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SUMMARY

In this paper a second-order solution, for the forces and moments
produced by an ogcillating two-dimensional airfoil of arbitrary cross
section, has been determined. This solution was obtained by means of
én.iteration procedure. In the iteratiom procedurs it was necessary
to have a linearized solution of simple, closed form which was valid
throughout the whole x, y plane. Existing solutions did not satisfy
these requirements, thus, it was first necessary to develop a new
linearized or first-order velocity potential. This potential was de-
veloped as a power series approximation, in frequency, to the exact
linearized solution. Six terms of this series were developed and this

gsixth-order solution shown to be within a few percent of the exact

linearized solution for reduced fregquencies (5 = g ¢ ) less than 1.3.

B Vo

The first two terms of the series approximation were then used in

the iteration process to produce the second-order solution in thickness.
This solution which i1s valid to second-order in thickness and frequency
has been determined for an oscillating airfoil of general cross section.
fhe second-order terms were found to have a relatively strong in-
Tluence on the final solution, particularly for the pitching moment.
It will be seen in Section V that in many cases the second-order terms
are larger in magnitude than the corvesponding first order-terms and
thus reverse the tendencies indicated by first-order theory. kIn rarti-
cular, it was shown that the theoretical instability predicted by
linearized theory for an airfoil of zero thickness is completely elimi-

nated for an airfoil having a thickness ratio as small as three percent.
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funetions of M_ and y (See Fig. 8).
the speed of sound; the subscripl zero refers to free

hord of airfoil.

coefficient .,

.n s

pltching moment ccefficient,

pregeure coefficient; subscripts v and !

and lower surfaces,

an arbitrary function of {(x - y B) w

i
A F
(g} =7{(8) =0Crorg 20; £'(§) ::C’g“) and T

and ' are conblnuocus.

an arbitrary function of {x - ¥ B)
g(6) =g (§) =0 Tor§ * C, and g and g' are cont inuous .
a function of the first order {im ) velocity potential
which Torms the non-homogeneous portion of the wave egua-
tion to be satisfied by the second order velocity po%en%iai;
free gtream Mach number.,

vresgure; the subscript zero refers to free stveam conditionsz,

perturbation velocity =f u + v .

perturbation velocities in the x, v directions.

free stream veloclity.
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The linearizced theory for the supersonlc, lrrotational, non-

i
si@(z) and VOE,EQTbgly(E}; a mumiber of and
Ruu1now{5}, (h}} Temple and J&hﬁiS)} and Miles((> have considered
the two-dimensional oscillating airfoll problem. In the lagt Tew

vearsg a mumber of solutions have been determined for non-etationary

{rr
three-dinensional wings, for example; Stewart and i’ {rectangular
2y Ho 0
. ro ) ; o . N 10 o
wing), Miles' ', (9) {rectangular and delta wings), ﬂvpscn( / {delta

ita wing with supersonic
Y. Thus, it seems probable thet within a few years the
linesrized solution, for almest eny planform will be avallable,

From previous experience with stationary flows 1t 1ls reascnable
to expect that these solutions should give forces and moments which
will be in good agresment with the actual forces and moments for some
conbinations of Mech mumber and thickness, However, for other combi-
3

nations of Mach nunber and thickness the linearized results will

provably be quite inaccurate and solutions which allow a larger range

[N

of validity will have to be cobtained., Now the previously mentioned
linearized solutions indicate the effect of Mach oumber but take no

8 to produce a solu-

3
ha
=
ko
]

5
i

>
D
s
[

account of thicknesz. The purpese of

ion which takes account of the effects of thicknesg. Or stated



2
another way, the reason for this study is to produce a second-order
solution in angle of attack {and thickness) so that the effects of
thickness on the forces and moments produced by an oscillating air-
foil may be evaluated,

The prototype of the higher order solution in supersonic flow

. (13) . i

is Buaemanﬁ’@& geries Tor the surface pressure on a two dimen-
e (14

siopal body in steady flow. More recently Van Dyke a8 solved

the problem of second-order steady superscnic flow past a body of
revelution., In both of these cases the second-order s@iutlon gave

e pressure coefficient which was sufficilently accurate for almos gt

This study involves the use of the same method of attack as

{14)

wag uged by Van Dyke - - pamely, an iteration process in which
each step of the iteration is dependent on the previocus solution.
Hence, Lo determine the second-order velocity potential, the first-
be availeble., However, to utilize the Ffirst-
order potential in the iteration process it had to be defined through-
cut the whole %, v plane and alsc be of & comparatively simple closed
form. Since none of the avallable soluﬁioﬁs satisfied these regquire-
ments, a satisfactory first-order veloclity petential had to be deter-
mined. This complete potential was calculated im the form of a
gseries approximation to the exact linear ized velocity potential.

In 19Q6vGuder1ey(15) produced the first two terms of the series
approzimation to the linearized velocity potential. This solution

wes complete (in the sense that it was valid throughout the whole X,

vy plane) and it was in a very simple form. It is this expresslion for
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the linearized potential which will he utilized in the determination
of the second-order solution. The use of this form of the potential
leads to a final solution which is sccurate only when the frequency

is less than an upper bound which is dependent on the number of tTerms

b

of the expansion which are retained, Of coursge, n terms of the series
could be retained and the second-order solubtions made accurate to any

degired degree, however, as might be expected the labor involved is

[§:]

more than directly proportional to the nugber of terms retained. Th
compromige in this study consisted of taking the first two terms of

the series expansion. Thus, the finel result is a solution valid to
second-order in angle of attack and Treguency ;. This solution will
be found accurate for most non-stationary problems that do not include

econd crder solubion can probably

s

flutter, and does indicate that the
not be neglected in the case of flutter,

In Section II the background material for this study is presented;
it will include: A discussion of the assumptions and the iteration
process; the differential eguations which must be satisfied by t©
first- and second-order velocity potentials; the boundary conditions
for the first- and second-order potentials; and the expression for the

pressure coefficient as & function of the velocity potential

1 ; . R R
= There is a tendency for the expression ''order'' to become confusing
in this paper since order can refer to the meximum angle of attack aﬁ,

the thickness parameter £ and the frequency w. The maximum angie of
attack and the thickness determine the order of the solution in the
usual sense of the word, i.e., the first-order (in Oy OF g ) is the

linearized solution. The maximun angle of attack and the thickness
parameter are taken to be of similar magnitude > Sy ig of O (£ Y, and

Tor brevity are referred to as or “der in angle of attack. Any ovder
solution in angle of attack may then be expanded inbo a series solution
in powers of the frequency. Terms of this expansion are re ferred to as
order in freguency.
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In Section III the series expansion of the linearized velocity
potential is considered. The first two terms 2 of the series expan-
gion are developed. This is the result as presented by Guderley( 5)
Guderley's paper did not indicate the method of development but pre-
sumably it was similar to that given here. ILater in this Section
the same method is applied to produce the first gix terms of the
0 series 2, The forces produced by the series expansion solution are
then compared with the exact solution to find out in what range the
series solution is valid.

Tn Section IV the second-order potential, in angle of attack;
is determined for the case of an oscillating airfoil of zero thick-
ness. The expressions for the lift and moment are then determined.

Section V extends the results of Section IV, first to the case
of a wedge, secondly, to the case of a double wedge and finally, to
an airfoil of general shape. The numerical results for a modified
double wedge section are calculated and compared with the first-order
solution., Tt is shown that the instabllity of an oscillating airfoil
of zero thickness as indicated by linearized theory is actually non-

existent for any feasible airfoil section when second-order terms are

considered.

2 In this paper the expression first n terms will mean the solution

valid to the n#h order.

é—Although only the first two terms of the series are to be used in de-
termining the second-order solutions in angle of attack the series ex-
pansion is, by itself, of value. First it is in a simple closed form
while the exact solutlon may only be solved by means of tables, and
thus, the series solution has immediate application in a Fourier solu-
tion of other non-oscillatory motions. Secondly, it is valid away from
the airfoil (i.e., ¥ £ 0) and hence may be of interest for interaction
or interference problems.



SECTION II. THE ITERATION PROCEDURE

In this section the general resulits which are necessary for the
application of the iteration procedure to a specific problem are pre-
gsented. The basic emssumptions are outlined., Under these assumptions
an exact perturbation potential is determined. Then, by means of the
iteration process the lipear differential equations, which must be
satisfied by the first- and second-order potentials;, are calculated,
The boundary conditions whiech these potentials must setisfy are then
- determined, these boundary conditions together with the differemtial
equations completely specify the unknown potemtials. Finally, the
second-order expression for the pressure iz calculated es & function

of the velocity potential,

Bagic Assumptions
The problem to be comsldered is the etudy of the surface
pressures produced by the uniform flow of & perfect gas pest an os-

cillating airfoil of general shape (See Fig. 1).

/S
/S 7
y /
A ////&\“x—yﬁ=o
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-~ 4 —
y=eh(x)
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required to be slender and the maximun angle of attack

It

ki

£

‘he airfoil
Ogy 18 required to be small. The slenderness is messured by the symbol
£ ceince the thickness is given by the eguation y = € n{z). Thus, by
reguiring that Ol and £ be much less than 1, and that the slope of
the surface st any point be emall (of O{f)}, the perturbation veloci-
tieg at any point on the surface are required to be small as compaxred
to the free siream velocity. The coordinate system is chosen so that
the center of cocrdinates is Fized in the leading edge of the airfoil

o

when oo = 0. The x axi n the direction of the free stream velocity.

j=ts
b
£

L8

The airfoil rotates ib@u% a point (x = z@ ¢} located a non-dimensional
digtance xo downstream Trom the lesding edge. The angle of attack is

defined by the symbol o = Gy COS W t, where w is the angular velocity

of the oscillation. The angular velocity w is limited by requiring
% £ 99 3 o 5 RO UJC 7 1) o - -
that the reduced frequency w (W= — } be small, The flow is re-
v
B o
ed to be uniform upstream from the leading edge and to be irrota-

.

