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ABSTRACT	
	

In	 this	 thesis,	 I	present	my	work	on	 the	development	of	 a	 self-contained	 toilet	

wastewater	treatment	and	recycling	system,	the	“Caltech	Solar	Toilet”.	The	Caltech	

Solar	Toilet	technology	is	based	on	electrolysis	of	toilet	wastewater	with	TiO2-coated	

semiconductor	anodes	and	stainless	steel	cathodes.	This	is	a	potentially	viable	onsite	

sanitation	 solution	 in	 parts	 of	 the	 world	 that	 lack	 the	 needed	 infrastructure	 for	

centralized	wastewater	treatment.		

Prototypes	of	Caltech	Solar	Toilets	were	designed	to	fit	in	shipping	containers	in	

order	to	provide	toilets	and	onsite	wastewater	treatment	with	clean	water	recycling.	

Units	 were	 designed	 to	 handle	 the	 waste	 of	 25	 users	 per	 day	 (or	 130	 L	 of	 toilet	

wastewater).	 The	 various	 prototypes	were	 able	 to	 provide	 for	 the	 disinfection	 of	

pathogens,	 reduction	 of	 chemical	 oxygen	 demand	 (COD),	 [NH3],	 and	 color	 at	 an	

average	energy	consumption	of	35	Wh	L-1.	The	treated	wastewater	was	recycled	for	

use	as	toilet	flushing	water.		

The	 addition	 of	 a	 microbial	 fuel	 cell	 system	 for	 urine	 pre-treatment	 was	

investigated	 to	 lower	 the	 overall	 energy	 consumption	 of	 the	 Solar	 Toilets.	 The	

microbial	 fuel	 cell	 system	 used	 consisted	 of	 two	 stacks	 of	 32	 cells	 connected	 in	

parallel.	An	average	power	density	of	23	mW	m-2	was	produced	at	an	effective	current	

density	of	65	mA	m-2	for	more	than	120	days.	[NH3],	total	inorganic	carbon,	COD,	and	

total	organic	carbon	 levels	were	monitored	 frequently	 to	understand	 the	chemical	

energy	 conversion	 to	 electricity	 as	 well	 as	 to	 determine	 the	 best	 electrical	
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configuration	of	the	stacks.	Archaeal	and	bacterial	population	on	selected	anode	felts	

and	in	the	anolyte	of	both	stacks	were	investigated	as	well.	

In	addition	to	treating	toilet	wastewater,	pilot-scale	and	bench-scale	experiments	

demonstrated	 that	electrolysis	 can	remove	phosphate	by	cathodic	precipitation	as	

hydroxyapatite	at	no	additional	energy	cost.	Phosphate	removal	could	be	predicted	

based	 on	 initial	 phosphate	 and	 calcium	 concentrations,	 and	 up	 to	 80%	 total	

phosphate	removal	was	achieved.	While	calcium	was	critical	for	phosphate	removal,	

magnesium	and	bicarbonate	had	only	minor	impacts	on	phosphate	removal	rates	at	

concentrations	typical	of	toilet	wastewater.		
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1.1. A	global	sanitation	crisis	

In	2000,	the	United	Nations	defined	a	set	of	eight	international	development	goals	

known	as	Millennium	Development	Goals	to	be	achieved	by	2015	(United	Nations,	

2016).	These	goals	were	aimed	at	eradicating	extreme	poverty	and	hunger,	giving	

access	 to	 primary	 education,	 promoting	 gender	 equality,	 reducing	 child	mortality,	

improving	 maternal	 health,	 combatting	 diseases,	 ensuring	 environmental	

sustainability,	and	developing	a	global	partnership	for	development.	Target	7C	under	

Goal	 7	 to	 “ensure	 environmental	 sustainability”	 was	 to	 “halve,	 by	 2015,	 the	

proportion	of	the	population	without	sustainable	access	to	safe	drinking	water	and	

basic	sanitation”.	The	World	Health	Organization	(WHO)/	United	Nations	Children's	

Fund	 (UNICEF)	 Joint	 Monitoring	 Programme	 for	 Water	 Supply,	 Sanitation,	 and	

Hygiene	 (JMP)	 has	 been	 the	 team	 responsible	 for	 reporting	 progress	 in	 country	

(Figure	1.1),	regional,	and	global	estimates	of	access	to	drinking	water,	sanitation,	and	

hygiene	since	1990	(WHO/UNICEF	JMP,	2017a).		

