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ABSTRACT

Vortex-induced oscillations, often of concern when a bluff structure is
exposed to fluid cross-flow, are considered herein using a semi-empirical model-
ing approach. Based on the fluid momentum theorem, the model involves a
highly simplified abstraction of the complex flow field, and major assumptions
concerning the nature of the coupling between the fluid and the oscillating

structure.

Three prototype problems are studied, including harmonically forced
cylinders, spring-mounted cylinders, and taut elastic cables; in each case the
structure is assumed to be of circular cross-section and situated in a uniform
cross-flow. Only oscillations transverse to the fiow are considered. The problem
of modal interaction for elastic cables, typically of interest when the fluid flow

excites high-mode-number resonances, is given particular attention.

The model produces a set of nonlinear, ordinary differential equations
describing the coupled fluid/structure oscillations. Steady-state oscillatory
solutions to these equations are found analytically and are examined for stabil-
ity. Using various regression techniques, the steady-state solutions are then fit
to experimental data for forced and spring-mounted cylinders. Finally, the
model's predictions for elastic cables are used to postulate a qualitative picture
of modal interaction, certain features of which have been observed experimen-

tally.
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CHAPTER 1
INTRODUCTION

Vortex induced oscillations are possible whenever a bluff object is exposed to
a flowing fluid. In most structural engineering applications, the induced vibra-
tions of interest are those of the bluff object itself, typically a cable or beam
exposed to a cross-flow of air or water, examples of which are mooring lines, guy
wires, electric transmission lines, towers, masts, and antennas. Such struc-
tures, as well as more complex ones such as bridges, may be damaged or even

destroyed by severe oscillations of this type.

In other, somewhat different examples of the same phenomenon, the induced
vibrations are not those of the bluff object (which may in fact be rigid), but
those of some auxilliary mechanical system, often a resonating column of air.
Several familiar musical instruments operate in this fashion, and serve as useful

illustrations in the following discussion.
1.1 Basic Mechanisms: Vortex Shedding and Lock-in

Periodic vortex shedding takes place when a flowing fluid is unable to negoci-
ate its way smoothly around a bluff object. For example, in the case of a circu-
lar cylinder, one cycle of the shedding process is sketched in Fig. 1.1. First, flow
separation occurs at points Sy and S, and the resulting pair of vortex sheets,
being unstable, roll up into vortices V,; and V, (Fig. 1.1a) [1, 54]. Next, the
developing vortices interfere: V; draws fluid from the other side across the wake
(Fig. 1.1b), causing the detachment or "shedding" of V, (Fig. 1.1c) [21]. To com-
plete the cycle, the shedding process is repeated for V, (Figs. 1.1d,e). Subse-
quently, as new vortices are formed to replace V; and Vj, the cycle repeats itself

with a frequency f,. Flowing downstream, the detached vortices typically



Flow separstes, and
vortex sheets roll up

into vortices vV, and V,

(a)

(b)

Fluid from V, is
drawn across the
wake, cutting off V,
and causing it to

detach (shed)

(c)

(d)

The shedding process

is repeated for V,

(e)

Fig. 1.1: The Mechanism of Vortex Shedding.
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arrange themselves in two staggered parallel rows, called a "vortex street,” as

shown in the flow visualization photograph, Fig. 1.2.

Figure 1.2. The Wake of a Stationary Cylinder (Re = 200, f, = 28) {37].

In the absence of induced structural oscillations, the vortex-shedding fre-

quency satisfies, according to experiment,

fv = fs (1.1)

where the natural vortex-shedding frequency f,, also called the Strouhal fre-

quency, is defined by

SU

Nk (1.2)

]

fs

In this experimentally determined relationship, U is the free-stream velocity, D
is a characteristic cross-sectional dimension of the bluff body, and S, the so-
called Strouhal number, is an experimentally specified parameter which

depends significantly on geometry and weakly on Reynolds number [7].

When a mechanical system with natural frequency f, is exposed to the

periodic pressure forces of such a flow, the resulting mechanical vibrations, at
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response frequency f, are said to be vortex induced. If the induced oscillations
are sufficiently small, the vortex shedding proceeds undisturbed at its own
natural frequency f,, and induces the mechanical system to oscillate likewise,

thus

F =75 =Js (1.3)

However, for a range of f, (i.e. a range of flow speed U) bracketing the reso-
nance condition fs = f,, induced vibrations may become large enough to cause
the mechanical system to take control of the response, initiating a condition
called "lock-in,” where the natural shedding frequency f, is suppressed in favor

of the natural mechanical frequency f,. such that

fF =fuo ® fn (1.4)

Once lock-in is initiated, mechanical oscillations grow to much larger ampli-
tudes, not only on account of the near-resonance condition f ® f,, but also
because the mechanical motion provides a synchronous tripping mechanism for
the vortices which strengthens and organizes the shedding process, producing
greater fluctuating pressures. Such large amplitude mechanical oscillations are

usually of the greatest interest in practical situations.

As previously mentioned, the most familiar examples of this phenomenon are
musical. When air is directed into the foot of a reedless organ pipe, it impinges
on a blufi, vortex-shedding lip. The flow speed and lip geometry are arranged to
produce a natural vortex-shedding frequency (fs) lying close to the natural
acoustic frequency of the pipe (fyn), whereby lock-in is initiated, and an audible
musical tone is produced. Flutes and other reedless woodwinds operate simi-

larly.

Such instruments owe their practical usefulness to the persistence of lock-in
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over a fairly wide range of flow speed (i.e. a range of f,), called the lock-in band.
If the lock-in band were very narrow, audible musical sounds would disappear
whenever an organ’s wind-pressure regulation or a flutist’s breath control was
not perfect. However, in reality the width of the lock-in band is sufficient to per-
mit a certain amount of variability in the air stream, the only effect being a
slight rise or fall in the pitch of the instrument [53, §322a], in accordance with

the approximate condition f ® f, in Eq. (1.4).
1.2 The Focus of This Investigation

In the current investigation, attention is restricted to the type of problem
most significant to structural engineering, as discussed at the opening of this
chapter, for which the vibrating mass is the bluff, vortex-shedding body itself. A
simplified, semi-empirical, mathematical model for such oscillations is pro-
posed, based on previous work by Iwan and Blevins [35]. Assuming uniform flow,
the model is analyzed and compared to experimental results for three types of

spanwise-uniform structures of circular cross-section, including
« harmonically forced rigid cylinders
« spring-mounted rigid cylinders

» taut elastic cables
In the latter analysis, considerable attention is given to the problem of interact-
ing cable modes. Each natural frequency f,, (n = 1,...,=) of a cable possesses
an associated lock-in band, which may interfere with that of either neighbor
(fn-1 or fn+1) as the two modes compete for control of the shedding process.
When adjacent frequencies f,, are very close together, the interference may
extend to three or more modes. The importance of such modal interaction has

long been recognized, even in the pioneering experimental work of Strouhal [65],
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and has been further emphasized in recent years by practical problems with
long, undersea cables [12]. Yet, because of the mathematical difficulties
involved, the problem has hitherto been neglected in semi-empirical investiga-

tions of the current type [36, 64].
1.3 The Organization of This Document

In Chapter 2, a brief historical account of the subject is given, after which
experimental data for rigid cylinders and cables are discussed. Results from a
modern reproduction of Strouhal’'s experiment are included, as obtained during
the course of this investigation in an effort to study the problem of modal

interaction.

In Chapter 3, the aforementioned mathematical model for vortex-shedding
structures is developed, using intuition provided by the rigid cylinder experi-
ments. Extension of the model to cables is made tractable by finite-mode
approximations, in which modes not likely to be locked-in are neglected. In par-
ticular, a two-mode approximation is used to study the efifects of modal interac-

tion.

In Chapters 4 and 5, the .nonl'mear differential equations generated by the
mode]l are solved analytically in an approximate sense, using a well-known
asymptotic method. Emphasis is placed on unifying the mathematical treat-
ment for all of the cases considered (Chapter 4 and Section 5.2), although the
final stage of solution for each type of structure must be carried out indepen-

dently (Sections 5.3 through 5.6).

In Chapter 8, optimization methods are developed for selecting numerical
values of certain constants embedded in the model. The objective of these

methods is to obtain the best possible model fit to the experimental data for
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rigid cylinders, as presented in Chapter 2.

In Chapter 7, results derived in Chapters 3 through 6 are presented graphi-

cally and compared to experimental data. Conclusions and a summary are

given in Chapter 8.

1.4 Notation

Following Chapter 8, a complete list of symbols used in this document is

given. Verbal definitions are stated whenever possible, together with reference

information, including

the location in the text where each symbol is first defined or used

the extent (chapter-wise or section-wise) over which the given

definition is valid
cross-references to relevant equations, figures, tables, or sections

the physical dimensions of the symbol.

In general, vectors are indicated by bold type, while matrices are enclosed in

square brackets.

Special remarks are warranted regarding the notation for frequencies:

Although the symbol f is occasionally used otherwise, whenever it

refers to fregency, the dimensions are Hertz.

The symbol w is always reserved for angular frequency, such that
wy = 2nf,, where k is any subscript, provided f, refers to a fre-

quency.

The symbol (1 is always reserved for dimensionless frequencies wich

have been normalized by the angular Strouhal frequency wg, such that

)
N, = Cw—k. where k is any subscript, while C is a constant, usually
S

equal to 1 (but not always).
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CHAPTER II
EXPERIMENTAL OBSERVATIONS

2.1 Historical Backgound

Vortex-induced oscillations have been utilized for musical purposes since
ancient times, although vortex shedding was not recognized as the source of
vibration until quite recently. For example, the principle of the organ pipe,
mentioned in Chapter 1, was discovered accidently in the third century B.C. by
Ktesibios of Alexandria [13], and thereafter the art of organ building developed
empirically without any fundamental knowledge of the sound-generating

mechanism involved [72, p. 401].

During the Renaissance, Leonardo da Vinci made several crude sketches of
vortices in the wakes of bluff bodies (Fig. 2.1.1), but, as suggested by some
Leonardo scholars [48, pp. 190-191], these sketches appear to depict recirculat-
ing vortices! rather than the periodically shedding vortices which cause vibra-
tion, so it is doubtful that Leonardo could have perceived the connection

between vortices and structural vibration.
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1. See Fig. 2.2.1, the second skeich from the top.
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The first systematic investigation of vortex-induced oscillations was completed
in 1878 by Strouhal [65], whose experiment consisted of spinning a stretched
wire or rod about an axis parallel to its length, thus creating a lengthwise-
uniform crossflow. Although he obtained important results, discussed below in
connection with more recent experiments, Strouhal himself had no knowledge of
the vortex-shedding mechanism per se. In fact, in accordance with a notion
prevalent at the time, he believed that the stretched wire oscillated parallel to
the wind, and that oscillations were induced by a friction-like force akin to the
action of a bow on a violin string. These misconceptions were dispelled by Ray-
leigh, who observed experimentally in 1879 that the wire actually vibrates per-
pendicular to the wind [52],2 and later correctly identified the source of vibra-

tion as the instability of vortex sheets [53, p. 412].

Subsequently, vortex wakes themselves were studied. In 1908 Bénard [3]
experimentally observed the periodic vortex-shedding phenomenon and meas-
ured the spacing of vortices, while von Karman [71] in 1912 theoretically estab-
lished why the two rows of vortices should be staggered rather than symmetri-
cal, and predicted a numerical value for the ratio of longitudinal to lateral vor-

tex spacing.

Since von Karman's analysis, numerous studies of vortex wakes and induced
vibration phenomena have been published, both theoretical [1, 8, 21, 33, 35, 38,
39, 54, 55, 62, 63, 84] and experimental [2, 5, 10, 12, 14, 15, 16, 17, 18, 19, 20,
22-30, 31, 37, 38, 41, 42, 45, 49, 50, 51, 56, 57, 58-60, 687, 69, 70], reviews of
which have been compiled by Marris in 1964 [40] and Blevins in 1977 [7].
Results most pertinent to the current investigation, dealing with circular rigid
cylinders and elastic cables, are presented below.

2. Rayleigh noted that the wire sometimes whirls in an elliptical shape, with the major
axis perpendicular to the flow. This phenomenon is associated with non-ideal wires,
for which the tension varies with the level of vibration [43]. Such behavior is
neglected in the analyses herein, which assume ideal wires having constant tension.
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2.2 Stationary Cylinders

The flow behind a rigid circular cylinder at rest changes dramatically with the
free-stream Reynolds number, as indicated in Fig. 2.2.1, but vortex shedding at a
well-defined natural frequency f, persists, first in a laminar state and then in a
turbulent state, over the entire Reynolds number range from 40 to 3 x 10%, as

well as for Reynolds numbers above 3.5 x 108,

V Re < 5 REGIME OF UNSEPARATED FLOW
— ~= 57015 < Re < 40 A FIXED PAIR OF FOPPL

v VORTICES IN WAKE

40 < Re < 90 AND 90 < Re < 150
TWO REGIMES IN WHICH VORTEX
STREET IS LAMINAR

150 < Re < 300 TRANSITION RANGE TO TURBU-
Q T LENCE IN VORTEX
e
U 300 < Re < 3X10° VORTEX STREET IS FULLY
TURBULENT
_/\—'“- 3x10° X Re < 35X 10°

LAMINAR BOUNDARY LAYER HAS UNDERGONE
TURBULENT TRANSITION AND WAKE IS
NARROWER AND DISORGANIZED

35X 108 < Re
RE-ESTABLISHMENT OF TURBU-
LENT VORTEX STREET

Figure 2.2.1. The Wake of a Stationary, Circular Cylinder [7].

The natural shedding frequency f, is given by Eq. (1.2), a relationship first

deduced by Strouhal in an experiment previously described.? For a circular



.
cylinder, D is the diameter, while the Strouhal number S depends on the Rey-
nolds number U—‘f) as shown in Fig. 2.2.2, which is a compilation of results from

numerous experiments.* The region bounded by solid lines indicates scatter in
the data, while that bounded by dotted lines signifies, in accordance with Fig.
2.2.1, that there is a broad band of shedding frequencies in the Reynolds

number range from 3 x 10% to 3.5 x 108 [57].

[ )]

)

= /
03 )

STROUHAL NUMBER (S)
N
~
"————-—’

'Y SN NS U TN W (NN W SN 0 W NN TN SN0 U (NN WO W0 U 0 Y VY 0 U

L T 103 1wt 10 108 10’
REYNOLDS NUMBER (UD/v)

Figure 2.2.2. The Strouhal Number for Circular Cylinders [7].

3. Although Strouhal used flexible wires as well as rigid rods in his experiments, a
stretched wire, free to vibrate, adequately approximates a stationary rigid cylinder if
the vibration amplitude is very small, which is generally true outside the lock-in
band.

4. Strouhal’s original results are not included. The concept of Reynolds number, intro-
duced by Reynolds in 1883 [61] , was unknown to Strouhal in 1878. In fact, the Re
range of Strouhal’'s experiments was 200 < Re < 8000, but Strouhal presumed S to
be constant, and simply averaged all of his results, obtaining S = 0.185. This value is
sightly lower than the average value according to the more recent experiments (Fig.
2.2.2). The reason for the discrepancy is probably the crudeness of Strouhal's
apparatus, discussed further in Section 2.5.
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2.3 Forced Cylinders

When the vibrations of a vortex-shedding structure are forced by an external
driving mechanism (e.g. Fig. 2.3.1) rather than induced by the flow itself (e.g.
Fig. 2.4.1), the concept of lock-in is somewhat different than that discussed in
Chapter 1. For both cases, lock-in involves the violation of Strouhal's relation-
ship f, = fs, and the synchronism of vortex shedding with structural vibration
at a frequency characteristic of the structure. However, as discussed in Chapter
1, the locked-in response frequency f for the induced case is very close to the
natural structural frequency f,, depends somewhat on f;, and is unknown a
priori, whereas for the forced case, the locked-in response frequency is neces-
sarily the forcing frequency f, which is known a priori. Thus, the locked-in con-

dition for the forced case, replacing Eq. (1.4), is simply

Jv = 1 (2.3.1)
while the non-locked-in condition is

fv = [ (2.3.8)

Koopman [37] has measured the extent of lock-in for rigid circular cylinders
which are harmonically forced (as in Fig. 2.3.1) and exposed to cross-flow at low
Reynolds numbers. For each value of Re, the natural shedding fregency fs was
determined directly for the stationary cylinder by means of a hot-wire in the

wake. Then, for a fixed, dimensionless forcing amplitude

%[ Peak-to-peak displacement of cylinder axis]

B = = . (2.3.3)

the forcing frequency f was varied slowly about f¢ until synchronism of the vor-
tex wake with the cylinder vibration was lost, first at the lower lock-in limit f~,
and again at the upper limit f*. These measurements, repeated for several
values of B at each of three Reynolds numbers, are recorded on Fig 2.3.2, where

the independent variable o is a measure of detuning between the forcing fre-
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Spanwise Rigid

Normalized
Displacement
Y(t) = Bcos2rfr
(prescribed)

Figure 2.3.1. Forced Cylinder.

quency f and the natural vortex-shedding frequency f,,

o = —{%f—{ (2.3.4)
Experimentally, there was additionally a well-determined amplitude threshold
By below which lock-in failed to exist even for values of o approaching zero. The
locked-in region thus lies above the threshold amplitude By and between the
boundaries (¢~, o*), where (¢~, 0*) are the normalized counterparts of
(F= 7.

In the same investigation Koopman obtained a pair of flow-visualization pho-
tographs, reproduced here as Figs. 2.3.3, which clarify the nature of lock-in, par-
ticularly the amplitude threshold. Both photographs are top views. Fig. 2.3.3a
shows the locked-in wake of a vibrating cylinder (B > By, o~ < o < o*), with
the vortex filaments aligned parallel to the axis. In contrast, Fig. 2.3.3b shows
the non-locked-in wake of a stationary cylinder (B =0), with the vortex
filaments inclined to the axis. Apparently, within the lock-in frequency band, a

sufficiently large amplitude of cylinder vibration provides a tripping mechanism
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Figure 2.3.2. Experimental Lock-in Boundaries for Forced Cylinders [37].

for the vortices, favoring a certain fixed phase relationship between the periodic
shedding and the periodic cylinder displacement. Therefore, at least for the low
Reynolds numbers studied by Koopman, locked-in vortex shedding is nearly

two-dimensional and well correlated along the span,! while non-locked-in shed-

ding is highly three-dimensional and uncorrelated.

A study by Toebes [87] at Reynolds numbers of 46,000 and 68,000 indicates
that these distinctions may be less clear for more turbulent flows; the degree of

correlation between two points (P;, P;) along the span then appears to increase

1. There are tunnel wall effects in Koopman’s photograph.

.30
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continuously with the cylinder vibration amplitude rather than increasing
suddenly at a certain amplitude threshold, and also appears to decrease sharply

with increasing spanwise distance between Py and P,.

Figure 2.3.3b. Non-locked-in Vortex Shedding; Re = 200, f, = 28 [37).
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2.4 Spring-Mounted Cylinders

Feng [18] has measured response amplitudes and frequencies versus flow
velocity for 3" diameter circular cylinders mounted elastically in a wind tunnel.
Fig. 2.4.1 is a schematic of such a cylinder and its elastic mounting, for which

the first (and only)! natural freqency is

- 5= 1-JE
In=f1= V5 (2.4.1)

while the fraction of critical damping ¢ and mass ratio 7 are defined by

- 0 _ pD?
¢ = ne o (2.4.2)

In these equations, p is the fluid density, while M, k, and b are, respectively, the

per-unit-length structural mass, damping coefficient, and spring constant.

Experimental results for five values of ¢ are shown in Fig. 2.4.2. The indepen-
dent variable has been converted, according to Eq. (1.2), from flow speed U to

the fluid-structure detuning d,, defined as

Normalized
Displacement
IV(') (unknown)

1. The cylinder is not permitted to rock side-to-side.
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Likewise, the dependent frequency variable has been converted from the system

response frequency? f to the response-structure detuning d,, defined as

_ S5 _ Dfs.f
2, = 12 L -1 (2.4.5)

The normalized response amplitude B is defined as in Eq. (2.3.3). To implement
the conversions (2.4.4) and (2.4.5) it is necessary to assume a value for the
Strouhal number S. Referring to Fig. 2.2.2, the value S = 0.20 is adopted, since

Feng's experiments involve Reynolds numbers from 10, 000 to 50, 000.

On each frequency plot, data points lying along a nearly horizontal line at
d, ® 0 comprise the lock-in band [see Eq. (1.4)], during which the vortex shed-
ding is observed to be spanwise correlated [16, pp. 26-29], and the cylinder
amplitude B rises to its peak.? Conversely, the points lying along the line d, = dy
represent unlocked response [see Eq. (1.3)], for which the vortex shedding is

spanwise uncorrelated and the amplitude response is small.

It is interesting to contrast these results to those for the forced cylinder. In
both cases, spanwise correlation of vortex shedding occurs during lock-in. How-
ever, for the spring-mounted cylinder, the lock-in band is highly skewed to the
right of the exact resonance point d, =d, =0 (0 =0, = 1), whereas for the
forced cylinder, the lock-in band is symmetrically located on either side of the
exact resonance point 0 = 0 (1 = 1). As suggested by the discussion at the open-
ing of Section 2.3, this discrepancy may be attributable to the qualitative

difference between forced vibrations and vortex-induced vibrations.

2. Feng actually measured the vortex— shedding frequency f, with hot- wires. For
steady— state induced vibrations however, according to Egs. 1.3 and 14, f,=f
always.

3. Hysteretic behavior in the amplitude response, experimentally observed at low
values of ¢, is indicated by the arrows on Figs. 2.4.2a,b.
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2.5 Elastic Cables: A Modern Reproduction of Strouhal’s Experiment

2.5.1 Motivation for the Experiment

Using the experimental apparatus described in Section 2.1, Strouhal [85]
measured the frequency response of taut, freely vibrating wires (i.e. cables) hav-
ing fixed ends. He observed lock-in for mode numbers as high as n =27, and
witnessed the phenomenon of modal interference extending to two and even

three modes, as discussed briefly in Section 1.2.

Unfortunately, Strouhal's description of lock-in and modal interference are
very crude. In particular, the concept of lock-in bands is absent from his data;
for each mode he cites a single flow speed corresponding to lock-in, rather than
a range of flow speed. This shortcoming is undoubtedly attributable to the
crudeness of his apparatus, notably the unsteadiness of the rotational speed
used to create the cross-flowing air-stream.! Although Strouhal recognized the
importance of steadiness in the airstream and paid considerable attention to it,
he was limited by nineteenth-century technology, and found that the best avail-

able system to produce steady rotation was simply a hand-operated crank.

Since Strouhal’s work, alf.hough numerous laboratory and field experiments
have been conducted to study the vortex-induced vibration of cables [12, 27, 38,
41, 49, 89], only a few studies present data on the modal lock-in bands [12], and
virtually none has dealt specifically with the interaction of lock-in bands for
high mode numbers. Therefore, to obtain valuable physical insight into the
problem of modal interference, a simple, modernized version of Strouhal's

experiment was constructed during the course of this investigation.

1. Recall from Section 2.1 that the stretched wire is revolved about an axis parallel to
its length.
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2.5.2 Experimental Equipment

Two photographs of the apparatus used are shown in Fig. 2.5.1, while a draw-

ing is given as Fig. 2.5.2. Labeled features of the drawing are described below:

Vibrating Wire: Steel music wire, diameter D = 0.013", length L =
16.75". The ends were wrapped around taper pins, which allowed tun-
ing to a fundamental frequency f; = 440 Hz (+ 1 Hz). The spin radius

(i.e. the distance from the axis of rotation to the wire) was R = 7.75".
Center Shaft: -g— inch diameter threaded rod.

Vertical Struts: Streamlined tube, whose closest surface was located

approximately 57 diameters D from the vibrating wire.

Cross-braces: Three pairs of cross-braces (shown in the photographs
but not in sketch) were used, consisting of stranded steel wire
tightened by turnbuckles. These served two purposes: first, to stiffen
the structure; second, to permit alignment of the motor shaft with the

lower bearing, by adjustment of tension in the wires.

Optical Pick-up: General Electrics model H13A2 interrupter module,
consisting of an infra-red emitting diode optically coupled to a photo
transistor, all in a plastic housing. Through the gap in the housing, the
light bearn was chopped once per revolution by the interrupter strip,
thereby briefly switching the output transistor from an "on'" to an "off"”
state. These pulses were used to measure the period of revolution 7,

and hence the flow speed U.

Flywheel: Steel, mass 10 lbm, diameter 6". Addition of the flywheel

improved the speed regulation by a factor of 4.



%

};?‘"

(a)

(a) At Rest, (b) During Operation.

Fig 2.5.1: Experimental Apparatus;
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Fig. 2.5.2: Experimental Apparatus.
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» Motor: Robbins and Myers, DC series motor, rated 24 VDC, 1.7 A, 3150

RPM.
o Power Supply: Hewlett-Packard Harrison 8824A; 0-50 VDC, 0-1 A.

« Sound-Level Meter: General Radio Corp. model 1551-C. Measurements

were taken using the "A" setting.

o Spectrum Analyzer: Spectral Dynamics model SD 360. Over the fre-
quency range 0 < f < 5000 Hz, 1024 sampling points were used, so the

frequency resolution was 4.88 Hz.

o Timer: Hewlett-Packard model 5245M, triggered by pulses from the
optical pick-up. Readout precision of the timer was set to 0.1 mil-
liseconds, while the measured value of rotational period T varied from
260 to 160 milliseconds, thus the precision of period measurement

varied from 0.06% to 0.047%.

e XY Plotter: Hewlett-Packard model 7015B, electronically linked to the

spectrum analyzer.

2.5.3 Experimental Procedure

During the experiments, all windows and doors of the room were closed to
minimize spurious air currents. The power supply, timer, and spectrum
analyzer, each possessing a cooling fan, were located about 15 feet from the
vibrating wire in order to minimize not only the associated air currents, but also

the fan noise reaching the microphone.

For each run, the motor supply voltage, approached from below, was fixed.
The period of rotation was monitored continuously until 5 successive readings
remained constant (to within 0.2% in the worst case), indicating that a steady-

state rotational speed had been achieved. The signal from the sound-level meter
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was then played into the spectrum analyzer for 7.75 seconds, producing a time-
averaged, discrete Fourier transform of the wire's vibration, which was subse-
quently output to the plotter. Finally, five additional measurements of the rota-
tional period were taken. Comparing these readings to those taken at the begin-

ning of the run, the greatest difference was found to be (in the worst case) 0.4%.
The Reynolds number range of the experiments was
95 < Re < 1566 (2.5.1)

In this regime, the Strouhal number S, used subsequently to infer f, from the
flow speed, varies significantly with Reynolds number (see Fig. 2.2.2). Since the
Reynolds number depends on ambient temperature through the kinematic

viscosity v, the temperature was noted periodically throughout the experiment.

2.5.4 Normalizing the Independent Variable
Experimentally, the independent variable was the period of revolution 7, as

measured by the optical pick-up. However, as described below, T is directly

. Js ) ]

related to the frequency ratio -f— appearing on subsequent plots, where f, is
1

the Strouhal frequency and f, is the fundamental frequency of the wire (440

Hz).
The Reynolds number for each run is derived from the period T according to

UbD

Bl Re(T) = L2, (2.5.2)

T

U =

where R is the spin radius of the wire, D is the wire diameter, and v is the
2
kinematic viscosity of air, equal to 17.3 x 1078 % for the temperature range of

the experiment (84° F to 85.5° F) [34]. For the range of Reynolds number given

by (2.5.1), the empirical formula
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20]

S(T) = 0.21[1 - Re(T)

(2.5.3)

holds approximately for the Strouhal number S.2 Thus the frequency ratio

v
Df,

fe .\ _ SU
) = S(T)Re(T) (2.5.4)

may replace T as independent variable.

For comparison to Section 2.3 as well as later chapters, it should be noted

parenthetically that the ratio Ii as used here to represent normalized fiow

i

speed U, is exceptional in this thesis. It is useful in this Section because many
structural modes are being considered simultaneously, hence the nominal reso-

nance conditions fs = f, =nf; (n =1,...,=) occur conveniently at integral

values of ﬁ However, elsewhere in the thesis, when only one specific struc-
1

tural mode (e.g. n = k) is considered, it is analyitically more convenient to meas-
ure normalized flow speed by the detuning d; between f¢ and f;, and to normal-
ize by f, rather than by f, [see for example Eq.(2.4.4)]. Likewise, if only two

structural modes are considered (e.g. n =k, k+1), it is convenient to measure

the flow speed by the detuning between f, and —;—(f,c + fr+1)- In every case, the

normalization is arranged such that the independent frequency variable (i.e. the

normalized flow speed) increases as the flow speed increases.

