
SOME TOPICS IN GRAND UNIF1ED MODELS 

AND 

THE COSMOLOGICAL BARYON ASYMMETRY 

Thesis by 

David Benjamin Reiss 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1.981 
(Submitt~Cl May 19, 1981) 



-ii-

Acknowledgements 

My sincere thanks go to _ my advisor Pierre Ramond for his support 

and encouragement over these last few years; I have been lucky to have 

worked with and learned from him. My thanks also go to my other colla­

borators, J. A. Harvey, E.W. Kolb and especially S. Wolfram. 

The love of many people has made it possible and worthwhile for me 

to do the work required to produce this thesis. Without their support and 

warmth it would have been a very empty road indeed. In a pseudorandom 

order they are: Helen, Andy, Peter~ Joshua, Carrol, another Andy, David, 

Emily, Shirley and the rest of the Weixel clan, Blatts, Margaret, Liz, 

Roger, Charlene, Tom, Barbara, Tony, Jonathan, Jesse, David Edward, 

Edward David, Cynthia, Duno, Mephisto, Teddy, the man in white spats ... 

Certainly there are more and, to anyone I have left out, my only excuse is 

that it is 2:30 in the morning. There are two people, however, that I have 

not forgotten; this thesis is dedicated to them because I love them: 

Gertrude and Julius --who else? 



-iii-

Abstract 

In part I of this thesis some of the parameters relevant to the pro­

duction of a cosmological baryon number asymmetry are considered in 

the context of grand unified models . General expressions for the average 

baryon number generated in the free decays of bosons are deriv~d . The 

CP violation necessary for the generation of a baryon excess is discussed 

for a variety of SU(5) models. The kinematics of baryon number produc­

tion in an illustrative SO( 10) model is discussed in detail. In part II a 

viable SO( 1 0) model is constructed which reproduces the phenomenologi­

cal fermion mass and mixing angle values. A detailed discussion of the 

beta function for this model is presented. This analysis includes the 

effects of scalars . 



-iv-

Contents 

1) Introduction 

Part. I 

2) Cosmological Baryon Number Generation in Grand Unified Models 

3) B and B-L Violation in Models With SU(5) Singlet Fermions 

4) Baryon Number Generation in Free Decays 

5) SU(5) Models 

6) CP Violation in the Minimal SU(5) Model 

7) CP Violation in Alternative SU(5) Models 

8) SO( 10) Models 

9) Analysis of an illustrative 80(10) Model 

Part. n 

10) Mass Matrices in SU(5) 

11) A Viable 80(10) :Model 

12) The Beta Function in this 80(10) Model 

Appendices 

A) Notation for Fermion Fields 

B) The CP Operation in Grand Unified Models 

C) Momentum Space Weights: Double-cut Diagrams 



-v-

D) lmO 

E) Symmetries of the Illustrative SO(lO) !v!oO.el 

References 



-1-

1) Introduction 

In the beginning, the idea of grand unification ( 1] was introduced as 

an economizing gesture to reduce the number of possible Yang-Mills [2] 

couplings . An immediate consequence of this was (under some cir­

cumstances) to reduce the plethora of parameters that appear in the 

Yukawa couplings of a model. The Higgs self-couplings, however. do not 

fare so well under this treatment for two reasons: the number of uncon­

strained parameters generally increases and the vial containing the noxi­

ous problem of hierarchies [3,8] is uncorked. There is also another prob­

lem endemic to grand unification that is shared by both fermions and 

scalars (especially when one considers models larger than the minimal 

SU(5) scheme). This is the proliferation of degrees of freedom. One is 

forced to consider the possibility of some (presently) unobserved fer­

miens and many unobserved scalars . In the end, the program of grand 

unification, although its original aim was to father simplicity, has given 

rise to a rather large amount of complexity. Nonetheless, in spite of or, 

perhaps, because of this complexity, grand unified models possess a 

number of interesting features . 

One of the first things grand unification forced one to consider was 

the possibility of the decay of the proton [ 4,5]. Vector induced proton 

decay did not exist in a theory based on the product of a flavor group 

with SU(3) of color: G1,®SU(3}c. However, scalar induced proton decay 

certainly could have been put into a G1 ,®S U(3}c theory ad hoc through 

the inclusion of scalar representations with appropriate quantum 

numbers. The context of grand unification is a natural one in which to 

CODBider vector-induced proton decay. 
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A similar situation exists for other esoteric processes. Those arising 

from the presence of the extra fermions (either charged or neutral) 

could certainly have been considered in a G1,®SU(3)c theory and recently 

such ideas have been examined, prompted by their appearance in grand 

unified models [6]. Grand unification beyond SU(5) requires one to con­

sider massive neutral fermions and the associated neutrino oscillation 

and lepton number violation phenomena [7]. 

The presence of a large number of degrees of freedom in larger 

grand unified models necessitates the examination of their effect on the 

renorrnalization of the parameters in the model (notably the gauge cou­

plings and, hence, the Weinberg angle) [8,9, 10]. 

In grand unified models the global symmetry structure can generally 

be very rich, allowing one to experiment with a large number of natural­

ness conditions in an attempt to reproduce phenomenological mass an~ 

mi.xi.ng angle (and CP violation parameter) values. The possible presence 

of of zeroth order mass relations and of the soft breaking of symmetries 

each allows one to consider exactly calculable quantities, permitting, 

perhaps, the construction of a model in which the electron family's 

parameters are strictly perturbative . 

To explore the ideas mentioned above, it is by no means necessary to 

introduce grand unification, but it does act as a natural matrix in which 

to consider them together. Just as one was able to consider the 

SU(2)LeU(l)y model as "a framework for organizing huge quantities of 

u:perhnenlal data," [ 11] so too grand unified models can be considered 

as a framework for considering a large number of theoretical possibili­

ties. 
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One may wonder about the possible significance of grand unified 

models on a level somewhat deeper than the pragmatic and the organiza­

tional. Unification without gravity is only partial unification. So too is 

unification without a criterion for choosing which of many possible 

models is the most correct one. Grand unified models may be criticized 

on both of these accounts. The following operational philosophy is cer­

tainly a reasonable one to adopt. Grand unified models are worth explor­

ing both from the point of view of being a laboratory for theoretical ideas 

and from the hope that one such model will turn out to be a limit of a fun­

damental theory yet to be discovered . 

A few such theoretical ideas are considered in this thesis . In the first 

part we discuss some aspects of the cosmological baryon asymmetry in 

the context of grand unified models. There are two perspectives that one 

may take in considering baryon number violating processes in the very 

early universe. First is the grand unified modeler's perspective . From 

this point of view one notes that there are only two laboratories in which 

the effects of the "intermediate vector baseballs• [53]" are manifest. One 

is caverns in salt mines where, it is hoped by some, the decay of the pro­

ton may be observed. The other is at the superhigh temperatures that 

were possibly present in the very early universe : T~ 1015 Ge V. At such 

temperatures the rates for baryon number violating interactions are 

competitive with those that conserve baryon number. The second per­

spective is that of the cosmologist who poses the so-called initial condi­

tion question: which observational cosmological facts must be taken as 

initial conditiaos (isotropy? homogeneity? thermal equilibrium? ... ) and 

4l'!1umk JDU Sid. 
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which ones may o:r must be derived? In this context grand unified models 

act as a self-consistent setting in which to discuss how the cosmological 

baryon number asymme Lry does not need to be imposed as an initial con-

dition on the evolution of the univerie . In the body of part I a number of 

topics relevant to t.he calculation of the baryon asyrnmetry are discussed . 

To set the stage for this we review, in chapter 2, the method of calculat­

ing the magnitude of the cosmological asymmetry in an arbitrary grand 

unified model•. 

In the second part of this thesis we discuss the construction of a 

grand unified model based on the simple Lie group SO( 10) which acts as a 

natural generalization of SU(5) . In this model we are able to reproduce 

the phenomenological fermion mass and mixing angle values. It is a gen­

eral feature of models based on gauge groups larger than SU(5) that 

there may be more than one level of symmetry breaking; SO(lO) has this 

feature. The various predicitons of a grand unified model depend upon 

the complexity of the symmetry breaking . Notable in this regard is the 

effect of multiple symmetry breaking scales . on the running of the gauge 

couplings; hence we present an analysis of the ·beta function in this 

model. 

In summary then, this thesis asks again the age old question, "What is 

the eat's laSt name?" This question cannot be answered as is pointed out 

in the poem which follows, nonetheless it is great fun to try. Eliot has put 

it (54]: 

-The text of chapter 2 i8 -.entially that of a paper by J. A. Harvey, E. W. Kclb, D. 
B. Re-. .adS. 1faifrmD r-eeMilly submitted to PhJSical Review Letters. 
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The naming of cats is a difficult matter, 

It isn't just one of your holiday games; 

You may think at first that I'm as mad as a hatter 

When I tell you, a cat must have THREE DIFFERENT NAllES . 

First of all, there's the name that the family use daily, 

Such as Peter, Agustus, Alonzo or James, 

Such as Victor or Jonathan, George or Bill Bailey­

All of them sensible everyday names. 

There are fancier names if you think they sound sweeter, 

Some for the gentlemen, some for the dames: 

Such as Plato, Ademetus, Electra, Demeter­

But all of them sensible everyday names. 

But I tell you, a cat needs a name that's particular, 

A name that's peculiar, and more dignified, 

Else how can he keep up his tail perpendicular, 

Or spread out his whiskers, or cherish his pride? 

Of names of this kind, I can give you a quorum, 

Such as Munkustrap, Quaxo, or Coricopat, 

Such as Bombalurina, or else Jellyorum-

Names that never belong to more than one cat. 

But above and beyond there's still one name left over, 

And that is the name that you never will guess; 

The name that no human research can discover -

But THE CAT HliiSElF KNOWS. and will never confess . 

When you notice a cat in profound meditation, 

The reason, I tell you, is always the same: 

His mind is engaged in a rapt contemplation 

Of the thought, of the thought, of the thought of his name: 

His ineffable effable 

Effaninefiable 

Deep and inscrutable singular Name. 
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PART I 
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2) Cosmological Baryon Generation in Grand Unified Models 

Cosmology is potentially an important source of information on the 

be.ryon number (B) violating interactions expected in most grand unified 

1auge models. Any net B imposed as an initial condition on the universe 

lilhould have been rapidly destroyed by any B-violating interactions. To 

account for the observed baryon number density to photon number den­

sity ratio, nBin., ~ 10-9
, a net ba.ryon number must subsequently have 

been generated. This requires, in addition to B violation, the violation of 

C and CP (and hence T) invariance, along with departures from thermal 

equilibrium [ 12, 13]. This chapter oullinE:s the complete calculation of 

nBI n., generation in specific grand unified models in the context of the 

standard hot big bang model of the early universe. The method we 

present allows for the exact treatment of an arbitrary number of 

superheavy bosons as well as the presence of nonthermalizing modes 

[14]. We summarize results for several realistic SU(5) models. Many 

details and extensions are discussed in ref. [ 15]. 

We denote heavy bosons generically by x and light ferrnions by a, b, .. .. 

The number density ~ of a particle i and that of its antiparticle n 1 are 

parametrized by i+=(~+n;)ln., and i_=(~ -1l.r)ln.,. The time development 

of these quantities is described by a set of coupled Boltzma~11 transport 

equations. For the heavy bosons these are [ 13, 15] 

X+ =-2;<r(x ... ab )> (x+ -x!q) (2.1a) 
a,b 

x- = -I;<r(x~ab )> (x-- (a_+ b_) x!q) (2.1 b) 
a,b 

where dots denote time derivatives and the expansion of the universe is 

accounted for through division by n., in the definitions of i± .. The first 
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terms on the right side of eqns (2 .1a) and (2.1 b) correspond to free 

decays of x and x with partial rates <r(x-.ab )> averaged over the decaying 

x. energy spectrum. The second terms account for back reactions in 

which the x. decay products interact to produce X· The equilibrium 

number density x!q is obtained by integrating the exp[ -Ex/ T] equili­

brium Maxwell-Boltzmann phase space density. In equilibrium, X+=x~q and 

X+=O; the expansion of the universe produces deviations from equilibrium 

at temperatures T - mx. 

The densities of fermion species develop according to 

i- = L: <r(x-.ab )> {N1 )ab Hx+- x!q) R(x--ab) + 2x-- (a_+ b_) x!q~ 
a.~>.x 

+ L: ~ [(N1 )ab -(N1 )cctJ ~a_+b_-c_-d_J <lv la'x(ab _.cd)> , . (2 .2) 
a,b,c ,ct.x 

where (N1 )a denotes the number of .particles of type f in the state ab. 

R(x-.ab) denotes the difference in branching ratios between the CP conju­

gate decays x~a b and x_.a b divided by the full rate for X decay; it van­

ishes if CP is conserved. The first part of the first term on the right side 

of eqn (2 .2) therefore represents the production of an asymmetry in fer­

mion number densities as a result of CP-violating decays of a symmetri­

cal x. x mixture. The second part causes asymmetries ~ x _ ~ between x and 

x to be transferred to the ferrnions when the x ( x) decays. The third part 

gives a correction to the rate for inverse decays resulting from the devi­

ation of the fermion number ciensities from their equilibrium value. The 

second term in eqn (2.2) represents the production and destruction of 

fermions by two-to-two scattering processes. rl x is the cross-section for 

this scattering Inediated by x exchange, but with the term correspondhTig 

to a real intermediate x removed (since this is already account~d for by x 
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decay and inverse decay processes). 

The number of independent particle densities to be treated in eqns 

(2.1) and (2.2) may be reduced by using unbroken symmetries (gauge and 

global). For non-Abelian groups, any asymmetries are shared symmetri­

cally among members of each irreducible representation. If only a sub­

set of the interac;tions that may potentially contribute to eqn (2. 2) is 

included, there may be additional symmetries leading to further con­

served combinations of fermion number densities (e.g., TI conservation in 

the absence of Riggs-fermion couplings for the models discussed below). 

Let Ji_ (i=1. · · · .N1 ) be the independent fermion asymmetries and 

x~ (cx=1, . . . , Ny) the independent supermassive boson asymmetries. It is 

convenient to form a set Q which consists of independent quantum 

number densities B .L. etc .. . related to f=~fi_, x~~ by a unitary transfor­

mation, Q=H F, F=H-1 Q. 

The thermalization of a quantum number Q through reactions of a 

particular boson x is given from eqn (2.2) by "'= ~ x:q Md Q;, where 
X 

Jl.d=l: llQ;,(x ... !Jc f')<r(x_.!~c /l)>(H~c-/+Hij1 ) and llQ(x_./Jc !') represents the 
lc.l 

change in the value of Q, through the reaction x_./t f'. Boltzmann's H 

theorem requires that the eigenvalues of J.IX are all real and nonpositive. 

Any zero eigenvalues reveal additional s:ynunetries; the corresponding 

eigenvector of number densities is then conserved in x reactions (e.g., TI 

in vector boson exchanges in SU(5)). · 

We consider two grand unified models based on SU(5). In each case a 

family of fermions transforms as a reducible representation ( 5 Eel O)i, 

labeled by the family index i. The following Higgs representations are 

taken to couple to fermions: in model I (minimal SU(5)), ~ single 5 of 
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Higgs, H5 ; in model IT, He and an additional 5 of Higgs, H 5•. The Yukawa 

couplings in these models have the schematic form 

It is shown in chapter 4 that a CP-violating nonzero R(x-+ab) enters 

through an imaginary part of the product of the couplings in diagrams in 

which one boson is exchanged between the ab produced in the x decay. 

The sum over a and b in eqn (2.2) runs over all types and families of fer­

miens; thus, for fixed fermion types. R(x-+ab) is proportional to a family 

space trace of Yukawa coupling matrices. In model I the first diagram 

exhibiting CP violation involves only Higgs bosons and is of eighth order in 

the Yukawa couplings [ 16,1 7,15]. This is discussed in chapter 6. It is pro­

portional to the imaginary part of the family space trace, 

17'[ UutUD2 [JiD2 ], suggesting the rough estimate R ..... as (mFI mw)6 e/ (128~a3) 

= 4x10-9 (m.p/mr)6 e, with !el~l. where mF is the mass of the heaviest 

fermion. (Stability of lhe effective potential requires that m.F~ v'Smw [ 18] 

and hence R~lo-e £, making the production of an adequate baryon asym­

metry implausible in this model.) 

In model II (discussed in chapter ?), both H'5 and H5• have only the 

single B-violating component •, (3, 1, -l /3); since 5 is a complex represen­

tation one may form complex linear combinations so that the (3, 1, -1 /3) 

in both Sand 5' is separately a mass eigenstate. This suffices tc show that 

no CP violation may occur for gauge boson decay with Higgs scalar 

exchange (or vice versa). CP violation may occur at O(cx(mp/ T.'1. 1r)2) 

through 5 decay with 5' exchange (and vice versa) [19]. 

• In this notation the first entry m the SU{3) multiplicity. the second is the SU(2)L 
multiplicity and the last the value of the weak hypercharge Y normalized so that 
the charge operator is given by QcTst.-Y. 
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SU(3)®SU(2)L®U(l)y symmetry allows the 15 independent fermion 

fields in a family of an SU(5) model to be reduced to the set 

UL, (UC)L, (Dc)L, ELand (Ec)L (the subscript L denotes the left-handed hel­

icity state and c denotes charge conjugation). The model contains a (3, 2, 

5/6) of B-violating vector bosons X (with number densities parametrized 

by X_ and X+) · We consider the case where there are 71.s (= 1 or 2) scalars , 

S I> S 2, . .. , Sn
5

, transforming as (3, 1, -1 /3) (with number densities 

parametrized by S.;,- and Si+) . These models possess a locally conserved 

weak hypercharge whose initial value we assume to be zero. The models 

exhibit two iurther zero eigenmodes. The first is B -L which hds zer o 

eigenvalue (is conserved) in all boson interactions . A second zero eigen­

mode, TI=-3(Dc)L--2EL-, is present if scalar-fermion interactions are 

removed [ 14]. TI (termed rrfiveness") corresponds to the net number den­

sity of the fermion species appearing in the 5 representation. A density 

IIo generated through Higgs decays would be distributed as B = -TI0 / 10, 

v_= -n0 I 5 through TI-conserving X interactions. no may be destroyed 

through exchanges of light Higgs bosons . A convenient choice of indepen­

dent combinations · of fermion densities is no/ n 7 = B = 
2Dr_-(UC)z_-(Dc)r_, TI and v_=EL- · 

For model I, according to the estimate for R(S ... ab) given above, an 

adequate baryon number asymmetry will be generated only if very heavy 

fermions exist (mF-miY )•. Fig. 2.1a shows the baryon asymmetry (taking 

mx=5x1014 GeV and a:=l/40) as a function of m 5 1mx for mFim r,. =l and 

mp/ m.r=3 obtained by numerically integrating the Boltzmann transport 

equations (2.1) and (2.2). When ms/mx>>l, X exchanges thermalize the B 

• Similar conclusions have recently been reached in ref. [20]. 



-12-

1011 

t6'~o3L...---,o.L-2~--, ...... o-, --,.L.o-=-o--,~6-:-' _..j 

ms;mx 

Fig . 2.la: Baryon number density as a function of the Higgs boson ( S) 

mass generated in the minimal SU(5) model in which the heaviest fer­

mion has mass mF. Results are for a= 1/40. mx=5x1014GeV. The CP viola-

tion parameter F: is unknown but less than 1. 



-13-

produced in S decay to the value -rv 10; meanwhile, II is reduced by light 

Higgs interactions. The final B attained is determined by the reduction 

in Il that occurs before X exchanges cease to be important and B 

becomes fixed. For m.5 /mx<1 the X is not effective in destroying the 

baryon number built up through S decay. The enhancement in the final 

value of B around ms/mx=l is a result of the transition between these 

two regions. The dotted curve shows the final baryon number if all .X 

interactions are artificially set to zero. Fig. 2.1 b shows the temperature 

development of the quantum number asymmetries B. II and v _ for the 

case m;-/ mw =3, m.:,·/ mx= 1 C with the solid (dashed) curves indicating the 

effect of including (excluding) the destruction of II and v_ by the interac­

tions of the light Higgs doublet. 

