
A Pascal Machine Architecture
Implemented in Bristle Blocks,
a Prototype Silicon Compiler

Technical Report 2883

Thesis by: Larry Seiler
Advisor: J. Craig Mudge

In Partial Fulfillment of the Requirements

for the Degree of Master of Science

California Institute of Technology

Pasadena, California .

1980
(Submitted July 3, 1979)

Abstract

This thesis presents the multi-chip design of an architecture which directly implements the

language Pascal. The design uses custom VLSI rather than standard chips in order to

increase speed and reduce the number of chips needed.

The integrated circuits comprising the architecture are designed using Bristle Blocks, a chip

design tool developed at Caltech by Dave Johannsen.6 Bristle Blocks is called a silicon

compiler because it will put together an entire integrated circuit from a high level description

of its function. Bristle Blocks can be used to design datapath processor chips, where

external microcode is used to control operations on data busses inside the chio.

The Pascal machine architecture presented here is based on the EM-1 instruction set

designed by Andrew Tannenbaum. 11
•13 The EM-1 instruction set is intended to allow

efficient compilation of stack-based, high level languages. Tannenbaum supplies static

frequency data which is used heavily in making design decisions in the Pascal machine

architecture.

VLSI design has several important differences from design using standard components. A

large amount of function can be placed on a single chip, e.g., approximately 30,000

transistors on the Intel 8086, but only a small number of pins are available for off -chip

communication (typically 64 or less). This requires designs to be highly modular. In the

NMOS technology used at Caltech, driving signals off-chip takes up to ten times the time and

energy of on-chip communication. This requires inter-chip communication to be limited as

much as possible. Finally, the large amount of computing power available in VLSI

encourages the use of concurrency to gain execution speed.

This thesis is structured as follows. The thesis begins with a section defining the principles

to be followed in designing the Pascal system architecture. Following that are sections

describing Bristle Blocks o.nd the EM 1 architecture. Next, the overall architecture of the

Pascal machine is described, followed by sections detailing the system data busses, the

common elements in the processors which make up the system, and the processors

themselves. A conclusion section summarizes the work, provides a brief critique of Bristle

Blocks, and includes recommendations for further work. Finally, the appendices document

the Bristle Blocks datapath elements and the EM-1 instruction set.

ii

iii

Table of Contents

1. Design Principles ... 1

2. Bristle Blocks Description ... 3

2.1 Design Constraints .. 3

2.2 Cell Library ... 4

2.3 Processor Types .. 6

3. EM-1 Instruction Architecture .. 9
3.1 EM-1 Machine .. 9

3.2 Instruction Set Format ... 10

3.3 Procedure Call and Return Mechanism .. 11

3.4 Alternate Context ... 11

3.5 Array Access .. 12

4. Pascal System Architecture .. 13

4.1 Bus Structure ... 13

4.2 Local Stacks .. 14

4.3 System Structure ... 15

4.4 Instruction Issue .. 15

5. Bus Definitions ... 17

5.1 Memory Bus ... 17

5.2 Stack Bus ... 18

6. Processor Section Definitions .. 20

6.1 Stack Bus Interface ... 20

6.2 Local Stack Controller ... 20

6.3 Instruction Scanner ... 23

7. Arithmetic and Stack Processors .. 28

7.1 Integer Processor .. 27

7.2 Floating Point Processor ... 32

7.3 Stack M(j,nager ... 32

Table of Contents iv

8. Memory Manager ... 37

8.1 Variables Section ... 39

8.2 Execution Section and Instruction Scanner ... 39

8.3 Execution Algorithm .. 42

9. Instruction Unit .. 44

9.1 Internal StructurA .. 44

9.2 Branch Instructions ... 49

9.3 Procedure Call and Return Mechanism .. 49

9.4 Instruction Pre-issue ... 51

10. Conclusions .. 53

References .. 54

Appendix A: Bristle Blocks Datapath Elements ... 55

1. Constant Source .. 56

1.1 Runtime File ... 56

1.2 Details File ... 58

1.3 Source File ... 59

1.4 Test File ... 61

2. Fixed Value Content Addressable Memory .. 63

2.1 Runtime File ... 03

2.2 Details File ... 64

2.3 Source File ... 65

2.4 Test File ... 67

3. Variable Value Content Addressable Memory .. 69

3.1 Runtime File ... 69

3.2 Details File ... 70

3.3 Source rile ... 71

3.4 Test File ... 73

4. Fixed Value Double CAM .. 76

4.1 Runtime File ... 76

4.2 Details File ... 77

4.3 Source File ... 78

4.4 Test File ... 79

Table of Contents v

5. Variable Value Double CAM ... 81

5.1 Runtime File ... 81

5.2 Details File ... 83

5.3 Source File ... 83

5.4 Test File ... 85

Appendix B: EM-1 Instruction and Frequency Tables 88

1. Instruction Table, Sorted by Instruction Group .. 90

!)_ ln,:;tructinn Ti:tble, Snrted by Execution Unit --9~

3. Instruction Table, Sorted by Frequency .. 96

4. Instruction Table, Sorted by Mnemonic ... 99

6. Opcode Frequency Table, Sorted by Opcode ... 102

vi

Figures

Figure 1: Physical Structure of a Bristle Blocks Chip ... 5
Figure 2: Bus Structure of a Datapath Bit Cell .. 5

Figure 3a: Multichip Processor ... 7
Figure 3b: Single Chip Prucessor ... 7

Figure 3c: Memory Interface Processor ... 8

Figure 3d: One Instruction Computer ... 8

Figure 4: Pascal System Architecture ... 16

Figure Sa: Local Stack Controller Block Diagram ... 21
Figure Sb: L..ocal Stack Controller Layout 22

Figure 6a: Instruction Scanner Block Diagram .. 25

Figure 6b: Instruction Scanner Layout ... 26

Figure 7: Integer Processor Block Diagram ... 29

Figure Sa: Integer Processor Execution Section Block Diagram 30

Figure Bb: Integer Processor Execution Section Layout. .. 31

Figure 9: Stack Manager Block Diagram · .. 34

Figure 10a: Stack Manager Execution Section Block Diagram .. 35

Figure 10b: Stack Manager Execution Section Layout ... 36

Figure 11: Memory Manager Block Diagram .. 38

Figure 12a: Memory Manager Execution Section Block Diagram40

Figure 12b: Memory Manager Execution Section Layout ... 41

Figure 13: Instruction Unit Block Diagram ... 45

Figure 14a: Instruction Unit Decode Section Block Diagram ... 47

Figure 14b: Instruction Unit Decode Section Layout... .. 48

Figure 15: Constant Source Layout and Circuit Diagram ... 62

Figure 16: Fixed Value CAM Layout and Circuit Diagram .. 69

Figure 17a: Variable Value CAM Layout ... 74

Figure 17b: Variable Value CAM Circuit Diagram .. 75

Figure 18: Fixed Value Double CAM Layout and Circuit Diagram 80

Figure 19a: Variable Value Double CAM Layout.. .. 87

Figure 19b: Variable Value Double CAM Circuit Diagram ... 87

vii

Tables

Table 1: EM-1 Machine Registers .. 9

Table 2: EM-1 Instruction Formats .. 10

Table 3: Stack Bus Messages .. 18

Table 4; Lui;C:1.I Slack Unit Messages ... 23

Table 5: Integer Processor Instructions .. 28

Table 6: Floating Point Processor Instructions ... 32

Table 7: Stack Manager Instructions ... 33

Table 8: Memory Manager Instructions ... 37
Table Q; Instruction Unit Instructions 44

Table 10: Constant Source Values .. 56

Table 11: Instruction Groups ... 88

Table 12: Operand Types ... 89

Table 13: Instruction Execution Processors ... 89

Tahle 14: Special Case Codes ... 89

Table 15: Stack Push/Pop Codes ... 89

Section 1: Design Principles

1. Design Principles

In selecting the principles to follow in designing the Pascal architecture, it is important to

keep in mind the differences between designing in custom VLSI and designing using

standard SSI or MSI parts. Many of the assumptions behind traditional switching theory are

false when applied to VLSl.7 For example, switching theory teaches how to minimize logic

elements, but ignores the communications paths between the logic elements. In VLSI, it is

the wires that take up most of the chip area and it is the delay involved in driving them

which takes up most of the time. So in VLSI, communication costs are more important than

logic costs.

When sending information off-chip, communication costs are even more important. Using
conservative processing technologies, driving signals off.chip can take up to 1 o times the

time and energy as on-chip communication. With design rules shrinking as the technology

advances, that factor will worsen to 25. Therefore, multichip VLSI systems must be designed

to minimize interchip communication.

Another difference is the issue of modularity. In a circuit designed with SSI, it is easy to test

internal signals to find a fault. Using VLSI, is is very difficult to gain access to internal

signals. This means that VLSI chips must be designed with well-defined interface

characteristics. Given the large amount of processing power available on each chip, it is

acceptable to design them such that they check their inputs to insure that the interface

protocol is being followed. If an error condition developes, the VLSI chip should be able to

detect it and report it.

Given that interchip communication is at a premium, it is reasonable to have the separate

VLSI chips operate as independently as possible. Requiring interchip communication to use

asynchronous, request/acknowledge protocols increases that independence. Given the

large variety of ways in which the various chips can communicate, it is also acceptable to

require interchip communication to be based on a message protocol. After the design is

fairly fixed it would be possible to optimize the communication busses. Al the beginning of a

design task it is important to include all the flexibility possible.

The result of the above principles is a multi-chip architecture where each chip is a custom

designed VLSI processor. This approach is seldom used in the computer industry because

the cost of hand designing several VLSI chips for one project is prohibitive. Standard chip

sets, limited custom design, and logic arrays are typically used instead to gain some of the

advantages of VLSI at a reasonable cost. None of these methods are completely satisfactory

for designing an architecture according to the above principles. Instead, we propose the

use of a silicon compiler. The advantages of using the Bristle Blocks silicon compiler are

Section 1: Design Principles

that it produces powerful, customized processor chips and greatly reduces chip design time.

Without Bristle Blocks or some other silicon compiler, the construction of the architecture

presented in this thesis would not be feasable.

2

Section 2: Bristle Blocks Description

2. Bristle Blocks Description

Bristle Blocks is an integrated circuit design tool developed at Caltech by Dave Johannsen.5

The name refers to the design style which Bristle Blocks enforces. Users select or define

low level cells, or blocks, which are specified by their internal structure and their interface

points, or bristles. Blocks are composed to make larger blocks, with the interconnect work

done completely by the Bristle Blocks system. Bristle Blocks was programmed in ICL

(Integrated Circuit Language), a language developed at Caltech by Ron Ayres.1•2

Drawing an analogy between integrated circuit design and software design, Bristle Blocks Is

referred to as a silicon compiler. In Bristle Blocks, the designer specifies the blocks and

their interconnect structure in a high level language. Designing ICs by laying down
individual wires and boxes corresponds to programming in machine code. A simple artwork

language which supports macros (symbols) corresponds to using an assembler. Bristle

Blocks qualifies as a compiler because the blocks it manipulates are not just fixed structures,

whose exact positions and interconnect are specified by the designer. Instead, the blocks

are parameterized functions whose placement and interconnect are done by the Bristle

Blocks system. The blocks are parameterized so that Bristle Blocks can adapt a single block

to a variety of conditions. For example, blocks can be stretched to make the pitch of their

bristles match up with those of adjacent blocks. Also, a block can be specified so that the

ratios of its bus drivers change depending on the capacitance of the bus it is driving.

2.1 Design Constraints

Bristle Blocks is not intended to be used to design all possible integrated circuits. Instead, it

is designed to build chips with a very specific architecture. Other silicon compilers will be

developed to handle other architectures. For example, an IC design system which uses

clocked logic equations to specify a heirarchy of PLAs is presently being developed at

Caltech by Ron Ayres.3

The present version of Bristle Blocks implements a datapath processor driven from an

external microcode store. The data chip used in the LSl-11 chip set is an example of such a

processor. The Bristle Blocks chip is driven by a two phase, non-overlapping clock. The

main section of the chip is the datapath, which contains two precharged data busses.

Memory registers, shifters, ALUs, and 1/0 ports are some of the blocks that can be included

in the datapath section. The control signals from the datapath are generated in the decoder

section, which is essentially the AND plane of a PLA. The decoder inputs microcode bits

from off.chip and performs logic functions on them. Some signals from the datapath. such

as the carry out bit from an adder, are also used by the decoder. The decoder outputs its

functions to a buffer section, which latches them and drives them onto the datapath. The

3

Section 2: Bristle Blocks Description

buffer section also feeds signals from the datapath section to the decoder. Figure 1 shows

the physical arrangement of these sections on the chip. The widths of the datapath, buffer,

and decoder sections are matched by the Bristle Blocks system. The pads are spaced

evenly around the perimeter of the chip.

The datapath section contains data busses and power busses, which run horizontally in

metal. Control lines generally run vP.rtically in polysilicon. Figure 2 shows the arrangement

of busses for each bit in the datapath. A ground bus runs through the center of the cell and

VDD busses run at top and bottom. The corresponding bits of the two data busses run

above and below the ground bus. Blocks designed for the datapath must fit into this

structure.

Datapath elements must be defined in such a way that they fit together well. The rules for

the left and right edges of a datapath element are fairly easy. All features of the element

must be one half of their respective design rule width within the boundary. An exception is

made for metal to diffusion contacts. They may be placed on the four points defined by the

intersections of the data busses and the cell boundaries. These contacts are permitted

because they can be shared by adjacent datapath elements and many datapath elements

need them.

The rules for the vertical spacings of the datapath cells are more difficult. To simplify the

interconnect along the datapath, all datapath blocks are required to have the same spacings

between each of their horizontal busses. Each datapath block is defined to be stretchable,

that is, they are defined such that the spacings between the busses can be increased

arbitrarily beyond a certain minimum spacing. When the datapath is generated, Bristle

Blocks simply finds the maximum required spacings, and stretches out all of the datapath

blocks to match. This is done by defining the internal features of the block relative to the

global variables Y1 to Y4, whose values correspond to the centers of the data and VDD

busses. The center of the ground bus is at zero.

2.2 Cell Library

Bristle Blocks places its emphasis on automating the high level aspects of chip design and.

at least for now, provides little assistance in the job of laying out datapath blocks. There are

several reasons for this. For a human designer, the bookkeeping tasks associated with high

level layout and interconnect ot a chip is the most tedious and error-prone part of the job. A

computer program can do the job more efficiently and more reliably. On the other hand,

efficient small cell design is much easier and less error prone for the human designer. The

most telling reason, though, is that there has not yet been sufficient time to develope low

level design aids for Bristle Blocks.

4

V D D

Hi
Bus

G N D

Low

Bus

VDD

Pascal Architecture Implemented in Bristle B locks
Section 2: Bristle Blocks Description

Oatapat h

Bu.P.Pe>r- :a

O ec:::oder-

Pads

Figure 1: Physical Structure of a Bristle Blocks Chip

Figure 2: Bus Structure of a Datapath Bit Cell

Y3

Y1

Y2

Y4

5

Section 2: Bristle Blocks Description

If each user had to personally design all the datapath elements he wanted, Bristle Blocks

would not be very useable. However, every datapath element that has been designed by any

user can be entered into a cell library and used by any other user. For example, many of

the dataoath elements used in the Pascal system were designed by Dave Johannsen as part

of his use of Bristle Blocks in designing a recent version of OM 2, a 16 bit microprocessor

datachip. He in turn is now able to use the datapath elements designed by the author for

the Pascal system. The cells designed for the Pascal system are documented in Appendix A.

The cell library system works as follows. A datapath element is defined by three code files

and one data file. The code files are the runtime function file, which is executed when a

chip is generated, the source file, which defines the internal structure of the cell, and the

details file. which contains information used by both the runtime and source files. The

source file is compiled to produce the data file, which is used when the chip is generated.

The layout is not the only information that can be recorded in the cell library. Bristle Blocks

allows the use of alternate representations, which are different representations of the same

cell. The alternate representations used presently are the layout, sticks representation,

transistor diagram, logic diagram, and block diagram. The block diagram abstracts the

datapath elements into a row of labeled rectangles, with the data busses above and below.

The data busses are connected to the datapath blocks; arrows indicate whether the bus is

read or written by that block. Having a number of representations available is a great aid to

documentation and provides the possibility for verifying the correspondence of physical and

logical representations.

2.3 Processor Types

Many types of processors can be generated using the Bristle Blocks chip architecture.

Figure 3 illustrates some possibilities relevant to the Pascal system. The multi-chip

processor uses two Bristle Blocks chips: one to process data and one to act as microcode

sequencer. The single chip processor combines the two into one chip. The memory

interface processor is a useful as an intelligent memory controller. Finally, the one

instruction computer produces its own microcode bits internally and accesses an external

memory for datapath transfer instructions.

6

Pascal Architecture Implemented in Bristle Blocks
Section 2: Bristle Blocks Description

3.:
3:
rnn
3::0
00
.:on
-<O

0 ,,,

0
:OU>
-i-<
:OU>

-I
CQFTI c.::x
(J)

Figure 3a: Multichip Processor

Figure 3b: Single Chip Processor

(""")3:
01-1
zn
--t::O
:DO on ro ro
mm
::::0

-0
::a
C)

n
rn
U)
(./)
0
:JJ

7

Pascal Architecture Implemented in Bristle Blocks
Section 2: Bristle Blocks Description

::;::
n1C1
3::0
0-f
:::0:0
-<

n
0 z:s:
-ffTl
::0::3::
00 r:::o
r--< rn
::JJ

CJ
:OU>
-f-<
:OU>

-I
mrn
c:x
(./)

Figure 3c: Memory Interface Processor

PROCESSOR
CHIP

l SYSTEM
DATA BUS

PROGRAM
MEMORY

Figure 3d: One Instruction Computer

8

Section 3: EM-1 Instruction Architecture

3. EM-1 Instruction Architecture

Before defining the Pascal system architecture, it is necessary to describe Tannenbaum's

EM-1 architecture. EM-1 is an experimental machine architecture designed to be

implemented on microprogrammed machines. It is intended to be used to execute stack

based, block structured languages. The EM-1 instruction set is designed to be compact and

easily interpreted. It is afao intended to simplify code generation by high level language

compilers. The information in this section is taken from a paper by Tannenbaum, Stevenson,

and van Staveren.13

3.1 EM-1 Machine

The EM-1 is similar in some ways to the PDP-11 series. It manipulates 16 bit data words.

Addresses are 16 bits long and the least significant address bit selects between the high and
low byte of a word. If 16 address bits are not sufficient, a virtual address upgrade can be

made by adding an 8 bit segment number to each physical address. Address variables in

memory and on the stack then take two words rather than one. This change is not difficult

to make because physical addresses do not occur in EM-1 code, just relative displacements.

Also, only a small number of instructions manipulate addresses on the stack.

The EM-1 architecture defines a set of machine registers which, along with the runtime

stack, define the state of the machine. The registers and their functions are given in table 1

below.

Register

Program Status Word

Procedure Base

Program Counter

Procedure Descriptors

External Base

Local Base

Stack Pointer

Heap pointer

Memory Limit

Function

Saves program status and priority

Points to the start of the code area

Points to the next instruction to execute

Points to the procedure descriptor table

Points to base of stack; used for external variable access

Points to the zeroth local variable in the current procedure

Points to highest occupied word on the stack

Points to lowest occupied word on the heap

Highest byte of memory available in the implementation

Table 1: EM-1 Machine Registers

9

Section 3: EM-1 Instruction Architecture

3.2 Instruction Set Format

The EM-1 instruction set is defined in appendix B. The instructions are described in section

1. Sections 2 to 4 give static instruction frequencies and other information used later in the
thesis. Section 5 gives more detailed frequency data.

EM-1 instructions are specified to be multiples of one 8 bit byte in length. Their main

difference from a standard instruction set is that they do not contain subfields: operands

either take up an entire byte, or the operand is encoded into the opcode. For example, the

load local variable instruction (lol x) is encoded as an opcode followed by an offset from the

local base register. Since accesses to the first few locals are very common, there are

bytecodes set aside for loading the zeroth through seventh local variables. These
instructions would be executed by separate microcode routines. Code space is reduced

because the most common load instructions do not require operand bytes. In choosing such
instructions, the instruction set designer is trading off code compaction against microcode

size. The greater the number of optimized bytecodes, the greater the number of microcode

routines needed to execute them.10

Table 2 below describes the instruction formats used in EM-1. There are two 1-byte

instruction formats. One is for instructions whose operand is coded into the opcode, as with

the load local variable instruction mentioned above. The other is for instructions which take

no operand. There are also two 2-byte instruction formats. Format f2a is for instructions

with short offsets. Format f.2b is for zero operand instructions that are not common enough

to use format f1 b. They are referred to as escaped instructions. The escape code has a

value of zero. The two 3-byte formats are for normal instructions with a large offset, and
escaped instructions with a short offset. Finally, there is a 4-byte format for escaped

instructions which have a large offset.

Format First 81'.!e Second Bl::te Third B::t:te Fourth B~e

f1 a opcode+ offset

f1 b opcode

f2a opcode offset byte

f2b e:scape opcode

f3a opcode offset high byte offset low byte

f3b escape opcode offset byte
f4a escape opcode offset high byte offset low byte

Table 2: EM·1 Instruction Formats

10

Section 3: EM-1 Instruction Architecture

An important advantage of the EM-1 architecture is that the specific mapping of the

instruction set onto bytecodes is not a fixed part of the architecture. The mapping and the

selection of optimized bytecodes can be specified by the user to fit his application. This is

accomplished by having compilers output a compact form of assembly code. An assembler

then translates this to the actual bytecodes, choosing the most efficient instruction formats

available and performing local optimizations. This greatly simplifies compiler code

generation. It also means that, in an application such as this, the bytecode mapping can be

chosen to match the architecture, rather than trying to match the architecture to an

arbitrarily defined mapping.

3.3 Procedure Call and Return Mechanism

A procedure call is accomplished in the EM-1 architecture using three separate steps. First,

a mark stack instruction (mrk n) is executed. This creates a procedure administration area

on the stack. The administration area contains the static and dynamic links. It also contains

a space for the return address, which is filled in later. Next, instructions are executed

which load the actual parameters onto the stacK. Finally, the procedure call instruction (cal

n) is executed. This instruction reads in procedure descriptor n, which gives the procedure

starting address and its number of words of parameters. The latter value is subtracted from

the stack pointer to find the address of the zeroth actual parameter. This address is loaded

into the local base register and is also used to find the return address location in the

administration area. The present PC value is saved, the procedure starting address is loaded

into the PC, and execution continues within the called procedure.