Between	1990	and	2015,	progress	was	made	 to	 reach	Target	7C.	For	example,	

global	access	to	improved	drinking	water2	supply	increased	from	76%	to	91%	of	the	

world	population	(Figure	1.2	a)	and	access	to	improved	sanitation3	increased	from	

54%	to	68%	of	the	world	population	(Figure	1.2	b).	Despite	the	progress	made	in	all	

aspects	 of	 access	 to	 water,	 sanitation,	 and	 hygiene	 during	 the	 1990-2015	 period	

																																																								
2	Improved	drinking	water	sources	are	defined	by	the	JMP	as	having	a	household	

connection	to	a	potable	water	network,	a	public	standpipe,	a	borehole,	a	protected	
dug	well,	a	protected	spring,	or	a	rain	water	collection	system.	

3	Improved	sanitation	is	defined	by	the	JMP	as	having	a	private	toilet	connected	to	
a	 public	 sewer	 or	 a	 septic	 system,	 a	 pour-flush	 latrine,	 a	 simple	 pit	 latrine,	 or	 a	
ventilated	improved	pit	latrine.	
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(World	Health	Organization,	2015),	only	access	to	improved	drinking	water	has	met	

the	 Millennium	 Development	 Goals	 target	 of	 at	 least	 88%	 coverage.	 Access	 to	

improved	sanitation	remained	9%	below	its	Millennium	Development	Goals	target	of	

77%.	But	having	access	to	improved	drinking	water	alone	does	not	guarantee	that	

this	 water	 is	 not	 contaminated	 by	 fecal	 residues.	 Most	 low-	 and	 middle-income	

countries	present	non-negligible	microbial	contamination	of	their	improved	drinking	

water	 sources	 (Figure	 1.3).	 This	 fecal	 contamination	 of	 improved	 drinking	 water	

sources	ranges	from	approximately	10%	in	Europe	to	more	than	25%	in	South	East	

Asia,	Eastern	Mediterranean	region,	and	Africa.	Therefore,	access	to	safe	and	clean	

water	alone	cannot	happen	without	having	access	to	proper	sanitation.		

In	its	2017	report,	the	JMP	introduced	the	sanitation	ladder	with	five	levels.	These	

levels	 are	 built	 on	 previous	 indicators	with	 the	 addition	 of	 criteria	 relative	 to	 the	

quality	 of	 the	 sanitation	 services.	 These	 levels	 are	 from	 least	 sanitary	 to	 most	

sanitary:	open	defecation	(no	service);	unimproved	sanitation	services	with	bucket	

latrines	or	pit	latrines	without	a	slab	or	platform;	limited	sanitation	services,	which	

are	 improved	 facilities	 shared	 between	 two	 or	more	 households;	 basic	 sanitation	

services	which	 are	 improved	 facilities	 belonging	 to	 a	 single	 household;	 and	 safely	

managed	 sanitation	 services	 for	which	 excreta	 are	 safely	 disposed	 of	 in	 situ	 (e.g.,	

ventilated	 improved	 pit	 latrine)	 or	 treated	 off-site	 (e.g.,	 wastewater	 treated	 in	 a	

municipal	plant).	Based	on	these	updated	levels,	only	39%	of	the	global	population	

has	 access	 to	 safely	 managed	 sanitation	 (Figure	 1.4).	 Thus,	 61%	 of	 the	 world	

population,	or	4.5	billion	people,	lack	access	to	safely	managed	sanitation.		
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Access	to	safe	sanitation	is	crucial	to	people’s	health	and	wellbeing:	the	lack	of	safe	

sanitation	 is	 directly	 correlated	 to	 high	 number	 of	 waterborne	 diseases	 such	 as	

Hepatitis	A,	diarrheal	diseases,	Cholera,	Poliomyelitis,	etc.	through	the	contamination	

of	water	bodies	by	human	excreta	(Ashbolt,	2004;	Montgomery	&	Elimelech,	2007).	

For	 instance,	more	 than	half-million	 children	under	5	years	old	die	 annually	 from	

diarrheal	diseases	only	(Julian,	2016),	while	the	WHO	estimates	that	88%	of	diarrheal	

diseases	are	directly	linked	to	unsafe	water	supplies	and	inadequate	sanitation	and	

hygiene	(World	Health	Organization,	2014).		

Sanitation	projects	that	are	designed	for	implementation	in	the	developing	world	

have	traditionally	used	a	segmented	approach	to	improve	sanitation	(World	Health	

Organization	and	UNICEF,	2014),	breaking	sanitation	down	to	a	value	chain	(Figure	

1.5,	 top)	 composed	 of	 toilets	 or	 latrines	 (user	 interface),	 collection	 of	 excreta,	

transportation	 of	 excreta,	 treatment	 of	 excreta,	 and	 the	 extraction	 and	 use	 of	

potentially	 valuable	 by-products	 (Dijk,	 2012).	 Each	 step	 of	 the	 value	 chain	 is	 a	

potential	vector	for	mishandling	of	the	waste	and	contamination	of	the	environment.	