For model ll the final baryon number density as a function of ms 
1
1 mx 

is shown in fig . 2.2 for different choices of ms(mx. Note that, when 

m 1=m2• we have (assuming (P51)totaL =(r52)totcat in the Born approximation) 

R(S 1-+a.b)=-R(S2 ... ab) and hence noB is generated. For msi>mx the addi­

tional decay mode S;. -.x +9' (where 9' is a light Higgs boson) decreases the 

effective CP violation, R(S;. -.ab ), in S;. decay. For m 52>mx and m 51>mx. 

the final B is negative and determined by vector thermalization of the 

positive II produced in S 2 decay. For m52>mx but m51 < 0.1 mx, the final 

baryon number is positive and determined mainly by inverse decays into 

S 1• The dominant term governing the time evolution of B for T';<:,ms
1 

is 

iJ IX s~~ <f sl>( i4v_-l2B+7Il) with similar equations for i;_ and n_. Since 

ll>O, il>v_ and II>B. this term tends to drive B positive. In general there 

are three linear combinations of B, v_ and II which decrease as exponen­

tials until cut off at temperatures below m.51 . The final value of B thus 
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165--~-----.-----r----1 
m5;mx = 10 

Fig. 2.lb. Evolution of independent quantum number densities as a func­

tion of temperature in the minimal SU(5) model. B denotes the net 

baryon number, v_ the asymmetry between v and 11 densities and TI the 

total asymmetry between ferrn.ions in the 5 and 5 representations of 

SU(5); 1TieV = 1o24 eV. In these. graphs the parameter t has been scaled 

out. The dashed curves are results obtained by neglecting light Higgs 

boson exchange processes. 
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8/ IE" I 

-165~2----------~--------~----------~--------~ 
10 101 10° 101 162 

ms1/mx 

Fig . 2.2: Baryon number density for an SU(5) model with two baryon 

number violating Higgs bosons (S 1 , S 2) as a function of the S 1 mass for 

different choices of the 8 2 mass . The results are for a=l/40 and 

rnx=5x1014 GeV. The CP violation parameter~ is unknown but less than 1. 
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depends sensitively on the initial values of TI, v_ and B. For this reason, it 

is inadequate to assume that B is produced and damped in successive 

independent stages as in simple models which treat only one quantu_rn 

number [13,21]. For both ms
2
<mx and ms

1
<mx inverse decays into 8 1 are 

no longer able to change the sign of the negative B produced through S 2 

decays and hence the final B produced is negative . The possibility of 

changes in the sign of B associated with detailed features of the boson 

spectrum indicates that no generic relation may be found between the 

definition of "matter" as given for the J(O -XO system and that determined 

from the cosmological baryon nun1ber asymmetry . 
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3) B and B-L Violation in Models With SU(5) Singlet Fermions 

At temperatures at which baryon number production is thought to 

occur, SU(3)®SU(2)L®U( l )y symmetry will be unbroken. With this 

assumption we may analyze the possible baryon number violating vector 

and scalar bosons which may occur in a renormalizable theory. This 

analysis has been done for fermions with the quantum numbers of the 

6ffi10 representation of SU(5) [ 19]. For this case the baryon violating vec­

tor bosons come in two varieties, X and X ' , with SU(3)®SU(2)L®U(l)y 

transformation properties (3. 2, 5/6) and (3. 2, -1 /6) respectively. The 

possible baryon violating scalars are s- (3, 1, 1/ 3), S 1-(3, 1. 4/ 3) and 

S 2-(3 . 3, 1/ 3) . Fermi statistics require that S 1 and S 2 couple to fermions 

antisymmetrically in family space in order to violate baryon number 

(hence, they cannot give a tree-level contribution to the proton decay 

rate). With the conventional assignments of baryon number (B) and lep­

ton number (L), it is found that all of these baryon number violating 

bosons preserve B -L. 

With the SO( 1 0) model in mind we extend this analysis to include an 

S U(5) singlet fermion NL-(1. 1. 0) . We assume here that the l 'h has a 

Majorana mass; consequently it may not carry any quantum numbers . 

The fermion fields considered in our analysis are listed in table 3.1. We 

assume that this pattern of fermions is repeated for the heavier families . 

Lorentz invariance requires that renormalizable vector couplings have 

tile form i'Ja~b V.u while renormalizable scalar couplings have the form 

i'[a2~b S with VJ.~. and S vector and scalar fields respectively. By taking the 

relevant products of fermion fields appearing in Table 3.1 we obtain the 

possible SU(3)®SU(2)L®U(l)y transformation properties of the vector and 

scalar fields along with their values of B and B-L . These values of B and 
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Field I S [! ( 3 )~S C ( 2) L ® U ( 1) :r i I 
i i 

l=~] i I 
(1, 2 , 1/2) I 

I I 
I 

q=~] I (3, 2, -1 /6) 

ec (1, 1, -1) 

uc (3, 1, 2/3) 

d.c (3, 1, -1/3) 

N (1, 1, 0) 

Table 3.1 

Fermion fields and their associated SU(3)®SU(2)L®U(l)y representation 

content. 
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B-L are listed in tables 3.2 and 3.3 respectively. Bosons which may 

violate B or B-L are indicated by a dash. We find no new B-violating vec­

tor or scalar bosons . However, the X ' vectors and S scalars are now capa­

ble of violating B-L due to their interactions with NL . The additional B-L 

violating vectors transform as (3, 1. -2/3) and (1, 1, 1) and are gauge 

fields for the SU(4) and SU(2)R subgroups of SO(lO) respectively. The 

additional B -L violating scalars transform as ( 1, 2, 1 /2) (the ordinary 

Higgs doublet of SU(2)L®U(l)y), (3, 2, -l/6) and (1, 1, 1). These scalars are 

found in the following SO( 10) representations which may couple to fer­

miens : 

(1,2,1/ 2) c 10, 120, 126 

(3,2,-1/ 6) c 126 

( 1, 1, 1) c 120' 126 

(3.1) 

If the effective symmetry is SU(4)®SU(2)L®SU(2)R or 

SU(4}®SU(2)L®U(l)R, then a Majorana mass for the NL is forbidden by the 

SU(2)R or U(1)R symmetry and the NL must be treated similarly to the 

other ferrnions. In particular, the gauged B-L symmetry present in 

S0(10) will be unbroken and we must assign a value B-L = 1 to the 1VL. If 

the effective symmetry is SU(4}®SU(2)L®SU(2)R. then, as will be dis­

cussed in chapter 8, the presence of an unbroken charge conjugation 

.yrnmetry forbids the production of a baryon asymmetry [22]. 

For the tables vkich follow, in (i, j, k), i denotes the SU(3) representa­

tion, j denotes the SU(2) representation and k denotes the U(1)y charge 

Y. Y is given here corresponding to a definition for the electric charge 

Q = T3-Y , where T3 is the diagonal generator of SU(2) normalized to 

7r[TJ]=1/2 in the 5 representation of SU(5) . 
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H B-I 

i 
(8 , 3, 0) 0 0 

(8, 1, 0) 0 I 0 

(8, 1, -1) 0 0 I 
(6, 2, -5/6) 2/3 2/3 

(6, 2, 1 /6) 2/3 2/3 

(3, 3, -2/3) 1/3 4/3 

(3, 2, -1 /6) - -

(3, 2, 5/6) - -2/3 

(3, 1, -2/3) 1/3 -

(3, 1, -5/3) 1/3 4/3 

(3, 1, 1/3) 1/3 1/3 

(1, 3, 0) 0 0 

(1, 2, -3/2) 0 2 

(1, 2, -1/2) 0 1 

(1, 1, 0) 0 0 

(1. 1, 1) 0 -

Table 3.2 

Vectors that may couple to the ferrnions of table 3.1. Their 

SU(3)®SU(2)L®U(l)y representation content is given along with the asso­

ciated values of Band B-L. Vectors that may have more than one value 

for these quantities are indicated by a dash. 
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B B-L 

! (B, 2 . 1 /2) 0 I 0 
I 

I 

(6, 3, -1/3) I 2/3 2/3 

I (6, 1, -1/3) 2/3 I 2/3 I 

(6, 1' -4/3) 2/3 2/3 

(6, 1, 2/3) 2/3 2/3 

(3, 3, 1 /3) - -2/3 

(3, 2, -7 /6) 1/3 4/3 

(3, 2, -1 /6) 1/3 -

(3, 1, 1 /3) I - -

(3, 1, 4/3) - -2/3 

(3, 1, -2/3) 1/3 1/3 

(1, 3, 1) 0 -2 

(1, 2, 1/2) 0 -

(1, 1, 1) 0 -

( 1. 1, -2) 0 2 

(1, 1, 0) 0 0 

Table 3.3 

Scalars that may couple to the ferm.ions of table 3.1. Their 

SU(3}®SU(2)L®V(l)y representation content is given along with the asso­

ciated values of B and B -L . Scalars that may have more than one value 

for these quantities are indicated by a dash. 
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4) Baryon Number Generation in Free Decays 

In this chapter we describe the calculation of the average baryon 

number produced in the free decays of an equal mixture of particles x 

and their antiparticles (CP conjugates) X· This asymmetry is 

parametrized by the quantity 

(4.1) 

where T'(x~ f) denotes the partial width for decay of x to the final state f, 

rx is the total x decny width and B1 is the baryon number of the state f 

(so that B1 =-B1 ). 

In treating the statistical mechanics of baryon number production it 

is convenient to choose a basis so that the x are mass eigenstates . For 

(4.1) to be nonzero, CP must be violated in the decays of x and X· As dis­

cussed below (and proved in general in the first reference of [ 19] and in 

[ 13]), this requires interference between the Born amplitude for the 

decay and a one-loop correction with an absorptive part. In addition, the 

couplings of the particles participating in the decay must be relatively 

complex. 

We consider first the simplest nontrivial case: two massive bosons, X 

and Y, coupled to four fermion species i 1, i 2, i 5 and i., through the ver-

tices of fig. 4.1 and their CP conjugates•. In the Born approximation, 

and the corresponding CP-conjugate processes. We denote the coupling 

-These vertices may be represented schematically by the interaction Lagrangian 

L ,.._iP'i 1 +ilXi3+i lYi3+i~Yi4 +h. c . 

where all Lorentz .t.ructure.luls been suppressed. 
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Fig . 4.1: Boson-fermion-fermion vertices. The jagged lines indicate gen­

eric bosons. 
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in, for example, the vertex in fig . 4.1a by <i2 1X li 1> so that the CP­

conjugate coupling becomes <i2 IX li1> •=<i 1 lxt li 2>. The quantity X here 

may be considered as a matrix of couplings in the space of possible fer­

mion states i; . Note that the set of vertices in fig . 4.1 is invariant under 

the combined transformations x .. y and i 1 .. i 4 . This invariance will be used 

below to obtain results for Y (Y) decays from those for X (X) decays . The 

couplings <ii IXIi.t> do not include the Lorentz structure whi~h deter­

mines, for example, which helicity states of the fermions ii may contri­

bute. 

Born approximations to the X and Y decay rates may be obtained 

directly from the vertices of fig . 4. 1. For example 

(4.2) 

Here /}2 accounts for the kinematic structure of the process X -+i 2[ 1; it 

gives the complete result if all couplings are set to one. Expressions for 

Ix for the cases where X is a scalar and a vector are given in appendix C. 

From eqn (4.2) it is evident that r(x -+i2il)Born = r(.X -+i2il)Bo17l , and hence 

Rx vanishes in this approximation. To obtain a nonzero result for Rx , one 

must include corrections arising from interference of the one-loop con­

tributions shown in fig. 4.2 with the Born amplitudes of fig . 4.1. Consider, 

for example, the interference of the diagrams of fig. 4.1a and fig . 4.2b. 

The resulting term in the squared amplitude is shown as fig. 4.3a. There 

the dotted line is a "unitarity cut"; each cut line represents a physical 

on-mass-shell particle. The amplitude for the diagram fig . 4.3a is then 

given by 
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Fig. 4.2: One particle exchange corrections to the diagrams of fig. 4.1. 

The jagged lines indicate generic bosons. 
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Fig. 4.3: Lowest order (non-Born) contributions to the decay rate of the 

generic boson X. The dashed line is a unitarily cut. 
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(4.3) 

while the complex conjugate diagram, fig. 4.3b, has the complex conju­

gate amplitude 

where the kinematic factor !}?54 accounts for integration over the final 

state phase space of i 2 and [ 1 and over the momenta of the internal i 4 and 

l 3 . Introducing notations for the quadratic and quartic combinations of 

the couplings of the Born terms and of fig . 4.3 

-)' - ,-)' )i - I . I I . 12 - . I l . . I t I . ;:.jk - ::.jk = <~ X 'Lj > - <'L.t X I 'Lj ><'Lj X I 7-,t > 

012s4 =<is I rt li1><ilj.xt ji2><i2 I·Yli4><i4 !X Iis> 
(4.5) 

one may write the one-loop approximation to the X -.i2i 1 decay rate which 

is obtained by adding the results (4.2), (4.3) and (4.4) as 

(4 .6) 

The kinematic factors, lx., of the Born approximation are always real. 

However, the kinematic factors lxy for loop diagrams may have an ima­

ginary part whenever the internal fermion lines have sufficiently small 

masses that they may propagate on their mass shells in the intermediate 

state. In the one-loop diagrams of fig. 4.3, this occurs when the threshold 

conditions 

(4.?) 
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and 

(4 .8) 

are satisfied. With light intermediate ferrnions therefore, IXY always exhi­

bits an imaginary part. Results for ImJii1Z in a variety of cases are given in 

appendix B. 

We now consider the CP-conjugate decay X-+ i 2i 1. To obtain the CP­

conjugate amplitude all couplings must be complex conjugated . The 

kinematic factors , however, are unaffected by the CP-conjugation (this is 

n1anifest in the fact that reversal of the direction of ferrnion lines in a 

closed loop does not affect the associated Dirac trace). Thus, to one-loop 

order, the complete result for r(.x -+[2i 1) becomes 

(4.9) 

The diagrams for the decays X-+ i.i[3 and X -+ [4i 3 are sho1vn as figs. 

4.3c and 4.3d. The loop diagrams differ from those for the decays X ~ i;::t1 

and X .... i 2i 1 only in that the unitary cut is taken through the i 3 and i 4 

rather than the i 1 and i 2 lines. In analogy with eqns (4.8) and (4.9) we 

obtain 

r(x · -;-) 1s.- 1 34120 (/3412) ....n -+t•ts = x ~34 + XY 1234 • + XY Tui234 • (4.10) 

and 

r(x- 0 
• ) J31- r3412Q fJ3412Q ) , -+'Z..t'l.s = X ~34 + in· 1234 + \ XY 1234 · (4.11) 

Using the results of eqns (4.7) through (4.11) together with eqn (4.1) we 

can compute the average baryon number produced in the free decays of 

an eqt1 al number of X's and X's. The one-loop contribution to this 
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(4.12) 

The analogous result for the 34 final state is 

( 4.13) 

The kinematic factors lm[J}P4] and lm[Jjf12] are obtained from 

diagrams involving two unitarily cuts (as in fig. 4 .4): one through the i 1 

and i 2 lines and the other through the i 3 and i 4 lines. The resulting quan-

tities are invariant under the combined interchanges i 1 .. i 3 and i 2 ~ i 4 

and consequently are equal: 

Im[Jjp-4] = Im[Ilf12]. ( 4. 14) 

mediate fermions have zero mass, then the Jjp-4 are completely indepen­

dent of their upper indices; corrections from small fermion masses are of 

order• (m1 /mx)2. 

~rrectiom~ of order m1 /mx vanish due to the helicity structure of the relevar ... t 
diaerams. 
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Fig. 4.4: The double cut diagram that represents the contribution of the 

generic boson X to the baryon asymmetry in its free decays. 
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Upon adding the contributions (4.12) and (4.13) we obtain the final 

result: 

Rx = ...L1mr J.l2.34]Irn [0 1234] [B· -B· -(B· -B· )] rx :... XY ~ ·~. 1.3 1.2 1.1 . 
( 4.15) 

The conditions for the kinematic factor Im[Ijf34] to be nonvanishing were 

given in eqns (4.5) and (4.6). A further condition for Rx to be nonvanish-

ing is that both X and Y interactions must violate baryon number . This js 

seen as follows . If X coupling~ were B-conserving, the two possible final 

states in .~Y dP.cay would have the same baryon number, so that 

r:J . -r:J. =B· -B· 
~2 -V\1 "• "s 

( 4.16) 

and Rx would vanish . Similarly, il Y couplings were B-conserving, 

(4.17) 

and Rx would again vanish. Thus, both the X and Y couplings must be B­

violating to obtain a nonvanishing Rx. Furthermore, even if X and Y are 

baryon violating, graphs which do not exhibit this quality do not contri­

bute to Rx . Thus, although it is not necessary that. it. i 2• i 3 and i 4 all be 

distinct (it is, of course, necessary that at least one be different from the 

others), they must be such that Bi._.-B;,
5
-(Bi

2
-Bi

4
) is nonzero if Rx is to be 

so. This is as implied by the general theorem given in the first reference 

of [19] and in [13], that there is no contribution to Rx from graphs of 

lowest order in baryon number vi~latin.g and arbitrary order in baryon 

number conserving interactions. 

The asymmetry Ry produced in Y and Y decays may be obtah1ed 

from (4.15) by the transformation x~Y and is~i4, yielding 
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(4.18) 

and so 

(4.19) 

It follows that the average baryon number produced in the free decay of 

an equal number of X, X, Y and Y is 

Even if the Rx and Ry are nonvanishing on their own, for the total to be 

nonzero, the terms in the brace must not cancel. Tills requires that the 

particles X and Y be distinct either in mass or in the Lorentz structure of 

their couplings (e.g., one vector and one scalar) and that rx#ry. The 

brace typically vanishes ii X and Yare in the same irreducible represen­

tation of an unbroken synrmetry group. 

If more than the minimal set of four fermion species is present, the 

result ( 4 . 20) must be summed over all possible contributing ~ii ~ . It must 

also be summed over all possible (X, Y) pairs. Whenever the fermions 

have equal masses on the scale of mx, the corresponding kinematic fac­

tors may be factored out of the summation as follows from the comment 

immediately following eqn (4 .14). 

Eqn (4.20) is also valid, with slight modification, when the intermedi­

ate particles in fig. 4.4 are bosons rather than fermions, as illustrated in 

fig . 4.5. If the intermediate bosons Z 1 and Z2 themselves have B-violatLTJ.g 

decays, their weight B1 in eqn (4.1) is the average baryon number 
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Fig. 4.5: A digram like that shown in fig. 4.4 but involving a three-boson 

vertex. 
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produced in their decays. It gives the contribution to Rx 

. (4.21) 

Here !lz25z depends on the masses of i 1• i 2 and i 3 as well as on the masses 
1 2 

of X, Zt and Z2. Since Zt or Z2 may be baryon number violating, Bz
1 

and 

Bz
2 

are defined to be the mean baryon numbers produced in the free 

decays of Z 1 and Z2, respectively. We can now make the following argu­

ment: if X is baryon number conserving then we have Bi.
2 
-Bi.

1 
= Bz

2 
- B21 

a.rJd this contribution to Rx vanishes. Further, if both Z 1 and Z 2 are 

baryon number conserving, then Bz
2 

= B;.
1

- B.;.
3 

and Bz
1
=Bi

2
- Bi

3 
and the 

diagram again vanishes. Because it corresponds to a double cut diagram, 

the expression for Im(Iiz~z2 ) has the threshold conditions 

(4.22) 

The expression for 0 is (analogous to eqn (4.5)) 

(4.23) 

The individual baryon asymmetry parameters Rx for X decays enter 

the complete Boltzmann transport equations discussed in chapter 2 and 

in [ 13]. These parameters determine the final baryon asymmetry by 

themselves onJy if back reactions (inverse decays) and 2-+2 scatterings 

are ignored [ 13]. The total contribution to the baryon asymmetry from 

decays of two species of bosons, X and Y, thus is not generally a simple 

sum of their corresponding parameters Rx and Ry: if X and Y have 

different masses, the importance of back reactions and 2 ... 2 scatterings 

may be different in the two cases. 
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The discussion above concerns the one-loop contributions to baryon 

asymmetry. In the generic case , an asymmetry occurs at this order if it 

is to occur at any order. However, in some simple models (such as the 

minimal SU(5) model considered in chapter 6) the one-loop contribution 

vanishes, but ).here are higher loop contributions which are finite . In such 

cases the detailed analysis given above must be suitably generalized by 

summing over all possible unitarily cuts through the multiloop diagram. 

We now discuss the value of the CP-violating coupling parameter 

Im[O] defined in eqn (4.12) (a general discussion of its structure is 

presented in appendix D). We assume here that the ii are all fermions 

V{ith masses much smaller than mx and my. 

In a grand unified model based upon a gauge group G a family of fer­

mions will transform either as a reducible or an irreducible representa­

tion. These models are conveniently cast in terms of left-handed fermion 

fields . The two simplest examples to keep in mind are the SU(5) model 

where a family of fermions transforms as the reducible representation 

SEB10, and an 80(10) model where a family can transform irreducibly as a 

16. 

In writing down eqns (4.15) and (4.18) we have assumed that Ll-Ie fer­

mion mass eigenstates are states of definite baryon number . This is 

guaranteed by the unbroken SU(3) symmetry if no exotic assignments of 

baryon number are made to the weak ei.genstates (i.e ., all SU(3) singlet 

fermions have B=O and all SU(3) triplet ferrnions have B=O); no Majorana 

mass terms for quarks may appear in the Lagrangian. We further assume 

(though this does not affect our discussion very much) that all ferrnions 

are SU(3) triplets or singlets. Thus , fermions may mix within and 

between families so long as the mixings respect the quant urn numbers of 
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the unbroken local and globaJ symmetries of the model. In the boson 

sector of the bodel there may be mbdngs (when allowed by the other 

quantum nutnbers of the model) among the baryon number conservi:1g 

bosons and mixings among the baryon number violating bosons, but no 

1nixlng may occur beJ:..ween these twc classes of bosons . 

As discussed in appendix B, the coupling of gauge vector bosons to 

massless fermions may always be taken as reaL Hence if both X and Y are 

gauge vector bosons, the CP violation parameter Im[O] will always vanish 

in this case: contributions from processes which only involve vectors 

come from the fermion mass matrix. 