A procedure return instruction (ret n) undoes all this. The local base register is used to find

the administration area so that the PC can be loaded from the return address and the local

base register can be loaded from the dynamic link. The stack is then trimmed down past the

administration area. After the stack is trimmed back, the n words from the old top of stack

are loaded onto the stack. This allows a procedure to return a value.

3.4 Alternate Context

Tannenbaum provides a mechanism to reduce the code space by reducing most procedure

call instructions to a single byte. This is done by defining an alternate instruction context, in

which some of the bytecodes are used as single byte procedure call instructions. To use

this method, the bytecode mapping must be chosen such that all instructions which are

commonly used to load actual parameters have bytecodes in one group and all instructions

which are not commonly used to load actual parameters have bytecodes in another group.

11

Section 3: EM-1 Instruction Architecture

The two groups are specified to the assembler. Whenever it finds a mark stack instruction,
the assembler checks to see if any instructions from the uncommon group occur betore the

next procedure call instruction. If not, the assembler issues a special mark stack instruction

which sets an alternate context flag. The entire uncommon section of the bytecode space is

now free to be used for optimized procedure call bytecodes. If the descriptor number of the

called procedure is less than the number of uncommon instruction bytecodes, a single byte
can specify the procedure call. The alternate context flag is cleared by the procedure call

instruction. In Tannenbaum's bytecode mapping, 122 bytecodes (nearly half of the

bytecodes) are specified to be uncommon.

3.5 Array Access

In the EM-1 machine, arrays are implemented using descriptors. There is one descriptor for

each array type declaration. An array descriptor contains information specifying the lower

bound, upper bound, and array element size.

An array element is lnaderl nntn the stack in the following way. First, the starting arldres.c: of

the array is loaded using an instruction such as load address external (loe x). Next, the

array index is pushed. Finally, a load array element instruction (lar x) is executed, where x is
the external ottset to the array descriptor. I he load array element instruction reads in the

array descriptor and compares the index to the upper and lower bounds. If it is out of

range, a runtime error is generated. Otherwise, the specified array element is loaded onto

the stack.

12

Section 4: Pascal System Architecture

4. Pascal System Architecture

The major issue involved in designing the architecture of the Pascal system is partitioning of

function between the chips. The task of executing the EM-1 bytecodes must be partitioned

in such a way that each chip has its own clearly defined function and requires a minimal

amount of communication with the other chips. To be efficient, the partitioning must allow a

large degree of concurrency. For each aspect of the design, the limiting factor must be

recognised and dealt with.

4.1 Bus Structure

The first aspect tu consider is lt1e bus stru<,;Lure of tl1e system. At U1e t1iyl1t:::::;L level, U1e

system looks like a single central processor communicating with main memory. To this

extent, the Pascal system architecture is constrained to match standard architectures.

However, the CPU of the Pascal system does not need to be a single processor.

Considerations of concurrency imply that it should be split up into several different

processors. This separation could naturally occur along the lines of the different types of

accesses performed on main memory.

In the language Pascal, three basic types of memory access are done. First, there are the

instruction fetches. Pascal code is re-entrant, so instructions can be fetched independently

from any other memory accesses occurring on the bus. That is, there are no conditions

placed on the relative orders of the instruction fetches and the other memory accesses.

Second, there are stack operations. Accesses to the evaluation stack are also independent

from the other memory accesses. Finally, there are the variable accesses. As with the other

two, the order of the variable accesses is essentially independent of the other memory

accesses.

These three types of memory access can be done by three different processor chips which

communicate with each other over a second message bus. The three processors will be

called the instruction unit, the memory manager, and the stack manager. The instruction

unit issues instructions over this bus to the other processors, which execute them.

13

Section 4: Pascal System Architecture

4.2 Local Stacks

Separating the three kinds of memory access increases concurrency, but does not affect the

memory bandwidth problem, which is the major bottleneck in most computer systems.

Therefore we must look for ways to eliminate accesses to main memory. Instruction fetches

could be reduced whenever a short loop is encountered by saving all the instructions from

the loop inside the instruction unit. Variable accesses could be reduced by putting a cache

within the memory manager. However, the greatest benefit would be realized if stack

accesses could be eliminated. This is because the stack must be accessed by each

processor on almost every instruction.

Suppose that each of the processor chips in the Pascal system contained a local stack, that
is, a set of registers internal to the processor which would contain the top few stack words.

These registers could be pushed and popped without having to access main memory,
provided that the evaluation stack stays short. Frequency data compiled by Tannenbaum 12

indicates that the evaluation stack will usually be very short. The local stacks would be kept

up to date by messages passing over the second message bus, hereafter referred to as the
stack bus. The stack manager would have the job of interfacing the local stacks to main

memory.

At this point we must ask how much we have gained by the introduction of local stacks.

They certainly eliminate many main memory accesses, but they add equally many messages
to the stack bus. Every time the memory manager, for example, wants to pop a word from

its local stack, it must send a pop stack message across the stack bus, so that all the local

stacks pop a word.

The local stacks do not reduce the number of messages that are passed, but there are

several important points in their favor. First, they increase the modularity of the system.

Only the stack manager needs to know about the stack pointer and the stack in main

memory. It would be difficult for several independent processors, each with its own copy of

the stack pointer, to stay synchronized. Second, the local stacks remove stack accesses

from the critical path. For a stack in main memory, a processor must calculate the address,

arbitrate for the bus, and perform the read before continuing execution. With a local stack,

the word can be read immediately, and execution can go on concurrently with the arbitration

for sending the pop stack message over the stack bus. Finally, the stack bus is faster than

the memory bus. The memory bus must connect components on several circuit boards,

possibly in more than one cabinet. Since the stack bus connects only a small number of

chips, it can easily be restricted to a single circuit board.

14

Section 4: Pascal System Architecture

4.3 System Structure

So far we have defined a CPU with three processors, each of which communicates with both

the memory bus and the stack bus. Many of the EM· 1 instructions, such as the arithmetic

instructions, only use the stack and do not require any communication with main memory. If

we add integer and floating point processor chips, we get a system that looks like figure 4.

The instruction unit fetches instructions from main memory, decades them, and issues them

over the stack bus to the other processors. The memory manager executes all instructions

that access variables in main memory. The stack manager keeps track of the local stacks,

and also executes those instructions which require accessing the stack in main memory.

The integer processor executes the integer arithmetic instructions plus some boolean

instructions, and the floating point processor executes the floating point instructions.

It should be noted at this point that each processor is free to execute its instructions in any

ws,y it wishes. For example, the memory manager could contain a standard cache. or it

could contain registers for the first few local variables. The instruction unit could save short

loops internally, prefetch from both sides of conditional branches, or use other instruction

prefetch strategies. The specific method chosen by a particular processor affects the speed

of the total system, but it does not affect the correct functioning of the other processors,

because all interactions between processors use an asynchronous request/acknowledge

protocol. This is the vitally important modularity condition, that a module may operate in any

way that satisfies its interface conditions without affecting the correct functioning of the rest

of the system.

4.4 Instruction hs:sue

Instruction issue must be done using a request/acknowledge protocol. More than this, the

instruction issue algorithm must be designed to minimize the amount of imformation the

instruction unit has about the rest of the system. In a typical computer system, the

instruction dispatcher controls which execution unit executes which instruction. With our

design principles, a more distributed system of control is desirable. The instruction unit

sends out an instruction on the stack bus. If one of the processors recognizes it as an

executable instruction, it sends a message back to the instuction unit indicating that it has

taken the instruction. If several processors recognize the instruction, the first to get control

of the bus sends the taken message and executes the instruction. If no taken message

appears within a certain amount of time, the instruction unit re-issues the same instruction.

This permits processors to ignore instructions being passed across the bus when they ae

busy doing something else. If the instruction unit issues the same instruction many times in

succession without a response, it assumes that either the stack bus or one of the other

processors has failed.

15

Section 4: Pascal System Architecture 16

INSTRUCTION UNIT

. MEMORY MANAGER .
I

I

STACK MANAGER I

MEMORY INTERFACE

I

INTEGER PROCESSOR

FLOATING PT PROCESSOR

.

Figure 4: Pascal System Architecture

Section 5: Bus Definitions

5. Bus Definitions

This section defines the logical function of the two data busses used in the Pascal system:

the memory bus and the stack bus. The physical properties of the busses are not specified

beyond the fact of their being message busses. As message busses, they require

asynchronous data transfer and an asynchronous method of arbitrating for bus control. One

message bus that could be used is the lriMosbus, developed at Caltech.9 ·
11 A triMOSbus

interface and chip test system has been developed at Caltech by Greg Efland for his

Master's Thesis.4

5.1 Memory Bus

The memory bus is used for main memory access by the instruction unit, the memory

manager and the stack manager. Each of the three has slightly different requirements. The

instruction unit does block reads almost exclusively. Since it is prefetching instructions, the

memory access time is noncritical. Therefore, the instruction unit should have the lowest

priority in arbitrating for control of the memory bus. The stack manager does mostly block

reads and writes along with a few alternating reads. An alternating read is used to do

operations such as string comparison: single words are read alternately from the two

multiword operands. Its accesses are sometimes on the critical path, so the stack manager

should have a higher priority than the instruction unit. The memory manager does mostly

single word loads and stores, but also does some block reads, block writes, and block

moves. Since operations done by the memory manager are often on the critical path, it

should have the highest priority in memory access.

In the present version of the Pascal system only two messages are defined for the memory

bus. They are block read and block write. Consulting the instruction frequency information

in appendix B, it can be seen that block moves and alternating reads are not done very

often. Adding up the static frequencies of instructions that would use an alternating read

message gives 0.25%. The static frequencies of instructions that would use a block move

message sum to 1.06%. It would be easy to add these and other messages if the need were

later thought to justify them or if another language implemented with this architecture used

them.

Having determined the messages which are used on the memory bus, it is necessary to

decide the width of the memory bus. The EM-1 architecture uses 16 bit data and 16 bit

addresses, so it is very natural to use a 16 bit bus. A memory bus message would consist of

a message header word, followed by the address word, followed by a specified number of

data words. The number of data words and the message type would be specified in the

17

Section 5: Bus Definitions

message header word. For a block write the data words would be provided by the processor

controlling the bus; for a block read they would be driven onto the bus by whatever memory

unit recognizes the message address address as being in its range. Because there are only

two messages defined, the header word will contain many unused bits. tn a future system
with virtual memory these bits could be used to contain the segment number.

5.2 Stack Bus

The stack bus is used for issuing instructions, pushing and popping the local stacks, and

sending certain error and reset messages. Table 3 gives the complete set of messages

which need to be sent over the stack bus. The instruction unit uses the OPCODE and ESCAPE

OPCODE messages to issue instructions to the execution units. The RESTORE s rAc..;K message

is issued by the stack manager. Its function is to rewrite the local stacks after a RESET

message or after a STACK UNDERFLOW message has indicated that an execution unit needs

data that was pushed from the bottom of its local stack.

Message Description

Opcode An EM·1 opcode with 0, 1 or 2 bytes of data

Escape Opcode An EM· 1 escaped opcode with 0, 1 or 2 bytes of data

Accept Instr Issued by chip which will execute the previously issued opcode

Pop Stack N Pop n words from local stack, push following data onto stack

Stack Underflow Issued by a chip when its local stack has lost data

Restore Stack Issued by stack manager. in response to above

Runtime Error

Interrupt

Informs instr unit of a runtime error (followed by an error code)

Informs instr unit of an interrupt (followed by an interrupt code)

Accept Interrupt Informs interrupting device that the interrupt has been accepted

Reset Resets the system to initial state

Table 3: Stack Bus Messages

The next question to be resolved is the width of the stack bus. It could be made 16 bits

wide, the same as the memory bus, but it seems best to limit the stack bus to 8 bits. The

reasons tor this are as follows. The EM-1 opcodes were specifically chosen so that most

instructions would be only one byte long. ACCEPT INSTR and other messages also need be

only one byte long. The only place where a larger bus would pay off is in the POP STACK N

message, where the data would take twice as long to transfer with an 8 bit bus, although

arbitrating for the bus and transmitting the message header would take the same time.

Therefore if it is common for instructions to push several data words onto the stack, a 16 bit

bus would be preferable. However, the table of mnemonic frequencies in section 3 of

18

Section 5: Bus Definitions

appendix B indicates that the average number of words pushed onto the stack by each

instruction is -1 . Therefore the best data width for the stack bus is 8 bits rather than 16.

In the above discussion, it was implicitly assumed that an instruction issue message (ie

OPCODE or ESCAPE OPCODE) consists of the bytes that represent the instruction in main

memory, with no translation done by the instruction unit. Since the representation in main

memory was chosen for compactness and ease of decoding, it is reasonable to do this. The

byte codes assigned to the other stack bus messages can be chosen from the set of

opcodes executed within the instruction unit, since these are never issued onto the stack

bus. This provides enough bytecodes so that POP STACK N can be given 16 separate codes,

corresponding to popping O to 15 words from the stack. There should also be a long form

of the POP STACK N message. which represents n as a two byte number following the

message header. This long form will be very seldom used and need only be recognized by

the stack manager, which will respond by adjusting the stack pointer and issuing a RESTORE

STACK message.

19

Section 6: Processor Section Definitions

6. Processor Section Definitions

There are several functions which are performed by more than one of the processors in the

Pascal system. This section gives functional definitions for the datapath sections which are

used to implement these functions. These processor chip sections are built out of the

primitive datapath elements defined in appendix A and some other datapath elements

designed by Dave Johannsen for the Oristle Blocks cell library.

6.1 Stack Bus Interface

Each chip connected to the stack bus must have a stack bus interface. This unit interfaces
the synchronous processor to thi= a:sym;hronous stack bus, and formats data passed

between the processor and the message bus. Data formatting is necessary because the

stack bus is B bits wide and the chip datapath is 16 bits wide.

Data formatting is handled by a byte manipulator contained in the stack bus interface. Three

types of formatting are done on input and two are done on output. When reading in data,

the next input byte always appears as the low order byte of the word. The high order byte

may be zero, a duplicate of the present input byte, or the previous input byte. A full word

may be written to the byte manipulator to be output high byte first onto the stack bus.

Alternately, a word may be written of which only the high order byte is output.

In the present system, the stack bus intertace is mostly implemented off.chip. The on-chip

section of the interface consists of a standard 1/0 register which can drive its contents off.

chip or latch data from off-chip. There are several reasons for not including the stack bus

interface on-chip in this version of the Pascal architecture. First, the interface cannot be

designed because the stack bus itself is not completely specified. Second, it would be

difficult to design the asynchronous interface and sequencing circuit in the present version

of Bristle Blocks. Finally, even if the above problems were solved, the time required to

design an on-chip stack bus interface would be too great to include it in this version of the

Pascal system.

6.2 Local Stack Controller

The factor which makes the processor chips efficient is the local stacks contained in each.

The execution section of each chip is free to read values out of the local stack, but the state

of the local stack can only be changed by messages received from the stack bus. Since all

the local stacks receive each message, all the local stacks are always in the same state.

20

Section 6: Processor Section Definitions 21

. I STACK MSG CRH ~ "
• STACK MSG CAM : "

ACCEPTED
REGISTER

COHPLETE2
REG STER

STACK VALID
REGISTER

SCRATCHPAD
REGISTER

. .

SUBTRACT OR
COMPARATOR

LOCRL
STRCK

Figure Sa: Local Stack Controller Block Diagram

Seetion 6: Processor Seetion Definitions 22

Figure Sb: Local Stack Controller Layout

Section 6: Processor Section Definitions

Figure 5 shows the components of a typical local stack controller. Note that only four bits of

the 16 bit datapath are shown. The block diagram is drawn at the same scale as the layout.

These conventions are followed throughout this thesis. In figure 5, the stack message CAM

contains the byte codes which are executed by the local stack. The first byte of each

message is loaded into the CAM to see if it should be acted on. The accepted and

completed registers contain a code indicating how many instructions have been accepted

and completed, respectively. This information is used by the execution section of the chip.

The stack valid register keeps track of the number of valid words on the local stack. The

constants include 1, 0, ·1, the local stack depth, the STACK UNDERFLOW message header, and
the POP STACK o messaoe header. Finally, the local stack controller includes a suhtrar.tnr

and the local stack itself. Table 4 lists the messages recognized by the local stack controller

and the actions performed.

Message

Accept Instr
Pop Stack N

Restore StacK

Reset

Action

Increment acceoted register
Pop n words off the local stack, push following data,

and increment completed register

Invalidate the local stacK and push followlng data

Invalidate the local stack, initialize accepted and completed

Table 4: Local Stack Unit Messages

The datapath operations required to execute the above messages are very simple. For

example, the ACCEPT INSTR message causes the value in the accepted register to be loaded

into the subtractor, incremented, and restored to the accepted register. The POP STACK N

message is not much more complicated. Given this, it would be wasteful to use o.n entire

microcode sequencer to perform these operations. An on-chip, clocked PLA would be

sufficient. However, this is not implemented in the present" version of Bristle Blocks. The

present instruction decoder is nothing more than the AND plane of a PLA, with clocking and

latching provided in the datapath buffers. Designing a more general instruction decoder is

an important area for further work on Bristle Blocks.

6.3 Instruction Scanner

Each processor except the instruction unit contains an instruction scanner. Its function is to

scan the stack bus message stream searching for instructions to execute. When such an

instruction is recognized, the instruction scanner saves the operand, if any, and arbitrates for

23

Section 6: Processor Section Definitions

control of the stack bus. While waiting to get control of the stack bus, the instruction

scanner scans the message stream looking for an ACCEPT INSTR message. If one is found,

another processor has accepted that instruction, so the scanner goes back to searching the

message stream for an instruction to execute. If the scanner is given control of the bus
before an ACCEPT INSTR message has been sent, then that processor accepts the instruction.

This is done by saving the present value of the accepted register from the local stack unit
and then sending an ACCEPT INSTR message.

In the present version of the Pascal system, no instruction is recognized by more than one

processor, so scanning for ACCEPT INSTR is not strictly necessary. To remain compatible with

future versions for which this may not be true, and because it does not cost any execution

speed, it would be better to scan for ACCEPT INSTR anyway. Some instructions, such as those
to the stack manager and memory manager, must be recognized within only one processor.

In these cases the instruction scanner should declare a runtime error if another ACCEPT INSTR

message is found.

After an instruction has been accepted, the processor does whatever setup is necessary to
execute the instruction. However, the stack may not be read until all prior instructions have

completed execution. This condition is true when the completed register in the local stack

unit is equal to the saved value of the accepted register. At this time the processor is free to

read values from the local stack, compute a result, and send a POP STACK N message over

the stack bus. This increments the completed register in each l.ocal stack controller,

allowing the next instruction to be executed.

Sometimes the stack depth may become too great, causing the lowermost words to be

pushed off the bottom of a local stack. This condition is detected when an processor reads

a value from its local stack and finds that it is marked invalid. When this happens, the

processor issues a STACK UNDERFLOW message and waits in a loop, periodically re-issuing the

message. This message is received by the stack manager, which responds by issuing a

RESTORE STACK message. After the processor detects the restore stack message, execution

continues.

Figure 6 shows the components of a typical instruction scanner. The instruction CAM is

divided into two sections. The first section is used to screen the first byte of messages to

see if they are recognized instructions. The second section is used to screen the second

byte of instruction messages which began with an escape bytecode. The auxiliary CAM

recognizes the escape bytecode and also recognizes the TAKE INSTR message header. The

bytecodes unit is a constant source, containing the bytecodes for the ACCEPT INSTR, STACK

UNDERFLOW, and POP STACK N messages. It also contains the constant zero. Finally, accept

compare is a CAM which recognizes when the saved value of the accepted register matches

the present value of the completed register.

24

Section 6: Processor Section Definitions 25

.
, INSTRUCTION CAM 1 1

' INSTRUCT ION CAM 1 1 -'

' INSTRUCTION CAM 1 7]

,.I INSTRUCTION CAM 2 7]

' INSTRUCTION CAM 2 /

- r AUX ILI ARY CAM ,

,
'

' .
- · T·~ - r rrru;,; .

'' ' .
,

n ' ..CVT~ - y --U::-

' .

. . RCCEPT
' . COMPRRE

. OPERRND .

'
' REGISTER ' •

Figure 6a: Instruction Scanner Block Diagram

Section 6: Processor Section Definitions 26

Figure 6b: Instruction Scanner Layout

Section 6: Processor Section Definitions

The datapath operations performed by the instruction scanner are even simpler than those

performed by the local stack controller. The instruction scanner could easily have its own

on-chip microcode sequencer in a future version of Bristle Blocks. This is not necessary,

though, because instruction scanning and instruction execution are mutually exclusive

activities. Therefore, the instruction scanner could use the same sequencer as the execution

section of the processor. This sequencer could be on-chip or off-chip, depending on the

complexity of the proce~or.

27

Section 7: Arithmetic and Stack Processors

7. Arithmetic and Stack Processors

This section describes three of the processors in the Pascal system: the integer processor,

the floating point processor, and the stack manager.

7 .1 Integer Processor

The integer processor executes the single word and double word integer arithmetic and

compare instructions. These instructions are listed in table 5 below. Their frequencies total

to 7.13%. Figure 7 shows the internal structure of the integer processor. The stack bus

interface, local stack unit, and instruction accept unit are described in the previous section.
No integer instruction requires more than four words from the stack and most require two or

less. Therefore, the integer processor's local stack need only be four words deep.