Le:]
e

tional, isentropic and non-viscous, The assumption that the flow is
irrotational and isentropic is valid in this problem since the fi@@tﬂ
of rotationaliity and changes in entropy are of third and higher order

in angle of attack.

The Exact Potemtial Equation
Under the limitations of the previous agsumptions there are,
in two dimensions the following well known results;

FEuler's Equations,
Ty + AUy + Ty =-7F #x s
Vt-f-uV;-fVV}, =-7r e, | (1)

here u and v are the velocity components in the x end y directions,

o is the density and p the pressure,



The Continuity Equ %iogj
Af, 2 (eg)+ D (FPT) =0 9
v ax(f“) 3(?(s" (2)

anrd
The Condition of Irrotationallty,
3&.;,- (3)
Now since the flow is irrotational and isemtropic there exists a velo-

city peten%iai_é-smch that u x_}% and v :_éyy end the speed of sound ¢

ig given by the relatiomnship,

a2 ¥ .
C-'=7.f’ ]

Replacing the velocity components u and §'by’§% and é& and combin-

ing Ege. (1), (3) end (k), results in the nom-stationary Bernoulll Equa-

. 2
tloﬂ) F + _/_ 81 +__C::: = -_C:e. .
2 - b"'/ 7
* ¥ (5)
o~ - - — _—
Here g is the total velocity (g = 30+ VO =_§; c +_ﬁ; £)§ and the sub=

chJpﬁ zero refers to free stream conditions. Combining Egs. (2) and

(5) the potential equation is found to be

-

F(28)e8 (8- 8i -28,8,4, -2, 8,28, 8,20 (4

These last two eguations are now rewritten in tensor notation since

the iteration procedure is considerably shortened by use of this form

of the potential. — = "
'YIREEY Y ) ¢t _ & |
=== + = ’ (5a)
At & AX: 2N ¥/ ¥-/

and - - - - - = —
2* oli J'f 5'25 ol 5 * (6a)

w

—= —= + £ T = =
e AN A at | axi AKLANAK .?x“vxt

Solution by Iteration
The complete potential equations Eg. (€} or (6a) is 2 non-

linear equation and hence, may not be sclved directly. The approach to
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(16)

It was later applied

(18)} (19)’

e used is that first suggested by Prandtl
to plarar subsonic flow by Gartler(l?) , Hantzsche and Wendit
tmai and oyema(P0) (31) ang gap1an(®®) (83 sopmicden and kawalki(®*)
applied the same method to subsonic flow past an ellipscid of revolution.
Van Dyke (1k) applied it to supersénic flow past & body of revolution.
In this method of solution it is assumed that the velocity potential _Z-
may be approximated by the expression,

Ftox +ag'ra’@2+a’dde .t «"@% )
Since the term VO x has been included in Eq. (7) the ;zf‘s represent the
perturbation potential, ¢n representing the nth order potential. Since

in this study only the second-order potential is desired, the terms g£n

for n) 2 may be neglected. The derivatives of E are given by the ex-
ressions I _ d e
2 s fx;"% Sf‘f"‘é\';*d ¢l; $oor 9

-ét = c(¢_;+6(‘¢_: e,
671{ is the Kronecker delta symbol so that 5;_( ={§ gg; :: f z

Putting the series expansion Eq. (7) for Z into Eq. (6a), and replacing
the speed of sound c¢ in Eq. (6a) by its corresponding function ofz

from Eg. (5a&), the potential equation becomes:

(terms containing o)
&

{ 2 g7 ! 2 lvoi 4 ”n LA
= - — * — -
ﬂ¢ Ia ¢xx v4 + Vo ¢Xt A é‘-f 0 | (8)
Vo >
here . has been replaced by the Mach number Mo and § = Mo -1,

© 2
(terms containing o)

aé = H(é')
g b )
2B by )2y (B v by ) |
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These are the differential egquations which must be satisfied by the
first- and second-order potentials ¢1 and ¢2. Both of these equa-
tions are linear and may be solved by the usual methods applicable
to linear differential equations. Although only the first- and
second-order equations are derived here the higher order equations

may easily be calculated. The higher order equations would be of

the form, n¢{=I(¢;¢7'
n¢t= T7(8, ¢54°),
etc.
The method of solution is now apparent. First one obtains the
first-order solution él which satisfies Eg. (8), the homogeneous
wave equation, and the proper first-order boundary conditions.
Then the function H(ﬁl) is determined. Next a second-order poten-
tial ¢2, which satisfies Eq. (9) (the non-homogenecus wave equation)
and the proper second—drder boundary conditions, is calculated.
The expression for the speed of sound ¢ will be needed later.
From Eq. (5a) : - -
ct= Co‘ —(_ia:l ( fx“ fx" - V0‘+£§t ) )
e e (RN [ ]
, 2
Lo (BT (824 )]
An interesting and important point in the application of the
iteration process has been investigated in detail by Ven Dyke. The
next two and a half paragraphs are a shortened version of Van Dyke%
discussion, for a more complete survey of the problem see Ref. 1k,

It should be kept in mind that this particular discussion concerns

only stationary flow.



16

It will be noted that this iteration process has a superficial
resemblance to the Picard process for hyperbolic equations in two
independent varisbles (Reference: C(ourant and Hilbert, Vol. II,
p.31T7). There is however, an essential difference. In the Picard
process the characteristic lines of the differential equations are
known at the outset since the functioms Fn do not depend on the
highest order derivative. In the iteration process however, the
characteristic lines are unknown and it might seem that the charac-
teristics would have to be revised after each step of the iteration
process. Thus, each step except the fi;st, would invplve equations
with non-constant coefficients. The subsonic counterpart of such a
procedure is known to converge under proper conditions (Reference:
Courant and Hilbert, Vol. II, pp. 288-289).

The iteration process as chosen makes no provision for such a
revision and at each stage of the iteration process the equation
has the original characteristics of the first-order potential (i.e.,
gg = %, here only the downstream running characteristics are consi-
dered). These are the Mach lines of the undisturbed flow and are
also characteristics in the mathematical sense (Reference: (ourant
and Hilbert, Vol. II, Chapter 5). Now the second-order characteris-
tics in the physical sense, that is lines along which discontinuities
in velocity are propagated, depend on the second-order potential and

are different from the mathematical second-order characteristics which

are still given by gz = %, However, when the physical characteristics

are calculated from the second-order potential they are found to be

coincident with the expected revised characteristics. Hence, if dis-



11
continuities do not occur, the mathematical characteristics (those of
the free stream) behave physically as if they had been revised.

This connection between the original and revised characteristics
can be interpreted physically. The right hand side, of the non-homo-
geneous wave equation which is to be satisfied by the second-order
potential, may be regarded as representing the effect of a known dis-
tribution of supersonic sources throughout the flow field. The Iin-
fluence of this source distribution spreads downstream along the origi-
nal characteristics. The resulting velocity changes are Just such that
the second-order velocities become constant along the revised rather
than the original characteristics. As was previously mentioned this
discussion was valid for the stationary case or ih the liﬁiting case
w=»0. TFor the general two-dimensional non-stationary problem the
characteristics surfaces are too complicated for a discussion of this
type; however, the method is mathemati%iély the same for the non-sta-
tionary as it is in the stationary case/gs is apparent thét the mathe-
matical and physical results must again be compatible. The discussion
of the failure of the iteration‘procedure to give a valid solution in !

the neighborhood of a discontinuity in the flow will be taken up later.

Boundary Conditions
The flow is required to satisfy two boundary conditions:
(1) The resultent velocity must be tangent to the surface
of the body.

(2) All perturbation velocities must vanish upstream from

the plane x = O.
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From the theory -of hyperbolic differential equations (Reference: C(our-
ant and Hilbert, Vol. II, p. 172) it is known that these two requirements

are sufficient to determine the solution,

Consider the Tangency Condition
If the surface of the plate is given as y = h (x, t), the tan-
gency condition at 'bhe surface of the body is
£
(.@. ) = hlay¢) "f "(%)(%"fx),-l(m) ] (11)
Here the terms on the left represent the difference in vertical velocity
between the flow and the plate while the term VO + _@ i is the resultant

velocity in the direction of flow. If j 2 is replaced by ¢l + ¢2 , Where

dl, g—g and gi; are of the order o while ¢ is of order @2 the boundary
condition at the surface to first-order in o is:
7y - 24 ., 24
(¢v)yao - V° 2% +v.3t g (12)

The exact boundary comilmon is

£ - -
Vot &y y=4
. 2 1 2
or s:.nce_z? = ¢ + ¢° it follows that
M 4 ‘+g* .
Then since

%(Vo+¢,{+¢;)“4 =ax 4 (v.+ 8 )+ o(«’);

4
X

A O

|

?

h M

and
/ 2 ’ L 3
(¢y 7‘¢<,)9_.4 = (¢7)9=4 * (¢7)7.-.-o + o(e?)
the second-order boiumdary condition may be expressed as,
, L)
(¢7)7 20 = ( ¢ )934 *;6 f—a"'(‘/of ¢‘)9¢°
Now eliminating V o 52 + 5"5 by means of Eq. 12 the second-order boundary

condition is seen to be,

(¢;)¢,z° = (¢X, )?ao f}é * [(¢‘I()7ao_(¢;)y=.‘] . (13)



13

Consider the condition that the perturbation potential vanish

for x S 0:

From the theory of hyperbolic differential equations (Ref-
erence: Courant and Hilbert, Vol. II) this requirement may be stated
and satisfied in two physically different and yet mathematically simi-
lar ways. Since both definitions are used later the two definitions
will be presented.

