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ABSTRACT

Phonons, quantized lattice vibrations, govern most of the thermophysical prop-

erties of solid-state materials such that understanding the temperature de-

pendent lattice dynamics is of great technological importance. I performed

inelastic neutron scattering measurements at the Spallation Neutron Source

on ARCS, a wide-angular chopper spectrometer, to measure phonon disper-

sions and density of states over a wide range of temperatures. Large phonon

anharmonicities manifested by phonon energy shifts and broadenings were ob-

served in both measured phonon dispersions and phonon density of states. The

sources of deviations from the simple harmonic model with temperature were

elucidated using experimentally assessed lattice dynamics coupled with ab initio

methods. Pure anharmonicity dominates the changes in lattice dynamics with

temperature and therefore drive the entropy and thermophysical properties of

thermal expansion and thermal conductivity. Crystal structure, anharmonicity,

and nuclear quantum effects all play important roles in the thermal expansion of

silicon, and a simple mechanical explanation is inappropriate. The quantum ef-

fect of nuclear vibrations is also expected to be important for thermal expansion

of many materials. My experimental techniques capture the linewidth broad-

enings from phonon anharmonicity needed to calculate thermal conductivity.

The methods developed for data reduction on single crystal inelastic neutron

scattering data and predicting macroscopic quantities should also be useful for

understanding microscopic mechanisms behind thermophysical properties for

materials.
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C h a p t e r 1

INTRODUCTION

A
toms, the building blocks for all materials, are always in motion, even

at 0 K. The changes in the motion of nuclei affect the levels in en-

ergy and entropy of materials, which in turn change its properties. Due to an

ever growing need for more efficient, cheaper, safer, and greener technologies,

there is interest in understanding the relationship between the atomic motions

and materials properties. The optimization of materials properties for a spe-

cific application will require a fundamental understanding of these relationships.

Since all manufacturing processes or synthesis conditions are influenced by the

presence of heat, the effect of atomic motion and their interactions on the

materials properties will be profound.

Starting from the seminal Gibbs free energy (G = E − TS + PV ) we

can see that entropy, S, is always correlated to temperature, the heat. In

many materials, especially for unary intrinsic semiconductors with a moderate

band gap, atomic vibrations make up the majority of entropy as the atoms

explore coordinate and momentum phase space [1]. Understanding how atomic

vibrations affect bonding, electronic states, to bulk properties is the basis of

this thesis. In other words, understanding the mechanisms behind changes in

entropy, anomalous thermal expansion behavior, and thermal conductivity will

result in a far greater control of the material’s thermal engineering parameter

space.
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The work presented is important not only to understand thermal prop-

erties of silicon, but also to show experimental methods in understanding vi-

brational properties of materials in general. Validating computational methods

to study thermal properties of materials could then lead to high throughput

capabilities in developing and characterizing new materials.

The aim of this thesis work is to experimentally determine the temperature-

dependent lattice dynamics and elucidate its effects on thermodynamic quan-

tities and thermal transport properties. This work tests the limits of time-

of-flight inelastic neutron scattering methods to determine all phonon central

frequency shifts and linewidth broadenings with temperature in materials.

A first take on lattice dynamics is typically through an Einstein solid

where a delta function for the density of states (DOS) is used to approximate

the complexity of real solid-state materials. The Debye model, where phonon

dispersions are assumed to have constant group velocity can predict the ex-

perimental low temperature T3-dependent heat capacity behavior. Due to the

simplicity of this one fitting parameter model it is still heavily used today despite

the lack of accuracy. The accuracy, however, can further be improved through a

normal mode analysis. These harmonic phonons do capture significant portions

of thermophysical properties, but are still non-interacting with infinite lifetimes.

In this approximation phonons would never result in thermal expansion, thermal

conductivity or any interactions with other quasiparticles. A popular approach

to approximate temperature effects is through the quasiharmonic model (QH).

This assume harmonic oscillators with frequencies renormalized to account for

the thermal expansion. Generally, this is physically intuitive as large distances
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between atomic nuclei may lead to decreased forces based on the electronic

bonding. But intuition is not always evidence for reality. Until recently, the

ability to accurately include pure anharmonicities, phonon-phonon interactions,

through ab initio methods throughout the Brillouin zone were unavailable or

difficult to assess. But by now in 2017, many systems including “highly” an-

harmonic systems can be simulated.

The material of study in this thesis is silicon. Silicon, is the third most

abundant element on our Earths crusts and the stable phase at atmospheric

pressures is the diamond-cubic crystal structure (Fd3̄m). This material is

known for its strong covalent atomic bonds and in-direct bang-gap of 1.12

eV. This band-gap is the initial reason for silicon’s ubiquitous use in modern

semiconductor technologies, photovoltaics, thermoelectrics, nanomechanics,

and batteries. Understanding the thermal properties of silicon because of its

wide use in modern technology is of great importance. It also serves as a

perfect test case material for experimental and theoretical comparisons due to

the plethora of measured thermal quantities and synthesis capabilities already

available.

The title of this thesis emphasizes the need to reexamine revisit the

“solved” problem of atomic vibration effects on the thermophysical properties

of silicon. I found that silicon is more complex than previously explained. I show

that inelastic neutron scattering coupled with ab initio methods are perfect

complements to studying lattice dynamics of materials. I believe advancements

in both experimental and computational methods create better opportunities

for applications oriented materials discovery and optimization. With the un-
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equivocal importance and impact silicon has had on our technologically centric

society, it behooves us to fully understand this important material. For brevity,

full derivations are not presented in this thesis nor are in-depth descriptions

to neutron scattering, lattice dynamics, and ab initio methods. Rigorous and

more thoughtful derivations can be found in classical and emerging textbooks

and references therein [1–7].
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C h a p t e r 2

VIBRATIONAL ENTROPY OF SILICON

Abstract from “Phonon anharmonicity in silicon from 100 to 1500 K” [1]:

Inelastic neutron scattering was performed on silicon powder to measure

the phonon density of states (DOS) from 100 to 1500 K. The mean fractional

energy shifts with temperature of the modes were 〈∆εi/εi∆T 〉 = −0.07 giving a

mean isobaric Grüneisen parameter of +6.95±0.67, significantly different from

the isothermal parameter of +0.98. These large effects are beyond the pre-

dictions from quasiharmonic models using density functional theory (DFT) or

experimental data, demonstrating large effects from phonon anharmonicity. At

1500 K the anharmonicity contributes 0.15 kB/atom to the vibrational entropy,

compared to the 0.03 kB/atom from quasiharmonicity. Excellent agreement

was found between the entropy from phonon DOS measurements and the ref-

erence JANAF thermodynamic entropy from calorimetric measurements.
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U
nderstanding finite-temperature thermodynamics requires the, at times

elusive, entropy. Phonons are responsible for most of the entropy of ma-

terials at modest temperatures. The phonon entropy, or vibrational entropy,

can be estimated with a set of fixed phonon frequencies in the harmonic ap-

proximation, but these results are usually too inaccurate for thermodynamic

predictions of phase stability at elevated temperatures [1]. Changes in phonon

frequencies with temperature are generally important for calculating thermo-

dynamic functions [2], but our understanding of high temperature behavior is

still emerging. Such studies require phonon spectra at high T , for which there

are few experimental data.

The thermal properties of silicon are of importance for silicon-based elec-

tronics, nano-mechanics, photovoltatics, thermoelectrics, and batteries [3–11].

Some of the nonharmonic behavior of a material is expected to originate from

“quasiharmonic” thermal softening (reduction in frequency) of phonons, where

the phonon entropy increases as the material expands against its bulk modu-

lus. Anharmonicity from phonon-phonon interactions causes further phonon

softening without thermal expansion and can account for a substantial part of

the entropy of materials at high temperatures. Anharmonic phonon-phonon

interactions also shorten the lifetimes of phonons, causing broadenings in the

phonon spectrum and a finite phonon mean free path for thermal transport.

The lattice dynamics of silicon has attracted ongoing attention owing

to its anomalous thermal expansion, which changes from negative to positive

at low temperatures. Phonon dispersions of silicon have been reported, as have

phonon densities of states (DOS), thermal properties and mode Grüneisen pa-
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Figure 2.1: Phonon DOS curves of silicon, gT (ε), normalized to unity. Curves

are offset for clarity.
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rameters [12–17]. The work with density functional theory (DFT) on silicon

includes one of its earliest successes for determining the crystal structure of a

solid at elevated temperatures [18]. Experimental work has employed inelastic

neutron scattering (INS) and Raman spectroscopy up to 300 K and to high

pressures [12–14, 19–23]. These studies assessed and correctly described the

low temperature lattice dynamics, but to our knowledge there has not been a

study of phonons above 700 K in silicon by inelastic neutron scattering. Mea-

surements at higher temperatures are important for assessing phonon anhar-

monicity, which is also pertinent to thermal conductivity at all temperatures.

Inelastic neutron scattering (INS) spectra were obtained with ARCS [24]

a time-of-flight Fermi chopper spectrometer at the Spallation Neutron Source

at Oak Ridge National Laboratory, using an incident energy of 97.5 meV and an

oscillating radial collimator to reduce background and multiple scattering [25].

Silicon of 99.9999% purity was pulverized, and 7.9 g of powder with an ef-

fective sample thickness of 6.0 mm was contained in an aluminum sachet and

mounted in a closed-cycle helium refrigerator for measurements at tempera-

tures 100, 200, and 300 K. Similar sachets made of niobium foil were mounted

in a low-background electrical resistance vacuum furnace for measurements

at temperatures 301, 600, 900, 1000, 1100, 1200, 1300, 1400, and 1500 K.

Backgrounds were measured on empty sachets in the same sample environment

at corresponding temperatures. Time-of-flight neutron data were reduced with

the standard software packages in the procedures for the ARCS instrument

as described previously [26–28]. Data reduction included subtraction of the

background, and corrections for multiple scattering and multiphonon scatter-
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Figure 2.2: Gaussian fitted 100 K measured DOS of silicon. Individual com-

ponents are red, black curve is their sum.
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ing. Because silicon is a coherent scatterer, averages over a wide range of

momentum transfer (2-12 Å−1) were used to obtain the phonon DOS curves

presented in Fig. 2.1. Successful background subtraction is indicated by the

close similarity of the room temperature measurements in both the closed-

cycle refrigerator and the electrical resistance furnace (300 and 301 K).

Ab-initio density functional theory (DFT) and density functional per-

turbation theory (DFPT) calculations were performed with the VASP pack-

age [29–33]. The generalized gradient method was used with PBE exchange

correlation functionals [34, 35] for projector augmented wave pseudopoten-

tials [36, 37] and a plane wave basis set. All calculations used a kinetic energy

cutoff of 500 meV, a direct supercell of 216 atoms, and a 2 × 2 × 2 k-point

grid. The energy cutoffs, k-point density, and configurations were converged

to within 5 meV/atom. The phonon eigenenergies were computed through

DFPT [33, 38]. The free energy was calculated as

F(T, V ) =E0(V )

+

∫
dε g(ε)

(ε
2

+ kBT ln(1− e−ε/kBT )
)
.

(2.1)

The quasiharmonic approximation (QHA) calculations were obtained by

minimizing the free energy F (T, V {a0}) of Eq. 2.1 with respect to the volume

of the supercell. Ground state energies, E0(V ), were calculated separately and

self-consistently for each volume, and the DOS, g(ε), were calculated with the

specific lattice parameter, a0, that produced the minimized volume.

A sharp cutoff of the phonon spectrum occurs at 67 meV. The phonon

DOS are near zero well above this cutoff, indicating the success of the cor-
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rections for background, multiple scattering, and multiphonon scattering. Fig-

ure 2.1 shows that the phonon DOS go through a systematic thermal softening

(decrease in phonon energy) and thermal linewidth broadening with increasing

temperature. The DOS curves contain five distinct features caused by Van

Hove singularities which were fitted to gaussians with temperature. An exam-

ple of peak fits are shown in Fig. 2.2.

