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ABSTRACT

For centuries, planet formation theories were tuned to reproduce the
remarkable coplanarity of our solar system. Specifically, the eight
planetary orbital planes exhibit mutual inclinations limited to ∼ 1 − 2
degrees. Furthermore, the misalignment between the Sun’s spin axis
and the orbital planes of the planets – the ‘spin-orbit misalignment’–
is only about 6 degrees. However, observational characterization of
close-in extrasolar planetary systems has revealed an abundance of
spin-orbit misalignments ranging all the way from 0 to 180 degrees
(Winn et al. 2010). Particularly among the hot Jupiters (giant planets
with orbital periods shorter than ∼ 1 week), spin-orbit misalignments
are more prevalent in systems hosted by stars with effective tempera-
tures exceeding about 6200K. Previous work has suggested that these
misalignments arose from violent dynamical interactions that excited
planets onto inclined and eccentric orbits, with subsequent tidal circu-
larization generating the observed population (Albrecht et al. 2012).
This hypothesis has had great difficulty explaining misaligned multi-
planet systems, and misaligned orbits of planets that are too distant
from their host stars for tidal circularization to act over a sufficiently
short timescale. A new mechanism is required.

In chapters II-VI, I present a theoretical framework referred to as
“disk-torquing,” whereby spin-orbit misalignments arise through the
tilting of protoplanetary disks themselves (Batygin 2012, Spalding
& Batygin 2014, 2015). In this picture, gravitational torques from
a companion star lead to the precession of the protoplanetary disk.
When the disk is young and massive, gravitational star-disk coupling
quenches misalignments between the stellar spin axis and disk plane.
However, as the disk dissipates, a secular resonance is encountered that



viii

impulsively excites large stellar obliquities, ranging between 0 and 180
degrees, in accordance with the observations. In addition, I computed
the magnetic torques between the star and disk, finding that a dipole
field strength of ∼1 kGauss is sufficiently strong to realign the star and
disk within typical disk lifetimes (∼ 3 million years). Magnetic fields
of this magnitude are observed to persist throughout the disk-hosting
stage only for stars less massive than ∼1.2 solar masses (Gregory et
al. 2012), corresponding to a main sequence effective temperature of
6200K, i.e., coincident with the observed break between aligned and
misaligned hot Jupiters. Cumulatively, the disk-torquing framework
exhibits qualitative consistency with the observed dependence of spin-
orbit misalignments upon stellar mass, leaving the theory ripe for a
statistical comparison to observations within future work.

The final three chapters change focus from spin-orbit misalignments
toward the excitation of mutual inclinations between planetary orbits
– orbit-orbit misalignments. Evaluation of the relative numbers of
single to multi-transiting planetary systems within the Kepler space
telescope’s dataset has revealed a dichotomy whereby there exist two
populations of planetary system – one with low orbit-orbit inclination,
and a second that either possesses a single planet, or possessesmultiple
planets with large mutual inclinations, leaving only one detectable
via transit (Johansen et al. 2012, Ballard & Johnson 2016). In
separate but related observational work, it has become apparent that
transiting hot Jupiters often appear without co-transiting, close-in
planetary companions, wheres warm Jupiters often do (Steffen et al.
2012, Huang et al. 2016). I showed that both of these observations
can naturally arise owing to secular perturbations from the host star
(Spalding & Batygin 2016, 2017). Specifically, young stars rotate
fast, becoming oblate. If the star’s spin axis is misaligned with respect
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to the orbits of a multi-planet system, its quadrupole moment can
disrupt the coplanarity of the system. Indeed, the stellar perturbations
are often sufficient to completely destabilize the system (Chapter VI).
In addition to constituting an entirely new mechanism of planetary
instability, the origin of the required spin-orbit misalignment relates
directly back to the discussion above – spin-orbit misalignments may
drive the seemingly unrelated Kepler dichotomy.

Finally, I tied in the observation that hot Jupiters appear lonely by
demonstrating that stellar contraction can give rise to a secular reso-
nance that tilts exterior companions of hot Jupiters, taking them out
of transit. Crucially, this resonance is encountered at an earlier time
in systems hosting warm Jupiters, precisely owing to their slightly
increased orbital distance. I found that the demarcation between a
system undergoing secular tilting, and one where the disk quenches
the tilting, coincides well with the relatively arbitrary dividing line
between hot and warm Jupiters, usually set at orbital periods of about
a week.

In summary, I showed that spin-orbit misalignments and orbit-orbit
misalignments, measured across a range of planetary size classes,
can arise primordially owing to interactions with the host star and
binary companions. The importance of the central star had most
likely beenmissed in the previous literature owing to our solar system’s
peculiarly wide inner edge at ∼ 0.4AU, as opposed to the more typical
∼ 0.1AU within a galactic setting. In reality, through the wider
lens of our Galactic planetary census, a true understanding of planet
formation demands a look at star-planet interactions wholly unknown
from centuries of solar system exploration.
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C h a p t e r 1

INTRODUCTION

1.1 From planetary to exo-planetary science
The term “planet” comes from the Greek “to wander,” recapitulating
the original realization that the motion of planets across the sky devi-
ates from the simple east to west motion of the stars. Even to the naked
eye, planets stand apart from stars in that they do not twinkle, Mars has
a red hue, and with the aid of a small backyard telescope, the phases
of Venus are revealed, in resemblance to those of the moon. Humans
have written myths, legends, and creative masterpieces inspired by
the planets. But the reality, as is so often the case, goes beyond the
imagination of even the most whimsical of tales.

Up until 1995, an extensive literature had been written in the quest to
understand the origin of our own solar system. Laplace and Kant had
independently come to the correct conclusion that the planets’ birth-
place consisted of a disk of gas (Kant, 1755; Laplace, 1796). This idea
was motivated by the coplanar arrangement of the planetary orbits,
and has been spectacularly confirmed by relatively recent images from
the Hubble Space Telescope.

In later work, it was noted that a giant planet such as Jupiter, if
placed within such a disk, would gravitationally interact with it in
such a way as to undergo inward, radial migration (Goldreich and
Tremaine, 1980), and indeed signs of a similar process were evident
in Saturn’s rings. Furthermore, the current model of our own solar
system’s history supposes that Jupitermigrated inwards, then outwards
in a celestial manoeuvre colloquially referred to as the “Grand Tack”
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(Walsh et al., 2011).

Given the prose above suggesting inward migration, perhaps it should
not have been the paradigm-shattering event that it was when the first
planet discovered around a Sun-like star, 51 Pegasi b, was a giant planet
residing 20 times closer to its host star than the Earth sits in its orbit
(Mayor and Queloz, 1995). These planets, known as “hot Jupiters”
feature heavily in the following chapters. In order to form such a titan
within a disk of gas, a core of solids must first be constructed totalling
over 10 Earth masses (Stevenson, 1982; Pollack et al., 1996), such
that its gravity attracts a significant amount of gas towards it. This
so-called “core accretion” framework was thought impossible within
the hot, inner regions of the natal disk. The reason is that water would
have evaporated, leaving a lower solid surface density which, together
with a reduced cohesiveness between dust particles, would inhibit the
growth of larger cores. Consequently, the requisite cores must have
formed at distances more similar to Jupiter, before migrating inwards.
However, whereas our Jupiter “tacked” and moved back out (because
of interactions with Saturn), the hot Jupiters continued their inward
march to the inner edge of the disk.

Disk-drivenmigration constitutes a viable hypothesis for themigration
of hot Jupiters. However, there is a second method of migration that
may feasibly account for these objects’ close-in orbits. The so-called
“high-eccentricity” pathway ofmigration (Wu andMurray, 2003) sup-
poses that the planet formed at a distance similar to Jupiter, but did
not migrate whilst the disk was present (i.e., the first 1 − 10million
years: Haisch Jr, Lada, and Lada 2001). Rather, dynamical pertur-
bations arising from nearby planets or stars increased the eccentricity
of the orbit – a measure of the difference between closest and furthest
approach from the parent body (the star in this case). These eccentric-
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ities bring the closest approach of the planet’s orbit close enough to
the host star for tidal deformation to become significant. These tides,
raised on the planet, dissipate the orbital energy, reduce the orbital
distance, and turn the “cold” Jupiter into a “hot” Jupiter.

As I discuss further below, this second pathway is essentially unique to
hot Jupiters, and thus if true would constitute an entirely separate for-
mation history for hot Jupiters than for almost all other planets known.
Despite this apparent special place for hot Jupiters, the literature has
tended toward favouring the high-eccentricity pathway.

1.2 The hot Jupiter debate
For the past 15 years, most of the literature investigating the formation
pathway of hot Jupiters has been focused primarily upon deducing
theirmigration pathway. However, since then, numerous other types of
close-in planets have come to light. For example, the so-called “warm
Jupiters” are giant planets, like hot Jupiters, but instead of possessing
week-long orbits, their orbits last between weeks and months. These
objects still reside too close-in to have formed via core accretion, but
they are too far from the star for tides to have circularized their orbits
within a sufficiently short amount of time. In other words, they still
must have migrated, but can only have done so owing to interactions
with the natal disk.

The most common close-in planets are the so-called “super Earths”
(Fulton et al., 2017) – planets between Earth and Neptune in size.
There is no consensus over whether these objects migrated or formed
where we see them, but the point is that it is extraordinarily unlikely
that they formed through high-eccentricity migration. The reasons
are multiple, but principally these objects are too small to dissipate
sufficient tidal energy, and secondarily, these bodies are frequently
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found asmembers ofmultiple-planet systems – a delicate configuration
(see Chapter V) that probably would not have survived the violent
events required to excite sufficiently high eccentricities.

With the above discussion highlighting the suspected importance of
disk-driven migration for other types of planets, it appears odd that
hot Jupiters arrive through an extra formation pathway, one not shared
by the warm Jupiters, not shared by the super Earths, and not shared
by our own solar system. Before the completion of the work con-
tained within this thesis, two pieces of evidence in particular strongly
suggested that this special place was appropriate for the hot Jupiters.
These were:
1) Hot Jupiters exhibit significant spin-orbit misalignments – mis-
alignments between the perpendicular to the orbit and the spin axis of
the host star (Winn, Fabrycky, et al., 2010; Albrecht et al., 2012).
2) Hot Jupiters are almost never found to possess close-in companion
planets within the same system. (Steffen et al., 2012; Huang, Wu, and
Triaud, 2016)

Spin-orbit misalignments
With regard to 1), the literature typically assumed that the solar-
system’s aligned configuration is overwhelmingly the most likely ini-
tial condition for planet formation (Winn and Fabrycky, 2015). In
other words, stars and disks were assumed to begin their lives in an
aligned configuration. With that picture in mind, the only way to tip
stars over with respect to the orbital planes of their planets is through
perturbations occurring subsequent to the disk-hosting phase – the
high-eccentricity pathway satisfies this requirement well.

Despite consistency at first look, the high-eccentricity pathway suf-
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fers in numerous respects upon closer inspection. Specifically, the
framework predicts a small but significant population of planets “on
the way" towards becoming hot Jupiters. However, fewer such objects
are detected than would be predicted form the hypothesis (Dawson,
Murray-Clay, and Johnson, 2014). Furthermore, under reasonable as-
sumptions, the orbital energy deposited within the giant planet during
its tidal dissipation is potentially enough to unbind the entire planet
(Gu, Lin, and Bodenheimer, 2003). In any case, the process itself is
difficult to thoroughly test because it depends upon the abundance of
encounters likely to excite sufficient orbital eccentricities. Neverthe-
less, estimates typically conclude that under half of hot Jupiters may
form this way, though the fraction of misaligned hot Jupiters explained
may be larger (Naoz, Farr, and Rasio, 2012).

Given the theoretical difficulty in explaining the properties of hot
Jupiters with high-eccentricity migration, in this thesis (Chapters II-
VI), I will challenge the above premise that stars and disks form in
an initially coplanar configuration. If true, the concerns regarding the
high-eccentricity framework are circumvented, as the planetary orbits
becomemisaligned with the central star from the outset. Furthermore,
as we shall see, tilting a disk with respect to its central star’s spin axis
naturally results from the presence of a gravitationally bound, stel-
lar mass companion (Chapter II). Though empirical estimates differ,
a fraction of stars close to unity originate in gravitationally-bound
multiples (Sadavoy and Stahler, 2017). Accordingly, with the the-
ory developed in this thesis, disk-star misalignments aren’t simply
possible, they are expected.

A subtlety in the observations is that hot Jupiters orbiting stars more
than about 1.2 times the Sun’s mass are significantly more misaligned
than those orbiting lower-mass stars (Winn, Fabrycky, et al., 2010).
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The previous, leading hypothesis to explain this trend was that mis-
alignments occurred around stars of all masses, but that the large
convective envelope possessed by the lower-mass stars enhanced tidal
dissipation, realigning the star and the planet over time (Winn, Fab-
rycky, et al., 2010; Lai, 2012; Dawson, 2014). Unfortunately, this idea
required questionable assumptions to be made regarding the pathway
toward tidal dissipation. Specifically, one needs to require that in-
clination damps faster than semi-major axis, or any model correcting
inclinations would remove the planet from orbit. Furthermore, though
more distant planets show a slight trend toward larger misalignments,
as expected from a tidal mechanism, the trend occurs too far out to be
indisputably tidal in nature (Li and Winn, 2016).

In the thesis, I postulate an alternative idea, one that, like the tilt-
ing of the disk itself, plays out during the first few million years of
planet formation. Specifically, not tides, but magnetic torques be-
tween the young star and its disk realign the lower-mass stars (Chapter
IV: Spalding and Batygin 2015). This idea was motivated by ob-
servations suggesting a roughly order of magnitude reduced dipole
field strength of disk-hosting, high mass stars relative to their lower
mass counterparts (Gregory, Donati, et al., 2012). This picture is
by no means complete, largely owing to uncertainties stemming from
the physics of star-disk magnetic interactions. Nevertheless my work
here demonstrates its feasibility, and bypasses the poorly-constrained
nature of tidal models.

Orbit-orbit misalignments
Considering 2) above, the absence of close-in companion planets to
hot Jupiters, in contrast to a ∼ 50% abundance of such companions
in warm Jupiter-hosting systems, has been noted by numerous authors
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(Steffen et al., 2012; Huang, Wu, and Triaud, 2016). Almost ubiq-
uitously, the proposed mechanism is that the dynamically violent na-
ture associated with the high-eccentricity migration has removed any
close-in planetary companions that may once have existed. Whereas
if indeed hot Jupiters form through such a pathway, they would be
expected to cast out companion planets, the above concerns regarding
high-eccentricity migration suggest an alternative hypothesis may be
required.

The alternative model presented in this thesis considers the dynami-
cal consequences of forming a close-in companion exterior to a hot
Jupiter. In brief, that the gravitational perturbations associated with
the contracting, central star initiate resonant dynamics between the two
planets. These interactions cause a tilting of the lower-mass planet’s
orbit out of the plane of the hot Jupiter (Batygin, Bodenheimer, and
Laughlin, 2016; Spalding and Batygin, 2017). Given the preponder-
ance of transit data used to infer these patterns, this tilted configuration
would be observed as a hot Jupiter without any companion planets.
Warm Jupiters escape this resonant tilting because, owing to their
larger orbital distances, the stellar oblateness weakens before the disk
dissipates. Consequently, the disk anchors the planets within the same
plane, despite the resonance, allowing warm Jupiters to coexist with
close-in companion planets.

A first-order prediction of the above picture is that “lonely" hot Jupiters
should possess inclined, lower-mass companion planets (Batygin, Bo-
denheimer, and Laughlin, 2016). However, this framework is in need
of amore detailedmodeling approach to fully delineate a set of testable
predictions. Specifically, in Chapters V and VI of the thesis, I model
systems of multiple, coplanar planets and subject them to the gravita-
tional influence of a tilted, oblate star. I show that such a configuration



8

often leads to dynamical instability, and many of the planets are lost. I
have not yet combined these two frameworks. Is an inclined compan-
ion to a hot Jupiter dynamically stable over billions of years? If not, it
would not be detected, meaning that different observational tests are
required.

An observational test suggested in this thesis is of a more statistical
nature (Chapter VII). In particular, knowing the orbital properties of a
giant planet, and its potential exterior companions, we can construct a
theoretical parameter-spacewhere the proposed resonant tilting should
occur. If exterior planets are frequently found in that region, the model
needs to be reconsidered. Only 4 examples exist of close-in giants
with exterior companions (Huang, Wu, and Triaud, 2016; Spalding
and Batygin, 2017). Whereas they are all consistent with my proposed
framework, the number is still too small to derive any significant
statistical conclusions.

Implications
The two observations above are consistent with a violent formation
history, and apparently inconsistent with a system arising within a
flat disk and remaining undisturbed for billions of years. This thesis
challenges the latter assumption. That is to say, this thesis shows that
formation within a disk naturally leads to spin-orbit misalignments,
and as the host star subsequently contracts, gravitational perturbations
within the giant planet-hosting system lead to the removal of close-in
companions to hot Jupiters, as the observations have shown. Cumu-
latively, this body of work demonstrates that disk-driven migration as
a dominant formation pathway for hot Jupiters is not falsified by the
current observations, and provides a new set of predictions, readily
testable by upcoming planet-finding missions.
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The picture conceived by Kant and Laplace was correct in many ways.
However, binary stars, the spinning down of planet-hosting stars, and
the numerous gravitational perturbations felt within the early stages of
the formation of a planetary system all conspire to disrupt coplanarity
akin to our solar system in numerous other instances. How might
our solar system’s history have been different if the Sun was tilted
over? Perhaps it was early on, but the stellar magnetic field righted the
system. Potentially, if our system, like most others, possessed close-in
super Earth planets the resulting star-planet interactions would have
destabilised the solar system.

This thesis introduces and analyses numerous new concepts that have
helped to understand how the architectures of planetary systems are
sculpted, and why the sculptures differ from system to system. Only
by considering our solar system within such a galactic context can we
truly understand our own planetary system’s place within the universe.
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C h a p t e r 2

EARLY EXCITATION OF SPIN-ORBIT MISALIGNMENTS IN
CLOSE-IN PLANETARY SYSTEMS
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ABSTRACT

Continued observational characterization of transiting planets that re-
side in close proximity to their host stars has shown that a substantial
fraction of such objects posses orbits that are inclined with respect to
the spin axes of their stars. Mounting evidence for the wide-spread
nature of this phenomenon has challenged the conventional notion
that large-scale orbital transport occurs during the early epochs of
planet formation and is accomplished via planet-disk interactions.
However, recent work has shown that the excitation of spin-orbit mis-
alignment between protoplanetary nebulae and their host stars can
naturally arise from gravitational perturbations in multi-stellar sys-
tems as well as magnetic disk-star coupling. In this work, we examine
these processes in tandem. We begin with a thorough exploration of
the gravitationally-facilitated acquisition of spin-orbit misalignment
and analytically show that the entire possible range of misalignments
can be trivially reproduced. Moreover, we demonstrate that the ob-
servable spin-orbit misalignment only depends on the primordial disk-
binary orbit inclination. Subsequently, we augment our treatment by
accounting for magnetic torques and show that more exotic dynami-
cal evolution is possible, provided favorable conditions for magnetic
tilting. Cumulatively, our results suggest that observed spin-orbit
misalignments are fully consistent with disk-driven migration as a
dominant mechanism for the origin of close-in planets.
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2.1 Introduction
Nearly two decades after the celebrated radial velocity detection of a
planet around 51 Peg (Mayor and Queloz, 1995; Marcy and Butler,
1996), the orbital histories of hot Jupiters, (giant planets that reside
within ∼ 0.1 AU of their host stars) remain poorly understood. Con-
ventional planet formation theory (Pollack et al., 1996) suggests that
in-situ formation of hot Jupiters is unlikely, implying that these objects
formed beyond the ice-lines of their natal disks (at orbital radii of or-
der ∼ a few AU) and subsequently migrated to their present locations.
The nature of the dominant migration mechanism, however, remains
somewhat elusive.

Broadly speaking, the proposed theoretical mechanisms responsible
for delivery of hot Jupiters to close-in radii fall into two categories. The
smoothmigration category essentially argues that large-scale transport
of giant planets is associated with viscous evolution of the disk (Lin,
Bodenheimer, and Richardson, 1996; Morbidelli and Crida, 2007).
More specifically the envisioned scenario suggests that newly-formed
giant planets clear out substantial gaps in their protoplanetary disks
(Goldreich and Tremaine, 1980; Armitage, 2011) and, having placed
themselves at the gap center (where torques from the inner and outer
parts of the disk instantaneously cancel), drift inwards along with the
gas.

A dramatically different story is foretold by the class of violent mi-
gration mechanisms. Within the context of this group of descriptions,
giant planets initially residing at large orbital radii first attain near-
unity eccentricities and eventually get tidally captured onto tighter
orbits. The necessary orbital excitations are expected to stem from
dynamical processes such as planet-planet scattering (Ford and Ra-
sio, 2008; Nagasawa, Ida, and Bessho, 2008; Beaugé and Nesvorný,



13

2012), Kozai resonance with a perturbing binary star (Wu and Mur-
ray, 2003; Fabrycky and Tremaine, 2007; Naoz, Farr, Lithwick, et al.,
2011), and secular chaotic excursions (Lithwick and Wu, 2012).

From a purely orbital stand point, there appears to be observational ev-
idence for both sets of processes. That is, the existence of a substantial
number of (near-) resonant giant exoplanets (Wright et al., 2011) and
direct observations of gaps in protoplanetary disks (Andrews, Wilner,
Espaillat, et al., 2011; Hashimoto et al., 2012) imply that smooth
disk-driven migration is an active process. Simultaneously, the exis-
tence of highly eccentric planets such as HD80606b (Laughlin, 2009)
hint at violent migration as a viable option (see however Dawson,
Murray-Clay, and Johnson 2014).

In the recent years, observations of the Rossiter-McLaughlin effect
(Rossiter, 1924; McLaughlin, 1924), which inform the projected an-
gle between the stellar spin axis and the planetary orbit (Fabrycky
andWinn, 2009), have placed additional constraints on the hot Jupiter
delivery process. Particularly, the data shows that spin-orbit mis-
alignments are generally common within the hot Jupiter population,
and the individual angles effectively occupy the entire possible range.
Interpreted as relics of hot Jupiter dynamical histories (see however
Rogers, Lin, and Lau 2012 for an alternative view), these observations
seemed to strongly favor the category of violent migration mecha-
nisms over disk-driven migration, as spin-orbit misalignments are a
natural outcome of the former.

However, a more thorough theoretical analysis shows that spin-orbit
alignment is not a necessary feature of disk-driven migration, because
a primordial correspondence between the stellar spin axis and the
disk angular momentum vector is not in any way guaranteed. To this
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end, Bate, Lodato, and Pringle (2010) hypothesized that stochastic
external forces that act on newly formed protoplanetary disks may
give rise to spin-orbit misalignment, while Lai, Foucart, and Lin
(2011) showed that a mismatch between the stellar magnetic axis and
the disk orbital angular momentum vector can be further amplified by
magnetic torques.

In a separate effort, Batygin (2012) showed that owing to enhanced
stellarmultiplicity in star-formation environments (Ghez, Neugebauer,
and Matthews, 1993; Kraus et al., 2011; Marks and Kroupa, 2012),
secular gravitational perturbations arising from binary companions
may torque protoplanetary disks out of alignment with their host stars.
This study was subsequently extended by Batygin and Adams (2013),
who also considered the dissipative effects of accretion and magnetic
modulation of stellar rotation as well as the physical evolution of
the star and the disk on the excitation of spin-orbit misalignment.
Importantly, the latter study demonstrated that the acquisition of stellar
obliquity occurs impulsively, via a passage through a secular spin-orbit
resonance.

A distinctive prediction made by the disk-torquing model is the exis-
tence of coplanar planetary systems, whose orbital angular momen-
tum vectors differ from the spin axes of the host stars. This prediction
was recently confirmed observationally by Huber et al. (2013) in the
Kepler-56 system. Moreover, the statistical analysis of Crida and
Batygin (2014) has shown that the expected spin-orbit misalignment
distribution of the disk-torquing model is fully consistent with the
observed one.

Given the aforementioned successes of the the disk-torquing mecha-
nism in resolving the discrepancy between disk-driven migration and
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spin-orbit misalignments, a thorough examination of the physical pro-
cess behind the excitation of inclination is warranted. This is the
primary aim of the study at hand. Specifically, in this work, we
analyze the passage of the star-disk system through a secular spin-
orbit resonance, under steady external gravitational perturbations and
magnetically-facilitated tiling of the star. The paper is organized as
follows. In section 2, we describe the construction of a perturbative
model that approximately captures the relevant physics. In section 3,
we describe the characteristic behavior exhibited by the model. We
conclude and discuss our results in section 4.

2.2 Model
In order to complete the specification of the problem, we must de-
lineate the various ingredients of the model we aim to construct. In
particular, these include formulations of the physical evolution of the
disk and the central star (section 2.1), magnetically-facilitated tilting
of the stellar-spin axis (section 2.2), gravitational interactions between
the disk and the binary companion, as well as the gravitational interac-
tions between the central star and the disk (section 2.3). In this work,
we opt to neglect the dissipative effects of accretion, as they have
been studied within the context of the same problem elsewhere (i.e.,
Batygin and Adams 2013) and have been found to be unimportant.

We describe our parameterization of the relevant processes below. In
interest of minimizing confusion, we adopt the following convention
for identically named variables: quantities referring to the disk are
primed, those referring to the central star are marked with a tilde,
and those referring to the companion star are labeled by an over-bar.
Throughout the paper, an emphasis is placed on simplicity inherent to
(semi-)analytical approximations, as opposed to precise yet perplexing
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numerical calculations.

Physical Evolution of the Protoplanetary Disk and the Stellar In-
terior
Typically quoted lifetimes of protoplanetary disks fall in the range
∼ 1−10 Myr and almost certainly depend on various parameters such
as the host stellar mass (Williams and Cieza, 2011). We adopt several
approximations for the physical evolution of the star and disk, which
are specific to Sun-like stars, which host the best observationally
characterized hot Jupiters. While generally difficult to accurately
parameterize, the disk mass can be taken to evolve as (Laughlin,
Bodenheimer, and Adams, 2004):

Mdisk =
M0

disk
1 + t/τdisk

. (2.1)

Interpreting the time derivative of Mdisk to represent the accretionary
flow, following Batygin and Adams (2013) we find that the initial
disk mass, M0

disk = 5 × 10−2M� and evaporation timescale τdisk = 5 ×
10−1 Myr provide an acceptable match to the observations (Hartmann,
2008; Herczeg and Hillenbrand, 2008; Hillenbrand, 2008).

For simplicity, we model the interior structure of the central star with a
polytrope of index ξ = 3/2 (appropriate for a fully convective object;
Chandrasekhar 1939). A polytropic body of this index is characterized
by a specific moment of inertia I = 0.21 and a Love number (twice the
apsidal motion constant) of k2 = 0.14. Because T-Tauri stars derive a
dominant fraction of their luminosity from gravitational contraction,
we adopt the following expression for the radiative loss of binding
energy (Hansen, Kawaler, and Trimble, 2012):

−4πR2
?σT4

eff =

(
3

5 − ξ

)
GM2

?

2R2
?

dR?
dt

. (2.2)
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Equation (2.2) effectively dictates the process of Kelvin-Helmhotz
contraction, and is satisfied by the solution:

R? = (R0
?)

[
1 +

(
5 − ξ

3

) 24πσT4
eff

GM?(R0
?)

3
t

]−1/3

. (2.3)

A good match to the numerical evolutionary track of Siess, Dufour,
and Forestini (2000) for a M? = 1M� star can be obtained by assuming
an initial radius of R0

? ' 4R� and an effective temperature of Teff =

4100K.

Magnetic Torques
In order to model the magnetic disk-star interactions, we consider a T
Tauri star possessing a pure dipole magnetic field, whose north pole
is aligned with the stellar spin axis. In the region of interest (i.e., in
the domain of the disk), the field is current-free and can be expressed
as a gradient of a scalar potential:

®Bdip = −®∇V . (2.4)

To retain generality, we take the field to be tilted at an angle βi with
respect to the disk plane into a direction specified by an azimuthal
angle φ̃i:

V = B?R?

(
R?
r

)2 [
P1

0(cos(θ̃)) cos(βi)

− sin(βi)

(
sin(φ̃i) sin(φ̃)

+ cos(φ̃i)cos(φ̃)
)
P1

1(cos(θ̃))
]
, (2.5)

where B? is the stellar surface field and Pm
l are associated Legendre

polynomials.

If we assume the disk to be circular andKeplerian, there exists a radius,
a′co = (G M?/ω

2)1/3 at which the mean motion of the disk material,
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n′, equals the spin rate of the stellar magnetic field, ω. At larger and
smaller radii, Keplerian shear will give rise to relative fluid velocity
with respect to the stellar rotation. Accordingly, as a result of thermal
ionization of alkali metals in the disk (Draine, Roberge, and Dalgarno,
1983), the magnetic field will be dragged azimuthally by differential
rotation, whilst slipping backwards diffusively (Livio and Pringle,
1992). Following Armitage and Clarke (1996) we parameterize the
magnitude of the azimuthally-induced field Bφ as a fraction, γ =
Bφ/Bz, of the vertical component of the dipole field Bz.

As shown by Agapitou and Papaloizou (2000) and Uzdensky, Königl,
and Litwin (2002), beyond a critical value of γ ' 1, field lines are
stretched to a sufficient degree to reconnect and transition from a
closed to an open topology. Thus, the condition |γ | . 1 defines a
magnetically-connected region within the disk with â′in < a′ < â′out.
Outside of this region, we assume there to be no appreciable magnetic
coupling to the disk.

The radial profile of γ is determined by the magnetic diffusivity of the
disk, which in turnmay be represented by the dimensionless parameter
(Matt and Pudritz, 2004):

ζ =
α

Pm

h
a′
, (2.6)

where ᾱ is the disk viscosity parameter introduced by Shakura and
Sunyaev (1973), Pm is the Magnetic Prandtl number, and h is the scale
height of the disk. As argued byMatt and Pudritz (2004) andMatt and
Pudritz (2005), any realistic choice of parameters yields ζ ≤ 10−2,
which is the value we adopt throughout our work here. In terms of ζ ,
a steady state magnetic twist angle may be expressed as (Uzdensky,
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Königl, and Litwin, 2002)

γ =
(a′/a′co)

3/2 − 1
ζ

. (2.7)

For our adopted value of ζ this so-called magnetically-connected re-
gion does not diverge from the corotation radius by more than ∼ 1%.

The above discussion highlights a crucial aspect of the magnetic star-
disk interaction, which is discussed in detail by Matt and Pudritz
(2004) and Matt and Pudritz (2005). If the disk is truncated at
a′in > â′out, then there is no magnetically-connected region within
the disk. The picture is slightly more complicated for the case where
a′in < â′in, as one may speculate that magnetic effects arising from
differential rotation outside a′co may cancel those associated with dif-
ferential rotation inside a′co to first order. In all of the following work,
we circumvent these issues by assuming a disk-locked condition (Shu,
Najita, et al., 1994; Mohanty and Shu, 2008) where a′in = a′co, but add
a cautionary note that this assumption may lead to somewhat overly
favorable results.

In order to derive the analytical form of the torques, we take a similar
approach to that of Lai, Foucart, and Lin (2011), and assume the disk
to be razor thin. The disk current loops are envisioned to follow the
magnetic field lines in a force-free fashion (see, e.g., Krasnopolsky,
Shang, and Li 2009; Zanni and Ferreira 2013) and connect onto the
stellar surface. Accordingly, the induced azimuthal magnetic field
arises from a radial current within the disk (Lai, 1999).

The magnitude of the radial current is calculated using Ampère’s Law
(Jackson, 1998) in the form:∫

C

®B · d®l = µ0

∫ ∫
A

®J · d ®S, (2.8)
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where d®l is a vector path length, d ®S is a vector area element and C is
a loop encompassing the surface A. ®J is the (induced) current density
within the disk. Because the induced field is entirely toroidal, we can
integrate the left hand side along an azimuthal loop around the disk.
This yields:

4πa′Bφ = 2πµ0a′Kr, (2.9)

where Kr =
∫

Jr dz = 2Bφ/µ0 is the inward radial surface current.

Combining this expression with equation (2.7), we obtain:

Kr =
2Bz

µ0

[
(a′/a′co)

3/2 − 1
ζ

]
. (2.10)

With an expression for the induced current at hand, we immediately
arrive at an expression for the associated Lorentz torque, considering
the induced current to interact only with the stellar dipole field:

®τL = (a′ ®̂ρ ) × (Kr ®̂ρ × ®Bdip). (2.11)

In the above expression, ρ̂ is the radial unit vector in the plane of the
disk.

At this point, in order to cast the magnetic torques into a usable form,
we project ®τL onto each of the Cartesian axes in the disk’s frame and
subsequently integrate over the entire magnetically-connected region:

τi′ =

∫ 2π

0

∫ â′out

a′co
®τL · ®̂xi′ ρ dρ dφ, (2.12)

where the subscript i′ represents the Cartesian axes in the disk’s frame.
With the variables and parameters given above, these torques evaluate
to:

τx′ =

(
2πB2

? R6
? ζ sin(βi) cos(βi)

3µ0(1 + ζ)2(a′co)3

)
cos(φ̃i) (2.13)
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τy′ =

(
2πB2

? R6
? ζ sin(βi) cos(βi)

3µ0(1 + ζ)2(a′co)3

)
sin(φ̃i) (2.14)

τz′ =

(
4πB2

?R6
? ζ cos2(βi)

3µ0(1 + ζ)2(a′co)3

)
. (2.15)

Note that for βi > π/2, the star and disk spin in opposite directions,
rendering a′co meaningless. In such a regime, there is no magnetically
connected region of the form described above. Indeed, it is unclear
how the magnetic field would interact with the disk in this case. For
the purposes of our model, we incorporate this loss of a magnetically
connected region by artifically forcing the torques to equal zero for
angles of βi > π/2. Mathematically, this is done by multiplying the
torques by an approximation to a step function S(βi) given by:

S(βi) = 1 −
(
π/2 + arctan

( βi−π/2
`

)
π

)
, (2.16)

where ` = 10−4. The importance of such a term becomes apparent
once the torques are coupled to gravity and inclinations above 90
degrees are naturally attained.

Angular momentum transport among neighboring annuli of the disk
is facilitated by propagation of bending waves (Foucart and Lai, 2011)
as well as disk self-gravity (Batygin, Morbidelli, and Tsiganis, 2011)
and generally occurs on a much shorter timescale than magnetic tilting
of the host star. Taking advantage of this, in our analyses we assume
that the effective moment of inertia of the disk around all axes is much
greater than that of the star, allowing us to ignore any torques from
the star on the disk and to consider −τi′ as a back-reaction on the star’s
dynamics.

As will become apparent below, it is beneficial to carry out all calcu-
lations in the frame of a distant, binary companion to the central star.
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As such, we follow the approach of Peale et al. (2014) and define Euler
angles within the binary frame related to the nutation, precession and
rotation of the rigid body while assuming exclusively principal axis
rotation (this is an excellent approximation for a T-Tauri star, spinning
at a period of 1-10 days). Specifically, β̃ is the angle between the
central star’s spin axis and the binary orbit normal; Ω̃ is the longitude
of ascending node of the star in the binary frame where Ω̃ = 0 implies
collinear disk and stellar lines of nodes; and the third Euler angle ϕ is
the angle through which the star rotates as it spins (ϕ only enters the
equations as a rate of change: Ûϕ = ω).

The equations for the evolution of β̃ and Ω̃, adapted from Peale et al.
(2014) are:

d β̃
dt
= −

1
ω

[
cos(β̃)(−Nx̄ sin(Ω̃) + Nȳ cos(Ω̃))

+ Nz̄ sin(β̃))
]
, (2.17)

dΩ̃
dt
= −

1
ω sin(β̃)

[
Nx̄ cos(Ω̃) + Nȳ sin(Ω̃)

]
, (2.18)

where Nī are projected torques. Note that by fixing the disk’s longitude
of ascending node at Ω′ = 0, we have implicitly placed ourselves into
a frame coprecessing with the disk’s angular momentum vector. The
effect of precession shall be included within the gravitational part of
the equations and we need not retain it here.

