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ABSTRACT 

The the sis is divided into two parts. The first part develops a 

method of dynamic analysis for vertical, torsional and lateral free 

vibrations of suspension bridges, based on linearized theory and the 

finite-element approach. The method involves two distic~1ct steps: 

(1) specification of the potential and kinetic energies of the vibrating 

members of the continuous structure, leading to derivation of the 

equations of motion by Hamilton's Principle, (2) use of the finite­

element technique to: (a) discretize the structure into equivalent 

systems of finite elements, (b) select the displacement model most 

closely approximating the real case, (c) derive element and assem­

blage stiffness and inertia properties, and finally (d) form the matrix 

equations of motion and the resulting eigenvalue problems. The 

stiffness and inertia properties are evaluated by expressing the 

potential and kinetic energies of the element (or the assemblage) in 

terms of nodal displacements. Detailed numerical examples are 

presented to illustrate the applicability and effectiveness of the 

analysis and to investigate the dynamic characteristics of suspension 

bridges with widely different properties. This method eliminates the 

need to solve transcendental frequency equations, simplifies the deter­

mination of the energy stored in different members of the bridge, and 

represents a simple, fast and accurate tool for calculating the natural 

frequencies and modes of vibration by means of a digital computer. 
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The method is illustrated by calculating the modes and frequencies of a 

bridge and comparing them with the measured frequencies. 

The second part contains two studies on the effect of differential 

motions of two foundations upon the response of the superstructure of 

a bridge. The first study deals with the dynamic response of a "long 

beam 11 mode 1 of a bridge to both steady- state and random excitations 

applied at the supports. The second study develops a method to 

analyze the dynamic soil-bridge interaction of a simple bridge model 

erected on an elastic half-space, and the input motion is ip the form 

of incident plane SH-waves. The dynamic response of the bridge and 

the effect of the radiative damping in the half-space on the interaction 

of the bridge are also studied. 
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PART A 

FREE VIBRATIONS OF SUSPENSION BRIDGES 

General Introduction 

Throughout the history of suspension bridges, their tendency 

to vibrate under different dynamic loads has been a matter of con­

cern which, in modern times, has led to several investigations into 

their vibrational properties. As a prerequisite to the further 

investigation of aerodynamic stability, traffic impact, soil-structure 

interaction and earthquake resistant design of suspension bridges, it 

is necessary to know certain dynamic characteristics such as the 

natural frequencies and the possible modes of motion during 

vibration. 

The natural, free vibrational modes of a suspension bridge may 

be classified as vertical, torsional and lateral, as shown in Fig. A-1. 

In pure vertical modes of vibration, all points on a given cross 

section of the bridge move the same amount in only the vertical 

direction, and they remain in phase (see Fig. A-1-a). In pure 

torsional modes, each cross section of the bridge rotates about an 

axis which is paralle 1 to the longitudinal axis of the bridge and which 

is in the same vertical plane as the centerline of the bridge. Cor­

responding points on opposite sides of the centerline of the roadway 

attain equal displacements, but in opposite directions, as shown in 

Fig. A-1-b. In pure lateral motion, each cross section swings in a 

pendular fashion in its own vertical plane, and, therefore, there is 
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upward movement of the cables and of the suspended structure 

incidental to their lateral movements, as shown in Fig. A-1-c. 

Problems in the dynamic analysis of the free vertical vibration 

of suspe nsion bridges have been investigated by many specialists 

duri ng the past few decades; the fundamental equations expressing 

this type of free vibration were well understood many decades ago. 

Much of the development which made these equations and their 

solutions versatile in application, however, has taken place in the 

wake of the collapse of the Tacoma Narrows Bridge in 1940. 

However, there have been few investigations into, and relatively 

little work published on, the dynamic analysis of either torsional 

or lateral vibration. Generally, in all past studies of the different 

types of vibration, investigators have started with certain more or 

less valid assumptions, have ma;de a series of approximations in 

varying degrees, and have attempted to develop equations and 

formulas that would predict with fair precision the performance of 

suspension b r idges in free vil:n~tion . The relative value of these 

equations and formulas lies ih their reliability .. 1or such prediction 

and, also, in their agreeme nt with res.ults obtained from experiments 

with models and with full-scale structures . In this regard, most of 

the complex formulas deve loped so far are not adequate beyond the 

first few modes; this is eit h er due to the type of assumptions involved 

or to the type of solution technique s adopted. 

Cu r rent inve stigations have implie d that the problem of the 

dynamic analysis of suspension bridges cannot be solved effectively 
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by analytical methods, but that the evolution of both the digital 

computer and various associated numerical techniques of analysis 

have significantly enhanced solution capability. Thus, . in spite of 

the recognition of the problem and intermittent attempts at its 

solution, the state-of-the-art of the study of suspension bridges' 

free vibration is, still, not satisfactory. 

The following study, in which the modern digital computer and 

the finite element method of analysis -play a central role, develops 

methods to analyze the dynamic problems of suspension bridges. 

The finite element method is very useful in that it provides a unified 

approach to discretization which can be applied to complex structures 

such as suspension bridges; the digital computer makes it possible 

to routinely solve the re suiting equations of motion, which may 

involve even hundreds of degrees of freedom. The methods of 

analysis developed here are designed to present general theories 

and their applications in order to determine the dynamic character-

istics, namely the natural frequencies, the modes of vibration, and 

the energy storage capacity, of the different members of a suspension 
; 

bridge. In order to simplify the presentation, coupling among vertical, 

torsional and lateral motions is neglected, and some conventional 

assumptions are used. 

In general, it is believed that the theoretical treatments 

presented yield practical solutions with reasonable accuracy and 

increase understanding of the general characteristics of vertical, 

torsional and lateral vibrations of suspension b 'ridges. Furthermore, 
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the formulation of the problem provides a basis for future 

theoretical study in two directions: analysis of geometric­

nonlinear free vibrations and of earthquake-resistant design. 

This first part of the thesis is divided into four chapters, and 

each chapter is further divided into several sections and sub-sections. 

Each chapter, and many of the sections, have individual introductions 

which give brief accounts of the historical development of the partic -

ular subject under investigation. The historical information has 

been collected from many sources; in some cases the original works 

have been referred to, as in others, where source material is diffi­

cult to obtain, the reader is directed to treatises which list refer­

ences. Many references have been included so that the reader may 

easily obtain a more complete discussion of the various phases of 

the total subject. 

The first chapter contains analyses of the free vertical vibration 

of a broad class of suspension bridges. In the first section, a detailed 

introduction is presented, and in the second section preliminary con­

siderations and fundamental assumptions are given. The third section 

discusses the different expressions for energy i n the vertically vibrat­

ing system and the derivation of the equations of motion by means of 

Hamilton's Pi:inciple. In the fourth section, topics which receive 

attention are : the finite element fo r mulation, the solutions obtained, 

and detailed numerical examples which examine the effect of the ex­

tensibility of the cables and the continuity of the suspended structure. 

In the analys e s in the third and the fourth sections, it is assumed 
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either that the cables rest on nests of rollers at the tower tops or 

that the towers are of rocker type with pin-bearings at their bases . 

Thereafter, in the fifth and the sixth sections, it is assumed that the 

saddles are fixed at the tower tops, and therefore, the towers offer 

a certain bending resistance to any horizontal displacement at their 

tops. Also, the in-plane free horizontal vibration of the towers has 

been considered. The fifth section contains the energy expressions 

modified due to the rigidity of the tower, and it also includes the 

derivation of the equation of motion for the towers. The sixth section 

· concerns the finite element solutions of the overall problem (which 

includes the suspended structures, the cables and the towers). A 

numerical example, to illustrate the tower effect, is presented. 

The second chapter is concerned with analyses of free tor­

sionally vibrating suspension bridges. Two advancements are made 

in this chapter. Firstly, a detailed treatment of a generalized theory 

of free torsional vibration for a wide class of suspension bridges 

having double lateral systems is developed, taking into account the 

warping of the cross section of the bridge deck and the effect of 

torsional rigidity of the towers . Secondly, a method of dynamic 

analysis based on a finite element approach is developed to determine 

vibrational properties in torsion. Almost the same procedures which 

were followed in the vertical vib r ation chapter are followed in this 

chapter on torsional vibration. 

The third chapter contains analyses of the free lateral vibration 

of suspension bridges. The upward movements of the cables and of 
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the suspended structure, incidental to their lateral movements, are 

taken into consideration. The first and second sections contain some 

theoretical preliminari~s and fundamental concepts. The third 

section contains the different expressions for energy in the laterally 

vibrating suspension bridge and the derivation of the equations of 

motion which couple the vibrational movements of the cables with 

those of the suspended structure. The fourth section is concerned 

with the finite element formulation, the solutions, and a numerical 

example, which illustrates and augments the analyses of this chapter. 

In the last chapter of this part of the thesis, vibration studies 

and experiments with the Vincent Thomas suspension bridge (between 

San Pedro and Terminal Island, California) are presented to illustrate 

the applicability and the effectiveness of the analyses under considera­

tion as well as to investigate the dynamic chara.cteristics of a real 

bridge. To further prove the validity and reliability of these analyses, 

a rigorous comparison with previous res-ults obtained by other investi­

gators has been made. In addition, the computed frequencies of this 

bridge have been compared with the measured frequencies, and the 

results of simple experiments conducted on the bridge are presented. 
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CHAPTER I 

FREE VERTICAL VIBRATIONS OF SUSPENSION BRIDGES 

I-1. Introduction 

The Tacoma Narrows Bridge disaster in 1940 profoundly 

influenced suspension bridge research by sharply focusing attention 

on the related dynamic problems. Prior to that time, the gradual 

development of suspension bridge theory, which took place during 

the nineteenth century and the first half of the twentieth century, had 

led to the construction of progressively more economical and more 

slender structures, such as the Tacoma Narrows Bridge. Early 

warnings of suspension bridge failures caused by vibration during 

high winds then culminated in the warning signs of the major dis­

aster that befellMoisseiff's Tacoma Bridge. It was a slender bridge 

of 2800 ft. span that showed a marked tendency to vibrate in the wind, 

both in flexure (vertically) and torsion, soon after construction, and 

finally, after a life of only a few months, it collapsed as a result of 

excessive vibrations in a transverse wind of approximately 40 m. p. h. 

This disaster so shocked the engineering world that major 

efforts were made to understand the nature of the dynamic problern 

of suspension bridges and to learn how to counter it. In accordance 

with this, several investigations into the vibrational properties of 

suspension bridges were conducted, and, as a result, it was found 
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that severe vibrations can be largely caused not only by wind but 

also by various dynamic loads, such as moving vehicles and earth­

quakes. 

One approach to this dynamic problem used aerodynamic 

theories and the research methods of aeronautics. The most 

extensive studies using this approach are the model investigations 

of Farquharson [8], von Karman [6], Frazer [10], Scruton [10]. 

Steinman [14land Selberg [16], and the" theoretical work of 

Bleich [ 9], and others. Thus, the aerodynamic stability of sus­

pension bridges has been of central interest for bridge designers 

and scientists ,and has been the subject of numerous treatises, 

while there have been comparatively few investigations into their 

response to other dynamic loads or into their general dynamic 

characteristics. 

However, in the last decade, Hirai and Ito [ 21 J did lead an 

investigation into the practicability of railway suspension bridges. 

They studied their response to moving vehicles, theoretically and 

experimentally, and they provided information enabling the creation 

of an impact specification for a long-span railway suspension bridge. 

The live load intensity on a bridge of this type is, of course, large 

compared with that in a highway bridge, and thus the dynamic 

effects in the former are generally much more remarkable. 

Although significant in the area of railway bridges, their research 

did not address the general prob lem of traffic loads. 
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Design of a major suspension bridge for a region where severe 

earthquakes may be expected is a problem which has also received 

little study; even though it is a much more demanding problem than 

the design of a typical multi-story building frame. Modern 

building codes have now been developed to the point where the 

basic earthqu;;i.ke requirements to be imposed on a "standard" 

building are specified adequately, and intelligent consideration of 

these requirements will lead to the design of a safe and economical 

structure. A large suspension bridge, however, is a vastly dif­

ferent structure than a typical frame building. The fundamental 

period of vibration of the suspension bridge may be many times as 

great as the longest period of a building (in which the first mode is 

primary), and it may be necessary to include a relatively large 

number of modes of vibration in order to obtain a reasonable rep­

resentation of the total response. 

Knowledge of the natural frequencies and possible modes of . 

vibration of a suspension bridge is necessary to investigate the 

response to aerodynamic forces, live loads and earthquake . loads. 

The earliest relevant investigations of natural frequencies and 

modes, concerned the vibrations of a heavy, isolated suspension 

cable in a vertical plane. The first known theoretical treatments 

of this problem were by Poisson [28] in 1820, and by Rohrs [l J in 

1851. The latter examined the symmetrical modes of a nearly 

horizontal cable which was assumed to be inextensible and produced 

results for the first two natural modes. The same problem was 
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examined more generally by Routh [2] in l S68, at which time he gave 

an exact solution for the symmetrical vertical vibrations (and 

associated longitudinal motion) of a heterogeneous cable which hung 

in a cycloid. Like Rohrs, he also assumed that the cable was inex­

tensible. He showed that the result for a cycloidal cable could be 

reduced to Rohrs 1 solution for the uniform cable, when the ratio of 

sag to span was small. Routh also obtained an exact solution for 

the antisymmetric, vertical vibrations (and associated longitudinal 

motion) of the cycloidal cable. 

At this point the subject appears to have been laid to rest until 

the aerodynamic failure of the Tacom~ Bridge which, as explained 

previously, initiated a comprehensive investigation of the problem 

of dynamic vibrations of suspension bridges. In 1941 Rannie [6] and 

von K~rm~n [5. 6] derived results for an inextensible, three-span 

cable. In 1945, Vincent [15, 18] extended Rant1.ie 1 s and von K£rm£n 1 s 

analyses to allow for the effect.s of cable elasticity in the calculation 

of the symmetric vertical motion of the three- span cable. However, 

he did not explore the nature of the solution so obtained and, there­

fore, he appears to have been unaware of the substantial effect which 

the inclusion of cable elasticity can have. 

From 1941 to 1943, Steinman [14] derived a number of 

simplified formulas for computing the frequencies and the modes of 

both vertical and torsional vibrations of suspension bridges. They 

have been independently checked for validity and accuracy by 

investigators using more complex fo r mulas. Steinman' s formulas 

appear to be the simplest and most practical to date, but some of 
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the more involved modes predicted by these formulas have not been 

found in other solutions. 

A semi-empirical theory for the natural frequencies of the 

first in-plane (vertical) modes of a uniform suspended cable was 

put forward by Pugsley [13] in 1949. He demonstrated the applica­

bility of his results by conducting experiments on ,cables in which 

the ratio of sag to span ranged from 1: 10 up to approximately 1 :4. 

Later, various analytical studies were made to develop 

formulas for computing the frequencies and modes of vertical as 

well as torsional vibrations of suspension bridges with and without 

recognition of the extensibility of the cable. Formulas for most of 

these cases and for other cases as well were developed by Bleich [9]. 

He analyzed free vibration by the so-called exact method (i.e., by 

solution of the fourth order linearized differential equations of 

motion), and he applied this method to various examples. An 

approximate method, based on the Rayleigh-Ritz approach and 

representing the deformation of the structure by Fourier series 

was also developed by Bleich, though this method can be applied 

usefully only to the first few modes because of the complexity and 

the redundancy of suspension bridges. 

In 1952, Pugsley [11 J discussed the stiffness of a heavy inex­

tensible cable in terms of work done by the cable against gravity 

when the cable is loaded; he also examined the relationship between 

this energy treatment and the conventional 11 linearized deflection 

theory" in common use. The latter is often presented in a form that 
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appears to imply that the gravity stiffness of a cable is negligible; 

this has proved to be misleading and results from neglect of a term 

in the expression for zero extension. 

Until the sixties, i t was believed that the best formulas for 

computing the frequencies and the modes of suspension bridge 

vibrations were those developed at the University of Washington 

by Smith and Vincent [15]. These formulas were derived from the 

differential equation of motion in bending (vertical vibration); 

unfortunately, the mis l eading condition of inextensibility of the 

cable, which Pugsley has critically examined, was used in some 

of these formulas. 

As mentioned before, recent studies have implied that the 

problem of the dynamic analysis of suspension bridges cannot be 

solved effectively by analytical methods, but that the evolution of 

both the digital compute r and various associated numerical 

techniques of analysis have significantly enhanced solution capability. 

Therefore, with the advance made in the computer , it has become 

possible to solve even extremely complex cases. 

The first use of a digital computer in analyzing this problem 

achieved significant results . This first trial was made by Clough [l 7], 

as a consultant in earthquake engineering, in an unpublished report, 

11Seismic analysis of the main piers for the Tagus River Bridge. 11 

The earthquake behavior of the Tagus River Bridge (in Lisbon, 

Portugal) was studied in the late fifties and early sixties by Housner, 

Converse [l 7] and Clough. The vibrational analysis of this bridge 
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was based on a lumped mass system, which was interconnected by 

elements having shearing and bending stiffness representative of 

the actual structure. Rotational stiffness of the foundation material 

was considered also . 

In the early 1960 1 s, Konishi, Yamada and Takaoka [19, 20] 

started an extensive research study to investigate the dynamics of 

suspension bridges and their earthquake resistant design. They 

simulated a three-span suspension bridge, structurally comprised 

of ~ystems of masses and springs, and using linearized theory, 

calculated the periods and modes of free vertical vibration. In this 

study, the vibration of the towers was considered as well as the 

vibration of the suspended structure and the cables. 

In the late 1960' s, Tezcan and Cherry [23] undertook similar 

research concerned with the earthquake analysis of suspension 

bridges, in which the effect of large deflections was taken into 

account. Thefr study dealt with an iteration scheme for the non­

linear static analysis of suspension bridges by means of tangent 

stiffness :matrices. The concept of these matrices was then 

introduced in the frequency equation governi ng the free vibration 

of the system. The bridge was idealized as a three-dimensional 

lumped mass system and was subjected to three orthogonal com­

ponents of earthquake ground motion producing horizontal, vertical 

and torsional vibrations. As the first nonlinear analysis of a 

vibrating suspension bridge, this study provided a foundation for 

further nonlinear suspension bridge research. 
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The following study develops a method of analyzing the 

dynamics of suspension bridges by means of a digital computer. 

This method is designed to determine the dynamic characteristics, 

namely the natural frequencies, the modes of vertical vibration, and 

the energy storage capacities, of the different members of the 

structure. This method is based on the so-called "linearized 

deflection theory11 and' a finite element approach. The method 

incorporates certain special simplifying features, and it involves 

two distinct steps which are summarized as follows: 

1. Specification of the different potential and kinetic energies of 

the vertically vibrating members of the real continuous 

structure and then derivation of the equations of motion, and 

2. Use of the finite element procedures to: a) discretize the 

structure into equivalent systems of finite elements, b) select 

the displacement model most closely approximating the real 

case , c) derive element and assemb'lage stiffness and inertia 

properties, and finally d) form the matrix equations of motion 

and the resulting eigenvalue problems. 

The evaluation of the stiffness and inertia properties of the 

idealized structural element and assemblage is based on the expres­

sion of the potential and kinetic energies of the element (or the 

assemblage) in terms of nodal displacements. This determines 

expressions for the stiffness and mass matrices. Hamilton's 

principle is then used to derive the matrix equations of motion. 

This finite-element technique furnishes a system with finite degrees 
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of freedom upon which matrix algebra operations can be performed. 

It has proved convenient to separate the investigation of the 

symmetric modes from that of the antisymmetric modes. 

Finally, detailed numerical examples are presented to 

illustrate the applicability and the effectiveness of the analysis and 

to investigate the dynamic characteristics of a broad class of sus­

pension bridges with widely different properties. In these examples, 

the effect of cable extensibility, tower stiffness, and suspended 

structure continuity are examined and some useful comparisons 

are drawn. 
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I-2. Preliminary Considerations and Fundamental Assumptions 

The following section is intended to briefly delineate the 

essential structural members of suspension bridges and their func­

tions and to discuss advantages of the suspension bridge over other 

bridge types. An outline of the coordinate systems used in the 

following analysis is also presented. Finally, this section c.ontains 

the fundamental assumptions involved in the subsequent analysis. 

I-2-1. Elucidation of the structural members of suspension 

bridges 

Suspension bridges consist essentially of cables, suspenders, 

towers, anchorages, and a suspended structure or bridge deck. The 

two cables are the principle carrying members and are fixed at their 

ends to anchor blocks which resist the cable pull. The cables are 

generally continuous over saddles at the tops of the towers; these 

saddles are eithe.r bolted to the tops of the towers or are equipped 

with rollers as shown in Fi.g. I-2-b. In modern suspension bridges 

the ratio of the cable sag to the span length ranges generally between 

1I8 and 1I11. 

The tower is usually composed of two parts: the substructure 

or pier, and the tower proper extending above the roadway and 

supporting the cables. The pier does not involve any special features 

differentiating it from ordinary bridge piers. The tower is composed 

of a column or tower leg for each suspension system. For lateral 

stability, the tower legs are braced by means of cross-girders and 

cross-bracings. The tower leg may be fixed to the pier or may be 
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of rocker type with a pin-bearing at the base . Rocker towers afford 

the most economical and scientific design for bridges of longer span; 

however, they must be secured against overturning during construe -

tion. 

The suspended structure consists of two stiffening trusses (or 

girders) and one or two lateral wind bracings to counter transverse 

wind pressure and lateral forces from moving loads, and to carry 

these forces to the piers. Stiffening trusses (or girders) are usually 

added to reduce and control the vertical movements due to heavy live 

loads and any other dynamic loads. When the required depth of a 

stiffening structure of the plate girder type exceeds practical or 

economical limitations, an open truss type can provide a solution. 

The two stiffening structures are located in the same planes as the 

suspenders and cables; they are hung from the suspenders which are 

attached to the suspension cables . Besides carrying the floor, they 

act vertically as stiffening trusses (or girders) and horizontally as 

chords of· the lateral bracing system. The stiffening structures in 

each span are restrained at their ends by the towers so as to prevent 

horizontal movement of the bridge deck. 

The stiffening girder (or truss) is usually very shallow in 

comparison with its length, (and the same is usually true of the 

lateral bracing). In practical terms, a three-span suspension bridge 

may incorporate three different types of stiffening structures in con­

nection with the general problem under consideration: 
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l · The stiffening structures might be continuous over all 

three spans with suspenders throughout those spans. And, 

although it is extremely unusual, they might actually be con­

tinuous over two of the spans and non-continuous over the 

third span. 

2. As a second major alternative, the stiffening structures 

might be continuous over all three spans, but with no 

suspenders in the side spans. In this case, the stiffening 

structures in the side spans would probably be much shorter 

than the full length of the side spans. 

3. Finally, the stiffening structure!:\ might be of the two-hinged 

type; it is widely used and is probably the most efficient. 

Also, it is more economical than the continuous type. In 

this case, the hinges are located in the towers where they 

are least objectionable. Actually, the stiffening structures 

might be a three-hinged type, but this is little used because 

it lacks rigidity and has other disadvantages arising from the 

hinge at mid- span. 

Suspension bridges are, in general, very flexible as compared 

with other types of bridge structures, the amplitudes being many 

times as great. It should be noted also that the rigidity of each 

member of a suspension bridge is markedly different from the 

rigidity of each of the other members. Furthermore, interaction 

occurs among members of the bridge from one end of the cable to 

the other, so that consideration of one member involves study of all 
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of the members. The stresses in some members of the structure -

like the towers, cables and anchorages - are due largely to dead 

loads, while the stresses in other members - such as the stiffening 

girders (or trusses) and lateral bracings - are due entirely to live 

loads, winds, changes of temperature and possibly earthquakes. 

Economic utilization of construction ma.terials demands that, 

as far as possible, the predominant stresses in any structure should 

be those for which the material is best adapted. Because steel is 

a very economic material, especially when used in a condition of 

tensile stress, the suspension bridge type, which undergoes prima­

rily tension rather than compression, provides a superior design for 

long spans. To summarize, the superior economy of suspension 

bridges as long-span structures is fundamentally due to the following: 

a) the very direct stress paths from the point of loading to the point 

of support, b) the predominance of tensile stress, and c) the highly 

increased ultimate resistance of steel in the form of cable wire. 

Furthermore, for heavy railway bridges, the suspension 

bridge is more economical than any other type for spans exceeding 

about 1500 ft. And, as the live load becomes lighter in proportion 

to the dead load, the suspension bridge becomes increasingly more 

economical in comparison with other types. Based on a study of 

~xisting bridges, Thul [22] has compared the center span length to 

the total length of three-span continuous girder bridges, of cable­

stayed bridges, and of suspension bridges. His results are sum­

marized in the following table: 
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Bridge type span comparison (
Center span) at 

Center Span Total span 1o 

Three-span continuous girder bridges up to 700 ft. 

Cable-stayed bridges 500-1200 ft. 

Suspension bridges 1000-4000 ft. 

30%-50% 

50%-60% 

60%-70% 

This table indicates that suspension bridges have a lower economic 

limit of approximately 1000 ft., with a ratio of center span to total 

span of approximately 60%. 

In addition to the economic advantages, the suspension bridge 

has several other points of superiority . . It is light, aesthetic, and 

graceful; it easily provides a roadway at low elevation, and it has a 

low center of wind pres sure. It is also easily constructed, using 

materials that are easily transported. There is little danger of 

failure during erection, and after completion, it is the safest 

structure known to bridge engineers. In other structures, the 

failure of a single truss or girder member may precipitate a 

collapse; in a suspension bridge, the rest of the structure will be 

unaffected. 

I-2-2. Coordinate systems 

The following coordinate syste~s are used for the typical 

three-span suspension bridge shown in Fig. 1-1. These coordinate 

systems have been chosen because they are appropriate for a wide 

class of suspension bridges, including a single suspended span as 

well as multiple suspended spans, either continuous or hinged. 
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Obviously, any number of spans may be considered. 

1. For the cable, the x. -axis of the i th span (i= 1, 2, 3) is defined 
1 

as the horizontal line starting from the vertical plane pas sing 

through the left support of each span as shown in Fig. I-1, 

while the ordinate y. of the ith span is measured downward 
1 

from the closing chord of each span, i.e., the straight line 

connecting the extremities of the cable in the ith span. (Note: 

in Fig. I-1, the subscript i has been left out for convenience) 

2. For the stiffening girders (or trusses), the x. -axis of the i th 
1 

span (i= 1, 2, 3) is defined along the centerline of the span with 

the origin located at the left support of that i th span. 

3. For the towers, the x' -axis is taken to be the centerline of 

the tower column or leg with the top of the column (or leg) 

being the origin, as shown in Fig. I-2-b. 

I-2-3. Fundamental assumptions 

In a consideration of the different factors affecting the dynamic 

analysis of a suspension bridge; the following general assumptions and 

approximations are made: 

1. All stresses in the bridge remain within the limits of propor-

tionality and thus follow Hooke 1 s law. 

2. The initial dead load is carried by the cable without causing 

stress in the stiffening girder (or truss). 

This condition is generally desirable since it simplifies con-

struction. However, if the bridge is eir. ,,,,cted in such a manner 
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that the dead load does cause certain stresses in the stiffening 

structure, this may be compensated for, in the dynamic 

problem, by taking into consideration all the initial stresses 

involved. 

3. The cable is assumed to be of a uniform cross section and of a 

parabolic profile under dead load. The assumption of a para­

bolic profile requires that the ratio of the sag to the span be 

kept relatively small; in other words, the cable slopes are, 

and remain, small. For example, the analyses to be presented 

are valid provided that the ratio of sag to span is 1:8 or less, 

so that the weight of the cable may be assumed to be uniformly 

distributed along the span r a ther than along the length of the 

cable (see Appendix I-a). 

4. The cables are assumed to be perfectly flexible. In con­

sideration of the small moment of inertia of the cable as 

compared with that of the stiffening structure, this as sump­

tion is obviously close to being exact for the purpose of 

determining horizontal cable tension and the stresses in the 

stiffening structure. The flexural stiffness of the cables 

was thoroughly investigated, and it was found that the bending 

stresses in the cables could be neglected. 

5. The vibrational suspender forces, instead of being treated 

as concentrated forces, are considered as distributed loads 

in the same manner as if the distance between the suspenders 

were very small, the suspenders thus forming a continuous 

sheet or wall without shearing resistance. 
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6. The suspenders or hangers are considered inextensible and 

are assumed to remain vertical during the vibration of the 

bridge; therefore, the vertical vibrational displacement of 

the cable, v (x., t), 
c l 

i = 1, 2, 3, and that of the stiffening 

girder (or truss), v .(x., t), 
g1 l 

i= 1, 2, 3, are assumed to be 

identical (see Fig. I-2-a); i.e., 

v (x., t) = v .(x., t) = v.(x., t) 
c l - g1 l l l 

'i=l,2,3, ( 1. 1) 

where vi {xi' t) represents the generalized vertical displace­

ment of the vibrating system. Consideration of the effect of 

the suspender elongation results in a ~egligible gain in 

accuracy (Johnson, Bryan and Turneaure [26] ) at the expense 

of a notable complication of the analyses, and it is therefore 

not to be recommended. Steinman [3] estimates the contribu-

tion of the deformation of the suspenders to be only a fraction 

of one per cent. Selberg [16] indicates that the change of 

inclination of the hangers is greatest near the center of a 

symmetrical stiffening structure. On the other hand, he 

finds that the influence of the hangers' deviation from the 

vertical upon the vibration of the bridge is negligible even 

for a slender stiffening structure. 

7. To stay within the linear theory, small vibrational displace-

ments from the position of the static equilibrium have been 

assumed; i.e., in the following analysis, attention will be 

restricted to small vibrations in the vertical plane. 
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8. The additional horizontal component, H(t), of cable tension 

caused by the inertia forces is small in comparison with H , 
w 

the initial horizontal component of cable tension due to dead 

loads, i. e. , 

H + H(t)'"" H w - w 
(1. 2) 

Similarly, the additional axial force P(t) due to inertia forces 

at the top of the tower is small compared with that due to dead 

loads, p ' i.e. ' w 

P +P(t)~P 
w w 

( 1. 3) 

In studying free vertical vibration, it has been assumed that 

there are no live loads on the vibrating bridge, vibration damping 

of the structure is neglected, and the total mass of the bridge deck 

is assumed to be concentrated along the centerline of the stiffening 

girders (or trusses). Furthermore, the initial curvature of the 

stiffening structure is considered small in comparison with the cable 

curvature, and therefore it can be neglected. 

Other assumptions will be discussed as they are encountered 

in the development of the analysis. 
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I-3. Analysis of Suspension Bridges Having Negligible Tower 

Stiffness 

In order to lay a foundation from which later work is herein 

developed, the differential equations of motion of a typical three -

span suspension bridge and their associated boundary conditions 

will be derived by means of Hamilton's Principle. Application 

of this variational principle requires a knowledge of the different 

expressions of energy of the vibrating bridge structure (which will 

also be very useful later on). In addition, the use of Hamilton's 

Principle has the advantage of furnishing, automatically, the correct 

number of boundary conditions and their correct expressions. There 

is no necessity to solve the differential equations of motion nor the 

resulting transcendental frequency equations, since they have both 

received considerable attention from other investigators. 

In the following analyses, the horizontal components of cable 

tension, H and H(t) due to dead loads and inertia forces w 

respectively, are assumed to be the same on both sides of the 

tower in all spans of the cable. (There is no tower resistance 

to displacement at the top. ) This presupposes that the tower 

cable saddles are free to move horizontally either upon roller 

nests under the saddles or via rocker tower bases . The former 

construction, however, is now considered obsolete. 
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I-3-1. Potential energy of the cables 

As a result of small, free vibrations about the position of static 

equilibrium, the horizontal component of cable tension, H will 
w 

change to [H + H(t)J , and the differential length of the cable ds. , w 1 

in the ith span will increase to (ds. + 6ds.) , as shown in 
1 1 

Fig. I-2-a. (Note: The subscript i has been left out of Fig. I-2-a 

for convenience. ) 

Now, the potential energy of this cable element, ds . , can be 
1 

expressed as 

{ 
ds.} , 

[ 
1. J 1 '•~ dVc(x

1
., t) = Hw+2H(t) -d · 6ds. - w. v dx. x. 1 1 c 1 

1 

i = 1, 2, 3 (1. 4) 

where 6ds. is the cable stretch of the differential length ds. , 
1 1 

~- is the dead weight of the cable ( w ) per unit length of the i th 
1 c 

span plus the dead load of the stiffening girder or truss (w gi) per 

unit length of that ith span, and v the vertical vibrational dis-
c 

placement of the cable. The first term in Eq. 1.4 is the strain 

energy stored in the element dsi and is equal to the .average force 
ds . . 

[H + ~ H(t)] d 
1 

times the cable stretch 6ds. • The factor ~ is 
W Xi 1 

needed due to the fact that H(t) increases from zero to its maximum 
ds. 

value H(t); -d 
1 

is the cosine of the angle of inclination, cpi , as 
xi ' 

shown in Fig. I - 2-a. The second term represents the gravity energy, 

i.e., the potential energy loss due to the lowered position of the dead 

load. 
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It is seen from the geometry of displacement (Fig. I-2-a) that, 

in static equilibrium,the element of length ds. of the cable can be 
l 

given by 

2 2 2 
ds. = dx. + dy. 

1 1 l 
i=l,2,3. 

When the cable is displaced (in-plane), its length increases to 
au · 

(ds. + 6.ds.) , dx. increases to dx. + ~ dx. where u is the 
l l l 1 ux.. l c 

l 

horizontal movement of the element, and dy. becomes 
av l 

dy. + a c dx. • Then, for the vibrational displaced position, 
1 ux. l 

1 

(1. 5) 

2 au )2 ( av )2 
(ds. + 6.ds.) = ~dx. + ~dx. + dy. + a c dx. i = 1, 2, 3, 

l 1 l ux. 1 l ux. 1 
l l 

or 

2 au (au )2 
2ds. 6.ds. + (6.ds.) = 2dx. ~dx. + ~ 

l l l l ux. l ux. 
l l 

2 ave 
dx. + 2dy. -a - dx. 

1 1 ux. 1 
l 

i = 1, 2, 3 . 

In general, u (x., t) is small in comparison with v (x., t); therefore, 
c 1 c l 

the increment in the length of the cable element 6.ds . , correct to 
1 

the second order of small quantities, is 

au dx. av dy. 1 (av )2 dx. 
6.ds. '.:::::: __£ --

1 dx. + __£ --1 dx. + - __£ 
1 dx. , 

l ax. ds. 1 ax. ' ds. 1 2 ox. ds. l 
1 1 l 1 l l 

i = 1, 2, 3 . 

(1. 6) 

Integrating Eq. 1. 4 over all spans and substituting Eq. 1. 6, 

the potential energy V (t) of the cable may be written as 
c 



-31-

~:: } w. v dx. ' 
1 c 1 

where £. is the length of the i th span. 
1 

dx. 
1 

( 1. 7) 

Integration of the second term (in the second set of brackets) 

by parts gives 

i
1

i (avc)(dyi) 
ox. dx. 

0 1 1 

dy. .R.. 
dx. = __ 1 v 11 -

1 dxi c 0 

i = 1, 2, 3 . 

providing that ( ::. ) and ( ::~) can be treated as continuous 
1 1 

functions of x. and that v (x., t) vanishes at the ends x. = 0 and 1 c 1 1 

x. = £ •• 
1 1 

( 1. 8) 

Appendix I-a gives the parabolic profile of a hanging uniform 

cable of the ith span having a load uniformly distributed along the 

horizontal span. It also gives the other cable profiles. The parabolic 

profile is expressed as 

,,, 2 2 

~li [ ~-i - (~.i) J Yi (xi) = 2H x x 
w 1 1 

The cable deflection at mid-span . (xi = :i) 

i = 1, 2, 3 . ( 1. 9) 

is the sag, f. , and the 
l 
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horizontal component of cable tension is 

>~ 2 
w .£. 

H = ii 

w 8Ji (1. 10) 

With the aid of Eq. 1. 10, Eq. 1. 9 is more conveniently written as 

2 

[ i.
x.i ( P.x.i ) J y.(x.) = 4f 

1 1 1 
1 1 

Eqs. 1. 9 and 1. 11 give 

2 d y. 
1 

--2- = 
dx. 

1 

i :::: 1, 2, 3 . 

i = 1, 2, 3 . 

Now, Eq. 1. 8, with the aid of Eq. 1. 10, becomes 

1
1
i (av )(dy.) ~. f

1
i c 1 l --dx=- vdx 

0 
8xi dxi i Hw 

0 
c i 

i= 1,2,3. 

(1. 11) 

(1. 12) 

( 1. 8 ') 

Using the result of Eq. 1. 8 ', the potential energy V (t) of the 
c 

cable (Eq. l.· 7) may be written as 

3 

Vc(t) = L { [ Hw + tH(t)J · 

i= 1 

i.. 8 2 

+ ~- H 11(_::s_) 
w ox. 

0 l 

dx. 
1 

. £ 

[ r i ( av ) (d y. ) 
+ t H(t) J ox~ dx~ 

0 1 l 

(1. 13) 

The assumption that there are no movements of the tower tops 

or of the anchorages makes it possible to reduce the potential energy, 

Ve (t) , of the cable (Eq. 1. 13) to 
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dx. 
l 

(1. 14) 

In order to put Eq. 1. 14 in a more convenient form, reference 

can be made to the cable equation which relates the stretching of the 

cable element to the geometric displacements which it undergoes. A 

derivation of this general cable equation can be found in Appendix I-b. 

In the present context, the equation reads -

H(t)L . e1 
EA 

c c 
i=l,2,3. 

(1. 15) 

where E is modulus of elasticity of the cable material, A is the 
c c 

effective cross-sectional area of the cable, Et is the coefficient of 

thermal expansion, 6. T. is the incremental change in temperature 
l 

in the ith span (it is assumed uniform along the ith span) and L . 
e1 

and Lti are virtual lengths of the cable in the i th span; they are 

defined by 

l. d 3 

L. = 11 (dsi) dx. 
e1 x. i 

0 l 

and iii ( dsi )2 
d 

dx. 
x. l 

0 l 

i= 1,2,3. (1. 16) 

The cable equation of compatibility (Eq. 1. 15) can be written for 

the whole cable, i. e., for a suspended cable hanging between two rigid 

anchorages and passing over vertical towers, by surb mation over the 
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H(t)LE 

EA 
c c 

3 

where LE=.[ 

i= 1 
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L . for the entire length of the cable. e1 

Substituting Eq. 1. 1 7 into Eq. 1. 14, and assuming that the 

thermal effect is of minor importance and may consequently be 

neglected, then the potential energy of the cable is 

[ J£i( ovc)2 J .!.. [H2 
(t). LE] 

Hw ox. dxi + 2 E A 
0 1 c c 

(l.17) 

(1. 18) 

It will be recognized that the second term of Eq. 1. 18, which 

includes the area, the virtual length and the modulus of elasticity of 

the cable, expresses that part of potential energy stored elastically 

in the cable, i.e., the strain energy stored in the cable. The first 

term contains the constant H and the expression for the change in 
w 

length of the cable, and actually represents the potential energy 

resulting from the elevation of the center of gravity of the entire 

structure while the cable is momentarily distorted under the influence 

of the inertia forces. These two terms of the potential energy expres-

sion, Eq. 1.18, were adopted by both Vincent [15] and Bleich [9], 

though on different grounds. 

To further clarify the two terms of the preceding potential 

energy expression (Eq. 1. 18) via a physical interpretation, and to 
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examine the relations between the energy treatment and the conven-

tional, commonly used "linearized deflection theory," one must con-

sider the strain energy and the strainless or gravitational energy 

separately. 

The strain energy stored in the cable due to the change in 

tension associated with H(t) is designated by . V (t) . At any point 
ds. ce 

in the cable, this change of tension is H(t) dx~ so that the strain 
l 

energy amounts to: 

[ 

ds ]2 
H(t)~ 

2E A 
c c 

v (t) 
ce, (

ds. )3 
__ 1 dx 
dxi i 

which, upon using the virtual length definition of Eq. 1. 16, will give 

(1.19) 

which is exactly the second term of Eq. 1. 18. 

Now, to clarify the first term of Eq. 1. 18, assume an inextensible 

cable, and consider the change in potential energy of the system arising 

from movement within the gravity field. Due to the vibrational dis­

placement V , each element of weight :.dx. of the bridge will lose 
c l l 

:>tc 
potential energy equal to w. v dx. . Thus the total change of potential 

l c l 

energy arising from gravity will be 

v (t) = 
cg (1. 20) 
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But, for an inextensible cable, the elastic extension of the 
H(t)· LE 

cable due to vibration, E A , given by Eq. 1. 1 7, is zero, and 
c c 

therefore Eq. 1. 17, with the aid of Eq. 1. 8 ', is reduced to the inex-

tensibility condition: 

(1. 21) 

Thus incorporating the inextensibility condition(Eq. 1. 21), the 

change in potential energy arising from gravity can be written as 

(1. 22) 

which is identical to the first term of the equation for the potential 

energy of the cable, Eq. 1. .18. There is thus an effective gravity 

stiffness associated with the vibration of the cable of the suspension 

bridge. This emphasis on gravity stiffness brings to the fore a type 

of stiffness that is not generally familiar but which helps to present 

the problem of the dynamics of suspension bridges in clear physical 

terms, in a way that brings out the nature of the nonlinearity pre sent. 

It is worthwhile to indicate that the so-called "Linearized 

Deflection Theory of Suspension Bridges" in common use, is often 

presented in a form that appears to imply that the gravity stiffness 

of the cable is negligible; this is obviously misleading and results 

from neglect of the higher order term in the cable equation, Eq. 1. 1 7, 

when it is used to obtain the expression for zero extension. This first 



-37-

approximation, which corresponds to the condition of inextensibility 

and which has been used very commonly, is expressed by the relation 

3 £. 

L .r Ve dxi = o 
i= 1 0 

(1.23) 

Now Eq. 1. 23 suggests that the change in potential energy 

arising from gravity, Eqs. 1. 20, 1. 21 and 1. 22, approximates zero 

for the inextensible cable. 

It is seen by comparing Eq s. 1. 21 and 1. 23, that the conventional 

approach treats the integral in Eq. 1. 23 as approximating zero, as 

though the gravity stiffness of the cable, given by Eqs. 1. 20 and 1. 22, 

were negligible and as though the cable were in a state of neutral 

equilibrium! This is obviously paradoxical. Actually, Pugsley [ 11] 

was the first one to examine more critically the use of the expression 

for an extensible cable (Eq. 1. 21 ), when he studied the nonlinear 

response of a simple cable to a static concentrated load by using an 

energy approach. More discussion and alternative viewpoints on the 

inextensibility condition of the cable can be found in Appendix I-c. 

I-3-2. Potential energy of the suspended structure 

The potential energy stored in the stiffening girders (or trusses) 

is in the form of strain energy due to the effects of bending moments, 

shearing forces and normal forces (see Fig. I-2-a). 

The total vertical vibrational displacements, v.(x.,t) or gi 1 

v. (x., t) , of the i th stiffening structure at a point x. , consists of 
1 1 1 

two parts, one caused by bending and one by shear, so the slope of 
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ov.(x., t) 
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x. can be written as 
1 

1 1 ' 
-....,..<:::.-- = r,.(x., t) +13.(x., t) 

ux. 1 1 1 1 
i= 1,2,3' 

1 

( 1. 24) 

where 11i (xi' t) is the slope of the deflection curve when the shearing 

force is neglected (i.e., it is rotation due to bending) and ~i (xi' t) is 

the angle of shear at the neutral axis in the same cross section. As 

usual, tile linear deflection and the angular deflection are assumed small. 

From the elementary flexural theory, the relation between the 

bending moment and the bending defor1nation is derivP.<l as 

M.(x., t) 
1 1 

017. (x., t) 
. / 1 1 = E .I .(x.) a 
gi gi 1 xi 

i= 1,2,3' (1. 25) 

where E . is the modulus 
gi 

of elasticity of the stiffening structure in 

the i th span and I . (x.) is the area moment of inertia of the 
gi 1 

stiffenir;ig girder (or truss) about its horizontal axis in the ith 

It is worthwhile to note that; in the case of a stiffening truss 

d~ d~ 
I .(x.) = 2A. (x. )-

4
1 = A. (x. )-

2
1 

g1 1 l 1 ' 1 1 
i = 1, 2, 3 ' 

where A. (x.) is the area of one chord at section x. in the i th 
1 l 1 

and · d. is the depth of the vertical truss in the ith span. 
l 

span. 

(1. 26) 

span 

The relation between the shearing force and shearing deformation 

is given by 

S.(x., t) = G . µ. (x.) 13. (x., t) 
1 l gi Vl 1 1 1 

i = 1, 2, 3 ' (1. 2 7) 
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G . h h d 1 f h . th "ff . d where . is t e s ear mo u us o t e i sti en1ng structure an 
g1 

~ . (x.) is the shear resistance coefficient of the vertical web plate 
Vl l 

(or diagonal and vertical truss members). The value of the shear 

resistance coefficient depends on the effective cross-sectional area 

of the web plate (stiffening girder); in the case of a truss, g. depends 
Vl 

on the equivalent solid web section, i.e., on the sectional area of the 

diagonal and vertical members in the truss panel. In the latter case 

it also depends on the type of truss system used. The shear 

resistance coefficients for the different types of trusses which are 

commonly used as stiffening trusses can be found in Chapter II. 

Because of shear alone, the element undergoes distortion but no 

rotation. 

Now the potential energy due to vertical dispiacement can be 

expressed by 

3 f_. 

V (t) = 
2
1 ) f1 

M.(x., t) 
gv LJ_ i1 

i=l 0 

a17. (x .• t) 1 L3 i1 i 
~ 1 dx. + 

2 
S.(x., t) (3.(x., t) dx. , 

ox. l l l l l l 

l i=l 0 

(1. 28) 

3 1. (".:11') ( ))2 3 £. 1 . l U 'Ii Xi' t 1 . 2 
= 2 )J E .I .(x.) 0 dx.+ 2 )fG .g.(x.)j3 . (x.,t)dx .. L gi g1 l x. l L gi Vl l l 1 l. 

. i= 1 0 l i= 1 0 

It is important to note that the first term of this equation 

represents the strain energy stored in the flanges (or chords) of 

the stiffening structure, while the second term represents the strain 

energy stored in the web system of the stiffening structure as a result 

of transverse shear deformation. The inclusion of shear flexibility in 
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the dynamical beam problem is known as the Timoshenko beam 

theory, in contrast to the Bernoulli-Euler theory, in which there 

is no transverse shear deformation. 

The strain energy of the Timoshenko beam, Eq. 1. 28, may be 

rewritten, conveniently, as 

3 1.. a 2 3 £. a )z 1 l fl.. 1 l v. 
V (t) =-2 ) f E . I ·(__:!...) dx. +-2 ) f G . g .(-a 1 

- 17. dx. gv L g1 g1 a l L g1 Vl x. l l 
. 1 0 x. . 1 0 l i= l i= 

Using Bernoulli-Eular theory, Eq. 1. 24 reduces to 

and it follows from Eq. 1. 25 that 

2 a v. 
l 

M. = E .I. --2 l g1 g1 ax. 
l 

i= 1,2,3' 

i = 1, 2, 3 ' 

The strain energy of the Bernoulli-Euler beam can now be 

written as 

v (t) = _21_ 
gv 

3 £. 

Lf1 

i=l 0 

( 
a2v.~2 

E.I.--1 

g1 g1 ax~ 
l 

dx. 
l 

In general, the shear deformation effect plays an important 

(1. 29) 

(1. 30) 

(1. 31) 

(1. 32) 

role in the vibration ofhigher frequencies when a vibrating beam is 

subdivided by nodal cross sections into comparatively short portions. 

In other words, for the P\lrpose of taking into account the effects of 

the cross- sectional dimensions on the frequencies, shear deform.ation 
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must be considered. When the cross-sectional dimensions of the 

beam are small in comparison with its length, Bernoulli-Euler 

theory can be used with acceptable accuracy. 

The expression for the potential (or strain) energy of the 

stiffening structure, deforming longitudinally; is 

3 I... <::. ( ))2 
1 . 1 uu . x.' t 

- g1 l V (t) - 2 ) i E . A . (x. ) ( 8 dx. ge L g1 g1 i x. i 

i=l 0 l 

where u .(x., t) is the longitudinal displacement of the ith span 
g1 l 

(1. 33) 

and A .(x.) is the cross-sectional area. In general, the longitudinal g1 l 

vibrational displacement u . (x., t) is very small as compared with the 
g1 l 

vertkal displacement v .(x., t) . 
g1 l 

The following analysis will consider only the vertical vibrational 

displacements of the structure. 

I-3-3. Kinetic energy of the vertically vibrating suspension 

bridge 

In the Timoshenko beam theory, the kinetic energy of the 

vertically vibrating bridge is due to translation and rotation and 

is expressed as 

* where m.(x. ) is the mass of the bridge (i.e., cables and stiffening 
1 1 

structures) pe ~ unit length of the ith span, and J .(x.) is the mass 
g1 1 
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moment of inertia per unit length of the i th stiffening structure 

about the neutral axis which passes through the center of the girder 

(or truss). But J . (x.) is related to I . (x.) by 
gi l gi l 

m .(x.) 2 
J . (x.) = p . I . (x.) = A gi ( 

1
) I . (x.) = r. (x.) m . (x.) 

g1 i g1 g1 1 gi xi g1 l l 1 g1 l 
i = 1, 2, 3 , 

(1. 35) 

where p cYi is the mass density of the i th stiffening structure, m . (x.) 
o- g1 l 

is the mass per unit length of the ith stiffening structure and r.(x.) is 
l l 

the radius of gyration about the neutral a.xis. 

When the cross-sectional dimensions are small compared with 

the length of span, the rotary inertia effects represented by the 

second integral in the kinetic energy expression, Eq. 1. 34, can be 

neglected. Therefore, the kinetic energy expression of the vibrating 

bridge reduces to 

3 l. (a ( ))2 - 1 l ,._ v. x. ' t 
Tv(t) = 2 L f ~i (xi) ~t 1 dxi 

i=l 0 

(1. 36) 

The kinetic energy due to longitudinal deformations will not be 

considered since only vertical vibrational deformations are as sum ed. 

I-3-4. Variational formulation of the eguations of motion 

a. Derivation of the general equations of motion 

For convenience and simplicity, the differential equations of 

motion will be derived by ·Hamilton's principle, with~:mt taking into 

account the effects of shear deformations and rotary inertia. However, 
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Appendix I-e contains the derivation of the governing equations of 

motion including the effect of transverse shear deformations and 

rotary inertia. 

Hamilton's principle is given by the integral form 

tz J 6(T-V)dt = 0 

tl 

(1. 3 7) 

where T is the total kinetic energy of the vertically vibrating birdge, 

V is the total potential energy of the system, including both the strain 

energy and the potential energy of any conservative forces, and 6 is a 

variational operator taken during the indicat'ed time interval. 

The variation of kinetic energy, 

OT (t) = 
v 

therefore, 

T (t) , has the form 
v 
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{ov.) dx. ] dt 
l 1 

(ov.) dt] dx. 
1 l 

(ov.) dt] dx. 
1 1 

3 ft2 iii i.< a2v i 
= - m.(x.) -

2
- ov. dx. dt 

. i i at i i 

i= 1 tl 0 

{l. 38) 

Note that. the order of integration with respect to x. and t is 
1 

interchangeable, and the variation and differentiation operators are 

commutative, so the integration can be perforrned by parts. Also, by 

definition, ovi (xi' t) is zero at t = tl and t = t2 • 

"' The total potential energy, V(t) , of the vertically vibrating 

bridge can be expressed, from Eq. 1. 14, after substituting v. for 
l 

vc , and from Eq. 1. 32, as 

3 { 1. ( 8 2 
V(t)=V(t)+V (t)=

2
1 ) H (1 aviJ 

c gv L wJ ux.; 
. i= 1 0 l 

dx. 
l 

[ 

1. (Q d 1. Q 2 J 1 uv. y. 1 l ( uv. 

+ H(t) f ox'. )(cixJlxi + 2 J \ox'.-) dxi 
0 l 1 0 1 

E . I . ( a2v2i \2 dx. } 
g1 g1 ox. ) 1 

1 

(1. 39) 
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and therefore, the variation of the total potential energy may be 

written as 

.£. Q2 Q2 ) 1 u v. u v. 

+ ( Egi Igi --t o(-t- dxiJ J
0 

. ox. ox. 
1 1 

= ~ J H fi ovi 
L.-J ) w J ox. 
i= 1 ~ 0 1 

a 
-n - (Ov.) dx. 
ux. 1 1 

1 

o 
ox. 

1 

--; (6v.) dx.J ox. 1 1 
1 

then integrating by parts, if it is necessary, yields 

3 l Q 1. 1. Q uv. 1 1 8 uv. 
oV(t) ='""' H ~ ov. I _ ( (~ (H ~) Ov. dx. ~ w ux. 1 J, ux. w ux. 1 1 

i= 1 . 1 0 0 1 1 

[d 1. 1 . 
y. 1 1 

+ H(t) dx~ Ov i I -f 
1 0 0 

2 
d y . ov. 

1 ~ 1 ~ --2- uv . dx. +-n- uv. 
dx 

1 1 o~. 1 
. 1 
1 

Q2 1. Q2 ) 
u vi 0 1 0 v vi 

+E I ---- ov. -- E . I . -- ov. gi gi Q 2 ox. ( 1) I ox. ( g1 g1 Q 2 1 
ux. 1 0 1 ux. 