At 300 K, two transverse acoustic modes between 10 and 30 meV give

the peak near 18 meV and the shoulder near 26 meV. The two features between

30 meV and 55 meV are from longitudinal acoustic and optical modes, respec-

tively. Finally, the higher energy feature around 60 meV is from transverse and

longitudinal optical modes. The high-energy optical modes centered around

60 meV show the largest thermal shift of approximately 4 meV between 100

and 1500 K, but the largest fractional changes, ∆εi/εi , are found for the low-

energy transverse acoustic modes from 10 to 30 meV. The negative fractional

shifts of the five features are shown in Fig. 2.4. Fractional shifts agree within

±1% of the average fractional shift. This uniform trend might seem indicative

of a simple quasiharmonic behavior, but the magnitude of the shift proves too

large.

The measured DOS agree strongly with the calculations and allow for

the identification of the five distinct features in the DOS corresponding to the

specific branch or branches in the silicon dispersion relations as seen in Fig. 2.3.

The phonon dispersion and DOS (Fig. 2.3) were calculated in the QHA at

the 100 K equilibrium volume and scaled in energy to fit the 100 K measured

DOS. Each branch was labeled and identified according to previously reported
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Figure 2.4: The negative of the fractional thermal shifts of the five features of

the DOS: transverse acoustic (TA: red squares and purple circles), longitudi-

nal acoustic (LA: blue pentagons), longitudinal acoustic and optical (LA/LO:

green hexagons), and transverse and longitudinal optical modes (TO/LO: black

triangles). The average between the shifts of the five features is shown by a

dotted orange line.



15

methods and results [12, 39]. The self-similarity of the phonon DOS at elevated

temperatures is shown in Fig. 2.5. Here the phonon DOS measured at 100 K

was rescaled in energy and normalized to unity. The self-similarity of the

phonon DOS at elevated temperatures is shown in Fig. 2.5. Here the phonon

DOS measured at 100 K was rescaled in energy and normalized to unity.

g′(ε) = g100K
(

[1− 3αT γ̄T (T − 100)]ε
)

(2.2)

The rescaled phonon DOS, g′(ε), is shown with the experimental DOS

curve for 1500 K. The thermal expansion coefficient, α, and isobaric Grüneisen

parameter are defined later in the text (Eq. 2.6). The two curves are in good co-

incidence, although the thermal broadening of the longitudinal peak at 56 meV

is evident.

In the quasiharmonic approximation, the minimization of the free energy

of Eq. 2.1 gives γi , the mode Grüneisen parameter

γi ≡ −
V

εi

∂εi
∂V

(2.3)

defined as the fractional shift of energy of phonon mode i per fractional

shift in volume. There have been many studies defining the Grüneisen parame-

ter as mode specific [14, 17, 40], but from the uniform thermal behavior of the

phonons in the whole Brillouin zone, we present a mean Grüneisen parameter

in Table. 2.1, defined as

γ̄ = −
〈
V

εi

∆εi
∂V

〉
= −

〈
∂ ln εi
∂ ln V

〉
(2.4)
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Figure 2.5: Silicon phonon DOS of experimental measurements at 100 (blue)

and 1500 (red) K (solid lines). A DOS at 1500 K (dotted line) is obtained from

shifting and renormalizing the measured DOS at 100 K (Eq. 2.2).
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The isothermal (γ̄P ) and isobaric (γ̄T ) Grüneisen parameters are defined as

γ̄P = −
1

3α(T )

〈
∂ ln εi
∂V

〉∣∣∣∣
T

∂V

∂T
= BT

〈
∂ ln εi
∂P

〉∣∣∣∣
T

(2.5)

γ̄T = −
1

3α(T )

〈
∂ ln εi
∂T

〉∣∣∣∣
P

(2.6)

γ̄T = −
1

3α(T )

(〈
∂ ln εi
∂V

〉∣∣∣∣
T

∂V

∂T
+

〈
∂ ln εi
∂T

〉∣∣∣∣
V

)
(2.7)

γ̄T = γ̄P −
1

3α(T )

〈
∂ ln εi
∂T

〉∣∣∣∣
V

(2.8)

The isothermal and isobaric parameters describe the phonon energy

shifts from effects of temperature and volume, where α(T ) is the coefficient of

linear thermal expansion and BT is the bulk modulus. The experimental phonon

shifts shown in Fig. 2.4 were used to obtain γ̄T with Eq. 2.6, whereas all of the

QHA parameters used phonon energy shifts from the differences in DFPT cal-

culated DOS of the change in volume that minimized the free energy (Eq. 2.1).

From Eq. 2.8, γ̄T contains not only a contribution from the volume-dependent

phonon frequency shifts, the “quasiharmonic” contribution, but also a second

term from a pure temperature dependence, the “anharmonic” contribution.

The calculated isobaric and isothermal parameters were normalized with room

temperature thermal expansion coefficients for consistency. Coefficients of lin-

ear thermal expansion, α(T ), were obtained from reported values of thermal

expansion and lattice constants [41, 42]. Our experimental isobaric parame-

ter (γ̄P ) was calculated using Eq. 2.5 with phonon shifts from high pressure

Raman spectroscopy measurements reported by Weinstein and Piermarini [23].
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Table 2.1: Calculated and measured Grüneisen parameters using constants at

room temperature. See text for details on values and method of calculation.

Experimental Calculated in the QHA

γ̄ - 1.00 ± 0.60

γ̄T 7.00 ±0.67 1.102 ± 0.72

γ̄P 0.98 -

γ 0.367 -

Note: Errors bars were calculated from the differences in peak shifts of the five features.
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The thermodynamic Grüneisen parameter γ is defined as

γ =
3αV0BT
CV

(2.9)

and is listed in Table 2.1. It was evaluated with BT = 0.9784 × 1011 Pa [43],

α = 2.59 × 10−6K−1 [43], and the classical result of heat capacity [1], CV =

25 J/(mol K). Table 2.1 shows a large discrepancy between the γ̄T from the

phonon measurements and the Grüneisen parameters from volume expansion.

In the present work we measured phonon DOS curves on high purity

silicon powder using a direct geometry inelastic neutron spectrometer and in-

vestigated the phonon DOS with DFT. We found that the thermal changes in

phonon frequencies were a factor of seven larger than expected from the quasi-

harmonic model, indicating a large effect from phonon anharmonicity. The

thermal broadening of features in the phonon spectrum also indicates anhar-

monicity.

To first order, the phonon DOS is the only function needed to obtain

the vibrational entropy [1, 44]

Svib(T ) = 3kB

∫
dε g(ε)

[
(n + 1) ln(n + 1)− n ln(n)

]
(2.10)

The entropy Svib(T ) obtained from each measured DOS at temperature T ,

g(ε)(T ), is shown by orange circles in Fig. 2.6. To obtain a continuous curve,

we also calculated the entropy with rescaled DOS curves from Eq. 2.2, using the

experimental γ̄T = 7.0 from Table 2.1. An ab initio calculation of a DOS at 0 K

is used with Eq. 3.8 to obtain a harmonic entropy for all temperatures. For the

calculated results in the QHA, the ab initio DOS with thermal expansion were



20

evaluated. At the highest measured temperature of 1500 K, we find that the

anharmonic contribution to entropy is 0.15 kB/atom, which is a factor of five

larger than the quasiharmonic entropy contribution of 0.03 kB/atom. Finally,

the total entropy from the NIST JANAF database [45] is shown in Fig. 2.6.

At all temperatures, the vibrational entropy Svib(T ) obtained from the

experimental phonon DOS measurements is in excellent agreement with the

total entropy from the JANAF tables (Fig. 2.6). The agreement to within ap-

proximately 1% is striking, especially considering that the JANAF tables were

assessed from calorimetric measurements, and our Svib(T ) was obtained by

counting phonons. The JANAF entropy is slightly higher than the phonon

entropy at high temperatures suggesting an additional contribution, but the

reliability of this difference is not yet understood. The contribution from elec-

tron excitations is probably negligible, and we also expect the phonon spectrum

will be little affected by adiabatic electron-phonon coupling [1, 44, 46–48].

A harmonic model accounts for most of the entropy of silicon at mod-

est temperatures, but the error at high temperatures is thermodynamically

significant. The first correction from the quasiharmonic approximation is small

because the bulk modulus is modest, and the thermal expansion is small for

strongly covalently bonded atoms [14]. Both the measured and calculated

mode-specific Grüneisen parameters have variations but are approximately 1 at

elevated temperatures [17, 49]. Prior calculations of temperature-dependent

Grüneisen parameters in the quasiharmonic approximation also do not exceed

1 [14]. Much of the previous interest in the lattice dynamics of silicon was cen-

tered on its peculiar thermal expansion at cryogenic temperatures. At low tem-
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Figure 2.6: Vibrational entropy of silicon from experimental phonon DOS
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lated anharmonic approximation is shown (orange dotted line), as is the NIST

JANAF entropy data (blue diamonds) [45]. Inset enlarges the high temperature

region.
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peratures and high pressures, the quasiharmonic approximation has predicted

accurate thermophysical behavior [14, 17, 20]. The quasiharmonic model can

predict the thermal expansion at low temperatures and give results that are

approximately accurate at high temperatures [50]. The low-energy transverse

modes in the open diamond cubic crystal structure have been suggested as the

source of the low temperature negative thermal expansion [20, 51, 52], but

the mechanistic details were not fully understood, and are addressed in [cite]

next chapter. Nevertheless, it is possible that the open-ness of the diamond

cubic structure may also be responsible for the anharmonicity and low thermal

expansion of silicon when all of the phonon modes are highly populated (above

800 K).

Thermal expansion is not a validation of the quasiharmonic model, as

it predicts phonon shifts that are in error by an order of magnitude when ac-

tual values of thermal expansion are used, as seen by the discrepancy of the

experimental and calculated γT in Table 2.1 and by the tiny phonon shifts

predicted by the quasiharmonic model (e.g., [50]). The failure of the quasihar-

monic approximation at high T stems from the assumptions that phonons are

non-interacting. Thermal broadening is evident in the peak from longitudinal

acoustic modes at 39 meV and longitudinal optic modes at 56 meV at high

temperatures. Although lifetime broadening has no effect on the vibrational

entropy to first order, we should expect that other anharmonic corrections to

the phonon self energy from the cubic and quartic parts of the phonon poten-

tials may be important [44]. This is most evident in the differences between γ̄P

and γ̄T in Table 2.1. The second term in Eq. 2.8 for γ̄T, which gives the pure
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temperature dependence of the phonon energy, is much larger than the first

term from the quasiharmonic contribution. This pure anharmonicity dominates

the non-harmonic thermodynamics of silicon at high temperatures, where 80%

of the deviation from the harmonic model is from pure anharmonicity. If the

phonon shifts (Fig. 2.4) were only dependent on volume changes and excluded

temperature effects, the mode Grüneisen parameter (γ̄) would have a value of

around 4.4 when using experimental lattice parameters [41, 42]. This is more

than a factor of four larger than the previously measured isothermal parame-

ters (γP ) found in Table 2.1 showing the need to differentiate the isothermal

and isobaric parameters. The experimental points were obtained with Eq. 3.8,

which was derived for non-interacting harmonic or quasi-harmonic phonons.

With phonon lifetime broadening, there is a net shift of spectral weight to

higher frequencies, lowering the apparent vibrational entropy. A small correc-

tion for this effect was suggested recently [2], and using this correction for

the thermal broadening of the present data would give an upward shift of the

experimental points in Fig. 2.6 by 0.015 kB/atom at 1500 K, but less at lower

temperatures.