The first approach requires that two conditions be imposed on
the so-called time-like surface x = O and one condition along the
space~like surface of the body. The previously mentioned tangency
condition is space-like hence, we have to impose two conditions on

the plane x = 0. These are,

,E(ol‘flt):o )
and (14)

fx(o'7/f) =0 -
These conditions along with the differential equation and the tamn-
gency condition completely specify the problem.

The second approach specifies the potential upstream by requir-
ing that the potential be zeroc on the Mach line from the leading edge
of the airfoil. ¢, (X, _’4 , -é) o

(15)
As expressed by Eq. (15) the potential goes to zero on the Mach wave
through the origin and not on the oscillating Mach line from the lead-
ing edge. However, since the movement of the airfoil is comsidered
to be small, the movement of the Mach wave only produces effects of

second-order in angle of attack. Therefore, since this criterion is

only used in the determination of the first-order solution the second-
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order effects may be neglected. Fhysically this requirement corres-
ponds to the known fact that the perturbation potential is zero up-
stream from the disturbance produced by the leading edge, and since
the potential is comtinuous it must in first-order theory be zero on
the Mach line from the leading edge. Mathematically this approach
corresponds to specifying one space-like condition (the tangency) and

one condition along a characteristic.

The Pressure Coefficient:

The flow is isentropic, hence,
Y~/
=(¢7et)
7, =(c7a2) ",

Thus, the pressure coefficient C

sion, - _i_[_g_ r~/ ]
& = AZRALS K

2
After substituting "25 from Bq. (10),
c

B
Cf 2).‘"5:5;[/"/15‘(1‘,‘/)[#,,’;};'*;;&}; *Z—IIZ‘(E:“_@‘)]]{.I'/J

and since the right-hend portion of the function in the bracket

is given by the expres-

mHA 3

2
Po Vb

is less than one the bracket may be expanded to give
« 2% Mo 2
f'“e{%fx e g,,[/"@' )-(4,)+ '.ff‘/‘ e (,é;)‘] - (/6)

The third and higher order terms have of course been neglected.
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SECTION ITI. FIRST-CRIER SOILUTION IN ANGLE OF ATTACK
Tt was shown in Section IT that the first-order velocity poten-

tial ¢l must satisfy the following conditions,

'-
O¢'=e (See Eq. 8), (174)
. b, a4
(0 )yeo = Vo 2+ 24 (See Ea. 12), (17B)
P(x=9£) = O (See Eq. 15). (17¢)

These conditions exactly specify the linearized velocity potential

and, as was previously pointed out, numerouslsolutions which satisfy
Egs. (17) are available. However, these solutions cannot (See Section
II) be used in the iteration procedure. In this Section a first-order
potential ¢1 (x, y, t) will bé developed which is both in closed form
and valid throughout the whole flow field. However, the solution will
no longer be an exact first-order solution but will consist of the first
6 terms of the series expansion in frequency (of the exect linearized
solution).

This Section is divided into three parts. In the first part the
expression determined by Guderley(ls), that is the second-order solution
in frequency, is derived in detail. The second part briefly utilizes
the same method to extend the solution to sixth-order. In part three
the expressions for the 1ift and pitching moment coefficients of an
airfoil of zero thickness are calculated and compared with the exact

solutions.

Guderley's Second Order Solution in Fregquency
In 1946 Guderley(l5)‘wrote 8 paper entitled '‘The Pressure Dis-
tribution on a Flat Plate Oscillating with a Small Fregquency''. In

this unpublished paper he produced without eny development the first
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two terms of the series expansion in frequency (of the linearized
velocity potential) for the flow over an oscillating flat plate.
This same solution will now be developed. The method of attack is
interesting because it allows an algebraic determination of any de-
gired number of the terms of the series expansion. The method is
not restricted to oscillatory motions, but actually appears to be
ugeful in the solution of any continuous non-stationary, supersanic
airfoil problem. To be more specific it is believed that this method
could lead to first- and second-order solutioms to the problems of an
airfoil experiencing a constant rate of change of angle of attack, an
airfoil experiencing a constant acceleration in forward velocity or
other continuous type motions.

The location of the surface of the airfoil (See Fig. 1) is
given by the relation

vy = (x - x c), (for 0 ¢ x £ 0)

where o = aM cos w t. Hence, the slope(%%) and the vertical velocity

<§%) of the plate are,

oy
ox

and .
g%zé; (X"’X, c).
The teangency condition, Ed. (17B) is thus,

(@) = Vo +X(X-XeT) - (17D)
7=0

E-Although 1t will not be specifically mentioned in the remainder of
this paper, the equations giving the location of the surface of the
airfoil, the vertical velocity of the airfoil, etc., are of course
restricted to the region 0 - x - chord. Similarly the velocity po-
tential is restricted to an appropriate strip of the x, y plane.
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. A .
Now congsider the series expansion of ¢" in powers of a non-dimen-

sionslized frequency w. The so-called reduced frequency w (v = g ¢ —)

B Vo

is initially required to be small (w << 1) in order that the higher
order terms in frequency mey be neglected. Later it will be seen that
the sixth-order solution gives a good approximetion to the exact solu-
tion for w € 1.4, The series approximation to ¢'l is

B b AT 45 B st Ty (28)
Where 5253; is the nth order term in the series. It should be noted that
while the so-called first-order term in frequency deces not contain ZJ,
this term does contain the parameter a = Gy €Os w t. Thus, this temm
is due to the instantaneous position of the airfoil and is the first-
order term in the frequency expénsion.

From Eq. (17D) it was seen that ¢; at y = 0 was of the form,
(¢;) = =V, A +;((X‘Xo?) ‘
Hence, ¢:2L must be, ¢ . . 3
g= [B). 1+ Kfax+ Dyt e FXEHXRY 4T X4 ]
2 ° =
3
+ x{ax+£7‘+@x‘+1 Ky +RK X%« } (19)

where D, E **-- K are functions of Maech number and velocity. The higher
terms in frequency (i.e., &, &, etc.) are not included since only a sec-
ond~order solubtion in frequency is desired. 95;' may now be determined
algebraically by substituting Eq. (19) into Ege. (17A) emd (17C). When
this is done ‘it will be seen that a set of n algebraic equations are
derived which are exactly sufficj.ent to determine the n unknown cocef-

ficients D, E ¢*+- n. To simplify the algebra the unknown coefficients

J *e-+ n will be taken to be zero immediately, although the same result
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would be cbtained if they were allowed to remain through the deriva-
tion.
Tntegrating Eq. (19) it is found that ¢% is of the form,
¢"= Vo K+ yX & -4 XX T

+ A fAxsD Y X HH XY o)

+;({3;<+57‘+@x"+1'x‘7} ’
Now substituting Eq. (20) into Egs. (17A) and (17C)it follows that:
{ . ‘
O¢ =0= p*(2FK +264) -2( 0% + F &)

+ Mo‘(gkﬁxﬁk;faﬂya) + o(R)>

_._L(gv‘x X'd_XKe E K +,4xx+axx-/~p°‘x
9‘(? =§)=0 iy 7 A-
R L L} x‘
EXXT p<‘+@xx‘+”"‘"+1"‘4 .
+ . 7+ FRX y -

Rearranging these two equations according to the variables o, o, x and ¥,
«(2Fp*-2D) = ’
«(26p=-2E+ Z”"A)"o »
xx( "W’ F)=0 1
75((—"1,—,’-? A)=o 1
xo((—z"-v‘ﬁ)-‘-O 9
z,((,t +ET "')_o ’

x‘(B_XoC)..c’
xtw(s pk+@+7—) o -

a set of éight similtanecus algebraic equations with eight wmknowns,
is determined. Again note that if twenty unknown coefficients had
been used there would have been twenty simultanecus edquations and the

last twelve coefficients would be given as zero. Solving these eight



19

simultaneocus equations the coefficients are found to be

A:_-&, F=O$
F 3
B= XC/p, 6= Vap"
D= O H= 0O 3
2
E:l——'_e../.y_o f[: .
2g '’ ©

Hence, to second-order in frequency the linearized velocity poten-
tial is gi"ven as ) X* « X _.

¢,= yz(a;:)(,_zﬂ;)+7[&((x—x.c)+d Vo] + ;.(ﬁ)+l-‘;[x.c o« -V (o1)
It is apparent that some umnnecessary work was done in this derivation
by including extra terms in Eq. (19). For example D, F, H and I could
have been immediately eliminated by realizing that as w —» 0 the ex~
pression for the potential must approach the solution for the flow
over a stationary surface at an angle of attack o = O'M cos w t.  Since
the solution for this problem is known to be

$=V,0( -3

D, F and H could then have been eliminated. Eq. (21) is the solution
given by Guderley for the potential of a flat plate oscillating sﬁch
that w<< 1. As will be seen later in this Section this solution ap-;
proximates the exact linearized solution within a few percent for

I ¢ .3 (this would include such motion as control movements, stability,

ete.).

