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Abstract

In part I of this thesis some of the parameters relevant to the pro-
duction of a cosmological baryon number asymmetry are considered in
the context of grand unified models. General expressions for the average
baryon number generated in the free decays of bosons are derived. The
CP violation necessary for the generation of a baryon excess is discussed
for a variety of SU(5) models. The kinematics of baryon number produc-
tion in an illustrative SO(10) model is discussed in detail. In part II a
viable SO(10) model is constructed which reproduces the phenomenologi-
cal fermion mass and mixing angle values. A detailed discussion of the
beta function for this model is presented. This analysis includes the

effects of scalars.
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1) Introduction

In the beginning, the idea of grand unification [1] was introduced as
an economizing gesture to reduce the number of possible Yang-Mills [2]
couplings. An immediate consequence of this was (under some cir-
cumstances) to reduce the plethora of parameters that appear in the
Yukawa couplings of a model. The Higgs self-couplings, however, do not
fare so well under this treatment for two reasons: the number of uncon-
strained parameters generally increases and the vial containing the noxi-
ous problem of hierarchies [3,8] is uncorked. There is also another prob-
lem endemic to grand unification that is shared by both fermions and
scalars (especially when one considers models larger than the minimal
SU(5) scheme). This is the proliferation of degrees of freedom. One is
forced to consider the possibility of some (presently) unobserved fer-
mions and many unobserved scalars. In the end, the program of grand
unification, although its original aim was to father simplicity, has given
rise to a rather large amount of complexity. Nonetheless, in spite of or,
perhaps, because of this complexity, grand unified models possess a

number of interesting features.

One of the first things grand unification forced one to consider was
the possibility of the decay of the proton [4,5]. Vector induced proton
decay did not exist in a theory based on the product of a flavor group
with SU(3) of color: G;;®SU(3).. However, scalar induced proton decay
certainly could have been put into a G;,®SU(3), theory ad hoc through
the inclusion of scalar representations with appropriate quantum
mumbers. The context of grand unification is a natural one in which to

consider vector-induced proton decay.



A similar situation exists for olther esoteric processes. Those arising
from the presence of the extra fermions (either charged or neutral)
could certainly have been considered in a G;,®SU(3), theory and recently
such ideas have been examined, prompted by their appearance in grand
unified models [6]. Grand unification beyond SU(5) requires one to con-
sider massive neutral fermions and the associated neutrino oscillation

and lepton number violation phenomena [7].

The presence of a large number of degrees of freedom in larger
grand unified models necessitates the examination of their effect on the
renormalization of the parameters in the model (notably the gauge cou-

plings and, hence, the Weinberg angle) [8,9,10].

In grand unified models the global symmetry structure can generally
be very rich, allowing one to experiment with a large number of natural-
ness conditions in an attempt to reproduce phenomenological mass and
mixing angle (and CP violation parameter) values. The possible presence
of of zeroth order mass relations and of the soft breaking of symmetries
each allows one to consider exactly calculable quantities, permitting,
perhaps, the construction of a model in which the electron family's

parameters are strictly perturbative.

To explore the ideas mentioned above, it is by no means necessary to
introduce grand unification, but it does act as a natural matrix in which
to consider them together. Just as one was able to consider the
SU(2);®U(1)y model as "a framework for organizing huge quantities of
experimental data,” [11] so too grand unified models can be considered
as a framework for considering a large number of theoretical possibili-

ties.



One may wonder about the possible significance of grand unified
models on a level somewhat deeper than the pragmatic and the organiza-
tional. Unification without gravity is only partial unification. So too is
unification without a criterion for choosing which of many possible
models is the most correct one. Grénd unified models may be criticized
on both of these accounts. The following operational philosophy is cer-
tainly a reasonable one to adopt. Grand unified models are worth explor-
ing both from the point of view of being a laboratory for theoretical ideas
and from the hope that one such model will turn out to be a limit of a fun-

damental theory yet to be discovered.

A few such theoretical ideas are considered in this thesis. In the first
part we discuss some aspects of ‘the cosmological baryon asymmetry in
the context of grand unified models. There are two perspectives that one
may take in considering baryon number violating processes in the very
early universe. First is the grand unified modeler’s perspective. From
this point of view one notes that there are only two laboratories in which
the effects of the “intermediate vector baseballs* [53]"" are manifest. One
is caverns in salt mines where, it is hoped by some, the decay of the pro-
ton may be observed. The other is at the superhigh temperatures that
were possibly present in the very early universe: T210'° GeV. At such
temperatures the rates for baryon number violating interactions are
competitive with those that conserve baryon number. The second per-
spective is that of the cosmologist who poses the so-called initial condi-
tion question: which observational cosmological facts must be taken as
initial conditions (isotropy? homogeneity? thermal equilibrium?...) and
*Thank you Sid.



which ones may or must be derived? In this context grand unified models
act as a self-consistent setting in which to discuss how the cosmological
baryon number asymmelry does not need to be imposed as an initial con-
dition on the evolution of the universe. In the body of part I a number of
topics relevant to the calculation of the baryon asyimnmetry are discussed.
To set the stage for this we review, in chapter 2, the method of calculat-
ing the magnitude of the cosmological asymmetry in an arbitrary grand

unified model*.

In the second part of this thesis we discuss the construction of a
grand unified model based on the simple Lie group SO(10) which acts as a
natural generalization of SU(5). In this model we are able to reproduce
the phenomenological fermion mass and mixing angle values. It is a gen-
eral feature of models based on gauge groups larger than SU(5) that
there may be more than one level of symmetry breaking; SO(10) has this
feature. The various predicitons of a grand unified model depend upon
the complexity of the symmetry breaking. Notable in this regard is the
effect of multiple symmetry breaking scales on the running of the gauge
couplings; hence we present an analysis of the beta function in this
model.

In summnary then, this thesis asks again the age old question, ""What is
the cat’s last name?" This question cannot be answered as is pointed out
in the poem which follows, nonetheless it is great fun to try. Eliot has put

*The text of chapter 2 is sssentially that of a paper by J. A Harvey, E. W. Kolb, D.
B. Reiss snd S. Woifram recently submitted to Physical Review Letters.



The naming of cats is a difficult matter,
It isn’t just one of your holiday games;
You may think at first that I'm as mad as a hatter
When I tell you, a cat must have THREE DIFFERENT NAMES.
First of all, there's the name that the family use daily,
Such as Peter, Agustus, Alonzo or James,
Such as Victor or Jonathan, Gecrge or Bill Bailey -
All of them sensible everyday names.
There are fancier names if you think they sound sweeter,
Some for the gentlemen, some for the dames:
Such as Plato, Ademetus, Electra, Demeter -
But all of them sensible everyday names.
But I tell you, a cat needs a name that’s particular,
A name that’s peculiar, and more dignified,
Else how can he keep up his tail perpendicular,
Or spread out his whiskers, or cherish his pride?
Of names of this kind, I can give you a quorum,
Such as Munkustrap, Quaxo, or Coricopat,
Such as Bombalurina, or else Jellyorum -
Names that never belong to more than one cat.
But above and beyond there’s still one name left over,
And that is the name that you never will guess;
The name that no human research can discover -
But THE CAT HIMSELF KNOWS, and will never confess.
When you notice a cat in profound meditation,
The reason, [ tell you, is always the same:
His mind is engaged in a rapt contemplation
Of the thought, of the thought, of the thought of his name:
His ineffable effable
Effanineffable
Deep and inscrutable singular Name.
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2) Cosmological Baryon Generation in Grand Unified Models

Cosmology is potentially an important source of information on the
baryon number (B) violating interactions expected in most grand unified
gauge models. Any net B imposed as an initial condition on the universe
should have been rapidly destroyed by any B-violating interactions. To
account for the observed baryon number density to photon number den-
sity ratio, ng/n,~10"° a net baryon number must subsequently have
been generated. This requires, in addition to B violation, the violaticn of
C and CP (and hence T) invariance, along with departures from thermal
equilibrium [12,13]. This chapter oullines the complete calculation of
np/n, generation in specific grand unified models in the context of the
standard hot big bang model of the early universe. The method we
present allows for the exact treatment of an arbitrary number of
superheavy bosons as well as the presence of nonthermalizing modes
[14]. We summarize results for several realistic SU(5) models. Many

details and extensions are discussed in ref. [15].

We denote heavy bosons generically by x and light fermions by a, 5,....
The number density n; of a particle i and that of its antiparticle n; are
parametrized by i,=(n;+n;)/ n, and i_=(n;-n;)/n,. The time development
of these quantities is described by a set of coupled Boltzmann transpert

equations. For the heavy bosons these are [13,15]

X+ = ‘§<P(X"ab)> (x+ —x19 (2~ la)
X- = -§<T‘(x*ub)> (x- = (a-+ ) x39) (R.1b)

where dots denote time derivatives and the expansion of the universe is

accounted for through divisicn by n, in the definitions of i,.. The first



terms on the right side of eqns (2.1a) and (2.1b) correspond to free
decays of x and x with partial rates <I'(x+ab)> averaged over the decaying
x energy spectrum. The second terms account for back reactions in
which the x decay products interact to produce x. The equilibrium
number density x{? is obtained by integrating the exp[-£,/ T] equili-
brium Maxwell-Boltzmann phase space density. In equilibrium, x;=x$? and
Xx+=0; the expansion of the universe produces deviations from equilibrium

at temperatures 7 ~m,.

The densities of fermion species develop according to

f-= ZJ <D(x=ab)> (Ny)as {{x+ — x39) R(x=ab) + Rx- — (a_+ b_) x39
a.9.x

t X al(Np)e «(Ny)ew] fa_tb_—c_-d_} <|u]o(absod)> , (22)
a.0.c.6.x

where (N;)s denotes the number of particles of type f in the state ab.
R(x»ab) denotes the difference in branching ratios between the CP conju-
gate decays x»ab and x»ab divided by the full rate for x decay; it van-
ishes if CP is conserved. The first part of the first term on the right side
of eqn (2.2) therefore represents the production of an asymmetry in fer-
mion number densities as a result of CP-viclating decays of a symmetri-
cal y, x mixture. The second part causes asymmetries, x- , between y and
X to be transferred to the fermions when thie x ( x ) decays. The third part
gives a correction to the rate for inverse decays resulting from the devi-
ation of the fermion number densities from their equilibrium value. The
second term in eqn (2.2) represents the production and destruction of
fermions by two-to-two scattering processes. ¢, is the cross-section for
this scattering mediated by x exchange, but with the term corresponding

to a real intermediate x removed (since this is already accounted for by x



decay and inverse decay processes).

The number of independent particle densities to be treated in eqns
(2.1) and (2.2) may be reduced by using unbroken symmetries (gauge and
global). For non-Abelian groups, any asymmetries are shared symmetri-
cally among members of each irreducible representation. If only a sub-
set of the interactions that may potentially contribute to eqn (2.2) is
included, there may be additional symmetries leading to further con-
served combinations of fermion number densities (e.g., I conservation in

the absence of Higgs-fermion couplings for the models discussed below).

Let f* (i=1, .- ,N;) be the independent fermion asymmetries and
x® (a=1,...,N,) the independent supermassive boson asymmetries. It is
convenient to form a set § which consists of independent quantum
number densities B,L, etc... related to F={f%,x% by a unitary transfor-
mation, @=H F, F=H" Q.

The thermalization of a quantum number & through reactions of a

particular boson x is given from eqn (2.2) by @&=) x$? M} @, where
X
ME=Y AQ (x-S r)<T(x~7* r})>(Hz' +H;;') and AQ(x~s*s') represents the
k.l

change in the value of § through the reaction x»f*f!. Boltzmann's H
theorem requires that the eigenvalues of M* are all real and nonpositive.
Any zero eigenvalues reveal additional symmetries; the corresponding
eigenvector of number densities is then conserved in y reactions (e.g., 11

in vector boson exchanges in SU(5)).

We consider two grand unified models based on SU(5). In each case a
family of fermions transforms as a reducible representation (5 ®10);,
labeled by thc family index i. The following Higgs representations are

taken to couple to fermions: in model I (minimal SU(5)), a single 5 of
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Higgs, Hs in model II, Hs and an additional 5 of Higgs, Hs. The Yukawa
couplings in these models have the schematic form
(5 (Da)ij 10;) Ha+(10;(Ug)s; 10;) H,.

It is shown in chapter 4 that a CP-violating nonzero R(x-ab) enters
through an imaginary part of the product of the couplings in diagrams in
which one boson is exchanged between the ab produced in the x decay.
The sum over a and b in eqn (2.2) runs over all types and families of fer-
mions; thus, for fixed fermion types, F(x»ab) is proportional to a family
space trace of Yukawa coupling matrices. In model I the first diagram
exhibiting CP violation involves only Higgs bosons and is of eighth order in
the Yukawa couplings [16,17,15]. This is discussed in chapter 8. It is pro-
portional to the imaginary part of the family space trace,
Tr{ UUTUDBUTD?], suggesting the rough estimate R~a® (mp/ my)® £/ (1287°)
= 4x107® (mp/my)8 e, with |£|g1, where my is the mass of the heaviest
fermion. (Stability of Lthe effective potential requires that mzg V3my [18]
and hence R<107® ¢, making the production of an adequate baryon asym-

metry implausible in this model.)

In model II (discussed in chapter 7), both Hs; and Hs have only the
single B-violating component®*, (3, 1, -1/3); since 5 is a complex represen-
tation one may form complex linear combinations so that the (3, 1, -1/3)
in both G and 5' is separately a mass eigenstate. This suffices tc show that
no CP violation may occur for gauge boson decay with Higgs scalar
exchange (or vice versa). CP violation may occur at O(a(mz/my)?)

through 5 decay with 5' exchange (and vice versa) [19].

* In this notation the first entry is the SU(3) multiplicity, the second is the SU(2);
mukltiplicity and the last the value of the weak hypercharge Y normalized so that
the charge operator is given by @=Tg;-Y.
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SUBR®SU(2),8U(1)y symmetry allows the 15 independent fermion
fields in a family of an SU(5) model to be reduced to the set
Uy, (U®);, (D°);, E; and (E°); (the subscript L denotes the left-handed hel-
icity state and ¢ denotes charge conjugation). The model contains a (3, 2,
5/6) of B-violating vector bosons X (with number densities parametrized
by X_ and X,). We consider the case where there are n; (=1 or 2) scalars,

S Sa,..., S

ng, transforming as (3, 1, -1/3) (with number densities
parametrized by S;_ and S;,). These models possess a locally conserved
weak hypercharge whose initial value we assume to be zero. The meodels
exhibit two further zero eigenmodes. The first is B—L which lias zero
eigenvalue (is conserved) in all boson interactions. A second zero eigen-
mode, [1=-3(D°);_—2E;_, is present if scalar-fermion interactions are
removed [14]. II (termed "fiveness'") corresponds to the net number den-
sity of the fermion species appearing in the 5 representation. A density
I1, generated through Higgs decays would be distributed as B = -1,/ 10,
v_=-I1,/5 through Il-conserving X interactions. II, may be destroyed
through exchanges of light Higgs bosons. A convenient choice of indepen-
dent combinations of {fermion densities is mng/n,= B =
2D, —(U®);_—(D°);_, Mand v_=E;_.

For model I, according to the estimate for R(S-+ab) given above, an
adequate baryon number asymmetry will be generated only if very heavy
fermions exist (mp~my)* Fig. 2.1a shows the baryon asymmetry (taking
my=5x10" GeV and a=1/40) as a function of mg/my for mp/m =1 anc
my/ my=3 obtained by numerically integrating the Boltzmann transport

equations (2.1) and (2.2). When ms/my>1, X exchanges thermalize the B

* Similar conclusions have recently been reached in ref. [20].
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Fig. 2.1a: Baryon number density as a function of the Higgs hoson (S)
mass generated in the minimal SU(5) model in which the heaviest fer-
mion has mass mp. Results are for a=1/40, my=5x10“GeV. The CP viola-

tion parameter ¢ is unknown but less than 1.
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produced in S decay to the value -II/ 10; meanwhile, I1is reduced by light
Higgs interactions. The final B attained is determined by the reduction
in I that occurs before X exchanges cease to be important and B
becomes fixed. For mg/my<! the X is not effective in destroying the
baryon number built up through S decay. The enhancement in the final
value of B around ms/my=1 is a result of the transition between these
two regions. The dotted curve shows the final baryon number if all X
interactions are artificially set to zero. Fig. 2.1b shows the temperature
development of the quantum number asymmetries B, I1 and v_ for the
case my/my=3, my/ my=1C with the solid (dashed) curves indicating the
effect of including (excluding) the destruction of 11 and v_ by the interac-

tions of the light Higgs doublet.

For model II the final baryon number density as a function of ms / my
is shown in fig. 2.2 for different choices of ms,/my. Note that, when
m,=m, we have (assuming (Ts,)totas =(I's,)tota in the Born approximation)
R(S,~ab)=-R(Sz+ab) and hence no B is generated. For ms>my the addi-
tional decay mode S;»>X+¢ (where ¢ is a light Higgs boson) decreases the
effective CP violation, R(S;~ab), in S; decay. For mgs,>my and mg >my,
the final B is negative and determined by vector thermalization of the
positive Il produced in S; decay. For mg,>my but mg <0.1my, the final
baryon number is positive and determined mainly by inverse decays into
S,. The dominant term governing the time evolution of B for Tms, is
B xS} <Is,>(i4v-—128+7Il) with similar equations for v_ and TI_. Since
I1>0, II>v_ and II>B, this term tends to drive F positive. In general there
are three linear combinations of B, v_ and Il which decrease as exponen-

tials until cut off at temperatures below mg . The final value of B thus
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Fig. 2.1b. Evolution of independent quantum number densities as a func-
tion of temperature in the minimal SU(5) model. B denotes the net
baryon number, v_ the asymmetry between v and v densities and I the
total asymmetry between fermions in the 5 and 5 representations of
SU(5); 1lleV = 10** eV. In these graphs the parameter ¢ has been scaled
out. The dashed curves are results obtained by neglecting light Higgs

boson exchange processes.
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Fig. 2.2: Baryon number density for an SU(5) model with two baryon
number violating Higgs bosons (S,, S;) as a function of the S, mass for
different choices of the S, mass. The results are for a=1/40 and

my=5x10"* GeV. The CP violation parameter ¢ is unknown but less than 1.
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depends sensitively on the initial values of I1, v_ and B. For this reason, it
is inadequate to assume that B is produced and damped in successive
independent stages as in simple models which treat only one quantum
number [13,21]. For both mgs,<my and ms <my inverse decays into S, are
no longer able to change the sign of the negative B produced through S,
decays and hence the final B produced is negative. The possibility of
changes in the sign of B associated with detailed features of the boson
spectrum indicates that no generic relation may be found between the
definition of "matter" as given for the K®*-K° system and that determined

from Lhe cosmological baryon number asymmetry.
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3) B and B-L Violation in Models With SU(5) Singlet Fermions

At temperatures at which baryon number production is thought to
occur, SU(3YRSU(R) ®U(1)y symmetry will be unbroken. With this
assumption we may analyze the possible baryon number violating vector
and scalar bosons which may occur in a renormalizable theory. This
analysis has been done for fermions with the quantum numbers of the
5®10 representation of SU(5) [19]. For this case the baryon violating vec-
tor bosons come in two varieties, X and X', with SU(3)®SU(R);®U(1)y
transformation properties (3, 2, 5/68) and (3, 2, -1/6) respectively. The
possible baryon violating scalars are S~(3,1,1/3), S;~(3,1,4/3) and
So~(3. 3, 1/3). Fermi statistics require that S, and S; couple to fermicns
antisymmetrically in family space in order to violate baryon number
(hence, they cannot give a tree-level contribution to the proton decay
rate). With the conventional assignments of baryon number (B) and lep-
ton number (L), it is found that all of these baryon number violating

bosons preserve B-L.

With the S0(10) model in mind we extend this aqalysis to include an
SU(5) singlet fermion N;~(1, 1,0). We assume here that the ~; has a
Majorana mass; consequently it may not carry any quantum numbers.
The fermion fields considered in our analysis are listed in table 3.1. We
assume that this pattern of fermions is repeated for the heavier families.
Lorentz invariance requires that renormalizable vector couplings have
the form V¥}o*¥, V, while renormalizable scalar couplings have the form
¥lo.¥, S with V, and S vector and scalar fields respectively. By taking the
relevant products of fermion fields appearing in Table 3.1 we obtain the
possible SU(3)®SU(2);®U(1)y transformation properties of the vector and
scalar fields along with their values of B and B—L. These values of B and
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Field !r SU(R)RSL2)RU(1)y i
1= (1,2, 1/2) |
a={4) (3,2, -1/6)

e’ (1, 1,-1)

u® (3, 1,2/3)

d° (3, 1, -1/3)

N (1, 1, 0)

Table 3.1

Fermion fields and their associated SU(3)®SU(2).®U(1)y representation

content.
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B-L are listed in tables 3.2 and 3.3 respectively. Bosons which may
violate B or B-L are indicated by a dash. We find no new B-violating vec-
tor or scalar bosons. However, the X' vectors and S scalars are now capa-
ble of violating F—L due to their interactions with N;. The additional B-L
violating vectors transform as (8, 1, -2/8) and (1, 1, 1) and are gauge
fields for the SU(4) and SU(R)p subgroups of SO(10) respectively. The
additional B-L violating scalars transform as (1, 2, 1/2) (the ordinary
Higgs doublet of SU(2);®U(1)y), (3, 2, -1/6) and (1, 1, 1). These scalars are
found in the following SO(10) representations which may couple to fer-

mions:
(1,2,1/2) € 10, 120, 126
(3,2,-1/86) c 126 (3.1)

(1,1,1) c 120, 1286

If the effective symmetry is SU@4)RSU(R):®SU(2)s or
SU(4)RSU(R)®U(1)r, then a Majorana mass for the N; is forbidden by the
SU(2)g or U(1)r symmetry and the N; must be treated similarly to the
other fermions. In particular, the gauged B-L symmetry present in
SO(10) will be unbroken and we must assign a value B—L = 1 to the ~;. If
the effective symmetry is SU(4)®SU(2);®SU(2)r, then, as will be dis-

cussed in chapter 8, the presence of an unbroken charge conjugation

symmetry forbids the production of a baryon asymmetry [22].

