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Abstract 

This thesis deals with the dynamics of the classical configuration of a quan­

tum field unstable due to pair creation. The efiective action method is 

developed first to treat such problems for a simple two-field model. Physical 

quantities such as pair creation probabilities are related to a complex function 

called the "effective configuration," which is defined to minimize the efiective 

action. Unitarity of the S-matrix is verified at the lowest order of the weak-field 

approximation. At the same order, the real valued vacuum expectation value of 

the quantum field, named the "real configuration," is constructed in terms of 

the efiective configuration. An integro-difierential equation for the real 

configuration is given and is used to show that the real configuration is causal. 

while the effective configuration is not. Two practical applications of the 

efiective action method are discussed. The first deals with pair creation in an 

anisotropic universe, and the "real geometry" is given in terms of the "effective 

geometry'' in the small anisotropy limit. The second deals with expanding 

vacuum bubbles. Corresponding to three possible situations, three kinds of field 

equations for each of the effective configuration and the real configuration are 

obtained. The behavior of the bubble is also studied by a semi-classical method, 

and one of the three situations is suggested to be plausible. 
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I. Introduction 

Quantum field theories deal with two kinds of objects: a set of particles and 

anti-particles, and field configurations. "Elementary particles" belong to the 

former kind. Most of the high energy coUisiot?- experiments are aimed at ex­

amining their properties, and we have been successful, to some extent, in con­

structing models appropriate up to energies of ""100 Gev. The simplest example 

of a field configuration is the electro-magnetic field radiated by a classical 

charged source. Within the framework of quantum electro-dynamics (QED), that 

radiation field is described as a coherent state, that is, an eigenstate of photon 

annihjlation operators [ 1]. In general, the classical electromagnetic field FJ.W(x) 

we observe is tlllderstood as the expectation value of the quantum field operator 

ff'JW(x): 

FJ.W(x )= <FJW(x )>. 

In this sense, classical field theories are reproduced by quantum field theories in 

the limit of Ir 4 0. 

As the result of recent development of models of fundamental interactions, 

expectation values of quantum field operators, or field configurations, have 

acquired more popularity. Gravity is one of them: The quantized versions of 

Einstein's theory of gravity coupled with matter have been suffering from non­

renormalizability. However, development in supergravity theories [2] and string 

theories [3] have given us a hope that somed~y we might have a renormalizable 



.. 2-

quantum field theory of gravity with matter. In such a theory, the classical 

observabl.e metric would be the expectation value of the metric operator. 

Field configurations play important roles in unified models of elementar~ 

particles: In 1960, Nam.bu [ 4], stimulated by the Bardeen-C~oper-Schrieffer 

theory of superconductivity, introduc~d the idea of spontaneous symmetry 

breaking into the dynamics of elementary particles. The ide.a was to let the 

ground state be less symmetric than t.he Lagrangian is, by having nonzero 

expectation value of certain field operators. For example, the strong interaction 

among N-quarks has chiral SU(N)LxSU(N)R symmetry at the Lagrangian level, 

which is violated by having nonzero vacuum expectation value (VEV) of t r/fi. qi, 
i=l 

where qi( qi) is the i-th (anti-)quark field operator [5]. In the Glashow-

Weinberg-Salam model [6] of weak and electromagnetic interactions, the 

SU(2)xU(1) symmetry is broken down to U(l)a.m. by a nonzero VEY of a neutral 

scalar field called the Higgs field [7]. In attempts to construct grand unified 

theories (GUTS) to describe strong, electromagnetic, and weak interactions, we 

are forced to j_ri.troduce more VEVs of Higgs fields or bi-linear scalar products of 

fermionic fields to obtain non-symmetric low-energy states. Investigation of the 

dynamics of these VEVs, or field configurations has become necessary for under-

standing the phase transitions [8...,10] in the early universe. 

In many of the models where field configurations play an important role , 

quantum effects are not negligible, in some cases, even essential: In the limit 

n~ 0, quantwn field theories give classical field equations for VEVs of quantum 

field operators. When n~ 0, the classical field equations are modified by quantum 

effects, so that the behavior of VEVs, or field .configurations, differ from that of 

classical solutions. In particular, when particle creation is possible, the classical 

solutions can be unstable and decay as time passes. These created particles 

usually occur in pairs of particle and anti-particle in order to conserve total 
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quantum numbers. For example, in gravity theories quantum effects are essen­

tial in blackhole evaporation by particle creation (Hawking effect [ 11]), and in 

dynamics of early universe [ 12] including anisotropy damping by pair creation 

[13]. In theories with spontaneous symmetry breaking, in some cases, the choice 

of the ground state can be totally governed by quantum effects [14], and pair 

creation during phase transitions may also be essential in understanding the 

dynamics. 

Jn this thesis, we will develop lhe effective action method in order to study 

quantum effects (especially pair creation) on field configurations, and discuss 

two possible applications of the formalism. The effective action method is useful 

in the sense that it deals directly with matrix elements of quantum field opera­

tors; in the limit Ir~ 0, the effective action is equal to the classical action and 

therefore equations for field configurations are automatically equal to classical 

field equations. One of the other advantages is that it provides a consistent 

quantum-mechanical description of the process. In particular, when the classi­

cal configuration is· unstable against pair creation, it allows us to take into 

account the back reaction from produced pairs in a systematic way, in contrast 

to semi-classical methods. 

In Chapter IL we investigate the effective action method in a simple two­

field model that has the essential features necessary for practical applications 

[16]. Namely, the fields whose configurations we are interested in are bosonic 

and real, as the gravitational field and the real Higgs scalar fields are. When pair 

creation is possible, the effective action SeJJ has an imaginary part. Thus, the 

matrix elements, or more precisely, Schwinger averages [15], of the real fields 

obtained by minimizing Se// are complex. These Schwinger averages are called 

the s-JI~ctive configJJratiQ.D The observable field configurations are the diagonal 

matrix elements , or the "expectation values" of real fields, which we name~ 
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~We derive the relation between these real configurations and the 

effective configurations. 

Chapter III discusses an anisotropy dissipation model of the early universe 

[ 18]. Jn such a model.. matter fields are coupled to the gravity in the conformally 

invariant manner. Because of this coupling, an anisotropy of the early universe 

is expected to decay by creation of pairs of matter fields. Ha.rtle and Hu [ 13] 

applied the effective action method to a model with a conformal scalar field in 

the small anisotropy limit and obtained numerical solutions of effective 

configurations of the metric, which they called the effective geometry. We dis­

cuss the real configurations of the metric, which we called the real geometry. 

In Chapter N, we discuss pair creation during phase transitions between 

states with different VEVs of Higgs fields. The process of phase transition from a 

higher energy state to a lower energy state is thought to be initiated by nuclea­

tion of "bubbles" of region where the field configuration has the value of the 

lower energy state . At the classical level, these . bubbles are thought to expand 

quite rapidly and leave a clean vacuum state. However, it is not necessarily so 

when quantum corrections are taken into account. Expanding bubbles can 

create pairs, quantum-mechanically. Thus, the expansion rate is expected to be 

slower than the classical expansion rate, and the resulting state may not be so 

clean. We give field equations for the field configuration by applying the effective 

action method developed in chapter II . A semi-classical analysis is also 

presented. 
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Il. The Effective Action Method 

1. Introduction 

One of applications of the effective action method was given by Hartle and 

others [2,..,4] in their studies of the dynamics of the early universe. They calcu­

lated the one-loop contribution of the conformally invariant scalar field to the 

gravitational effective action Sa/ 1 . The production probabilities of scalar pairs 

are given in terms of metrics obtained by minimizing S0JJ. Since Sef 1 had an 

imaginary part corresponding to the possibility of pair creation, the resulting 

metrics were complex, and were called the effective geometry. 

Recently, we gave the real observable metric, which we called the real 

geometry, in terms of the effective geometry [5]. The real geometry is defined 

as the expectation value of the metric operator in the initial vacuum state, while 

the effective geometry is the Schwinger average of the metric operator between 

the initial and final vacuum states. Furthermore, we verified that the real 

geometry had no imaginary part. However, we found that the unitarity of the S­

matrix is not trivial as a consequence of the complex metric. This unitarity 

problem was solved in reference[6], where the causal propercies of the real 

configuration were also clarified. This chapter covers the content of the ref er­

ence [6]. 

A typical model we consider has two fields, one of them, the .B-field, whose 

configuration we observe, real, and the other, the So-field, of which pairs are 
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created that need not be real. Further Lor entz-properties of the {3- and rp-fields 

are left unspecified. These fields interact via a {3rptcp coupling so that some 

configuration of the (3-field creates pairs of cp-particle and anti-particle. As a 

result of the backreaction from the produced cp-pairs, the configuration of the 

p-field decays with time . The problem is to give a description of this decay proc­

ess and also to give prescriptions to obtatn various physical quantities, including 

pair creation probabilities. Although we confine ourselves to the case where the 

So-field is bosonic, we see no difficulty in extending the results to include fer­

mions. The renormalizability of the model is assumed for the unitarity discus­

sion. In this two-field model, we shall call the complex function p that 

corresponds to the effective geometry in Hartle and Hu's model the effective 

configuration. Stmilarly, we shall call the real function pr corresponding to the 

real geometry the real configuration. 

In Section 2, we construct Se!J from the generating functional of the con­

nected Green's functions by using a Legendre transformation on the {3-field. 

This construction gives p in terms of the real external source of the {3-field, B, 

which enforces the boundary condition on the configuration, if necessary. 

In Section 3, transition amplitudes are given in terms of 73 at the 0 ({P) of 

8611 . We prove that they satisfy unitarity conditions by using the relation 

between 73 and B given in the previous section. It is clarified which physical 

processes are taken into account at each order of the perturbative calculation 

of (3. 

The real configuration is discussed in Section 4. The proof of the relation 

between p and pr given in Ref. [5] is improved to include the contribution of mul­

tipair intermediate states. Its consequences are discussed in relation with 

causality, the real configuration pr is shown to be causal, while pis not. 



- 9 -

The appendi.x gives discussions based on the operator field equations. The 

relation between {Y and~ given in Section 4 is reproduced by taking the initial.­

vacuum expectation value of the operator field equation for the .B-field. Finally a 

word on notation: we use subscripts i ,j for any labels the field operators and 

their matrix elements may carry, including the space-time variables. Also impli­

cit is integration and summation over repeated indices. 



2. The Efi'ective Action 

Transition amplitudes in a quantum field theory are calculated from the 

Green's functions with the help of reduction formulas. The Green's functions are 

the matrix elements of the time-ordered products of field operat_ors between the 

initial vacuum I 0-> and the final vacuum I 0+>. In the Heisenberg representa­

tion, I 0-> is defined to be the perturbative vacuum state for t. 4 - 00 ; for exam­

ple, 

N9'(t =-oo) I 0-> = 0, (2.1) 

where N'l(t) is the operator which gives the number of y?-pairs at time t. Simi­

larly, Io+> satisfies 

N,(t=+oo) IO+>::: 0. (2.2) 

The Green's functions are obtained by differentiating the generating functional 

Z[B,J] with respect to the external sources; w.r.t. Bi for the t?-field and w.r.t. Ji 

for the y?-field. This relation between the Green's functions and Z is easily seen 

in the Feynman path-integral formula: 

where S[p,i;o] is the bare action. We assume that the perturbation theory applies 

to this S[p,ip]. An explicit form of S is given in the appendix. Typically, the 

source J is zero and is therefore taken to be zero after all necessary 

differentiations with respect to J are performed. On the other hand, B is n.ot 

set to zero since it is used to excite the p-configuration out of the initial vacuwn. 

In cases when initial conditions on the p-configuration are desired, B enforces 

them. 
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For our purpose of dealing with the configurations of the {Hield, it is most 

convenient to define the effective action s011 [P., J] as a Legendre transform on 

the B-field, but not on the ~-field: 

(2.4) 

In the above, fi is defined by 

?J. = _ oZ[B,J] 
t-'i - oBi . (2.5) 

We shall call this p the effective configuration. Using the effective action Se// of 

(2.4), we can obtain the Green's functions by differentiating the vacuum to 

vacuum amplitude; 

(2.6) 

with respect to B and J. keeping in mind that p is a functional of B and J 

according to (2.5). Because of (2.4), Seff is the generating functional of con­

nected graphs which are proper only for the ,B-field, i.e., do not become dis-

jointed upon removal of a ,B-propagator. Some of the lower order graphs are 

illustrated in Fig. 1. 

By using (2.3), we find that the effective configuration Pi defined by (2.5) is 

the Schwinger average of the ,B-field operator p: 

rv· <O+IPilD->s; (3 - . 
i - <0+ I 0->B,J . 

