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ABSTRACT 

Part I presents results for TDHF calculations of realistic heavy-ion 

reactions. Results for a separable approximation, neglecting motion 

normal to the scattering plane, agree very well with the results of the 

full 3-D calculation. Results for the fusion cross section of two systems 

leading to the compound nucleus 56Ni are compared with experimental data. 

The 160 + 40ca results agree quite well with the experimental data, and 

the 28si + 28si results agree quite well with experimental data for the 

similar 32s + 27Al system. Results of calculations with the separable 

approximation for 86Kr + 139La are compared with both axially syn:nnetric 

calculations and experimental results. All three show substantial 

agreement. 

Part II presents a stability criterion for the validity of TDHF 

solutions based on a time-dependent generalization of RPA theory. Results 

are tested in an exactly soluble model, the SU(3) generalization of the 

Lipkin model. Unfortunately, the exact solution could not be computed 

for a large enough number of particles to permit quantitative testing of 

this criterion. However, it does seem to correctly indicate the stability 

or instability of the TDHF path. 
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PART I 

TIME DEPENDENT HARTREE-FOCK CALCULATIONS 

OF 

NUCLEAR COLLISIONS 
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Section 1: Time-Dependent Hartree-Fock Theory 

A recent major effort in theoretical nuclear physics has been the devek:J-

menl of microscopic dynamical theories to complemenl the pl1enome11ulogi:.. d , 

macroscopic treatments . These macroscopic treatments, comprising V:·~-t:1c:~ ly 

the entire history of nuclear physics, have been very valuable as a fr .:.m ev,' '.:'rk in 

which to visualize various phenomena; showing what degrees c·f freedom are 

needed and what laws govern the motion of these degrees of freedom . However, 

because these models are constructed to fit experiments on a particular 

phenomenon, they cannot give any underlying, unified explanation for diverse 

phenomena, nor show fully the relationships between these phenomena. Macro-

scopic theories also have a limited power for predicting new phenomena. To 

resolve these questions, we must turn to a microscopic many-bcdy theory. The 

ultimate theory of nuclear physics, involving nucleons, pions, etc . is, of course , 

not feasible; but approximations can be made which should be valid for certain 

types of problems. 

Time-Dependent Hartree-Fock theory (TDHF) (DI 30) is one such approxL-na-

lion. It consists of independent particles, in this case nucleons , moving in a self-

consistent mean field generated from the internucleon interaction. This 

independent particle picture may seem unreasonable, since nucleons at normal 

nuclear densities are strongly interacting. However, since they are fermions, the 

Pauli principle is very effective at blocking their interaction at low energies . 

A simple estimate of the mean free path of a particle p, with energy 

El A +er, (where er is the fermi energy) may be obtained by considering binary 

collisions, {p)+(q) -.. (p ')+(q') , in infinite nuclear matter. The collisior.. rate 

including Pauli blocking is (KO 79b,PI 66) 

(1.1) 

where vP is the velocity ~ ~~ is the free-nucleon cross section, and f is the 
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phase-space occupation. These can be calculated assuming an h;c.tropic 

differential cross S8Ction ( ~~ - :; ), a Fermi-Dirac distribution at low t empera-

2 
ture for the phase-space occupation, a..'1.d a free-nucleon spectrum eP = ;!-.. For 

f ~ rri 

high energies, EI A»ep, the Pauli blocking is ineffective and the collision rate, 

I'p has its cla,sical value pvP a0 where p is the density of nuclear rnatt~-r . Wi: h 

typical numbers p=.17frn- 3 and a0=250mb, this leads to a short mean free path 

v 
>.p = p.23fm. However, for low energies, El A«eF, Pauli blocking severely 

p 

limits the number of accessible final states+ (KO 79b) so that 

( 1.2) 

and 

~= P;o ~( ;:A)2 ( 1. 3) 

With eF=41 MeV this leads to a mean free path 

(1.4) 

and a lifetime, 

_1_= 5.9x10-21 

rp (El A)2 sec, ( 1.5) 

where El A is measured in MeV. For energies up to a few MeV per particle, the 

+There is a simple way to show that this blocking factor, ~~2 is reasonable . For a Fermi 
4 ., 

.a.. 
ges, the number of states per unit volume with energies less than E is proportional to E 2 . 

The density of states near the Fermi surface : is proportional to ieJf· The PauJi princip le 

will require 11' and q' to have energies above 'F and conservation of energy will require that all 
three particles q, p ' , q' have energies within E/A of the Fermi surface for E/A<•F · For EIA 
small, the density of states will be appro:X:mately constant throughout this energy range . 
Since conservation of energy will specify the energy of one of these particles, the nu.'Il.ber of 
accessible states will be limited to approximately (A:~ JfE/ A)2. Since the number of stat es 

.a.. 
without Pauli blocking would have been (A:e}J2, Pauli blocking will cause a factor approxi-

mately ~~2. Since conservation of energy act ually requires all three particles to shar e 
4 'F 

this deviation E/A from the Fermi surface rather than merely being bound to within E/ A of 
the surface, it isn't surprising that the actual blocking factor is three times smaller than 
above. 
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mean free path is much larger than the nuclear size (~10 fm) and th e life1-L-:1e ·s 

com.parable to the collision time (several 10-21 sec.). Therefore , in r.luclear •Xdi-

sions , this picture is expected to work fer energies up to a fev- J..: e'.0 p er Ll.:'.:: ! ~·..; ::-i 

above the Coulomb barrier . 

Indeed, this independent particle picture has teen quit e suc cessful in 

explaining static properties of nuclei, from the early days of the she ll model to 

the recent sophisticated, self-consistent, mean-field calculations, such as 

Density-Dependent Hartree-Fock (NE 70) . The first extension of these ideas t o 
/ 

time-dependent problems was the use of the RPA approximation (TH 61), a small 

amplitude approximation to TDHF, to calculate the near-equilibrium dynamics of 

low-lying vibrational states in nuclei (BER 75) . This success prompted the inves-

tigation of TDHF in situations far from equilibrium, though still at relatively low 

excitation energies . Thus , although the derivation of the TDHF meth:::>d dates 

back to Dirac in 1930, the application of these calculations to the collision of 

heavy ions was not attempted until the mid 1970's (BO 76a) . 

These TDHF calculations have several attractive features . First, they are the 

natural extensions of successful, near-equilibrium descriptions . Since they use 

the same internucleon interaction (see Section 2) , they have no free pararne-

ters. This unified approach links these different problems and completely 

specifies the behavior of the TDHF solutions. Second, TDHF calculations treat 

implicitly both single-particle and collective degrees of freedom . By not impos-

ing collective degrees of freedom, they provide a flexible treatment of the 

nuclear shape and surface. The mean field is the most obvious way of comrnuni-

eating collective information. Third, TDHF is the microscopic one-body theory to 

compare with macroscopic treatments of the long mean free path reg ime (KO 

79b) . 

To discuss in more detail the nature of the approximation and the type of 
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results we will obtain, we begin with a derivation of the TDHF formula. Details 

can be found in Appendix Al . The exact Schroedinger equation can be derived by 

applying a variational principle to the action (KE 76), 

I = J cU; <+(t) jih:t -HI +(t )> . (1.6) 

where H is the Hamiltonian. Looking for stationary points of I with respect to 

variation of the conjugate wavefunction, +•. gives ih:t + = H '¥. The transition 

to a derivation of TDHF is straightforward (KE 76) . Since the total wavefunction 

is assumed to be composed of independent particles, it can be written as a pro-

duct of single-particle wavefunctions, 1/1;; or in the case of identical fermions, 

where'¥ must be antisymmetrized, as a Slater determinant of the 1/J; . We then 

derive the TDHF formulas by looking for stationary action with respect to varia­

tion of a particular single-particle conjugate wavefunction, 1/lt This leads to an 

evolution formula for each 1/1;, 

411..!!_1/IJ = -6-<+IH I+> 
Bt 6l';• 

(1.7) 

Although it isn't obvious that this leads to a mean field formulation, 

(1.8) 

with h a one-body operator; this is shown in Appendix Al.Part I. Thus, we see that 

the TDHF wavefunction is the best independent-particle approximation to the 

exact Schroedinger wavefunction However, the independent-particle assump-

ti.on greatly limits the usable information we can obtain from the TDHF 

wavefunction, since any quantity strongly dependent on correlations between 

two or more particles (other than antisymmetry) will not be correct. Therefore, 

the theory only attempts to approximate one-body operators and will give useful 

results for at most few-body operators. 

This can be seen explicitly in an alternative derivation of the TDHF formulas 

detailed in Appendix Al.Part JI. In this derivation, the exact equation for the 
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one-body density matrix, 

p~(t) = <ir(t) I a/a" I ir(t )> . 

in terms of the two-body density matrix, 

(1.9) 

(1.10) 

and higher-body density matrices is truncated by retaining only many- body 

correlations required by the Pauli principle and expressing these higher-body 

densities in terms of one-body density matrices (KO 79a) . 

The form of the TDHF equations is important for several reasons . First, they 

lead directly to several conservation laws which are not only desirable for a phy-

sically plausible theory, but will serve as checks for numerical computations. 

Since TDHF is a mean-field theory with each single-particle wavefunction evolv-

ing in time through the same hermitian Hamiltonian, h ; the overlap matrix of 

the 'f/;'s, <1/1; l"\bt>. is time independent (normally 6ij ) . 

(1.11) 

Therefore, the norm of the TDHF wavefunction and the expectation value of the 

number operator are also time independent . 

The variational formulation of TDHF is useful for demonstrating other con-

servation laws. For any operator, 0, with no intrinsic time dependence, the time 

evolution of its expectation value in the TDHF wavefunction. ir, may be written as 

(1.12) 

where <0> is viewed as a functional of ~1/1;~ and ~t;l Use of the evolution equa­

tion,(1.8), results in 

iti.L<O> = ~r 6<0> 6<H> 
at /o. °'Y'; (ex) 6'f//( a) 

6<0> 6<H> 
~1/1/(a) 61/I; (a) 

(1.13) 

the analogue of the Poisson bracket. Using 0 = H immediately results in con­

servation of energy. It can also be shown th.at 111.:t <0> = 0 for any one-body 
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operaLor, if the commutator. [H, O] = 0 (see Appendix Al, Fart rY) . Tb.is, fo~·· uny 

reasonable choice of H, that is a Gaililean-invariant interaction, the tot21 

momentum and angL.ar m:.:men~U:.":l. ¥:El be com:crved by the TDIJF sobti::21. 

The Form of the TDHi' equations will also ca.use problems i::i foe inte!F'etc.i.-

tion of the TDHF results (BO 76a). Since the mean field depends on the co:r.plste 

set of single-particle wavefunctions, ~1/li l; the TDHF equations will be coupied, 

nonlinear equations. Thus, if we tried to imagine two outgoing channels, they 

would be coupled even asymptotically. This arises because of the demand that 

the wavefunction be a single Slater determinant and not a sum over various pos-

sibilities. Thus, projecting the final state onto any final eigenstates of the system 

gives amplitudes which are time dependent (indicating transitions) even asymp-

totically. These "spurious cross-channel correlations" are the result of trying to 

extract information from the wavefunction which was already assumed not to be 

in the wavefunction. Since we can't calculate amplitudes for various final states, 

but merely some "average" final state, TDHF is a semiclassical theory. 

An alternative way of arriving at the same conclusion is to notice that a 

Slater determinant is a wavepacket (FL 78) . Thus, for example, a static Hartree­

Fock (HF) solution with its localized center of mass represents a wavepacket of 

momentum eigenstates. When one of these Slater determinants is evolved with 

the TDHF equations, the coupling between the different eigenstates doesn't allow 

the wavepacket to spread. Thus, for the example above, the TDHF evolution of 

the static HF solution will merely involve multiplication of these solutions by a 

phase exp(-i2,;ei t In} . The wave packet of momentum eigenstates can't spread 
j 

because we aren't free to arbitrarily change the center of mass wavefunction. 

The TDHF (or HF) equations will simultaneously give the wavefunctions for the 

internal degrees of freedom and for the center of mass. This non-spreading of 

the initial wavepacket is a sure signal that TDHF is a semiclassical theory. 
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The moral of this discussion is that TDHF theory is a deterministic theory, 

calculating some kind of average evolution of our initial wavepacket: and that 

this wavepacket is only useful for calculating expectation values of few-body 

operators. Thus, our primary information will be simply the density as a function 

of time, and our principal results will be the number of fragments and their 

sizes, masses, charges, and motion. As we shall see later, the rich collision 

phenomenology exhibited by real nuclei will make the comparison of such gross, 

inclusive measurements with the theoetical results quite interesting . 
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Section 2: 1be Effective Interaction 

For the internucleon nuclear interaction we use a phenomenological force 

familiar from static Hartree-Fock and RPA calculations, the Skyrme potential 

(SK 56), with a slight modification described later. Although in principle we 

might like to use a potential or G matrix more directly connected to nucleon­

nucleon scattering (DAV 74), the computations would be far too cumbersome. In 

fact, even the most direct methods require some minor phenomenological 

adjustment to agree with the data (NE 72) . This isn't too suprising since the 

choice of a potential to fit the scattering data is ambiguous; the calculation of 

the many-body effects in a finite nucleus to determine the mean field is very 

difficult for even a two-body potential, requiring some approximations; and the 

effect of higher-body correlations is completely undetermined. It was found that 

an effective two- and three-body interaction could give very accurate results for 

both binding energies and densities of nuclei (BEI 75) . 

The Skyrrne force is used because it is particularly simple to calculate. The 

potential energy is taken to be (YAU 72, EN 75) 

(2.1) 

This three-body force gives a density dependence, which aids saturation of the 

nuclear force. The Skyrme form parametrizes the potential by an expansion in 

momentum space. 

& I y<2l lk'> = t(J(1+xoPa)+*t1(k 2+k'2 )+t2k·k'+iW0(a1+u2)·kxk' , (2.2) 

where t 0,t 1.t2 , Wll and Xe are constants, the Skyrme paramaters; Pa is the spin-

exchange operator, Pu= *(1+u1·«f2); a1 and a2 are the spin operators; and k and 

k' are the relative momenta of the two particles. Notice that in general 

& I v<2> lk'> ¢. v (k-k'), so the transformation to coordinate space does not give 

a local potential, <rl v<2>ir'> = 6(r-l')v(r).The transformation to coordinate 

space, 
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gives 

<r I v<2 ) If'>= to(1+x0Pa)o(r)o(r ')-72t1H\72o(r)]o(f ')+[v2o(f')]o (f )l (2.4) 

+t 2 [ 9o(r)] · [Vo(r ') ]+i W 0(cr1 +a2) · [Vo (f) ]x[~o (r ') J 
where r , r' are the relative coordinates of the two nucleons. 

Thus we can anticipate that the simplicity of the Skyrme form will be dw.e to 

the expansion of the range and nonlocality of the potential as differential opera­

tors . The t 0 term can be rewritten t 0(1 +xoPa)o(r--T')o(r), so it is a local, zero-

range force . Since this term acts only ins waves; it has strength t 0( 1-xc) for like 

nucleons (singlet spin states) , while it has strength t 0 (1+x0) for unlike nuc leorn 

( triplet spin states) . The t 1 term acts in s-d states and the t 2 term acts in p 

states; W0 is the strength of the spin-orbit force . In all of our applications we -will 

be investigating bulk nuclear dynamics . Since these spin-orbit forces cause 

single-particle effects which are unlikely to significantly alter the bulk dync.m-

ics, we assume a spin-saturated system and neglect the spin-orbit force . There-

fore , each orbital is occupied by two protons or two neutrons , one spin up a...11d 

the other spin down. 

The three-body interaction contains only the first term of an expansion like 

the above. In coordinate space, it is 

(2 .5) 

a zero-range. three-body interaction. Since the potential between two nucleons 

depends on the presence of another nucleon. this term introduces a local den-

sity dependence. 

In Appendix A2. the expectation values of these potentials are derivc;,d for a 

spin-saturated Slater determinant, showing that the three-body potential above 

is equivalent to a two-body potential (YAU 72) 

(2.6) 
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The result, from Appendix A2, for the nuclear energy density is (EN 75) 

H.(r) = :n or+~o[*(1-xo)(pi+p~)+(2+xo)PJ,Pn]+~p+Pn)PpPn (2.7) 

(t1+3t2) -t2 72 (t1+t2) 1' 7 
+ B (pp 'Tp-Jp +Pn 'T n -Jn]+ 

4 
(pp T n +pn Tp-2}p ' }n] 

3(t2-t1) (t2-3t1) 
+ 32 [ppV2pp+PnV2Pn]+ 

16 
[ppV2Pn+PnV2Pp] . 

The particle, kinetic energy and current densities for each isospin species q ( p 

for protons, n for neutrons ) are defined as: 

Pcz(r) = l; l-¥i,{r,q,) 12 • 

'"'"" fli=q 

'Tq(r} = l; IV-¥i,(r,q,)1 2 • and 

'"'"" ,,=q 
hfr) = l; Im[vt(r,q,)Vl',(r,q,)J , 

'"1UJt fi=q 

(2.8) 

where the Vt. are the occupied single-particle orbitals and the sums are over all 

these orbitals with isospin q. Densities without isospin subscripts refer to total 

densities; p=pp+Pn· T=Tp+Tn , and J=Jp+'fn . ( For notational convenience the 

ti.me dependence of the above orbitals and densities has not been explicitly 

included.) 

For light systems, where the Coulomb potential is weak, which have equal 

numbers of protons and neutrons an assumption of isospin degeneracy seems a 

reasonable approximation Since this assumption considerably simplifies calcu-

lations, it was used in many of the early calculations (BO 76a, BO 76b, BO 78, DAV 

78a, DAV 78b, FL 78, KO 76, KO 77) and we use it for some of our calculations. 

With this assumption, each spatial orbital is effectively occupied by an alpha par­

ticle. Setting each of the proton and neutron densities to one-half the total den-

sity gives 

R (r)=l!_r+~o,02+~&09+ (3t1+5t2) (p,--'P}+ (5t2-9t1) pv2p (2.9) 
• 2m B 16 16 64 

The p'T-j..,_ term gives rise to a non-locality ( effective mass ) in the mean field. 
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The pV2p term, which is sometimes rewritten after integration by parts as 

-I Vp 12 • can be identified with the surface energy since the density varies rapidly 

only at the surface. 

The determination of the five Skyrme parameters t 0 .x0 .t 1.t 2 ,andt 3 is some­

what ambiguous and has led to a variety of Skyrme potentials. Of course, a 

saturating internucleon force demands t 0 negative and ts positive. Four of the 

conditions used to determine the coefficients are the nuclear volume, surface 

and symmetry energies (as determined from the semi-empirical mass formula) 

and the saturation density. One linear combination is then undetermined, 

essentially the balance between the effective mass and the density dependence 

in producing saturation. A more refined approach uses these values as esti­

mates and adjusts the parameters slightly to give better fits to the binding ener­

gies and charge radii of magic nuclei when used in static HF calculations (BEI 

75). All of these potentials give accurate fits to both the binding energies and 

charge radii of magic nuclei and reasonable densities when used in these static 

HF calculations. However, with very different effective masses the different 

potentials give different single-particle level densities near the Fermi surface 

(BEI 75) . The level density decreases with decreasing m• ( increasing t 3 ). This 

determines the last parameter. Presently the two favored forces are Skyrme II 

and III with effective masses in nuclear matter of .58 and .76 respectively. 

Another force, the BKN force (BO 76a), is sometimes used for isospin degenerate 

systems because of its simplicity. For these systems, there is only one nonlocal 

term, so with a choice of 3t 1+5t 2=0 one can select a purely local potential. This 

expression is approximately true for Skyrme VI with t 1=271.67 and t 2=-13B.33 

so a slight readjustment of these parameters yields a local mean-field potential. 

Therefore, use of this force, the BKN force, greatly simplifies calculations. How­

ever, for the nondegenerate case only the trivial choice t 1=t2=0 can eliminate 
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both of the nonlocal terms . This choice is completely unreasonable since it also 

eliminates the surface energy terms t p'l2p ) . 

The modification of i.he 3kyrme form menl1oned earlier con.s1::;t::; u! replei.c-

ing the~e surface energy terms by direct Yukawa interactions . (BO 76a, J~E 78) 

There are two reasons for this change. First, the finite range of the nucle3.r fo r ce 

is more accurately approximated (HOO 77) . The expansion of the exchru."'lge term 

is the crucial simplification which makes the Skryme form so useful, but there is 

no technical reason to eliminate the convolution of the density with a finite 

range interaction occurring in the direct term. Second, when the calculations 

are done in coordinate space (as ours are) the evolution with V2 terms is 

unstable (BO 76a) . That is , the wavefunctions develop a periodicity equal to the 

number of points in the discretization formula for V2 . The connection between 

the surface energy terms and a Yukawa energy can be seen by a Taylor series 

expansion of the Yukawa energy. 

E ·=ffcird ... exp(- IT~· 11 a) (r) ·( .. . ) (2.10) 
n r lr-r'j/a Pq Pq r 

=4rra5lf drpq (r)p,,l'(r)+1fla 2f dr[pq (r)V'2pq·(r)+pq ·(r)V2p9 (r)]+ .. . ) 

Therefore, the surface energy terms are replaced by 

(2 .11) 

VL and Vr.r are the strengths of the interaction between like and unlike 

nucleons respectively and a is the range of the force . Since we choose a to 

approximate the range of the G matrix in nuclear matter (BO 76a), the selection 

of a set of Skyrme constants determines Vi, and Vu . The presence of the first 

term above requires adjusting the parameters t 0 and Xo of the zero-range com­

ponent of the potential. Therefore, the parameters t 0 and Xo are replace d by t"'o 

and Xo satisfying 
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1 ...., ...., 1 Vi 
ttc(l-xo)= tto(1-xt;)--4m13

2 
and 

...., ...., 3 
~c(2+xo)=*to(2+xo)-4rra Vu + 

For the isospin degenerate case we need only one Yukawa interaction, 

Ey= :1 drdr'exp (l~:;·,~:)p(T)p(r') 
The surf ace energy terms can be replaced by choosing 

and replacing t 0 by t~ satisfying 

3"' 3 v :::;...to= ::::;....to-47Ta3-
8 8 2 

( ? . .... ) 
.- •. . 1::. 

(2.13) 

(2 .14) 

(2 .1 5) 

For the Coulomb energy we will use only the direct Coulomb contribution, 

(2 .16) 

TDHF studies of light ion systems have shown the inclusion of the exchange 

energy has negligible effect on experimental observables (KRl 78) . Studies of 

heavy ion systems have shown that the exchange energy is approximately 30 

times smaller than the direct and that it fluctuates little throughout the colli­

sion (DAV ) .++ 

Therefore, in summary, for the isospin non-degenerate systems we will use 

the energy functional, 

+ Although the contribution of higher-order terms causes small changes in the results of 
static HF calculations (HOO 77, BO 76a), no ane has attempted to readjust the parameters to 
maintain the same accuracy of fit to energies and radii for each set of Skyrme paramete::-s. 
This adjustment would require a whole new set of static HF calculations, and the cha.IJ8es in 
the parameters would be very small compared to the differences for different Skyrme forces . 
++ All these TDHF studies e.pproximate the exchange energy as the first term (Slater term) 
of a density-matrix expansion (NE 72), 

Hc(ezchange )=-~ J1 ~e2J rG[pP(~lt-. 
since an exact treatment would destroy the mmplicity of the Skyrme form. Previous static 
HF calculations (TI 74) showed that this is accurate to better than 103 and the discrepancy 
varies slowly with nucleon number. These studies also showed that the excha.IJ8e contribut :c::1 
is less than 103 of the direct contribution. 
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+ f ar'Oy( jr-T' J)[ ~[pp (r)pp (r')+pn(r)pn(r')]+ V!!Pp (r)pn(r ') l 
+*f dr'Oc( lr-T' l)pp(r)pp(r')] . 

_ exp(-jr-T'lla) _ e 2 
where Oy-

1 
.... I and Oc-

1
.. .. I . The coefficients are given by 

r-T' I a r-T' 

VL=bt2-t1)-
1

- V!l=-A-<t2-3t1)-
1 

-
32 2rra5 16 2na5 

with parameters chosen from Skyrme III . 

For the isospin degenerate systems we will use the energy functional, 

<H>= f dr[! ,-+ ~~2+ 1
1
6 tsa

3+: f ctr'Oy( lr-T' l)p(r)p(r') (2.18) 

+ ~ f ctr' Oc( 1-r--r· l)p(r)p(r')] . 

. v 5t 2-9t 1 1 "' 8 3 v . 
'Ib.e coefficients are given by 

2 
-( 

64 
) 

4
1fa5 and t 0=t0-'34na 2 with 

parameters of the BKN force. The values of both sets of parameters are shown in 

Table 1. 
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Table 1 
Skyrme Parameters 

Force to t1 t2 t~ Yn 

MeV-fm3 MeV-fm5 MeV-fm5 MeV-fm6 

n -1169.9 586.6 -27.1 9331.1 0.34 
Ill -1128.B 395.0 -95 .0 14000.0 0.45 

BKN -1089.0 250.0 -150.0 17270.0 -

Nuclear Matter Results 

Force EIA kr K 
m" 
.... 

MeV fm-1 MeV 
II -16.00 1.30 342 0.58 
Ill -15.87 1.29 356 0.76 

BKN -15.77 1.29 368 1.0 

Derived with r~e a=0 .45979 
Force fn '.Vn Vr1 V,, 

MeV-fm3 MeV MeV 
II -104.49 4.01 -868.53 -444.65 
III -334.52 1.74 -619.60 -355.79 

BKN -497.73 - -363.04 

We derive the mean field, hv, to use in the evolution of the single-particle 

wavefunctions, ih:t '/J;.q =hv'l/l;.q, by the variation of the energy functional, 

o~>) ="v1/11q. As before q labels the isospin and i the orbital. In the isospin 
o'l{liq r 

nondegenerate case this mean field will, of course, be difierent for protons and 

neutrons. Terms in <H> involving the variation of the density will be very sim-

(2.19) 

Variation of the kinetic energy or current densities will require integration by 

parts. Th.us, with,.,= IV'l/lill 12 , 

ch·, =~[vo1.; · v'l/I" +V'l/J~·V6'1/Jiq] (2 .20) 
( 

Therefore, integration by parts gives 

(2.21) 
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.. 
where the operator V acts on all functions to its right. Similarly for 

(2 .22) 

Therefore, 

.. 
J , ... , d;q.(r') 1 ... ... .. ... ... ... ... ... 

d.T F(r)- 6lt~(r) c:6qq·i.f£F(r)-V'¢'ilz(r)+V·F(r)'¢'iiz(r)] . (2.23) 

Combining these formulas and defining q'rtq gives the result (EN 75, NE 78) 

hq(r)=-~ V2+ToLPq+Tor.JPg·+Ts(p:·+2pqPg·) 

+CL ( T q-Vpq V+i rlq ·V+VJq]) 
+Cv(Tq·-V·pq•V+i[]q .. v+v.;q.]) 

+ °VL UYq + Vr;r Uyq·+ Uc6qp . 

where the Yukawa potential is 

uYq= f dr'Or( ir-r· l)Pq(r') • 

and the Coulomb potential is 

(2.24) 

(2 .25) 

(2.26) 

and the differential operators V act on all functions to the right including the 

wavefunction. 

We can see now that the nonlocality of the mean field, contained in the 

terms CL and Cv. has been expressed as a second-order differential operator -

just like the kinetic energy. By rearranging the terms slightly, we can define an 

effective mass, 

~ ~ 
~(r) - 2m I CLpg+CvPq• (2.27) 

which will appear in the mean field as -V· ~(r) V. 

For the isospin degenerate case, with the BKN force, the mean field is quite 

simple and can be written immediately (BO 76a). 
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n 3..... 3 
h(r)=-~2 +~()0+~6 31>2+VUy+*Uc , 

m 4 1 
(2.28) 

where 

Uy= f dr'Oy( ir-r· J)p(r') (2 .29) 

and 

Uc= f ar'Oc(jr-r·1)~ . (2 .30) 

Therefore, this BKN force results in a local mean-field potential. Although a local 

two-body interaction with finite range will give rise to a nonlocal Hartree-Fock 

potential (as shown in Apprendix Al, Part III), we see that we can choose a nonlo­

cal two-body interaction which will result in a local Hartree-Fock potential for 

spin-saturated systems. 
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Section 3: Brief Review of Heavy-Ion Reactions 

(For a recent review see (LE 78) . ) 

The early heavy-ion beams of about 20 years ago were confined primarily to 

7Li, i 2c, 14N, and 160 at energies less than 10 MeV /nucli::on. Scattering sL.:.dies 

were done to probe the optical potential between nuclei, and resonances 

revealed the occurrence of transient nuclear molecules (BR 60). Compou_"ld 

nucleus formation and decay was used to study the behavior of highly excited 

nuclei with large angular momentum. Then, about 10 years ago, with the use of 

heavier beams, a new phenomenon called deep-inelastic reactions was 

discovered . Two fragments similar to the target and projecWe are emitted, but 

with pronounced damping of the initial kinetic energy (LE 73) . In the most 

dramatic cases, there can even be complete energy relaxation; the two frag­

ments are emitted with energies corresponding to Coulomb repulsion, just like a 

fissioning compound nucleus . However, the masses of the fragments are com­

pletely different from the expectations of a fissioning compound nucleus . The 

lack of a fissioning compound nucleus was convincingly demonstrated when 

reactions leading to nearly the same composite system had different final frag­

ments (TA 75) . 

Thus, the energy damping and mass exchange show that a composite sys­

tem is formed, but the entrance channel dependence shows that the system 

splits again before complete equilibration can be reached. These reactions, 

therefore, allow the study of interaction times and equilibration times of 

dit!erent degrees of freedom for a tremendous variety of targets, projectiles, 

and energies. This opens a new field of collective phenomenology correlating the 

scattering angle, energy loss, mass of the products, and the charge of the pro­

ducts . We can then develop models using parameters such as interaction poten­

tials, viscosity coefficients. friction tensors, and diffusion coefficients (NO 76) . 
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Or, in our case, we try to describe all these collective phenomena from a micros-

copic approximation using a previously determined nucleon-nucleon interaction. 

The application of classical concepts, like that of an ion-ion trajectory, to 

the problem is justified since the wavelength associated with the relative motion 

of the nuclei is small. This wavelength is (NO 76 p.3) 

(3.1) 

where v is the relative velocity, µ is the reduced mass, ~ is in fm, Ecm is the 

center of mass kinetic energy in MeV, and A1, A2 are the atomic mass numbers 

of the target, projectile. Thus, for some of the cases we will be describing later, 

this wavelength can range from .2 fm, for 160+ 160 at Ecm =55 MeV, to .004 fm, for 

86Kr+139La at Ecm =312 MeV. 

Also, the Sommerfeld parameter, 1), is large for these collisions (NO 76 

p.19). 

(3.2) 

Here dmm is the distance of closest approach on a Coulomb trajectory; and Z 1 , 

Z2 are the charges of the two nuclei. This parameter ranges from about 5, for 

our 0+0 case, to about 400, for our Kr+La case. This means the scattering can 

be described with a classical defiection function, and that classical Rutherford 

scattering is expected when the minimum distance of approach lies significantly 

outside the sum of the radii of the two nuclei. 

Therefore, at large impact parameters Rutherford scattering is expected. 

At small.er impact parameters, the attractive nuclear interaction bends these 

trajectories forward in angle (WI 73). For still smaller impact parameters, when 

the nuclei touch, the damping of kinetic energy begirul along with mass, charge, 

and angular momentum transfer. Also, the temporary sticking and rotation of 

the system bends the trajectories further forward in angle. At still smaller 
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impact parameters, with significant overlap of the two nuclei, a composit '=' sys­

tem is formed; in some cases, a compound nucleus . 

For the formauon of !:I. compound nucleus the target C1.nd pwjeetile mu::;L 

completely lose their individltul characteristics, and the system must eYh~ ·..::it 

equipartition in the occupation of all accessible degrees of freedom. Tr~::n, ':.!'le 

decay process will be independent of the formation process, except for s:ich res­

trictions as the conservation of energy and angular momentum. The system is 

still considered fused into a compound nucleus if a few pre-equilibrium nucleons 

or alpha particles are emitted. For light nuclei fusion is quite clear because the 

composite system is stable against fission. Therefore, we observe an evapora­

tion residue together with light particles: mainly protons and neutrons, '\\ith 

alpha particles if the system has high angular momentum. Thus, for light sys­

tems, with small Z 1Z 2 , the complete-fusion cross section is a large part of the 

total reaction cross section; and only a small fraction of the reaction goes into 

the inelastic, grazing collisions. 

For heavier systems the situation is much more complex. These systems 

can be unstable and fission - either because they are simply too large, or 

because they have too much .excitation energy and angular momentum - so the 

complete-fusion cross section goes to zero. Evidence of fusion-fission behavior is 

the complete relaxation of the kinetic energy of the system, and mass and 

charge distributions of the fragments which are independent of the initial frag­

ments . However, these same factors, which would cause the compound nucleus 

to fission, will inhibit its formation; causing the system to break apart before 

becoming completely equilibrated. Thus, for heavier systems even the fusion­

fission cross section decreases, and the deep-inelastic reactions become more 

important. 

For later sections, it is useful to discuss in general terms some of the final-
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fragment correlatioru; we will be looking at. and the type of information we can 

learn. For instance, as mentioned earlier, the correlation between energy arid 

mass led to the disc0vcry of deep-inelastic reactions. Thu _·; , cont.Jurs of lll·2 

nwnber of events versus the total kilJ.etic energy and mass of the fragmen '. s 

show two schematic possibilities. (Fig . la and lb). both of which have been 

observed (TA 75) . Both of these reactions show quasi-elastic peaks at the initial 

masses and energy. Fig . la shows evidence of fusion-fission since the energy­

relaxed products are centered about the average mass. Fig . lb shows evidence 

of the deep-inelastic reaction since the energy-relaxed products still maintain 

nearly their original identities . 

Thus, using the previously discussed classical concepts, we would say that 

for the system in Fig . la a certain range of impact parameters have interaction 

times longer than the equilibration times for both mass and energy. For the sys­

tem in Fig . lb the energy equilibration is much more rapid than the mass equili­

bration, and a certain range of impact parameters have interaction times which 

are between these two equilibration times. No impact parameters have interac­

tion times as long as the equilibration time for the mass . By looking in more 

detail at this correlation, we can relate the amount of energy damping, mass 

transfer, and the spread of these two distributions (HU 76). Thus, for example, a 

certain increase in energy damping corresponds to a certain increase in mass 

transfer; but the time scale, so far, is completely undetermined. 