We now consider the case in which X is a gauge vector boson V and Y 

is a Higgs sealar boson S, as illustrated in fig. 4.6. (Interchange of the 

identifications of X and Y is irrelevant for this discussion since this 

merely complex conjugates 0; however, this interchange does effect the 

Born rate.) The diagonal nature of the gauge couplings requires that the 

fermions i 1 and i 2 lie in the same irreducible representa.tion f 1 of the 

gauge group (and similarly i 3 and i 4 lie in the same irreducible represen­

tation f 2). Scalar bosons contributing to fig. 4.6 must lie in irreducible 

representations Bt such that 

(4.24) 

The exchanged mass eigenstate scalar boson S is in general a linear com­

bination of components which have the same transformation properties 

under some subgroup of the gauge group (e .g ., for SU(5) the relevant 

subgroup is SU(3)8SU(2)L®U(1)y): 

(4.25) 
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I 

Fig. 4.6: Vector decay with scalar exchange . 
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Note that this linear combination may include both mixing betweEn the 

irreducible representations Sa and within a given irreducible representa­

tion (an example of both such m.ixings is discussed in the context of an 

illustrative 80(10) model in chapter 9) . We shall assume for now that at 

most two components are present; the generalization to an arbitrary 

number is immediate. In this case , 

x(al <i2 l S 1! i4>+a2<i2 l S2li4> )]] (4.26) 

where we have dropped the real factor corresponding to the gauge boson 

couplings, and the trace represents a sum over all fermion representa­

tions (usually "families"). Since· i 1,i2cf1 and i 3 ,i.4cf2 , the couplings 

<i2 1 S4 ji 4 > and <i1 l S4 ji 3> are related by a real Clebsch-Gordan 

coefficient: 

(4.27) 

Hence 

lm[O]=Im[ Tr[(a1 •<is l SI ! i 1>b:2 •<isl st li1>( C1a1<it l S 1lis>+C2a2<i 1! S2 ! i3>) ]] 

(4.28) 

Thus:, i! C 1 = C2, then this contribution vanishes. This is inevitable if all 

relevant Higgs bosons lie in replications of the same irreducible 

representation of the gauge group, and if this representation contains 
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only one B-violating component. Examples of cases in which C1 "# C2 are 

the SU(5) model with a 5s and a 45H (case Bin chapter 7) and an S0 (1 0) 

model with a 10H and a 120H or a 126s. In these models, CP violation may 

occur at the one-loop level from scalar boson exchange in vector boson 

decay. Notice that since in the absence of spontaneous symmetry break­

down only one of the o..i is nonzero, the result (4.28) yields no CP violation 

in this case. 

The case of vector boson exchange in scalar boson decay (illustrated 

in fig . 4. ?) is exactly analogous to the case of scalar exchange in vector 

decay discussed above . When flg . 4. 7 contributes, il is often important by 

virtue of the large value of the vec tor couplings relative to the scalar 

ones. 

We now consider CP violation arising from scalar boson (s') exchange 

in scalar (S) boson decay, as illustrated in fig. 4.8. If only one B-violating 

Higgs boson is present, then the decaying and exchanged boson must be 

identical, and the results discussed above show that :fig. 4.8 Cfui giv·e no 

CP violation. This is the case for the minimal SU(5) model. (Hovlever, as 

described in chapter 6, CP violation may occur in higher-order diagrams .) 
i 

We consider for now the case in which all fermions are effectively mass-

less. Then, in analogy with (4.24), the contributing scalar bosons must 

appear in representations sa such that 

(4.29) 
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Fig. 4. 7: Scalar decay with vector exchange. 
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F1g. 4.8: ScaJnr decay with scalar exchange . 
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H all the left-handed fermions lie in the same complex irreducible 

representation, f (or sequence of such identical representations), then 

f 1 = 12 = 13 = f4 and these constraints become 

(4.30) 

For low-dimensionality representations, this requires sa and s~ to be real 

representations. Hence in S0(10) models where all fermions lie in the 16 

representation, only 10n or 120n may contribute to fig. 4.8; the 126n 

which appears in 161®161 is complex. (For high-dimensional fermion 

representations., some complex Higgs representations may satisfy (4.30) : 

an example is the 126n occurring in the symmetric product 1441 ®1441 of 

S0(10).) After spontaneous syrnrnetry breakdown, mixing between scalar 

bosons may occur, and the constraints (4.29) are no longer applicable. 

Thus, in both SU(5) models with several Higgs representations coupling to 

fermions, and in SO(lO) models, fig. 4.8 can yield CP violation. 

The discussion above has assumed that all relevant fermion species 

are effectively massless. With gauge groups such as SO(lO) or E(6), it is 

common for fermions with SU(2) singlet and thus potentially large mass 

terms to exist. The effect of such fermions in intermediate states of figs. 

4.6 .through 4.8 and in vector decay through vector exchange diagrams is 

always suppressed by O(m}lm]). If only a single massive fermion exists, 

then it can introduce no CP-violati.ng effects into vector decay through 

.ector exchange; a single massive fermion is, however, sufficient to gen­

erate CP violation in figs. 4.6 through 4.8 even when ( 4.28) vanishes. 

It is certainly worth noting that, though the analysis of this chapter 

has focused on baryon number, the expressions that we have derived are 

by no means restricted to that quantum number. The expressions are 
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valid to describe the generation of any quantum number in the free 

decays of X, X , Y or Y . Thus, for example, to describe lepton number 

generation we need to replace the B;, 's by the relevant lepton number 

assignments. Furthermore, although ·our analysis focused on the 

diagrams of fig. 4.4 as the first nonvanishing contributions to Rx, it may 

be that those diagrams give a vanishing contribution to Rx for a particu­

lar model (an example is the minimal SU(5) model discussed in chapter 

6). In that event the discussion given here goes through with very little 

change: the quantity /0 then arises from the lowest order contributing 

diagrams. 
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5) SU(5) Models 

SU(5) is the simplest group (and the only one of rank 4) which con­

tains the group which so successfully describes the existing low energy 

phenomenology• [1], SU(3)®SU(2)L®U(1). The vector bosons transform 

according to the adjoint representation, 24. The symmetry breaking 

SU(5)-..SU(3)®SU(2)®U(1) is typically effected by means of a 24H of Higgs 

scalars which is postulated to attain a superlarge vacuum expectation 

value so that the phenomenological constraints on the decay rate of the 

proton [23] may be maintained. A family of fermions, which consists of 

15 left-handed fields, falls into the reducible representation "5ffi l O. Such a 

family has the {generic) particle content 

(5.la) 

(5.1 b) 

where the superscript c stands for charge conjugation and the vector 

sign indicates transformation as an SU(3) triplet. Thus VL transforms as 

8 3. 

Scalar fields whic.:h couple to fermions must transform according to 

representations that appear in the decompositions of~. 5®10 or 10®10: 

5®10 = 5+45 

1~10 = {5+50)s + (45)A . 

•Sametimes refered to as the "Holy Tr~Jty." 

(5.2a) 

(5.2b) 

(5.2c) 
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With the assignments. (5.1), of these representations the only ones 

which have a neutral (zero electric charge) component (and hence can 

have a vacuum expectation value and contribute to the fermion mass 

matrix) are 5, 15 and 45. The inclusion of a 15 of Higgs would allow the 

left-handed neutrino to have a Majorana mass (and would thereby violate 

the B-L symmetry usually present in the broken SU(5) theory with only 

5's or 45's of Higgs [24]) . It appears difficult to make such a MajorruJ.a 

mass naturally small in an SU(5) model with the fermions (5 .1); the 15 is 

usually excluded on these grounds . 

The simplest viable set of Higgs is a single 5H (in addition, of e:ourse, 

to the 24n ) . A model with a single 45H, though theoretically sound, has 

phenomenological problems because it gives the mass relation 

7'ntJ I mT = 1/3 at the unification scale and this is very difficult to reconcile 

with experiment. Alternatives to this so-called minimal SU(5) model that 

effect the charged fermion mass matrix while leaving the neutral mass 

matrix unaltered are to have more than one 5H or to have a 5H and a 45H 

or to have some arbitrary number of each. A discussion of the CP viola­

tion necessary for cosmological baryon number production in such 

models is discussed in chapter 7. Another possibility is to add a 50n of 

Higgs (this, of course, has no effect on the fermion mass matrix at tree 

level); this case is relevant for the "primordial" S0(1 0) model discussed in 

chapter 9. 

The reducibility of the fermion representation implies that, even with 

a single Higgs representation (5y or 45y), there are two independent 

Yukawa coupling matrices. One couples to the product 5i®10; (where i 

and i index fermion families) and the other couples to the product 

10i®10;. The former yields (after the Higgs have obtained their vacuum 



-46-

expectation values) the D and _,:; rnc.ss rr1aLrif'e:' nnd the 1aitcr Lh2 fi rn ass 

matrix. 

The SU(5) representations introduced above may be decomposed 

according to the embedding SU(5)::>SU(3)®SU(2)L®U(l)y as 

5 = (3, 1. 1/ 3) + (1, 2, -1/ 2) (5 .3) 

10 = (3, 2, -1/6) + (3, 1, 2/3) + (1. 1. -1) 1 (5.4) 

15 = (6, ] ' 2/ 3) + (3, 2 , -1/ 6) + (1, 3, -1) (5.5) 

24 = (8, 1, 0) + (3, 2, -5/6) + (3, 2, 5/6) + (1. 1, 0) + (1. 3, 0) (5.6) 

45 = (1, 2. -1/ 2) + (8, 2, -1/ 2) + (6, 1, 1/ 3) + (3, 1, -4/ 3) 

+ (3, 1, 1/3) +(3, 3, 1/3) + (3, 2, 7/6) 

50= (6, 3, -1/3) + (B, 2, 1/2) + (3, 2. -7/6) + (6, 1, +4/3) 

+ (3 1 1, -1/ 3) + ( 1, 1 1 -2) e 

(5.7) 

(5.8) 
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6) CP Violation in the Minimal SU(5) Model 

In this chapter we discuss the result that, for the minimal S U(5) 

model, the first possibly nonzero contribution to Im(O) (in the notation of 

chapter 8) occurs at eighth order in the couplings [ 16]. 

In minimal SU(5) one puts each family of fermions in the reducible 

representation 5tffi10t , where the index i is a family index. As we dis­

cussed above, the Higgs multiplets in the minimal model are taken to be 

a 5n and a 24n ; the 24H cannot couple directly to ferrnions. The coupling 

of the fermions to the 5H may be written schematically as 

(6.1) 

where summation over repeated indices is implied and where hD and h r; 

are the Yukawa coupling matrices in family space. In eqn (6 .1) there 

should also appear group coupling coefficients to make the respective 

terms to transform as SU(5) singlets . Such coefficients may be taken to 

be real as discussed in appendix B. Furthermore, there is only a single 

representation of Higgs that couples to fermions and that representation 

contains only one baryon number violating scalar (up to SU(3) degen­

eracy); thus, there is no mixing among the relevant baryon number 

violating scalars. Consequently, any group coupling coefficients that 

appear in 0 can be factored out of Im(O); thus, for the present discussion, 

they cause us no consternation and we will therefore suppress them. This 

will also be the case for an extended SU(5) model with two 5H representa­

tions; however, for an extended SU(5) model with a 5H and a 45H this will 

not be valid since the group coupling coefficients for coupling to the 5H 

differ from those for coupling to the 45H. The details of these cases are 

discussed in chapter 7. Thus, all matrices that we consider in this 
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chapter are matrices in family space and all traces are over family 

indices. Off-diagonal elements in these matrices represent transitions 

between different families. 

The coupling of the gauge vector bosons to the fermion fields is diag­

onal in family space. We write those couplings schematically as 

(6 .2) 

In the broken theory · the errors introduced by neglecting the mixing of 

fermions induced by the off-diagonal elements in hD and hr; are of 

D(mjl JJ2), where m1 is a typical fermion mass and M is the mass of an 

internal boson line (see appendix C for explicit calculations in the two­

loop case). In· the unbroken theory (i.e., at high temperatures) the fer­

miens propagate as massless particles. Either way we are justified in 

neglecting fermion mixing. 

The types of vertices that may appear in a diagram fall into two 

classes: the couplings of fermions to bosons and the couplings of bosons 

to one another. For the minimal SU(5) model, the latter class has all real 

(non-CF violating) couplings. Thus, all factors arising from such vertices 

may be factored out of Irn(O) . The reasons for this are as follows. In the 

minimal SU(5) model there is no spontaneous CP violation (the 24n is a 

real representation and hence its vacuum expectation value is real; any 

phase appearing in the vacuum expectation value of the 5H can be 

rotate u away in exactly the same fashion as in the SU(2)L~U( 1 )y elec­

troweak theory with one Higgs doublet.) Furthermore, there can be no 

intrinsic CP violation in the Higgs potential (which CP violation would be 

necessary for the three- or four-boson couplings to be CP non-invariant) 

because it is Hermitian. For example, 
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(6 .3) 

which is CP invariant. In treating CP violation in the minimal SU(5) model 

to lowest order, we therefore consider diagrams with no three or four­

boson vertic-es . This leaves us with diagrams consisting of one or more 

closed fermion loops and with only fermion-fermion-boson vertices . It 

therefore suffices to determine what the lowest order is for w:bJch the 

family-space trace corresponding to a single fermion loop bubble diagram 

with no multiple boson vertices has an imaginary part. 

The fermion-boson coupling vertices in the minimal SU(5) model are 

shown in fig. 6.1. The lowestorder corrections to B-violating decays in this 

model are given in fig. 6.2. Each diagram is proportional to a trace in 

family space over the products of coupling matrices occurring around the 

closed fermion loop. The trace for fig . 6.2(a1) and 6.2(a2) is trivial, hence 

there can be no CP violation from vector boson exchanges in vector boson 

decays. For fig . 6.2(a1), the relevant trace is Tr [(hD)t(hD)] , which is real. 

Similarly, fig. 6.2(b2) involves Tr [ (h ~ )t(h ~ )] which is again real. Figs. 6.2c 

yield the same traces and are thus also CP-conserving . Finally, fig . 6.2d 

gives Tr[(hD)t(hD)(h~)t(h~)] , which is manifestly real. Thus, none of the 

diagrams in fig. 6.2 can give rise to CP violation. 

A systematic investigation of possible three-loop diagr~TTis reveuls 

that none can have CP violation. For example , fig . 6.3 yields the trace 

(6.4) 

The first diagrams for which the corresponding traces are not necessarily 
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Fig. 6.1: Boson-fermion-fermion vertices in the minimal SU(5) model. 
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(a I) (a2) 

( b I) (b2) 

( c I) (c2) 

·--
(d) 

Fig. 6.2: Lowest order (non-Born) diagrams for the decay of bosons in the 

minimal SU(5) model. Unitarity cuts are not exhibited. These diagrams do 

not give CP violation. 
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Fig . 6.3: An example of a sixth order diagram for the decay of a scalar 

boson in the minimal SU(5) model. Unitarily cuts are not exhibited. This 

diagram does not give CP violation. 
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real appear in the next order [ 16] . . The relevant diagrams are shown in 

fig. 6.4. and are proportional to the trace' 

(6.5) 

At this point it is worth noting that there is an additional freedom in 

this model which allows us to take either hD or hu to be real and diagonal. 

In earlier work [16] it was believed that this freedom was necessary to 

show that all of the diagrams of less than eighth order do not have a CP-

violating imaginary trace; however. as we have shown above, it is not 

necessary to use this freedom. We review the discussion oi this synr 

metry here because it is interesting to see how, by using the available 

freedom (under the assumption of massless fermions). the CP violation 

may be isolated. 

With the neglect of fermion mixing we can perform a unitary 

redefinition of fields in family space 

5; = Yv5; } 

1 o1 = uj~c fb~c 
(6.6) 

(6.7) 

Upon applying these redefinitions and suppressing explicit family indices, 

the couplings ( 6.1) become 

where 

(~n) = llt·(hn )· UJ . 
(htr) = ur. (hu ) · 

•In this expreaion ~ ill taken to be real and diqonal (this may always be done, as 
Ia diacu.ssed in what follows). For such an h.IJ all of the diagrams in fig. 6.4 have 
equal weight. 

(6.8) 

(6.9) 
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(b) 

( c ) 

Fig. 6.4: Eighth order diagrams that may give · CP violation in the Minimal 

SU(5) model. Unitarity cuts are not exhibited. 
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The 5's of ferrn.ions and the 1 D's of fermions can be independently 

redefined as in eqn (6.6) because, in this limit, the naming of families is 

an arbitrary convention. Thus, eqn (6.6) amounts to a new choice of fam­

ily convention. The specific form of the Lagrangian is altered but its 

predictions are not. 

Since it is the symmetric product of two 10's that couples to 5H , h ~; 

must itself be a symmetric matrix. Clearly hv must be symmetric as 
/ 

well. It is clear from eqn (6.6) that, for suitable V and U, hD may be ren-

dered real and diagonal. Given such a V and U, hv may not, in general, be 

cast.. into such a form. It nlay therefore contain CP-violating COlllplex 

entries. (W~ may also proceed differently by choosing U so as to render 

hv real and diagonal [25], then hD cannot be made real and diagonal in 

general.) 

The gauge couplings (6.2) may be written after the transformation 

(6.6) as 

and are therefore left unaltered. The arguments given above also app]y 

in an SU(5) model with a single 45n of Higgs (as well as the 24n ) . 

For the minimal SU(5) model the high order of the diagrams gen­

erally renders possible CP-violating differences between the X and X par­

tial widths very small and prevents the generation of an adequate baryon 

o.synu'Uetry. A rough estimate fo1· the rnagnitude of the paraJ.neter R of 

eqn (4.1) arising from these diagrams is 

( 6.11) 
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where ~ is a CP violation parameter (~=sino where o is a CP violating 

phase angle ) !1: 1~1. The Yukawa couplings are dominated by the heaviest 

fermion F. The momentum integration factor lm[I] is given very roughly 

simply by the volume of available phase space for each loop integration: 

lm[f]"' (1/ 8~3 . Thus one may estimate 

(6.12) 

This is completely inadequate unless vP-ry heavy ferrnions exist in a iamily 

transformaing as 6EB1 0. With the usual symmetry breaking mechanism, 

mF ~ -v'3 m,, so that R ~ x 10-a~ . In principle, one may make unitariiy 

cuts through the diagrams of fig. 6.4 to obtain either two-body or three­

body final states. However, the fact that the exchanged bosons have ihe 

same mass as the decaying bosons renders all but two-body final states 

energetically forbidden. 

Above we have considered only decays to fermion final states . CP vio­

lation can enter in the minimal model only through intrinsic complex 

mixings between fermion families: fermion intermediate states are 

therefore necessary for CP violation. Decays such as S .... X cy or X .... S;; to 

boson final states (where rp is an SU(2)L doublet scalar) therefore exhibit 

CP violation only through internal fermion loops and at very high order in 

perturbation theory (always at an order higher than if one has only fer­

mion final states). 
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7) CP Violation in Alternative SU(5) Mod~ls 

The minimal SU(5) model is economical in its choice of Higgs 

representations, but that choice is by no means necessary. From the 

point of view of generating an acceptable baryon number asymmetry, 
/ 

there are two simple modifications of the SU(5) Higgs structure that may 

be :made: adding a further 5s (case A) or the addition of a 45R (case B) . 

Of cour~e. more complicated Higgs structures may be chosen. 

We first discuss case A, in which two 5n's, denoted 5n1 and 5s2 , 

appear . The coupling of these Higgs to fermions may then be written in 

the form 

(7.1) 

The 5n 1 and 5n2 here may be chosen to be mass eigenstates. This is possi­

ble because any linear combination of 5n's is also a 5n (complex linear 

combinations are permitted since 5n is a complex representation) and 

furthermore there is only a single baryon number violating scalar in each 

5n up to S U(3) degeneracy. 

The diagrams for corrections to gauge boson decay through Higgs 

. exchange are as in fig . (6.2), except that either of the two 5n's may be 

exchanged. In each case, to lowest order, the 

CP-violating part is proportional to Im[Tr(hahat)] = 0. Similarly, no CP vio­

lation is generated by gauge boson exchange corrections to the decays of 

5a1 or 5n2 Higgs bosons. Exchanges of 5na in 5na decay may be treated 

just as in the minimal model which contains only a single 5n discussed in 

chapter 6: CP violation in such cases was shown to vanish until eighth 

order. However, exchange of 5e1 in 5n2 decay (or vice versa) may lead to 
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CP violation at fourth order. The coupling factor associated vvith this 
/ 

diagram is 0 = 7r[(hD 1)(hD2)t(ht.r1)(hr,r2)t]. One may apply the unitary 

transformations (6.3) to render real and diagonal either hD 1 or hD2, but 

not, in general, both. Hence here, in general, Im[O] 7l 0, so that CP viola­

tion may occur in 582 decays through 5H1 exchange (or vice versa) at the 

one-loop (O(a:)) order. This is shown in fig. 7.1. 

We now discuss case B defined above, involving a 5H and a 45H. Their 

coupling to fermions may be written in the form 

(7.2) 

In this case, Higgs with definite SU(5) transformation properties will not, 

in general, contain baryon number violating scalars that are mass eigen-

states. A (3, 1, 1 /3) (B-violating) component exists in both 5H and 45n; 

the mass eigenstates will be linear combinations of these components. 