2.5.5 Results
Figure 2.5.3 (consisting of 5 pages) shows the Fourier-transformed audio sig-

nals for selected experimental runs, which are arranged in order of increasing

fs

~—. The response frequency f, like fs, has been normalized by f;, while the

I

amplitude scale, although fixed over the course of the experiment, is arbitrary.

——————————————

2. See Fig. 2.2.2, and also Schlichting, p. 32.
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For each plot in the figure, peaks to the left of —}_L = 5 are merely noise, predom-
1

inantly attributable to cooling fans in the experimental instruments, mentioned
earlier, as well as rumble of the center-shaft in its bearing. Other peaks
correspond to locked-in vibrational response of the wire, which typically was

loud enough to be heard easily across a large room.

According to the discussion of Section 1.1, vortex shedding should lock onto

the n'*-mode natural frequency of the wire at

L oy In (2.5.5)

F1 S '
provided % falls within the n**-mode lock-in band. For the current experi-
1

ment, modes 1-5 could not be excited; apparently the corresponding Reynolds
number was too low to intiate well-established, periodic shedding capable of

lock-in (see Fig. 2.2.1).

Thus, as the rotational speed was slowly increased, mode 8 was the first to

respond, as illustrated in Fig 2.5.3 (Run 5), by the peak at }L = 8. As the upper
A 1

end of the lock-in band for n =6 was reached, this amplitude peak sharply

declined (Run 8, ;—s = 6.88). As %— was further increased, the peak disappeared

1 1

altogether, vortex-shedding returned to its own natural (Strouhal) frequency,

fs

and the wire was quiet (Run 7, — = 7.14), a situation which extended over a

J1

perceptible "dead band.”

Next, lock-in for mode 7 was initiated (Run 8), and persisted over the range

7.25 < Je < B.16 (Runs 10 and 14 ). As s was increased to 8.23 (Run 15),

L3 J1

response suddenly shifted from mode 7 to mode 8, with little or none of the
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intervening ""dead band" which occurred between modes 8 and 7. Thus mode 7

and 8 were on the verge of interfering.

Locked-in response for mode 8 ( Runs 15, 16, 17) persisted from £ =8.23 to

J1

approximately ;;—s— = 8.3, at which point mode 9 interfered. In the regime of
1

interference, spectra such as Runs 19-23 were obtained, whose twin response
peaks (discussed further below) indicate that modes 8 and 9 of the wire were

participating simultaneously. Finally, 9**-mode response established itself, free

of interference from mode 8, at Is = 9.55 (Run 24). Higher values of Is were

J1 1

unattainable, since the power demand of the motor became greater than that

available from the power supply.

The above discussion is summarized in Fig. 2.5.4, which plots —.‘ft_ versus é—

1 1
for each response peak, irrespective of its amplitude.® Using Egs. (2.5.3) and
(2.5.4), a Reynolds number scale is also provided. Data from all runs are

presented, including those not shown explicitly in Fig. 2.5.3, and each data point

is labeled with its associated run number. Lock-in bands appear on Fig. 2.5.4 as

horizontal rows of data points at —}f— =n, where n = 6, 7, 8, 8. In agreement
1

with analogous plots for spring-mounted cylinders (Figs 2.5.2), the data points
for an elastic cable (marked on Fig. 2.5.4) all lie to the right of the exact reso-
nance points f = fs = fn = nf; (marked * ). Thus, for both spring-mounted
cylinders and elastic cables, lock-in occurs for somewhat higher values of flow

speed than would be expected based on the notion of simple resonance.

3. In this simplified plot, a multiple (i.e. "dirty”) peak, typical of mode 8, is represented
by the symbol e-———-e (aligned vertically), where the dots indicate the locations
of the lower and upper peaks. The cause of the dirty peaks at fg was found to be
sympathetic resonance of certain structural members of the apparatus. Several
experimental retrofits were attempted to alleviate this problem, without success.
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2.5.6 Modal Interaction
Further comments are in order regarding Runs 19-23, since these involve
modal interaction, whose characteristics are of particular interest to the

current study.

The spectra shown in Fig. 2.5.3 for these cases should not be assumed to
imply steady-state response. In reality, during each run there was a very slow
transient drift from 8**-mode to 9**-mode lock-in and vice-versa, in a seemingly
random fashion. Thus the signal recorded by the spectrum analyzer (time-

averaged over 7.75 seconds) shows peaks for both modes. This explains, for

example, why Runs 21 and 22, despite having the same value of A give very

J1

different results.

The nature of the transient drift described above suggests that at a given
instant during any of the runs 19-23, only one of the two competing modes was
actually being excited by vortex-shedding, while the other mode, previously
excited, was dying out. This interpretation implies that vortex-shedding from
the wire was at each instant monofrequency, but bistable, alternating between
fes and fg.. The impetus to change from one frequency to the other might well
have been afforded by slight changes in the rotational speed, by turbulence, or
by stray air currents, none of which could be perfectly controlled with the

experimental setup shown in Fig. 2.5.1. In particular, although the flow speed,

and hence -'f—s, was held constant to within 0.4% of the value plotted,* this varia-

J1

tion is still significant compared to the width of the interaction region, as shown

on Fig. 2.5.4.

—— ————————————

4. As discussed in Section 2.5.3.
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Thus a better experimental understanding of the modal interaction
phenomenon requires a more sophisticated apparatus than the one described
herein. Precise regulation of the flow speed is particularly crucial. Neverthe-
less, the experiment described above is useful to interpret the analytical results

derived in subsequent chapters.
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CHAPTER I

A MODEL FOR VORTEX-INDUCED VIBRATIONS OF STRUCTURES

3.1 History and 'Philosophy of Empirical Modeling

In the early 1980’s, Bishop and Hassan [5] demonstrated experimentally that
the oscillating wake behind a forced cylinder behaves qualitatively as if it were a
single-degree-of-freedom, self-excited, nonlinear oscillator being driven by the
cylinder’s motion. Their suggestion, that such a simplified mathematical system
might be useful to model the complex fluid-structure interaction, has since been
pursued by several authors, including Iwan and Blevins [35], whose model is
based on a nonlinear fluid momentum oscillator, and Hartlen and Currie [33],
whose model is based on a nonlinear lift-coefficient oscillator. The Iwan-Blevins
model has been extended from rigid structures to elastic ones by Iwan [38],
while the Hartlen-Currie model has been refined and extended by Skop and
Griffin [63, 64]. Attention has been concentrated on oscillations transverse to
the flow, since vortex-excited motion of a freely vibrating structure in the
treansverse direction is much larger than motion parallel to the flow [52], as
mentioned in Section 2.1. The current discussion deals exclusively with

transverse oscillations.

Common to both of the models mentioned above is the desire to use experi-
mental knowledge of the flow field's bulk character, notably the periodic vortex-
shedding, to avoid the search for detailed solutions of the flow field itself. Flow
details are in fact unnecessary if, as in many applications, only the structural
motion is of interest; in such cases the flow solution must merely provide
expressions for the Fourier components of the overall, transverse periodic force

on the structure. The equation of motion for the structure is then written with



. .
the fluid terms as forcing functions.

Since any model of a physical phenomenon relies partially on experimental
observations rather than proceeding completely from known principles, it is
clear that a model must be made to fit experimental data in some way. In each
of the models mentioned above, this is achieved through so-called model con-
stants, which are introduced as coefficients in the fluid model equation. Values
for these constants are selected to optimize the fit to some data. Unfortunately,
the mode! constants are usually not directly measurable experimentally, so it is
desirable to introduce as few of them as possible while still achieving reasonable

results.

The most difficult part of the modeling problem is to concoct a fluid model
which retains all essential features of the flow, particularly its interaction with
the structure. Toward this end, the fluid model equation should arise from
some form of the Navier-Stokes equations, for which it must serve as a substi-
tute. By this criterion, the momentum-oscillator model of Iwan and Blevins is
preferable to the lift-coefficient model of Hartlen and Currie, because the fluid
oscillator equation used in the Iwan-Blevins model is based on the fluid momen-
tum theorem, while that used in the Hartlen-Currie model is completely ad hoc.
Consequently, only the Iwan-Blevins type of model is considered herein; a

modified version of the original model is developed in the sequel.

It should be emphasized from the outset that the present semi-empirical
model, like any of its predecessors, does not purport to "solve" the fluid-
structure interaction problem, nor does it constitute a theory. Although efforts
have been made to incorporate fluid mechanic principles whenever possible,
there are still several ad hoc assumptions, with obscure or nonexistent physical

justification, which greatly influence the results. Therefore extreme caution
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should be used in extrapolating guantitative predictions beyond the range or

types of data used to fit the model.

Nevertheless, qualitative results of the model may be generally useful to con-
ceptualize the physical problem, to suggest trends, and even to lend credence to
seemingly contradictory experimental data. For example, the experimental
results cited in Chapter 2 are paradoxical at first glance: the lock-in band for
forced circular cylinders is symmetric about the exact resonance point f, = f
(ie. 0 = 0), as shown in Fig. 2.3.1, while the lock-in band for spring-mounted cir-
cular cylinders is highly asymmetric, occurring almost exclusively in the range
fs > fn (ie.dy > 0) as shown in Figs. 2.4.2-2.4.6. However the present model
predicts just such behavior, and suggests reasons for the apparent paradox.
This result casts doubt on the speculation of some investigators who, regardless
of the experimental lock-in data, have postulated an analogy between the forced
cylinder and the spring-mounted cylinder, and suggested experimental use of
the one to understand the other [23]. The present model emphasizes the
danger of such an analogy, by demonstrating, for a prototype nonlinear system,
how fundamentally different the two problems are, despite their apparent simi-

larities. Such is the usefulness of an empirical model.

In the remainder of this chapter, the present model is formulated for three
types of structures, including forced and spring-mounted cylinders, as well as

spanwise uniform, taut elastic cables.
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3.2 Development of the Model for Spring-Mounted Cylinders

For development of the model, consider the rigid, spring-mounted cylinder
sketched in Fig. 3.2.1, for which the coordinate system (z, zp z3) is chosen

with z, along the cylinder axis and zg in the direction of the free stream. Due to
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Figure 3.2.1. Control Volume Analysis for Spring-Mounted Cylinders.

spanwise rigidity of the cylinder, the problem (in particular, the vortex-shedding
process) is considered two-dimensional in the (zp zg) plane. This is not strictly
true, but it is a reasonable approximation within the lock-in band, according to
the experimental observations of Koopman [37] and Feng [16], as discussed in

Chapter 2. Structural displacement in the z; direction, a function of time 7
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only, is denoted )‘;(1'), and the steady, uniform free-stream velocity is denoted U.
Adopting Bishop and Hassan's concept of the flow field as a single-degree-of-
freedom oscillator, the system then consists of two oscillators, one structural

and one fluid, which drive each other, as depicted in Fig. 3.2.1.

FLUID

OSC!LLATOR
Structural motion Z(T)
provides synchronous Vortex shedding creates
tripping mechanism fluctuating lift force
for voitex shedding, on structure
causing lock=-in

STRUCTURAL

OSCILLATOR

Y(T)

Figure 3.2.2. Fluid-Structure Coupling.

3.2.1 The Fluid Oscillator

Following Iwan and Blevins [35], a variable Z(7) is adopted as the fluid oscilla-
tor, whose time derivative Z'(7) is defined as the average vertical fluid velocity in

a unit depth of control volume surrounding the cylinder:

Z(r) = — 5 | va(za z3 T)dzodzs, (3.2.1)
a v

where ay is a model constant, as discussed in Section 3.1, D is the cylinder
diameter, v is the zz;-component of fluid velocity, and CV is the control volume

AB CDA'B'C'D' of unit depth shown in Fig. 3.2.2.

The fluid oscillator equation is obtained by writing the zz-component of the

fluid momentum equeation:
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T(7) + Mpe(7) = NF (D), (3.2.2)

where J'(7) is the time rate of change of zz-directed momentum within the unit
depth control volume, Mﬂu('r) is the flux of zp-directed momentum outward
through the control surfaces, and ZF(T) is the sum of external zz-directed
forces acting on the unit depth of fluid, including pressure and viscous forces on
the faces of the control volume, body forces, and the fluid-structure interaction

force.

Consider first the terms in ZF(T) other than the interaction force. Pres-
sures in the zz-airection act only on the control surfaces A4'B'B and CC'D'D,
but by elongation of the control volume in the zp-direction, these surfaces may
be moved far away from the cylinder into the undisturbed fluid where the pres-
sure is steady and equal to that of the free stream. Therefore, pressure forces
on the top and bottom control surfaces cancel, except if there is a body force
(gravitational field) in the zp -direction, in which case the pressure differential
just counterbalances the body force. Consequently pressure and body forces
are eliminated from consideration. Vertical viscous shears on the side control
surfaces are zero by the assumed two-dimensionality; on the front and rear sur-
faces they are negligible according to the usual boundary layer approximation,
provided the control surfaces are sufficiently far from the cylinder wall. Even
though the rear surface bisects the infinite vortex street, viscosity there is negli-
gible. Theoretical work by Rosenhead [54] and Abernathy and Kronauer [1] has
shown that the role of viscosity in the vortex-shedding problem is almost
entirely restricted to boundary layer separation on the cylinder and the conse-
quent formation of vortex sheets; in the region of vortex roll-up, and certainly
at the point where a vortex street is fully formed, the fluid may be considered

inviscid, to a good approximation.
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Therefore, all terms in ))F (1) other than the fluid-structure interaction force

are either zero or negligible, so

Y F(1) = =Fiu(7), (3.2.3)

where F4,(7) is defined as the interaction force per unit depth of the fluid on

the structure, and Eq. (3.2.2) becomes
J(T) + Mpo (T) = =F (7). (3.2.4)

Consider next the possibility of writing the terms in Eq. (3.2.4) as functions of
Y. Z', and their derivatives. If the integral in Eq. (3.2.1) is multiplied by the con-

stant fluid density p, the result is J(7). Thus
J'(T) = agpD?Z". (3.2.5)

This expression is completely rigorous, given the definition of 2. Unfortunately,
there is no equally rigorous way of deriving expressions for the momentum flux
M;,, and the interaction force Fy; Expressions must merely be assumed,
based on certain physical, mathematical, and heuristic grounds. The expres-

sions assumed herein, namely
" 25 > D =8
Mo (1) = agpU=Z — a1pDUZ" + ang]—Z (3.2.8)

Fou(t) = anga(f" - )7") + a4pDU(5’ - ?') + abpﬂaf" (3.2.7)

are variants of those originally used by Blevins [68]. Factors of p, U, and D
appearing in Egs. (3.2.8) and (3.2.7) are chosen simply to make each term
dimensionally correct, while the constants a4, .. ., ag, like ag introduced previ-
ously, are model constants whose values will be selected later to fit certain

experimental data.

Rationale for the selection of terms in Egs. (3.2.8) and (3.2.7) follow:
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1. Odd functions. If the coordinate system is turned upside down, with z,
becoming —z,, while 5, )7. M2, and Fipy retain their definitions as upward-
directed quantities, then the numerical values of Z and Y each chage sign,
and the only effect on My, and Fy,; must likewise be a sign change. This will
be the case if and only if My,,, and F,, are odd functions of 5’, ?'. and their

derivatives.
2. Physical Reasoning:

a. Z term in M;y.. According to a convincing pictoral argument given by
Blevins [6], in which the phase relationship between M. (7) and Z'(7) is
examined, My, lags Z by approximately one-quarter cycle, just as a
sinusoidally-varying Z would lag Z'. So it is reasonable that the principle
term in M,,,, should be proportional to 2; the other terms in M, are to

be viewed as corrections.

b. (Z' = ¥") term in Fy, . It is intuitively plausible that the interaction force
should depend upon the relative velocity between the bulk of the fluid
and the structure, although it is not clear that the linear dependence
(2 = )’;') is best. Perhaps a "fluid-damping” dependence
| B - ?’I (2‘ - ?‘) would be better, but the latter is extremely difficult to

handle analytically, and is therefore avoided.

C- (2" - ?") term in F4; . A relative acceleration term in the interaction

force attempts to model the effect of apparent fluid mass [11].

d. 2” term in Fy . If the entire system (fluid + structure) is accelerated
upward with a uniform acceleration @ , and no other motion is present,
then @ = 2" = ?" for all time, so 2 = f’. and the first and second terms

in F;,, are both zero. However F;,; must not vanish in this case, because
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the upward uniform acceleration is entirely ‘equivalent to a downward
gravitational field of strength @, in response to which the fluid develops
a hydrostatic pressure distribution, and exerts an upward buoyancy
force on the structure. Therefore F,; must contain a third term, pro-

portional to the bulk fluid acceleration @ = 2z

3. Mathematical foresight. The "correction terms"in M, , proportional to gz
and 2’3. are selected primarily on the basis of mathematical foresight, in
order to produce a van der Pol type of fluid oscillator which is known to pos-
sess, at least for the forced case, the lock-in behavior observed experimen-
tally [86]. This is the very same foresight exercised by Bishop and Hassan in

their original suggestion of a nonlinear fluid oscillator.

4. Simplicity. While it would be possible to assume more terms in Egs. (3.2.8)
and (3.2.7), for example a Z'5 term in (3.2.8), it is desirable to minimize the
number of model constants a; as well as the complexity of the model equa-
tions. It would also be possible to model the nonlinearity into the interac-
tion force F'g; rather than into the momentum flux My, , and still obtain
the desired van der Pol type equation. However, since F,; appears in both
the structural and fluid oscillator equations, while My, appears only in the
fluid equation, nonlinear F'j,; produces two nonlinear equations while non-
linear M;y,,, produces one nonlinear and one linear equation. The latter is of

great analytical advantage.

The fluid oscillator equation is obtained by substitution of Egs. (3.2.5), (3.2.6),
and (3.2.7) into Eq. (3.2.4). Combination of Z" terms, and division by the

coefficient pD%e, , where

ey = Qg + Qg + ag, (3.2.8)
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yields

2“ _ (01—04)U2' + Q2 53 anZ > - G4U },.;' _ Eg
81.D EIUD el,D2 elD e

e (3.2.9)

The model constant ag may be eliminated immediately according to experi-
mental knowledge of the natural vortex-shedding frequency w, for a stationary
cylinder ()7 = 0), as discussed in Chapter 2. Since it is well known that the van
der Pol oscillator (3.2.9) displays limit-cycle oscillations whose squared natural

angular frequency equals the coefficient of the Z term [8], it follows that

w? = ‘::’g: (3.2.10)
But according to Strouhal’s relationship (1.2)
W = 2118%. (3.2.11)
So it follows, using Eq. (3.2.8), that
ag = 472S%aq + ag + ag) (3.2.12)
which reduces the number of independent model constants to six, ag ..., a5.

Time T and the oscillator variables Z and Y are nondimensionalized as follows:

Z. .
Z = Z ¥ =5 (3.2.13a)
t = w,T (3.2.13b)
¢ = .d__ = i '
() = 2 = w,( Y. (3.2.13¢)

Substitution of Egs. (3.2.11) and (3.2.13) into Eq. (3.2.9) yields the normalized

fluid oscillator equation
Z-aZ +B2%+2 = rY -t¥, (3.2.14)

where the coefficients a, 8, r, and T are functions of model constants and the
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Strouhal number only:

_ 1 Q) —ay
as s (3.2.15a)
a
g = 211'Se—2 (3.2.15b)
1
_ 1 84
rE o ot (3.2.15¢)
a
s = (3.2.15d)
€

3.2.2 The Structural Oscillator

Referring to Fig. 3.2.1, the equation of motion for the spring-mounted

cylinder is
V" + 20w 7 + by = 2 (3.2.18)

where ¢ is the fraction of critical damping

b
= . 3.2.17
i = ( )

w; is the natural frequency of the cylinder
wy = (3218)

x|

and M is the cylinder mass per unit length. The dimensionless fluid-structure

mass ratio 77 is defined as
= oD% (3.2.19)
n = I 2 Qs

Substituting Eq. (3.2.7) for the interaction force Fg; into Eq. (3.2.18), combining

Y" terms, dividing by the coefficient!

1. For perspective concerning the importance of e, the mass ratio 7 is often very small
for systems of engineering interest, in which case ez~ 1.
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eg = 1+agn (3.2.20)

(assumed positive), and non-dimensionalizing as in Egs. (3.2.13) yields the nor-

malized structural oscillator equation
Y+9Y +0fY = cZ +¢Z. (3.2.21)
In this equation, the damping coefficient

1 Wy Qg
= ——= s + aoa
Y e [ths 5ng ] (3.2.22)

includes a fluid damping term as well as a structural damping term, the normal-

ized structural frequency is

1 w

(, = = 3.2.23
1 s ( )
and the coupling coefficients are
1 a4

B - oS (3.2.24a)

+
pa S2TES (3.2.24b)

€z

3.2.3 Summary

To summarize, vortex-induced oscillations of spring-mounted cylinders are
described according to the current model by the pair of differential equations

(8.2.9) and (3.2.21), coefficients in which are functions of six model constants
(ag,..., ag) as well as four physical parameters (S, ¢ 7, %) . To obtain phy-
S

sically interesting information from the model, such as lock-in band location
and peak structural response amplitudes, these differential equations must be
solved, and the model constants selected on some rational basis. The first of
these problems is addressed in Chapters 4 and 5, while the second is discussed

in Chapter 6.
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3.3 Application of the Model to Forced Cylinders

Consider the rigid cylinder of Fig. 2.3.1, whose normalized, transverse dis-
placement Y(7), typically sinusoidal, is prescribed by some external driving
mechanism, as in many experiments which study vortex-induced effects on
vibrating cylinders. According to the model developed above, this problem is
completely described by the fluid oscillator equation (3.2.14); since the forcing
functions Y(¢) and Y(¢) are known, the structural oscillator equation (3.2.21) is

irrelevant.
3.4 Extension of the Model to Elastic Cables

3.4.1 The Fluid Oscillator

Rigid cylinders, used above as prototype structures for development of the
model, are rarely encountered in engineering practice. Extension of the model
to more realistic elastic structures such as cables and beams, for which the dis-
placement is a function of the axial coordinate z; as well as time, may be per-
formed as suggested by Iwan [36], under the assumption of no spanwise cou-
pling within the flow. That is, in applying the momentum theorem analysis of
Section 3.2 to the deformed elastic structure shown in Fig. 3.4.1, the flux of vert-
ical momentum through the lateral surfaces A B CD and A'B'C'D’', as well as

any vertical viscous shearing forces on these surfaces, is neglected.

Incorporation of these efflects into the model would produce terms in the
fluid oscillator equation involving spatial derivatives. However, experimental
studies by Ramberg and Griffin [49] on vortex formation behind vibrating cables
have indicated that "the shedding process is strongly dependent on the local
amplitude of vibration but only weakly, if at all, dependent on the behavior of
nearby cable elements [B84]." Therefore it is reasonable to neglect spanwise

effects in the fluid oscillator equation.
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As a consequence of this approximation, all of the equations in Section 3.2
apply to the case of elastic structures, merely by reinterpreting the full time
derivatives as partial derivatives. In particular, the fluid-structure interaction

force per unit axial length is, upon normalization of Eq. (3.2.7),

Qg4

Fiy = pwfD® [ag(Zy - Yy) + oS (Z: - Y1) + asZy] (3.4.1)
and the fluid oscillator equation is
Z“ = aZt + ﬁZ,a +7Z = !'Y‘ = ?"Y“ (342)

where subcript { indicates partial derivative with respect to the normalized time

t. In this context,

Z = Z(ut) (3.4.32)

Y

Y(ut), (3.4.3b)

where u is the normalized axial coordinate

- L
u = -, (3.4.4)

and L is the structural length.

3.4.2 The Structural Oscillator

For specificity, only spanwise uniform, taut elastic cabes with fixed ends are
considered in the present analysis; a similar analysis is possible for other struc-
tures. The equation of motion for such a cable, being acted upon by the interac-

tion force Fgy, is
MY = TY,!:,1 +[C(Y))r+ Fensz, (3.4.5)
where subscripts indicate partial derivatives, M is the structural mass per unit

length, T is the cable tension, and C(Y) is a linear homogeneous differential

operator representing the structural damping. Normalizing according to Egs.
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(3.2.13) and (3.4.4), while noting that length scaling of ¥ goes through the opera-

tor C because it is linear, gives

1 T 1 Fint
= ——— 4 e = 4.
Yu wZ ML? Vi Mo, LE(Y))e MD w? A6}

Next, substituting Eq. (3.4.1) for Fgy, combining Yy terms, and dividing through

by e, as defined by Eq. (3.2.20) gives

1rC(Y) , 94 1 2T -
T e * - =Yy & o0+ BBy (34
" ez Moy ZnSnY e e 5 MLE You = €2y + €2y (3.4.7)

where the coupling coefficients ¢ and ¢ have been previously defined in Egs.

(3.2.24).

3.4.3 Modal Decomposition

It is always possible to expand the spatial dependence of Y(w,t) and Z(w,t) in
the complete set of functions [sinnnu, cosnnu;n =0,...,=]. However, for a
cable with fixed ends, all of the cosine components of Y (w, t) must be identically
zero to satisfy the boundary conditions, and by spatial Fourier decompostion of
Eq. (3.4.7), it may be shown that all cosine components of Z (u, t) must likewise
be zero. Therefore it suffices to consider only the orthonormal eigenfunctions

of the cable

¢o(u) = VBsinnmu; n=1,...,, (3.4.8)

expanding Z and Y as
Zlut) = i_)lzn(t)f,‘(u) (3.4.9a)
V) = 3 yn(t)inlu) (3.4.9b)

where y,(f) and z,(¢) are unknown time functions.
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A normalized n** mode natural frequency of the cable may be defined as

1 Wn

1., = —
B \/22 Ws

(3.4.10a)

where

Wy, = _L— E s (3.4.10b)

which is exactly analogous to Eq. (3.2.23) for the spring-mounted rigid cylinder.
To permit complete uncoupling of the structural equation (3.4.7), it is necessary
to assume that the structural damping is expressible in classical form, whereby

the operator C[¢,] is orthogonal to §,, for m = n:

—\/‘é—?lﬁ,/;lfm(u )C[fn(u)]du = 26 nbmn, (3.4.11)

the symbol §,,, being the Kronecker delta. Essentially, this equation defines the
operator C in terms of modal damping ratios ¢, which, for practical situations,

are usually measured or estimated.

Substituting the assumed solution form (3.4.9) and (3.4.7), multiplying each

by ém(wu), integrating over u, using the orthogonality relations (3.4.11) and
1
Sy tm@)n(u)du = G, (3.4.12)
and finally interchanging the dummy subscripts m and n yields, for every
n=1...,60m:

zZ, — az, + ﬁj:[ i em(u)ém ]8 en(u)du + 2, = rYp — Tin (3.4.13a)
m=1

and
Un * Yaln * Ofyn- = o2y + %, (3.4.13b)

In the latter equation, the damping coefficient
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26nlln Ay
= + . 4.
In T_ez 2nSes n (3.4.14)

includes both structural and fluid damping, in analogy to 7 for the spring-

mounted rigid cylinder.

Note that the above modal decomposition does not uncouple the components
z, of the fluid oscillator Z, since the nonlinear g-term in Eq. (3.4.13a) couples
every 2z, nonlinearly to all of the others. This difficulty precludes an analytic

solution to the infinite set of equations (3.4.13).

3.4.4 One-Mode Approximation
To reduce the system (3.4.13) to a tractable from, consider a one-mode
approximation for situations in which structural vibration in one particular

mode, say mode k, is much greater than that in any other mode:
Yy large (3.4.15a)
Yyn = 0, n =k (3.4.15b)
As a physical example of such a case, consider the experiment discussed in Sec-

tion 2.4. In the range 4;—5— = 6.8 to 7.3, Figs. 2.4.2 demonstrate that the struc-
1 .

tural response is confined entirely to mode k = 7. It is then physicaly reason-
able to presume that spatial dependence of the fluid variable Z (u,t) is likewise

confined to mode shape k, i.e.
z, - 0, n=k (3.4.18)

since the fluid can have no knowledge of mode shapes which are absent from the

structural vibration itself.