Throughout the pre-main-sequence, we assume a constant rotation
rate of the host star. Although stellar rotation is almost certainly
modulated by the presence of the disk (Herbst, n.d.; Affer et al., 2013;
Bouvier, 2013), the present lack of detailed understanding of the
physical processes behind rotational breaking render this assumption
reasonable (see Gallet and Bouvier 2013).
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The projected quantities Nī are directly related to the torques calculated
above, although the components of the torques in the disk frame, −τi′,
must first be projected onto the Cartesian axes in the binary frame.
Such a projection constitutes a simple rotation of co-ordinates because,
as discussed below, the disk-binary inclination is a constant of motion.
The rotation angle is fixed at some prescribed angle, β′, anti-clockwise
about the x-axis. As such, the components, Nī are given in terms of τi

by:
Nx̄ = −τx′/(IM?R2

?), (2.19)

Nȳ = −(cos(β′)τy′ − τz′ sin(β′))/(IM?R2
?), (2.20)

Nz̄ = −(cos(β′)τx′ + τy′ sin(β′))/(IM?R2
?). (2.21)

The above equations can be used to analyze the dynamics of the central
star owing to its magnetic field interacting with its protoplanetary
disk. It is noteworthy that we have made no mathematical assumption
of small angles, but physically, we have not taken into account the
changes in the parameterized geometry of the problem that arise when
mutual disk-star inclinations approach βi → π/2.

Gravitational Torques
Binary Star - Disk Interactions

In this section, we calculate the gravitational response of a disk to a
distant, binary companion, whose orbit is taken to lie in the reference
plane. We derive a Hamiltonian for the disk subject to perturbations
from the companion, working under the secular approximation. In
other words, we assume that the disk’s outer radius a′out is sufficiently
small compared to the binary orbit’s semi-major axis ā that no mean-
ingful commensurabilities between the orbital motions exist.
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The Gaussian averaging method (see Ch. 7 of Murray and Dermott
1999) dictates that in the aforementioned regime, the (orbit-averaged)
treatment of the gravitational interactions of the disk-companion sys-
tem is mathematically equivalent to considering the companion to be a
circular ring with line density λ = M̄/(2πā) and the disk as an infinite
series of annular wires at every radius between a′in and a′out (Murray
and Dermott, 1999; Morbidelli, Tsiganis, et al., 2012).

It is well known that within the secular framework, the semi-major
axes are constants of motion (Morbidelli, 2002). Consequently, the
Keplerian contribution to the Hamiltonian can be dropped, rendering
the Hamiltonian of this set up, simply the total gravitational potential
energyU possessed by the disk in the field of the companion ring:

U = −

∫
disk

∫
ring

G
r

dMdisk dMring, (2.22)

where r is the separation between two mass elements dMring (com-
panion), and dMdisk (disk). The integral is carried out over all angles
(φ̄) within the ring and over all radii (a′) and angles (φ′) in the disk.
The evaluation of r(φ′, a′, φ̄) is a purely geometric problem and can be
simplified by approximating a′out/ā � 1. Under such an approxima-
tion, we expand r to second order in equation (2.22) (first order terms
are axisymmetric and therefore cancel out).

In order to compute the integral (2.22), we must specify the disk
surface density profile, Σ. For definitiveness, in this work we shall
follow (Mestel, 1963; Batygin, 2012) and adopt

Σ = Σ0

(a′0
a′

)
, (2.23)

where Σ0 is the surface density at semi-major axis a′0. We note that the
passive disk model of Chiang and Goldreich (1997) is characterized
by a very similar power-law index: Σ ∝ (a′)−15/14 (Rafikov, 2012).
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With this prescription, equation (2.22) becomes:

U = −

∫ a′out

a′in

∫ 2π

0

∫ 2π

0

G
r
Σ0 a′0

M̄
2π

dφ̄ dφ′ da′. (2.24)

Noting that a′in � a′out, we arrive at the expression for theHamiltonian.

Switching to canonically conjugated variables, we introduce the scaled
Poincaré action-angle coordinates:

Z′ = 1 − cos(β′) z′ = −Ω′. (2.25)

This definition of the coordinates differs from the standard definition
(see Ch. 2 of Murray and Dermott 1999) in that at each disk annulus,
the standard definition multiplies Z′ by dΛ = dm′

√
GM?a′, where

dm′ = 2πΣ0a′0da′ is the mass of the annulus. Thus, for the variables
(4.4) to remain canonical, we must also scale the Hamiltonian itself
in a corresponding manner:

Ŭ =
U

2π
∫ a′out

a′in
Σ0a′0
√

GM?a′da′

=
3n′out

8
M̄
M?

(
a′out
ā

)3 [
Z′ −

Z′2

2

]
. (2.26)

This expression agrees with the fourth-order Lagrange-Laplace expan-
sion of the disturbing function (Murray and Dermott, 1999), where
Laplace coefficients are replaced with their leading order hypergeo-
metric series approximations (Batygin and Adams, 2013).

The crucial result here is that Ŭ does not depend on z′, meaning that
the disk inclination is exactly preserved in the binary frame:

dZ′

dt
= −

∂Ŭ

∂z′
= 0 (2.27)

while the precession rate depends on both the companion semi-major
axis and mass. As shown by Batygin (2012) via a different approach,
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the constancy of disk-star inclination holds even if an eccentric com-
panion is considered. In this case, however, the precession rate is
enhanced by a factor of (1 + 3ē/2).

Disk - Central Star Interactions

As alreadymentioned above, the spin rates of classical T-Tauri stars fall
within the characteristic range of 1 − 10 days (Herbst, n.d.; Bouvier,
2013). This results in substantial rotational deformation of young
stars. To an excellent approximation, the dynamical response of a
spheroidal star to the gravitational potential of the disk can bemodeled
by considering an inertially equivalent orbiting ring of mass

m̃ =
[
3M2

?ω
2R3

?I4

4Gk2

]1/3

, (2.28)

and semi-major axis

ã =

[
16ω2k2

2 R6
?

9I2GM?

]1/3

. (2.29)

Within the context of this picture, the standard perturbation techniques
of celestial mechanics can be applied (Murray and Dermott, 1999;
Morbidelli, 2002).

In the exploratory study of Batygin and Adams (2013), the gravita-
tional torques were computed using a low mutual inclination approxi-
mation to the true potential. This simplification is limiting, especially
on the quantitative level, as it forces the topology of the dynamical
portrait to be that of the second fundamental model for resonance
(Henrard and Lemaitre, 1983), for all choices of parameters. In this
work, we shall place no restrictions on the mutual inclination and
adopt the series of Kaula (1962) as a representation of the potential,
which utilizes the semi-major axis ratio (ã/a′) as an expansion param-
eter. Provided the smallness of the semi-major axis ratio inherent to
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our problem (ã/a′ . O(10−1)), an octupole-order expansion suffices
our needs.

Written in terms of scaled canonical Poincaré action-angle coordinates
(4.4), the Hamiltonian that governs the dynamics of the stellar spin-
axis1 under the gravitational influence of an infinitesimal wire of mass
dm′ reads:

dH =
1

16

√
GM?

a′3
dm′

M?

(
ã
a′

)3/2 [ (
2 − 6Z̃ + 3Z̃2)

×
(
2 − 6Z′ + 3Z′2

)
+ 12

(√
Z̃(2 − Z̃) −

√
Z̃3(2 − Z̃)

)
×

(√
Z̃(2 − Z̃) −

√
Z̃3(2 − Z̃)

)
cos(z̃ − z′)

+ 3Z̃ Z′
(
Z̃ − 2

) (
Z′ − 2

)
cos

(
2(z̃ − z′)

) ]
. (2.30)

As above, to obtain an expression for theHamiltonian that incorporates
the effect of the entire disk, we imagine the disk to be composed of a
series of such aforementioned wires and integrate:

H =

∫
dH . (2.31)

Recalling that the mass of each individual wire comprising the disk is
dm′ = 2πΣ0a′0da′, we note that the integral (2.31) runs with respect
to the disk semi-major axis.

Because of the stiff dependence of equation (2.30) on a′, the integral
(2.31) is only sensitive to the disk’s total mass, and not the location of
its outer edge, provided that the latter is substantial (i.e., 10s of AU;
Anderson, Adams, and Calvet 2013). On the contrary, the disk’s mass
is predominantly set by the disk’s size, a′out:

Mdisk = 2π
∫ a′out

a′in

a′Σ0

(a′0
a′

)
da′ ' 2πΣ0a′0a′out. (2.32)

1In unanimity with the above treatment, the back-reaction of the star onto the disk is ignored.
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In addition to the disk’s physical properties, we must also prescribe its
dynamical behavior to complete the specification of the problem. As
already mentioned above, because the Hamiltonian (4.5) is indepen-
dent of the angles (i.e., is a Birkhoff normal form), the disk inclination
with respect to the binary orbital plane (and therefore Z′) is conserved,
while the disk’s nodal precession rate, ν = dz′/dt, is given by

ν =
∂Ŭ

∂Z′
=

3n′out
8

M̄
M?

(
a′out
ā

)3 [
1 − Z′

]
. (2.33)

Consequently,H represents a non-autonomous one degree of freedom
system.

Because the time-dependence inherent to the problem at hand is par-
ticularly simple (z′ = νt),H can be made autonomous by employing a
canonical transformation arising from the following generating func-
tion of the second kind (Goldstein, 1950):

G2 = (z̃ − νt)Φ, (2.34)

where φ = (z̃ − νt) is the new angle and the new momentum is related
to the old one through:

Z̃ =
∂G2

∂ z̃
= Φ. (2.35)

Accordingly, the Hamiltonian itself is transformed as follows (Licht-
enberg and Lieberman, 1992):

K = H −
∂G2

∂t
. (2.36)

Having removed explicit time dependence, we additionally scale the
Hamiltonian by ν, which introduces a single dimensionless number δ̃
that encompasses the physical properties of the system.
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Following the transformations described above, the Hamiltonian takes
on the following form:

K = −Φ +
δ̃

12

[
3
(
Φ − 2

)
Φ − 3

(
2 + 3(Φ − 2)

)
Φ cos2(β′)

+ 6 sin(2β′)
(
Φ − 1

)√
(2 − Φ)Φ cos(φ) + 3 sin2(β′)

×
(
Φ − 2

)
Φ cos(2φ)

]
. (2.37)

Accordingly, the explicit expression for the resonance proximity pa-
rameter reads:

δ̃ =
3
8

(
n′2in
ων

Mdisk

M?

a′in
a′out

)
. (2.38)

2.3 Results
With a theoretical model in place, let us begin our exploration of the
acquisition of spin-orbit misalignments in an idealized limit. That is,
we begin by neglecting magnetic torques and assuming adiabaticity.

Purely Gravitational Excitation
Although theHamiltonian (4.10) does not exhibit explicit time-dependence,
it does possess implicit time-dependence through the evolution of res-
onance proximity parameter, δ̃. As discussed in Batygin and Adams
(2013), the time-dependent variation in δ̃ is primarily brought about
as a result of disk mass loss and the physical evolution of the host
star (via ñ). While both of these processes can be quite complex,
for our purposes, it suffices to note that for any reasonable choice of
parameters, δ̃→ 0 as the system approaches main sequence.

What are the consequences of the changes in the value of δ̃? Pre-
liminary progress towards understanding this question can be made
by studying the equilibria of the Hamiltonian (4.10). To do so, it is
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Figure 2.1: Equilibria of the Hamiltonian (4.10) as a function of the resonance
proximity parameter δ̃. The three panels correspond to different choices of disk-
binary inclination, namely β′ = 25 deg, β′ = 50 deg, and β′ = 75 deg. The equilibria
depicted in black, blue, and green lines are stable, while that shown as a red line
is unstable. As δ̃ → δ̃crit, two of the four solution merge onto a single unstable
equilibrium. On the contrary, as δ̃ → ∞, a stable equilibrium point approaches
perfect alignment with the disk (shown as a dashed line).
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particularly convenient to switch to cartesian coordinates defined as

x =
√

2Φ cos(φ) y =
√

2Φ sin(φ). (2.39)

The angular dependence ofK shows that all equilibria will have φ = 0,
also implying y = 0 (Murray and Dermott, 1999). The equilibrium
values of x are shown as functions of δ̃ in Figure (2.1) for three choices
of disk-binary orbit inclination.

Depending on the value of δ̃, the Hamiltonian K possesses between
two and four fixed points. Generally, for δ̃ < 1 two stable (elliptic)
fixed points exist (shown in black and green), while four fixed points
(one of which is stable (shown in blue) and the other is unstable, i.e.,
hyperbolic (shown in red)) are guaranteed for δ̃ > 2. There exists
a critical bifurcation value 1 6 δ̃crit 6 2 where the number of fixed
points is three and the stable and unstable fixed points merge into
a single unstable equilibrium (Henrard and Lemaitre, 1983; Peale,
1986). As shown in Figure (2.1), δ̃crit depends on the disk-binary
orbit inclination: it changes smoothly from δ̃crit = 1 at β′ = 0 deg to
δ̃crit = 2 at β′ = 45 deg, and back to δ̃crit = 1 at β′ = 90 deg.

Physically, δ̃ represents the ratio of the characteristic precession rates
of the star’s and disk’s angular momentum vectors. It is generally
safe to assume that this ratio is well above unity at the epoch when
the system emerges from the embedded stage (see, e.g., Williams and
Cieza 2011). Moreover, it can be argued that dissipative processes
such as accretion will force the stellar spin axis to evolve towards the
equilibrium point closest to alignment with the disk’s angular momen-
tum vector (see Batygin and Morbidelli 2011 for a related discussion).
Provided that the changes in δ̃ are slow compared to the characteristic
precession period of the star, adiabatic theory dictates that the (null)
phase-space area (i.e., the adiabatic invariant J ) associated with the
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orbit of the stellar spin axis must be approximately conserved (Hen-
rard, 1982): Jeq = 0. Consequently, as δ̃ decreases in time the stellar
spin axis will reside on the equilibrium solution shown in blue on Fig-
ure (2.1). However, once the evolutionary track of the system reaches
δ̃ = δ̃crit, the associated equilibrium becomes unstable.

To understand the dynamical evolution of the stellar spin axis beyond
the aforementioned adiabatic trailing phase, it is useful to consider
the geometry of the Hamiltonian. For the three choices of inclination
depicted in Figure (2.1), Figure (2.2) shows a series of phase-space
portraits of K in cartesian coordinates. Specifically, the panels of
the Figure (2.2) depict snap-shots of the Hamiltonian flow at δ̃ = 5,
δ̃ = δ̃crit, and δ̃ = 0. Here, the equilibrium points of K are shown as
gray dots, while the separatrix (i.e., homoclinic orbit) associated with
the secular spin-orbit resonance is depicted as a black curve where it
exists (i.e., δ̃ > δ̃crit).

Qualitatively, the following picture holds. As long as δ̃ > δ̃crit, the sys-
tem remains adiabatically frozen on the equilibrium point contained
in the inner circulation zone of the separatrix. As δ̃ → δ̃crit, the
phase space area associated with the inner circulation zone shrinks
and eventually the equilibrium point on which the stellar spin-axis
resides is invaded by the separatrix. Because the separatrix is charac-
terized by an infinite period, the adiabatic principle inevitably breaks
down and the conservation of J is momentarily violated. However,
immediately after the encounter, the separatrix turns into a regular
circulatory orbit and the system returns into the realm of adiabatic
theory (Borderies and Goldreich, 1984; Henrard, 1991; Batygin and
Morbidelli, 2013). As such, for all subsequent evolution, the value
of the adiabatic invariant remains equivalent to that of the separatrix,
evaluated at the critical resonance proximity parameter (Peale, 1986).
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Ultimately as the disk dissipates, δ̃ approaches zero and the Hamilto-
nian (4.10) becomes a trivial one, whose flow is represented by con-
centric circles on the phase plane. Accordingly, the post-encounter
inclination can be calculated from the definition of the adiabatic in-
variant:

J = 2π(1 − cos(β̃)) =
[∮
Φseparatrixdφ

]
δ̃crit

, (2.40)

where the separatrix equation at critical δ̃ can be obtained by substitut-
ing the value ofK corresponding to the unstable equilibrium point into
equation (4.10). A noteworthy property of the solution (2.40) is that
it depends exclusively on Z′. In other words, in the adiabatic regime,
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the excitation of spin-orbit misalignment is independent of all system
parameters except the primordial disk-binary plane inclination.

Using the approach delineated above, we have mapped out the rela-
tionship between the primordial disk-binary inclination and the final
(post-encounter) stellar inclination (also with respect to the binary
orbital plane). This function is shown as a purple curve on Figure
(2.3). In the decoupled δ̃ = 0 regime, both the stellar and the disk’s
inclinations, measured with respect to the binary orbit, are preserved.
However, because of differential precession, the mutual disk-star in-
clination undergoes cyclical variations (Batygin, 2012). The maximal
and minimal mutual inclinations are obtained when the stellar orbit
crosses the y = 0 line with a negative and a positive values of x re-
spectively. The associated range of mutual inclinations is depicted in
Figure (2.3) with red lines. As shown in the Figure, a broad array
of spin-orbit angles, ranging from perfectly disk-aligned states to per-
fectly disk-anti-aligned star states can be produced as a consequence
of passage through the secular spin-orbit resonance.

Magnetic and Gravitational Excitation
As pointed out by Lai, Foucart, and Lin (2011) (see also Lai 1999) and
rehashed in section 2.2 of this paper, a finite disk-star misalignment
can be amplified bymagnetic disk-star interactions. Within the context
of the picture outlined above, it is tempting to assume that magnetic
torques will be of no consequence prior to the encounter with the
separatrix, since adiabatic invariance ensures alignment between the
disk and the star. However, a more thorough examination shows that
the equilibrium on which the star is envisioned to reside at δ̃ > δ̃crit

deviates away from the exact disk-aligned state by a small amount2.
2This misalignment refers to the forced component of the inclination vector (see Ch.7 of Murray

and Dermott 1999)
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Consequently, the seed misalignment needed for the magnetic tilting
process to become active is ensured to exist from purely gravitational
considerations. The amplitude of this equilibrium misalignment is
shown as a function of δ̃ in Figure (2.4) for the three choices of
inclination considered above. Note that even for high values of δ̃, the
misalignment can be consequential (e.g., ∼ 0.5 − 5 deg).

The extent to which the purely gravitational picture outlined above
will be altered by the incorporation of magnetic fields depends on
the assumed parameters inherent to the system. This can be gath-
ered immediately by considering the characteristic magnetic tilting
timescale:

τB =

[
ζ

3
B2
?

µ0

R4
?

IM?Ω?a′3in

]−1

. (2.41)

Evaluated using the physical parameters quoted in section 2, a stellar
rotation period of ∼ 5 days (Affer et al., 2013; Bouvier, 2013), and a
surface field of B? ' 1.5 kGauss (Johns-Krull, 2007; Gregory, Donati,
et al., 2012), this timescale (either assuming a constant surface field
or a constant magnetic dipole moment in time), along with the char-
acteristic stellar precession timescale, and a typical disk precession
timescale are plotted over a maximal disk lifetime in Figure (2.5).

Owing to gravitational contraction, if an evolutionary trackwith a con-
stant surface field is assumed, the cumulative effect of the magnetic
torque is smaller than that if a constant dipole moment is assumed.
The former situation is easily tractable within the context of the pic-
ture outlined above. First, let us imagine that system parameters are
such that the secular resonance is encountered later than ∼ 0.5 Myr
after the birth of the star (i.e., after the characteristic magnetic tilting
timescale becomes considerably longer than the disk lifetime). Under
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this assumption, the magnetic and gravitational acquisitions of disk-
star misalignment occur on separate timescales and can be treated
sequentially.

It is worth recalling that the neighborhood of the (nearly) disk-aligned
equilibrium of K (shown on Figure 2.2) is foliated in elliptical cir-
culatory trajectories. This means that the system can acquire a non-
zero value of J well before resonance crossing. Consequently, as
δ̃ approaches δ̃crit, the trajectory will encounter the separatrix at at
a moment when the phase-space area occupied by the inner branch
of the critical curve matches that of the orbit. In other words, the
resonant encounter will take place at δ̃ > δ̃crit. As a consequence,
the resonant excitation of spin-orbit misalignment will occur earlier in
the disk’s evolution and the acquired misalignment will be somewhat
different. However, blunt evaluation shows that barring unreasonable
estimates, the quantitative correction is essentially negligible and is
of little interest (especially given the substantial uncertainties in other,
more essential parameters such as ν).

Considerably more interesting dynamical behavior can be observed if
a constant magnetic moment is assumed. As shown in Figure (2.5),
in this case the magnetic tilting timescale is comparable to the disk
torquing time. Thus, rather than reasoning through the evolution
within the framework of adiabatic theory, we resort to direct numeri-
cal integration of equations of motion, accounting for both, magnetic
torques (equations 4.31) and gravitational torques arising fromHamil-
tonian (4.10).

We initialize the system at the gravitational equilibrium point dis-
cussed above. The orbit is evolved for 10 Myr, adopting the same
choices of disk-binary inclination as before, in addition to an almost
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(i.e., initial condition) of the Hamiltonian (4.10) and the disk-aligned state as a
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state provides a seed inclination for magnetic torques to operate.

orthogonal configuration with β′ = 85 deg. Finally, for a more candid
comparison, we ignore the dependence of ν on β′ and assume a disk
precession period of 2π/ν = 1 Myr for all simulations. The physical
evolutions of the star and the disk are assumed to proceed as described
in section 2.1.

The results of the integrations are shown in Figure (2.6), where the
full integrations are plotted in red and solutions that only account for
gravitational torques are plotted in gray for comparison. Immediately,
a number of interesting features can be observed. First, in all simu-
lations, the magnetically facilitated growth of J is evident, and the
impulsive excitation of spin-orbit misalignment occurs substantially
earlier when magnetic tilting is taken into account.
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For lower inclinations (i.e., β′ = 25 deg and β′ = 50 deg), it is clear that
magnetic tilting complicates the trajectory, although the qualitative
behavior of the dynamical evolution is similar to that of the purely
gravitational calculation. That is to say that the orbit evolves towards
a quasi-circular state (in phase-space) as the disk dissipates. However,
unlike the purely gravitational case, here the value of J continues to
grow, even after separatrix crossing. This is largely due to magnetic
torques and arises from the fact that a fraction of the orbit resides at
β < 90 deg. The plots of stellar inclination relative to the disk give a
physical picture of the above process.

When star-disk inclinations reach values of βi ≥ 90 deg, the magnetic
contribution in our model becomes null and the only effect is that of
secular gravitational interactions. This remains true until the oscilla-
tory trajectory brings the star-disk inclination to βi ≤ 90 deg. At this
point, the magnetic influence returns and repels the stellar inclination
back to values of βi ≥ 90 deg. This causes the inclination to oscillate
in a similar fashion to the purely gravitational case, but with its trajec-
tory is eventually excluded from βi ≤ 90 deg. It is worth noting that
a quantitative description of this effect would be significantly altered
if there is in fact some magnetic influence (not considered here) for
βi ≥ 90 deg.

The evolution at higher inclinations is qualitatively different, as the
orbit evolves towards a fixed point (characterized by a balance between
gravitational and magnetic torques) after crossing the separatrix. The
β′ = 85 deg case is particularly striking, as the phase-space plot de-
picts an initial condition that behaves as a repeller of the trajectory and
the binary aligned equilibrium point serves as an attractor. It is in-
teresting to note that similar behavior can be obtained by augmenting
the Hamiltonian evolution with dissipative effects of accretion (see
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Batygin and Adams 2013 for an in-depth discussion).

These results imply that provided an advantageous prescription for the
ingredients inherent to the magnetic torquing part of the calculation,
the dynamical evolution of the system can be qualitatively altered.
However, it is important to note that magnetic effects do not obstruct
the acquisition of spin-orbit misalignment within the framework of
the disk-torquing model but instead act to accelerate it. In turn, grav-
itational effects provide the root inclination needed for the magnetic
torques to operate. Consequently, it seems reasonable to conclude
that the magnetic torquing mechanism proposed by Lai, Foucart, and
Lin (2011) may play an important, but nevertheless secondary role in
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explaining observed hot Jupiter spin-orbit misalignments.

2.4 Discussion
In this work, we have considered the excitation of spin-orbit mis-
alignment within the context of disk-torquing theory (Batygin, 2012),
taking into account magnetically-facilitated tilting of the star (Lai,
Foucart, and Lin, 2011). While this study builds on the previous work
of Batygin and Adams (2013), it differs in two important ways. First,
the treatment of gravitational torques employed in this work does not
assume small inclinations and allows us to self-consistently explore
the process of secular spin-orbit resonant encounters. Second, this
work includes additional physics stemming from magnetic disk-star
interactions (Lai, 1999). Cumulatively, the results of our work can be
summarized as follows.

Taking advantage of the separation of dynamical and physical evolu-
tion timescales inherent to the problem, we utilized adiabatic theory
(Henrard, 1991) to analytically compute the impulsive excitation of
spin-orbit misalignment during resonant encounters. The attained re-
sults prove that the entire possible range of spin-orbit misalignments
can be produced exclusively by the disk-torquing mechanism given a
disk-binary orbit inclination β′ 6 65 deg. Moreover, as long as the
resonant encounter takes place in an adiabatic regime, the attained
inclination depends only on β′.

The inclusion of magnetic effects complicates the purely gravitational
picture on a quantitative level. Primarily, magnetic perturbations drive
the system through secular spin-orbit resonance at an earlier epoch,
thereby leading to somewhat enhanced disk-star inclinations. At high
disk-binary orbit inclinations, magnetic torques may also drive the
system towards an equilibrium that corresponds to a near-alignment
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between the stellar spin-axis and and the binary orbit angular mo-
mentum vector. However, we note that in order to obtain significant
deviations away from a purely gravitational solution, we made favor-
able (and perhaps unrealistic) assumptions about the strength of the
field (Donati et al., 2010; Gregory, Jardine, et al., 2010) and the disk
truncation radius (Matt and Pudritz, 2004). Consequently, it may be
true that the aforementioned corrections are not too relevant in real-
ity. Either way, the capacity of the disk-torquing model to explain the
origins of spin-orbit misalignments of hot Jupiters, within the context
of smooth disk-driven transport is not hindered by the inclusion of
additional physics.

An obligatory property of the disk-torquing model considered in this
work is the prevalence of stellar companions during the early epochs
of planet formation.This constraint is not as stringent as that inherent
to (for example) the Kozai migration model (Wu and Murray, 2003;
Fabrycky and Tremaine, 2007; Naoz, Farr, Lithwick, et al., 2011)
which requires longer-lived binaries than the model presented here.
As such, we would expect the disk-torquing scenario to play out more
frequently across a sample of planetary systems than Kozai migration
owing to the expectation that longer-lived binaries are rarer than the
short-lived types that torque the disk. Enhanced stellar multiplicity in
star-forming environments is nevertheless a requirement of the disk
torquing model (Batygin, 2012). Although a significantly elevated
fraction of multi-stellar systems in young star clusters is observation-
ally established (Ghez, Neugebauer, andMatthews, 1993; Kraus et al.,
2011), it seems natural to additionally expect a corresponding corre-
lation between hot Jupiter spin-orbit misalignments and the existence
of present-day wide-orbit companions.

To this end, the observational survey of Knutson et al. (2014) has not
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found a statistically significant parallel between the twomeasurements.
However, in interpreting these results, it is important to keep in mind
that the dynamics of stellar clusters can be extremely complex (see,
e.g., Malmberg et al. 2007; Adams 2010), and dissolution of multi-
stellar systems as well as binary exchange reactions will act to obscure
a direct relationship between primordial and present (i.e., cluster-
processed) field stellar multiplicity. However, such interactions may
well be specific to high density clusters (Duchêne andKraus 2013) and
so additional computational effort is required to determine whether
the theory presented here is consistent with observations of stellar
multiplicity. This issue should be examined in detail as an integral
component of a future study.

An observational trend that our model does not explicitly account for
is the dependence of hot Jupiter misalignments on the effective tem-
perature of their host stars (Winn, Fabrycky, et al., 2010). Although,
an explanation that invokes the mass-dependence of tidal dissipation
for why predominantly hotter stars (Teff & 6250K) are characterized
by large obliquities has been presented (Winn, Howard, et al., 2011;
Lai, 2012; Albrecht et al., 2012). Within the context of the envisioned
scenario, all hot Jupiters originate with high orbital obliquities, and
spin-orbit misalignments are subsequently erased by tidal dissipation
preferentially in low-mass stars.

Generally, the disk torquingmodel discussed in this work does not pre-
clude subsequent, additional effects owing to tidal dissipation. How-
ever, in light of the recent criticism of this narrative by Rogers and
Lin (2013), it may be worthwhile to speculate about an alternative
scenario. As already mentioned above, if disk-driven migration is
the dominant mode of early orbital transport, the generation of spin-
orbit misalignments requires a wide-spread existence of binaries in
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birth clusters. It has been noted observationally that stellar bina-
rity (and the stellar orbital distribution) are both strong functions of
stellar mass (Kraus et al., 2011). Consequently, a handle on the ob-
served misalignment-Teff correlation may conceivably be obtained by
further examining the tally and the longevity of multi-stellar systems
in star-formation environments as a function of their mass. While a
potentially fruitful avenue of reasoning, additional observational and
modeling efforts will be required to definitively evaluate this possibil-
ity.
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C h a p t e r 3

ALIGNMENT OF PROTOSTARS AND CIRCUMSTELLAR
DISKS DURING THE EMBEDDED PHASE
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ABSTRACT

Star formation proceeds via the collapse of a molecular cloud core
over multiple dynamical timescales. Turbulence within cores results
in a spatially non-uniform angular momentum of the cloud, causing a
stochastic variation in orientation of the disk forming from the collaps-
ing material. In the absence of star-disk angular momentum coupling,
such disk-tilting would provide a natural mechanism for production
of primordial spin-orbit misalignments in the resulting planetary sys-
tems. However, owing to high accretion rates in the embedded phase
of star formation, the inner edge of the circumstellar disk extends down
to the stellar surface, resulting in efficient gravitational and accretional
angular momentum transfer between the star and the disk. Here, we
demonstrate that the resulting gravitational coupling is sufficient to
suppress any significant star-disk misalignment, with accretion play-
ing a secondary role. The joint tilting of the star-disk system leads to
a stochastic wandering of star-aligned bipolar outflows. Such wander-
ing widens the effective opening angle of stellar outflows, allowing
for more efficient clearing of the remainder of the protostar’s gaseous
envelope. Accordingly, the processes described in this work provide
an additional mechanism responsible for sculpting the stellar Initial
Mass Function (IMF).
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3.1 Introduction
In the simplest picture for star and planet formation, the angular mo-
mentum vectors for stellar rotation, the circumstellar disk, and the
resulting planetary orbits all coincide. However, recent observations
showing that planetary orbits are often misaligned with stellar rotation
axes (Fabrycky and Winn, 2009; Winn, Fabrycky, et al., 2010) have
prompted several authors (e.g., Bate, Lodato, and Pringle 2010; Baty-
gin 2012) to suggest that disks themselves may become misaligned
with their parent stars. Any such primordial star-disk misalignment
occurring within the embedded phase, during which the star gains
most of its mass, has consequences both for future planetary systems
and for the impact of protostellar outflows on their surrounding en-
velopes. In this letter, we construct a model for protostar-disk systems
that describes the gravitationally-facilitated precession of the stellar
rotation axis about a tilting disk, including dissipative torques owing
to accretion.

In spite of enormous progress in our understanding of star formation
(from Shu, Adams, and Lizano 1987 to McKee and Ostriker 2007),
the final mass of a star still cannot be unambiguously determined
from the initial conditions of the original molecular cloud core. Pro-
tostellar outflows represent one mechanism that can help separate a
newly formed star from its immediate environment (Shu, Adams, and
Lizano, 1987), and this mechanism may provide an explanation for
the stellar initial mass function (Adams and Fatuzzo, 1996). Although
outflows have sufficient mechanical luminosity to reverse the infall
(Lada, 1985), one criticism of this picture is that the outflows start
with relatively narrow angular extents. However, the opening angles
widen with time and precessing outflows can produce outflow cones
that are effectively wider than their intrinsic extent, thereby making it
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easier for outflows to limit the mass falling onto the central star/disk
system. Independent of the efficacy of the outflows in limiting stel-
lar masses, observations show that protostellar jets precess (Eisloffel
et al., 1996; Cesaroni et al., 2005) and that circumstellar disks are not
always aligned with the plane of binary orbits (Stapelfeldt et al., 1998;
Koresko, 1998).

The angular momentum of a circumstellar disk must be obtained from
the gradual accumulation of material from a molecular cloud core.
Rotation rates of such cores are estimated through measurements of
velocity gradients of a given molecular line across the map of the core
(e.g., Goodman et al. 1993). The inferred angular velocity vectors do
not point in the same direction over the entire core; instead they vary
in projected direction over a range of ∼ 30 degrees within the region
encompassing material that is destined to form a star. Moreover, the
coherence length λ for the velocity vectors inferred from these emis-
sion maps is λ ∼ 0.01 pc (Caselli et al., 2002). As collapse of these
core structures proceeds, the infalling material will thus sample cloud
layers of differing angular momentum orientation. As the layers fall
inward and join the growing star/disk system, the angular momentum
vector of the system must vary in direction (as well as magnitude).
On a related note, these cores are observed to be turbulent, especially
in the outer layers of low-mass cores (Myers and Fuller, 1992) and in
more massive cores (Jijina, Myers, and Adams, 1999). The collapse
of a turbulent region also produces varying directions for the angular
momentum vectors of the forming star/disk systems as the collapse
proceeds. Numerical simulations of this process (Bate, Lodato, and
Pringle, 2010; Fielding et al., 2015) show that the angular momentum
vectors of the disks change as different cloud layers fall inward.

Assuming the star to be decoupled from the disk, star-disk misalign-
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time. Gravitational and accretional torques act between the star and disk, with
bipolar outflows originating from the stellar spin axis.

ment is indeed an expected result of disk-tilting. However, young
stars rotate rapidly, becoming oblate. This oblateness leads to a
gravitationally-forced precession of the stellar spin axis with respect to
the disk (Batygin andAdams 2013) and provides a physicalmechanism
by which the star’s spin axis may trail the disk as it tilts. Additional
potential sources of stellar spin-axis evolution include accretion, stel-
lar winds, and magnetic fields. As we are considering the Class 0
phase, accretion is likely to dominate over other effects, as discussed
below.

3.2 Model Description
We begin by describing the basic model, illustrated in Figure 3.1,
whereby a molecular cloud core collapses to form a star and circum-
stellar disk. As noted in the Introduction, sequential radii within the
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core differ in mean angular momentum direction. Owing to the large
angular momentum reservoir of the collapsing material, the disk will
in turn adopt a time-varying orientation as the core collapses onto it.
Within the physical framework considered here, there exist three rel-
evant timescales. Specifically, these are the shell-shell de-correlation
time (τdc), the characteristic star-disk realignment time (τr) and the
nodal regression period of the stellar spin-axis (T ). Let us evaluate
these quantities sequentially.