At high temperatures (Fig 2.7) the problem is even less well understood

because phonon spectra have only become available with the work reported

in the present manuscript. What we show is that the quasiharmonic model is

unreliable at high temperatures. Even though the quasiharmonic model gives

thermal expansion results that are reasonable, the phonon energy shifts with

temperature from anharmonicity are a factor of 7 larger than the thermal shifts

from quasiharmonicity. This is new and is directly pertinent to both thermody-
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Figure 2.7: Enlargement of vibrational entropy from 1200 to 1500 K. The

difference between experimental (orange circles) and quasiharmonic (green tri-

angles) changes sign with temperature as quasiharmonic drifts further from the

experimental points.
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namics and thermal transport, which require anharmonic phonons. Although

we report an experimental result that is not yet provable by theory, it is an

important effect in an important material.

The phonon DOS of silicon shows a curious self-similarity. With increas-

ing temperature the phonon DOS keeps approximately the same shape but is

rescaled in energy. The simplest explanation is that all interatomic force con-

stants decrease proportionately with temperature, but this explanation may be

specious. At 1500 K the different features of the phonon DOS are broadened

differently, reflecting differences in the imaginary part of the phonon self energy

from cubic terms in the phonon potential [44]. Such differences were reported

recently by Hellman, et al. [40], who showed large broadenings of the longitudi-

nal and highest optical modes compared to the lower energy transverse acoustic

modes. (Perhaps the lack of inversion symmetry at silicon atom sites allows for

a relatively large cubic contribution to the potential energy of some phonons.)

The different cubic anharmonicities also contribute different real shifts to the

phonon self energies, so a thermal re-scaling of force constants would require

compensating contributions from the quartic and quasiharmonic contributions

of different phonons. It, therefore, seems unlikely that this self-similarity of the

phonon DOS could be precisely accurate, and the different slopes in Fig. 2.4

suggest that it is only approximate.

Measurements of the phonon DOS of silicon from 100 to 1500 K showed

significant thermal softening and some thermal broadening. From prior experi-

mental studies of the effect of pressure on the phonons, and from the present

computational study on the effect of volume on phonon frequencies, the quasi-
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harmonic contribution to the non-harmonicity was obtained. At low temper-

atures, the quasiharmonic model works well to describe the phonon shifts but

at high temperatures, all of the thermal broadening, and 80% of the thermal

softening, were due to phonon anharmonicity. Nevertheless, the vibrational

entropy calculated from the experimental phonon DOS curves of silicon was

found to be within 1% of the total thermodynamic entropy reported by JANAF

obtained from calorimetry data.



27

References

1B. Fultz, “Vibrational thermodynamics of materials”, Progress in Materials

Science 55, 247–352 (2010).

2M. Palumbo, B. Burton, A. Costa e Silva, B. Fultz, B. Grabowski, G. Grim-

vall, B. Hallstedt, O. Hellman, B. Lindahl, A. Schneider, P. E. A. Turchi, and

W. Xiong, “Thermodynamic modelling of crystalline unary phases: thermo-

dynamic modelling of crystalline phases”, en, physica status solidi (b) 251,

14–32 (2014) 10.1002/pssb.201350133.

3M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon

light-emitting diodes”, Nature 412, 805–808 (2001) 10.1038/35090539.

4A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Na-

jarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of

rough silicon nanowires”, Nature 451, 163–167 (2008) 10.1038/nature06381.

5Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High perfor-

mance silicon nanowire field effect transistors”, en, Nano Letters 3, 149–152

(2003) 10.1021/nl025875l.

6J. Graetz, C. C. Ahn, R. Yazami, and B. Fultz, “Highly reversible lithium stor-

age in nanostructured silicon”, en, Electrochemical and Solid-State Letters

6, A194 (2003) 10.1149/1.1596917.

7A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard III, and

J. R. Heath, “Silicon nanowires as efficient thermoelectric materials”, Nature

451, 168–171 (2008) 10.1038/nature06458.

8K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet,

“Silicon-based visible light-emitting devices integrated into microelectronic

circuits”, Nature 384, 338–341 (1996) 10.1038/384338a0.

9H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic de-

vices”, Nature Materials 9, 205–213 (2010) 10.1038/nmat2629.

10B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and

C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic

power sources”, Nature 449, 885–889 (2007) 10.1038/nature06181.

11K. E. Petersen, “Silicon as a mechanical material”, Proceedings of the IEEE

70, 420–457 (1982).

12G. Nilsson and G. Nelin, “Study of the homology between silicon and germa-

nium by thermal-neutron spectrometry”, Phys. Rev. B 6, 3777 (1972).

http://www.sciencedirect.com/science/article/pii/S0079642509000577
http://www.sciencedirect.com/science/article/pii/S0079642509000577
http://dx.doi.org/10.1002/pssb.201350133
http://dx.doi.org/10.1002/pssb.201350133
http://dx.doi.org/10.1002/pssb.201350133
http://dx.doi.org/10.1038/35090539
http://dx.doi.org/10.1038/35090539
http://dx.doi.org/10.1038/nature06381
http://dx.doi.org/10.1038/nature06381
http://dx.doi.org/10.1021/nl025875l
http://dx.doi.org/10.1021/nl025875l
http://dx.doi.org/10.1021/nl025875l
http://dx.doi.org/10.1149/1.1596917
http://dx.doi.org/10.1149/1.1596917
http://dx.doi.org/10.1149/1.1596917
http://dx.doi.org/10.1038/nature06458
http://dx.doi.org/10.1038/nature06458
http://dx.doi.org/10.1038/nature06458
http://dx.doi.org/10.1038/384338a0
http://dx.doi.org/10.1038/384338a0
http://dx.doi.org/10.1038/nmat2629
http://dx.doi.org/10.1038/nmat2629
http://dx.doi.org/10.1038/nature06181
http://dx.doi.org/10.1038/nature06181
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1456599
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1456599
http://prb.aps.org/abstract/PRB/v6/i10/p3777_1


28

13G. Dolling and R. A. Cowley, “The thermodynamic and optical properties

of germanium, silicon, diamond and gallium arsenide”, Proceedings of the

Physical Society 88, 463 (1966).

14S. Wei, C. Li, and M. Y. Chou, “Ab initio calculation of thermodynamic

properties of silicon”, Phys. Rev. B 50, 14587–14590 (1994) 10.1103/

PhysRevB.50.14587.

15C. Flensburg and R. F. Stewart, “Lattice dynamical debye-waller factor for

silicon”, Phys. Rev. B 60, 284 (1999).

16G. Lang, K. Karch, M. Schmitt, P. Pavone, A. P. Mayer, R. K. Wehner,

and D. Strauch, “Anharmonic line shift and linewidth of the raman mode in

covalent semiconductors”, Phys. Rev. B 59, 6182 (1999).

17W. B. Gauster, “Low-temperature grüneisen parameters for silicon and alu-

minum”, Phys. Rev. B 4, 1288 (1971).

18M. T. Yin and M. L. Cohen, “Theory of static structural properties, crystal

stability, and phase transformations: application to si and ge”, Phys. Rev. B

26, 5668 (1982).

19J. Kulda, D. Strauch, P. Pavone, and Y. Ishii, “Inelastic-neutron-scattering

study of phonon eigenvectors and frequencies in si”, Phys. Rev. B 50, 13347

(1994).

20S. Biernacki and M. Scheffler, “Negative thermal expansion of diamond and

zinc-blende semiconductors”, Phys. Rev. Lett. 63, 290–293 (1989).

21P. Mishra and K. P. Jain, “Temperature-dependent raman scattering studies

in nanocrystalline silicon and finite-size effects”, Phys. Rev. B 62, 14790

(2000).

22J. Menéndez and M. Cardona, “Temperature dependence of the first-order

raman scattering by phonons in si, ge, and α-sn: anharmonic effects”, Phys.

Rev. B 29, 2051 (1984).

23B. A. Weinstein and G. J. Piermarini, “Raman scattering and phonon disper-

sion in si and GaP at very high pressure”, Phys. Rev. B 12, 1172 (1975).

24D. L. Abernathy, M. B. Stone, M. J. Loguillo, M. S. Lucas, O. Delaire, X.

Tang, J. Y. Y. Lin, and B. Fultz, “Design and operation of the wide angular-

range chopper spectrometer ARCS atSpallation Neutron Source”, Rev. Sci.

Instrum. 83, 015114 (2012).

http://iopscience.iop.org/0370-1328/88/2/318
http://iopscience.iop.org/0370-1328/88/2/318
http://dx.doi.org/10.1103/PhysRevB.50.14587
http://dx.doi.org/10.1103/PhysRevB.50.14587
http://dx.doi.org/10.1103/PhysRevB.50.14587
http://prb.aps.org/abstract/PRB/v60/i1/p284_1
http://prb.aps.org/abstract/PRB/v59/i9/p6182_1
http://prb.aps.org/abstract/PRB/v4/i4/p1288_1
http://prb.aps.org/abstract/PRB/v26/i10/p5668_1
http://prb.aps.org/abstract/PRB/v26/i10/p5668_1
http://prb.aps.org/abstract/PRB/v50/i18/p13347_1
http://prb.aps.org/abstract/PRB/v50/i18/p13347_1
http://th.fhi-berlin.mpg.de/th/publications/PRL-63-290-1989.pdf
http://prb.aps.org/abstract/PRB/v62/i22/p14790_1
http://prb.aps.org/abstract/PRB/v62/i22/p14790_1
http://prb.aps.org/abstract/PRB/v29/i4/p2051_1
http://prb.aps.org/abstract/PRB/v29/i4/p2051_1
http://prb.aps.org/abstract/PRB/v12/i4/p1172_1


29

25M. B. Stone, J. L. Niedziela, M. J. Loguillo, M. A. Overbay, and D. L.

Abernathy, “A radial collimator for a time-of-flight neutron spectrometer”,

Review of Scientific Instruments 85, 085101 (2014).

26Mantid: http://www.mantidproject.org/, 2013.

27M. Kresch, M. Lucas, O. Delaire, J. Y. Y. Lin, and B. Fultz, “Phonons

in aluminum at high temperatures studied by inelastic neutron scattering”,

Phys. Rev. B 77, 024301 (2008) 10.1103/PhysRevB.77.024301.

28M. Kresch, O. Delaire, R. Stevens, J. Y. Y. Lin, and B. Fultz, “Neutron

scattering measurements of phonons in nickel at elevated temperatures”,

Phys. Rev. B 75, 104301 (2007) 10.1103/PhysRevB.75.104301.

29G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations

for metals and semiconductors using a plane-wave basis set”, en, Computa-

tional Materials Science 6, 15–50 (1996).

30G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals”,

Phys. Rev. B 47, 558–561 (1993).

31G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the

liquid-metal–amorphous-semiconductor transition in germanium”, en, Phys.

Rev. B 49, 14251–14269 (1994) 10.1103/PhysRevB.49.14251.

32G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-

energy calculations using a plane-wave basis set”, Phys. Rev. B 54, 11169

(1996).

33X. Gonze and C. Lee, “Dynamical matrices, born effective charges, dielectric

permittivity tensors, and interatomic force constants from density-functional

perturbation theory”, Phys. Rev. B 55, 10355 (1997).

34J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approxima-

tion made simple”, Phys. Rev. Lett. 77, 3865 (1996).

35J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approxima-

tion made simple [phys. rev. lett. 77, 3865 (1996)]”, en, Phys. Rev. Lett.

78, 1396–1396 (1997) 10.1103/PhysRevLett.78.1396.