Together with Eq. (3.4.9a), Eq. (3.4.18) implies full spatial correlation of vor-

tex shedding with the resonating cable mode shape ¢,(u) = V2sink mu, just as
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the rigid cylinder model above assumed full spatial correlation of vortex shed-
ding with the rigid mode shape ¢(u) = 1. Griffin [30, p. 33] offers experimental
justification of such mode-shape-correlated vortex shedding for a cable; namely,
the correlation coefficient for signals from two hot-wires, located at different
spanwise locations in a cable’'s wake, is positive if both hot-wires lie within the
same half-wavelength of cable displacement, but becomes negative as soon as

one hot-wire crosses a displacement node.

Based on Egs. (3.4.16), the one-mode approximation considers only the k'
pair of equations (3.4.13), and truncates the infinite sum in Eq. (3.4.13a) to a
single term such that the only relevant mode-shape integral is, using definition

(3.4.8),
1 " )
S edw)du = X (3.4.17)
Therefore the one-mode-approximate equations for a cable are:
- ; B e B s s
Zr — azp + —2‘574: +2r = rii - Ty (3.4.18a)

Ye + Yl + Qfyr = ¢z, + T2, (3.4.18b)
These equations are the same as Egs. (3.2.14) and (3.2.21) for a rigid cylinder,
with the sole exception that the coefficient of the nonlinear term, equal to g for
the rigid cylinder, is here %ﬁ. The two results may easily be unified by thinking
of the rigid cylinder as an elastic structure with mode shape ¢{(u) = 1, for which

the integral (3.4.17) yields 1 rather than %

3.4.5 Two-Mode Approximation
Practical situations often arise in which assumptions (3.4.15) of the one-
mode analysis are not valid. As demonstrated by the experiment discussed in

Section 2.5, for sufficiently high mode number &, two or more adjacent natural
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frequencies of a cable, say w, and w,,;, may lie sufficiently close to the Strouhal
frequency w, to induce simultaneous vortex-excited oscillations of the several
modes. The reason is simply that the normalized spacing between adjacent

cable frequencies,

W1 — Wy (k +1) -k 1
= = -, 4.19
- = - (3.4.19)

approaches 0 as k approaches infinity. In other words, modal density increases
with £ such that adjacent lock-in bands may overlap, or otherwise interfere,

when k is sufficiently large.

To describe such modal interference, consider a two-mode approximation of

Egs. (3.4.13), which permits y; and y; 4+ to be simultaneously large, but requires
Yn > 0, n=k k+1 (3.4.20a)

By extension of the argument which lead to Eq. (3.4.18), it is reasonable to

assume in this case that
zp, » 0, nwk k+1 (3.4.20b)
Consequently, the infinite set of equations (3.4.13) is truncated to two pairs, one
equation for each of the variables 2, ¥k, 2x+1, and yi+3. Likewise the infinite
sum in each z-equation (3.4.13b) is truncated to two terms, reducing the non-
linearity for m =k to
1 k+1 R - s
S 6@ L tm(u)em P du = 14028 + 8l512f24 41
n=k
+ 3/pp2; 2k2+1 + ]1aéka+1 (3.4.223)
where the integrals

I = Jf, 6 (W) P [bras(w) P du (3.4.228)

have the following values for the mode shapes given by Eq. (3.4.8):
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T4 = %; Igy = 0; T2 =1, I =0 (3.4.22b)

Substitution of Eqs (3.4.21) and (3.4.22) into the two-mode-approximate form of

Eq. (3.4.13a) yields the following equation for the z, oscillator:
s ; B o7 ; ; puss
Zp — az; + Eﬂ(zf + 2281 )2, + 21 = ryx - Tie. (3.4.23)

The equation for z,.; is obtained similarly; the result is identical to Eq. (3.4.23)
with subscripts & and ¥ + 1 interchanged. The equation for y, (or y;.) is ident-

ical to Eq. (3.4.13b), with subscript n replaced by k (or k + 1).

Symmetry in the subscripts (k, £ + 1) may be exploited by the following

convention:
For mode k equations: i = k; j=k+1 (3.4.24a)
For mode (k + 1) equations: i = k+1; j = k (3.4.24Db)

The double pair of two-mode-approximate equations may then be written as a

single pair:
.z'i 2= aéi + —3‘5(2‘2 + 22,2)2‘ + 2y = ry; — Fy‘l (3.4253)

Yi +viys + Qfys = czi + T (3.4.25b)

where 1 =k, k +1 and j =k + 1, k respectively, as dictated by convention

(3.4.24).
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3.5 Summary

In Sections 3.2--4.3 above, a modified Iwan-Blevins model for vortex-induced

vibrations has been developed and applied to structures of both experimental

and practical interest. For each case considered, the relevant model equations

are summarized in Table 3.5.1, for ease of reference.

Table 3.5.1: Index to Chapter 3

mation

Yi: Yi+1

Type of Structure Fluid Structural Oscillators Number
Oscillator Oscillator Involed of Diff.
Equation Equation Egs.
Elastically Mounted (3.2.14) (3.2.21) Z Y 2
Cylinder
Forced Cylinder (3.2.14) None; Y(t) z 1
prescribed
Cable (3.4.13a) (3.4.13b) 2 Zgieod ®
Y1 Yo
One-Mode Cable Approxi- (3.4.18a) (3.4.18b) Zk Yk 2
mation
Two-Mode Cable Approxi- (3.4.25a) (3.4.25b) 2k, Zk+l 4
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CHAPTER IV
MATHEMATICAL ANALYSIS OF MODEL EQUATIONS

4.1 Generalized Model Equations

All sets of equations listed in Table 3.5.1 are so similar that it is desirable to
unify the mathematical treatment as far as possible. In each case the general

form of the equations is
x+x = eF(x x X), (4.1.1)

where £<< 1! and x is the vector of component oscillators; e.g.

X = (2, Zga+1, Ve, Yir+1) for the two-mode-approximate cable.

To write the structural oscillator equations, for example Eq. (3.4.25b), in the
form (4.1.1), it is necessary to add {1 — 0#)y; to both sides, thereby introducing

this term in the function ¢F. Implicit in such a procedure is the assumption
1-0f = 0(e). (4.1.2)

For the spring-mounted cylinder and the one-mode cable approximation this
assumption is valid in the vicinity of lock-in ({1, near (1;, where 0}, = 1), which is
the region of greatest interest from a physical viewpoint. Likewise, for the two-
mode cable approximation, assumption (4.1.2) is valid for both i (i =k, k+1) in
the region where modal lock-in bands are likely to interfere, which is again the
region of greatest physical interest. Consequently, assumption (4.1.2) will be

adopted henceforth.

If the analysis is carried out to order ¢ only, then the appearance of X on the
right-hand side of Eq. (4.1.1) may be eliminated as follows. According to Eq.

(4.1.1),

1. See the comment following Egs. (4.1.8).



X = -x+¢F (4.1.3)
Therefore
+x = eF(x & -x+ ¢F). (4.1.4)
Expanding €F in a Taylor's series of its third argument about -x,
I+x = eF(x x -x) + 0 (). (4.1.5)
Defining
ef(x, x) = eF(x x, -X), (4.1.8)
this may be written more simply, to order g, as
X+x = ef(x Xx) (4.1.7)

Therefore, apart from the infinite set of equations for the elastic cable, each
set of equations listed in Table 3.5.1 is, to order ¢, a special case of the following

set of generalized model equations:

Yy + y1 =~y + (1 - 08y, + ¢z, - €2, (4.1.8a)
Yo + Yo = —72¥e + (1 - Qf)yz +czp— Tz, (4.1.8b)
Zy + 2z, = az, —-pzi — qzfz, +ry, + Ty, (4.1.8¢c)
Zp + 25 = az; —pzd - qzfi, + rys + Fyo (4.1.84)

These equations have the form (4.1.7) if each of the terms on the right-hand
side is an order of magnitude smaller than the terms on the left-hand side; that

is, for each of the four component equations,

0(efm)

0(z..) R O0(e); m =1,...,4 (4.1.9)

For i = 1, 2 this requires that the products ? p [2#], q |z#| and the coefficients a,

2. In this context, | |indicates the amplitude of an oscillating quantity.
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7%.¢, ¢, r, T, as well as the quantity 1 — 7 discussed above, must be order ¢.

Egs. (4.1.8) correspond to the various equations listed in Table 3.5.1 accord-

ing to the following conventions:

1. Subscript Values. The generic subscript values i = 1, 2 are employed in
place of i =k, k + 1, merely for convenience. With these generic subscripts,

convention (3.4.24) becomes:
For "mode—1"equations: i=1, j=2 (4.1.10a)
For "mode—-2" equations: i=2, j=1 (4.1.10b)

By the quotation marks in convention (4.1.10), it is emphasized that sub-
scripts 1 and 2 in this context do not refer necessarily to modes 1 and 2 of

an elastic structure, but to any two adjacent modes k¥ and k¥ + 1.

2. Coefficients of nonlinear terms. The generic parameters p and g appearing
in Egs. (4.1.8) are employed to represent certain multiples of g, as indicated

in Table 4.1.1.

3. Variable Identification. The generic variables (z, zp, Yy, Yg) are employed
to represent the oscillator variables Z, Y, z,, y,, etc. as indicated in Table
4.1.1 . Some of the generic variables have no counterparts in certain cases,
as represented by dashes in the Table. In such instances the associated

oscillator equations are ignored.

The asymptotic method to be used for analysis of equations (4.1.8) is

developed in the following section.
4.2 An Asymptotic Method Using Two Time Scales

Consider a set of N coupled, nonlinear, autonomous, ordinary differential

equations of the form?®
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X+ [A2x = ef(x x), (4.2.1)
where
x= (z4....2Zx) (4.2.2a)
[A] = diag(Ay .. .. AN), (4.2.2b)
() = T.‘zi?' (4.2.2c)
and
£ << 1. (4.2.24d)

Analysis of this system may be carried out using a variation of the method of
multiple time scales, as given in Nayfeh [48, pp. 228-230], and further illustrated
in Nayfeh and Mook [47, pp. 388-390]. Specifics of the method as used herein

are presented below.

Let the solution x be expanded as a power series in ¢ which for the current

discussion is truncated to two terms:
x = x0T T) +exX(ToT) + - (4.2.3)
The independent time scales 7y and T'y are defined as
To = ¢; Ty = &t (4.2.4)
so by the chain rule,
(") = Dy + eDy, (4.2.5)

where the operators Dy and D, are defined as

—— —————————————————————— ———————————————{——{———— ——— ——————— - —————

3. This system is more general than is necessary for the present purposes, since the
system of interest (4.1.8) has the form (4.1.7), for which [A] =[/] (the identity
matrix). Consequently, the asymptotic method presented in this section would be
capable of handling, for example, Eqs. (4.1.8) in the case where Eq. (4.1.2) is not
satisfied.
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Dy = B_To: D, = Ty (4.2.8)
Consequently,
x = Dox® + e(Dox(V + D x) + - - - (4.2.7a)
¥ = DEx9 + ¢(DExV) + 2D,D x(¥) + - - - (4.2.7b)
where
D¢ = a"ng. (4.2.8)

Furthermore, expansion of the right-hand side of Eq. (4.2.1) about the zeroth

order solution x© gives

ef(x, x) = ef[ X9 + ex(V), Dex(® + (D x© + Dox{1)]
(4.2.9)
_— ef[x(o)‘Dox(o)] + O

Therefore, substituting Egs. (4.2.3), (4.2.7b), and (4.2.8) into Eq. (4.2.1) and

equating coefficients of like powers of &:
eC: DEx(® + [A]1%x® = 0o (4.2.10a)
el: e(DoxM + [ARX)) = —2eDuD,x(9 + ef(x(®), Dx(), (4.2.10b)
The £° equation is satisfied by
z0 = I-I,,n(Ti)eD""T0 - me(Tl)e-ﬂ"‘T", m=1...,N (4.2.11)

where H,, is a slowly-varying complex amplitude whose conjugate is IT,,, and

i = V-1. Consequently the ¢! equation becomes
gDz + A22,)) = =i (eHm'e™T0 = e, e ™ T0) 4 e (20, Dex®), (4.2.12)

in which H,,' denotes differentiation of H,, with respect to its argument, the

"slow time" T,.
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To proceed further, it is necessary to specify constants A, and functions £f,,
in the system (4.2.1). The objective is then to generate first order differential
equations for the H,, by identifying the secular terms in ¢f,,, and requiring that
these, together with the explicit secular terms in Eq. (4.2.12), vanish.* This pro-
cess is carried out in the next section, where the system (4.2.1) is specified to be

the set of model equations (4.1.8).
4.3 Application of the Asymptotic Method to the Model Equations

4.3.1 Introduction

The generalized model equations (4.1.8) may be written in the language of

Egs. (4.2.1) by letting N = 4,

x = (yy Yo 21 22), (4.3.1)
ef(x X) = =7y + 61y +czy - Czy (4.3.2a)
efe(x X) = —ypyp + bgyp + c2p — C2p (4.3.2b)
efs(x X) = az, -pz{ - qz82, +ry, + Ty, (4.3.2c)
efy(x X) = azp—pzd — qz82, + ryp + Ty (4.3.24)

and, as indicated in the footnote to Eq. (4.2.1),
)\1 = Az = Aa = M = 1. (4.3.3)
For brevity, the symbol®

& 1-0% i1=12 (4.3.4)

has been introduced in Egs. (4.3.2).

4. The rationale for this procedure is well known: if the secular e*“"‘r" terms on the
right-hand side of Eq. (4.2.12) did not vanish, unbounded resonance of the
undamped harmonic oscillator z,) would result, thereby destroying the order of
magnitude assumption in the expansion (4.2.3).

5. Throughout Section 4.3, i = v~1 whenever i is used explicitly, except as noted in
Egs. (4.3.4) and (4.3.20b), where i is an index.
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4.3.2 Determination of Secular Terms
Consider the determination of secular terms on the right-hand side of Eq.

(4.2.12). The functions efm (x©,Dox(®), are, for m = 1, 3:

ef 1(x(9, Dex(®) = —9,[Doz{?] + 6,2 + c[Doz{® ] - &z (4.3.5a)

efa(x®, Dox(®) = a[Dezd?] - p[Doz{? P - q[Dozf? 1¥[Doz§? ]

+r[Dez{®] +Tz{® . (4.3.5b)

Companion expressions for gf; and £f, are obtained by interchanging sub-

scripts as follows
1 - 2 3 «-» 4, (4.3.8)

Differentiation of the solution form (4.2.11) gives, in view of Eq. (4.3.3),

Doz,® = i(Hpe'® - H,e™0), (4.3.7)

Calculation of the nonlinear terms in Eq. {(4.3.5b) yields
[Dozd®)® = -i(ngaiT°—3H§}7-3eiT°) + cc. (4.3.8a)
Do f? FIDf0] = —i[HoHEe™™ ~ (Fa§ + 2HH T ™) + oo (4380)

where "c.c.” indicates the complex conjugate of all preceding terms. Substitu-

tion of Egs. (4.2.11), (4.3.7), and (4.3.8) into Egs. (4.3.5) produces:
ef1[x(9, Dex(?] = C;e"" + c.c (4.3.9a)

ef 3[x(®, Dox(?] Cse"" + Kg,e'(m’° + c.c. (4.3.9b)

where

C; = (61 = ‘i71)H1 + (‘I..C = E')Hs (4.3.108)
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Ca = (ir+¥)H, +iaHg - 3ipHEH, — 2igHH H, - igHsH? (4.3.10b)

Ks iHg(qgHE + pHE) (4.3.10c)

Again, companion expressions for £f; and ¢f, are obtained merely by inter-

changing subscripts according to (4.3.8).
Substitution of Egs. (4.3.10) into Eq. (4.2.12) produces, form = 1, 3,

e D8z{V +2z{V] = (C, - ZiaHl')eiT" + c.c (4.3.11a)

e[DEzdV + zfV] = (C5 - 21’.&H3')eg° + KaeSiT" + c.c. (4.3.11b)

On the right-hand side of each equation (4.3.11), the ¢'’® term is secular, while
the 70 term in Eq. (4.3.11b) is not. Using (4.3.18), the situation is analagous

for the companion equations. The "c.c." notation emphasizes that the set of
equations generated by secular e-iT" terms is always equivalent to that gen-

erated by eiT° terms, since the one set is just the complex conjugate of the

other.

4.3.3 Amplitude/Phase Equations
The requirement that secular terms vanish in Egs. (4.3.11) gives, for

m = 1, 3,
-2ieH, +(1-0f-iy)H+ (ic -€)Hg = 0 (4.3.12a)
—2ieHg +iaHg — 3ipHEH, — RigHsH JH 4 —igHsHE + (ir +T)H, = 0, (4.3.12b)

and companion equations for m = 2, 4. These equations are satisfied by the

following solution form for the complex amplitudes H,, :
Hp(Ty) = %Bm(Tl)em”‘(T‘) . (4.3.13)

The unknown real quantities B,, and 8,,, which depend on the slow time Ty, may

be identified respectively as slowly-varying amplitudes and phases for the four
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component oscillators (yy, ¥z 2z zz). That is, by substituting Eq. (4.3.13) into
Eq. (4.2.11),

0 = B, cos(A\,To + 8,,). (4.3.14)

Thus, recalling equations (4.3.1), and (4.3.3), explicit representations for the

approximate component oscillators are found to be

y{9 = Bicos(To + 8,); z{9 = A;cos'(To + &) (4.3.15a)
y§9 = Bcos(Ty + 8,); z§% = Agcos(Ty + ®5), (4.3.15b)
where
Ay = By, 9, = 8, (4.3.18a)
Ay = By 9, = 6, (4.3.18b)

have been introduced for convenience in the sequel.

Substitution of Egs. (4.3.13) and (4.3.14) into Egs. (4.3.12), while noting

d 1d 1,.
' E e— E —_— E — % 3 7
) dTy e dit e( ) (4.3.17)
gives
—2i(B, +18,0,) + (ic - S)a,e & "% y (1 Q2 -iy)B, = 0 (4.3.18a)

—21(A1+1A1'I>1)+1.aA1-—Z-1.pA?—%qufAl

2i(ep - ®,) (8, - &) _

o i—qAEAle + (ir +¥)B,e 0 (4.3.18b)

As before, companion equations also hold, as obtained by interchanging sub-
scripts 1 and 2.

Separating real and imaginary parts gives, upon rearrangement, the following

set of first-order, nonlinear differential equations in the amplitudes and phases:
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Ay = Za4, - -g-pA? - -;—quzA 1(2 + cos2¢p) + %B 1(rcosyy + Tsinug)

A = Lad, - -g—pAaa - %qA £42(2 + cos2p) + %BE(TCOSM + F'sinug)

B,
By

B,

82

n

—_21.7131 + %A 1{ccosu; + ¢'siny,y)

——%7232 + —;—A o{ccosuy + C'sinyyp)

B
——l-quzsianJ - —1(?"cos,u.1 - rsinyy)
8 24

B
+—1—qust¢ - —2 (Fcosug - rsiny,)
B 24,

A
-1y g2y 21~ ;
2(1 ng) 20, C'cosp, + csing,)

_l¢_qp -2z & i
2(1 ns) 282( T cosup + csinupg)

(4.3.192)

(4.3.19b)

(4.3.19¢)

(4.3.194)

(4.3.19€)

(4.3.19%)

(4.3.19g)

(4.3.19h)

Here the companion equations have been written explicitly, and the phase

differences

p = b9,

e 8, -9, i=12

(4.3.20a)

(4.3.20b)

have been introduced. Egs. (4.3.19) will be referred to hereafter as the

amplitude/phase equations.

4.4 Summary

In this chapter, Egs. (4.1.8) have been proposed as generalized model equa-

tions which contain each of the entries in Table 4.1.1 as a special case. An

asymptotic method developed in Section 4.2 has been applied to the generalized

equations in Section 4.3, the result being a set of differential equations in the

amplitudes and phases of the original oscillator variables y; and z;.
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CHAPTER V

STEADY-STATE MONOFREQUENCY SOLUTIONS

5.1 Introduction

As indicated in Figs. 2.4.2, vortex-induced structural vibrations reach max-
imum amplitude during lock-in, when the fluid and structural oscillators vibrate
steadily at a common frequency. Such steady-state, monofrequency oscillations
are therefore of great practical interest, and should rightfully be emphasized in
an analysis of the empirical model. In this chapter, approximate monofre-
quency solutions are found analytically, based on results of the previous
chapter, for each of the cases listed in Table 4.1.1. The unified analysis of
Chapter 4 is continued in Section 5.2, after which separate, specific results are

obtained for each case.
5.2 General Analysis

Consider the following expressions for the approximate oscillator variables

(29, ¥@), i=1, 2

z,-(o)(_t) A (t)cos[Qt + p;(t)] (5.2.1a)

yi¢t) = By(t)cos[Ot + &(t)]. (5.2.1b)

Although this form is slightly different than Egs. (4.3.15) dictated by the asymp-

totic method, the equivalence of the two forms is recognized by identifying

0,(t) (t)+(Q - 1) (5.2.2a)

B,(t) = put) + (0 - 1)t (5.2.2b)

and recalling Tq = ¢. Simply stated, Egs. (4.3.15) interpret as a uniform phase

drift what Egs. (5.2.1) interpret as a frequency shift.

For steady-state, monofrequency oscillations at the (unknown) frequency 1,
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the amplitudes and phases in Egs. (5.2.1) must be constant:
A =B, =0 (5.2.3a)
¢ = % = 0. (5.2.3b)
Thus, according to Egs. (5.3.2), the phases ®; and 8; must, in the steady state,
all drift at the same, constant rate
d, = 8, =0 -1, i=1 2. (5.2.4)

Substitution of Egs. (5.2.3) and (5.2.4) into the amplitude/phase equations
(4.3.19) yields the following equations for approximate, steady-state, monofre-

quency oscillations of the system (4.1.8):

ad; - -‘%pAt-s - -:qufA‘-(z + cos2ypjy) + By(rcosy; + Fsing) = 0 (5.2.5a)
—viB; + Aj(ccosy; + Csingg) = 0 (5.2.5b)

204, + %quAﬁinZ;aﬁ + B;(Fcosy; — rsingg) = 0 (5.2.5¢)

(1 -02+20)B; + A;(-Ccosyy + csinw;) = 0, (5.2.54)

where i = 1, 2, and convention (4.1.10) applies for subscripts i and j. The fre-

quency unknown

c=0-1n~ 0() (5.2.6)

has been introduced here, as well as the phases gg; and gy, where

$21 = Q = Pa—9; = —@g (5.2.7)

The latter series of definition is necessary to preserve the (1, 2) subscript sym-

metry of the two sets of equations represented by (5.2.5).

The system (5.2.5) comprises eight nonlinear algebraic equations for the
steady-state values of the eight unknowns (4, 4, By, Ba uy, i ¢ o). The
method of solution depends strongly upon which of the cases listed in Table
4.1.1 is considered. Consequently, in the following sections, a separate analysis

is performed for each case.
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5.3 Forced Cylinder

5.3.1 Amplitude Solution
According to Table 4.1.1, there is only one unknown oscillator variable in this

case,
zy = 2, (56.3.1)
satisfying the generalized model equation
Z-aZ +pZ3+2Z = rY(t)+TY(t) (5.3.2)
where p = . The cylinder displacement
yy = Y(t) (5.3.3)

assumed to be harmonic with frequency {1 and amplitude B, is known. There-

fore, with the help of Egs. (4.3.20) and (5.2.2), Egs. (5.2.1) give

Z©) = Acos(1t + ¢,) (5.3.4a)

Y(t) = YO

Bqcos(f1t + ¢y + wy). (5.3.4b)

Since the phase of the forcing function y(© may be arbitrarily prescribed, let

p1+u =0, {5.3.5)

such that
Z© = Acos(Qt + ¢) (5.3.86a)
Y® = Bcosht. (5.3.6b)

Subscripts on A and B have been dropped here for simplicity, without ambiguity.
The forcing frequency ] = 1 + o and the forcing amplitude B are both known, so

there remain only two unknowns, A and g;.
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Of Egs. (5.2.5), only Egs. (5.2.5a) and (5.2.5¢c) for i = 1 are relevant, having
been obtained from the differential equations for z{%. Reduction of these two

equations according to Table 4.1.1 and Eq. (5.3.5) yields
oA - %pAa + B(rcosp; — F'singy) = 0 (5.3.7a)
20A + B(Tcosg, + rsing,) = 0, (5.3.7b)

which may be solved as a linear, inhomogeneous algebraic system in the

unknowns cosy; and sing;:

r{a — %pAz) + 2Fo

A
cospy = = o o (5.3.8a)
~ 3 2
A r(a—:pA ) - 2ro
sing; = + e (5.3.8b)

Squaring and adding gives a single equation in the unknown amplitude A:

2
2 (a - %pAz) + 407

(f—) = -y . (5.3.9)

It is useful in the sequel to introduce the constants

cy = — (5.3103)
2 L ~2
Cp = \/_:K_!:__tr_)p_ (5.3.10b)

and the normalizations
o' = c1o0 = cy(0 - 1) (5.3.11a)

B*® = c.B (5.3.11b)
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- - 3pA?
A® = = (5.3.11c)

in terms of which the solution (5.3.9) relating 4, B, and o becomes
B*® = A [(1-4"%+ ") (5.3.12)

The quantities (c;, cz) may be regarded as axis-stretching constants which
transform the physical variables (o, B) into the canonical variables (¢°, B").

Eq. (5.3.12) is quadratic in ", so

o' = & { B'E-AA.(.I —4")" }%, (5.3.13)

from which the solution curves on Fig. 5.3.1 have been generated. This is a well-
known result for the single degree-of-freedom van der Pol oscillator equation
(5.3.2) [66]. With B® and ¢’ fixed there may be either one or three real solutions
for A®, which is not surprising since Eq. (5.3.12) may be alternatively regarded as
a cubic in A®. Stability of solutions shown in Fig. 5.3.1 is considered below; let-

tered points in the figure are discussed in Section 6.2.

5.3.2 Stability

To investigate stability of the above solutions, it is necessary to return to the
amplitude/phase equations of Chapter 4, prior to assumption of the steady-
state. Using Eqgs. (4.3.19a) and (4.3.19e), with the help of Egs. (5.2.2) and (5.2.6),
the two variables (44, ;) are found to satisfy a pair of first-order differential

equations of the form
X = IX), (5.3.14)

where, recalling4; = Aand B; = B,
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A
= { } (5.3.15)

>
I

?1

and

A(a - %pAz) + B(rcosg, — T'sing,)
IX) = =L (5.3.18)

¥1 -20 - %(’f"cosm + rsing;)

The steady-state solution X, satisfies
I(X,) = 0, | ' (5.3.17)
so if X is perturbed sightly away from Xo, i.e.
X = Xo+eX, (5.3.18)
the perturbation X satisfies, to first order in ¢,
X = [V]X. (5.3.19)
where [J']g is an abbreviation for the Jacobian matrix evaluated in the steady

0d
state [ax:l

Differentiating Eq. (5.3.18), using the steady-state equations (5.3.7) in the

x=x°'

form

-‘g(?‘sinw - rcosg) = a-3pa? (5.3.20a)
A ‘- 4
=X
B (T cosyp; + rsing;) = -204, (5.3.20Db)
X=X,

and normalizing according to Egs. (5.3.11) gives



V'] = a . (5.3.21)

.
o s
A

By a well-known property of two-dimensional linear systems of the form (5.3.19),
the perturbation X decays with time, and hence the steady-state solution Xj is
stable, if and only if the trace of [/'], is negative and the determinant is positive

[44]. Consequently the stability conditions are

4 > % (straight ~line boundary) (5.3.22a)
(1-34"%1-4%+¢" > 0 (elliptical boundary) (5.3.22b)

In other words, if a stability boundary in the (¢°A4°) plane is denoted by the

locus of points
A* = Lilo"), (5.3.23)

where k is an index, then according to Egs (5.3.22), a solution of (5.3.13) is

stable if and only if the point (¢°,A4°) lies above the straight line given by

L") = % (5.3.24a)

and outside the ellipse whose upper half is given by

La(c®) = %{1 + -\/1 - %(1 +0°% } (5.3.24b)

and whose lower half is given by

Lg(o®) = %{1 - \/1 - %(1 +0°% } , (5.3.24c)

On Fig. (5.3.1) these loci are shown as dashed lines, marking the limits beyond
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which real stable solutions of the assumed form (5.3.8) fail to exist. In the

unstable regions, solutions of a more complex nature prevail.