1 1 

£. 2 ( o
2 

J +fl ~2 E . I . v2i) ov. dx. 
Q g1 g1 0 1 1 

0 
ux. x. 

1 1 

a
2

v. ] 
- 2

1 Ov. dx. 
Q 1 1 ux. 

1 
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~f[(, ) av. dy: 0 
.'. B V(t) = ~) \Hw + H(t) ox~ + H(t) d:. - ox. 

. ll 1 1 1 
(

E .I. a2~i)Jov. ii 
g1 gi ox. 1 

l= 

2 a v. 
1 +E.I.-2-g1 g1 ox. 

1 

a £Ii 
- (ov.) ox. 1 

1 
0 

2 2 a v. d y. 
__ 1 + H(t)--1 

2 2 ox. dx. 
1 1 

1 
0 

02 ( 02Vi) 
-- E I --
ox~ gi gi ox~ 

1 1 

( 1. 40) 

Introducing Eq s . 1. 38 and 1. 40 into Eq. 1. 3 7 after using Eq. 1. 12, 

gives 

3 t 2 

-f; ~ 
1 
iii [ _,_ a

2
v. 8 2 ( a

2
v .) ( ) a

2
v. 

~. (x.)-21 +--2 E .I .(x.)-21 - H +H(t) _21 
1 1 at a g1 g1 1 a w a 

0 
u ux. x. ux. 

1 1 1 

~- J a
2
v. (av.) 1

1i 
+H(t)H 1 ov.dx.-E .I .-2

1 
O ~ . 1 1 g1 g1 0 ux. 

w , xi 1 0 

[ 

a ( . a
2v.) + _u_ E 1 ·: __ 1 

oxi gi gi ox~ 
1 

( ) av. dy.] 
1
1i 

- H + H(t) a2 - H(t)-d 
1 

ov. w x. x. 1 
1 1 0 

(1. 41) 

The integ·ral must vanish for any arbitrary values of Ov. and 

(
av. ) , 

1 

6 ox~ , so these variations can be set equal to zero at xi = 0 and 

x. = 1. i = 1, 2, 3 and different from zero throughout the domains 
1 1 

O<x.<£. , i = 1, 2, 3. Therefore, o ne must have 
1 1 

2 2 
··- a v. a2 ( a v. ) '•' 1 u 1 

m . (x.)-2- + - 2 E . I . (x. ) --2 1 1 at ax. g1 g1 1 ox. 
1 1 

i= 1,2,3, 

( ) 
o2v . !. 

- Hw + H(t) ~ + H 
1 

H(t) = O , 
ox. w 

1 

( 1. 42) 
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Eqs. 1. 42 and 1. 43 are the basic differential and integral 

( 1. 43) 

equations expressing the vertical vibration of suspension bridges . 

The symbol of summation in Eq . 1. 43 is applied when the bridge has 

suspended side spans. Eqs. 1. 42 and 1. 43 are the well-known 

equations in the theory of suspension bridges . 

Furthermore, because of the arbitrary nature of the variation, 

in considering Eq. 1. 41, one can write 

and 

2 a v. 
l E .I .-

2
-

gi g1 ax. 
l 

2 

(
avi) .£Ii _ 

0 a - 0 
ux. 

l 0 
i = 1, 2, 3 ' (1. 44) 

£. 

[
a ( avi) - EI --

oxi gi gi ax~ ( ) 
av. dy. J 

- H +H(t) ~ - H(t)-d 
1 

w x. x. 
ov. 

l 1

1 

= 0 , i = I, 2, 3 , 

l 
l l 

0 

which take into account the possibility that either 

2 a v. 
E .I .-2

1 = 0 
g1 g1 ax. 

l 

and that 

or 
av. 

l = 0 
ax. 

l 

at x . = 0 ' x . = £. 
l l l 

2 

[a!. (Egi Igi aa :i )- ( Hw + H(t)) ::~ - H(t) :~J = O 
l ux. l l 

l 

or v. = 0 at x. = 0 
l l 

x. = £. 
l l 

i = 1, 2, 3 . 

( 1. 45) 

i= l ,2,3, 

( 1. 46) 

(1. 47) 
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Eqs. 1. 46 and 1. 47 represent the boundary conditions associated 

with the equations of motion for vertically vibrating suspension 

bridges. The first part of Eq. 1. 46 implies that the bending moment 

at each end vanishes, as in a bridge which has a stiffening structure 

with a free end or a simply supported end (hinged end). The second 

part of Eq. 1. 46 indicates that the slope of the deflection curve 

vanishes at each end, such as when the ends of the stiffening structure 

are fixed (built-in ends). The first part of Eq. 1. 47 requires that the 

vibrational resisting shear, which is developed by the vibration of the 

stiffening structure at the ends of each span, be equal to the vibra-

tional shear which is developed by cable forces. The second part of 

Eq. 1. 47 means that the vibrational displacement is zero at each 

end. Hence, both the natural and geometrical boundary conditions of 

the problem are presented. 

Thus, Hamilton's principle has furnished the fundamental 

differential equation of vertical vibration corresponding to the 

defined energy, and it furnished conveniently all the most meaning­

ful boundary conditions. 

The differential equations including the effects of shear 

deformations and rotary inertia, derived in Appendix 1-d, are: 

z a
2v. ".'12 ( a

2v.) 2 ~ E . I . ) ' 1 u 1 g1 g1 m--+-- EI -- -m r l+ 
i at2 ax~ gi gi ox~ gi i G .g .r.2 

2 2 m .r. + gl 1 

G .g. 
gl Vl 

i 1 glv11 

4 a v. 
l 

at
4 

2 

( ) 
a v. 

- H +H(t) -
2

1 

w . <:> 
ux. 

1 

* w. 
+-1-

H 
w 

H(t) = 0 

4 a v. 
1 

2 2 ax.at 
l .. 

i = 1, 2, 3 • 

(1.48) 
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where the effect of rotary inertia is 

4 

represented by the term 

2 a vi 
m . r. 2 2 

gi 1 ox. 8t 
1 

, while the effect of the shearing deformations is 

4 2 2 
m .r. 

represented by the terms 
a v. 

1 + gi 1 

G ./.L. gi Vl 

b. Conventional linearized theory 

The equations of motion, the cable equation and the boundary 

conditions which were derived above, have nonlinear terms: 

2 a v. 
i. the term H(t) ---:J: 

ox. 
1 

(Eqs. 1. 42 and 1. 48) 

av. 
ii. the term H(t) r x. 

1 

(Eq. 1. 4 7) , and 

111. the term 
1 . uvi £. (<:I )2 
Z f ox. · dxi 

0 1 

(Eq. 1.43) 

Two useful simplifications are possible as aids in linearizing the 

problem: 

1. It has been assumed that the horizontal component of cable 

tension H(t) due to inertia loads is small compared with the 

initial tension H 
w 

In this case, Eqs. 1. 42, 1. 4 7 and 1. 48 

can be simplified by the omission of H(t) , to read : 

2 
>!< a vi 

m . (x.)--
2 1 1 8t 

02 ( 82vi) + -
2 

E . I . (x.)-
2
-

n g1 g1 1 n ux. ux. 
1 1 

2 '~ O V. W. 

H --
1 + - 1 

H(t) = 
w n 2 H ux. w 

0 ' 
1 

i = 1, 2, 3 ' 

(1. 49) 
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[ ( 
o

2v.) av. dy. J 8 l l () l = 
a;{. Egi 1gi:--Z - Hw ox. - Ht dx. 

l ux. l 1 
l 

and 

2 2 
>!< 0 vi 02 ( 0 vi) 2 ( 

rn - + -- E . I . -- - m .r. 1 
i ot2 ox~ g1 g1 ox~ g1 l 

1 l 

4 
8 v. 2 * O V. W. 

0 at x. = 0 , at x. = i.. 
l l l 

i = 1, 2, 3, 

4 
E .I . ) o v. + g1 g1 ___ 1_ 

G 2 Qx2. Qt2 .J.!. .r. u u 
g1 Vl l l 

+ 

2 2 
m .r . 

g1 1 1 

ot4 -
H __ 1 + _1_ 

w 0 2 H 
H(t) = 0 i= 1,2,3' 

G .J.!.. g1 Vl 
x. w 

l 

(1. 50) 

(1.51) 

2. Sine~ small vibrational displacements have been assumed, the 

nonlinear, second order term in the cable equation (Eq. 1. 43) 

may be neglected, and the cable equation is reduced to 

E A ~ [f£i( ov. )(dy.) J 
H(t) = ~E c ~ 0 ox: d< dxi 

(1. 52-a) 

(b . E 1.8 1
) or yus1ng q. 

3 * £ 
EA ~[ w. fi 

H(t) = ~ c LI H 1 

E i=l w 0 

v. dx.J 
1 l 

(1. 52-b) 

The basic equations of motion (Eq. 1. 49 or Eq. 1. 51) thus 

become linear differential equations. These equations have been 

studied at some length by Steinman [_14] and by Bleich [ 9] . The 

former concentrated on study of bridges having an inextensible 

cable. Bleich' s work on this problem, using the full equations of 

motion (Eq. 1. 49), allowed for the elastic extensibility of the cable 
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and led to expressions for the frequency equations that are much 

more complicated and that, therefore, could not be solved 

explicitly. 

Another way of treating the linearized problem is by means of 

~nergy relations, using trigonometrical series for the approximate 

representation of the modes of vertical vibration. This series 

method was, as in so many structural problems, first applied by 

Timoshenko. Then the application of the Rayleigh-Ritz method in 

dynamics leads to a system of linear, homogeneous equations deter­

mining the natural frequencies. Bleich [ 9] used this approximate 

technique for the determination of the first three modes of vertical 

vibration (and their natural frequencies) of suspension bridges with 

hinged and continuous three-span stiffening structures . 
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I-4. A Finite Element Approach to Vertical Vibrations 

The finite element method, an effective and commonly used 

discretization procedure, provides a convenient and reliable idealiza­

tion of the structure under consideration and is particularly effective 

'in a digital-computer analysis. 

The first step in the finite-element idealization of the structure 

involves dividing the suspension bridge into an appropriate number of 

segments, or elements. Their size is arbitrary; they may all be of 

the same size or may all be different. Then, a set of nodal points is 

selected along the boundaries of these elements. The displacements 

of these nodal points are taken as the degree~ of freedom (generalized 

coordinates) of the system. 

The deflection of the complete structure can now be expressed 

in terms of these generalized coordinates by means of an appropriate 

set of assumed displacement functions. In this case, however, the 

displacement functions are called interpolation functions because they 

define the shape of the displacement curve between the specified nodal 

displacements. Furthermore, as the displacements associated with 

any degree of freedom are non-zero over only the neighboring finite 

elements, the mass and stiffness matrices will be very sparse, and 

the degrees of freedom can be ordered so as to arrange the matrices 

in banded form, leading to great reductions in the computational effort 

and the computer storage required for analysis. However, as is dis­

cussed later, there is a case where evaluation of the interaction among 

all elements is necessary in order to formulate the elastic stiffness 

matrix, and this necessitates a full matrix. 
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The evaluation of the stiffness matrices for the finite elements 

involves expressing the potential (or strain) energy of the element or 

the assemblage in terms of nodal displacements, which leads to an 

expression for the stiffness matrices in terms of the finite element 

interpolation functions and various other structural properties. 

Except for satisfying the appropriate continuity conditions at inter­

element boundaries, considerable freedom exists in selecting the 

interpolation functions. The computational effort required in deter­

mining the element stiffness matrices, and the accuracy with which 

the element represents the stress and deformation state in the 

structure, depends on the interpolation functions, i.e., on the order 

of the polynomial if interpolating polynomials are being used. 

The element consistent mass matrix can be determined in a 

manner similar to the formulation of the stiffness matrix. Basically, 

the kinetic energy of the element is expressed in terms of the nodal 

velocities, leading to an expression for the mass matrix in terms of 

the mass density and interpolation functions (which were used in 

determining the stiffness matrix). 

In this section, the underlying principles of structural 

idealization for suspension bridge structures are discussed. Also, 

stiffness and inertia properties are developed for the elements and 

for the entire assembled suspension bridge, using the different energy 

expressions developed for suspension bridges in the previous section. 

Finally, Hamilton's Principle is used to derive the equations of motion, 

from which the natural frequencies and modes of vibration are obtained. 
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This formulation has the advantage of dealing only with purely scalar 

energy quantities. Several numerical examples are included to 

illustrate the effectiveness and the applicability of the analysis under 

consideration, and to investigate the dynamic characteristics of 

suspension bridges. 

I-4-1. Idealization of the structure and the displacement model 

By the finite element approach, the suspension bridge structure 

is assumed to be divided into a system of discrete elements which are 

interconnected only at a finite number of nodal points. It has been 

assumed previously, in Sec. I-2, that the suspenders are inextensible 

and remain vertical during vibration,and that consequently the vibra­

tional displacements of both the cable and the stiffening structure are 

identical; these assumptions lead to the following: 

1. The element consists of cable and girder (or truss) elements 

connected. by two or more rigid suspenders, as shown in 

Fig. I-3-b. 

2. The elements are connected to each other at common cross 

sections or interfaces; this defines the cable nodes as well 

as the stiffening girder (or truss) nodes. 

3. Since the displacements of each stiffening structure node must 

equal the displacements of the corresponding cable node 

(joined by a single suspender), it is appropriate to define 

only the nodes on the centerline of the stiffening structure, 

as shown in Fig. I-3-a. 
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The two nodal points by which this type of element can be 

assembled into the suspended bridge structure are located a t its ends . 

Obviously any number of elements may be chosen in establishing the 

idealized system, depending on the accuracy desired. If only vertical 

plane displacements are considered, there are two nodal degrees of 

freedom at each node: vertical translation and rotation. The inter-

polation functions associated with the two degrees of freedom of the 

nodal point, which produce vertical displacements, could be any 

arbitrary shapes which satisfy nodal and internal continuity require-

ments, but they are generally assumed to be the shapes which dev-elop 

in a uniform beam subjected to these nodal displacements. These are 

cubic Hermitian polynomials which are sketched in Fig. I-3-c , and 

may be expressed as: 

-2 -3 
£12(x) = x + ~ -y L2 

where L is the length of an element in the suspended structure. 

(1.53) 

With these four interpolation functions , the deflection shape 

ve(x, t), of the element can now be expressed in terms of its nodal 

displacements as: 
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( 1. 54) 

where e is the subscript indicating 11element, 11 and q.(t), i = 1, 2, 3, 4 
1 

are the nodal displacements for the element. (See Fig. 1-3-b. ) 

Eq. 1. 54 can be written in a matrix form as 

v (x, t) =U(x)} T [q(t)} 
e e e (1. 55) 

in which [£( x) }T represents the transpose of [£( x)} ; it is the vector 
e e 

of the polynomials 

(1.56) 

and [q(t)} is the vector of nodal displacement for the element. 

By introducing the normalized coordinates 

and (1. 5 7) 

any point x in the element [ 0, L] can be referred to in terms of 

the "coordinate functions, 11 ~ 1 ( x) and ~ 2 ( x) , as new coordinates. 

Therefore, Eq. 1. 55 can be written as 

(1. 58) 

Finally, integration of the polynomial terms in the normalized 

coordinates is conveniently expressed by the formula 

IL ~nl~m2 dx = n! m! L 
(n+m+l)! 

0 

(1. 59) 
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where n! is the factorial product n(n-l)(n-2) ... (1). and O! is 

defined as unity. Also, differentiation with respect to x is given 

by the formula 
2 

L a~. a ( - 1 • 
- ax a~. 

1 i=l 

(1. 60) 

I-4-2. Evaluation of structural-property matrices 

In practice, the finite element approach frequently provides the 

most convenient means for evaluating the elastic or stiffness properties 

of the complete structure. These properties are found by evaluating 

the properties of the individual finite elements and superposing them 

appropriately. Thus the problem of defining the stiffness properties 

of the structure is reduced basically to evaluating the stiffness of a 

typical element. 

a. Elastic stiffness matrix of the stiffening girder 

(or truss) 

The strain energy of the stiffening structure due to bending 

only (Bernoulli-Euler beam), Eq. 1. 32, may be expressed (with the 

aid of the displacement model, Eq. 1. 58), as 

3 Ni L . 

V ( t} = .!. ) [ ) I E I ( x ) (t £11 
} T [ } )T ( [f" } [ . } ) dx J gv 2 L L ge ge e q e e q e ' 

i=l e=l 0 

(1. 61) 

where N. is the total number of elements used to present the ith 
l 

bridge span, and E I is the flexural rigidity of the element; it 
. ge ge 

is assumed uniform over the entire element. The integrations involved 
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in Eq. 1. 61 are performed for the individual elements before the 

summation inherent in the assembly process is carried out. Here, 

{£"} is the vector of the curvature model; this vector can be 
e 

accomplished by using Eqs. 1. 58 and 1. 59. The resulting curvature 

model vector is 

u"J:!' = ££"(~ 1 • s 2 ) 1~ = ~2 [ (6-12s 1). L(4~ 1 -2~ 2), (6-12s 2), L(2s 1 -4s 2 )]. 

(1. 62) 

Eq. 1. 61 may be expressed conveniently in terms of the stiff-

ness matrix, as 

N 

Vgv(t) = 21 ) r }T [k J r } ~ lq e ge e lq e 
e= 1 

3 

with the understanding that N = L 
i= 1 

N. is the total number of 
1 

elements used to present the entire assembled structure, and 

L 

[k J =IE r [£"} U"}T dx ge e ge ge e e 
. 0 

(1.63) 

(1. 64) 

is the element elastic stiffness matrix of the stiffening girder (or truss). 

The subscript ge indicates 11 girder elastic, 11 while the subscript e 

alone indicates "element. 11 'The integration involved in the evaluation 

of [k J can be accomplished by using Eq . 1. 62 and the integration 
ge e 

property (Eq. 1. 59) of the interpolation function. The resulting 

stiffness matrix is 
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12 -6L -12 -6L 

E I -6L 4L
2 

6L 2L
2 

[k J = ge ge (1. 65) 
gee L3 -12 6L 12 6L 

-6L 2L
2 6L 4L

2 

It should be noted that these stiffness coefficients are the exact 

values for a uniform beam without shear deformation because the 

interpolation functions used in Eq. 1. 53 are the true shapes for this 

case. For an analysis of the effect of shear deformations on a beam 

element, refer to Ref. [27]; this consideration of shear deformation 
. , 

naturally leads to rather complicated expressions for the interpolation 

functions, and consequently the formulation of the elastic stiffness 

matrix is complex and is therefore not presented here. The matrix 

itself reads: 

12 -6L -12 -6L 

E I -6L (4+cP)L2 
6L (2-cP )L2 

[k J = ge ge 
gee L 3 (l+lP} - -12 6L 12 6L 

-6L (2 7 cP )L2 
6L (4+<P )L2 

where 

(
12E I ) q, = ge ge 
G L

2 
ge'te 

in which G g is the shear rigidity of the element. geve 

(1. 66) 

(1. 67) 

As mentioned earlier, the process of constructing the equations 

for the assemblage from the equations for the individual elements is 
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routine. Nodal compatibility is used as the basis for this process. 

Because the displacements are matched at the nodes, the stiffnesses 

are added at these locations; therefore, the assemblage stiffness 

matrix and th'e nodal displacements can be written as follows 

and 

N N 

[KGE] = L [kge]e or [KGE] = L [ kge]e 

e=l 

N 

( r}=) (q} L e 
e=l 

e=l 

Now, 'the total strain energy of the assemblage due to the 

(1. 68) 

(1. 69) 

contribution from the stiffening girders (or trusses) can be written 

as 

(1. 70) 

Finally, when it is noted that the. strain energy stored in a 

stable structure during distortion must always be positive, it is 

evident that 

Matrices which satisfy this condition, where [ r} is any arbitrary 

nonzero vector, are said to be positive definite; positive definite 

matrices (and consequently stiffness matrices) are nonsingular and 

can be inverted. The stiffness matrix is also symmetric and banded. 



-62-

b. Consistent gravity-stiffness matrix of the cable 

From the strainless or gravitational energy expression of the 

cable (Eq. 1. 22), it has been found that this energy depends not only 

on the change in the shape of the cable but also on the initial internal 

stress, represented by the constant H . A similar situation exists w 

in the buckling problems. In these problems, the geometric-stiffness 

property represents the tendency toward buckling induced in a structure 

by axially directed load components; thus it depends not only on the con-

figuration of the structure but also on its condition of loading. 

The finite-element concept can be used to obtain a higher-order 

approximation of gravity stiffness by µsing Hermitian interpolation 

functions (Eq. 1. 53) in deriving the gravity-stiffness coefficients; the 

result is called the consistent gravity-stiffness matrix. Thus the 

consistent gravity-stiffness matrix represents rotational as well as 

translational degrees of freedom. 

Now, the gravitational energy of the cable V (t) (Eq. 1. 22) 
cg 

and the displacement model (Eq. 1. 58), give 

(1. 71) 

where [£ 
1

} is the vector of the slope of the model displacement and 
e 

is expressed by 

( 1. 72) 

Eq. 1. 71 may be expressed conveniently in terms of the consistent 

gravity-stiffness matrix, as follows 
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N 

V (t) = 21 ) [q}T [k J [q} 
cg L e cg e e 

e=l 

L 

[k ] = H l 
cg e w J 

0 

(1. 73) 

(1. 74) 

in the element consistent gravity-stiffness matrix. In the double sub-

script cg, c indicates "cable" and g indicates "gravity. 11 

Substituting Eq. 1. 72 into Eq. 1. 74, and using the integration 

property (Eq. 1. 59) in the resulting matrix, the element consistent 

gravity-stiffness matrix can be obtained as 

36 -3L -36 -3L 

H -3L 4L2 3L -L2 
[k J = _;f!_ (1. 75) cg e 30L -36 3L 36 3L 

-3L -L2 3L 4L2 

The assemblage gravity-stiffness matrix can be obtained by 

merely adding the element stiffness coefficients appropriately and by 

taking the boundary conditions into consideration, it is expressed as 

N 

[KCGJ = L [kcg]e 

e;= 1 

which has a similar configuration (positions of the non-zero terms) 

as the elastic stiffness matrix [KGEJ . 

Now, the potential energy expression (due to gravity) of the 

assemblage may be given as 
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( 1. 76) 

in which [KCGJ is a positive definite, symmetric and banded matrix. 

c. Elastic stiffness matrix of the cable 

Using the linearized cable equation (Eq. 1. 52-b), the strain 

energy of the cable due to the additional cable tension caused by 

vibration (Eq. I. 19) may be written as 

,...,,,2 
l H (t)LE 

Vce(t) = 2 E A (1. 77) 
c c 

With the aid of the displacement model (Eq. 1. 58), the energy 

expression (Eq. 1. 77) becomes 

V (t) =.!_(Ee Ac)',~ [~ ;;i IL [f}T ( } dX JT[~ ;;i IL(£ }T (, } dx J 
ce 2 L 'L L H e q e L H e q e ' 

E ·- 1 WO 1 WO 
i= 1 e= e= (1. 78 ) 

and upon using the assemblage nodal displacement ( r} in Eq. 1. 78, it 

can be obtained 

L 

" T i T - [ L -L2 
L L2 J [£} = (f} dx = -·-·-· -e e 2 12 2 12 • 

0 

(1. 80) 



and 

then Eq. 1. 79 becomes 

[

E A 
3 

V (t) = !_ [ r }T c c ( )' 
ce 2 LE L 

i=l 

or equivalently 
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[£} 
e 

.., ..,. 
w. 

1 

H w 

(1. 81) 

(1. 82) 

(1. 83) 

in which [KCEJ is the assemblage elastic stiffness matrix of the 

cable; it can be defined as 

(1. 84) 

This matrix is symmetric and is a partially complete matrix 

(i.e., not banded); the arrays are well distributed over the matrix. 

A general form for such a matrix and for the banded stiffness matrices 

[KGEJ and [KCGJ is shown schematically in Fig. I-4; only the 

hatched blocks are non-zero arrays. These matrices are the 

assemblage matrices for the special case of a suspension bridge 

with hinged stiffening structures. 
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I-4-3. Evaluation of inertia-property matrices 

Making use of the finite-element concept, it is possible to eval-

uate mass influence coefficients for each element of the bridge by a 

procedure similar to the analyses of element stiffness matrices . The 

degrees of freedom of the element are the translation and rotation at 

each end, and it is assumed that the displacements within the element 

are defined by the same interpolation functions used in deriving the 

element stiffnesses; the result is called the consistent-mass matrix. 

Consistent-mass matrix 

When interpolation displacement models are used, Eq. 1 . 58 

can be inserted into the expression for translational kinetic energy 

(Eq. 1. 36) to obtain, 

where m e 
is the mass of the bridge element per unit length. 

Eq. 1. 85 can also be written as 

3 Ni 

:r (tl = ! '\' () ( 0 1T [m.J { Q} ) 
v zLLqe eqe 

i= l e= 1 

(1. 85) 

(1. 86) 

where [ill] is the consistent mass matrix of the element which is 
e 

defined as 

L 

[ill] = ~ I [£} {f}T dx 
e e e e 

0 

(1. 87) 
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The integration involved in the evaluation of [me] can be 

accomplished by using Eqs. 1. 58 and 1. 59. The resulting consistent-

rnas s matrix is 

156 -22L 54 BL 
, ... 

4L
2 

-3L
2 '•' 

-22L -13L m L 
[mJ e (1. 88) = 420 e 54 -13L 156 22L 

13L ~3L2 22L 4L2 

The physical meaning of the different coefficients of this matrix 

is shown in Fig. 1-3-c. The mass matrix of the complete element 

assemblage can be developed by exactly the same type of super-

position procedure as that described for development of the assemblage 

stiffness matrix. The resulting mass matrix will have the same 

general configuration (that is, arrangement of non-zero terms) as 

the stiffness matrices [KGEJ and [KCGJ. The assemblage con-

sistent-mass matrix is 

N 

[M] = L [m]e (1. 89) 

e=l 

.and, therefore, the translational kinetic energy can be written as 

(1. 90) 

The evaluation of the consistent-mass matrix, when the effects 

of both shear deformation and rotary inertia are accounted for , is 

very involved (see Ref. 27). However, if the kinetic energy due to 

translation and rotation is considered and the shear deformation is 
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neglected the resulting consistent-mass matrix takes the form 

156 -22L 54 13L 36 3L -36 3L 
..... 

4L
2 -3L

2 2 
4L

2 _rf ~L -22L -13L m r 3L -3L 

[mJe = 4:0 + ge e 

54 -13L 156 22L 
30L 

-36 -3L 36 -31 

13L -3L
2 

22L 4L
2 

3L _if -3L 4L
2 

(1. 91) 
where m is the mass of the stiffening girder (or truss) element ge 

per unit length and r is the radius of gyration of the element cross e 

section. The first term in Eq. 1. 91 represents the translational 

inertia of the element, i.e., the mass matrix [m] , while the second e 

term represents the rotatoryinertia. A derivation of the general con-

sistent-mass matrix can be found in Ref. 27. 

I-4-4. Variational formulation of the matrix equations of motion 

To establish the matrix equations of motion, one can make use of 

the scalar energy quantities, already obtained, in a variational form. 

The most generally applicable variational concept is Hamilton's 

Principle (Eq. 1. 37), which leads directly to the equation of motion.· 

Now, inserting Eq s . 1. 70, 1. 76, 1 . 83 and 1. 90 into Hamilton 1 s 

Principle (Eq. 1. 37), one can obtain for the assemblage 

= 0 
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Applying the variational operator yields 

r ( [6r )T['MJ(;, }- [ 6r }T[ (!:(:GE]+ [KCG]+ [KCE] J [ r} )at= 0 . (I. 92) 

tl 

Integration of the first term by parts with respect to time gives 

Jz T "' ( T ,..., ) lt2 Jt2 T ,..., ) [or} (MJ[r}dt= {6r} (MJ{i-} . - {or} [M]{r}dt 

tl tl tl 

(1. 93) 

Again, according to Hamilton 1 s Principle, the tentative displace-

ment configuration must satisfy given conditions at .time t 1 and t 2 . 

Hence, [or(t1 )} = {or(t
2

)} = [o}, so the first term on the right hand 

side of Eq. 1. 93 vanishes . Substituting the remaining term into 

Eq. 1. 92 gives 

Since the variations of the nodal displacement, {or}, are 

arbitrary, the expression in brackets must vanish. Therefore, the 

matrix equation of motion for the assemblage can be obtained in the 

form 

(1. 94) 

where the tilde indicates that in this matrix equation of motion neither 

the. shear deformation effect nor the rotatory inertia effect has been 

&onsidered. However, if these secondary effects are take°: into account, 
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Eq. 1. 94 becomes 

(1. 95) 

N 
with [M] = L [m] 

e=l e 
[m]e is given by Eq. 1. 91 and [KGEJ is 

given by Eq. 1. 68. 

Eq. 1. 94 (or Eq. 1. 95) is the governing matrix equation of the 

vertical vibration of suspension bridges . There are two separate 

parts of the problem, i.e., two independent eigenvalue problems, 

which must be considered. They are: 

1. The symmetric eigenvalue problem having the symmetric 

modes of vertical vibration, which include additional cable 

tension, and in which there are an even number of internal 

nodes along the spans. Here, H(t) is not zero and accordingly, 

the stiffness matrix [KCEJ is not a zero matrix. 

2. The antisymmetric eigenvalue problem having the antisymmetric 

modes of vertical vibration,which cause no additional cable 

tension, and in which there are an odd number of internal nodes 

along the spans. Here H(t) is zero, and accordingly the stiff­

ness matrix [KCEJ is a null matrix. 

Thus, for the symmetric modes: 

( 1. 96 ) 

and for the antisymmetric modes : 

(1. 97) 
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Then the matrix equations for the free, vertical-undamped 

symmetric and antisymmetric vibrations of the suspension bridge 

structure are, respectively: 

(1. 98-a) 

and 

(1. 98-b) 

By writing the solutions of Eq. 1. 98 in the familiar form 

>!< iWt 
{ r AS ( t)} = { r AS} e i= VT (1. 99) 

and substituting Eq. 1. 99 into Eq. 1. 98 (leaving out the common factor 

iWt) 
e ' the following equations are obtained 

( 
2 ) ~ -w [ M] + [KS] [ ~ S} = { 0} (1. 100-a) 

(-wz [M]+ [K AS]){; AS}= {O} (1. 100-b} 

where {;
5

} and {;AS} are the vectors of the displacement amplitudes 

(which do not change with time) of both symmetric and antisymmetric 

vibrations, respectively, and w is the natural circular frequency. 

Now it can be shown by Cramer's rule that the solutions of 

these two sets of simultaneous equations (Eqs. 1. 100-a and b) are 

of the form 

£t }= {o} 
s II [Ks] -wz[MJ II 

(1.101-a) 

{; }= {o} 

AS I/ [K ASJ-wz[M] II 
(1.101-b) 



-73-

Hence a nontrivial solution for each problem is possible only 

when the denominator determinant vanishes. In other words, non-

zero amplitude free vibrations· are possible only when 

(1. 102-a) 

and 
(1. 102-b) 

Eqs. 1.102-a and bare called the frequency equations of the 

symmetric and antisymmetric vertical vibrations, respectively. 

Expanding each detel'.min:ant will give an algebraic equation of the 

th 2 N degree in the frequency parameter w for a system having N 

de~rees of freedorn. 

Because of the positive definitiveness of [M] , [K
5
J and 

J . 2 2 2 
[K AS , the roots w1 , w

2 , ... , wN (eigenvalues) of each problem 

are real and positive quantities; Eq s. 1.. 100-a and b provide non-
:>:< ..,_ 

zero solution vectors [ r S} and {;::AS} (eigenvectors) for each 

root w2 
of the symmetric and antisymmetric problems, respectively. 

I-4-5. Illustrative numerical examples 

Three examples of suspension bridges with widely different 

properties are presented to demonstrate the applicability of the 

analysis developed herein, and to cover the dynamic characteristics 

of these suspension bridges. In these examples, the free vertical 

vibrations of suspension bridges are analyzed. The natural frequencies 

and modes of vibration of the system are computed, and the distribu-

tion of the energy stored in the various members of tbe structure is 
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also determined. A knowledge of the energy of vibration of a given 

rnode of vibration of a suspension bridge is essential if any study of 

the damping and exciting forces is to be made. Furthermore, if the 

motions and resisting actions of the various members of the structure 

are kept clearly in mind, it will not be difficult to anticipate which 

are likely to have a significant effect on a given mode . 

Also, the influence of both the extensibility of the cable and the 

continuity of the stiffening girders (trusses) upon the vertical vibration 

frequencies and modes is considered in these examples. 

Lastly, the computation of the eigenvalues w~ and the eigen-
1 

* vectors [ r.}, i = 1, 2, ... , N, for both the symmetric and the anti-
1 

symmetric vibrations, is worked out through a Householder-QR-

Inverse Iteration Solution subroutine . A double precision version is 

available from the Caltech computer (IBM 370/158 system) program 

library and is written for the solution of the problem in the standard 

form ([A]- A.[I] )[x} = [ O}, where [A] is a real matrix, A. is the 

eigenvalue, [I] is the unity matrix and [x} i s the eigenvector. Con-

sequently, Eqs. 1. 100-a and b must . be converted to the standard form 

by premultiplying each by the matrix [M] -l . Thus, a matrix inver-

sion subroutine is also needed and the final forms of the eignevalue 

and eigenvector problems for both symmetric and antisymmetric 

vibration, will be 

(l.103-a) 

and 

(1. 103-b) 
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Finally, for simplicity of presentation.the effects of shear 

deformation and rotatory inertia will be neglected (in all examples), 

but if required, they can be accounted for without difficulty. 

Example 1. (One suspended span) 

The suspension bridge shown in Fig. I-3-a, having one sus-

pended span,has the following properties: 

a) stiffening girder (or truss) 

12 = J_ = 2800 ft. 

~~ ~'( 

w 2 = w = 2. 85 Kip/ft. 

b) cable 

J2=f=232ft. 

Hw = 120040 Kips. 

LE = Lez = 4000 ft. 

2 2 
I = I = 128400 ft. in. 
g2 g 

EgZ = Eg = 29600 Kip/in~ 

A = 1. 91. 5 in~ 
c 

E = 2600 O Kip/in? 
c 

The number of elements (N
2 

= N) was taken to be 20 elements; 

therefore, the number of expected modes is (N-1) (i.e., 19 modes 

are expected), and the length of each element L is 140 ft. 

The two eigenvalue problems (Eqs. 1. 103-a and b) have been 

solved by the Caltech digital computer (IBM 370/158) system). 

The computed natural periods and frequencies, for different cases, 

are presented in Table I. 1, and the mode-shapes of both translational 

and rotational displacements are shown in Fig. I-5. 

Bleich [3] calculated the first two symmetric modes for the same 

bridge by solving the frequency equation (involving trigonometric and 
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TABLE I-1 

a . Natural Frequencies and Periods of the Symmetric Modes 

Effect of the Extensibility of the Cable 

(One Suspended Span) 

Mode 
Extensible Cable Inextensible Cable 

Order Frequency Period Fr.equency Period 
(rad/sec.) (sec . ) (rad / sec . ) (sec . ) 

1 1. 397460 4.496146 0.481302 13 . 054559 
2 2.704650 2 . 323105 2 . 653828 2 . 367593 
3 6. 847194 0 . 917629 6 . 841255 0. 918426 
4 13 . 118742 0. 478947 13.116910 0. 479014 
5 21. 510308 0.292101 21. 509355 0. 292114 
6 32 . 068751 o. 195929 32.068340 o. 195931 
7 44.88337 5 o. 139989 44 . 883155 o. 139990 
8 60.088212 0.104566 60 . 881410 o. 104566 
9 77. 848210 0.080711 77 . 848260 0. 080711 

10 97. 978733 0.064128 97. 978832 0. 064128 

b. Natural Frequencies and Periods of the Antisymmetr ic Modes 

Comparison Between the F _inite Ele!'l:lE?nt Method and Exact Solution 

(One Suspended Span) 

Finite Element Method Exact Solution 
Mode (Using Eq . 1. 104) 
Prder Frequency Period Frequency Period 

(rad / sec . ) (sec. ) (rad / sec . ) (sec. ) 

1 1. 333049 4 . 749018 1. 33 1842 4 . 717666 
2 4 . 487016 1. 400304 4.4901 03 1 . 399341 
3 9 . 716318 0 . 646663 9 . 713860 o. 646827 
4 17. 046238 0. 368597 1 7 . 0204 89 0 . 369154 
5 26 . 5 13585 0 . 236980 26 . 412797 0. 237884 
6 38. 186522 o. 164 539 37. 89 1516 o. 165820 
7 52 . 176271 0 . 120423 49 . 739350 o. 126322 
8 68. 640026 0.091538 67 . 139526 0 . 09 3584 
9 87 . 697946 0. 071646 82 . 28 1857 o. 076 362 
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hyperbolic functions) resulting from the linearized equation of motion 

(Eq. 1. 49) and the linearized cable equation (Eq. 1. 52) ; he used a 

process of trial and error, and he found that: 

w
1 

= 1. 400 rad/ sec . and w2 = 2. 696 rad/ sec . , 

Then, using the approximate energy method (Rayleigh-Ritz), he a r rived 

at 

w
1 

= 1 . 402 rad/ sec . and w2 = 2. 705 rad/ sec = 

The method of analysis under investigation gives 

w
1 

= 1. 3975 rad/ sec . and w
2 

= 2. 7046 rad/ sec., 

in addition to the higher frequencies. 

For the antisymmetric case, the frequency equation res~lting 

from the linearized equation of motion (Eq. 1. 49 with H(t) = 0) has 

a simple form: 

n= 1,2,3, . . . 

(1. 104) 

It is easy, now, to compare the results obtained by the method 

of analysis under study and the results obtained by the frequency ex-

pression (Eq. 1 . 104). Table I-1-b, and Figs . I-6 and I-7-a indicate 

a very close agreement between the two solutions . The degree of 

accuracy increases as the mode order decreases (i . e, i n the higher 

modes the finite element solution represents an upper bound to the 

exact solution) . 

To demonstrate the influence of the extensibility of the cable , 

calculations of frequencies and modes with cable extensibility and 

without are shown in Table I-1-a and in Fig. I-8. Inextensibility of 



-79-

the cable is mathematically expressed by the equation E A ,.., co 
c c 

H(t)LE 
(i.e., E A = 0 ); therefore, the second term of Eq. 1. 18, ex-

c c 
pressing the strain energy of the cable, equals zero, and accordingly, 

the stiffness matrix [KCEJ in Eq. 1. 94 equals the null matrix. In 

this context the stiffness of the cable is seen to arise largely from 

its own weight and from the dead load upon it, and as indicated before, 

the interaction between the cables and the stiffening girders (or 

trusses) is regarded as the interplay of the gravity stiffness (essential-

ly nonlinear) of the cable and the elastic stiffness (linear) of the 

stiffening structure. 

Inspection of Table I-1-a and Fig. I-8 shows that the effect of 

cable stretch on the frequencies is limited to only the first few modes. 

This suggests that the actual extension of the cable in the higher 

modes is quite small and that consequently H(t) is also small. 

Fig. I-7-b also shows the magnitude of the cable tens~on H(t) which 

decreases rapidly as the number of modes of vibration increases. On 

the other hand, Fig. I-8 shows that extension of the cable permits a 

mode (the fundamental mode) that is quite different from that which 

results with an inextensible- cable. 

In Fig. 1-9, the various energies accumulated in the cables, 

the stiffening structure and the system as a whole have been considered 

at each of the symmetric and antisymmetric modes. In this figure, 

the normalized factor is designated by the total energy of the partic -

ular inode. The relative. contribution of the strain energy of the 

cable to the total energy storage capacity of the Stl'-12lc~ure is greatest 
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HR IN SPAN OF A SUSPENSION BR JOG( 

ANTI-SYMMETRIC MOO!' SHAPES 

EXACT SllllJT I ON 

FINITE ELfMf_NT METHOD 
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0 o~-===-_,__ _ __,. __ _,_ __ _L_ _ __,.,___~6--~,--~8~-~9--~IO:---~l~l--~12:----~,~3---:'I~ 

ANTI-SYMMETRIC MOOE SHAPES 

0 

Fig. I-7-a. Comparison between frequencies from the finite­
element approach and those from the exact 
solution (antisymmetric modes). 

HAIN SPAN OF A SUSPENSION BRIDGE 

ROD IT I ONRL HOR I ZONTAL COMPONENT OF rRBLE TENS I ON 

FOR DIFFERENT SYMMETRIC HOOF - SHAPES 

f IN I TE ELf.MENT HE THOO 

--­~--- -}----}---~-----}-----'-s----~---~----~-----.io 
SYHHETRIC MOOE-SHRPES 

Fig. I- 7-b. Magnitude of the horizontal component of additional 
cable tension, H(t) for various symmetric modes . 
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Fig. I-9. Relative energy storage capacity for: 
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in the first two symmetric modes, while the relative contribution 

of the strain energy of the stiffening girder (or truss) builds until 

it governs almost all of the potential energy of the structure . 

Therefore, the stiffening structures have a significant role in 

determining the modes and frequencies of the higher modes of 

vibration; these higher modes with their shorter waves involve 

sharper curvature in the stiffening girder and, therefore, greater 

bending moment. Furthermore, they reflect accordingly the 

influence of the stiffening girders' stiffness to a greater degree 

than do the lower modes. 

Generally, the results obtained by using this analysis satisfy 

the principle of conservation of energy so that for each mode the 

total potential energy is equal to the total kinetic energy. 

Example 2 . (Three suspended spans with hinged stiffening structures) 

The properties and dimensions of the second suspension bridge 

are: 

a) stiffening girders (or trusses) 

- side spans 

il = 13 = 1100 ft. 

Egl = Eg3 = 29600 Kip/in~ 
b) cable 

f2 = f = 232 Jt. 

E = 26000 Kip/in~ 
c 

3 

LE=L 
i= 1 

L . = 6080 ft . 
e1 

Igl = Ig3 = 128400 ft~ in~ 
* ...... w

1 
= w

3 
= 2 . 85 Kip/ft. 

A = 191. 5 in~ 
c 

H = 12040 K ips . 
w 
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The number of elements in each side span, N
1 

= N
3 

• was 

taken to be 11 elements, providing 10 modes per side span. Each 

element has a length L = 140 ft.; the number of elements in the 

center span N2 • was taken to be 28 elements of the same length, 

giving 27 possible modes. 

Table 1-2 shows the computed natural periods and frequencies 

of vertical vibration for the symmetric and antisymmetric cases 

respectively, while Fig. 1-10 shows the modes of vibration. 

Again. to illustrate the effectiveness of the analysis under con­

sideration, a comparison between the obtained results and Bleich' s [ 3] 

results has been made. Bleich's frequency equation (resulting from 

the linearized equation of motion, Eq. 1. 49, and the linearized cable 

equation, Eq. 1. 52) for the symmetric modes gives : 

w
1 

= 1. 051 rad/ sec. as compared with w
1 

= 1. 05144 rad/ sec . from 

the method under consideration. Bleich's approximate method 

(Rayleigh-Ritz method) gives: w1 = 1. 055 rad/ sec . • w
2 

= 2. 255 rad/ sec. 

and w3 = 2. 699 rad/ sec. as compared with w1 = 1. 055 rad/ sec . , 

w2 = 2 7 254 rad/ sec . and w
3 

= 2. 698 rad/ sec . , fo r the first three 

symmetric modes. 

As seen from Fig. 1-10, in the lowest three modes the center 

span and side spans vibrate together, but in the higher modes the center 

and side spans vibrate separately. This illustrates the r ole played 

by the cable during the first few modes of vibration where the cable 

creates an interaction between the side spans and the center span. 
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Fig. I-1 O. Mode- shapes of the symmetric and the antisymmetric 
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The antisymmetric deflections of the cable and the stiffening 

structures cause no additional cable tension H(t) because the down­

ward movement on one side of the centerline of the center span tends 

to increase the cable length, while at the same time the upward move­

ment on the other side of the center span tends to reduce cable length, 

and the effects balance each other. In consequence of the lack of 

additional cable tension, H(t) , there is no interaction between the 

center span and the side spans; i.e., two types of independent vibra­

tion are possible. Both types of vibration may occur at one time, 

and any mode of one type may be combined with any mode of the other. 

The distribution of the energies stored in the various members 

of the structure, for both the symmetric and antisymmetric cases, is 

demonstrated by Fig. I-11. From this Figure the significance of the 

relative contributions of the cable and the stiffening structures to the 

total energy storage capacity of the bridge structure can easily be 

extracted. The lower modes reflect the influence of the strain and 

strainles s (gravitational) energies of the cable, while the higher 

modes with their relatively shorter waves involve sharper curvature 

in the stiffening girder (or truss) and, therefore, involve greater 

bending moments. Furthermore, they reflect accordingly the influence 

of the stiffening girder to a greater degree than do the lower modes. 

It is worthwhile to note that in the antisymmetric modes, all of the 

cable energy storage is of this strainless, i.e. , gravitational energy 

type. 
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~L-.L_J __ L _.L_J __ ,__---'-_._ .. --'-'° __ J _ _ -_--"te--·--·--·--'-t-·_- -_--..,-r--':------ --·--c· •~----------~-•,--·-----~--'!:•~--~--'7 .. ~- -~--"c-~;...:...L._,_,.:..:...:.A..~ 
O 8 9 10 11 12 13 Ii.I I S 16 17 IB 19 20 21 

ANT I-SYMMETRIC MODE-SHAPES 

Fig. I-11. 

(b) 

Relative energy sto rage capacity for the hinged-span 
suspension bridge (Example 2) . 
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Table I-3 illustrates the effect of the inextensibility of the cable 

upon the frequencies of free vertical vibration for the symmetric 

modes, while Fig. I-12 shows a comparison between the modes of 

vibration for the extensible cable and those for the inextensible 

cable. It is seen that the role played by the extensibility of the 

cable is confined to only the first few modes where the interaction 

between side and center spans exists. In the first mode, the inex­

tensibility effect increases the fundamental period to two times 

its value when the cable is extensible, and for the second and third 

modes the magnifications are about 13% and 2%, respectively. This, 

again, demonstrates the significant contribution at these modes from 

the elastic strain energy of the cable. 

Another effect of inextensibility is seen in the independent 

vibration of both the center and side spans. It is desirable to re­

examine more critically, the use of the expression for an inextensible 

cable (Eq. 1. 23 ). This inextensibility expression, which is a result 

of the conventional deflection theory, requires that the algebraic sum 

of the areas between the deflection curve and the line of static 

equilibrium be zero. But it has already been shown, by considering 

a higher order term in the cable equation (Eq. 1. 17), that the form 

of this conventional expression for inextensibility appears to imply 

that the gravity stiffness of the cable is negligible. This is seen to 

be misleading, because were this gravity stiffness negligible, there 

Would be no potential energy contribution from the cable at all, and the 

only energy contribution would be from the stiffening girders. This is 
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certainly contradictory and violates the fundamental assumptions which 

say that the cable and the stiffening structure have the same vibra­

tional displacement. 

Thus, the relation between the inextensibility condition and the 

gravity stiffness, heretofore virtually ignored, must be considered, 

and therefore the general problem of the dynamics of suspension 

bridges still involves the interaction of the two major members (the 

suspension cables and the stiffening structures), regardless of the 

extensibility of the cable. 

Example 3. (Three suspended spans with a continuous stiffening 

structure) 

The properties and dimensions of Example 2 have also been used 

to compute the frequencies and modes of vibration of a suspension 

bridge having continuous stiffening girders (or trusses). The computed 

natural periods and frequencies are presented in Table I-2, and the 

mode-shapes are shown in Fig. I-13. 

In order to judge the effect of continuity upon the frequencies of 

both the symmetric and antisymmetric modes, the frequencies of the 

suspension bridge with hinged stiffening structures (Example 2) are 

shown in the same table. This table suggests that the adoption of 

continuous stiffening structures in suspension bridges offers the 

advantage of increased stiffness in comparison with the hinged stif­

fening structures normally used in suspension bridges. This increased 

stiffness has the tendency to increase the value of the frequencies, as 

seen from Table I - 2 . No rerr1arkable long span suspension. bridge 
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having continuous stiffening structures has been acknowledged in the 

literature. However, the effect of a continuous stiffening structure 

on the dynamic characteristics of a suspension bridge is an important 

question in a comprehensive study of the dynamics of suspension 

bridges. 

Inspection of Table I-2 reveals that the effect of continuity of 

the stiffening structure upon the frequencies of the symn1etric modes 

is very small, while the effect upon the frequencies of the anti­

symmetric modes is considerable . 

As a comparison, the approximate energy-method (Rayleigh­

Ritz method) gives w
1

=1. 060 rad/sec. for the first symmetric 

mode and w
1 

= 1. 495 rad/ sec . for the first antisymmetric mode, 

as compared with w
1 

= 1. 0549 rad/sec . for the first symmetric 

mode and w
1 

= 1.4918 rad/sec. for the first antisymmetr ic mode, 

from the analysis under consideration. 

Again, it is de sir able to compute the amount of potential energy 

stored elastically in the stiffening structure and in the cable separately 

from that due to the change of elevation of the structure, at different 

modes, in order to anticipate which are likely to have a significant 

effect on a given mode. Also, because the damping action differs in 

the various members of the bridge, the total ene r gy lo s t per cycle 

depends upon the distribution of the potential energy. Fig. I - 14 shows 

the distribution of the energy storage capacity in the various members 

of the structure for both symmetric and antisymmetric modes of 

vibration. The relative distribution of the energies is seen to have the 

same trend as in a suspension bridge having hinged stiffening structures . 
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Relative energy storage capacity for the continuous­
span suspension bridge (Example 3). 



-97-

I-5. Effect of Tower Stiffness Upon Free Vertical Vibrations 

In the preceding analysis, it was assumed that the tower cable 

saddles were free to move horizontally either upon roller nests under 

the saddles or by means of rockers at the bases of the towers. How­

ever, the construction of hinged tower bases is often found impractical 

especially in larger bridges, and so fixed tower bases are often 

resorted to. Fixed saddles provide one of the simplest and safest 

constructions, but the friction forces accompanying this de sign are 

so high that the tower tops move in unison with the adjacent cables. 

A consequence of the fixed tower-base or fixed saddle is that 

the horizontal movement of the top of the tower is accompanied by a 

horizontal component of the force between the cable and the tower. 

Thus the horizontal force in the side spans will differ from that in the 

center span, but usually by only small amounts if the towers are well­

designed. A modification of the analysis for this complication will be 

made. Furthermore, the vibration of the entire tower should be con­

sidered as the tower is an important member of the suspension bridge. 

In general this section will include analysis of the following: 

1. The effect of the elasticity of towers on the free vertical 

vibration of suspension bridges. 

2. The in-plane free horizontal vibration of the towers, i . e., 

their vibration in the longitudinal direction of the bridge. 
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I-5-1. Correction for strain energy of the cables 

In the entire preceding analysis, it was assumed that the 

horizontal component of cable tension, H(t) was the same on both 

sides of the tower. However, this is not true if the tower resists 

displacement at the top. If, for example, it is deflected toward the 

side span as shown in the upper half of Fig. I-15, the increase in 

tension in that span, H 1 (t) or H 3 (t) , must equal the sum of the 

center span increase, Hz(t), and the elastic resistance of the tower. 

This tower resistance can be expressed as the product of the tower 

top movement, u].(t) or u}(t) , and the elastic resistance of the 

tower, stl or st3 . The displacements and forces at the top of 

the towers are shown in Fig. I-15, with their sign conventions. 

When the top of each tower moves toward or away from the center 

of the bridge the cable tension component 

the i th span, and the tension component 

span. 

H.(t), i=l,3 acts on 
1 

H 2 (t) acts on the center 

Given this new situation, the strain energy of the cable,. 

Eq. 1. 19, should be modified; the linearized part of Eq. 1. 19 can 

be written as follows 

(1.105) 

b . E 1. 8 1 
or yus1ng q. 

( 1. 106) 
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Upon recalling the linearized cable equation (from Appendix 1-b), 

H.(t)L . 
i e1 

E A = uc(xi' t) 
c c 

x.=i.. 
1 1 

x.=O 
1 

J£i ( dyi) (ovi) + d <::> dx. , x. ux. 1 
0 1 1 

i=l,2,3. 

(1.107) 

and noting that: 

£1 

uc(xl,t)I = uc(i. 1, t) - uc(O, t) = u~(t) 
0 

i2 

uc (x2, t) J = uc(i. 2 , t) - uc(O, t) = -(u~ (t) + u~(t)), (1.108) 

0 

and 
£3 

uc (x3, t) j = uc(i.3' t) - uc(O, t) = -u;(t) ' 
0 

where the assumption of fixed anchorages has been made, then the 

modified linearized cable equations, applied successively to the side 

and center spans, become 

u~ (t) = 
1 

H.(t)L . 
1 e1 

EA 
c c 

-i1i (dyi)(ovi) dx. 
dx. ox. 1 

0 1 1 

i = 1, 3' (1. 109) 

and 

(l.110) 

For symmetric suspension bridges, tl.- two towers are identical 

and, except for the sign, the displacements u~ (t) and u~ (t) at the top 

of the left and right towers, respectively, must be the same. There-
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fore, the linearized cable equation for the entire bridge can be 

written by summing Eq s. 1. 109 and 1. 110 to give 

3 

L 
i= 1 

H. (t)L . 
1 ei 

EA c c L
3 i1i (dyi) (avi) _ - --dx.-0 

dx. ox. 1 

i= 1 0 1 1 

(1.111) 

Considering the equilibrium of the horizontal forces at the top 

of the towers, the following is obtained: 

i = 1, 3' (1.114) 

where sti, i = I, 3 characterizes the elastic resistance of the ith 

tower; this resistance is the force required to deflect the ith tower 

by unit deflection. and it can be expressed, for uniform Iti , as 

i = 1, 3 ' (1. 113) 

where Eti is the modulus of elasticity of the ith tower material, 

Iti is the average value of the moment of inertia of the i th tower 

leg about a horizontal axis perpendicular to the longitudinal axis of the 

bridge, and hti is the height of the i th tower leg. 

