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Abstract

This thesis deals with the dynamics of the classical configuration of a quan-
tum field unstable due to pair creation. The effective action method is
developed first to treat such problems for a simple two-field model. Physical
quantities such as pair creation probabilities are related to a complex function
called the "effective configuration,” which is defined to minimize the effective
action. Unitarity of the S-matrix is verified at the lowest order of the weak-field
approximation. At the same order, the real valued vacuum expectation value of
the quantum field, named the "real configuration,” is constructed in terms of
the effective configuration. An integro-differential equation for the real
configuration is given and is used to show that the real configuration is causal,
while the effective configuration is not. Two practical applications of the
effective action method are discussed. The first deals with pair creation in an
anisotropic universe, and the "real geometry" is given in terms of the "effective
geometry” in the small anisotropy limit. The second deals with expanding
vacuum bubbles. Corresponding to three possible situations, three kinds of field
equations for each of the effective configuration and the real configuration are
obtained. The behavior of the bubble is also studied by a semi-classical method,

and one of the three situations is suggested to be plausible.
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1. Introduction

Quantum field theories deal with two kinds of objects: a set of particles and
anti-particles, and field configurations. "Elementary particles” belong to the
former kind. Most of the high energy collision experiments are aimed at ex-
amining their properties, and we have been successful, to some extent, in con-
structing models appropriate up to energies of ~100 Gev. The simplest example
of a field configuration is the electro-magnetic fleld radiated by a classical
charged source. Within the framework of quantum electro-dynamics (QED), that
radiation field is described as a coherent state, that is, an eigenstate of photon
annihilation operators [1]. In general, the classical electromagnetic field F*(z)

we observe is understood as the expectation value of the quantum field operator

() .
Fv(z)=<F*(z)>.

In this sense, classical field theories are reproduced by quantum field theories in

the limit of A- 0.

As the result of recent development of models of fundameéntal interactions,
expectation values of quantum field operators, or field configurations, have
acquired more popularity. Gravity is one of them: The quantized versions of
Einstein's theory of gravity coupled with matter have been suffering from non-
renormalizability. However, development in supergravity theories [2] and string

theories [3] have given us a hope that someday we might have a renormalizable
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gquantumn field theory of gravity with matter. In such a theory, the classical

observable metric would be the expectation value of the metric operator.

Field configurations play important roles in unified models of elementary
particles: In 1960, Nambu [4], stimulated by the Bardeen-Cooper-Schrieffer
theory of superconductivity, introduced the idea of spontaneous symmetry
breaking into the dynamics of elementary particles. The idea was to let the
pround state be less symmetric than the Lagrangian is, by having nonzero
expectation value of certain field operators. For example, the strong interaction

among N-quarks has chiral SU(N)xSU(N)z symmetry at the Lagrangian level,

which is violated by having nonzero vacuum expectation value (VEV) of ﬁ 4: 9,

1=t
where g;(g;) is the i-th (anti-)quark field operator [5]. In the Glashow-
Weinberg-Salam model [8] of weak and electromagnetic interactions, the
SU(2)xU(1) symmetry is broken down to U(1)e,m by a nonzero VEV of a neutral
scalar field called the Higgs field [7]. In attempts to construct grand unified
theories (GUTS) to describe strong, electromagnetic, and weak interactions, we
are forced to introduce more VEVs of Higgs fields or bi-linear scalar products of
fermionic fields to obtain non-symmetric low-energy states. Investigation of the
dynamics of these VEVs, or field configurations has become necessary for under-

standing the phase transitions [B~10] in the early universe.

In many of the models where field configurations play an important role,
gquanturn effects are not negligible, in some cases, even essential: In the limit
Ft- 0, quantum field theories give classical field equations for VEVs of quantum
field operators. When F# 0, the classical field equalions are modified by quantum
effects, so that the behavior of VEVs, or field configurations, differ from that of
classical solutions. In particular, when particle creation is possible, the classical
solutions can be unstable and decay as time passes. These created particles

usually occur in pairs of particle and anti-particle in order to conserve total
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quantum numbers. For example, in gravity theories quantum effects are essen-
tial in blackhole evaporation by particle creation (Hawking effect [11]), and in
dynamics of early universe [12] including anisotropy damping by pair creation
[18]. In theories with spontaneous symmetry breaking, in somme céses, the choice
of the ground state can be totally governed by quantum effects [14], and pair
creation during phase transitions may also be essential in understanding the

dynarmics.

In this thesis, we will develop the effective action method in order to study
quantum effects (especially pair creation) on field configurations, and discuss
two possible applications of the formalism. The effective action method is useful
in the sense that it deals directly with matrix elements of quantum field opera-
tors; in the limit - 0, the effective action is equal to the classical action and
therefore equations for field configurations are automatically equal to classical
field equations. One of the other advantages is that it provides a consistent
guantum-mechanical description of the process. In particular, when the classi-
cal configuration is unstable against pair creation, it allows us to take into
account the back reaction from produced pairs in a systematic way, in contrast

to semi-classical methods.

In Chapter II, we investigate the effective action method in a simple two-
field model that has the essential features necessary for practical applications
[18]. Namely, the fields whose configurations we are interested in are bosonic
and real, as the gravitational field and the real Higgs scalar fields are. When pair
creation is possible, the effective action Sy;; has an imaginary part. Thus, the
matrix elements, or more precisely, Schwinger averages [15], of the real fields
obtained by minimizing S.;, are complex. These Schwinger averages are called
the effective confisuration The observable field configurations are the diagonal

matrix elements , or the "expectation values"” of real fields, which we name real
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configurations. We derive the relation between these real configurations and the

effective configurations.

Chapter 1II discusses an anisotropy dissipation model of the early universe
[18]. In such a model, matter fields are coupled to the gravity in the conformally
invariant manner. Because of this coupling, an anisotropy of the early universe
is expected to decay by creation of pairs of matter fields. Hartle and Hu [13]
applied the effective action method to a model with a conformal scalar field in
the small anisotropy limit and obtained numerical solutions of effective
configurations of the metric, which they called the effective geometry. We dis-

cuss the real configurations of the metric, which we called the real geometry.

In Chapter 1V, we discuss pair creation during phase transitions between
states with different VEVs of Higgs fields. The process of phase transition from a
higher energy state to a lower energy state is thought to be initiated by nuclea-
tion of "bubbles"” of region where the field configuration has the value of the
lower energy state. At the classical level, these bubbles are thought to expand
quite rapidly and leave a clean vacuum state. However, it is not necessarily so
when quantum corrections are taken into account. Expanding bubbles can
create pairs, quantuni-mechanically. Thus, the expansion rate is expected to be
slower than the classical expansion rate, and the resulting state may not be so
clean. We give field equations for the field configuration by applying the effective
action method developed in chapter 1I. A semi-classical analysis is also

presented.
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II. The Effective Action Method

1. Inmtroduction

One of applications of the effective action method was given by Hartle and
others [2~4] in their studies of the dynamics of the early universe. They calcu-
lated the one-loop contribution of the conformally invariant scalar field to the
gravitational effective action Sgry. The production probabilities of scalar pairs
are given in terms of metrics obtained by minimizing S,r;. Since Sgr;y had an
imaginary part corresponding to the possibility of pair creation, the resulting

metrics were complex, and were called the effective geometry.

Recently, we gave the real observable metric, which we called the real
geometry, in terms of the effective geometry [5]. The real geometry is defined
as the expectation value of the metric operator in the initial vacuum state, while
the effective geometry is the Schwinger average of the metric operator between
the initial and final vacuum states. Furthermore, we verified that the real
geometry had no imaginary part. However, we found that the unitarity of the S-
matrix is not trivial as a consequence of the complex metric. This unitarity
problem was solved in reference[6], where the causal propercies of the real
configuration were also clarified. This chapter covers the content of the refer-
ence [6].

A typical model we consider has two fields, one of them, the g-field, whose

configuration we observe, real, and the other, the p-field, of which pairs are
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created that need not be real. Further Lorentz-properties of the §- and p-fields
are left unspecified. These fields interact via a B¢’y coupling so that some
configuration of the g-field creates pairs of gp-particle and anti-particle. As a
result of the backreaction from the produced ¢-pairs, the configuration of the
f-field decays with time. The problem is to give a description of this decay proc-
ess and also to give prescriptions to obtain various physical quantities, including
pair creation probabilities. Although we confine ourselves to the case where the
p-field is bosonic, we see no difficulty in extending the results to include fer-
mions. The renormalizability of the model is assumed for the unitarity discus-
sion. In this two-field model, we shall call the complex function '{;" that
corresponds to the effective geometry in Hartle and Hu's model the effective
configuration. Similarly, we shall call the real function g7 corresponding to the

real geometry the real configuration.

In Section B, we construct Sgr; from the generating functional of the con-
nected Green’s functions by using a Legendre transformation on the g-field.
This construction gives B’J in terms of the real external source of the g-field, B,

which enforces the boundary condition on the configuration, if necessary.

In Section 3, transition amplitudes are given in terms of § at the 0(5°) of
Se¢rr. We prove that they satisfy unitarity conditions by using the relation
between E and B given in the previous section. It is clarified which physical
processes are taken into account at each order of the perturbative calculation
of E

The real configuration is discussed in Section 4. The proof of the relation
between § and 7 given in Ref. [5] is improved to include the contribution of mul-
tipair intermediate states. Its consequences are discussed in relation with

causality, the real configuration §7 is shown to be causal, while § is not.
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The appendix gives discussions based on the operator field equations. The
relation between 7 and E given in Section 4 is reproduced by taking the initial-
vacuum expectation value of the operator field equation for the g-field. Finally a
word on notation: we use subscripts 1,7 for any labels the field operators and
their matrix elements may carry, including the space-time variables. Also impli-

cit is integration and summation over repeated indices.
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2. The Effective Action

Transition amplitudes in a quantum field theory are calculated from the
Green's functions with the help of reduction formulas. The Green's functions are
the matrix elements of the time-ordered products of field operators between the
initial vacuum |0—> and the final vacuum |0+>. In the Heisenberg representa-
tion, |0—> is defined to be the perturbative vacuum state for £ - —; for exam-

ple,
Ny(t =—)|0—> =0, (.1)

where Ny(t) is the operator which gives the number of p-pairs at time £. Simi-

larly, |0+> satisfies
Ny(t=+=)|0+> =0, (2.2)

The Green's functions are obtained by differentiating the generating functional
Z[B,J] with respect to the external sources; w.r.t. B; for the g-field and w.r.t. J;
for the p-field. This relation between the Green's functions and 7 is easily seen

in the Feynman path-integral formula:
e8I = <0+[0->p; = [ [af][dp][apt]e CEABA AT (o)

where S[B.¢] is the bare action. We assume that the perturbation theory applies
to this S[B.¢]. An explicit form of S is given in the appendix. Typically, the
source J is zero and is therefore taken to be zero after all necessary
differentiations with respect to J are performed. On the other hand, B is not
sct to zero since it is used to excite the S-configuration out of the initial vacuum.
In cases when initial conditions on the g-configuration are desired, B enforces

them.
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For our purpose of dealing with the configurations of the g-field, it is most
convenient to define the effective action Sgzr[8./] as a Legendre transform on

the B-field, but not on the ¢-field:
Soss 8.1 = Z[B.J] + BiBi. (2.4)

In the above, E is defined by

™ 6Z[B.J
Bo=- B (2.5)
05;
We shall call this E the effective configuration. Using the effective action Sess of

(2.4), we can obtain the Green's functions by differentiating the vacuum to

vacuum amplitude;

o 1ers BI1FiB)

<0+] 0—>ps = (26)

with respect to B and J, keeping in mind that E is a functional of B and J
according to (2.5). Because of (2.4), S,sy is the generating functional of con-
nected graphs which are proper only for the g-fleld, i.e., do not become dis-
jointed upon removal of a §-propagator. Some of the lower order graphs are

illustrated in Fig. 1.

