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ABSTRACT

The thesis is divided into two parts. The first part d’evelops a
method of dynamic analysis for vertical, torsional and lateral free
vibrations of suspension bridges, based on linearized theory and the
finite-element approach. The method involves two distitict steps:

(1) specification of the potential and kinetic energies of the vibrating
members of the continuous structure, leading to derivation of the
equations of motion by Hamilton's Principle, (2) use of the finite-
element technique to: (a) discretize the structure into equivalent
systems of finite elements, (b) select the displacement model most
closely approximating the real case, (c) derive element and assem-
blage stiffness and inertia properties, and finally (d) form the matrix
equations of motion and the resulting eigenvalue problems. The
stiffness and inertia properties are evaluated by expressing the
potential and kinetic energies of the element (or the assemblage) in
terms of nodal displacements. Detailed numerical examples are
presented to illustrate the applicability and effectiveness of the
analysis and to investigate the dynamic characteristics of suspension
bridges with widely different properties. This method eliminates the
need to solve transcendental frequency equations, simplifies the deter-
mination of the energy stored in different members of the bridge, and
represents a simple, fast and accurate tool for calculating the natural

frequencies and modes of vibration by means of a digital computer.
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The method is illustrated by calculating the modes and frequencies of a
bridge and comparing them with the measured frequencies.

The second part contains two studies on the effect of differentia.l
motions of two foundations upon the response of the superstructure of
a bridge. The first study deals with the dynamic re sf)onse of a "long
beam'' model of a bridge to both steady-state and random excitations
applied at the supports. The second study develops a method to
analyze the dynamic soil-bridge interaction of a simple bridge model
erected on an elastic half-space, and the input motion is in the form
of incident plane SH-waves. The dynamic response of the bridge and
the effect of the radiative damping in the half-space on the interaction

of the bridge are also studied.
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PART A

FREE VIBRATIONS OF SUSPENSION BRIDGES

General Introduction

Throughout the history of suspension bridges, their tendency
to vibrate under different dynafnic loads has been a matter of con-
cern which, in modern times, has led to several investigations into
their vibrational properties. As a prerequisite to the further
investigation of aerodynamic stability, traffic impact, soil-structure
interaction and earthquake resistant design of suspension bridges, it
is necessary to know certain dynamic characteristics such as the
natural frequencies and the possible modes of motion during
vibration.

The natural, free vibrational modes of a suspension bridge may
be classified as vertical, torsional and lateral, as shown in Fig. A-L
In pure vertical modes of vibration, all points on a given cross
section of the bridge move the same amount in only the vertical
direction, and they remain in phase (see Fig. A-l-a). In pure
torsional modes, each cross section of the bridge rotates about an
axis which is parallel to the longitudinal axis of the bridge and which
is in the same vertical plane as the centerline of the bridge. Cor-
responding points on opposite sides of the centerline of the roadway
attain equal displacements, but in opposite directions, as shown in
Fig. A-1-b. In pure lateral motion, each cross section swings in a

pendular fashion in its own vertical plane, and, therefore, there is
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upward movement of the cables and of the suspended structure
incidental to their lateral movements, as shown in Fig. A-1l-c.

Problems in the dynamié analysis of the free vertical vibration
of suspension bridges have been investigated by many specialists
during the past few decades; the fundamental equations expressing
this type of free vibration were well understood many decades ago.
Much of the development which made these equations and their
solutions versatile in application, however, has taken place in the
wake of the collapse of the Tacoma Narrows Bridge in 1940.
However, there have been few investigations into, and relatively
little work published on, the dynamic analysis of either torsional
or lateral vibration. Generally, in all past studies of the different
types of vibration, investigators have started with certain more or |
less valid assumptions, have made a series of approximations in
varying degrees, and have battempted to develop equations and
formulas that would predict with fair precision the performance of
suspension bridges in free vibration. The relative value of these
equations and formulas lies in their reliabilityzor such prediction
and, also, in their agreement with results obtained from experiments
with models and with full-scale structures. In this regard, most of
the complex formulas developed so far are not adequate beyond the
first few modes; this is either due to the type of assumptions involved
or to the type of solution techniques adopted.