36G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector

augmented-wave method”, Phys. Rev. B 59, 1758 (1999).
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C h a p t e r 3

THERMAL EXPANSION OF SILICON

Abstract from “A nuclear quantum effect with pure anharmonicity causes the

anomalous thermal expansion of silicon” [2]:

Despite the widespread use of silicon in modern technology, its pecu-

liar thermal expansion is not well-understood. Adapting harmonic phonons to

the specific volume at temperature, the quasiharmonic approximation, has be-

come accepted for simulating the thermal expansion, but has given ambiguous

interpretations for microscopic mechanisms. To test atomistic mechanisms,

we performed inelastic neutron scattering experiments from 100–1500 K on a

single-crystal of silicon to measure the changes in phonon frequencies. Our

state-of-the-art ab initio calculations, which fully account for phonon anhar-

monicity and nuclear quantum effects, reproduced the measured shifts of in-

dividual phonons with temperature, whereas quasiharmonic shifts were mostly

of the wrong sign. Surprisingly, the accepted quasiharmonic model was found

to predict the thermal expansion owing to a fortuitous cancellation of contri-

butions from individual phonons.
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A
quantized harmonic oscillator was Einstein’s seminal idea for understand-

ing atom vibrations in solids. Better accuracy for crystalline solids is

achieved when the vibrations are resolved into normal modes. Each normal

mode is quantized, with a zero-point energy and excitations called phonons.

However, harmonic models are limited to quadratic terms in the interatomic

potential, and it is well-known that higher order terms are necessary to de-

scribe properties of real solids such as thermal conductivity and thermal ex-

pansivity. Despite this knowledge, the necessary and sufficient contributions

to non-harmonic effects remain less clear. A popular approach is the quasi-

harmonic model (QH), which assumes harmonic oscillators, but with frequen-

cies renormalized to account for the thermal expansion. In a quasiharmonic

model, the energy of the phonon mode i changes with crystal volume, V .

Changes to phonon energies are usually described by a mode Grüneisen pa-

rameter, γi = −(V ∂εi)/(εi ∂V ), where εi = ~ωi is the phonon energy (and

ωi/2π is the frequency). A positive γ gives a reduction in mode energy with

thermal expansion, increasing the vibrational entropy ∆Svib. At finite temper-

ature, the extra elastic energy from thermal expansion, ∆Eel , is offset by the

term −T∆Svib in the free energy ∆F = ∆Eel − T∆Svib [1, 2]. For positive γ,

∆F is minimized with a positive thermal expansion; for negative γ, a negative

thermal expansion is expected.

The cubic and quartic terms of the interatomic potential cause the nor-

mal modes to interact and exchange energy. This is pure anharmonicity, where

the the energy of a phonon is altered by the presence of other phonons irrespec-

tive of the volume of the solid. Phonon anharmonicity is essential for thermal
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Figure 3.1: Experimental phonon dispersions of silicon. Inelastic neutron scat-

tering data of silicon were measured on the ARCS time-of-flight spectrometer

at (a) 100 K, (b) 200 K, (c) 300 K, (d) 900 K, (e) 1200 K, (f) 1500 K. The

4-D phonon dynamical structure factor, S(q,ε), were reduced, multiphonon

subtracted, and “folded” into one irreducible wedge in the first Brillouin zone.

Phonon dispersions are shown along high symmetry lines and through the zone

(L–X).
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Figure 3.2: Comparison between experimental, s-TDEP and quasiharmonic

(QH) ab initio calculations throughout the Brillouin zone. (a)–(c), Phonon

dispersions of silicon from harmonic, s-TDEP, and QH ab initio density func-

tional theory calculations. The (0.75,0.25,0.25)-point is shown as a black cir-

cle marker for reference. (b),(c) Insets shows low-energy transverse acoustic

modes.
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conductivity and other thermophysical properties. Anharmonic effects increase

with larger thermal atomic displacements. Sometimes this causes a misper-

ception that pure anharmonicity is important only at high temperatures, and

quasiharmonic models may be valid at low and moderate temperatures owing

to low phonon populations. However, the leading-order terms of both quasihar-

monicity and anharmonicity are linear in temperature [3], so if anharmonicity

is important at high temperatures, it can have the same relative importance

at low temperatures, too. Furthermore, at low temperatures the “zero-point”

energy gives atom displacements that allow a nuclear quantum effect to engage

the high-energy phonon modes that are half occupied.

Finding the relative importances of quasiharmonicity and anharmonicity

should be done by quantitative analysis, but to date the dominance of quasi-

harmonicity for silicon has been assumed in part because quasiharmonic models

predict the thermal expansion with reasonable accuracy [4–6]. The quasihar-

monic model predicts the anomalous negative thermal expansion of silicon from

10 K to 125 K and the low thermal expansion up to the melting temperature

[7–11]. The positive thermal expansion coefficients observed at moderate and

high temperatures are anomalous in their own right – they are small com-

pared to diamond and other materials with zincblende structures [9]. Further

validation of the quasiharmonic approximation was provided by measurements

of the Raman mode and a few second-order Raman modes of silicon under

pressure, which were accurately predicted by volume-dependent density func-

tional theory (DFT) calculations at low temperature [12, 13]. The negative

Grüneisen parameters of the low-energy transverse acoustic (TA) modes have
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received considerable attention and have been attributed to the “open-ness”

of the diamond cubic structure [11], the stability of angular forces [6], or en-

tropy in general [5]. Nevertheless, the precise role of the TA modes in thermal

expansion remains unclear [4, 6]. With increasing temperature, phonons are

excited in higher-energy phonon branches, and their positive Grüneisen param-

eters are expected to cause the overall thermal expansion to change sign (as

discussed in the (Supporting Information). Today this quasiharmonic model is

the workhorse for predicting thermal expansion.

“Non-trivial” phonon shifts that were not accounted for by thermal ex-

pansion were reported in an earlier experimental paper on phonon dispersions in

silicon up to 300 K [14]. The importance of pure anharmonicity in temperature-

dependent phonon shifts at moderate and high temperatures was also found

in work based on molecular dynamics, many-body perturbation theory, and ab

initio calculations on silicon [15–21]. The uncertainty principle and quantum

distributions of nuclear positions influence the exploration of atomic potential

landscapes. The zero-point motion was shown to be important, but does not

by itself reproduce the correct thermal expansion coefficients [22, 23]. (More

information on quantum and zero-point effects are in the Supporting Informa-

tion.) Temperature-dependent phonon shifts from pure phonon anharmonicity

with zero-point energy could give a nuclear quantum effect that alters ther-

mophysical properties. A more detailed study of the temperature dependence

of phonons in silicon is therefore appropriate because very few modes were

previously assessed [14, 19, 20, 24].

We report the first inelastic neutron scattering measurements of phonon
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dispersions of silicon above 300 K along with fully anharmonic ab inito calcula-

tions. These measurements discredit the quasiharmonic theory, which predicts

the wrong sign for phonon shifts with temperature, and we show that the crys-

tal structure, pure anharmonicity, and nuclear quantum effects of silicon all play

important roles in the thermal expansion of silicon.

The experiments used a high-purity single crystal of silicon (mass ≈

28.5 g) with 〈110〉-orientation, machined into a tube for optimal neutron scat-

tering properties. The sample was rotated in a furnace on a direct geometry

time-of-flight inelastic neutron scattering spectrometer (ARCS) [25] at the

Spallation Neutron Source at Oak Ridge National Laboratory. For each tem-

perature the 4-dimensional S(q,ε) data were reduced and multiphonon scat-

tering subtracted to give all phonon dispersions in the irreducible wedge of the

first Brillouin zone. The multiphonon scattering produces a relatively smooth

background between the phonon dispersions and was determined to produce

the majority of the background intensity (Supporting Information) [26]. Our

“folding” technique of summing all of the S(q,ε) data (from >100 Brillouin

zones) into an irreducible wedge increases the signal strength, suppresses polar-

ization effects that alter intensities in some Brillouin zones [26], and averages

out any possible effects of “anharmonic interference” [27].

Figure 3.1 shows phonon dispersions as bright intensities. The disper-

sions at low temperatures are in excellent agreement with previous work that

used triple-axis spectrometers [14, 24]. With increasing temperature, the ma-

jority of phonon modes, including the low-energy transverse acoustic modes,

soften in proportion to their energy, i.e., the mode Grüneisen parameters are
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Figure 3.3: Comparison between experimental, s-TDEP and quasiharmonic

(QH) ab initio calculations throughout the Brillouin zone. (a) Density of frac-

tional phonon energy shifts with temperature. The densities from all branches

(s-TDEP: teal, QH: red) and densities from just the low transverse modes are

offset and scaled for clarity. (b) The density of the 700 K s-TDEP. Notice the

more negative peak consists of a majority of TA-modes.
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Figure 3.4: Comparison between experimental, s-TDEP and quasiharmonic

(QH) ab initio calculations throughout the Brillouin zone. Temperature-

dependent phonon shifts, (ε−ε100K)/ε100K, of the low-energy transverse modes

at the (a) L, (b) X, (c) (0.75,0.25,0.25) r.l.u., and (d) K points. Experimental

fits of phonon centroids with standard (1 σ) error-bars from the present work

are shown alongside calculated shifts and previously reported shifts [14].
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similar. This self-similar behavior of phonon softening was reported previously

[21].

All ab initio calculations were performed with the VASP package [28–

34]. A stochastically-initialized temperature-dependent effective potential method

(s-TDEP) [12, 35–37] was implemented to obtain phonon shifts with temper-

ature, including intrinsic phonon anharmonicities and nuclear quantum effects.

Quasiharmonic calculations were also conducted as described previously [21].

Methods for both the measurements and the calculations are described in the

Supporting Information.

Results from calculations by the s-TDEP method (with anharmonicity

and thermal expansion) and conventional quasiharmonic ab initio calculations

(with no anharmonicity) are shown in Fig. 3.2 through Fig. 3.4. There are large

discrepancies in the signs and magnitudes of phonon energy shifts between

the two models. Most interestingly, Fig. 3.2 (b),(c) show that the s-TDEP

calculations predict a reduction in phonon energy, a thermal “softening”, in the

transverse modes (roughly <35 meV), whereas the quasiharmonic calculations

predict an increase in phonon energy, “stiffening”, at 1500 K (with negative

Grüneisen parameters as reported previously [4–6]).

We calculated the fractional shifts of energies, ∆ε/ε (T ), for all phonon

modes in the first Brillouin zone. The energies of all phonons were calculated

using a 50×50×50 grid of q-points. Figure 3.3 (a) compares the density of

fractional phonon shifts from quasiharmonic and anharmonic (s-TDEP) calcu-

lations. The density of fractional shifts, ρ (∆ε/ε), is shown in Fig. 3.3 (b) from
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Figure 3.5: Phonon shifts and entropy differences from constant volume ab

initio calculations. (a)–(f) Density of fractional shifts with temperature at

constant volumes using the s-TDEP method. The mean (dashed color line),

median (solid color line), and the 5th and 95th percentile (black solid lines)

of the density are also shown. Calculations shown for: [(a),(d),(g)] 99 % of

0 K volume, [(b),(h),(e)] 0 K volume, and [(c),(f),(i)] 101 % of 0 K volume.

Quasiharmonic predictions are the dashed zero–lines in (a)–(f). (g)–(i) Cor-

responding constant volume differences between the quasiharmonic (QH) and

s-TDEP in free energies from vibrational entropy with temperature.
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the s-TDEP method at 700 K. Compared to the quasiharmonic predictions for

the TA modes (shown at top of Fig. 3.3 (a)), the anharmonic shifts are an

order-of-magnitude larger, have opposite signs, and follow opposite thermal

trends. Such large discrepancies allow for definitive experimental tests.

Individual phonon energies were obtained from constant-q fits to the

measured S(q,ε), as shown in the Supporting Information. Fig. 3.4 (a)–(d)

show that the trends from the anharmonic s-TDEP calculations are in far

better agreement with experiment than the quasiharmonic trends. Thermal

trends for individual phonons at the L,X,K-points (Fig. 3.4 (a), (b), (d) are

presented for their importance in the interpretation of quasiharmonic results

[4]. Another example for a phonon mode located away from a high-symmetry

line is shown in Fig. 3.4 (d).