By using (2.8), we find that the effective configuration §; defined by (2.5) is

the Schwinger average of the g-field operator B:

~ <0+ IE‘ iO“‘)B_J

t T T L0+]|0—>py (2.7)
In terms of Sy, 'E satisfies the following equation;
0S.rr B
05es[BI] _ o (2.8)
68:

The above equation follows from (2.4) and (2.5) with the help of the chain
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¢
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+ + & F e
J
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Figure 1: The lower-order Feynman graphs that represent S, [rB’.J]. The solid
lines are g-propagators and the wavy line the f-propagators. The dotted lines

show possible cuts.
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differentiation rule;
05ys (BI) _ SBBJ] s2[8J1 [ p , 5, 05ilBJ]
0B; 68; 0B; A ’

where the first and second terms cancel each other because of (2.5). It should
be noted, however, that (2.8) is an integro-differential equation for § and does
not uniquely determine 'E It seems rather difficult to find the boundary condi-
tion on 'ﬁ by any physical argument because ﬁ is an off-diagonal matrix element
of the field operator g according to (2.7) and therefore is not directly observ-

able. However, the definition of 'E (2.5), completely determines it.

The uniqueness of E is easily seen at lowest order of the weak-field approxi-

mation. For small B, Z[B,J]is of O(B?),

Z[B,0] = - %—Bi [H‘_Bj + O(J1J) + O(JTIR) + O(BS), (2.9)
1

where (1/ D)ij = (1/ D)ﬁ contains the contribution of the g self-energy graphs.
In this case, (2.5) leads to the following definition of §;

[117]”3,. + O(J1T) + O(B?). (2.10)

v

From (R.4) and the above, we find
~J 1 J ~s ™ NI,
Serr[8.0] = 5 BiDyB; + O(JJB) + O(B°).
The equation (2.8) translates into

.Dijrgj G . -—‘B,;. (211)

The general solution of the above equation is



w 1w

B = [H”Bj + 82 +... (2.12)

i

where %is defined to be the same as the one that appear in Z of (2.9), and §°

are zero modes defined by the following,
Dyf; =

According to (2.11), we have to exclude these §° from the solution (2.12).

The effective configuration given by (2.5), or equivalently (2.8) with zero
modes subtracted, is complex. This is because Sgry has an imaginary part
corresponding to the physical intermediate states or "culs" in some of the
graphs. For example, the graph illustrated in Fig. 1{a) has a cut C, correspond-
ing to the one g-pair state and thus gives an imaginary part to the D in (2.10) ~
(2.12). Therefore, Ei in (2.11) is complex for nonzero real source B. This com-
plexity of 2?‘ is in no contradiction with equation (2.7): Because of the nonzero B,
the configuration of the g-field is excited out of the initial vacuum and subse-

quently g-pairs are created. Therefore, |0+> is not the same state as |0—>*.

The effective configuration E given by (2.10) is not retarded. In models with

time-translational invariance, we can write (2.11) as follows;

Bz) = J d*z' [ d*%pG(p)e ®E=1B(z") + O(B?), (2.13)

where we used the diagonal metric (+——-) and omitted indices. On the physical
sheet of the complex p%plane, G(p) is analytic except for cuts on real axis
corresponding to g-pair creation. On the other hand, the imaginary part of D(p)

in (2.13) is always negative because the imaginary part of D is positive to insure

¢ The absence of zero modes in EI can also be understood in the following manner. If B =0,
nothing happens in the initial vacuum. Thus | 0+> is proportional to | 0—> and (2.7) gives
ﬂ{ =0.
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the positivity of probabilities. Therefore, (2.13) can be written as
B = 4! 3 0 ip(z—=2") t 2
Blz)= [ d%z' [ a% fc dp® G(p)e ®==1B(z') + O(B?) (2.14)

where the contour C runs beneath the cut for pp < 0 and above the cut for
p%> 0, as is illustrated in Fig. 2. Because of this contour, the propagator 1/ D
has an advanced part. For £ < {', the contour C can be deformed in the upper
half-plane of p° to the contour C'. Thus, t the discontinuity of the analytic func-
tion G(p) on the negative real axis contributes to the advanced part of 1/ D.
Since there are no zero-modes present to cancel this advanced part, 'B" has an
advanced part, i.e., the effective configuration ﬁ is not causal. The real

configuration should not have this property.



o Y

Figure 2: The analytic structure of F(p) in (2.14) on the physical sheet of com-
plex p%-plane. Since the S-configuration is unstable, the on-shell poles are on the
unphysical sheet. The line C is the contour for 1/D in (2.14) and the line C” is

the contour for 1/D7 in (4.9).
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3. Transition Amplitudes and Their Unitarity

Since the action and the source terms are Hermitian, the unitarity of the

S-matrix should be satisfied,
StS =1, (3.1)

When we calculate transition arnplitudes in perturbation expansion, it is very
important to verify this unitarity at each order. It also clarifies the correspon-
dence belween a certain order of calculation of ?)’J and the physical processes

which are taken into account.

We define the states |i—> as the states which have definite quantum

numbers at £ = —oo,
Ut =—w) |i~> = g M |i—> (8R)

where (M) denotes a set of all the necessary quantum numbers. Similarly, the

states |i+> are defined by
QU (t =+o)|it+> = g/ |i+>,
Since the S-matrix elements are written as
Sy = <i+|j->,
(8.1) reduces to

<G =i +><i+]j'=> = 65, (3.3)
%

In this section, we verify this relation at the lowest order of the coupling-
constant expansion of S;r; for two cases, (i) both |j-> and |j'—> are the initial
vacuum state |0—>, and (ii) |7—> is |0-> and |j'—> is an initial state |a,b—>

with a g-pair of quantum numbers (a, b). Note that J = 0 unless otherwise
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specified.

(i) Here we have <0—|0~> =1,

The first term in the expansion (8.3) has the intermediate state |0+> and is

therefore vacuum-to-vacuum transition probability,
|<0+]0->|2 = | CFANFP |2 < o-r, (3.4)

where K is given by
k= 21111[5 ['E-O]_E::Bi} = *Im[B’i {%—}B}] = ~Im(BFDsB;) = B#DLE;.
ij

Here, D! is the imaginary part of D {D = D®+ip!), which comes from the graph
(a) of Fig. 1.

The next term is the transition probability from the initial vacuum |0—> to
the one yp-pair final state |a,b+>, where a denotes the set of quantum numbers
for the particle and antiparticle, respectively. The reduction formula and (2.3)

give

<a,b+|0=> = Py Py <O+ | T($:0]) | 0>

id ié
= PmeJ 60” 57, — <0+ 10“)5,1 .
- p.p.|0821B.J] 62[B.J] , ~i8*Z[B.J]1) iz
= PaBiy o 57, 57700, (3.5)

J=0

Here, P, projects p; to the £ = +w annihilation operator for a p-particle of
guantum number a, and ﬁb_,— does similarly for a p-antiparticle [5]. To evaluate

(3.5), we start from the following relation,
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82[B.J1 _ 8Ses[B.J]
67 87

(3.6)

obtained from (2.4) and (3.5). Note that on the Lh.s. B is kept constant against
the differentiation whereas on the r.h.s. §is. Since Sezs is of O(JJT) and higher
as is illustrated in Fig. 1(d) and (e), the first term in the left most side of (3.5)

for vanishing J. Differentiating (3.8) with respect to Jf, we learn

62Z[B.J] _ 6%Sessr[BJ] " 6FL[B.J] 62Ses[B.J]
8J16J; 6J76J; 6Ji 6BLsd;

The second term of the r.h.s. of the above equation vanishes for § = 0, because

from (2.11),
6~
= 0{J).
6J% (/)
Therefore, we obtain
_ —16S.7[8.7] ]|
+|0=> = Py Py; +]0->.
<a,b+|0~> = Py Py; 57167 |J=O <0+]0—>

The r.h.s. of the above is O(F) because of the contribution of the graph (e) of Fig.

1. We write that term as
<a,b+|0-> = iF 4 B, <0+ [0—> + ... (3.7)

Since the above depends only on the quantum numbers a and b, F* causes a

Fourier transform with total four-momentum, p;, of the pair on ﬁ in x-space:
Ft o f diz e 7,

In particular, the superscript F* denotes that the time component is

transformed with the positive energy. The total one-pair creation probability P,
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Py= % [<abt]0->|% = [iFhnfy %™ = BiFaxFdnbne™,  (38)

where F~ denotes the conjugate of F*, which causes the Fourier transform with

a negative energy.

Since, in the small E lirnit,
[total pair crection probability] =1 ~ |<0+|0->]2 ~ P,,
the following relation should be true,
BEF o F B = R. (3.9)

We prove as follows: First, note that

Db = L {FacFae + FbeFa) (3.10)

Nl»—*

This form is explained by the fact that D depends only on the square of the
external momentum. Furthermore, in the test-field approximation, i.e., if -
pairs are created by an externally fixed (i.e., nondynamical) g, (3.9) follows from
12.10) because of the reality of §. In our dynamical case, however, (3.9) is not
trivial because '{7?' is compley; it is therefore necessary to use (2.11) as follows:

R
TR T

R R s S 1 2 W iy I SO O b
'",,,?;;‘Lo(z) Bon [Dfﬁ% L [DIDR] B

Lhs of (39) =B

1 > \n —m 1 1 n“—i- n-mp+E-
= 5 (7) BB'}}—[DJF} [i’ Fr+(-1) F F]

m
J—{Df LS
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= Y apmptlprd }nz), 1ty 1)

R =gven D'Rl B DRl DRJ
=B-Lp'lp=rhs of (3.9
D* D

where the indices have been omitted for simplicity. Thus, at this order, (3.8)

leads to
Py = RB—R.

In the similar way, it is easy to show that the total n-pair creation probabil-

ity P, is given by
Pp==—e %+ ... (3.11)

Here the first term corresponds to the totally incoherent production of n-pairs,

which is illustrated in Fig. 3.
By summing only the incoherent multipair production probabilities, we
obtain
» _1_?’:_8__3 =1=<0-]0->.
= ql
That is, our calculation of Sgry and £ at the level of Fig. 1(a) is equivalent to
counting only the incoherent production processes: Only when we extend our

calculation to graphs which are cut into more than two pieces, we begin taking

into account the coherent production processes®,

* When S, ;, is calculated in the loop expansion, summation over all coherent terms of (3.11)
becomes important for unitarity. In the charged pair creation model in a constant electric
field, Tm(Sess ) was calculated by Schwinger [7] in the proper time method. The author and
Kobayashi [8] gave the coherent part of P, and showed that the Schwinger’s result is repro-
duced by using unitarity.
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20 5

Figure 3: The n-pair creation probability P,. The first graph is the totally-
n
incoherent part %—e‘R in (3.11). In the second graph, at the top, two pairs are

created coherently. It is obvious that the contribution of this term to 7, is

necessary to satisfy £ P, = 1 only when Sg;; includes a one-loop graph with four
n

vertices.
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(ii) Inthis case: <a,b—|0~-> =0

For the calculation of the lowest order term, we note that
<0+ |a,b—> = iF g Pk <0+ ]0->.
This leads to
<a,b—|0+><0+|0-> = —iF i fire 2. (3.12)
Similarly, the next term is obtained as follows,

Y <a,b—|a'b'+><a’b'+]0->
&b’

= (v:mkﬁmz«*;gklb%} FaveFavi B —iFoufir R)e 8 (3.18)
! k'

where we used (3.9). The graphs corresponding to (3.12) and (3.13) are illus-
trated in Fig. 4(a) and 4(b), respectively. The (n+1)th term, i.e., the term with
n-pairs “+" intermediate state, has the following incoherent parts;

R"] -R

-1
A0 i
TL!J

n—1)!

(J+11) (

where I, II and II] represent the 1st, 2nd and 3rd terms of (3.183), respectively.

Surmnming over these incoherent parts, we obtain

<ab—|0-> = —iFF* + iF* — iF“g—'L;-F”F“'E, (3.14)

where we have omitted trivial indices.
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!
Co,b-]0->+ B
!
(o)
S I~ . /]
. b« DD Dr D
{
(bl) (b2) (b3)

£ loops

Figure 4: The matrix element <ab-—|0-> The graph {a) and (bl) ~ (b3)
represent (3.12) and the three terms of (3.18), respectively. The content of the

"dressed” propagator 1/ D is illustrated in (c).
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When the §-field is not dynamical and E is merely a given real function as it
is in the test-field approximation, the r.h.s. of (3.14) is zero. Since there are no
virtual 8-quanta, the third term of (3.14) does not exist in such models. The first

and second terms cancel each other simply because ﬁ is a real function.

In our dynamical case, the r.h.s. of (3.14) is verified to be zero with the help

of the energy conservation rule,
F+i-F* =0, (3.15)
Adding
0= —-*LF*—B%F*F"E

to the third term of r.h.s. of {3.14), we obtain

+

D*

i
D*

> T PR = 4 IR —a ._1.._ e .l_
~iF P = iF DI = iF S (D-D7) B

= {F*(§*—B), (3.18)

where we used (2.11) and (3.10). Therefore, (3.14) is equal to zero.