Current investigations have implied that the problem of the

dynamic analysis of suspension bridges cannot be solved effectively



by analytical methods, but that the evolution of both the digital
computer and various associated numerical techniques of analysis
have significantly enhanced solution capability. Thus, in spite of
the recognition of the problem and intermittent attempts at its
solution, the state-of-the-art of the study of suspension bridges'
free vibration is, still, not satisfactory.

The following study, in which the modern digital computer and
the finite element method of analysis play a central role, develops
methods to analyze the dynamic problems of suspension bridges.

The finite element method is very useful in that it provides a unified
approach to discretization which can be applied to complex structures
such as suspension bridges; the digital computer makes it possible

to routinely solve the resulting equations of motion, which may
involve even hundreds of degrees of freedom. The methods of
analysis developed here are desigﬁed to present general theories

and their applications in order to determine the dynamic character-
istics, namely the natural frequencies, the modes of vibration, and
the energy storage capacity, of the different members of a suspension
bridge. In order to simplify the presentation, coupling among vertical,
torsional and lateral motions is neglected, and some conventional
assumptions are used.

In general, it is believed that the theoretical treatments
presented yield practical solutions with reasonable accuracy and
increase understanding of the general characteristics of vertical,

torsional and lateral vibrations of suspension bridges. Furthermore,



the formulation of the problem provides a basis for future
theoretical study in two directions: analysis of geometric-
nonlinear free vibrations and of earthquake-resistant design.

This first part of the thesis is divided into four chapters, and
each chapter is further divided into several sections and sub-sections.
Each chapter, and many of the sections, have individual introductions
which give brief accounts of the historical development of the partic-
ular subject under investigation. The historical information has
been collected from many sources; in some cases the original works
have been referred to, as in others, where source material is diffi-
cult to obtain, the reader is directed to treatises which list refer-
ences. Many references have been included so that the reader may
easily obtain a more complete discussion of the various phases of
the total subject.

The first chapter contains analyses of the free vertical vibration
of a broad class of suspension bridges. In the first section, a detailed
introduction is presented, and in the second section preliminary con-
siderations and fundamental assumptions are given. The third section
discusses the different expressions for energy in the vertically vibrat-
ing system and the derivation of the equations of motion by means of
Hamilton's Principle. In the fourth section, topics which receive
attention are: the finite element formulation, the solutions obtained,
and detailed numerical examples which examine the effect of the ex-
tensibility of the cables and the continuity of the suspended structure.

In the analyses in the third and the fourth sections, it is assumed



s

either that the cables rest on nests of rollers at the tower tops or
that the towers are of rocker type with pin-bearings at their bases.
Thereafter, inthe fifth and the sixth sections, it is assumed that the
saddles are fixed at the tower tops, and therefore, the towers offer
a ceftain bending resistance to any horizontal displacement at their
tops. Also, the in-plane free horizontal vibration of the towers has
been considered. The fifth section contains the energy expressions
modified due to the rigidity of the tower, and it also includes the
derivation of the equation of motion for the towers. The sixth section
concerns the finite element solutions of the overall problem (which
includes the suspended structures, the cables and the towers). A
numerical example, to illustrate the tower effect, is presented.

The second chapter is concerned with analyses of free tor-
sionally vibrating suspension bridges. Two advancements are made
in this chapter. Firstly, a detailed treatment of a generalized theory
of free torsional vibration for a wide class of suspension bridges
having double lateral systems is developed, taking into account the
warping of the cross section of the bridge deck and the effect of
torsional rigidity of the towers. Secondly, a method of dynamic
analysis based on a finite element approach is developed to determine
vibrational properties in torsion. Almost the same procedures which
were followed in the vertical vibration chapter are followed in this
chapter ontorsional vibration.