Looking for correlations with scattering angle proves very useful because 

this allows the estimation of an interaction time (SC 77); and thus, sets a definite 

time scale for the equilibration processes. For a given angular momentum (or 

impact parameter) the deviation from Coulomb scattering is a measure of the 

rotation of the composite system. Therefore. a knowledge of the angular 

momentum and moment-of-inertia of the composite system gives an estimate of 
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: ~he interaction time, TtTtt = .~ /).'() ; where 1 is the moment-of-inertia, L the & · IS '-l­

iar momentum. and 6,1') the -tev:iation from Coulomb scattering . Typical int c: ~·ac­

tion times range from 10-22 to several times 10-21 sec . (SC 77) . 

Thus, for instance, a gradual energy loss as interaction time increases 

would lead to a classical trajectory in E vs . 19. like that in Fig . 2a (WI 73); excepl , 

of course, that we can't differentiate between positive and negative angle 

scattering, so the trajectory folds back at 19.=0° . Since each point in the trajec­

tory corresponds to a particular angular momentum, we can also plot E vs . l 

and 1' vs. l. From the plot of 19. vs. l, we can derive an interaction time, Ttnt vs . L. 

These are also shown in Figs . 2b, 2c, and 2d for the same system as in Fig . 2a. 

In a realistic case, showing spread in both E and f), the trajectory ir: E vs . 19 

becomes a ridge in contours of the cross section. The example in Fig . 2 is fai:ly 

typical of moderately light systems (GA 76), but the variation of both interaction 

times and equilibration rates causes the shape of these contours to vary for 

different systems . For heavier systems, the trajectory drops more steeply in 

energy (SC 77). 

In summary, we can make a few general comments about these heavy-ion 

reactions. First, the widths of the mass and energy distributions increase as the 

mass transfer or energy damping increases (HU 76). This shows that these 

deep-inelastic reactions are relaxation phenomena. Second, the kinetic energy 

equilibrates much more rapidly than the masses of the fragments (LE 73). Third, 

looking at different isotopes shows that the neutron excess, or ratio N /Z, equ:'.li­

brates even more rapidly than energy (TN/ z~10-22 sec.)(GA 75, KRA 77) . And 

fourth, the large variation in all these rates and interaction times for different 

systems leads to quite difierent collective behavior, and presents a formidable 

challenge to a unified, microscopic theory. 
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Section 4: Application of TDHF to Heavy-Ion Reactions 

The application of th~ TDHF method to heavy-ion collisions requires large 

scale numerical calculations. We write the TDHF equations in coordinal~ space 

and use finite difference methods to follow the evolution of the single-particle 

orbitals. These orbitals are described by their values on a uniformly spaced 

Cartesian mesh within a rectangular box. Vanishing boundary conditions are 

imposed outside this box. We use a coordinate space representation rather than 

an expansion in a set of basis functions as in static calculations because it more 

uniformly describes the wide variety of shapes which occur and because the 

matrices are sparse. Our discrete space-time mesh has a typical spacing, 6.x, of 

approximately 1 frn and a time step, 6.t, of approximately 5 x10-24 sec . There­

fore, two separated nuclei require a spatial box approximately 30 x 30 x 16 (the 

smaller dimension is perpendicular to the scattering plane) and the evolution to 

the final state requires on the order of 100 time steps . For our heaviest nuclei , 

with approximately 100 wave functions, the computational effort is substantial. 

Storage requirements exceed that available on a CDC 7600, requiring tapes and 

substantial input/output; the computing time can be as high as 5 hours for a 

single impact parameter. F-ortunately, the Cray we used most recently can 

meet the storage requirements and also decrease the computing time to about 

one hour per run In our calculations, we impose a reflection symmetry with 

respect to the reaction plane, thus cutting our numerical work in half. For colli­

sions of identical nuclei, we also impose a point reflection symmetry through the 

center of mass of the total system, cutting our numerical work by another fac­

tor of t wo. 

Since the TDHF equations, ih:t '/ij =hV;; .. are first order in time, they can be 

solved formally by using a time evolution operator, 

(4.1) 
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where U is the unitary operator 

. ' 
U(t,t 0)=Texp[ -;;.J dTh(T)] 

lo 
(4.2) 

and Tis the time-ordering operator. Therefore, we only need to know the set of 

single-particle waverunctions at one time to solve the problem. Our discrete 

approximation to this operator, U(t +At ,t ), is discussed in Appendix A6. The cal-

culation or h'l/I;, required for the evolution, is considerably simplified because 

the only nonlocal terms are differential operators. Therefore, the discretization, 

as discussed in Appendices A3 and A4, results in a sparse matrix for h with 

nonzero elements only near the diagonal. 

Our initial condition is an impending collision between two nuclei. At a 

large separation. when nuclear forces between nuclei and Coulomb induced dis-

tort.ion are negligible, the system is completely described by the nuclei. their 

energies (kinetic plus Coulomb) and their impact parameter (or angular 

momentum) . 'We choose two static Hartree-Fock solutions at positions which 

result in a large separation without either nucleus getting too close to the walls 

of our spatial box. We can generate a translating HF solution, '1', by 

+=exp[ ik A ]t. where t is the static HF solution, composed of single-particle 

wave.ruD.ction.s <fJ; and R = ~ 1 is the center of mass coordinate of the nucelus. 
i 

(A is the mass number of the nucleus.) The nucleus then bas a total momentum 
.. 

NC The existence of these translating solutions is intimately connected with 

the conservation or momentum. The time-dependent single-particle 

wavelfunctions of i1 are -;1 where 

(4.3) .. .. 
where iJ =:. c: ~ and m is the nucleon mass. We do our calculations in the 

~ .. .. 
center-of-mass frame, so we choose A 1=-K2=K and our initial state becomes 
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+=exp[ikR1]1f> 1exp[-ikR2]lf>2 . 

two translating static HF solutions. The total kinetic energy is given by 

TKE= (M)
2 

I 

2µ 
A1A2 

with reduced mass µ=m (Ai+A
2
). The total energy is 

Z1Z2e 2 

E=TKE+ I.. .. I I 

Ri-R2 

and the total angular momentum is given by 

(4.4) 

(4.5) 

(4.6) 

l=11Kx(R1-R2) (4.7) 

(or equivalently the impact parameter is IR 1-R2 I sin1' where 1' is the angle 
.. .. .. 

between Kand R 1-R2 ) .+ 

The static HF solutions are calculated using the same energy functional as 

the TDHF solutions . (Otherwise they would not be the ground state of the nuclei 

in the collision) These solutions are obtained by an imaginary time step method 

(FL 78). We use an operator similar to the actual evolution operator, U(t ,t 0), 

but with t replaced by -i;. This results in an exponential decrease, exp( -~-r ~. 

of higher states relative to the ground state of the static solution. Since this 

operator is nonunitary, we e,1.so renormalize the wavefunctions after each time 

step. This procedure enables us to use a code almost identical to our TDHF code 

and results in very rapid convergence to the ground state static HF solution. 

For the exact solution, we can easily show that the imaginary time step method 

will result in the lowest energy state which has any overlap with the initial trial 

state. Any+ can be expanded +(O)=l:°'i~i where the ti are the complete set of 

" 
eigenstates Ht,=£'-&~..:. The exact evolution of+ is given by 

+(t}=l;°'Lexp[ ~t ]~, 

' 
+ Difierent diacretize.tion errors for the different wavefunctiom result in slight]y different 
boosts. Since an we.vefunctions are coupled by the mee.n fteld, this results in 6 small initial 
trmisrer of collective ldnetic energy to internal e:zcitation. 

(4.B) 
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E-
where wi = ~ . Replacing t by -i; gives 

'1:,( -i:) =exp( -WoT n:Cli exp[ - (Ult -Wo)T N'i 
' 

Renormalizing+ as a function of time gives 

and 

For the HF solution the method is very similar, 

'T 

+(-ir)=N(1)Texp[-~ { d1'h(i1')]+(0) , 

(4 .S) 

(4.1 0) 

(4.11) 

( 4.12) 

but the dependence of h on the wavefunction +means that a tiny overlap of the 

intial guess 'lf(O) with the ground state, IP 0, is no longer a sufficient condition for 

convergence to the ground state. If the initial guess is bad enough so the mean 

field h (0) looks nothing like the mean field in the ground state, h 0 , it is possible 

that the self-consistency will result in an excited state. similar to '11(0) , 1~ith a 

mean field similar to h(O) . In practice, this is not a problem because we always 

know the approximate ground state. The resulting mean field is always close 

enough to h 0 so that+ evolves closer to IP0 and the convergence is very rapid. 

This initial state is evolved by our discrete approximation to the evolution 

operator (in both space and time) until some final time. The complete set of 

wavefunctions ~'¢-;(t)J contains far too much information, as we are primarily 

interested in the proton and neutron densities . We observe one of two possibili-

ties, either the density separates into two fragments again rather quickly or 

stays as one fragment long enough to be considered fused . This fusion criterion 

can be improved by considering the mean radius of the system (or a collective 

coordinate describing fragment separation as discussed later) although in some 

cases the determination can be ambiguous. 
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As an example, we will jump ahead to sorr;e data which are cliscusseJ more 

<r;;!> 
fully later. The root mean square radius of the system, ( ~)*. for four .:::.ngu-

lar momenta is plotted in Fig. 3. All show a rapid decrease initially, as the two 

nuclei approach one another, followed by a slower increase. For the pt:ripi.1eral 

angular momentum, L= 165, this increase is very steady with th~ d~nsit:, " 

separating into two fragments at about r=9.16 fm and the fragments moving 

apart at a speed somewhat slower than the initial speed. The curve for L = 80 is 

a typical deep-inelastic event. The rms radius can oscillate several times 

before beginning a steady increase leading to separation into two fragment~ at 

about r = 8. 9 frn.. The lowest curve for, L = 50, is an unambiguous fusion event . 

The rms radius shows oscillations, indicative of the excitation of the system, but 

no net increase . The curve for 1=5 is one of the most ambiguous cases since tr ... e 

rms radius shows a slow but definite increase . Extrapolation of this increase 

would result in the system reaching a typical separation radius of 9 fm at a time 

approximately 160 x 10-22 sec, far beyond our calculations . However, in any 

sytem interacting this long, the two-body collisions will become important . The 

excitation of these additional internal modes will damp the energy in collective 

modes and result in fusion. Therefore, events such as this are considered fused 

and we can use plots such as these to determine whether or not to continue our 

calculation a little farther to look for separation. 

For the angular momenta which lead to fusion, we can learn little except 

that the system fuses . The behavior of the system after fusion is better 

described by traditional statistical models (NO 76 p.224). We can calculate a 

fusion cross section, aF, by a sharp cutoff formula 

C1F= 1r2 ~)2l+1) , 
k '1 

(4.13) 

where hk is the relative momentum of the nuclei and the sum is over all l which 
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fuse, lF. When fusion occurs, it occurs for a range of l from l< to l» Then we 

can do the sum, 

(4.14) 

The classical correspondence is most obvious from the first formula. Since the 

total angular momentum squared L2=1f!L (l +1)=(hkb )2 , where b is the classical 

impact parameter, substituting above gives uF=7r(b~-bn. the area between 

these impact parameters . For lighter nuclei at low energies, fusion dominates 

and the fusion cross section is the main result. 

For heavier nuclei, scattering becomes more important. For the angular 

momenta which separate, we get much more information, primarily from the 

densities. By integrating the densities over each fragment separately, we can 

calculate their mass numbers (A1, A2). charge numbers (Z,, Z2) and centers of 

mass (R1• R2) at each time. (After separation the masses and charges are very 

nearly constant.) The motion of the centers of mass determines the important 

dynamic quantities in the center of mass frame: 

A 1A2 -+ -+ 2 TKE=~(Ai+A2 )(R1-R2) . 

Z1Z2e 2 

E=TKE+ I.. .. I ,and 
R1-R2 

L=mA1R1x(R1-R2)=m.A2A2x(R2-R1) 

These quantities are actually estimated at the half time step, t -~t, by 

and 

.. R,(t)-il,.(t-M) 
Rt=------

At 

i4= ~(t)+ACt-At) 
2 

(4.15) 

(4.16) 

We also calculate the orientation of the principal axis of inertia and various 

moments of the density distribution for both the total system and the frag-

ments . In addition. we define fragments even when they aren't separated, as 
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discussed in Appendix A 7. Although this procedure is somewhat arbitrary when 

the fragments overlap greatly. it determines possibly useful collective coordi-

nates throughout the evolution. 

To calculate the scattering angle, we need to translate our initial nuclei 

back to infinity and our final nuclei forward to infinity along Rutherford trajec­

tories (GO 50). Therefore, the change in angle before the calculation begins is 

fl1'0 =cos-1[ .::-4 _1___,,..1)]-cos-1[ -l ~ • 
ei ~ri ei 

(4 .17) 

and the change after the calculation ends is 

where 

(4.18) 

Z 1• Z2 • A 1, and A2 are all different. (Of course A1+A2=Ar and Z1+Z2=Zr and the 

total mass and charge are not changed.) Therefore, the scattering angle is given 

by 

(4.19) 

The ambiguity in the sign of fl1' due to the multiple values of cos-1z is resolved 

by choosing cos-1z between 00 and 1800. This results in fl1'>0 as we would 

expect for a repulsive potential. 

For scattered events. we also define two moments, contact and separation, 

from the pictures of the density projected onto the scattering plane. Thus, we 

consider the fragments to be separated when a line in the scattering plan divid­

ing the density distribution has a maximum projected density, Ppr= J d.zp, less 

than Pc:r=.lfm-2 . (1bis would correspond to a neck width of .6 fm at 
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P•at =.17fm-5.) Defining these events allows us to approximate the interaction 

Ume by 7'tnt=t (separation)-t (contact} and allows comparison of other quantities, 

like the rms radius of the system, at contact and separation. 

The last results we obtain require more information from the wavefunctions 

than the total proton and neutron density. These are the single-particle ener-

gies and the mass and charge widths of the fragments. The single-particle ener-

gies, 

e;=<'t/I; lh l't/I;> (4.20) 

are obtained quite simply since h 11;> is calculated for the evolution of 1/1; (see 

Appendix A6, Part N). The mass and charge widths can be obtained by defining 

a number operator for particles in a particular fragment (BO 76a) 

(4.21) 

where ir+, ir are creation, annihilation operators for a particle of position r and 

r' is a Heaviside function (MA 70) so the integral extends only over one fragment 

(as defined by the split in Appendix A 7). 

<NR>= J drtJ(r)~'jt,(r)'Jlt(r) 
( 

=~w.a 
i 

The dispersion of this number operator is given by 

The first term gives 

(4.22) 

(4.23) 

<.FJR'>= J cfrtJ(r)++(r)ir(r}+ J drdr'tJ(r)~{r')++(r)lf!+(r')ir(r')'l'(r) (4 .24) 

=~Wg; + ~(UJ.:'WJ;~wji) 
( 'i 

Since 

(4.25) 

(4.26) 

Thus for a Gaussian distribution, we can define a full-width half-maximum for 
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charge or mass by 

(4 .27) 

,,·here the sums over ij include only prntons ft:.r the cb.c.,,rge w1::lth anC. bc':.h is2-

spins for the mass widths . 

We note that this width is inherently limited by the one-body nature of TDHF 

(DAS 79). (Since this r is a two-body operator, the TDHF results will be less accu­

rate.) Performing a unitary transformation to diagonalize W\i gives 

so with ~wii =AR 
i 

and the absolute maximum is 

O'~R= ~Wu (1-wu) 
i 

2 ( )-A aRRma.x-4. 

(4.28) 

(4 .29) 

(4.30) 
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Section 5: Brief Review of Earlier Calculations 

The earliest investigation of TDHF for nuclear collisions was a one­

dimensional calculation of the dynamics of slabs of nuclear matter, infinite and 

homogeneous in two directions but finite in the other direction (BO 76a). These 

authors introduced the BKN force and ignored Coulomb forces . These slabs 

showed nearly constant saturation density in the interior with surf aces about 2 

fm thick. Single slab dynamics were studied, both breathing mode oscillations 

and the interaction with an external barrier. However, for our purposes their 

calculations of slab collisions are more important. These revealed a wide range 

of phenomena - fusion, resonances, deep inelastic scattering and fragmentation 

as the bombarding energy was increased. At the lowest energies, up to 1 MeV 

per nucleon. the nuclei fused. The coherent translational energy went into 

internal excitation, that is, oscillations of the system. At higher energies, these 

oscillations became more vigorous and could lead to scission. In this energy 

range, from 1 - 2 MeV I A, a delicate interplay between single particle effects 

(orbitals bouncing between the walls) and collective effects (scission of the 

walls) caused resonances, sometimes fusion, sometimes inelastic scattering . 

From 2 - 15 MeV I A, there was deep-inelastic scattering where the fragments 

separated with reduced relative kinetic energies (sometimes only 10% of the ini­

tial) and internal excitation. At still higher energies fragmentation was observed 

with 3 or 4 outgoing fragments . 

These results encouraged the first realistic calculations: two dimensions 

with axial symmetry . These calculations were first done for head-on collisions 

(BO 76b, KO 76) but were very soon extended to any impact parameter by the 

use of a rotating frame approximation (KO 77) . 'Ibis approximation reduced 

'I'DHF to two dimensions (r, z) by requiring axial symmetry about the rotating 

line between mass centers. It then added a rotational energy to the Hamiltonian 
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£2 
H'=H+ 2/(p) (5.1) 

where L was the conserved relative orbital momentum and I was the moment of 

inertia, a prescribed functional of the density. This added a centrifugal term to 

the HF potential 

W'= W-*'->2 OJ 
6p 

(5.2) 

- d.1' - L where "'-~ T At large separation I was taken to be that of two point 

masses, and, when the nuclei coalesced, it was taken to be that of a rigid rotor. 

The wavefunctions were evolved with W' while simultaneously e.> was integrated to 

give the orientation of the symmetry axis in space, 1'. This approximation 

should be best for peripheral or head-on collisions and at lower energies. These 

first calculations for symmetric collisions of 160 or 4tlca showed inelastic scatter-

ing and fusion similar to the experimental data but with too little dissipation and 

too little fusion. 

Since these deficiencies could be due to either TDHF itself, the effective 

interaction, or the two dimensional approximation, it was important to do full 

three-dimensional calculations. Calculations were done for the same systems, 

yielding fusion cross sections· at various energies (BO 78) and detailed scattering 

results at one energy (FL 78) . The results at large and small impact parameters 

agreed with the axially symmetric results but significant differences appeared 

at intermediate impact parameters, where nonaxial deformations were large. In 

<z2-y2> 
some cases, the axial asymmetry, 2 2 , was as large as 0.2. The 3D calcula-

<z +y > 

tions provided a microscopic realization of tangential dissipation which 

decreased both the angular momentum and energy in collective modes, particu-

larly at higher energies, and led to increased fusion. 

The scattered solutions for 180 at one energy. showed a behavior typical of 

our later calculations. The highest angular momenta showed no energy loss and 
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Coulomb scattering . Smaller angular momenta led to decreasing scattering 

angle (becoming negative when nuclear attraction dominated Coulomb repul­

sion) and increasing energy loss until the system fused . This behavior is to be 

expected (see section 3) although the details can be compared with experiment. 

'Ib.e unexpected result was that at the lowest angular momentum there were 

also scattered solutions with nearly constant energy loss (about 35 MeV of the 

original 52.5 MeV) and little loss of angular momentum. 

The fusion calculation for 160 showed that this low-l "cutoff" appeared at 

Elllb =54 MeV and persisted at higher energies. This lower angular momentum 

limit occured because too much energy was transferred to a single collective 

mode, in this case a vibrational mode . For TDHF calculations this mode is 

strongly excited because the long mean free path of the nucleons results in an 

"almost transparent" nucleus, but it has been shown to be a more general 

phenomenon (BR 78, TS 74, SI 76) occurring even in drops of water (AD 68) . 

Thus, the upper and lower angular momentum limits can be thought of as rota­

tional and vibrational limits. Both the upper- and lower-l cutoffs were approxi­

mately proportional to ..JE-ET, though with difierent proportionality constants 

and energy thresholds, ET. This can be interpreted as a limitation of radial 

kinetic energy since E,.u=Er will result in l=[ ~ (E-Er)]*. For the upper-l 

cutoff this means the nuclei can climb in over the fusion barrier, for the low-l 

cutofi this means that a more compact configuration (smaller I) can climb out 

over the fission barrier. 

These 160 fusion cross sections fit the data very well up to Eia1> = 120 MeV, 

in contrast to optical model predictions which greatly overestimate the fusion 

cross section above about 60 MeV. (The potential fit elastic scattering for 

EllllJ:s:70 MeV.) The higher cutoff was in excellent agreement with the optical 

model up to 80 Mev and showed only a slight lowering above this energy due to 
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the onset of peripheral deep inelastic processes. This discrepancy between the 

optical model and experiment was then resolved in TDHF by the existence of a 

low-l cutofi'. The fusion calculations for .40Ca showed the same general behavior 

of the upper limit but they showed no lower cutoff. The energies were all below 

the threshold since a low-l cutoff was seen in the higher energy 2D calculations 

which should be exact for l =O. These cross sections were less accurate and 

showed some sensitivity to the interaction parameters. However, all of the 

forces were local forces so these calculations may give us more information 

about the effective interaction. The experimental search for this low-l cutoff is 

as yet unresolved and work is continuing. More will be said about this later for 

our specific calculations. 

The need to extend these calculations to more realistic forces (even if still 

the Skymre type) and heavier nuclei led to a renewed investigation of 2D approx­

imations (DAV 78a, 79,80) since the 3D calculations were already saturating com­

puter capabilities. Heavier nuclei are important both because the increase in 

deep inelastic events will yield information about equilibration processes in 

TDHF and because the classical concepts we are using will be more appropriate. 

Refinements to the axially symmetric approximation were made by changes in 

the moment of inertia (DAV 78b) . Several prescriptions were tried which permit­

ted angular momentum to be transferred to internal excitation, thus allowing 

tangential dissipation. These results were a better approximation to 3D results 

than the previous 2D results and agreed quite well at lower energies. However, 

at higher energies, above the threshold of the low-l cutofi', there is no escaping 

the importance of nonaxial deformations for intermediate impact parameters. 
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Section 6: Separable Appro:ximation 

The deficiencies of axially symmetric approximations and the intractability 

of full 3D calculations prompt the investigation of other approximations which 

can limit the number of variables treated explicitly but still retain those degrees 

of freedom necessary for an accurate solution. Once such approximation, the 

separable approximation (DE 78a,78b), is tested in the first published paper 

included here (KO 78). The separable approximation reduces the calculation to 

two dimensions by forbidding motion perpendicular to the scattering plane . 

However, it imposes no restrictions on motion in the scattering plane and will 

allow the important features of nonaxial deformations and tangential dissipation 

to be calculated self-consistently. 

The freezing of the wavefunctions in this transverse direction is motivated 

by the mean-field dynamics which govern their evolution in the TDHF approxima-

lion. The saturation of nuclear forces results in a nearly constant density and 

thus a nearly constant mean field in the nuclear interior. Therefore, the orbitals 

which are initially moving in the scattering plane will continue to move predom-

inantly in the scattering plane during the collision. 

The separable approximation constrains the single-particle wavefunctions 

to the factorized form. 

(6.1) 

where z is the coordinate normal to the reaction plane and x ,y are coordinates 

in this plane. The functions X• are real and time independent so only the 2D 

complex wavefunctions rp, need to be evolved in time. The time evolution is 

obtained from the TDHF equation, ih:t '/Ji =h'l/I;. Since XJ is time independent, 

the equation becomes 

(6.2) 
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The functions XJ are normalized so we can write the evolution equation as 

'ill.:t 'I'; (z ,y)=(h ';'P; )(.:z: ,y) (6.3) 

(in general h and h' will be nonlocal) with the projected Hamiltonian given by 

h '(z ,:i:',y ,y')= J d.zd.z 'XJ(z)h(x ,z',y ,y',z ,z ')X,; (z') . (6.4) 

This equation can also be derived from a variational principle with. 

~<H> ' ) 6 •( ) (h J'Pi )(z ,y 
'/>; z .y 

(6.5) 

(Variation of only rp;• would leave a XJ on the left-hand side of the Hamiltonian 

and give the same result as Eq. (6.4)) Notice that this projected Hamiltonian is, 

in general, different for different orbitals. 

Since the mean field (that is, the same field for all wavefunctions) is impor­

ta.nt for maintaining the orthogonality of the single-particle wavefunctions 1f;1, we 

must check the orthogonality in the separable approximation. At the initial time 

<rp; I rp"><x; lx">=6i.1 can be satisfied with either <Xj lxt>=oiJ or <rp1 \rpi>=oii per­

mitting a natural grouping of the 1/IJ · The orthogonality of the 1/1; is trivially 

preserved for wavefunctions with <x; I Xi >=0 since these functions are indepen­

dent of time. However, maintaining the orthogonality of the 'P; for the other 

wavefunctlons with <x.; lx,>~0 is not trivial since ~'Pi jrp,>=<rp; lht-h; I 'Pt>. 

Orthogonality requires ~ = h; and Xi =XJ if <XJ lx,>iJfO. Therefore, we need a set 

of orthogonal functions in the z direction, Ba(z ). and there is a group of 

wavefunctions 'PJ for each a. For a symmetric collision. like those considered in 

this first paper, this is the obvious thing to do. However, in asymmetric colli-

sions, like those considered later in Sections 7 and 8, this requires that the 

same set of orthogonal functions be used for the two different nuclei. 

We choose these wavefunctions, Ba(z), to be one-dimensional harmonic 

oscillator functions . For the 16<> and 40Ca nuclei considered in this first paper, 

oscillator states are a fairly accurate approximation to the ground state 
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wavefunctions and for oscillator states the factorization, 1/J; (r)=r,o;(x,y)x;(z) is 

exact. For heavier nuclei we might consider other possibilities for the 

transverse wavefunctions but the 3D HF wavefunctions can't generally be fac­

tored as above . Fortunately, as shown in the paper, factoring and using oscilla­

tor states doesn't cause much change from the 3D results . The static HF calcu­

lations begin with 3D oscillator states, so we simply freeze these wavefunctions 

in one direction and use the imaginary time step method with the separable 

approximation to find the ground state wavefunctions SD;(x ,y) . We then choose 

the time independent oscillator frequency to minimize the energy of the static 

solution. 

The actual incorporation of this approximation into the computer code and 

the savings obtained are discussed in Appendix A5 for the full nonlocal Skyrme 

force (protons and neutrons treated separately). For this paper, we use the 

much simpler BKN force, isospin degenerate and without the (p-r-j 2) term, but 

otherwise the discussion is applicable. The major computational effort, both in 

time and storage, is the evolution of the wavefunctions. This evolution is 

reduced to a 2D problem resulting in considerable savings. However , the entire 

problem is not two dimensional and the calculation or the energy and potential 

will still require 3 dimensions. 

The results we obtain with this approximation for symmetric collisions of 

180 or 40Ca and the comparisons to the 3D results are described in detail in the 

paper. The conclusion is that this approximation is not only better than the axi­

ally symmetric approximation, but is surprisingly accurate. Therefore, we will 

use this approximation for more TDHF calculations with heavier nuclei and more 

realistic nonlocal Skyrme forces . 

The insensitivity of the results to the choice of oscillator parameter is also 

important. For both 0 and Ca, runs done at the most sensitive angular 
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momenta, those at the fusion limits, showed that a 10% change in the oscillator 

parameter would lead to, at most, one unit (h) of angular momentum difference 

in the fusion cross section or in comparable trajectories. This is undoubtedly 

related to the success of the approximation, since even small motion in the 

transverse direction could be important if the results were sensitive to the 

shape in this direction. It is also fortunate since the transverse wavefunctions 

for heavier nuclei are more complicated than harmonic oscillator functions, and 

the factorized form limits the accuracy of the descriptions of these heavy nuclei 

in the z direction. Also, this insensitivity is almost a necessity for the calcula­

tion of asymmetric systems since the requirement of one set of wavefunctions 

Bo.(z) in the transverse direction limits the accuracy of the shapes of the two 

different nuclei. 
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Abstract 

We discuss an approximation to three-dimensional (3-D) 
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Numerical applications of the time-dependent Hartree-Fock method (l] 

to heavy-ion reactions (2-5] and fission [6] provide a microscopic description 

of large-amplitude nuclear dynamics. Several calculations have approximated 

these systems in two non-trivial spatial dimensions by constraining the TDHF 

determinant to be axially symmetric (21 3 1 6]. However, recent fully three­

dimensional (3-D) solutions for heavy-ion reactions have shown that tangential 

degrees of freedom are important for realizing fully the dissipation inherent 

in a mean-field approach [4,s]. There are also indications that tri-axiality 

is essential for an accurate TDHF description of fission dynamics [6]. Since 

"exact" 3-D solutions presently involve a great deal of computational 

effort for large systems, it is desirable to seek approximations 

which limit the number of variables to be treated explicitly, but which retain 

those degrees of freedom necessary for an accurate solution. This Letter 

explores one such approximation for heavy-ion reactions, in which motion 

normal to the scattering plane is forbidden (7). By direct comparison 

with 3-D calculations for 160 + 160 and 40ca + 40ca reactions we show 

that the resulting solutions are surprisingly accurate. The associated order-

of-magnitude reduction in computation time therefore opens the possibility 

for meaningful calculations of larger systems using more sophisticated 

effective interactions. 

The motivation and specifics of a TDHF approach to nuclear dynamics have 

been discussed elsewhere [1,2,4]. The fundamental feature new to this work 

is that the complex time-dependent single-particle wavefunctions are con-

strained to be of the factorized form proposed by Devi and Strayer [7) 

(1) 

The coordinate normal to the reaction plane is z, while (x,y) are the 
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coordinates in this plane. The real functions X are time independent, so 

that only the complex functions ~ involving two spatial variables must be 

evolved in time. The ansatz (1) is thus comparable to the axially symmetric 

factorization used previously [2,31 6], although here the coordinate z is 

"frozen" rather than the azimuthal angle about the symmetry axis. Note that 

non-axial configurations are still permitted by the form of (1). 

The motivation for the above factorization can be found in features 

of mean-field dynamics familiar from previous calculations [2,4]. In a TDHF 

approach, the evolution of the single-particle wavefunctions is governed 

only by their common, time-dependent mean field. Initially, the determinant 

is constructed to represent approaching, self-consistent static HF solutions 

for the colliding ions. During the collision, as orbitals propagate freely 

in the nearly constant mean-field of the nuclear interior (l], their motion 

is predominantly in the scattering plane. This can readily be seen in fig. 2 

] 4o 4oc 11 .. of ref. [2 , which represents a Ca + a co 1s1on. There, despite the 

dramatic dynamics along the symmetry axis, the transverse extent of the system 

changes little during the collision. There is consequently little tendency 

to deform the system normal to the plane, and an approximte self consistency 

in this direction is maintained. 

The equations of motion for the functions ~ follow from the TDHF equa-

tions. For an effective interaction which results in a local HF potential w, 

they are of the form 

. o~. [ 'fl.2 ( 02 · 02 ) J 
l.'fl. -it= - 2m 2 + 2 + (Tz). + W.(x,y) ~· ox oy J J J 

Here, W. is the projected HF potential 
J 

(2) 
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W /x, y) =[co dz 

-oo 

lx.(z)l
2 

W(x,y,z), 
J 

and (T ). is the kinetic energy of XJ.: 
z J 

(3) 

(4) 

Our calculations employ the energy functional of refs. [2,4,5]. This 

includes zero-range two- and three-body forces, a finite range Yukawa inter-

action, and the direct Coulomb energy. It is known to give a fair reproduc­

tion of the ground-state properties of 
16

0 and 
40

ca [1,5] and results in a 

local HF potential. The functions X are chosen to be one-dimensional hannonic-

oscillator functions and are assigned to the wavefunctions ~ at t = 0 according 

to the three-dimensional harmonic-oscillator classification of the static HF 

solutions. The time-independent oscillator frequency 

is chosen to minimize the energy of the individual static HF solutions before 

collision. Finite difference approximations to the equations (2) are derived 

by variation of a discretized "5-point" energy functional defined on a uniform 

1 fm cartesian mesh, as described in refs. [2,4]. The Poisson and Helmholtz 

equations for the one-body Coulomb and Yukawa potentials are solved by the 

conjugate-gradient method discussed in ref. [4], and the functions~ are 

evolved in time using the exponential method of that reference. Time steps 

oo4 -21 of 6t = 0.002-0. x 10 sec are used and energy and norm conservation for 

the entire system are equal to or better than the values quoted in ref. [4] 

for the 3-D calculations. 

One evidently necessary condition for the accuracy of the separable 

approximation (1) is that it reproduce adequately the exact static HF 
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solutions, at least in the reaction plane. The properties of these solutions 

for several oscillator closed-shell nuclei (N = Z = 8, 20, 40, 70) are shown 

in Table 1. Both the separable and 3-D solutions have been obtained with the 

imaginary time-step technique of ref. [4]. For each separable solution, the 

oscillator frequency for the functions X, ~w, has been chosen to maximize the 

binding energy per nucleon, BE/A. The binding energies of the separable solu-

tions are consistently somewhat smaller than the 3-D values since they 

correspond to a more restricted class of variational wavefunction. The 

discrepancy increases with mass as oscillator states become a poorer approxi-

mation to the exact HF wavefunctions, although even for A = 140 it amounts 

to only 0.3 MeV per nucleon. The root-mean-square radii, (r2)i, of the two 

solutions agree to within 1% for all values of A. The values of Q/A(r2 ), where 

Q is the mass quadrupole moment, show that even though the separable approxi-

mation treats one cartesian coordinate differently from the other two, it 

results in only slightly oblate solutions. Note that the deformations listed 

for the 3-D solutions indicate the accuracy of our finite-difference techniques, 

since these should be zero in the exact HF solution. 

In fig. 1 we show the coordinate-space densities of the separable and 

3-D static solutions. In the reaction plane (z = o), the separable results 

agree well with the 3-D calculation, particularly in the surface region. In 

the direction normal to the reaction plane (x = y = O), where the separable 

approximation is expected to be worst, the agreement is poor. However, this 

appears to be of small significance for dynamical TDHF calculations, which 

depend strongly onl y on those properties of the ions within the reaction plane. 