The other unitarity relations can be verified in a similar way by using the
basic relations (3.9) and (3.16). It is important to note that, in contrast to the
test-fleld approximation, unitarity does not hold for arbitrary complek functions
B. The effective action § has to satisfy (2.11) with the real source B for (3.9) and
(3.18). And for (2.11), it is necessary that DE be a real function. Therefore, §

cannot be any arbitrary function.
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So far, we have limited ourselves to study the lowest nonfrivial order of the
coupling expansion: Only the contributions of the graphs (a), (e) and (d) of Fig.
1 to the S¢ry have been taken into account. Howeéver, the discussion of unitarity
given in this section can be easily extended to include any graphs which contri-

bute to O(F%J°) of S,;; such as graph (b) of Fig. 1.
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4. The Real Configuration

In previous sections, we observed that matrix elements are given by the
effective configuration § defined as the Schwinger average (2.7) of the p-field

operator E

o <0+|B;|0->

YT+ 0> e

For nonvanishing B, the initial vacuum state |0-> has ¢-pairs as ¢ - += and
therefore represents the different states |0+>; |0—> is not proportional to
[0+>. Because of this reason, ﬁ is complex and is not an directry observable

quantity itself. The real configuration f7, the configuration of the g-field that we

observe, is defined as follows;
T = <0~|B; |0->. (4.1)
This quantity is calculable in the following form

Br =3 <0—]j+><j+|B; |0~>, (4.2)
J

in the framework of the effective action method described so far. As we did in

the previous section, we first deal with (4.1) at the level of Fig. 1(a).

It is easy to find the first term, 7 = O:
<0-|0+><0+|B;|0—> = B;e R, (4.8)

This is represented graphically in Fig. 5(a). For the next term, we need a new

matrix element <a,b+ ]Ei |0—>, which is calculated as follows,

<a,b+|B;|0-> =i £

35, <a,b+|0—>

= iE%T {iF;;,k'Ek <O+] 0——>}
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i 63, e v
= iFa%klggf’" '*'iFa’%kﬂkﬂi]<D+ |G-
and (3.7) and (3.9) lead to

188,

Y0Pk | pB.|.-R
3B, +RB; e, (4.4)

):‘é <0—|a,b+><ab+|B;|0-> = {'ﬁlegbk-F;gk
@,

Here, 68/ 6B is the full propagator of the g-field because, from (2.5), it is just

the second derivative of Z by B. At the order we are working, (2.11) gives

168 _ i
6.B; ol

Therefore, {4.4) can be represented as in Fig. 5{b). The second term of (4.4)
partially cancels the factor e ™F of (4.3) as the third term in (3.13) did for (3.12).

The incoherent part of the (n+1)th term is

N i riom BE® e~ _R
{{)’F F+F'—_—_—(n-l)! +'n! ﬁ]e ,

as is illustrated in Fig. 5{(c). Therefore, by summing all these incoherent higher

order terms, we obtain
~y '1: - ~t
pr=p; + [3] F oo Fapie B (4.5)
ki

To verify the reality of r.h.s. of (4.5), we operate T's on (4.5) [5]:

Ftg" = Ft B+ -I’;—F’fF-?}*] = F*B, (4.62)
= = ¥ ..3:_ - -3 - _._.]:_. _1_._ D= 1 = -R*
FE~F{E+D(FF+FF)§] F[DJ.—D(D D)D*]B F-5*, (4.6b)
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o

H .
i- (D@ OO F
{(a) (bl) (b2)

ORI
. %*@«%
o ¢

(c)

Figure 5: The real configuration g7. The graph (a), (b1) and (b2) represent (4.3)
and the two terms of (4.4), respectively. In the third graph, the isolated broken-

loops correspond to £. The (n+1)th term is illustrated in (c).
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where we have used the energy conservation law (3.15). Trom the above, we find
FHE") = (F @) = (FE) =FE=F'p,
and similarly,
F(F*)=FF.
Therefore, 87 given by (4.5) is real.

In terms of B, (4.5) can be expressed as follows;

:—L—i—.""_l._ :_1_.#'+,—_1__=1
£ ID+DFFD"]B D(DHFF]D*B D"B' (4.7)
where

DT =D —iF*F- = DR +%—(-—F’“F”+F“I=‘*). (4.8)

The last equality of (4.7) can be proven as follows: First, we define

407y | (DR=prsp) L_|(pr+py L
DF D¥ DF

\

m

=
DR

DR

n+Tm 1 ntm+l 1 nt+m+l

where we have used (3.15). Changing the index (n,m) to (N=n+m,n), we find

N

1 o 1
¥ 'B-R"} (CN—CN_l)'*-[D_ 'B]—?—

%_Drpl“ = 3! -513—{ (CN+CN—1)}



N N
1 -1
= A "b—_{( 1)N } DR ]
= i ._.1..... (_D* +D ) ! = 1
=0 D DR DR+D+ D~

where

W= 9 (-1r = Lo,
720
The causal structure of 7 is manifest in (4.7). The only difference between
(2.11) and {4.7) lies in the sign of D~, which is the negative-energy imaginary
part of D*. Thus (4.7) can be expressed in terms of the same F{p) defined in
(.14);

F(z)=[faz [ % fc,, Ap°G{p)e ?E=1 B (z"). (4.9)

The new contour C” has to run above the cut for both p®>0 and p®<0,
reflecting the difference of sign in D~ (see Fig. 6). Comparing the contours C
and C", we notice that the second term in (4.5) corresponds to the integration of
the same integrand as in the r.h.s. of (4.9) along the contour C'in Fig. 2. For
f < t', the contour closes in the upper half plane where no singularities exist.
Therefore, the “propagator” 1/ D" is retarded, end g7 (z) has no advanced part,
that is, 7 becomes nonzero only after the source B has. This causal property of
g’ agrees with the physical picture that |0—> is the vacuum not only in ¢-sector
but also in f-sector before the source B attains a nonzero value. The real

configuration §” is zero initially and gets excited by the source B.

¢ This difference is elso understood from (4.6): If cne defines 1/ D" as f = -fD-"'-;B , (4.6b) im-

ples that the imaginary part of 1/ D" for negative energy has different sign from that of
1/ D7, while it is not so for positive energy. This argurnent completely determines 1/ D7,
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Since we gave the relation between the effective configuration ',5 and the
real configuration §7, the transition amplitudes, which are given in terms of 'B‘
can also be given in terms of §7. For example, by substituting (4.6) into (3.9), we
find that the vacuum-to-vacuum transition probability e ¥ is obtained from g

by
R = FF P (4.10)
Sirnilarly, the one pair creation amplitude (2.7) is
<ab+|0->=1iF} pre R, (4.11)
The inverse of (4.5) is also useful:

=1 ol ror s pr_ b oprpepar
i = g OF = - PP, (4.12)

From this formula, the one-pair annihilation probability is obtained as follows:

<0+|a,b—> = iF 7om Pm = iFasm[ﬁr"‘;TZD;ﬂ’] = iF,},m[—%)—D*ﬁT] . [4.18)
m

m

It should be noted that, as is illustrated in the above examples, all the matrix

elements are calculated from the physical quantity 7.

In this section, we worked at the order of the graph of Fig. 1. However, any
O('EZ) contribution to Sg;y can be easily included in the results. In particular,
the causal property of the 87 remains unchanged: The real configuration 8" is
always retarded. The Green's function 1/ D has various cuts on the real axis of
complex pg-plane, while the retarded Green's function 1/ D" is always obtained

by shifting the integration contour to the upper half-plane.
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H. Conclusion and Discussion

We have developed the effective action method to deal with unstable
configurations by using a two field model, where we have a f-field whose
configurations are observed and a ¢-field whose pairs are created. At the lowest
nontrivial order of the weak g-field approximation, i.e., at O(f?) of the effective
action S,ry, the unitarity conditions among the g-pair creation and the p-pair
annihilation amplitudes are verified. Because of the dynamical property of the
p-field, the effective configuration E in terms of which the transition amplitudes
are expressed, is complex and made unitarity nontrivial. By the same reason,
however, f-quanta can appear as internal lines of the Feynman graphs and are

shown to save unitarity.

Furthermore, we derived the equations relating the real configuration g7
and the effective configuration 'ﬁ which were used to show that 87 is causal as we
expected on physical grounds. Using results of the unitarity discussion, we were
able to sum the higher-order incoherent terms in the expansion of 87 to obtain
(4.5). Then (4.5) was converted into (4.8) and (4.7). The equation (4.7) has a
consequence that the real configuration g7 is retarded relative to the source B.
This agrees with the physical picture that our initial state |0—> is initially the

vacuum state, and the real configuration 7 is excited by the source B.

In higher orders of the weak-field approximation, 8" is related to 'ﬁ" as
g" = § + [connected terms such as Fig. 5(b1)], (5.1)

as the extension of (4.5). In general, the connected terms in the above are non-
linear both inE and E*. For example, when 0('53) of Sgrs is taken into account,
the connected terms in (5.1) are of O(F%) + O(FF*) + O(B*?). Because of this
nonlinearity, the simple relations like (4.6a) and (4.6b) would not hold at higher

orders*. However, on physical grounds, we expect that the causal structure of

* A partial discussion at this order is given in Ref. {9].
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f" does pot change. £ should be nonzero opnly after the source B has. Thus,

the expression {4.7) of §7 in terms of B is expected to be generalized as follows;
F=3 f dte,.. A, Gz, 0 e, .. Bl (5.2)
n

where G's are real, retarded Green's functions,

G(zz,..2,)=0 ift <any {;,

The G, is obtained by the (N +1)-point connected Green's function G, by deform-

ing the integration contour: The first term E on the r.h.s. of (5.1) is given by
B(z) =Y [ d%z,..d%, Gy (zizy...2,) B(2))... B(z,), (5.3)
i

and the connected terms in (5.1) then add the discontinuity to G,'s so that the
sumn becomes the retarded Green's function &G;'s. For practical purposes, the
generalization of the equation (4.B) for g7 would be more useful than (5.2)

because the source B is implicit in most actual applications®*.

Throughout this chapter, we have assumed that the field configuration is
totally unstable, i.e., m} > 4m?, where mg denotes the mass of a -quantum.
However, the effective action method as developed here can also be applied to
the case where m§ < 4mg, when only a part of the configuration decays. In
such a case, G{p) in (2.14) has on-shell poles pg = ﬂ:m on the physical
sheet Fig. 2 of complex py-plane. These poles cause further complexity of E In
the expansion (4.2) of 87, however, we have an extra contribution from + states

which have some configuration left over, which makes §” real and causal again.

* The proof of {5.2) was recently given by Sonoda [10].
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Appendix. The Operator Field Equations and the Real Configuration

Relation (4.5) between the real configuration 7 and the effective
configuration ﬁ is consistent with the operator field equations. The purpose of
this appendix is to reproduce (4.5) from the operator field equations using naive

arguments.