(2.7) 

In terms of S 8JJ. {i satisfies the following equation; 

(2.8) 

The above equation follows from (2.4) and (2.5) with the help of the chain 
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c 

Sett LS, J] ~ /3(])/3 
(a) 

+ 

+ 13rt'f 
~ 

{c) 

+ 

(d) 

~ 'i3 ® 
.. 
. 

. · : 
( b) 

+ .... 

J'\z 
J 

(e) 

+ 

Figure 1: The lower-order Feynman graphs that represent Self [~.J]. The solid 

lines are ~-propagators and the wavy line the p-propagators. The dotted lines 

show possible cuts. 
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differentiation rule; 

oSeJJCB.J] _ oB1[p,J] oZ[B,J] · .... oB1 [{3,J] 
"' "' 6B + B;, + f31 rv of3i o{3;. j of3;. 

where the first and second terms cancel each other because of (2.5). It should 

be noted, however, that (2.8) is an integr o-differential equation for 7J and does 

not uniquely determine p. It seems rather difficult to find the boundary condi­

tion on p by any physical argument because pis an off-diagonal matrix element 

of the field operator p according to (2. 7) and therefore is not directly observ­

able. However, the definition of p (2.5), completely determines it. 

The uniqueness of p is easily seen at lowest order of the weak-field approxi-

mation. For small B, Z[B ,J] is of O(B2), 

where (1/ D);,i = (1/ D)ii contains the contribution of the f3 self-energy graphs. 

In this case, (2.5) leads to the following definition of {3; 

(2.10) 

From (2.4) and the above, we find 

The equation (2.8) translates into 

(2.11) 

The general solution of the above equation is 
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(2.12) 

where 1 is defined to be the same as t.he one that appear in Z of (2.9), and p0 

are zero modes defined by the following, 

According to (2 .11), we have to exclude these Po from the solution (2.12). 

The effective conflguration given by (2.5), or equivalently (2.8) with zero 

modes subtracted, is complex. This is because Scf f has an imaginary part 

corresponding to the physical intermediate states or "cuts" in some of the 

graphs. For example, the graph illustrated in Fig. l(a) has a cut C1 correspond­

·tng to the one )0-pair state and thus gives an imaginary part to the D in (2.10) ,.., 

(2.12). Therefore, 'jji in (2 .11) is complex for nonzero rea] source B. This com­

plexity of P is in no contradiction with equation (2.7): Because of the nonzero B, 

the cohfiguration of the p-field is excited out of the initial vacuum and subse-

quently \"-pairs are created. Therefore, I 0+> is not the same state as I 0->*. 

The effective configuration 'jj given by (2.10) is not retarded. Jn models with 

time-translational invariance, we can write (2.11) as follows; 

(2.13) 

where we used the diagonal metric(+---) and omitted indices. On the physical 

sheet of the complex p 0-plane, G(p) is analytic except for cuts on real axis 

corresponding to ~-pair creation. On the other hand, the imaginary part of D(.p) 

in (2.13) is always negative because the imaginary part of D is positive to insure 

•The absence of zero modes in p can also be understood in the followipg manner. If B = 0, 
~othmg happens in the initial vacuum. Thus I 0+> is proportional to I 0-> and (2.7) gives 
Pt= o. 
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the positivity of probabilities. Therefore, (2.13) can be written as 

(2.14) 

where the contour C runs beneath the cut for p 0 < 0 and above the cut for 

p 0 > 0, as is illustrated in Fig. 2. Because of this contour, the propagator 11 D 

has an advanced part. For t < t ', the contour C can be deformed in the upper 

half-plane of p 0 to the contour C'. Thus. t the discontinuity of the analytic func­

tion G(p) on the negative real axis contributes to the advanced part of 11 D. 

Since there are no zero-modes present to cancel this advanced part, 71 has an 

advanced part, i.e., the effective configuration ~ is not causal. The real 

configuration should not have this property. 
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er ---------- -------,,.,.... 

+w=~4m~ 

c 

Figure 2: The analytic structure of F(.p) in (2.14) on the physical sheet of com­

plex p 0-plane. Since the p-configuration is unstable, the on-shell poles are on the 

unphysical sheet. The line C is the contour for 1 ID in (2. 14) and the line C'" is 

the contour for 1 I Dr in ( 4. 9). 
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3. 'l.Yansition .Amplitudes and Their Unitarity 

Since the action and the source term..r:s are Hermi.tia~ the unitarity of the 

S-matrix should be satisfied, 

(3,1) 

When we calculate transition amplitudes in perturbation expansion, it is very 

important to verify this unitarity at each order. It also clarifies the correspon­

dence between a certain order of calculation of p and the physical processes 

which are taken into account. 

We define the states Ii-> as the states which have definite quantum 

numbers at t = -oo, 

(3.2) 

where (M) denotes a set of all the necessary quantum numbers. Similarly, the 

states Ii+> are defined by 

Since the S-matrix elements are written as 

sii = <i+ IJ->. 

(3.1) reduces to 

~<j-li+><i+ lj'-> = oii'· 
" 

(3.3) 

In this section, we verify this relation at the lowest order of the coupling­

constant expansion of SeJJ for two cases, (i) both IJ-> and IJ'-> are the initial 

vacuum state I 0->. and (ii) lj-> is I 0-> and Ii'-> is an initial state I a,b-> 

with a 9'-pair of quantum numbers (a, b). Note that J = 0 unless otherwise 
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specified. 

(i) Here we have <0-l 0-> = 1. 

The first term in the expansion (3.3) has the intermediate state I 0+ > and is 

therefore vacuum-to-vacuum transition probability, 

(3.4) 

where R is given by 

Here, D1 is the imaginary part of D (D = DR +iD1), which comes from the graph 

(a) of Fig. 1. 

The next term is the transition probability from the initial vacuum I 0-> to 

the one ~-pair fmal state I a,b+>. where a denotes the set of quantum numbers 

for the particle and antiparticle. respectively. The reduction formula and (2.3) 

give 

<a,b+ I 0-> =Pm Poi <0+ I T(~ifO]) I 0-> 

- io i~ I = P. .p,_. ----<0+ 0->RJ 
tn u) ..S:J.J OJ,- I"• 

u i t J=O 

iZ e 

J=O 

(3.5) 

Here, Pai projects r/Ji to the t = +00 annihilation operator for a rp-particle of 

quantum number a, and Pbj does similarly for a rp-antiparticle [5]. To evatµate 

(3. 5). we start from the following relation, 
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oSe!f [p,J] 
oJ· ) 

(3.6) 

obtained from (2.4) and {3.5). Note that on the l.h.s. B is kept constant against 

the differentiation whereas on the r.h.s. pis. Since Self is oi O(JJt) and higher 

as is illustrated in Fig. 1(d) and {e), the first term in the left most side of (3.5) 

for vanishing cl. Differentiating (3. 6) with respect to Jl. we learn 

~:z[B,J] = 02se11(P.J] + o~>:[B.J] 02Sa11[~.J] 
oJloJj oJloJ; oJl o'P1:0Jj 

The second term of the r.h.s. of the above equation vanishes for J = 0, because 

from (2.11), 

Therefore, we obtain 

_ - -ioSefj (p,J] I l 
<a,b+ IO-> - PmPoi 

6 
.t(;J. <0+ 0->. 

Ji J J=O 

The r.h.s. of the above is o(fJ) because of the contribution of the graph (e) of Fig. 

1. We write that term as 

<a,b+ J 0-> = iF ;bm~m <0+ I 0-> + ..... (3.7) 

Since the above depends only on the quantum numbers a and b, y+ causes a 

Fourier transform with total four-momentum, Pt, of the pair on p in x-space: 

In particular, the superscript F+ denotes that the time component is 

transformed with the positive energy. The total one-pair creation probability P 1 
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is 

where p- denotes the conjugate of F+, which causes the Fourier transform with 

a negative energy. 

"' Since, in the small (3 limit, 

[total pair creation probability]= 1- l<O+IO->l 2 "'P~, 

the following relation should be true, 

n*"?- y+ ...... (3 - R 
,...le .11: tLblc . a.Ok' le' - • 

We prove as follows: First, note that 

(3.9) 

(3.10) 

This form is explained by the fact that D depends only on the square of the 

external momentum. Furthermore, in the test-field approximation, i.e., if rp­

pairs are created by an externally fixed (i.e., nondynamical) p, (3.9) follows from 

~'.? . !C') because of the reality of p. In our dynamical case, however, (3.9) is not 

trivial because {1 is complex; it is therefore necessary to use (2.11) as follows: 
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= B ~* D1 1 B = r.h.s. of (3.9) 

where the indices have been orru.tted for simplicity. Thus, at this order, (3.8) 

leads to 

In the similar way, it is easy to show that the total n-pair creation probabil-

ity Pn is given by 

D - Rn -R 
rn - -,-e + ...... n. 

(3.11) 

Here the first term corresponds to the totally incoherent production of n-pairs, 

which is illustrated in Fig. 3. 

By summing only the incoherent multipair production probabilities, we 

obtain 

Rn -
}:; -

1 
e R = 1 = <0-jO->. 

n n. 

That is, our calculation of Self and {1 at the level of Fig. 1(a) is equivalent to 

counting only the incoherent production processes: Only when we extend our 

calculation to graphs which are cut into more than two pieces, we begin taking 

into account the coherent production processes*. 

• When Se/ 1 is calculated in the loop e:xpans:ion, summation over all coherent terms of (3.11) 
becomes important for unitar:ity. In the charged pair creation model in a constant electric 
field, Im( Sf!f J) was calculated by Schwinger [7) in the proper time method. The author and 
Kobayashi [ B] gave the coherent part of Pn and showed that the Schwinger's result is repro­
duced by using unitarity. 
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i3*(1)E Cl) I 

(I) Cl 
I I 

Pn= + I + .... 
I I I 
I ' 

(l) (1) 
I I 

Figure 3: The n-pair creation probability Pn. The first graph is the totally­

incoherent part R: e -R in (3.11). In the second graph, at the top, two pairs are 
n. 

created coherently. It is obvious that the contribution of this term to Pn is 

necessary to satisfy l.! Pn = 1 only when Se!J includes a one-loop graph with four 
n 

vertices. 
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(ii) In this case: <a,b-· I 0--> = 0 

For the calculation of the lowest order term, we note that 

Tb.is leads to 

(3.12) 

Similarly, the next term is obtained as follows, 

l:; <a,b-Ja'b'+><a'b'+ !O-> 
a'b' 

( . ...... ,.., . + [ =:iJ :w - + ,..., . + "'* ) -R 
::: -iF abkf3k --iF abk. D*Jkk'F a'b'kF a'b'tf3i -iF abkf3k · R e (3.13) 

where we used (3.9). The graphs corresponding to (3.12) and (3.13) are illus­

trated in F'ig. 4(a) and 4(b), respectively. The (n+1)th term, i.e., the term vii.th 

n-pairs "+" intermediate state, has the following incoherent parts; 

where I, II and III represent the 1st, 2nd and 3rd terms of (3.13), respectively. 

Summing over these incoherent parts, we obtain 

(3.14) 

where we have omitted trivial indices. 



.. 24-

I ~_,* (o,b-0-)= __;·/3 

I 

+ --:)'iJ 
-1 

I 
(b I) 

(c) 

(a) 

I I 

+ J@<!)E + -:>~* (!) 
I 

(b3) 
I 

(b2) 

r -OO····V 
.t=O 
~·--

£loops 

Figure 4: The matrix element <a,b-10->. The graph (a) and (b1) "' (b3) 

represent (3.12) and the three terms of (3.13), respectively. The content of the 

"dressed" propagator 1/ Dis illustrated in (c). 
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'Then the p-field is not dynamical and p is merely a given real fw1ction as it 

is in the test-field approximation, the r.h.s. of (3.14) is zero. Since there are no 

virtual p-quanta, the third term of (3.14) does not exist in such models. The first 

and second terms cancei each other simply because pis a real function. 

In our dynamical case, the r.h.s. of (3.14) is verified to be zero with the help 

of the energy con,servation rule, 

(3.15) 

Adding 

to the third term of r.h.s. of {3.14). we obtain 

= iF*(p*-'/i), (3.16) 

where we used (2.11) and (3.10). Therefore, (3.14) is equal to zero. 

The other unitarity relations can be verified in a similar way by using the 

bu.sic relations (3.9) and (3.16). It is important to note that, in contrast to the 

test-field approximation, unitarity does not hold for arbitrary complex functions 

p. The effective action p has to satisfy (2.11) with the real source B for (3. 9) and 

(3.16). And for (2.11), it is necessary that D~ be a real function. Therefore, p 
cannot be any arbitrary function. 
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So far, we have limited 01.ffselves to study the lowest nonfrivial order of the 

coupling expansion: Only the contributions of the graphs (a), (e) and (d) of Fig. 