Opcode, Instr. Static
Operand Group Code Freg. Percent Instruction Description

add integer 1469 0.79% Integer add
:sub integer 878 0.47% I ntcgor subtract
mul integer 565 0.30% Integer multiply
div integer 383 0.21 % Integer divide
mod integer 343 0.18% Modulo (remainder)
neg integer 108 0.06% Negate {two's complement)
shl integer 139 0.07% Shift left tos-1 by tos bits
shr integer 0 0.00% Shift right tos-1 by tos bits
rol integer 0 0.00% Rotate left tos-1 by tos bits
ror integer 0 000% Rnt11tP. right tns-1 by tos bits
inc integer 797 0.43% Increment top of stack by 1
dee integer 478 0.26% Decrement top of stack by 1
exg integer o 0.00% Exchange top two words
adi b integer 960 0.51 % Add the constant b to top of stack; do not check overflow
ads integer o 0.00% Same as add, but do not check for overflow
dad double 0 0.00% Double add
dsb double o 0.00% Double subtract
dmu double 0 0.00% Double multiply
ddv double 0 0.00% Double divide
dmd double o 0.00% Double modulo
cid convert o 0.00% Convert integer to double
cdi convert o 0.00% Convert double to integer
and 2 boolean m 1035 0.55% Boolean and on two groups of 2 bytes
ior 2 boolean m 726 0.39% Boolean inclusive or on two groups of 2 bytes
not boolean o 0.00% Convert top of stack from true to false or vice versa
cmi compare 1911 1.02% Compare two integers. Push -1,0,1 for<.=.>
cmd compare u U.UU% Compare two double Integers
tit compare 292 0.16% True if less {based on previous compare)
tie compare 172 0.09% True if less or equal
teq compare 1184 0.63% True if equal
tne compare 591 0.32% Trut: if nut e4ual
tge compare 134 0.07% True if greater or equal
tgt compare 290 0.16% True if greater
dup 2 misc m 845 0.45 % Duplicate top 2 words on stack

Table5: Integer Processor Instructions

28

r
u
n
:0
r
(.f)
-;
:0
n
::A:

OJ
c
(.f)

,_..
z
(J)

-l
::0
c
n
-l ,_..
D
z
OJ
c
(.f)

Section 7: Arithmetic and Stack Processors

~-' STRCK BUS I_

-~TERFRCE r~

I
!!-----+. LOCAL STACK
~ONTROLLE_R__,

------~

INSTRUCT I ON
.I SCANNER I

.
1 Ex~cu-r r ON I
, SECTION· ~
I

Figure 7: Integer Processor Block Diagram

._..
z:
(.f)
-l
::JJ
c
n
-;
.........
D
z
OJ
c
(.f)

rn
x
rn
n
c
-i
1--i

0
:z
OJ
c:
(J)

29

Section 7: Arithmetic and Stack Processors 30

, SHIFT
RRRRY

ARITHMETIC
AND

LOGIC UNIT

-
SCRRTCHPAD

I
REGISTERS

I
Figure Sa: Integer Processor Execution Section Block Diagram

Section 7: Arithmetic and Stack Processors 31

Figure 8b: Integer Processor Execution Section Layout

Section 7: Arithmetic and Stack Processors

Figure 8 shows the internal structure of the execution section. To execute its instructions,

the integer processor needs only a shift array, an ALU, some numeric constants (0, 1, -1,

and .oo, that is, 100 ...), and some scratch registers. The datapath operations required to

execute these instructions are simple. Therefore, this execution unit could use an on-chip

microcode sequencer.

7.2 Floating Point Processor

The floating point processor executes the floating point and conversion instructions listed in

table 6 below. Their frequencies total to 1.77%. A detailed design of the floating point

processor is beyond the scope of this thesis. It should be noted that the integer and floating

point processors could be merged into a single chip in a future ver::>ion of the Pascal system.

The low frequencies of the instructions executed by both chips would lead one to do this. A

specialized floating point chip could then be designed for use in applications that make

significant use of floating point operations.

Opcode, Instr ~tRtic

Operand Group Code Freq. Percent Instruction Description

fad real 355 0.19 o/o Floating add
fsb real 301 0.16 % Floating subtract
fmu real 482 0.26 % Floating multiply
fdv real 289 0.15 % Floating divide
cif convert 1227 0.66 % Convert integer to floating
cfi convert 303 0.16 % Convert floating to integer
1,;df t.;<,;mvert 0 0.00 % Convert double to floating
cfd convert 0 0.00 o/o Convert floating to double
emf compare 338 0.18% Compare two reals

Table 6: Floating Point Processor Instructions

7 .3 Stack Manager

The stack manager has a dual purpose. It interfaces the local stacks with the stack stored

in main memory, saving data pushed out the bottom of its local stack and restoring it when

the stack depth decreases again. It also executes instructions which manipulate the stack or

multiword operands on the stack. The instructions it executes are listed in table 7 below.

Their frequencies total to 13.56%.

32

Section 7: Arithmetic and Stack Processors

Opcode, Instr. Static
Operand Group Code Freq. Percent Instruction Descri12tion

and x boolean 55 0.03% Boolean and on two groups of x bytes
ans boolean 0 0.00% Boolean and; first pop number of bytes from stack
ior x boolean 325 0.17% Boolean inclusive or on two groups of x bytes
ios boolean 0 0.00% Boolean inclusive or; first pop number of bytes from stack
xor x boolean 0 0.00% Boolean exclusive or on two groups of x bytes
XOS boolean 0 0.00% Boolean exclusive or; first pop number of bytes from stack
com x boolean 48 0.03% Complement (one's complement of top x bytes)
c;o:s boolean 0 0.00% Complement; fir:st pop number of byte:; from :stack
inn x set 363 0.19% Bit test on x byte set (bit number on top of stack)
ins set 0 0.00% Bit test; first pop set size, then bit number
set x set 119 0.06% Create singleton x word set with bit number tos on
aea aet 0 0.00% Oreo.to aingleton act; first pop aet aizc, then bit number
emu x compare 35 0.02% Compare two blocks of x bytes each
ems compare 0 0.00% Compare two blocks of bytes; pop byte count
cal n call 19147 10.26% Call procedure with descriptor n
cas call 4 0.00% Call indirect (first pop procedure number from stack)
ret n call 3517 1.88% Return (function result consists of top x bytes)
res call 0 0.00% Return; first pop number of bytes to return
beg x misc 1613 0.86% Begin procedure (reserve x bytes for locals)
bes misc 0 0.00% Begin procedure; pop number of bytes to reserve for locals
dup x misc 79 0.04% Duplicate top x words on stack
dus misc 0 0.00% Duplicate; first pop number of words to duplicate
lor 3 misc m 0 0.00% Load stack pointer register
str 3 misc m 0 0.00% Store stack oointer register

Table 7: Stack Manager Instructions

t-igure 9 shows the internal structure of the stacK manager. Its local stack controller is

somewhat special, because it also needs to keep track of when data is going to be lost out

the bottom of the local stack. When this happens, the local stack is written out to main

memory and the stack pointer is updated. The local stack is also written out to memory on

receipt of a load stack pointer instruction (lor 3). This instruction is sent by the instruction

unit when the memory manager needs to access data relative to the stack pointer, which is

necessary in order to execute instructions such as store indirect (sti y) and store array

element (sar x). Instructions for which this is done are marked with "*" in their code fields.

Figure 1 O shows the internal structure of the stack manager execution section. All that is

needed is an ALU, some scratch registers, the stack pointer register, and some constants.

The constants consist of the numeric constants (0,1,·1,and -00) and the message headers

necessary to communicate with the memory bus.

33

Section 7: Arithmetic and Stack Processors 34

r --,

r STPCK BUS
0 . z
n

'~ I ~ ITERFRCE_j
CJ)

:0 --l
r :::0

c:
CJ) n
-; r --- - --, -I
:0
n LOCAL STRCK

0
::;::i.-::: . z . CONTROLLER co co
c: c:
CJ)

L
CJ)

-

r l
"? I~ ISTRUCTIO~J .

rr1 -- -~·
(j) . ~'

--l
.

SCR~l~IER
. rr1

:::0 n
c: J c:
n - -l
-~

r I to-< ,_, 0
0

E/ 'ECUT ~ C~ I .
-;?

"?" ~

~

. .
a:; S~CT i O~ ;· co
c c:
CJ) (f) - 1

Figure 9: Stack Manager Block Diagram

Section 7: Arithmetic and Stack Processors 35

ARI THMETIC
.,

' AND .

' '
-

LOGIC UN IT

, .
' ~

.

. SCRRTCHPAD .
' ' REGISTERS ~

Figure 10a; Stack Manager Execution Section Block Diagram

Section 7: Arithmetic and Stack Processors 36

Figure 10b: Stack Manager Execution Section Layout

Section 8: Memory Manager

8. Memory Manager

The memory manager executes all instructions which access variables in main memory.

These instructions are listed in table 8. Their frequencies total to 53.33%. Figure 11 shows

the internal structure of the memory manager; the various sections are described below.

Opcode. Instr.
Operand Group

Joi x load
loe x load
lop x load
lof x load
lal x load
lae x load
lex n load
Joi y load
lib load
los load
ldl x load
Ide x load
ldf x load
stl x store
ste x

stp x
stf x
sti y
sib
sts
sdl x
sde x
sdf x
lar x
las
sar x
sas
aar x
aas
mrk n
mrx n
mrs
mxs
inl x
ine x
del x
dee x
zrl x
zre x

store
store
store
store
store
store
store
store
store
array
array
array
array
array
array
call
call
call
call
inc/dee
inc/dee
inc/dee
inc/dee
inc/dee
inc/dee

rck x mi:sc
blm x misc
bis misc
lor misc
lor 2 misc
lor 4 misc
str 2 misc
str 4 misc

Static
Code Freg. Percent

9.18 %
5.08 %
0.36%
1.86%
0.97%
8.70%
1.01 %

0.84%
0.00%
0.00%
0.84 %
0.64%
0.04%
3.53%
1.A2%

0.39%
0.96%
0.40%
0.00%
0.00%
0.20%
0.21 %
0.03%
1.13 %
0.00%
0.67%
0.00%
0.94 %
0.00%

17140
9490
676

3472
1805

16242
1665

1561
m 0

m

m

m

m
m

m
m
m

0
1576
1196

73
6587
::!!'iRR

731
1788
746

0
0

377
390

60
2111

0
1245

0
1753

0
19147

0
4
0

1403
1285

126
71

784
760

10.26 %
0.00 %
0.00%
0.00%
0.75%
0.69%
0.07%
0.04%
0.42%
0.41 %

987 0.53 %
482 0.26 %

0 0.00 %
0 0.00 o/o
0 0.00 ~
0 0.00 o/o
0 0.00%
0 0.00 %

Instruction Description

Load local word x
Load external word x
Load parameter (address is at xth local)
Load otfsetted (top of stack + x yields address)
Load address of local
Load address of external
LoQd lcxioo.l (o.ddrcoo of lb, n otatio levelo back)
Load indirect y bytes (address is popped from the stack)
Load indirect 1 byte (loaded into 1 word on stack)
Load indirect (first pop byte count; must be 1 or even)
Load double local (two consiecutive locals: are sitacked)
Load double external
Load double offsetted (top of stack + x yields address)
Store local
Store external
Store parameter
Store offsetted
Store indirect y bytes (pop address, then data)
Store indirect 1 byte (taken from 1 word on stack)
Store indirect (pop byte count, then address, then data)
Store double local
Store double external
Store double offsetted
Load array element with descriptor x, pop index, array addr
Load array element; first pop pointer to descriptor
Store array element; pop index, array address, array element
Store array element; first pop pointer to descriptor
Stack address of array element; pop index, array address
Stack array address; first pop pointer to descriptor
Mark stack (n = 1 + change in static depth of nesting)
Mark stack; set alternate context
Mark stack; first pop static link from stack
Mark stack; pop static link and set alternate context
Increment local
Increment external
Decrement local
Decrement external
Zero local
Zero external
nange chock (tro.p if top of oto.ck out of range)
Block move x bytes; pop source address, then destination
Block move; first pop x, then addresses
Load procedure descriptors register
Load local basi::. reoisti::.r
Load heap pointer register
Store local base register
Store heap pointer register

Table 8: Memory Manager Instructions

37

r
C)
n
:n
r
U>
-I
::0
n
;:...;

CD c:
U>

,____.
z:
(./)
--1
::IJ c:
n
-I
D
z:
co
c:
(./)

Section 8: Memory Manager

STRCK BUS
INTERFACE

LOCRL STRCK
CONTROLLER

INSTRUCTION
SCANNER

EXECUTION
SECTION

I VARIABLE
I

SECTION

I MEM BUS
·
1

I NTERFRCE

Figure 11: Memory Manager Block Diagram

-z:
U>
-I
::IJ
c:
n
-I -D
:z:
co c:
U>

rn
><
rn
n
c:
--I

0
z:
OJ
c:
(.f)

Section 8: Memory Manager

8. '1 Variables Section

The variables section exists in recognition of the fact that most memory accesses in a block

structured language are made to the first few local and global (or external) variables. The

variables section consists of 16 memory registers. Eight of them are reserved for the first

eight global variables, and the other eight are reserved for the first eight local variables. All

reads and writes in these ranges are done exclusively on-chip. In this way, a large fraction

of variable accesses do not need to use main memory cycles. Using the frequency data in

section 5 of appendix B, the first eight local variables account for 14,799 out of 17,140 static

occurences of the load local instruction (lol x). This means that 86% of local variable

accesses do not need to access main memory. The data for the load external instruction

(loe x) is not as good: only 1998 out of 9490, or 21 % of the instructions load from the first

eight global variables. The reason why this figure is so much poorer than for the load local

instruction is that there are many more global (external) variables than local variables. Since

the variables are defined in an arbitn:try order, il seems reasonable to have the assembler

order the globals such that those variables which are accessed often occur first. For

Tannenbaum's frequency data this would only increase the incidence to 30%, so such a

scheme is probably not worth implementing.

One disadvantage of the variable registers as described above is that they must be saved on

each procedure call and restored on each procedure return. This is not as much of a

disadvantage as it would be for less concurrent architectures, because the saves and

restores are not llKely to be on the critical path. If Lhis Lurns out to be a problem, a more

complex scheme could be used which would eliminate much of the saving and restoring.

For example, a write-through policy would remove the need to save the registers on

procedure calls. Including valid bits for the variable registers would eliminate the need to

restore them on a procedure return; they would simply be marked invalid. The memory

manager would be free to fill them in during its spare time.

8.2 Execution Section and Instruction Scanner

The execution section of the memory manager is detailed in figure 12. It contains the local

and external base registers, the heap pointer, the memory limit register, some constants, and

a subtracter. It also contains an instruction CAM, which the previously described processors

do not have. Instead of getting instructions directly from the instruction scanner, the

execution section reads them from a buffer contained in the instruction scanner. The

execution section's instruction CAM is for interpreting these buffered instructions.

39

Section 8: Memory Manager 40

, 1 INSTRUCTION CAM I
' I I

, 1 INSTRUCTION CAM I
• 1

LOCAL BASE
REGISTER

,
'

EXTERNAL BASE
REGISTER .

' .
MEMORY LIMIT

REGISTER
'

HEAP POINTER
REGISTER

.
' '
, .
' .
,

'
' • • •

'

. ' SUB TRACTOR
'

, COMPARATOR

Figure 12a: Memory Manager Execution Section Block Diagram

Section 8: Memory Manager 41

Figure 12b: Memory Manager Execution Section Layout

Section 8: Memory Manager

The memory manager's instruction scanner buffers the instructions it accepts because the

memory manager cannot be limited to accepting only one instruction at a time. There are

two reasons why it cannot. First, too many instructions are executed in the memory

manager. These instructions account for 53% of the static frequency. The system would

lose most of its concurrency if only one could be accepted at a time. Second, many memory

manager instructions can be partially executed before the prior instructions have completed.
For example, a load array element instruction (lar x) can read its descriptor and calculate the

array element address as soon as the instruction is received. The array element may be

read as soon as all prior incomplete instructions which could write to that address have

finished execution. This removes main memory accesses from the critical path, which is an

important result.

The memory manager is also different from the previously described processors in that its

instruction scanner has a sequencer of its own. This is necessary because the instruction

scanner continually scans for instructions to accept rather than stopping after each

instruction. When it finds an instruction it can accept, it loads it into the instruction buffer.

Prior to loading an instruction and its operand into the instruction buffer, the scanner loads

the current value of the accepted register from the local stack controller. This is necessary

so that the execution section knows when to complete execution of the instruction.

The instruction buffer allows words to be inserted and deleted at any point, rather than just

at the ends as in a stack or a fifo. This added functionality gives the execution sequencer

quite a bit of freedom in how it can execute its instructions. Instructions can be popped out

of the middle of the buffer and replaced by other instructions, if the execution algorithm calls

for it. It is interesting to note that this added functionality complicates the decoder section

of the Bristle Blocks chip, but does not affect the design of the datapath element.

8.3 Execution Algorithm

The choice of the specific execution algorithm used by the execution section of the memory

manager is a tradeoff between complexity and concurrency: the more complex the

algorithm, the more it is able to take advantage of potential concurrency by executing parts

of instructions in advance. The algorithm described below clarifies some of the tradeofts to

be made.

42

Section 8: Memory Manager

To start with, the first word in the instruction buffer, which is a value saved from the

accepted register, is compared with the completed register in the local stack controller. If

they match, the following instruction can now be executed. If they don't match, it may be

that the instruction can be partially executed. For example, a store parameter instruction

(stp x) could have its store address fetched. The store parameter instruction would then be

replaced in the instruction buffer with a store instruction for that address. The idea is to do

as much calculation as possible ahead of time, thus moviny il urr Lhe critical path.

A simple execution algorithm could stop here. However, under certain conditions it is safe

to partially execute instructions which occur farther back in the buffer. For example,

suppose a load offsetted instruction (lof x) is followed by a load external instruction (loe x).

Nothing can be done with the load offsetted instruction until all prior instructions have

completed. While waiting for that to happen, the processor could read in the external value

and change the load external instruction into a load constant instruction, which will execute

much faster.

Depending on the amount of pre-execution desired, the execution algorithm can be made

arbitrarily complex. It would be possible to have status flags which are set by certain

instructions to control which later instructions are allowed to partially execute. For example,

a load local instruction could not be pre-executed if an earlier instruction had set a store

local flag. The store local base instruction (str 2) could set a flag which stops all local loads

and stores from executing. Of course, the processor should go back at each step and

checK whether the first word In the buffer matches the cornµleled register. If it does, the

first instruction in the buffer should be executed immediately, because we are now on the

critical path. After completing execution of an instruction, the flags would be reset and the

algorithm would start over from the beginning.

In choosing the execution algorithm, it is important to keep instruction frequencies and

system performance firmly in mind. For example, it does no good to have a highly complex,

n levels deep pre-execute algorithm if there are never more than two instructions in the

buffer. It does little good ·to include special cases to handle seldom executed instructions.

Especially in an early version, the simplest algorithm that satisfies the recognized

requirements and limitations of the system is best. For this reason, the memory manager

execution algorithm for the first version of the Pascal system will only attempt ta pre-execute

the first instruction in the buffer.

43

Section 9: Instruction Unit

9. Instruction Unit

The instruction unit fetches instructions from main memory, decodes them, and issues them

across the stack bus to the various processors. Some instructions are executed by the
instruction unit itself. These are not issued across the the stack bus, although an INSTR

ACCEPT message is issued. The instructions executed by the instruction unit are listed in

table 9 below. Their frequencies total 4.22%. The instructions marked with an "x" in the

code field do not even have an INSTR ACCEPT message issued. They are executed completely

within the instruction unit.

Opcode, Instr. Static
Operand Group Code Freq. Percent Instruction Description

lac m load 27604 14.79% Load constant (i.e. push it onto the stack)
Inc n load m 1136 0.61 % Load negative constant
brf n branch x 3067 1.64 % Branch foreward unconditionally n bytes
brb n branch x 2688 1.44 % Branch backward unconditionally n bytes
bit n branch 1016 0.54% Forward branch less (pop two words, brancll if top >second}
ble n branch 305 0.16 % Forward branch less or equal
beq n branch 1060 0.57% Forward branch equal
bne n branch 1681 0.90% Forward branch not equal
bge n branch 293 0.16 % Forward branch greater or equal
bgt n branch 598 0.32% Forward branch greater
zit n branch 47 0.03% Forward branch less than zero (pop 1 word, branch negative)
zle n branch 217 0.12% Forward branch less or equal to zero
zeq n branch 2094 1.12 % Forward branch equal zero
zne n branch 1139 0.61 % Forward branch not zero
zge n branch 155 0.08% Forward branch greater or equal to zero
zgt n branch 31 0.02% Forward branch greater than zero
nop misc x 0 0.00% No operation
lin n misc 1763 0.94% Line number (set external Oto n)
cse x misc 297 0.16 % Case jump; xis external offset of jump table
lor n misc 0 0.00% Load EM· 1 machine register onto stack
str n misc 0 000% 8tnrA EM-1 machine reoister from stack
str misc m 0 0.00% Store procedure descriptor register
hit misc o 0.00% Halt the machine
man monitor 5 0.00% Monitor call
stu monitor 0 0.00% Start user job

Table 9: Instruction Unit Instructions

9.1 Internal Structure

Figure 13 shows the internal structure of the instruction unit. On the left side, the chip

interfaces to the memory bus and on the right it interfaces to the stack bus. The local stack

controller has been described previously; the prefetch, decode, and execution sections are

described below.

44

r
a
n
:0 .-
(./')
-I
:0
n ;;::s;:

co
= (./')

CJ
ri
n
C)

CJ
rn
co
c:
U)

..

Section 9: Instruction Unit

STACK BUS
INTERFACE

LOCAL STACK
CONTROLLER

EXECUTION
SECTION

DECODE
SECTION

-
PREF ETCH
SECTION

MEM BUS
INTERFACE

Figure 13: Instruction Unit Block Diagram

.........
z
(./')
-I
:::0
c::
n
-I
a
:z:
co
= (./')

rn
><
fTl
n c
--I
1-t

0
::z:
OJ
c
(f)

-0
::::0
rn .,
rrr
---l
('"'"")

::c
OJ
c
(f)

Section 9: Instruction Unit

The prefetch section holds instructions that have been fetched from main memory before

they are decoded. The components of the prefetch section are two fife buffers, each of

which has a byte manipulator on its output end. The byte manipulator is similar in function

to the byte manipulator contained in the stack bus interface, and has the same purpose.

The two fifo buffers are filled in alternation: one is filled while instructions are being read

from the other. The buffer length should be chosen such that the time required to fill one of

the buffer:s is less than the time required to issue all the instructions from one of the buffers.

In the present system, the buffer length is chosen to be four. A better value could be

chosen in a future system by measuring the performance of the system with this buffer size.

The decode section reads instructions from the prefetch buffers and decodes them to

determine their length and whether they are executed within the instruction unit. Figure 14
shows the components of the decode section. The instruction length CAMS are used to find

the length in bytes of the various instructions. There are two of them in order to handle

normal and escaped instructions. The instruction execute CAMs are used to find

instructions to be executed within the instruction unit. The purpose of the procedure

descriptor, procedure base and program status registers is given in the EM-1 machine

definition. The program counter register is incremented each time a byte is read from one of

the prefetch buffers. The function of the return address register is described below in the

section on the procedure call and return mechanism. Finally, the decode section contains a

subtracter and a constant source.

The execute section saves constants to be loaded onto the stack and issues them across the

stack bus. It contains a subtractor/comparator, a constant source, and the the load

constant buffer. The constant source contains the message headers necessary to send

messages on the stack bus. The load constant buffer is a fifo buffer used in executing the

load constant instructions. When a load constant (lac m) or load negative constant (Inc n)

instruction is decoded, the value of the accepted register in the local stack controller is

loaded into the load constant buffer, followed by the constant to be loaded. Then an ACCEPT

INSTR message is sent over the stack bus. The execution section compares the first word in

the fifo to the completed register in the local stack controller. When they are equal, a POP

STACK o message is sent which pushes the next word in the fifo onto the stack. In this way

constants can be loaded onto the stack without stopping the instruction prefetch sequence.