The Sixth-Order Sclution in Frequency
In this part the previously determined second-order solution will
be extended to include the linearized solution valid to sixth-order in

frequency. As will be seen later the sixth-order solution is within
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1 percent of the exact for ® * .9, while the previously obtained
solution is only valid to 1 percent for w S .15. Hencs, for many
flutter problems the simple final form for the forces and moments
as given by the sixth-order solubtion will give satisfactory re-
sults. A linearized potential of the form,
,é': &' + &3952' +c7f‘é‘-h~+ 75 d
must now be determined such that ;él satisfies the conditions,
(8),., = Vox + X(K-KT )
¢I( 7= X//’) =0 See Eq. (17) .
ﬂ¢l: ot 0(5‘) .
The me%hod of solution is exactly the same as before and is made
especially easy if two simple rules are followed,
a) No term Ax" y may appear since ¢y # 0 and the tangency
conditions would be changed. |

b) The symmetry shown in the first two terms of the series

expansion is continued throughout the higher terms and thus

1 18] )
¢n"F(X y)Where(O‘-man&p‘-n

The final sixth-order solution in frequency that satisfies the re-

quirements of Egs. (17) to 0 (w 6) is presepnted below.

-—Voﬂ({?'—} -/-0({71( -2/%)+X}'I'X (218) Xac(‘?_—)}

3'(/7.,;)(3(7#) 7( )+x7‘(”“’ Xo € (, 7)}

'52/7, Iff/% 4 3-12M, + 87, )(73—)(71
, {X ‘/iﬂ") 7( 48 B2 ) € 3—_—;5

_ X" Xyt g3 o(/‘/. 5 3+4/‘7¢
'ch(/a s(eﬂ.f/)ﬁ/p,#- } 5 { ( } 8y°

2 t YA §
/0;\'77 ;i (g/z, ~20 /) +/5) ‘,«,\',c(x (/% +3)‘ sx 7
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(4 L8 I'§
+_(3 2M x))} I9zoy X‘(?”.'/'?M-f/ SX 7{,5/%_*/)

s (22)
-3, % Y ¥
+'“‘ X‘ < (28rm* 1109, +8) + %%%ﬂ (11M-¢) + '5:/ (1= 3/4)
+/6 xys-/;x. Ty¥s -::—(/5— S92 48 M) + ‘%E;X_? (25Ms +r)}

In the calculation of the linearized pressure on the oscillating plate

only the potential on the plane y = O is required. This potential is

presented in Eq. (23).

(l __VeRK, (X XeCTK _'écﬂ.‘{x’ AeTX* L‘c/y,{ (/M/f,‘)
¢) T ep> P Ve (4p5 2B° ¥3p

- I® 4
Kl X3 5y X My s 3+m 'fx.cx
+75;?(2”° #1) §~ —L2 {X ( ) (2/‘7. 1‘3)} (23)

/92 v,3

X ¢ ¥ s
M5 (B IM S 'fx.cx y teg }
= %qfx ( o * et (29/‘7, £ 109 My + ¥ )

The fourth-order solution included in Eq. (23) has recently been ob-

-+

tained by Watkins (25) who expanded the first-order solution in powers
of w and then integrated to obtain the fourth-order solution in fre-

quency.

The Linearized Lift and Pitching Moment Coefficients

Tn this part the pressure, lift and pitching moment will be cal-
culated from the éeries expansion and a comparison will be mede be-
tween the series and the exact solutions. The umstable tendency
(i.e., negative demping) of an oscillating airfoil of zero thickness,

(17)

which was first pointed out by Garrick and Rubinow , is also dis-
cussed.

The linearized pressure coefficient is given by Eq. (16) if all
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terms containing a? are dropped, i.e.,

¢ =-e(y bt (24)
Now substituting the potential ¢6 (BEq. (22)) for ¢l in Eq. (24) the

pressure coefficient is seen to be,

= = ([cos wf 1= ( [;7/9:8 XOCX) V, [,(/7;’;:;/7;+¥%]
L4/, A KA,
+ XoC X[lz;ﬁ j) X sin wz‘[x(” Z) ~X.C Vo ( /2,;‘ ) (25)

¢
LIRCKY w [3”0*/‘”4’:7/‘70 e, CA¥ 5(/m.+/o/‘7,] .
AT #80p” d 67 p*
Thus, the sectlon 11£p coefficient
“'J'()v X
is,

‘/dn C_U-l z 3 6;4 é '} 2 .
C=5"4cos wt[i- 3 (M° *E+6K.F )+7?s—o (‘//‘f. +2]Me+ 4 M-

220K B(# M +14, ))]—— s/ wz‘[(/‘/,‘-z-zxa,ﬂ‘)+£ (/1,“+‘//7.‘+/u,,6‘/7.‘}
-‘I
25780 (7(2/7., +6 MELIMY) +304. P2( 19 M, +/a/‘7,"))]} (2¢)

The pitching moment coefficient as calculated about the point of

robation Xé is given‘by the equation,

Cm“""‘/"‘ ~XoT) Cpo ol X
or,
. 44 -
C'm"'jé'ﬂfcos a—’é[(z X") (”' #2+ X0 (4/0°-8)- 8X¢ﬂ) e 70(2 a

+1351 w20 m>) +Xe (36039614120 15’ )~ 120X, P (4, ¢ ﬂ,‘))]

-Lsim m[(z l-4-3X(2P~1) v 6XSB") + M ((4715+4)

o /‘I,
720

+X( 736 M5-552M*-5 €3) - 30X P17 ﬂo"f/"))]} .

+Xo (4012-65) ~60K"F%) - (24 7% 192"+ 108

(27)
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The solution for the 1ift, Eg. (26) will now be compared with
the 1lift as determined by the exact linearized solution. The exact

solution was computed from the tabular data presented by von Bor-

bgly(m). The comparisons will be made at three Mach numbers
(Mo = ;L—g-, 1‘-,-70— and 1‘%) and plotted versus ﬁ2 w. The reason for plot-

ting versus 82 & is that it tends to separate the results which other-
wise lie very close to each other. As may be seen from Eq. (26) the

1ift is given in ths form

b

CL=-—I-3——(Pcoswt+Qsmwt).

Where P and Q are functions of (w, M and x ). Figure 2 shows the
function P as calculated from the second-order, fourth-order, sixth-
order and exact solutions, Figure 3 shows the function § under the
same conditions. Both Figures 2 and 3 are presented for the condi-
tion x = 0, that is the case when the airfoil is rotating sbout its
leading edge. It will be noted that for relatively low speed motions -
such as are found in sta;laility calculations or control deflections
(vhere w may be expected to be’ less than .4) the second-order solu~-
tion in frequency is within a few percent of the exact solution.
For high-speed motions such as flutter the sixth-order solution will
probably give a sufficiently accurate result.

Now consider the unstable tendency of the oscillating flat plate.
In 1946 Garrick and Rubinow(lf” noted that as the frequency w approached
zero the damping moment (represented by the odd ''Q'* terms) would be
negative for certain combinations of Mach number and location of the

point of rotation. Their result is exactly that given by the present

second-order solution in frequency. The region in which the motion
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will be unstable is indicated on Fig. 4. As 2 matter of interest this
unstable region is also presented for frequencies of Bg W = .25 and
B2 w = .5 (as calculated from the fourth-order solution). The region

of instability is seen to be reduced somewhat by the higher order terms

in fregquency.
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SECTION IV. THE SECOND-ORDER SOLUTION IN ANGLE OF ATTACK
FOR AN AIRFOIL OF ZERO THICKHNESS

In this Section the second-order solution in angle of attack, for
an oscillating flat airfoil, will be considered. The second-order
solution in frequency, as determined in Sectiom III, will be used in
the iteration process thereby limiting the final result to second-
order in angle of attack and frequency.
The General Solution

Another difficulty arises as soon as the first-order potential
[Eq. (21) or the first two terms of Eq. (22)] is substituted into the
right hand side [H (551)] of the non-hbmogeneous wave equation which de-
termines 9§2. Consider the second derivative of the first-order term

(in frequency) of the linearized potential 951 (i.e., 553‘_ ) as given by

Eq. (21).
(! X
B'= Vo (71-7)
Thus,
(¢,I)’: Ve [ ?
and hence,

¢
{ ¢ =0
/ )77
The second derivative is then zero shead of the line x = y 8 since yfi"
is defined as zero ahead of the Mach line from the leading edge, and
is also seen to be zero downstream from this Mach line. However,

. 1y R R . 1 1
since (75‘ )y is a discontinuous functlon[¢ly = 0 for x<y B and ¢1y =V o
for x )y B] (yfi) gy 18 infinite along the Mach line from the leading
edge. The second derivative is then given as zero everywhere except at
the Mach line from the leading edge at which point it is represented by

a delta function. Although it is possible to work with this velocity
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potential another methed of attack vhich eliminetes the dismcontinuous

derivatives was chosen. The method wes that employed by Van Iyke (a%) s

(26)

and 1z alpo mentioned on page 365 of Courant and Fredericks , Tor
the statiovary {iow problem.