We write the bare action S[B,¢] explicitly as follows;
SiB.el = %‘ﬁiﬂi?ﬁj + iy + gueBipive.- (A.1)
Then, the B-field operator B’ and the ¢-field operator ¢ satisfy the following;
D8B; + 9w 31 = B, (A.R)

dy®; + 9ubiPe = 0. (A.3)

where we have neglected the source J for simplicity. First, we take the matrix

element of (A.2) between <0+| and |0->.
DI<0+|B; |0—> + gy <O+ P[P, |0-> = B, <0+ |0->, (A.4)

In the above, the second term of the Lh.s. is a local product and is well-defined
as an equal time limit of the T-product. Therefore, we substitute <0+|3]3, |0—>

by <0+| T($]2,)|0~>, which satisfies

<O+| T(373:)10—> = <0+ T{‘—!}'—B} |0—>. (A.5)

This relation is most easily obtained in the path integral formalism as follows:

For the action (A.1), the [dp][dg'] integration in (2.3) can be done to yield

: 1
@[BJ] = I[dﬁ] det d {BDD‘B"’T dg B
det(d+gﬂ)
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Therefore,

1o Viges = L0 10 izipJ)
<O+ | T(3{0)|0—> A

J =0

- ~i | _detd .
”f[d‘e] [d+gﬁjuc det(d+g ) = )

= <0+ | ~ |0=>.
d+9 8 Ju

In the expansion of (A.5) in terms of the coupling g, gy X [the first term], which
is represented by a tadpole graph, vanishes corresponding to the fact that we

assumed no O(B) term in Z of (2.10). Therefore, (A.4) reduces to
Gom § o ] <0+|B; |0—> o
{D +ig 5 gg]ij ~<o+]0-> + ... = Bj. (A.8)

Here we defined

U U 0 I !
dgdij"gubdtmggnmdnk-

Equalion (4.8) is equivalent to {2.12) at the order of the graph (a) of Fig. 1.
To obtain (4.5) from the operator field equations, we take the expectation

value of (A.R) in the initial vacuum state, |0->:
DJ<0~|B; 0> + gup <O~ | T({e)|0—> = B (A.7)

We can calculate the second term of the Lhs. of (A8) by inserting

1=2 |n+><n+|. Then, the first term of the series,
n

Qi 2} <0-|j+><j+|T(2{%x)|0—>,
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is given by

3 il -~ 1
CO—{04+5><0+ | T |—2]  |0=> = gy <O~|0+>}i=0g <O+ |B|0—> + ..
fu<0—| I [d+gﬁ L 9 <0—| [1(1 g <0+|6] d‘]uc

= . .}:... »1 -R
"’gtlk[?’d gﬁd‘}&e . (AB)
The next term, § = (a,b), yields the following:

gur 3 <0-|ab+><ab+|T(37:)]|0->
z _

R P . 1) |1 1 1
=~ Fabm Fobi~1BmFasmF dbs {-5] [ﬂga-gg] + R g [%d—gﬁgll-] (A.9)
e ik

TN

where (8.9) has been used. The graphs that represent (A.7) and (A.8) are illus-
trated in {a) and (b) of Fig. 6, respectively. By summing all the incoherent con-

tributions of multipair intermediate states, we obtain

P 5 - + . 1 ] 1 1
G <0—{ T(3[0:)10—> = —iBaF eomFani — i1BmFaomF abs [E} [—zg E_gﬂ
jm ni

; 1 ~1
+ Gk [ 7 9P ﬂw,
Therefore, (A.6) reduces to

DOg" —iF*F —i[g é—g‘]ﬂ (—iF PR + i[gé—gﬂ-'f}‘ =B (A10)

. =

Since, at this order,

o Pl g 2 i,
De ity gd,

Q-—|*—*

the second and the third terms of the Lh.s. of (A.10) combine into
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A' Pt

6, <O-| (@' 20>+

B
(0)

O - DGO O 7O -

Figure 6: The matrix element gy, <0—|T(%/®;)|0—>. The graphs (a) and (b)

correspond to (A.7) and (A.B), respectively.
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Dy (—iFF )R

By substituting (A.6), or its equivalent (2.12), DF = B into the r.h.s. of (A.10), we

obtain
D" = DB + Do (T FR"

The general solution to the above is

e 'ﬁ —-i%—F“F”ﬁ* + [zero modes of DY]. (A.11)

The zero modes in the above are excluded by physical arguments: The first two
terms of (A.11) are, as is shown in Section IV, retarded, while, in general, tﬁe
zero modes span all space-time. Therefore, if the zero modes exist in (A.11), 87
has always an advanced part. However, it is not allowed because the state [0->
is the vacuum state before the source B becomes nonzero. Thus, the zero

modes are excluded from {A.11) to yield (4.5).
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II. Anisotropy Dissipation Model of the Farly Universe

i. Hartle and Hu's Model

One of the possible mechanisms for dissipation of an anisotropy in the early
universe is creation of conformally invariant particle pairs. If a field @ is cou-
pled to gravity in the conformally invariant manner, $-pairs are not created in
an isotropically expanding universe [1]. Thus, an anisotropic universe is
expected to be driven to be isotropic by creation of ®-pairs. This mechanism was
studied, and shown to work, by several people by using semi-classical methods
[R]. These methods, however, had difficulties. The total pair creation probability
diverged as one approached the initial singularity, indicating that the semi- clas-
sical methods were not applicable near the singularity. To avoid this dif‘ﬁculfy of
traditional methods, Hartle, Hu, and others [3~7] applied the effective action
method to this problem. They showed that the s‘ingularity of the production
probability is removed by the quantum correction, which can be treated sys-

tematically by the effective action method.

In terms of the effective action method studied in chapter II, they calcu-
lated the effective configuration g, which they called the gffective geometry ,
of the quantum metric operator §,,. The given numerical solutions §,, have, as
expected, an imaginary part. The purpose of this chapter is to study the relation
between the effective geometry and the real configuration gJ,,, which we call the
rea) geometry in Hartle and Hu's model. This section outlines the work done by

Hartle and Hu in a manner suitable for further analysis in the next section.
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The action at the tree level is

= { qbzev=r]-L _ L E s ati
Y fdz ”‘Q{ISWGE ELQ 0,90,% + - @}—s—[radwiwn term]| (1.1)

where ¢ is the real scalar field , and the classical radiation is put in to give the
usual expanding universe at the tree level. Assuming spatial homogeneity, we

write the metric as

38 " .
d5? = az(??)[dﬁz“i; 1["“ Zﬁ(m]ij dztdxj} o

where the traceless matrix (%) represents the anisotropy in the expansion

rates of the universe. The action in terms of this metric is

2 2
S = Spovg[a.p] + f dn a3z é— {g% ——g}[gﬁi—] +oF[Ble (1.8)

-+

Flal= 3 2p,(m) 2+ 0(2), (1.9)

152 Ozt ox?

where
p(z) = a(z)d(z).
The gravitational action in (1.3) is given by [4],
Syrantylt, 1= —=f dn (~6(a' 427y + O(6%)) | (1.5)

where V denotes the volume of 3-space and primes denote derivatives with
respect to 7. The classical equations obtained by minimizing the action (1.5)

have a isotropic solution
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o 1178
a(n>={%~] VIBRGY L fyln) =0 , (1.6)

of & radialion-dominated universe with radiation-energy density
p+(n) = pr/ 2*(n). Since the funclion F(B) is independent from a, the "¢-field”
has no couplings with the "a-ficld”, This is because of the invariance of the cou-

pling between @ and g,, under a conformal transformation, or more precisely,

under the Weyl-rescaling,
¢+ QYz)d ,

G > Bz gy

As a result of this absence of a in /[8], no g-pairs are crealed in a isotropically
expanding universe like (1.6) in agreement with Parker's argument [1]. In terms
of the original scalar field @, the cxact wave- function of a particle in such a iso-

tropic universe is 1/ e (%) times that of a free particle in a flat space-time.

Assuming small §, Hartle and Hu calculated the contribution of the one-loop
graph of the p-fleld, which is illustrated in the figure 1, to the gravitational
eflective action Sgsp[a,B], This quantum correction term has a ultra-violet diver-

gence,

s 1 4 "'. '.'
8601*(n —4) fd = by

when n-dimensional regularization method is used. The counter terms to sub-
tract this divergence had to be eilther conformally invariant or pure divergence

for n = 4. They showed that the right counter term is

A n-—4
Se = —f_—;—fd“x V=g (RapysRagys — RagR%) | (1.7)



w A, =

Figure 1: The one-loop graph treated by Hartle and Hu. The cut, which gives Dy,

is shown by the dotted line.
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where g is an arbitrary constant of dimension 1/liji(}, and A=1/288072. The

resulting finite action S,zp can be symbolically wrillvi ¢ foliows
~ ~ 1 ~7% v
Serr B8] = 5,[8] + é—ﬁﬂ[a]ﬁ +JIG N IGTGIB +

where

Spft] : a real, nonlinear functional of &,
D[&] = Dg[&] + iD;: & complex operator,
G: the p-propagator,

I the Bpg proper vertex.

In the above, the source J for the p-field is put in as w,x qone in chapter 1L Both
Sp and D have non-quadratic terms in a which eomiu [y the finite part of the

counter term {1.7).

Using the effective action (1.8), the transition ubability from the initial

vacuum (11.2.1) to the final vacuum (I1.2.2) is given by

_ 1S, [EBJY +4(BA 4 14
<0+|0—> =e o/ i (1.9)

where A is the source of a and B the source of 8% Tl nective geometry ( 3§ )

is obtained from the equations,

GSe!f
e = "’A.
65ass
—— = -B,
88 (1.11)

* The signatures of sources differ from the convention in chapter Ii 1, T —
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Substituting S,;; in the above by (1.B), we obtain a coupled nonlinear equations

as follows;

B=-4, (1.122)

DR)E =-B . (1.12b)

where we neglected the source J and higher order terms of E In the small 'E
limit, the solutions 3 and E can be written as a perturbation expansion about the

zeroth order solutions 3, and £ as

¥ =% + 0(B3), | (1.13a)
B =By + 0(B8), (1.13b)
where 3; is defined by
ﬁﬁﬁd—= —-A4, (1.14a)
HET
and B, by
D[%o]B, + 0(J?) = —B. (1.14b)

At the lowest order of the perturbation expansion, a and § are decoupled: The
function % is obtained from (1.14a) and B is then given by {1.14b) where %, is
already known. At this order, % is real and B is complex. Hartle and Hu [5,6]
solved (1.14a) and (1.14b) numerically for fo= constant matrix x scalar function
of . Then they discussed the total pair creation probability £, which is , in

terms of Eo-

P=1-|<0+|0->]2=1~-eF |
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which was derived by an argument similar to that used to derive the equation

(3.4) of chapter II.
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2. Efective Geometry vs. Real Geometry

Hartle and Hu's model differs from the two-field model dealt in the previous
chapter. Their model has three flelds a, f, and ¢, instead of two fields. The a-field
couples to the g-field nonlinearly and the g -field couples to the ;o-ﬁeid. Thus, the
g-field only is a source of pair creation, while both fields have configurations.
These differences, however, are minor at the lowest order of the perturbation
expansion (1.13a,b). In this section, we discuss the relation between the effective
geometry and the real geometry along the lines of the argument given in the

previous chapter.

First of all, equations (1.10) and (1.11) guarantee the following relations

between the effective geometry (3, 'ﬁ) and the corresponding field operators (3,

-,

B).

~ . <0+]8[0->
&= ~<o+|o-> Bl
EZ <0+|B]0—> . (2.1b)

<0+|0->
as can be shown such as follows:

0 (S, +24+FB)

<0+|&a[0-> = T5A

B.J

(o1 | 05,s7 l s 5'§ l 6Serr ] (S, +BA+EB)
T IB.J[ - IE.J+A i+ o lB.J A EJ+B gt \Vets

((S¢IJ+EA+§B)

= ge = 8<0+|0->,

As we did in section 4 of chapter II, we define the real configuration of the
metric operators & and E or the real configuration as the expectation values of

8 and g, in the initial vacuum state |0—>;
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a" = <0-|&|0-> , (R.2a)
g = <0-|B|0-> . (2.2b)

These quantities are calculated by inserting the complete intermediate set of

"+ states 3, |7 +><j +| as in (11.4.2).
i

In spite of the extra a-field, the argument in the previous chapter leading to
the (I1.4.4) applies to the above (2.2a,b) with minor modifications. The expres-
sion (I1.3.7) for the one-pair creation amplitude is not changed at all , because

the two-point propagator is now calculated as follows,

_ 1) ) (S, s, +BA+EB)
_ a6 [ ez | [8Sys oF | [6%1 }
BT HwJ(z) ol 3 b T W@l ToF et

:
, 857 ] R L
?'GJ(Z) ﬁ.'éJ B

- id 6Serys ei[Se 17 +84+8B)
i6J(1) [i6J(R) V]

AB

where we denoted the independent variables which should be kept constant in

the partial differentiation as |4 p etc. Equations (1.10) and (1.11) have also been

0.5
used. From the effective action of (1.8), it is easy to see that only E—J:(li’:————

) (R)

survives for J = 0. Therefore, (11.3.7) holds. The projection operator at 7 = +o of

37

& particle with a momentum k out of ¢(7;x;), is explicitly given by the following,

P G N I 3 ]
= e e - : {2.3)
ng i Velk [ (em)® [0 Oy J
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Similarly, the operator Fin (I1.3.7) to obtain the creation amplitude of a pair of

momentum (k;, k) is

L R T AT
F, = ic] $(ky+ky) [ dne . (2.4)

From (2.2b), we learn that
g=p-illrry . -

which corresponds to {I1.4.5). In general, 68/ 6B is a nonlinear function of ¥ and
# because of the coupling seen in (1.12a,b). At the first order of the expansion
(1.13a,b), however, (1.14b) leads to

o8 _ 6B _ 1

68 6B  Dlag)

This is because 3p satisfies (1.14a) and therefore is independent from B. In

terms of ¥ and Bo, (2.5) is reduced to

F=PFo+ —=—=F"Ffo+ OFF) . (2.6)
-D[ao]

The only difference between (2.6) and (11.4.5) is that the propagator i/ D is now
explicitly time-dependent because of 3y. Therefore, the energy conservation
rule (11.8.15) does not necessary hold. However, under the assumption that the
a-field itself does not create any g-quanta, i/ D[&;] does not connect the nega-
tive frequency part to the positive frequency part, and thus (I1.3.15) holds. It
should be noted that in deriving (2.8), we virtually used such an assumption: If
this assumption is not satisfied, we have to take into account the contribution of

the graph with intermediate f-quanta such as the one illustrated in figure 2.
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DLGol

B vV T

s — c— — a——

Figure 2: An extra contribution to (2.8) when the a-field can be a source of g-

quanta.