The next step to be taken is to express H. (t) , i = 1, 2, 3 in 
1 

terms of the displacement v. , i = 1, 2, 3. For this purpose, the 
1 

displacements of the tops u; (t) and u~(t) have been eliminated 

from Eqs. 1.109 and 1.110, and Eq. 1.111 has been used to give 
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(E A )2 [L
3 J1j (dy.)(av.) L 2 st.1£i(dy. )(av.) J t = c c _:_i __l dx + e l _1 _1 dx 

Hi( ) (E A LE+L 2 L . st.) dx. 8x. j E A dx. 8x . i ' 
. c c e e1 i j = 1 0 J J c c 0 1 1 

i = 1, 3. (1.114) 

When the coefficients c 1i and c 2i , i = 1, 3 are defined as 

(E A )
2 

c c 
and i = 1, 3' cli = (E A LE+L 2 L .st.) 

c c e e1 1 
(1.115) 

Eq. 1. 114, can be written as 

3 £. d )(<:I ) £. d ) <:I J . y. uv. y. uv. 

H~(t) = cu[L f ( ~ at dxj + c 2if ( dx~ (ax~) dxil 
j= 1 0 J J 0 1 l ~ 

i = 1, 3 . 

(1. 116) 

Substitution of Eq. 1. 116 into Eq. 1. 111, yields 

[ ~ L · )i~ f£j(dy.)(8v.) L . f£i(dy .)(8v. ) J 
H7(t)= cli \l+czi Le12 L it at dxj -2c2i Le12 dx~ 8x~ dxi ' 

e j=l 0 J J e 0 1 1 

i = 1 o r 3 (1. 117) 

Therefore the modified strain energy of the cable, Eq. 1 . 106, 

I 
with the aid of Eqs. 1. 116, 1. 117 and 1. 8 , may be written as 

* l1L3 v (t) = -ce 2 
i= 1, 3 

J, 
'•' 
w . 

1 

H 
w 

+ ~[cli(l+c 2; ~:~?:; I=~tvj dy 2clic2i !:tvi dx~[~2 dxz]}· 
(1.118) 
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where the index i , indicated between the second set of brackets, is 

either 1 or 3 . 

I-5-2. Potential energy absorbed by the towers 

Now, the strain energy due to the bending of the two towers is 

given by 
3 ht. M2 

1 L J. 
l '· Xl I 

Vtb(t) = 2 E .I." dxi 
i=l, 3 0 ti ti 

(1. 119) 

where M 1. is the bending moment of the tower leg at the point 
Xl 

I 

x. ' 
1 

i = 1, 3 caused by the horizontal force I H 2 (t) - Hi (t) I , i = 1, 3 and 

is expressed by 

I x. 
1 

(1. 120) 

Substitution of this expression into Eq. 1.119 and then integra-

tio n, yields 

(1. 121) 

From Eqs. 1. 116 and 1. 117 the force l~2 (t)-Hi (t)\ can be 

obtained as 

' i= 1, 3 

(1. 122) 

Therefore, the strain energy absorbed by the two tower legs, 

Eq. 1. 119, can be written, with the aid of Eqs. 1. 122 and 1. 8', as 



3 

vtb(t) = ~ L 
i= 1, 3 
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Because of the complexity of the resulting equations, it is not 

desirable to derive the differential equations of motion which include 

the effect of tower rigidity. Instead, the solutions will be obtained by 

the finite element approach. 

I-5-3. Equations of motion for the towers 

In order to derive the differential equations of motion, each 

tower of the suspension bridge is now replaced by the equivalent 

system shown in Fig. 1-2-b, where the elastic constraint by the 

cables at the top of the tower is simulated by a spring of stiffness 

k . , i = 1, 3 (see Refs. 19 and 20 ). It has been assumed that the 
ei 

centerline of the tower is allowed only horizontal motion in the 

longitudinal direction of the bridge, and the axial and horizontal 

forces acting on the top of the tower have been taken into consideration. 

The bending-strain energy in the towers may be written as 

(1. 124) 

where the index i implies the left (i=l) and the right (i=3) towers. 

In Fig. I-2-b this index has been omitted for simplicity. 

In order to calculate the potential energy of the tower due to 

the static and dynamic reactions of the cable, the relative displacement 
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D,hti , i = 1, 3 caused by the vertical loads during bending must 

first be determined. With this in mind, consider an element ds' 

of the tower leg in its deflected shape; the infinitesimal relative dis-

placement over the element of the tower leg is 

I I 
ds - dx = 

( 
,~2 OU · / 2 

(ds') 2 -(dx ')2 ,.,,, a;{7 (dx) 
ds' + dx - 2dx' (1. 125) 

therefore, 

h . ht. . 2 

i ti 1 i 1 (8 ') 6hti = (ds~ - dx~) = 2 0~~ dx~ 
0 0 

1 

i = 1, 3 . (1. 126) 

During this displacement, the load P remains constant, w 

while the load P(t} increases gradually. Therefore, the potential 

energy of the two loads in the deflected position is: 

3 

vta(t} = L (pw + ~ P(t)). 6hti 

i= 1, 3 

i=l,3, 

~ ( 1 )fhti 1 (8u~)
2 

.L PW+ 2 P(t} 2 oxi dx~ 
i=l,3 0 

i = 1, 3 ' 

3 

"'-~ L 
i=l. 3 

(
0 ')2 
0:1 dx~ i = 1, 3 . 

(1. 127) 

In deriving this relation, assumption no. 8 (Eq. 1. 3) of the fundamental 

assumptions mentioned in section I-2-3, has been used. 
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The potential energy stored in fae equivalent spring is 

12 
k . u. (t) ' 

ei l 
(1. 128) 

where k . , e1 i = 1, 3 is the stiffness of the equivalent spring at each 

tower top. Konishi and Yamada [19, 20] have estimated the value of 

the spring stiffness, k . , to be 
e1 

EA 
k . ~ c c + 

e1 Le2 

EA c c 
L. e1 

i= 1,3. (1.129) 

Now, the total potential energy in the towers, Vt(t), is 

Vt(t) = Vt (t) + Vt + V (t) e a es 
(1. 130) 

The kinetic energy for the tower legs can be expressed as 

(l.131) 

where mt. (x~) is the mass per unit length of the i th tower leg. 
l l 

Application of Hamilton's Principle, Eq. 1. 37, as before, 

enables derivation of the equation of motion of the ith tower leg 

in the form: 

a2 I u. 
I l 

mt.(x.) -z-
1 i at ~ 

2 I 2 I 

a2 . a u. a u~ 
· I l l 

+ - Et. It. (x. ) --2) + p --2 = 0 ' a' lll a' wa' x. vx. x. 
1 . 1 l 

i=l,3, 

(1. 132) 
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and the associated boundary conditions are 

and 

au~ a ( a2u~) 
..,....,..a Et. It. (x~) _21 

X. l l l a I + p p 1 = k . u: w x . e1 i 
1 1 x. 

I 
Et. It. (x.) 

1 1 1 

1 

32 I u. 
1 

-
3 

,z · 
x. 

1 

i = 1, 3 ' (1.133) 

i = 1, 3. (1. 134) 
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I-6. Finite Element Approach for the Overall Problem 

This section contains the finite element solutions for the overall 

problem, i. e., for the suspended structure, the cables and the towers . 

Therefore, the stiffness and inertia characteristics of the entire 

assembled suspension bridge structure must be determined. 

I-6-1. Modification of structural- property matrices 

a. The modified elastic stiffness matrix of the cable 

With the aid of the displacement model, Eq . 1. 58, the modified 

energy expression, Eq. 1. 118, becomes 

3 " 3 N. ,., L ,,_ J '•' 

{J (t)=.!_ J ) wicli[) () wi [ [f}T [ } dx) 
ce 2 l L H L L H J e q e 

i= 1, 3 w j= 1 e= 1 w 0 

N. 
1 

L 
>!< L T Ni L :i I {£}; [q}e dx J [ L i [!); [q}e dX] 

e=l w 0 e=l 0 

,,, 3 N. .... L 

+ W~cli [ (I+ czi ~•i)L (t ;i ( [£); (q}e ax) 
w e2 j=l e=l w JO 

Ni ::< L T Nz L 

- ZcZi ~:~ ~ :~L [£}; [q}e dx J [ ~ L [£}; [q}e ax] } 

Using the integral of Eq. 1. 80 and the definition of Eq . I. 81 in this 

modified energy expression leads to 
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(1.135) 

or equivalently 

(1. 136) 

where [l~CEJ is the modified assemblage elastic stiffness matrix of 

the cable; it can be defined as 

(1. 137) 

where, again, the index i , indicated between the second set of 

parentheses, is either 1 or 3 . 
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b. The elastic stiffness matrix of the towers 

corresponding to bending of the towers by the 

cable forces 

The strain energy absorbed by the two towers, Eq. 1. 123, due to 

their elastic resistance to the movement of their tops, can be expressed 

in a matrix form by using the displacement model, Eq. 1. 158, as 

follows 

Expanding, and using Eqs. 1. 80 and 1. 81, this expression becomes 

3 2 
1 T [ L (hti stJ (Lei 

vtb(t) = -2 [ r} 3E I L 
t . t" E ·-1 3 1 1 1- • 

or equivalently 

Where [KTBJ is the bending stiffness matrix of the towers ; it is 

defined in Eq. 1. 138. 

(1. 138) 

(1.139) 



-111-

So far, the stiffness and mass matrices have been of order 

NXN , where N is the number of degrees of freedom of the 

suspended structure and the cable, i.e . , the number of unknown 

nodal displacements. The vector of nodal displacement for the 

assemblage [ r}, is of order N X 1 • Even the bending stiffness 

matrix of the tower is of order NXN, since it is expressed in terms 

of the nodal displacements of the suspended structure and the cable . 

I-6-2. Modification of the matrix eguations of motion 

To formulate the overall problem, the stiffness and inertia 

matrices of the towers must be determined. For this, the towers 

are divided into small elements as shown in Fig. I-2-b. The top 

element of the tower must include the equivalent spring which 

simulates the influence of the restraint of the tower by the main 

cable. 

The element elastic stiffness matrix due to flexural rigidity for 

the elements of the tower is the same as that for the elements of the 

stiffening structure, Eq. 1. 65, excepting the matrix for the uppermost 

element which includes the spring effect; the latter is in the form 

12 -6L' -12 -6L' 

E I -6L' 4L' 2 6L' 2L' 2 
[k J . = te te 

te e1 Ld - 12 6L' 12+k . 6L' 
ei 

-6L' 2L' 2 6L' 4L' 2 

i = I, 3 , (1. 140) 
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where Etelte is the flexural rigidity of the individual element; it 

is assumed that Ite is constant along the element. L' is the 

element length. 

The assemblage bending-stiffness matrix for the two towers 

is thus 

Here, 

(1. 141) 

N.1 is the total number of elements in the i th tower leg. 
1 

The nodal displacements can now be written as 

load 

N' 

[rt}::L [qt}e 

e::l 

3 

with N':: L 
i:: 1, 3 

N .' 
l 

(1. 142) 

The element geometric-stiffness matrix due to the compressive 

p then takes the form 
w 

r 36 -3L' -36 -3L' 

-P -3L' 4L' 2 3L' -L'2 
[k J - w (1.143) tg e - 30L1 

-36 3L' 36 3L' 

-3L' -L'2 3L' 4L' 2 

The assemblage geometric-stiffness matrix for the two towers is 

(1. 144) 

The consistent-mass matrix for the element of the tower can 

be written as 



I 

mteL 
420 

156 

-22L
1 

54 

13L
1 
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-22L' 54 

-13L' 

-13L' 156 

-3L'
2 

22L' 

13L' 

-3L' 2 

22L' 

4L' 2 

(1. 145} 

where rote is the element distributed mass per unit length. 

The assemblage consistent mass matrix for the two towers 

is 

Now, the nodal displacements, that is, the unknowns for the 

entire assemblage, may be written in the following partitional form 

( 1. 146} 

where the subvector [ r} is of the order N X 1 , while the subvector 

[rt} is of order N{Xl ;therefore, the order of [i-} is (N+N')Xl. 

To form the overall stiffness and inertia matrices more con-

veniently for both the suspended structures and the cables on one hand, 

and the two towers on the other hand, one can write each matrix in a 

partitioned form. Two examples, one for the suspended structure and 

the cable and the other for the towers, are presented as follows 

(1. 147) 

and 
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c:K J = [-~2ItC2l ___ J 
TE [ O] :, [KTEJ (N+ N 1)X(N+ NI) 

(1. 148) 

Now, performing the same variational procedure as before, the 

assemblage (overall) matrix equations of motion for symmetric 

vibrations may be written as 

= { o} (1. 149) 

or more conveniently 

(1. 150) 

where [:K
5
J is a symmetric, full, positive definite matrix, of order 

(N+N
1
)X (N+N') ; it is defined through Eq. I. 149. Eq. 1. 149 (or 1. 150) 

is subjected to the constraint 

H. (t)L . 
I 1 el 

q(ZN'-1). = ui(t) = E A 
1 c c 

riv. dx. J 1 1 
0 

i = 1, 3' 

which can be written, by the aid of Eqs. 1. 116, 1. 158, as 

(1. 151) 

( 
L . [L3 

:, . T :, . T ] _ I _ el _j_ " 1 " 
q(2N '-1 ). - ui (t) - cli E A H {f}N· ( r} + c2i H (f}Ni ( r} 

1 . cc. 1 w J w 
y= 

:. " T ) 
- _1 (£} (r} 

H N. w 1 

i = 1, 3. (1. 152) 

this is actually the relation between the nodal displacement, q(ZN'-l) , 

at the top of the tower and the nodaldisplacements ( r} of the 



-115-

suspended structure. 

For the antisymmetric vibrations 

A 

[RCE] = [o] and (1. 153) 

and the equation of motion (1. 150) reduces to 

or .. 
[MsHrAS} + [KASJ{;As}= [o} (1. 155) 

where [KAS] is a symmetric, banded, positive definite matrix of 

order (N+N
1

) X (N+N') ; it is defined through Eq. 1. 154. 

The formulation of the eigenvalue problem, for both the sym-

metric and the antisymmetric vibrations, follows similar procedures 

to those which were used in section 1-4. 

The following computation illustrates the application of the 

previous analysis to the overall problem. 

I-6-3. Illustrative numerical example 

To clarify the effect of the flexural rigidity of the towers upon 

the dynamic characteristics of suspension bridges and to show the 

different modes of vibration of the towers , a nume r ical example has 

been worked out for the suspension bridge in Example 2. Additional 

information about the towers follows: 



Itl = It3 = 20, 000 ft~ in~ 

htl = ht3 = 400 ft. 

Etl = Et3 = 29, 600 Kip/in~ 
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wt 1 = wt3 = 4. 0 Kip/ft. 

P = 10, 000 Kips. 
w 

The frequencies and modes of vibration have been computed 

for the symmetric case of the overall problem. The number of 

elements in each tower leg (N.', i= 1, 3), was taken to be 10 elements 
l 

and therefore the length of each element L' is equal to 42 ft. 

The frequencies of vibration and the mainly vibrating members 

corresponding to each frequency, are shown in Table I-4. While 

Table I-3 shows that the effect of the flexural rigidity of the towers 

upon the frequencies of the vertically vibrating stiffening structure 

is comparatively small and is limited to only the first few frequencies. 

The vibrational modes of the system, shown in Fig. I-16, can 

be separated into two groups. In one group, the displacements of the 

stiffening structures are predominant, and in the other group, the 

displacements of the towers are predcminant. Therefore , investiga-

tion of the energy accumulated in the different members of the 

suspension bridge, may require separation of the energies into two 

groups. Fig. I-17-a represents the energy storage capacity of the 

cables and the stiffening structures as one group, including that 

part of the potential energy absorbed by the towers during vibration 

of the suspended structures. The minor (or secondary) role the 

towers play, in the energy storage capacity of vertically vibrating 

bridge is indicated by the dotted line near the horizontal axis. The 

correction in the strain energy of the cable (Eq. 1. 118) can be shown 



Mode 
brder 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
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TABLE I-4 

Natural Periods and Frequencies of Vertical Vibration 

The Overall Problem 

(Symmetric Mode Shapes) 

Frequency Period Frequency 
Member of Dominant 

W(rad/ sec.) T (sec.) £(cps) Vibration 

1. 064821 5.900698 o. 1694 71 center and side spans 
2.255588 2.785608 0.358988 center and side spans 
2.698381 2.328502 0.429461 center and side spans 
5.477865 1. 147013 0.871830 towers 
6.845536 o. 917851 1.089501 center span 
7.081554 0.887261 1. 127064 side spans 

13. 110453 0.479250 2.086594 center span 
15.545536 0.404179 2.474151 side spans 
17.733480 0.354312 2.822371 towers 
21. 470668 0.292640 3.417168 center span 
27.400477 0.229309 4.360928 side spans 
31. 939673 0.196720 5.083367 center span 
33.794722 0.185922 5.378600 towers 
42.697815 0.147155 6.795556 side spans 
44.543139 o. 141058 7.089282 center span 
53.246513 o. 118002 8.474433 towers 
59.322982 0.105915 9.441533 center span 
76.341798 0.082303 12.150225 center span 
81. 392639 0.077196 12.954039 towers 
83. 968655 0.074828 13.363981 side spans 
95. 686260 0.065664 15.229045 center span 

117.471018 0.053489 18.695433 center span 
119.085201 0.052762 18.953034 towers 
140.643156 0.044675 22.383884 side spans 
141. 806416 0.044308 22.569288 center span 
165.742317 0.037909 26.378960 towers 
168.755532 0.037232 26.858616 center span 
197.325764 0.031842 31.405063 center span 
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by a comparison between Fig. I-11-a and Fig. I-17-a; actually it is 

very small. Fig. I-17-b shows the energy storage capacity of the 

towers at different modes, as the other group (when the main 

vibrating elements are the towers}. The very small contribution 

of the negative potential energy of the axial force, p 
w due to 

cable reaction is an interesting phenomena. Actually, the drop of 

the relative kinetic energy in the first two modes is caused by that 

negative potential energy. 

As is seen, there is no situation in which the towers and the 

suspended structures vibrate simultaneously in a common mode; 

however, the towers vibrate opposite to each other so when their 

vibration is significant, the stiffening structure vibration will 

increase. 

It is important to note that in all the previous numerical 

examples the mode shapes obtained by the finite element method 

are distorted in the higher modes because they are determined by 

connecting the displacements at the various nodal points, and these 

nodal points, of course, do not describe all points on the curve; in 

the lower modes, each loop is described by more nodal points, 

enabling a smoother curve. 
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I-7. Appendices 

Appendix I-a 

Cable Profiles of Suspension Bridges and their Associated Properties 

· A single flexible cable suspended between two fixed points is the 

simplest suspension bridge. The initial problem in such a case is to 

determine the form adopted by the cable when it is loaded solely by its 

own weight, and to find the tension in the cable at any point along its 

length. The solution of this problem provides a startihg point for a 

consideration of the effects upon a suspended cable of extraneous 

applied forces, such as the dead weight of the stiffening structures 

of a practical suspension bridge. This appendix is devoted to the 

initial problem of determining the different cable profiles of sus-

pension bridges and their associated properties, as well as discover-

ing the most usable profile. 

1. The Common Catenary 

The curve in which a perfectly flexible uniform cable hangs 

when freely suspended between two fixed points is called a catenary. 

"Perfectly flexible 11 means that the cable resists applied load by 

developing direct stresses only. It follows, therefore, that at any 

cross section the resultant cable force is tangential to the cable pro­

file at that point and acts through the centroid of the cross section. 

"Uniform" indicates that the weight per unit length, W, of the cable 

is constant. This defines the classical problem of the common 
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catenary which was first solved by James Bernouilli, in 1691; the 

earliest published solution was by David Gregory in 1697. 

Consider a cable hanging symmetrically between two fixed 

points at the same level, as shown in Fig. I-a-i. Let 0 be the 

origin for the ordinates x and y . If the cable is treated as inex-

tensible, the vertical equilibrium of the element of the cable shown 

in Fig. I-a-ii requires that 

~(T~) = w ds ds - • (I-a-1) 

where T is the tension in the cable, w is the weight of the cable 

per unit length of the cable curve and * is the sine of the angle of 

inclination, i. e. , sin cp. 

The horizontal component of cable tension, H , is constant w 

since there are no acting longitudinal components of load. 

H = T dx = 
w ds 

constant 

dx 
where ds = coscp . Consequently, Eq. I-a-1 is reduced to 

or 

2 
H ~ = 

w dx2 
-ds -w-

dx 

2 2 .1. 

H ~ = -w[l +(§.Y.) ]2 

w dxz dx 

Since w is constant, the solution of Eq. I-a-3 gives the 

Catenary. Integration of Eq. I-a-3 yields 

-1 ~ w 
sinh dx = - H x + c 1 w 

(I-a-2) 

(I-a-3) 
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i- Definition Diagram 

ii-Equilibrium of an Element 

iii- Cable Profile in a Side Span 

Fig. I-a 
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where c 1 is a constant of integration. 

w £ 
that c 1 = H 2 and 

w 

. -1 dv W s1nh .::::.J-=--
dx H 

w 

£ 
But at x = 2 , 

Integration again, the following can be obtained 

y = - :w cosh [ H: ( ~ -x )]+ c2 

iY-dx - 0 ' so 

(I-a-4) 

where c 2 is another constant of integration. The cable deflection 

at mid-span ( x = ~) is the sag, J , and therefore c 2 =f + 1 and 

y = :w {1 -cosh[;') ~ -xl]} + J . (I-a-5) 

This gives the shape of the curve adopted by the cable. When 

required, the length of the catenary is given by 

£ 2 ],_ 

s = i [1 +(~) ] 2

dx 

0 

(I-a-6) 

Substituting ~ , obtained from Eq. I-a-5, in Eq. I-a-6 and integrat­

ing yields 

(I-a-7) 

The tension at any point in the cable is given by Eq. I-a-2 or 

(I-a-8) 

Substituting the value ~ derived from Eq. I-a-5, Eq. I-a-8 is 

reduced to 
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(I-a-9) 

This tension will be maximum at the ends of the span, where 

x = 0 or x = P. , yielding 

(I-a-10) 

All the above results depend upon a knowledge of the parameter 

for their usefulness. 

2. The Parabolic Cable 

In many practical suspension bridges the total dead weight of the 

bridge, instead of being distributed as though uniform along the cables, 

is distributed more uniformly across the span. Of more practical 

importance than the common catenary, therefore, is the case of a 

cable suspended between two points and so loaded (or with a weight 

per unit length such) that the load per unit of span, P. , rather than 

the curve, is constant. Remarkably enough, although the catenary 

was understood at the end of the seventeenth century, this related 

yet simpler problem was not solved until one hundred years later. In 

1794, a suspension bridge was proposed across the Neva, near 

Leningrad, and it was as a result of considering this proposed bridge 

that Nicholas Fuss published his solution that year. 

Now, consider the cable, as before, to be perfectly flexible 

and inextensible. The vertical load on the element, ds , of the 

-·-
cab le will be wds (instead of w ds which was for the common 
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catenary}. Again, the equilibrium of this element of the cable gives 

and 

T dx = H = constant 
ds w 

Furthermore, Eqs. I-a-11 and I-a-12 give 

(I-a-11) 

(I-a-12} 

(I-a-13) 

* ds When w dx is constant, the profile of the cable is a parabola (which 

is the essence of the discovery made by Fuss). 

However, for flat-sag cables of constant weight per unit length, 

the slope of the cable profile is everywhere small and, therefore 

ds ~ dx 

The differential equation of the equilibrium curve is then 

accurately specified as 

..... 
~,. 

-w (I-a-14) 

The solution of this differential equation, for the coordinate 

system shown in Fig. I-a-i, is the parabola 

w1 x x 2 ~' 2 [ J 
y= 2Hw T -(1) · (I--a-15} 

The cable deflection at mid-span ( x = ~ ) · is the sag , J , and 

the horizontal component of cable tension is 
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>~ 2 
H = w.e 

w Bf (I-a-16) 

The tension at any point in the cable is given by Eq. I-a-8, and 

its value is 

(I-a - 1 7) 

The maximum tension in the cable, occuring at either support, will 

be 

T = ,/Hw2 +(!J;.e)2 
max v· (I-a-18) 

With the aid of Eq. I-a-16, Eq. I-a-15 is more conveniently written as 

4f 
y = - x (£ - x) 

.e 2 
(I-a-19) 

It is worthwhile to note that this equation is also valid for the 

parabolic cable shown in Fig. I-a-iii. 

The length of the parabolic cable is given in general by 

Eq. I-a-6, and in this particular case the total length is therefore 

(I-a-20) 

It is convenient, and sufficiently accurate, to expand the integrand 

of Eq. l-a-20 in a binomial series and then to carry out the integration 

term by term. If this is done, it is found that 

s = £ [1 +~ ({t- ~2 (ft + ... J ' (I-a-21) 
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and for small { ratios, it is sufficient to adopt 

for most practical purposes. 

Similarly, in the more general case when the two ends are not 

on the same level, as shown in Fig. I-a-iii, this formula for s still 

holds provided that both y 1 and the sag J1 are measured from the 

closing chord joined the two end supports. 

3~ Some Other Cases 

In the case of the common catenary, w was constant measured 

along the cable; in the case of the parabolic cable, * w was constant 

measured along the span (horizontal) of the cable. In addition, there 

is the heterogeneous cable in which w is a variable, whether 

measured along the cable or the span. Shortly after solving the 

catenary problem, B ernouilli proceeded to solve this more general 

problem, inquiring into the law of the variation of w associated with 

various possible geometrical forms for the cable. The main result 

from this kind of approach concludes that w measured along the 

ds * cable must vary so that w dx , corresponding to w measured along 

the span, is a constant. A further result of interest is that when 

w(~~)3 is constant, the curve is cycloid. Another example of a 

possible cable profile is the catenary of uniform strength developed 

by Gilbert in 1826, in which the cable's cross sectional area is 

Proportional to the tension acting upon it. But t:bis approach limits 
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the spans of suspension bridge cables, which should be set by con­

siderations other than mathematical limits. 

4. Comparison of Cable Profiles 

The cables of suspension bridges are commonly constructed 

with a uniform cross-sectional area, and thus, if allowed to hang 

freely, they would adopt the form of the common catenary given by 

Eq. I-a-5. But in practice they are often constructed at the site on 

a temporary platform, and the roadway is hung from them by vertical 

suspension rods so that when all is complete, and the structure is 

bearing its own weight, the form of the cables is more nearly 

parabolic. The aim of this erection procedure is to ensure that the 

dead weight of the whole bridge (roughly uniform measured along the 

span) be carried wholly by the cables and suspension rod without 

causing bending actions in any stiffening structures. 

Thus practical interest naturally settles upon the parabolic 

rather than the catenary profile of cable, but there is another reason 

for this. The profiles of the two curves are very similar in terms of 

their ratios of span to sag which fall in the range common in 

suspension bridges (usually 8:1 or more). And since the cable 

profiles are alike, the loads in the cable and in any subsidiary 

structure of the real bridge will also be similar. In these circum­

stances it is natural to adopt the parabolic profile, with its greater 

simplicity and familiarity, as the standard one for suspension bridges, 

and this has become the general custom. 
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Appendix I-b 

The Cable Equation (Compatibility Equation) 

The cable equation provides a compatibility or closure condi-

tion relating the changes which occur in the cable tension to the 

changes in cable geometry when the cable is displaced (in-plane) from 

its original equilibrium position. 

It is seen from the geometry of displacement (Fig. I-2-a), that 

for the static position of equilibrium, the element of length ds. in 
1 

the i th span of the cable can be given by 

2 
ds. = 

1 

2 2 
dx. + dy. 

1 1 
i= 1,2,3. 

When the cable is displaced (in-plane) due to vibration, its length 
OU 

increases to ds. + 6. ds. , dx. increases to dx. +~ dx. where 
1 1 1 1 ux. 1 

1 

u is the vibrational horizontal movement of the element, and dy. 
c ov 1 

c becomes dy. +-d dx. where v is the vibrational vertica.1 movement 
1 x. 1 c 

1 

of the element. Then for the vibrationally displaced position 

2 ou )2 ( ov )2 
(ds. + 6.ds.) = ( dx. + <::> c dx. + dy. + <::> c dxi 

1 1 1 ux. 1 1 ux. 
1 1 

or 

2ds . 6.ds. + (6.ds. )2 = 2dx. :uc dx. + (:uc)
2 dx~ + 2dy. :vc dx. +(:vc)

2

dx~ 
1 1 l 1 x. 1 x. 1 1 ux. 1 ux. 1 

1 1 1 1 

In general u (x., t) is small in comparison with v (x. , t) ; 
c 1 c 1 

therefore the increi;n~nt in the length of the cable element 6.ds. , 
1 

correct to the second order of small quantities, is 
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c 1 c 1 c 1 
au dx. av dy. 1 (av )2 dx. 

ti,ds.!:::- -dx. + - --dx. + - - - dx. 
i ox. ds. i 8x. ds. i 2 ox. ds. i 

i = 1, 2. 3 . 
1 1 1 1 1 1 

Hooke's Law, applied to the element, requires that 

ds. 

H(t) 
EA 

c c 

ds. 6ds. 
1 1 

dx. = ds:- i= 1,2,3. 
1 1 

where H(t) dx~ is the i .ncrement in tension exerted on the element, 
1 

E is the modulus of elasticity of the cable material and A is the 
c c 

effective cross-sectional area of the cable. Consequently, the cable 

equation for the elem.ent reads 

H(t) (ds. )
3 

8u 8v dy. 1 (ov )
2 

__ 1 _ _£+__£ __ l+- _£ . 1 2 3 
E A dx. - ox. 8x. dx. 2 8x. 1 = • • 
cc 1 1 1 1 1 

The effect of a change in temperature can readily be accomodated, 

and the cable element equation then is 

3 2 2 
H(t) (dsi) ouc ovc dyi 1 (ave) (dsi) - =-+--+-- ±E 6T. -E A dx. ox. ox. dx. 2 ox. t i dx. 
cc 1 1 1 1 1 1 

i=l,2,3, 

where Et is the coefficient of thermal expansion and 6 Ti is the 

incremental change in temperature in the ith span. 

The above cable equation may be integrated, for each span, 

to give 

H(t)L . 
e1 

EA 
c c 

i = 1. 2. 3 ' 
' 

Where L . and Lt. are virtual lengths of the ·cable in the i th span 
e1 i 

Which are defined by 
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L . =fQi (ddsi)3 dx. 
e1 x. i 

0 1 

and i=l,2,3, 

and it has been assumed that 6 Ti is uniform along the i th span. 

In the case of a suspended cable, hanging between rigid supports, 

the above cable equation reduces to 

H(t)L . Iii (8v \(dy.) 1J1i (8v \ 
2 

E A ei ::: ox~) dx~ dxi + 2 8x~/ dxi ± Et 6 Ti Lti 
cc 0 1 1 0 1 

Finally, to evaluate L . , the expression for y. is: 
e1 i 

but 

Ji y. ::: 4 -2 x. (£. - x.) 
1 i. 1 1 1 

1 

dyi = 4 Ji - Bf xi 
dx. i. 1 n2 

1 1 .I'.. 

(
dsi)

3
::: 

dx. 
1 

1 

(
ddxs11·.)3 expansion of the series yields 

Hence 

(
dsi)

3 
::: 

dx. 
1 

3 (dyi)2 3 (dyi)4 1 + 2 dxi + 8 dxi + · · · 

i ::: 1, 2, 3 ' 

i ::: 1, 2, 3 . 
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P. )3 £ . (d 2 P. • ( d )4 
Ji (ds. 3 J1 Y·) 3 J1 Y· dx~ dxi = £ i + 2 dx~ cl.xi + 8 · dx~ dxi + · · · 

0 1 0 1 0 1 

2 4 

3 ( 16 Ji ) ( Ji) = P.i + 2 3 ~ + 0 \ + ... 

therefore the virtual length L . is defined by 
e1 

Similarly, for Lti , one can write 

2 

L ,...., P. [ 1 + .!E.. ( Ji ) J ti - i 3 1. 
1 
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Appendix I-c 

An Alternative Approach to the Inextensibility Condition 

To re - examine more critically the use of the expression (Eq. 1. 23) 

(Eq. 1. 23) for an inextensible cable. In the presentations given by 

von K~rm~n, Boit and Rannie [5, 6] it is noted that the initial total 

length of the cable is given by 

(I-c-1) 

and hence, by replacing y . with (y. + v (x., t)) and expanding in a 
1 1 c 1 

Taylor series, the variation 6s , for the entire length, is found to 

be 

3 

6s = :E 
i=l 

dx. 
1 

(I-c-2) 

neglecting higher terms in v. 
c 

Hence, by integrating by parts, noting 

that v = 0 at the two limits of the integral, and by neglecting the 
c 

departure from unity of the denominator of Eq. I-c-2, it is found that 

Where 

6s = 

2 
d y. 

1 -z = 
dx . 

1 

2 
d y. 

1 
-2-
dx. 

1 

(see Appendix I-a, Eq. I-a-14). 

(I-c-3 
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Eq. 1. 23 is identical to Eq. I-c-3 when 6s is zero. 

From a review of the approximations made in this argument, 

it is apparent that the paradox noted has been unaffected by the 

. [ (dyi)2]~ replacement of 1 + dxi in Eq. I-c-2 with unity; the explana-

tion must lie, at least in part, in the neglect of higher-terms in the 

Taylor series for s . If further term is included then 

6s (I-c-4) 

The second term here is, of course, the same as the change in 

length, due to v , of a straight member from x. = 0 to x. = f.. • 
c l l l 

~:< f. . 

Again, the substitution of ( ;i f.1 

vc dxi) for the first of 
w 0 

these two integrals in Eq. I-c-4 depends upon a process of integra-

tion by parts which is strictly legitimate only when ( ::~) and ( ::~) 
l l 

are continuous functions of x. between the limits x. = 0 and x. = .R. • • 
l l l l 

or 

Thus, for an inextensible cable, the further equation 

3 

L 
i= 1 

3 { ,.~ .R.. £. ( 8 )2 } -L :i f\c dxi - ~ f.1 

0=~ dxi = 0 
i= 1 w 0 0 l . 

-·- f.Q i .... . 

w. v 
l c 

0 

3 

dx. = .!. '"' 
l 2 L..,, 

i= 1 

dx. 
l 

is the inextensibility condition for the cable. 

(I-c-5) 
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Appendix I-d 

Effect of Shear Deformation and Rotary Inertia 

The governing equations of motion for the vertical vibration of 

suspension bridges, including adjustments for the effect of transverse 

shear deformations and rotary inertia, will be derived by Hamilton's 

Principle. 

The kinetic energy is due to translation and rotation (Eq. 1. 34) 

and is expressed by 

3 i. . ( !l )2 3 i. . ( 011 )2 1 . 1 * vvi 1 1 ''i 
T(t) = 2 L f mi 8t dxi + 2 L f J gi 8t 

i=l 0 i=l 0 

dx. 
1 

where ~. is the mass of the bridge per unit length of the i th span, 
1 

J . is the mass moment of inertia per unit length of the ith stiffening 
gi 

structure about the neutral axis, v. is the total vibrational displace-
1 

ment and 7]. is the angle of rotation due to bending, i . e. , 
1 

ov. 
1 

-!l- = TJ. + f3. vx. 1 1 
1 

i=l , 2,3, 

with f3. as the angle of distortion due to shear. But J . is related 
1 . gi 

to I . (the moment of inertia of the i th stiffening structure) by 
gi 

m. 
J.=p I =__K!._I . = 

gi gi gi A . gi 
gi 

2 
r . m . 

1 gi 

where p . is the mass density of the i th stiffening structure, 
gi 

m. 
gi 

is the mass per unit length of the ith stiffening structure and r . is 
1 

the radius of gyration about the neutral axis. 
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Furthermore, the variation of T(t) can be written as 

3 £. 

oT(t) = L f 1 4i 
i= 1 0 

The potential energy of the stiffening structure (Eq. 1. 29) is 

3 .R.. ( 0,., )2 3 .R.. ( n )2 1 1 ''i 1 1 vv i 
V (t) = -2 '°"" i E . I . n-- . dx. + -2 '°"" i G . µ . . -n - - 'I']. dx. gv LJ g1 g1 vx. 1 LJ g1 Vl ux. 1 1 

i= 1 0 1 i= 1 0 1 

where E . I . and G . µ_ • are the flexural and shear rigidities, g1 g1 g1 Vl 

. 1 f h . th "ff . H h . . respective y, o t e 1 sti en1ng structure. ence t e variation 

of the potential energy, V , has the form 
gv 

3 £. a'I']. a'I']. 

oV (t) = ~ f E .I.~ o(n 1
)dx. gv L...J gi gi vx. vx. 1 

i= 1 0 1 1 

3 £. (!:'.\ ) (!:'.\ ) " vv. vv. 
+ '" f G · µ . ~ - 'I']. 6 ~ - 71. dx. L...J g1 Vl vx. 1 vx. 1 1 

i= 1 0 
1 1 

It is convenient to consider only these two energies T(t) and 

V (t) since the potential energy of the cable, V (t) , has been dealt gv c 

with before. 

to 

Introducing OT(t) and oV (t) in the variational principle leads gv 
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t 3 tz £ · o (o ) £ • o (<:::. ) 

f2 '"'{I [fl -·- v. v. fl 2 TJ. vT/. 
o(T-Vgv) dt = L...J J_ n\ 0/ o 0/ dxi + J ri mgi 0 / o 0 / dxi 

tl i= 1 tl 0 0 

i. · 011. (011.) -f E I --
1 o - 1 

dx gi gi ox. ox. i 
0 1 1 

f£. (ov. ) (ov. ) J } 
- G . f.r. ~ - 11. o ~ - 11. dx. dt = o 

g1 Vl vX. l vX. l l 
0 l l 

The order of integrations with respect to x. and t is inter-
1 

changeable and the variation and differentiation operators are com- . 

mutative, so one can perform the following integrations by parts: 

t 2 

J
2 .,_ 0 v. 

'I' l = - m. --2- Ov. dt 
i ot i 

tl 

ov. dt 
l 

because Ovi vanishes at t = t 1 and t = t
2 

• In a similar fashion one 

can obtain 

On the other hand, integration over the spatial variable yields 
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[

1. a71• ~a77 .) r1· a77. 8 
E . I . ~ ~ dx. = E . I . a2 -n- (677.) dx. 

gl g1 ux. ux. 1 g1 g1 x. ux. 1 1 
0 1 1 0 1 1 

( 

n 1. 1· n ) 
u7J. 1 1 n u7J. 

1 u 1 
= E . I . - 6 . - - E . I . - 6 . dx. , g1 g1 ax. ) 771 I J ax. ( g1 g1 ax. fll l 

1 b 0 1 1 

Iii (av. ) (av. ) I1i (av. ) 8 
G . µ_ • ~ - rJ. 6 ~ - 77. dx. = G . µ . ~ - f/. ~ (ov.) dx. g1 Vl uX. 1 ux. 1 1 g1 Vl ux. 1 u:X. 1 1 

0 1 1 0 ,. 1 1 

1. (a · ) -fG .µ_. nvi_fl. 677.dx. 
g1 Vl ux . 1 1 1 

0 1 

= [G . µ_ .(:vi - r/.)~ 6v.1i 
g1 Vl ux. 1 J l 

l 0 

1. [ (n )] 1 a uvi -I ~ G . µ_ • a- - 77. Ov. dx. ux. g1 Vl ux. 1 1 l 
0 1 l 

1. n ) 1 uv. -·f G . µ_ . (~ - fJ. 671. dx. g1 Vl ux. l 1 1 
0 1 

Using the above expression in the variational principle produces 

1. n2 1. n2 n 1· 1 .,, u V. 1 Z u fJ. u1'J . 1 -I ~. - 2
1 ov. dx. -f r. m . - 2

1 orj. dx . -(E . I -~)of]. 
i at 1 1 1 g1 at 1 i g1 g1 ux. i 

0 0 l 0 

1. n ~ n 1 l a ufJ. uv. i +I -n (E . I . ~)077. dx. - G . µ .(~ - 17. )] Ov. / ux. g1 g1 ux. 1 1 g1 Vl ux. 1 1 
. 0 1 . 1 i 

0 
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£. [ (a )] 1 a vvi 
+f n- G . µ . n- - T}. Ov. dx. vX. g1 Vl vX. 1 1 1 

0 1 1 

£. (a ) } +f1 
G . µ . a vi - T]. OT}. dx. dt g1 Vl vx. 1 1 1 

0 1 

2:3 jt2 [ 1
1
\ { a [ (av. ) J _,_ 82v. } 

= a G . µ . a2 - T}. - ~- - 2
1 o v. dx. 

X. g1 Vl X. 1 1 ot 1 1 
i= 1 t 0 

1 1 

1 . 

. £.{ [ a a J a2 } 1 a vT}. vv. 2 v T}. 
+f -a-(E .I -~)+G .µ.(~-T}.) -r.m .-2

1 
OT}.dx. vX. g1 g1 vx. g1 Vl vx. 1 1 g1 at l 1 

0 1 1 1 v 

( 
nT}.) f_li 

- E . I . ~ OT}. -g1 g1 vx. 1 
1 0 

[ G . µ . (~vi - TJ. )]oT}. f.\i J dt 
g1 Vl vx. 1 1 

1 0 

Th.e virtual displacements OT}i and Ovi are arbitrary and 

independent, so they can be taken equal to zero at x. = 0 and x. = f. 
1 1 i 

and arbitrary for 0 < x. < .£.. ; therefore, after including the variation 
1 1 

of the cable 1 s potential energy from Eq. 1. 40, one must have 

2 2 * w. ..,,. a v. 
'I' 1 

-m--
i -at2 ( ) 

a v. 
+ Hw +H(t) --f 

ox. 
1 

1 - H H(t) = 0. 

a 
ox. 

1 
( 8f1.) (av. ) 1 1 E.I.-. +G .. -- . -g1 g1 OX. g1 µVl OX. T]l 

1 1 

02f1. 
2 1 

r. m .--2- = 
i g1 at 

throughout the domain. In addition, one can write 

w 

i = 1, 2, 3 • 

0 ' i=l,2,3, 
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( 
oT}. ) 

E . I . ~ OT]. i=l,2,3, 
gi gi xi 1 

r (av. . ) ( ) ov. dy. J IG . µ_ • ~ - T]. + H + H(t) ~ + H(t) d l 

L gl Vl ux. l W X. X. 
1 1 1 

iii= 0 ov. 
1 

0 

i = 1, 2, 3 . 

Eliminating 1]. from the two resulting equations of motion, a 
1 . 

more complete differential equation for the vertically vibrating 

suspension bridge can be obtained as follows: 
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~~ 
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H(t) = 0 H w 
1 i=l,2,3 . 

In this manner, the effect of rotary inertia is represented by 

( m r 2 
84

vi ) , while the effect of shearing deformations is 
gi i 8x~at2 

l 

represented by 

4 a v. 
1 + 

8x~ot2 
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2 2 
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CHAPTER II 

FREE TORSIONAL VIBRATIONS OF SUSPENSION BRIDGES 

II-1. Introduction 

Torsional vibration of a suspension bridge may be produced by: 

a) unsymmetrical live loads such as a traffic load on only one side of 

the bridge roadway, b) unsymmetrical dead loads created during 

erection, c) aerodynamic forces which tend to twist the roadway of 

the bridge about a longitudinal axis, and d) earthquake ground motion 

perpendicular to the longitudinal centerline of the bridge and trans­

mitted through the peirs, foundations, and anchorages to the bridge 

deck and cables. Each of these loading conditions produces vibra­

tional torque of the bridge deck about the longitudinal axis of the bridge 

together with opposed-phase vertical vibration of the two cables. 

As mentioned in Chapter I, the analysis of vertical, flexural 

vibrations of suspension bridges has a long history and is well 

established. However, torsional analyses have been much less 

frequently made; there have been few investigations into, and 

relatively little work published on, the torsional vibrations of sus­

pension bridges. For example, few analytical studies have been 

made to develop formulas for computing the natural frequencies and 

mode shapes, and most of those which have been developed are not 

precise either due to the assumptions involved or due to the type of 
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solution techniques adopted. Standard treatises such as those by 

Steinman [13], Smith, Vincent [11] and Bleich [3] call attention to 

the undeveloped state of torsional analyses, and recent investigations 

such as those of Selberg [ 9] and Irvine [5, 6] imply that the problem 

of the torsional vibration of suspension bridges needs to be treated 

more effectively by either analytical or approximate methods. Thus, 

in spite of the recognition of the problem and intermittent attempts 

at its solution, the state-of-the art of free torsional vibration of 

suspension bridges is, still, not satisfactory. Nonetheless, in order 

to achieve a complete picture of the problem, a brief review of the 

literature (in English) seems appropriate. 

In 1941, in connection with the spectacular failure of the Tacoma 

Narrows bridge, Rannie [8] presented an approximate analysis of the 

free torsional vibrations of a three- span bridge which lacked a lower 

lateral wind-bracing system; in his study, the torsional stiffness of 

the deck was ignored, but the flexural rigidity of the stiffening trusses 

in the vertical planes was considered, and the cables were assumed 

inextensible. 

In 1948, Smith and Vincent [ 11 J extended Rannie' s analytical 

approach by including the extensibility of the cables. They found that 

the simplified approach of Rannie did not agree well with the observed 

torsional frequencies for the Tacoma Narrows bridge and for its model. 

Accordingly, they also modified the analysis to take into account the 

torsional rigidity of the suspended structure. They assumed a linear 

relation between the angle of twist and the torque induced in the 
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suspended structure. The torque was represented by a couple con­

sisting of two equal and opposite forces acting vertically on the two 

stiffening structures; then, when this additional force was added to 

the equation of vertical vibration, with .modified inertia load, the 

torsional equation of motion was obtained. However, Smith and 

Vincent recognized that in an actual bridge, in order to attain any 

substantial torsional rigidity, both top and bottom lateral bracing 

systems must be used, so that the entire deck system would act like 

a rectangular tube. 

In 1950, in a comprehensive work on the theory of vibrations of 

suspension bridges, Bleich [3] , et al., studied the torsional vibration 

of a suspension bridge having a uniform four-truss box deck with heavy 

chord members at the corners. In this structure, bending deforma­

tions resulted from the longitudinal strains in the chord members, and 

shear deformations resulted from strains in the bracing members. 

They assumed that the torque, due to the inertia forces, produced in 

each of the four trusses a bending moment and a torsional shearing 

force, both acting in the plane of the truss. They further assumed 

that the longitudinal stresses in each chord were as a result of the 

bending of the vertical as well as the horizontal truss in which this 

chord participated. These longitudinal stresses were later corrected 

by Steinman [ 13] . Bleich did not obtain the differential equation of 

motion in its most general form, but used an approximate method of 

solution involving a Fourier series to evaluate the first few torsional 

frequencies and modes of motion. This was the first attempt to deal 
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with the torsional vibration of a bridge having a box-shaped deck 

system. 

Later, in 1957, Sih [10] presented a brief paper analyzing static 

torsion in box truss suspension bridges. In his paper, equations were 

derived to determine the stresses in the stiffening trusses due to 

torsion considering cable interaction, and for the first time, the 

effect of warping was considered. Warping involves the longitudinal 

movement of points on a cross section (sometimes it is known as 

bending-torsion). 

In 1959, Steinman [ 13] published a paper in which he presented 

simplified formulas for the calculation of the natural frequencies and 

modes of torsional vibration of suspension bridges. Some of these 

formulas were derived by Steinman in 1941-1943 and were subsequently 

modified (to include box-shaped decks) and tested for simplicity and 

practical usefulness. In his study, he essentially adopted Bleich1 s 

approach. He considered the bending moment contributions of the 

vertical and the horizontal trusses to be equal; however, Steinman 

concluded that when Bleich added the two contributions, he created a 

duplication, identical chords being counted in both the horizontal and 

vertical trusses. 

A recent and extensive treatment of torsional vibration is the 

one by Selberg [9]. In 1961, he deduced the fundamental equations 

of motion of a torsionally vibrating suspension bridge, including 

warping effects. He made a significant modification by adopting both 

Bleich1s approach and Steinman' s approximate method of analysis, in 
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a. very careful and precise way. In fact his work was the first to 

provide major refinement of the previous approaches and was also 

the first to treat the problem of torsional vibration of suspension 

bridges in as general a manner as possible. 

In 1974, Irvine [ 5, 6] made a detailed analysis of the response 

of the boxgirder, single-span suspension bridge to static torsional 

loading, and he later developed a linear theory for the free torsional 

vibration of this type of bridge. He considered the deck to be a thin­

walled box-girder of elliptical cross section and assumed there would 

be no warping associated with torsion. 

In the following analysis, two further advances in the analysis 

of torsional vibrations of suspension bridges have been made: 

1. A theory of free torsional vibration for a wide class of sus­

pension bridges, having double lateral systems, is developed 

taking into account the warping of the cross section. Certain 

simplifying assumptions are made, and Hamilton's Principle is 

used to derive the equations of motion and the associated boundary 

conditions. Solutions of the differential equations are obtained. 

2. A method of dynamic analysis based on the finite element 

approach is developed for calculating the natural frequencies 

and modes of free torsional vibration. 

In addition to the theoretical analysis, some approximate equa­

tions and formulas are derived which help to clarify the torsional 

behavior of suspension bridges. Finally, a numerical example is 

presented. 
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II-2. Preliminary Considerations and Fundamental Assumptions 

The main aim of this section is to present a brief description of 

the different types of suspended structures (or bridge decks) commonly 

used in modern long-span suspension bridges. These suspended 

structures have a very significant role in resisting torsional vibrations. 

The section is also intended to outline the coordinate systems used, 

and it contains the simplifying assumptions involved in the subsequent 

analysis. 

II-2-1. Types of suspended structures and their torsional 

resistance 

The old type of suspended structure (bridge deck), consisting of 

two stiffening girders (or trusses) 'and a single lateral wind bracing 

system below the floor stringers, had so small a torsional rigidity 

that its effect on torsional vibrations could be disregarded [2, 8, 11, 13]. 

The only restoring forces provided by the deck came from the bending 

resistance of the stiffening girders (or trusses). Accordingly, the 

principal torsional modes in this case are identical to the correspond­

ing vertical modes, except that the two sides of the deck and the two 

cables each move in opposite directions, i.e., 180° out of phase. 

Certain differences between the frequencies of these two comparable 

modes - flexural and torsional - arise, however, from the different 

inertial conditions involved. In the flexural mode, the vertical motion 

of the deck is uniform across any one cross-section; in the torsional 

!node, one side is rising when the other is going down, and the mid­

point of the deck remains stationary. 
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Modern long-span suspension bridges frequently have decks 

which are comprised of two lateral wind-bracing trusses provided 

in the horizontal planes of the top and bottom chords (or flanges) of 

the stiffening trusses (or girders). This four-walled bridge deck 

represents a rectangular tube of high torsional rigidity which has 

a significant effect on torsional vibrations. 

Fig. II-1 shows two examples of the rectangular deck: one 

with stiffening plate-girders and the other with stiffening trusses. 

Two lateral bracing systems, of truss type, are in the plane of the 

top chord and the plane of the bottom chord. Fig. II-2 shows 

commonly used types of stiffening trusses and lateral bracing systems. 

II-2-2. Coordinate systems 

In this chapter, the dead load ordinate of the cable, measured 

from the closing line to the cable of the i th span, is defined as Y. (x.) 
c i 

to avoid confusion with the yi -axis of the deck cross section shown 

in Fig. II-3. (Note: In this figure, the subscript i has been left out 

f . ) Th . f h . th . . d . th th or convenience. e x. -axis o t e i span coinci es wi e 
i 

longitudinal axis of the bridge (i.e., the axis of rotation); this is the 

axis along which there is no movement. The coordinate origin for the 

deck is located at the left support of each span, while for the cable it 

is located at the left support of the cable whether it is an anchorage or 

a tower top. Beside the x. , Y: and z. coordinate system of the 
1 i 1 

de k . th . th dd" . 1 d" f h . th c t t t J. or t e i in e i span, an a i iona coor ina e sys em 
1 

span is established along the perimeter of the section of the suspended 
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structure as shown in Fig. II-4. This peripheral coordinate ;j . 
1 

is :measured clockwise along the centerline of the cross-section 

walls. 

II-2-3. Simplifying assumptions 

When a rectangular bridge deck, having one or more cross 

sections constrained against warping, is vibrating torsionally, a 

complex distribution of longitudinal stresses is developed that 

cannot be evaluated using elementary theories of stress analysis. 

The assumption that plane sections remain plane during deformation 

is no longer valid, and applications of Saint- Venant' s Principle may 

lead to serious error. The well-known example of the twist of a 

cantilever I-beam that is built-in at one end illustrates the nature 

of the problem. 

