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ABSTRACT 

This investigation is concerned with the possibility of the change of 

type of the differential equations governing finite plane elastostatics for 

incompressible elastic materials, and the related is sue of the existence of 

equilibrium fields with discontinuous deformation gradients. .Explicit 

necessary and sufficient conditions on the deformation invariants and the 

material for the ellipticity of the plane displacement equations of equilibrium 

are established. The issue of the existence, locally, of 11elasto static shocks 11
-

elastostatic fields with continuous displacements and discontinuous deforma

tion gradients - is then investigated. It is shown that an elastostatic shock 

exists only if the governing field equations suffe:r a loss of ellipticity at some 

deformation. Conversely, if the governing field equations have lost ellip

ticity at a given deformation at some point, an elastostatl.c shock can exist, 

locally, at that poinL The results obtained are valid for an arbitrary homo

geneous, isotropic, incompressible, elastic material. In order to illus

trate the occurrence of elastostatic shocks in a physical problem, a specific 

displacement boundary value problem is studied. Here, a particular class 

of isotropic, incompressible, elastic materials which allow for a loss of ellip

ticity is considered. It is shown that no solution which is smooth in the clas

sical sense exists to this problem for certain ranges of the applied loading. 

Next, we admit solutions involving elastostatic shocks into the discussion 

and find that the problem may then be solved completely. When this is done, 

however, there results a lack of uniqueness of solutions to the boundary value 

problem. In order to resolve this non-uniqueness, dissipativity and stability 

are investigated. 
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INTRODUCTION 

It is known that the type of the system of partial differential equa

tions governing finite elastostatics can change type from being elliptic to 

being non-elliptic at sufficiently large deformations for certain reasqn

able materials. This leads one to suspect that classically smooth solu

tions may cease to exist in certain situations for such materials, and 

raises the question of the possibility that the elastostatic field may ex

hibit certain discontinuities. The mathematical problem here is analo 

gous to that describing the steady irrotational flow of an inviscid com

pressible fluid, where the governing equations are elliptic at a point 

where the flow is subsonic and hyperbolic where it is supersonic . It i s 

well known that in such flows there may occur shocks - surfaces in the 

flow field across which certain physical quantities suffer jump discon

tinuities. 

The pre sent study is in two parts. In the first, we look at the 

general theory associated with the issues mentioned above in the con

text of plane deformations of incompressible elastic materials. In par -

ticular we determine the precise conditions under which ellipticity of the 

governing system of partial differential equations is lost and examine the 

conditions under which solutions exhibiting certain discontinuities, refor

red to as elastostatic shocks, can exist . 

In the second part we look at a specific equilibrium boundary 

value problem in order to demonstrate how elastostatic shocks could 

actually occur in a physical situation . We show that this one-dimensional 

example has no classically smooth solution for certain ranges of the 
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applied loading, but that solutions involving shocks can be constructed 

in such circumstances. 
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PART I 

GENERAL CONSIDERATIONS 
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CHAPTER I 

1. 1 Introduction 

In two recent papers [ 1], [ 2], Knowles and Sternberg looked in-

to the question of the possible loss of ellipticity of the displacement equa

tions of equilibrium of nonlinear elastostatics for compressible materials. 

In [ l], three dimensional homogeneous deformations of a particular i·so

tropic compressible elastic material were considered, and necessary 

and sufficient restrictions on the principal stretches for ellipticity 

to prevail were deduced. It was shown that for this material, a loss of 

ellipticity occurred at sufficiently severe local deformations . In [ 2] 

they established similar explicit necessary and sufficient conditions for 

an arbitrary homogeneous, isotropic, compressible elastic solid sub

jected to plane deformations. 

These papers were motivated by some asymptotic studies of 

crack problems they had considered previously, in which certain diffi

culties encountered suggested that the problem may not admit a classi

cally smooth solution. 

In a subsequent paper [ 3] Knowles and Sternberg investigated 

the implications of a loss of ellipticity. The question of the existence 

of "elastostatic (or equilibrium) shocks" - solutions which possess fi

nite jump discontinuities of the displacement gradient across certain 

surfaces while maintaining continuous displacements - was studied 

within the context of plane deformations of compressible elastic solids. 

It was established in [ 3] that a necessary condition for the existence of 

a piecewise homogeneous elastostatic shock was that the material lose 
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strong ellipticity at some homogeneous deformation. The question of 

whether in fact a loss of ordinary ellipticity was necessary was left 

unanswered . In the particular case of weak elastostatic shocks it was 

shown that ordinary ellipticity must necessarily be lost at the pre-

assigned deformation on one side of the shock. 

Rice [ 5] had previously examined the phenomenon of "localiza

tion of deformation" for plastic materials. Localization is the bifurca

tion of an initially smooth state of deformation into one involving a zone 

of highly localized shearing. Localized deformations as described in 

[ 5] appear to have certain qualitative features in common with elasto

static shocks as described in [ 3] . Jn fact , within l:.is setting, Rice 

shows that the onset of localization is first possible, in a program of 

deformation, when the displacement equations of equilibrium lose el

lipticity. 

In the present study we t reat the corresponding issues for an 

arbitrary homo geneous incompressible elastic solid subjected to plane 

deformations. Some of the results established are appropriate only 

for isotropic materials. Explicit necessary and sufficient restrictions 

on the deformation invariants and the material are deduced which ensure 

ellipticity of the plane displacement equations of equilibrium. In the con

text of isotropic materials it is established that a loss of ordinary ellip

ticity at some homogeneous deformation is a necessary condition for the 

existence of a piecewise homogeneous elastostatic shock. It is further 

shown that a strict loss of ordinary ellipticity at a given homogeneous 

deformation is sufficient, but not necessary, to ensure the existence of 

a piecewise homogeneous elastostatic shock which bounds this preassigned 

deformation on one side. 
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In Section 2 we cite some relevant results from the theory of fi

nite elastostatics for incompressible elastic solids which we then spe

cialize to plane deformations. The notion of the "local amount of shear" 

associated with any plane volume preserving deformation is then de

scribed. In Section 3 the conventional notion of ellipticity is adapted 

to the displacement equations of equilibrium and necessary and suffi

cient conditions for ellipticity are then deduced. In the isotropic case 

these conditions are put into explicit form and a simple interpretation 

is given in terms of what we call the "local amount of shear". A loss 

of ellipticity is found to depend on a loss of invertibility of the shear 

stre :: s-amount of shear relation in simple shear. 

The notion of piecewise homogeneous elastostatic shocks devel

oped in [ 3] for the compressible case is extended to the incompressible 

case in Section 4. fa Section 5 we then consider weak elastostatic shocks 

in homogeneous, incompressible, .!:i.niso~ropic elastic solids and show 

that a loss of ellipticity at the pre-assigned deformation on one side of 

the shock is necessary for its existence. The jumps across the shock

line of various physically significant field quantities are also deduced. 

In Section 6 we return to equilibrium shocks of finite strength in 

homogeneous, incompressible, isotropic elastic solids. We show that 

a strict failure of ordinary ellipticity at a given deformation is suffi

cient to ensure the existence of a piecewise homogeneous elastostatic 

shock which bounds this deformation on one side. Moreover we show 

that a failure of ordinary ellipticity at some homogeneous deformation 

is necessary for the existence of a shock of the type under consideration. 

In Section 7 we discuss the dissipativity inequality first proposed 

by Knowles and Sternberg in [3] and later extended by Knowles [4] to 
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three-dimensional deformations of both compressible and incom"?ressible 

materials and explore some of its consequences . In particular its im

plications in the case of weak elastostatic shocks in anisotropic materials 

is examined. 

Finally in Section 8 we illustrate some of the preceeding results 

by means of an example involving a particular hypothetical constitutive 

law. 
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CHAPTER 2 

2. 1 Preliminaries on Finite Plane Elastostatics 

Let R be the three-dimensional open region occupied by the 

interior of a body in its undeformed configuration. A deformation of the 

body is described by a sufficiently smooth and invertible transformation 

y=y(x)=x+u(x) on R (2. 1) 
r..J r..J r..J r..J ,...._, r..J 

which maps R onto a domain R,:< • Here Y., is the position vector after 

deforrnation cf the particle which, in the undeformed configuration was 

located at x. We will assume for the moment that the displacement 

vector field u(x) is twice continuously differentiable on R • 
~,....., 

The deformation gradient tensor f, is defined by 

on R , (2. 2) 

and since the material is presumed to be incompressible, 

det F = 1 on R , (2. 3) 

where det f, is the Jacobian of the mapping (2. 1). The right and left 

Cauchy-Green tensors £ and G are defined respectively by 

(2. 4) 

Let T be the Cauchy stress tensor field accompanying the de- . 

formation at hand. Assuming that ;::, is continuously differentiable on 

R,,, , the equilibrium equations are .,, 
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div T = 0 on R,,, .,, (2. 5) 

where body forces are presumed to be absent. The nominal (Piola) 

stress tensor corresponding to ,!, is given by 

T -1 
CT=T(F ) , (2. 6) 
~ ~ ~ 

where use has been made of (2. 3). Equations (2. 2), (2. 3), (2. 5) and 

(2. 6) lead to the equilibrium equations 

div cr = 0 F T FT cr = cr on R . 

We now turn to the constitutive relations and suppose that the 

body is homogeneous and elastic and possesses an elastic potential 

/\ 

W =WC.[) • W represents the strain energy density per unit undeformed 

volume. The nominal stresses are now given by 

where p~) is a scalar field arising because of the incompressibility 

constraint. We assume for the moment that p(~) is continuously dif-

ferentiable on R . Alternatively, from (2. 6), (2. 8) we have 

(2 ' 9) 

From (2 . 1)-(2.3), (2. 7) and (2.8) we are led to 

1see Truesdell and Noll [ 6]. 
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-1 
C . •kn( F) Uk n • - p . F.. = 0 

lJ .( ,...., , .( J , J J 1 
on R , (2. 10) 1 

where 

(2 . 11) 

2 2 2 
Let A. 1 (~) , A. 2 (~) and A. 3 (~) , whe r e A. i > 0 , be the eigenvalues 

of the symmetric positive definite tensor field G (or S) . The princi-

pal scalar invariants of G are 

(2 . 12) 

where tr denotes the trace. From (2. 3 ), (2. 4) and (2. 12) it follows 

that 

on R • (2 . 13) 

In the special case when the material is incompressible and isotropic, 

W depends on f, only through the invariants r
1 

and r
2 

, whence 

we have 

1 
All tensor and vector components are taken with respect to a fixed 

rectangular cartesian frame. A comma followed by a subscript indi
cates differentiation with r espect to the corresponding x-coordinate. 
Latin subscripts take the values 1, 2 , 3 while greek subscripts take the 
values 1, 2. Repeated subscripts are summed over the appropriate 
range. 
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,,, ,,, 

W=W(I 1 ,I2 ) . 

Suppose now that the domain 6l, occupied by the undeformed 

(2 . 14) 

body is a right cylinder with generators parallel to the x
3 

-axis . Let 

II be the open region of the x 1 -x2 plane occupied by the interior of 

the middle cross-section of this cylinder . Suppose further that the 

deformation (2. 1) is a plane deformation so that 

y =x +u (x1 ,x2 ) 
Ci Ci Ci 

on II , 

(2 . 15) 

on 6l, • 

TI is then mapped onto a domain II,,, of the same plane, which would b e 
. ~ 

the middle cross - section of the cylindrical region 6l. ,:, • From here o n 

we shall be exclusively concerned with plane deformations unless spe-

cifically stated otherwise. It follows from (2,2) and (2.15) that 

F R.=y R. • 
Cl't-' et,t-' 

(2 . 16) 

The nominal stresses are now given by 

oW([J - l 
cr a(3 = o F a(3 - pF (3et ' 

(2. 17) 
A 

8W(F) 
cr - ~ -p . 

33- oF 
33 

If we assume that the elastic potential W is such that 
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A A 

oW(;[) 

oF a 3 

8W(f) 
= = 0 

oF 3 0:' 
(2. 18) 

for every F such that (2. 16) holds, then we further have 

(2.19) 

The assumption (2. 18) holds true identically for isotropic materials in 

particular. 

One sees readily from (2. 7), (2. 15)-(2. 19) that for equilibrium 

in the x
3

-direction it is necessary and sufficient that the scalar field 

p(::) be independent of x
3 

. Thus 

on TI • (2. 20) 

In the present circumstances (2. 10) specializes to 

.. 1 
c P. s:.Cf)u (3s:.-P P.FP. =: 0 

e!t--Yv y, v , t-' ~·'QI 
on TI • (2. 21) 

Equation (2.21), together with the incornpressibility condition (2.3), 

constitute the governing system of equations for the plane problem and 

we shall refer to them as the displacement equations of equilibrium in 

plane strain (despite the obvious inaccuracy of the title). They are 

three scalar equations involving the three functions uO:'(x
1

, x 2 ) and 

p(xl' x2). 

One sees readily from (2.4) and (2.15) that in any plane defor .. 

mation, unity is an eigenvalue of the left and right Cauchy-Green ten-

sors, whence we have 

(2. 22) 
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Equations (2. 12) and (2. 13) now specialize to 

and 

whence 

If we now define I by 

2 2 
A.1A.2= 1 , 

we have, because of (2. 4), (2. 12), (2 . 16) and (2 . 25) that 

In the special case when the material is i sotropic, w e have 

from (2 . 14) and (2. 27) that, in plane deformations, 

, ,, 
' •' 

( 2 . 23) 

(2. 24) 

(2 . 25) 

(2. 26) 

(2. 27) 

W=W(I+l, I+l) (2. 29) 

so that if we define the Plane Strain Elastic Potential W(I) by 
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W(I)=W(I+l, I+l) , 1:2: 2 , (2.30) 

A 

we have in the present context that W(~) = W(I) where I= F af3F af3 . 

It follows from this that 

A 

oW(F) 
~ =2F W'(I) ~o-F_a_f3_ af3 ' (2 . 31) 

and that 

(2 . 32) 

From (2 . 4), (2.9) and (2.31) we conclude that 

(2.33) 

It is apparent that the plane strain elastic potential W(I) fully determine s 

the in-plane stress components. This is not true, however, of the corn -

ponent ,-
33 

• 

Finally we recall that in this case the in-plane Baker-Ericksen 

inequality requires that 

if "A. I -f "A. 2 (2 . 34)
1 

for all pure homogeneous (plane) deformations of the form 

y ="A. x 
Q' Q' Q' 

(no sum); t.. 1"A. 2 = 1, "A.Q'>O , 

(2. 35) 

1
see Truesdell and Noll [ 6]. 
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where TO! are the principal in-plane Cauchy stresses. From (2. 4), 

(2.16), (2. 26), (2. 33) and (2. 35) we have 

2 
T = 2W' (I)A. - p , ex ex 

whence (2. 34) may be equivalently written as 

or 

which in turn is equivalent to 

W' (I)> 0 for I> 2 • 

The infinitesimal shear modulus is easily shown to be µ = 2W' (2) 

we assu..rne that µ>o, we may replace (2.39) by 

W'(I)>O for I~ 2 . 

(2. 36) 

(2.37) 

(2. 38} 

(2.39} 

if 

(2. 40) 

Requiring that (2. 40) hold for the material at hand is equivalent to re-

quiring that the material have a positive (finite) shear modulus. Con-

versely, (2. 40} implies (2. 34), though it does not imply the full (three-

dimensional) Baker-Ericksen inequalities. 

2. 2 Local Amount of Shear 

We now establish that any plane volume preserving deformation 

can be decomposed locally into the product of a simple shear in a suit-

able direction followed or pre ceded by a suitable rotation. 
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To this end, let F be a two-dimensional tensor such that 

det F = 1. Define 

k=~' I= F (.l.F (.l. • a..., a..., (2.41)
1 

Then we will show that there exist proper orthogonal tensors 9
1 

, 9 2 , 

non-singular tensors !51 , !52 with unit determinant (all two-dimen

sional) and rectangular cartesian frames X 
1 

, x
2 

such that 

(2. 42) 

and 

1 k 

(2 . 43)
2 

0 1 

Conversely, if (2. 42) holds for some proper orthogonal tensors 91, 92 

and tensors !Si, ~2 with unit determinant such that (2. 43) is true in 

some rectangular cartesian frames x 1, x
2

, then we will show that 

k is necessarily given by k = ±~ . 

In order to prove the first part of the result, let X be a princi -

pal frame for the symmetric positive definite tensor FF T 

A.
2 

0 

0 
-2 

A 

A. > 0 

1since det F = 1 , we have that necessarily r ;;.:: 2. 

Then 

( 2. 44) 

2 xl ,..., 
~l is the matrix of components of the tensor ~l in the frame ~l . 
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where we have made use of the fact that det F = 1. Clearly we may 

assume A.;;:: 1 with no loss of generality. Consider the rectangular 

cartesian coordinate frame x
2 

obtained by rotating the frame X 

counterclockwise through an angle e determined by 

. e i 
sip =- p , 

: 1 +A. 2 
I ·\ 
I • 

A cos e = ---

.r;:;:2 

By the change of frame formula for tensors, 

where 

cos e sine 

R = 

-sine cos e 

x 
we compute CSE T) 

2 
to find 

A. 2+A.- 2 -l A. - A. - l 

x 
(FFT) 2 = ,._,,._, 

A. - A. - l 1 

Let !5
2 

be the tensor with unit determinant defined by 

1 A. - A. - l 

Xz 
!52 = 

0 1 

(2. 45) 

( 2. 46) 

(2 •. 47) 
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Then (2.46) and (2.47) imply that 

T T 
FF = !S2!S2 . 

Define the tensor g
2 

by 

(2. 48) and (2. 49) now lead to 

Since !S2 is non-singular it thus follows that g2gi = l, whence g2 

is orthogonal. But, from (2. 49) it follows that det g2 = + 1 since 

det !S,2 = det !:, = 1 , so that in fact g2 _is proper orthogonal. 

(2. 48) 

(2. 49) 

Finally, since we are assuming A~ 1, it follows from (2.46) 

that "A -"A-
1

=JFaj3Faj3-2=,;r:2 whence from (2.41) k="A -"A-l. This 

establishes the left decomposition f, = !S,29,2 . The right decomposition 

!:, = 9
1 
!Si can be similarly established by considering I_ T !:, in place of 

FFT. 

The second part of the result is easily proved as follows. Sup -

pose now that associated with the given tensor f, there exists some 

proper orthogonal tensor g2 , some tensor !S,2 with unit determinant 

and some rectangular cartesian frame x
2 

such that 

(2. 50) 
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1 k 

X2 
(2. 51) !S2 = 

0 1 

for some real number k. Note that the tensors 92 , !S2 and the frame 

x2 are not required to be the particular ones used in the preceeding 

proof. Since 9
2 

is orthogonal, it follows from (2. 50) that 

T T 
FF = !S2!S2 , (2. 52) 

whence in particular, the traces of the two-dimensional tensors f,f,T 

T 
and !S2!S2 are equal. By virtue of (2. 51) we now have that necessar ily 

2 
I= F af~l af3 = 2 + k , whence 

k = ±Jf=Z • 

The corresponding result for the decomposition f, = 9 1!S 1 may be simi-

larly established. 

Given any plane volume preserving deformation with deformatio n 

gradient :_[,(~), we refer to k~) defined by (2 . 41) as the associated 

local amount of shear. Therefore any arbitrary plane deformation of 

an incompressible material can be viewed locally as a simple shear in 

a suitable direction with local amount of shear k(~) , followed or pre -

ceeded by a suitable rotation. 



-20-

CHAPTER 3 

3.1 Ellipticity of the Plane Displacement Equations of Equilibrium 

We now introduce the relevant notion of ellipticity without re-

stricting ourselves to isotropic materials. 

Consider a cylindrical surface S with generators parallel to 

those of the undeformed body and lying wholly within ~ . Let C be 

the curve along which S intersects Il. Assume that C has a con-

tinuous curvature, and let s be the arc length on C . Then C 

may be described by the non- singular parameterization 

C: x = ~ (s) 
O' O' 

If C is a coordinate normal to C and ~(s) is a unit vector normal to 

C in the x
1 
-x

2 
plane, then near a fixed point P on C we have the 

orthogonal curvilinear coordinate system ($, C), permitting us to 

write 

x =~ (s)+CN (s) (3.1) · 
O' O' O! 

for any point (x
1

, x
2

) in a two-dimensional neighborhood of P. The 

mapping (3. 1) is locally one to one, so that it has an inverse 

(3. 2) 

and f and g are twice continuously differentiable in a neighborhood 

of P . Note that we may take 
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yg 
N=-- on C . 

lygl 

Now suppose that (uO'(x
1
,x

2
), p(x

1
,x

2
)) is a solution of the 

plane displacement equations of equilibrium (2. 3) and (2. 21) such that 

u is once continuously differentiable and twice piecewis e continuously 
O' 

differentiable on TI, while p is continuous and piecewise continuously 

differentiable on TI • We set 

and further suppose that, in fact, the second order partial derivatives 

of u 
O' 

are 

derivative 

all continuous 
a2u. 

across C except possibly for the normal 

Ci 

8C2 
continuous across 

and that the first order partial derivative * is 

a" 
C, while the normal derivative ~ may suffer a 

jump discontinuity. 