Additional s-TDEP calculations of densities of thermal shifts suggest

why the quasiharmonic theory has been so apparently successful. Calculations

were performed for volumes that were 1% larger and 1% smaller than the 0 K

harmonic volume calculated for Fig. 3.2 (a), and the results are shown on the

left and right sides of Fig. 3.5 for the TA modes (top three panels) and all

phonon modes (middle three panels). For all three volumes, at low tempera-

tures there is a wide spread in the thermal phonon shifts, both stiffening and

softening. At low temperatures, the average thermal shift from anharmonic-

ity at a fixed volume is surprisingly nearly zero. At fixed volume, the shifts

of all quasiharmonic phonons are zero, of course, so the two methods agree

on the average owing to the cancellation of anharmonic stiffenings and soft-

enings. This approximate cancellation is seen in Fig. 3.5 (a)–(c) for the TA
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modes and in Fig. 3.5 (d)–(f) for all modes. Nevertheless, the average phonon

energies from the s-TDEP method show an ordinary softening with increased

volume and temperature, inconsistent with the negative Grüneisen parameters

from quasiharmonic calculations. At high temperatures, Fig. 3.5 (d)–(f) show

that all the modes tend to soften at similar rates. Differences in vibrational

entropies from the s-TDEP and quasiharmonic methods were calculated us-

ing equations in the Supporting Information. The difference in entropies ∆S

from the quasiharmonic and anharmonic calculations was used to obtain the

−T∆S shown in Fig. 3.5 (g)–(i). For all volumes, the differences are negligible

up to 125 K but increase at higher temperatures (Fig. 3.6). The success of the

quasiharmonic theory may be an indicator that the diamond cubic structure is

intrinsically prone to anomalies in thermal expansion, but the quasiharmonic

model is not physically correct.

An independent concern about the quasiharmonic model is the elastic

energy of thermal expansion, ∆Eel = 1/2Bv(βT )2, where B is the bulk mod-

ulus, β is the volume coefficient of thermal expansion, and v is the atomic

volume. This ∆Eel should be comparable to the −T∆Svib contribution to

the free energy from finite temperature phonons including pure anharmonic-

ity and nuclear quantum effects. The maximum negative linear expansion at

atmospheric pressure is 0.003 %, and the maximum positive linear expansion

is 0.5%̇ near the melting temperature [7, 8, 10]. The corresponding elastic

energy per atom for the negative thermal expansion is in the µeV range, and

the positive thermal expansion gives approximately 0.2 meV at 500 K [7, 8,

10, 38]. These quasiharmonic energies are orders of magnitude smaller than
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the correct entropic contributions to the free energy. A quasiharmonic model

with negative Grüneisen parameters gives a physically incorrect explanation of

thermal expansion, although some of its predictions of average properties are

preserved by gross cancellations of errors.

The zero-point energy proves important for thermal expansion in silicon

[22, 23], where the (fractional) population of the higher energy phonons alters

the self-energies of the TA phonons that change their population at low tem-

peratures. Without this nuclear quantum effect, our anharmonic calculations

predict significantly different thermal expansion at low temperatures (Support-

ing Information). Classical mechanical models based on the “open-ness” of the

structure, classical springs, force constant ratios, and negative Grüneisen pa-

rameters may contribute to the general behavior as discussed in the Supporting

Information, but a classical picture of thermal expansion is not reliable. Nuclear

quantum effects give an anharmonic coupling between phonons of all energies,

even modes of higher energy that are not excited at low temperature, and these

couplings are essential for correct predictions of thermal expansion. Nuclear

quantum effects with pure anharmonicity should also alter thermal conductivity

and other thermophysical properties at low temperatures.

Measurements of the phonon dispersions of single crystal silicon from

100 to 1500 K showed thermal shifts that contradict the trends predicted by

the widely accepted quasiharmonic model, even at low temperatures. Pure

phonon anharmonicity, i.e., phonon-phonon interactions, dominate the phonons

in silicon from low to high temperatures, altering the effective interatomic

potential and causing both positive and negative shifts of phonon energies. At
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Figure 3.6: Calculated and experimental coefficients of linear thermal expan-

sion in silicon. Calculated coefficients are from minimized free energies using

Supporting Information Eq. 1 (s-TDEP: teal solid line, quasiharmonic (QH):

red dashed line). Experimental values are shown as colored markers [7–10].

Inset shows calculations and experimental values at higher temperatures.
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low temperatures the zero-point quantum occupancy of high-energy vibrational

modes alter the energies of low-energy modes through anharmonic coupling.

This nuclear quantum effect with anharmonicity is the essential cause of the

negative thermal expansion of silicon. The crystal structure, anharmonicity,

and nuclear quantum effects of silicon all play important roles in the thermal

expansion of silicon, and could be essential in other technologically important

materials.

Supporting Information (SI)

Inelastic Neutron Scattering

Inelastic neutron scattering measurements were performed on a single

crystal of silicon of 99.999% purity that was highly-oriented (<2◦), purchased

from Virginia Semiconductor, Inc. The [110] oriented single crystal was further

machined into a cylinder of 3.8 cm in height, 2.54 cm in outer diameter and

a 1.59 cm inner diameter to minimize multiple scattering. The crystal was

suspended in an aluminum holder and then mounted into a closed-cycle helium

refrigerator for the 100 and 200 K measurements, and a similar holder made

from niobium was mounted into a low-background electrical resistance vacuum

furnace for measurements at 300, 900, 1200 and 1500 K. For all measurements

the incident energy was 97.5 meV, and an oscillating radial collimator was used

to reduce background and multiple scattering [25, 39].

The time-of-flight neutron data included multiple datasets from 200 ro-

tations in increments of 0.5◦ about the vertical [110]-axis, reduced to create the
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Figure 3.7: “Folded” inelastic neutron scattering data without (a) and with

(b) multiphonon subtracted S(q,ε) at 300 K. (c) Scattering intensity and fit-

ted spectrum at the X-point. Fitted peaks are shown as the red solid line.

Grey circles are without [(a)] and black triangles with [(b)] multiphonon scat-

tering subtracted. Black dashed line shows subtracted multiphonon scattering

intensity.
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4-dimensional S(q,ε) [40, 41]. A secondary data reduction process consisted

of ‘folding’ the entire S(q,ε) data set into an irreducible wedge in the first Bril-

louin zone. Non-linear offsets of the q-grid were corrected by fitting typically

50 in situ Bragg diffractions in an energy transfer range of ∆ε = ± 4 meV by

a transformation to the positions of the theoretical diffraction peaks for a di-

amond cubic structure. The multiphonon scattering was then subtracted, and

the data ‘folded back’ and corrected for the phonon creation thermal factor

[26].

The multiphonon scattering was determined with q-dependence through

the incoherent approximation and calculated from Eq. 3.1 [26],

Sn>1(~q, ε) =

10∑
n=2

e−2W
(2W )n

n!
A1 ~ An−1, (3.1)

where the 2W is the well-known Debye-Waller factor calculated from

the experimental temperature-dependent phonon density of states (DOS) [21,

26]. The single and n-phonon scattering spectrum are,

A1 =
g(ε)

ε
〈n + 1〉, (3.2)

An = A1 ~ An−1. (3.3)

The g(ε) is the experimental phonon DOS [21], and n is the Planck

distribution. We find that even at temperatures > 1000 K the contributions

above the 5th multiphonon spectrum (S5) are negligible. A global scaling factor
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Figure 3.8: Constant q-S(q,ε) data at the X point for 100, 200, 300, 900,

1200, 1500 K. Data are black markers and fits are in orange.
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(b ∗Sn>1) was applied to the total multiphonon scattering function throughout

the Brillouin zone after “folding” to correct for normalization. The multiphonon

scattering accounted for most of the background intensity as seen clearly in

Fig 3.7.

The correct alignment of the data in reciprocal space and multiphonon

subtraction produced S(q,ε) of high statistical quality. Thermal shifts of

phonons reported previously, when available, were in good agreement [14, 15,

20].

Energy spectra at specific q-points mentioned were evaluated by in-

tegrating over 0.0025 Å−3. Phonon centroids were then fitted using the

Levenberg-Marquardt non-linear least square method for multiple skewed-Voigt

functions. The skewed-Voigt functions gave the best fits to the known asym-

metric lineshape of the ARCS time-of-flight spectometer. Examples of the

scattered intensities at a constant-q, with fits, are shown for the X-point in

Fig. 3.8.

For comparison, a “slice” of “unfolded” 4-D S(q,ε) along a momen-

tum direction is shown in Fig. 3.9. The data were processed using standard

software and corrected for the phonon creation thermal factor [26, 42]. First

principles calculations were performed using the s-TDEP method described be-

low and elsewhere [12, 43]. The experimental results are in good agreement

with first principles calculations throughout reciprocal space. There are bene-

fits of assessing phonon intensities over multiple Brillouin zones, but these are

not essential for a study of thermal expansion.
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Figure 3.9: Inelastic neutron scattering [(a)–(c)] and first principle calculations

[(d)–(f)] of S(q,ε) at 300 K along momenta q (X–Γ–X) in different Brillouin

zones. Calculated S(q,ε) was corrected for instrument resolution and polariza-

tion effects to match the experiment conditions [25, 26].
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Ab-initio Calculations

Ab initio DFT calculations were performed with the projector augmented

wave [44] formalism as implemented in VASP [28–30, 45]. All calculations

used a 5×5×5 supercell and a 500 eV plane wave energy cutoff. The Brillouin

zone integrations used a 3×3×3 k-point grid, and the exchange-correlation

energy was calculated with the AM05 functional [32–34]. All calculations were

converged to within 1 meV/atom.

Finite temperature phonon dispersions of silicon were calculated by fit-

ting first-principles forces to a model hamiltonian,

H = U0 +
∑
i

p2i
2m

+
1

2

∑
i jαβ

Φαβ
ij u

α
i u

β
j +

1

3!

∑
i jkαβγ

Φαβγ
ijk u

α
i u

β
j u

γ
k . (3.4)

The forces on atoms were generated using DFT with various configurations

of displaced atoms by a stochastic sampling of a canonical ensemble, with

cartesian displacements (uαi ) normally distributed around the mean thermal

displacement using

uαi =
∑
k

εiαk ck√
mi

√
−2 ln ξ1 sin(2πξ2). (3.5)

The thermal factor, ck , is based on thermal amplitudes of normal mode

k , with eigenvector εk and frequency ωk [36, 46, 47]

ck =

√
~(2nk + 1)

2ωk
, (3.6)

and ξ1 and ξ2 are stochastically sampled numbers between 0 and 1. The

phonon distribution follows the Planck distribution, nk = (eβ~ωk − 1)−1, where

the nuclear quantum effect can be turned off by taking the high-temperature
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limit of Eq. 4.3. The fitting to the model Hamiltonian used the temperature-

dependent effective potential method (TDEP) [12, 35]. With thermal displace-

ments from Eq. 4.2 and Eq. 4.3, we refer to our temperature-dependent calcula-

tions as the stochastically-initialized temperature-dependent effective potential

method (s-TDEP). This method circumvents the issue of expensive compu-

tational resources required of ab initio molecular-dynamics (AIMD), replacing

AIMD with a Monte Carlo sampling of atomic positions and momentum near

equilibrium positions [12, 36]. The quasiharmonic model was calculated as

described previously [21].