For	instance,	the	Shit	Flow	Diagram	(SFD)	for	the	city	of	Dhaka,	Bangladesh	(Figure	

1.5)	shows	that	99%	of	the	population	has	access	to	improved	sanitation;	however,	

only	20%	of	the	population	has	flush	toilets	connected	to	sewers	and	79%	has	access	

to	onsite	toilets,	but	only	2%	of	the	fecal	waste	is	being	effectively	treated	(Blackett,	

Hawkins,	&	Heymans,	2014).	The	remaining	98%	is	discharged	to	the	environment	

with	 no	 adequate	 treatment.	 This	 extreme	 example	 illustrates	 the	 complexity	 of	

dealing	with	each	step	of	the	sanitation	value	chain	separately	when	each	step	often	
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requires	 coordination	 among	 public	 and	 private	 actors	 in	 order	 to	 be	 achieved	

correctly.		

The	 development	 of	 a	 system	 that	 safely	 treats	 the	 human	waste	 close	 to	 the	

toilet(s)	would	also	prevent	contamination	of	the	local	environment	and	significantly	

reduce	the	risk	of	foodborne	disease	transmission	by	acting	as	an	effective	primary	

barrier	 against	 direct	 and	 indirect	 transmission	 or	 transport	 of	 disease	 agents	

(bacteria,	 viruses,	 protozoa	 and	 helminthes)	 to	 other	 humans	 (Figure	 1.6).	 As	 a	

consequence,	such	a	system	would	act	as	a	strong	and	effective	primary	barrier	to	

lower	 the	 risk	 associated	when	 relying	 on	 secondary	 barriers	 related	 to	 hygienic	

practices	on	 food	handling	and	preparation	as	methods	 to	prevent	 foodborne	and	

waterborne	diseases	(Trench,	Narrod,	Roy,	&	Tiongco,	2012).		
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1.2. Current	processes	for	safe	sanitation	

Safe	 sanitation	 technologies	 employ	 one	 or	multiple	 processes	 to	 treat	 human	

waste.	These	processes	are	physical,	chemical,	biological,	or	a	combination	thereof.	

Physical	 treatment	 of	 human	 waste	 is	 often	 done	 thermally	 in	 simple	 drying	

processes,	pressure	during	centrifugation,	or	by	a	combination	of	heat	and	pressure	

with	pasteurization.	These	processes	are	very	effective	for	treating	biosolids	such	as	

the	 sludge	material	 from	pit	 latrines	 (Strauss,	 Larmie,	&	Heinss,	 1997)	 or	 aerobic	

sludge	 from	 wastewater	 treatment	 plants	 (Metcalf	 &	 Eddy,	 2014;	 Whitmore	 &	

Robertson,	1995).	Physical	processes	can	guarantee	pathogen-free	residuals	but	are	

often	 energy-intensive	 for	 small-scale	 systems.	 For	 instance,	 portable	 incinerating	

toilets	can	be	used	in	remote	environments	and	guarantee	pathogen-free	residuals	

but	 the	 incineration	 process	 destroys	 N-based	 nutrients	 in	 the	 waste	 (U.S.	

Environmental	Protection	Agency,	1999).		

Chemical	 processes	 used	 in	 human	 waste	 disinfection	 are	 often	 oxidative	

processes	 carried	out	 in	 a	wide	variety	of	 scales	 for	wastewater	 treatment.	These	

processes	 range	 from	 chlorination	 of	 wastewater	 with	 addition	 of	 sodium	

hypochlorite	 (U.S.	 Environmental	 Protection	 Agency,	 2003)	 or	 chlorine	 gas,	 to	

advanced	oxidation	processes	using	UV/ozone	photochemical	processes	for	hydroxyl	

radical	 generation	 (White,	 2010).	 Although	 seldom	 used,	 direct	 or	 indirect	

electrochemical	oxidation	of	pollutants	in	wastewater	are	“potential	next-generation	

technologies	for	the	treatment	of	contaminated	water”	(Radjenovic	&	Sedlak,	2015).	

Biosolid	 waste	 can	 also	 be	 treated	 chemically	 with	 reactions	 such	 as	 alkaline	
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hydrolysis	that	can	be	carried	out	on	the	biosolids	when	soda	ash	is	added	to	sludge	

from	a	pit	latrine	(Neyens,	Baeyens,	&	Creemers,	2003).		