Let 

(3. 3) 

where [h] denotes the jump of a function h across C . Then one shows 

easily that 

[ u A ] = u NAN , 
et, t->Y <:t t-> y 

where N = 'Vg = (N• N) 1 
/ZN • We have by the chain rule and (3. 2) that 

"'-' r...J r--..J r...J r...J 

1
see S e ction 1 of [ 1] . 
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which because of the presumed smoothness and (3. 3) leads to 

[p ]=qN . 
, Ct Ct 

{3. 5) 

Taking jumps in the first two displacement equations of equilibrium 

(2. 21), and rnaking use of (3. 4), (3. 5) and the assumed smoothness we 

get 

on C • (3. 6) 

If for all vectors N and nonsingular tensors F with unit deter-

minant, we define the matrix Q P. (N, F) through 
Ct t-' r-.J r.J 

Q (N, F) == c P. ~ (F)NP.N~ , 
ety ,..., ~ ett-'Yu ,..., t-' u 

{3. 7) 

then QCi'f3 is symmetric by virtue of (2.11). Equation (3.6) can now be 

written in the form 

on C . (3. 8) 

We also need the ''jump equation" associated with the remaining 

displacement equation of equilibrium (2. 3). 
a 

We compute aC(det f) to 

find 

(3. 9) 

where use has been made of (3. 2), the chain rule and a standard formula 
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for the differentiation of a determinant. Taking jumps in (3. 9) and making 

use of (2.3), (3.3) and the presumed smoothness leads to 

ra l -1-! ac(det f) _ = F (3aN l3 U a • (3.10) 

But by (2. 3) the jump in det F must vanish, whence (3. 10) simplifies to 

on C . (3. 11) 

The system of jump equations associated with the displacement equations 

of equilibrium are (3. 8) and (3. 11 ), and may be regarded as three linear 

homogeneous algebraic equations for the jumps U and q. 
Q' 

We say that the system of plane displacement equations of equili-

brium is elliptic at the solution (-ua ,p) and at the point (x
1

, x
2

) if and 

only if, for all vectors ~~ Q , the system (3. 8), (3. 11) has only the 

trivial solution U = 0 , q = 0. 
Q' 

Consequently if the system is elliptic, the displacement field 

u will in fact be twice continuously differentiable at the point under 
Ci 

consideration and the pressure p will be continuously differentiable 

there. If on the other hand there exists a non-trivial solution of (3. 8) , 

(3. 11) for some vector ~, then N is normal to a characteristic curve 

in the undeformed configuration. These characteristic curves are the 

only possible carriers of discontinuities of the kind admitted here in 

u and p , and ellipticity precludes the existence of real characteristics. 
Ct 

If we set 

we can write the system of jump equations (3. 8) and (3. 11) as 
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0 q 

This system of linear homogeneous algebraic equations for U and q 
CY 

has only the trivial solution if and only if 

(3. 13) 

0 

or equivalently 

(3 . 14)
1 

Since F has unit determinant, one shows easily that in plane strain 

(3 . 15) 

By virtue of (3.12) and (3.15) we may write (3.14) equivalently as 

(3 . 16) 

Therefore, we have that a necessary and sufficient condition for 

1 
eal3 is the two-dimensional alternator. c 11 =e 22=0, e 12=1, e 21 =-l. 
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the displacement equations of equilibrium to be elliptic at a solution 

(u
01

, p) and at some point (x
1

, x
2

) is 

e ,eP. F ,Fi: Q JN,F)N :NP.rfo, 
Qlf\. I-'µ Yfl. uµ y u '"'"' ~ QI I-' 

(3.17) 

for every vector ~f Q. Finally, because of (3. 7) it is clear that (3.17) 

is equivalent to 

e ,ep, F ,Fi: Q J:(N,F)N NP.lo 
O'fl. !-'µ yfl. uµ yu '"'"' '"'"' QI I-' 

for all unit vectors N . 

3. 2 Specialization to Isotropic Materials 

(3. 18) 

When the material at hand is isotropic, we can use (2.4), (2.1 1 ), 

(2. 32) and (3. 7) to simplify the necessary and sufficient condition for 

ellipticity (3. 18), which then gives 

(e , e P. C AN, N )W'(I) + 2(e , C N N, )
2

W"(I) f 0 , 
Otf\. !-'µ Ot I-' fl. µ Qlf\. QIP p fl. 

(3 . 19) 

for every unit vector N. Now let the frame be principal for ~ , so th at 

A.2 
1 

0 

[ c ] = 0tf3 
0 A.2 

2 

and evaluate (3. 19) in this frame. We then find 

(3 . 20) 

for all unit vectors ~ , as being necessary and sufficient for ellipticitf. 

We will now show that the plane displacement equations of 
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equilibrium are elliptic at a solution (uO' , p) and at a point (x 1, x 2 ) if 

and only if 

and 

W'(I)-/: 0 

2W"(I) (I- 2) + l>O 
W 1 (I) 

(3 . 21) 

atthe point under consideration; i.e. that (3.21) is equivalent to (3.20). 

To show this, we observe that since N is a unit vector, 

so that (3. 20) may be written as 

for all unit vectors N • If we set 

z 
Q' 

we can replace (3. 23) by 

2 '( E 22= A l W I) , 

(3 > 2 2) 

(3 . 24) 

(3 . 25) 

It has been shown in Section 2 of reference [2] that (3.25) holds if and 

only if 
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(3. 26) 

and 

(3. 27) 

where 

(3. 28) 

Substituting from (3 0 24) into (3. 26) we get A. i"- ~ [W'(I)} 
2 > 0 

which, be cause A. > 0 is equivalent to O! , 

W'(I)-/- 0 • (3. 29) 

Using (3.24) and (3.28) in (3o27) leads to 

which because of (2. 24) and (2. 27) may in turn be written as 

W"(I) 
2(1-2) W'(I)+l>O • (3. 30) 

Equations (3.29) and (3.30) are what we set out to establisho 

A physical interpretation of the ellipticity condition (3. 21) may 

be obtained in terms of the concept of the local amount of shear intro-

duced in Section 2. 2. Consider an isotropic, incompressible, homo

geneous, elastic solid which has a positive shear modulus: 
1 

1see (2. 40). A similar interpretation can clearly be given in terms of 
the local amount of shear even in the unrealistic case when (2. 40) does 
not hold. 
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W'(I)> 0 for 1:2 2 . (3. 31) 

The first of (3. 21) is now trivially satisfied. If we define the 

function T ( • ) by 

(3. 3 2) 

then T(k) is easily shown to be the shear stress corresponding to an 

amount of shear k in a simple shear deformation. The graph of T(k) 

vs. k described by (3. 32) will .be called the response curve in simple 

shear. Differentiating (3. 32) with respect to k and observing that 

(3. 31) holds leads to 

{ 

II 2 
'T 1(k)=2W'(2+k2 ) 2k2 w< 2 +k >+1 

W'(2+k
2

) 

We therefore find that (3. 21) is equivalent to 

T
1(k)>O for k =JI:Z , 

} 
{3. 33) 

from which we conclude that for an isotropic, incompressible elastic 

solid having a positive shear modulus, the plane displacement equations 

of equilibriuxn are elliptic at a solution (ua, p) and a point (x 1, x 2 ) if 

and only if the slope of the response curve in simple shear at an amount 

of shear equal to the local amount of shear is positive. 

Suppose for example that the response of a particular homo-

geneous, isotropic, incompressible elastic solid in simple shear is as 

described by Fig. 2. Then in any plane deformation the displacement 

equations of equilibrium are elliptic at some point (x1, x
2

) and some 

solution if and only if the local amount of shear at that point k(x
1

, x 2 ), 
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defined by (2.41), is such that -k
0

<k(x
1
,x

2
)<k

0
. 

It is apparent from the above discussion that a loss of ellipticity 

for materials of the type being considered is dependent upon a loss of 

invertibility of the shear stress - amount of shear relation in simple 

shear. 

Finally, we note from (3. 21) that the undeformed state is ellip

tic if and only if the infinitesimal shear modulus µ = 2W'(2) f. O. This is 

precisely the condition for ellipticity of the linearized displacement 

equations of equilibrium for a homogeneous, isotropic, incompressible, 

elastic material. 

3. 3 Characteristic Curves 

If the ellipticity condition (3. 21) is violated, it follows that 

there exists a unit vector ~ such that equality holds in (3. 20). N will 

then be normal to a (material) characteristic, and we now determine the 

number of possible characteristics and their inclinations. To this end; 

let 

N l = - sin 8 , N 2 = co s 8 , (3.34) 

so that e is the local inclination of the material characteristic to the 

A. 
1
-principal axis of C. Substituting this in (3. 20), with equality hold-

ing now, we find 

2 2 2 . 2 '( 2 2 2 . 2 2 "( ) (A.
1
cos 8 +A. 2 sm 8)W I)+ 2(A. l -A. 2 ) sm 8cos 8W I = 0 

We seek solutions 8 of this equation in the interval (- ~, ¥] . 
Let us assume that the infinitesimal shear modulus of the ma-

terial is positive: 
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µ = 2W'(2)>0 . (3. 36) 

We see immediately from (3. 21) that, if the point under consideration 

is locally undeformed (I= 2) in the given deformation, then the dis-

placement equations of equilibrium are elliptic there. Consequently 

we need only consider I> 2 in our search for characteristics. 

Suppose first that ellipticity is lo st by virtue of the fact that the 

first of the ellipticity conditions (3. 21) is violated. 
1 

Then 

W'(I) = 0 (3. 3 7) 

at the point (x
1

, x
2

) of interest at the given deformation. We then find 

from (3.35) that either W"(I)=O or 8=0, ¥. Using (2.41) and (3.32), 

we may state this result as follows. Let k be the local amount of 

shear. Then if -r(k) = 0, the displacement equations of equilibrium are 

not elliptic for the given deformation at the point under consideration. 

Furthermore, we then have two (material) characteristics inclined at 

angles 0 and ¥ to a principal axis of £ , except in the particular 

case when T '(k) = 0 as well, in which case any number of arbitrarily 

inclined characteristics may exist locally. 

Now suppose that W'(I) f 0 at the point of interest and that ellip-

ticity is lost by virtue of the fact that the second of (3. 21) has been 

violated. Then 

2W"(I) (I - 2) + 1 ~ 0 
W 1 (I) 

Equation (3. 3 5) can now be rearranged into the form of a quadratic 

(3 . 3 8) 

1Note from (2. 40) that this possibility does not exist if the material h a s 
a positive shear modulus. 
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equation for cos 28 • 

2 2 2 2 2 
(A. 1 - A. 2) W"(l) 2 (A. 1 - ;\ 2) 

2 W' (l) cos 28 - 2 cos 28 

~ + ;\ 2 (;\ 1 - ;\ 2) W"(l) _ 

{ 

2 2 2 22 } 

- 2 + 2 W' (I) - O (3.39) 

Formally we can write the solution of this after making use of (2. 24) 

and (2. 27) as 

.;!,. 

28 
_ 1±([2(1 - 2 )W"(l) /W'(l) + 1} [ 2(1 + 2}W"(I) /W'(l) + 1}} 2 

cos - . 2 1 

2(1 - 4)2W''(I) /W'(I) 
(3. 40) 

where with no loss of generality we have assumed that A 
1

>A. 2 • 

If (3.38) holds witJ; equality (so that 'f(k)iO, 'r
1(k)=O at the 

local amo u..'1.t of shear k) we find two values of 8 in the interval 

(-¥, ¥] from (3. 4 0), whence two characteristics exist. Equation (3. 40) 

now simplifies to 

. ;r-=z cos 2 8 = - ~ l + 2 , 

which because of (2. 24) and (2. 27) (and since A 
1

>A.
2

) leads to 

whence 

l-;\2 
cos 29 = ---1 

1 +A. 2 1 

1 

tan 8 = ±;\ 1 . 

(3. 41) 

(3.42) 

(3. 43) 



-32-

Suppose the spatial characteristic corresponding to this material char-

acteristic is ·inclined at an angle a to the A 1-principal axis of Q.. 

It can be shown that 

"-2 
tan a= -tan e , 

A 1 

so that {2.24), {3.43) and (3.44) give 

1 
tan a=± - • 

A 1 

{3. 44) 

{3. 45) 

Because of (2. 33), a is also the inclination to the corresponding prin-

cipal axis of the Cauchy stress tensor. 

If however, strict inequality holds m (3.38) (so that 'f(k)~O, 

k'f(k)T 1(k}<O at the local amount of shear k) (3.40) gives us four values 

of e which in turn implies the existence of two pairs of characteristics. 

Clearly, each pair is positioned symmetrically with respect to the prin-

cipal axes of £ . In what follows we will have need for the inclinations 

a of the corresponding spatial characteristics to the A 
1
-principal axis 

of g (A. 
1 

>A. 
2

) . From (2. 24), (2. 27), (3. 40) and (3. 44) we have 

cos 2a = 

.1. 
-1±(( 2(I - 2)W"(I)/W'(I) + 1} ( 2(I+ 2)W"(I)/W'(I) + l})_:a 

2(1
2 

- 4)"~W"{I)/W'(I) 
{3. 46} 
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CHAPTER 4 

4. I Weak Formulation of Problem 

· In the derivation of the classical field equations of elasticity the 

displacement field ~ and stress field 2, are assumed to satisfy certain 

smoothness requirements. There are, however, some physical prob-

lems in which these conditions are not met, so that in order to study 

them one would be forced to relax the smoothness demanded of the fie l d 

quantities. It may, for example, be necessary to require only that the 

displacement field ~(~) be continuous and piecewise continuously dif-

ferentiable on R , while the nominal stress field 2,(~) and the pressure 

field p(~) are to be piecewise continuous 
1 

on R • Clearly , the global 

balance laws continue to be meaningful even under these smoothness 

conditions , but one must re-examine the validity of the local field 

equations. 

Of particular physical interest is the case wherein the field 

quantities possess the classical degree of smoothness
2 

everywhere 

except on one or more regular surfaces within the body. This would, 

for example, describe an idealized model for shear bands . To formu -

late this problem, we suppose that there is a surface S in R such 

that ::!., , ~ and p are continuously differentiable everywhere in R 

except on S , and such that a , F and p suffer finite jump disconti-
~ ~ 

nuities across it. The displacement ~(25) is presumed to be continuous 

1
we return momentarily to the three-dimensional case in this section . 

2
See Section 2. 1. 
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everywhere in ~ . The possibility of the breakdown of ellipticity of the 

governing equations suggests that solutions of this type to the equations 

of finite elastostatics may emerge in some circumstances. 

1 
Going through the usual arguments, one finds from the global 

equilibrium of forces that 

div CJ= 0 on R - S (4. 1) 

and 

on S , (4. 2) 

while from the global equilibrium of moments we have 

on R - S (4. 3) 

and 

on S • (4. 4) 

Equation (4. 2 ) says that the nominal tractions are continuous across 

+ + - + -
S • Here [CJ] =a - CJ where CJ and cr are the limiting values of cr 

f"-J - ,..._, ,..._, ,...._, ,...._, ,..._. 

(presumed to exi st) as a point on S is approached from each side, and N 

is is a unit normal to S • Equations (4. 2) and (4. 4) are . referred to as 

jump conditions.. Note that (4. 4) is trivially satisfied once (4. 2) is. 

The global version of mass balance likewise leads to 

det F = 1 on R - S , (4. 5) 

while the associated jump condition is trivially satisfied in equilibrium 

1
see Chadwick [ 7]. 
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problems. 

Such a surface S carrying jump discontinuities in f, , E., and 

p which conform with the jump condition (4. 2), while maintaining con-

tinuous displacements across it is called an "equilibrium shock 11 , or 

an "elastostatic shock11 in the particular case when the body is com-

posed of an elastic material. 

4. 2 Piecewise Homogeneous Elastostatic Shocks 

To investigate many of the local issues related to elastostatic 

shocks, it is sufficient to consider the case in which S is a plane and 

the deformation gradient F is constant on either side of S • From 
~~ . 

here on we shall be concerned with such a situation within the context 

of plane deformations 
1 

of an incompressible elastic solid, so that we 

may take S to be a plane parallel to the generators of the body. 

The corresponding problem for a compressible elastic solid 

was investigated by Knowles and Sternberg [ 3]. In this section, we 

formulate the problem governing the existence of an elastostatic shock 

in the incompressible case in a manner entirely analogous to [3]. 

Suppose that the middle cross-section of the body we are deal-

ing with occupies the entire x
1 
-x2 plane II in its undeformed configu

ration. Let X be a fixed rectangular cartesian coordinate frame and 

let £ be the straight line through the origin of X with unit direction 

vector L . Thus 

£: x = L s 
O' O' 

-co<s<co (4. 6) 

1
we leave the three-dimensional introduction to elastostatic shocks of 

the last section and return to plane deformations from here on. 
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Let ~ be the unit vector normal to £ obtained by a counterclockwise 

+ 
rotation of L . Let TI and TI be the two open half planes into which 

+ 
£ divides TI, with TI being the one into which ~ points. {See Fig. 1.) 

Now consider the piecewise homogeneous plane deformation 

+ 

y = 
Ct 

+ 
on TI , 

on · TI , 

where F and F are constant tensors such that 

+ 
det F = det F = 1 

The nominal stresses associated with the deformation (4. 7) are 

A -

oW(f) - - -1 
0 af3 = a F af3 - pF f3a 

+ 
on n 

-
on IT 

(4 . 7) 

{4 0 8) 

(4 . 9) 

+ Clearly, the equilibrium equations (4. 1) are satisfied if and only if p 

and p are constants. 

If we are to view the line of.. as the intersection of an equilibrium 

shock S with the cross-section TI , then according to Section 4. 1 we 

need to impose displacement and traction continuity requirements across 

£ . Because of (4. 7) the requirement of a continuous displacement field 

is equivalent to 

on £ , (4. 10) 



-37-

which in view of (4. 6) reduces to 

(4 . 11) 

By (4. 9), we have traction continuity {4. 2) if and only if 

{4. 12) 

If the deformation field {4. 7), subject to (4. 8), together with 

+ - + - 1 
real constants p and p conform with {4. 11) and (4. 12) , and if [-f [, 

then we refer to the corresponding elasto static field as a piecewise 

homogeneous elasto static shock. The line £ will be referred to as 

the material shock-line. Figure 1 {b) displays the images of the three 

rectangles shown in Fig. l(a) under a typical mapping (4 . 7) in the pres -

ence of a piecewise homogeneous elastostatic shock. 

In order to examine questions related to the existence of piece-

wise homogeneous elastostatic shocks we pose the following problem . 

+ + 
Given a constant tensor F with det F = 1 + and a real constant p , de -

- - - + 
termine a constant tensor F with det F = 1 (I_;i I_) and a real constant 

p such that (4. 11) and (4 . 12) hold . 

Equation (4 . 11) may be solved as follows . Let £,:, , which we 

shall refer to as the spatial shock-line, be the image of £ under the 

+ + 
mapping (4. 7). Let TI_,_ and TI .. , be the two half p l anes into which TI 

'I" ""I' 

and TI map by virtue of (4. 7) . Suppose ,£ is the unit direction vecto r 

of £,:, such that the unit normal E, to £,:, obtained by rotating !:, 
+ 

counterclockwise points into TI_,_ • (See Fig . 1. ) Without any loss of 
'•' 

1
Note from (4. 12) that if i-1 ]; then necessarily E-f "jt. 
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generality the inclinations 9.i and ¢ of the shock-lines £, and £,_,_ 

relative to the xl-axis may be confined to the interval [-¥ ' ¥] . 
+ 

One can show readily that, given a constant tensor [ with 

+ 

-.-

det F = 1 , (4. 11) will hold for a tensor F with unit determinant if and 

only if 

- + 
F ~={6 +n£ n )F ~ 

at-' ay a Y Yt-' , 
(4. 13) 

for some real number n • We omit the derivation of this result as it 

parallels exactly the corresponding derivation in the compressible case 

contained in [ 3]. Let X / be the rectangular cartesian frame obtained 

by rotating the frame X counterclockwise throug}1 an angle ¢ . The 

base vectors associated with X' are then 1 and n • Expressing (4.13) 

in the frame x' we have 

-x' -x' 
1 

+x' +x' 
F 11 F12 n Fll F 12 

= (4. 14) 

- 'J: ! -x' 
0 1 

+x' +x' F--
F22 F 21 F 22 21 

Accordingly, the deformation on TI may be viewed as being equivalent 

+ 
to the deformation on TI followed by a simple shear parallel to £,_,_ -.-

with an amount of shear it • 

We may now pose the following problem which is equivalent to 

+ 
the one posed earlier. Given a constant tensor [ with unit determi-

nant and a real constant i, determine real numbers p, n(f 0) and 

¢ E [-¥ , ¥] such that (4. 12) holds with I defined by (4. 13). Here 

we have omitted u = 0 since, by (4. 13) we see that this corresponds to 

- + 
the shockless state F = F • 



-39-

Finally , we note that since the traction continuity condition (4. 12) 

imposes only two scalar restrictions on the three parameters ¢ , it 

and p , one would anticipate that if there exists an elasto static shock 

corresponding to a given t and i , then in fact there exists a one 

parameter family of shocks. 
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CHAPTER 5 

5. 1 Weak Piecewise Homogeneous Elastostatic Shocks 

We now specialize the problem posed in the general setting of 

Section 4. 2 to the first of two simpler cases. Here we confine attention 

to elastostatic shocks that are weak in the sense that the departure of 

+ 
F from F is small. Motivated by the ren1arks at the end of the pre -

vious section, we assume here that there exists a one parameter family 

+ + 
of shocks, corresponding to the given f, and p , depending on the 

paranieter K and sufficiently smooth near K = 0 • Specifically, we 

suppose that there are functions ¢(K) , p(K) both twice continuously 

-
differentiable in a neighborhood of K = 0 , such that [ defined by (4. 13) 

together with p(K) conforms with the traction continuity requirement 

- + 
(4. 12). Since from (4. 13) we have that f, = f, when Ii= 0 , we may use 

+ 
Ii as a measure of the departure of f, from S . Accordingly Ii will 

be referred to as the shock strength para1neter. 