The presence of a 5H·45H·24H-24H term in the Higgs potential enforces 

such a mixing between the (3, 1, 1 /3) in the 5H and that in the 45H . This 

term cannot be removed by the imposition of a discrete symmetry 

without affecting the Yukawa terms. A cubic term such as 5H·45H ·24n can 

be excluded by the symmetry 24H .... -24H . We denote the (3, 1, 1 /3) 

mass eigenstates (assumed mixtures of that in the 5H and that in the 45H) 

by S 1 and S 2. The couplings of fermions to these mass eigenstates are 

linear combinations of the hJJ, HD and hr1 • HrJ app l-::aring in (7.2). However, 

in general, the linear combinations will be different for different fermions 

within a single family by virtue of the different Clebsch-Gordan 

coefficients in coupling fermions to the (3, 1, 1 /3) in 5H and to the 

(3, 1. 1/ 3) in the 45H. H we call the (3, 1, 1 /3) in the 5H, Sg (where a is the 
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~HI __ .__ 

Fig. 7.1: Scalar decay with scalar exchange in an extended SU(5) model 

with two 5's of Higgs. This diagram may give CP vioation. 
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SU(3) index) and call the (3, 1, 1 /3) in the 459 , Sa., then we may ·write 

their couplings to fermions as follows. The coupling of Sa. coming from 

the 5·10·59 term is 

(7.3) 

The coupling of Sa. coming from the 5·10·459 term is 

Aside from having differing y·ukawa couplings, the preceding two expres­

sions also differ in their Clebsch-Gordan coefficients (notably the crucis.l 

minus sign in (7.4) as compared to (7.3)) . Eqn (4.28) then shows that we 

may now have a contribution to the baryon asymmetry due to the CP vio­

lation in vector exchange in scalar decay (and vice versa). Similarly, 

gauge boson exchanges in Higgs boson decays may also yield CP violation. 

The structure of CP violation for Higgs boson exchanges in Higgs boson 

decay is analogous to the model A discussed above. 

It is worth noting that there are two more baryon number violating 

scalars in Model B: a (3, 1, -4/ 3) and a (3, 3, 1 /3), both contained in the 

45n. We call them S3 and S4 respectively. Diagrams involving only an S 3 

or those involving only an S4 show no possible CP violation until eighth 

order in the couplings if there is no intrinsic CP violation in the Higgs 

potential. Furthermore, in the decays of gauge vector bosons there is no 

CP violation through the exchange of a single S 3 or S 4 as follows from eqn 

(4.28) since S 5 and S 4 are necessarily mass ei.genstates. Also, since each 

couples to fermions identically (within a factor of a real Clebsch-Gordan 

coefficient), it follows that a diagram that only involves Ss and S4 "\\ill 

show no CP violation until eighth order, although a diagram for, sn.y, S 1 
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decay through S 3 exchange may have CP violation at fourth order. 
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8) Introduction to SO( 1 0) 

Grand unified models based on SU(5) are the most economical as vtell 

as being the simplest for actual calculations. However, the assignment of 

a (left-handed) family to the reducible 5~10 representation has a number 

of ugly featw··es. So1ne of the particles belong to differe11t irreducible 

representations than their anti partie les and, although the anomalies can­

cel between the 5 and 10 representations of fermions [ 1] , this cancella­

tion appears rather artificial · from the standpoint of SU(5). In addition, 

many SU(5) models contain a global quantum number corresponding to 

baryon number minus lepton number, B-L [24]. These features may be 

removed by embedding the SU(5) theory in an S0(10) model with the fer­

mions assigned to the lowest dimensional spinor representation [26]. 

The defining representation of S0( 10), 10, is real and has the follow­

ing SU(5) decomposition: 

10 = 5 + 5. (8.1) 

The lowest dimensional spinor representations of S0(10) are• 16 and its 

conjugate, 16. All representations of S0(10) can be built out of products 

of 16 and 16 among themselves. The SU(5) decomposition of 16 is 

16 =1+ 5 + 10. (8 .2) 

We see that a single family of fermions can be accommodated in the 16 of 

S0(10) . The anomaly cancellation that occurs in SU(5) between the 5 and 

the 10 of fermions has a natural explanation by choosing the 16 as the 

•It is here that the (often confused) distinction between 0(10) and 80(10) occurs. 
The lowe3t dimensional spinor representation of 0(10) is 32 and is self-conjugate. 
Under 0(10)::>80(10), 32 = 16 +ill. 32 is irreducible in 0(10), but reducible in 80(10) . 
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fermion representation in 80(10). The 16 is anomaly free as are all 

representations of SO(n) for n >6. This is equivalent to the statement 

that the symmetric product of the adjoint with itself does not contain the 

adjoint and hence the d. coefficients vanish. 

SO( 10) is of rank 5 and contains SU(5) as a subgroup with the maxi­

mal embeddL11.g 

SO(lO) ::>· SU(5) ® U(l}. (8.3) 

The SU(5) model may be considered as being embedded in an SO( l O) 

model in a sense sirnilar lo the way the SU(3}®SU{2)L®[/p)y rn.odel is 

embedded in SU(5). This point of view is expressed by the following dis­

cussion. In the simplest SU(5) models (with only 5's and 45's of Higgs) 

there is a global U(l) symmetry in addition to the gauged SU(5) sym­

metry. When SU(5) undergoes spontaneous symmetry breakdo·wn, this 

global U( 1) is broken, as is the combination of generators through which 

the Z0 boson couples. A linear combination of these generators, however, 

survives as a global symmetry• and corresponds to B-L [2?]. If we 

demand that there be no ul'lgauged continuous symmetries••, then ·we 

•We will refer to this process by which a global symmetry survives spontaneous 
symmetry breaking as the 't Hoeft mechanism [28]. This mechanism can be used 
for both discrete as well as continuous symmetries. In the latter case, however, it 
provides one with a method for avoiding Goldstone basons. In the case of discrete 
symmetries it allows for what may possibly be a very simple symmetry to 
transmute into a much richer symmetry. If one takes a. somewhat proletarian al­
titude towards model building (and, for example, postulating various messy 
discrete symmetries to force particular results from a given model), this fa.ct 
gives one hope that embedding such a model in a larger model may give rise to a 
S"impler natural symmetry structure. An exacple of tr..is is given in the context of 
an il1ust.rative S0(10) mode: in chapter 13 !tlld appendix E. 
•f!rus is, of course. a bias which is not necessitated at present by any well defined 
theoretical principles just as long as any global symmetries that are spontaneous­
ly broken are rendered harmless by the 't Hoeft mecbanism. Other alternatives 
are to explicitly break the symmetry with terms of dimension 2 or 3 or terms of 
dimension 4 in the Lagrangian. This cannot always be done as is evidenced by the 
SU(5) example where one bas to use the 't Hoeft mechanism of necessity. It was 
this feelmg that continuous global symmetries are in some sense incompatible 
with the ideas of locel quantum field theory that originally led Yang and Mills to 
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must consider S['(5)®U( l) as the gauge group . SO( 10) is then the smal­

lest simple group containing SU(5)®U(l) . The gauge vector boson 

correspo11ding to the U(1) factor can then mediate B-L violating 

processes . 

:r rorn eqn (3.2) we see that the price to pay for this SO( 10) unification 

is an SU(5) singlet fermion. Since the electric charge operator is entirely 

contained in SU(5), this fermion is neutral. We denote this extra field by 

NL. It provides a charge conjugate partner for the left-handed neutrino 

and thus allows a /1/ r = 1/ 2 Dirac mass term for the neutrino. The poten­

tial disaster of neutrino masses of the order of the fll w = 1/ 2 breaking mdy 

be avoided if the NL acquires a very large, f).fw=O, Majorana mass, MN [29, 

27]. The neutral lepton mass matrix will then have the form • 

(8.4) 

with 171.q a matrix with entries of the order of the observed quark masses 

and MN the Majorana mass matrix for the NL. F.or MN>>mq the eigenvalues 

of this matrix are given approximately by the eigenvalues of MN, which 

are the masses of the NL, and the eigenvalues of the matrix m{M.N1TTLq, • 

which are the light neutrino masses. As a result of this mechanism, 

SO( 1 0) models naturally predict the existence of neutrino masses and 

hence neutrino oscillations. The NL can be given a large Major ana mass 

either directly through a 126 of Higgs that obtains a _ large vacuum 

the concept of the eauae field [2]. 
~e zero entry in this matrix is not necessary. All that is required is a condition 
such as bein& < O(n; ). Such a Majorana mass for "'L would have A/, = 1 and must 
be relatively small so as not to disturb m r/ (mzCOIIIJ ,) 01 1. A Majorana mass for 11L 

can be accommodated in SU(5) by including a 15 of Higgs which obtains a vacuum 
expectation value or by means of a 10 of Hi&p. In the latter case, the left-handed 
neutrino's Majonm.a I'D.-s arises • a ce.leuleble correction to the zeroth order 
mass relation which requires it to vanish [ 31]. 
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expectation value aloJ14 its SU(5) singlet direction or through radiati\7 e 

corrections [30]. 

The vector bosons transform as the 45 dimensional (adjoint) 

representation of 80(10) which has the chiral decomposition 

( s 0 ( 1 0) :J s u ( 4 )®S u (2) L ®S u ( 2) R) I 

45= (6,2,2) + (15.1,1) + (1,3,1) + (1,1,3) (8.5) 

The last three representations correspond to the gauge bosons of 

SU(4), SU(2)L and SU(2)R respectively. The (6, 2, 2) contains the usual 

leptoquark-diquarks (X, Y) of SU(5) transforming as (3, 2, 5/6) under 

SU(3)®SU(2)L®U(1)y, their antiparticles, an additional doublet of 

leptoquark-diquarks, (X', Y'), transforming as (3, 2, -1/6) and their anti­

particles. The gauge bosons of SU(4) contain the gluons of SU(3) and an 

additional color triplet field transforming as (3, 1, 2/3), which we denote 

by V, its antiparticle and a color singlet field. The gauge bosons of SU(2)R 

transform as (1,1,-1), (1,1,0), and (1,1,1) which we denote by w;, w.R. and 

WR respectively. 

The scalar fields which couple directly to fermions must transform 

according to representations which appear in the Clebsch-Gordan decom­

position of 16®16: 

(16®16) = (10 + 126)5 +(120)A , (8.6) 

where S and A denote the symmetric and the antisymmetric parts. The 

SU(5) decompositions of some SO(lO) representations are given in table 

8.1; their SU(3)®SU(2)L®U(1}y decompositions can be obtained easily 

from this table and eqns (5.3) through (5.8). The 10 and 120 are real 

representations; the 126 is complex. One may also include other Higgs 
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10=5+5 

16=1+5+10 

45=1+10+10+24 

54=15+15+24 

120=5+5+10+10+45+45 

126=1+5+10+15+45+50 

SU(5) decompositions of some S0(10) representations. 
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multiplets which do not have direct couplings to fermions. Typically an 

adjoint, 45, ' or a 54, is chosen. The minimal set of Higgs necessary to 

break SO(lO) down to SU(3)®U(1)Ell and give masses to all fermions is 

lOB, 16H and 45H. With only these Higgs one finds the tree level mass rela­

tions 

mv = rnu = 'l'na = ~ (8 .7) 

at the unification scale, with the same relations holding for the heavier 

farrti.lies . Thus we see that for the minimal set of Higgs the mass of the 

everyday neutrino is predicted to be far too large. 

The generation of a net baryon number from symmetrical initial con­

ditions requires the presence of both C and CP violation [ 12, 13]. In 

SU(2)L ® V(1)y weak interaction models and SU(5) grand unified models 

no C operator may be defined since there is no left-handed antLn.eutrino 

to act as the charge conjugate partner of the left-handed neutrino . In 

some larger modeB, such as S0(10) or E(6), each fermion has a potential 

charge conjugate partner or is an eigenstate of C hence a C operation 

may be defined which is a symmetry of the unbroken theory [32]. The 

production of a C-odd quantum number (such as B or L) in these models 

therefore depends on the interplay between the sources of C violation and 

the processes which violate the quantum number under consideration. 

The lack of B production in a C-symmetric theory may be seen by 

considering the decays of B-violating bosons x and their antiparticles x as 

well as the decays of their charge conjugate partners >f and )C. The B 

produced by the decays of an equal mixture of x and x into the specific 

final state i 1i 2 and the charge conjugate decays of >f and X: into the state 

iYi~ is proportional to the quantity (see eqn (4.12)) 
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R 12 + (R 12 )c = lm/lmO (B· -B· ) + Irnlc: Imnc (B. -B. ) (8 .8) 
)( )( 'l '1 \~ \~ 

where 1 represents t.he integral over the intermediate momenta and final 

state phase space for the decay and 0 is a product of the relevant cou­

plings . The lowest order contributions to I and 0 were discussed in 

chapter 4. 1c and OC are the corresponding quantities for the charge con­

jugate reaction. In a C-symmetric theory, I = 1c and 0 = oc, while, since 

B is C-odd, Bi
2 

= -Bii and Bi
1 
= -Bii causing Ri_2 + (Ri_2 )' to vanish. 

We now restrict our attention to SO(lO} grand unified models. The 

presence of a charge conjugate partner for the neutrino, NL, allows the 

definition of a C operation for all fermion fields appearing in the theory. 

In terms of the SU(4) ® SU(2)L ® SU(2)R subgroup of SO(lO), C inter-

changes the two SU(2)'s, as well as conjugating them, and also conjugates 
I 

the representations of SU(4) [22]. It may be shown that all C violation in 

the fermion mass matrix must lie in the part of the 126 representation of 

SO(lO) which gives a Majorana mass to ~"~L· This C-violating mass term 

allows for the production of a nonzero B since lml is no longer equal to 

Imlc . Expanding I and /c in powers of MN I M x gives 

(8.9) 

where M x is the mass of the decaying boson. 

If all asymmetries can be expressed in terms of C odd quantum 

numbers then, (8.9) constrains the possible values of MNI Mx if we 

demand that the theory be able to produce the observed baryon asym­

metry. However, in the general case, asymmetries which have no definite 

behavior under C must be considered. Large asymmetries in such quan­

tum numbers may be produced even if the theory is in a C-conserving 
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phase (e.g., SO(lO) broken t.o SU(4)®SU(2)L®SU(2)R) [33]. These asyrn­

metries may later be converted into a baryon asymmetry by B-violating 

reactions which occur in a C-violating phase of the theory. These reac­

tions will be able to produce a sufficient baryon asymmetry only if there 

exist B-violating bosons with masses less than the transition temperature 

between the C-conser~...ng and C-violating phases of the theory. For 

S0(10) ~ SU(4)®SU(2)L®SU(2)R the SU(4)®SU(2)L®SU(2)R symmetry must 

not persist to temperatures below -1012 GeV if an adequate B is to be pro­

duced. A detailed discussion of some of these ideas is presented in the 

context of an illustro.t.ive SO(lO) model in the following chapter. 
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9) Analysis of an illustrative SO(lO) Model 

We saw in chapter 8 that NL can obtain a large Majorana mass if we 

have the fermions couple to a .i.26n of Higgs which obtains a large vacuum 

expectation value along its SU(5) singlet direction. Vacuum expectation 

values along other components of the 126n break SU(2)®U( ~ ) (see table 

8.1 and eqns (5 .3) through (5.8)) and hence must be small relative to the 

singlet vacuum expectation value. If SU(3)®SU(2)r®U(l)y is unbroken* 

the vacuum expectation value of 126n is purely along its SU(5) singlet, 

<126H>"'1. To effect a complete symmetry breakdown of SO( l O) to 

S U(3)®SU(2}®U(l) we need another Higgs representation**. Either a 54n 

or a 45n is usually chosen so as to conform with typical SU(5) models 

since both contain a 24 of SU(5). The size of the 54n (or 45n) vacuum 
* 

expectation value along the SU(5) 24 direction is 0(1015 GeV) so as to con­

form with the bound imposed by the nonobservation of proton decay [23]. 

Depending on the relative sizes of <54n> (or <45n>) and <126n> one will 

have different symmetry breaking patterns for 80(10) . 

To consider the production of a cosmological baryon number asym­

metry in an SO(lO) model with <126>"'1 we will consider the simplified 

case where there is only one family of fermions. We will discuss the con-

tributions to the asymmetry due to the free decays of baryon number 

violating bosons. The free decays of the NL do not contribute appreciably 

to the baryon asymmetry because the baryon number violating decays of 

the NL are generally into a three-body fermion final state, whereas the 

main contribution to the Born rate is through the two-body final state 

-rbis is generally the case at the high temperatures present in the standard 
model of the early universe. 
"With <126>-1 alone, SO(lO) bree.b down cmly to SU(5). 
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NL -+Vr'P where rp is an SU(2)L doublet scalar field [34]. The contribution of 

the decay of the .NL is thereby greatly supressed. 

We assume that there is no intrinsic CP violation in this model; how-

ever, it has been shown [35,36] that there can be a source of high tem­

perature spontaneous CP violation ~ith a calculable phase. The Higgs 

potential contains the following quartic terms involving only the 126n: 

(9.1) 

where A1 and~ are real. If we write <126n>=pe'' then (9.1) gives 

(9.2) 

If we choose A1, ~>0 then• the potential has its minimum when rp=±Tr/ 4 or 

±31T'/ 4. These two cases are not independent in the following since the 

quantity that always enters into the calculations is <126>2 . Such a CP­

violating phase enters the theory at a scale 0( I <1269 >1) and is the only 

CP violation present between that scale and the scale at which the next 

level of symmetry breaking occurs. Thus, if the vacuum expectation 

value of the 54n is greater thaD that of the 1269 (this is the most interest­

ing case since the chain of symmetry breaking is SO(lO) -+ 

SU(4)®SU(2)L®SU(2)R -+ SU(3)®SU(2)L®U(1)R ), then this CP violation will 

be absent in the SU(4)®SU(2)L&SU(2)R phase; any decays that occur in 

this phase will conserve baryon number by virtue of the absence of CP 

violation. Even if there had been CP violation in this phase {for example 

.-ro insure the stability of the potential we must also have ~<A1 . The sign of , 
must be ao as to generate the correct sign of the baryon number esymmetry con-
8lstent with our conventions fer particles and antiparticles. Also, (126·126)2 may 
couple to form a singlet in four ways [33,36]; however. only the term construc.ted 
from havin& 128·1'2! transform as a sqlet has a pf term in its expansion (where , 1 
til the SU(t5) singlet in the t26a) and thus the remaining quartic invariants do not 
Contribute to eqn {9.2). 
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due to the presence of intrinsic CP violation in the Lagrangian), a baryon 

asymmetry could not be generated directly by the decays of baryon 

number violating bosons because of the presence of an unbroken charge 

conjugation operation as discussed in chapter 8. 

The Yukawa tern1 that we currently have in this model, (16·16) ·126H, 

has a global Ux(l) symmetry with a charge X for which (by convention) 

X= 1 for the 16 a.nd X=Z for the 126n (X=-2 for 126H ). (This global Ux(l) is 

broken explicitly by the (126H)4 term in the Higgs potential as well as by 

other terms to be discussed below.) When 126H gets its vacuum expecta-

lion value; Ux(l) is broken as is the local U(l)R appearing in SU(5)®U(1)R 

(we call the charge ~orresponding to the local U(l)R. R). If the vacuum 

expectation value of 126H is along any one direction in its SU(5) decompo­

sition {as is true in our case), then the 't Hoeft mechanism is operable, 

yielding a global U(l)z after symmetry breaking with a corresponding 

charge (for <126H>-1), 

Z=(x-f1 . (9.3) 

The analysis of this symmetry ls discussed in appendix E. 

This symmetry allows us to classify the possible scalar mass terms in 

the model, since they all must be Z (as well as SU(3)®SU(2)L®U(1)y) 

invariant. To this end we list all of the values of Z for 54H and the 126H. 

All components of the 54H have Z=O. For 126H the 1, 5, 10, 15, 45 and 50 

have Z values respectively, 

8 4 16 12 8 
0. -g-: 5' 5' 5and 5 . (9.4) 
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In this model CP violation may occur through the scalar mass matrix 

and hence, in the scalar's mass eigenstate basis, through the scalar rota­

tion matrix; in particular this occurs when complex entries occur in the 

mass matrix of the baryon number violating scalars that couple directly 

to fermions . 

In addition to the terms (9.1) there are other quartic terms appear­

ing in the Higgs potential•: 

(9.5) 

If we assume that the Higgs potential consists only of quartic terms•• 

we can immediately state, within factors of quartic coupling constants 

and Clebsch-Gordan coefficients, what the scalar mass terms are. We 

write the fields appearing in the 126n as rp 11 rpJ, rp 10, rpf:> 9'4:> and rpJo; and we 

write the fields appearing in 54n as 1JI1r,, +m and Tj/24 . Note that since 54n is 

self-conjugate, "lfj=Th5. 

From (126n)4 we can only get 

and from (126n)4 we get the Hermitian conjugate of this, 

•At this point the term (1268 )2(54H)2 could appear, but is excluded on the basis of 
the discrete residue of the U(l)x symmetry. Later we shall need to include these 
termB when we break the U(l)x symmetry further by the inclusion of a real 10 of 
lfi&gs. Furthermore, as mentioned above, there are, for example, four ways to 
eouple 126, 126, it! and 1E to form a singlet. 
MTbis is the case if the symmetry breaking is generated by the Coleman-Weinberg 
mecbaltism [37] which one would wish to occur so as to exclude dimensionful 
parameters from the bare Lagrangian. Dimensional transmutation may then oc­
ear. Cubic terms can always be excluded from the Hiegs potential by means of a 
.-crete aymmetry {in fact the discrete residue of the X symmetry will suffice to 
llo Uda). The pr.en.ce of possible quadratic terma does not affect the following 
.aalJais yery much aince they yield only a diagonal contribution to the baryon 
aamber violat.iq acalar bose~ mass matrix. 