In fig. 2 we compare separable and 3-D time-dependent trajectories for the 

4o 4o . . Ca+ Ca system at E = 139 MeV. The fragment separation and angular coordinates cm 

used are defined in ref. [4] in terms of the over-all mass-quadrupole tensor 
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of the system and the centers-of-mass of the two fragments. The results as 

a function of impact parameter follow a pattern familiar from previous 3-D 

calculations [4,5): highly inelastic events at small impact parameters, 

fusion at intermediate angular momenta, and inelastic scattering for peripheral 

collisions. The overall qualitative behavior of the separable approximation 

agrees excellently with the 3-D calculations. The relatively minor discrepancies 

in the L = 20 ~ (highly inelastic) and L = 30 ~ (fusion) trajectories indicate 

that the nuclei are somewhat too "stiff" in the separable approximation, and 

scission is therefore more difficult. This trend is confirmed in the L = 80 ~ 

trajectory (inelastic scattering), although the discrepancy here is actually 

smaller than it appears since the deflection function is changing rapidly with 

40 40 
L in this region. Trajectory plots for Ca + Ca at other bombarding energies 

and for 160 + 160 collisions show similar agreement between the separable and 

3-D calculations. 

Final-state results for some 16
0 + 160 and 40ca + 40ca collisions 

are quantitatively compared in Table 2. Separable values for the final orbital 

angular momentum, final fragment kinetic energies, and center-of-mass scatter-

ing angle are generally in very good agreement 

40 
particularly that in every case save one ( Ca 

with the 3-D 

4o 
+ Ca, E. = 

1 

calculations. Note 

96 MeV, L. = 10 ~) 
1 

the fusion region is reproduced by the separable approximation, in contrast 

to the axially symmetric approximation where no fusion is found at all in these 

collisions [2]. Note also that the apparently large discrepancies in Ef for 

4o 4o Ca + Ca at E. = 400 MeV amount to only some 20 MeV out of over 300 MeV 
1 

dissipated in the collisions. The largest differences between the separable 

and 3-D results generally occur where the final state is very sensitive to the 

initial conditions. 
40 40 

Thus, the separable solution for Ca + Ca at Ei = 96 MeV, 

L. = 10 t'1 crosses the outer barrier to scission with less than 2 MeV of radial 
1 
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collective kinetic energy, while the 3-D calculation is just above the low-L 

cutoff for fusion. Similarly, the slight discrepancies at E. = 96 MeV, L. = 
i i 

60 h and Ei = 192 MeV, Li = 80 h may be attributed to the rapid change of 

scattering angle with impact parameter in the region just above orbiting. 

Since such singular regions of L-space are only a very small part of the total 

cross section, the separable approximation accurately reproduces both the 3-D 

fusion cross section and the deflection function. We have also investigated 

the sensitivity of several of our calculations to choices of ~ other than 

that which minimizes the energy of the static solutions. The separable results pre-

sented in Table 2 are relatively insensitive to variations of ± 200/c in thus parameter. 

· d f 
160 160 d 40c 40c 11· · In summary, a quantitative stu y o + an a + a co isions 

has demonstrated the accuracy of a separable approximation to the 3-D TDHF 

equations. The time-independence of the wavefunction in the coordinate normal 

to the reaction plane results in almost an order-of-magnitude decrease in corn-

putational time. The techniques presented here may be extended inunediately to 

Skyrme-like forces having an effective mass and allowing for isospin degrees 

of freedom. Large-scale calculations with these methods for mass synunetric 

systems should then provide a decisive test of mean-field theories for heavy-

ion reactions. Furthermore, while there appears to be no need to do so at 

present, the separable determinant can be made somewhat more flexible by 

allowing for a simple time-dependence in the transverse coordinate; e.g., a 

time-dependent oscillator frequency. Self-consistent equations describing 

such motion can readily be derived from the time-dependent variational 

principle [8]. The method can be simply extended to moderately mass-

asymmetric systems by using the same ~ for each nucleus; the relative insensitivity 

of the results in Table 2 to hw favors such an approach. However, the extension 
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of this technique to strongly asymmetric systems is not at all obvious and 

work in this direction is in progress. 

We are grateful for discussions with Drs. Paul Bonche and John Negele 

during these calculations. 
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BE/A (MeV) 
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8.11 

(8.30) 

7.84 

(8.10) 

6.91 

( 7 .23) 
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Table l 

of the static solutions 

2 1. 
( r ) 2 ( fm) Q/A(r

2
) 

2.61 -0.014 

(2.60)- (-0.006) 

3.38 -0.003 

(3.35) (-0.003) 

4.17 -0.022 

(4 .14) (-0.001) 

5.00 -0.020 

(4. 96) (-0.000) 

Values in parentheses correspond to the 3-D solutions. 

~w (MeV) 

13.9 

10.9 

9.1 

7.6 



Ei and Li are the initial c.m. energy and orbital angular momentum; Lf' Ef' and Gf are the final orbital angular 

momentum, c.m. fragment kinetic energy, and c.rn. scattering angle. 3-D results are given below the separable 

values. 
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Figure Captions 

Fig. 1. Comparison between separable and 3-D static HF solutions for 

several oscillator closed-shell nuclei. Curves labeled by 

z = 0 (x = y = 0) are the separable solutions in (nonnal to) 

the reaction plane. The fully 3-D solutions are the solid 

lines. 

Fig. 2. Comparison between separable and 3-D trajectories for 

40c 40c 11' · f E 139 M v a + a co isions at a center-o -mass energy i = e • 

In cases where the 3-D trajectory is not shown, it is too close 

to the separable result to be plotted. 
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Section 7: The JiUling Approximation 

The previous calculations were for closed shell nuclei, 160 and 40Ca. For 

open shell nuclei, however, the static HF solutions will be deformed. Therefore, 

the previous initial conditions are ambiguous because we must also specify the 

initial orientation of the ions. Difierent orientations have been shown to lead to 

substantial differences in the fusion cross sections calculated for 12C+ 12C [Nils­

son. Dhar, Koonin unpublished], so a plausible presumption is to average over all 

such orientations . However, heavier nuclei are relatively less deformed than was 

12C in these calculations ({:J= 2(a-:) ~0. 4 with a,b the major and minor axes) so 
a+ 

that such orientation effects are probably small for energies not too near the 

Coulomb barrier . Averaging over orientation would substantially increase the 

computation involved, even beyond the need to perform several runs, at 

ditferent orientations, for each energy and angular momentum. Lack of 

reflection symmetry with respect to the reaction plane would double the size of 

our spatial box; and, in fact, a general orientation would no longer permit the 

separable approximation to be made since the values of the wavefunctions out of 

the plane will depend on both the values in the plane and the tilt of the nucleus . 

'Ib.erefore, we adopt a filling approximation in which the valence nucleons are 

uniformly distributed throughout the valence shell, resulting in spherical HF 

solutions. This represents a crude orientation averaging. 

In the filling approximation, the density matrix is generalized as 

p(r,r',t)=~n{l/IJ(r.tfil'/(r',t) . 
; 

(7.1) 

where the n; are time-independent occupation numbers determined by the 

ground states of the colliding ions. These n; are one for filled shells and a frac­

tional value for the partially filled shells . Since these n; are not all zero or one, 

the many-body wavefunction cannot be expressed as a single Slater determinant 
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and these calculations are no longer true HF or TDHF calculations. (In effect, 

this creates a wavepacket of difierent orientations and binds them together by 

the use or a common mean field.) However, once the densities have been 

defined, the TDHF evolution scheme is still applicable. Since the particles are 

independent, moving in a mean field and conserving their normalization, the 

evolution should be just like TDHF as long as the contribution of each particle to 

the mean field is properly normalized. Therefore, we regard the filling approxi-

mation as only a slight generalization of the ordinary theory. 

To actually incorporate this approximation into the computer code, it is 

much more convenient to normlize the 'V!i to ni rather than 1. <'l/.'i 11/li >=ni . .. 
Therefore, the calculation of the densities Pv· -r,, and }q doesn't need to be 

changed. Instead, relatively minor changes are made in the code: in the nor-

malization routine, the calculation of single particle energies, and the calcula-

tion of the mass and charge dispersion. The single particle energies become 

e;=~'l/lilh 11/1;> 
ni 

and the total single particle energy becomes 

ESPT=L;niei 
i 

The dispersion of proton (or neutron) number becomes 

(7.2) 

(7.3) 

(7.4) 

where the operator Di means that the integral in r is done over only one frag-

ment (see Eq. (4.22)) and the sums are over only protons (or neutrons). 

Use of the tlll.ing approximation results in static solutions with smaller bind­

ing energy. For the case considered in the next published paper (BO 79), 28Si, 

this difierence is quite large. Shown in Table 2 are energies for several systems 

calculated with the BKN force . 
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Table 2 
nucleus exo. sep. aoorox. 

u10 -127.6 -116.9 
40Ca -342.l -324.9 

28Si prolate -236.5 -208.4 
28Si oblate -205 .0 
26Si filliru!: -185.2 

Oxygen is a closed shell nucleus, in an oscillator basis (~, ~, 7'l.z) the occu­

pied states are (000), (100), (010) and (001). Calcium is the next closed shell 

nucleus, including the states (110), (101), (011). (200), {020) and (002). The first 

two silicon solutions used n;=l and included only 3 of these valence states; pro-

late about the z axis used (101), (011). and (002), while oblate used (110), (200) , 

and (020). (The HF solution using the separable approximation will retain the 

oscillator states in the z direction and the symmetry of the wavefunctions in the 

x-y plane .) The third silicon solution used n;=* for all six states in the valence 

shell. Therefore, the binding energy discrepancy mentioned in the paper is due 

to the filling approximation rather than the force or the separable approxima-

ti on. 

The second paper included here describes in detail calculations for two sys­

tems 160+40Ca and 28Si+28SL These would lead to the same compound nucleus 

158Ni but use of the filling approximation for 28Si results in a di.fierent system. 

Although both systems have 26 protons and neutrons, the u10+40Ca calculation 

uses 14 wavefunctions whereas the 28Si+28Si calculation uses 20 wavefunctions. 

Therefore, the silicon system has more degrees of freedom to dissipate energy. 

but it also has more total energy and more energy to dissipate at a given born-

barding energy because the nuclei e.re less tightly bound. The energy 

differences seem to dominate, resulting in both a smaller maximum angular 

momentum for fusion and the opening of the low-l window for fusion at a smaller 

energy. This seems reasonable since some of the degrees of freedom in the sili­

con case are, in a sense, fractional degrees of freedom. Regardless of their 
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relative size, however, these two effects obscure any entrance channel effE' cts 

which could be discovered by a detailed comparison of these calculations. (Just 

as possible entrance channel effects throw uncertainty into the comparison of 

the two effects above .) 

Both of these calculations can be compared with experiment and both give 

reasonable agreement, as discussed in the paper. The 160+ 40 Ca calculations are 

compared with 160+40Ca experiments. The fusion cross sections show quite good 

agreement but the experiments don't extend to high enough energies to give 

evidence of the low-l fusion ·window. The 28Si+28Si calculations are compared 

with 52S+2
? Al experiments since there were no data for 28Si +26Si at the time of 

publication. This can be done because single-particle effects aren't calculated 

properly anyway and the bulk dynamics should be very similar for these two sys­

tems . The experiment doesn't measure fusion cross sections but does give evi­

dence of a high-l and low-l cutoff for fusion in quantitive agreement with the cal­

culated results . The calculation also gives quantitative agreement for the ener­

gies of scattered products just above and below these fusion cutoffs . 

The experimental references of this paper (24,25) have since been pub­

lished (VI 79, NA 79) . The major addition is that 180+40Ca seems to have too few 

deep-inelastic events for the low-l cutoff to be correct, however, no numbers are 

quoted. There are at least two experimental groups actively looking for low-l 

cutoffs in systems relevant to TDHF predictions . R. Vandenbosch, et al are study­

ing 160+ 160, and J . Barrette ,et al are studying 28Si+ 28Si. The problem is difficult, 

however, especially because or the small cross section at these low l . 
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~NUCLEAR REACTIONS 
16oc40

ca,x) and 
28

si(
28

si,x) in time-dependent] 

~artree-Fock approximation. Fusion and strongly damped collisions. 

ABSTRACT 

Time-dependent Hartree-Fock calculations are carried out for the 

16 40 28 . 28 . systems 0 + Ca and Si + Si. Cross sections for the formation 

of 56Ni are qualitatively similar in both cases, although there exist 

significant quantitative differences which reflect the importance of 

the entrance channel. Both systems exhibit an angular momentum win-

dow for fusion. The results of the calculations are compared with 

currently available experimental data. 
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I. INTRODUCTION 

Although the time-dependent Hartree-Fock (TDHF) approximation was 

formulatedl) 50 years ago, it is the last 3 years in which the approxi-

mation has been seriously applied to the calculation of physical quanti-

ties in heavy ion collisions. In this brief span, we have witnessed a 

remarkably rapid evolution from the early one-dimensional calculations2), 3), 

which reproduced the qualitative features of colliding heavy ions, to in­

creasingly more ambitious two-dimensional calculations4)-l4), and finally 

to three-dimensional calculations12)-l8) which yield quantitatively ac-

curate descriptions of certain experimental data. In the present work, 

the TDHF approach is applied to the calculation of fusion cross sections 

f 16 + 40 d 28 . + 28 . bo h f . 1 or two systems, 0 Ca, an Si Si, t o which ead to the 

d 1 56 . compoun nuc eus Ni. Although the primary purpose of this work is to 

compare the results of the TDHF calculations with experimental data, we 

shall also discuss the accuracy of the two-dimensional rotating frame 

and separable approximations to the fully three-dimensional TDHF calcu-

lations. In addition, we shall discuss the effect of removing the isospin 

symmetry restriction on the nuclear wave function, and of varying the 

parameters of the nuclear potential. 

II. METHOD OF CALCULATION 

Most of the calculations presented here employ the parameterization 

of the Skyrme potential 19) referred to as Force I in ref. 18). In this 

version of the potential, the non-local terms in the mean field propor-

tional to the Skyrme parameters t 1 and t 2 are identically zero. At the 

highest energies, the full Skyrme potential, including the non-local 



-64-

terms.has also been used to calculate the fusion cross section. The ef-

f ect on the fusion cross section of varying the 5kyrme parameters is al-

so discussed in ref. 18), and in ref. 11). 

The calculations have been carried out using the two-dimensional 

bl . . 12),14) d h d. . 1 . f separa e approximation , an t e two- imensiona rotating rame 

approximation4),S),lJ) to the TDHF equations. In addition, in order to 

. f h f h bl . . h 16 + 40 veri y t e accuracy o t e separa e approximation, t e O Ca 

fusion cross section has also been calculated at selected energies using 

the fully three-dimensional TDHF codelJ),l7)• It should be noted that 

in effecting this comparison we have employed codes, both the separable 

code and the three-dimensional code, which enforce isospin symmetry. 

That is, neutrons and protons which occupy the same orbital are con-

strained to be degenerate. This degeneracy is not enforced in the 

rotating frame approximation4),S),lJ) code, and we shall therefore be 

able to conunent upon the effect of lifting the isospin degeneracy. As 

the various numerical methods which are employed to solve the TDHF equa-

~ions have been discussed extensively in the references cited, we shall 

not conunent upon them further here. 

Th f · t• f 160 + 40c d 285· + 285· have been e usion cross sec ions or a an i i 

calculated as follows. For each of the energies studied, the maximum 

value of angular momentum for which fusion takes place, R> ~' and the 

minimum value of angular momentum for which fusion takes place, I<. ~. are 

separately de termined to a precision of approximately 2~. The fusion 

cross section is then calculated at each energy by the sharp cut-off 

18) 
formula , 

- 1T 
O'fusion - k2 

, (2.1) 
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in which k represents the relative wave number in the entrance channel. 

h . 16 + 40c h d 11 . 1 For t e asymmetric system O a, t e sum exten s over a partia 

waves for which fusion occurs. For the symmetric system 
28

si + 28si, 

the sum in eq. 2.1 is replaced by twice the sum over all even partial 

waves for which fusion occurs. The values of R for which fusion does 

occur are determined at each energy by evolving the system at various 

impact parameters for a sufficiently long period of time to off er con-

vincing evidence that the system will not undergo prompt fission. A 

more detailed discussion of the latter Point may be found in ref. 11). 

Although the sums to which we refer above may easily be evaluated exactly, 

it is consistent with the nature of the approximation to use, for either 

symmetric or asymmetric systems, the result 

cJf . tv ~ [ <~> +1)2 - (Q< +1)2 J usion - k 

2 
= 1T~ [(I.> +1)2 - (~, +1)2 J 

2µECM 
(2.2) 

in which µ represents the reduced mass of the system under consideration. 

III. RESULTS 

A. 160 + 40Ca 

We have performed calculations for the 
16

0 + 40
ca system for labor-

atory bombarding energies from 40 MeV to 350 MeV. The calculations have 

. . 1 bl . . 12),14),30) been carried out in the two-dimensiona separa e approximation , , 

. . . 4),5),13) I and in the two-dimensional rotating frame approximation • n 

addition, selected Points have been calculated using the fully three-

d .. 1 13),17) imensiona TDHF code • In all cases which have been compared, the 

separable fusion cross sections have been in complete agreement with the 
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fully three-dimensional TDHF calculations. A graphic demonstration of 

this agreement is given in fig. 1, in which the fragment separation co-

ordinate r, defined as in ref. 5), is plotted as a function of time for 

a collision at a ·1aboratory energy of 290 MeV, in which the initial 

angular momentum,~, is equal to 48. The results of the two-dimensional 

separable approximation are in very good agreement with the results of 

the fully three-dimensional calculation, until t ~ 9xlo-22 s, by which 

time the system has fused. Plots of the quadrupcle moments of the mass 

distribution exhibit similar behavior. 

. 16 40 The angular momenta for which the O + Ca system fuses are de-

picted as a function of the center of mass energy in fig. 2. The values 

plotted are derived from calculations which employ the separable two-

dimensional code with degenerate neutron and proton orbitals. The max-

imum angular momentum which the fused system can sustain is approximately 

60 units of ~. This value is in good agreement with the prediction 58 ~ 

of the liquid drop model20) for the A = 56 system. The fact that there 

exists a minimum angular momentum,P<(E), for which the 
16

0 + 40ca sys­

tem fuses, represents a dramatic prediction of the TDHF calculations27). 

Referring again to fig. 2, we note that as the center of mass energy 

increases above 100 Mev,9< likewise increases. This reflects the in-

ability of the colliding ions to convert sufficient translational energy 

to internal excitation energy. The inability of the transient fused 

system to dissipate more radial kinetic energy than a certain amount is 

an essential feature of the mean field dynamics21). The increase of 2< 

with energy causes the fusion cross section to decrease more rapidly 

than l/ECM' which represents the energy dependence of Eq. (2.2) in the 

absence of}~, for energies greater than ECM ~ 160 MeV. At the latter 
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energy, the saturation angular momentum, k N 60, has been reached, and, 

in the absence of J<, the energy dependence is given simply by the kine-

matical factor l/EcM• The actual existence of a lower fusion limit could 

thus be inferred from the decrease with energy of the experimental fusion 

cross section for energies ECM ') 160 MeV. 

16 40 . 
The 0 + Ca fusion cross section, as given by Eq. (2.2) is com-

pared with the experimental cross section in fig. 3. The theoretical 

results presented have been calculated using both the results of the 

two-dimensional, separable approximation with constrained neutron and 

proton orbitals, and the two-dimensional rotating frame approximation 

in which no isospin symmetry has been enforced. As we have previously 

noted, the separable results are in complete agreement with the results 

of fully three-dimensional TDHF calculations (with the same enforced 

isospin symmetry). The cross section computed using the results of the 

rotating frame approximation exceeds the cross section calculated using 

the results of the separable approximation by approximately 120 mb in 

the energy range from just above the fusion barrier to ECM N.100 MeV. 

This difference may be attributed entirely to the enforced neutron-proton 

degeneracy in the separable calculations. At center of mass energies 

above 100 MeV, a significant amount of the dissipated energy excites non-

axial modes, and the rotating frame approximation breaks down. Thus, 

although the upper limit for fusion, J~N 50, is accurately given by the 

rotating frame approximation at ECM N 100 MeV, the approximation incor­

rectly indicates that the system will not fuse at J = 15. The latter 

results are qualitatively the same as those found in ref, 11), in which 

the lifting of the isospin restriction on the nuclear wave function 

resulted in an increase of approximately 200 mb in the 
40

ca + 40
ca fusion 
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cross section, and the excitation of non-axial modes caused the rotating 

frame approximation to break down in the 40ca + 40ca system at a center 

of mass energy on the order of 100 MeV, the approximate energy at which 

the angular momentum window appears in the three-dimensional calculations. 

Referring to fig. 3, in which the fusion cross section is plotted 

as a function of the energy, we note that the theoretical results are in 

good agreement with the experimental results at low energy. This agree-

ment at low energy affirms the facts that the nuclear sizes and the 

inter-ion Potential are accurately given by the TDHF wave functions and 

the nucleon-nucleon interaction. However at energies ECM ~ 100 MeV, 

the theoretical cross section exceeds the measured cross section by 

~ 25 i. • In discussing the discrepancy between theory and experiment it 

should be noted that a significant amount of fusion followed by fission 

is consistent with the prediction of the liquid drop model22
) for the 

mass 56 system. Moreover such events would not have been observed in 

the evaPoration residue experiments with which we are making our com-

. . . . 23 ) d • d 0 th h parison. However, separate investigations o not in icate at t ere 

exists sufficient fusion-fission cross section to account for the dis-

crepancy between the theoretical and experimental results. The fact 

that the TDHF cross section exceeds the experimental cross section 

especially warrants further study, since corrections to TDHF would be 

expected, at least naively, to result in an increased fusion cross sec-

tion. 

We have also performed a single calculation at ECM = 208 MeV, using 

. . . f 11 k . . ll) d the separable approximation with the u S yrrne interaction , an 

the isospin symmetry restriction removed. The fusion cross section corn-

puted on the basis of this calculation is 823±121 rob. Referring to fig.3, 
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we note that the cross section at this energy, as calculated using the 

results of the separable calculation with the local Skyrme interaction 

and degenerate neutron and proton orbitals is approximately 600 mb. The 

difference in cross section of the calculations is thus 220±120 mb. 

Since approximately 120 mb of this difference can be attributed to the 

removal of the isospin symmetry restriction, no definitive statement can 

be made as to the effect of the non-local terms in the Skyrme patential. 
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B. 
28si + 28si 

We have performed calculations for the 28si + 28si system for lab-

oratory bombarding energies from 70 MeV to 220 MeV. The calculations 

have been carried out in the two-dimensional separable approximation, 

with the initial, static wave function for the system determined in a 

filling approximation, in which the occupation of each ls-Od orbital of 

h d 
28s· . . 1 0 5 . . t e separate i ions is set equa to • • In essence, this approx1ma-

tion represents an average over the possible initial orientations of the 

d f d Sl d . f h d 28 . . e orme ater eterminants o t e separate Si ions. As such it is 

a physically reasonable (and computationally necessary) approximation 

to the actual scattering. It nevertheless represents a departure from, 

and approximation to, a true TDHF calculation. 

The angular momenta for which the 28si + 28si system fuses are depic-

ted as a function of the energy in fig. 4. The maximum angular momentum 

which the fused system can sustain can be inferred to be approximately 

so ~-
16 40 Since the fused 0 + Ca system has been calculated to sustain 

60 ~, it might appear that the maximum angular Jlk>mentum depends upon the 

entrance channel, and is not a function only of the total charge and mass 

of the system, as given by the liquid drop Jlk>del. This conclusion, how­

ever, is considerably obscured by the fact that the 28si + 28
si calcula-

tion has been effected in the filling approximation. We shall discuss 

this point Jlk>re fully at the conclusion of this section. As in the case 

of the 160 + 40ca system, we find a fusion window in the 
28

si + 28
si vs. 

ECM plot. For center of mass energies greater than 54 MeV, the 
28

si + 28
si 

system exhibits no fusion when the angular Jlk>mentum of the system is less 

than a cut-off value, ~JE), which increases as a function of bombarding 

energy. An unexpected result of the 28si + 28si calculations is the 
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partial closing of the fusion window in the energy range above 100 MeV. 

This effect is manifest in fig. 4, in which the fusion region in the 

1 t 1 . 1 d f 28 . 28 . angu ar rnomen um-energy p ane is p otte or the Si + Si system. 

The results of the calculations effected in this energy range have been 

explicitly plotted. Thus, the crosses represent calculations in which 

h 28s. • 1 . . . t e i ions scatter, and the dots represent ca culations in which the 

28
si ions fuse. An island of non-fusion events is clearly visible in 

this energy range. While such dramatic variation, associated with only 

minor changes in the initial conditions did occur in the very first 

one-dimensional calculations2), it is more probable that the appearance 

of the island signals a breakdown of the two-dimensional separable approx-

irnation. For a fully three-dimensional calculation effected in the cen-

ter of the island of non-fusion events indeed leads to fusion. It is 

thus possible that the two-dimensional separable approximation breaks 

down at high energy, where the fusion cross section goes to zero. 

Accordingly, we shall assume that the island of non-fusion events is 

spurious, and shall ignore it in the computation of the fusion cross 

sections. 

. . f 28 • + 28 . . 1 d f . The fusion cross section or Si Si is p otte as a unction 

of energy in fig. 5. The behavior of the cross section is qualitatively 

similar to that of 160 + 40ca, although the latter system exhibits a. 

more pronounced plateau at intermediate energies, and drops more pre-

cipitously at high energy. A comparison of fig. 2 and fig. 4 shows that 

the faster decrease of the 160 + 40ca cross section is due to the more 

rapid closing of the fusion window of the latter reaction. As the energy 

. 16 40 increases,9< increases more rapidly for the 0 + Ca system than for 

the 28si + 28si system. It should be noted, however, that this high 
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energy comparison may be complicated by the unexpected behavior of the 

28
si + 28

si system at energies above ECM = 100 MeV, as given by the 

separable approximation. 

In fig. 6, the center of mass energy loss and scattering angle, as 

calculated in the separable approximation, are plotted as functions of 

angular momentum for 28si + 28si at ECM = 111 MeV •. The curves are qual­

itatively similar to results obtained5) for 160 + 160 and 40ca + 40ca. 

However, an important distinction is the fact that the systems and 

energies investigated in ref. 5) did not lead to fusion. As discussed 

above, the scattering events observed in reactions in which the angular 

momentum of the system is in the range 27~ J. ~ 39 are quite possibly 

spurious. Fully three-dimensional calculations would likely l~ad to 

fusion in this interval. 

Although experimental data are not available for the 28si + 28si 

system, measurements have recently been rnade25) on the simiiar 

32s + 27Al system. In their investigation of the latter system at a 

laboratory energy of 175 MeV, Natowitz ex a125) can explain the observed 

spectrum by assuming the existence of two strongly damped components in 

the energy spectrum of the reaction products. One component is inferred 

to correspond to an angular momentum ~ ~ 48, not inconsistent with the 

liquid drop expectation that the A = 59 system will not support angular 

momentum ~58. In contrast, the second component is inferred to corres-,.,, 

pond to very low values of angular momentum, ~ ~ 15. As a result of their 

analysis, Natowitz et a125) conclude that the observation of scissioning 

nuclei with such small angular momenta can be explained if the lowest 

partial waves in the entrance channel lead to strongly damped collisions, 

rather than to fusion. This situation is precisely that found in the 
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80 MeV, the same center of mass enerp,y as 

we find that the 28si + 28si fusion window 

is open for angular momenta 17 ~ j ~ 48. Further comparison can be made 

with the fragment energies for collisions at angular momenta just outside 

the window. Natowitz, et a125 ) find a center of mass fragment kinetic 

energy of 16.6 MeV for the R~ 15 component, and a fragment kinetic 

kinetic energy of 26.4 MeV for the~ ~ 48 component. TDHF calculations 

of the 28si + 28
5i system at ECM = 80 MeV show that the fragments in 

collisions with ~ = 16 carry 16 MeV kinetic energy, and fragments in 

collisions with .l = 49 carry 28 MeV kinetic energy. The results of the 

28 . + 28s . 1 1 . h . . h h. . . f Si i ca cu ations are t us consistent wit t is interpretation o 

the 325 + 27Al data. 

We mentioned above that any conclusion as to the existence of 

entrance channel effects is significantly obscured by the fact that the 

filling approximation has been employed in the calculations for the 

28si + 28si system. One such consideration is the fact that the Q 

value of the reaction is .considerably affected by the filling approxima-

tion. 
16 Thus, while the total binding energy of the separated 0 and 

40ca ions, as computed using the local Skyrme interaction, is 442 HeV, 

28 MeV less than the experimental value, the total binding energy of 

the separated 28si ions is but 370 MeV, 103 HeV less than the experi-

mental value. The 75 HeV discrepancy in binding energy of the two 

systems can be used to explain, at least in a qualitative sense, the 

reason why the low angular momentum cut-off occurs at a much lower 

. h 28s. + 28s. h . h 160 + 40c h energy in t e i i system t an in t e a system. Ot er 

effects must be considered as well. 
16 40 Thus, for the 0 + Ca system, 

i (16 + 40) = 14 orbitals are involved in the calculation, while for the 
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28 . + 28 . b f h f" 11 " . . 1 (40 40) 51 Si system, ecause o t e i ing approximation, 4 + = 20 

orbitals are involved in the calculation. The intent of this discussion 

is to emphasize that no clear-cut statement as to the importance of en-

trance channel effects is possible on the basis of the present calcula-

tions. 

IV. SUMMARY 

We have calculated fusion cross sections for the systems 16
0 + 40ca 

and 
28

si + 28si, both of which lead to the compound system 56Ni. Both 

systems exhibit an angular momentum window for fusion. The 16
0 + 40ca 

1 . bl . h . 24) resu ts are in reasona e agreement wit experiment , and the 

28si + 28si results are consistent with the experimental data 25) on the 

. · 1 32S + 27Al s1m1 ar system. 

f . 1 l" . 1 . . 1 f 16 40 The us1on resu ts are qua itat1ve y s1m1 ar or the 0 + Ca 

and 28si + 28si systems, but do display s.ignificant quantitative differ-

26) 16 40 
ences • Thus, the 0 + Ca system can fuse with an angular momentum 

l = 62, while the maximum · angular momentum with which the 28si + 28si 

system is calculated to fuse is e = 50. For comparison, the ·limiting 

angular momentum which the A = 56 system can sustain is given by the 

liquid drop model as R. = 58. 

The results calculated using the two-dimensional separable approx-

imation are in very good agreement with the results of the fully three-

dimensional calculations, except in the case of th.e most energetic of 

th 2s5 . + 2s5 . . e i i reactions. The rotating frame approximation, as in 

past calculation~ is accurate just above the Coulomb barrier, but breaks 

down for energies greater than that at which a fusion window develops. 

The effect of removing the neutron-proton degeneracy increases the 
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16 40c f · · b · l 120 h O + a usion cross section y approximate y rob over t e energy 

range studied. The effect of the non-local terms in the Skyrme interac-

tion is not clear at the single energy at which comparison was attempted. 

The difference in fusion cross section, as computed using the full Skyrme 

and local Skyrme interactions is not inconsistent with the difference 

which could be attributed to the fact that the full Skyrme calculation 

does not enforce isospin symmetry. 

Perhaps the most striking result of the TDHF calculations remains 

the prediction of an angular momentum window for fusion. While both the 

16 + 4oc d 285 . + 285 . 1 . . h . . O a an i i resu ts are consistent wit experiment, it 

would be exciting if a definitive experiment could determine whether such 

a window indeed does exist. 
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FIGURE CAPTIONS 

Fig. 1 Comparison, as a fUnCt U)Il Of time I of the fragment separation 

coordinate in a 11" . b 16 co ision etween 0 and 40c . a ions at a labor-

atory energy of 290 MeV with J. = 48. The solid line gives the 

result of the two-dimensional separable approximation, and the 

dashed line gives the result of the fully three-dimensional 

calcul ation. In both calculations, the neutron and proton 

orbitals are degenerate. 

Fig. 2 Fusion region in the angular momentum-energy plane for the system 

16
0 + 40

ca. The calculations have been effected with the separ-

able code using the local Skyrme interaction, and with neutron 

and proton orbitals degenerate. 

Fig. 3 Comparison of the calculated fusion cross section with the re-

. 24) 16 40 
sults of experiment for 0 + Ca. Plotted are the results 

of calculations using the separable code with the local 5kyrme 

interaction and degenerate neutron and proton orbitals, the re-

sults of calculations using the rotating frame approximation with 

the local 5kyrme interaction and unrestricted neutron and proton 

orbitals, and the result of a single calculation at 208 MeV 

using the separable code with the full Skyrme interaction and 

unrestricted neutron and proton orbitals. 

Fig. 4 Fusion region, in the angular momentum-energy plane, for the sys-

t 285. + 285. em i i.. The calculations have been effected with the 

separable code using the local Skyrme interaction, and with neu-

tron and proton orbitals degenerate. For energies above 100 MeV, 

the results of the calculations have been explicitly plotted, 

with crosses used to indicate events in which the 285i ions scat­

ter, and dots used to indicate events in which the 285i ions fuse. 
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F · s c 1 l d f · · f 28
5 · + 28 · ig. a cu ate usion cross section or l Si. The calculations 

have been effected using the code as described in fig. 4. 

Fig. 6 Deflection and energy loss functions for 28si + 28
si at a cen-

ter of mass energy of 111 MeV. The calculations have been effec-

ted using the code as described in fig. 4. 
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Section 8: Results for 86Kr + 1s9La 

The final calculations presented here are separable, 2-D calculations for the 

heavier system, 86Kr + 1391.a, using the Skyrme III force. This system is heavy 

enough so that deep-inelastic processes dominate and the TDHF predications for 

the various equilibration processes can be obtained. For this larger system, the 

classical approximations discussed previously are more accurate and the bulk 

dynamics is less infl.uenced by single-particle behavior. This system has also 

been studied experimentally (VAN 78, DY 80) and with axially symmetric TDHF 

calculations (DAV 79,80), providing ample results for comparison with our pred­

ictions. The experimental results do show substantial deep-inelastic scattering 

but also show some fusion-fission events. 

For this system, the full, nonlocal modified Skyrme force must be used 

(again neglecting the spin-orbit force and occupying each orbital with two 

nucleons of opposite spin) as in Eq. (2.17) and (2.24). Since neither of these 

nuclei have closed shells in an oscillator basis, we also use the filling approxima­

tion. Thus, for eei<r the 36 protons fill the lowest three shells and the fractional 

occupation of the fourth shell is 0.8, while the 50 neutrons fill the lowest four 

shells and the fractional occupation of the fifth shell is 1 /3. For 189La, the 57 

protons result in a fractional occupation for the fifth shell of 17 /30 while the 82 

neutrons result in a fractional occupation for the sixth shell of 6/21. (However, 

tor real nuclei, including the spin-orbit force, both of these nuclei would have 

closed neutron shells N = 50, 82.) 

