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ABSTRACT 

Vortex-induced oscillations. often of concern when a bluff structure is 

exposed to fluid cross-flow. are considered herein using a semi-empirical model

ing approach. Eased on the fiuid momentum theorem, the model involves a 

highly simplified abstraction of the complex flow field. and major assumptions 

concerning the nature of the coupling between the fluid and the oscillating 

structure. 

Three prototype problems are studied, including harmonically forced 

cylinders, spring-mounted cylinders. and taut elastic cables; in each case the 

structure is assumed to be of circular cross-section and situated in a uniform 

cross-flow. Only oscillations transverse to the flow are considered. The problem 

of modal interaction for elastic cables, typically of interest when the fluid flow 

excites high-mode-number resonances, is given particular attention. 

The model produces a set of nonlinear, ordinary differential equations 

describing the coupled fluid/ structure oscillations. Steady-state oscillatory 

solutions to these equations are found analytically and are examined for stabil

ity. Using various regression techniques, the steady-state solutions are then fit 

to experimental data for forced and spring-mounted cylinders. Finally, the 

model's predictions for elastic cables are used to postulate a qualitative picture 

of modal interaction, certain features of which have been observed experimen

tally. 
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CHAPTER I 

INTRODUCTION 

Vortex induced oscillations are possible whenever a bluff object is exposed to 

a Bowing fluid. In most structural engineering applications, the induced vibra

tions of interest are those of the bluff object itself, typically a cable or beam 

exposed to a cross-flow of air or water, examples of which are mooring lines, guy 

wires, electric transmission lines, towers, masts, and antennas. Such struc

tures, as well as more complex ones such as bridges, may be damaged or even 

destroyed by severe oscillations of this type. 

In other, somewhat different examples of the same phenomenon, the induced 

vibrations are not those of the bluff object (which may in fact be rigid), but 

those of some auxilliary mechanical system, often a resonating column of air. 

Several familiar musical instruments operate in this fashion, and serve as useful 

illustrations in the following discussion. 

1.1 Basic Mechanisms: Vortex Sheddinl and Lock-in 

Periodic vortex shedding takes place when a flowing fluid is unable to negoci

ate its way smoothly around a bluff object. For example, in the case of a circu

lar cylinder, one cycle of the shedding process is sketched in Fig. 1.1. First, flow 

separation occurs at points S 1 a.nd S 2 , and the resulting pair of vortex sheets, 

being unstable, roll up into vortices V 1 and V 2 {Fig. l.la) [ 1, 54]. Next, the 

developing vortices interfere: V 1 draws fluid from the other side across the wake 

{Fig. l.lb), causing the detachment or "shedding" of V 1 {Fig. l.lc) [21]. To com

plete the cycle, the shedding process is repeated for V2 (Figs. l.ld,e). Subse

quently, as new vortices are formed to replace V 1 and V 2 , the cycle repeats itself 

with a frequency f't)· Flowing downstream, the detached vortices typically 
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arrange themselves in two staggered parallel rows, called a "vortex street," as 

shown in the fiow visualization photograph, Fig . 1.2. 

u ... 

Ficure 1.2. The Wake of a Stationary Cylinder (Re = 200, ftJ = 28) [37]. 

In the absence of induced structural oscillations, the vortex-shedding fre-

quency satisfies, according to experirnent, 

( 1.1) 

where the natural vortei-sheddinl frequency fs, also called tbe Stroubal fre-

quency. is defined by 

fs -
su 
n· ( 1.2) 

In this experimentally determined relationship, U is the free-stream velocity, D 

is a characteristic cross-sectional dimension of the bluff body, and S, the so-

called Stroubal number. is an experimentally specified pararneler which 

depends significantly on geometry and weakly on Reynolds nun1ber [7]. 

When a mechanical system with natural frequency f n is exposed to the 

periodic pressure forces of such a flow, the resulting mechanical vibralions, at 
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response frequency 1. are said to be vortex induced. If the induced oscillations 

are sufficiently small. the vortex shedding proceeds undisturbed at its own 

natural frequency Is• and induces the mechanical system to oscillate likewise, 

thus 

I = 1~ = Is· (1.3) 

However, for a range of 1. {i.e. a range of flow speed U} bracketing the reso

nance condition Is =In· induced vibrations may become large enough to cause 

the mechanical system to take control of the response, initiating a condition 

called "lock-in," where the natural shedding frequency Is is suppressed in favor 

of the natural mechanical frequency In· such that 

I = If) R; In· (1.4) 

Once lock-in is initiated, mechanical oscillations grow to much larger ampli

tudes, not only on account of the near-resonance condition f R; fn, but also 

because the mechanical motion provides a synchronous tripping mechanism for 

the vortices which strengthens and organizes the shedding process, producing 

greater fluctuating pressures. Such large amplitude mechanical oscillations are 

usually of the greatest interest in practical situations. 

As previously mentioned, the most familiar examples of this phenomenon are 

musical. When air is directed into the foot of a reed.less organ pipe, it impinges 

on a bluff. vortex-shedding lip. The flow speed and lip geometry are arranged to 

produce a natural vortex-shedding frequency (/.) lying close to the natural 

acoustic frequency of the pipe Un), whereby lock-in is initiated, and an audible 

musical tone is produced. Flutes and other reedless woodwinds operate simi

larly. 

Such instruments owe their practical usefulness to the persistence of lock-in 
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over a fairly wide range of flow speed (i.e. a range of / 8 ), called the lock-in band. 

lf the lock-in band were very narrow, audible musical sounds would disappear 

whenever an organ's wind-pressure regulation or a flutist's breath control was 

not perfect. However, in reality the width of the lock-in band is sufficient to per-

mit a certain amount of variability in the air stream, the only effect being a 

slight rise or fall in the pitch of the instrument [53, §322a], in accordance with 

the approximate condition f ~ f n in Eq. {1.4). 

1.2 The Focus of This Invest;ieation 

In the current investigation~ attention is restricted to the type of problem 

most significant to structural engineering, as discussed at the opening of this 

chapter, for which tb e vibrating mass is the bluff, vortex-shedding body itself. A 

simplified, semi-empirical, mathematical _ model for such oscillations is pro-

posed, based on previous work by Iwan and Blevins [35]. Assuming uniform flow, 

the model is analyzed and compared to experimental results for three types of 

spanwise-uniform structures of circular cross-section, including 

• harmonically forced rigid cylinders 

• spring-mounted rigid cylinders 

• taut elastic cables 

In the latter analysis, considerable attention is given to the problem of interact-

ing cable modes. Each natural frequency f n (n = 1, ... , oo) of a cable possesses 

an associated lock-in band, which may interfere with that of either neighbor 

Un-t or fn+t) as the two modes compete for control of the shedding process. 

When adjacent frequencies f n are very close together, the interference may 

extend to three or more modes. The importance of such modal interaction has 
I 

long been recognized, even in the pioneering experimental work of Strouhal [ 65 ), 
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and has been further emphasized in recent years by practical problems with 

long, undersea cables [12]. Yet, because of the mathematical difficulties 

involved, the problem has hitherto been neglected in semi-empirical investiga

tions of the current type [36, 64]. 

1.3 The Organization of This Document 

In Chapter 2, a brief historical account of the subject is given, after which 

experimental data for rigid cylinders and cables are discussed. Results from a 

modern reproduction of Strouhal's experiment are included, a~ obtained during 

the course of this investigation in an effort to study the problem of modal 

interaction. 

In Chapter 3, the aforementioned math em a tical model for vortex-shedding 

structures is developed, using intuition provided by the rigid cylinder experi

ments. Extension of the model to cables is made tractable by finite-mode 

approximations, in which modes not likely to be locked-in are neglected. In par

ticular, a two-mode approximation is used to study the effects of modal interac

tion . 

In Chapters 4 and 5, the nonlinear differential equations generated by the 

model are solved analytically in an approximate sense, using a well-known 

asymptotic method. Emphasis is placed on unifying the mathematical treat

ment for all of the cases considered (Chapter 4 and Section 5.2), although the 

final stage of solution for each type of structure must be carried out indepen

dently (Sections 5.3 through 5.6). 

In Chapter 6, optimization methods are developed for selecting numerical 

values of certain constants embedded in the model. The objective of these 

methods is to obtain the best possible model fit to the experimental data for 



-7-

rigid cylinders, as presented in Chapter 2. 

In Chapter 7, results derived in Chapters 3 through 6 are presented graphi-

cally and compared to experimental data. Conclusions and a summary are 

given in Chapter B. 

1.4 Notation 

Following Chapter 8, a complete list of symbols used in this document is 

given. Verbal definitions are stated whenever possible, together with reference 

information, including 

• the location in the text where each symbol is first defined or used 

• the extent (chapter-wise or section-wise) over which the given 

definition is valid 

• cross-references to relevant equations, figures, tables, or sections 

• the physical dimensions of the symbol. 

In general. vectors are indicated by bold type, while matrices are enclosed in 

square brackets. 

Special remarks are warranted regarding the notation for frequencies: 

• Although the symbol f is occasionally used otherwise, whenever it 

refers to freqency, the dimensions are Hertz. 

• The symbol "-' is always reserved for angular frequency, such that 

"-'k = 2rrfk• where k is any subscript, provided fk refers to a fre-

quency. 

• The symbol 0 is always reserved for dimensionless frequencies wich 

have been normalized by the angular Strouhal frequency C~J5 , such that 

Wk 
0 k = C-, where k is any subscript, while C is a constant, usually 

Ws 

equal to 1 (but not always). 
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CHAPTERD 

EXPERIMENTAL OBSERVATIONS 

2.1 Historical Hackeound 

Vortex-induced oscillations have been utilized for musical purposes since 

ancient times, although vortex shedding was not recognized as the source of 

vibration until quite recently. For example, the principle of the organ pipe, 

mentioned in Chapter 1, was discovered accidently in the third century B.C. by 

Ktesibios of Alexandria [13], and thereafter the art of organ building developed 

empirically without any fundamental knowledge of the sound-generating 

mechanism involved [72, p. 401 ]. 

During the Renaissance, Leonardo da Vinci made several crude sketches of 

vortices in the wakes of bluff bodies (Fig. 2.1.1), but, as suggested by some 

Leonardo scholars [ 48, pp. 190-191], these sketches appear to depict recirculat

ing vortices 1 rather than the periodically shedding vortices which cause vibra-

lion, so it is doubtful that Leonardo could have perceived the connection 

between vortices and structural vibration . 

.lc'i&ure 2.1.1. Bluff body wakes, as sketched by Leonardo da Vinc1 L48]. 

1. See Fig. 2. 2 .1, the second sketch from the top. 
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The first systematic _.investigation of vortex-induced . oscillations was completed 

in 1878 by Strouhal · [65], whose experiment consisted of spinning a stretched 

wire or rod about an axis parallel to its length, thus creating a lengthwise-

uniform crossflow. Although he obtained important results, discussed below in 

connection with more recent experiments, Strouhal himself had no knowledge of 

the vortex-shedding mechanism per se. In fact, in accordance with a notion 

prevalent at the time, he believed that the stretched wire oscillated parallel to 

the wind, and that oscillations were induced by a friction-like force akin to the 

action of a bow on a violin string. These misconceptions were dispelled by Ray-

leigh, who observed experimentally in 1879 that the wire actually vibrates per-

pendicular to the wind [52],2 and later correctly identified the source of vibra-

tion as the instability of vortex sheets [53, p. 412]. 

Subsequently, vortex wakes ·themselves were studied. In 1908 B~nard [3] 

experimentally observed the periodic vortex-shedding phenomenon and meas-

ured the spacing of vortices, while von Karman [71] in 1912 theoretically estab-

lished why the two rows of vortices should be staggered rather than symmetri-

cal, and predicted a numerical value for the ratio of longitudinal to lateral vor-

tex spacing. 

Since von Karman's analysis, numerous studies of vortex wakes and induced 

vibration phenomena have been published, both theoretical [1, 6, 21, 33, 35, 36, 

39, 54, 55, 62, 63, 64] and experimental [2, 5, 10, 12, 14, 15, 16, 17, 18, 19, 20, 

22-30, 31, 37, 38, 41, 42, 45, 49, 50, 51, 56, 57, 58-60, 67, 69, 70], reviews of 

which have been compiled by Marris in 1964 [ 40] and Blevins in 1977 [7]. 

Results most pertinent to the current investigation, dealing with circular rigid 

cylinders and elastic cables, are presented below. 

2. Rayleigh noted that the wire sometimes whirls in an elliptical shape, with the ma jor 
axis perpendicular to the flow. This phenomenon is associated with non-ideal wires, 
for which the tension varies with the level of vibration [ 43]. Such behavior is 
neglected in the analyses herein, which assume ideal wires having constant tension. 
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2.2 Stationary Cylinders 

The flow behind a rigid circular cylinder at rest changes dramatically with the 

free-stream Reynolds number, as indicated in Fig. 2.2.1, but vortex shedding at a 

well-defined natural frequency fs persists, first in a laminar state and then in a 

turbulent state, over the entire Reynolds number range from 40 to 3 x 10°, as 

well as for Reynolds numbers above 3.5 x 106• 

Rt < 5 REGIME OF UNSEPAAATEO FLOW 

5 TO 15 ..;;; At < 40 A FIXED PAIR OF FOPPL 
VORTICES IN WAKE 

40 ..;;; At < 10 AND 10 ..; At < 150 
TWO REGIMES IN WHICH VORTEX 
STREET IS LAMINAR 

150 ..;;; At < 300 TRANSITION RANGE TO TURBU
LENCE IN VORTEX 

300 .;;; At <: 3 X 105 VORTEX STREET IS FULLY 
TURBULENT 

3 X 1 o5 ~ Rt < 3.5 X 106 

LAMINAR BOUNDARY LAYER HAS UNDERGONE 
TURBULENT TRANSITION AND WAKE IS 
NARROWER AND DISORGANIZED 

3.5 X 106 .;;; Rt 
RE-ESTABLISHMENT OF TURBU
LENT VORTEX STREET 

Fi&ure 2.2.1. The Wake of a Stationary, Circular Cylinder [7]. 

The natural shedding frequency Is is given by Eq. (1.2), a relationship first 

deduced by Strouhal in an experiment previously described.3 For a circular 
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cylinder, D is the diameter, while the Strouhal number S depends on the Rey-

nolds number UD as shown in Fig. 2.2.2. which is a compilation of results from 
ll 

numerous experiments.• The region bounded by solid lines indicates scatter in 

the data, while that bounded by dotted lines signifies, in accordance with Fig. 

2.2.1. that there is a broad band of shedding frequencies in the Reynolds 

number range from 3 x 1015 to 3.5 x 106 [57]. 

U7 

... 
H 
c ... 

1.3 • • ~ 
2 
J 
c 
z u ~ 
c 
a: 
t; 

1.1 

I .. 1r 

/' I I 
I I 

I : 
I I 

I I 

II ~ I ~\ 
I 

..-----~-rtf~ ----,...... ~ ~.,..."" 

, .. 
MYIOLDS ..... (UO/vl 

Figure 2.2.2. The Strouhal Number for Circular Cylinders [7]. 

3. Although Strouhal used fiexible wires as well as rigid rods in his experiments, a 
stretched wire, free to vibrate, adequately approximates a stationary rigid cylinder if 
the vi bra lion amplitude is very small, which is generally true outside the lock- in 
band. 

4. Strouhal's original results are not included. The concept of Reynolds number, intro
duced by Reynolds in 1883 [61] , was unknown to Strouhal in 1878. In fact, the Re 
range of Strouhal's experiments was 200 < Re < 6000, but Strouhal presumed S to 
be constant, and simply averaged all of his results, obtaining S = 0.185. This value is 
sightly lower than the average value according to the more recent experiments (Fig. 
2.2.2). The reason for the discrepancy is probably the crudeness of Strouhal's 
apparatus, discussed further in Section 2.5. 
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2.3 Forced Cylinden 

When the vibrations of a vortex-shedding structure are forced by an external 

driving mechanism (e.g. Fig. 2.3.1) rather than induced by the flow itself {e.g. 

Fig. 2.4.1 ), the concept of lock-in is somewhat different than that discussed in 

Chapter 1. For both cases, lock-in involves the violation of Strouhal's relation-

ship f"' = fs· and the synchronism of vortex shedding with structural vibration 

at a frequency characteristic of the structure. However, as discussed in Chapter 

1, the locked-in response frequency f for the induced case is very close to the 

natural structural frequency fn, depends somewhat on fs, and is unknown a 

priori, whereas for the forced case, the locked-in response frequency is neces-

sarily the forcing frequency f, which is known a priori. Thus, the locked-in con

dition for the forced case, replacing Eq. (1.4), is simply 

fv = f, (2.3.1) 

while the non-locked-in condition is 

fv ~ f . (2.3.2) 

Koopman [37] has measured the extent of lock-in for rigid circular cylinders 

which are harmonically forced {as in Fig. 2.3.1) and exposed to cross-flow at low 

Reynolds numbers. For each value of Re, the natural shedding freqency Is was 

determined directly for the stationary cylinder by means of a hot-wire in the 

wake. Then, for a fixed, dimensionless forcing amplitude 

B -
t[ Peak-to-peak displacement of cylinder axis] 

D 
(2.3.3) 

the forcing frequency f was varied slowly about fs until synchronism of the vor-

lex wake with the cylinder vibration was lost, first at the lower lock-in limit /-. 

and again at the upper limit f+. These measurements, repeated for several 

values of B at each of three Reynolds numbers. are recorded on Fig 2.3.2, where 

the independent variable a is a measure of detuning between the forcing fre-
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Spanwise Rigid 

Fi«ure 2.3.1. Forced Cylinder. 

quency f and the natural vortex-shedding frequency/ •• 

rr = 
f- fs 

fs 

Normalized 

Displacement 

y ( T) = B cos 21T f T 

(prescribed) 

(2.3.4) 

Experimentally, there was additionally a well-determined amplitude threshold 

B o below which lock-in failed to exist even for values of u approaching zero. The 

locked -in region thus lies above the threshold amplitude B 0 and between the 

boundaries (rr-, u+), where {u-, u+) are the normalized counterparts of 

In the same investigation Koopman obtained a pair of flow-visualization pho

tographs, reproduced here as Figs. 2.3.3, which clarify the nature of lock-in, par

ticularly the amplitude threshold. Both photographs are top views. Fig. 2.3.3a 

shows the locked-in wake of a vibrating cylinder (B > B 0, u- < cr < rr+), with 

the vortex filaments aligned parallel to the axis. In contrast, Fig. 2.3.3b shows 

the non-locked-in wake of a stationary cylinder (B = 0), with the vortex 

filaments inclined to the axis. Apparently, within the lock-in frequency band, a 

sufficiently large amplitude of cylinder vibration provides a tripping mechanism 
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Figure 2.3.2. Experimental Lock-in Boundaries for Forced Cylinders [37]. 

for the vortices, favoring a certain fixed phase relationship between the periodic 

shedding and the periodic cylinder displacement. Therefore, at least for the low 

Reynolds numbers studied by Koopman, locked-in vortex shedding is nearly 

two-dimensional and well correlated along the span,1 while non-locked-in shed-

ding is highly three-dimensional and uncorrelated. 

A study by Toebes [67] at Reynolds numbers of 46,000 and 68,000 indicates 

that these distinctions may be less clear for more turbulent flows: the degree of 

correlation between two points {P1, P2 ) along the span then appears to increase 

1. There are tunnel wall effects in Koopman's photograph. 
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continuously with the cylinder vibration amplitude rather than increasing 

suddenly at a certain amplitude threshold, and also appears to decrease sharply 

with increasing spanwise distance between P 1 and P 2• 

u 
~---

Fipre 2..3.3L Locked-in Vortex Sbeddina; Re = 200. /.,a: 28 [37]. 

u 

Fipre 2.3.3b. Non-locked-in Vortex Shedding; Re = 200. I" = 28 [37]. 
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2.4 Sprina-MoUDted CyliDclen 

Feng [16] has measured response amplitudes and frequencies versus flow 

velocity for 3" diameter circular cylinders mounted elastically in a wind tunnel. 

Fig. 2.4.1 is a schematic of such a cylinder and its elastic mounting, for which 

the first {and only)! natural freqency is 

J, = 11 = _1 __ TiC J 

2TT -v M 

while the fraction of critical damping ("and mass ratio TJ are defined by 

b on = pD2 ., M. 

(2.4.1) 

(2.4.2) 

In these equations, p is the fluid density, while M, k, and b are, respectively, the 

per-unit-length structural mass, damping coefficient, and spring constant. 

Experimental results for five values of(" are shown in Fig. 2.4.2. The indepen

dent variable has been converted, according to Eq. (1.2), from flow speed U to 

the fluid-structure detu.ni.nc d1 , defined as 

Normalized 

1 Dlaplacement 
Y(T) (unknown) 

Fi&ure 2.4.1. Spring-Mounted Cylinder. 

1. The cylinder is not permitted to rock side-to-side. 
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Dlt 
= 1 - su. (2.4.4) 

Likewise, the dependent frequency variable has been converted from the system 

response frequencr I to the response-structure detu.ning d.,.. defined as 

cJ.,. = I -It = Dl t [ _L _ 1]. 
Is su It 

(2.4.5} 

The normalized response amplitude B is defined as in Eq. (2.3.3). To implement 

the conversions (2.4.4) and {2.4.5) it is necessary to assume a value for the 

Strouhal number S. Referring to Fig. 2.2.2, the value S = 0.20 is adopted, since 

Feng's experiments involve Reynolds numbers from 10, 000 to 50, 000. 

On each frequency plot. data points lying along a nearly horizontal line at 

dr RS 0 comprise the lock-in band [see Eq. (1.4)]. during which the vortex shed

ding is observed to be spanwise correlated [16, pp. 26-29], and the cylinder 

amplitude B rises to its peak.3 Conversely. the points lying along the line c4 = d1 

represent unlocked response [see Eq. (1.3)]. for which the vortex shedding is 

spanwise uncorrelated and the amplitude response is small. 

It is interesting to contrast these results to those for the forced cylinder. In 

both cases, spanwise correlation of vortex shedding occurs during lock-in. How

ever, for the spring-mounted cylinder, the lock-in band is highly skewed to the 

right of the exact resonance point dr = d1 = 0 (0 = 0 1 = 1), whereas for the 

forced cylinder, the lock-in band is symmetrically located on either side of the 

exact resonance point a = 0 (0 = 1). As suggested by the discussion at the open-

ing of Section 2.3, this discrepancy may be attributable to the qualitative 

difl'erence between forced vibrations and vortex-induced vibrations. 

2. Feng actually measured the vortex- shedding frequency f, with hot- wires. For 
steady- state induced vibrations however, according to Eqs. 1.3 and 1.4, f, = f 
always. 

3. Hysteretic behavior in the amplitude response, experimentally observed at low 
values of (. is indicated by the arrows on Figs. 2.4.2a,b. 
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2.5 Elastic Cabler. A llo4ern Reproduction of Strouhal's Experiment 

2.5.1 llotivation for the Experiment 

Using the experimental apparatus described in Section 2.1, Strouhal [65] 

measured the frequency response of taut, freely vibrating wires {i.e. cables) hav-

ing fixed ends. He observed lock-in for mode numbers as high as n = 27, and 

witnessed the phenomenon of modal interference extending to two and even 

three modes, as discussed briefly in Section 1.2. 

Unfortunately, Strouhal's description of lock-in and modal interference are 

very crude. In particular, the concept of lock-in bands is absent from his data; 

for each mode he cites a single flow speed corresponding to lock-in, rather than 

a range of flow speed. This shortcoming is undoubtedly attributable to the 

crudeness of his apparatus, notably the unsteadiness of the rotational speed 

used to create the cross-flowing air-stream.1 Although Strouhal recognized the 

importance of steadiness in the airstream and paid considerable attention to it, 

he was limited by nineteenth-century technology, and found that the best avail-

able system to produce steady rotation was simply a hand-operated crank. 

Since Strouhal's work, although numerous laboratory and field experiments 

have been conducted to study the vortex-induced vibration of cables [ 12, 27. 38, 

41, 49, 69], only a few studies present data on the modal lock-in bands [12], and 

virtually none has dealt specifically with the interaction of lock-in bands for 

high mode numbers. Therefore, to obtain valuable physical insight into the 

problem of modal interference, a simple, modernized version of Strouhal's 

experiment was constructed during the course of this investigation. 

1. Recall from Section 2.1 that the stretched wire is revolved about an axis parallel to 
its length. 
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2.5.2 Experimental Equipment 

Two photographs of the apparatus used are shown in Fig. 2.5.1, while a draw

ing is given as Fig. 2.5.2. Labeled features of the drawing are described below: 

• Vibrating Wire: Steel music wire. diameter D = 0.013", length L = 
16.75". The ends were wrapped around taper pins, which allowed tun

ing to a fundamental frequency f 1 = 440 Hz(± 1 Hz}. The spin radius 

(i.e. the distance from the axis of rotation to the wire) was R = 7.75". 

• Center Shaft: ~ inch diameter threaded rod. 

• Vertical Struts: Streamlined tube, whose closest surface was located 

approximately 57 diameters D from the vibrating wire. 

• Cross-braces: Three pairs of cross-braces (shown in the photographs 

but not in sketch) were used, consisting of stranded steel wire 

tightened by turnbuckles. These served two purposes: first, to stiffen 

the structure; second, to permit alignment of the motor shaft with the 

lower bearing, by adjustment of tension in the wires. 

• Optical Pick-up: General Electrics model H 13A2 interrupter module, 

consisting of an infra-red emitting diode optically coupled to a photo 

transistor, all in a plastic housing. Through the gap in the housing, the 

light beam was chopped once per revolution by the interrupter strip, 

thereby briefly switching the output transistor from an "on" to an "off' 

state. These pulses were used to measure the period of revolution T, 

and hence the flow speed U. 

• Flyw~eel: Steel, mass 10 lbm, diameter 6". Addition of the flywheel 

improved the speed regulation by a factor of 4. 
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Fig. 2.5.2: Experimental Apparatus. 
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• Motor: Robbins and Myers, DC series motor, rated 24 VDC, 1.7 A. 3150 

RPM. 

• Power Supply: Hewlett-Packard Harrison 6824A; 0-50 VDC, 0-1 A. 

• Sound-Level Meter: General Radio Corp. model 1551-C. Measurements 

were taken using the ''A" setting. 

• Spectrum Analyzer: Spectral Dynamics model SD 360. Over the fre

quency range 0 < f < 5000Hz, 1024 sampling points were used, so the 

frequency resolution was 4.88 Hz. 

• Timer: Hewlett-Packard model 5245M, triggered by pulses from the 

optical pick-up. Readout precision of the timer was set to 0.1 mil

liseconds, while the measured value of rotational period T varied from 

260 to 160 milliseconds, thus the precision of period measurement 

varied from .0.06% to 0.04%. 

• XY Plotter: Hewlett-Packard model 7015B, electronically linked to the 

spectrum analyzer. 

2.5.3 Experimental Procedure . 

During the experiments, all windows and doors of the room were closed to 

minimize spurious air currents. The power supply, timer, and spectrum 

analyzer, each possessing a cooling fan, were located about 15 feet from the 

vibrating wire in order to minimize not only the associated air currents, but also 

the fan noise reaching the microphone. 

For each run, the motor supply voltag·e, approached from below, was fixed. 

The period of rotation was monitored continuously until 5 successive readings 

remained constant (to within 0.2% in the worst case), indicating that a steady

state rotational speed had been achieved. The signal from the sound-level meter 
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was then played into the spectrum analyzer for 7. 75 seconds, producing a time-

averaged, discrete Fourier transform of the wire's vibration, which was subse-

quently output to the plotter. Finally, five additional measurements of the rota-

tiona! period were taken. Comparing these readings to those taken at the begin-

ning of the run, the greatest difference was found to be {in the worst case) 0.4%. 

The Reynolds number range of the experiments was 

95 < Re < 155. (2.5.1) 

In this regime, the Strouhal number S, used subsequently to infer fs from the 

flow speed, varies significantly with Reynolds number {see Fig. 2.2.2). Since the 

Reynolds number depends on ambient temperature through the kinematic 

viscosity 11, the temperature was noted periodically throughout the experiment. 

2.5.4.- Normalizin& the Independent Variable 

Experimentally, the independent variable was the period of revolution T, as 

measured by the optical pick-up. However, as described below, T is directly 

related to the frequency ratio ~: appearing on subsequent plots, where f. is 

the Strouhal frequency and · f 1 is the fundamental frequency of the wire ( 440 

Hz). 

The Reynolds number for each run is derived from the period T according to 

U = 21TR 
T; 

Re{T) = UD 
ll 

(2.5.2) 

where R is the spin radius of the wire, D is the wire diameter, and 11 is the 

ft2 
kinematic viscosity of air, equal to 17.3 x 10-6 -- for the temperature range of 

sec 

the experiment. (84° F to 85.5° F) [34]. For the range of Reynolds number given 

by (2.5.1), the empirical formula 
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20 
S (T) = 0.21[1 - Re{T)] (2.5.3) 

holds approximately for the Strouhal number 8.2 Thus the frequency ratio 

A(r) = 
ft 

SU II ( ( - = --S T)Re T) 
Dft D 2ft 

may replace T as independent variable. 

(2.5.4) 

For comparison to Section 2.3 as well as later chapters. it should be noted 

parenthetically that the ratio ~:, as used here to represent normalized fiow 

speed U. is exceptional in this thesis. It is useful in this Section because many 

structural modes are being considered simultaneously. hence the nominal reso-

nance conditions fs = f n = nf 1 (n = 1. ... , oo) occur conveniently at integral 

values of ~:. However, elsewhere in the thesis, when only one specific struc-

tural mode (e.g. n = k) is considered, it is analyitically more convenient to me as-

ure normalized flow speed by the detuning dt between fs and f~c. and to normal-

ize by fs rather than by f 1 [see for example Eq.(2.4.4)]. Likewise, if only two 

structural modes are considered (e.g. n = k, k +1), it is convenient to measure 

the flow speed by the detuning between fs and ~ (f~c + !Jr.+t>· In every case, the 

normalization is arranged such that the independent frequency variable (i.e. the 

normalized flow speed) increases as the flow speed increases. 