Turbulent Core Collapse
Although the detailed structure of the core is complicated, we assume
that the density distribution has the form

ρ(r) =
A c 2

s
2 πG r2 , (3.1)

where cs is the isothermal sound speed and A > 1 is an overdensity
factor (Fatuzzo, Adams, andMyers, 2004) that accommodates the fact
that cores are not in exact hydrostatic equilibrium (Lee, Myers, and
Tafalla, 1999). With the density distribution (3.1), the enclosed mass
has the form

M(r) =
2 A c 2

s r
G

. (3.2)

Motivated by both observations of emissionmaps (Caselli et al., 2002)
and numerical simulations of collapsing turbulent cores (Bate, Lodato,
and Pringle, 2010; Fielding et al., 2015), we assume that different
(spherical) shells have different directions for their angular velocity.
To be consistent with observed maps and numerical expectations,
the shell thickness should be comparable to, but smaller than, the
coherence length λ. For the sake of definiteness, we take the shell
thickness ` = λ/2 = 0.005 pc. With this choice, the formation of a
solar type star will involve the collapse of N = 5 − 10 shells. The
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mass of each shell is given by

∆m =
2 A c 2

s
G

` ≈ 0.10 M�
( cs
0.2 km/s

)2
(

`

0.005 pc

)
. (3.3)

Each of these shells is then assumed to have an angular velocity vector
with direction chosen randomly within a range 0 – 30 degrees. In this
scenario, the mass infall rate is nearly constant with ÛM = m0 c3

s /G,
where m0 is a dimensionless constant of order unity (Shu, 1977).
The shell-shell decorrelation time is equal to the corresponding time
interval required for a shell to fall inward, given by

τdc =
2A
m0

`

cs
≈ 25, 000 yr . (3.4)

In order to model angular velocity variation, we define scaled Poincaré
action-angle coordinates in terms of inclination angle β and longitude
of ascending node Ω:

Z = 1 − cos(β) z = −Ω. (3.5)

We randomly choose the third Poincaré momentum of shell i from
a Gaussian distribution having mean µ = Zi−1 and standard devi-
ation σ = Z30◦ where Z30◦ = 1 − cos(30◦) is the value of Zdisk

corresponding to a 30 degree inclination. Specifically,

Zi+1 = Ran

[
exp

(
−
(Z −Zi)

2

2Z2
30◦

)]
, (3.6)

where Ran[] symbolises extracting a random number from the distri-
bution within parentheses. Likewise, the canonical angle z of shell i

relative to shell i − 1 is drawn randomly, but from a uniform distri-
bution of 0 ≤ −z ≤ 2π. Additional, small-scale turbulence-mediated
stochasticity is introduced by way of 100 N smaller shells, each vary-
ing in a Gaussian form by a value of 1 degree. Once all shells have
been prescribed a value ofZ and z, we smooth the 100 N inclinations
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into a continuous function of time by considering the entire star for-
mation process to proceed over a time τform = 2 × 105 years and thus,
for each of the 100 N inclinations to occur within a time interval of
∆t = τform/100 N . Using a 3rd order cubic spline interpolation, we
generate a pseudo-random function of time, {Z(t), z(t)}, denoting the
time-varying angular momentum vector of the collapsing material.
Assuming the disk to obtain its angular momentum directly from the
envelope, the disk angular momentum vector instantaneously follows
that of the collapsing shells.

Realignment Time
The angular momentum of a rotating star is given by the well-known
expression

L? = I M? R2
?ω, (3.7)

where I is the dimensionless moment of inertia and ω is the stellar
spin. For the purposes of this letter, we shall adopt stellar structure
parameters corresponding to n = 3/2 polytrope, which corresponds
to a fully convective object.

At the earliest stages of stellar evolution, accretion rates of disk ma-
terial onto the protostellar core can be ubiquitously high with charac-
teristic values of order ÛM ∼ 10−5 M�/yr (for a M ∼ 1 M� object; see
Ward-Thompson 2002). Accordingly, the accretionary ram pressure
may in fact be sufficient to overwhelm the magnetic pressure of the
protostellar magnetosphere, connecting the disk’s inner edge to the
stellar surface (Ghosh and Lamb 1978). The critical magnetic field
strength, Bcrit, below which this happens can be estimated by setting
the magnetospheric disk truncation radius to that of the star (Shu,
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Najita, et al. 1994):

Bcrit =

(
G M?

ÛM2 ξ7

R5
?

)1/4
, (3.8)

where ξ is a dimensionless constant of order unity (Mohanty and
Shu 2008). Given nominal parameters, the critical field evaluates to
Bcrit ∼ 2 kG, which is above the oft-cited B? ∼ 1 kG fields inherent to
young stellar objects (Gregory, Donati, et al. 2012).

In a regime where the inner edge of the disk is physically connected
to the stellar surface, the accretionary flow will facilitate a direct
and efficient transfer of angular momentum between the disk and the
host star (Ghosh and Lamb 1979). While the details of the disk-
star coupling in a shearing boundary layer can be complex (Belyaev,
Rafikov, and Stone 2013), to leading order the rate of stellar angular
momentum accumulation can be written as follows (Armitage and
Clarke 1996):

dL?
dt
' ÛM

√
G M? R?. (3.9)

With the above equations at hand, we may now define a characteristic
timescale for accretion-forced realignment of the stellar spin-axis.
Specifically, we have:

τr ≡
L?

dL?/dt
∼

I M? R2
?ω

ÛM
√
G M? R?

∼ 104 years, (3.10)

where as an estimate of the stellar spin rate we adopt the break-up
rotational velocity ω =

√
GM?/R3

?, leading to τr = I (M?/ ÛM), which
is independent of stellar radius, R?. Note the similarity between τr
and the shell infall timescale (equation 3.4)

Additional effects can change the alignment. Perhaps most notably,
modulation of the stellar spin-axis may arise from magnetic disk-star
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coupling (Lai, Foucart, and Lin 2011; Spalding and Batygin 2014).
While we have neglected this effect here, the fact that the accretionary
flow at early stages of stellar evolution is intense enough to penetrate
the stellar magnetosphere suggests that, indeed, the dominant mode
of realignment will be facilitated by accretion and not magnetohydro-
dynamic effects.

Precession
As mentioned above, during the Class 0 epoch of stellar formation,
young stellar objects may spin at near-breakup velocities. This natu-
rally leads to significant rotational deformation. The spin-axis dynam-
ics of an oblate spheroid can be modeled using standard techniques of
celestial mechanics by replacing the rotational bulge of the star with
an inertially equivalent orbiting ring of semi-major axis

χ =

(
16ω2 k2

2 R6
?

9 I2 GM?

)3

= R?

(
4 k2

3 I

)2/3
, (3.11)

where k2 = 0.14 is the Love number1 (twice the apsidal motion
constant). The second equality follows from assuming that the star
spins at breakup frequency. In principle, the aforementioned ring has a
well-specified mass, however, its value only controls the back-reaction
of the stellar quadrupole moment on the disk, which is unimportant.

To complete the specification of the problem, we must characterize
the properties of the disk. We take the disk to be axisymmetric, and
its surface density to vary inversely with semi-major axis (Andrews,
Wilner, Hughes, et al. 2009):

Σ = Σ0

(
a
a0

)−1
, (3.12)

1This value corresponds to a polytropic body of index n = 3/2



56

where Σ0 is the surface density at a = a0. Additionally, we take the
disk aspect ratio to be ζ ≡ h/a = 0.05, though its actual value likely
varies with disk radius up to ∼ 0.1 (Armitage 2011). We note that
under this prescription,

Mdisk =

∫ 2π

0

∫ aout

R?

Σ a da dφ ' 2 πΣ0 a0 aout, (3.13)

where aout = 30 − 50 AU is the physical size of the disk (Kretke et al.
2012; Anderson, Adams, and Calvet 2013).

To compute the dynamical evolution, we make use of classical pertur-
bation theory (Morbidelli 2002). Accordingly, we must first choose
the appropriate expansion of the disturbing Hamiltonian. Given that
χ ≈ R? and the inner boundary of the disk is linked to the stellar sur-
face, an expansion in the semi-major axis ratio (Kaula 1962; Spalding
and Batygin 2014) is bound to be slowly-convergent. Therefore, in this
work we shall opt for an alternative description that assumes mutual
disk-star inclination as a small parameter and places no restrictions
on the semi-major axis ratio (Le Verrier 1856, Murray and Dermott
1999).

As a starting step, consider the mutual interaction of a massive hoop
representing the stellar rotational bulge and a disk annulus of radial
thickness da. It is a well-known result of secular perturbation theory
that upon averaging over the orbital phase, the semi-major axes of
both rings are rendered constants of motion. Thus, the Keplerian
contributions to the Hamiltonian become trivial and can be omitted.

To leading order in mutual inclination, the Lagrange-Laplace disturb-
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ing Hamiltonian reads (Batygin and Adams 2013):

dH =
b̃(1)3/2

4

√
G M?

a3
dm
M?

√
χ

a

[
Zstar

− 2
√
ZstarZdisk cos(zstar − zdisk)

]
,

(3.14)

where dm = 2π Σ0 a0 da is the mass of the perturbing annulus, b̃(1)3/2 is
a softened Laplace coefficient (see below for an explicit expression).

To obtain the Hamiltonian governing the interactions between the star
and the full disk, we integrate with respect to the semi-major axis ratio
α = χ/a:

H =
1

4π

√
GM?

χ3
Mdisk

M?

χ

aout

×

(∫ χ/R?

0

∫ 2π

0

cos(ψ)
(1 − 2α cos(ψ) + α2 + ζ2)3/2

dψ dα
)

×

[
Zstar − 2

√
ZstarZdisk cos(zstar − zdisk)

]
.

(3.15)

Note that in this formulation of the problem, we are not explicitly solv-
ing for the dynamical evolution of the disk using the above Hamil-
tonian. Instead, the time-varying variables (Zdisk, zdisk) constitute
prescribed functions of time, as described above. Suitably, the only
equations of motion we derive from equation (3.15) are those corre-
sponding to the (Zstar, zstar) degree of freedom.

Although the inclination, i, and the longitude of ascending node, Ω,
are measured in an inertial reference frame, the inherent assumption
of the Lagrange-Laplace secular theory is that the mutual disk-star
inclination remains small (Morbidelli, Tsiganis, et al. 2012). Thus,
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it is important to understand that any solution obtained within the
framework of this description is only trustworthy if it dictates a low
disk-star inclination for the entirety of the time-span of interest. Con-
versely, if mutual disk-star inclination is to increase to an appreciable
value, one must default to the much more computationally expensive,
but ultimately precise Gaussian averaging method (Touma, Tremaine,
and Kazandjian 2009).

To obtain the precession rate of the stellar spin axis in the frame of the
disk, we may envision that the disk remains stationary at β = 0 (this
assumption will be lifted later), meaning that Zdisk = 0. This puts
the amplitude of the harmonic part of the Hamiltonian (3.15) to zero,
such thatH governs pure rotation in zstar. Accordingly, we have:

T = 2 π
(
∂H

∂Zstar

)−1
' 130

(
0.01M�

Mdisk

) (
M?

1M�

)
years. (3.16)

For all reasonable choices of parameters, the precession timescale of
the stellar spin-axis (which acts as the dynamical timescale of the
problem at hand) is substantially shorter than both the accretionary
realignment timescale and the shell-shell decoherence timescale. This
feature is of crucial importance to understanding the results that follow,
as it effectively guarantees that the dynamical evolution occurs within
the adiabatic regime, within which the star trails the disk’s orientation.

3.3 Numerical Simulations
Equations of motion arising from Hamiltonian (3.15), as formulated
in terms of action-angle coordinates (3.5) contain a coordinate singu-
larity atZstar = 0. This complication can be removed with a canonical
change of variables. Specifically, we introduce a complex coordinate

η =
√
Z cos(z) + ı

√
Z sin(z), (3.17)
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where ı =
√
−1. The Hamiltonian now reads:

H = S
(
ηstarη

∗
star + ηstarη

∗
disk + η

∗
starηdisk

)
, (3.18)

where S = 2π/T is the coefficient on the first line of equation (3.18)
and the asterisk denotes a complex conjugate.

In addition to the dynamical evolution governed byH , it is important
to account for the dissipative effects originating from the realigning
influence of accretionary torques, in the equations of motion. For
tractability, it is sensible to parameterize such realignment as an expo-
nential decay of the action2Zstar. Cumulatively, the relevant equation
of motion takes the form:

dηstar
dt
= ı

(
∂H

∂η∗star

)
+

(
dηstar

dt

)
r

= ıS (ηstar + ηdisk) −
ηstar
2τr

,

(3.19)

where (dηstar/dt)r describes the dissipative term, which acts to damp
any misalignment. Without the dissipative term, equation 3.19 de-
scribes conservative, gravitational precession of the stellar spin axis
about a time-varying disk angular momentum vector.

To complete the specification of the problem, we prescribe the time
evolution of a 1M� star as

Mstar(t) = M�
(
ε +

t
τform

)
, (3.20)

where ε = 0.01 represents a small initial ‘seed’ mass onto which shells
collapse. Additionally, the circumstellar disk mass (Mdisk) grows
proportionally to that of the star such that

Mdisk(t) = 0.1 Mstar(t), (3.21)
2Introduction of such terms into the equations of motion tends to transform nearby elliptical

fixed points into attractors (see, e.g., Batygin and Morbidelli 2011).
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with the 0.1 prefactor corresponding approximately to the upper limit
for dynamical stability (Armitage 2011). We consider a constant
stellar radius of R? = 4R� throughout (Stahler, Shu, and Taam 1980).

3.4 Results & Discussion
In Figure 3.2 we present the paths followed by the stellar and disk an-
gular momentum vectors in the purely gravitational regime, i.e., zero
accretion. As is immediately obvious, the two paths are indistinguish-
able, meaning that even in the absence of accretionary realignment, no
significant star-disk misalignment can result from turbulent core col-
lapse. Accretionary torques simply act to reduce the already-miniscule
misalignments (Figure 3.3) and so are dynamically unimportant to the
problem at hand. As such, the first crucial result is that the hypothesis
that turbulent core-collapse leads to primordial spin-orbit misalign-
ments is inconsistent with the framework presented here. Spin-orbit
misalignments must be obtained at a later evolutionary stage, such
as during the main phase of planet formation (Lai, Foucart, and Lin
2011; Batygin 2012; Batygin and Adams 2013; Spalding and Batygin
2014) or after the disk has dispersed (e.g., Wu and Lithwick 2011;
Beaugé and Nesvorný 2012; Albrecht et al. 2012).

Class 0 and Class I protostars possess collimated bipolar jets with
sufficient mechanical luminosity to reverse the infall of core material.
Such jets have been observed to ‘wiggle’ in such a way as to sug-
gest time evolution of the jet direction (Eisloffel et al. 1996; Cesaroni
et al. 2005). Previous pictures considering only disk motion do not
necessarily account for jet wiggles, as the jets are collimated along
the stellar spin axis through the action of magnetic fields (Shu, Najita,
et al. 1994). Thus the jet itself is unlikely to move significantly if the
star itself is not changing orientation. As noted by Shu, Adams, and
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ABSTRACT

Star formation proceeds via the collapse of a molecular cloud core over multiple dynamical
timescales. Turbulence within cores results in a spatially non-uniform angular momentum of the
cloud, causing a stochastic variation in orientation of the disk forming from the collapsing material.
In the absence of star-disk angular momentum coupling, such disk-tilting would provide a natural
mechanism for production of primordial spin-orbit misalignments in the resulting planetary systems.
However, owing to high accretion rates in the embedded phase of star formation, the inner edge of
the circumstellar disk extends down to the stellar surface, resulting in e�cient gravitational and ac-
cretional angular momentum transfer between the star and the disk. Here, we demonstrate that the
resulting gravitational coupling is su�cient to suppress any significant star-disk misalignment, with
accretion playing a secondary role. The joint tilting of the star-disk system leads to a stochastic wan-
dering of star-aligned bipolar outflows. Such wandering widens the e↵ective opening angle of stellar
outflows, allowing for more e�cient clearing of the remainder of the protostar’s gaseous envelope.
Accordingly, the processes described in this work provide an additional mechanism responsible for
sculpting the stellar Initial Mass Function (IMF).

1. INTRODUCTIONp
2Z cos(z)

p
2Z sin(z)

In the simplest picture for star and planet formation,
the angular momentum vectors for stellar rotation, the
circumstellar disk, and the resulting planetary orbits all
coincide. However, recent observations showing that
planetary orbits are often misaligned with stellar rota-
tion axes (Fabrycky & Winn 2009; Winn et al. 2010) have
prompted several authors (e.g. Bate et al. 2010; Baty-
gin 2012) to suggest that disks themselves may become
misaligned with their parent stars. Any such primordial
star-disk misalignment occurring within the embedded
phase (when the mass of the envelope is compa-
rable to that of the star) has consequences both for
future planetary systems and for the impact of proto-
stellar outflows on their surrounding envelopes. In this
Letter, we construct a model for protostar-disk systems
that describes the gravitationally-facilitated precession
of the stellar rotation axis about a tilting disk, including
dissipative torques owing to accretion.

In spite of enormous progress in our understanding of
star formation (from Shu et al. 1987b to McKee & Os-
triker 2007), the final mass of a star still cannot be un-
ambiguously determined from the initial conditions of
the original molecular cloud core. Protostellar outflows
represent one mechanism that can help separate a newly
formed star from its immediate environment (Shu et al.
1987b), and this mechanism may provide an explanation
for the stellar initial mass function (Adams & Fatuzzo
1996). Although outflows have su�cient mechanical lu-

cspaldin@caltech.edu, kbatygin@gps.caltech.edu,
fca@umich.edu

minosity to reverse the infall (Lada 1985), one criticism
of this picture is that the outflows are relatively narrow
in angular extent. However, precessing outflows can pro-
duce outflow cones that are e↵ectively wider than their
intrinsic extent, thereby making it easier for outflows to
limit the mass falling onto the central star/disk system.
Independent of the e�cacy of the outflows in limiting
stellar masses, observations show that protostellar jets
precess (Eislö↵el et al. 1996; Cesaronia et al. 2005) and
that circumstellar disks are not always aligned with the
plane of binary orbits (Stapelfeldt et al. 1998; Koresko
1998).

The angular momentum of a circumstellar disk must
be obtained from the gradual accumulation of material
from a molecular cloud core. Rotation rates of such cores
are estimated through measurements of velocity gradi-
ents of a given molecular line across the map of the core
(e.g., Goodman et al. 1993). The inferred angular veloc-
ity vectors do not point in the same direction over the
entire core; instead they vary in projected direction over
a range of ⇠ 30 degrees within the region encompassing
material that is destined to form a star. Moreover, the
coherence length � for the velocity vectors inferred from
these emission maps is � ⇠ 0.01 pc (Caselli et al. 2002).
As collapse of these core structures proceeds, the infalling
material will thus sample cloud layers of di↵ering angu-
lar momentum orientation. As the layers fall inward and
join the growing star/disk system, the angular momen-
tum vector of the system must vary in direction (as well
as magnitude). On a related note, these cores are ob-
served to be turbulent, especially in the outer layers of
low-mass cores (Myers & Fuller 1992) and in more mas-
sive cores (Jijina et al. 1999). The collapse of a turbulent
region also produces varying directions for the angular
momentum vectors of the forming star/disk systems as
the collapse proceeds. Numerical simulations of this pro-
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Figure 3.2: The paths traced out by the angular momentum vectors of the disk (red)
and star (blue) plotted in canonical Cartesian co-ordinates (see text). Notice that
the red and blue paths almost exactly overlap. The shaded region approximately
inscribes the cone of gas cleared out by stellar spin axis-aligned jets.

Lizano (1987), a star breaks free of its enshrouding molecular enve-
lope once outward pressures owing to stellar winds and jets exceed
the ram pressure of infalling gas. Stellar outflows contribute signifi-
cantly to such outward pressures and thus may in part determine the
final mass of the forming star. Here we find that the stellar outflows
carry out a random walk (Figure 3.2), leading to an effectively wider
opening angle of the outflow. Accordingly, the wandering outflows
may help separate the newly formed star/disk system from its environ-
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ment earlier than would a stationary outflow. Such a physical process
adds an important correction onto previous theories of star formation
(e.g., Adams and Fatuzzo 1996) which propose that the IMF may be
determined in part by outflows.
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Figure 3.3: The misalignment between star and disk angular momenta plotted as a
function of time. Gravitational interactions alone (blue) are sufficient to suppress
significant misalignment. Accretionary torques (red) further reduce the misalign-
ment to near-zero values.

Here, we considered a constant mass infall rate of ÛM ≈ 105 M� year−1

over the entire star formation process. Strictly speaking, this assump-
tion contradicts the non-steady nature of turbulent collapse. In prin-
ciple, sufficiently violent episodic mass infall may lead to more rapid
variations in disk angular momentum than considered here. However,
owing to the vast separation of timescales between shell-shell decor-
relation (τdc ∼ 104 years) and stellar precession (T ∼ 102 years) the
star shall trail the disk under almost any reasonable collapse condi-
tions. Additionally, the mass infall and accretion rates fall by about
an order of magnitude over a longer timescale, between the Class 0
and Class I phases of star formation (Ward-Thompson 2002). Such a
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drop in infall rate is not included in our model but during the Class I
phase, most of the mass is in the star-disk system (by definition) and
so, combined with a drop in infall rate, disk tilting is likely to become
significantly lower in amplitude. Accordingly, the star should remain
even more tightly coupled to the disk, despite reduced accretionary
torques, which we determined to be dynamically unimportant.

This letter presents a simple model for star/disk formation in molec-
ular cloud cores possessing non-uniform angular momentum direc-
tions. We find that outflows change direction substantially, but stars
and disks remain nearly aligned. Future work should develop more
detailed models for all aspects of this problem, including the initial
conditions, disk formation, wandering of outflow directions, and mis-
alignment between star and disk.



64

C h a p t e r 4

MAGNETIC ORIGINS OF THE STELLAR MASS-OBLIQUITY
CORRELATION IN PLANETARY SYSTEMS
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ABSTRACT

Detailed observational characterization of transiting exoplanet sys-
tems has revealed that the spin-axes of massive (M & 1.2M�) stars
often exhibit substantial misalignments with respect to the orbits of
the planets they host. Conversely, lower-mass stars tend to only have
limited obliquities. A similar trend has recently emerged within the
observational dataset of young stars’ magnetic field strengths: mas-
sive T-Tauri stars tend to have dipole fields that are ∼10 times weaker
than their less-massive counterparts. Here we show that the associated
dependence of magnetic star-disk torques upon stellar mass naturally
explains the observed spin-orbit misalignment trend, provided that
misalignments are obtained within the disk-hosting phase. Magnetic
torques act to realign the stellar spin-axes of lower-mass stars with the
disk plane on a timescale significantly shorter than the typical disk life-
time, whereas the same effect operates on a much longer timescale for
massive stars. Cumulatively, our results point to a primordial excita-
tion of extrasolar spin-orbit misalignment, signalling consistency with
disk-driven migration as the dominant transport mechanism for short-
period planets. Furthermore, we predict that spin-orbit misalignments
in systems where close-in planets show signatures of dynamical, post-
nebular emplacement will not follow the observed correlation with
stellar mass.
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4.1 Introduction
Of all ideas in planetary science, few have stood the test of time
better than the “Nebular Hypothesis”, originally proposed in the 18th
century by Kant and Laplace (Kant, 1755; Laplace, 1796). The
impetus for such a model was the near-aligned configuration of the
planetary orbits with each other and with the Sun’s spin axis; the net
angular momentum of the the planets differs in direction from the
Sun’s spin by about 7 deg1 (Beck and Giles, 2005). Centuries of
refinement (with help from astronomical observations) have resulted
in the modern picture whereby a dense molecular cloud core collapses
under its own self gravity (Shu, Adams, and Lizano, 1987; McKee
and Ostriker, 2007) to form a star encircled by a disk of gas and dust.

The earliest descriptions of molecular core collapse were naturally
the most simplistic, supposing that the star and its disk both inherit
similar angular momentum directions. More recent work (Goodman
et al., 1993; Caselli et al., 2002; Bate, Lodato, and Pringle, 2010) has
added a layer of complexity to the story by noting that turbulence in
collapsing cores implies that the last bits of material falling onto the
disk do not necessarily share the same angular momentum direction as
the star. Despite this apparent tendency towards slight misalignment,
the mutual gravitational torque between star and disk is likely strong
enough during the earliest stages to stave off any significant star-disk
misalignment arising from core turbulence (Spalding, Batygin, and
Adams, 2014).

Long before the first exoplanetary detections (Mayor and Queloz,
1995; Marcy and Butler, 1996), the theory behind protoplanetary
disks was already fairly mature (e.g., Goldreich and Tremaine 1979;
Goldreich and Tremaine 1980; Lin and Papaloizou 1986; Ward 1986).

1Of course, 7 deg is very different from zero and so is still in need of an explanation.
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An early prediction from this field was that angular momentum ex-
change between disks and their embedded planets should give rise to
planetary migration towards shorter-period orbits. More recent work
has subjected this idea to extensive numerical (Nelson, Papaloizou,
et al., 2000; Rice, Armitage, and Hogg, 2008) and analytic (Tanaka,
Takeuchi, and Ward, 2002) analyses, with the general picture of mi-
gration holding up as an expected outcome (for a recent review, see
Kley and Nelson 2012). Sure enough, the earliest days of exoplanet-
hunting revealed a considerable population of hot Jupiters, planets
with about the mass of Jupiter but with orbital periods of a few days.
Conventional planet formation theory (Pollack et al., 1996) suggests
that these planets must form at several AU, beyond the snow line, and
must have migrated towards their present-day orbits. Accordingly,
disk-driven migration seemed an attractive mechanism by which giant
planets may be delivered to close-in orbits.

Until recently, it was impossible to tell whether these systems, sup-
posed to migrate through a planar disk, were aligned or misaligned
with their stars. This property, referred to variably as obliquity or
spin-orbit misalignment, has now fallen within the observational capa-
bilities of exoplanetary astronomy by way of the Rossiter-McLaughin
effect (Rossiter, 1924; McLaughlin, 1924; Winn, Noyes, et al., 2005).
Currently, measurements of misalignments are most common for the
orbits of hot Jupiters, wherein the findings have revealed that a sub-
stantial fraction of such planets follow orbits with significant obliq-
uities (Winn, Fabrycky, et al., 2010; Albrecht et al., 2012). Indeed,
misalignments range all the way from prograde aligned to retrograde
anti-aligned. However, the degree of misalignment exhibits a clear de-
pendence on stellar mass, with the most extreme, retrograde (circular)
orbits only appearing around stars with mass greater than M & 1.2M�
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(Figure 4.1).
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ABSTRACT

Detailed observational characterisation of transiting exoplanetary systems has revealed that
the spin-axes of massive (M & 1.2M�) stars often exhibit substantial misalignments with
respect to the orbits of the planets they host (Winn et al. (2010); Albrecht et al. (2012)).
Conversely, lower-mass stars tend to only have limited obliquities. A similar trend has recently
emerged within the observational dataset of young stars’ magnetic field strengths: massive
T-Tauri stars tend to have dipole fields that are ⇠10 times weaker than their less-massive
counterparts (Gregory et al. (2012)). Here we show that the associated mass-dependence,
inherent to magnetic disk-star coupling, naturally explains the observed spin-orbit misalignment
trend, provided that misalignments are excited early in the system’s lifetime (Batygin (2012);
Batygin & Adams (2013); Spalding & Batygin (2014)). While for lower-mass stars, magnetic
torques can act to realign the stellar spin-axis with the disk plane on a timescale significantly
shorter than the typical disk lifetime, the same e↵ect operates on a much longer timescale for
massive stars. Cumulatively, our results point to a primordial excitation of extrasolar spin-orbit
misalignment, and signal consistency with the disk-torquing mechanism as well as disk-driven
migration as a dominant mode of planetary transport. Accordingly, our results predict that
spin-orbit misalignments in systems where close-in planets show signatures of late emplacement
(Fabrycky & Tremaine (2007); Naoz et al. (2011); Beaugé & Nesvorný (2012); Petrovich &
Tremaine (2014)), will not follow the observed correlation with stellar mass.

M & 1.2 M�

M . 1.2 M�
A recent(Winn et al. (2010); Albrecht et al.

(2012)) shift in our perception of exoplanetary
systems is that, unlike the Solar System, a sub-
stantial fraction of planetary orbits are grossly
misaligned with respect to the spin axes of their
host stars. Furthermore, the obliquities display a
clear dependence on the mass of the planet-hosting
star (Figure 1). More massive (M & 1.2M�)
stars possess misalignments ranging continuously
from prograde aligned, all the way to retrograde
anti-aligned. On the other hand, the lower mass
stars display much smaller misalignments, with a
conspicuous absence of retrograde circular plan-
ets around such stars. These misalignments, and

their peculiar dependence on stellar mass, demand
an extension to the simple picture whereby planets
form out of a coplanar star-disk system.

Within the existing dataset, observations of
misalignments are most common in systems that
contain “hot Jupiters”, a class of exoplanets com-
prised of Jupiter-mass or higher bodies that oc-
cupy tight orbits with periods as low as a few
days (CITE). These planets pose a problem for
conventional planet formation theory (Pollack et
al. (1996)) which dictates that such planets must
have formed at far greater (& 1� 3 AU) distances
from their parent star within a natal disk. Thus,
a transport mechanism must be invoked to ex-
plain their short-period orbits. Despite nearly
two decades having passed since the first detec-
tion of a hot Jupiter(Mayor & Queloz (1995)), the

1

Stellar Mass (       )

Figure 4.1: The observed projected angle between the stellar spin axis and orbital
plane of circular planetary orbits (e ≤ 0.1; red, solid points) and eccentric orbits
(e > 0.1; black, faint points) for stars of given masses. There exists a clear
distinction between low-mass stars (M . 1.2 M�), which display moderate-to small
misalignments (especially among circular systems), and the more massive stars
(M & 1.2 M�), which exhibit misalignments ranging all the way from retrograde-
aligned to prograde-aligned. Measurements of magnetic field strengths (Gregory,
Donati, et al., 2012) have revealed that, among T-Tauri stars, lower-mass stars
(similarly, corresponding to M . 1.2 − 1.4 M�) possess a much stronger surface
dipole field than do their higher-mass counterparts. Specifically, low-mass stars
possess fields of ∼1 kGauss in contrast to more modest ∼0.1 kGauss for higher-mass
T-Tauri stars. The misalignments data were obtained from exoplanets.org and
follow the discussion of Albrecht et al. (2012).

In light of the existence of significant obliquities, many authors (e.g.,
Albrecht et al. 2012; Lai 2012; Dawson, Murray-Clay, and Johnson
2014; Storch, Anderson, and Lai 2014; Petrovich 2015a) have sought
alternatives to disk-driven migration as a production mechanism for
inclined hot Jupiters. Specifically, in contrast to the ‘smooth’ picture
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of disk-driven migration, there exists a separate class of migration
mechanisms which occur after the dissipation of the protoplanetary
disk. Post-disk migrationmust invoke dynamical interactions to excite
near-unity eccentricities, bringing the periastron close enough to the
central star such that tidal forcesmay take over and circularize the orbit
(Ford and Rasio, 2006). The necessary perturbations are hypothesized
to arise from processes such as planet-planet scattering (Ford and
Rasio, 2008; Nagasawa, Ida, andBessho, 2008; Beaugé andNesvorný,
2012), Kozai resonancewith a perturbing companion (WuandMurray,
2003; Fabrycky and Tremaine, 2007; Naoz, Farr, Lithwick, et al.,
2011) or secular chaotic excursions (Lithwick and Wu, 2012).

Despite the natural tendency of dynamical interactions to excite incli-
nations, their occurrence rate appears to be insufficient to explain the
current data (Dawson, Murray-Clay, and Johnson, 2014). Conversely,
disk-driven migration is expected to be almost ubiquitous but has long
been assumed to give rise to low-obliquity systems because of the
tendency for an isolated collapsing core to form an aligned star-disk
system. However, stars do not form in isolation. On the contrary, bi-
nary fraction probably lies somewhere between half and unity during
the early, disk-hosting stage of stellar evolution (Ghez, Neugebauer,
and Matthews, 1993; Kraus et al., 2011; Marks and Kroupa, 2012;
Duchêne and Kraus, 2013). The potential for neighbouring stars to
influence disk orientation has actually been recognized for some time
(e.g., Larwood et al. 1996), but it was first suggested as an explanation
for spin-orbit misalignments by Batygin (2012). In this scenario, the
gravitational torque exerted by a distant companion star causes the disk
to precess about the plane of the binary system. Observations suggest
that binary planes do not correlate with disk orientation (Stapelfeldt
et al., 1998; Koresko, 1998; Jensen and Akeson, 2014) and so the
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disk-precession tends to torque the star and disk out of alignment.

We recently advanced the so-called “disk-torquing” framework by
taking into account the gravitational torques communicated between
the star and its disk (Spalding andBatygin, 2014). Specifically, the star
tends to precess about the disk’s plane at a rate that decreases with time
owing both to stellar contraction and disk mass-loss. In the earliest
stages, the star is well enough coupled to the disk to adiabatically trail
the disk as it precesses. However, once the precession rate of the star
about the disk is roughly commensurate with that of the disk about the
binary plane, a secular resonance is encountered which is capable of
exciting star-disk misalignments occupying the entire observed range.
Such a picture has been independently corroborated in other work and
appears to be a robust result across various levels of approximation
(Batygin and Adams, 2013; Lai, 2014; Xiang-Gruess and Papaloizou,
2014).

From the above discussion, it appears that spin-orbit misalignments
may arise naturally out of either class of proposed migrationary sce-
nario. What is less obvious is how to reconcile the migration pathway
with the mass-dependence of the obliquity distribution (Figure 4.1).
Previous attempts to explain the trend (Winn, Fabrycky, et al., 2010;
Lai, 2012) have largely focused on the violent migration pathway.
Specifically, it has been proposed that dynamical encounters misalign
orbits, after which, strong tidal coupling between low-mass stars and
their planets (owing to an extended convective region) re-aligns the
orbits. These hypotheses rest upon a number of assumptions, one of
which being that the tidal damping rate of obliquity greatly exceeds
that of orbital semi-major axis (Lai, 2012). Additionally, the presence
of misaligned multi-transiting systems (Huber et al., 2013) has yet to
be given a viable explanation within the violent framework.
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The disk-torquing mechanism is expected to misalign all planets in
the system by a similar amount, at least in the inner disk. However,
to date, the mass-misalignment trend has not been given an adequate
explanation. Here, we provide such an explanation by utilizing an ad-
ditional piece of evidence in the form of the magnetic field strengths
of young, disk-hosting stars. Specifically, recent observations (Gre-
gory, Donati, et al., 2012) have revealed that low-mass T-Tauri stars
possess dipole field strengths of order ∼ 1 kG, an order of magnitude
greater than their higher-mass counterparts (∼ 0.1 kG). This trend
appears to continue into the more massive Herbig AeBe class of star-
disk systems (M ∼ 1.5 − 8M�) (Alecian et al., 2012), suggesting the
dipole strength to be a robust mass-dependent feature, intrinsically
connected to PMS evolution. Crucially, the transition from weaker
to stronger fields occurs at a similar mass to that defining the mass-
misalignment trend (∼ 1.2M�). In this work, we suggest that the two
trends are causally linked: stronger magnetic fields of low-mass stars
erase primordial misalignments that their higher-mass, weaker-field
counterparts retain.

In order to test this idea, we must first quantify the torques communi-
cated between a tilted dipole and a disk. We are not the first to suggest
that magnetic torques might influence misalignments (Lai, Foucart,
and Lin, 2011) but our goal is to couple the star-disk magnetic torques
to the full disk-torquing picture, i.e., a freely precessing star-disk
system. Consequently, we develop a more complete picture of the
various torques involved using semi-analytic methods, whilst taking
advantage of the conclusions of various numerical studies (mostly on
aligned disks, e.g., Ghosh and Lamb 1978; Armitage and Clarke 1996;
Uzdensky, Königl, and Litwin 2002). Highly sophisticated numerical
models exist for the study of star-disk interactions (e.g., Romanova
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et al. 2012), however, detailed simulations must be integrated in full
throughout each stellar rotation period. Even at the current state-of-
the-art, full 3D calculations can only be carried out within a reasonable
length of computer time for∼ 1000 orbital timescales (depending upon
the precision). In contrast, we seek to model the global evolution of
the star-disk system, including time-dependent disk mass and stellar
contraction, over multi-Myr timescales. Considering also that current
observations only constrain the topologies of T-Tauri field strengths to
within an order of magnitude or so, we shall construct our model such
that the level of detail is commensurate with that of the observations.

In this paper, we begin with a description for the time evolution
of the star and disk. Next we provide a re-hashing of the purely
gravitational torques as derived in Spalding andBatygin (2014), derive
the various magnetic torques communicated between the disk and
star, and subsequently present the results obtained through numerical
integration of the star-disk system, complete with gravitational and
magnetic torques. We conclude by discussing the implications of
the result for the acquisition of spin-orbit misalignments within the
disk-torquing framework.

4.2 Model
Our goal is to describe the spin-axis dynamics of a star, possessing a
dipolar field that is encircled by a protoplanetary disk. We suppose the
star-disk system to be orbited by a companion star. In what follows,
we derive the analytical forms of the various torques inherent to the
system. Throughout the entire calculation, we assume a hierarchical
configuration. Specifically, we assume that the central star and binary
companion do not influence each other directly. Rather, the companion
torques the disk (gravitationally), which in turn interacts with the
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central star (gravitationally and magnetically). In order to improve
clarity, we adopt the following convention for variables with identical
symbols: quantities referring to the disk are primed, those referring
to the central star are marked with a tilde, and those referring to the
companion star are given an over-bar (e.g., semi-major axes will be
defined as a′, ã, and ā, respectively).