The third chapter contains analyses of the free lateral vibration

of suspension bridges. The upward movements of the cables and of
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the suspended structure, incidental to thelir lateral movements, are
taken into consideration. The first and second sections contain some
theoretical preliminaries and fundamental concepts. The third
section contains the different expressions for energy in the laterally
vibrating suspension bridge and the derivation of the equations of
motion which couple the vibrational movements of the cables with
those of the suspended structure. The fourth section is concerned
with the finite element formulation, the solutions, and a numerical
examplé\ which illustrates and augments the analyses of this chapter.
In the last chapter of this part of the thesis, vibration studies
and experiments with the Vincent Thomas suspension bridge (between
San Pedro and Terminal Island, California) are presented to illustrate
the applicability and the effectiveness of the analyses under considera-
tion as well as to investigate the dynamic characteristics of a real
bridge. To further prove the validity and reliability of these analyses,
a rigorous comparison with previous results obtained by other investi-
gators has been made. In addition, the computed frequencies of this
bridge have been compared with the measured frequencies, and the

results of simple experiments conducted on the bridge are presented.



CHAPTER1

" FREE VERTICAL VIBRATIONS OF SUSPENSION BRIDGES

I-1. Introduction

The Tacoma Narrows Bridge disaster in 1940 profoundly
influenced suspension bridge research by sharply focusing attention
on the related dynamic problems. Prior to that time, the gradual
development of suspension bridge theory, which took place during
the nineteenth century and the first half of the twentieth century, had
led to the construction of progressively more economical and more
slender structures, such as the Tacoma Narrows Bridge. KEarly
warnings of suspension bridge failures caused by vibration during
high winds then culminated in the warning signs of the major dis-
aster that befell Moisseiff's Tacoma Bridge. It was a slender bridge
of 2800 ft. span that showed a marked tendency to vibrate in the wind,
both in flexure (vertically) and torsion, soon after construction, and
finally, after a life of only a few months, it collapsed as a result of
excessive vibrations in a transverse wind of approximately 40 m. p. h.

This disaster so shocked the engineering world that major
efforts were made to understand the nature of the dynamic problem
of suspension bridges and to learn how to counter it. In accordance
with this, several investigations into the vibrational properties of

suspension bridges were conducted, and, as a result, it was found
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that severe vibraticns can be largely caused not only by wind but
alsoc by various dynamic loads, such as moving vehicles and earth-
quakes.

One approach to this dynamic problem used aerodynamic
theories and the research methods of aeronautics. The most
extensive studies using this approach are the model investigations
of Farquharson [8], von Kdrman [6], Frazer [10], Scruton [10],
Steinman [14] and Selberg [16], and the theoretical work of
Bleich [9], and others. Thus, the aerodynamic stability of sus-
pension bridges has been of central interest for bridge designers
and scientists and has been the subject of numerous treatises,
while there have been comparatively few investigations into their
response to other dynamic loads or into their general dynamic
characteristics.

However, in the last decade, Hirai and Ito [21] did lead an
investigation into the practicability of railway suspension bridges.
They studied their response to moving vehicles, theoretically and
experimentally, and they prm‘rided information enabling the creation
of an impact specification for a long-span railway suspension bridge.
The live load intensity on a bridge of this type is, of course, large
compared with that ih a highway bridge, and thus the dynamic
effects in the former are generally much more remarkable.
Although significant in the area of railway bridges, their research

did not address the general problem of traffic loads.
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Design of a major suspension bridge for a region where severe
earthquakes may be expected is a problem which has also received
little study; even though it is a much more demanding problem than
the design of a typical multi-story building frame. Modern
building codes have now been developed to the point where the
basic earthquake requirerhents to be imposed on a "'standard"
building are specified adequately, and intelligent consideration of
these requirements will lead to the design of a safe and econémical
structure. A large suspension bridge, however, is a vastly dif-
ferent structure than a typical frame building. The fundamental
period of vibration of the suspension bridge may be many times as
‘great as the longest period of a building (in which the first mode is
primary), and it may be necessary to include a relatively large
number of modes of vibration in order to obtain a reasonable rep-
resentation of the total response.