For the tables vhich follow, in (i, j, k), i denotes the SU(3) representa-
tion, j denotes the SU(R) representation and k denotes the U(1)y charge
Y. Y is given here corresponding to a definition for the electric charge
@ = Ts-Y , where T3 is the diagonal generator of SU(2) normalized to
Tr[T§]=1/2 in the 5 representation of SU(5).
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(8, 3, 0) 0 ! 0
(8, 1,0) 0 0
(8, 1,-1) 0 0
(8, 2, -5/8) 2/3 2/3
(8,2, 1/6) 2/3 2/3
(8, 3, -2/3) 1/3 4/3
(3,2, -1/6) - -
(38,2, 5/6) - -2/3
(3,1, -2/3) 1/3 -
(3, 1, -5/3) 1/3 4/3
(3,1, 1/3) 1/3 1/3
(1, 3, 0) 0 0
(1,2, -3/2) 0 2
(1,2, -1/2) 0 1
(1,1,0) 0 0
(1,1, 1) 0 i
Table 3.2
Vectors that may couple to the fermions of table 3.1.

Their

SU(3)®SU(R)®U(1)y representation content is given along with the asso-

ciated values of B and B-L. Vectors that may have more than one value

for these quantities are indicated by a dash.



R

; B B-L
(8,2, 1/2) 0 0
(6, 3, -1/3) 2/3 2/3
(6, 1,-1/3) 2/3 2/3
(6,1, -4/3) 2/3 2/3
(8, 1,2/3) 2/3 2/3
(3,3, 1/3) - -2/3
(8,2, -7/6) 1/3 4/3
(3,2, -1/6) 1/3 E
(3,1,1/3) - -
(3,1, 4/3) - -2/3
(8,1, -2/3) 1/3 1/3

(1,3, 1) 0 -2
(1,2, 1/2) 0 -
(1,1, 1) 0 =
(1,1,-2) 0 2
(1,1, 0) 0 0

Table 3.3

Scalars that may couple to the fermions of

table 3.1. Their

SU(3)®&SU(R)®U(1)y representation content is given along with the asso-

ciated values of P and B—L. Scalars that may have more than one value

for these quantities are indicated by a dash.
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4) Baryon Number Generation in Free Decays

In this chapter we describe the calculation of the average baryon
number produced in the free decays of an equal mixture of particles x
and their antiparticles (CP conjugates) x. This asymmetry is
parametrized by the quantity

P

RXEZBJ{M -1 (4.1)

I's Ty
where T(x-f ) denotes the partial width for decay of x to the final state f,
Ty is the total x decay width and B, is the baryon number of the state f
(so that B, =-5yp).

In treating the statistical mechanics of baryon number production it
is convenient to choose a basis so that the y are mass eigenstates. For
(4.1) to be nonzero, CP must be violated in the decays of x and x. As dis-
cussed below (and proved in general in the first reference of [19] and in
[13]), this requires interference between the Born amplitude for the
decay and a one-loop correction with an absorptive part. In addition, the
couplings of the particles participating in the decay must be relatively

complex.

We consider first the simplest nontrivial case: two massive bosons, X
and Y, coupled to four fermion species 1i,, ip, ig and i, through the ver-
tices of fig. 4.1 and their CP conjugates*. In the Born approximation,
these vertices lead to the decay processes X-ijiz, X-igiy, Y-1gi;, Y147z
and the corresponding CP-conjugate processes. We denote the coupling

*These vertices may be represented schematically by the interaction Lagrangian
L~i£Xi,+iIXi3+if)€3+‘i§Yi4 +h.c.
where all Lorentz structure has been suppressed.
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Fig. 4.1: Boson-fermion-fermion vertices. The jagged lines indicate gen-

eric bosons.
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in, for example, the vertex in fig. 4.1a by <iz|X|i,> so that the CP-
conjugate coupling becomes <iz|X|i,>*=<i,|X"|is>. The quantity X here
may be considered as a matrix of couplings in the space of possible fer-
mion states i;. Note that the set of vertices in fig. 4.1 is invariant under
the combined transformations X« Y and i,#i,. This invariance will be used
below to obtain results for ¥ (Y) decays from those for X (X) decays. The
couplings <i; |X|i> do not include the Lorentz structure which deter-
mines, for example, which helicity states of the fermions i; may contri-

bute.

Born approximations to the X and Y decay rates may be obtained

directly from the vertices of fig. 4.1. For example
T(X +12i)) Born =1¥% | <iz| X |i,>|®
= I32 <ip| X |i,> <iy | XT]ig>. (4.2)

Here I}? accounts for the kinematic structure of the process X-izi,; it
gives the complete result if all couplings are set to one. Expressions for
Iy for the cases where X is a scalar and a vector are given in appendix C.
From eqn {(4.2) it is evident that I'(X-izi,)gorn = I(X>12i,)5m. and hence
Ry vanishes in this approximation. To obtain a nonzero result for Ry, one
must include corrections arising from interference of the one-loop con-
tributions shown in fig. 4.2 with the Born amplitudes of fig. 4.1. Censider,
for example, the interference of the diagrams of fig. 4.1a and fig. 4.2b.
The resulting term in the squared amplitude is shown as fig. 4.3a. There
the dotted line is a "unitarity cut"; each cut line represents a physical
on-mass-shell particle. The amplitude for the diagram fig. 4.3a is then

given by
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Fig. 4.2: One particle exchange corrections to the diagrams of fig. 4.1.

The jagged lines indicate generic bosons.
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©) i2 I4| (d) ' i4 i2

Fig. 4.3: Lowest order (non-Born) contributions to the decay rate of the

generic boson X. The dashed line is a unitarity cut.
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P [<ig| YT|i,><i| X |ig><ip| Y ]ig>][<in| X [1:>]*
= I} <ig| YT|i1><ig | X |igd><ig| ¥V |ig><iy | XT]i2>, (4.3)

while the complex conjugate diagram, fig. 4.3b, has the complex conju-
gate amplitude

(138%%) * [<ig| YT|i,><iq| X |ig><ia| Y ]ig>] *<in| X |i>
= (3834 * <ip| X |1,><iy| Y ig><ig| X |ig><iy | Y]ig> (4.4)

where the kinematic factor /3§ accounts for integration over the final
state phase space of i, and 7, and over the momenta of the internal i, and
i3. Introducing notations for the quadratic and quartic combinations of
the couplings of the Born terms and of fig. 4.3

Tk = (BB = | < lx15> 1% = < x14><h X |4>

(4.5)
Dyz3s = <ig| Y1i1><0, | XT|1p5<05| Y |14><i4| X 15>

one may write the one-loop approximation to the X-izi, decay rate which

is obtained by adding the results (4.2), (4.3) and (4.4) as

T(X>ip1)) = IIPEYL + I3 0oss + (37 0zss) * (4.6)

The kinematic factors, J,, of the Born approximation are always real.
However, the kinematic factors Iyy for loop diagrams may have an ima-
ginary part whenever the internal fermion lines have sufficiently small
masses that they may propagate on their mass shells in the intermediate
state. In the one-loop diagrams of fig. 4.3, this occurs when the threshold

conditions

my=ms+m, (4.7)
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and
my=>m, + m,. (4.8)

are satisfied. With light intermediate fermions therefore, Ixy always exhi-

bits an imaginary part. Results for Im/#¥ in a variety of cases are given in
appendix B.

We now consider the CP-conjugate decay X - izi,. To obtain the CP-
conjugate amplitude all couplings must be complex conjugated. The
kinematic factors , however, are unaffected by the CP-conjugation (this is
manifest in the fact that reversal of the direction of fermion lines in a
closed loop does not affect the associated Dirac trace). Thus, to one-loop

order, the complete result for I'(X »i,i,) becomes

L

T(Xigiy) = IPEL + II830508. * + (I3F7%) *Q2ss . (4.9)

The diagrams for the decays X - i ig and X -» i ig are shown as figs.
4.3c and 4.3d. The loop diagrams differ from those for the decays X - 1,1,
and X - iy, only in that the unitary cut is taken through the i; and i,

rather than the i, and i, lines. In analogy with eqns (4.8) and (4.9) we

obtain

T(X »igig) = I§*Z34 + I3 % Mzss* + (IH'2) *Nizss . (4.10)
and

T(X+i4ig) = %53y + i'%0 00y + (T % 00ss) * . (4.11

Using the results of eqns (4.7) through (4.11) together with eqn (4.1) we
can compute the average baryon number produced in the free decays of

an equal number of X's and X's. The one-loop contribution to this
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asymmetry from the 4,7, and %,i, final states is given by

[FXigh,) = T(X-E5i,)]
[[(X-ip1,) + T(X>igig)]

" R=(B,-B)

(138301234 + (138 012s4) * — P 12ss * — (35> *01234]

= (B;,~5B;,)

(22 + ]?515‘;]
(B, ~B;)
= —4 ‘—}X——‘—lmms‘]knmmd . (4.12)

The analogous result for the 34 final state is

(Bi,—By) )
R = -4 T‘h’n[[}?w]lmmxza *]

(Bi,—Biy)
=4 ——Im[[%lz]lm[ﬂlgg.;] . (413)

Iy
The kinematic factors Im[/$#°*] and Im[/$}'?] are obtained from
diagrams involving two unitarity cuts (as in fig. 4.4): one through the 1,
and i; lines and the other through the i5 and i, lines. The resulting quan-
tities are invariant under the combined interchanges i, iz and i, & iy

and consequently are equal:
Im[7}F4] = Im[/3$'2]. (4.14)

Hence R}?/ R = (B, -B,,)/ (B;,~B, ), as expected. Notice that, if all inter-
mediate fermions have zero mass, then the 7/3#** are completely indepen-
dent of their upper indices; corrections from small fermion masses are of
order* (m, / my)?.

*Corrections of order m,/my vanish due to the helicity structure of the relevart

diagrams.
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Fig. 4.4: The double cut diagram that represents the contribution of the

generic boson X to the baryon asymmetry in its free decays.
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Upon adding the contributions (4.12) and (4.13) we obtain the final
result:

5 -
Ry = ﬁlm{fﬁaﬂlmmmsﬂ[Bi,—Bia—(Biz-Bi,)] : (4.15)

The conditions for the kinematic factor Im[/3§**] to be nonvanishing were
given in eqns (4.5) and (4.6). A further condition for Ry to be nonvanish-
ing is thatl both X and Y interactions must violate baryon number. This is
seen as follows. If X couplings were B-conserving, the two possible final

states in X decay would have the same baryon number, so that

B;,—B; =B;,~bB;, (4.16)
and Ry would vanish. Similarly, if Y couplings were B-conserving,

B;,—B; =B; -B;, (4.17)

and Ry would again vanish. Thﬁs, both the X and Y couplings must be B-
violating to obtain a nonvanishing Ry. Furthermore, even if X and Y are
baryon violating, graphs which do not exhibit this quality do not contri-
bute to By. Thus, although it is not necessary that i,, ip, i and i, all be
distinct (it is, of course, necessary that at least one be different from the
others), they must be such that B, ,—-B; ~(B,,~B;,) is nonzero if Ry is to be
so. This is as implied by the general theorem given in the first reference
of [19] and in [13], that there is no contribution to Ry from graphs of
lowest order in baryon number viclating and arbitrary order in baryon

number conserving interactions.

The asymmetry Ry produced in Y and ¥ decays may be obtained

from (4.15) by the transformation XY and igei,, yielding
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4
Ry = i-.‘y—lmmxasu *Im[/}}*?][ B;,~ B ;—(B;,~B;,)]
G5 = I-‘-}Tlm[91234]11’11[1?}42][Bi"‘Bia"(Biz—Btl)] (4.18)
and so
Ry/ Ry = —Im(/3$%*)/ Im(/$$*?). (4.19)

It follows that the average baryon number produced in the free decay of

an equal number of X, X , Y and Y is

Im[/3p%]  Im[/3#%])
i)

Rx.y = 4[ ” Ty x Im{Ch234)[ B,,—Bi,—(Bi,~B.,)]. (4.20)

Even if the Ry and Ry are nonvanishing on their own, for the total to be
nonzero, the terms in the brace must not cancel. This requires that the
particles X and Y be distinct either in mass or in the Lorentz structure of
their couplings (e.g., one vector and one scalar) and that T'y#I'y. The
brace typically vanishes if X and Y are in the same irreducible represen-

tation of an unbroken symmetry group.

If more than the minimal set of four fermion species is present, the
result (4.20) must be summed over all possible contributing {i;}. It must
also be summed over all possible (X,Y) pairs. Whenever the fermions
have equal masses on the scale of my, the corresponding kinematic fac-
tors may be factored out of the summation as follows from the ccrmment
immediately following eqn {4.14).

Eqn (4.20) is also valid, with slight modification, when the intermedi-
ate particles in fig. 4.4 are bosons rather than fermions, as illustrated in
fig. 4.5. If the intermediate bosons Z, and Z, themselves have B-violating

decays, their weight B, in eqn (4.1) is the average baryon number
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Fig. 4.5: A digram like that shown in fig. 4.4 but involving a three-boson

vertex.
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produced in their decays. It gives the contribution to Ry

Ry = -I-?Tlm(ﬁ)lm(lgfzz)[Biz-Bt-l+§zl—§Zz]. (4.21)

Here Izlzzfzz depends on the masses of i}, i; and ig as well as on the masses
of X, Z, and Z,. Since Z, or Z; may be baryon number violating, 1_321 and

Bz, are defined to be the mean baryon numbers produced in the free

decays of Z, and Z,, respectively. We can now make the following argu-

ment: if X is baryon number conserving then we have B;,~B; = Bz - Ezl

Y]

and this contribution to Ry vanishes. Further, if both Z;, and Z; are
baryon number conserving, then Bz, = B; - B;, and Bz =B;, — B;, and the
diagram again vanishes. Because it corresponds to a double cut diagram,

the expression for Im(l}zzfzz) has the threshold conditions
my>mz, + mg, and my>m, + my. (4.22)
The expression for 0} is (analogous to eqn (4.5))

ﬁ = <Zzi.XiZl><1:2|22’1:3><1:3|ZI 11:1><1:1 |XT|1:2> ; (423)

The individual baryon asymmetry parameters Ry for X decays enter
the complete Boltzmann transport equations discussed in chapter 2 and
in [13]. These parameters determine the final baryon asymmstry by
themselves only if back reactions (inverse decays) and 2-2 scatterings
are ignored [13]. The total contribution to the baryon asymmetry from
decays of two species of bosons, X and Y, thus is not generally a simple
sum of their corresponding parameters Ry and Ry: if X and Y have
different masses, the importance of back reactions and 2-+2 scatterings

may be different in the two cases.



-35-

The discussion above concerns the one-loop contributions to baryon
asymmetry. In the generic case, an asymmetry occurs at this order if it
is to occur at any order. However, in some simple models (such as the
minimal SU(5) model considered in chapter 6) the one-loop contribution
vanishes, but there are higher loop contributions which are finite. In such
cases the detailed analysis given above must be suitably generalized by

summing over all possible unitarity cuts through the multiloop diagram.

We now discuss the value of the CP-violating coupling parameter
Im[Q] defined in eqn (4.12) (a general discussion of its structure is
presented in appendix D). We assume here that the 4; are all fermions

with masses much smaller than my and my.

In a grand unified model based upon a gauge group G a family of fer-
mions will transform either as a reducible or an irreducible representa-
tion. These models are conveniently cast in terms of left-handed fermion
fields. The two simplest examples to keep in mind are the SU(5) model
where a family of fermions transforms as the reducible representation
5p10, and an SO(10) model where a family can transform irreducibly as a

16.

In writing down eqgns (4.15) and (4.18) we have assumed that the fer-
mion mass eigenstates are states of definite baryon number. This is
guaranteed by the unbroken SU(3) symmetry if no exotic assignments of
baryon number are made to the weak eigenstates (i.e., all SU(3) singlet
fermions have B=0 and all SU(3) triplet fermions have B=0); no Majorana
mass terms for quarks may appear in the Lagrangian. We further assume
(though this does not affect our discussion very much) that all fermions
are SU(3) triplets or singlets. Thus, fermions may mix within and

between families so long as the mixings respect the quantum numbers of
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the unbrecken local and global symmetries of the model. In the beson
sector of the \model there may be mixings (when allowed by the other
quantum numbers of the model) among the baryon number conserving
bosons and mixings among the baryon number violating bosons, but no

mnixing may occur belween these twe classes of bosons.

As discussed in appendix B, the coupling of gauge vector bosons to
massless fermions rmay always be taken as real. Hence if both X and Y are
gauge vector bosons, the CP violation parameter Im[Q] will always vanish
in this case: contributions from processes which only involve vectors

come from the fermion mass matrix.

We now consider the case in which X is a gauge vector boson vV and ¥
is a Higgs scalar boson S, as illustrated in fig. 4.6. (Interchange of the
identifications of X and Y is irrelevant for this discussion since this
merely complex conjugates ); however, this interchange does effect the
Born rate.) The diagonal nature of the gauge couplings requires that the
fermions i, and i; lie in the same irreducible representation f, of the
gauge group (and similarly ig and i, lie in the same irreducible represen-
tation f;). Scalar bosons contributing to fig. 4.6 must lie in irreducible

representations s; such that
f1®f238a " (424)

The exchanged mass eigenstate scalar boson § is in general a linear com-
bination of components which have the same transformation properties
under some subgroup of the gauge group (e.g., for SU(5) the relevant

subgroup is SU(S)SU(2),®U(1)y):

S=alSl+a252+ b (425)
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Fig. 4.8: Vector decay with scalar exchange.
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Note that this linear combination may include both mixing between the
irreducible representations s, and within a given irreducible representa-
tion (an example of both such mixings is discussed in the context of an
illustrative SO(10) model in chapter 9). We shall assume for now that at
most two components are present; the generalization to an arbitrary

number is immediate. In this case,
Im{MB4])=Im[ Tr[<ig|St|i,><iz| S |i>]]
=Im[ 7r [(a, *<ig|S{ |[i,>+0ap *<ig| S§ [i,>)
X(a;<ip| S, |14>+az<iz|S2]is>)]] (4.26)

where we have dropped the real factor corresponding to the gauge boson
couplings, and the trace represents a sum over all fermion representa-
tions (usually "families'’). Since 4,i,cf; and 1isi,Cfz, the couplings
<ipl|Sg|iy> and <i;|S;lis> are related by a real Clebsch-Gordan

coeflicient:
<ig|Sg|1a>=G<i,|Se |is> . (4.27)
Hence
Im[Q)=Im[ Tr[(a; *<is| ST |i,>bz *<is| Sh 14,>(Crou<iy | Sy lig>+Ca0e<i, | S21i5>)]]
=Im[ Tr[(Caa, *ap<ig| ST |4,><i, | Sz |ig>+Cia0p *<ig| ST |1,><i, [ S ]i5>)]]
=(Co—Cy)Im[ Tr[a, *0p<i, | S, [ig><is| SE [11>]] - (4.28)

Thus, if C;=C,, then this contribution vanishes. This is inevitable if all
relevant Higgs bosons lie in replications of the same irreducible

representation of the gauge group, and if this representation contains
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anly one B-violating component. Examples of cases in which C;#C; are
the SU(5) model with a 55 and a 45y (case B in chapter 7) and an SC({10)
model with a 104 and a 1204 or a 1265. In these models, CP violation may
occur at the one-loop level from scalar boson exchange in vector boson
decay. Notice that since in the absence of spontaneous symmetry break-
down only one of the a; is nonzero, the result (4.28) yields no CP violation

in this case.

The case of vector boson exchange in scalar boson decay (illustrated
in fig. 4.7) is exactly analogous to the case of scalar exchange in vector
decay discussed above. When fig. 4.7 contributes, il is often imporiant by
virtue of the large value of the vector couplings relative to the scalar

ones.