This is impo1iant, since the static frequency of the load constant and load negative constant

instructions total more than 15%.

46

Section 9: Instruction Unit

INSTA U!!Ol'H Cl1l1 2

ltelll EXEC CAI l

INSTR EXEC CAI l

IHSTll EXEC CAI 2

IH3Tfl EXEC Cfft 2

~~lgyER
PROC8mrmA
~~M
SCAATWsrot

SUBTRACT OR
COMPARATOR

Figure 14a: Instruction Unit Decode Section Block Diagram

47

Section 9: lnstruc;t1on Un~ 48

Figure 14b: Instruction Unit Decode Section Layout

Section 9: Instruction Unit

9.2 Branch Instructions

There are two kinds of branch instructions: conditional and unconditional. Unconditional

forward branches are handled by updating the PC, invalidating the prefetch buffers, and

continuing. Short backward branches could be done completely within the instruction unit

by saving previously decoded instructions. Tannenbaum's frequency data indicates that

backward branches a.re seldom short. Therefore, unconditional forward o.nd backward

branches are handled in the same way. An unconditional branch does not require that any

of the instructions issued prior to it finish executing.

A conditional branch, on the other hand, does require that all prior instructions finish

executing before it can be resolved. When a conditional branch instruction is decoded, the

instruction unit invalidates the prefetch buffers and refills them: one from the present value

of the PC, and one from the PC plus the branch displacement. When the completed register

matches the accepted register, meaning that all prior instructions have completed execution,

the instruction unit is free to read the comparison value(s) from the stack and perform the

comparison. It then knows which prefetch butter to use, so it issues an ACCEPT INSTR

message followed by a STACK POP 1 or STACK POP 2 message, depending whether two stack

words are being compared or one word is being compared to zero. The instruction unit then

continue!': exAcuting normally.

If greater concurrency is needed, a future version of the Pascal system could employ a more

complicated scheme involving the pre-issuing of instructions from both sides of the

conditional branch. After the branch has been calculated, a special stack bus message

would be sent indicating which set of instructions to start executing. This method would

gain a little extra concurrency, but at the cost of moving some of the instruction unit's

function into all the other processors. This violates the principal of separation of function,

so it is not a good thing to do. The resulting extra complexity makes it doubtful that such a

scheme would be useful in any case.

9.3 Procedure Call and Return Mechanism

Procedure calls are very common in most Pascal programs. In Tannenbaum's frequency

data, procedure calls accounted for more than 10% of the instructions. Therefore it is

important that they be handled efficiently. This is difficult in this architecture, because

procedure calls and returns affect the instruction unit, the memory manager and the stack

manager. Therefore, they cannot be executed in any single one of the three. The solution

used in the Pascal system is to hl'lve the instructinn unit i~c:;ue certain special instructions

before and after the procedure call and return instructions and to redefine slightly what

those instructions do.

49

Section 9: Instruction Unit

A procedure call is executed in the following way. Upon decoding the call instruction (cal

n), the instruction unit reads in the procedure descriptor indexed by the instruction operand.

The procedure descriptor contains the procedure starting address and its number of words

of parameters. The instruction unit loads the PC with the procedure starting address and

pushes the old value of the PC onto the stack just as if it had decoded a load constant

instruction. It then issues the call instruction, replacing the old operand with the number of

words of parameters and follows this by issuing a store local base instruction (str 2). The

stack manager accepts the call instruction. When the time comes to execute it, the stack

manager pops the return address from the stack and writes it into the space provided in the

administration area. The stack manager finds the administration area by subtracting the

number of words of parameters from the stack pointer. The stack manager then writes the
stClck out to ma.in memory, ~o that the memory mana.ger <;;c:P.n read the actual parameter

values that were loaded onto the stack. Finally, the stack manager pushes the address of

the top of the administration area onto the stack, so that the memory manager can store it

into the local base register.

The procedure return instruction is also executed by the stack manager. The stack manager

executes this instruction normally, with the exception that it leaves the dynamic link and

return address on the top of the stack. After issuing the return Instruction, the instruction
unit issues store local base (str 2) to restore the local base register, and then waits for all

prior instructions to complete so that it can remove the return address from the stack. The

return address is removed by issuing the messages ACCEPT INSTR and POP STACK 1.

As defined above, the procedure call instruction does not require the instruction unit to wait

for all prior instructions to complete. The return instruction does. If this is shown to be a

problem, there is a fairly simple change that can be made within the instruction unit which

removes this limitation. When a procedure call is encountered, the present value of the PC

Js not pushed onto the slack. lm:;lead, ii is saved in lhe return address register. The old

value of this register is pushed onto the stack instead. When a return instruction is

decoded, the return address register is immediately copied into the PC and instruction

prefetch continues. When the return instruction has finished execution and the dynamic link

has been removed from the stack, the return address from the administration area is copied

into the return address register. The result of this is that the most recent return address is

kept in the instruction unit and each administration area contains the return address for the

previous procedure.

50

Section 9: Instruction Unit

There is one more complication in the definition of the return address register. The register

must never be read while its value is invalid, that is, after a procedure return but before the

return instruction has completed execution. This can be assured by writing -1 into the

register every time its value is read. Then if a procedure call or return instruction is

decoded while the return address register register is still · 1, the instruction unit must wait

until the previous return instruction has finished execution. It is not likely that this will occur

very often.

9.4 Instruction Pre-issue

It is instructive to try to determine the average number of instructions that have been issued

across the stack bus but have not yet completed execution. This is equivalent to finding the

average difference between the accepted and completed registers. Simulation, or at least

some dynamic frequency data, is necessary to get a real answer. A good guess at the upper

limit can be reached by using static frequency data and making some simplifying

assumptions.

The first assumption is that the static and dynamic frequencies are essentially the same.

Data gathered by Tannenbaum for programs written in a simple, structured language strongly
supports this assumption. 12 For most instructions that he measured, the dynamic frequency

was within 20% of the value of the static frequency. The most variance was shown among

instructions with low frequencies.

The second assumption is that procedure returns are the only important exception to the

first assumption. Tannenbaum does not compile data on the number of procedure returns,

but it is not necessary. The static frequency is roughly equivalent to the number of

procedures, and the dynamic frequency is identical to the frequency of procedure calls.

Consulting table 3 in appendix A, the static frequency of procedure calls is 10.26%.

Therefore it is acceptable to assume that procedure return. instructions occur with a dynamic

frequenc:y of 10%.

The final assumption is useful only in placing an upper limit on the average number of

instructions issued but not yet completed. It is that the instruction unit issues instructions

infinitely fast, stopping only when it must wait for all prior instructions to complete. This

assumption implies that if the average number of instructions that cause the instruction unit

to wait is 1 in n, then the average number of instructions issued but not executed is n/2.

51

Section 9: Instruction Unit

The only instructions that cause the instruction unit to wait are the conditional branches and

procedure returns. Summing up their frequencies from section 3 in appendix B, we see that

14.9% of the instructions cause the instruction unit to wait. This works out to 1 in every 6.7

instructions, for an average of 3.4 instructions issued but not completed. This number is

unfortunately low, especially considering that it is an upper limit.

In the last section we saw th:::it is is possible tn implement procedure returns in such a way

that they do not require the instruction unit to wait for all prior instructions to complete. If

this is done, the frequency of instructions that cause the instruction unit to wait is only 4.6%,

or 1 in 22 instructions. This gives 11 as an upper limit for the average number of

instructions issued but not completed. From this discussion, it is clear that the return

address register should be included in the instruction unit.

52

Section 1 O: Conclusions

10. Conclusions

This thesis has presented a Pascal machine architecture designed using custom VLSI. The

design is not complete, but all major aspects of the architecture are specified and

alternatives are listed for the areas that are not specified. The main areas yet to be resolved

are the design of the processor microcode controllers, the specification of the message

busses and their interfaces, and the design of the floating point processor. These are left

unspecified primarily because of time constraints. However, the microcode controllers also

could not ba specified becausa of a limitation in Bristle Blocks.

The decode section of a Bristle Blocks datapath processor is just the AND plane of a PLA.
Minterms can be generated to produce AND/OR functions, but the decoder section contains

no clocks and therefore no state. This means that the microcode inputs must either come

from off-chip or from a datapath element on-chip. For certain processors in the Pascal

system, it is clear that a much simpler control mechanism is sufficient. A state machine,

implemented as a clocked PLA, could easily handle the sequencing of the local stack

controllers and the integer processor. This would be vastly more efficient than using a

microcode controller and off-chip microcode memory.

The present version of Bristle Blocks does not allow the decoder section to be a state

machine, but plans have been made to combine Ron Ayres' heirarchical PLA work3 with

Bristle Blocks. Using Ron Ayres' PLA functions, it would be possible to make the decoder

section be an arbitrarily complex heirarchy of clocked PLAs. By having some PLA inputs

come from off-chip, it would even be possible to mix external microcode with the internal

state machine.

There is a great deal ot further work mat can be done on both the Pascal system and 1:mstle

Blocks. Allowing the decoder section to be a state machine is an important generalization of

Bristle Blocks. Also, much work can be done designing new datapath elements and

improving the Bristle Blocks user interface. For the Pascal system, the main work involves

specifying the message busses, designing an on-chip bus interface, and designing a floating

point processor. The message busses could also be optimized on a basis of expected use.

The microcode controller design work should wait until the more generalized Bristle Blocks

decoder section is implemented.

53

References

[1] Ayres, Ron, "IC Specification Language", Proceedings of the 16th Annual Design

Automation Conference, June, 1979

[2] Ayres, Ron. "A Language Processor and a Samole Language", PhD Thesis, California
Institute of Technology, 1979

[3] Ayres, Ron, "Silicon Compilation- Heirarchical Use of PLAs", Proceedinos of the 16th

Annual Design Automation Conference, June, 1979

[4] Efland, Greg, "An IC Breadboard Facility Based on the TriMOSbus". MS Thesis.

California Institute of Technology (in preparation)

[5] Johannsen, Dave, "Bristle Blocks: A Silicon Compiler", Proceedings of the Caltech

Conference on VLSI, January 22, 1979

[6] Johannsen, Dave, Bristle Blocks Program Te'l(t, Caltech Dec~ystem-20 fil~i::.

<DAVE>DH".ICL and <DAVE>Dl*.ICL, June, 1979

[7] Mead, Carver, and Sutherland, Ivan, "Micro-electronics and Computer Science",

Scientific American, Volume 237, Number 3, September, 1977

[8] Mead, Carver and Conway, Lynn, Introduction to VLSI Systems, Addison-Wesley,
to be published August, 1979

{9] Seiler, Larry, "Transaction Arbitration for the TriMosbus", Caltech SSP memo # 2163,

November 16, 1978

[10] Stevenson, Johan, and Tanm:mbaum, Andrew, "Efficienl Encoding of Machine

Instructions", submitted for publication March, 1979

[11] Sutherland, Ivan, Molnar, Charles, Sproull, Robert, and Mudge, Craig, "TriMosbus ",

Proceedings of the Caltech Conference on VLSI, January 22, 1979

[12] Tannenbaum, Andrew, "Implications of Structured Programming for Machine

Architecture", Communications of the ACM, Volume 21, Number 3, March, 1978

[13] Tannenbaum, Andrew, Stevenson, Johan, and van Staveren, Hans, "Description of

an Experimental Machine Architecture for Use with Block Structured Languages",

unpublished, version of March 2, 1979

54

Appendix A:
Bristle Blocks Datapath Elements

This appendix documents the primitive datapath elements designed by the author to be used

in the Pascal system. For each datapath element there is a description, followed by the ICL

code which defines it, followed by the layout and circuit diagram representations of the

element. The code is kept in four separate files: the runtime file, the details file, the source

file, and the test file. The runtime file contains functions which are executed when the chip

is generated. The source file contains the code which creates the data file used to generate

the element at runtime. The details file contains information used by the runtime and source

files. The test file generates an instance of the datapath element which is used to generate

the layout and circuit diagram of each datapath element.

A little background will make it easier to read the code files. The entire Bristle Blocks

system is coded in ICL (Integrated Circuit Language), a language designed at Caltech by

Ran Ayres as part of his Doctoral thesis.2 Although it was created for the purpose of IC
design, it is a general purpose programming language, with features such as strong

datatyping, list structures, polymorphic function names, and coercions. Points are defined as

a µrimilive ualatype and are entered using the sharp, or pound sign. For example, 0#0

denotes the origin. As in most languages, parentheses ((...)) delimit function parameter

lists with commas separating the elements in each list. In ICL, brackets ([...]) delimit record

structures, and braces ({ ... }) delimit strings. Spaces separate the elements in a record

structure, and semicolons separate the elements in a string. Single quotes (' ... ') delimit

character strings and double quotes (" ... ") delimit comments. A backslash (\) indicates

an infix or postfix function call. The forms <$, $$, and $> are string append and concatenate

operators. The form 11 [...] ... \ \ represents a suspendable function. This is a function

which is stored as data. The brackets contain variables whose values are passed to the

suspendable function. For further information about ICL, .see the !CL Reference Manual,

which is contained in Ron Ayres' PhD thesis.2

Several things are useful to know about the Bristle Blocks program code. The three data

types which are most important to know about are BLOCK, used to describe datapath

elements, VBLOCK, a special type of BLOCK used in the source files, and BLOCK_PRODUCER,

which is used in the runtime file. A BLOCK_PRODUCER is a suspendable function which returns

a variable of type BLOCK. DATAPATH is the global variable used to produce the datapath. It is

a string of BLOCK_PRODUCERS. USPEC_PRODUCER and MEMORY_USPEC are types used to specify

microcode functions. The variable UNUSED is a pre-defined USPFC_PRODUCFR which has a null

function. This variable is used in the test files, since a microcode function is unnecessary to

test plot the datapath.

55

Appendix A: Bristle Blocks Datapath Elements
Section 1: Constant Source

1. Constant Source

This datapath element is used ta source constants onto the data busses. constants are

specified either as integers or as character strings representing binary, octal, or hex

numbers. Each constant source element has two separate control lines. Each control line

can be specified to drive a constant onto either or both busses.

Figure 15 shows three constant source elements. The six control lines drive constants onto

the busses as shown in table 10.

Control Line UQQer Bus Lower Bus

1 left 11

1 right 9

2 left 7 0
2 right 10 5

3 left 4

3 right 1.11

Table 10: Constant Source Values

1.1 Runtime File

"CONST ICI ! RuntimA function definitions for constant value source"

/*READ CONSTD;*/ "also requires BINARY.ICL"

·constant value source: Description of Parameters"

Name: name of block for block diagram"
Ul: microcode spec for driving first constant onto bus"
U2: microcode spec for driving second constant onto bus"
UL: binary constant to be driven onto upper bus when Ul is true"
LL: bi nary constant to be driven onto lower bus when Ul is true"
UR: bi nary constant to be driven onto upper bus when U2 is true"
LR: binary constant to be driven onto lower bus when U2 is true"

VAR NULL = BINARY; NULL := NIL;

If any of the binary constants has a value of NULL, that bus is not
driven while that microcode function is enabled. By using NULL values,
constants may be sourced to only one of the two busses, allowing
another microcode driver to source the other bus."

56

Appendix A: Bristle Blocks Datapath Elements
Section 1: Constant Source

DEFINE CONSTANT(NAME:SC U1,U2:USPEC_PRODUCER UL,LL,UR,LR:BINARY)
=BLOCK_PRODUCER:

II [NAME; Ul; U2; UL; LL; UR; LR;]
BEGIN VAR A, B = BLOCK; I = INT;
DO

\\
ENDDEFN

B ·= NEXT_GUY(9,9,5,5,0,8,011);
A := NEXT_BLOCK;

©(A).CALLS := { B \AT 14#0;

CONST_COL \AT 0#0 \WITH_USPECS {U1;U2};

} :

FOR I FROM 0 TO WIDTH-1; COLLECT
IF DEFINED(LL) THEN

IF TAIL(LL) THEN CONST_LL_l
ELSE CONST_LL_O

~l

ELSE NIL
FI;

FOR I FROM 0 TO WIDTH-1; COLLECT
IF DEFINED(UL) THEN

IF TAIL(UL) THEN CONST_UL_l
ELSE CONST_UL_O

FI
ELSE NIL
FI;

FOR I FROM 0 TO WIDTH-1; COLLECT
IF DEFINED(LR} THEN

\AT O#I*HEIGHT
\AT O#I*HEIGHT

\AT O#I*HEIGHT
\AT O#I*HEIGHT

IF TAIL(LR) THEN CONST_LR_l \AT O#I*HEIGHT
ELSE CONST_LR_O \AT O#I*HEIGHT

FI
ELSE NIL
FI;

FOR I FROM 0 TO WIDTH-1; COLLECT
IF DEFINED(UR) THEN

IF TAIL(UR) THEN CONST_UR_l \AT O#I*HEIGHT
ELSE CONST UR 0 \AT O#I*HEIGHT

FI
ELSE NIL
FI

©(A).VIEWS ·= { BLOCK(NAME,14,DEFINED(UL)
FALSE,FALSE,DEFINED(LL)

DEFINED(UR),
DEFINED(LR) } ;

GIVE A END

57

Appendix A: Bristle Blocks Datapath Elements
Section 1: Constant Source

DEFINE CONSTANT(NAME:SC U1,U2:USPEC_PRODUCER UL,LL,UR,LR:BINARY):
DATAPATH · ·= $> CONSTANT(NAME,U1,U2,UL,Ll,UR,LR);

ENDDEFN

"Multiple Constant value source: Description of Parameters"

Name: name of block for block diagram"
Ul: microcode producer for driV1ng constants onto Dus··
Hi: binary constants to be driven onto upper bus when Ul
Lo: binary constants to be driven onto lower bus

DEFINE CONSTANT(NAME:SC U1:USPEC_PRODUCER HI,LO:BINARYS):
BEGIN VAR HI1,HI2,L01,L02 =BINARY; I = INT;

I : = 1;
WHILE DEFINED{ HI[I]) ! DEFINED(LOLIJ); DO

CONSTANT(NAME,Ul,Ul,DEF(HI[I]),DEF(LO[I]),

when Ul

DEF(HI[I+1]),DEF(LO[I+1]));

END
ENDDEFN

END
I : I+2;

"End of CONST.ICL"

1.2 Details File

"CONSTD.ICL:

VAR
VAR
VAR

Details for constant value source·

CONST_NULL, CONST_CONN, CONST_COL
CONST_LL_O, CONST_UL_O, COlllST_LR_O, COlllST_UR_O
CONST_LL_l, CONST_UL_l, CONST_LR_l, CONST_UR_l

BLOCK;
RIOC:K;

BLOCK;

"PARAMETERS TO DISK_BLOCK ARE FILE NAME, POSITION IN FILE, UNIQUE ID"

CONST_NULL ·= DISK_BLOCK{'CONST', 1, 3181);
CONST_CONN ·= DISK_BLOCK('CONST', 2' 3182);
CONST_COL := DISK_BLOCK('CONST', 3, 3183);
CONST_LL_O := DISK_BLOCK('CONST', 4, 3184);
CONST_UL_O : = DISK_BLOCK('CONST', 5. 3185);
CONST_LR_O ·= DISK BLOCK('CONST', 6, 3186);
CONST UR 0 DISK_BLOCK('CONST', 7' 3187);
CONST LL 1 - DISK_BLOCK('CONST', 8, 3188);
CONST_UL 1 ·= DISK_BLOCK('CONST', 9, 3189); -
CONST -LK -1 := UlSK_BLOCK('CONST' ,10, 3190);

CONST_UR 1 . = OISK_BLOCK('CONST' ,11, 3191); -
"End of CONSTD.ICL"

58

is true"
is true"

Appendix A: Bristle Blocks Datapath Elements
Section 1: Constant Source

1 .3 Source Fi le

"CONSTS.ICL: Definitions for constant value source•

/*READ CONSTD;"/

VAR CONST VNULL, CONST VCONN, CONST VCOL = VBLOCK
VAR CONST-VLL 0, CONST-YUL 0, CONST-VLR 0, CONST VUR 0 VBLOCK
VAR CONST=VLL:1. CONST:vuL:1. CONST=VLR:1. CONST=VUR=1 = VBLOCK

CONST_VNULL ·= NIL;

CONST VNULL.VIEWS
CLAYOUT ({

BW ({ O#O\Y2; 14#. });
BW ({ 0#0 \Yl; 14#. });

RW ({

RW ({

GB
GB
GB

KB
KB
KB

}) } ;

CONST_VLL_O

2#0\Y4; .#-4.5\Y2; 4.5#.+2.5;
.#.+8; 2#.+2.5; 2#-8.5 \Yl;
4.5#.+2,5; .#.+8; 2#.+2.5;

.#O\y3 }) ;
12#0\Y4; .#-4.6\Y2; S.5#.+2.5;
.#.+8; 12#.+2.5; 12#-8.5 \Yl;
g. 5#. +2. 5 j • #. +8 j 12#. +2. 6 j

.#O\y3 }) ;

5#-2.0\Y4, 9#-6.0\Y2);
5#-9.0 \Y1, 9#9\Y2);
5#2\y3, 9#5 \Yl);

6#1\Y4, 8#-1.0\Y4 };
6#1, 8#-1.0 };
6#1\y3, 8#-1.0\y3 }

· = NIL;

CONST_VLL_O.CALLS ·= { GCB \AT O#O\Y2 };

CONST VLL O.VIEWS :=
CLAYOUT ({

GP ({ 1.5#0\Y2; 7.5#.; .#.+9.5;
5 • 5#. : 1. 5#. - 4 . 0 })

} } } ;

CONST_VUL_O

CONST_VUL_O.CALLS

·= NIL;

CONST VUL 0.VIEWS ·=
CLAYOUT ({

{ GCB \AT 0#0 \Yl }:

GP ({ 1.5#0 \Y1; 7.5#.; .#.-S.5;
5. 5#. ; 1. 5#. +4 })

} } } ;

CONST VLR_O := NIL;

"lower bus"
"upper bus"

"right control wire"

"left control wire"

•1ower VDD connect•
"GND connect"
"upper VDD connect•

"lower VDD contact cut"
"GND contact cut"
"upper VDD contact cut"

"lower bus contact"

"pulldown path"

"upper bus contact"

"pulldown path"

CONST_VLR_O.CALLS := { CONST_LL_O \MIRY \AT 14#0 };

59

Appendix A: Bristle Blocks Datapath Elements
Section 1: Constant Source

CONST_VUR_O := NIL;

CONST_VUR_O.CALLS ·= { CONST UL 0 \MIRY \AT 14#0 };

CONST_VLL_l ·= NIL;

CONST_VLL 1.CALLS := { GCS \AT 0#0\YZ };

