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ABSTRACT

This study was an attempt to analyze convective flow patterns
under conditions applicable to fires in high rise buildings when natural
convection alone is the most important driving force. The primary
aim of this investigation was to consider the turbulent flow in vertical
shafts caused by hot gases entering the bottom of the shaft which is
already filled with a cooler (denser) gas, and hence creating an un-
stable density field.

The small scale model used to study this problem consisted of
a vertical tube of dense fluid placed in an infinite (less dense) fluid en-
vironment. General scaling laws were developed for the variation of
density with time for the flow set up in the model. Also, an analytical
model was developed to account for the observed mixing rates in this
simple configuration.

In the analysis, the diffusion equation was solved and found to
be in agreement with the small scale model. The mixing coefficient

for this unstable system is

1/4
_ g 0 .
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where the constant, 0.28, was determined empirically, and the funda-

mental time scale that characterizes the mixing in the vertical column

Np. 9/4
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Later, the above techniques were used to investigate in a more
superficial way the effects on the mixing rates of geometric variations,
limited external environments, changes in the internal geometry of the

shafts, gas density ratio, and heat transfer.
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1. INTRODUCTION

1.1 Background

High rise buildings are found throughout the world. They are
symbolic of the economic growth of any prosperous city. However,
fires in such buildings are very difficult to cope with. The construc-
tion of skyscrapers has advanced more rapidly than the local fire
departments. As a result, they are not properly equipped to handle
fires in the multi-story buildings, and many lives are lost each year.

Fires in multi-story buildings are much different from those
in conventional buildings. The difference is that isolated fires on
lower floors create tremendous buoyancy forces that drive the hot
gases to the upper floors. These toxic gases usually account for most
of the deaths. The amazing phenomenon is that although the fire often
does not reach the top floors, the death toll is usually highest there.
For instance, a fire in a fourteen story hotel in Jacksonville, Florida
killed twenty-two peoplel. It occurred in the ballroom of the first
floor and was under control within 30 minutes. During that time,
however, smoke spread to the ceiling of the ballroom and up 15 verti-
cal pipe shafts, each about 2' by 5', and thus passed through the
building to the top floor. The smoke advanced through access panels
to the corridors and into a number of the bedrooms, and eventually
produced the deaths of people caught between the 6th and 13th floors.
The people who died occupied the floors as follows: 8 on the 13th
floor, 4 on the 12th floor, 5 on the 11th floor, 2 on the 10th, 2 on the
9th, and 1 on the 6th floor. This incident reflects the situation of

movement of smoke into the upper floors remote from the fire, and
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also that heat is not the primary cause of most fire-related deaths.

The nation spends about 105 million dollars annually on re-
search and development related to firesz. This amounts to less than
one per cent of the cost of destruction caused by fires in the United
States. Until recently, more emphasis was placed on the evacuation
of the occupants of burning buildings. Now researchers are placing
more emphasis on the movement of smoke. This study is an attempt
to analyze the propagation of toxic gases to the upper floors of multi-
story buildings as a result of natural convection. Knowledge of the
time required for the smoke to reach a lethal concentration on the up-
per floors of a building may be valuable in saving lives and in the de-
sign of building construction codes.

1.2 The Propagation of Fires in High Rise Buildings

The spread of fire in all buildings is qualitatively similar. It
essentially consists of three phases, as shown in Fig. 1.1. They are
(1) the ignition, (2) the growth within the compartment of origin, and
(3) the spread between adjacent compartments. If the fire does not
extinguish itself, it may lead to total involvement and spread to other
enclosures. The growth of the fire within the compartment does not
change if it is taking place in a multi-story or conventional building;
but once the fire propagates beyond the room of origin, the fact that
it is in a high rise building becomes relevant in relation to the spread
of the toxic gases. f‘igure 1.2 is a schematic of a building that de-
picts the phenomena occurring as a result of an isolated fire. It con-
sists of a room where the isolated fire is initiated and a long corridor

that connects the room with the stairwell or elevator shaft.
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Fig. 1.2 Schematic Drawing of Fire in a Building.

The mechanism by which the isolated fire spreads throughout
the enclosure depends primarily on the fuel. Energy is transferred
by convection currents (natural or forced) and radiation. After a
certain amount of energy has been absorbed by the enclosure, the en-
tire room will burst into flames, Fig. 1.3. After a fire is ignited
and spreads, the transfer of energy by combustion processes to the
air and combustion products produces an increase of pressure in the
compartment primarily due to the reduction in density, i.e., expan-
sion of the heated air. The pressure gradient that exists between the
room and corridor, for example, causes convection to take place in
the absence of any ventilation systems. In addition, hot gas produced
in the fire will spill out under the door and spread down the hall.

The fluid motion that takes place in the corridor is coupled to

that in the room. It consists of a two-layered flow system as shown



Fig. 1.3 Development of a Typical Room Fire (after Fitzgerald,
1973).
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in Fig. 1.2. The gas that propagates to the upper floors is on the top,
and the bottom layer is the cold return flow. The return flow supplies
the oxygen to the fire in the room which is necessary to sustain itself.
Besides the mixing taking place between the hot and cold layers of the
gases, 'the only energy being transferred in the corridor is through
the upper walls by conduction.

The elevator shafts and stairways connect all other floors of the
building to the one where the fire exists. Strong buoyancy forces drive
the toxic gases to the upper floors. Initially, there is a cold column of
gas resting on top of a hot layer. Since the system is unstable, the .
cold gas falls and the hot gas rises in some fashion. The extent of
mixing of the hot and cold fluids determines the rate at which the up-
per floors fill up with the toxic gases. The dynamics and mixing in-
volved in this phase are the central theme in this document.

1.3 Objectives and Scope of Study

Problems due to the movement of smoke in high rise buildings
have been widely discussed3, but only a few analytical and experi-
mental rnodels4 exist. The non-existence of scaling laws is due pri-
marily to the difficulty of simulating the movement of smoke. 'Fung5
made a quantitative study of a pressurized stairwell smoke control
system for a 12-story apartment building. Smoke was simulated by
the flow of air from a room on the bottom floor of the building. The
air was heated 10°F above the corridor temperature and mixed with a
certain percentage of SF6 tracer. Although this model is useful, the

buoyancy force created by the 10 degree temperature difference is

very small. In a real fire, the temperature rise may be as high as
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800 degrees. For this reason, fire models that contain useful quanti-
tative data on the movement of smoke up vertical ducts are scarce.

This study deals with the propagation of hot gases to the upper
floors of a high rise building. It seeks to provide a fundamental time
scale to characterize the mixing in vertical ducts due to an unstable
density field. An understanding of the physical mixing laws can aid
researchers in their quest to simulate the movement of smoke in
buildings.

The remaining chapters of this report deal with the presenta-
tion and validation of a model simulating the transport processes of
hot gases in building fires due to natural convection. Chapter 2 de-
fines each problem being considered and states the relevant questions
to be answered in each case. Chapter 3 discusses the experimental ap-
proach to the various problems and gives a brief description of the
small scale models. Chapter 4 gives a complete description of the
mixing mechanism observed in the experimental model and dévelOps
analytical models to predict the mixing rates and density profiles
found in the small scale models. Chapter 5 discusses the experi-
mental apparatus and procedures of the various models, and Chapter
6 presents and discusses the experimental data and compares them to
the analytical results. The summary and conclusions of this study

are given in Chapter 7.
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2. STATEMENT OF THE PROBLEM

The primary aim of this research project was to study natural
convective flow patterns in high rise buildings due to fires. The
propagation of fires in multi-story buildings was discussed briefly in
Chapter 1. There we pointed out that elevator shafts, stairwells, and
other vertical ducts are the primary sources by which hot gases es-
cape to the upper floors of the buildings. Because of their relative im-
portance, the dynamics of the buoyancy-driven motion in vertical
ducts received the most attention in this report.

We have primarily considered the transient flow problem
shown schematically in the left hand side of Fig. 2. 1. A fire starts in
the room and generates hot gas which then runs down the hall and be-
gins to propagate up the stairwell or elevator shaft. In some manner,
hot gases of temperatures ranging from 800° to 1500°F enter the stair -
well and replace the cold, dense air initially present. The density
stratification, prior to and after the initiation of the mixing process, is
unstable because of the constant existence of hot gas at the bottom of
the stairwell and the mixture of cooler, and hence more dense, gases
at the top of the stairwell. (To avoid forced convection effects, we
have assumed that the only entrance to the duct is through the bottom. )

From this often-realized situation we have abstracted for study
the simpler problem shown in the right hand side of Fig. 2.1. That is,
we consider the transient density changes occurring in a vertical shaft
closed at the top and initially filled with a dense (cool) fluid. At the
start of the problem, the bottom of the shaft is suddenly opened and the

dense fluid is exposed to an unlimited volume of less dense (hot) fluid.
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The dynamics of this problem are controlled by density differences in
the gas and heat flux to the walls of the duct. To simplify our study
further, the problem was divided into two major categories: (1) a
buoyancy force model, and (2) a heat transfer model. The buoyancy
model was treated in much more detail than the heat transfer model
(which is not yet completed).

In addition to this problem, a number of related examples were
studied  briefly. A concise statement of the aspects of each model
investigated is considered in the following sections.

2.1 Buoyancy Force Model

In the buoyancy model we attempt to analyze only the effects of
large density differences due to temperature without the influence of
heat transfer from the system. The following subsections present
the questions to be studied in each case of this model.

2.1.1 Vertical Duct (Stairwell). Consider a fire in a large

volume below the inlet of an insulated duct that is closed at
the top, as shown in Fig. 2.2. Although this is an oversimplificatiqn
of the problem, the fire is assumed to supply a continuous source of
buoyancy in the stairwell. In essence, the fire and volume surround-
ing it are replaced by an infinite volume of hot gas at the same tem-
perature as the fire. The basic questions to be answered may be stat-
ed in the following manner.

1) How long does it take the hot gas to propagate to the

top of the stairwell? Is the stratification always unstable?
2) Physically, in what manner does the hot air displace the

column of room temperature air in the vertical duct? Is it
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turbulent, or does the cold air fall along the walls of the

vessel or along one side?

3) Is the motion of the gas in the duct reproducible? If
so, can it be modeled physically on a small scale?

4) What are the important parameters and scaling laws
that affect the dynamics of this problem? For example,
what role does viscosity play, etc.?

5) In particular, what effect does the aspect ratio, L/d,
have on the mixing rates of the hot and cold air if it is tur-
bulent?

2.1.2 Corridors. We pointed out in the Introduction that the
corridor links the room with the fire to the stairwell in this example.
The motion of the gas in this case has received much attention by
workers in other fields, such as density current86 and stratified
flow7. The main problem is concerned with the transfer of energy
and momentum between two counterflowing streams. In this case,
the opposing streams are the fresh supply of cold air en route to the
fire and the stream of hot, toxic gases emitted by the fire en route to
the exit or upper floors. The behavior of the two streams influences
the fire and its propagation, and the spread of toxic gas.

2.1.3 Stairwell-Corridor System. In most instances, fire

spreads from floor to floor upward. That is, the hot gases propagate
to the stairwell and up it to other floors. Combustible materials are
preheated along the way. Usually, the toxic gases leave the stairwell
by way of corridors on each floor. A simplified version of a stairwell-

corridor system is shown in Fig. 2.3. The dynamics of the gas motion
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in the vertical duct is changed because of the addition of the corri-
dor. The obvious question is: ''does the corridor increase or de-
crease the mixing rates in the vertical duct?' Do the same mixing
phenomena exist in both the horizontal and vertical portions of the
tubes? From experience, one expects a two-layered flow system to
exist in the horizontal attachment. However, the effect of the change
in direction of the momentum vector from horizontal to vertical ori-
entation is not known.

2.1.4 Stairwell-Basement System. Consider a fire in a

basement,or in some other enclosure of limited extent, that is con-
nected to a vertical duct as shown in Fig. 2.4. In this example, the
fire is not allowed to burn throughout the duration of the mixing
process. The essential point is that a limited supply of buoyancy is
present instead of an unlimited supply as was the case in the previous
problems. Now the mixing rates in the vertical duct will be different
because the amount of potential energy in the system is much less.
The same basic questions may be asked in this problem as with the
case of a continuous source of buoyancy.

2.1.5 Stairway System. The addition of stairs in the stair-

well, Fig. 2.2, complicates the problem a little more. For simplic-
ity, the stairs may be viewed as baffles spaced equal distances apart,
as depicted in Fig. 2.5. Since the baffles are streamlines with re-
spect to flow in the duct, one expects the flow to be more predictable.
than in the initial problem. However, the obvious question is: ''do
the stairs speed up or slow down the mixing in the duct? ' If it takes

a longer period of time for the hot gas to reach the top of the duct,
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the stairs serve a dual purpose. That is, along with the known pur-
pose of transporting people, it may also be a life saver with respect

to fire, or vice versa.

2.2 Heat Transfer Model

In the buoyancy model, all of the ducts were insulated. An
effort was made to isolate the heat transfer and to consider the dy-
namics of the gas due only to density differences. However, the ad-
dition of heat transfer to the system complicates the problem even
more. The schematic in Fig. 2.1 shows that energy is drained out
of the system because the walls of the stairwell are at a lower tem-
perature than that of the hot gas, initially. Eventually, the walls
heat up. A question that arises is: ''since energy is drained oqt of
the stairwell, is it possible to inhibit the mixing process so that the
hot gases will not penetrate to the top of the duct during the initial
stages of the fire? ' A priori, one expects that the heat transfer
from the hot gas will reduce the mixing rates, but to what extent is
not known.

The above problems are of fundamental importance in rela-
tion to the propagation of toxic gas and fire in a high rise building.
This research study is an attempt to investigate each of them. They

are considered in more detail in the following chapters.
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3. MODEL REPRESENTATION

Small scale models were used to examine the mixing phe-
nomena associated with the problems stated in Chapter 2. Initially,
salt-water mixtures were used to model the dense (cool) gas and
water alone to model the less dense (hotter) gas. In this program we
attempted to:

1) develop general scaling laws for the variation of density
with time in the flow set up in a vertical tube placed in an un-
limited surrounding atmosphere;

2) develop an analytical model which can account for the
observed mixing rates in these simple configurations;

3) use the above techniques to investigate what the effects
of geometric variations, limited external atmospheres, and
changes in the internal geometry of the shafts would have on
the mixing rates.

Later, we used gases of uniform temperature but different
densities, Ap/p >1, to produce the buoyancy forces in the gases in a
more realistic manner. Temperature differences alone (rather than
specie changes ) were used in this manner too. Then the effects of
large density differences and heat transfer were considered.

This chapter explains briefly the physical models used to
study the various problems. Also, consideration is given to the
physics and scaling laws used in conjunction with the models.

3.1 Buoyancy Force Model

In the buoyancy force model, the stairwell was replaced by a

cylindrical tube immersed in a large basin filled with a lighter mis-
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cible fluid. Brine solutions and dense gases were used as the heavy
fluids, whereas the less dense fluids were tap water and air, re-
spectively. A schematic of the system is shown in Fig. 3. 1. In this
particular case, the tube was filled with a salt solution and placed
vertically over a large basin of tap water. The mouth of the tube was
placed several diameters below the water surface in the basin. Ini-
tially, a partition separated the brine solution and the tap water, and
the mixing began when this partition was removed.