Static HF solutions for each nucleus are obtained by the imaginary time 

step method. For an oscillator parameter 1r.> = 4.10, which maximizes the total 

binding energy of the system, the binding energies and rms radii of the two 

nucleons are given in Table 3. 
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Tc.b le ~ 
: 

nucleus i BE I rm:s., 1 rmsn i 
l (M1-::V'\ i I . L) am I (frn) i 

88lv. 6'1~. 4 I .;.2~ I 4.41 i 
1391,a 1032.5 I 4.86 I 5.01 I 

The experimental values are BEKr = 749.2 and BELa = 1159.5. (All energies are in 

MeV.) From Table 1 of the first paper, we expect that the separable approxL'na-

tion would cause about 20 MeV and 40 MeV less binding, respectively, than the 

full 3-D calculation. Because of this difference in binding energies, our calcula-

tions will have an extra 200 MeV of total energy at a given bombarding energy 

(collective kinetic energy) . However, to the extent that it is the initial relative 

velocity of the ions which determines the dynamics , this should be unimportant. 

The spherical aspect of the filling approximation should not present this kind of 

problem, ho·wever, since both nuclei have small deformations . ({3< .1 see page 

56.) This is related to the closure of the neutron shells . 

For the TDHF evolution of the system, a spacing ta= 1.2 fm and a box size 

35 x 34 x 16 are used. The discretization errors can be estimated from the 

kinetic energy in the z direction (odd multiples of 1/2 1'.>) . These range from 

0.3% for the first level to almost 6% for the sixth level. Indeed, discretization · 

errors in the boost result in a rapid initial transfer of about 16 MeV, or 53, fr om 

collective kinetic energy to internal excitation. This is worse than fer lighter 

systems because higher orbitals with more rapid spatial variation are included. 

These errors, however, are not related to the conservation of the discrete total 

energy because the operator h was derived from a variational principle. The 

conservation of energy (and norm) are dependent on the accuracy of the time 

evolution operator. Using ~t = .08 or.09 x 10-22 sec . and 2(4) terms in the 

exponential in the first (second) time step, total energy is conserved to 1 part in 

600 and the normalization to 1 part in 5 ,000. A partial test run with M smaller 
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by a factor of 2 showed less Lhan 1 part in 900 difference in the physical obE.~rv­

ables: kinetic energy and the total and fragment rms radii. 

A sel of c.:dlculalions Wiis performed at E 1@ = 505 MeV lo determine:: bo ~h 

the fusion region and the characteristics of the scattering , and two rur...s were 

performed at El® = 710 MeV to check the existence of a fusion region. 

Looking first at the fusion regions for E 1ab = 505 MeV, our results predict 

fusion for l =5 through l =60 (in units of h) while l =O and l =BO scatter. Thus, we 

would predict a fusion cross section 190±50 rnb . This agrees quite well with the 

experimental value of 170±50 mb (Lent = 66±10) which is identified as fusion­

fission yield from both charge and angular distributions . In contrast, the axially 

symmetric (AS) calculation shows no fusion at this energy. However , the 

Skyrme Il force was used in these calculations and a single run at l =O with 

Skyrme lII did fuse . 

The scattering at l =O differed from that in lighter systems because the 

lighter nuclei bounced back from the heavier nuclei rather than passing through 

it. This is undoubtedly due to the greater strength of the Coulomb potential. 

However, since the AS calculation should be exact for l =O, this effect is probably 

due to the slightly increased stiffness of nuclei in the separable approximation. 

This is demonstrated by comparing the rms radii of the systems. The AS result 

tor l =O has a minimum rms radius approximately 6.4 fm whereas our results 

have a minimum rms radius about 6.75 frn for any 1 ~ 80 . (This corresponds to a 

fragment separation about 9.8 fm.) At slightly larger l, the impact of the two 

nuclei is somewhat more gradual, giving the nuclear shapes more time to adjust. 

Runs performed at El.ab = 710 MeV show fusion for both l =O and l =50. This 

is consistent with both the experimental determination, 77±12, and with AS cal­

culations using Skyrme II , which show fusion for !~65 . (For these two r : . .ms, our 

minimum rms radius is about 6 .4 frn whereas AS calculations give about 6.2 fm.) 
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Figure 4 shows results for the final total kinetic energy and scattering angle 

in the center of mass. Our results are compared with both the axial calculations 

and the experimental contours for the double differential cross section. (The 

TDHF results are labelled by the initial angular momentum.) Both calculations 

reproduce the general characteristics of the experimental contours but with 

less energy dissipation, particularly for the fully damped events . The separable 

calculations provide slightly more dissipation in general than the axially sym­

metric calculations but the principle difference seemB to be a much larger 

small-angle contribution from the separable calculations. 

Experimental values are quoted for partially damped and fully damped 

cross sections - fully damped events are defined to be those below and to the left 

of the dashed line in Figure 4. These values are a(fully damped) = 1020±200 rnb 

and a (partially damped) = 770±165 mb. The axial results are quoted as 

a.ro~975 mb (l =0-100 and 125-175) and upDr:i:; 745 mb. Our results show l =0-90 

and 110-180 in the run damping region yielding <1.FD~ 1100 mb. The partially 

damped region is hard to estimate in TDHF calculations because of the "energy 

damping" due to the numerical errors, so that even at l =250, when the nuclei 

pass without getting closer than 14.6 fm (their combined radii are only about 

11.4 fm.), there is some energy loss. Although an energy loss of almost 20 MeV is 

not particularly good, it must be remembered that this is only 2% of the total 

energy of -1380 MeV. Both predictions of the fully damped cross section are 

consistent with the experiment. For small angle events (~cm <42°) the 

difference between the two TDHF calculations is much more dramatic. Our 

results indicate l =110-180 in this region giving a cross section ~ 800 mb. We 

also expect that fusion-fission events (with an angular distribution =~ = s~1'- ), 

will fall in this region approximately a quarter of the time, contributing another 

40 nib. For the axially symmetric calculations, the comparable estimate is only 
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about 600 mb. Unfortunately, the comparable experimental number was not 

published. 

Figure 5 shows the total kinetic energy in the center of mass, Ecm, the 

scattering angle in the center of mass, 1'., and the interaction time, Tw as func-

tions of the initial angular momentum for l~BO. The fusion region and the run at 

l=O, which should have fused, have been omitted. We see that Ecm damps below 

the Coulomb barrier very quickly. 

The experimental Coulomb barrier is about Ecm.=250 MeV, in agreement 

with the estimate 

ro(Af +A/-) 
(B.1) 

The final states have energy below the barrier because they scission with a very 

deformed shape (not two tangent spheres). Full energy dissipation is reached in 

about 2 x 10-21 sec. 

The scattering angle, 1'., is characteristic of a heavier system with a 

stronger Coulomb force. Thus, it is predominantly positive, like the AS results, 

although in contrast to these, there is a small region of negative angle scatter-

ing . For the highest l, 1'. is very close to pure Coulomb scattering. Our interac-

tion times are generally larger than the AS calculation - sometimes by as large 

as a factor of two. 

Figure 6 shows the changes in charge and mass numbers, AZ and AA, the 

charge to mass ratio ZIA and the widths of the number distributions, r z and r A. 

Since the AS results for the width are quoted as full-width hal!-maximum, r. and 

the experimental results as dispersion, all, both labels are used for the axis, 

where r=..JBln.202. The AS results are quoted for AA and r.A while experimental 

results are quoted for AZ and I'z. 
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Our calculatio·1S show more mass transfer to the larger fragment ¥.ith a 

typical M~-3 for events with intermediate damping, compared to ilA~-1 for the 

AS calculations. Tht experime!''..al valuu are gn7en for two amounts d e!"" ... 2 ~ ;;y 

damping: Q = -123 MeV gives ~z~-1 and Q = -:75 MeY gives ~z~+l. Therefo:· e, 

we seem to slightly overestimate mass and charge transfer, while AS calcula-

tions underestimate them. We never show mass transfer to the light fragment 

as do the most highly damped experimental events. but none of our calculations 

show as much damping either; our Qmax ~ - 110 Mev. 

Our value for AIZ shows an initial rise due to a greater transfer of neutrons 

to the heavy fragment and never seems to equilibrate to the ZIA of the total sys-

tern, denoted (ZI A)r. The AS results show the expected behavior ·with Z I A 

approaching and then fluctuating about (Z I A)T . 

Our results for the widths are somewhat smaller than the AS results, but 

they use a slightly different prescription for calculating the widths in the filling 

approximation because of ambiguities in the implementation. The AS calcula-

tions (DAV ) use 

a2=~'11.\Wii-~)tinj lwii i2 
, (8.2) 

' ij 

but since this isn't zero for the initial 86Kr nucleus. it is modified to 

a2(tru.e)=a2-uj;.cd C=O • (8.3) 

In either case, the results are lower than the experimental values. These values 

are u}=7 for Q = -125 MeV and uz=20 for Q = -175 Mev. Thus. for intermediate 

damping, we are about a factor of 4 too low, while for the full damping (which we 

do not get in our results). we are a factor of 10 too low. For comparison, the 

absolute limit on u2 for an independent-particle wavefunction ((DAS 79) and Sec­

tion 4) is about 20 (depending on how the filling approximation changes the 

widths) close to the value observed experimentally. This underestimation of the 

widths is a common feature of TDHF calculations and is related to the fact that 
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u2 is a two-body operator. 
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Section 9: Summary 

Jn conclusion, a one-body microscopic theory, TDHF using the Skyrme 

interaction, calculates quite successfully the gross properties of many different 

types or nuclear behavior for collisions or nuclei up to several MeV /nucleon 

above the Coulomb barrier. 

The separable approximation yields substantial agreement with both full 3D 

TDHF calculations and experimental results . Fusion cross sections are generally 

within about 10% of the experimental values for systems from 160+ 160 to 

86.Kr+139La. In heavier systems, the predictions of these separable approxima­

tions for the deep-inelastic scattering are also quite accurate for energy vs. 

scattering angle and for the mean charges and masses of the fragments, except 

at the most fully damped events. The most fully damped events in these calcu­

lations show too little energy dissipation. The widths of the distributions, how­

ever, are not accurately given. The calculations predict widths smaller by a fac­

tor of 2 to 4 (for the most fully damped events). This isn't surprising since the 

widths are expectation values of two-body operators. 

The inadequacies of these calculations are generally assumed to be due to 

the TDHF approximation itself. However, in the absence of full 3-D calculations 

including the spin-orbit force and averaging over orientations, we cannot, with 

certainty, know how much or the inadequacy is indeed due to the TDHF approxi­

mation itseU. These calculations will, however, have to wait for more powerful 

computers or more powerful computer budgets . Indeed, they may be inap­

propriate because of the use of an effective interaction and the inherent limita­

tions of the TDHF description. 
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A STABILITY CRITERION 

FOR 

TDHF CALCULATIONS 
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Section 1: Introduction 

Large-scale numerical calculations have shown that the TDHF approxima­

tion can successtully describe the gross features of heavy-ion collisions. The 

situation remains unsatisfying, however, for two related reasons: there are as 

yet no quantitative criteria which might be applied to signal the brecik-down of 

the mean-field approximation in any given physical situation, and tractable, sys­

tematic corrections to TDHF which become important when such a break-down 

occurs have yet to be developed. Although we can otrer no guidance in solving 

the second problem, this contribution is relevant to the first problem, namely 

the development of a necessary criterion for the validity of TDHF solutions. 

Our approach rests on the following general considerations . It is well known 

that the TDHF equations for a system of A nucleons may be derived from a varia­

tional principle (KE 76), in which the action is made stationary with respect to 

the functional variation or the A complex single-particle wavefunctions 

parametrizing the TDHF determinant. However, the variational principle makes 

no statement about the second variation of the action, which is connected with 

the stability of the TDHF solution under small perturbations. Consider, for 

example, the situations shown in Fig . 7. Let 4>(t) be a. solution to the TDHF equa­

tion (one which makes the action stationary). and suppose that at some time 

t=O, 4>(0) is perturbed to a new determinant +(O) which differs only slightly from 

t(O). The subsequent evolution of+ can then lead to one of two situations. In 

Fig. 7a, +(t) remains "near" t(t) for all t>O and so 4>(t) is stable. Fig . 7b, i.P(t) is 

unstable, and +(t) diverges from t(t ) . Of course, the stability or instability of CJ> 

may change with time, and might depend upon the type of perturbation applied 

to generate it (conditional stability) . 

The standard interpretation of the TDHF wa.vefunction is that expectation 

values of one- or few-body operators generated from it correspond to the aver-
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age evolution of the exact Schroedinger wavepacket. Consistency in this 

interpretation requires that this mean evolution (and hence the TDHF path) be 

well defined; i.e ., that~ lie in a "valley" as in Fig. 7a, rather than on a "ridge", as 

in Fig . 7b. We, therefore, propose that the stability of TDHF solution with 

respect to small perturbations is a necessary {although not sufficient) criterion 

for the validity of the TDHF approximation. The RPA theory (TH 61) has been 

used to test the stability of static HF solutions; we propose a time-dependent 

generalization to test the stability of TDHF solutions. 



Section 2: RPA Theory 

Ordinary RPA theory attempts to calculate the energies of collective states 

which are similar to the rlartree-r ock ground stale . The theory looks ior 

periodic solutions for state:; "close" to the HF state. Because of the condition 

that these states be "close" to the HF state, about which we will be specific later, 

we are actually calculating the curvature of the energy surface for deterrninan-

tal wavefunctions at the HF state . This curvature is the important property to 

test the local stability of the HF state. If all the normal modes have periodic 

solutions, the HF state mu.st be a local minimum and it will be stable . However, 

if any mode does not have a periodic solution, because its frequency is ima-

ginary, then the HF state will be unstable with respect to that mode . 

As in the derivation of TDHF, we minimize the action 

frit,<'o/lili:t -Hl'o/> (2. 1) 

with respect to variations in 'o/• in order to derive equations or motion for 'o/. For 

the state '11 we want to use a general Slater determinant. Thouiess (TH 61) 

showed that any N-particle Slater determinant not orthogonal to the Hartree-

Fock determinant ii> can be written in the representation appropriate for .P as 

(2.2) 

1J is a normalization constant and a+ and a are creation and annihilation opera-

tors, respectively. The subscripts p or h refer to states which are not occupied 

or occupied, respectively. in the original HF state 

14>>= IT a,t IO> . (2.3) 
h=l 

To show that it is a determinant, we need to use the fact that all terms in which 

the same creation or annihilation operator occurs more than once vanish. 

(2 .4) 
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Since there are only N different occupied states h we can stop the sum over n at 

N and rewrite the sum as a product of N terms. 

lir>=[fl(l + ~c.Ph0p+a,J][IJan-t: IO>] (2.5) 
h. p h. ' 

Each term in h will give 0 unless h'=h. Therefore, 

lir>= Il(a,,,++ ~Cph<Jp+) I 0> (2.6) 
h. p 

Thus, we can see that ir is a determinant of the wavefunctions 

Xh =cI>h + ~cph «I>p • (2. 7) 
p 

Since unitary transformations among occupied states will not change the Slater 

determinant of the wavefunctions, we see that the state iris a general deter­

minant not orthogonal to cI> . States orthogonal to cI> can be constructed by using 

one or more wave functions of the type Z11. = ~ ~ «I>p. 
p 

We now see that we are calculating the TDHF evolution of the state '11 where 

its time dependence is contained completely inc.Ph, the particle-bole occupation 

numbers. We write the action in terms of cl'h , c.Ph, and c~ and accomplish the 

variation with respect to +• by a variation of c~ . so the evolution of '11 is 

described by the equation for c':p1i. as a function of cp1i. and c~ . To study the local 

stability of the HF state, we assume cp11. is small and truncate the calculations of 

+and the action to second order in cp1i.. Therefore. after the variation. the equa­

tion for cl'h will be linear in cJlh and c;i. . We look for periodic solutions by assurn-

1ng 

(2.8) 

and then solve for the normal modes and their frequencies <.J. These must all be 

real for the solution~ in Eq. (2.B) to be periodic. Of course, a larger rJ will 

imply a sharper local minimum and a more sharply confined HF state. 
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Section 3: Time-Dependent Generalization of the RPA Theory 

For our time-dependent generalization of the RPA theory, we again minim-

ize the action for a general determinantal wavefunction, 

(3.1 ) 

but in this case, the state 4> and the creation and annihilation operators for per-

ticles and holes also evolve in time . We define an operator ~=a1,+ah. which 

creates a particle-hole pair and write 

(3 .2) 

Since we are still concerned with local stability, we still truncate the expressions 

for + and the action to second order in cph: 

(3.3) 

We also evaluate TJ to second order, by setting <'11J'11>=1. (See Appendix B1 for 

details.) 

(3.4) 

80 that 

(3.5) 

For the action we need <+IHI+> and <+li:t I+>. ( h=l) The first is 

straightforward. 

<+I H I+>=( 1-e • · c) <H> +<He· A.+>+ <c \AH> 
+<c··Aflc·A+>+*<(c··A)2H>+*<H(c·A+)2> 

We assume a second-quantized Hamiltonian 

H -"'t + 1 "' T'S + + - /..J 4ao. a~+ 4 '-' ,. ~a.a. a.~ a.4ri.y • 
,,, o.'16 

where laJ is a complete single-particle basis, 

t 4 =<alt I"> 
are the matrix elements of the one-body kinetic energy, and 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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are the antisymmetrized matrix elements of the two-body interaction. 

The second expression, <ir Ii :t I ir>, is more complicated because the gen-

eralization must agree with the RPA theory for ii> an HF state . If we evolved each 

wavefunction rp11, with the standard HF operator h as irP11, =h rp11,, we would get 

rp11,=e 1ht 'ht.!IF· where hrph.HF=e11,rphJIF. This would result in a time dependent 

I il>>=exp(-il:eht) I il>eF> (3.10) 
h 

rather than the time independent I il>HF> needed to agree with ordinary RPA 

theory. Since this time-dependent phase is unobservable, the correct operator 

ii must include only the physically relevant changes in <I> . The usual h in the 

single-particle wavefunction evolution i¢u.=ho.prtJp. with hu.fJ=tap+ l: VimfJh. (since 
h 

pap=Oo.pOo.h see Appendix Al) is a unitary transformation mixing all the various 

states. However, since unitary transformations among hole states or among 

particle states will not produce any observable changes, we want to take the 

bole-hole and particle-particle components out of h. To do this , we can use the 

one-body density matrix p=~ l<Ph><rph I. which is a projector for Iii>>. If we 
h 

remove the hole-hole components, php and the particle-particle components, 

(1-p)h(l-p) we are left with 

h =ph (1-p )+ (1-p )hp (3.11) 

80 that 

Ji,,;,·= O=hn '" (3.12) 

~ =~ and ~ =h,,p 
Since we now include only the physically relevant changes ii> is orthogonal to its 

time derivative . 

<tJ :t l<P>=-i<il>lph(1-p)+(1-p)hpl~>=O (3.13) 

With this evolution operator, the static <Pw is a solution to the evolution equa­

tion 
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.8 -'1.-1 il>HF>=h I il'HF>=O 8t 

We can now evalute the other term from the action, 

<it Ii :t lit>=i[ -¥lfti.c··c)+c··b' +<i! .J+>+<c··.A c .J+> 

+}2( <i! .J+c . .J+>+<c . .J+c . .J+> 

(3.14) 

(3.15) 

+<il> 11-c··c +c··l+c .1+ +c··1 c .1+ +}2(c··1)2+}2(c ·.A+)2 1 ~> J 

We now know the correct evolution operator to use, so 

i I 4>=h l ii» 

ia;t=[ii.~+] ; and ~=[h,a1J 
~=[Ji . .A+] 

Therefore, the net result is 

<itli :t lit>=i[-}2fti.c··c)+c··e]+(1-c··c)<h>+<ii c ·A+> 

+<c··.A ii>+<c· ·.A ii c·.A+>+}2<li(c·A+)2>+}2<(c··.A)2ii:» 

(3 .16) 

(3 .17) 

We can notice that after the first two terms, the right-hand side looks precisely 

like <it l HI ir> but with H replaced by h. 

Now we want to minimize the action by varying c~ but remembering that 

the total derivatives, such as :t (c··c) do not vary since the endpoints are .fixed. 

(3.18) 

and 

.A-<+li !t l+>=iC.Ph-c:Jlh <ii>+~ii>+~ii c·A+> 
6c:Jlh u 

(3.19) 

+*(~c··.A ii>+<c··.A ~ii>) 

Since the stability of the TDHF path is determined by the curvature of the 

energy surface normal to the path. another modification of the ordinary RPA 

theory is needed. We require that the initial perturbation of il> be orthogonal to 
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the TDHF path. (An initial perturbation along the path would be equivalent to a 

shift in time.) The direction of the path is given by :t 4J. so that !Ji is also orthog-

onal to the path and the perturbed wavefunction "-¥ is orthogonal to :t !Ji . 

(3.20) 

Only the c·A+ terms contribute (See Appendix Bl for details.) The orthogonality 

condition on "-¥ becomes 

(3.21) 

These conditions are most simply imposed by the method of LaGrange multi-

pliers, adding the terms 

(3 .22) 

to the action. The final result for the variation of the action with this constraint 

is 

ii:Jlh =-cl1h ( <H>-<.h >) + <Ap.i.. (H -h)>+<Ap.i.. (H -h)c ·A+> 
+*[~c··A(H-h)>+<c··A ~(H-h)>]-~ 

The evaluation of these expectation values in Appendix Bl gives the result 

where the matrix 

Ap,."J''h'=hpp•6M·-6ppJtn.•11. + Vph'hp' 

is hermitian and the matrix 

is symmetric. 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

We can see that for a static HF solution with '7n=O, hpp·=e,,6pp·· and 

ht..·1r. =s1r.6M' where the e's are the single particle energies; this equation reduces 

to the usual RPA equation. To test the stability (or measure the curvature of the 

energy surface) at a particular point along the TDHF path of~. we must imagine 



- 105 -

suspending the evolution of q, and studying the motion of '-Ir constrained to be 

perpendicular to this frozen direction of motion for cl> . Thus A , B, and h depend 

on the TDHF wavefunction cl> and vary from point to point in parameter space. 

However, while testing the hypothetical motion of '-Ir in a particular direction, at 

a particular point these are constant. Note that we are only able to equate 

choosing a particular point in parameter space with freezing the time evolution 

of~. A, B, and~ because we have chosen the correct evolution operator h to 

isolate only physically relevant changes. This means that Eq. (3.21) becomes 

(3.27) 

for all times t in the motion of '-Ir and any particular time we choose to freeze the 

motion of If>, tF. Therefore, 

(3 .28) 

al.so and we can solve for A. by multiplying Eq. (3 .23) by~ and summing over 

ph . This gives 

+~(tF)Bph;p'h'(tF)c;.h' (t )] 

and substituting>.. back into Eq. (3.23) gives 

where 

~
~h;2he 

p Jllt.;p2h2=6.PP26'M2- E 11.p.,, .. ~.h' 
'h' 

(3 .29) 

(3 .30) 

(3.31) 

We can put this equation into a more elegant form by noticing that P is hermi-

ti.an and that it is a projector off the TDHF path, i.e. 

(3.32) 

We can write the equation as 
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ii:,m= ~ [~;p'h'cp'h'+B,m;p 'h'c;.h . ] (3 .33) 
p'h' 

where A=PAP is hermitian and B=PBP• is symmetric, just like the RPA 

matrices A and B. 

We look for periodic solutions by setting 

C,m ( t) =X,m e -ir.it + Y;., e Hr.it 

and assuming r..> is real. Equating terms with e -ir.it gives 

CJXpn = ~ [~;p'h'x;,'h'+B,m;p·h·Yp~·] 
p'h' 

and equating terms with e +ic.it gives 

-GJY.Ph = ~ [~;p'h' ~·h.+ B.Ph'3''h'x;'h ' ] 
p'h' 

In the usual RPA matrix notation. these equations are written. 

"'rn=[_~. -~·l m 

(3 .34) 

(3 .35) 

(3.36) 

(3 .37) 

If all the eigenvalues r..> are real, then the TDHF path for ~ lies in a valley and the 

path is stable. Once again larger I r..>j imply a more sharply confined path. 

Although a specific evolution operator h was chosen to facilitate the deriva-

tion of these equations, we would suspect that unitary transformations among 

particles or among holes would not change the eigenvalues, e.>. In Appendix B2 

we show that these transformations would result merely in a similarity transfer-

mation of the matrix 

I ~. ~.1 -B -A 

and thus, we prove that the eigenvalues are not changed. This is important 

because the time evolution can still be defined merely by the particle-hole and 

hole-particle elements, h,,n and Ii,,,,, as in TDHF. Therefore, we will not need to 

evolve any additional wavefunctions or parameters to do the stability analysis . 
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Section 4: TDHF for the SU(3) Model 

To test our ideas about stability, we apply them to an exactly soluble model. 

We consider the SU(3) generalization (LI 70, HOL 74) of the familiar SU( 2) (Lip­

kin) model (LIP 65) . Although the TDHF approximation for SU(2) has be en invcs-

tigated in some detail (KRI 77), it is not sufficiently complex for our purposes. 

There is only one collective coordinate and associated velocity (the rotation 

angles ~. If') and hence, no collective degrees or freedom exist normal to the 

TDHF path. 

The SU(3) model consists of N distinguishable identical particles, labeled by 

the index n. each of which can be in three single-particle states having energy 

~i . The Hamiltonian is 

(4. 1) 

where Vti is the strength of the two-body interaction between states k and l . 

V~ = VUc and Y.t.t: = 0 (4.2) 

with 

(4.3) 

The operators a+ and a are creation and annihilation operators so that each 

term of ~ takes a particle, n, out of state l and into state k and each ~ 

counts the particles in state k . 

We want to write a general collective determinant, i.e .. in which all particles 

behave identically. We define new creation, annihilation operators a+, a by 

(4.4) 

where A is a unitary matrix independent of n . Now a.,! 1 creates the occupied 

TDHF orbital; a.,!2 and a.,!3 create the remaining two particle orbitals . Thus, a 

general collective determinant is written 

(4.5) 
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and the matrix elements AtJ determine the actual occupied and unoccupied 

states. Since these A 's may be complex, six parameters would be required to 

completely define the TDHF orbital; however, since both wavefunctions (created 

by a+ or ex+) are normalized and the overall phase can be ignored, we are left 

with four parameters needed to define the TDHF state . 

Since the operators a+ are in a fixed basis, the time dependence of the 

operators a+ and ultimately of the TDHF state is contained completely in the 

matrix elements of A . Therefore, the TDHF equation governing the evolution of 4> 

must be transformed into equations governing the evolution of the matrix ele-

ments of A and the parameters used to characterize A . The TDHF equations are 

.B h 
"'wn= rfJn . (4.6) 

where h is a one-body operator 

h=~"*'~G\'.~G\'.ni (4.7) 
l:;l n 

The matrix elements ~ are independent of n because the particles are identi-

cal. We write the TDHF equation in terms of the a+•s as 

(4.8) 

and 

hrpn =~~~cxri·ka'.n 'lcx,!1 I O>=~h.t1~ IO> (4.9) 
l:;l n ' J: 

Therefore, the equation for the operators a+ becomes 

. . + ""'"- + 'l an 1 = .LrU CXJ1A: • (4.10) 

" We know that the time dependence of ex is contained completely in the matrix A . 

(4.11) 

Th.us, if we define a matrix 

(4.12) 

we can write Eq. (4.10) as 
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iT it =./1t; 1 (4.1 3) 

We can easily show that iT i:; herrnltia...""l., just ash is hermitian. 

If we igr1ore the winding phase, given by tht · pw·ely imaginary T, 1, '""e tgs.:n 

need just 4 parameters for the two complex equations with k = 2 or 3. For our 

time-dependent generalization of the RPA theory, we have shown that we can 

ignore hole-hole and particle-particle components of the evolution operator, T 11 , 

T22. TP/:3 and T33. Therefore, throughout the calculation we need only the four 

parameters used for a normalized general TDHF orbital (ignoring the overall 

phase). Using the matrix elements of h , which are calculated in Appendix B3, 

the TDHF equations can be written as two equations for matrix elements of A : 

(4. 14) 

for j =2,3. 

We choose, for our model Hamiltonian, equal level spacing (e 1 =-e, e2=0 , and 

e3 =e) and equal interaction strengths (Vkl= ~ for k~l). We choose to 

parameterize the matrix A in terms of four rotation angles 1'1."'2,1Jl1, and 1/12 and 

write A as 

C0~1 

A= co~sim~1e "'"°'11 

sin~s~ 1 e -i1i! 

cos~sin1' 1 e •ti 

1+cos2~(co~1-1) 
sin~cos"'2( cos1'1-1)e •C?i-"'2> 

(4.15) 

-simj2sin1' 1 e '"'2 

sin"'2cos1'2(co~1 -1)e -iC'fii--12) 

1 + ~in21'2( cos1'1-1) 

Note that this A is defined to be the inverse of the transformation matrix in (KRI 

77) . So for ,,2 =0 this choice results in the same definitions : my 1'1 is his a.., my 1/11 

is his 1/J. The physical meaning of the "coordinates" ~ 1 and ~2 is quite clear. 

Since we can easily confirm that A is unitary in Eq. (4.15), we can write the occu-

pied TDHF orbital 

(4 .16) 
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Therefore, the probability of finding n in the first level is cos2~2 • in the second 

level is cos2~sin2~1 and in the third level is sin~2sin2~ 1 . Since all particles 

behave the same in the collective state, multiplying the above probabilities by 

the number of particles, N, gives the mean number of particles in each level for 

the TDHF state ii> (in agreement with<~> as calculated in Appendix B3) . The 

meaning of the "associated velocities" 'f/11 and 'f/12 is less clear but we can see from 

the evolution equations following, that 1/11=1/12=0 will imply ~1=~2=0. 

In Appendix B4 we transform the TDHF equations for the matrix elements of 

A into four coupled nonlinear first-order differential equations for the four 

angles . 

,,P1 =-t(l +x[ cos2'f/11(-cos~1+cos~~in2~1)+cos2'f/12 sin2~2sin2~1 
-cos2('¥'1-lt2) sin2~sin~1 ]) 

,,P2 =-t(2+x[cos2'f'1 cos~sin~1 +cos2l'2(-cos2~1+sin~sin2~1 ) 
~os2(l'1 -"2) cos~sin~i]) 

(4.17) 

Note that for ~=O these agree with (KRI 77) 's TDHF equations. Here xis the 

usual strength parameter 

x=- V(N-1) . 
t 

The determinant characterized by these four angles has a total energy 

H(~1.""2.l'1.'Yt2)=N e(sin2""2sin~1 -cos2~1-xsin2~1 
[ cos~1 ( cos2~cos2'f/11 +sin2""2cos2'f/12) 

+co~sin2~2sin2~1cos2( 1/11-1'2)]) 

(4.18) 

(4.19) 

(see Appendix B4). The TDHF evolution of ii> must conserve energy and substitu-

8H 
lion of the TDHF equations for the four angles into 8t shows that indeed, 
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a; =O. We can also notice that for x positive, an attractive potential between 

particles in different states, the minimum energy for a given '?9 1, '?92 occurs at 

1/;1=1/;2=0. Thus, H('t9 1,'t92 ,0,0) can be viewed as the potential energy and we can 

orient ourselves by following the position of the TDHF state, '?91 and '?92 on a con­

tour plot of the potential energy surface . 
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Section 5: TDRPA for the SU(3) Model 

To apply our ideas for a time-dependent generalization of the RPA theory, 

we must cast our general equations (3.30-3.33) into the specific form suitable for 

this SU(3) model. Thus, a normally occupied state, previously denoted by h , will 

now be denoted by a particle n in state 1. A normally unoccupied state, previ­

ously p, will now be a particle n in state a=2,3. Thus, our particle-hole creation 

operator ~=a7,+~ . now becomes Knai=a.taan 1 and its adjoint~ now becomes 

~la· Our particle-hole occupation numbers, cp11,. become Cnal• or dropping the 

irrelevant 1, Cna· The previous sums over p and h now become sums over n and 

a. Thus, our perturbed state becomes 

I i'>=1]ffexp(})naatiatx.n i) l 4>> (5.1) 
fta 

with the TDHF state 

(5.2) 

Of course, for jir> to also be a collective state, all particles must behave identi-

cally and Cna must be independent of n, i.e . Cna= -Jica where C11=~cna · This res­

" 
triction on the perturbation of I ir> will be used only after the equations have 

been solved. 'We now need only a prescription for 11.ph in order to write down the 

TDRPA equations for the SU(3) model. 

Before h,,A=~=<A,,hh> . Now this equation becomes 

(5.3) 

Since all particles, n, are identical in our full Hamiltonian H, these hnai must 

also be independent of n and are written hai· The term <Knia(H-h)> vanishes 

again just like ~ (H -h)> and the bole-hole and particle-particle components 

of h must vanish. With these substitutions, the TDRPA equations for cna become 



- 113 -

Wna= l; Cn·a.C-Onn•Oua'( <H>-<h > )+<Kn111(H-h.)Kn,·11·1) (5.4) 
n'a' 

After the evaluation of these expectation values, as discussed in Appendix B3, we 

get 

where 

and 

.Anu;n•a·=Onn·(hua'-Oaa·hu)+ Ya1111·(1-0nn·) 

Bn.a~·u= Vaa'll ( 1-0nn•) 

"""' " . ,, V*Pnq = ~2Vi;~A,1~1\q 
ij 

hw = l;A..t Atr + l; 2 Vii ( N -1)Aj1 At1 A;A: ~ =h~ 
( 1J 

(5.5) 

(5.6) 

(5.7) 

Because the n dependence of the matrices A and B is of the simple forms 1 or 

Onn· we can rewrite the above equation, using Ca as 

Wna= l;(h=·-Oaa'h u-Ycrua' )cnu+ Ycr1 la' Ca' 
a' 

+ 2; (-Vcr,,.u)c:a' + 2; Ycra·11 c; -Mai . 
,,. rt 

(5.8) 

With the equation in this form, we see that all the coupling between different n's 

occurs in the collective terms Cv and c;. 
The constraint l;~(tF)c,ph(t)=O now becomes 

ph 

Lhia(t.P) Ccr(t )=O 
CJ 

Just as in the general case, we solve for >.by 

CJ 

(5.9) 

(5.10) 

We find the expression for C,, by adding the equations for each n. Thus, we get 

(5.11) 

With 
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"' ( ) . Aov=hoo·-~orth 11 + Vol la' N -1 =Aa·a (5.12) 

and Baa·= Yaa'll (N-l)=Ba·u 

The matrices A and B have the usual RPA symmetries, A=A+ and B=BTr. Using 

the constraint from Eq. (5.10) to find >.in Eq. (5 .11) gives 

(5.13) 

0 

Now to solve the TDRPA equations, we .first solve the collective equation for 

ta. 