The stability boundaries are important for comparison of the mathematical
model with experimental results. Physically, the stability boundaries imply that,
according to the model, vortex-shedding is synchronized with the forcing fre-
quency (i.e. locked-in) only within a certain range of o* bracketing ¢* = 0. For

example, with B' = 0.8 in Fig, 5.3.1, the solution curve is stable for

lo*] < -1—16\/4—?— ~ 0.686,! and unstable otherwise. Moreover, this range of stabil-

ity increases in width as B* is increased. The truth of such qualitative model
predictions is well-documented experimentally, as shown in Fig. 2.3.2. This
agreement is not surprising; in fact, as discussed in Sections 3.1 and 3.2, such
qualitative agreement was anticipated by experimentalists Bishop and Hassan
[5] when they first proposed the idea of modeling vortex wakes as nonlinear

oscillators.

It is emphasized that the present model predicts the forced-cylinder lock-in
band to be symmetrically located about the exact resonance point o = 0,
regardless of what values are selected for the model constants. This qualitative
result appears to agree with Koopman's data (Fig. 2.3.2). Quantitatively, the
agreement obtainable with the present model depends on judicious selection of

the model constants, to be carried out in Chapter 6.

1. This value is obtained using Eq. (6.3.13) with 4°* = -;-, since, according to Fig. 5.3.1,
stability boundary L is relevant for this case.
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5.4 Spring-Mounted Cylinder

5.4.1 Amplitude and Frequency Solution

According to Table 4.1.1, there are two unknown oscillator variables in this

case,
zy = 2 (5.4.1a)
Yy = Y, (5.4.1b)
satisfying the generalized model equations
Z-0aZ +pZ®+Z = rY +¥FY (5.4.2a)

Y+9Y +QfY = cZ -22Z (5.4.2b)

wherep = Bandy = 7. Asin Section 5.3, Egs. (5.2.1) give
ZO© = A,cos(t + ¢y) (5.4.3a)
Y® = B cos(t + ¢, + ). (5.4.3b)

However, in this case Y{? is unknown rather than prescribed, so the differential
equations (5.4.2) are autonomous, and the origin of time is arbitrary. Conse-
quently one arbitrary condition may be imposed on the phases (g, #1). Eq.
(5.3.5) would be one possibility, but the ensuing analysis has been carried out

instead with

¢y = 0. (5.4.4)

Therefore
Z©) = AcosQt (5.4.5a)
Y© = Bceos(Qt + w), (5.4.5b)

where subscripts on 4, B, and u have been dropped for simplicity.!

1. The subscript on 2, is retained in order to distinguish the natural structural fre—
quency (1; from the response frequency ().
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Steady-state equations for the four unknowns 4, B, u4, and 0 = () — 1 are gen-

erated by application of Egs. (5.2.5) with i =1, ¥y =9, and ¢ =0 (see Table

4.1.1):
ad - -2—pA3 + B(rcosu + Tsiny) = 0 (5.4.6a)
—yB + A(ccosu + Csinu) = 0 (5.4.6b)
204 + B(Tcosu — rsiny) = 0 (5.4.6c)

]
o

(1-Qf+20)B +A(-Ccosu + csiny) (5.4.64)

Solving Egs. (5.4.8b) and (5.4.8d) as a linear, inhomogeneous, algebraic system

in the unknowns cosu and sinu yields

cy+c(1-Qf+20) B

cosy = - y (5.4.7a)

. Cy-c(1-0%+20) B
= =. 4.7b
sinu e 2 (5.4.7b)

Squaring and adding gives
B 2 c? + g%

—) = ‘ 5.4.8
(A) (1-0%+20)%+ % ( )

Substitution of Egs. (5.4.75 into Egs. (5.4.6a) and (5.4.8c) followed by substitu-
tion of Eq. (5.4.8) to eliminate (—g—)2 produces a frequency equation and an
amplitude equation,

F(o) = 0 (5.4.92)
Glo) = A% (5.4.9a)

where the functions F and G are defined as
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4 ky(1 - 0F + 20) + kgy

F(o) = —[-20 - ] (5.4.10a)

3p (1-0%+20)%+ 5%
4 —ko(1 - QF + 20) + kpy
G(og) = — + : 5.4.10b
er} Bp[a (1-0%+20)%+9° ] ( )
and
ke = Tc-rC (5.4.11a)
k, = rc +¥t¢. (5.4.11b)

5.4.2 Detuning Variables

Since o is the only unknown appearing in the functions F and G, Eq. (5.4.9a)
might be used to solve for o, and the result inserted into Eq. (5.4.9b) to solve for
amplitude A. However, upon clearing of fractions in Eq. (5.4.9a), a cubic in ¢ is
obtained, yielding either one or three real solutions, which must be found

numerically or by the relatively complicated analytical formulas for a cubic.

A simpler result is obtained by replacing the pair of frequency variables

(o, Q) appearing in Egs. (5.4.10) with defuning variables

A, = -21-(1 - 02+ 20) (5.4.12a)

o, = -%-(1 - n2). (5.4.12b)

The subscripts "r " and "f" on (A,, Ay) are mnemonic for response-structure
detuning and fluid-structure detuning respectively, although the A’'s are ""detun-
ings" only in an approximate sense. Assuming e; & 1 [as explained in the foot-

note to Eq. (3.2.20)],% the exact detunings

d, = 1 —+/ez; (Response-structure detuning) (5.4.13a)

2. The factors of \e; appearing in Egs. (5.4.13) are necessary to achieve consistenc_:y
with the physically motivated definitions of (d,, d;) given in Section 2.4; see Egs.
(2.4.4), (2.4.5), and (3.2.20).
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d; = 1-+/p0,; (Fluid-structure detuning) (5.4.13b)

are equivalent, respectively, to (A,,Ay) only in the limit d, » 0, which is

apparent upon substitution of Egs. (5.4.13) into Egs. (5.4.12): 2

A, R d, -%df (5.4.14a)
by & dy ——df. (5.4.14b)

The relationship between frequencies, normlaized frequencies, and detuning

variables (d,,d,) is diagrammed on Fig. 5.4.1 for the case e; = 1.

Natural structural frequency

Strouhal
Response /_ frequency
frequency
w, @ @,
1 t t FREQUENCY
Q, 0 1
{ : X NORMALIZED
L FREQUENCY
1 ] |
i d | ]
+ - |
: y | | DETUNING
|
! | VARIABLES
| 1
d' .

Figure 5.4.1. One-Mode Interpretation of d —Variables.

According to the order of magnitude assumptions (4.1.2) and (5.2.8), d, is
order &; hence, to the order of accuracy of the asymptotic method, terms of
order d}"’ may theoretically be neglected; that is, it would be permissible to
approximate A, as d,, and Ay as d;. Pracitically however, the comparison

between analytical and numerical solutions to Egs. (5.4.2) is somewhat better if

3. The relations (5.4.14) are exact if e; = 1.
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these approximations are not made. Therefore the distinctions between (4,, A,)
end (d, d;), which cause no analytical difficulty, will be retained in the sequel,
according to definitions (5.4.12) and (5.4.13). Nevertheless, for conceptual pur-
poses, the A's and the d's may be thought of as equivalent. Typically, solutions

are obtained in terms of (4,, A;) and then converted to (d,,d;) for plotting.
5.4.3 Solution in Detuning Variables

Recasting the frequency and amplitude equations (5.4.9) in terms of A-

variables gives

F(a) =0 (5.4.15a)
C(a,) = A% (5.4.15b)
where
2kyA, + kg

F(a) = Lrz0a,-a,)- 500 7 %7 5.4.16

4,) 3p[ (ay-4,) T, ] ( a)
4 —2kgl, + kyy
G, = =Ja + . 5.4.16b

This form of solution is not useful unless A, and A, are the only frequency
variables in the problem. Therefore it is necessary to make a slight approxima-

tion; namely, the quantity 7, defined according to Egs. (3.2.22) and (3.2.23) as

2¢ly ay

= <+ 7 e
v e " Znse,” (5.4.17)
is approximated as
e ay
Rl + ] 5.4.18
7T ks 2nSex’ ( )

thereby eliminating the appearance of the structural frequency 1;. This is per-

missible because of condition (4.1.2); since 7 itself is 0(e), the error associated



-83-
with approximation (5.4.18) is 0 (e?).

In the solution (5.4.15), the response detuning A, would normally be con-
sidered the dependent variable, with A, independent. However, upon clearing
fractions, F = 0 is cubic in A,, hence the solution would be either single or triple
valued, and not expressible in simple form. Therefore it is advantageous to

reverse the roles of A, and A,, considering A, independent and A; dependent.

Then, using F = 0,the explicit, single-valued expression for A, is
1, Rkpdy + ko
Ay = Ay + | ————— | 5.4.19
% d r 2[ 4A,? + 72 ] ( )

A typical example of this relationship is shown as the solid line in Fig. 5.4.2.
5.4.4 Interpretation of the Frequency Solution

The general nature of the frequency solution (5.4.19), as exemplified by Fig.
5.4.2, may be readily interpreted. When the independent variable A, is far from
0, the denominator of the second term is large, so the first term predominates,
giving Ay ® A,; thus A, is likewise far from zero. According to definitions
(5.4.12), the latter implies that Q; is far away from 1, while A, ® A, implies
o R 0,i.e. 1 ® 1. Hence, according to the model, when the natural frequency (1,
of the spring-mounted cylinder is far from the natural vortex-shedding fre-
quency ({l; = 1), the system response frequency (1 is very near {l; that is, vor-

tices shed nearly at their natural frequency. This is a physically correct result.

Conversely, when A, ™ 0, the second term on the right of Eq. (5.4.19) may
become large, especially for light damping (y small), producing Ay # A, such
that A, # 0. Hence in this case 1 ~ (1, = 1 which describes lock-in. These
qualitative observations are quantified in Chapter 6, where simple, analytical
expressions for model lock-in characteristics are derived and compared to

experimental data.
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2| -
4 | ----- STROUHAL FREQUENCY RESPONSE
s (STATIONARY CYLINDER)
z
= FREQUENCY RESPONSE FOR
> AP VIBRATING CYLINDER: 1
a ky = 0.001
w ’
S ky, = 0.005 .
o Y = 0.01 )
: X
= O ; T
? ’
w
m ’
z ’
]
o
7
W
¢ ’01" 1

-2 ) -1 0] N .2
FLUID-STRUCTURE DETUNING 4,

Figure 5.4.2. Typical Model Solution, Prior to Stability Considerations.

5.4.5 Classes of Solution: The Boundary of Real Amplitudes

For each value of A,, the amplitude 4 is given by Egs (5.4.15b) and (5.4.16b),
but there is no guarantee that A4 is real since 5(A,) may be negative.
Specifically, setting G (A,) = O to find the boundary of real solutions, it follows

that 4 is imaginary in the range

ka_\/F ka+\,F

= < A, < i (5.4.20)
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provided the discriminant
I' = k2 - 4ay(cy + k) (5.4.21)

is positive. If T is negative, 4 is real for all values of A,. Whenever A4 is real, the
structural amplitude B and phase u may be recovered using Egs. (5.4.8) and

(5.4.7) respectively, with the help of definition (5.4.12a).

Further, whenever 4 is real, stability of the solution may be investigated as
discussed below (Section 5.4.8). Therefore, three classes of solution are possi-

ble:
(1) Non-real (4 imaginary)
() Real but unstable
(3) Real and stable.

5.4.6 Stability

As in Section 5.3, stability of the steady-state, monofrequency solutions above
may be investigated using the amplitude/phase equations (4.3.19), assuming the
solution under consideration. is real, as discussed in Section 5.4.4. Since g =0
for this case while y = 7y and u= uy = 8y — &, by definition, the following sys-

tem of three first order differential equations is obtained:
X = JX), (5.4.22)

where

>
[

(4, B, p) (5.4.23)

and
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oA - %pA8 + B (rcosu + T'sinw)

IX) = 1 —yB + A(ccosu + C'siny) (5.4.24)

-(1-08) - %—(—c”cosp, + csinu) + %(’r"cosu - rsinu)

Repeating the argument preceding Eq. (5.3.19), a perturbation X satisfying
X = [J]X (5.4.25)

will decay with time, and hence the steady-state solution X; will be stable, if and

only if all eigenvalues of [J']; have negative real parts.

The Jacobian [J']p may be found as a function of constants and the indepen-
dent variable A, only. That is, after differentiating J(X), the steady-state equa-
tions (5.4.8) may be used to replace trigonometric functions of u with functions
of A, B, A, and A,, after which Egs. (5.4.9b), (5.4.8), and (5.4.19) may be substi-

tuted to eliminate 4, B, and A, in favor of A,:

A‘ = VG (a,) (5.4.262)

X=X,

B /c?+ 2
= = ——7 = R{A 5.4.26b
Af = AJ(A,-) (54260)

VWithout writing A f(A,.) explicitly, the result is



B 9 -~ ) = Zpa N]
a- zpC R 2(A, — ApWVC
V] = % 7R iy 20RVC (5.4.27)
2 -2(24, - A,) -
TEE -8 =t a-g- el
- -

The eigenvalues A of [J']o, satisfying
det(A[7]-[J']g) = 0 ([/] = the identity matrix), (5.4.28)

are found to be roots of the cubic

A+ kA + kA +kp = 0, (5.4.29)
where
ks = 3pC +2(y - a) (5.4.30a)
_ 2,3 A 27 2a2 2
1 = (a=9)%+ EpC (3y - 2a) + T Ta G*+4(24, - Ay) (5.4.30b)
_ e 3_ A 3 a
ko = 6pG A (RA, — Ay) - EypG (a=v9- sz ). (5.4.30c)

The well-known Routh conditions [9]
G 5.> 0, m=0 1,8 (5.4.31a)
(i) koky— ko> 0O (5.4.31b)
are necessary and sufficient to insure that all solutions A of Eq. (5.4.29) have

negative real parts.

Therefore, a given value of the independent variable A, produces a stable,
steady-state solution X if and only if conditions (5.4.31) hold. In general, only
certain portions of a solution curve such as Fig. 5.4.2 will be stable; instability
indicates that the steady-state solution under consideration is in fact not physi-

cally meaningful.
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5.5 One-Mode Cable Approximation

As indicated in Table 4.1.1, the model equations for this case are identical to
those for the previous case (Section 5.4), except for the identification of vari-
ables and the value of p. Thus, adopting the subscript convention (4.1.10), the

oscillator variables (z{%, ¥{?) replace (Z(®, Y) in Egs. (5.4.5):
z{9 = Acost (5.5.1a)
y{9 = Beos(Ot + p). (5.5.1b)

All of the equations in Section 5.4 are valid here; p merely assumes the value %ﬁ’

rather than 8, which does not affect the frequency solution (5.4.19) at all, affects

the amplitude solution (5.4.15b) by a constant factor

Wesmste = \/Z ) epring- (5.5.22)
cable mounted
approzimation cylinder

Elonsmsts = /= (B)upring- - (5.5.20)
cable mountsd
approzimation cylinder

Any solution which is stable (unstable) for the spring-mounted cylinder will
likewise be stable (unstable) for the one-mode cable approximation, because the
stability equations (5.4.31) do not involve the altered values of the amplitudes
(Egs. 5.5.2), while the altered parameter p always appears in the combination
p&. which according to Eq. (5.4.16b) is only a function of «, 7, kq, ky, and A,,

irrespective of p itself.

In short, the spring-mounted cylinder and the one-mode cable approximation

have identical solutions, except that the amplitudes are smaller in the latter

case by a factor of \/-:-32——
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5.6 Two-Mode Cable Approximation

5.6.1 General Remarks

According to Table 4.1.1, all four of the generalized model equations (4.1.8)

apply to this case. Using Egs. (5.2.1), the approximate solutions are

200

Ascos(f1t + o)

Bicos(Q1t + %),

yi(o)

where1 =1, 2.

Since Egs. (4.1.8) are autonomous, only the three phase differences

M= & - g

$ = P21 = P2 P1 = —P12

(5.6.1a)

(5.8.1b)

(5.6.2)

(5.8.3)

rather than the four phases (¢;, %) themselves, are independent.! Thus, as in

Section 5.4, one arbitrary condition may be imposed on the four phases, for

example ¢, = 0.

Upon inspection of Egs. (4.1.8) it is clear that two entirely different brands of

nontrivial solution are possible, namely

1. Case 1: Non-degenerate solutions, for which both 2z; and both y; are non-

zZero

2. Case 2: Degenerate solutions, which are of two types:

|
o

e 2,y * 0 and zp = ypz = (Type 1)

e Z3 Yz * 0 and zy = y, 0 (Type 2).

For any given set of parameters ( a, p, ¢, r, T, etc.), it is not clear a priori

1. These definitions are consistent with previous equations (4.3.20), (5.2.2), and (5.2.7).



-90-

which type of steady-state solution (if any) will actually prevail. In analogy to
Section 5.3, existence demands not only a real algebraic solution to the steady-
state equations (5.2.5), but also the stability of that solution against arbitrary,
small disturbances. These questions are discussed in subsections 5.6.2 and 5.6.3
for non-degenerate and degenerate solutions respectively. Reasons for handling
the two types of solution separately will become clear in the course of the

analysis.

5.6.2 Non-Degenerate Solutions

5.6.2.1 Algebraic Solutions of Equations {(5.2.5)

Initially, solution of the eight steady-state equations (5.2.5) in eight unk-
nowns (4, Az, By, Bga w1, Mz ¢, o) proceeds in direct analogy to the solution
of the reduced one-mode system (5.4.8). By definition of non-degenerate solu-

tions (Section 5.6.1), 4; # O for both values of 1, so it is permissible to write:

cy: +¢{(1-02+ 20) B;
cosy; = : '6'2‘ A—: (5.6.4a)

8‘7-,; - C(l = Q.F + 20’) B;

inw = 5.6.4b

sing; - A ( )

Bay Zoeh 4 (5.6.5)
Ay (1—Q$+20)2+7‘2

At this point, the analogy to Section 5.4 becomes less direct because, for the

present case g # 0. Substitution of Egs. (5.6.4) into Egs. {5.2.5a) and (5.2.5¢),
2

B.
followed by substitution of Eq. (5.6.5) to eliminate (A—‘) , produces a set of four
i

equations (i = 1, 2) in the four unknowns (44, 45 ¢, o):

QAfsin2p; = Fy(o) (5.8.6a)



oy [
AZ + QAZ(2 + cos2pj;) = Gy(o), (5.6.8b)

where, in analogy to Egs. (5.4.10),

4 k(1 = QF + 20) + ka7,
: = — + B.7

Fim) » ol (1-0F+ 202+ % R8T

4 —ku(l - ﬂ,a + 20’) + kb‘y"
G, = — + . 5.6.7b
(9) 3p i (1-0Ff +20)% +9f ] ( )

while

Q = 1, (5.6.8)

3p
and convention (4.1.10) holds for subscriptsi =1, 2 and j =2, 1, as always. It
should be noted that each pair of equations represented by (5.6.8) reduces
correctly to Egs. (5.4.9) for the special case § = 0. However, division of both
sides by 4, is necessary to obtain Eq. (5.8.6a), which consequently is valid in a
two-mode context only for the non-degenerate case, where A; # 0 for both 1.
This is one of the motivations for the separate discussion of degenerate solu-
tions in Section 5.6.3. Another motivation occurs in the stability analysis (see

Section 5.6.3.2).

Egs. (5.6.6) are next reduced to two equations in two unknowns (¢, o) by
elimination of the A;. Multiplying Eq. (5.6.6b) by sin2¢;, Eq. (5.6.6a) by

(2 + cos2¢;), and subtracting yields
Afsin2py; = Gysin2gpj — Fi(2 + cos2py). (5.8.9)
Interchanging the indices (i, j) in Eq. (5.6.6a) and recalling ¢;; = —¢y4 gives
-QAfsin2p; = Fy. (5.8.10)

Multiplying Eq. (5.6.9) by @ and adding Eq. (5.6.10) accomplishes elimination of

the A'l'.:
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Q[Fi(2 + cos2py) — G;sin2py] = Fy. (5.6.11)
Again, this result correctly reduces to Eq. (5.4.9a) for the special case § = 0.

Elimination of g is achieved by writing Eq. (5.6.11) for i = 1, 2 as a linear sys-
tem in the trigonometric functions @Q(2 + cos2¢) and @sin2p, where

¢ = @21 = —¢;p is recalled from Eq. (5.6.3):

Fy Gy Q (2 + cos2p) Fq
= (5.6.12)
Fg Ga QsinZ;o F1
Solving:
_ F Gy + FaGy
Qcos2yp = F\Cp + Fol, 2Q (5.6.13a)
: Ff-r§
Qsngo = m (5.6.13b)
Squaring and adding yields
(F§ = F5)2 + [(F\Gy + FoGp) — 2Q (F1Ga + FaGy) P
(5.8.14)

= Q¥F1Gz + FoC1)%
which is a single equation in the unknown o.

5.6.2.2 Detuning Variables

Substitution of Egs. (5.6.7) into (5.6.14) would produce, upon clearing of frac-
tions and cancellation of terms, a tenth-order polynomial equation in o. The
analogous equation for the one-mode case is the cubic (5.4.9). As in Section 5.4,
detuning variables are introduced here to recast the frequency equation in

simpler form.

Egs. (5.4.12) for the approximate detunings (A,, A;) are generalized so as to

preserve the modal (1, 2) symmetry of the problem:
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e (5.8.15a)
ng+0g
Ay = -%[1 - 2—2—‘]. (5.6.15b)

Attempting to write the functions F; and G in terms of these variables (A,, Aj)
reveals that a third variable is needed to measure the separation between struc-

tural frequencies {i; and (1;:
Apy & L{OF =08 = =Ap (5.8.15¢)

As in Section 5.4, the A's are "detunings” only in an approximate sense. In
analogy to Egs. (5.4.13), the exact mode-averaged response-structure detuning
is

1
w = (w0 + wp) 0.+ 0
d, = £ = 0-+E———1, (5.6.16a)

We

the exact mode-averaged fluid-structure detuning is

Ws — —;'(01 + wp)

0+ 0
d, = 5 ol et (5.6.16b)
Ws 2
and the exact intermodal detuning is
Wp — W
dgy = —zw L = ez (U2 - Oy). (5.8.16¢)

S

The relationships between frequencies, normalized. frequencies, and detuning
variables are diagrammed on Fig. 5.8.1 for the case e, = 1.2 This figure is analo-

gous to Fig. 5.4.1.

Assuming e, ® 1, these quantities (d,, d;, dj,) are equivalent, respectively, to

A,, A,, Apy) only in the limit as d, and dy; approach zero, which is apparent
2 i

2. See the footnote to Egs. (3.2.20).
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Figure 5.6.1. Two-Mode Interpretation of d —Variables.
upon substitution of Egs. (5.6.18) into Egs. (5.6.15):!
A, R d - -é—[df + (%42,)2} (5.6.17a)
1 2 1 2
Ay R dpy — d,dgl. (56170)

The discussion following Egs. (5.4.14), which argues in favor of distinguishing
between the A's and the d's even though the difference is order &%, goes through

analogously in this case.

5.6.2.8 Solution in Detuning Variables

Recasting the frequency equation (5.6.14) in terms of A-variables gives

1. The relations (5.6.17) are exact for eg = 1.
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(FE-FER+[(FiC +FoCp)-2Q(F T+ Fql )P

(5.8.18)
= Q¥F G2+ F o0,
where
a 4 ky(RA, + Ag) + Koy
FA,) = —[2(4A; - 4,) - 5.6.19
~ 4 ko (RA, + Ay) + kpv;
GCildy) = —|a + ’ 5.6.19b
Some algebra reveals that Eq. (5.6.18) may be written
u?+ (v -3Qw)lv - Qw) = 0 (5.6.20)
where
u(a,) = (BRyFE-FP (5.6.212)
’U(A,-) = (_342)2(]”_\' 1&1 +ﬁ25 2) (5621b)
w(d,) = (%J‘E)Z(F* BBl ) (5.6.21c)

As in Section 5.4, this form of solution is not useful unless (4,, 4;, 4j;) are
the only frequency variables in the problem. Therefore it is necessary to replace

definition (3.4.14)

2¢i€l; ay

, = + .B.22
7i e B (5.6.22a)
with the approximation
2¢i a4
i R e+ ; 5.6.22b
% =¥ Baeg Y ( )

which is permissible on account of Eq. (4.1.2).
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Also in analogy to Section 5.4, A, is chosen as the dependent variable in Eq.

(5.6.20}, with A, independent. Substitution of Egs. (5.6.19) into Egs. (5.6.21) pro-

duces

where

and

Consequently, the frequency équation (5.6.20) is quadratic in Ag,

where
xz(4,)
’Cl(Ar)

'CO(Ar)

u = 'u.°+Afu1

e
|

w = wo+Ayw,

uo = ff-r%.:
vo = fi191+ feg2:

wo = fige *+ f29:

f".(Af')

-24, -

gi(Ar) = o +

= Yo +AJ'U1

4(f1-f2)
2(g1 + g2)

2(g1 +g2)

kb(ZA.r + A]’L) + ka.71'.

(A, + Aﬁ)z + 71‘2

-ka(ZAr 5a Aji) + ky7s

ICZA; + ICgAj +x9 = 0,

uf + (v1-3Qw;)(v,—-Qw,)

2uou; + (v1-3Qw,)(vo—Qwo) + (vo—3Qwo)(v1—Qw;)

ug + (vo—3Qwg)(vo—Qwg).

(2Ar ete Aji)z + 71‘.2

Hence for each value of A, there are two solutions 4A,:

(5.6.23a)
(5.6.23b)

(5.6.23c)

(5.8.242)
(5.8.24b)

(5.6.24c)

(5.6.25)

(5.8.28)

(5.6.27)

(5.6.28a)
(5.6.28b)

(5.6.28c)
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-Ky + \/xf - 4K2Kg

2!62

Ar(a,) = (5.8.29)

which are either both real or both non-real, depending on the sign of the
discriminant. The latter equation is analogous to Eq. (5.4.19) of the one-mode

analysis, where the solution A, was single-valued rather than double-valued.

For each real solution A,, the amplitudes and phases (4;, B;, i, ) may be
recovered by back-substitution. First, with the help of Egs. (5.6.21), Egs. (5.6.13)

give, for @ = O:

p = Ltan™! { ¥— 1. (5.6.30)

Next, using Egs. (5.8.21) and (5.6.13b), Eq. (5.6.10) gives

-F 2w

Af B (5.8.31a)
+Fw
2 |
= ; .8.31b
AZ B (5.8.31b)
Finally, from Egs. (5.8.5) and (5.6.4),
. 2 <+ E“z
BE = 2 AP 5.8.32
: (28, + A2 + 98 (5.68.32)
and
. _1’8‘71-C(2A.,.+Aﬁ) } 5.6.33
i (o \\c7‘+c~(2A,+Aﬁ) ' Ry

5.6.2.4 Classes of Solution

Stability of real steady-state solutions is considered in the next sub-section.
However, from the above discussion it is clear that for certain values of A,, a
real steady-state solution may fail to exist altogether. First, if the discriminant

is negative in Eq. (5.6.29), no real frequency solution exists. Second, even if a
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pair of real values for A, is found, either or both may fail to generate real ampli-

tudes «; in Egs. (5.6.31). To summarize, four classes of solution are possible:
(0) Ay non-real
(1) Ay real but one or both 4; imaginary
(2) A real and 4; real, but unstable

(3) 4 real, A, real, stable.
Each class, except (0), has its analogy in the one-mode analysis; see Section

5.4.4. Only class (3), of course, is physically meaningful.

5.6.2.5 Stability

As in Sections 5.4 and 5.5, stability of the above solutions is investigated
using the amplitude/phase equations (4.3.19). By subtraction of Eq. (4.3.19c)
from each of the equations (4.3.19f) and (4.3.16g), and by subtraction of Eq.
(4.3.19f) from Eq. (4.3.19h), the following set of seven first-order differential

equations is obtained in the four amplitudes and three phase differences:

X = IX) (5.6.34)
where

X = (A, Ay By, Ba py pa v) (5.6.35)

and the functions
Jy = Ay(X) (5.6.36a)
Jp = A(X) (5.6.36b)
Jas = By(X) (5.6.36¢)
J¢ = Ba(X) (5.6.36d)
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Jg = 8,(X) - &,(X) (5.6.36¢€)
Jg = 8p(X) - $5(X) (5.6.36f)
Jyp = &5(X) - &,(X) (5.6.36g)

are given explicitly by substitution of Eqgs. (4.3.19).