2.5.5 Results 

Figure 2.5.3 {consisting of 5 pages) shows the Fourier-transformed audio sig-

nals for selected experimental runs, which are arranged in order of increasing 

~:. The response frequency f, like f., has been normalized by ft, while the 

amplitude scale, although fixed over the course of the experiment, is arbitrary. 

2. See Fig. 2.2.2, and also Schlichting, p. 32. 
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For each plot in the figure, peaks to the left of L = 5 are merely noise, predom
lt 

inantly attributable to cooling fans in the experimental instruments, mentioned 

earlier, as well as rumble of the center-shaft in its bearing. Other peaks 

correspond to locked-in vibrational response of the wire. which typically was 

loud enough to be heard easily across a large room. 

According to the discussion of Section 1.1, vortex shedding should lock onto 

the n th_mode natural frequency of the wire at 

_j_R! 
It 

In 
It 

= n, (2.5.5) 

provided !s falls within the nth-mode lock-in band. For the current experi
ft 

ment, modes 1-5 could not be excited; apparently the corresponding Reynolds 

number was too low to intiate well-established, periodic shedding capable of 

lock-in (see Fig. 2.2.1 ). 

Thus, as the rotational speed was slowly increased, mode 6 was the first to 

respond, as illustrated in Fig 2.5.3 (Run 5), by the peak at*= 6. As the upper 

end of the lock-in band for n = 6 was reached. this amplitude peak sharply 

declined (Run 6. Is = 6.86). As Is was further increased. the peak disappeared 
ft It 

altogether. vortex-shedding returned to its own natural (Strouhal) frequency, 

( fs ) and the wire was quiet Run 7, f 
1 

= 7.14 , a situation which extended over a 

perceptible "dead band." 

Next, lock-in for mode 7 was initiated {Run B), and persisted over the range 

7.25 < 1.!_ < 8.16 {Runs 10 and 14 }. As 1• was increased to 8.23 {Run 15), 
ft It . 

response suddenly shifted from mode 7 to mode 8, with little or none of the 
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intervening "dead band" which occurred between modes 6 and 7. Thus mode 7 

and 8 were on the verge of interfering. 

Locked-in response for mode B (Runs 15, 16, 17) persisted from 1• = 8.23 to 
It 

approximately ~: = 9.3, at which point mode 9 interfered. In the regime of 

interference, spectra such as Runs 19-23 were obtained, whose twin response 

peaks (discussed further below) indicate that modes 8 and 9 of the wire were 

participating simultaneously. Finally, 9th-mode response established itself, free 

of interference from mode B, at ~: = 9.55 {Run 24). Higher values of ~: were 

unattainable, since the power demand of the motor became greater than that 

available from the power supply. 

The above discussion is summarized in Fig. 2.5.4, which plots _L versus !Is 
I 1 1 

for each response peak, irrespective of its amplitude.8 Using Eqs. (2.5.3) and 

(2.5.4), a Reynolds number scale is also provided. Data from all runs are 

presented, including those not shown explicitly in Fig. 2.5.3, and each data point 

is labeled with its associated run number. Lock-in bands appear on Fig. 2.5.4 as 

horizontal rows of data points at _L = n, where n = 6, 7, 8, 9. In agreement 
It 

with analogous plots for spring-mounted cylinders (Figs 2.5.2), the data points 

for an elastic cable (marked on Fig. 2.5.4) all lie to the right of the exact reso-

nance points f = Is = f n = nf 1 (marked * ). Thus, for both spring-mounted 

cylinders and elastic cables, lock-in occurs for somewhat higher values of flow 

speed than would be expected based on the notion of simple resonance. 

3. In this simplified plot, a multiple (i.e . "dirty'' peak, typical of mode B, is represented 
by the symbol .. ___ _. (aligned vertically}, where the dots indicate the locations 
of the lower and upper peaks. The cause of the dirty peaks at f 8 was found to be 
sympathetic resonance of certain structural members of the apparatus. Several 
experimental retrofits were attempted to alleviate this problem, without success. 
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2.5.6 Modal Interaction 

Further comments are in order regarding Runs 19-23, since these involve 

modal interaction, whose characteristics are of particular interest to the 

current study. 

The spectra shown in Fig. 2.5.3 for these cases should not be assumed to 

imply steady-state response. In reality, during each run there was a very slow 

transient drift from sth_mode to 9th-mode lock-in and vice-versa, in a seemingly 

random fashion. Thus the signal recorded by the spectrum analyzer {time-

averaged over 7.75 seconds) shows peaks for both modes. This explains, for 

example, why Runs 21 and 22, despite having the same value of ~:, give very 

difierent results. 

The nature of the transient drift described above suggests that at a given 

instant during any of the runs 19-23, only one of the two competing modes was 

actually being excited by vortex-shedding, while the other mode, previously 

excited, was dying out. This interpretation implies that vortex-shedding from 

the wire was at each instant monofrequency, but bistable, alternating between 

I 8 and I 9 • The impetus to change from one frequency to the other might well 

have been afforded by slight changes in the rotational speed, by turbulence, or 

by stray air currents, none of which could be perfectly controlled with the 

experimental setup shown in Fig. 2.5.1. In particular, although the flow speed, 

and hence ;: , was held constant to within 0.4% of the value plotted.' this varia-

lion is still significant compared to the width of the interaction region, as shown 

on Fig. 2.5.4. 

4. As discussed in Section 2.5.3. 
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Thus a better experimental ·understanding of the modal interaction 

phenomenon requires a more sophisticated apparatus than the one described 

herein. Precise regulation of the flow speed is particularly crucial. Neverthe

less, the experiment described above is useful to interpret the analytical results 

derived in subsequent chapters. 
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CHAPTERm 

A IIODELFOR:VORTEX-INDUCED VIBRATIONS OF STRUCTURES 

3.1 History and ~Philosophy of Empirical llodeliq 

In the early 1960's, Bishop and Hassan [5] demonstrated experimentally that 

the oscillating wake behind a forced cylinder behaves qualitatively as if it were a 

single-degree-of-freedom, self-excited, nonlinear oscillator being driven by the 

cylinder's motion. Their suggestion, that such a simplified mathematical system 

might be useful to model the complex fluid-structure interaction, has since been 

pursued by several authors, including Iwan and Blevins [35], whose model is 

based on a nonlinear fluid momentum oscillator, and Hartlen and Currie [33], 

whose model is based on a nonlinear lift-coefficient oscillator. The !wan-Blevins 

model has been extended from rigid structures to elastic ones by Iwan [36], 

while the Hartlen-Currie model has been refined and extended by Skop and 

Griffin [63, 64]. Attention has been concentrated on oscillations transverse to 

the flow, since vortex-excited motion of a freely vibrating structure in the 

transverse direction is much larger than motion parallel to the flow [52], as 

mentioned in Section 2.1. The current discussion deals exclusively with 

transverse os cilia lions. 

Common to both of the models mentioned above is the desire to use experi

mental knowledge of the flow field's bulk character, notably the periodic vortex

shedding. to avoid the search for detailed solutions of the flow · field itself. Flow 

details are in fact unnecessary if, as in many applications, only the structural 

motion is of interest; in such cases the flow solution must merely provide 

expressions for the Fourier components of the overall, transverse periodic force 

on the structure. The equation of motion for the structure is then written with 
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the fluid terms as forcing functions. 

Since any model of a physical phenomenon relies partially on experimental 

observations rather than proceeding completely from known principles, it is 

clear that a model must be made to fit experimental data in some way. In each 

of the models mentioned above, this is achieved through so-called model con

stants. which are introduced as coefficients in the fluid model equation. Values 

fer these constants are selected to optimize the fit to some data. Unfortunately, 

the model constants are usually not directly measurable experimentally, so it is 

desirable to introduce as few of them as possible while still achieving reasonable 

results. 

The most difficult part of the modeling problem is to concoct a fluid model 

which retains all essential features of the flow, particularly its interaction with 

the structure. Toward this end, the fluid model equation should arise from 

some form of the Navier-Stokes equations, for which it must serve as a substi

tute. By this criterion, the momentum-oscillator model of Iwan and Blevins is 

preferable to the lift-coefficient model of Hartlen and Currie, because the fluid 

oscillator equation used in the }wan-Blevins model is based on the fluid momen

tum theorem. while that used in the Hartlen-Currie model is completely ad hoc. 

Consequently, only the !wan-Blevins type of model is considered herein; a 

modified version of the original model is developed in the sequel. 

It should be emphasized from the outset that the present semi-empirical 

model, like any of its predecessors, does not purport to "solve" the fluid

structure interaction problem, nor does it constitute a theory. Although efforts 

have been made to incorporate fluid mechanic principles whenever possible, 

there are still several ad hoc assumptions, with obscure or nonexistent physical 

justification, which greatly influence the results. Therefore extreme caution 
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should be used in extrapolating quantitative predictions beyond the range or 

types of data used to fit the model. 

Nevertheless, qualitative results of the model may be generally useful to con

ceptualize the physical problem, to suggest trends, and even to lend credence to 

seemingly contradictory experimental data. For example, the experimental 

results cited in Chapter 2 are paradoxical at first glance: the lock-in band for 

forced circular cylinders is symmetric about the exact resonance point Is =I 

(ie. a= 0), as shown in Fig. 2.3.1, while the lock-in band for spring-mounted cir

cular cylinders is highly asymmetric~ occurring almost exclusively in the range 

Is > In {i.e. d1 > 0) as shown in Figs. 2.4.2-2.4.6. However the present model 

predicts just such behavior, and suggests reasons for the apparent paradox. 

This result casts doubt on the speculation of some investigators who, regardless 

of the experimental lock-in data, have postulated an analogy between the forced 

cylinder and the spring-mounted cylinder, and suggested experimental use of 

the one to understand the other [23]. The present model emphasizes the 

danger of such an analogy, by demonstrating, for a prototype nonlinear system, 

how fundamentally different the two problems are, despite their apparent simi

larities. Such is the usefulness of an empirical model. 

In the remainder of this chapter, the present model is formulated for three 

types of structures, including forced and spring-mounted cylinders, as well as 

span wise uniform, taut elastic cables. 
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3.2 DeYelopment of .the Model for Sprine-Mounted Cylinders 

For development of the model. consider the rigid, spring-mounted cylinder 

sketched in Fig. 3.2.1, for which the coordinate system (x 1• x 2• x 8 ) is chosen 

with x 1 along the cylinder axis and x 8 in the direction of the free stream. Due to 
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Y(T) (unknown) 

JPiaure 3.2.1. Control Volume Analysis for Spring-Mounted Cylinders. 

spanwise rigidity of the cylinder, the problem (in particular, the vortex-shedding 

process) is considered two-dimensional in the (x2, x 5) plane. This is not strictly 

true. but it is a reasonable approximation within the lock-in band, according to 

the experimental observations of Koopman [37] and Feng [16]. as discussed in 

Chapter 2. Structural displacement in the x 2 direction, a function of time T 
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only. is denoted Y( T). and the steady. uniform free-stream velocity is denoted U. 

Adopting Bishop and Hassan•s concept of the flow field as a single-degree-of-

freedom oscillator. the system then consists of two oscillators. one structural 

and one fluid. which drive each other. as depicted in Fig. 3.2.1. 

Structural motion 

provides synchronous 

tripping mechan i am 

for voatex shedding, 

causing lock-in 

FLUID 
OSCILLATOR 

" Z(T) 

STRUCTURAL 
OSCILLATOR 

" Y(T) 

Fiaure 3.2.2. Fluid-Structure Coupling. 

3.2.1 1be Fluid Oacillator 

Vortex shedding creates 

fluctuating lift force 

on structure 

Following lwan and Blevins [35]. a variable Z(T) is adopted as the fluid oscilla

tor. whose time derivative Z'(T) is defined as the average vertical fluid velocity in 

a unit depth of control volume surrounding the cylinder: 

(3.2.1) 

where a 0 is a model constant. as discussed in Section 3.1. D is the cylinder 

diameter. v 2 is the x 2-component of fluid velocity. and CV is the control volume 

A B CD A • B 1 C 1 D 1 of unit depth shown in Fig. 3.2.2. 

The fluid oscillator equation is obtained by writing the x 2-component of the 

fluid momentum equation: 
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' 
J'(;} + M/w.z(;} = L;F(T), (3.2.2) 

where J'(;) is the time rate of change of :r 2-directed momentum within the unit 

depth control volume. M Jlu:z ( -r} is the flux of x 2-directed momentum outward 

through the control surfaces. and L;F(-r) is the sum of external :r 2-directed 

forces acting on the unit depth of fluid, including pressure and viscous forces on 

the faces of the control volume, body fprces. and the fluid-structure interaction 

force. 

Consider first the terms in L;F(-r) other than the interaction force. Pres-

sures in the .x 2-direction act only on the control surfaces A A ' B ' B and C C 'D 'D, 

but by elongation of the control volume in the .x 2-direction, these surfaces may 

be moved far away from the cylinder into the undisturbed fluid where the pres-

sure is steady and equal to that of the free stream. Therefore. pressure forces 

on the top and bottom control surfaces cancel, except if there is a body force 

(gravitational field) in the x 2 -direction. in which case the pressure differential 

just counterbalances the body force. Consequently pressure and body forces 

are eliminated from consideration. Vertical viscous shears on the side control 

surfaces are zero by the assumed two-dimensionality; on the front and rear sur-

faces they are negligible according to the usual boundary layer approximation, 

provided the control surfaces are sufficiently far from the cylinder wall. Even 

though the rear surface bisects the infinite vortex street, viscosity there is negli-

gible. Theoretical work by Rosenhead [54] and Abernathy and Kronauer [1] has 

shown that the role of viscosity in the vortex-shedding problem is almost 

entirely restricted to boundary layer separation on the cylinder and the conse-

quent formation of vortex sheets; in the region of vortex roll-up, and certainly 

at the point where a vortex street is fully formed, the fluid may be considered 

inviscid, to a good approximation . 
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Therefore, all terms in ~F {T} other than the fluid-structure interaction force 

are either zero or negligible, so 

(3.2.3) 

where F ;,u(T) is defined as the interaction force per unit depth of the fluid on 

the structure, and Eq. (3.2.2) becomes 

(3.2.4) 

Consider next the possibility of writing the terms in Eq. (3.2.4) as functions of 

Y', Z', and their derivatives. If the integral in Eq. (3.2.1) is multiplied by the con

stant fluid density p, the result is J{T). Thus 

(3.2.5) 

-This expression is completely rigorous, given the definition of Z'. Unfortunately, 

there is no equ~y rigorous way of deriving expressions for the momentum flux 

Mttw: and the interaction force F -tnt· Expressions must merely be assumed, 

based on certain physical, mathematical, and heuristic grounds. The expres-

sions assumed herein, namely 

{3.2.6) 

(3.2.7) 

are variants of those originally used by Blevins [6]. Factors of p, U, and D 

appearing in Eqs. (3.2.6) and (3.2.7) are chosen simply to make each term 

dimensionally correct, while the constants a 1, ... , a 6, like a 0 introduced previ-

ously, are model constants whose values will be selected later to fit certain 

experimental data. 

Rationale for the selection of terms in Eqs. {3.2.6) and (3.2.7) follow: 
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1. Odd functians. If the coordinate system is turned upside down, with .x2 

...... ...... 
becoming -x 2, while Z, Y, M1tuz, and Fint retain their definitions as upward-

...... ...... 
directed quantities, then the numerical values of Z and Y each chage sign, 

and the only effect on M1~.w: and F uu must likewise be a sign change. This will 
...... .... 

be the case if and only if Mttu:z and Fint are odd functions of Z', Y', and their 

derivatives. 

2. Physical Reasoning: 

.... 
a. Z term in Mttu:z· According to a convincing pictoral argument given by 

Blevins [6], in which the phase relationship between Mflu:z(T) and Z'(T) is 
...... 

examined, Mttu:z lags Z' by approximately one-quarter cycle, just as a 
...... ...... 

sinusoidally-varying Z would lag Z'. So it is reasonable that the principle 

...... 
term in Mttu:z should be proportional to Z; the other terms in Mttu:z are to 

be viewed as corrections. 

b. (Z' - Y') term in F int . It is intuitively plausible that the interaction force 

should depend upon the relative velocity between the bulk of the fluid 

and the structure, although it is not clear that the linear dependence 

is best.· Perhaps a "fluid-damping" dependence 

I Z' - Y' I {Z' - Y') would be better, but the latter is extremely difficult to 

handle analytically, and is therefore avoided. 

c. (Z" - Y") term in F int . A relative acceleration term in the interaction 

force attempts to model the effect of apparent fluid mass [11]. 

d. Z" term in F;,nt . If the entire system (fluid + structure) is accelerated 

upward with a uniform acceleration a . and no other motion is present, 

then a = Z" = Y" tor au time, so i· = :Y·. and the first and second terms 

in F int are both zero. However F int must not vanish in this case, because 
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the upward uniform acceleration is entirely 'equivalent to a downward 

gravitational field of strength a . in response to which the fluid develops 

a hydrostatic pressure distribution, and exerts an upward buoyancy 

force on the structure. Therefore F t.nt must contain a third term, pro

portional to the bulk fluid acceleration a = Z". 

3. Mathematical foresight. The "correction terms" in M1tw: , proportional to i· 

and Z'3 , are selected primarily on the basis of mathematical foresight, in 

order to produce a van der Pol type of fluid oscillator which is known to pos-

sess. at least for the forced case, the lock-in behavior observed experimen-

tally [66]. This is the very same foresight exercised by Bishop and Hassan in 

their original suggestion of a nonlinear fluid oscillator. 

4. Simplicity. While it would be possible to assume more terms in Eqs. (3.2.6) 

and (3.2. 7), for example a Z'5 term in (3.2.6). it is desirable to minimize the 

number of model constants ai as well as the complexity of the model equa-

tions. It would also be possible to model the nonlinearity into the interac-

tion force Ftnt rather than into the momentum fiux M1tw: , and still obtain 

the desired van der Pol type equation. However, since F w appears in both 

the structural and fluid oscillator equations, while MJtu:z appears only in the 

fluid equation, nonlinear F int produce.s two nonlinear equations while non-

linear M1ttt:t produces one nonlinear and one linear equation. The latter is of 

great analytical advantage. 

The fluid oscillator equation is obtained by substitution of Eqs. (3.2.5), (3.2.6), 

..... 
and (3.2.7) into Eq. {3.2.4). Combination of Z" terms, and division by the 

coefficient pD 2e 1 , where 

e 1 - a 0 + a 3 + a f§· (3.2.8) 
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yields 

a .. U.... as .... 
-~-Y'--Y". 
e 1D e 1 

(3.2.9) 

The model constant a.e may be eliminated immediately according to experi-

mental knowledge of the natural vortex-shedding frequency CJ5 for a stationary 

cylinder (Y = 0}, as discussed in Chapter 2. Since it is well known that the van 

der Pol oscillator (3.2.9) displays limit-cycle oscillations whose squared natural 

angular frequency equals the coefficient of the Z term [8], it follows that 

(3.2.10) 

But according to Strouhal's relationship (1.2) 

(3.2.11) 

So it follows, using Eq. (3.2.8), that 

(3.2.12) 

which reduces the number of independent model constants to six, a.a. ... , a 5 • 

Time ;-and the oscillator variables Z and Yare nondimensionalized as follows: 

.... ...... 

z z y 
y 

{3.2.13a) - -· = 
D' D 

t = CJsl (3.2.13b) 

{.) d _L( )'. (3.2.13c) -
dt -

CJ.s 

Substitution of Eqs. (3.2.11) and {3.2.13) into Eq. (3.2.9) yields the normalized 

fluid oscillator equation 

z - at + pz3 + z = rY - rY, (3.2.14) 

where the coefficients a , fJ , r , and r are functions of model constants and the 
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Strouhal number only: 

1 a 1 - a 4 a - 2nS el 
(3.2.15a) 

(3 
a2 

= 2nS-
e 1 

(3.2.15b) 

1 a_. 
r - ----

2rrS e 1 
(3.2.15c) 

"" as 
r -

et 
(3.2.15d) 

3.2.2 The Structural Oscillator 

Referring to Fig. 3.2.1, the equation of motion for the spring-mounted 

cylinder is 

where (is the fraction of critical damping 

b 

"-l1 is the natural frequency of the cylinder 

Fw 
M 

{3.2.16) 

{3.2.17) 

(3.2.18) 

and M is the cylinder mass per unit length. The dimensionless fluid-structure 

mass ratio TJ is defined as 

- .e!f!_ 
TJ= M' (3.2.19) 

Substituting Eq. (3.2. 7} for the interaction force F .u into Eq. {3.2.16), combining 

Y" terms, dividing by the coefficient 1 

1. For perspective concerning the importance of e 2 , the mass ratio 1J is often very small 
for systems of engineering interest, in which case e 2 ~ 1. 
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(3.2.20) 

(assumed positive}, and non-dimensionalizing as in Eqs. (3.2.13) yields the nor

malized structural oscillator equation 

Y + -yY + nfY = cZ + cZ. (3.2.21) 

In this equation, the damping coefficient 

(3.2.22) 

includes a fiuid damping term as well as a structural damping term, the normal-

ized structural frequency is 

(3.2.23) 

and the coupling coefficients are 

1 a4 
c = 

-;; 2nS TJ 
{3.2.24a) 

row as+ a5 
c - TJ 

e2 
(3.2.24b) 

3.2.3 Summary 

To summarize, vortex-induced oscillations of spring-mounted cylinders are 

described according to the current model by the pair of diff'erential equations 

(3.2.9) and (3.2.21), coefficients in which are functions of six model constants 

(a0 , ... , a 5) as well as four physical parameters (S, (", TJ, ~) • To obtain phy
"'s 

sically interesting information from the model, such as lock-in band location 

and peak structural response amplitudes, these differential equations must be 

solved, and the model constants selected on some rational basis. The first of 

these problems is addressed in Chapters 4 and 5, while the second is discussed 

in Chapter 6. 
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3.3 Application of the Model to Forced Cylindem 

Consider the rigid cylinder of Fig. 2.3.1, whose normalized, transverse dis

placement Y(T), typically sinusoidal, is prescribed by some external driving 

mechanism, as in many experiments which study vortex-induced effects on 

vibrating cylinders. According to the model developed above, this problem is 

completely described by the fluid oscillator equation (3.2.14): since the forcing 

functions Y(t) and Y(t) are known, the structural oscillator equation (3.2.21) is 

irrelevant. 

3.4 Extension of the Model to Elastic Cables 

3.4.1 The Fluid Oacillator 

Rigid cylinders, used above as prototype structures for development of the 

model, are rarely encountered in engineering practice. Extension of the model 

to more realistic elastic structures such as cables and beams, for which the dis

placement is a function of the axial coordinate x 1 as well as time, may be per

formed as suggested by Iwan [36], under the assumption of no spanwise cou

pling within the flow. That is, in applying the momentum theorem analysis of 

Section 3.2 to the deformed elastic structure shown in Fig. 3.4.1, the flux of vert

ical momentum through the lateral surfaces A B CD and A 1 B 'C 1 D 1
, as well as 

any vertical viscous shearing forces on these surfaces, is neglected. 

Incorporation of these effects into the model would produce terms in the 

fluid oscillator equation involving spatial derivatives. However, experimental 

studies by Ramberg and Griffin [ 49] on vortex formation behind vibrating cables 

have indicated that "the shedding process is strongly dependent on the local 

amplitude of vibration but only weakly, if at all, dependent on the behavior of 

nearby cable elements [64]." Therefore it is reasonable to neglect spanwise 

effects in the fluid oscillator equation. 
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As a consequence of this approximation, all of the equations in Section 3.2 

apply to the case of elastic structures, merely by reinterpreting the full time 

derivatives as partial derivatives. In particular, the fluid-structure interaction 

force per unit axial length is, upon normalization of Eq. {3.2.7), 

{3.4.1) 

and the fluid oscillator equation is 

(3.4.2) 

where subcript t indicates partial derivative with respect to the normalized time 

t. In this context, 

Z = Z(u.t) (3.4.3a) 

Y = Y(u,t), (3.4.3b) 

where u is the normalized axial coordinate 

u - (3.4.4) 

and L is the structural length. 

3.4.2 The Structural Oscillator 

For specificity, only spanwise uniform, taut elastic cabes with fixed ends are 

considered in the present analysis: a similar analysis is possible for other struc-

tures. The equation of motion for such a cable, being acted upon by the interac-

tion force F 'tnt• is 

(3.4.5) 

where subscripts indicate partial derivatives, M is the structural mass per unit 

length, T is the cable tension, and C(Y) is a linear homogeneous differential 

operator representing the structural damping. Normalizing according to Eqs. 
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(3.2.13) and {3.4.4). while noting that length scaling off goes through the opera-

tor C because it is linear, gives 

(3.4.6) 

Next, substituting Eq. (3.4.1) for F tnt• combining Ytt terms, and dividing through 

by e 2 as defined by Eq. (3.2.20) gives 

(3.4.7) 

where the coupling coefficients c and c have been previously defined in Eqs. 

(3.2.24). 

3.4:.3 Modal Decomposition 

It is always possible to expand the spatial dependence of Y(u. t) and Z (u, t) in 

the complete set of functions [sin nrru, cosnrru; n = 0, ... , co]. However, for a 

cable with fixed ends, all of the cosine components of Y(u. t) must be identically 

zero to satisfy the boundary conditions, and by spatial Fourier decompostion of 

Eq. (3.4.7), it may be shown that all cosine components of Z (u, t} must likewise 

be zero. Therefore it suffices to consider only the orthonormal eigenfunctions 

of the cable 

tn(u) - '-'2sinnrru; n = 1, ... , co, (3.4.8) 

expanding Z and Yas 

-Z ( U, t } = ~ Zn ( t ) tn ( U) (3.4.9a} 
n=1 

-Y ( U. t ) = ~ Yn ( t ) t n ( U ) (3.4.9b) 
n = 1 

where Yn (t) and Zn (t) are unknown time functions. 
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A normalized n u.. mode natural frequency of the cable may be defined as 

where 

nn_ ;-r
c;.,n = £""VJi ' 

{3.4.10a) 

(3.4.10b) 

which is exactly analogous to Eq. {3.2.23) for the spring-mounted rigid cylinder. 

To permit complete uncoupling of the structural equation (3.4.7). it is necessary 

to assume that the structural damping is expressible in classical form. whereby 

the operator C [tn] is orthogonal to lm form~ n: 

(3.4.11) 

the symbol dmn being the Kronecker delta. Essentially, this equation defines the 

operator C in terms of modal damping ratios (n which, for practical situations, 

are usually measured or estimated. 

Substituting the assumed solution form (3.4.9) and (3.4. 7}, multiplying each 

by lm ( u ), integrating over u, using the orthogonality relations (3.4.11) and 

1 fo tm(u)tn(u) du = Omn• (3.4.12) 

and finally interchanging the dummy subscripts m and n yields, for every 

n=l, ... ,oo: 

1 -Zn- azn + Pfo [ ~ lm{u)zm]8 tn(u}du + Zn = riln-r.Yn 
m = 1 

{3.4.13a) 

and 

(3.4.13b} 

In the latter equation1 the damping coefficient 
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(3.4.14) 

includes both structural and fiuid damping. in analogy to 7 for the spring-

mounted rigid cylinder. 

Note that the above modal decomposition does not uncouple the components 

Zn of the fiuid oscillator z. since the nonlinear p-term in Eq. (3.4.13a} couples 

every Zn nonlinearly to all of the others. This difficulty precludes an analytic 

solution to the infinite set of equations (3.4.13). 

3.4:.4 One-Mode Approrimation 

To reduce the system (3.4.13) to a tractable from. consider a one-mode 

approximation for situations in which structural vibration in one particular 

mode, say mode k, is much greater than that in any other mode: 

Yk large (3.4.15a) 

Yn -+ 0, n ,t k. (3.4.15b) 

As a physical example of such a case, consider the experiment discussed in Sec-

tion 2.4. In the range fs = 6.6 to 7.3, Figs. 2.4.2 demonstrate that the struc-
/ 1 . 

tural response is confined entirely to mode k = 7. It is then physicaly reason-

able to presume that spatial dependence of the fluid variable Z (u, t) is likewise 

confined to mode shape k, i.e. 

Zn -+ 0, n ,t k, (3.4.16) 

since the fiuid can have no knowledge of mode shapes which are absent from the 

structural vibration itself. 

Together with Eq. (3.4.9a), Eq. (3.4.16) implies full spatial correlation of vor

tex shedding with the resonating cable mode shape tA:{u) = ..J2sin k 1t'U, just as 
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the rigid cylinder model above assumed full spatial correlation of vortex shed-

ding with the rigid mode shape t(u) = 1. Griffin [30, p. 33] offers experimental 

justification of such mode-shape-correlated vortex shedding for a cable; namely, 

the correlation coefficient for signals from two hot-wires, located at different 

spanwise locations in a cable's wake, is positive if both hot-wires lie within the 

same half-wavelength of cable displacement, but becomes negative as soon as 

one hot-wire crosses a displacement node. 

Based on Eqs. {3.4.16), the one-mode approximation considers only the kth 

pair of equations (3.4.13), and truncates the infinite sum in Eq. (3.4.13a) to a 

single term such that the only relevant mode-shape integral is. using definition 

(3.4.8), 

1 3 fo ~t(u) du = 2· (3.4.17) 

Therefore the one-mode-approximate equations for a cable are: 

(3.4.1Ba) 

(3.4.18b) 

These equations are the same as Eqs. (3.2.14) and {3.2.21) for a rigid cylinder, 

with the sole exception that the coefficient of the n·onlinear term, equal to {1 for 

the rigid cylinder, is here ~ (3. The two results may easily be unified by thinking 

of the rigid cylinder as an elastic structure with mode shape ~{u) = 1, for which 

the integral (3.4.1 'r) yields 1 rather than ~. 

3.4-.5 Two-Mode Appro](i.mation 

Practical situations often arise in which assumptions (3.4.15) of the one-

mode analysis are not valid. As demonstrated by the experiment discussed in 

Section 2.5, for sufficiently high mode number k, two or more adjacent natural 
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frequencies of a cable, say '-'t and '-'t+t• may lie sufficiently close to the Strouhal 

frequency "'• to induce simultaneous vortex-excited oscillations of the several 

modes. The reason is simply that the normalized spacing between adjacent 

cable frequencies, 

= (k + 1)- k = 1 
k k' (3.4.19) 

approaches 0 as k approaches infinity. In other words, modal density increases 

with k such that adjacent lock-in bands may overlap, or otherwise interfere, 

when k is sufficiently large. 