We first record the following kinematic results which are estab-

lished in [ 3]. Let 

Then 

1 + 1 -
.R_ = -F ALA= -F ALA ' a c a~ ~ c a~ ~ 

(5. 1) 

( 5 0 2) 

(5. 3) 
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(5. 4) 

If ¢(u) and p(u) exist as described above, it follows that L,N,£, 
,..._, rv ,..._, 

E , f, and c are all u dependent whence we write ~(u) , ~(u) , !:_,Cu) , 
-

E(u) , f,(u) and c(u). 

Because of the presumed smoothness of ¢(u) we have the fol-

lowing Taylor expansions, where a prime denotes differentiation with 

respect to u , 

£(u) =£(0)+£'{0)x.+o{u), 
....._, rv rv 

n{u) =n(O)+n'(O)u+o(u) , ......., ......., ,....., 

N(u)=N(O)+N'(O)x.+o{u). 
r..J ,. . ....,, ,......_, 

Equation (4. 13) now gives 

- + + 
F A{u)=F R.+u£ (O)n (O)F R.+o{u) , 

CL!'-' Q't-' Ci 'Y Yt-' 
(5 . 6) 

--1 +-1 +_1 
F A (x.) = F A - u£ (O)nA{O)F +o(u) , 

at-' CLt-' y I" CLY 
(5. 7) 

where we have also used (5. 4). This enables us to write the following 

Taylor expansion 

A - A + 
oW(F(u)) oW(F) 

......., = ......., +x. 
o F 0t{3 

2 A + o W(F) + 
oF aF £ (O)n (O)F ~+o(u) 

R. ~ Ci \) \JV 
Q't-' yv 

(5. 8) 

The Taylor expansion of p{u) leads to 

1whenever we write o(I-{.) , we mean o(u) as u-> 0 • 
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p(i-t) = p(O) + i-t p '(O) + o(i-t) • (5. 9) 

Using (5. 6), (5. 7) and (5. 9) and evaluating the traction continuity con-

dition (4. 12) to leading order, gives 

+ -p=p(O) • 

Consequently we may write (5. 9) as 

- + - I p(i-t)=p+i-tp (O)+o(i-t) . 

(5.10) 

(5 . 11) 

We now return to the traction continuity condition (4. 12) and re-evaluate 

it to leading order using (2. 11), (5. 5), (5 . 7) , (5. 8) and (5. 11). This 

leads to 

{ + + - I + -1 + t -1} c R ~(F)i (O)n (O)F i:-P (O)FR +pf (O)n (O)FR NR(O)=O , 
Ct~yu r¥ Y \I \IU ~Ci Y O' ~y ~ 

(5. 12) 

which are two scalar equations for p'(O) and ¢(0) . 

5. 2 A Necessary Condition for the Existence of a Weak Shock 

We now derive a necessary condition for equation (5. 12) to have 

a solution p '(O) , ¢(0) • We have from a Taylor expansion of (5. 3) that 

(5. 13) 

Using (5. 13) in (5. 12) leads to 

+ + + + 
c R i:(F)i (O)n (O)n (O)F i:F R-p'(O)n (O)+piy(O)ny(O)n (0)=0 • 
a~yu r¥ y TT \I TIU \I~ Q' Q' 

(5. 14) 

But since l1 is perpendicular to n we have l1 (O)n (O) = 0 , whence 
r¥ r¥ Q' Ci 

(5. 14} simplifies to 
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+ + + -
c A i:.(F).f (O)n (O)n (O)F i:.F A-p'(O)n (0)=0 (5.15) 

O't-'Yu ""' Y Tr \J Tru \J t-' CY 

Multiplying (5.15) by nCY(O) and making use of the fact that 2 is a unit 

vector leads to 

- I t t t 
p (O)=c A i:.(F).f (O)n (O)n (O)n (O)F i:.F A • 

O'J'-''Vu ""' y rr \J CY rru \Jt-' 

Alternatively, multiplying (5. 15) by £ (0) gives that 
O' 

+ + + 
c A i:.(F).f (0)£ (O)n (O)n (O)F i:.F A=O , 

O't-'Y u ,...., 'V et rr v rr u v t-' 

(5.16) 

(5 . 17) 

by virtue of the fact that .P.• n = 0 • Using (5. 3) and (5. 4) in (5. 17) leads 
"-' ,...., 

to 

+ + + 
€ e, F . F 1 c A i:.(F)NA(O)Ni:.(O)N (O)N (0)=0 , 

Tr\J 11.µ yrr Cifl. ett-'yu ,...., t-' u \J µ 
(5 . 18) 

which because of (3. 7) can: be equivalently written as 

+ + + 
e: ,eA F ,Fi:. Q i:.(N(O),F)N (O)Np,(0)=0. 

0'11. t-'µ "(II. uµ y U rv rv O' t-' 
(5. 19) 

Equation (5. 19) must necessarily hold if a one parameter family of 

elastostatic shocks of the type being considered is to exist. On com-

paring with (3. 18), we see that (5. 19) implies a loss of ellipticity of the 

+ + + 
displacement equations of equilibrium on I1 at the given I, and p • 

We therefore have the following result: 

Theorem 1. A necessary condition for the exist

ence of a one parameter family of elastostatic 

shocks, of the kind under consideration, is that 

the displacement equations of equilibrium suffer 

a loss of ellipticity at the given deformation and 
+ 

pressure on TI • Furthermore, in the weak shock 
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limit (it ..... O) the material shock-line and the 

spatial shock-line tend respectively to a ma

terial and spatial characteristic associated 
+ 

with rr . 

The corresponding result was obtained by Knowles and 

Sternberg [ 3] in the case of compressible elastic materials. 

+ + In the event that, corresponding to a given I and p a one 

parameter family of shocks of the type being considered exists, the 

jumps of various physical quantities across the shock can be easily 

+ + 
determined to leading order in terms of the given I, p and the pre-

sumably determinable (from (5. 12)) ¢(0) , p '(O) . We now determine 

some of these jumps. 

(i) The jump h1 energy densi!}: [w]+ 

" -The Taylor expansion of WCf,(it)) about it = 0 , together with 

(2. 9) and (5. 6) leads to 

" - " + {+ + }· W(F(i-t))=W(F)+it 'f ~nA(O).€ (O)+p.€ (O)n (0) +o(u) . 
,..., ,..., al-' I-' a a a 

(5. 20) 

Since .€ is perpendicular to n we ·can drop the last term in (5. 20) to 

get 

where we have set 

[W]+- =u t (0).€ (0) + o(u) , 
Cl! Cl! 

+ t(x.)='fn(it) . ,..., ,...,,..., 

(5. 21) 

(5. 22) 

As a consequence of (2. 6), (4. 2), (5. 3) and displacement continuity, we 

see immediately that t (u) = f n(u) = T n(1i) which implies the continuity of 
r-J ,....._,,...._, r-..J,....._, 

the Cauchy traction vector across £,,, • ,,, 
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(ii) The stress jumps [,- A]+ 
O:'t-' -

From (2 . 9) we have that 

{ 5. 23) 

( 5 . 24) 

which together with (2. 11), (5. 6), (5. 8), (5. 11) and (5. 22) leads to 

[ ] - { + + + -, + 
T A + = ><. c s: (F)F s:F Ai, .R {O)n (0) - p {O)o A+ pn (0)£ A(O) 

Q't-' aµ y u ~ rr u M--'- y rr O:' I" O:' I-' 

(5 .2 5) 

(iii) The jump in the normal stress acting on a plane perpendi-

cular to -£,,, 
'•' 

Consider the plane perpendicular to the spatial shock so that the 

normal to this plane is !:., • The jump in the normal stress acting on 

x' + this plane across the shock-line, [,- 11 ]_ , is 

(5. 26) 

which because of (5 . 25) and the perpendicularity of the vectors l, and 

~ can be written to leading order as 

+ + + 1 

+c i:(F)F s:FA f (0).RA{O).R {O)n (O)Jto(~) • (5 . 27) 
O:'µyu ~ 1Tu I-'µ y I-' CC 1T · 

In view of (5. 4) and (5. 16) this leads to 
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hx
11

1

]+=-it{t (O)i (O)+c i:(P)P i:; 1 (O)n (O) 
- Q' Q' O'µyu,....., 1Tu Cl'µ y 1T 

- 2p'(O)J+o(K) , 

which together with (5. 25) gives 

[ X 
1

] + - I - I ,-
11 

_=-tr1_(0)-itp (O)+o(it) . ( 5. 28) 
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CHAPTER 6 

6. 1 Finite Elastostatic Shocks in Isotropic Incompressible Materials 

We now return to shocks of finite strength, but assume the ma-

terial at hand to be isotropic. Substituting (2.31) in (4.12) and making 

use of (2.4) and (5.3) leads to 

(6. 1) 

where 

+ + + + 
I=F (.\F (.\=G , I=F (.\F (.\=G • 

CY t-' O:' t-' Ci C1' C1' t-' QI t-' CY O:' 
(6. 2) 

Clearly, (6. 1) is simply a statement of the fact that the Cauchy traction 

is continuous across the spatial shock. The original problem concern-

ing the existence of elastostatic shocks can now be posed as follows: 

+ 
given a constant tensor r with unit determinant and a real constant 

~, determine real numbers p, it(~ 0) and ¢ such that (6.1) holds 

- · 
with g given by (4. 13), (6. 2). 

If we express (6.1) in terms of its components in the frame X', 

we have 

+x' ,+ -x' ,-
2G12 W (I)= 2G 12 W (I) , (6. 3) 

+x I I t + -x I I - -
2G 22 W (I) - p = 2G22 W (I) - p . (6. 4) 

As observed earlier, (6. 3) and (6. 4) impose only two scalar restrictions 

on the three quantities ¢ , it and p . Furthermore since p enters 
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only in (6.4), and there too only linearly, we may consider (6. 3) and 

(6. 4) separately i.e. if there are numbers u. and ¢ such that (6. 3) 

holds, then there certainly is a third number p such that (6. 4) holds 

as well. The existence of an elastostatic shock therefore depends on 

whether there are numbers u. and ¢ such that (6. 3) holds. 

To pursue this question further, we need the components of 

+ 
G and G in the frame X' • With no loss of generality let us take X 

+ 
to be a principal frame for Q . Then 

AZ 
1 

0 

+x 
A. IA z = 1 G = , . 

0 AZ z 

By the change of frame formula for tensors we have 

where 

cos¢ 

R= 

-sin¢ 

Using (6. 5) and (6. 7) in (6. 6) gives 

+ X' 
G = 

AZ-AZ 
l 2 . z,.,, z sin ..,., 

sin¢ 

cos¢ 

2 z 
Al -A Z 

Z sin Z¢ 

AZ +AZ 
1 z 

2 

t..2-A..2 
1 2 

2 cos 2¢ 

(6. 5) 

(6. 6) 

(6. 7) 

(6 . 8) 
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/...2-/...2 
1 2 

13= 2 2 ' 
/... 1+/...2 

we can write (6. 8) because of the second of (6. 5) as 

1+13 cos 2¢ - 13 sin 2¢ 

+ X' 
G = - 1 

n - 13 sin 2¢ 1 - 13 cos 2¢ 

( 6. 9) 

(6. 10) 

It is clear from (6. 5) and (6. 9), that the value of 13 alone suf

fices to determine g X completely, and in this sense ~ is a measure 

+ 
of the deformation on TI • Note that because /... > 0 , (6. 9) implies that 

Ct 

1>13>- 1 . (6.11) 

Furthermore, we have 13 = 0 if and only if the part of the body occupy-

+ 1 
ing TI in its lL."ldeformed configuration remains undeformed under the 

mapping (4. 7). 

We now find from (4.14), (6. 2) and (6. 10) that 

- x' I 
G =---

1 + f3cos 2¢ - 2ul3sin 2¢ 
2 

+x. (1 - 13cos 2¢) 

- 13s in 2¢ + x. ( 1 - J3co s 2¢) 

1 i.e. F is a proper orthogonal tensor. 

- f3sin 2¢ 

+x.(l - f3cos 2¢) 

1 - 13cos 2¢ 

( 6. 12) 
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and from (6. 2), (6. 10) and (6. 12) that 

(6.13) 

I= 2 - 27if3sin 2¢ +Ii 
2

(1 - J3cos 2¢) 

p 
(6. 14) 

Returning to the traction continuity requirement (6. 3) with (6. 10), 

(6. 12) - (6. 14) we find 

- ~sin 2¢W'(~ " {-~sin 2¢ 

(6. 15) 

We may now pose the problem as follows: given a number f3 in (-1, 1), 

find numbers Ii -:f 0 and ¢ m [-¥ , ¥] such that (6. 15) holds. 

If, for the given f3 in (-1, 1) and any ¢ . in [-¥, "i] there 

does not exist a root 1i I- 0 to (6. 15), the material is incapable of sus-

taining an elastostatic shock corresponding to the given deformation 

+ 
associated with (3 on D . On the other hand .if, for the given (3 in 

(- 1, 1) and for some ¢ in [-~, ~] there is a root 1-il-O to equation 

(6. 15), then there exists a corresponding elastostatic shock. There

fore, we now investigate the possibility that (6. 15) has a root 1i I 0 

for all values of¢ and f3 such that -~:::;;¢:::;;~, 1131<1. 

Finally we observe from (6. 15) that if for some pair (¢ , (3) , 
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I 13 I< 1 and - ~~ ¢ ~ ~ , there exists a root x. to equation (6. 15), then 

(i) - it is a root of (6. 15) for the values ( - ¢ , {3) , and 

(ii) - x. is a root of (6. 15) for the values TT (z - ¢ , - 13) • 

It therefore follows that, as far as the issue of existence is concerned, 

wemayinfactrestrict ¢to [o,¥] and j3 to [0,1). Ifwedefinethe 

set G by 

(6. 16) 

we need to look at the question of the existence of a root K f 0 to 

equation (6. 15) for every (¢, j3) in G • 

6. 2 Some General Results 

We now establish some general results concerning the existence 

of elastostatic shocks, valid for an arbitrary homogeneous, isotropic , 

incompressible elastic solid which has a positive shear modulus. 
1 

We first make the following preliminary observation. If j3 = 0 

or ¢::: 0 or ¢ =~ , the only root of (6. 15) is K::: 0 . This follows 

directly from (6. 15) because of (2. 40). This means that for a material 

of the type we are considering, no elastostatic shock is possible if the 

+ 
part of the body occupying II,:< is undeformed, nor can any spatial 

+ 
shock-line be inclined at 0 or ¥ to the principal axes of G . We 

0 

may now re strict attention to the interior G of the set G: 

0 I TT G ==[(¢,j3) 0<¢<z , O< j3< 1} 

If we set 

1 We assume from here on that (2. 40) holds. 

(6. 1 7) 
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b=b(¢,j3)=- (3sin2¢ 
(1-13 2 )~ 

_ (¢ A)_ (1 - f?cos 2¢) 
C-C •t-' - 2 1 

(1 - j3 )2 

0 

on G, 

0 
on G, 

we can write (6. 15) using (6. 13) , (6 . 18) and (6 . 19) as 

Clearly 

+ + 2 
b W' (I) = (b +cit )W' (I + 2bit + ex. ) • 

0 
b< 0 on G, , 

0 

c>O on G, 

" " 0 Choose and fix a point (¢ , 13) in G, • At this fixed value of 

¢ and 13 we define the function h( • ) by 

+ 2 + 
h(x) = (b + cx)W'(I + 2bx +ex ) - bW'(I) for Ix I< oo , 

(6 . 18) 

(6 . 19) 

(6 . 20) 

(6 . 21) 

(6.22) 

(6 . 23)
1 

+ 
where I , b and c are given by (6. 13), (6 . 18) and (6 . 19) respective ly 

A A 

evaluated at (¢ , 13) • If the plane strain elastic potential W(I) is twice 

continuously differentiable on I~ 2 , as we have implicitly assumed, it 

follow s that h(x) is continuously differentiable on (- oo , oo) . If there 

exists an equilibrium shock corresponding to the homogeneous defor-

" + A 

mation associated with 13 on IT and inclined at an angle ¢ to the 

y
1
-axis, it is necessary and sufficient that h(x) have a zero at some 

1From (6 . 13), (6. 18), (6.19) and (6. 22) we have that 
+ 2 2 
I+2bx+cx2=2+ (b+cx) + (c-l) ~2 for all lxl<oo 

c c 



-53-

x:J 0 • The zero of h(x) gives the shock strength K • 

Because of (2.40) , (6. 21) and (6. 22) we see from (6. 23) that 

h(O) = 0 , 

b + 
h( --) = - bW'(I)>O 

c 
b -->O . 
c 

(6. 24) 

(6 . 25) 

It now follows from (6. 24) ,. (6. 25) and the smoothness of h(x) that 

(i) if h '(O)< 0 , then there exists a zero of h(x) other than 

x= O. 

(ii) if there exists a zero other than x = 0 of h(x) , then there 

exists a number K ,."f 0 such that h 1
(K ,,) = 0 • Furthermore, 

b ('+ b 2) , 
since h '(-c) = cW' I -7 >O it follows that 

K,.}-E . (6 . 26) 
' c 

Because of the remarks made before (6. 24), we may interpret 

(i) and (ii) as follows: 

(a) h 1(0)< 0 is sufficient to ensure the existence of an elasto-

static shock corresponding to the deformation associated 

A + A 

with f3 on I1 with spatial shock inclination ¢ . 

(b) If an elastostatic shock as just described is to exist, then it 

is necessary that h 1(K ,;) = 0 for some number K ,:~ • 

This leads to the main results of this section which we now es-

tablish. We first introduce the following terminology. Recall from 

(2 . 40) and (3 . 21), that a loss of ellipticity of the displacement equation s 

of equilibrium can occur at some deformation and at some point if and. 

only if 
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2W"(I) 
W' (I) (I - 2) + 1 :;:; 0 • (6. 27) 

If ellipticity is lost because in fact the strict inequality holds in (6. 27), 

we say that a strict failure of ellipticity has occurred. Since four 

characteristic curves exist in this case (see Section 3. 3) one may say 

that the displacement equations of equilibrium are hyperbolic at such 

+ 
a deformation on TI . 

Proof: 

Theorem 2. A strict failure of ellipticity of the dis

placement equations of equilibrium, at the given homo-
+ 

geneous deformation and pressure on TI , is sufficient 

to ensure the existence of a corresponding elastostatic 

shock in a homogeneous, isotropic, incompressible, 

·elastic solid with a positive shear modulus. 

+ 
By hypothesis, the given deformation gradient F is such that 

" the associated value of 13, say 13, given by (2.4), (6. 5) and (6. 9) con-

forms with the inequality 

where by (6. 13) 

II t t 
2w 'V(I-2)+1<0 , 

W'(I) 
(6.28) 

t = 
2 

(6.29) 

J1 -~2 
+ 

Note from (2.40) and (6.28) that necessarily If 2, whence ~fO. We 

" now choose the value of ¢ as 
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" 1 - 1 (1 - J 1 - @
2

) ¢ =-cos 
2 " p 

(6.30) 1 

We will show that corresponding to the given homogeneous deformation 
+ 

on TI , such that the associated value of p conforms with (6. 28) and 
A 

(6. 29), there exists an elastostatic shock at the inclination ¢ given by 

(6.30). 

According to (6. 23) and statement (a) following (6. 26), we need 

only show that 

2 + + 
2b W"(I) + cW'(I )< 0 " " at (¢ , p), (6 . 31) 

in order to establish this. Using (2. 40) we may write (6. 28) alternate-

ly as 

(6.32) 

" " where b and c are defined by (6. 18), (6 . 19) and evaluated at (¢, p) . 