CONST VLL 1.VIEWS ·=
CLAYOUT ({

GP ({ 2#0\Y2; 7#.-5; 5#.-2; 0#.+5 })
}) } ;

CONST_VUL_ := NIL;

CONST VUL 1.CALLS := { GCB \AT 0#0 \Yl };

CONST VUL 1.VIEWS ·=
{-LAYOUT ({

GP ({ 2#0 \Yl; 7#.+5; 5#.+2; 0#.-6 })
}) } ;

CONST_VLR_l ·= NIL;

"lower bus contact"

"pullup path"

"upper bus contact"

"pullup path"

CONST_VLR_l.CALLS ·= { CONST_LL_l \MIRY \AT 14#0 };

CONST_VUR_l ·= NIL;

CONST_ VUR_1. CALLS • = { CON.C\T _111_1 \MIRV \AT 14#0 } :

CONST_VCONN ·= NIL;

CONST_VCONN.CALLS ·= { GRCBU \AT { 3.5#1\Y6; 10.5#1\Y6 } };

CONST VCONN.VIEWS
{-LAYOUT ({

RW ({ 2#0\Y4: 2#3\Y6 }):
RW ({ 12#0\Y4; 12#3\Y6 })

}) } :

"left control connect"
"right control connect"

CONST_VCOL := NIL;

CONST_VCOL.CALLS := { CONST_CONN;
CUN~l_NULL \AT EACH_BIT_POSITION };

CONST VCOL.INTERFACE :=
{- [FROM: 3.5#0\Y6 TYPE:l BUFFER:! EDGE:3 UCODE:l];

[FROM:!O.OUO\YO TYPE:l BUFFER;l EDGE;3 UC00[;1] };

SCRATCH_FILE(CONST_NULL.DETAILS.FILE_NAME):

60

Appendix A: Bristle Blocks Datapath Elements
Section 1: Constant Source

DUMP_SET({ [B:CONST NULL
[B:CONST-CONN
[B:CONST-COL
[B:CONST-LL 0
[B:CONST-UL-0
f B:CONST-LR-0
[B:CONST-UR-0
[B:CONST-LL-1
[B:CONST-UL-1
[B:CONST-LR-1
[B: CONs(:u()

•End of CONSTS.ICL•

1.4 Test File

V:CONST VNULL];
V:CONST-VCONN];
V:CONST-VCOL];
V:CONST-VLL 0];
V:CONST-VUL-0];
V:CONST-VLR-0 l;
V:CONST-VUR-0];
V:CONST-VLL-1];
V:CONST-VUL-1];
V:CONST-VLR-1];
V:CONsr:vuR=l] });

·coNSTT. ICL: Tests the constant value source"

VAR A = BLOCK:

PRECHARGE := FALSE;
DATA_WIDTH(4);

CONSTANT('Const', UNUSED, UNUSED, NULL, 'H B', 'Qll', NULL
CONSTANT('Const', UNUSED, UNUSED, 'H 7', 0, 10, '101'
CONSTANT{'Const', UNUSED, UNUSED, '100', NULL, 'Q16', NULL

A : = DATAPATH;

"End of CONSTT.ICL"

61

I

I

I

Appendix A: Bristle Blocks Datapath Elements
Section 1: Constant Source

1n o n n 10 r 1 o r I I \ ~:~I ', ?-.. l '' -' II
,,,,,, ,l

0 II
,/

I

~ \
I I CJ l

I

,/ /

o II

'('
·~·

I

/

I D t JD D I

//
110 I D 11 D Ill

.. I

I

"'llQ!!1'1:-H'"', 1:1, "':! ~/~tl;~·tt· _,H"~=:J,
-

I 0 ID D I

Figure 15: Constant Source Layout and Circuit Diagram

62

Appendix A: Bristle Blocks Datapath Elements
Section 2: Fixed Value CAM

2. Fixed Value Content Addressable Memory

This datapath element compares a value loaded from the lower data bus against a fixed

value. If they match, a compare out line goes high. In the Pascal system, these elements
are used to recognize memory bus message headers.

Figure 16 shows two fixed value CAMs. Each has a compare output line and a control line

for loading the word to be compared. The first CAM compares against the binary value

'0011 '. The second CAM compares against the value '1 XXO', that is, it compares the high

order bit against 1, ignores the middle two bits and compares the low order bit against a.

2.1 Runtime File

"CAM1.ICL: Runtime function definitions for content addressable
memories with fixed mask and fixed compare value

/*READ CAM1D;*I "also requires BINARY.ICL"

"Fixed value CAM with no Masking: Description of Parameters"

Name: name of block for block diagram"
U1: microcode spec for loading word to be compared"
U2: microcode spec for comparison output"
Value: binary constant indicating the comparison value"

DEFINE CAM(NAME:SC U1,U2:USPEC_PRODUCER VALUE:BINARY)=BLOCK_PROOUCER:
II [NAME; Ul; U2; VALUE;]

\\
ENDDEFN

BEGIN VAR A, B = BLOCK; INT;
00

B :=NEXT GUY(12,12,5,5,0,6,116);
A := NEXT=BLOCK;

@(A).CALLS := { B \AT 21#0;

} ;

CAMl_COL \AT 0#0 \WITH_USPECS {Ul;U2};

FOR I FROM 0 TO WIDTH-1; COLLECT
IF TAIL(VALUE) THEN CAM1 ONE \AT O#T*HEIGHT

ELSE CAMl-ZERO\AT O#I*HEIGHT
FI

@(A).VIEWS ·= { BLOCK(NAME,21,FALSE,FALSE,TRUE,FALSE) };

GIVE A END

DEFINE CAM(IJAME,SC U1.LJ?,ILSPFC_PRODUCER VALUE:BINARY):
DATAPATH · ·= $> CAM(NAME,U1,U2,VALUE);

ENDDEFN

63

Appendix A: Bristle Blocks Datapath Elements
Section 2: Fixed Value CAM

"Fixed value CAM with Fixed Mask: Description of Parameters"

Name:
U1:
U2:

Name of block for block diagram"
Microcode spec for loading word to be compared"
Microcode spec for comparison output"

Mask: Binary constant indicating which bits are compared to 1,"
which bits are compared to 0, and which bits are masked."

DEFINE CAM(NAME:SC U1,U2:USPEC PRODUCER MASK:MASK)=BLOCK_PRODUCER:
II [NAME; U1; U2; MASK;]-

BEGIN VAR A, B = BLOCK; I = INT;
DO

B :=NEXT GUY(12,12,5,5,0,6,116);
A · = NEXT=BLOCK;

@(A). CALLS . = { B \AT 21#0;
CAMl_COL \AT 0#0 \WITH_USPECS {Ul;U2};

FOR I FROM 0 TO WIDTH-1; COLLECT
CASE TAIL(MASK) OF

NONE: NIL
ZCRO; CAM1 zrno \AT O#I"'llEICllT

ONE: CAMl=ONE \AT O#I*HEIGHT
ENDCASE

} ;

©(A).VIEWS . = (BLOCK(NAME,21,FALSE,FALSE,TRUE,FALSE)
GIVE A END

\\
ENDDEFN

DEFINE CAM(NAME:SC U1,U2:USPEC PRODUCER MASK:MASK):
DATAPATH ··= $> CAM(NAME,U1~U2,MASK);

FlllnnFFN

"End of CAMl.ICL"

2.2 Details File

"CAMlD.ICL: Details for content addressable memories
with fixed mask and fixed compare value

) ;

VAR CAMl_NULL, CAMl_NUM, CAMl_ZERO, CAMl_ONE, CAMl CONN, CAMl_COL

"PARAMETERS TO DISK_BLOCK ARE FILE NAME, POSITION IN FILE, UNIQUE ID"

CAM1_NULL • = DISK_BLOCK('CAMl', 1, 3681);
CAM1 -NUM : = DISK_BLOCK('CAM1', '· 3nA:i):
CAMl ZERO . = DISK_BLOCK('CAM1', 3, 3683);
CAMl ONE • = DISK_BLOCK{'CAMl', 4, 3684);
CAM1=CONN • = DISK_BLOCK('CAMl', 5, 3685);
C:AM1 -COL ~ = DISK_BLOCK('CAM1'. 6. 3686):

"End of CAMlD.ICL"

BLOCK;

64

Appendix A: Bristle Blocks Datapath Elements
Section 2: Fixed Value CAM

2.3 Source File

"CAM1S.ICL: Definitions for content addressable memories
w1th fixed mask and fixed compare value

/ .. RCAD CAM1D;"'/

VAR CAM1_VNULL, CAM1_VNUM, CAM! VZERO, CAM1 VONE,
CAM1:vcONN, CAM1:vcoL VBLOCK;

CAM1_VNULL := NIL; "Contains bus wires & control lines"

CAM1_VNULL.VIEWS := { LAYOUT ({

BW ({ 0#0\Yl; 21#.
BW ({ O#O\Y2: 21#.

}) ;
}) :

RW ({ 4#0\Y4; .#2.5\Y2; .-2#.+2;
.#-4.5\Yl; .+2#.+2; .#O\Y3 });

GW ({ 15#0\Y4; .#6\Y2; 18.5#.;
.#-6\Yl; 15#.; .#O\Y3 })

}) } ;

"upper data bus wire"
"lower data bus wire"

"data load 1 i ne"

"compare line"

CAMl_VNUM := NIL; "Defines basic comparison cell"

CAM1 VNUM.CALLS ·=
{

GCB \AT O#O\Y2;
GRCBR \AT 6#7\Y2;
GCB \AT 12#0

"data load contact"
"internal data contact"
"contact to GND"

} ;

CAMl_VNUM.VIEWS := {LAYOUT ({

RW ({ 12#6; 13 .5#.; 16#2.5;
16#-2.5; 13.5#-5.0; 13#.

GP ({ 13#2; 17#6; 18#6;
.#-6.0; 17#.; 13#-2.0

GP ({ 1#2\YZ; 5#6\Y2; 8#.;
8#0\Y2;

}) } ;

CAMl_VZERO ·= NIL;

CAM1_VZERO.CALLS := { CAM1_NUM };

CAMl VZERO.VIEWS ·= { LAYOUT ({

1#.

}) ;

}) ;

})

RW ({ 8#9\YZ; .#-5.0; 12#. }) }) };

CAMl_VONE

CAMl_VONE.CALLS

·= NIL;

·= { CAM1 NUM;
GRCBR-\AT 6#-7.0\Yl;
GCB \AT 9#0\Y3

"compare pulldown gate"

"compare pulldown path"

"dafa load path"

"internal connect"

"inverter contact"
"VDD contact"

65

Appendix A: Bristle Blocks Datapath Elements
Section 2: Fixed Value CAM

} ;

CAMl_VONE.VIEWS := { LAYOUT ({

RW ({ 8#9\Y2; .#2 }) ;
RW ({ 12#-9\Yl; .#5 }) ;

GW ({ 10#0; 5#0; .#-9.0\Yl
GW ({ 8#-6.0\Yl; 10#.; .#O\Y3

RB (13#-9.0\Yl, 7#4\ Y1 }
}) };

}) ;
}) ;

"inverter pulldown gate"
"compare line gate connect"

"inverter pulldown path"
"inverter pullup path"

"inverter pullup gate"

CAM1_VCONN ·= NIL; "Defines connections at bottom of column"

CAM1_VCONN.CALLS ·= { GRCBL \AT 7#1\Y6 };

CAM1_VCONN.VIEWS ·= { LAYOUI ({ HW({ 4t/'3\YO; .t/'O\Y4 }); "Oata loao connect"
GW({ 15#0\Y6; .#O\Y4 }) "compare line connect"

}) };

CAMl_VCONN.INTERFACE ·= { [FROM: 8NO\Y6 TYPE:l BUFFER:1 EDGE:S UCODE:l];
[FROM:15#0\Y6 TYPE:l BUFFER:3 EDGE:3 UCODE:2] };

CAM1_VCOL • NIL;

CAM1_VCOL.CALLS ·= { CAM1_CONN PASSING_USPECS {1;2};
CAM1_NULL \AT EACH_BIT_POSITION };

SCRATCH_FILE(CAM1_NULL.DETAILS.FILE_NAME);

DUMP_SET({

}) ;

[B: CAM1 NULL
[B: CAMl-NUM
[B: CAM1-ZERO
(B: CAM1-0NE
[B: CAM1-CONN
[B: CAM(~COL

"End of CAM1S.ICL"

V: CAM1 VNULL];
V: CAM1-VNUM] ;
V: CAMl-VZERO l;
V: CAM1-VONE];
V: CAM1-VCONN];
V: CAM1=VCOL]

66

Appendix A: Bristle Blocks Datapath Elements
Section 2: Fixed Value CAM

2.4 Test File

"CAM1T. ICL:

VAR A = BLOCK;

PRECHARGE := FALSE;
DATA_WIOTH(4};

Tests content addressable memoruie
with fixed mask and fixed compare value"

CAM('Cam', UNUSED, UNUSED, '0011');
CAM('Cam', UNUSED, UNUSED, '1XXO');

A : = DATA PATH;

"Fnd nf CAM1T.ICL"

67

I

I

I I I

I

L I I

!::H!.I - -

Appendix A: Bristle B locks Oatapath Elements
Section 2: Fixed Value CAM

[- _J
I

. ~ __ _.I

I

- -
Cl l:l=t::tt':o· ·tt=±b

I

I

I 11111

I I ,
(-;

,

. ~ -
I I

I I; I

-

_J
l

--
I

I
-~--J

I

Figure 16: Fixed Value CAM Layout and Circuit Diagram

6B

Appendix A: Bristle Blocks Datapath Elements
Section 3: Variable Value CAM

3. Variable Value Content Addressable Memory

This datapath element compares a value loaded from the lower data bus against a value

stored in a memory register. If they match, a compare out line goes high. In the Pascal

system, these elements are used to compare the local stack controller's COMPLETED register

against the saved value of the ACCEPTED register. They could also be used in place of the
fixed value CAMs, if the memory bus message heaaders were not specified prior to chip

fabrication.

Figure 17 shows two variable value CAMs. The first compares against all four bits. The

second does not compare against bits 1 and 3. The value the bus is compared against is

stored in a standard memory register. The first CAM's memory register can be written from

both busses and read onto the lower bus. The second CAM's memory register can be read

from both busses and written onto the upper bus. Both memory registers have refresh
control lines (not shown in the circuit diagram). Normally these are driven by the 01 clock.

3.1 Runtime File

"CAM2.ICL: Runtime function definitions for content addressable
memories with fixed mask and variable compare value •

/*READ CAM2D-L01D;*/ "also requires BINARY.ICL"

"Variable value CAM with no Masking: Description of Parameters"

Name: name of block for block diagram"
U1: microcode spec for loading word to be compared"
U2: microcode spec for comparison output"
MU: mtnnury rnicrucul.ltt :;pttc:; fo1· compari:;;on register"

DEFINE CAM(NAME:SC U1,U2:USPEC_PRODUCER MU:MEMORY_USPEC)=BLOCK_PRODUCER:
II [NAME; Ul; U2; MU;]

\\
ENDDEFN

BEGIN VAR A, B = BLOCK; I = INT; MR=MEMORY_RETURN:
DO

MR ·=MEMORY REGISTER(MU,[A:O B:O],[A:l B:O],[A:O B:O],[A:O B:O]);
B := NEXT GTIY(14,14,5,5,0,8,1/8+1/4+MR .. POWER);
A := NEXT=BLOCK;

@(A).CALLS := { B\AT 31+MR.WIDTH#O;
CAM2_ALL\AT MR.WIDTH#O \WITH_USPECS {Ul;U2}:
MR CAllS

} ;

@(A).VIEWS := { BLOCK(NAME,31+MR.WIDTH,DEFINED(MU.WU),
DEFINED(MU.RU}.TRUE.TRUE) }:

GIVE A END

DEFINE CAM(NAME:SC Ul,U2:USPEC PRODUCER MU:MEMORY_USPEC):
DATAPATH : := $> CAM(NAME,Ul~U2,MU);

69

ENDDEFN

Appendix A: Bristle Blocks Datapath Elements
Section 3: Variable Value CAM

"Variable value CAM with Fixed Mask: Description of Parameters"

Name: Name of block for block diagram"
Ul: Microcode spec for loading word to be compared"
U2: Microcode spec for comparison output"
MU: Microcode specs for comparison register"
Mask: Binary constant indicating which bits are compared.

Bits marked zero are ignored in the comparison.·

DEFINE CAM(NAME:SC Ul,U2:USPEC_PRODUCER MU:MEMORY USPEC
MASK:BINARY) = BLOCK_PRODUCER:

II [NAME; Ul; U2; MU; MASK;]
BEGIN VAR A, B = BLOCK; I = INT; MR = MEMORY_RETURN;
DO

MR := MEMORY_REGISTER(MU,[A:O B:O],[A:l B:O],[A:O B:O],[A:O B:O]);
B :=NEXT GUY{14,14,5,5,0,8,1/8+1/4+MR.POWCR);
A := NEXT=BLOCK;

@(A).CALLS := { B \AT 31+MR.WIDTH#O;
CAM2_COL \AT MR.WIOTH#O \WITH_USPECS (Ul;U2);

FOR I FROM 0 TO WIDTH-1; COLLECT
IF TAIL(MASK) THEN CAM2_CELL \AT MR.WIDTH

#I*HFTGHT
ELSE NIL

FI
} ;

@(A).VIEWS ·= { BLOCK(NAME,31+MR.WIDTH,DEFINED(MU.WU),
DEFINED(MU.RU),TRUE,DEFINED(MU.RL)) };

\\
ENDDEFN

GIVE A END

DEFINE CAM(NAME:SC U1,U2:USPEC PRODUCER MU:MEMORY USPEC MASK:BINARY):
DATAPATH ::= $> CAM(NAME,U1~U2,MU,MASK); -

ENDDEFN

"End of CAM2.ICL"

3.2 Details File

"CAM2D.ICL: Details for content addressable memories
with fixed mask and variable compare value•

VAR CAM? _Niii I • CAM2_CELL. CAM2_CONN. CAM2_COL. CAM2_ALL = BLOCK;

"PARAMETERS TO DISK_BLOCK ARE FILE NAME, POSITION IN FILE, UNIQUE ID"

CAM2 NULL DISK_BLOCK('CAM2' I 1 t 7681);
CAM2-CELL : = DISK_BLOCK('CAM2', 2 t 7682):
CAM2-CONN . = DISK_BLOCK('CAM2', 3, 7683);
CAM2=COL . = DISK_BLOCK('CAM2', 4, 7684);
CAM2_ALL . = DISK_BLOCK('CAM2', 5' 7685);

"End of CAM2D.ICL"

70

Appendix A: Bristle Blocks Oatapath Elements
Section 3: Variable Value CAM

3.3 Source File

"CAM2S.ICL: Definitions for content addressable memories
with fixed mask and variable compare value

/•RCAO CAMZO;"'/

VAR CAM2_VNULL, CAM2_VCELL, CAM2_VCONN, CAM2_VCOL, CAM2_VALL = VBLOCK;

CAM2_VNULL ·= NIL; "Contains bus wires & control lines"

CAM2_VNULL.VIEWS := { LAYOUT ({

BW ({ 0#0\Yl; 31#. }); "upper data bus wire"
BW ({ O#O\Y2; 31#. }); "lower data bus wire"

RW ({ 27#0\Y4; .#2.5\Y2;
29#.+2; .#-4.5\Yl;
27#.+2; .#O\Y3 }); "data load control line"

GW ({ 6#0\Y4; .#3.5\Y2;
1.5#.+4.5; .#-8\Yl;
6#.+4.5; 6#0\Y3 }) "equal line"

}) };

CAM2_VCELL • = NIL;

CAM2 VCELL.CALLS : =
{

GCB \AT { 17#0\Y4;
17#0\Y3;
311'1'0\YZ;
8#-4.0;

25#-2.0 } ;
GRCBL \AT { 24#7\Y2 } ;
GRCBU \AT { Z3#-9.0\Y1 };
GRCBR \AT { 14#-8.0\Yl } ;
GRCBD \AT { 15#9\Y2 }

} ;

CAM2_VCELL.VIEWS ·= { LAYOUT ({

BW ({ -3.0#-8.0\Yl; 11#.

RW ({ 21#9\Y2; .#0.5;
22.5#2; 25#.