Knowledge of the natural frequencies and possible modes of
vibration of a suspension bridge is necessary to investigate the
response to aerodynamic forces, live loads and earthquake loads.
The earliest relevant investigations of natural frequencies and
modes, concerned the vibrations of a heavy, isolated suspension
cable in a vertical plane. The first known theoretical treatments
of this problem were by Poisson [28]in 1820, and by Rohrs [1]in
1851. The latter examined the symmetrical modes of a nearly
horizontal cable which was assumed to be inextensible and produced

results for the first two natural modes. The same problem was
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examined more generally by Routh [2]in 1868, at which time he gave
an exact solution for the symmetrical vertical vibrations (and
associated longitudinal motion) of a heterogeneous cable which hung
in a cycloid. Like Rohrs, he also assumed that the cable was inex-
tensible. He showed that the result for a cycloidal cable could be
reduced to Rohrs' solution for the uniform cable, when the ratio of
sag to spian was small. Routh also obtained an exact solution for

the antisymmetric, vertical vibrations (and associated longitudinal
motion) of the cycloidal cable.

At this point the subject appears to have bee;1 laid to rest until
the aerodynamic failure of the Tacoma Bridge which, as explained
previously, initiated a comprehensive investigation of the problem
of dynamic vibrations of suspension bridges. In 1941, Rannie (6] and
von Karman [5, 6] derived results for an inextensible, three-span
cable. In 1945, Vincent [15, 18] extended Rannie's and von Kirman's
analyses to allow for the effects of cable elasticity in the calculation
of the symmetric vertical motion of the three-span cable. However,
he did not explore the nature of the solution so obtained and, there-
fore, he appears to have been unaware of the substantial effect which
the inclusion of cable elasticity can have.

From 1941 to 1943, Steinman [14] derived a number of
simplified formulas for co'mputing the frequencies and the modes of
both vertical and torsioﬁal vibrations of suspension bridges. They
have been independently checked for validity and accuracy by
investigators using more complex formulas. Steinman's formulas

appear to be the simplest and most practical to date, but some of
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the more involved modes predicted by these formulas have not been
found in other solutions.

A semi-empirical theory for the natural frequencies of the
first in-plane (vertical) modes of a uniform -suspended cable was
put forward by Pugsley [13]in 1949. He demonstrated the applica-
bility of his results by conducting experimerits on cables in which
the ratio of sag to span ranged from 1:10 up to approximately 1:4.

Later, various analytical studies were made to develop
formulas for computing the frequencies and modes of vertical as
well as torsional vibrations of suspension bridges with and without
recognition of the extensibility of the cable. Formulas for most of
these cases and for other cases as well were developed by Bleich[9].
He analyzed free vibration by the so-called exact method (i. e., by
solution of the fourth order linearized differential equations of
motion), and he applied this method to various examples. An
approximate method, based on the Rayleigh-Ritz approach and
representing the deformation of the structure by Fourier series
Wés also developed by Bieich, though this method can be applied
usefully only to the first few modes because of the complexity and
the redundancy of suspension bridges.

In 1952, Pugsley [11] discussed the stiffness of a heavy inex-
tensible cable in terms of work done by the cable against gravity
when the cable is loaded; he also examined the relationship between
this energy treatment and the conventional ''linearized deflection

theory' in common use. The latter is often presented in a form that
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appears to imply that the gravity stiffness of a cable is negligible;
this has proved to be misleading and results from neglect of a term
in the expression for zero extension.