As in the stability analyses of Sections 5.3 and 5.4, the steady-state solution
X, is stable if and only if all eigenvalues of the Jacobian matrix [/'], have nega-
tive real parts. However, unlike the previous cases, the 7 x 7 Jacobian of the
present case is too large to permit a convenient analytical determination of
specific stability conditions. The stability results given in Chapter 7 were
obtained by numerical determination of eigenvalues for the analytically

differentiated matrix [/']o.
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5.6.3 Degenerate Solutions

5.6.8.1 The Steady State
According to the discussion of Section 5.8.1, solutions to the set of four

differential equations (4.1.8) are called "degenerate" if either

2y, Y120 and 23 = yp =0 (Typel) (5.8.37a)

or

zs, y2# 0 and 2z, = y, = 0 (Type?2). (5.8.37b)

Type 1 solutions are treated below. However, as should be clear from the
differential equations (4.1.8), Type 2 solutions may be obtained analogously,
merely by interchanging all subscripts 1 and 2. This observation will be referred

to henceforth as subscript symmetry.

Considering Type 1 solutions, the steady-state equations (5.2.5) reduce, for
the non-degenerating degrees of freedom (z;, ¥;), to Egs. (5.4.8).! The same
equations reduce, for the degenerating degrees of freedom (zp ¥3z), to the iden-
tity 0 = 0, since Eq. (5.6.37a) implies 4z = B, = 0. Therefore, steady-state degen-

erate solutions for the two-mode-approximate cable reduce to the solutions

developed in Section 5.4, provided p = %B (Table 4.1.1).

To clarify this result in a two-mode context, the one-mode detunings previ-
ously defined by Egs. (5.4.12) must be embellished by a subscript indicating the

generic mode number? of the non-degenerating mode. Thus for Type 1:

Ay = %(1 - 02+ 20). (5.6.38a)

———————————————

1. Provided4 = A4,,B = B, u= uy;andy = 7,.
2. Recall convention (4.1.10).
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Agy = %(1 - 03 (5.8.38b)

The relationships connecting the two-mode detunings (A;, A,, Ag;) defined by

Egs. (5.6.15) and the one-mode detunings (A;y, A,,) are:
Bpy = By + Lhg (5.8.39a)
Byy = A, + %Agl. (5.8.39b)

This coordinate transformation is shown in Fig. 5.6.2, together with the analo-

gous transformation for Type 2,

Afg = A! - —A21 (5.6403)
A,-g = A,- - —A21, (5.6.40b)

obtained from Egs. (5.8.39) using subscript symmetry and Eq. (5.8.15¢c).

Hence Type-1 solutions for frequency and amplitude response, obtained by

rewriting Egs. (5.4.15b), (5.4.16b) and (5.4.19) in a two-mode context, are given

by
: 1, Ckplyy + ko
A = A + = 5.8.41a
-2k, A + k
Spif = g 4 Tl Bl (5.6.41b)
4 447 + 7§

Using subscript symmetry, analogous equations hold for Type 2 solutions. Fig-
ure 5.8.3 exemplifies Type 1 and Type 2 frequency solutions. Since the
parameter values used here are the same as for Fig 5.4.2, each curve is identical
to Fig. 5.4.2, except for the simple coordinate shifts (5.6.39) and (5.6.40). Thus
solution Types 1 and 2 exhibit lock-in for the lower mode and the upper mode

respectively. It remains to investigate which portions of these solution curves
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are stable.

5.6.8.2 A Difficulty with the Stability Analysis Used Previously

Although the above steady-state solutions are identical to those for the one-
mode case, the corresponding stability analysis is quite different. Consider Type
1 solutions (as usual, Type 2 is analogous). Since arbitrary perturbations about
the steady-state may, in a two-mode context, include perturbed values of the
degenerating amplitudes 4; and B, which are non-zero, the full system of eight
amplitude/phase equations (4.3.19) must be considered, involving all four

amplitudes (4, 45 B4 Bj) and three phase differences (i, g2 @).

However, a problem arises; namely, since the steady-state amplitudes of z;
and yp are zero, it is meaningless to speak of the corresponding phases, and
steady-state values of the phase differences u; and ¢ are not well defined. Con-
sequently a stability analysis based on the amplitude/phase equations, which
requires well-defined A's, B's, u’s and g, must be abandoned in the degenerate

case.

5.6.3.3 An Alternative Approach to Stability
Still considering Type 1 solutions, an alternative stability method is to per-
turb the original, second-order differential equations (4.1.8) about the exact,

degenerate steady-state (designated by an (e) superscript):

zy = z§%) + eu, (5.6.42a)
y1 = yi¥) + ey (5.6.42Db)
z; = 0+ guy (5.8.42¢c)
yz = 0+ evy (5.8.42d)

In such a method the concept of phases for the degenerating degrees of freedom

is absent, so the problem discussed above does not arise. Substituting Egs.
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(5.6.42) into Eqgs. (4.1.8), subtracting the exact steady-state, and retaining terms
to first order in ¢ yields a pair of parametrically excited equations for the per-

turbations of the non-degenerating degrees of freedom,

iy = oy + 3p[z {0 (t) ]2, + u, rvg + Tu, (5.6.43a)

C’!‘J.l . E“U.l, (5.6.43b)

'Ui + 711'11 == 012111

and a corresponding pair for the perturbations of the degenerating degrees of

freedom,

o

g — otz + q[2{(t)]%uz + ua

ris + Tvs (5.6.444a)

Vg + 7202 + 05v, cup — Cup. (5.6.44b)

Therefore, the stability of a Type 1, steady-state solution to Egs. (4.1.8) depends
on the mutual stability of the two systems (5.6.43) and (5.8.44), which for-
tunately are completely uncoupled. If either system has unbounded response,

then the steady-state solution (z{¢), y{); 2§*) = y§®) = 0) is unstable.

5.6.83.4 Stability of the Non-Degenerating Degrees of Freedom
The stability characteristics of Egs. (5.6.43) may be inferred from work previ-
ously presented. That is, consider perturbing the one-mode variables (Z, Y) of

Section 5.4, which satisfy the differential equations (5.4.2):
Z =Z©) 4+ eU (5.6.45a)

Y

Y(e) 4+ gV, (5.6.45b)

These eguations are analogous to Egs. (5.8.42); as before, superscript (e)
denotes the exact steady-state solution. Substituting Egs. (5.6.45) into Egs.

(5.4.2) and subtracting the exact steady-state yields, to order &:

U=-alU +3p[Z@®()20 +U = rV + TV (5.8.46a)
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V49V +0Q8V = cU -EU. (5.8.48Db)

Upon identifying (U, V, 7, Q4) as (uy, vy, 71 0y) respectively, and noting?®
zf(t) = zE)Xe), (5.6.47)
it follows that Egs. (5.6.43) are identical to Egs. (5.6.46), and therefore the sta-
bility characteristics of these two systems are identical. But the stability
characteristics of Egs. (5.6.46) are implicitly known, since the present perturba-
ticn approach to stability must give the same results as the amplitude/phase
approach of Section 5.4.8, to the accuracy of the asymptotic method. It follows

then that the stability of the system (5.6.43) may likewise be inferred from Sec-

tion 5.4.6, upon substituting (yy, 44, B, 1) for (7, A, B, ).

Specifically, stability conditions for the non-degenerating degrees of freedom
(z4, y4) are given by rewriting Egs. (5.4.30) and (5.4.31) in the notation of this

section:
i) by > & m=01 2 (5.8.48a)
(i) kgky—ko > O (5.6.48Db)

where, using Egs. (5.4.15b) and (5.4.16b),

k; = 3pA% +2(7; - a) (5.8.49a)
3

ki = (a—71)2%+ E1:;,4,2(371 2a) + — EAE + 428,y — Agy)? (5.6.49b)

ko = BpAfA, (28, = Apy) - —71PA1 (a=7 - —PA s (5.6.49c¢)

Using Egs. (5.8.41), it is clear that these conditions depend only on the
parameters a, k;, k., 71, and the independent variable A,;. In particular, there

is no dependence on the modal separation Ap;.

3. Since, z§)(t) = 0 in the degenerate steady-state (Type 1), the differential equations
(4.1.8a,c) governing (z,,%,) are identical to Egs. (5.4.2) governing (Z, Y).
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5.6.83.5 Stability of the Degenerating Degrees of Freedom

The stability characteristics of Egs. (5.8.44), unlike Egs. (5.8.43), cannot be
inferred from previous work. However, if the exact parametric excitation
[2{(¢)]? in Eq. (5.8.44a) is replaced by the approximate value given by the

asymptotic method,
z{(t) v 2{9(t) = -0Asin(Qt + ¢y), (5.8.50)

then stability characteristics may be deduced using Floquet theory. Toward this

end the system (5.6.44) is written in matrix form as

x = [P(t)]x (5.6.51)
where
x = (up up vy Vg) (5.6.52a)
and
0 1 0 0
- @y + 2b cos2(lt ¥
[P(t)] = | 0 0 3 (5.8.52b)
-¢ ¢ -0 -7

The above expression for Py has been obtained by replacing the time function
sin{Qt + p;) in Eq. (5.8.45) with sin(l¢ through a simple shift of the time scale,.
and by introducing (for brevity) the coefficients &, and b,, whose definitions

arise from Eq. (5.6.41b) and the two-mode identity g = 2p (see Table 4.1.1):

]

8, = a- %ﬂe(a +T,) (5.6.53a)

~

by

%n"’(a +T)). (5.6.53b)

The quantity I'y is defined by
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~2kgA, + k
r, = . (5.6.54)
4’Arl + 71

and the response frequency (] is given by definitions (5.6.39) and (5.2.8) as
Q=1+ A'rl = AII(ATI)' (5.6.55)
Thus the matrix [P(t)] is periodic with a known period T,

[P(t +T)] = [P()]: T = % (5.8.56)

so Eq. (5.6.51) may be treated with Floquet theory, a summary of which is given

below.

According to the theory of differential equations, there exists for Eq. (5.6.51)
a set of N = 4 linearly independent solutions x(*) (tk=1,...,N) called
principal solutions, which, when arranged as columns of a matrix denoted [X],

satisfy
[X()] = [P()]X ()] (5.6.57)

and
[X(0)] = [/] (the identity matrix). (5.6.58)

[X(t)] is called the principal matriz solution. In general, the principal solution

vectors in [X] are related to any alternative set of N independent solutions
w*)(¢) by

[x(t)] = [W(IR]Y (5.8.59)
where the w{*) are columns of [W], and [R] is a constant, nonsingular transfor-
mation matrix. In particular, since [P(¢)] is periodic, the columns of [X (¢t + T)]

are solutions of Eq. (5.6.51), so the vectors x*)(¢ + T') must be related to the

x¥)(¢) by
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[X(t +7T)] = [X()][M] (5.6.60)
where [M] is a constant matrix. From Egs. (5.6.59) and (5.6.60) it follows that
(W +T)] = [WE)IRIMIR] (5.6.61)
If [R] is chosen such that*
[RIAMIR] = [A] = diag(Ay .. .. AN). (5.6.62)
then each of the solutions w*)(¢) satisfies
wkl(t + T) = A wl®)(2), (5.6.63)

the multipliers A, being constants, complex in general. Thus the A, are eigen-
values of the matrix [M], and [R ] is the matrix of eigenvectors. The vectors w(*)

are usually called normal solutions.
The eigenvalues may be found using the following algorithm:

« Numerically integrate N systems of equations x*) = [P(¢)]x®*)
{k =1,...,N) over one period (0= t £ T), using the N columns of

initial conditions (5.6.58). Then according to Eq. (5.6.60),
(X(T)] = [M]. (5.6.64)

» Numerically determine the eigenvalues A; of [M]. In particular, find

the complex moduli [A.].

According to Eq. (5.8.83), the perturbations represented by the w*) will decay
with time, and hence the system (5.6.51) [i.e. Eqgs. (5.6.44)] will be stable, if and
only if

4. To be completely general, the possibility of [M ] possessing indistinct eigenvalues with
less than a full complement of independent eignevectors should be considered. In
such a case [A] cannot be made diagonal. However practicaly (i.e. numerically)
speaking, this is a very special case; in fact, for random values of
(@, b, . T, ¢, &, 72 Qz) in the matrix [P(¢)], the probability of such an
occurrence is nil. )
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I\e] < 1 foreveryk=1,...,N. (5.8.85)

Unlike conditions (5.6.48), the stability condition (5.6.65) does depend on the
intermodal spacing Agz,, since the quantity (l; appearing in [P(¢)] must be calcu-

lated according to definitions (5.8.39) and (5.2.8) as
g = OF + Ay, (5.8.68a)
where (1, is given by definition (5.6.39a) and the frequency solution {(5.6.41a):
OF = 1-20;,(8ry). (5.6.86b)

Stability condition (5.8.65) depends additionally on the parameters a, 73, 1, T, c,

~

and C.

5.6.8.6 Summary and Interpretation

For Type 1, a degenerate steady-state solution (5.6.37a) is stable if and only if

+ Conditions (5.6.48), which do not depend on Ay, hold for the non-

degenerating degrees of freedom (z4, v)

» Condition (5.6.65), which does depend on Ay, holds for the degenerat-
ing degrees of freedom (z;, y3).
The situation is analogous for Type 2 solutions, upon interchanging subscripts 1

and 2, and recalling Ay = —Ap;.

The first condition above is equivalent to the one-mode stability condition,
thus segments of a solution curve (e.g. either of the curves on Fig. 5.6.3) which

are unstable in the one-mode case are also unstable in the two-mode case.

The second condition, depending on Ap;, can only restrict the range of stabil-
ity further. From a physical viewpoint (in analogy to the experiment discussed
in Section 2.5), the second condition should cause modal interference for small

Agy; that is, the lock-in bands are likely to overlap, and/or be suppressed, as the
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two modes compete for control of the response frequency {l. For example, it is
reasonable to expect that the lock-in band for Type 1 (representing the lower
mode) will become unstable at the upper end in deference to Type 2 (represent-
ing the upper mode); and conversely, that the lock-in band for Type 2 will
become unstable at the lower end in deference to Type 1. Numerical results

presented in Chapter 7 display just such behavior.
5.7 Summary

For each case listed in Table 4.1.1, steady-state monofrequency solutions to
the amplitude/phase equations (4.3.19) have been found analytically, and the
stability of solutions has been investigated by a combination of analytical and

numerical techniques. An index to the results is given in Table 5.7.1.
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CHAPTER VI
METHODS OF FITTING THE MODEL TO EXPERIMENTAL DATA

6.1 Introduction

In this chapter, certain important characteristics of the model solutions for
rigid cylinders, distilled from the analyses of Sections 5.3 and 5.4, are found to
depend on a set of six parameters, denoted P, k =0, 1,...,5, from which the
six model constants a;, may be recovered. Simple, easily implemented methods
are developed for selecting numerical values of the P, which optimally fit the

model to experimental data.

To be more specific, Table 6.1.1 summarizes the chapter by listing the solu-
tion characteristics considered, the pertinent experimental data, and the
relevant parameters P, whose definitions arise naturally in the sequel. The

sixth parameter Pg does not appear in the Table, for reasons explained in Sec-

tion 6.4.
Table 6.1.1: An Overview of Chapter 6
Struc- | Section Solution Characteristic Exp'l Parameter(s)
ture Data Optimized
Forced 6.2 Dependence of lock-in Fig. 2.3.2 Pqg
Cylinder band-width on foreing
amplitude
6.3 Lock-in band-center C, Fig. 2.4.2 Py, P, Pg
Spring- bandwidth W, and the
Mounted dependence of C and ¥ on
Cylinder "reduced damping".
8.4 Peak structural amplitude | Fig. 2.4.2 Py
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The above criteria for selecting model constants are considered superior to
those previously used in a similar model by Blevins [8], for two reasons. First,
the previous work relied heavily on experimental data for stationary cylinders.
Here, on the contrary, stationary-cylinder data has been deliberately avoided,!
since Koopman's photographs (Figs. 2.3.3) show clearly that the assumption of
two-dimensionality, inherent in the fluid model, is strongly violated for the sta-
tionary cylinder. Second, Blevins' method does little to clarify the dependence
of physically measurable quantities on a set of model parameters. Here, on the
contrary, some simple formulas are developed which make such relationships

transparent.

For comparison of the current model with Skop and Griffin's lift-coefficient
model [63], previously discussed at the opening of Chapter 3, it is emphasized
that here the parameters P, are restricted to be constant. In contrast, the

parameters of the lift-coefficient model, as determined for spring-mounted
cylinders, are allowed to vary with the reduced damping —5)—, which gives an illu-

sion of good model/experimental agreement. Indeed, if such variation were per-
mitted in t.he present model, the agreement with experiment would be greatly
enhanced. However, the fluid oscillator, which depends upon the P, can in real-
ity have no knowledge of the structural damping ratio — the fluid reacts only to
motion of the structure, not to parameters internal to the structural oscillator.

Consequently it is physically incorrect to allow model parameters to vary with
-7%, and the temptation to do so, in order to improve the appearance of results,
has been resisted in the current work.

1. Except for the previous determination of model constant ag using the stationary-
cylinder shedding frequency w,; see Eqs. (3.2.11) and (3.2.12).
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6.2 Lock-in Band-Width for Forced Cylinders

6.2.1 Experimental Data

Experimental measurements by Koopman [37] of lock-in band-width versus
forcing amplitude have been discussed in Section 2.3; the results are shown in
Fig. 2.3.1 for Reynolds numbers of 100, 200, and 300. Of these three values,
Re = 300 best represents the fully turbulent vortex street which prevails for the
entire Reynolds number range from 300 to 3 x 10% (see Fig. 2.2.1). Therefore
only the Re = 300 data, as digitized in Table 6.2.1, are considered in the current

analysis.

Table 6.2.1: Koopman Experimental Data for Re = 300

o | -0.294 | -0.242 | -0.199 | -0.099 | -0.062 | 0.094 | 0.150

B 0.273 0.186 0.150 0.073 0.050 | 0.0567 | 0.105

6.2.2 Model Stability Boundaries in the (¢°, 5°) Plane
As discussed in Section 5.3, the theoretical equivalent of experimental lock-in
boundaries are the model-predicted stability boundaries. As given by Egs.

(5.3.24) and shown in Fig. 5.3.1, the stability boundaries
A* = Lilo®) (8.2.1)

are loci in the (0%, A°) plane; however, the normalized squared-amplitude 4° of
the fluid oscillator cannot be measured experimentally. Therefore, to compare
the model with experiment directly, it is necessary to eliminate A’ from the
expressions for the stability boundaries, obtaining instead explicit relationships

between the normalized forcing amplitude B° and the normalized detuning o".

To accomplish this objective, each of the boundaries (5.3.24) is substituted

into the solution (5.3.12), yielding
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[B'lotariey = VIe(o)[1 = L(a)E + 0%, (8.2.2)
bdoundary k

where k = 1, 2, 3. Each of these loci in the (¢*, B®) plane may be readily calcu-
lated; the results are shown in Figs. 6.2.1, with lettered points corresponding to
those in Fig. 5.3.1.

0.7¢ .

NORMALIZED FORCING AMPLITUDE B”

08 -06 -04 -02 O 02 04 06 08
NORMALIZED DETUNING o*

Figure 6.2.1a. Transformed Stability Boundaries (cf. Fig. 5.3.1).

Interpretation of the various stability boundaries in Figs. 8.2.1 to determine
the overall boundary requires some care, because the regions of stability and
instability do not map simply from the (¢°, A°) plane to the (¢*, B®) plane. For

fixed ¢°, the transformation B°(4°) given by Eq. (5.3.12) is sometimes one-to-
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52 54 .56 .58
NORMALIZED DETUNING o*

NORMALIZED FORCING AMPLITUDE B*

Figure 6.2.1b. Magnified View of Region Indicated on Fig. 6.2.1a.

one, sometimes three-to-one, and, in the special situation where two of the three
roots A° coalesce (i.e. at the point of vertical tangency), two-to-one. The many-

to-one mappings invalidate the notion of regions mapping into regions.
To infer the overall stability boundary for Fig. 6.2.1 from the boundaries of
Fig. 5.3.1, attention is focused on the solution for B® = %\/é_. shown explicitly in

Fig. 5.3.1, and occurring at points T and 7' in Figs. 6.2.1. This particular solu-

tion is special because it represents the dividing line between two types of

behavior; that is, for B*® < %\/_2— (e.g. B*=0.4) each solution crosses L; (the

%) at a lower value of |¢°| than it crosses

straight-line stability boundary A* =
Lj (the half-elliptical boundary UPU'), while for B* > %\/2_ (e.g. B* =0.8), the
opposite is true. The solution for B® = %\/5 crosses both stability boundaries L

and L, at the same value of |¢°|! namely



%\/E (6.2.3)
Consequently if B® is fixed and it is desired to know the maximum value of lo®

which will produce a stable solution, Ly is the relevant boundary if B ‘< %\/—2_

while L, is the relevant boundary otherwise. In other words, the overall stability

boundary in Fig. 6.2.1ais V'T'P T V, and the region above is stable.?

Using Eq. (6.2.2), this result is stated mathematically as

VEi[(1-L2+0%]; |o*| < of
(B .]moda.zl' = (6.2.4)
el VI[(1-L)2+0%]: |6 > of

where L, = L,(c"), as given by Egs. (5.3.24), and oy is given by Eq. (6.2.3).

6.2.3 Optimizing Model Lock-in with Respect to Experiment
The analysis above has determined a fixed set of model stability boundaries

in the normalized (¢°, B') plane. Therefore, recalling the definitions

o' = co0; ¢y = % (8.2.5a)

2 ~2
ceB: cp = B+ F5p (6.2.5b)

B* 3
408

it follows that the location of the model stability boundaries in the (o, B) plane
of Fig. 2.3.2 depends only on the axis-stretching constants ¢y and cp. The goal of

this section is to determine positive numerical values for c; and cz or

c
equivalently c; and C—l, which best fit the experimental data (o;, B;) listed in
2

1. In fact, this condition was wused to arrive at the special values
of = +V5andB'= 2V

2. Since the mapping B*(4°) is three to one in the region bounded by U’'P U R, that
region represents not only the unstable interior of the ellipse (Lp, Lg), but also some
of the stable exterior.



-119-

Table 6.2.1.

c
The optimum values of (cy, —c-l) are defined to be those which minimize the
2

squared-error £ between the experimental data and the model,

2
E, = > . { By = C_lz\/LZi[(l = L )? + (c104)%] }
i:log < :T
2
+ 2 { B; - C—la\/L 1[(1 = L)% + (c104)?] } ; (6.2.6)
i:lv‘l>%%

where the quantities L,; are defined by
Ly = Li(o]) = Li(cyoy), k=123 (8.2.7)

and the second term within each pair of curly brackets is obtained from Eg.

(6.2.4).

At first it may seem that minimization of £y with respect to ¢y and c; must
be carried out by trial and error; however, calculations reveal a considerable

simplification. For the data of Table 6.2.1, £y versus c, is plotted in Fig. 6.2.2

c - c
with ?l— as parameter. On the plateaus at left ( ¢y,cp << 1, —ci fixed ), only the
2 ~ 2

first summation in Eq. (6.2.8) contributes since |o;]| % holds for all the data
1

points. In other words, ¢y and cp are so small that all of the data (oy,B;) lie very
near the origin of the normalized (¢°, B°®) plane (Fig. 6.2.1), such that only sta-

bility boundary L3 is relevant. Conversely, on the plateaus at the right of Fig.

c
8.2.2 ( cy,c2>> 1, -c-l— fixed ), only the second summation in Eq. (6.2.8) contri-
2

agr
Cy

butes since |o¢| > holds for all the data points. In other words, the axis-

stretching constants are so large that points T and 7' of Fig. 6.2.1 appear, on

the scale of the data, to be virtually at the origin, such that only stability boun-
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dary L, is relevant.

From Fig 6.2.2 it is apparent that the least-squares solution occurs either for
€1 << 1 or for cy >> 1. But ¢y << 1 must be ruled out on the basis of the

assumption

& m = Ol (6.2.8)
Cy

which is inherent in the asymptotic method of Chapter 4; see Eq. (4.1.9). Hence
the least squares solution of interest lies at ¢y >> 1, and only stability boundary

L, is relevant.
With the help of definitions (5.3.24) and (6.2.5), consideration of the second

. . s s . Ci . 3
line of Eq. (6.2.4) in the limit ¢y >> 1 with e fixed gives
2

5 1 ¢

lim Buiss — T—lol. (8.2.9)
. e stab:lli.!y g Ce
;i finite boundary

Therefore, minimization of £y, occurring at ¢y » =, is equivalent to finding the

best straight line*
B = Pylo| (6.2.10)
to fit the stability boundary data (|o;| B;) given in Table 6.1.1, where

1 &
Py = 72—0—2 (6.2.11)

Substituting definitions (6.2.5) and (3.2.15), while identifying p = 8 for the

3. It has been assumed here that 0*=c;0 >> 1 so that only Eq. (6.2.4b) need be con-
sidered, with ¢* dominating under the radical. These assumptions might be ques—
tioned on the grounds that c; is not actually infinite, while the detuning ¢ may actu-
ally be zero, in which case ¢° goes to zero rather than infinity. Experimentally, how-
ever, the value of ¢ on the lock-in boundaries never actually approaches zero, due
to the threshold displacement level shown in Fig. 2.3.2. This threshold level,
although not predicted by the present model, demonstrates that the behavior of the
model stability boundaries near o = 0, including whatever distortions of them are
inherent in the limiting process (6.2.8), is irrelevant from a physical viewpoint.

4. Eq. (6.2.10) represents a V-shaped line in the (¢, B) plane, a straight line in the
(lo} B) plane.
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forced case (Table 4.1.1), yields

1

2a z 2(as — ay)ef #
Py = {—~ } - (6.2.12)
BREEEY 3m2S2a,[ (2:43 ¥ +af ]

In view of the definition (3.2.8) of ey, the latter expression is a function of S and
the a; only, hence Py is a proper candidate for the set of model parameters P;

discussed in Section 86.1.

The optimum value for the stability boundary slope Py is defined to be that

which minimizes the squared error

Ez = E(Bg—PQIO"'I)a (6.2.13)
i

between the experimental lock-in-boundary values B; in Table 6.2.1 and the
corresponding model values given by Eq. (8.2.10). Minimization of E, with

respect to Py gives
ZB:' log|
i

Po - _——2‘0’;‘]2 !

(6.2.14)
Performing these summations using Table 6.2.1 yields the optimum value

Py = 0.813, (8.2.15)

c
which corresponds to the curve -El— = 1.15 in Fig. 6.2.2.
2
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6.3 Lock-in for Spring-Mounted Cylinders

6.3.1 Frequency Variables for Comparing Model to Experiment
For comparison with experimental plots such as Fig. 2.4.2, model predictions
for frequency response (e.g. Fig. 5.4.2) must be converted from the (4,, A,)

plane to the (d;, d,) plane, using the inverted form of approximations (5.4.14),
d; » 1--A-2b, . (6.3.1a)
de R A, - Af +1- \/i = ZAI 5 (6.3.1b)

which are exact for e; = 1. Such a conversion has been applied to Fig. 5.4.2
(duplicated here as Fig. 6.3.1a), the result being Fig. 8.3.1b. Two features of the

transformation should be noted:

i. A 45° line, A, — Ay = K, where K is a constant, transforms to the 45° line
dy — dy; = K. In particular, portions of the frequency solution satisfying

A, ® Ay transform to d, ® d;.

ii. The horizontal line A, =0 transforms to the parabola d,=%df. This

explains the slight upward curl in the horizontal (locked-in) portion of the
transformed solution, Fig. 6.3.1b. Thus, while the function A;(A,) is one-to-
one [Eq. (5.4.19)], the function d,(d,) is not.