-Be -

Under this assumption, results (11.4.6a,b) and (11.4.7) hold in our model.
Especially, (11.4.7) gives the equation for 7. The imaginary part of D[3p] comes

frorn finite part of the graph in figure 1, which is proportional to

1
fn dz In{—iz—p?z(1-z)) ~ In(~-Bie—p®) + constants ,

where p is the four-momentum into the vertex E‘z Since we assume spatial
homogeneity, the space portion of p is zero. The exact D[&),, in equation

(1.14b) is as follows,

2 2
D{go]n.n' = Do['éfo]n.n’ - 3?:\_[6% F(??“‘??')[gzﬂ ) (2-7)

with

. , s i
F{n-n") = fcdp"e““”"iﬂ“'”ln—-——w&':;zi—— : (2.8)

The operator Dy is nonlinear in &y, local, and real. The scale u comes from the
contour term (1.7) to give the dimensionless argument of the logarithm. The
contour C is the same as the one given in the figure 1.2 except that now m=0 as
is seen by inspecting the action in (1.1) or (1.8). F(n—7') is explicitly calculable

with the help of an appropriate regularization scheme. For example [8],

Fln) = Ej;wdw coswn lni—-— iﬂf_:dw g —iem
=1 1 & —aw X os. 2
= ]a{% Z{dw coswn e 1nu _im=6(n)

- . x 24P 174 o
]:}113[ W{a7+§-ln(n +0°)+ntan Z—}] Rim?6(n)

I S
~—n’PMl Rin?d(n) .

il
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where y=0.5772156649..... is the Euler's constant. The above expression can also
be obtained by deforming the contour under the same regularization condition.
For 7 <0, for instance, the contour c is deformed to C' in the figure (I1.2), which

picks up the discontinuity of the integrand:

0 .
F(n) = ~2infdwe”iw) = —2i7 P%—fﬂd(?’])] : (2.10)

The integro-differential operator D" in (11.4.7) has the same contour C” with

1/ D". Thus, D7 is written in a manner similar to (2.7),

2 2
Dr[go]vm = Dc[ao:ln.n’ - 3‘;\—[% F(n—") [567?'] '

. P - . .
Fr(n-n) = fdp% “‘f”’("""’m———l’——s’”;z : (2.8)

For the purpose of illustration, we calculate F™ by two methods that correspond

to (2.9) and (2.10). First, the direct calculation shows the following,

Frim) = zﬁ“dw coswn lnl—%——— iﬂf_:dw e(w)e ~in

= —qP 1

= —iﬂ[—-iP%—] = —-2m¥(n)P%~ , (2.11)

where e(w)=t/ |w|. By the method of contour deformation, we learn that
Fr(n) = ’6(7))[—2i1rfdw s(w)e'i"’ﬂ] - -—Znﬂ(n)P%- . (2.12)

which agrees with (2.11).

For a" of (2.2a), the same method gives a result analogous to (2.5),

& =%~ i%%F*F‘E . (2.13)
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Using the expansion (1.13), we obtain

Lol 5N ~
q=3 + 0(BE) - 'imS%D-F'F‘ﬁo + higher orders

Since, from (1.14b),

we learn that
o =%+ 088 . (2.14)

The above a" is real up to first order in B, since 3y is real.

In summary, the real geometry (a”, f7) was related to the effective
geometry (¥, §) up to first order of the perturbation expansion (1.13a,b). The
assumption that the configuration 3y deoes not create any f-quanta has been
used. For the higher orders of ﬁo, not only the numerical calculation of E
becomes very complicated, but also §3 term of Sgry becomes important.
Nevertheless, all the expected features of the model are already exhibited at the
current order of the perturbation expansion. Therefore, even though the rela-
tion between the effective geometry and the real geometry could be extended to

higher orders, I believe that higher orders are not of practical interest.
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V. Vacuum Bubble Expansion

1 Introduction

In certain models of elementary particles, there exist degenerate or meta-
stable vacua. They are vacua in the sense thal any one of them is not obtained
by adding infinitesimal excitations, or a finite number of particles, to any other
state in the model. However, they are connected by finite excitations, or dis-

placement of fields. In analogy with the WKB-method for tunneling amplitudes in
guanturn mechanics, the transition amplitudes between the different vacua are
given by examining the finite displacements that connect the vacua. The steady
states of the model, which are called the true vacua, depend on the properties of

the transition amplitudes.

In pure gauge field theories, we have degenerate discrete vacua that have
different topological properties. In the SU(S) Yang-Mﬂls theory of the strong
interaction, for example, there are infinite number of vacua |n>, where n is an
integer varying from =—e= to +e. The m-instanton solution [1], which is an
Fuclidean solution with a finite action Sz(m) and a topological number m, con-

nects an initial vacuum |n,—> and a final vacuum |n+m,+>,
<n+m,+|n,—> = Tmoce"sf’("‘) . (1.1)

Since the transition amplitudes depend only on the difference of the indices of
the vacuum, a true vacuum |9¥> is a superposition of the discrete of vacua given

as follows,
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9> =N i e™?|n> ,

= —o0
where 0=8<2m and N is the normalization factor. In fact,

<Y 4|, —> = | N |? E gtdnden'+|n,~>
nn'

1 . i ¢ ,
- |N [2 Z Tu _n'eié—{(n-—'n YB+6) +(n+n") (6-0))

na'
o §(9—9") .

Sirnilar mechanisms have been proposed for models with Higgs mechanism [2].
In models that have monopole solutions of finite action [3] in Euclidean space-
time, the different degenerate vacua also have a transition amplitude like (4.1).
Thus, it was suggested that the true vacua may be a mixture of the usual vacua

that have definite expectation values of Higgs fields.

When a model has non-degenerate vacua, there is no mixing, and the true
vacuum is the state with the lowest energy density. A vacuum state of higher
energy density, which is called the false vacuum [3], decays in time. This decay
is realized by nucleation, creation of bubbles of the true vacuum in the false
vacuum surroundings. A famous analogy is the boiling of superheated fluids [4].
This nucleation mechanism for phase transition in quantum field theory was first
suggested by Volosin et. al. [5]. Coleman and Callan [8,7] developed a method to
calculate the decay rate of false vacuum. In contrast to (1.1), they discussed the

amplitude,

< false vacuum, T | folse vacuum,0 > xe BT

The quantum correction to E, was shown to have an imaginary part in the

Euclidean path-integral formalism. The false vacuum decay rate I" per unit time
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is obtained from Ey as,
I'= ——ZImE_,- :

Coleman [6] argued on basis of a classical analysis that once a bubble is created,
all the energy released in converting the false vacuurn to the true vacuum is
used to accelerate the wall, and that no "roiling sea of mesons” is left behind it.

The generalization to finite temperature were discussed by Linde [8].

This phase transition from the false vacuum te the true vacuum plays an
important role in cosmology. Most of the meodels with spontaneous symmetry
breaking at 7 = 0 have their original symmetry restored at high temperature
[9]. Thus, the early universe is in the symmetric phase of the theory. As the
universe cools down to a temperature of the grand-unified scale ~ 10'° GeV, the
symmetry-broken phases become the true vacua. If the nucleation rate is high,
many bubbles with difflerent VEVs are created at the same time. As each bubble
expands and collides with each other, "knots" of different VEVs, monopoles [10],
are created between them. The number of monopoles is of the same order as
that of the bubbles and therefore in conflict with observations [11]. An alterna-
tive scenario, the inflationary universe, has been proposed by Guth and others
[12]. Their idea was to have a small nucleation rate so that the universe is dom-
inated by a few large bubbles. The monopole problem is thus solved. Further-
more, due to the high energy density of the false vacuum, the early universe
undergoes an exponential expansion state for a relatively long time. Therefore,
the horizon and flatness problems seem to be avoided. A difficulty of this
scenario is that if Coleman's conclusion of no "roiling sea of mesons” is to be
believed, then the energy of false vacua should be released only when the walls
of the few large bubbles collide. This leads to a large scale inhomogeneity and

anisotropy [18]. To avoid this difficulty, several other scenarios has been
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proposed [14, 15].

It should be noted that Coleman's argument on the real-time behavior of a
bubble is a classical one. Particle production is quantum phenomenon. Thus, it
_is natural that Coleman did not find the roiling sea of mesons. Since Coleman's
conclusion is one of the bases of cbnstructing meodels of the early universe and
the elementary particles, it is important to take quantum effects into account
and to see whether the energy obtained by the conversion is still concentrated
on the wall or not. The purpose of this chapter is to describe an attempt to

evaluate quantum effects, especially pair creation.

In the next section, we briefly describe Coleman's work [8] on the real-time
behavior of the wall in connection with the earlier works by Volosin and others
[6]. The method for calculating the nucleation rate [7] is also outlined for com-
pleteness. In Section 3, we apply the effective action method developed in
chapter II to this problem. Three field equations are given corresponding to
different physical situations. Section 4 gives a semi-classical treatment of the
bubble expansions. Also the asymptotic behavior of the bubble and pair creation
rates is exarmined under some assumptions. Finally in section 5 we discuss on

results.
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2. Quantum Creation and Classical Expansion of a Vacuum Bubble

The simplest model that has all the essential features for the decay of the
false vacua is that of a single scalar field p with the following action at a tree

level [ 18, 5, 6],
S = f {20 P-Vie). (2.1)

The potential V{g) has two minima ¢, and g_, the former having an energy den-

sity £ higher than the latter, as is illustrated in Fig. 1.

e
AN
&
v

-

;

i

|
M

Figure 1: A potential V(p) that has a stable vacuum ¢_ and a meta-stable

vacuum ¢;.



-81 -

The following V(p) is commonly used,

V() = 3 (#2227 + 2 (p-a), (2.2)

which will be explained later ((4.3)).

Consider a bubble of true vacuum <¢> = ¢_ surrounded by false vacuum
<e> = ¢, with a thin wall, a transition region that is narrow relative to the
radius of the bubble, separating the two vacua. The energy E® of such a bubble

relative to the homogeneous, i.e., completie false vacuum, is given by the follow-

ing [5].

£ = 47T511jz _ 4me
Vi-g# 3

RS, (2.3)

where F(t) is the radius of the bubble in the ¢.m. frame and R =dR/d4t. The
first term includes the surface-tension and the Lorentz factor due to the motion
of the wall. S, is the rest energy of the bubble wall per unit area. The second
term is the energy gain due to the difference in the energy density between the
true and the false vacua. By conserbation of energy, £Y=0, then the solution to

(2.2) is
R =VEE + (—to) (2.4)

where Fg is the radius of the bubble at rest (£ = £g),

Ro= —. (.5)

Therefore, once a bubble is created, regardless of whether it is shrinking
(t <tg), at rest (f =tp) or expanding (¢ > £p) at the time of the creation, it
blows up as £ - = (see the figure ). This is because all the energy released from

the false vacuum is used to accelerate the wall. The wall is accelerated outward
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because the wider region of the true vacuum is energetically favored. From
(R.5) we also note that the thin wall approximation is satisfied by the small &
compared to the height and width of the potential barrier between ¢ and ¢,.
This is because as £ = 0, the thickness of the wall and S, are governed by the
shape of the potential barrier and therefore finite, while the minimum radius Ky

diverges.