Biological	 processes	 are	 commonly	 employed	 in	 the	 treatment	 of	wastewaters	

with	 aerobic	 and	 anaerobic	microorganisms	 used	 in	wastewater	 treatment	 plants	

(Metcalf	 &	 Eddy,	 2014).	 Controlled	 microorganisms	 populations	 are	 also	 directly	

used	for	onsite	treatment	processes	ranging	from	small	scale	wastewater	treatment	

plants	 to	 composting	 (Langergraber	 et	 al.,	 2004)	 or	 even	 vermicomposting	 toilets	

(Adhikary,	2012).	Anaerobic	digestion	of	toilet	waste	to	biogas	is	often	suggested	as	

a	 way	 to	 combine	 treatment	 and	 energy	 recovery	 but	 issues	 related	 to	 cost,	

maintenance,	smell,	and	sometimes	cultural	adoption	make	those	systems	limited	to	

rural	areas	(Schouten	&	Mathenge,	2010).	Electrochemical	biotechnologies	such	as	

microbial	 fuel	 cells	 are	 sometimes	used	 to	oxidize	nutrients	 in	wastewaters	while	

producing	electricity	(Logan	&	Rabaey,	2012).		

Despite	all	these	technological	developments,	as	stated	in	section	1.1,	4.5	billion	

people	still	lack	access	to	safe	sanitation.	This	global	crisis	is	unacceptable	to	the	Bill	

&	 Melinda	 Gates	 Foundation.	 This	 untenable	 situation	 became	 the	 driving	 force	

behind	the	research	and	development	presented	in	this	thesis.	
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1.3. The	Gates	Foundation’s	“Reinvent	The	Toilet	Challenge”	

In	 February	 2011,	 The	 Bill	 &	 Melinda	 Gates	 Foundation	 announced	 a	 major	

challenge	 to	 university	 researchers	 to	 “Reinvent	 the	 Toilet”	 (Bill	 &	Melinda	 Gates	

Foundation,	2013).	The	primary	goal	of	the	Bill	&	Melinda	Gates	Foundation	was	to	

engage	 universities	 in	 the	 development	 of	 new	 and	 innovative	 processes	 to	 treat	

human	 bodily	 wastes	 at	 the	 site	 of	 origin	 without	 discharge	 to	 the	 ambient	

environment	or	discharge	to	conventional	sewer	systems,	septic	tanks,	cesspools,	or	

open	drainage	systems.	The	overarching	goal	of	the	Bill	&	Melinda	Gates	Foundation	

Global	 Development	 Program	 within	 the	 context	 of	 their	 Water,	 Hygiene	 and	

Sanitation	 initiative	 was	 to	 develop	 practical	 low-cost	 solutions	 that	 could	 be	

implemented	in	regions	of	the	world	that	lack	access	to	safe	and	affordable	sanitation.	

The	 primary	 challenge	 was	 to	 develop	 a	 comprehensive	 approach	 to	 designing,	

developing,	testing,	and	prototyping	systems	that	could	collect	and	process	human	

waste	on-site	at	the	source	of	origin	and	at	the	same	time	produce	useful	byproducts,	

including	fertilizer,	mineral	salts,	energy,	purified,	and	disinfected	water	with	no	solid	

of	 liquid	discharge	to	the	environment.	A	cost	constraint	was	set	at	a	maximum	of	

$0.05	 per	 person	 per	 day	 including	 capital	 costs	 and	 operating	 expenses.	 In	 this	

thesis,	 I	 present	 my	 work	 on	 the	 development	 of	 a	 “Reinvented	 Toilet”:	 a	 self-

contained	toilet	wastewater	treatment	and	recycling	system,	called	the	“Caltech	Solar	

Toilet”.		
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1.4. The	Caltech	Solar	Toilet	

The	Caltech	Solar	Toilet	was	invented	as	a	response	to	the	challenge	set	by	the	Bill	

&	Melinda	Gates	Foundation	described	in	section	1.3.	The	Caltech	Solar	Toilet	has	at	

its	 core	 unit	 an	 electrochemical	 reactor	 using	 semiconductor	 anodes	 for	 chloride	

oxidation	 to	 reactive	 chlorine	 that	 can	 provide	 complete	 disinfection	 of	 indicator	

microorganisms	 (Huang	 et	 al.,	 2016),	 oxidize	 organic	 nitrogen	 (Cho	 &	 Hoffmann,	

2014;	 Kim,	 Choi,	 Choi,	 Hoffmann,	 &	 Park,	 2013),	 and	 eventually	 mineralize	 the	

organic	material	(Jasper,	Shafaat,	&	Hoffmann,	2016)	present	in	the	wastewater.	The	

system	has	been	designed	to	be	autonomous	and	infrastructure-free:	it	does	not	need	

a	connection	to	a	water	source,	a	sewer	system,	or	an	electrical	grid	(Hoffmann	et	al.,	

2013).		