To describe such modal interference, consider a two-mode approximation of 

Eqs. (3.4.13), which permits Yk and Yt+t to be simultaneously large, but requires 

Yn -+ 0, n ,e k, k + 1. (3.4.20a) 

By extension of the argument which lead to Eq. {3.4.16), it is reasonable to 

assume in this case that 

Zn -+ 0, n ,e k, k + 1. (3.4.20b) 

Consequently, the infinite set of equations (3.4.13) is truncated to two pairs, one 

equation for each of the variables Zt, Yk• Zt+l• and Yk+l· Likewise the infinite 

sum in each z-equation (3.4~ 13b) is truncated to two terms, reducing the non-

linearity for m = k to 

1 t+1 
fo tt (u )[ L: tm (u )zm ]8 du = I 40z~c8 + 31 31zt2Zt+t 

n=k 

(3.4.22a) 

where the integrals 

(3.4.22a) 

have the following values for the mode shapes given by Eq. (3.4.8): 
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3 
I 40 = 2; Is 1 = 0; I 22 = 1; Its = 0. {3.4.22b) 

Substitution of Eqs {3.4.21) and (3.4.22) into the two-mode-approximate form of 

Eq. (3.4.13a} yields the following equation for the Zt oscillator: 

(3.4.23) 

The equation for Zt+t is obtained similarly; the result is identical to Eq. (3.4.23) 

with subscripts k and k + 1 interchanged. The equation for Yt {or Yt+d is ident

ical to Eq. (3.4.13b), with subscript n replaced by k {or k + 1 ). 

Symmetry in the subscripts (k, k + 1) may be exploited by the following 

convention: 

For mode k equations: i - k; j - k + 1 (3.4.24a) 

For mode (k + 1) equations: i - k + 1; j - k (3.4.24b) 

The double pair of two-mode-approximate equations may then be written as a 

single pair: 

{3.4.25a) 

(3.4.25b) 

where i = k, k + 1 and j = k + 1, k respectively, as dictated by convention 

(3.4.24). 
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3.~ Summary 

In Sections 3.2--4.3 above, a modified Iwan-Blevins model for vortex-induced 

vibrations has been developed and applied to structures of both experimental 

and practical interest. For each case considered, the relevant model equations 

are summarized in Table 3.5.1. for ease of reference. 

Table 3.5.1: Index to Chapter 3 

Type of Structure Fluid Structural Oscillators Number 
Oscillator Oscillator Involed of Ditr. 
Equation Equation Eqs. 

Elastically Mounted (3.2.14) (3.2.21) z. y 2 
Cylinder 

Forced Cylinder (3.2.14} None; Y(t) z 1 
prescribed 

Cable (3.4.13a} (3.4.13b) Zt, Z2, ... ; 00 

Yt· Y2 .... 
One-Mode Cable Approxi- (3.4.1Ba) (3.4.18b) Zk, Yk 2 
mation 

Two-Mode Cable Approxi- (3.4.25a) (3.4.25b) Zk, ZA:+l I 4 
mation Yk· Yk+l 
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CHAPTER IV 

IIATHEIIATICAL ANALYSIS OF MODEL EQUATIONS 

4.1 Generalized Model Equations 

All sets of equations listed in Table 3.5.1 are so similar that it is desirable to 

unify the mathematical treatment as far as possible. In each case the general 

form of the equations is 

i + X = e:F(x. i. i), (4.1.1) 

where e: << 1,1 and x is the vector of component oscillators; e.g. 

x = (zt. Zt+l• Yt· Yk+l) for the two-mode-approximate cable. 

To write the structural oscillator equations, for example Eq. (3.4.25b), in the 

form (4.1.1}. it is necessary to add (1- nf)y, to both sides, thereby introducing 

this term in the function e:F. Implicit in such a procedure is the assumption 

( 4.1.2) 

For the spring-mounted cylinder and the one-mode cable approximation this 

assumption is valid in the vicinity of lock-in (n. near Ot. where n. = 1). which is 

the region of greatest interest from a physical viewpoint. Likewise. for the two-

mode cable approximation, assumption (4.1.2) is valid for both i ( i = k, k+1) in 

the region where modal lock-in bands are likely to interfere, which is again the 

region of greatest physical interest. Consequently, assumption ( 4.1.2) will be 

adopted henceforth. 

If the analysis is carried out to order e: only, then the appearance of i on the 

right-hand side of Eq. ( 4.1.1} may be eliminated as follows. According to Eq. 

(4.1.1), 

1. See the comment following Eqs. (4.1.8). 
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i = -I+ t:F. ( 4.1.3) 

Therefore 

i + I = t:F(x. i -I + t:F). ( 4.1.4) 

Expanding t:F in a Taylor's series of its third argument about -I. 

( 4.1.5) 

Defining 

tf(x. i) = t:F(x. i, -I), ( 4.1.6) 

this may be written more simply. to order t:, as 

i + I = d(I, i). ( 4.1. 7) 

Therefore. apart from the infinite set of equations for the elastic cable, each 

set of equations listed in Table 3.5.1 is, to order t:, a special case of the following 

set of generalized model equations: 

Y1 + Y1 = -71 ilt + ( 1 - o ~ )y 1 + cz 1 - c z 1 {4.1.Ba) 

Y2 + Y2 = --y2i12 + (1 - O~)Y2 + cze- cze (4.1.Bb) 

Zt + Zt = . . 3 . 2. . -
az1- PZt - qzezt + TYl + ry1 (4.1.Bc} 

ze + ze = . . 3 . 2. . -az2- PZe - qz1z2 + TY2 + ry2. {4.1.Bd) 

These equations have the form {4.1.7) if each of the terms on the right-hand 

side is an order of magnitude smaller than the terms on the left-hand side; that 

is. for each of the four component equations, 

m = 1, ... ,4. ( 4.1.9) 

For i = 1, 2 this requires that the products 2 p lzi2 l. q lzll and the coefficients a~ 

2. In this context, I I indicates the amplitude of an oscillating quantity. 
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7t.• C, C, r, r, as Well as the quantity 1 - Ol discussed above, must be order £. 

Eqs. (4.1.8) correspond to the various equations listed in Table 3.5.1 accord

ing to the following conventions: 

1. Subscript Values. The generic subscript values i = 1, ·2 are employed in 

place of i = lc, 1c + 1, merely for convenience. With these generic subscripts, 

convention {3.4.24) becomes: 

For "mode-l" equations: i = 1, j = 2 

For "mode-2" equations: i = 2, j = 1 

{4.1.10a) 

(4.1.10b) 

By the quotation marks in convention (4.1.10), it is emphasized that sub

scripts 1 and 2 in this context do not refer necessarily to modes 1 and 2 of 

an elastic structure, but to any two adjacent modes 1c and 1c + 1. 

2. Coefficients of nonlinear terms. The generic parameters p and q appearing 

in Eqs. (4.1.8) are employed to represent certain multiples of p, as indicated 

in Table 4.1.1. 

3. Variable Identification. The generic variables (z 1, z 2, y 1, y 2 ) are employed 

to represent the oscillator variables Z, Y, z1c, Y1c, etc. as indicated in Table 

4.1.1 . Some of the generic variables have no counterparts in certain cases, 

as represented by dashes in the Table. In such instances the associated 

oscillator equations are ignored. 

The asymptotic method to be used for analysis of equations {4.1.8) is 

developed in the following section. 

4.2 An Asymptotic Method Usiq Two Time Scales 

Consider a set of N coupled, nonlinear, autonomous, ordinary di.fierential 

equations of the form 8 
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i + [A]2x = r:f{x. i), 

I := (Xt, ... , XN), 

[A] = diag(At• ...• AN), 

d 
dt' 

£ << 1. 

(4.2.1) 

(4.2.2a) 

(4.2.2b) 

(4.2.2c) 

(4.2.2d) 

Analysis of this system may be carried out using a variation of the method of 

multiple time scales, as given in Nayfeh [ 46, pp. 228-230], and further illustrated 

in Nayfeb and Mook [ 47, pp. 388-390]. Specifics of the method as used herein 

are presented below. 

Let the solution I be expanded as a power series in r:, which for the current 

discussion is truncated to two terms: 

(4.2.3) 

The independent time scales T0 and T 1 are defined as 

To = t; T 1 = r:t, (4.2.4) 

so by the chain rule, 

(4.2.5) 

where the operators Do and D 1 are defined as 

3. This system is more general than is necessary for the present purposes, since the 
system of interest ( 4.1.8) has the form ( 4.1.7), for which [A] = (I] (the identity 
matrix). Consequently, the asymptotic method presented in this section would be 
capable of handling, for example, Eqs. (4.1.8) in the case where Eq. (4.1.2) is not 
satisfied. 
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_a_. 
Do - BTo • (4.2.6) 

Consequently, 

(4.2.7a) 

(4.2.7b) 

where 

(4.2.8) 

Furthermore, expansion of the right-hand side of Eq. {4.2.1) about the zeroth 

order solution x<0> gives 

( 4.2.9) 

Therefore, substituting Eqs. (4.2.3), (4.2.7b), and (4.2.9} into Eq. (4.2.1) and 

equating coefficients of like powers of ~= 

(4.2.10a) 

(4.2.10b) 

The t;
0 equation is satisfied by 

m = 1, ... ,N (4.2.11) 

where Hm is a slowly-varying complex amplitude whose conjugate is Hm. and 

i ~ ..J:T. Consequently the t;1 equation becomes 

in which Hm' denotes differentiation of Hm with respect to its argument, the 

"slow time" Tt. 
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To proceed further, it is necessary to specify constants ~ and functions t:f m 

in the system (4.2.1). The objective is then to generate first order differential 

equations for the Hm by identifying the secular terms in t:fm· and requiring that 

these, together with the explicit secular terms in Eq. (4.2.12), vanish.4 This pro-

cess is carried out in the next section, where the system ( 4.2.1) is specified to be 

the set of model equations (4.1.8). 

4.3 Application of the Asymptotic Method to the Model Equations 

4.3.1 Introduction 

The generalized model equations ( 4.1.8) may be written in the language of 

Eqs. ( 4.2.1) by letting N = 4, 

X :: (y 1• Y2· z 1• z2), ( 4.3.1) 

t:f t('I, i) = --,tilt+ OtY1 + CZt- CZt (4.3.2a) 

t:f 2(X. i) = --yeiJ2 + 62Y2 + cze - c ze (4.3.2b) 

t:f a(x. i) = . . 3 . 2 . . ..... 
az 1 - pz 1 - qz 2 z 1 + ry 1 + r y 1 {4.3.2c) 

t:f .(x. i) = . . 3 . 2. . ..... 
aze- pze - qz1z2 +rye+ ryp,. (4.3.2d) 

and, as indicated in the footnote to Eq. (4.2.1), 

(4.3.3) 

For brevity, the symbol~ 

(4.3.4) 

has been introduced in Eqs. (4.3.2). 

:J:(~ro 
4. The rationale for this procedure is well known: if the secular e terms on the 

right-hand side of Eq. ( 4.2.12) did not vanish, unbounded resonance of the 
undamped harmonic oscillator xJ!> would result, thereby destroying the order of 
magnitude assumption in the expansion ( 4.2.3). 

5. Throughout Section 4.3, i = .J=T whenever i is used explicitly, except as noted in 
Eqs. (4.3.4) and (4.3.20b), where i is an index. 



-65-

4:.3.2 Determination of Secular TermB 

Consider the determination of secular terms on the right-hand side of Eq. 

(4.2.12). The functions ~/m(x<0>,D0x<0>), are, form = 1, 3: 

(4.3.5a) 

(4.3.5b) 

Companion expressions for ~/2 and ~1 • are obtained by interchanging sub-

scripts as follows 

1 ..--+ 2, 3 ..--+ 4, (4.3.6) 

Differentiation of the solution form {4.2.11) gives, in view of Eq. (4.3.3), 

(4.3.7) 

Calculation of the nonlinear terms in Eq. {4.3.5b) yields 

(4.3.8a) 

(4.3.8b) 

where "c. c." indicates the complex conjugate of all preceding terms. Substitu-

tion of Eqs. (4.2.11), (4.3.7), and (4.3.8) into Eqs. (4.3.5) produces: 

{4.3.9a) 

(4.3.9b) 

where 

(4.3.10a) 
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Cs ~ {ir + r)Ht + iaHs- 3ipHlHa- 2iqHsH411•- iqHsH1 (4.3.10b) 

Ks- iHs(qHl +pHI) {4.3.10c) 

Again, companion expressions for £/ 2 and £/4 are obtained merely by inter-

changing subscripts according to ( 4.3.6 ). 

Substitution of Eqs. (4.3.10) into Eq. {4.2.12) produces, form = 1, 3, 

{4.3.11a) 

[D 2 lt) lt)] (C 2 · _u ') i.To K SiTo & 0 xs +xg = 3 - tc.ns e + 3e +c.c. (4.3.11b) 

On the right-hand side of each equation {4.3.11), the e'To term is secular, while 

the e
3

\1'0 term in Eq. (4.3.11b) is not. Using (4.3.16), the situation is analagous 

for the companion equations. The "c. c." notation emphasizes that the set of 

equations generated by secular e -t.To terms is always equivalent to that gen

erated by e ITo terms, since the one set is just the complex conjugate of the 

other. 

4.3.3 Amplitude/Phaae Equations 

The requirement that secular terms vanish in Eqs. (4.3.11) gives, for 

m = 1, 3, 

-2iilis' + iaHs- 3ipHlHs- 2iqHsfl¢1•- iqHsflf +(ir + r)Ht = 0, (4.3.12b) 

and companion equations for m = 2, 4. These equations are satisfied by the 

following solution form for the complex amplitudes H m. : 

(4.3.13) 

The unknown real quantities Em and 8m., which depend on the slow time T 1t may 

be identified respectively as slowly-varying amplitudes and phases for the four 
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component oscillators {y 1, y 2, z 1, z 2). That is, by substituting Eq. (4.3.13) into 

Eq. (4.2.11), 

zJ.O) = Bm cos(Am To + Bm ). (4.3.14) 

Thus, recalling equations {4.3.1), and (4.3.3), explicit representations for the 

approximate component oscillators are found to be 

y {0) = B 1cos(To + 8t}; z {0) = A tCos(To + ~~) (4.3.15a) 

y~O) = B 2cos(To + 82); z~o) = A 2cos(To + ~2), (4.3.15b) 

where 

At = Ba; ~1 - 8a (4.3 .16a) 

A2 - B.,; ~2 - a, (4.3.16b) 

have been introduced for convenience in the sequel. 

Substitution of Eqs. (4.3.13) and (4.3.14) into Eqs. (4.3.12), while noting 

( )' = _!L -
dT1 

gives 

1 d 
£ dt 

(4.3.17) 

{4.3.18a) 

(4.3.18b) 

As before, companion equations also hold, as obtained by interchanging sub-

scripts 1 and 2. 

Separating real and imaginary parts gives, upon rearrangement, the following 

set of first-order, nonlinear differential equations in the amplitudes and phases: 
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(4.3.19a) 

(4.3.19b} 

B1 = - ~ 71B 1 + ~A 1(c COS,U1 + csin,Ut) ( 4.3.19c) 

B2 = - ~ 7eB 2 + ~A 2( c cos.ue + c sin.ue) (4.3.19d) 

~1 = lqA 2 . 2 Bt \r . ) -B 2 SID rp - 2A l r COS,Ut - rs1n,u1 { 4.3.19e) 

~2 = + ~ qA f sin21D - ! 2
2 
\r cosiJ2 - rsinJ.L2) (4.3.19f) 

81 = - 1..(1- Of)- ~(-ccos,u1 + csin,u1) 
2 2Bt 

(4.3.19g) 

82 = - ..!..(1 - Ol)- ~(-ccosJ.Le + c sinJ.Le) 
2 2B2 

(4.3.19h) 

Here the companion equations have been written explicitly, and the phase 

difierences 

(4.3.20a) 

(4.3.20b) 

have been introduced. Eqs. (4.3.19) will be referred to hereafter as the 

amplitude/phase equations. 

4:.4 Summary 

In this chapter, Eqs. ( 4.1.8) have been proposed as generalized model equa-

tions which contain each of the entries in Table 4.1.1 as a special case. An 

asymptotic method developed in Section 4.2 has been applied to the generalized 

equations in Section 4.3, the result being a set of differential equations in the 

amplitudes and phases of the original oscillator variables y;, and z;,. 
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CHAPTERV 

STEADY-STATE IIONOFREQUENCY SOLUTIONS 

5.1 Introduction 

As indicated in Figs. 2.4.2, vortex-induced structural vibrations reach · max

imum amplitude during lock-in,· when the ftuid and structural oscillators vibrate 

steadily at a common frequency. Such steady-state, monofrequency oscillations 

are therefore of great practical interest, and should rightfully be emphasized in 

an analysis of the empirical model. In this chapter, approximate monofre

quency solutions are found analytically, based on results of the previous 

chapter, for each of the cases listed in . Table 4.1.1. The unified analysis of 

Chapter 4 is continued in Section 5.2, after which separate, specific results are 

obtained for each case. 

5.2 General Analysia 

Consider the following expressions for the approximate oscillator variables 

(zi<o>, yi0>), i = 1, 2: 

z;5°>(t) = Ai(t)cos[Ot + ~i(t)] 

yl0>(t) = B,(t )cos[Ot + ~(t )]. 

{5.2.1a) 

{5.2.1b) 

Although this form is slightly different than Eqs. (4.3.15) dictated by the asymp

totic method, the equivalence of the two forms is recognized by identifying 

a,(t) _ 1\{t) + (o- l}t 

~i(t) - ~,(t) + (0 - l)t 

(5.2.2a} 

(5.2.2b) 

and recalling T0 = t. Simply stated, Eqs. (4.3.15) interpret as a uniform phase 

drift what Eqs. {5.2.1) interpret as a frequency shift. 

For steady-state, monofrequency oscillations at the (unknown} frequency n, 
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the amplitudes and phases in Eqs. {5.2.1) must be constant: 

A, = B;, = 0 {5.2.3a) 

rp;, = ~ = 0. {5.2.3b) 

Thus, according to Eqs. (5.3.2), the phases 4», and 9;, must, in the steady state, 

all drift at the same, constant rate 

. . 
~, = e, = n - 1. i = 1, 2. (5.2.4) 

Substitution of Eqs. (5.2.3) and (5.2.4) into the amplitude/phase equations 

{4.3.19} yields the following equations for approximate, steady-state, monofre

quency oscillations of the system (4.1.8): 

aA, - ! pA,8 - ! qAlA,(2 + cos2~;i) + B,{rcOSJ.L;. + rsin~} = 0 (5.2.5a) 

--,,B, +A, ( c cosJ.ti + c sinJ.L,:} = 0 (5.2.5b) 

2uAi + ! qAlA,sin2rp1, + B;,{rcosJ.L;.- rsinJ.L;.) = 0 {5.2.5c) 

( 1 - nf + 2a )B, +A;,( -c COSJ.L;. + c sinJ.Li) = 0, (5.2.5d) 

where i = 1, 2, and convention {4.1.10) applies for subscripts i and j. The fre-

quency unknown 

u = n - 1 ..w o (&) (5.2.6) 

has been introduced here, as well as the phases rp21 and rp12• where 

(5.2. 7) 

The latter series of definition is necessary to preserve the (1, 2) subscript sym

metry of the two sets of equations represented by (5.2.5). 

The system (5.2.5) comprises eight nonlinear algebraic equations for the 

steady-state values. of the eight unknowns (A 1, A 2, B 1, B 2, JJ-1, J.Le, rp, u ). The 

method of solution depends strongly upon which of the cases listed in Table 

4.1.1 is considered. Consequently, in the following sections, a separate analysis 

is performed for each case. 
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5.3 Forced Cylinder 

5.3.1 Amplitude Solution 

According to Table 4.1.1, there is only one unknown oscillator variable in this 

case, 

Zt E Z, {5.3.1) 

satisfying the generalized model equation 

Z- aZ + pZ8 + Z = rY(t) + rY(t) (5.3.2) 

where p = (J. The cylinder displacement 

Yt = Y(t ). {5.3.3) 

assumed to be harmonic with frequency n and amplitude B 1, is known. There

fore, with the help of Eqs. (4.3.20) and (5.2.2), Eqs. (5.2.1) give 

z<o) = A 1 cos(O t + ~t) 

Y(t) = y{o) = B 1cos(n t + ~~ + J.Lt). 

(5.3.4a) 

(5.3.4b) 

Since the phase of the forcing function y{o) may be arbitrarily prescribed, let 

such that 

~1 + Ji-1 = 0, 

z<o> = A cos(O t + ~~) 

y(O) = B cosO t. 

(5.3.5) 

(5.3.6a) 

(5.3.6b) 

Subscripts on A and B have been dropped here for simplicity, without ambiguity. 

The forcing frequency 0 = 1 + u and the forcing amplitude B are both known, so 

there remain only two unknowns, A and ~1· 
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Of Eqs. (5.2.5}, only Eqs. (5.2.5a} and (5.2.5c) for i = 1 are relevant, having 

been obta~ed from the differential equations for z f0>. Reduction of these two 

equations according to Table 4.1.1 and Eq. (5.3.5) yields 

aA - ~pA 3 + B {rcos~ 1 - rsin~ 1 ) = 0 
4 

2uA + B {rcos~ 1 + rsin~ 1 ) = 0, 

(5.3.7a) 

(5.3.7b) 

which may be solved as a linear, inhomogeneous algebraic system in the 

unknowns cos~1 and sin~1: 

COS~t = 
A r(a - tpA 2 ) + 2r u 

B r2 + ?'2 
(5.3.Ba) 

sin~t (5.3.Bb) 

Squaring and adding ·gives a single equation in the unknown amplitude A:. 

(5.3.9) 

It is useful in the sequel to introduce the constants 

(5.3.10a} 

(5.3.10b) 

and the normalizations 

(5.3.11a) 

(5.3.11b) 
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=~~ 
4 a ' 

(5.3.11c) 

in terms of which the solution (5.3.9) relating A. B. and u becomes 

(5.3.12) 

The quantities {ct. ce) may be regarded as axis-stretching constants which 

transform the physical variables {u, B) into the canonical variables (u•, B •). 

Eq. (5.3.12) is quadratic in a•, so 

(5.3.13) 

from which the solution curves on Fig. 5.3.1 have been generated. This is a well-

known result for the single degree-of-freedom van der Pol oscillator equation 

(5.3.2) [66]. With B • and a• fixed there may be either one or three real solutions 

for A •. which is not surprising since Eq. (5.3.12) may be alternatively regarded as 

a cubic in A •. Stability of solutions shown in Fig. 5.3.1 is considered below; let-

tered points in the figure are discussed in Section 6.2. 

5.3.2 Stability 

To investigate stability of the above solutions, it is necessary to return to the 

amplitude/phase equations of Chapter 4, prior to assumption of the steady-

state. Using Eqs. (4.3.19a) and (4.3.19e}. with the help of Eqs. (5.2.2) and (5.2.6), 

the two variables (A 1• ~ 1 ) are found to satisfy a pair of first-order differential 

equations of the form 

X = l(X), (5.3.14) 

where, recalling A 1 = A and B 1 = B, 
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(5.3.15) 

and 

(5.3.16) 

-2u - ~ {'r cos1P1 + rsin~Pt) 

The steady-slate solution Xo satisfies 

.J(X0) = 0, (5.3.17) 

so if X is perturbed sightly away from Xo. i.e . 

..... 
X=Xo+tX, (5.3 .18) 

..... 
the perturbation X satisfies, to first order in t, 

X = [J']0X, (5.3 .19) 

where [J']o is an abbreviation for the Jacobian matrix evaluated in the steady 

state[:~ . J X=:lo 

Difierentiating Eq. (5.3.16), using the steady-state equations {5.3.7) in the 

form 

B ("""' . ) A r s1n~P1 - rcos~P 1 

X =:Ia 

and normalizing according to Eqs. (5.3.11) gives 

= a-~pAe 
4 

= -2aA, 

(5.3.20a) 

(5.3.20b) 
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1 - 3A • A u• 
[J']o = a (5.3.21) 

By a well-known property of two-dimensional linear systems of the form (5.3.19), 

..... 
the perturbation X decays with time, and hence the steady-state solution Xo is 

stable, if and only if the trace of [J']o is negative and the determinant is positive 

[ 44]. Consequently the stability conditions are 

(straight -line boundary} (5.3.22a} 

(elliptical boundary) {5.3.22b) 

In other words. if a stability boundary in the (cr*,A •) plane is denoted by the 

locus of points 

(5.3.23) 

where k is an index, then according to Eqs (5.3.22). a solution of {5.3.13) is 

stable if and only if the point (a*,A •) lies above the straight line given by 

(5.3.24a) 

and outside the ellipse whose upper half is given by 

L 2(a") = ~ {1 + ~ - ! (1 + o-"
2

) } (5.3.24b) 

and whose lower half is given by 

L 8{ a") = ~ { 1 - ..j1 - ! ( 1 + a "
2

) } • {5.3.24c) 

On Fig. (5.3.1) these loci are shown as dashed lines, marking the limits beyond 
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which real stable solutions of the assumed form (5.3.6} fail to exist. In the 

unstable regions, solutions of a more complex nature prevail. 

The stability boundaries are important for comparison of the mathematical 

model with experimental results. Physically, the stability boundaries imply that, 

according to the model, vortex-shedding is synchronized with the forcing fre-

quency (i.e. locked-in) only within a certain range of u• bracketing u• = 0. For 

example, with B • = 0.6 in Fig, 5.3.1, the solution curve is stable for 

I a• l < 
1
1
0 
~ ~ 0.686, 1 and unstable otherwise. Moreover, this range of stabil-

ity increases in width as B • is increased. The truth of such qualitative model 

predictions is well-documented experimentally, as shown in Fig. 2.3.2. This 

agreement is not surprising; in fact, as discussed in Sections 3.1 and 3.2, such 

qualitative agreement was anticipated by experimentalists Bishop and Hassan 

[5] when they first proposed the idea of modeling vortex wakes as nonlinear 

oscillators. 

It is emphasized that the present model predicts the forced-cylinder lock-in 

band to be symmetrically located about the exact resonance point u• = 0, 

regardless of what values are selected for the model constants. This qualitative 

result appears to agree with Koopman's data (Fig. 2.3.2). Quantitatively, the 

agreement obtainable with the present model depends on judicious selection of 

the model constants, to be carried out in Chapter 6. 

1. This value is obtained using Eq. (5.3.13) with A • = t• since, according to Fig. 5.3.1, 

stability boundary L 1 is relevant for this case. 
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5.4 Sprina-Kounted Cylinder 

5.4.1 Amplitude and Prequency Solution 

According to Table 4.1.1. there are two unknown oscillator variables in this 

case, 

Z1 = Z {5.4.1a) 

Y1 = Y, (5.4.1b) 

satisfying the generalized model equations 

Z- aZ + pZ8 + Z = rY + rY {5.4.2a) 

(5.4.2b) 

where p = (3 and-y = 7 1. As in Section 5.3, Eqs. (5.2.1) give 

z<O) = A1cos(nt +~1) (5.4.3a) 

(5.4.3b) 

However, in this case y{O) is unknown rather than prescribed, so the difi'erential 

equations (5.4.2) are autonomous. and the origin of time is arbitrary. Conse

quently one arbitrary condition may be imposed on the phases {~1· Jl-1). Eq. 

(5.3.5) would be one possibility. but the ensuing analysis has been carried out 

instead with 

~1 = 0. (5.4.4) 

Therefore 

zCO) = A cosO t (5.4.5a) 

y<o> = Bcos(rlt + p,), (5.4.5b) 

where subscripts on A. B. and p. have been dropped for simplicity.1 

1. The subscript on 0 1 i8 retained in order to distinguish the natural structural fre
quency 0 1 from the response frequency 0. 
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Steady-state equations for the four unknowns A, B, JJ., and a = 0 - 1 are gen-

erated by application of Eqs. (5.2.5) with i = 1, 7 = -y1, and q = 0 (see Table 

4.1.1): 

aA - ~pAs+ B (rcOSJ.L + rsinJ.L) = 0 (5.4.6a) 
4 

--yB +A ( c COSJ.L + c sinp.) = 0 {5.4.6b) 

2uA + B (r cosJ.L - rsinJ.L) = 0 (5.4.6c) 

(1- Of+ 2u)B +A (-ccosJ.L + csinJ.L) = 0 (5.4.6d) 

Solving Eqs. (5.4.6b) and (5.4.6d) as a linear, inhomogeneous, algebraic system 

in the unknowns cosJ.L and sinJL yields 

COSJ.L = c 7 + c ( 1 - 0 f + 2a) B 
c 2 + c2 A 

(5.4.7a) 

sinJ.L = c 7 - c ( 1 - n f + 2u) B 
c 2 + c2 A. (5.4.7b} 

Squaring and adding gives 

(5.4.8) 

Substitution of Eqs. (5.4. 7) into Eqs. (5.4.6a) and (5.4.6c) followed by substitu-

tion of Eq. (5.4.8) to eliminate { ~ )2 produces a frequency equation and an 

amplitude equation, 

F(a) = 0 (5.4.9a) 

(5.4.9a) 

where the functions F and C are defined as 



F(u) 

and 

5.4.2 Detunin1 Variables 

4 == -[ -2u 
3p 
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kb(1- np + 2u) + ka.7 ] 
( 1 - n f + 2u )2 + -y2 

ka. - rc - rc 

(5.4.10a) 

(5.4.10b) 

(5.4.11a) 

(5.4.11b) 

Since u is the only unknown appearing in the functions F and G, Eq. (5.4.9a) 

might be used to solve for u, and the result inserted into Eq. (5.4.9b) to solve for 

amplitude A. However, upon clearing of fractions in Eq. (5.4.9a), a cubic in a is 

obtained, yielding either one or three real solutions, which must be found 

numerically or by the relatively complicated analytical formulas for a cubic. 