P+

Figure 2: The "world line" of the bubble wall (2.4).
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The prescription for the nucleation rate was given by Callan and Coleman
[7]. In Euclidean space-time, there is a localized hyperspherical solution ¢,

which has the {ollowing property {8, 17],

~ - for p=VTHTE i 0

Wl('rct). (26)
S P, OS p >

where 7 = —it is the Euclidean time. The energy £, of the false vacuum state
gets a quantum correction due to the presence of bubbles. They can be calcu-

lated as follows,

<ty | aitis o

« f [dple 2]

where Sg[y] is the Buclidean action and the functional integral over ¢ has the
boundary condition ¢{T = 7y, 'rf) = ¢,. Let ¥ = p_p,; be perturbations about the 1

bubble solution (2.8), then naive integration over @ gives
f [dgb'}e ”SE{¢1]_’$(~82+V"(?1))'¢ x g _SE[?‘;]](det (_62+ V”(@l)))—l/z. (27)

The determinant is a product of all the eigenvalues of the operator —8° + V'(g,).
There are zero eigenmodes which correspond to displacements of the original
solution,

d
Yo = gz, (2.8)

A

Displacements are actually treated by considering the coordinates of the center
of the solution ¢, as a collective coordinate in the functional integral in (2.7)
[1B]. Therefore, zero eigenmodes do not appear in the r.h.s. of (2.7). The modes

(1.8) have nodes, and therefore are not lowest eigenmodes: There exist negative
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eigenvalues, which make (2.7) complex. The Gaussian integration of the Lh.s. of
v\« ¢) actually diverges for these negative eigenvalues. A convergent expression
is obtained by meodifying the integration "contour" in complex ¢g-functional
space. After summing the contributions of other multicentered solutions, Callan

and Coleman obtained

twg, = Vel -spieq|det (=04 V' (p1)) [
v Br® det(—8%+ V'(p4)) '

where V is the volume of the space and det' denotes that the zero eigenvalues

are excluded.

The solution (2.6) in Euclidean space-time is related to the bubble in real
time (2.4) by analytic continuation. In real time, ¢; is a function of
p= ~~t%57r%. Thus, the surfaces of constant ¢, are hyperboloids like the one
illustrated in Fig. 2. In fact, if we assume that the solution (2.6) has a narrow
fransition region at around p ~ X, ¢, is obtained so as to minimize the Euclidéan

action Sg, which is given as follows,

2
—o2 [ 8411 1901 o el I g
SE—Eﬂj;pdp{e[dp]+V—ﬂ'RSI Rz, (2.9)
In the above, we used
2
dg; ]
——1 ~ S.6(p—R),
{dp 16(p—R)
and
U{p) ~ —eB({R-p). (2.10)

The constants S, and ¢ in (2.10) are the same as the ones in (2.3) because the

energy E of a bubble at rest is given by
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2

+V A7

- b 4.1_.199_1__ - 2 _ AT o3
E—~41rfo rd’r[z{dr = 418K 3 R,

The action (2.9) is minimized by B = 35,/ ¢, thus the wall is located at

L

p=~N_iPrri= §_§_}_

in agreement with (2.4,5).
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S. Quantum Correction te the Bubble Eguation of Kotion

As was explained in the previous section, the bubble solution in real-time,
¢1{p = V~£?+7?), is a solution that minimizes the classical action (1.2). There-

fore, p, satisfies the following equation,

6“6“591 + =0, (31)

Since no quantum correction is considered, this ¢; in the above equation is
related to the quantum field operator § as

= S0+[g|0-> _ <0-1p|0~>

¥15 "o+ o>

in the limit %- 0. This section discusses the O(E') correction to the above

matrix element.

In our simple model (1.2), there is only one field ¢ in contrast to the two-
field model discussed in chapter II. The fluctuation ¢’ of the p-field on the back-

ground @ corresponds to the p-field in the two-field model,

o =p-3. (3:2)

In spite of this difference of models, most of the results obtained in chapter I
apply to our model at the order of the first quantum correction. The effective

action Sgz; [¢] is defined as follows

%(Sivl—v-f )

Lis , (3]-97
ek( o 1717 )—___: <0+10-—>J = f [d‘?’]e 2 (3.5)

where @ is defined by

6Sep7 %] -

5 J. (3.4)
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In (3.3), an appropriate normalization is assumed and K is inserted for conveni-

ence. Definition (3.3) can be modified to yield a compact expression for Sy [Z],

L (Slel-tw-3))

Sors(B]= i Kln| [ [dele” (3.5)
We expand S[¢] in terms of the fluctuation ¢/ of (3.2),
A 65’ (%} 1 ~J e
Slel= s[g] + —dgi;af + 59! DIFle” + Seul¥97 ], (3.8)

where S [@.97 ] contains terms with cubic or higher powers in ¢7. After substi-

tuting (3.8) into (8.5), we obtain

J 8" Jexp %[é*sﬁ*ﬂ[@’]sof*’sm[%@f] + [%gl— J]qafH.

Sers [@1= S[¢] —1 Rln

Thus, the quantum correction SY[¥] = S.;;[¥] — S[¥] satisfies the following

self-consistent equation [19].

f s f ~t
S (%) = =i min| [ (a9’ Jexp %{%‘WDW]W +Sudip’] - EZTEL ¢f]
o

(3.7)

The K -expansion for S7{P] is obtained by starting from the zeroth order solu-

tion, S [¥] = 0, and iterating (3.7). The first order solution is
~t - 'l.l 1 ~o ~J
Sg) = fﬂn{f [dg” Jexp E[é‘&”"DW]W +Sw[so.¢f]]}-

This expression contains still higher power of . The expansion in & is equivalent
to the expansion in the number of loops [20]. The lowest term is the one-loop

term, which yields

S [¥] =i FinVdet D[g] + C,
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= 7:—257% In D[¥] + C,

where € is constant.

The effective configuration @ corrected to first order in Kis obtained by

minimizing the effective action,
(o Ied L ﬁ rew
Sors [#) = S[F] + Z-Tr n D[] + C. (3.8)

However, since ¢ is space-time dependent, we usually can not evaluate 77 In
term exactly. If that is the case, we have to expand and take a few terms of the
7r Interm. Since only a few terms can be taken into account, the expansion has
to be such that the physical picture is right: From the action (1.2), we learn

that

2 ~
D[F] = —a,8" — %gfl-.

Consider the following expansion of the 7rln term of (3.8),

it 1 P V()
Tr In D[F] = Tr In(—8,8*-m?) + Tr ln[l gy [ = —m?
" 1 VR . a|
=+ —Tr L . 3.9
i n [uaﬂap—mz [ o ®8)

where C' and m? are constants. The series in (3.9) is graphically represented in
Fig. 3. The first term vanishes in dimensional regularization. The second term
has a cut €. Since we will use a few terms of the expansion (8.9), this cut has to
correspond to the contribution of the physical intermediate states. This is also
important for the discussion of the real configuration ¢”. Therefore, m has to
be chosen as a mass for created particles. However, there are two masses in

this theory, the mass m, of the excitations in the false vacuum and the mass
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vacuwmn and the mass m_ of the excitations in the true vacuum. The choice has
to be self-consistent: If we choose m to be m*, the result has to be such that
both particles of the created pairs mainly go out of the bubble. And if m_, both

have to go into or remain inside the bubble.

In both cases, the effective action is approximated as the following,

Sers [#] = S[P] + é grn.. ] i[ z-lﬂ"mi]. (3.10)

8e"°

where the kernel X, is

i

s 2
% il :
K, 5 [:ﬂ‘—a;m --mE] (symbolically),

4
‘f (g]; e ¥V, (k%) (in coordinate space)..

Using dimensional regularization with n = 4 + 2w, K{k®) is given by

1 1

-
BiR) 2 f (217)" emPrie (g+k)P-mi+ie

;71r2 [;}j‘;—] I(—w) - 3252 f dz In(mf+ie—k*z(1-x)). {3.11)

The above K(k?) has an imaginary part,

_ 4m g

kz

ImK, (k%) = é—;a(%«zmi) (3.12)

Since the highest power of ¥ in V is 4 as required by renormalizability, the
second term of the r.h.s. of (8.10) is also §* at most. Thus, the divergence of
0(1/ @) in (3.11) can be absorbed into the parameters in S[$]. The equation for

the effective field configuration ¢ is obtained by minimizing (3.10).
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5y OV(@) | V() . |8*V() 2| -
-0,0"% + + K e 3.13
poy 0% 653 + 652 + ( )
Since K, is complex, ¢ is complex as is expected. Since the graph treated here
is the same as the one used in the analysis in chapter II, the equation for the
real configuration ¢” is obtained from (3.12) by replacing K, by a retarded real
kernel K%.

g
3w

K% = constant — j;l dz In{m.? —isko—k%z(1-z2)). (3.14)

There is another possible situation in which one particle of the pair goes
inside the bubble and the other outside. In this case, neither of the choices m,
or m_ is appropriate. There is a prescription to treat the two vacua symmetri-
cally, which was originally found by the author [21] for the pair creation pro‘b-
lem by strong electric fields, i.e., the Klein problem. The idea is to rearrange
the perturbation series such that both Green's functions, one with mass m and
one with m_, appear in the same graph. That goes as follows: First, we start
from the perturbation series (3.9) with m being one of the masses, say, m,. The
vertex ¥ can be divided into two parts,

x =TB e

6;02

m
O
™
o)

We decompose each term in the expansion (3.9) according to the following pro-

cedure:
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(i) Pick up a vertex as a starting point to go around the circle clockwise.

The coeflicient 1/ is canceled by the n-possible choices.

(ii) The next vertex ¥ is decomposed into [ and © . Thus, two graphs

are generated.

(iii) In each of the graphs generated at the step (ii), if the second vertex is

0 , the third vertex ¥ is decomposed into two.

{n) In each of the graphs generated at the step (n—1), if the (n—1)y ver-

tex is either ¥ or i, the nth vertexis decomposed into two.

The steps (i) ~ (iii) is illustrated in Fig. 4. The result of this decomposition for
the first four terms of the expansion in (3.9) is given in Fig. 5. Because of the
step (n), for each graph of definite X ‘s and © 's, we have an infinite series of
graphs due to all possible numbers of [ lined up after the ¥ 's. Each such
series of graphs can be surmnmed up by using the Green's function for a particle

with mass m_,

12

X 1 2 2 1 _ 1
— 5 (I —m = : 3.15
i=0 | —B8M-m? ( 2 ~3,8*-m%  -8,0¢-m? (8.18)

Figure 6 gives the graphical representation of the above, The first four terms of
the resulling rearranged series are given in Fig. 7. This series has the following
physical interpretation: Since the mass of the fluctuation is given by the curva-
ture of the potential,

2yyns
mt = ZVB)

6232 ¥ =p,

Then the vertex ¥ is zero in the space-time region where ¥ = ¢, and the
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(i) = xN

(i) X

Figure 4: Illustration of the decomposition procedure (i)~(iii) of the nth term of
the expansion (3.9). The solid lines denote the Green's function are particles

with mass m,.
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Figure 5. Decomposition of the first four terms of the expansion (3.9).
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Figure 6: The graphical representation of (3.10). The double-solid line denotes

the Green's function of a particle of mass m._.
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Figure 7. The rearranged series. The letters in the parentheses denote the

graphs of Fig.5 which are to be included in each of the above graphs.
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vertex © 1is zero where p = ¢_. Therefore, the first graph in Fig. 7 can be
understood as a quanturn correction to Sgp; due to a virtual particle exists only
in the true vacuum. In the second graph, the particle goes through both the
false and the true vacua. This situation is illustrated in Fig. B together with the

interpretation of other graphs of Fig. 7‘.

The result of the rearrangement, Fig. 7, does nolt treat the two vacua
equally. If we start from the perturbation expansion (3.9) with m =m_, we get
another set of graphs in Fig. 9. A symmetric set of graphs is obtained by averag-
ing the graphs in Fig. 7 and Fig. 8. In any case, the lowest nontrivial graph is the
second graph in Fig. 7. This graph is equivalent to the second graph in Fig. © and
is symmetric. The cut C of this graph corresponds to a particle of mass m, and
a particle of mass m_. This properly is desirable for dealing with the case when
the bubble wall creates a pair with one particle going out and the other falling
in.

The resulting effective action, in contrast to (3.10), is

&uWﬁSWL%%%@«mﬂ&Pﬂ@L ﬂ (3.16)

- mFr i
8y°

where the kernel K; in momentum space is given by,

Ko(k*) = 5—2;71;2-[% I'-w) — égl—ﬂjg——j;l dz In(miz+m?2(1-z)~ie—k2z (1-z)).