In attacking the steady flov problem Ven Dyke generslized the
airfoil shepe so thet the ordinate (3ee Fig. 5) of the airfoil is
given es y =€ £(x). The function £(x) i= undefined, except that the

surface and the slope of the surfece are required to be cantinuous end

to go to zero at the leading edge (i.e., £(x) = £'{x) = 0 at x = 0).
(5.2 28 4

i here is no discontinuity in veloeity occurring at the leading edse,
or | AY' y=ef(x) for x>0
7411 y-= /‘2‘
/y=0 for x<O '
7 7, AT , - =X
f(x)=f(x)=0 for x=0
f(x) and f'(x) are continuous

| Fig. 5

for that matter enyvhere in the flow field. The iteratlon process wes
then utilized and an expression for the pressure wis determined. This
solutfon showed that the second-order pressure abt any polnt on the siy-
foil depended only on the slope £ f'(x) of the alrfoll st that point.
Therefore, suppose that & £{x) was required to represent a flat airfoll
gveryvhere excopt in the region 0% x < 5 whare the original regirlic-
tions on £{x) are cgtill enforced. The general solution 1s otill welid

for this problem.  Tow the solubtion remains valid no matter how smell
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% is allowed to become, and as & —»0 the pressurc 1s known everyvwhors
on the airfoil except for an infinitesimml distance aft of the leading
edge. In the limit where B = O the pressure is known everyvhere except
a% the point x = 0. This is the flat plate solution. Ven Dyke has
Purther shown that, in the limit, the velocity components and the pres-
sure are iknown everywhere in the flow field except in the fan shaped
region ¥ = (- + 'v) v extending from the leadingoedgge of the airfoil.
The expression for y was shown to be v = Wf The angle v ig
equal o the angle that the shock (as given b§ zeccmdmrﬁ@r theory) lies
ahsad of the Mach wave, or for an expemsion 2v represents the width of
the Prandtl-Mever ezpansion fan. The iteration process, as applied to
" ¢he case of an airfoil of zero thickness by means of the ''general solu-
tion'' attack, was thus showm to be successful except within the pre-
viously mentioned fan like region of order £ lying near the Mach line
from the leading edge.

A simimr procedure will now be applied to the problem of an os-
cillating flat plate. A first-order 2 velocity potential 9525 (£, £,
such that ¢3§ (;fi’ , ') becomes the previously determined first-order
selution ¢],5 (z, y) vhen £ = £(x - yB)= x - yB, must be determined.

A genersl potential which satisfles these reguirements is found to be
{ X C+‘
#, :—O(VO +x{ Ho X1, Xe P’*"’ ff(f)a’j} (28)

Whan £ (x - y&) = x -~ yB the general expression for the velocity poten-

tial ¢;’ {f) becomes,

] oyk
¢£=“V0("‘,"9L)+"‘{(‘/‘272&)72+X7 2-/;;3 ~Xo(Y ‘)}

2 For the remainder of this report order will refer to angle of atizck
uniess otherwlsze etated.
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the particular velocity potential g%‘ (x, vy, t) as given by Eq. (21).
That Eq. (28) also satisfies the boundary conditions and the wave
equation is shown below. Since f (x -y B) =f' (x -y B) =0 at
= 0 it follows that y% and (;A%)K are zero at x = 0. This is the

boundary condition on the plane x = O as required by Eq. (1k). Then

since g—}% = ' and gg = = B £ the derivative of Eq. (28) with respect
te y is,

(¢e7) - alor s 41 pxt —--+()f‘ £ %, )2 oo

Hence, vhen £ (§) =€ ,( § =x -y B),
‘ . -
(¢27)7=o = Vo #4(k-XeC)

which is the tengency condition as required by Ey. (174). Finally,

Dp{ is seen to be zero. e .y
» &/ A
D¢2 Ig ¢1XK ¢277 _—- é‘f -7" é’.tt 4

:Ig‘[-:(?_ﬁ__:_ “f%f’; ;.3_/_)(“;1“ ]_ [—Vov‘ﬁf”
(B (o)t proTt Y 2w [+ 0(57)

=0 +0(@?)

Thus, the general potential Eq. (28) satisfies the conditions,

D¢:.‘=" ’ (30A)

¢ (¢) =0 at X=0 (30B)

(¢;),,j =K Vo '+ K f“%—g* (5 # f‘Xoff'} .« (300)
20

Also this general potential reduces to the desired specific potential
(21), and the requirements on the general potential Eg. (30) re-

duce to the requirements on Egs.(17) and (21) vhen £ (£) = § . It

is of interest to note that in order to solve the problem of an oscil-

lating flat plate the general potential selected mugt satisfy a boun-
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= PN I JF S SR - A RO TR TN - =
dary conditicn Bo. {(30c) which has no physical me:

problem is specialized by letting £ (¢) =§.

Now having determined a satisfactory first-order general po-
tential ¢§]é' a general second-order potential qﬁg must be Tound which
will satisfy Egs. (9), (13), and (1k).

Eq. (9):

A CRY W CRT LW
‘ ' r,o
+a¢zx(¢lxx+17[;¢zlx£) +2¢;.7«(¢9.x7 +t7:' ¢:.Iyé)} )

Eq. (13):

(gi)’ ("( Vo ) [( ’-;)ya o-(é-"l)surface].

and Eq. (1h4):
¢ =
2 (ol 7/£)"o 4
L
géx (0,9,£)=0 .
Substituting Bq. (28) into Eq. (9) it follows that
/.7¢ o b7 (F+I)M°7“-/‘”+ p‘q,{éﬂ, (7+1) /\'7‘"/'” M (a'fl)z\’, 7“7“”

/
y L (3/)
_2He(¥4) 4 oy Mo “3- aﬂ. o )(E2) ) * }

AT

Now let gfg = dto Whe:fe dis a _partlcular golution which satisfies

the non-homogeneous wave equation Eq. (31) and o is the correction
potential which maekes «;52 satisfy the boundary conditions [ Eqs. (13)

and (lh)]. A function ¢ which samsf'les Fq. (31) is,

), )y M 350 (54) 17y 4 M,(w)xo )}
o (MECet) gt M (5t1) )) (32)
dd —————————)
+ { 253 Xy — o X£F
That ¢ does satisfy Eq. (31) may be verified by direct substitution,

it is also apparent that ¢ = ¢§X =0Oat x = 0.
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Now ¢ must satisfy the equations shown below.
oo =0 (338}

=05 =0 at X=0 (338)

{
%) yeo” ‘("r),;,* (% £ %y )yt [( “z‘,),zg ( é(c,)m_ ] 0
For the oscillating airfoil the ordinate of the surface is
7= X (X=X.C) ;
hence, for the general sclution the ordinate will be defined as,
g= &F(X-XsC) -

From Bq. {32) ¢ is given by the expression,

_ (,,«,q) M, (b’+/)(f’) Motee)g £ ﬂ.(rf/)x,cff }
¢ =& Vo - ”. ()~ By Eal Y L
i/ ¢ I 8
+od ”;;r:')[x(f’) 2xypryf+ 2 m') [ﬁ"#(f’)]};
and hence, the function - (éy)y=0 as required by Eq. (33C) is seen
to be,
's [
-(¢,)...= RLAL +'Z’)[‘+I)(f")‘+o<‘l/ B sty & r'p”
e “r £ (34)
M (511)(3M5-2) M (51)
- Ao 2 L 0=2) x ')~ uk 73 X"

The two underlined terme in Eq. (34) are actuslly unnecessary in the
solution since, when f (5 ) is set equal to§ £'!' is zero. However,
these terms will be retained in this paper so that the general solu-
tion will be complete. The term o f° (éé)x of Eg. (33C) is determined
by differentiating Eq. (28) with respect to x and is found to be,

"‘7"(“‘;,‘),= ---—¢><'"V"(f)+a<d{”"‘(f) £t (f)} (35)
The final term of Eq., (33C) may be determlned by'expandlng f and f°

in a Maclaurin series - i.e.,
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& Fix-95)] = o(f(x)-o(‘,a(x-xoa)ﬁ’(xlj; O (a?)

7= &F (5-X,C)

(3¢)
o(f'(xwﬁ)]’:ﬂ“_ba) o £ (k)= L BLY-KB)F L () +0(«3)

Thus,

fité') -4 - 2 v 2 —~ 0
[(k,),:, (é,,)yuf,(xme)] = UABFE =& Vo pXCF
+ ok ({ g KEP (B ep) P KT pLS gf,mc“f “

- (Lerp)xcr'rp A EF" 5 (27)
Substituting Egs. (34), (35) and (37) into Eg. (33C) the boundary
condition on (cy)y=o is complete and it only remeins to determine o.

The development of o is reasonably simple once the behaviour of
the general function f under the operations indicated by Eq. (33) is
understood. Some relations which are useful in the derivation are
listed below, where £ = £ (x - y B), f' = W?im and g is any
function of f or its derivatives (i.e., g = ff', (f')z etc.),

ﬁthX‘ Tqy =0 2
PLx-129] g~ [X-9£) 9], =2 -
Ay,
1e -7 905 )6
then ° (%), = A4 g;’-y’

A-yp =0

1f Y= - /ﬁ(!‘?/)fﬁ(vc/j + %aof’ s Ir)otn 5 -
then . (}/{')936 = ,4)(5.

With the use of such relations the undetermined function ¢ is found

to be,

, 1P 4 at). Z,1 p
= ol ({ff —fﬁs)dg[“*')"‘{;;/:’o )4 4 & r
R o

X~7p Y , t
- K2 [ F Pl -—”‘;‘T‘”B + « R{yf'f‘ (42%)
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A 9,6 [ (54 /72‘1‘/20“) -4F W"Lj CAXTL [ = )
f -
(38)

_Fe v T Mt
+xxacff’f;/_’§ Lﬁ—*—‘-) + (X-yﬂ)ff‘”a/g [e _/

f f’(n)c/no/f[zﬂl‘_/ fv“ 7‘"/5[ 2/%]
[2 /7a (K+)”2;¢1’ ][(X-?/),[(f');(j -f /Z—/"(xﬂ:/))affj
”o(“")][ f /f PN In)dnAS - ( x-98) f -:ﬁfo”/s J} :

The complete SOluthD&i;e valid to second-order in frequency and
angle of attack is

_@:= é/-f é+ o | (39)

where ég, 4 and o are given by equations {28), (32), and (38).