1 to the Se/ 1 have been taken into account. However, the discussion of unitarity 

given in this section can be easily extended to include any graphs which contri­

bute to o({32·J0
) of Self such as graph (b) of Fig. 1. 
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4. The Real Configuration 

In previous sections, we observed that matrix elements are given by the 

effective configuration p defined as the Schwinger average (2. 7) of the p-field 

operator p, 

~ <O+lPdO-> 
fli = <D+ Io-> . (2.7) 

For nonvanishing B, the initial vacuum state I 0-> has So-pairs as t -> +00 and 

therefore represents the different states jO+>; JO-> is not proportional to 

IO+>. Because of this reason, p is complex and is l1Qt an directry observable 

quantity itself. The real configuration {J1", the configuration of the {Hield that we 

observe, is defined as follows; 

This quantity is calculable in the following form 

fJ[ = ~ <0--Jj +><i + 1#, Io->. 
j 

(4.1) 

(4.2) 

in the framework of the effective action method described so far. As we did in 

the previous section, we first deal with (4.1) at the level of Fig. l(a). 

It is easy to find the first term, j = 0: 

(4.3) 

This is represented graphically in Fig. 5(a). For the next term, we need a new 

matrix element <a,b+ l~i !O->, which is calculated as follows, 
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and (3. 7) and (3~ 9) lead to 

(4.4) 

Here, op/ oB is the full propagator of the {$-field because, from (2.5), it is just 

the second derivative of Z by B .. At the order we are working, (2.11) gives 

Therefore, (4.4) can be represented as in Fig. 5(b). The second term of (4.4) 

partially cancels the factor e-R of (4.3) as the third term in (3.13) did for (3.12). 

The incoherent part of the (n+ 1)th term is 

as is illustrated in Fig. 5(c). Therefore, by summing all these incoherent higher 

order terms, we obtain 

(4.5) 

To verify the reality of r.h.s. of ( 4.5), we operate F's on ( 4.5) [5]: 

(4.6a) 
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~~ ~*(:~·· ~ +(3 . 1 + 
I 
I 

(!) 
I 

+ ... 

(a) (b I) (b2) 

Ci) 
. I. 

Cl) 
I 

: t : I 

~~c1~ 
: I : 

""'J 

+ + : I : f3; 
: I : 

JI( + ... 
. I . 

: I : ' . I . 

Cl) (!) 
I I 

(c) 

Figure 5: The real configuration {3[. The graph (a), (bl) and (b2) represent (4.3) 

and the two terms of (4.4), respectively. In the third graph, the isolated broken · 

loops correspond to R. The (n+1)th term is ilfostrated in (c) . 
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where we have used the energy conservation law (3.15). From the above, we find 

and similarly, 

Therefore, {31' given by (4.5) is real. 

In terms of B, (4.5) can be expressed as follows; 

where 

(4.8) 

The last equality of (4.7) can be proven as follows: First, we define 

respectively. Expanding 1/ D and 1/ D* in powers of D+ and n-, we get 

(- r {[ ln+m I ln+m ! ln+m+l ! ln+m+ll = "'~ 1 n+_1_ + n--1_ -n+_1_ + n--1_ 
'-' LJ D'R IJR nR nR nR n m 

where we have used (3.15). Changing the index (n,m) to (N=n+m,n), we find 
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= ~ _1 {(-1)N[/Y-1 JN +[n--1 JN} 
N =O DR [JR ff 

where 

_ ~ 1 N 
CN = t.J (-1r = --(1+(-1) ). 

f?,~ 2 

The causal structure of pr is manifest in (4.7). The only difference between 

(2.11) and (4.7) lies in the sign of n-, which is the negative-energy imaginary 

part of D*. Thus (4.7) can be expressed in terms of the same F(p) defined in 

(2.14); 

pr(x) = J d4x' J d3p J C1' dp 0 G(p )e-{t>(z-:c') B (x'). (4.9) 

The new contour er has to run above the cut for both p 0 > 0 and p 0 < 0, 

reflecting the difference of sign in D- (see Fig. 6). Comparing the contours C 

and er, we notice that the second term in (4.5) corresponds to the integration of 

the same integrand as in the r.h.s. of (4.9) along Uie contour C' in Fig. 2. For 

t < t ', the contour closes in the upper half plane where no singularities exist. 

Therefore, the "propagator" 1/ IJ" is retarded, and pr (x) has no advanced part, 

that is, ff" becomes nonzero .o.nly after the source B has. This causal property of 

pr agrees with the physical picture that I 0-> is the vacuum not only in So-sector 

but also in {'-sector before the source B attains a nonzero value. The real 

configuration {J1' is zero initially and gets excited by the source B. 

• Th:i.8 clliierence is also understood from (4.6): If one de:fir.1es 1/ Dr as pr = ~r B, (4.6b) im­

p1i-:-c:i t.hAt. the imaginary part of l./ I? for negative energy has different sign from that of 
V 17, while it is not so for positive energy. This argument comp1etely determines 1/ Dr. 
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Since we gave the relation between the effective configuration p and the 

real conf:J.guration pr, the transition amplitudes, which are given in terms of p, 
can also be given in terms of pr . For example, by, substituting (4.6) into (3.9), we 

find that the vacuum-to-vacuum transition probability e-R is obtained from {Y 

by 

(4.10) 

Similarly, the one pair creation amplitude (2.7) is 

b I 0 - · F + {3r -R <a. + -> - -i abm me • (4.11) 

The inverse of ( 4.5) is also useful: 

(4.12) 

From this formula, the one-pair annihilation probability is obtained as follows: 

It should be noted that, as is illustrated in the above examples, all the matrix 

elements are calculated from the physical quantity{!". 

In this section, we worked at the order of the gr aph of Fig. 1. However, any 

O({J2) contribution to 8011 can be easily included in the results. In particular, 

the causal property of the fl" remains unchanged: The real configuration fY is 

always retarded. The Green's function 1/ D has various cuts on the real axis of 

complex p 0-plane, while the retarded Green's function 1/ Dr is always obtained 

by shifting the integration contour to the upper half-plane. 
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5. Conclusion and Discussion 

We have developed the effective action method to deal with unstable 

configurations by using a two field model, where we have a p-field whose 

configurations are observed and a yo-field whose pairs . are created. At the lowest 

nontrivial order of the weak {3-field approximation, Le,, at 0((32) of the effective 

action S811 , the unitarity conditions among the So-pair creation and the yo-pair 

annihilation amplitudes are verified. Because of the dynamical property of the 

,8-field, the effective configuration p, in terms of which the transition amplitudes 

are expressed, is complex and made unitarity nontrivial. By the same reason, 

however, ,8-quanta can appear as internal lines of the Feynman graphs and are 

shown to save unitarity. 

Furthermore, we derived the equations relating the real configuration {:f" 

and the effective configuration (1, which were used to show that {I" is causal as we 

expected on physical grounds. Using results of the unitarity discussion, we were 

able to sum the higher-order incoherent terms in the expansion of ff" to obtain 

(4.5). Then (4.5) was converted into (4.6) and (4.7). The equation (4.7) has a 

consequence that the real configuration ff'" is retarded relative to the source B. 

~i~ agrees with the physical picture that our initial state I 0-> is initially the 

vacuum state. and the real configuration ff'" is excited by the source B. 

In higher orders of the weak-field approximation, ff" is related top as 

(f1" = {j + [connected terms such as Pig. 5(b 1)], (5.1) 

as the extension of (4.5). In general. the connected terms in the above are non­

linear both in p and p*. For example, when o(fi3) of Set 1 is taken into account, 

the connected terms in (5.1) are of O(p2
) + O(M*) + o(j3*2

). Because of this 

nonlinearity, the simple relations like (4.6a) and (4.6b) would not hold at higher 

orders•. However, on physical grounds, we expect that the causal structure of 

•A partiaJ discussion at this order is given in Ref. [9]. 
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pr does not change. pr should be nonzero QDlY after the source B has. Thus, 

the expression (4.'i') of ff" in terms of B is expected to be generalized as follows; 

pr = ~ J d4x 1 ... d4.xn ~(x;x 1 ... xn)B(x 1) ... B(xn), (5.2) 
n 

where G;,'s are real, retarded Green's functions, 

The a; is obtained by the (N + 1)-point connected Green's function Gn by deform­

ing the integration contour: The first term p on the r.h.s. of (5.1) is given by 

p(x) = ~ J d4x 1 ... d4Xn Gn(x;x 1 ... xn')B(x 1) ... B(xn), (5.3) 
n 

and the connected terms in (5.1) then add the discontinuity to Gn 's so that the 

sum becomes the retarded Green's function ~·s. For practical purposes, the 

generalization of the equation (4.8) for pr would be more useful than (5.2) 

because the source B is implicit in most actual applications*. 

Throughout this chapter. we have assumed that the field configuration is 

totally unstable, i.e., mp > 4mi, where mp denotes the mass of a p-quantum. 

However, the effective action method as developed here can also be applied to 

the case where mp < 4m;, when only a part of the configuration decays. In 

such a case, G(p) in (2.14) has on-shell poles p 0 = ±V-p2+mp on the physical 

sheet Fig. 2 of complex p 0-plane. These poles cause further complexity of~. In 

the expansion ( 4.2) of pr, however, we have an extra contribution from + states 

which have some configuration left over, which makes {I" real and causal again. 

•The proof of (5.2) was recently given by Sonoda [10). 
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Appendix. Tii.e Operator Field F..qu.at.ions and the Real Configuration 

Relation ( 4.5) between the real configuration ff" and the effective 

configuration p is consistent with the operator field equations. The purpose of 

this appendix is to reproduce ( 4.5) from the operator field equations using naive 

arguments. 

We write the bare action S[P.sti) explicitly as follows; 

(A.1) 

Then, the p-field operator p and the ~-field operator~ satisfy the following; 

(A.2) 

(A.3) 

where we have neglected the source J for simplicity. First, we take the matrix 

element of (A.2) between <0+ I and !O->. 

(A.4) 

In the above, the second term of the l.h.s. is a local product and is well-defined 

as an equal time limit of the T-product. Therefore, we substitute <0+ I ~J~k I 0-> 

by <0+ I T($Nt) I 0->, Y{hich satisfies 

<O+ \ r(~l;o1c) lo-> = <O+ I rl -i ~) Io->. 
d+g{3 lk 

(A.5) 

This relation is most easily obtained in the path integral formalism as follows: 

For the action (A.1), the [d~ ][dept] integration in (2.3) can be done to yield 

J 
ilBDOp-Jt - 1 - ~ 

iZf.B,J] = [df3] det d r d1-.qfJ "J 
e det(d+g pi) e · 
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Therefore, 

<O+ I T( ..... l"' ) Io-> = io .iQ_ iZ[B.JJ I rp 'Pk (jJ .tJt e 
l u Ji J=O 

::: J [ dp] [- _-:1~ _ __Q_et d __ ei( .. . ) 
d+gp)Lk det(d +gt?) 

= <0+ I [ '-i ~J IO->. 
d+g[i lk 

In the expansion of (A.5) in terms of the coupling g, YiJJc x [the first term], which 

is represented by a tadpole graph, vanishes corresponding to the fact that we 

assumed no O(B) term in Z of (2.10). Therefore, (A.4) reduces to 

(A.6) 

Here we defined 

Equalion ( 4.6) is equivalent to (2.12) at the order of the graph (a) of Fig. 1. 