(5.14) 

where h 2=I;h 1uh01 . Because there are only two values for CT, the constraint 
f1 

l;h 1uCu can be used to solve for 
f1 

(5.15) 

This fortunate circumstance occurs because the one-body HF Hamiltonian cou-

ples the hole state to one linear combination of our two particle states. Excita-

tion of the other linear combination is the single RPA mode transverse to the 

TDHF path whose stability we are testing. Thus, the equation for u=2 is 

(5.16) 

where 

h31h13 h21h13 h1i!l-s1 h21h12 
A= h2 ~- h2 A32- h2 ~s+ h2 Ass (5.17) 

(which is real) and 

h31h1s h21h1s h21h1s hl1hrn 
B= h 2 B22- h 2 Bs2- h 2 B2li3+ h:uh2 Bss (5.18) 

(which is complex) . 

We now look for periodic solutions 

(5.19) 

With c.> real. When we separately equate terms With e """"'' and terms with e +ic.it , 
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we get 

~~]=[-~. -~·]~:] (5 .20) 

Therefore, our collective mode has a frequency(,,) given by setting 

IA-r.> B I j-s• -A ·-r.> =O . (5 .21) 

Notice that a real frequency r.> is only possible for A real, as it is in this case, so 

(5 .22) 

Of course, we could just as well have substituted for C2 in the equation for C3 . 

This would give 

(5.23) 

with 

(5.24) 

Thus, we would get the same value for r,;2 verifying that we have found a normal 

mode . This is the one collective mode normal to the TDHF path. 

Of course, the matrix equation above also has the trivial solution, X2= J2=0 

meaning C2=C8 =0. This also means that A=O and the constraint ~h10C0=0 
fl 

becomes trivial. Now we can look back to our equations for the individual Cna 

and try noncollective perturbations for which cACJ is dependent on n and ~cn0=0 
n 

with cnCJJl!O. With C"=O our equations for cna become uncoupled, i.e. single-

particle like. The equations are 

(5.25) 

.... . 
A

1

ao'=hCJa'-6ar1h11-Vcruo'=A 
1

a'a (5.26) 

B'11o'=-Vfla'l1 =B'u'a. 

Making the periodic assumption and separating terms as before gives modes 

with frequencies r.> given by 
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(5.27) 

where 

(5.28) 

and 

IA' B'I E=det B'• A'• (5.29) 

Thus, we get two values for (,)2 for the two normal modes of noncollective oscilla-

ti.ens. However, the exact Hamiltonian H, which treats all particles identically, 

would not mix these states with any collective state. This means that this insta-

bility will not be apparent in a comparison of TDHF with the exact evolution of a 

collective state. This instability will instead cause doubts about the appropriate-

ness of a collective state description of the many-body wavefunction. 
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Section 6; Exact Solution for the SU(3) Model 

We choose a two-body Hamiltonian which is exactly soluble (Ll 70) 

(6.1) 

Yv= vji ' V-a =O ' (6.2) 

~ = L: Cln~ Cln; ' 
n 

0,: creates a particle n in state i, and f1ni annihilates a particle n from state i. 

Applying the usual fermion anti-commutation rules, we get 

(6.3) 

and the nine operators ~ are generators for U(3) . Remembering number con­

servation, L:~=N, this becomes SU(3) . 
( 

In order to find the eigenstates and eigenvalues to solve the problem 

exactly, we need to find a complete set of basis states. Group theoretic methods 

have been published (LI 70) which derive this basis set, but for our purposes 

physical intuition will suffice. First, we must remember that we are only 

interested in collective states, that is, states with all particles, n, behaving the 

same. Therefore, we need not worry about each particle and its mean occupa-

tion of each level, but only the mean number of particles in each level. This is 

analogous to Krieger's (KRI 77) using only states with J=*N like the state with N 
in lowest level. In our case, H will not mix a collective state like this state with 

any noncollective states since H treats all particles alike . 

Thus, a natural basis can be written jpq >meaning p particles in the second 

level, q in the third level and, of course, N-p-q in the first level. To calculate 

the number of basis states lpq > for a given N, we can pick any number from 0 

to N for p and then pick any number from 0 to ,N-p for q. The number in the 

first level is then determined, N-p-q . Thus, for q we have N-p + 1 choices 
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after p is chosen, with N + 1 choices for p. Thus, the number of states NS is 

NS= f (N+l-p)= (N+1)(N+2) 
p=O 2 

(6.4) 

that is, the number of choices for p times the average number of choices for q, 

We define 

IOO>=TI0.:1 IO> . (6.5) 
n 

so that I 00> is all N particles in the lowest level. We can write the general basis 

state 

jpq>=c(p,q)~ic;gi IOO> (6.6) 

with c (p ,q) a normalizing constant since ~ is the collective operator to move a 

particle from state j to state i . To caiculate c (p. q) or any of the other expecta­

tion values we will need (<G\i> and <H>), we need to learn how to manipulate 

these ~·s to arbitrary powers. (Note that since [~i.~i]=O the ~i's in Eq. 

(6.6) can all be grouped together as can the ~i's.) For q =O these states jpO> 

are identical to the basis states of (KRI 77) since ~i is his J +· 

We know that ~IOO>=O unless j=l and G11 jOO>=NIOO>. Therefore, to 

evaluate ~; jpq >, we can commute the ~ through G2 i p times, and through G3 i 

q times, collecting G21 's and G:n's to the left and moving the other ~ 's toward 

the right. For instance, to verity the meaning o! the states above, we need to 

show G22 jpq >=p jpq > and Gss jpq >=q I qp >. From the commutation relation 

derived earlier we get 

(6.7) 

and therefore 

(6.8) 

Similarly, 



so 

For ~2 we get 

and 

Therefore, 

Similar relations show that 

and 
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Gu lpq >=(N-p -q) lpq > 

[Gss.~1 ]=O 

[Gss.G3iJ=qGg1 

Gss jpq >=q Jpq > 

(6.9) 

(6.10) 

(6 .11) 

(6 .12) 

(6 .13) 

(6.14) 

(6 .15) 

Thus, we have chosen our basis to be eigenstates of these number operators 

Ga;. Since Ga: lpq > was proportional to lpq > we didn't need to evaluate c (p ,q) 

yet. However, for the other elements of ~· we need to know c(p,q); for 

instance 

~ lpq>= c(p,q) lp+l,q> (6.16) 1 c(p+l,q) 
Before finishing these calculations, we must evaluate all the other ~ jpq >. By a 

similar repeated application of the commutation rule in Eq. (6.3). we calculate 

the following commutators: 

[G11.G11 ]=-p~1 

[~.Gti]=p~l 

[Gss.G11]=0 

(Gu.G§1 ]=-q~1 

[~.G§1]=0 

[Gss.G§1 ]=qGg1 

[G12.G1.J=p~11 (G11-G22)-p(p-l)G11-1 · 

( G13,G§1 ]=qG'g}1 (Gu-Gss)-q (q-1)Gg}1 

(G1s.G11 ]=-pG111~ [G12.G!1 ]=-qG!l1Gs2 

[Gs2.G!1 ]=p~1-1 Gs1 [~.GK1 ]=q~1G!1 1 

(6.17) 



[~lo~i)=O 

[Galo~1 ]=O 

(~3.~1]=0 
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[ G~n. Ggi)=O 

[~1.GgiJ=O 

[ Gs2. Ggi)=O 

These relations then give net results for the action on the states lpq > of 

Gu IFq >=(N-p -q) jpq > 
G22 IFq >=p jpq > 

Gas jpq >=q lpq > 

G I - c (p I q) ( (p )) I 12 pq>- c(p-l,q}p N-q- -1 p-1,q> 

G21lpq>= ~(p .f)) lp+l.q> c + ,q 

G13lpq>= c~~:.1) q(N-(q-1)-p) jp.q-1> 

G jpq>= c(p,q) jp,q+1> 
31 c (p ,q +1) 

G lpq>= c(p,q) qlp+l.q-1> 23 c(p+l,q-1) 

G jpq>= c(p.q) p lp-1 q+l> 32 c(p-1 ,q+l) I 

(6.18) 

We can calculate c (p ,q) by a repeated application of these rules to evaluate 

<OOI Gf3~2~1Gg1 IOO>. Thus 

p!(N-q)! 
Gf2Gt1G§1 lOO>= (N-p-q}! G81 IOO> 

A similar relation for Gf3 resulting in a factor (Z~\! gives 

I I N!p!q! 
<00 GfaG'1'2 Gl1 Gg1 00>= (N-p -q )! 

Substituting into the previous Eqs. (6.18), the net result is 

G12 lpq >=-..Ip (N-q-p + 1) lp-1,q > 
Gislpq >=-..lq(N-q-p +1) lp,q-1> 

~i lpq >=-..l(P + l)(N-p -q) IP+ l ,q > 
Gs1 lpq >=-..l(q + 1)(N-p-q) IF ,q + 1> 

G23jpq>=-..l(p+1)q lp+l,q-1> 

G32jpq>=-..l(q+l)p lp-1.q+l> 

(6.19) 

(6.20) 

(6.21) 

Now we can immediately write down the one-body density matrix elements 

<p'q' IPv lpq>=i;-<p'q' I G"' lpq> (6.22) 
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for each ij by writing the above factors and appropriate delta functions . By set-

ting q=O andp=l/2N+m, G,a1 agrees with (KRI 77)'s J+ and G22 agrees with his 

L;flp+flp, although there is a misprint in his Eq. 2.12. We must look to his Eq. 2.14 
p 

1 N 
to kee that Eq. 2.12 should be ( z+ m ~Omm· . 

Now we can calculate expectation values of H and thus, eigenvalues and 

eigenstates of H. We need GJ acting on Jpq >; that is, two applications of the 

rules in Eq. (6.21) . Thus, with e1 =-e, e2=0, e3=+e and Vv = f(l-oii ), the result is 

<p'q' 1Hjpq>=e(-N+p+2q)6pp·Oqq· +~ 

where 

A=v'p (p-l)(N-p-q +l)(N-p-q +2)6p-2,p' Oqq' 

+...J(p + l)(p +2)(N-p-q )(N-p-q-1)6p+2.p' Oqq' 

+...Jq (q-l)(N-p-q + 1)(N-p -q +2)6pp· 6q-2,q· 

+...J(q + l)(q +2)(N-p-q )(N-q -p-l)opp' 6q+2,q· 

+...J(p +l)(p +2)q (q -l)op+2.p · oq-24 

+...J(q + l)(q +2)p (p-l)op-2,p' 6q+24 

(6 .23) 

(6 .24) 

H is hermitian, in fact, with the choice made for Vi.i and phase of c (p ,q), it is 

real and symmetric . To make this more apparent, we can rewrite some of the 

terms, for instance p +2=p' as p =p' -2. Now switching p with p' and q with q ' 

obviously leaves A unchanged. 

For any given number of particles N we can set up the complete basis 

states, write down the matrix elements of H and then diagonalize H to find its 

eigenvalues (real) and its eigenvectors (real and orthogonal) . For even a 

moderately large N the dimensions of H will be very large (greater than ~
4

) . 

However, H connects only states with Ap=0,+-2 and Aq=0,±2 which makes the 

problem easier. First , we group states with p ,q even; p even, q odd; p odd, q 

even; and p ,q odd. This means that <H> becomes block diagonal containing 4 
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blocks which can be diagonalized separately, each approximately 1/16 the size 

of the full <H>. Regardless of the size of N, there can be no more than 7 non-

zero elements in any row or column - all quite close to the diagonal for many 

reasonable schemes of ordering the states. For this kind of sparse matrix, 

' the standard routines for eigenvalues and eigenvectors of a matrix work very 

well and very quickly. 

Eigenvalues are labeled e A and eigenvectors I>..> . An arbitrary state can be 

expanded 

l'!Jt(O)>=~ l>-><>..l,P(O)> 
A 

and its time dependence is straightforward. 

l,P(t )>=~I >..>exp(-ie>.t)<>.. !if(O)> 
A 

Now for any given wavefunction, we can follow its evolution exactly. 

(6 .25) 

(6.26) 
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Section 7: How to Compare Exact and TDHF Calculations 

Our purpose is, of course, to compare with the Hartree-Fock approximation. 

At this point, we can compare our ground state energy, the smallest eA, with the 

eqergy of the Hartree-Fock state (and perhaps higher states to periodic TDHF 

solutions if these can be found), but we want to compare the evolution of an 

arbitrary TDHF state to its exact evolution .. To do this, we must expand an arbi-

trary TDHF state in terms of these eigenvectors and, secondly, we must identify 

the 4 parameters characterizing a TDHF state from an arbitrary state. 

Although the eventual goal is to expand a TDHF state 11/1> in terms of the 

eigenstates IX>; these are not known yet and are different for each N,V 

different . Therefore, we expand 11/1> in our basis states lpq >; 

lv>=~lpq><pq 11/1> (7.1) 
pq 

Our general TDHF state was defined as 

(7.2) 

a general determinantal state, where the states created by a are linear combi-

nations of the three levels, an obvious set of basis states . Thus, using the 

defintions of a and lpq >. we get 

<pq 11/1>=<0ITICl.n1Gfo~2fl( f;Ai'iaJi) I O>c (p ,q) 
n n' \=l 

We need to expand IT~Ai'ia;., . Thus, we get a general term of the structure 
n' i 

(7.3) 

(A{1)N-n-m(A{2)n(At5)m TI Cl.nt1fICI.nt2fICJ.nt3 , (7.4) 
(N-n-m) (n) (m) 

where the number in parantheses under the product is the nwnber of n' 's in the 

product. 

The difierent choices or particles for each level give terms of identical 

structure. First, we need to choose from N particles N-n -m to be in the first 

level; this gives the standard binomial coefficient (N --n _:;! ( n +m) ! . Then 
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with n+m particles left, we need to choose n for the second level - (n+m)! 
n!m! 

choices. The net result is then 

<nq I"''>= ~ (A+ )N--n-m(A + )n(A + )m N! I (7.5) 
r Y' n":'m 11 12 13 (N-n-m)!n!m! 

n+m<N 

where 

/=<OIIT1Zn1G¥sGuaP IT aJ1ITU.:.2IlaJs IO> (7.6) 
n (N--n-m) (n) (m) 

G12= ~aJ· i!Zn" 2 commutes with u.n+: 1 and acts on CJ.nt2 . Terms with n" #-n' give 
n" 

zero since !Jn" 2 10>=0. Terms n" =n' leave aJ 1 . Since there are n factors of flnt 2 , 

there will be n terms left, each with one less G12, one less CJ.n· 2 and one more 

aJ 1 • Multiplying all the G12 through gives 

dpnn!<OITI0n1G¥s TI a.J1TICJ.nts !O> (7.7) 
n (N-m) (m) 

The G15's behave similar to the G12's leaving 

(7.8) 

The net result for <pq 11/1> is 

<pq 11/1>=( (N-p ~~ )!p!q ! )ff(A;1 )N-P-q(A~1 )1'(Ai1 )q (7. 9) 

This can be checked quite simply to be sure <1/1 lpq ><pq 11/1>=1 . Note also that if 

we constrain q =O in Eq. (7.9), the result agrees with Krieger's results for SU(2) 

(KRI 77). 

Now that we can expand any TDHF state in terms of our basis states for the 

exact solution, we can evolve any TDHF state exactly. We need, however, to com-

pare this exact solution with the TDHF evolution. Since the TDHF states form 

only a restricted set of many-body wavefunctions, namely determinantal 

wavefunctions, there will be no way to uniquely match wavefunctions in general. 

In particular the wavefunctions themselves can not be matched since for a TDHF 

state 1/1( t) 
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<pq 11/t(t)>rt ~ <pq IX>exp(-ie>.t)<Xlp'q'><p'q' 11/t(D)> 
'>qJ'q' 

(7.10) 

The TDHF state (or its expansion parameters) depends only on the 4 parameters 

used to specify An 1. The one-body density matrix Pii =-}<Gt;> for the TDHF 

state also depends only on these 4 parameters piJ=A0 A/1 . We use this one-body 

density matrix to compare to the exact evolution. Of course, the exact < GlJ > 

depends on more than 4 parameters. A general 3 x 3 complex matrix would 

require 18 parameters, an hermitian matrix half of this or 9 parameters, and 

since the Trp=l. we are left with 8 parameters for<~>. This number is reduced 

to 4 for the TDHF state by the condition that for determinantal wavefunctions 

p2=p. 

Thus, there is ambiguity in determining the relevant 4 parameters for com-

parison. We also want to know Tr(p2 -p) for the exact state since the deviation 

from the TDHF value of 0 gives us an idea of the deviation of the exact wavefunc-

tion from a determinantal wavefunction and an idea of the ambiguity involved in 

matching p to determine the 4 parameters. 

Although the choice of which elements to match may vary in specific cases, 

generally, the most physically relevant property of these states is the mean 

occupation of the various levels. Therefore, we want to use the diagonal ele-

ments Pv. to calculate the magnitudes of the An 1 and thus, the parameters ~ 1 

and "'2· (We can also check on some of the numerics involved in the calculation 

by checking Trp=l.) This means that in general, the magnitude of the off-

diagonal elements will not match. To compare the phases relative to the first 

level, we use p 12 and p 13 to calculate the phases 'lf 1 and 1f2, but now the phase of 

p 23 will not match 'lf 1 --1/12 . Therefore, we define 

1'1(exa.ct )=cos-1{v<G11>/ N) 

"'2(ezact )=tan-1( v<Gs:i>/ <G22>) 

1'1(e.:m.ct )=~os-1 (Re[ <G12>/ <G21> ])xSi.gn (Im[ <G12>) 

(7.11) 
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•1J12(exact )=*cos-1(Re[ <G13>/ <Gs1> ])xSign (Im[ <G13>]) 
We also check that 

(7.12) 

Since there are many exact states which result in these same 4 pararne-

ters, the prescription for finding <pq l'lf> can be thought of as finding the unique 

exact state which gives these 4 parameters and the auxilary condition p2-p=O. 

(This state must be unique since we find a unique expansion.) 

We also find this prescription useful to compare our lowest energy eigenvec-

tor to the Hartree-Fock state. Since H mixes states with l:!.p ,t!.q =O, ±2 and G 

mixes states with l:!.p ,l:!.q =0,±1 only the diagonal elements <~> will be nonzero 

for any eigenvector. Thus, the phases of the off-diagonal elements are zero just 

like static HF solutions. We compare ,,.1 and ,,.2 by the prescription in Eq. (7 .11) 

and also compare Tr(p2-p) . Tr(p2-p)(exact)=p~1 -pi2-p~3-1 since pis diagonal. 
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Section 8: TDRPA Results 

For orientation, contours of the energy surface (Eq. ( 4.19) with 1/;1 =1/;2=0) 

are plotted in Figures 8-13 for values of x= .5. 2.5. 5, 10, 20 and 100 (attractive 

forces) . The surface is relatively fiat and featureless for x= .5 but as x increases, 

it develops rather deep valleys and quite a deep minimum. Static HF calcula­

tions can be performed analytically (HOL 74). yielding the position and depth of 

the minimum, as well as saddle points and maxima. For ~ 1. the minimum 

energy lies along the line 'jj1 =O (all particles in the lowest level) and has a value 

E/nE=l. When x increases past 1, the strength of the attraction between 

different levels becomes strong enough to decrease the energy by beginning to 

populate the second level. The position and energy of the minimum are then 

given by 

'jjl =~os-1 ( ~ · 'jj2=0 x . 
1 1 

E/nE=-:i"\x+~-* . 

(B.1) 

At x=3. the potential is strong enough to begin populating the third level also, 

and the minimum moves off the ~2 axis. Its position and energy are then given 

by 

1'1 =sin-1([ 2Tu~3 ]*) ; ~=Micos-1( 3 ) zx-3 
E/nE=-(t+? . 

(B.2) 

The TDHF calculations can be checked by calculating the evolution near this 

minimum in energy. The solutions should then be approximately equal to those 

of the ordinary RPA calculations, which can be solved analytically. Since the 

time-dependent generalization agrees with ordinary RPA theory for static HF 

solutions. these positions can be substituted into Eq. (5.22). The solution 

involves only straightforward but rather messy algebra and trigonometry. We 

are most interested in ~3 where the energy surface has a more interesting 
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topology. In this case, the RPA frequencies are 

( ~2=4( f-3 ±[ ~*) 
£ 3 3 

(8.3) 

Therefore, we expect an average period 

eT- 4rre 
- (c.>++CJ_) • (8.4) 

and beats in the amplitude with a period 

(8.5) 

Table 4 shows the two periods and the beat period for several values of X· Figure 

14 shows that the TDHF solutions do oscillate with these periods . 

Table 4 

Period x=5 x=lO x=20 x=100 

tT+ 0.975 0 .508 0.262 0.054 

tT- 1.519 0.611 0.286 0.055 

eT,, 2.721 3.035 3 .126 3.142 

Figures 15-18 show results for the TDRPA frequencies for several paths to 

compare with our expectations from the contours of the energy surface . Begin-

ning with a case of extreme topography, x=lOO, the first example is not plotted 

in this way although the details of the motion are shown in Figure 26. For this 

path near the minimum, r.>2 is positive and large everywhere. The path is a small 

elipse and ( ~2 varies only between +1.32 x 104 and +1.42 x 104 . Figure 15 
£ 

shows a TDHF path moving down a valley. The frequency is initially negative 

because the motion is from the side of the valley down into it. However, once 

the path begins moving along the valley, the frequency becomes positive and 

large, and it stays positive and large . 

Figure 16 shows a path which is unstable almost everywhere. At this higher 
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energy, Lhe path moves closer to the maxima where the peaks flatten and the 

curvature of the surface is negative . The tew points where the frequency is posi-

tive, mo::'.ly 0n the inne1· loop, cross the ridge closer tc.· the minimwn wher::: the 

curvature of the top of the ridge is positive. Thus , there can be a ridge effect (if 

' the ridgP has a saddle shape) since the direction in which stability is being 

tested changes from across the ridge to along the ridge . 

The next example, Figure 17, shows a path with more nearly equal stable 

and unstable regions . The central right region in the vicinity of the minimum, 

where the curvature of V is positive, has positive frequencies and should be 

stable . The upper right region shows another ridge effect . The path is unstable 

while moving along either side of the ridge, but appears stable briefly as the top 

of the ridge is crossed and the direction of the stability test crosses along the 

top of the ridge . The lower left region shows interesting behavior where two 

paths cross the initial rightward path. The inner loop, lying closer to the 

minimum, is stable but the outer loop isn't. The initial rightward path tests sta-

bility in a different direction and is unstable. Therefore, in the vicinity of the 

inner loop, the surface must have a saddle shape . 

These features persist at other values of x with less drastic topology as seen 

in Figure 18 for x=5. Here, the path is unstable while moving back and forth 

across the valley (at either end), but is stable while moving along the valley. 

Just as for ordinary RPA theory, the values of r,;2 scale like x2 - on the order of 

104 for x= 100 and 25 for x=5. 

Therefore, the value of r,;2 does, indeed, describe the local curvature of the 

potential energy surface in the direction normal to the TDHF path and can 

thereby identify relative minima, ridges, valleys and saddle shapes . In this case, 

we could easily draw contours of the energy surface; however, in more realistic 

cases there are far too many parameters to allow the construction of this kind 
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of energy surface, so the smallest values of (,)2 could prove useful. 

We next compare these TDRPA calculations with exact calculations, first 

checking the HF results. Figure 19 shows that the energies of the exact ground 

states agree quite well for N~15. (Lines are to guide the eye since N is an 

integer.) However, comparing the positions and Tr(p2 -p) for these states gives 

poorer agreement. The trace, shown in Figure 20, shows that none of these 

states looks much like HF (independent particle) states which have Tr=O. How­

ever, the important quantity tor comparison is the position ~1.~ . This com­

parison is made in Figure 21 for x= 5, 10, 20. For x=5, agreement is quite poor. 

As x increases, the agreement gets much better and also seems to agree for 

smaller values of N. For x=lOO, both N=10 and 15 give good agreement with the 

position of the ground state. 

This is a problem because the method of comparing the evolution of TDHF 

and exact states is to compare these angular positions. Indeed, for calculations 

with small x. the exact solution doesn't look like TDHF regardless of the value of 

~. Tb.us, in Figure 22, for x=5, the direction of motion seems to be right when 

r.:}>O and wrong when r.>2<0, but neither of the exact results agrees well with the 

TDHF results . (Notice that the TDHF path moves so slowly relative to the exact, 

that it is drawn for twice as long a time so that it can be seen more clearly.) 

The exact solutions, of course, depend on the number of particles N and 

TDHF is accurate only for large N. Therefore, the agreement could be poor 

because TDHF is a poor approximation to the exact behavior or because N is too 

small to give this limiting behavior for large N. For the SU(2) case (KRI 77), 

N=40 particles could be solved exactly since the number of basis states is pro­

portional to N, and the agreement was very good. In our case, with an extra 

level populated, we would expect to need N>40 to be sure of a similar com­

parison. However, since the number of basis states is proportional to N 2
, we 
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simply can't run N>15 for any length of time . 

From the change in the exact results from N=lD to N=15, the stability 

parameter seems to work. That is. a pr~dic.:Uon of stability re:'mlts in exact soiu­

tipns which approach the TDHF solution as N increases while a predicticm of in­

stability seems to result in an approach to something different than the TDHF 

result. The real test, however, comes from increasing x so that the limit ing 

behavior of the exact solutions for large N can be reached at a smaller value of N 

(as for the static solutions described earlier) . Thus, we look for solutions near 

the minimum, which are always predicted to be stable and increase x until the 

exact solution agrees fairly well with the TDHF solution. Figures 23-26 plot 13-1 

and 13-2 as functions of time for the TDHF solution and two exact solutions N= 10 

and N=15. These show the progression from poor agreement for x=5 to very 

good agreement for a full period in both 13-1 and1J2 for x=lOO withN=15. A plot of 

Tr(p 2-p) in Figure 27 also shows that the exact state in this case is approaching 

an independent particle state with Tr=O. 

For an unstable example at x=100, we test the path from Figure 16. In Fig­

ures 28-30, plots of both 1J1 and~ vs. time and a trajectory plot of 1J 1 vs. ~2 show 

that TDHF is a poor approximation to the exact solution. Figure 31 also shows 

that the Tr(p2-p) climbs quickly to a relatively large value, .6, and then levels off 

- a state far removed from a TDHF state. We also notice that all these results in 

Figures 28-31 don't vary much from N=10 to N=15 so that these calculations 

probably are in the "large N regime" where the exact solutions have reached 

their limiting behavior . 
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Section 9: Summary 

This TDRPA frequency can be used in a qualitative way to get fairly accurate 

ideas of the shape of the energy surface, and might, therefore, prove useful in 

more complex models . It also works well for predicting the reliability of TDHF 

calculations in extreme cases, with x= 100. However, because of the scaling of 

the frequency with x. this means the frequency has only proven reliable for 

I~ $::j100. The motion of the exact solutions as N increases shows that G>2 seems 
£ 

to be a good indicator of the reliability of TDHF calculations in general. How-

ever, even this relatively simple model can't be solved exactly for a large enough 

number of particles to permit quantitative testing of this criterion or the 

development of quantitative ideas about its meaning . The results also suggest 

another possible use for this frequency. Its magnitude might give a qualitative 

idea of the number of particles which can be considered large in a given situa-

Uon. 



-133-

APPENDICES 



- 134 -

Appendix Al: Derivation of the TDHF Equations 

L Variation.al Derivation (KE 76) 

We begin with the definition of the action, 

1 = f d.t<vlih:t -H Iv>. (Al. l) 

and parametrize the many-body wavefunction, v, as a Slater determinant of 

single-particle wavefunctions,1/1;. 

(Al.2) 

where the a; refer to spatial. spin, and isospin nucleon coordinates and A is the 

total number of nucleons. These single-particle wavefunctions will be orthonor-

mal, 

<'ljl, l't/t;> = o;,; . (Al.3) 

The calculation of <v Iv> checks that the many-body wavefunction is normal-

ized. 

(Al.4) 

Each determinant has A! terms so the product has A! terms where the coordi-

nates pair identical single-particle wavefunctions, 

(Al.5) 

The other terms include at least two mismatched wavefunctions, with 

<1/l;.11/11,.;> = 0 ; and thus, do not contribute. Therefore , 

<vlv> = 1 . (Al.6) 

In a similar way, we can rewrite <vlm:t Iv>. As above, this product has 

(A1)2 terms. Of these, A! properly match the single-particle wavefunctions and 

the rest mismatch at least two of them. The derivative of each of the product 

terms can be expressed as a sum involving derivatives of single-particle 

wavefunctions, 
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8 TI B 
;/a.fit . 1/1; = L:i < ihF'l/I; > n .. _1/1, 

' ' J 

(Al .7) 

Tb.us, any of the mismatched terms still have at least one mismatch, with 

<1/li 11/l;f0\>=0, and do not contribute . Each of the A! matched terms gives 

L:<li1 lih:t 11/l;>Il <1/li 11/1,> = L:<'l/I; lih:t 11/1;> 
i , .. ; j 

Tb.us, our net result is 

<irl'ih:t lir>=L:<'l/I; liii.:t 11/1;> I 

; 

(Al.8) 

(Al.9) 

and the variation with respect to 1/1;.will give ih:t 1/1; · We then arrive at the TDHF 

equations in the form 

ih.E_~,,. = 6 <H > 
Bt "' 61/1/ 

(Al.10) 

To see that Eq. (Al.10) results in a mean-field formulation, ih:t 1/1; =h'l/I; , 

with h a one-body operator, we calculate tS~H? for a two-body Hamiltonian. The 
1/11 

generalization for higher-body potentials is straightforward. A two-body Hamil-

tonian can be written in second-quantized notation as, 

H = L;ta.B a.: a.p + * L: Vah6 a: a; a4a7 (Al .11) 
a.P a.fJ'r6 

The greek labels refer to the spatial, spin, and isospin nucleon coordinates; and 

the annihilation and creation operators satisfy the usual fermion anti-

commutation rules: 

fa..1" ,a/~ = laa ,apJ = 0 and ~a: ,a,~ = 6'1.p . 

Since H is hermitian, 

t a/1 = t fla and Va.'16 = Vfla67 = v;6a.B 
With ir a Slater determinant as in Eq. (Al.2), 

<H> = l; tt/$1/(a.)1/I; (p) 
a/Ii 

+ * L: v~ 1/lt(a.)1/l/(f3)[1/l,(-r)1/1;(6)-1/li(o)1/1;(7)] 
~ij 

(Al .12) 

(Al.13) 

(Al.14) 
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The variation of <H> with respect to 'if;; gives 

o<H> 
o'if;;(r;) - ~tap6;k 6at1/l;(f3) + * ~ Va.8?6 (6ik 6at1/l/(f3) + 6;k 6pt1/l/(o..)l x 

apj a,8?6ij 

f1/li ( 1)1/11 ( 6)-1/li ( 6)1/lj b') l . 

= ~tcp1/lk(f3) +~Vc,8?6[~1/l/(f3)1/11(6)]1/lk(/) , 
fJ p-y6 ; 

= ~hcp'l/lk ({3) ; (Al . 15) 
fJ 

where V are the antisymmetrized elements of V, Va.8?6 = Va.8?6- V a,867 : h =t + W : 

and the mean-field potential, W, a one-body operator, is given by 

Wap = ~Varp6[~1/l;lr)1/1;(6)] . (Al.16) 
?6 ; 

For >Ir a Slater determinant, we can write the one-body density matrix, 

(A1.17) 

and rewrite Eq. (Al.16) as 

W aP = ~ Ya1P6 P67 · (Al. 18) 
"'16 

We can also rewrite Eq. (Al.14) for <H> in terms of the mean field and density 

as 

<H > = ~tap Ppa + }2 ~ Ya,8?6 P"'1a P6p • 
aP afJ?'6 

= 1;[tap + *Wap]Ppa · (Al. 19) 
a{J 

Similarly, for a general n-body potential, Va
1 
... anp

1 
.. . fJn ; 

(Al.20) 

where Ya
1 

. .. ~p1 .. . /Jn is completely antisymmetrized with respect to inter-

changes of the cx's and interchanges of the {J's . The variation gives 

(A1.21) 
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Thus the mean field, 

and 

Il. Derivation by Truncation (KO 79a) 

This derivation begins with the definitions of the density matrices. 

Pop = «If I a/aa I '11> , 

P~6 = <it I a;a!aaafJ I '11> • 
etc. 

We once again use a two-body Hamiltonian, as in Eq. (Al.11),so 

<H> = ~tafJP~ + * 2: Va.&?'6 pJ~~Jl . 
afJ afty6 

The exact equation for the evolution of the one-body density is 

ih:t Pop= <'11 J-Halao.+a/aaH I '11> , 

= ~t715<'1t I [a/aa, a.;a6] lit> 
76 

+ * ~ V76c('<'1tl[apaa, a;a/a('a1J I '11> 
76c(' 

Using the anti-commutation rules from Eq. (Al.12), we get 

Therefore, 

ih:t Pop= ~(ta.6 P6TJ-Pa6 f411) + * L;('i1o.6c(' Pt~b6-Pt~~6 Vc6fJ(') 
I le(' 

(Al.22) 

(Al.23) 

(Al .24) 

(Al.25) 

(Al.26) 

(Al.27) 

(Al .28) 

(Al.29) 

{Al .30) 

This equation gives the exact evolution of Pap for a two-body potential in 

terms of a two-body dynamical quantity pZf.r6. Of course , higher-body potentials 

would involve higher-body dynamical quantities . The evolution of p<2> can be 

described by a similar equation involving p(3) (or higher for higher-body poten-
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tials). The hierarchy terminates at p(A) and is equivalent to the exact Schroed-

inger equation. 

We make the independent-particle approximation by saying that the only 

two-body correlation is the necessary antisymmetry, 

(A1.31) 

and we ignore all the higher-body equations. Eq. (Al.31) is true for '11 a Slater 

determinant since a comparison of Eqs. (A1.26) and (A1.14) shows that 

PafJ = "E'lfj(f/)1/1; (a) and PA~~P = "E'lft(a)'!fj(p)[1/I, (7)1/i; (o}-'!f,(o)'!f;(/')]. However, it 
j ~ 

can also be shown that the assumption of Eq. (Al.31) leads to a Slater deter-

minant wavefunction. Setting o = a and summing over a in Eq. (A1 .31) gives 

(Al.32) 
a a Cll a 

Since the number operator is N = "Eaiiaa, "EPaa = <N> =A the total number of 
a a 

particles and <a; Nap> = (A-l)<a;a 11>. Therefore, p2 = p and p is a projector. 