8.3.2 Model Lock-in Characteristics

The objective of this subsection is to develop simple expressions for the posi-
tion and width of the model lock-in band, delimited by the points {* and I~ on
Fig. 8.3.1a.! The easiest way to describe the position and width of this band is to

define a new coordinate z in the (A,, A,) plane as

x = Ay=~28, (8.3.2)

1. It is assumed throughout that all solutions in the lock-in band are stable. As shown
in Chapter 7, this is a justifiable assumption for the parameter values selected
herein.
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k, = 0.005
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Fig. 6.3.1: Comparison of Detuning Coordinates
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which has the advantage of reducing the frequency equation (5.4.19) to a quad-

ratic in the response detuning A,:

2z[4A% + ¥?] = 2k,A, + k,7. (6.3.3)
Solving,
ks \/ ks o ka? 22
= —)2 + - . 3.
b = 5o WG * 5 2 (B 2)

Viewed in (z, A,) coordinates, the endpoints z;* of the lock-in band
correspond almost exactly to the limits of real solution A,, where the two roots
(6.3.4) of the quadratic coalecse. Therefore, setting the radical in Eq. (6.3.4)

equal to zero:
1692z, ° - Bkgyzt — k& = 0 (6.3.5)

Solving,
2t = z%—[ka + VEE+ k2 ] (8.3.8)

Therefore the center of the lock-in band,

't + 2
L= lTl. (6.3.7a)

and the width of the lock-in band,
W = z* -z, (8.3.7b)

are given by the following simple expressions:

k
Model Band-Center: C = —4% (6.3.8a)
Model Band-Width: W = %\/k,f+kf. (6.3.8b)

Since the damping coefficient ¥ in Egs. (6.3.8) is positive, symmetry of the
lock-in band about the exact resonance point A, = 0 depends entirely on the
parameter k,. In particular, if ¥, > 0, then the lock-in band is skewed to the

right, in qualitative agreement with experimental data (see Fig. 2.4.2).
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To fit the above result to experimental data, it is necessary to isolate the
dependence of k,, k3, and y on the mass ratio 7 and structural damping ratio ¢.

Substitution of Egs. (3.2.15¢,d) and (3.2.24a,b) into definitions (5.4.11) gives

_ —M, %4
ke = % 182 ( 2nS N2as + as) (6.3.92)
_— Qy 2 _
. [(55)° — as(aa + as)] (8.3.9b)

Also, recalling approximation (5.4.17b):

2¢ ay
R = + 7. 6.3.10
7 \/ez 21‘\'8227 ( )

Although the previously defined quantity
ez = 1+ agn (6.3.11)

is strictly a function of 7, the value of 7 for the experiments under considera-

tion is so small { 7 = 0.00514 ) that
ex R 1 (6.3.12)

is assumed, the validity of which must be verified a posteriori when a value for
ag is known. Assumption (6.3.12) does not invalidate results of the model for
large values of 7; it merely implies that the current procedure for selecting

model constants is not generally applicable.?

Under assumption (6.3.12), the parameters (k,, k,, 7) may be written as

ko ® Pyny (6.3.13a)
vy R 2¢+ Pan, (6.3.13c)

where the P, discussed in Section 8.1, are functions of Strouhal number S and

the g, only:

2. As previously indicated, the accuracy of the approximate conversions (5.4.14) and
(6.3.1), which relate the solution coordinates (4;, 4A,) in a simple way to the physical
coordinates (dy, d,), also depends on assumption (6.3.12).
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Qg

—
P, = e,(2ns )(2as + ag) (8.3.14a)
Py = L[4 ah(as + ag)] (6.3.14b)
e, 2nS 3“3 6 RGN
- 4
Py = 5. (6.3.14c)

Substitution of approximations (6.3.13) into Egs. (6.3.8) produces the follow-

ing expressions for model lock-in band-center C and band-width W:

P,

- : z | T - .

Model Band-Center: C 12 + Py (6.3.15a)
VPZ? + P

-Width: W N ——e——, .3.

Model Band-Width 2(2¢ + Ps) (6.3.15b)
where the reduced damping E is defined as

i = L. (6.3.16)

n

Hence for small 7, C and W are function of reduced damping only. It remains to
select values for Py, P, and P3 to optimize this result with respect to experi-

mental data.

6.3.3 Experimental Lock-in Characteristics
Experimental values of lock-in band-center and band-width, denoted C; and
W, respectively (i = 1, .. ., 5), may be calculated for the five frequency response

curves shown in Fig. 2.4.2 by the method illustrated in Fig. 6.3.2. Since
T = A -Ap = d, —dy, (8.3.17)

values of z may be read directly from the original (d,, d;) plots. Results of

these calculations are given in Table 6.3.1.

6.3.4 Optimizing Model Lock-in with Respect to Experiment
The optimal values of model parameters P,;, P and Py are defined to be

those which minimize the squared error F'z between the experimental values
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Table 6.3.1: Experimental Lock-in Characteristics
T & ¢ (z7); | (z*) I Gy l Wy
0.00514 | 0.00103 | 0.200 0.000 | 0.314 | 0.157 0.314
0.00514 | 0.00145 | 0.282 | 0.000 | 0.257 | 0.1285 | 0.257
0.00514 | 0.00181 | 0.352 0.000 | 0.225 | 0.1125 | 0.225
0.00514 | 0.00257 | 0.500 | -0.021 | 0.156 | 0.067 0.177
0.00514 | 0.00324 | 0.630 0.000 | 0.108 | 0.053 0.106

U'-PWNHT.A.

(C;, W;) and the model predictions (C, ¥ ):

2511[ (Ci=CR+ (W, -W)] (8.3.18)
i=
Defining for convenience
Q = % (8.3.19a)
Qz = -‘i—m (6.3.19b)
Qs = 529. (6.3.19¢)

it follows from Egs. (6.3.15) that

E3(@1. Q2 {3) = ﬁ:l [Ci - = 5 B+ [w - e ], (6.3.20)

(i + €3 &i+ Qs
Error minimization with respect to @, and @, requires that at the optimal

point (Q1, Qz)

8E 5 5 Qi 1

%3 _ o $ic, - = . =0 6.3.21
9Q, igl[ ('i"'Qs][fi"‘Qa] ( °)
9E 5 Q2 1

L. I ~ =0, 6.3.21b
0Q2 21[ ‘ ¢ +Qa][(i+Qa] ( )

which yields



g% =~ (i * Qs (8.3.22a)

Q: = :=1(’i'41‘Qa : (8.3.22b)

For fixed Qg, optimal values (], §z) may easily be found by performing the
indicated summations using Table 6.3.1. Complete optimization is achieved by
tabulating the (§4, §2)-minimized error £5(Q], Q2 Q3) versus Qg and seeking

the minimum at Q3. The result is
Q1 = 0.04641; Q2 = 0.09556; Q3 = 0.0986. (6.3.23)

By inverting Egs. (6.3.19), and substituting Egs. (6.3.23), the optimum values of

P, P, Pgjare found to be

P, = 0.371 (8.3.24a)
Py = +0.0909 (8.3.24b)
Py = 0.192. (6.3.24c)

The ambiguous result for Pp,.to be resolved in Section 8.4, is natural here since

expressions (6.3.15) for C and W depend on P# rather than on Pj itself.
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6.4 Peak Structural Amplitude for Spring-Mounted Cylinders

6.4.1 Model Predictions for Peak Amplitude
An explicit formula for the model-predicted structural amplitude B is
obtained in terms of A, by substitution of Egs. (5.4.15b) and (5.4.16b) into Eq.

(5.4.8):

4aAl - 2k A, + ay® + kyy

(4AE 4 57)2 (6.4.1)

B? = %(c2+5'2)

For comparison with the experimental curves (Figs. 2.4.2), the maximum of B?

with respect to d; is sought,

de
———— = [, 6.4.2
a(d;) P
According to Egs. (6.3.1) and (5.4.19),
df = df[Af(A,-)], (643)

so according to the chain rule

dB? _ dB? d(d,) dA,

= . 4.4
da,  d(d;) db; dA, ey

Differentiation of Egs. (8.3.1a) and (5.4.19) demonstrates that each of the latter
two derivatives is bounded,! so that every solution of Eq. (8.4.2) is also a solution

of

dBZ
dA,

= 0. (6.4.5)

Therefore, the latter condition may be used to deduce the peak amplitude B

and the corresponding value K, of A,.

Differentiating Eq. (6.4.1) and evaluating at the peak gives

d(a
1% —d(—All is infiniteat 4, = -% but such large values of A; are not permitted.
24
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= L (c? + 2?)(8ad, - 2k,). (6.4.6)

L 2 2+ 2\2
imraarey| = A

peak
On the other hand, by direct differentiation of the product B%(4A2 + ¥%)2 and

evaluation at the peak [condition (6.4.5)]:

d
dA,

[B2(4A2 + ¥?)?] = 16A,(44,% +y?)8 ? (8.4.7)

peak
Thus the peak amplitude is given by

4ab, -k,
Bar (437-2 + 72) '

B _;4_(02,,_~z)

o - (6.4.8)

A, is given by equating the specific expression (6.4.8) for B 2 to the general
expression (6.4.1) for B2 evaluated at A, = A,., the result being

1804, 3 = 12kqA, 2 — 4y(ay + 2ky)A, + kay? = O. (6.4.9)
Whenever this cubic yields more than one real root, Eq. (6.4.8) may be applied

for each to determine which root actually corresponds to the peak.

6.4.2 Experimental Data for Peak Amplitude

Experimental values of peak structural response, read from Figs. 2.4.2, are

tabulated below.

Table 6.4.1: Experimental Peak Amplitudes
1 Ul =__]= i B

1 0.00514 0.00103 0.524

2 0.00514 0.00145 0.396

3 0.00514 0.00181 0.204

4 0.00514 0.00257 0.148

5 0.00514 0.00324 0.082

6.4.3 Optimizing Model Peak Amplitude Predictions with Respect to Experiment
Recapping the selection of model parameters so far: Py has been chosen to

optimize model/experimental agreement for lock-in of forced cylinders, while
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Py, Py, and Pg have been chosen to optimize such agreement for spring-
mounted cylinders. Since there are a total of 8 parameters (Py, . .., Pg) avail-
able to fit the model, P4 and Pg remain free for optimization of peak-amplitude

predictions.

Identification of a pair of parameters P, and Pg may be attempted by writing
the equations for B and A, [Egs. (6.4.8) and (6.4.9)] as functions of ¢, 7, and
Pyg, ..., Pg only; whatever additional parameter groups remain are candidates
for P4 and Ps. Toward this end, the quantities k,, ky, and ¥ are written as in

Egs. (6.3.13), which utilize the small-n approximation (8.3.12), while the quantity

-é;—)-(c2 + €°2) is rewritten using Eq. (6.2.12) and the identity

(c2+T2)(r®+72) = K2+ k8 (8.4.10)
the result being
4 - "
E(ca+ca) = %PE(P? + P§). (68.4.11)

It is apparent then that, instead of two additional parameters (P, Pg), only one,

namely

1 @y —ay4
2nS ey '’

Py == (6.4.12)

will appear in the equations for B and 3,..

Some reflection reveals that the sixth model parameter Pg has actually been
discarded by the small-n approximation (6.3.12). Comparing Egs. (6.3.11) and

(8.3.12) it is therefore appropriate to take
Pg = -as, (6.4.13)

with the realization that this parameter cannot be numerically determined

using the data or the analysis presented herein. Determination of Pg requires
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additional experimental data on spring-mounted cylinders for which 7 is

sufficiently large that the product 7P is likely to be comparable to 1.2

To find the optimum value for P, (assuming Py ,...,Pg are fixed), Eq.

(6.4.8) for the model-predicted peak amplitude B 2 is written as

l\"i‘

=Y

B(Pum )= —'LPO\/PI + P2 l _P, (6.4.14)

A,[44,2 + (2¢ + Pan)?]

where

&, = b5(Pum O (6.4.15)
according to Eq. (6.4.9).

The optimum value of P, is defined as that which minimizes the squared

error

E(Py)

E[E i =B (Pe mi &) (6.4.18)

between the experimental peaks B ; listed in Table 6.4.1 and the corresponding
model predictions B (P, 7;, ¢). Substitution of the previously optimized values
of Py, Py, and Pg [Egs. (8.2.15) and (6.3.25a,c)], as well as the two alternative

values for P, [Eq. (6.3.25b)] yields Table 6.4.2.

Table 6.4.2: Two Alternative Solutions
Solution # Py Optimum P, | Minimized Error £ |
1 +0.0909 0.385 0.02283
11 -0.0909 0.126 0.01973

Of the two possibilities tabulated,

2. Recall that the value 77 = 0.00514 is used herein for comparison to experimental
data (Table 6.4.1).
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P, = -0.0909 (6.4.17a)
is better for several reasons. First, the error £, is lower in that case. Second,
the corresponding value

Py = 0.126 (6.4.17b)

yields c, = % = f— = 15.75, whereas P, = 0.385 yields ¢, = 5.19. The former
4

value is sufficiently large to achieve the least-squares plateau for cy - = and

e
C—l = 1.149 on Fig 6.2.2, whereas the latter value is not. Third, the smaller value
2

of P4 = ais more consistent with the order of magnitude assumption (4.1.9).
6.5 Recovering Model Constants from the Parameters P,

6.5.1 Algebraic Expressions

The functions
Py =Pk(ao,....0,5, S), =1 .00 7D (6.5.1)

as given by definitions (6.2.12), (6.3.14a,b,c), (6.4.12), and (6.4.13), may be

inverted by algebraic manipulation to yield
A = ak(Po,. ..,Pb, S) (652)

1t should be emphasized however that the a;, are model constants and do not
actually depend on the Strouhal number S. The parameters P, do depend on S,
and their numerical values have been determined in Sections 6.2, 6.3, and 6.4
for S = 0.20. Consequently, when these numerical values are substituted into

equations of the form (8.8.2), S = 0.20 must again be used.

Algebraic manipulation of the equations represented by (6.5.1) begins by solv-
ing for ey, a function of ag, as, and as previously defined by Eq. (3.2.8). Using

Egs. (6.3.14), (6.4.12), and (6.4.13), the result is
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2P P
&1 = —p— 2, (6.5.3)
Back substitution into the same equations yields
_ (P1+Py)(P§ + P§)
0 = P1Ps + PoP, Py (6.5.4a)
Py(P§ + P§)
= + s
Qg 27TSP3[1 P!P5+P2P3 (654b)
P3P (P§ + PE)?
@y = 4 aa o(P§ §) . (6.5.4c)
3nS P§ (P1P5 + PgPa)
ag = —P5 (654(1)
ay = 2nSPj3 (6.5.4¢)
- Py(P§ + P¢
as = nee PB4 2Ps, (8.5.4f)

P1P5 +P2P3

6.5.2 Sign Restrictions
The physical arguments used to develop the model in Chapter 3 imply that ag

and a4 must be positive, for the following reasons:

* apis a proportionality constant relating the bulk fluid velocity and the

integrated fluid momentum, which makes sense if and only if

ap > 0. (8.5.5a)

» In the expression (3.2.7) for the fluid-structure interaction force F,;,
a, multiplies the term proportional to the relative velocity between
fluid and structure, and this force properly opposes the relative

motion if and only if
ay > 0. (8.5.5b)

Other physical arguments in Chapter 3, of a more nebulous nature, suggest

that a3 and ag should also be positive, for the following reasons:
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» In the expression for Fg; as multiplies the terrm representing

apparent fluid mass, and the apparent mass is positive if and only if
ag > 0. (6.5.5¢)

» In the expression for F,;, ag multiplies the term representing a buoy-

ancy force, whose sign is physically correct if and only if
as > 0. (6.5.5d)

6.5.3 Numerical Values

In Fig. 8.5.1, the model constants a; are plotted versus the undetermined®
model parameter Ps using Egs. (6.5.4) and the optimal values for Py, ..., Py
given by Egs. (8.2.15), (6.3.25a,c), and (8.4.18a,b). According to Egs. (8.5.4),

P3Py
Py

there is a singularity at Ps = — . Unfortunately, there is no value of Pg in

Fig. 6.5.1 which simultaneously satisfies all four of the sign restrictions above,

a3 being negative whenever ag is positive, and vice-versa.

If compromising the desired conditions is unavoidable, it should at least be
minimal. Since conditions (8.5.5a,b) are deemed more important than condi-

tions (6.5.5¢,d),
Ps = 0.30 (6.5.6)

is selected as the best value, since ey a4 and as are then positive in Fig. 6.5.1,

while agis minimally negative.
For this value, the small-n approximation
eg = 1=Pgn N 1, (6.5.7)
upon which the analyses of Sections 6.3 and 8.4 are based, is certainly justified
for the value 77 = 0.00514 used therein.

3. As mentioned in Section 6.4, an optimum value of Py cannot be deduced from the
experimental data presented in Chapter 2.
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CHAPTER VII
RESULTS

7.1 Introduction

Fig. 7.1.1 summarizes the thesis: the description of vortex-shedding
phenomena in Chapters 1 and 2 is represented by boxes A and A’ of the Figure,
while the mathematical development in Chapters 3-8 is outlined by the
sequence 4 - B - C-» D> F -, Boxes F, G, B', C', and H diagram the con-

tents of this chapter, including

o Analytic results for each type of structure considered (box F), and a

comparison to experimental results (circle G).

+ A comparison (circle H) between numerical solutions to the differential
equations (B'), numerical solutions to the amplitude/phase equations
(C'), and analytic results F.

Comparison H serves two purposes:
1. To check the mathematical analysis represented by B - C »D - E .

2. To isolate the effect of model assumptions (4 -+ B) from mathematical
assumptions (B »C -»D). If comparison H reveals that analytic
results F match numerical results B' fairly well, then whatever
discrepancies appear in the comparison G are directly attributable to

the model assumptions 4 »B.

All of the model results presented in this chapter have been obtained using
the parameter values P, selected in Chapter 6, summarized here for ease of

reference,
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P, = 0813; P, = 0.371; Pz = —0.0909 (7.1.1a)

Ps = 0.192; P, = 0.126; Pg = 0.30. (7.1.1b)

and hereafter referred to as Parameter Set I.

7.2 Forced Cylinders

Model versus experimental stability boundaries are shown in Fig. 7.2.1.
Values of Py and P4 used for the model calculations are those given by Egs.
(7.1.1). The calculations have been performed according to Egs. (8.2.4) and
(8.2.5), where the axis-stretching constants ¢y and cp are given in terms of P,
and P, by definitions (6.2.11), (6.2.8), and (6.4.12). Points T and 7' on Fig. 7.2.1

correspond to those discussed at some length in Section 6.2 (see Fig. 6.2.1).

The relatively good agreement between model and experiment is attributable
to the small value of P4 (large value of c;) determined in Section 6.4, since large
c; has the effect of placing points T and 7' close to the origin, as assumed in

Section 6.2.3 during the determination of Py,.
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7.3 Spring-Mounted Cylinders

Experimental measurements of amplitude and frequency response for
spring-mounted cylinders, previously given in Fig. 2.4.2, are compared to the
corresponding model predictions [Egs. (5.4.19) and (6.4.1)] in Figs. 7.3.1-7.3.5.
Parameter Set I is used throughout, together with the experimental value of

mass ratio
n = 0.00514 (7.3.1)

and the Strouhal number S = 0.20. The structural damping ratio ¢ is given on

each plot.

Recalling the discussion following Eq. (5.4.19), there are three types of solu-

tion for spring-mounted cylinders, denoted on subsequent Figures as follows:
1. Short-dashed lines: Non-real amplitudes
2. Long-dashed lines: Real amplitudes, but unstable

3. Solid lines: Real amplitudes, stable.

Therefore, only the solid line segments are physically meaningful.

7.3.1 Frequency Response (Figs. 7.3.1a—7.3.5a)

The discussion of model-ﬁredicted frequency response is facillitated by the
annotation of Fig. 7.3.2a, the other frequency curves being similar. Non-locked-
in freqency response w R w, (i.e. dy ® dy ), typical of the experimental data far
from resonance ( d, far from 0), is well approximated by the nearly straight seg-
ments AB and FCD'G. Likewise, locked-in response w, N w#* w, (iLe.
d, ® 0= dy), typical of the experimental data near resonance, is well-
approximated by the nearly horizontal, hair-pin-shaped segment BCDEF. The
upward curl of the hair-pin segment at large values of d, has been explained

previously in the discussion following Egs. (6.3.1).

Solutions generated by the underside of the hair-pin segment are real and
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stable (i.e. the curve is a solid line) virtually all the way out to the cusp F, except
for a very small distance between D and E. Stability of the entire lock-in band
BCDE was assumed in the regression analysis of Section 6.3, without any
guarantee that it would actually be true. However, since it is virtually true for
the parameter values under consideration (Egs. 7.1.1), the design of Section 8.3
succeeds, producing model predictions for lock-in band width, position, and

dependence on damping ratio which compare well to the experimental data.

Thus, according to the model, as d; (i.e. flow speed U) is increased, there is
initially a smooth transition from natural vortex-shedding response to lock-in
along the curve ABCD, but at D the solution jumps suddenly to D', marking the
end of the lock-in band and a return to natural vortex-shedding. As d; is
further increassed, the solution proceeds along D'G. Conversely, as d; (i.e. U) is
decreased, the solution at first proceeds along GD'C’, then jumps from C' to C,
and finally proceeds along CBA. This behavior agrees qualitatively with the
experimental data, except that the model-predicted jump upward from D to D'
occurs at a higher value of d,; than the jump downward from C' to C — a hys-
teretic efiect typical of nonlinear systems, but not exhibited by the frequency

response data.

7.3.2 Amplitude Response (Figs. 7.3.1b—7.3.5b)

The discu.ssion of model amplitude response is facillitated by the annotation
of Fig. 7.3.2b, the other amplitude curves being similar. Lettered points on Figs.
7.3.2a and 7.3.2b correspond respectively, such that a discussion of the model-
predicted hysteresis loop need not be repeated. However, in contrast to the fre-
quency data, it shou!d be noted that Lhe experimental amplitude response, like

the model, does exhibit hysteresis, as indicated by the arrows in Fig. 2.4.2. !

The curious smaller branch FC'D'GC of each amplitude curve is easily

1. For clarity, the arrows have been omitted from Figs. 7.3.1b and 7.3.2b.
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explained by plotting the squared amplitude B? as obtained from Eq. (6.4.1),
rather than the amplitude B itself. For ¢ = 0.00145, the result is Fig. 7.3.6, with
lettered points corresponding to those in Figs. 7.3.2. It is clear then that points
E and F connect through the region B% < 0, which of course is imaginary in the

(d;, B) plane of Fig. 7.3.2b.

Quantitatively, model/experimental agreement is not nearly as good for
amplitude response as for frequency response. This is natural however, since
three model parameters (P, Py Pj) were devoted to fitting the frequency data,

whereas only one parameter (P ) was allotted to fit the amplitude data.

7.3.3 Numerical Implementation

Considerable care was required to obtain Figs. 7.3.1-7.3.5, since the one-to-
one functions A;(4A,) [Eq. (5.4.19)] and B(A,) [Eq. (6.4.1)] are exztremnely sensi-
tive in the locked-in region, at least for the parameter values used herein. This
sensitivity is somewhat masked by the conversion to (d_r,d,) coordinates, which
causes the hair-pin segment of the frequency response to curl upward at the

right (see Section 6.3.1 and Fig. 6.3.1).

To allow for this sensitivity, the increment in the "independent variable" ? A,
was selected at each step such that the next stepwise element of arclength along
either of the curves A, vs. Ay or B vs. Ay would be no greater than some
prescribed maximum. For example, to produce Fig. 7.3.1a, A,-steps on the order
of 10™* were required in the hair-pin segment, while steps on the order of 18°®
were possible in the straight segments. Additionally, a step-size control based
on the second derivative A_,"(A,.) was incorporated as an override, to guard

against taking too large a step near a point of vertical tangency A,'(A,) = 0.

2. See the discussion of Section 5.4.2.
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7.4 One-Mode Cable Approximation

As discussed in Section 5.5, the solutions for this case are identical to those

for the spring-mounted cylinder (Section 7.3), except that all amplitudes are
smaller by a factor of '\/%_ In particular, the lock-in band characteristics are

identical to those of a rigid cylinder having the same mass ratio and damping
ratio. Thus Eq. (6.3.15b), plotted in Fig. 7.4.1 using Parameter Set ], predicts the
model lock-in band-width W(¢) for vibrating wires or cables, provided that the

one-mode approximation is valid and the mass ratio 7 is small.

Both of these conditions hold for mode 7 of the steel wire examined in Sec-
tion 2.5,! for which the experimental value of band-width is ¥ = 0.108.% Thus, for
model/experimental agreement in this regard, the experimental structural
damping ratio would have to be ¢ ® 1.6 x 10™%. Realistically, it is unlikely that ¢
is so small, since even the slightest amount of structural slippage — notably
between the vibrating wire and the pins around which its ends are wrapped (cf.
Fig. 2.5.2) - is capable of dissipating energy at a rate corresponding to ¢ ~ 0.001
or greater [32, p. 31-11]. For such a realistic value of damping, Parameter Set ]

seriously under-predicts the width of the lock-in band, by a factor of about 5.

The source of this difficulty is easily ascertained: the model parameters
(P, Py Pg3) were selected in Section 6.3 to produce model values of bandwidth
agreeing optimally with Feng's data (also shown in Fig. 7.5.1), for which the lev-
els of reduced damping are much smaller than those appropriate for a steel wire
in air. Ideally, of course, the model should extrapolate correctly to larger values
of ¢. However, it fails to do so, at least for Parameter Set 1. Improved results
for large E may be possible by re-selecting (P, Pz P3) based on experimental

results which incorporate a wider range of E Unfortunately, such data are una-

1. The mass ratio for steel in air is 1.94 x 1074

2. In terms of the coordinates used on Fig. 2.5.4, values of z [Eq. (6.3.17)] are given by
z =1= 1 ’
fs /fl
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vilable at the present time.

Consequently, as the two-mode cable approximation analysis is discussed in
the next section, Parameter Set I is used, and no further attempt is made to
relate model results quantitatively to the experimental data of Section 2.5.
Rather, the mass ratio and damping ratios typical of Feng's rigid-cylinder exper-
iments are selected, and qualitative features of the experimental data are

sought in the model solutions.

REDUCED DAMPING { E—f’—

0.1 2 5 1 2 5 10
T i Ll T |
.30+ ® FENG DATA FOR -
ELASTICALLY-MOUNTED
CYLINDERS
25 .
T MODEL
-
(=]
3 .20+ _
1
(=]
<
< Measured band-width for
m 15+ mode number 7 of a _
> v steel wire in air
T
S
(o) J0+ < . : L
bt Minimum realistic |
damping ratio |
for steel wire
05
1 1 1

s 16" 2 5 16"
DAMPING RATIO ¢ FOR STEEL IN AIR

(7= 1.94x107")

Figure 7.4.1. Model vs. Experimental Lock-In Band-Width
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7.5 Two-Mode Cable Approximation

7.5.1 General Remarks

In this section, the analytic, steady-state solutions developed in Section 5.8
are presented graphically. The foremost objective of the presentation is to
demonstrate the nature of modal interaction for small values of the intermodal
detuning A;;. These model results may then be compared qualitatively to the
experimental observations of Section 2.5. Additionally, the reasonableness of
two-mode solutions is sought by comparison to one-mode results; for large Ay,

the two-mode problem should resolve into two one-mode problems.

For such purposes, the dependence on the mass ratio n and on damping

ratios ¢; is of secondary importance. Thus, the fixed values
7 = 0.00514, (7.5.1a)
& = ¢ = 0.00257 (7.5.1b)

are used throughout Section 7.5, together with the Strouhal number S = 0.20

and Parameter Set I (Egs. 7.1.1).

The results are plotted using the approximate detunings (A,, A,, Agy),! which
1. In contrast, d-variables (the exact detunings) rather than A-variables were used to
present one—mode results in Section 7.3. There are good reasons for this:

« The A’s may be regarded as natural variables for solution of the mathemat-
ical problem, while the d’s are natural from a physical viewpoint. Thus in
Section 7.3, the use of (d,, d;) [defined by Egs. (5.4.13)] was advantageous
for quantitative comparison with experimental data. In this section on the
other hand, quantitative comparisons with experimental data are never
made, so the use of (d;, d,) [defined by Egs. (5.6.16)] holds no particular
advantage.