Three	 generations	 of	 Solar	 Toilet	 prototypes	 have	 been	 developed	 and	 tested	

across	the	world	since	2012	(Table	1.1,	Figure	1.1),	they	are	based	on	the	following	

treatment	stream:	one	or	multiple	toilets,	urinals,	and	washbasins	are	connected	to	a	

collection	 tank	 (wastewater	 tank)	with	 the	 potential	 for	 biological	 pre-treatment,	

then	wastewater	is	pumped	into	the	electrochemical	reactor	in	which	it	undergoes	

electrolysis	 for	 a	 fixed	 amount	 of	 time.	 The	 treated	water	 passes	 through	 a	 filter	

before	being	pumped	 into	a	 storage	 tank	where	 it	 can	be	reused	as	 toilet	 flushing	

water.	The	whole	process	is	automatized	and	can	be	connected	to	grid	electricity	or	

run	 on	 solar	 panels	 with	 backup	 battery	 storage	 for	 use	 throughout	 24	 hours	 of	

continuous	operation.	The	simplified	flow	diagram	of	the	first-generation	prototypes	

is	schematized	in	Figure	1.7	along	with	the	implication	of	Chapters	2,	3,	and	4	of	this	

thesis.	
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1.5. Thesis	overview	

Chapter	2	of	this	thesis	provides	more	details	on	the	Solar	Toilet	prototypes	and	

their	testing	under	field	conditions	in	India	and	China.	The	general	concept,	specific	

design	elements,	and	treatment	approach	proven	to	be	viable	for	the	treatment	of	raw	

domestic	 wastewater,	 human	 urine,	 and	 human	 feces.	 After	 several	 hours	 of	

photovoltaic-powered	 (PV-powered)	 electrochemical	 treatment,	 the	 turbid,	 black-

water	influent	can	be	clarified	with	the	elimination	of	the	suspended	particles	along	

with	the	reduction	or	total	elimination	of	the	chemical	oxygen	demand	(COD),	total	

enteric	coliform	disinfection	via	in	situ	reactive	chlorine	species	generation,	and	the	

elimination	of	measurable	protein	after	3	to	4	hours	of	electrochemical	treatment.	

In	Chapter	3	of	this	thesis,	the	energy	efficiency	of	the	Solar	Toilets	is	improved	

by	the	addition	of	a	microbial	fuel	cell	system	for	urine	pre-treatment.	The	microbial	

fuel	cell	system	used	consists	of	two	stacks	of	32	fuel	cells	connected	in	parallel.	The	

pre-treatment	of	human	urine	by	anodic	microorganisms	occurred	with	concomitant	

electrical	energy	recovery.	This	usage	of	microbial	fuel	cells	can	lower	the	energy	cost	

for	treating	human	waste	while	recovering	the	necessary	electrical	energy	to	divert	

the	urine	flow,	making	this	approach	an	overall	energy	gain	for	the	entire	onsite	self-

contained	human	waste	treatment	system.		

Chapter	 4	 of	 this	 thesis	 provides	 information	 on	 nutrient	 recovery	 from	 the	

Caltech	 Solar	 Toilets.	 It	 describes	 the	 co-production	 of	 crystallized	Mg-containing	

hydroxyapatite	during	the	treatment	of	wastewater.	The	purpose	of	this	study	was	to	

evaluate	 the	 potential	 for	 phosphate	 removal	 from	 human	 wastewater	 during	

electrochemical	 treatment	 using	 the	 same	 combined	 anode-cathode	 system	
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described	 in	 Chapter	 2.	 Phosphate-containing	 precipitates	 were	 identified	 and	

phosphate	 removal	 efficiencies	 were	 measured	 in	 authentic	 and	 synthetic	 toilet	

wastewater.	 Experiments	 in	 synthetic	 wastewater	 allowed	 quantification	 of	 the	

effects	of	ion	composition,	buffering	capacity,	current	density,	and	electrode	surface	

area	to	volume	ratio	on	phosphate	removal	kinetics	and	equilibria.		