Thermodynamic Calculations

Temperature dependent coefficients of linear thermal expansion in silicon were

calculated through the minimization of the free energy,

F(T, V ) =E(T, V ) +
∑
q,k

(~ωk(q, V, T )

2

+ kBT ln(1− e−~ωk(q,T,V )/kBT )
)
,

(3.7)

from quasiharmonic calculations, and from s-TDEP (main text Fig. 5). The

quasiharmonic model implies the only temperature dependence of the entropy is

from the volume expansion εi(V {T}) and the Planck distribution (nk), whereas

the anharmonic s-TDEP method minimizes the free energy for temperature and

volume simultaneously. The vibrational entropy from all phonon modes,
∑

k ,

was calculated as [1],

Svib(T ) = 3kB
∑
k

[
(nk + 1) ln(nk + 1)− nk ln(nk)

]
. (3.8)
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Possible Contributions to the Thermal Expansion

As stated in the main text, a simple physical model for the anomalous

thermal expansion of silicon is unlikely because different effects contribute to

the thermal expansion. In particular, the anharmonicity and nuclear quantum

effects are difficult to formulate as a simple 3D model. The thermal expansion

of Si can be simulated properly with methods based on ab initio calculations

that includes all these factors, but this seems unsatisfying for a “physical”

understanding. A number of possible contributions and models are presented

here, but any single model is insufficient by itself.

Negative Grüneisen Parameters as Fitting Parameters

If individual Grüneisen parameters are assigned to different parts of the phonon

DOS, it is easy to make a model that predicts negative thermal expansion at

low temperatures. An approximation for silicon is shown in Fig. 3.10, together

with the experimental phonon DOS reported previously [21]. The six phonon

branches were modeled as follows: acoustic branches were approximated by

Debye models with cutoff energies of 20, 25, 42 meV, and optical branches

were approximated as Einstein modes with energies of 52, 60, 60 meV. These

curves were convoluted with a Gaussian function of standard deviation
√

3 meV,

summed, and are compared to the experimental phonon DOS of Si [21] in

Fig. 3.10.

The heat capacities of these six functions were calculated as shown

in Fig. 3 (a). For simplicity, a Grüneisen parameter of –1 was assigned to

the lowest-energy TA modes, and a Grüneisen parameter of +1 was assigned
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Figure 3.10: Phonon DOS of Si from (thick line) experimental measurement

at 100 K [21], and (thin line) approximated with Debye and Einstein models.



57

Figure 3.11: (a) Heat capacities from phonons approximated by Debye and

Einstein models, using the six branches of Fig. 3.10. (b) Coefficient of thermal

expansion, assuming all Grüneisen parameters were +1 except for TA modes

set as –1.
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to the other five phonon branches. The thermal expansion as a function of

temperature, shown in Fig. 3.(b), has a shape that follows the heat capacity

curves times their Grüneisen parameters. At low temperatures, the negative

contribution from the TA1 modes overcomes the positive contribution from

the TA2 modes, but the thermal expansion changes sign when the LA modes

are sufficiently occupied. With six Grüneisen parameters, there are many ways

to optimize the thermal expansion as a function of temperature, and the depth

and breadth of the minimum can be tuned by appropriate parameter selection.

We did not explore this further because the main text shows that this approach

is physically incorrect.

Simple Springs and Angular Bonds

The simplest model of harmonic interatomic forces is useful for illustrating a ge-

ometrical source of phonon anharmonicity. Fig. 3.(a) shows a tetrahedron with

a Si atom surrounded by its nearest neighbors. The four bonds are assumed to

be harmonic springs, and it can be initially assumed that the neighbors remain

fixed in position. As shown in Fig. 3.(a), the springs are relaxed, with no elastic

energy. If the central Si atom is displaced vertically, the amount of elastic

energy stored in the spring to the neighbor above is the same for positive and

negative displacements of equal magnitude. This symmetry does not hold for

the lower three springs. Upwards displacements are more along the directions of

the springs, and generate more elastic energy than downwards displacements.

The elastic energy is straightforward to calculate for harmonic springs in a

tetrahedral coordination with angles of 109.5◦ and a nearest-neighbor separa-

tion of a. For vertical displacements, x , a numerical fit to the elastic energy in
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all four springs gives

Eel(x) ∝
(x
a

)2
+ 0.666

(x
a

)3
, (3.9)

so negative x (downwards) displacements are more favorable energetically. The

lengthening of the vertical bond in Fig. 3.(a) gives positive thermal expansion,

and it is likely important at high temperatures when numerous short wavelength

phonons disrupt the cooperative displacements between adjacent tetrahedra.

For long wavelength phonons, however, displacements along the [111]

direction can provide for negative thermal expansion. Figure 3.(a) helps to

illustrate a phonon mode where the vertical Si pairs along [111] maintain a

fixed separation, and vibrate as a unit along the [111] direction. For the case

shown in Fig. 3.(b), the cubic anharmonicity of Eq. 3.9 will cause a decrease in

separations between planes of atoms, illustrated by the arrows. For a 1% mean-

squared displacement, Eq. 3.9 predicts that the cubic term is approximately 1%

of the magnitude of the quadratic. We might expect the lattice parameter to

decrease by approximately one part in 10−4 if such modes dominate. The

complexity of accounting for all different modes and their thermal occupancies

makes further analysis impractical, however. These examples show

• When atom displacements are not along the directions of the springs,

phonon modes can be anharmonic even when the springs are harmonic.

• These geometrically-induced anharmonicites can change sign with the

wavevector of the phonon mode.

The influence of anharmonicity may also be expected because the geo-
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metrical structure of silicon does not have inversion symmetry at each atom.

This allows cubic phonon-phonon interactions in first order [3, 48], making

vibrational modes more free to exchange energy.

Transverse Bonds

The diamond cubic structure is not stable under longitudinal forces alone, and

transverse forces are required to prevent its collapse into a denser structure. Xu,

et al., argue that the negative thermal expansion of silicon depends on the rel-

ative strengths of the first-nearest-neighbor bond-bending and bond-stretching

forces [6]. For two specific phonon modes (TA(q=X) and TA(q=L)), they

develop a mechanical model that predicts negative Grüneisen parameters when

both central forces and non-central forces are of comparable strength. They

note that the relative strength of the non-central forces plays a major role in

setting the thermal expansion of silicon [6].

We decomposed pairwise interactions between silicon atoms, quantified

as force constant tensors, into components that are transverse and longitudinal

to the relevant bond. Interestingly, we found that with a model quasiharmonic

system there is some optimal scaling of the transverse to longitudinal force

constants that results in maximal negative thermal expansion in Si. (Although

the simple modes described previously in Section B have no transverse forces

but have negative Grüneisen parameters, there are many other modes that con-

tribute to the thermal expansion.) To do this, we began with force constant

tensors that describe pairwise interactions between the atom at each of the

two distinct symmetry positions in silicon and its closest 123 neighbors as a
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Figure 3.12: a, Tetrahedral coordination around a central Si atom. b, four

interconnected tetrahedra of the diamond cubic structure. Thick vertical lines

are along a [111] direction.
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Figure 3.13: Trends for silicons thermal expansion coefficient vs. temperature

plotted for scalings of the ratio of transverse to longitudinal force constants

between 0 and 2.8
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function of volume at 0 K. For each pairwise interaction between each of the

atoms at distinct symmetry positions and its neighbors, we decomposed the

force constant tensor into components transverse and longitudinal to the bond

between the pair of atoms. We scaled the ratio of transverse to longitudinal

force constants by a constant, k , while holding fixed the norm of the force

constant tensor. We then calculated the the thermal expansion in silicon for

values of k between 0 and 2.8. In Fig. 3.13, we show that increasing the ra-

tios of transverse to longitudinal force constants in the system for values of k

between 0 and about 1.6 increases the amount of negative thermal expansion,

and that increasing k beyond 1.6 decreases negative thermal expansion. In

Fig. 3.14, we illustrate the dependence of the negative thermal expansion on

the ratios of transverse to longitudinal force constants by plotting the minimum

value of thermal expansion exhibited by the system (one metric for quantifying

the degree of NTE) against the scaling constant k . Although the quasihar-

monic approximation should not be used to predict how negative Grüneisen

parameters give the negative thermal expansion of silicon, the ratio of forces

should influence on the thermal expansion of diamond cubic structures.

Quantum and Zero-point Effects

Models with transverse bonds and simple springs, like many other previous

models, can be understood with classical mechanics. There is evidence that

this is inadequate [22, 23]. For lattice dynamics, the difference between quan-

tum and classical particles are evident in the governing distributions. Classical

molecular dynamics or even Born-Oppenheimer ab initio molecular dynamics

are still classical depictions of nuclear dynamics, and do not provide the correct
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Figure 3.14: Maximum negative thermal expansion coefficients taken from each

trend in Fig. S5 plotted against the scaling factor, k , applied to the ratios of

transverse to longitudinal force constants.
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Figure 3.15: Volume as a function of temperature for silicon obtained from

classical and quantum mechanical free energies.
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quantum distributions. There have been great advances in overcoming this

by utilizing path-integral methods to include nuclear quantum effects including

zero-point motion [23], but a full ab intio path-integral molecular dynamics of

solid materials is computationally expensive. We have addressed these limi-

tations through our stochastic method as described above which includes the

zero-point energy (~ωx/2) in Eq. 4.3, giving nuclear quantum effects with the

anharmonicity.

Using Eq. 3.8 for classical or quantum distributions in Eq. 3.7 for the

free energy give major differences in thermal expansion in silicon, as shown

in Fig. 3.15. Even at lower temperatures, the zero-point energy brings impor-

tance to all the phonon modes. Not only are quantum effects essential at

lower temperatures, but differences persist up to melting temperatures. Vary-

ing the zero-point motion from changes in nuclear mass allow for an interesting

engineering opportunity, too [23, 49–51]

In general, all of the models explained above are effective for a peda-

gogical thought exercise for a “physical interpretation” of the negative thermal

expansion of silicon, but no single simple model is able to capture the full

behavior. A simple model has not yet been provided, as there is none.
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lattice parameter of germanium from path-integral Monte Carlo simulations”,

Physical Review B 56, 237–243 (1997).



72

C h a p t e r 4

THERMAL CONDUCTIVITY OF SILICON

Abstract:

Inelastic neutron scattering is vital for a fundamental understanding of ma-

terials. Measured temperature-dependent phonon spectrum contain phonon

energies and scattering lifetime information; all the information needed to de-

termine thermal properties. But the correct determination of phonon lifetimes

(linewidths) throughout the Brillouin zone are difficult to assess due to beam

brightness, interference effects, polarization, multiphonon scattering, and in-

strument resolution. We were able to overcome these limitations by deconvol-

ing linewidths from scattering data that used a reduction process that “folds”

and subtracts the multiphonon spectrum. We determined phonon linewidths

and phonon centroids throughout the Brillouin zone and compared to ab ini-

tio calculations. This method advances experimental and ab initio methods

for thermophysical property analysis. Phonon anharmonicities are required to

obtain correct lattice dynamics shifts but do not significantly effect the total

thermal conductivity.
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U
nderstanding thermal properties of materials is of the utmost impor-

tance for current and future development of technologies. One of

these thermal properties is the thermal conductivity, a fundamental quantity

in transport phenomena that describes how a crystal lattice conducts heat.

The thermal properties of silicon are extensively studied due to the wide range

of silicon-based technologies including thermoelectrics, semiconductors, elec-

tronics, nanomechanics, and photovoltaics [1–10]. Understanding the silicon

lattice thermal conductivity through both calculations and experiment provides

valuable insight for designing more efficient silicon-based technologies. Silicon

is also a perfect model material to build more encompassing thermal lattice

dynamics models.

Historically, the experimental lattice thermal conductivity of silicon was

measured as a standard value due to the high purity and availability of the

crystal. Initial silicon experiments used a radial heat flow apparatus to de-

termine the lattice thermal conductivity [11, 12]. More modern experimental

techniques include the time and frequency-domain transient thermoreflectance

methods, and mean free path spectroscopy which are applicable for both bulk

and thin film samples [13, 14]. Due to the abundance of experimental thermal

conductivity of silicon, calculating the thermal conductivity via ab initio tech-

niques has gained traction in recent years. In these methods the lattice thermal

conductivity is calculated by iteratively solving the Boltzmann transport equa-

tion (BTE), or using the Green-Kubo method with either classical force field

potentials or ab initio derived ones [15–20].