A simpler result is obtained by replacing the pair of frequency variables 

(a, 0 1) appearing in Eqs. (5.4.10) with detuning variables 

{5.4.12a) 

(5.4.12b) 

The subscripts "r " and "/" on (~. ~~) are mnemonic for response-structure 

detuning and fluid-structure detuning respectively, although the ~·s are "detun-

ings" only in an approximate sense. Assuming e 2 RS 1 [as explained in the foot-

note to Eq. (3.2.20)],2 the exact detunings 

c4 = n -~ 0 1 (Response-structure detuning) (5.4.13a) 

2. The factors of ...J;; appearing in Eqs. (5 .4.13) are necessary to achieve consistency 
with the physically motivated definitions of (c4. d1) given in Section 2.4; see Eqs . 
(2 .4.4), (2.4 .5), and (3 .2.20) . 
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d1 = 1-~01 (Fluid-structure detuning) (5.4.13b) 

are equivalent, respectively, to (~r• ll1 ) only in the limit d1 .... 0, which is 

apparent upon substitution of Eqs. (5.4.13) into Eqs. (5.4.12): 9 

{5.4.14a) 

(5.4.14b) 

The relationship between frequencies, normlaized frequencies, and detuning 

variables (d.,.. d1 ) is diagrammed on Fig. 5.4.1 for the case e 2 = 1. 

r 
Natural structural frequency 

{
Response 

/ frequency ... , ... 
(
Strouhal r frequency 

.... 
-----;-----------r------------------~-----------FREQUENCY 

1 0, 
----~~---------+-------------------~~-------------NORMALIZED 

FREQUENCY 

I I 

t----dr--
1 I 

~------d, 

DETUNING 

VARIABLES 

ftcure 5.4.1. One-Mode Interpretation of d-Variables. 

According to the order of magnitude assumptions (4.1.2) and (5.2.6), d1 is 

order ,;; hence, to the order of accuracy of the asymptotic method, terms of 

order d] may theoretically be neglected; that is, it would be permissible to 

approximate llr as dr. and ll1 as d1 . Pracitically however, the comparison 

between analytical and numerical solutions to Eqs. (5.4.2) is somewhat better if 

3. The relations (5.4.14) are exact if e 2 = 1. 
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these approximations are not made. Therefore the distinctions between (.1.,., !!.1 ) 

and (d.,., d1 ), which cause no analytical difficulty, will be retained in the sequel, 

according to definitions (5.4.12) and (5.4.13). Nevertheless, for conceptual pur-

poses, the ~·s and the d's may be thought of as equivalent. Typically, solutions 

are obtained in terms of {~. !!.1 ) and then converted to {d.,., d1 } for plotting. 

5.4.3 Solution in Detun~ Variables 

Recasting the frequency and amplitude equations (5.4.9) in terms of !!.-

variables gives 

(5.4.15a) 

-. 2 
G (llr) = A , (5.4.15b) 

where 

fit (llr) {5.4.16a) 

4 -2kCl~r + kb "! 
- -[a + 2 2 ]. 

3p 4l!.r + -y 
{5.4.16b) 

This form of solution is not useful unless ~r and ~/ are the only frequency 

variables in the problem. Therefore it is necessary to make a slight approxima-

tion; namely. the quantity -y, defined according to Eqs. (3.2.22) and (3.2.23) as 

(5.4.17} 

is approximated as 

(5.4.18) 

thereby eliminating the appearance of the structural frequency 0 1• This is per-

missible because of condition ( 4.1.2): since -y itself is 0 {t:), the error associated 
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with approximation (5.4.16) is 0 (r:2). 

In the solution {5.4.15), the response detuning ll,. would normally be con-

sidered the dependent variable, with ll1 independent. However, upon clearing 

fractions, F = 0 is cubic in ll,., hence the solution would be either single or triple 

valued, and not expressible in simple form. Therefore it is advantageous to 

reverse the roles of ll,. and ll1 , considering ll,. independent and ll1 dependent. 

Then, using F = 0, the explicit, single-valued expression for !l1 is 

(5.4.19) 

A typical example of this relationship is shown as the solid line in Fig. 5.4.2. 

5.4.4 Interpretation of the Frequency Solution 

The general nature of the frequency solution (5.4.19), as exemplified by Fig. 

5.4.2, may be readily interpreted. When the independent variable ll,. is far from 

0, the denominator of the second term is large, so the first term predominates, 

giving 6.1 ~ ll,.; thus ll1 is likewise far from zero. According to definitions 

(5.4.12), the latter implies that n 1 is far away from 1, while Ill ~ ll,. implies 

u ~ 0, i.e. 0 R:1 1. Hence, according to the model, when the natural frequency 01 

of the spring-mounted cylinder is far from the natural vortex-shedding fre-

quency (ns = 1). the system response frequency n is very near ns: that is, vor-

tices shed nearly at their natural frequency. This is a physically correct result. 

Conversely, when ll,. ~ 0, the second term on the right of Eq. (5.4.19) may 

become large, especially for light damping (')' small), producing ll1 ~ ll,. such 

that &1 ..e 0. Hence in this case n ~ 0 1 ~ 1, which describes lock-in. These 

qualitative observations are quantified in Chapter 6, where simple, analytical 

expressions for model lock-in characteristics are derived and compared tq 

experimental data. 
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.2 

~ -----STROUHAL FREQUENCY RESPONSE <I 

" 
(STATIONARY CYLINDER) 

z -z FREQUENCY RESPONSE FOR :;) ... .1 VIBRATING CYLINDER: w 
Q k •• 0.001 
w 
a: kb. 0.005 , 
:;) ~ ... y • 0.01 u / 

:;) 
a: 0 ... 
Cl) 
I 
w 
Cl) 

z 
0 
A. 
Cl) 
w 
a: -.1 

-.2 -~ 0 ~ .2 

FLUID-STRUCTURE DETUNING ~, 

Ficure 5.4.2. Typical Model Solution. Prior to Stability Considerations. 

5.4.5 Clas11e11 of Solution: Tbe Boundary of Real Amplitudes 

For each value of llr, the amplitude A is given by Eqs (5.4.15b) and (5.4.16b). 

but there is no guarantee that A is real since G (llr) may be negative. 

Specifically, setting G (llr) = 0 to find the boundary of real solutions. it follows 

that A is imaginary in the range 

k - ..;r ka. + ..;r 
a. 4a < llr < 4a (5.4.20) 
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provided the discriminant 

(5.4.21) 

is positive. If r is negative, A is real for all values of ll,.. Whenever A is real, the 

structural amplitude B and phase p, may be recovered using Eqs. (5.4.8) and 

(5.4.7} respectively, with the help of definition (5.4.12a). 

Further, whenever A is real, stability of the solution may b.e investigated as 

discussed below {Section 5.4.6). Therefore, three classes of solution are possi

ble: 

(1) Non-real (A imaginary) 

{2) Real but unstable 

{3) Real and stable. 

5.4.6 Stability 

As in Section 5.3, stability of the steady-state, monofrequency solutions above 

may be investigated using the amplitude/phase equations (4.3.19}, assuming the 

solution under consideration is real, as discussed in Section 5.4.4. Since q = 0 

for this case while 7 = 71 and J..L = J..L1 = 81 - t 1 by definition, the following sys

tem of three first order differential equations is obtained: 

X = l{X}, (5.4.22) 

where 

X - (A, B, p,) (5.4.23) 

and 
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aA - ! pA 8 + B {rcOSJJ. + r SinJJ.) 

J(X) - ~ · -yB +A (c cosJJ. + csinJJ.) {5.4.24) 

- ( 1 - 0 f) - ~ { -c COSJJ. + C sinJ.l,) + ~ ('?' COSJJ. - rsinJJ.) 

Repeating the argument preceding Eq. {5.3.19), a perturbation X satisfying 

x = [J']oi (5.4.25) 

will decay with time, and hence the steady-state solution Xo will be stable, if and 

only if all eigenvalues of [J']o have negative real parts. 

The Jacobian [J']o may be found as a function of constants and the indepen-

dent variable l:ir only. That is, after differentiating J{X), the steady-state equa-

tions {5.4.6) may be used to replace trigonometric functions of Jl with functions 

of A. B, !:11 , and Ar, after which Eqs. {5.4.9b), (5.4.8). and (5.4.19) may be substi-

tuted to eliminate A, B, and ll1 in favor of llr: 

B 
A I=JO 

AI =~ 
l=lo 

= ~"" R(A.) 

Without writing ll 1 (!:ir) explicitly, the result is 

{5.4.26a) 

(5.4.26b} 

(5.4.26c) 



[J']o = 1 
2 

9 .... 
a--pG 

4 
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3 .... 
a--pG 

4 
R 

The eigenvalues " of [J']o. satisfying 

3 .... 
a -7- -pG 

4 

det(X[J] - [J']0) = 0 ([/] = the identity matrix), 

are found to be roots of the cubic 

'A8 + k 2'A2 + k tA + ko = 0, 

where 

(5.4.27) 

(5.4.28} 

(5.4.29) 

k2 - 3pG + 2(/'- a) (5.4.30a) 

.... 3 ..... 3 ..... 
ko = 6pG ~,.(2~,. -~I) - 27pG (a- 7- t;PG ). (5.4.30c} 

The well-known Routh conditions [9] 

(i) km > 0, m = 0, 1, 2 (5.4.31a) 

( ii ) k 2k 1 - k 0 > 0 (5.4.31b) 

are necessary and sufficient to insure that all solutions " of Eq. (5.4.29) have 

negative real parts. 

Therefore, a given value of the independent variable ~ produces a stable, 

steady-state solution X0 if and only if conditions (5.4.31) hold. In general, only 

certain portions of a solution curve such as Fig. 5.4.2 will be stable; instability 

indicates that the steady-state solution under consideration is in fact not physi-

cally meaningful. 
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:i.5 One-Mode Cable Approiimatlon 

As indicated in Table 4.1.1, the model equations for this case are identical to 

those for the previous case {Section 5.4). except for the identification of vari-

abies and the value of p. Thus. adopting the subscript convention (4.1.10). the 

oscillator variables {z {0>. y {0>) replace (z<0>, y<o>) in Eqs. (5.4.5): 

z f0> = A cosrlt {5.5.1a} 

y f0> = B cos(n t + J.L). (5.5.1b) 

All of the equations in Section 5.4 are valid here: p merely assumes the value ~ (3 

rather than (3. which does not affect the frequency solution (5.4.19) at all. affects 

the amplitude solution (5.4.15b) by a constant factor 

(A ) one -mode = -vr {A ).,nng-
cctbLe mounted 

{5.5.2a) 

e~pprozimcUion cyl'inder 

(B )one -mode = -vr (B )sprmg-
cable mounted 

(5.5.2b) 

ctpprorim.a.t\on cvtinder 

Any solution which is stable {unstable) for the spring-mounted cylinder will 

likewise be stable {unstable) for the one-mode cable approximation, because the 

stability equations {5.4.31) do not involve the altered values of the amplitudes 

(Eqs. 5.5.2), while the altered parameter p always appears in the combination 

pG, which according to Eq. (5.4.16b) is only a function of ex, -y, k 4 , kb. and ~r• 

irrespective of p itself. 

In short, the spring-mounted cylinder and the one-mode cable approximation 

have identical solutions, except that the amplitudes are smaller in the latter 

case by a factor of ~ 



-89-

5.6 Two-Mode Cable Approximation 

5.6.1 General Remark& 

According to Table 4.1.1, all four of the generalized model equations {4.1.6) 

apply to this case. Using Eqs. (5.2.1), the approximate solutions are 

{5.6.1a) 

(5.6.1b) 

where i = 1, 2. 

Since Eqs. {4.1.6) are autonomous, only the three phase differences 

(5.6.2) 

and 

(5.6.3) 

rather than the four phases (cp,, ~) themselves, are independent. 1 Thus, as in 

Section 5.4, one arbitrary condition may be imposed on the four phases, for 

example rp 1 = 0. 

Upon inspection of Eqs. ( 4 .. 1.8) it is clear that two entirely different brands of 
~ 

nontrivial solution are possible, namely 

1. Case 1: Non-degenerate solutions. for which both z,: and both Yi are non-

zero 

2. Case 2: Degenerate solutions, which are of two types: 

• z 11 y 1 - 0 and z 2 = y 2 = 0 (Type 1) 

(Type 2). 

For any given set of parameters ( a, p, q, r, r. etc.), it is not clear a priori 

1. These definitions are consistent with previous equations ( 4.3.20), (5 .2.2), and (5.2 . 7) . 
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which type of steady-state solution (if any) will actually prevail. In analogy to 

Section 5.3, existence demands not only a real algebraic solution to the steady-

stale equations (5.2.5), but also the stability of that solution against arbitrary, 

small disturbances. These questions are discussed in subsections 5.6.2 and 5.6.3 

for non-degenerate and degenerate solutions respectively. Reasons for handling 

the two types of solution separately will become clear in the course of the 

analysis. 

5.6.2 Non-Degenerate Solutions 

5.6.2.1 Algebraic Solutions of Equations (5.2.5) 

Initially, solution of the eight steady-state equations (5.2.5) in eight unk-

nowns (A t. A 2, B 1, B 2, JJ- 1, JJ-2- rp, cr) proceeds in direct analogy to the solution 

of the reduced one-mode system (5.4.6). By definition of non-degenerate solu-

lions (Section 5.6.1), Ai ;.t 0 for both values of i, so it is permissible to write: 

COSJ.Li = c-yi + c(l- 0[ + 2a) Bi 

c 2 +c2 Ai 
(5.6.4a) 

sin,u,: = C!'i- c(l- Of+ 2a) Bi 

c 2 + c2 Ai 
(5.6.4b) 

(5.6.5) 

At this point, the analogy to Section 5.4 becomes less direct because, for the 

present case q • 0. Substitution of Eqs. (5.6.4) into Eqs. (5.2.5a) and (5.2.5c), 

B· 2 
followed by substitution of Eq. (5.6.5) to eliminate (A~} , produces a set of four 

\ 

equations (i = 1, 2) in the four unknowns (A 1, A 2• rp, cr ): 

(5.6.6a) 



where, in analogy to Eqs. (5.4.10), 

while 
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Q = _!1_, 
3p 

(5.6.6b) 

{5.6.7a) 

(5.6.7b) 

{5.6.8) 

and convention (4.1.10) holds for subscripts i = 1. 2 and j = 2, 1, as always. It 

should be noted that each pair of equations represented by (5.6.6) reduces 

correctly to Eqs. (5.4.9) for the special case Q = 0. However, division of both 

sides by A,2 is necessary to obtain Eq. (5.6.6a), which consequently is valid in a 

two-mode context only for the non-degenerate case, where Ai ~ 0 for both i. 

This is one of the motivations for the separate discussion of degenerate solu-

lions in Section 5.6. 3. Another motivation occurs in the stability analysis (see 

Section 5.6.3.2). 

Eqs. (5.6.6) are next reduced to two equations in two unknowns (~. u) by 

elimination of the At· Multiplying Eq. (5.6.6b) by sin2~fi· Eq. (5.6.6a) by 

(2 + cos2~ii), and subtracting yields 

(5.6.9) 

Interchanging the indices (i, j) in Eq. (5.6.6a) and recalling rp;.; = -rpii gives 

(5.6.10) 

Multiplying Eq. (5.6.9) by Q and adding Eq. (5.6.10) accomplishes elimination of 

the At: 
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(5.6.11) 

Again, this result correctly reduces to Eq. (5.4.9a) for the special case Q = 0. 

Elimination of rp is achieved by writing Eq. (5.6.11) fori = 1, 2 as a linear sys-

tern in the trigonometric functions Q(2 + cos2rp) and Q sin2rp, where 

rp = rp2t = -rp 12 is recalled from Eq. (5.6.3): 

Q (2 + cos2rp) 

Q sin2rp 

Solving: 

Q cos2rp 

Q sin2rp = 
FP -Fl 

F1G2 + F2G1. 

Squaring and adding yields 

which is a single equation in the unknown u. 

5.6.2.2 Detuning Variables 

(5.6.12) 

(5.6.13a) 

(5.6.13b) 

(5.6.14) 

Substitution of Eqs. (5.6.7) into (5.6.14) would produce, upon clearing of frac-

tions and cancellation of terms, a tenth-order polynomial equation in u. The 

analogous equation for the one-mode case is the cubic (5.4.9). As in Section 5.4, 

detuning variables are introduced here to recast the frequency equation in 

simpler form. 

Eqs. (5.4.12) for the approximate detunings (6.r, 6.1 ) are generalized so as to 

preserve the modal (1, 2) symmetry of the problem: 
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1[ nl+nf 
ll,. = 2 1 -

2 
+ 2u] (5.6.15a} 

(5.6.15b) 

Attempting to write the functions F;, and c, in terms of these variables (~r. ~J) 

reveals that a third variable is needed to measure the separation between struc-

tural frequencies n 1 and 02: 

(5.6.15c) 

As in Section 5.4, the ~ 's are "detunings" only in an approximate sense. In 

analogy to Eqs. (5.4.13), the exact mode-averaged response-structure detuning 

is 

d,.- {5.6.16a) 

the exact mode-averaged fluid-structure detuning is 

(5.6.16b) 

and the exact intermodal detuning is 

(5.6.16c) 

The relationships between frequencies, normalized . frequencies, and detuning 

variables are diagrammed on Fig. 5.6.1 for the case e 2 = 1.2 This figure is analo-

gous to Fig. 5.4.1. 

Assuming e 2 ~ 1, these quantities (d,., d1 , d 21 ) are equivalent, respectively, to 

(~r• ~1 . ~ 21 ) only in the limit as d1 and d 21 approach zero, which is apparent 

2. See the footnote to Eqs. (3.2.20). 
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structural frequenciea \ 

Response} 
frequency \ 

- -2 
{
Strouhal r frequency -. 

------~---------------------------+-----~------------+----------~FREQUENCY 

1 a, -2
1 (a,• a2> a a2 

------+----------------------~-------------+----~------------~------------NORMALIZED FREQUENCY 

I I 

t---dr-
1 I 
I 

~-------------d,------------~~ 

DETUNING 

VARIABLES 

Ji'irure 5.6.1. Two-Mode Interpretation of a-Variables. 

upon substitution of Eqs. (5.6.16) into Eqs. (5.6.15): 1 

{5.6.17a) 

(5.6.17b) 

(5.6.17c) 

The discu.ssion following Eqs. (5.4.14), which argues in favor of distinguishing 

between the ~·s and the d's even though the difference is order F!-, goes through 

analogously in this ease. 

5. 6. 2 . 3 Solution in De tuning Variables 

Recasting the frequency equation (5.6.14) in terms of ~-variables gives 

1. The relo.tions (5.6 .17) are exact. for e 2 = 1. 
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2 .... .... .... .... 2 = Q (F 1 G 2 + F eG 1) • 

kb(2~,. + flfi) + ka7i] 

(2~,. + ~ii)2 + 7l 

Some algebra reveals that Eq. (5.6.16) may be written 

u 2 + ( v - 3Qw) ( v - Qw ) = 0 

where 

(5.6.16) 

(5.6.19a) 

(5.6.19b) 

(5.6.20) 

{5.6.21a} 

(5.6.21 b) 

(5.6.21c} 

As in Section 5.4. this form of solution is not useful unless {6,.. 61 • ~1;.) are 

the only frequency variables in the problem. Therefore it is necessary to replace 

definition (3.4.14} 

2(.·0· a 4 
-y;, - ..)e; + 27TSe

2 
TJ (5.6.22a) 

with the approximation 

(5.6.22b) 

which is permissible on account of Eq. (4.1.2). 
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Also in analogy to Section 5.4. ll1 is chosen as the dependent variable in Eq. 

(5.6.20}, with l::ar independent. Substitution of Eqs. (5.6.19) into Eqs. (5.6.21) pro-

duces 

(5.6.23a) 

(5.6.23b) 

(5.6.23c) 

where 

uo = !2- !2. 1 2 I Ut - 4{/ 1- 12) (5.6.24a) 

vo - !t91 + /292; V1 - 2(gt + Y2) (5.6.24b) 

Wo - f tY 2 + f 29 t : Wt - 2(g 1 + 92) {5.6.24c) 

and 

(5.6.25) 

(5.6.26) 

Consequently, the frequency ~quation (5 6.20) is quadratic in fl1• 

(5.6.27) 

where 

(5.6.28a) 

(5.6.28b) 

{5.6.28c) 

Hence for each value of A.,. there are two solutions fl 1 : 
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-~~ ± .J'"r - 4"2"0 
2~C2 

(5.6.29) 

which are either both real or both non-real, depending on the sign of the 

discriminant. The latter equation is analogous to Eq. (5.4.19) of the one-mode 

analysis, where the solution b. 1 was single-valued rather than double-valued. 

For each real solution b.1 , the amplitudes and phases {A,, Bt,. JJ-i, ~) may be 

recovered by back-substitution. First, with the help of Eqs. (5.6.21), Eqs. (5.6.13) 

give, for Q ~ 0: 

v --2Q 
w 

u 
w 

Next, using Eqs. (5.6.21) and (5.6.13b), Eq. (5.6.10) gives 

A 2 -1 -
-F2w 

Qu 

Finally, from Eqs. (5.6.5) and (5.6.4), 

2 -2 
B 2 _ c + c A·e 

i - ( )2 2 1. 2b.r + b.;t. + '"Yt. 

and 

5. 6 .2.4 Classes of Solution 

(5.6.30) 

{5.6 .31a) 

(5.6.31b) 

(5 . ~.32) 

(5.6.33) 

Stability of real steady-state solutions is considered in the next sub-section. 

However, from the above discussion it is clear that for certain values of Ar. a 

real steady-state solution may fail to exist altogether. First. if the discriminant 

is negative in Eq. {5.6.29), no real frequency solution exists. Second, even if a 
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pair of real values for ll1 is found, either or both may fail to generate real ampli

tudes IC;. in Eqs. (5.6.31). To summarize, four classes of solution are possible: 

(0) ll1 non-real 

(1) ll1 real but one or both Ai imaginary 

(2) ~, real and Ai real. but unstable 

(3) ll1 real, Ai real. stable. 

Each class, except (0), has its analogy in the one-mode analysis; see Section 

5.4.4. Only class (3), of course, is physically meaningful. 

5.6.2.5 Stability 

As in Sections 5.4 and 5.5, stability of the above solutions is investigated 

using the amplitude/phase equations ( 4. 3. 19). By subtraction of Eq. ( 4.3.19c) 

from each of the equations (4.3.19f) and (4.3.16g), and by subtraction of Eq. 

(4.3.19f) from Eq. ( 4.3.19h), the following set of seven first-order differential 

equations is obtained in the four amplitudes and three phase differences: 

where 

and the functions 

J1 -

J2 -

Ja -

J. -

X = J(X) 

At(X) 

A2(X) 

B 1 (X) 

B 2(X) 

(5.6.34) 

(5.6.35) 

{5.6.36a) 

(5.6.36b) 

{5.6.36c) 

(5.6.36d) 
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J& - 81 (X} - t 1 {X) 

Je - Se{X) - te{X) 

J? = ~e{X) - ~ 1 {X) 

are given explicitly by substitution of Eqs. (4.3.19). 

{5.6.36e) 

(5.6.36f) 

(5.6.36g) 

As in the stability analyses of Sections 5.3 and 5.4, the steady-state solution 

Xo is stable if and only if all eigenvalues of the Jacobian matrix [J']o have nega

tive real parts. However, unlike the previous cases, the 7 x 7 Jacobian of the 

present case is too large to permit a convenient analytical determination of 

specific stability conditions. The stability results given in Chapter 7 were 

obtained by numerical determination of eigenvalues for the analytically 

differentiated matrix [J'] 0 . 
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5.1.3 De&enera t.e Solutions 

5.6.3.1 The Steady State 

According to the discussion of Section 5.6.1. solutions to the set of four 

differential equations ( 4.1.8) are called "degenerate" if either 

z t• y 1 ~ 0 and z 2 = y 2 = 0 (Type 1) (5.6.37a) 

or 

z2. Y2 Jt 0 and Zt = y 1 = 0 (Type 2). (5.6.37b) 

Type 1 solutions are treated below. However. as should be clear from the 

differential equations ( 4.1.8), Type 2 solutions may be obtained analogously, 

merely by interchanging all subscripts 1 and 2. This observation will be referred 

to henceforth as subscript sym.metry. 

Considering Type 1 solutions, the steady-state equations (5.2.5) reduce. for 

the non-degenerating degrees of freedom {z 1, y 1). to Eqs. {5.4.6). 1 The same 

equations reduce, for the degenerating degrees of freedom (z 2, y 2 ), to the iden-

tity 0 = 0, since Eq. (5.6.37a) implies A 2 = B 2 = 0. Therefore. steady-state degen-

erate solutions for the two~mode-approximate cable reduce to the solutions 

developed in Section 5.4, provided p = ~ fJ (Table 4.1.1 ). 

To clarify this result in a two-mode context, the one-mode detunings previ-

ously defined by Eqs. (5.4.12) must be embellished by a subscript indicating the 

generic mode number2 of the non-degenerating mode. Thus for Type 1: 

~rl = ~ (1- nf + 2u). {5.6.38a) 

1. Provided A = A 1, B !!: B 1, J.J. = J.J-1 and 7 = 7 1• 

2. Recall convention (4.1.10). 
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ll/1 = ~ ( 1 - 0 ~) (5.6.3Bb) 

The relationships connecting the two-mode detunings (~1 • llr. t121 ) defined by 

Eqs. {5.6.15) and the one-mode detunings {~11• ~ 1 ) are: 

(5.6.39a) 

(5.6.39b) 

This coordinate transformation is shown in Fig. 5.6.2, together with the analo-

gous transformation for Type 2, 

{5.6.40a) 

(5.6.40b) 

obtained from Eqs. (5.6.39) using subscript symmetry and Eq. (5.6.15c). 

Hence Type-1 solutions for frequency and amplitude response, obtained by 

rewriting Eqs. (5.4.15b), (5.4.16b) and (5.4.19) in a two-mode context, are given 

by 

(5.6.41a) 

(5.6.41 b) 

Using subscript symmetry, analogous equations hold for Type 2 solutions. Fig-

ure 5.6.3 exemplifies Type 1 and Type 2 frequency solutions. Since the 

parameter values used here are the same as for Fig 5.4.2, each curve is identical 

to Fig. 5.4.2, except for the simple coordinate shifts (5.6.39) and (5.6.40). Thus 

solution Types 1 and 2 exhibit lock-in for the lower mode and the upper mode 

respectively. lt remains to investigate which portions of these solution curves 
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are stable. 

5.6.3.2 A Difficulty with the Stability Analysis Used Previously 

Although the above steady-state solutions are identical to those for the one

mode case, the corresponding stability analysis is quite di.fierent. Consider Type 

1 solutions {as usual. Type 2 is analogous). Since arbitrary perturbations about 

the steady-state may, in a two-mode context, include perturbed values of the 

degenerating amplitudes A 2 and B 2 which are non-zero, the full system of eigh l 

amplitude/phase equations ( 4.3.19) must be considered, involving all four 

amplitudes (A 1, A~ B 1, B 2 ) and three phase differences (J.L1, JJ-2, rp ). 

However, a problem arises; namely, since the steady-state amplitudes of z2 

and y 2 are zero, it is meaningless to speak of the corresponding phases, and 

steady-state values of the phase differences J.L2 and rp are not well defined. Con

sequently a stability analysis based on the amplitude/phase equations, which 

requires well-defined A's, B's, J.L's and rp, must be abandoned in the degenerate 

case. 

5. 6. 3.3 An Alternative Approach to Stability 

Still considering Type 1 solutions, an alternative stability method is to per

turb the original, second-order differential equations (4.1.8) about the exact, 

degenerate steady-state (designated by an (e) superscript): 

Zt = zf•>+t:Ut (5.6.42a) 

Yt = y f') + t:V 1 (5.6.42b) 

z2 = 0 + ru 2 (5.6.42c) 

Y2 = 0 + t:t~2. {5.6.42d) 

In such a method the concept of phases for the degenerating degrees of freedom 

is absent, so the problem discussed above does not arise. Substituting Eqs. 
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(5.6.42} into Eqs. ( 4.1.8), subtracting the exact steady-state, and retaining terms 

to first order in ~ yields a pair of parametrically excited equations for the per

turbations of the non-degenerating degrees of freedom, 

(5.6.43a) 

(5.6.43b) 

and a corresponding pair for the perturbations of the degenerating degrees of 

freedom, 

(5.6.44a) 

(5.6.44b} 

Therefore, the stability of a Type 1, steady-state solution to Eqs. ( 4.1.8) depends 

on the mutual stability of the two systems (5.6.43} and (5.6.44), which for

tunately are completely uncoupled. If either system has unbounded response, 

then the steady-state solution (z fe >, y f•>; z~e) = y~e) = 0) is unstable. 

5. 6 . 3. 4 Stability of the Non-Degenerating Degrees of Freedom 

The stability characteristics of Eqs. (5.6.43) may be inferred from work previ

ously presented. That is, consider perturbing the one-mode variables (Z, Y} of 

Section 5.4, which satisfy the differential equations (5.4.2): 

z = z<•> + ~u 

Y = y{e) + eV. 

{5.6.45a) 

(5.6.45b) 

These equations are analogous to Eqs. (5.6.42); as before, superscript (e) 

denotes the exact steady-state solution. Substituting Eqs. (5.6.45) into Eqs. 

(5.4.2) and subtracting the exact steady-state yields, to order ~= 

u -au + 3p [.i<•>(t }] 2U + u = rV + rV (5.6.46a) 
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.. . 2 v +~ 7V + n1 v = cU- cU. (5.6.46b) 

Upon identifying {U, V, 7, n,) as (u 1, Vt, 71• 0 1) respectively. and noting3 

(5.6.4 7) 

it follows that Eqs. (5.6.43) are identical to Eqs. (5.6.46), and therefore the sta-

bility characteristics of these two systems are identical. But the stability 

characteristics of Eqs. {5.6.46) are implicitly known, since the present perturba-

lion approach to stability must give the same results as the amplitude/phase 

approach of Section 5.4.6, to the accuracy of the asymptotic method. It follows 

then that the stability of the system {5.6.43) may likewise be inferred from Sec-

lion 5.4.6, upon substituting (;' 1• A 1, B 1, J.L1) for(;'. A, B, J.L). 