The mixing, subsequent to the removal of the partition, was

very turbulent. A distinct front propagated up the tube rapidly.

Violent mixing existed on the lower side of this front, whereas the

ot el 2

| — SALTWATER MIXTURE

INTENSE MIXING

WATER SURFACE

| S

Fig. 3.1 Schematic of Mixing Phenomena in Brine Solution Model.



-17-

brine solution on the upper side was motionless. Later the front
reached the top of the tube and turbulent mixing existed everywhere
in the duct.

Both dense gases and brine solutions were used in the vertical
duct problem (unlimited source of buoyancy). In the other problems
with their specific geometries, use was made of brine solutions as in
the case cited above. In each instance, the ducts were cylindrical
and the intense turbulent mixing was observed.

3.1.1 Scaling Laws. The density at any point in the tube has

the form

where x = Z/L and T is a dimensionless time. The purpose of this
study is to find the fundamental time scale, T, that characterizes the
mixing. From dimensional arguments, T may be written as

T o= f(/(%)p;—pa t, L/d, Gr ) ,

a

where Gr is the Grashof number. Note that (Api/pa) was included
with the first dimensionless group. However, it may also appear as
as a separate variable when Ap./p_ >>1.

The Grashof number has the form

p-p
_ a ) gd
ox - (Zfa) el

where v is the kinematic viscosity. In a real fire, the properties of

the heated gases change drastically, Roughly, the kinematic viscosity
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and the thermal diffusivity change by a factor of 10 if one compares the
hot and cold gas values. For example, the Grashof number, based on
a fire at 500°F in a duct of diameter of 10 ft. , is of the order of
7 X 1011. If the gas temperature is ZOOOOF, it is roughly 2.5 X 1010.
The Reynolds number, Re, which can be expressed here as the square

? to 8.5><105 in the

root of the Grashof number, ranges from 1.5X 10
above examples. The largest values of Gr and Re indicate that the
flow is certainly turbulent in a real fire. Although the molecular
transport quantities change by a significant amount in the fire, it is
the turbulent transport of energy and momentum that dominate the
dynamics of this problem.

In the brine solution model used in these experiments, Grashof

numbers are roughly 1/2 X 10lO , and hence Reynolds numbers are

about 0. 7 X 105. These values are somewhat smaller than the com-
parable values in a fire, but are close enough so that no large differ-
ences are énticipated. Therefore, We‘assumed that the important pa-
rameters in the model are épﬁ g, d, and L, and that viscosity could
be omitted. All of the small scale experiments were aimed at finding
the fundamental time scale, 7, and mode of density change based on

these quantities.

3.2 Heat Transfer Model

Heat transferred through the walls of the vessel was neglected
in the previous model, and an attempt was made to solve the more
basic problem of buoyancy. The dynamics of the gas motion is
changed, somewhat, because of the loss of potential energy of buoy-

ancy due to heat transfer. In the prototype, the heat capacity of the
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gas is much smaller than that of the duct. For example, consider a
cylindrical duct made of concrete, filled with air at room temperature.
The cylinder is 15' long, 1/2' thick, and its diameter is 10'. The
heat capacity of the concrete duct is roughly 6800 BTU/°F, as com-
pared to 7% BTU/°F for the volume of air in it. If the same amount
of energy is absorbed by Both the duct and the volume of air in it, the
temperature change of the duct is negligible relative to the tempera-
ture change of the air.

Therefore, it takes much more energy to heat the walls of the
duct than it takes to heat the volume of gas in it. This implies that
the temperature of the walls of the duct will essentially remain fixed
or will change slowly ddring the mixing process in the stairwell.
Since the walls are cool, they will act as a constant-temperature heat
sink and have a tendency to drain energy from the hot gases. Figure

3.2 is a schematic of the energy transfer mechanisms.

!
'

energy transfer into
constant-temperature
heat sink at walls

\\\)\\ AN
(

}
v

mixing due to strong
buoyancy forces

Fig. 3.2 Schematic of Energy Transfer Mechanisms in Heat
Transfer Model.
The experimental set-up of the heat transfer model was very
similar to that in the buoyancy model, Fig. 3.3. It consisted of a

vertical tube whose walls were maintained at a very low temperature.
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Figure 3.3 Schematic of Mixing Phenomena in Heat Transfer Model.

Initially, the air in the tube was chilled to the same temperature as
that of the surrounding walls. The experiment began when the par-
tition separating the ambient air and the cold air in the tube was re-
moved. The mixing was very turbulent, as before. The room tem-
perature air entering the tube was cooled by the walls of the vessel
during the mixing process. Thus, the temperature of the gas near the
top surface was much lower than that of the gas near the inlet of the
tube, and hence the system was unstable. However, the heat flux
through the walls drained energy from the mixing eddies, and after a

suitable time a steady state would be set up in which the temperature
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of the gas in the tube approached a constant value at any position.
In the previous cases, the system was always unsteady because
no other energy or density transfer mechanism existed to offset losses

from the open mouth of the tube.



-
4. THEORETICAL ANALYSIS

This chapter contains an analytical treatment of the buoyancy
force and heat transfer models. Initially, a description of the mixing
process in the brine solution model (stairwell problem) is given in
order that the reader gets an insight into the dynamics of the flow.
Then the one-dimensional turbulent diffusion equation is derived for
this system. Its derivation relies heavily on dimensional analysis
that takes the observed mixing phenomena into consideration. Solu-
tions of the diffusion equation are found for the basic vertical duct
problem, the stairwell-corridor system, and the stairwell-basement
system. Results are derived that can be applied directly to the small
scale models.

Formulation of the heat transfer model is an extension of the
buoyancy model. The solution of this problem describes the effects
of the heat transfer on the system.

4.1 A Description of the Mixing Phenomena in the Brine Solution

Model (Stairwell)

The remarkable phenomenon observed in the experimental
work was the intense mixing which lasted long after major density
differences had died out. Figure 4.1 is a photograph showing the
structure of the turbulence midway up the tube for the situation shown
schematically in Fig. 3.1. Salt-water mixtures and tap water (con-
taining dye to help visualize the mixing phenomena) were used to pro-
duce the buoyancy forces in this model. The photograph shows dark
(less dense) solution propagating up the tube and the clear (dense)

solution moving down the tube.
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<« Front |

Front 2

Front 3 —

Fig. 4.1 Turbulent Mixing in Brine Solution Model Midway Up the
Vertical Tube.
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After the removal of the partition separating the two fluids,
a distinct interface or front could be seen propagating up the tube.
On the lower side of the front there was intense mixing, and on the
upper side the brine solution was observed to be undisturbed. The
propagation of this interface was not steady. Its movement con-
sisted of intermittent bursts of high speed followed by periods of al-
most no motion. Initially the average speed of the front and the
density gradient near the front were large. However, as the front
traveled up the tube, its density gradient and its speed decreased
until another stronger front penetrated it. The initial front was al-.
ways followed by a series of stronger fronts, as shown in Fig. 4. 1.
The series of fronts move up the tube and pass the initial front.
Later, theypass through each other. This is shown more explicitly
in Figs.. 4.2 and 4. 3, which are a sequence of photographs of the
front before it reaches the top of the duct.

Figure 4. 2 depicts the mixing phenomena near the inlet of the
tube. The arrows on the photographs show the various fronts. The
sequence of photographs may be explained in the following manner.

A) The density of the initial front has increased (because
of its light color) and a less dense (darker) front has formed
about one diameter below it.

B) The second, stronger front in A has penetrated the
original front. Still another front is about 13 diameters
below it.

C) and D) The fronts are very dense in these sequences.

E) The density of the previous fronts has increased and
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a new distinct front is about 3 diameters below the uppermost
front.

F) Same as above.

The above photographs show how the fronts of less dense solu-
tion mix with the more dense brine solution and, hence, decrease the
density gradient between the front and the fluid above it. Also, the
manner in which the front propagates up the tube is shown. For ex-
ample, in Frame B, the solution is not uniform across the tube. The
dense (light colored) solution goes down the right hand side of the
tube, while the less dense (dark colored) solution goes up the left
side. The sequence of photographs (taken midway up the tube) in Fig.
4.3 also depicts this mechanism. Rather than propagating up or
down a side, the solution spirals in all directions. The spiralling
motion is random and very turbu.lént. The largest eddies at each
cross section were roughly the size of the diameter of the tube.

All of the above photographs were taken before the fronts
reached the top of the tube. We pointed out in Chapter 3 that the mix-
ing was turbulent everywhere in the duct after the front reached the
end of the tube. However, the same mixing mechanism (described in
the above paragraph) continued throughout the tube until the density
stratification in the tube was reduced to zero. Figure 4.4 is a typical
concentration record at a point near the top of the duct that shows the
pulse-type motion. In this example, the wave-like fronts are easily
seen on the concentration record. They are well-defined here because
this example had a large initial value of % g and a very small L/d.

Systems with these characteristics have well-defined fronts reaching
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the top of the tube. In tubes with smaller initial density differences
and large L/d, the fronts are not as distinguishable and a much more

. smooth concentration record is obtained.

While the mixing process described above was occurring, the
diluted brine solution could be seen leaving the bottom or inlet of the
duct more or less on its centerline. Tap water entered the tube near
its surface in a somewhat spiralling motion. Photographs of this
phenomenon are shown in Fig. 4.5, for which the heavy brine solution
was colored wifh dye. The heavier solution leaving the tube fell to
the floor of the tank containing the low-density fluid as a turbulent
plume and spread along the floor of the tank as a density current. In
analyzing the mixing process, we will assume that the density at the
exit is the ambient fluid density. From these photographs, it is clear
that this assumption is not exact.

In the gas - gas experiments of the buoyancy force model and
the experiments in the heat transfer model, the mixing phenomena
were not visible as in the above case. However, smoke was intro-
duced into the mouth of the tdbe in the gas - gas experiments, and al-
though the smoke could not be seen propagating to the top of the tube,
the mixing (when visible) was very turbulent. The same spiralling
motion and motion near the inlet were 6bserved as in the brine solu-
tion model. In the heat transfer experiments, dense fog was observed
at the inlet of the tube. It revealed the flow to be very turbulent, as in
the other cases. Hence, the visual obsérvations indicated that all

three cases produced the same general type of motion.
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Fig. 4.5 Mixing Phenomena at the Inlet of Tubes in the Brine
Solution Model. '
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4.2 Buoyancy Force Model

This section consists chiefly of three parts. Initially, the
conservation equations are stated for a system in general. Then
they are applied to the model under investigation and a diffusion coef-
ficient is derived based on simple energy arguments and dimensional
analysis. The turbulent diffusion equation derived from this analysis
is then solved for the basic vertical duct discharging a dense solution
into an infinite environment of less dense solution. The stairwell-
corridor and stairwell-basement problems are just extensions of the
vertical duct problem. They are solved by making assumptions that
change the boundary conditions of the vertical duct problem. The re-
sulting solutions have the same form as that of the basic separation
of variables solution of the stairwell problem.

The model equations derived here are based on the assump -
tions that viscosity and molecular diffusion are not important. These
assumptions are in part justified by the discussion in Section 3.1 and
the description of turbulence given in Section 4. 1.

4.2.1 The Turbulent Diffusion Equation. Consider fluid

flowing through a control volume as shown in Fig. 4. 6. If the fluid

is homogeneous, the continuity equation is

-%%‘f‘V'(pX):O (% 1)

where v is the velocity vector. The velocities inthis analysis are pure-
ly kinematic and are not weighted averages as those computed from a

momentum flux balance. That is, the velocities are based on the dis-
tance a particle travels and the time elapsed during this flow period,

which makes their values independent of the mass of the particles.
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If there is a foreign substance in the fluid, as dissolved
salts in water, then there is an additional transfer of mass across
the control volume due to molecular diffusion of the salt through the
water. Therefore, an additional mass transfer term must be added

to the continuity equation if the fluid is nonhomogeneous. That is,

aai+v (pv) = v+ (Dvc) (4.2)
where D is the molecular diffusion coefficient and ¢ is the concen-

tration of the dissolved salt. In this same example, the equation for

conservation of mass of the dissolved salt is

%%+V'(cy_): v+ (DVc) , (4.3)

f Control Volume
I

/
| Streamlines
mayl

~<—-’-

\_» e s
S
L__t._:':__._i__J
Diffusion If Fluid |s Not Pure

Fig. 4.6 Definition Sketch of Fluid Flowing through a Control Volume.

where V is the gradient operator. To complete the conservation equa-
tions, the density must be related to the concentration of the salt. The

relation has the form, determined empirically,

p-p, = Blc -c.) o (4.4)

where p, is the density of water in this case and B is a constant.
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Although reference was made to dissolved salts as being the foreign
substance which makes the fluid nonhomogeneous, the above conser-
vation equations apply for the gas - gas experiments. In those experi-
ments, the molecular weight (M) of the gas mixture is analogous to the
concentration of salt in the solution. For instance, the density can be
Wi'itten as
p-p, = P'M-M), (4.5)
where o is the density of air and B' is a constant. Since (4.5) is
the equation of state for a perfect gas, ' has the form
B! = P/ROT
The turbulent diffusion equation can be derived by making the

following substitutions into the conservation equations: p = p+p', ¢ =

ctc', v=v', where p and c are time-averaged quantities and p',

C 1

, and v' are deviations from the corresponding mean values. Note
that E has been assumed to be zero in this analysis. This assumption
arises from the fact that the net volume flux of solution at any cross
section in the tube is zero. The velocities in this analysis are based
on the volume flux of solution in the duct and are independent of any
particular species present in the solution. However, this assumption
is not valid when the shaft is tilted from its vertical position because
a two-layered flow system may develop. Therefore, these equations
apply only for the vertical duct system, and also E must be included
in the case of an inclined shaft.

In this analysis, we are concerned only with the mode of den-

sity change along the central axis of the tube. Therefore, the one-

dimensional diffusion equation will be used because the large scale
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mixing rates are a function of the density gradient based on the aver-
age density at any cross section in the tube. Hence, we are assuming
that the cross-sectional variation of the density is not important.
Therefore, after substitution of the above quantities into Eqs.
(4.2) and (4. 3) and using Reynolds' averaging techniques, the conser-

vation equations become (in one dimension)

o 0 —~—  _ 8 o
and
dc 0 : _ 0 dc
8—t+8—Z—(C Vi) = 52 (D_é-z—.) (4.7)

where p'v' and c'v' represent the turbulent mass flux per unit area
of the solution and solute, respectively. Using Reynolds' mixing anal-

ogy, the turbulent mass fluxes may be written as

— 9
T - E o)
Y - -E, g_;_ , (4.9)

-where Ez is the turbulent mixing coefficient. Since the turbulent
transport of energy and momentum are dominant, the molecular diffu-
sion terms can be neglected. This assumption makes (4. 6) and (4.7)
equivalent because of the relation between p and ¢ in (4.4). There-
fore, only (4. 6) will be used to derive the turbulent diffusion equation.
After substitution of (4. 8) into (4. 6) the diffusion equation has the form

op ) 8p

ot ~ oz (Ez oz ) (4. 10)

For simplicity, the bars above p and c will be omitted.
Whenever they are used it is understood that they are time-averaged

and cross-sectional averaged quantities.