Finding an exact solution of the problem of free torsional 

vibration of a suspension bridge having a rectangular deck structure 

is not possible. Certain simplifying assumptions must be introduced 

in addition to the fundamental assumptions adopted in the analysis of 

vertical vibration (Chapter I). Not only is it assumed that the hangers 

are vertical and inextensible, the cables parabolic, and only small 

deformations allowed, but also the following simplifying assumptions 

are introduced: 

1. The cross section of the bridge deck is assumed to be symmetric 

about the center of the section. This cross section consists of 

four horizontal chords (or flanges), and four shear web 

systems (either diagonal and vertical truss members or web 
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plates). The two chords (or flanges) of each stiffening truss 

(or girder) in the ith span have the same effective cross-

sectional area A. , i = 1, 2, 3, and the web members of the 
1 

top and bottom bracing systems are also the same. Accordingly, 

Y: and z. , i = 1, 2, 3, are axes of symmetry of the four-walled 
1 l 

structure shown in Fig. II-3. 

2. The four horizontal chords (or flanges) transmit axial forces 

only, and the axial stresses in each chord (or flange) are 

distributed uniformly over its cross-sectional area A. , 
1 

i = 1, 2, 3 . 

3. The web systems of the vertical walls (either plates or trusses) 

and the horizontal walls (usually trusses) transmit pure shear 

(there is no tension or compression in the horizontal or vertical 

directions). Also, the shear stress is constant through the web 

system. Thus, the shear stresses are in the web systems only, 

while the direct stresses are in the corner chords (or flanges). 

4. The original shape of every cross-section is unaltered during 

vibrational deformation. Thus, the geometric dimensions of 

every plane normal to the bridge 1 s longitudinal axis remain 

uµchanged, although the section may undergo out-of-plane 

deformation (warping). Also, the peripheral bending in the 

walls of the section is negligible. 

In view of the last assumption regarding rotation and out-of-plane 

deformation of the cross-section, it follows that the vibrational angle 

of twist, e. ' i = 1, 2, 3, of a cross section in the ith span and the Y: 
1 1 

z. components of the vibrational displacements v. and w. are 
1 l 1 
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functions only of xi and of time t , while the longitudinal vibrational 

dispi.acement ui is a function of ji , x . and time t . 
1 

Other assumptions will be discussed as they are encountered in 

the development of the analysis. 
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i!I~3. Analysis of Suspension Bridges Having Negligible Tower 

Stiffness 

The following analysis assumes either that the cable rests on 

nests of rollers at the tower top (i.e., with a movable saddle) or that 

the tower is of the rocker type with a pin-bearing at the base. In both 

cases, the horizontal components of cable tension, H (due to dead 
w 

load) and H(t) (due to inertia load), are the same on both sides of the 

tower since there is no tower resistance to displacement at the top. 

The equations of motion of the torsionally vibrating suspension bridge 

and the associated boundary conditions will be derived by means of 

Hamilton's Principle: 

tz 
J o(T-V)dt = o 
tl 

(2. 1) 

where T is the total kinetic energy of the torsionally vibrating bridge, 

V is the total potential energy of the system, including both the strain 

energy and the potential energy of any conservative forces, and 6 is 

the variational operator taken during the indicated time interval. 

The kinetic energy T consists of two parts: the kinetic energy 

Tc of the two cables vibrating in their vertical planes, 180° out of 

phase, and the kinetic energy Ts due to the rotation of the entire cross 

section of the suspended structure. Similarly, the potential energy of 

vibration V consists of two parts: the potential energy V of the 
c 

vibrating cables and the potential energy V of the elastic deformation 
s 

of the torsionally vibrating suspended structure. 
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II-3-1. Potential energy of the suspended structure 

Based on the previous simplifying assumptions in Section II-2, 

the elastic potential energy Vs , i.e., the strain energy stored in the 

deck, can be divided into two parts: V the strain energy due to the 
SC 

direct longitudinal stresses in the corner chords (or flanges) and Vsd 

the strain energy due to the shearing of the web system of both the 

stiffening trusses (or girders) and the lateral bracings. 

The total strain energy V of the suspended structure is corn­s 

puted by summing the strain energy of each of the individual com-

ponents of the cross section. Thus, V is given by 
s 

(2. 2) 

where cr. and E. are the direct longitudi.nal strain and stress due to 
1 1 

a non-constant rate of twist measured at the cross section of each of 

the four corner chords (or flanges) in the ith span; T . and y . 
Vl Vl 

are the torsional shear stress and strain in the web system of the two 

vertical walls (stiffening trusses or girders) in the ith span, and 

1inally, Thi and 'Yhi are the shear stress and strain in the web 

system of the two horizontal walls (lateral bracings) in the ith span. 

The summations extend over all three spans. In general, the shear 

stress and strain in the four walls dependonthe effective cross-

sectional area of the web plate for a plate girder type. In the case 

of a truss they depend on the equivalent solid web section, i.e. , on 

the sectional area of the diagonal members or of the truss panel 

rnembers. 
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The first term in Eq. 2. 2, as indicated above, is the portion of 

the strain energy V stored in the four chords (or flanges), i.e . , 
SC · 

the strain energy associated with warping, while the second and third 

terms are the portions of the strain energy Vsd stored in the web 

system of the two vertical and the two horizontal walls, respectively. 

In order to further evaluate V , a knowledge of direct and s 

shearing stresses resulting from torsional vibration, in terms of the 

vibrational angle of twist, e. ' i = 1, 2, 3, must be specified. 
i 

1. Stress-Strain Relationships 

From a consideration of the deformation of an element of length 

dx. in both the vertical and horizontal web systems, illustrated in 
i 

Fig. II-4, the vibrational shear strain due to the warping displacement 

u. and the twist e. about point 0 in the vertical system of the cross-
1 i 

t . . th . th b d sec ion in e i span may e expresse as 

Tvi ov. ou. 
'):' =--=--i+ __ i 
vi G. ox. oj.. 

i i i 
i = 1, 2, 3 (2. 3) 

Here G . is the shear modulus of the i th 
i 

span, v. is the vertical 
i 

vibrational displacement of the vertical system and u . is the vibra­
i 

tional axial displacement of the corner chords (or flanges) in the i th 

span. This axial displacement is the same (excepting the sign) for 

each of the chords in any given cross-section. From Fig. II-4-a, for 

the vertical system, it can be seen that 

b. 
l v.(x. ,t)=-2 e.(x.,t) 

i i i i 
i=l,2,3, 

where b. is the width of the deck in the i th span. 
l 

(2. 4) 
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The shear strain due to warping displacement u. in the 
1 

vertical system is given by 

au. 2u. 
1 1 = aJ. d. 
1 1 

i=l,2,3' 

where d. is the depth of the deck in the i th span. 
1 

(2. 5) 

The vertical vibrational shear force S . is equal to the product 
Vl 

of the shear stiffness and the shear strain; i.e., 

S .(x.,t) = G.µ. ')' .(x.,t) , 1 = 1,2,3, 
Vl l l Vl Vl l 

(2. 6) 

where µ . is the shear resistance coefficient of the vertical web 
Vl . 

system and G. µ . is the shear stiffness of the wall. The value of 
l Vl 

the shear resistance coefficient depends on the effective cross-

sectional area of the web plate (plate girder type). In the case of a 

truss, f.L • depends on the equivalent solid web section, i.e., on the 
Vl 

sectional area of the diagonal member or members in a truss panel. 

In the latter case µ . also depends on the type of truss system used. 
Vl 

Appendix II-a demonstrates the shear resistance coefficient for the 

different types of trusses commonly used in stiffening trusses and in 

lateral bracing systems. These types are shown in Fig. II-2. 

Substitution of Eqs. 2. 4, 2. 5 and 2. 6 into Eq. 2. 3 yields 

S . b. 80. 2u. 
')'= Vl 1 lt l 
vi G.µ . = T ox. d. 

l Vl l l 

i= 1,2, 3. (2. 7) 

Similarly, the vibrational shear strain in the lateral system is 

given by 
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Thi" ow. OU. 
- l + __ 1 

'Xh1" =-G. - -<:::.- <:::.;1 
UX. U;>. 

1 l l 

i = 1, 2, 3 . (2. 8) 

Bere wi is the horizontal vibrational displacement of the lateral 

system, and can be expressed as 

d. 
w. (x., t) = 2

1 e. (x., t) 
l l l l 

i= 1,2,3. (2. 9) 

From Fig. II-4-b, the shear strain due to warping displacement 

u. in the horizontal wall can be written as 
l 

OU. 
l 

od. 
l 

= 
2u. 

l 
-b. 

l 

i = 1, 2, 3 . (2. 10) 

The horizontal vibrational shear force Shi can be expressed as 

Sh. (x., t) = G . µh. y,h. (x., t) 
1 l l l l 1 

i = 1, 2, 3 • (2. 11) 

with µhi being the shear resistance coefficient of the horizontal web 

system. 

Substitution of Eqs. 2. 9, 2. 10 and 2. 11 into Eq. 2. 8, yields 

Sh
1
. d. o0. 2u. 

l l l 

yhi = G.µh. = T ox. - b. 
l l 1 1 

i = 1, 2, 3 . (2. 12) 

Now, the direct axial strain E. and stress a. due to warping 
l l 

in the corner chords (or flanges) of the ith span are 

OU. 
E = __ 1 

i ox. 
1 

ou. 
a = E. E. = E - 1 

i l l i ox. 
l 

i = 1, 2, 3 (2. 13) 

where E. is the modulus of elasticity of the deck in the i th span. 
l 

The axial force F. acting at each chord (or flange) of the i th span 
l 

as shown in Fig. II-3, is given by 



au. 
l 

F. = E. A. -a-
1 l l x. 

l 
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i= 1,2,3' (2. 14) 

where Ai is the equivalent cross-sectional area of the corner chord 

(or flange). 

Since the total axial force in the deck structure must equal 

zero at any section, the following relation must hold 

= .th 
-v- i span (2. 15) 

where A is the entire cross-sectional area. 

z. Equilibrium Relationships 

At a section of the i th span there are two shear forces S . 
Vl 

that form a couple, and two shear forces Shi that form another 

couple, and there are four chord forces F. 
l 

The two couples have 

a resulting twisting moment Mti" 

From consideration of the equilibrium of an element of length 

dx. , located at the corner chord (or flange) as illustrated in 
l 

Fig. II-5-c, it can be seen that 

i = 1, 2, 3 ' 

and the equilibrium of the torsional moment gives 

Mt. = S . · b. + Shi · d. 
l Vl l l 

i = 1, 2, 3 

(2. 16) 

(2. 17) 

Eqs. 2. 16 and 2. 17 express the two equilibrium relationships for 

the various vibrational forces. 

The next step is to express the forces F. , S . and Sh. , and 
l Vl l 

accordingly Mti , in terms of the vibrational angle of twist ei . 
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3. Force-displacement Relationships 

Multiplying Eq. 2. 7 by d. and Eq. 2. 12 by b. and then adding 
l l 

yields: 
oe. d. b. 

bd l ls+ ls 
· ·-n-= G . G h1· l l vX. µ. . . Vl µh. • 

l Vl l l l 

i= 1,2,3. (2.18) 

Substitution of Eq. 2. 18 into Eq. 2. 16 then gives 

2 2 
aF. b. oe. ( b. µ .+d. µh.) -2: = ..2 µ, G _1_ - l Vl l l 
ax. d. vi i ax. b.d.#-£ .LL • 

i i i i i v1'h1 

i = 1, 2, 3 ' (2.19) 

or 

i= 1,2,3. (2 . 20) 

[ntroducing the coefficient f3. as 
1 

b.d.µ .µh. 
P.= llVl 1 
t-'i 2 2 

b. µ . + d. µh. 
l Vl 1 1 

i = 1, 2, 3 ' 

into Eqs. 2. 19 and 2. 20 gives the following 

oF. b. o9. µ . 
1 1 1 Vl 

-=-µ G -- ---S ox. d. vi i ox. f3.d. hi 
l l 1 1 1 

i = 1, 2, 3 ' 

and 

oF. -d. o~\ µhi 
_1=-1µ G--+ S. 
OX. b. hi i OX. f3. b. Vl 

1 1 1 1 l 

i = 1, 2, 3 . 

(2. 21) 

(2. 19 ') 

(2. 20 
1

) 

Differentiating Eq. 2. 7 twice and Eq. 2. 14 once ( w.r ·t .xJ. 
combining the two equations, and then substituting Eq. 2. 20' in the 

resulting equation obtains: 



o9. 
l 

S = G. 13. d. -n -vi i i i ux. 
l 

b.d.13. 
l l l 

E. A. 2µ 
l l hi 
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3 

(

b. o a. 
1 l l 

T :-3- µ .G. 
ux. Vl l 

l 

o
2

S ·) Vl 

2 ox. 
l 

i = 1, 2,3 . 

(2. 22) 

A similar expression for Shi can be obtained by using the same 

procedure; it can be written as 

oe. 
l 

Sh
1
. = G. f3. b . -n -

l l l ux. 
l 

o3a b.d.13. (d. . l l l l l 
- Ei Ai 2µ . T -3-

v1 ox. 
l 

1 
µ .G. 

Vl l 

2 
o Shi) 

2 , 
ox. 

l 

i = 1; 2, 3 . 

(2. 23) 

Differentiating Eqs. 2. 22 and 2. 23 twice and substituting the 

resulting expressions for the last term in each equation results in a 

final expression for the torsional shearing forces, given in terms of 

e . . 
l 

s . = 
Vl 

oai b.d.13. (b. f3. b.) o3e. 
G. 13. d. -- - E. A. i i i __! - --2:._! __ 1 

l l l ox. l l 2µ . 2 µ . <:I 3 
l Vl Vl ux. 

l 

( 
b.d.13.)2(b. f3.d.) o

5e. E A i i i __! _ --2:._! __ . _
5

_1 + 
i i 2µh. 2 µ . <:I 

l Vl ux. 

1 
G.µ . 

l Vl 
l 

oei b.d.f3. (d. 13. b.) o3e. 
G 13 b --- EA iii__! _ __!__!_ __ 1 

i i i ox. i i 2µ . 2 µ . <:I 3 
l V1 V .l ux. 

l 

1 ( . b.d. j3.)
2

(d. f3.b.) o
5

8i ___ EA i11 __! _ __!__!_ __ + 
G. µh. i i 2µ . 2 µhi n 5 

l l Vl ux. 
l 

i = 1, 2, 3. 

('2. 24) 

i = 1, 2, 3 . 

(2 . 25) 

The Saint-Venant shear forces are now given by the first term 

of both Eqs. 2. 24 and 2. 25; i.e., they are proportional to the rate of 

twist. 

Neglection of terms of higher derivatives than 3 is identical to 

the usual neglection of shear defor.rnation of beams. Consequently, 
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d 1 -EA lll _1 _ __!_! 
S == G. j3. · -a - • • 2 2 

0
30. 

l 
-3- i :=: I, 2, 3 . 

aa. b.d.13. (b. 13.d.) 

vi l 1 1 vxi l 1 f.b.i µvi ox. 
l (2. 24 I) 

1 l l l 1 
S == G. f:L b. n- - E. A. 2 -2 

1 l l i==l,2,3 
80. b.d.j3. ( d. 

hi 1 1 1 vx. 1 1 µ . 
1 Vl 

3 
13.b.) a a. 

- µh. :--r 
1 vx. 

1 (2.25
1

) 

Introducing expressions 2. 24 'and 2. 25' into Eq. 2. 17, Mti 

1.:an be written as 

3 
06. A. b. d.13. [ b . . (b. 13.d.) d. (d. 13. b. )] a e. 

1 l l l l _1_ -2:. - --2.:.2. + _1_ -2:. - --2:._2:. __ 1 M . == 2G. j3. b. d. n- - E. 2 2 2 3 • 
ti l l l l vx. 1 µh. µ . µ . µh. <:I 

l l Vl Vl 1 vx. 

The warping displacement 

i :=: 1,2,3. (2. 26) 

u. of the cross-section in the ith 
l 

span is given by 

di ( 1 b. 80. ) - s . l 1 
ui - T µ . G. Vl - T ax. ' 

Vl l l 

i == 1, 2, 3 ' (2. 7,) 

or 

l 

b. ( 1 d. 86. ) l l 1 
u ==- s ----

i 2 µh. G. hi 2 ox. ' i == 1,2,3. (2. 12 I) 

1 1 l 

Usingtheexpressionsfor S. and Sh. (Eqs. 2.24' and 2.25'), 
Vl l 

Eqs. 2. 7' and 2. 12 
/ 

can be expressed in terms of 6. as follows: 
1 

2 3 
d. ( 13. d. b. ) a e. A. b. d. 13. ( 13. d. b. ) a El. u. = -2:. --2:._2:. _ -2:. __ 1 + E. i 1 i i ..2:...2:. _ .-2:. __ 1 

i 2 µ . 2 ox. i 4µ .µh. G. µ . 2 a 3 
Vl l Vl 1 1 Vl vx. 

1 

i = 1, 2, 3 ' 

(2. 27) 

or 

2 
b. ( d. 13. b.) ae. A. b. d.13. ( d. 13. b.) u. = -2:. -2:. _ __!_! _1 + E i l l i -2:. _ --2.:.2. 

i 2 2 µh . ox. i 4µ .µh.G. 2 µhi 
1 1 Vl 1 l 

a3e. 
l 

-3-
ox. 

1 

i= 1,2,3. 

(2. 28) 
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Appendix II-b gives a proof showing that expressions 2. 27 and 

z. 28, for the longitudinal warping displacement, are identical. 

The axial force F. can now be obtained by substituting Eq. 2. 27 
1 

or z. 28 into Eq. 2. 14 to get 

or 

2 2 4 
1 1 1 1 1 1 1 d. ({3. b. 

F - E.A. T µ 
1 1 1 vi 

b. )0 9. ( )2 b.d. {3. _ _2 __ 1+EA 111 

2 n 2 i i 4µ . µh. G. 
vX. Vl 1 1 

(
f3.d. b.) 8 9. 

µ.-T-:4' 
Vl ox. 

1 1 

2 2 
b. (d. {3.d.) 8 9. ( )2 b. d.{3. 

F=EA _2_2_-1:__!_ __ 1+ EA 111 
i i i 2 2 fJh. n 2 i i 4µ .µh.G. 

' 1 vx. Vl 1 1 
1 

i=l,2,3, (2.29) 

4 

(
d. {3.b.) 0 9. 

1 1 1 1 

T - µh. -:--4 , 
1 vx. 

1 

i = 1, 2, 3 ' (2. 30) 

Now, all displacements, strains, stresses and forces are 

expressed in terms of the vibrational angle of twist 9 .. 
1 

Neglecting the high derivative terms in the above expressions for 

u. , leaves 
1 

d. ({3.d. b.) o9. o9. 
1 11 1 l - l u ,...,_ ---- -- =u --

i - 2 µ . 2 ox. i ox. 
Vl l l 

or 

b. (d. {3. b.) o0. o0. 
l 1 11 l - l u--------=u--

i - 2 2 µh. ox. i ox. 
l 1 l 

i = 1, 2, 3 ' (2.31) 

i = 1, 2, 3 ' (2. 32) 

where u. is now the warping per unit rate of twist of the i th span. 
l 

a. Strain energy of the chords (or flanges) 

The strain energy V stored in the corner chords (or flanges) 
SC 

of the cross section, due to direct (torsion-bending) stresses, may be 
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e:x:pressed as: 

(2 . 33) 

using the linear stress-strain law (Hookean elasticity). 

Using Eqs. 2. 13, 2. 31 and 2. 32, the direct strain E and stress 
l 

a. due to a non-uniform rate of twist become 
l 

a
1
. = E. u. 

l l 

a2e. 
l 

-2-
Clx. 

l 

i= 1,2, 3 . (2. 34) 

Therefore, the strain energy associated with warping can be 

written, with the aid of Eq s. 2. 31 through 2. 34, as 

3 Q 2 2 1 ""{ (i [d. (~.d. b.) a e.] 
Vsc(t) =IL.I J 2Ei Ai ; : .1 - 21 -f dxi 

. l Q Vl OX. 
i= l 

or 

1 ~{f1\ [ d~(~.d. b.)
2 b~(d. ~.b.)2 J(a 2a.)

2 

l 
Vsc (t) = 2,LJ Ei Ai T µ1 ~ - 21 +Ai T 21 - µ1h.1 a 21 dxif' 

· 1 0 Vl l x. i= l 

(2 . 35) 

or equivalently 

(2. 36) 
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where r. is the warping constant of the cross section in the i th 
1 

span (sometimes called the torsion-bending constant); it is expressed 

by 2 2 2 2 
d.(13.d. b.) b. (d. 13.b.) 

f = A --2:... 2....2:. - _!. + A --2:... _!. - 2....2:. 
i i 2 µ . 2 i 2 2 µh. 

Vl 1 

i = 1, 2, 3 . (2. 37) 

The warping constant has units of length to the sixth power. The 

Product, E. r. , in Eq. 2. 36 is called the warping rigidity of the 
1 1 

t . . th . th Th . f h . cross sec ion in e i span. e expre ss1on or t e warping 

constant, 

a 3 ~L 

r. , (Eq. 2. 37) is the same as the coefficient of 
1 

Ei---:/- in the second term of the vibrational torsional moment 
ox. 

1 

(Eq. 2. 26). Appendix II-c contains a proof of this equality. 

b. Strain energy of the web systems 

The strain energy Vsd stored in the web system of both the 

' vertical and the horizontal walls of the cross section, using a linear 

stress-strain law, is given by 

or 

(2. 38) 

Using Eq s. 2. 24' and 2. 25 ' and noting that 
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s . 
Vl and (2 . 39) T. --

Vl µVi 

then Eq. 2. 38 can be written as: 

1 L:
3 {f.ei µ, . [G.13.d. ae. Vl 111 1 

V
5
d(t) :: 2 2 G. µ . ox. -

i= l Q 1 Vl l 

b.d.{3 . (·b. 13 .d.) a3e. ] 2 
E A l l 1 2. _ __!__! __ 1 dx 

i i 2µ .µh. 2 µ . n 3 i 
Vl 1 Vl vx. 

1 

fP.. µh. [G.13. b. ae. b . d.f3. (d. 13. b. ) a3e. ]2 
} + 2 _1 111_1_EA 111 2._...2:.2. __ 1 dx 

G . µh. ox. i i Zµ . µh . 2 µ h" n 3 i 
O 1 l 1 Vl 1 1 vxi 

(2.40) 

Neglecting terms with higher derivatives than the first is 

identical to assuming that these shear stresses due to twisting are 

equal to those in St. Venant' s theory of torsion. Therefore, the 

strain energy, in accordance with St. Venant' s theory of uniform 

torsion, will take the form 

1 1 2 i i i 3 { P.. [ dz b2 J ( ae · )2 } 
Vsd(t)" 2~ ~ 2 Gi ~i µvi +µhi axi dxi 

• (2. 41) 

Recalling the definition of the coefficient 13 . (Eq . 2. 21 ), the 
1 

strain energy expression (Eq. 2. 41) becomes 

Defining the torsion constant J . as 
l 

J.:: 2(3 . b. d. 
l 1 1 1 

(2. 42) 

(2 . 43) 
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then Eq. 2. 42 can be written in a more convenient form as 

(2. 44) 

Here, G. J. represents the torsional rigidity of the cross section in 
1 1 

.th the i span. 

The torsional strain energy can also be examined within the 

framework of St. Venant' s theory of uniform torsion which gives an 

alternative way to derive Eq. 2. 44. The shear stresses due to 

twisting are assumed to be the same as in St. Venant' s theory and 

the resultant of these shear stresses is a torque which is expressed 

by the first term of Eq. 2. 26; i.e., 

ae. 
1 

Mti~ 2 G. (3. b. d. -!:l -
1 1 1 1 ux. 

l 

or 
ae. 

r..J 1 
Mt1· = G. J. --::i -

1 1 ux. 
1 

i = 1, 2. 3 . 

(2. 45) 

The strain energy for an element of the bridge deck of length dx. 
1 

is necessarily equal to the work done on the element by the torque 

Mti . Therefore, vsd for the entire bridge deck is 

(2. 44 ') 

Which is exactly the same expression obtained previously (Eq. 2. 44). 

Returning to the derivation of the total strain energy stored in 

the torsionally vibrating suspended structure, Eqs. 2. 36 and 2. 44 are 

summed to give: 
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(2. 46) 

It is worthwhile noting that in the St. Venant type of torsion the 

torque is constant along the beam and the sections of the beam are 

permitted to warp freely. When the warping is restricted by physical 

constraints at the ends of the beam, normal stresses arise in addition 

to the shear stresses, and they contribute an additional resistance to 

twisting. This same effect is caused by variations in the applied 

torque along the beam such as a torque caused by inertia forces 

resulting from vibration. The warping effect is completely absent 

from beams of circular cross section whose normal sections remain 

plane during torsion, but it is very important in box-shaped cross 

sections. 

ll-3-2. Potential energy of the cables 

In torsional vibration, corresponding points on the two cables 

move equal distances in opposite directions. For small torsional 

amplitudes the movement of any point is essentially vertical and the 

variation of amplitude along the cable is the same as for the corre-

sponding pure vertical vibrational modes. Thus, the two cables vibrate 

in their vertical planes in opposite phase with antisymmetric vertical 

movements of ±v. , i = 1, 2, 3 . The downward movement of the cable 
1 

tends to increase its length by bending the cable m.ore sharply while 

at the same time the upward move1nent tends to reduce its length by 

straightening the cable. The total potential energy, V, of the two 
c 
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vibrating cables is composed of the potential energy of the depressed 

cable, Vd , and the potential energy of the elevated cable, Ve . 

If c Hw(~) is the tension of the cable under deal load :t 

a point along the i th span, and ± H(t)(::~) are the vibrational 
1 

increments in cable tension for the depressed and elevated cables, 

respectively, then the potential energies Vd and Ve stored in 
c c 

caole length dx. , are 
1 

d >:< 
6d s. - w . v. dx. 

1 1 1 1 

and 

{[ J ds.} ... e 1 i e ,,, 
dV (x., t) = H - 2 H(t) -d · 6d s. + w. v. dx. 

c 1 w x. 1 1 1 1 
1 

i = 1, 2, 3 ' 

(2. 4 7) 

i = 1, 2, 3 ; 

(2 . 48) 

H is the horizontal component of cable tension owing to dead load, 
w 

H(t) is the vibrational increment in the horizontal component of cable 

* tension, wi is the total dead weight of the bridge per unit length 

per cable, and 6dds. and 6des . are the vibrational increments in 
1 1 

the length of the depressed and elevated cables, respectively. Using 

the results of the analysis given previously in Chapter I which deals 

with vertical vibration, the potential energy Vd stored in the 
c 

depressed cable can be given in the form 

3 .R.. 0 2 

Vd(t) = _!_ '""'{H . f1(-2.) dx. c 2L..J w ox. 1 

i=l 0 1 

[ 
e. d o .R. ( <;.) 2 

fl( Y )( v.) l Ji vv.) 
+ H(t) dx~ ox~ dxi + 2 ox~ dxi 

0 1 1 0 1 

J} ' (2 . 49) 
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.dy c th 
where -- is the dead load slope in the i span of the cables. 

dx. 
l 

The relationship between H(t) and v.(x., t) is expressed by 
l l 

the cable equation which relates the elastic stretching of the cable to 

the vertical vibrational displacement, as follows: 

H(t)LE = ~ [fP..(dyc)(ovi) dx. + .!.fP..(ovi)2 dx. J 
E A L..J dx. ox. i 2 ox. i 

c c i= 1 0 l l 0 l 

(2. 50) 

Here, E is the modulus of elasticity of the cable, A is the area of 
c c 

one cable cross section and LE is a virtual length of the cable defined 

by 3 

LE=L 
i=l 

After substitution of -v. and -H(t) for v. and H(t) , 
l l 

respectively, in Eq. 2. 49, an expression for the potential energy 

of the elevated cable Ve is obtained as 
c 

The total potential energy, 

P. . d (l £. ((l )2 } l Y, vv. 1 l uv. 

H(t) [- r (dx~Xox~) dxi +z-i ox~ dxi J . J0 i i 0 i 

V stored in the two cables of the 
c 

(2. 51) 

torsionally vibrating suspension bridge, is obtained by the sum of 

v: and v; and is given by 

b. 
l 

By noting that vi= Tei ' Eq. 2. 52 can be rewritten in terms 
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1 
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vc<t)" n: { Hw:~ J\(::i J dxi + H(t) bi[J\:~~)(::i) &i]} · (2. 53) 

i= 1 0 
1 

0 1 1 

Ht .ei(ae.)2 
It will be noticed that the term i )_( ox~ dxi ' has been 

Jo i 

canceled. Also, it will be recognized that the first term of Eq. 2. 53 

represents the strainless or gravitational energy while the second 

term, after neglecting the second order term which appears in the 

cable equation (Eq. 2. 50), represents the strain energy stored in the 

two cables. 

The contributions to the potential energy of the system from the 

hangers are neglected since they are usually too small to be important 

II-3-3. Kinetic energy of the torsionally vibrating suspension 

bridge 

The expression for the kinetic energy of the torsionally vibrating 

susoension bridge may also be divided into two parts: one part repre-

sents the vibration of the bridge deck, 

sents the vibration of the two cables, 

T , and the other part repre­s 

T . 
c 

The kinetic energy, T , of the suspended structure (or the deck}, 
s 

for the entire bridge may be expressed by: 

(2. 54) 
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where I . is the mass polar moment of inertia per unit length of the pl 
. f th .th I . 1 2 b . 

C ross section o e i span. tis equa to m . r . , m . e1ng 
Sl Sl Sl 

the mass of the i th suspended structure per unit length and r . being 
Sl 

the radius of gyration of the cross section. 

The two cables, having the weight w per unit length of the span 
c 

and vibrating with antisymmetric vertical displacements 

have kinetic energy expressed by 

b. 
but since v . = 2

1 0. , the kinetic energy T 
l l c 

becomes 

g being the acceleration of gravity. 

±v., i=l,2, 3, 
l 

(2.55) 

(2. 56) 

The total kinetic energy of the structure is then given by 

(2. 57) 

The total kinetic energy may also be written in the form 

3 .R.. (ae )2 
T(t) = ~ ~ u: 1mi a/ dxi J (2 . 58) 

where 
2 

( 
w b.) 

I =I +___£_-1 

mi pi g 4 i=l,2, 3 , (2. 59) 
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and !mi is the equivalent mass polar moment of inertia of the 

bridge cross section in the ith span (including the contribution 

of the two cables) per unit length. 

II-3-4. Variational formulation of the eguations of motion 

The variation of the total kinetic energy can be expressed 

as 

t
2 

3 

f oT(t) dt =I:· 
t i= 1 
1 

6 9. dx. dt] ' 
1 1 

since, be definition, 69i is zero at t = t 1 and t = t
2 

. 

(2. 6 0) 

The total potential energy of the torsionally vibrating suspension 

bridge can also be expressed, from Eqs. 2. 46 and 2. 53, as 

V(t)" ~ ±j[t 
i::: 1 0 

1
· ae )

2 

dx. +f1 

G. r.(~ dx. J 1 1 1 vx. 1 
0 1 

[
H b~ 

+ w 1 

2 (2. 61) 
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The expression in the fir st set of brackets represents the 

potential energy stored in the suspended structure, while that in 

the second set of brackets represents the potential energy stored 

in the two cables. 

Performing the variation with respect to 0. , of Eq. 2. 61, 
1 

and integrating (by parts, where necessary), the following equation 

is obtained 

3 

8V(t) = L E.r. 
1 1 

i= 1 

Noting that 

0
20. 

1 
-2-
ox. 

1 

d2 
ye 

--2- = 
dx. 

1 

~:< 

w. 
1 

H 
w 

:{< 
where w. 

1 

80i) 
ox. 

1 

(2 . 62) 

is the dead weight (per 
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cable) per unit length, and introducing Eqs. 2. 60 and 2. 62 into 

Ba:rnilton' s Principle (Eq. 2. 1) the following is obtained: 

3 
1t2 f£ i [ o 

2 
0. a 2 ( o 

2 
0 . ) a ~ o 9. ) a (H b ~ o 0.) 1 u 1 u 1 u Wl 1 · I --+-Ef----GJ--- -

- mi at2 0 2 i i 0 2 ox. i i Clx. Clx. 2 ox. 
. 1 t 0 u x. x. 1 1 1 1 
l= 1 1 1 

1 1 :.b. ] 
+ H(t) Hw 68i dxi -

dt = 0 . (2. 63) 

Because the integral must vanish for any arbitrary values of 60. 
oe. 1 

aud o(ax;) , these variations can be set equal to zero at xi ~ 0 and 

x. = £. , i = 1, 2, 3 , and equal to values other than zero throughout the 
1 1 

domain O(x. (.i'. . It follows then that the differential equation governing 
1 1 

the torsional vibration of the i th span in the suspension bridge is 

2 2 
o e. 02 ( a e.) 

I .(x. ) _21 + -2 E. r. _21 
m1 1 ot a l l a 

where 

x. ux. 
l 1 

::::< 
w.b. 

+ H(t) 
1 1 = 0 

H 
w 

3 ( oe.) 3 ( H b~ ae.) ---GJ-1 __ w1_1 
ox. i i ox. ox. 2 ox. 

l 1 1 1 

i = 1, 2, 3 ' (2. 64) 

A E L:3 
( :. b. J£i H(t) = c c _1_1 

L 2H 
E i =- 1 w 0 

(2. 65) 
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Equations 2. 64 and 2. 65 are the basic differeritial and integral equations 

of the torsional vibration of suspension bridges. 

In addition, because of the arbitrary nature of the variation, the 

la.st bracketed term and the term preceeding it in Eq. 2. 63, vanish, 

and thus the following conditions are obtained: 

E. r. 
l l 

and 

o2e. 
l 

-2-
ox. 

1 

[ 
8 ( 

02ei) -Q- E. r . - 2- - G. J. 
vx. i i 0 i i 

1 x. 
1 

ae. 
1 

8x. -
1 

i=l,2,3, 

H b~ oe. 
w 1 1 

2 ox. -
1 

i = 1, 2, 3 

which take into account the possibility that either 

E. f. 
1 1 

o2e. 
1 

-2- = 0 
ox. 

l 

and that 

or 

aa (E. r. 8 2~i) - G. J. 
x. 1 1 1 1 

1 ox. 
1 

or e. = 0 at x.:: 
l 1 

oe. 
l 0 ox. = 
l 

oa. 
1 

ox. 
1 

0 

at 

H b~ 
w 1 

2 

x. :: J.. 
l 1 

x. = 0 
1 

x. = J.. 
l 1 

aa. (dy ) 
~ - H(t)b. d c x. 1 x. 

l l 

i = 1, 2, 3 

= 

(2. 66) 

£. 

o ei j 1 = 

0 

0 ' 

(2. 67) 

i = 1, 2, 3 ' 

(2. 68) 

0 

(2. 69) 

Equations 2. 68 and 2. 69 represent the boundary conditions 

associated with the differential equations of motion for to r sionally 

vibrating suspension bridges. The first part of Eq. 2 . 68 requires 

that the direct stress vanish at each end, as in a bridge which has a 

deck with a free end or a simply supported end (which are free of 

normal stress). The second part of Eq. 2. 68 r equires that the warping 
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be zero at each end of the structure, such as when the ends of the deck 

are fixed so that the built-in section can neither twist nor warp. The 

first part of Eq. 2. 69 requires that the vibrational resisting torque 

M.ti which is developed by the vibration of the deck at the ends of each 

span .be equal to the vibrational torque Mtc which is caused by the 

vertical shear forces in the depressed and elevated cables at the ends 

of each span. Mti is expressed by: 

2 
ae. a ( a a.) 

Mt.(x .• t) = G. J. -a i - -a- E. r. _21 
i i i 1 x. x. i i 8 1 l x . 

i = 1, 2, 3 ' (2. 70) 

l 

and Mtc by: 

H b~ (ae.\ (dy:) 
Mtc (xi' t) = ~ i ax~J+ H(t) bi dx~ 

I 1 

i=l,2,3. (2.71) 

The second part of Eq. 2. 69 requires that there be no twist at the ends, 

such as when there are fixed or simply supported ends. 

Hence, both the natural and geometric boundary conditions of the 

problem are presented. The above results are general and provide an 

accurate formulation of the problem which will be useful for analytical 

study and for understanding the general characteristics of the vibrations . 

Three useful simplifications are possible for the general theory. 

In the first, the equations are linearized, in the second (see Appendix 

II-d) the solutions are obtained for a simplified case, and, finally in the 

third, the equations are verified. These three cases are discussed 

below. 



-183-

1. Linearization 

The problem is linearized by neglecting all second-order terms 

which appear only in the cable equation. This requires that the term 

-b~ J.1i(aei)2dx. be removed from Eq. 2. 65. Consequently, the cable z ox. l 
0 l 

equation reduces to A E ~[vt.b.J.£i J 
H(t) = ~ c L.J 2~ 1 0i dxi . 

E i=l w 0 

(2. 65 ') 

2. Solutions 

The chief aim of this chapter is to derive the equations of motion 

in a general form and to outline the procedure for determining the 

frequencies and modes of torsional motion by a finite element approach. 

But since solutions of the torsional equations of motion are not well 

known, they have been derived in order to present a complete theory 

of the free torsional vibrations of suspension bridges. However, 

because the solutions are lengthy, they have not been included here 

but are presented in Appendix II-d. 

The solutions of the linearized differential equations of motion are 

given for a three span symmetric suspension bridge in which the 

stiffening trusses {or girders) of each span are simply supported, with 

the cables held on top of the towers by roller supports. It is assumed 

that the mass of the bridge and its elastic properties are uniform along 

each span. Both mode shapes and natural frequencies for the sym-

metric and antisymmetric modes are obtained. 
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3. Verification 

In what follows, the reliability and validity of the equations of 

motion and their associated boundary conditions will be examined by 

considering the dynamic equilibrium of an element dx. of the sus-
1 

pension bridge. Fig. II-5 shows a free body diagram for the bridge 

element dxi . The total vibrational torque, MTi , acting at the cross 

section is equal to the vibrational torque, Mti , developed by the deck 

plus the vibrational torque, Mtc , caused by the vertical shear forces 

in the depressed and elevated cables. As seen from Fig. II-5, 

[ H + H(t)J ~ (Y. + v.) and [H - H(t)J n ° (y - v.) are the vertical w vx. c l w ux. c l 
1 l 

shear forces in the depressed and elevated cables, respectively. Thus, 

the vibrational torque, Mtc , at the cross section is 

bi o b. a 
Mt (x.,t) = -2 [H +H(t)J-n-(Y +v.) - 2

1 [H -H(t)J-n- (y -v.) c l w vx. c l w ux. c 1 
l 1 

i= 1,2,3. (2. 72) 
b. 

After substituting vi= 2
1 

9i, Eq. 2. 27 reduces to 

H b~ 
w l 

Mtc (xi' t) = 2 
89. dy 

ox~ + H(t) bi dx~ i=l,2,3, (2.73) 
l l 

It may be noted that Eq. 2. 73 is in exactly the same form as 

the equation for Mtc obtained from the interpretation of the boundary 
b. ov. 

conditions (Eq. 2. 71 ), and also that the nonlinear terms ± H(t) 2
1 ox~ 

l 

have canceled each other out. 

The torque Mti , which the deck would develop if the cables were 

absent, is 
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. 2 

Mt.(x.,t) = 
l l 

i v r i aa. a ( a a.) 
GJ--- E --i i ox. ox. i i a 2 

i = 1, 2, 3 . 
l l vx. 

l (2. 70 ') 

The total torque MTi is then given by 

2 2 ae. 8 ( a e.) H b. a0. <lY. 
M + M G J l E r l + w l _1 + H(t) b. __..£ MT. = t· t = . . ;:;- - a . . -2 2 a d l l C l l vx. X. l l a vx. l X. 

l l vx. l l 
l 

i = 1, 2, 3 • (2. 74) 

The equations of the torsional motion can readily be derived by 

considering the equilibrium of forces acting on the differential segment 

of the bridge shown in Fig. II-5. 

2 

[ 

oMT.(x., t) J o 9.(x., t) 
MT.(x.,t)+ 81 i -MT.(x.,t)=I .(x.) i21 

l l xi l l m1 l ot 

which reduces to 

oMT. (x. , t) 
; 

1 = I .(x.) x. m1 l 
l 

2 a 9 . (x., t) 
. l l 

at2 i=l,2,3 

.In view of Eq s. 2. 74 and 2. 76 

Eq. 2. 76 becomes 

and the relation 

-i-- ( G. J. ~ai)- a22 (E. r. a2e2i) 
xi \ l l vxi ox. l l ox. 

l l 

H b~ 
+ w l 

2 

2 * a 0. b.w. 
--

1 
- H(t) _L!_ 

2 H ox. w 
l 

i= 1,2,3' 

' i = 1, 2, 3 

(2. 75) 

(2. 76) 

* w. 
l 

-H 
w 

(2.64') 

which is in precisely the same form as Eq. 2. 64, derived by using 

scalar quantities in a variational form. 
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rJl-4· A Finite Element Approach to Torsional Vibrations 

I-4-1. Idealization of the structure and the displacement model 

The finite-element concept, described in Chapter I, will be used 

to express the dynamic characteristics of the torsionally vibrating 

suspension bridge. This approach to ·the analysis of structural continua 

frequently provides a convenient and reliable idealization of the system, 

and it also provides the most conve.nient means for evaluating struc-

tural and inertia properties; it is particularly effective in a digital-

computer analysis. In this approach, the bridge is assumed to be 

divided into the same system of discrete elements which was used in 

the analysis of vertical vibration; these elements are interconnected 

only at a finite number of nodal points where both rotations and trans-

lations are presented as basic nodal degrees of freedom. Since 
b. 

v.(x.,t) = 21 0.(x.,t)' the vibrational angle of twist e. can be 
1 1 1 1 1 

expressed in terms of the cubic Hermitian polynomials used in 

Chapter I. Thus 

e=l,2, •.. ,N, (2.77) 

where N is the total number of elements and e is an index denoting 

an element; (~1 , ~2 ) are the normalized coordinates. The vector of 

interpolating functions {f(~ 1 , ~ 2 )} is given by 

(2. 78) 

where L is the length of an individual element, and {q (t)} is the 
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vector of nodal displacements. 

The structural and inertia properties of the complete structure 

can now be found by evaluating the properties of the individual finite 

elements and superposing them appropriately. However, as mentioned 

in Chapter I, there is a case where evaluation of the interaction 

between all elements is necessary to formulate the elastic stiffness 

matrix of the cable. 

II-4-2. Evaluation of structural-property matrices 

a. Elastic-stiffness matrix of the chords {or flanges) 

The strain energy associated with warping {torsion-bending) 

which is stored in the four chords {or flanges), Eq. 2. 36, may be 

expressed conveniently in terms of the stiffness matrix {with the aid 

of the displacement model, Eq. 2. 77), as follows: 

3 Ni L 

v {t) = .!."'""["'"" .1- f Er ({f"}T{ } )T({f"}T{ } )dx]. 
sc 2~ .L.J b 2 1 e e e q e e q e 

i=l e=l e 0 (2 . 79 ) 

Here, N. is the total number of elements used to present the 
1 

.th 
i span, x is the horizontal axis of the individual element {note: 

~l = 1 - i and ~ 2 = ~ ) , and Ee re is the warping rigidity for the 

element; and is assumed uniform over the entire element. 

Eq. 2. 79 can be written in a more convenient form as 

N 

Vsc(t) = i L {q}; [ks)e {q}e ' (2. 80) 

e=l 

Where 
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3 
N = L: N. is the total number of elements used to present the 

. l l i= 

entire assembled structure, and 

4E r L 
[k J = e e i {£"} {f"}T dx 

sc e b2 e e • 
e 0 

(2. 81) 

is the element elastic stiffness matrix associated with warping. 

The integration involved in the evaluation of [k J can be 
SC e 

accomplished as de scribed in Chapter I. The resulting stiffness 

matrix is 

12 -6L -12 -6L 

4E r -6L 4L2 6L 2L
2 

[ k J = e e (2. 82) 
SC e b2L3 -12 6L 12 6L 

e 

-6L 2L
2 

6L 4L
2 

The assemblage stiffness matrix and the assemblage nodal 

displacements are respectively 

N 

[Ksc J = L [ ks) e (2 . 83) 

e= 1 
and 

N 

[r}= L [q}e (2. 84) 

~= 1 

Now, the total strain energy of the assemblage associated with 

warping and stored in the chords (or flanges) of the suspended structure 

may be expressed by 

(2 . 85) 
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Finally, when it is noted that the strain energy stored in a 

~table structure during any distortion must always be positive, it is 

•evident that 
t 

!Ma.trices which satisfy this condition, where { r} is any arbitrary 

non-zero vector, are said to be positive definite. Positive definite 

matrices, and consequently the stiffness matrices, are nonsingular 

and can be inverted. 

b. Elastic-stiffness matrix of the web system 

The strain energy associated with the torsional shear which is 

stored in the web system of both the vertical and the lateral walls of 

the bridge deck (Eq. 2. 44), can now be expressed conveniently, in 

terms of the stiffness matrix, as 

3 Ni L 

V (t) =.!_~["'""' ..!_l G J (ff'}T{} )T(ff'}T [} )dx], (2.87) 
sd 2.£...J L...J b2 e e e q e e q e 

i= 1 e= 1 e 0 

where G J is the torsional rigidity of an element. Simplifying this e e 

equation, vsd can be expressed as 

N 

vsd(t) = i .L: [q}; [ksd] [q}e (2. 88) 

e=l 

where 
L 

[ k d] = 42 J G J ( [£ ' } [f ' } T) dx 
se b ee e e 

e 0 

(2. 89) 
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is the element stiffness matrix associated with St. Venant' s uniform 

. torsion. For the special case of a uniform deck segment, the stiffness 

rnatrix resulting from Eq. 2. 89, when the interpolation functions of 

Eq. 2. 78 are used, may be expressed by 

36 -3L -36 -3L 

2G J -3L 4L2 3L -i.2 
[k ] = e e 

sd e 15 b
2 -36 3L 36 3L 

(2. 90) 

e 

-3L -L2 3L 4i.2 

Finally, the assemblage stiffness matrix is 

[ k d] s e 
(2.91) 

and the total strain energy of the assemblage stored in the web system 

is given by 

(2. 92) 

where [KSDJ is a positive definite matrix if one assumes that the 

boundary conditions have already been incorporated. 

c. Gravity-stiffness matrix of the cables 

The first term of Eq. 2. 53 represents the strainless or gravita-

tional energy of the two cables. The strainless energy, 

given by 

V (t) is cg 

(2. 93) 
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Using the displacement model of Eq. 2. 77, V can be 
cg 

expressed in terms of the gravity stiffness matrix to obtain 

or equivalently 

N 

vcg<t) = ~ L {q}: c kcg]e {q}e 

e=l 

where 
L 

[k ] = 2H f {£'} {f'}T dX 
cg e w e e ' 

0 

(2. 94) 

(2. 95) 

(2. 96) 

is the element gravity-stiffness matrix of the cable; it may also be 

expressed as 

36 -3L -36 -3L 

H 
-3L 4L

2 
3L -L2 

[kcg]e = 15~ -36 3L 36 3L 

-3L _If 3L 4L
2 

Finally, the as sernblage gravity stiffness matrix is 

N 

[KCGJ =I: 
e=l 

[ k J 
cg 

(2. 97) 

(2. 98) 

and the assemblage's potential energy due to gravity (or change of 

geometry) which is stored in the two cables is given by 

(2. 99) 
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in which [KCGJ is a positive definite matrix. 

d. Elastic-stiffness matrix of the cables 

From the second term of Eq. 2. 53, the elastic potential energy 

of the two cables is 

(2. 100) 

where 

A E 
3 

[ * b .Q. b
2 

.R.. ae 2 J 
H(t) = ~ c L: ;k i f 1 0i dxi + 8i f 1 (ax~) dxi . 

E i=l w 0 0 1 

(2. 65 ') 

Integrating Eq. 2. 100 by parts yields 

3 { d £. £. d2 

Vee (t) = i 'L: H(t) bi [ (a:~) ei I 1 -f1 

( I) 
i= 1 1 0 0 dxi 

(2. 101) 

providing that(:~) and (:~1 can be treated as continuous functions 

of x. . Furthermore, because 9. vanishes at the ends where x. = 0 
1 1 l 

and x. = £. , and because 
l 1 

d2 
Ye 

-2-= 
dx. 

l 

~~ 

w. 
l - H , Eq. 2. 101 may be reduced to 
w 

(2.102) 

Substitution of Eq. 2. 65' into Eq. 2. 102, obtains 
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3 {A E 1 c c 
vce(t) = 2L 2 L 

i=l E 

(2. 103) 

It may be noted that the first term in Eq. 2. 103 represents the 

linear strain energy, while the second term is the contribution from 

the nonlinear component of horizontal tension H(t) . 

Now, using the linear part of the strain energy expression 

(from Eq. 2. 103) and the displacement model expression (Eq. 2. 77), 

one obtains 

Use of the assemblage nodal displacement [r} in Eq. 2. 104 

yields 

where w is the total dead weight of the bridge element per unit e 

length for each cable. 

and 

As before, in Chapter I, if the vector [:[} is defined as 
e 

N. 
1 

[f}N. = L [f} 
e 

(2.106) 
1 e=l 



'then Eq. 2. 105 becomes 

3 
l T[2A E (~ w 

V ( t) !:::: z { r} Lc c i..J H e 
ce E . w 

i=l 

or more conveniently 
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w e 
H w 

• (2. 107) 

(2. 108) 

where [KCEJ is the assemblage elastic stiffness matrix of the cable 

defined by 

2 A E (~ w ~ )(~""" w ,.. T ) 
[KCEJ = L c c L..J He {f }N. L..J He {f JN. 

E . 1 w i . 1 w i i= i= 

(2. I 09) 

This matrix is symmetric and is a partially complete matrix 

(not banded); i.e., the arrays are well distributed over the entire 

matrix. Thus an interaction exists not only between adjacent elements 

but also among all elements of the structure. 

II-4-3. Evaluation of the inertia-property matrix 

Generalized consistent-mass matrix 

The kinetic energy expression (Eq. 2. 58), with the aid of the 

displacement model (Eq. 2. 77), gives: 

where I is the equivalent mass polar moment of inertia of the cross 
me 
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section of an element in the ith span per unit length (including the 

'contribution of the two cables). In this case I is assumed uniform me 

across the individual element .. 

Eq. 2. 110 may also be written in the form: 

(2 . 111) 

where [ r
9

Je is the generalized consistant-mass matrix of the bridge 

element and is defined by 

41 me 

b2 
e 

L 

i {£} {f}T dx 
e e 

0 

(2. 112) 

Upon carrying o u t the necessary vector multiplications and 

integrations, this matrix becomes 

156 -22L 54 13L 

I L -22L 4If -13L -3 i,2 
[Ie]e = 

me (2. 113) 
105 b

2 
. 

54 -13L 156 22L 
e 

13L -3 r,2 22L 4L
2 

When the mass coefficients of the elements of the bridge have, 

been e valuated, the mass matrix of the complete element assemblage 

can be developed by using the same superposition procedu r e as that 

described in developing the deck stiffness matrices from the element 

stiffnesses. Thus the assemblage generalized consistent-mass matrix 

lS 
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(2 . 114) 

This resulting mass matrix has the same configuration, that is, 

the same arrangement of nonzero terms, as the deck stiffness matrices. 

The total kinetic energy of the system can now be written as 

(2.115) 

II-4-4. Variatio.nal formulation of the matrix equation of motion 

Inserting the different energy expressions, Eqs . 2. 85, 2. 92, 

2. 99, 2. 108 and 2. 115, into Hamilton's Principle, Eq. 2. I , and 

then applying the variational operator and integrating by parts obtains 

the following 

r[6r}T [ [10 J {;:} + ( [K5CJ + [K50J+ [KCG] + [KCEJ) [ r)] dt" O . 

tl 

Due to the arbitrary nature of the variations in nodal displace­

ment, for}, the expression in brackets must vanish. Therefore the 

equations of motion for the assemblage can be obtained in the form 

These are the governing differential equations of the problem. As in 

the vertical vibration analysis, there are two separate parts of the 

problem which must be considered. They are: 
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I. The symmetric modes of vibration in which there are an 

even number of internal nodes along the center span. Here 

H(t) is not zero, and accordingly the stiffness matrix [KCEJ 

is not a zero matrix. 

z. The antisymmetric modes of vibration which result in an odd 

number of nodes along the center span. Here H(t) is zero, 

and accordingly the stiffness matrix [KCEJ is a null matrix. 

Thus, for the symmetric modes: 

(2. 11 7) 

and for the antisymmetric modes: 

(2.118) 

Then, the matrix equations for the free undamped symmetric and 

antisymmetric vibrations of the suspension bridge struc~ure are, 

respectively: 

(2. 119-a) 

and 

(2. 119-b) 

By writing the solutions of Eq. 2. 119 in the familiar form 

i =V-1. 
(2. 120) 

and substituting Eq. 2.120 in Eqs. 2.119 (omitting the common factor 

eiWt ) , the following equations are obtained 
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(2.121-a) 

(2. 121-b) 

~here {;S} and {;AS} are the vectors of the displacement amplitudes 

·t which do not change with time) of both symmetric and antisymmetric 

vibrations, respectively, and w is the circular frequency. 