For semiconductors, like silicon, this theory traces back to the micro-
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scopic model for phonon-phonon scattering developed by Peierls in 1929 [21].

The lattice thermal conductivity is largely dominated by phonon-phonon inter-

actions, phonon anharmonicity, especially at high temperatures. The phonon-

phonon couplings shorten phonon lifetimes and cause shifts in central frequen-

cies, which results in a finite phonon mean free path in thermal transport.

Although, in many materials, conductivity calculations are heavily dependent

on volume/pressure and temperature, classical forces and many-body perturba-

tion methods predict the correct temperature dependence of phonon lifetimes

and thermal conductivity in silicon [16, 18, 22–24].

Previous studies on silicon show, however, that thermal trends of phonon

frequency shifts in silicon are not accurately described by the quasiharmonic

model, harmonic frequencies renormalized with thermal expansion [25, 26]. Due

to the lack of experimental verification, a better understanding of both changes

in phonon centers and linewidths, the phonon self-energy, is necessary. The

phonon self-energy, (Σ = ∆ + iΓ), the anharmonic corrections to the harmonic

frequencies, provide the necessary corrections through shifts and broadenings

of finite temperature lattice dynamic behavior.

Difficulties in determining accurate thermal conductivity information

from phonon lifetimes measured by inelastic neutron scattering measurements

are due to instrument resolution, missing volumes of the Brillouin zones, or

overall source brightness. Typically only a few modes are assessed through

triple-axis experiments or Raman scattering [27–32]. Due to instrument res-

olution, although single crystals on chopper spectrometers have been used to

determine trends, a quantitative linewidth determinations require complemen-
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Figure 4.1: Phonon linewidths from inelastic neutron scattering experiments.

(a) Example of experimental phonon dispersions of silicon from inelastic neu-

trons scattering data of silicon. Data were measured on ARCS time-of-flight

spectrometer at 300 K, and reduced, multiphonon subtracted and “folded”

into one irreducible wedge in the first Brillouin zone. (b) Phonon scattering

spectra determined at q-point = (0.75, 0.25, 0.25) r.l.u.. Experimental data is

shown as purple circle markers and best fit of peaks is in grey solid line. The

longitudinal acoustic mode is highlighted as an example of phonon lineshape

deconvolution. (c) Deconvoluted longitudinal acoustic mode phonon lineshape

at q-point = (0.75, 0.25, 0.25) r.l.u. at 300 K.
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tary model calculations. These hurdles were overcome through in this work

through a “folding” and multiphonon subtraction data reduction scheme. To

date we report the highest statistical quality of phonon dispersions of silicon

with temperature. We report accurate measurements of phonon dispersions,

frequencies and linewidths, from time-of-flight inelastic neutron scattering ex-

periments and show the effects of anharmonicity on thermal conductivity.

Phonon spectrum (Fig. 4.1.a) show bright intensities at atomic vibration

resonances. The widths of these peaks are the inverse of phonon lifetimes or

scattering rates. Phonon dispersions with temperature were obtained through

inelastic neutron scattering experiments on a time-of-flight chopper spectrom-

eter, ARCS, at the SNS [33]. 4-dimensional scattering functions (S(q, ε))

with temperature were reduced and processed through standard reduction with

“folding” and multiphonon background subtraction. Phonon linewidths, per

mode (λ), were determined through the deconvolution of phonon difference

lineshapes to determined the change in linewidths with temperature (2ΓT −

2Γ100K). Experimental methods are discussed in more detail in the Materials

and Methods section. Changes in linewidths at 300, 900, 1200, 1500 K show

broadening, decrease in lifetime, or decrease in lifetimes with temperature. An

example of fitted phonon linewidths for the (0.75, 0.25, 0.25) q-point longi-

tudinal acoustic mode (LA) is shown in Fig. 4.2.c. Phonon centroid energies

show self similar softening behavior, a decrease in energy, with temperature

(Fig. 4.2.b). The observed thermal trends are in good agreement with previ-

ous results where available [12, 34, 35]. Previously, only Raman measurements

of phonon linewidths at a few modes were observed and the thermal trends
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Figure 4.2: Temperature-dependence of phonon shifts and broadening of the

(0.75,0.25,0.25) q-point with temperature. Experimental changes are shown as

markers, and ab initio calculated linewidth thermal trends with anharmonicity

in teal solid line, and quasiharmonic approximation in red-dashed line.
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coincide well with our results.

Recent advances in ab initio methods allow for direct comparisons to ex-

perimental shifts and broadenings. Equilibrium phonon dispersions and linewidths

with phonon anharmonicities were calculated using DFT and the stochastically

initialized temperature-dependent effective potential method (s-TDEP) [36–

38]. The quasiharmonic phonon dispersions and linewidths were calculated as

described in the Materials and Methods section. The quasiharmonic theory

does not include phonon interactions and would not have any lifetimes associ-

ated with phonon and only scaled energies with respect to volume expansion.

But the third-order forces on atoms can be determined from the 0 K force con-

stants (harmonic model) in the TDEP framework (Materials and Methods) or

even as the third derivatives using density functional perturbation theory [39] at

various volumes. Both calculations inherently include pure anharmonicity, but

the s-TDEP calculations include the temperature-dependence sampled through

a stochastic canonical ensemble average.

We find good agreement with experimental shifts and broadenings with

our phonon anharmonicity included ab initio calculations. The quasiharmonic

shifts with temperature are heavily underestimated for softening in the higher

energy modes [40].

Both the s-TDEP and qusiharmoinc calculations are in good agreement

with measured broadenings throughout the Brillouin zone (Table ??). We have

assessed over 950 modes and phonon centroids and linewidths and can be

found in the Supplemental Information. For the longitudinal acoustic modes
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Figure 4.3: Ab initio calculated phonon linewidths with temperature (2Γ =

1/τ). (a) Temperature dependence of shifts and broadenings throughout the

Brillouin zone. (b) A comparison between the s-TDEP and quasiharmonic

calculations at 300 K and 1500 K.
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and optical phonons we find the s-TDEP calculations slightly underestimate

the thermal broadenings in linewidths compared to s-TDEP and quasiharmonic

calculated linewidths.

Phonon linewidths (1/τ) throughout the Brillouin zone are shown in

Fig. 4.3 for a better comparison between the quasiharmonic and s-TDEP cal-

culations. Figure 4.3.a shows the temperature effects and resultant softening

and broadening with temperature from a 50×50×50. Although, the quasihar-

monic model can produce a significant portion of broadening with temperature,

the central frequencies are not. At 1500 K the s-TDEP calculated shifts are

65% and broadening 15% different than those of the quasiharmonic model. A

comparison between the average phonon energy shifts and averaged broaden-

ing are shown in Fig. 4.3.a-b. The experimental points in purple are calculated

from Table ??. Finite linewidths were determined by adding to 100 K calculated

linewidths.

Using both the second and third order interatomic force constants we

solved the Boltzmann transport equations with temperature as described in

the Materials and Methods section. We calculated total and mode-dependent

spectral thermal conductivity (κ(ε)/κtot) with temperature shown in Fig. 4.5

to show the amount of heat carried with phonon energy. The majority of heat

is carried through low-energy phonons. Optical modes carry only 5 % of heat at

300 K and increases to roughly 8.5 % at 1500 K (Fig. 4.4). With temperature

higher-modes increase in contribution to thermal conductivity. But, pure anhar-

monicity included s-TDEP calculations at 1500 K show higher heat carried by

lower energies shown in Fig. 4.4. The quasiharmonic calculations show a greater
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Figure 4.4: Brillouin zone averaged temperature-dependent phonon energies

(a) and linewidths (b). Energies calculated from experimental fits from Table ??

are in purple circle markers and ab initio calculations of the s-TDEP (solid teal

line) and quasiharmonic approximation (red dashed line) are also shown.



82

increase in heat carried by optical modes than s-TDEP calculation by an 11 %

difference. The total thermal conductivity values are are in good agreement

with experimental values (Fig. 4.5. At higher temperatures (> 1200 K) we see

a decrease in conductivity in both quasiharmonic and s-TDEP calculations.

At all temperatures the experimental linewidths, therefore phonon scat-

tering lifetimes, are in agreement with ab initio calculations. Pure anharmonic-

ity beyond perturbation calculations using quasiharmonic forces show changes

in shifts of frequencies, but only small deviations of linewidth changes at ele-

vated temperatures (> 800K). The small frequency corrections from thermal

expansion do not significantly alter calculations from constant volume calcula-

tions. Pure phonon anharmonicities with temperature are shown to affect the

real part of phonon self-energy, the shifts in frequencies with temperature. The

real part of the self-energy is consisted of third and fourth-order contributions,

we expect a proper fourth-order calculations would increase the accuracy of

temperature-dependent shifts. The s-TDEP method allows the sampling of all

orders of anharmonicity contained to the second and third order forces.

The observed softening in all phonons with temperature, although ther-

modynamically significant [40], do not seem to affect the thermal transport

calculations. The cause of this can be explained as follows. The kinematics of

the anharmonic coupling between modes are essentially unchanged as softening

is self-similar in all modes and the ratios between branches are not changed.

Therefore the large acoustic optical mode gap or acoustic bunching [41] are

not created and could be the cause for small differences between the quasihar-

monicity and pure anharmonicity calculated phonon lifetimes. There are also
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Figure 4.5: Spectral thermal conductivity (κ(ε)/κtot) at 300 (a) and 1500 K

(b). Ab initio calculated total spectral thermal conductivity of silicon at as

a black dashed line. Mode dependent spectral functions are shown as the

shaded area( TA: maroon and red,LA: blue, LO: green, and TO: black). (b)

Comparison between s-TDEP (teal) and quasiharmonic (red) calculation of

spectral thermal conductivity.
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Figure 4.6: Temperature-dependent thermal conductivity of silicon. Phonon

anharmonic ab intio calculations (s-TDEP) are shown as a solid teal line and the

quasiharmonic model in red dashed line. Experimental points as markers [12,

34, 35].
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no significant differences in the group velocities, and only significant differences

in phonon lifetimes of higher energy modes (> 30meV ). But the contribution

from the higher energy modes are decreased as the overall softening height-

ens the low transverse mode contributions to the overall thermal conductivity.

Generally, the heat capacity per mode would not change with softening alone

as the decrease in energy is compensated by the increase in population [42].

These methods for determining phonon lifetimes and centroid frequen-

cies in materials extends beyond a study of silicon. The exact phonon spectrum

with temperature, energy, and momentum dependence contains all of the in-

formation necessary to fit second and third order force constants for systems

where ab initio methods are intractable. As inelastic neutron scattering exper-

iments are not limited to simple solids and can be extended to more complex

systems in other applied fields. In silicon pure anharmonicity appears mostly in

the shifts with temperature throughout the Brillouin zone.
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MATERIALS AND METHODS

Inelastic Neutron Scattering

Inelastic neutron scattering measurements were performed on a single crystal of

silicon of 99.999% purity that was highly-oriented. The [110] oriented single

crystal was machined into a cylinder of 3.8 cm in height, 2.54 cm in outer

diameter and a 1.59 cm inner diameter to minimize multiple scattering. The

crystal was suspended in an aluminum holder and then mounted into a closed-

cycle helium refrigerator for the 100 K measurements, and a similar holder made

from niobium was mounted into a low-background electrical resistance vacuum

furnace for measurements at 300, 900, 1200 and 1500 K. For all measurements

the incident energy was 97.5 meV, and an oscillating radial collimator was used

to reduce background and multiple scattering [33, 43].