= 35

Consider the parcels of fluid in a tube as shown in Fig. 4.7,

where > . Since the parcels exist in an unstable environment,
Py Po P

V4 ZF———— - — — ——— Eq. Position

Fig. 4.7 Definition Sketch of an Unstable Density Field.

the rate at which they mix or approach each other depends on their
separation and the magnitude of the density differences. As time
progresses, the magnitude of the density difference decreases as a
result of the mixing, and the diffusion coeffi‘cient should decrease also.
From dimensional analysis the diffusion coefficient is expected to be
of the form

E ~w'A, (4.11)
where )\ is a characteristic length and w' is a velocity fluctuation.
As stated above, w' = f(0p/98z) and a simple form for the function may
be found from energy arguments. A schematic is shown in Fig. 4.8
which consists of a stratified system that is unstable in its initial state
and stable in its final state. The potential energy (P.E. ) of state (1)

is converted into P. E. of a corresponding stable density field and

kinetic energy (K. E. ) of state (2). The energy equation is as follows:
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e + K.E.
Z ¢

- L |2eL
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Fig. 4.8 Definition Sketch of the Conversion of Energy from an
Unstable System to a Stable System.

P’.E.)1 = P. B )2 + K. B,

(4. 12)
The potential energy for the system in Fig. 4.8 can be written as
follows:
P.E 4
= % (pg)z dz . (4. 13)
Substituting (4. 13) into the energy equation (4. 12) yields
£
K. K.
area % (pl""z) gz dz
After integration the kinetic energy becomes
K. E. 2 3
—7ea - 3 PoB° L (4. 14)
The kinetic energy is usually written as
K.E. /area = %pw'zab (4. 15)

Thus, combining (4. 14) and (4. 15) yields

P~ /8 9 ,2
w Jp 5 L
and hence
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A priori, the logical choice for X and {is the diameter, d,
which is the largest characteristic size of the mixing eddies. How-
ever, observations made during these experiments indicate that there
is some other length scale that controls the distance a front propagates
before being dampened due to the mixing. The experimental results
indicate that JLZ is of the order of di/dL and ) is of the order of d,
where L is the tube's length. Therefore, the diffusion coefficient

will be defined as

1/4

] k/pi%g- @) (4. 16)
a

il

E

where k is an empirical diffusion constant. Substitution of (4.16) into
the diffusion equation (4. 11) yields

1/4

op _ B iat 9  9p
—E_k/-p— (d'L) = (52) ) (4.17)

ot
a
The diffusion equation can be normalized by making the following sub-

stitutions: z =XL, Ap Ep—pa, Api Epi~pa, g = Ap/Api, and

T = «/<5A—pi)—g-(

p, /d

9/4

d
E ) (4.18)

After normalization the turbulent diffusion equation is

82
96 _ ., 9 98
3= = Kgy =) ) (4.19)

This equation resembles the ordinary diffusion or heat transfer equa-
tion with a coefficient which in this case is 4/90/0x. For nonlinear

equations of this type, one expects (e. g., ref. 9) to get the wave-like
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fronts as shown in Figs. 4. 1.

Note that in obtaining equation (4. 16) we use = —g—)pz rather

dp . : e &
than % 3;2— in the expression for the diffusion coefficient. For the

water - salt water example for which A.p/paL is never larger than 0.15,
this simplification is justified. For cases where Ap > Py further
justifications may be necessary. The change was made primarily be-
cause it greatly simplified the analysis,and we were interested in ob-
taining a simple model.

4.2.2 Stairwell (Vertical Duct). The stairwell model consists

of diffusion controlled by an unstable density field. The above obser-
vations (Section 4. 1) suggest that two phases exist. They are: (1) the
time during which the initial front propagates to the top of the tube,
0sts< L and (2) the time during which the mixing process exists
throughout the whole tube, TET The latter phase will be considered
first in the following analysis.

4.2.2.1 Separation of variables solution, T 2T Previ-

ously, we pointed out that turbulent mixing exists throughout the tube
after the initial front has arrived at its top boundary. Formulation of
the mathematical model begins at this point in time. That is, at some
time, To (which is the arrival time of the front), an unstable density
stratification exists throughout the tube. The density at the top of the
tube decreases with time and is always a maximum there. Also, the
density at the inlet of the tube is approximately equal to the ambient
value, which is always less than the density at any point in the tube.
The bottom boundary condition fixes the buoyancy in this

model. As long as the density at the bottom of the tube is less than
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that at the top boundary, unstable buoyancy forces exist which account
for the mixing. The mathematical formulation of the boundary condi-
tions includes: (1) no mass flux across the tube's upper boundary;

and (2) the ambient density is constant at the inlet of the tube, i.e.,

= = 0 at x = ] (4.20)
and

g = D at % =0 , (4.21)
for all T.

In addition, the initial distribution of 8, i.e., 8{x, 'r:'ro} g
must be specified to complete the boundary conditions. Since we can
not solve the initial transient problem (0 < 7 < 'ro) , we do not know
a priori what distribution 6{x, TO} to use. |

We can approach the problem in an approximate manner and
find a solution for a particular initial distribution. This initial dis-
tribution will be found as part of our solution process and will later
be shown to be very close to the experimental value.

The form of the solution is indicated by the form of Eq. (4.19)
which suggests that a separation of variable technique may be pos -
sible. We try:

B = BE{T)F{x) , (4.22)
where H(T) can be thought of as the normalized density at the top of
the tube and F(x) as the density distribution present at T = To which
will remain constant throughout the test. The boundary and initial
conditions now become

dF/dx = 0 at x=1; (4. 23)

F =0 at x = 0, (4. 24)
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F 1 at 2 =2 1 (4.25)

I

and H =1 at T e W . (4.26)
The boundary conditions (4.24) and (4.25) normalize but do not specify
Substituting ©, (4.22), in the diffusion equation, (4.18),and

simplifying yields

s .1/2..
H 3 FUUFR O
_7_H3 7 = (zk) = = -@ i (4.27)

where O is a positive constant obtained from the equality of both sides
of the equation. Solving for H gives

4

H =
La(r-r 1+AT"

where A is the constant of integration. The condition H =1 at

TE T, implies that A = 2 and therefore gives

1
H = > . (4.28)

[% (r-T )+ 1]

We must now solve for F from the equation

3wl
-Z—kF2 iy = -8 .
. 3/2 2 o . :
If we let P = F, then P dP = - I FdF , and the first integra-
tion gives dF/dx = [ - % % FZ + B]Z/S where B is the constant of
integration. The conditions F = 1 and ¥ = 0 at x = 1 imply that B =
% % . Thus, the equation becomes
2/5 2/5
dF _ ,5 & 2
= ® (6 =) (1-F ) . (4.29)
2/5 -

The quantity ( % % ) may be found by integrating (4.29) from x = 0

tox=1. Thus, if F =sin0,
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2/5 m/2
) = j‘ CQSI/

0

58d6 " (4. 30)

ke

(%

The integral in (4.30) can be written in the form

&
/2 - (=)
[ sos! OBag = -A-/Z’L._Tl{.’__ (4.31)
0 T(TO_)

where I' is the gamma function. Combining (4.30) and (4. 31) and

substituting the appropriate values for I' gives
50 /°

(6 k) = 1.3872 . (4. 32)

We can now integrate (4.29) for this particular value of &. The equa-

tion can be rewritten as

2/5
9 - 1ssr2(1-F%) 0<x<1 (4.33)
with the boundary condition ¥ = 0 at x = 0. This equation was

solved numerically to obtain the particular function F{x} which cor-
responds to the value of @ given in (4. 32).

The Adams-Moulton predictor-corrector method was used to
solve numerically for F{x}. The fourth-order Runge-Kutta method
was used to obtain the starting values and also when the step size was
changed. The solution is shown in Fig. 4.9. The values of F are
closely approximated by

F e [ - {luxPro

1.
Note that the diffusion constant, k, and the arrival time of the

front, Ty Mmay be found empirically now. The solution to the diffu-

sion equation for B at x = 1 can be written as follows:
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Fig. 4.9 Theoretical Density Distribution of the Separation of
Variables Solution for T = To®
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1]

Ap; .
A;- " (é})m>70)+1 : (4. 34)

SEo=

If the experimental data are plotted in this manner, s is the inter -

x=1 x=1
cept of the abscissa and (&/2) is the slope of the linear plot. Then k
may be found from (4. 32), which can be simplified to give

| k = .736(a/2) . (4. 35)
Equations (4. 34) and (4. 35) will be used when analyzing the experi-
mental results in Chapter 6.

The solution to our problem is represented by Eqs. (4.22),

(4.28), (4.32) and the integral of (4. 33) for F(x) shown graphically in
Fig. 4.9. What we have actually done is to solve Eq. (4.19) for the
initial distribution F{x} = 8{x, fro} and the conditions (4.20) and
(4.21). Fortunately, as we will show later, F{x} is a good repre-
sentation of the experimentally observed distribution.

4.2.2.2 Initial time period, T< o The separation of

variables solution in the previous model was based on the premise
that the initial front had reached the top boundary of the tube. We
pointed out in Section 4.1 that the mixing mechanism subsequent to
the arrival of the initial front appeared to be the same as that before
its arrival. Based on observations of the mixing phenomena, it is
reasonable to postulate that the propagation of the fronts prior to and
after their arrival at the top boundary is dependent only on the local
mixing in the tube. In essence, the propagation of the fronts is not
influenced by the tube's length. However, the length of the tube, L,
was used in the separation of variables solution first because a zero

mass flux boundary condition was applied at z = Li; and second be-
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/4

cause a factor (L/d)1 was applied to the diffusion coefficient to

successfully correlate the experimental results.

The first of these conditions does not apply here because we
are interested in the propagation of the front up the‘tube before it
reaches the end of the tube. If the second condition is generally cor-
i‘ect, the diffusion coefficient should be rewritten as

E % ()
E,_ = 10/5;- 5= (d'z,) ) (4.36)

Here, this expression is identical to (4. 16) with z the position of

f L]
the front, substituted for the length scale L found in (4. 16). The

normalized equation is of the form:

3/2
90 1/4 o a8
o 7 RO e () 28
where
xp= z/d , x' =z/d, and T = (Bp, 7o Jg/d t . (4. 38)

Solutions of (4.37) were sought using an integral technique based on

the assumptions that

[1- (- {rdxg in )P,

B{x', 7'} . 81

00
! ! 1 1 =
G{Xf,'r } 1, and e {Xf, '} 0

Analysis is straightforward and leads to the result that x}., the loca-

4/9

As we shall show later, this
0.6

tion of the front, propagates as (t')
is too weak a dependence; the experimental value is closer to (7')
A second approach was also tried. This consisted of ignoring

1/4

the additional factor of (L/d) and looking for a self-similar solu-

tion for the equation
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3/2
06 0 06
5 = kg (gn ) (4. 40)

with similar boundary conditions. The solution is again straightfor-
ward and the similarity parameter is found to have the form
x! /(T')O'4. Again, the dependence of x' on T' is too weak.

Although neither approach leads to a good prediction, both

suggest that zf/d can be expressed as a function of

_‘l
I
=
s
o.for
ot

Later, the experimental data show that this is true.

4.2.3 Stairwell-Corridor System. We pointed out in Chapter

2 (Section 2. 1. 3) that the mixing mechanism in the stairwell is al-
tered if a long corridor is attached horizontally to the top of the tube.
In this case, the dense fluid must flow from the horizontal attach-
ment into the vertical portion of the tube and then into the less dense
ambient fluid. However, if the fluid in the horizontal portion of the
tube is assumed to be well mixed, the system can be modeled analy-
tically. This assumption means that the corridor can be replaced by
a volume of equal size and that less dense fluid entering the volume
is mixed instantaneously and uniformly throughout it.

For the '"well-mixed top, ' we assume that the change in mass
of volume at the top of the tube is equal to its mass flux down the
tube at that point. This assumption can be stated mathematically as
follows:

9 9
-ApEZ —5% - Vtﬁg at  z = L (4. 41)

where Ap is the cross-sectional area of the vertical duct and Vt is
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the volume of the well-mixed top of the tube. This condition replaces
the previqus boundary condition, i.e., no mass flux across the top
boundary used in the vertical tube system of Section 4.2.2.1. All of
the rest of the system remains unchanged. Therefore, the system to

be solved is as follows:

3/2
06 9 , 08 »
Br © 25 V3% TET, o
512
96 98
_Vrk(a_x) = _57; at x & [ s (4.4:2)
: A L
=0 at x=0 , 8=6(x)att=71 , and V_ =B
o 1 Vt

where Vr is the ratio of the volume of the vertical duct to the volume
of the upper horizontal tube. Here, the boundary condition at the top
of the tube, x = 1, and the rest of the system have been normalized
as before.

The solution to this problem is carried out in a manner very
similar to the separation of variables solution of the stairwell model.

That is, 6 = F(x)H(T) where

1
B =
[ (17 )+ 1%
and
2/5 2/5
dF 5 a 2
- (EE) (C-F)

C is a constant of integration. The density ranges from F = 0 at
x=0to F=1at x=1, as before. Applying the top boundary con-
dition, (4.42) yields

F3/2) ) (4.43)

[
~le

_L
x=1 \
r

Since F(l) = 1, the constant of integration, C, can be found by com-
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bining the above equations for E'“(l). Therefore,

6 a2/3
§(E)
C = + 1
Ir
and]é‘becomes
2
25, (&) 45
UF - oy ok + 1 sz (4. 44)
dx = '6 k 5V‘573_ B g g
I

2

If the volume of the stairwell >>volume of the top, V.o
then the differential equation, (4.44), reduces to the stairwell sys-
tem with no mass flux across the top boundary. The above differen-
tial equation with the boundary conditicns F(0) = 0 and F(1) =1 was
solved numerically using standard shooting methods. For example, _
(&/k) is initially estimated and the numerical integration starts with
F =0 at x = 0. The integration continues until x = 1. Now, if F=1
at this point, then the initial value of (a/k) is correct. If not, (a/k)
is re-estimated and the method is repeated until the top boundary
condition is satisfied. The Runge-Kutta integration scheme was used
to carry out the integration in this analysis. The results are plotted
in Figs. 4.10 and 4. 11.

Figure 4. 10 shows the relationship between @ and Vr . Since
the density decreases according to the relation

Api

L\p o ’
o 2
\-'2— (’T—’T‘O)‘Fl]

smaller values of & imply that the mixing process is slower. & /k

ranges from 2. 72, (Vshaft >>Vtop)’ to 0, (V <<Vtop) . There-

shaft

fore, a larger volume on top will take a longer time to empty itself
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as one would expect. The corresponding density profiles, F(x), are
s‘hown in Fig. 4. 11. ‘The extremes are no top volume, for which
Vr = oo and mass flux = 0 at the top, and an infinite top volume, for
which Vr = 0 and the density profile is linear. The function F(x)

does not change very much from the stairwell model.