Then Eqs. 2. 121-a and b admit non-trivial solutions if, as is 

well known, 

(2. 122-a) 

(2. 122-b) 

Eqs. 2. 122-a and b are called the frequency equations of the 

symmetric and antisymmetric vibrations, respectively. Expanding 

each determinant will give an algebraic equation of the Nth degree 

in the frequency parameter w2 for a system having N degrees of 

freedom. 

Because of the positive definitivene SS of [ I e J • [Ks] and 

[K AS], the roots wf , w~ , ... , W~ (eigenvalues) of each problem 

are real and positive quantities; Eqs. 1. 121-a and b provide non-zero 

solution vectors {;S}i and {; AS}i (eigenvectors) for each root w~ 

of the symmetric and antisymmetric problems, respectively. 

II-4-5. Numerical example 

The numerical example is based on computations for the Vincent-

Thomas suspension bridge located between San Pedro and Terminal 
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~sland in Los Angeles County, California. An extensive study of this 

~articular bridge, including a complete description, vibration studies 

and test measurements of the structure, will be presented in Chapter 

rv; however, the geometry of the bridge and an outline of the structural 

properties necessary for a torsional vibration study are given by the 

'data be low· 

Although the frictional resistance between the cables and the 

saddles of this specific bridge prevents the cables from sliding through 

the saddles, movement of the tower tops will not be taken into con-

sideration until the subsequent section. 

Center span 12 = 1, 500 ft. 

Cable sag J2 = 150 ft. 

Width (center to center of cables} 

Side spans £1 =1
3 

= 506. 5 ft. 

1i = ~ = l 7. 103 ft. 

b = 59. 17 ft. 

Depth of stiffening truss (assumed distance 
between the two lateral systems) 

Dead load on suspended structure (both 
trusses) 

Dead load on cables (both cables) 

Total dead load of bridge 

Cable force 

Cross-sectional area of one cable 

Cross-sectional area of one chord of 
side span (assumed invariable) 

Cross-sectional area of one chord of 
center span (assumed invariable) 

Cross-sectional area of the diagonals of 
the stiffening truss (average value) 

d = 15. ft. 

w = 6.15Kips/ft. 
s 

w = O. 85 Kips/ft. 
c 

2~ = 7. 2 Kips/ft. 

H = 6, 750 Kips/cable. 
w 

A = 121 in~ 
c 

A2 = 53. 78 in~ 

Ad = 16. 9 in~ 
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Cross-sectional area of the diagonals of 
the lateral bracings (average value) 

Radius of gyration of the cross section 

Shear modulus of the stiffening truss 

:Modulus of elasticity of the stiffening truss 

fylodulus of elasticity of the cable 

Virtual length of the cable 

The number of elements in the side span, 

Ad = 16. 58 in~ 

r = 20. 3 ft. s 

G = 11, 600 Ksi 

E = 29, 000 Ksi 

E = 27, 000 Ksi 
c 

LE = 3, 460 ft. 

N 1 = N 3 , was taken 

to be 11 elements; the number of elements in the center span N2 , 

was taken to be 28 elements 

The computation of the eigenvalues w~ and the eigenvectors 
l 

"'c 
{~.}, for both the symmetric and the antisymmetric vibrations, is 

l 

worked out through a Householder method subroutine. A double 

precision version is available from the Caltech computer program 

library and is written for the solution of the problem in the standard 

form ([A] - A[I] ) {x} = { O} where [A] is a real matrix, A is the 

eigenvalue, [I] is the unity matrix and {x} is the eigenvector 

Consequently, equations 2. 121-a and b must be converted to the 

standard form by premultiplying each of them by the matrix [ le r 1
. 

Thus, a matrix inversion subroutine is also needed,and the final 

forms of the eigenvalue and eigenvector problem, for both symmetric 

and antisymmetric vibrations, will be 

(2. 121 '-a) 

and 

(2.121 1 -b) 
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The two eigenvalue problems have been solved on the Caltech 

digital computer (IBM 370/158 system); some of the computed natural 

,frequencies and periods of symmetric and antisymmetric vibrations 

a.re shown in Tables II-1 and II-2 respectively, while Figs. II-6 and 

II-7 show the modes of torsional vibration for both cases. 

To check the effectiveness and reliability of the method of 

analysis under consideration, a comparison between these results 

and some previous results is also presented. The first few modes 

of torsional motion were predicted and the corresponding natural 

frequencies of the bridge were computed by the Bridge Department 

of the State of California using the approximate energy method; they 

were also recorded in a report by Ernest G. Wiles [16]. The follow-

ing table summarizes this comparison. 

Natural Natural 
Torsional Frequencies cps Frequencies cps 

Modes of Vibration (Wiles' Report) (Tables II-1 & II-2) 

1. Symmetric Modes 

first 0.46 cps 0.449419 cps 

second 0.66 cps 0.943311 cps 

third o. 95 cps 0. 949762 cps 

2. Antisymmetric Modes 

first 0.59 cps 0.595927 cps 

second 1. 33 cps o. 944303 cps 

Fig. II-8 shows the modes of torsional vibration given in Wiles 1 report. 
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From this comparison between Wiles' (predicted) modes 

(Fig. II-8) and the computed modes (Fig. II-6 and II-7) and from 

the preceding table, the following observations may be made. 

1. The frequency of the first predicted mode (of both symmetric 

and antisymmetric vibrations) is in very close agreement with 

that of the computed one, as is the mode shape. This may be 

explained by the simple configuration of this fundamental mode 

in both the symmetric and antisymmetric cases. 

2. The frequency of the second predicted symmetric mode deviates 

considerably from the computed one and the mode shapes also 

disagree. This predicted mode, as shown in Fig. II-8, has the 

same number of internal nodes along the center span as the third 

mode of Fig. II--6. However, the positions of these nodes in the 

two cases are not identical. The computed second mode in 

Fig. II-6 shows dominant vibration of the side spans with only a 

slight contribution from the center span. 

3. The frequency of the third predicted symmetric mode seems 

close to the computed one, but at the same time the two mode 

shapes differ. In the predicted one, this bimodal shape has no 

nodes along the center span while the computed one has two nodes. 

4. The frequency of the second predicted antisymmetric mode 

agrees with the computed frequency of the third computed mode 

(in which f
3 

= 1. 36665 cps), and the two mode shapes are 

identical. It would seem that the predictions for the anti­

symmetric case were confined to the center span, because, 
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apparently, no prediction was made for the second computed 

mode where the motion of the side spans is dominant. 

The distribution of the energy storage capacity in various 

members of the structure, for both the symmetric and the anti­

symmetric cases, is demonstrated in Fig. II-9. From this figure, 

one can easily extract the most significant dynamic characteristics 

of the relative contributions of the deck structure and the cables to 

the total energy storage capacity of the bridge structure at the 

·different modes. The following points are of some interest in this 

regard: 

1. The relative contribution of the strain energy accumulated in 

the chords builds until, in the high modes, it governs almost 

all of the potential energy of the structure. 

2. For the symmetric case, the strain energy accumulated in the 

web systems peaks in the second and third modes and then 

decays, while for the antisymmetric case it begins very high 

(being significant even in the first mode) and then decays at 

almost the same rate as for the symmetric case. 

3. The relative contribution of the strain energy of the cable to the 

total energy storage capacity is greatest in the second and fourth 

symmetric modes, while it is almost zero in the third mode 

where the positive areas of the deflection curve are canceled by 

the negative areas. (Note: The additional cable tension H(t) is 

proportional to the algebraic sum of the areas under the deflection 

curve. ) 



-205-

Again, from the symmetric modes of vibration it is easy to 

recognize that any kind of symmetric-torsional vibration, in particular 

in the first few modes, causes interaction between the center span and 

the side spans. 
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Fig. II-6 . Symmetric modes of torsional vibration of the 
San Pedro-Terminal Island suspension bridge. 
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SYMMETRIC TORSIONAL MODES 
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(State of California Bridge Deportment Report) 

Fig. II-8 
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Fig. II-9. 

THE ANTI-SYMMETRIC TORSIONAL MClOES ClF THE BRIDGE 

(b) 
Relative energy storage capacity for the San Pedro­
Terminal Island suspension bridge (torsional vibration). 



-212-

II-5. Effect of Torsional Rigidity of the Towers Upon Free 

Torsional Vibration 

In the preceding analysis, it was assumed that the cables either 

rested on nests of rollers at the tower tops (i.e., on movable saddles) 

or that the towers were of a rocker type with pin-bearings at the bases. 

On the whole, however, fixed saddles provide one of the simplest and 

safest constructions, but the friction forces accompanying the design 

are so high that the tower tops move in unison with the cables. This 

results in increments, different in each span, in the horizontal com-

ponent of cable tension. Furthermore, the towers offer a certain bend-

ing and torsional resistance to any horizontal displacement of the top. 

The effect of this tower resistance upon the dynamic characteristics 

of a suspension bridge, and the correction for the potential energy 

stored in the cables, will be considered in this part of the study of 

torsional vibration. 

II-5-1. Correction for strain energy of the cables 

To compensate for the fact that the cable tensions due to inertia 

forces are different in the side spans and the center span, modification 

of the strain energy of the cables is introduced, for both cables, through 

the equation 

.... 1 [~ f1i (dY. ) (80.) 
Vee (t) = 2 ~Hi (t) bi 0 dx: ox~ dxi J ' (2. 123) 

where H. (t) is the vibrational horizontal component of cable tension 
1 

in the i th span. As in Fig. II-10, if both columns of the two towers 
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are deflected toward the center span in the vertical plane of the 

depressed cable, the increment in the horizontal component of cable 

tension in the center span, H 2 (t) , must equal the sum of the incre-

:rnents in the side spans, H. (t) , i == 1, 3 plus the tower resistance R. , 
1 1 

i = 1, 3 • This tower resistance can be expressed as the product of the 

tower-top movement, 
I 

u. (t) ' 
1 

i == 1, 3 , and the elastic resistance 

ST . , i == 1, 3 • 
. 1 

Recalling the linearized cable equation (Appendix I-b), assuming 

fixed anchorages, and applying this cable equation successively to the 

side and center spans, yields 

u~ (t) == 
1 

H. (t)L . 
i e1 
EA 

c c 

__ bi J
1
i(dyc) (aei) 

2 dx. ox. 
0 1 1 

and 

dx. 
1 

i == 1, 3 , (2. 124-a) 

{2.124-b) 

Therefore, the linearized cable equation for the entire bridge can 

be written by summing Eqs. 2. 124-a and b to give 

3 

~ 
i=l 

H.{t)L . 
i e1 
EA 

c c 

3 

biJ

1

i(dyc)(aei) == 
2 d d

0 dx. 0 x. x. 1 

i= 1 0 1 1 

(2. 125) 

Now, from the equilibrium of the horizontal forces at the top of 

each tower column, the following is obtained 

I H2(t) - Hi(t) I == STi u~(t) i == 1, 3 ' (2.126) 
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(where STi characterizes the elastic resistance of the tower; it is 

.equal to the force required to deflect the leg (or column) of the i th 

tower by a unit displacement when the other leg is also deflected by 

a unit displacement in the opposite direction by an equal force. The 

evaluation of ST. is very involved [11] and is best done through the 
. l 

use of the digital computer or through model studies. 

Now, to express the horizontal components of cable tension 

lli(t}, i = 1, Z, 3 , in terms of the vibrational angle of twist, E\, 
i = 1, 2, 3 , the top displacements u~(t} and u;(t) have been eliminated 

from Eqs. Z. 124-a and b, and Eqs. 2. 125 and 2. 126 have been used, to 

give 

where (3. and a. are coefficients defined as follows: 
l l 

(E A )
2 

c c 
(3. = 

i (E A LE+ L 2 L .ST.) c c e e1 i 

and 

Substituting Eq. 2. 127 into Eq. Z. 125 yields: 

[( L . )~ b. J.ej(dy )(oe) 
Hz(t) = f3i l + ai L:~ L.J -t . dx~ . ox~ dxj 

j= 1 0 J ' J 

l = 1, 3 ' 

(2. 127) 

i = 1, 3 . 

(2. 128} 

L . · b. J.ei (dv. )(oe.) e1 l c i 
- 2a -- -- -- -- dx 

i Le 2 2 dx. ox. i 
i = 1 or 3 • (2. 129) 

0 l l 

Finally, substituting Eqs. 2. 127 and 2. 129 into Eq. 2. 123 obtains 

the modified strain energy {f 
ce stored in the two cables: 
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b. J1i(dY: )(ae.) J [b. J1i(dY: )(ae.) J + ai T dx~ a/ dxi T dx~ ox~ dxi 
0 1 1 0 1 1 

3 

+ 2: 
i= 1, 3 

[ ( 
L . ) ~ b. f1j (dy) (aa.) I\ 1 + ai Le12 L.J T dx~ ~ dxj 

e j= 1 0 J J 

L. 
e1 

- 2a. --
1 Le2 

bi f1i(dyc) (aai) dx.J [b2 f12(dyc)f 
0

02) dx JI . 
2 dxi oxi 1 2 dxz \ ox2 2 

0 . 0 (2. 130) 

II-5-2. Potential energy absorbed by the towers 

In the vertical vibration analysis presented in Chapter I, the 

tower stiffness primarily involves the flexural rigidity of the tower 

legs (or columns). Under torsional vibrations the situation is quite 

different; resistance to the antisymmetric movement of each leg of a 

tower can involve flexure and torsion of the leg, and most importantly, 
\ 

flexure of the portal beams (or cross-bracings) between the tower 

columns. For instance, for the symmetric vibration, the tops of the 

tower legs undergo horizontal displacement u~ (t) , i = l, 3 , as 
1 

illustrated by Fig. I-10 (for the fundamental mode). Since the two 

legs are connected by relatively stiff horizontal struts, such a dis-

placement is possible only when the tower top rotates about a vertical 

axis. Thus the two legs are bent and twisted, and the struts are 

deformed as indicated in Fig. I-1 O. 
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The torsional analysis of suspension bridge towers will not 

!be treated here; only the potential energy stored in the towers due 

to unbalanced top forces will be considered. However, an analytical 

procedure for torsional analysis of suspension bridge towers can be 

founa in a paper by Baron and Arioto [ 17] . 

The potential energy accumulated in one half of a twisted tower 

acted upon by the top load IH2 (t) -Hi(t) I , i = 1, 3, is equal to the 

work done by this top load when the point of application is displaced 

by a distance u~ (t} , i = 1, 3 . Therefore, the total potential energy, 

V , stored in the two towers, with their four columns supporting 
te 

the two cables, is 

3 

vte(t)" z _L: [~I H2 (t) - Hi(t) j ·u;(t)J, 
i=l, 3 . 

(2. 131) 

where the top load I H2(t) -Hi(t)J is obtained from Eqs. 2. 127 and 

2. 129. For example, for the depressed cable where H 2(t)) Hi(t) , 

i = 1, 3 , the top load takes the form 

[ 
L . 1:3 

b. J£j (ay )(ae.) 
[H

2
(t) - H

1
. (t}] = ~ a ~ J ..-£ _i dx 

i i L 2 2 dx. Bx. j 
e j=l 0 J J 

( Lei ) biJ

1

\(dyc)(aai) J -2-+l- ----dx 
L 2 2 dx. ox. i 

e 
0 

i i 

i ::: 1, 3 . 

(2. 132) 

With the aid of Eq. 2. 126, Eq. 2. 131 can be written in the form 
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(2 . 133) 

and using Eq. 2. 132, Vte becomes 

1 I ~ ~.a. [ L . ~ b.J
1
j(dy )(ae . ) 

Vte (t) = 2 L..J 2 S1T.1 L e12 L..J T dx~ ~ dxj 
·-1 3 1 e ·-1 0 J J 
1- ' J-

_ ( 2 Lei + i) bif

1

i(dyc)(aei) dx. J 2 I 
L 2 2 dx. ox. 1 

e 
0 

1 1 

(2. 134) 

The complexity of the resulting differential equations of motion, 

when this alteration of the potential energy (Eq. 2. 130 and 2. 134) is 

added, is so great that it is difficult to deduce any information from 

them. Accordingly, the analysis will proceed directly to the finite 

element approach. 
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II-6. Finite Element Approach to Include the Effect of the Towers 

* w. 
Noting that - H 1 (for the parabolic cable), and that 

w 

f1i(dy)(a0.) dy 
_..£ - 1 dx = ___£ 
dx. ox. i dx. 

0 1 1 1 

2 * 1. 
d y w. fl 
- 2c 0. dx. = H1 0. dx. 
d 

. 1 1 1 1 
xi w 0 

the energy expressions (Eqs. 2. 130 and 2. 134) take the following forms 

* 1 v (t) = -2 ce 

and 

V (t) = .!_ ) 2 i e2 ~ ) I 3 j3L [L 3 

te zL EALL 
. _ 1 3 c c e2 . _ 1 
1- ' J-

* 1 w .b. fj TI.r1 0. dx. 
w J J 

0 

( 
L . ) .$. b. fl i ] 2 

- 2 L e1 + 1 2~ 1 0 i dxi 
e2 w 

0 

(2. 135) 

(2. 136) 
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II-6-1. Modification of structural-property matrices 

a. The modified elastic-stiffness matrix of the cable 

With the aid of the displacement model, Eq. 2.. 77, the modified 

strain energy, Eq. 2. 135, becomes 

3 3 * Nj L 

{ice(t) = ~ l f 3 ~i[ ~ J~i (El L [f}; [q}e dX) 

f {£1; [ql.dxt[ :~~(i I u1; [qJ. ~J 
0 e=l 0 

* Ni 
O:'.W.b. (I: + l l l 

H 
w e=l 

3 3 * N. L · 

+ i~ /i [(1 + ai ~:~) ~ ;k: (E L [f}; [q}e dX) 

L. 
e1 - a --

i L~2 

* Ni L T * Nz L 

:;~i ( ~! L u1; [q}e dX)] [:~:2 ( ~ L (f};(q1dX)] I· 
I 

(2.137) 

Using the integral and the definition of Eq. 2. 106 in this modified 

energy expression yields 

:.b. " a.:.b. " )(:.b. " )T Ii-1 [f}N. + ~ 
1 1 

{f}N. 2~ 1 
(£JN. 

w J w l w l 

... 
w.b. 
zir (f}N· 

w J 

- a. ~ei ~bi {fJN.) (:~b2 {f)N )T J ( r} 
1 

e2 w l w 2 
(2.. 138) 

or equivalently 
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(2. 139) 

where [RCEJ is the modified assemblage elastic stiffness matrix of 

the two cables; it is defined by the matrix resulting from vectorial 

multiplication of the quantities between brackets in Eq. 2. 138. 

b. The elastic-stiffness matrix resulting from the 

contribution of the towers 

The portion of the potential energy absorbed by the structure and 

stored in the towers (Eq. 2. 134) can now be expressed in a matrix form 

by using the displacement model of Eq. 2. 78, as follows 

1 
vte(t) = 2 

3 3 * N. 

L 13. L 2 [ L . L w. b. ( J 
2 l e ~ -L.l.. ""'"' 

E A L 2H Li ._
1 3 

c c e2 ._
1 

w _
1 1- , J- e-

,,_ N. 

:~bi ( ~ 
w e=l 

Expanding and using Eq. 2. 106, it becomes 

l' 
3 3 '!< 

. 1 T[L 13.L2(L. L w.b. V (t) = -[ } 2 1 e ~ -Ll 
te 2 r E A L 2H 

._ 1 3 
c c · e2 ._

1 
w 

1- • J-

~.b. ) ( L . 
_2:..2. [f} ~ 
2H N. L z w l e 

3 

L 
j= 1 

or equivalently 

(2. 140) 

(2. 141) 
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(2. 142) 

where (KTEJ is the elastic stiffness matrix of the tower and is 

defined by the matrix between two brackets in Eq. 2. 141. 

II-6-2. Modification of the matrix equation of motion 

The assemblage equation of motion for symmetric vibration may 

now be written as 

( IeJfr} + ((Ksc]+(KSD]+(KCG]+(RCE]+(KTEJ)tr}= [o}' 

(2.143) 

or more conveniently as 

(2. 144) 

where the symmetric matrix (R
8
J is defined through Eq. 2. 143, it 

. 3 

is a full, real and positive definite matrix of order NxN(N= L N.) 
i= 1 1 

It is important to note that, in the case of antisymmetric vibra-

tion where the center of the cable is not tied to the stiffening girder 

(or truss), the inertia forces do not produce any stresses in the cables, 

and no interaction occurs between the center span and the · side spans. 

Hence, the tower remains at rest. 

The solutions of Eq. 2. 144 can be obtained in the same manner 

as before. The following computation shows an application of the 

above analysis, taking into account the effect of the torsional rigidity 

of the towers upon the free torsional vibration of the suspension bridge . 
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II-6-3. Numerical example 

To illustrate the effect of the torsional rigidity of cantilever 

towers upon the dynamic characteristics of suspension bridges, a 

numerical example has been worked out for the San Pedro-Terminal 

Island Suspension Bridge. The elastic resistance of the tower, 

STi , i = I, 3 , has been computed by applying Castigliano 's second 

theorem; it is found to be 

STl = ST3 = 235. 4323 Kips/ft. 

The eigenvalue problem resulting from the equations of motion 

(Eq. 2. 144), was solved by the Caltech digital computer. Some of 

the computed natural frequencies of symmetric vibration are shown 

in Table II-3. Inspection of this table shows that the effect of the 

torsional rigidity of the towers upon the frequencies of the torsionally 

vibrating bridge is comparatively small and is limited to only the first 

few frequencies. Fig. II-11 shows the effect of the torsional rigidity 

of the towers on the first four mode shapes. The first, third and 

fourth modes show very slight alteration due to tower effect, but the 

second mode shows a significant alteration, particularly of the center 

span amplitudes. Without this tower effect, the second mode has very 

small amplitudes in the center span; however, when the tower rigidity 

is taken into consideration, the simultaneous movement of the tower 

tops toward the center span and the corresponding upward motion of 

the side spans are reflected in increased center span amplitudes. 
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TABLE 11-3 

Effect of the Torsional Rigidity of the Towers 

Upon the Frequencies of the Free Torsional 

Vibration of the San Pedro-Terminal Island Suspension Bridge 

(Symmetric Mode-Shapes) 

No Consideration of Effect of Tower 
Towers Elasticity 

Mode 
Order (Frequency w rad/sec.) (Frequency w rad/ sec. ) 

1 2.823782 2.867896 
2 5.930141 5.969224 
3 5.967536 5.973676 
4 6.354410 6.358562 
5 11.666183 11.666594 
6 15. 125776 15. 125776 
7 19.348123 19.348246 
8 29. 111019 29. 111410 
9 29.275387 29.275433 

10 41. 556141 41. 556164 
11 48.365446 48.365446 
12 56.262482 56.262494 
13 73. 137340 73. 137421 
14 73.462733 73.462740 
15 93.238806 93.238810 
16 103. 641937 103.641937 
17 115.694949 115.694952 
18 140. 176745 140.176766 
19 140. 959612 140.959614 
20 169. 168520 169. 168521 
21 183. 143402 183. 143410 
22 200.359700 200.359700 
23 232.994136 232.994143 
24 233 .230948 233.230948 
25 289. S21374 289. 521374 
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II-7. Appendices 

Appendix II-a 

Shear Resistance Coefficients µv and J.b. 

To determine the value of the shear resistance coefficients /1 ,..v 

and µh for different types of trusses used in both the stiffening 

trusses and the lateral bracing systems, ,. shown in Fig. II-2, consider, 

for convenience, a panel of vertical stiffening truss shown in Fig. II-2 

as type 2 (Warren System). This truss is subject to vertical shear 

force S (with negligible warping). The vertical displacement of the v 

panel at point p due to the elongation 6.) .. d of the diagonal which is 

stressed by the force Sv/sina1 and which has the cros~-sectional 

area Ad is given by 

I s d 
v = 

EAd 
1 

(II-a-I) 

where Ad is the length of the diagonal, a 1 is the angle of inclination 

from the horizontal of the diagonal and E is the modulus of elasticity 

of the truss material. (Note: In the above equation, the relation 

Ad = d/ sin a
1 

is used where d is the depth of the truss. ) 

By considering the displacement line shown in Fig. II-2, it is 

possible to write 

. b.v 
tan i!Js = r 

v 
= 

5
v d 1 

EAd Av . 3 sin a
1 

(II-a-2) 
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ere /,.v is the panel length. But because (d/)...v) = tana1 , Eq. II-a-2. 

!CG!.n be written as 

s 
,1, - v G 

tan 'l's - - -­
G EAd 

1 s 
v 

= Gµ 
v 

(II-a-3) 

where G is the shear modulus of the truss. 

Thus, the shear resistance coefficient, µv, for this truss is 

given by 

II EA .2 ,..,v = G d sin a 1 cos a 1 (II-a-4) 

Replacing the broken displacement line with a continuous curve, 

av 
tan 1)1

8 
may be replaced at any point of the curve by ox ; therefore 

Eq. II-a-3 becomes 

s av v 
ax= Gµ 

v 
(II-a-5) 

Following the same procedure, the shear resistance coefficients 

µv and µ,h can easily be obtained for the different patterns of trusses 

shown in Fig. II-2. 

For type 1 of the lateral bracing systems, known as the multiple 

web system, the force in each diagonal is equal to i(Sh/ sin a 2 ) , which 

gives 

(II-a-6) 

For type 1 of the stiffening trusses, known as the N-system, the 

vertical displacement of the panel at point P due to the elongation 

t:i.A.d of the diagonal and the elongation 6d of the vertical member is 

given by 
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(II-a-7) 

which gives 

(II-a-8) 

From which it can be seen that there is a contribution from the 

vertical members of that particular system. 

Finally, for type 2 of the lateral bracing systems, known as 

the K-system, the shear resistance coefficient µhis given by 

= E(2AdAv sin
2

a 2 cos a 2) 
µh G 3 

Av+ Ad sin a 2 

(II-a-9) 

Now, if the stiffening structure is a plate-girder type, then 

Eq. II-a-5 can be written as 

s av - v 
ox - Gdt 

which gives µ = dt 
v 

t is the thickness of the plate. 

(II-a-10) 
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Appendix II-b 

Longitudinal Warping Displacement 

To prove the equivalence of the two expressions for the longitu-

dinal warping displacement, u , equate the coefficients of similar 

terms in Eqs. 2. 27 and 2. 28, as follows 

) ff . . f 86 a coe ic1ents o ox : 

~ (~ -E.) = E. (~. - ~) 2µ 2 22 µ' 
v h 

i. e. 13 = 

This is consistent with the definition of the coefficient 13 defined 

before by Eq. 2. 21 

or 

a3e 
b) coefficient of --

ox3 

giving 

Thus the two expressions for the warping displacement u are 

identical. 
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Appendix II-c 

The Warping Constani 

a3e. 
The coefficient of Ei --f in the second term of the expression 

ox. 
1 

for the vibrational torsional moment, M . , (Eq. 2. 25 ), is given as 
t1 

2 2 
A.b.d.f3.(b. (3.d.) A.b.d.(3. 
1111 ....2:._-2:.2:... + 1111 

2 µh. 2 µh. 2 µ. . 
1 1 Vl 

(
d. f3.d.) 1 1 l 

2 - --µ-:-
. Vl 

i= 1,2,3. 

(II-c-1) 

Expanding and rearranging obtains 

2 2 2 2 2 
A.(3. b. d. ( b. d. ) A.(3. b. d. 

1 1 1 1 _1_ + _1_ - l 1 1 l 

4 µhi µvi µhi µ.vi 
i= 1,2,3. (II-c-2} 

Now, upon recalling the definition of the coefficient 13. (Eq. 2. 20), 
l 

Eq. II-c-2 becomes 

or 

2 2 2 2 2 
A.b.d. A.f3. b. d. 

1 l 1 l l 1 1 

4 µhi µvi 

2 2 
A.b. d. 

[" .µh. - 4~2 J l l l 
(U-c-3) 4 µh.µ . Vl l 1 

l Vl 

The warping constant r. resulting from the expression for the 
l 

strain energy of the chords V and defined by Eq. 2. 37, can be 
SC 

rewritten as 

2 ( )2 2 d. (3. d. b. b . (d. r 1 11 1 1 1 
=A----- +A--i i2 µ. 2 i2 2 

Vl 

13. b. )2 
1 1 ---

µhi 
(II-c -4) 
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Expand and rearrange the terms to get 

2 2 2 2 2 4 
A . b. d. A.j3. b . d. ( d. b. ) A.j3. ( d. r == 1 1 1 _ 1 1 1 1 _1_ + _1_ + _!___!_ _1_ 

i 4 2 µvi µhi 2 , µ 2. 
Vl 

(II-c -5) 

Again, using the definition of the coefficient j3 . from Eq. 2. 20, 
1 

Eq. II-c-5 takes the form 

A b~d~ 2 2 2 2 2 2 
A . b. d. A.j3 . ( d. b . ) 

1 1 1 + __!___!_ _1_ + _1_ r. == 
1 4 

:. r. == -
1 

1 1 

2 2 µ . µh. 
Vl 1 

2 2 
A.b . d. 

1 1 1 + 
4 

2 2 
A . b . d. 

1 1 1 

2 
2 

- A. j3. 
1 1 

b~d~ 
1 1 

µvi µhi 

and finally, 

2 2 
A.b. d. r = i i i 

i 4µ . µh' 
Vl 1 

( µ . µh. - 4 j3 ~ ) 
Vl 1 1 

2 
A. j3. 

1 1 

b~d~ 
1 1 

µviµhi 
.. 

which is identical to Eq . II-c-3 . Therefore, the vibrational 

(II-c -6) 

torsional moment Mti can be written, with the aid of Eq . 2. 45, as 

ae . a3e. 
Mt. = G . J. ~ - E. r. 

1 1 1 ux. 1 1 
1 

1 
-3-
8x. 

i= 1 , 2,3. (II - c-7) 

1 

Thus, the total vibrational twisting moment developed in the deck 

cross section may be expressed as the sum of two parts - a moment 

results solely from torsional shearing stresses, it is related to the 

angle of twist e. by the relation of the fir st term of Eq. II-c -7, and 
1 

a warping to r que r e sults from the stresses produce d by restrained 

warping. 
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Appendix II-d 

Solutions of the Differential Equations of Motion 

If it is assumed that the mass of the bridge as well as its elastic 

properties are uniform along the i th span, the equations of motion 

become 

a2a. 
I .-z1-+E.r. 
mJ ot J J 

with H(t) as 

A E 

a4~L 
--1 

4 ox. 
J 

2 2 >!< 

( 

b. ) a e. w.b. 
G. J. + Hw T --f + H(t) IP = 

J J ox. w 
J 

H(t) = c c ~ [ ~ J£j ~ Jej(3)2 J L.J 2 H 8. dx. + 8 ~ dx. 
LE . J J ux. J 

j= 1 w 0 0 J 

It may be further assumed that 

0 ' j = 1, 2, 3 

(II-d-1) 

(II-d-2) 

-x iwt e. (x., t) = t1. (x.) e 
J J J J 

H(t) = Heiwt j = 1, 2, 3 ' 

(II-d-3) 

in which i =V-1 and W is the natural circular frequency of torsional 

vibration. Substituting Eq. II-d-3 into Eq. II-d-1, yields the equations 

~motionintheform 

4"" 
2 ,..., d e. 

-W I . e. +E. r. ___j4 
mJ J J J dx. 

J 

''< w.b. 
+_J_j H= 

H 
w 

0 ' j=l,2,3 

(II-d-4) 

Because H is independent of x. and may be treated as a con­
J 

stant, Eq. Il-d-4 represents linear, ordinary differential equations 

of the fourth order with constant coefficients. The general solutions 

of Eq. (IV -4) are nonhomogeneous differential equations and are 

expressed as 



where 

<P.,~ 
A = -1V _J.,-j R_, 2 

J 

and 
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4.>.,~ 
µ=JV~ 

j £. 2 
J 

2 2 41 .£.w 

(

mi J b~) 
CJ1.' G. J. + H J..

2 
· 

J J J w 

~.b.H 
+ 1 1 

2 
w H I . 

W mJ 

j=l,2,3, (II-d-5) 

<P. = i. 
J J 

( b~) 
G.J. + H ..1...2 1 1 w 

E.r. 
J J 

j = 1, 2, 3 ' (II-d-6) 

c1 , c
2

, c
3 

and c
4 

are arbitrary constants and are determined in 

conformity with the boundary conditions of the vibrating structure; 

i.e., the boundary conditions at the supports of the jth stiffening 

girder (or truss). The first four terms of Eq. II-d-5 represent the 

general solutions of the homogeneous equations ( H = 0) , while the 

last term of the same equation represents the particular solutions of 

the complete differential equations. 

The cable equation, Eq. II-d-2, which relates the elastic and 

geometric compatibility of the cable, is expressed, to the first order 

of small quantities, as: 

,...., 
H= 

3 -·-

L [ 
.;.b. 

J J 
2H 

. 1 w 3= 
fij ,..., ] 

e.(x.) dx. 
J J J 

0 

(II-d-7) 
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It is convenient to separate the investigation of the symmetric 

modes from that of the antisymmetric modes; i.e., the problem can 

be divided into two parts: 

1. The symmetric modes of vibration in which there are an 

even number of internal nodes along the center span. Here H 

is not zero. 

2. The antisymmetric modes of vibration which result in an odd 

number of internal nodes along the center span. Here H is 

zero. 

Symmetric Modes of Torsional Vibration 

When the bridge is a three-span, symmetric type in which the 

stiffening structures of each span are simply supported by cables held 

on top of the towers by roller supports, the boundary conditions are: 

,..., d
28. 

for x. = 0 0.= 0 and E.r.-t = 0 
J J J J dx. 

J 

} and j = 1, 2, 3 ' 

d
2

0. ,..., 
for x. = P.. e. = 0 and E.r.-t = 0 (II-d-8) 

J J J J J dx. 
J 

expressing the fact that the angle of twist and the normal stress are 

zero at the supports of each span. Therefore, modes of the symmetric 

vibration become 
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>'~ 
w.b.H 

,...,, l l e. (x.) = 2 
iVz.i-r 1 

. iVz.i-r 1 i 
[ 

Q>."1~ <P.,G x. 

2 Zi + (Zi - l) tanh 2 JZ s1nh {2 ·ii 
1 1 2 w I . Z. H 

and 

m1 i w 

<P.,G x.J iVZ.i T 
1 

l 
- cosh ~r;.. r -

r2 · l 

<P.")G x.J + cos iVzi - i . .-2:. 
i2 ii 

[ 
<P.~ 

(Zi + 1) tan -1-2-{2-~- sin 
<P.·G x. 

l V:·\ - 1 • .-2:. 
12 i. 

l 

i = 1, 3 , i.e., for side spans, 

(II-d-9) 

cp2~ cp2~ X2 
2 Z - (Z - 1) sech cosh · -

2 2 2 i2 i2 iz 

(II-d-10) 

for the center span. 

Finally, substituting Eqs. II-d-10 and II-d-9 in Eq. II-d-7 in 

order to obtain the frequency equation, the following characteristics 

equation is obtained 

1 z. <P. 
l l 3 2 <P. Z.(Z. - 1) 

l l l 

-;::=1== tan iVz.i - 1 - l tanh iVZ..i + l . (II-d-11) z.+1 (<P .-i~) z.-1 (<P.,G)J/ . 
..,' zi - 1 z 12 izi + 1 · z f2 
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Antisymmetric Modes of Torsional Vibration 

An antisymmetric vibrational deflection of the cable and of the 

stiffening girder causes no additional cable tension ft. Therefore, 

there is no interaction between the center span and the side spans. 

For this reason, two types of independent vibration in a three-span 

bridge are possible. 

The boundary conditions for the center span are: 

for x = 0 2 

,..,, d
2e 

0 = O· and E2r2 
2 

0 ' = 2 ' 2 
dx2 

and . (II-d-12) 

d
2e 

e = O· and Ezrz 
2 

0 -z- = 2 ' 
dx2 

for 

The second part of Eq. II-d-12 indicates that the center of the 

span remains at re st and that an inflexion point of the deflection curve 

does exist. 

After dropping the last term, depending on H in Eq. II-d-5, and 

using Eq. II-d-12, the frequency equation is derived in the form 

sin(µ 2; 2) = 0 (II-d-13) 

from which may be derived 

µ2£2 = 2n;r (n= 1,2,3, ... ) 

The characteristic value z2 is obtained from the second equation 

of (!I-d-6) 
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2 2 
::::l+8n 'TT 

cp2 
2 

Substituting this in the last equation (II-d-6), the natural circular 

frequency for the center span is determined: 

n:::: 1,2,3, . • . 

(II-d-14) 

The antisymmetric modes are given by 

n:::: 1,2,3, ... (II-d-15) 

In a similar way, the frequency equation for any side span is 

' found to be sinµ.i.. :::: 0 , i:::: 1, 3 . Therefore, 
l 1 

n TIX. 
1 e. (x.) :::: c. sin -n--

1n i in I'.. 
1 

i= 1,3, n= 1,2,3, .. . 

and the natural circular frequency is determined by 

W. n TI 
in =r 

l 

(II-d-16) 

n=l,2,3, . . . 

(II-d-17) 
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CHAPTER III 

FREE LATERAL VIBRATIONS OF SUSPENSION BRIDGES 

III-1. Introduction 

The great span length of suspension bridges makes their static 

and dynamic behavior under the action of lateral forces an important 

engineering problem. The most significant lateral forces are due to 

wind and to earthquakes. In the literature, little can be found on the 

subject of lateral vibrations in suspension bridges, although many 

studies deal extensively with the subject of vertical vibrations (as 

seen in Chapter I). There have been few publications in recent 

decades dealing with the lateral rigidity of suspension bridges under 

wind loading, but there have been at least three investigations [6, 7, 8] 

on lateral vibrations and earthquake resistant design of these 

structures. 

Lateral forces such as horizontal wind pressures, when acting 

on a suspension bridge, are sustained by the cables and the suspended 

structure, which transmit the resulting reactions to the towers and 

abutments or piers. The hangers, which connect the stiffening 

structure to the cables, cause the two loaded systems to interact so 

that the deformation of one system exerts an influence on the other. 

For instance, compared with the suspended structure, the cables 
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themselves offer only a small exposed area to wind pressure, but 

part of the forces which act on the suspended structure are trans­

mitted through the inclined hangers to the cables. The magnitude 

of the transmitted forces depends on the respective stiffnesses of the 
c 

two systems and on the ratio of the wind forces acting on them. 

Methods of analysis of suspension bridges subject to lateral 

wind forces acting as static loads were derived by Mois seiff, et al. [ 1 ], 

Silverman [3], Erzen, et al. [5], and Selberg [2] . In these studies, 

the lateral bending of a suspension bridge is examined, considering 

the combined influence of the suspended structure and the cables by 

distributing the wind load between the two systems. In general, these 

investigations showed clearly how the cables, hangers, and suspended 

structures participate and cooperate in resisting lateral forces. Also, 

the numerical results obtained in these investigations revealed pre-

viously unknown characteristics of the static behavior of suspension 

. bridges, and formed a good starting point for the study of the dynamic 

behavior of these structures. 

The first attempt at investigation of the free lateral vibration of 

suspension bridges was made by Silverman [3] in 1957. He proposed 

a formula, based on a Fourier series solution, for calculating the 

natural frequencies, but some of his assumptions about the coupling 

between the cables and the suspended structure are questionable. In 

1958, Selberg [4] found that Silverman's analysis gave an incorrect 

equation of motion. Selberg corrected the equation of motion to include 
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the interaction between the cables and the suspended structure and, 

using a Fourier series solution, obtained formulas for the natural 

frequencies. 

In the early 1960 1 s, Ito, Hirai, Okumura and Narita [6, 7, 9] 

undertook an extensive investigation of the lateral rigidity of a 

suspension bridge subjected to static lateral loads and to foundation­

rnotion. In their publications, they discuss the free lateral vibration 

of the bridge and its bending deformations due to lateral loads, both 

theoretically and experimentally. They applied an approximate method 

of analysis (the Ritz-method) to the equations of motion already 

derived by Selberg [4], and thus obtained frequency equations. Then, 

they developed these equations to include the effect of the upward 

deflection of the cables and the suspended structure which accom­

panies the lateral movement. Their analysis is an improvement over 

that of Selberg, but they were careful to point out that further improve­

ments were required. 

Despite the foregoing efforts, an entirely satisfactory vibration 

problem has not yet been derived. It would appear that the most 

promising direction of research on this problem would be to utilize 

the capabilities of the digital computer. The first use of a digital 

computer in approaching this problem, by Konishi and Yamada [8], 

achieved significant results. Their vibrational analysis was based on 

a lumped-mass and spring system representing a one-span suspension 

bridge. Natural periods. and mode shapes were obtained, and it was 

found that some of their modes did not agree with those predicted by 

the approximate methods of Selberg [ 4] and Ito, et al. [ 7] . 
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In the following study, methods of analysis are developed 

employing a digital computer and the finite-element technique. 

The objective of the study is to determine a sufficient number of 

natural frequencies and mode-shapes to enable an accurate analysis 

to be made for practical purposes. The problem is linearized by 

restricting the amplitudes of vibration to be small. Free lateral 

vibrations are investigated using the same procedures employed in 

the analyses of vertical and torsional vibrations. The governing 

differential equations of motion of the cable and of the suspended 

structure are derived first, using Hamilton's Principle. These 

equations include the effect of upward deflections associated with 

lateral movements; that is, the pendulum action of the cable and 

suspended structure is taken into account. The study uses a matrix 

discrete method based on a finite-element idealization, as in Chapters 

I and II. A numerical example is presented as verification of the 

analysis. This method appears to be the simplest and most practical 

thus far developed for calculating the natural frequencies and mode 

shapes required for a satisfactory analysis of a laterally vibrating 

suspension bridge. 
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rII-Z· Preliminary Considerations and Fundamental Assumptions 

The following section contains a description of the coordinate 

systems used in this analysis and of the different vibrational-displace­

ments describing the motion of the cable and the suspended structure. 

In addition, a discussion of the simplifying assumptions involved in the 

analysis is presented. 

I~I-2-1. Coordinate systems and vibrational-displacements 

For the suspended structure system, the x. -axis , i = 1, 2, 3 , of 
l 

the ith span coincides with the equilibrium position of the longitudinal 

axis of the bridge deck with the origin located at the left support of 

each span; the y. -axis , i = 1, 2, 3 is vertical and the z. -axis is 
l l 

horizontal, as shown in Fig. III-1-a. For the cable system, the 

cables' dead-load ordinate, y (x.) , is measured downwards from the 
c l 

closing chord-line to the cable of the ith span. The origin for this 

cable system is located at the left support of each cable span whether 

it is an anchorage or a tower top. 

The vibrational displacements of the suspended structure are 

mea.sured from the x. -y. plane and the x. -z. plane . The cable's 
l l l l 

vibrational-displacements are measured vertically and horizontally 

from the static position of the cable itself, as shown in Fig. III-1. 

The coordinates of vibrational-displacements of the suspended struc-

ture are u (x., t), v (x., t) and w (x., t) in the x. , y. and z. 
Sl Sl Sl l 1 1 

directions, respectively, and the coordinates of displacement of the 

cable are u (x., t) , v (x. t) and w (x., t) in the x. , y and z. 
Cl Cl Cl l C l 
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directions, as shown in Fig. III-1. (Note: Again, the subscript i 

has been left out of this figure for convenience.) 

. III-2-2. Basis for analysis 

The following simplifications are introduced in the analysis. 

1. Small vibrations about the position of equilibrium are assumed; 

i.e., the amplitudes of vibration about the static equilibrium 

configuration are taken to be sufficiently small so that the 

stiffness of the structure may be taken to be constant during 

the motion. 

As a corollary to the above, the increment of horizontal 

component of cable tension, H(t) , due to lateral vibration 

is small in comparison with the initial dead-load horizontal 

component of cable tension H 
w 

2. In this theoretical analysis, the ends of the cables are taken 

to be immovable. Actually, the tops of the towers on a real 

bridge will move in response to changing forces, and this 

properly should be taken into account in the specification of 

the end conditions; but for purposes of exposition, the tower 

tops are taken to be immovable. In the finite element analysis, 

the deformations of the towers can be taken into account; in 

fact, the deformations of the towers may have a significant 

effect on the natural periods of vibration and the mode 

shapes. 
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3, The coupling between lateral, torsional and vertical motions 

should be taken into consideration when a suspension bridge 

is transversely vibrating. However, as this coupling leads 

to very intricate calculations and has significant influence only 

for non-small displacements, it is not considered here . 

4. In addition to the above assumptions, it has also been assumed, 

in studying free lateral vibration, that vibration damping of the 

structure may be neglected, the suspenders (or hangers) are 

inextensible, the cables are parabolic, and the mass of the 

cables is separate from that of the suspended structure. 

There are upward vibrational-displacements of the cables and 

the suspended structure incidental to their lateral movements. A 

pendulum action occurs which may be defined in terms of the coupling 

between these upward and transverse motions . For small vibrations 

(assumption 1) the upward movements can be found as follows. 

By considering Fig. III-1-a, the upward displacements v and 
c 

v of the cables and the suspended structure, respectively, may be s 

expressed as 

v (x., t) = y (x.)[l - coscp.J 
c l c 1 l i=l,2,3, ( 3. 1) 

and 

v (x., t)= y (x.)[l - coscp.J + h(x. )[l - cose.J 
Sl Cl 1 1 1 i=l,2,3, 

(3. 2) 
where cpi is the angle of rotation of the cable plane (at section xi) 

With respect to the vertical plane passing through tower top and 0. is 
1 

the angle of rotation of the suspended structure with respect to the 
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vertical plane passing through the deflected position of the cable at 

section x. (see Fig. III-1-a and III-1-d). 
l 

Since wc and ws are very small quantities compared with 

and h , one can write 
Ye 

[
w(x.,t)J 

cp.(x.,t)~ C(l) 
l l y x . 

c l . 

and 

'i= 1,2,3, 

9.(x.,t) 
l l [

w (x. , t) - w (x., t)J s l c l 
h(x.) , i = 1, 2, 3 . 

l 

( 3. 3) 

(3. 4) 

Expanding Eqs. 3. 1 and 3. 2, and using Eqs. 3. 3 and 3. 4, one 

obtains 

or 

and 

or 

[ 
w
2 

J [(w _ w )2] v ~y ~ + h s c 
s c 2 2 2h2 

ye 

+ ... J ' i=l,2,3 

i= 1,2, 3 

2 
(w -w) s c 

2h 

(3. 5) 

(3. 6) 
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IJI-3. Derivation of the Equations of Motion 

In this section, the governing differential equations of lateral 

vibration of the cable and suspended structure systems are derived 

in a very general form by using Hamilton 1 s variational principle. The 

resulting equations are linearized and reduced to a standard form 

through use of the previously stated simplifying assumptions. 

III-3-1. Potential energy of the cables 

The potential energy of the laterally vibrating cable, V (t) , is 
c 

comprised of two parts: the strain energy, V (t) , of the cable, and 
ce 

the gravitational potential energy, v (t). 
cg 

energy of the cable is expressed as: 

v (t) = v (t) + v (t) 
c ce cg 

The expression for the strain energy, 

Thus, the total potential 

(3. 7) 

V (t) , will be derived 
ce 

by considering the inertia forces and the corresponding small vi bra-

tional-deformations . The inertia forces change the horizontal com-

ponent of cable tension H to H ± H(t) • where H(t) is the 
w w 

horizontal-component of cable tension caused by the vibration. As 

illustrated in Fig. III-1-d, the horizontal displacement of the cable is 

accompanied by a vertical displacement. The length of the cable 

el t d . h . th emen s. , int e 1 span, 
l 

2 2 2 
ds. = dx. + dy dx. and dy 

1 1 c 1 c 

i = 1, 2, 3, under dead load is 

being the projections in the 

horizontal and vertical directions, respectively. As a result of 

small, free lateral-vibration about the position of static equilibrium, 
~ 

the length of the cable element will become ds. + 6ds. in the laterally 
l l 
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displaced-position with projections dxi +due along the ith span, 

dy + dv in the vertical direction, and dw in the lateral direction, 
c c c 

as shown in Fig. III-1 -d. Here u and v are the longitudinal and 
c c 

vertical components of the in-plane motion, respectively, and w 
c 

is the lateral horizontal component of motion (perpendicular to the 

vertical plane through the two bearing points of the cable in any span). 

The components of motion are functions of both position and time. 

Therefore, one has 

2 
(ds. +6ds.) 

l l 

2 2 2 
::: (dx. +du ) + (dy + dv ) + (dw ) 

l c c c c 
i= 1,2,3, 

and consequently 

2 
2ds . D.ds. + (D.ds.) 

1 l l 

since 
2 2 2 

ds. = dx. + dy 
1 1 c 

( 3. 8) 

2 2 2 = 2dx. du + 2dy dv + du + dv + dw 
l c cc cc c 

it follows that 

2 2 
2 [ au (av )(dy) (ov ) (ow) J 2 

2ds. 6ds. + (D.ds~) = 2r + 2 n c d c + ~ + r dx. 
1 1 1 x . vx. x. x . x. 1 

1 1 1 1 1 

Since the analyses are to be valid for cables with sag to span 

ratios of about 1 :8 or less (flat-sag cables), the slope of the cable 

profile is consistently small; furthermore the longitudinal component 

of motion u is a small quantity in comparison with w and v 
c c c 

au 
2 

Consequently, (ax~) is a small quantity of higher order, and so 
1 

the diffP.rential extension, D.ds. , in the length of the cable element, 
1 

correct to the second order of small quantities, is 
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2 2 
av dy 1 (ov ) dx. 1 (ow ) dx. 

dx + ___.£ ___.£ dx + - __..£ --
1 dx + - ~ --1 dx 

i 8x. d s. i 2 Ox. ds. i 2 Bx. ds. i ' · 
1 1 1 1 1 1 

i= 1,2,3. (3. 9) 

The strain energy of the cable element, d . th .th s. , 1 n e 1 span, 
1 

can be expressed as 

d V (t) = {[H + 
2
1 

H(t)J ddsi t · 6ds. 
ce w xi) 1 

i = 1 ' 2' 3 . ( 3 • 1 0) 

In this equation, the factor ~ is needed due to the fact that H(t) 

increases from zero to its maximum value H(t) . 

Substituting the expression for the cable stretch 6.ds. (Eq. 3. 9) 
1 

into Eq. 3. 10 and then integrating over all spans, the strain energy, 

V (t) , of the two cables may be written as 
ce 

(3.11) 

where £. is the length of the i th 
1 

span. This energy expression can 

be written more conveniently as 
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The assumption that there are no movements of the tower tops 

or of the anchorages makes it possible to reduce this energy expres-

sion to 

(3. 12) 

Now, the cable equation, which relates the stretching of the 

cable element to the geometric displacements which it undergoes, 

can be modified to include the lateral vibrational-displacement w 
c 

as follows: (See Appendix 1-b.) 

H(t}L . ei i. . ( !l )2 i.. ( !l ) ( d ) £ • ( !l )2 1 1 vw 1 vv Y. 1 1 vv 

= 2f ox~ dxi +f ox~ dx~ dxi + 2f ox~ dxi 
0 1 0 1 1 0 1 

i = 1, 2, 3 EA 
c c 

(3.13) 

where E is the modulus of elasticity of the cable, A is the area 
c c 

of the cable, and L . ei 

fi.i(ds. )
3 

by L = - 1 dx. 
ei dx. 1 

0 1 

is the virtual length of the cable which is defined 

(An evaluation of the virtual length can also 

be found in Appendix 1-b.) This cable equation can be written for the 

entire cable, in the three spans, as 

H{t)LE 

EA 
c c 

(3. 14) 
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3 
where LE = L L . for the entire length of the cable. 

i= 1 e1 

Substituting Eq. 3. 14 into Eq. 3. 12, the strain energy of the 

cable becomes 

(3. 15) 

Attention is drawn to the fact that if the dead-load cable tension 

were to remain constant during vibration with a horizontal component 

H , and if H(t) were due only to the inertia load, then the first term w 

of Eq. 3. 15 would be the dead-load work stored in the cable while the 

second term would be the energy of vibration stored in the cable. 

However, the dead-load cable tension changes because of the altered 

cable curve, and H(t) represents the combined effect of this change 

in dead-load stress plus the inertia load stress . 

The expression for gravitational energy, V (t) , of the two 
cg 

cables due to the upward deflection, v , incidental to their lateral 
c 

movement w , can be written (in view of the preceding analysis) as 
s 

where 

span. 

w 
c 

:::-:= 

w v (x., t) dx. , 
c c 1 1 

(3. 16) 

is the dead weight of the two cables per unit length of the 

Using the approximate relation between v and w (Eq. 3. 5), 
c c 

Eq. 3. 16 can be expressed as 
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2 
>'< (w (x., t)) w c 1 
c Zy(x.) 

c 1 

dx. 
1 

(3. 1 7) 

Now, (after substituting Eqs. 3. 15 and 3. 17 into Eq. 3. 7) the 

expression for the total potential energy of the cable is 

2 3 £. 2 
= [HwH(t)LE l [H (t)LE] "'°"' 11 >:~ (we) 

Vc(t) 2 E A J + 2 ZE A + L.J we Zy 
c c c c i= 1 0 c 

III-3-2. Potential energy of the suspended structure 

dx. 
1 

The potential energy of the laterally vibrating suspended 

(3. 7 I) 

stru.cture, V (t) , also consists of two parts: the elastic potential s 

energy (i.e., the strain energy), V (t) , due to the effects of bending se 

moments, shearing forces and normal forces, and the gravitational 

potential energy, V (t) , due to upward movement; i.e., 
sg 

v (t) = v (t) + v (t) 
s se sg 

(3. 18) 

Neglecting the effects of shear and longitudinal deformations, the 

strain energy stored in the suspended structure due to bending can be 

written as 

3 £. 2 2 

1 '~fl Vse(t) = 2 L- E I s i (
a w (x., t)) 

si si 2 dxi (3. 19) 

i= 1 0 ox. 
1 

where E . is the modulus of elasticity of the suspended structure in 
Sl 

th .th e i span, and I . is the area moment of inertia of the suspended 
Sl 

t · · h ·th Th" t s ructure about its vertical axis, y . , in t e i span. is momen 
1 
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of inertia includes the contribution from the two stiffening girders 

{or trusses) as well as the contribution from the lateral bracing 

systems. The suspended structure displacement, w, 
c 

is measured 

from the vertical plane through the longitudinal centerline of the span. 