The Case of an Airfoil of Zero Thickness
Now consider the particular solution for the problem of an
oscillating airfoil of zero thickness, i.e.,, for an airfoil whose
ordinate is defined as,
7:: O((X‘Xog)-
A second-order potential is defined such that the potential satisfies

the following conditions,

2 /
ag, = #( %) (See Eg. 9),
e o A
[gzr ‘ . ° ) = & {See Eq. 11),
l /! *v. sz _?p((X?‘Xa‘C-)
ZJ f at X=0 (See Eq. 1k4),
2x

The solution 5' (x, v, t) is obtaired by setting f (x - y B)
=x - y B in the general solution_ﬁ.gl?Eq. (592]. When this is done

the second-order potential is found to be,



%6
-2/

§ = Vo (¥~ "/ﬁ)wxfr ( )*’(7"5‘;(-?: "'XoE('/"X/,e)}

+ Vod‘gl\' ‘/ﬂ‘;;x:/)ﬂ.j P}*“{ (X-98) [zm f/% d

+ (8 #1)[ =5~ ZIZ,'B.‘B’/? +2X C(x-98) - X,C/r‘( ) (+0)

+(XLT‘K7/?)['(K1‘I{”;;/;7’ _.ZP’Zo].f, (gx~ 9 P)(2/7¢ )}

Hence, the derivative evaluated at the surface, il.e., at

v=a(x - X C) are found to be,

58 =g (o ) P [l
px [F(BEE) - “"”‘3”")]}

2 p¢
VAP SR Gy IR AL Sy ¢ . 014
L §,c K+ g (X-KE) - g ar “{F’+ 4

%ft"Tx’;p V éx[mz‘;eﬂ;v(m) ]“,o [(w)ﬂ. M,jj

Now the preesure coefficient is given by Eq. (16),

refirad, BB A B

Substituting the results of Eq. (41) into the expression for the

(%)

pressure coefficient, Cp is given in the form,

Ve ﬂg““"[““*p‘(z-ﬂ,‘)_ﬁx (fﬁ)ﬂ. 7,4]

+= v([ (r(ﬂ, ~4 M) -3 Mt 10 NS'- 10 M4 ]}

This pressure coefficient is the pressure coefficient for the upper

#e)

surface of the flat plate shown in Fig. 1. The pressure on the lower
surface is egqual and opposite to that on the upper surface and is

180° out of phase, i.e.,
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C‘f“:. C,,(Sm wt, Cos w-ﬁ),
Cf,c = —C}o (Sm[wt‘fﬁj,Cos[wtfﬂ'J):-C;a[~ S/ wt,—Costoi)o
The pressure difference between the upper and lower surfaces is,
| C}ar:: Cre Clon -

The pressure difference is given by the equation,
-‘l(dn _C:é_ = a* - L]
Cp, = VB Cos wi + 5~ Sin wi[2K.Cf +2X(2 ") < (1)

Tt mey be seen from Eq. (43) that the pressure difference to
second-order is exactly the seme as the previously determined re-
sult[See Eqg. (25)] valid to first-order in angle of attack. Thus,
the gecond-order terms in angle of attack cancel out for an airfoil
of zero thicknese. This is similar to Busememn's result for the
flat plate in a steady flow. There is no need to indicate the
gpecond-order expressions for the 1ift and pitching moment coef-
ficients since they are identical to Eqs, (26) and (27) the equa-

tions for the linearized 1ift and pitching moment.
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THE SECOND-CRDER SOLUTICN

FOR AN AIRFOIL OF GEWERAL SHAPE

It was seen in Section IV that

the second-order effects do not

enter into the equations for the 1ift and pitching moment of an air-

Toill of zero thickness.
will be considered. In
sidered, In part two a
Part three extends this

problen of an arbitrary

In thie Section the effects of thickneass
part one an escillating wedge will be conw
generalized double wedge is investigated.
solution for a double wedge to inmclude the

eilrfolil section. In part four a speeifie

airfoll (modified double wedge) is comsidered, and the pressure 1ift
and pitching moment are determined. The second-order 1ift and pitche
ing moment are then compared with the exact linearized solution of

von Borbely.

The Oscillating Wedge

The oscillating wedge which 1s to be considered has a thickness

. thickness _
ratio 2§ {W = 26), See Fig., 6.
‘Y
2¢
a -
\\\\\
\\
The—
- . - ra -l
X, C ot C >
Fig. 6
The ordinate for the upper surface is given as,
g=X (XX C)+EX
(bk)

-4 4

———

2

5)‘{:(«4&:)

X(X‘Xo?)
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The peneral problem is quite similar to the zero thickness prob-
lem econsidered in Section IV. In fact the problem and the method of
solution are so similar that only the major steps and the fimal re-
sults will be given for the case of the wedge.

The first-order potential ¢2 for the wedge is ,

¢2’:—vo(o<+e)§¢ « —?3-75- 1 aCF (”" . )ff(f)c@}
Hence, (45)
)}' = Vo(Rte) f +o(é HoXE f(-a—+/7" XaCf'} )
and
g, y,t)], o= Vol )+ AKX )= vt L,
vhere £ (€ ) =

Thus, the general first-order potential satisfies the conditions,

o =0+ 0(@*) >
¢/=(¢')=o at K=o ,

) = WX c/‘/
7 =0 dx /f
and is the correct first-order poteniial for the oscillating wedge.

Substituting ;5; (rq. (45)) into Eq. (9) the non-homegeneous wave

eguation is developed.

2_H(H) = U GHIME
?= %)= A* (wre)” #6)

2MECs4), gt o RIE(TTE) o &l o

- 2..”0;[37‘/) {7( Mo(3 fef{; )(b"f'/) (71'} }

Now let the second-order solution ¢§ be composed of a particular

+ X(X+E)3-

sclution }b and a coerrection potential ¢. The particular solutien
which satisfies the non~homogensous wave equation [ ®g. (hé)] is then

found to be,



ko

2 s M (x+41) x
=~ (o +E) Ry *")
y ry el | ()

ol (A+28) Vo { M’p{b’ﬂ)f(-/‘) oA§ + Mot 811 ”°“‘*’) c(rY) }

+5<(x+£){~——-’2“;:*) (-/‘) ”“(”’)xff} )

As before V = ’ﬂx = 0 at ¥ = O hence, the correction potential 6 is

determined by the following conditions,

ge =o {hBn;
© 28,z=0 a? X=o0 » (4E8)

(&) =,=‘“ {%)9“* (o(-fs)f"[{g’)x]?“
+ [( ¢2’9)y=o" ( ¢2’9 )c,=-(x+£)1‘"K-Z f,] . (480)

The particulser functions which meke up the right side of Eq. (hEC)

may now be determined from Egs. (45) and (k7).

£'(a+e) (Sé!lx)yzf-(“+E)—‘(f‘)+d(o<+e){”°xa) ;” Mﬁ‘} (49)

ME(e40) ()"
¥ p>

ﬂo(rw)xoc f.f} o (KHE) /%’;:*/) XFA"

2 p
M3 nE-2)(x+/) . (50)
+ L2 X" }

After expanding the general functions f and f!' in a Maclsurin Series,

-(S”)y s+ (K+E) V"”‘;(;"’)(f} + o Vo (o(-/-as)z(

o )7_(”8)*. qxc—c(-{-‘_-«(d-l»e')p,v(x)f'/x)+qzx°c-P_F(x)f,(x)

(5D, . ey r-saxet = KN -R(KE)BFL" 1 8™ XL P ot O

the final term in Eq. (48C) is seen to be,

[( ¢"I9)‘I=o_ (é-lf)7=5«&] = %(“16)2:’"70’;6 -« (d‘/£)Vo'/BX°Ef(

+o?(a<f£)f~'—"?¢1ff’# (%:f,e)ff'-x,ﬁc*f‘f”} continued.