Specifically, stability conditions for the non-degenerating degrees of freedom 

(z 1, y 1) are given by rewriting Eqs. (5.4.30) and (5.4.31) in the notation of this 

section: 

(i) lcm > 0; m = 0, 1, 2 (5.6.48a) 

(5.6.48b) 

where, using Eqs. (5.4.15b) and (5.4.16b), 

(5.6.49a) 

(5.6.49b) 

(5.6.49c) 

Using Eqs. (5.6.41), it is clear that these conditions depend only on the 

parameters a, ka., kb, )'1, and the independent variable ~rt· In particular, there 

is no dependence on the modal separation ~21 . 

3. Since, z~•>(t) = 0 in the degenerate steady-state (Type 1), the differential equations 
(4.1.Ba,c) governing (z 1,y 1) are identical to Eqs. {5.4.2) governing (Z, Y). 
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5.6.3.5 Stability of the Degenerating Degrees of Freedom 

The stability characteristics of Eqs. {5.6.44), unlike Eqs. (5.6.43), cannot be 

inferred from previous work. However, if the exact parametric excitation 

[z [•> (t) ]2 in Eq. {5.6.44a) is replaced by the approximate value given by the 

asymptotic method, 

(5.6.50) 

then stability characteristics may be deduced using Floquet theory. Toward this 

end the system (5.6.44) is written in matrix form as 

i = [P(t }]x (5.6.51) 

where 

{5.6.52a) 

and 

0 1 0 0 
-1 a 1 + 2b 1 cos20 t r r 

[P(t }] - 0 0 0 1 (5.6.52b) 

-c c -n~ --.,2 

The above expression for P 22 has been obtained by replacing the time function 

sin(rlt + ~ 1 ) in Eq. (5.6.45) with sin Ot through a simple shift of the time scale .. 

and by introducing (for brevity} the coefficients a 1 and b 1. whose definitions 

arise from Eq. {5.6.41 b) and the two-mode identity q = 2p (see Table 4.1.1): 

a1 - a - ~ 0 2(a + r 1) (5.6.53a) 

bt 2 
- 3 n2(a: + r 1). (5.6.53b) 

The quantity f 1 is defined by 
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-2ke~~r1 + kb'?'l 

4~:1 + J'f 
(5.6.54} 

and the response frequency 0 is given by definitions (5.6.39} and (5.2.6} as 

(5.6.55) 

Thus the matrix [P(t }] is periodic with a known period T. 

[P(t + T)] = [P(t)]; (5.6.56) 

so Eq. (5.6.51) may be treated with Floquet theory, a summary of which is given 

below. 

According to the theory of differential equations, there exists for Eq. (5.6.51) 

a set of N = 4 linearly independent solutions x<k) (k = 1, . .. , N) called 

principal solutions. which, when arranged as columns of a matrix denoted [X], 

satisfy 

[X(t)] = [P(t)][X(t)] (5.6.57) 

and 

[X(O)] .= [I] (the identity matrix). (5.6.58) 

[X (t)] is called the principal matrix solution. In general, the principal solution 

vectors in [X] are related to any alternative set of N independent solutions 

w<k>(t) by 

[X(t)] = [Jf(t)][R]-1, (5.6.59) 

where the w<A:> are columns of [W], and [R] is a constant. nonsingular transfor-

mation matrix. In particular. since [P(t )] is periodic. the columns of [X(t + T)] 

are solutions of Eq. (5.6.51), so the vectors x<A:>(t + T) must be related to the 

x<k>(t) by 
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[X(t + T)] = [X(t )][M]. (5.6.60) 

where [M] is a constant matrix. From Eqs. (5.6.59) and (5.6.60) ·it follows that 

[W(t + T)] = [W(t )][R ]-1[M][R ]. (5.6.61) 

If [R] is chosen such that" 

(5.6.62) 

then each of the solutions w<k>(t) satisfies 

(5.6.63) 

the multipliers ~ being constants, complex in general. Thus the ~ are ·eigen

values of the matrix [M], and [R] is the matrix of eigenvectors. The vectors w(l:) 

are usually called normal solutions. 

The eigenvalues may be found using the following algorithm: 

• Numerically integrate N systems of equations i(k) = [P(t)]x(k) 

(k = 1, ... , N) over one period (0 ~ t ~ T ), using the N columns of 

initial conditions (5.6.58). Then according to Eq. (5.6.60), 

[X(T )] = [M]. (5.6.64) 

• Numerically determine the eigenvalues Ak of [M]. In particular, find 

the complex moduli IA .. J 

According to Eq. {5.6.63), the perturbations represented by the -.(k) will decay 

with time, and hence the system {5.6.51) [i.e. Eqs. (5.6.44)] will be stable, if and 

only if 

4. To be completely general, the possibility of [M] possessing indistinct eigenvalues with 
less than a full complement of independent eignevectors should be considered. In 
such a case - [A] cannot be made diagonal. However practicaly (i.e. numerically) 
speaking. this is a very special case; in fact, for random values of 
(Ci 1 , b1 , r, r, c, c. -y2, 0 2) in the matrix [P(t)], the probability of such an 
occurrence is nil. 
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I Ak I < 1 for every 1c = 1, . . . , N. (5.6.65) 

Unlike conditions (5.6.48), the stability condition (5.6.65) does depend on the 

intermodal spacing &21 , since the quantity 0 2 appearing in [P(t )] must be calcu

lated according to definitions (5.6.39) and (5.2.6) as 

(5.6.66a) 

where n 1 is given by definition (5.6.39a) and the frequency solution (5.6.41a): 

(5.6.66b) 

Stability condition (5.6.65) depends additionally on the parameters ex, 72• r, r I C, 

and c. 

5.6.3.6 Summary and Interpretation 

For Type 1, a degenerate steady-slate solution (5.6.37a) is stable if and only if 

• Conditions (5.6.48), which do not depend on 6 21 , hold for the non

degenerating degrees of freedom (z 1, y 1) 

• Condition (5.6.65 ), which does depend on 6 21 , holds for the degenerat

ing degrees of freedom (z2, Y2). 

The situation is analogous for Type 2 solutions, upon interchanging subscripts 1 

and 2, and recalling 612 = -~21· 

The first condition above is equivalent to the one-mode stability condition, 

thus segments of a solution curve (e.g. either of the curves on Fig. 5.6.3) which 

are unstable in the one-mode case are also unstable in the two-mode case. 

The second condition, depending on 6 21 , can only restrict the range of stabil

ity further. From a physical viewpoint (in analogy to the experiment discussed 

in Section 2.5), the second condition should cause modal interference for small 

6 21 ; that is, the lock-in bands are likely to overlap, and/ or be suppressed, as the 
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two modes compete for control of the response frequency n. For example, it is 

reasonable to expect that the lock-in band for Type 1 (representing the lower 

mode) will become unstable at the upper end in deference to Type 2 (represent

ing the upper mode); and conversely, that the lock-in band for Type 2 will 

become unstable at the lower end in deference to Type 1. Numerical results 

presented in Chapter 7 display just such behavior. 

5.7 Summary 

For each case listed in Table 4.1.1, steady-state monofrequency solutions to 

the amplitude/phase equations (4.3.19) have been found analytically, and the 

stability of solutions has been investigated by a combination of analytical and 

numerical techniques. An index to the results is given in Table 5. 7 .1. 
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CHAPTER VI 

METHODS OF Fffi'ING THE MODEL TO EXPER.J](ENTAL DATA 

8.1 Introduction 

In this chapter. certain important characteristics of the model solutions for 

rigid cylinders, distilled from the analyses of Sections 5.3 and 5.4, are found to 

depend on a set of six parameters, denoted P~e. k = 0, 1, ... , 5, from which the 

six model constants a~e may be recovered. Simple, easily implemented methods 

are developed for selecting numerical values of the P~e which optimally fit the 

model to experimental data. 

To be more specific, Table 6.1.1 summarizes the chapter by listing the solu-

tion characteristics considered, the pertinent experimental data, and the 

relevant parameters P~e. whose definitions arise naturally in the sequel. The 

sixth parameter Pr, does not appear in the Table, for reasons explained in Sec-

lion 6.4. 

Table 6.1.1: An Overview of Chapter 6 

Struc- Section Solution Characteristic Exp'l Parameter{s} 
lure Data Optimized 

Forced 6.2 Dependence of lock-in Fig. 2.3.2 Po 
Cylinder band-width on forcing 

amplitude 

6.3 Lock-in band-center C, Fig. 2.4.2 P 1, P 2, Ps 

Spring- bandwidth W, and the 

Mounted dependence of C and Won 

Cylinder "reduced damping". 

6.4 Peak structural amplitude Fig. 2.4.2 p4 
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The above criteria for selecting model constants are considered superior to 

those previously used in a similar model by Blevins [6], for two reasons. First, 

the previous work relied heavily on experimental data for stationary cylinders. 

Here, on the contrary, stationary-cylinder data has been deliberately avoided, 1 

since Koopman's photographs (Figs. 2.3.3) show clearly that the assumption of 

two-dimensionality, inherent in the fluid model, is strongly violated for the sta-

tionary cylinder. Second, Blevins' method does little to clarify the dependence 

of physically measurable quantities on a set of model parameters. Here, on the 

contrary, some simple formulas are developed which make such relationships 

transparent. 

For comparison of the current model with Skop and Griffin's lift-coefficient 

model [63], previously discussed at the opening of Chapter 3, it is emphasized 

that here the parameters P~: are restricted to be constant. In contrast, the 

parameters of the lift-coefficient model, as determined for spring-mounted 

cylinders, are allowed to vary with the reduced damping ..t, which gives an illu
TJ 

sion of good model/experimental agreement. Indeed, if such variation were per-

mitted in the present modeL the agreement with experiment would be greatly 

enhanced. However, the fluid oscillator, which depends upon the P~:. can in real-

ity have no knowledge of the structural damping ratio - the fluid reacts only to 

motion of the structure, not to parameters internal to the structural oscillator. 

Consequently it is physically incorrect to allow model parameters to vary with 

..t, and the temptation to do so, in order to improve the appearance of results, 
TJ . 

has been resisted in the current work. 

1. Except for the previous determination of model constant ae using the stationary- . 
cylinder shedding frequency c.J.; see Eqs. (3.2.11) and (3.2.12). 
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8.2 Lock-in Band-Width for Forced Cylinders 

6.2.1 Experimental Data 

Experimental measurements by Koopman [37] of lock-in band-width versus 

forcing amplitude have been discussed in Section 2.3; the results are shown in 

Fig. 2.3.1 for Reynolds numbers of 100, 200, and 300. Of these three values, 

Re = 300 best represents the fully turbulent vortex street which prevails for the 

entire Reynolds number range from 300 to 3 x 105 (see Fig. 2.2.1). Therefore 

only the Re = 300 data, as digitized in Table 6.2.1, are considered in the current 

analysis. 

Table 6.2.1: Koopman Experimental Data for Re = 300 

(]' -0.294 -0.242 -0.199 -0.099 -0.062 0.094 0.150 

B 0.273 0.186 0.150 0.073 0.050 0.057 0.105 

6.2.2 Model Stability Boundaries in the ( u •. B •) Plane 

As discussed in Section 5.3, the theoretical equivalent of experimental lock-in 

boundaries are the model-predicted stability boundaries. As given by Eqs. 

(5.3.24) and shown in Fig. 5.3.1, the stability boundaries 

(6.2.1) 

are loci in the (u•, A •) plane; however, the normalized squared-amplitude A • of 

the fluid oscillator cannot be measured experimentally. Therefore, to compare 

the model with experiment directly, it is necessary to eliminate A • from the 

expressions for the stability boundaries, obtaining instead explicit relationships 

between the normalized forcing amplitude B • and the normalized detuning u•. 

To accomplish this objective, each of the boundaries (5.3.24) is substituted 

into the solution (5.3.12), yielding 
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[BJstabOOt! = .JL~:(u•H [1 -L~:{u.)]2 + u·2~ {6.2.2) 
bound47"ffk 

where k = 1, 2, 3. Each of these loci in the {u•. B •) plane may be readily calcu-

lated; the results are shown in Figs. 6.2.1, with lettered points corresponding to 

those in Fig. 5.3.1. 
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Interpretation of the various stability boundaries in Figs. 6.2.1 to determine 

the overall boundary requires some care, because the regions of stability and 

instability do not map simply from the {u•. A •) plane to the {u•, B•) plane. For 

fixed u•, the transformation B •(A •) given by Eq. {5.3.12) is sometimes one-to-
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detai I : 

T. • ( iJS , ~[2 ) 
u : ( i/3 '~ 2

1
7 ) 

s =(!,f-) 

.52 .54 .56 .58 
NORMALIZED DETUNING cr* 

Figure 6.2.1b. Magnified View of Region Indicated on Fig. 6.2.1a. 

one, sometimes three-to-one, and, in the special situation where two of the three 

root$ A • coalesce {i.e. at the point of vertical tangency), two-to-one. The many-

to-one mappings invalidate the notion of regions mapping into regions. 

To infer the overall stability boundary for Fig. 6.2.1 from the boundaries of 

Fig. 5.3.1. attention is focused on the solution forB • = ~ ...J2. shown explicitly in 

Fig. 5.3.1, and occurring at points T and T' in Figs. 6.2.1. This particular solu-

tion is special because it represents the dividing line between two types of 

behavior: that is, for B • < ~ ~ {e.g. B • = 0.4) each solution crosses L 1 (the 

straight-line stability boundary A • = ~) at a lower value of !u•l than it crosses 

L2 (the half-elliptical boundary UPU'). while for B• > ~v'2(e.g. B• = 0.6), the 

opposite is true. The solution forB • = ~ F2" crosses both stability boundaries L 1 

and L 2 at the same value of !u•l.1 namely 
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., 1 r;-5 = UT = -v~. 
4 

(6.2.3) 

Consequently if B • is fixed and it is desired to know the maximum value of I u •1 

which will produce a stable solution, L 2 is the relevant boundary if B •< ~"2. 
B 

while L 1 is the relevant boundary otherwise. In other words, the overall stability 

boundary in Fig. 6.2.1a is V' T 'P TV, and the region above is stable.2 

Using Eq. (6.2.2), this result is staled mathematically as 

(6.2.4) 

lu•l > u;. 

where Lt - Lt(a•), as given by Eqs. (5.3.24), and u;. is given by Eq. (6.2.3). 

6.2.3 Optimizina Model Lock-in with Respect to Experiment 

The analysis above has determined a fixed set of model stability boundaries 

in the normalized (a•, B •) plane. Therefore, recalling the definitions 

• a = c 1a ; 
2 

(B.2.5a) Ct - ex 

B• = c~; (6.2.5b) 

it follows that the location of the model stability boundaries in the (a. B} plane 

of Fig. 2.3.2 depends only on the axis-stretching constants c 1 and c 2. The goal of 

this section is to determine positive numerical values for c 1 and c2. or 

equivalently c 1 and ~. which best .fit the experimental data (a i• Bi) listed in 
ce 

1. In fact, this condition was used to arrive at the special values 
• 1 r.=- B• 3 ~ 

ar = 4v5 and = Bv2. 

2. Since the mapping· B •(A •) is three to one in the region bounded by U' PUR, that 
region represents not only the unstable interior of the ellipse {£ 2, L 5), but also some 
of the stable exterior. 
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Table 6.2.1. 

The optimum values of {c 1, ~) are defined to be those which minimize the 
c2 

squared-errorE 1 between the experimental data and the model. 

(6.2.6) 

where the quantities Ltt. are defined by 

(6.2. 7) 

and the second term within each pair of curly brackets is obtained from Eq. 

(6.2.4). 

At first it may seem that minimization of E 1 with respect to c 1 and c 2 must 

be carried out by trial and error: however. calculations reveal a considerable 

simplification. For the data of Table 6.2.1, E 1 versus c 1 is plotted in Fig. 6.2.2 

Ct . Ct 
with- as parameter. On the plateaus at left ( c 1,c 2 << 1. -fixed), only the 

c2 . c2 

• 
first summation in Eq. (6.2.6) contributes since !u, I ~ O'T holds for all the data 

Ct 

points. In other words, c 1 and c 2 are so small that all of the data (a,,B,) lie very 

near the origin of the normalized {u•, B •) plane (Fig. 6.2.1), such that only sta

bility boundary £2 is relevant. Conversely, on the plateaus at the right of Fig. 

c . 
6.2.2 ( c 1, c2 >> 1. c: fixed ), only the second summation, in Eq. (6.2.6) contri-

• 
butes since !u, I > aT holds for all the data points. In other words, the axis

Ct 

stretching constants are so large that points T and T' of Fig. 6.2.1 appear, on 

the scale of the data, to be virtually at the origin, such that only stability boun-
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dary L 1 is relevant. 

From Fig 6.2.2 it is apparent that the least-squares solution occurs either for 

c 1 << 1 or for c 1 >> 1. But c 1 << 1 must be ruled out on the basis of the 

assumption 

a - (6.2.6) 

which is inherent in the asymptotic method of Chapter 4; see Eq. {4.1.9). Hence 

the least squares solution of interest lies at c 1 >> 1, and only stability boundary 

L 1 is relevant. 

With the help of definitions (5.3.24) and (6.2.5), consideration of the second 

line of Eq. (6.2.4) in the limit c 1 >> 1 with ..:...!.. fixed gives3 

c2 

(6.2.9) 

Therefore, minimization of E 1, occurring at c 1 -. CJ!), is equivalent to finding the 

best straight line• 

B = Polul (6.2.10) 

to fit the stability boundary data ( !u, ~ B;.) given in Table 6.1.1, where 

Po 
= 1 C1 

ra~· 
{6.2.11) 

Substituting definitions (6.2.5) and (3.2.15), while identifying p = (J for the 

3. It has been assumed here that a• = c 1a >> 1 so that only Eq. (6.2.4b) need be con
sidered, with a• dominating under the radical. These assumptions might be ques
tioned on the grounds that c 1 is not actually infinite, while the detuning a may actu
ally be zero, in which case a' goes to zero rather than infinity. Experimentally, how
ever, the value of a on the lock-in boundaries never actually approaches zero, due 
to the threshold displacement level shown in Fig. 2.3.2. This threshold level, 
although not predicted by the present model, demonstrates that the behavior of the 
model stability boundaries near a = 0, including whatever distortions of them are 
inherent in the limiting process (6.2.9), is irrelevant from a physical viewpoint. 

4. Eq. (6.2.10) represents a V- shaped line in the (a, B) plane, a straight line in the 
( Ia ~ B) plane. 
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forced case {Table 4.1.1), yields 

p _ 2 { 2a }t 
o - 3f3(r2 + r2) 

(6.2.12) 

In view of the definition (3.2.8) of e 1, the latter expression is a function of S and 

the Q.( only. hence Po is a proper candidate for the set of model parameters Pt. 

discussed in Section 6.1. 

The optimum value for the stability boundary slope P 0 is defined to be that 

which minimizes the squared error 

E2 = L;(Bi-Poluil)2 

i 
(6.2.13) 

between the experimental lock-in-boundary values Bi in Table 6.2.1 and the 

corresponding model values given by Eq. (6.2.10). Minimization of E 2 with 

respect to P 0 gives 

Po = 

Performing these summations using Table 6.2.1 yields the optimum value 

Po = 0.813, 

which corresponds to the curve ~ = 1.15 in Fig. 6.2.2. 
c2 

(6.2.14) 

(6.2.15} 
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8.3 Lock-in for Spriq-llounted Cylinden 

8.3.1 Frequency Variables for Comparin& Kadel to Experiment 

For comparison with experimental plots such as Fig. 2.4.2, model predictions 

for frequency response {e.g. Fig. 5.4.2) must be converted from the (fl1 , ~) 

plane to the (d,. d,.) plane, using the in~erted form of approximations (5.4.14), 

{6.3.1a) 

(6.3.1b) 

which are exact for e 2 = 1. Such a conversion has been applied to Fig. 5.4.2 

(duplicated here as Fig. 6.3.1a), the result being Fig. 6.3.1b. Two features of the 

transformation should be noted: 

i. A 45° line, flr - fl1 = K, where K is a constant, transforms to the 45° line 

d,. - d1 = K. In particular, portions of the frequency solution satisfying 

flr ~ fl1 transform to d,. R:l d1. 

ii. The horizontal line dr = 0 transforms to the parabola cL,. = ~ d}. This 

explains the slight upward curl in the horizontal (locked-in) portion of the 

transformed solution, Fig. 6.3.1b. Thus, while the function fl1 (Ar) is one-to

one [Eq. (5.4.19)], the function dt(dr) is not. 

8.3.2 Model Lock-in Characteristics 

The objective of this subsection is to develop simple expressions for the posi-

tion and width of the model lock-in band, delimited by the points z+ and z- on 

Fig. 6.3.1a. 1 The easiest way to describe the position and width of this band is to 

define a new coordinate x in the {a1 . flr) plane as 

{6.3.2) 

1. It is assumed throughout that all solutions in the lock-in band are stable. As shown 
in Chapter 7, this is a justifiable assumption for the parameter values selected 
herein. 
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- - ---STROUHAL FREQUENCY RESPONSE 
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Fig. 6.3.1: Comparison of Detuning Coordinates 
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which has the advantage of reducing the frequency equation (5.4.19) to a quad-

ratic in the response detuning fl.,.: 

(6.3.3) 

Solving, 

(6.3.4) 

Viewed in (z, A,.} coordinates, the endpoints x1* of the lock-in band 

correspond almost exactly to the limits of real solution A,.. where the two roots 

(6.3.4) of the quadratic coalecse. Therefore, setting the radical in Eq. {6.3.4) 

equal to zero: 

Solving. 

Therefore the center of the lock-in band, 

c -

and the width of the lock-in b.and, 

Xt+ + Xt-

2 

are given by the following simple expressions: 

ka. 
Model Band-Center: C = 

4')' 

Model Band-Widlb: W = 1~"k2+k2 
2')' VI a. b · 

(6.3.5) 

(6.3.6) 

(6.3.7a) 

(6.3.7b) 

(6.3.8a) 

(6.3.8b) 

Since the damping coefficient J' in Eqs. (6.3.8} is positive, symmetry of the 

lock-in band about the exact resonance point ll1 = 0 depends entirely on the 

parameter ka.. In particular, if ka. > 0. then the lock-in band is skewed to the 

right, in qualitative agreement with experimental data {see Fig. 2.4-.2). 
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To fit the above result to experimental data, it is necessary to isolate the 

dependence of k 4 , kb, and-y on the mass ratio 7J and structural damping ratio~· 

Substitution of Eqs. {3.2.15c,d) and {3.2.24a,b) into definitions {5.4.11) gives 

(6.3.9a) 

{6.3.9b) 

Also, recalling approximation {5.4.17b }: 

(6.3.10) 

Although the previously defined quantity 

(6.3 .11) 

is strictly a function of TJ, the value of TJ for the experiments under considera-

tion is so small { TJ = 0.00514 ) that 

(6.3.12) 

is assumed, the validity of which must be verified a posteriori when a value for 

as is known. Assumption {6.3.12) does not invalidate results of the model for 

large values of 7]: it merely . implies that the current procedure for selecting 

model constants is not generally applicable. 2 

Under assumption (6.3.12), the parameters {k4 , kb, -,)may be written as 

{6.3.13a) 

(6.3.13b) 

(6.3.13c) 

where the P~:o discussed in Section 6.1, are functions of Strouhal numberS and 

the ak only: 

2 . As previously indicated, the accuracy of the approximate conversions (5.4.14) and 
(6 .3 .1), which relate the solution coordinates (fl1• flr) in a simple way to the physical 
coordinates (d1 , c4 ), also depends on assumption {6.3.12). 
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Pt 
1 a,. 

(6.3.14a} !!: - -(--)(2a3 + a 6} 
e1 2nS 

p2 
1 a4 

(6.3.14b) - -[{28)2
- as(aa + a5)) 

e 1 n 

Pa = 
a,. 

{6.3.14c) 2nS · 

Substitution of approximations (6.3.13} into Eqs. (6.3.6) produces the follow-

ing expressions for model lock-in band-center C and band-width W: 

Model Band-Center: C ~ 
4(2( + Pa) 

.Jp~ + p~ 
Model Band-Width: W Rf 

2(2( + P 8 } ' 

where the reduced damping ( is defined as 

{6.3.15a) 

(6.3.15b) 

(6.3.16) 

Hence for small T}. C and W are function of reduced damping only. It remains to 

select values for P 1, Pe. and P 3 to optimize this result with respect to experi-

mental data. 

6.3.3 Experimental Lock-in Characteristics 

Experimental values of lock-in band-center and band-width. denoted c, and 

Wi respectively {i = 1, .. . , 5 ). may be calculated for the five frequency response 

curves shown in Fig. 2.4.2 by the method illustrated in Fig. 6.3.2. Since 

(6.3.17) 

values of x may be read directly from the original (d,., d1 ) plots. Results of 

these calculations are given in Table 6.3.1. 

8.3.4 Optimizin& Model Lock-in with Respect to Experiment 

The optimal values of model parameters P 1, P 2, and Ps are defined . to be 

those which minimize the squared error E 3 between the experimental values 
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Table 6.3.1: Experimental Lock-in Characteristics 
i Tit. t .. t (xl-)t (xt_)i c .. w .. 
1 0.00514 0.00103 0.200 0.000 0.314 0.157 0.314 
2 0.00514 0.00145 0.282 0.000 0.257 0.1285 0.257 
3 0.00514 0.00181 0.352 0.000 0.225 0.1125 0.225 
4 0.00514 0.00257 0.500 -0.021 0.156 0.067 0.177 
5 0.00514 0.00324 0.630 0.000 0.106 0.053 0.106 

(C,, W,) and the model predictions {C, W): 

5 
Ea- E[{c,-C)2 +{W,-W)2 ]. {6.3.18) 

\=1 

Defining for convenience 

(6.3.19a) 

(6.3.19b) 

(6.3.19c) 

it follows from Eqs. {6.3.15) that 

Ea(Q t• Q2. Qa) = ~ [C"· - Q 1 
] 2 + [W. - Q2 

]2 
{;;1 f i + Q s ( f i + Q s . 

(6.3.20) 

Error minimiza~ion with respect to Q 1 and Q 2 requires that at the optimal 

point (Qi. Qi) 

BE a -2f;[c,- Qi ][ 1 J 0 = = BQ1 i=1 (", + Qa (", + Qs 
{6.3.21a) 

oEs -2 t [ w, - Q 2 ][ .... 1 ] 0, = = oQ2 o£=1 (.,;+Qs (",+Qs 
(6.3.21b) 

which yields 



-130-

Qi = {6.3.22a} 

Q~ = {6.3.22b) 

For fixed Q3 , optimal values {Qi. Q~) may easily be found by performing the 

indicated summations using Table 6.3.1. Complete optimization is achieved by 

tabulating the {Q 1, Q2}-minimized error E3(Q~ , Q~ Q3) versus Q3, and seeking 

the minimum at Q;. The result is 

Q i = 0.04641; Q~ = 0.09556; q; = 0.096. {6.3.23) 

By inverting Eqs. (6.3.19), and substituting Eqs. (6.3.23), the optimum values of 

p1 = 0.371 {6.3.24a) 

P 2 = ± 0.0909 (6.3.24b) 

P 3 = 0.192. {6.3.24c) 

The ambiguous result for P 2, .to be resolved in Section 6.4. is natural here since 

expressions (6.3.15) for C and W depend on Pl rather than on P2 itself. 



-131-

8.4 Peak Structural Amplitude for Spriq-Mounted Cylinders 

8.4.1 Model Predictions for Peak Amplitude 

An explicit formula for the model-predicted structural amplitude . B is 

obtained in terms of f:.r by substitution of Eqs. {5.4.15b) and (5.4.16b) into Eq. 

(5.4.8): 

{6.4.1) 

For comparison with the experimental curves (Figs. 2.4.2), the maximum of B 2 

with respect to d1 is sought, 

(6.4.2) 

According to Eqs. (6.3.1) and (5.4.19), 

(6.4.3) 

so according to the chain rule 

d.B2 = d.B2 d(dJ) df:.J 

d f:.r d ( d J ) d f:. J d f:.r · 
(6.4.4) 

Differentiation of Eqs. (6.3.1a) and (5.4.19) demonstrates that each of the latter 

two derivatives is bounded, 1 so that every solution of Eq. {6.4.2) is also a solution 

of 

= 0. (6.4.5) 

Therefore, the latter condition may be used to deduce the peak amplitude B 

and the corresponding value ~r of flr· 

Differentiating Eq. (6.4.1) and evaluating at the peak gives 

1. ctJ:;) is infinite at A1 = i· but such large values of A1 are not permitted. 



-132-

d~ [B 2(4fli + -y2
)

2
] I = 3

4
p (c 2 + c2)(8~r - 2kCl). 

r peak 
(6.4.6) 

On the other hand. by direct d.i.fi'erentiation of the product B 2 (4!1; + -y2)2 and 

evaluation at the peak [condition (6.4.5)]: 

(6.4.7) 

Thus the peak amplitude is given by 

(6.4.8) 

ar is given by equating the specific expression (6.4.8) for ff 2 to the general 

expression (6.4.1) for B 2 evaluated at ~r = ar I the result being 

(6.4.9) 

Whenever this cubic yields more than one real root, Eq. (6.4.8) may be applied 

for each to determine which root actually corresponds to the peak. 

6.4.2 Experimental Data for Peak Amplitude 

Experimental values of peak structural response, read from Figs. 2.4.2, are 

tabulated below. 

Table 6.4.1: Experimental Peak Amplitudes 
i 17t (t Bt 

1 0.00514 0.00103 0.524 

2 0.00514 0.00145 0.396 
3 0.00514 0.00181 0.204 
4 0.00514 0.00257 0.146 
5 0.00514 0.00324 0.082 

6.4.3 Optimizinc Model Peak Amplitude Predictions with Respect to Experiment 

Recapping the selection of model parameters so far: Po has been chosen to 

optimize model/experimental agreement for lock-in of forced cylinders, while 
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P 1, P 2, and P 9 have been chosen to optimize such agreement for spring-

mounted cylinders. Since there are a total of 6 parameters {P0, .••• P 6) avail-

able to fit the model, P 4 and P 6 remain free for optimization of peak-amplitude 

predictions. 