(9.6) 



-75-

(9.7) 

From (126H ·12GH )2 , if a 126H and a 126H get a vacuum expectation 

value we get 

(9.8) 

each multipt,ied by I <9' 1>1 2 . If 126H and 126H get their vacuum expecta­

tion values then we get 

(9.9) 

and if 126H and 126H are given their vacuum expectation values the term 

(9.10) 

arises. 

From (126H·126H)·(54H}2 , if both 54H's get their vacuum expectation 

values, then we have the same terms as in eqn (9.8) but multiplied by 

<~24>2 . Other possible terms such as 9'e~ are excluded, at this point, by 

the Z symmetry; we shall have occasion to include them later. Finally, if 

126n and 126n get their vacuum expectation values ,we get the terms 

(9. 11) 

Since all the terms above which involve baryon number violating 

scalars have real coefficients, it is clear that one cannot have a contribu­

tion to the baryon asymmetry in the present form of this model because 

CP is not violated., 

There is a simple extension of the model, however, which yields non­

trivial results. H we introduce a Hi&P reprnentation transforming as a 
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real 10, 10H, then it can couple to the fermions through 

(16 ·16)·10H . (9.12) 

(The 10 of SO(lO) has the SU(5) decomposition 10=5+5, where, for a single 

scalar representation, the 5 is conjugate to the 5; thus, ii we write ~5 for 

the 5 in the 109 and ~:; for the 5, we have ~~=~J.) The X symmetry is now 

explicitly broken down to the discrete symmetry generated by the 

transformations 

(9.13) 

All quartic terms that are SO( 10) singlets and which can made from 126n , 

54n and lOn respect this discrete symmetry. These terms are listed in 

Table 9. 1. Before the X symmetry is broken down to the discrete sym­

metry (9.13) we have the Z symmetry for which 

8 a< I Z=5 for the 5 
12 ...... 

and Z=5 for the 5 
(9.14) 

After the X symmetry is broken down to the discrete symmetry (9.14) the 

Z symmetry breaks down as well in the following fashion. 

H, under U(l)x, a given field (say~) transforms as 

(9.15) 

then. after the 126H gets a vacuum expectation value along its SU(5) 

sin&let direction, the Ulgrangian continues to be globally invariant under 

the action of U( l)z: 
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(9.16) 

When the U(1)x symmetry is explicitly broken down to the discrete 

symmetry (9.13), then , upon comparing (9.13) with (9.15) , we see that 

Utis is equivalent to the constraint a=n rr/2 (with n an arbitrary integer) 

in (9.15) and, hence, in (9 .16) . With this restriction a field with Z= 12/ 5 

and one with Z=-B/5 have identical transformations under U(1)z since 

e\(12/5)nn/2=e -i(6/5)n1f/2 I (9.17) 

as must certainly be the case since 's=~~- Thus, the U(1)z symmetry 

allows• the (3, 1, 1/3) in the 5 to mix with those in the 5, 45 and 50 that 

come from the 126H. 

If SU(5) is unbroken, then certainly the (3, 1, 1 /3) in the 50, for 

example, cannot mix with those in the 45, 5 or 5 since the mass terms 

from which these mixings arise must themselves be SU(5) invariant. The 

breaking of SU(5) comes, in lhis model, from the 54n obtaining a vacuum 

expectation value. Thus, any te_rm of the form f'J~50 or ~~~50 must be pro­

portional•• to <'f/24>. The term ,!,~ could therefore come from 

(126·126)·542, (126·126) ·54·126 or (126·126)·54·126; however, one cannot form 

an 80(10) singlet with the latter two possibilities, nor, for that matter, 

are they permitted by the Z symmetry. The term 'J~!a could come from 
/ 

(10'126) ·542, (10'126) ·54·126 or {10'126)·54·126; however, none of these can 

•It also turns out that the 15 and the 10 in the 126 now haw the same transforma­
tion properties as one enat.her under the remaining Z .,mmetry; however, nei­
ther the 10 or the 15 contain any baryon number Yiolatinc scalars as can be seen 
from eqns (5.3) tbroueh (5.8) and table 3.3. 
"'l'he full mess term must. at the SV{5) leftl, be an inwuilmt before the 24C54 ob­
tains its YaCuum expectation Ylllue; thus, any eandidate mas term must be 
checked to show that ane can farm a .tn&Iet from the reMimt product of S U(5) 
repr...entatiom. 
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com~ine to form singlP-ts of S0 (10); thus, the term ~J~50 cannot occur . 

Mixing between ~'6 and ~will occur through the term 126126·542 . A sirnJ­

lar analysis shows that ~45 mixes with the rp5 and the ~50 • but not with the 

~5 • and the mixing occurs again through the term 1262 ·542 . 

MiXIng between the 5 in the 10n and the 5 in the 126n is permitted by 

th~ Z symmetry and does indeed occur through the lerrn 

10n·126n ·(126n)2 +h.c . (9.18) 

Further quartic terms consistent with the symmetries of the previous 

terms are 

(10n)4
, (10n)2·(126n)2 

I 

(10a)2·(126n·126n) I (10n)2· (54n)2 
(9.19) 

and tileir Hermitian conjugates. The quartic terms appearing in the 

Higgs potential are summarized in table 9.1 [33,36]. The entries in the 

baryon number violating scalar boson mass matrix that may come from 

t.hese terms are summarized • in table 9.2. The suppressed coefficients of 

these mass terms are typically the product of a quartic coupling con­

stant, a combinatoric factor and a Clebsch-Gordan coefficient. In light of 

' our ignorance of these factors (especially the quartic coupling constants) 

we will take all the coefficients to have the common value A. We choose 

<,1>2/ I <~ 1> l 2=+i (the case <,1>2/ l <~ 1> 12=-i can be obtained easily 

from the following). Defining e=<l!24>2/ I <~1> 12 we get the following scalar 

mass matrix in the(,_,, WJ.o. rp5 , ; 5) basis: 

e 
1+~ 

e 
0 

£ 0 
£ 0 

l+e 1-i 
l+i l+t 

..-e anly write t.ha8e ia;uhlq the (3. 1. 113) in the p61 p5 p46 and f1D since all oth­
_.. lead ka (at maat) ._)tkl. d btq ~ with no CP violation. 

(9.20) 
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104 

126· 126 
I 
I 

I 1264 

102·542 

126 ·1 26 · 542 I 

I 
1262 ·542 

le>2·126·126 

102·1262 

l 

I 10·126·(126·1 26) 

Table 9.1 

- All quartic terms in a Higgs potential involving a 54, a 126 and a real . 
-

10. The number of possible terms of each type is not indicated. 
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10:z·54~ 

I 126·126·542 

I I 

1262·542 

lo2·126·126 

1 0·126· ( 126·126) 

9'~1it'~ l <~1> 1 2 

~~s;·5o ! <rp 1> i 2 

Y'451'~ : <9' 1 > 12 

~rs'V'J<~24><.! 

lit'o~~<~24>2 

IP!t51it'~<~24>2 

~45~l5<1Jt2-1>2 

r,t'r;~<1P24>2 

,~,J 

lit'451it'~ 

,o~J I <1it'1> 1
2 

,o'it'J I <~1> 12 

"'J 2 'Polit' <1',1'1> 

J 
! 

Table 9.2 

Terms in the Higgs potential that give rise to entries in the mass 

matrix of (3, 1, 1/3) baryon number violating scalar bosons along 

with the associated mass terms. 



-81-

If we write the eigenvalues of this mPttrix as JJ-2 and \\Tite 

( 9. 21) 

then the characteristic equation is 

(9.22) 

We can write down one solution of this exactly, x=t, giving 

(9.23) 

The remaining solutions can be given approximately for large t as 

(9.24) 

(9.25) 

(9.26) 

Thus, for large E, J.£2 and J..Ls decouple from equilibrium at a temperature at 

which the CP violation that we are considering has not yet turned on, and 

thus a baryon asymmetry cannot be generated through their decays. To 

1et a nomero baryon number asymmetry we need to have a scalar that 

decouples from equilibrium at a temperature that is less than the 

SU(4)8SU(2)L&S'U(2)R .... SU(3)®SU(2)L®U(1)R transition temperature•; for 

4We ~ here the question of the supercooling and possible associated entropy 
pcend.iall that may occur when a phase transition occurs via tha Goleman­
Weill.,. m...,.nimn [3B]. This may be avoided by haVing small negative quadrat­
ic t8TID8 ill tile Hi&P potential; BS mentioned abOYe, such terms would not sub­
paetieJV .&et aur .aalysis. 
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A< 1 this may occur. Thus, the decays of the lighter baryon number 

violating scalars may gjve rise to a baryon number asymmetry if they 

have CP violation in their decays. 

and 

The eigenvectors associated with the above eigenvalues are respec-

1 
~ 

1 
v'2 
0 
0 

1 7 1 
v'3 36"'3 
1 7 

-./3 - 36'\1'3 

_1_+ 5 
..J3 36..J3 e2 

ein/4[ ~£ J 

1 
V2e 

1 
~t 

1 
- "2£ 

ein/4[-1 + _U 
4t2J 

(9.27a) 

(9 .27b) 

(9.27c) 

(9.27d) 
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Of the twn light scalars, 1-LI and~ (,u4 <J,.t1), only the eigenvector of the 

tighter one is associ&tcd with a comp]ex eigenvector . Thu~. its de(;a.y, 

through the exchange of a vector, may exhibit CP violation. The other 

light scalar, ~1 , may not violate CP in such a decay, although it may do so 

through the exchange of another scalar. Generally, the decay of a scalar 

thra\lgh the exchange of a vector produces a baryon asymmetry greater 

than that produced through the exchange of another scalar by a factor 

g21 ye where g is a typical gauge coupling constant and Y is a typical 

Yukawa coupling constant. Thus, unless the Yukawa couplings are very 

large, an estimation of the baryon asymmetry produced through the free 

decays will be dominated by the vector exchange diagrams . For illustra­

tive purposes we only ~nsider these diagrams . This model allows for 

scalar exchange in vector decay since the double-cut diagram for scalar 

exchange in scalar decay is related to that of vector exchange in scalar 

decay sim.ply by complex conjugation; however, the relevant vectors have 

masses that are obtained in the S0(10)-+SU(4)®SU(2)L®SU(2)R symmetry 

breaking and decouple from equlibrium at a temperature generally 

greater than that at which our liigh temperature CP violation has turned 

an (cert.ainly this is true if t>>1 as is the case that we are investigating) . 

Also, the Born rates for tile two processes are generally different, making 

the latter process larN;er than the former by the factor g 21 Jl2. If we write 

Ute eigenvectors, eqns (9.27), as 

(~ ; j=l. 2. 3, 4 

~j 
(9.28) 
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and this may be 111verted tc give 

f!l5=a;Xi 
rp~={Ji .Xi 
rp5=7; •x; 
,5=6; •x; 

(8 .29) 

(9.30) 

where we have taken a.i to be real by convention (this convention has 

already been imposed in the expressions given above for the eigenvec­

tors) . If we write the SO( 10) Yukawa couplings as 

A(16 ·16)·126+B(16·16)·10+h.c. (9.31) 

(BOte that A and B may be taken to be real since we are considering the 

case of no intrinsic CP violation), we find the neutral fermion mass matrix 

to be 

(9.32) 

'1lW; is rendered real by working with the field N'L related to NL by 

(9.33) 

tilling tJlis we ftnd the effective SU(5) Yukawa couplings to be 

(9.34) 

• ..te ht!re that the Clebsch-Gordan coeMcients for the coupling of the 

C& 1. VS) iD a 50 to 10r ·101 are different from those for the coupling of 
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the (3 , 1. 1/ 3) in a 5 to the same quantity . The former case has the cou­

pling 

(9.35) 

whereas ·the latter case has the coupling 

(9.36) 

The couplings of the Xi to 51 · 101 do not appear in the diagrams of a X.i 

decay through X' or Y' exchange and therefore are not relevant to our 

calculation. Thus, in writing down the relevant Yukawa terms for these 

processes, we will ignore these couplings. In terms of the Xi's the Yukawa 

couplings therefore read (referring back to our eigenvectors, eqns (9.27), 

we write a ·=a · R.=b · ""' ·=c · and o - =e'n.t-'r~ . where a· b · c· and d· are all J J I f'J] J I I J J J ...., J I ] l ] J 

real) : 

(9.37) 

The couplings of the X' and Y' vector bosons (the baryon number violating 

vector bosons that are in S0(10) but not in SU(5)) are [33] 

(9.38) 

and 

(9.39) 

Note that the sum af eqna (9.36) and (9.39) is invariant under SU(2)L. 
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As discussed 1n chaper 8, in the hmiL of va11i~h.ing "h maE~ the be~'yon 

asyrru11ety generated in free decays will vanish in this S0(10) model since, 

in this limit, there is an unbroken charge conjugation operator. Vve need 

therefore consider only those diagrams which involve an NL . There are 

two such diagrams as shown in fig . 9.1. Note that, since the X ' and the Y" 

constitute an SU(2)L doublet, the diagram of fig . 9.1a can be obtained 

from that of fig. 9 .1 b by an SU(2)L rotation; therefore, the contribution of 

the two diagrams are identical (this is also verifiable by explicit computa­

tion) . The weiiht of each diagram is 

~=3g2(.Ac; +e """'"14Bd.; )(Aft-a; +c; J+e -in/
4Bd;)- (9.40) 

and its imaginary part is 

Im0=-3g2 ~a.; d.; (9.41) 

For the scalar, Ji.4, we he.ve 

(9.42) 

To compute the aYerage baryon number generated in the decays of 

the light scalar we must divide t.he above results by the full (Born) rate 

for its decay as noted in eqn ( 4.1 ). The total rate for the free decay of the 

XJ is proportional to (here, u =mN I m;) 
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x. 
J 

--~--

x. 
J 

-~---

(a) 

x. 
J 

-~--

x. 
J 

--~---

(b) 

Fig. 9.1: Scalar decay with vector exchange diagrams in the "primordial" 

80(10) model that can give rise to a baryon asymmetry (for j =4) . Only 

diagrams that involve NL may contribute. 
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(9.43) 

where u < 1 and, on the left hand side , the term proportional to ~ 1-u 2 ~ is 

that due to the Born graph involving NL in the final state (see eqn C-15) . 

For u > 1 this term is absent and the Born rate is proportional to 

(9.44) 

Both A ·and B are presumably small (at best, B-~lmw and A-gmNim 41 

where 7n.t is a typical mass of a vector boson that becomes massive when 

the transition SU(4)®SU(2)L®SU(2)9 .... SU(3}®SU(2)L®U(l)R occurs) ; 

therefore, for large e, t.he Born rate is proportional to 

for u<1 and to 

for u>l. It follows that the ratio of ImO to the Born rate is 

_r1 B 12 
a A 11 

u<l 

a>l . 

(9.45a) 

(9.45b) 

(9.46a) 

(9.46b) 
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, 

In computing the everagP baryon number produced in the free 

decays of these scalars we must multiply this resalt by t.he baryon 

number factor -1 and by the difference, lm[Isv(v, u)]-Im[Isv(v, 0)], where 

the momentum space weight, Im[Isv(v , u)] is given in eqn C-13. This gives 

for u < 1 (where v =mx·l ms), and 

(9.47b) 

. 2 
for u>l. We also know that Mx-g <1/124>; thus v 2-~. H t is large enough 

so that v is also large, then we can make a Taylor expansion of ~B in 

powers of 1/ t. Keeping only the lowest order term we have 

1 1 B ~ 2\2 
AB~---Gf-R[l-(1--u I] 

6.1r t
2 

A ~-~2] 
12 3 

(9.48a) 

for u <1 (where, in t.he last equality, we liave used the fact that u =AI -JX), 

IIIld 

(9.48b) 

for ">1. We can make a rough estimate of the maximum MJ one can 

expect in tbis IDOdel as follows. Stability of t.he effective potential 

requhw u.at. if lU1 then (A. B)~ and, if ~2• then (A, B)~'A [18]. 
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Although A and B are bounded above in the~e two cases respectively by g 

and >.., they are not bounded below. Thus, for fixed A, we can vary u from 0 

to ,._,.g/ v'X in the first case, and from 0 to v'X in the second case. In the 

:first case since, for fixed A, M3 is monotonically increasing as a function 

of u in the region O<u <1 and is monotonically decreasing for u>l and, 

since the maximum permitted value of u is g 1 ....IX> 1, it is clear that M3 is 

maximized by choosing u-1. The maximum choice for A under these 

assumptions is A-g2 giving a maximum liB of 6B-3a/ 2~2 . In the second 

case, for fixed A, the maximum value of u. is v'X; thus, for X<l, the max­

imum of l:lB is obtained at u-..JX., while for A>1 the maximum is obtained 

at u -1. However, for A> 1 no baryon asymmetry will be generated since 

then the mass of the J-L4 will be greater than the temperature at which the 

SU(4)®sU(2)L®SU(2)R .... SU(3)®SU(2)L®U(1)R phase transition occurs and 

so there will be no CP violation in its decays (this is independent of the 

statement that perturbation theory may not now be valid in the scalar 

sector and the arguments that we are using here will then probably not 

be v~d). Thus we want A.<l (we are of course assuming that g 2<1). If we 

saturate this bound we find that MJ <31 Bn-~2 . If g is very small there can 

be a substantial difference between the results of these two cases. In 

practice, however, we have g 2/ 41r-l/ 40 and hence g2-11 3. 

The value of AB is an upper bound for the value of the baryon number 

to photon number ratio that can 'be produced in the context of a grand 

unified modeL In fact, if we ignore the dynamics contained in the 

Boltzmann transport equations (2.1) and (2.2), then the value of nBin7 is 

related to MJ by a statistical factor that is generally O(Nx/ N) where Nx is 

the number of bosons participating in the free decay process and N is the 

total number of particles with mass less than that of the relevent 
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decaying bosons [ 12, 19]. In a grand unified model this factor has the 

potential of being quite small. It follows that (for nBin7-10-9) we can 

have a maximum £-104. This in turn gives a minimum value <126n>-1 11 if 

we assume the minimum value <54n>-1015 which is required to keep the 

proton slJ..fficiently stable . 

Thus we have seeq., in a rather detailed example, how the breaking of 

a charge conjugation symmetry may lead to the generation of' a baryon 

excess. The magnitude of this excess depends upon the scale at which 

the breaking of the charge conjugation symmetry occurs. In the present 

example the magnitude of this scale is proportional to the mass of the NL. 

In the limit mN-+0, 6B vanishes. 
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PART II 
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10) llass llatriees in SU(5) 

The phenomenological mass relations [39] ... 

m., 1 fnci ----
mj6 10 rn. 

(10. 1) 

( 10.2) 

must be reproduced in any viable grand unified model. Since both sides 

of (10.1) are renormalized in the same way, it is a. relation valid at all 

scales and, in particular, at the grand unification scale ; ( 10.2) is a rela­

tion valid at the grand unification scale. A somewhat weaker set of rela­

tions (weaker in the sense that use of the renormalization group may not 

be a valid procedure) may be obtained from current algebra as 

( 10. 3) 

at the grand unification scale . It is the first of the relations in ( 10.3) that 

one is most insecure about; nonetheless, these relations are consistent 

with (10.1) and (10.2) . 

In an SU(5) model it is rather easy to institute the relations m;/ ms ~s 

and m..rff'nt,~l in a natural way by having the 11- family obtain its masses 

solely through coupling to a 45 of Higgs and having the -r family get its 

masses through a 5 of Higgs. However, to incorporate the relation ( j 0.1) 

in a natural way is a trickier business. Nonetheless, it has almost been 

done with the following choice of Yukawa terms [39] (the Higgs represen­

tations are three 5's~ 5g, 5'n. 5"y and a 45y) : 

+fD(10t·102)+E(10s · 10s)~·5'n+F( 102 · 1~) · 5 ''n . (10 .4) 



-94-

The naturalness of these terms is maintained by several U(l) 's which 

must be broken softly (i.e ., by terms of dimension ~ 3) in the Higgs 

potential. The latter fact then allows for there to be calculable correc­

tions to the Yukawa terms ( 10.4) and hence the possible inclusion of 

terms that do not have the required form. The predicted mass relations 

may there by be altered. 

The mass matrices obtained from (10 .4) are schematically 

~ A ' OJ 
M-vs= C 0 

0 B 
( 10.5) 

1
0 A' OJ 

Mwpton = A -3C 0 
0 0 B 

(10.6) 

(10 .7) 

where, for brevity, we have absorbed vacuum expectation values into the 

definitions of the couplings and we have omitted CP-violating phases. 