4.2.4 Stairwell-Basement System. The stairwell-basement
system (Section 2. 1.4) is just a modification of the vertical duct prob-
lem. Instead of a dense solution discharging from the duct into an in-
finite environment, the ambient (less dense) fluid is contained in a
finite volume. Since the dense fluid leaving the tube mixes with the
ambient fluid, the density of the solution in the finite volume increases
with time. Then at some later time (after the initiation of the mixing
process), the mixing ceases because the density of the fluid throughout
the system becomes uniform. Mixing was present in the ambient vol-
ume of the stairwell problem, but it did not enter the analysis because
the ambient volume was infinite, and hence there was always a source
of buoyancy.

The spatial-time density distribution in the ambient volume is
very complicated. However, the system can be simplified by making
an assumption equivalent to the ''well-mixed' hypothesis in the stair-
well - corridor system. For instance, the finite ambient volume of
less-dense fluid can be assumed to be well-mixed, and this problem
nearly reduces to the previous model. Clearly, this "well-mixed"
hypothesis is reasonable for a system where the volume of the vertical
duct is comparable to the volume of the ambient fluid. With this as-

sumption, the system to be solved is as follows:



08 k _8_ ( 9.9. )3/2 =
oT ox  Ox TS Ty
f = e(X) at T=T"T 3
o
06
g{- = O at X = l 3
3/2
a6 08 v
k(é;) :Vr'ﬁ at XZO, (4.45)
and
Vv . ;
_ ambient fluid
V = 3
1 A\

tube
where a well-mixed bottom assumption replaces the boundary condi-
tion, 6 = 0 at x = 0, which was used in the basic vertical tube system.
In this analysis, it was convenient to redefine the volume ratio, Vr .
and the density ratio, 6 . V. is the ratio of finite volume of the ambi-
ent fluid to the volume of the vertical tube. Now the density ratio is

defined as
P=P¢

pl-pf

3

where Py is the final (equilibrium) density of the system, and replaces
P, of the previous model. Therefore, 8 cannot equal zero at x = 0 as
in the brine solution model. It is always less than zero in this case
because the initial density in its bottom value, o = p(x=0, T:‘To) , is
such that Po <Pp<py-

The solution again has the form

where

and



dF 5 q2/5  22/5 (4. 46)
o= (725 (-F9
Simplification of (4.45) yields
.3/2
F _ a
— l = -(g)V, . (4.47)
x=0
Now, combining (4.46) and (4.47) gives
5 o 2/5 LB Ry D
e 2y A S S (4. 48)
6 k 6 TV g
O T :

where FO = F(x=0). The system has been reduced to two equations

and two unknowns. That is,

2/5
5 a
EE‘(?SK) (1-F°) F 8x£1 ,

boundary conditions: F = FO at x=0, F=1atx=1, and

23/5
(29)2/5 - E(I_FO)
6 k - 76 FoVr ’

where FO is a negative number. a/k and FO , which are functions of
Vr , must be found before the differential equation can be integrated.

They may be found by integrating the differential equation from FO to 1
2/5
and substituting the value of ( % %) from (4. 48) into the relation.

Then solving for Vr we get

3/5
2
(1-F_)

F
o

Vr | df
I 2 275
F_ (1-£7)

4
B

(4. 49)

The integral in (4.49) may be evaluated by noting that
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= 1.3872
jl as ) f a J«l ds i B
275 2/5 2/5 :
F 2 F 2 0 2
o (1-f) o (1-f) (1-£)

The resulting integral may be solved graphically with the use of the
separation of variables solution in Fig. 4.9. For example, the equa-

tion
F

[ —r = 1.3872x (4.51)
0 (1-£%)

is plotted as F against x in Fig. 4.9. Because of the symmetry of
the integrands in (4.50) and (4.51), the integrals are equivalent.

Therefore, the volume ratio may be written as
8/8

(4. 52)

where X is the valueiof x corresponding to a particular F , (FO) , in
Fig. 4.9 (separation of variables solution). Now, @&/k can be found
from (4.48) since the relationship between Vr and FO is given in
(4.52). The density profile, F(x), was obtained by integrating the
differential equation for F numerically. Figures 4. 12 and 4.13
contain the results of this analysis.

The plot of &/k against Vr is given in Fig. 4.12. It shows
that a/k = 2. 72 as the volume of the ambient fluid becomes infinite,
which is the same as that in the brine solution model. Also, a/k — oo
as Vr - 0, which implies that the mixing speeds up when the ambient
volume of fluid is reduced to less than the tube's volume. In this case,

the well-mixed assumption seems reasonable because the mixing in the
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ambient fluid is likely to be comparable to that in the tube. The cor-
responding density profiles, F(x), are plotted in Fig. 4. 13. These
profiles are different from the previous solutions because F(0) <0.

This implies that the density of the ambient fluid increases with time,
. p-p
and hence the buoyancy in the model decreases. Since F ~ g pf .
i Tf
the normalized density is zero at some cross section in the tube, and

it remains that way because the function of time in the solution de-
creases the density at every point in the tube simultaneously after the
initial profile has been established.

4.3 Heat Transfer Model

This section considers all modes of energy transfer that take
place in the stairwell model as presented in Chapter 3. Only the ef-
fects of buoyancy were considered in the previous analysis and the
density differences were due to specie changes rather than due to tem-
perature changes as in the heat transfer model. Although the mixing
phenomena are due to buoyancy forces, the diffusion equation must be
derived in terms of temperature, rather than density, in order to
analyze the effects of heat transfer in the system. An analytical model
is presented in the following subsections that include the heat transfer
through the walls of the duct as well as the mixing due to the strong
buoyancy forces.

Two particular examples are examined here in detail for
steady-state conditions. The first involves a tube with a constant tem-
perature top and insulated walls; and the second, constant tempera-
ture top and walls. Solutions of both will be found by examining the lat-

ter problem and obtaining the solution to the former problem as a
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special case. The equations developed here could be solved with

other boundary conditions.

4.3.1 Energy Equation. Derivation of the energy equation in

the heat transfer model is analogous to that of the turbulent diffusion
equation in the buoyancy force model. Figure 4. 14 schematizes the
energy transfer mechanisms that take place as a result of hot gas

propagating up a vertical duct. Balancing the turbulent transport of
energy in the vertical direction with the convective heat flux through

the walls of the duct yields:

B0 . 8 e 2 o4
-t T3 WQ) = -a(3) (4.53)
where w'Q' = turbulent energy transfer, d g = convective heat flux

per unit area to the duct walls, and Q = p CpT :

Convective
Heat Transfer l — }
Out Of Duct )

0
Transport Of Energy a—z— w'Q')AZ
Due To Turbulent Mixing

Y
{
|
|
Y
R

T

Fig. 4. 14 Definition Sketch of Energy Transfer Mechanisms in the
Heat Transfer Model.
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All quantities such as p and T are understood to be averaged
over time and cross-sectional area as in the previous analysis. Q is
the average quantity of heat contained in the infinitesimal volume, and
Q'is the deviation in time from the mean value. Note that the molecu-
lar transport terms were neglected in (4. 53) as in the previous analy-
sis. Using Reynolds' mixing analogy, we assume that the turbulent

transport of heat can be written as
ey TR, ; .. (4. 54)

where D is the turbulent mixing coefficient. Also, the convective heat

flux to the wall is assumed to have the form

q = H(T-T,) , (4.55)

where H is the film coefficient and TS is the surface temperature of
the tube. Substituting (4. 54) and (4.55) into (4. 53) and simplifying

yields

9 9 9 4
—éz(pT) = [D5- (pT)] = - d—CH; (T-T,) , (4.56)

where cp is assumed to be constant. The quantity (pT) can be found
from the equation of state and assuming that the pressure is distributed

hydrostatically in the tube. That is,

equation of state: 6T = PIR , (4.57)
hydrostatic pressure oP  _
distribution: 5z -~ PE: (4 38)

Combining (4. 57) and (4. 58) yields:

4 _ 4.5
5= (pT) = - L 59

ol

After substituting this result into (4. 56), the energy equation becomes
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9 g 0 B 4H
Tt R 7 0P = - ge (T-T,)

4.3.2 Solution for Steady-State. In Section 3.2 we pointed out

that the heat capacity of the walls of the stairwell is much greater than
the heat capacity of the gas contained in it. Therefore, we assumed
the temperature of the walls of the stairwell to be constant and uni-
form during the initial stages of the fire. This assumption allows a
steady-state solution to exist in the duct. For instance, hot gas enter-
ing the duct is cooled (due to heat transferred to the wall) as it propa-
gates upward. Heat transferred from the hot gas causes the system to
always be unstable; i. e., dense (cool) gas is always above the less
dense (hot) gas.

Therefore, using the steady-state assumption, the energy
equation is as follows:

d _ 4HR
3 (PD) = Te g (T -T) . (4. 60)

The equation of state is the second equation in this system, since the
energy equation contains two unknowns, p and T. Differentiating
(4.59) and simplifying it yields

dT

=
dz )

g
R »p

353

(4. 61)

where the term -g/R is the hydrostatic contribution.
The system to be solved is as follows:

d(pD) _ 4HR (T -T) ,

energy equation: e g cpg 5

equation of state: —_— = -
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boundary conditions: i and p = Py at m =10,

and K at z = L.

= T
a
= T
S
The nature of the solution to the system of equations depends on the
choice of mixing coefficient D and film coefficient H. One logical

choice for the form of the diffusion coefficient is the same as that

used in the brine solution model. Therefore,

D =D /53_2 , (4. 62)

o p
where Do is a scaling parameter defined as

D - ‘%JTg g L (4. 63)

There is no information available from previous work concern-
ing the nature of the film coefficient for the type of flow under con-
sideration. Qualitatively, one expects the film coefficient H to be a
function of the turbulence in the flow. Therefore, H is assumed to be

of the form

W = hD 3 (4:. 64)

where h is a heat transfer constant and D is the turbulent diffusion co-
efficient discussed above. This form of H seems reasonable since D
is a measure of the turbulence in the system.

Note that by setting h to zero, the special case of insulated
side walls can be obtained from this analysis.

The equations can be normalized by making the following sub-

stitutions:

1l

BET/Ta, ¢ p/pa, x=z/L, and BSETS/Ta

-

After simplification the system can be written as follows:



Al

., 6 b
energy equation: ¢ + —$—+ 2hpB i (G_BS) =

, _ B - P
equation of state: 8§ = -8 o

Be=l,; =1 at =0 3 e:es af %= 1

where

2

= gL = .4_}:_ E

In the energy equation, (b + J)Z/dﬂ represents the diffusion ;.nd
Zﬁhci)/qb (9-68) is the heat flux out of the tube. Two extreme cases exist
depending on the magnitude of h. As hf = 0 the difftisive terms are
dominant and the system should be very turbulent as in the buoyancy
model. However, as hf - 0 the heét flux to the tube walls is dominant
and there may be very little mixing. The value of B is about 105 for
cases examined experimentally, and nothing is known about h. There-
fore, the system was solved for 0 < h< 10—3. Standard shooting meth-
ods (Section 4. 2. 3) were used to solve the two-point boundary value
problem. d) at x = 0 was estimated initially in order to solve the cor-
responding ''initial value' problem. The fourth order Adams-Moulton
predictor-corrector method was the numerical scheme used.

The solution is given in Fig. 4.15. The plot of temperature
against distance along the central axis of the tube is the solution to the
heat transfer model for TS = 203°K and Ta. = 296°K. The two ex-
tremes in this plot are the temperature profiles for h = 0 and h = 10_3.
The profile for h = 0 corresponds to an insulated tube with the heat
flux th‘rough the top surface as shown in Fig. 4. 16. This solution is

for a steady state since the heat flux, Q, that enters the mouth of the

tube leaves through the top surface. A schematic of the constant tem-
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perature tube for which h >0 is shown in Fig. 4.17. The mixing in
this case is also steady, but heat is transferred through the walls of
the duct as well as through the upper surface.

The .temperature profile for h = 10_3 (see Fig. 4.15) is partic-
ularly interesting. Heat transferred to the walls of the tube drains a
large amount of energy from the system. This leads to a strong tem-
perature gradient near the mouth of the tube which results from the
strong mixing in that region produced by those strong gradients.
Near the top of the tube the temperature is nearly uniform, and mixing
will be weak. Thus, we end up with a tube with almost constant tem-

perature throughout and with steep gradients near the exit.
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Irig. 4. 16 Definition Sketch of Mixing Patterns in the Insulated Tube
of the Heat Transfer Model.
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Fig. 4.17 Definition Sketch of Mixing Patterns in the Constant
Temperature Tube of the Heat Transfer Model.
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5. EXPERIMENTAL EQUIPMENT AND PROCEDURES

Laboratory experiments were performed to simulate the energy
transfer mechanisms that occur in the stairwell of a burning high rise
building. Three sets of experiments were considered. In each case,
a vertical tube filled with a dense fluid discharged into an environment
of a lighter miscible fluid. Brine solutions and dense gases mixed with
tap water and air, respectively, in the buoyancy force model. The
heat transfer model made use of low temperature air mixing with
room temperature air. The purpose of the experimental model was to
obtain a fundamental time scale that characterizes the mixing in the
prototype and to check the validity of the analytical models presented
in Chapter 4.

This chapter gives a complete description of the experimental
apparatus and procedures for each set of experiments. Also, a sum-
mary of all the experimental runs is included in this chapter.

5.1 Brine Solution Experiments

A brief description of the brine solution model was given in
Chapter 3. Figure 5.1 1is a photograph of the experimental setup. It
consists of a cylindrical tube filled with a salt solution in a basin of
tap water. The concentration at selected points in the tube was record-
ed by means of a conductivity probe and Sanborn recorder system.

The apparatus and procedures are described in'detail in the following
sections.

5.1.1 Apparatus.

(1) Experimental duct. Cylindrical tubes made of lucite

were used for the experimental duct. The nominal wall thickness of
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Fig. 5.1 The Experimental Setup for the Brine Solution Model.
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each tube was 1/4'". The lengths varied from 2' to 9', and the di-
ameters from 1 1/2'" to 7 1/8". Therefore, it was possible to con-
sider a wide range of aspect ratios, 7.5 - 30. A photograph of a
typical tube is shown in Fig. 5.2. Fittings to hold the conductivity
probes are at selected locations along the tube.

The bottom plug that sealed the inlet of the tube is shown in
Fig. 5.3. An "O'" ring on the plug was used to ensure a vacuum tight
it

(2) Experimental tank. The purpose of the experimental

tank, in most instances, was to simulate an infinite environment of
constant density fluid. A fluid environment whose density would not
change during the course of the experiment was desired. Therefore,
only two tanks were used. They were a 11' X 13' X 3' basin and a 70-
gallon plastic tank with a 3' diameter. The plastic tank was used only
for the smallest of the tubes. A volume ratio, Vtube/vtank’ less

) ; : g
than 10 = was adequate to achieve a constant density reservoir.