The binary companion is prescribed a mass M̄ and an orbit with
semi-major axis ā which is much greater than the outer disk edge
a′out ≈ 30AU. The resulting gravitational torques acting upon the
disk cause it to precess at a frequency that depends upon the mass of
the companion, its semi-major axis and its inclination relative to the
disk-plane (Spalding and Batygin, 2014). In the absence of star-disk
interactions, the precession of the disk would simply cause it to tilt out
of alignment with its host star. However, the central star can interact
with its disk by way of several physical processes. Specifically, young
stars rotate rapidly enough to possess a considerable centrifugal bulge
at their equators. This bulge allows for gravitational coupling between
the disk and star, the dynamics of which having been derived in detail
elsewhere (Batygin and Adams, 2013; Spalding and Batygin, 2014).
In addition, observations of young stars have revealed the presence
of significant magnetic fields (Johns-Krull, 2007; Gregory, Donati,
et al., 2012) which facilitate angular momentum transfer between star
and disk in addition to the gravitational influences.

Our ultimate goal is to develop a theoretical framework by which
we may test the hypothesis that differences in stellar magnetic field
between high and low-mass stars is the dominant driver of the observed
mass-misalignment trend in the current Rossiter-McLaughlin dataset
(Winn, Fabrycky, et al., 2010; Albrecht et al., 2012). We follow
a semi-analytic, parameterized framework in deriving the relevant
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equations.

As the system ages, the star contracts and the disk loses mass. Accord-
ingly, before calculating the star-disk torques, we must first provide
formulations of the physical evolution of the disk and the central
star. Within such a framework we then describe our calculations of
magnetically-facilitated tilting of the stellar-spin axis and star-disk
gravitational coupling. Torques arising from accretion are neglected
in this work because their influence within a similar physical frame-
work has been examined elsewhere (Batygin and Adams, 2013) and
found to be insignificant.

Physical Evolution of the Protoplanetary Disk and the Stellar In-
terior
Typically quoted lifetimes of protoplanetary disks fall in the range
∼ 1 − 10Myr, with some recent evidence in support of longer-lived
systems (Haisch Jr, Lada, and Lada, 2001; Williams and Cieza, 2011;
Bell et al., 2013). We parameterize disk mass evolution as (Laughlin,
Bodenheimer, and Adams, 2004):

Mdisk =
M0

disk
1 + t/τdisk

. (4.1)

The time derivative of Mdisk approximately represents the accretionary
flow. Following Spalding and Batygin (2014), we note that ob-
servations (Hartmann, 2008; Herczeg and Hillenbrand, 2008; Hil-
lenbrand, 2008) are best matched by adopting an initial disk mass,
M0

disk = 5 × 10−2 M� and dissipation timescale τdisk = 5 × 10−1 Myr.

For simplicity, we approximate the central star with a polytrope of in-
dex ξ = 3/2 (appropriate for a fully convective object; Chandrasekhar
1939). A polytropic body of this index possesses a specific moment
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of inertia I = 0.21 and a Love number (twice the apsidal motion
constant) of k2 = 0.14. In contracting along their respective Hyashi
Tracks, T-Tauri stars derive most of their luminosity from the release
of gravitational potential energy. We describe the radiative loss of
such binding energy as (Hansen, Kawaler, and Trimble, 2012):

−4πR2
?σT4

eff =

(
3

5 − ξ

)
GM2

?

2R2
?

dR?
dt

, (4.2)

with a solution,

R? = (R0
?)

[
1 +

(
5 − ξ

3

) 24πσT4
eff

GM?(R0
?)

3
t

]−1/3

. (4.3)

For definiteness, we match the numerical evolutionary track of an
M? = 1M� star (Siess, Dufour, and Forestini, 2000) by assuming
an initial radius of R0

? ' 4R� and an effective temperature of Teff =

4100K.

Disk-Binary Gravitational Interactions
The binary companion interacts with the disk through gravitational
torques alone. To capture the long-term behaviour of the angular
momentum exchange, we utilize the secular approximation (Murray
and Dermott, 1999; Morbidelli, 2002) whereby the torques exerted
by the companion on the disk are equivalent to those communicated
by a massive wire sharing the companion’s orbital elements. As a
consequence of self-gravity and hydrodynamic pressure forces, the
disk retains coherence under the influence of such torques, acting as a
rigid body (Larwood et al., 1996; Batygin, Morbidelli, and Tsiganis,
2011; Xiang-Gruess and Papaloizou, 2014). Additionally, we neglect
any dynamical influence of disk-warping.
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We adopt a Hamiltonian framework in describing the dynamics. The
gravitational torques acting between a star, disk, and companion
have already been comprehensively derived and discussed elsewhere
(Spalding and Batygin, 2014). Accordingly, here we provide only a
brief outline of the corresponding computation.

To begin, we introduce the scaled Poincaré action-angle coordinates,
defined in terms of the disk-star mutual inclination β′ and the disk’s
argument of ascending node Ω′,

Z′ = 1 − cos(β′) z′ = −Ω′. (4.4)

The appropriate Hamiltonian describing the companion’s influence
upon the disk is then

U =
3n′out

8
M̄
M?

(
a′out
ā

)3 [
Z′ −

Z′2

2

]
, (4.5)

where nout is the mean motion of the gas at the outer edge of the
disk. Crucially, U contains no explicit dependence on z′. Therefore,
the disk-binary inclination is a constant of motion. Appropriately, in
our analysis, we carry out our simulations within a reference frame
co-precessing with the disk, at a rate ν = dz′/dt, given by

ν =
∂U

∂Z′
=

3n′out
8

M̄
M?

(
a′out
ā

)3 [
1 − Z′

]
. (4.6)

Boosting into such a frame is equivalent to subtracting νt from the
argument of ascending node of the disk.

Owing to the arbitrary nature of choosing the companion’s orbital
parameters, we prescribe ν and Z′ in our problem independently. It is
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worth noting that the picture whereby a single companion remains on a
circular orbit throughout the entire disk lifetime is highly idealized. In
reality there may exist multiple companions and/or companions might
be gained and lost throughout the pre-main sequence. Of course, these
complications will lead not only to a time-dependent ν, but also to
secular variations in Z′. This point is not crucial to the problem at
hand, so we leave analysis of such dynamic processes to future work
and maintain a constant ν and Z′ throughout.

Disk-Star Interactions: Gravity
Having prescribed the secular evolution of the disk owing to the com-
panion (constant, rigid-body precession), we now describe the pro-
cesses by which torques are communicated between the star and the
disk. Observations of T-Tauri stars have revealed that they spin with
periods ranging between ∼ 3 − 10 days (Herbst, n.d.; Littlefair et al.,
2010; Bouvier, 2013). Such high spin rates (∼within a factor of ten of
break-up rotation) lead to the development of a significant centrifugal
bulge on the stellar equator. When the star and disk are misaligned,
this bulge results in gravitational torques that force a precession of the
stellar spin pole about the disk plane (analogous to a top spinning on
a planar table).

The dynamics of a spheroidal star and the gravitational influence aris-
ing from its rotationally-derived equatorial bulgemay be approximated
to high precision by considering the inertially-equivalent picture of a
wire with mass m̃ in circular orbit with semi-major axis ã around a
point mass. Respectively, the appropriate mass and semi-major axis
are given by (Batygin and Adams, 2013)
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m̃ =
[
3M2

?ω
2R3

?I4

4Gk2

]1/3

,

ã =

[
16ω2k2

2 R6
?

9I2GM?

]1/3

. (4.7)

With this prescription, the standard perturbation techniques of celestial
mechanics can be applied to the spheroidal star (Murray and Dermott,
1999; Morbidelli, 2002).

By working in a frame co-precessing with the disk, we introduce a
time-dependence to the Hamiltonian resulting in an apparent linear
increase in the disk’s argument of ascending node of ν t. The Hamil-
tonian can be made autonomous by employing a canonical transfor-
mation arising from the following generating function of the second
kind (Goldstein, 1950):

G2 = (z̃ − νt)Φ, (4.8)

where φ = (z̃ − νt) is the new angle and the new momentum is related
to the old one through:

Z̃ =
∂G2

∂ z̃
= Φ. (4.9)

In addition to removing explicit time dependence, we scale the Hamil-
tonian by ν. Following the transformations described above, the
Hamiltonian takes on the following form:
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H = −Φ +
δ̃

12

[
3
(
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)
Φ

− 3
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2 + 3(Φ − 2)

)
Φ cos2(β′)

+ 6 sin(2β′)
(
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)√
(2 − Φ)Φ cos(φ)

+ 3 sin2(β′)
(
Φ − 2

)
Φ cos(2φ)

]
, (4.10)

where

δ̃ ≡
3
8

(
n′2in
ων

Mdisk

M?

a′in
a′out

)
, (4.11)

and n′in is the mean motion at the disk’s inner edge.

The purely gravitational dynamics described by the aboveHamiltonian
(4.10), together with the physical evolution of the star and disk, give
rise to the excitement ofmutual inclination between the central star and
its disk (Spalding and Batygin, 2014). However, additional physical
mechanisms must exist in order to explain the mass-misalignment
trend. The main hypothesis of our paper is that the dominant driver of
such a trend is the mass-dependence of T-Tauri dipole field strengths.
Accordingly, next we present our derivations of the magnetic torques
and the differential equations used in determining their influence on
stellar spin dynamics.

Magnetic Torques
In order to prescribe the magnetic disk-star interactions, we consider
a T-Tauri star possessing a purely dipole magnetic field, whose north
pole is aligned with the stellar spin axis. A pure dipole is modeled
because the octupole component in real systems falls off much faster
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with distance (∝ 1/r5) than the dipole (∝ 1/r3). Accordingly, at
the position of the inner edge of the disk (∼ 10 R?), the octupole
components have been attenuated to a factor of ∼ 10−5 relative to the
stellar surface field (r = R?) as opposed to the ∼ 10−3 attenuation
suffered by the dipole component. Observations constrain the surface
octupole field to differ from the dipole field by little more than a factor
of 10 (higher or lower) and so the octupole component is almost always
negligible when considering disk-star torques. The stronger dipoles
of low-mass stars directly lead to a greater magnetic interaction with
their disks than for high-mass stars.

In the region of interest (i.e., in the domain of the disk), the stellar
field is current-free and can be expressed as the gradient of a scalar
potential:

Bdip = −∇V . (4.12)

To retain generality, we take the field to be tilted at an angle β′ with
respect to a spherical coordinate system (r , θ , φ) into a direction
specified by an azimuthal angle ψ:

V = B?R?

(
R?
r

)2 [
P1

0(cos(θ)) cos(β′)

− sin(β′)
(

sin(ψ) sin(φ)

+ cos(ψ)cos(φ)
)
P1

1(cos(θ))
]
, (4.13)

where B? is the equatorial stellar surface field and Pm
l are associated

Legendre polynomials. Within such a framework, the tilted dipole
components are as follows:
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Br = 2 B?

(
R?
r

)3 (
cos β′ cos(θ)

+ cos(φ − ψ) sin(β′) sin(θ)
)

Bθ = B?

(
R?
r

)3 (
cos β′ sin(θ)

− cos(φ − ψ) sin(β′) cos(θ)
)

Bφ = B?

(
R?
r

)3 (
sin(β′) sin(φ − ψ)

)
, (4.14)

which describe the vector field

Bdip = Br êr + Bθ êθ + Bφêφ. (4.15)

If we assume that the disk material is in Keplerian orbit about the star
and for now suppose the star and disk are aligned, there exists a well-
known expression for the corotation radius a′co |β′=0 = (G M?/ω

2
?)

1
3 ,

the radius at which relative angular velocity between the stellar mag-
netosphere (ω?) and the disk material is zero. Now consider tilting
the star with respect to the disk. The azimuthal motion of the stellar
magnetosphere at the disk plane becomes reduced in such a way that
the corotation radius is modulated as follows:

a′co =
(

G M?

ω2
? cos2(β′)

) 1
3

. (4.16)

In other words, as the star tilts, the proportion of the disk which is
effectively super-rotating relative to stellar rotation increases. At radii
greater or smaller than the corotation radius, Keplerian shear results
in relative motion between the stellar magnetosphere and the fluid
comprising the disk (Figure 4.2).
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Owing to thermal ionization of alkalimetalswithin the inner regions of
the disk, motion of disk material relative to the stellar magnetosphere
‘drags’ the field lines, inducing magnetic fields. The evolution of
induced fields is governed by the induction equation,

∂B
∂t
= ∇ ×

(
η∇ × B + v × B

)
, (4.17)

where B is the total magnetic field, η is the magnetic diffusivity and

v = vK êφ − ω × r (4.18)

is the motion of the disk fluid in the frame rotating with the stellar
magnetosphere, i.e., we imagine the stellar magnetosphere to be held
fixed, with the disk moving within it. The Keplerian velocity vK

is azimuthally-directed whereas stellar rotation, arising from stellar
angular velocity ω has both azimuthal and vertical components.

A full, time-dependent solution of equation (4.17) is computationally
difficult and so we adopt an approximate, semi-analytic approach.
Specifically, we simplify the picture by noting that the disk fluid
velocity v possesses two separate components in the rotating frame.
The first is an azimuthal component, arising from motion of disk
material in Keplerian orbit relative to the azimuthal magnetospheric
motion from stellar rotation. Second, there is a vertical component,
where ‘vertical’ refers to normal to the disk’s plane. Vertical motion
occurs owing to the tilt of the star with respect to its disk, which
causes the stellar magnetosphere to be dragged vertically through the
disk every stellar rotation period (best imagined for a star tilted by
90 deg; red diagram in Figure 4.2). In a frame rotating with the star,
this vertical dragging appears as a vertical motion of disk material (a
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vertical component to v) and therefore constitutes an additional source
of magnetic induction (see section 4.2).

For a small region on either side of the corotation radius, the relative
azimuthal motion may be sufficiently small to allow a steady state to
exist between magnetic field dragging and slippage (Matt and Pudritz,
2004). However, everywhere outside of this small region (of annu-
lar thickness ∼ 0.01 a′co), the diffusive timescale is longer than the
dragging timescale, leading to the unbounded inflation of magnetic
field lines. Such inflation cannot physically continue indefinitely and
so some mechanism must act to dissipate magnetic energy on orbital
timescales.

Analytic and numerical models of the aligned star-disk configuration
find that the most likely dissipative process is magnetic reconnection,
whereby the magnetic field lines are stretched azimuthally until the in-
duced field is of the same order as the vertical stellar field. At this point
the magnetic field lines break and reform (Livio and Pringle, 1992;
Uzdensky, Königl, and Litwin, 2002). Such a process is intrinsically
non-steady, however. Owing to the short timescale of reconnection (∼
the orbital period) compared to disk evolution, we may average over
each orbit and consider a steady magnetic torque to result between the
star and disk.

We shall proceed by considering separately the fields generated from
azimuthal relative motion and those originating from vertical (in the
disk’s frame) relative magnetospheric motion. The form of equa-
tion (4.17) ensures that the fields induced by vertical and azimuthal
velocities back-react upon each other (through the v × B term) and
so such separation of vertical and azimuthal induction is not strictly
accurate. However, as we are seeking an approximate model for the
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magnetic star-disk interactions, we proceed with the picture whereby
the two components act independently.

Azimuthal Induction

Relative azimuthal disk motion induces an azimuthal field2 through
flux-freezing (Armitage and Clarke, 1996; Agapitou and Papaloizou,
2000). This induced field, Bφ,i is represented as a fraction (also called
a pitch angle), γ of the component of the stellar dipole field perpen-
dicular to the disk’s surface. In the case of a thin disk in spherical
coordinates, the ‘vertical’ field is well approximated by the (negative)
θ−component of the stellar field, Bθ , at the disk mid plane (θ = π/2).
Thus, Bφ,i = γBθ , where the subscript ‘i’ refers to ‘induced’.

As mentioned above, γ is unable to instantaneously greatly exceed
unity, but rather, magnetic reconnection reduces γ to γ ∼ 0 each
orbital period, allowing the field to be re-wound. We average over
each reconnection timescale and consider the star-disk torque to act
equivalently to a steady torque of azimuthal pitch angle γ ∼ 1. The
force per unit volume is given by the Lorentz equation

f = J × B. (4.19)

In the case of azimuthal induction, the current density J = (1/µ0)∇ ×

Bind may be considered to arise from the variation in magnetic field
going from outside the disk vertically into the plane of the disk over
some length scale δ. In such a case, the current induced is radial and
within the plane of the disk. Effectively, this statement is equivalent
to setting the ∇ operator equal to a vector of magnitude 1/δ in the

2Physically, the motion of the disk material relative to the background field generates a current
within the disk. For purely-azimuthal fluid motion, the current is radial. This radial current in turn
induces its own an azimuthal magnetic field (in the ideal MHD case), which leads the background
field lines to appear stretched.
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vertical direction. Assuming δ � h, where h is the disk scale height,
the final torque per unit area on the disk is obtained approximately
by multiplying equation (4.19) by δ, effectively integrating the torque
over the vertical dimension.

Angular momentum transport among neighbouring annuli of the disk
is facilitated by the propagation of bending waves (Foucart and Lai,
2011), disk viscosity (Larwood et al., 1996) and through disk self-
gravity (Batygin, Morbidelli, and Tsiganis, 2011), all of which gener-
ally occur over a shorter timescale than does stellar tilting. As a result,
the effective moment of inertia of the disk in response to magnetic
torques is much greater than that of the star, as was the case above
in the gravitational picture. Accordingly, in the calculations which
follow, we consider only the back-reaction of the torques, in deter-
mining the dynamics of the star (which effectively introduces a minus
sign), with the disk’s dynamics being forced solely by the perturbing
companion.

From considering only the azimuthal field induction, arising from the
penetration of stellar flux into the upper and lower surfaces of the disk,
a torque per unit area of

τ = −r ×
[
γBθ êr × Bdip

��
θ=π/2

]
(4.20)

is communicated between the disk and the star. It is appropriate to
display these torques in terms of their Cartesian components in the
disk frame (i.e., êz points along the disk angular momentum axis)
before integrating over the entire disk. We find that the x̂, ŷ, and
ẑ torques arising from equation (4.20) within the region interior to
corotation (a < aco) are given by
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where the variableT , ameasure of stellarmagneticmoment, is defined
for ease of writing as

T ≡
B2
? R6

?

µ0
. (4.22)

Analogous torques generated by the region exterior to corotation are
similar in functional form but instead of integrating the torques be-
tween ain and aco, we integrate outwards from aco and note that the
outer edge of the disk is sufficiently large as to be approximately equiv-
alent to integration out to a′ → ∞. Accordingly, the torques arising
from outside of corotation are given by

τx = −
2 π T

3
1

a3
co

sin(β) cos(β) cos(ψ)

τy = −
2 π T

3
1

a3
co

sin(β) cos(β) sin(ψ)

τz = −
4 π T

3
1

a3
co

cos(β)2. (4.23)

It is important to notice that the above torques are null for a star-
disk inclination of β = π/2. The torque vanishes in such a scenario
because in the picture considered thus far, at Bθ = 0 no flux penetrates
the upper and lower surfaces of the disk. In other words, the null
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torque arises as an artifact of assuming a razor-thin disk. In reality,
the disk possesses a finite scale height h. For small β, most of the
stellar magnetospheric flux penetrates the upper and lower surfaces of
the disk, validating the razor-thin model. However, as β is increased,
more stellar flux penetrates the inner edge of the disk. This flux
penetration leads to additional azimuthal twisting of field lines within
a small annular region at the disk truncation radius (Figure 4.2).

Whereas the induction considered previously generated a radial cur-
rent, the induction owing to horizontal penetration of flux in the inner
disk wall causes the field strength to vary along the radial direction.
By the curl operator in equation (4.17), radial variation loosely trans-
lates to the generation of a vertical current. If we again suppose that
the induced field is of a similar magnitude to the background stellar
field, the current generated is that given by a change in magnetic field
strength of Br(r = ain) (the radial stellar field evaluated at the trun-
cation radius) over a radial length scale δr . Once again, we integrate
over this small region, assuming δr/ain � 1, to find a torque per unit
area (where the area is now the inner face of the disk) of

τr =
1
µ0

ainêr ×

[
− Br êθ × Bdip

��
r=ain

]
. (4.24)

Once again, converting to Cartesian components and integrating, we
obtain the torques arising from radial flux penetration in the form,

τx = 0

τy = 0

τz =
8 π αT

a3
in

sin(β)2,

(4.25)
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where α ≡ hin/ain is the aspect ratio evaluated at the inner edge of the
disk. Its value is likely to be about ∼ 0.1 (Armitage, 2011), although
it may indeed be slightly larger at the inner disk edge as a result of
thermal expansion from strong stellar irradiation. For definiteness, we
set α = 0.1 in our calculations.

Vertical Induction

Many previous works have considered the torques arising from az-
imuthal field dragging within accretion disks (Ghosh and Lamb, 1978;
Livio and Pringle, 1992; Armitage and Clarke, 1996; Agapitou and
Papaloizou, 2000; Uzdensky, Königl, and Litwin, 2002; Matt and Pu-
dritz, 2004; Lai, Foucart, and Lin, 2011). However, a feature which
has been omitted from previous works is the fact that if a stellar mag-
netosphere is rotating at an inclination relative to its disk, there exists
a component of relative star-disk motion which forces the field lines to
be dragged vertically through the disk. This process is best imagined
in the case of a star inclined by π/2 to a disk, i.e., spinning on its side.
In such a case, consider the situation in a frame co-rotating with the
star. In this frame, the disk is being forced to push through and break
all stellar field lines each rotation period.

The result is that as the star spins, the field loops are forced to bunch up
on one face of the disk and become rarified on the opposed side of the
disk (red diagram in Figure 4.2), similarly to how water is pressurized
on the leading edge of a boat paddle. Unlike the azimuthal induction,
this paddle-like braking occurs over the entire disk as opposed to solely
the region orbiting beyond co-rotation. As such, this effect constitutes
a significant source of angular momentum loss for the star.

In addition to the intuitive braking torque upon stellar spin rate, the ver-
tical component of magnetic induction leads to an additional torque
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affecting stellar orientation. In order to calculate the magnitude of
these torques, we take a similar approach to that used within the
azimuthal framework above. Specifically, we suppose that the com-
ponent of the magnetosphere parallel to the disk is built up over half
the disk and reduced on the other half to a degree which is of the same
order as the stellar magnetosphere. Again, we suppose non-steady
reconnection to provide a bound on magnetic field magnitude. Thus,
we suppose the field induced by vertical field dragging (with subscript
“p”) is given by

Bp = ζ(φ)
[
Br êr + Bφêφ

]
, (4.26)

where ζ(φ) = sin(φ − ψ). Recalling that ψ is the azimuthal angle
of the stellar spin pole direction projected onto the disk plane, this
functional form for ζ ensures that field lines bunch up on the faces of
the disk where magnetic field lines are being pushed into the disk and
the field is rarified on the other faces, where the field is being rotated
away from the disk surface3.

Finally, vertical field motion generates torques which take the form,

τx = −
7 π T
6 a3

in
sin(β)2 cos(ψ)

τy = −
7 π T
6 a3

in
sin(β)2 sin(ψ)

τz = −
2 π T
3 a3

in
cos(β) sin(β),

(4.27)

where we have again invoked aout � ain.
3The ζ = sin(φ − ψ) form additionally ensures that ∇ · Bp=0.
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of disk material relative to the stellar magneto-
sphere ‘drags’ the field lines, inducing a magnetic
fields. The evolution of induced fields is governed
by the induction equation,

@B

@t
= r⇥

✓
⌘r⇥ B + v ⇥ B

◆
. (17)

where B is the total magnetic field, ⌘ is the mag-
netic di↵usivity and

v = vK ê� � ! ⇥ r (18)

is the motion of the fluid in the frame rotating
with the stellar magnetosphere. The Keplerian
velocity vK is azimuthally-directed whereas stellar
rotation, arising from stellar angular velocity !
has both azimuthal and vertical components.

A full, time-dependent solution of equation (17)
is computationally di�cult and so we adopt an ap-
proximate, semi-analytic parameterised approach.
Specifically, we note that v possesses two sepa-
rate components, an azimuthal component (par-
allel to Keplerian motion of disk material) and
a vertical component, where ‘vertical’ refers to
normal to the disk’s plane. To distinguish these
two velocity components, consider that the star
and disk are aligned. In this case, there exists
only the azimuthal motion of disk material in Ke-
plerian orbit relative to the azimuthal magneto-
spheric motion of stellar rotation. Conversely, if
we now imagine tilting the star with respect to the
disk, the stellar magnetosphere must be dragged
vertically through the disk every stellar rotation
period. Such vertical field dragging constitutes
an additional source of magnetic induction, as de-
scribed below.

For a small region on either side of the coro-
tation radius, the relative azimuthal motion may
be su�ciently small to allow a steady state to ex-
ist between magnetic field dragging and slippage
(Matt & Pudritz 2004). However, everywhere out-
side of this small region (of annular thickness ⇠
0.01 a0

co), the di↵usive timescale is longer than the
dragging timescale, leading to the unbounded in-
flation of magnetic field lines. Such inflation can-
not physically continue indefinitely and so some
mechanism must act to dissipate magnetic energy
on orbital timescales.

Analytic and numerical models of the aligned
star-disk configuration find that the most likely

dissipative process is magnetic reconnection,
whereby the magnetic field lines are stretched az-
imuthally until the induced field is of the same
order as the vertical stellar field. At this point
the magnetic field lines break and reform (Livio &
Pringle 1992; Uzdensky et al. 2002). Such a pro-
cess is intrinsically non-steady, however, owing to
the short timescale of reconnection (⇠ the orbital
period) compared to disk evolution, we may aver-
age over each orbit and consider a steady magnetic
torque to result between the star and disk.

We shall proceed by considering separately the
fields generated from azimuthal relative motion
and those originating from vertical (in the disk’s
frame) relative magnetospheric motion. The form
of equation (17) ensures that the fields induced by
vertical and azimuthal velocities back-react upon
each other (through the v ⇥ B term) and so such
separation of vertical and azimuthal induction is
not strictly accurate. However, as we are seeking
an approximate model for the magnetic star-disk
interactions, we proceed with the picture whereby
the two components act independently.

2.1. Azimuthal Induction

Relative azimuthal disk motion induces an az-
imuthal field through flux-freezing1 (see, e.g., Ar-
mitage & Clarke 1996; Agapitou et al. 2000; Uz-
densky et al. 2002). This induced field, B�,i is
represented as a fraction (also called a pitch an-
gle), � of the component of the stellar dipole field
perpendicular to the disk’s surface. In the case
of a thin disk in spherical coordinates, the ‘ver-
tical’ field is well approximated by the (negative)
✓�component of the stellar field, B✓, at the disk
mid plane (✓ = ⇡/2). Thus, B�,i = �B✓, where
the subscript i refers to ‘induced’.

As mentioned above, � is unable to instanta-
neously greatly exceed unity, but rather, magnetic
reconnection reduces � to � ⇠ 0 each orbital pe-
riod, allowing the field to be re-wound. We aver-
age over each reconnection timescale and consider
the star-disk torque to act equivalently to a steady
torque of azimuthal pitch angle � ⇠ 1.

1Physically, the motion of the disk material relative to the
background field generates a current within the disk. For
purely-azimuthal fluid motion, the current is radial. This
radial current in turn induces its own an azimuthal mag-
netic field (in the ideal MHD case), which leads the back-
ground field lines to appear stretched.
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v = vK ê� � ! ⇥ r (18)

is the motion of the fluid in the frame rotating
with the stellar magnetosphere. The Keplerian
velocity vK is azimuthally-directed whereas stellar
rotation, arising from stellar angular velocity !
has both azimuthal and vertical components.

A full, time-dependent solution of equation (17)
is computationally di�cult and so we adopt an ap-
proximate, semi-analytic parameterised approach.
Specifically, we note that v possesses two sepa-
rate components, an azimuthal component (par-
allel to Keplerian motion of disk material) and
a vertical component, where ‘vertical’ refers to
normal to the disk’s plane. To distinguish these
two velocity components, consider that the star
and disk are aligned. In this case, there exists
only the azimuthal motion of disk material in Ke-
plerian orbit relative to the azimuthal magneto-
spheric motion of stellar rotation. Conversely, if
we now imagine tilting the star with respect to the
disk, the stellar magnetosphere must be dragged
vertically through the disk every stellar rotation
period. Such vertical field dragging constitutes
an additional source of magnetic induction, as de-
scribed below.

For a small region on either side of the coro-
tation radius, the relative azimuthal motion may
be su�ciently small to allow a steady state to ex-
ist between magnetic field dragging and slippage
(Matt & Pudritz 2004). However, everywhere out-
side of this small region (of annular thickness ⇠
0.01 a0

co), the di↵usive timescale is longer than the
dragging timescale, leading to the unbounded in-
flation of magnetic field lines. Such inflation can-
not physically continue indefinitely and so some
mechanism must act to dissipate magnetic energy
on orbital timescales.

Analytic and numerical models of the aligned
star-disk configuration find that the most likely

dissipative process is magnetic reconnection,
whereby the magnetic field lines are stretched az-
imuthally until the induced field is of the same
order as the vertical stellar field. At this point
the magnetic field lines break and reform (Livio &
Pringle 1992; Uzdensky et al. 2002). Such a pro-
cess is intrinsically non-steady, however, owing to
the short timescale of reconnection (⇠ the orbital
period) compared to disk evolution, we may aver-
age over each orbit and consider a steady magnetic
torque to result between the star and disk.

We shall proceed by considering separately the
fields generated from azimuthal relative motion
and those originating from vertical (in the disk’s
frame) relative magnetospheric motion. The form
of equation (17) ensures that the fields induced by
vertical and azimuthal velocities back-react upon
each other (through the v ⇥ B term) and so such
separation of vertical and azimuthal induction is
not strictly accurate. However, as we are seeking
an approximate model for the magnetic star-disk
interactions, we proceed with the picture whereby
the two components act independently.

2.1. Azimuthal Induction

Relative azimuthal disk motion induces an az-
imuthal field through flux-freezing1 (see, e.g., Ar-
mitage & Clarke 1996; Agapitou et al. 2000; Uz-
densky et al. 2002). This induced field, B�,i is
represented as a fraction (also called a pitch an-
gle), � of the component of the stellar dipole field
perpendicular to the disk’s surface. In the case
of a thin disk in spherical coordinates, the ‘ver-
tical’ field is well approximated by the (negative)
✓�component of the stellar field, B✓, at the disk
mid plane (✓ = ⇡/2). Thus, B�,i = �B✓, where
the subscript i refers to ‘induced’.

As mentioned above, � is unable to instanta-
neously greatly exceed unity, but rather, magnetic
reconnection reduces � to � ⇠ 0 each orbital pe-
riod, allowing the field to be re-wound. We aver-
age over each reconnection timescale and consider
the star-disk torque to act equivalently to a steady
torque of azimuthal pitch angle � ⇠ 1.

1Physically, the motion of the disk material relative to the
background field generates a current within the disk. For
purely-azimuthal fluid motion, the current is radial. This
radial current in turn induces its own an azimuthal mag-
netic field (in the ideal MHD case), which leads the back-
ground field lines to appear stretched.

5

Figure 4.2: A schematic to illustrate the origin of each magnetic torque. The blue
region represents the disk material interior to corotation, including the inner wall of
the disk, which super-rotates with respect to the stellar spin, acting both to spin the
star up and realign its axis with the disk’s. The green region is further out and so
rotates more slowly, braking the stellar spin and acting to misalign the star. Red lines
represent the requirement that the entire magnetosphere must be dragged vertically
through the disk once per stellar rotation period if the star and disk are misaligned.
A simple illustration of the physical mechanism behind each torque is shown on the
right. The colored arrows in the top-left denote the net torque acting upon the stellar
spin axis: green regions slow down and misalign the star, blue regions speed the star
up and force realignment, whereas red regions act to brake stellar rotation whilst
realigning the stellar spin-axis. Summed together, the resultant magnetic effect is
usually to realign the disk and star with each other.

We complete the specification of the torques arising from vertical field
dragging by noting that if the star spins sufficiently slowly, the field
lines will be able to diffuse vertically through the disk within one
rotational period. Essentially, this is equivalent to saying that the field
lines no longer reconnect and a true steady state is attainable (at least
in terms of vertical field dragging). Suppose that the disk’s diffusivity
is prescribed as
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η = ᾱsh2 nK, (4.28)

where ᾱs is the Shakura-Sunyaev parameter for disk viscosity (Shakura
and Sunyaev, 1973) and nK is the Keplerian angular velocity. We may
suppose that the stellar field lines could diffuse vertically through the
disk over a timescale τ ≈ h2/η = 1/(ᾱs nK). Put another way, if the
star is spinning more slowly than about 1/ᾱs times the angular velocity
of the gas in the disk, we would expect field lines to diffuse through
with greatly reducedmagnetic induction. The likely value of ᾱs within
the inner disk ranges widely, from 10−1 to 10−3. Owing to this range,
for definiteness we suppose that negligible field is induced if the star
rotates less than about 10 times the Keplerian angular velocity of the
disk. We include such an effect qualitatively bymodulating the torques
in equation (4.27) by a factor of exp[−(ω/ε ω0)

−2] with ε = 0.1 and
ω0 corresponding to an 8 day spin-period.

Summary of Magnetic Torques

The cumulative impact of the magnetic torques derived above is de-
picted visually in Figure 4.2 and may be summarized as follows. The
inner regions of the disk (i.e., a′ < a′co) rotate faster than the stellar
magnetosphere, dragging field lines azimuthally, ahead of the stellar
rotation. The result is both an acceleration of the stellar spin rate and a
torque that acts to realign the disk and stellar spin pole. Note that pre-
vious authors have concluded ambiguity over the sense of the tilting
component to this torque (Lai, Foucart, and Lin, 2011) largely owing
to uncertain parameterizations for the stellar wind. Our analysis here
demonstrates that the pure impact of the magnetic torques from the
inner disk is realignment. As can be seen from equations (4.25), the
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z-component (i.e., disk-aligned) component is always positive, which
tends to spin up and realign. The horizontal components, however,
are also positive and so tend to misalign, but simply adding the z-
and horizontal components in quadrature results in a net realignment
torque.

The sense of torques is exactly reversed in the outer disk, i.e., the outer
regions have a tendency to misalign. Torques arising from vertical
induction tend predominantly to brake the stellar spin rate but they
include a small component acting to realign. In order to complete the
specification of magnetic torques, wemust choose a value for the inner
disk radius a′in. In our models, we adopt a so-called “disk-locked”
configuration (Koenigl, 1991; Mohanty and Shu, 2008), whereby
the outer and inner disk torques cancel at some prescribed stellar
period (which we set to 8 days; see section (4.2) below). Accordingly,
the inner disk truncation radius lies at ∼ 0.8 aco |β=0, in agreement
with more sophisticated numerical simulations (Long, Romanova, and
Lovelace, 2005).

Stellar Spin Rate
A complete account of the factors influencing the spin rates of young
stars remains elusive (Matt and Pudritz, 2004; Herbst, n.d.; Littlefair
et al., 2010). The reason is that if one na’́ively assumes a T-Tauri star to
contract along its Hyashi track whilst conserving angular momentum,
it would be expected to spin up sufficiently quickly such as to reach
break-up velocity within the disk lifetime. However, observations
clearly demonstrate that the vast majority of T-Tauri stars spin at rates
far reduced from their break-up angular velocity. Specifically, most
young stellar objects rotate at about 3−10 day periods with only a rare
few which are indeed close to break-up angular velocity, at periods of
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∼ 1 day. The slow spins of such stars is sometimes referred to as the
‘stellar angular momentum problem’ because stars spin slower than
they “should”.

It has long been suspected that magnetic star-disk interactions play a
key role in modulating the spin rates of T-Tauri stars (see Bouvier et al.
(2014) for a recent review). Here, we do not attempt any sophisticated
modeling aimed at explaining the stellar spin rates in detail. However,
we note that the quasi-periodic twisting and opening of magnetic
field lines discussed above provides a conduit through which angular
momentum may be lost from the system, by way of stellar and/or
disk winds. In addition, the torque arising from vertical field motion,
derived above, provides an extremely efficient braking mechanism
upon stellar spin, provided the stellar magnetosphere is sufficiently
strong. As such, mutual inclination between a star and its diskmay give
rise to hitherto under appreciated magnetohydrodynamic influences
upon stellar spin, especially when considering stars with lower masses
(M . 1.2M�) and strong magnetospheres (∼1 kGauss).