The gravitational energy, V (t) , of the suspended structure 
sg 

due to the upward displacement v is 
s 

3 .£.. 

V (t) = '°" f 1 

vt . v (x., t) dx. sg L-J Sl S 1 1 

i= 1 0 

'~ . 

(3. 20) 

where w . is the dead weight of the suspended structure per unit 
Sl 

length of the i th span. 

By the aid of Eq. 3. 6, this gravitational energy becomes 

3 

v (t) =" sg L.J 
i= 1 J:

£i _,_ [w
2

(x.,t) (w (x.,t)-w (x.,t))
21 

'•' C 1 Sl Cl 

wsi 2y (x.) + 2h(x.) J dxi • 
0 c 1 1 

(3.21) 

where h(x.) is the length of a hanger in the i th span at section x .. 
1 1 

It should be noted that Eq. 3. 21 contains a coupling between the 

vibrational-displacements of the cable and those of the suspended 

structure systems. 

Now, the equation for the total potential energy of the suspended 

structure (Eq. 3. 18), becomes 
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III-3-3. Kinetic energy of the laterally vibrating suspension 

bridge 

The kinetic energies caused by the lateral vibrational displace-

:rnents w and w , of the two cables and of the suspended str.ucture, 
c s 

respectively, are expressed as 

and 

3 

Tc(t) =-} L 
i= 1 

3 

T (t) = .!_ "'' s 2 '-' 
i= 1 

£. Jl 
0 

..... (ow (x., t))2 

.. ,, c l 

me ot dxi 

J£i >!< (ow (x., t))2 
m . s i d 

0 Sl ot Xi 

(3. 22) 

(3. 23) 

where 
w 

c m =­
c g 

is the mass of the two cables per unit length of the 
, ... 
'•' 

span, and ~ . = 
Sl 

Wsi 
-.- is the mass of the suspended structure per unit 

g 

length of the i th span; g is the acceleration due to gravity. 

The kinetic energies caused by the incidental vertical movements, 

v and v , of the cables and the suspended structure, respectively, 
c s 

are given by 

3 

"' l L: T (t) = -
c 2 

i= l I
ii .... (ov (x., t))2 

'•' c l 
me ot dxi 

0 

(3. 24) 

and 

3 
,.., 1 L: T (t) = -

s 2 (3. 25) 

i= 1 

Using the relation between the lateral and vertical movements 
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of the bridge (Eq s. 3. 5 and 3. 6 ), Eq s. 3. 24 and 3. 25 become 

3 
,...., 1 ~-T (t) = - .\ . 

c 2 £...J (3.26) 

i= 1 

and 

. (3. 27) 

III-3-4. Variational formulation of the equations of motion 

a. Derivation of the general eguations of motion 

When applying Hamilton's Principle to derive the differential 

equations in terms of the lateral displacements w and w , T and 
c s 

V must be functions of the dependent variables w and w only. c s 

This requires making use of the approximate relations given by 

Eqs. 3. 5 and 3. 6 which can be expressed in variational form as 

Ov = o(wc2) =WC ow 
c 2y Y. c c c 

(3. 28) 

and 

2 2 
ov =o[wc + (ws-wc) J =[(ws-wc)Jow +[we_ (ws-wc) J owe 

s 2y 2h h s y h 
c c 

(3. 29) 

The variation to be performed on the kinetic energy is 

o(T+T+T+T)dt 
c s c s (3. 30) 
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Expanding, performing the variation of each of the terms for the 

various kinetic energies with respect to w and w , and integrating 
c s 

by parts where necessary, yields 

3 t 1. 2 

_ L f 2 fl~ c a :c 
i-1 t o at - 1 

6w dx. dt 
c 1 

t
2 

3 t
2 

.P. . 82 

( oT dt = - l: f f1 

~ . wzs ow dx. dt , L s . s1 ot s 1 
tl 1= 1 tl 0 

3 t
2 

.P.. 3 2 

L f f
l"' v - m -

2
c ov dx. dt 

c at c i 

i= 1 t 0 1 

and 

3 t
2 

e. 
8

2 · "f fl~- v - L.J ~ . - 2c ov dx. dt 
Sl ot S 1 

i= 1 tl 0 

2 2 

(
w (w - w )) 8 2 [ w (w - w ) J } + __£ - s c - _£_ + s c ow 
Ye h ot2 2yc 2h c 

(3. 30-a) 

(3. 30-b) 

(3. 30-c) 

dx. dt . (3. 30-d) 
l 

The above equations have incorporated the fact that ow , Ow , 
c s 

ov 
c and 6v

8 
are zero at t = t

1 
and t = t

2 
. 
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The variation to be performed on the potential energy V is 

t2 t2 

f oVdt=J o(v +v +v +v )dt. ce cg se sg 
(3.31) 

tl tl 

Proceeding as in the case of the kinetic energy, the variation of 

the potential energy terms can be obtained. 

dx. 
l 

3 
tz [ a 1 

· 
1 

· a 2 
d 

1 
· =~f {z[H +H(t)J owcow 11-J1 w2c owdx.+,J~cov 11 

W X . C O C l l.LX. C 

i= 1 t 1 0 0 xi 1 O 
1 . 

J.

li d
2

Y. °'v J_' i J.J_i °'
2

v J} 
- - 2c ov dx. +~ov - ~2c ov dx. dt . (3. 31-a) 

dx 
C l ux. C n C l 

0 i 1 0 0 uxi 

Substituting Eqs. 3. 5, 3. 6, 3. 28 and 3. 29 into Eq. 3. 31-a, and 
2 * ::~ 

dv. 1 (w+w.~ C C Sl . 
cable -z-=- 2 H , gives 

dx. w 
noting that for the parabolic 

1 

{
aw w dy · w 8 ( w

2
)} . 

1
i J J + __ c + __..£. ~ + __..£. -- _£_ ow dt 

ox. Y. dx. Y. ox. 2 Y. c 
1 c 1 cl c 0 

(3. 31-a 
1

) 
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For the other terms of the integral of Eq. 3. 31, one obtains 

t 3 t2 82 o f.. ( 82 

f
2
0v (t)=LJ {E .I. :s 0( 0ws)l

1

--/- E . I. w2s) se Sl Sl 0 X. X. Sl Sl 
0 - ·-1 t x. 1 0 1 x. tl 1- 1 1 1 

+f-'\ ± (E I o2ws) 
a 2 si si a 2 

0 xi xi 

and, finally 

tz 3 t2 £ i -·-

J o V dt = ~ f f .:;; . ov dx. dt sg L...J Sl S 1 

tl i= 1 tl 0 

ow dx.} dt , s 1 

£. 

ow 11 s . 
0 

(3. 31-e) 

~ w-w ~ w w-w L3 Jt2{Jf. i( ... _ [ [ ( ) J ) } 
= i=l t 0 wsi sh e]ows+.:;;si y:- she owe dxi dt. 

1 
(3. 31-d) 

Having the foregoing variations of the different energies, Hamilton's 

Principle, after rearranging terms, gives 

,,, (w (w - w )) ~2 ( ,,, c s e v 
+m -- --

si Ye h ot2 

2 
w 

e 
2y + 

e 

2 
(w - w) ) s e 

2h 
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02 

2[Hw + H(t)J :c 
ox. 

1 
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1 WC 
---

2 y c 
(: +: •) c Sl 

H 
w 

+ 2[H + H(t)J [:WC + WC 
w xi Ye 

dye + we _o ( w;)] ow I.Qi 
dx. y ox. 2y c 

1 c 1 c 0 

J£i [ ,._ ( o
2

w (w - w ) 
'&' c s c + m. --2-+ h 

s1 ot 
0 

o2 ( +-2- E.I. 
ox. Sl Sl 

1 

2 2 
02 ( w (w - w ) )) 
-- ___£_ + s c 
ot2 2yc 2h 

+ E . I . 
Sl Sl 

o2
w 

s 
--2 

ox. 
l 

( 
r::.w) I.Qi r::. ( r::.

2
w ) u s u u s o - -- E I --

ox. ox. si si 0 2 
i 0 1 xi 

.Q. } 

Ows 1

1 

dt = 0 

0 

(3. 32) 

The coefficients of Ow and Ow that appear under the integral 
c s 

signs must be equal to zero, and the integral terms must be equal to 

zero at x. = 0 and x. = .R.. • It follows then that the differential 
1 1 1 

equations governing the lateral vibration of the cable and the suspended 
I 

structure are given by 
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[
a

2
w w ( .$ + .$ .) w 2 ( w

2
) J 

2[H + H(t)J __ c _ .!. ~ c s1 +~_a _ _£_ 
w <:> 2 2 y H y CJ 2 2y vx. c w c x. c 

1 1 

>:< [WY.cc - (wsh- we) J + w . 
Sl 

= 0 

2 
(w - w) a2 ( w s c ____ c_+ 

h ot2 2yc 

i = 1 , 2, 3 ' (3. 33) 

(
E . I . 

Sl Sl 

021) >a'< 
+ w. 

Sl 
i = 1, 2, 3 ' 

where 

A E 
H(t) = c c 

LE 

3 

L: 
i = 1 

ox. 
1 

i · 1 a i. [ 
+- -

2 J ox. 
0 1 

2 2 

(~) J dxi 
c 

dx. 
1 

Integrating the second term by parts and using the relation 

gives 

(3. 34) 

(3. 35) 
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B(t) ::: 
(: .+:)Iii( w2) Sl C C 

2H 2y 
w 0 c 

dx. 
1 

(3. 36) 

The two equations of motion (Eqs. 3. 33 and 3. 34) describe the 

coupled vibrational motion of the cables and the suspended structure. 

These two equations, as well as the cable equation (Eq. 3. 35 or Eq. 

3. 36) conta~n nonlinear terms. 

The boundary conditions specified by Eq. 3. 32 are 

and 

E . I . 
Sl Sl 

a2w 
s 

--2 
ox. 

l 

a 
ox. 

1 

a
2

w ) 
(

E .I. -
2
s ow 

Sl Sl 
0 

S x. 
1 

these can be satisfied by 

2[Hw+ H(t)J [~xwc. + WC dye + WC ~ 
u y dx. y ox. 

l c l c 1 

wc = 0 at x. = O and x. = £. 
1 1 l 

i=l,2,3, 

i= 1,2,3 

or 

i = I, 2, 3 , 

i = 1, 2, 3 • 

(3.37) 

(3. 38) 

(3. 39) 

( 3. 40) 



o 2w ow 
s s 

E . I . 0 -2- = or 
ox. Sl Sl ox. 

a 
ax. 

l 

l 

( 
a

2w) 
E.I.--8 = 

Sl Sl Clx~ 
l 

l 

0 or 
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0 at 0 and = £. = x. = x. 
l l l 

i= 1,2,3. 

(3. 41) 

w = 0 at x. = 0 and x. = £. s l l l 
i = 1, 2, 3 . 

(3. 42) 

Eq s. 3. 40, 3. 41 and 3. 42 re pre sent the boundary conditions 

associated with the differential equations 3. 33 and 3. 34. 

The first part of Eq. 3. 40 can be rewritten as 

ow ( dy ov ) w 
2 [ H + H( t)] ~ + 2 [ H + H ( t)] d c + ~ · __£ 

w vx. w x. vx. y 
. l l l c 

in which the first 

term represents the lateral shear force transmitted by the cables to 

the tower tops or anchorages due to only the lateral displacement w 
c 

The second term represents the transv~rse component of the shearing 

force, (
dy: ov ) 

2[H + H(t)J d c + r w x. x. 
in the rotated plane of the cable 

l l 

which is produced by the vertical displacement v . Eq. 3. 40 requires 
c 

that either the lateral shearing force or the lateral deflection of the 

cable be zero at each end of the cable span. As indicated in the 

simplifying assumptions, the deflection of the cable span is zero at 

both ends, so its variation is zero, and the geometric boundary con-

dition of Eq. 3. 37 is satisfied. 

The first part of Eq. 3. 41 requires that the bending moment 

vanish at each end of the suspended structure, while the second part 

requires that the rotation vanish at each end. Eq. 3. 42 requires that 

either the shearing force or the deflection be zero at each end of the 
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suspended structure. For a suspended structure hinged at both ends, 

the bending moment and the deflection are zero at both ends, and 

Eqs. 3. 38 and 3. 39 are satisfied. In this case, there is one geometric 

and one natural boundary condition. 

b. Linearization of the equations of motion 

When the higher order terms in Eqs . 3. 33 and 3. 34 are 

neglected, the linearized forms of the equations are obtained: 

or 

o2w 
c 

2H --2-w ox. 
1 

w ,,, ,,, w 
C'•' "' C + - (w +w .) + -

Y, C Sl Y, 
c c 

,,, (w-w) '•' s c 
wsi h = 

i = 1, 2, 3 ' (3. 43) 

0 ' 

o2
w 

c 
2H --2 0 ' i= 1,2,3' 

w ox. 
1 

for the cable; and 

02 
+-z 

ox. 
1 

s o
2w) 

E .I.-­
( Sl Sl ax2 

1 

for the suspended structure. 

(3.43
1

) 

,,, (w-w) '•' s c + w. h 
Sl = 0 ' i=l,2,3 

(3. 44) 

The first term of Eq. 3. 43 results from consideration of the 

kinetic energy caused by the lateral displacement w only (Eq. 3. 22). 
c 

The second and third terms are from the linear strain energy expres-

sion of the cable, which is derived from Eq. 3. 12 in the form: 
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Upon integrating by parts, noting that 
. ' 

and using Eq . 3. 5, this equation becomes 

p_ 2 >!< >!< p_ 2 3 

v (t) = '""' ce 6 
2H 

w [.!.f.i( owe) .!. (we+ wsi) f.i(. we ) J 
2 ox. dxi + 2 H 2y dxi (3.12') 

i= 1 0 1 w 0 c 

The fourth term in Eq. 3. 43 results from the gravitational 

energy expression of the cable (Eq. 3. 16) due to the upward displace-

ment, v , while the last two terms result from the gravitational 
c 

energy expression of the suspended structure (Eq. 3. 21) due to the 

upward displacement v . 
s 

Comparison of Eqs. 3. 34 and 3. 44 reveals that the only lineariza-

tion is due to neglection of the kinetic energy caused by the upward 

displacement v of the suspended structure. s 

Finally, Eqs. 3. 43' and 3. 44 are identical to those derived by 

Selberg [4] , except for the last term of Eq . 3. 43 
1

, which is a con-

sequence of taking into consideration the upward movements of the 

structure. No solutions of Eqs. 3. 43' and 3. 44 in closed form are 

known. However, Fourier series solutions, and energy approximate 

methods have been used by Selberg and Ito [ 7, 6] to determine natural 

frequencies by assuming sine mode shapes. An approximate solution 

of these two linear differential equations of motion (Eqs. 3. 43' and 

3. 44), in which the frequency equations are obtained, can be found in 

Appendix III-a. In this solution, sine mode shapes are assumed, and 

the orthogonality property of the modes is used. 



-267-

III-4. A Finite Element Approach to Lateral Vibrations 

A method of analysis based on the finite element technique is 

presented in the following section. The method takes into account 

the characteristics of both the cable and the suspended structure. 

The cable is idealized by a set of string elements, while the suspended 

structure is idealized by a set of beam elements. The two sets of 

elements, connected by rigid hangers, form the bridge elements. The 

stiffness and inertia properties for each set of elements are derived 

and assembled to obtain the gross assemblage characteristics. 

Finally, Hamilton's Principle is used to derive the matrix equations 

of motion for the entire bridge structure, from which the natural 

frequencies and modes of vibration are obtained. · To illustrate the 

applicability of the analysis, and to exhibit the dynamic characteristics 

of lateral vibration, a numerical example is presented. 

In deriving the finite-element solutions, the strain energy of 

vibration stored in the cables due to H(t) (second part of Eq. 3. 15) and 

the kinetic energy caused by the upward motion of the suspended 

structure and the cables are both neglected. In addition, the previous 

assumptions presented in Section III-2-2 are employed. 

III-4-1. Idealization of the structure and the displacement models 

The suspension bridge structure is divided into an appropriate 

number of elements which a~e interconnected only at a finite number 

of nodal points along the cable and the suspended structure, as shown 

in Fig. llI-2-a (for the center span only). Each bridge element 
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consists of a cable subelement and a suspended structure subelement 

connected by two or more rigid suspenders, as in Figs. III-2-b and c. 

Since the lateral vibrational-displacement of each suspended-

structure nodal-point is different from the lateral vibrational-displace-

rnent of the corresponding cable nodal-point, it is necessary to make 

a distinction between the two nodes. Thus, each bridge element has 

four nodal-points, two for the suspended-structure subelement and 

two for the cable subelement. For the suspended-structure subelement, 

there are two nodal degrees of freedom at each node: one is the trans-

lation of the cross section defined by the node and the other is the 

rotation of that cross section in the horizontal plane (as shown in 

Fig. III-1-c). The cable subelement has only one translational degree 

of freedom at each node. This introduces six degrees of freedom (or 

nodal displacements) for the bridge element, designated by 

q . (t), j=l,2,3,4,5and6, at the nodes i, i+l, i+2 and i+3. 
J 

(In Fig. IV-2, the suspended-structure nodes i and i + 2 are con-

nected to the cable nodes i + 1 and i + 3 , respectively.) 

The interpolation functions associated with the two degrees of 

freedom of the nodal-point in the suspended - structure subelement are 

taken to be cubic Hermitian polynomials (used before in Chapters I 

and II). Consequently, the lateral vibration of the suspended-structure 

can now be expressed in terms of the bridge-element nodal displace-

ments q.(t), j = 1, 2, 3, 4, 5 and 6 , as 
J 
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or 

(3. 45) 

where e is the subscript indicating 11element, 11 L is the length of 

the element, and ~l and ; 2 are the normalized coordinates defined 

by 

; 1 (x) = (1 - ~) and ;
2

(:x) = i, (3. 46) 

x is the horizontal axis of the individual element, as shown in 

Fig. III-2-b. 

In Eq. 3. 45, (fs(; 1, ~ 2 )}; represents the transpose of 

{fs(; 1, ~ 2 )}e ; it is the vector of the polynomial for the suspended­

structure subelement, and {q(t)} is the vector of the six nodal-
e 

displacements for the bridge element. 

The interpolation displacement polynomial associated with the 

one degree of freedom of the cable nodal-point is taken to be a linear 

interpolati,_on function, i.e., interpolation where only function values 

and no function derivatives are prescribed. Thus, the cable lateral 

vibrational-displacement can be expressed in terms of the six nodal-

displacements of the bridge-element, as 

w (x·t) = [o 
ce ' ' 0 ' 

A " 
Here, 1

1 
(x) and £2 (x) are the linear interpolation functions for the 

cable-subelement, and are given (on [ 0, L]) as 

(3. 48) 
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By introducing the normalized coordinates ; 1 and ; 2 (Eq. 3. 46 ), 

any point in the cable subelement [ 0, L] can be referred to in terms 

of ;
1 

and ; 2 as new coordinates. Therefore, Eq. 3. 47 becomes 

or 

(3. 49) 

where [£c(; 1, ;
2

;t)}e is the vector of the polynomials of the cable­

subelement. 

Equations 3. 45 and 3. 49 furnish the displacement models for the 

bridge -e le me nt. 

Each bridge-element has an average suspender length h , and 
e 

an average dead-load cable ordinate y , as shown in Fig. III-2. 
e 

III-4-2. Evaluation of structural-property matrices 

For the derivation of the various stiffness matrices of the 

individual bridge element, it is again convenient to treat the suspended-

structure subelement and the cable- structure subelement separately. 

Then by superposing them appropriately, the structural or stiffness 

properties of the entire element (or assemblage) can be found. 

a. Elastic-stiffness matrix of the suspended structure 

The strain energy of the suspended structure due to bending, 

Eq. 3. 19, may be expressed (with the aid of the displacement model 

for the suspended-structure subelement, Eq. 3. 45), as 
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3 Ni L 

V (t) = -2
1 

'"""" ['"""" ( E I (U" }T [q} )T( [f"}T [q} ) dx J . se f....J L-i J se se s e e s e e 
i=l e=l 0 

(3. 5 0) 

Here, N. is the total number of bridge elements used to present the 
1 

ith span; E I , the flexural rigidity for the element, is assumed se se 

uniform over the entire element. 

Writing Eq. 3. 50 in a more convenient form provides the elastic-

stiffness matrix for the element, as follows 

N 

vse(t) = i 2: f q1; [kseJe {q}e (3.51} 

e=l 

3 
where N = L N. is the total number of elements used to present the 

i=l l 

entire assembled structure, and 

L 

[ k J = I E I [£" } [£" }T dx , 
se e se se s e s e 

0 

(3. 52) 

is the element elastic -stiffness matrix of the suspended-structure sub-

element. The integration involved in the evaluation of [k J can be 
see 

accomplished as described in Chapter I. The resulting elastic-stiffness 

matrix is 

[k J = 
see 

E I 
se se 
L3 

12 

-6L 

0 

-12 

-6L 

0 

-6L 

4L
2 

0 

6L 

zi.2 
0 

0 -12 -6L 0 

0 6L 2L
2 0 

0 0 0 0 (3. 53) 

0 12 6L 0 

0 6L 4L
2 

0 

0 0 0 0 
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Note that zeros are used for the columns and the corresponding 

rows of the nodal-displacements of the cable subelement, as is 

expected from the assumptions associated with the individual dis-

placement models of the two systems. 

For the complete system, the assemblage elastic-stiffness 

matrix and the assemblage nodal displacements are, respectively 

N 

[KSEJ = I: [k J 
see 

(3. 54) 

e=l 

and N 

[ r} = L: [q}e (3. 55) 

e=l 

Now, the total strain energy of the assemblage associated with 

bending and stored in the suspended structure may be expressed by 

(3. 56) 

Th~ stiffness matrix of the complete system [K
8

EJ is 

symmetric, positive-definite and thinly populated (i.e. banded). 

b. Gravity-stiffness matrix of the suspended structure 

The gravitational energy associated with the upward deflection 

of the suspended structure (Eq. 3. 21) can be written, by using the 

displacement models for w and w (Eqs. 3. 45 and 3. 49), as 
s c 
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3 Ni L :\~ 

V (t) = .!_ '°" [ '°'{i wse (££ }T [ } )2 dx sg 2 L..J L..J y c e q e 
i= 1 e= 1 0 e 

(3.57) 

where 
>:~ 

w se is the weight of the suspended-structure subelement per 

unit length, and y and h are the geometric properties defined as 
e e 

before. 

It is important to note that the second term of Eq. 3. 57 repre-

sents the coupled vibrational-motions of the cable and the suspended 

structure. 

Now, define the vector [ rP} as follows 
e 

£<PJ = (u J - u J ) 
e s e c e 

which in terms of the normalized coordinates, becomes 

Then Eq. 2. 57, may be expressed as 

(3. 58) 

(3. 59) 

N L* L* 
V (t) = .!_ '°" [r }T(L wse [£} [£ }T dx +i wse [CI>} l<P}T dx) [ } ] 

sg 2 L..J q e y c e c e h e e q e ' 
e e 

e=l 0 0 (3.60) 

or more conveniently 



N 

v (t) = l' sg 2 L. 
e==l 

N 
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{q}T ( [k l] + [k 2] ) {q} 
e s e s e e 

= 21 L {q}T [k J {q} 
e sg e e 

e=l 

(3. 61) 

where [k J is the element gravity-stiffness matrix of the suspended 
sg e 

structure; it consists of the sum of two matrices. The first matrix, 

[k 1J , is due to the contribution from the cable, and is expressed by 
s e 

L * 
[k J =f wse [£ } {f }T dX 

sl e y c e c e 
0 e 

(3. 62) 

while the second matrix, [k 2 J , is due to the coupled motion of the s e 

cable and the suspended structure, and is expressed by 

L ~:< 

[k ] =I wse {<P} {<P}T dx 
s2 e h e e 

0 e 

(3. 63) 

The integration involved in the evaluation of both matrices, 

[k 1J and [k 2J , can be accomplished by the integration property 
s e s e . 

(Eq. 1. 59) of the interpolation functions in Chapter I. The resulting 

matrices are 

:::< 
w L 

[k J = ~ 
sl e 6 y 

c 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 

0 0 0 0 

2 0 0 1 
( 3-. 64) 

0 0 0 0 

0 0 0 0 

1 0 0 2 



-276-

156 -22L -147 54 13L -63 

-22L 4L
2 

21L -13L -3L
2 

14L 
,,, 
"' w L -147 21L 140 -63 -14.L 70 

J se (3. 65) [ks2 e = 420 h 
e 54 -13L -63 156 22L -147 

13L -3L
2 

-14L 22L 4L
2 

-21 L 

-63 14L 70 -147 -22L 140 

Therefore, the resulting gravity-stiffness matrix of the bridge-

element (due to the suspended-structure's upward motion) has non-zero 

coefficients corresponding to the six nodal-displacements for the 

element; it is 

156 -22L -147 54 13L -63 

-22L 4L
2 21L -13L -3L

2 
14L 

, ... h h 
'I' 

-147 21 L 140(1+~) -63 -14L 70(1+~) w L 

[ksg]e = 42~\ Ye Ye 
e 54 -13L -63 156 22L -147 

13L -3L
2 

-14L 22L 4L
2 -21L 

h h 
-63 14L 70(1+~) -147 -21L 140(1+~) 

Ye Ye 

(3. 66) 

The assemblage gravity-stiffness matrix can be obtained by 

merely adding the element stiffness coefficients appropriately; it is 

expressed as 

N 

[KSGJ = L [ksg]e ( 3. 6 7) 

e=l 
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Thus, the gravitational energy associated with the upward 

motion of the suspended structure, for the assemblage, may be 

given as 

(3. 68) 

in which [K
5

GJ is a symmetric, positive-definite and banded matrix. 

c. Elastic-stiffness matrix of the cables 

Recalling the expression for the strain energy of the cables, 

Eq. 3. 15, and using Eq. 3. 36 (the expression for H(t)), yields 

3 . Q. 2 (~:< :{<).R.. 2 £. . 2 2 

[
l J1(ow ) W · + w (

1 
( w ) 1 f [ o ( w )~ l 

Yce(t) = 2: 2 Hw 2 ox~ dxi + ~1H c J_ 2; dxi +2 ox. 2~ _jdxtj 
i= 1 0 1 w 0 c 0 1 c 

3 
EA 

+ L: ~ c 

i=l E 

.R.. 2 (~:< ~:< Y· 2 .R.. 2 2 2 

[
1 f1(ow) w.+w11(w) 1 111. 0 (w \l J Z ox~ dxi + ~

1

H c \2 ~ dxi + Z Lox. 2; /j . 
0 1 WO c 0 1 c 

(3. 69) 

The second term of this equation, which is the energy of vibration 

stored in the cables, is a very small quantity of higher order and may 

be ignored; furthermore, the last term in the first set of brackets is 

unimportant and may also be neglected. Therefore, the strain energy 

of the cable reduces to the linear form 

With the aid of the displacement model of the cable subelement 

(Eq. 3. 49), the energy expression (Eq. 3 . 70) becomes 

(3 . 70) 
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3 Ni 

Vee (t) = i L [ L 
i= 1 e= 1 

3 Ni 

L[L 
i= 1 e= 1 

(; +; ) 
se ce 

Ye 
(3. 71) 

>'< 
where w is the weight of the cable subelement per unit length, and 

ce 

{f'} is the vector of the slope of the cable model-displacement, 
ce 

expressed by 

{f'}T=!..[o, 0, -1, 0, 0, l]. 
ce L 

(3. 72) 

Eq. 3. 71 may be expressed in more convenient terms as 

N L 

v (t) = -21 
' [ {q}T (2 H i [£'} [f'}T dx ce L.... e w c e c e 
e= l 0 

,,, >'' L 

+ wse + ~ce J {£ } lf j1' ax:) [ } J 
y ce ce q e 
e 0 

(3. 73) 

or 

N N 

Vee (t) = i L [q}; ( [kcl Je + [kc2Je) {q}e = i L {q }~ [kce]e {q}e ' 

e= 1 e=l (3. 74) 

where [kce]e is the element elastic-stiffness matrix of the cable; 

again it consists of the sum of two rnatrice s, and can be evaluated, as 

before, to give 
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0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 -1 * * ) 0 2 0 1 2H 1 w +w 0 0 
[k J =-3!.. + ( se ce 

ce e L 0 0 0 0 0 0 6 Y. 0 0 0 0 0 0 e 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 -1 0 0 1 0 0 1 0 0 2 

(3. 75) 

Once more, note that zeros are used for the columns and the cor-

responding rows of the nodal-displacements of the suspended-

structure .subelement, as the previous assumptions would indicate. 

The assemblage elastic-stiffness matrix of the cables can. now 

be written as 
N 

(KCEJ = 'L: [kce]e (3. 76) 

e=l 

and consequently, the strain energy expression of the cables is 

(3. 77) 

d. Gravity-stiffness matrix of the cables 

The gravitational energy associated with the upward motion of 

the cables (Eq. 3. 17) can be expressed, by using the cable displace-

ment-model (Eq. 3. 49), as follows 

3 Ni 

Vcg(t) = ~ L [ L 
i=l e= 1 

N * L 
( }T [ wee i (£ } (£ }. T dx lj r } qe Y. ce ce tqe 

e 0 
(3. 78) 

e=l 
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or N 

Vcg(t) = _21 2: [q}T [k J [q} 
e cg e e 

e=l 

Here, [k J is the element gravity-stiffness mati'ix of the cg e 

cables; it can be obtained by using Eqs. 3. 62, 3. 64 and 3. 78 and is 

given as 

0 0 0 0 0 0 

0 0 0 0 0 0 
,,, .... 

w L 0 0 2 0 0 1 
[k J ::: ce 

(3. 79) 6y cg e 
e . 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 1 0 0 2 

Superposing appropriately gives the assemblage gravity-stiffness 

matrix of the cables as 

N 

[KCGJ = 2: [kcg]e (3. 80) 

e=l 

and, therefore, the gravitational energy expression of the cables 

may be written as 

(3. 81) 

III-4-3. Evaluation of inertia-property matrices 

In evaluating the mass matri ces of the system, the kinetic 

energy caused by -the incidental vertical motion of the laterally 
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vibrating suspension bridge (Eq s. 3. 26 and 3 . 2 7) is neglected because 

the upward deflections v and v are small quantities of higher order c s 

than the lateral displacements w and w c s 

a. Consistent-mass matrix of the suspended structure 

The kinetic energy expression (Eq. 3. 23) of the suspended 

structure due to lateral displacement, with the aid of the suspended-

structure displacement model (Eq. 3. 45), gives 

. 3 Ni L 

Ts(t) = ~ L [ L ,'!',se i ( {f sJ:!' {(i}e )T( {f sJ:!' {cj}e )dX ] 
i=l e=l 0 

(3. 82) 

>!< 
where m is the mass of the suspended-structure subelement per 

se 

unit length. In this case m 
se 

is assumed uniform along the individual 

element. 

Eq . 3. 82 may also be written in the form 

3 Ni 

T5 (t) = ~ I: [I: [cjJ:!' [m.Je {cj}e J 
i= 1 e= 1 

where [m J is the consistent-mass matrix of the suspended­
s e 

structure subelement and is defined by 

L 

[ rn J = ~ i { f } { f } T dx 
s e se s e s e 

0 

(3.83) 

( 3. 84) 

Upon carrying out the necessary vector multiplications and 

integrations, this matrix becomes 
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156 -22L 0 54 13L 0 

-22L 4L
2 

0 -13L -3L2 
0 

,,, 
' •' 

m L 0 0 0 0 0 0 
[m J se 

(3. 85) = s e 420 
54 -13L 0 156 22L 0 

13L -3L 0 22L 4L
2 0 

0 0 0 0 0 0 

Thus, the assemblage consistent-mass matrix of the suspended 

structure is 
N 

[Ms]= L [ms]e 

e=l 

and, the kinetic energy expression (Eq. 3. 83) becomes 

b. Mass matrix of the cable 

( 3. 86) 

(3. 87) 

The kinetic energy expression (Eq . 3. 22) of the cable due to 

lateral displacement, can now be expressed conveniently, in terms 

of the stiffness matrix, as 

3 Ni L 

Tc(t) = i I: [I: ,';;ce i ( (£); m] ( (f c}; {.j}e) dXJ 
i= 1 e= 1 0 

N 

= ~ L Ud;!' [m)e [q}e (3. 88) . 

e=l 

where 
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L 

[m J = ::i I {£ } {£ }T dx 
c e ce c e c e 

0 . 

is the element-mass matrix of the cable structure, and 

rnass of the cable subelement per unit length. 

m ce 

(3 . 89) 

is the 

The element-mass matrix resulting from Eq. 3. 89, when the 

results of Eqs. 3. 62 and 3. 64 are used, may be expressed by 

0 0 0 0 0 0 

0 0 0 0 0 0 
,,, 
'I' 

L 0 0 2 0 0 1 m 
[m J = 

ce 
c e 6 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 1 0 0 2 

Finally, the assemblage mass matrix of the cables is 

N 

[Mc]= L [mcJe 

e=l 

and the kinetic energy of the assemblage is given by 

T (t) = -21 [ r }T [M J [ r} 
c c 

(3. 90) 

(3. 91) 

III-4-4. Variational formulation of the matrix eguations of motion 

Inserting the different energy expressions, Eqs. 3. 56, 3. 68, 

3. 77, 3. 81, 3. 87 and 3. 91 into Hamilton's Principle, and performing 
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the variations and the integration by parts, one obtains the following 

r [lir }T [ ( [M5J +[MC]) [i'}+ ([K5EJ + [KSG]+ [KCE]+ [KCGJ) ( r }Jdt = 0 . 

tl 

Due to the arbitrary nature of the variations in nodal displace-

ment, [or}, the expression in square brackets must vanish. 

Therefore, the equations of motion for the gross assemblage has 

the form 

These are the governing differential equations for the problem 

of lateral vibrations of suspension bridge structures. 

The matrix equations of motion for the free, lateral undamped 

vibrations of the suspension bridge can be conveniently written as 

[MJ [r}+ [KJ[r}= o (3. 93) 

where 

(3. 93-a) 

and 

(3. 93-b) 

are the mass and stiffness matrices, respectively, for the complete 

system; they are positive definite, symmetric, and banded matrices. 

form 

Again, by writing the solutions of Eq. 3. 93 in the well-known 

>:< iwt 
[r(t)}= [r}e i = V-1 (3. 94) 

the eigenproblem, identical in form to those given in Chapters I and II, 
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appears as 

(3. 95) 

:Here w is the natural circular frequency of free vibration, and { ;} 

is the vector of the displacement amplitudes. 

Multiplying throughout by [Mr
1 

, one has the more standard 

representation 

(3. 96) 

If the matrices [M] and [K] are nxn matrices corresponding 

to n degrees of freedom, then there will be n eigenvalues (w
2

) and 
n 

n corresponding eigenvectors ( f ;nJ) satisfying Eq. 3. 95; the above-

mentioned eigenvectors will not necessarily be distinct from one 

another. 

III-4-5. Numerical example 

A numerical example is presented to demonstrate the effective-

ness of the analysis developed in this chapter. In this example, the 

finite-element results are compared with those obtained by an approxi-

mate method of analysis (i.e., one based on deriving the frequency 

equations). In general, the numerical example is presented not only 

in order to illustrate the satisfactory agreement of the results but 

also to delineate some characteristics of the dynamic behavior of 

laterally vibrating suspension bridges. 

Computations using data from the San Pedro-Terminal Island 

Suspension Bridge provide the basis for this example . Lateral vibra-

tions of the center span cable and suspended structure are 
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investigated. In this illustrative example, the lateral displacements 

of the cable segments and the ends of the suspended structure are 

taken to be zero. 

The structural properties used in this example are: 

rs 2 = 293, 000 in~ft~ 

Es 2 = 29, 000 Kip/in~ 

H = 6, 750 Kips I cable. 
w 

~::: 
w = 1. 042 Kip/ft. per bridge. 

c 

,;s2 = 6. 152 Kip/ft. per bridge. 

The span was subdivided into N2 = 24 elements, as shown in 

Figs. III-2-a and b, and the length of each element L is 62. 5 ft. 

There are (2 Nz+ 2) nodes, starting with node 1 at the left support 

of the suspended structure and ending with node (2 N2 + 2) at the top 

of the right tower . There are (3 N2 - 1) degrees of freedom for the 

complete structure, with the numbering system shown in Fig. III-2. 

The eigenvalue problem (Eq. 3. 95 or 3. 96) was solved on the 

Caltech digital computer (IBM 370/158 system). Some of the computed 

natural periods and frequencies are presented, for the symmetric and 

antisymmetric vibrations, in Tables III-1 and III-2, respectively, and 

the corresponding mode-shapes are shown in Figs. III-3, III-4 and 

III-5. It can be seen in these figures that: 

1. In the lower modes there is a coupled motion between the 

cables and the suspended structure, while in the higher modes 

the two systems vibrate in a prescribed manner. 
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z. The first two symmetric (and antisymmetric) modes have a 

similar configuration except for the fact that in the first mode 

the cable and the suspended structure are moving in phase, 

while in the second mode they are moving 180° out of phase. 

Furthermore, the effect of short suspenders at the mid-span 

is clear in the second mode from the depression or dip in the 

middle region. 

3. In most of the coupled modes (such as the 5th symmetric and 

the 6th antisymmetric modes) the nodal points of the cable and 

those of the suspended structure do not coincide. 

4. In the higher modes, where the two systems vibrate in a 

prescribed manner, the cable frequencies are smaller than 

those of the suspended structure even when the respective 

mode configurations are the same; see mode 6 (for the cable) 

and mode 16 (for the suspended structure). 

The distribution of the various energies stored in the cable and 

in the suspended structure, for both symmetric and antisymmetric 

vibrations, is illustrated in Figs. III-6 and III-7. As presented in 

Fig. III-6-a, the relative contribution of the kinetic energy of the 

suspended structure is greatest in the first mode (about 90% of the 

total kinetic energy, while the contribution of the cables is about 10%); 

the opposite is true for the second symmetric mode. Subsequently, 

the kinetic energy comes entirely from either the cable or from the 

suspended structure, depending on which is dominant. The potential 

energy of the complete system in the first mode is 70% strain energy 
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F i g .  I I I - 6 .  R e l a t i v e  e n e r g y  s t o r a g e  c a p a c i t y  of  t h e  c a b l e  a n d  
s u s p e n d e d  s t r u c t u r e  f o r  t h e  (a) s y m m e t r i c  m o d e s  
a n d  (b) a n t i s y m m e t r i c  m o d e s .
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of the suspended structure, 15% strain energy of the cable and 15% 

gravitational energy of the suspended structure. The contribution 

of this gravitational energy is greatest in the second symmetric mode. 

In Fig . III-6-b, the relative contribution from the kinetic e ner g y of 

the cable is shown to be the same as that from the kinetic energy of 

the bridge deck in the first and second antisymmetric modes. In 

general, the relative contribution from the strain energy (of both the 

suspended structure and the cable) increases in the higher modes 

until it provides almost all of the potential energy of the structure; 

the principle effect of gravitational energy is confined to the first few 

modes of the suspended structure vibration. Contribution from the 

gravitational energy of the cable is extremely small throughout. 

Now, by considering the two linear differential equations of 

I 
motion (Eqs. 3. 43 and 3 . 44), by assuming sine mode shapes and by 

using the orthogonality property of the modes, the frequency equations 

can be obtained. Appendix III-a contains a d e tailed derivation of these 

frequency equations. The roots of each frequency equation (i.e. , the 

. natural frequencies) reflect both the in-phase vibration of the cable 

and suspended structure systems and the vibration when the systems 

0 
are 180 out of phase. The first few frequencies and some of their 

corresponding modes are shown in Tables III-3 and III-4 and in 

Fig. III-8 . In these tables, a compariso n between the finite-element 

solutions and the approximate results is included. There is a close 

agreement between the frequencies of the finite-element solution and 

those of the frequency-equations solution. It will be noted that some 
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of the assumed 11 sine 11 mode-shapes do not agree with those of the 

finite-element solutions; for instance: a) the second assumed 11 sine 11 

symmetric mode (Fig. III-8) does not show the effect of the short 

suspenders in the mid-span, b) in the fifth assumed 11 sine 11 symmetric 

mode, the two systems have the same number of nodal points, as was 

assumed in a prerequisite to deriving the frequency equation (this is 

also true in the sixth antisymmetric mode),- c) the first assumed 

"sine 11 antisymmetric mode is completely different from the finite­

element solution, and finally d) the coupling between the two systems 

has disappeared in some modes of the approximate solution. 
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II!-5. Appendices 

Appendix III-a 

An Approximate Solution for the Equations of Motion 

The two linear differential equations of motion (Eqs. 3. 43 and 

3. 44) recalled from section III-3 of this chapter, are 

a2 

2 H w2c - : . (:(-~ c) + 2 (: . +: ) ~ c ) = 
W <:. SJ X. SJ C y X. 

uxj J c J 
0 ' 

j=l,2,3, 

and 

a4
w 

s + E . I . 4 SJ SJ 8x. 

..... s c ,,, (w -w ) 
+ w sj h(x.) 

J 

= 0 j = 1, 2, 3 ' 

J 

4f. 

(III-a-1) 

(III-a-2) 

Y. (x.) = T x. (£. - x.) 
c J f J J J 

where and h(x.) = hT- y (x.) , 
J c J 

j = 1, 2, 3 ' 

j 

with hT being the height of the suspender close to the tower. 

These equations cannot be solved in closed form; however, one 

can approximate their eigenfunctions and find the corresponding 

eigenvalues. 

First, define a normal mode vibration as one in which each 

system (cable and suspended structure) undergoes harmonic motion 

of the same frequency. For each motion one can write 

,..., iwt 
w (x., t) = w (x.) e 

c J c J 
j = 1, 2, 3 ' (III-a-3) 

,.... iwt 
w (x., t) = w (x.) e 

s J s J 
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where W is the natural circular frequency and i = ri-

Substituting these into the two differential equations, 

:multiplying the first equation (III-a-1) by y (x . ) h(x.) and the 
c J J 

second equation (III-a-2) by h(x.) and rearranging the terms, gives 
J 

dz; [ -·- ( -·- >:~ ) J z H h(x.) y (x.) -
2
c - ;;; . y (x.) + 2 ;;; + w . h(x.) w 

W J C J dx. SJ C J C SJ J C 

J 

::::::: 2 ,....., >!< rv 

+ m w h(x.)y (x. )w + w .y (x.)w = 0 
C J C J C SJ C J S 

j=l,2,3 (III-a-4) 

and 

d 4w 
s 

E . I . h(x.) -
4
-

SJ SJ J dx. 

>!< rv >!< 2 l"V >!< ,....., 
+ w . w - m . w h(x.) w - w . w = 0 

SJ S SJ J S SJ C 
j = 1,2,3 

J (III-a-5) 

By letting W and w be two different eigenvalues with the 
n m 

corre spending eigenfunctions "'n w 
c 

"-'U "'ill 
w and w 

s c 

orthogonality conditions can be derived in the forms 

and 

p_ • 

J:
J "'n ""m h(x. ) y (x.) w w dx:. = 0 

J c J c c J 
0 

i. . 

J:
J "'n "'ill 

h(x. ) w w dx. = 0 
J s s J 

0 

Define w and w as 
c s 

nrrx. 
w (x.) = A sin n--1 

j = 1, 2, 3 . 

"'ill w , the 
s 

(III-a-6) 

c J n ~j 
j = 1, 2, 3 ' n = 1, 2, 3, 4, . . . 

nrrx. 
~ (x.) = B sinn-1 

s J n x . 
'J 

(III-a- 7) 
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Substituting these into the ordinary differential equations 
mnx. 

(III-a-4 and 5 ), multiplying each equation by sin ---1. · and using i. . 
J 

the orthogonality conditions (Eq. III-a-6), give 

n = 1, 2, 3, ... (III-a-8) 

where the coefficients a.. ' lJ 
i, j = 1, 2 , are given by 

= -2 H (1:i n )
2

f£ j h(x.) y (x.) sin 2(~ n x~ dx. - ~ ·f£ j y (x.) sin z(nnn xildx. 
W x . J C J x. J SJ C J \ x.. ) J 

J 0 J 0 J 

f. 

+ 2 (~ + ~ . )f J h(x.) 
C SJ J 

0 

2(n n x .~ >:< 2 ii j 2(n n x~ 
sin -y--1 dx . + m W h(x .) y (x.) sin --n---1-dx. 

. . Jen JCJ x.. J 
J 0 J 

,,, J:fj z(n 1T x.~ .,, . __Jd = 
- ~sj sin £ . xj 

0 J 

and 

( )4 fi j ~n n x .) ,,, i. . - n n . ---1 .,, _l 
a 22 - E . I . -n - h(x.) sin n dx. + w . 

2 SJ SJ x.. J x.. J SJ 
J 0 J 

£ . .,, 2 f J 2(n n x.) .,, . --1 
- m . W h(x. ) sin n dx . 

SJ n J x . J 
0 ' J 

These coefficients can be evaluated by direct integrations. 
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Equation III-a-8 is satisfied for any A and B if the 
n n 

following determinant is zero 

= 0 . (III-a-9) 

Letting 
2 

W = A , the above determinant leads to the 
n n 

characteristic equation. The two roots of this equation, for each 

value of n , reflect both the in-phase vibration of the cable and 

suspended structure systems and the vibration when the systems are 

0 180 out of phase. 

Finally, substituting these natural frequencies into Eq. III-a-8 

enables one to find the ratio of the amplitudes A /B 
n n 

n= 1,2,3,4, .. . 
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CHAPTER IV 

VIBRATION STUDIES AND TESTS OF THE 

SAN PEDRO-TERMINAL ISLAND SUSPENSION BRIDGE 

IV -1. Introduction 

The need for extensive dynamic tests of foll size suspension 

bridge structures has been apparent for many years. Although the only 

certain way to determine the parameters of major interest in struc­

tural dynamics problems, such as the frequencies, the modes of 

vibration and the amount of energy dissipated by the structure, is by 

testing actual structures, very few of these tests have been performed 

[2, 6, 7, 9, 10]. Knowledge of these properties is essential if one is to 

understand and interpret with confidence the structural response of 

suspension bridges to strong earthquake ground motion, to wind exci­

tation and to moving vehicles on the bridge deck. Unfortunately, testing 

complete or section models does not provide adequate information 

[l, 4, 8]. Tests of actual suspension bridge structures have rarely been 

possible due to the difficulty of making the necessary measurements of 

dynamic structural response, and due to the lack of development of 

appropriate instrumentation. In most of the previous trials, the field 

measurements were made on wind excited vibrations, and the motions 

usually observed were predominately vertical modes, whereas, the 
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:rnost hazardous wind induced vibrations are predominantly torsional 

(see Refs. 2, 8). In severe wind induced vibrations, only one of the 

lower modes is significantly excited, whereas during an earthquake, 

many modes may contribute to the response and, therefore, measure­

ments made to throw light on wind induced vibrations are usually not 

adequate for studying earthquake induced vibrations. 

Early observations of suspension bridge motions [ 1, 7] , excited 

by wind or traffic, were inaccurate and incomplete. In tests recorded 

before special modern instruments were developed and installed, the 

period of vibration was estimated or was measured approximately by 

using a pocket watch. Wave forms were noted and remembered accord­

ing to the impression of the observer. In some instances, amplitudes 

were estimated by sighting on bridge elements. At other times 

sightings were taken with a transit which was located on rods attached 

to the bridge. Using these methods, vibrations sufficient to be of 

interest were observed [2] on the Golden Gate Bridge. For example, 

an engine~r who was involved in the construction of the bridge, later 

recorded observations qf the bridge motion during two storms, one on 

February 9, 1938, some eight months after the bridge was opened to 

traffic, and the other on February 11, 1941. During the first storm, 

the movements were evidently in_a multi-noded vertical mode. No 

evidence was given which would indicate lateral or torsional vibration. 

The highest frequency observed, o. 33 to O. 5 c. p. s. , corresponds to 

Vincent's [2] subsequent computations for the six-noded vertical mode. 

The computed loop length of the six-noded mode averages 600 ft. No 
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other recorded observations describe movements having a frequency 

as high or loops as short as these. The movements during the second 

storm suggest the second symmetric vertical mode which has a com­

puted period of 6. 3 seconds. 

The failure of the Tacoma Narrows Bridge in 1940 led to a close 

scrutiny of all evidence of wind-forced vibration of suspension bridges 

by engineers and scientists concerned with the problem [l, 9] . As a 

result, a cooperative research project, between the Golden Gate Bridge 

and fiighway District and the Bureau of Public Roads, was created. 

Under this agreement, instruments for measuring movements of a 

bridge were developed, and several of them were installed on the Golden 

Gate Bridge in 1942. Examples of these early instruments are the 

anemometer and the accelerometer (see Ref. 2). The anemometer was 

installed on the bridge to record the velocity and direction of the wind 

vs. time. The accelerometer, also known as the Hall Recorder, had 

two conical pendulums for measuring the two horizontal components of 

motion as well as a mass on a helical spring for measuring the velocity 

.component. The spring suspension could be adjusted to record within 

a considerable range of natural frequencies, permitting the~election 

of frequencies most favorable to the recording of the expected vibra­

tions. The record was made by a stylus on smoked paper which was 

fixed to a drum that was revolved in a spiral motion by clockwork. 

Later this instrument was replaced by new types which were designed 

to record only vertical vibration. 

In the past, most of the data obtained from different records was 

analyzed in the time domain. When the time scale of the record was 



-308-

selected, it was thought that one would only need to determine the 

frequency over a . few cycles with sufficient accuracy to obtain the 

fundamental frequency, or at the most, the first few natural frequen­

cies, in order to correlate the observations with theoretical calcula­

tions of the frequencies of vibration. The scale was adequate for 

these purposes and for identifying pure vertical or pure torsional 

motion by noting which stations moved in phase and which moved in 

opposite phase. However, subsequent experimental work [ 1, 2, 8] 

and theoretical analysis revealed that a truss- stiffened suspension 

bridge might be expected to vibrate in coupled vertical and torsional 

motion at an altered frequency and with a distinctive phase difference 

in the two motions. Evidence of such motion had existed in the records, 

but the time scale had been too small to permit the determination of 

phase differences. 

In the late 1960's and early 1970's, work was begun to study the 

effect of natural winds on suspension bridges. During this time 

instrumentation was being developed for measuring all components of 

·the wind velocity at several locations along a suspension bridge. The 

objective was to record the results in such a manner that they could be 

analyzed by an electronic computer to produce data on the potential of 

the wind for producing vibration, as well as on its potential for produc­

ing static loading over areas of different sizes. In this regard, the 

California Division of Highways installed instrumentation on most of 

the state suspension bridges, including the San Pedro Bridge. One of 

their reports shows that the bridge has a fundamental period of 4. 5 

seconds in vertical vibration. 
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In recent years a method for testing structures based on wind­

and microtremor-induced vibrations has been developed. Although 

the method has been in use for almost 40 years by the United States 

Coast and Geodetic Survey [ 7] to measure fundamental periods of 

building structures, it was not until recently that this approach was 

extended to higher modes (see Refs. 5 and 6) and also to different 

structures (other than buildings). 

Current studies in Earthquake Engineering and Structural 

Dynamics, utilize the Fourier techniques which represent an important 

tool for understanding and interpreting the frequency content of various 

time signals. An ambient vibration test is only one of the examples in 

which Fourier representations are widely used. Furthermore, with 

the advance made in sensitive vibration-instruments, digital computers, 

measuring techniques and data processing and analysis, it has become 

possible to accurately obtain a wide band of natural frequencies of a 

structure, to identify the different modes and to study the other dynamic 

characteristics such as damping and nonlinearity. 

In 1971, under a contract with the Department of Transportation, 

Federal Highway Administration, Bureau of Public Roads, and as a 

part of their continuing pro~ram to improve the methodology for pre­

dicting the aeroelastic behavior of suspension bridges, McLamore, 

Hart and Stubbs [6] experimentally determined the natural frequencies, 

damping and normal mode shapes of vibration for two American 

suspension bridges - the Newport Bridge in Rhode Island, and the 

William Preston Lane Memorial Bridge in Maryland. The bridges 1 
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responses to motion caused by traffic, wind, and other environmental 

factors were measured using sensitive seismometers. The recorded 

rnotions were analyzed using spectral techniques (a fast Fourier trans­

form computer program). The dynamical behavior of both bridges 

included vertical, lateral and torsional vibrations. The study 

revealed a total of 20 modes of different vibrational motion in the 

frequency range 0 Hz-1 Hz. No coupling between torsional and 

vertical motion was observed. 