{52}
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o(o(((+--1(,xc1' (”‘+f)x,cf'+ BXo & f‘”}

The correction potential 6 that fulfills the conditions of Eg. {(48)

ig,

& = Vs (dte) [f(f“) 4/3( T30, G )) i ]+ Vo (44€)XEf'

/'l
) s (s tez) ”2?’!’))*1/ £ 9" Ll

+vd(ous){ szfw- x"cf(f")/.f #XXaEfff‘”o/j(”’ (s1!)
[(Mﬁ) (7S f ﬁf'('\ﬂa/7°’5][(rﬂ)(e’zo;/‘7o ) m-am]
[(Kﬁ/’) 7“;‘"3@ f f;f'a/?'@/{] f(a’f/)ﬂjq.x,,c/f/j ) (53)

+xf wdf[f”' ”"m’) 2%] *"""f fr U5 4908 I(%)

z,e‘ sy
2/19
—-X,C(X ?,6’)7“ }+XK{—X,CK-/‘ —- +/)x,cf
X-1p L A9f

+[Y fff"é/ng-(x W’)ff f’;/f_][”" (x+1) eﬂ"ff‘f 5
-1"(2”’) Xo S+ (a-9p)F 55 3”" + dzt(A ”f;‘fo/rzﬂ’f "‘)

[f f(f)o/?o/f (x~7ﬁ)f(f)xg]r + (X~ 7/,)/ fff""/f

x-”ﬂ
[
ff‘f’dj XcCXP s x L2 fffa/j+x [’(f) /5}
Thus, the complete second-order ve1001ty potential is dbtalned
_2;2-§2+¢+9
where ¢é, f’and o are given by Egs. (45), (47), and (53). This
completes the general solution. Now consider the solution (in x, ¥,

t) to the oscillating wedge problem.
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Setting £ (x - y B) = x - y B, the potentiaj.jrg may be deter-
mined. Then the derivatives evaluatéd on the surface of the wedge

[y = {a +&) x - X, @ 5] are found to be,

, \ A 4B Ml (vt0)
_‘:§:‘=-'§’—(of+e)+%(%,+’% #ater [P
YL {
7(4“){ x[Hefe! - (w)—— - X, € (”"*)) (54)

_.l. = 37 - oC - d 0(+ X Xo (55)
Vofz,, (c(+s)+ (XX ) ,_(o(+s)+ ( E)( ,3 ),

g &X X m‘ﬂ-M,"(w/) [(mm, +2 A" (56)
2y Vo(ws){x 7 7" +X,

The pressure coefficient as given by Eqg. (16) is,

C;’:'[ t{, e: [ﬁ(éx &I}Z ZV?O 2 zIt ‘4’(}“))]

Which after substituting the values of ¢éx’ égy and égt’ from Eqs. (54),

(55), and (56), becomes,

cf: g.{ (a+€) "'%[X’E*%(Z-”f)}* (d*e)e[(f+l)Mi“¥ﬂx]

x(a+e)[2 ,55( ¥ (M- 41 ) M +10M, %10, ) (N,(m) 'f}]} (57)

This is the pressure coefficient for the upper surface of the wedge.
As before the pressure coefficient on the lower surface is equal to
and 180O out of phase with, that of the upper surface. The total

pressure difference Cp is then given as,
‘ T

Crr = Cre= Cru 9
= Q?(Cos[wtfﬂj’JWn[wffvj)-‘C%Q .
Or redefining o to be the actual angle of attack of the plate,

C/’r: Cf - C},(—Co.sw‘é, ~smw?)
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This, after the substitution of C from Eq. (57), becomes;

Cf ‘M”gcos wz‘[ (K-/'I)Mo 4/9)] & sinp wt [Xo,B (a+ E[ﬂo (x+1) - ‘I_p

X o, £[5(41 -m")+3m‘-/o/zf +/aﬂo‘]) . 9
+‘:’C-'(4'2”¢ +P[ ﬂt.

Where the angle of attack now represents the true angle of attack

of the airfoil.

The 1ift coefficient

fcf’r ol X

may now be determlned from Eq. (58) and is found to be,

G = y;{”{cos w‘l[lw‘ (»W)'% ”)] “’s/»wzf[x.p (2+£[/7 (st1)- "‘])

(}_ oMt = [‘(_@‘ﬂ l%‘)+;/:; ~o M +10 /1" ])}} . (59)

The pitching mﬂment coefficient

= —af(X‘Xo )Cfr ’(K

igs found to be
C‘M"T{coswi(l ~2Xs l+ ”m’ #]) = S/n wflq 2",

Efv(11," o‘)+3Mo“/o”°4+/o”:)+3x°‘[2ML-—3 (o)

P p’- [ Lo
¥(2N5-€ MY+ M) -2 M) m, A 4)} £

P( T ! 3,9‘(e+ [ (ve) - «J)xa

This completes the analysis of the oscillating wedge. The dis-

cussion of the second-order effect on the 1ift and pitching moment

for the wedge will be taken up in part four of this Section.
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The Double Wedge Airfoil

The problem under inveetigation in this part is the effeect of &
sharp bend or break in the upper surface of the wedge, As a convenw
ient reference term this problem has been entitled the double wedge
problem eince the solution will certainly be applicable to such an
eirfoil shape. From the results determined in Sections TIT and IV,
it is apparent that the pressure at any point on this airfoil will
consist of four terms, i.e.,

Cf=/§[ﬂd+5& +Co "+ D"(""]'

Of these four terms three are known apriori: The first term A is
the term depending on the first-order solution in angle of attack
and on the first-order in frequency (al wl). It must be the linear-
ized sclution previously determined and hence; & = instantancous
glope at that point. The second term B (ul wa) is also a linearw
ized term but is second-order in frequency. It is given in Eq. (57}

_ 2 1,
7

as a function of.xo, c, Vo and Mo. The third term € { o w™) 1g a
term which corresponds to Busemsans second-order solution multiplied
by the square of the instantancous slope. Therefore, it appears that
only the term D (az wg) actually remains to be determined.

Consider the cscillating wedge 28 shown in Fig. 7. This problem

migt be solved 4in

2¢

Fig. 7
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B < < "ﬁg: P
two parts, one part representing the solution for % - - ;; ~ g,
t“; o
x o< _<
and one part ropresenting the solution for ol %“;-— ¥ - ;;5 + g« {1+ ,,)

0f course, the previous wedge solution will take cars of the solution
for the diverging section of the wedge (i.e., x < ). In addition,
1t will be necessary only te consider the effect, én the pressure, of
& discontinuity in the slope of an oscillating flat plate therefore
&€ will be set equal to zero.

The Problem

Por z £ C,
¢/
o [

¢/) =V, &F +O([ X,Cf+(pu"} J
ey .
177 Order {61}

é :Zx:o at X=0 -

of=H¢),

x/'

¢ _ o9 ond 50 Y
§ = L oL 7 Order (62,_

2x Jsugface

ézzgizo at X=o -

, . ] ) 2 2 1
Where the c:mnyl@‘t}e sacond-order potential is } o [.é.g = ¢2 + ﬁg}

The problem posed by Egs. {(61) and (62) is ldentical to that solved
by the potential for the flow past the oscillating alrfolil of zero
thickness Bg. (39)

-, r i y - x ; € % 2

For x ) ¢, the complete second-order potential 1} 5
(F o=t @¥2). Anew runction g will now be defined such that
g =@, =0 at x = 0. Later for the specific problem of the broken

riat plate g(§ ) will specifically be defined as g (§) =g (x - yb - T
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N de
thus & = g and 5; = - P g'- The first-order potenmtial must satisfy
e

the conditions,

12
ﬂg-’-‘*@ 9

1*% orger (63)

¢ }- Vb(df‘i‘&j)fﬂ{—x’c{‘.ﬁ(poi_l)f
%:g 8%}:%; ef X=C .

The last condition requires that there be no discontinuity in the

potential or its x derivative anyvwhere in the flow. In particular
there can be no disconbinuities near the Mach lines from the break

in the plate. The second-order @ot@ntiaigbéigmst satisfy the con-

1J1@n35
a¥=HY,)
Q:? - g vy M order (64
vo * &, A

25 dsagface

¢Z=¢2£ ?12 =¢£ at )(35

2 2 2x éx
Again the boundary conditions allow no discontinmuibies in the flow,
Wow, note that this problem is very similar to the double wedge
problem in o and & . In fact if B g were replaced by & £ the prob-
lems would be identical except for the requirements on ¢ and #Xe
However, it is apparent that this boundary condition would be
satisfied in both cases. The determination of the solution for
z D € is much simplified by this fact. A first-order potential is

immediately seen to be,

g’:-’é’—{qﬁsg)m ":;"" AoCf_ ( -)fffs)d’f } . (&)

The second-order solubion which will now be determined requires
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some changes but is handled in essentially the same manner. From

Eq. (65) the function H (%’ as given in Eg. (9) is,

H(¢, )=, J‘j;;'f’»f & FF M(S(fé’”fs"f’”}f 59°9”
6 ME)(v+s)
459 )yete T L ﬁ"‘
- lotr sy I (”’)}H«sx(fa W’?{ o))
= Mo (¥ (w)
2 g+ B °

MrE(x+1)Xo E"}
4pt

o

(AN
s

g ¢ 4
u.g([(om +89°) £ (a#"t59")F ]{(
Thus o the particular solution is found to be,

o
= wwg‘):""—,%;f”-—ﬂ Vool f ?xf4385’){

X-9p X-9/ (8
o Vo{df(f )dj-fégf-f"g’afg {%}Q}

It #59’){W’§6;";"’) XgF- M‘;B(f" )xf%

Tt will be noted that Eg. (67) is very nearly the same as
Bu. (B0), the particular solution for the wedge; in fact for
£(g) ”";5 and g (§) = § - C the two expressions are identical,

The second-order bowndary condibtion to be satisfied by the corresc-

tion potential @ {?; =0+ 6) is,
= ! ‘ ’ / (/ f )
(97) :;~(V;)?-‘-’a+[(¢1?) 26 (%7):«&}-* (d{d.gg) %K - (68)
The terms on the right side of Eg. {68) may be evaluated from
Egs. (66) and (67).