RW ({ 13#-3.0\Yl: 10#.: .#. -8
RW ({ 17#-9\Yl; .#0
RW ({ 11#5\Y2; .#-8; 5.5#.;

4# .+1. 5; .#-1.5; 5.5#0
RW ({ 23#-4.0\Yl; .#. -1

GW ({ 21#-10\Yl; 20#.;
.#0\Yl; 16#.; .#-1\Y3

GW ({ 14#10\Y2; .#2; 8#.; 7#3;

"Defines basic comparison cell"

"VDD contact for ex-or pullup"
"VOO contact for inverter pullup"
"i.;011Lai;L Lv lVWl:ll" daLa bu;;;"

"GND contact for equal line"
"GND contact for inverter"
"pulldown contact for inverter"
"pullup contact for inverter"
"register gate contact"
"ex-or pullup contact"

}) ; "extra bus connection"

}) ; "inverter pulldown gate"
}) ; "ex-o.r ilate: inverter"
}) ; "ex-or gate: register"

}) ; "equal line pulldown gate"
}) ; "inverter pullup connect"

}) ; "inverter pull up path"

.#-9.5\Yl; 7.5#.+.5; 12#. }) ; "ex-or pull down path: register"
GW ({ 14#2; 19#.;

20#3; .#-10\Yl }) ; "ex-or pull down path: inverter"

71

GW

GP
GP

GP

BB

RB
RB
RB

YB
YB
YB
YB

}) } ;

({

{{
({

({

Appendix A: Bristle Blocks Datapath Elements
Section 3: Variable Value CAM

14#7\ Y2; .#.-6; 11#.;
.#. -7; .+5#.; .#O\Y4 }) ; "ex-or pullup path"

25#0; 23#.-2; 19#2; 21#4 }); "inverter pulldown path"
30#1\Y2; 25#.+5;
24#. ; • If. -6; 30#. }) ; "data load path"
2#-9; 3#.; 7#-5;

. lf-3; 3#1; 2#. }) ; "equal line pull down path"

6#-6.0, 10#2) ; "equal line GND connect"

13#-4.0\Yl, 24#3\Yl) ; "inverter pullup gate"
17#-2.0\Y2, 11#8\ Y2) ; "upper part of ex-or pullup
14#-9.0\Y2, 8#4\Y2) ; "lower part of ex-or pullup

13.5#-5.5\Yl, 23.5#4.5\Yl) ; "upper part inverter pullup
19.5#-9.5\Yl, 23.5#4.5\Yl) ; "lower part inverter pullup
11. 5#-1. 5\ Y2, 16.5#9.5\Y2) ; "upper part of ex-or pullup
8.5#-8.5\YZ, lb.b#3.5\YZ) "lower part ot ex-or pullup

gate"
gate"

implant"
implant"
implant"
lmpl 1111 v·

CAM2 VCONN ·= NIL; "Defines connections at bottom of column"

CAM2_VCONN.CALLS • = { GRCBU \AT 25#1\Y6 } ;

CAM2_VCONN.VIEWS : = { LAYOUT ({ GW({ 6#0\Y6; ,#O\Y4 }) ;
RW({ 27#0\Y4; .#2\Y6 })

}) } ;

CAM2_VCONN.INTERFACE ·= { [FROM:25#0\Y6 TYPE:1 BUFFER:l EDGE:3 UCODE:l];

CAM2_VCOL

CAM2 VCOL.CALLS

CAM2_VALL

CAM2_VALL.CALLS

[FROM:6#0\Y6 TYPE:l BUFFER:3 EDGE:3 UCODE:2] };

: "' NIL;

:= { CAM2 NULL
CAM2=CONN

NIL;

"Defines a CAM without any comparison cells"

\AT 0#0
\AT 0#0

\AT EACH BIT POSITION;
PASSING=USPECS {1;2} } ;

~Defines a CAM with comp cells for each bit"

·= { CAM2_COL PASSING USPECS (1;2);
CAMZ_CELL \AT EACH_BIT_POSITION };

SCRATCH_FILE{CAM2_CELL.DETAILS.FILE_NAME);

DUMP_SET({ [B: CAM2 NULL V: CAM2 VNULL J
L l:l: t:AMZ-t:t.LL V: CAM2.::::VCELL]
[B: CAM2-CONN V: CAM2 VCONN]
[B: CAM2-COL V: CAM2-VCOL]
[B: CAM2=ALL V: CAM2=VALL]

});

"End of CAM2S.ICL"

72

Appendix A: Bristle Blocks Datapath Elements
Section 3: Variable Value CAM

3.4 Test File

"CAM2T.ICL:

VAR A = BLOCK;

PRECHARGE := FALSE:
DATA_WIDTH(4);

Tests content addressable memories with
fixed mask and variable compare value

CAM('Cam•, UNUSED, UNUSED, [RU:UNUSED RL:UNUSED WL:UNUSED C:UNUSED]);
CAM('Cam', UNUSED, UNUSED, [WU:UNUSED RU:UNUSED. RL:UNUSED C:UNUSED], '101');

A := DATAPATH;

"End of CAM2T.ICL"

73

Appendix A: Bristle Blocks Dat apath Elements
Section 3: Variable Value CAM

Figure 17a: Variable Value CAM Layout

74

Memory
Element

Memory
Element

Memory
Element

Memory
Element

Appendix A: Bristle Blocks Datapath Elements
Section 3: Variable Value CAM

Memory
Element

Memory
Element

Memory
Element

Memory
Element

Figure 17b: Variable Value CAM Circuit Diagram

75

Appendix A: Bristle Blocks Datapath Elements
Section 4: Fixed Value Double CAM

4. Fixed Value Double CAM

This datapath element is almost identical to the fixed value CAM. The only difference is that

the fixed value double CAM divides the word to be loaded from the datapath into upper and

lower halves, each of which is compared separately. The fixed value double CAM has only

one load control line, but it has separate compare output lines for the upper and lower

halves. A pare.meter in the runtime function specifies where the break occurs. In the Pascal

system, this element is used to recognize stack bus message headers. Since the stack bus

is half the width of a processor datapath, using double CAMs cuts the space requires in half.

Figure 18 shows two fixed value double CAMs. The comparison values are the same as

those used in figure 16, except that here the comparison values are divided into upper and
lower halves. The first CAM makes the division between bits 1 and 2; the second CAM

makes the division between bits O and 1.

4. 1 Runtime File

"DCAM1. ICL; nuntime function definitions for doublo comparison
(separate high byte and low byte) content addressable
memories with fixed mask and fixed compare value

/*READ DCAM1D-CAM1D;*/ "also requires BINARY, MASK"

"Fixed value double CAM: Description of Parameters

Name: name of block for block diagram
Ul:
U2:
U3:
Break:

microcode spec for loading word to be compared
microcode spec for high byt~ comparison output
microcode spec for low byte comparison output
low order bit of the upper byte

HVal: mask constant indicating the high byte comparison value
mask constant indicating the low byte comparison value LVal:

DEFINE DBL_CAM(NAME:SC Ul,U2,U3:USPEC_PRODUCER BREAK:INT
HVAL,LVAL:MASK)=BLOCK PRODUCER:

II [NAME; Ul; UZ; U3; BREAK; HVAL; LVAL;] -
BEGIN VAR A, B = BLOCK; I = INT;
DO

IF BREAK> WIDTH-1 THEN WRITE('Byte boundary '); WRITE(BREAK);
WRITE(' not less than datapath width');
HELP;

FI

B :=NEXT GUY(12,12,5,5,6,8,l/6);
A :• NE:XT=BLOCK;

©(A).CALLS := { B \AT 24#0;
DCAMl_COL \AT 0#0 \WITH_USPECS {Ul;U2;U3};

FOR I FROM 0 TO BREAK-1; COLLECT
CASE TAIL(LVAL) OF

76

\\
ENDDEFN

Appendix A: Bristle Blocks Datapath Elements
Section 4: Fixed Value Double CAM

} ;

NONE:
ZERO:
ONE:

ENDCASE;

NIL
DCAMl ZERO \AT O#I*HEIGHT
DCAM1=0NE \AT O#I*HEIGHT

FOR I FROM BREAK TO WIDTH-1; COLLECT
CASE TAIL(HVAL) OF

NONE: NIL
ZERO: DCAM1 ZERO \AT O#I*HEIGHT
ONE: DCAM1-0NE \AT O#I*HEIGHT

ENDCASE -

@(A).VIEWS ·= {LAYOUT({ FOR I FROM 1 TO WIDTH-1; WITH !<>BREAK;
COLLECT GW({ 15#Y4+I*HEIGHT;

.#Y2+6+I*HEIGHT })
})

};
GIVE A END

DEFINE DBL CAM(NAME:SC U1,U2,U3:USPEC PRODUCER BREAK:INT HVAL,LVAL:MASK}:
DATAPATH ··=$>DBL CAM(NAME,U1,u2:u3,BREAK,HVAL,LVAL);

ENDDEFN -

"Multiple fixed value double CAM: Description of Parameters

Name: name of block for block diagram
Ul; microcode ~pee for loading word to be compared
U2: microcode spec for high byte comparison output
U3: microcode spec for low byte comparison output
Break: low order bit of the upper byte
HVals: string of mask constants indicating high byte comp values
LVals: string of mask constants indicating low byte comp values

DEFINE DBL CAM(NAME:SC Ul,U2,U3:USPEC PRODUCER BREAK:INT HVALS,LVALS:MASKS):
BEGIN -VAR HVAL,LVAL = MASK; I INT;

I : = 1;

END
ENDDEFN

WHILE DEFINED(HVALS[I]) ! 'DEFINED(LVALS[I]); DO
DBL_CAM(NAME.Ul,U2.U3.BREAK.DEF(HVALS[Il).DEF(LVALSfll});
I := I+l;

END

"End of DCAM1.ICL"

4.2 Details File

"DCAM1D.ICL:

VAR

VAR

Details for double compare (separate high byte
and low byte) content addressable memories
with fixed mask and fixed compare value

OCAMl_NULL, OCAM1_NUM, nCAM1_7FRO RI or.K;

DCAM1_0NE, DCAMl_CONN, DCAMl_COL BLOCK;

77

Appendix A: Bristle Blocks Datapath Elements
Section 4: Fixed Value Double CAM

"PARAMETERS TO DISK_BLOCK ARE FILE NAME, POSITION IN FILE, UNIQUE ID"

DCAMl NULL • = DISK_BLOCK('DCAM1', 1, 4781);
DCAM1-NUM : = DISK_BLOCK('DCAM1'. 2. 4782):
DCAMCZERO . = DISK_BLOCK('DCAM1', 3 • 4 783);
DCAMl-ONE . = DISK_BLOCK{'OCAM1', 4, 4784);
DCAM1-CONN . = DISK_BLOCK{'DCAM1', 5 • 4785);
DCAM1:=coL . = DISK_BLOCK('DCAM1', 6 • 4786);

"End of DCAM1D.ICL"

4.3 Source File

"DCAM1S.ICL: Definitions fordouble compare (separate high byte
and low byte) content addressable memories
with fixed mask and fixed compare value

/*READ DCAM1D-CAM1D;*/

VAR DCAMl_VNULL, DCAM1_VNUM, DCAM1 VZERO, DCAM1 VONE,
DCAMl=VCONN, DCAMl=VCOL = VBLOCK;

DCAM1_VNULL := NIL; "Contains bus wires & control lines"

DCAMl_VNULL.VIEWS ·= { LAYOUT ({

BW ({ O#O\Y1; 24#. }); "upper data bus wire"
BW ({ 0#0\ Y2; 24#. }) ; "lower data bus wire"

RW ({ 4#0\Y4; .#2.5\Y2; .-2#.+Z;
.#-4.5\Yl; .+2#.+2; .#O\Y3 }) ; "data load line"

RW ({ 20#0\Y4; .#2.5\Y2; 22#.+2;
.#-4.5\Yl; 20#.+2; .#O\Y3 }) ; "high byte compare return line"

GW ({ 15#6\YZ; 18.5#.;
.#-6\Yl; 15#.; .#O\Y3 }) "compare line"

}) } ;

DCAM1_VNUM ·= NIL; "Defines basic comparison cell"

DCAMl_VNUM.CALLS := { CAMl_NUM };

DCAMl_VZERO NIL;

DCAMl_VZERO.CALLS ·= { CAMl_ZERO };

OCAM1_VON!". tJTI ;

DCAMl_VONE.CALLS := { CAM1_0NE };

DCAM1_VCONN ·= NIL; "Defines connections at top and bottom of column"

78

Appendix A: Bristle Blocks Datapath Elements
Section 4: Fixed Value Double CAM

DCAM1_VCONN.CALLS ·= { GRCBL \AT 7#1\Y6;
GRCBR \AT 16#-1\Y5;
GRCBU \AT 20#1\Y6

"load line in contact"
"return line top contact"
"high byte equal out contact"

} ;

DCAM1_VCONN.VIEWS := { LAYOUT {{
RW ({ 20#0\Y4; .#5\Y6 }) ; "high byte equal out connect"
RW ({ 4#3\Y6; .#O\Y4 }) ; "data load connect"
RW ({ 20#0\VY TIP_TOP; .#O\Y5 }) ; "top return line connect"

GW ({ 15#0\VY TIP TOP: .#O\Y5 }) ; "top return line connect"
GW ({ 14#0\Y6; .#B\Y2 }) "l OW byte compare line connect"

}) } ;

DCAM1_VCONN.INTERFACE := { (FROM: 8#0\Y6 TYPE:l BUFFER:! EDGE:3 UCODE:1];
[FROM:14#0\Y6 TYPE:1 BUFFER:3 EDGE:3 UCODE:3];
[FROM:20#0\Y6 TYPE:l BUFFER:3 EDGE:3 UCODE:2] };

DCAMl_VCOL NIL;

DCAMl_VCOL.CALLS ·= { DCAM1 CONN PASSING_USPECS {1:2;3};
OCAMl=NULL \AT EACH_BIT_POSITION };

SCRATCll_rILE(OCAMl_NULL.OETAILS.FILE_NAME);

DUMP_SET({

}) ;

[B: DCAM1 NULL
[B: DCAM1-NUM
[B: DCAM1-ZERO
[B: DCAMl-ONE
[B: DCAM1-CONN
[B, DCAMl=COL

"End of DCAM1S.ICL"

4.4 Test File

V: DCAM1 VNULL];
V: DCAM1-VNUM];
V: DCAM1-VZERO];
V: DCAM1-VONE];
V: DCAMl-VCONN];
V: DCAMl=VCOL]

"DCAMlT. ICL: Tests double comparison (separate high

VAR A = BLOCK;

PRECHARGE :~ FALSE;
DATA_WIDTH(4);

and low bute) content addressable memories
with fixed mask and fixed compare value

DBL CAM('Cam', UNUSED, UNUSED, UNUSED, 2, '00', '11');
DBL=CAM('Cam', UIJllSFD. lJNlJSFD. UIJUSED. 1. '1XX'. ·o·):

A := DATAPATH;

"End of DCAM1T.ICL"

79

Appendix A: Bristle Blocks Oatapath Elements
Section 4: Fixed Value Double CAM

'9

r

r

c:

. II

, 1-1--141-04 1-,

I

I "

).., !I c:.. ... c fl=!::=±frTn, l=:l:tlb•
r ..

1
L-.U..WJU1-W . .J.L1 .il. 1 1--l ~ W
~ ~ L.... L... '

-:: '-

r

If
a li:!:::jtifiT:J,:tt==ttJ,
r

I l l

I

r

m L

I'-
v

~

I

!'-..

v
~

l

!'....
l7

-L
I

I":...
17

~
l -

.

"'

I'-
17

~

I'-

V J
k!

J
,__ •

Figure 18: Fixed Value Double CAM layout and Circuit Diagram

80

Appendix A: Bristle Blocks Datapath Elements
Section 5: Variable Value Double CAM

5. Variable Value Double CAM

This datapath element is almost identical to the variable value CAM. The only difference is

that the variable value double CAM divides the word to be compared and the word to be

loaded from the datapath into upper and lower halves, just as the fixed value double CAM

does. This datapath element does not occur in the Pascal system. However, it could be

substituted for the fixed value double CAM if the stack bus message headers were not

specified prior to chip fabrication.

Figure 19 shows two variable value double CAMs. The first compares against all four bits.

The second ignores bits 1 and 3. The comparison value is stored in a standard memory

register. The first CAM's memory register can be written from the upper bus and read onto
the lower bus. The second CAM's memory register can be read from the upper bus and

written onto the lower bus. Both memory registers have refresh control lines (not shown in
the circuit diagram). Normally those arc driven by the 1251 clock.

5.1 Runtime File

"DCAM2.ICL: Runtime function definitions for double compare
(separate high byte and low byte) content addressable
memories with fixed mask and variable compare value

/*READ DCAM2D-CAM2D-L01D;*/ "also requires BINARY.ICL" .

"Variable value double CAM with no Masking: uescription or Parameters·

Name: name of block for block diagram"
Ul: microcode spec for loading word to be compared"
U2: m1crocooe spec ior h1gh byte comp1:11·i:;u11 uuLpuV'
U3: microcode spec for low byte comparison output"
MU: microcode specs for comparison register"
Break: low order bit of high byte"

DEFINE DBL_CAM(NAME:SC Ul,U2,U3:USPEC PRODUCER MU:MEMORY USPEC
- BREAK:INT)=BLOCK_PRODUCER:

II [NAME; Ul; ·u2; U3; MU; BREAK;]
BEGIN VAR A, B = BLOCK; I = INT; MR = MEMORY_RETURN; R = REAL;
DO

IF BREAK> WIDTH-1 THEN WRITE('Byte boundary '); WRITE(BREAK);
WRITE(' not 11;1ss than datapath width'):
HELP;

FI

MR MEMORV_REGISTFR(MU,[A•O R•O].[A:t B:OJ.[A:O B:OJ.[A:O B:O]):
B := NEXT GUY(14,14,5,5,6,8,1/8+1/4+MR.POWER);
A ·= NEXT=BLOCK;
R : = MR. WIDTH;

@(A).CALLS := { B
DCAM2_ALL

\AT 35+R#O;
\AT R#O \WITH_USPECS {Ul;U2;U3}

81

\\
ENDDEFN

Appendix A: Bristle Blocks Datapath Elements
Section 5: Variable Value Double CAM

} ;

@(A).VIEWS := {LAYOUT({ FOR I FROM 1 TO WIDTH-1; WITH I<>BREAK;
COLLECT GW({ 10+R#Y4+I*HEIGHT;

.#Y2+3+I*HEIGHT })
}) :

BLOCK(NAME,35+R,DEFINED(MU.RU).DEFINED(MU.WU),
TRUE,DEFINED(MU.RL)) };

GIVE A END

DEFINE DBL_CAM(NAME:SC Ul,U2,U3:USPEC_PRODUCER MU:MEMORY_USPEC BREAK:INT):
DATAPATH ::= $> DBL_CAM(NAME,Ul,U2,U3,MU,BREAK);

ENDDEFN

•var1able value aouble CAM w1tn t1xea MasK: Descr1pt1on or Parameters·

Name: Name of block for block diagram"
U1: Microcode spec for loading word to be compared"
U2: mlc;ruc;uutt :sptt'-' ru1· ll i9h byLt:i i;ompdrison output"
U3: Microcode spec for low byte comparison output"
MU: Microcode specs for comparison register"
Break: Low order bit of high byte"
llVal; Binary constant indicating which bits in high byte are compared.

Bits marked zero are ignored in the comparison."
LVal: Binary constant indicating which bits in low byte are compared.

Bits marked zero are ignored in the comparison."

DEFINE DBL_CAM(NAME:SC Ul,U2,U3:USPEC PRODUCER MU:MEMORY USPEC
BREAK~INT HVAL,LVAL:BINARY) BLOCK_PRODUCER:

II [NAME; Ul; U2; U3; MU; BREAK; HVAL; LVAL; J
RFr.TN VAR A. B = BLOCK: I = INT: MR MEMORY_RETURN: R = REAL:
DO

IF BREAK> WIDTH-1 THEN WRITE{'Byte boundary '); WRITE(BREAK);
WRITE(' not less than datapath width');
HELP;

FI

MR
B
A
R

·=
: =
. =
. =

MEMORY_REGISTER(MU,[A:O B:O],[A:l B:O],[A:O B:O],[A:O B:O]);
NEXT GUY(14,14,5,5,6,8,118+114);
NEX()LOCK;
MR.WIDTH;

@(A).CALLS { B \AT 35+R#O;
DCAM2_COL \AT R#O \WITH_USPECS {Ul;U2;U3};

FOR I FROM 0 TO BREAK-1; COLLECT
IF JA!L(LVAL) IHtN UCAM2_CtLL \AT R#l"'HEIGHT

ELSE NIL
FI:

FOR I FROM BREAK TO WIDTH-1; COLLECT
IF TAIL(HVAL) THEN DCAM2_CELL \AT R#I*HEIGHT

ELSE NIL
FI

};

@{A). VIEWS . = { LAYOUT({ FOR I FROM 1 TO WIDTH-1; WITH !<>BREAK;

82

Appendix A: Bristle Blocks Datapath Elements
Section 5: Variable Value Double CAM

COLLECT GW({ 10+R#Y4+I*HEIGHT;
.#Y2+3+I*HEIGHT })

}) ;
BLOCK(NAME,35+R,DEFINED(MU.RU),DEFINED(MU.WU),

TRUE,DEFINED(MU.RL)) };
GIVE A EMO

\\
ENDDEFN

nFFTNF nRLJAM(NAME:SC U1.U2.U3:USPEC_PRODUCER MU:MEMORY_USPEC BREAK: INT
HVAL,LVAL:BINARY):

DATAPATH ::= $> DBL_CAM(NAME,U1,U2,U3,MU,BREAK,HVAL,LVAL);
ENDDEFN

"End of DCAM2.ICL"

5.2 Details File

"DCAM2D.ICL: Details for double compare (separate high byte
and low bytg) contgnt addrgssable mgmories
with fixed mask and variable compare value"

VAR DCAM2_NULL, DCAM2_CELL, DCAM2_CONN, DCAM2_COL, DCAM2_ALL = BLOCK;

"PARAMETERS TO DISK_BLOCK ARE FILE NAME, POSITION IN FILE, UNIQUE ID"

DCAM2 NULL : = DISK_BLOCK('DCAM2', 1, 8281);
DCAM2-CELL . = DISK_BLOCK('DCAM2', 2' 8282);
DCAM2-CONN . = DISK_BLOCK('DCAM2', 3' 8283);
DCAM2-COL . = DISK_BLOCK('DCAM2', 4, 8284);
DCAM2:::ALL • = DISK_BLOCK{'DCAM2', 5' 8285);

"End of DCAM2D.ICL"

5.3 Source File

"DCAM2S.ICL: Definitions for double compare (separate high byte
and low byte) content addressable memories
with fixed mask and variable compare value

/*READ DCAM2D-CAM2D;*/

VAR DCAM2_VNULL, DCAM2_VCELL, DCAM2_VCONN, DCAM2_VCOL, DCAM2_VALL = VBLOCK;

nC:AM2_VNULL ·= NIL: "Contains bus wires & control lines"

DCAM2 VNULL.VIEWS . = { LAYOUT ({

BW ({ 0#0\ Yl; 35#. }) ; "upper data bus wire•
BW ({ O#O\Y2; 35#. }) ; "lower data bus wire"

RW ({ 31#0\Y4; .#2.5\Y2;
33#.+2 .#-4.5\Yl;
31#.+2 .#O\Y3 }) ; "data load control line•

RW ({ 4#0\Y4 .#2.5\Y2;

83

Appendix A: Bristle Blocks Datapath Elements
Section 5: Variable Value Double CAM

2#.+2; .#-4.5\Yl;
4#.+2; .#O\Y3 }); "high byte equal return 1 ine"

GW ({ 9.5#4\Y2;
5.5#.+4.5; .#-8\Yl;
10#.+4.5: .#O\Y3 }) "equal line"

}) };

DCAM2_VCELL := NIL: "Defines basic comparison cell"

DCAM2_VCELL.CALLS ·= { CAM2_CELL \AT 4#0 };

DCAM2_VCONN

DCAM2_VCONN.CALLS :=

NIL; "Defines connections at bottom and top of column"

UCAMZ VCONN.VIEWS :=
CLAYOUT ({

{ GRCBU \AT 29#1\Y6;
GHCBL \Al 8#-1\Yb;
GRCBU \AT 4#1\Y6

}:

RW ({ 31#0\Y4; .#3\Y6 });
RW ({ 4#0\Y4; .#3\Y6 });
RW ({ 4HO\VY TIP_TOP; .#O\Y5 });

GW ({ 10#0\VY TIP TOP; .#O\Y5 }):
GW ({ 10#0\ Y6; . #3\ Y2 })

}) };

"load line contact"
·n1gn oyte return 11ne contact"
"high byte equal out contact"

"load line input connect"
"high byte equal out connect"
"top return lino connect•

"top return line connect"
"low byte equal out connect"

DCAM2_VCONN.INTERFACE ·= { [FROM:29#0\Y6 TYPE:l BUFFER:! EDGE:3 UCODE:l];
[FROM:10#0\Y6 TYPE:l BUFFER:3 EDGE:3 UCODE:3];

DCAM2_VCOL

DCAM2_VCOL.CALLS

DCAM2_VALL

DCAM2 VALL.CALLS

[FROM· 4#0\Vfi TYPF,1 BUFFER,3 EDGE,3 UCODE:2] }:

:= NIL;

·= { DCAM2 NULL
DCAM2=CONN

·= NIL;

"Defines a CAM without any comparison cells"

\AT 0#0
\AT 0#0

\AT EACH BIT POSITION;
PASSING=USPECS {1;2;3} };

"Defines a CAM with comp cells for each bit"

· = { DCAM2 COL PASSING USPECS { 1;-2;3};
DCAM2=CELL \AT EACH_BIT_POSITION };

SCRATCH_FILE(DCAM2_CELL.DETAILS.FILE_NAME);

DUMP_SET({ [B: DCAM2 NULL V: DCAM2 VNULL]
[B: DCAM2-CELL V: DCAM2-VCELL]
[B: DCAM2-CONN V: DCAM2-VCONN J
[B: DCAMZ-COL V: UCAMZ-VCOL J
[B: DCAM2=ALL V: DCAM2=VALL J

}) ;

"End of DCAM2S.ICL"

84

Appendix A: Bristle Blocks Datapath Elements
Section 5: Variable Value Double CAM

5.4 Test File

"DCAM2T.ICL:

VAR A = BLOCK;

PRECHARGE :- FALSE;
DATA_WIDTH(4);

Tests double compare (separate high byte
and low byte) content addressable memories
with fixed mask and variable compare value "

DBL CAM('Cam', UNUSED, UNUSED, UNUSED, [RU: UNUSED WL:UNUSED], 2
DBL=CAM('Cam', UNUSED, UNUSED, UNUSED, [RL:UNUSED WL:UNUSED], 1,

A : = DAT AP A TH;

"End of DCAM2T.ICL"

) ;
• 100' • • 1.) ;

85

Appendix A: Bristle Blocks Datapath Elements
Section 5: Variable Value Double CAM

Figure 19a: Variable Value Double CAM Layout

66

Memory
Element

Memory
Element

Memory
Bement

Memory
Element

Appendix A: Bristle Blocks Datapath Elements
Section 5: Variable Value Double CAM

Memory
Element

Memory
Element

Memory
Bement

Memory
Element

Figure 19b: Variable Value Double CAM Circuit Diagram

87

Appendix B:
EM-1 Instruction and Frequency Tables

The sections in this appendix define Tannenbaum's EM-1 instruction set and give information

about static instruction frequencies. For each instruction, section 1 lists the mnemonic,

operand type, instruction group, and a brief description. Sections 2 through 4 leave out the

instruction description information but include the execution processor, the special case

code, the number of words popped and pushed, and static instruction frequency data.