Within the framework of our model, we treat spin-rate evolution as
follows. We allow the torques prescribed above to act freely on stellar
spin rate. In addition, we introduce a relaxation factor, reflecting
the reluctance of stars to spin up to break-up, whereby the star seeks
the disk-locked spin rate ωr over a timescale τr. The relaxation is
prescribed as,

(
dω
dt

)
r
= −

ω − ω0

τr
, (4.29)

where we choose, for τr, the stellar contraction timescale, which may
be derived from equation (4.2):
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τr ≡ ( ÛR/R)−1 =
24π

5 − ξ
R3
?σT4

eff

GM2
?

. (4.30)

The above timescale changes as the star contracts, but remains of order
∼ 1Myr which is the value we adopt in this work. As already stated
above, we choose the equilibrium angular velocity to be within the
observed range, ω0 = 2π/(8 days).

Frame of Reference
It is beneficial to carry out all calculations in the frame of a distant,
binary companion to the central star. As such, we follow the approach
of Peale et al. (2014) and define Euler angles within the binary frame
related to the nutation, precession and rotation of the rigid body while
assuming exclusively principal axis rotation (this is an excellent ap-
proximation for a T-Tauri star, spinning at a period of 3 − 10 days).
Specifically, β̃ is the angle between the central star’s spin axis and
the binary orbit normal; Ω̃ is the longitude of ascending node of the
star in the binary frame where Ω̃ = 0 implies commensurate disk and
stellar lines of nodes; and the third Euler angle ϕ is the angle through
which the star rotates as it spins (ϕ only enters the equations as a rate
of change: Ûϕ = ω).

The equations for the evolution of β̃, ω, and Ω̃, adapted from Peale
et al. (2014) are:
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dω
dt
= −

ω − ω0

τr
+ sin(β̃)

[
Nx̄ sin(Ω̃)

− Nȳ cos(Ω̃)
]
+ cos(β̃) Nz̄,

d β̃
dt
= −

1
ω

[
cos(β̃)(−Nx̄ sin(Ω̃) + Nȳ cos(Ω̃))

+ Nz̄ sin(β̃))
]
,

dΩ̃
dt
= −

1
ω sin(β̃)

[
Nx̄ cos(Ω̃) + Nȳ sin(Ω̃)

]
, (4.31)

where Nī are projected torques. Note that by fixing the disk’s longitude
of ascending node at Ω′ = 0, we have implicitly placed ourselves into
a frame co-precessing with the disk’s angular momentum vector, as
discussed above. The effect of precession was included within the
gravitational part of the calculation (equation (4.10)) and so we need
not retain it here.

The projected quantities Nī are directly related to the torques calculated
above, although the components of the torques in the disk frame,
−τi′, must first be projected onto the Cartesian axes in the binary
frame. Such a projection constitutes a simple geometric rotation
of co-ordinates because the disk-binary inclination is a constant of
motion. The co-ordinate rotation transformation angle is fixed at
some prescribed value, β′ to the z-axis and its sense is defined as
anti-clockwise about the x-axis. As such, the components, Nī, are
given in terms of τi by:
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Nx̄ = −τx′/(IM?R2
?),

Nȳ = −(cos(β′)τy′ − τz′ sin(β′))/(IM?R2
?),

Nz̄ = −(cos(β′)τx′ + τy′ sin(β′))/(IM?R2
?). (4.32)

The above equations can be used to model the dynamics of the central
star resulting from its magnetic interactions with its protoplanetary
disk whilst the disk itself precesses within the binary frame.

4.3 Results
Wemotivate the following analysis by considering the timescales over
which the magnetic torques act, as derived above. Specifically, mag-
netic torques increase as ∝ B2, meaning that the order-of-magnitude
difference in field strengths between high and low-mass stars trans-
lates to an enhancement of two orders of magnitude in the torques felt
by lower-mass stars. Supposing the star to be set up in a retrograde,
anti-aligned state (β = π), we calculate the characteristic realignment
timescale Talign using the equations derived above:

Talign ≡
ω

Ûω
=

3GM2
?I

4πω
µ0

B2
?R4

?

, (4.33)

where R? follows the time-dependence described in equation 7.4,
giving rise to a time dependent magnetic torquing timescale which we
illustrate in Figure 4.3. Taking 1 kGauss as the field strength typical
of low-mass stars, under nominal star-disk parameters their absolute
re-alignment timescales are of the order of ∼ 1Myr throughout the
majority of the disk lifetime. Conversely, the analogous timescale for
the 0.1 kGauss fields typical of high-mass stars is closer to ∼ 100Myr
(Figure 4.3). These timescales are respectively shorter and longer
than the typically-quoted 3− 10Myr lifetimes of protoplanetary disks
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(Haisch Jr, Lada, and Lada, 2001). Therefore, magnetic interactions
only have the potential to wipe out primordial star-disk misalignments
in low-mass systems.
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ABSTRACT

Detailed observational characterisation of transiting exoplanetary systems has revealed that
the spin-axes of massive (M & 1.2M�) stars often exhibit substantial misalignments with
respect to the orbits of the planets they host (Winn et al. (2010); Albrecht et al. (2012)).
Conversely, lower-mass stars tend to only have limited obliquities. A similar trend has recently
emerged within the observational dataset of young stars’ magnetic field strengths: massive
T-Tauri stars tend to have dipole fields that are ⇠10 times weaker than their less-massive
counterparts (Gregory et al. (2012)). Here we show that the associated mass-dependence,
inherent to magnetic disk-star coupling, naturally explains the observed spin-orbit misalignment
trend, provided that misalignments are excited early in the system’s lifetime (Batygin (2012);
Batygin & Adams (2013); Spalding & Batygin (2014)). While for lower-mass stars, magnetic
torques can act to realign the stellar spin-axis with the disk plane on a timescale significantly
shorter than the typical disk lifetime, the same e↵ect operates on a much longer timescale for
massive stars. Cumulatively, our results point to a primordial excitation of extrasolar spin-orbit
misalignment, and signal consistency with the disk-torquing mechanism as well as disk-driven
migration as a dominant mode of planetary transport. Accordingly, our results predict that
spin-orbit misalignments in systems where close-in planets show signatures of late emplacement
(Fabrycky & Tremaine (2007); Naoz et al. (2011); Beaugé & Nesvorný (2012); Petrovich &
Tremaine (2014)), will not follow the observed correlation with stellar mass.

M & 1.2 M�

M . 1.2 M�
A recent(Winn et al. (2010); Albrecht et al.

(2012)) shift in our perception of exoplanetary
systems is that, unlike the Solar System, a sub-
stantial fraction of planetary orbits are grossly
misaligned with respect to the spin axes of their
host stars. Furthermore, the obliquities display a
clear dependence on the mass of the planet-hosting
star (Figure 1). More massive (M & 1.2M�)
stars possess misalignments ranging continuously
from prograde aligned, all the way to retrograde
anti-aligned. On the other hand, the lower mass
stars display much smaller misalignments, with a
conspicuous absence of retrograde circular plan-
ets around such stars. These misalignments, and

their peculiar dependence on stellar mass, demand
an extension to the simple picture whereby planets
form out of a coplanar star-disk system.

Within the existing dataset, observations of
misalignments are most common in systems that
contain “hot Jupiters”, a class of exoplanets com-
prised of Jupiter-mass or higher bodies that oc-
cupy tight orbits with periods as low as a few
days (CITE). These planets pose a problem for
conventional planet formation theory (Pollack et
al. (1996)) which dictates that such planets must
have formed at far greater (& 1� 3 AU) distances
from their parent star within a natal disk. Thus,
a transport mechanism must be invoked to ex-
plain their short-period orbits. Despite nearly
two decades having passed since the first detec-
tion of a hot Jupiter(Mayor & Queloz (1995)), the
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the spin-axes of massive (M & 1.2M�) stars often exhibit substantial misalignments with
respect to the orbits of the planets they host (Winn et al. (2010); Albrecht et al. (2012)).
Conversely, lower-mass stars tend to only have limited obliquities. A similar trend has recently
emerged within the observational dataset of young stars’ magnetic field strengths: massive
T-Tauri stars tend to have dipole fields that are ⇠10 times weaker than their less-massive
counterparts (Gregory et al. (2012)). Here we show that the associated mass-dependence,
inherent to magnetic disk-star coupling, naturally explains the observed spin-orbit misalignment
trend, provided that misalignments are excited early in the system’s lifetime (Batygin (2012);
Batygin & Adams (2013); Spalding & Batygin (2014)). While for lower-mass stars, magnetic
torques can act to realign the stellar spin-axis with the disk plane on a timescale significantly
shorter than the typical disk lifetime, the same e↵ect operates on a much longer timescale for
massive stars. Cumulatively, our results point to a primordial excitation of extrasolar spin-orbit
misalignment, and signal consistency with the disk-torquing mechanism as well as disk-driven
migration as a dominant mode of planetary transport. Accordingly, our results predict that
spin-orbit misalignments in systems where close-in planets show signatures of late emplacement
(Fabrycky & Tremaine (2007); Naoz et al. (2011); Beaugé & Nesvorný (2012); Petrovich &
Tremaine (2014)), will not follow the observed correlation with stellar mass.

M & 1.2 M�

M . 1.2 M�
A recent(Winn et al. (2010); Albrecht et al.

(2012)) shift in our perception of exoplanetary
systems is that, unlike the Solar System, a sub-
stantial fraction of planetary orbits are grossly
misaligned with respect to the spin axes of their
host stars. Furthermore, the obliquities display a
clear dependence on the mass of the planet-hosting
star (Figure 1). More massive (M & 1.2M�)
stars possess misalignments ranging continuously
from prograde aligned, all the way to retrograde
anti-aligned. On the other hand, the lower mass
stars display much smaller misalignments, with a
conspicuous absence of retrograde circular plan-
ets around such stars. These misalignments, and

their peculiar dependence on stellar mass, demand
an extension to the simple picture whereby planets
form out of a coplanar star-disk system.

Within the existing dataset, observations of
misalignments are most common in systems that
contain “hot Jupiters”, a class of exoplanets com-
prised of Jupiter-mass or higher bodies that oc-
cupy tight orbits with periods as low as a few
days (CITE). These planets pose a problem for
conventional planet formation theory (Pollack et
al. (1996)) which dictates that such planets must
have formed at far greater (& 1� 3 AU) distances
from their parent star within a natal disk. Thus,
a transport mechanism must be invoked to ex-
plain their short-period orbits. Despite nearly
two decades having passed since the first detec-
tion of a hot Jupiter(Mayor & Queloz (1995)), the
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Figure 4.3: The approximate magnetic torquing timescale (Talign) as a function of
disk-star age for four regimes. The green lines apply to high-mass stars with a
surface field strength of ∼ 0.1 kGauss. Red denotes low-mass stars with a surface
field strength of ∼ 1 kGuass. In both cases, the upper line considers the timescale
relevant to a star which is spinning with a 10 day period whereas the lower line
applies to one with a 3 day period. The stellar spin rate is assumed to result from
the locking to a circumstellar disk (Koenigl, 1991) and so the faster-spinning cases
consider a disk which is truncated at smaller radii, increasing themagnetic influence.
Notice that the dominant effect upon magnetic torquing timescale is the magnetic
field strength, with timescales proportional to its inverse square. The timescales
increase with time because the star contracts, leading to an effectively weaker field
at the position of the inner disk. Only for the very earliest stages of protoplanetary
disk evolution are high-mass stars’ magnetospheres strong enough to significantly
alter their orientation whereas low-mass stars remain dynamically influenced by
magnetic fields throughout the entire typical disk lifetime of ∼ 1 − 10Myr.
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A companion inclined by 30 degrees
In order to place magnetic realignment into the disk-torquing context,
we integrate the mutual star-disk inclination over a 10Myr timescale
(i.e., an upper bound on typical disk lifetimes; Haisch Jr, Lada, and
Lada 2001), adopting the case of a 1M� massive companion inclined
at 30 degrees to the disk plane. We present three cases in Figure 4.4:
the purely-gravitational scenario (thick, pink line), the dynamics of a
star with a dipole magnetic field strength of 0.1 kG, characteristic of
higher-mass stars (thin grey line), and the situation for a dipole field
strength of 1 kG, typical of low-mass stars (blue line).

Both themagnetic field-free and 0.1 kG cases look almost identical. In
other words, the magnetic fields of higher-mass stars are dynamically
unimportant within the disk lifetime, in accordance with the timescale
analysis quoted above. The gravitational evolution is then equivalent
to that discussed in Spalding and Batygin (2014). Specifically, at
the earliest times, the star precesses about the disk plane much faster
than the disk precesses about the binary plane (the high-frequency
wiggles at time t . 0.3Myr) and small misalignments are maintained.
However, as the star shrinks and the disk loses mass, gravitational star-
disk coupling weakens until the two precession timescales are roughly
commensurate. This situation causes the system to pass through a
secular resonance (Murray and Dermott, 1999; Morbidelli, 2002),
facilitating a brief period of extremely efficient angular momentum
transfer between the disk and star, resulting in large misalignments.

Importantly, even with the initial companion-disk inclination set to
30 degrees, a retrograde disk may emerge from the secular resonance.
It is this non-linearity between disk-binary inclination and resulting
misalignment which is the essence of how disk-torquing can account
for the entire range of observed misalignments (Spalding and Batygin,
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Figure 4.4: The time evolution of mutual star-disk inclination. We consider a binary
companion to orbit the system at an inclination of 30 degrees relative the disk (greater
angles are displayed in Figure 4.5). The companion is prescribed to cause the disk to
precess with a 1Myr period. The purely gravitational case is shown as a thick, pink
line. The thin, black line denotes evolution in the presence of the weak fields of high-
mass stars (∼ 0.1 kGauss) and the blue line denotes the evolution corresponding to
the strong fields of low-mass stars (∼ 1 kGauss). As in previous work (Spalding and
Batygin, 2014), we find that a secular spin-orbit resonance is encountered as the disk
loses mass and the star contracts. However, significant misalignments are inhibited
for the stronger magnetic fields characteristic of low-mass stars whereas the fields of
high-mass stars make no appreciable difference to the dynamics. Interestingly, the
action of magnetic torques takes the star into alignment with the binary plane, not
the disk plane, suggesting that small misalignments are indeed a natural outcome
of low-mass star evolution, whereas high-mass stars can take on the full range of
misalignments, in direct agreement with the observations.

2014).

The same secular resonance is encountered in the 1 kG case, but cru-
cially, the resulting large misalignments are erased within typical disk
lifetimes. An important aspect of the dynamics is that the orientation
of the star does not converge upon the disk plane, but rather, it con-
verges to 30 degrees, i.e., the binary plane., which may be explained
qualitatively as follows. Gravitational systems are conservative, al-



100

lowing their dynamics to be described as following contours of a scalar
function, or Hamiltonian (Morbidelli, 2002). Magnetic torques intro-
duce a dissipative component that acts to turn the elliptical equilibrium
points of the Hamiltonian into attractors. In this case, the attractor is
the binary-aligned state.

A crucial point to emphasize is that in aligning with the binary plane,
retrograde disks are prohibited. To see this, note that the companion’s
gravitational perturbation upon the disk is dynamically equivalent
whether the binary orbit is clockwise or counter-clockwise (as defined
in some arbitrary frame). Such symmetry arises from approximating
the orbit as a massive wire and has the consequence that the equilib-
rium of the Hamiltonian never lies at a position where the star is tilted
by more than 90 deg to the disk.

Sensitivity to Disk-Binary Inclination

For completeness, we investigate the star-disk dynamics over a range of
disk-binary inclinations in addition to the 30 deg case above. Specif-
ically, Figure 4.5 illustrates the more extreme cases of 45, 60, and
75 degree inclinations. The picture is very similar across 30, 45 and
60 degrees, i.e., the magnetic fields of low-mass stars are capable of
realigning them with the binary plane within the disk lifetime for a
broad range of angles. In contrast, even the stronger fields were un-
able to wipe out retrograde disks when an extreme initial binary-disk
inclination of 75 degrees is chosen. As expected, the orientation of
the star is almost entirely unaltered by magnetic disk-star interactions
for 0.1 kG fields in all cases.

We also present the time evolution of stellar spin resulting from the
dynamics. A notable effect of larger binary inclinations is the consid-
erable impact upon stellar spin rate, displayed in Figure (4.6). Though
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one should not take the rotation periods displayed in Figure (4.6) too
literally, owing to the uncertainties in prescribing rotation rates, an
important aspect of the set-up emerges. Specifically, tilted stars will
interact with their disks in such a way as to significantly brake stellar
rotation, with such braking being more significant for larger star-disk
inclinations. The origin of such an effect is in the requirement of a
tilted star to drag its entire magnetosphere vertically through the disk
once every period4. For high binary inclinations, the star is poten-
tially spun down to nearly a stand-still as the system passes through
the secular resonance, before being spun-up again in the direction of
the disk.

4.4 Discussion
Summary
Prior to this work, a deficiency of the “disk-torquing” model (Batygin,
2012; Batygin and Adams, 2013; Spalding and Batygin, 2014) for the
acquisition of spin-orbit misalignments lay in its inability to reproduce
the observed mass-dependence of misalignments (Winn, Fabrycky, et
al., 2010; Albrecht et al., 2012). Here, we resolved this discrepancy
through the addition of a comprehensive set of magnetic star-disk
torques on top of the previously-considered gravitational dynamics.
Taking account of the recently-observed mass-dependence of T-Tauri
dipole field strengths (Gregory, Donati, et al., 2012), the observed
trend arises naturally.

We began by deriving analytical expressions describing the magnetic
star-disk torques. Many previous authors have contributed to the
development of a description of such torques (Ghosh and Lamb, 1978;
Livio and Pringle, 1992; Armitage and Clarke, 1996; Agapitou and

4Note that ignoring the torques arising from vertical field motion would actually predict spin-up
of a tilted star owing to the expanded corotation radius.
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Figure 4.5: Star-disk misalignments as functions of time for a variety of disk-binary
inclinations. This set of figures show similar information to that shown in Figure 4.4,
except we now illustrate the evolution for a range of angles: 30 deg (top-left), 45 deg
(top-right), 60 deg (bottom-left) and 75 deg (bottom-right). The thick, pink line
is the field-free case, the thin, black line presents the weak-field (0.1 kGauss) case
inherent to high-mass stars and the blue line denotes the strong-field (1 kGuass)
case of low-mass stars. The over-all pattern is largely similar up to 60 deg, in
that the star is drawn towards a binary-aligned state over the magnetic realignment
timescale. Not even the strong fields can undo the extreme resonant acquisition of
misalignments occurring as a result of a 75 deg binary inclination. These larger
binary inclinations are less likely, but raise the possibility that we may find a rare
population of retrograde planetary orbits around low-mass stars in future datasets.

Papaloizou, 2000; Uzdensky, Königl, and Litwin, 2002; Matt and
Pudritz, 2004; Lai, Foucart, and Lin, 2011). A common limitation
has been that torques are considered to arise solely as a result of
magnetic induction associated with relative azimuthalmotion between
the stellar magnetosphere and the disk fluid. However, here we also
considered magnetic induction arising from oblique rotation. To this
end, we have found that the associated torques provide an important
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Figure 4.6: The time evolution of absolute stellar angular velocity in the case of
a 1 kGauss dipole field, plotted in units of the equilibrium angular velocity (here
corresponding to an 8 day period). We show the evolution for four values of disk-
binary inclination, increasing from top to bottom: 30 deg (cyan line), 45 deg (green
line), 60 deg (purple line), 75 deg (orange line). In each case, the star is prescribed
to relax to a disk-locked equilibrium at an 8 day rotational period over a Kelvin-
Helmholtz time. The relaxation is included in an ad hoc fashion and so the exact
formof the rotation curves after∼ 2Myr is not to be taken too literally. However, as is
most apparent for the higher inclinations, magnetic braking constitutes a significant
mechanism for the removal of stellar angular momentum. Indeed, for large binary
inclinations, the star can be almost entirely stopped and re-spun within a relatively
brief time interval.

correction to the existing pictures. Accordingly, this effect constitutes
an efficient source of braking upon the stellar spin.

The largest contribution to the torques affecting stellar orientation, as
opposed to spin rate, arise from azimuthal induction. The influence of
the disk material inside corotation is to spin the star up and align the
stellar spin pole with the disk, with the opposite effect arising from
the outer disk. This effect is amplified by stellar obliquity. In other
words, when the star is tilted, a greater proportion of the disk is acting
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to accelerate the stellar spin and align it with the disk. Inclusion of this
aspect increases the stability of the disk-locked equilibrium proposed
elsewhere (Koenigl, 1991; Mohanty and Shu, 2008).

The final addition to our picture of magnetic torques was to include
(to leading order) the effect of finite disk thickness. Whilst simple and
widely adopted, a short-coming of the razor-thin disk model is that a
star inclined by 90 degrees to the disk is predicted to feel no magnetic
torques arising from azimuthal field dragging alone (vertical induction
still occurs). This is an artifact that comes about by supposing that
there exists a negligible solid angle within which field lines penetrate
radially the disk. However, though disk aspect ratios are small (∼ 0.1),
the inner edge of the disk is the closest point on the disk to the star
and therefore can communicate a non-negligible torque to the central
star (Equation 4.25).

We motivated the potential for magnetic torques to sculpt the mass-
dependence of obliquities by showing that the calculated magnetic
torquing timescale is ∼1Myr for the 1 kG fields typical of low-mass
stars whereas the analogous timescale applicable to high-mass stars
was closer to 100Myr. The fact that a typical protoplanetary disk
lifetime sits right in the middle of these two timescales, at 3-10Myr,
indicates qualitatively different evolutionary scenarios during the disk-
hosting stages of high and low-mass stars. In other words, star-disk
magnetic torques constitute an influential factor in low-mass systems
but may be neglected in high-mass systems.

The timescale analysis is compelling, and demonstrates that, were one
to place a star and its disk in a misaligned configuration and leave
them alone, a 1 kG dipole field would realign them before the disk
dissipates. However, stars are likely to be aligned with their disks
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in the absence of outside influences (Spalding, Batygin, and Adams,
2014). The excitation of misalignments must then come about by
way of perturbations arising from a companion star (Batygin, 2012).
Appropriately, next we coupled the updated magnetic torques derived
here to the purely gravitational model presented in Spalding and Baty-
gin (2014). Specifically, the star and the disk interacted through both
gravitational andmagnetic torques, with amassive companion causing
the disk to precess with a period of 1Myr.

As expected from the timescale analysis, the 0.1 kG fields charac-
teristic of high-mass stars resulted in little deviation from a purely
gravitational picture. However, the stronger 1 kG fields caused the
star to align, not with the disk, but with the binary plane (except
for extreme disk-binary inclinations of >75 degrees). Thus, the most
important result of our paper emerges: Dipole fields typical of lower-
mass T Tauri stars realign the stellar spin axis with the plane of a
perturbing companion on a timescale shorter than the disk lifetime.
In this way, small misalignments occur naturally, but retrograde disks
are prohibited in all but the more massive systems.

Our results agree with the observational data presented in Figure 4.1.
Retrograde circular orbits only exist among the higher-mass (M & 1.2M�)
population of stars. Despite the absence of retrograde orbits around
the lower-mass stars, significant obliquities still persist in general. It is
important to note, also, that the observations only reveal the projected
obliquity of exoplanetary systems. A true inclination of 60 degrees,
say, will on average appear sky-projected as a lower obliquity within
our current observational dataset. On the other hand, distinguishing
retrograde from prograde orbits is a much simpler task. The lack
of retrograde systems, together with the degeneracy inherent to mea-
suring sky-projections, means that the current observations are fully
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consistent with our analysis here whereby small alignments persist
while retrograde orbits are prohibited.

A more subtle point is that, although the low-mass inclinations ap-
proach binary-aligned equilibria, their time-evolution traces an oscil-
latory trajectory. Such oscillations in stellar orientation, especially
for the 60 and 75 degree cases (Figure 4.5), take the star retrograde
with respect to the disk for a small portion of the trajectory. If the
disk were to rapidly dissipate before the amplitude of oscillations was
sufficiently damped by magnetic interactions, and at a point in the
oscillations where the star was in a retrograde position, such a sys-
tem could conceivably produce retrograde planetary systems around
low-mass stars. This scenario is much less likely than the alternative
result of prograde systems, but does allow for the future detection
of retrograde systems around low-mass stars, albeit at a significantly
reduced frequency as compared to prograde systems.

Our analysis was largely based upon order-of-magnitude estimates.
In accordance with this level of precision, we had to make several
assumptions about the star-disk configuration. Perhaps most impor-
tantly, we chose the inner truncation radius of the disk such as to
mimic a “disk-locked” scenario whereby the inner and outer disk
torques cancelled at a specified equilibrium, aligned spin rate. In ac-
cordance with observations (Bouvier, 2013), we decided upon 8 days
for this equilibrium spin period in our simulations. As can be seen in
Figure (4.3), the chosen equilibrium period does indeed influence the
characteristic magnetic torquing timescale. Had we chosen 3 days, for
example, disk-locking would require a smaller truncation radius, re-
sulting in stronger disk-star torques (both magnetic and gravitational).
However, the relative variation in timescales between 3 and 10 day
configurations is far smaller than the difference between high and
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low-mass stars (owing to the B2 dependence). Furthermore, because
8 days is in the middle of these extremes, the end result with respect to
star-disk inclination is qualitatively similar across all realistic star-disk
configurations.

One final omission that is worth a brief mention is the potential argu-
ment that, because our picture (disk-torquing) requires the presence
of a companion, perhaps the mass-misalignment trend is merely a
reflection of higher binarity in higher-mass stars. Whilst this par-
ticular aspect has not been examined in depth, Crida and Batygin
(2014) analyzed the expected spin-orbit distribution arising out of the
purely-gravitational disk-torquing picture presented in Batygin (2012).
Whilst the expected distribution was consistent with that observed it
was difficult to simultaneously fit the highest and lowest obliquities
and little attention was paid to any mass dependence. It is difficult to
see how such a sharp transition in obliquities may arise purely from
such a smooth occurrence relation as mass vs binarity and so we feel
the much sharper nature of the dipole field strength transition is a more
likely cause.

Viability of the Disk-Torquing framework
Ultimately, our work here is a demonstration that the observed spin-
orbit misalignments in exoplanetary systems can come about predom-
inantly by way of mechanisms occurring during the early, disk-hosting
phase. We do not expect the entirety of the observed misalignments to
have originated through disk-torquing because dynamical interactions
probably play a secondary role in the hot Jupiter delivery process
(Ford and Rasio, 2006). It is important, therefore, to contrast the
predictions of each model in order to determine which mechanism, if
any, is dominant.
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Dynamically-excited inclinations are likely to coincide with high ec-
centricities. Although controversy exists between analytic and nu-
merical analyzes over the sense of eccentricity evolution during disk-
driven migration (e.g., Goldreich and Sari 2003; Bitsch and Kley
2010; Kley and Nelson 2012), the general consensus is that eccen-
tricity is limited to small values. As such, we predict that as datasets
become more complete, the mass-misalignment trend will remain for
circular systems, but not for eccentric systems (e & 0.1). Such a
pattern is already beginning to emerge (Figure 4.1) but will be fully
tested when the upcoming TESS mission commences. Furthermore,
a disk-torquing origin for misalignments is fully consistent with the
existence of multi-transiting systems (Huber et al., 2013). Indeed,
we expect future observations of such systems to reveal the same
mass-misalignment trend as that currently measured for single planet
systems, with the break between high and low obliquities occurring at
a similar (although not necessarily identical) stellar mass.

Our work here has focused largely on close in systems. What can
be said about more distant planets? An implicit assumption we have
made is that throughout the dynamics, the disk acts like a rigid, planar
body. Numerical simulations have demonstrated that in reality, the
disk is likely to develop a mild warp in response to the perturbations
of a companion (Larwood et al., 1996). Therefore, the possibility
exists for the outer planets to occupy a different plane from the inner
planets despite having undergone disk-torquing.

A more subtle difference between the outer and inner regions exists.
Onemight imagine that close-in planets, havingmigrated through their
natal disks, will be much more shielded from dynamical instabilities
arising from perturbations later in the systems lifetime. This shielding
arises both as a result of sitting in a deeper gravitational potential
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well, but also through the stabilizing influence of general relativity5.
Accordingly, we might expect there to exist a population of close-
in systems which have obtained their orbits by way of coplanar disk
migration, in addition to a separate population of planets around the
same star that, for whatever reason, remained at larger radii within
their disk, becoming subject to various dynamical instabilities later in
their evolution.

In conclusion, the magnetically-facilitated realignment presented here
provides a natural pathway for the generation, not only of high obliq-
uities, but also their observed dependence upon mass. Such a “disk-
torquing” model appeals to no assumptions beyond those within the
bounds of what has been observed for T-Tauri systems, namely mag-
netic field strength, stellar spin rate, disk ionization state and diskmass.
Out of such nominal parameters, the observed mass-misalignment
trend arises naturally. Additionally, the conclusions presented here
are fully consistent with the decades-old picture of smooth migra-
tion through a protoplanetary disk (Goldreich and Tremaine, 1980),
leading to short-period orbits coplanar with the disk.

5Indeed, general relativity provides a considerable boost to stability of Mercury’s orbit, despite
being situated 10 times further from the Sun than some hot Jupiters are from their stars (Batygin,
Morbidelli, and Holman, 2015).
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C h a p t e r 5

SPIN-ORBIT MISALIGNMENT AS A DRIVER OF THE KEPLER
DICHOTOMY
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ABSTRACT

During its 5 year mission, the Kepler spacecraft has uncovered a
diverse population of planetary systems with orbital configurations
ranging from single-transiting planets to systems of multiple planets
co-transiting the parent star. By comparing the relative occurrences
of multiple to single-transiting systems, recent analyses have revealed
a significant over-abundance of singles. Dubbed the “Kepler Di-
chotomy,” this feature has been interpreted as evidence for two separate
populations of planetary systems: one where all orbits are confined
to a single plane, and a second where the constituent planetary orbits
possess significant mutual inclinations, allowing only a singlemember
to be observed in transit at a given epoch. In this work, we demonstrate
that stellar obliquity, excited within the disk-hosting stage, can explain
this dichotomy. Young stars rotate rapidly, generating a significant
quadrupole moment which torques the planetary orbits, with inner
planets influenced more strongly. Given nominal parameters, this
torque is sufficiently strong to excite significant mutual inclinations
between planets, enhancing the number of single-transiting planets,
sometimes through a dynamical instability. Furthermore, as hot stars
appear to possess systematically higher obliquities, we predict that
single-transiting systems should be relatively more prevalent around
more massive stars. We analyze the Kepler data and confirm this
signal to be present.
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5.1 Introduction
In our solar system, the orbits of all 8 confirmed planets are confined
to the same plane with an RMS inclination of ∼1-2◦, inspiring the no-
tion that planets arise from protoplanetary disks (Kant, 1755; Laplace,
1796). By inference, one would expect extrasolar planetary systems
to formwith a similarly coplanar architecture. However, it is unknown
whether such lowmutual inclinations typically persist over billion-year
timescales. Planetary systems are subject to many mechanisms capa-
ble of perturbing coplanar orbits out of alignment, including secular
chaos (Laskar, 1996; Lithwick and Wu, 2012), planet-planet scatter-
ing (Ford and Rasio, 2008; Beaugé and Nesvorný, 2012) and Kozai
interactions (Naoz, Farr, Lithwick, et al., 2011).

Despite numerous attempts, mutual inclinations between planets are
notoriously difficult to measure directly (Winn and Fabrycky, 2015).
In light of this, investigations have turned to indirect methods. For
example, by comparing the transit durations of co-transiting plan-
ets, Fabrycky, Lissauer, et al. (2014) inferred generally low mutual
inclinations (∼ 1.0−2.2◦) within closely-packed Kepler systems. Ad-
ditionally, within a subset of systems (e.g., 47 Uma and 55 Cnc)
stability arguments have been used to limit mutual inclinations to
. 40◦ (Laughlin, Chambers, and Fischer, 2002; Veras and Armitage,
2004; Nelson, Ford, et al., 2014). On the other hand, Dawson and
Chiang (2014) have presented indirect evidence of unseen, inclined
companions based upon peculiar apsidal alignments within known
planetary orbits. Obtaining a better handle on the distribution of plan-
etary orbital inclinations would lend vital clues to planet formation
and evolution.

Recent work has attempted to place better constraints upon planet-
planet inclinations at a population level, by comparing the number of
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single to multi-transiting systems within the Kepler dataset (Johansen
et al., 2012; Ballard and Johnson, 2016). Owing to the nature of
the transit technique, an intrinsically multiple planet system might
be observed as a single if the planetary orbits are mutually inclined.
An emerging picture is that although a distribution of small ∼ 5◦

mutual inclinations can explain the relative numbers of double and
triple-transiting systems, a striking feature of the planetary census is a
significant over-abundance of single-transiting systems. Furthermore,
the singles generally possess larger radii (more with Rp & 4 Earth
radii), drawing further contrast.

The problem outlined above has been dubbed the “KeplerDichotomy,”
and is interpreted as representing at least two separate populations;
one with low mutual inclinations and another with large mutual in-
clinations that are observed as singles. The physical origin of this
dichotomy remains unresolved (Morton and Winn, 2014; Becker and
Adams, 2015). To this end, Johansen et al. (2012) proposed the expla-
nation that planetary systems with higher masses undergo dynamical
instability, leaving a separate population of larger, mutually inclined
planets, detected as single transits. While qualitatively attractive,
this model has two primary shortcomings. First, it cannot explain
the excess of smaller single-transiting planets. Second, unreasonably
high-mass planets are needed to induce instability within the required
∼Gyr timescales. Accordingly, the dichotomy’s full explanation re-
quires amechanism applicable to amore general planetarymass range.
In this paper we propose such a mechanism – the torque arising from
the quadrupole moment of a young, inclined star.

The past decade has seen a flurry of measurements of the obliquities,
or spin-orbit misalignments, of planet-hosting stars (Winn, Fabrycky,
et al., 2010; Albrecht et al., 2012; Huber et al., 2013; Morton and
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Winn, 2014; Mazeh et al., 2015; Li and Winn, 2016). A trend has
emergedwhereby hot stars (Teff & 6200K) hosting hot Jupiters possess
obliquities ranging from 0◦ to 180◦, as opposed to their more modestly
inclined, cooler (lower-mass) counterparts. Further investigation has
revealed a similar trend among stars hosting lower-mass and multiple-
transiting planets (Huber et al., 2013; Mazeh et al., 2015). Most
relevant to theKeplerDichotomy,Morton andWinn (2014) concluded
at 95% confidence that single-transiting systems possess enhanced
spin-orbit misalignment compared to multi-transiting systems.

Precisely when these spin-orbit misalignments arose in each system’s
evolution is still debated (Albrecht et al., 2012; Lai, 2012; Storch,
Anderson, and Lai, 2014; Spalding and Batygin, 2015). However, the
presence of stellar obliquities within currently coplanar, multi-planet
systems hints at an origin during the disk-hosting stage (Huber et al.,
2013; Mazeh et al., 2015). Indeed, many studies have demonstrated
viable mechanisms for the production of disk-star misalignments, in-
cluding turbulence within the protostellar core (Bate, Lodato, and
Pringle, 2010; Spalding, Batygin, and Adams, 2014; Fielding et al.,
2015) and torques arising from stellar companions (Batygin, 2012;
Batygin and Adams, 2013; Spalding and Batygin, 2014; Lai, 2014;
Spalding and Batygin, 2015). Furthermore, Spalding and Batygin
(2015) proposed that differences in magnetospheric topology between
high and low-mass T Tauri stars (Gregory, Donati, et al., 2012) may
naturally account for the dependence of obliquities upon stellar (main
sequence) Teff. Crucially, if the star is inclined relative to its planetary
system whilst young, fast-rotating, and expanded (Shu, Adams, and
Lizano, 1987; Bouvier, 2013), its quadrupole moment can be large
enough to perturb a coplanar systemof planets into amutually-inclined
configuration after disk dissipation.
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In what follows, we analyze this process quantitatively. First, we
calculate the mutual inclination induced between two planets as a
function of stellar oblateness (J2), demonstrating a proof-of-concept
that stellar obliquity suffices as a mechanism for over-producing single
transiting systems. Following this, we use N-body simulations to
subject the famed, 6-transiting system Kepler-11 to the quadrupole
moment of a tilted, oblate star. We show that not only are the planetary
orbits mutually inclined, but for nominal parameters the system itself
can undergo a dynamical instability, losing 3-5 of its planets, with
larger mass planets preferentially retained. In this way, we naturally
account for the slightly larger observed size of singles (Johansen et al.,
2012).