We now consider CP violation arising from scalar boson (S") exchange
in scalar (S) boson decay, as illustrated in fig. 4.8. If only one B-violating
Higgs boson is present, then the decaying and exchanged boson must be
identical, and the results discussed above show that fig. 4.8 can give no
CP violation. This is the case for the minimal SU(5) model. (However, as
described in chapter 6, CP viollation may occur in higher-order diagrams.)
We consider for now the case in which all fermions are effectively mass-
less. Then, in analogy with (4.24), the contributing scalar bosons must

appear in representations s, such that
£,81,C5, (4.29)
£.Rf:Cs,
1, Cs,

fRf, C5,
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Fig. 4.7: Scalar decay with vector exchange.
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Fig. 4.8: Scalar decay with scalar exchange.
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If all the left-handed fermions lie in the same complex irreducible
representation, f (or sequence of such identical representations), then

f, =1, = I3 =1, and these constraints become
2M>8,, 5.5, 5, . (4.30)

For low-dimensionality representations, this requires s, and s, to be real
representations. Hence in SO(10) models where all fermions lie in the 16
representation, only 10y or 120y may contribute to fig. 4.8; the 126y
which appears in 16,816, is complex. (For high-dimensional fermion
representations, some ccmplex Higgs representations may satisfy (4.30):
an example is the 126y occurring in the symmetric product 144,8144, of
S0(10).) After spontaneous symrnetry breakdown, mixing between scalar
bosons may occur, and the constraints (4.29) are no longer applicable.
Thus, in both SU(5) models with several Higgs representations coupling to

fermions, and in SO(10) models, fig. 4.8 can yield CP violation.

The discussion above has assumed that all relevant fermion species
are effectively massless. With gauge groups such as S0(10) or E(8), it is
common for fermions with SU(R) singlet and thus potentially large mass
terms to exist. The effect of such fermions in intermediate states of figs.
4.8 through 4.8 and in vector decay through vector exchange diagrams is
always suppressed by O(mf/m$). If only a single massive fermion exists,
then it can introduce no CP-violating effects into vector decay through
vector exchange; a single massive fermion is, however, sufficient to gen-

erate CP violation in figs. 4.6 through 4.8 even when (4.28) vanishes.

It is certainly worth noting that, though the analysis of this chapter
has focused on baryon number, the expressions that we have derived are

by no means restricted to that quantum number. The expressions are
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valid to describe the generation of any quantum number in the free
decays of X, X, Y or Y . Thus, for example, to describe lepton number
generation we need to replace the B;’s by the relevant lepton number
assignments. Furthermore, although our analysis focused on the
diagrams of fig. 4.4 as the first nonvanishing contributions to Ry, it may
be that those diagrams give a vanishing contribution to Ry for a particu-
lar model (an example is the minimal SU(5) model discussed in chapter
6). In that event the discussion given here goes through with very little
change: the quantity /Q then arises from the lowest order contributing

diagrams.
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5) SU(5) Models

SU(5) is the simplest group (and the only one of rank 4) which con-
tains the group which so successfully describes the existing low energy
phenomenology* [1], SU(3)®SU(R),®U(1). The vector bosons transform
according to the adjoint representation, 24. The symmetry breaking
SU(5)»SU(I)RSU(R)Y®U(1) is typically effected by means of a 24y of Higgs
scalars which is postulated to attain a superlarge vacuum expectation
value so that the phenomenological constraints on the decay rate of the
proton [23] may be maintained. A family of fermions, which consists of
15 left-handed fields, falls into the reducible representation 5&10. Such a

family has the (generic) particle content

5, 5 {Df: vy, Ep} (5.1a)
10, = {0y, Dy U5 EF) (5.1b)

where the superscript ¢ stands for charge conjugation and the vector
sign indicates transformation as an SU(3) triplet. Thus Uf transforms as

a 3.

Scalar fields which couple to fermicns must transform according to

representations that appear in the decompositions of 5&5, 5810 or 10810:

5@5 = _OA'*'ES (528)
5®10 = 5+45 (5.2b)
10810 = (5+50)s + (45), . (5.2¢c)

*Semetimes refered to as the "Holy Trinity."
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With the assignment.s‘ (5.1), of these representations the only ones
which have a neutral (zero electric charge) component (and hence can
have a vacuum expectation value and contribute to the fermion mass
matrix) are 5, 15 and 45. The inclusion of a 15 of Higgs would allow the
left-handed neutrino to have a Majorana mass (and would thereby violate
the F-L symmetry usually present in the broken SU(5) theory with only
5's or 45’s of Higgs [24]). It appears difficult to make such a Majorana
mass naturally small in an SU(5) model with the fermions (5.1); the 15 is

usually excluded on these grounds.

The simplest viable set of Higgs is a single 55 (in addition, of course,
to the 245). A model with a single 45y, though theoretically sound, has
phenomenological problems because it gives the mass relation
my/m, = 1/3 at the unification scale and this is very difficult to reconcile
with experiment. Alternatives to this so-called minimal SU(5) model that
effect the charged fermion mass matrix while leaving the neutral mass
matrix unaltered are to have more than one 5y or to have a 55 and a 45y
or to have some arbitrary number of each. A discussion of the CP viola-
tion necessary for cosmological baryon number production in such
models is discussed in chapter 7. Another possibility is to add a 50y of
Higgs (this, of course, has no effect on the fermion mass matrix at tree
level); this case is relevant for the "primordial” SO(10) model discussed in

chapter 9.

The reducibility of the fermion representation implies that, even with
a single Higgs representation (55 or 45y), there are two independent
Yukawa coupling matrices. One couples to the product 5,810; (where i
and j index fermion families) and the other couples to the product
10;®10;. The former yields (after the Higgs have obtained their vacuum
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expectation values) the D and F mass matrices and the latter the [7 mass
matrix.
The SU(5) representations introduced above may be decomposed

according to the embedding SU(5)>SU(3)RSU(R)®U(1)y as

5=(3,1,1/3) + (1,2, -1/2) (5.3)
10=(3,2, -1/8) +(3,1,2/3) + (1. 1, -1), (5.4)
15=1(6,1,2/3)+ (3,2 -1/8) + (1,8, -1) (5.5)
24=(8,1,0)+ (3,2 -5/6) + (3,2, 5/6) + (1, 1,0) + (1, 3, 0) (5.6)

45=(1,2,-1/2)+ (8,2, -1/2)+ (6.1, 1/3) + (3, 1, —4/3)
+(8,1,1/3) +(3,3,1/3) + (3,2, 7/8) (5.7)
50=(6,3 -1/3)+ (8,2, 1/2) + (3.2, -7/6) + (6, 1, +4/3)

+(8.,1,-1/3)+ (1,1, -2). (5.8)
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6) CP Violation in the Minimal SU(5) Model

In this chapier we discuss the result that, for the minimal SU(5)
model, the first possibly nonzero contribution to Im(Q) (in the notation of

chapter B) occurs at eighth order in the couplings [18].

In minimal SU(5) one puts each family of fermions in the reducible
representation 5,@10; , where the index i is a family index. As we dis-
cussed above, the Higgs multiplets in the minimal model are taken to be
a 5y and a 24y ; the 24y cannot couple directly to fermions. The coupling

of the fermions to the 55 may be written schematically as
5a'(10;(hy)i; 105) + By (5i(hp)y; 10;) (6.1)

where summation over repeated indices is implied and where hp and Ay
are the Yukawa coupling matrices in family space. In eqn (6.1) there
should also appear group coupling coefficients to make the respective
terms to transform as SU(5) singlets. Such coefficients may be taken to
be real as discussed in appendix B. Furthermore, there is only a single
representation of Higgs that couples to fermions and that representation
contains only one baryon number violating scalar (up to SU(3) degen-
eracy); thus, there is no mixing among the relevant baryon number
violating scalars. Consequently, any group coupling coefficients that
appear in Q can be factored out of Im(Q); thus, for the present discussion,
they cause us no consternation and we will therefore suppress them. This
will also be the case for an extended SU(5) model with two 5y representa-
tions; however, for an extended SU(5) model with a 55 and a 455 this will
not be valid since the group coupling coefficients for coupling to the 54
differ from those for coupling to the 45;. The details of these cases are

discussed in chapter 7. Thus, all matrices that we consider in this
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chapter are matrices in family space and all traces are over family
indices. Off-diagonal elements in these matrices represent transitions

between different families.

The coupling of the gauge vector bosons to the fermion fields is diag-
onal in family space. We write those couplings schematically as

'5-2—[24V'(ﬁ~;'101;)"'241/'(5:"51‘)]- (8.2)

In the broken theory the errors introduced by neglecting the mixing of
fermions induced by the off-diagonal elements in hp, and hy are of
0(mf/ M?), where m, is a typical fermion mass and M is the mass of an
internal boson line (see appendix C for explicit calculations in the two-
loop case). In the unbroken theory (i.e., at high temperatures) the fer-
mions propagate as massless particles. Either way we are justified in
neglecting fermion mixing.

The types of vertices that may appear in a diagram fall into two
classes: the couplings of fermions to bosons and the couplings of bosons
to one another. For the minimal SU(5) model, the latter class has all real
(non-CF violating) couplings. Thus, all factors arising from such vertices
may be factored out of Im(Q). The reasons for this are as follows. In the
minimal SU(5) model there is no spontaneous CP violation (the 24y is a
real representation and hence its vacuumn expectation value is real; any
phase appearing in the vacuum expectation value of the 55 can be
rotatec away in exactly the same fashion as in the SU(2);&7/(1)y elec-
troweak theory with one Higgs doublet.) Furthermore, there can be no
intrinsic CP violation in the Higgs potential (which CP violation would be
necessary for the three- or four-boson couplings to be CP non-invariant)

because 1t is Hermitian. For example,
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A5y 5yR4y + A*(By -5y 245)"
4

= A5y'55-24y + N*(By)" (5m)" 24y
= (A"’)\.)BH'SH'Z‘}H' (63)

which is CP invariant. In treating CP violation in the minimal SU(5) model
to lowest order, we therefore consider diagrams with no three or four-
boson vertices. This leaves us with diagrams consisting of one or more
closed fermion loops and with only fermion-fermion-boson vertiges. It
therefore suffices to determine what the lowest order is for which the
family-space trace corresponding to a single fermion loop bubble diagram

with no multiple boson vertices has an imaginary part.

The fermion-boson coupling vertices in the minimal SU(5) model are
shown in fig. 6.1. The lowestorder corrections to B-violating decays in this
model are given in fig. 6.2. Each diagram is proportional to a trace in
family space over the products of coupling matrices occurring around the
closed fermion loop. The trace for fig. 6.2(al) and 6.2(a2) is trivial, hence
there can be no CP violation from vector boson exchanges in vector boson
decays. For fig. 6.2(al), the relevant trace is Tr[(hp)¥{hp)] , which is real.
Similarly, fig. 6.2(b2) involves Tr[(hy)'(hy)] which is again real. Figs. 8.2¢
yield the same traces and are thus also CP-conserving. Finally, fig. 6.2d
gives Tr[(hp)'(hp)(hy)l(hy)], which is manifestly real. Thus, none of the
diagrams in fig. 6.2 can give rise to CP violation.

A sysiematic investigation of possible three-lcop diagrams resveals

that none can have CP violation. For example, fig. 6.3 yields the trace
Trhghyhihphbhp]=[Tr [hhyhfhphthp]]* . (6.4)

The first diagrams for which the corresponding traces are not necessarily
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Fig. 6.1: Boson-fermion-fermion vertices in the minimal SU(5) model.
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(cl) _ (c2)

Fig. 6.2: Lowest order (non-Born) diagrams for the decay of bosons in the
minimal SU(5) model. Unitarity cuts are not exhibited. These diagrams do

not give CP violation.
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Fig. 6.3: An example of a sixth order diagram for the decay of a scalar
boson in the minimal SU(5) model. Unitarity cuts are not exhibited. This

diagram does not give CP violation.



=/ G

(PAGE 53 IS BLANK, DUE TO ERROR IN PAGINATION)



.

real appear in the next order [18]. The relevant diagrams are shown in

fig. 6.4, and are proportional to the trace*
Tr{(hy)(hy)(hy)(hp)?(hy) (hp)?]. (8.5)

At this point it is worth noting that there is an additional freedom in
this model which allows us to take either hp or hy to be real and diagonal.
In earlier work [16] it was believed that this freedom was necessary to
show that all of the diagrams of less than eighth order do not have a CP-
violating imaginary trace; however, as we have shown above, it is not
necessary to use this freedom. We review the discussion oi this syni-
metry here because it is interesting to see how, by using the available
freedom (under the assumption of massless fermions), the CP violation

may be isolated.

With the neglect of fermion mixing we can perform a unitary

redefinition of fields in family space

5 = Vﬁgj .
. (6.8)
IOj = Ujk 10):
ij = (V—l)ijl Uks' = (U_l)jk- (6'7)

Upon applying these redefinitions and suppressing explicit family indices,
the couplings (6.1) become

(5 Vt-(hp): U-T6) B+ (107 UT-(hy)- U-10) 54

= (5-(hp) 10)-5 + (107-(R)-10)-5 (6.8)

where

(hp) = V'-(hp) U
. U] . (6.9)
(hy) = UT-(hy)-

*In this expression A) is taken to be real and diagonal (this may always be done, as
is discussed in what follows). For such an hp all of the diagrams in fig. 6.4 have
equal weight.
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(c)

Fig. 6.4: Eighth order diagrams that may give CP violation in the Minimal
SU(5) model. Unitarity cuts are not exhibited.
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The 5’s of fermions and the 10’s of fermions can be independently
redefined as in eqn (6.6) because, in this limit, the naming of families is
an arbitrary convention. Thus, eqn (6.6) amounts to a new choice of fam-
ily convention. The specific form of the Lagrangian is altered but its

predictions are not.

Since it is the symmetric product of two 10’s that couples to 55 , hy
rr/mst itself be a symmetric matrix. Clearly ky must be symmetric as
well. It is clear from eqn (6.6) that, for suitable V and U, hp may be ren-
dered real and diagonal. Given such a V and U, hy may not, in general, be
cast into such a form. It may therefore contain CP-violating compiex
entries. (We may also proceed differently by choosing U so as to render
Ry real and diagonal [25], then hp cannot be made real and diagonal in

general.)

The gauge couplings (6.2) may be written after the transformation
(6.8) as

-j_?[%y-(ﬁ)- Ut U-10)+24, (5 v v-5)] = [24y-(10- T0)+241 (5-3)] (6.10)

and are therefore left unaltered. The arguments given above also apply
in an SU(5) model with a single 454 of Higgs (as well as the 24y ).

For the minimal SU(5) model the high order of the diagrams gen-
erally renders possible CP-violating differences between the X and X par-
tial widths very small and prevents the generation of an adequate baryon
asymumetry. A rough estimate for the magnitude of the paraineter K of

eqn (4.1) arising from these diagrams is

R~ ;‘—lm[z](gz/z)*’iz; (hy+hp) "e. (6.11)
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where ¢ is a CP violation parameter (e=siné where 6 is a CP violating
phase angle )|e|<1. The Yukawa couplings are dominated by the heaviest
fermion . The momentum integration factor Im[/] is given very roughly
simply by the volume of available phase space for each loop integration:

Im[/] ~ (1/8n%)3. Thus one may estimate

6
mg

My

8
mg

8
£~ 4x10‘°[ £ (6.12)

R~ 2
12872

my

This is completely inadequate unless very heavy fermions exist in a family
transformaing as 5@10. With the usual symmetry breaking mechanism,
mp { V3 my, so that R ¢ x1078 . In principle, one may make unitarity
cuts through the diagrams of fig. 6.4 to obtain either two-body or three-
body final states. However, the fact that the exchanged bosons have the
same mass as the decaying bosons renders all but twe-body final states

energetically forbidden.

Above we have considered only decays to fermion final states. CP vio-
lation can enter in the minimal model only through intrinsic complex
mixings between fermion families: fermion intermediate states are
therefore necessary for CP violation. Decays suchas S » Xg or X » Sy to
boson final states (where ¢ is an SU(R); doublet scalar) therefore exhihit
CP violation only through internal fermion loops and at very high order in
perturbation theory (always at an order higher than if one has only fer-

mion final states).
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7) CP Violation in Alternative SU(5) Models

The minimal SU{5) model is economical in its choice of Higgs
representations, but that choice is by no means necessary. From the
point of giew of generating an acceptable baryon number asymmetry,
there are two simple modifications of the SU(5) Higgs structure that may
be made: adding a further 5y (case A) or the addition of a 455 (case B).

Of course, more complicated Higgs structures may be chosen.

We first discuss case A, in which two 5y’s, denoted 5y; and 5g;,
appear. The coupling of these Higgs to fermions may then be written in

the form
(57 -(hp)) 10;) -5 + (55 (hpe) 10,) By,
+ (10f(hyy) 10, )55, + (107 (hyz) 10, ) 5p2. (7.1)

The 54, and 54, here may be chosen to be mass eigenstates. This is possi-
ble because any linear combination of 5;'s is also a 55 (complex linear
combinations are permitted since 5y is a complex representation) and
furthermore there is only a single baryon number violating scalar in each
5y up to SU(3) degeneracy.

The diagrams for corrections to gauge boson decay through Higgs
exchange are as in fig. (6.2), except that either of the two 5y's may be
exchanged. In each case, to lowest order, the
CP-violating part is proportional to Im[ 7r (A®he")] = 0. Similarly, no CP vio-
lation is generated by gauge boson exchange corrections to the decays oif
54, or 5y, Higgs bosons. Exchanges of 54, in 5y, decay may be treated
just as in the minimal model which contains only a single 55 discussed in
chapter 6: CP violation in such cases was shown to vanish until eighth

order. However, exchange of 5y, in 5y, decay (or vice versa) may lead to



CP violation at fourth order. The coupling factor associated with this
diagram is /Q = Tr[(hp,)(hp2)T(hy1)(hy2)!]. One may apply the unitary
transformations (6.3) to render real and diagonal either hp, or hp, but
not, in general, both. Hence here, in general, Im[Q] # 0, so that CP viola-
tion may occur in 54, decays through 55, exchange (or vice versa) at the
one-loop (0(a)) order. This is shown in fig. 7.1.

We now discuss case B defined above, involving a 55 and a 455. Their

coupling to fermions may be written in the form
(57(hp)'10;) -5y + (5, (Hp) 10;) 45y
+ (105 (hy)-10;)-55 + (10f-(Hy) 10, )-454. (7.2)

In this case, Higgs with definite SU(5) transformation properties will not,
in general, contain baryon number violating scalars that are mass eigen-
states. A (3, 1, 1/3) (B-violating) component exists in both 55 and 45y;
the mass eigenstates will be linear combinations of these components.
The presence of a 5445y 24y 24y term in the Higgs potential enforces
such a mixing between the (3, 1, 1/3) in the 55 and that in the 455 . This
term cannot be removed by the imposition of a discrete symmetr

without affecting the Yukawa terms. A cubic term such as 54455 24y can
be excluded by the symmetry 24y » —245 . We denote the (3, 1, 1/3)
mass eigenstates (assumed mixtures of that in the 55 and that in the 455)
by S, and S;. The couplings of fermions to these mass eigenstates are
linear combinations of the kp, Hp and hy, H: app:aring in (7.2). However,
in general, the linear combinations will be different for different fermions
within a single family by virtue of the different Clebsch-Gordan
coefficients in coupling fermions to the (3, 1, 1/3) in 5y and to the
(3. 1, 1/3) in the 455. If we call the (3, 1, 1/3) in the 5y, S, (where e is the
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Fig. 7.1: Scalar decay with scalar exchange in an extended SU(5) model

with two 5’s of Higgs. This diagram may give CP vioation.
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SU(3) index) and call the (3, 1, 1/3) in the 454, S,, then we may write
their couplings to fermions as follows. The coupling of S, coming from

the 51055 term is
tE{hpo2(Us)® +vIhpog(Dy)® +(DE)Thpoo( UR)gs™4}S, . (7.3)
The coupling of 5, coming from the 5-10-455 term is
{ETHpoo( Uy )+l Hpoo( Dy )® —(Df){ Hpoo( Uy )ae®?3 5, . (7.4)

Aside from having differing Yukawa couplings, the preceding two expres-
sions also differ in their Clebsch-Gordan coefficients {notably the crucizl
minus sign in (7.4) as compared to (7.3)). Eqn (4.28) then shows that we
may now have a contribution to the baryon asymmetry due to the CP vio-
lation in vector exchange in scalar decay (and vice versa). Similarly,
gauge boson exchanges in Higgs boson decays may also yield CP violation.

The structure of CP violation for Higgs boson exchanges in Higgs boson

decay is analogous to the model A discussed above.