In 1974 and 1975, as part of a project to conduct extensive 

repairs to the deck of the Lions' Gate Suspension Bridge (Vancouver, 

Canada}, an aerodynamic investigation was undertaken which included 

a full-scale aeroelastic model. To obtain some guidan~e in establishing 

the dynamic parameters for the model tests and the design calculations, 

measurements on the existing structure were carried out by Rainer 

and Selst [ 1 o] . In determining the bridge Is dynamic properties, they 

followed exactly the same procedure as did Mc Lamore, et al. [6] , 

discussed above. Ambient vibrations due to vehicular traffic as well 

as forced vibrations due to a series of simulated impacts applied to the 

bridge, were recorded. The data was analyzed using the Fourier 

technique, and modal damping was computed using the log decrement 

relationship. The measured frequencies ranged from 0 to 1 c. p. s. 

Two methods were used to calculate the modal properties of the bridge: 

a continuum model, where the solutions to the differential equations 

describing the vibration problem were evaluated, and a lumped mass, 

linear stiffness model, for which eigenmodes were found. Some 

calculated modes and frequencies were in close agreement with the 
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:measured values, for the vertical and the lowest horizontal modes. 

However, for the frequencies of the torsional modes, the calculated 

values showed substantial differences from the measured ones. Also, 

in many cases, the measured frequencies corresponding to peak 

amplitudes, lacked corresponding computed frequencies. 

It is possible that other experimental work equal to or exceeding 

the value of the above mentioned studies has been conducted; but no such 

works are known to this investigator outside the present study. 

Much effort has been made by the faculty and the graduate 

students at the California Institute of Technology to establish a 

measurement system for the dynamic response of full-scale civil 

engineering structures . The system adopted for this investigation 

has been used for many full- scale and reduced-scale studies of the 

dynamic response of structures such as earth dams and buildings. 

The technique most often used for the experimental determination of 

natural frequencies of vibration of large structures involves measure­

ment of the motion excited by wind or traffic by means of sensitive 

-instruments, and then analysis of that motion using Fourier methods . 

The present chapter is concerned primarily with experimental 

dynamic studies which were performed on the Vincent-Thomas 

Suspension Bridge between San Pedro and Terminal Island, California. 

The detailed study of the experimental measurements is directed 

toward three major objectives: 

1. To check the accuracy and demonstrate the essential reliability 

of the dynamic methods of analysis developed in Chapters I through 

III of this thesis, by correlating the observed motion of the 
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bridge with its computed frequencies of vibration. 

z. To make a field trial of both the vibration instruments and 

this complex suspension bridge structure. 

3. To further the understanding of the dynamic properties of full­

scale suspension bridges, and to lay a foundation from which 

later work can be developed. ; 

The instrumentation used in the experiments is described,and 

the main features of the structure itself are also presented. The 

natural frequencies of the modes of vibration of the bridge were 

accurately determined by measuring wind- and traffic -excited vibra­

tions with a sensitive seismometer mounted at various locations on 

the bridge. The Fourier amplitude spectrum of the recorded move­

ments was computed and plotted. The measurements revealed a wide 

band of natural frequencies. In addition, the results for the vertical 

and torsional natural frequencies were correlated with the computed 

frequencies. The results of the field measurements agreed very well 

with the theoretical results which confirms the validity of the assump­

tions that were made in the previous chapters. 

The experience gained in making these measurements will be 

valuable in planning future, more complete, measurements. 
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IV-2. Description of the Bridge 

The Vincent-Thomas Suspension Bridge, shown in Figs. IV-1 and 

IV-3, was constructed in the early 1960 1 s across the Main Channel of 

the Los Angeles Harbor from San Pedro to Terminal Island. The 

bridge was designed by the Bridge Department, Division of Highways, 

Department of Public Works of the State of California. The bridge 

superstructure consists of a 1500 ft. suspended center span, two 

506. 5 ft. suspended side spans, two 151. 5 ft. backstay (or approach) 

spans, a 52 ft. wide roadway and two safety curbs. There are also 

tower foundations, anchorages, navigation and maintenance equipment, 

a highway lighting system and other items and details necessary for 

the proper functioning of the bridge. The approach spans consist of 

simply supported welded.,-plate girders, which serve to bring the cable 

down from the roadway grade to the anchorages below (see Fig. IV-2). 

There are two 32 ft. splay spans contained within the anchorages which 

serve to spread the cables into 20 separate parts and thereby distribute 

the force in the cables throughout a large area of the anchorages. A 

vertical sag of 150 ft. is provided for the cable at the center of the 

main span. The supporting towers are vertical, and the suspended 

portion of the structure, including the backstay and anchor spans, are 

symmetrical about the center of the main span. 

The suspended structure consists of two stiffening trusses, floor 

beams and a lower wind bracing system of the K-trus s type shown in Fig. 

IV-3. The suspended structure carries a four lane roadway 52 feet wide 

and curbs and sidewalks 10 inches high and 2 feet, 3-3 /8 inches wide (see 

Fig. IV -4 ). The cables and the stiffening tr us se s are 5 9 feet, 2 inches 
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Fig. IV-1. The San Pedro-Terminal Island Suspension Bridge . 

Fig. IV-2 . The anchorages and the approach spans . 
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apart from center to center. The stiffening truss, from center to 

center of the upper and lower chord members, is 15 feet deep. The 

floor beams are trusses. The top edge of the roadway is 3 feet below 

the top edge of the stiffening trusses. The bridge was designed with 

bottom lateral and stringer ties in the trussed floor beam system to 

develop torsional stiffness. The deck system for the suspended spans 

consists of transverse rolled girders, which are 7 feet apart center to 

center, and which are supported by the transverse top chords of the 

floor truss. Lightweight concrete was utilized for the deck slabs on 

both the approach and suspended spans. Reinforcement is conventional, 

consisting of straight and truss transverse bars and of longitudinal top 

and bottom bars on 12 inch centers. 

The San Pedro and Terminal Island towers are supported on 

steel piles penetrated to an average elevation of -75 feet at the 

Terminal Island tower and to an average elevation of -135 feet at the 

San Pedro tower (see Fig. IV-4). The towers are 335 feet high and 

extend 360 feet above M. H. H ,. W. The main tower is made up of 

3/4 inch steel plate. Each tower leg is anchored to the tower footing 

by thirty nine 2-1 /2 inch (in diameter) and 25 feet long prestressed 

rods. There is a total of 5, 550 Kips of structural steel in the towers 

and the tower bracings. The tower legs are made up of sections of 

cruciform design (see Fig. IV-4); they consist of four welded box 

sections, field bolted with 1 inch diameter high strength bolts. In 

order for the towers to be vertical under ordinary conditions, the 

horizontal force in the cables must be equal on each side of the towers. 
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The cable in the suspended spans for this structure consists of 

4028 cold drawn, galvanized, 6 gage steel wires providing 121. 5 square 

inches of area including the galvanizing. The ultimate strength of the 

wlre was required to be 225, 000 psi providing a theoretical cable 

strength of 27, 337 Kips. The maximum design tension in the cable 

at the towers was 9, 620 Kips. This indicates a design safety factor 

of about 3. The suspenders are made of small diameter, high strength 

wires layed up into rope. The cable saddles are centered on the tower 

legs. This causes the cable to spread at the tower tops where the 

frictional resistance between the cable and the saddle is sufficient to 

prevent the cable from slipping through the saddle. 

Table IV-1 contains a summary of the structural properties of 

the San Pedro Suspension Bridge. 
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TABLE IV-1 

Structural Properties of the San Pedro Suspension Bridge 

Parameter 

Weight 
(Kip/ft. ) 

Modulus of 
Elasticity 

(f(ip/in
2

) 

Forces 
(Kips) 

Description 

Bridge Floor 

Curb, bracket and armour 
Grating and railing 
Lightweight concrete 
Reinforcement steel 
Stringers and bracings 
Floor truss, wind shoes and 

inspection walk 

Stiffening Truss 

Top chords 
Bottom chords 
Gusset plates, splices, etc. 
Webs 
Posts 
Struts, rivets, bolts, etc. 

Lateral System 

Cable 

Cables 
Suspenders 

TOT AL DEAD WEIGHT 

Suspended structure 
Cable 
Tower 
Shear modulus of suspended 

structure 

Cable 
One chord of stiffening truss 

(average) 
Diagonal in stiffening truss 

(average) 
Diagonal in lateral system 

(average) 

Horizontal component of 
cable tension 

Center 
Span 

0.203 
o. 199 
2.592 
o. 173 
0.682 

0.613 

0.315 
0.302 
o. 124 
o. 142 
0.053 
0.007 

o. 159 

1. 025 
o. 054 

7. 177 

29,000 
27, 000 
30,000 

11,600 

121. 50 

53. 78 

16.90 

16.58 

6, 750 

Side 
Span 

55.56 



-320-

Structural Properties of the San Pedro Suspension Bridge (Continued) 

Parameter 

Moment 
of 

Inertia 

(in~ft~) 

Cable 
Properties 

(ft. ) 

Tower 
Properties 

Description 

Vertical moment of inertia of 
stiffening truss 

Lateral moment of inertia of 
chords 

Lateral moment of inertia of 
slab 

Lateral moment of inertia of 
stringers 

Lateral moment of inertia of 
suspended structure 

Sag 
Virtual length L . , i = 1, 2, 3 

e1 
Virtual length LE 

Longitudinal stiffness (Kip/ft.) 
(Force applied at tower top 
for unit deflection) 

Torsional stiffness (Kip/ft.) 
(Forces applied at tower top; 
tower legs move in opposite 

direction) 
Dead weight per leg (Kips) 
Vertical reaction from 

cable (Kips) 2 
Area at base (in. ) 

Area at top (in~) 
Height (ft. ) 
Longitudinal moment of inertia 

(average) (in~ft~) 

Center 
Span 

6, 050 

188, 500 

105, 000 

290 

293,800 

150 
1,620 

Side 
Span 

6,250 

1 7. 103 
920 

3,460 

26.3330 

235.4323 

2, 700 

6,400 
1,022 

572 
335 

10,000 



-321-

IV-3. Dynamic Characteristics of the Bridge 

The computed dynamic characteristics of the torsional and lateral 

vibrations of the San Pedro Suspension Bridge have been presented in 

the numerical examples of Chapters II and III. These characteristics 

included the natural frequencies, the corresponding modes of vibra-

tions, and the distribution of the energies accumulated in the various 

members of the structure, for both the symmetric and antisymmetric 

cases. The dynamic characteristics of the vertical vibration of the 

bridge are presented in this section. The computation of the natural 

frequencies, modes of vibration, and the energy storage capacity of 

the various members of the San PeQ.ro Suspension Bridge have been 
, 

calculated by the method of analysis developed in Chapter I. The 

procedure for the discretization of the suspended structure i~to finite 

elements is the same as that used in the numerical example of the 

torsional analysis in Chapter II. The number of elements in each tower 

leg was taken to be 10. The structural properties necessary for the 

vertical vibration study were taken from Table IV-1. 

The eigenvalue problems (Eqs. I-100-a and b) were solved by 

means of the Caltech digital computer. Some of the computed natural 

periods and frequencies, and the dominant vibrating portion cor-

responding to each frequency, are shown in Tables IV-2 and IV-3 for 

the symmetric and antisymmetric cases, respectively, and the cor-

responding mode-shapes are shown in Figs. IV-5 and IV-6. By con-

sidering these figures, the following observations may be made: 
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1. As seen before, vibration modes of the bridge structure can 

be separated into two groups having different characteristics . 

In one group, the displacements of the stiffening truss are 

predominant, and in the other group, the displacements of 

the towers are predominant. 

2. Based on (1 ), investigation of the energy accumulated in the 

different members of the suspension bridge may require 

separation of the energies into two groups. Fig . IV-7, 

represents the energy storage capacity of the cables and the 

stiffening truss together, while Fig. IV -8 shows the energy 

storage capacity of the towers for different modes. 

3. As seen from Fig. IV-5, in the lowest four modes the center 

span and side spans vibrate together, while in the higher modes 

the center and side spans vibrate separately. 

Other features can be easily extracted from these figures, as have 

been shown previously in the various numerical examples of 

Chapters I and II. 

Finally, the modes of vertical motion and their corresponding 

natural periods, which were computed by the Bridge Department of 

the State of California, are shown in Fig. IV-9 . Despite the omission 

of certain modes, these results are in close agreement with the 

frequencies (as well as the modes , if the tower is excluded) of the 

finite-element solution. 
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Fig. IV-5. Symmetric modes of vertical vibration of the 
San Pedro-Terminal Island Suspension Bridge. 
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SAN PEDRO - TERMINAL I SLAND SUSPENSION BR I DGE 

CV I NC ENT THOMAS BR! OGE) 

ANT I -SYMMETRI C MODES OF VERTICAL VI BRATI ON 

-k~~~~ 
A-5 . HOOE l Ti ~ 5. ffJ8004 SEC. 

// 1---- --~-- 1 -- --
R·S . .01~ 2 12 ' 2.HR"l•BI 5fC. v 

---r~/~-~ 
A- 5 . HOOE 3 13 " 1.822669 SEC. 

q q 
A-S. HOOE l,\ P-1 " 1.011196 SEC. 

,,_J1 ····-·"· lf 
bl\Jrvl 

A-5 . HOOE 6 TS " 0.903625 SEC. 

A-5. HOOE . 7 T1 c 0 .5315!,\ ll SEC. 

SAN PEDRO- TEAM I NAL I SL ANO SUSPENSION BA !OGE 

(VINCENT THOMAS BAI OGEJ 

ANT I -SYMMETRIC MODES OF VER TI CAL VIBRATION 

"' ·~ ~ ...... ,.," lA 
~b-J-J.-J/\JV\Ni 

A-S. NODE 9 19 : 0.34759 1 SEC. 

Sl? Sl? 
A-S. NOOE 10 

A-S. HOOE 12 

A- S. HOOE 13 T13" 0.!80it63 S£C. 

R--5 . HOOE Ill 114: 0 . J68'n7 SEC. 
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SAN PEIJRO-TERM I NAL I SLAND SUSPENS ION BRIDGE 

<V I NCE NT THOMAS 8AIDGEJ 

ANTI - SYMMETR IC MODES OF VER TI CAL VIBFIRTION 

TIS" O.l~'IOL l SH. 

A-S. HOOE 17 117: 0.1091,1 31 SEC. 

AA~ 
R- S. HO!lf ~ v v TIB• 0 .1 08792 SEC. 

$= 
A-5. HOOE 19 Tl9: 0 .1 06709 SEC. 

Jµ0vC\fM1-1+AV-\-.J-1~--
A-S. HOOE 20 T20"' O . 0881.139 . SEC . 

AA A~ 
A-S . HOOE ,,V u v T21 .: 0.080346 SEC. 

SAN PEDRO- TERMINAL ISLAND SUSPENSION BRIDGE 

( VI NC ENT THOMAS BR IOGO 

ANT I -SYMMETRIC MODES OF VER TI CAL VI BRATION 

A-S . HOOE 22 

R-S. HOOE 23 

R-S. HIX)E 25 

V l{V V rYy V rv\/ 
Fl-S. HOOE 26 126= 0 .0515li6 SEC. 

A-S. HroE. 28 T28• O.IJll7355 SEC. 

Fig. IV - 6 . Antisymmetric modes of vertical vibration of the 
San Pedro-Te r minal Island Suspension Bridge . 
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SAN PEORO - TERMINRL ISLAND SUSPENSION BRIDGE 
THE SYMMETRIC VERTICRL VIBRATIONS 
ENERGY STORR GE CR PAC I TY 
FOR DIFFERENT SYMMETRIC VERT !CAL MODES 

>- ~ -
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THE SYMMETRIC VERT I CAL MODES OF THE BR !OGE 

(a) 
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/.,_ ___ ___ /,./ SAN PEDRO- TEAM I NRL . ISLAND SUSPENSION BR!DGE 

/ THE ANTI-SYMMETRIC VERTICAL VlBRATIONS 
/ ENERGY STORAGE CAPRC I TY 

/ FOR DIFFERENT ANTI-SYMMETRIC VERTICAL MODES 
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THE ANTI-SYMMETRIC VERTICAL MODES OF THE BRIDGE 

(b) 

Fig. IV-7 
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SAN-PEDRO-TERMINAL ISLAND SUSPENSION BRIDGE 
SYMMETRIC MODES OF VERTICAL VIBRATION 

S. MODE I 

S. MODE 2 

S. MODE 3 

1 1 
w 1 =I. 39 rad /sec I · I 

~ . 1~1- · ~~I 1 Ti-4.52sec 
I I I I 
I I I I 
I I w2 = 2.21 rad/sec I 1 
I ~ ~ I_ t<:::::::::::::: 1 ""'=7 . 1 ~ T 2 - 2. 8 4 sec 
I I I I 
I I I I 
I I . I I 
I 1w 3 =2.89 rad/sec 1 1 

K:/J1~U T3 ° 2.17 sec 
I I I I 

ANTI-SYMMETRIC MODES OF VERTICAL VIBRATION 

A-S. MODE I 

A-S. MODE 2 

A-S. MODE 3 

1 1 
w 1 = 1.25 rad/~1 I 

I-· 1'<::7-I I T1 = 5.02 sec 

I I~ : : 
I I I I 
I I I I 
I I w2=2.08rad/sec I~ 
1-z::::::7l :~ T2 = 3 .02 sec 

I : - I : : I 1 w 3 - 3.49 rod sec 
1 1 

I I~ C:'\ I 1 

: ~"=:/ QI IT3 =1.80sec 

VERTICAL MODES OF VIBRATION COMPUTED BY THE STATE 
OF CALIFORNIA BRIDGE DEPARTMENT 

Fig. IV -9 
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IV-4. Measuring the Natural Frequencies of the Bridge 

Ambient vibration testing of the San Pedro Suspension Bridge 

excited by traffic motions is discussed in the following section, with 

determination of the natural frequencies of possible vertical and 

torsional modes of vibrations in mind. Information is given also on 

modern methods of making ambient test measurements based on 

magnetic tape recording and electronic analog-digital conversion. A 

complete description of the instruments used in the experiment may 

be found in Reference [5],buta summary of their salient features is 

provided here. 

IV-4-1. Description of the measuring experiment 

The measurements of the natural frequencies of the San Pedro 

Suspension Bridge were carried out with the following instruments. 

1. Kinemetrics (SS-1 Short-Period) Ranger Seismometer 

Two seismometers were used at different locations, to measure 

vertical motions of the bridge. No strong wind occurred during the 

measurements, and the only significant vibrations recorded were 

caused by the traffic. The SS-1 Ranger Seismometer is a short­

period seismometer usable for portable and fixed station seismological 

purposes, and is a versatile, sensitive vibration sensor for structural 

dynamics applications. Mechanically, the Ranger is a 11moving coil 

type 11 (velocity) transducer, adaptable for either vertical or horizontal 

operation in the field. Its sensitivity (290 v /m/ sec . for 5000 ohm 

coil), and size make it suitable as a sensor for ambient vibration 
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measurements of buildings, dams, bridges, foundations, or offshore 

platforms. The natural period of the seismometer is close to one 

second. Damping is adjusted by the choice of appropriate resistance 

in the coil and external circuits. During this experiment, the damp­

ing was set at O. 7 of the critical value. 

2. Earth Sciences SC-1 Signal Conditioner 

The signal conditioner is a wide band, low noise amplifier 

system, designed with filters for use in low level structural vibration 

and micro seismic measurements. Four input channels, each having 

its own attenuator and adjustable low-pass filter, provide isolated 

circuitry for a normal, integrated, and/ or differentiated output signal 

(i. e., velocity, displacement, and/ or acceleration output using a 

velocity sensor). All outputs are simultaneously or independently 

available for recording. The output can be recorded on magnetic 

tape and/or on a strip-chart recorder. In this experiment, the con­

ditioner was used to amplify and simultaneously control two outputs 

from the ranger seismometers. The power for this instrument was 

provided by an A. C. power source in the tower leg, 

3. Magnetic Tape Recorder (Model 3960 Hewlett-Packard) 

The amplified signal, i.e. , the voltage proportional to the 

relative velocity of the seismic mass of the seismometer, is recorded 

on low noise magnetic tape. It has a separate eight track magnetic 

tape reel. The electrical output of the recorder can be digitized for 

computer processing by means of an analog-digital converter. 
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4 . . Mark 220 Brush Recorder 

To enable immediate visual inspection of the vibrations during 

each measurement, the signals from both seismometers, via the 

signal conditioner, were simultaneously recorded on a strip-chart 

Brush Recorder having two channels. This was necessary to insure 

that the signal was within the limits of operation of the magnetic tape 

recorder and the analog-digital computer. 

5. Electronic Analog-Digital Converter (Model DDS-1103 Kinemetric s) 

The DDS-11 03 Digital Data Acquisition System is an accurate 

means of converting analog data from the magnetic tape recorder to 

digital format on computer compatible digital magnetic tape. At 

pre sent, it is wired to handle 1 to 8 input channels. The dynamic 

range of the system is approximately 72 db. 

IV-4-2. Measuring procedures 

In the past, wind has been the usual source of excitation for 

suspension bridges. However, traffic excitation [6, 1 O] of such 

flexible structures can induce vibrations large enough to yield informa­

tion about the structural behavior which would be very difficult to 

obtain in any other way, except during severe winds or strong earth­

quakes. 

The experiments carried out on the San Pedro Suspension Bridge, 

described in Section IV-2, were performed under traffic excited motion 

with the principal purpose of finding the natural frequencies of the 

bridge. Most ambient vibration tests [5, 7] assume that the structure 

under consideration can be approximated by a damped, linear, discrete 
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or continuous system. In the experimental study of the bridge vibra-

tion, it was assumed that the resulting motions would be expressed 

as the superposition of modes associated with discrete frequencies. 

It may be mentioned here that for the measurement of traffic induced . . 

vibrations, it is not necessary to calibrate all the seismometers used 

so that they give the same amplitudes when excited by the same 

motion. It is also not necessary to know the absolute values of the 

amplitudes that are recorded, because the frequencies are the only 

concern; even if the mode shapes are required, the relative amplitudes 

of the recorded motions is sufficient. 

The conditions under which the tests were made were far from 

ideal, and installing the instruments involved difficult maneuvering. 

The time schedule for the installation, operation, and recording was 

very limited by the need to reopen the one closed lane of traffic prior 

to rush hour, and by other maintenance activities in the area. Only 

approximately four hours were available for completion of the tests. 

Additional difficulties were caused by the repainting of the bridge, being 

done at that time (mid-November, 1975 ). 

The measurements of the bridge frequencies were conducted 

using the following procedures. The recording instruments, consisting 

of the Brush Recorder, the signal conditioner and the magnetic tape 

recorder as shown in Fig. IV-11, were plac~d on a platform located 

at the juncture of the tower and the lower wind bracing of the suspended 

structure. This platform is generally used to provide access to the 

inspection walk shown in Fig. IV-12. The two seismometers were 

first placed on the centerline of the lower wind bracing of the center 
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Fig. IV-10. Location of ranger seismometer on the lower 
wind bracing. 

Fig. IV -11. The recording instruments. 
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TABLE IV-4 

Sequence of Tests to Determine Natural Frequencies 

of the San Pedro Suspension Bridge 

Instrument Locations and Recorded Motions During 8 Tests 

Recorded Location on the Bridge 
Test 

Motion 
Point Cross Section Span 

A-1 Displacement 
A Center line of the Bridge Center 

A-2 Velocity 

B-1 Dis placement 
B Center line of the Truss Center 

B-2 Velocity 

C-1 Displacement 
c Center line of the Bridge Side 

C-2 Velocity 

D-1 Displacement 
D Center line of the Truss Side 

D-2 Velocity 
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span (i.e., at location A) as shown in Fig. IV-10, and the vertical 

motion at this location was recorded for about 4 minutes per run. 

(The recording was begun after several minutes of monitoring the 

Brush Recorder display during which fine adjustments were made to 

obtain identical output from the two seismometers.) Then the two 

seismometers were placed on the centerline of the bottom chord of 

the stiffening truss (i.e., at location B) in the same cross section of 

the bridge (see Fig. IV-12). At this location vertical motion was 

also recorded after all necessary adjustments were made. 

These procedures were repeated for the side spans at locations 

C and D. Fig. IV-12 shows the locations of the Ranger seismometers 

on both the cross section and the elevation of the bridge; Table IV -4 

also shows these locations and the type of the recorded motions during 

eight tests. It may be mentioned that these particular locations (A, B, 

C and D) were selected because they provided safety screens which had 

been installed for use in repainting the bridge. For each location, two 

simultaneous displacement recordings were made lasting between 2 and 

5 minutes in each run; then two simultaneous velocity recordings were 

made at the same location. Actually, one seismometer would have 

been adequate for each location, but two recordings were rriade to 

verify the results. The seismometers were both connected to the 

recording instruments by means of various electrical cables which 

ran along the inspection walk. The recording instruments, as well as 

the two seismometers, were adjusted at the location, and the various 

motions of the bridge were displayed on the two-channel Brush 
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Recorder. AU of the instruments functioned satisfactorily throughout 

the tests. 

IV -4-3. Data analysis 

The following procedures were used in conducting data process­

ing analysis of the experimental records. 

1. The recorded data were converted to digital form on a magnetic 

tape compatible with the digital computer to be used, and 50 

discrete points per second were generated for each analog 

record. 

2. These original records were filtered with a Kronhite analog 

low-pass filter to remove any aliasing effects in the computed 

spectrum. Since all frequencies in the records that could be 

used in comparing the computed and measured frequencies lie 

well below 20 c. p. s., it was decided to use this limit for the 

filtering. 

3. It was decided that 50 points per second would be appropriate 

for data processing because this would give a Nyquist frequency 

of 25 c. p. s., which is well above all the frequencies being con­

sidered. A typical record consists of 8192 points (2N equispaced 

samples with N= 4096 points) or 163 . 84 seconds. A typical set 

of records of the first 150 seconds at locations A, C and Dis 

shown in Figs. IV-13, 14, and 15. In these figures, the scale 

of the vertical axis is proportional to the transducer voltage 

after the filtration. 
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4. The Fourier amplitude spectrum for each record of 163. 84 

seconds was obtained by using the Cooley and Tukey algorithm 

(the subroutine is available from the Caltech computer program 

library). This algorithm requires 2 N equally spaced data, 

where N= zM = 4096 points. and M is an integer (M = 12 in this 

case). 

The distribution of the Fourier amplitude spectra versus the 

distribution of the frequencies (from all 8 tests listed in 

Table IV -3) was plotted, for up to 10 c. p. s . , as shown in 

Fig. IV -16 through Fig. IV -19. The natural frequencies of 

vibration were determined by considering the distribution of 

all peaks in the Fourier spectra for the 8 tests. 
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IV-5. Comparison Between the Computed and the Measured Freguencies 

To measure the natural frequencies of the vertical modes of the 

bridge, the two seismometers were placed near the centerline of the 

lower wind bracing (Locations A andC) . By locating them elsewhere 

than the center of torsion of the bridge cross section, the vertical 

motion of that location, which accompanied the torsional vibration of 

the cross section, was recorded. To obtain more information about 

the torsional frequencies, the two seismometers were then placed on 

the center of the bottom chord of the stiffening truss. 

Because the possible sites for measurement were limited, it 

is conceivable that some existing modes were not recorded, if the 

locations chosen coincided with the nodes of those modes. 

The natural frequencies were obtained from the recorded data 

in two ways. 

1. The frequencies corresponding to the spectral peaks of each 

test were determined and were listed in Tables IV -5 and IV-6 

in ascending frequency order (lowest frequency first), along with 

both the expected vertical and torsional modes for each location 

and their computed frequencies. To select the frequencies at 

which the peaks occurred, all of the discrete values of the 

Fourier amplitude spectrum (the vertical ordinates) were listed 

opposite their corresponding frequencies (the horizontal values) 

by using a computer program. The frequencies at which the 

values peaked were then easily determined . 

2 . The discrete computed natural frequencies expecte<l for each 

location (or record) were plotted (and the corresponding numbers 
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of the modes of vibrations were indicated) on Fourier spectra 

as seen in Figs. IV -16 through IV -19. 

In general, the frequencies corresponding to the peaks in a 

typical Fourier amplitude spectrum agree closely with the computed 

values given in Tables IV-5 and IV-6. Actually, the measured 

frequencies are either the same as or higher than those computed, 

and the measured and computed frequencies of the first few modes 

(for instance, from 1 to 6) are almost identical. 

For the center span, in Figs. IV-16 and IV-17 and in Table IV-5, 

there are two peaks corresponding .to frequencies of about O. 71 and 

4. 64 c. p. s. It is possible that these frequencies correspond to the 

vertical aspect of the lateral modes of frequencies 0. 65 and 5. 31 c. p. s. 

(i.e., modes 2 and 13 in Table III-2). In these lateral modes, there is 

an upward motion incidental to the lateral vibration. It is also possible 

that the peaks re pre sent the coupling between two different motions, 

vertical and torsional or lateral and torsional. The analyses in this 

thesis does not consider the coupled horizontal-torsional motion or 

vertical-torsional motion because, as indicated previously, the 

resulting calculations are prohibitively intricate. For the side span, 

in Figs. IV-18 and IV -19 and in Table IV -6, there are two dominant 

peaks corresponding to frequencies of about 2. 1 and 5. 8 c. p. s. These 

two frequencies do not correlate with any of the computed vertical or 

torsional natural frequencies of the side spans. It is possible that 

these frequencies may also correspond to the coupling of different motions. 

Figs. IV-20andIV-21, representabreakdownofthe results pre­

sented in Tables IV-5 and IV-6 and also in figs. IV-16 through IV-19; 
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the torsional or vertical vibrations, symmetric and antisymmetric are 

shown individually. Again, the calculated frequencies, joined by the 

solid line, are in close agreement with the measured frequencies. 

It often happens that two vertical modes, two torsional modes 

or a vertical and a torsional mode are at nearly the same frequency, 

and the problem of separating the modes may be troublesome. 

Examples of these modes having very close frequencies are: 

a) 

b) 

for the 

S-V-2 

S-V-4 

AS-V-7 

for the 

S-V-2 

S-V-4 

center span 

and S-V-3 

and S-V-1 

and S-T-5 

side span 

and S-V-3 

and S-T-1 

S-V-9 and S-V-10 

AS - V -13 and AS - T -1 

AS-V-13 and AS-T-8 

S-V-2 S-V-3 and AS-V-2 

S-T-2 and S-T-3 

S-V-7 and S-T-4 , S - V-9 , S-V-10 , AS-V-8, S-T-6 and 

AS-T-4 . 

Here "S'' and "AS" indicate "symmetric" or "antisymmetric, 11 

while "V" and "T" indicate "vertical" or "torsional" vibration. 

To identify the different modes of vibration more effectively in 

future experimental work, the following recommendations are made: 

1. Torsional modes of vibration can be recovered by placing two 

seismometers on the same cross section of the bridge, on the 

centerline of both stiffening trusses, and simultaneously 

recording their vertical motions. By then subtracting their 

outputs, one should recover the torsional m otions . Vertical 
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modes can be isolated similarly by summing the outputs. 

2. To obtain more information about torsional modes and, at 

the same time, to identify the pure lateral modes, two 

seismometers should be placed in the same cross section, 

one at each centerline of the top and bottom chords of one 

stiffening truss to simultaneously record their lateral motions. 

Summing their outputs will give information about the purely 

lateral vibration while subtracting their outputs wlll provide 

data on purely torsional vibration. 

Thus, two seismometers recording vertical motions are needed 

on the same cross section to distinctly determine both the vertical and 

the torsional frequencies, while two seismometers recording lateral 

motions are needed to distinguish torsional .and lateral modes of 

vibrations. 

Finally, it may be interesti ng to note that in Figs. IV-16 through 

IV-19 the recorded displacements and velocities did not have large 

spectral amplitudes above approximately 5 c . p. s . ; this gives a limit 

above which structural motion is practically indistinguishable from 

other recorded noise. One source of noise causing distortion of the 

higher modes could be the impact of vehicles crossing expansion and 

structural joints of the bridge. (This impact was clearly heard and 

felt while the experiments were being conducted. ) The equipment used 

to repaint the bridge was also a possible source of noise. In general, 

however, this method of structural testing, based on traffic induced 

vibrations, can give realistic estimates of the natural frequencies of 

a wide variety of suspension bridge structures . 
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From the Earthquake Engineering and Structural Dynamics point 

of view, the proper location of permanent instrumentation to record 

strong ground motion, on and in the vicinity of suspension bridges, is 

an important question. Proper placement will yield information about 

the response of the bridge, the nature of different modes of vibration 

and the coupling of those modes. Information indicating the effects of 

soil-bridge-soil interaction and, possibly, the damping of the 

structure as well as the phase differences in the motions of the piers 

and anchorages may also be obtained. 

The following are suggestions for appropriate locations of the 

instruments; it should be noted that these suggestions assume an 

ideal set of circumstances and, thus, do not consider any economic 

limitations. 

1. A set of three instruments, located on any given cross section 

of the suspended structure, between the mid-point and the point 

of support of the span, should be placed on the center span and 

one of the side spans. Each set would include one instrument 

on the centerline of the top chord of one of the suspended 

structures and another instrument on the centerline of the 

bottom chord. The third instrument would be located on either 

the top or the bottom chord of the other suspended structure. 

All of the instruments should be situated so as to record vertical 

motions, horizontal motions in the longitudinal direction of the 

bridge, and horizontal motions perpendicular to the bridge. 

Theserecordswouldhelpto identify the different modes of 

vibrations. 
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z. Two additional instruments should be used, one located at each 

pier, in order to correlate the ground motions at the two sites 

and to evaluate any phase differences. These placements are 

particularly important in bridges having very long spans. 

3 . Instruments should be located, also, at each of the supports of 

the suspended structures on the tower legs ; from these locations, 

information may be obtained to evaluate the effect of the dif­

ferential motion of the supports on the movements and inter­

action of the bridge spans, and thus on the mode shapes. 

4. To study the soil-structure interaction, an instrument should 

be located on each of the banks, in line with the piers of the 

bridge, and below each end of the bridge deck. 

5. Finally, although not essential, instruments located at each of 

the tower tops and at each anchorage would be useful to evaluate 

the motion of each of those locations. 
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TEST A-I 

6 Sll'mmetrlc Vertical Frequ1nclH 

Q Antl~tymm1trlc Vertlcol Fr1qu1ncln 

o Symmetric Toralonal Freq1.11ncl11 

• Antl"'l)'mmetric Tor;lonol Frequencies 

10 

ILQOO 5.000 6.000 e.ooo 9.000 10.000 
FREQUENCY - HZ. 

TEST A-2 

14 

.o. Symmetric Vertical Frequencies 

o Anti-symmetric Vertical Frequencies 

o Symmetric Torsional Frequencies 

" 12 Anti-symmetric Torsional Frequencies 

17 
10 

16 

o o·--f 0cxi-· ~:-.;oo --+ooo--- ~:c;oo--tooo · - --b;oo·-- ~:000.,,.--~~.,..... 

Fig. IV-16. 

f REQUENCY - HZ. 

Fourier amplitude spectrum of the (A-1) displace­
ment and (A-2) velocity recorded at location A. 
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TEST B - I 

A Symmetric Vertical Frequencies 

o Anti-symmetric Vertlcal Frequencies 

o Symmetric Torsional Frequencies 

• Anti-symmetric ·Torsional Frequencies 

1,1 . 000 S. 000 6.000 7.000 
FREQUENCY - HZ. 

,. 

TEST B- 2 

4 Symmetric Vertica I Frequencies 

u Anti-symmetric Vertical Frequencies 

o Symmetric Torsional Frequencies 

Anti-symmetric Torsional Frequencies 

17 

ILOOO 5.000 6.000 7.000 
FREQUENCY - HZ .· 

Fourier amplitude spectrum of the (B-1) displace­
ment and (B-2) velocity recorded at location B. 
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TEST C - I 

4 Symmetric Vertlcol FrequenclH 

o Anll- aymmetrlc Vertical Frequencies 

• Symmetric Tortlonol Frequencies 

* Anti-symmetric Torsional Frequencies 

7 .000 B.000 9.000 10.000 

TEST C-2 

11 Symmetric Vertical Frequencies 

a Anti-symmetric Vertical Frequencies 

o Symmetric Torsional Frequencies 

• Anti-symmetric Torsional Frequencies 

ILOOO 5.000 ·6 ,000 
F REOUENC Y - HZ • 

Fourier amplitude spectrum of the ( C-1) displace ­
ment and (C-2) velocity recorded at location C . 
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TEST 0- I 

4 Symmetric Vertlcal FrequenclH 

a Anti-symmetric Vertlcol FrequenclH 

o Symmetric Tottlonal Frequencies 

• Anti-symmetric Toralonol Frequencies 

7.000 6.000 9 .000 10.000 

TEST D-2 

A Symmetric Vertical Frequencies 

o Anti-symmetric Vertical Frequencies 

o Symmetric Torsional Frequencies 

• Anti· symmetric To1alonol Frequencies 

Fourier amplitude spectrum of the (D-1) displace­
ment and (D-2) velocity recorded at location D. 
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SAN PEDRO- TERMINAL I SLANO SUSPENSION BR !OGE 

COMPARISON BETWEEN CALCULATED ANO MEASURED FREQUENCIES 

SYMMETRIC VERTICAL VIBRATION 

EXPLANATION 

~ CALCULATED FREQUENCIES 

TEST A-1 

TEST A-2 

TEST 8-1 

TEST 8- 2 
MEASURED FREQUENCIES 

TEST C-1 

/ 
/ 

"- 4. TEST C-2 

TEST 0-1 

3. TEST D-2 

o~~_,,~~-=------t-~--'c~~-=-~~~8,__~_,,.~~~,~o~~~,~2~~~,3~~~,~.~~~,6~~~11~~~,~8~___.,,,9 

EXPECTED SYMMETRIC VERTICAL MODES 

(a) 

SAN PEDRO-TERM I NRL I SLRNO SUSPENSION BR !OGE 

~ COMPARISON BETHEEN CALCULATED ANO MEASURED FREQUENCIES 

ANTI-SYMMETRIC VERTICAL VIBRATION 

g 
.; 

EXPLANATION 

~ --- CALCULATED FREQUENC JES 

g 
.,; 

TEST A- 1 

TEST A-2 

TEST B-1 

TEST B-2 

TEST C-1 

TEST C-2 

TEST 0- 1 

TEST D-2 

MEASURED FRECUENC JES 

" 0 ~~--;~~~~~~~~-t-~~'?-~--Je.---~--1;.~~,,~,~~~,2.-~-+.;,3~~~,~5~~~,s~~,,~7~~~,8~~_J 
EXPECTED ANTI-SYMMETRIC VERTICAL MODES 

(b) 

Fig. IV -20. Comparison between calculated and measured 
frequencies for vertical vibration (a) symmetric 
and (b) antisymmetric. 



-356-

SAN PEDRO-TERMINAL ISLAND SUSPENSION BRIDGE 

2 COMPARISON BETWEEN CALCULATED AND MEASURED FREQUENCIES 

SYMMETRIC TORSIONAL VIBRATION 

EXPLRNRT ION 

~ ___,,____ CALCULATED FRfQUENCIES 

2 
..; 

0 

TEST A-l 

TEST A-2 

TEST 8-1 

TE5T 8-2 

TEST C-1 

TEST C-2 

TEST 0-1 

TEST 0-2 

MEASURED FREOUENC I ES 

0~~~~~-7~~-=--~~--7-~~~s~~~.~~--.,~~-• ..-~-,,,o~~___,,,,~~~,~2~~~~~~~~~~~ 

0 

.,;w 
0.. 
u 

NI 

EXPECTED SYMMETR IC rnRS!ONAL MODES 

(a) 

SAN PEDRO-TERMINAL ISLAND SUSPENSION BRIDGE 

COMPARISON BETWEEN CALCULATED ANO MEASURED FREQUENCIES 

ANT I -SYMMETRIC TORSIONAL VIBRATION 

EXPLANATION 

CALCULATED FREOUENC JES 

TEST A-1 

TEST A-2 

TEST 8-1 

TEST B-2 
MEASURED FREOUENC I 

TEST C-l 

TE Sf C-2 

TEST 0-1 

TEST 0-2 

:t~ ~-----__....---~--· ~-
~~.~~~,~~~.~~~9~~~~~~~~~~~~~~~~~-

Fig. IV-21. 

EXPECTED ANT I -SYMMETRIC TORSIONAL HOOE 

(b) 

Comparison between calculated and measured 
frequencies for torsional vibration (a) symmetric 
and (b) antisymmetric . 
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IV-6 . Summary and Conclusions 

1. The prime objective of this experimental study of the San Pedro 

Suspension Bridge was to check the reliability of the dynamic 

methods of analysis developed in Chapters I through III by com­

paring the measured and computed frequencies. 

2 . The bridge 1 s response to motion caused mainly by traffic, as 

well as by wind, and other environmental factors was measured 

with sensitive seismometers. The ,. recorded motion was analyzed 

using Fourier techniques and a digital computer. 

3 . The experimental estimates of the natural frequencies of the 

bridge revealed many modes of vertical and torsional vibrations 

in the frequency range 0 c. p. s. - 5 c. p . s . 

4 . The close spacing of the different modes requires high resolution 

spectrum analysis and consequently long recording sessio.ns; 

it also requires proper placement of the seismometers, as 

indicated. 

5 . Further recommendations toward obtaining better results are 

also indicated. 

6. The natural frequencies measured showed reasonable agreernent 

with computed values for the vertical and torsional modes of 

vibrations in the first few modes . 
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Summary and Conclusions of Part A 

Thj._s part of the the sis develops a method of dynamic analysis 

for the free , vertical, torsional and lateral vibrations of suspension 

bridges . The rpethod is based on the so-called linearized deflection 

theory, on the finite element approach and on use of the digital com­

puter. It incorporates certain simplifying features and involves two 

distinct steps: 

1. Specification of the different potential and kinetic energies of 

the vibrating members of the continuous structure, leading 

to derivation, by Hamilton 1 s Principle, of the differential 

equations of motion and the associated boundary conditions 

governing the vertical, torsional and lateral free vibrations. 

Solutions of the linear differential equations for torsional and 

lateral free vibrations are obtained; the solutions for vertical 

vibration have not been derived as they are well known. 

2. Use of the finite element technique to: 

a. discretize the structure into equivalent systems of finite 

elements, 

b. select the displacement model most closely approximating 

the real case, 

c. derive the element and assemblage stiffness and inertia 

properties, and finally 

d. form the matrix equations of motion and the resulting 

eigenproblems . 
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The evaluation of the stiffness and inertia properties of the 

idealized structural element and assemblage is based on the expres­

sion of the potential and kinetic energies of the element (or the 

assemblage) in terms of nodal displacements. 

Detailed nume rical examples are presented to illustrate the 

applicability and the effectiveness of the analysis and to investigate 

the dynamic characteristics of a wide class of suspension bridges 

with widely different properties. Furthermore, a rigorous com-

parison with previous results obtained by other investigators has 

been made. 

To further demonstrate the reliability of the analysis, the 

natural frequencies and mode shapes of vibration of the Vincent­

Thomas Suspension Bridge (between San Pedro and Terminal Island, 

California) have been computed and compared with the measured 

frequencies of the bridge. The experimental estimates of the natural 

frequencies revealed many modes of vertical and torsional vibrations 

in the frequency range 0 c . p. s. -5 c. p. s . The natural frequencies 

measured showed excellent agreement with the computed values for 

the vertical and torsional modes of vibration. Further recommenda­

tions toward obtaining better results are also indicated. 

This method constitutes an advance in the analysis of the 

dynamics of suspension bridges, in that it eliminates the need to 

solve transcendental frequency equations, simplifies the accurate 

computation of both lower and higher modes of vibration, simplifies 

the determination of the energy stored in diffe rent member s of the 
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suspension bridge, and represents from the engineering point of 

view, a simple, fast and accurate tool for calculating the natural 

frequencies and modes of vibration by means of a digital computer. 
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PART B 

STUDIES ON THE EFFECT OF DIFFERENTIAL MOTIONS 

OF TWO FOUNDATIONS UPON THE RESPONSE OF 

THE SUPERSTRUCTURE OF A BRIDGE 

General Introduction 

The effect of differential motions of two (or more) foundations 

upon the dynamic response of the superstructure of a bridge is a 

little understood problem which is of considerable interest in earth­

quake engineering. Although dynamic loadings acting on a bridge 

structure may result from different sources, including wind or 

vehicular motions, to the structural engineer one of the most 

important types of dynamic input is that produced by an earthquake. 

The definition of an appropriate ground-motion history is the most 

difficult and uncertain phase of the problem of predicting structural 

response to earthquakes. A common assumption in the usual treat­

ment of earthquake excitations is that the same motion acts simul­

taneously at all points of the structure's foundation. If rotation 

motions are neglected, this assumption is equivalent to considering 

the foundation soil to be rigid. Such a hypothesis is not consistent 

with the concept of earthquake wave propagation; however, if the 

base dimensions of the structure are small relative to the vibration 

wave length in the soil, the assumption is acceptable. For example, 

if the velocity of the wave propagation is 6,.000 ft/ sec., a sinusoidal 
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wave of 3 Hz frequency will have a length of 2, 000 ft., and a building 

with a base dimension of 100 ft. will be subjected to essentially the 

same motions over its entire length. On the other hand, a suspension 

bridge, which might have a length of several thousand feet, obviously 

would be subjected to drastically different motions at its two founda­

tions. No direct measurements have been taken of a bridge (or 

similar struclure) at two widely separated foundations during an 

earthquake; however, it is evident that the motions must vary and 

their variance could contribute significantly to the dynamic response. 

Therefore, it is important to develop analytical procedures capable 

of dealing with multiple support excitation, 

In order to lay a foundation from which later work, analyzing 

the dynamic response of long-span suspension bridges to earthquake 

ground motions applied at separate points of support, can be developed, 

two related topics have been studied in this part of the thesis. The 

first topic, in Chapter V, deals with the dynamic response of a 

1'long beam 11 model of a bridge span to both steady-state and random 

excitations applied at the supports; the results involve a large number 

of modes. The second topic, presented in Chapter VI, develops a 

method to analyze the dynamic soil-bridge interaction of a simple 

bridge model erected on an elastic half-space, and the input motion 

is in the form of incident plane SH-waves . The dynamic response of 

the girder and the effect of the radiative damping in the half-space on 

the interaction of the girder are also studied . 

It is believed that these preliminary studies provide valuable 

insight into the structural behavior of suspension bridge structures. 
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CHAPTER V 

DYNAMIC RESPONSE OF A LONG BEAM MODEL 

OF A BRIDGE STRUCTURE SUBJECT TO TWO END EXCITATIONS 

V -1. Introduction 

For long span structures such as suspension bridges, the piers 

or the abutments of the bridge may be far apart . In such a case, one 

may have a situation involving ground motion with different charac­

teristics at each point of the bridge structure . For instance, during 

the 1971 San Fernando earthquake, the motions recorded by instru ­

ments located in Millikan library, at one end of the campus of 

California Institute of Technology; di ffered greatly from those of the 

Caltech Athenaeum located at the other end. 

The following study deals with the effect of differential motions 

of two end supports upon the response of the superstructure. The 

study has been simplified by considering a long shear beam, simply 

supported at two ends, as shown in Fig . V-1, this beam is subjected 

to two end excitation, f 1 (t) and f
2

(t) , in the form of ground dis­

placements. 

Two cases of excitation have been examined : 

1 . Harmonic excitations where 
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f
1 

(t) = A sinwt and f
2

(t) =A sin(wt+a) 

in which A is the amplitude of the input motion and a is 

the phase difference between the two end excitations, as 

shown in Fig . V-1-a. 

2. Random excitations where 

fl (t) = f2 (t) = f(t) 

in which f(t) is a random function of time . 

For the harmonic excitations, which may differ in phase at 

the ends, the analysis has been made in the frequency domain by 

considering the steady state vibrations and calculating the displace­

ment amplitudes at certain points on the beam. The energy content 

of the system has been presented, and the correlation between the 

two end excitations has been considered. 

For random excitations where f 1 (t) = f
2

(t) = f(t) , i.e., where 

the two ends of the shear beam have the same motion (symmetric 

mode shapes) , the analysis has been made in the time domain; two 

cases of random motion have been considered : (1) Random motion 

(or displacement) of the supported ends that might be appropriate for 

a motion resulting from earthquake acceleration. This random 

motion was suggested by Shinozuka [ 1] , and is in the form of the 

integral of a product of an e 'nvelope decaying deterministic function 

times a random function. (2) Random acceleration of the supported 

ends, which was developed by Tajima [8] from the work of Kanai [9], 

has been studied. The case where the excitation has a certain dura­

tion followed by free vibration has been considered. 
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In either case of random motion, the response of the beam 

structure has been calculated and plotted versus different cases 

of envelope functions for case (1) and different durations for 

case (2). 
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V-2 . Steady-State Vibration Analysis 

In this section, a study is made of the she ar beam excited by 

the motion of the two support points, as shown in Fig . V -1 '-a. The 

two harmonic excitations, evidenced in the form of displacements, 

are of the same frequency and amplitude , but differ in phase by a 

The steady-state vibration of the beam is studied, and the results 

are expressed in a nondimensional form that enables a concise 

graphical presentation of the dynamic characteristics of the system. 

V-2-1. Undamped natural frequencies and mode shapes 

The free vibration of the undamped shear beam is described by 

the equation of motion 

2 
= k' a G 0 

v 
ox2 ( 5. 1) 

where p is the mass density, a is the cross-sectional area of the 

beam, k' is a numerical factor depending on the shape of the cross-

section, and G is the shear modulus . From Eq . 5 . 1, the eigen-

functions or mode shapes for the simply supported beam are 

q, (x ) 
n 

• n1TX = sin --
L 

n= 1,2,3,4, ... , 

where L is the span length of the beam. 

The natural frequencies are 

w = n 
n1T 

L 
n = 1, 2, 3 , .. . 

(5. 2) 

(5 . 3) 
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th th Eqs. 5. 2 and 5. 3 are the n mode shape and the n natural 

frequency, with the understanding that these mode shapes and 

frequencies could be for fixed-end bridges as well as for hinged-end 

ones so long as they do not violate the boundary conditions of the dis-

placement for such shear beams. 

V-2-2. Equation of motion of damped shear beam 

The differential equation of motion, in which a strain-rate type 

damping (relative damping) is assumed, can be written as 

where c is the damping coefficient. 

The }. nitial and boundary conditions are 

v(x, 0) = v(x. 0) = 0 

v(O, t) = A sinwt 

} v(L, t) = A sin (wt+ a) 

(5. 4) 

. (5. 5) 

(5. 6-a) 

(5. 6-b) 

where A is the amplitude of the two harmonic excitations, a is the 

phase difference, and W is the frequency of the excitations. 

V-2-3. Steady-state solution 

For the steady-state vibration, the solutio,n of Eq. 5. 4 maybe 

written as 

v(x, t) = X 1 (x) cos wt+ X 2 (x) sinwt (5. 7) 

where both x 1 (x) and X
2

(x) are functions of the spatial coordinate 
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x, only. 

Substitution of Eq. 5. 7 into Eq. 5. 4 yields two simultaneous 

ordinary differential equations; putting these two equations in a 

matrix form containing the solutions and their derivatives, and then 

solving these four equations, one can obtain 

x
1 

(x) = c
1 

coshqx cospx + c
2 

sinhqx cospx + c
3 

sinhqx sinpx 

+ c 
4 

coshqx sinpx (5. 8) 

and 

X
2

(x) =-c
1 

sinhqx sinpx - c
2 

coshqx sinpx + c
3 

coshqxcospx 

+ c 
4 

sinhqx cospx (5. 9) 

where c
1

, c
2

, c
3 

and c
4 

are arbitrary constants which can be 

determined from the boundary conditions (Eq. 5. 6 ), and q , p 

and j3 are given by 

(5. 10) 

= w , rr -V [1?±.!..J P Vk'G 2 
2[3 

(5.11) 

~ = v I+ (~~J (5.12) · 

Upon using the boundary conditions (Eq. 5 . 6), the constants 

c
1 

, · c
2 

, c
3 

, and c
4 

are found to be 
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(5.13) 

_ [sina sinhg L cospL - cosa coshg L sinpL + cospL sinpL J cz - A 2 2 2 2 
sinh qLcos pL + cosh qLsin pL 

' (5. 14) 

(5.15) 

c
4 

= A[sinacoshgL~npL+2cosasinhg2Lcosp~ - sinhgLcoshgL J,( 5. 16 ) 

cosh qLsin pL+ sinh qLcos pL 

Therefore, at any point ~ on the beam, the displacement can 

be written as 

(5.17-a) 

or more conveniently as 

v( i, t) = V 
0

( i) sin(wt+<P) (5.17-b) 

where V 
0

( ;E ) is the amplitude of the beam displacement at point 

5e; it is expressed as 

(5.18) 

In Eq. 5 . 17-b, <P is the phase angle between the displacement at that 

particular point 
>!.: 
x and the harmonic motion of the left support 

(where x = 0 and a = O); <P is given by 

(5. 19) 
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To simplify the calculations, all the parameters involved in 

the steady-state solution are expressed in nondimensional form; for 
,,, 

instance, define the dimensionless frequency w as 

(5. 20) 

where w 
1 

is the fun.damental natural frequency of the beam which is 

given by 

w ::: 
1 L 

Tr N p 
(5.21) 

Therefore, Eqs. 5 . 10and5.ll become 

(5. 22) 

and 

(5.23) 

Now, the steady-state solution, v(x, t), can be expressed in 

terms of the normal modes <Pn(x) as follows 

00 

v(x, t) ::: L <Pn(x) T]n(t) 
n:::l 

(5. 24) 

th 
where T] (t) is the n normal or generalized coordinate and is a 

n 

function of time only. 