The time-of-flight neutron data included multiple datasets from 200 ro-

tations in increments of 0.5◦ about the vertical [110]-axis, reduced to create

the 4-dimensional S(q,ε) using standard software [44, 45]. A secondary data

reduction process consisted of ‘folding’ the entire S(q,ε) data set into an ir-

reducible wedge in the first Brillouin zone as previously mentioned [cite me].

Phonon centroids were then fitted using the Levenberg-Marquardt non-linear

least square method for multiple skewed-voigt functions. Changes in phonon

linewidths (FWHM ∝ 2Γ) were determined from isolating each peak at a spe-

cific ~q-point and deconvoluting the finite temperature phonon lineshape from

the fixed resolution approximated as the shape of the 100 K corresponding
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peak. The energy resolution from the 100 K data [cite:me alpha] corresponds

well to previously reported ARCS resolution [33, 43].

Ab initio calculations

Ab initio calculations were completed with the VASP package [46–49].

The projector augmented-wave formalism with the exchange-correlation en-

ergy calculated with the AM05 functional were used [50–52]. All calculations

used 5×5×5 supercell with a kinetic-energy cutoff of 500 eV and a 3×3×3

k-point grid. Phonon dispersions with fully anharmonic phonons with nuclear

quantum effects with temperature were calculated from stochastically initial-

ized temperature-dependent effective potential method (s-TDEP) described

previously [37, 53]. All calculations were converged to within 1 meV/atom.

Finite temperature phonon dispersions of silicon were calculated by fit-

ting first-principles forces to a model hamiltonian,

H =U0 +
∑
i

p2i
2m

+
1

2

∑
i jαβ

Φαβ
ij u

α
i u

β
j

+
1

3!

∑
i jkαβγ

Φαβγ
ijk u

α
i u

β
j u

γ
k .

(4.1)

The forces on atoms were generated using DFT with various configurations

of displaced atoms by a stochastic sampling of a canonical ensemble, with

cartesian displacements (uαi ) normally distributed around the mean thermal

displacement using

uαi =
∑
λ

εiαλ cλ√
mi

√
−2 ln ξ1 sin(2πξ2). (4.2)
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The thermal factor, cλ, is based on thermal amplitudes of normal mode λ, with

eigenvector ελ and frequency ωλ [54–56]

cλ =

√
~(2nλ + 1)

2ωλ
, (4.3)

and ξ1 and ξ2 are stochastically sampled numbers between 0 and 1. The phonon

distribution follows the Planck distribution, nλ = (eβ~ωλ − 1)−1, where the nu-

clear quantum effect can be turned off by taking the high-temperature limit of

Eq. 4.3. The fitting to the model Hamiltonian used the temperature-dependent

effective potential method (TDEP) [37, 53]. With thermal displacements from

Eq. 4.2 and Eq. 4.3, we refer to our temperature-dependent calculations as

the stochastically-initialized temperature-dependent effective potential method

(s-TDEP). This method circumvents the issue of expensive computational re-

sources required of ab initio molecular-dynamics (AIMD), replacing AIMD with

a Monte Carlo sampling of atomic positions and momentum near equilibrium

positions [53, 54]. The quasiharmonic model was calculated with 0 K configura-

tions at the respective volumes for a minimized quasiharmonic free energy [40].

Phonon self-energies

The phonon self-energy part, correction to phonon energies from many-body

interactions, is comprised of real and imaginary contributions,

Σλ = ∆λ + iΓλ. (4.4)

Phonon scattering rates, their lifetimes, are related to the imaginary

part of the self-energy ( 1
τλ

= 2Γλ) for mode λ evaluated at the harmonic fre-
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quency []. The imaginary part of the self-energy from many-body perturbation

theory is

Γλ(Ω) =
~π
16

∑
λλ

|Φλλλ|2

×
{

(nλ + nλ + 1)δ(Ω− ωλ − ωλ) + (nλ − nλ)

× [δ(Ω− ωλ + ωλ)− δ(Ω + ωλ − ωλ)]
}
.

(4.5)

The Ω(= E/~) is the probing energy and the delta functions conserve

energy and momentum and sum over all possible three-phonon interactions

between modes. The Φλλλ is the three-phonon matrix elements the Fourier

transform of the third-order component of the interactomic potential (Eq. 4.6),

Φλλλ =
∑
i jk

∑
αβγ

εiαλ ε
jβ
λ′′ε

kγ
λ′√

mimjmk
√
ωλωλ′ωλ′′

×Φαβγ
ijk e

i ~q·~ri+i ~q ·~rj+i ~q ·~rk ,

(4.6)

where the constants are as previously described and ~ri is the lattice

vector associated with atom i . The real part of the self-energy is calculated

through a Kramers-Kronig transformation of the imaginary part

∆(Ω) =
1

π

∫
dω

Γ(ω)

ω −Ω
. (4.7)

Ab initio calculated phonon-self energies used second and third order

force constants with temperature (s-TDEP) and at 0 K for the quasiharmonic
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model (4). Note, this quasiharmonic model, still incorporates pure anharmonic-

ity through the third-order force constants, but is different in nature from DFT

calculations which include the true temperature-dependent forces on atoms.

Thermal conductivity

Using perturbation theory, thermal conductivities for both force constants from

experimental data and ab initio calculated force constants were obtained by it-

eratively solving the full Boltzmann transport equation (BTE) on a 90 × 90

× 90 q-point grid [18]. The only inputs are the second and third order force

constants. The momentum conservation is exactly fulfilled, and energy conser-

vation was employed with the tetrahedron method [57]. Thermal conductivity

was converged with respect to q-point grid density to within 0.01 %. Pure

anharmonicity, from phonon-phonon interactions, and isotope scattering in the

natural distribution were included [58].

καα =
1

V

∑
~qs

C~qsv
2
α~qsτα~qs (4.8)
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C h a p t e r 5

FINAL REMARKS AND FUTURE DIRECTIONS

T
his thesis work benefited from a synchronous approach to understanding

the theoretical model needed to accurately determine entropy, ther-

mal expansion, and thermal conductivity of silicon. Silicon, does not exhibit

“giant” or “massive” anharmonicities in the absolute sense, but show prop-

erty altering deviations from the harmonic and quasiharmonic approximated

phonon frequency changes with temperature. Pure anharmonicities whether it

be coupled to nuclear quantum effects at low temperatures, or as the dominant

driving force for finite temperature changes should be important for thermal

characterization of materials and optimal applications.

Without the systematic wide temperature range study, the majority of

this work would have been overlooked. The possible error in calculating high

temperature quasiharmonic entropy was not surprising initially. The surprise

came from the mechanism behind these increasing errors. The microscopic

mechanism of shifts in low energy modes of the wrong sign motivated us to

revisit silicon’s anomalous thermal expansion behavior. The quasiharmonic the-

ory predicts incorrect phonon frequency shifts and therefore is incorrect, at all

temperatures. The leading-order terms of both quasiharmonicity and anhar-

monicity are linear in temperature [1], so if anharmonicity is important at high

temperatures, it can have the same relative importance at low temperatures,
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too. Thus, the accepted quasiharmonic model is incorrect, but it is shown that

it predicts the macroscopic behavior correctly. For thermal expansion, the can-

cellation of shifts of various modes average out the differences in total entropy

at lower temperatures as well as at high T.

The thermal conductivity at high temperatures is mediated on the other

hand by larges softening of phonons competing with their intrinsic increase

of heat capacity. These pure anharmonicities, and nuclear quantum effects

should prove to be important for many materials and its thermal properties.

Macroscopic bulk properties may not always be a fail proof method for validating

theoretical models alone. Precise inelastic neutron scattering experiments and

state-of-the-art ab initio calculations will be a useful in thermal characterization

of materials based on anharmonicities and nuclear quantum effects.

Recent progress in understanding complexities in vibrational entropy,

and thermodynamic properties opens new ways to accurately describe ther-

mal properties over a broad range of materials. Another problem to address

is the temperature dependence of elasticity. Although simple explanations for

temperature-dependent elastic constants seem trivial [2–5], due to the nature

of silicon’s strong covalent bonds, understanding how elasticity is effected by

phonon-phonon interactions and any deviations from linearity will prove to be

interesting especially for micro-mechanic applications [6, 7]. Single crystal in-

elastic neutron scattering data-sets could prove to be a perfect way to sample

sound velocities in all directions especially anisotropic solids. Sampling all di-

rections to study anisotropy could be a promising method of understanding

strength of materials with temperature, pressure, or in other applied fields
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through time-of-flight inelastic neutron scattering.

A closer look at neutron scattering with materials on these large data

sets of accurate and high statistical quality allows for a better understanding of

anharmonic interference. Anharmonic interference is from the constructive or

destructive interference of scattered neutrons with itself as the cubic term of

anharmonicity allows for either one phonon scattering to two created phonons

or two phonons annihilated with the creation of one. This phase difference

will cause a change in scattered intensity (S(q, ε)) across various points in q-

space. Anharmonic interference has been theoretically solved previously with

comparisons to historical scattering experiments [8–12]. But, the impact of

these effects on the phonon spectrum intensity between various Brillouin zones

are typically ignored and deserves a more deliberate examination.

In depth studies on nuclear quantum effects and its role in negative

thermal expansion are also promising research directions. Real-space inter-

pretations or mechanisms would prove to be interesting as can be levied for

future quantitative analysis and high-throughput engineering. Other materials

that show anomalous thermal expansion often have light elements where these

effects become more pronounced [13–17] The s-TDEP method has shown

adequate representations of atomic densities compared to other path-integral

methods even for Hydrogen-gas, but these methods are in need of further

testing. Other examples of anomalous thermal expansion behavior system like

solid-ice (H2O) would be strong candidate test materials, both experimentally

and computationally.
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Another major theme that deserves more attention is changes of lattice

dynamics through doping and defects. Doped silicon shows large effects on bulk

modulii, and was also found to increase electron-phonon couplings. Comparing

how these effects from type of dopant to fermi level engineering seems to

be a good future research direction [18, 19]. Large anharmonic effects were

calculated for atomics in close proximity to defects [20, 21]. Anharmonicity was

shown to affect the thermal conductivity and the bulk modulus through doping

have been studied and great advancements were made through modern DFT

methods [22, 23]. But experimental evidence of the microscopic mechanisms is

still not available. Significant advancements have been made in understanding

the electrical properties of these materials, but the thermal properties and

the effects on electronic properties are not as well understood and should be

studied.

Other effects of geometry will be vital for understanding advanced ma-

terials that are typically in planer, or the so called 2D geometries. Low-

dimensional materials such as bismuth-based compounds, and transition metal

dichalcogenides show promise due to exotic electronic and transport proper-

ties [24–27]. Understanding the thermal properties and inter-planer effects of

phonons, and electron-phonon interactions will provide answers to how exotic

properties are physically governed. Currently, I am working on understanding

the thermodynamics of graphite, single-walled nanotubes, and carbon diamond.

We have measured phonon density of sttes in grpahite from 7 to 1400 K and

observed large phonon shifts unacountable by the quasiharmonic model. For

graphite in particular, there are reported phonon anharmonicities and electron-
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phonon interactions in Raman and IR modes [28, 29]. But an extensive study

on the temperature-dependence of all phonon modes is lacking. Surprisingly,

the anharmonicities and electron-phonon interactions are avoided in the calcu-

lation of thermodynamic free energies and thermal expansion [29]. Accounting

for van der Waal forces computationally and understanding the effects on lt-

tice dynamics are also not well understood. Although anharmonic shifts and

broadening are observed experimentally, the computational limitations at the

moment regarding van der Waals forces need to be addressed passed analytical

models.

There are still many open question of how geometry, dimensionality,

and bond strength through variations in composition, doping, defects inter-

planer effects, and many-body interactions contribute to the changes in the

thermodynamics, and other materials properties. I am excited in the belief that

the community will bring much needed progress in the next decades.
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