Identification of a pair of parameters P 4 and P 6 may be attempted by writing 

the equations for B and ~r [Eqs. (6.4.8) and (6.4.9)] as functions of ('", "1· and 

P 0, •••• Ps only; whatever additional parameter groups remain are candidates 

for P 4 and Pe. Toward this end, the quantities ka., kt,. and 7 are written as in 

Eqs. (6.3.13), which utilize the small-TJ approximation (6.3.12), while the quantity 

_1_(c 2 + c2) is rewritten using Eq. (6.2.12) and the identity 
3p 

the result being 

(6.4.10) 

(6.4.11) 

It is apparent then that, instead of two additional parameters (P., P 6), only one, 

namely 

(6.4.12) 

will appear in the equations forB and ~r. 

Some reflection reveals that the sixth model parameter P 6 has actually been 

discarded by the small-TJ approximation (6.3.12). Comparing Eqs. (6.3.11) and 

(6.3.12) it is therefore appropriate to take 

Pe = -as. (6.4.13) 

with the realization that this parameter cannot be numerically determined 

using the data or the analysis presented herein. Determination of P 6 requires 
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additional experimental data on spring-mounted cylinders for which TJ is 

sufficiently large that the product TJP~ is likely to be comparable to 1.2 

To find the optimum value for P • (assuming Po. , ... , P 9 are fixed), Eq. 

(6.4.8) for the model-predicted peak amplitude B 2 is written as 

(6.4.14) 

where 

(6.4.15) 

according to Eq. (6.4.9). 

The optimum value of P • is defined as that which minimizes the squared 

error 

(6.4.16) 

between the experimental peaks B i listed in Table 6.4.1 and the corresponding 

model predictions ff (P •· TJ;,, (".d. Substitution of the previously optimized values 

of Po. P 1r and Ps [Eqs. {6.2.15) and {6.3.25a,c)], as well as the two alternative 

values for P 2 [Eq. (6.3.25b)] yields Table 6.4.2. 

Table 6.4.2: Two Alternative Solutions 
Solution# p2 Optimum P,ol Minimized Error E _A 

I +0.0909 0.385 0.02283 
II -0.0909 0.126 0.01973 

Of the two possibilities tabulated, 

2. Recall that the value TJ = 0.00514 is used herein for oomparison to experimental 
data (Table 6.4.1). 
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p2 = -0.0909 (6.4.17a) 

is better for several reasons. Yrrst, the error E 4 is lower in that case. Second, 

the corresponding value 

P 4 = 0.126 {6.4.17b) 

2 2 
yields c 1 =- = -p = 15.75, whereas P 4 = 0.385 yields c 1 = 5.19. The former 

a • 

value is sufficiently large to achieve the least-squares plateau .for c 1 -. co and 

~ = 1.149 on Fig 6.2.2, whereas the latter value is not. Third, the smaller value 
c2 

of P 4 = a is more consistent with the order of magnitude assumption {4.1.9). 

6.5 Recoverin1 Model Constants from the Parameters ·P~: 

6.5.1 Al1ebraic Expressions 

The functions 

{6.5.1) 

as given by definitions (6.2.12), (6.3.14a,b,c), {6.4.12), and {6.4.13), may be 

inverted by algebraic manipulation to yield 

{6.5.2) 

It should be emphasized however that the a~: are model constants and do not 

actually depend on the Strouhal number S. The parameters P~: do depend on S, 

and their numerical values have been determined in Sections 6.2, 6.3, and 6.4 

for S = 0.20. Consequently, when these numerical values are substituted into 

equations of the form (6.6.2), S = 0.20 must again be used. 

Algebraic manipulation of the equations represented by {6.5.1) begins by solv

ing for e 1o a function of a 0 , a 3 , and a 5 previously defined by Eq. (3.2.8). Using 

Eqs. (6.3.14), (6-.4.12), and (6.4.13), the result is 
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(6.5.3) 

Back substitution into the same equations yields 

{Pt + Ps)(P~ + Pl) 
- p~ (6.5.4a) 

(6.5.4b) 

4 P9P .(P~ +PC )2 

a 2 = 3nS P§ (P 1P 5 + P 2P 3) 3 (6.5.4c} 

(6.5.4d) 

(6.5.4e) 

(6.5.4f) 

6.5.2 Sicn Restrictions 

The physical arguments used to develop the model in Chapter 3 imply that ao 

and a, must be positive, for the following reasons: 

• ao is a proportionality constant relating the bulk fluid velocity and the 

integrated fluid momentum, which makes sense if and only if 

ao > 0. (6.5.5a} 

• In the expression {3.2. 7) for the fluid-structure interaction force F int• 

a 4 multiplies the term proportional to the relative velocity between 

fluid and structure, and this force properly opposes the relative 

motion if and only if 

a 4 > 0. (6.5.5b) 

Other physical arguments in Chapter 3, of a more nebulous nature, suggest 

that a 3 and a 5 should also be positive, for the following reasons: 
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• In the expression for F 'into as multiplies the term representing 

apparent fluid mass, and the apparent mass is positive if and only if 

(6.5.5c) 

• ln the expression for F into ar; multiplies the term representing a buoy

ancy force, whose sign is physically correct if and only if 

(6.5.5d) 

6.5.3 Numerical Values 

In Fig. 6.5.1, the model constants ak are plotted versus the undetermined3 

model parameter P5 using Eqs. (6.5.4} and the optimal values for P 0, ..• , P 4 

given by Eqs. (6.2.15), (6.3.25aoc), and (6.4.18a,b). According to Eqs. (6.5.4), 

pp 
there is a singularity at P 5 = - ;

1 

3
• Unfortunately, there is no value of P 5 in 

Fig. 6.5.1 which simultaneously satisfies all four of the sign restrictions above, 

a 3 being negative whenever a 0 is positive, and vice-versa. 

If compromising the desired conditions is unavoidable, it should at least be 

minimal. Since conditions (6.5.5a,b) are deemed more important than condi-

tions (6.5.5c,d), 

P 6 = 0.30 (6.5.6) 

is selected as the best value, since a 0 a 4 and a~ are then positive in Fig. 6.5.1, 

while a 3 is minimally negative. 

For this value, the small-'7} approximation 

(6.5.7) 

upon which the analyses of Sections 6.3 and 6.4 are based, is certainly justified 

for the value 7J = 0.00514 used therein. 

3. As mentioned in Section 6.4, an optimum value of Pr, cannot be deduced from the 
experimental data presented in Chapter 2. 
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CHAPTER VB 

RESULTS 

7.1 Introduction 

Fig. 7 .1.1 summarizes the thesis: the description of vortex-shedding 

phenomena in Chapters 1 and 2 is represented by boxes A and A' of the Figure, 

while the mathematical development in Chapters 3-6 is outlined by the 

sequence A -+ B -+ C -+ D -+ E -+. Boxes F, G, B ', C', and H diagram the con

tents of this chapter, including 

• Analytic results for each type of structure considered (box F), and a 

comparison to experimental results {circle G). 

• A comparison {circle H) between numerical solutions to the differential 

equations . (B '), numerical solutions to the amplitude/phase equations 

(C '), and analytic results F. 

Comparison H serves two purposes: 

1. To check the mathematical analysis represented by B -+ C -+ D -+ E -+. 

2. To isolate the efiect of model assumptions (A -+B) from mathematical 

assumptions (B -+ C -+D). If comparison H reveals that analytic 

results F match numerical results B' fairly well, then whatever 

discrepancies appear in the comparison G are directly attributable to 

the model assumptions A -+B. 

All of the model results presented in this chapter have been obtained using 

the parameter values Pit. selected in Chapter 6, summarized here for ease of 

reference, 
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MODEL 

(Chaptar 3) 

Many 
Aaaumptions 

Oscillator Eqs. ( 4.1.8) 
Non linear, 2"d-Order O.D.E.' s 

(See Also Table 3.5. 1) 

ASYMPTOTIC 

METHOD 

(Chapter 4) 

Order-E 
Assumptions 

Amplitude/Phase Eqs. (4.3.19) 

D 

E 

Nonlinear, 1•'- Order O.D.E.' s 

Stea~y-State 

Assumption 

Steady-State Eqs. (5.2.5) 

(Nonlinear, Algebraic) 

(Sea Alao Table 5.7.1) 

ANALYTIC 

SOLUTION 

\Chapter 5) 

No 

Aaaumptiona 

Response and Stability 
In terms of Model Parametera 

(See Table 5. 7.1) DETERMINATION OF 

MODEL PARAMETERS 

(Chapter 6) 

Fig. 7.1.1: Thesis Summary; the Role of Chapter 7. 
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P 1 = 0.371; 

P 4 = 0.126; 

and hereafter referred to as Parameter Set I. 

7.2 Forced Cylinden 

p2 = -0.0909 

p(J = 0.30. 

(7.1.1a} 

(7.1.1b) 

Model versus experimental stability boundaries are shown in Fig. 7.2.1. 

Values of P 0 and P 4 used for the model calculations are those given by Eqs. 

(7.1.1). The calculations have· been performed according to Eqs. (6.2.4) and 

(6.2.5), where the axis-stretching constants c 1 and c 2 are given in terms of P 0 

and P 4 by definitions (6.2.11), (6.2.8), and (6.4.12). Points T and T' on Fig. 7.2.1 

correspond to those discussed at some length in Section 6.2 (see Fig. 6.2.1). 

The relatively good agreement between model and experiment is attributable 

to the small value of P 4 (large value of c 1) determined in Section 6.4, since large 

c 1 has the effect of placing points T and T' close to the origin, as assumed in 

Section 6.2.3 during the determination of P 0 . 
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7.3 Sprin&-Kounted Cylindera 

Experimental measurements of amplitude and frequency response for 

spring-mounted cylinders, previously given in Fig. 2.4.2. are compared to the 

corresponding model predictions [Eqs. (5.4.19) and (6.4.1)] in Figs. 7.3.1-7.3.5. 

Parameter Set I is used throughout. together with the experimental value of 

mass ratio 

T} = 0.00514 {7.3.1) 

and the Strouhal number S = 0.20. The structural damping ratio ~ is given on 

each plot. 

Recalling the discussion following Eq. (5.4.19). there are three types of solu-

tion for spring-mounted cylinders, denoted on subsequent Figures as follows: 

1. Short-dashed lines: Non-real amplitudes 

2. Long-dashed lines: Real amplitudes, but unstable 

3. Solid lines: Real amplitudes, stable. 

Therefore, only the solid line segments are physically meaningful. 

7.3.1 Frequency Response (Fip. 7.3.1a-7.3.5a} 

The discussion of model-predicted frequency response is facillitated by the 

annotation of Fig. 7.3.2a, the other frequency curves being similar. Non-locked

in freqency response CJ ~ CJ5 (i.e. d.,. ~ dt ), typical of the experimental data far 

from resonance ( d,. far from 0). is well approximated by the nearly straight seg

ments AB and FC'D'G. Likewise, locked-in response CJn RS CJ - CJs {i.e. 

dr ~ 0 - d1 ), typical of the experimental data near resonance, is well

approximated by the nearly horizontal, hair-pin-shaped segment BCDEF. The 

upward curl of the hair-pin segment at large values of d1 bas been explained 

previously in the discussion following Eqs. (6.3.1). 

Solutions generated by the underside of the hair-pin segment are real and 



._ 
"'0 

c.:> 
Zo _m 
z• 
::>0 
~ 
LLJ 
D .., 
w-
a:c:) 
::> 
~ 
u 
::> 
a:::o 
t-- • 
U')O 

I 
w 
tf) 

z 
QU"' n..-: 
tf)O 
w• 
a: 

0 
(") . 
0 

-144-
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stable {i.e. the curve is a solid line) virtually all the way out to the cusp E. except 

for a very small distance between D and E. Stability of the entire lock-in band 

BCDE was assumed · in the regression analysis of Section 6.3, without any 

guarantee that it would actually be true. However, since it is virtually true for 

the parameter values under consideration (Eqs. 7.1.1), the design of Section 6.3 

succeeds, producing model predictions for lock-in band width, position, and 

dependence on damping ratio which compare well to the experimental data. 

Thus, according to the model, as d1 {i.e. fiow speed U} is increased, there is 

initially a smooth transition from natural vortex-shedding response to lock-in 

along the curve ABCD. but at D the solution jumps suddenly to D ', marking the 

end of the lock-in band and a return to natural vortex-shedding. As d1 is 

further increa sed, the solution proceeds along n·c. Conversely, as d1 (i.e. U) is 

decreased, t h e solution at first proceeds along CD 'C ', then jumps from C' to C, 

and finally proceeds along CBA. This behavior agrees qualitatively with the 

experimental data, except that the model-predicted jump upward from D to D' 

occurs at a higher value of d1 than the jump downward from C' to C - a hys

teretic effect typical of nonlinear systems, but not exhibited by the frequency 

response data. 

7.3.2 Amplitude Response (Fip. 7.3.1b-7.3.5b) 

The discussion of model amplitude response is facillitated by the annotation 

of Fig. 7.3.2b, the other amplitude curves being similar. Lettered points on Figs. 

7.3.2a and 7.3.2b correspond respectively, such that a discussion of the model-

predicted hysteresis loop need not be repeated. However, in contrast to the fre-

quency data, it should be noted that h e experimental amplitude response, like 

the model, does exhibit hysteresis, as indicated by the arrows in Fig. 2.4.2. 1 

The curious smaller branch FC 'D 'G of each amplitude curve is easily 

1. For clarity, the arrows have been omitted from Figs. 7.3.1b and 7.3..2b. 
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explained by plotting the squared amplitude B 2, a s obt ained from Eq. (6.4.1), 

rather than the amplitude B itself. For ( = 0.00145, the result is Fig. 7.3.6, with 

lettered points corresponding to those in Figs. 7.3.2. It is clear then that points 

E and F connect through the region B 2 < 0, which of course is imaginary in the 

(d1 , B) plane of Fig. 7.3.2b. 

Quantitatively, model/ experimental agreement is not nearly as good for 

amplitude response as for frequency response. This is natural however, since 

three model parameters (P 1• P2. Pa) were devoted to fitting the frequency data, 

whereas only one parameter (P ")was allotted to fit the amplitude data. 

7 .3.3 Numerical Implementation 

Considerable care was required to obtain Figs. 7.3.1-7.3.5, since the one-to-

one functions ll1 (llr) [Eq. (5.4.19)] and B (llr) [Eq. {6.4.1)] are extremely sensi-

tive in the locked-in region, at least for the parameter values used herein. This 

sensitivity is somewhat masked by the conversion to (d1 , d.,.) coordinates, which 

causes the hair-pin segment of the frequency response to curl upward at the 

right (see Section 6.3.1 and Fig. 6.3.1 ). 

To allow for this sensitivity, the increment in the "independent variable" 2 llr 

was selected at each step such that the next stepwise element of arclength along 

either of the curves llr vs. ll1 or B vs. ll1 would be no greater than some 

prescribed maximum. For example, to produce Fig. 7.3.1a, llr-steps on the order 

of 10-4 were required in the hair-pin segment, while steps on the order of 10-2 

were possible in the straight segments. Additionally, a step-size control based 

on the second derivative fl/'(llr) was incorporated as an override, to guard 

against taking too large a step near a point of vertical tangency llj'(llr) -+ 0. 

2 . See the discussion of Section 5.4 .2 . 
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7.4 One-Mode Cable Approrlmation 

As discussed in Section 5.5, the solutions for this . case are identical to those 

for the spring-mounted cylinder {Section 7.3), except that all amplitudes are 

smaller by a factor of Vf. In particular, the lock-in band characteristics are 

identical to those of a rigid cylinder having the same mass ratio and damping 

ratio. Thus Eq. (6.3.15b), plotted in Fig. 7.4.1 using Parameter Set 1, predicts the 

model lock-in band-width W (f) for vibrating wires or cables, provided that the 

one-mode approximation is valid and the mass ratio TJ is small. 

Both of these conditions hold for mode 7 of the steel wire examined in Sec-

tion 2.5, 1 for which the experimental value of band-width is W = 0.106.2 Thus, for 

model/experimental agreement in this regard, the experimental structural 

damping ratio would have to be (" ~ 1.6 x 1o-•. Realistically, it is unlikely that {" 

is so small, since even the slightest amount of structural slippage - notably 

between the vibrating wire and the pins around which its ends are wrapped ( cf. 

Fig. 2.5.2) - is capable of dissipating energy at a rate corresponding to ( ..... 0.001 

or greater [32, p. 31-11]. For such a realistic value of damping, Parameter Set I 

seriously under-predicts the width of the lock-in band, by a factor of about 5. 

The source of this diffic.ulty is easily ascertained: the model parameters 

(P 1, P 2, P 3 ) were selected in Section 6.3 to produce model values of bandwidth 

agreeing optimally with Feng's data {also shown in Fig. 7.5.1), for which the lev-

els of reduced damping are much smaller than those appropriate for a steel wire 

in air. Ideally, of course, the model should extrapolate correctly to larger values 

of (. However, it fails to do so, at least for Parameter Set I. Improved results 

for large ( may be possible by re-selecting (P 1, P 2, P 3) based on experimental 

results which incorporate a wider range of f. Unfortunately, such data are una-

1. The mass ratio for steel in air is 1.94 x 10-4 . 

2 . In terms of the coordinates used on Fig. 2 .5 .4, values of x [Eq. {6.3.17)] are given by 
X : 1 - f / f 1 • 

f, /ft 
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vilable at the present time. 

Consequently, as the two-mode cable approximation analysis is discussed in 

the next section, Parameter Set I is used, and no further attempt is made to 

relate model results quantitatively to the experimental data of Section 2.5. 

Rather, the mass ratio and damping ratios typical of Feng's rigid-cylinder exper-

iments are selected, and qualitative features of the experimental data are 

sought in the model solutions. 

% 
t
Q -
~ 

I 

Q 
z 
c( 
CD 

z 
I 

~ 
() 

0 .... 

0.1 2 

REDUCED DAMPING i = ~ 
5 1 2 5 10 

5 10-4 

• FENG DATA FOR 

ELASTICALLY- MOUNTED 

CYLINDERS 

MODEL 

I 
Measured bend-width for 

[ 

mode number 7 of a 

steal wlra in air 

- - - - - - - - -
Minimum realist lc h: 

damping ratio , 

for steel wire 
I 

2 5 10-3 

DAMPING RATIO C FOR STEEL IN AIR 

(., = 1.94 )( 10-4
) 

P'ipre 7.4-.1. Model vs. Experimental Lock-In Band-Width 
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7.5 Two-Mode Cable Approximation 

7 .5.1 General Remark& 

In this section, the analytic, steady-state solutions developed in Section 5.6 

are presented graphically. The foremost objective of the presentation is to 

demonstrate the nature of modal interaction for small values of the intermodal 

detuning ~21 . These model results may then be compared qualitatively to the 

experimental observations of Section 2.5. Additionally, the reasonableness of 

two-mode solutions is sought by comparison to one-mode results; for large ~ 21 

the two-mode problem should resolve into two one-mode problems. 

For such purposes, the dependence on the mass ratio 17 and on damping 

ratios ~' is of secondary importance. Thus, the fixed values 

TJ = 0.00514, (7.5.1a} 

(7.5.1b) 

are used throughout Section 7.5, together with the Strouhal number S = 0.20 

and Parameter Set I (Eqs. 7.1.1). 

The results are plotted usi:ng the approximate detunings (ll1, A,.. ll21 }, 1 which 

1. In contrast, d-variables (the exact detunings) rather than A-variables were used to 
present one-mode results in Section 7 .3. There are good reasons for this: 

• The A's may be regarded as natural variables· for solution of the mathemat
ical problem, while the d's are natural from a physical viewpoint. Thus in 
Section 7 .3, the use of (d,., d1 ) [defined by Eqs. (5.4.13)] was advantageous 
for quantitative comparison with experimental data. In this section on the 
other hand, quantitative comparisons with experimental data are never 
made, so the use of (d1, d,.) [defined by Eqs. · {5.6.16)] holds no particular 
advantage .· 

• The use of (d.r. d1 ) in Section 7.3 was convenient because the conversion 
from (A1. A,.) to (d1. d,.) was easily ac~omplished for the one-mode prob
lem [cf. Eqs. (5.3.1)]. In this section on the other hand, there is no easy 
way, for the non-degen-erate case, of converting the function A,(A,.) (ll21 
fixed) [Eq. (5 .6.29)] to the function d1(d.r) (d 21 fixed), since the conversion 
frorri A21 to d 21 involves the unknown A1 [ct. Eqs. (5.6.17)]. 

Therefore, A-variables are preferable for Section 7.5, and will be used exclusively 
throughout. In any case, the small distinction between A's and d's should not cause: 
undue concern. The results look much the same in either set of variables, except for 
a slight, upward curl of the lock-in bands in the (d1 , d.,.) plane (see Fig. 6.3.1; the 
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are defined by Eqs. (5.6.15). These variables are to be interpreted as shown on 

Fig. 7.5.1, which is exactly analogous to Fig. 5.6.1.2 Thus 61 , plotted below as the 

abscissa, measures the normalized free-stream velocity U, while ~21 , treated 

below as a parameter, measures the separation between the two adjacent struc-

tural frequencies 0 1 and 0 2.3 The frequency solution ~ 1 (~r) is expected to exhi

bit locked-in behavior near ~r ~ ± ~ 6 21 , since these values correspond to 

n = 01 and n = rla. 

(Neturel 
... , 

atructural frequenciea \ 

Response} 
frequency\ 

... ...2 
{
Strouhal r frequency 

6» • 2wS U • 0 
----~r---------------------------~--~~----------~~----------FREQUENCY 

1 0, }(0,• 0 2 ) C 0 2 

----~--------------------------~----------~--~--------------~------------NORMALIZED FREQUENCY 

I I 

-~A,
' I 

~ At --------

Fipre 7.5.1. Interpretation of ~-Variables 

DETUNING 

VARIABLES 

As indicated in Fig. 7.5.2, the solutions developed in Sections 5.6.2 and 5.6.3 

must be pieced together to form the composite solution. Non-degenerate solu-

tions are denoted "Plus" or "Minus" in reference to the quadratic formula 

(5.6.29), while degenerate solutions are denoted by "Type" as discussed in Sec-

two-mode case is analogous). 

2. The approximations "~" indicated in Fig. 7.5.1 are attributable to the O(t:2
) 

difference between the A's and the d's [Eqs. (5.6.17)]. 

3. See the discussion concerning generic subscripts, Eqs.(4.1.10). 
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tion 5.6.1. Each kind of solution is further distinguished by its "Class," as dis-

cussed in Section 5.4.5 (applicable to the degenerate case) and again in Section 

5.6.2.4 (applicable to the non-degenerate case}. Solution Classes are indicated 

on plots as follows: 

(0) No line: Frequency solution~~ not real (non-degenerate case only) 

(1) Short-dashed line: ~, real but one or both amplitudes non-real 

(2) Long-dashed line: 61 real and ampltidues real, but unstable 

(3} Solid line: Real, stable solution. 

Only Class (3) is physically meaningful, thus the composite steady-state solution 

is the union of Class (3} results. 

7 .5.2 Caae 1: Non-DeEenerate Solutions 

Frequency response and structural amplitude response are plotted in Figures 

7.5.3, 7.5.4, and 7.5.5 for 6 21 = 0.05, 0.10, and 0.20 respectively.• For each value 

of 6 21 , the "Plus" and "Minus" frequency solutions are plotted separately for 

clarity. However, for the parameters under consideration, "Plus" solutions are 

never Class (3), so the corresponding amplitude plots are omitted. "Minus" solu

tions are Class (3) over the segments AB and EF, and additionally over the seg

ment CD when the intermodal detuning 6 21 is large enough (Fig. 7.5.5). In each 

instance, points A-F on the frequency plot correspond respectively to those on 

the amplitude plots. 

4. The arclength controls used to adjust the Ar step size in Figs. 7 .5.3-5, although simi
lar to those described in Section 7 .3.3, were not refined enough to capture all the 
details. In particular, the denominator 1e2 in Eq. (5.6.29) goes through zero near 
each of the values Ar = ± ~621 . Therefore the long, dashed, horizontal lines on the 

frequency plots should properly extend to the edge of the graph; their truncation is 
attributable to the particular numerical algorithm used. On the other hand, the 
apparent vertical gaps in the frequency solution {e.g. Fig. 7.5.3a, near Ar = ~A21 ) are 

not attributable to oversized steps, but rather to the occurrence of non- real fre
quency solutions [ Class (0)]. 



"' ot
-

1 
l 

a
)
 

FR
EQ

UE
NC

Y 
R
E
S
P
~
N
S
E
 

<'
PL

U
S'

 
SO

LU
TI

ON
> 

/ 
/ 

/ 
/ 

/ 

T
 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

/ 
-

J
\ 

C
)'

 
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_ 

/ 

-
-
-
-
·
·
t
:
~
~
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

~
r
 

c:
)t

-

"' o .
.. 

I 

/ 
/ 

--
-
-
-
-
-
-
-
-
-
-
-
-
-_

_
_

_
_

_
_

 ?
 _

_
_

_
_

_
_

 _
 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ I 

/ 

/ 
/ 

/ 

I 

- -

I 

~
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
1
F
 

"' . 0 

b)
 F

RE
Qt

£N
CY

 R
ES

PO
NS

E 
<'

M
IN

U
S'

 
SO

LU
TI

ON
> / 

/ 

---
---

--
---

---
---

-~:
:::

~==
==-

---
--

---
---

-
i:l

.r 
~ 

--
--
--
--
--
--
--
--

--
--

--
--

~:
==

==
==

=~
~~

~-
--

--
--

--

"' 0 I A
 -o

. 3
0

 
-0

.
15

 
0

.0
 

0
. 

15
 

i:l
.f 

0
.3

0
 

82
 

81
 0 "' ~
~
 

0 "' C'\1 ~
~
 

0 

I 
I 

' 
c
)
 

UP
PE

R-
M

OD
E 

AM
PL

IT
UD

E 
RE

SP
ON

SE
 

('M
IN

U
S'

 
SO

LU
TI

ON
> 

( 
.....

 

- -

, 
E

 
! 

~1
A 

1 
~
~
 

1 
-
:
:
C

F
 

0 "' 0 . 0 "' C'
\1 0 0 

d
) 

LO
W

ER
-M

OD
E 

AM
PL

IT
UD

E 
RE

SP
ON

SE
 

( 
'M

lN
U

S'
 
S
~
L
U
T
I
~
N
)
 

B
 

~L
A 
~
 

--
-

l 
0 

I 
I 
I
F

 
-0

.3
0

 
-0

.1
5

 
0

.0
 

0
.1

5
 

0
.3

0
 

A
f 

F
ig

. 
7

.5
.3

: 
N

o
n

-D
eg

en
er

at
e 

S
o

lu
ti

o
n

s.
 ~

21
 

0
.0

5
. 

I ~
 

(.
]1

 

ex:
> 

I 



&
I)

 

0 

~
r
~
 

&
I)

 

0 I 

&
I)

 . 
0 

~
r
~
 

&
I)

 

0 I 

a
)
 

FR
EQ

UE
NC

Y 
RE

SP
ON

SE
 

('P
L

U
S'

 
SO

LU
TI

ON
> 

/ 
/ 

/ 
/ 

/ 
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
:
:
:
:
:
:
;
~
;
~
=
=
-
-
-
-
-
-

/ 
/ 

/ 

--
--

--
--

--
=--

=:-
..... 

-:_
-:.

-:.
..-

---
---

--
--
-'
""
-~
--

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

/ 

/ 

/ 
/ 

/ 
/ 

~
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
F
 

b>
 F

RE
QL

EN
CY

 R
ES

PO
NS

E 
<'

M
IN

U
S'

 
SO

LU
TI

ON
> / 

/ 
/ 

-
-

-
-

-
-

-
-
-
-

-
-

-
-

-
-

-
-

-
~-

:.
 -=_

 -=-
_:..

 -s_
 ..

 _ 
-_

 ~
 -_

 ~~
-

-
-

-
-

-
-

-
-

/ 

,
/
 

--
--

--
--

--
--

--
--
--
--
--
--
~~
~~
~~
~~
~~
~~
~~
~~
--
--

--
-

--
-

A
~
-
-
-
-
-
-
~
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
~
-
-
-
-
~
 

-o
. 3

0
 

-o
. 1

5 
o.

 o
 

o.
 t5

 
o.

 3
0 

~
f
 

c
) 

UP
PE

R-
M

OD
E 

AM
PL

IT
UD

E 
RE

SP
ON

SE
 

<'
M

IN
U

S'
 
S
~
L
U
T
I
~
N
>
 

I 
0 &

I)
 

0 0 

82
 an

 
N

 
0 0 

I 
I 

/ 
I 

.....
. 

._
 

E
 

~1
A 

I 
....

._.
8 

I 
' 

-
~
 

!F
 

I 
d>

 L
~
W
E
R
-
M
O
D
E
 

RM
PL

IT
UD

E 
R
E
S
P
~
N
S
E
 

<'
M

IN
U

S'
 

SO
LU

TI
ON

> 
I 

0 &
n ~
r
 

8 
0 

81
 &

I)
 

N
 

0 0 OL
A 
~
 

--
l 

c:i
 

I 
I 
'
\
 

-
-

-~
· 

F 
-0

.3
0

 
-0

.1
5

 
0

.0
 

0
.1

5
 

0
.3

0
 

~
f
 

F
ig

. 
7

.5
.4

: 
N

o
n

-D
eg

en
er

at
e 

S
o

lu
ti

o
n

s,
 L

l 2
1

 
0

.1
0

. 

I ~
 

(.
}1

 

'..
0 I 



T
 

I 
I 

/ 

/ 
/ 

a
)
 

FR
EQ

UE
NC

Y 
RE

SP
ON

SE
 

/ 
/ 

~~
 

('P
L

U
S'

 
SO

LU
TI

ON
> 

/ 

/ 
/ 

-
/ 

--
--

--
--

--
--

--
--

--
--

-
--

--
--
~
~
~

~~
j
~~

: __
__

__
__

__
__

 _
 

A
r
~
~
 

&
n ·
~
 

0 I 

/ 
/ 

/ 
/ 

/ 

/ 

/ 

/ 

/ 
/ 

/ 

--
--

--
--

--
--
~~
~~

--
--

--
--

--
--

--
--

--
--

--
-

--
--

--
--

--

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ I 
I 

I 

- -

~
-
-
-
-
-
-
~
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
~
F
 

"" . 0 

A
r
~
 

&
n 

0 I 

b>
 F

RE
QU

EN
CY

 R
E
S
P
~
N
S
E
 

('M
IN

U
S'

 
SO

LU
TI

ON
> 

/ 
/ 

, 
, 

E
 

/ 

--
-

--
--

--
--
~
~

::
:~

::
:~

~~
~-

--
--

/ 

~
/
 

/ 

,'{
 

--
--

::
::

::
:
~:

~~
~~

~-
--

--
-
--

--
--

-
~ 

B
 

-0
. 