« The use of (d,, d;) in Section 7.3 was convenient because the conversion
from (4, A,) to (ds, d,) was easily accomplished for the one-mode prob-
lem [cf. Egs. (5.3.1;]. In this section on the other hand, there is no easy
way, for the non—-degenerate case, of converting the function A,(A,) (Agy
fixed) [Eq. (5.6.29)] to the function d;(d,) (dz; fixed), since the conversion
from Ag; to dz; involves the unknown A, [cf. Egs. (5.6.17)].

Therefore, A—variables are preferable for Section 7.5, and will be used exclusively
throughout. In any case, the small distinction between A's and d’'s should not cause
undue concern. The results look much the same in either set of variables, except for
a slight, upward curl of the lock-in bands in the (d;, d,) plane (see Fig. 6.3.1; the
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are defined by Egs. (5.6.15). These variables are to be interpreted as shown on
Fig. 7.5.1, which is exactly analogous to Fig. 5.8.1.%2 Thus A;, plotted below as the
abscissa, measures the normalized free-stream velocity U, while Az, treated
below as a parameter, measures the separation between the two adjacent struc-

tural frequencies {1, and 1,.2 The frequency solution A,(A,) is expected to exhi-

bit locked-in behavior near A, R i';-Agl, since these values correspond to

0 =0yand 0 = 0O,

Natural structural frequencies

Response I Strouhal
frequency _\ frequency
- ® w, ©, =25y
: 4 : —+ FREQUENCY
Q, 3o+ 0,) o 0 1
. d . " : NORMALIZED
: ; b i y FREQUENCY
' ] | |
' | A \ ]
: : ey . Z
1 ] 1
\ I I DETUNING
' - 1 ] I
. ~ 28x o Rl e VARIABLES

. = T PP

zA'

Figure 7.5.1. Interpretation of A—Variables

As indicated in Fig. 7.5.2, the solutions developed in Sections 5.68.2 and 5.6.3
must be pieced together to form the composite solution. Non-degenerate solu-
tions are denoted "Plus" or "Minus" in reference to the quadratic formula

(5.6.29), while degenerate solutions are denoted by "Type'" as discussed in Sec-

two—-mode case is analogous).

2. The approximations "=" indicated in Fig. 7.5.1 are attributable to the O(¢?)
difference between the A's and the d's [Egs. (6.6.17)].

3. See the discussion concerning generic subscripts, Egs.(4.1.10).
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tion 5.6.1. Each kind of solution is further distinguished by its "Class,” as dis-
cussed in Section 5.4.5 (applicable to the degenerate case) and again in Section
5.6.2.4 (applicable to the non-degenerate case). Solution Classes are indicated

on plots as follows:
(0) No line: Frequency solution Ay not real (non-degenerate case only)
(1) Short-dashed line: A, real but one or both amplitudes non-real
() Long-dashed line: A; real and ampltidues real, but unstable

(3) Solid line: Real, stable solution.
Only Class (3) is physically meaningful, thus the composite steady-state solution

is the union of Class (3) results.

7.5.2 Case 1: Non-Degenerate Solutions

Frequency response and structural amplitude response are plotted in Figures
7.5.3, 7.5.4, and 7.5.5 for Az; = 0.05, 0.10, and 0.20 respectively.* For each value
of Apy, the "Plus" and "Minus" frequency solutions are plotted separately for
clarity. However, for the parameters under consideration, "Plus” solutions are
never Class (3), so the corresponding amplitude plots are omitted. "Minus" solu-
tions are Class (3) over the segments AB and EF, and additionally over the seg-
ment CD when the intermodal detuning Ag, is large enough (Fig. 7.5.5). In each
instance, points A-F on the frequency plot correspond respectively to those on

the amplitude plots.

4. The arclength controls used to adjust the A, step size in Figs. 7.5.3-5, although simi-
lar to those described in Section 7.3.3, were not refined enough to capture all the
details. In particular, the denominator x; in Eq. (5.6.29) goes through zero near
each of the values A, = £ —2‘A21. Therefore the long, dashed, horizontal lines on the

frequency plots should properly extend to the edge of the graph; their truncation is
attributable to the particular numerical algorithm used. On the other hand, the
apparent vertical gaps in the frequency solution (e.g. Fig. 7.5.3a, near A, = —Z-Am) are

not attributable to oversized steps, but rather to the occurrence of non-real fre—
quency solutions [ Class (0)].
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Points B and D have a special significance. At B, the upper mode amplitudes
B, and A, vanish,® so point B must represent the borderline between non-
degenerate solutions and degenerate solutions of Type 1. Likewise, at D, the
lower mode amplitudes B; and A, vanish, so point D must represent the border-
line between non-degenerate solutions and degenerate solutions of Type 2.
These observations will be discussed further in connection with the composite

solution (Section 7.5.4).

For the set of parameters under consideration, non-degenerate solutions
apparently do not exhibit lock-in to any great degree. This is by no means true
in general; for alternative sets of models parameters, "locked-in'" portions of the
frequency solution have been found which are real and stable. Such solutions
typically involve large amplitudes for one of the structural variables y; and for
both of the fluid variables z;, which persist even for large values of the modal
separation Ap;. This is unacceptable from a physical viewpoint, since it is then
impossible for the two-mode problem to resolve into two one-mode problems for
large Apy, inasmuch as assumption (3.4.16) of the one-mode approximation is
violated by one of the z;. .It is fortunate — or perhaps significant — that
Parameter Set I, selected herein in accordance with experimental data, does not

produce such physically unacceptable results.

7.5.3 Case 2: Degenerate Solutions

As for Case 1, frequency response and structural amplitude response for the
degenerate case are plotted on Figs. 7.5.8, 7.5.7, and 7.5.8 for Az; = 0.05, 0.10,
and 0.20 respe‘ctively. In each instance, Type 1 and Type 2 frequency solutions
are plotted on a single set of axes (similar to Fig. 5.6.3). As indicated by arrows,

each frequency curve is truncated so as not to obscure the other, but the trun-

5. Referring to Eq. (5.6.5), A must go to zero whenever B, does.



-162-

(113

Si°0 0°0 S1°0- 0€ "0~
U 4 e B Tl Y e o
) N o "G00
! /
| /
] 7
| /
0 .m o
| -
! =)
|
l Lom 2 )
__ m £ 113
\
- V7B 49
n
o
ISNOES3IY 3ANLITdWY 300W-Y3IMOT (2
i i 1
i i T o
'
|
) /
| /
] /
- I / 49
: / =
! p % s 2
/
o a:
L. :/\-\ Jde
a 3
JSNQ4S3Y 30NLITdWY 300W-Y3ddn (9

= 2y ‘suonnjog aerouada(q :9-g 2 "y

Si'0 0°0 SI‘0- 0€ ‘0~

1 =l T o m
&
5 o

”
dk) .7 '
} 9 |/ 7 | .O
ey a

\\
0 sm \\
el

a Vd 4o
i a.r.h-.ﬂ-n%l anuijuoy o

7 suoiyn|og

N 0Q>|—. \\

i, a|qeisun I
B AT ’
7~ (%))

= 3ISNOLSIH AININOIHY (e

. | 8 1




oe”

-163-

Si'0 0°0 G1. "0~ 0e‘0-
: L Ty A e e 2
N :
I !
] /
g g
| ¢
! o
N IE
)
L 4
| (4
| m €
|
% Je
9 3
3ISNOJ4S3Y 3ANLITdWE 300W-43MOT (2
L 1 L
T T o
o
Ko
=)
¢ C
g:
49
n
Q
ISHC4S3Y J0NLINGHY 309W-4344N (q
1 g il

"01°0 = '2y ‘suonnjog aBIdUEA(] :4°G L F1Y
Ot Si°0 0°0 Sl1- 0= 0E*0=
I I I P e .0
P
” Q
\\\ !
- ol e
»* I
0 ~m\ \\
..I!.d.l.\.l,nﬂnu

s Q
H g - o

‘lld.hu”\uﬂﬂ\:\ql
\\.\ e
o =

R JCNOJS3IH AININC3YHL (e
& 1 1 1




-164-

e’

SI 0 0°0 S1°0- 0€°0-
T 7 T e o
I ~ | L= :
I % & <
| /
. /
I \m
‘ 4
! o
! g =5
| o
|
¢ leg €
,, g%
0 LI
n
=
3CNCLSIY ICNLTITdNE 30SW-43IM0T (9
b 1 1
T T o
o
49
=
[Pe KA
=
o
.
n
o
ISNQ4S3IY IANLTTdWY 3A0W-d3ddn (q
1 1 !

"02'0 = '2y ‘suonnjog ajetouada( 4G L "

0€ 0 SI°0 0°0 Sl°0- Q€ "0~
T 7 | | 71!
e
A% w
Q
\\ "
i o 4e
w..L\ @
........ =5
V4
. o
o
H a.”
'I‘#In\ﬂnl:l””\\l‘
i |
- \.\ I.D
@
o ISNOJS3IH AININO3YL (e
d 1 1 |




-165-

cated portions contain only unstable solutions. The Type 1 solution generates
an amplitude curve for B, (plot c of each Figure), while Type 2 generates a curve
for B, (plot b of each Figure).® Apparently, real stable solutions [Class (3)] occur
for the degenerate case only in the locked-in segments B'C and D'H. lt is clear
that these lock-in bands are suppressed as the modal separation Ay, decreases;
the presence of the upper mode causes instability of the right end of the mode-1
lock-in band, and likewise, the presence of the lower mode causes instability of

the left end of the mode-2 lock-in band.

7.5.4 Composite Solutions

By piecing together the Class (3) results from Figs. 7.5.3-7.5.8, the composite
solutions shown in Figs. 7.5.9-7.5.11 are obtained, with lettered points
corresponding to the previous figures. Although not shown, similar composite

graphs might be constructed for the structural amplitudes.
The frequency composites reveal certain features of modal interaction:

» Complez solutions for small values of Apy. In Fig. 7.5.9 (Az; = 0.05), the
suppression of lock-in bands discussed above is evident. As a result, in
the range of Ay between points ¢ and £, no solution of the assumed
form (5.6.1) exists, thus some other, more complex form of solution

must prevail. An example of such a solution is given in Section 7.5.4.

o Lock-in overlap for intermediate values of Ag;. In Fig. 7.5.10
(A3 = 0.10), a hysteresis loop involving both lock-in bands appears.
Thus, for intermediate values of modal separation, the model predicts

the possibility of lock-in for both modes at the same value of flow

6. The factor of % appearing on the axis scales is that discussed in Section 5.5. The
computer code which generated the amplitude plots was adapt from a routine
originally written for rigid cylinders; the amplitude scaling by \[é—iwas neglected in
the plotting.
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speed (A,); one mode or the other prevails depending on initial condi-
tions. This result is qualitatively similar to the experimental observa-
tions discussed in Section 2.5.6, where lock-in "drifted"” between modes
8 and 9 despite a virtually constant flow speed. It is quite possible
that, in this crude experiment, various "initial conditions" were
imposed randomly by factors not under strict experimental control

(e.g. extraneous air currents).

» Resolution of the two-mode problem into two one-mode problems for
large values of Apy. In Fig. 7.5.11 (A = 0.20), the two modes are well
separated, there is an intervening ""dead-band" between them, and each
of the hysteresis loops is similar to that discussed previously for the
one-mode case (Section 7.5.3). Again, this result resembles experimen-
tally observed behavior of the lower modes having larger Agy, for exam-

ple modes 6 and 7 discussed in Section 2.5.5.

It is clear that non-degenerate and degenerate solutions "fit together” at
points B-B' and D-D'. This makes perfect sense since, as previously noted
(Section 7.5.2), the "non-degenerate” solutions at B ad D are in fact borderline-
degenerate. Thus B and D are bifurcation points. But what are the small gaps
between B and B' and between D and D'? Ideally there should be no gaps; B—B'
should be a single point, as should Dl—D . The gaps are attributable to the fact
that the analysis which obtained points B and D (Section 5.6.2) is entirely
different from that which obtained points B' and D' (Section 5.6.3). In particu-
lar, the real-amplitude boundaries (B, D) arise from the asymptotic method,
which includes certain order-¢ approximations, while the stability boundaries
(B', D') arise from a direct perturbation of the differential equations and a sta-

bility analysis based on Floquet theory, which include only some of these
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approximations. Thus, the "primed" points are probably more accurate, but this
speculation is uncertain. As exemplified by Fig. 7.5.12, the largest modulus of
the eigenvalues arising from Floquet theory (Section 5.6.3.5) is very close to the
critical value |A| = 1, such that numerical error in the integration routine used
to obtain the matrix X(7') may be a factor in determining the precise location of

the stability boundaries B' and D'.”

Fig. 7.5.13 is a map of the composite solutions, which has been obtained by
computing the various boundaries B, B', G, C, D, D', H, E for a number of values
of Apy. Thus, the lettered points at Az; = 0.20 correspond to those on Fig. 7.5.11.
Non-degenerate solutions exist in the three shaded regions, while degenerate
solutions exist in the hatched regions. The white gaps between the B-B' boun-
daries and between the D —D' boundaries are artificial, as discussed in the previ-
ous paragraph. On the other hand, the large white area is real; in this region
the differential equations fail to admit simple-harmonic solutions of any sort, as
mentioned previously in connection with Fig. 7.5.9. Overlapping regions indicate
hysteretic behavior; in particular, lock-in overlap occurs in the region where
Type 1 and Type 2 degenerate solutions coexist. The lettered points 7y, . .., Ty

are test points for nurnericallsolutions. as discussed in Section 7.5.4.

The phenomenon of lock-in suppression, particularly of the upper mode,® is
clearly displayed by the solution map. Lock-in suppresion has two effects: first,
it reduces the extent of lock-in overlap, and second, it gives rise to the region of

complex solutions (the white region of Fig. 7.5.13), discussed above.

7. Double precision (IBM 370) was used exclusively in the numerical work. Numerical
integrations were performed with the Adams—Moulton predictor—corrector method,
with starting values obtained by the method of Runge- Kutta- Gill. This routine
incorporated automatic step-size refinement to control the local truncation error.
The tolerarce for this error was set at 1075,

8. This asymmetry is attributable to the same factor which causes the skewness of
lock-n bands, namely, k; # 0.
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Decomposition of the two-mode problem into two one-mode problems at large
values of Ap; is also depicted by the solution map. The shaded, triangular
"wedge" of non-degenerate solutions near the center of the map represents the
"dead"” area between modes, where both structural amplitudes B; are relatively
small (cf. Figs. 7.5.5c,d and Fig. 7.5.11). Thus the two modes are "well-separated”
— and hence the one-mode approximation is adeguate for each - if Ap; is
sufficiently large that this wedge is intersected during a traverse of the flow-
speed variable Af.g Thus the value of modal separation Ay, at the vertez V may
be regarded as the minimum value for which the one-mmode approzrimation is
permissible. The location of this point will of course vary with the parameters
which have been fixed throughout this section, notably the mass ratio  and the

structural damping ratios ¢;.

7.5.5 Numerical Checks

As previously indicated in Fig. 7.1.1, the mathematical analysis of Chapters 4
and 5 may be checked by solving the differential equations (4.1.8) numerically.
In Figs. 7.5.14-7.5.17. such solutions are shown for four combinations of
(A,, Azy), as itemized in Table 7.5.1. These test points have been selected to
represent the four types of ~solutiv;m predicted analytically by the composite

solution map, Fig. 7.5.13.

Table 7.5.1: Test Points for Numerical Solution
| Figure As Apy Point on Fig. 7.5.13 Analytical Prediction
7.5.14 0 0.10 Ty Degenerate, Type 1
7.5.15 0.10 0.10 Ty Degenerate, Type 2
7.5.16 -0.05 0.05 Tg Non-Degenerate
7.5.17 0.10 0.05 T, Not Simple Harmonic

9. Solutions in the ""degenerate” regions of Fig. 7.5.13 are precisely those of the one-
mode approximation, while solutions in the "non-degenerate” regions differ some-
what, since the other mode is participating.
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The numerical solutions are plotted for 0 < ¢ < 1250, each integration start-

ing from the perturbed rest state
21(0) = 22(0) = ‘yx(O) = ‘yz(O) = 0.001 (7523)
21(0) = 22(0) = §1(0) = ¥=2(0) = O. (7.5.2b)

Footnote 7 of Section 7.5 describes the details of the numerical integration pro-
cedure, except that the local truncation error tolerance was set to 1074 in this
case. The time step for the plots is At = 0.5; thus, since Q =1 + 0(¢), there are

approximately 12 points plotted per cycle.

In Figs. 7.5.14-7.5.16, the steady-state amplitudes (4;, B;) predicted by the
asymptotic method are given at the right of each plot. Clearly, the analytical
predictions are very good — qualitatively, each solution is of the type predicted
by Fig. 7.5.13, and quantitatively, the amplitude predictions are accurate. The
quantitative agreement is somewhat surprising, since Parameter Set I produces

~

r=0.7398, r =1.156, p =0.405, and g = 0.810, which violate the order-¢
assumption (4.1.9). Apparently, the asymptotic method continues to perform

well in spite of this.

As predicted by the steady-state stability analysis, the solution shown in Fig.
7.5.17 is not simple harmonic. Although the steady-state equations yield no
further information for such a case, the asymptotic method itself, prior to the
assumption of steady state, does yield such information, as shown by Fig. 7.5.18.
The latter figure was obtained by numerical integration of the amplitude/phase

equations (4.3.19), with initial conditions
Al = AE = 31 = Bz = 0.001 (7.5.33)
My = pp = p =0, (7.5.3b)

which are the amplitude/phase equivalents of (7.5.2). Envelope plots were
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Fig. 7.5.16:

Asymptotic Prediction for Test Point T, (compare

to Fig. 7.5.17).
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produced by plotting + 4;(¢) and + B;(t), as indicated on the vertical axes.

Comparison of Fig. 7.5.18 to Fig. 7.5.17 reveals that the asymptotic method
continues to predict accurately even when the solution is not steady-state. On
account of order-¢ approximations in the asymptotic method, the comparison is
of course not perfect; for example, the predicted number of envelope maxima
for each of the y; (Fig. 7.5.18) is slightly lower than the actual number (Fig.
7.5.17). However, if such inaccuracies are acceptable, the asymptotic results are
very valuable in such cases, since an integration such as Fig. 7.5.18 is computa-

tionally far less costly than Fig. 7.5.17.
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CHAPTER VIII
SUMMARY AND CONCLUSIONS

8.1 Overview

In this investigation, vortex-induced structural oscillations have been con-
sidered using a semi-empirical modeling approach, the results of which have
been compared to experimental data. In the Introduction, the mechanisms of
vortex-shedding and lock-in have been discussed from a physical viewpoint, and
attention has been focused on three types of structures having circular cross-
section, including forced and spring-mounted rigid cylinders, as well as taut

elastic cables.

The development of the thesis, diagrammed by Fig. 7.1.1 above, has proceeded
in a parallel fashion for these three types of structures, but the emphasis
throughout has been on elastic cables, and particularly on the associated prob-

lem of modal interaction.
8.2 Synopsis of Chapter 2

Experimental results have lead to several conclusions regarding the nature of
lock-in, all of which may be understood in terms of the mathematical model

developed in later chapters:

e For circular cylinders, lock-in is somewhat different if the structural
vibrations are externally forced rather than vortex-induced: forced
vibrations produce lock-in bands symmetrically disposed about reso-
nance (Fig. 2.3.1), while vortex-induced vibrations produce lock-in

bands skewed entirely to the right side of resonance (Fig. 2.4.1).!
1. Skewness of lock-in bands depends on other factors as well, notably the structure’s
cross sectional shape. For example, lock- in for spring-— mounted, D- section
cylinders is skewed almost entirely to the left side of resonance, in direct contrast to
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+ For lower modes of elastic cables, lock-in occurs as for a spring-

mounted cylinders (Fig. 2.5.4, modes 8 and 7).

» For higher modes of elastic cables, lock-in overlap exists, in which
either of two modes may prevail depending on initial conditions. (Fig.

2.5.4, modes 8 and 9).
8.3 Synopsis of Chapter 3

A mathematical model for vibrations of vortex-shedding structures has been
developed. The model contains a series of bold assumptions which succeed in
reducing the complex flow problem to a tractable form, but which are hardly
rigorous. Moreover, there are a half-dozen empirical constants in the model
whose numerical values must be determined by comparison to experimental
data. Nevertheless, the differential equations generated by the model may be
regarded as prototype nonlinear systems for studying the physical processes

involved.

As summarized by Table 3.5.1, the model yields a pair of coupled, nonlinear
oscillator equations for spring-mounted cylinders, which reduce to a single
equation for forced cylinders,. and generalize, using modal decomposition, to an
infinite set of coupled equations for elastic cables (one pair per mode). The
infinite set of equations for cables have been truncated to one pair (the one-
mode approximation) and to two pairs (the two-mode approximation) based on
a physical understanding of lock-in and modal participation. One of the goals of
the ensuing analysis has been to assess the validity of such finite-mode approxi-

mations by a comparison of one-mode and two-mode results.

circular cylinders [18]. The present model cannot explain thJs. since the only
parameter in the model which depends on cross-sectional shape is the Strouhal
number S, but variation of S does not change the sign of k,; see item 2 of Section
8.6.
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8.4 Synopsis of Chapter 4

The introduction of order-¢ approximations has permitted the development
of generalized model equations (4.1.8), which contain each of the problems of
interest as a special case (Table 4.1.1). Moreover, Egs. (4.1.8) are amenable to
analysis by well-known asymptotic methods, one of which is described in Section
4.2. In this method, each of the structural variables y; and fluid variables z; is
assumed to perform sinusoidal oscillations with slowly varying amplitude and
phase. The result of the analysis is a set of first order differential equations for

the amplitudes and phases, Egs. (4.3.19).
8.5 Synopsis of Chapter §

The steady state has been assumed for the structural and fluid oscillators,
thereby reducing the nonlinear differential equations (4.3.19) to nonlinear alge-
braic equations (5.2.5). The latter equations have been specialized to the vari-
ous structures of interest; the two-mode approximation involves the full set of
equations. In each case, the algebraic equations have been solved analytically,
and the stability of steady-state solutions has been investigated. These analyses

have led to a number of observations, cataloged below.
A. Forced cylinder:

1. Mathematical analog of lock-in. For the forced case, monofrequency
oscillations automatically satisfy the condition (2.3.1) for forced lock-
in. Thus, boundaries of stability for the assumed solution form are the
model analogs of experimentally observed lock-in boundaries. In
agreement with experiment, the stability boundaries are found to be

symmetric about resonance, irrespective of model parameter values.

2. Lock-in band-width. Band-width increases with forcing amplitude, a



-184-

dependence which is made more explicit in Chapter 8.
B. Spring mounted cylinder:

1. Mathematical analog of lock-in. For induced oscillations, monofre-
quency solutions do not necessarily satisfy the condition (1.4) for
lock-in; condition (1.3) may be satisfied instead. Thus, from a
mathematical viewpoint, lock-in for spring-mounted cylinders is not
delimited by stability boundaries (as in the forced case) but by the
peculiar shape of the frequency respsonse curve. This calls for a spe-
cial definition to define uniquely the endpoints of the lock-in band; see

item 2 of Section B.6.

2. Lock-in symmetry and band-width. Steady-state solutions and stabil-
ity depend on two groupings (ka, k») of the fluid-structure coupling
coefficients (r, ¥, ¢, ¢ ) rather than on the four coefficients them-
selves. In Chapter 6, these same two groupings are found to control

the extent and symmetry of lock-in; see item 2 of Section 8.8.

3. Detuning variables. There exist frequency detuning variables (A 1 4y)
which are natural for the solution of the mathematical problem, such
that the inverted form of the frequency solution, A,(4,), is single-
valued. The exact detuning variables (df. d,), which are natural for a
description of the physical problem, differ from (4;, A,) by quantities

of order &2

4. Solution Classes. Only solutions which are real and stable [Class (3)]

are of interest.
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C. One-mode cable approximation:

1. Similarity to spring-mounted cylinder. Solutions and stability are

identical to those for the spring-mounted cylinder, except that all

amplitudes for the cable are smaller by the mode-shape factor \/%_

D. Two-mode cable approximation:

1. JIdentification of Two Cases. Solutions to the two-mode equations
(4.1.8) may be either non-degenerate (Case 1) or degenerate (Case 2).
The two cases require separate analyses. For both cases, natural
detuning variables (Af, A,, Apy) exist for solution of the mathematical
problem; (Af. A,) are two-mode generalizations of the variables dis-
cussed in item B3 above, while Az; measures the separation between

the two natural structural frequencies under consideration (Fig. 7.5.1).

2. The Non-degenerate Case. In Case 1, the solution is quite different
than for the one-mode case. For example, the inverted frequency solu-
tion A,(A,) is double-valued, whereas it was single valued for the one-
mode problem. Solutions Classes exist as for the one-mode problem,

with the additional possibility that A;(A,) is non-real [Class (0)].

3. The Degenerate Case. In Case 2, two sub-cases (""Types') are identified;
either "mode-1" variables? are non-zero while "mode-2" variables are
zero (Type 1), or vice-versa (Type 2). For each Type, the one-mode-
approximate solution is applicable for the non-degenerating mode,
provided the results are shifted according to Egs. (5.6.39) and (5.6.40).
However, for each Type, the presence of the degenerating mode gives

rise to extra stability conditions, which destabilize many portions of

2. See convention (4.1.10) regarding the use of generic mode numbers (1,2).
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the solution curves, notably causing the supression of lock-in bands as
the structural frequencies approach each other. This is one of the

mechanisms of modal interaction, as discussed further in Section 8.8.
8.6 Synopsis of Chapter 6

Model predictions are largely dependent on the values selected for the model
constants ay, .. ., a5 A series of regression techniques have been developed to
fit the model optimally to experimental data on rigid cylinders. In the course of
this development, some important properties of the model solutions have

emerged:

1. Lock-in boundaries for forced cylinders. Stability boundaries for the
forced van der Pol equation, traditionally plotted in the (o, 4) plane
(where A is the response amplitude), are replotted in the (o, B) plane
(where B is the forcing amplitude). Qualitatively, this representation
clearly demonstrates the similarity between the model and experimen-
tal data. Quantitatively, it permits the development of a simple regres-

sion scheme to optimize this similarity.

2. Lock-in characteristics for spring-mounted cylinders. By defining a
new coordinate in the (A,, A,) plane, a simplified description of the
frequency-response curve is possible in terms of the lock-in band-
center C and band-width W. The band-center C, and hence the sym-
metry of lock-in about resonance, is simply proportional to k,, while #
depends on k, and k,. These observations permit the development of a
regression scheme to fit the model to experimental frequency-response

data.

3. Peak structural amplitude for spring-mounted cylinders. A formula
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for peak cylinder amplitude has been derived. This permits a regres-

sion scheme to fit the model to experimental amplitude-response data.

8.7 Synopsis of Chapter 7

Using the model parameter values selected in Chapter 6, model/experimental

comparisons for rigid cylinders have been presented graphically. A similar com-

parison for elastic cables (using the one-mode approximation) has demon-

strated the need for refitting the model over a wider range of the ratio -75;- Sub-

sequently, results of the two-mode approximation have been presented to

describe modal interaction mechanisms in a qualitative sense.

8.8 General Conclusions

In Fig. 8.1, the thesis is diagrammed in a manner similar to Fig. 7.1.1, but in

less detail.

Physical
Problem

Model Mathematical | Analysis

Analytical

~ | Description

Comparisons for

Solution

One-Mode Problems

Predictions for
Two-Mode Problem
(Modal Interaction)

Figure 8.1. Thesis Summary
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On the basis of this diagram, conclusions may be conveniently categorized into

three areas:

1. Evaluation of analytical methods. The results are excellent, as demon-
strated by the agreement of approximate analytical solutions with direct
numerical solutions (Section 7.5.5). As an additional check, two entirely

different analytical approaches yield very similar results (Section 7.5.4).

1. Evaluation of the model. Since the analytical methods are accurate,
analytical/experimental comparisons reflect wholly on the model. The results
are mixed. On the one hand, the mathematical solutions exhibit certain

features which resemble experimentally observed behavior:

1. For forced circular cylinders, the lock-in band is symmetric about resonance
(irrespective of model parameters), and grows wider as the forcing ampli-

tude is increased.