5.2 Analytical Theory
In order to motivate the following discussion, consider two planets,
orbiting in a shared plane around an inclined, oblate (high J2) star.
The effect of the stellar potential is to force a precession of each plan-
etary orbit about the stellar spin pole, with the precession rate higher
for the inner planet. If planet-planet coupling is negligible, the subse-
quent evolution would excite a mutual inclination between the planets
of twice the stellar inclination (assuming fixed stellar orientation and
negligible eccentricities). Alternatively, if planet-planet coupling is
very strong, they will retain approximate coplanarity. Below, we an-
alytically compute the system’s evolution between these two extreme
regimes (i.e., for general J2).

Assumptions
We restrict our analytic calculation to small mutual inclinations be-
tween the planets and utilize Laplace-Lagrange secular theory (Mur-
ray and Dermott, 1999). This framework assumes the planets to be
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far from mean motion resonances, allowing one to average over the
orbital motion. Consequently, each planetary orbit becomes dynam-
ically equivalent to a massive wire, a concept that is due to Gauss
(Murray and Dermott, 1999; Morbidelli, 2002). Furthermore we set
all eccentricities to zero1.

The star’s orientation will be held fixed. The validity of this assump-
tion can be demonstrated by considering the ratio of stellar spin to
planetary orbital angular momenta:

J?
Λp
≡

I?M?R2
?Ω?

mp
√

GM?ap
, (5.1)

where I? ≈ 0.21 is the dimensionless moment of inertia appropriate
for a fully convective, polytropic star (Chandrasekhar, 1939), and
the stellar rotation rate is Ω? = 2π/P?. Consider a young, Sun-like
star, possessing a rotation period of P? = 10 days (on the slower end
of observations; Bouvier 2013) and a radius of roughly 2R� (Shu,
Adams, and Lizano, 1987). A 10 Earth-mass object would need to
orbit at over ∼100AU in order to possess the angular momentum of
the star. Thus, provided we deal with compact, relatively low-mass
systems, the stellar orientation can be safely fixed to zero.

A further assumption is that the dynamical influence of stellar oblate-
ness may be approximated using only the leading order quadrupole
terms, neglecting those of order O(J2

2 ). Therefore, the disturbing part
of the stellar potential (with e = 0) may be written as (Danby, 1992)

R =
GmpM?

2ap

(
R?
ap

)2
J2

(
3
2

sin2 ip − 1
)

≈
GmpM?

2ap
J2

(
R?
ap

)2 (
6s2

p − 1
)
, (5.2)

1This approximation is simply for ease of analytics and will be lifted in the numerical analysis
below.
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where the second step has made the assumption of small planetary
inclination ip and defined a new variable sp ≡ sin(ip/2) (this defini-
tion is introduced to maintain coherence with traditional notation in
celestial mechanics, e.g., Murray and Dermott (1999)).

Finally, it is essential to define an initial configuration for the planetary
system. Both numerical and analytic modeling of planet-disk interac-
tions suggest that embedded protoplanets have their inclinations and
eccentricities damped to small values within the disk-hosting stage
(Tanaka and Ward, 2004; Cresswell et al., 2007; Kley and Nelson,
2012). Furthermore, any warping of the disk in response to a stel-
lar companion is expected to be small (Fragner and Nelson, 2010).
Therefore, throughout this work we assume that the planets emerge
from the disk with circular, coplanar orbits that are inclined by some
angle β? relative to the star. Note that we will always fix the stellar
spin direction to be aligned with the z-axis, so β?, the stellar obliquity,
constitutes the initial inclination of the planetary orbits in our chosen
frame.

2-planet system
Incorporating the above assumptions, we may now write down the
Hamiltonian (H ) that governs the dynamical evolution of the planetary
orbits. To second order in inclinations (and dropping constant terms)
we have (Murray and Dermott, 1999)

H =
Gm1m2

a2

[ (
s2

1 + s2
2
)

f3 + s1s2 f14 cos(Ω1 −Ω2)

]
︸                                                      ︷︷                                                      ︸

Planet-planet interaction

−
3Gm1M?

a1
J2

(
R?
a1

)2
s2

1 −
3Gm2M?

a2
J2

(
R?
a2

)2
s2

2︸                                                      ︷︷                                                      ︸
Planet-stellar quadrupole interaction

, (5.3)
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where the prefactors are

f3 = −
1
2

f14 = −
1
2

(
a1

a2

)
b(1)3/2

(
a1

a2

)
, (5.4)

and b(1)3/2 is the Laplace coefficient

b(1)3/2(α) ≡
1
π

∫ 2π

0

[
cosψ

(1 + α2 − 2α cosψ)3/2

]
dψ. (5.5)

As we are using Hamiltonian mechanics, the dynamics must be de-
scribed in terms of canonical variables. Traditional Keplerian orbital
elements do not constitute a canonical set, so we transform to Poincaré
(or, modified Delauney; Murray and Dermott 1999) variables, defined
as

Zp ≡ mp
√

GM?ap
(
1 − cos(ip)

)
zp ≡ −Ωp. (5.6)

Physically, Zp is the angular momentum of a circular orbit after sub-
tracting its component in the z-direction. Notice that in the small
angle limit,

Zp ≈
1
2

mp
√

GM?api2
p ≡

1
2
Λpi2

p . (5.7)

After substituting, we arrive at the governing Hamiltonian

H = − E

[
Z1

Λ1
+

Z2

Λ2
− 2

√
Z1Z2

Λ1Λ2
cos(z1 − z2)

]
−

3
2

n1J2

(
R?
a1

)2
Z1 −

3
2

n2J2

(
R?
a2

)2
Z2, (5.8)

where for compactness we define

E ≡
Gm1m2

4a2

(
a1

a2

)
b(1)3/2

(
a1

a2

)
. (5.9)
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In order to complete the calculation, we define a complex variable for
that represents the inclination of each planet

ηp ≡

√
Zp

Λp

(
cos(zp) + ı sin(zp)

)
≈

1
√

2
ip
(
cos(Ωp) − ı sin(Ωp)

)
, (5.10)

where ı =
√
−1. The purpose is to cast Hamilton’s equations into an

eigenvector/eigenvalue problem. Specifically, in terms of these new
variables, we must solve

Ûηp = ı
∂H

∂η∗p

1
Λp
, (5.11)

in which “ ∗ ” denotes complex conjugation, yielding the matrix equa-
tion

d
dt

(
η1

η2

)
= −ı

(
B1 + ν1 −B1

−B2 B2 + ν2

) (
η1

η2

)
,

where we have defined four frequencies as

B1 ≡
1
4

n1

(
a1

a2

)2
b(1)3/2

(
a1

a2

)
m2

M?

B2 ≡
1
4

n2

(
a1

a2

)
b(1)3/2

(
a1

a2

)
m1

M?

νp =
3
2

npJ2

(
R?
ap

)2
. (5.12)

The equation above may be solved using standard methods, whereby
the solution is written as a sum of eigenmodes

ηp =

2∑
j=1

ηp, j exp(ıλ jt). (5.13)

Indeed, the problem may be easily extended to N planets, though
writing down all eigenvectors ηp, j and eigenmodes λ j rapidly becomes
cumbersome.
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Initial conditions and solution

A choice must be made for the initial conditions of the problem. As
alreadymentioned above, herewe choose the condition that both orbits
are initially coplanar, having recently emerged from their natal disk,
with the star inclined by some angle β? relative to them. Accordingly,
all four boundary conditions may be satisfied by requiring that

ηp
��
t=0 =

β?
√

2
. (5.14)

What we seek is the mutual planet-planet inclination (denoted βrel).
In the small angle approximation, we can compute this quantity using
the relation

(1 − cos(βrel)) ≈ η1η
∗
1 + η2η

∗
2 − (η1η

∗
2 + η2η

∗
1)

≈
1
2
β2
rel. (5.15)

After solving for eigenvalues, eigenvectors and matching the initial
conditions, we arrive at the solution for the mutual inclination of the
two planets as a function of time, which takes the rather compact form

βrel(t) = 2β?G(J2) sin(ω0t/2) , (5.16)

where we define the (semi-)amplitude of the oscillations between
planets

G = L

[
1 + L2 + 2

(
Λ2 − Λ1

Λ2 + Λ1

)
L

]−1/2
(5.17)

in terms of the ratio of frequencies

L ≡
ν1 − ν2

B1 + B2

= 6J2

(
R?
a1

)2 (a2

a1

)2 1

b(1)3/2(α)

M?

m2

1 − α7/2

1 + Λ1/Λ2
. (5.18)
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Figure 5.1: The amplitude of oscillations inmutual planet-planet inclinations excited
between two initially coplanar, circular planetary orbits βrel, scaled by twice the
stellar obliquity β?. The planets are situated at 0.05AU and 0.1AU for 3 different
mass configurations: The red line has a 10 Earth mass planet outside a 1 Earth
mass planet, where blue has the planets switched. The cyan line augments the inner
planet to 100 Earth masses. Notice that any time the inner planet has more angular
momentum, there exists a peak in the misalignments, representing resonance. In the
limit of large J2, the planets entirely decouple and reach mutual inclinations equal
to twice the stellar obliquity.

A convenient consequence of the aligned initial conditions is that the
oscillations are purely sinusoidal, evolving with half the frequency

ω0 ≡
[
(B1 + B2)

2 + (ν1 − ν2)

×
(
ν1 − ν2 + 2(B1 − B2)

) ]1/2
. (5.19)

One aspect to notice is that the amplitude is maximized when the
equality

ν1 +K
2B1 = ν2 +K

2B2 (5.20)
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is satisfied, whereK ≡ (Λ1+Λ2)/(Λ1−Λ2). Themaximumamplitude,
scaled by β?, can then be written as

2Gmax =
Λ1 + Λ2
√
Λ1Λ2

. (5.21)

The significance of this result is best seen upon considering the outer
planet to be a test particle, such that B1 = 0 and Λ2 → 0. In such a
scenario, the maximum of the amplitude Gmax →∞. Such an unphys-
ical result occurs as a consequence of a secular resonance (Murray and
Dermott, 1999; Morbidelli, 2002; Spalding and Batygin, 2014; Baty-
gin, Bodenheimer, and Laughlin, 2016), whereby the inner and outer
bodies precess at similar rates. In reality, our earlier approximation
that mutual inclinations are small breaks down in this regime and the
inclusion of higher order terms is required.

In principle, one may also set Λ1 → 0 and conclude that the above
resonance persists when the inner planet is a test particle. However,
the resonant criterion in terms of stellar oblateness reads:

J2
��
res ≈

1
6

(
a1

R?

)2 (a1

a2

)2 ( m2

M?

)
×

(
b(1)3/2(α)

Λ2

)
(Λ1 + Λ2)

2

(Λ1 − Λ2)(1 − α7/2)
, (5.22)

which is negative when Λ1 < Λ2. Accordingly, the condition for
secular resonance can only be satisfied when Λ1 > Λ2, i.e., when the
inner planet possess more orbital angular momentum than the outer
planet.

As an illustration, we plot the semi-amplitude G in Figure (5.1) appro-
priate for a configuration where the two planetary orbits are situated
at 0.05AU and 0.1AU, both orbiting a solar-mass star with radius
0.01AU (about twice the Sun’s radius). Three cases are shown: the
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red line depicts a 1 Earth mass planet interior to a 10 Earth mass planet
while the blue line has the planets interchanged. The former config-
uration possesses a positive J2

��
res, appearing as a maximum in the

amplitude. The third situation (the cyan line) represents a 100 Earth
mass planet interior to a 1 Earth mass body, illustrating that higher
mass inner planets may more easily misalign their outer companion
(equation 5.21), but J2

��
res is correspondingly higher.

Figure (5.1) demonstrates that misalignments of the order twice the
stellar obliquity can be readily excited for reasonable values of J2. By
geometric arguments, the potential for such misalignments to take one
of the planets out of transit depends upon the ratio R?/a. However, for
the cases considered above, only ∼ 4◦ of stellar obliquity are required
to remove the two planets from a co-transiting configuration (less than
the ∼ 7◦ present in the solar system; Lissauer, Ragozzine, et al. 2011).
Conversely, planets may remain co-transiting if the innermost planet is
sufficiently distant, the planets are very massive and/or tightly packed,
or the stellar quadrupole moment is particularly low.

5.3 Numerical Analysis
Several crucial aspects of real systems were neglected in order to
obtain the analytic solution (5.16) above. Principally, we included
only two planets whose orbits were assumed to be circular and only
slightly mutually inclined. Additionally, in averaging over short-term
motion, our adopted secular approach is unable to describe the full
dynamics. A more subtle aspect was that we considered a constant
J2, when in reality, stars are expected to spin down and shrink over
time until J2 is essentially negligible (Irwin et al., 2008; McQuillan,
Mazeh, and Aigrain, 2013; Bouvier, 2013).

In order to test our hypothesis within a more general framework, we



124

now turn to N-body simulations. To carry out the calculations, we
employed the well-tested Mercury6 symplectic integration software
package (Chambers 1999) 2. In addition to standard planet-planet in-
teractions, we modified the code to include the gravitational potential
arising from a tilted star of given J2, along with a term to produce gen-
eral relativistic precession (following Nobili and Roxburgh (1986)).

For the sake of definiteness, the parameters of our modelled system
were based off of Kepler-11, a star around which 6 transiting planets
have been discovered (Lissauer, Fabrycky, et al., 2011). Detailed
follow-up studies, using Transit Timing Variations, have constrained
the masses of the innermost 5 planets and placed upper limits upon
the mass of Kepler-11g, the outermost planet3, making this system
ideal for dynamical investigation. Though choosing one system is
not exhaustive, our goal is to demonstrate the influence of a tilted star
upon a general coplanar systemof planets. We followLissauer, Jontof-
Hutter, et al. (2013) and use their best-fit mass of 8Earth Masses for
Kepler-11g, with the stellar mass given by 0.961M� (see Table 5.1).

N-body simulation
For our numerical runs, we choose 10 values of stellar obliquity and
11 of initial stellar J2 = J2,0 (i.e., the oblateness immediately as the
disk dissipates). Once again, we fix the stellar orientation aligned with
the z-axis, but choose the initial planet-star misalignments:

β? ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80, 85}. (5.23)

The value of J2 for a star deformed by its own rotationmay be related to
its spin rate ω? and Love number (twice the apsidal motion constant)

2http://www.arm.ac.uk/ jec/home.html
3The mass of Kepler-11g, is only loosely constrained, however for the purposes of this work, it

is not particularly imperative to choose the “real” mass.
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k2 as follows (Sterne, 1939):

J2 =
1
3

(
Ω

Ωb

)2
k2, (5.24)

where Ωb is the break-up spin frequency at the relevant epoch. The
Love number can be estimated by modeling the star as a polytope with
index χ = 3/2 (i.e., fully convective; Chandrasekhar 1939), which
yields k2 ≈ 0.28. Observations constrain the spin-periods of T-Tauri
stars to lie within the range ∼ 1 − 10 days (Bouvier, 2013), while the
break-up period is given by

Tb =
2π
Ωb
≈

1
3

(
M?

M�

)−1/2 ( R?
2R�

)3/2
days. (5.25)

In our simulations below, we use the current mass of Kepler-11 for
the star, but suppose its radius to be somewhat inflated relative to its
current radius (R? = 2R�), reflecting the T Tauri stage (Shu, Adams,
and Lizano, 1987). With these parameters, we arrive at a reasonable
range of J2,0 of

10−4 . J2,0 . 10−2, (5.26)

within which we choose 11 values uniformly separated in log-space:

J2,0 ∈ {10−4, 10−3.8 ... 10−2}. (5.27)

In all runs, rather than allowing both R? and J2 to vary, we simply left
R? as a constant, letting J2 decay exponentially over a timescale of
τ = 1Myr

J2(t) = J2,0 e(−t/τ). (5.28)

The choice for τ is essentially arbitrary, provided J2 decays over many
precessional timescales, owing to the adiabatic nature of the dynamics
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(Lichtenberg and Lieberman, 1992; Morbidelli, 2002). Our choice of
1Myr roughly coincides with a Kelvin-Helmholtz timescale (Batygin
and Adams, 2013) but is chosen also to save computational time.

For each case, our integrations span 22 million years, beginning with
the initial condition of a coplanar system possessing the current semi-
major axes of the Kepler-11 system, but with eccentricities set to zero
(Lissauer, Jontof-Hutter, et al., 2013). In order to analyze the results,
we sample the system 6 times between 19 and 22 Myr, and at each
step calculate the maximum number of transiting planets that could
be observed from a single direction. The results at all six times were
then averaged.

The determination of the maximum number of transits was accom-
plished as follows. We begin by checking whether all possible pairs
within the 6 planets mutually transit, where the criterion for conclud-
ing a pair of planets to be non-transiting is�� sin(βrel)

�� > sin(βcrit) ≈
R?
a1
+

R?
a2
, (5.29)

where in the above formula we used the current radius of Kepler-
11 (R? = 1.065R�, as opposed to the inflated value relevant to the
T Tauri stage). If any single pair of planets was non-transiting, we
proceeded to choose each possible combination of 5 out of the 6 and
performed a similar pairwise test to identify potentially observable
5-transiting systems. If no set of 5 passed the test we chose all sets
of 4, etc, until potentially finding that only one planet could be seen
transiting. We note that the criterion above neglects the possibility of
fortunate orbital configurations allowing two mutually inclined orbits
to intersect along the line of sight. This complication, however, does
not affect our qualitative picture.
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5.4 Results
The numerical results are presented in Figure (5.2), where the x-axis
depicts the initial stellar J2 = J2,0. The y-axis refers to the mis-
alignment β? between the stellar spin axis and the initial plane of the 6
planets. Each run has been given its own rectangular box, withinwhich
the color represents the maximum number of co-transiting planets that
may be observed around the star (as discussed above). The numerics
verify our analytic result, in that the observable multiplicity may be
significantly reduced solely as a consequence of stellar obliquity.

As expected, higher values of J2,0 result in fewer transiting planets,
provided the star is tilted relative to the planetary orbits. As with our
analytic results, even small stellar obliquities are sufficient to reduce
the transit count, with 5◦ of obliquity reducing the transit number to
as little as 3 (Figure (5.2)). However, planet-planet mutual inclination
was not the only source of the reduction in transit number. A crucial
finding was that for large enough J2,0 and β?, the stellar quadrupole
potential caused the system to go unstable, casting 3-5 planets out
of the system or into the central body, with planet-planet collisions
existing as an additional possibility not captured in our simulations
(Boley, Contreras, and Gladman, 2016).

The region of instability (i.e., where at least one planet was lost) is
outlined by a dotted line in Figure (5.2). Interestingly, the areas of
instability map closely onto the regions where only a single transit re-
mains. In other words, almost every single-transiting system coming
out of the integration had lost planets through dynamical instability.
Furthermore, each time instability occurred, the 2 lowest mass mem-
bers were lost: Kepler-11b and f, with the next lowest mass body,
Kepler-11c often joining them. Such a preference for retaining more
massive planets is indeed reflected in the data as a slightly larger typ-
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Figure 5.2: The maximum number of transits detectable after 22 million years
of integrating Kepler-11 with a tilted, oblate star. The x-axis denotes the value
of J2 immediately after disk dispersal (J2,0) and the y-axis represents the stellar
inclination. The runs where planets were lost through instability are outlined by a
dotted line, which corresponds closely to the region where only single transits can
be observed (the purple region).

ical radius for single-transiting systems (Johansen et al., 2012). More
testing is required to determine whether this a generic feature of our
model, however.

We showed that for any given two-planet system, there exists a resonant
J2 if the inner planet has more angular momentum than the outer.
However, the picture becomes much more complicated in a multi-
planet system, where each planet introduces two additional secular
modes (one for eccentricity one for inclination; Murray and Dermott
1999), increasing the density of resonances in Fourier space. As the
stellar J2 decays, its influence sweeps across each resonance, providing
ample opportunity to excite mutual inclinations. If the two planets,
Kepler-11d and f, were alone, they could become resonant at J2

��
res ∼
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10−2.4, which coincides approximately with the onset of instability in
the low-inclination runs (Figure 5.2) but not exactly, for the reasons
mentioned above.

5.5 Discussion
In recent years, the Kepler dataset has grown sufficiently compre-
hensive to facilitate statistically robust investigations at a population
level. Out of this data has emerged a so-called “Kepler Dichotomy”;
the notion that single-transiting systems are too common to be ex-
plained as resulting from a simple distribution of mutual inclinations
within systems of higher multiplicity (Johansen et al., 2012; Ballard
and Johnson, 2016).

In separate studies, significant misalignments have been detected be-
tween the stellar spin axes and the planetary orbits they host, partic-
ularly around stars with main sequence Teff & 6200K (Winn, Fab-
rycky, et al., 2010; Albrecht et al., 2012; Mazeh et al., 2015; Li and
Winn, 2016). This trend initially became apparent within the hot
Jupiter dataset and was consequently often interpreted as evidence
for a post-disk, high-eccentricity migration pathway for hot Jupiter
formation4. However, a similar trend has now emerged within Kepler
systems, including the multi-transiting sub-population (Huber et al.,
2013; Mazeh et al., 2015), with little evidence supporting a tidal ori-
gin (Li and Winn, 2016). These observations cumulatively suggest
that many of the misalignments originated from directly tilting the
protoplanetary disk, thereby inclining all planets in the system at once
(Batygin, 2012; Spalding and Batygin, 2014; Lai, 2014; Spalding and
Batygin, 2015; Fielding et al., 2015).

4The dependence on host star temperature (and therefore mass) was attributed to tidal dissipation
within the convective regions of lower-mass stars (Winn, Fabrycky, et al., 2010; Lai, 2012).
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A consequence of primordially-generated spin-orbit misalignments is
that stellar obliquity would be present at the end of the natal disk’s
life, leaving the planetary orbital architecture subject to the quadrupole
moment of their young, rapidly-spinning and expanded host star. This
paper has demonstrated that such a configuration naturally misaligns
close-in systems and, furthermore, provides a mechanism for dynam-
ical instability that by-passes the problem encountered in earlier work
that unreasonably large planets were required to induce instability
(Johansen et al., 2012).

The observablemultiplicity of transiting systems can be reduced either
by inclining planetary orbits relative to each other, or by intrinsically
reducing the number of planets. Here, we have shown that both can be
at play, with modest J2 and stellar obliquity causing misalignments,
whereas sufficiently large values thereof lead to dynamical instability,
shedding planets. The origin of the instability is likely secular in
nature, and significant planet-planet inclinations have been shown to
reduce the inherent stability of planetary systems in numerous previous
works (Laughlin, Chambers, and Fischer, 2002; Veras and Armitage,
2004; Nelson, Ford, et al., 2014). In support of this interpretation, our
simulations resulted in planetary instability at much smaller J2 when
obliquity was high & 40◦. Accordingly, we would expect multiplicity
(both transiting and intrinsic) to be lower around hot stars, which tend
to possess higher obliquities (Winn, Fabrycky, et al. 2010; see below).

Predictions
Imposing stellar obliquity as a source of the Kepler Dichotomy leads
to several predictions. Naturally, stars leaving the disk-hosting stage
with larger J2 and obliquity are more likely to end up observed as
exhibiting single-transits, either as a result of dynamical instability
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or the excitation of mutual planet-planet inclinations. As mentioned
above, there is an observed trend whereby stars with Teff & 6200K
exhibit higher obliquity (Winn, Fabrycky, et al., 2010; Albrecht et al.,
2012; Mazeh et al., 2015) and so, on the face of it, one would expect
a higher relative incidence of singles around higher mass stars. The
picture is, however, complicated by the universal feature of stellar
evolution models that more massive stars contract along their Hayashi
tracks faster (Siess, Dufour, and Forestini, 2000). Accordingly, the
influence of J2 in more massive stars may have decayed to a greater
extent than in lower-mass stars by the time their natal disk dissipates,
partly offsetting the impact of their larger typical obliquities.

The above complications notwithstanding, both our analytical and
numerical analyses suggest a greater sensitivity of the degree of mis-
alignment to stellar obliquity than to stellar J2. Consequently, wemake
the prediction that hot stars possess more abundant single-transiting
systems relative to cool stars.

Previous work has already suggested the existence of our predicted
trend. Specifically, both hotter stars and, independently, single-
transiting systems appear to exhibit higher obliquities (Morton and
Winn, 2014; Mazeh et al., 2015). The overlapping of these two find-
ings implies at least a weak trend toward more singles around hotter
stars. In order to further test this prediction, we carried out a simple
statistical analysis of confirmed Kepler planets, as we now describe.

Kepler data
To obtain data on confirmed, Kepler systems, we downloaded the data
from the “Confirmed Planets” list (as of July 2016) on the NASA
Exoplanet Archive website5. The systems were filtered to include

5http://exoplanetarchive.ipac.caltech.edu
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only those in the Kepler field, though the conclusions that follow do
not change qualitatively if non-Kepler detections are included.

In Figure (5.3), we split the data into “hot” stars with Teff > 6200K
(132 in total) and “cool” stars, with Teff < 6200K (1504 in total).
For each sub-population, we illustrate the fraction of systems as a
function of the number of planets observed in transit. The hot stars
clearly demonstrate a larger fraction of singles and a smaller fraction
of multiples for each value of multiplicity, in agreement with the
predictions of our model. In order to quantify the significance of this
agreement, we carry out a statistical test that quantitatively compares
the two populations.

transiting planet number
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cool stars 73% single(Te↵ < 6200 K)

Figure 5.3: Fraction of systems exhibiting each number of transiting planets from
1 to 7 within the hot (Teff > 6200K, red bars) and cool (Teff < 6200K, blue bars)
sub-samples of planet-hosting Kepler stars. There were 132 hot stars and 1504 cool
stars in the data used, of which 83% and 73% respectively exhibited single transits.
Accordingly, transiting systems around hot stars show a stronger tendency toward
being single, in agreement with the predictions of our presented model (see text).
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Using Bayes’ theorem, with a uniform prior, we generated a binomial
distribution for hot stars and cool stars separately that illustrates the
probability of the data, given an assumption about what fraction of
systems are single. Such an argument is similar to determining the
fairness of a coin flip, where heads equates to a single system and tails
a multi system. Specifically, we plot

P({data}|S) = ASNs(1 − S)Nt−Ns, (5.30)

where Ns is the number of single systems within a population of Nt

total stars and A is a normalization coefficient (Sivia, 1996). The
variable S is the single bias weighting; the probabilistic tendency
for a population of planet-hosting stars to display single transits as
opposed to multiples. The quantity P({data}|S) gives the probability
of reproducing the data if the underlying tendency is S. In the hot
population, Nt = 132 and Ns = 110, whereas the cool population had
Nt = 1504 and Ns = 1098.

As can be seen from Figure (5.4), the two distributions are visually
distinct, with hotter stars possessing a stronger bias towards singles,
with a significance of 2.9σ 6. More data are needed to tease out this
relationship further and to isolate the influence of a tilted star versus
other confounding factors, such as the dependence upon stellar mass
of the occurrence rate of giant planets. For now, we conclude that
the data supports our general prediction that hotter, more oblique stars
possess a relatively greater abundance of single-transiting planets.

A separate prediction relates to the distance of the planets from the
host star. Specifically, the quadrupole moment falls off as R2

?/a
2,

whereas the coplanarity required for transit grows as a/R?, and so
6Where σ2 here is defined as the sum of the squares of the standard deviations of each individual

distribution.
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Figure 5.4: Probability of the data, given an intrinsic fraction S of singles out of
systems with hot (red line) and cool (blue line) stars. The separation of the peaks
is roughly 2.9σ (as defined in the text). Therefore, to a very high confidence, hot
stars possess relatively more singles, as our hypothesis predicts.

the overall magnitude of our proposed mechanism should become
negligible within more distant systems. In consequence, we predict
that the “Kepler Dichotomy” signal will weaken for systems at larger
orbital distances. As future missions, such as TESS collect more data,
this unique aspect of ourmodelwill become amenable to observational
tests.

A caveat to the above analysis is that the dichotomy appears to persist
within the population of planets around M-dwarfs (Ballard and John-
son, 2016). This is problematic, as these stars are expected to exhibit
lower inclinations, being cooler on the main sequence. We interpret
this as stellar oblateness being effective across all stellar masses, but
being relatively more important within the hotter, more inclined pop-
ulation. This is supported by our numerical simulations, where even
small obliquities reduced the transit number if oblateness was large
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enough (Figure (5.2)).

The origin of spin-orbit misalignments
Our work here essentially relies upon the assumption that stellar obliq-
uity is excited early on, in the disk-hosting stage. This is not the only
potential origin for spin-orbit misalignments, with alternative path-
ways including secular chaos (Lithwick and Wu, 2012), planet-planet
scattering (Ford and Rasio, 2008) and Kozai interactions (Naoz, Farr,
Lithwick, et al., 2011; Petrovich, 2015b). These mechanisms are tra-
ditionally inseparable from the idea that hot Jupiters migrate through
a post-disk, high-eccentricity pathway (Wu and Murray, 2003; Petro-
vich, 2015a). Whereas it is likely that some hot Jupiters formed in
this way, it is unlikely to constitute the dominant pathway (Dawson,
Murray-Clay, and Johnson, 2014) and, furthermore, cannot explain
the spin-orbit misalignment distribution in Kepler systems (Mazeh et
al., 2015; Li and Winn, 2016). Rather, disk-driven migration consti-
tutes a favourable mechanism that may retain multiple planet systems
within the same plane, and can account for the observed spin-orbit
misalignments if the disk itself becomes misaligned with respect to
the host star.

To that end, multiple studies have shown that a stellar companion is
dynamically capable of exciting star-disk misalignments across the
entire observed range of spin-orbit misalignments (Batygin, 2012;
Spalding and Batygin, 2014; Lai, 2014). Specifically, the tidal poten-
tial of a companion star, or even that of the star cluster itself, induces
a precession of the disk orientation, leading to significant star-disk
misalignments, usually by way of a secular resonance (Spalding and
Batygin, 2014). Although observations of disk orientation in young
binary systems are elusive, there exists at least one known example of
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a binary where each star has a disk with its plane misaligned to that of
the binary (Jensen and Akeson, 2014), just as in the aforementioned
theoretical picture. Furthermore, stellar multiplicity appears to be a
nearly universal outcome of star formation (Duchêne and Kraus, 2013;
Beuther et al., 2014).

Within the framework of primordial excitation of spin-orbit misalign-
ments, the dependence upon stellar mass (orTeff) has been linked to the
observed multipolar field topology of higher mass T Tauri stars com-
pared with the more dipolar configuration seen in lower-mass T Tauri
stars (Gregory, Donati, et al., 2012). The weaker dipoles of higher
mass stars increase their magnetic realignment timescales above that
of their lower-mass counterparts, naturally explaining the observed
trend in spin-orbit misalignments with stellar Teff, and therefore mass
(Spalding and Batygin, 2015). Our work here has demonstrated an ad-
ditional consistency between observations and primordially excitied
spin-orbit misalignments, namely that the Kepler Dichotomy natu-
rally arises from the dynamical response of multi-planet systems to
the potential of an oblate, tilted star.

5.6 Conclusions
This paper investigates the origin of the “Kepler Dichotomy,” within
the context of primordially-generated spin-orbit misalignments. We
have shown that the quadrupole moment of such misaligned, young,
fast-rotating stars is typically capable of exciting significant mutual
inclinations between the hosted planetary orbits. In turn, the number
of planets available for observation through transit around such a star
is reduced, either through dynamical instability or directly as a result
of the mutual inclinations, leaving behind an abundance of single-
transiting systems (Johansen et al., 2012). The outcome is an apparent
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Kepler-11
Property b c d e f g
Mass (Earth
masses)

1.9 2.9 7.3 8.0 2.0 8.0

Radius (Earth
radii)

1.80 2.87 3.12 4.19 2.49 3.33

a (AU) 0.091 0.107 0.155 0.195 0.250 0.466
Period (days) 10.3 13.0 22.7 32.0 46.7 118.4

Table 5.1: The parameters of the Kepler-11 system. The mass of Kepler-11g only
has upper limits set upon it, but we follow Lissauer, Jontof-Hutter, et al. (2013) and
choose a best fit mass of 8 Earth masses here.

reduction in multiplicity of tilted, hot stars, with their observed singles
being slightly larger, as a consequence of many having undergone
dynamical instabilities, in accordance with observations.

Through the conclusions of this work, the origins of hot Jupiters and
of compact Kepler systems, the Kepler Dichotomy, and spin-orbit
misalignments, are all placed within a common context.
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C h a p t e r 6

THE UBIQUITY OF STELLAR OBLATENESS AS A DRIVER
OF DYNAMICAL INSTABILITY
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ABSTRACT

The Kepler mission and its successor K2 have brought forth a cas-
cade of transiting planets. Many of these planetary systems exhibit
multiple transiting members, but a large fraction possess only a single
transiting example. This overabundance of singles has lead to the
suggestion that up to half of Kepler systems might possess significant
mutual inclinations between orbits, reducing the transiting number
(the so-called “Kepler Dichotomy”). In a recent paper, Spalding et
al. (2016) demonstrated that the quadrupole moment arising from
a young, oblate star is capable of misaligning the contitue orbits of
a close-in planetary system enough to reduce their transit number.
Moreover, the 6-transiting system Kepler-11 was shown to become
destabilized during the process. Here, we investigate the ubiquity of
the stellar obliquity-driven instability within systems of lower multi-
plicity. We find that the instability occurs in most planetary systems
analysed, including those possessing only 2 planets. Given the known
parameters of T Tauri stars, we predict that between 1/4 and 1/2
of super-Earth mass systems may encounter the instability, in general
agreement with the fraction required to explain theKeplerDichotomy.
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6.1 Introduction
The ever-growing yield of exoplanetary detections continues to reveal
peculiarities between the properties of our own solar system and the
galactic norm (Batalha et al., 2013; Fabrycky, Lissauer, et al., 2014).
Among these, we highlight two features in particular. The first is that
planetary orbits hosted by other stars frequently occupy a region inte-
rior to about 0.4AU (where AU=Astronomical Unit), i.e., Mercury’s
approximate position in our solar system. In contrast, extrasolar plane-
tary systems are awash with examples of planets orbiting significantly
closer than Mercury (Batalha et al., 2013).

A second key aspect of the solar system is that the angular momentum
vectors of the eight confirmed planets are mutually inclined by only
∼ 1 − 2 ◦. In the 18th century, this coplanarity inspired the so-called
“Nebular Hypothesis,” wherein planetary systems originate from flat
disks of gas and dust (Kant 1755, Laplace 1796).1 Given the ubiquity
with which planets form within disks, the expectation is that other
planetary systems emerge from their protoplanetary nebula possessing
a coplanar architecture. However, the frequency with which this
coplanarity is retained over Gyr timescales is not fully understood.

Observational determination ofmutual inclinations between extrasolar
planetary orbits has proved exceedingly difficult (Winn and Fabrycky,
2015). Inclined planetary companions are frequently hypothesized
as explanations for peculiar signals among transiting planets (Dawson
and Chiang, 2014; Lai and Pu, 2017), and under special circumstances
stability arguments have been used to place limits upon mutual incli-
nations (Laughlin, Chambers, and Fischer, 2002; Veras and Armitage,
2004; Nelson, Ford, et al., 2014). In addition, among systems with

1In contrast, the absence of material inside of Mercury’s orbit remains mysterious (Batygin,
Morbidelli, and Holman, 2015).
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multiple transiting planets, the relative transit durations reveal mutual
inclinations, but are generally limited to small values owing to the
requirement that the planets simultaneously transit.

A separate method of ascertaining mutual inclinations has been to
compare the relative numbers of multi-transiting systems to single-
transiting systems (Lissauer, Ragozzine, et al., 2011; Johansen et al.,
2012; Tremaine and Dong, 2012; Ballard and Johnson, 2016). If
planetary systems are typically as coplanar as the solar system, one
would expect to observe a larger abundance ofmulti-transiting systems
than from a hypothetical population with larger mutual inclinations.
Though conclusions differ in the literature (Tremaine andDong, 2012),
it is generally difficult to fit the observedmultiplicity distribution using
a single population of mutually coplanar planetary systems; there are
too many single-transiting systems. Rather, some fraction (up to
50%; Johansen et al. 2012; Ballard and Johnson 2016) of systems
either possess large mutual inclinations and therefore reveal only one
planet at a time in transit, or alternatively this fraction of stars host
only one planet.