Using (6. 18), (6. 19) and (6. 29) in (6. 32) we find 

(6. 33) 

which because of (6. 30) reduces to (6. 31), which in turn establishes our 

result. 

Theorem 3. A necessary condition for the existence 

of a piecewise homogeneous elastostatic shock in a 

homogeneous, isotropic, incompressible, elastic 

1Since Pi 0 , I 131<1 this defines a real angle ¢ in 
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solid with positive shear modulus, is that the dis

placement equations of equilibrium suffer a loss 

of ellipticity at some homogeneous deformation. 

A A 0 

By hypothesis there is a point (¢ (3) in Ci such that there 

exists an associated elastostatic shock. By statement (b) following 

(6. 26) then, there is a real number x..,_ such that -.-

h '(u _,_) = 0 
'•' 

(6. 34) 

+ A A 

where h(x) is given by (6. 23) with b , c and I evaluated at (¢ , f3) • 

Equations (6. 23) and (6. 34) give that 

,+ 2 2 //+ 2 
cW(I+2bu_,_+cx.,,,)+2(b+cu.,,) W (I+2bu.,_+cu.,,)=0 • 

~ ~ ~ ~ ~ 
(6.35) 

Let 

+ 2 
I,,,::: I + 2bu .,,,+cu_,_ , 

"'I' 'f.. ,..l",. 
(6.36) 

so that we have from (6.35) that 

It follows from this that 

~ ~2 { . 2~ - 1_)1 - @2}2 W'(I ) 
2 cos 'I' -·- • 

(1-~) ~ '•' 
(6. 37) 

since by virtue of (2.40) and (6.11) the right hand side of (6.37) is 
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non-negative. Using (6. 13), (6 . 18), (6 . 19) and (6 . 36) in (6 . 37) leads to 

(6.38) 

which because of (2.40) and (6 . 26) gives 

(6.39) 

This implies a loss of ellipticity of the displacement equations of equili-

brium at a homogeneous deformation in which the deformation gradient 

F is such that F AF A= I,, • ext-' ext-' -.< 

To summarize , we have shown that for the type of material at 

hand, a strict loss of ellipticity at the given deformation is sufficient 

to ensure the existence of a corresponding elastostatic shock. On the 

other hand, a loss of ellipticity at some homogeneous deformation is 

necessary, if an elastostatic shock is to exist . 

We draw attention to the fact that Theorem 2 does not imply 

that if ellipticity is strictly lost at the given deformation then the cor-

responding configuration of the body must involve a shock . Rat her, it 

claims that such a configuration is available . There is also a shock-

less configuration available corresponding to the root x. = 0 of (6. 20) . 

Likewise, a loss of ellipticity at the given deformation is not necessary 

for a corresponding elastostatic shock to exist . In the boundary value 

problem considered in the second part of this paper, we encounter 

configurations of the body involving elastostatic shocks such that the 

displacement equations of equilibriun1 are elliptic on both sides of the 

shock-line . 
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CHAPTER 7 

7. 1 Dissipativity Inequality 

If we admit weak solutions into the discussion of a problem, 

(such as those of the type introduced in Sections 4. 0 - 6 . 0), we would 

anticipate that since the admissible class of solutions has been greatly 

widened, there could possibly be many solutions to that problem. It 

is well known that this is indeed the case in the theory of quasi-linear 

hyperbolic partial differential equations. See for example Lax [ 8]. 

The specific boundary value problem considered in the next part of 

this paper confirms this to be the case in the present context as well. 

In such circumstances, it is essential to introduce criteria 

which single out a physically admissible solution from among the many 

solutions admitted by the differential equations. The second law of 

thermodynamics appears to play such a role in gas dynamics. Lax [ 8 ] 

has examined "entropy conditions" which furnish such criteria in the 

context of hyperbolic systems of conservation laws. 

An analogous "entropy condition" in the context of elastostatics 

was proposed by Knowles and Sternberg [ 3] and subsequently extended 

by Knowles [ 4] . A thermodynamic motivation for the proposed condi

tion, in the case of compressible materials, was also given in [4]. In 

the three-dimensional case, a quasi- static time dependent family of 

equilibrium states was considered, the time merely playing the role 

of a history parameter, and it was then required that 
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J £~: Y, dA - ! J W([)dv:2: 0 

a;ig ;ig 

for every regular sub-domain ;ig of &r, , at each instant of the time m-

terval considered. Here t is the time and Y, the quasi- static particle 

velocity. Equation (7.1) gives expression to the idea that the rate at 

which elastic energy is being stored in ;ig cannot exceed the rate at 

which work is being done on ;ig • 

One shows easily that for a subdomain ;ig of the body which is 

such that the field quantities have classical smootlmess properties at 

each interior point, the global condition (7. 1) holds with inequality 

replaced by equality by virtue of the field equations. This is indeed as 

one would expect, and accordingly (7.1) imposes no local restrictions 

at a point where the fields are smooth. If however an elastostatic 

shock is present in the domain :i9 , then (7. 1) does not hold automati-

cally and consequently, at each point on the shock it imposes a local 

restriction on the jumps of the field quantities. 

Now consider a quasi- static family of plane strain piecewise 

homogeneous elastostatic shocks in a homogeneous, incomp·ressible, 

elastic solid. It can be shown that, if at some instant t (7. 1) holds 

with strict inequality for all sub-domains ;ig which intersect £, then 

1 

(i) the motion of the shock-line £ at that instant is translatory 

in a direction not parallel to itself. Moreover, if we orient 

the shock-line £ such that this translation is directed into 

+ rr , then at that instant 

Body forces were omitted from this discussion. 
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A . + 
[W(F)-cr ANAF N ] >O • 

rv Q' t-' t-' 0:y V -
(7. 2) 

Conversely, if at some time t the quasi-static family of solutions con-

forms with (i), then (7. 1) holds with strict inequality at that instant. 

On the other hand we can show that if at the instant t (7. 1} 

holds with equality, then either 

(ii) the shock-line £ is instantaneously stationary at that 

moment, or 

(iii) the shock-line £ is instantaneously in a state of translation 

parallel to itself at that moment, or 
A 

(iv) the jmnp of W(F) - cr P.NP.F N across the shock is zero, 
rv Q't-' t-' cty y 

(in which case the shock-line motion ls not restricted to 

being translatory). 

Conversely, if at some time t the quasi- static family of solutions con-

forms with one of (ii), (iii), and (iv), then (7. 1) holds with equality at 

that instant. 

Finally one can show that if at some time t (7. 1) holds for all sub-

domains :i9 , and if in addition it holds with equality for some sub-domain 

which intersects the shock, then in fact, at that instant (7. 1) holds with 

equality for all sub-domains ~ . We conclude from this that the preceding 

are the only possibilities. Therefore, if (7.1) holds it is necessary 

that one of (i) - (iv) h9ld. Conversely if one of (i) - (iv) holds this is 

sufficient to ensure that (7. 1) hold. 

One arrives at (i) - (iv) by applying to the incompressible case 

the parallel arguments used by Knowles and Sternberg in [ 3], or by 

specializing to this context the results of Knowles [ 4]. Since (7. 1) 

implies that the presence of an elastostatic shock decreases, or at 
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least does not increase, the stored energy in the body, we refer to 

(7. 2) as the dissipativity inequality. 

It is apparent from (i) - (iv) that the dis sipativity requirement 

(7. 1) may be viewed as restricting the admissible class of quasi-static 

motions. The only quasi-static motions admitted by it are those in 
A 

which the value of [ - W(F) + F N• cr N} at a particle does not decrease as 
~ "'-Jr">-1 f"'Jr-..J 

the particle crosses the shock-line. 

It may be remarked that the dissipativity inequality does not 

rule out any piecewise homogeneous elastostatic shock itself as being 

inadmissible, since any given piecewise homogeneous elastostatic 

shock can always be embedded in a suitable time dependent family of 

such shocks which conforms with the dissipativity inequality. 

As one would expect, and as is verified by Knowles [4], these 

results remain true locally in the general case of a curved shock in a 

non-homogeneous elastic field, with the exception that the shock motion 

may no longer be restricted to translation. The latter property is 

clearly peculiar to piecewise homogeneous elastostatic shocks. 

Using (2. 4), (2. 6), (4. 13), (5. 3), and evaluating the left hand 

side of (7. 2) in the frame X / leads to 

A + A + x' 
[W(F) - F Ao NAN ] = [W(F)] +wr 12 , 

,...., ~!-' ~y t-' y - ~ -
(7. 3) 

x' 
where we have also used the fact that ,- 12 is continuous across £,;, 

Therefore the inequality (7. 2) may be written in the simpler form 

A + x' [ w <:£::> ] - + It ,. 12 > 0 , ( 7 • 4) 

+ 
where £ is presumed to be oriented such that it moves into IT as time 
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t increases. 

In the particular case when the material at hand is isotropic, 

we have from (2. 33), (6. 10) and (6. 18) that 

X 1 It 
,-

12
=2bW(I) , (7. 5) 

whence (7. 4), by virtue of (6. 14), (6.18) and (6. 19), may be equivalently 

written as 

+ + 2 + 
W(I) - W(I + 2bx. + C>i. ) + 2bx. W'(I) > 0 • (7. 6) 

Note, however, that (6. 23) may alternatively be written as 

1 aw+ 2 + 
h(x) = 2 ax (I+ 2bx +ex ) - bW'{I) , (7. 7) 

whence (7.6) takes the simple form 

x. 

J h{x)dx< 0 • 

0 

(7. 8) 

We will make use of this form of the dissipativity inequality in the 

example taken up in the next section. 

Finally, we return to anisotropic, incompressible, elastic 

solids in order to determine the weak shock approximation to the value 

of the jump of [W{F) - F rP NAN } across the shock-line. Recall 
,....., O'..., O'Y t-' y 

from Section 5. 1, where we first looked at weak elastostatic shocks, 

+ 
that we now assume that, given the deformation gradient [ with unit 

determinant and the pressure i , there exist functions ¢{x.) and p{x. ), 

-
both sufficiently smooth in a neighborhood of u = 0, such that F O'j3(u) 
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defined by 

+ + 
F R(><.)=F R+K.£ (x.)n (><.)FR, (7.9) 

Q't-' Q't-' Q' V Vt-' 

conforms with the traction continuity requirement (4. 12). Observe 

from (7. 9) that 

--1 +_1 +_1 
F R(><.)=F A-Ki (f!.)nR(K)F • 

cvt-' Cl't-' V t-' Cl'V 
(7. 10) 

It is first necessary to analyze the traction continuity conditio n 

(4. 12). To this end set 

(7. 11) 

which because of (4. 9), (5. 3 ), (7. 10) and the perpendicularity of P. 

and n leads to ,...., 

(7. 12) 

Differentiating (7. 12) with respect to K and using (2.11), (5. 10) and 

(7.9)gives 

(7 . 13) 

The continuity of traction across the shock requires that 

6 (it) = 0 
QI 

(7.14) 

for all sufficiently small K , from which it follows that in particular 

(7 . 15) 
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From (7. 13) and (7. 15) we find that 

++ -, +_1 
c A i:(F)F i:£ (O)n (O)NA(O)-p(O)FA NA(O)=O. 

Cit-'YV ,...., 'ITV y 'IT t-' t-'QI t-' 
(7. 16) 

As one would expect, (7. 16) is in fact the same as (5. 12) because of 

(5. 3). Differentiation of (7. 12) twice with respect to u , together with 

the symmetry ccxj3yo = cyoaf3 , the fact that .£• n = 0 and (2. 11), (5. 1) -

(5. 3 ), (5. 10) and (7. 9) leads to 

£ (0).6 11 (0) = - c
2

(0)d f3 i:, (t)£ (0)£ (0)£, (O)NA(O)Ni:(O)N (O) 
Q' a C¥ y v11. µ ,...., a y 11. t-' v µ 

+ 
-4c(O)c A i:(F)f (0)£ (O)NA(O)N:(o) 

r:xt-'yv ,...., Ci y t-' v 

where we have set 

and c(K) was defined in (5 . 1). Because of (7.14) we have that 

.611 (0) = 0 , whence we have from (7. 17) that 
ct 

+ 
4c(O)c A i:(F)£ (0)£ (O)Np,(O)N~(O) 

ctt-'Y v ,...., CY y t-' v 

= - c
2

(0)d A s: 1 (:~)£ (O)J! (0)1!, (O)NA(O)Ni:(O)N (0) 
Q't-'yv11.µ ,...., Ct y f\ t-' v µ 

(7. 17) 

(7. 18) 

(7. 19) 

We now compute the jump in across the shock. 
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To this end, let 

" - " + + + 
T]()t)=W(F(u.))-W(F)+F ANA(u.)o N ()t) 

,..., ......, O!t-' t-' Ciy v 

- -
- F A ()t )NA (u. )cr (x )N (x) • 

O!t-' I" O!V y 
(7.20) 

Because of traction continuity , the fact that £ • n = 0 , (4. 9), (5 . 3) and ......, ,...., 

(7. 9) we can write (7. 20) as 

" -" - " + oW(F(x )) 
ri(x)=W(F(x))-W(F)-xc(u.)£ (x)N (u.) nF'"" 

,...., ......, O! v u 
O!y 

(7. 21) 

Clearly, 

ri(O)=O , (7. 22) 

by virtue of (7 . 9). Differentiating (7. 21) with respect to x and using 

(2.11), (5.3) and (7 . 9) gives 

- d 
ri'(x)= - xc(K)c A ~(F(u.))£ (u.)N~(u.)-d [xc(u.)£ (x)NA(x)} , 

CYt-'V v ......, V u K O! t-' 
(7 . 23) 

from which we have that 

ri'(O) =0 • (7 . 24) 

Differentiating (7. 23) with respect to x and using (7 . 9) leads to 

2 + 
ri"(O) = - c (O)c A ~(F)£ (0)£ (O)NA(O)N~(O) , 

O!t-'V u ,...., O! V I" u 
(7 . 25) 

which because of (5. 3) and (7 . 16) gives 

ri"(O) = - p '(O)n (0)£ (0) , 
CY CY 

(7. 26) 
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which in turn, because f.Q'(O)nQ'(O) = 0 , implies that 

r{'(O)=O • (7. 27) 

Finally , differentiating (7 . 23) twice with respect to K , using the sym-

metry ccvj3yo=cyoaj3, (5 . 3), (7.9) and (7.18) leads to 

- 6c
2

(0)c A s: (:t)f. (0)£ (O)N~ (O)NA(O) 
°'r--Yu ,...., et y u r--

+ 
-6c(O)c A i:(F)f. (O)NA(O)Ni:(O)[c'(O)f. (O)+c(O)f.' (O)} 

Q' r--Y u ,...., y r-- u °' r:x 
(7 . 28) 

which on using ( 5. 3), (7. 19) and f. (O)n (0) = 0 implies that 
QI Ct 

- 3p '(O)[n' (0)£ (0) + n (0)£' (0)} 
et et a et 

(7 . 29) 

Since the vectors ,i(K) and ~(u) are perpendicular to each other, 

f. (x.)n (it)= 0 for all sufficiently small it • 
Ci Ct 

(7. 30) 

Differentiating (7. 30) with respect to u shows that 

£' (O)n (0) + f. (O)n' (0) = 0 , 
O! Q' O! Ct 

(7.31) 

so that finally we may write (7. 29) as 

(7. 3 2) 
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Therefore (7. 21), (7. 22), (7. 24) and (7. 27) allow us to write 

" 1 3 3 
[ W(F) - F j3NAo N )+- = -

6 
r('(O)i-t + o(i-t ) 

~ Ot ""' ay y 
as i-t -+ 0 , (7.33) 

where rJ'"(O) is given by (7. 3 2). We observe that the jump in 

[ W(F) - F j3NAo N } across the shock is of the third order in the shock 
~ Ot t-' O!y y 

strength i-t , which is as in the case of compressible elastic solids. 

This is analogous to the situation in gas dynamics where the entropy 

1 
jump is of the third order in the appropriate shock strength. 

1see references cited m [4]. 
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CHAPTER 8 

8. l An Illustrative Example 

For the purpose of illustrating the results of the previous sec-

tions and demonstrating how in a particular case one could in fact ob-

tain even more information than has been indicated, we now specialize 

our constitutive law. Consider the hypothetical class of homogeneous, 

isotropic, incompressible, elastic solids for which the plane strain 

elastic potential is given by 

' µ >O , (8. 1) 

One sees immediate ly fro'm (8.1) that (2.40) is satisfied whence this 

class of materials has a positive shear modulus. 

According to (3. 32), we have in simple shear, the shear stress-

amount of shear relation 

'f(k) =µkexp(- k
2

2 ) • 
2k I 

0 

(8. 2) 

A sketch of the response curve in shear defined by (8.2) is shown in . 

Fig. 2. The significant feature of this for our purposes is that T
1(k) 

is positive for all k in the interval (- k
0

, k
0

) and is non-positive 

otherwise. The implications of this as far as the issue of the ellipti-

city of the displacement equations of equilibrium are concerned were 
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observed in Section 3.
1 

We now turn to the issue of piecewise homogeneous elasto static 

+ 
shocks. Suppose we are given the deformation gradient I_ , and hence 

" (through (2.4), (6. 5) and (6. 9)) the associated value of f3 (say {3), and 

+ + 
the pressure p on I1 • We look at the question of the existence of a 

A 

corresponding elastostatic shock with spatial shock-line inclination ¢ 

A A 

to the y 1-axis. ¢ and f3 are held fixed in this discussion, and as 
A A 0 

noted previously we may assume (¢ , {3) to be in G, , with no loss of 

generality. We recall that a corresponding piecewise homogeneous 

elastostatic shock exists if and only if the function 

It 2 It 
h(x) = (b+ cx)W (I+ 2bx+ ex ) - bW (I) , (8. 3) 

where 

A A A p • A 

b=- sm2¢ 

J1 -~2 
(<0),c= 

1 - pco s 2¢ 

J1 -~2 
( > 0) , 

(8. 4) 

( > 2) , 

has a zero at some x°IO. Using (8.1) in (8.3), we find, for the type 

of materials under consideration, that 

+ ) 2) .. . I - 2 2bx + ex 1 
h(x)=1exp(- ( 2 ) {<b+cx)exp(- ( 2 ) -bJ . 

2k0 2k0 

(8. 5) 

A A 

Case (i) Suppose ¢ and f3 are such that 

I Shortly after Equation ( 3 • 3 3). 
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2 2 
b >ck

0 
. (8. 6) 

Then h'(O)<O • One shows easily from (8.4), (8. 5) and (8. 6) that in 

this case h(x) has a unique zero (in addition to the one at the origin) 
ft, 

at X=ft., where ft. is a positive number and is such that Jh(x)dx<O 

0 
It follows that, corresponding to the homogeneous deformation 

A + A 

associated with 13 on IT and to the inclination ¢ compatible with 

(8.4) and (8.6), there exists a unique piecewise homogeneous elasto-

static shock with positive shock strength ft. • Furthermore, suppose 

this piecewise homogeneous shock is embedded in a quasi-static family 

of shocks. Then if at the instant when the family of shocks coincides 

+ 
with this given shock the shock-line -£ is translating into IT , it con-

forms with the dis sipativity inequality. 
A A 

Case (ii) Suppose ¢ and 13 are such that 

2 2 
b < cko • (8. 7) 

Then h'(O)>O • In this case, it is easily verified by virtue of (8.4), 

(8. 5) and (8. 7) that . h(x) has a unique zero (in addition to the one at 

the origin) at x = i-t , where ft. is a negative number such that 
;{. 

J h(x)dx> 0 • 
0 

It follows that corresponding to the homogeneous deformation 

A + A 

associated with 13 on IT and the inclination ¢ compatible with (8. 4) 

and (8. 7), there exists a unique piecewise homogeneous elastostatic 

shock with negative shock strength ft. • Furthermore, suppose this 

piecewise homogeneous shock is embedded in a quasi-static family of 

shocks. Then, if at the instant when the family of shocks coincides 

with this given shock the shock-line -£ is translating into IT , it 
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conforms with the dissipativity inequality. 

Case (iii) 
A A 

Suppose ¢ and J3 are such that 

2 2 
b ::: cko 

Then h '(O)::: O. In this case the only zero of h(x) is at the origin, 

(8. 8) 

+ 
from which we conclude that if the homogeneous deformation on TI is 

A A 

such that the associated value of J3 and the (proposed) inclination ¢ 

conform with (8. 4) and (8. 8), then there is no corresponding piecewise 

homogeneous elastostatic shock. 