It is worth noting that there are two more baryon number vioclating
scalars in Model B: a (3, 1, -4/3) and a (3, 3, 1/3), both contained in the
455. We call themn S3 and S, respectively. Diagrams involving only an Sy
or those involving only an S, show no possible CP violation until eighth
order in the couplings if there is no intrinsic CP violation in the Higgs
potential. Furthermore, in the decays of gauge vector bosons there is no
CP violation through the exchange of a single S3 or S, as follows from eqn
(4.28) since Sg and S, are necessarily mass eigenstates. Also, since each
couples to fermions identically (within a factor of a real Clebsch-Gordan
coefficient), it follows that a diagram that only involves Sg and S, will

show no CP violation until eighth order, although a diagram for, say, S,
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decay through S5 exchange may have CP violation at fourth order.
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8) Introduction to SO(10)

Grand unified models based on SU(5) are the most economical as well
as being the simplest for actual calculations. However, the assignment of
a (left-handed) family to the reducible 510 representation has a number
of ugly features. Soine of the particles belong to differeunt irreducible
representations than their antiparticles and, although the anomalies can-
cel between the 5 and 10 representations of fermions [1], this cancella-
tion appears rather artificial from the standpoint of SU(5). In addition,
many SU(5) models contain a global quantum number corresponding to
baryon number minus lepton number, B—L [24]. These features may be
removed by embedding the SU(5) theory in an SO{10) model with the fer-

mions assigned to the lowest dimensional spinor representation [26].

The defining representation of SO(10), 10, is real and has the follow-

ing SU(5) decomposition:
10=5+5. (8.1)

The lowest dimensional spinor representations of SO(10) are* 16 and its
conjugate, 16. All representations of SO(10) can be built out of products

of 16 and 16 among themselves. The SU(5) decomposition of 16 is
18=1+5+10. (8.2)

We see that a single family of fermions can be accommodated in the 18 of
S0(10). The anomaly cancellation that occurs in SU(5) between the 5 and
the 10 of fermions has a natural explanation by choosing the 16 as the
oIt is here that the (often confused) distinction between 0(10) and SO(10) occurs.

The lowest dimensional spinor representation of 0(10) is 32 and is self-conjugate.
Under 0(10)>50(10), 32 = 16 + 16. 32 is irreducible in 0(10), but reducible in S0(10).
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fermion representation in S0(10). The 16 is anomaly free as are all
representations of SO(n) for n>6. This is equivalent to the statement
that the symmetric product of the adjoint with itself does not contain the

adjoint and hence the d coefficients vanish.

S0(10) is of rank 5 and contains SU(5) as a subgroup with the maxi-

mal embedding
S0(10) > SU(B) ® U(1). (8.3)

The SU(5) model may be considered as being embedded in an S0{10)
model in a sense similar to the way the SU(S)®SU(R)®U (1)y 1nodel is
embedded in SU(5). This point of view is expressed by the following dis-
cussion. In the simplest SU{5) models (with only 5's and 45's of Higgs)
there is a global U(1) symmetry in addition to the gauged SU(5) sym-
metry. When SU(5) undergoes spontaneous symmetry breakdown, this
global U(1) is broken, as is the combination of generators through which
the Z° boson couples. A linear combination of these generators, however,
survives as a global symmetry* and corresponds to B-L [27]. If we

demand that there be no ungauged continuous symmetries**, then we

*We will refer to this process by which a global symmetry survives spontanecus
symmetry breaking as the 't Hooft mechanism [28]. This mechanism can be used
for both discrete as well as continucus symmetries. In the latter case, however, it
provides one with a method for avoiding Goldstone bosons. In the case of discrete
symmetries it allows for what may possibly be a very simple symmetry to
transmute into a much richer symmetry. If one takes a somewhat proletarian at-
titude towards model building (and, for example, pastulating various messy
discrete symmetries to force particular results from a given model), this fact
gives one hope that embedding such a model in a larger model may give rise to a
stmpler natural symmetry structure. An example of this is given in the context of
an illustrative SO(10) mode. in chapter 13 and appendix E.

*¢This is, of course, a bias which is not necessitated at present by any well defined
theoretical principles just as long as any global symmetries that are spontaneous-
ly broken are rendered harmless by the 't Hooft mechanism. Other alternatives
are to explicitly break the symmetry with terms of dimension 2 or 3 or terms of
dimension 4 in the Lagrangian. This cannot always be done as is evidenced by the
SU(5) example where one has to use the 't Hooft mechanism of necessity. It was
this feeling that continuous global symmetries are in some sense incompatible
with the ideas of locs! quantum field theory that originally led Yang and Mills to
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must cousider SI'(5)®U(:) as the gauge group. S0{10) is then the smal-
lest simple group containing SU(BY®U{1) . The gauge vector boson
correspouding to the U(1) factor can then mediate B-L violating

processes.

Froin eqn (8.2) we see that the price to pay for this SO(10) unification
is an SU(5) singlet fermion. Since the electric charge operator is entirely
contained in SU(5), this fermion is neutral. We denote this extra field by
N;. It provides a charge conjugate partner for the left-handed neutrino
and thus allows a A/y=1/2 Dirac mass term for the neutrino. The poten-
tial disaster of neutrino masses of the order of the A7y=1/2 breaking may
be avoided if the N; acquires a very large, Ay =0, Majorana mass, My [R9,

27]. The neutral lepton mass matrix will then have the form*

0
[m; ',;:‘;] (8.4)

with m; a matrix with entries of the order of the observed quark masses
and My the Majorana mass matrix for the N;. For My>»m, the eigenvalues
of this matrix are given approximately by the eigenvalues of My, which
are the masses of the Ny, and the eigenvalues of the matrix m{My'my,"
which are the light neutrino masses. As a result of this mechanism,
S0(10) models naturally predict the existence of neutrino masses and
hence neutrino oscillations. The N; can be given a large Majorana mass

either directly through a 126 of Higgs that obtains a large vacuum

the concept of the gauge field [2].

*The zero entry in this matrix is not necessary. All that is required is a condition
such as being < O(my,). Such a Majorana mass for ¥, would have Aly =1 and must
be relatively small so as not to disturb m y/(mgcoedy) = 1. A Majorana mass for v,
can be accommodated in SU(5) by including a 15 of Higgs which obtains a vacuum
expectation value or by means of a 10 of Higgs. In the latter case, the left-handed
neutrino’s Majorana mass arises as a calculable correction to the zeroth order
mass relation which requires it to vanish [31].
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expectation value along its SU{5) singlet direction or through radietive

corrections [30].

The vector bosons transform as the 45 dimensional (adjoint)
representation of S0(10) which has the chiral decomposition

(SO(10)>SU(4)RSU(2),8SU(2)r),
45=(86,2,2) + (15,1,1) + (1,3,1) + (1,1,3) . (8.5)

The last three representations correspond to the gauge bosons of
SU(4), SU(R); and SU(2)r respectively. The (6, 2, 2) contains the usual
leptoquark-diquarks (X, ¥) of SU(5) transforming as (3, 2, 5/6) under
SU(BYRSU(R)®U(1)y, their antiparticles, an additional doublet of
leptoquark-diquarks, (X', ¥"), transforming as (3, 2, -1/6) and their anti-
particles. The gauge bosons of SU(4) contain the gluons of SU(3) and an
additional color triplet field transforming as (3, 1, 2/3), which we denote
by V, its antiparticle and a color singlet field. The gauge bosons of SU(2)z
transform as (1,1,-1), (1,1,0), and (1,1,1) which we denote by Wz, W8, and
Wg respectively.

The scalar fields which couple directly to fermions must transform
according to representations which appear in the Clebsch-Gordan decom-

position of 16®16:
(16®16) = (10 + 128)s+(120), , (8.6)

where S and A denote the symmetric and the antisymmetric parts. The
SU(5) decompositions of some S0O(10) representations are given in table
8.1; their SU(3)®SU(2);®U(1)y decompositions can be obtained easily
from this table and egns (5.3) through (5.8). The 10 and 120 are real

representations; the 126 is complex. One may also include other Higgs
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10=5+5
16=1+5+10
45=1+10+10+24
54=15+15+24
120=5+5+10+10+45+45

126=1+5+10+15+45+50

Table 8.1

SU(5) decompositions of some SO(10) representations.



-68-

multiplets which do not have direct couplings to fermions. Typically an
adjoint, 45, 'or a 54, is chosen. The minimal set of Higgs necessary to
break S0(10) down to SU(8)®U(1)gy and give masses to all fermions is
10y, 165 and 45y. With only these Higgs one finds the tree level mass rela-

tions
m,=my, =my =m, (8.7)

at the unification scale, with the same relations holding for the heavier
families. Thus we see that for the minimal set of Higgs the mass of the

everyday neutrino is predicted to bc far too large.

The generation of a net baryon number from symmetrical initial con-
ditions requires ihe presence of both C and CP violation [12,13]. In
SU(2), ® U(1)y weak interaction models and SU(5) grand unified models
no C operator may be defined since there is no left-handed antineutrino
to act as the charge conjugate partner of the left-handed neutrino. In
some larger modeld, such as SO(10) or E(6), each fermion has a potential
charge conjugate partner or is an eigenstate of C hence a C operation
may be defined which is a ssrmmetry of the unbroken theory [32]. The
production of a C-odd quantum number (such as B or L) in these models
therefore depends on the interplay between the sources of C violation and

the processes which violate the quantum number under consideration.

The lack of B production in a C-symmetric theory may be seen by
considering the decays of F-violating bosons y and their antiparticles x as
well as the decays of their charge conjugate partners ¥ and ¥*. The B
produced by the decays of an equal mixture of y and ¥ into the specific
final state i,i; and the charge conjugate decays of x¥* and ¥° intc the state

i$i§ is proportionzl to the quantity (see eqn (4.12))
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Ry? + (RI2)* = ImJ ImQ (B,,~B;,) + Im/° ImQ* (B, -B,) (8.8)

where / represents ithe integral over the inlermediate momenta and final
state phase space for the decay and 2 is a product of the relevant cou-
plings. The lowest order contributions to / and ) were discussed in
chapter 4. I° and (F are the corresponding quantities for the charge con-
jugate reaction. In a C-symmetric theory, 7 = I and Q = (¢, while, since

B is C-odd, B,, = -B,; and By, = —B,; causing Ry® + (Ry*)° to vanish.

We now restrict our attention to SO(10) grand unified models. The
presence of a charge conjugate partner for the neutrino, N;, allows the
definition of a C operation for all fermion fields appearing in the theory.
In terms of the SU(4)® SU(2), ® SU(R)r subgroup of S0(10), C inter-
changes the two SU(R)'s, as well as conjugating them, and also conjugates
the representations of SU (4) [22]. It may be shown that all C violation in
the fermion mass matrix must lie in the part of the 126 representation of
S0(10) which gives a Majorana mass to N;. This C-violating mass term
allows for the production of a nonzero B since Im/ is no longer equal to

Im/°. Expanding 7 and /¢ in pdwers of My/ M, gives
R + (R2) = O(Mf/ ME) (8.9)

where M, is the mass of the decaying boson.

If all asymmetries can be expressed in terms of C odd quantum
numbers then, (8.9) constrains the possible values of My/ M, if we
demand that the theory be able to produce the observed baryon asym-
metry. However, in the general case, asymmetries which have no definite
behavior under C must be considered. Large asymmetries in such quan-

tum numbers may be produced even if the theory is in a C-conserving
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phase (e.g., SO(10) broken to SU(4)®SU(R);8SU(2)z) [33]. These asym-
metries may later be converted into a baryon asymmetry by B-violating
reactions which occur in a C-violating phase of the theory. These reac-
tions will be able to produce a sufficient baryon asymmetry only if there
exist B-violating bosons with masses less than the transition temperature
between the C-conserving and C-violating phases of the theory. For
S0(10) » SU(4SU(2)®SU(2)r the SU(4)RSU(R);®SU(R)r symmetry must
not persist to temperatures below ~10'® GeV if an adequate B is to be pro-
duced. A detailed discussion of some of these ideas is presented in thé

context of an illustrative SC({10) model in the [cllowing chapter.
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9) Analysis of an Ilustrative SO(10) Model

We saw 1n chapter 8 that N, can obtain a large Majorana mass if we
have the fermions couple to a 126y of Higgs which obtains a large vacuum
expectation value along its SU(5) singlet direction. Vacuum expectation
values along other components of the 126y break SU{R)®U(1) (see table
B.1 and eqgns (5.3) through (5.8)) and hence must be small relative to the
singlet vacuum expectation value. If SU(3)®SU(R);®U(1)y is unbroken*
the vacuum expectation value of 126y is purely along its SU(5) singlet,
<126y>~1. To effect a complete symmetry breakdown of S0(10) to
SU(3)SU(RYRU(1) we need another Higgs representation**. Either a 54y
or a 45y is usually chosen so as to conform with typical SU(5) models
since both conta'm‘ a 24 of SU(5). The size of the 54y (or 45y) vacuum
expectation value along the SU(5) 24 direction is 0(10'% GeV) so as to con-
form with the bound imposed by the nonobservation of proton decay [23].
Depending on the relative sizes of <54y> (or <45y>) and <126y> one will

have different symmetry breaking patterns for S0(10).

To consider the production of a cosmological baryon number asym-
metry in an S0O(10) model with <126>~1 we will consider the simplified
case where there is only one family of fermions. We will discuss the con-
tributions to the asymmetry due to the free decays of baryon number
violating bosons. The free decays of the N; do not contribute appreciably
to the baryon asymmetry because the baryon number violating decays of
the N, are generally into a three-body fermion final state, whereas the

main contribution to the Born rate is through the two-body final state

*This is generally the case at the high temperatures present in the standard
model of the early universe.
**With <126>~1 alone, SO(10) breaks down only to SU(5).
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Np-v;¢ where ¢ is an SU(2); doublet scalar ficld [34]. The contributicn of

the decay of the N; is thereby greatly supressed.

We assume that there is no intrinsic CP violation in this model; how-
ever, it has been shown [35,36] that there can be a source of high tem-
perature spontaneous CP viaolation with a calculable phase. The Higgs

potential contains the following quartic terms involving only the 1265:
M (1265 1265 )%+ Ax{(126)*+(1265)") (8.1)
where A, and A; are real. If we write <126y>=pe'? then (9.1) gives

fA1+2hgcos(49)3p0* . (8.2)

If we choose A;, A2>0 then* the potential has its minimum when g=+n/4 or
+3n/ 4. These two 'cases are not independent in the following since the
quantity that always enters into the calculations is <126>%. Such a CP-
violating phase enters the theory at a scale O(|<1265>|) and is the only
CP violation present between that scale and the scale at which the next
level of symmetry breaking occurs. Thus, if the vacuum expectation
value of the 54y is greater than that of the 126y (this is the most interest-
ing case since the chain of symmetry breaking is S0(10) -
SU(4)®SU(R)®8SU(R)r » SU(ISU(2),®U(1)g), then this CP violation will
be absent in the SU(4)&SU(2),&SU(2)z phase; any decays that occur in

this phase will conserve baryon number by virtue of the absence of CP

violation. Even if there had been CP violation in this phase (for example

*To insure the stability of the potential we must also have 25<A;. The sign of ¢
must be so as to generate the correct sign of the baryon number asymmetry con-
sistent with our conventions for particles and antiparticles. Also, (126:126)% may
couple to form a singlet in four ways [33,36]; however, only the term constructed
trom having 126-T28 transform as a singlet has a ¢f term in its expansion (where ¢,
is the SU(5) singlet in the 126y) and thus the remaining quartic invariants do not

contribute to eqn (9.2).
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due to the presence of intrinsic CP violation in the Lagrangian}, a baryen
asymmetry could not be generated directly by the decays of baryon
number violating bosons because of the presence of an unbroken charge

conjugation operation as discussed in chapter 8.

The Yukawa term that we currently have in this model, (16-16) 1264,
has a global Uyx(1) symmetry with a charge X for which (by convention)
X=1 for the 18 and X=2 for the 126y (X=-2 for 126y). (This global Uyx(1) is
broken explicitly by the (126y)* term in the Higgs potential as well as by
other terms to be discussed below.) When 1264 gets its vacuum expecta-
tion value, Uy(1) is broken as is the local U(1)p appearing in SU(5)®U(1)z
(we call the charge corresponding to the local U(1)g, R). If the vacuum
expectation value of 126y is along any one direction in its SU(5) decompo-
sition (as is true in our case), then the 't Hooft mechanism is operable,
yielding a global U(1); after symmetry breaking with a corresponding

charge (for <126y5>~1),
z=(x—’si) . (9.3)

The analysis of this symmetry is discussed in appendix E.

This symmetry allows us to classify the possible scalar mass terms in
the model, since they all must be Z (as well as SU(S)®SU(2),®U(1)y)
invariant. To this end we list all of the values of Z for 545 and the 1264.
All components of the 54y have Z=0. For 1264 the 1, 5, 10, 15, 45 and 50

have Z values respectively,

16 12
: .5and

'4’-

8
0 & (9.4)

(9}
01|m
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In this model CP violation may occur through the scalar mass matrix
and hence, in the scalar’'s mass eigenstate basis, through the scalar rota-
tion matrix; in particular this occurs when complex entries occur in the
mass matrix of the baryon number violating scalars that couple directly

to fermions.

In addition to the terms (9.1) there are other quartic terms appear-

ing in the Higgs potential*:
126}{'_1—2_6}1'(54}1)2 . (54h)t. (9.5)

If we assume that the Higgs potential consists only of quartic terms**
we can immediately state, within factors of quartic coupling constants
and Clebsch-Gordan coeflicients, what the scalar mass terms are. We
write the fields appearing in the 126y as ¢;, ¢d, 910, ¥ls ¥4s and pk; and we

write the fields appearing in 54y as ¥;5, %45 and ¥z,. Note that since 54y is
self-conjugate, Ys=%5s.

From (1264)* we can only get
P191<91>% | (9.8)

and from (126y)* we get the Hermitian conjugate of this,

®At this point the term (1264)%54)2 could appear, but is excluded on the basis of
the discrete residue of the U(1)y symmetry. Later we shall need to include these
terms when we break the U(1)y symmetry further by the inclusion of a real 10 of
Higgs. Furthermore, as mentioned above, there are, for example, four ways to
ecouple 126, 126, 728 and 128 to form a singlet.

**This is the case if the symmetry breaking is generated by the Coleman-Weinberg
mechanism [37] which one would wish to occur so as to exclude dimensionful
parameters from the bare Lagrangian. Dimensional transmutation may then oc-
eur. Cubic terms can always be excluded from the Higgs potential by means of a
discrete symmetry (in fact the discrete residue of the X symmetry will suffice to
do this). The presence of possible quadratic terms does not affect the following
amalysis very much since they yield only a diagonal contribution to the baryon
aumber violating scalar boson mass matrix.
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elpl<ei>?. (8.7)

From (1264 126g)? if a 1265 and a 126y get a vacuum expectation

value we get

?le1 . pdvs . plovio . @lstrs . Pisvas . Pl - (9.8)

each multiplied by |<¢;>|%. If 1265 and 126y get their vacuum expecta-

tion vaiues then we get

Pr191<p]>? (9.9)

and if 1265 and 128y are given their vacuum expectation values the term

plol<e,>? (9.10)

arises.

From (1264 128y) (545)?, if both 54y's get their vacuum expectation
values, then we have the same terms as in eqn (9.8) but multiplied by
<y¥a4>®. Other possible terms such as pspgy are excluded, at this point, by
the Z symmetry; we shall have occasion to include them later. Finally, if

126y and 126y get their vacuum expectation values ,we get the terms
Yi¥is| <e1> |2, VeVl <p1> 2. (9.11)

Since all the terms above which involve baryon number violating
scalars have real coeflicients, it is clear that one cannot have a contribu-
tion to the baryon asymmetry in the present fom{ of this model because
CP is not violated.,

There is a simple extension of the model, however, which yields non-

trivial results. If we introduce a Higgs representation transforming as a
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real 10, 10y, then it can couple to the fermions through
(16-18)-10y . (9.12)

(The 10 of S0O(10) has the SU(5) decomposition 10=5+5, where, for a single
scalar ;'epresentation, the 5 is conjugate to the 5; thus, if we write Pz for
the 5 in the 105 and P5 for the 5, we have Pz=I.) The X symmetry is now
explicitly broken down to the discrete symmetry generated by the

transformations

126, +—1265} . (9.13)
104-+-10y

All quartic terms that are SO(10) singlets and which can made from 126y,
54y and 10y respect this discrete symmetry. These terms are listed in
Table 9.1. Before the X symmetry is broken down to the discrete sym-

metry (9.13) we have the Z symmetry for which

o
for the 5

12
5

2=
and 7=

CJIlGJ

i (9. 14)
for the 5

After the X symmetry is broken down to the discrete symmetry (9.14) the
Z symmetry breaks down as well in the following fashion.

If, under U(1)y, a given field (say ¢) transforms as
p - eXag (9.15)

then, after the 126y gets a vacuum expectation value along its SU(5)
singlet direction, the Lagrangian continues to be globally invariant under
the action of U(1);:



-

_&|,

¢-'e"z“¢=e+ °ig (9.18)
When the U(1)y symmetry is explicitly broken down to the discrete

symmetry (9.13), then, upon comparing (9.13) with (9.15), we see that

this is equivalent to the constraint a=nn/2 (with n an arbitrary integer)

in (9.15) and, hence, in (9.16). With this restriction a field with Z=12/5

and one with Z=-8/5 have identical transformations under U(1)z since

et(12/5mn/ 2o —i(&/S)nn/2 (9.17)

as must certainly be the case since Pg=$J. Thus, the U(1)z symmetry
allows* the (3, 1, 1/3) in the 5 to mix with those in the 5, 45 and 50 that

come from the 1264.