These mass matrices yield the desired mass relations under the unna­

tural assumption 

A ~A' (10.8) 

and the "fermion-mass-hierarchy" assumption 

B>>C>>A. ( 10. 9) 

One may also obtain a prediction for the magnitude of the Cabibbo angle : 



-95-

(10.10) 

The details of such calculations are discussed below in the context of 

S0(10). 
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11) Mass Jlatriees in A Viable 50(10) Model 

To construct a set of SO( 10) Yukawa terms that behave like those in 

( 10.4) when restricted to the SU(5) level we proceed as follows [35,36 j . To 

reproduqe the (~· 102)·45n term in (10 .4) we must use a 12~ coupling to 

(1~· 16~s. The terms [A~ · 101+A '5t · 102+B~ · 103}5n+[D101 · 1~+E10s·l0sl5 'n 

can be easily obtained by coupling 1 6 1 · 1~ and 1 63 · 1~ to the same complex 

10n ( = 101 +i 1~) of Higgs. The relevant SU(5) decompositions are 

126n=l+B+10+15+45+50 

and 

16=1+5+10 

(11. 1) 

( 11. 2) 

( 11. 3) 

(Note that we have emphasized that we have given the decomposition for 

a complex lOn in (11.1) by having 5~5. ) To assure the coupling ( 1 02 ·10~) · 5" 

as in (2.4) without a (52·103) ·5n or a (5~r 102)·5n term, we couple 162·165 to a 

126s: 

( 11.4) 

The Yukawa terms of this model are, thus far, 

( 11. 5) 

If we now assume that, for a range of parameters in the Higgs potential. 

the 1262 has its vacuum expectation value purely along its SU(5) 45 direc­

tion and that the 1263 has its vacuum expectation value along its SU(5) 5 

direction, 
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<1262>-~5H2J 
<126s>-5Hs ' 

( 11.6) 

then the predictions of (10.4) for charged fermions are reproduced. This 

would not have been possible without choosing 126s different from 12~. 

When the Yukawa terms (11.5) are expanded with the decompositions 

( 11.1) ,_ ( 11.2) and ( 11.3) we obtain the following terms which contribute to 

the neutral fermion mass matrix when the Higgs fields get vacuum expec-

tation values: 

( 11. 7) 

If we view the CP conjugate of the SU(5) singlet fermion as a right handed 

partner for the neutrino, then we see that the terms ( 11. 7) give Dirac 

masses to the neutrinos of the same order of magnitude as those of the 

charge 2/3 quarks. H, however, in addition to the Dirac mass, m, men­

tioned above, the neutral singlet fermion has a Major ana mass, M, then 

the neutrino mass matrix has the following form in the (vL ,NL) basis* 

[29.27]: 

[! :;;]. ( 11.8) 

If M >>m, then the eigenvalues of this matrix are approximately M and 

m(m/ M). Thus, one eigenvalue is naturally very large relative to the 

charge 2/3 quark mass and the other is very small. It is the latter eigen­

state which we identtly with the garden variety neutrino. Such an eigen­

state would be primarily vL with a small amplitude (proportional to 

m 2/ M) for helicity flip into VR ( =(NL )CP). 

•Also see chapter 8. 
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The mechanism described above is effected in this 80(10) model by 
~ 

coupling the .relevant combinations of fermion multiplets (in the case of 

eqn (11.5). the combination e 16 1 ·1~+/ 16s·163) to a 1261 which obtains a 

superlarge Yaeuum. e%pectation value along its SU(5) singlet direction . 

Further, to preserve the predictions of eqn (11.5) along with the assump­

tion ( 11.6), we assume that the 1261 has vacuum expectation values only 

along its SU(5) singlet and 5 directions• : 

( 11. 9) 

The complete Yukawa couplings are now 

(11.10) 

These couplings are natural, the naturalness being maintained by two glo­

bal U(l) symmetries which will be explicitly broken down to discrete sym­

metries in the Higgs potential. We call the charges associated with these 

U(l) symmetries X and Y. Their values for the representations present in 

this model are summarized in the following table: 

161 1~ 16s 10 1261 1262 126s 

X -3/2 1/2 -1/2 1 -1 1 0 

y 1 -1 0 0 0 -2 -1 

•u <581>-o. at~ maa relation fallows that i8 phenomenologically unaccept­
able . This .acuum expectatian value i8 al8o required fer naturalness reasons 
{33,36]. 
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When the Higgs acquire vacuum expectation values, these phase sym­

metries will be spontaneously broken. Since they are not gauged, mass­

less Goldstone-N ambu bosons will result. To avoid their presence we have 

to break X and Y in such a way as to preserve the naturalness of the 

Yukawa couplings. Remarkably enough this can be done through the fol­

lowing property of the 126 representation: the fourfold fully symmetrized 

product ( 12ot")s contains one SO( 10) singlet. Thus, we require that the 

Higgs potential contain terms like 

(11.11) 

The first term breaks X to a discrete symmetry mod 4; the second one 

brea.l<s Y to another discrete symmetry mod 8. These two discrete sym­

metries suffice to maintain the naturalness of the Yukawa couplings while 

avoiding the problem of massless bosons . The remaining Higgs self­

couplings are selected so as to honor the remaining discrete symmetries. 

The terrns, at the SU(5) level, in eqn (11.10) which are relevant for 

the computation of the fermion f!lass matrices are: 

for charged fermions and 

(11.13) 

for neutral fermions. 

We will discuss here only the charged fermion mass matrices. (The 

neutral fermion mass matrices are discussed in [33] and [36] .) The first 
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thing worth notmg is that the unnatural relation (10.8) is natural in this 

S0(10) scheme. This is obviated by comparison of (10.4) with (11.12). If 

we now write 

(11.14) 

and define 

ar=R, br=T, 

dq=Q, cs=S, 

then the charged fermion mass matricies are: 

charged -1/3 quarks: 

ro Rei-6 0 
- i-6 SeiX 0 M -11s- ~ 

0 Tei-6 
(11.15) 

charged 2/ 3 quarks: 

M213=r.'6 

Pe"~ 0 
0 QeiJ.' 

QeiJ.' Vei( 
(11.16) 

charged leptons: 

M:=r~·~ 
Re'~ 

T~'~l -3SeiX 

0 
( 11.1 ?) 
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By a suitable redefinition of the fermion fields (discussed below) the 

phases can be removed from these matrices . (The phases certainly reap­

pear, for example, in the charge current sector of the theory.) For the 

mass matrices with the phases removed we write respectively M -113 , M2/ 3 

and JJ, . The eigenvalues of both Ji-v 3 and ii, are easy to compute since 

they are both block diagonal. The eigenvalues of M213 are easily com­

puted in the limit V>>Q>>P, while assuming one eigenvalue to be 0( V) and 

the remaining two to be <<V. In this limit and in the limit T>>S>>R for 

M _113 and 11, we may identify the fermion masses as 

(11.18) 

(11.19) 

and 

(11.20) 

The mass relations (10.1), (10.2) and (10.3) follow from (11.18), (11.19) 

and ( 11.20). These expressions can be used to solve for the parameters 

Ulat appear in iJ -u:s. 11219 and .M, in terms of the fermion masses. 
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M-us. M215 and M, are real and symmetric and are diagonalized by 

orthogonal matrices which we denote respectively by U -vs. U215 and Ut: 

(11.21) 

(11.22) 

(11.23) 

U _113 is easily computed to be 

-[~ U-1/S~ ~ 1 0 ( 11.24) 

0 0 1 

Similarly for Ut : 

( 11.25) 

U219 is somewhat messier but nonetheless straightforward: 
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( 11.26) 

1 

If we write the column vector, in family (weak eigenstate) space, of 

charge -1/3 left-handed quarks as L_113 and that for the right-handed 

components as R _113, the mass term in the Lagrangian is 

before any phase redefinitions of the fields have been made . We can 

redefine each of the fermion fields by an arbitrary phase 

(11.28) 

where h-vs and R-vs are diagonal matrices of the form 

e 
ia1 0 0 

L....l/3= 0 e iot2 0 (11.29) 

0 0 e ia3 

and 

(11.30) 

We want 

rwt ""' ,... 
=L-vaM-vsR-t;s. (11.31) 
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or 

- - . M-v3-~113M-u3R-V3 · ( 11 ~ ')\ 
~ -~ ·-) 

Note that if this is true then it follows that 

(11.33) 

although one might wish to choose Lz and Rz different from L-113 and R- 113 

for reasons of convenience. Eqn ( 11.32) results in the following: 

Similarly, if we write 

and 

then from 

we get 

e "71 0 0 

~s= 0 e'72 0 

0 0 e""s 

Rets= 0 
0 

~ . 
Ma~s=IetsMvsRets 

c$+911r2=0 
6+912r1=0 
#J.+9'2/s=O 
#J.+V's/e=O 
("+9'3/s=O 

( 11.34) 

(11.35) 

(11.36) 

(11.37) 

( 11.38) 
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Of the phasPs a 11 o: 2 , o:3 • {3 1, {12 and (33 c.nly five are independent ire sc rd:' e:-; 

effecting changes on M-us i3 concerned (in particular the transforrr:.::.tjon 

a.1 = a.2= as= (31 =(32=(33 =0 is sterile) . Thus, we choose a.1 =0; and similarly far 

charge 2/3 quarks we choose ')'1=0. Thus, from eqns (11.34) we are left 

with one degree of freedom and from eqns ( 11.38) we are left -v\i+..h no 

degrees of freedom. 

The left-handed charged current coupling io the usual (SU(2)L) Wl 

boson is 

(11.39) 

or, from eqn (11.27) and its analogue for charge 2/3 quarks, 

j; =L~/S a#-J..l/3~1/sL-t/3 . ( 11.40) 

We can write L-1/ 3 and 'l2/ 3 in terms of the mass eigenstates: 

(11.41) 

Thus, in the mass eigenstate basis, we have 

( 11.42) 

The matrix that appears in this expression to be acting on the left­

handed charge -1/3 mass eigenstates, 
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( 11.43) 

is explicitly 

(11. #) 

where 

and ( 11.45) 

The quantity a is completely determined by eqns ( 11.34) and eqns ( 11.33) 

to be 

a=x-19--2p+o+( . (11.46) 

The remaining unconstrained quantity in eqns (11.34) (i.e., {33) cru.1 be 

used to set 

b=O. (11.47) 
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Thus the matrix (11.44) has a CP-violating phase. Eqn (11.44) is not in 

standard Kobayashi-Maskawa form [40]; however, it can be rendered so, if 

necessary, by a phase redefinition of the left-handed mass eigenstate 

fields. 
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12) The Beta Function in This SO(lO) llodel 

In general, the symmetry breaking in a grand unified mociel based 

upon a gauge group G will proceed in several steps before arriving at the 

low energy model G1t®SU(3) where G1t is the electroweak gauge group 

aud is at least as large as SU(2)1 ®U( 1 ). After the i th step there will be a 

remaining unbroken gauge group ~ which is a valid symmetry up to a 

scale 0(2M) where M is the mass of a gauge vector boson which is in ~- 1 

and not in ~ (note that we are writing the sequence of symmetry break­

ing as G~Gr-..G2 -t · · · .... ~ .... · · · ~[G1t®SU(3)] ). 

In the SU(5) model there is only one possible pattern of symmetry 

breaking compatible with low energy phenomenology: SU(5) ~ 

SU(3)®sU(2)1®U(l)y. However, as soon as one considers larger groups, 

the possible patterns of symmetry breaking compatible with the world as 

we know it become more numerous. Such models offer some hope of par-

tially filling the "desert" region between 300 GeV and 101:> GeV which is 

present ih the simplest grand unified models based on SU(5). 

In a generic SO( 10) model there are a number of possible symmetry 

breaking patterns as illustrated in :fig. 12.1 [38,41]. Of these we consider 

Ll-tose with the intermediate scale gauge group SU(4)®SU(2)1 ®SU(2)R to 

be of particular interest because of the presence of SU(4) as a general­

ized (Pati-Salam) color group with lepton number as the fourth color 

[ 42]. In this chapter we discuss the running of the various Yang-Mills cou­

plings for the symmetry breaking scheme 

of Ule model described in the preceding chapter. We compute the renor­

malization of the m.-val'"" mass relations down from the unification 
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so ( 10) 

. ~ l ---------
SU(5) e U( 1) SU(4) s SU(2)L® U( I) SU(4)8 SU(2)LS SU(2)R 

SU(3)8 SU(2)L e U(l)y 

Fig. 12.1: Possible paths of symmetry breaking for the group 80(10). By 

suitable choice of Higgs representations any given sequence of symmetry 

breaking may occur that is consistent with the ftow of the lines in this 

figure . 
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scale. We consider the effects of running the coupling~ nn the value of 

sin2~ It' and on the lifetime of the proton. Furthermore, since this model is 

only temporarily free, we compute the position of the Landau '~singular-

ity" . 

We call" the scale at which SO( 1 0) breaks dovv-n Lu 

SU(4)®SU(2)L®SU(2)R, m 2; the scale at which SU(4)®SU(2)L®SU(2)R 

breaks down to SU(3)®SU(2)L®V(l)y is called m 1; and, the scale at which 

SV(3)®SU(2)L®V(l)y breaks to SU(3)®V(l)EAI is called mo. mo is related to 

the mass of the W boson through mo ~2 Mw. m 1 and m 2 are similarly 

related to the masses of the vector bosons that become massive at those 

scales. 

With forethought we choose to normalize the generators of SO(lO) to 

2 in the 16 representation: 

Tr[T(16)2] = 2 . (12.1) 

This will give us the expression for the electric charge operator, 

(12.2) 

where TM,0) is the diagonal SU(2)L generator (the superscript indicates 

that it is normalized as embedded in SO(lO)) andY is the V(l)y generator 

as embedded in S0(10), so as to conform with the traditional SU(5) 

expression. This latter point is assured if we normalize the generators of 

any SU(n) subgroup of SO( 10) to 1 /2 in the n representation: 

(12.3) 
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By trbcking the three low energy couplings up to the scale m 2 at 

which S0( 10) first breaks, we will geL three expressions that depend on 

the parameters m 1, m 2 and a 10(m2) (a10 is the SO( 10) coupling squared 

divided by 4n). These can be determined by using as inputs the values of 

a.3, sin219 w and agJJ at '1ng. The qualitative behavior of the couplings for a 

simple assumption about scalar thresholds is shown in fig. 12.2. We work 

with beta functions to lowest order in g and treat all mass thresholds in 

the theta function approximation. 

We write g 10 for the SO(lO) coupling (a10=gf0 / 4n); similarly we write 

9• for SU(4), gu for SU(2)L, g 2R for SU(2)R. gy for U(l)y and e for U(l)EM · 

We use a similar notation for the quantities b that appear in the respec­

tive beta functions . 

In general a Yang-Mills coupling g runs according to (J.L<m) [ 43] 

( 12.4) 

assuming that there are no mass thresholds between JJ. and m and that 

the coupling remains perturoative in that region. The only difficulty in 

running, say, what starts as the SU(3) coupling up to the unification scale 

is in determining the boundary conditions applicable as one goes from 

one reigon to an adjacent one. With the normalizations in eqns ( 12.1) and 

( 12.3) we have 

(12.5) 



SU(3) ® U( I )EM 
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I I I 

lsU(3l®S~U(~SUI4l®SU2\_®~ 
I I 1 

: I I 
I I I 
I I I 

I I 
I I 
I I 

I 

SO(IO) 

Fig 12.2: The scaling behavior of the couplings in this 80(10) model. 
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and gu is continuous across the threshold at m 1 . In eqn (12.5), Y' is a 

mixing angle which specifies which linear combination of the SU(2)R diag­

onal generator TsR and the diagonal generator T us in SU( 4) becomes the 

U(l)y generator. Similarly, 77 specifies which linear combination of TSL 

and Y becomes Q, and f is a constant which normalizes the electron 

charge to -1. The conditions that Y=O for the SU(5) singlet fermion and 

that Q=O for ,the SU(2)L doublet neutrino give 

Sin9' = -Yl ; COS9' = ~ ; 

sin77 =~ ; coS?'} =~ ; ( 12.6) 

f=VJ. 
The expression for, say, gy2 is obtained from the following argument 

(which can easily be generalized to cases more complicated than the 

linear combination of U(l)'s that we review here [9]). Say that we have 

vector fields A and B coupling respectively with generators X and Y and 

coupling constants g and g' : 

g AX+g'BY. 

Then, if symmetry breaking leaves the combination aX +bY unbroken 

(where a 2+b 2=1), we have 

gAX+g'BY=gC(aX+bY)+gD(cX+dY) 

where D is the vector which couples through the broken generator eX+ dY 

(this generator is not necessarily orthogonal to aX +bY), 11 is the coupling 

constant for the vector field C and g is that for the vector D. This gives 
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gA=gaC+gcD 

and 

g I B ='gb c + gd..D 

The orthonormality of A and B then gives 

and 

from which follows 

It is from this that the last two boundary conditions in eqn ( 12.5) were 

obtained. (If the normalization conditions ( 12.1) or ( 12.3) are changed 

the conditions in eqn (12.5) change accordingly. For example, if we 

choose Tr[T(16)2]=1/2 then we getg 4(m2) 2=g 10(m2) 2/4 .) 

Using eqns (12.4), (12.5) and the definition of the Weinberg angle [8], 

( 12. 7) 

where ce=5/ 3 (again, the specific form of this equation depends upon the 

normalization conditions), we get the following three relations: 
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(12.B) 

and 

(1 + c'!-W)-r+ [b2L ( 1-W)+c2by ]y 

(12.10) 

where 

( 12.11) 

and 

b2L is the SU(2)L value for b in ( 12.4) between m, and m 1 and b '2L is the 

value between m 1 and m 2 . 

In calculating the various b 's we use the expression obtained from 

the one-loop beta function [ 43], 

(12.12) 

where r = rank of the group, and the second index of the representation 

r, / 2(r) is given by 

/e(r) =7r[T(r)2] . 
r 

(12.13) 
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(Tables of / 2 for the simple compact Lie gr·oups are given in [ 44].) The 

summations in eqn (12.12) are over all relevant lefl-handed fermion 

representations f and real scalar representations s; complex scalar 

representations are counted twice since each complex scalar field con­

tains two degrees of freedom; this comment also applies to doubled real 

or pseudoreal representations. Adj stands for the (vector) adjoint 

representation. 

To consider the scalar and fermion thresholds it is convenient to con-

sider the SU(4)®SU(2)L®SU(2)R decomposition of the 10, 16, 54 and 126: 

10=(61 11 1)+( 1 ,212) (12.14) 

16=(41 21 1)+(41 1. 2) ( 12.14a) 

54=(11 1.1)+(20, 11 1)+(6,2,2)+(1.313) (12.15) 

126=(61 1,1)+( 10,31 1)+( 101 113)+( 151212) (12.16) 

In order to decide at which of the scales fno, m 1 or m 2 a given Higgs 

obtains a mass, we adopt the following ansatz: a scalar multiplet gets the 

largest possible mass consistent with its vacuum expectation value and 

the symmetry present at that scale. Thus, a multiplet which gets no 

vacuum ~xpectation value (such as the (6, 1, 1) in the complex 10) will 

have a mass of O(m.2). This assignment assures that all baryon number 

violating scalars will have a mass of O(m2) . Certainly other assignments 

may be made since the only necessary constraints are that the 

SU{3}®SU(2)L®U(l)y theory be consistent with phenomenology at accessi­

ble energies and that the proton not decay too fast. Our choice is the one 

with the fewest low mass scalars. 



-117-

As m.sntion.ed above, in the complex 10 of Higgs the (6, 1: 1) ho.s a 

mass ~ m 2; the (1,2,2) will have a mass ~ mo. Since, by assumption, 

<54>-m2, we put all of the masses of the (real) 54 ~ m 2 . The representa­

tions 12~ and 1263 have vacuum expectation values 0(1'no) (in the 1262 

case it is along the SU(5) 5 direction and for the 125:3 it is along the 45 

direction). In each case the vacuum expectation value is contained in the 

(15, 2, 2). The SU(3) decomposition of the 15 of SU(4), 15=1c+3c+3c+Bc, 

then shows that we will have a mass for the (lc, 2, 2) of O(mo) and masses 

for the remaining parti~les in (15, 2, 2) O(m 1). The other particles in 

1262 and 1263 may all be given masses O(m2) . For the 1261 we have the 

addition of a vacuum expectation value along the SU(5) singlet direction 

D(m 1). The SU(5) singlet is contained in the (10, 1, 3) which will therefore 

have a mass"' m 1 . These results are summarized in table 12.1. 

With this information we can now compute by, b2R, b2.L. b 3 and b 4 (and 

b 10). With the normalizations ( 12.1) and ( 12. 3) we get, for F families of 

ferrnions, 

For F=3 these give 

16n2b =~+~· 16n-2b =~- 20 . r3 5' 2L 3 3' 

(12.17) 
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scale scalars I multiplicity 
I i 
i I 

mo (1. 2, 2) l 2 

I (lc, 2, 2) fc (15, 2, 2)~ 6 

m.l (1, 2, 2) 2 

(10, 1, 3) 1 

(15, 2, 2) 6 

m.2 10 2 

54 1 

126 3 

Table 12.1 

Scalars with masses less than or equal to the respective scales m 0 , m 1 

and m 2 . The superscript c indicates that the SU(3) representation is 

being specified. In the remaining cases (except for m 2) the 

SU(4}®SU(2)L®SU(2)R transformation properties are specified. For the 

case of m 2 , the SO( 1 0) representation is given. 
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16n2by=24/ 5; 16n2bu=-B/ 3 ; 

(12.18) 

Thus, in this scenario, the only couplings which diminish with increasing 

r;f are the SV(3) and SU(2)L couplings in the region from '1no to m 1. 

The predictions for the ratio of the charged lepton to that of the 

charged -1/3 quark are valid down to the scale mb where SV(4) is broken. 