This means it has A eigenvalues of l, the rest zero. Therefore, we can write a 

spectral expansion for Pa.fl , 

Po.p = t1"j(P)1/l;(a.) : 
i=l 

where the functions 'If; span the space of unit eigenvalues Dap1/I; (p) = 'If; (a) and , 
are orthonormal "E'lfj(p)y;,(p) =oil'. The above expression for p is then con­, 
sistent with a Slater determinant many-body wavefunction as in Eq. (Al.2) . 

Substituting this approximation, Eq. (Al.31), into our exact expression gives 

ih:t Pap= "L,(ta6P6P-Pa6tlfl) +l,;(Va.6e(P('6Pcfl-Pa.&P{6~c6fJ(} • 
I le{ 

= I;[ (t al+ W a6)P6p-Pal(t lfJ+ W 6p)] • 
I 

= [ h , p ]o.p : (Al.33) 

where h and W are the same as the previous definitions in Eqs. (Al.15) through 
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(Al.18). 

Similarly for an n-body potential 

we get 

<[a..;a4, v<n>]>= ~! [V4~ · · · °'n/J1 · .. fJ11 PJ:>. · · /J17a2 · .. an 

-p!:>. · · ll26a1 · · · °'n Val ··· ~7fJ2 ··· /Jn] 

(Al. 34) 

(Al.35) 

where V is antisymmetric under permutations of o through the a 's or 

equivalently -y through the P's while keeping the a's or P's in order. For Slater 

determinant wavefunctions p{n) is written as an antisymmetric combination of 

one-body p's , with n! terms. Thus there are n terms where I' is permuted 

through the a 's and the a's remain in the same order. Because of the symmetry 

of V these all give the same result. The (n-1)! permutations of the a's for each 

position of -y form the completely antisymmetric matrix elements V. Therefore, 

<[a..;a4, v<n >]>= (n .:.l)! ~ ( V6a2 · · · °'n/Ji · · · fJ11PfJ17P/Jt!'-2 · · ' P/Jn °'n 

-P6a1 Val · ·· °'n7fJ2 · · · fJ3PfJ~2 ' · ' P/Jn°'n) ' 

=I; ( W 6fJ1PP1r-P6fJ1 W fJ{r) • 
111 

with Win agreement with Eq. (Al.22). Therefore, 

ID. Hartree. Potential and J"ock Potential 

(Al.36) 

(Al.37) 

The traditional Hartree and Fock terms can be calculated by evaluating this 

mean field, W, for a local, Gaililean-invariant two-body potential, V, dependent 

only on the relative position of the particles. 

( .......... ) (r1+r2 rs+r4l ( ...... ( ... ... 1) ( ...... ) Yah6-.Vr 1,r 2 ,r5,r4 =6 
2 2 

16r1-r2-r5-r4 v r 1-r2 (A1.3B) 

Ignoring the spins of the particles, Eq. (Al.18) gives a mean field 
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(Al.39) 

In this first term, the two o functions require r 1=r3 and r 2=r4 . Thus, the 

first term, the direct term, gives 

Un(r1,-ra) = o(r1-ra)f a:r2p(r2.r2)v(r1-T2) . 

= 6(r1-Ta)f dr2p(r2)v(r1-r2) , 

the local Hartree term. 

(Al .40) 

In the second term, the exchange term, the two 6 functions require r 1 =r 4 

(Al .41) 

the nonlocal Fock term. 

IV. Conservation Laws 

We want to show that for a one-body operator the TDHF equations conserve 

any expectation values conserved by the exact H, but that this is not true for 

many-body operators. The time evolution of <0> for the TDHF state is given by 

Ui~O>=~[ 6<0> o<H> - 6<0> o<H> 
at jo. 01/J; (a) o'ljlj(a..) 61/lf(a..) 61/1; (a) 

Using the results from Part I, for a general n-body operator we get 

;n8
6t <O>= ~ ('l/l/(o)04-r1f74·1/J;(o')-1/lj(o)H6'70-r6'1/l;(o')) 

j76cS' 

= ~ [ 0 ,H ]cSctPcS'cS 
cSd' 

=<[D,H]> 

(Al. 42) 

(Al.43) 

where 0 and H are one-body operators defined by Eq. (Al.22) . Of course, the 

exact evolution would be 

B ih'Bf<D>=<[ O,H]> (Al .44) 

Therefore, we must compare these two commutators from Eqs . (Al.43-44) . 

For a one-body operator 0 and an n-body H, the expectation value of the 

commutator is 
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<[ O,H]>= L0f'6<[a.;-a6,H]> 
f'6 

Using Eq. (Al.36) from Part II this gives 

which can be rewritten 

(Al .45) 

(Al.46) 

{Al.47) 

Since O=O for a one-body operator, the TDHF evolution with the one-body h=H 

conserves all expectations of one-body operators which are conserved by the 

exact n-body Hamiltonian, in addition to the energy and normalization. 

However, it will not conserve expectations of many-body operators. For 

instance, with both 0 and H two-body operators and Ji the antisymmetrized ele-

ments of H the commutator is 

1 X' .... 
[ 0 ,H] = 4 L.i Oo.1P17161 (H-r1P27e62a;1 a;1 a61 a;2a62a-Y2 (Al.48) 

-Ji o.lifl20.162a:_2a;2a6iil1 a61 ~i 

where the sum is over all repeated indices. Collecting all a+•s to the left yields 

two-body and three-body pieces. The three-body pieces can be paired by 

defining an antisymrnetrized 0. The expectation values for a Slater determinant 

many-body wavefunction are antisymmetric combinations of one-body density 

matrices. For the two-body pieces, the two pairs of terms can be combined by 

changing 0 to 0. For each three-body piece, the terms form two groups : 4 terms 
.... .... 

have only one p with one index from each 0 and H, while 2 terms have all 3 p 

with one index from each. Within each group the terms are equal because of the 

symmetries of 0 and H. The four terms with only one mixed p give 

(Al.49) 
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Therefore, the difference in expectation values is 

(Al .50) 
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Appendix A2: <H> for the !:kyrme Potential 

I. lntr .xluction and Kinetic Energy Term 

We want to evaluate the energy functional. Hs (r) , defined by 

<H> = J d.r H. (r), for a Skyrrne potential and a Slater determinant wavefunc-

tion. For a Slater determinant wavefunction 

<H> = ~ <i IT Ii> + 2
1 ~<ij I v<2> l ij-ji> (A2.1) 

i \i 

+ .L ~<ijk I y<3> lijk +iki+kiJ-jilc -kji-1lcJ > . 
6 ijk 

where T is the one-body, kinetic energy operator, and v<2> (or vC3>) is the two-

(or three-) body potential. In coordinate space, T(r) = - ! V2 or 

(A2. 2) 

Similarly in coordinate space, the Skyrme potentials are : 

t 
VC2>(r ,r') = t0 (1 + Xo Pa) 6(r) o(r') - T[v; o(r) o(r') + v;. 6(r ') o(f )] (A2.3) 

+ t 2 [Vr o(r)l[Vr·6(r ')] + iWa (a1 + C12) ·[Vr o(r)] x (Vr·o(r ')] , 

or 

v<2>(r1.r{Z.r3,r4) = o(i? - R') v<2>(r,r') . 

.. .. .. ~ .. .. .. r1+r2 .. rs+r4 
where r =r 1-r2 , r' =r3-r4 , R = 

2 
, and R' = 

2 

and 

(A2.4) 

or 

In these expressions: Pa=)?(l+a1·a2 ), the spin-exchange operator, and 0-1 . a2 

are Pauli spin matrices. The rewriting of the expressions above is to make 

Gaililean invariance ( conservation of total momentum ) manifest ; that is, the 

potentials only depend on the relative coordinates and do not change the 
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centers of mass . 

A general state, Ii>. is l9'1(r)>. a four component spinor in spin, isospin 

space. 

(A2.5) 

where 9'i(r,a,,q,) is a wavefunction characterized by position r, spin a-;., and 

isospin qi. and I ai >. I q, > are each two component spinors, in spin and isospin, 

respectively. Since each single-particle state is either a proton or a neutron. 

specifying Ii> also specifies its isospin q, (either p or n ) and the spinors I q,: > 

are eigeruitates of the isospin operator, Qz . ( The more traditional 'T is being 

used for the kinetic energy density.) Therefore. the spinors are orthogonal. 

(A2.6) 

We consider only spin-saturated systems, so th.at for each Ji> as above there is 

a corresponding state j i '> with opposite spin. but with the same isospin. We also 

neglect the spin-orbit force. so the state Ji'> has the same spatial orbital as the 

state Ii>. 

(A2.7) 

where 

<~ I0-1~> = - <-~ I0-1-~> and ip,(r,-~.q,) = 9'i(r.~.q,) . (A2.B) 

These two states. l ~ > and 1-0'.\ >. form a complete set of spin states, so 

Therefore, 

and 

I;t (~)=I(~)+/(~) 
Ac 

I;<a'.\ l<fla,> = 0 I 

Ac 

I;la'.\><a,1=1, 
Ac 

I;<a'.\ I~> = 2 . 
Ac 

(A2.9) 

(A2.10) 

Since ip,(r,ai,q,) is independent of the spin ai, it can be rewritten 9'i(r ,q-;.) and 
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the sum over i can be replaced by a sum over i and a.i . The ability to sum over 

the spinors, lcxi>. without weighting factors from rpi(r,a.i,qi) is a crucial 

simplification in dealing with spin-saturated systems . 

The one-body piece, ~<i IT li>,can be evaluated as follows . 
i 

~<i l T Ii> = ~f d.T1f dr2rpt(r2.qi )<ai I <qi I 6(r i-f2)(-
2
-w. vi1)rpi (r1 .qi) I a.i> I qi> 

' '~ m 

where 

= ~J dr1rpt(r1.qi)(- : v;1)rpi(r1.qi:)<ai la.i><qi lqi> 
ia, m 

= 2~J dr1rpt(r1,qi:)(-
2
1f. v;1)r;i(r ,qi) 

i m 

= 2J dr 2! 41v~i(r , q") 12 

\ 

= f dr:m r(r) 

'T'q(r)=2~ 1Vr;i(f,qi)l 2 and 'T'=Tp+'Tn . 
i with 
q,=q 

D. Two-Body Terms 

(A2 .11) 

(A2 .12) 

Since the two-body potential has been written in terms of the relative coor-
.. .. 

dinates, rand r', and the center of mass coordinates, R and R'; the expectation 

value is calculated by setting r 1 = R+~. r2 = R-W, r5 = R'+~·. and 

r 4 = R ' -~'. Therefore, the integral f d.r1d.r2dr5dr4 becomes f drd.r'cJRdk . 

The integral J dR'6(R-R') can be done by replacing R' by R in the rest of the 

expression. Since none of the terms in v<2> involve any isospin operators. the 

inner product of the isospin spinors can be done very easily for any term. The 

direct terms give <q, I qi ><q; I q; > = 1, and the exchange terms give 

<q;. I q; ><q; I qi> = oq,qr The two-body contribution is evaluated term by term, 

neglecting the spin-orbit term. 

The t0 term from Eq. (A2.3) gives 
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V0='h"Ef drdr'ci.Rr;;t(R+1/il',q,)rp/(R-1/il'.qi )o(r)o(r') (A2 .13) 
ij 

[ "E to( <Cl.t I ai><a; I ai >+x0 <ai I <ai I P 11 I a;.> I ai> )rp;.(R +}2-r ,qi)rpi(R-}2T ,q1 ) -
°"f.aJ 

6q,q1 "E t 0( <ai I ai ><ail a, >+xo<ail <ai !Pa I a;> l ai> )rpi (R-}2T .qi )rpi(R +}W,q.Jl 
°"f.aJ 

The simplest way to evaluate the contribution from P 17 is simply to regard it as a 

(A2.14) 

and 

Since "E <ai I a;.><ai I a;>= 2x2 = 4 and "E <ai: I ai ><a; I a;.>= "E<ai I at> = 2, 
tl.t. aJ °'i a.i tl.t. 

the contribution from the t 0 term is 

Vo='h"Ef d.Tdr'dRr;;t(R+1/il' ,q,)rp/(R-1/il' .q; )1fto( 4+2xo)rtJi (R +1/il ,qi )<Pi (R-1/il ,qi) 
ij 

With 

and 

-6q,q/ o(2+4xo)<Pi (R-'hf ,q; )rp; (R +Y.f ,qi) ]o(r)o (r') . 

= 'hl:if d.i?rpt(R .q;,)rp/(.R .q; )[to(4+2xo)'Pi (R .qi)<P;(.R .q;) 
ij 

-c5q,q/o(2+4xo)rp.JR,q; )rp;(R ,qi)] . 

Pq (R)= "E rpt(R ,q, )<Pi (R .qi)=Z "E rpt(R .q;,)rpi (R .qi) 
i with i wilh 
q,=q q~=q 

p(R)=Pp (R)+Pn (R) . 

Eq. (A2.15) can be written 

Vo='hf &{to(4+2xo)(}?p)2-to(2+4xo)[(}?pp )2+(¥1Pn )2]] , 

= J dH~oJ(1+*xo)(pp+Pn)2-('h+xo)(pi+p~)] . 

= J aR~o~(l-x.o)(pj+p~)+(Z+xo)PpPn] . 

(A2.15) 

(A2.16) 

(A2 . l 7) 
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The ti term from Eq. (A2.3) gives 

Vi= - ~ ~f ctrdr'dRSDt(R+W'.qi)Soj(R-W',q; ){[v;o(r)]o(r')+[v;.o(r')]o(r) )x 
(49',(R+}W,qi)Soj(.R-W .q;)-oq.q

1
2rpi (.R--W.q;)i;P;(R+W.qi)) . (A2.1B) 

Since r and r' are independent variables, integrating by parts twice for each v; 

and v~. gives 

Vi=- i ~f ardr'ctR6(r)6(r')[9't(R+W'.qi)9'j(R--W',q;) ~v;[rpi(.R+W.qi)rp;(.R-W.q; )J 

-26,.q1 v;[i;P, (.R-~ .q; )rp;(R+*7' ,qi)J)+v;.[rp/(R+*7''.qi)rp/(i?-~· .q; )Jx 

~,(i?+}W,q,)9';(A-~ .q; )-20,,,1 1iPi(.R-~.q; )9';(A+~.qi) )] : (A2.19) 

where V2[i;Pi9';] is shorthand for V2[9',9';]=(V2rpi)SD;+2(VSD,)·(Vi;P;)+i;P,;(V2i;P;). and 

VrSDi (R±*7' ,q )=±*VSD, (R ±~.q ). 

Therefore the contribution from t 1 is 

t 1 J .. , 1 .. .. ... .... .. .. .. 2 .. 
Vi=-4ij d.R 4( 'i1[v2i;Pi (R ,qi)SD; (R .q; )-2(V9'i: (R ,q,))· (Vi;Pj (R,q; ))+Soi (R,q,)V i;P;(R .q; )] 

-269.q1( ~[Vlrp,(R .q; )rp; (R ,qi)-2(VSDi (R .q; ))· (Vrp;(R ,q,))+i;P, (R .qj )V2rpj(A .qi)]] 

1...r ne;! • .... • .... ... • ... .. • .. • .. ).,.., • .. 
+ 4l( v-rp, (R ,q,))rpj(R .qj )-2(Vrp, (R ,q,))-(Vrpj (R .q; ))+i;P, (R ,qi Y-9'j (R .q; )]x 

[ 49'i (R ,q.Jrpj(.R ,q1 )-261, 1111iPi(A .q; )rp; (R .q1)]) . (A2.20) 

The sums over i and j can be done, to express this result in terms of densities, 

by defining a current density 

"t " ...... 1" ~ .... j 19 =Im £J rpi(r ,q,)V9'-c (r ,q,) = i £J (rp, v9',-rp, Vrpi 
(~ wUh ( with. 
~~ ~~ 

(A2.21) 

and rearranging the terms in Eq. (A2.20) as follows: 
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(A2.22) 

t 1 f ~fr[ •( .. )"2 .. "2 • .. .. • .. .. Y1=-4 dRL...ij rpi\R.q, v-rp,(R ,q,)+v-rp, (R ,q,)rp, (R ,q,)]rpi(R .q; )rp; (R .q; )x2 
i,i 

-2[rpt(.R ,q,)Vrp,(R ,q,)-rpj(R,qs )Vrp; c.R .qi )+Vrpt(.R ,q, )rp,(R ,q,)-Vrpj(R,qs )rp;(R .q; >1) 

-*6,. 111 ([rpt(.R ,q,)V2rp,(R ,qi )+V2rpt(.R,q,)rp,(R ,qi )]rpj(R .qi )rp;(R .qi)x2 

-2[rpt(R ,q,)Vrp, (R ,qJ )-rpj(R .q1 )VrpJ(R .q")+rp, (R .q; )vrpt(.R ,q,)-rp; (R ,q,.)Vrpj(R .q;) 1]) . 

where the extra factors of two come from terms with i and j switched. With 

p=2I;,t<r ,q,)rp,(r ,q,). 
f. 

~p=2I;(vrpt(r,q,)rp,(r,q,)+rpt(r,q,)Vrp,(r,q,)) . and (A2.23) 
f. 

V2p=2I;[v2rpt(r ,q,)rp, (r .q,)+2vrp,,r .q,)-rp,(r ,q,)+rpt(r,q,)V2rp, (r ,q, )J 

' Therefore, 

~,t(r,q,)vrp,(r,q") = t<vp+2iJ) . 
The contribution from the t 1 term becomes 

v,=-~ J ~[(J!V"p-,-)p-2( {6 (Vp+?fi.f)•+ 1~ (Vp-21:Jl21J 

~[<m2P11-'T1)P11-2[ 116 (vp,+2ij~)2+ 1~ (Vp11-2il11>21J] . 

=-!!._fdR[(YiPV2p-pT--!--IVp 12+;2) 4 4 

~<*1?11V2P11-P,,..,-tivpq 12+;l>J ., 
Doing an integration by parts on l~P 12• 8Ild combining terms gives, 

J .. [t1 3 "t ~ 
Yi= dR t-£-~V2Pn +Pn 'flpp)+ppTn +Pn1"p-2Jp"Jn] 

+1}t-~p V'lpp+Pn V2pn)+ppTp+PnTn -JJ-j~]l 
The contribution from the t 2 term is 

(A2.24) 

(A2.25) 

(A2.26) 
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V2=1h~f drdr'd.i?rp;."(R+1h-;t',q;,)t2Vr6(r)·Vr·6(r')x 
i.j 

[~<a;, la;,><a; la;>rp;.(R+1h-;t,q;,)rp;(R-1h.;t.q;) 
ll(.llj 

-6q(qi ~<a;. la:;><cx; la;.>rp;.(R-W .q;);o;.(R+W.q;,)] , 
ll(O.i 

=1h~f d.Td.T'ctRt26(r)6(r')Vr{Sot(R+W'.qdrp/(R-W'.q; )l 
'! 

[ 4Vr(<,O;.(R+1hT .q;,)<,O; (R-*1 .q; ))-26q,qi Vr (rpi (R-1h.;t .q; )rp; (R+W .q;,))] ' 

= t
2
2 f cti?~1h[Vrp;."(R ,q.;.)rp/(R .q; )-rp;."(R,q,)Vrp/(R .q; )l 

ii 

~ 4(Vrp, (R,q,)r,o;(R .q; )-rp;.(R .q;,)Vr,o; (R .q;) 

= ~ J dil[2pT-Jl(V p + 2if) (ii p-2if) + *~ [ 2p, T. -J>(V P, + f?:if,) (VP, -2ij~) i J 

= f ctR[it1h(pn V2Pp +pp V2pn)+2(pn 'Tp +pp'Tn -2,h Jn)] (A2.27) 

3t2 ~272\ l +1if{1h(pp V2pp +pn V2pn)+2(ppip +pnin -Jp]nJ] 

fil Three-Body Term. and Density-Dependent Two-Body Term 

The three-body contribution can be written quite easily since 

t 96(ri---r2)6(r2 -T3) requires all three particles in the same place . This means 

that three nucleons must be two like nucleons, one spin up and one spin down, 

and an unlike nucleon in either spin state. The density in a particular spin state 

is }',p . Therefore, the total three-body contribution is 

fs[(p; )2Pp +(pi )2Pn ]= ~P +pn)PpPn 

The full calculation verifies this result. 

(A2.2B) 
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Adding all these contributions gives 

Hs(r)= 2':n "r+*to[}« 1-xo)(p:+p~)+(Z+xo)PpPn]+ ~PnPp (A2.29) 

+ 
1
1
6 

(t2-3t i)(pn V2pP +pp V2pn)+ ;
2 

(t2-t i)(pp V2Pn +pn V2pp) 

.!..J ) ~ ~ 1 ) -:-2 72 + 4't1+t2 (pn Tp+Pp'rn -2Jp "Jn)+ f}{t1+3t2 (pp'rp +pn Tn -Jp -Jn) 

The density-dependent two-body potential 

v2= ~1 +P,,)o(r-i'')o(r)p(R)o(R-R') (A2.30) 

is Gaililean-invariant and local with zero range. Its expectation value <v 2> is 

(A2.31) 

"f .. ts .... • ... • ... ... ... ... ... *t d.Rs--P(R)rp, (R ,q,)rp; (R .q; )(6rp, (R ,qi )rp; (R .q; )-6oq,q
1

rp, (R .q; )rp; (R ,qJ) 

since 

(A2.32) 

Therefore, 

<v2>= !.1_f ctRp(R)[( ~2-2:(Pq(R) )2] 
2 2 q 2 

(A2.33) 

tsf ... =4 d.RPPnPp 

It is therefore equivalent to the three-body potential above. 
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Appendix A3: Spatial Discretization of. the Energy Functional 

I. Introduction and Zero-Range Terms 

We solve the TDHF equations by finite difierence methods in coordinate 

space. We obtain the discrete representation of the TDHF Hamiltonian by the 

variation of a discrete approximation to the energy functional with respect to 

the values of the single-particle wavefunctions at the mesh points . This pro­

cedure guarantees a hermitian approximation to the single-particle Hamiltonian 

and would yield exact conservation of the discrete approximation to the energy 

if we could use an evolution operator which is exact in time. We split the energy 

functional, H, into zero-range, Hz; kinetic, Hx; nonlocal, HNL; Yukawa, Hy; and 

Coulomb, He. energies. 

H=Hz+Hx+HNL+Hy+Hc 

Our TDHF equations are 

'11.:t YJ>.q (i ,j ,k )=hv (i,j ,k) where "( ' . k) 6H ""'111,·1· =~,,/,.(' ' k) 
u r>iq .,, ·1 • 

(A3. l) 

(A3.2) 

We use a uniformly-spaced cartesian mesh within a rectangular box. Vanishing 

boundary conditions are imposed outside of this box and the separable approxi­

mation allows some simplification. We use a relatively large mesh spacing (typi­

cally 1 fm in all directions) because of computing time and storage considera-

lions; so we need care to obtain an accurate representation of the energy func-

tional. 

We begin with the wavefunctions at each mesh point TJ>iq (i ,j ,k ) . Since 1/1>.q =O 

outside the box, we must be sure nothing gets too close to the edges. From 

these wavefunctions we calculate the proton and neutron densities at each mesh 

point 

p, (i,j ,k )= ~ 11>.q (i,j ,k) 12 

>. 
(A3.3) 
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Previous work has shown that the zero-range terms, Hz, involving t 0 and t5 

are accurately discretized by a simple trapezoidal approximation to the 

integrals. 

and 

f d.rp:(r)p9 .(11)= ~p:(i .; ,k )p9.(i .j ,k )(.6.x )s 
fJA; 

Therefore, the discretized expression for Hz is 

Hz=~~o[*(l-'X.o)(p:(i,j ,k)+p:(i ,; ,k ))+(2+'X.o)Pp(i,j ,k )Pn (i,j ,k )] 
ii" 

(A3.4) 

(A3.5) 

+ ~p(i,j ,k )+pn(i,j ,k ))pp(i,j ,k )Pn(i,j ,k )] (A3.6) 

Il. Kinetic Energy Term 

The kinetic energy term. Hx. is more difficult because of the gradient 

operator. The treatment here is described in (FL 78) . Instead of first approxi­

mating -r= I VV; j 2 at each mesh point and then summing the contributions, it is 

more accurate to directly approximate the integral of T over each interval and 

sum these contributions . The difference in accuracy is shown by Taylor's expan-

sions in the above reference. This method consists of approximating the 

integral 

where 

with 

ifi+(») 

* I d:T(.:r:>=*(-r++,-><.6.x) 
Ir(-(») 

and 

b - 2 1 
o- ""3 (Az) 

( -1 L 1 
b.t= vs ±27 (Az) 

(A3.7) 

(A3.8) 

(A3.9) 

This approximation is the simplest of the most accurate group of formulas 
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involving only the points at i,i±l. We can see that this is an application of 

Gauss' method, using the two points at i ± .Js with equal weightings = }2, from 

the Taylor expansion for -r. 

b~(i-l)+b 01f(i)+b:1:'¢'(i+l)=±'¢''(i)-(~:;/ ~(i)± (~)
2 

'f/13+ ... 

=±'!f'(i- .Js) with error=order ((~)3) 

Thus in 3D, 

(A3 .10) 

(A3.11) 

Hx= ! ~*[ -ri(i,j ,k )+-ri(i,j ,k )+-r:(i,j ,k )+-r;(i ,j .k )+-rt(i ,j ,k )+-r;(i ,j ,k )] 

where 

ill. Nonlocal Terms 

The nonlocal term HNL is the new feature, so its discretization is described 

in more detail. The fundamental quantity of interest is again the one­

dimensional integral over an interval of±(~). Just as for the kinetic energy, we 

first discretize the integral for each component of -r and j in that direction and 

then perform a simple sum, like for the zero-range terms, in the directions not 

involving the differential operator. 

We look at the general case J dx/g. The Taylor expansion for the integral is 

then 

~+(~) 2 * J =1u=<~>[1u+ <t;' (J 2g+21·g·+1g2)+. ·. Jl:r:=:r:, 
S(-(~) . 

(A3.13) 

Once again we want to use a formula involving only the 3 points i,i±1 . The 

values of r and g at these points can also be expanded. We will find that the best 

formula is similar to that for -r. We define I :1:R!. J (%;. ± (':s) ) and g ±~g (%;. ± (~) ~ 
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and approximate the integral 

(A3.14) 

If we try a simpler formula involving only one combination off's and g's, our 

error will be order ((Ax)2). 

(b-/ (i-l)+bof (i)+b +/ (i+ l))(a._g (i-1)+ao!1 (i )+a+g (i + 1)) (A3.15) 

=(b _+b 0+b +)(a._+a.0+a+)/ (i )g (i) 

+(Az)[(b +-b _)(a._+a.0 +a.+)/ '(i)g (i)+(a.+-a._)(b_+b 0+b +)/ (i)g '(i )] 

+ (~ >
2 

( (b ++b _)(a._+a.0+a.+)/ 2(i )g (i)+2(b +-b _)(a.+-a.-)/ '(i )g '(i) 

+(a++a._)(b_+b0+b+)I (i)g 2(i)+ · · · 

'lb.us, setting the first coefficient to 1 and the next two coefficients to 0 requires 

b+-b-=O=a ... -a_ and we can't match the middle term of order (Ax)2 . If we use 

two combinations, we can use symmetry to remove all odd powers of (Ax) just as 

in the expansion of the integral. We can then match all the terms of order (Ax )2 

and be left with an error of order (Ax }4. Because the odd powers have a factor 

(a.+-a_) we simply add two terms with a.+ and a._ switched. (Each with weighting 

*and b from the previous formula replaced by a..) Thus, we eliminate all odd 

powers of (Ax) and are left with simple equations for the coefficients a. 

(ti_ +a0 +a+ )2= 1 

Choosing (a._+a0+a.+)=1 simplifies the other equations to become 

(a.++a_)= ~ 

(a.+-a-)=± J:s 
Choosing the minus sign above gives 

ft _ 2 -o--3 
Now if we substitute these coefticients into 

1•=a.+/ (i-l)+a.of (i)+a.~1 (i+l) 

(A3.16) 

(A3.17) 

(A3.18) 

(A3.19) 

and do a Taylor's expansion, we see that we have derived an approximation for 
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I (i+ ~) with error of order (fix )8 . 

fi=J (i}+(fix) /'(i)+ (fix)2 /2(i)+ ... 
~ 2X3 

(A3.20) 

1t1/(i+~) 

There is some ambiguity, however, to applying this rule to integrating func-

tions of 1/l'from the values of V; at the mesh points. For instance, in calculating 

the kinetic en~rgy, we calculated V1/I at the points±(~) and then squared. We 

could also imagine using V1/I at the mesh points, squaring and then interpolating 

to the points ± (~). Of course, this would be foolish in this case since V1/J isn't 

known at the mesh points. Calculating it at the points ±{fix) from the three 

allowed points, a; .Z\ ±(fix) would be less accurate than calculating it inside the 

interval, for instance at Z\ ± <.e;> . This method would also require two succes-

sive numerical approximations and would be more complex. Thus, for both T 

and ; we want to approximate the gradients directly at the relevant points 

(A3.21) 

and 

;•="im.[(a+;i(i-l)+a01/l(i )+a:t: 'ft(i+ 1)) •(b+t'(i-l)+b01/l(i )+b :1:1/l(i+ 1))](A3.22) 

For calculating p+ there is no clear di!lerence between the accuracy of the 

methods 

p+(i )=a-.p(i-l)+ac,£>(i)+a:t:P(i + 1) 

p+(i)= I a+l'(i-l)+a0.Y,(i)+a:1:1'(i +1) !2 

(A3.23) 

(A3.24) 

However, since we are already calculating the densities at the mesh points (it is 

our primary result, in fact), and the resulting formulas for both the energy func­

tional and the TDHF Hamiltonian will be much simpler (involving no cross terms 
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like 1/l•(i-1)1/l(i)), we interpolate the densities at the mesh points . 

Our 1-D approximation 

becomes in 3-D 

where 

Rn':& =*l;(p;11;(i ,j ,k )-r;·z(i ,j ,k )+piz(i,j ,k )Tqo11;(i,j ,k) 
iii: 

-J;(i,j ,k )fq\(i,j ,k)-J~(i,j ,k )fq-;z(i,j ,k)) 

(A3.25) 

(A3.26) 

(A3.27) 

(A3.28) 

(We have included the x in Pz also since this determines the direction of the 

points ±(6.x) .) We must also discretize they and z components to form R 11 and 

R1e . Then with 

(A3,29) 

The net result is 

(A3.30) 

We can simplify the expression for R considerably, since we used a linear 

combination of p(i,j,k) to make our p•(i,j,k), by rearranging the terms in the 

sum. In 1-D 

l;[p+(i);+(i )+p-(i )T-(i)]= ~([ a+p(i-l)+aa0(i)+a_p(i + 1)]T+(i) (A3 .31) 

' ' +[ a_p(i-l)+a.o.0(i)+a+P(i + 1nr-(i)) 

: U(i)(a+ ;+(i + l)+aoT+(i)+ri_;+(i-1)+a_r-(i+ l)+a.01-(i)+a+ ,--(i-1)) 

' 
In 3-D we rearrange the entire sum or pT terms 

where 
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r(i,j ,k )=-r :r (i,j ,k )+-r 'll(i ,j ,k )+-r • (i,j ,k) (A3.33) 

and 

'Ts (i,; ,k )=*(a_[ -r;(i+1,j ,k )+ii(i-1,j ,k )] (A3.34) 

+a0 [ r;(i,; ,k )+1i(i,j ,k )]+a+[ -ri(i+1,j ,k )+-r;(i-1,j ,k )]) 

and -r11 and Tz are similarly defined with the index j or k, respectively, varying 

±1. 

This me.ans we only need two extra arrays -r11 rather than p: and -r; in all 

three directions. As we shall see later, this -r1 is precisely what we need for the 

TDHF Hamiltonian. (Because 6'1/!{q(~.j ,k) p(i,j ,k )=•rfl-A.1 (i,j ,k ).) 

IV. Coulomb and Yukawa Terms 

The Coulomb and Yukawa energies are simply summed using the densities 

and the Coulomb and Yukawa potentials. 

Ern·= ~Pq (i .; ,k) Uyq•(i ,j ,k )(~ )S 
ijk 

Vi, 
Hy= "t-<ElH> + Eim) + Vr.r E:ijm 

Hc=l/ZD>p(i.j ,k )Uq,(i,j ,k)(~)8 

ii" 

(A3.35) 

These potentials, U, are calculated by the solution of discrete Poisson or 

Helmholtz problems with the conjugate gradient method as described in (FL 78). 

We also choose the boundary conditions zero for the short range Yukawa force 

resulting in a repulsion from the edges of the box which destroys energy conser­

vation when the density approaches too near the edge. For the Coulomb boun­

dary conditions, we use a multipole expansion including multipole moments of 

the mass and charge density through order 3. These are important to calculate 

anyway since they will be used to divide the density into two spherical fragments 

and calculate their mass and position at each time step. (See Appendix A7) 



- 158 -

Appendix A4: Finite Ditference Form for the TD:HF Equations in Space 

I. Introduction and Zero-Range Terms 

The TDHF equations are partial differential equations in time and space . 

Since we need ordinary differential equations for numerical computations, we 

first need a spatial discretization of the equations, specifically for 

hq(i,j,k)=
6 
·t. )fl=hqz+hqx+hqNL+hqy+hqc 1/1>.q i ,3 ,k 

Then we need to specify the time evolution algorithm. 

(A4.1) 

We obtain our discretization by the variation of the discretized form of the 

energy functional with respect to the single-particle wavefunctions at the mesh 

points. Thus, our discretized equations will properly embody the conservation 

laws satisfied by the continuous equations, particularly energy conservation and 

the orthogonality of the single-particle wavefunctions. We first do the variations 

in 1-D and generalize to 3-D for which all directions are equivalent. 

First, we calculate the zero-range piece of the TDHF Hamiltonian 

It _ 6 rr 
• "VZ - Z,J, • ( • • k ) ¥l Z u.,.>.cz 'L,J, 

by varying the densities in Eq. (3.6) 

(A4.2) 

d-i/I• t . k) ( E P:·(i.',j'.k'))=2.p"(i,j,k)l'>.q(i,j,k)oqcz· (A4.3) 
>.q .,, .1 • i';'I;. 