Tannenbaum did not indicate the source of the frequency data. Possibly it was collected

from a Pascal compiler. In section 2, the list is sorted by execution processor, in section 3 it
is sorted by frequency, and in section 4 it is sorted by instruction mnemonic. Section 5 lists

all mnemonic and operand combinations which occur more than 40 times in Tannenbaum's

tAst code. The list includes 492 elements, and is sorted alphabetically by mnemonic.

Instr Group

Load

Store

Int

Double

Real

Convert

Boolean

Set

Array

Compare

Branch

Call

Inc/Dec

Misc

Monitor

Meaning

Load instructions

Store instructions

Integer arithmetic instructions

Double precision integer arithmetic instructions

Flooating point arithmetic instructions

Conversion instructions

Boolean operation instructions

Set manipulation instructions

Array access instructions

Comparison instructions

Branch instructions

Procedure call instructions

Increment/decrement/zero instructions

Miscellaneous instructions

Monitor instructions

Table 11: Instruction Groups

88

Appendix B: EM-1 Instruction and Frequency Tables

Operand Type

(blank)

x
y

b

n
m

Exec Unit

Int

Real

Stack

Mem

Instr

Code Field

(blank)

m

*

x

Meaning

Zero operand instruction

Byte count, must be even

Byte count, must be 1 or even

Byte count, must be greater than or equal to zero

Nonnegative integer

Integer operand

Table 12: Operand Types

Meaning

Integer processor

Floating point processor

Stack manager

Memory man1:1ger

Instruction unit

Table 13: Instruction Execution Processors

Meaning

No special case

Instruction generated by the assembler (machine only instruction)

Instruction is preceeded by a load stack register (lor 3) instruction

Procedure call or return instruction, special execution sequence

Instruction is not issued over stack bus

Table 14: Special Case Codes

Push/Pop Char Meaning

number Push/pop that number of words

x or y . Push/pop instruction operand/2 words

a Push/pop address: one word for non virtual addressing,

two words for virtual addressing

???

Push/pop number of words ir1dic.;1:1L1:::d by top of stack

Push/pop array element

Push/pop an unknown number of words

Table 15: Stack Push/Pop Codes

89

Appendix B: EM·1 Instruction and Frequency Tables

Section 1: Instruction Table, Sorted by Instruction Group

1. Instruction Table, Sorted by Instruction Group

This section lists the EM-1 instruction set and provides a brief description of each instruction.

The list is organized by instruction groups, which are described in table 11.

Opcode, Instr
Operand Group Instruction Description

loc m load Load constant (i.e. push it onto the stack)
Inc n load Load negative constant
lol x load Load local word x
loe x load Load external word x
lop x load Load parameter (address is at xth local)
lof x load Load offsetted (top of stack + x yields address)
lal x load Load address of local
lae x load Load address of external
lex n load Load lexical (address of lb, n static levels back)
loi y load Load indirect y bytes (address is popped from the stack)
lib load Load indirect 1 byte (loaded into 1 word on stack)
los load Load indirect (first pop byte count; must be 1 or even)
kll x load Load double local (two consecutive locals are stacked)
Ide x load Load double external
ldf x load Load double offsetted (top of stack + x yields address)
stl x store Store local
ste x store Store external
stp x store Store parameter
stf x store Store offsetted
sti y store Store indirect y bytes (pop address, then data)
sib store Store indirect 1 byte (taken from 1 word on stack)
sts store Store indirect (pop byte count, then address, then data)
sdl x store Store double local
sde x store Store double external
sdf x store Store double offsetted
add integer Integer add
sub integer Integer subtract
mul integer Integer multiply
div integer Integer divide
mod integer Modulo (remainder)
neg integer Negate (two's complement)
shl integer Shift left tos-1 by tos bits
shr integer Shift rig ht tos-1 by tos bits
rol in leg er Rotate left tos-1 by tos bits
ror integer Rotate right tos-1 by tos bits
inc integer Increment top of stack by 1
dee integer Decrement too of stack by 1
exg integer Exchange top two words
adi b integer Add the constant b to top of stack; do not check overflow
ads integer Same as add, but do not check for overflow
dad double Double add
dsb double Double subtract
dmu double Double multiply

90

Appendix B: EM· 1 Instruction and Frequency Tables 91

Section 1: Instruction Table, Sorted by Instruction Group

Opcode, Instr
Operand Group Instruction Description

ddv double Double divide
dmd double Double modulo
fad real Floating add
fsb real Floating subtract
fmu real Floating multiply
fdv real Floating divide
cid convert Convert integer to double
cdi convert Convert double to integer
cif convert Convert integer to floating
cfi convert Convert floating to integer
cdf convert Convert double to floating
cfd convert Convert floating to double
and x boolean Boolean and on two groups of x bytes
and 2 boolean Boolean and on two groups of 2 bytes
an~ boolean Boolean and; first pop number of bytes from stack
ior x boolean Boolean inclusive or on two groups of x bytes
ior 2 boolean Boolean inclusive or on two groups of 2 bytes
ios boolean Boolean inclusive or; first pop number of bytes from stack
xor x boolean i:joolean exclusive or on two groups of x bytes
xos boolean Boolean exclusive or; first pop number of bytes from stack
com x boolean Complement (one's complement of top x bytes)
cos boolean Complement; first pop number of bytes from stack
not boolean Convert top of stack from true to false or vice versa
inn x set Bit test on x byte set (bit number on top of stack)
ins set Bit test; first pop set size, then bit number
set x set Create singleton x word set with bit number tos on
ses set Create singleton set; first pop set size, then bit number
lar x array Load array element with descriptor x, pop index, array addr
las array Load array element; first pop pointer to descriptor
sar x array Store array element; pop index, array address, array element
sas array Store array element; first pop pointer to descriptor
aar x array Stack address of array element; pop index, array address
aas array Stack array address; first pop pointer to descriptor
cmi compare Compare two integers. Push -1,0, 1 for<, = ,>
cmd compare Compare two double integers
emf compare Compare two reals
emu x compare Compare two blocks of x bytes each
ems compare Compare two blocks of bytes; pop byte count
tit compare True if less (based on previous compare)
tie compare True if less or equal
teq compare True if equal
tne compare True if not equal
tge compare True if greater or equal
tgt compare True if greater
brf n branch Branch foreward unconditionally n bytes
brb n branch Branch backward unconditionally n bytes
bit n branch Forward branch less (pop two words, branch if top > second)
ble n branch Forward branch less or equal

Appendix B: EM-1 Instruction and Frequency Tables 92

Section 1: Instruction Table, Sorted by Instruction Group

Opcode, Instr
Operand Group Instruction Description

beq n branch Forward branch equal
bne n branch Forward branch not equal
bge n branch Forward branch greater or equal
bgt n branch Forward branch greater
z:lt n branch Forward branch leaa than zero (pop 1 word, branch negative)
zle n branch Forward branch less or equal to zero
zeq n branch Forward branch equal zero
zne n branch Forward branch not zero
zge n branch Forward branch greater or equal to zero
zgt n branch Forward branch greater than zero
mrk n call Mark stack (n = 1 + change in static depth of nesting)
mrx n call Mark slack; sel alternate context
mrs call Mark stack; first pop static link from stack
mxs call Mark stack; pop static link and set alternate context
cal n call Call procedure with descriptor n
cas call Call indirect (first pop procedure number from stack)
ret n call Return (function result consists of top x bytes)
res call Return; first pop number of bytes to return
inl x inc/dee Increment local
ine x inc/dee Increment external
del x inc/dee Decrement local
dee x inc/dee Decrement external
zrl x inc/dee Zero local
zre x inc/dee Zero external
beg x misc Begin procedure (reserve x bytes for locals)
bes misc Begin procedure; pop number of bytes to reserve for locals
rck x misc Range check (trap if top of stack out of range)
nop misc No operation
blm x misc Glock move x bytes; pop source address, then destination
bis misc Block move; first pop x, then addresses
lin n misc Line number (set external Oto n)
dup x misc Duplicate top x words on stack
dup 2 misc Duplicate top 2 words on stack
dus misc Duplicate; first pop number of words to duplicate
cse x misc Case jump; xis external offset of jump table
lor n misc Load EM-1 machine register onto stack
lor 1 misc Load procedure descriptors register
lor 2 misc Load local base register
lor 3 misc Load stack pointer reoister
lor 4 misc Load heap pointer register
str n misc Store EM-1 machine register from stack
str 1 misc Store procedure descriptor register
str 2 misc Store local base register
str 3 misc Store stack pointer register
str 4 misc Store heap pointer register
hit misc Halt the machine
mon monitor Monitor call
stu monitor Start user job

Appendix B: EM· 1 Instruction and Frequency Tables 93

Section 2: Mnemonic Table, Sorted by Execution Unit

2. Mnemonic Table, Sorted by Execution Unit

This section lists information about the EM-1 mnemonics. The list is sorted by the execution

units, described in table 13.

Opcode, Instr. Exec. Words Words Static
Operand Group Unit Code Popped Pushed Freq.

loc m load instr 0 27604 14.79%
Inc n load instr m 0 1 1136 0.61 %
brf n branch instr x 0 0 3067 1.64%
brb n branch instr x 0 0 2688 1.44%
bit n branch instr 2 0 1016 0.54%
ble n branch instr 2 0 305 0.16%

beq n branch instr 2 0 1060 0.57%
bne n branch instr 2 0 1681 0.90%
bge n branch instr 2 0 293 0.16%
bgt n branch instr 2 0 598 0.32%
zit n branch instr 1 0 47 0.03%
zle n branch instr 1 0 217 0.12%
zeq n branch instr 1 0 2094 1.12 %

zne n branch instr 1 0 1139 0.61 %
zge n branch instr 1 0 155 0.08%
zgt n branch instr 1 0 31 0.02%
nop misc instr x 0 0 0 0.00%
lin n misc instr 0 0 1763 0.94%
cse x misc instr 1 0 297 0.16%
lor n misc instr 0 1 0 0.00%

str n misc instr 1 0 0 0.00%
str 1 misc instr m 1 0 0 0.00%
hit misc instr 0 0 0 0.00%

man monitor instr 0 0 5 0.00%
stu monitor instr 8 0 0 0.00%
add integer int 2 1 1469 0.79%
sub integer int 2 1 878 0.47 %
mul integer int 2 1 565 0.30%
div integer int 2 1 383 0.21 %
mod integer int 2 1 343 0.18%
neg integer int 1 1 108 0.06%
shl integer int 2 1 139 0.07%
shr integer int 2 1 0 0.00%
rol integer int 2 1 0 0.00%
ror integer int 2 1 0 0.00%
inc integer int 1 1 797 0.43%
dee integer int 1 1 478 0.26%

exg integer int 2 2 0 0.00%
adi b integer int 1 1 960 0.51 %
ads integer int 2 1 0 0.00%
dad double int 4 2 0 0.00%
dsb double int 4 2 0 0.00%
dmu double int 4 2 0 0.00%

Appendix B: EM·1 Instruction and Frequency Tables 94

Section 2: Mnemonic Table, Sorted by Execution Unit

Opcode, Instr. Exec. Words Words Static
Operand Group Unit Code Popped Pushed Freq. Percent

ddv double int 4 2 0 0.00%
dmd double int 4 2 0 0.00%

cid convert int 1 2 0 0.00%
cdi convert int 2 1 0 0.00%
and 2 boolean int m 2 1 1035 0.55%
ior 2 boolean int m 2 1 726 0.39%
not boolean int 1 1 0 0.00%
cmi compare int 2 1 1911 1.02%
cmd compare int 4 1 0 0.00%
tit compare int 1 1 292 0.16%
tie compare int 1 1 172 0.09%
teq com para int 1 1 1184 0.63%

tne compare int 1 1 591 0.32%
tge compare int 1 1 134 0.07%
tgt compare int 1 1 290 0.16%
dup 2 misc int m 1 2 845 0.45%
lol x load mem 0 1 17140 9.18%
loe x load mem 0 1 9490 5.08%
lop x load mem 0 676 0.36%

lof x load mem 1 3472 1.86%
lal x load mem 0 a 1805 0.97%
lae x load mem 0 a 16242 8.70%
lex n load mem 0 a 1885 1.01 %
loi y load mem a y 1561 0.84%
lib load mem m a 1 0 0.00%
los load mem 1 + l:I. 1" 0 0.00%

ldl x load mem 0 2 1576 0.84%
Ide x load mem 0 2 1196 0.64%
ldf x load mem 1 2 73 0.04%
stl x store mem 1 0 6587 3.53%
ste x store mem 1 0 3588 1.92%
stp x store mem 1 0 731 0.39%
stf x store mem 2 0 1788 0.96%
sti y store mem * a+y 0 746 0.40 %
sib store mem m a+1 0 0 0.00%
sts store mem * 1+a+t 0 0 0.00%
sdl x store mem 2 0 377 0.20%
sde x store mem 2 0 390 0.21 %
sdf x store mem a+1 0 60 0.03%
lar x array mem 1+a # 2111 1.13%
las array mem 2+a # 0 0.00%
sar x array mem * 1 +a+# 0 1245 0.67%
sas array mem * 2+a+ # 0 0 0.00%

aar x array mem 1+a a 1753 0.94%
aas array mem 2+a a 0 0.00%
mrk n call mem 0 3 19147 10.26%
mrx n call mem m 0 3 0 0.00%
mrs call mem 3 4 0.00%

Appendix B: EM-1 Instruction and Frequency Tables 95

Section 2: Mnemonic Table, Sorted by Execution Unit

Opcode, Instr. Exec. Words Words Static
Operand Group Unit Code Popped Pushed Freq. Percent

mxs call mem m 3 0 0.00%
lnl x Inc/dee mem 0 0 1403 0.75%

ine x inc/dee mem 0 0 1285 0.69%
del x inc/dee mem 0 0 126 0.07%
dee x inc/dee mem 0 0 71 0.04%
zrl x inc/dee mem 0 0 784 0.42%
zre x inc/dee mem 0 0 760 0.41 %
rck x misc mem 1 1 987 0.53%
blm x misc mern a+a 0 482 0.26%
bis misc mem 1+a+a 0 0 0.00%
lor 1 misc mern m 0 1 0 0.00%
lor 2 misc mem m 0 1 0 0.00%

lor 4 misc mern m 0 1 0 0.00%
str 2 misc mern m 1 0 0 0.00%
str 4 misc mern m 1 0 0 0.00%
fad real real 4 2 355 0.19%
fsb real real 4 2 301 0.16%
fmu real real 4 2 482 0.26%
fdv real real 4 2 289 0.15%

cif convert real 1 2 1227 0.66%
cfi convert real 2 1 303 0.16%
cdf convert real 2 2 0 0.00%
cf d convert real 2 2 0 0.00%
emf compare real 4 1 338 0.18%
and x boolean stack x+x x 55 0.03%
ans boolean stack 1+-r+-r T 0 0.00%

ior x boolean stack x+x x 325 0.17 %
ios boolean stack 1+t+t t 0 0.00%
xor x boolean stl'lck x+x x 0 0.00%
xos boolean stack 1+t+t t 0 0.00%
com x boolean stack x x 48 0.03%
cos boolean stack 1+t t 0 0.00%
inn x set stack 1+x 1 363 0.19%
ins set stack 2+t 1 0 0.00%
set x set stack 1 x 119 0.06%
ses set stack 2 t 0 0.00%
emu x compare stack x+x 1 35 0.02%
ems compare stack 1+t+t 1 0 0.00%
cal n call stack 0 0 19147 10.26 %
cas call stack 1 0 4 0.00%
ret n call stack ??? n 3517 1.88%
res call stack 1 + ??? t 0 0.00%
beg x misc stack 0 x 1613 0.86%

bes misc stack 1 t 0 0.00%
dup x misc stack x x+x 79 0.04%

dus misc stack 1 t+t 0 0.00%
lor 3 misc stack m 0 1 0 0.00%
str 3 misc stack m 1 0 0 0.00%

Appendix B: EM· 1 Instruction and Frequency Tables

Section 3: Mnemonic Table, Sorted by Frequency

3. Mnemonic Table, Sorted by Frequency

This section lists the EM-1 mnemonics. Here they are sorted by static instruction frequency.

Opcode, Instr. Exec. Words Words Static
OQerand Group Unit Code POQQed Pushed Freq. Percent

loc m load instr 0 1 27604 14.79 %
cal n call stack 0 0 19147 10.26 %
mrk n call mem 0 3 19147 10.26 %
lol x load mem 0 1 17140 9.18%
lae x load mem 0 a 16242 8.70%
loe x load rnem 0 1 9490 5.08%

stl x store mem 1 0 6587 3.53%
ste x store mem 1 0 3588 1.92%
ret n call stack ??? n 3517 1.88%
lof x load mem 1 1 3472 1.86%
brf n branch instr x 0 0 3067 1.64%
brb n branch instr x 0 0 2688 1.44%
lar x array mem 1+a # 21I1 1.13%

zeq n branch instr 1 0 2094 1.12 %
cmi compare int 2 1 1911 1.02%
lex n load mem 0 a 1885 1.01 %
lal x load mem 0 a 1805 0.97%
stf x store mem 2 0 1788 0.96%
lin n misc instr 0 0 1763 0.94%
aar x array mem 1+a a 1753 0.94%
bne n branch instr 2 0 1681 0.90%
beg x misc stack 0 x 1613 0.86%
ldl x load mem 0 2 1576 0.84%

loi y load mem a y 1561 0.84%
add integer int 2 1 1469 0.79%
inl x inc/dee mem 0 0 1403 0.75%
ine x inc/dee mem 0 0 1285 0.69%
sar x array mem 1 +a+# 0 1245 0.67%
cif convert real 1 2 1227 0.66%
Ide x load mem 0 2 1196 0.64%
teq compare int 1 1 1184 0.63%
zne n branch instr 1 0 1139 0.61 %
Inc n load instr m 0 1 1136 0.61 %
beq n branch instr 2 0 1060 0.57%
and 2 boolean int m 2 1 1035 0.55%
bit n branch instr 2 0 1016 0.54%
rck x misc mem 1 1 987 0.53%

adi b integer int 1 1 960 0.51 %
sub integer int 2 1 878 0.47%
dup 2 misc int m 1 2 845 0.45%
inc integer int 1 1 797 0.43%
zrl x inc/dee mem 0 0 784 0.42%
zre x inc/dee mem 0 0 760 0.41 %

96

Appendix B: EM· 1 Instruction and Frequency Tables 97

Section 3: Mnemonic Table, Sorted by Frequency

Oµcudt:, lrn;;Lr. Ext:<.;. Words Words Static

0Qerand GrouQ Unit Code POQQed Pushed Freq. Percent

sti y store mem * a+y 0 746 0.40%
stp x store mem 1 0 731 0.39%
ior 2 boolean int m 2 1 726 0.39%
lop x load mem 0 1 676 0.36%
bgt n branch instr 2 0 598 0.32%

tne compare int 1 1 591 0.32%
mul integer int 2 1 565 0.30%
blm x misc mem a+a 0 482 0.26%
fmu real real 4 2 482 0.26%
dee integer int 1 1 478 0.26%
sde x store mem 2 0 390 0.21 %
div integer int 2 1 383 0.21 %

sdl x store mem 2 0 377 0.20%
inn x set stack 1+x 1 363 0.19%
fad real real 4 2 355 0.19%
mod integer int 2 1 343 0.18%
emf compare real 4 1 338 0.18%
ior x boolean stack x+x x 325 0.17%
ble 11 branch instr 2 0 305 0.16%

cfi convert real 2 1 303 0.16%
fsb real real 4 2 301 0.16%
cse x misc instr 1 o 297 0.16%
bge n branch instr 2 o 293 0.16%
tit compare int 1 1 292 0.16%
tgt compare int 1 1 290 0.16%
fdv real real 4 2 289 0.15%
zle n branch instr 1 0 217 0.12%
tie compare int 1 1 172 0.09%
zge n branch instr 1 0 155 0.08%
shl integer int 2 1 139 0.07%
tge compare int 1 1 134 0.07%
del x inc/dee mem 0 o 126 0.07%
set x set stack 1 x 119 0.06%

neg integer int 1 1 108 0.06%
dup x misc stack x x+x 79 0.04%
ldf x load mam 1 2 73 0.04%

dee x inc/dee mem 0 0 71 0.04%
sdf x store mem a+1 0 60 0.03%
and x boolean stack x+x x 55 0.03%
com x boolean stack x x 48 0.03%
zit n branch instr 1 0 47 0.03%
emu x compare stack x+x 1 35 0.02%
zgt n branch instr 1 0 31 0.02%
mon monitor instr 0 0 5 0.00%
cas call stack 1 0 4 0.00%

mrs call mem 1 3 4 0.00%
stu monitor instr 8 0 0 0.00%
hit misc instr 0 0 0 0.00%