(3) Conductivity probe. The concentration or density at a

point in the tube was measured by means of a conductivity probe. The
probe design and a photograph are shown in Fig. 5.4. It was designed
and constructed by Elton Daly of the Keck Hydraulics and Water Re-
sources Laboratory at the California Institute of Technology. A probe
of this type is ideal for the measurement of conductivity at a point.
The electrodes are small and the spacing between them is not critical.
They were kept in distilled water between runs and were cleansed and
platinized whenever the readings became erratic. The platinization

and cleansing processes were performed according to a standard



Fig. 5.3 A Typical Bottom Plug for the Vertical Duct of the Brine
Solution Model.
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chemical method .

(4) Sanborn recording system. The Sanborn recording sys -

tem Series 150 was used for all of the conductivity measurements.

It makes use of the Wheatstone bridge circuit shown in Fig. 5.5 . All
of the resistors are precision wire wound. They are needed to elimi-
nate the drift that is common to all tube-type recording systems. The
conductivity probe is part of an arm of the Wheatstone bridge circuit.
The bridge was balanced internally by the use of the Sanborn preampli-
fiers. The out-of-balance voltage of the probe was recorded when-
ever the conductivity of the solutions changed.

The system was calibrated by means of standard solutions of
different conductivities. The specific gravity of each standard solu-
tion was obtained by a hydrometer. A typical calibration curve is
shown in Fig. 5. 6. The stylus deflection of the recorder is plotted
against the specific gravity of the solution.

5.1.2 Procedure. A photograph of the experimental setup is
shown in Fig. 5.1. Prior to each run the basin was mixed thoroughly
with compressed air to insure that its density was uniform. The
cylindrical tube was attached to a vertical stand over the tap water
reservoir. It was filled with a salt solution by means of a vacuum
pump, which was used to suck salt solution in through a pipe in the
closure plug. The mouth of the tube was approximately 2' below the
surface of the tap water reservoir during all of the runs. The tube
was allowed to stand,until all of the excess oxygen was out of the brine
solution and for the ambient fluid to become motionless. Then the

plug was gently pulled out of the mouth of the tube so that the ambient
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Fig. 5.5 The Bridge Circuit Used in Conjunction with the Sanborn
Recorder for the Measurement of Conductivity.

fluid would not be disturbed excessively. The initial front that propa-

gates up the duct was timed at selected positions. Also, the concen-

tration of the solution was recorded at different points along the tube.

The concentration was recorded until it was reduced to a predeter-

mined value.

5.1.3 Density-Concentration Relationship. In Chapter 4 (Eq.

(4.4)), we pointed out that the density of the salt-water mixture, p, can
be related to the concentration of salt, ¢, in the following manner:

p-p, = Blec-cl) (4. 4)

where Po is the density of water at some reference temperature and

S5 is zero in this case. This relatim is only a first order approxima-
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tion. Figure 5. 7 contains a plot of p against c¢ for a salt-water mix-
ture at room temperature. The curve drawn through the points is
linear. Careful inspection of the graph reveals that the curve is not
exactly linear, but for all practical purposes we will assume it to be
so. The linearity of the relation is important because the gases used
in the buoyancy model obey the equation of state. That is,

P
PPy = R T (M-M_) (4.5)

which states that the density of the gas mixture is a linear function of
the average molecular weight of the mixture. In this case, B' is de-

. (at T = ZSOC), and

fined as P/ROT and has a value of 2. 48X 10~
g =, BT % 10-3 from Fig. 5.7.

Because of these linear relationships, mixing of two volumes
containing fluids with different densities will lead to a mixture with an
intermediate density which will occupy a volume exactly equal to the
sum of the original volumes. Inthis sense, constant volume mixing
will occur, and hence no volume flux from the system will occur due

to the mixing process.

5.2 Gas-Gas Experiments

The experimental setup for the gas-gas experiments was simi-
lar to that in the previous model. Instead of brine solutions mixing
with tap water, mixtures of dense gases and air diffused into the am-
bient air in this case. A schematic of the system is shown in Fig. 5.8.
It consists of a vertical tube, Beckman OM-11 oxygen analyzer, San-

born recorder system, and a mixing chamber.
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A 1/2'X 6' glass tube was suspended vertically by means of a
tripod and the open end (bottom) of the tube was approximately 2'
above the surface of the floor. The OM-11 detector was connected to
the top of the tube by a piece of tygon tubing, 1/8'" I.D. and 1' long.
The response time of the oxygen analyzer ranged from .1 to 1 sec-
ond. Sampling gas was drawn from the test tube at a rate of 500 cc/
minute, which is very small. During an experimental run of five
minutes, less than 1/12 of the total volume of gas in the test tube was
drawn from it. The sample gas passed through a membrane of the
oxygen detector that is only sensitive to the partial pressure of oxy-
gen in the sample. The voltage output of the detector was recorded
by the Sanborn recorder.

The test tube was filled with a dense gas that had been premixed
with air in a chamber to obtain the desired molecular weight. Argon
(M = 40) and sulfur hexafluoride (M = 146) were used to produce the
dense gas. The gas was bled into the test tube until the oxygen analy-
zer indicated that no air was present. After the turbulent motion due
to filling of the test tube had died out, the bottom plate was removed to
allow mixing with the ambient air to take place. The results were re-
corded on the Sanborn recorder.

Prior to each experiment the system was calibrated. Prede-
termined amounts of air and a dense gas (Ar or SF6) were mixed in a
large mixing chamber. The kinetic energy of the gases entering the
chamber aided the mixing. Pressure gauges in the system were used
to determine the number of moles of each gas present. The oxygen

analyzer was used to sample the gas mixture in the chamber after it
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Fig. 5.9 A Typical Calibration Curve for the Gas-Gas Experiments.



= T8
was allowed to stand for 15 minutes. Figure 5.9 is a typical calibra-
tion curve for the system.

5.3 Heat Transfer Experiments

Two heat transfer experiments were conducted: (1) an insu-
lated tube with the heat flux through the top surface, and (2) a con-
stant temperature tube with small density differences, L ® 200°K.
The insulated tube corresponds to the solution of the energy equation
(heat transfer model) for which h = 0, and the constant temperature
tube corresponds to h > 0 in the energy equation. Also, we attempted
to measure the heat transfer out of the constant temperature tube by
using the thin skin approximations.

5.3.1 Insulated Tube with Heat Transfer through the Upper

Surface. A photograph of the experimental setup is shown in Fig.
5.10. It consists of a vertical insulated tube, Sanborn recorder sys-
tem, thermocouples, and a thermocouple switch. The test tube was
constructed from four 3' sections of polyurethane pipe covering glued
together to form a 6' tube (5" L. D.,2" wall thickness). The top of the
tube was closed with the bottom surface'of a steel cup,. and the bottom
portion of the tube was open. Iron-constantan thermocouples, d =
. 005", were located along the tube's central axis and spaced 5'' apart.
The voltages from the thermocouples were amplified and vrecorded on
the Sanborn recorders.

The experiment started when the steel cup was filled with
liquid nitrogen. It was added frequently in order to keep the top sur-
face at a constant temperature. Measurements were taken over a

period of 5 hours to insure that a steady state existed. The voltages
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Fig. 5.10 The Experimental Setup for the Insulated Tube.
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were recorded on a single channel of the recorder with the use of a
thermocouple switch.

5.3.2 Constant Temperature Tube. The experimental setup

was identical to that in the previous case. Design details of the tube
syétem are shown in Fig. 5.11. It consists of two concentric steel
tubes with the top of the inner cylinder sealed. The 3'' inner tube
(test tube) has a wall thickness of . 016" and is made of stainless steel.
The 5' outer cylinder has a 1/8'" wall thickness and is covered with
insulation on its outer surface. This arrangement made it possible

to fill the cavity between the tubes with a liquid in order to keep the
test tube at a constant temperature.

The procedure consisted of two parts. Initially, the cavity
was filled with a solution of dry ice and acetone. The temperature of
the test tube and the air inside it was monitored with the thermo-
couples during the mixing process. After a steady state existed, the
axial temperature profile of the air in the tube was recorded, and
then the cavity was drained. The latter part of the procedure con-
sisted of recording data during the transient period following the
draining process. The temperature - time history of the tube's sur-
face and the air in it at selected points was recorded on a single-
channel recorder with the use of the thermocouple switch. The
measurements taken during the transient period were used to cal-
culate the heat transfer out of the tube.

5.4 Summary of Experimental Runs

The experimental runs can be categorized in the following

manner: (1) brine solution - tap water, (2) gas - gas, and (3) heat
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transfer. The brine solution model was investigated in more detail
than the other experiments. All of the brine solution - tap water ex-
periments that dealt with the mixing phenomena in the stairwell model
are listed in Tables 5-1 and 5-2. Figure 5. 12 is a typical graph of

an experimental run for the data listed in Table 5-1.
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TABLE 5-2. Summary of Brine Solution Experiments

Performed in Order to Obtain the Density

Stratification in the Stairwell Model.

(z/L lists axial position of probes. )

d=1 1/2", L/d=15.3 d=31/2", LJ/d= 15,3
p; = 1. 050 p; = 1. 050
z/L = 1.0 2/ = 1,0
.8 . 87
6 .74
.38 .61
| 47
.36
d=51/2", L./d = 11.5 d=7 1/8", L/d = 15.6
P; = 1.050 p; = 1. 050, 1.100
z/L = 1.0 z/L = 1.0
. 82 .58
. 64
.46

.« 25
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6. PRESENTATION AND DISCUSSION OF RESULTS

The results of the small scale models are presented and dis-
cussed in this chapter. Each problem stated in Chapter 2 was in-
vestigated, but the buoyancy model was considered in more detail
than the heat transfer model. This was partly due to the difficulty of
performing the experiments in the heat transfer model. All of the re-
sults of the buoyancy and heat transfer models are contained in Sec-
tions 6. 1 and 6.2, respectively. A more critical discussion of all
aspects of this study is given in Section 6. 3.

6.1 Buoyancy Force Model

The buoyancy model was concerned primarily with the mixing
phenomena associated with natural convective flows in vertical ducts
and, to a much smaller extent, in stairwell-corridor systems, stair-
well - basement systems, and stairway systems. This section con-
tains the results of the small scale models for each system, and they
are compared to the analytical results of Chapter 4 in most cases.
Since the mixing phenomenon in vertical ducts is fundamental to this
subject matter, it was investigated in greater detail than the other
problems. The stairwell-corridor and stairwell - basement systems
are just extensions of the stairwell problem, and they were not com-
pletely solved.

6.1.1 Stairwell (Vertical Duct) System. The major portion of

this section deals with the mixing in vertical tubes with an unlimited
source of buoyancy where salt-water mixtures were used to produce
the unstable buoyancy forces. Initially, dimensional analysis is used

to correlate the experimental results and to find the fundamental time
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scale, T. Then the analytical results of Chapter 4 are applied to the
small scale models. The latter part of this section contains the re-
sults of the gas-gas model, which are compared to the results of the
brine solution model.

In finding T, the arrival times for the various tubes were not
taken into account, and this caused some scatter in the results. This
point will be discussed in Section 6. 1. 1. 3.

6.1.1.1 Scaling relations. In Section 3. 1.1 the density was

written as Ap/Api = G(x, T), where 7 is the fundamental time scale
that characterizes the mixing phenomena in the stairwell model.

From dimensional arguments (Section 3.1), v was assumed to be a

Ap.
function of A/(%) —5—}— t and L/d. However, it is possible for the
a
density ratio to be scaled in some other manner, especially if Api >>

Py Therefore, the simplest form for the fundamental time scale is
g 3

r = (32 (%)

where power laws have been assumed. The exponents B and y are

B
Vet

given in Figs. 6.1 and 6. 2, respectively. P is the slope of the line
drawn through the data points in the graph of tp versus Api/pa (Fig.
6.1), i.e., ‘cp ~ A.pi/pa)B . The time constant, tp , was obtained
from a normalization method to scale the experiments for different
values of Api/pa. For instance, different curves for Api/pa can be
plotted on the same plot as Ap/Api against t. tp is the multiplica-
tion factor that moves all of the data points of one curve onto the other

curves. td/L was obtained by this same scaling method, and hence
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Fig. 6.2 indicates that td/L ~ (d/L)Y .
In Fig. 6.1, B has a value of 1/2. A priori, this value of B
Ap.
was expected because physicall arguments necessitate L g as avar-
P
a

iable, and hence ‘cp ~ <—Z%f)a—l g . This result indicates that Api/pa
does not appear as an independent parameter here. There is a lot of
experimental scatter for Ap./p_ <2.5 % (Fig. 6.1). This is partly
due to the difficulty of running the experiments for such small initial
density differences. Initial disturbances in the system for low values
of Api/pa are more likely to interfere with the mixing process,
since the flow is not as turbulent as for larger values of Api/pa.
Also, the nature of the mixing process is different for smaller
Api/pa (this will be discussed in detail in Section 6.3). The graphs
in Fig. 6.3 were selected to show the accuracy of the 1/2 exponent
over a large initial density range. L/d was held fixed, and Ap,/p
varied roughly by a factor of 4 for each curve. There is some scat-
ter, but the agreement is good. These plots are typical of all the
data taken.

The slope of the curve drawn through the data points in Fig.
6.2 has a value of 9/4. In these experiments, d varied roughly by
a factor of 4 1/2, L/d ranged from 7 1/2 to 30, and Api/pa was held
constant at 5 per cent. Note that the data points corresponding to
d = 3 3/4" fall slightly below the curve, but a curve with the same
slope can be drawn through them. These points could have been dis-
placed due to error in the initial density difference or by some other
experimental errors that will be discussed later. Also, note that the

data point for the largest tube (d = 7 1/8'") coincides with that of the
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smallest tube (d = 1 1/2'")., Since the mixing in the 7 1/8' tube can be
characterized by a Reynolds number, which is more comparable to
those found in fires than any of the other tubes, there is a tendency to
give more weight to the larger tubes. However, if viscous effects are
present, they are not evident from this plot. Figure 6.4 is a plot

that shows how the 9/4 exponent correlates the data for selected
tubes. The scatter in the plot increases as T increases, but the
relative error is not large. Other exponents for d/L were used, but

e was the best fit for all of the data.

(d/L)
All of the results presented thus far apply only at the top of the
tube (x = 1). The above results indicate that 6f{x=1, t} = H{r},

where 9/
Ap. 4
ERLCOT N O
a

Since the system is unstable throughout the mixing process,
the density at the top of the tube is always a maximum there. There-
fore, it was convenient to present the data obtained at different posi-
tions along the central axis of the tube in the form of a plot of
ApZ/ApL against x for different values of time in Fig. 6.5. The
plot consists of data taken from three different tubes and also at dif-
ferent positions along the tube. The graph indicates that Apz/ApL is
approximately constant for all time at any point along the axis of the
tube. The constanf,which is a weak function of time, varies about 15
per cent in some of the worst cases. Although there is a certain
amount of scatter, a smooth curve can be drawn through the data
points in the plot. There was a trend in all of the data that ApZ/ApL

decreases as time increases. This is shown in the plot by the line
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connecting the points. Table 6-1 contains the data shown in Fig. 6. 5.
We have not determined why this trend exists.