Chapter	 5	 of	 this	 thesis	 provides	 more	 practical	 applications	 of	 my	 work	 in	

developing	the	Caltech	Solar	Toilets.	A	key	finding	from	the	field	studies	of	Chapter	2	

was	the	need	for	a	maintenance	plan.	I	and	several	of	my	coworkers	are	developing	a	

smart	maintenance	technology	for	onsite	wastewater	systems.	Another	key	finding	

from	Chapter	3	was	that	the	use	of	a	MFC	system	for	pre-treating	urine	could	be	even	

more	effective	and	easier	to	install	in	a	Solar	Toilet	if	all	the	flush	water	could	enter	

the	MFC.	This	 approach	 is	under	 investigation.	The	development	of	 a	 standard	on	

“Reinvented	Toilets”	is	also	addressed	in	Chapter	5.		
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Table	1.1:	Description	of	the	Caltech	Solar	Toilet	prototypes	of	different	generations	(Gen.)	with	
manufacturing	and	field	partners	in	the	USA,	India,	China,	and	South	Africa.	

Map	
ref.	

Gen.	 Configuration	 Testing	 Manufacturing	and	
field	partners	

Location	 Period	 	
PAS	 1	 PV-powered	self-

contained	bathroom	with	
wastewater	treatment	and	
recycling	unit	in	a	
shipping	container.	Design	
for	40-60	users/day.	

Pasadena,	CA,	
USA	

06/2013	to	
06/2017	

-	

KYM	 Kottayam,	
Kerala,	India	

04/2014	to	
01/2016		

Mahtamah	Gandhi	
University	of	Science	and	
Technology	

YXG	 Yixing,	
Jiangsu,	China	

12/2014	to	
05/2015	

Yixing	Eco-Sanitary	
Manufacture	Co.	

AMD	 1	 Grid-powered	wastewater	
treatment	and	recycling	
unit	connected	to	an	
“eToilet”	public	toilet	
(Eram	Scientific,	
Trivandrum,	Kerala,	
India).	Design	for	40	
users/day.	

Ahmedabad,	
Gujarat,	India	

04/2014	to	
01/2016	

Eram	Scientific	and	
Indian	Institute	of	
Technology	(IIT)	
Gandhinagar	

COI	 2	 Grid-powered	wastewater	
treatment	and	recycling	
unit	connected	apartment	
buildings.	Designed	for	5	
families.	

Coimbatore,	
Tamil	Nadhu,	
India.	

10/2015	to	
08/2017	

The	Kohler	Company	
(design	and	
construction)	and	RTI	
International	(field	
testing).	

YXG	 2	 PV-powered	self-
contained	bathroom	with	
wastewater	treatment	and	
recycling	unit	in	a	
shipping	container	with	
advanced	
anaerobic/aerobic	pre-
treatment.	Designed	from	
40-60	users/day	to	200	
users/day.	

Yixing,	
Jiangsu,	China	

05/2015	to	
present	

Yixing	Eco-Sanitary	
Manufacture	Co.	

COI	 3	 Grid-powered	wastewater	
treatment	and	recycling	
unit	with	advanced	
anaerobic/aerobic	pre-
treatment	connected	
apartment	buildings.	
Designed	for	5	families.	

Coimbatore,	
Tamil	Nadu,	
India.	

10/2017	to	
present	

The	Kohler	Company	
(design	and	
construction)	and	RTI	
International	(field	
testing).	

DUR	 3	 PV-powered	self-
contained	bathroom	with	
wastewater	treatment	and	
recycling	unit	in	a	
shipping	container	with	
advanced	
anaerobic/aerobic	pre-
treatment.	Designed	from	
40-60	users/day	to	200	
users/day.	