These results are best visualized on the ¢ - J3 plane. Using 

(8. 4) we have that 

(8. 9) 

Let r be the curve in the first quandrant of the ¢ - J3 plane whose 

equation is 

(8. 10) 

0 

r separates G into two regions as shown in Fig. 3. Case (i) 

refers to points in the hatched open region shown there, while Case (ii) 

refers to points in the unhatched open region. Points on r refer to 

Case (iii). One finds that r has a minimum point at (¢e , {3e} where 

(8. 11) 
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From (2.41), (3.33), (8.2) and (8.4) we find that the displacement 

+ 
equations of equilibrium are elliptic on II , if and only if the deforma-

tion there is such that the associated value of f3 is less than f3 • 
e 

+ 
Suppa se that the given deformation on IT is such that the displacement 

A 

equations of equilibrium are non-elliptic there. Then f3 ~ f3 • The 
e 

spatial characteristics associated with this deformation are inclined 

+ 
to the t.. 

1
-principal axis of 9, at angles O! , which because of (3. 46 ), 

(8. 1) and (8. 4) are given by 

cos 2a = ... (8. 12) 
2p 

Note however, that the equation of the curve r , (8. 10), can alterna-

tively be written as 

r: cos 2¢ = 
k~J1 - [3

2
± {<k~+2)J1-f32 -2 .} {<k~ - 2)~1-(32 - 2} ~ 

2f3 
(8.13) 

It is immediately evident from a comparison of (8.12) and (8.13) that; 

A 

the abscissa of the points on r corresponding to f3 ~ f3 · give the spae 

tial characteristic inclinations corresponding to the deformation as so-

A 

ciated with f3 . 

We now summarize our findings for the particular class of 

materials at hand. Corresponding to any given homogeneous deforma-

+ 
tion on II 

(provided 

we can have a piecewise homogeneous elastostatic shock 

+ A~ 
~ is not proper orthogonal, i.e. f310). 

If, at the given deformation, the displacement equations of 

+ A 

equilibrium are elliptic on II , so that f3< f3e , the spatial shock-line 
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may be inclined at any angle ¢ provided it is not parallel to the princi

+ 
pal axes of Q (i.e. ¢-f.O, ~). One can show that for such an elasto-

static shock, the displacement equations of equilibrium are non-elliptic 

on TI • Furthermore the corresponding shock strength is negative and 

a quasi-static motion from such a configuration is compatible with the 

dissipativity inequality if the shock moves into n. 

On the other hand if the displacement equations of equilibrium 

+ A 
are non-elliptic at the given deformation on TI , so that f3:::::: f3 , the 

e 

spatial shock-line may be inclined at any angle ¢ provided it is not 

+ 
parallel to the principal axes of Q nor parallel to the spatial charac-

teristic directions associated with the deformation on rt . In this case 

the sign of the shock strength and the admissible direction of quasi-

static motion depends on the specific shock-line inclination (see Fig.3). 

In particular note that the admissible direction of quasi- static shock 

motion, for dissipativity, is governed solely by whether the spatial 

shock-line inclin.ation is between or outside the inclinations of the 

2 spatial characteristics (in the relevant quadrant) associated with the 

+ 
deformation on TI . The ellipticity or non-ellipticity of the displace -

ment equations of equilibrium on TI also turn out to depend on the 

specific shock-line inclination . 
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PART II 

AN EXAMPLE 
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CHAPTER 9 

9. 1 Introduction 

During the study of some crack problems [ 12], [ 13], [ 14]. 

Knowles and Sternberg encountered certain difficulties which suggested 

that the problem may not admit a classically smooth solution. In order 

to clarify this situation, a series of preliminary studies were undertaken 

(references [ 1] - [4]) in which they looked at the question of the failure 

of ellipticity of the displacement equations of equilibrium and the related 

issue of the existence of weak solutions involving elastostatic shocks. 

They further proposed a dissipativity requirement in an attempt to single 

out a physically acceptable solution from among the many available weak 

solutions. Part I of the present study is also in this same spirit. 

In order to illustrate the occurrence of elastostatic shocks in a 

boundary value problem, we consider a problem in finite plane strain 

for a hollow circular cylinder. We examine the case in which the outer 

surface is held fixed while the inner surface is twisted circumferentially. 

The cylinder is presumed to be composed of a homogeneous; isotropic, 

incompressible, elastic solid, subject to certain restrictions on its 

strain energy density. In particular, the strain energy density is chosen 

such that a failure of ellipticity of the displacement equations of equili

brium can occur at some deformations. 

We demonstrate that, while for both sufficiently large and small 

values of the prescribed twist the problem admits a unique smooth solu

tion, there are certain intermediate ranges of the prescribed twist at 

which no classically smooth solutions exist. We then show that there 
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are however, an infinite nwnber of weak solutions involving elastostatic 

shocks in this range of the applied twist. 

We then consider the quasi-static problem in which the prescrib

ed twist is gradually changed in time, and we explore the consequences 

of the dissipation inequality • . It turns out that enforcing this inequality 

fails to single out a unique weak solution. 

In an attempt to clarify this issue of non-uniqueness, we examine 

the stability of the various equilibrium solutions against circumferential 

perturbations of arbitrary magnitude. It turns out that the classic al 

energy criterion for stability, without reference to the dissipation in 

equality, picks out a unique solution to the boundary value problem at 

every value of the prescribed twist. In the discussion of the various 

issues outlined above, we restrict attention to configurations involving 

not more than one elastostatic shock. As a consequence of the stability 

criterion, it turns out that an equilibrium solution involving more than 

one shock is, in fact, unstable. 

Ericksen [ 9] had previously discussed the equilibrium of a bar 

composed of a material whose stress response in uniaxial tension is 

qualitatively similar to the shear stress response in simple shear of 

the class of materials considered here. There is a striking similarity 

between his results and ours; in fact, certain aspects of our study of 

the stability of weak solutions were suggested by the arguments in [ 9] " 

In Section 10 we set up the classical problem governing the 

twisting of a hollow cylinder composed of an arbitrary homogeneous, 

incompressible, isotropic, elastic solid. We then discuss the particular 

class o f materials with which we will be concerned. In Section 11 we 

determine the solutions of this problem and const r uct the associated 
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torque - twist curves. For sufficiently small and large values of the 

prescribed twist, we have a unique smooth solution at which the dis

placement equations of equilibrium are elliptic. Depending on the de

tails of the geometry and constitutive law, it is also possible to have 

a unique, non-elliptic, smooth solution at certain - but not all - values 

of the twist in the intermediate range. In all cases there are ranges of 

values of the prescribed twist for which we find no solution. We then 

prove that, in fact, no smooth solutions exist in these ranges of the 

prescribed twist. 

We next set up and solve, in Section 12, the problem in its weak 

formulation. We now find a solution corresponding to every value of the 

prescribed twist, but unfortunately, many solutions corresponding to 

certain values. 

In Section 13 we make use of the dissipation inequality in an 

unsuccessful attempt to extract a unique solution from among these 

many solutions to the boundary value problem. Finally, in Section 14, 

we examine the stability of each of the available solutions against cir

cumferential perturbations of arbitrary magnitude. We find that at 

every value of the pre scribed twist there is precisely one stable solution 

to the boundary value problem in its weak formulation. For sufficiently 

small and large values of the applied twist, this unique stable solution 

is smooth and elliptic. For all intermediate values, the unique stable 

solution involves an elastostatic shock and is elliptic. 
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CHAPTER 10 

10 . 1 Formulation of Problem 

Suppose that the open region lit occupied by the interior of a 

body in its undeformed configuration is a hollow right circular cylinder 

of internal and external radii a and b , respectively. Let I1 be the 

open middle cross-section of the cylinder lit , and let 0 be the center 

of the annular re gion I1 • 

Suppose the inner surface of the cylinder is rotated circumfer-

entially through an angle ¢
0 

, while the outer lateral surface is held 

fixed. We assume that the resulting deformation maps the point with 

cylindrical coordinates (r, 8 , z) in the undeformed configuration onto 

the point with cylindrical coordinates (p, o/, S), where 

p=p(r , 8,z) =r , 

A 

1)r=1)r(r,8,z)=8+¢(r) , (10. 1) 

" s=s(r,8,z)=z • 

This describes a plane deformation in which each particle moves cir-

cumferentially through an angle ¢(r). Suitable tractions are presumed 

to be applied on the ends of the cylinder so as to maintain such a state 

of plane strain. 

The deformation (10. 1) may be equivalently expressed as follows. 

Let X be a fixed rectangular cartesian coordinate frame with its o ri·-

gin at 0 and formed by the orthonormal base vectors !:.i , ~2 and ::,3 

such that !:.i and ~2 are in the plane of I1 and !:,3 is normal to I1 • 
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If I is the position vector after deformation of the par ticle which was 

located at ~ in the undeformed configuration , we can write (IO . I) 

equivalently as 

Y 1 = x 
1 
cos ¢ ( r) - x

2 
sin ¢ ( r) , 

(10 . 2) 

where 

~ r = ,.;x1 -r x 2 . (10. 3) 

Here y. and x. are the components of the vectors y and x in the 
1 1 ,.__, ,.__, 

frame X • We will temporarily assume that the local angle of twist 

¢(r) is twice continuously differentiable on (a, b). 

It is convenient to express the field quantities at any point 

(r, 8, z) in terms of components in the rectangular Cartesian coordinate 

frame X / which is obtained by rotating the frame X through an angle 

" Hr, 8, z) about the ~3 -axis. The matrix of components of the deforma-

tion gradient tensor F =Vy in the frame X / is easily computed from 
,.__, "' 

( 10. 2), ( 10. 3) and the change of frame formula for tensors to be 

cos ¢(r) - sin ¢(r) 0 

x' F = sin ¢(r) + r¢'(r)cos ¢(r) cos ¢(r) - r¢'(r)sin¢(r) 0 (10.4) 

0 0 l 

X' 
Note that the matrix F may be decomposed as follows; 
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1 0 0 cos ¢(r) - sin ¢(r) 0 

X' 
F :::: r ¢'(r) 1 0 sin ¢(r) cos ¢(r) 0 (10.5) 

0 0 1 0 0 1 

which implies that locally the deformation (10. 1) is composed of a rigid 

rotation through an angle ¢ about the ~3 -axis followed by a simple 

shear parallel to the circumferential direction with an amount of shear 

r¢'(r). Set 

k(r)=r¢'(r) , (10.6) 

so that k(r) is the local amount of shear. 

Equation (10.4) indicates that det[= 1, so that the deformation 

(10.1) is locally volume preserving. From (10.4) and (10 . 6) we have 

the components of the left Cauchy-Green tensor G = F FT ,....., ,.._,,....., 

1 k(r) 0 

X' 
G = k(r) 0 (10. 7) 

0 0 1 

The principal invariants of G are found from ( 10. 7) to be 

2 
I 1 = tr 9, = 3 + k ( r) , 

1 { 2 2 ·: 2 r2 = 2 (tr 2) - tr g ) = 3 + k (r) , (10. 8) 

r
3 

= det 2, = 1 . 

Suppose that the body is composed of a homogeneous, isotropic, 
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incompressible, elastic solid which possesses an elastic potential 

W:::: W(IF r2 ). W represents the strain energy density per unit unde

formed volume. The constitutive law for the Cauchy stress tensor 

T is then ,...., 

* * * 
(aw aw) aw 2 

1=2 8:£ +II 8r 9,- 2 8r Q, - Pl, 
1 . 2 2 

(10. 9)
1 

where p(y) is a scalar field arising because of the constraint of in-,...., 

compressibility. We suppose for the moment that p(y) is continuously 

differentiable on 6Y, • Using (10. 7), (10. 8} and (10. 9) we find that the 

stresses induced by the deformation (10. 1) are 

X' X' · 
'f 12 = -r 21::::"2kW'(I) ' 

X' 2 I 
'f 

22 
= 2(1 + k )W (I) - q , (10. 10) 

X' X' X' X' 
'f 13 = 'f 31 :::: 'f 23 = 'f 3 2 = 0 

~< 

X' I 2 'OW 
'f

33
=2W(I}+2k aI(I+l, I+l) -q, 

2 

where we have set 

-·-2 '•' 
I=2+k (r}, W(I}=W(I+l, I+l) for P~ 2 (10. 11} 

and 

1see Truesdell and Noll [ 6]. 
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(10. 12) 

Since the pressure p might depend on the coordinates $ and S in 

addition to p , it follows that the Cauchy stress tensor ,. might depend 
"'J 

on a ll three of p , $ , and s . 
It is suggestive to introduce the notation 

(10. 13) 

The equilibrium equation 
1 

in the axial direction is easily shown 

to be satisfied if and only if q does not depend on y
3 

(and hence s). 
It follows from (10. 10), that the Cauchy stress tensor ,. is also inde-

pendent of the axial coordinate s . The remaining two equilibrium 

equations now take the form 

(10. 14) 

a,."''' 1 a,.,1r,1r 2 
--.1::..l.. + - --LI.. + - ,. = 0 • ap p a* p p* (10.15) 

From (10.1), (10.6), (10.10) 1! (10.11) and (10.13) we see that 
;' i 

,. p* is independent of the coordinate * , whence ( 10. 14) and (10. f?) 
specialize to 

1 Body forces are presumed to be absent. 
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a.,- .,. _.,. 
~ + PP !Jry =0 , 
vp p (10 . 16) 

(10.17) 

Integrating (10.17) with respect to 1jr leads to 

( 10. 18) 

where c(p) is a constant of integration depending on p alone. It is 

apparent from ( 10. 18) that .,- 1Jri!r is single valued only if 

(10. 19) 

It now follows from (10.18) and (10.19) that 'TH , and hence q, p and 

'T pp as well, are independent of the angular coordinate 1jr • Using 

(10. 10) and (10. 13) in (10. 16) and (10. 19), we obtain the governing 

system of ordinary differential equations 

(10 . 20) 

(10. 21) 

for ¢(p) and q(p). 

On integrating (10. 20) with respect to p we find that 

(10. 22) 

where T is a constant of integration. Likewise , integration of (10. 2 1) 



-84-

with respect to p and making use of (10. 22) gives 

p 

q(P)"2W'(2+p
2¢' 2

(p))+;:;, f ¢~~) d\;+q0 , 

where q
0 

is a constant. 

It is convenient to define the scalar valued function f(•) by 

f(k) = 2kW'(2 + k 2
) for -oo<k<oo • 

(10. 23) 

(10. 24) 1 

It is readily seen that, if an inco1npressible, isotropic, elastic solid is 

subj~cted to a simple shear deformation, the shear stress corresponding 

to an a:mount of shear k is f(k) • Accordingly the function f{•) may 

be interpreted as the shear stress response function in simple shear. 

Equation (10. 22) c~n now be written as 

T 
f{p¢'(p)) = - --2 on (a, b) , 

2rrp 
(10. 25) 

which together with the boundary conditions 

¢(a)=¢
0

, (10.26) 

¢ (b) = 0 ' ( 1 0 • 2 7 ) 

constitutes the boundary value problem for ¢(p). We wish to find a 

function ¢(p ), continuous on [a, b] and twice continuously differentiable 

on (a, b) , and a real number T such that (10. 25) - (10. 27) hold. We 

will refer to such a solution as a smooth solution. Note that once ¢(p) 

1rn Part I of this paper we called this function 'f(• ). It is convenient 
to re-label it here. 
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has been so determined, (10. 23) gives q(p) directly. 

Finally, note from (10. 6), (10. 10), (10. 13) and (10. 22) that 

'f "' {p) = -~ so that T is the torque per unit axial length of the 
p 'I' 2np 

cylinder acting on the inner surface,measured positive in the counter-

clockwise sense. 

10. 2 A Particular Class of Constitutive Laws 

We now describe the particular class of homogeneous, isotropic, 

incompressible, elastic materials to which we will restrict attention 

in this study. It is adequate for our purposes to specify the response 

of the material in shnple shear alone. Observe from ( 10. 24) that the 

plane strain elastic potential W(I) is completely determined by the 

function f , so that the response in simple shear, in fact, determines 

completely the in-plane response in all plane deformations. 

Equation ( 10. 24) implies that f is an odd function 

f(k) = -f(-k) for - oo<k<oo • (10. 28) 

We presGme that 

(i) f is continuously differentiable on {- oo, oo), 

(ii) £ is positive on (O, oo} , whence it follows from (10. 28) that 

kf(k) > 0 for k~O , (10. 29) 

(iii) there exist real numbers k
1 

and k
2 

(O< k
1 
< k 2 <oo) such 

that 

f'(k) > 0 

f'(k) < 0 

for O~k<k1 , k
2

<k<oo , 

for k 1 <k<k2 , 

(10.30) 
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(iv) f(k) .... oo as k .... oo • 

Since f is an odd function it now follows that f'(- k 
1

) = f'( - k
2

) = 0 , 

f'(k)>O for -oo<k<-k2 , -k
1

<k:$;Q, f'(k)<O on -k2 <k<-k
1 

and 

f(k) .... - oo as k ..... - oo . Therefore, the function f(k) has local maxima 

at k = k 1 , -k2 and local minima at k = k 2 , -k1 and is monotone in 

between. A sketch of such a function f is shown in Fig. 4, where we 

have set 

f(k
1
)=T , f(k 2 )=T .• max min (10.31) 

Note that necessarily 

lf(k)l:$;'f for lkl~k 1 , max 

(10. 32) 

Recall from Section 2. 1 of Part I that an isotropic, incompres-

sible, elastic solid conforms with the in-plane Baker-Ericksen inequality 

if and only if W'(I) > 0 for I> 2 . By virtue of ( 10. 24) this is equivalent 

to kf(k)>O for k;l 0 •. Because of (10. 29) we see that the class of 

materials under consideration satisfies this condition. 

Moreover, we have because of Section 3. 2 of Part I that in any 

plane deformation, the plane strain displacement equations of equilibrit.un 

are elliptic at some point if and only if the associated local amount of 

shear
1 

is less than k 1 or greater than k
2 

. In the context of the prob

lem considered here, we have by virtue of (10 . 6) and (10.11) that the 

1see Section 2. 2 of Part I. 
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displacement equations of equilibrium 1 are elliptic, at a solution cor-

responding to ¢(r) and some point, if and only if I r¢'(r) I is less than 

k
1 

or greater than k 2 at that point. 

It is clear that for the particular class of materials just de-

scribed, f has no single-valued inverse. The restrictions of f to 

certain subintervals of (-co, co), on the other hand, do have unique 

inverses. Let F 1 , F 2 and F 
3 

be the functions defined by 

(10.33) 

By virtue of (10.32), it follows that F
1

, F
2 

and F
3 

are de-

fined on [-'T , T ] .. , [-'T -T ]U[T 'T ] and 
max max max ' min min ' max 

(-co , -'T . ] U [ T • , co) respectively, and that they are continuously 
mm min 

differentiable on the corresponding open intervals. 

The following properties of the inverses F. (i = 1, 2, 3) can be 
1 

easily verified; we list them here for subsequent reference. 

f(F l ('T)) = 'T for l'Tl~'f 
' max 

f(F 2 ('T))='f for 'f 
min 

~ l'fl~'f , (10.34) 
max 

f(F
3

(1"))='T for 'f 
min 

~ l'Tl<co ' 

1i. e. the system of partial differential equations (2. 3 ), (2. 21). 
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F~('f)>O for ,,. l<'f 
' max 

F ~('f)< 0 for ,. . <l'fl<'f min max ' 

F ~(,.)> 0 for 'f · <l,.l<oo , 
min 

Fl(,. ) = F2('f ) =kl , max max · 

F ('f } - F (-r ) - k 2 max - 3 max - 2 ' 

IF1('f)l:o:;;kl for , ,. l :.:;; ,. 
. rnax ' 

k 1 :.:;; I F 2 (,. ) I :.:;; k2 for 'i . :::.:l,.l:.:;;,. 
min max ' 

lF3<,.)I >-k3 for , ,. I ;:;: T • 
' mm j 

for 'i . <l'il<'i ' min max 

F.(--r)=-F.('i) , 
i 1 

i = 1, 2, 3 and 
for 'i in the 
appropriate 
interval 

(10.35) 

(10.36) 

(10.37) 

(10.38) 

(10. 39) 

( 10. 40) 

( 10. 41) 

( 10. 42) 
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CHAPTER 11 

11. 1 Smooth Solutions 

We now return to the task of solving ( 10. 25) - (10 . 27) for the 

special class of materials described in the previous section. To this 

end, we first establish the following preliminary result. 

Lemma: There does not exist a solution ¢(r) in 

the class c2(a, b) to the differential equation 

f(r¢'(r)) = -~ , 
2rrr 

where f is a continuously differentiable function 

conforming with (10. 28) - (10. 30) and T is a con

stant, such that at some radius s , a< s < b , 

(11.1) 

s¢'(s)=±k
1 

or ±k
2 

. (11.2) 

Proof: Suppose that there is such a solution ¢(r). Differentiating (11. 1) 

with respect to r and setting r = s leads to 

f'(s¢'(s)){¢'(s)+s¢"(s)j= T
3 

, 
1T s 

which because of (10. 28), (10. 30) and (11. 2) yields 

T = 0 • 

The differential equation ( 11. 1) now reads 

f(r¢'(r)) = 0 , 

(11.3) 
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which because of (10.28) and (10.29) implies that 

¢'(r) = 0 on (a, b) . ( 11. 4) 

Equation ( 11. 4), however, contradicts the assumption ( 11. 2). This 

establishes the lemma. 