The above has an imaginary part

2(m2+m?) (mE-m?P)
%2 (k2)?

Ik (k?) = gé;r-—'ﬁ(ka——(mﬁ-sz)'\/ } =

The equation for the effective configuration ¢ is obtained from (3.14).

~J 20 2
5 OV(@) | BV(P) o fan(so) m2+m)
—8,,0M% + + 2 e = 0. (3.17)
WO "oy 0 O 0%° 2
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Figure 9. An another rearranged series.
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The real configuration ¢" satisfies a similar equation obtained by replacing i¢ in

Ky by itkg as was done in (3.14).

In summary, the equations for each of the following three cases have been
obtained; (i) both particles of a created pair going outside of the bubble, (ii)
both going inside and (iii) one going outside and the other inside. All equations
seermn to require numerical calculations. The consistency of the behavior
assumed for pair creation has to be checked. It is also possible that the physi-
cal situation is a superposition of the three states. For example, half of the pair
can go inside, while the other half split. If that is the case, the equation for ¢"

has to be improved further.

For the purpose of examining the features of pair production, a semi-
classical method has been applied to this model by the author. In the next sec-

tion, we describe the method and some of the results obtained.
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4. A DSemi-classical Analysis

The eflective action method gives physical quantities such as the pair pro-
duction probability as functionals of the effective configuration ¢ (Section 3 of
Chapter II) or the real configuration g7 ((I1.4.10) ~ (11.4.13)). The guantum
correction part S7 of the effective action is a functional of . By extremizing
S + 57, we obtained equations for P, (3.13) and (3.16). These equations, and
equations for ¢*, are, in general, nonlinear integro-difierential equations and
therefore seermn hard to treat analytically. However, if we parametrize ¢ and "
and thereby reduce their degrees of freedom, then the field equations reduce to
equations on the parameters, which are easier to be examined. At the classical
level, the pararcetrization is done by using R(t), the radius of the bubble at
time £ [5]. The behavior of the solution of the field equation ¢; of (2.8) has been
successfully reproduced by the solution (2.4) of the energy conservation law,

4‘”51}?2 41s
V1-R? 3

0= EXT)= RS, (4.1)

Quantum corrections meodify the energy conservation law. If pairs of particles
are created, a portion of the energy released from the false vacuum is carried
away by the pairs. Thus, the acceleration rate of the wall is expected to be
smaller than the classical rate. As a result, the bubble expands at a slower rate
than the classical rate. If we assume that with pair creation, the solution, ¢",
can still be parametrized by FR(t), then the energy, EP* (T), consumed to

create pairs by time £ is a functional of R(f). The total energy conservation law
0= E®(T) + EPe"(T) (4.2)

should yield a solution R (#) that describes a slower expanding bubble,

In order to estimate EP*"(T) in terms of R (L), we have to express ¢"(£,z) in

terms of F(#). Since the classical solution g; has to be reproduced to some
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accuracy in the limit &+ 0, we first examine the properties of p; and an
appropriate parametrization in terms of F(f). For the renormalizability of the
action (2.1), V() is a fourth order polynomial in ¢. Of the five possible
coeflicients in the polynornial, only three are physical: Since we neglect the
effect of gravity, the value of V itself is unphysical, and the value ¢ itself is
unphysical. These two redundant degrees of freedom correspond to the vertical
and horizontal parallel transport of the curve V(g) in the V—g plane (Fig. 1). A
traditionally used set of three constants is {u, A, g5} and gives the following V{p)
of (2.2) [186, 5, 8],

V() = B-(pP-2%? + 2-(p=2), (4.3)

with

a=~/L (4.4)

All constants are positive. For small g4, the values of the ¢-field in the true and

false vacua are given by

23 + 0(ed). (4.5)

= +a ~
Ps a 5

TFor later convenience, we give the values of several parameters in the false and

true vacua.

_ £o 3
Vips) = = o1+ Olz0), (4.6)
Vip.) = £o - + 0(ed 7
(W—) = 2 B>\a4 €0/} (4' )
62 I', e A_ -
agpg = o (3¢ a )' (4'8)
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Ry
6902 P =Py

Q.

mi =

= B8 - 3g&g
=Aa? ¥ 55% O(ed) = B ¥ —+ 0(gg). (4.9)

The difference ¢ of the energy densities of the false and true vacua is equal to gg
at the lowesti order of the £y-expansion.

&= V(p,) — V(p-) = g + O(s9). (4.10)

Therefore, the bubble has a thin wall when g; is small. Because of the

mathematical simplicity, we will concern ourselves with this thin wall case.

The classical field equation (3.1) for the present Vis;
A 2 g0 _
Bﬂa“qpl - —é—gol(gal-—- 2) + '55—-— 0. (4:.11)

And for a spherically symmetric ¢;, (4.11) reduces to

9° 8° 2 0 A £
[‘a‘}%“ B T p Br)Prt paleia) ¥ =0 W]

Consider the solution at £ = 0, when the bubble has the minimum radius Ky The
derivative terms of ¢; are nonzero only near the wall. Since the bubble is

expected to expand in the fime scale of ~ Fy according to (R.4), we have,

.@E_. o i} 2
FYCREE XA

By writing the width of the wall as w, we have

Since we have

Ry > w, (4.13)
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52
only the -69;5—;01 term is dominant among the derivative terms of (4.12). There-
fore, near the wall, the field equation (4.12) reduces to the following,

92 A 2 g _
= ozt gl )+ 5—=0. (4.14)
In the perturbation expansion of ¢, in g, the first term is known to be the follow-
ing [6];

plr —Rp)

5 + gof (r) + 0(e) , (4.15)

@ = a tanh

where the function f (r) satisfies the following equation.

ik s 8 g2 MT—Ry) 1
———-—-arzf+y,1 2sech ) f+2a—»0.

For |u(r—Eg)| > 1, the above equation has the solution

L _ 1
Rap 2xnal ’

Therefore, property (2.6) can be satisfied. For 7 ~ Ky, f would have a peak of
width ~ f‘z— The resulting solution ¢; is illustrated in Fig. 10. The solution (4.15)

gives the surface tension S; of (2.3) as

Since K is given by (2.5), we learn that

T

Ry (4.16)

The wall has a thickness 1/ g.



B~

Figure 10: A possible shape of the solution (4.15) for g;. The broken line gives

the O(1)-term of ¢,, while the solid line includes the O(g)-contribution.
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Therefore, the condition for the thin wall approximation (4.13) becomes,

1
Eo>» —, 4.17a
L ( )
or
4
Rop = %—» 1. (4.17Db)

As was explained in the previous section, the solution for £ #0 is obtained by

substituting r by Vr?—t? in ¢,,

u(VrP—t*=Ry)
4

@1 = a tanh + &g J (VTP=£%) + 0(f), (4.18)

which is appropriate outside the light cone (r>|t]). Inside the light cone,
@1 ~ ¢-. It is also shown that ¢; behaves regularly near the light cone, 7 = |#]
[22]. The resulting ¢ in the whole space-time is quite "clean” except for the
region occupied by the wall as is shown in Fig. 2. The thickness of the wall
changes with time. In fact, if we define F(¢) as the radius of the zero point of g,

at the classical level, we have
VRO (t)2—t% ~ Ry = 0
where we neglected the 0(¢g) term. Thus,
R%(t) = Vt?*+RE .

Near the wall, the argument of tanh in (4.18) is approximated Ly the following

Taylor expansion,

BT = Ro) ~ B (o9 ) + O ~R(E)))
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= pu (1 —R°H(£)) + O((r —R(£))?). (4.19)

Thus, the thickness i——of the wall decreases with time for £ > 0. This is under-

stood as a result of lorentz contraction. In fact, at any time £,

o

g Vi1-R3(t) (4.20)

® (-

is satisfied by R = R°.

We assume a similar behavior for the real configuration ¢” at the quantum

level,

¢" = atanh g‘-—(t—-—-z—{?—(—m-—% €0 f[%—-('r—}?(t))} + 0(ed), (4.21a)

where p; is given by (4.20). Since the bubble is to be created at £ ~ 0, (4.21a)

should apply for £ 3 0. Fori 0,
¢ = ¢y (4.21b)

The assumption {(4.212a, b) reduces the problem of finding ¢"(r,t) to the problem
of finding R(t), thus simplifying the problem. The region £ ~ 0 needs a careful
consideration. If the bubble is created spontaneously, i.e., via a quantum tun-
neling, just after its birth, space has to be clean; there should be no particles.
Therefore, the end point £ ~ 0 of the bubble world sheet should not create any
pairs. The right prescription for treating this region £ ~ 0 is not known. Our
eim here in this section is to obtain results that are insensitive to the region
£t ~0.

Because of (11.4.b a), the physical observables that are related to pair crea-

tion, but not to pair annihilation, can be directly calculated in terms of ¢".
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Examples are given in (11.4.12) and (11.4.13). For the purpose of obtaining
EP*7(T), the energy carried away by the created pairs, in terms of R(¢), we first

consider the creation probability P(k) of a pair of the total four momentum k,

P(k) = R(k%e %,

with
B{r®) = {?—fg;—(,%l- m2]2 ImKo(k?) {%(;@;L“ mz], (4.22)

and
R = [ Q%R (k). {4.23)

In the above, as was explained in the previous section, m takes the value of
either m, or m_ depending on different physical situations. Summing over the
incoherent production probabilities, we learn that the pair energy EP® (=) is

given by the following,

. b3 n
EPr () = [d% KO R(EDe R + .. + ;%,—f 11 d‘*kiﬁ(kf)lz |2 |le ™R + ...,
' i=1 =1
= [ % |k°| R (k7). (4.24)
where we have used (4.23).
At the lowest order of &g, the vertex in (4.22) is given as follows,
2
B g = Bh(gr2-a?) + 0(zo)
dp 2
2 ~FK (L
5 o —%—L--'a?(t)sechz ’ii_(_?'__z__(.ll+ 0(e). (4.25)
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At this order, there is no actual distinction between three cases; (i) both parti-
cles of a pair go outside the bubble, (ii) both particles of a pair go inside the
bubble, (iii) one outside and the other inside. This is because for gg = 0, the
potential {4.3) is symmetric, m, = m_, and therefore particles do not distin-
guish true vacuum from false vacuum. The energy-density difference gg appears

only in the expression of the bubble energy (4.1).

The pair energy EP*" (=) is now explicitly given as follows,

EPoin () = [d%z [d%z f (2 )4 | k0| 2ImKp(k?) e* = V(z t ) V(z' t")

+ 0(gp) (4.28)
where,

Viz,t) =- 22&215‘()5)59311’3 '—L—Lt—(-%l—e(—t)—)— (4.27)

Since ImK(k®) is not polynomial in k? as is seen in {3.12), its Fourier transform
is nonlocal, in contrast to the model discussed in the previous chapter (see
(II1.2.7) and (I11.2.9)). This causes difficulty in finding the EP%"(¢) for finite £: If
EP°% () is expressed by a one-fold infegration over a time coordinate £, EP*"(T)
is given by the finite integration of the same integrand with upper limit 7, This
prescription is not applicable to our case. In order to define EP*7(T) for a finite

T, we introduce a cutoff function

i
e T (4.28)

for each of the vertices in (4.26). Since this cutoff function gradually turns off
the vertices after £ ~ T, the resulting integration seems appropriate for the

definition of EP® (T), the energy carried away by the created pairs by time T.
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Another reason for choosing (4.28) is that the integral in (4.28) is actually diver-
gent because of the upper limit £ ~ ¢' ~ o, Consider a case when EP*"(T) is a

single-fold integration over { and is divergent, for example,
Err (=)= A [Tt 7 (n>0),
In this case, exact £P°¥ for a finite T is given by

AT‘n‘}'l

; r
or e n -
perry = 8 e

The cutoff function (4.28) gives the following, approximation for the above
EPS(T),

- t
E“’W(T)EA_/; dt t"e T =AnITH,

Therefore, the asymptotic behavior of EP®"(T) is correctly reproduced. How-
ever, the example also shows that the numerical factor in the result obtained

under our assumption should not be rigorously believed in.

We limit ourselves with the asymptotic behavior of £ for the following rea-
sons: (i) We do not know how to treat the region f ~ 0, where quantum tunneling
is essential. Thus, we need a result that is insensitive to that region. (u) When
T ~0, our cutofi (4.26) is not smooth and thus inappropriate. This limit is
nevertheless interesting because the asymptbtic behavior of the bubble expan-

sion is irnportant for cosmological problems.