6
1/1. t . k) ( E Pp(i',j',k')Pn(i',j',k'))=pcz'""J(i,j,k)'l/l>.q(i,j,k) 

>.q 'I, ,J, i'j'J:' 

at• t . k > ( E p(i'.i ',k ')Pp(i • .;· .1, ')p"(i' .; ',k '))=(p2(i .; ,k )-pi(i.; .k ))'1/1,.q (i .1 .k) 
>.q 1. .J. i'j'lc' 

Therefore, 

(A4.4) 

h,,z(i ,j ,k )=~0[(1-'Xo)Pq (i .j ,k )+ (2+xo)Pcz·,oq{i ,j ,k )]+ ~(i,j ,k )-p:(i ,j ,k )]]'1/1>.q (i ,j ,k) 
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D. JCi.netic Energy Terms 

Varying our expression for the kinetic energy (A3. 7-9) gives a 5 point for­

mula for the operator v2 as in (FL 78). 

~( ") ~)~[ ,.-(i~+,.+(i')]=*l;[(b_6u·-1+bo6ii'+b +6u·+i)(b-1k (i'-1)+bo1k (i')+b +1k (i '+ 1) 
6l'A: 'l. i' ,. 

+(b +Ou·-1 +bo6tt·+b _6«·+1)(b +1• (i'-l)+botk (i')+b-'fl• (i • + 1))] 

= (~)2 ( 1
1
2 ft;(i-2)-~k(i-1)+ ~A:(i)-~t;(i+ 1)+ 1

1
2 ¥'t;(i+2)) (A4.5) 

Thus, in 3-D 

where 

~(i,; ,le)= 112 ,,.,(i-2,; ,le)-~>.q(i-1,; ,k) (A4.7) 

+ ~>.q(i,; ,k)-~>.q(i+l,j ,k)+ 1
1
2 ¥1>.q(i+2,j ,le) 

and Kva, and Kq. are similarly defined withj or k, respectively, varying ±1. 

ID. Nonlocal Terms 

The nonlocal terms HNL• Eq. (A3.27-34), are the new contribution. Since 

this discretization also i.p.vol~ed only the points i,i±1 ( like the kinetic energy), 

it also gives a 5 point formula in each direction. We begin with 

~ ~( ") D(i')T(i')='T(i)'ft.t (i)+ l;p(i') 61/J ~(") or(i') (A4.8) 
A: t. ,. ,. A: 'I. 

From Eq. (A3.21), we get 

6';~(i) 'l"(i')= 2{!)2 [1t(i-2)( ia )(~·+2+46ii'+l+c5 •. ) 

+1.t (i-1)( tHc5a·+2-l3c5,i·+1-136a·+c5u·-1) 

(A4.9) 

+1'1 (i )( ia )(-56a·+2+446ii'+1+ 1026a·+446a·-1-50a·-2) 

+t.t(i+ 1)( ~(~·+ 1-136a·-136a:·-1 +6u·-e>+t.t (i+2)( is )(c5u·+40u·-1 +Ou·-2) 
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Therefore, the variation of the p-r term gives 

IS'f~(i) t.J'(i ')T(i ')= (A4.10) 

Yl1c (i-2)A(i-1)+11c (i-l)B (i )+'f1: (i )C(i )+'J'A: (i + l)B (i + l)+'f1: (i +2)A(i + 1) 

where 

A(i)= ?2{!z)2 (p(i-1)+4p(i)+p(i+1)) (A4.11) 

B(i)= !B{!z)2 (p(i-2)-13p(i-1)-13p(i)+p(i+l)) 

C(i)=r(i)+ 
72

(!z)2 (-5p(i-2)+4-4p(i-1)+102p(i)+44p(i+ 1)-5p(i +2)) 

Now we must do the ; 2 term. From Eq. (A3.22), with reasoning like above, we get 

~( ') ~(;+1(i')+;J(i'))=-i[ 'f1:(i-2)D(i-1)+1'1: (i-l)E(i) (A4.12) 
t51J1c 'I. ,. 

where 

and 

-Yl1c (i + l)E(i + 1)-1',_ (i +2)D(i+ 1)] 

D(i)=- lZ(~) [;+{i)+j-(i)] 

E(i)=- 2(~) b·i+(i)+pj-(i)+pj+(i-1)+7;-(i-l)] 

7=(-~~) 

~=-{~ ~) 

(A4.13) 

(A4.14) 

Th.us, we see that the coet!'icients for the 5 points are complex functions of the 

densities and currents. 

For the 3-D result, we need 

tS 
41.;,,(i .j ,k) (Rpp + R,.,J (A4.15) 

and 

(A4.16) 

The first, Eq. (A4.15), is straightforward since one term contributes 

~(:.j.k) (p1 T1 -I:) as previously discussed. and the other term is zero. We 
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can generalize the previous discussion to give 

61/1. t . k) (Rp,, + Rnn )=rqq (i ,j ,k) 
Ml .,,,, ' 

(A4.17) 

where 

""Ip: (i,j ,k )=[.Ap;(i-1,j ,k }+i.Dp{i-1,j ,k )]1'>.q (i-2,j ,k) (A4.18) 

+[Bp(i,j ,k )+iEp(i,j ,k )]'¢1,.,,(i-l,j ,k )+cqz (i,j ,k )'1/1>.q (i,j ,k) 

+[Bp:(i+1,j ,k )-i.Eqz(i+l,j ,k )]'l/;>.q (i+ l,j ,k) 

+[Ap; (i+ 1.; ,k )-iDp: (i+ 1,j ,k )]1'>.q (i +2,j ,k) 

The subscripts (x,y,z) in the coefficients give the index (i,j,k) respectively to 

vary and the component of; and j to use . For instance, using the definition of 

D(i) and A(i) from Eq. (A4.13 and 10), 

Dp(i,j ,k)=--&<l/z(i,j ,k )+lp(i,j ,k )) 

Ap(i.j,k)= 72(~)2 (pq(i-1,j ,k)+4pq (i,j ,k )+pq (i+ 1,j ,k)) 

For the second term, Eq. (A4.16), we adopt the convention q ·~q 

(A4.19) 

(A4.20) 

We can see that by adding the terms Rw and R,9 , we have arrived at the same 

formula as for R'l'l with one exception. The wavefunctions involved are precisely 

the same -;,.,, , but the coefficients use q' rather than q. We call 

~· t . k) (R,m+R,.p)=rq',(iJ.k) 
Aq 'L ,, • 

(A4.21) 

where 

nt qz=[l\r'.s (i-1.j ,k )+iD11·.s (i-1,j ,k )]'¥',.,, (i-2.j ,k) (A4.22) 

+[B,·z(i,j ,k )+iEq•z(i,j ,k ))'l/;>.q (i-1,j ,k )+c,.z(i,j ,k )'l/;>.1z (i ,j ,k) 

+[B,·z(i+l.j ,k)-iE,·.s(i+ 1.; ,k )]-;,.,, (i+l.j ,k) 

+[J\·.s (i +l,j ,k )-iD,·.s (i+ 1,j ,k )]l'!.>.q (i+2,j ,k) 
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Th.us, the final result is 

We can see that since rq and rq' are linear in p:r,j we can evaluate hqNL 

more easily by combi.ni.ng densities: 

(A4.24) 

and likewise for -r and each component of j . We can use these densities in the 

formulas for the coefficients A, B, C, D, and E in the three directions to form 

A,B, C, D. and E, respectively, in the three directions. Applying these new 

coefficients to the formula for rq will give h,,NL directly while cutting the 

coefficients evaluated in half. 

IV. Coulomb and Yukawa Terms 

The variation for Hy and He is straightforward as in previous work (FL 78) . 

The discretized r orm. or the potentials u ( i ,j ,k) must be equivalent to a sum 

U(iJ ,le)= I; O(ii: ,jf ,/ck' )p(i' ,j' ,le') 
('j'I:' 

where Or is a discrete representation for exp1;!; ~a) 
(A4.25) 

e2 
and Oc for I r-T' I . 

Since the continuous functions 0 are symmetric in r and r', the discrete 

representation must be also symmetric if we switch primed and unprimed. 

Thus, from Eq. (A3.35) we get 

61~(~.j ,k) E.Yf'q"=[Uy,(i,j ,le ).Sw+ Uy, (i,j ,k)o'l'l" }lpAq(i,j ,k) (A4.26) 

We can see that these terms are also completely local. Therefore, 

(A4.27) 

Similarly, 

(A4.28) 
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Appendix A5: Implementation of the Separable Approximation 

I. General Features 

The main saving from using this approximation is , of course, that the 

wavefunctions which are evolved are only two dimensional. The discretized form 

of the separable ansatz is 

YlNi (i ,j ,k .t )=rpN/ (i .j ,t )B a(k) (A5.1) 

Evolving only the 'P>.q saves an order of magnitude in both storage and comput­

ing time . However, the entire problem is not two dimensional, and we need to 

keep many three dimensional quantities . 

Using the separable ansatz, we can rewrite the particle, kinetic energy and 

current densities: 

(A5.2) 
a 

r:;i:(i ,j ,k )= "Er:=(i,j)B~ (k) 
a 

'T:V(i ,j ,k )= "Er:ay(i ,j )B! (k) 
a 

'T:S(i,j ,k )= "f;>qa(i,j)D;
2 
(k) 

Cl 

;~(i.i ,k)=Dl=(i.J)B:(k) 
Cl 

i:V(i,j ,k )="Eiqa11 B: (k) 
Cl 

and il.(i,j ,k )=O 

The z current is zero since the 19'Ni(i,j)j 2 factors out and Ba(k) are real. The 

new densities are : 

P,a(i,;)= "E 19'>.q(i,j)J2 
h&Jilh 
a(>.)=a 

r;= (i .j)= I; I b+9?>.q (i-1,J)+bo()O><q (i .j)+b ±'P>-q (i + 1,J) 12 

A with 
a(>.)=a 

il= (i ,j)= ~ Im[( a~i;oNi (i-1,j)+ao()O>.q (i ,j)+a±rp>.q (i + 1,j)r 
AwWt 
ca(>.)=a 

[b+cpNi (i-1,j)+bofP>.q (i ,j)+b ±!IO>.q (i+ l,j) J) 
with r:a11 and jq+a11 the same except using j±1 instead of i±1 and 

(A5.3) 

(A5.4) 

(A5.5) 
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D! (k )=[b+Ba(k-l)+boBa(k )+b±(k + 1)]2 (A5.6) 

Some of the savings are very obvious. First, ;; is eliminated and, second, 

-r: becomes trivial since Pqa(i,;) is already calculated and the D! (k) need be 

calculated only one time along with the basis functions Ba(k ). The savings for 

the other densities are not as substantial since we need to store them 

separately for the di.fierent z quantum numbers, a. This saves some storage 

since we use fewer numbers a than points k, and saves more computing time 

since each density is summed only over wavefunctions with a particular z quan-

tum number rather than over all wavefunctions . This fact also indicates that the 

most efficient grouping of wavefunctions is by the z quantum number. 

The other quantities we need for the evaluation of the energy functional and 

TDHF Hamiltonian are the Yukawa and Coulomb potentials. These are calculated 

from the three-dimensional proton and neutron densities without any changes 

due to the separable ansatz, so we must still calculate these densities Pq ( i ,j ,k) . 

II. Incorporation into the Energy Ji"unctional 

Since we still calculate the proton and neutron densities, and the Coulomb 

and Yukawa potentials in three dimensions, the evaluation of the zero-range 

component, Hz, and the Coulomb and Yukawa components, He and Hy, is 

unafi'ected by the separable approximation. 

where 

Hz~~~ 1-:i'ollP:( i J ,k) +p:( i J ,k) J+'l'o( I +1€1'0)p,( i J ,k )p. ( i J ,k) (A5. 7) 

+ ~(i,j ,lc)+Pn(i,j ,k)}pp(i,j ,Jc)pn(i,j ,k)l(L\%)9 

Hc=*LPp(i,j ,k) Uq,(i,j ,k )(6%)9 (A5.8) 
~ 

"'I. Hy= f{ElPP+Eim)+ VvE]jm (A5.9) 

EJW = LJ>cz (i,j ,k )+ Uycz' (i ,j ,Jc )(Ax )9 
~ 

(A5.10) 
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The kinetic energy term, HK, is simplified. In the x direction, 

(A5.ll) 

since I;B!(k)(~)=l, and similarly for y. Th.ere is a slight savings because 
It; 

fewer orbitals a are used than points k. In the z direction: 

where 

I;'T:.r (i ,j ,k )=N,,a Tz(a) 
'iii: 

Tz(a)=(~)I;}!{D~(k)+D:"(k)] 
I: 

is the kinetic energy in the z direction for each basis state and 

(A5.12) 

(A5.13) 

(A5.14) 

is the number of particles with isospin q and z quantum number a. Now, the 

result is 

(A5.15) 

and the z component need be calculated only one time along with the basis func-

tions.+ 

The nonlocal terms, HNL; were given by Eqs. (A3.28-34). We look first at the 

p; terms and substitute the separable approximation. We can do the sums over 

k to form 

BM(a,a')=~B: (k )B:· (k )(~) (A5.16) 
I: 

and 

DM(a,a')=~Da·(k )B! (k )(6.-r) (A5.17) 
I& 

where 

+We don't actually calculate the total kinetic enew in this way, instead, we U8e the Bingle 
particle energies •A=<1Alhl1A>· ESPT=~e,.. and ETOT=<TJHjir>. Then 

>. 
E'l'OT=ESPT-EPOT-E'l'3 where EPOT is the potential energy and ET3 is the three-body 
term (triple counted in ESP'/'). Therefore EKIN=ETOT-EPOT. The calculation of the "A is 
str&ghtfo:nrard followin& the calculation of ht as d.iscUDed le.ter in Appendix A6. 



Iben with 

- 166-

Da.(k )=a.-[D;2 (k +l)+Dci2 (k-l)]+a.0[D;2 (k )+D;2 (k )] 

+a+[D:2 (k +l)+D;2 (k-1)] 

'T fH (i,j)=a_[ 'Tf"u(i+ 1,;)+'T;u(i-1,j)] 

+ao[ Tia.z(i ,;)+'T;az(i ,;)] 

+a+[ 'T';az(i+ 1,j)+'T'qaz(i-1,j)] 

and a similar expression for 'T' 'latJI, we calculate 

(A5.18) 

(A5.19) 

T1111(i,;)= ~ ([ r 9 a.·z (i ,j)+r9 a·11 (i ,j )]BM(a,a')+p90·(i,j)DM(a,o:')) (A5.20) 

Once again, the z direction is only calculated once at the initial time. This quan-

tity is stored since it will be useful for calculating h"/I . We can then write 

~q (i,j ,k )r I( (i,j ,k )=°E°EP11 a(i,j)Tq'a(i,j)(&r)2 (A5.2i) 
iJlr. 0. f.J 

We rewrite the j terms in a similar way, combining the functions of k and 

doing the sum over k. We form 

19 a(i,j)=°Ei11 a·(i,j)BM(a,a') (A5 .22) 
a' 

and then 

(&r )3°EJq (i .j ,k )jrf (i,j ,k )=(&r )2°E'Eiqo:(i,j )J9•o;(i ,j) (A5 .23) 
~ o.f.J 

for each of the four currents (x or y) and (+or-). 

We store 11a.(i.j) since it will be useful in calculating h"/I. However, we do 

not need iva.(i,j), since we can do the sums needed to calculate the energy while 

constructing the J1a.(i ,j). First. calculate the currents for each wavefunction, 

i"Nz · 'lberefore, for each wavefunction we can form the partial sums for each of 

the four currents 

(A5.24) 

We can write 

E1111 =(flz )2 °E °E°Ei~ (i,j)[j~ (i,j)BM(a(>.).a(>.))+2J;;1 (i,j)] (A5.25) 
~fJ.>.. 

so that we can do the sum for E1f!l without storing j~(i,j) . For q' ,tq that is Epn. 
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the sum is simpler. Since we do all proton wavefunctions first, we have stored 

the full Jpo.(i,j) . We can then sum 

(A5.26) 

The total is then 

(A5 .27) 

Ill. In.corporation into the TDHF Hamiltonian 

The discretized version of the TDHF equation is given in Appendix A4. The 

separable approximation gives: 

ih:t 'h.q (i,j )=h 1qu.(i ,j) (A5 .28) 

where 

h'1 u.(i ,j)= ~B0(k )liq (i ,j ,k )(.6.:r) (A5.29) 
t 

Notice that since the operator h' depends on a., we have a second reason for 

grouping wavefunctions by their z quantum number. 

The zero-range terms and the Coulomb and Yukawa potentials are very 

straightforward. First, these are all diagonal. that is 

h (i,; ,k )= J (i.i ,k )'lfAtz (i,j ,k) (A5.30) 

and, second, the function. J, is dependent on proton and neutron densities and 

Coulomb and Yukawa potentials, all of which are calculated in the full three 

dimensions, unaffected by the separable approximation We, therefore, combine 

these elements 

hqz(i,j ,k )+h,,y(i,j ,k )+hqc(i,j ,k )=/, (i,j ,k )ifA.q (i ,j ,k) (A5.31) 

where 
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/q(i,j ,k)=~o(l-xo)p,(i,j ,k)+pq·.,.11 (i,j ,k) 
t 

lto(l +*Xo)+ f<2p,(i,j ,k )+p, . .,.11 (i,j ,k ))] 

+Ji Uy,(i,j ,k )+ Vr1Uy, . .,.11 (i,j ,k)+ Uq,(i,j ,k )oqp 

The efi'ect of the separable approximation is to replace these h by 

(A5.32) 

h '10(i,j)=~B! (k )/ q (i,j ,k )(.6:.t )~Ni (i,j) (A5.33) 
k 

resulting in a two-dimensional potential /', 0 (i,j) for each set of wavefunctions 

with z quantum number a. 

The kinetic energy part hvJ< gives a discretized approximation to the Lapla­

cian, V2• Each direction involves ofi'-diagonal elements in that direction only, so 

hq.Kz(i.j,k) and ~{i,j,Jc) are functions of i and j multiplied by Bo.(k) . This 

means the projections are trivial, since (Ax)~B!{k)=l. We can write 
~ 

h' (' ')- ~ 1 [ 1 (' 2 ') 4 ( ' 1 ') 
,.Kz "'·' -2m <A:t>2 wNi .,,_ ·' -~;>." .,,_ ·' (A5.34) 

+~Nz(i,j)-~Aq(i+l,j)+ 112 ,Ni(i+2,j)] 

and similarly for y. In the z direction, h' will be diagonal in i,j: 

h'1,ur.{i.j)= ~ (~)e~.>.q(i.j)~B11 (k) {A5.35) 

1 4 5 4 1 
[ l2'8a(k-2)-3Ba(k-1)+ 2Ha(k )-3-Ba{k +1)+'128a(k +2)](Ax) 

and only h'1 o.XJt is dependent on the quantum number a.. Note: Although this 

would be quite easy to calculate, we don't actually use it. For the time evolu­

tion, we use an operator (h - <h>) which would eliminate h 'qKz . For the single 

particle energies e ,., we add a z kinetic energy to the <h> above using the 

discretization for J d.z I cUJ;z) 12 as described earlier rather than the less accu-

d.2B (z) 
rate discretization of J dzBa(z) ci:2 . Therefore, 

(A5.36) 
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independent of ex. 

The new, nonlocal part, h.vNL, contributes non-constant off-diagonal pieces. 

For the separable approximation, in the x and y directions all the wavefunctions 

are "/l>..q (i' .j' ,k ), so we may form 

A'qu (i .j)= ~B: (k )~ (i ,j ,k )(6.z) (A5.37) 
le 

and similarly form B', C', D' and E' in these two directions. In the z direction, all 

the wavefunctions involve 1/1>.,,z(i,j ,k') so the terms are diagonal in the separable 

approximation. Of course since j 111 =O, .D. =E111 =O. 

Looking first at the off-diagonal terms, for a particular a we calculate 

Pq4(i,j)=(6.x)~B: (k )p11 (i,j ,k )=~PqaBM(a,a.') 
le a' 

and then calculate the needed coefficients : 

and 

B'qaz (i,j)= lB(!x )2 [Pqa(i-2,j)-13Pqa(i-1,j) 

-13Pqa(i ,j)+ P1 a(i + l,j)] 

(A5 .38) 

(A5.39) 

(A5.40) 

with similar equations for the y direction. To calculate D' and E', we need the 

analogous sum 

11a(i,;)=Dqa•(i,j)BM(cx,a') (A5.41) 
a' 

which was mentioned in the last chapter and stored. Thus with 

(A5.42) 

we get 

(A5.43) 

and 
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E'qaz(i,;)=- 2(~) [·y'J9+az(i,j)+p'J,;az(i,j) 

+(J'J,taz(i-1,j )+/'jqoz (i-1,j)] 

The diagonal part is given by 

(A5 .44) 

G94(i ,j)rp>.q (i ,j)=[ C'qaz (i ,j)+C''lOll (i ,j )+h 'qo.NLz (i,j)]rp>.q (i ,j) (A5 .45) 

where 

(A5.46) 

and 

(A5.47) 

PM(a.,a')=(l::.x )~Ba.(k )! ( l )2 (B4 a'2(k -2)+4B4 a'2(k -l)+Baa'2(k )]B 4 (k -2) 
A: 72 6x 

+' ( 1 )2 [B4 a'2(k-2)-13B4 a'2(k -1)-13B4 a'2(k )+B 11a'2(k + l)]B11(k -1) 
18 l::.x 

+ 72(~ )2 ( -5B 11a'2(k -2) +44B 11a'2(k -1) 

+102B11a'2(k )+44B4 o.'2 (k +1)-5B11a.'2(k +2)]Ba.(k) 

+ 18(~ )2 [Ba.a'2(k -1)-13B4 a'2 (k )-13B11a'2(k + l)+B11a'2 (k +2)]B11(k + 1) 

+ 
72

(!z )2 [B 11a'2(k )+4B11a'2(k +1)+Ba.a'2(k +2)]B11 (k +2) l 
This matrix PM need be calculated only once along with the basis B 11 • The first 

term can be combined with the .,. terms from C'z and c·,, to give 

r, 11(i,;)=(!::.x)~B!(k)t(i,j ,k) (A5.48) 
A: 

t1+t2 . . f1+f2 .. 
:( 4 )Tv''"9a.('l.,,7)+( 4 )T,a.('L,:J) 

using the r,, 11 as defined in the last section and stored. Thus, we can write the 

entire diagonal part 
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~,a(i,j)= T,a(i,j)+ ~Pq 11·(i ,j)PM(a.,a.') 
ll' 

+ ?2(~)2 [-5.P,,.(i-2.;)+44.P,11(i-1,j) 

+102P, .. (i,;)+44P,a(i+1,j)-5Pqa(i+2,j) 

Then, the final result for the nonlocal term is 

(A5.49) 

h 'qczNL (i,j )=G, 111(i,j)r,D>.q (i,j) (A5.50) 

+[A'1cu(i-l,j)+iD'1 cu(i-1,j)]rp>.1 (i-2,j)+[A'1 ,.Jl(i,j-1)+iD'1 "11(i ,j-1)]9'>.q (i,j-2) 
1 

+[B'1-(i ,j)+iE'1 u (i,j) ]r,D>.q (i-1,j)+[B'1 "11(i ,j)+iE'11111 (i ,j)]r,D).q (i,j -1) 

+(B'1CIS(i+ 1,j )--iE'1az (i+ 1,j)]rp>.q {i+ 1,j)+(B'1 "11(i ,j + 1)--iE'1"11(i,j+1) ]r,o>.q (i ,j + 1) 

+[A'1az (i+ l,i}--iD'1 iu: (i+ l,j) ]'PAI (i+2,j)+[A'1 CIJI (i ,j + 1)-iD'q"ll (i ,j + 1) ]'P>.q (i,j +2) 

and the total discrete representation of h'lf is 

h'1 ,.(i,j)= /'qa(i ,j )r,D>.q (i ,j)+h 'qK(i ,j)+h 'gaNL (i ,j) 

(neglecting the v; operator). 

(A5.51) 
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Appendix AB: Discretization of the TDHF' Equations in Time 

I. Introduction and Statement of the Problem 

The evolution or the TDHF wavefunctions, 1fllz, is given by 

(A6.1) 

where 1/IN/=1/lllz(z,y,z,t) in three-dimensional calculations (or 1/IN/(x,y,t) in the 

separable approximation) and his a hermitian operator, h=h(z,z' ,y,y' ,z,z',t) 

(or h(z ,z' ,y ,y' ,t) in the separable approximation). For the rest of this appen­

dix, all dependence except time will be suppressed. This equation is formally 

solved by using time evolution operator, u,, as 

Yl'Nl = u, (t ,t0)1/IN/ (t0) 

where u, is the unitary operator 

. ' 
U9 (t,t 0)=Texp[( ~f dt'hy(t')] 

to 

(A6.2) 

(A6.3) 

with T the time ordering operator. Discretization de.fines a time mesh 

f m=(m)M where (m) is an integer and calculates 'I/IN/. at each time step from 

YJN/,(m+l)= u,(m+l,m)'l/l>.q(m) 

This discrete evolution operator can be written as 

-i 
u,(m.+1.m)=exp[( T16.t hy(m+)0] 

(A6.4) 

(A6.5) 

where h,z(m+~ must represent the average effect of h(t') over the interval t to 

t+llt. Thus, determination of the correct operator .hy(m+*> accomplishes the 

discretization in time. An obvious' possibility, hy(m.+*)=*(hv (m)+hy (m+ 1)) is 

very close to the operator we use. 

Part II of this appendix compares the Taylor expansions in 6t for exact and 

discrete solutions. This procedure determines an arbitrarily accurate approxi­

mation for hy (m+)0 as a function or hy, 'I/IN/., 1/l;q. and functional derivatives of hy 

with respect to 1 and y/; but, of course, the higher-order terms ·are very 
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cumbersome to calculate. Therefore, this expression for hv_ (m+*) is not used in 

the actual evolution code. Instead, it is used to estimate the error arising from 

other choices for hy(m+*) . 

These other choices use the values of h, 'ljl, and 'I/I• at various discrete time 

steps, rather than derivatives or functional derivatives. We use a two point for-

mula involving the time steps (m) and (m+l). With only two points, this approxi­

mation can match only the first two terms in the exact expansion for hq(m+*). 

This results in an error of order At2 for h.q(m+}0; or order At3 for Uq(m+l,m) 

(since the first order term is 1). There is an ambiguity in this two point formula 

since changing terms of order At2 or higher won't change the order of the error. 

This ambiguity is resolved by choosing the higher-order terms to conserve 

energy. 

Part III of this appendix calculates the energy difference E(m+1)-E(m) 

and expresses it in terms of a single-particle operator 01 as 

E(m.+ 1)-E(m)= I;[ 'l/J~ (m+ 1)01 1/IAq (m+ 1)-'l/l~(m)01 '1/1>.q (m)] 
Aq 

This means that 

(A6.6) 

M'=~'ji~(m)[ U1,+01 Uq-Oq]l!>.q(m) (A6. 7) 

"' (where U is the evolution operator as before) and energy is conserved if 

[U1 ,Dq}=O From Eq. (AS.4), choosing h.q(m.+~=Oq conserves energy. Part Ill 

also checks that the operator h.q(m+*' determined this way matches the expan­

sion through order At as expected for the best two point formula. These calcula­

tions are based on those of (FL 78) . 

A problem with choosing ftv (m+*> to depend on quantities at time steps (m) 

and (m.+1) is that the quantities at step (m+l) are not yet known (they depend 

on hq (m+}0) . Part N of this appendix discusses the algorithm used to achieve 

this self-consistency and other details of the actual evolution code. This kind of 
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self-consistency is necessary because the simplest guess hq (m+}0=hq (m) 

doesn't work. This operator would evolve 'l/J>.q in a potential always lagging 

behind its proper position. This gradually slows motion and results in a continu-

ous decrease in energy. 

D. Comparison of Taylor Expansions for the Exact and Discrete Solutions 

The exact solution at t +flt can be expanded as 

(A6.8) 

where the exact solution obeys the TDHF equation and h=h(t) because h is a 

function or 1/'>.q (t ). The various derivatives of 'l/J>.q can be written exactly in terms 

of derivatives of h as 

a -i 
( ft-11/l>.q = ( -,;1hv i/l>.q (A6. 9) 

< ft121/l>.q=[(-::)2Jtf+( -::)( :t )hq]i/l>.q 

etc. 

Th.e time derivatives of h can be written exactly in terms of functional deriva-

tives as 

( 3P11,, = ~.[[ 6:,.., r .. J ( /piV,..·+ [ 6:;., hv right) ( fi-1JV;..] 

= ( ~ ~· [! ~,... r .. ]11,,-t,.. ·-[ 6:;.. hv ]11,, -.PA.] 

( 3P'11,, = ( -; } ~· [ 6:,... [ ( /tl1i,, lh,,·JV,.,,.- 6: ... [( fi-111,, ]liq ·iVA.·] 
etc. 

The discrete TDHF solution is given by 

?~ (m+ l)=exp[ ( -:: )flt h.q (m+}0]i/l>.q (m) 

In the expansion, h.q (m+J.0 is time dependent, involving h at future times 

(A6.10) 

(A6.11) 

(A6.12) 
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The net result is 

(A6 .13) 

1Ni (m+1)=1Ji.>.q (m)+~t (";::)/ o~>.q(m)+.6t2[}2( ;)2/ 9 +( ;)/ 1 ]~.>.q (m)+ · · · 

Matching this to the exact solution determines the operators f"; and gives 

hq(m+}0 accurate to any order. The first-order terms give 

/c=h.q(t) (A6.14) 

The s.econd-order terms give 

(A6.15) 

The third-order terms give 

/2=t< IP2,,_~ ~[liq( IP11v-<( IPhq)hq] (A6.16) 

The fourth-order terms give 

f s= t< 1Ps11.q -t< ~) [ hv ( ~211.q-( ( IP21iq )liq] (A6 .17) 

etc. 

So now given hq and 'f/!.>.q• we can compute the operator hy(m+}0 and com-

pute to any order 1Ji>.q(m+l). However, we want to derive an approximate for­

mula based on hy(m) and l!v(m+l) . The easiest way is to look for conservation 

of energy. 

m. Derivation of the Discrete Evolution Operator from Energy Conservation 

Defining 

(A6.18) 

6pq=pq(m.+1)-pq(m), c5Tq='Tq(m+1)-T9(m). c5fq=fq(m+l)-f9(m), 

and taking E(m.)=<H> from Eq. (2.7) or (A2.29), the energy difference between 

two time steps can be written 
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(A6.19) 

E(m+l)-E(m)= J ctr[,! [o'Tp+OTn]+ T~L l6pp[Pp(m+l)+pp(m)]+6pn[pn(m+l)+pn(m)]~ 
To!'! 

+ ~opp[pn (m+l)+pn(m)]+opn[pp (m+ l)+pp (m)]~ 

2 1 1 2 
+ Ts~OPp [ ,W'P ( m+ 1 )Pn (m+ 1) + W'P ( m+ 1 )Pn ( m)+ W'P ( m)pn ( m+ 1 )+ S"PP ( m)pn ( m) 

+ ~:(m.+1)+ ?n (m+ l)Pn (m)+ ?:(m)] 

2 1 1 2 
+6pn[ S"P (m+l)pn(m+l)+ ~.P {m+l)pn(m.)+ ?p(m)pn(m.+1)+ W'P (m)pn (m) 

+ ~(m+ 1)+ ?P (m)pp (m+ 1)+ ?i(m) ]~ 
CL 

+ "t-16pp[ 'Tl' (m.+l)+rp (m)]+o'Tp [pp(m+ 1)+pp (m)] 

+opn [ 'T n (m+ l)+'T n (m)]+or n lPn (m+ l)+Pn (m)] 

-6Jp [j~ (m+ l)+jp (m) ]J 
Cy 

+ 2'°10Pp [ 'in(m+1)+'Tn(m)]+c5pn [ 'Tp (m.+l)+'Tp (m)] 

+o'T,, (pn (m+l)+Pn (m)]+61n[pp (m+l)+pp (m)] 

-26]p [h (m+l)+Jn(m)]-26Jn [JP (m+l)+Jp (m)]~ 
~ + "°i'16Pp [ U1P (m+ 1)+ U.Jj1(m)]+6pn [ Uin (m+l)+ Uin (m)]~ 

Yu 
+ -t-topP [ Uin(m+ 1)+ Uin(m.)]+opn[ ulj1 (m.+1)+ u.Jj1 (m.)]~ 

+opp*[ Uc(m+l)+ Uc(m)J) 

We would like to write this difference in energy as 

~(m.+ 1)0.'lfAiz (m+ l)-f'At(m.)09 .Y,Alz (m) {A6.20) 

to choose an evolution operator which conserves energy. Since 

1'Aiz(m.+l)=Uq'f'Ni(m.), the energy ditference can then be expressed as 

(A6.21} 

·Thus, for any u, which commutes with 09 energy is conserved exactly. Since we 

have Uq=exp(( -;)flt 12.q(m+*)), choosing hy(m+}0=01 conserves energy. 

(A6.22) 

Therefore, 
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Oq=l (A6.23) 

Similarly, for 6pqF(r) 

(A6.24) .. 
For 67'1 and 6jq the calculation requires integrating by parts as in Section 2. 

Therefore, 

J d:r6'1'q(r)F(r) yields Oq=-V·FV 

where V operates on everything to the right, and 

f d:r6]q(r)F(r0) yields Oq=FV~VF 
Applying these Eqs. (A6.22-25), we rewrite the energy difference as 

AE= J ttr2;[ li~(m+l)Oq'\VJ.q (m+ 1)-l'~(m)Oq'\lt>.q (m)] 
"q 

where with the exception of the three-body T 5 terms; 

Oq =*[hv (m+l)+h.q (m)]=h:z 

with 

(A6.25) 

{A6.26) 

(A6.27) 

(A6 .28) 

(A6.29) 

ii:, =h(p,, =*[p1 (m+l)+p9 (m)].rq=*[ '1"q(m+ 1)+'1"q (m)].Jq=~Jq (m+ l)+Jq (m)]) 

'lb.e three-body terms are 

TaOf= T8[ ~:·(m+l)+~,,.(m)pq•(m+l)+ }P:·(m) (A6.30) 

2 1 1 2 + 3Pt (m.+ l)p,,.(m+l)+ s-Pq (m+l)p,,.(m.)+ 31'q(m)pq•(m+1)+ s-Pq (m)pq.(m)] -where rt ~q. Since we will use h'l, that is a calculation of the discretized version 

of h for the average densities of tbe two time steps, we must calculate the 

correction C1 , due to three-body forces O" =~ + C11 . 