To determine m_115/ mt at m 0 we must renormalize through [ 4,45,46] 

(12.19) 

where F is the number of families. From eqns (12.5) and (12.7) we find 

that 

( 12.20) 

If we write m_v 3 (fno)/m,(f71.o)=R(F) m_113(m 1)/m,(m1), then, using eqns 

(12 .4), (12 .6) and the two preceding equations, we find 

R(F)= [ 1-Brrb 3a:3('1no )(y -z) p21 (33-4F) 

x[l-BnbyagJI(m, H ~ w-; )-1+ ~ Hy-z)]3/4F . ( 12.21) 

Given a:E.V(7'71o) and a:5(7no ), this expression depends on F through by and b 3 

and through the exponents. Neither y nor z depends upon F. Aside 

from the explicit dependence upon W, R depends upon W implicitly 

through 'II and z. In this expr ession for R we are neglecting scalar thres-

holds. 
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To estimate the prot on lifetime in this scheme W f! use the r esult fr om. 

BEGN [ 4] for the S U(5) rnodel, 

1 r(p 4lepton +rmy )=-
'rp 

for three families . For rough comparison we would wish to replace O..gum 

by_ o.. 10 (m 2) and replace Mx by m 2 . Thus the ratio of the BEGN estimate to 

the present one is 

(12.23) 

Using t he SU(5) result Mx~4x 1 014 Gev and o..gwn~l/ 40 , the requirement 

that the proton not decay too fast implies that ( 12.23) be greater than 

one : 

-r
1

(S0(10)) _ {m2)4[cx 10(m2)]-lO/? 

Tp (SU(5)) 2x1061 > 1 
· 

( 12.24) 

It is unclear whether the relevant parameter for a perturbation 

expansion is ex or cxTr ( T2) (where T is the generator in the representation 

relevant to a vertex in the diagram being considered) or any of a large 

number of other possibilities. Thus , to ask where, for a non­

asymptotically free theory, the expansion parameter becomes non­

perturbative is ambiguous. However. a measure of where perturbation 

theory fails that is independent of these questions is the position of the 

80-Called Landau singularity. This is the value of m in eqn (12.4) for which 

J(m.)-e vanishes. In the present model it is given by 
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(12.25) 

It is a matter of personal opinion whether one wants mL to be greater 

than, less than or of the arder of the Planck mass, mp; ' 'aesthetic" argu­

ments can be made for each point of view. The resolution of this question 

must certainly wait for a theory that includes the effects of gravitation at 

the quantum level. What seems clear nonetheless is that asymptotic free­

dom is by no means a necessary condition to impose on a grand unified 

model. 

The results of these calculations are given in figs. 12.3 through 12.6. 

(For these calculations, in computing mw we have taken into account its 

variation with sin2(~r) given by 

( 12.26) 

This has a negligible effect on mL, but does affect rP (SO{l 0})1 Tp (S U{5}) 

somewhat. In all calculation~ we have used aE.V(2mr )~1/ 128.) In figs. 12.3 

we have ploted m 2 and mL versus sin2~ w· What is notable about these 

graphs is that the presence of the Landau "singularity" gives an upper 

bound for the Weinberg angle in each case; this upper bound is deter­

mined by the condition m.2=m.L. However, it is necessary to note that it is 

not clear that the Landau "singularity" is a true physical singularity as 

opposed to, for example, be~ just a relic of perturbation theory. Thus, 

it is not clear whether this upper bound is physically significant or not. 

In figs. 12.4 we have plotted m 2 and m.1 versus sin21J,. What should be 

noted from these graphs is that with our symmetry breaking scheme we 

have a lower bol.md for sma,,: the value for which m 1 =m.2. The inclusion 
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of scalars in the calculation generally rfl1ses thi~ value (in thP. ab:::;ence of 

scalars the value is -0.20 [ 40]) . Independent of this is the fact that the 

value of sin~w becomes larger as the difference between the scales (at 

which the symmetry breakings occur) grows. 

In figs. 12.5 we show lhe values of R(3) and R(4) as a function of 

sin~, . These values are somewhat larger than those in the absence of 

scalars [ 48 J . 

In fig . 12.6 is plotted the values of 'Tp(S0(10))/-rp(SU(5)). It is clear 

that considering a model that is more complicated than the minimal 

SU(5) scheme can increase the proton's lifetime by many orders of mag­

nitude. It is worth noting in this context that the actual value of the pro-

ton lifetime is very sensitive to the values of the various input parame-

ters . Thus, a calculation that uses only the lowest order beta function 

cannot be used to obtain precise results since higher order corrections 

can effect the results significantly. Furthermore, uncertainties in the 

location of scalar thresholds can also effect the results• ( 47]. 

The results of this chapter show that one must be quite careful in 

making catagorical statements about the specific numerical predictions 

of grand unified models••. 

~ is independent of the possibility that an 8Ill!latz different from the one that 
we have chosen will effect the lowest order beta function s~nificantly by having 
many more low JD8SS scalars. 
•ecalculatioru~ similar to t~e presented here have recently been given in [ 49]. 
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Fii. 12.3a: m~ and m.L as a function of sine,, for as(m..)=0.12. 
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Fig. 12.3b: m, and mL as a function of sin21Jr for as(fno )=0.13. 
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m~ 

mAt 

fi&. 12.3c: m.a. and m.L as a function of sine,, for as(m.o )=0.14. 
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Fig. 12.3d: m~ and mL as a function of sin~r for as(f'11o)=0.15. 
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Fig. 12.4a: m. 1 and m.2 as a function of sin2,,. for as(77l.o )=0.12. 
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Fig . 12.4b: m 1 and m.2 as a function of sine, r for as(7'Tl.o )=0.13. 
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GeV 

Fig. 12.4c: m.1 and m.2 as a function of sin2~, for as(?n.o)==0 .14. 
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Fig. 12.4d: m. 1 and m.2 as a function of sin~, for as(ffl.o )=0.15. 
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~): .12 

Fig. 12.5a: R(3) and R(4) as a function of sin21)w for as(mo)=0.12. 
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Fig. l2.5b: R(3) and R(4) fli a function of sin~r for as(fno )=0.13. 
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Rt~) 

R(l) 

Fig. 12.5c: R(3} and R(4) as a function of sin2~r for as(mo )=0.14. 
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Fig. 12.5d: R(3) and R(4) as a function of sin2~, for a.s(f'no )=0.15. 
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Fig. 12.6: 'Tp(S0(10))/;p(SU(5)) as a function of sin2~, for the various 

values of as('m.o ). 
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Appendix A) Notation for Fermion Fields 

We describe spin-1/2 fermions by two-component fields of definite 

chirality: left-handed fields are denoted by 'f/IL and right-handed fields by 

YlR · For massless fermions. chirality and · helicity are equivalent and the 

two chirality slates are independent. Only one of the states need there­

fore be present in a model. 

For the two-component fields, tf denotes the left-handed antiparticle 

of l'R• while 'f/1!? denotes the right-handed antiparticle of tL· For fields in 

which both helicity states are present, parity (P) serves to interchange L 

and R components, while charge conjugation (C) interchanges particles 

with antiparticles, according to : 

where a2 is a Pauli matrix. These transformations are summarized in fig . 

A.l. Note the important feature that while the separate operations of C 

and P interchange L and R components, the combined CP transformation 

does not modify the helicity state . Hence while the definition of individual 

C and P transformation properties generally requires the presence of 

both L and R states, CP transformation properties may always be defined 

for massless particles with only a single helicity state . 

The two-component fermion fields may be collected into a four-

component Dirac spinor describing a fennion of arbitrary helicity: V=~~l · 
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p 
~L~4------------~• ~R 

c 

C ~y,c 
'¥L~c-------p------~~ YR 

Fig. A. l: Illustration of the action of the operators C, P and CP on the two 

helicity components of a four-component spinor or, equivalently, two 

independent two-component Weyl spinors. 
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lt i:::: convenient to t..a.'ke the Dir~c gamme1 matrices which act. on t.his ~ pi-

nor in the Weyl re:..1resentation: 

1" =[~ ~] ' 

1
0 -ci'] "l= ai 0 , 

where ai (i=1, 2, 3) are the usual Pauli matrices . (This representation 

differs from the more usual Dirac representation simply by the inter­

change, -y0~r.) 

The kinetic energy term in the fermion Lagrangian is given by 

Fermion fields for which both helicity states are present may give a 

Dirac mass term: 

If only one helicity is present, say 1/IL, no Dirac mass term may be con­

structed, but a Majorana mass term is still possible: 

Here the charge-conjugate four-component spinor ¥ is given by 
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For a fermion field with only a single helicity state, it is sometimes 

convenient to define a four-component Major ana spinor, 

in terms of which the Majorana mass term becomes ';. ~M~.M. 

Note that fields with Majorana mass terms may not carry any U( l )Q 

charges since the mass term is not invariant under the global gauge 

transformation 1/IL .... e'""Q'f/IL. 
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Appendix B) The CP Operation in Grand Unified Models 

The generation of a baryon excess from an initially symmetrical state 

requires CP violating interactions . In this appendix we discuss some of 

the properties of the CP operator in the context of grand unified models 

constructed from a standard Yang-Mills action •. 

We consider first a complex scalar field Y'(x ,t ). It is necessary to dis-

tinguish the field operator ~ from the "fields" Y' obtained as the ex"})ecta­

tion values of this operator in particular states. It is the q-number field 

operator which appears in the canonical quantization procedure; the c-

number field appears in the path integral formalism; we generally work 

with the latter. 

The actions of parity (P), charge conjugation (C) and time reversal 

(T) on a complex scalar field are given, up to arbitrary phases. by: 

P: Y'(x ,t) -. ~( -x ,t) 

C: ~(x ,t) -. ~ "(x ,t) 

~(x .t) -. ~t(x ,t) 

T: Y'(x ,t) -+ ~ "(x ,-t) 

~(x,t)-+ ~(x , -t) 

The transformations P and C are represented by unitary operators, which 

act on ~ just as on rp . T is an antiunjtary operator, which reverses the 

order of factors in products of field operators . It thus interchanges the 

bra and ket states in an expectation value and complex conjugates the 

~This presumes that we are talking only about compact Lie groups. For noncom­
pact Lie groups the discussion presented here must be extended. 
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field rp. The combined operation of CPT on rp(.z ,t) yields rp( -.z. -t) and is 

equivalent, as usual, to a generalized Lorentz transformation (total 4-

inversion) . 

The P, C and T transformations above are modified for particles with 

spin. Their action on spin 1/2 fermions is outlined in appendix A. Note 

that separate P and C transformations interchange chirality-states, while 

the combined CP or T transformations do not. Thus, massless particles 

with only one chirality or helicity state have definite behavior under CP, 

but the action of C or P may not be defined . For spin 1 fields, P and T 

transformations reverse respectively the space and time compon~nts of 

the polarization vector; they may therefore be considered to "raise" or 

'1ower" the Lorentz vector index on a vector potential A~. 

If a simple scalar charge is associated with the :field rp above, then the 

C operation serves to reverse this charge . When a field carries a non­

Abelian charge the action of the C transformation on this charge is more 

complicated, and again may not be defined. 

We shall consider a field tran.sforming under a unitary representation 

r of some simple compact Lie group G that acts as the gauge group for a 

grand unified model. The analysis presented below can be easily 

extended to take into account any additional global symmetries of the 

model. The group G will, for now, be assumed unbroken. A coltiffi.J."'"l vector 

of fields n, transforms under the action of a finite element of G accordii"lg 

to 

'I'J .... etPcP 'I'J (B.l) 

where the CJfJ are the group parameters of the transformation and the ra. 

are the generators of G in the representation r . If the CJa. are chosen to 
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be real, then the 1"' are Hermitian. 

"Charges" or "quantum numbers" are usually associated with the ele­

ments of the Cartan subalgebra or center of G. The elements of this alge­

bra will be denoted H,, where l runs from 1 to the rank of the group . This 

algebra consists of the maximal set of commuting generators of G and 

thus generates the maximal Abelian subgroup of G (it therefore may be 

written as a product of U(l) factors) . The Ht may be rendered simultane­

ously diagonal by a unitary transformation on the representation space 

{which does not affect the Herrniticity of the 'r'). We denote the vector 7'} 

of fields in this basis by 7'JD, and the Ht by HP. In this basis, the CP 

transformation is defined by 

(B.2) 

where A is a matrix acting on Lorentz indices, and no sum is taken over j . 

(For the case of scalar fields A= 1, for fermion fields A=±a2 depending on 

whether 7'JD is left- or right-handed respectively (see appendix A) and for 

vector fields A=g JW or g~v; i.e., A lowers or raises an index on a vector 

field.) The phase aj is, for the moment, arbitrary, but we will show later 

that it may be taken to vanish. With this definition, the transformation 

(B.3) 

becomes for the CP conjugate fields : 

(B.4) 

Hence the CP transformation reverses signs of all the charges associated 

with H'. If a set of fields transforms according to a representation r, the 

CP conjuaate fields transform according to the conjugate representation :;;, 
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If the representation r is irreducible, then the phase factors e 'i.a; 

appearing in eqn (B.2) must all be equal, so that aj =a for all j, since one 

may perform an arbitrary group transformation on ,f before applying 

CP. The common phase, a, may then be removed by an overall phase 

redefinition of all fields . We shall usually assume below that r is irreduci­

ble; reducible representations may be treated by considering separate]y 

each of their irreducible components. 

We have defined CP transformations above in terms of the "diagonal" 

basis TJD; below we shall consider other bases 1'J obtained by unitary 

transformations: 

TJ=Urf. (B.4) 

The action of CP on fields in this basis is given from (B.2) and (B.4) by 

(B.5) 

since CP(ut11)=utCP(TJ). 

The action of CP on the ·vector A(TJD) • transforming as the conjugate 

representation f" is 

(B.6) 

· where, if A=a2 (A=g~) then A'=-a2 (A'=g~W), so 

A'A=l. (B.7) 

The phase fJ must be such that the kinetic term for '1D be CP invariant. 

The analogue of eqn (B. 5) is 
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(B.B) 

The form of CP transformations for fields in a representation r 

depends on the relationship of r to the conjugate representation r . 

Representations with three basic characteristics may be distinguished 

[50]: 

Complex 

Real 

Pseudoreal 

r and r are completely inequivalent (e.g . fundamental 

representation of SU(n) for n>2); for complex 

representations the singlet does not appear in the 

decomposition of r®r . 

r is equivalent to r and there is a basis in which the 

representation matrices are purely real (in which 

basis r is equal tor) (e.g . all adjoint representations of 

compact simple Lie groups); for real representations 

the singlet appears in the decomposition of the sym­

metric part of r®r . 

r is equivalent to r, but there is no basis in which r is 

equal to r (e.g . fundamental representations of ~ym­

plectic groups) ; for pseudoreal representations the 

singlet appears in the decomposition of the antisym­

metric part of r®r . All pseudoreal represe n tations 

have even dimension. 

For our purposes the basis of greatest interest for a complex 

representation is that in which the Cartan subalgebra is diagonal; the CP 

transformation properties of a set of fields transforming according to r 

are simplest in this basis. For any representation, under the action of 

the group, 7'J transforms as 
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(B.9) 

where g is an element of the (unitary) representation r in the TJ basis . It 

follows that 

(B.lO) 

If r is a complex representation and if TJ are scalar fields then aJJ-TJt~TJ is a 

group (and Lorentz) invariant (we have not yet gauged G; gaugin~ 

replaces all derivatives by gauge covariant derivatives). If the 17 are 

(left-handed) fermi fields then i(TJtal-lBJ4r]-(aJ4r]'t)al-lTJ) is a group (and 

Lorentz) invariant. In both cases the requirement of CP invariance gives 

fJ=O. Thus (CP)2= 1 when acting on a complex representation. 

Real and pseudoreal representations both have the property that, for 

an arbitrary basis there is a unitary matrix V such that all of the 

representation matrices satisfy g •=Vgvt. If we apply this relation twice we 

find g =V#Vgvtv'l' . Thus the (unitary) matrix V#V commutes with the 

representation and thus, by Shur's lemma, must be proportional to the 

identity: V#V=al. Since V is unj.tary it follows that v" =aV. Applying this 

relation tV\Iice then gives n2= 1; thus, the matrix Vis either symmetric or 

antisymmetric. These two alternatives correspond to the real and the 

pseudoreal cases respectively. We now discuss these cases in turn. 

If r is a real representation, then one may choose a basis TJR in which 

all the representation matrices g are real (orthogonal). The action of the 

· group ca.IlLot mix the real with the i.rnaginary parts of TJR. Th:...:s, for 

scalar fields we may choose 1'/R to be real; this gives us the minimal set of 

fields needed to construct the representation. For fermi fields we are 

obligated to take an appropriate linear combination of fields transform­

ing as r to assure definite transformation properties under the Lorentz 
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group; i.e., the representation must be "doubled". (There exist an 

equivalence class of representation TJR connected by orthogonal similarity 

transformations.) This basis is obtained by the unitary transformation U 

such that 

(B. ll) 

is real; hence 

(B.12) 

so lhat the matrix which effects the equivalence between -r and r is ::<ym­

metric (this is related to the fact that the singlet is in the symmetric 

part of r®r). The TJR is distinct from the basis TJD in which the Car tan 

subalgebra is diagonal, but may be obtained from it by a unitary transfor­

mation UR . In the TJR basis, the action of the CP operator is obtained 

from eqn (B .5) as 

(B.13) 

(For scalars the complex conjugation on the right-hand side of this equa­

tion is superfluous.) It is clear that we may choose UR so that each of its 

elements is either purely real or purely imaginary. It follows that UR u_k is 

a real (orthogonal) matrix and that (UR UJ}2= 1. By an appropriate orthog­

onal matrix we may diagonalize URU.l; its eigenvalues are l's and -l's . 

Consequently we may work with a basis in which each 17f is an eigenstate 

of CP (it is a me1nber of the equivalence class mentioned above) . If, 

choosing TJR to be real, we act on it a second time ~ith CP vre get 

(CP)2(TJR)=(URU1}2M'TJR=,f. Thus (CP)2=1 when acting on a real represen­

tation. 
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A. pseudoreal representation, r, is one for which r is equivalent tor, 

but there is no basis in which the representation matrices are real. In 

any basis there is a unitary matrix C such that 

g •=Cgct (B.14) 

and Cis antisyrnrnetric (this is connected with the fact that, for a pseudo­

real representation, the singlet is in the antisyrnmetric part of r®r) : 

CT=-C . (B.15) 

Although there is no basis in which the representation matrices are real 

there is a basis (with representation matrices gZ) with the property 

(B.l6) 

where Z is the antisymrnetric orthogonal matrix [50] 

-1 0 0 .. ·] 
0 0 0 

Z= 0 0 -1 = diag(i'T2, i'T2· ... ) . (B.17) 
0 1 0 

Note that since Z is related to C by a unitary similarity transformation, 

and since ~=-1, it follows that c2=-1. 

If TJ transforms as a pseudoreal representation, then a conjugation 

matrix C may be defined so that the constraint CTJ=7'J ~ may be imposed as 

long as this constraint does not violate any other syrnmetr~es of the 

theory (in particular, Lorentz invariance; this constraint cannot be 

imposed on the fermi fields of definite chirality with which we work). This 

amounts to the statement that the minimal number of degrees of free-

dam for a set of scalar fields transform1ng as a pseudoreal representB.ticn 
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may be chosen to be equal to the dimension of the representation, as is 

certainly true for a real representation, but definitely not true for a com­

plex representation. The obvious choice for this conjugation matrix is 

C=C. Thus, if 1'J is a set of scalar fields with this constraint imposed, the 

usual kinetic term vanishes identically; B~TJt~=B~TJTcT~TJ=O since C is 

antisyrnmetric [32,51,52]. A normal kinetic term can be formed for scalar 

fields transforming as a pseudoreal representation only if the representa­

tion is "doubled" by taking an additional set of scalars x satisfying x•=Cx 

and forming the combination p=f']+ix; then the kinetic term for p 

becomes B;.J>'t~p=2iB;.JX7 C~r;, which is nonvanishing . We can act \-vith CP 

twice on the fields p as follows : (CP)2p= CP(TJ •+ix•)= CCP(r;+ix)= c!-p= -p , 

since £:2=-1 [32]. We can build a fermi field (of definite chirality) as fol­

lows. If 1/1 and ~ satisfy t•=Ct/1 and ( •=C~ and transform, under CP as 

'ljl .... a27f; •=Ca21/l and ~ .... -a2~ •=-Ca2{, then the combination +=1{1+i~ transforms 

as a left-handed field. Under CP + .... a2+ •= Ca2(t-it) and, under the action 

of CP once again, (CP)2: + .... c2a2("+i()= -+, which is the same result as for 

the scalar case [32,51 ]. 

Given two vectors TJ and x transforming as the pseudoreal representa­

tion r, there are two ways to form invariants under G (for simplicity v;e 

write in the Z basis): 

(B.18) 

and 

(B . l9) 

Whether one of these expressions is useful depends upon whether it can 

be made to have useful transformation properties under the Lorentz 
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group . If ~z are left-handed fermi fields (and therefore we are taking a 

"doubled" pseudoreal representation) and >f =iu~~z, then it is eqn 

(B.19) that is the Lorentz singlet; if x_Z =TJz, then eqn (B.1i3) is the Lorentz 

singlet [32,51]. 