Until the sixties, it was believed that the best formulas for
computing the frequencies and the modes of suspension bridge
vibrations were those’developed at the University of Waéhington
by Smith and Vincent [1 5]. These formulas were derived from the
differential equation of motion in bending (vertical vibration);
unfortunately, the misleading condition of inextensibility of the
cable, which Pugsley has critically examined, was used in some
of these formulas.

As mentioned before, recent studies have implied that the
problem of the dynamic analysis of suspension bridges‘ cannot be
solved effectively by analytical methods, but that the evolution of
both the digital computer and various associated numerical
techniqu.es‘of analysis have significantly enhanced solution capability.
Therefore, with the advance made in the computer, it has become
possible to solve even extremely complex cases.

The first use of a digital computer in analyzing this problem
achieved significant results. This first trial was made by Clough[l 71,

3
as a consultant in earthquake engineering, in an unpublished report,

"Seismic analysis of the main piers for the Tagus River Bridge."
The earthquake behavior of the Tagus River Bridge (in Lisbon,

Portugal) was studied in the late fifties and early sixties by Housner,

Converse [17] and Clough. The vibrational analysis of this bridge
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was based on a lumped mass system, which was interconnected by
elements having shearing and bending stiffness representative of
the actual structure. Rotational stiffness of the foundation material
was considered also.

In the early 1960's, Konishi, Yamada and Takaoka [19, 20]
started an extensive research study to investigate the dynamics of
suspension bridges and their earthquake resistant design. They
simulated a three-span suspension bridge, structurally comprised
of Systems of masses and springs, and using linearized theory,
calculated the periods and modes of free vertical vibration. In this
study, the vibration of the towers was considered as well as the
- vibration of the suspended structure and the cables.

In the late 1960's, Tezcan and Cherry [23] undertook similar
research concerned with the earthquake analysis of suspension
bridges, in which the effect of large deflections was taken into
account. Their study dealt with an iteration scheme for the non-
linear static analysis of suspension bridges by means of tangent
stiffness matrices. The concept of these matrices was then
introduced in the frequency equation governing the free vibration
of the system. The bridge was idealized as a three-dimensional
lumped mass system and was subjected to three orthogonal com-
ponents of earthquake ground motion producing horizontal, vertical
and torsional vibrations. As the first nonlinear analysis of a
vibrating suspension bridge, this study provided a foundation for

further nonlinear suspension bridge research.
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The following study develops a method of analyzing the
dynamics of suspension bridges by means of a digital computer.
This method is designed to determine the dynamic characteristics,
namely the natural frequencies, the modes of vertical vibration, and
the energy storage capacities, of the different members of the
 structure. This method is based on the so-called "linearized
deflection theory' and a finite element approach. The method
incorporates certain special simplifying features, and it involves
two distinct steps which are summarized as follows:

1. Specification of the different potential and kinetic energies of
the vertically vibrating members of the real continuous
structure and then derivation of the equations of motion, and

2. Use of the finite element procedures to: a) discretize the
structure into equivalent systems of finite elements, b) select
the displacement model most closely approximating the real
case, c) derive element and assemb‘iage stiffness and inertia
properties, and finally d) form the matrix equations of motion
and the resulting eigenvalue problems.

The evaluation of the stiffness and inertia properties of the
idealized structural element and assemblage is based on the expres-
sion of the potential and kinetic energies of the element (or the
assemblage) in terms of nodal displacements. This determines
expressions for the stiffness and mass matrices. Hamilton's
principle is then used to derive the matrix equations of motion.

This finite-element technique furnishes a system with finite degrees
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of freedom upon which matrix algebra operations can be performed.
It has proved convenient to separate the investigation of the
symmetric modes from that of the antisymmetric modes.

Finally, detailed numerical examples are presented to
illustrate the applicability and the effectiveness of the analysis and
to investigate the dynamic characteristics of a broad class of sus-
pension br<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>