Now suppose that the prescribed twist ¢
0 

is a number in the 

interval 

-Jb l_F ( a2'f'max\ 

a s 1 \ g2 ) 

b 

ds:5:¢:5:ll_F 
0 t) s 1 

a 

On using (10.26), (10.27), (10.35) and (10.36) in (11.5) we have 

whence 

b s¢'(s)+k b s¢'(s)-k J s 
1 

ds > o , J s 
1 

ds < o • 
a a 

(11.5) 

(1L6) 

( 11. 7) 

By the preceeding lemma we know that r¢'(r) f ± k
1 

on (a, b) , by virtue 

of which ( 11. 7) implies that 

k
1 

> r¢'(r)> - k
1 

on (a, b) , (11.8) 

since the integrands in ( 11. 7) are continuous on (a, b). Therefore, if 

¢
0 

is a number such that (11. 5) holds, then necessarily the solution to 

(10,25) - (10.27) must satisfy (11.8). But because of {10.33) and 

(10. 34), we see that, (10. 25) and (11. 8) hold if and only if 
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(11.9) 

Integrating this and using the boundary condition (10. 27) together with 

(10 . 39) leads to 

(11.10) 

On enforcing the boundary condition (10. 26), we have fron1 (11. 10) that 

(11.11) 

Finally, we verify that (11. 11) determines a unique number T 

for every given number ¢
0 

in the interval defined by (11. 5). To this 

end, define the function <l.i 
1 

by 

(11.12) 

On differentiating (11.12) with respect to T and making use of (10.35), 

we find that 

(11.13) 

2 2 
whence ~ 

1 
is monotonically increasing on [-2rra .,.. , 2rra .,.. ] . 

max max 

Thus, if ¢
0 

is a number such that 

2 2 
4i 

1
{-2rra 'T )< ¢

0
:<:: f 

1
(2rra .,.. ) , 

max max 
(11. 14) 
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then, ¢
0 

= ~ 
1 

(T) defines a unique number T . Note that ( 11. 14), 

because of (11. 12), is identical to (11. 5). 

Therefore, we conclude that, if the prescribed twist ¢
0 

is in 

the interval defined by (11. 5), Equation (11. 11) determines a unique 

real number T , which together with (11. 10) gives the corresponding 

unique smooth solution to (10.25) - (10.27). 

In an entirely ax1alogous manner, we can show that, if the pre-

scribed twist ¢
0 

is in the interval 

Jb ..!F (a2,.max) ds:S:: !¢ l :S:: Jb ..!F (b2,.min )ds 
a s 2 s2 0 a s 2 s2 

{11.15) 

then, the relation 

(11.16) 

determines a unique real number T , which together with 

b 

¢(r)=J %F2 (~)ds 
· r 2'ITS 

(11.17) 

is the corresponding unique smooth solution to {10. 25) - (10. 27). 

Similarly, if the prescribed twist ¢ 0 is in the interval 

(11.18) 

the relation 
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(11.19) 

determines a unique real number T , which together with 

(11.20) 

is the corresponding unique smooth solution to (10. 25) - (10. 27). 

We will refer to (11. 10), (11. 17) and (11. 20) as (smooth) solution 

_!, solution 2 and solution 3 respectively. Equations (11.11), (11.16) 

and (11. 19) are the corresponding torque-twist relations. One sees 

readily from (11.10), (11. 17), (11. 20) and the discussion on ellipticity 

in Section 10. 2, that the displacement equations of equilibrium are 

elliptic everywhere in TI at solution 1 and solution 3, and that they 

are non-elliptic at solution 2. 

Because of (10.35) we see that 

(11.21) 

if and only if 

2 2 
b T . ~a T 

min max 
(11.22) 

Accordingly, it is only when (11. 22) holds that there are values of ¢
0 

in the interval (11. 15), and consequently that solution 2 exists. In this 

paper, we will consider in detail the case when the dimensions of the 

tube and the constitutive law of the m .aterial arc such that 
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2 'T • 
~> . mm 

2 'T b max 
( 11. 23) 

and trace the other cases (which are in fact less complicated) through 

footnotes. The end result turns out to be the same in all cases. For a 

given material, one could view (11. 23) as requiring the thickness of the 

tube to be sufficiently small. Since 'T 1jT (p) = -~ , we have 
'T (a) b2 P 2np 
.,. PW (b) = 2 in any equilibrium configuration of the body irrespective of 

pljr a 
the magnitude of the applied twist. Thus ( 11. 23) can be equivalently 

written as 

'T (a) 'T 
po/ <-2~ 

'T '" (b) 'T . p'I' . min 

The torque-twist relations (11.11), (11.16) and (11.19) are 

sketched in Fig . 5. Clearly, because of inaterial isotropy, these curves 

are anti-syrnmetric. 

We observ e f rom the preceding calculations, and also from 

Fig. 5, that we have not as yet found any solutions to (10. 25) - (10. 27) 

if the pre scribed twist lies in one of the intervals 

b c ) b (2 ) s iF 1 

a'T . aT 

t~ax ds< l¢ol<f iFz .sr;ax ds , 

a 
( 11. 24) 

b ~z:~m) 
b (2 ) s iF2 d s < l ¢ 0 I <I ·t F 3 

b 'T • . 

s~m ds . 
a a 

We show in the next section that there are, in fact, no smooth solutions 

when the prescribed twist lies in these ranges. 
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11. 2 Non-existence of Smooth Solutions 

We now establish a sequence of lemmas leading to a result 

which is in fact stronger than the one claimed at the end of the last 

section. We will show that there is~ solution ¢(r) to (10. 25) - (10. 27) 

which is continuously differentiable if the prescribed twist ¢
0 

is in one 

of the intervals defined by ( 11. 24). 

Lemma 1: There is no continuously differentiable 

solution ¢(r) to the differential equation ( 11. 1), 

where T is a constant and f is a continuously dif

ferentiable function conforming with (10. 28) - (10. 30), 

for which (11. 2) holds at some radius s, a<s<b. 

_;?_Fo_s:if: Assume that there exists such a solution ¢(r) and suppose that 

k(s)=s¢'(s)=+k 1 • (11.25) 

By hypothesis k(r)::: r¢'(r) is continuous on (a, b) so that, in particular, 

it is continuous at r = s. Therefore, given any number e: > 0 , there 

exists a ntL.-n.ber 6::: 6(e:)>O such that lk(s) - k(r) I <e: for all r such 

that Ir- sl<o(e:). Using (11.25) we may write this as 

for all lr-sl<o(e:) . ( 11. 26) 

Recall that f(k) has a local maximum at k = k
1 

, so that there 

is a number n> 0 such that 

(11.27) 

Combining (11.26) with (11.27) gives 

for lr-sl<o(n) , 
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which on using (10.6), (11. 1) and (11. 25) leads to 

-T T I I -- ;;:: - --2 for r - s < o(Tj) . 
2TTS 

2 
2;rr 

(11. 28) 

2 
Note from ( 11. 1 ) and ( 11. 2 5) that T ::: - 2 TT s f ( k 1 ) , whence T < 0 . 

Equation ( 11. 28) now requires that 

2 ...... 2 
r ""s for s-o(ri)<r<s+o(ri), o(ri)>O, (11.29) 

which is impossible. Consequently there cannot exist a solution ¢(r) 

with the properties we assumed. 

The cases s¢'(s) :::-k
1

, ±k
2 

can be dealt with similarly. 

Lemma 2: Suppose that there exists a continuously 

differentiable solution ¢(r) to (11. 25) - (11. 27), 

where T is a constant and f is as in Lemma 1. 

Then 

(i) I r¢'(r) I< k1 on (a, b) if and only if ¢0 is in 

the interval ( 11. 5). 

(ii) k 1 < lr¢'(r)l<k2 on (a, b) if and only if ¢0 is 

in the interval (11. 2 9). 

(iii) I r¢'(r) I> k2 on (a, b) if and only if ¢0 is in 

the in te rva 1 ( 11. 18 ) . 

Proof: Considering part (i), suppose that ¢
0 

is in the interval ( 11. 5). 

By virtue of lemma 1, the steps leading from ( 11. 5) to ( 11. 8), go 

through even when ¢(•) is merely continuously differentiable. Thus 

necessarily I r¢'(r) I< k 1 on (a, b). 

Conversely, suppose that I r¢'(r) I < k 1 on (a, b). It follows 

from (10.25) and (11.25) that 

l:!:.l < 'f 

2 2 max 
TTr 

on (a, b) , (11.30) 
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whence 

(11.31) 

Since lr¢'(r)j <k1 on (a, b), we have because of ( 10.33) that (10.25) 

holds only if 

(11.32) 

Integrating (11.32) and using (10.26), (10.27) and ( 10.39) gives 

(11.33) 

which by virtue of (10 . 40) and (10.41) leads to 

(11.34) 

Since by (10. 35) F 1 (•) is a monotone increasing fnnction, it follows 

from (11.31) and (11.34) that 

(11.35) 

which completes the proof of part (i) of the lemma. Parts (ii) and (iii) 

c an be similarly established. 

Lemma 3: There does not exist a continuously dif

ferentiable solution ¢(r) to (10. 25) - (10. 27) , where 

T is a constant and f is as in Lemma 1, if the pre

scribed twist ¢
0 

is in one of the inte r vals ( 11. 24). 
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Proof: This result follows immediately from Lemmas l and 2. For, 

suppose that there is such a solution ¢(r). It follows from Lemma 2 

that we must have 

r¢'(r) = ±k
1 

or ±k2 at some r, a<r<b . (11.36) 

But Lemma l says that this is impossible. 

We have thus shown that for certain ranges of the prescribed 

twist, the re is no solution in the classic al sense to the problem under 

consideration. 
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CHAPTER 12 

12. 1 Weak Formulation of Problem 

There are some problems of considerable physical interest in 

which the field quantities do not vary smoothly through the body. Rice 

gives some examples of such problems in [ 5] . We have observed that 

the problem under consideration here has no smooth solution for certain 

ranges of the applied loading. One possibility, which we shall not con

sider, is that the tube buckles, possibly into some unsymmetric state 

of plane strain at such a loading. An alternative possibility is that the 

tube remains in a configuration of axisymmetric plane strain, but that 

now the field quantities are no longer smooth and e xhibit certain dis

continuities. This latter possibility is suggested by the observation in 

Section 10. 2 that the displacement equations of equilibrium may suffer 

a loss of ellipticity at certain deformations for the material at hand. 

We now relax the smoothness demanded of the local twist ¢(r) 

and the pressure field q(r) , in the hope that this will enable us to ex

plain what happens when the prescribed twist ¢
0 

is in one of the inter

vals (11. 24). 

To this end, let r be a number in the interval (a, b]. If in 

fact a<r< b , we will now require that ¢(r) be merely twice contin

uously differentiable on the intervals (a, r) and (r, b) and continuous 

on [a,b]. The stress field and pressure field induced by the deforma

tion (10. 1) are now required only to be continuously differentiable on 

(a, r) and rr. b) while the traction is presumed to be continuous at r = r. 

Accordingly, we have admitted the pas sibility of the existence of a 
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cylindrical elastostatic shock
1 

of radius r co-axial with the cylindrical 

region ~ • 

The global balance laws, which continue to be meaningful, now 

reduce to the same differential equations obtained in Section 10. 1 on 

(a, r) and (r, b), together with jump conditions at r = r . Accordingly 

we now have 

d { 2 . 
dr r f(r¢'(r))}=o , 

on a<r<r 

r<r<b 

instead of (10. 20) and (10. 21). On integrating (12. 1) we have 

T 
(a, r) ---2 on 

' 2rrr 

f(r¢'(r ))= 
+ 
T rr. b) ---2 on , 

2rrr 

+ 
where T and T are (not neces sarily equal) constants. Because of 

(10.10), (10.13), (10.24) and (12.3) we have that 

(12. 1) 

(12. 2) 

(12. 3) 

1
we formulate the problem in the case when a single elastostatic shock 

exists. We will find that this suffices for our purposes, and more im
portantly, that a configuration involving more than one shock is neces
sarily unstable (in a sense to be made precise). 
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T 
- --2 on {a, r) , 

21Tr 

+ 
T 

---2 
2rrr 

on \r, b) • 

Clearly the tractions are continuous across · r = r .if and only if 

and 

'r (r-)=-r (r+) • 
PP PP 

Equations (12. 4) and (12. 5) lead to 

- + 
T=T=T 

We therefore have the following problem governing the local 

( 12. 4) 

(12.5) 

(12.6) 

(12. 7) 

twist ¢(r) . Given a number ¢
0 

, find a function ¢(r) which is contin

uous on [a, b] and twice continuously differentiable on {a, r) and 

(r, b) , and numbers T, r with a:5:r::;; b , such that 

T 
f(r¢'(r)) = - --2 on a<r<r' r<r<b ' 

2rrr 
(12. 8) 

¢(a)= ¢0 , (12.9) 

¢(b) = 0 • (12. 10) 

Integrating (12. 2) leads to 
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r 

2W'(2 + r 2
¢'

2
(r)) +I 2s¢'

2
(s)W'(2 + s 2

¢'
2

(s))dg + qo on (a, r) 
r 

q(r) = (12. 11) 

r 

2W'(2 + r 2
¢'

2
(r))- J 2s¢'

2
(s)W'(2 + s 2

¢'
2

(s))ds +~0 on (r, b) 
-r 

which, together with (10. 10) and (10.13), gives 

,. (r) = pp 

r 

-J 2s¢'
2 

(s )W'(2 + g 2¢'
2

(s ))ds - q
0 

on (a, r) , 

r 

r 

J 2s¢'
2

(s)W'(2 + s 2
¢'

2
(s ))ds - ~O on (F, b) . 

r 

(12. 12) 

(12. 13) 

We see from (12. 12) and (12. 13) that the traction continuity condition 

( 12. 6) holds if and only if 

+ -q
0 

= q
0 

. < 12 • 14) 

Once (12. 8) - (12. 10) has been solved for the function ¢(r) , equation 

(12. 11) together with (12. 14) directly gives the pressure field q(r). 

12. 2 Weak Solutions 

We first observe that the Lemma at the beginning of Section 11. 1 

continues to hold if we replace (a, b) by (r 
1

, r 
2

) where r 
1 

and r 
2 

are any two numbers such that a~ r 
1
< r 

2 
~ b • This result, with the 

particular choices r
1 
=a, r 2 =r and r

1 
=r, r 2 = b p leads to the con

clusion that all admissible solutions of (12. 8) are necessarily such that 
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on a< r<r, r< r<b . (12. 15) 

Since ¢'(r) is continuous on (a, r) it now follows that any admissible 

solution to (12. 8) must be such that r¢'(r) takes on values exclusively 

in one of the intervals (-oo, -k
2
), (-k

2
, -k

1
), (-k

1
, k

1
), (k

1
, k

2
) or 

(k 1, oo) , at all points in (a, r) • The same must be true on (r, b). 

Therefore we see, because of (10. 33) and (10. 39), that (12. 8) holds 

if and only if 

-F. (~) on (a, r) , 
1 2 2 Tir 

r¢'(r)= (12.16) 

-F.(~) on (r, b) , 
J 2Tir 

for some fixed i, j = 1, 2, 3 • 

Integrating (12. 16) and using the boundary conditions (12. 9) and 

(12. 10) leads to 

on [a, r) , 

¢(r) = (12.17) 

on (r, b] 

Finally, we require that 

r b 

¢0 = [ i Fi (2TT~2 )as+ l i Fj (2TT~2 )as , 
r 

(12. 18) 
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since the local twist ¢(r) given by (12 . 17) is supposed to be continuous 

at r = r • 

Collecting the preceeding results, we come to the following con -

clusion. Given a real number ¢
0 

, if there exist real numbers T and 

r, a:5: r:5: b, such that (12. 18) holds for some fixed choice of the sub-

scripts i,j = 1, 2, 3, then (12.17) with this choice of T, r, i and j 

is a solution to (12. 8) - (12 . 10) at the given ¢
0 

• 

Clearly in the case when i=j= 1,2, 3, (12.17) and (12.18) de -

scribe the smooth solutions we obtained in Section 11. 1. This is not 

surprising, since any smooth solution of ( 10. 25) - ( 10. 27) is also a 

solution of the problem in its weak formulation. Likewise, in the parti-

cular cases when r=a and r=b, (12.17) and (12.18) are readily seen 

to reduce again to these same smooth solutions. A solution defined by 

(12.17) and (12.18) is therefore not smooth only if if j and a<r<b. 

The existence of a solution (12. 17) corresponding to the pre-

scribed value of the twist ¢
0 

is contingent upon the existence of numbers 

T and r, a:5:r:5:b, such that (12.18) holds. We now examine this lat-

ter issue. First we note that, since (12. 18) furnishes only one scalar 

restriction on the two numbers T and r , we expect that if there are 

values of T and r conforming with ( 12. 18), then there would in fact 

be many such values. If, therefore, we momentarily imagine specify-

ing both ¢
0 

and T , we may pose the following question: at each fixed 

choice of the subscripts i, j = 1, 2, 3 , if j , for what values of the pair 

(¢
0

, T) will (12. 18) determine a value for r , a:5:r::: b? We will, with 

no loss of generality , restrict attention to the first quadrant of the 

¢
0

- T plane. We will show that for each fixed choice of the subscripts 

i,j = 1,2,3, if j, there is a simply connected closed region A. . in the 
l 
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first quadrant of the ¢
0

- T plane such that (12. 18) determines a value 

for r if and only if (¢0 , T) is in Ai. • Furthermore, this value of r 

is unique. 

To this end, define the functions ¢ij , i, j = 1, 2, 3 , i /; j , by 

on B .. , 
iJ 

(12. 19) 

where the domains of definition B.. of the functions ¢.. on the r - T 
iJ iJ 

plane are given by 

{ 
r:::. ) I - . . -2 < T 2 -2 .J, B

31
= \r,T asrsb, 2Tir T. - ::;; rrr 'f , min max 

B
13

= {\r,T)lasrsb, 2rrb
2

T . sTs2rra
2

'f } , min max 

{ 
2 2 I 

B
21

= (r,T)lasrsb, 2rrr 'f • sTs2rra T r, tnin maxJ 
(12.20)

1 

B
12

= {(r,T)lasrsb, 2Tih
2

T • sTs2rra
2

T } , min max 

B
32

= {\r,T)lasrsb, 2Tib
2

T . sTs2rrr
2

T } , min max 

We now consider the case i = 3 ·, j = 1 in detail. For each fixed 

value of r in [a, b] , it follows from (12. 19), (12. 20) that ¢ 0 = ¢31 (r, T) 

defines a segment of a smooth curve on the ¢ 0 - T plane for 

-2 -2 2rrr T • sTs2rrr T 
min max 

Therefore, we have a family of such curves 

on the ¢
0

- T plane, each corresponding to a different value of r in 

1 . 
Because of (10.32), (10.33) one sees that these are the largest possible 

domains of definition of the functions ¢ij . In the case when 
a2Tmax<b2'fmin - so that (11. 23) does not hold- we see that B13 , B12 
and B23 are empty. In this case, therefore, solutions (12.17) with 
(i,j)=(l,3), (1,2) and (2,3) do not exist. 
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[a, b] , and all of them having their end points on the curves 

¢ 0 = ¢ 31 (}2!T . , T) and ¢ 0 = ¢31 ~ , T) • Since by (10. 38) and 
mm max 

( 12 • 19) we have 

(12. 21) 

it follows that the different members of this family of curves do not in-

tersect each other. Furthermore, a curve corresponding to a larger 

value of r lies to the right of a curve corresponding to a smaller value 

of r. And finally, since ¢31 depends continuously on r, these curves 

span a simply connected region, A
31 

, in the ¢
0

- T plane. From the 

above discussion it follows that A
31 

is the closed region bounded by 

the curves ¢ 0 = ¢3 i (a, T) , ¢ 0= ¢31 (b, T) , ¢ 0 = ¢31 (~ . , T) and 

¢ 0 = ¢31 (};f; , T) . A sketch of this region, toge::::~ with the span-
max 

ning family of curves, is shoWTI in Fig.6(i). The fact that a curve cor-

responding to a larger value of r is to the right of a curve associated 

with a smaller value of r is indicated in Fig. 6(i) by the arrow labelled 

"direction of increasing r". Since there is exactly one of these curves 

pas sing through any point in A31 , it follows that there is a unique 

number r associated with every point (¢
0

, T} in A
31 

, such that 

¢
0
= ¢

31 
\r, T). This is what we set out to establish. We may express 

this analytically as follows: there exists a function r
31 

, defined on A
31

, 

such that r determined by 

(12. 22) 
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Surrrmarizing the results for this case, we have that, if ¢
0 

and 

T are numbers such that (¢ 0 , T) is in A (the region PQRS in 
31 , 

Fig. 6(i)), then there is a unique number r, . a:5:r:5: b, such that (12. 18) 

holds (with i=3, j = 1). Equation (12.17), with these values of T, r, i 

and j, is a solution to (12.8) - (12.10) at that value of ¢
0

• 

The other cases - corresponding to the remaining choices of the 

subscripts i, j - may be likewise examined. In each case we find a 

simply connected closed region A .. , 
lJ 

¢
0 

and T are numbers with (¢
0

, T) 

shown in Figs. 6-8, such that, if 

in A .. , then there is a unique 
lJ 

number r, a:5:r:5: b, such that (12.18) holds for that choice of i,j . 