If SU(5) is unbroken, then certainly the (3, 1, 1/3) in the 50, for
example, cannot mix with those in the 45, 5 or 5 since the mass terms
from which these mixings arise must themselves be SU(5) invariant. The
breaking of SU(5) comes, in this model, from the 545 obtaining a vacuum
expectation value. Thus, any term of the form gd¢ss or Zd¢s; must be pro-
portional** to <¥>. The term ¢lps could therefore come from
(126-126)-54%, (126-126)-54-128 or (1268-126)-54-126; however, one cannot form
an S0(10) singlet with the latter two possibilities, nor, for that matter,
are they germitted by the Z symmetry. The term Blpzs could come from

(10'128)-54%, (10126)-54-126 or (10128)-54-128; however, none of these can

®[t also turns out that the 15 and the 10 in the 128 now have the same transforma-
tion properties as one ancther under the remaining Z symmetry; however, nei-
ther the 10 or the 15 contain any baryon number viclating scalars as can be seen
from eqns (5.3) through (5.8) and table 3.3.

**The full mass term must, at the SU(5) level, be an invariant before the 24c54 ob-
tains its vacuum expectation vatue; thus, any candidate mass term must be
checked to show that one can form a singlet from the relevant product of SU(5)
representations.
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combine to form singlets of S0{10); thus, the term Piy¢z cannot occur.
Mixing between g5 and gg will occur through the term 126126-54%. A simi-
lar analysis shows that g,s mixes with the g5 and the ¢z, but not with the

#s. and the mixing occurs again through the term 1262 542,

Mixing between the 5 in the 105 and the 5 in the 1264 is permitted by

the Z symmetry and does indeed occur through the term
10y 1284-(126x)%*+h.c. (9.18)

Further quartic terms consistent with the symmetries of the previous

terms are

(105)*. (105)%(1265)%

9.19
(105)% (1264 1284) . (105)° (545)° (919

and their Hermitian conjugates. The quartic terms appearing in the
Higgs potential are summarized in table 9.1 [33,36]. The entries in the
baryon number violating scalar boson mass matrix that may come from
these terms are summarized* in table 9.2. The suppressed coefficients of
these mass terms are typically the product of a quartic coupling con-
stant, a combinatoric factor and a Clebsch-Gordan coefficient. In light of
our ignorance of these factors (especially the quartic coupling constants)
we will tdke all the coefficients to have the common value A. We choose
<p,>% |<¢;>|?=+i (the case <yp,>?/|<¢,>|?=—i can be obtained easily
from the following). Defining z=<y,>%/ | <¢,>|? we get the following scalar

mass matrix in the (¢g5. @es. ¥5. Fs) basis:

142 ¢ & 0

e 14z ¢ 0
2
A<e>l® 1%8: 14 (9.20)
0 0 141 1+¢

*We anly write those isvalving the (3, 1, 1/3) in the ps. §5 p4s and gy since all oth-
ers lead (o (at most) baryon vislating inkeractions with no CP violation.
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10t

544

(126-126)°

126*

10%-54%

126126 542

1262 542

10?-126-126

102 1262

10-126-(126:1286)

Table 8.1

"~ All quartic terms in a Higgs potential involving a 54, a 126 and a real

10. The number of p’ossible terms of each type is not indicated.
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(128-126) w5l | <p)> |2 |
vovds! <g1> |
Paspls <¢1>| .
10%-54" FsPi<yaa>*
126-128-542 PsPi<Pas>?
¢30¢§n<¢%4>2
Paspis<y¥2s>®
Pspin<yza>?
Paspd
126%54%
¢45¢§n
10°126-126 PsPl <p1>|?
Powd | <p)> |2
10-126-(126-126)
PsPi<p>®

Table 9.2

Terms in the Higgs potential that give rise to entries in the

mass

matrix of (3, 1, 1/3) baryon number violating scalar bosons along

with the associated mass terms.
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If we write the eigenvalues of this matrix as u? and write

2
z=1+s N<goT " (8.21)

then the characteristic equation is
x4—(3e2+2)x%4+2x £2+2%=0 . (9.22)
We can write down one solution of this exactly, z=¢, giving
uE=N| <> (2 . (9.23)

The remaining solutions can be given approximately for large ¢ as

g:x}<¢,>12{3a+1+ §1£—+ x } (9.24)
y§=M<¢,>|2{s+1+ —;~+} (9.25)
y.f=)\|<¢1>|2{1—;T+ . ] (9.26)

Thus, for large ¢, u, and ug dec,;ouple from equilibrium at a temperature at
which the CP violation that we are considering has not yet turned on, and
thus a baryon asymmetry cannot be generated through their decays. To
get a nonzero baryon number asymmetry we need to have a scalar that
decouples from equilibrium at a temperature that is less than the
SU(4)BSU(2)8SU(R)r » SU(3)®SU(R)®U(1)r transition temperature*; for

*¥e neglect here the question of the supercooling and possible associated entropy
gereration that may occur when a phase transition occurs via tha Coleman-
Weinberg mechanism [38]. This may be avoided by having small negative quadrat-
ic terms in the Higgs potential; as mentioned above, such terms would not sub-
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A<1 this may occur. Thus, the decays of the lighter baryon number
violating scalars may give rise to a baryon number asymmetry if they

have CP violation in their decays.

The eigenvectors associated with the above eigenvalues are respec-

tively

s

(9.27a)

OOé

-2
(o)

(&3]

~ o)

3

- %=

(9.27b)
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(9.27d)
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Of the two light scalars, yu, and u, (ue<u,), only the eigenvector of the
bghter one is associated with a complex eigenvector. Thus, its decay,
through the exchange of a vector, may exhibit CP violation. The other
light scalar, 4,, may not violate CP in such a decay, although it may do so
through the exchange of another scalar. Generally, the decay of a scalar
through the exchange of a vector produces a baryon asymmetry greater
than that produced through the exchange of another scalar by a factor
g%/ Y where g is a typical gauge coupling constant and Y is a typical
Yukawa coupling constant. Thus, unless the Yukawa couplings are very
large, an estimation of the baryon asymmetry produced through the free
decays will be dominated by the vector exchange diagrams. For illustra-
tive purposes we only consider these diagrams. This model allows for
scalar exchange in vector decay since the double-cut diagram for scalar
exchange in scalar decay is related to that of vector exchange in scalar
decay simply by complex conjugation; however, the relevant vectors have
masses that are obtained in the SO(10)-SU(4)®SU(2),8SU(2)r symmetry
breaking and decouple from equlibrium at a temperature generally
greater than that at which our high temperature CP violation has turned
on (certainly this is true if £>>1 as is the case that we are investigating).
Also, the Born rates for the Lwo processes are generally different, making
the latter process larger than the former by the factor g2/ Y2 If we write

the eigenvectors, eqns (9.27), as

&y
’; . §=1.2.3.4 (9.28)
Ji

then the mass eigenstates, x;, may be written as
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Xj =0 Pzt B Past7; ps5t6; s (8.29)

and this may be mverted tc give

¢§5";°‘j'Xj

Pas™ 3 XJ ‘Q -
P5=75 *X; (8.30)
Fs=0; *x;

where we have taken o; to be real by convention (this convention has
adlready been imposed in the expressions given above for thie eigenvec-

tors). If we write the SO(10) Yukawa couplings as
A(1616)126+B(16'16)-10+h.c. (8.31)

{note that 4 and B may be taken to be real since we are considering the

oase of no intrinsic CP violation), we find the neutral fermion mass matrix

to be
R (9.5
This is rendered real by working with the field N'; related to N; by
N =2™EeN; . (9.33)
Using this we find the effective SU(5) Yukawa couplings to be
e84 (5,1',) 5+A(10,-10,)-5+A(10,-10,)-50+A4(5, 10,)45
+e™9%5(5,.1',)8+B(5, 10,) 5+B(10,-10;) 3 . (9.34)

We note here that the Clebsch-Gordan coeflicients for the coupling of the
€. 1. 1/9) in a 50 to 10,10, are different from those for the coupling of
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the (3. 1. 1/3) in a S Lo the same quantity. The former case has the cou-
pling

HeE)T so(uh)® + S{u; )oa(d1)as4}S, (9.35)

whereas the latter case has the coupling

[(ef)T op(uf)® +(uy ) oo(d; )az®%]S, . (9.36)

The couplings of the x; to 5,10, do not appear in the diagrams of a y;
decay through X' or Y' exchange and therefore are not relevant to our
calculation. Thus, in writing down the relevant Yukawa terms for these
processes, we will ignore these couplings. In terms of the x;’s the Yukawa
couplings therefore read (referring back to our eigenvectors, eqns (9.27),
we write a;=a;, 8;=b;, 7;=c; and 6;=e*™*d; where a;, b;, ¢; and d; are all

real):

[e*™/8[(df)® 17 02N "1 (Ac; +e ™4 Bd;)+(ef) T 02(uf)® {A(a; +c;) +e ™ *Bd, ]
+(uz ) (dr)e EMSA(%%*'C,')TB"‘""‘B%” Xaj - (9.37)

The couplings of the X’ and Y vector bosons (the baryon number violating

vector bosons that are in SO(10) but not in SU(5)) are [33]
-gzarg;ega,,(uf)ﬂ-e*wd,;a“w',,+s°°¢[(ag)b]fo,,uuuh.c. (9.38)
and
-jz—rﬂ —vio, (ufs+e"™8 ul o N'; +e™3[(df)® ['o,usg}+hc.  (9.39)

Note that the sum of eqns (9.38) and (8.39) is invariant under SU(2);.
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As discussead in chaper 8, in the limil of vanishing \; mass the barvon
asyminety generated in free decays will vanish in this SO{10) model since,
in this limit, there is an unbroken charge conjugation operator. We need
therefore consider only those diagrams which involve an N;. There are
two such diagrams as shown in fig. 8.1. Note that, since the X' and the V"
constitute an SU(2); doublet, the diagram of fig. 9.1a can be obtained
from that of fig. 9.1b by an SU(2); rotation; therefore, the contribution of
the two diagrams are identical (this is also verifiable by explicit computa-

tion). The weight of each diagram is
20=0g%(Ac, +e ™ *Bdy)(Al Sa; +o;)+e TV 4Bd,) ¢ (9.40)

and its immaginary part is

AB

Im0=—3ggﬁa-dj ‘ (9.41)

For the scalar, w,, we have

ImN=-3g%4B/¢ . (9.42)

To compute the average baryon number generated in the decays of
the light scalar we must divide the above results by the full (Born) rate
for its decay as noted in eqn (4.1). The total rate for the free decay of the
X; is proportional to (here, u=my/m;)
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Fig. 9.1: Scalar decay with vector exchange diagrams in the "primordial”
S0(10) model that can give rise to a baryon asymmetry (for j=4). Only

diagrams that involve N; may contribute.
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3t | Ac, + Be "™ 4d, |?(1—u?)+ | A(a; +c;)+Be "4 |2

+2 [A( %ﬂj"'cJ)"'Be —in/ 4d1 12;
=3{4%[ %"v?*' cf(4—u?)+4a;c; ]+ BpdF 4—u?)

+V2AB[c;d;(4—u?)+2a;d;]] (9.43)

where u<1 and, on the left hand side, the term proportional to §1—u?} is
that due to the Born graph involving N; in the final state (see eqn C-15).

For u>1 this term is absent and the Born rate is proportional to
3¢4%] -g-a,2+3c,-2+4a,-c,]+3324,2+\/'2AB[3c,.d,.+za,.d,]; . (9.44)

Both 4 and B are presumably small (at best, B~gm,/my and A~gmy/ me
where mg is a typical mass of a vector boson that becomes massive when
the transition SU(4)®SU(2)®SU(2)p -+ SU(BRSU(R)®U(1)p occurs);

therefore, for large ¢, the Born rate is proportional to

3}42{%-%‘2] (9.45a)
for u<1 and to
A2-14—1— (9.45b)

for u>1. R follows that the ratio of Im{? to the Born rate is

-y'-l— B 4 u<i (9.46a)
tAle 2.
12 3
_gtBi12
Y ud>l. (9.46b)



-89-

In compﬁting the average baryon number preduced in the {ree
decays of these scalars we must multiply this result by the baryon
number factor -1 and by the difference, Im[Isy(v, u)]-Im[Isy(v, 0)], where
the momentum space weight, Im[/sy{v, «)] is given in eqn C-13. This gives

|_v? }—(1—112)ln

B i 1 |_v
ll+vz

=gtdc Bk
BB e A B Tog - {m
, 12

v } (9.47a)

14+v2—y?

-

CD&N

for u<1 (where v=my/mg), and
1 g°12 8 ’_vi_] .
Br & 11 A l.nl“_vz (9.47h)

2
for u>1. We also know that My~g <yg,>; thus 'u2~g)\—e. If £ is large enough

so that v is also large, then we can make a Taylor expansion of AB in

powers of 1/ ¢. Keeping only the lowest order term we have

apa L B Ay (e
B ¢* A |19 2 ,
12 3"
el o] ud—2u
e AN (9.48a)
12 3

and
aBaSpYR L (9.48b)

for u>1. We can make a rough estimate of the maximum AP one can
expect in this model as follows. Stability of the effective potential
requires that, if Agg® then (4. B)gg and, if A2g® then (4, B)g\ [18].
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Although 4 and B are bounded above in these two cases respectively by g
and A, they are not bounded below. Thus, for fixed A, we can vary u from 0
to ~g/ VA in the first case, and from 0 to VX in the second case. In the
first case since, for fixed A, AP 1s monotonically increasing as a function
of u in the region 0<u<1 and is monotonically decreasing for u>1 and,
since tht; maximum permitted value of v is g/VA>1, it is clear that AP is
maximized by choosing u~!. The maximum choice for A under these
assumptions is A~g? giving a maximum AB of AB~3a/2z% In the second
case, for fixed A, the maximum value of u is VA; thus, for A<1, the ma};-
imum of AB is obtained at u~VAX, while for A>! the maximum is obtained
at u~1. However, for A>1 no baryon asymmetry will be generated since
then the mass of the u, will be greater than the temperature at which the
SU(4)SU(R)@SU()r » SU(SSU(2),®U(1)r phase transition occurs and
so there will be no CP violation in its decays (this is independent of the
statement that perturbation theory may not now be valid in the scalar
sector and the arguments that we are using here will then probably not
be valid). Thus we want A<1 (we are of course assuming that g%<1). If we
saturate this bound we find that AB<3/8me2. If g is very small there can
be a substantial difference between the results of these two cases. In

practice, however, we have g2/ 4n~1/40 and hence g%~1/3.

The value of AB is an upper bound for the value of the baryon number
to photon number ratio that can be produced in the context of a grand
unified model. In fact, if we ignore the dynamics contained in the
Boltzmann transport equations (2.1) and (2.2), then the value of ng/n, is
related to AP by a statistical factor that is generally O(Ny/ N) where Ny is
the number of bosons participating in the free decay process and N is the

total number of particles with mass less than that of the relevent
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decaying bosons [12,19]. In a grand umnified model this factor has the
potential of being quite small. It follows that (for ng/n,~10"%) we can
have a maximum £~10% This in turn gives a minimum value <126z5>~11! if
we assume the minimum value <545 >~10" which is required to keep the

proton sufficiently stable.

Thus we have seen, in a rather detailed example, how the breaking of
a charge conjugation symmetry may lead to the generation of a baryon
excess. The magnitude of this excess depends upon the scale at which
the b;eaking of the charge conjugation symmetry occurs. In the present
example the magnitude of this scale is proportional to the mass of the N;.

In the limit my -0, AP vanishes.
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PART 11
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10) Mass Matrices in SU(5)

The phenomenological mass relations [39]

m, 10 m (10.1)
™y
"'n—ﬁl (10.2)

must be reproduced in any viable grand unified model. Since both sides
of (10.1) are renormalized in the same way, it is a relation valid at all
scales and, in particular, at the grand unification scale; (10.2) is a rela-
tion valid at the grand unification scale. A somewhat weaker set of rela-
tions (weaker in the sense that use of the renormalization group may not

be a valid procedure) may be obtained from current algebra as

1. my . My
5 a8l —Tul (10.3)

s 9
my

at the grand unification scale. It is the first of the relations in (10.3) that
one is most insecure about; nonetheless, these relations are consistent
with (10.1) and {10.2).

In an SU(5) model it is rather easy to institute the relations m,/ my~3
and m./my~1 in a natural way by having the u family obtain its masses
solely through coupling to a 45 of Higgs and having the 7 family get its
masses through a 5 of Higgs. However, to incorporate the relation (i0.1)
in a natural way is a trickier business. Nonetheless, it has almost been
done with the following choice of Yukawa terms [39] (the Higgs represen-

tations are three 5's, 5y, 5’5, 5"y and a 45g):
{A(52 10,)+A'(5,-102)+ B (53 103)} 55+ C (5, 10;)-45y

+{D(10, 102)+ E(105'103)}-5'g+F (102 103) 5"y . (10.4)
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The naturalness of these terms is maintained by several U(1)’s which
must be broken softly (i.e., by terms of dimension < 3) in the Higgs
potential. The latter fact then allows for there to be calculable correc-
tions to the Yukawa terms (10.4) and hence the possible inclusion of
terms that do not have the required form. The predicted mass relations

may thereby be allered.

The mass matrices obtained from (10.4) are schematically

0 A O

M—V3= C 0 (105)
0 0 B
0 A O
0 0 B
0DO

Ma/5=|D 0 (10.7)
0 F

where, for brevity, we have absorbed vacuum expectation values into the
definitions of the couplings and we have omitited CP-violating phases.
These mass matrices yield the desired mass relations under the unna-

tural assumption
A~ A (10.8)
and the "fermion-mass-hierarchy’ assumption
B>»>C>>A . (10.9)

One may alsc obtain a prediction for the magnitude of the Cabibbo angle:
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tan(d; )~vmg/ mg . (10.10)

The details of such calculations are discussed below in ihe context of

50(10).



=96

11) Mass Matrices in A Viable SO(10) Model
To construct a set of SO(10) Yukawa terms that behave like those in
(10.4) when restricted to the SU(5) level we proceed as follows [35,36]. To
reproduce the (5;105)-455 term in (10.4) we must use a 126; coupling to
(162:163)s. The terms [A5; 10,+A4'5, 10;+ B55-105] 55+ [D10,-10;+E 103 103]-5'y
can be easily obtained by coupling 16, 16; and 163-183 to the same complex

10y (=10,+110;) of Higgs. The relevant SU(5) decompositions are

105 =5+5 (11.1)
1265=1+5+10+15+45+50 (11.28)

and
18=1+5+10 . (11.3)

(Note that we have emphasized that we have given the decomposition for
a complex 10y in (11.1) by having 5#5.) To assure the coupling (10s'104):5"
as in (2.4) without a (55103)-55 or a (53:10;)-5y term, we couple 16,165 tc a

126g:
d (165 163g) 1263 . (11.4)
The Yukawa terms of this model are, thus far,
(218, 182+b 163 163)- 10y +c (165 165)126,+d (165 183) 1263 . (11.5)

If we now assume that, for a range of parameters in the Higgs potential,
the 126; has its vacuum expectation value purely along its SU(5) 45 direc-
tion and that the 1263 has its vacuum expectation value along its SU(5) 5
direction,
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<126‘°'>”4-5”2] (11.6)

<1263>~5y3
then the predictions of (10.4) for charged fermions are reproduced. This

would not have been possible without choosing 1265 different from 126,.