To obtain (4.5) from the operator field equations, we take the expectation 

value of (A.2) in the initial vacuum state, I 0->: 

(A.7) 

We can calculate the second term of the l.h.s. of (A.6) by inserting 

1 =}:; In +><n + J. Then, the first term of the series, 
n 
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is given by 

[~. [·1 .,., ~ Uilk<O-IO+><D+IT ""' IO->=gilk<O-IO+>'i-d g<O+LBJO->d -t- ... 
d+g p lk lk 

I. 1 ~13 1 l -R 
= 9tlk -idg d)lk e . (A.8) 

The next term, j ::: (a,b), yields the following: 

Uilk ~ <0-ja,b+><a,b+I r(M~t)IO-> 
G,b · 

where (3.9) has been used. The graphs that represent (A.7) and (A.8) are illus­

trated in (a) and {b) of Fig. 6, respectively. By summing all the incoherent con-

tributions of multipair intermediate states, we obtain 

Therefore, (A.6) reduces to 

Since, at this order, 

D = D0 + ?.n..Lg.L 
vd d' 

the second and the third terms of the l.h.s. of (A.10) combine into 

(A.10) 



- 38 -

(o) 

I I I 
I 

Cl>~C) (!) PQi $•(!) + + + 
I I I 
I I ' (b) 

Figure 6: The matrix element gilk<O-JT(MSoAJ!O~>. The graphs (a) and (b) 

correspond to (A.7) and (A.8), respectively. 
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By substituting (A.6), or its equivalent (2.12), Dp·= B into the r.h.s. of (A.10), we 

obtain 

The general solution to the above is 

(A.11) 

The zero modes in the above are excluded by physical arguments: The first two 

terms of (A.11) are, as is shown in Section IV, retarded, while, in general. the 

.zero modes span all space-time. Therefore, if the zero modes exist in (A.11), pr 

has always an advanced part. However, it is not allowed because the state I 0-> 

is the vacuum state before the source 13 becomes nonzero. Thus, the zero 

modes .are excluded from (A.11) to yield (4.5). 
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Ill. Anisotropy Dissipation Model of the Early Universe 

1. Hartle and Hu' s Model 

One of the possible mechanisms for dissipation of an anisotropy in the early 

universe is creation of conformally invariant particle pairs. If a field ~ is cou­

pled to gravity in the conformally invariant manner, ~-pairs are not created in 

an isotropically expanding universe [1]. Thus, an anisotropic universe is 

expected to be driven to be isotropic by creation of ~-pairs. Thls mechanism was 

studied, and shown to work. by several people by using semi-cla.ssical methods 

[2]. These methods, however, had difficulties. The total pair creation probability 

diverged as one approached the il1itial singularity, inrucating that the semi- clas­

sical methods were not applicable near the singularity. To avoid this difficulty of 

traditional methods, Hartle, Hu, and others [3"'-'7] applied the effective action 

method to this problem. They showed that the singularity of the production 

probability is removed by the quantum correction, which can be treated sys­

tematically by the effective action method. 

In terms of the effective action method studied in chapter II. they calcu­

lated the effective configuration 'fl JW• which they called the effective geometry . 

of the quantum metric operator g µ,v· The given numerical solutions Y;.w have, as 

expected, an imaginary part. The purpose of this chapter is to study the relation 

between the effective geometry and the real configuration g~v, which we call the 

rag). geometry in Hartle and Hu's model. This section outlines the work done by 

Hartle and Hu in a manner suitable for further analysis in the next section. 
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The action at the tree level is 

where r; is the real scalar field , and the classical radiation is put' in to give the 

usual expanding universe at the tree level. Assuming spatial homogeneity, we 

write the metric as 

(1.2) 

where 1:.he traceless matrix {JiJ·(r;) represents the anisotropy in the expansion 

rates of the universe . The action in terms of this metric is 

... ""°' 

F[P] = f: ~a i f1iJ(TJ) 'Cl 

8
1 + o(p2

). (1.4) 
i.j=l vX OZ 

where 

~(x) = a(x)cIJ(x). 

The gravitational action in (1.3) is given by [ 4], 

where V denotes the volume of 3-space and primes denote derivatives with 

respect to 17. The classical equations obtained by minimizing the action (1.5) 

have a isotropic solution 
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(,.....,.. l l/~ 
u.(17) = ~ .../16rrG'l] (1.6) 

of a radiation-dominated universe Viiith radiation-energy density 

Pr(7J) =prla4('YJ). Since the run,~lion F({3) is independent from a, the "~-field" 

bas no couplings with the "a-ficldo;. This is because of the invariance of the cou-

pling bet.ween ~ and g 1.w under n conformal transformation, or more precisely, 

under the Weyl-rescaling, 

As a result of this absence of a in F[p], no ~-pairs are created in a isotropically 

expanding universe like ( 1.6) in ar,reement vrith Parker's argument [ 1]. Jn terms 

of the original scalar field q>, the oxact wave- function of a particle in such a iso­

tropic universe is 1/ a(71) times l.hut of a free particle in a fiat space-time. 

Assuming small (3, Hartle and Hu calculated the contribution of the one-loop 

graph or the ~field, which is illustrated in the figure 1, to the gravitational 

effective action s,, I [a ,p], This qwmtum correction term has a ultra-violet diver-

gence, 

- 1 fd4 ~" R'' 
960rr2(n-4) x P ij P ii 

when n-dimensional regularization method is used. The counter terms to sub-

tract this divergence had to be eiLher conformally invariant or pure divergence 

for n = 4. They showed that the right counter term is 

(1.7) 
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Figure 1: The one-loop graph treated by Hartle and Hu. The cut, which gives D1, 

is shown by the dotted line. 
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where µ is an arbitr ary constant of dimension 1 /h.11 t1 lh and )\.::: 112880rr2. The 

resulting finite act.ion Sflf/ can be symbolically wrill r.111 ns follows, 

S0u[a,{i,J] = s 0[a] + ~ i1D[a]p + JGJ 1 .i urGJ{i + ... , 

where 

S 0 [a] : a real, nonlinear functional of a, 

D[a] = DR(a] + ill1: a complex operator, 

G: the )0-propagator, 

r: the {3cprp proper vertex. 

In the above, the source J for the ~-field is put in as \ v i ,~ done in chapter II. Both 

S 0 and D have non-quadratic terms in a which corrll. It-om the finite part of the 

counter term (1.7). 

Using the effective action (1.8), the transition jq ubability from the initial 

vacuum (II.2.1) to the final vacuum (II.2.2) is given by 

(1.9) 

where A is the source of a and B the source of {3*. Tl 11-1 t?. ffective geometry ( a,p) 

is obtained from the equations, 

08~1 I =-A, 
oa 'ji,J 

oSaff op -,v=-B. 

• The signatures of sources differ from the convention in chapter fl f iq technical reasons. 

(1.10) 

(1.11) 
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Substituting Saff in the above by (1.8), we obtain a coupled nonlinear equations 

as follows; 

_os_o_(a_) + l;JoD('a) {3rv =-A 
oa 2 (J oa · (1.12a) 

D(B:;p = -B . (1.12b) 

where we neglected the source J and higher order terms of p. In the small 'jj 

limit, the solutions a and 'ii can be written as a perturbation expansion about the 

zeroth order solutions a0 and Po as 

a= ao + o(j15), (1.13a) 

'ii = Po + o(p5). (1.13b) 

where ao is defined by 

-A, (1.14a) 

and Po by 

D[ao]Po + o(J2
) = -B. (1.14b) 

At the lowest order of the perturbation expansion, a and {3 are decoupled: The 

runcuon ao is obtained from (i.14a) and Po is then given by (i.14b) where aa is 

already known. At this order, a0 is real and Po is complex. Hartle and Hu [5,6] 

solved (1.14a) and (1.14b) numerically for Po= constant matrix x scalar function 

of 17. Then they discussed the total pair creation probability P, which is , in 

terms of Po. 

P = 1- l<O+j0->1 2 =1-e-R . 
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which was derived by an argument similar to that used to derive the equation . 

(3.4) of chapter II. 
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2. Effective Geometry vs. Real Geometry 

Hartle and Hu' s model differs from the t\vo-field model dealt in the previous 

chapter. Their model has three fields a, {3, and rp, instead of two fields. The a-field 

couples to the {:?-field nonlinearly and the f3 ·-field couples to the 9'-field. Thus, the 

p-field only is a source of pair creation, while both fields have configurations. 

These differences, however, are minor at the lowest order of the perturbation 

expansion (1.13a,b). In this section, we discuss the relation between the effective 

geometry and the real geometry along the lines of the argument given in the 

previous chapter. 

First of alL equations (1.10) and (1.11) guarantee the following relations 

between the effective geometry (a, /3) and the corresponding field operators (a, 

p). 

a= <D+ la!O-> 
<0+ IO-> . 

1'J _ <o+ I Pl o--> 
(3 - <0+ jO-> . 

as can be shown such as follows: 

(2. la) 

(2.1b) 

= oa [ 6Seff +J+a + _o@ I[ 6Se;,1 I +BJ ei(Se11+8.A+'jiB) 

ioA B.J oa 'lJ.J ~ -ioA ~.J of3 a..1 

As we did in section 4 of chapter II, we define the real configuration of the 

metric operators a and p, or the real configuration as the expectation values of 

a and p. in the initial vacuum state Io->; 
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a.v- = <D-1 a Io-> . (2.2a) 

fJT = <O-IPIO-> . (2.2b) 

These quantities are calculated by inserting the complete intermediate set of 

0 +" states L: Ii +><j + l as in (Il.4.2). 
; 

In spite of the extra a-field, the argument in the previous ch?-pter leading to 

the (Il.4.4) applies to the above (2.2a,b) with minor modifications. The expres-· 

sion (11.3.7) for the one-pair creation amplitude is not changed at all , because 

the two-point propagator is now calculated as follows, 

0 IT( ( ) (2)) I 0 _ 0 0 i(S6JJ+aA+pB) I 
< + Cf' l <p -> - ioJ(l) ioJ(2) e ~.B 

= 'lv ua eff +A + u sf! + B ·~ I{ ~...., [~s J ~"' [os I J 
ioJ(1) ioJ(2) A.B oa -.1 ioJ(Z) A.B op a..J 

+ ~Self }e\(SeJJ+e.A+pB] l 
'l.OJ(2) e.,{i ~.B 

= ___j_o_l 6Se.rt I i(Se11 +aA+pB)l I 
ic5J"( 1) ioJ(2) ~/ A.B 

where we denoted the independent variables which should be kept constant in 

the partial differentiation as IA.B etc. Equations (1.10) and (1.11) have also been 

oS 
used. From the effective action of (1.8), it is easy to see that only oJ(i)'J(

2
) 

a,p 

survives for J = 0. Therefore. (II.3.7) holds. The projection operator at 7J = +oo of 

a particle with a momentum k out of ~(?Jixi), is explicitly given by the following, 

(2.3) 
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Similarly, the operator Fin (11.3. 7) to obtain the creation arnplitude of a pair of 

momentum (k1, lrz) is 

kiki +"° !"'- I F - i 1 os(k +i..-_) f .. i2 .e>.1 7J 
+ - - Tki! · 1 nz -rJO G7J e · (2.4) 

From (2.2b), we learn that 

(2.5) 

which corresponds to {11.4.5). In general, 6p/ oB is a nonlinear function of a and 

p because of the coupling seen in (1.12a,b). At the first order of the expansion 

(l.13a,b), however, (1.14b) leads to 

21_= oPo !:: __ 1 _ 
oB oB D[ao] . 

This is because 'ao satisfies (1.14a) and therefore is independent from B. In 

terms of 'ao and p0 , (2.5) is reduced to 

(2.6) 

The only difference between (2.6) and (11.4.5) is that the propagator ii D is now 

explicitly time-dependent because of aa. Therefore, the energy conservation 

rule (II.3.15) does not necessary hold. However, under the assumption that the 

a-field itself does not create any p-quanta, i/ D[a0] does not connect the nega­

tive frequency part to the positive frequency part, and thus (Il.3.15) holds. It 

should be noted that in deriving (2.6), we virtually used such an assumption: If 

this assumption is not satisfied, we have to tak~ into account the contribution of 

the graph with intermediate p-quanta such as the one illustrated in figure 2. 
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D[a o] 

B 

Figure 2: An extra contribution to (2.6) when the a-field can be a source of {3-

quanta. 
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Under this assumption, results (II.4.6a,b) and (Il.4.7) hold in our model. 

Especially. (ll.4.7) gives the equation for pr. The imaginary part of D[ao] comes 

from finite part of the graph in figure 1. will.ch is proportional to 

1 fo dx ln(-iI;-p 2x(1-x)) r..i Ln(-3ie-p2) +constants , 

where p is the four-momentum into the vertex '{12. Since we assume spatial 

homogeneity, the space portion of p is zero. The exact D[a0] 17 ,7J' in equation 

(l.14b) is as follows, 

(2.7) 

·with 

(2.8) 

The operator D0 is nonlinear in a0, local. and real. The scale µ comes from the 

contour term (1.7) to give the dimensionless argument of the logarithm. The 

contour C is the same as the one given in the figure II.2 except that now m=O as 

is seen by inspecting the action in (1.1) or (1.3). F(TJ-r;') is explicitly calculable 

with the help of an appropriate regularization scheme. For example [8], 

"° CJ "" • F('f)) = 2 r dCJ COSCYf'J ln--i1ff dCJ e-'l.c.J'1J J 0 µ -w 

11!1 

= lim 2J dCJ COSc.Yr] e-CXCJ ln~- 2i1T20(77) 
a~o 0 µ 

= um{---l-:Jo:r+ $.J.2 n(r;2+o:2)+11tan-177J]-2in20(17) 
tx-*O ~ a] 



where 1=0.5772156649 ..... is the Euler's constant. The above expression can also 

be obtained by deforming the contour under the same regularization condition. 