We now consider the action of CP on gauge vector fields A_! . Under an 

infinitesimal gauge transformation parametrized by r.>a, the gauge poten­

tials behave according to 

(B .20) 

where the C:c are the structure constants for G defined in terrns of the 

infinitesimal generators (the Lie algebra) ra by 

(B.21) 

To discuss CP we need only consider global gauge transformations, for 

which the last terrn in (B .20) is absent. The gauge vectors are real if the 

generators ra are chosen to be Hermitian (and hence if the group param­

eters are chosen to be real). 

By an appropriate choice of basis on the group manifold one can 

choose C:c =if abc where f abc is completely antisymmetric and real . This is 

the choice that is usually made. By virtue of the fact that the structure 

constants satisfy the Jacobi relation one rnay choose them to be the ele­

ments of the generator matrices in the adjoint representation. In this 

case the choice C:c =if abc renders the adjoint representation matrices 

real. It is not possible to choose t he generators in the adjoint represen­

tation to be the structure constants, to have Hermitian generators and to 

have the Cartan subalgebra diagonal all at the same time. If a basis is 

chosen so that the ra are all Hermitian, then the fields A" may all be 
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taken as real . This basis makes the reality of the adjoint representation 

manifest, and, as discussed above, gives 

(B.22) 

where t;~=±1 (depending on the value of a). 

Using the above results we shall now discuss the conditions that the 

matrices of the group generators and the Cle bsch-Gordan coefficients 

must satisfy so that the action of CP on the fields transforms a given 

term in the Lagrangian into its Hermitian conjugate (when all couplings 

are set to unity). 

If 1J'i. is a column vector of (left-handed) fermions transforming as 

some representation r, then in its gauge invariant kinetic term we have 

the term 

(B.23) 

If we work in the basis of r in which the Cartan subalgebra is diagonal 

then, upon acting with CP on the fields, we get (note that a2a~a2 =(af.I.)T) 

(E .24) 

where we have used the anticommutativity of the fermi fields and the 

thrice-repeated index a is summed over as are all other repeated indices . 

For eqn (B.24) to be the Hermitian conjugate of eqn (B.23) we must have 

~=ta Tfi (no sum on a). (B.25) 

Thus we must have tCI=+l for the elements of the diagonal Cartan 

sub~ebra. The rem.aining generators (in the basis in which the Cartan 

subalgebra is diagonal) are purely real or purely imaginary accordingly as 
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~=±1. These conditions also suffice to render the gauge invariant scalar 

kinetic term CP invariant. 

We may now digress for a moment to consider the gauge vector boson 

mass matrix and its eigenstates at tree level. This matrix is real and 

therefore cannot itself violate CP. Consequently its eigenstates, if chosen 

to be Hermitian fields, must also be eigenstates of CP . Generally, those 

eigenstates will not be states with definite U(l) quantum numbers (unless 

those quantum numbers all vanish). In that case there will be at least a 

twofold degeneracy in the mass matrix where the mass eigenstates have 

opposite CP eigenvalues. If we call such a pair of eigenstates A; and A; 
(where ±indicates the CP eigenvalue) then the combinations (A; ±A;)I -v'2 

are states of definite U( 1) quantum numbers and 

(B.26) 

If T± is the linear combination of generators that A;! couples through, 

then (A; ±iA; )I~ couples through ( r+ ±iT-)/ v'2, which is purely real . 

To discuss t.he Yukawa terms we consider (left-handed) fermi fields 1/li 

and Xm transforming as irreducible representations r'¥1 and rx respec­

tively. We also consider scalar fields rpa transforming as some irreducible 

representation r • appearing in the Clebsch-Gordan decomposition of 

"•®rx. A group invariant Yukawa term is then of the form 

(B.27) 

where Rtma are group-coupling coefficients to couple r 1 . rx and r, to make 

a singlet. We assume that the bases for the representations r 1 and rx are 

chosen so that the Cartan subalge bra is diagonal. If we also choose the 

basis for r, so that the Cartan subalge bra is diagonal, then the action of 
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CP changes (B.22) into 

·,.,,t t tR 
'Z. .,.., U2Xm~a ima · (B.28) 

For this to be the Hermitian conjugate of (B. 27), Rma. must be real. If r, 

is a real representation in the real basis (we call the group-coupling 

coefficients Rllna in this basis) then CP('iO~)=ta9'a (no sum on a.) where 

ta=±l as discussed above. The action of CP then changes (B.27) int.o 

(B.29) 

We must then have 

(no sum on a) . (B.30) 

Thus, Rlin.a is purely real or purely imaginary accordingly as ta=±l. 

The group-coupling coefficients for the coupling of scalars to scalars 

can be treated along the same lines as above. 
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Appendii C) Momentum Space Weights: Dau.hle-cut Diagrams 

In this appendix we evaluate the momentum space weight of the 

"double-cut" diagram of fig . 4.4. We present the results normalized by the 

Born diagram with massless ferm.ions . 

We take the fermions i 1, i 2 , is and i 4 in fig. 4.4 to have masses m 1, m 2 , 

m 5 and m 4 respectively. X and Yare bosons with masses mx and m y. The 

coupbngs to be used depend upon whether X ( Y) is a scalar or a vector 

boson. 

We have, in the center of mass system of the X I 

where 

2(m.f +ml) 1/
2 

m} 

(C.l) 

(C .2) 

(C.3) 

and c I d I e I 1 and g are various products of gamma matrices and chiral 

projection operators which depend upon the specific diagram being 

evaluated. 
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Some further kinematical facts are : 

(C.4) 

(C.5) 

k · q =k. q: -I k I I tHx } 
k 2=mi; q 2=mi · 

(C.6) 

As an example, take the case of vector exchange in vector decay with 

all of the fermion masses set equal to zero. We obtain 

1 

Im[/w]= -1 J d:::-~1 -~ 
32n1'r [ c()',uP(q-p)~P] -I (k -q )2-my 

(C.7) 

where P=(l±)'0)/2 and v=my/mx. 

The results for the remaining three cases are 

(C.B) 

1 1~2 Im[lsv(v)]=~6 n 2 1T' 1 +v 
4 

(C.9) 

and 

(C.10) 
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Plots of these functions are given in fig . C. l. 

For the case m 2=m.:!=m.4=0 we define u=m 1/mx . We then get the fol­

lowing exact results and Taylor expansions about u=O: 

=~61 2(1+v2)ln,~+2v2+3 161Tl ~ 

r r v2 1] u6 
-l2+(1--v2)lnl~ u 2

- ( ~) l+v J 3,1 +v-

u4 
+--~ 

2(1+v2) 

(C.ll) 

(C . l2) 



and 
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1 r~2 Im[lsv(v, u)]= t:::-<
8 

1-u2) lnl 2 2 
1f ll+v --u 

- u4(1+2v2) 
2(1 +v 2) 2 

u 6(1 +3v 2) 

3( 1 +v 2) 3 . I (C .13) 

(C.14) 

We note here the expression for the Born rate (when all couplings are 

set to nnity) of the vector and scalar decay diagrams (normalized by the 

rate with massless ferrnions) : 

1-[!!l-! 12 _f ~2 
~l~ 

(C.15) 



-157-

lo7L_ __ ~,o~2~--------,~o~,----------,o~o~--------,~o~-,--~ 

m5 /m5 • 

Fig . C.la: Momentum space weight for scalar decay with scalar exchange 

for massless fermions . 
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-Im lvs mx =0.5 IIev 

1m lsv 

~~~oL2L---------,~o-,---------~~o-o---------,~o--~---------~~o2 

ms/mx 

Fig. C.1 b: Momentum space weights for scalar decay with vector exchange 

(SV) and for vector decay with scalar exchange ( VS)for massless fer­

miens. The mass of the vector is taken to be 0.5 neV. 
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Appendix D) lm(O) 

In this appendix we discuss some general features of the quantity 0 

appearing in the expression for the average baryon number generated in 

the free decays of a boson and its antiparticle, eqn (4.15) . We specialize 

to the case in which each fermion family transforn1s as a single irreduc.:i­

ble representation, r, of the simple gauge group G. We "YtTite an element 

of a fermion multiplet as 'f/lf (all fermion fields are taken to be left-handed 

two component spinors; we suppress any helicity labels), where the latin 

index specifies the family and the greek index is the group index. The 

couplings of the gauge vector bosons to the fermions may now be VvTitten 

as 

(D.l) 

where T (1.~ are the (Hermitian) generators of G in the fermion representa­

tion r. With more than one family the fermion fields can couple directly 

to any set of scalar fields transforming as one of the irreducible 

representations in the decomposition 

(D.2) 

(if all fermions appear in a single irreducible representation, they can 

only couple to scalar representatins appearing in the symmetric part of 

(D.2)). In general there may be several scalar multiplets which transform 

according to a given irreducible representation (whether or not it 

appears in (D.2)); that is, the scalar sector may have its own family struc­

ture. We write the l th scalar family which transforms according to r" as 

(rp")l. The Yukawa couplings can then be written as 
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where all repeated indil'es are . summPd over (even those repeated 

thrice) . The (h" )i;t are the Yukawa coupling constants and the (R" )o.fh' are 

the Clebsch-Gordan coefficients coupling r11 to r®r to make a singlet. Tne 

(Ra. )a~J·; may be taken as real when all fermion and scalar representations 

are taken in the basis in which their Cartan sublage bra is diagonal (as 

discussed in appendix B) ; also, for a given r 11 , (Ra.)aftr is either symmetric 

or antisymmetric under the interchange of a and {3 . ~a. is a unitary 

matrix defined to vanish when rb is a complex representation. If ra is a 

real representation, then (fla. )?P is symmetric, whereas if r 11 is pseudoreal, 

(fl")?P is antisymmetric. Furthermore, if ra. is a real representation and a 

basis is chosen in which the representation matrices are real, then 

(fl11 )?P:o?P . The second term is an independent term in the Lagrangian 

only if r is a doubled real or pseudoreal representation. 

The various fields appearing in (D.l) and (D.3) may be rewritten in 

terms of mass eigenstate fields by the unitary transformations 

(rpCI >i=( VU)lprtJp +( ~)lprtJp 

In eqn (D .4b) if, for a given P, the field rpp is a Hermitian field, then 

(D.4a) 

(D.4b) 

(D.4c) 

(D.5) 

Furthermore, if the representation ra. is a (undoubled) real representa­

tion and the basis of the representation space is chosen so that the fields 

(rp11 )l are Hermitian (real), it follows that 

(D.6) 
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(this condition was used in writing eqn (D.5c); the vector mass malrix i:~ 

discussed in appendix B). These transformaUc:1s satisfy the unitary rela-

tions 

(D. ?a) 

(D. ?c) 

In eqn (D. ?b) the indices a and b refer only to representations that 

appear in the decomposition of r®r, i.e., representations that can couple 

to the fermion-fermion operator. There may be other scalar representa­

tions in the model which do not couple directly to fermions (indeed, in 

general, with fermions transforming according to the fundamental 

representation of the gauge group, there must be such scalar multiplets 

except in the case of E(6) • [27]). Thus, to invert the expression (D.?b), 

one must allow the indices a and b to run over a set of values which 

includes these multiplets as well. However, the inverses of the expres­

sions (D.4) are not needed in the following. 

In terms of the mass eigenstate fields eqns (D.l) and (D.3) become 

•In an E(6) model a fermion family (or, in some incarnations of the model, more 
than one fermion family) can be put into the fundamental 27 dimensional 
representation. To break E(6) down to SU(3)&S'U(2)L®U(l)y and then to 
,SU(3)eU(l).uwe need only use scalar multiplets that appear in the decomposition 
of 21S27: 

2?W27={2'7+35t')s+351A . 

E(8) is the only compact simple Lie group with this property. 

(D.B) 
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Ua"' aU/ • (f'a )aaty_ (R" )Ah~ [ (h a )iJl: ( VC )lp + (ha )iik [ ( }ia )fp) •(6a )7P) ~ p 

+[(h• k.c (il-)lp+(h•~ [(JIG )fp] •(6a )7P)9'J>~+h . c . 

=U.•. Uf,. ("-')<Pt"-H~)39'p+(f~)ij9'.PHRa)4h+h.c . , 

where 

and 

(D.9) 

(D.lO) 

(D.ll) 

(there is no sum on a in the two preceding equations). We have the fol­

k:Jwing symmetry as a consequence of the Pauli principle : 

(D .12a) 

and 

(D.12h) 

We can now consider the quantity 

(D.13) 

which appears in eqn (4.15). in the limit where the fermion m asses are 

much smaller than boson masses. In this case the imaginary part of the 

loop integrals. lm[/n] are (as discussed in chapter 4) independent of 

their indicies i 1, i 2 • i 8 and i" and we may therefore sum over the relevmt 

indices (the fermion mass eigen~tate indices) in the express ~ on for A In 
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the 1 e~ u1ti~ expression ihc t:ontributions of fermion mixing , 
a rop 

due to the condition (D.?a) and the absence of mixing at tb:s order 

betweP.n fermions of different baryon number . This last fact allows us to 

implement eqn (D.?a) in spite of the presence of the factor 

For the case of vector exchange in vector decay (fig . D.l ) we find 

(D. l4) 

where N1 is the number of fermion families and 

T~=W7PT~ (D.l5) 

is real as discussed in appendix B. There is no summation on P or S in 

(D. l4) because the bosons are specific mass eigenstates (neither the 

decaying nor the exchanged boson species is summed over). As a conse­

quence of the reality of rP and T5 it follows that 

Im(Aw)=O . (D . l6) 

The expressions for Asv, Avs and Ass are not, in general, real•. 

For Asv there are two types of diagram that may contribute as sho·wn 

in fig . D.2. Diagrams in which the directions of the fermion arrows are 

reversed are equivalent to one of the diagrams already listed. Fig. D.2a 

gives the contribution 

~ey are unreal. 
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Fig. D. l: Vector decay witt_, vector exchange . Arrows on the ferrrJon lines 

indicate the flow of the left-handed helic1ty. 
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p p 
-~-- -~--

(a) 

p p 
-~-- -~--

(b) 

Fig. D.2: Scalar decay with vector exchange . Arrows on the fermion lines 

indicate the flow of the left-handed helicity. 
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91 ~r:. (rJ)~ (Ra. )~[ (r.t )~ (!?" )"'4] -~ B a-B ~-(B v-B ~) ~ I (D.l7) 

and fi.g. D.2b gives 

(D.lB) 

H the exchanged scaucr ' boson cannes a nonzero conserved quantuxn 

number (such as electric charge), then one of the two preceding expres­

sion~ will vanish for each set of a:, {3, J1 and v. 

For ~ there are two corresponding types of diagrams as shown in 

fig. D.3. These diagrams differ by reversal of the direction of the fermion 

arrows. If we reverse the direction of the exchanged vector boson we do 

not get a new type of diagram. Note that fig. D.3a and fig. D.3b 

correspond to processes with distinct fmal states in contrast to the situa­

tion for Asv. Fig. D.3a gives the contribution 

, (D.l9) 

and fig . D.3b gives 

g2(f'J)~ (R0 )4~[ (r~)~ (R*' )~....S] ..,~~ TC~ [B a+ B ~-(B ~+ B v)] . (D.20) 

If S or P carry a conserved quantuin number, then one of the two preced­

ing expressions vanishes for each choice of a:, {3, J.L and v. Apart from the 

baryon number factors, eqns (D.19) and (D.20) are the complex conju­

gates of eqns (0.17) and (D.18) respectively. 

For A.ss we again have two types of diagrams as shown in fig. D.4. The 

diagrams corespond to processes with distinct final states. Reversal of 

the direction of the exchanged scalar boson yields no new type of 

diagram. Fig. D.4a gives the contribution 
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(a) 

(b) 

Fig. D.3: Vector decay with scalar exchange. Arrows on the fermion lines 

indicate the fiow of the left-handed helicity. 
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p p 
-~-- -~--

(a) 

p p 
-~-- -~--

(b) 

Fig . D.4: Scalar decay with scalar exchange . Arrows on the fermion lines 

indicate the flow of the left-handed helicity. 
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(D.21) 

while fig . D.4b gives 

[ (f$)~ (Ra )v~(rJ,)i~ (Rb )a.S6] ~(r~ )]le (Rc )~J#J(r~)~ (Rd. )ave (D.22) 

x[ -~Ba+B~+B~+Bvn . 

Again, if S or P carry a conserved quantum number, then one ~f the 

preceding expressions will always vanish for each choice of a:, {3 , J.L and 1.1. 
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~pendix E) Symmetries of lhe Illustrative SO( 10) Model 

In the model of chapter 9 we have a single family of fermions , _51 , 

the obligatory adjoint of vectors, 45v and, for th e sake of the present dis-

cussion, we consider the following set of scalar representations: a 126H, a 

cornplex 10n (=10 1 -t-il~ where 101 and 102 are real rt:presentations) and a 

54n . Later we may replace the complex 10 by a real 10 and there by spe­

cialize to the discrete symmetry, 9.14, of the model of chapter 9. We 

choose the Yukawa terms in this model to be 

(E . l) 

Ignoring for the moment the terms in the Higgs potential, this model 

possesses a global U(1)x symmetry. If we call the generator of U(1)x, X, 

then we have X=1 for 161 , X=2 for 126n and X=2 for 10H; all other values 

for X are zero. These values corespond to the transformations 

(E.2) 

U(1)x may be broken down to a discrete symmetry by various terms in 

the Higgs potential: as long as this discrete symmetry is large enough the 

Yukawa terms (E.l) are natural. However, for the particular case where 

the discrete syrn.m.etry is that generated by the transformations 

(E.3) 

the Yukawa terms (E.1) must either be augmented by the term 

(E.4) 
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OJ the thcury may be modified so that the lDH is J·ea.l. The discrete sym­

metry (E .3) may be considered as a special case of (E .2) for a=±Tt/ 2. We 

wilJ therefore treat the theory as if it had the full U( 1) symmetry, special­

izing later to the case cx=±1T/ 2 (and thus adding in the parameter C if the 

10H is con"lplcx). The symmetry (E .3) is the Sy'rrunetry of the most gen-

eral Yukawa coupling in this model. We will see below that although this 

symmetry is very simple it leads to a richer symmetry after SO(lO) has 

been broken via the SU(5) singlet vacuum expectation value of the 126H · 

The global symmetry U( l)x is spontaneously broken when 126H 

obtains a vacuum expectation value, as is the local group U( l)R appearing 

in S0(10)~SU(5)®U(l)n. U(1)R distinguishes among the terms in the 

SU(5) decomposition of a given 80(10) representation. We call the gen­

erator of U(l)n. R. At temperatures sufficiently large so that 

SU(3}®SU(2)L®U(1)y is unbroken, 126H will have a vacuum expectation 

value only along its SU(5) singlet direction. At such a temperature a 

linear combination of X and R that vanishes along that direction will still 

generate a global U(1)z symmetry even though U(l)R and U(l)x are 

separately spontaneously broken •. To determine the relevant linear 

combination we must compute the values of R for the components of 

126H (in particular the SU(5) singlet component) . . 
We call the values of R for the components in the decomposition 

126=1+5+10+15+45+50 respectively a., b, c, d, e and f . Similarly for 

16=1+5+10 we use fl, 1 and 6; and for 10=5+5 (where 10 is real) we use p 

and -p ( where only in the last case have we implemented the 

•At this temperature therefore nc Goldstone baaons would appear even if U(l)x 
was respected by the Hi&P potential. However, at lower temperatures this new 
global U(l)z will cenent.lly be broken in a way that produces a Goldstone boson. 
Thus, we must break U(l)..r tknrn to a discrete symmetry in the Higgs potential. 
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tracelessness of X) . 

Two conditions on (:3, -y and o can be obtained by considering the 

antisymmetric product of two 16's 

(E.5) 

In the SU(5) decomposition of the (real) 120, 

120=5+n+10+10+45+45, (E.6) 

the 5 and the 5 are conjugates of one another: similarly for the 10 and 10 

and for the 45 and 45. Thus the values of R for each of these pairs are 

equal and opposite. The 5 in (E. 6) arises in the combination 

(E.7) 

appearing in (E.5). Similarly the 5 comes from 

(E.B) 

Thus it follows that 

-y+6=-(f3+r) . (E.9) 

Similarly considering the 45 and 45 gives us 

1+6=-26 . (E.lO) 

Thus 

-r=-36= -3; {J=56=5 . (E.ll) 

(We choose to normalize so that 6=1.) If we now consider the symmetric 

product of two 16's, 
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(E 12) 

and demC!Ild U1at the trace o! R be zero, ~· z lind lhat 

a=lO, b=2. c=6, ct=-6, e=-2,/=2 andp=2. (E.13) 

The linear combination of X and R that we seek, Z, is then 

Z = X-2!]_ 
a 

(E.14) 

The values of Z for the components of 161 , lOy, 54n and 126n are sum­

marized in table E.l. As noted in chapter 9, when the X symmetry is bro­

ken to the discrete symmetry (E.3), the Z values 8/5 and 12/5 are 

equivalent as are the values 4/5 and 16/5. 
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16i = 1(0)+5( ~+10( ~1 

- B 12 
10H = 5(-)+5(-~ 5 . . 5 . 

54H = =15(0)+ 15(0)+24(0) 

i 126n = 1(0)+5( ~+10( ~+Til( lf7+45( ¥1+50( ~ 

The SU(5) decompositions of some S0(10) representations and their 

associated values of Z. 
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