Substitution of Eq. 5. 24 into Eq. 5 . 4 yields 

ryn(t) + Gck-, w
2 T, (t) + w2 

71 (t) = o 
n n n n 

n = 1, 2, 3, . . . 
(5.25) 
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Let 

where ~ is the damping ratio which is given by 
n 

then, one can obtain 

cw 
Gk

1 

where ~l is the damping ratio of the first mode. Therefore, 

Eq. 5. 12 becomes 

(5. 26) 

(5. 27) 

(5. 28) 

(5. 29) 

V-2-4. Dynamic response of the beam (numerical results) 

With the aid of Eq s. 5. 1 7, 5. 18 and 5. 19, the displacement 

v(x, t) , and the phase angle cp(x) were computed at three different 

points of the beam: at x :::: ~ , 
L 
4 

3L 
and 4 The damping for 

the first mode was assumed to be 2%, and a was given several 

values: 0° , 45° , 90°, 135° and 180° Figures V-2, V-4 and 

v -6 show the displacement amplitudes v o(~) 
vo( 34~) as functions of the dimensionless frequency ft, ' with the 

excitation phase angle a as a parameter. From these figures the 

following observations may be made. 
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1. In all cases, the amplitude curves for different values of the 

phase angle a, all have the same value ( lv0 I= 1. 0) when 

w approaches 0. 

2. At the mid-point of the span ( jv
0

( ~ )j, Fig. V-2 ), there is 

no contribution from the even modes (antisymmetric mode 

shapes), because that point ( 5f = ~ ) is always a node point 

for these mode shapes. 

3. In Fig. V-2, also, the maximum displacement is attained when 

a = 0° , i.e. , when the two harmonic end-excitations are in 

phase, and this maximum (or peak value) decreases as a 

increases in all the odd modes (symmetric mode shapes). 

Further understanding of this behavior of the system may be 

obtained by studying Fig. V-3 which corresponds to Fig. V-2. 

In Fig. V-3, when a= 0° to a ~60° the rate of decrease is 

very slow, while from a ~60° to Cl!= 180°, the rate of decrease 

is very rapid. 

4. Because of the type of damping assumed, the contribution from 

the third mode, in Figs. V-2 and V-3, is smaller than the con-

tribution from the first mode (by about 80%). 

5. At the points lvo (34L )j , the results are 

almost identical, as seen from Figs . V-4, V-5, V-6 and V-7. 

There is no contribution from the fourth mode where there are . 

nodes at these points (
>!< L d 3L) x = - an --4 4 For different 

values of the angle a , the behavior of the system at the second 

mode is completely different from the behavior at the first 

mode. 
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6. The phase difference cp between the response and the left-

support excitation (Eqs. 5. 17-b and 5. 19), has been plotted 

for these three points on the beam, as a function of the 

>::: 
dimensionless frequency w , and with a as a parameter. 

All three sets of curves in Figs. V-8, V-9 and V-10 indicated 

that during resonance of the first mode, the external forced 

displacement at the left support and the response have a phase 

difference of ~ . 

7. By comparing Figs. V-9 and V-10, a considerable difference 

is seen in the phase characteristics of the two cases when 

and 
3
4
L , in contrast with the similarity of the 

amplitude characteristics (in the frequency domain) shown 

in Figs. V-4, V-5, V-6 and V-7. 

V-2-5. Energy consideration 

For an external force F(x, t) , the equation of motion (Eq. 5. 4) 

can be written as 

Gk' a2
v + c a

2
v = -- + F(x, t) 

ox
2 

ot ox
2 

(5. 30) 

In terms of the inertia forces which result from the two end 

motions, F(x, t) can be described, as shown in Fig. V-1-c, as 

(5.31) 

Because f
1 

(t) = A sin wt and f
2

(t) = A sin (Wt+ a), Eq. 5. 31 becomes 
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F(x, t) = PA [-w
2 

sinwt - w
2 ~ ( sinwt cos a+ coswt sina - sinwt) J . (5. 32) 

Therefore, the amount of energy input into the system, which 

is supplied by the harmonically excited motions is 

8v 
F(x, t) at dt dx , 

and the energy per cycle of the vibration is 

L 2or 

EI/ cycle = i fw F(x, t) ~; dt dx 

0 0 

(5 . 33) 

(5. 34) 

This energy was calculated and plotted in dimensionless form 

~\ , as 

E = I 
(5 . 35) 

,,, .,, ::!< 
Fig. V-11 shows EI versus W with a as a parameter. At 

resonance, this energy input is equal to the energy dissipated by the 

system due to damping. Fig. V-11 shows the increase of this 

energy in the higher modes . The contribution from the odd 

symmetric modes and the even antisymmetric modes are shown to 

be proportional with the phase angle a . Finally, the energy of 

vibration as seen in Fig. V-11, is greatest in the normal modes of 

low order; this is to be expected because to excite the lower modes 

requires more energy. 
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A similar analysis was made for both the kinetic and strain 

energies of the system: The kinetic energy is 

L 

1 ( (av)2 
T(t) = 2 )_ pa at dx , 

0 

and the mean value of this kinetic energy per cycle is 

I W iLf~tr 
T /cycle= 2 -2 mean tr 

0 0 

(5. 31) 

The strain energy of the system is 

L 2 
U(t) = l ( k

1 a c(0v) dx 
2 J . ox 

0 . 

(5. 38} 

and the mean value of this energy per cycle is 

(5. 3 9) 

This strain energy is due to shear alone, because any element 

of the beam may undergo distortion but no rotation. 

Expressing these energies in nondimensional form, one obtains 

and 

·"· (T I cycle) "' mean T= 
kaG . A2 

L 

..,, (U /cycle') U= mean 
kaG . A2 

L 

(5. 40) 

(5.41) 
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Figs . V - 12 and V-13 show these two dimensionless energies 
, ,, 

as functions of w; they are almost equal at each normal mode. 
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V-3. Random Vibration Analysis 

This section contains a discussion of the transient response of 

the beam to random excitations applied at the support points. The 

analysis has been confined to the stationary aspects of the motion. 

Two types of input motion having various specific characteristics 

were considered, and the mean square displacement was calculated 

for both cases. The two end excitations were assumed to be identical 

in both cases. 

V-3-1. Eguation of motion 

Substituting Eq. 5. 24 into Eq. 5. 30, with F(x, t) defined as 

in Eq. 5. 31, one can obtain the following, after multiplying both 

sides of the resulting equation by <Pm(x) , integrating from 0 to L 

with respect to x , and making use of the orthogonality of the modes. 

?Jn(t)+2wn~n 7]n(t) + W~'TJn(t) = :rr [f
0

1 (t) - (-l)nf2 (t)J , n = 1, 2, 3, .•. 

(5. 42) 

By considering Fig. V-1-c, one can decompose the two triangular 

I (•· .. ) inertia forces to the symmetric case where one has 2 £1 {t) + £2 (t} , 

1 ("" •. ~ and the antisymmetric case where one has 2 fi (t) - f 2 (t~; using 

Eq. 5. 42, these two cases can be written as 

1j (t) + 2w ~ 17 (t) + w 2 
'TJ (t) = _?_ (£1 (t) + f

0

2 (t)) n n n n n n nrr n= 1,3,5, •.• 

(5. 43) 

which includes the contributions from the odd. modes (symmetric 

mode shapes), and 
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ti (t) + 2W ~ T] (t) + w2 77 (t) = 1_ (1'1(t) - f2(t)) n = 2, 4, 6, •.. 
n n n n n n n1T 

(5. 44) 

which includes the contributions from the even modes (antisymmetric 

mode shapes). 

Because this analysis considers that £
1 

(t) = f
2

(t) = f(t) , where 

f(t) is a random input motion, it shows only the contributions from 

the symmetric modes. Accordingly, Eqs. 5. 43 and 5.44 reduce to 

ti (t) + 2W ~ f/ (t) + w2 77 (t) = _i_ f(t) n n n n n n nrr · 
n = 1, 3, 5, ... (5. 45) 

If the initial conditions are assumed to be zero, a valid solution 

of Eq. 5. 45 is obtained through the time domain using the convolution, 

or DuhameL integral 

t 
4 I .. 1] (t) = - h(t-T) f(T) dT 

n n1T 
0 

n= 1,3,5, ... (5. 46) 

in which T is a dummy time variable and h(t) is the unit-impulse-

response function of tl~e system; it is expressed by 

t ~ 0 

(5.47) 

= 0 t < 0 

with u.i = , ~ w as the damped natural frequency. dn V ~ -sn n 

The stochastic mean square of the normal coordinate of 

Eq. 5. 46 can be written as 
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2 4)2ft ( .. .. . 
(17n(t))=(mr • J h(t-T)h(t-T

1

)(f(T)f{T
1

))dTdT
1

• n= 1,3,5, .. . 

0 0 (5 . 48) 
.. 

where f (t} is assumed to be mean· square continuous. The quantity 

(f(T)f (T
1

)) is, b y definition, R£{T, T
1

), which is the autocor-
.. 

relation function f o r f (T) • The autocorrelation function for a 

stationary process depends only on the time difference (T - T
1

) , 

and not on T and T
1 

individually. 

The random excitation has been considered as either 
' 

( 1) Random imput displacement f(t) with specific characteristics, 

or 

(2) 
.. 

Random input acceleration f (t) with specific duration and 

other definite characteristics. 

V-3-2. Dynamic response under random displacements 

The particu lar form of random motion considered for the 

random function f (t) (case (1) above) might express ground motion 

resulting from earthquake acceleration as stated by Shinozuka and 

Henry [ 1 J . Unfortunately, the amount of data on strong motion earth-

quakes is quite limited, so it has not been possible to obtain anything 

like a complete statistical description of earthquakes. However, 

there has been prev ious work concerning the statistical nature of 

ground motion; ref erence is made to studies by Bogdanoff, Goldberg 

and Bernard [3], B olotin [4], Rosenblueth and Bustamante [5] , 

Caughey and Stumpf [2], Sharpe, et al. [6] , and Housner and 

Jennings [7]. 
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The random displacement f(t) suggested by Shinozuka and 

Henry [ 1 J was based on the evident condition that the ground 
• 

velocity f(t) must approach zero as time t approaches infinity. 

This ground displacement is in the form of the integral of the 

envelope deterministic time function times a random function 

having specific properties: 

t 

f(t) =I G(T) g(T) dT ... , 

0 

where G(t) is the envelope function; it is expressed by 

~>a>O 

a and ~ are constants. 

The random function g(t) has the following properties: 

1. g(t) is stationary 

2. g(t) is Gaussian 

3. g(t) has mean zero, i.e., ( g(t)) = 0 

4. g(t) has power spectrum W(W) 

5. g(t) exists and is continuous in mean square; moreover, 

because g(t) is stationary and Gaussian, so is g(t) . 

(5. 49) 

(5. 50) 

Hence, g(t) and g(t) are Gaussian and continuous in mean square 

with mean (g(t)) = (g(t)) = 0 . 

From Eq. 5. 49, the expressions for the velocity and the 

acceleration are 

• -at -Bt 
f (t) = (e - e 1 

) g(t) (5. 51) 
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and 

·• -at -f3t -at -f3t • 
f(t) = (-ae + f3e ) g(t) + (e - e ) g(t) (5. 52) 

The r~ndom function has a covariance given by 

(X) 

(g(t) g(s)) = R (t - s) = -1 f W(w) eiW(t - s) dW 
g 2ir (5.53} 

where R (t - s) is the autocorrelation function for g(t) ; it depends g 

only on the time difference (t - s) , and not on t and s individually. 

The covariances of both the velocity (Eq. 5. 51) and the accelera-

tion (Eq. 5. 5 2), are given by 

and 

(f(t)f(s)) = (-ae-at+f3e-13t)(-ae-as+f3e-13 5 ) (g(t)g(s)) 

+ (-ae-at+ f3e-13t)(e -as - e-f3s) (g(t) g(s)) 

+ (e-at_e-f3t)(-ae-a 5 +f3e-13 5 ) (g(t)g(s)) 

+ (e-at - e-f3t)(e-as - e-f3s) (g(t) g(s)) 

in which 

():> 

(5. 54) 

(5. 55) 

(g(t)g(s)) = - (g(t) g(s)) = i (t - s) = i_ J w W{w) eiw (t - s) dw 
·g 2rr 

-co 

(5. 56} 
o:> 

- (g(t) g(s)) = R (t - s) = - _!_ J w 2'1r(w) eiw (t - s) dw 
g 2'!r 

'Now, substitution of Eqs. 5. 47, 5. 53, 5.54, 5.55 and 5.56 into 



-391-

Eq. 5. 48, after lengthy algebra operations, yields 

- 2 2] +2wim[J (w,t;a,{3)J (w,t;l,l)}+w /J (w,t;l,l)/ dw, 
n n n 

(5. 57) 

where J denotes the complex conjugate of J . The expressions 
n n 

£or J (w, t; 1, 1) are shown in Appendix V -a. 
n 

For the purpose of numerical computation, Shinozuka [ 1] 

suggested the following power spectrum 

(5. 58) 

where B and D · are constants. Shinozuka admits that the applica-

bility of this form of 'V(w) to earthquake problems is open to 

question; however, due to the lack of statistical studies concerning 

earthquake ground displacement, a superior spectrum has not been 

discovered by this investigation. The autocorrelation function of 

Eq. 5. 58 is 

R (T) = ( D ) 
g 2 Jn- B 

2 

(~~z) 
e (5. 59) 

Expressing all the parameters in nondimensional form enables 

one to visualize some of the characteristics of the problem. By 

introducing w 1 from Eq. 5. 21, one can obtain the dimensionless 

quantities 



and 

* w W=-
Wl 

* ~dn / 2 
W - = - = n l l - ~n dn w1 
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* w n 
w -­n w1 

= n 

* a a=-, - and 
WI 

(5. 60) 

(5. 61) 

Therefore, Eq. 5. 57 becomes 

* .,, .,, 2] .,, .,_.,,.,_.,_..,.., __ ._ "·21""*"- I.,, 
+zwrm{J (w,t;;;,p>J (w,t';1,1)} +w ,J (w,t';1,1> .. dw. 

n n n 
(5. 62) 

00 

Upon using the modal solution v(x, t) = L 4'n(x) 7Jn (t) , one 
n=l, 3, 5 

can obtain the mean square displacement as 

(v2
(x, t)) = L sin

2 n~x ( 17~(t)) (5. 63) 

n=l,3,5 

Evaluating the integral of Eq. 5. 62 is very involved; so its 

value was obtained numerically by using the Hildebrand algorithm, 

which is based on the following relation 

00 2 2 

f e-X x f(x) dx= R [£ (- -{6) + 4£(0) + £( f6 )] 6>:" · 2A. . \ 2A. (5. 64) 
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A numerical example is presented for the set of parameters 

~~ * a and 13 , i.e., for different envelope functions as shown in 

Fig. V-14 where four types, designated by A, B, C and D , are 

as follows: 

..,,. ..,,. .... ..... 
Type a {3 

A 0.2 o. 5 

B 0.5 1. 0 

c 0.8 1. 5 

D 2. 0 4.0 

* 2 The corresponding mean square displacement (v) was 

plotted in Fig. V-15, where 

2 ..,, 
(v (x,t')) 

DL y' e 
k

1

G 

(5. 65) 

Only the first term of the series of Eq. 5. 63 was considered because 

the series is rapidly convergent. 

In the numerical example, the damping was taken to be 10%, 

which is quite high, and the quantity B2w~ in the power spectrum 

was taken equal to O. 5 

It is important to note, also, that the contribution from the term 

sin
2 

nz- in Eq. 5.63 was taken to be equal to~ indicating one of 

two possibilities 

1. L 3L 
x = 4 or T or 
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2. the space average of the mean square displacement is in 

the form 

L 

n= 1, 3, 5 

1 i . 2 n1TX dx - sin --L L 
0 

(5. 66) 

Figs. V-14 and V-15 show the correlation between the shape 

of the envelope function G(t) and the corresponding mean square 

. * 2 displacement (v) . In all curves of Fig. V-15, there is a rapid 

decaying of these response curves due to the high percentage of 

damping which has been assumed (10%). 

V-3-3 . Dynamic response under random accelerations 

Another example of random excitation is based on the random 

acceleration with specific duration, which is given as 

F(t) = [H(t) - H(t - t
0

)J g(t) (5.67) 

where H(t) is the unit step function (the Heaviside function), and t
0 

is the duration of this input excitation. The displacements both 

during and after the application of the random acceleration are 

presented. 

The solution of Eq. 5. 45, which is in t...lle form of Eq. 5. 48, 

may be reduced to the following form, after much algebra is per-

formed 

. 2 
( 77

2 
(t)) = -2

1 
[H(t) - H(t - t

0
)J (_i_) 

n 1T nTI 

et:> ~ 

J W(w) r(w, t) dw (5.68) 

-oo 
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the expression for I(w, t) is given in Appendix V-b. 

Another method to evaluate the integral of Eq. 5. 68, is the one 

suggested by Caughey andStumpf[2]; their method approximates the 

integral of Eq. 5. 68 by 

W(W ) 2 [ fco 1 
<11!<t)) ~ 2:n [H(t) - H(t - t 0 )J (n!) I(w, t) dw J (5. 69) 

-oo 

which, with the aid of Appendix V-b, becomes 

'lt(w ) __ 2 
<112(t)) ~ dn [H(t) - H(t - t >J(..L) _1__ [ 1 - e -z;nwnt 

n 2'll" 0 nil". ; 
n 

2 ( -2~ w t + ~ e n n cos 2W t -
n dn 

-2~ w t ) J e n n sin 2W dn t - 1 . 

(5. 70) 

The power spectral density of strong motion earthquake 

acceleration suggested by Tajima(8] was used for the purpose of 

numerical computation. The power spectrum [7] is in the form 

W(W) = 
o. 01238 (1+14~~ 8) 

2 2 ( 2 ) 
( 1 - 2~2 ) + 1~7. 8 

(5. 71) 

The root mean square (rms) value of the displacement was com-

puted for the random input, for different· durations of the excitation 

(t0 = 30, 20 and 10 seconds). Also, the free vibrational displacement 

which followed the forced vibration was computed. The time history 

of the two displacements is shown in Figs. V-16 and V-17, where only 

two terms of the series of Eq . 5. 63 were considered. In these figures, 
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w1 (the fundamental frequency) was assumed to be O. 3 rad/sec.; 

i.e., the natural period was taken to be about 21 sec., which is 

the fundamental period of a long-span suspension bridge. The 

damping was taken to be 10% which is, again, a very high value. 

The figures show the displacement at the mid-point of the span; for 

the displacement at ~ and 
3~ , or for the space average of the 

displacement, one has to multiply the ordinate by O. 707. 

As is seen from Figs. V-16 and V-17, for the 30 seconds 

duration, the displacement at the mid-point of the beam reaches 

a value of 1. 7 ft. at t ~ 33 sec . , while for 10 seconds duration, the 

displacement reduces to 1. 2 ft. at about 13 seconds. One can 

notice, also, that the maximum displacement always occurs 

immediately after the excitation subsides. 

Fig. V-18 shows the energy content of the system with both 

the strain and kinetic energies plotted for the example of 30 seconds 

duration. The figure demonstrates the gradual increase of the two 

energies during the input motion; subsequently, during free vibration, 

the kinetic energy is at its minimum when the strain energy is at 

its maximum. The sum of the two energies is the envelope of the 

two curves, and it is shown in the same figure. 
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V-4. Conclusions 

This study has examined the effect when the two end supports 

of a simply supported uniform bridge deck (assumed to be shear beam 

type) are ·shaken simultaneously by earthquake-type motion; this 

situation was analyzed in both the frequency and time domains, with 

harmonic and random excitations, respectively. 

In the harmonic vibration analysis, the response of the beam as 

well as the correlation between the two support-point excitations 

have been investigated. The different modes of vibration are related 

to the nature of the support movement; in particular, they depend on 

the relative phase of the two support motions. When the two supports 

move in phase, symmetric modes of beam vibration can be excited, 

while when the end supports are moving 18{)0 out of phase, the anti­

symmetric modes are excited. 

In the random vibration analysis, two methods are presented 

to determine the stochastic response of the beam when it is subjected 

to identical stationary Gaussian excitations acting simultaneously 

on both end suworts. Both methods indicated that significant dis­

placement amplitude occurs immediately subsequent to the end of 

the random excitations. 
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V -5. Appendices 

Appendix V -a 

Expressions for J (w,t;a,13) and J (w,t;l, 1) 
n n 

The complex quantities Jn(w, t; a, 13) and Jn(w, t; 1, 1) of 

Eq. 5. 58 are given by 

t 

I -Ct'T -13T iWT 
Jn(w, t; a, 13) = h(t - T)(ae -13e ) e , dT 

G 

and 

t 
( -Ct'T -13T iWT 

Jn(w,t;l,l}=J h(t-T)(e -e )e dT 

0 

Let G ((tJ,t;0) and H (rJ.l,t;0) be defined as 
n n 

·· and 

where e stands for a and 13 . 

Then, J (W, t; a, 13) and J (W, t; 1, 1) can be written as 
n n 

J (w,t;a,13) = [aG (w,t;a}-bG (w,t;13)J + i[aH (w,t;a) -13H (w,t;13)J 
n n n n n 
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and 

J (w. t; l~ 1) = [G (w. t; a) - G (w. t; [3)] + i(H (w. t; a) - H (w, t; [3)] 
n n n n n 

G . (w. t; 8) and H (W • t; 8) are evaluated and given by 
n n 

1 
I w d n [{ 2 2 2} 

G(w.t ;e )=[ 2 2 2]2 2 2 (w~-e)+wd-w. 
n (~ w -e) + wd -w + 4w (~ w -e) n n n 

nn n n nn , . 

and 

· 
1 

/wdn [{ 2 2 2} 
H (w,t ;9 )=U( )2 2 2]2 2 )2 (w ~ -e ) +wd -w . 

n ~ W -9 +W -W + 4W (~ W -9 n n n 
n n dn n n 

again W = .. Q W dn v.L-sn n is the damped frequency for the th 
n mode. 
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Appendix V-b 

Expression for I(W, t) 

I(w, t) of Eq. 5. 69 can be written, in terms of the unit-impulse-

response function h(t) (Eq. 5. 48), as 

I I 
-T)dTdT 

or, more conveniently, as 

where r
1 

denotes the complex conjugate of r1 which is given by 

Therefore, the expression for I(w, t) is 



I(w,t) = 

w 
+ 2~ __!!.. sinWdnt 

n wdn 

-404-

-~ w t ( ~ w ) + 2e n n -cos wd.nt - w:nn sinwdnt cos wt 

-~ w t w ] 
- 2e n n wdn sinwdnt sinwt 

. 2 t 
sin wdn 
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CHAPTER VI 

ANTIPLANE DYNAM!C SOIL-BRIDGE INTERACTION 

FOR INCIDENT PLANE SH- WAVES 

VI-1. Introduction 

The problem of the dynamic interaction between buildings and the 

soil during earthquake excitation has attracted considerable interest of 

many investigators [l, 2, 3, 4, 5]. However, such analyses have, so 

far, not been extended to more complicated structures, such as bridges 

or large industrial buildings, where differential motions of foundations 

might influence response in an important way, as seen in Chapter V. 

There have been many cases reported in the literature in which 

bridges suffered damage during earthquakes [6, 7]. These exampies 

clearly indicate the need for detailed investigations of the dynamic 

soil-bridge interaction to determine the significance of that interaction 

on the bridge response. The soil-bridge interaction effect is considered 

important, for example, when the motion of an abutment or foundation 

is significantly different from the motion of the ground in the absence 

of the bridge, the latter motion being usually referred to as the free-

fie ld ground motion. 
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The general dynamic soil- structure interaction problem can be 

broken down into three parts [8]. These are: 

1. The determination of the input motion to the foundations (the 

contribution of the seismic waves) or equivalently the deter­

mination of the driving forces. 

2. The evaluation of the force-displacement relationship (the· 

impedance functions or their reciprocal, the compliance 

functions) for the foundations. 

3 . The solution of the equations of motion including both the 

foundations and the superstructure. 

This approach has the advantage that once the solutions of the first 

two parts have been obtained for a class of foundations, the results 

can be used to calculate the interaction response of different 

structures. This is done by superimposing the results so that the 

equations of motion for the foundations are satisfied. This method, 

of course, is possible only if the problem is linear . 

Luco and Contesse [5] have studied the dynamic interaction, 

through the soil for two parallel infinite shear walls placed on rigid 

foundations and for vertically incident SH-waves. In a similar study 

Wong and Trifunac [9] have determined the driving forces induced 

by harmonic plane SH-waves and the impedance functions for a class 

of embedded foundations with circular cross sections at different 

separation distances. These results will be used in the present 

analysis of a two-dimensional superstructure (the girder), the sub­

structure (the two abutments) and the two foundations. 
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In the following study, the analysis of dynamic soil-bridge 

interaction has been performed in three steps. These are: 

1. the analysis of input motions 

2. the force-displacement relationships for the foundations 

3. the dynamic analysis of the structure itself, i. e. , the bridge. 

Based on the exact solution of the first two steps, the dynamic inter­

action of a simple two-dimensional bridge model erected on the elastic 

half-space has been investigated for a single span case. The two­

dimensional model under study consists of an elastic shear girder 

bridge supported by two rigid abutments and rigid foundations which 

have a circular eras s section and are welded to the half-space. It 

has been shown that the dynamic interaction depends on: 

1. the incide nee angle of plane SH-waves, 

2. the ratio of the rigidity of the girder and the soil, 

3. the ratio of the girder mass to the mass of the rigid abutment­

foundation system, and 

4. the span of the bridge. 

The dynamic response of the girder and the effect of the radiative 

damping in the half-space on the interaction ofthe girder have been 

studied. 

Finally, the model considered in this study offers obvious 

analytical advantages and a simple and direct insight into a complicated 

wave propagation phenomenon. However, this model represents a 

highly simplified version of the actual three-dimensional problem, in 

which in-plane as well as anti-plane incident waves are present, and 
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where coupling between the horizontal, rocking, torsional and 

vertical motions of the structure and the foundations take place . 
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VI-2. The Model, the Excitation and the Exact Solution 

The two-dimensional model studied in this analysis is shown 

in Fig. VI-1-a. It consists of three structural elements : the super-

structure (the girder), the substructure (the abutments) and the 

foundations. These elements are assumed to be infinitely extended 

in the z-direction. Furthermore, the following assumptions are 

made: 

1. The soil, which is represented by the half-space, is elastic, 

isotropic and homogeneous. Its rigidity and the velocity of 

shear waves are µ and [3 , respectively. 
s s 

2. The two foundations are assumed to be rigid, semicircular 

in cross section, and welded to the half-space. 

3. The abutments are also assumed to be rigid. They are welded 

to the foundations so they behave together as a rigid body 

partially embedded in the soil. 

4. The model for the girder is a shear beam, of span L and 

depth d , supported at the ends by the rigid piers. The beam 

is isotropic and homogeneous; the rigidity and the velocity of 

the shear waves in the beam are given by µb and [3b , 

respectively. 

VI-2-1. The coordinate systems 

1 . For the superstructure, i . e . , the girde r, the origin of x and y 

c oordinates is located at the left suppor t point as shown in 

Fig . VI-1-a. The x - axis is defined along the span of the bridge, 

while the y-axis is in the vertical directi on. 
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2. For the two rigid abutment-foundation systems, the scattered 

waves from the two rigid foundations are best represented by 

polar coordinates (r1 , cp1 ) and (r
2

, cp
2

) , which have their 

origins at the center of each foundation. The cartesian 

coordinates (x ', y ') are located at the left foundation such that 

I 
x 

x' - L 

= lr1 coscp1 

r
2

coscp
2 

= 
r

1 
sincp

1 

r 
2 

sincp
2 

( 6. 1) 

This choice of the (r 1 , cp1 ) and (r
2

, cp
2

) coordinate systems is 

identical to that used by Wong and Trifunac [9]. 

As shown by several investigators [5, 9, 10], the interaction 

problem can be separated into three steps : 

1. Input motion or 11driving forces . 11 

2. Impedance functions or 11compliance functions. 11 

3. Dynamic analysis of the structure (bridge) . 

The final results are then obtained by superposition. Some 

parts of these analyses are given in this study for the completeness 

of this presentation, as follows. 

VI-2-2. Motion of the soil 

It is assumed that the excitation is in a form of plane harmonic 

SH-waves with an amplitude equal to one and with the angle of 

incidence a' which is measured counterclockwise from the horizontal 

axis to the normal on the plane wave front (Fig . VI-1-a) . This 

incident wave is given by 



where 
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i / 1 iw ( t - x' I c - y' I c ) 
u (x , y , t) = e x y 

z 

13 s 
c =-­

x cos6 
[3 s 

c =--
y sin0 

(6. 2) 

(6. 3) 

and is the shear wave velocity in the soil; µ is the 
s 

shear modulus of the soil,and p is the density. 
s 

The resulting free-field motion, i.e . , motion of the half-space 

in the absence of the bridge and its foundations, becomes 

i+r I I 
u (x , y, t) 

z 
(6. 4) 

i+r i 
where uz stands for the sum of incident, uz, and reflected, 

r I 
u , waves from the half-space boundary y = 0 . This motion can z 

be represented in terms of polar coordinates (r
1

,cp
1

) and (r
2

,cp
2

) [9 ] . 

The total displacement field u , in the half-space in the 
z 

presence of the two rigid foundations is composed of the free-field 

. i+r d th d R d R f h motion uz an e scattere waves, u 1z an u 2 z , rom t e two 

foundations; i.e., 

(6. 5) 

This total displacement, u ' must satisfy the Helmholtz equation in z 

each of the (rl,cpl) and (r2' cp2) coordinate systems 

o2 u 
+ ...!._ 

OU 
+ _l_ 

o
2

u 
+ k

2
u 

z z z 
0 j 1, 2 ' (6. 6) -2- or. -2- = = 

r- 2 s z or. J J r. ocp. 
J J J 
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in which k - · W is the wave number, and the two boundary condi-
s - ~ 

tions: 

1. Stress-free surface boundary condition 

µ 8u 
a = ~ __ z = 0 at cp. = -IT , 

cp.z r. 8cp. J 
J J J 

O , j = 1, 2, r j ~ Rj , ( 6. 7) 

2. Harmonic displacement boundary condition 

(R t) A iwt u . , cp., = w. . e 
z J J J 

-IT~ cp. ~ 0 
J . 

j = 1, 2 ' (6. 8) 

where 6.
1 

and 6. 2 are the displacement amplitudes of the two 

foundations (Fig. VI-1-b). 6. 1 and 6. 2 are unknown and depend 

on the soil-structure interaction of both foundations and on the 

characteristics of the incoming waves. 

This interaction problem can be analyzed in three parts which 

are illustrated in Fig. VI-2-i. This figure represents a generaliza­

tion of the solution method presented by Wong and Trifunac [9] . to 

the soil-bridge interaction problem studied in this analysis. 

VI-2-3. Forces generated by the soil and compliance functions 

The forces exerted by the soil on the two foundations and caused 

by the incident waves and the motion of the neighboring foundations, 

as shown in Fig. VI-1-b, are given by 

0 -f a rz (Rl' cpl )Rl dcpl 
-IT 

= (6. 9) 0 -I (j rz(R2' <P2)R2d<P2 
-TI 
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r.=R. 
1 1 

i = 1, 2 ' . (6. 10) 

Using the principle of superposition, the total soil forces can be 

expressed in terms of the ''driving forces," and the unknown displace-

ments {6} premultiplied by the impedance matrix, 

-·--F''' 
1 Kll Kl2 61 

= + (6.11) 
,,, 

-F''' 
2 K21 K22 62 

* ~* Here the driving forces F 1 and F 2 are the forces exerted by the 

soil on the two foundations which are held fixed during excitation by 

the incident waves ui . The driving forces depend on the properties 
z 

of the foundations and the soil and also on the nature of the seismic 

excitation. An element of the impedance matrix K .. (i, j = 11 2) 
lJ 

represents force acting on the motionless i th foundation caused by 

the unit harmonic motion of the j th foundation. The impedance 

matrix depends only on the characteristics of the foundations and 

soil and on the frequency of the motion. Fig. VI-2-i illustrates the 

physic al meaning of these force c oefficients. 
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VI-3. Dynamic Analysis of the Bridge 

VI-3-1. Motion of the bridge 

The displacements u and v of the two-dimensional bridge 

model are selected to be zero, while the displacement w depends 

only on the coordinate x. This displacement must satisfy the 

equation of motion of an undamped shear beam; 

2 2 o w(x, t) 

ox2 
1 o w(x, t) 

= 13~ ot2 O~x~L , (6. 12) 

is the shear wave velocity in' the beam; 

µb is the shear modulus of the beam, and Pb is the density of the 

beam. 

The boundary conditions for the beam are 

w(o, t) 
= (6.13) 

w( L, t) 

where t:i. 1 and 6. 2 are the unknown complex displacements of the 

two foundations. The solution of Eq. 6 . 12 , compatible with the 

boundary conditions given by Eq . 6 . 13, is 

iwt 
e 

(6. 14) 
in which kb = W 11\ .. . is the wave number in the shear beam . 

From Eq. 6. 14, it is seen that the displacement w(x, t) depends on 

the instantaneous values of the harmonic boundary conditions. 
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VI-3-2. Forces exerted by the bridge 

The end resisting forces, per unit length, acting on the two 

abutments (Fig. VI-1-b) are given by 

F(o, t) 
b d ow(o, t) dO' (o, t) -µb ox xz 

= = = ' (6. 15) 

F(L, t) 
b -µ d ow(L, t) -dO' ( L, t) 
xz b ox 

where d is the depth of the shear beam and O'b is the shear stress 
xz 

in the z -direction. 

By using Eqs. 6. 14 and 6. 15, and by introducing the 

expression 

(6.16) 

which corresponds to the mass of the beam per unit length in the 

z-direction, these support forces can be written as: 

F~(t) 
2 · cot (kb L) 2 cosec (kbL) 

61 -W Mb 
(kbL) w Mb (kbL) 

iwt = e 

F~(t) 2 cosec (kbL) 2 cot (kb L) 
62 w Mb (kbL) -W Mb (kbL) 

(6. 1 7) 

'It is convenient to recall here that the undamped natural 

frequencies of the simply supported shear beam are given by 

n= 1,2,3, .. . (6 . 18) 
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This corresponds to 

~L=nTT, n= 1,2,3, ••• 

The mode shapes are given by 

W (x) = 
n 

. nTTx s1n-­
L n= 1,2,3, .•• 

( 6. 19) 

( 6. 20) 
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VI-4. Dynamic Soil-Bridge-Soil Interaction 

The unknown foundation displacement amplitudes 6 1 and 6 2 

can now be determined from the balance of forces exerted on each 

foundation. These forces are: 

1. Soil forces F sl and F s 2 , as given by Eq. 6. 11. 

2. Bridge end forces F~(t) and F~(t), as given by Eq. 6.17. 

3. Inertia forces of each rigid abutment-foundation system, with 

masses Mfl 

-w2" iwt · 
w.2e ' 

d M d 1 t . -w2" eiwt d an f 2 , an acce era ions w. 1 an 

as shown in Fig. VI-1-b. 

The balance of the forces for the two abutment-foundation systems is 

then 

(6. 21) 

Introducing 

M sl 
R2 

1 
'IT 

- 2~ 
Ms2 

R2 
2 

(6. 22) 

which corresponds to the mass of the soil per unit length removed 

by the two foundations and by using Eq s. 6. 1 7 and 6. 21 there follows: 

F~< 
1 

= (6. 23) 

F* 
2 



where 

and 

= µ 1Tk R 1 s s 
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(6. 24) 

The foundation displacement amplitudes 6 1 and 6 2 are uniquely 

determined by solving the two simultaneous, complex, and non-

homogeneous equations (Eq. 6. 23). 

Numerical examples presented in Figs. VI-3 through VI-12 

depend mainly on the angle of incident waves 9 and five other 

dimensionless parameters: 

1. w 
T/= ~ Rl = ksRl 

s 
which compares 

= ~1T R 1 , which is the dimensionless frequency 
s 

the wavelength A of the incident wave to the 
s 

width of the left foundation. 

Mfl Mf2 
2. -M and -M , which are the ratios of the masses of the 

sl s2 
abutment-foundation systems to the masses of the soil replaced 

by the foundation only. 

considered in this paper 

They are 

(i.e., 

set equal in the examples 

Mfl _ Mf2 _ MF ) 
Msl - Ms2 - MS 

Mb Mb 
3. -- and -- , which are the ratios of the mass of the bridge 

Msl Ms2 

girder to the masses of the soil replaced by its foundations. 

(In the figures these are denoted by ~~ when R 1 = R 2 and 

MB MB 
by MSl and MS2 when R 1 :/. R 2 . ) 
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4. 
kbL (3 s L (3 s L Rl 

this ratio reflects the E=kR = = ·- ; 
s 2 (3b R2 (3b Rl R2 

relative stiffness of the bridge and the soil; it also describes 

the ratio of the span to the radius of the foundation. Large 

values of E indicate a more flexible bridge with respect to the 

soil and/or a longer span, while E = 0 implies a rigid 

structure composed of a rigid bridge girder, rigid abutments 

and rigid foundations. In that case 6.
1 

= 6.
2 

R 
5. R 

1 
; this geometric parameter which reflects the relative 

2 
width of the two foundations is also needed unless R

1 
= R

2 

For different types of soil and a typical reinforced concrete 

structure 11bridge 11 with µ , Y, and (3 as shown in Table VI-1 

L Rl 
and - , the range of 

R2 R2 
and for selected rations of 

values for E is as shown in Table VI-2. 
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VI-5. Interpretation of the Interaction 

The two displacement amplitudes t:::.. 1 and t:::.. 2 computed for the 

excitation corresponding to the incident plane harmonic SH-waves have 

been illustrated in Figs. VI-3 through VI 712 . The displacement of the 

left foundation t:::.. 1 is represented by a dashed line, and the displace­

ment of the right foundation t:::.. 2 by a solid line . These two displace­

ment amplitudes have been plotted against the dimensionless freque'ncy 

T/ • 

Different cases have been considered which corr.espond to the 

following parameters .: 

1 . The mass ratios have been considered in four cases: 

MF 2 
MB 

2 a. MS = MS = 

b . MF 4 MB 2 
MS = MS = 

MF = 2 MB= 4 c. 
MS MS 

d. MF 2 MB = 2 
MS = MS2 

MB 
MSl = 8 

2 . The following geometric size ratios were examined: = 5, 10' 

for 
Rl 

1, 2' respectively. 
R2 = I 

3 . The relative stiffness ratio of the bridge girder and the soil, ~ 

which is represented by the parameter E (Note : E is written 

as EPS in these graphs), has been assumed to have the valqes 

1, 2, 3, and 4 . 

4 . The angle of incidence, 6 , of plane SH - waves has taken the 

values equal to 0° , 45u, 90u, l 35u and 180° . (Note: In 

the case of R 1 = R 2 , only 0°, 45°, and 90° have been shown 

because of symmetry. ) 
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The figures have been arranged so that the influence of the angle 

of incidence and the relative stiffness ratio can be studied for the 

mass ratios and the geometric size ratios fixed in each figure. Each 

of these figures consists of parts a, b, c, and d which correspond to 

different values of E. 

Some of the most important phenomena of the interaction of the 

bridge and the soil through the two rigid abutment-foundation systems 

and the dynamic characteristics of the bridge girder response are as 

follows: 

1. As E _, 0 , 6 1 _, 6 2 (from Eq. 6. 23). In that case, one has 

a rigid structure composed of three elements (two foundations, 

two abutments and a girder) all acting as a rigid body. Fig. 

VI-3-a illustrates this case for E small. When E increases, 

the differences between 6 1 and 6
2 

become more apparent. 

One notes, however, that in all cases these amplitudes approach 

the low frequency limit of I 61 \ = 1621 = 2 , which corresponds 

to the displacement amplitude of the surface of the half-space 

for incident SH-waves with unit amplitude. 

The amplitude 6 1 may become larger than 6
2 

due to the 

amplification effect caused by the scattering from the right 

foundation. In the cases of E = 1. 5 in Fig. VI-3-d, for example, 

or for E = 2. 0 in Figs . VI-4-b and VI-5-b, the peaks of 6
1 

are considerably larger than 2 for small dimensionless 

frequencies. 

2. In the case of B = 90° , when R1 = Rz , the two foundations 

are in phase and have the same amplitude. These amplitudes 
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become zero when the beam is excited at its odd frequencies, 

i . e., the symmetric mode-shapes. In that case 

77= nrr/E n=l,3,5 ... , 

and the symmetric modes of the bridge are 

W (x) = (sin nrrx)/L 
n 

n = 1, 3, 5, ... 

(6. 25) 

(6. 26) 

Thus, when 0 = 90° and R 1 = R 2 , the symmetry of vibration 

reduces mathematically to a single foundation problem [2, 3] . 

When incident waves have a frequency corresponding to a fixed 

base frequency of this structure, the foundation(s) is(are) located 

at a node of the standing wave pattern and the structure above and 

the soil below are moving 180° out of phase. 

3. The dip of the displacement amplitude curve 6 2 , which occurs 

for a shallow angle of incidence e = 0°, 45°' is displaced 

towards the lower values of the dimensionless frequency 77, as 

the flexibility of the bridge increases (Figs. VI-4 and VI-7). If 

one compares Figs .VI-4 and VI-6 and VI-7 and VI-9, one notes 

that, for the same E and the same L/ R 2 , as the mass of the 

bridge increases, the dip moves again towards low values of T1, 

i.e. , the frequency dee rease s. 

This behavior can be qualitatively explained by the simplified 

model consisting of three masses and several springs (shown 

in Fig. VI-2-ii) where the spring constants k 1, k 2 , and k 12 

depend upon the soil properties, while the spring constant k 13 

depends on the bridge stiffness. The displacements resulting 

from simple excitation, shown in Fig. VI-2-ii, can be deter-
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mined from the following matrix equation 

2 
-W ml+kl+kl3+kl2 -kl2 -kl3 x1 kl 

- kl2 

-kl3 

three masses. 

i.e. , 

2 
x2 0 -w m2+k2+kl3+k2 -kl3 = 

-kl3 
2 

-W m
3

+2k
13 X3 0 

(6 . 27) 
and x

3 
are the displacement amplitudes of the 

2 2 
x 2 = 0 when k 12 (-w m 3 +2k13)+k

13 
= 0, 

k ( 2 + kl3 ) 
13 k12 

(6. 28) 

This frequency depends on the absolute stiffness of the bridge 

k
13 

and the ratio of stiffness of the bridge with respect to the 

soil underneath it k
13

/k
12 

. As the stiffness of the bridge k
13 

or the stiffness ratio k 13 /k12 decrease, the frequency for 

which the dip occurs decreases (e.g. , Figs . VI-4, VI-6, VI-7 

and VI-9) . This frequency also decreases when the mass of the 

· bridge increases . The above model is, of course, only a 

simple one-dimensional analogue, while the problem under 

consideration is a two-dimensional one involving propagation, 

reflection and scattering of waves f r om the rigid foundations in 

the soil and inside the beam. Nevertheless, in spite of its one-

dimensional simplicity, the above model does allow one to 

obtain an approximate physical understanding of a more com-

plicated wave propagation problem. 
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4. In all cases which have been shown in the figures for the non-

vertical incidence of waves and when fJ = nrr /E , n = 1, 2, 3, ... , 

(i.e., when the frequency of the incident waves corresponds to 

the natural frequencies of the girder ), one finds ,that 

As was mentioned before, 6.
1 

= 6.
2 

for 

n = 1, 3, 5, . . . and 6. 1 = -6. 2 for n = 2, 4, 6, ... ; i.e. , the 

two end displacements are 180° out of phase . This observation 

gives a better idea about the phase difference between the two 

amplitudes 6. 1 and 6. 2 , as shown,for example, in Fig. VI-10. 

In some cases, 6. 1 = 6. 2 ~ 0 at fJ = nrr/E, n = 1, 2, 3, 5, as in 

Figs. VI-5-b, VI-7, VI-8 and VI-9-c for the second mode, 

Fig. VI-7-c for the first mode, and Fig. VI-8-c for the third 

mode . 

5. The peak amplitudes of the displacements 6. 1 and 6.
2 

may be 

relatively high in some cases (e.g., Figs . VI-5 through VI-9). 

For the cases studied, these amplitudes are as much as four 

times greater than they would be if the foundations did not 

interact with the soil. These peaks occur at frequencies which 

increase as the parameter E increases for a constant span. 

Therefore, the more flexible the girder, the higher the frequency 

at which the peak occurs . Increasing the span while holding E 

constant decreases the frequencies of these peaks. This cor-

responds to increasing the rigidity of the bridge with respect to 

13 s L 
that of the soil since E = - --

!3b R2 
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6. When the mass of the foundations increases with respect to 

that of the girder, the peak values of the 6 1 and 6 2 ampli-

tudes increase moderately. This additional increase results 

from increasing the span, which also decreases the significance 

of the interaction (e.g., Figs . VI-5 and VI-8). 

7. When the mass of the girder increases with respect to that of 

the foundation (e.g., Figs. VI-6 and VI-9), the peak amplitudes 

of 6 1 and 6 2 decrease appreciably. As the span increases, 

this effect becomes less pronounced. 

8. In general, as the span L increases, there is a greater degree 

of fluctuation in both 6 1 and 6 2 amplitudes. For constant L , 

the fluctuations of 6 1 and 6 2 decrease as the angle of 

incidence e approaches 90° ' since in that case the projected 

wavelength on the horizontal surface A.~:~= A. /cos e becomes 
s s 

infinite. 

9. When the sizes of the two foundations differ, more complicated 

interaction phenomena occur (Figs . VI-11 and VI-12): 

a . When the incident wave first hits the larger foundation (the 

left one), i.e.' when e = 0° or 45° ' this foundation acts 

as a shield for the right foundation. This shielding effect is 

most evident in Figs. VI-11-a, band VI-12-a, where the 

smaller foundation moves with nearly the same displacement 

as the larger one. The additional amplification effects 

caused by the smaller foundation are negligible in all these 

cases because of the massiveness of the larger foundation. 
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The shielding effect decre,ases with an increase of . the 

following parameters : 

(1) the flexibility of the girder 

(2) the span (Fig. VI-11) 

(3) the angle of incidence 0 

(4) the ratio R
2 

/R
1 

for the same span (Figs . VI-11 and 

VI-12) . 

b. When the incident wave first hits the smalle r foundation 

(the right one), i.e . ' when a= 135° or 180°' the left 

foundation acts as a bar r ier which reflects significant 

wave energy back towards the small foundation while the 

shielding effect provided by the right foundation is 

negligible (Figs. VI - 11-b and VI-12-b) . The overall 

amplitudes of 6. 1 and 6. 2 are influenced by: 

(1) the flexibility of the girder; 

(2) the span and the size of the foundations; and 

(3) the angle of incidence a . 
c. The peak value of the displacement amplitudes 6.

1 
and 6.

2 

increases "With the increase of flexibility of the super ­

structure and the increase of ratio R 1 /R2 (Figs. VI-11-b 

and VI-12-a, b, c) . 

d . For both vertical and nonvertical incident waves, small 

amplitudes of \ 6. 1 \ and 16. 2 1 occur at TJ = nrr/E , 

R 1 /R2 =/: 1 , n = 1, 3, 5, ... as shown in Figs . VI-11 and 

VI-12. Since R
1 

=le R 2 , the bridge system is not symmetric 



-440-

now and, in general, one does not expect to find that 

RI 
for all 8 and T/ = ~iT Rz = 
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VI-6. Response of the Bridge 

From the Earthquake Engineering and Structural Dynamics 

point of view, one of the more important problems is to find which 

are the critical sections of a structure and to estimate where the 

maximum displacements or the maximum stresses may occur. With 

this in mind, and to illustrate the effects of soil-bridge interaction on 

the girder of the single-span bridge studied in this analysis, 

the response of the midpoint and the two quarter points (x/L = O. 25, 

0. 75 ), have been examined in some detail as shown in the three-

dimensional Fig. VI-10 .. 

Using Eq. 6. 14 for · x = L/2, the displacement amplitude 

I w(L/2, t) I is calculated at the midpoint of the span as: 

w ( ~, t) c [cos (k~L) - cot (kbL) sin.(k~L) J 6 1 + 

+[ cosec (kbL) sin(~L)] 6 2 

which reduces to 

(6. 29) 

When interaction is neglected, both t:i. 1 and t:i. 2 would become 1, and 

I w(L/2, t) I would become infinite at the natural frequencies of the 

shear beam, i. e., at kb L = nrr, n = 1, 3, 5, ... (since there is con­

tribution only from the symmetric modes for the midpoint). However, 

if interaction is not neglected by using the results from the above 

analysis the following can be said about the beam response : 
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1. When t:.. 1 = t:.. 2 = 0 at 1J = nrr / E; n = 1, 3, 5, ... ; R 1 = R 2 ; 

i.e., in the case of vertical SH-waves where 0 = 90° , th e 

2. 

response given by Eq. 6. 29 remains finite and is characterized 

by relatively s m all peaks, as shown for example, in Fig. 

VI-13. It can also be seen in this figure that when 0 i- 90° 

the peaks, in general, are much larger and the effect of 

small t:..l and t:..2 is less pronounc ed. 

When t:..l and t:..2 have considerable amplitudes at f1 = nrr / E, 

n = 1, 3, 5 , ... , and in the case of no n-vertically incident SH­

waves, the amplitude of the beam response is large at 1J = nrr / E, 

i.e., at the fundamental resonant frequencies of the beam. It 

should be noted that the sharp peaks in Fig. VI-13 have been 

plotted only up to the amplitude equal to 40 to "preserve the 

detail and resolution of the neighboring smaller amplitudes. 

Other important characteristics of the results which can be 

shown in figures similar to Fig. VI-13 can be summarized as follows: 

In general, the peak valu~s of I w(L/ 2, t) I increase with E, when 

e = 90° • i.e .• for higher flexibility of the structure with respect' to 

th'at of the soil and for the MB / MS fixed. The peak response 

amplitudes decrease for the higher modes and for the same E. 

Increasing the foundation mass [larger (MF / MS)] leads to more 

effective coupling 6£ the bridge to the soil and thus less radiative 

damp~ng, while increasing the mass of the girder l large.r (MB/MS)] 

leads to higher radiative damping when L is constant. The increase 

of span L for a fixed value of ( :: " E~) , which is equivalent to 
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increasing the rigidity of the girder with respect to that of the soil, 

also leads to more radiative damping. 
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VI-7. Conclusions 

A key step in the evaluation of the soil-structure interaction 

effects on the earthquake response of ·a structure is in the computation 

of the force - displacement relationships for the foundation. Several 

such relationships [2, 5, 8, 9], expressed in terms of impedance or 

compliance functions, are available in the literature. 

Having obtained the impedance function for particular two-

dimensional abutment conditions, represented by rigid foundations 

with semicircular cross sections, and having defined the input motion 

in terms of plane SH-waves, the calculation of the response of bridge 

girder depends on the stiffness, mass and damping characteristics 

of the bridge relative to that of the soil. For some input frequencies 

the amplitude of the foundation response has been found to be signifi-

cantly larger than the free field surface displacement amplitude which 

~ould be obtained for the same excitation in the absence of a bridge or 

its abutments. 

The excitation of different modes of vibration of the two­

dimensional bridge girder is related to the natur~ of the foundation 

movement for different angles of incident SH-waves and, in particular, 

depends on the relative phase of motion for two bridge abutments. 

When two abutments move in phase, there is a tendency to excite 
" 

symmetric modes of girder vibratio·n; while when they are moving 

out of phase, the antisymmetric modes are excited more effectively. 

The simplest type of two-dimensional soil-bridge interaction 

occurs for the vertical incidence of SH-waves and for the symmetric 

bridge and its abutments. In that case, for the frequendes that 
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correspond to the symmetric modes of girder vibration, the two 

abutments do not move and the efficiency of radiation damping, 

which results from the wave scattering from the two foundations, 

is maximum. In all other cases, when the angle of incident waves 

is n·ot vertical, or when the bridge girder is not symmetric and/ or 

when the abutments are different, this simplicity is lost and the 

efficiency of radiative damping is significantly reduced. In general, 

when the angle of incident SH-waves is not vertical, large response 

of the bridge is obtained at the fixed base natural frequencies of the 

bridge. 

When the bridge and its abutments are symmetric, the torsional 

motion of the whole bridge does not seem to be excited appreciably, 

at least not for the mass ratios and the geometries studied in this 

analysis. However, this tendency is completely reversed when the 

bridge abutments are not the same (i.e . , R 1 i- R2 and/ or 

MSl i- MSZ). Nonsymmetry of mass distributions enhances the 

overall torsional response, especially for horizontally incident 

SH-waves. Other related phenomena, such as shielding, amplifica­

tion by the wave scattered from the other foundation, and the 

influence of the standing wave pattern on the excitation of two bridge 

abutments, are all accentuated and made more complex by the non ­

symmetry of the two abutments. 
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