For 7'}<0, for instance, the contour c is deformed ·to C' in the figure (II.2), which 

picks up the discontinuity of the integrand: 

(2.10) 

The integro-differential operator Dr in (II.4. 7) has the same contour er with 

11 Dr. Thus, nr is written in a manner similar to (2. 7), 

(2.8) 

For the purpose of illustration, we calculate F by two methods that correspond 

to (2.9) and (2.10). First, the direct calculation shows the following, 

u CJ co • 

P(71) = 2 r dCJ COSc.>r) ln-- inf dCJ e(cv)e-1."1TJ Jo µ _..,., 

(2.11) 

where e(CJ)=c..>/ !CJ!. By the method of contour deformation, we learn that 

(2.12) 

which agrees with (2.11). 

For ar of (2.2a), the same method gives a result analogous to (2.5), 

(2.13) 
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Using the expansion (1.13), we obtain 

Since, from (1.14b), 

we learn that 

(2.14) 

The above ar is real up to first order in p0 , since 'ao is real. 

In summary, the real geornetry (ar, {37') was related to the effective 

geometry (a, p) up to first order of the perturbation expansion (1.13a,b). The 

assumption . that the configuration 'ao does not create any {?-quanta has been 

used. For the higher orders of (30 , not only the numerical calculation of p 
becomes very complicated, but also 'P3 term of Sef J becomes important. 

Nevertheless, all the expected features of the model are already exhibited at the 

current order of the perturbation expansion. Therefore, even though the rela-

tion between the effective geometry and the real geometry could be extended to 

higher orders, I believe that higher orders are not of practical interest. 
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lY. Vacuurn Bubble Expansion 

1 Introduction 

In certain models of elementary particles, there exist degenerate or meta­

stable vacua. They are vacua in the sense that any one of them is not obtained 

by adding infinitesimal excitations. or a finite number of particles, to any other 

state in the model. However, they are connected by finite excitations, or dis­

placement of fields. In analogy with the WKB-method for tunneling amplitudes in 

quantum mechanics, the transition amplitudes between the different vacua are 

given by examining the finite displacements that connect the vacua. The steady 

states of the model, which are called the true vacua, depend on the properties of 

the transition amplitudes. 

In pure gauge field theories, we have degenerate discrete vacua that have 

different topological properties. In the SU(3) Yang-Mills theory of the strong 

interaction, for example, there are infinite number of vacua l n >, where n is an 

integer varying from - 00 to +00 • The m-instanton solution [1], which is an 

Euclidean solution with a finite action SE(m) and a topological number m, con­

nects an initial vacuum Jn,-> and a final vacuum ln+m,+>. 

(1.1) 

Since the transition amplitudes depend only on the difference of the indices of 

the vacuum, a true vacuum lil> is a superposition of the discrete of vacua given 

as follows, 
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tlO 

I~>= N I; ein,,jn> , 
n =--<><> 

where ~'19-<2rr and N is the normalization factor. Jn fact, 

<~',+ j-6,-> = l N 12 I; ei(n"'-n"ir)<n'+ In,-> 
n.n• 

_ 1 12 \:' i~(n-n '){~rl')+(n+n')(~-1!1')] 
- N i.J Tn-n'e 

n:n' 

°' o(~-4'') . 

Similar mechanisms have been proposed for models with Higgs mechanism [2]. 

In models that have monopole solutions of finite action [3] in Euclidean space­

time, the different degenerate vacua also have a transition amplitude like (4.1). 

Thus, it was suggested that the true vacua may be a mixture of the usual vacua 

that have definite expectation values of Higgs fields. 

When a model has non-degenerate vacua, there is no mixing, and the true 

vacuum is the state -with the lowest energy density. A vacuum state of higher 

energy density, which is called the false vacuum [3], decays in time. This decay 

is realized by nucleation, creation of bubbles of the true vacuum in the false 

vacuum surroundings. A famous analogy is the boiling of superheated fluids [ 4]. 

This nucleation mechanism for phase transition in quantum field theory was first 

suggested by Volosin et. al. [5]. Coleman and Callan [6, 7] developed a method to 

calculate the decay rate of false vacuum. Jn contrast to ( 1.1), they discussed the 

amplitude, 

-1.E T <false vacu·um, T I false vacuum,0 > oce 1 

The quantum correction to E1 was shown to have an imaginary part in the 

Euclidean path-integral formalism. The false vacuum decay rate r per unit time 
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is obtained from E1 as, 

r = - 2ImE1 . 

Coleman [6] argued on basis of a classical analysis that once a bubble is created, 

all the energy released in converting the false vacuum to the true vacuum is 

used to accelerate the wall, and that no "roiling sea of mesons" is left behind it. 

The generalization to finite temperature were discussed by Linde [8]. 

This phase transition from the false vacuum to the true vacuum plays an 

important role in cosmology. Most of the models with spontaneous symmetry 

breaking at T = 0 have their original symmetry restored at high temperature 

[9]. Thus, the early universe is in the symmetric phase of the theory. As the 

universe cools down to a temperature of the grand-unified scale "' 1015 Ge V, the 

symmetry-broken phases become the true vacua. If the nucleation rate is high, 

many bubbles with different VEVs are created at the same time. As each bubble 

expands and collides with each other, "knots" of different VEVs, monopoles [ 10], 

are created between them. The number of monopoles is of the same order as 

that of the bubbles and therefore in conflict with observations [ 11]. .An alterna­

tive scenarj_o, the inflationary universe, has been proposed by Guth and others 

[12]. Their idea was to have a small nucleation rate so that the universe is dom­

jnated by a few large bubbles. The monopole problem is thus solved. Further­

more, due to the high energy density of the false vacuum, the early universe 

undergoes an exponential expansion state for a relatively long time. Therefore, 

the horizon and flatness problems seem to be avoided. A difficulty of this 

scenario is that if Coleman's conclusion of no "roiling sea of mesons" is to be 

believed, then the energy of false vacua should be released only when the walls 

of the few large bubbles collide. This leads to a large scale inhomogeneity and 

anisotropy [13]. To avoid this difficulty, several other scenarios has been 
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proposed [14, 15]. 

It should be noted that Coleman's argun1ent on the real-time behavior of a 

bubble is a classical one. Particle production is quantum phenomenon. Thus, it 

. is natural that Coleman did not find the roiling sea of mesons. Since Coleman's 

conclusion is one of the bases of constructing models of the early universe and 

the elementary particles, it is important to take quantum effects into account 

end to see whether the energy obtained by the conversion is still concentrated 

on the wall or not. The purpose of this chapter is to describe an attempt to 

evaluate quantum effects, especially pair creation. 

In the next section. we briefly describe Coleman's work [6] on the real-time 

behavior of the wall in connection with the earlier works by Volosin and others 

(5]. The method for calculating the nucleation rate [7] is also outlined for com-

. pleteness. In Section 3, we apply the effective action method developed in 

chapter II to this problem. Three field equations are given corresponding to 

different physical situations. Section 4 gives a semi-classical treatment of the 

bubble expansions. Also the asymptotic behavior of the bubble and pair creation 

rates is examined under some assumptions. Finally in section 5 we discuss on 

results. 
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2. Quantum Creation and Classical Expansion of a Vacuum Bubble 

The simplest model that has all the essential features for the decay of the 

false vacua is that of a single scalar field rp with the following action at a tree 

level I 16, 5, 6], 

(2.1) 

The potential V(So) has two minima CfJt- and CfJ-, the former having an energy den­

sity~ higher than the latter, as is illustrated in Fi.g. 1. 

v 

Figure 1: A potential V( cp) that has a stable vacuum rp_ and a meta-stable 

vacuum cp.,_. 
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The following V(~) is commonly used, 

(2.2) 

which will be explained later ((4.3)). 

Consider a bubble of true vacuum <\O> = cp_ surrounded by false vacuum 

<~> = 'IJ+ with a thin wan, a transition region that is narrow relative to the 

radius of the bubble, separating the two vacua. The energy Eb of such a bubble 

relative to the homogeneous, i.e., complete false vacuum, is given by the follow-

ing [5], 

4n~ Rs 
3 . (2.3) 

where R (t) is the radius of the bubble in the c.m. frame and R == dR I dt. The 

first term includes the surface-tension and the Lorentz factor due to the motion 

of the wal..L S 1 is the rest energy of the bubble wall per unit area. The second 

term is the energy gain due to the difference in the energy density between the 

true and the false vacua. By conserbation of energy, Eb=O, then the solution to 

(2.2) is 

where Ro is the radius of the bubble at rest (t = t 0), 

381 
Ro=--. 

t 

(2.4) 

(2.5) 

Therefore, once a bubble is created, regardless of whether it is shrinking 

(t < t 0), at rest (t = t 0) or expanding (t > t 0) a.t the time of the creation, it 

blows up as t -> oo {see the figure 2). This is because all the energy released from 

the false vacuum is used to accelerate the wall. The wall is accelerated outward 
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because the wider region of the true vacuum is energetically favored. From 

(2.5) we also note that the thin wall approximation is satisfied by the small £ 

compared to the height and width of the potential barrier between rp_ and <P.+· 

This is because as e ~ 0, the thickness of the wall and 8 1 are governed by the 

shape of the potential barrier and therefore finite, while the minimum radius Ro 

diverges. 

t 

¢_ 

r 

Fi.gure 2: The "world line" of the bubble wall (2.4). 
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The prescription for the nucleation rate was given by Callan and Coleman 

[7]. In Euclidean space-time. there is a localized hyperspherical solution cp 1 

which has the follo1ving property [6, 17], 

·I""' <P- for p=.v,,-2-+r
2

"" o 
9'1(r.t) 

4 t.p + f1..S p --!> 00 

(2.6) 

where T :: -it is the Euclidean time. The energy E1 of the false vacuum state 

gets a quantum correction due to the presence of bubbles. They can be calcu-

lated as follows, 

where SE[>P] is the Euclidean action and the functional integral over cp has the 

boundary condition ~o( T = Ti, 1j) = 'P+· Let StJ = ~o_rp 1 be perturbations about the 1 

bubble solution (2.6), then naive integration over sP' gives 

The determinant is a product of all the eigenvalues of the operator -82 + V1'(rp 1). 

There are zero eigenmodes 1vhich correspond to displacements of the original 

solution, 

d~1 
~o = dz ox. (2.8) 

Displacements are actually treated by considering the coordinates of the center 

of the solution cp 1 as a collective coordinate in the functional integral in (2. 7) 

[18]. Therefore, zero eigenmodes do not appear in the r.h.s. of (2.7). The modes 

(1.8) have nodes, and therefore are not lowest eigenmodes: There exist negative 
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eigenvalues, which make (2. 7) complex. The Gaussian integration of the l.h.s. of 

\i:J. () actually diverges for these negative eigenvalues. A convergent expression 

is obtained by modifying the integration "contour" in complex so-functional 

space. After summing the contributions of other multicentered solutions, Callan 

and Coleman obtained 

where Vis the volume of the space and det' denotes that the zero eigenvalues 

are excluded. 

The solution (2.6) in Euclidean space-time is related to the bubble in real 

time (2.4) by analytic continuation. In :real time, q; 1 is a function of 

p :::: Y -t 2 +r2 . Thus, the surfaces of constant ~ 1 are hyperboloids like the one 

illustrated in Fig. 2. Jn fact, if we assume that the solution (2.6) has a narrow 

transition region at around p "' R. ~ 1 is obtained so as to minimize the Euclidean 

action SE. which is given as follows, 

(2.9) 

In the above, we used 

and 

U{p)"' -t1J(R-p). (2.10) 

The constants S 1 and £ in (2.10) are the same as the ones in (2.3) because the 

energy E of a bubble at rest is given by 
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E = 4n r°"' r drl.L [dcp
1
-]

2 

+ V l = 4nS 1R2 -
4

n R 3 
Jo 2 dr 3 · 

The action (2.9) is minimized by R = 381/ £, thus the wall is located at 

in agreement with (2.4,5). 

3S 1 p = v-t2 + r2 = --. 
e 
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3. Quant um Correction to the Bubble Equation of Motion 

As was e xplained in the previous section, the bubble solution in real-time, 

~o 1 (p = .J-t2+r2), is a solution that minimizes the classical action ( 1.2). There-

for e, Soi satisfies the following equa tion, 

(3.1) 

Since no quantum correction is considered: this q; 1 in the above equation is 

related to the quantum field operator ~ as 

<0+ 1$10-> <O-jri5JO-> 
~ 1 = <0 + l 0-> 't' 

in the limit }[4 0. This section discusses the O(lr1
) correction to the above 

matrix element. 

In our simple model ( 1.2), there is only one field so in contrast to the two­

.field model discussed in chapter II. The fluctuation cpf of the rp-field on the back-

ground 9' cor resp onds to the rp-field in the two-field model. 