%K(@ef%sg’): (off+59’)¢=d(a<f+5~sj) ”"xﬂ/j X:;*’ 5 (60)
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VM, (5%1) M2(x+1)
), (af+59)‘_-7;_-—-— Vo (dF3289") (F)—2—5~ e
#Vo[d'FT % a5 (5 +fq”)j"£.(ﬂi’f°_‘_ (70)

- d(a(f,aggj[x?p'/‘/o(w/)(ﬂ’% 2{] X (AR 59" xf Mi{"o’-//,y,

and

¢
[(K), - (%), J-wplcsrsess(ories sys”]
2 o
+ ok(aﬁsg)[(-p‘v‘ﬁ)fi i;;xf” - A (AF"+5F")pXCF' i
- d(AP+5G)BXCF + a&[ﬁxo CHre ”"xmff-- (—-‘1-/ )p#.C () _{ .
The correction potential 6 which must satisfy t;’ﬁe homogsneous
wave equation and Eq. (68) can now be determined. However, since
the solubion is guite lengthy let it suffice to say that the cor-
rection potential 6 is essentially the same asg that for the correc-
tion potential (Eq. (53)) for the oscillating wedge when & £ is re-
placed by & g. In fact when £ and g are replaced by x - ¥y B and
X -y B - C the two functions become identical.
The pressure on the osclllating double wedge may now be deter-
mined from Bg. (57).
g%jj the pressure coefficlent C@ ig given by Eg. (57) when

& is set squal to zero.

N Y T

+(F “)?[2% ~-55 B]}

(724)
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Where

A (U'f'/)M:‘y :

/ 2’3&§

B= My (85+1) =% 3
and

¥ { ‘{”o‘f" /Vo‘} +3 /%6- /0/‘?,,41‘/0 /‘7;
. Z e

For v = 1.40 A, B and D are plotted as a function of Mach

number on Fig. 8.
For x Q. C
The pressure coefficient C, is given by Bg. (57) when

E is set equal to - & ( - & since the bend, see Fig. T , causes

a negetive change of slope).

Cp = f(« 5)- (—"—‘)[x.,cw‘—(z -mt )|+ (%-5) "z ]

+ [T/%(“'S)][z; D- g‘;; B]} .

Thus the effect of a corner on the pressure has been deter-

(72B)

mined. Consider The four terms in the expression for the pressure.
1 1 . \
A: o wo (first-order in « and w)

The pressure depends only on the instantanecus slope of
the airfoil at the point in guestion. For a symmetrical airfoll
the effects of thickness will cancel. This would be the well-
known linearized solution for an oscillating plate as w approached
ZET0.

‘ 1 2 , . .
B: o w" (first-order in o second-order in w)

The pressure depends on the rate of change of angle of
attack o multiplied by a funcition of %, X5 Mz and 7. This is also

a part of the linearized solution and thickness hes no effect.
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. @1 (secand-order in o, first~crder in o)
The pressure depends on o Puncticr of Mach muber multi-
@lieﬁ by the square of the instentanesous slope. This is Busenﬂ@n%
socond-order solution and ie the result that would be expected as
v approaches Zero.
D: & W2 (eecond~order in o and w)
The pressure depends on the instantaneous slope, the rate
of chenge of angle of attack «, and & function of Ry £y ﬁb and ¥,
This completes the special study of the double wedge alrfoll
and as will be seen in part thres it has to all practical purposes

coupleted the study of an oscllliating airfoll of general shapa.

The CGeneral Airfoil

Consider the airfoil as ehown in Pig. 2.

by

———— —x_ G o ¢ -

VAR
N

= X

Fig. 9
Consider the pressure ot any point xl o the upper surface.
From the results determined in part two for the oscillating double
wedge 1t is apparent that by & series of n steps the pressure oun

the surface of an ailrfoil with n breaks could also be calculsted.
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Then, independent of the shape of the airfoil ahead of the surface
in gquestion the pressure at that poiﬁt would be the same as that
given in the discussion of the pressure on the double wedge alr-
foil. Thue, it is apparent that the pressure gt any point is in-
dependémt of the shape of the remainder of the airfoll and depends
only on . EQ and 7, and on the slope and the rate of chenge of
gslope at that point. Hence, the pressure on the general alrfoil

of Fig. 9 may be expressed in the form, {on ths upper surface )

Cﬂ:;g(o&- Z)- (& ot # Futa-ms)] #(- = (4)

(734)
: P o
+ (8o~ 24 7 D2, CB}
(on the lower surface)
2/ 0. o
“re= ((( “ )+ (V [X"“ 2 M:)]*("H Z’)(zﬁ) (73B)

. o
~(§far 2 0-%E8])
Eas. (73) give the pressure on the upper arnd lower surfaces of
an oscillating airfoil of general shape. The 1ift, drag and pitch-
ing moment coefficients mey be caleulated From these equations in

the usual menner. This result completes the general sscond~order

investigation of the oscillating airfoil problem.

Lift end Pitching Moment Coefficients For a Modified Double Wedge
Ajrfoil
Consider the specific problem of The modified double wedge

sirfoil as shown in Flg. 10.



a=a,,cos wt *%v//';/%/j _______?[T
L —F i
| Fig. 10

From ¥g. (73) the pressure difference (C_ = C_ =~ C_ ) between the
Pp By Pp

the upper and lower swrfaces of the modified double wedge is found

to be

(0 ¢x <)

L] i&' @ [ 2
Cﬁ_:—IB—”{Cos wt[/f I3 ] 4-2- Sin @t 2K, B

ErX .
+2-E),(—(2-/‘7:)+ ;‘(‘gD 'chﬁ‘B)]} ) ()

¢ Y

Cfrrf%,-’{ cos wit +-z£-_a—5'/n (ot[zxoﬁl-;.e?-(z_ﬂ;)]} , (14B)
(E <2 (D)
_4an _Ag] w L
Cfr-——/é—{coswil p]-fz s/nwz‘[z)(‘,ﬂ
P E (X 2 e
+2-ET(2—M§)—F(ED ":"oﬂ B)]} ‘ {7hc)

%

o
C, dx is
f Py ’

Q

|

Eence, the 11t cosfficient CI =

1
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CL :‘%— cos wit +—-Smw{[2)(a,3+(3 Ma}" } {(75)
While the pitching moment coefficient C *‘““““ﬁ]ﬁ (x - z ) C dx
T

mey be expressed in the form,

Cﬂ = -%9-(-'3 ({cos wv [/'ZXa A] Sin wf[g(a Ms —*D)

o

+X. (6B 3 +2P€[D—Bﬁ‘]—5,\f}ﬁ‘]} . (76)

Now consider the importance of the second-order terms in angle of

atback., For the 1ift coefficient (where C = WEMNM[E cos w t

a plot of the function Q versus Mach number 1s presented on Fig. 11
for three thickness ratios (w%f =0, .05, ,10). It appears that the
Secon@%oréer effects in angle of attack {See Fig. 11) are most pre-
dominant at the low Mach numbers. However since the higher order
terms in frequency are small foz’ﬁ%f( 1.4 the relative imporbtance of
the second-order terms in angle of attack is approximately constant

throughout the Mach number range 1.1 € @%}( 2.0,

2 Sy —
For the moment coefficient where Gm = - MEWM (R cos wt + ; S sin wt)

+the functions R and 8 are plotted versus Mach number for three thickness
ratios {“%ﬁ =0, .05, .10) on Figs. 12 and 13. Agein in the case of the
mement coefficient the second-order terms have sbout the same relative
importance throughout the Mach nunber range 1.1¢ M@'< 2.0 gince the

higher order terms in frequency are of emaller magnitude at the higher

Mach numbers. The second-order terms are especially important for the
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0dd (sin) terms in frequency. In Fig. 13 it is ssen that the second-
order termg in angles of attack actually are of greater magnitude than
the FPirst-order terms for most of the Mach number range. It is this
fact which causes the unstable tendencies, noted by Garyick and
Rubinow, to be eliminated and the motion to be stable when the ef-
fects of thickness are considered. When Tthe Mach number is less than
1/2; (for this case of X = 0) the function S is seen to be positive
for the case of a flat plate (»%r=z 0). This term being positive
corresponds to negative damping - i.e., an unstable mobion. Howsver,
when the effect of thickness is considered (See Fig. 13), the function
S is seen to be negative throughout the whole Mach number range. This
igs further indicated in Fig. 1k where the region of instability shrinks
rapidly to zero with increasing m%}-and disappears entirely for

c
L2 s,

C
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SECTION VI. CONCLUDING REMARKS

Two extensions of the study presented in this paper are appavent.
Bither a solution valid to third-order in angle of attack and second-
order in frequency or 2 second-order soluntion in angle of attack
valid to fourth- or sixth-order in freguency could be atbtempled.

A third-order solubion in angle of attack would reguire that the
effectes of entropy be considered, since’ﬁh@ effects of entropy are
proporbional to the cube of the deflection angle for small deflec-
tiong. To include the effects of changes in entropy it would be

necessary to consider the exact position and slope of the shock wave.

-y

his

b

low region is however, exactly the reglon in which the iltera-
tion procedure fails to give a solution. Hence, it doss not zeem
p@ssibie to incliude the entropy chsunges in the ilteration procedurs.
It has been pointed out by Iaitona{27> that for ressonably small
deflections (say less than ten degrees) the entropy effects consbi-
tute only 2 spall porticn of the botal third-order effects and thus,
mey be neglected. With this assumption, the third-order solution
could be determined Ffrom the third step of the iteration procedure.
The extension of the second-crder solution Yo higher order in
frequency could probably be justified if more exact pressure dis-
tributions sre needed in the investigetion of flutber. The exben-
gion to sixth-order in freguency, while quite Tedious, should give
2 solubion which would be within a2 few psrcent of the exact second-
order solution in angle of attack whenever the reduced frequency

(w) ig less than 1.30.
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Second-order solutions to other non-statiovary problems (such as,
an airfoil experiencing a constant rate of change of angle of athback
or an airfoil experiencing a constant acceleration in forward velocity,
ete.) can be attempbed by the same method utilized in this report.
That is by the caleulation of a general Tirst-order velocity poltential

and then the utilization of the iteration procedurs.
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