2. For spring-mounted circular cylinders, the lock-in band is skewed with
respect to resonance (in contrast to the forced case). Moreover, the transi-
tion between lock-in and non-lock-in is discontinuous at the upper end of

the lock-in band, while it ié smooth at the lower end.

3. For elastic cables, structural response in the vicinity of each natural fre-
quency is similar to that of spring-mounted cylinders, provided that the
mode number is sufficiently small (i.e. Az, sufficiently large). For high mode
numbers, the complexities of modal interaction become important, as dis-

cussed in item III below.
On the other hand, the model also displays a number of short-comings:

1. There are serious discrepancies between model predictions and experimen-

tal data regarding amplitude response for spring-mounted cylinders (Figs.
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7.3.1b—7.3.5b).

2. For the "optimal" model parameters selected herein, the dependence of

lock-in band-width on reduced damping —5}- is far too strong (Section 7.4).

3. For the "optimal" parameters, it is impossible to satisfy all of the sign res-
trictions on the model constants, which are dictated by physical reasoning

(Section 8.5.2).

In general, although the present model can fit certain experimental features
very well, it seems to be unable to fit all the data adequately with a single ‘set of
model parameters. For example, when an attempt was made, for forced
cylinders, to reconcile model predictions of the fluid-structure interaction force
with experimental data [19, 51, 58, 59, 80 ] using regression techniques, the
optimum parameter values thus generated were incompatible with the optimal
values selected in Chapter 6. Attempts to fit interaction-force data were subse-
quently abandoned. Another example, discussed in footnote 1 of Section 8.2, is
that the model cannot simultaneously predict right-skewed lock-in for spring-
mounted circular cylinders and left-skewed lock-in for D-section cylinders,
although it can predict either if the model parameter P, is appropriately
selected. Other vortex-shedding models are plagued with the same problems.

Some authors have dealt with this difficulty by allowing the model parameters to

vary with the ratio —f): [63].2 or even with the independent flow variable (i.e. A;)

[4]. Although such treatments are of course capable of obtaining improved
results, the cost is greater empiricism, and the benefit in terms of understand-

ing basic mechanisms is questionable.

IIl. Predictions concerning modal interaction. If the model is accepted,

3. See the discussion in Section 6.1.
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regardless of its shortcomings, for its ability to describe qualitative features of
lock-in, then the following description of modal interaction may be postulated,
some of which has been verified by experimental evidence. The discussion is
based on the analysis of Section 5.6 and the results of Section 7.5, with particu-

lar references to the composite solution map, Fig. 7.5.13.

For mathematical comparison, consider first the one-mode approximation, in
which modal interaction is completely ignored. This is equivalent to setting
g =0 in Egs. (4.1.8), such that a monofrequency solution may exist for each
mode independently of the other, regardless of the modal frequency separation
wz — w; (i.e. Az;). Thus at a given flow speed (i.e. A,), the response frequency w

(i.e. A, ) for each of the independent solutions may be different.

When the interaction of "mode 1" and "mode 2" is considered* using the two-
mode approximation (g # 0), the situation is entirely different, because the cou-
pled modes may no longer establish independent monofrequency solutions.

Instead, there are three possibilities:

» Case 7. Non-degenerate solutions. The two competing modes are able
to "compromise” on a single value of w, and thereby achieve mutual,
monofrequency response. This typically occurs when the compromise
response frequency is not too close to either of the modal frequencies

(w1, wg).

e Case 2. Degenerate solutions. One mode dominates, drives the other
mode to zero, and establishes monofrequency response at the value of
@ which it would assume if the other mode were totally absent. That is,

the dominant mode reverts to the one-mode approximation. Typically,

4. See convention (4.1.10) regarding the use of generic mode numbers (1,2).
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degenerate case is very much closer to w; than to wp, and conversely

for "mode 2".

» Case 3. Complex solutions. The two modes are unable to "agree" on a
compromise value of w for monofrequency response, and at the same
time, neither mode is able to dominate the other. This typically occurs
when the modal separation Ap; is very small, but w lies neither very

near w; NOTr Very near wp.

As exemplified by Fig. 7.5.13, the interplay between these three possibilities

produces the following phenomena:

« Degnerate/Non-degenerate bifurcation. The smooth transition from

Case 1 to Case 2 occurs along certain loci in the (4;, 4p) plane.

« Degenerate/Non-degenerate overlap. Regions exist in the (A;, Ap)
plane where either kind of solution may occur, depending on initial

conditions. "Jump" phenomena occur at the edges of the overlap.

» Degenerate/Degenerate overlap ( or "lock-in overlap'). A region exists
in the (A;y, Az;) plane where either mode may dominate, depending on
initial conditions. "Jump" phenomena occur at the edges of the over-

lap. This phenomenon has been observed experimentally.

» Lock-in suppression. As Ap; becomes small, each mode suppresses the
region of dominance of the other. If it were not for lock-in suppres-
sion, the region of lock-in overlap would be much larger, and complex

solutions would not occur.

As a practical consequence of this investigation, it may be concluded that the
one-mode approximation is adequate (and in fact precise whenever degenerate

solutions prevail) provided that the modal separation Ay is greater than some
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minimum value which depends on the mass ratio and the structural damping.
8.9 Suggestions for Futher Research

Extensions of the above work are immediately obvious. First, the dependence
of the two-mode solution map (Fig. 7.5.13) on mass ratio and damping ratios
should be considered. In particular, such dependence of the vertex V is of
interest, as a guide to the adequacy of the one-mode approximation. Second, if
appropriate experimental data become available, a refit of the model over a
wider range of conditions might be considered, as discusssed in Section 7.4.
Finally, the extension to three- (or higher) mode approximations is possible, and
perhaps necessary to model interaction phenomena for very-high-mode
response of vortex-shedding structures. However, it is questionable whether the
understanding gained from such an extension would be worth the considerable
effort involved, at least until a model having firmer theoretical foundations is
available. In the opinion of this author, establishing such foundations should be

the central goal of further research.
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NOTATION

The Table below lists the symbols used in this thesis alphabetically, as follows:
e Roman
+ Greek

+ Special (non-alphabetic).

The Table contains six columns, each of which requires some comment:

o Column 1 (Symbol): If the symbol (e.g. B;) has different meanings in

different parts of the thesis, the following distinction is made in column 1:
e B; (1) [referred to elsewhere as def. 1]

« B; (2) [referred to elsewhere as def. 2]
Different definitions of the same symbol are never used within the same sec-
tion,! so by reference to Column 4 ("Extent'), a particular usage should be

unambiguous.

Subscripted variables are sometimes listed with specific numeric sub-
scripts (e.g. ag, . . ., ag); and sometimes not (e.g. z;), depending on the need
to specify information in other columns of the Table. Column 2 (Descrip-
tion) should be consulted to specify the numeric values a subscript may

assume (if any).

o Column 2 (Description): Verbal descriptions are usually given. When a con-
venient verbal description is not possible, the mathematical definition is

given (if it is short enough) or the space is left blank.

« Column 3 (Defined) This column documents the location where a symbol is

first defined or used. The following conventions are employed:

1. With one exception; see the footnote to Eq. (4.3.4).
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» ( )--Equation number

+ F. -- Figure number

o T.-- Table number

+ fn. - Footnote number (1)
+ §-- Section number

* Ch. -- Chapter number

e Column 4 (Eztent): This column documents the extent of usage of a symbol,
by listing the section numbers in which the given definition is valid.
Conventions (1) apply to note equations and sections. Additionally, the fol-

lowing abbreviations are used:
» G: Global. The given definition is valid everywhere.

+ G-: Global with exceptions. The given definition is valid everywhere

except where indicated by other definitions of the same symbol.

» FORCED: "Forced Cylinder". The given definition is valid in Sections 2.3,

3.2, 5.3,6.2, and 7.2.

« SMC "Spring-Mounted Cylinder" The given definition is valid in Sec-

tions 2.4, 3.2, 5.4, 8.3, 6.4, and 7.3.

+ OMCA: "One-Mode Cable Approximation'. The given definition is valid in

Sections 3.4.4, 5.5, and 7.4.
« 1-MODE: Same as FORCED + SMC + OMCA.

« TMCA: "Two-Mode Cable Approximation.” The given definition is valid in

Section 3.4.5, 5.8, and 7.5.

+ TMCA-N: "Two-Mode Cable Approximation, the Nondegenerate case'.
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The given definition is valid in Sections 5.6.2 and 7.5.2.

» TMCA-D: "Two-Mode Cable Approximation, the Degenerate case'". The

given definition is valid in Sections 5.6.3 and 7.5.3.
 INDUCED: Same as SMC + OMCA + TMCA.

e Column 5 (See Also): This column gives cross-references to other discus-

sions of the symbol in question. The abbreviations itemized above are used.

o Column 6 (Units): This column gives the dimensions of the symbol. The fol-

lowing abbreviations are used:

o M -- Mass

L - Length
o T —Time

o F --Force (MLT™?).
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Note: B; (def. 1) an
B,, are equivalent for
i=m =12

Symbol Descrigtion Defined L Extent See Also Units
a Uniform Acceleration §3.2 §3.2 5T
ag Model constant (scales (3.2.1) G (8.5.4a) --

Z")
a, Model constant (3.2.8) G (8.5.4b) --
as Model constant (3.2.8) G (8.5.4c) --
asg Model constant {3.2.7) G (6.5.4d) --
ay Model constant (3.2.7) G (8.5.4e) -~
as Model constant (3.2.7) G (8.5.4f) --
ag Model constant (3.2.8) G (3.2.12) --
a; Functions of A4 (5.6.53) TMCA-D --
appearing in [P(t)];
1=12
A Dimensionless ampli- (5.3.6a) 1-MODE (5.4.15b) --
tude of the fluid oscil- (5.5.2a)
lator Z; abbreviation
for 4,
Aq Amplitude of z{%), (4.3.18) G (5.2.1) -
1=12
b ~ Viscous damping (2.4.2) §2.4 FTL™
coefficient per unit
structural length
b, Function of An (5.3.53) TMCA-D --
appearing in [P(¢)];
1=1,2
B Dimensionless struc- (2.3.3) 1-MODE (5.2.1b) --
tural amplitude; abbre- (5.3.8b)
viation for B
B* Normalized form of B | (5.3.11b) FORCED --
B Peak value of B §6.4 §6.4 (6.4.8) -
(6.4.14)
B, Experimentally §2.3 §2.3 -
observed amplitude
threshold
B; (1) Amplitude of struc- (4.3.15) G- {5.2.1) --
tural oscillator y{%,
1=1,2
B, (2) Value of B at the i*® §6.2 §6.2 -
experimental data
point
B, Double amplitude of (4.3.13) G- (4.3.14) --
Hpom=1,...,4. (4.3.15)
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Description

Coupling coefficient in
structural oscillator
equation

(3.2.24a)

Extent

See Also
(3.2.21)

)4

Coupling coefficient in
structural oscillator
equation

(3.2.24b)

(3.2.21)

Cy

Axis-stretching con-
stant for o (def. 2)

(5.3.10a)

FORCED

§5.3.1 1a)
6.2

Cz2

Axis-stretching con-
stant for B (in the
forced case)

(5.3.10b)

FORCED

(5.3.11b)
§8.2

C.C.

Complex conjugate of
all preceding terms

(4.3.8)

§4.3

c (1)

Differential operator
representing struc-
tural damping

(3.4.5)

Ch. 3

(3.4.11)

Model-predicted lock-in
band-center

(8.3.7a)

§6.3

(6.3.8a)
(8.3.15a)

Function defined
locally for brevity

(4.3.10a)

§4.3

Function defined
locally for brevity

(4.3.10b)

§4.3

Experimental value of
lock-in band for i**
value of ¢

§6.3.3

§6.3.3

F. 8.3.2

Exact, intermodal
detuning

(5.8.18c)

TMCA

Exact, fluid-structure
detuning. Note: Sub-
script f is not an index

[see (),].

(5.4.13b)
(2.4.4)

SMC

Exact, mode averaged,
fluid-structure detun-
ing. Note: Subscript f
is not an index [see

Oyl

(5.8.18b)

TMCA

dr (1)

Exact, response- struc-
ture detuning. Note:
Subscript r is not an
index [see ( ), ].

(2.4.5)
(5.4.13a)

SMC

d, (2)

Exact, mode averaged,
response-structure
detuning. Note: Sub-
script r is not an index

[see ()]

(5.8.16a)

TMCA
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Symbol ____Description Defined _Extent See Also Units
D Characteristic cross- (1.1) G L
sectional dimension.
For circular cross- |
sections, D is the |
diameter '
Do F] | (4.2.6) Ch. 4 --
0T ?j
D, a I (4.2.8) Ch. 4 -
oT,
€y ag+ag+ ag (3.28) G (65.3) e
ez 1+azn (3.2.20) G fn. 1 of --
| §3.2;
5 (6.5.10)
E, Squared error I (6.2.8) §6.2 --
E, Squared error | (6.2.13) §6.2 -
Ej Squared error (6.3.18) §6.3 --
E, Squared error (6.4.18) §6.4 =
) Vibrational response (1.3) INDUCED §1.4 P+
frequency of a system
r (2 Forcing frequency §2.3 FORCED 7!
() As a subscript, f is (2.4.4) G (5.4.12) --
mnemonic for "fluid"” in (5.8.15)
the fluid-structure l
detunings dy, Ay, and |
Ay;. Note: subscript f 5
is never an index. !
7.1t Lock-in band I §e.3 §2.3 !
frequency-limits for |
the forced rigid i
cylinder
fi Function of A, (def.2), (5.6.28) TMCA-N o
1=12
£ n' natural frequency (1.4) G- é2.4.1) T~
of a structure 2.5
n=1...,=) ‘
E Natural vortex- (1.1) G §1.4 7
shedding frequency
(Strouhal frequency).
Note: Subscript s is not |
an index. !
fu Frequency of vortex |  §1.1 §1.1 7
shedding. Note: Sub-
script v is not an i
index.
f Function f(x, x) | (4.1.8) Ch. 4 --
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Symbol Description Defined Extent See Also Units
F Function of o (def.1), (5.4.10a) SMC --
F Function of A, (def.1), | (5.4.16a) SMC -
Fy Function of o (def.2), (5.6.7a) TMCA-N -~

1=1,2
F, Function of A, (def.2), | (5.6.19a) TMCA-N -
1=1,2
Fou Fluid-structure i (3.2.3) G (3.2.7) o A
interaction force
F Function F(x, x, X) (4.1.1) Ch. 4 --
gi Function of A, (def.2), (5.6.26) TMCA-N --
1=1,2
G Function of o (def.1) (5.4.10b) SMC --
& Function of A, (def.1) | (5.4.16b) SMC --
& Function of o (def.1), | (5.6.7b) TMCA-N -
1=12 i
&y Function of A, (def.2), | (5.6.19b) TMCA-N --
i=1,2 I
He Complex amplitude for | (4.2.11) Ch. 4 --
(o). = '
zaim=1%1 ..., N |
i V-1 | (4.2.11) §4.2 -
§4.3
(); (1) | i=12 where(1,2)are | (3.4.24) G- (4.1.10) -
used in a generic sense i
to indicate any two |
adjacent structural }
modes i =k, k+1 [def. |
1 of ( )¢ ]. Subscript t |
in this sense is used in |
conjunction with sub- |
script j.
() (@) Index for experimental | 88.2 Ch. 6 --
data i
Tax Mode-shape integrals (3.4.224d) (3.4.22) --
(in this Incal context, a
and b are indices)
[7] Identity matrix (5.4.28) G --
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()4 j =2, 1, where (2,1) are | (3.4.24) G (4.1.10) -
used in a generic sense
to indicate any two
adjacent structural
modes j = k+1 ,k [def.
1 of ( )¢]. Subscript j
in this sense is used in
conjunction with sub-
script .
J Momentum contained (3.2.2) §3.2 (3.2.5) MT!
per unit depth of con-
trol volume
3 (1) X = J(X) (def. 1 of X) (5.3.14) FORCED -
J (2) X = J(X) (def. 2 of X) (5.4.22) SMC (5.4.24) -
J (3) X = J(X) (def. 3 of X) §5.8.2.5 TMCA-N -
V'] (1) Jacobian Matrix (5.3.19) FORCED (5.3.21) --
[V']o (R) Jacobian Matrix (5.4.25) SMC (5.4.27) --
[V']o (3) Jacobian Matrix §5.8.2.5 TMCA-N -
k Spring constant per (2.4.1) §2.4 F.2.4.1 FL™%
unit structural length
( )x (1) | Subscript indicating a (3.4.15a) Ch. 3 -
specific mode number;
see ( )n and ( )i
{ )x (2) | Index for stability (5.3.23) FORCED (5.3.24) -
boundaries k =1, 2, 3 §8.2
() (8) | Component index forx | §5.8.3.5 TMCA-D --
(def. 2)
() (4) Index for Py, ay, §6.1 §6.1 -
k=0 1.5 §6.5
ky Fc - rc (ais notan (5.4.11a) G (6.3.13) --
index)
ky rc + ¢ (b is not an (5.4.11b) G (6.3.13) -
index)
km (1) | Routhian stability con- | (5.4.30) SMC -
stants; m =0, 1, 2
kn () Routhian stability con- (5.6.49 TMCA-D --
stants;m =0, 1, 2
Ky Function defined (4.3.10c) §4.3 --
locally
L Axial length of a vibrat- §2.5.2 §2.5 (3.4.4) --
ing structure §3.4
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L, Stability boundary k, (5.3.23) FORCED (5.4.24) --
k=12 3 §6.2
Lki Lk (Ui) (8.27) §62 =
{()m (1) Refers to mode m of (3.4.11) Ch. 3 --
structure;
(m=1,..., =)
()m (2) | Refers to component m (4.1.9) Ch. 4 --
of Egs, (4.1.8),
(m=1...,4)
(m (3) Subscript for ky,; (5.4.31) §5.4 -
m=0,1 2 §5.6.3
M Structural mass per (2.4.1) G ML™!
unit length
M1 Momentum flux (3.4.11) Ch.3 -
through control sur-
faces(m =1,..., =)
[(M] Transformation matrix | (5.6.60) TMCA-D --
{ Ju Refers to mode n of a §1.2 G --
structure;
n=1...,=
N (1) Number of components | (4.2.2a) Ch. 4 (4.3.1) --
in vector x (def. 1)
N (2) Number of components §5.6.3.5 TMCA-D -~
in vector x (def. 2)
P Coefficient of nonlinear T. 4.1.1 G (4.1.8) --
term in generalized
model equations
Py Model parameter con- (6.2.11) G (6.2.14) --
trolling the slope of (6.2.15)
stability boundaries for
the forced case
P, Model parameter con- (8.3.14a) G (8.3.24a) --
trolling lock-in band-
center C and band-
width W for SMC
P, Another model (6.3.14b) G (8.3.24b) --
parameter controlling (6.4.17a)
C and W for SMC,
Pg Model parameter con- (6.3.14c) G (6.3.24c) --

trolling the depen-
dence of C and ¥ on
reduced damping ¢
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P, Model parameter (6.4.12) G (6.4.17b) --
affecting peak struc-
tural amplitude for
SMC as well as the sta-
bility boundaries for
the forced case

P Model parameter left (8.4.13) G (8.5.11) -
undetermined by
regression analyses of
Ch. B, because of
small-n approximation

P, Model parameters §6.1 G =

enumerated above;
k=050
[P(t)] Periodic matrix {58.51) TMCA-D ==
q Coefficient of nonlinear | T. 4.1.1 G (4.1.8) -
coupling term in gen-
eralized model equa-
tions
q 9 (5.6.8) TMCA-N ==
3p
Q1. Q2. | Functions of Py, Ps, P3 | (8.3.19) §6.3 -
Qs
Q1. Q2. Optimal values of @, (8.3.21) §6.3 -
Qs Q2. Qs
r Coupling coefficient in | (3.2.15¢) G (3.2.14) --
fluid oscillator equa-
tion -

()r As a subscript, 7 is (2.4.5) G (5.4.12) -
mnemonic for (5.6.15)
'response’’ in the
response-structure
detunings d,, A,, and
A,;. Note: Subscript 7
is never an index.

r Coupling coefficient in | (3.2.15d) G (3.2.14) --
fluid oscillator equa-
tion

R (1) Spin radius for (2.5.2) §2.5 L
Strouhal experiment

R (2) | Function of A, (def.1) | (5.4.26b) §5.4 -

[R] Transformation matrix (5.6.59) TMCA-D s

Re F. 1.2 G F.2.2.2 ==

Reynolds number U—VD




-203-

[ Symbol Description Defined Extent See Also Units
(s As a subscript, s is (1.1) G §2.2 -
mnemonic for '
'Strouhal,” as in the
Strouhal frequency f,.
Note: Subscript s is
never an index.
S Strouhal number (1.1) G F. 222 -
t Normalized time w,T (3.2.13b) G --
() KA (3.4.1) Ch. 3 s
ot
T (1) Period of revolution §2.5.2 §2.5 T
T (2) Cable tension (3.4.5) Ch. 3 F
T {3) Period of matrix [P(t)] (5.8.58) TMCA-D --
Ty One of two times scales (4.2.4) Ch. 4 --
used in the asympotitic
method of Ch. 4
(To=1)
g One of two times scales (4.2.4) Ch. 4 -
used in the asympotitic
method of Ch. 4
(T'y = et)
u (1) Normalized axial coor- (3.4.4) Chi. 3 --
dinat i
inate —
o 2
u (2) Function of 4,  (def. | (5.8.21a) TMCA-N --
2) .
( )u % (def. 1ofu ) (3.4.8) Ch.3 L
ug, u; | Functions of A, (def. 2) (5.6.24) TMCA-N --
U Perturbations in (5.8.42a) TMCA-D -
Zq, 1= 1. 2
U (1) Free stream flow velo- {1.1) G- LT
city
U (2) Perturbation in Z (5.6.45a) TMCA-D --
v Function of A, (def.2) (5.8.21b) TMCA-N -
Vg, Vg Functions of A, (def. 2) (5.6.24) TMCA-N --
vy Fluid velocity in zo- (3.2.1) Ch. 3 Fl e
direction
Vi Perturbation in y;, (5.8.42b) TMCA-D -
=1, 2
4 Perturbation in Y (5.8.45Db) TMCA-D -
w Function of A, (def.2) (5.6.21c) TMCA-N =
| wo, wy | Functions of A, (def. 2) (5.6.24) TMCA-N =
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wik) k** normal solution for §5.6.3.5 TMCA-D --
x(def.2),k=1,...,N
(def. 2); that is, the ¥
column of [¥]
4 Model-predicted lock-in | (8.3.7b) §6.3 (8.3.8) -
band-width (8.3.15b)
Wy Experimental value of §6.3.3 §8.3.3 F.8.3.2 -
lock-in band-width for
i** value of ¢
[#W] Matrix whose columns (5.8.57) TMCA-D --
are wit)
A, — A, (=-0, def. 1) (6.3.2) Chs. 6-8 -
T Cartesian coordinate F. 3.2 Ch.3 (3.4.4) L
along structural axis
)z, 9 (3.4.5) Ch. 3 L1
82:1
To Cartesian coordinate F. 3.2 Ch. 3 L
transverse to flow
direction
Zg Cartesian coordinate F.3.2 Ch.3 L
parallel to free stream
z? x-endpoints of the (8.3.5) §6.3 -~
lock-in band
z,{0) Zeroth order solution (4.2.11) Ch. 4 --
for component m of R
vector z (def. 1)
x (1) Vector of component (4.1.1) Ch. 4 (4.3.1) --
oscillators
x (2) Vector of perturba- (5.6.52a) TMCA-D -
tions
Xg Zeroth order asymp- (4.2.3) Ch. 4 ==
totic solution for x
(def. 1)
x4 First order asymptotic (4.2.3) Ch. 4 s
solution for x (def. 1)
x{k) k** principle solution (5.8.57) TMCA-D --
for x (def. 2)
k=1,...,N(def. 2);
that is, the k** column
of [X]
X (1) Amplitude/phase vec- (5.8.15) FORCED -
tor
X (2) Amplitude/phase vec- (5.4.23) SMC --

tor
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X (3) Amplitude/phase vec- (5.6.35) TMCA-N -
tor
X (1) Perturbation for X (5.3.18) FORCED --
(def. 1)
X (2) Perturbation for X (5.4.25) SMC (5.4.27) -
(def. 2)
X (3) Perturbation for X §5.8.2.5 TMCA-N --
(def. 3)
X (1) Steady-state solution (5.8.17) FORCED -
for X (def. 1)
X; (2) Steady-state solution §5.4.8 SMC -
for X (def. 2)
X; (3) Steady-state solution §5.8.2.5 TMCA-N -
for X (def. 3)
[X] Matrix whose columns (5.8.57) TMCA-D --
are x(k)
Yi See y, and ( ); (def. 1) Ch.3 G (4.1.10) --
T.4.1.1
y @ Approximate solution (4.3.15) G (5.2.1) -
fory;(t);i=1 2
y®) Exact, steady-state (5.6.42) TMCA-D -
solution for y;(t);
1.='1,2
Yk See y, and ( ), (def. 1) Ch. 3 G e
Yn Time function in eigen- (3.4.9b) G - =
function expansion of
Yt n'=1 ...,
Y Normalized Y (3.2.13a) G --
Y Normalized Y (8.2.13a) G -
Y Displacement of struc- §3.2 G L
tural axis
Y(®©® (1) | Prescribed sinusoidal (5.3.4b) FORCED =
forcing function
Y@ (2) Approximate solution (5.4.3b) SMC (5.4.5b) --
for Y(t)
y(e) Exact, steady-state (5.6.45) TMCA-D -
solution for Y (¢)
24 See z,, and ( ); (def. 1) Ch. 3 G (4.1.10) -
T.4.2.1
z {0 Approximate solution (4.3.15) G (5.2.1) =

for z;(t);i=1, 2
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ze) Exact, steady-state (5.6.42) TMCA-D --
solution for z;(t);
1=1,2
2 See z,, and ( ); (def. 1) Ch.3 G (4.1.10) -
T-4.1.1
2z See z,, and ( ), (def. 1) Ch.3 G --
Zn Time function in eigen- | (3.4.9a) G --
function expansion of
Z{u,t),n=1...,=
Z Normalized Z (3.2.13a) G -
z Fluid oscillator vari- (3.2.1) G L
able
AL Approximate solution (5.3.4b) G (5.4.3a) --
for Z (t) (5.4.5a)
VAQ Exact, steady-state (5.6.45) TMCA-D --
solution for Z (¢t )
a Negative damping (3.2.15a) G (3.2.14) --
coefficient in van der
Pol type equation
g Coefficient of nonlinear | (3.2.15b) G (3.2.14) --
term in van der Pol T.4.1.1
type equation
y Normalized damping (3.2.22) G =
coefficient (includes
both structural and
fluid damping)
Y n* mode structural (3.4.14) G --
damping coefficient
r : (5.4.21) §5.4 --
Ty Function of A,; appear- (5.6.54) TMCA-D --
ingin &@; and §;,71 = 1,2
&; 1-08 (4.3.4) §4.3 -
', - Kronecker delta (3.4.11) §3.4 --
Agy Approximate, intermo- | (5.6.15¢c) G --
dal detuning
A, (1) Approximate, fluid- (5.4.12b) SMC -
structure detuning.
Note: Subscript f is not
an index [see ( ),].
A, (2) Approximate, mode- (5.6.15b) TMCA --

averaged, fluid-
structure detuning.
Note: Subscript f is not
an index [see ( ),].




1i

Extent

mode detuning A (def.
1), but in a two-mode
context. The subscript
t© = 1,2 is appended to
distinguish Ay; from
Ay, def. 2. Note: Sub-
script f is not an index

[see ();].

l Sghol | Description l Defined
A Equivalent to the one- (5.8.38Db)

TMCA-D

See Also

UnitS:J

a- (1)

Approximate,
response-structure
detuning. Note: Sub-
script r is not an index

[see ()]

(5.4.122)

SMC

A, (2)

Approximate, mode-
averaged, response-
structure detuning.
Note: Subscript r is not
an index [see ( ), ].

(5.8.15a)

TMCA

P
2

Value of A, (def. 1) at
which peak structural
amplitude 8 occurs.
Note: Subscript r is not
an index [see ( ),<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>