Appendix B: EM-1 Instruction and Frequency Tables 98

Section 3: Mnemonic Table, Sorted by Frequency

Opcode, Instr. Exec. Words Words Static
012erand Grou12 Unit Code Po1212ed Pushed Freq. Percent

str 4 misc mem m 0 0 0.00%
str 3 misc stacK m 1 0 0 0.00%

str 2 misc mem m 1 0 0 0.00%
str 1 misc instr m 1 0 0 0.00%
str n misc instr 1 0 0 0.00%

lor 4 misc mem m 0 1 0 0.00%
lor 3 misc stack m 0 1 0 0.00%
lor 2 misc mem m 0 1 0 0.00%
lor 1 misc mem m 0 1 0 0.00%
lor n misc instr 0 1 0 0.00%
dus misc stack 1 1' + 1' 0 0.00%
bis misc mem 1+ata 0 0 0.00%
nap misc instr x 0 0 0 0.00%
bes misc stack 1 1' 0 0.00%
res call stack ! 1 + ??? 1' 0 0.00%
mxs call mem m 1 3 0 0.00%
mrx n call mem m 0 3 0 0.00%
ems compare stack 1 +1'+1' 1 0 0.00%
cmd compare int 4 1 0 0.00%

aas array mem 2+a a 0 0.00%
sas array mem * 2+a+ # 0 0 0.00%
las array mem 2+a # 0 0.00%
ses set stack 2 1' 0 0.00%
ins set stack 2+ 1' 1 0 0.00%
not boolean int 1 1 0 0.00%
cos boolean stacK 1 + 1' 1' 0 0.00%

xos boolean stack 1 +1'+1' 1' 0 0.00%
xor x boolean stack x+x x o 0.00%
ios boolean stack 1 -l-1'-1-1' t 0 0.00%

an.a boolean stack 1+t+t 1' 0 0.00%
cfd convert real 2 2 0 0.00%
cdf convert real 2 2 0 0.00%
cdi convert int 2 1 0 0.00%
cid convert int 2 0 0.00%
dmd double int 4 2 a 0.00%
ddv double int 4 2 a 0.00%
dmu double int 4 2 0 0.00%
dsb double int 4 2 o 0.00%
dad double int 4 2 0 0.00%
ads integer int 2 1 0 0.00%
exg integer int 2 2 0 0.00%
ror integer int 2 1 0 0.00%
rol integer int 2 1 0 0.00%

shr integer int 2 1 0 0.00%
sts store mem * 1+a+1' 0 0 0.00%
sib store mem m a+1 0 0 0.00%
los load mem 1+a 1' 0 0.00%
lib load mem m a 1 0 0.00%

Appendix B: EM·1 Instruction and Frequency Tables 99

Section 4: Mnemonic Table, Sorted by Mnemonic

4. Mnemonic Table, Sorted by Mnemonic

This section lists the EM-1 mnemonics. Here the mnemonics are listed in alphabetical order.

Opcode, Instr. Exec. Words Words Static
Operand Group Unit Code Po1;112ed Pushed Freq. Percent

aar x array mem 1+a a 1753 0.94%
aas array mem 2+a a 0 0.00%
add integer int 2 1 1469 0.79%
adi b integer int 1 1 960 0.51 %
ads integer int 2 1 0 0.00%
and x boolean stack x+x x 55 0.03%
and 2 boolean int m 2 1 1035 0.55%
ans boolean stack 1+'t+t 't 0 0.00%
beg x misc stack 0 x 1613 0.86%
beq n branch instr 2 0 1060 0.57%
bes misc stack 1 t 0 0.00%
bge n branch instr 2 0 293 0.16%
bgt n branch instr 2 0 598 0.3?%

ble n branch instr 2 0 305 0.16%
blm x misc mem a+a 0 482 0.26%
bis misc mem 1+a+a 0 0 0.00%
bit n branch instr 2 0 1016 0.54%
bne n branch instr 2 0 1681 0.90%
brb n branch instr x 0 0 2688 1.44%
brf n branch inotr x 0 0 3067 1.64%
cal n call stack I 0 0 19147 10.26 %
cas call stack 1 0 4 0.00%
cdf convert real 2 2 0 0.00%
cdi convert int 2 1 0 0.00%
cfd convert real 2 2 0 0.00%
cfi convert real 2 1 303 0.16%
cid convert int 1 2 0 0.00%
cif convert real 1 2 1227 0.66%
cmd compare int 4 1 0 0.00%
emf compare real 4 1 338 0.18%
cmi compare int 2 1 1911 1.02%
ems compare stack 1+t+t 1 0 0.00%
emu x compare stack x+x 1 35 0.02%
com x boolean stack x x 48 0.03%
cos boolean stack 1+t t 0 0.00%
cse x misc instr 1 0 297 0.16%
dad double int 4 2 0 0.00%
ddv double int 4 2 0 0.00%

dee integer int 1 1 478 0.26%
dee x inc/dee mem 0 0 71 0.04%
del x inc/dee mem 0 0 126 0.07%
div integer int 2 1 383 0.21 %
dmd double int 4 2 0 0.00%

Appendix B: EM-1 Instruction and Frequency Tables 100

Section 4: Mnemonic Table, Sorted by Mnemonic

Opcode, Instr. Exec. Words Words Static
Operand Group Unit Code PopQed Pushed Freq. Percent

dmu double int 4 2 0 0.00%
dsb double int 4 2 0 0.00%

dup x misc stack x x+x 79 0.04%
dup 2 misc int m 1 2 845 0.45%
dus misc stack 1 1' -1- 1" 0 0.00%

exg integer int 2 2 0 0.00%
fad real real 4 2 355 0.19%
fdv real real 4 2 289 0.15%
fmu real real 4 2 482 0.26%
fsb real real 4 2 301 0.16%
hit misc instr 0 0 0 0.00%
inc integer int 1 1 797 0.43%

ine x inc/dee mem 0 0 1285 0.69%
inl x inc/dee mem 0 0 1403 0.75%
inn x set stack 1+x 1 363 0.19%
ins set stack 2+ 1' 1 0 0.00%
ior x boolean stack x+x x 325 0.17%
ior 2 boolean int m 2 1 726 0.39%
ios boolean stack 1+t+t t 0 0.00%

lae x load mem 0 a 16242 8.70%
lal x load mem 0 a 1805 0.97%
lar x array mem 1+a # 2111 1.13%
las array mem 2+a # 0 0.00%
Ide x load mem 0 2 1196 0.64%
ldf x load mem 1 2 73 0.04%
ldl x load mem 0 2 1576 0.84%

lex n load mem 0 a 1885 1.01 %
lib load mem m a 1 0 0.00%
lin n misc instr 0 0 1763 0.94%
Inc n load instr m 0 1 1136 0.61 %
lac m load instr 0 1 27604 14.79 %
loe x load mem 0 1 9490 5.08%
lof x load mem 1 1 3472 1.86%
loi y load mem a y 1561 0.84%
lol x load mem 0 1 17140 9.18%
lop x load mem 0 1 676 0.36%
lor n misc instr 0 1 0 0.00%
lor 1 misc mem m 0 1 0 0.00%
lor 2 misc mem m 0 1 0 0.00%
lor 3 misc stack m 0 1 0 0.00%
lor 4 misc mem m 0 1 0 0.00%
los load mem 1+a 1' 0 0.00%
mod integer int 2 1 343 0.18%

mon monitor instr 0 0 5 0.00%
mrk n call mem 0 3 19147 10.26 %
mrs call mem 1 3 4 0.00%
mrx n call mem m 0 3 0 0.00%
mul integer int 2 1 565 0.30%

Appendix B: EM·1 Instruction and Frequency Tables 101

Section 4: Mnemonic Table, Sorted by Mnemonic

Opcode, Instr. Exec. Words Words Static
012erand Grou12 Unit Code Poi;med Pushed Freq. Percent

mxs call mem m 1 3 0 0.00%
neg integer int 1 1 108 0.06%

nop misc instr x 0 0 0 0.00%
not boolean int 1 1 0 0.00%
rck x misc mem 1 987 0.53%
res call stack 1 +?7? t 0 0.00%
ret n call stack 7?? n 3517 1.88%
rol integer int 2 1 0 0.00%
ror integer int 2 1 0 0.00%
sar x array mem * 1 +a+# 0 1245 0.67%
sas array mem * 2+a+ # 0 0 0.00%
sde x store mom 2 0 390 0.21 %

sdf x store mem a+1 0 60 0.03%
sdl x store mem 2 0 377 0.20%
ses set stack 2 t 0 0.00%
set x set stack 1 x 119 0.06%
shl integer int 2 1 139 0.07%
shr integer int 2 1 0 0.00%
::;ib store mem m a+1 o 0 0.00%

ste x store mem 1 0 3588 1.92%
stf x store mem 2 0 1788 0.96%
sti y store mem . * a+y 0 746 0.40%
stl x store mem 1 0 6587 3.53%
stp x store mem 1 o 731 0.39%
str n misc instr 1 0 0 0.00%
str 1 misc Instr m 0 0 0.00%

str 2 misc mem m 0 0 0.00%
str 3 misc stack m 0 0 0.00%
str 4 misc mem m 0 0 0.00%
sts store mern * 1+a+t 0 0 0.00%
stu monitor instr 8 0 0 0.00%
sub integer int 2 1 878 0.47%
teq compare int 1 1184 0.63%
tge compare int 1 1 134 0.07%
tgt compare int 1 1 290 0.16%
tie compare int 1 1 172 0.09%
tit compare int 1 292 0.16%
tne compare int 591 0.32%
xor x boolean stack x+x x 0 0.00%
xos boolean stack 1+t+t t 0 0.00%
zeq n branch instr 1 0 2094 1.12 %
zge n branch instr 1 0 155 0.08%
t.gl n branch inatr 1 0 31 0.02%

zle n branch instr 1 0 217 0.12%
zit n branch instr 1 0 47 0.03%
zne n branch instr 1 0 1139 0.61 %
zre x inc/dee mem 0 0 760 0.41 %
zrl x inc/dee mem 0 0 784 0.42%

Appendix B: EM·1 Instruction and Frequency Tables 102

Section 5: Opcode Frequency Table, Sorted by Opcode

5. Opcode Frequency Table, Sorted by Opcode

This section contains a list of the 492 most frequent mnemonic and operand combinations.
The list Is sorted alphabetically by opcode. The operands are divided into high order byte

and low order byte. The byte values are given in decimal.

operana Operand Oporand

Freq Opcode High Low Freq Opcode High Low £!:.!!.9. Opcode High Low

47 aar 0 143 53 brb 0 14 446 cal 0 15

100 aar 1 58 95 brb 0 15 508 cal 0 16

43 aar 1 130 85 brb 0 16 315 cal 0 17

43 aar 1 210 72 brb 0 17 221 cal 0 18

43 aar 1 211 78 brb 0 18 305 cal 0 19

48 aar 17 22 65 brb 0 19 246 cal 0 20

44 aar 19 35 68 brb 0 20 211 cal 0 21

44 aar 19 38 52 brb 0 21 221 cal 0 22

44 aar 28 62 48 brb 0 22 209 cal 0 23

75 aar 45 206 66 brb 0 23 222 cal 0 24

63 aar 45 209 67 Orb 0 24 242 1;'11 0 ZG

75 aar 60 187 48 brb 0 25 171 cal 0 26

1469 add 54 brb 0 26 153 cal 0 27

71 adi 0 1 45 brb 0 27 121 cal 0 28

191 adi 0 2 43 brb 0 za 133 cal 0 20

61 adi 0 6 42 brb 0 29 122 cal 0 30

41 adi 0 8 46 brb 0 30 113 cal 0 31

74 adi 0 16 50 brb 0 31 105 cal 0 32

71 ad1 0 18 47 brb 0 35 98 cal 0 33

1035 and 0 1 43 brb 0 36 124 cal 0 34

52 and 0 4 181 brf 0 2 79 cal 0 35

464 beg 0 1 130 brf 0 3 98 cal 0 36

37Z beg 0 z 130 brf 0 4 72 cal 0 37

198 beg 0 3 102 brf 0 5 70 cal 0 38

147 beg 0 4 88 brf 0 6 66 cal 0 39

58 beg 0 5 59 brf 0 7 54 cal 0 40

85 bog 0 6 76 brf 0 8 160 cal 0 41

45 beg 0 7 68 brf 0 9 72 cal 0 42

129 beq 0 2 67 brf 0 10 47 cal 0 43

213 beq 0 3 62 brf 0 11 40 cal 0 44

50 beq 0 4 58 brf 0 12 55 cal 0 46

65 beq 0 5 46 brf 0 14 48 cal 0 47

60 beq 0 6 40 brf 0 16 288 cal 0 50

55 bgt 0 12 46 brf 0 18 61 cal 0 51

158 blm 0 8 47 brf 0 22 51 cal 0 52

87 blm 0 10 1202 ca 1 0 1 45 cal a 55

50 blt 0 11 1040 cal 0 2 41 cal 0 56

55 blt 0 12 969 cal 0 3 51 cal 0 59

87 bne 0 2 1386 cal 0 4 58 cal 0 61

83 bne 0 3 962 cal 0 5 62 cal 0 67

196 bne 0 4 940 cal 0 6 72 cal 0 78

163 bne 0 5 761 cal 0 7 59 cal 0 79

224 bne 0 6 1179 cal 0 8 77 cal 0 169

74 bne 0 7 618 cal 0 9 303 i; r i

55 bne 0 8 696 cal 0 10 1227 cif

45 bne 0 9 956 cal 0 11 338 emf

66 bne 0 10 651 cal 0 12 1911 cmi

41 bne 0 12 390 cal 0 13 45 com 0 4

55 brb 0 12 423 cal 0 14 478 dee

53 brb 0 13

Appendix B: EM·1 Instruction and Frequency Tables 103

Section 5: Opcode Frequency Table, sorted by Opcode

Operand Operand Operand
Freq Opcode High Low Freq Opcode High Low Freq Opcode High Low

383 div 118 1a1 0 3 103 loc 0 33
845 dup 0 1 102 1a1 0 4 59 loc 0 34

68 dup 0 2 133 1 al 0 5 45 loc 0 35
355 fad 114 1 al 0 6 68 loc 0 36
289 fdv 83 1 al 0 7 68 loc 0 39
482 fmu 101 1 al 0 s 128 loc 0 40
301 fsb 50 1 al 0 9 84 loc 0 41
797 inc 60 1 al 0 10 149 loc 0 42
529 ine 0 0 56 lar 0 107 56 loc 0 43

43 inQ 0 5 62 lar 0 147 109 loc 0 44
90 ine 0 6 42 lar 12 122 122 Toe 0 45
50 ine 0 7 113 lar 26 193 183 loc 0 46
43 ine 0 14 44 lar 26 208 65 loc 0 47

313 inl 0 0 83 lde 0 13 226 loc 0 48
326 inl 0 1 42 lde 0 17 91 loc 0 50
200 inl 0 2 491 1 dl 0 0 50 loc 0 51
151 inl 0 3 236 1 dl 0 1 51 loc 0 52
106 inl 0 4 188 1 dl 0 2 62 loc 0 54

67 inl 0 5 84 1 dl 0 3 46 loc 0 55
41 inl 0 6 108 ldl 0 4 45 loc 0 56

272 inn 0 4 145 ldl 0 6 93 loc 0 57
726 ior 0 1 98 ldl 0 8 89 loc 0 58
322 ior 0 4 49 ldl 0 12 b8 IOC u bU

846 1 ae 0 1 1696 lex 0 1 69 loc 0 61
5681 lae 0 3 143 Jex 0 2 42 loc 0 62
870 1 ae 0 5 3012 loc 0 0 73 loc 0 63
14\:l 1ae 0 0 4470 lOC 0 l 98 1 ui; 0 04

164 lae 0 7 1764 loc 0 2 64 loc 0 80
165 lae 0 8 1276 loc 0 3 45 loc 0 92
210 lae 0 9 1066 loc 0 4 120 loc 0 97
193 1 ae 0 10 822 loc 0 5 55 loc 0 99
253 1 ae 0 11 1274 loc 0 6 215 loc 0 100
178 1 ae 0 12 582 loc 0 7 79 loc 0 101
111 1 ae 0 13 942 loc 0 8 41 loc 0 106

63 1 ae 0 14 573 loc 0 9 44 loc 0 108
55 1 ae 0 15 1557 loc 0 10 55 loc 0 110
59 1 ae 0 17 285 loc 0 11 53 loc 0 116
79 1 ae 0 19 249 ioc 0 12 64 loc 0 122
66 1 aG 0 20 405 loc n 13 54 loc 0 125

44 1 ae 0 22 171 loc 0 14 42 loc 0 128
41 1 ae 0 28 242 loc 0 15 117 loc 1 0

145 1 ae 0 45 227 loc 0 16 58 loc 3 232
155 l 111;1 0 59 163 loc 0 17 48 loc 4 0

42 1 ae 0 69 147 loc 0 18 1136 loc 255 255
48 1 ae 0 85 121 loc 0 19 46 loe 0 2
41 1 ae 0 87 212 loc 0 20 363 loe 0 5

343 1 ae 0 105 148 loc 0 21 292 loe 0 6
57 1 ae 0 148 120 loc 0 22 711 loe 0 7
48 lae 0 171 96 loc 0 23 378 loe 0 8
49 lae 0 187 114 loc 0 24 206 loe 0 9
57 1 ae 1 2 181 loc 0 25 115 loe 0 10

92 1 ae 1 9 81 loc 0 26 156 loe 0 11
134 1 ae 1 149 121 loc 0 27 117 loe 0 12
44 lae 2 115 84 loc 0 28 318 7oe 0 13

75 1 ae 25 127 71 loc 0 29 236 loe 0 14
329 1 al 0 0 113 loc 0 30 89 loe 0 15
136 1 al 0 1 59 loc 0 31 123 loe 0 16
178 1 al 0 2 626 loc 0 32

Appendix B: EM·1 Instruction and Frequency Tables 104

Section 5: Opcode Frequency Table, Sorted by Opcode

Operand Operand Operand

Freq Opcode !!.:!..9.h Low Freq Opcode High Low Freq Opcode High Low

105 loe 0 17 969 lol 0 5 111 stf 0 7
64 loe 0 18 729 lol 0 6 86 stf 0 8

278 loe 0 19 559 lol 0 7 64 stf 0 9
66 loe 0 20 439 lol 0 8 569 sti 0 1
65 loe 0 21 310 lol 0 9 145 sti 0 4
67 loe 0 22 280 lol 0 10 872 stl 0 0
81 loe 0 23 222 lol 0 11 1073 stl 0 1
56 loe 0 24 142 lol 0 12 1185 stl 0 2
42 loe 0 26 128 lol 0 13 728 stl 0 3
53 loe 0 29 83 lol 0 14 543 stl 0 4
72 loe 0 30 108 101 0 16 429 Stl 0 0

71 loe 0 49 53 101 0 16 339 stl 0 6
58 loe 0 50 52 lol 0 17 258 stl 0 7
78 loe 0 62 292 lop 0 0 204 stl 0 8
oz loe 0 7Z 1U: lop 0 1 l~Z :stl 0 9

68 loe 0 97 81 lop 0 2 89 stl 0 10
58 loe 0 102 343 mod 102 stl 0 11
80 loe 0 106 11111 mrk 0 0 66 stl 0 12
96 loe 0 107 6144 mrk 0 1 48 stl 0 13
65 loe 0 109 1183 mrk 0 2 56 stl 0 14
52 1oe 0 110 384 mrk 0 3 43 stl 0 15

122 loe 0 113 152 mrk 0 4 164 stp 0 0
SQ loo 0 114 14~ mrk 0 5 68 stp 0 1
56 loe 0 117 665 mul 293 stp 0 2
77 loe 0 119 108 neg 51 stp 0 3

157 loe 0 126 45 rck 5 138 43 stp 0 4
57 loe 0 138 160 rck 5 140 878 sub
69 loe 0 246 109 rck 5 142 1184 teq
48 loe 1 103 46 rck 5 163 134 tge
58 loe 12 48 51 rck 60 202 290 tgt
52 loe 15 182 3145 ret 0 0 172 tle
42 loe 19 21 316 ret 0 1 292 tlt
68 loe 21 27 56 ret 0 2 591 tne

810 l of 0 1 41 sar 28 59 65 zeq 0 1

630 lof 0 2 67 sdl 0 4 135 zeq 0 2
330 lof 0 3 89 Sdl 0 6 221 zeq 0 3
241 lof 0 4 118 set 0 4 169 zeq 0 4
168 lof 0 5 139 shl 125 zeq 0 5
163 lof 0 6 157 ste 0 5 100 zeq 0 6
134 !of a I 167 Ste D 0 80 L61/ 0 7

92 lof 0 8 235 ste 0 7 49 zeq 0 8
104 lof 0 9 150 ste 0 8 43 zeq 0 9

68 lof 0 10 110 ste 0 9 59 zeq 0 10
70 lOf D 11 46 :>ttt 0 10 61 zeq 0 11

45 lof 0 12 46 ste 0 11 42 zeq 0 19
61 lof 0 13 63 ste 0 13 271 zne 0 2
47 lof 0 14 70 ste 0 14 68 zne 0 3
47 lof 0 15 69 ste 0 19 67 zne 0 4
43 lof 0 16 44 ste 0 97 50 zne 0 5

43 lof 9 200 52 ste 0 114 47 zne 0 6
798 loi 0 1 42 ste 0 119 52 zne 0 7
641 loi 0 4 64 ste 0 126 107 z rl 0 0

4391 l 0 l 0 0 344 stf 0 1 115 zrl 0 1

3034 lol 0 1 333 stf 0 2 86 zrl 0 2
2208 1 ol 0 2 144 stf 0 3 93 zrl 0 3
1707 l ol 0 3 07 11tf 0 4 54 zrl 0 4

1202 1 ol 0 4 70 stf 0 5 82. zrl 0 5
116 stf 0 6 67 zrl 0 6