Equation (12. 17) then provides the corresponding solution ¢(r). Accord-

ingly, in each case there exist functions 
A 

r .. defined on A .. , such that 
lJ lJ 

r = ~- .(¢
0

, T) lJ 

conforms with ¢
0
= ¢ . . (r, T) • 

lJ 

on A .. 
lJ 

(12. 23) 

The composite torque-twist diagram, wherein all of these admis-

sible regions A .. together with the torque-twist curves for the smooth 
lJ 

solutions are sketched on one figure,is shown in Fig. 9. We observe that 

the admissible regions A.. 11£it 11 appropriately between the torque-twist 
lJ 

curves associated with the smooth solutions (Fig. 5). Therefore cor-

responding to any given value of the twist ¢
0 

we now have a solution. 

However, we are now faced with the unsatisfactory situation in which 

there is an infinite number of admissible solutions at certain values of 

the prescribed twist ¢
0 

• 

We observe from Fig. 9 that at sufficiently small twists ¢
0 

(::5: ¢ s) and at sufficiently large twists ¢
0 

(2 ¢
0

) we have a unique 
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solution, which is smooth. When the prescribed twist ¢
0 

is in one of 

the intervals ¢p < ¢ 0 < ¢M , ¢N< ¢
0 

< ¢R , we have an infinite number of 

solutions, all of which are weak solutions. In the remaining intervals, 

we have an infinite number of solutions, one of which is smooth, all the 

re st being weak solutions. 

Observe from Figure 9 that even a knowledge of both ¢
0 

and T 

may be insufficient, in some cases, to determine a unique solution. For 

example, there are four solutions corresponding to any point in PMNK, 

one for each of the pairs, (i,j) = (1, 2), (2, 1), (1, 3) and (3, 1) . We 

remark that at any point (¢
0

, T) on PS or RQ there is in fact only 

one solution-the smooth one. One sees this from (12. 17), (12.18), 

since all of the weak solutions at such a point have either r =a or r = b 

(see Figs . 6 - 8). Likewise, at any point on MN we only have smooth 

solution 2 or the weak solutions (i,j) = (1, 3), (3 , 1). 

Finally, we observe that it is convenient to visualize the various 

solutions as follows. Consider for example a weak solution with i = 3 , 

j = 1. Let r denote the radius of the associated shock . Let A , B , C 

and D be points on a radial line in the cross-section TI of the tube in 

the undeformed configuration, see Fig. lO(a) , such that A and D are 

at the inside and outside boundaries respectively , while B and C are 

points just inside and outside the shock-line . The solution at hand is 

given by ( 12 . 17) with i = 3 , j = 1. If we use this to compute r¢'(r) and 

then plot the points with coordinates (lr¢'(r)I, ~) (suppose T > O) 
2TT r 

for each r in the intervals a:5: r<r, r<r:5: b , we obtain the curves 

A
1 

B
1 

and c
1
n 1 (typically) shown in Fig . lO(b) . The graph of f(k) has 

been superimposed on this diagram. The abscissa of any point on A 1B 1 

or c
1
n

1 
gives the value of the local am.aunt of shear I r¢'(r) I at the 
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corresponding point in the tube, while the ordinate gives the correspond

ing shear stress I,. PW I . Observe from Fig. IO(b) how the local amount 

of shear varies continuously on either side of the shock but suffers a 

jump discontinuity across it. The shear stress ,. P$ , on the other hand, 

is seen to vary continuously throughout the tube. If we refer to the por-

tions of the curve f(k) vs.k between Q:o;: k:o;: k
1 

, k
1 
~ k~ k

2 
and 

k
2

:o;: k<oo as the first, second and third branches of f(k) respectively, 

we see that this solution (i = 3, j = 1) is associated with the third and 

first branches of f(k) , with the region inside the shock-line associated 

with the former branch. In general, the weak solution (i, j) is associ

ated with the ith and /h branches of f(k), with the part of the tube 

inside the shock-line corresponding to the ith branch. 

We see from this and Section 10. 2 that the ~of these weak 

solutions is mixed, in general. The displacement equations of equili-

brium are elliptic on that part of TI for which a< r <r and non-elliptic 

where r<r<b, at solutions with (i,j)=(l,2), (3,2), while they are 

elliptic where r< r<b and non-elliptic where a< r<r, at the solutions 

(i,j)= (2, 1), (2,3). In the case of the solutions corresponding to 

(i, j) = ( 1, 3) , (3, 1) , the displacement equations of equilibrium are el

liptic everywhere in IT where r fr. 
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CHAPTER 13 

13. 1 Dissipativity 

The lack of uniqueness encountered in the preceeding section is 

not unexpected, since we had enlarged the admissible class of solutions 

there. In such circumstances, it is usually the case that not all of the 

solutions admitted by the differential equations are physically reasonable. 

In gas dynamics, for example, there are problems in which the differen

tial equations admit solutions which are unacceptable since they are as

sociated with a decrease of entropy. It is essential therefore to intro:... 

duce additional criteria which will single out a physically admissible 

solution. 

Knowles and Sternberg proposed such a criterion in [3], in the 

context of finite elastostatics, which they referred to as the dis sipativity 

inequality. A thermodynamic motivation for this inequality , stemming 

from the Clausius-Duhem inequality, was given by Knowles in [4]. The 

dissipativity inequality is essentially an expression of the physically 

reasonable idea that the rate at which elastic energy is being stored in 

any part of the body, in some quasi-static process , cannot exceed the 

rate at which work is being done on that part . 

We now examine the implications of the dissipativity inequality 

in the context of the present problem. While we could specialize the 

general dissipativity inequality given in [ 4] to our problem, it is il

lustrative (and equally easy) to derive it from first principles. 

We now consider a quasi-static time dependent family of equili 

brium solutions. The time t merely plays the role of a history 
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parameter and no inertia effects are accounted for. Accordingly, we 

are concerned with a one parameter family of functions ¢(r, t) , depend-

ing on the parameter t in some time interval T , such that at each t 

in 1 , ¢(r, t) is a solution to (12 . 8) - (12. 10) . The torque, twist and 

shock radius are all time dependent now, and we write T(t) , ¢
0

(t) and 

r(t). It is convenient to set 

+ . 
IT(t) = [ r lr(t)< r< b} 

(13 . 1) 

TI(t)= [rla<r<r(t)} 

Then ¢(•, t) is continuous on [a, b] and twice continuously differentiable 

+ -
on I1 and II at each t in 1 • Furthermore 

_!ill_ f (r¢ r (r , t)) = - 2 
2'ITr 

+ -
on IT(t) and IT(t) , 

¢(a, t) = ¢
0

(t) , (13. 3) 

¢(b,t)=O, (13 . 4) 

at each t in 1 . Here ¢ 0 (t) is the prescribed twist, and we suppose 

it to be continuous and piecewise continuously differentiable on 1 • In 

certain discussions, as we observed previously , it will be temporarily 

necessary to imagine that T(t) is also specified. In such circumstances, 

we presume T(t) to possess the same smoothness as ¢ 0 (t) on 1 . 

It is convenient to set 

k(r,t)=r¢(r,t), 
r 

1 . ot+.(r t) ot+.(r t) 
We use the notat10n ¢ =..:::.r. ' and ¢ =..:::.r. ' . 

r or t ot 

(13 . 5) 
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+ 
k(t) =r(t)¢ (r(t)+, t) , 

r 
(13.6) 

k.(t) = r(t)¢ \r(t)-, t) , 
r -

(13. 7) 

with the understanding that when r(t) = b we take 
1 

r(t)+ = b and when 

+ -
r(t) =a we take r(t)- =a . k and k represent the instantaneous local 

amounts of shear at points just outside and inside the shock, respectively. 

We will now require that at each instant in 1 , the rate at which 

the external forces on the tube are doing work should not be less than 

the rate of increase of the stored energy, i.e. we demand that 

b 

T(t) ~t ¢ 0 (t) ~ ~t J W(2 + k
2

(r, t))2Tirdr 
a 

for all t in 1 . (13.8) 

We may evaluate the right hand side of (13. 8), using (13.6) and (13. 7), 

as follows. 

b 

~tJ W(2+k
2

(r,t))2Tirdr 
a 

r(t) b 
d r 2 d J 2 =dtJW(Z+k (r,t))2Tirdr+dt W(Z+k (r,t))2Tirdr , 

a r(t) 

b 

{ -2 +z } _ dr f ok , 2 
= W(2 + k ) - W(2 + k ) 2Tir(t) dt (t) +. 4Tirkat W (2 + k )dr . 

a 

Using (10.24), (13.2) and (13.5) in (13.9), gives 

1This is admissible since we observed in Section 12. 2 that when 
or b , the solution is in fact smooth. Thus ¢ exists there. 

r 

(13. 9) 

r=a 
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b 

d J 2 dt W(2 + k )2nrdr 
a 

b 
-2 +2 dr J =[W(2+k )-W(2+k )}2nr(t)dt -T(t) ¢rt(r,t)dr • 

a 

However, because of (13.3) and (13.4), we have 

b 

J ¢rt(r, t)dr = ~\(b, t) - ¢t(r(t)+, t) + ¢t(r(t)-, t) - ¢t(a, t) , 
a 

so that we may write (13. 10) as 

b 
d J 2 -2 +2 dr d dt W(2+k )2nrdr=[W(2+k )-W(2+k )}2nr(t)dt+T(t)dt¢0 (t) 

a 

+ T (t)f ¢/r<t)+ , t) - ¢t(r(t)-, t) J • 

Since the displacements are continuous across the shock, we have 

¢(r(t)+, t) = ¢\r(t)-, t) for t in r , 

which when differentiated with respect to t leads to 

Using (13.6), (13. 7) and (13.14) in (13.12) gives 

(13.10) 

(13.11) 

(13.12) 

(13. 13) 

(13.14) 
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b 
d J 2 -2 + 2 d- d 
dt W(2 + k )2nrdr = [ W(2 + k ) - W(2 + k) } 21Tr d~ + T(t) dt ¢

0
(t) 

a 

1 - + dr 
+r(t) T(t) [k(t)- k(t)}dt(t) , 

which because of (13. 2), (13.6) can be written as 

b 
d J 2 d - z +2 } dr dt W(2+k )21Trdr=T(t)dt¢0 (t)+[W(2+k )-W(2+k) 21Trdt 

a 

+ + - Or 
+ 21Trf(k)(k - k) dt (t) • 

The dissipativity requirement (13. 8) can now be written as 

or alternatively, because of (10. 24), as 

{ f + - + l dr i f(s)ds - (k - k)f(k) J21Trdt:<:: 0 for all t in r . 

(13.15) 

(13. 17) 

This is the form of the dissipativity inequality that we shall find useful. 

It follows from the results of Section i2 . 2 that all admissible 

quasi-static families of equilibrimn solutions are of the form 

1 + -
Note from ( 13 . 2) that f(k):: f(k) . 
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r 

¢ (t) - r .!.F. (.I.ill. Jd~ 
0 ~ S 1 ZTTS21 

on IT(t) , 

¢(r,t)== (13 . 18) 
b 

J .!. F. (_!ill )ds 
+ 

on TI(t) , 
r S J 2TTS2 

subject to the restriction 

r(t) b 

¢ (t)=J .!.F.(..Iill..)ds+J .!.F.(_.!.ill_)ds , 
0 s 1 2 ir2 s J 2 i:-2 

a TT':> r(t) TT:. 
(13 . 19) 

for some i, j = 1, 2, 3 and for t in 1 . We now proceed to apply the 

dissipativity inequality (13. 17) to the various families of solutions rep-

resented by (13.18), (13.19). 

We first note that, if at some instant t we have a smooth solu-

tion, then ( 13. 17) holds at that instant by virtue of the continuity of ¢ , 
r 

- :t-
i.e. since k= k . Therefore, we may restrict attention to the cases 

for which i;t j in (13. 18), (13. 19), and to times in r for which 

a<r(t)<b • 

Equations ( 13. 6), ( 13. 7) and (13. 18) now give 

~(t)=-F.( . T(t) ) , 
J 2TTr2 (t) 

k(t)=-F.( T(t) J, 
l 2TTr2 (t) 

1see discussion following (12 . 18). 

(13.20)
1 

(13.21) 



-116-

so that we may use (10.28), (10.39). (10.40), (10.41) (13.2), (13.6) and 

( 13. 21) to write ( 13. 17) as 

(13.22) 

for all t in r for which (13.20) holds. 

It is convenient to define the functions A
1 
(·) and A 2(·) by 

rF2(T) . , 

A 1('r)=j {£(s)-T}ds for T • :::;; T:::;; T ' 
min max 

(13. 23) 

F
1

('r) 

F 
3 

(T) 

A2<-r>=J {-r-£<s>}<ls for T • :::;; T:::;; T 
min max 

(13. 24) 

F 
2

(-r) 

These functions A 
1 

and A 2 have the following geometrical interpreta

tion. If in Fig. 4 we draw a line parallel to the k-axis at a distance 1" 

above it (-r . :::;; T:::;; T ) , then A1(T) and A2(T) are the areas of the 
mm max 

two loops formed. It follows from this that 

Al(T ) = A2(T . ) = 0 • max min (13. 25) 

for T . :::;; T< T 
min max ( 13 •· 26) 

for T • < T:::;; T 
min max (13. 27) 
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Using (13. 23) and (13. 24) in (13. 22) leads to 

{
A (1'.tl)- A (Til)} 2rrr dr ~ o for (i, j) = (3, 1) , 

2 2 _2 1 2 _2 dt rrr rrr 
{13.28) 

-{A2 (JtlT 2)-A 1 (l'.!.12 )}2rrrdr~ o for (i,j) = (1, 3) , 
2 - 2 - dt rrr rrr 

(13.29) 

-A (Til '\2 -dr:::: o 
1 -2/ rrr dt 

2rrr 
for {i,j)=(2,1) , (13.30} 

for (i, j)::: (1, 2) , (13.31) 

A (TI1)2 -dr> o 
2 

2 
_2 rrr dt -

rrr 
for (i, j) = (3, 2) , (13. 32) 

-A .(_IT_j_)2 -dt::::: 0 2 ~ _2 rrr dt 
t::rrr 

for (i,j) = (2, 3) , (13.33) 

in each of the different cases. 

Now consider, for example .. the case (i,j)= (2, 1), i.e. suppose 

that for all times sufficiently close to some t
1 

in 1 , the quasi-static 

family of solutions (13.18) has i=2, j= 1. We then have from (10.32), 

(10. 33), (13. 1), (13. 18), (13. 26) and (13. 30) that the dissipativity ine-

quality is satisfied at a time t
1 

for which ( 13. 20) holds if and only if 

(13.34) 

As previously observed, in the event that (13 . 20)does not hold, so that 

{13. 35) 
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then the dissipativity inequality holds without need for any restrictions 

such as ( 13. 34). The meaning of these restrictions is most transparent 

when viewed in the torque-twist diagram (see Fig. 11). With no loss of 

generality we suppose that T(t) and ¢
0

(t) are non-negative for all times 

in r . We shall refer to the piecewise smooth oriented
1 

curve r in the 

torque-twist plane defined by ¢
0
= ¢

0
(t) , T = T(t) for t in J" as the 

loading path. By hypothesis, for all values of t sufficiently close to 

t
1 

, the loading path r lies in A
21 

. Let Z = (¢
0

(t
1

) , T(t
1

)) be the 

point on r corresponding to t=t
1

. 

Recall
2 

that the region A
21 

is spanned by a one parameter 

family of curves ¢
0

= ¢ 21 (r, T) , a::;;;··:r::;;; b, and that a member of this 

farriily of curves co.rresponding to a larger value of the parameter r 

lies to the right of a curve corresponding to a smaller value. Let C be 

the particular memb er of this family with equation ¢
0

= ¢21 (r(t
1

) , T) , 

so that C passes through Z . , (see Fig. 11). It follows that the shock 

radius r corresponding to any point in A 21 to the right of C is greater 

than r(t 1) ' while at a point to the left of c , it is less than r(t 1) . 

Therefore, dissipativity - (13. 34) - requires that the loading path r 

should be oriented at Z .in such a way that it does not point 'to the right 

of C , provided Z is not a point on PS or MN. This is shown in 

Fig. 7(i) as well, wherein the concentrated source of arrows indicates 

the admissible orientations of a loading path through a typical point. 

This is true for all points in A
21 

except for those which lie on PS 

and MN. At a point on these curves the loading path may be arbitrarily 

1r is oriented in the direction of increasing time. 

2
see Fig. 7(i). 
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oriented, by virtue of (13. 35). 

Clearly we can analyze the other cases m an entirely analogous 

manner. We find that dissipativity is essentially equivalent to 

if (i,j)=(l,2), (13.36) 

if (i,j)=(3,2) ' {13. 37) 

if (i,j)=(2,3) , (13.38) 

and these are geometrically interpreted in Figs. 7 and 8 as before. The 

only exceptions to (13.36) - (13.38) are respectively at points on the 

curves PK , MN a..YJ.d MN, RQ and MN , LR, whereat the orientation 

is arbitrary. 

Equations {13 . 28) and (13. 29)- i.e. the cases (i,j)= (3, 1) and 

(1, 3) - can also b e similarly exa.Inined, taking care now to note that 

[A
2

(T) - A
1 

(T)} is not always of the same sign. lf we set 

f 0 r 'f • ~ 'f ~ T , 
min max 

(13. 39) 

where A
1 

and A
2 

are as defined previously, we find because of (13. 23 )-

(13. 27) and (13. 39) that 

A(T . )<0, A(T )>O , 
min max 

(13. 40) 

(13.41) 

Since A{T) is continuous, it follows from (13.40) and (13.41) that there 

is a unique number T in (T • , T ) , such that 
c min max 
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A('f ) = O , c 
(13.42) 

A (T ) > 0 on ( 'f , 'f ] , A ( 'f) < 0 on [ 'f • , 'f ) • 
cmax . mmc 

( 13. 43) 

The number 'f c is shown in Fig. 4, where, since A 1 ('f c) = A 2 (.,- c) , the 

two hatched regions are of equal area. The dissipativity conditions 

(13.28) and (13.29), because of (13.39), (13.42) and (13.43), are equiva-

lent to 

and 

dr 
d t 

l"f Jtl> 2 'f ' 
2'ITr c 

·+ ltl< 
lJ. 2 'f ' 

2 - c 'ITr 

l.tl -- rr is arbitrary if , 
2 

_2 c 
'ITr 

1.f Jtl< 
2 'f ' 

2 - c 'ITr 

dr 1T 1 
is arbitrary if _L=-.L = 'f 

dt 2 _2 c rrr 

(i,j)=(3,1) ' 

(i, j) = ( 1, 3) • 

Conside r the case (i, j) = (3, 1) • One shows easily that 

( 13. 44) 

(13.45) 

¢
0

= ¢
31 

(j2~ , T) is a curve in A31 which qualitatively looks as shown 
c 

in Fig. 6(i) - curve XY. Corresponding to any point on this curve, 
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T 
we have --2 = 'f while it is readily seen that at any point above or below XY 

- c 
T 27rr 

--2 is, respectively, greater than or less than 'f Accordingly, the 
27Tr c 
dissipativity inequality is equivalent to the first, second and third of 

(13.44) at points in A 31 , respectively, above, below and on the curve 

XY. The arrows in Fig.6(i) indicate the admissible orientations of a 

loading path at some typical points in A 31 • As before, the orientation 

at points on PS and QR is arbitrary. The solution (i, j) = (1, 3) may 

be similarly interpreted, as shown1 in Fig. 6(ii). 

13. 2 Consequences of Dis sipativity 

The dissipativity inequality was introduced in the hope that it 

would single out a physically adrnissible solution from among the many 

available equilibrium solutions. We now demonstrate that, if we re

quire the local twist ¢(r, •) to be continuous
2 

on r at each r in 

[a, b] , and if we suppose that the body was in an undeformed config-

uration at some time, then a configuration corresponding to solutions 

(i,j) = (1, 2), (2, 1), (2, 3) (3, 2) or smooth solution 2 cannot be attained 

at any subsequent time. 