The aforementioned over-abundance of single systems has been dubbed
the “Kepler Dichotomy.” Planet-planet interactions alone are gener-
ally unable to excite sufficient mutual inclinations (Becker and Adams,
2015), unless a massive exterior companion exists (Lai and Pu, 2017).
Others have proposed a dichotomy in disk properties (Moriarty and
Ballard, 2016). However, there still exists no widely-accepted expla-
nation for the dichotomy. Furthermore, it remains unclear whether the
singles are truly single, or rather members of mutually inclined multi
systems.

The earliest attempt to explain the dichotomy proposed dynamical
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instability within the single systems (Johansen et al., 2012), consis-
tent with the larger sizes of single-transiting planets. This idea was
disfavoured, largely owing to the unrealistically large masses required
in order to trigger instability within Gyr timescales. To that end,
Spalding and Batygin (2016) demonstrated that the quadrupole mo-
ment arising from a tilted, oblate central star is sufficient to misalign
the orbits of planets enough to reduce their transit number. Upon
simulating the 6-transiting Kepler-11 system, the stellar quadrupole
was found to drive dynamical instability over a multi-Myr timescale,
partly resolving the timescale issue in Johansen et al. (2012).

The primary goal of this paper is to deduce the ubiquity of the afore-
mentioned instability mechanism across different planetary systems.
Specifically, Spalding and Batygin (2016) were unable to say whether
the instability is likely to occur in planetary systems with lower mul-
tiplicities than Kepler-11. Within a simplified, analytical framework,
2-planet systemswere shown susceptible to becomingmisalignedwith
one-another, but a more sophisticated treatment is required to inves-
tigate the potential for dynamical instabilities. Accordingly, in this
work, we simulate systems with multiplicities ranging from 2 to 4
planets.

We find that the instability occurs inmost systems simulated, including
even 2-planet systems. Therefore, our second goal is to develop insight
into the mechanism of instability. In brief, we show that the stellar
quadrupole tilts the planetary orbits to a point where the precession
rates of their longitudes of pericenter become approximately com-
mensurate. This commensurability drives the eccentricities upward
until the orbits cross, triggering instability. We provide a qualitative
outline of the dynamics in this work, leaving a focused, quantitative
description of the instability for a future paper.
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6.2 Methods
In order to determine the influence of a tilted, oblate star upon Kepler
systems in general, we simulated the first 20million years of a selection
of 11 planetary systems. For each system, we performed a suite of 110
N-body simulations, where each simulation corresponds to a different
combination of stellar obliquity and stellar oblateness. Throughout
each simulation, the stellar oblateness is allowed to decay, reflecting
contraction onto the main sequence, though many systems undergo
instability before the 20 million year simulation is concluded. For
those that remain stable, we compute the mutual inclinations between
the remaining planets in order to determine how many of the planets
could be observed in transit.

Choice of systems
Our goal was to determine whether the obliquity-driven instability
mechanism proposed in Spalding and Batygin (2016) is generic across
planetary systems with lower multiplicities than Kepler-11. Accord-
ingly, we modelled 6 examples of 2-planet systems, 3 examples of
3-planet systems, and 2 examples of 4-planet systems. We drew the
system parameters from real, detected systems where measurements
are available of the planetary masses Jontof-Hutter et al. (2016). The
properties of these systems are outlined in Table 6.1.

Choosing real rather than fabricated systems has 2 advantages. First,
we can be sure that the masses and semi-major axes in our simula-
tions are representative of planetary system architectures known to
exist. Second, given that these systems are observed to exhibit multi-
ple transits, we may place constraints upon the obliquities of the host
stars in order that their coplanarity has been retained. Such constraints
upon stellar obliquity are particularly valuable in systems of low-mass
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Modelled system parameters
Name M?

(M�)
a1 (AU) m1

(Earth
masses)

a2 (AU) m2
(Earth
masses)

a3 (AU) m3
(Earth
masses)

a4 (AU) m4
(Earth
masses)

K2-38 1.07 0.0505 12 0.0965 9.9 - - - -
Kepler-10 0.913 0.0169 3.33 0.241 17.2 - - - -
Kepler-29 0.979 0.0922 4.5 0.1090 4.0 - - - -
Kepler-36 1.071 0.1153 4.45 0.1283 8.08 - - - -
Kepler-131 1.02 0.1256 16.13 0.1708 8.25 - - - -
Kepler-307 0.907 0.0904 7.4 0.105 3.6 - - - -
Kepler-18 0.972 0.0446 6.9 0.0751 17.3 0.117 16.4 - -
Kepler-51 1.04 0.253 2.1 0.384 4.0 0.509 7.6 - -
Kepler-60 1.041 0.0734 4.2 0.0852 3.9 0.103 4.2 - -
Kepler-79 1.17 0.117 10.9 0.187 5.9 0.287 6.0 0.386 4.1
Kepler-223 1.13 0.0771 7.4 0.0934 5.1 0.123 8.0 0.148 4.8

Table 6.1: The parameters of the simulated Kepler systems. Initially, we set all
eccentricities to zero. Date are obtained from (Jontof-Hutter et al., 2016) and
exoplanetarchive.

planets, where alternative techniques for spin-orbitmisalignmentmea-
surements are notoriously difficult to accomplish (Winn, Fabrycky, et
al., 2010; Wang et al., 2017).

Numerical Set-up
We begin by performing numerical simulations of planetary systems
orbiting stars with varying degrees of obliquities and quadrupole mo-
ments. Throughout, we utilize the mercury6 N-body symplectic inte-
grator (Chambers, 1999). The planets move under the action of their
own mutual gravity, along with that of the host star. Expanded to
quadrupole order, the stellar potential may be written as

V? = −
GM?

r

[
1 −

(
R?
r

)2
J2

(
3
2

cos2 θ −
1
2

)]
, (6.1)

where θ is the angle between the planet’s position and the spin axis
of the star. The stellar mass and radius are denoted M? and R?, the
distance from the center of the star is written r , and G is Newton’s
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Figure 6.1: A schematic of our numerical simulations. The planetary system is
initialized with coplanar orbits, all sharing a mutual inclination of β?with the stellar
spin axis. The star begins with an oblateness parameter J2 = J2,0 which decays
exponentially on a 1 million year timescale. The simulations are carried out using
the symplectic N-body integrator mercury6 (Chambers, 1999).

gravitational constant. The quantity J2 is known as the second grav-
itational moment and encodes the star’s oblateness, to quadrupole
order.

A measurement of J2 in distant stars is well beyond observational
capabilities. However, it can be shown (Sterne, 1939;Ward, Colombo,
and Franklin, 1976) that J2 relates to the stellar spin rate Ω? through
the expression

J2 ≈
k2

3

(
Ω?

Ωb

)2
, (6.2)

where k2 is the Love number and Ωb =

√
GM?/R3

? is the stellar
break-up angular velocity. This approximation holds when Ω? � Ωb,
which is the case for most T Tauri stars (Bouvier, 2013). The benefit
of parameterizing J2 as above is the ability to directly measure Ω?,
and to obtain k2 and Ωb from stellar models. Specifically, the Love



146

number k2 may be computed from polytropic models of polytropic
index χ = 3/2, yielding k2 ≈ 0.28 (Chandrasekhar, 1939; Batygin
and Adams, 2013).

Owing primarily to Kelvin-Helmholtz contraction, the product J2R2
?

will decay with time, and with it the quadrupole moment. We choose
to parameterize this contraction by supposing that the radius of the
star is fixed at R? = 2R�, reflecting the inflated radius typical of
young stars (Shu, Adams, and Lizano, 1987). However, we allow J2

to undergo exponential decay such that

J2(t) = J2,0 exp(−t/τc), (6.3)

where J2,0 is the initial value of J2 and the Kelvin-Helmholtz timescale
τc = 1Myr (Batygin and Adams, 2013).

In our prescription 6.2 for J2, we prescribe M? and R?, yielding Ωb,
along with a value k2 = 0.28. The final component is the stellar spin
rate. Here, we must draw from observations of young stars (Bouvier,
2013) which suggest a distribution of rotation periods ranging from
∼ 1 − 10 days. Using the parameters above, we arrive at a range of
J2,0 given by

10−4 . J2,0 . 10−2. (6.4)

Accordingly, in our simulations we choose 11 values of J2,0, equally
separated in log-space:2

log10(J2,0) ∈ {−4, −3.8, ... ,−2}. (6.5)

2It should be noted that our simulations will begin subsequent to disk-dispersal, meaning that
the stellar radius is likely to be somewhat reduced from 2R� and so our strongest quadrupole is a
slight over-estimate.
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Figure 6.2: The number of planets detectable in transit after 20 million years of
simulation from an initially 2-planet configuration. Solid black lines denote the
critical obliquity as a function of J2,0 predicted to reduce the transit number from 2
to 1 according the the formula Spalding and Batygin (2016). The dotted line outlines
the region where one of the two planets was lost owing to dynamical instability. We
explore the mechanism of instability in more detail by examining the cases outlined
in blue on the plot for K2-38.

In all simulations, we fix the spin axis of the star to be parallel to the
z-axis. This approximation holds provided the angular momentum
of the star is significantly larger than that of the planetary orbits. A
planet of mass mp following a circular orbit at semi-major axis ap,
possesses angular momentum mp

√
GM?ap, which, when divided by

that of a star of dimensionless moment of inertia I ≈ 0.21, yields an
angular momentum ratio between the two of

j ≡
mp

√
GM?ap

IM?R2
?ω?

≈ 0.05
(

mp

10Mearth

) (
M?

M�

)−1/2

(
P?

10 days

) (
R?
R�

)−2 ( ap

0.1AU

)1/2
. (6.6)

The smallness of j validates our assumption that the stellar spin axis
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does not change significantly with time.

We note that our modelled systems take their masses and semi-major
axes from observed systems, but we are not necessarily attempting to
reconstruct the history of these systems in detail. Rather, we are using
their orbital parameters as general guidelines for “typical” planetary
system parameters. As initial conditions, we set all eccentricities to
zero. For each value of J2,0, we run simulations with 10 different initial
stellar obliquities (β?), spread between 0 and 90 degrees, including:

β? ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80, 85}. (6.7)

Determination of transit number
At each time step in our model runs, we determine the maximum
number of planets that can be seen transiting by computing the mutual
inclination between all of the planetary orbital pairs. Considering a
pair of planets i and j, the mutual inclination Ii j will remove them
from transit if the following criterion is satisfied�� sin(Ii j)

�� & R?
ai
+

R?
a j
. (6.8)

For example, given three planets we compute I12, I13, and I23. If all
satisfy the above criterion, the transit number is unity. If I12 and/or I23

do not satisfy the criterion but I13 does, the transit number is 2, etc.
Given that the mutual inclination will change with time, potentially
bringing the planet pairs into and out of mutual transit, we average the
transit number over the final 10 time-steps of the integration (spanning
∼ 105 years).

Caveat: Disk Potential
It is important to point out one confounding factor in our results.
We began with an initial condition whereby the planetary system
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possessed a non-zero inclination with respect to the stellar spin axis.
However, in any physical situation like this, it is important to ask
how the system was set up in that configuration, especially if that
configuration is not a steady-state. Here, the key assumption was that
the disk dispersed on a short enough timescale such that the planets
inherited the disk’s plane exactly.

To examine this problem, we cannot simply add a disk potential to the
numerical simulations, because in that case fixing the stellar preces-
sion axis is no longer valid (Spalding and Batygin, 2014). The disk
will induce a nodal regression upon the planetary orbits of (Hahn,
2003)

νcrit ≈ np
πσa2

p

M?

ap

h
, (6.9)

where σ is the disk’s surface density and h is the disk’s scale height.
We may define the time of disk dispersal as the point at which νd

is approximately equal to the nodal regression induced by the stellar
quadrupole moment (ν? = (3/2)J2(R?/ap)

2). This criterion corre-
sponds to a disk surface density of

σd ≈

(
3M?hJ2

2πa3

) (
R?
a

)2

≈ 200g cm−2, (6.10)

where we used J2 = 10−3, h/a = 0.05 and R? = 2R�. The sur-
face density of the MMSN at 0.1AU is approximately 50,000 gcm−2,
meaning that disk dispersal for our purposes happens at the point when
the disk possesses roughly 1% of its original mass (Armitage, 2010).
The final stages of disk dispersal in the inner regions are thought to
progress through viscous accretion, subsequent to photoevaporative
starvation from gas accreting inwards from the outer disk. The viscous
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time at 0.1AU is given by

τν ≈
a2

p

ν

≈
a2

p

αh2Ω

≈ 2000 years, (6.11)

whereas the precession timescale from the stellar quadrupole is roughly
300 years. Given that the disk dissipates on a longer timescale than
the precession timescale, the system might reduce its spin-orbit mis-
alignment during disk dissipation as the stellar quadrupole begins to
dominate over the disk’s quadrupole. More work is required in order
to investigate this possibility. The timescales and physics governing
disk dispersal are poorly understood, and so we leave this aspect of the
problem as a caveat, to be returned to once better constraints become
available.

6.3 Results & Discussion
For each planetary system, we construct a grid of colors representing
the 110 chosen combinations of stellar obliquity and initial J2,0. Sys-
tems of 2 planets are illustrated in Figure 6.2 and those with 3 or 4
planets are depicted in Figures 6.3 & 6.4. The number of co-transiting
planets associated with each color is labeled on the figures. Crucially,
we outline the cases where instability occurred with a dotted line and
grey shading. Here, instability is defined as the loss of at least one
planet from the system. In reality, the escape velocities of the plan-
ets considered are too low to typically remove other planets from the
system entirely. Rather, the end result is that planets that are lost will
end up either colliding with the star, or colliding with the remaining
planets. We do not take account of the collisions themselves in this
work.
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Figure 6.3: The number of planets detectable in transit after 20 million years of
simulation from an initially 3-planet configuration. The dotted line outlines the
region where one or more planets were lost owing to dynamical instability.

An analytic formula was derived in Spalding and Batygin (2016),
relating the mutual inclination excited owing to the stellar quadrupole,
under the assumptions of circular orbits and low inclinations. For the
2-planet systems, we draw a solid black line that denotes this predicted
boundary between coplanar and misaligned orbits.

As stated above, our primary goal was to delineate the ubiquity of
stellar oblateness as an instabilitymechanism. To that end, we note that
only Kepler-10 was immune to instability for all chosen parameters,
with Kepler-36 remaining stable all but two times. All other systems
were susceptible, at least for the upper range of J2,0. Accordingly, we
conclude that the instability mechanism uncovered in Spalding and
Batygin (2016) constitutes a viable pathway toward instability for low
and high-multiplicity systems alike. In general terms, the range of J2,0

leading to instability is slightly smaller for the 3 and 4 planet systems
than 2-planet systems; however, given our small sample size such a
pattern is by no means statistically significant.

Eccentricities
If a single-transiting system is observed, it is difficult to infer whether
there exist any non-transiting companions. Within the frame of our
present investigation, a key signature of dynamical instability is the
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Figure 6.4: The number of planets detectable in transit after 20 million years of
simulation from an initially 4-planet configuration. The dotted line outlines the
region where one or more planets were lost owing to dynamical instability.
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presence of significant eccentricity within the planetary orbits that
remain subsequent to instability. Eccentricity therefore constitutes an
observable signature of instability, however, for the shortest-period
systems tidal effects are likely to have damped out any traces of pri-
mordial eccentricity. The tidal circularization timescale is given by
(Murray and Dermott, 1999)

τe ≡

����eÛe ���� ≈ 2
21

Q
k2,pnp

mp

M?

(
ap

Rp

)5

≈ 40
(

ap

0.1AU

) 13
2
(
Q/k2,p

1000

) (
2REarth

Rp

)5
Gyr, (6.12)

where k2,p is the planetary Love number and Qp is its tidal quality
factor. Put another way, planets possessing 10 Earth masses and 2
Earth radii will circularize within a Gyr for semi-major axes below
ap ∼ 0.05AU. Those with semi-major axes exceeding ap ∼ 0.1AU
ought to possess eccentricities that are relatively unaffected by tides,
though numerous other dynamical interactions are capable of exciting,
or indeed damping, their eccentricities.

With the caveat regarding tidal circularization in mind, it is interest-
ing to tabulate the orbital parameters of the planet that remains after
dynamical instability within the four most unstable 2-planet exam-
ples – K2-38, Kepler-27, Kepler-131, and Kepler-307. As can be
seen from Table 6.2, the mean eccentricity of the remaining planet is
roughly ēi ≈ 0.3 − 0.4.

Cumulatively, we may propose the following observational signature.
First, consider a sample of single-transiting systems beyond 0.1AU.
Suppose that they are composed of two populations: a fraction fin that
have undergone dynamical instability and a fraction fin that have not.
The latter fraction did not pass a dynamical instability, and appear sin-
gle owing to exhibiting mutual inclinations with unseen companions,
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or alternatively were born single. According to our proposed mech-
anism, the population that experienced instability should possess a
mean eccentricity of ēinst ≈ ēi. If the mean across both populations is
ē and the mean of the stable population is ēst � ēinst, one can show
that

fin =
ē − ēst

ēinst − ēst

≈
ē

ēinst
, (6.13)

where the second equality assumes the stable population will exhibit
eccentricities much lower than the unstable population.

Typically, theKeplerDichotomy is quoted as reflecting a roughly equal
split between the large and small inclination systems, i.e., fin = 1/2
(Johansen et al., 2012; Ballard and Johnson, 2016). In order to
reproduce this fraction with ēu,o ≈ 0.4, we would predict ēo ≈ 0.2. Of
course, this is a very simplified picture, but outlines the feasibility of
learning about the true underlying abundance of planets despite only
observing the proportion that transit.

During the planets’ close encounters at high eccentricity, the semi-
major axes of both planets are altered. The remaining planet generally
experiences an increase in semi-major axis, indicating a gain in energy
at the cost of the second planet, which usually ends up colliding with
the central body. Related to this point, recall that the stellar radius
was held fixed in the code, and J2 was forced to decay, leaving the
star modestly larger than it would be in reality during the later stages
of the simulation. Accordingly, there exists the possibility that in real
systems, more energy would need to be transferred to collide with a
smaller star, and larger semi-major axes and/or eccentricity influences
might occur. In addition, depending upon the exact mechanism of in-
stability, tides may “save” the inner planet by damping its eccentricity
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before it enters a star-crossing trajectory. These details of the problem
do not alter the general picture.

Our discussion in this section uses eccentricities and semi-major axes
obtained from the mercury6 N-body code. However, we did not
model collisions between planets, which is likely to influence the final
eccentricity distribution. Accordingly, the eccentricities in reality
may be smaller than we predict here owing to dissipative processes
associatedwith the physics ofmerging. Though the quantitative nature
of our predictions are subject to numerous uncertainties, the qualitative
prediction is that a population of single-transiting systems ought to
exhibit larger eccentricities than those possessing unseen companion
planets.

6.4 Mechanism of instability
If the stellar quadrupole only induced instability in systems with 3
or more planets, it would have been difficult to understand in simple
terms the physical mechanism of instability. However, the onset of
instability in 2-planet systems leaves the process amenable to analytic
investigation.

In Spalding and Batygin (2016), 2-planet systems were studied analyt-
ically by expanding the planet-planet interaction disturbing potential
to lowest (second) order in inclinations, and assuming zero eccentric-
ities (Lagrange-Laplace secular theory; Murray and Dermott 1999).
This approach yielded a closed-form solution for the relative inclina-
tion excited between the two planetary orbits. The locus of stellar J2

and β? taking the two transits out of the same plane is drawn onto Fig-
ure 6.2, and agrees relatively well with the transition between coplanar
and misaligned systems. However, the framework was ill-equipped to
explain why greater inclinations or oblateness give rise to instability.
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2-planet systems
System a1,i (AU) ā1, f (AU) a2,i (AU) ā2, f (AU) ē1, f ē2, f ē f
K2-38 0.0505 0.0732 0.0965 0.1815 0.4507 0.4091 0.4242
Kepler-29 0.0922 0.1502 0.1090 0.1418 0.4028 0.3351 0.3701
Kepler-131 0.1256 0.1488 0.1708 0.2541∗∗ 0.3572 0.3840∗∗ 0.3603
Kepler-307 0.0904 0.0952 0.105 0.1378∗ 0.3195 0.3665∗ 0.3224

Table 6.2: The semi major axes and eccentricities of the 4 most unstable 2-planet
systems resulting from our simulations. For each case where instability occurred,
we recorded the eccentricity and semi-major axis of the remaining planet, then took
the mean of all the results (denoted by an overbar, with the subscript ‘f’ meaning
‘final,’ ‘i’ representing ‘initial” and the number corresponding to the particular
planet). The mean is only a very general guideline as to what to expect, but the
results suggest that a population of single-transiting systems that had undergone our
proposed instability mechanism would be expected to yield an average eccentricity
of roughly 0.3-0.4.

In order to do so, we lift the assumptions of circular orbits and low
inclination by utilising a different expansion of the disturbing poten-
tial, one that uses semi-major axis ratio as a small parameter (Kaula,
1962):

H =
Gm1m2

a2

l=∞∑
l=2

(
a1

a2

) l

Al(e1, e2, I1, I2)

× cos( j1λ1 + j2λ2 + j3$1 + j4$2 + j5Ω1 + j6Ω2), (6.14)

where the above form is written succinctly, with significant informa-
tion encoded in the value of Al . The constants ji are constructed such
that

∑6
i=1 ji = 0 (Murray and Dermott, 1999), and the angles λi, $i

and Ωi are respectively the mean longitude, longitude of pericenter,
and argument of ascending nodes of the planetary orbits.

The above Hamiltonian contains infinite “harmonics” – the cosine
terms – each associated with its own specific resonance. Here, a
resonance may be thought of as a restoring torque that tends to force
libration about some constant value of the argument. If we can assume
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that the system is close to one of these resonances, and no other
resonances overlap significantly, it is possible to ignore the other
harmonics and consider the dynamics associated with one harmonic
alone (Lichtenberg and Lieberman, 1992; Morbidelli, 2002). In order
to determine which harmonic(s) must be retained, we turn to our
numerical simulations.
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Figure 6.5: The evolution of eccentricity of both planets in the K2-38 system when
the stellar obliquity is set at 30◦ (blue, inner planet and red, outer planet) and 20◦
(grey, inner planet and black, outer planet). For both cases, oblateness decays
from J2,0 = 10−2.6. The difference in dynamics between the two cases is profound.
Whereas at 20◦ both planets remain circular, at 30◦ both eccentricities begin to grow
in unison at 3.75Myr. After reaching eccentricities of roughly 1/2, instability sends
the outer planet into the central star. We discuss this process in the text.

Beginning with K2-38, we consider two cases: one that undergoes
instability and another that does not, annotated in Figure 6.2. The same
value of J2,0 = 10−2.6 is chosen, with the stable case having β? = 20◦

and the unstable case corresponding to β? = 30◦. In Figure 6.5 we plot
the eccentricities of both planets as a function of time at each value
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of stellar obliquity. Notably, in the stable 20◦ case, both eccentricities
remain low, but the dynamics change qualitatively at 30◦. In the
unstable case, both eccentricities begin to grow simultaneously at
∼ 3.75Myr until roughly 0.6Myr later, when the system undergoes
instability and the outer planet is lost through collision with the central
star.

Eccentricity growth of the kind described above is a common outcome
of capture into a secular resonance (Ward, Colombo, and Franklin,
1976; Batygin, Bodenheimer, and Laughlin, 2016), whereby two fre-
quencies become roughly commensurate, causing them to “lock” as
system parameters evolve. In order to deduce which resonance the
system enters we illustrate the evolution of the argument $1 − $2

in Figure 6.6. Concurrent with the initiation of eccentricity-growth,
the system enters a libration of $1 −$2 around π, i.e., the orbits are
roughly anti-aligned. Accordingly, the resonance corresponds to a
commensurability between the frequencies Û$1 and Û$2.

Interestingly, $1 − $2 appears to librate around $1 − $2 = 0 with a
large amplitude for a brief period before the resonant growth of ec-
centricity begins. Furthermore, this brief period of apparent libration
corresponds to an order of magnitude increase in eccentricity, from
ei ∼ 10−4 to ei ∼ 10−3. This libration does not imply resonant lock-
ing. A circulating trajectory in phase-space will appear to librate if
the center of libration is offset from the origin and the libration ampli-
tude is small enough (Lichtenberg and Lieberman, 1992; Morbidelli,
2002). Furthermore, the impulsive nature of the eccentricity rise is
not characteristic of resonant locking.

With the understanding that eccentricity growth commences at Û$1 ≈

Û$2, we can begin to develop a criterion for the onset of instability
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within a given planetary system. We expand Hamiltonian 6.14, but
remove all harmonics except for cos($1 − $2). For illustration, we
expand the potential to fourth (hexadecapolar) order, but in order to
adequately treat the resonant dynamics, higher order expansions are
likely required (e.g., Boué, Laskar, and Farago 2012). The disturbing
function acting between the two planets may then be written

R12 = Rquad + Roct + Rhexa

Rquad =
Gm1m2

a2

(
a1

a2

)2 2 + 3e2
1

128(1 − e2
2)

3/2

×
[
1 + 3 cos(2I1)

] [
1 + 3 cos(2I2)

]
Roct = −

Gm1m2

a2

(
a1

a2

)3 15e1e2(4 + 3e2
1)

4096(1 − e2
2)

5/2
cos($1 −$2)

×
[
5 cos(I1)

(
3 cos(I1) − 2

)
− 1

] [
(1 + cos[I1])

]
×

[
5 cos(I2)

(
3 cos(I2) − 2

)
− 1

] [
(1 + cos[I2])

]
Rhexa =

Gm1m2

a2

(
a1

a2

)4
[
9(15e4

1 + 40e2
1 + 8)(3e2

2 + 2)
4194304(1 − e2

2)
7/2

]
×

(
20 cos(2I1) + 35 cos(4I1) + 9

)
×

(
20 cos(2I2) + 35 cos(4I2) + 9

)
. (6.15)

In addition to the planet-planet disturbing potential, the stellar disturb-
ing potential may be written (Danby, 1992)

RJ2,p = −
GmpM?

2ap
J2

(
R?
ap

)2 [3
2

sin2(Ip) − 1
]
(1 − e2

p)
−3/2. (6.16)

In order to solve for the inclinations at which Û$1 ≈ Û$2, we use
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Lagrange’s planetary equations (Murray and Dermott, 1999)

mp
√

GMap
d$p

dt
=

√
1 − e2

p

ep

∂R

∂ep
+

tan(Ip/2)√
1 − e2

p

∂R

∂Ip

− mp
√

GMap
3GM?

c2a(1 − ep)
np, (6.17)

where the full disturbing function is given by

R = RJ2,1 + RJ2,2 + R12, (6.18)

and we have introduced the speed of light c through the inclusion of
general relativistic precession (Wald, 2010).

The precession frequencies Û$i depend upon the orbital inclinations I1

and I2. In Figure 6.7 we plot the evolution of both planetary inclina-
tions for 4 different cases corresponding to β? = {30◦, 40◦, 50◦, 60◦}
and J2,0 = 10−2.6. Initially, both inclinations are equal to β?. As time
proceeds, the location in I1-I2 space follows an arc (the blue points),
with the location oscillating about I1 = I2 = β? with gradually in-
creasing amplitude. Eventually, this trajectory takes the system into a
configuration where Û$1 − Û$2 ≈ 0. We plot the locus of Û$1 − Û$2 = 0,
after setting $1 −$2 = π and e1 = e2 = 0.01 (i.e., small).

The red points in Figure 6.7 correspond to eccentricities above 0.01,
corresponding to trajectories that begun their secular resonant growth
of eccentricity. If our above argument, that eccentricity growth begins
at exact resonance, wewould expect the blue points to turn to red points
as soon as the blue arc intersects the contours of Û$1− Û$2 ≈ 0. However,
these contours do not match exactly to the transition between low and
high eccentricity evolution. This fact is likely a consequence of our
assumption in the above calculation that the planetary inclinations
are stationary in time. In reality, they are oscillating on a similar
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timescale to the eccentricities, meaning it is not strictly appropriate to
treat the set-up as a 1-degree of freedom system (i.e., e and $), but
rather it is necessary to include a second degree of freedom (I and
Ω). Despite the resonant criterion failing quantitatively, the qualitative
picture remains unchanged.

We emphasise that the above expressions do notmake any assumptions
regarding inclinations. This aspect is key, because at small inclinations
no configuration exists that brings the two precession frequencies close
to one another (see dashed contour int Figure 6.7). However Figure 6.7
indicates that when the inner planet is inclined by more than ∼40 ◦,
the two frequencies can be brought close to one another.

The requirement of planetary inclinationsmay be understood by noting
that the inner planet’s greater proximity to the star contributes to a
faster J2-induced precession rate in the coplanar case. However, as
the inner planet is tilted, the stellar quadrupole’s influence weakens
such that there exists a critical inclination at which the two planets
are precessing at equal rates. Though different in important aspects,
the effect whereby higher inclinations open up a system to resonant
behaviour is reminiscent of the Kozai-Lidov resonance which has
found wide-spread usage within celestial mechanics (Kozai, 1962;
Fabrycky and Tremaine, 2007; Nagasawa, Ida, and Bessho, 2008;
Naoz, Farr, Lithwick, et al., 2011). The resonance we outline may
likewise have had wide-spread importance in the evolution of systems
around oblate central bodies.

Resonances do not exist at low inclinations in K2-38 owing to the
low angular momentum of the inner body relative to the outer body.
The planet-planet induced precession cannot overcome the greater
influence of the stellar quadrupole at shorter orbital periods. It was
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found in Spalding and Batygin (2016) that resonance in the argument
of ascending node only existed if the inner planet possessed more
angular momentum than the outer planet. A similar scenario is found
here. It is possible to find low-inclination resonant values of J2 in the
systems, such as Kepler-131 that possess an inner planet with more
angular momentum than the outer planet. However, the resonant
value of J2 is an order of magnitude larger than the largest value we
considered and so plays no role in these dynamics. High inclinations
must be excited if the system is to enter resonance.

To close our discussion of the instability itself, we illustrate why the
aforementioned eccentricity growth leads to instability. We plot in
the bottom panel of Figure 6.6 the pericenters, apocenters, and semi-
major axes of both planets in the unstable case. Instability corresponds
roughly to the time when the pericenter of the outer planet coincides
with the apocenter of the inner planet. If the orbits were perfectly
anti-aligned and in the same plane this configuration corresponds to
orbit-crossing. Whereas they are not in the same plane in general,
their libration around $1 −$2 = π suggests the orbits come close to
crossing.

6.5 Conclusions
Ubiquity of instability
The primary motivation for this work was to determine whether the
gravitational perturbation arising from a tilted, oblate star is sufficient
to destabilize systems of planets possessing low multiplicity. We
studied 11 systems, 6 of which possess 2 planets, 3 possess 3 planets,
and 2 possess 4 planets. We find that instability occurred in all but
one system for nominal values of stellar oblateness and obliquity.
However, instability only occurred in general for J2 & 10−3 and stellar
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obliquities β? & 30◦, with the range varying widely.

If we suppose that J2 & 10−3 leads to instability in most systems, then
this equate to periods

P? . 20π
(

R3
?

GM?

)1/2

P? . 3 days, (6.19)

though the critical value can vary for different assumptions on the
appropriate stellar radius. T Tauri stars spin with periods ranging
between about 1-10 days, with the median of the distribution lying
close to 3-5 days (Bouvier, 2013). Furthermore, there is evidence that
stars spin up slightly, to periods below 3 days, immediately following
disk dissipation (Bouvier et al., 2014; Karim et al., 2016). These
observations suggest that a relatively large fraction, perhaps as many
as 1/2 of systems, are subject to this instability.

In addition to the proportion of systems exhibiting large enough
quadrupole moments, we must also consider the distribution of stel-
lar obliquities. The stellar obliquity of hot stars (surface temperature
above 6200K) hosting hot Jupiters appears to be close to isotropic
(Winn, Fabrycky, et al., 2010; Albrecht et al., 2012). However, the
picture changes for cool stars and smaller planets (Li andWinn, 2016;
Winn, Petigura, et al., 2017), where the obliquities appear substan-
tially reduced. If stellar obliquity was distributed isotropically, and
150◦ > β? > 30◦ triggered instability, we would expect an unstable
fraction given by

f30 =

∫ 150
30 sin(θ)dθ∫ 180
0 sin(θ)dθ

= 0.87. (6.20)
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We consider this value as an extreme case; however, it illustrates that a
modestly enhanced stellar obliquity distribution can bring a significant
fraction of systems into the realms of instability.

Depending upon the true values of many currently uncertainty param-
eters, the instabilitymechanismmight turn out to be almost ubiquitous,
or extremely rare. The estimates are limited by the so-far small sam-
ple size of 11 modelled systems, poor knowledge of young star radii
and rotational evolution, along with the present dearth of spin-orbit
misalignment measurements in systems of lower-mass planets (Wang
et al., 2017). With those caveats in mind, the approximate, yet slightly
optimistic discussion above suggests that somewhere between 1/2 to
1/4 of super-Earth systems might pass through a phase where their
host star’s quadrupole moment triggers instability.

Observational tests
An addition goal of this work was to progress toward a method of
distinguishing single-transiting systems with unseen transiting com-
panions from those systems possessing a single planet intrinsically.
One way to accomplish this directly is through the measurement of
transit timing variations arising both from direct perturbations upon
the transiting planet (Agol et al., 2005; Nesvorný et al., 2012), and
from astrometric variations of the stellar light curve induced from the
perturbations upon the star itself (Millholland, Wang, and Laughlin,
2016). However, here we propose that if the stellar oblateness drives
instability in a significant fraction of systems, one may distinguish
single transiting from single planet systems at a population level by
measuring the eccentricities of the transiting planets. We find that
typical eccentricities excited lie between 0.3 and 0.4 (Table 6.2), and
that tidal circularization is ineffective at erasing these eccentricities
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provided the planet resides outside of roughly 0.1AU.

Given that the stellar quadrupole falls of as the square of semi-major
axis, we would expect that the mechanism is less effective for more
distant systems. Indeed, in a general sense, we would predict that
the closest single-transiting planets exhibit low eccentricities, owing
to tides. A little further away we would expect the eccentricities to
grow, before decaying again as the instability mechanism becomes
less effective. Uncertainties on tidal dissipation, together with the
influence of semi-major axis upon stellar obliquities (Li and Winn,
2016; Dai andWinn, 2017)make a preition fo the value of the proposed
peak highly speculative.

Finally, our analysis of planetary system stability allows us to place
loose constraints upon stellar obliquity in order for specific multi
planet systems to have remained coplanar. For example, we pre-
dict that the stellar obliquity of K2-38 is under 10◦, otherwise the
two planetary orbits ought to have been misaligned with one another.
Likewise Kepler-10 is probably no more misaligned with its plane-
tary orbits than ∼ 20◦. We are hesitant to make similar predictions
regarding Kepler-223, as although it appeared highly unstable in our
integrations, we did not take care to reproduce the multi-resonant con-
figuration as is currently observed (Mills et al., 2016), which might
help retain the planets within the same plane.

Future directions
This work considered an initial condition whereby the planetary orbits
were coplanar, assuming the disk to have dissipated more rapidly that
the orbits can reconfigure into their equilibrium potential. Future
treatments should consider this aspect. In particular, the disk itself
leads to a precession of longitudes of periapse for embedded planets.
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Given our finding that the instability is driven by a resonance between
Û$ of planetary pairs, it would be a fruitful investigation to consider
how the disk’s gradual dissipation alters the secular phase space (Ward,
1981).

We obtained a qualitative understanding of the instability mechanism,
namely, that the values of Û$ of both planets can be brought close
to together by way of quadrupole-driven inclinations. The resulting
resonance leads to eccentricity growth and orbit-crossing. However,
we did not treat this problem in a full, 2-degree of freedom framework.
To do so would better elucidate the quantitive criteria governing the
instability. Furthermore, within this framework the disk potential
may be added as an additional term, and the stellar orientation may
be allowed to evolve with time, providing an analytic framework for
following the system all the way from formation within a massive disk,
to the onset of instability subsequent to disk dispersal.