(3.2) 

In spite of this difference of models, most of the results obtained in chapter Il 

apply to our model at the order of the first quantum correction. The effective 

action Se/ 1 [~] is defined as follows 

~(Sofjl9']-95J) - 0 I 0 - J [d ] ~(S[~]-9'/) 
e = < + ->; - cp 3 I (3.3) 

where rp is defiI1ed by 

(3,4) 
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In (3.3), an appropriate normalization is assumed and n is inserted for conveni-

ence. Definition (3.3) can be modified to yield a eompact expression for SaJJ [So']. 

S [."'"'] - . J,...l If [d ] k<s[~ ]-(ip-~~V)l 
ef I 'l/J - ~-'l L n cp e · (3.5) 

We expand S[ip] in terms of the fluctuation cpf of (3.2). 

where Sinl[';p,rpf] contains terms -with cubic or higher powers in cpl. After substi-

tuting (3.6) into (3.5), we obtain 

Thus, the quantum correction Sf[~] = Sef/ [~] - S [~] satisfies the following 

self-consistent equation [ 19]. 

The n-expa.nsion for sJ [~] is obtained by starting from the zeroth order solu­

tion, sf [9'] = 0, and iterating {3. 7). The first order solution is 

This expression contains still higher power of n. The expansion inn is equivalent 

to the expansion in the number of loops [20]. The lowest term is the one-loop 

term, which yields 

sJ [9?] = i lrlnV det D[9'] + C, 
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== i: 1r lnD[~] + c, 

where C is constant. 

The effective configuration <; corrected to first order in ft is obtained by 

minimizing the effective action, 

,s~JJ [~] = S[~] + i
2
fi Tr ln D[~] + C (3.8) 

However, since ~ is space-time dependent, we usually can not evaluate Tr ln 

term exactly. If that is the case, we have to expand and take a few terms of the 

'Pr Jn term. Since only a few terms can be taken into account, the expansion has 

to be such that the physical picture is right: From the action (1.2), we learn 

that 

Consider the following expansion of the Tr ln term of ( 3. 8), 

_ C' + ~ 1_ 'll-1 1 [8
2 V(~J_- 2lln. - t..J i.·i ~u~ 2 "-'2 m ' 

n=l n -v Bµ,-m a~() 
(3.9) 

where C' and m 2 are constants. The series in (3.9) is graphically represented in 

Fig. 3. The first term vanishes in dimensional regularization. The second term 

has a cut C. Since we -vvill use a few terms of the expansion (3.9), this cut has to 

correspond to the contribution of the physical intermediate states. This is also 

important for the discussion of the real configuration cpr. Therefore, m has to 

be chosen as a mass for created particles. However, there are two masses in 

this theory, the mass rn+ of the excitations in the false vacuum and the mass 
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I 
2 

c 

+ .... 

Figure 3: The series of (3.9). The solid lines represent 1 
2 and the vertex -aµ,aµ,-m 
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vacuum and the mass m_ of the ex.citations in the true vacuum. The choice has 

to be self-consistent: If we choose m to be m +, the result has to be such that 

both particles of the created pairs mainly go out of the bubble. And if '17L, both 

have to go into or remain inside the bubble. 

In both cases, the effective action is approximated as the following, 

S [ rv] _ S[rv] 1 [. o2 V(~) 2]K r· B2ml_ · 2] 
e/j rp - (/) + 2 6~2 -m± ± -a~2 -m± I 

(3.10) 

where the kernel K± is 

(symbolically), 

= J d
4
k e-ilc(x-v)K (k2) . (in coordinate space) .. 

(2rr)4 ~±: 

Using dimensional regularization with n = 4 + 2CJ, K(lc 2) is given by 

[~"' -1 1 1 1 = ~ 4 r(-c..>) - -..2-fr d;c ln(m; +if;-k 2;-c (1-x )). 
3211 rr 3211- o 

(3.11) 

The above K(k 2) has an imaginary part, 

(3.12) 

Since the highest power of ~ in V is 4 as required by renormalizability, the 

second term of the r.h.s. of (3.10) is also S2J'-
4

_ at most. Thus, the divergence of 

0(1/CJ) in (3.11) can be absorbed into the parameters in S[~]. The equation for 

the effective field configuration~ is obtained by minimizing (3.10). 
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(3.13) 

Since K.J:. is complex, ~ is complex as is expected. Since the graph treated here 

is the same as the one used in the analysis in chapter II, the equation for the 

real configuration rpr is obtained from (3.12) by replacing K± by a retarded real 

kernel K';; . 

1 1 
~ =constant -

32
n fa dx ln(mf-iGk 0-k

2x(1-x )). (3.14) 

There is another possible situation in which one particle of the pair goes 

inside the bubble and the other outside. In this case, neither of the choices m+ 

or m_ is appropriate. There is a prescription to treat the two vacua symmetri-

cally, which was originally found by the author [21] for the pair creation prob-

lem by strong electric fields, i.e., the Klein problem. The idea is to rearrange 

the perturbation series such that both Green's functions, one with mass m+ and 

one with m_, appear in the same graph. That goes as follows : First, we start 

from the perturbation series (3.9) with m being one of the masses, say, m+. The 

vertex x can be divided into two parts, 

x 

a + 0 

We decompose each term in the expansion (3. 9) according to the follo"\\ing pro-

cedure: 
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(i) Pick up a vertex as a starting point to go around the circle clockwise. 

TI1e coefficient 1/ n is canceled by the n-possible choices. 

(ii) The next vertex ){ is decomposed into C and O . Thus, two graphs 

are generated. 

(iii) In each of the graphs generated at the step (ii), if the second vertex is 

Cl , the third vertex ){ is decomposed into two. 

(n) In each of the graphs generated at the step (n-1), if the (n-l)ui ver-

tex is either >: or O , the nth vertex is decomposed into two. 

The steps (i) ~ (iii) is illustrated in Fig. 4. The result of this decomposition for 

the first four terms of the expansion in (3.9) is given in Fig. 5. Because of the 

step (n), for each graph of definite X 's and O 's, we have an infinite series of 

graphs due to all possible numbers of a lined up after the x 's. Each such 

series of graphs can be summed up by using the Green's function for a particle 

with mass m_, 

1 (3.15) 

Figure 6 gives the graphical representation of the above. The first four terms of 

the resulting rearranged series are given in Fig. 7. This series has the following 

physical interpretation: Since the mass of the fluctuation is given by the curva-

ture of the potential, 

Then the vertex )! is zero in the space-time region where ~ = 9'+· and the 



( i) 

(ii) 

(iii) 

l x n n 
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+ 

+ + 

Figure 4: Illustration of the decomposition procedure (i}· ... (iii) of the nth term of 

the expansion (3. 9). The solid lines denote the Green's function are particles 

with mass m+. 
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0 0 
(0) 

I 0 O+O 2 -

( b) (C) 

I 0 O+O+O 3 -

(d) (e) ( f) 

I 0 O+O+O+O+O 4 -

Cg) (h) ( i) (j) (k) 

Figure 5: Decomposition of the first four terms of the expansion (3.9) . 
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00 

I -B-f3 .... D 

l=O ""---~---/ 

Jl 

Figure 6: The graphical representation of (3.10). The double-solid line denotes 

the Green's function of a particle of mass m._, 
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0 + ···8···~ + 0 + 0 + .... 

(O,b,d ,g ····) (C,e,h····) cf,i,j····) { k,. ... ) 

Figure 7: The rearranged series. The letters in the parentheses denote the 

graphs of Fig.5 which are to be included in each of the above graphs. 
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vertex O is zero where ~ = </L Therefore, the first graph in F'ig. 7 can be 

understood as a quantum correction to SeJJ due to a virtual particle exists only 

in the true vacuum. In the second graph, the particle goes through both the 

false and the true vacua. This situation is illustrated in Fig. B together with the 

interpretation of other graphs of Fig. 7. 

The result of the rearrangement, Fig. 7, does not treat the two vacua 

equally. If we start from the perturbation expansion (3.9) with m = m_, we get 

another set of graphs in Fig. 9. A symmetric set of graphs is obtained by averag-

ing the graphs in Fig. 7 and Fig. 9. Jn any case. the lowest nontrivial graph is the 

second graph in Fig. 7. This graph is equivalent to the second graph in Fig. 9 and 

is symmetric. The cut C of this graph corresponds to a particle of mass m+ and 

a particle of mass m_. This property is desirable for dealing with the case when 

the bubble wall creates a pair 'With one particle going out and the other falling 

in. 

The resulting effective action, in contrast to (3.10), is 

m 2]K [a2V(p) 
+ o aq;2 (3.16) 

where the kernel K0 in momentum space is given by, 

The above has an imaginary part 

The equation for the effective configuration VJ is obtained from (3.14). 

-8 ilµ~ + iJV(\O) + ()3V((O) 2K, r iJ2V(Pl__ m~ +m~ l == 0. 
jJ, y a~ aq;3 ol ac;;2 2 . 

(3 .17) 
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4'+ I ¢_ 

I 10 ll 
1· 
lJ 
I 
I I .a 
I 
.. 1 ... ~- " "-)~ Figure 8: Space-time interpretation of 

. ~ the graphs in the Fig.7. The shaded 

I •• 
region shows the transition region, the 

wall, between ~o+ and c/L 

~ · 
I 
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0 + 0 + 0 + 0 + ... 

Figure 9: An another rearranged series. 
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The real configuration <pr satisfies a similar equation obtained by replacing ie in 

Ko by iek 0 as was done in (3.14). 

Jn summary, the equations for each of the follmving three cases have been 

obtained; (i) both particles of a created pair going outside of the bubble, (H) 

both going inside and (iii) one going outside and the other inside. All equations 

seem to require numerical calculations. The consistency of the behavior 

assumed for pair creation has to be checked. It is also possible that the physi­

cal situation is a superposition of the three states. For example, half of the pair 

can go inside, while the other half split. If that is the case, the equation for <pr 

has to be improved further. 

For the purpose of examining the features of pair production, a serni­

classical method has been applied to this model by the author. In the next sec­

tion, we describe the method and some of the results obtained. 
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4-. A Semi-classical Aa-ialysis 

The effective action method gives physical quantities such as the pair pro-

duction probability as funcUonals of the effective configuration q; (Section 3 of 

Chapter II) or the r eal configuration rpr ((Il.4.10) ""' (II.4.13)). The quantum 

correction part Sf of the effective action is a functional of ~· By extremizing 

S + sf. we obtained equations for ~. (3.13) and (3.16). These equations, and 

equations for <pT, a.re. in general. nonlinear integro-differential equations and 

therefore seem hard to t r eat analytically. However, if we parametrize cp and rpr 

and thereby reduce their degrees of freedom, then the field equations reduce to 

equations on the parameters. which are easier to be examined. At the classical 

level. the parametrization is clone by using R(t), the radius of the bubble at 

time t [5]. The behavior of the solution of the field equation rp 1 of (2.6) has been 

successfully reproduced by the solution (2.4) of the energy conservation law, 

4m~ Rs 
3 . (4.1} 

Quantum corrections modify the energy conservation law. If pairs of particles 

are created, a portion of the energy released from the false vacuum is carried 

away by the pairs. Thus. the . acceleration rate of the wall is expected to be 

smaller than the classical rate. As a result, the bubble expands at a slower rate 

than the classical rate. If we assume that with pair creation, the solution, <pr. 

can still be parametrized by R(t), then the energy, EPrLir(T), consumed to 

create pairs by time tis a functional of R(t). The total energy conservation law 

(4.2) 

should yield a solution R (t) that describes a slower expanding bubble, 

In order to estimate EJJfLi:i·( T) in terms of R(t }, we have to express rpr(t .x) in 

terms of R(t ). Since the classical solution ~ 1 has to be reproduced to some 
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accuracy in the limit n ~ 0, we first examine the properties of tp 1 and an 

appropriate parametri.zation in terms of R(t ). For the renormalizability of the 

action (2.1), V(cp) is a fourth order polynomial in rp. Of the five possible 

coefficients in the polynomial, only three are physical: Since we neglect the 

effect of gravity, the value of V itself is unphysical, and the value ~o itself is 

unphysical. These two redundant degrees of freedom correspond to the vertical 

and horizontal parallel transport of the curve V(~o) in the V-rp plane (Fig. 1). A 

traditionally used set of three constants is ~µ. "A., to~ and gives the follmving V( cp) 

of (2.2) [16, 5, 6], 

(4.3) 

with 

a= Vf-. (4.4) 

All constants are positive. For small E 0, the values of the tp-field in the true and 

false vacua are given by 

(4.5) 

For later convenience, we give the values of several parameters in the false and 

true vacua. 