Fir st, omit the weak solutions (i, j) = ( 1, 3) and (3, 1) from dis-

' 
cussion. We observe from Fig. 7 that any loading path in Fig. 9 con-

forming with the dissipativity inequality and starting from 0 . is neces-

sarily confined to the curve OP for all subsequent time. Note similarly, 

1 An examination of the details of the curve ¢0 = ¢13 (JT I 27T'f c , T) show 
that it is possible for this curve, depending on the specific geometry 
and constitutive law, to intersect a different pair of boundaries of A13 

thanshowninFig.6(ii). Thefigureisdrawnfor b2 /a2 rr . <-r<a2 /b2 -r min c max 
2

Note that despite the presumed continuity of ¢0 (t) and T(t), ¢(r, •)de
fined by (13.18) is not necessarily continuous on r, since the subscripts 
i and j may change values at certain times. 
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from Figs. 8 and 9, that any admissible loading path starting from 0 1 

is likewise restricted to · O'R for all subsequent time. The only possi-

ble way of achieving a solution (i,j) = (1, 2), (2, 3), (3, 2), (2, 1) or 

solution 2 is then, by virtue of a loading path which is associated with 

one of the solutions (i,j)= (3, 1), (1,3) for some time interval less than 

some time t
1 

, and with one of these solutions after time t
1 

• One sees 

readily from (13. 18) however, that this involves a discontinuity in ¢(r, •) 

at the time t
1 

. Since we have disallowed this possibility, we now con

clude that a configuration corresponding to any solution associated with 

the second branch of the graph of f(k) vs. k cannot be attained through 

2- di_ssipatjye quasi-~~atic deformation process. These are, incidentally, 

the solutions at which the displacement equations of equilibrium. are non-

elliptic somewhere in I1 . 

However, even if we now discard the solutions associated with 

the second branch of f , we would not have overcome our troubles with 

non-uniqueness. For example, consider the solutions 1, 3 and 

(i,j) = (3, 1). The appropriate torque-twist diagram is shown in Fig. 12. 

If we imagine gradually increasing the applied twist ¢ 0 from zero, the 

only available loading path initially is OS. During the next ,stage, 

¢ < ¢
0
< ¢ , dis sipativity - see Fig. 6(i) - disallows all loading paths 

s x 

except SX. Once the applied twist ¢
0 

exceeds the value ¢x, however, 

the loading path could lie anywhere in PQYX, and we have no criterion 

for deciding which path to follow. Eventually, for ¢ 0 >¢Q, we are 

restricted to the path . QO'. Likewise, during a steady decrease 

of the applied twist the loading path would be restricted to 0 1QY , 

then allowed to follow an arbitrary path (consistent with dissipativify) 

in XYRS and finally restricted to SO. It is interesting to note 

that if in either case the loading path lies on the curve OXYO' , 
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then the quasi-static process is dissipationless in the sense that (13. 8) 

would hold with equality at every instant t . 

It is therefore imperative that we seek an additional - or possibly 

an alternative - physical criterion, to the dissipativity inequality, that 

would sort out more completely the is sue of non-uniqueness. 
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CHAPTER 14 

14.1 Preliminaries cm Stability 

In the context of the initial value problem for nonlinear hyperbolic 

partial differential equations, Lax [ 10] says: "First of all, we exclude 

all solutions where entropy of a particle has been decreased. It is not 

clear, however, whether this insures the uniqueness of the s.olution of 

the initial value problem,_ especially if there are several space variables 

but even in the case of one space variable. Some additional principle is 

needed to pick out a unique solution, such as: (a) the weak soluHons oc

curing in nature are limits of viscous flows (b) the weak solutions occur

ing in nature must be stable. It is commonly believed that (a) charac

terizes uniquely the solutions occuring in nature. But whether the same 

is true of postulate (b) is seriously doubted by some. 11 

We now look into the possibility of using a stability criterion, 

instead of the dis sipativity inequality, in order to single out a physically 

admissible solution to the boundary value problem under consideration. 

We draw attention to the fact that we will not make use of the partial 

success achieved through the dissipativity inequality, since we are at 

present examining the possibility of an alternative - rather than addi-

tional - criterion. 

The notion of stability that we will use is a static one based on · 

the energy criterion. 
1 

According to this, an equilibrium configuration 

of a body is stable if and only if the work done by the external loads in 

1
See page 195 of [ 11] for a discussion of this criterion. 



-125-

every kinematically possible virtual displacement from this equilibrium 

configuration is less than the corresponding increase in the stored 

energy. 

We first need to specify the manner in which the applied loading 

behaves during a virtual displacement. We consider two possibilities -

stability under dead loading and stability with fixed boundaries. Suppose 

first, that we have dead loading on the inner surface of the tube while 

the outer surface is held fixed, so that the torque T remains constant 

during a virtual displacement. Let ¢(r) be the equilibrium solution 

whose stability we wish to investigate. Define the potential energy func..., 

tional V{ $} by 

b 

I 2 2 2 2 
V{$} = {W(2+r w' )-W(2+r ¢' )}21Trdr-T{$(a)-¢(a)} , (14.1) 

a 

for all functions $ (r) in some set X • In order to interpret $ (r) as a 

virtual twist, 
1 

- measured from the undeformed configuration - we sup-

pose that )(, is the set of all functions which are defined, continuous and 

twice piecewise continuously differentiable on [a, b] and are such that 

w (b) = 0 • Since this limited degree of smoothness is all that is required 

of an equilibrium solution ¢(r) , it seems reasonable not to impose more 

severe smoothness requirements on the virtual displacement. The kine-

matical restriction of incompressibility is automatically satisfied by any 

purely circumferential virtual displacement. We now say that the equili-

brium solution ¢(r) is stable against arbitrarily large circumferential 

1we re strict attention to purely circumferential virtual displacements. 
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perturbations 
1 if and only if 

V [ w } > 0 for all w in x , w "¥ ¢ • ( 14. 2) 

In order to establish the instability of some solution ¢(r) , it is 

clearly sufficient to show that V[ w} < 0 for some ~ in x . We now 

determine, from (14. 2), a sufficient condition for stability, which will 

be useful for our purposes. We can rewrite (14. 1), after making use of 

(10. 25) and (10. 27), as 

b 

V[ w} = J [ W(2 + r 2
w '

2
) - W(2 + r 2

¢'
2

) - f(r¢')(rw '- r¢')} 27Trdr , 
a 

(14.3) 

for any v in ·x • It follows that a sufficient condition for the stability 

of ¢(r) is . that for every w in X , ~ "¥ ¢ , 

( 14. 4) 

at each r in (a, b) where the left hand side exists, and 

( 14. 5) 

at each r in some sub-interval of (a, b) where the left hand side exists. 

On the other hand, if at each r in (a, b) where k(r) = r¢'(r) exists, 

we have 

W(2 +)t 2
) - W(2 + k2(r)) - f(k(r))(K - k(r))>O (14. 6) 

for all numbers K°ik(r), it follows that (14.4), (14.5) holds. Equation 

1we shall merely say stable for brevity. 
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( 14. 6) is thus a sufficient condition for the stability of the solution ¢(r). 

Now consider the case in which the inner and outer surfaces of 

the tube are held fixed during a virtual displacement. The potential 

energy functional V[ w} is now defined by 

b 

v[ w} =I [W(2 + r 2w' 2
) - W(2 + r 2

¢,2)}2lTrdr , 
a 

for all functions w in some set x . In this case we take x to be the 

subset of the previous set of admissible virtual twists which conforms 

with W(a) =¢(a)= ¢
0 

• By virtue of (10. 25) and (10, 27) we can again 

write V[ W} in the form given by ( 14. 3 ), whence ( 14. 6) continues to be 

a sufficient condition for stability. Instability of a solution may again 

be established by demonstrating that V[ w} < 0 for some virtual twist 

w which is admissible. 

14. 2 Consequences of Stability 

Following Ericksen [ 9], we fir st make note of a geometric prop-

erty of the response curve in shear. Recall the functions A 1 (T) and 

A 2 (T) defined by (13. 23) and (13. 24), representing the areas of the loops 

formed by drawing a line, in Fig. 4, parallel to the k-axis at a distance 

T , ,. • ~,. ~ T , above it. Recall also that 
min max 

for ,. . ::::;; ,. < ,. 
min c ( 14. 7) 

for T < ,. ~ ,. 
c max 



-128-

Keeping this in mind, one observes the following properties of f(k) 

upon examining its graph (Fig. 4). If we set 

k3 = F 1 ( 1" c) I k4 = F 3 ( 1" c) I ( 14. 8) 

then we may observe first that 

(i) if k is any number such that either 

( 14 . 9) 

then 

K 

Jf(~)d~>f(k)(K-k) for all Kfk . ( 14. 10) 
k 

Equation (14.10) is a statement of the geometric observation that, pro-

vided (14. 9) holds, the area under the response curve from k to K , 

for any K 'f k is greater than the area of the rectangle of the same width 

and of height f(k) . By virtue of (10. 24), we can write (14 . 10) as 

W(2 +K
2

) - W(2 + k
2

) - f(k)(K - k)>O for all it 'f k . (14. 11) 

Next, it may be noted that 

(ii) if k is any number such that 

(14. 12) 

then there exists some sub-interval J of (-oo, oo) such that 

K 

J f(~)d~<f(k)(x. - k) for it in J , (14 . 13) 

k 
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whence by (10.24), we have 

W(Z+>t
2
)-W(Z+k

2
)-f(k)(>t-k)<O for >t in J. (14. 14) 

Alternatively, (i) and (ii) can be established analytically. 

We now conclude, by virtue of (14.6), (14.9) and (14.11), that 

any equilibrium solution ¢(r) for which 

lk(r)I = lr¢'(r)l<k3 , 

or (14.15) 

everywhere on (a, b) where ¢' exists, is stable. It is a trivial exercise 

to examine all the available equilibrium solutions ¢(r) - given by (12. 17) -

and determine those that conform with (14.15). One finds that only the 

following do: 

(i) Smooth Solution 1 with 

(ii) Smooth Solution 3 

(iii) Weak Solution (3, 1) with IT I= 21Tr
2

-r , i.e. the solution (3, 1) with c 

the torque given by I ¢0 I = ¢31 cJ1 TI /21T'f c , IT I) and with shock 

radius r =JI TI /21TT • c 

These solutions therefore are stable. On Fig. 12, these refer to the 

solutions associated with points on the curves OX, YO' and XY re spec-

tively. 

We will now show that all the other solutions are unstable. We do 
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this by exhibiting particular admissible functions $ (r) which render 

V[ $} negative. It is readily shown that these remaining solutions-

i.e. solutions (12.17) which do not conform with (14.15) - all have 

(14. 16) 

on some sub-interval of [a, b]. In each case $ (r) is chosen to take 

advantage of (14. 12), (14. 14) and (14. 16). We first consider the case of 

dead loading. 

Consider Solution 1 with 

(14.17) 

In this case re call that 

r¢'(r) = -F 1 (~) , 
21Tr 

(14. 18) 

with T given by 

(14 . 19) 

By the monotonicity of the function F 1 it follows from (14.17) and (14.19) 

that 

(14. 20) 
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By virtue of (14. 20) there is a nw:nber s , a< s<b , such that 

IT l >2Trr
2

-r for a~ r< s . 
c 

(14. 21) 

Note from (10. 35), (10. 41), (14. 8), (14. 18) and (14. 21) that I r¢'(r) l >k
3 

on [a, s). We now choose the function Hr) in X such that 

-F (_!__) for a< r< s , 
3 2 2 Trr 

rt1r)= (14.22) 

-F 1 (~) for s<r<b . 
2Trr 

On using (14.18) and (14.22) in (14.3) we find by virtue of (10.24) , (10 . 28) , 

(10. 34), (10. 40) and (10. 41) that 

{14 . 23) 

This can be written as 

{14. 24) 

because of (13. 23), (13. 24) and (13 . 39). Since (14. 20) and (14. 21) imply 

that 

for a~ r< s , (1 4 . 25) 
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it now follows from (13.43), (14.24) and (14.25) that 

(14. 26) 

Therefore Solution 1 with ( 14. 17) in effect is unstable. On Fig. 12, these 

solutions are associated with points on the curve XP (excluding X). 

The instability of the other solutions may be established in an 

entirely analogous manner. We merely present the results. 

Solution 3 with 

( 14. 27) 

Lets be a number, a<s<b, such that lr¢'(r)l<k
4 

on (s,b]. Choos-

ing * in X such that 

-F
3 
(-1'-2 ) on (a, s) , 

2 J 
rrr 

r~'(r) = (14. 28) 

-F 
1 

(
2 

T 2 ) on (s, b) , 
rrr 

we find 

( 14. 29) 

This case is associated with points on RY- except R - in Fig. 12. 

Solution 2 

Choosing 
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b 

1jr(r)=J-tF3 ( T 2)di; on [a,b] , 
r 2lTi; 

( 14. 30) 

we find 

b 

V[1Jr} = -J A 2 (J.:!:..k)2lTrdr<O • 
a 2lTr 

(14 . 31) 

This case is associated with points on MN in Fig. 5. 

Solution (2, 1) with 

r>a . (14.32) 

Recall that Solution (2, 1) with r =a is identical with Solution 1, which 

we have already examined. An analogous comment is appropriate for 

the next four solutions as well. Choosing 

b 

J. 1 ( T ' 1jr(r)= ~F 1 --2 1di; 
r 27rs 

on [a, b] , (14.33) 

we find 

(14. 34) 

This case is associated with points in PMNS (excluding the curve PS) 

in Fig. 7(ii) . 

Solution ( 1, 2) with 

r<b . (14.35) 
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Choosing 

b 

V(r) = J ~F 1 (~)d~ on [a, b] , 
r 21Ts 

(14. 36) 

we find 

(14.37) 

This case is associated with points in PMNK (excluding the curve PK) 

in Fig. 7(ii). 

Solution (2, 3) with 

Choosing · 

r>a . 

b 

~ (r) = J j. F 3 (_I_2)ds on [a, b] , 
r '=> · 2iTs 

we find 

(14.38) 

(14.39) 

( 14. 40) 

This case is associated with points in MLRN (excluding the curve LR) 

in Fig. S(ii). 

Solution (3, 2) with 

r<b . ( 1,±. 41) 
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Choosing 

b 

W(r)=J~F3 (~)ds on [a,b] , 
r 2TIS 

(14. 42) 

we find 

(14.43) 

This case is associated with points in MQRN (excluding the curve RQ) 

in Fig. 8(i). 

Solution ( 1, 3) with 

b>r>a . 

If IT l 2 2rrr
2 

'f we choose 
c 

b 

*(r)=J~F3 (_!_2)ds on [a,b], 
r ';:. 2rrS I 

and find 

r 

v{ w} =-I A(4)2rrrdr<O • 
a 2rrr 

If IT I< 2rrr
2

T , we choose 
c 

b 

w(r)=JfF1( Tz\;ds on [a,b] , 
r ';:. 21TS 

and find 

(14. 44) 

(14.45) 

(14. 46) 

(14. 47) 



-136-

b 

V[~} = J A(J'.4:)2rrrdr<O • 
- 2rrr 
r 

{14. 48) 

This case refers to points in PLRK (excluding the curves PK and RL) 

in Fig.6(ii). 

Solution (3, 1) with 

{14.49) 

If IT I >2rrr
2

'T t there is a number s, r<s<b , such that 
c 

k
3
<lr¢'(r)j<k

4 
on \r,s). Choosing~ in X such that 

-F
3

(
2

T 2 ) on (a,s) , 
rrr 

r*'(r) = {14. 50) 

-F
1

(
2

T z) on (s,b) , 
rrr 

we find 

If IT I< 2Tir
2 

'T it follows that there is a number s , a< s < r , such 
c 

that k
3

< Jr¢'(r)l<k
4 

on (s,r). Choosing ~(r) as above (for this 

value of s) we find 

(14. 51) 

(14. 52) 
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This case refers to points in PQRS (excluding the curves XS, XY and 

QY) in Fig.6(i) and also in Fig.12. 

Instability in the case when the inner boundary is fixed may be 

established in a similar manner, taking care now to satisfy the boundary 

condition ~(a)= ¢(a)= ¢ 0 • For example, consider Solution 1 with ( 14. 17) 

in effect. Let c(e) be the function defined implicitly by 

(14.53) 

By virtue of (10.38), (14.19) and the implicit function theorem, one can 

show that (14. 53) does in fact define a function c(e) which is twice
1 

continuously differentiable in a neighborhood of e = 0 , and that 

c(O)=a , c'(O)>O • ( 14. 54) 

Thus c(e)>a for sufficiently small positive e • 

Now consider the virtual twist ~(r) , defined by 

on [a,c(e)] , 

~(r)= (14. 55) 

b . 

J l (T-e) gFl - . -2 d~ 
r 2rrt; 

on [c(e),b] , 

for a sufficiently small e > 0 • Note that ~ is in X by virtue of ( 14. 53). 

If we now set 

1Twice continuously differentiable when T< 2rra2
'1" max . The argument 

presented here can be readily modified in the case T = 2rra2
'1" max 
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c(e) 

V 1(e) = J [W(2 + r 2w' 2
) - W(2 + r 2

¢'
2
)- f(r¢')(r$'- r¢'))2rrrdr , 

a 

b 

V 2(e) = J [ W(2 + r 2v' 2
) - W(2 + r 2

¢'
2

) - f(r¢')(r$'- r¢')) 2rrrdr , 
c(e) 

with v given by (14. 55), we may write (14. 3) as 

We find from (14. 18), (14. 54), (14. 55) and (14. 56) that 

because of (10. 24) and (10. 28). Likewise we find 

V l (0) = 0 . , Vi(O) = -A(lI...k)c'(O) , 
2rra 

where we have also used (10.34), (10.40), (10.41),(13.23), (13.24), 

(14. 56) 

(14.57) 

(14. 58) 

( 14. 59) 

(13. 39) and (14. 54). Note because of (14. 17), (14. 19) and the mono

tonicity of F 1 that 'f c < 
2
1 T ~ s: 'f max , whence by ( 13. 43 ), ( 14. 54) and 
rra 

(14. 59) we have 

(14.60) 

On using (14. 58), (14. 59) in (14. 57) we find 

(14.61) 
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so that by (14 . 60) 

v[ w} <O for sufficiently small e > 0 . (14.62) 

This establishes the instability of Solution 1 with (14. 17) in effect in this 

case. The instability of the other solutions may be likewise established. 

This completes our instability analysis. 

Collecting the preceeding results leads to the conclusion that the 

only stable solutions
1 

are the ones given by (i), (ii), (iii) following 

equation (14. 15). Recall that on the torque-twist diagram, Fig.12, these 

are the solutions associated with the curve OXYO'. We therefore have 

that there is a unique stable solution ¢(r) to the boundary value problem 

in its weak formulation corresponding to every value of the applied twist 

¢
0

, i.e. there is a unique solution ¢(r) to (12. 8) - (12. 10) which con

forms with (14. 2), (14. 3). Note that at every value of ¢
0 

, the displace 

ment equations of equilibrium are elliptic on TI (r ;lr) at this unique 

solution. 

We now refer to a remark made in Section 12. 1 that a configura-

tion involving more than one elastostatic shock is unstable. In the ca s e 

of a solution with a single shock we showed instability whenever ( 14. 16) 

held. Clearly, it is (14 . 16) and not the number of shocks that is im

portant in that argument. 
2 

It is readily established that ( 14. 16) holds 

for every weak solution involving more than one elastostatic shock. This 

is most easily seen from a visualization of such a solution in the mann er 

1
These solutions exist irrespective of the geometric and constitutive 

details, i.e. even in the cases when (11. 23) does not hold these are the 
only stable solutions. 

2
As remarked previously, the importance of (14 . 16) for instability is 

related to the property (14 . 12), (14. 14). 
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explained in association with Fig. 10. This leads to the instability of 

such a solution. 

Now consider a quasi- static loading of the body. If the loading 

is performed in a manner which involves large circumferential disturb

ances, one might expect that at each instant, the tube seeks out the con

figuration which is stable against such distrubances. On increasing the 

applied twist we would then expect the loading path to follow the curve 

OXYO' in Fig. 12. We would first observe a smooth configuration of 

the tube. An elastostatic shock would then emerge at the inner boundary 

and gradually move outwards, disappearing upon reaching the outer 

boundary and giving way to a smooth configuration. On decreasing the 

applied twist, we would observe this process in reverse. Note from 

Section 13. 2 that this loading path conforms with the dissipation inequality, 

even though we did not den1and - here - that it should be so. In fact this 

is the dissipation-free path referred to previously. 

The stability criterion which we have used is a very strong con

dition, requiring stability against arbitrarily large perturbations. Cor

respondingly the result achieved is also strong - picking out a single 

solution from a.m.ong an infinite number of available solutions. One 

would anticipate that a weaker criterion, such as infinitesimal stability, 

would not suffice to determine a unique solution to the boundary value 

problem. However, it does not seem necessary to demand, as we have, 

a unique solution to the boundary value problem. It would be sufficient 

for physical reasonableness to demand a unique response corresponding 

to any pre scribed loading. It is possible to have different paths on load

ing and unloading, resulting in such a unique quasi- static response 

without having a unique solution to the boundary value problem. Such a 
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situation would be acceptable, especially because of the possibility of 

dissipation in the sense of Section 13. We have examined a criterion 

motivated by infinitesimal stability which in fact leads to such a situation. 

Of course solutions involving elastostatic shocks continue to play an 

essential part even then. 
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