When the Yukawa terms (11.5) are expanded with the decompositions
(11.1), (11.2) and (11.3) we obtain the following terms which contribute to
the neutral fermion mass matrix when the Higgs fields get vacuum expec-

tation values:
[@(1,5e+125,)+b 1955] B (11.7)

If we view the CP conjugate of the SU(5) singlet fermion as a right handed
partner for the neutrino, then we see that the terms (11.7) give Dirac
masses to the neutrinos of the same order of magnitude as those of the
charge 2/3 quarks. If, however, in addition to the Dirac mass, m, men-
tioned above, the neutral singlet fermion has a Majorana mass, #, then
the neutrino mass matrix has the following form in the (v;,N;) basis*

[29.27]:

[31 ™ (11.8)

If ¥>»m, then the eigenvalues of this matrix are approximately # and
m(m/M). Thus, one eigenvalue is naturally very large relative to the
charge 2/3 quark mass and the other is very small. It is the latter eigen-
state which we identify with the garden variety neutrino. Such an eigen-
state would be primarily v; with a small amplitude (proportional to
m?/ M) for helicity flip into vp (=(N)P).

mr 8.
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The !rwchamfm described above is effected in this SO(10) model by
coupling the relevant combinations of fermion multiplets (in the case of
eqn (11.5), the combination e 16, 18,+f 164 185) to a 126, which obtains a
superiarge vacuum expectation value alang its SU(5) singlet direction.
Further, to preserve the predictions of eqn (11.5) along with the assump-
tion (11.6), we assume that the 126, has vacuum expectation values only

along its SU(5) singlet and 5 directions*:
<126,> ~ 1g1+5y, . (11.9)
The complete Yukawa couplings are now
(@18, 162+b 165 16g) 105 +c (165 183)- 1265
+d (165 185) 1265+ (e 16, 165+ f 185 16g)- 126, . (11.10)

These couplings are natural, the naturalness being maintained by two glo-
bal U(1) symmetries which will be explicitly broken down to discrete sym-
metries in the Higgs potential. We call the charges associated with these
U(1) symmetries X and Y. Their values for the representations present in

this model are summarized in the following table:

16, 16; 163 10 126, 1263 1263
X -3/2 1/2 ~1/2 1 ~1 1 0
Y 1 =1 0 0 0 -0 =1

*If <54,>=0, a t-guark mass relation faollows that is phenomenologically unaccept-
able. This vacuum expectation value is also reguired for naturalness reasons
{33,36].
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When the Higgs acquire vacuum expectation values, these phase sym-
metries will be spontaneously broken. Since they are not gauged, mass-
less Goldstone-Nambu bosons will result. To avoid their presence we have
to break X and Y in such a way as to preserve the naturalness of the
Yukawa couplings. Remarkably enough this can be done through the fol-
lowing property of the 126 representation: the fourfold fully symmetrized
product (126%)s contains one S0(10) singlet. Thus, we require that the

Higgs potential contain terms like
A1(1261)4+A2(1262)4+...+h.C. (1111)

The first term breaks X to a discrete symmetry mod 4; the second one
breaks Y to another discrete symmetry mod 8. vThese two discrete sym-
metries suffice to maintain the naturalness of the Yukawa couplings while
avoiding the problem of massless bosons. The remaining Higgs self-

couplings are selected so as to honor the remaining discrete symmetries.

The terms, at the SU(5) level, in eqn (11.10) which are relevant for

the computation of the fermion mass matrices are:
(210, 10p+b 105-105)-5y+[e 10, 1+ £ 103 105) 5,
+[a(10,-52+102-5,)+b 103:55]- 5 +d (102 105)-5yg+c (5z: 102) 4552  (11.12)
for charged fermions and
[@a(1y:52+12'5,)+b 195s] S+ (e 1, 10+ f 151s) 1ay (11.13)

for neutral fermions.

We will discuss here only the charged fermion mass matrices. (The

neutral fermion mass matrices are discussed in [33] and [36].) The first
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thing worth noting is that the unnatural relation (10.8) is natural in this
S0(10) scheme. This is obviated by comparison of (10.4) with (11.12). If

we now write

<5y>=re®?
<5g>=pe‘_"

<5y, >=tein (11.14)
<5pz>=get
<45yz>=seX

N——.

and define

ar=R, bor="T,
dg=@,cs=S,
ape'*+etein=pPetl
bpetc+fte =Ve¥l
then the charged fermion mass matricies are:

charged -1/ 3 quarks:

0 Re® 0
M_, s=|Re'® Seix 0 (11.15)
0 0 Te?
charged 2/ 3 quarks:
0 Pe® 0
Mz, s=|Pet® 0 Qei# (11.18)
0 Qe Te¥
charged leptons:
0 Re'® 0
M,=|Re%® -3Sex 0 (11.17)

13

0 0 Te'?
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By a suitable redefinition of the fermion fields (discussed below) the

phases can be removed from these matrices. (The phases certainly reap-

pear, for example, in the charge current sector of the theory.) For the

mass matrices with the phases removed we write respectively )7 ~1/8 ﬁz,s

and #,. The eigenvalues of both H_,,5 and M, are easy to compute since

they are both block diagonal. The eigenvalues of M, 3 are easily com-

puted in the limit V>»>@>P, while assumning one eigenvalue to be 0(V) and

the remaining two to be «V. In this limit and in the limit 7>»>S>»F for

M_,,s and M, we may identify the fermion masses as

and

1
m.uu?ﬂ%wﬁ’z
ik 4

my~V

)

172
-Q;_}

/2
2

)

(11.18)

(11.19)

(11.20)

The mass relations (10.1), (10.2) and (10.3) follow from (11.18), (11.19)

and (11.20). These expressions can be used to solve for the parameters

that appear in H_,,3 My 3and M, in terms of the fermion masses.
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M_\,3 M,;s and M, are real and symmetric and are diagonalized by

orthogonal matrices which we denote respectively by U_y,s, Uz/s and U;:

—-my

U_rysf_y/sUTy,5=| 0O
0

0 0O
m, O
0 m,

-m, 0 O
Ug/sMz,3U;3=| 0 m; 0 |,
0 0 my

0 0
uMul=|o -m, o©
0 0 m,

U_,,3 is easily computed to be

( v2 3

1 ["—""-] 0
my;

U-l/S-'! -[% 1 0} .

Similarly for U;:

U,,s is somewhat messier but nonetheless straightforward:

(11.21)

(11.22)

(11.23)

(11.24)

(11.25)
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4

172 11/2’

. __[mu m, [m,
me ) mg|m

S

_{'nu]VE _["‘c ]l/Z )
\ o e J

(11.26)

If we write the column vector, in family (weak eigenstate) space, of

charge -1/3 left-handed quarks as L_,,5 and that for the right-handed

components as £_,,5, the mass term in the Lagrangian is

before any phase redefinitions of the fields have been made.

redefine each of the fermion fields by an arbitrary phase

LY, sM_ 1 sR_ /s

L-us:Lx/a'l:,-us
R_,/s=R ,/sK_y;3

where L.,,5 and R_,,5 are diagonal matrices of the form

and

We want

B T

L,s=| 0 €' o
0 0 e

i 0 0

R,s=|0 e 0
0 0 '

LYy sM_yysR_1,9=L /g L% sM_, sR 15K _1/5

=L~Ivsﬁ-usﬁ-vs '

(11.27)

We can

(11.28)

(11.29)

(11.30)

(11.31)
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or

o
=
(9%}
\)

~—

My s=L¥ sl 1R s (
Note that if this is true then it follows that
ﬁl =L:1/3M¢R_1/3 (1 133)

although one might wish to choose L, and R, different from L_,,5 and R_,,3

for reasons of convenience. Eqn (11.32) results in the following:

+f,—0z=0)
19+ﬁa—a1=0
X+Bz—0=0] "
¥+P3—ag=0

(11.34)

Similarly, if we write

ewl 0 0
le,s=| 0 e 0 (11.35)
0 0 e

and

e 0 o0
Ry,s=| 0 e 0|, (11.36)
0 0 e'®

then from
Moys=18 sMz/5Res 5 (11.37)

we get

6+p1—y2=0
6+p2—7,=0
p+pa—ys=0} . (11.38)
pt+ps—y2=0
¢tes—ys=0
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Of the phases «;, az, as. 8;, B2 and Bs cnly five are independent irseizr as
effecting changes on M_,.3 is concerned (in particular the transformztion
a;=0=a3=f,=Pp=F5=0 is sterile). Thus, we choose a,=0; and similarly for
charge 2/3 quarks we choose 7,;=0. Thus, from eqns (11.34) we are left
with one degree of freedom and from egns (11.38) we are left with no
degrees of freedom.

The left-handed charged current coupling to the usual (517(2);) %/

boson is
ja=L3,s50.,L 15 (11.39)
or, from eqn (11.27) and its analogue for charge 2/3 quarks,
i =13/50.18 sk ysL-1/s. (11.40)
We can write I_,,5 and Ly, s in terms of the mass eigenstates:

d;
Sz
by

L_y/s=U_y;3

(11.41)

Uy,
Cp
153

La/s=Ugs

Thus, in the mass eigenstate basis, we have

dy
St
by,

ja=(ufcf tHo,UL,s1dsL 1, sU_ys|s.| - (11.42)

The matrix that appears in this expression to be acting on the left-

handed charge -1/3 mass eigenstates,
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U518 sly/sU 1/s . (11.43)

is explicitly

( m,mg "2 ve 172 (rn 1/2]
1a® T gt T —e® jm" '
mg My my lmc l’n't
m )2 (my )7 - Yo
4 ve | [mema)? e elme]Y M
- /2 " 1/2 o i
-m:_{"_k;]l _ew[M] me [mgm, 172 o[ me 12
my | my mymy m |mem, | e |, e®

where
a=0z—72
and (11.45)

b=03—7s .

The quantity a is completely determined by eqns (11.34) and egns (11.28)

to be
a=x—38-2u+6+¢ . (11.46)

The remaining unconstrained quantity in eqns (11.34) (i.e., Bs) can be

used to set

b=0. (11.47)
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Thus the matrix (11.44) has a CP-violating phase. Eqn (11.44) is not in
standard Kobayashi-Maskawa form [40]; however, it can be rendered so, if

necessary, by a phase redefinition of the left-handed mass eigenstate

fields.
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12) The Bet;a Function in This SO(10) Model

In general, the symmetry breaking in a grand unified model based
upon a gauge group G will proceed in several steps before arriving at the
low energy model G;,,®SU(3) where Gy is the electroweak gauge group
and is at least as large as SU(R);®U(1). After the ith step there will be a
remaining unbroken gauge group G which is a valid symmetry up to a
scale O(2M) where M is the mass of a gauge vector boson which is in G-,
and not in G (note that we are writing the sequence of symmetry break-
ing as G+G,+Gp» - - - +G~» - - - »[Gu®SU(3)] ).

In the SU(5) model there is only one possible pattern of symmetry
breaking compatible with low energy phenomenology: SU(5) -
SU(3YSU(R);®U(1)y. However, as soon as one considers larger groups,
the possible patterns of symmetry breaking compatible with the world as
we know it become more numerous. Such models offer some hope of par-
tially filling the "desert" region between 300 GeV and 10! GeV which is

present in the simplest grand unified models based on SU(5).

In a generic SO(10) model there are a number of possible symmetry
breaking patterns as illustrated in fig. 12.1 [38,41]. Of these we consider
those with the intermediate scale gauge group SU(4)®@SU(2),®SU(R)r to
be of particular interest because of the presence of SU(4) as a general-
ized (Pati-Salam) color group with lepton number as the fourth color
[42]. In this chapter we discuss the running of the various Yang-Mills cou-

plings for the symmetry breaking scheme

50(10) 2 SU(4)®SU(2),8SU(2)r =3 SUBSU(2)®U(1)y

of the model described in the preceding chapter. We compute the renor-

malization of the m_;,3/m; mass relations down from the unification
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su(5) @ u(!) SU(4)®SU(2),®U(1) SU(4)®SU(2), @ SU(R)g
SU(5) SU(3) 8 SU(),8U()eU(l)  SUR@SUR)SSURIPU(Y)

\

SU(3)® SU(2) ® U(l)y

Fig. 12.1: Possible paths of symmetry breaking for the group S0(10). By
suitable choice of Higgs r:epresentations any given sequence of symmetry

breaking may occur that is consistent with the flow of the lines in this

figure.
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scale. We consider the effects of running the couplings on the value of
sin®8y and on the lifetime of the proton. Furthermore, since this model is
only temporarily free, we compute the position of the Landau "singular-
ity".

We call the scale at which SO(10) breaks down Lo
SU(4)®SU(2);8SU(2)r, mz the scale at which SU4)®SU(R)®SU(R)p
breaks down to SU(3)®SU(2),®U(1)y is called m,; and, the scale at which
SU(3)®SU(R)®U(1)y breaks to SU(3)®U(1)gy is called m,. m, is related to
the mass of the W boson through m,~2 My. m, and m, are similarly

related to the masses of the vector bosons that become massive at those

scales.

With forethought we choose to normalize the generators of SO(10) to

2 in the 16 representation:
Tr{T(16)%] =2 . (12.1)

This will give us the expression for the electric charge operator,

5]V
3—] Y, (12.2)

where T{? is the diagonal SU(R), generator (the superscript indicates

Q=T{%+

that it is normalized as embedded in SO(10)) and Y is the U(1)y generator
as embedded in SO(10), so as to conform with the traditional SU(5)
expression. This latter point is assured if we normalize the generators of

any SU(n) subgroup of SO(10) to 1/2 in the n representation:

Tr [T (n)?] = %— . (12.3)
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By tracking the three Jow energy couplings up tc the scale m; at
which S0{10) first breaks, we will get three expressions that depend on
the parameters m,, m, and a,5(m;) (a;o is the SO(10) coupling squared
divided by 4n). These can be determined by using as inputs the values of
as, sin®¥y and agy at m,. The qualitative behavior of the couplings for a
simple assumption about scalar thresholds is shown in fig. 12.2. We work
with beta functions to lowest order in g and treat all mass thresholds in

the theta function approximation.

We write g, for the SO(10) coupling (a,0=g%/ 4n); similarly we write
g4 for SU(4), gar for SU(R);, ger for SU(R)g, gy for U(1)y and e for U(1)gu.
We use a similar notation for the quantities b that appear in the respec-

tive beta functions.

In general a Yang-Mills coupling g runs according to (u<m) [43]
g (W) =g (m)*+2bIn(7) . (12.4)

assuming that there are no mass thresholds between 4 and m and that
the coupling remains perturbative in that region. The only difficulty in
running, say, what starts as the SU(3) coupling up to the unification scale
is in determining the boundary conditions applicable as one goes from
one reigon to an adjacent one. With the normalizations in eqns (12.1) and

(12.3) we have
g3(m1)=g4(my) ; go(mz)=g1o(mz) :
g22(m2)=g10(m2) : g2r(M2)=g10(m2) :
gr(m,)"=sinp gp(m ) 2+cos?p go(m,)2 (12.5)

e (m, ) 2=f%[sin®n gy(m, ) 2+cos®n gg; (m,)?] ;
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| |
SUBI@ Ui, SUB® sue@un,:sm)@ su@,_@s.xz,,} So(10)
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Fig 12.2: The scaling behavior of the couplings in this S0(10) model.
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and g, is continuous across the threshold at m,. in egn (12.5), ¢ is a
mixing angle which specifies which linear combination of the SU(2)z diag-
onal generator T3 and the diagonal generator T,s in SU(4) becomes the
U(1)y generator. Similarly, n specifies which linear combination of 7g;
and Y becomes @, and f is a constant which normalizes the electron
charge to -1. The conditions that ¥Y=0 for the SU(5) singlet fermion and
that @=0 for the SU(R); doublet neutrino give

sing =\/§—; cosy =\/E—;
sinn) ='\/-—g—; cosn =\/_g—; (12.8)
f='\/—§—.

The expression for, say, gy? is obtained from the following argument
(which can easily be generalized to cases more complicated than the
linear combination of U(1)'s that we review here [9]). Say that we have
vector fields 4 and B coupling respectively with generators X and Y and

coupling constants g and g':
g AX+g'BY .

Then, if symmetry breaking leaves the combination aX+bY unbroken

(where a2+b%=1), we have
gAX +g'BY=gC(aX+bY)+gD(cX+dY)

where D is the vector which couples through the broken generator cX+dY
(this generator is not necessarily orthogonal to aX+bY), § is the coupling
constant for the vector field C and g is that for the vector D. This gives
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gA=gaC+gcD
and

g'B=§bC+gdD
The orthonormality of 4 and B then gives

g?=at+gic?.

g2=52%%+g2d?
and

0=5§%ab +g%cd ,
from which follows

§2=ag 2+b% 2.

It is from this that the last two boundary conditions in eqn (12.5) were
obtained. (If the normalization conditions (12.1) or (12.3) are changed
the conditions in eqn (12.5) change accordingly. For example, if we

choose 7r[T(16)*]=1/2 then we get g,(mz)?=g,0o(m3z)?/ 4 .)

Using eqns (12.4), (12.5) and the definition of the Weinberg angle [8],

! 5 2 c* 1 ]
¥ intoy g2 (mo) [yzf,(ma)2 +9y(mo)2J' e

where C?=5/3 (again, the specific form of this equation depends upon the

normalization conditions), we get the following three relations:
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BriT+bay +(by—bg)z| = ag(m,) ", (12.8)
Brf 2{7+(bascos®n+bysin®n)y

+[(b'21—b2;)cos?n+(bopsin®p+bcos?p—by)sin®n]z] = agu(m,)™ . (12.9)

and
(14 CP—W)T+[bo (1-W)+C?yly
+[(b'a;—b2r)(1— W)+ C3(byRsinp+bcos’p—by)]z =0, (12.10)
where
7 = [Bmayg(me)]™
ysln[%] (12.11)
and

zsln[m—zl ;
m,

bz is the SU(R); value for b in (12.4) between m, and m, and b’ is the

value between m, and m; .

In calculating the various b’s we use the expression obtained from

the one-loop beta function [43],

T T A= ED )= Tt (12.12)

where r = rank of the group, and the second index of the representation

r, Iy(r) is given by

=Tr[T(r)?] . (12.13)
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(Tables of /; for the simple compact Lie groups are given in [44].) The
summations in eqn (12.12) are over all relevant left-handed fermion
representations f and real scalar representations s; complex scalar
representations are counted twice since each complex scalar field con-
tains two degrees of freedom; this comment also applies to doubled real
or pseudoreal representations. Adj stands for the (vector) adjoint

representation.

To consider the scalar and fermion thresholds it is convenient to con-

sider the SU(4)®SU(2),®SU(2)r decomposition of the 10, 16, 54 and 126:

10=(6,1,1)+(1,2,2) (12.14)
16=(4, 2, 1)+(4, 1, 2) (12.14a)
54=(1,1,1)+(20,1,1)+(8,2,2)+(1.,3,3) (12.15)
126=(6,1,1)+(10,3,1)+(10,1,3)+(15,2,2) . (12.16)

In order to decide at which of the scales m,, m, or m,; a given Higgs
obtains a mass, we adopt the following ansatz: a scalar multiplet gets the
largest possible mass consistent with its vacuum expectation value and
the symmetry present at that scale. Thus, a multiplet which gets no
vacuum expectation value (such as the (6,1,1) in the complex 10) will
have a mass of O(m;). This assignment assures that all baryon number
violating scalars will have a mass of O(m;). Certainly other assignments
may be made since the only necessary constraints are that the
SU(B)Y®SU(2);®U(1)y theory be consistent with phenomenology at accessi-
ble energies and that the proton not decay too fast. Our choice is the one

with the fewest low mass scalars.
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As mentioned above, in the complex 10 of Higgs the (6,1,1) has &
mass ~ mgp the (1,2,2) will have a mass ~ m,. Since, by assumption,
<54>~m,, we put all of the masses of the (real) 54 ~ m,. The representa-
tions 126; and 1265 have vacuumn expectation values O(m,) (in the 126;
case it is along the SU{5) 5 direction and for the 1263 it is along the 45
direction). In each case the vacuum expectation value is contained in the
(15, 2, 2). The SU(3) decomposition of the 15 of SU(4), 15=1°+3°+3° +B°,
then shows that we will have a mass for the (1°, 2, 2) of O(m,) and masses
for the remaining particles in (15, 2, 2) O(m,). The other particles in
126; and 1263 may all be given masses O(m;). For the 126, we have the
addition of a vacuum expectation value along the SU(5) singlet direction
O{m,). The SU(5) singlet is contained in the (10, 1, 3) which will therefore

have a mass ~ m;. These results are summarized in table 12.1.

With this information we can now compute by, bag, by, bs and b, (and
byo). With the normalizations (12.1) and (12.3) we get, for F families of

fermions,

=4p. 4. =45 _20.
16mby= 2+ 2= 162, = 2~ 2
16n2bm=§—F+ 431; 161r2b'2L=%F+ 8 (12.17)

16n2b 4= g—F—u 116m%b 4= S+ 131;

16m2b 4= g—F+a.

For F=3 these give
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scale scalars multiplicity
mo (1, 2, 2) 2
(1¢, 2, 2) {c (15, 2, 2)3 8
m, (1, 2, 2) 2
(10, 1, 3) 1
(15, 2, 2) 6
my 10 2
54 1
126 3
Table 12.1

Scalars with masses less than or equal to the respective scales my, m,
and m; The superscript ¢ indicates that the SU(3) representation is
being specified. In the remaining cases (except for mj;) the
SU(4®SU(2);®SU(R)r transformation properties are specified. For the

case of m,, the SO(10) representation is given.
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18m2by=24/5 ; 18m%bg; =—B/ 3 ;

16m2bop=56/3 ; 16m2b 5, =12 ; (12.18)
16m2b3=—7 ; 16m2b=25/3 :
16m2b 1p=12.

Thus, in this scenario, the only couplings which diminish with increasing
@ are the SU(3) and SU(2); couplings in the region from m, to m,.
The predictions for the ratio of the charged lepton to that of the

charged -1/3 quark are valid down to the scale m,, where SU(4) is broken.