The integral over z and z' in (4.28) is straightforward.
Vrlk Kg) = f d*z e¥ V(= t)

+ikyt R,

¢
. - 7k
= —R4meu? ./; dte T ;&—%sin fer 24 cosech—;;tr—+ (4.29)
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with B, = B(t) and k, = |k |, and we kept only the leading term in the thin wall

approximation. The following formula has been used to derive (4.29) [23],

T

f_:d?" cos k,r[sech =

2n 2
4"k By Bt 1R
5 L2 pomsch—t Hl{ 5 +l2], (4.30)

2

T (2n—-1)uf Mo =1 |

In order to evaluate (4.29), we assume that the asymptotic speed £ of the

bubble expansion is less than 1, the speed of light,
R(t)-pt +... ast >, (4.31)

In this case, (4.29) is approximated as follows,

- o~ 24m%R Tk, L pag
Vp(kr ko) & — ——%éi-g—cosech pf—fo dte 7 Ut sink.pt

ke | —2ikok,
= —2472(1-8%)B cosech L l(kg —l:rzb’gz + O{LTH (4.32)

The pair energy EP® is calculated from the following formula,

B (T) = [, kodko J T ERdk, N/ 1- ”: | Vr ey ke o) | 2(4.33)

where we have used (3.12) and (4.26). The vertex (4.32) leads to the following,

. . N =
EPTr(T) = 288n*(1-B%)°p* fa,u ko dkg j; O 2 Ak, - /1 f;—zz

2 2.2
7k, kgk, 1
¢ +0|=]. :
x[cosech } oE k25 0[ T ] (4.34)

This yields a finite result. The integrand in (4.34) has no singularity in the
integration region because the denominator, kg——kfﬁz, is always greater than
4u*. For kg - =, the k.-integration is finite because of the (cosech)®. Thus, the

kg-integration
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kg-integration becomes

'

- (1), (4.35)

"‘fwkodko

which is finite for 8 < 1. The pair energy EP® (=) is approximately

atr (o) o OB
EP ( ) 64 W & (4.38)

Since EP% (T is finite for T - =, we conclude that the asymptotic speed of
the bubble expansion cannot be less than 1. Consider r.h.s. of the equation

(4.2),

4rS R 4me

, R + EPO(T), 4,37

Using the asymptotic form {4.31) for Ry, we learn that as T-, the leading ord-
ers of the first and second terms are of 0{7%) and 0(7?), respectively. Since we
have found that EP%T(T) is of O(1) in this case, it is impossible to balance the
released energy (the second term) with the pair energy, i.e., we cannot have
zero coefficient for the leading 0(7®) term in (4.37). Therefore, the asymptotic

behavior (4.31) cannot be a self-consistent asymptotic solution of (4.2).

Next, we consider the case when the asymptotic expansion speed is 1.
Naively, (4.368) gives a divergent expression and therefore suggests that pair
creation may affect the expansion rate significantly. The classical solution

Re(t) has the following asymptotic behavior,

RE
R (t) = VIB+RE > t.+ —é-;—’—+ (4.38)

We assume a similar asymptotic behavior for R(t),
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2
R(t) =t +a+ g—t—+.... (4.39)
Since, in this case,
Rt b 0
()*1-2t2. (4.40)

we expect that b > R, so that the expansion is slowed down by pair creation.

The vertex V of {4.29) is now,

w -t vyt sinkqt bk
S (2 & _ o B2 g g el el T
Vrlky ko) & ~247°b fo df e ;——cosech TR (4.41)
where we have used
t
I et (4.42)

In order to estimate (4.40) and EP* (T) of (4.33), we divide the momentum

space integral in (4.33) into two parts.

(1) T3 ”i’f’ .

The integration is dominated by the region where the argument of cosech is

small. Thus, by approximating cosechz ~ 1/z, we get

1
(5 iko)+k?

V(e o) & 247 by

Therefore, the total energy EP!(T) of the pairs created in this region, ie.,

[total three-momentum| %57:- , is given as follows,

i1 e 1B 202 "%2 ¥ 447 1 i
EPErA(7) —ﬂ:é"-[,é b y krdke, kodkg~/ 1—- %2 7 . (4.48)
¢ FZ

NI (77— ko) +kf



‘.94_..

The k¢-integration is finite for 7 = «. An approximate value 1/ 8u? is obtained if
we neglect the V-function that is & 1 except near the boundary, k? = 4u®. Note
that the main contribution comes from the peak of the integrand at k* = 5u%,

and the integrand k7 in the k.-integration gives the largest contribution at the
upper limit k, ~ e The approximate value of the leading order term of (4.43)

is,

. 3
EPoir.1( T 2 %‘ 78, (4.44)

S_
4n°

bk,
(R) Tg e

Using cosech z ~ 2e ™ for z > 1, we approximate (4.41) as follows,

o ---f—-kz'}cot 1 ._P'bkr
Vir(k, ko) & —4Bn®b? Jodte T ssinkle .

This integration is given in terms of a modified Bessel functicn of the third kind,

Ky(z). The argument z satisfies the following,

|z | > vVRmub > 2N2ruRe > 1

where we used (4.17a). By wusing the asymptotic expansion of

Ko(z) ~ \/-2-_75;8—2, we obtain the following FP%#(T),

Bn2b%k 2
0o o -y — ———
EPoirR(T) = 72nb4fk,2d1c,f kodkg 1-—%61:‘;; %;-e KT
g Ve J
where ¥y = 2‘\/ ke (ko—%7) -2—:—3—)-— By changing the integration variable kg to y, we

obtain the leading order term,

(4.45)
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EPoe ¥(T) # o ub Y AL (4.45)

We can now discuss the consequences of the energy conservation. The
asymptotic behavior (4.39) leads to the following leading terms for each piece of
(4.57),

4a1S 1}?,3 . 418,

— 7,
Vi-R2 b

the surface energy:

4g£ Ryg L o Ame 78,

the volurne energy : —

The pair energy EP®2(T) is considerably smaller than FP%"!(T) because of the

—8Vaub

factor e , therefore we neglect EP**3(T) and write

air ...__,.._3 LS 3
R

The total energy conservation law (4.2) implies the following equation for b,

AnSy;  4me 3 us
= 5t o 0. (4.48)
Thus, we obtain
122N
= Rpll + ; y
b o{ = (4.47)

in agreement with the naive expectation b > Ry From (4.47), we also learn that
the ratio of the energy used to create pairs and the released energy is given by

the following.

A
167°
OA

T .
. 16m°

(4.48)
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The spectrum of the created particles can be obtained from the following
argument: In deriving EP*7{(T) of (4.44), we first learned that the integration in
(4.43) is dominated by the peak, k®=5u? of the integrand. This is mainly
’because of the fractional f{unction in the integrand, which 1is for
T o, 1/ (k& —k?)? 1f we leave an angle ¥ between x and k unintegrated, (4.29)
leads to

1
VTxfd(cosﬁ) Ta——

Therefore, the integrand of (4.43) is proportional to the following,

) 1
fd(COS’ﬂ)fd(COS"g) (ko—krcos®)?(kg—k,cos)?

Thus, the peak of the integrand in (4.45) comes from the region where
¥~ ~ 0, Therefore, we conclude that pair creation is a local phenomenon and
that the direction of the total three-momenturm of a pair is along the radius vec-
tor of the place where the pair is created, and outward. The momentum of the
individual pair is obtained by noting that pair creation occurs isotopically in the
rest frame of the center of mass system of the pairs. Note that it is not the rest

frame of the portion of the bubble wall where a pair is created. Since k® ~ 5u?

and k, ~ BT where b is given by (4.47), the speed v of the rest frame of the

b’

center of mass systemn of the pairs at time T is given as follows,

_ kr 5mb?
Y= —~n] -

Zo oy (4.49)

Comparing this with (4.40), we learn that v is smaller than £. In this rest frame,

the particle has an energy of 2’;—5—;,5 and the velocity is :}—5—- Therefore, the

highest velocity of a particle going outward is given by
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1~
1~

72 ~1—-904 PR (4.50)

1

V5 BrfbR b?
1

1+ 75

which is still smaller than £. From this, we conclude that the created pairs are

left behind the wall, i.e., inside the bubble, even though they are going outward.

They have high energies of ~ %{— This is consistent with the cutoff (4.28): Since

the high energy component is dominant, the short time scale is important,

which is not affected by the cutoff (4.28). Also, from (4.42), we learn that

k,~%~. This agrees with the naive expectation that the thickness of the wall at

T determines the scale of the energy spectrum of created pairs at 7.

Some comments follow:
(i) So far, we have neglected 0(¢) terms in the vertex V(z.,t) of (4.25). From
{4.15), they are

(T —FRp)

Bhasof tanh ——

+ constants, (4.51)

Consider approximnating f by 1, a constant. The Fourier transform of the above
has then one less power of k than the leading term in (4.29) because tanh is an
integration of sech® in coordinate space. Therefore, (4.51) only contributes an
0(7T? term in EP®". Actually, # has a "bump” at the wall. To carry the discus-
sion further, we need to know the high rnomentum behavior of the Fourier
transform of f.

(ii) We have also neglected the real part of the quantum correction to Sgsp. If
the shape of the potential is significantly changed by taking it into account, then
assumption (4.21a) may be inappropriate. Also in a case when we consider a

one-loop effective action as a starting point, the effective potential is usually not
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a polynomial in ¢, and (4.21a) would not be applicable. As an example, consider
a case when the vertex V(z,t) behaves like ~ sech®™ instead of ~ sech? in (4.25)
and (4.27). Formula (4.30) tells us that the Fourier transform has then an extra
factor £*™~1, In this case, the assuwmption on the asymptotic behavior (4.39)

leads to
Gy gy P, (4.52)

For mn > 1, too much energy is used to create pairs and we cannot find a solution
consistent with the assumption (4.39). This kind of wall cannot attain a terminal
speed smaller than 1 either, because under (4.31), k.-integration is finite
regardless of the power of k. and thus EP* is always finite. An alternative is to

assume that
R(t)»t —nT¢

hoping to find self-consistent values of parameters  and £ that should satisfy
7&€>0 and 1> £ > —-1. However, this assumption only changes the power of
kg—k, and thus does not change the behavior indicated in (4.52). Therefore, it
becomes necessary to take into account the change of the shape of the wall
(sech®) itself. A possibility is that the shape, sech®®, is broadened by pair crea-

tion such that n » 1 when we have a self-consistent solution.
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b. Discussion

The semi-classical analysis given in Section 4 showed that the Higgs parti-
cles, the excitations of the ¢-field, are actually created, and as a result, the bub-
ble expansion velocity approaches to the velocity of light slower than the classi-
cal velocity. The ratio of the energy carried by created pairs and the energy
released from the false vacuum is constant in time and is given in terms of a
coupling constant of the model ((4.48)). We also showed that these particles
remain inside the bubble. Therefore, it is plausible that equations (3.13) and
(3.14) for m = m_ are the most suitable ones for the physical situation. The
author has inserted the assumption (4.21a) into the field equation for the real
configuration obtained from (3.13) and {3.14). That, however, does not work,
because ¢" is not equal to its vacuum values inside and outside the bubble due
to the presence of the produced particles. Therefore, we may have to proceed

to a numerical calculation.

In Chapter IV, we have treated only quantum effects due to Higgs particles.
However, the effects of other particles can be treated in a similar manner. For
example, if a fermion field 9 has a Yukawa-interaction gyvg with the p-field, the
vertex Vis linear in p”. Therefore, according to the semi-classical analysis given
in the previous section, this vertex has a lower power of k., and therefore we
expect that the energy consumed to create fermion pairs is of order T!. How-
ever, this may not be true if the fermion is massless in one of the vacua. In such
a case, if we assume that both fermion and antifermion are created in the
vacuum where they are massless, the appropriate imaginary part of the loop
graph has (k%) instead of ¥{(k*—4m?) in (3.12). Therefore, the fraction in (4.43)
has a singularity at the boundary. This divergence increases the power of T in
EP®  Furthermore, analyses in the previous section showed that the rest frame

of the pair is, in the bubble rest frame, moving outward. Therefore, if the pair is
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to be massless, it is most likely that both of the particles go outside the bubble.
In usual theories, the false vacuum corresponds to the symmetric phase. Thus,
the particles tend to be massless in the false vacuum. Therefore, the creation of
massless particles going outside the bubble may be significant during the bubble

expansion. Investigation along this line is under way.
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