Cumulatively, we have shown that the contraction of the host star, an
evolutionary phase common to all planetary systems, can play a key
role in sculpting the resulting planetary systems. Our own solar system
was likely not sensitive to the Sun’s quadrupole moment owing to the
relatively large semi-major axis of Mercury. Its enhanced stability is
in part responsible for Earth’s low eccentricity and stable conditions
over billions of years. By turning toward exoplanetary systems, we
see that the host star is not always the giver of life that is in our system,
but rather its gravity may disrupt and destroy the tranquility of the
systems it hosts.
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Figure 6.6: A closer look at the dynamics close to the time of instability of K2-38
with parmeters β? = 30◦, J2,0 = 10−2.6. Top panel: The evolution of eccentricity
as a function of time for the outer planet (blue) and the inner planet (red). Middle
panel: Time evolution of the resonant argument cos($1 − $2) through instability.
Notice that the argument librates close to π during the main phase of eccentricity
growth (the shaded, blue region), which is indicative of secular resonant capture.
During these dynamics, Û$1 ≈ Û$2. Bottom panel: Illustration of ultimate cause of
instability. The solid lines illustrate semi-major axis of the inner (red) and outer
(blue) planets, whilst the dotted lines denote the apocenter (upper) and pericenter
(lower) of the orbits. Secular resonance is broken as the orbits begin to cross
(time≈ 3.98Myr), and instability ensues soon after (time≈ 4.36Myr).
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C h a p t e r 7

A SECULAR RESONANT ORIGIN FOR THE LONELINESS OF
HOT JUPITERS
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ABSTRACT

Despite decades of inquiry, the origin of giant planets residing within
a few tenths of an astronomical unit from their host stars remains un-
clear. Traditionally, these objects are thought to have formed further
out before subsequently migrating inwards. However, the necessity of
migration has been recently called into question with the emergence
of in-situ formation models of close-in giant planets. Observational
characterization of the transiting sub-sample of close-in giants has
revealed that “warm” Jupiters, possessing orbital periods longer than
roughly 10 days more often possess close-in, co-transiting planetary
companions than shorter period “hot” Jupiters, that are usually lonely.
This finding has previously been interpreted as evidence that smooth,
early migration or in situ formation gave rise to warm Jupiter-hosting
systems, whereas more violent, post-diskmigration pathways sculpted
hot Jupiter-hosting systems. In this work, we demonstrate that both
classes of planet may arise via early migration or in-situ conglomer-
ation, but that the enhanced loneliness of hot Jupiters arises due to a
secular resonant interaction with the stellar quadrupole moment. Such
an interaction tilts the orbits of exterior, lower mass planets, removing
them from transit surveys where the hot Jupiter is detected. Warm
Jupiter-hosting systems, in contrast, retain their coplanarity due to the
weaker influence of the host star’s quadrupolar potential relative to
planet-disk interactions. In this way, hot Jupiters and warm Jupiters
are placed within a unified theoretical framework that may be read-
ily validated or falsified using data from upcoming missions such as
TESS.
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7.1 Introduction

a1

m1

a2

m2

stellar
contraction

secular
resonant
tilting

!?

Figure 7.1: A schematic of the set up considered in the text. A giant planet with
mass m2 follows a circular orbit with semi-major axis a1. Exterior, lies a lower-
mass planet m2 on circular orbit with semi-major axis a2. The exterior orbit is
forced to undergo nodal regression due to a combination of stellar quadrupolar
potential and secular perturbations from the inner giant planet’s orbit. The giant’s
orbit, in turn, is regressing mostly owing to secular perturbations form the stellar
oblateness. Initially, the inner planet regresses faster but as the stellar quadrupole
decays (as a result of physical contraction), a commensurability is encountered in
the two frequencies, leading to the secular resonant excitation of mutual inclinations
between the planets.

Arguably the longest-standing problem in exoplanetary science con-
cerns the origin and evolution of so-called “hot Jupiters” (Mayor and
Queloz, 1995). Planets in this category are loosely defined as possess-
ing masses comparable to Jupiter, but residing on orbits with periods
shorter than about 10 days. Similarly to the giant planets in our solar
system, these objects are thought to have formed through the “core-
accretion” pathway (Stevenson, 1982; Pollack et al., 1996). Within
this framework, a ∼ 10 − 15 Earth mass solid core conglomerates
whilst still embedded within the natal protoplanetary disk, accretes
a comparable-mass envelope and subsequently initiates a period of
runaway gas accretion, yielding a Jupiter-mass planet.

Traditionally, the in situ formation of hot Jupiters has been considered
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impossible, owing to the difficulty in constructing sufficiently large
cores within the hot inner regions of the protoplanetary nebula, where
solid grains are relatively scarce (Lin, Bodenheimer, and Richardson,
1996; Rafikov, 2006). Consequently, the prevailing notion is that
hot Jupiters formed further out, beyond the snow line, before subse-
quently migrating inwards. This migration can occur either during
the disk-hosting stage (through so-called type II migration; Lin, Bo-
denheimer, and Richardson 1996; Kley and Nelson 2012) or later, via
the excitation of large eccentricity followed by tidal circularization
(Wu and Murray, 2003; Beaugé and Nesvorný, 2012). For brevity, we
will group these migration mechanisms into two categories: “early”
for when the hot Jupiters reach their close-in orbits before the disk
disperses, and “late,” referring to migration proceeding subsequent to
disk-dispersal.

A separate sub-population of giant planets that is progressively be-
coming better characterized is the “warm Jupiter” class of close-in
bodies (Steffen et al., 2012; Huang, Wu, and Triaud, 2016), which are
defined, again loosely, as residing on orbits of period ∼ 10 − 30 days.
Like the hot Jupiters, these objects lie interior to the ice line, and there-
fore suffer from many of the same arguments against in situ formation
as their hotter counterparts. However, a crucial difference is that warm
Jupiters exhibit tidal circularization timescales that are typically too
long to have migrated via a late pathway, particularly when no exterior
giant companion is detected (Dong, Katz, and Socrates, 2013; Petro-
vich and Tremaine, 2016). Accordingly these giants appear to have
attained their close-in orbits prior to disk dispersal.

Within published literature, the distinction between “warm” and “hot”
has been somewhat arbitrary. However, the recent study of Huang,
Wu, and Triaud (2016), along with some earlier investigations (Steffen
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et al., 2012), have pointed out an empirical distinction between the
transiting subsample of the two populations. Specifically, the fraction
of warm Jupiters possessing close-in (i.e., periods < 50 days), co-
transiting companions is roughly 50%, in contrast to the hot Jupiters,
where the analogous fraction is close to 0%, with only one counter-
example, WASP-47b currently known (Becker, Vanderburg, et al.,
2015;Weiss et al., 2017). This pattern has been interpreted as evidence
in support of a high-eccentricity origin for hot Jupiters, with close-in
companions being cast out during the migration. In contrast, warm
Jupiters were interpreted to arise from smooth migration within a
natal disk, where WASP-47b constitutes the innermost tail of this
population.

Recent work has begun to question the necessity of migration for the
formation of close-in giant planets (Boley, Contreras, and Gladman,
2016; Batygin, Bodenheimer, and Laughlin, 2016). In particular,
Batygin, Bodenheimer, and Laughlin (2016) considered the long-
term dynamical evolution of a close-in giant planet forming in situ,
with a super Earth residing on an exterior orbit. As the host star
contracts, and as the giant planet grows, the outer planet transitions
from a regime where its nodal regression rate is smaller than that of
the giant’s, to a regime where the two frequencies are approximately
commensurate. This results in a convergent encounter with a secular
resonance that tilts the orbit of the outer companion, potentially all
the way to 90◦. Moreover, if the giant planet’s orbit is sufficiently
eccentric (e & 0.05) the outer orbit may instead have its eccentricity
raised, by a similar secular resonance in terms of the precession of
perihelia, leading to dynamical instability within the system. From
the point of view of transit surveys, both outcomes will lead to a lonely
close-in giant, except for fortunate viewing geometries.



175

A key limitation of the above picture, mentioned in Batygin, Boden-
heimer, and Laughlin (2016), is that tidal interactions with the disk
gas itself may induce nodal regression upon the outer planet’s orbit
that quenches the resonant tilting that would otherwise occur in the
absence of a disk (Hahn, 2003). In other words, if the physical mech-
anism responsible for the onset of the secular resonance occurs whilst
the disk is still around, the systemmay retain coplanarity, and the giant
planet will co-transit with its close-in companions. For the purposes
of this work, “in situ” formation is dynamically equivalent to “early”
migration, because both processes lead to systems that are already
close-in at the time of disk dissipation, and so we make no statements
regarding which of the two scenarios is more likely.

The key finding of this paper is that the resonance is encountered
later for closer-in systems. That is, hot Jupiter-hosting systems en-
counter the resonance later than warm Jupiter systems. Given fiducial
disk lifetimes and stellar rotation periods (Haisch Jr, Lada, and Lada,
2001; Bouvier, 2013), we expect giant planets to become lonely when
orbiting interior to ∼ 0.1AU (or, ≈ 11.6 days for a solar mass star,
i.e., suggestively close to the warm Jupiter - hot Jupiter divide). At
larger orbital radii, systems may still encounter the resonance, but will
do so whilst embedded in the disk gas, which can therefore prevent
inclination excitation.

In brief, we show that hot Jupiters will become lonely in transit sur-
veys, not because they formed differently from warm Jupiters, but
because they encountered the aforementioned resonance after their
disk dissipated, when nothing prevented their outer companions from
being driven to high inclinations.
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7.2 Analytical Theory
To set up the problem, suppose a giant planet, of mass m1 orbits at
a semi-major axis a1 interior to a less massive planet, say, a super
Earth of mass m2 at semi-major axis a2 (Figure 7.1). Young stars
possess large radii R? and rotate rapidly (Shu, Adams, and Lizano,
1987; Bouvier, 2013), leading to significant oblateness. This oblate-
ness, parameterized via the second gravitational moment J2, leads
to precession of the argument of perihelion $ and regression of the
longitudes of ascending node Ω of the planetary orbits.

The protoplanetary disk is expected to damp inclinations and eccen-
tricities to small values (Kley and Nelson, 2012), allowing the grav-
itational disturbing potential influencing the planets to be expanded
to second order in eccentricities and inclinations (or 4th order near
secular resonances (Batygin, Bodenheimer, and Laughlin, 2016)). At
such an order, the inclination and eccentricity degrees of freedom are
decoupled and therefore may be treated in isolation. In this work, we
assume the orbits to be circular, such that Ω and inclination i together
constitute the only degree of freedom. Alternatively one may assume
the orbits are coplanar, but instead consider the eccentricity degree of
freedom in isolation. The logic and numerical coefficients are very
similar in both cases, so we do not work through both, but include a
brief discussion of eccentricity dynamics in Section 3.1.

Stellar Evolution
For a circular orbit with semi-major axis ap and mean motion np, the
stellar-induced nodal regression rate is given by (Murray and Dermott,
1999)

ÛΩp ≡ ν?,p =
3
2

npJ2

(
R?
ap

)2
, (7.1)
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where p = {1, 2}; see Figure 7.1. The aforementioned second grav-
itational moment, J2 is related to the stellar spin angular velocity ω?
and Love number (twice the apsidal motion constant) k2 through the
relation (Sterne, 1939):

J2 =
1
3

(
ω?
ωb

)2
k2, (7.2)

where ωb is the break-up angular velocity of the star. The Love
number can be extracted from polytropic stellar models with index
χ = 3/2 (i.e., fully convective; Chandrasekhar 1939), leading to
k2 ≈ 0.28 (Batygin and Adams, 2013), which is the numerical value
we adopt throughout. The spin periods of T Tauri stars may be
constrained through observation (Bouvier, 2013) and in general lie
within the range of ∼ 1 − 10 days. Substituting expression (7.2) into
Equation (7.1) yields,

ν?,p = np
k2

2

(
ω?
np

)2 (R?
ap

)5
, (7.3)

thereby casting the nodal regression rate in terms of quantities that are
either directly observable or may be inferred from simple models.

With time, the central star will contract ( ÛR? < 0) and so ν?,p will
decrease. Additional time-dependence may arise owing to stellar
spin-down; however, owing to the high order of R? in equation 7.3 we
ignore any changes in ω? (as discussed below, the dynamics do not
depend sensitively on the details, only that ν?,p decreases).

To a good approximation, the contraction of a protostar may be mod-
elled as Kelvin-Helmholtz contraction of a polytropic body (Batygin
and Adams, 2013):

R?(t) = R?,0

(
1 +

t
τc

)− 1
3

, (7.4)
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wherewedefine the contraction timescale (1/3 of theKelvin-Helmholtz
timescale):

τc ≡
GM2

?

28πσT4
effR3

?,0
. (7.5)

In this expression, G is the gravitational constant, σ is the Steffan-
Boltzmann constant and the stellar mass M? is taken equal to 1 solar
mass (M�) throughout. The above analytic form agrees well with the
numerical pre-main sequence evolution models of Siess, Dufour, and
Forestini (2000) provided a value of R?,0 & 6R� is chosen1 for a solar
mass star with surface temperature Teff = 4270K.

Capture into secular resonance
Planet-planet interactions will induce modal regression in addition to
that arising from the stellar quadrupole. It can be shown through linear
secular perturbation theory (Murray and Dermott, 1999; Morbidelli,
2002) that the time-averaged regression rate of the inner planet < ν1 >

takes the form

< ν1(t) >≈ ν?,1(t) +
1
4

m2

M?

(
a1

a2

)2
b(1)3/2

(
a1

a2

)
n1, (7.6)

where the first term results from the oblateness of the host star, which
decays with time, and the second term arises owing to planet-planet in-
teractions. Furthermore, we have introduced the function b(1)3/2(a1/a2),
known as a Laplace coefficient (Murray and Dermott, 1999), defined
as

b(1)3/2(α) ≡
1
π

∫ 2π

0

[
cos(ψ)

(1 + α2 − 2α cosψ)3/2

]
dψ. (7.7)

1The initial radius simply has to be large, rather than an exact value, because the star essentially
loses information about initial conditions within the disk’s lifetime.
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Analogously, the time-averaged nodal regression rate of the outer
planet is given by

< ν2(t) >≈ ν?,2(t) +
1
4

m1

M?

(
a1

a2

)
b(1)3/2

(
a1

a2

)
n2. (7.8)

We will assume that the semi-major axes and masses are fixed, reflect-
ing the fact that most planet-building and migration occurs before the
disk dissipates. Then, the ratio between stellar and planetary orbital
angular momenta is given by

j ≡
I?M?R2

?ω?

mp
√

GM?ap
, (7.9)

where I? ≈ 0.21 is the dimensionless moment of inertia, as calculated
for a fully convective, polytropic star (Chandrasekhar, 1939). For
nominal hot Jupiter parameters; a Jupiter-mass planet at 0.05AU,
orbiting a star with R? ∼ 2R�, spinning with a period of 3 days, we
find that j � 1. As a result, we will consider the stellar spin axis
to be fixed, a statement that the planetary orbits possess significantly
less angular momentum than the star (Batygin, Bodenheimer, and
Laughlin, 2016). We note that this approximation begins to break
down as the star contracts, the stellar rotation period is long, or if the
planet is situated further out, i.e., in the warm Jupiter regime. Whereas
a full account of the star spin dynamics is not expected to affect our
arguments with respect to planet-planet inclinations, numerous recent
observational investigations (Li andWinn, 2016; Dai andWinn, 2017)
are beginning to detect a trend whereby more distant transiting planets
exhibit larger spin-orbit misalignments. While suggestive, we shall
not explore this aspect of the problem further here.

The stellar quadrupole’s influence upon the inner planet will be sig-
nificantly larger than its effect upon the outer planet ((ν?,1/ν?,2) =
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Figure 7.2: The time evolution of the nodal regression frequencies for both planets as
the host star contracts. The requirement to turn a giant planet-super Earth system into
an apparently lonely giant is that ν2 < ν1 (i.e., the red line is above the blue line) at the
point when the disk dissipates, such that a point is crossed where the two frequencies
are roughly commensurate. As argued in the text, this will always happen as the
giant grows, but can be bypassed due to planet-disk interactions. If this is the picture
dominating the hot Jupiter-warm Jupiter distribution, we would expect to see more
hot Jupiters with companions around faster-rotating, massive stars and a gradual
drop in companion fraction toward smaller semi-major axes. Parameters used in
this illustrative figure are m1/M? = 10−3, m2/M? = 10−5, a1 = 0.04AU, a2 =

0.1AU, P? = 3 days around a solar mass star. Resonance is encountered at t =
2.86Myr.

(a2/a1)
7/2 � 1). Consequently, as the star contracts, the inner planet’s

nodal regression frequency will decrease more rapidly than that of the
outer planet’s. For nominal parameters, the initial state has ν1 > ν2,
but at a later stage the star has contracted to the point where the two
frequencies become similar (Figure 7.2). As discussed in more detail
in Batygin, Bodenheimer, and Laughlin (2016), the result of such a
commensurability in frequencies is capture into a secular resonance
and excitation of inclination within the outer companion’s orbit. Ac-



181

cordingly, if the giant was detected through transit it would appear
“lonely” except under a fortuitous viewing geometry.
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Influence of the disk
The above discussion showed how close-in giants may become lonely,
but made little distinction between “hot” and “warm” Jupiter-hosting
systems. In this section, we show that considering gravitational in-
teractions between the planets and their natal disk naturally leads to
closer-in systems experiencing resonant excitation of inclinationsmore
often than more distant systems, thereby accounting for the increased
loneliness of hot vs warm Jupiters.

Determining the detailed dynamics of planets embeddedwithin gaseous
disks constitutes an active field of research on its own (Kley and Nel-
son, 2012). Here we will concern ourselves with a simplified yet
instructive description of the dynamics, involving two qualitatively
separate processes. Specifically, planet-disk interactions tend to damp
the eccentricities and inclinations of embedded planets (Tanaka and
Ward, 2004), together with inducing precession in the planetary ar-
guments of perihelion and regression of the longitudes of ascending
node (Hahn, 2003).

We will show below that the most important effect for our purposes is
the disk-induced regression of the node. Tidal disk-planet interactions
are expected to damp the outer planet’s orbital inclination over a
timescale given approximately by (Tanaka and Ward, 2004)

τinc ≡

����di2
dt

1
i2

����−1
≈ ζ

P2

2π

(
M?

m2

) (
M?

Σ2a2
2

)
β4, (7.10)

where β ≡ h/a2 ≈ 0.05 is the disk’s aspect ratio, Σ2 is the disk’s
surface density at a2, the numerical constant ζ ≈ 2, and P2 is the outer
planet’s orbital period.

In order to determine whether the disk’s inclination damping will
inhibit the adiabatic growth of inclination described above, we intro-
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duce the libration timescale for the resonant argument Ω1 −Ω2 within
resonance (Morbidelli, 2002; Batygin, Bodenheimer, and Laughlin,
2016)

Plib ≈
P2

2π
2

3s1

(
M?

m1

) (
a2

a1

)2
, (7.11)

where s1 ≡ sin(i1/2), with i1 being the inclination of the inner planet’s
orbit with respect to the stellar spin axis. The secular resonant in-
clination excitation will be prevented if the adiabatic limit is broken
(Henrard, 1993), i.e.,

τinc . Plib. (7.12)

If we suppose the disk to follow a minimum mass solar nebula profile
(Hayashi, 1981) of Σ(a) ≈ 2000(a/1au)−3/2g cm−2, a2 ≈ 0.2AU,
a1 = 0.1AU, m2 = 10−5 M� and m1 = 10−3 M� the disk will damp
inclination growth provided s1 . 0.2, or i1 . 20◦. Accordingly, disk-
induced inclination damping may prevent the secular resonance from
driving inclination growth for systems aligned with their natal disk.
However, owing to the uncertainties in both the calculation of damping
timescales and the order-of-magnitude nature of inequality 7.12, it is
difficult to determinewhether resonant growth is prevented in all cases.

Given the uncertainties in computing the importance of direct disk-
driven inclination-damping, let us now consider an additional mech-
anism by which the disk may prevent resonant growth of inclination;
the regression of nodes induced by the disk’s gravitational potential.
It may be shown that the disk’s quadrupole induces a regression rate
of (Hahn, 2003)

νpd ≈ np
πΣpa2

p

M?β
, (7.13)
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and the modal regression occurs in the same direction as that induced
by the stellar quadrupole and planet-planet interactions. If one as-
sumes a surface density profile of the MMSN, Σp ∝ a−3/2

p (Hayashi,
1981) the disk-induced modal regression frequency νpd ∝ a−1

p , such
that more distant planets experience a slower rate arising from the
disk’s quadrupole.

In the interest of simplicity, and for illustrative purposes, we only
include the disk’s effect upon the outer, smaller planet. Ultimately
our arguments are not particularly sensitive to this decision. However,
giant planets are expected to open gaps in the disk (Crida, Morbidelli,
and Masset, 2006), and the MRI-active inner region of the nebula
is expected to possess a lower gas density (Armitage, 2011). Both
of these effects are likely to significantly diminish the disk’s secular
influence upon the inner giant’s orbit. Including the disk-induced
nodal regression to < ν2(t) > given above yields〈(

ν2(t)/n2
〉)
≈

3
2

J2

(
R?
a2

)2

+
1
4

m1

M?

(
a1

a2

)
b(1)3/2

(
a1

a2

)
+
πΣ2a2

2
βM?

. (7.14)

In order to determine the importance of disk-induced nodal regression,
wemust formulate the evolution of the disk’s mass and surface density.
Observational constraints upon disk masses remain challenging, and
intrinsic variation between the evolution of individual disks makes a
single, generalized parameterisation impossible. For our purposes, it
suffices to use an average disk mass evolution. The observed decay of
disk accretion rateswith time (Calvet et al., 2005) is well approximated
by the following parameterization

Mdisk(t) =
Mdisk,0

1 + t/τv
, (7.15)
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Figure 7.3: An illustration of the influence of the disk’s quadrupole. The solid blue
line represents the outer planet’s nodal regression in the case with no disk, whereas
the three dashed lines represent the case where the disk’s quadrupole moment is
included. When the outer planet is forced to regress faster than the giant (red line)
throughout the entire disk lifetime, the secular resonant encounter described in the
text is prevented. The left panel considers a hot Jupiter, at 0.04AU interior to a test
particle at 0.12 au. The right panel depicts the case for a Warm Jupiter at 0.1AU
with an exterior test particle at 0.3 au. The closer, hot Jupiter system encounters the
secular resonance later (black circle) and so the disk is more likely to have dispersed,
whereas the warm Jupiter system entirely bypasses the secular resonance even for
very short disk lifetimes (e.g., 1Myr).

where the viscous decay time τv = 0.5Myr and the initial disk mass
Mdisk,0 = 0.05M�. We may sanity-check this result by writing the
surface density profile as

Σ(a, t) = Σ0(t)
(

a
a0

)−3/2
(7.16)

yielding the disk mass

Mdisk(t) = 4πΣ0(t = 0)a1/2
out a

3/2
0 . (7.17)

In order to achieve Mdisk,0 = 0.05 M� the disk must begin with a
surface density at 1AU of Σ0(t = 0) ≈ 6500g cm−2, which is similar
to the “minimum-mass extrasolar nebula” inferred by requiring the
observed populations of close-in super Earths formed close to their
current locations (Chiang and Laughlin, 2013). Accordingly, pre-
scription (7.15) constitutes a reasonable approximation to the disk’s
global evolution.
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Viscous evolution alone is notoriously unable to match observational
deductions regarding disk dispersal timescales. Rather, the current
consensus is that, after ∼ 1 − 10Myr of viscous evolution, the disk
disperses over a short (∆t . 105 years) timescale (Alexander et al.,
2014), beginning with the inner few au. To account for the two-
timescale nature of disk evolution we parameterize the surface density
as

Σ0(t) =
Σ0 |t=0

1 + t/τv

[
1
2
−

1
π

arctan
(
t − τd

∆t

)]
, (7.18)

where τd is the time of disk dispersal, ranging from ∼ 1 − 10Myr.

In the disk-free case (Figure 7.2) < ν2 > is always greater than < ν1 >

initially. However, the influence of the disk upon the outer planet
increases its regression frequency above that of the inner giant when
the system is relatively far from the central star. To illustrate this
effect, we present the evolution of < ν1 > and < ν2 > for two systems
(Figure 7.3). The first is a hot Jupiter, orbiting at a1 = 0.04AU interior
to a companion at a2 = 0.12 au. In this scenario, the disk quadrupole
is not sufficient to take the outer planet’s regression rate above the
giant’s and so the resonant criterion is met at a disk age under 1Myr.

If the the giant planet has already formed at this early stage, secular
resonant excitation will proceed. However, if the giant is not yet
formed, the system has a second chance to encounter resonance, after
the disk disperses. When the disk dispersal time is τd = 1Myr or
τd = 3Myr, the system encounters secular resonance as it would have
in the absence of a disk (Figure 7.2). Owing to the strong influence of
the central star’s quadrupole, only very long-lived disks will disperse
after the system can subsequently encounter secular resonance (e.g.,
10Myr in this case) and so in most cases, this hot Jupiter will end up
appearing lonely in transit surveys.
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The second case presented would generally be described as possessing
a “warm Jupiter” at 0.1AU and an exterior companion at 0.3 au. In
this case, the influence of the disk overcomes the nodal regression
induced by the more distant central star’s oblateness. Accordingly, the
resonance is quenched and inclination excitation does not occur. If,
for example, the disk had dissipated already by ∼ 1Myr, this system
would undergo resonant capture and become a lonely warm Jupiter
system. More typical disk lifetimes (Haisch Jr, Lada, and Lada,
2001) tend to prevent secular resonant tilting when the giant planet
lies beyond ∼ 0.1AU - which is close to the oft-quoted dividing line
between what is considered a “warm” or a “hot” Jupiter.

Criterion for Loneliness
The above discussion shows that when the disk is still present, it is
likely to quench the secular resonant dynamics, especially in more
distant systems. Consequently, the criterion for whether a giant planet
will resonantly excite the inclination of its outer companion is simply
that the inner planet is regressing faster than the outer planet at the
time of disk dissipation:

ν1
��
t=τd

> ν2
��
t=τd

. (7.19)

By substituting expressions (7.3, 7.4, 7.6 and 7.8) into the above
inequality, we may reformulate the criterion in terms of a critical
stellar spin period at the time of disk dissipation P?

��
t=τd

below which
inclination is excited. After some algebra, we arrive at the criterion
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for tilting to occur and the generation of a lonely giant planet:

P?
��
t=τd
. P1

√
2k2

(
M?

m1

)1/2 (R?(τd)
a1

)5/2

×

[
1 − α7/2

α5/2b(1)3/2(α)

]1/2 (
1 −
Λ2

Λ1

)−1/2
, (7.20)

where P1 is the inner planet’s orbital period, α ≡ a1/a2 and Λp ≡

mp
√

GM?ap.

It is worth noting that the above criterion was derived within the
secular regime, and so assumes that the two planets are not caught
in first or second order mean-motion resonances. Terms associated
with these resonances enter the disturbing potential at first and second
order respectively in eccentricity, potentially swamping the second
order secular dynamics considered here (Murray and Dermott, 1999).
Accordingly, if our criterion is to be applied to close-in giant planet
systems with observed exterior companions, care must be taken to
check whether the resonant arguments appropriate to first or second
order mean motion resonances are librating or circulating. In general,
for nearly circular orbits, this is equivalent to requiring that the period
ratios lay more than a few per cent from exact commensurability,
though precise libration widths depend upon the resonance considered
and the eccentricity.

7.3 Results & Discussion
The criterion (7.20) is represented in Figure 7.4 by way of 3 plots, cor-
responding to 3 nominal times of disk dissipation, τd = {1Myr, 3Myr, 10Myr}.
Using the above prescription for stellar contraction (equation 7.4),
these times correspond to stellar radii R?(τd) = {2.4 R�, 1.7 R�, 1.1 R�}.
Within each plot, we display lines representing 3 stellar spin periods
P
��
t=τd
= {10 days, 3 days, 1 day}, spanning the observed range of T
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Tauri spin periods (Bouvier, 2013), with m1 = 10−3M�, m2 = 10−5M�
and M? = M�. For the relevant spin period and τd, an outer planet with
a2 above the line is expected to encounter resonance and become mis-
aligned. The region where coplanarity is expected to be maintained
even for a relatively fast 1 day stellar rotation period is shaded.

The key message of Figure 7.4 is that there is significantly more semi-
major axis space available for close, outer companions to Jupiters
residing beyond ∼ 0.1AU than hotter Jupiters. Therefore, the lone-
liness of closer-in giants may naturally arise owing to the greater
tendency for their outer companions to become resonantly inclined
and taken out of transit surveys.

Superimposed on Figure 7.4, we have placed points representing the
four cases in Huang, Wu, and Triaud (2016) where a giant planet lies
interior to a close companion. All four lie within the shaded region,
consistent with our hypothesis. The hot Jupiter system WASP-47
might havemisalignedWASP-47d if its disk dissipated early (∼ 1Myr)
and the star was particularly rapidly-rotating (∼ 1 day; see top panel).
Asmore examples are detected, we expect the shaded region to become
filled in to a significantly greater extent than the regions between the
1 and 10 day lines.

The Hot Jupiter - Warm Jupiter Distinction
Despite the somewhat arbitrary distinction between a “hot” versus a
“warm” Jupiter, the dearth of close-in companions to hot Jupiters has
been taken as evidence that there is a physical distinction between
the formation pathway of each planetary regime (Steffen et al., 2012;
Huang, Wu, and Triaud, 2016). In this paper, we have shown that
separate formation pathways are not required to explain the loneliness
of hot Jupiters. Simply by forming closer to their host stars, these
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Figure 7.4: Loci of systems expected to undergo resonant excitation of inclination
before disk dissipation at 1Myr (top panel), 3Myr (middle panel) and 10Myr
(bottom panel). Outer companions within the shaded region will not encounter
the resonance and will remain coplanar with the inner giant. We have plotted the
configuration of the four systems known where a giant lies interior to a lower-mass
planet. All four lie within the region where coplanarity is expected to persist around
a well-aligned star. Interestingly, the innermost example, WASP-47, lies almost
exactly on the boundary, consistent with it being the closest-in known example and
only hot Jupiter with a close outer companion.
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systems were more susceptible to perturbations from the host star’s
quadrupole moment, facilitating a secular resonance that tilted their
outer companions.

Our proposed mechanism is directly falsifiable in that we would not
expect to find transiting outer companions above the upper-most line
in Figure (7.4), though too large of an a2 will eventually break our
assumption that the star possesses most of the system’s angular mo-
mentum, altering the criteria derived above somewhat. Additionally,
owing to uncertainties in disk lifetime and T Tauri spin rates, finding
a transiting outer companion between the 3 day and 10 day lines is not
necessarily a falsification – one can simply suppose the young star
was rotating rapidly, or the disk was late to dissipate. Consequently,
predictions may be falsified most readily in a statistical sense.

In the framework of our model, fewer outer companions should be
found to transit outside the shaded region in Figure (7.4) than in the
shaded region, even after correcting for observational biases. The
semi-major axis distribution within the shaded region is expected to
resemble those of lower-mass Kepler systems (Tremaine and Dong,
2012; Morton, Bryson, et al., 2016). Having only four examples
makes it difficult to rigorously evaluate these hypothesis currently.

We should note that it is possible to view mutually inclined orbits via
transit if their lines of nodes are fortunately commensuratewith the line
of sight. Consequently, if all hot Jupiters possess inclined companions,
we would expect to see a small fraction of those companions in transit
surveys (Steffen et al., 2012). The lack of such detections suggests
that any close companions to hot Jupiters are not simply misaligned,
but lost from the system entirely.

We propose two potential mechanisms whereby the dynamics de-
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scribed here will not simply misalign, but remove close companions
to hot Jupiters. First, lower-mass Kepler systems often exhibit high
multiplicity (Fabrycky, Lissauer, et al., 2014), as opposed to the simple
2-planet system described here. It has been previously demonstrated
(Spalding and Batygin, 2016) that misaligning one or more compo-
nents of such closely-packed systems has the potential to destabilize
the entire architecture. Furthermore, any additional planets within the
system introduce extra secular modes and potential resonances that
the system sequentially encounters as the central star contracts.

A second mechanism for complete loss of companions arises if the
giant planet’s orbit possesses an eccentricity higher than e1 ∼ 0.05.
Here, an additional secular resonance becomes applicable whereby
the outer orbit has its eccentricity, as opposed to its inclination, raised.
This process will eject the outer planet from the system by way of a
lowering of its pericenter until the orbits cross (Batygin, Bodenheimer,
and Laughlin, 2016). As alluded to in Section 2, the quantitative
criteria for encountering this eccentricity resonance are similar to
those of the inclination resonance (Murray and Dermott, 1999), but
disks are generally expected to damp planetary eccentricities to a point
where the inclination resonance should dominate (Kley and Nelson,
2012; Batygin, Bodenheimer, and Laughlin, 2016). However, many
warm Jupiters are known to be eccentric (Dong, Katz, and Socrates,
2013), potentially forced by exterior giant companions (Bryan et al.,
2016), hinting that super Earths may occasionally be lost through
the eccentricity resonance. Cumulatively, more work is needed to
elucidate how often companions are expected to be tilted versus lost
entirely.
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Inner Companions
This work has focused on the tilting of outer companions to giant
planets, and has talked little of inner companions. By inspection
of equation (7.20), one can see that the secular resonance cannot be
encountered if the inner planet has less angular momentum then the
outer planet (Λ1 < Λ2). Accordingly, the resonant misalignment
mechanism proposed here is not capable of explaining the absence of
inner companions to hot Jupiters versus warm Jupiters (Huang, Wu,
and Triaud, 2016). However, the only known inner companion to a
hot Jupiter, WASP-47e, resides at the particularly close-in distance
of 0.017 au, not much larger than the radius of the young star itself
(0.017 au ≈ 3.6R�). Whereas we have not identified a specific mech-
anism that removes inner companions, their rarity may simply arising
owing to limited physical space within a hot Jupiter’s orbit. We ex-
pect that more interior companions will be found by the TESSmission
(Ricker et al., 2015), however, they are likely to be rare.

7.4 Summary
The existence of giant planets inside the snowline has traditionally
favoured an explanation whereby the planet itself, or at least its multi-
ple Earthmass core, forms at large radii before subsequentlymigrating
inwards. This migration can occur early, during the disk-hosting stage
(Kley and Nelson, 2012), or long after, through a high-eccentricity
pathway (Wu and Murray, 2003; Beaugé and Nesvorný, 2012). Be-
tween the two formation channels, the high-eccentricity pathway en-
counters more theoretical challenges in forming warm Jupiters (Dong,
Katz, and Socrates, 2013), and empirical challenges in forming hot
Jupiters (Dawson, Murray-Clay, and Johnson, 2014).

With a single exception, hot Jupiters are found to possess no close-in
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transiting companions, in contrast to their slightly cooler counterparts,
the warm Jupiters, roughly half of which are found with co-transiting
close companions (Steffen et al., 2012; Becker, Vanderburg, et al.,
2015; Huang, Wu, and Triaud, 2016). This evidence appears consis-
tent with a high-eccentricity origin for hot Jupiters and an early, pos-
sibly in situ, origin for warm Jupiters. Interestingly, around 50% of
Super Earth systems are thought to be significantly inclined (Johansen
et al., 2012), possibly also owing to mutual inclinations induced by
the host star (Spalding and Batygin, 2016).

Systems of super Earths are generally thought to form through early
migration or in situ (Lee and Chiang, 2016), much like warm Jupiter
systems. Thus, in the picture of high-eccentricity migration, hot
Jupiters are exceptional – the lone class of planets who swung in from
the outer regions of the planetary system long after the dispersal of
the protoplanetary disk. In this paper, we have demonstrated that
by taking account of the stellar quadrupole moment, hot Jupiters and
warm Jupiters may have formed through identical pathways. However,
the hot Jupiters, precisely because of their close-in configuration,
encounter a secular resonance after the dispersal of their natal disk,
and tilt their outer companions’ orbits beyond the reach of transit
surveys.

The relative unimportance of the Sun to the solar system planets’ or-
bits has caused many to ignore stellar non-sphericity in exoplanetary
systems. In contrast, the results of this paper, and of related works
(Batygin, Bodenheimer, and Laughlin 2016; Spalding and Batygin
2016), illustrate the key role of the stellar oblateness to the long-term
dynamical evolution, and eventual architecture, of compact exoplane-
tary systems.
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