IS
 

0
.0

 
o.

 1
5 

A
f 

0
.3

0
 

C
) 
U
P
P
E
R
-
M
~
O
E
 

AM
PL

IT
UD

E 
RE

SP
ON

SE
 

<'
M

IN
U

S'
 
S
~
L
U
T
I
O
N
>
 

I 
0 &

n 
0 0 

82
 

I 
.o

 
&

n 
N

 
0 0 ~lA 

c 
,-

-
E

 
t 

B
-
-
-
-
~
 

-.
...

._
 

I 
-=

-. 
I 

I 
I 

I 

d
) 
L
~
W
E
R
-
M
~
D
E
 

AM
PL

IT
UD

E 
RE

SP
ON

SE
 

<'
M

IN
U

S'
 

SO
LU

TI
ON

> 
I 

0 &
n 

0 0 

81
 
I 

_8
 

&
n 

N
 

0 0 

c 
E

 
0 

T
 

I 
' 

I 
-

::
::

::
-:

--
.-

-
J 

• 
• 

F
 

-
(l

.3
0

 
-0

.1
5

 
0

.0
 

0
.1

5
 

0
.3

0
 

A
f 

F
ig

. 
7

.5
.5

: 
N

o
n

-D
eg

en
er

a
te

 S
o

lu
ti

o
n

s,
 L

\ 2
1

 
0

.2
0

. 

I ~
 ""' ::::>
 

I 



-161-

Points B and D have a special significance. At B. the upper mode amplitudes 

B2 and A 2 vanish,6 so point B must represent the borderline between non-

degenerate solutions and degenerate solutions of Type 1. Likewise, at D, the 

lower mode amplitudes B 1 and A 1 vanish, so point D must represent the border-

line between non-degenerate solutions and degenerate solutions of Type 2. 

These observations will be discussed further in connection with the composite 

solution (Section 7.5.4). 

For the set of parameters under consideration, non-degenerate solutions 

apparently do not exhibit lock-in to any great degree. This is by no means true 

in general; for alternative sets of models parameters, "locked-in" portions of the 

frequency solution have been found which are real and stable. Such solutions 

typically involve large amplitudes for one of the structural variables Y;. and for 

both of the fluid variables z;.. which persist even for large values of the modal 

separation ~21 • This is unacceptable from a physical viewpoint, since it is then 

impossible for the two-mode problem to resolve into two one-mode problems for 

large ~21 , inasmuch as assumption {3.4.16) of the one-mode approximation is 

violated by one of the z;.. It is fortunate - or perhaps significant - that 

Parameter Set I. selected herein in accordance with experimental data, does not 

produce such physically unacceptable results. 

7 .5.3 Caae 2: De1enerate Solutions 

As for Case 1, frequency response and structural amplitude response for the 

degenerate case are plotted on Figs. 7.5.6, 7.5. 7, and 7.5.6 for ~21 = 0.05, 0.10, 

and 0.20 respectively. In each instance, Type 1 and Type 2 frequency solutions 

are plotted on a single set of axes (similar to Fig. 5.6.3). As indicated by arrows, 

each frequency curve is truncated so as not to obscure the other, but the trun-

5. Referring to Eq. (5.6.5), A, must go to zero whenever B, does. 
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cated portions contain only unstable solutions. The Type 1 solution generates 

an amplitude curve forB 1 {plot' c of each Figure), while Type 2 generates a curve 

forB 2 {plot b of each Figure). 6 Apparently, real stable solutions [Class (3)] occur 

for the degenerate case only in the locked-in segments B 'G and D 'H. It is clear 

that these lock-in bands are suppressed as the modal separation ~21 decreases; 

the presence of the upper mode causes instability of the right end of the mode-l 

lock-in band, and likewise, the presence of the lower mode causes instability of 

the left end of the mode-2 lock-in band. 

7.5.4 Composite Solutions 

By piecing together the Class (3) results from Figs. 7.5.3-7.5.8, the composite 

solutions shown in Figs. 7.5.9-7.5.11 are obtained, with lettered points 

corresponding to the previous figures. Although not shown, similar composite 

graphs might be constructed for the structural amplitudes. 

The frequency composites reveal certain features of modal interaction: 

• Comptex solutions for small values of ~21· In Fig. 7.5.9 (~21 = 0.05), the 

suppression of lock-in· bands discussed above is evident. As a result, in 

the range of ~, be~ween points G and E, no solution of the assumed 

form (5.6.1) exists, thus some other, more complex form of solution 

must prevail. An example of such a solution is given in Section 7.5.4. 

• Lock-in overlap for intermediate values of ~21· In Fig. 7.5.10 

(~21 = 0.10), a hysteresis loop involving both lock-in bands appears. 

Thus, for intermediate values of modal separation, the model predicts 

the possibility of lock-in for both modes at the same value of flow 

6. The factor of ~ppearing on the axis scales is that discussed in Section 5.5. The 

computer code which generated the amplitude plots was adapt~ from a routine 

originally written for rigid cylinders; the amplitude scaling by vt was neglected in 

the plotting. 
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speed (~ 1 ); one mode or the other prevails depending 'On initial condi

tions. This· result is qualitatively similar to the experimental observa

tions discussed in Section 2.5.6. where lock-in "drifted" between modes 

B and 9 despite a virtually constant flow speed. It is quite possible 

that. in this crude experiment. various ''initial conditions" were 

imposed randomly by factors not under strict experimental control 

(e.g. extraneous air currents). 

• Resolution of the two-mode problem into two one-mode problems for 

large values of ~2 1 . In Fig. 7.5.11 (~21 = 0.20), the two modes are well 

separated. there is an intervening "dead-band" between them. and each 

of the hysteresis loops is similar to that discussed previously for the 

one-mode case (Section 7.5.3). Again. this result resembles experimen

tally observed behavior of the lower modes having larger ~21 , for exam

ple modes 6 and 7 discussed in Section 2.5.5. 

It is clear that non-degenerate and degenerate solutions "fit together" at 

points B -B' and D -D '. This makes perfect sense since, as previously noted 

(Section 7.5.2). the "non-deg~nerate" solutions at B adD are in fact borderline

degenerate. Thus B and D are bifurcation points. But what are the small gaps 

between B and B' and between D and D 1? Ideally there should be no gaps: B -B I 

should be a single point, as should D -D '. The gaps are attributable to the fact 

that the analysis which obtained points B and D {Section 5.6.2) is entirely 

different from that which obtained points B I and D' (Section 5.6.3). In particu

lar, the real-amplitude boundaries (B, D} arise from the asymptotic method. 

which includes certain order-t approximations, while the stability boundaries 

(B ', D ') arise from a direct perturbation of the differential equations and a sta

bility analysis based on Floquet theory, which include only some of these 
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approximations. Thus, the "primed" points are probably more accurate, but this 

speculation is uncertain. As exemplified by Fig. 7.5.12, the largest modulus of 

the eigenvalues arising from Floquet theory (Section 5.6.3.5) is very close to the 

critical value !A.I = 1, such that numerical error in the integration routine used 

to obtain the matrix X(T) may be a factor in determining the precise location of 

the stability boundaries B' and D'. 7 

Fig. 7.5.13 is a map of the composite solutions, which has been obtained by 

computing the various boundaries B, B ', G, C, D, D ', H, E for a number of values 

of ~21 . Thus, the lettered points at a21 = 0.20 correspond to those on Fig. 7.5.11. 

Non-degenerate solutions exist in the three shaded regions, while degenerate 

solutions exist in the hatched regions. The white gaps between the B -B' boun-

daries and between the D -D' boundaries are artificial, as discussed in the previ-

ous paragraph. On the other hand, the large while .area is real; in this region 

the differential equations fail to admit simple-harmonic solutions of any sort, as 

mentioned previously in connection with Fig. 7.5.9. Overlapping regions indicate 

hysteretic behavior; in particular, lock-in overlap occurs in the region where 

Type 1 and Type 2 degenerate solutions coexist. The lettered points T 1, ... , T • 

are test points for numerical solutions, as discussed in Section 7.5.4. 

The phenomenon of lock-in suppression, particularly of the upper mode, 8 is 

clearly displayed by the solution map. Lock-in suppresion has two effects: first, 

it reduces the extent of lock-in overlap, and second, it gives rise to the region of 

complex solutions (the white region of Fig. 7.5.13), discussed above. 

7 . Double precision (IBM 370) was used exclusively in the numerical work. Numerical 
integrations were performed with the Adams-Moulton predictor-corrector method, 
with starting values obtained by the method of Runge- Kutta- Gill. This routine 
incorporated automatic step-size refinement to control the local truncation error . 
The tolerar:.ce for this error was set at 10-5• 

B. This asymmetry is attributable to the same factor which causes the skewness of 
lock-in bands, namely, km '¢ 0. 
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Decomposition of the two-mode problem into two one-mode problems at large 

values of ~21 is also depicted by the solution map. The shaded, triangular 

"wedge" of non-degenerate solutions near the center ·of the map represents the 

"dead" area between modes, where both structural amplitudes B;. are relatively 

small {cf. Figs. 7.5.5c,d and Fig. 7.5.11}. Thus the two modes are "well-separated" 

- and hence the one-mode approximation is adequate for each - if ~21 is 

sufficiently large that this wedge is intersected during a traverse of the flow-

speed variable ~1 .9 Thus the value of modal separation ~21 at the vertex V may 

be regarded as the minimum value for which the one-mode approximation is 

permissible. The location of this point will of course vary with the parameters 

which have been fixed throughout this section, notably the mass ratio TJ and the 

structural damping ratios {i· 

7.5.5 Numerical Checks 

As previously indicated in Fig. 7.1.1, the mathematical analysis of Chapters 4 

and 5 may be checked by solving the differential equations (4.1.8) numerically. 

In Figs. 7.5.14-7.5.17. such solutions are shown for four combinations of 

(~,. ~21). as itemized in Table 7.5.1. These test points have been selected to 

represent the four types of solution predicted analytically by the composite 

solution map, Fig. 7.5.13. 

Table 7.5.1: Test Points for Numerical Solution 
Figure ~J ~21 Point on Fig. 7.5.13 Analytical Prediction 

7.5.14 0 0.10 Tt Degenerate, Type 1 

7.5.15 0.10 0.10 T2 Degenerate, Type 2 

7.5.16 -0.05 0.05 Ts Non-Degenerate 

7.5.17 0.10 0.05 T" Not Simple Harmonic 

Q. Solutions in the "degenerate" regions of Fig. 7 .5.13 are precisely those of the one
mode approximation, while solutions in the "non-degenerate" regions dit!er some
what, since the other mode is participating. 
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The numerical solutions are plotted for 0 < t < 1250, each integration start

ing from the perturbed rest state 

:z t(O) = ze(O) = Yt(O) = Ye(O) = 0.001 

Zt(O) = Z2(0) = Yt(O) = Y2(0) = 0. 

(7.5.2a} 

(7.5.2b) 

Footnote 7 of Section 7.5 describes the details of the numerical integration pro

cedure, except that the local truncation error tolerance was set to 10-4 in this 

case. The time step for the plots is tlt = 0.5; thus, since n = 1 + O(t;), there are 

approximately 12 points plotted per cycle. 

In Figs. 7.5.14-7.5.16, the steady-state amplitudes {A,, Bi) predicted by the 

asymptotic method are given at the right of each plot. Clearly, the analytical 

predictions are very good - qualitatively, each solution is of the type predicted 

by Fig. 7.5.13, and quantitatively, the amplitude predictions are accurate. The 

quantitative agreement is somewhat surprising, since Parameter Set I produces 

r = 0.7398, r = 1.156, p = 0.405, and q = 0.810, which violate the order-£ 

assumption (4.1.9). Apparently, the asymptotic method continues to perform 

well in spite of this. 

As predicted by the steady-state stability analysis, the solution shown in Fig. 

7.5.17 is not simple harmonic. Although the steady-state equations yield no 

further information for such a case, the asymptotic method itself, prior to the 

assumption of steady state, does yield such information, as shown by Fig. 7.5.18. 

The latter figure was obtained by numerical integration of the amplitude/phase 

equations (4.3.19), with initial conditions 

A 1 = A 2 = B t = B 2 = 0.001 

1-Lt = J.L2 = rp = 0, 

{7.5.3a) 

(7.5.3b) 

which are the amplitude/phase equivalents of (7.5.2). Envelope plots were 
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produced by plotting± A,(t) and± B,(t }, as indicated on the vertical axes. 

Comparison of Fig. 7.5.18 to Fig. 7.5.17 reveals that the asymptotic method 

continues to predict accurately even when the solution is not steady-state. On 

account of order-£ approximations in the asymptotic method, the comparison is 

of course not perfect; for example, the predicted number of envelope maxima 

for each of the Yt. (Fig. 7.5.18) is slightly lower than the actual number (Fig. 

7.5.17). However, if such inaccuracies are acceptable, the asymptotic results are 

very valuable in such cases, since an integration such as Fig. 7.5.18 is computa

tionally far less costly than Fig. 7.5.17. 
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CHAPTERVIll 

SUMMARY AND CONCLUSIONS 

8.1 Overview 

In this investigation. vortex-induced structural oscillations. have been con-

sidered using a semi-empirical modeling approach. the results of which have 

been compared to experimental data. In the Introduction. the mechanisms of 

vortex-shedding and lock-in have been dis.cussed from a physical viewpoint, and 

attention has been focused on three types of structures having circular cross-

section, including forced and spring-mounted rigid cylinders, as well as taut 

elastic cables. 

The development of the thesis, diagrammed by Fig. 7.1.1 above, has proceeded 

in a parallel fashion for these three types of structures, but the emphasis 

throughout has been on elastic cables, and particularly on the associated prob-

lem of modal interaction. 

8.2 Synopsis of Chapter 2 

Experimental results have lead to several conclusions regarding the nature of 

lock-in, all of which may be understood in terms of the mathematical model 

developed in later chapters: 

• For circular cylinders, lock-in is somewhat different if the structural 

vibrations are externally forced rather than vortex-induced: forced 

vibrations produce lock-in bands symmetrically disposed about reso-

nance (Fig. 2.3.1), while vortex-induced vibrations produce lock-in 

bands skewed entirely to the right side of resonance {Fig. 2.4.1). 1 

1. Skewness of lock-in bands depends on other factors as well, notably the structure's 
cross sectional shape. For example, lock- in for spring- mounted, D- section 
cylinders is skewed almost entirely to the left side of resonance, in direct contrast to 
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• For lower modes of elastic cables, lock-in occurs as for a spring-

mounted cylinders (Fig. 2.5.4, modes 6 and 7). 

• For higher modes of elastic cables, lock-in overlap exists, in which 

either of two modes may prevail depending on initial conditions. (Fig. 

2.5.4, modes 8 and 9). 

8.3 SynopBiB of Chapter 3 

A mathematical model for vibrations of vortex-shedding structures has been 

developed. The model contains a series of bold assumptions which succeed in 

reducing the complex flow problem to a tractable form, but which are hardly 

rigorous. Moreover, there are a half-dozen empirical constants in the model 

whose numerical values must be determined by comparison to experimental 

data. Nevertheless. the differential equations generated by the model may be 

regarded as prototype nonlinear systems for studying the physical processes 

involved. 

As summarized by Table 3.5.1, the model yields a pair of coupled, nonlinear 

oscillator equations for spring-mounted cylinders, which reduce to a single 

equation for forced cylinders, and generalize, using modal decomposition, to an 

infinite set of coupled equations for elastic cables {one pair per mode). The 

infinite set of equations for cables have been truncated to one pair (the one-

mode approximation) and to two pairs (the two-mode approximation) based on 

a physical understanding of lock-in and modal participation. One of the goals of 

the ensuing analysis has been to assess the validity of such finite-mode approxi-

mations by a comparison of one-mode and two-mode results. 

circular cylinders [16]. The present model cannot explain this. since the only 
parameter in the model which depends on cross~ectional shape is the Strouhal 
number S. but variation of S does not change the sign of k"; see item 2 of Section 
8.6 . 
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8.4 Synopllill of Chapter -i 

The introduction of order-r; approximations has permitted the development 

of generalized model equations {4.1.8), which contain each of the problems of 

interest as a special case {Table 4.1.1). Moreover, Eqs. {4.1.8) are amenable to 

analysis by well-known asymptotic methods, one of which is described in Section 

4.2. In this method, each of the structural variables Yt. and fluid variables z;, is 

assumed to perform sinusoidal oscillations with slowly varying amplitude and 

phase. The result of the analysis is a set of first order differential equations for 

the amplitudes and phases, Eqs. {4.3.19). 

8.5 Synopsis of Chapter 5 

The steady state has been assumed for the structural and fluid oscillators, 

thereby reducing the nonlinear differential equations (4.3.19) to nonlinear alge

braic equations (5.2.5). The latter equations have been specialized to the vari

o-us structures of interest; the two-mode approximation involves the full set of 

equations. In each case, the algebraic equations have been solved analytically, 

and the stability of steady-state solutions has been investigated. These analyses 

have led to a number of observations, cataloged below. 

A. Forced cylinder: 

1. Mathematical analog of lock-in. For the forced case. monofrequency 

oscillations automatically satisfy the condition (2.3.1) for forced lock

in. Thus, boundaries of stability for the assumed solution form are the 

model analogs of experimentally o~:?served lock-in boundaries. In 

agreement with experiment, the stability boundaries are found to be 

symmetric about resonance, irrespective of model parameter values. 

2. Lock-in band-width. Band-width increases with forcing amplitude, a 
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dependence which is made more explicit in Chapter 6. 

B. Spring mounted cylinder: 

1. Mathematical analog of lock-in For induced oscillations. monofre

quency solutions do not necessarily satisfy the condition { 1.4) for 

lock-in; condition (1.3) may be satisfied instead. Thus, from a 

mathematical viewpoint, lock-in for spring-mounted cylinders is not 

delimited by stability boundaries {as in the forced case) but by the 

peculiar shape of the frequency respsonse curve. This calls for a spe

cial definition to define uniquely the endpoints of the lock-in band; see 

item 2 of Section 8.6. 

2. Lock-in symmetry and band-width. Steady-state solutions and stabil

ity depend on two groupings {ka.. kb) of the fluid-structure coupling 

coefficients (r, r, C, c) rather than on the four coefficients them

selves. In Chapter 6, these same two groupings are found to control 

the extent and symmetry of lock-in; see item 2 of Section 8.6. 

3. Detuning vu:riables. There exist frequency detuning variables (ll1 , ll,.) 

which are natural for the solution of the mathematical problem, such 

that the inverted form of the frequency solution, t:.1 (t:.,.), is single

valued. The exact detuning variables (d1 , d,.), which are natural for a 

description of the physical problem, differ from (t:.1 , ll,.) by quantities 

of order t:2• 

4. Solution Classes. Only solutions which are real and stable [Class (3)] 

are of interest. 
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C. One-mode cable approxima lion: 

1. Si'Tnilarity to spring-1TWunted cylinder. Solutions and stability are 

identical to those for the spring-mounted cylinder, except that all 

amplitudes for the cable are smaller by the mode-shape factor -y'f. 

D. Two-mode cable approximation: 

1. Identification of Two Cases. Solutions to the two-mode equations 

(4.1.8) may be either non-degenerate (Case 1) or degenerate (Case 2). 

The two cases require separate analyses. For both cases, natural 

detuning variables (ll1 , llr, lle 1) exist for solution of the mathematical 

problem; (ll1 . llr) are two-mode generalizations of the variables dis-

cussed in item B3 above, while lle1 measures the separation between 

the two natural structural frequencies under consideration (Fig. 7.5.1). 

2. The Non-degenerate Case. In Case 1, the solution is quite . different 

than for the one-mode case. For example, the inverted frequency solu-

tion ll1 (Ar) is double-valued, whereas it was single valued for the one-

mode problem. Solutions Classes exist as for the one-mode problem, 

with the additional possibility that A1 (llr) is non-real [Class (0)). 

3. The Degenerate Case. In Case 2, two sub-cases ("Types'? are identified; 

either "mode-l" variablese are non-zero while "mode-2" variables are 

zero (Type 1), or vice-versa (Type 2). For each Type, the one-mode-

approximate solution is applicable for the non-degenerating mode, 

provided the results are shifted according to Eqs. (5.6.39) and (5.6.40). 

However, for each Type, the presence of the degenerating mode gives 

rise to extra stability conditions, which destabilize many portions of 

2. See convention (4.1.10) regarding the use of generic mode numbers (1.2) . 
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the solution curves, notably causing the supression of lock-in bands as 

the structural frequencies approach each other. This is one of the 

mechanisms of modal interaction, as discussed further in Section 8.8. 

8.6 Synopsis of Chapter 6 

Model predictions are largely dependent on the values selected for the model 

constants a 0, ..• , a 5 . A series of regression techniques have been developed to 

fit the model optimally to experimental data on rigid cylinders. In the course of 

this development, some important properties of the model solutions have 

emerged: 

1. Lock-in boundaries for forced cylinders. Stability boundaries for the 

forced van der Pol equation, traditionally plotted in the (u, A} plane 

(where A is the response amplitude}, are replotted in the (u, B) plane 

(where B is the forcing amplitude). Qualitatively, this representation 

clearly demonstrates the similarity between the model and experimen

tal data. Quantitatively, it permits the development of a simple regres

sion scheme to optimize this similarity. 

2. Lock-in characteristics for spring-mounted cylinders. By defining a 

new coordinate in the (A1 , Ar) plane, a simplified description of the 

frequency-response curve is possible in terms of the lock-in band

center C and band-width W. The band-center C, and hence the sym

metry of lock-in about resonance, is simply proportional to ka., while W 

depends on ka. and kb. These observations permit the development of a 

regression scheme to fit the model to experimental frequency-response 

data. 

3. Peak structural amplitude for spring-mounted cylinders. A formula 
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for peak cylinder amplitude has been derived. This permits a regres-

sion scheme to fit the model to experimental amplitude-response data. 

8. 7 Synopsis of Chapter 7 

Using the model parameter values selected in Chapter 6, model/experimental 

comparisons for rigid cylinders have been presented graphically. A similar com-

parison for elastic cables (using the one-mode approximation) has demon-

strated the need for refitting the model over a wider range of the ratio i.. Sub
TJ 

sequently, results of the two-mode approximation have been presented to 

describe modal interaction mechanisms in a qualitative sense. 

8.8 General Conclusions 

In Fig. 8.1. the thesis is diagrammed in a manner similar to Fig. 7.1.1, but in 

less detail. 

. 

Physical 
Problem 

Model Mathematical 
Description 

Analysis Analyt ica I 
Solution 

Comparisons for 
One-Mode Problems 

~e 8.1. Thesis Summary 

Predict ions for 
Two-Mode Problem 
(Modal Interaction) 
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On the basis of this diagram, conclusions ·may be conveniently categorized into 

three areas: 

1. Evaluation of analytical methods. The results are excellent, as demon

strated by the agreement of. approximate analytical solutions with direct 

numerical solutions (Section 7.5.5). As an additional check, two entirely 

different analytical approaches yield very similar results (Section 7 .5.4 ). 

II. Evaluation of the model. Since the analytical methods are accurate, 

analytical/experimental comparisons reflect wholly on the model. The results 

are mixed. On the one hand, the mathematical · solutions exhibit certain 

features which resemble experimentally observed behavior: 

1. For forced circular cylinders, the lock-in band is symmetric about resonance 

(irrespective of model parameters}, and grows wider as the forcing ampli

tude is increased. 

2. For spring-mounted circular cylinders, the lock-in band is skewed with 

respect to resonance (in contrast to the forced case). Moreover, the transi

tion between lock-in and non-lock-in is discontinuous at the upper end of 

the lock-in band, while it is smooth at the lower end. 

3. For elastic cables, structural response in the vicinity of each natural fre

quency is similar to that of spring-mounted cylinders, provided that the 

mode number is sufficiently small {i.e. ~21 sufficiently large}. For high mode 

numbers, the complexities of modal interaction become important, as dis

cussed in item III below. 

On the other hand, the model also displays a number of short-comings: 

1. There are serious discrepancies between model predictions and experimen

tal data regarding amplitude response for spring-mounted cylinders (Figs. 
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7.3.1b-7.3.5b). 

2. For the "optimal" model parameters selected herein, the dependence of 

lock-in band-width on reduced damping _t is far too strong {Section 7.4). 
TJ 

3. For the ''optimal" parameters. it is impossible to satisfy all of the sign res-

trictions on the model constants. which are dictated by physical reasoning 

(Section 6.5.2). 

In general, although the present model can fit certain experimental features 

very well, it seems to be unable to fit all the data adequately with a single ·set of 

model parameters. For example, when an attempt was made, for forced 

cylinders, to reconcile model predictions of the fluid-structure interaction force 

with experimental data [19. 51, 58, 59, 60 ] using regression ·techniques, the 

optimum parameter values thus generated were incompatible with the optimal 

values selected in Chapter 6. Attempts to fit interaction-force data were subse-

quently abandoned. Another example, discussed in footnote 1 of Section 8.2, is 

that the model cannot simultaneously predict right-skewed lock-in for spring-

mounted circular cylinders and left-skewed lock-in for D-section cylinders, 

although it can predict either if the model parameter P 1 is appropriately 

selected. Other vortex-shedding models are plagued with the same problems. 

Some authors have dealt with this difficulty by allowing the model parameters to 

vary with the ratio _t [63],3 or even with the independent flow variable (i.e. t::a1 ) 
. 7] 

[ 4]. Although such treatments are of course capable of obtaining improved 

results, the cost is greater empiricism, and the benefit in terms of understand-

ing basic mechanisms is questionable. 

III. Predictions concerning modal interaction. If the model is accepted, 

3. See the discussion in Section 6.1. 
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regardless of its shortcomings, for its ability to describe qualitative features of 

lock-in, then the following description of modal interaction may be postulated, 

some of which has been verified by experimental evidence. The discussion is 

based on the analysis of Section 5.6 and the results of Section 7 .5, with particu-

lar references to the composite solution map, Fig. 7.5.13. 

For mathematical comparison, consider first the one-mode approximation, in 

which modal interaction is completely ignored. This is equivalent to setting 

q = 0 in Eqs. (4.1.8), such that a monofrequency solution may exist for each 

mode independently of the other, regardless of the modal frequency separation 

CJ2 - CJ 1 (i.e. ~21 ). Thus at a given flow speed (i.e. ~~ ), the response frequency CJ 

(i.e. ~r} for each of the independent solutions may be different. 

When the interaction of "mode 1" and "mode 2" is considered4 using the two-

mode approximation (q t~t 0), the situation is entirely different, because the cou-

pled modes may no longer establish independent · monofrequency solutions. 

Instead, there are three possibilities: 

• Case 1. Non-degenerate solutions. The two competing modes are able 

to ''compromise" on a single value of CJ, and thereby achieve mutual, 

monofrequency response. This typically occurs when the compromise 

response frequency is not too close to either of the modal frequencies 

• Case 2. Degenerate solutions. One mode dominates, drives the other 

mode to zero, and establishes monofrequency response at the value of 

CJ which it would assume if the other mode were totally absent. That is, 

the dominant mode reverts to the one-mode approximation. Typically, 

"mode 1" dominates when the would-be solution for CJ in the non-

4. See convention (4.1.10) regarding the use of generic mode numbers (1,2). 
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degenerate case is very much closer to CJ1 than to '-'2· and conversely 

for "mode 2". 

• Case 3. Complex solutions. The two modes ·.are unable to "agree" on a 

compromise value of CJ for monofrequency response, and at the same 

time, neither mode is able to dominate the other. This typically occurs 

when the modal separation ~21 is very small, but CJ lies neither very 

near CJ 1 nor very near c.J 2. 

As exemplified by Fig. 7.5.13, the interplay between these three possibilities 

produces the following phenomena: 

• Degnerat e/N on-degenerate bifurcation. The smooth transition from 

Case 1 to Case 2 occurs along certain loci in the (~1 • ~21 } plane. 

• Degenerate/Non-degenerate overlap. Regions exist in the (~1 • ~ 21 ) 

plane where either kind of solution may occur, depending on initial 

conditions. "Jump" phenomena occur at the edges of the overlap. 

• Degenerate//Degenerate overlap ( or "lock-in overlap'~. A region exists 

in the (~,. ~21} plane where either mode may dominate, depending on 

initial conditions. "Jump" phenomena occur at the edges of the over

lap. This phenomenon has been observed experimentally. 

• Lock-in suppression. As ~21 becomes smalL each mode suppresses the 

region of dominance of the other. If it were not for lock-in suppres

sion, the region of lock-in overlap would be much larger, and complex 

solutions would not occur. 

As a practical consequence of this investigation, it may be concluded that the 

one-mode approximation is adequate (and in fact precise whenever degenerate 

solutions prevail) provided that the modal separation ~21 is greater than some 
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minimum value which depends on the mass ratio and the structural damping. 

8.9 Suggestions for Futher Research 

Extensions of the above work are immediately obvious. First. the dependence 

of the two-mode solution map {Fig. 7.5.13) on mass ratio and damping ratios 

should be considered. In particular, such dependence of the vertex V is of 

interest, as a guide to the adequacy of the one-mode approximation. Second, if 

appropriate experimental data become available, a refit of the model over a 

wider range of conditions might be considered, as discusssed in Section 7.4. 

Finally, the extension to three- {or higher) mode approximations is possible, and 

perhaps necessary to model interaction phenomena for very-high-mode 

response of vortex-shedding structures. However, it is questionable whether the 

understanding gained from such an extension would be worth the considerable 

effort involved, at least until a model having firmer theoretical foundations is 

available. In the opinion of this author, establishing such foundations should be 

the central goal of further research. 
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NOTATION 

The Table below lists the symbols used in this thesis alphabetically, as follows: 

• Roman 

• Greek 

• Special (non-alphabetic). 