The results of Fig. 6.5 indicate that the density at any cross
section below the top surface of the tube is always nearly proportional
to the density at the top for all times. This may be stated mathe-
matically as:

ApZ(T) & ApL(T)F(z/L),

where F(z/L ) is the value of the constant in Fig. 6.5. This relation
is very important because the solution of the stairwell model (Section
4,1.1) for T> T, Was based on a separation of variables analysis.
The above relation can be reduced to the normalized solution of the
stairwell model by letting Apyp = ApiH('r). Therefore, G(x, T) can be
written as G = H(71)F(x), where H(T) is the normalized density at the
top of the tube. If this form is correct, it is obvious that the shape
of the density profile would not change with time, and that the density
at each point in the tube would always be a constant fraction of the
density at the top of the tube, H(fT).

A plot of H(t) is shown in Fig. 6.6, which contains data for a
wide range of values of both L/d and Api/pa . The scatter is about
the same as that in the previous plots where these parameters were
varied separately.

6.1.1.2 The empirical diffusion constant, k. In the pre-

vious section, the density along the axis of the vertical duct was
shown to have the form Ap/Api = H(7)F(x), where H(t) is the value
of the density at the top of the tube and F(x) is the shape of the density

distribution along the tube axis. The analytical solution of the stair-
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well model for r 2 Fa (Section 4. 2) has this form also. The theo-

retical analysis gave the following results:

Ap F(x)

By [ E(rer 4170

where
1

[ (r-r_)+17°

and F(x) is the density profile in Fig. 4.9 for which 7 2 T The dif-
fusion constant, k, was derived in the analysis and found to have the
form k = 0.736(a/2). Given these definitions, the above density' pro-

file can be written in the form

/

which is convenient when analyzing the experimental results because

A

Pi
o F(x) = (

N @

(F-r )+ 1,

the experimental data should be linear when plotted in this manner,
provided that the analytical model is valid. Also, k can be found
empirically, since it equals 0. 736 times the slope of the linear plot.
Figures 6.7 and 6. 8 contain plots of /\/m against
Tavg for most of the experimental data. Tavg is the average value of
T at a particular value of A.p/Api for different values of Api/pa.
There were several different initial density differences for each tube,
as shown in the previous graphs. In this case,JW =1//H,
since F(1)=1. Note that all of the curves are linear, as the model
predicts. Figure 6.9 is a plot of «/m versus T for a typical
experimental run (d = 3 1/2", L/d = 15. 3, p; = 1. 050) that shows a

linear relationship exists for each value of x, but the slope is dif-

ferent in each case. This is exactly what the theoretical analysis
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predicts because

/Api 3 (romg )+l
= JEE)

which shows that the slope of each curve should be ®/24/F(x) when the

data are plotted in this manner. However, if the data in Fig. 6.9 are

/Api F
= F)

against T where the values for F are taken from the theoretical

plofted as

curve (Fig. 4.9), then all of the lines coincide, as shown in Fig. 6.10.

Note that for

A

/ ‘).
F(x) ].- )

the curves in the plot collapse onto a single curve. However, below
this point, each curve for different values of x is different. The
reason for this behavior is that Ap/Api = 1.0 at the instant the initial
front reaches the top of the tube (i.e., T= 'ro), and the theoretical

’,

model is not valid prior to this time.

The turbulent mixing coefficient was defined as follows:

~ T O .7 1/4
E, =k /£ (32) @

where k is the diffusion constant. The length scaling in the mixing
coefficient is correct because T was obtained from the theoretical
model based on this form of the mixing coefficient which was verified
in the previous section. However, if the length scaling was incorrect,
k would be a function of L./d. Earlier we stated that k can be found

empirically from the linear plots already presented (Figs. 6.7, 6.8,
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6.9, and 6. 10) since k = .736(a/2), where o/2 is the slope of the
curve 1/4/H against 7. The data plotted in Fig. 6.6, which is
representative of all the data taken for this system, were plotted as
1//H versus T in Fig. 6.11. A linear curve was drawn through the
data points, and it has a slope of 0.383. Therefore, from the above
expression, k = 0.28. The scatter in the plot is the same as that in
Fig. 6. 6.

Note that the intercept of the abscissa in Fig. 6. 11 is the theo-
retical value of To It has an average value of ébout 0.27. The actual
arrival times for the initial front are listed in Table 6-2. The values
in this table indicate that the experimental value of T is a function of
L/d. The reason for this behavior will be discussed in the next sec-
tion.

The agreement between the experimental results and the analy-
tical model is remarkably good. The value of the diffusion constant
makes the order of magnitude arguments uséd in the development of the
model more convincing, since it is of the right order of magnitude,
i.e., close to one. However, the theory and experiments are not in

agreement for small values of x. This is shown in Fig. 6. 12, which

is a plot of /izl F(x) versus T for one of the short tubes (d = 5. 4",
L/d=10.9, and P, = 1. 052) where experimental data were taken for
small x. In this graph, F(x) is not large enough for small x in order
to make the data points fall onto one curve. This can be explained by
noting that the theory assumes p = Py at x = 0, which is not exact in

the experimental model. Since the diluted brine solution (p > pa)

leaves and the tap water (p = pa) enters the tube simultaneously, the
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density at x = 0 is the average density of the two solutions, and
hence is greater than P, - The data suggest that this boundary con-
dition should be applied at an effective tube inlet which would lie a
few diameters below the real inlet.

In essence, if the inlet of the tube is considered to lie one di-
ameter below the real inlet (i.e., d is added to L in order to in-
crease the length of the tube), then VF(x) increases for all x , but
the increase is much larger for smaller values of x than for larger
values because the density distribution is flat near x = 1 (see Fig.
4.9). The net effect of adding length to the tube is to move the lower
curves for smaller x (Fig. 6.12) onto the rest of the curve without
changing the slope of the upper curves a great deal.

The effective length of the tube is probably near L+d , but the
exact value was not found because of the lack of data for small values
of x. The data for small x were difficult to analyze without the use
of digital methods because the turbulence intensity increases as x
approaches zero and fluctuations as large as 10 per cent were pres-
ent for z/d < 3,

6.1.1.3 Propagation of the initial front. In the theoretical

model for the initial time period, T <7, (Section 4.2.2.2), a self-
similar and an integral solution were found. The mixing coefficient
in each case was proportional to m , but the length scaling was
changed in order to examine several approaches and because it is not
understood how the mixing coefficient should be scaled. The mixing
coefficient used in the integral solution was exactly the same as that

for 7= T However, the mixing coefficient in the self-similar solu-
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tion was taken to be independent of L. or front location. The solu-
tions obtained in both cases were approximately equivalent; that is,

the solutions predicted that the location of the front,
2/5

depended on
t4:/ 9

Zf )
for the self-similar solution, and as Zg ™~

for the integral solution. Thus, the predicted exponents differ by

the time as Zg ™

about 10 per cent.
The characteristic time scale in each of the theoretical models
for the initial time period was defined as follows:

Api
T'E/( -]
P

a

A.jor
o

which is obviously not a function of the tube's length.

Figure 6. 13 contains a plot of the position of the front, Zg
against T' for a wide range of experimental runs. The correlation is
good for z/d >5, and a wide range of parameters is covered by the
data.

The scatter for small z/d was expected because of the experi-
mental error during the development of the initial front. That is,
when the plug was removed from the inlet of the tube in order to start
the experiment, tap water rushed in to fill the void left by the plug.
The removal of the plug aided the mixing process by increasing the
turbulence in the system and hence decreasing the speed of the front
during its initial stages. This is shown in the plot, because the
times corresponding to most of the data points for z/d < 5 are too
large. The graph in Fig. 6. 13 shows that the propagation of the ini-
tial front is independent of the tube's length. Nearly all of the data in

this plot represent experiments which were aimed at determining the
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speed of the initial front,and to facilitate these meas urements tubes
with Li/d =2 15 were used. However, the arrival times for the tubes
used to find T for which L/d <15 are plotted also in Fig. 6.13. The
values of these particular points are listed in Table 6-2, and they are
in agreement with the rest of the data.

The propagation of the front can be described by the relation

which is faster than that predicted by either of the analytic solutions.
This means that the proposed mixing model for 7< Ts is not valid.
However, the characteristic time scale suggested by the analysis is
correct.
The above results indicate that the mixing mechanism for
T T, and for = >To may be different because the characteristic time
scale for ;ach period is different. Thus, the time scale correspond-
ing to the initial period before the front reaches the top of the tube is
o E
Py d

and the time scale for the period following the arrival of the front is

Ap., 9/4
co /B e (4)"

p d L :

Ta

This result has an impact on the analysis of the experiments
discussed previously for which we examined the phenomena for 7 > Tor
The data for this period were presented as values of ® versus T
rather than T Since T_ values depend on L/d, the difference

between T and T-T will change between experiments as L/d is



N
Table 6-2. Arrival Times for the Initial Front

9
Ap. 4 Ap.
SR e =/ Pig
Py by 198EF B, S p, d (L t o /pa a o
1,021 42 216 97. 1
1.050 26 . 207 93. 0
= 2'1
i/d{}{S | 1076 22.5 .220 98. 9
=151 102 21 238 107. 2
1.150  17.5 241 108. 5
) . 1.052  15.5 . 348 35. 8
i/ﬁ?—%{4é 1.102 11.5 . 362 37.3 A
=T 1.151 10. 1 . 368 37.9
1.021 83 . 254 117.5
) L 1.052 46 . 229 106. 0
i;ai?{f , 1.076 40 242 112. 0
=153 1698 35 242 112. 0
1.151 28 . 240 111.2
) 1,050  71.5 . 243
i;&i}{f . 1.100  51.5 247 121.0 e
= kb glimt a2 . 248
1.0105 36 .288 27. 6
1.050  26.5 . 454 43.5
- 1
i/_d7—17/86 1. 100 15. 5 . 383 37.0 &
= 1.150  13.3 . 403 38. 6

Note: t_is the physical time necessary for the initial front to reach
the top of the tube. Also, the values of T' plotted in Fig. 6. 13
are represented by the symbols opposite them.
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changed, and consequently some scatter is introduced in the curves
such as those shown in Fig. 6.11. The arrival times for some of
the experimental data are given in Table 6-2, where both time
scales are presented for selected data. Note that for the arrival
time data shown in Table 6-2, values of T, vary by about less than
= 0.1, and hence the scatter will be of this order.

6.1.1.4 Gas - gas experiments. The initial density differ-

ences between the gas mixtures and air were much greater than those
used in the brine solution model. We pointed out in Section 4.1 that
the mixing (when visible) in the gas-gas experiments was very turbu-
lent and had characteristics similar to the mixing phenomena observed
in the salt-water experiments. The results of the gas-gas model are
plotted in Fig. 6.14. L/d and d were fixed in these experiments at
12 and 6', respectively, and the initial density ratio ranged from
0.22 to 4.0. The graph shows that the density correlation (i.e.,

T N,\/Zp—i—]—[;; ) is good except for the data points corresponding to the
largest density ratio ( Api/pa = 4.0 ) because they are displaced from
the rest of the points. Note that a curve with approximately the same
slope can be drawn through both sets of points. Also, the curve from
Fig. 6. 11 that was used to calculate the diffusion constant is drawn in
the graph. The general agreement between the gas-gas experiments
and the brine solution experiments is good, as indicated by the line.
The dashed line in the plot has the same slope as the solid line, but a
different value of 'ro.’ It is a good fit for the results corresponding to
a value of 4.0 for Api/pa. T}1e reason why these data (Api/pa = 4.0)

are displaced to the right of the other results is not known. Since the
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mixing rates increase as JW increase, the experimental error
also increases in this same manner because of the slow response time
of the system used to measure the density of the gas mixtures. The
density recorded at any time had roughly a 1 1/2' second time lag from
its actual value because the gas sample was drawn from the tube to an
O2 analyzer which fixed the response time of the system. This time
lag is important in the initial phase of the experiments (especially in
those with Api/pa = 4.0, since the characteristic velocities increased
by a factor of 4), because the density differences are large, and
therefore disturbances propagate rapidly in the vertical tube.

Thus, it is reasonable to conclude from the results in Fig.

6. 14 that the mixing phenomena in the gas-gas model are the same
as those in the brine solution model. In general, natural convective
flows resulting from unstable buoyancy forces in vertical ducts are
independent of the fluid used to produce the density differences. Ini-
tially, this result was expected because the conservation equations
for each model are identical.

6.1.2 Corridors. The vertical tubes in the brine solution
model were used to model the movement of hot gases in corridors.
They were filled with a dense brine solution and submerged horizon-
tally in a large basin of tap water. The experiment started when the
cap on the ""open end' of the tube was removed. Tap water rushed in
and propagated along the upper half of the tube, while the diluted
brine solution exited at the open end. When the front of the less dense
solution arrived at the end of the tube, the remaining dense solution

in the bottom layer flowed out of the tube. This process took about
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the same time as the initial transient period. Then the entire tube
was full of the less dense solution.
The movement of the front was timed until it reached the end
of the tube. The results are plotted in Fig. 6. 15, and indicate that

the front propagated at a constant speed. Its speed, v, is as follows:

Y
v = 0.45 gd .
pa

Note that the above expression is the same as that used in the
dimensional arguments to find the diffusion velocity. Another point
worth noting is that very little mixing was observed at the interface
of the two-layered flow. Also, these results are in agreement with
the work of Benjamin6.

6.1.3 Stairwell-Corridor System. The model of the stairwell -

corridor system consisted of two cylindrical lucite tubes of equal
length joined together at right angles. The horizontal end was closed
and the inlet was the bottom of the vertical portion. The tube was
filled with a dense brine solution, as in the other experiments, and
the mixing began when the bottom plug of the vertical tube was re-
moved.

Figures 6. 16 - 6. 18 are a sequence of photographs of the
turbulent mixing that took place in the stairwell-corridor system.
Basically, the same mixing mechanism existed in the vertical direc-
tion as before, but the mixing was more intense at the top. The mo-
mentum of the lighter fluid changed direction at that point and propa-
gated laterally after mixing with some of the heavier solution at the

top. This is shown in frames A -H of Figs. 6. 16 and 6.17. In frames
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C and D, the less dense fluid has reached the top and is beginning to
flow laterally into the horizontal tube, Frames E and F show the
development of a two-layered flow system, described in the previous
section. At the top of the vertical tube in these photographs, the two
fluids are well mixed because of the intense mixing at that point.
After the two-layered flow had fully developed in the horizontal tube,
frames G and H, the mixing patterns at the top of the vertical tube
changed. The momentum of the dense fluid in the bottom layer
caused it to pass over the vertical tube and impinge on the far side of
it. In essence, this flow pattern increased the mixing at that point.

The less dense fluid in the top layer in the horizontal tube had
a well-defined front or head preceding it. The head was identical to
that found in density curren’cs6 of other flows. Also, as expected, we
observed very little mixing between the two layers inthis flow. Figure
6. 18 (frames I- L) shows how the less dense fluid propagated to the
end of the horizontal tube and reversed its direction. When the fluid
in the top layer struck the end of the tube, an eddy developed at that
point. The eddy mixed the fluid in that region and then the adverse
pressure gradient, which was very small, caused the fluid to propa-
gate laterally in the opposite direction. This mixing mechanism
continued until the system was stable.