To determine m_,,3/ m; at m, we must renormalize through [4,45,46]

m_;,3(m,) =m_us(m1) {ar(m'o)la/w{as(mo)112/(33-4” (12 19)
my(m, ) mi(m,) |ay(m,)] as(m,) '

where F is the number of families. From eqns (12.5) and (12.7) we find

that
ay(my,) = f2{cos’n(W—C?) " +sin®niogy(m, ). (12.20)

If we write m_y,3(m,)/ my(m,)=R(F) m_,,s(m,)/ my(m,), then, using eqns

(12.4), (12.6) and the two preceding equations, we find

R(F)=[1-Bmbgag(m, )y _z)]12/(88—4_F')
3 Sy-1,32 3/4F
x[l‘ﬁﬂbram(mv)ig(»’—s—) iy -2 (12.21)

Given agy(m,) and as(m, ), this expression depends on F through by and b3
and through the exponents. Neither y nor z depends upon F. Aside
from the explicit dependence upon ¥, R depends upon W implicitly
through ¥y and z. In this expression for £ we are neglecting scalar thres-
holds.
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To estimate Lthe preion lifetime in this scheme we use the result from

BEGN [4] for the SU(5) model,

I'(p ~+lepton +any )= ‘r—l_
P

2
~ 22y(0) 1zﬂ‘—(amv"”[as(mmn)r/?{%ﬁ-} (12.22)

for three families. For rough comparison we would wish to replace ogm
by ayo{m;) and replace My by m, Thus the ratio of the BEGN estimate to

the present one is

1 ezl '|m/7 m2]4

tamal 1 (12.23)

Using the SU(5) result My~4x10' Gev and ap,,=~1/40, the requirement
that the proton not decay too fast implies that (12.23) be greater than
one:

7p(50(10))  (mz)*{euo(ms)]'%”

7 (SU(5)) 2101 >1. (12.24)

It is unclear whether the relevant parameter for a perturbation
expansion is a or aTr (7% (where T is the generator in the representation
relevant to a vertex in the diagram being considered) or any of a large
number of other possibilities. Thus, to ask where, for a non-
asymptotically free theory, the expansion parameter becomes non-
perturbative is ambiguous. However, a measure of where perturbation
theory fails that is independent of these questions is the position of the
so—called Landau singularity. This is the value of m in eqn (12.4) for which

g (m)~® vanishes. In the present model it is given by
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my=mp exp[1/ {Bmb p0u0(m2)}]
=m exp[n/ {Boyo(me)i] . (12.25)

It is a matter of personal opinion whether one wants m; to be greater
than, less than or of the order of the Planck mass, mp; "aesthetic” argu-
ments can be made for each point of view. The resolution of this question
must certainly wait for a theory that includes the effects of gravitation at
the quantum level. What seems clear nonetheless is that asymptotic free-
dom is by no means a necessary condition to impose on a grand unified

model.

The results of these calculations are given in figs. 12.3 through 12.6.
(For these calculations, in computing my we have taken into account its
variation with sin®(¥y) given by

TaEy

= 75¢, s (12.26)

mf

This has a negligible effect on m;, but does affect 7,(S0(10))/ 7, (SU(5))
somewhat. In all calculations we have used agy(2my)~1/128.) In figs. 12.3
we have ploted m, and m; versus sin®3y. What is notable about these
graphs is that the presence of the Landau "singularity” gives an upper
bound for the Weinberg angle in each case; this upper bound is deter-
mined by the condition my=m;. However, it is necessary to note that it is
not clear that the Landau "singularity” is a true physical singularity as
opposed to, for example, being just a relic of perturbation theory. Thus,
it is not clear whether this upper bound is physically significant or not.

In figs. 12.4 we have plotted my and m, versus sin®3y. What should be

noted from these graphs is that with our symmetry breaking scheme we
have a lower bound for sin®8y: the value for which m;=m,. The inclusion
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of scalars in the calculation generally raises this value {in the absence of
scalars the value is ~0.20 [46)). Independent of this is the fact that the
value of sin®8y becomes larger as the difference between the scales (at

which the symmetry breakings occur) grows.

In figs. 12.5 we show Lhe values of R(3) and F(4) as a function of
sin®8y. These values are somewhat larger than those in the absence of

scalars [48].

In fig. 12.6 is plotted the values of 7p(S0(10))/ 7p(SU(5)). It is clear
that considering a model that is more complicated than the minimal
SU(5) scheme can increase the proton’s lifetime by many orders of mag-
nitude. It is worth noting in this context that the actual value of the pro-
ton lifetime is very sensitive to the values of the various input parame-
ters. Thus, a calculation that uses only the lowest order beta function
cannot be used to obtain precise results since higher order corrections
can effect the results significantly. Furthermore, uncertainties in the

location of scalar thresholds can also effect the results* [47].

The results of this chapter show that one must be quite careful in
making catagorical statements about the specific numerical predictions

of grand unified models**.

*This is independent of the possibility that an ansatz different from the one that
we have chosen will effect the lowest order beta function significantly by having
many more low mass scalars.

**Calculations similar to those presented here have recently been given in [49].
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Fig. 12.3d: m, and m; as a function of sin®8y for ag(m,)=0.15.
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Appendix A) Notation for Fermion Fields

We describe spin-1/2 fermions by two-component fields of definite
chirality: left-handed fields are denoted by %; and right-handed fields by
¥r. For massless fermions, chirality and helicity are equivalent and the
two chirality states are independent. Only one of the states need there-

fore be present in a model.

For the two-component fields, ¥§ denotes the left-handed antiparticle
of ¥z, while ¥§ denotes the right-handed antiparticle of ¢;. For fields in
which both helicity states are present, parity (P) serves to interchange L
and R components, while charge conjugation (C) interchanges particles

with antiparticles, according to:

P: YL = VYR Yr > YL
C: Yo > VE=0¥r Yr > VE = —0¥L

CP: ¥y, - —oxy; Vg - 02z

where o, is a Pauli matrix. Thése transformations are summarized in fig.
A.1. Note the important feature that while the separate operations of C
and P interchange L and # components, the combined CP transformation
does not modify the helicity state. Hence while the definition of individual
C and P transformation properties generally requires the presence of
both L and R states, CP transformation properties may always be defined

for massless particles with only a single helicity state.

The two-component fermion fields may be collected into a four-

component Dirac spinor describing a fermion of arbitrary helicity: ¥= WIL? ]

g
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Fig. A.1: lllustration of the action of the operators C, P and CF on the two
helicity components of a four-component spinor or, equivalently, two

independent two-component Weyl spinors.
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IL i= convenient to take the Dirac gamma matrices which act on this spi-

nor in the Weyl representation:

10
75:[0 -1

where ¢ (i=1, 2, 3) are the usual Pauli matrices. (This representiation
differs from the more usual Dirac representation simply by the inter-
change, y%e+5.)

The kinetic energy term in the fermion Lagrangian is given by
Yav=yl o8, +¥Eo40, ¥R

with o#=(1, ¢*), *=(1, —0%).
Fermion fields for which both helicity states are present may give a

Dirac mass term:
m¥¥=m (Yhy, +¥I¥r) .

If only one helicity is present, say ¥;, no Dirac mass term may be con-

structed, but a Majorana mass term is still possible:

m¥e (—1%‘15—)-4:77&1//[02'% :

Here the charge-conjugate four-component spinor ¥° is given by

_WE|_|-oz¥r
‘I’c-[ﬁi oYy '1 '
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For a fermion field with only a single helicity state, it is sometimes

convenient to define a four-component Majorana spinor,

in terms of which the Majorana mass term becomes 7;—%,{'”.

Note that fields with Majorana mass terms may not carry any U(i)g

charges since the mass term is not invariant under the global gauge

transformation y; »et2@y; .
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Appendix B) The CP Operation in Grand Unified Models

The generation of a baryon excess from an initially symmetrical state
requires CP violating interactions. In this appendix we discuss some of
the properties of the CP operator in the context of grand unified modzls

constructed from a standard Yang-Mills action*.

We consider first a complex scalar field ¢(z.t). It is necessary to dis-
tinguish the field operator ¢ from the "fields" ¢ obtained as the expecta-
tion values of this operator in particular states. It is the g-number ficld
operator which appears in the canonical quantization procedure; the c-
number field appears in the path integral formalism; we generally work

with the latter.

The actions of parity (P), charge conjugation (C) and time reversal

(T) on a complex scalar field are given, up to arbitrary phases, by:

P: pl(z.t) » p(-z.t)

C: plzit) »p*(z.2)

P(z.t) - o'z t)

T glz.) »p*(z.~t)

p(z.t) » 3(z.-t)

The transformations P and C are represented by unitary operators, which
act on ¢ just as on ¢. T is an antiunitary operator, which reverses the
order of factors in products of field operators. It thus interchanges the

bra and ket states in an expectation value and complex conjugates the

#This presumes that we are talking only about compact Lie groups. For noncom-
pact Lie groups the discussion presented here must be extended.
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field ¢. The combined operation of CPT on ¢(z.t) yields ¢(-z.-t) and is
equivalent, as usual, to a generalized Lorentz transformation (iotal 4-
inversion).

The P, C and T transformations above are modified for particles with
spin. Their action on spin 1/2 fermions is outlined in appendix A. Note
that separate P and C transformations interchange chirality states, while
the combined CP or T transformations do not. Thus, massless particles
with only one chirality or helicity state have definite behavior under CP,
but the action of C or P may not be defined. For spin 1 fields, P and T
transformations reverse respectively the space and time components of
the polarization vector; they may therefore be considered to "raise” or

"lower"” the Lorentz vector index on a vector potential 4,.

If a simple scalar charge is associated with the field ¢ above, then the
C operation serves to reverse this charge. When a field carries a non-
Abelian charge the action of the C transformation on this charge is more

complicated, and again may not be defined.

We shall consider a field transforming under a unitary representation
r of some simple compact Lie group G that acts as the gauge group for a
grand unified model. The analysis presented below can be easily
extended to take into account any additional global symmetries of the
model. The group G will, for now, be assumed unbroken. A column vector
of fields n transforms under the action of a finite element of G according

to
n-el™ g (B.1)

where the o® are the group parameters of the transformation and the 7

are the generators of G in the representation r. If the o% are chosen to
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be real, then the T are Hermitian.

"Charges" or "quantum numbers" are usually associated with the ele-
ments of the Cartan subalgebra or center of G. The elements of this alge-
bra will be denoted H,, where I runs from 1 to the rank of the group. This
algebra consists of the maximal set of commuting generators of G and
thus generates the maximal Abelian subgroup of G (it therefore may be
written as a product of U(1) factors). The H, may be rendered simultane-
ously diagonal by a unitary transformation on the representation space
(which does not affect the Hermiticity of the 7). We denote the vector
of fields in this basis by n?, and the H, by HP. In this basis, the CP

transformation is defined by

CP[nf] = ' A(nP) * (B.2)

where A is a matrix acting on Lorentz indices, and no sum is taken over j.
(For the case of scalar fields A=1, for fermion fields A=+0, depending on
whether np is left- or right-handed respectively (see appendix A) and for
vector fields A=g,, or g*; i.e.,, A lowers or raises an index on a vector
field.) The phase q; is, for the moment, arbitrary, but we will show later

that it may be taken to vanish. With this definition, the transformation
n? ¥ po (B.3)

becomes for the CP conjugate fields:

i

CP[n?] » e ¥ CP[4?]. (B.4)

Hence the CP transformation reverses signs of all the charges associated
with H'. If a set of fields transforms according to a representation r, the

CP conjugate fields transform according to the conjugate representation %,
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I the representation r is irreducible, then the phase factors e*%
appearing in eqn (B.2) must all be equal, so that aj=a for all j, since one
may perform an arbitrary group transformation on n? before applying
CP. The common phase, o, may then be removed by an overall phase
redefinition of all fields. We shall usually assume below that = is irreduci-
ble; reducible representations may be treated by considering separately

each of their irreducible components.

We have defined CP transformations above in terms of the "diagonal”
basis n?; below we shall consider other bases n obtained by unitary

transformations:
n=Un’. (B.4)
The action of CP on fields in this basis is given from (B.2) and (B.4) by
CP[n]=UUTAn* (B.5)

since CP(U'n)=U'CP(n).

The action of CP on the vector A(n?)* transforming as the conjugate

representation ¥ is
CP(A(n?) *)=etéAA*nP (B.6)
where, if A=0; (A=g,,) then A'=—0; (A'=g*), so
AA=1. (B.7)

The phase 8 must be such that the kinetic term for n? be CP invariant.

The analogue of eqn (B.5) is
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CP(An *)=e‘fU*U'n . (B.8)

The form of CP transformations for fields in a representation r
depends on the relationship of r to the conjugate representation 7.
Representations with three basic characteristics may be distinguished
[50]:

Complex ¥ and r are completely inequivalent (e.g. fundamental
representation of SU(n) for mn>2); for complex
representations the singlet does not appear in tlie

decomposition of r®r.

Real T is equivalent to r and there is a basis in which the
representation matrices are purely real (in which
basis 7 is equal to 7) (e.g. all adjoint representations of
compact simple Lie groups); for real representations
the singlet appears in the decomposition of the sym-

metric part of r®r.

Pseudoreal ¥ is equivalent to r, but there is no basis in which r is
equal to 7 (e.g. fundamental representations of sym-
plectic groups); for pseudoreal representations the
singlet appears in the decomposition of the antisym-
metric part of r®& . All pseudoreal representations

have even dimension.

For our purposes the basis of greatest interest for a complex
representation is that in which the Cartan subalgebra is diagonal; the CP
transformation properties of a set of fields transforming according to r
are simplest in this basis. For any representation, under the action of

the group, n transforms as
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n-gn . (B.9)

where g is an element of the (unitary) representation r in the 7 basis. It

follows that
ntantgt. (B.10)

If r is a complex representation and if n are scalar fields then 8,n'84n is a
group (and Lorentz) invariant (we have not yet gauged G; gauging
replaces all derivatives by gauge covariant derivatives). If the » are
(left-handed) fermi fields then i(n'o,8*n—(8*n"o,n) is a group (and
Lorentz) invariant. In both cases the requirement of CP invariance gives

#=0. Thus (CP)?*=1 when acting on a complex representation.

Real and pseudoreal representations both have the property that, for
an arbitrary basis there is a unitary matrix V such that all of the
representation matrices satisfy g*=Vg V'. If we apply this relation twice we
find g=V*VgV'V’. Thus the (unitary) matrix V*V commutes with the
representation and thus, by Shur’s lemma, must be proportional to the
identity: V#V=al. Since V is unitary it follows that V'=aV. Applying this
relation twice then gives a®=1; thus, the matrix V is either symmetric or
antisymmetric. These two alternatives correspond to the real and the

pseudoreal cases respectively. We now discuss these cases in turn.

If r is a real representation, then one may choose a basis #* in which
all the representation matrices g are real (orthogonal). The action of the
- group cannot mix the real with the imaginary parts of nf. Thus, for
scalar fields we may choose n® to be real; this gives us the minimal set of
fields needed to construct the representation. For fermi fields we are
obligated to take an appropriate linear combination of fields transform-

ing as r to assure definite transformation properties under the Lorentz
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group; i.e., the representation must be "doubled’. (There exist an
equivalence class of representation ¥ connected by orthogonal similarity
transformations.) This basis is obtained by the unitary transformation U

such that

gf =UgUt = (g%7)* (B.11)
is real; hence

g*=U"ug(uTuy (B.12)

sc that the matrix which effects the equivalence between r and 7 is sym-
metric (this is related to the fact that the singlet is in the symmetric
part of r®r). The n® is distinct from the basis n? in which the Cartan
subalgebra is diagonal, but may be obtained from it by a unitary transfor-
mation Uz. In the n¥ basis, the action of the CP operator is obtained

from eqn (B.5) as

CP[n®] = UrUZA(R™)* . (B.13)

(For scalars the complex coﬁjugation on the right-hand side of this equa-
tion is superfluous.) It is clear that we may choose Up so that each of its
elements is either purely real or purely imaginary. It follows that U,UZ is
a real (orthogonal) matrix and that (U,UT)?=1. By an appropriate orthog-
onal matrix we may diagonalize UpU{; its eigenvalues are 1's and -1's.
Consequently we may work with a basis in which each nf is an eigenstate
of CP (it is a member of the equivalence class mentioned above). If,
choosing n* to be real, we act on it a second time with CP we get
(CP)%(n®)=(UpUZ)?AAn®=nF. Thus (CP)?*=1 when acting on a real represen-
tation.
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A pseudoreal representation, =, is one for which r is equivalent to 7,
but there is no basis in which the representation matrices are real. In

any basis there is a unitary matrix C such that

and C is antisymmetric (this is connected with the fact that, for a pseudo-

real representation, the singlet is in the antisymmetric part of r&r):
c’=-c. (B.15)

Although there is no basis in which the representation matrices are real

there is a basis (with representation matrices g4) with the property
ZgZ=(g%) 2, (B.16)

where Z is the antisymmetric orthogonal matrix [50]

|
—

.' = diag(iTa i70. ...) . (B.17)

a-2-1-P
-~ 000
ol oo

Note that since Z is related to C by a unitary similarity transformatiocn,

and since Z=-1, it follows that C®=-1.

If n transiorms as a pseudoreal representation, then a conjugation
matrix C may be defined so that the constraint Cn=7n* may be impcsed as
long as this constraint does not violate any other symmetries of the
theory (in particular, Lorentz invariance; this constraint cannot be
imposed on the fermi fields of definite chirality with which we work). This
amounts to the statement that the minimal number of degrees of free-

dom for a set of scalar fields transforming as a pseudoreal representaticn
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may be chosen to be equal to the dimension of the representation, as is
certainly true for a real representation, but definitely not true for a com-
plex representation. The obvious choice for this conjugation matrix is
C=C. Thus, if n is a set of scalar fields with this constraint imposed, the
usual kinetic term vanishes identically; 8,n'8*n=8,n7C78%n=0 since C is
antisymmetric [32,51,52]. A normal kinetic term can be formed for scalar
fields transforming as a pseudoreal representation only if the representa-
tion is "doubled” by taking an additional set of scalars x satisfying x*=Cy
and forming the combination p=n+ix; then the kinetic term for p
becomes 8,0'8#p=2i8,x7Co*n, which is nonvanishing. We can act with CP
twice on the fields p as follows: (CP)%= CP(n*+ix*)= CCP(n+ix)= C%= —p,
since C®=-1 [32]. We can build a fermi field (of definite chirality) as fol-
lows. If ¥ and ¢ satisfy ¥ *=Cy¢ and ¢*=C¢ and transform, under CP as
Y02y *=Coy and £-—02f *=—Coy¢, then the combination ¥=y+i¢ transforms
as a left-handed field. Under CP ¥-0,¥ *= Coz(¥—i¢) and, under the action
of CP once again, (CP)% ¥-C?%0,(y+i¢)= —¥, which is the same result as for
the scalar case [32,51].

Given two vectors n and y transforming as the pseudoreal representa-
tion r, there are two ways to form invariants under G (for simplicity we

write in the Z basis):
(ZA(n?) *TZ=(n?)TAZ® (B.18)
and
()X . (B.19)

Whether one of these expressions is useful depends upon whether it can

be made to have useful transformation properties under the Lorentz
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group. If n? are left-handed fermi fields (and therefore we are taking a
"doubled” pseudoreal representation) and x%Z=ig,8n?, then it is eqn
(B.19) that is the Lorentz singlet; if x2=nZ, then eqn (B.18) is the Lorentz
singlet [32,51].

We now consider the action of CP on gauge vector fields A]. Under an
infinitesimal gauge transformation parametrized by «®, the gauge poten-

tials behave according to
Ab A% +iC 0f AB 40,00 (B.20)

where the C§ are the siructure constants for G defined in terms oi the

infinitesimal generators (the Lie algebra) T° by
(PPl (B.21)

To discuss CP we need only consider global gauge transformations, for
which the last terin in (B.20) is absent. The gauge vectors are real if the
generators T¢ are chosen to be Hermitian (and hence if the group param-

eters are chosen to be real).

By an appropriate choice of basis on the group manifcld one can
choose C¢.=if . Where f,. is completely antisymmetric and real. This is
the choice that is usually made. By virtue of the fact that the structure
constants satisfy the Jacobi relation one may choose them to be the ele-
ments of the generator matrices in the adjoint representation. In this
case the choice Cg. =if,,. renders the adjoint representation matrices
real. It is not possible to choose the generators in the adjoint représen-
tation to be the structure constants, to have Hermitian generators and to
have the Cartan subalgebra diagonal all at the same time. If a basis is

chosen so that the 7° are all Hermitian, then the fields A% may all be
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taken as real. This basis makes the reality of the adjoint representation

manifest, and, as discussed above, gives
CP[A%] = £8 A% (B.22)

where £®=11 (depending on the value of a).

Using the above results we shall now discuss the conditions that the
matrices of the group generators and the Clebsch-Gordan coefficients
must satisfy so that the action of CP on the fields transforms a given
term in the Lagrangian into its Hermitian conjugate (when all couplings
are set to unity).

If ¥, is a column vector of (left-handed) fermions transforming as
some representation =, then in its gauge invariant kinetic term we have

the term
iYJory; TRAS . (B.23)

If we work in the basis of r in which the Cartan subalgebra is diagonal

then, upon acting with CP on the fields, we get (note that oy040;=(0,)7)
—iy]o,; TSe® A% (B.24)

where we have used the anticommutativity of the fermi fields and the
thrice-repeated index a is summed over as are all other repeated indices.