The Table contains six columns, each of which requires some comment: 

• Column 1 (Symbol): If the symbol (e.g. B;,) has different meanings in 

different parts of the thesis, the following distinction is made in column 1: 

[referred to elsewhere as def. 1] 

[referred to elsewhere as def. 2] 

Different definitions of the same symbol are never used within the same sec-

tion, 1 so by reference to Column 4 ("Extent'~. a _particular usage should be 

unambiguous. 

Subscripted variables are sometimes listed with specific numeric sub-

scripts (e.g. a 0, . .. , a 6 ),- and sometimes not (e.g. zi), depending on the need 

to specify information in other columns of the Table. Column 2 (Descrip-

tion) should be consulted to specify the numeric values a subscript may 

assume (if any). 

• Column 2 (Description): Verbal descriptions are usually given. When a con-

venient verbal description is not possible, the mathematical definition is 

given (if it is short enough) or the space is left blank. 

• Column 3 (Defined) This column documents the location where a symbol is 

first defined or used. The following conventions are employed: 

1. With one exception; see the footnote to Eq. (4.3.4). 
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• ( ) -- Equation number 

• F. -Figure number 

• T. --Table number 

• fn. --Footnote number (1) 

• §--Section number 

• Ch. -- Chapter number 

• Column 4 (Extent): This column documents the extent of usage of a symbol, 

by listing the section numbers in which the given definition is valid. 

Conventions (1) apply to note equations and sections. Additionally, the fol

lowing abbreviations are used: 

• G: Global. The given definition is valid everywhere. 

• G-: Global with exceptions. The given definition is valid everywhere 

except where indicated by other definitions of the same symbol. 

• FORCED: "Forced Cylinder". The given definition is valid in Sections 2.3, 

3.2, 5.3, 6.2, and 7.2. 

• SMC "Spring-Mounted Cylinder". The given definition is valid in Sec

tions 2.4, 3.2, 5.4, 6.3, 6.4, and 7.3. 

• OMCA: "One-Mode Cable Approximation". The given definition is valid in 

Sections 3.4.4, 5.5, and 7.4. 

• 1-MODE: Same as FORCED+ SMC + OMCA. 

• TMCA: "Two-Mode Cable Approximation." The given definition is valid in 

Section 3.4.5, 5.6, and 7.5. 

• TMCA-N: "Two-Mode Cable Approximation, the Nondegenerate case,.'. 
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The given definition is valid in Sections 5.6.2 and 7.5.2. 

• TMCA-D: "Two-Mode Cable Approximation, the Degenerate case". The 

given definition is valid in Sections 5.6.3 and 7.5.3. 

• INDUCED: Same as SMC + OMCA + TMCA. 

• Column 5 (See Also): This column gives cross-references to other discus

sions of the symbol in question. The abbreviations itemized above are used. 

• Column 6 (Units): This column gives the dimensions of the symbol. The fol

lowing abbreviations are used: 

• M- Mass 

• L- Length 

• T- Time 

• F --Force (MLT-2). 
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Symbol Description Defined Extent See Also Units 
,... 

Uniform Acceleration §3.2 §3.2 LT-2 a 

ao ~odel constant {scales (3.2.1) G (6.5.4a} --
Z'} 

at Model constant (3.2.6) G (6.5.4b} --
a2 Model constant (3.2.6) G (6.5.4c) --
as Model constant (3.2. 7) G (6.5.4d) --
a• Model constant (3.2.7) G (6.5.4e) --
a5 Model constant (3.2. 7) G (6.5.4f) --
a a Model constant (3.2.6) G (3.2.12) --
~ Functions of !ln. (5.6.53) TMCA-D --

appearing in [P(t )]; 
i = 1, 2 

A Dimensionless ampli- (5.3.6a} 1-MODE (5.4.15b) --
tude of the fluid oscil- (5.5.2a) 
lator Z; abbreviation 
for A 1 

A, Amplitude of z,<0 >; (4.3.16) G (5.2.1) --
i = 1, 2 

b Viscous damping (2.4.2) §2.4 FTL-2 

coefficient per unit 
structural length 

o, Function of ~" (5.3.53) TMCA-D --
appearing in [P(t )]; 
i=l, 2 

B Dimensionless struc- (2.3.3) 1-MODE (5.2.1b) --
tural amplitude; abbre- (5.3.6b) 
viation forB 1 

B• Normalized form of B {5.3.11b) FORCED --
B Peak value of B §6.4 §6.4 (6.4.8) -

(6.4.14} 

Eo Experimentally §2.3 §2.3 --
observed amplitude 
threshold 

B, (1) Amplitude of struc-
tural oscillator y,<o>, 

(4.3.15) G- {5.2.1) --

i=1,2 

E;. (2) Value of E at the ith §6.2 §6.2 --
experimental data 
point 

Bm Double amplitude of (4.3.13) G- (4.3.14) --
Hm, m = 1, . .. , 4. (4.3.15) 
Note: E, {def. 1) and 
Em are equivalent for 
i = m = 1, 2. 
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Symbol Description Defined Extent See Also Units 

c Coupling coefficient in (3.2.24a} G (3.2.21) --
structural oscillator 
equation 

,..., 
Coupling coefficient in (3.2.24b) G (3.2.21) c -
structural oscillator 
equation 

cl Axis-stretching con- (5.3.10a) FORCED ~5.3.11a) --
stant for u (def. 2) 6.2 

c2 Axis-stretching con- (5.3.10b) FORCED (5.3.1lb) -
stant forB (in the §6.2 
forced case) 

c. c. Complex conjugate of (4.3.8) §4.3 -
all preceding terms 

c (1) Differential operator (3.4.5) Ch.3 (3.4.11} FTL-1 

representing struc-
tural damping 

c (2) Model-predicted lock-in (6.3.7a) §6.3 {6.3.8a} --
band-center (6.3.15a) 

Ct Function defined (4.3.10a) §4.3 --
locally for brevity 

Cs Function defined {4.3.10b) §4.3 --
locally for brevity 

c, Experimental value of §6.3.3 §6.3.3 F. 6.3.2 --
lock-in band for ith 
value of(" 

d21 Exact, intermodal (5.6.16c) TMCA --
detuning 

dt (1) Exact, fluid-structure (5.4.13b) SMC --
detuning. Note: Sub- (2.4.4) 
script f is not an index 
[see ( )1 ]. 

dt (2) Exact. mode averaged, (5.6.16b) TMCA --
fluid-structure detun-
ing. Note: Subscript f 
is not an index [see 
( >t]. 

c4 (1) Exact, response- struc- (2.4.5) SMC -
lure detuning. Note: (5.4.13a) 
Subscript r is not an 
index [see ( )rJ. 

c4 (2) Exact. mode averaged. (5.6.16a) TMCA --
response-structure 
detuning. Note: Sub-
script r is not an index 
[see { )r]. 
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Symbol Description Defined Extent See Also Units 

D Cb aracteristic cross- (1.1) G L 
sectional dimension. 
For circular cross- ! 
section!ol, D is the I 
diameter I 

Do a 
I (4-.2.6) Ch.4 ----aTe ; 

Dt a I (4.2.6) Ch.4 I ---- I 

aTt I 
e1 ao +as+ a5 ! (3.2.8) G (6.5.3) --i 

e2 1 + a3·T} 
! 

(3.2.20) G fn. 1 of --
§3.2; 

I 
(6.5.10) I 

Et Squared error I (6.2.6) §6.2 --I 

E2 Squared error 
I 

(6.2.13) §6.2 --
Ea Squared error (6.3.18) §6.3 --
E• Squared error (6.4.16) §6.4 --

f (1) Vibrational response I (1.3) INDUCED §1.4 r-t 
frequency of a system 

I (2) Forcing frequency §2.3 FORCED r-t 
( )j As a subscript, f is (2.4.4) G I (5.4.12) I --

mnemonic for "fluid'' in I (5.6.15) 
the fluid-structure I 

detunings d1 , ~1 • and i 
~ Ji· Note: subscript f 
is never an index. 

f-,f+ Lock-in band I §2.3 §2.3 r-t 
I frequency-limits for I 
I the forced rigid I cylinder 

fi Function of ~r (def.2), (5.6.26) TMCA-N --
i = 1, 2 

fn nth natural frequency (1.4) G- ~2.4.1) r-t 
of a structure 

I 

2.5 
(n = 1, ... , CIO) 

fs Natural vortex-

I 

( 1.1) G i §1.4 r-t 
shedding frequency I 
(Strouhal frequency}. 
Note: Subscripts is not I 

an index. I I 
I 

fv Frequency of vortex ! §1.1 §1.1 r-t 
I 

shedding. Note: Sub- I 

I 
script v is not an i 
index. I 

I 

f Function f(x, i) I (4.1.6) Ch.4 --
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Symbol Description Defined Extent See Also Units 

F Function of u ( def.l), I (5.4.10a) SMC --
i' Function of llr {def.l), I (5.4.16a} SMC --
Fi Function of u ( def.2) , (5.6.7a) TMCA-N --

i = 1, 2 

F, I Function o.f llr {def.2), I (5.6.19a} TMCA-N --
i = 1. 2 I 

Fw Fluid-structure ! (3.2.3) G (3.2.7) FL- 1 
I 

interaction force 

F Function F(x. i, i) {4.1.1) Ch.4 --
Y;. I Function of llr {def.2), (5.6.26) TMCA-N --

l i=1,2 I 
G ! Function of a {def.1) (5.4.10b) SMC --
c Function of llr ( def.1) (5.4.16b) SMC --
G;. Function of a { def.l ). 

i (5.6.7b} TMCA-N I --
I 

i = 1, 2 i c, Function of ~r {def.2), i (5.6.19b) TMCA-N --
i = 1, 2 ! I 

I 

Hm Complex amplitude for : (4.2.11} Ch.4 --
I x~0>; m = 1, . .. ,N l 

i vC1 
I 

(4.2.11) §4.2 --
§4.3 

( );. ( 1) i = 1. 2. where (1,2) are I (3.4.24) G- (4.1.10) --
I 

I I used in a generic sense 
I 

I 
to indicate any two 
adjacen t structural 
modes i = k, k +1 [def. I 

I 
1 of ( )~:]. Subscript i I 

i 

in this sense is used in 
I 

conjunction with sub- l 
script j. 

I 

( );. (2) Index for experimental I §6.2 Ch.6 --
data i 

I a.b Mode-shape integrals 

I 
(3.4.22d) {3.4.22) --

(in this local context, a I 
and bare indices) i 

[I) Identity matrix (5.4.28) G --
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Symbol Description Defined Extent See Also Units 

( )i j = 2, 1. where (2,1) are {3.4.24) G (4.1.10) -
used in a generic sense 
to indicate any two 
adjacent structural 
modes j = k+1 ,k [def. 
1 of ( )A:]. Subscript j 
in this sense is used in 
conjunction with sub-
script i. 

J Momentum contained (3.2.2) §3.2 (3.2.5) Mr-t 
per unit depth of con-
trol volume 

l (1) X= l(X) (def. 1 of X) (5.3.14) FORCED --
l {2) X= l(X) (def. 2 of X) (5.4.22) SMC (5.4.24) --
l (3) X= l(X) (def. 3 of X) §5.6.2.5 TMCA-N -

[J']o ( 1) Jacobian Matrix {5.3.19) FORCED. (5.3.21) --
[J']o (2) Jacobian Matrix (5.4.25) SMC (5.4.27) --
[J']o (3) Jacobian Matrix §5.6.2.5 TMCA-N --

k Spring constant per (2.4.1) §2.4 F. 2.4.1 FL-2 

unit structural length 

( )A: ( 1) Subscript indicating a {3.4.15a) Ch.3 --
specific mode number; 
see ( )n and ( ), 

( )A: (2) Index for stability (5.3.23) FORCED (5.3.24) --
boundaries k = 1, 2, 3 §6.2 

( )k (3) Component index for x §5.6.3.5 TMCA-D --
(def. 2) 

( )A: (4) Index for Pt, O:t •· §6.1 §6.1 --
k = 0, 1, .... 5 §6.5 

ka. r c - rc (a is not an {5.4.11a) G (6.3.13) --
index) 

kb rc + rc (b is not an (5.4.11b) G (6.3.13) --
index) 

km (1) Roulhian stability con- (5.4.30) SMC --
slants; m = 0, 1. 2 

km (2) Routhian stability con- (5.6.49 TMCA-D --
stants; m = 0, 1. 2 

Ka Function defined ( 4.3.10c) §4.3 --
locally 

L Axial length of a vibrat- §2.5.2 §2.5 (3.4.4) --
ing structure §3.4 
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Symbol Description Defined Extent See Also Units 

L~e Stability boundary k, (5.3.23) FORCED (5.4.24) --
k = 1, 2. 3 §6.2 

L~ei L1e (a i) (6.2. 7) §6.2 -
( )m ( 1) Refers to modem of (3.4.11) Ch.3 --

structure; 
(m = 1. , , , 1 CIO) 

{ }m (2) Refers to component m (4.1.9) Ch.4 --
of Eqs, ( 4.1.8). 
(m = 1, ... , 4) 

( )m (3) Subscript for km: (5.4.31) §5.4 --
m = 0, 1, 2 §5.6.3 

M Structural mass per (2.4.1) G ML-1 

unit length 

Mttw: Momentum flux (3.4.11) Ch.3 --
through control sur-
faces {m = 1, ... , oo} 

[M] Transformation matrix (5.6.60) TMCA-D --
( )n Refers to mode n of a §1.2 G --

structure; 
n=l. ... ,oo 

N ( 1) Number of components (4.2.2a) Ch.4 (4.3.1) --
in vector I ( def. 1) 

N (2) Number of components §5.6.3.5 TMCA-D --
in vector I ( def. 2) 

p Coefficient of nonlinear T. 4.1.1 G (4.1.8) --
term in generalized 
model equations 

Po Model parameter con- (6.2.11) G (6.2.14) --
trolling the slope of (6.2.15) 
stability boundaries for 
the forced case 

Pt Model parameter con- {6.3.14a) G (6.3.24a) --
trolling lock-in band-
center C and band-
width W for SMC 

p2 Another model (6.3.14b) G (6.3.24b) --
parameter controlling (6.4.17a) 
C and W for SMC, 

Ps Model parameter con- (6.3.14c) G (6.3.24c) --
trolling the depen-
dence of C and Won 
reduced damping f 
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Symbol Description Defined Extent See Also Units 

p• Model parameter (6.4.12) G (6.4.17b) --
affecting peak struc-
tural amplitude for 
SMC as well as the sta-
bility boundaries for 
the forced case 

p5 Model parameter left (6.4.13) G (6.5.11) --
undetermined by 
regression analyses of 
Ch. 6, because of 
small-TJ approximation 

Pt. Model parameters §6.1 G --
enumerated above; 
k = o .... '5 

[P (t)] Periodic matrix (5.6.51) TMCA-D --
q Coefficient of nonlinear T. 4.1.1 G (4.1.8) --

coupling term in gen-
eralized model equa-
tions 

Q _g_ (5.6.8) TMCA-N --
31) 

Qt. Q2. Functions of Pt. P2. Pa (6.3.19) §6.3 --
Qa 
Q~. Q;, Optimal values of Q 1• (6.3.21) §6.3 --
Q; Q2,Q3 

r Coupling coefficient in (3.2.15c) G (3 .2.14) --
fluid oscillator equa-
lion . 

{ )r As a subscript, r is (2.4.5) G (5.4.12) --
mnemonic for (5.6.15) 
''response" in the 
response-structure 
detunings dr, Ar, and 
A,.;. . Note: Subscript r 
is never an index. 

.... Coupling coefficient in (3.2.15d} G (3.2.14} --r 
fluid oscillator equa-
tion 

R (1) Spin radius for (2.5.2) §2.5 L 
Strouhal experiment 

R (2) Function of Ar ( def .1) (5.4.26b) §5.4 --
[R] Transformation matrix (5.6.59) TMCA-D --
Re UD F. 1.2 G F. 2.2.2 --Reynolds number-

v 
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( ). As a subscript, s is (1.1) G 12.2 --
mnemonic for 
"Strouhal," as in the 
Strouhal frequency fa. 
Note: Subscript s is 
never an index. 

s Strouhal number (1.1} G F. 2.2.2 -
t Normalized time CAJs T (3.2.13b) G -

( )e a (3.4.1) Ch.3 ---at 
T { 1) Period of revolution 12.5.2 §2.5 T 

T (2) Cable tension (3.4.5) Ch.3 F 

T {3} Period of matrix [P{t}] (5.6.56) TMCA-D --
To One of two times scales (4.2.4) Ch.4 --

used in the asympotitic 
method of Ch. 4 
(To= t) 

Tt One of two times scales (4.2.4) Ch.4 --
used in the asympotitic 
method of Ch. 4 
(T t = t:t) 

u {1) Normalized axial coor- {3.4.4) Ch.3 --
Xt 

dinate L 
u (2) Function of !lr (def. {5.6.21a) TMCA-N --

2 ) -
( }u a au ( def. 1 of u) (3.4.6) Ch.3 --

Uo, Ut Functions of !lr {def. 2) (5.6.24) TMCA-N --
ut Perturbations in (5.6.42a} TMCA-D --

z\. i = 1. 2 
u (1} Free stream flow velo- (1.1} G- Lr-1 

city 

u (2) Perturbation in Z {5.6.45a) TMCA-D --
v . Function of flr {def.2} (5.6.21b) TMCA-N --

Vo, Vt Functions of !lr {def. 2) {5.6.24} TMCA-N --
1)2 Fluid velocity in x 2- (3.2.1) Ch.3 Lr-1 

direction 

v, Perturbation in Yi· (5.6.42b) TMCA-D -
i = 1, 2 

v Perturbation in Y (5.6.45b) TMCA-D --
w Function of flr ( def .2) (5.6.21c} TMCA-N --

Wo, Wt Functions of flr (def. 2} (5.6.24) TMCA-N -
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Symbol Description Defined Extent See Also Units 
w<t) ktk normal solution for §5.6.3.5 TMCA-D --

x { def. 2 } • k = 1, . . . , N 
(def. 2); that is, the kth 
column of [W] 

w Model-predicted lock-in (6.3.7b} §6.3 (6.3.8) --
band-width (6.3.15b) 

w, Experimental value of §6.3.3 §6.3.3 F. 6.3.2 --
lock-in band-width for 
ith value of ~ 

[W] Matrix whose columns (5.6.57) TMCA-D --
are ,(k) 

X ~ J - ~r ( = -u. def. 1) (6.3.2) Chs. 6-8 -
x1 Cartesian coordinate F. 3.2 Ch.3 (3.4.4) L 

along structural axis 

( }zl a -- (3.4.5) Ch.3 L-t 

OXt 

X2 Cartesian coordinate F. 3.2 Ch.3 L 
transverse to flow 
direction 

:ts Cartesian coordinate F. 3.2 Ch.3 L 
parallel to free stream 

Xt± x-endpoin ts of the (6.3.5) §6.3 --
lock-in band 

X (0) Zeroth order solution (4.2.11) Cb.4 --m 
for component m of -vector x ( def. 1) 

X (1) Vector of compo~ent (4.1.1) Cb.4 (4.3.1) --
oscillators 

X (2) Vector of perturba- {5.6.52a) TMCA-D -
tions 

Xo Zeroth order asyrnp- (4.2.3) Ch.4 --
totic solution for x 
(def. 1) 

Xt First order asymptotic (4.2.3) Ch.4 --
solution for x (def. 1) 

x<k) k th principle solution (5.6.57) TMCA-D --
for x (def. 2) 
k = 1, . . . , N (de f. 2); 
that is, the kth column 
of [X] 

X (1) Amplitude/phase vee- (5.3.15) FORCED --
tor 

X (2) Amplitude/phase vee- (5.4.23) SMC --
tor 
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X (3} Amplitude/phase vee- (5.6.35) TMCA-N --
tor 

x (1) Perturbation for X (5.3.18) FORCED --
(def. 1) 

x (2) Perturbation for X (5.4.25) SMC (5.4.27) --
(def. 2) 

x (3) Perturbation for X §5.6.2.5 TMCA-N --
(def. 3) 

Xo (1) Steady-state solution (5.3.17) FORCED --
for X (def. 1) 

Xo (2) Steady-state solution §5.4.6 SMC --
for X (def. 2) 

Xo (3) Steady-state solution §5.6.2.5 TMCA-N --
for X (def. 3) 

[X] Matrix whose columns (5.6.57) TMCA-D --
are x(k) 

Yi See Yn and ( ),: (def. 1) Ch.3 G (4.1.10) --
T. 4.1.1 

Yi0 ) Approximate solution (4.3.15) G (5.2.1) --
for Yi(t ); i = 1, 2 

Yie) Exact, steady-state (5.6.42) TMCA-D --
solution for Yi(t ); 
i=1,2 

Yk See Yn and ( h ( def. 1) Ch.3 G --
Yn Time function in eigen- (3.4.9b) G - --

function expansion of I 

Y ( u, t ) , n = 1, . . . 1 oo 

y Normalized Y {3.2.13a) G --
y Normalized Y (3.2.13a) G --
y Displacement of struc- §3.2 G L 

tural axis 
y(O) (1) Prescribed sinusoidal (5.3.4b) FORCED --

forcing function 
y(O) (2) Approximate solution (5.4.3b) SMC (5.4.5b) --

forY(t) 
y(e) Exact, steady-state (5.6.45) TMCA-D --

solution for Y ( t) 
z, See Zn and ( )i (def. 1) Ch.3 G (4.1.10) --

T. 4.1.1 
z .(0) Approximate solution (4.3.15) G (5.2.1) --

'l 

for zi(t); i = 1, 2 
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z .(e) 

\ Exact, steady-state {5.6.42) TMCA-D --
solution for zi(t }; 
i = 1, 2 

Zj See Zn and ( )1 (def. 1) I Ch.3 G (4.1.10) --
T. 4.1.1 

zk See Zn and ( h ( def. 1) Ch . 3 G --
Zn. Time function in eigen- (3.4 .9a) G --

function expansion of 
Z (u, t ), n = 1, ... , co 

z Normalized Z {3.2.13a) G --
z Fluid oscillator vari- (3.2.1) G L 

able 
z<o) Approximate solution (5.3.4b) G (5.4.3a) --

for Z (t) (5.4.5a) 
z (e) Exact, steady-state (5.6.45) TMCA-D --

solution for Z (t) 

a Negative damping {3.2.15a) G (3.2 .14) --
coefficient in van der 
Pol type equation 

p Coefficient of nonlinear {3.2.15b) G (3.2 .14) --
term in van der Pol T. 4.1.1 
type equation 

-y Normalized damping {3.2.22) G --
coefficient (includes 
both structural and 
fluid damping) 

"Yn nth mode structural {3.4.14) G --
damping coefficient 

r (5 .4.21) §5.4 --
r, Function of lln appear- (5 .6.54) TMCA-D --

ing in ai and 0,: ' i = 1, 2 

oi 1- 0 ~ (4.3.4) §4.3 --\ 

Omn Kronecker delta (3.4.11) §3.4 --
/l21 Approximate, in termo- {5.6.15c) G --

dal detuning 

ll J ( 1) Approximate , flu id- (5.4.12b) SMC --
st ructure detun ing . 
Note: Subscript f is not 
an index [see ( )1]. 

A1 (2) Approximate, mode- (5.6. 15b) TMCA --
averaged, flu id-
structur e detuning . 
Not e: Subscript f is not 
a n index [see ( )1]. 



-207-

Symbol Description Defined Extent See Also Units 

flti Equivalent to the one- (5.6.3Bb) TMCA-D --
mode detuning flt {def. 
1). but in a two-mode 
context. The subscript 
i = 1, 2 is appended to 
distinguish ll Ji from 
!11 , def. 2. Note: Sub-
script f is not an index 
[see{)1 ]. 

~r {1) Approximate, {5.4.12a) SMC --
response-structure 
detuning. Note: Sub-
script r is not an index 
[see { )r]. 

flr {2) Approximate, mode- (5.6.15a) TMCA --
averaged, response-
structure detuning. 
Note: Subscript r is not 
an index [see { )r]. 

~r Value of llr (def. 1) at §6.4 §6.4 (6.4.9) --
which peak ~tructural 
amplitudeB occurs. 
Note: Subscript r is not 
an index [see ( )rJ. 

&n Equivalent to the one-
1 

(5.6.3Ba) TMCA-D --
mode detuning llr ( def. 
1), but in a two-mode 
context. The subscript 
i = 1, 2 is appended to 
distinguish An from lir, 
def. 2. Note: Subscript 
r is not an index [see 
{ )r]. 

£ A small quantity; (4.1.1) G --
t; << 1 

(" Structural damping (2.4.2) G --
ratio (fraction of criti-
cal damping) 

f Reduced damping ~ (6.3.16) G --
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(;. ith experimental value §6.4.2 §6.4.2 F. 2.4.2 --

of(" T. 6.4.1 

(n nth_mode structural (3.4.11) G --
damping ratio 

TJ D2 
Mass ratio PM (2.4.3) G --

T];. ith experimental value §6.4.2 §6.4.2 F. 2.4.2 --
of TJ T. 6.4.1 

~ Phase angle for Yi(O), (5.2.2a) G --
i = 1, 2; excluding uni-
form drift attributable 
to frequency shift 

S;. Phase angle for yi0
> I (4.3.13) G (4.3.14) --

i = 1, 2; including uni- (4.3.15) 
form drift attributable 
to frequency shift 

em. Phase angle for Hm., (4.3.13) G --
m = 1, ... , 4; 

ICm Functions of llr (def.2); (5.6.26) TMCA-N --
m = 0, 1, 2 

A Eigenvalue of [J']0 (5.4.28) §5.4.6 --
Ak kth eigenvalue of [M ]; (5.6.62) TMCA-D --

k = 1, ... , N (de f. 2} 

8t Phase angle for yl0
> I (4.3.13) G (4.3.14} --

i = 1, 2; including uni- (4.3.15) 
form drift attributable 
to frequency shift 

[A] (1) Diagonal matrix (4.2.1) Ch.4 --
[A J (2) Diagonal matrix of (5.6.62) TMCA-D --

eigenvalues 

1-L Abbreviation for J.ll (5.4.5b) SMC --
JLi e" - tP,; i = 1. 2 (4.3.20b) G --
v Kinematic viscosity of §2.2 G L2T-1 

a fluid 

~n nth orthonormal eigen- (3.4.8) Ch.3 --
function of a structure 

p Fluid density (2.4.3) G ML-3 
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u (1) Response-fluid detun- (5.2.6) INDUCED --

ing for the case of 
induced vibrations: 

I- Is 
a= = {) - 1 

Is 
{defs. 1 for I and n) 

CJ (2) Detuning for the case (2.3.4) FORCED (5.2.1) --
of forced vibrations: (5.3.4b) 

I- Is = {) - 1 a= 
fs 

{defs. 2 for f and 0) 
a-, u+ Values of a ( def. 2) 

I 
§2.3 §23 --

corresponding to 
(f-.1+) 

• Normalized form of a (5.3.11a) FORCED a --
{def. 2) 

a, Value of a at ith experi- §6.2 §6.2 --
mental data point 

ar (1} Value of a • at point T (6.2.3) §6.2 --
T Time §3.2 G T 

( )T a (3.4.5} Ch.3 r-t 
-aT 

rp ~2-~t=rp2-rp1 {4.3.20a) G (5.2.1) --
rp12 -rp21 (5.2. 7} G --
rp21 rfJ2 - rp1 (5.2. 7) G (4.3.20a) --

(5.2.2b) 

rp, Phase angle for z;.<0 ), (5.2.2b) G (5.2.7) --
i = 1, 2; excluding uni- (5.3.6a) 
form drift attributable 
to frequency shift 

rpji rp 21 if j = 2. i = 1 (5.2.5) G {5.2.7) --
rp12 if j = 1, i = 2 

~i Phase angle for z;,(O), (4.3.15) G --
i = 1, 2; including uni-
form drift attributable 
to frequency shift 

"' (1) Angular response fre- §1.4 G r-t 
quency for induced 
vibrations [CJ = 2rrf 
def. 1] 

CJ (2) Angular forcing fre-

I 

§1.4 G r-t 
quency for forced 
vibrations [CJ = 2rr f 
def. 2] 
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""t ( 1) The first natural struc- (3.2.18) SMC --
tural frequency 

""t (2) Abbreviation for "".tt (3.4.19) TMCA --
where k ( def. 2) is a 
particular value of the 
mode number n {see 
CJn) 

""2 Abbreviation for CJt+t• {3.4.19) TMCA --
where k ( def. 2) is a 
particular value of the 
mode number n (see 
CJn) 

CJn Angular frequency (3.2.18) G (3.4.10b) r-1 
corresponding to f n 

(CJn = 2rrf n; 

n = 1, . . . , oc) 

CJs Angular Strouhal fre- (3.2.10) G §1.4 r-1 
quency (CJs = 2rrfs) (3.2.11) 

n ( 1) Normalized angular (5.2.1) INDUCED §1.4 --
response frequency for (5.2.4) 
induced vibrations; 

n = ~ 
CJs 

0 (2) Normalized angular (5.3.4) FORCED --
forcing frequency for 
forced vibrations; 

0 = ~ 
CJs 

nl (1) Normalized form of the (3.2.23) SMC --
first natural structural 
frequency c..>t 

01 (2) Abbreviation for Ot, (4.1.8) Ch. 4, (4.1.10) --
where k (def. 2) is a TMCA 
particular value of the 
mode number n (see 
On) 

I 

02 Abbreviation for Ot+ts (4.1.8) Ch. 4, (4.1.10) --
where k ( def. 2) is a .TMCA 
particular value of the 
mode number n {see 
On ) 
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n, Refers to either 0 1 (3.4.25) Ch. 4 TMAC --
( def. 2} or 02 

On Normalized version of (3.2.23) Ch.3 {3.4.10a) --
Wn; n = 1, ... , oo §1.4 

Os Normalized Strouhal (5.4.4) G --
frequency; I 

CJs 
0 5 = - = 1. Note: 

CJs 

Subscript s is not an 
index. 

( . ) d {3.2.13c) G --- i dt 
( ) ' ( 1) d (3.2.1 ) §3.2 r-t -

dT 
( )' (2) d (4.2.12) Ch.4 ----

dT 1 

IT Complex conjugate (4.2.11) Ch.4 --
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