Durban,	South	
Africa	

01/2018	to	
present	

Yixing	Eco-Sanitary	
Manufacture	Co.	(design	
and	construction)	and	
Water	Research	Council	
for	South	Africa	(field	
evaluation).	
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Figure	 1.1:	 Percentage	 of	 a	 country’s	 population	 without	 access	 to	 safe	 sanitation	 in	 2015	
according	to	the	World	Health	Organization	(World	Health	Organization	2015).	Location	of	the	
prototype	 testing	 sites	 across	 the	world:	AMD,	Ahmedabad,	Gujarat,	 India;	 COI,	 Coimbatore,	
Tamil	Nadu,	 India;	DUR,	Durban,	Kuazulu-Natal,	 South	Africa;	KYM,	Kottayam,	Kerala,	 India;	
PAS,	Pasadena,	California,	USA;	YXG,	Yixing,	Jiangsu,	China.	 	
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Figure	 1.2:	 Trends	 in	 global	 drinking	water	 (a)	 and	 sanitation	 (b)	 coverage	 and	Millenium	
Development	Goal	target	coverage	(%),	1990-2015.	Reproduced	from	Progress	on	sanitation	
and	drinking	water:	2015	update	and	MDG	assessment	with	the	permission	of	the	World	Health	
Organization	and	UNICEF	(World	Health	Organization,	2015).	 	
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Figure	1.3:	“Proportion	of	population	accessing	difference	types	of	drinking	water,	by	region	
and	 by	 microbial	 contamination	 level,	 2012.	 AFR:	 Africa;	 AMR:	 Americas;	 EMR:	 Eastern	
Mediterranean;	 EUR:	 Europe;	 SEAR:	 South	 East	 Asia;	 WPR:	 Western	 Pacific.	 Microbially	
contaminated	water	has	detectable	E.	 coli	 or	 thermotolerant	 coliforms	 in	a	100	mL	sample,	
while	samples	showing	no	detectable	faecal	indicator	bacteria	(<1	per	100	mL)	are	compliant	
with	 WHO	 guideline	 values	 and	 most	 national	 standards.”	 Reproduced	 from	 Preventing	
diarrhoea	 through	 better	 water,	 sanitation	 and	 hygiene:	 exposures	 and	 impacts	 in	 low-and	
middle-income	countries	with	the	permission	of	the	World	Health	Organization	(World	Health	
Organization,	2014).	 	
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Figure	 1.4:	 Proportion	 of	 the	 global	 population	 using	 sanitation	 facilities	 meeting	 specific	
criteria	for	safely	managed	services.	Reproduced	from	Progress	on	drinking	water,	sanitation	
and	 hygiene:	 2017	 update	 and	 SDG	 baselines	 with	 the	 permission	 of	 the	 World	 Health	
Organization	(WHO/UNICEF	JMP,	2017b).	 	
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Figure	 1.5:	 Sanitation	 value	 chain	 (top)	 and	 Shit	 Flow	Diagram	 (SFD)	 for	 the	 city	 of	 Dhaka,	
Bangladesh.	Reproduced	with	the	permission	of	The	World	Bank	Group	(Blackett	et	al.,	2014).	 	

www.wsp.org
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S ervice Delivery Assessment Scorecard
The second analysis tool used was the Service Delivery 
Assessment (SDA) scorecard (Figure 3).3 This tool ana-
lyzes the enabling environment, the level and management 
of budgets and other inputs needed to develop adequate 
fecal sludge management services, and the factors con-
tributing to service sustainability.4 The scorecard was ap-
plied to each step of the sanitation service chain, resulting 
in a two-dimensional matrix in which bottlenecks and gaps 
at any point along the chain are identified and classified 
according to whether the issues are in the enabling envi-
ronment, in service development, or in sustaining services.

3 The SDA was originally developed to provide a national-level overview of the 
quality of urban and rural sanitation and water supply service delivery.

4 The tool generates a score ranging from zero (worst case) to three (best 
case) in response to a set of specific questions relating to components of 
the enabling environment (policy, planning, budget), development of services 
(expenditure, equity, outputs), and sustainability of services (maintenance, 
service expansion, user outcomes). It uses a red, amber, and green color-
coding to highlight the scores.
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Figure	1.6:	Waterborne	and	foodborne	diseases	transmission	and	control.	(Water	Supply	and	
Sanitation	Collaborative	Council	&	World	Health	Organization,	2005)	
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Figure	1.7:	System	flow	diagram	of	the	2014	Caltech	Solar	Toilet	prototypes	with	capacity	and	
residence	time	of	the	relevant	components.	Relevant	components	to	chapters	2,	3,	and	4	of	this	
thesis	 are	 highlighted	 with	 a	 different	 color.	 Chapter	 2	 (black):	 design	 and	 preliminary	
implementation	of	onsite	electrochemical	wastewater	treatment	and	recycling	toilets	for	the	
developing	world.	Chapter	3	(red):	urine	microbial	fuel	cells	in	a	semi-controlled	environment	
for	onsite	urine	pre-treatment	and	electricity	production.	Chapter	4	(blue):	phosphate	recovery	
from	 human	waste	 via	 the	 formation	 of	 hydroxyapatite	 during	 electrochemical	wastewater	
treatment.	

	

	 	



	 20	

1.6. References	

	

Adhikary,	 S.	 (2012).	 Vermicompost,	 the	 story	 of	 organic	 gold:	 A	 review.	 Agricultural	
Sciences,	3(7),	905.		

Ashbolt,	N.	J.	(2004).	Microbial	contamination	of	drinking	water	and	disease	outcomes	in	
developing	regions.	Toxicology,	198(1),	229-238.	doi:10.1016/j.tox.2004.01.030	

Bill	 &	Melinda	 Gates	 Foundation.	 (2013).	Water,	 Sanitation	 &	 Hygiene:	 Reinvent	 The	
Toilet	Challenge.	