For eqn (B.24) to be the Hermitian conjugate of eqn (B.23) we must have
T5=¢"T§ (nosumona). (B.25)

Thus we must have £*=+1 for the elements of the diagonal Cartan
subalgebra. The remaining generators (in the basis in which the Cartan

subalgebra is diagonal) are purely real or purely imaginary accordingly as
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e2=+1. These conditions also suffice to render the gauge invariant scalar

kinetic term CP invariant.

We may now digress for a moment to consider the gauge vector boson
mass matrix and its eigenstates at tree level. This matrix is real and
therefore cannot itself violate CP. Consequently its eigenstates, if chosen
to be Hermitian fields, must also be eigenstates of CP. Generally, those
eigenstates will not be states with definite U(1) quantum numbers (unless
those quantum numbers all vanish). In that case there will be at least a
twofold degeneracy in the mass matrix where the mass eigenstates have
opposite CP eigenvalues. If we call such a pair of eigenstates A, and A,
(where + indicates the CP eigenvalue) then the combinations (4] A7)/ V2

are states of definite U(1) quantum numbers and
CP 712—(A,;‘ +A])]= \}E—uw FAR) . (B.26)

If T* is the linear combination of generators that A; couples through,
then (A} +iA] )/ V2 couples through (T*+iT~)/ V2, which is purely real.

To discuss the Yukawa terms we consider (left-handed) fermi fields ¥;
and x,, transforming as irreducible representations r, and r, respec-
tively. We also consider scalar fields ¢, transforming as some irreducible
representation r, appearing in the Clebsch-Gordan decompesition of

T7¢®7,. A group invariant Yukawa term is then of the form

WiTUz"l/m ‘PaRima (B 27)

where Rimq are group-coupling coefficients to couple ry, 7, and r, to make
a singlet. We assume that the bases for the representations r, and r, are
chosen so that the Cartan subalgebra is diagonal. If we also choose the
basis for r, so that the Cartan subalgebra is diagonal, then the action of



=152~
CP changes (B.22) into

iYdoaxmpdR. . (B.28)

For this to be the Hermitian conjugate of (B.27), Rin, must be real. If 7,
is a real representation in the real basis (we call the group-coupling
coefficients RE,, in this basis) then CP(g,)=t,¢. (no sum on «) where

£,=+1 as discussed above. The action of CP then changes (B.27) into
iYloaxh batalbna - (B.29)
We must then have
REx =RE ., (no sum on a) . (B.30)

Thus, RE.. is purely real or purely imaginary accordingly as g,=+1.
The group-coupling coefficients for the coupling of scalars to scalars

can be treated along the same lines as above.
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Appendix C) Momentum Space Weights: Double-cut Diagrams
In this appendix we evaluate the momentum space weight of the

"double-cut” diagram of fig. 4.4. We present the results normalized by the

Born diagram with massless fermions.

We take the fermions i, i;, ig and i, in fig. 4.4 to have masses m,, m,,
mg and m, respectively. X and Y are bosons with masses my and my. The
couplings to be used depend upon whether X (Y) is a scalar or a vector

boson.

We have, in the center of mass system of the X,

ml1) = ~ e T el
xTr [(g+m e (k+mp)f (K-g+m )g (q-p+ms)h ] (C.1)
=_)\(m):.3 ’2"-1- mg) Y(my—(mitms)) S(my—(mstm,)) ] oy o
m Trqh(q-p)h] 21 (k-g)°-m$
XTr [(g+myq)e (K+mp)f (K—p+m )g (f—w+ms)h ] (C.2)
where

L (mE-mB _ 2mPsmb) |2 vy

m mi |

A(".'Xt m,, m2)= i

and c, d, e, f and g are various products of gamma matrices and chiral
projection operators which depend upon the specific diagram being

evaluated.
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Some further kinematical facts are:

m .
P g=mxgo =3 A(mf-mf+m}) (C.4)
- 172
k-p=myk, =mx{ﬁ—?\2(mx, m,, m2)+m§] (C.5)
k"I:koQo“EH‘—fiz (CG)
S guen} }

As an example, take the case of vector exchange in vector decay with

all of the fermion masses set equal to zero. We obtain

=1

Imliwl= g [97.P(g-7)7*P] '—/; “ =gy

xIr [qy,Picy,P(k-p)»*P(q-p))7'P]

=2 2(1+v?)3 |_v? +2v%+3 (C.7)
“ten nllﬂ)"’ '

where P=(1+y5)/2 and v=my/ my.

The results for the remaining three cases are

[ .2
Im[lys(v)]=-fé7{v‘lnl#]+vz—é—} ; (CB)
v? .
m] VB

Im[/sy(v)]= Biﬂ-ln

and

1’;12 }+1} . (C.10)
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Plots of these functions are given in fig. C.1.

For the case my=mg=m,=0 we define u=m,/my. We then get the fol-

lowing exact results and Taylor expansions about u=0:

2
Im[[w(v i 'u,)]: %—{2( 1+v2)(1+v2—u2)ln{l+—:z-_1—tz—]+(1—u2)(2'u2—'u.2+ 3)}
2
"—2-]+21:2+3
1+v

[ [
—12+(1—112)1nll'uT:2—”u2-3(1+:2)—+ e } (C.11)

| 2
S 2(1+v%)ln

[ 2
——_1 la.2_,2 v -y 2 glay 1 sy @
Im{1ys('v, u)]— E{U (‘U —-U )lnlm]+z (1—u )(21} 1) E'u (l U )}
. v? ] 2_ 1 u®? 2 v?
- 161"{11 o 1+'u2]+v 2 1427 (1+2v7)in 1+v® M

ut ub(3+v¥v? C 12)
+2(1+v"’) B(1+v%)3 } NGRS
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1 . [ e
Im[/sy(v, u)]= ety ml TroP—u?

| [ .2 l
__1 vt | 2
T B ll+-u2 E

_ut(1+20®)  ubf(1+3?)
2(1+v?)? 3(1+2?)2

2

[
inj5

I
]

1 ]J
1+v? ]

R

(C.13)

and

1 2 2 [ 'I.)2
Im[/ss(v, u)}=- T3 ln{1+u2—u2

__1 1+'u21n[ v? ]_ u? | wt? | wh? |
167 ll+v2] 1402  2(1+v?)?  3(1+v3)3

(C.14)

We note here the expression for the Born rate (when all couplings are
set to unity) of the vecior and scalar decay diagrams (normalized by the

rate with massless fermions):

2 2
m, mz

my |™mx

{C.15)
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107!

Fig. C.1a: Momentum space weight for scalar decay with scalar exchange

for massless fermions.
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| I

m,=0.5 [Tev

ImIg,,

10! 109 o}
ms/mx

Fig. C.1b: Momentum space weights for scalar decay with vector exchange
(5V) and for vector decay with scalar exchange (VS)for massless fer-

mions. The mass of the vector is taken to be 0.5 [IeV.

1072
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Appendix D) Im(0))

In this appendix we discuss some general features of the quantity 0
appearing in the expression for the average baryon number generated in
the free decays of a boson and its antiparticle, eqn (4.15). We specialize
to the case in which each fermion family transforms as a single irreduci-
ble representation, r, of the simple gauge group G. We write an element
of a fermion multiplet as ¢¥£ (all fermion fields are taken to be left-handed
two component spinors; we suppress any helicity labels), where the latin
index specifies the family and the greek index is the group index. The
couplings of the gauge vector bosons to the [ermions may now be written

as

ig (&) AYE T (D.1)

where T,z are the (Hermitian) generators of G in the fermion representa-
tion 7. With more than one family the fermion fields can couple directly
to any set of scalar fields transforming as one of the irreducible

representations in the decomposition
T®T =1, @r®.. . BreD. .. (D.2)

(if all fermions appear in a single irreducible representation, they can
only couple to scalar representatins appearing in the symmetric part of
(D.2)). In general there may be several scalar multiplets which transform
according to a given irreducible representation (whether or not it
appears in (D.2)); that is, the scalar sector may have its own family struc-
ture. We write the lth scalar family which transforms according to r, as

(¢®)?. The Yukawa couplings can then be written as

(W) T o2¥P (R )T {(R% )i (9 )2 +(R®)ia (%[ (9)E]N +hoc. (D.3)
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where all repeated indices are summed over (even those repeated
thrice). The (h®);s are the Yukawa coupling constants and the (R?%)°#” are
the Clebsch-Gordan coefficients coupling 7, to 7®r to make a singlet. The
(R*)*” may be taken as real when all fermion and scalar representations
are taken in the basis in which their Cartan sublagebra is diagenal (as
discussed in appendix B); also, for a given r,, (R%)*®?7 is either symmetric
or antisymmetric under the interchange of a and g. A% is a unitary
matrix defined to vanish when 7, is a complex representation. If r, is a
real representation, then (A%)” is symmetric, whereas if r, is pseudoreal,
(A*)?* is antisymmetric. Furthermore, if 7, is a real representaticn and a
basis is chosen in which the representation matrices are real, then
(A®)7»=67. The second term is an independent term in the Lagrangian

only if  is a doubled real or pseudoreal representation.

The various fields appearing in (D.1) and (D.3) may be rewritten in

terms of mass eigenstate fields by the unitary transformations

,w':a= Ulm¥m (D.4a)
(¢*)2=(V*)Zp¥p+(7%)2pP} (D.4b)
A=WrS AS +(WrS)* 45T (D.4c)

In eqn (D.4b) if, for a given P, the field ¢p is a Hermitian field, then
(V)2p=(P)p . (D.5)

Furthermore, if the representation r, is a (undoubled) real representa-
tion and the basis of the representation space is chosen so that the fields

(¢®)Z are Hermitian (real), it follows that

(V®)Zp=[(7)2p]* (D.6)
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(this condition was used in writing eqn (D.5c); the vector mass matrix is
discussed in appendix B). These transformatlicns satisfy the unitary rela-

tions
( Uiam) 'U]ﬁm =6a_86ij ' (D.'?a)

[(7)2p]*(P)ep+[(7®)2p] *(P)Pp=6,6606a summedon P, (D.7b)

W7S (WeS) '=6~,=] | (D.7¢)

WS (W) *=6sr
In eqn (D.7b) the indices a and b refer only to representations that
appear in the decomposition of r®r, i.e., representations that can couple
to the fermion-fermion operator. There may be other scalar representa-
tions in the model which do not couple directly to fermions (indeed, in
general, with fermions transforming according to the fundamental
representation of the gauge group, there must be such scalar multiplets
except in the case of £(6) * [27]). Thus, to invert the expression (D.7b),
one must allow the indices ¢ and b to run over a set of values which
includes these multiplets as well. However, the inverses of the expres-

sions (D.4) are not needed in the following.

In terms of the mass eigenstate fields eqns (D.1) and (D.3) become
ig ( Ut‘.am) 'Utpn ms TZanAS% (DB)

*In an E(6) model a fermion family (or, in some incarnations of the model, more
than one fermion family) can be put into the fundamental 27 dimensional
representation. To break E(8) down to SU(3RSU(2),®@U(1)y and then to
SU(3®U(1)gywe need only use scalar multiplets that appear in the decomposition
of 27=27:

27827=(27+351')g+351, .
E(6) is the only compact simple Lie group with this property.
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and
Ul m Ufa (¥m ) 90 (B )2 ([ (A% )i (V*)Zp+ (R® ) [(72)ER] *(8°) %)
+[(A% ) (P*)Zp+ (A% [(V°)£p] *(8°)*]pbi+hoc.
=08 Ufn (¥ )T ¥ (TR 22+ (TR) 9B (R2)*4hc. (D.9)
where
(TR =1 (h® )i (V*)Zp+(R® ) [(72)EP] *(A%)7 (D.10;
and
(TG =t(h®)e (V2P +(R® e [(V*)Ep] (8% )™} (D.11)

(there is no sum on a in the two preceding equations). We have the fol-

lowing symmetry as a consequence of the Pauli principle:

(R®)*#(T8)3=(R®)P*"(TB)Z (D.12a)
and
(RoYP(T)z=(R* P> (T8)% . (D.12h)

We can now consider the quantity
AEQ(Big_Bil"'Bis_Bi‘) . (D 13)

which appears in eqgn (4.15), in the limit where the fermion masses are
much smaller than boson masses. In this case the imaginary part of the
loop integrals, Im[/yy] are (as discussed in chapter 4) independent of
their indicies 1,, iz, ig and i, and we may therefore sum over the relevant

indices (the fermion mass eigenstate indices) in the expression for A In
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the 1esuiting expression the contributions of fermion mixing drop cut
due to the condilion (D.7a) and the absence of mixing at this order
between {ermions of different baryon number. This last fact allows us to
implement eqn (D.7a) 1n spite of the presence of the factor

B;,—-B; +B,,—B,, in the surnmed version of eqn (D.15).
For the case of vector exchange in vector decay (fig. D.1 ) we find
Ay =T TonTasToe U (Usp) *UlTp (Ufn) *
X Ugn(Ubm) *UY'm(Uf'q) *[ B+ Bp —(By +Bn)]
=Ny TR TEaT5,T5 [ Byt Ba—(B,u+B,)] . (D.14)
where Ny is the number of fermion families and
TRe=W""TZ ' (D.15)

is real as discussed in appendix B. There is no sumnmation on P or S in
(D.14) because the bosons are specific mass eigenstates (neither the
decaying nor the exchanged boson species is summed over). As a conse-

quence of the reality of 77 and TS it follows that
Im(Ay)=0 . (D.16)

The expressions for Asy, Ays and Ags are not, in general, real*.

For Asy there are two types of diagram that may contribute as shown
in fig. D.2. Diagrams in which the directions of the fermion arrows are
reversed are equivalent to one of the diagrams already listed. Fig. D.2a

gives the contribution

*They are unreal.
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Fig. D.1: Vector decay with vector exchange. Arrows on the fermion lines

indicate the flow of the left-handed helicity.



-165-

Vo
Vo

|
V
|
|
Vo

Fig. D.2: Scalar decay with vector exchange. Arrows on the fermion lines

indicate the flow of the left-handed helicity.
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gETETE (TR (R®)¥[(TR)E (R )] #{Ba—Bg—(B,~B,)} . (D.17)
and fig. D.2b gives
geTRTh (T®)G(R*) (TR (R®)P¥] *[ Ba—Bs—(B,—~B,)] . (D.18)

If the exchanged scalar boson carries a nonzero conserved quantum
number (such as electric charge), then one of the two preceding expres-

sions will vanish for each set of a, 8, 4 and v.

For Ays there are two corresponding types of diagrams as shown in
fig. D.3. These diagrams differ by reversal of the direction of the fermion
arrows. If we reverse the direction of the exchanged vector boson we do
not get a new type of diagram. Note that fig. D.3a and fig. D.3b
correspond to processes with distinct final states in contrast to the situa-

tion for Asy. Fig. D.3a gives the contribution

gETHG (R PTG (R®) ) TE T, [ Bu+ B,~(Ba+Bp)]  (D.19)
and fig. D.3b gives

g2 (TG (Re) (TR (R®)P¥] *TE TE, [ Bat By—~(Bu+B.)] . (D.20

If S or P carry a conserved quantum number, then one of the twc preced-
ing expressions vanishes for each choice of a, 8, u and v. Apart from the
baryon number factors, eqns (D.19) and (D.20) are the complex conju-

gales of eqns (D.17) and (D.18) respectively.

For Ags we again have two types of diagrams as shown in fig. D.4. The
diagrams corespond to processes with distinct final states. Reversal of
the direction of the exchanged scalar boson yields no new type of

diagram. Fig. D.4a gives the contribution
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Fig. D.3: Vector decay with scalar exchange. Arrows on the fermion lines

indicate the flow of the left-handed helicity.
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Fig. D.4: Scalar decay with scalar exchangc. Arrows on the fermion lines

indicate the flow of the left-handed helicity.
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(TR (R (TR)G (RY)*[(TE)A (RO YPun(Td) 5 (RS)™v] * (D.21)
x[Ba+Bg+B,+B,]
while fig. D.4b gives  *
[(TB)&(R®)"(TR)S (R)*#8] «(T6) A (R° )P(T8)§ (R?)>v* (D.22)
x[—{Ba+Bp+B#+BV§] ;

Again, if S or P carry a conserved guantum number, then one of the

preceding expressions will always vanish for each choice of «, 8. x and v.
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Appendix E) Symmetries of the Ilustrative SO(10) Model

In the model of chapter 9 we have a single family of fermions, 18;,
the obligatory adjoint of vectors, 45y and, for the sake of the present dis-
cussion, we consider the following set of scalar representations: a 126y, a
complex 10y (=10;+110; where 10, and 10, are real representations) and a
54y. Later we may replace the complex 10 by a real 10 and thereby spe-
cialize to the discrete symmetry, 9.14, of the model of chapter 9. We

choose the Yukawa terms in this model to be
A(18;-18,) 1265 +B(16;16,) 105 +h.c. (E.1)

Ignoring for the moment the terms in the Higgs potential, this mecdel
possesses a global U(1)y symmetry. If we call the generator of U(i)y, X,
then we have X=1 for 16,, X=2 for 126y and X=2 for 10y; all other values
for X are zero. These values corespond to the transformations

16, 42‘“16!

126}[*2‘2"126;{ , (E2)
10H*8i2°10H

U(1)y may be broken down to a discrete symmetry by various terms in
the Higgs potential: as long as this discrete symmetry is large enough the
Yukawa terms (E.1) are natural. However, for the particular case where
the discrete symmetry is that generated by the transformations

16] »>+1 16]

126}[-’—126}; ' (EB)
10}1"-1011

the Yukawa terms (E.1) must either be augmented by the term

C(16;°16;) 10y (E.4)
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0: the theory may be modified so that the 10y is real. The discrete sym-
metry (E 3) may be considered as a special case of (E.2) for a=+r/2. We
will therefore treat the theory as if it had the full U(1) symmetry, special-
izing later to the case a=+n/2 (and thus adding in the parameter C if the
10y is complex). The symmetry (E.3) is the symmetry of the mest gen-
eral Yukawa coupling in this model. We will see below that although this
symmetry is very simple it leads to a richer symmetry after S0O(10) has

been broken via the SU(5) singlet vacuum expectation value of the 1264.

The global symmetry U(1)y is spontaneously broken when 126y
obtains a vacuum expectation value, as is the local group U(1)p appearing
in SO(10)>SU(S)®U(1)r. U(1)r distinguishes among the terms in the
SU(5) decomposition of a given SO(10) representation. We call the gen-
erator of U(1)p, R. At temperatures sufficiently large so that
SU(3)YRSU(R)®U(1)y is unbroken, 126y will have a vacuum expectation
value only along its SU(5) singlet direction. At such a temperature a
linear combination of X and R that vanishes along that direction will still
generate a global U(1); symmetry even though U(1)p and U(1l)y are
separately spontaneously brdken". To determine the relevant linear
combination we must compute the values of ® for the components of

126y (in particular the SU(5) singlet component).

We call the values of # for the components in the decomposition
126=1+5+10+15+45+50 respectively a, b, ¢, d, e and f. Similarly for
16=1+5+10 we use B, ¥ and 6; and for 10=5+5 (where 10 is real) we use p
and —p ( where only in the last case have we implemented the
mperature therefore no Goldstone bosons would appear even if U(1)y
was respected by the Higgs potential. However, at lower temperatures this new

global U(1)z will generally be broken in a way that produces a Goldstone boson.
Thus, we must break U(1)y down to a discrete symmetry in the Higgs potential.
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tracelessness of X).

Two conditions on B, ¥ and 6 can be obtained by considering the

antisymmetric product of two 16’s
(1@16),1:120 .
In the S’(5) decomposition of the (real) 120,

120=5+5+10+10+45+45,

(E.5)

(E.8)

the 5 and the 5 are conjugates of one another: similarly for the 10 and 10

and for the 45 and 45. Thus the values of R for each of these pairs are

equal and opposite. The 5 in (E.B8) arises in the combination
(5®10+10R5),
appearing in (E.5). Similarly the 5 comes from
(591+1®5), .
Thus it follows that
y+6=—(8+7) .
Similarly considering the 45 and 45 gives us
y+0=-26 .
Thus

y=—386=-3; B=56=5.

(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

(We choose to normalize so that 6=1.) If we now consider the symmetric

product of two 16's,
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(16R13)-=10+126
and demend that the trace of ® be zero, we find that
a=10,b6=2, ¢c=6,d=—6,e=-2, f=2 and p=2 .
The linear combination of X and R that we seek, Z, is then

z=x—2E
a

(E.12)

(E.13}

(E.14)

The values of Z for the components of 16;, 10y, 54y and 126y are sum-

marized in table E.1. As noted in chapter 9, when the X symmetry is bro-

ken to the discrete symmetry (E.3), the Z values 8/5 and 12/5 are

equivalent as are the values 4/5 and 16/5.
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16; = 1(0)+5(D+10(H)

10y =B(§-}+5(—1§—)

54y = =15(0)+15(0)+24(0)

1265 = 1(0)+5( %+10( g%ﬁ?)( 151)+45( 151)+50(g—)

Table E. 1

The SU(5) decompositions of some SO(10) representations and their

associated values of Z.
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