Figure 6.19 is a plot of Ap/Api\le against time which com-
pares the vertical tube with/without the horizontal attachment. The
additibn of the attachment slowed down the mixing process. However,
the important point is that the density at the end of the horizontal tube

is nearly equal to that at the top of the vertical portion of the tube.
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For small Ap/Ap‘i , the time lag between the density at the two points
increased, but not by a substantial amount. A small time lag was ex-
pected because the less dense fluid propagated to the end of the hori-
zontal tube and then returned to the same point, where the density had
changed slightly. The mixing between the two layers did not affect the
stratification in the system. In essence, it appears that the upper por-
tion of the tube system was well mixed. The well-mixed top assump-
tion in Section 4. 2. 3 was based on this observation.

The theoretical results are applied to the experimental results
of the stairwell-corridor system in Fig. 6.20. In this case, the vol-
umes of the horizontal and vertical tubes were equal. The theoretical
curve in Fig. 4. 10 (based on Vo= 1) predicts that a/k = 3/4 for this
system. Since k is an empirical diffusion constant obtained from the
brine solution and gas-gas models, it is the same for this system.
Therefore, the slope, a/2 , of the curve drawn through the data points
in Fig. 6.20 should be .105. However, the slope of the line drawn
in the graph is; approximately twice the predicted value. The reason
for this disagreement is not understood. That the general mixing
model is correct is suggested by the result that a linear curve can be
drawn through the data points. Also, the top boundary condition (well-
mixed top) does not change the form of the solution, i.e., & = H(7)F(x),
but it fixes the slope, /2. The increased turbulence at the top of the
tube due to the addition of the horizontal attachment may be the reason
for the high mixing rate in the small scale model. Previously, we
pointed out that the flow mechanism changed at the top of the tube. In

the vertical tube system with zero mass flux across the top surface,
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the turbulence was dampened as x increased. However, the turbu-
lence in this case increased as x increased, and the theoretical mod-
el could not take this into account. It only allowed mass to diffuse
out of the top volume. Also, it is possible that the horizontal attach-
ment caused the effective length scaling in T to change. For ex-
ample, instead of being proportional to (d/L)9/4, the exponent
could have increased to 5/2, whichwould increase the mixing rate by a
factor of 1.7. Or a 35 per cent increase in effective length would
give the same change. Sufficient data were not taken in order to
clarify this point.

6.1.4 Stairwell-Basement System. In all of the previous

models, excluding the gas-gas experiments, salt-water mixtures dif-
fused out of the tube into an infinite fluid environment (tap water
basin). This is analogous to a continuous source of buoyancy, such
as a fire would supply, which is responsible for the mixing in the un-
stable density field. However, a finite ambient volume of less dense
fluid corresponds to a limited source of buoyancy. The stairwell-
basement system was based on this point. The experimental setup
and procedure were the same as that for the vertical tube system ex-
cept for the volume of the ambient fluid. The tap water basin was
replaced by a container of tap water of volume comparable to that of
the tube.

The mixing observed in the vertical tube was exactly the same
as in the previous models. However, the salt-water mixture leaving
the mouth of the tube mixed vigorously with the solution in the tap

water container. The fluid flow leaving the tube resembled a plume.
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Less dense fluid was entrained into it. Later, the exiting fluid im-
pinged on the bottom surface of the container and spread rapidly over
it. The size of the volume of ambient fluid had a profound effect on
the mixing phenomena in this system. It is shown in Fig. 6.21,
which is a plot of Ap/Api versus t for three experimental runs
/v

(d=11/2", L/d = 15. 3) where the volume ratio (V )

ambient’ tube

ranged from 12 to co. The plot indicates that the mixing rate de-
creased as the volume of the ambient fluid decreased. Measure-
ments taken at the end of the experiment revealed the entire system to
be of uniform density. This can be seen in Fig. 6.21 because the
data points corresponding to Vr = 12 level off for large t as the sys-
tem becomes stable.

In the above experiments, the bottom of the vertical tube was
approximately 2! below the surface of the ambient fluid. However,
other experiments were performed in the same container with a larger
tube (d = 3 3/4", L/d = 7. 85), but the inlet of the tube was épproxi-
mately 6' above the bottom of the container. This configuration is
shown in Fig. 6. 22 along with its experimental results. In this case,
the volume of less dense fluid below the tube was twice the volume of
the tube, i.e., Vr = 2, and the mixing in the ambient fluid was con-
fined to the region below the tube. The upper (less dense) fluid did
not mix with the salt-water mixture leaving the tube. The graph in
Fig. 6.22 indicates that the density of the fluid in the tube approached
an equilibrium value as in Fig.6.21 when the volume of the ambient
fluid was comparable to that in the tube. Later, the mixing in the en-

tire system ceased, and the density of the fluid in the tube was the
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same as that in the region below it. The density of the fluid in-the up-
per region had the same value as it had initially.

The interesting feature of the system in Fig. 6.22 was the in-
tense mixing in the region below the tube. The entire volume was in
motion during the mixing process in the tube, and it seemed to be well
mixed at all timeé. Although measurements were not taken to check
this observation, the '""well-mixed bottom' boundary condition was
based on this point. The theory is applied to the experimental results
in Figs. 6.23 and 6.24. The data from Fig. 6.2} (d = 1 1/2") are plot-
ted in Fig. 6.23, and the data from Fig. 6.22 (d = 3 3/4") are plotted
in Fig. 6.24. In both cases, the ambient density was replaced in the
normalization of 8 by the final equilibrium density of the system, and
1//’H was plotted against T.

The theoretical values of @&/k are not in very good agreement
with the experimental values, as is shown in Figs. 6.23 and 6. 24. In
all cases, the estimated value of &/k should have been larger in order
to ensure agreement with the data. The disagreement for d = 3 3/4"
(Fig. 6.24) is largest; here, the predicted value of &/k is approxi-
mately 43 per cent too small. That is, the mixing rate is greater than
that predicted by the theory.

The agreement between theory and experiments for Vr > 12
(see Fig. 6.23) is better. This result was expected because the mixing
rates change only by roughly 15 per cent for 5 < Vr < oo, see Fig. 4.12.

As in the stairwell-corridor system, the fact that a linear curve
fits the data points in both plots suggests that the general mixing model

is valid. The disagreement between the theoretical and experimental
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slopes could result because the well-mixed bottom boundary condition
is not valid. Also, the experiments were difficult to run without in-
troducing turbulence into the bottom region in the tank. The initial dis-
turbances should increase the mixing rate, which means that the ex-
perimental slope would be greater than the predicted slope, as was ob-
served in the above cas‘es.

6.1.5 Stairway System. The model of the stairway system con-

sisted of semi-circular discs spaced one diameter apart in a cylindrical
tube. The baffle and tube system is shown in Fig. 6.25. The tube and
discs were made of lucite. The experimental procedure was the same
as in the other cases of the brine solution model.

The mixing process was similar to that of the duct without the
baffles. The presence of the semi-discs restricted the movement of
the eddies, and they could not spiral in any direction as before. The
lighter solution ascended beneath the discs and the heavier solution
descended on top of the discs as shown in Fig. 6.25. As a result,
individual cells formed between each set of discs that rotated in op-
posite directions. Most of the mixing occurred at the point where
the solution ascended and descended.

The results are plotted in Fig. 6.26 along with a plot of the
vertical tube without the baffles. The mixing was reduced by a factor
of 10 due to the presence of the baffles. No effort was made to obtain
a relation between the number of baffles and the time scale, but the
density scaling did not change (i.e., T N(Api/pa)% ). These results
are very important becausethey indicate that the presence of obstacles

in the vertical ducts greatly reduces the mixing rates. A priori, this
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phenomenon was expected because stairs in stairwells tend to reduce
the effective diameter of the stairwell. Since the mixing coefficient is
proportional to d7/4, smaller diameters have smaller diffusion coef-
ficients. Also, the mixing patterns are fixed by the geometry of the
obstacles and thus reduce the mixing rates, because higher mixing

rates are obtained when the flow is disorganized and random.

6.2 Heat Transfer Model

Figures 6.27 - 6.29 contain the results of the heat transfer
experiments with the insulated and constant temperature tubes. The
points in each plot are the average of a number of experimental runs
for each case. Although visualization of the mixing phenomena was
hindered due to the experimental setup, observations revealed the
structure of the turbulence to be the same as that in the brine solution
model. No attempt was made to vary the free parameters in the ex-
perimental model because of the difficulty involved in running the ex-
periments. However, the surface temperature in each case could be
varied at will. Acetone/dry ice solutions and liquid nitrogen were
used as the coolants to obtain the desired surface temperatures.

The model developed previously furnishes a crude guide for
the experimental work. The results were such that these experiments
were adequate to explain the phenomena taking place.

6.2.1 Insulated Tube with Heat Transfer through the Top

Surface. The insulated tube corresponds to h = 0 in the energy equa-
tion of the heat transfer model. A schematic of the mixing phenomena
in this model was presented in Fig. 4. 16 and the solution was discussed

in Section 4.3,2 . There we pointed out that heat entered the mouth
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of the tube and was conducted through the top surface, of which the
temperature TS was fixed. Also, the flow was steady because the
tube system did not retain any of the heat that entered the tube. The
experimental results of this model for Ts = 850K (LN2 temperature)
are contained in Fig. 6.27. The graph indicates that the temperature
of the upper probes did not approach the liquid nitrogen temperature.
The temperature of the top probe,which was located approximately
1 1/2" below the top surface, was about 125°K above the temperature
of the surface. This result was not very surprising. A priori, one
expects that the flow will be turbulent everywhere except near the
boundaries of the tube and, in particular, that the turbulence will be
dampened near the top surface. In this region, one expects the phe-
nomena to be laminar,and that very close to the surface heat will be
transferred by a pure molecular conduction process. The scales in-
volved here are reasonable if pure conduction is involved.

The analytical model for the mixing phenomena in this case
did not allow for conduction of heat through the top surface. Actually,
the analysis is only valid for the flow in the turbulent regions of the
tube. The foundation of this analysis was based on the mixing phe-
nomena in the buoyancy force model. In particular, if dense fluid
was allowed to flow (with small flow rates) from the top of the tube
downward into the less dense ambient fluid surrounding the vertical
tube in the buoyancy model, then this flow would be analogous to the
flow in the insulated tube. That is, a steady state would exist in the
tube of the buoyancy model, and the density at the top would be con-

stant and a maximum there. Also, there would be a mass flux across
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the top boundary of the tube, and the flow would be turbulent every-
where. However, in the analytical model of the insulated tube, only
Ts was specified at the top of the tube, which does not account for the
thin thermal boundary layer on its surface.

Therefore, the analytical solution was applied to the experi-
mental results by choosing the boundary condition, TS, and the length,
L, to be the data points near the top of the tube, but below this '"con-
duction'" region. This is equivalent to cutting the tube off at the re-
gion where it is known to be turbulent and to using the temperature at
that point as the boundary condition. In this case, Ts was chosen to
be ZISOK, which is the temperature of the top probe. The theoretical
curve is drawn in Fig. 6.27 with the data points. The agreement is
good. The heat transfer coefficient for this system could not be cal-
culated because the heat flux.in the tube could not be obtained from
the experimental results.

6.2.2 Constant Temperature Tube. Preliminary experiments

using the constant temperature tube, ’I‘s ~ 850K, indicated that con-
vective heat transfer through the walls of the tube was the dominant
energy transfer mechanism. For this wall temperature, the hot
gases did not diffuse to the upper 3/4 of the tube. As a result, the
density stratification resembled that of a step function with the upper
3/4 of the tube at liquid nitrogen temperature and the bottom 1/4
gradually increasing to room temperature, 295°K. Clearly, this set
of experiments corresponds to h = 10"3 in the heat transfer model,
Fig. 4.15. In this case, very large temperature fluctuations were

present which made measurements difficult. Hence, a dry ice and
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acetone mixture at a temperature much warmer than the liquid nitro-
gen solution was used. This enabled the room temperature air to dif-
fuse up the tube before its energy was drained by the convective heat
flux out of the tube. The reason why the hot gases penetrated to the
top of the tube for small Ts and not for large TS was due to the
magnitude of the temperature difference, AT, between the hot gas and
the cooler walls of the tube. The heat flux was much greater for the
colder surface or larger AT because the convective heat transfer is
proportional to AT, and the film coefficient also increases with in-
creasing temperature gradients. The results of this model are con-
tained in Figs. 6.28 and 6.29.

The experiments with the constant temperature tube consisted
of two phases. Initially, the surface temperature of the tube, T,
was kept constant by filling the cavity surrounding the test tube with
a mixture of dry ice and acetone. During this period, the process in
the tube was steady. The steady-state profile of the gas temperature
is shown in Fig. 6.28. This temperature profile resembles the theo-
retical profiles, Fig. 4.15, for a value of h between 10“3 and 10—4.
Note that the slope of curve has a maximum value at x = 0 and ap-
proaches zero near x = 1, which implies that the axial heat transfer
decreases as x increases. The reason for this behavior is that heat
is drained from the mixing eddies at each point aiong the tube, and
that the film coefficient also decreases as x approaches one.

The second phase of the experiment was the transient period
after the cavity had been drained. Only air remained in the cooling

cavity, and heat transfer from the stagnant cool air in this cavity to
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the thin tube wall was by natural convection alone. Early in the test
period, the magnitude of this flux was very small compared with heat
transfer from the warm air entering the tube at its open end. The
surface temperature of the tube changed during this phase due to heat
transfer from the gas inside the tube. Also, the mixing in the tube
was reduced slightly because the gas temperature increased during
this period, as shown in Fig. 6. 28.

The temperature-time history of the surface temperature at
certain points is given in Fig. 6.29. The walls of the tube heated up
during the transient period as it absorbed energy from the gas enter-
ing the tube. Wall temperature data taken during the first 200 - 300
seconds can be used to estimate the heat transfer rates and the heat
transfer constant, h. In this calculation, we made use of the ''thin
skin'' approximation in order to estimate the heat transfer to the
walls of the tube during the steady period. That is, the initial tem-
perature stratification in the tube was assumed not to vary appreci-
ably during the transient period for which Ts increased with time.
This technique amounts to extrapolating all the slopes and tempera-
ture differences to their value at t = 0 .

Figures 6.28 and 6.29 show that the initial temperature profile
or slopes did not change very much during the 200 - 300 second tran-
sient period, which means that the approximation is valid. The heat

transfer to the duct was calculated from the relation
dT

s
q = PCpV-(—i't— s

where V is the volume of the tube consisting of a section of one di-
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ameter in length. The term dTS/dt was obtained from the slopes of
the curves in Fig. 6.29 for t <200 seconds. The curves are linear
in this range, and Ts does not vary from its steady-state value by
more than 5°C for x >0.11.