2 
G'o '3 

V(;ti+) = - 8Aa4 + O(to). (4.6) 

(4.7) 

(4.8) 
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2 a2 v I 2 _ 3£o ( 2) 2 __ 3£o ( 2) m± = - 2- =A.a + - 2-+ 0 £ 0 ::: µ, · + - 2-+ 0 c- 0 . 
acp ~ :: ~± 2a 2a 

(4.9) 

The difference e of the energy densities of the false and true vacua is equal to c- 0 

at the lowest order of the e0-expansion. 

(4.10) 

Therefore, the bubble has a thin wall when eo is small. Because of the 

mathematical simplicity, we will concern ourselves ·with this thin wall case. 

The classical field equation (3.1) for the present Vis; 

(4.11) 

And for a spherically symmetric cp 1, (4.11) reduces to 

--- --- - + - -a2 + -= 0 
[ 

a2 a2 2 M >... 2 e 
at 2 ar 2 r ar So 1 2 cp 1 (So 1 ) 2a . (4.12) 

Con.sider the solution at t = 0, when the bubble has the minimum radius R 0 . The 

derivative terms of cp 1 are nonzero only near the wall. Since the bubble is 

expected to expand in the time scale of"' Ro according to (2.4), we have, 

By writing the width of the wall as w, we have 

a
2 

[ a ] 1 a [ a l --y?1 .-W 0 -- I --cpl"-' 0 -- • or2 w 2 r or Row 

Since we have 

R0 »w, ( 4.13) 



- 84-

only the ::2 ;o1 term is dominant among the derivative terms of ( 4.12). There-

fore, near the wall, the field equation ( 4.12) reduces to the following, 

a2 A. ( 2 2) £ 
- -2-<P1 + -2 <Pi </)1-a + -2-= 0. ar a 

(4.14) 

In the perturbation expansion of ~ 1 inc, the first term is known to be the follow-

ing [6]; 

µ,(r-Ro) 2 
~o 1 =a tanh 

2 
+ eof (r) + O(c0 ) , (4.15) 

where the function f (r) satisfies the follo"rving equation. 

a2 [ 3 µ,(r-Ro) l 1 - --f + µ,2 1 - -sech2 f + -= 0 . or 2 2 2 2a 

For lµ.(r-R 0) I » 1. the above equation has the solution 

1 1 I=---=--2aµ.2 2A.a3 · 

Therefore, property (2.6) can be satisfied. For r ...... R 0 , f would have a peak of 

width""' ..L. The resulting solution rp 1 is illustrated in Fig. 10. The solution (4.15) 
µ. 

gives the surface tension S 1 of (2.3) as 

_ J!_ 
S1 - 3/... • 

Since Ro is given by (2.5), we learn that 

The wall has a thickness 1/ µ.. 

3 

Ro==~· (4.16) 
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µ(r-Ro) 
ratanh 2 

-----~--------

r 

Figure 10: A possible shape of the solution ( 4. 15) for rp 1. The broken line gives 

the 0(1)-term of rp 1, while the solid line includes the O(t)-contribution. 



- 86 ~ 

Therefore, the condition for the th.in wall approximation ( 4-.13) becomes, 

1 (4.17a) Ro» - . 
µ 

or 

_Jt__ 
(4.17b) R 0,u - /. » 1. . '"e 

As was explained in the previous section, the solution for t ~O is obtained by 

substituting r by Vr2-t 2 in sr.i 1, 

µ(-Jr2-t2-Ro) 
'P1 =a tanh 

2 
+ E:o f (~) + 0(f;5), (4.18) 

which is appropriate outside the light cone (r >It I). Inside the light cone, 

rp 1 ~ ~o_. It is also shown that y? 1 behaves regularly near the light cone, r = It I 

(22]. The resulting rp in the whole space-time is quite "clean" except for the 

region occupied by the wall as is shown in Fig. 2. The thickness of the wall 

changes with time. In fact, if we define R(t) as the radius of the zero point of Soi· 

at the classical level. we have 

where we neglected the O(e) term. Thus. 

Near the wall, the argument of tanh in (4.18) is approximated ~y the following 

Taylor expansion, 
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:= JJ-'t(r-Rcl(t)) + O((r-R(t))2). (4.19) 

Thus, the thiclmess -1-or the wall decreases with time fort > 0. This is under­
µg 

stood as a result of Lorent z contr action. In fact, at any time t, 

1 1 v '2 -= - 1-R (t) 
~ µ 

(4.20) 

is satisfied by R :.::: Rel . 

We assume a similar behavior for the real configuration cpr at the quantum 

leveL 

~ (r-R(t)) [/J-t , l 2 rpr =a tanh ---
2 

+ eo f µ (r-R(i )) + O(to). (4.21a) 

whereµ, is given by (4.20). Since the bubble is to be created at t ...., 0, (4.21a) 

should apply fort :<. 0. Fort ~ 0, 

rpr ::: 9'+. (4.21b) 

The assumption (4.21a, b) reduces the problem of finding ~or(r ,t) to the problem 

of finding R(t ), thus simplifying the problem. The region t "' 0 needs a careful 

consideration. If the bubble is created spontaneously, i.e., via a quantum tun-

neling, just after its birth, space has to be clean; there should be no particles. 

Therefore, the end point t ...... 0 of the bubble world sheet should not create any 

pairs. The right prescription for treating this region t ....... 0 is not knovm. Our 

eim here in this section is to obtain results that are insensitive to the region 

t ....... 0. 

Because of (II.4.b a), the physical observables that are related to pair crea­

tion, but not to pair annihllatio~ can be directly calculated in terms of rpr. 
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Examples are given in (II.4.12) and (II.4.13). For the purpose of obtaining 

~:r ( T), the energy carried away by the cr eated pairs, in terms of R ( t), we first 

consider the creation probability P(k) of a pair of the total four momentum k, 

with 

(4.22) 

and 

(4.23) 

In the above, as was explained in the previous section, rn takes the value of 

either m+ or m_ depending on different physical situations. Summing over the 

incoherent production probabilities, we learn that the pair energy EPair(oo) is 

given by the following, 

(4.24) 

where we have used (4.23). 

At the lowest order of t;0 , the vertex in ( 4.22) is given as follows, 

:: - ~~2 
'19(t)sech2 /Lt (r ~R(t)) + O(e). (4.25) 
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At this order, there is no actual distinction between three cases; (i) both parti-

cles of a pair go outside the bubble, (ii) both particles of a pair go inside the 

bubble, (ill) one outside and the other inside. This is because for eo = 0, the 

potential (4.3) is symmetric, m+ = m_, and therefore particles do not distin-

guish true vacuum from false vacuum. The energy-density difference e0 appears 

only in the expression of the bubble energy ( 4.1). 

The pair energy vair ( 00) is now explicitly given as follows I 

+ O(e0) ( 4.26) 

where, 

V(x ,t) s - 3{l '!1(t )sech2 P1 (r-:(t )) . (4.27) 

Since ImK0(k 2) is not polynomial in k 2 as is seen in (3.12), its Fourier transform 

is nonlocal, in contrast to the model discussed in the previous chapter (see 

(Ill.2. 7) and (Ill.2.9)). This causes difficulty in finding the £.Pair (t) for finite t: If 

EP°'13"(oo) is expressed by a one-fold integration over a time coordinate t. £PUir(T) 

is given by the finite integration of the same integrand with upper limit T. This 

prescription is not applicable to our case. In order to define vmr ( T) for a finite 

T, we introduce a cutoff function 

(4.28) 

for each of the vertices in (4.26). Since this cutofi function gradually turns off 

the vertices after t ..... T, the resulting integration seems appropriate for the 

definition of EJXLir(T), the energy carried away by the created pairs by time T. 
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Another reason for choosing ( 4.28) is that the integral in ( 4.26) is actually diver­

gent because of the upper limit t ....... t' ....... oo. Consider a case when Epu:i.r ( T) is a 

single-fold integration over t and is divergent, for example, 

EPCI-ir ( 00) ::: A rw dt tn (n > 0) . 
.lo 

In this case, exact vu.i.:r for a finite T is given by 

T A171.+l 
EPair(T) =A f dt tn = ---. 

Jo n+1 

The cutoff function ( 4.28) gives the following. approximation for the above 

t 
EPair(T) ~A fo00 

dt tn e-y =A n!Tn+t. 

Therefore, the asymptotic behavior of EJ>af.r ( T) is correctly reproduced. How-

ever, the example also shows that the numerical factor in the result obtained 

under our assumption should not be rigorously believed in. 

We limit ourselves with the asymptotic behavior of E for the following rea-

sons: (i) We do not know how to treat the region t- "' 0, where quantum tunneling 

is essential. Thus, we need a result that is insensitive to that region. (ii) When 

T "'0, our cutoff ( 4.26) is not smooth and thus inappropriate. TI1is limit is 

nevertheless interesting because the asymptotic behavior of the bubble expan.., 

sion is important for cosmological problems. 

The integral over x and x' in ( 4.26) is straightforward. 

Vr(k Jco) = J d4x efr;z V(x ,t) 

(4.29) 
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with Rt == R ( t) and kr = I k I. and we kept only the leading term in the th:i_n wall 

approximation. The follovvi.ng formula has been used to derive (4.29) [23], 

[ 

~2n 

""' f..Lt r l 4 n 1ikr 1fkr n.,-=tJ [ kr
2 l J_""'dr coskrrsech -

2
- = ( ) 2 cosech--11 ~+ l 2

. (4.30) 
2n-1 !µt ~ l=I ,/-li 

In order to evaluate (4.29), we assume that the asymptotic speed {3 of the 

bubble expansion is less than 1, the speed of light, 

R ( t ) -) {3t + .. . as t --> oo. (4.31) 

In this case, ( 4.29) is approximated as follows, 

(4.32) 

The pair energy~ is calculated from the follovfing formula, 

. i J:.... lr..Jc"t-4µ2 2 I k2 ,...., 2 
wair(T) = --4 kodko kr dkr ' 1 - -2 I Vr(kr,ko) I ,(4.33) 

32rr 2µ o ~ 4µ 

where we have used (3.12) and (4.26). The vertex (4.32) leads to the follovving, 

(4.34) 

This yields a finite result. The integrand in (4.34) has no singularity in the 

integration region because the denominator, k~ -kr2f32
, is always greater than 

4µ2• For k 0 -> oo, the lcr-integration is finite because of the (cosech)2. Thus, the 

k 0-integration 
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k 0-integration becomes 

2 

! ""' ko ( . )5 
"4 k 0 dk 0 k 8 µ<¥'> • 

0 

(4-.35) 

which is finite for {:3 < 1. The pair energy vatr ( 00) is approximately 

. 9 fJ4 
1"'Datr ( oc) ,..., - µ 
L& 64 ..Jf=1j2 • (4.36) 

Since .EPa,ir ( T) is finite for T -> tXJ, we conclude that the asymptotic speed of 

the bubble expansion cannot be less than 1. Consider r.h.s. of the equation 

(4.2), 

(4.37) 

Using the asymptotic form (4.31) for Rr. we learn that as T-'>=, the leading ord­

ers of the first and second terms are of 0( T2) and 0( 7'3). respectively. Since we 

have folllld that _EPa:ir ( T) is of 0 ( 1) in this case, it is impossible to balance the 

released energy (the second term) with the pair energy. i.e., we cannot have 

zero coefficient for the leading O(T3) term in (4.37). Therefore, the asymptotic 

behavior (4.31) cannot be a self-consistent asymptotic solution of (4.2). 

Next, we consider the case when the asymptotic expansion speed is 1. 

Naively, ( 4.36) gives a divergent expression and therefore suggests that pair 

creation may affect the expansion rate significantly. The classical solution 

Rei (t) has the following asymptotic behavior, 

(4.38) 

We assume a similar asymptotic behavior for R(t ), 
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b2 
R ( t) ~ t + a + Zt + .... 

. b2 
R(t) ~ 1- -

2t2 ' 

(4.39) 

(4.40) 

we expect that b > R0 , so that the expansion is slowed down by pair creation. 

The vertex Vof (4.29) is now, 

.-v °" - !_ + i.k t sin kr t ?Tbkr 
. Vr(A;,,k 0) :! -24rr2b2 fo dt e r 

0 
t cosech ---µt· (4.41) 

·where we have used 

(4.42) 

In order to estimate (4.40) and vw(T) of (4.33), we divide the momentum 

space integral in ( 4.33) into two parts. 

( ) 
r.bk,. 