Cv =Ts[ of-(2*[p" (m+ 1)+p11 (m)]~q.(m+ l)+p11·(m)]+[}Hp,·(m+ l)+p,.(m)]]2
) 

= ~~ [(6p1 .)2+26p9 6p9 ·] (A6.31) 

Thus, choosing fly (m+*>=hq +C9 conserves energy exactly, but how accu­

rately does this operator approximate the TDHF evolution? 
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To check this, we write 011 as 

Oq =hq (m+)0=*!:h,, (m+l)+h.q (m)]+C11 (A6.32) 

with a difierent correction term, where again C11 only involves three-body terms, 

Ts. 

(AS.33) 

Now we can expand 

dp 
dp =flt~ ... 

q dt (A6.34) 

and 

h.q(m+l)=h.q(m)+6t~ '1~2 d~';t 1 · • · (AS.35) 

giving 

Q :n (m)+M* dhq +6t2[ 1 d.
2
1tq - Ts [( d.pq )2+2 dpq dpq· ]] (AS .36) 

q ., dt 4 rJJ;2 4 dt dt dt 

By comparing this expression with our previous expansion for hq (m+*), Eqs . 

(A6.14-17), we see that terms through M match, meaning that 1f;(t +dt) matches 

through terms of '1t2 . With or without the correction term c, or c,. the error is 

order '1t3 , but including the correction term conserves energy for this approxi­

mate TDHF evolution. thus providing us with a check on the numerical accuracy 

of the program. 

IV. Evolution .Algorithm 

We must calculate '¥'>.t(m+l)=exp[(-;:)M .h.q(m+)0}Yi>-q(m) for each orbital, 

with the Hamiltonian for the average densities and a correction term, as dis-

cussed previously. There is a self-consistency problem because the operator 

hq(m+*) depends on the wavefunctions at the next time step (m+l) . A double­

stepping procedure gives sufficiently accurate sell-consistency (as measured by 

energy conservation). First, the wavefunctions 1/J>.11 (m+1) are estimated usiilg 
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lzv(m+}0=h.q(m). Then, these estimates for "A.q(m+l) are used to construct the 

lzv(m.+*) which performs the actual calculation of 1'1-q(m+l). Further iterations 

could be done if necessary. The exponential is expanded in a power series and 

the evolution operator is modified slightly to give better convergence . This 

modification consists of adding a phase k6t <hq >. This phase is physically 

irrelevant (since the particles are independent), but now the evolution operator 

becomes 

U11 =exp[ ( -;; ).6.t (hg-<hq >)] (A6.37) 

The exponent is now a "smaller" operator and the expansions of the exponential 

are more accurate . 

The wavefunctions , 1'A.i ( m) are used to construct the densities p11 ( m), 

,-1 (m) , and J,(m). These densities are stored and used to calculate the total 

energies He. Hy, HNL and Hz = ETO and ET'3 at time step (m) (as discussed in 

Appendices A3 and A5 part II) and to calculate the operators hv_ (m) (as discussed 

in Appendices A4 and A5 part III) . This Hamiltonian is used to calculate 

"' -i '1A.i(m.+1)=( ~.6.t h.q(m)1',.q(m) (A6.38) 

and the single-particle energies 

1h -eAll =<hy (m)>= A£<1'1'q (m.) l"Aq (m+ 1)> (A6.39) 

Th.e exponential of the modified evolution operator can be expanded yielding 

((~At [11.,, (m)-<hq (m)> ]).t 
'1Ni(m+l)=~ k! t;'>q(m) 

=~1'fq(m+l) I 

" 

(A6 .40) 

where 'f',fg(m+l)=lxl'Aq(m) . Therefore, the quantities ~,.11 (m+l) and <h11 (m)> 

are used to calculate the first term, 

(A6 .41) 
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The energies e >..q are also used to calculate the total single-particle Inergy and 

total energy (as discussed in Appendix A5 part II) . Higher-order terms in the 

expansion are calculated from the previous term by 

(A6.42) 

and a running sum is kept 

1'Ni(m+l)= t 1/tf~(m.+1) . (A6.43) 
t'=O 

(This requires storage space for two wavefunctions - the most recent term, and 

the running sum.) For this first step, two terms are typically used in expansion 

of the exponential. 

From the estimate of 1/t>.q(m+l), we construct the average densities by 

returning to the same routine used for the densities in the first step, but not ini-

tializing the sums over the wavefunctions to zero. Instead, the final results are 

multiplied by one half. These 1/t>.q (m+ 1) are also used to calculate the correction 

term, C11 , from *6p11 =pq-p11 (m) before storing the average densities where 

p11 (m) was previously stored. Now the same routines are used to calculate 

hv(m+*), except for the addition of the correction term. However, calculation 

of the energies is skipped. The same evolution routine is used to calculate the 

new wavefunctions, 

'1Ni (m+ 1)=exp[( ~)at (h,, (m.+}0-<J; (m+}0>)]1/tN/(m) (A6.44) 

but for the actual time step four or five terms are used in the expansion of the 

exponential. Also, the single-particle energies are unchanged: they are not set 

to <hy(m+~> and the calculation of the total energies is skipped. 
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Appendix A7: Bi.nary Partition of. the Nuclear Density 

'We choose a convenient r,eference frame centered at the total center of 

mass with axes parallel to the principle axes of inertia. These are easily found 

from the spatial distribution of nuclear matter . Due to the assumed refiection 

symmetry through the scattering plane, one axis OZ is perpendicular to the 

scattering plane. The remaining two axes in the scattering plane are denoted by 

OX and OY, OX being associated with the smallest moment of inertia (see Fig . 

32a). 

For symmetric systems such as 160 + 1110, the analysis of the nuclear den­

sity is rather simple . The center of mass, 0, is a center of inversion symmetry 

so that the Y,Z plane provides a natural division of the system. However, for 

asymmetric systems this is not an adequate procedure. Ai!. shown in Fig. 32, the 

total center of mass may be well within the heaviest fragment even when the two 

nuclei are physically separted and no longer interact through the short-range 

nuclear forces . Under such circumstances, it is desirable to divide the system 

into two pieces by a plane between the two fragments parallel to the Y, Z plane 

and in some sense as far as possible from each of them; for instance a plane 

through the dashed line in Fig . 32. 

'We present two systematic procedures to automatically define this dividing 

line. The first one was used in the O+Ca calculations (see Section 7) and in the 

first few Kr + La calculations (see Section B). The second one has since been 

introduced into most of our Kr + La calculations. Th.ere are no significant 

difierences between the two methods, which are only useful tools to analyze 

TDHF solutions. However, the second one is better suited to very asymmetric 

events found in many IDHF studies which result in scattering for angular 

momenta below the fusion window. 

In both methods, we analyze the system in terms of two spheres with 
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uniform density, each centered on the X axis. These spheres are characterized 

by four parameters: the positions :r 1 and :r2 of their centers along the X axis and 

their masses, A 1 and A2. Equivalently, their radii R 1 and R 2 are known if their 

density is given. 

The spheres are constrained to have the same total mass, A, and center of 

mass position ( =O) as those of the actual system: 

Ai+A2=A 

Aiz1+Ai!:r2=0 

(A7.1) 

(A7.2) 

The two-sphere system must also reproduce the mean square extension along 

the X axis 

(A7.3) 

with 

<X2>= j dXdYdZp(X, Y,Z)x2 

Finally, the sum of the mean square extensions in the Y and Z directions must 

be reproduced 

(A7.4) 

We now need only a relationship between Rand A to solve these equations. 

Jn the first method, a uniform time-independent density is assumed for the two 

sphere, namely 

(A7.5) 

where r 0 is ti.me independent and is determined by the initial condition through 

F.q. (A7.4), where A1 and A2 are set to the masses of the colliding ions. Substitu-

tion of (A7.5) into (A7.4) and a combining of (A7.3) and (A?.4) then results in a 

set of four equations with four unknowns 

(A7.6) 

(A7.7) 
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~A7. 8) 

Eqs. (A? .6) and (A7.7) are solved iteratively for A 1 and A2 at er:>.ch t.lme s~sf , ~Ith 

the initial guess being the values of A1 and A2 from the previous time step . For 

convergence, the smaller A is substituted into Eq. (A7.7) and the new value of 

the larger A is substituted into Eq. (A7.6) . Eqs. (A7.8) and {A7.9) are then solve d 

for.xf andxl : 

and (A7.10) 

These solutions do not specify the signs of .x 1 and x 2. However, the two spheres 

must be on opposite sides of the total center of mass, i.e . .x 1x 2 < 0 . To com­

pletely determine the signs, we require that the expectation value ~>has the 

same sign in both the actual and two-sphere systems. 

-Having defined these two spheres, we divide the system along a line equidis-

tant from the surface of each of the spheres, as illustrated in Fig. 33, i.e . at 

z+(R1-R2}/2 where z=(z 1+z2)/2. (The location of this line is really the only 

quantity of interest in the procedure.) It should be noted that this procedure 

does not depend upon the orientation of the X axis, which is, of course, changing 

throughout the collision. 

In solving Eqs. (A7.6) and (A7.7), difficulties may arise if the coefficient P is 

5 

either too large or too small, since a solution is possible only for P between A 3 

!.. 
and 2( ~ 5 . Since the definition of the axes requires <Y2~<X2> and <Z2> is 

frozen by the separable approximation, P will be large when a fused system is 

formed with an almost oblate shape: <X2>~<Y2>. This will then result in a very 

asymmetric solution with one mass, say A1, almost equal to A. and the other , A2 , 

unphysically small, with the sphere corresponding to A2 unphysically distant 

( <z~ > large ). 
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To avoid this difficulty, whenever A2 (or A1) becomes smaller than a 

specified critical mass Amm +, a binary division is not attempted. Rather, the 

analysis is done as a single nucleus and the Coulomb boundary conditions are 

calculated assuming a single fused system. The maxi.mum value of P for a 

binary division is then 

(A7. l 1) 

The other extreme is when P is too small, as for a system which is highly 

elongated along the X axis . Whenever P becomes smaller than 

cs 
Pmm=2(~3 2 

during the collision, we have arbitrarily chosenA1 and A2 to be 

_A 
Au-;t±l 

(A7.12) 

The above prescription in which r 0 is time independent, has proven to be 

adequate for scattering events of impact parameters larger than the maximum 

one for fusion. The accurate determination of an l-window for fusion does not 

require a refined division of the density, as we only need to know whether or not 

fusion is achieved. However, for scattering events at angular momentum 

smaller than l<, the outgoing fragments are highly excited and deformed and 

<X9> for the actual system is then quite different from its value for the two­

sphere system defined above . The ansatz o'f time-independent uniform density 

for the spheres is then not appropriate for those events. 

This defect is remedied in the second method, which we describe now. We 

shall use Eq. (A7.1) through (A7.5) but instead of having r 0 time independent, we 

require that the actual <.K-i> be reproduced by the two spheres. This furnishes a 

subsidiary condition which determines r 0 as a function of time: 

+Note that Am1n must be smaller than the lightest fnlgment to be emitted. Othenrise,when 
the fused 97Blem 9CiBsiOilll with a 'li&ht fragment mess smaller than AllllAo the analysis of the 
deDHity would be done Ill! i! the system had remained fused. 



- ~ 85 -

Ai(xr+ ~rx1)+A2(x~+~~xz)=<X3> u.7 i J) 

The system of Eqs . (A7. l) through (A7.5) (or equivalently (A7 .5-9) togethc v.r:.t:-, 

Eq. \A7 . l3)) can then b~ slated implicitly. E4s. ,A7.6,8,9} are combinc:d Li give: 

A -Ai1± 1 1 1
•
2-2' v'1+QI2Ax 2 

(A7.14) 

and Eqs. (A7.13, 14) give 

(A7.15) 

P' ,..2 ____ _ 
•o- Ii. IL (A7.16) 

(AP +A~) 
i.e . P'=Pr0

2 and Eq. (A7.5) is unchanged. Note that x, R 1 and R 2 are the only 

quantities of int.erest. Having a first guess for the two masses A1 and A2, r 0 is 

obtained from (A7.16), the two radii from (A7.17), and then x through (A7.15) . 

This procedure is then iterated, the new masses being given by (A7.14) . 

Although this algorithm may not be rigorously convergent for all values of Q, P, 

and <X3>, due to the physical nature of the problem these quantities are not 

strictly independent parameters and there is convergence in all practical situa-

tions. The convergence is rather slow but can be accelerated by averaging the 

x's obtained before and after each iteration. 

This alternate method otrers three advantages over the previous one. First, 

there are no limiting cases; if the system fuses, x goes to zero, the masses A 1 

and A2 become close to each other (s::i~ but Eq. (A7.15) is always soluble. 

Second. xis directly obtained, not j% 1 l and jx2 j . Finally. less emphasis is put on 

the mean square extension perpendicular to the X axis and the asymmetry of 

the system is fully exploited. If the system is symmetric, <x5> goes to zero, but 

the denominator in Eq. (A7.15) has a finite limit, so that x is zero, as it should 

be. 
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Appendix Bl: Expectation Values Needed for TDRPA 

We calculate the various expectation values used in the derivation of our 

time-dependent generalization of the RPA theory. The normalization condition 

required evaluating several expectation values. 

I 
... • ... .. ... + ............ + 

1']=<rp rp>+<c ·A>+<c ·A >+<c ·Ac ·A > (Bl.1) 

+*[ <(c··.4)2>+<(c ·.4+)2> J 
Since A+ creates a particle-bole pair and A annihilates a particle-hole pair, all 

terms with unequal numbers of A+ and A give zero. The only term left is 

(Bl .2) 

Therefore, 

fJ=l+c··c . (B1.3) 

Precisely the same reasoning is used in evaluating the ~ terms in the first step 

of <it Ii :t I it> which is to second order 

_jJ_ ..!!..J .. • :t) + ... • \. =-n ;::,~ ,c ·c; c ·c 
dt 

This same reasoning is used in the orthogonality condition < :t '1l I °'1'>=0. 

O=<t lii.(1-}{C··c+c·.A+ +*<c . ..4+)2) I 4>> 

Since 

can be written 

... *I .. + 
the only term with equal numbers of A+ and A is <h ·A c ·A >. Therefore, 

(Bl.4) 

(Bl.5) 

(Bl .6) 

(Bl .7) 

(Bl .8) 
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Now we need to calculate the expectation values used to get Eq. (3.24) in 

Part II . We first calculate the various expectation values for the full two-body 

Hamiltonian H . Then we are able to write down the expecatation values for the 

evolution operator h from the one-body terms in H if we simply remember that 

h has only hole-particle and particle-hole components. Throughout these 

derivations i, j, k, and l label general states whereas p or h refer specifically to 

empty or occupied states of the 'I'DHF solution. For the two-body Hin Eq. (3.7). 

(Bl.9) 

Since 

<"-'+ti..: >=c5 .. 
"""' , '11io1a • 

(Bl.10) 

(meaning 6v plus the condition that both states must be normally occupied, 

therefore labelled by h) and 

(Bl.11) 

we get 

(B1.12) 

The next expectation 

(Bl.13) 

Since 

(Bl.14) 

and 

(Bl.15) 

<a.,tu,, ~ +a,+a., ~ >=c5pi( c51i.,,,.. c5""' -c5jt,.,_ 6u..)-c5,,; ( c5il...,_ 61m -011i;,..S 6Ur.) I 

we get 

~H>=tph + l;'V.Ph'M' 
" 

The next expectation value is 

(Bl.16) 
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(Bl .17) 

The one-body terms are 

(Bl.18) 

Two-body terms are 

1~~ < + + + + > - t.J Y ~A:t a,l Up ~ a.; f1i ak a.p· a.11.· . 
4 "Jtl 

(Bl.19) 

Using the symmetry properties of l1 to combine various terms such as opi. and 

-Op; gives a result 

(BUZO) 

Therefore, the net result is 

<ApnHc ·A+>= l;cp'h' [tpp· oM. -t11.·11.0pp· +opp· oM· })11."11." (Bl.21) 
p'h' h" 

+ l1.J1h'hp' +oM' I; l11ft"p'h." -opp·~ ~·11."M" +opp· oM. ~ ~ .. 11..Hh"h"'] 
It''. h." h."h"' 

The next expectation value is 

(Bl.22) 

The one-body terms give zero. Therefore, 

<Apn.Ap·11.· H>= 
4
1 I; 'ViJA:L (-oyi Op; +op·10~(011.·i 6h.k -011:A: ohl) 

"Jtl I 

{Bl .23) 

=V.wM· . 

Therefore, 

(Bl.24) 

(Bl .25) 

These expressions for expectation values of H can be simplified by using 

the equation 

{Bl.26) 
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~H>=~ • 

~ l!C ·.A+>= L cp'h' ( 6M· hpp· -6w htth + Yp11.·11p·) + cp11. <H> • 
p'h' 

Now we can write the expectation values for ii. . From Eq. (Bl.12), 

From Eq. (Bl.27), 

From Eq. (Bl.28) , 

~fur.j{+>=Lcyh' [6hh·if,.,p· -6w~·h]+cph <h>=O · 
p'h' 

From Eq. (Bl.24), 

.. -
<A,inc .Ah>=O • 

The evolution equation is thus 

w11h=Lcp·11.· (6hh·hpp· -6pp·hn·h + 'Ypn·11p·) 
p'h' 

+ L c;,,,. vpp'hh' -~ . 
Jlh' 

(Bl.27) 

(Bl.28) 

(Bl.29) 

(Bl .30) 

(Bl .31) 

(Bl.32) 

(Bl.33) 
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Appendix B2: Invariance of. the TDRPA Equations 

We prove that an arbitrary unitary transformation among particle states or 

among hole states does not change the eigenvalues, "'· of the time-dependent 

RPA equations. (Repeated indices are summed.) 

or 

where 

and 

Cp11. =~e-i~ + ~e ttr.ii 
A=PAP B=PBP. 

~;p'h' =6M' hp,,• -6pp· fln·11. + Vph'hp' 

We transform either particle states 

or hole states 

(B2.1) 

(B2.2) 

(B2.3) 

(B2.4) 

,.,,, =UM' rp,,,. (B2.5) 

with a unitary operator u+U=1=uu•. With t=detl~11J and '1r=det(XJi.L we get 

single-particle wavefunctions 

(B2.6) 

Therefore, 

(B2.7) 

Since the proofs for the two transformations are so similar, only the 

second, (B2.5), will be shown. Under this tranformation 

(B2.8) 

and 
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h 'l'P· =hpp· 

h ·,,,."' = u;.1r. .. ht.:·1r.·· u;.~ 
h 'p11, = U,,,,: hp,..· 

h ·,,,, =hn·p uh'h 

(B2.9) 

(B2.10) 

Although the position of the U's is arbitrary, they have been chosen for later 

convenience. 

The IS functions can be trivially rewritten, 

The transformation of the potentials; 

Yp11,·11p· = <ph' I v I h:p' -p' h > 
gives 

and of 

j;HJ'M' =<pp' I VIM' -h'h> 

gives 

~ "' rl 
v·irP'M' = uM .. Vw"'""''" un ... 11.· 

Therefore, the matrix transformations give 

A ·llA..,,.,,,. = uNN' A,n· .. .,,,, .. u;.!n. 
= ulllt. ... ~ ... .,,,, .. Uii-11.· • 

and 

B 'p11.~1r.· = UM" 13,,hn -,p'h."' u;.~. . 
With 

h 'Jlhh ·,,,, = uM. h,,n· /in'p u,;.~ =k,,nhti;, . 
the projector transforms as 

(B2.11) 

(B2.12) 

(B2.13) 

(B2.14) 

(B2.15) 

(B2.16) 

(B2 .17) 

(B2.18) 

(B2.19) 
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C'=UC 

A'=UAlf1 

B'=UBU.,.1 

P'=UPU-1 

p··= u• p• u'"1 

(B2.20) 

(B2.21) 

The only change in the proof for the first transformation, (B2.4) is that 

U=U~·6M' · 

Therefore, 

A'=UAU-1 

and 

B'=UBU.,.1 

so the first equation, (B2.1), is invariant. 

W'=A'C +l'J·c·· 
becomes 

iUC= U(AC +BC) . 

The eigenvalue matrix in the new coordinate system is 

! l' e· J lu o J[ A. B J[u-' o J -'fi·· -.A·· = o u• -l'J· -.A• o u ... 1 

(B2.22) 

(B2.23) 

(B2.24) 

(B2.25) 

(B2 .26) 

Since this is a similarity transformation the eigenvalues, e.>, are not changed. 
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Appendix B3: Expectation Values for the SU(3) Model 

In this appendix, we calculate the expectation values of several operators 

for a general TDHF state 1-t'>= Ila.ti I 0>. The number operator for each level i is 

" 
Ga=~fln~Clm· Remembering that cx+=A-1a+, we can transform G from the 

n 

representation convenient for the levels, using a 's, to the representation con-

venient for our states, using a's. Thus 

(B3.1) 

and 

<Ga>=~Au-..\i ~6i' 1611 (B3.2) 
ff n 

=N.At1At1 

To calculate the various expectation values used in the TDRPA analysis, we 

need to rewrite Hin the more convenient representation using a's. Thus, 

~ . ~ . . 
H = """t,Asf At;· K;.·,. + i..J Vv Afi' Aij-A~· i\i· ~i ~i· (B3.3) 

ftf i,ii'fl(r 

where Kt.J = ~ ~£X.n;. We could now calculate all the various expectation values. 
n'a' 

However, by finding the correct substitutes for t~ and i'iJA:l we are able to substi­

tute directly into our previous general formulas for these various values (Appen­

dix Bl). 'Ihis method requires fewer calculations but we have, of course, 

checked that the results of the complete calculation agree with the shorter 

transcription derived in this appendix. 

Thus, t'1 =<i It Ii >=<0 I O'.\t af I 0> now becomes 

tj;t = <O I a. t a.:!i l O> 

tor any particle n where k ,l =l,2,3. 

tti = ~ e,~ A;.~ ~o I~ a,!-K <Xn·i· ~ IO> 
wr n 

=I;e,Aa:Aa 
' independent of the particle n . 

(B3.4) 

(B3.5) 
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The potential term vijl:t becomes 

VijA:t=<OJan·1ani: Vari.t:a:.i IO> (B3.6) 

(the particles n, n' are distinguishable). This expression is true for any n, n' 

but for n =n' the two consecutive creation or annihilation operators give zero. 

Therefore, the result is evaluated for n,tn' and multiplied by (1-0nn·) . We have 

V1:imq= L ~~~A;m·~X 
~i·mq' 

L <01 an'l anA:a,!'2.l:·an2r a,tsm•ansq-a~a.,t-11 I0> n2.n5 

(B3. 7) 

Using ~5q' to eliminate one of the creation operators to its right, using ~2k. to 

eliminate one of the annihilation operators to its left, performing the sum over 

n2 and n3, and remembering that n' ffn gives 

I; <O>=oq'm [ oKK Di·m· 6iq +olA:' 6krn' 611i·] 
n2.n5 

+6w [ 61d:' Otm• 6ml' +61.t' Oi·m· 6krn] 

The two terms above with 6i·m· do not contribute since 

L ~ A;m• 6i•m• =LA;• A;i• = Oij 
rm• r 

and 

for all i,j. Thus, we are left with 

for anyn, n'. 

(B3.8) 

(B3.9) 

(BS.10) 

(BS.11) 

We substitute these values into our previous formulas. We also need 6M', 

which becomes Onn·, and Opp·, which becomes 6nn· 6uv· for a,u'=2.3. Thus, 

Wi.i=l:VihJ°h becomes, for anyn, 

" 

and hcz becomes 

W.i=l,;VA:u1=l;Vi1Ap:A;A; 1At1 x22;(1-6nn·) 
n• ij n' 

= ~2Vv(N-l)A;.:Ati.A;1At1 
f,f 

(B3.12) 
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(B3 .13) 

for any particle n . The elements hu1 are used in the TDHF equations; all hkl are 

used in the TDRPA analysis . 

With these substitutions. the energy <H> becomes 

<H>= l:;(t i1+~W i1) (B3.14) 
n 

=N[l:;£iAuA/1 + l: Vv (N-l)(A;1)2(At1 )2
) 

( ii 

Substituting directly into the general TDRPA matrices. we get for Apn;p'h' a new 

matrix 

Ana;n'a'=Onn·hua·-Onn• oaa'h 11+ Yu11C7'( 1-0nn') ' 

and for B,m~'h' a new matrix 

Bna;n'a'= Vau'll ( 1-0nn•) 

We use these new matrices in our time-dependent RPA equations 

(B3.15) 

(B3.16) 

(B3 .17) 
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Appendix B4: Energy and Evolution Equation as Functions of the Four Rotation 

Angles 

In this appendix we would iike to rewrite some of lhe equations, which were 

written in terms of matrix elements of A, in terms of the four rotation angles 19 1, 

~2· 1/11 • and 1/12. We choose for our Hamiltonian, equal level spacing ( t 1=-t , e2 =0, 

t 3=t) and equal interaction strength (Vij= f<1-oij ). We choose for A 

(B4. l) 

C~1 

A= cos~sin~1e ""'11 

sin~sin:t'- 1e -i'l'e 

-cos~sin~1ei°"1 
t 

l+cos2~(co~1-1) 

-sin~2sin~1 e '"'2 

sin~cos~2(co~1 -l)e -i(1'i--"f2) 

sin~co~2( cos~1-l)e i(ti1'e) 1 +sin2~(cos~1 -1) 

The energy, from Appendix 3, is 

<H>=N[l:ti l~ 11 2+ l: Vv (N-l)(Aj 1 )2(~"1 ) 2
] 

i ;,; 

Substituting the values of the matrix elements of A and x= V(N-l) gives 
t 

(B4. 2) 

<H>=N t (sin~2sin~1-cos~1 -xsin2~1 [ cos~1 (cos~cos21f1 +sin~cos21f2) 
+cos~sin~sin~1cos2(1/11 -1/12)]) (B4.3) 

Next we must derive the equations of motion for the rotation angles from 

the two complex equations of motion for ID5itrix elements of A . Because of the 

unitarity of A, Eq. ( 4. ) becomes 

(B4.4) 

for j =2,3. First we evaluate the left-hand side for j =2, 

il;...4;1.A,; 2=ei°"1 [i,j 1co~-i~sirn'-2sin~1 (B4.5) 
It: 

41i1 cos~sirn'- 1 ( 1 +cos~2( co~1 -1))-;?2sin~2co~2sin~ 1 (co~ 1 -1)] 

Next we evaluate the left-hand side for j =3, 
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i~A; 14:3=e •12[ i,j 1sin"'2+i~cos1'2sin1'1 
" 

~icos2~si..n1'2sin1' 1 ( cos1' 1-1)~2sin~sin1'1 ( 1 +sin21';?Sm)] 

Next we need to evaluate the right-hand side for j =2. 

(B4.6) 

h21 =ee'11(cos"'2sin1'1[sin2"'2(cos1'1-l)+cos1'i]-xsin1'1cos1'2 (B4. 7) 

[ cos21'1 ( 1 +cos~(cos1'1 -l))e -2i't1+cos21'1sin21'2 (cos1'1-1)e -2i"2 

-cos2"'2sin21'1cos1' 1e 2i1'1+cos2"'2sin2"'2sin21'1 ( cos1'1-1)e 2i C1'i -1'~ 

-sin2~sin21'1 cos1'1e2i1e+sin2"'2sin21'1 ( 1 +cos21'2(cos1'1-1))e -2i(fli--1'z)]) 

Next we need to evaluate the right-hand side for j =3, 

h 31 =te ' 12sin"'2sin1'1 (1 +sin~(cos1'1 -l)+cos1'1 -x (B4.8) 

[ cos2~cos21'1 (cos1'1 -l)e -2i1'1+cos21'1 (1 +sin~(cos1'1 -l))e - 2il'a 

-cos21'2sin21'1cos1'1e2i1'1+cos2"'2sin21'1 ( 1 +sin21':a( cos1'1-1))e 2i(1'i -ila) 

-sin21':asin21'1 cos1'1e ett2+cos21':asin21':asin21'1 ( cos1'1-1)e -2i('ti-1'a>]) 

If we divide by the common phase e •ti for the equation with j =2 and by e '"2 for 

the equation with j =3, the real and imaginary parts of the left-hand side are 

quite obvious. This results in four equations: 

. . h21 
1'1cos1':a-1':asin"'2sin1'1=Im( ~ (B4.9) 

e J , 

· . · . hs1 
1'-1 si..n1'2+1'2cos1'2sm1'1 =Im( ~ 

e a 

11co~si..n1' 1 ( 1 +cos2"'2( cos1'1-1))+12sin~cos1'2sin1' 1 ( cos1'1-1) 

=-Re(~~) e i . 

11 cos2"'2sin"'2sin1'1 ( cos1'1-1)+12sin1':asin1'1(1 +sin21':a( cos1'1-1)) 

=-Re(~~) 
8 

We can solve the first two equations for ,j1 by multipl~ the first by cos1'2, the 

second by sin"'2. and adding . 

· h21 . hs1 
1'1=cos"'2Im( ~+sm"'2lm( ~ 

a i e e 
(B4.10) 

Similarly, 

{B4.11) 
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The second equation, (B4.11), looks like it might give trouble for ~ 1=0. How­

ever, both imaginary parts of h contain sin~1 also. The first equation, (B4.10) 

gives 

-d., =exsi..mS1 COS~1 (sin2'¥'1 COS~2+sin2;(i2sin2~2) 
The second equation. Eq. (B4.11), gives 

(B4.12) 

{B4.13) 

~=excoS17-asi..mS2{sinfy1 (-cos~1)+sin2;(i2cos2~1+sin2(1/11-'¢'2)(-sin2~1)) 

Now having solved the first two equations for ~1 and ~. we must solve the last 

two equations for .,P1 and .,P2 . We can simplify some of the mathematics by notic-

1.ng a common factor co~sin~1 in the third equation and sin1':!sin~1 in the 

fourth equation. After dividing by these factors. the determinant of the 

coefficients is co8'1)1. 

Once again. these expressions look like they might cause trouble if cos~1 =O 

but the numerators also contain a co8'1)1. For .,j1 we get 

"11=-&(1 +x[ cos2'¥'1 (-cos2,j,1+cos~sin~1)+cos21f2(sin2~sin~1) 
+cos2(1'1 --1/t2)(-sin~sin~1)]) (B4.14) 

For "12 we get 

~=-e(2+xf cos2y1cos~sin~1 +cos2'¥'2(-cos2i7.1 +sin2~sin~1) 
+cos2('jt1-'f!2)(-co~sin~1)]) (B4.15) 
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Figure 1 . 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 
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FIGURE CAPTIONS 

Schematic possibilities for the double differential cross 

section of heavy-i~n reactions. Shaded areas indicate peaks. 

Fig. la shows fusion-fission; whereas Fig. lb shows deep­

inelastic reactions. 

Schematic classical analysis of heavy-ion scattering; each 

initial angular momentum leads to a definite energy and 

scattering angle. These can ~e plotted as a trajectory 

for comparison with experiment as in Fig. 2a; or plotted 

separately as in Figs. 2b and 2c to determine various macro­

scopic parameters, such as the interaction time as in Fig. 2d. 

Rms. radius of the Kr+ La system as a function of time for 

four initial angular momenta. These show both scattering 

and fusion events, along with one ambiguous event. 

Comparison of our calculated trajectory of energy vs. scatter­

ing angle for Kr + La with the axially symnetric calculation 

and the -experimental contours of the double differential 

cross section. 

Energy, scattering angle and interaction times as functions 

of the initial angular momentum for Kr+ La. Ei denotes the 

initial bombarding energy. 



Figure 6. 

Figure 7. 

Figure 8. 
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Charge and mass transfers, charge and mass widths, and charge 

to mass ratio as functions of the initial angular momentum. 

Charge to mass ratios of the original Kr nucleus and the 

total system are also shown. 

Schematic illustration of (a) stable and (b) unstable TDHF 

solutions. 

Contours of the potential energy surface in the SU(3) model 

for X = 0 .5 • 

Figure 9. Energy surface for X= 2 .5 

Figure 10. Energy surface for 7( = 5 

Figure 11. Energy surface for X= 10 

Figure 12. Energy surface for Jf.= 20 

Figure 13. Energy surface for X= 100 

Figure 14. Oscillations of the TDHF solution near the mininru.m of the 

SU(3) model with X= 10 and the periods derived from an RPA 

analysis. 

Figure 15. TDHF path and TDRPA frequencies for a stable path, in valley, 

with X= 100. Position is shown at time steps dt = 0 :01 . 

Figure 16. TDHF path and TDRPA frequencies for an unstable path, across 

ridges, with X= 100. dt = 0.01. 
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Figure 17. TDHF path and TDRPA frequencies for an intermediate path with 

'X= 100. dt = 0.01. 

Figure 18. TDHF path and TDRPA frequencies for a stable path, in a valley, 

· with X = 5. dt = 0. l • 

Figure 19. Comparison of the HF and exact ground state energies. 

Figure 20. Deviation of the exact ground states from independent particle 

states, Tr C,-(") . 

Figure 21. Comparisons of the positions of the HF and exact ground states. 

Figure 22. Comparisons of stable and unstable TDHF paths with exact 

paths for X = 5. 

Figure 23. Comparison of TDHF and exact oscillations near the miniml.Uil 

for X= 5. 

Figure 24. Comparison of .TDHF and exact oscillations near the minimum 

for ){= 10. 

Figure 25. Comparison of TDHF and exact oscillations near the minimum 

for X= 20. 

Figure 26. Comparison of TDHF and exact oscillations near the minimum 

for "f...= 100. 

Figure 27. Deviation of the exact solutions from independent particle 

states for the paths in Figure 26. 
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Figure 28. Comparison of the TDHF and exact positions, 81, for an 

unstable path with X = 100. 

Figure 29. Comparison of the TDHF and exact positions, 62, for an 

unstable path with X = 100. 

Figure 30. C'omparison of an unstable TDHF path with exact paths for 

X= loo. 

Figure 31. Deviation of the exact solutions from independent particle 

states for the paths in Figures 28 - 30. 

Figure 32. Slicing of the densities (projected onto the scattering 

plane) _for separated and unseparated fragments. 

Figure 33. Equivalent two-sphere systems for the densities in Figure 32. 
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Energy - Mass Correlations in Heavy-Ion Scattering 

Energy 

Mass 

Figure la 

E. -
1. 

Energy 

t ' Mass 

Figure lb 
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Interaction Time (lo-22 sec) C.M. Total Kinetic Energy (MeV) 
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Comparison of TDHF and Exact Positions 
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Comparison of TDHF and Exact Positions 
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Deviation from Independent Particle States 
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Comparison of TDHF and Exact Paths 
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Slicing of the Density 
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Equivalent Two-Sphere System 
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