In the analysis of this model in Section 4. 3, we assumed

q = HA(TS—T) (4.55)
and
1/4
H _ ,.1,8 9 47
e ¢ h 4Jp 5> (@'L) (4. 64)
(—2)

where A is the surface area of the tube. Equating the values of q

from these equations and solving for h yields

(pec)
" P'tube Vd) } s
pc ) 7 1/4
(d'L) JE & (T,-T)
In this expression, El; %% was replaced by _lT ST , which is equiva-

lent when the pressure is assumed constant in the gquation of state.
Note that the quantity 4/(d L) L was used to scale the mixing coef-
fjcient of the buoyancy model. The temperature gradient of the gas in
the tube was obtained from the steady-state profile in Fig. 6.28.
Therefore, h was calculated from this expression at certain regions
along the tube for t = 100 seconds. The results are tabulated in
Table 6. 3.

In the theoretical model, h was assumed to be constant. Ex-
cluding the value computed near x = 0.1, h is approximately constant

to within 30 per cent. The value of h computed near the inlet of the

tube does not agree with the other values; this is probably due to the
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TABLE 6-3. The Values of h Computed from

the Thin Skin Approximation.

5 hx 107>
0.11 | 4.35
0.30 11. 30
0.43 7.32
0. 60 13.0

relatively large heat losses at that region.

The 1/8'" steel flange located near the inlet of the tube (see Fig.
5.11) served as a heat sink, since its heat capacity was larger (rough-
ly by a factor of 10) than that of the tube in that region. Therefore, it
drained energy from the tube during the transient period which de-
creased de/dt at x = 0. 11 and hence decreased the heat transfer
constant. Also, the axial heat conduction between points along the
tube was greatest in that area.

The average value of h obtained from the experiments (Table
6-3) is of the order of 10-2, which is larger, by roughly a factor of 10,
than that of the theoretical model required to match the temperature
profile. The actual value of h corresponding to the steady-state tem-
perature profile in Fig. 6.28 was not calculated, but it is of the order
of 10-3, since this temperature profile agrees with the data in the
theoretical curves (see Fig. 4. 15) for h in this range.

Besides experimental error, the disagreement between the
theoretical and calculated values of h could be due to the length

scaling in the film coefficient, H. The form of H was assumed to be
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the same as that of the mixing coefficient in the buoyancy model. How-

ever, the scaling quantity -‘-ll—(d—,L)l/4

may be different in this model,
and the value of h would be different also.

6.3 Discussion

In the previous sections of this chapter, the experimental re-
sults were presented and discussed in general. This section contains
a more critical discussion of the models and the assumptions made
when analyzing them. Also, the experimental errors are discussed.

6.3.1 Sources of Experimental Error. The most common

sources of error in the experiments of the buoyancy force model were
due to the initial turbulence in the system and to the finite ambient
volume of less dense fluid in the brine solution experiments.

The initial turbulence in the system was due to the removal of
the plug from the inlet of the tube. During the process of removing
the plug the ambient fluid was disturbed, and also the ambient fluid
rushed in to fill the space vacated by the plug. The turbulence that
was put into the system by this process aided the mixing in the tube,
and this distorted the results. Whenever the duration of the experi-
ment was long for L/d > 8, the turbulence affected only the initial
part of the data. However, for L/d < 8, the accuracy of the data was
dependent on the magnitude of the disturbances initially in the system.
Therefore, care was taken i:o avoid disturbing the ambient fluid ex-
cessively.

The size of the ambient volume of less dense fluid became im-
portant during the latter part of the brine solution experiments in-

volving the largest of the tubes (d = 7 1/8", L/d = 15.6). An infinite
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(less dense) fluid environment was desired so that the ambient fluid
density would approximately remain constant throughout the mixing
process in the tube. This was not the case in all the experiments
involving the 7 1/8" tube because of the large volume of salt-water
mixture in the tube. The dense fluid that fell from the inlet of the
tube entrained the less dense fluid very rapidly. The mixing in the
ambient tank was very intense because of the large volume flow of
brine solution out of the tube. Also, the entrainment caused disturb-
ances in the ambient fluid. In most instances, a large clockwise
spiral or vortex was observed around the tube. This phenomenon
tended to distort the results.

The experimental error in the heat transfer experiments was
of a different nature. Water vapor in the ambient air froze at some
points on the inner surface of the test tube during all of the experi-
ments. The ice on the inner surface affected the heat transfer to the
walls of the duct, but not by any significant amount. Dry air should be
used for the ambient fluid in order to avoid this problem in future ex-
periments.

In the analytical models, the quantities p and T were assumed
to be cross-sectional averages. However, only one probe was placed
in the middle of the duct at a particular cross section, and each ex-
perimental run was repeated twice in most instances. Clearly, this is
not a cross-sectional average, but the remarkable phenomenon was
that the data were reproducible to within a few per cent in most cases.
Initially, it was feared that one probe in the middle of the duct would

not be representative of a cross-sectional average because of the high
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intensity of the mixing. Later this notion was dropped because the re-
sults were reproducible. This is partly due to the mixing mechanism
and to the turbulence itself. The mixing in the tube seems random and
disorganized. Probably this is true locally, but not so when the tube
is considered as a whole. The large eddies (in the brine solution
model) that transport the solution up the duct can only propagate a
certain distance before they break up into smaller eddies at each cross
section. The distance a front propagates (as described in Section 4. 1)
is a functipn of the density stratification in the tube. Mixing of the
smaller eddies is random, but they are confined to a length scale of
the order of the tube's. diameter. This is probably why the data are
reproducible at any cross section.

6.3.2 Discussion of the Diffusion Equation of the Buoyancy

Model. In the derivation of the turbulent diffusion equation of the

buoyancy fomce model, the average velocity of the solution at any
cross section in the tube was assumed to be zero. This assumption
seems reasonable, since the velocity was unweighted and there was
no net volume flux of solution in the tube. However, there was a net
flux of salt out of the tube and also a net flux of water into the tube.
The conservation equations could have been written to include the ef-
flux of salt out of the tube. If the velocities used in these equations
were the mass average values, they could not be considered zero
when using Reynolds' averaging techniques. It is not clear what ef-
fect the addition of the advective term in the conservation equations
would have on the solution. In the existing analysis, all of the ad-

vective transport was lumped into the diffusion coefficient by means
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of Reynolds' analogy. The agreement of the model calculations with
the experimental data was very good except for a short time period
following the arrival of the initial front.
The turbulent diffusion coefficient in the buoyancy force model

g 9p

was assumed to have the form: Ez ~ /p— -
a e
pression would be to replace Py by p; that is, Ez ~ »\/g -55 . A pri-

A more general ex-

ori, one is more likely to use the latter expression, but the experi-
ments suggest that the former gives an adequate representation even
when p/pa changes by a factor of 2 or more (as happens in the gas-
gas experiments). In all of the plots of A.p/Api against T, the initial
portion of the curve exhibited an exponential relationship. Also, the
same phenomenon existed for all T when the initial density was small.
This is shown in Fig. 6. 30, which is a plot of the results of the brine
solution model where d and L/d were held constant and Ap./p_
varied from 1 per cent to 15 per cent. The graph indicates that for
./_\.pi/pa < 2 per cent, the diffusion process is exponential. However,
the curves in the plot are not linear for Api/pa > 2 per cent.

The reason for this behavior could be due to the form of Ez .
Perhaps 1/p is important, since Api is small in these experiments;
whereas in the previous cases, Ap; was large and replacing p by Py
does not introduce much error. Another possible reason could be due
to the omission of the advective transport term in the diffusion equa-
tion. Initially, the salt particles have a large velocity, and during the
latter stages it is very small and can be neglected.

6.3.3 Discussion of Boundary Conditions Using the '"Well-

Mixed" Assumption. The agreement between the theoretical and ex-
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perimental values of the slope, @/2, in the stairwell-corridor and
stairwell-basement systems was not very good. In each model, the
experimental slope was too large. However, the general form of the
proposed mixing mechanism in each model appeared to be valid be-
cause a linear curve could be drawn through the data points when they
were plotted as 1/4/ H against T . It appears that the "well-mixed"
boundary conditions are not accurate, because they fix the value of the
slope in each case.

In the brine solution experiments of the stairwell-corridor
system, the '"'well-mixed top' boundary condition was based on the fact
that the density at the top of the vertical tube was nearly the same as
the density at the end of the horizontal tube for all times investigated.
It is obvious that this could not be true before the two-layered flow
system in the horizontal tube has been fully established. The time
elapsed between the arrival of the initial front at the top of the tube
and the end of the developmental period of the flow in the horizontal
tube may be enough to distort the results. The theory has no way of
taking this elapsed time into account. It seems as if To would be
larger in order to account for this time period. However, it is re-
markable that the separation of variables solution is applicable in
this case. Also, we pointed out in Section 4. 2. 3 that the addition of
the horizontal attachment could change the length scaling in the model
because of the increase in the turbulence near the top of the tube.
This increased turbulence would be effective in increasing the overall

mixing rates.
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The ''well-mixed bottom'" boundary condition of the stairwell-
basement model was based on the observation that the ambient fluid
beneath the tube was mixed thoroughly due to the flow leaving the tube.
Measurements were not taken to check the validity of this assumption
as in the above case. However, the diffusion equation was solved us-
ing this boundary condition.

A second problem concerning this exit assumption is that it is
not certain that the theory can account for the dense fluid that diffused
from the tube before the initial front reached the top surface at 7= To*
In the previous case, the ambient fluid environment was infinite and
we assumed F = 0 at x = 0, but in this case F # 0 at x = 0 because
the density of the ambient fluid increases with time. This initial
density is computed from the model, but it should properly be stated
initially. However, comparison between values of F{x =0, 7 = TO}
calculated from the model and from a continuity model based on an as-
sumed distribution of density in the tube at To shows that they are al-
most equal. A final source of error may be that the bottom mixing
may not be as thorough as expected on the basis of visual observa-
tions.

6.3.4 Discussion of Heat Transfer Model. In the heat trans-

fer model, the walls of the duct were assumed to be constant in tem-
perature. This hypothesis is only valid during the early stages of the
fire before the walls have absorbed a sufficient amount of energy.
The heat transfer experiments revealed that it is possible for the
walls of the duct to drain most of the energy from the mixing eddies

and inhibit them from propagating to the top of the duct. However, the
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propagation of the gases or heat up the duct depends on the local tem-
perature or density gradients and temperature differences relative to
the walls. During the latter stages of the fire, the walls will be very
hot and the amount of energy drained from the gases en route to the
upper floors would not be significant. For this reason, it is important
to know the length of the time interval during which the constant tem-
perature assumpfion is valid. However, it was not obtained from
these exéeriments because of the difficulty involved in performing
them.

The theory for the heat transfer model was not as complete as
that for the buoyancy model. The analysis of the buoyancy model re-
lated the diffusion constant to the slopes of the density-time curves,
which enables it to be found empirically. However, this was not the
case for the heat transfer model because the heat transfer constant
was arbitrary and the analysis did not provide any basis for calculating
it. Another point worth noting is that the steady state solution did not
depend on the magnitude of the diffusion coefficient. That is, all of the
scaling quantities (such as d, L, etc.) cancelled from the energy
equation (see Eq. 4. 61), since the film coefficient was assumed pro-
portional to the diffusion coefficient. The solution would depend on
the scaling quantities if the transient problem had been solved.

In spite of the crudeness of the theoretical heat transfer model,
it is useful because the temperature profiles of the steady state solu-

tion are very similar to those found in the experiments.
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7. SUMMARY AND CONCLUSIONS

This research project was motivated by the large number of
fatalities from fires in homes and multi-story buildings each year.
The major concern of this report was to analyze the flow mechanism
and to develop simple modeling parameters by which hot gases propa-
gate to the upper floors of high rise buildings.

The problem examined in this investigation has been the turbu-
lent motion of hot gas through vertical shafts (e. g.,ventilation shafts,
stairwells, or elevator shafts) and horizontal passages (such as halls)
when natural convection is the most important driving force. Pri-
marily, consideration was given to the transient flow situation in
which the gas in the shaft is initially cold; then, at some time, the bot-
tom end of the vertical shaft, or either end of the horizontal shaft, is
opened to allow a hot gas atmosphere outside the shaft to mix with the
cold gas inside the shaft. Mixing in all cases is the result of natural
convection alone.

The models were divided into two categories: a buoyancy force
model,and a heat transfer model that includes buoyancy forces. Brine
solutions anddense gases were used to model the buoyancy forces,and
the heat transfer model made use of low temperature air. In both
cases, the diffusion equation was solved and found to be in agreement
with the experimental models. The following major conclusions can
be drawn from the buoyancy model:

1) Salt-water mixtgres can be used successfully to model
buoyancy forces due to dense gases in an unstable density stratifica-

tion.
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2) The fundamental time scale that characterizes mixing rates
in vertical columns due to unstable buoyancy forces is
Ap. 9/4
r=a LB (2Y7
Py d L

3) The turbulent diffusion coefficient for the flow induced in a

vertical column of fluid with an unstable density stratification is

E - 0.28/ 8 382 (q70)1/%,
= Py dz

4) The density stratification due to the mixing caused by un-
stable buoyancy forces in a vertical column of fluid placed in an in-

finite environment of less dense fluid can be described as follows:

PPy F(x)

2 ?
7 ('T—'T'O)+ l]

where F(x) is plotted in Figure 4.9. This solution is only valid when
turbulent mixing exists throughout the column.
5) The propagation of density currents along the upper surface

of a horizontal duct can be described as follows:

S
V = 0.45 gd
pa

where V is the speed of the front and d is a characteristic length.

6) Obstacles in vertical columns (such as stairs in a stair-
well) reduce the mixing rates associated with the mixing phenomena
due to unstable buoyancy forces in an unstable density field.

In the heat transfer model, the unstable buoyancy forces were
due to temperature differences in the air rather than to specie changes

as in the buoyancy model. The major conclusions that can be drawn



-154-
are as follows:

The mixing caused by hot gas entering a vertical duct filled
with a relative cool gas is reduced by the heat absorbed by the walls
of the duct. In some instances, depending on the temperature differ-
ence between the wall and the hot gas, it is possible for the heat flux
out of the system to inhibit the hot gas from propagating to the top of

the duct.
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LIST OF SYMBOLS

For simplicity, symbols of secondary importance which appear

only briefly in the text are omitted from the following list.

® o W oD A

2 Box

Il

concentration of solute in the salt-water mixture, (mass/
volume)

tube diameter

molecular diffusion coefficient; mixing coefficient (heat
transfer model)

turbulent mixing coefficient

normalized density profile, Ap(x)/Api

acceleration due to gravity

heat transfer constant

normalized density at top of tube, Ap/Ap. ‘ in the buoy-
ancy model; film coefficient in the heat transf‘er model

diffusion constant

length of tube

molecular weight of gas mixture

convective heat transfer to the duct
universal gas constant

time

time scale for various initial density ratios
time scale for various diameter-to-length ratios
temperature of gas mixture

ambient fluid temperature

surface temperature of tube

velocity vector

volume ratio
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normalized position along the central axis of the tube, z/L
position along the central axis of the tube

position of initial front

slope of the theoretical curve, 1//H versus 7
normalized density, Ap/Api

density of fluid

ambient density of fluid

equilibrium density of system

initial fluid density

PP,
Pi=Pa
p(x=1) - p
fundamental time scale
arrival time of initial front

average value of T for various Api/pa

time scale for initial period, T< i
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