1 T~ --. 
/.L 

The integration is dominated by the region where the argument of cosech is 

small. Thus, by approximating cosech x "" 1/ x, we get 

Vr(I;.. ,k0) ~ -24rr bµ 
1 

1 

( -- ik )2+k2 T o r 

Therefore, the total energy Epcnr.l(T) of the pairs created in this region, i.e., 

ltotal three-momentum!~ ;~ , i.s given as follov.rs, 
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The k 0-integration is finite for T -> =. An approximate value 1/ B1-L2 is obtained i.f 

we neglect the -V-function that is :=: 1 except near the boundary, k 2 = 4µ2 . Note 

that the main contribution comes from the peak of the integrand at k 2 = 5µ2 , 

and the integrand lc.r2 in the A;.-integration gives the largest contribution at the 

upper limit kr "" 'fr~. The approximate value of the leading order term of ( 4.43) 

is, 

(4.44) 

(2) T ~ rrbk,. . 
Jl 

Using cosech x ""ze-z for x » 1, we approximate ( 4.41) as follows, 

This integration is given in terms of a modified Bessel function of the third kind, 

K0(z ). The arg1lment z satisfies the following, 

I z I > 2-J211µb > 2..J2riµR 0 » 1 I 

where we used ( 4.17a). By using the asymptotic expansion of 

Ko(z)"' ~ e-z, we obtain the following £-Pair,2 (T), 

where y = Z~kr) 2rrb. By changing the integration variable ko toy. we 
µ 

obtain the leading order term, 

(4.45) 
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(4.45) 

We can now discuss the consequences of the energy co~servation. The 

asym_ptotic behavior ( 4.39) leads to the following leading terms for each piece of 

(4-.37), 

2 
4rrS 1Rr 4rrS1 3 the surface energy : -r,=-. -> -b- T , 
v1-R 2 

T 

41Te s 4m~ 3 the volurne energy: --
3
-Rr-> - -

3
--T. 

The pair energy ]!;-Pa:ir.2( T) is considerably smaller than £Pair.I( T) because of the 

factor e-2vnµb, therefore we neglect gpai:r·2(T) and write 

3 /J.5 EPa:i:r ( T) -> -- c:__ T3 

4rr5 b · 

The total energy conservation 19.w ( 4.2) implies the folloVving equation for b, 

4irS 1 _ 4m; + _ _?_ t!_ = O 
b 3 4rr5 b · 

Thus, we obtain 

(4.46) 

(4.47) 

in agreement ·with the naive expectation b > R 0 . From (4.47), we also learn that 

the ratio of the energy used to create pairs and the released energy is given by 

the following. 

9t.. 1 + ---~-
16rr6 

(4.48) 
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The spectrum of the created particles can be obtained from the following 

argument: In deriving EPa:i:r ·1 
( T) of ( 4.44), we first learned that the integration in 

(4.43) is dominated by the peak, k 2 = 5µ2 , of the integrand. This is mainly 

because of the fractional function in the integrand, which is for 

T-> oo, 1/ (k~ -k()2. lf we leave an angle iJ between x and k unmtegrated, (4.29) 

leads to 

Vr "' J d( cos19-) ( 
1 

)2 . 
ko-lcrcos1J. 

Therefore, the integrand of ( 4.43) is proportional to the following, 

J d( cos19-) J d( cos19-') ( )2 ~ ')2 · ko-k;.cosiJ ko-krcos13 

Thus, the peak of the integrand in ( 4.45) comes from the region where 

~ ..... 'IJ' ,.... 0. Therefore, we conclude that pair creation is a local phenomenon and 

that the direction of the total three-momentum of a pair is along the radius vec-

tor of the place where the pair is created, and outward. The momentum of the 

individual pair is obtained by noting that pair creation occurs isotopically in the 

rest frame of the center of mass system of the pairs. Note that it is .n_Qt the rest 

frame of the portion of the bubble wall where a pair is created. Since k 2 ..... 5µ2 

and kr ...... µbT, where b is given by ( 4.4 7), the speed v of the rest frame of the n . 

center of mass system of the pairs at time T is given as follows, 

(4.49) 

Comparing this with (4.40), we learn that v is .smaller than R. In this rest frame, 

the particle has an energy of 'i5 µ, and the velocity is ~. Therefore, the 

highest velocity of a particle going outward is given by 
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1 
1 - v1) 2 2 b2 

1 ~ 5 5~.-.J 1 - 9.4 -
1 2T2 T2 ' 

1 + r;;: 
v5 

(4.50) 

which is still smaller than R. From this, we conclude that the created pairs are 

left behind the wall, i.e., inside the bubble, even though they are going outward. 

They have high energies of "" 'fr~. This is consistent with the cutoff ( 4.28): Since 

the high energy component is dominant, the short time scale is important, 

which is not affected by the cutoff (4.28). Also, from (4.42), we learn that 

kr"" ~ . This agrees with the naive expectation that the thickness of the wall at 
'Tr 

T determines the scale of the energy spectrum of created pairs at T. 

Some comments follow: 

(i) So far, we have neglected O(i-) terms in the vertex V(x ,t) of ( 4.25). From 

(4.15), they are 

µ(r-Ro) 
3A.at:0f tanh 

2 
+ constants. (4.51) 

Consider approximating f by 1, a constant. The Fourier transform of the above 

has then one less power of k than the leading term in (4.29) because tanh is an 

integration of sech2 in coordinate space. Therefore, ( 4.51) only contributes an 

O( T2) term in EJ>r:ci.r. Actually, j' has a "bump" at the wall. To carry the discus-

sion further, we need to know the high momentum behavior of the Fourier 

transform of f . 

(ii) We have also neglected the real part of the quantum correction to Se!J. If 

the shape of the potential is significantly changed by taking it into account, then 

assumption (4.21a) may be inappropriate. Also in a case when we consider a 

one-loop effective action as a starting point, the effective potential is usually not 
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a polynomial in C(), and (4.21.a) would not be applicable. As an example, consider 

a case vvhen the vertex l'(x ,t") behaves like ,..... sech2n instead of"" sech2 in (4.25) 

and (4.27). Formula (4.30) tells us that the Fourier transform. has then an e}..i.ra 

factor k 2(n-l). In this case, the assumption on the asymptotic behavior (4.39) 

leads to 

(4.52) 

For n > 1, too much energy is used to create pairs and we cannot find a solution 

consistent with the assumption ( 4.39). This kind of wall cannot attain a terminal 

speed smaller than 1 either, because under (4.31), 1';.-integration is finite 

regardless of the power of kr and thus vm:r is always finite. An alternative is to 

assume that 

R ( t ) ~ t - r; T~ 

hoping to find self-consistent values of parameters 'I] and ~ that should satisfy 

'Y)~ > 0 and 1 > ( > -1. However, this assumption only changes the power of 

ktJ-kr and thus does not change the behavior indicated in (4.52). Therefore, it 

becomes necessary to take into account the change of the shape of the wall 

(sech2n) itself. A possibility is that the shape, sech2n, is broadened by pair crea­

tion such that n ~ 1 when we have a self-consistent solution. 
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5. Discussion 

The semi-classical analysis given in Section 4 showed that the Higgs parti­

cles, the excitations of the si:i-field, are actually created, and as a result, the bub­

ble expansion velocity approaches to the velocity of light slower than the classi­

cal velocity. The ratio of the energy carried by created pairs and the energy 

released from the false vacuum is constant in time and is giyen in terms of a 

coupling constant of the model ((4.48)). We also showed that these particles 

remain inside the bubble. Therefore, it is plausible that equations (3.13) and 

(3.14) for m = m_ are the most suitable ones for the physical situation. The 

author has inserted the assumption (4.21a) into the field equation for the real 

configuration obtained from (3.13) and (3.14). That, however, does not work, 

because r.pr is not equal to its vacuum values inside and outside the bubble due 

to the presence of the produced particles. Therefore, we may have to proceed 

to a numerical calculation. 

In Chapter N, we have treated only quantum effects due to Higgs particles. 

However, the effects of other particles can be treated in a similar manner. For 

example, if a fermion field 1/; has a Yukawa-interaction g1f,rt/;cp with the 9-field, the 

vertex Vis linear in rpr. Therefore, according to the semi-classical analysis given 

in the previous section, this vertex has a lower power of kr, and therefore we 

expect that the energy consumed to create fermion pairs is of order T1• How­

ever, this may not be true if the fermion is massless in one of the vacua. In such 

a case, if we assume that both fermion and antifermion are created in the 

vacuum where they are massless, the appropriate imaginary part of the loop 

graph has 1J.(k 2) instead of 1J.(Jc 2-4m2) in (3.12). Therefore, the fraction in (4.43) 

bas a singularity at the boundary. This divergence increases the power of T in 

J!:P<W. Furthermore, analyses in the previous section showed that the rest frame 

of the pair is, in the bubble rest frame, moving outward. Therefore, if the pair is 
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to be massless, it is most likely that both of the particles go outside the bubble. 

In usual theories, the false vacuum corresponds to the symmetric phase. Thus, 

the particles tend to be massless in the false vacuum. Therefore, the creation of 

massless particles going outside the bubble may be significant during the bubble 

expansion. Investigation along this line is under way. 



- 101 -

References for Chapter IV 

[1] See, for example, S. Coleman, "The Uses of Ir1stantons," (1977 International 

School of Subnuclear Physics, Ettore Majorana); T. Eguchi, P. B. Gilkey ad A. 

J. Hanson, Phys. Rep. Q.6... (1980) 213. 

[2] T. Inoue, Frog. Theor. Phys. Q9. (1978) 986; Y. M. Cho, Phys. Lett . .8..1.li 

(1979) 25. 

[3] G t'Hooft, Nucl. Phys. fil.9 (1974) 276; A M. Polyakov, Zh. Eksp. Toer. Fiz. 

Pis' ma Red . .212 (1974) 430 [JETP Lett . .2._Q (1974) 194. 

[ 4] J. S. Langer, Ann. of Phys . .41... (1967) 108, gives a mathematical treatment 

of nucleation phenomena in the statistical physics. 

[5] M. B. Volosin, I. Yu. Kobzarev and 1. B. Okun, Yad. Fiz . .a.Q... (1974) 1229 [Sov. 

J. Nucl. Phys. lliL ( 1975) 644]. 

[6] S. Coleman, Phys. Rev. Ill.5... (1977) 2929. 

[7] G. C. Callan and S. Coleman, Phys. Rev. J2.1Q... (1977) 1762. 

(B] A. D. Linde, Phys. Lett. j.QQJ1. (1981) 37. 

[9] D. A. Kirzhnitz and A. D. Linde, Phys. Lett. .42Il (1972) 471. Ann. Phys . .1..Q.L 

(1976) 195; L. Dolan and R. Jackiw, Phys. Rev. 129... (1974) 3320; S. Weinberg, 

Phys. Rev. ill!.. (1974) 3357. 

[10] P.A. M. Dirac, Phys. Rev. ~ (1948) 817; G. t'Hooft, Nucl. Phys. BTI1. (l974) 

276, ~ (1976) 538; A. M. Polyakov, Pisma Zh. Exsp. Theor. Fiz . .2.Q (1974) 

430 [JETP Lett . .2.Q... (1974) 194]. 

[11] Ya. B. Zeldovich and M. Yu. Khlopov, Phys. Lett . .7fili. (1978) 239; J. P. 

Preskill, Phys. Rev. Lett . .13... (1979) 1365. 



- 102 -

[12] A. H. Guth and S. H. Tye, Phys. Rev. Lett . .ti.. (1.980) 631. 963; A. H. Guth, 

Phys. Rev. 12.Z..3. .... (1981) 34-?; A. H. Guth and E. J . Weinberg, Phys. Rev . .122-3... 

(1981) 876. 

[13] S. W. Hawking, I. G. Moss and J. M. Stewart. "Bubble Collisions in the Very 

Early Universe," Cambridge (PA11TP) preprint. 

(14] A. D. Linde, Phys. Lett. Wf.ill._ (1982) 389. 

[15] S. W. Hawking and I. G. Moss. Phys. Lett. _1J.Ql1. (1982) 35. 

[16] T. D. Lee and G. C. Wick, Phys. Rev. DJL (1974) 2291. 

(17] S. Coleman, V. Glaser and A. Martin, Commun. Math. Phys. iIB... (1978) 211. 

[ 18] A. M. Polyakov, Nucl. Phys. lll.ZQ.. ( 1977) 429. 

[19] C. De Dominics and P. C. Martin, J. Ma.th. Phys. Ji. (1964) 14, 31; R. Jackiw, 

Phys. Rev. llQ... (1973) 1686. 

[20] Y. Nambu, Phys. Lett. 2-6..R (1966) 626; L. S. Brown and D. Boulusare, Phys. 

Rev. 112... ( 1968) 1628. 

[21] H. Aoyama, unpublished. 

[22] R. F. Sawyer, UCSB preprint TI:I-53 (1982). 

[23] "Table of Integral Transforms" (Bateman Manuscript Project) vol.1, page 30 

(McGraw-Hill, 1954). 