Blackett,	 I.,	 Hawkins,	 P.,	&	Heymans,	 C.	 (2014).	 The	Missing	 Link	 in	 Sanitation	 Service	
Delivery	–	A	Review	of	Fecal	Sludge	Management	in	12	Cities.		

Cho,	 K.,	&	Hoffmann,	M.	R.	 (2014).	Urea	Degradation	by	 Electrochemically	Generated	
Reactive	 Chlorine	 Species:	 Products	 and	 Reaction	 Pathways.	 Environmental	
science	&	technology,	48(19),	11504-11511.	doi:10.1021/es5025405	

Dijk,	M.	P.	v.	(2012).	Sanitation	in	Developing	Countries:	Innovative	Solutions	in	a	Value	
Chain	 Framework.	 In	H.	 Sun	 (Ed.),	Management	 of	 Technological	 Innovation	 in	
Developing	and	Developed	Countries.	

Hoffmann,	M.	R.,	Aryanfar,	A.,	Cho,	K.,	Cid,	C.	A.,	Kwon,	D.,	&	Qu,	Y.	(2013).	Self-contained,	
pv-powered	domestic	toilet	and	wastewater	treatment	system:	Google	Patents.	

Huang,	X.,	Qu,	 Y.,	 Cid,	 C.	A.,	 Finke,	C.,	Hoffmann,	M.	R.,	 Lim,	K.,	&	 Jiang,	 S.	 C.	 (2016).	
Electrochemical	 disinfection	 of	 toilet	wastewater	 using	wastewater	 electrolysis	
cell.	Water	Research,	92,	164-172.	doi:10.1016/j.watres.2016.01.040	

Jasper,	J.	T.,	Shafaat,	O.	S.,	&	Hoffmann,	M.	R.	(2016).	Electrochemical	Transformation	of	
Trace	Organic	Contaminants	in	Latrine	Wastewater.	Environ	Sci	Technol,	50(18),	
10198-10208.	doi:10.1021/acs.est.6b02912	

Julian,	T.	R.	(2016).	Environmental	transmission	of	diarrheal	pathogens	in	low	and	middle	
income	 countries.	 Environ	 Sci	 Process	 Impacts,	 18(8),	 944-955.	
doi:10.1039/c6em00222f	

Kim,	J.,	Choi,	W.	J.	K.,	Choi,	J.,	Hoffmann,	M.	R.,	&	Park,	H.	(2013).	Electrolysis	of	urea	and	
urine	 for	 solar	 hydrogen.	 Catalysis	 Today,	 199(0),	 2-7.	
doi:10.1016/j.cattod.2012.02.009	

Langergraber,	G.,	Rieger,	L.,	Winkler,	S.,	Alex,	J.,	Wiese,	J.,	Owerdieck,	C.,	.	.	.	Maurer,	M.	
(2004).	A	guideline	for	simulation	studies	of	wastewater	treatment	plants.	Water	
Science	and	Technology,	50(7),	131-138.		



	 21	

Logan,	B.	E.,	&	Rabaey,	K.	(2012).	Conversion	of	Wastes	into	Bioelectricity	and	Chemicals	
by	 Using	Microbial	 Electrochemical	 Technologies.	 Science,	 337(6095),	 686-690.	
doi:10.1126/science.1217412	

Metcalf,	 &	 Eddy.	 (2014).	Wastewater	 Engineering:	 Treatment	 and	 Resource	 Recovery:	
McGraw-Hill	international	ed.	

Montgomery,	 M.	 A.,	 &	 Elimelech,	 M.	 (2007).	 Water	 and	 sanitation	 in	 developing	
countries:	including	health	in	the	equation:	ACS	Publications.	

Neyens,	E.,	Baeyens,	J.,	&	Creemers,	C.	(2003).	Alkaline	thermal	sludge	hydrolysis.	Journal	
of	Hazardous	Materials,	97(1),	295-314.	doi:10.1016/S0304-3894(02)00286-8	

Radjenovic,	J.,	&	Sedlak,	D.	L.	(2015).	Challenges	and	Opportunities	for	Electrochemical	
Processes	as	Next-Generation	Technologies	for	the	Treatment	of	Contaminated	
Water.	 Environmental	 science	 &	 technology,	 49(19),	 11292-11302.	
doi:10.1021/acs.est.5b02414	

Schouten,	M.,	&	Mathenge,	R.	(2010).	Communal	sanitation	alternatives	for	slums:	A	case	
study	of	Kibera,	Kenya.	Physics	and	Chemistry	of	the	Earth,	Parts	A/B/C,	35(13),	
815-822.		

Strauss,	 M.,	 Larmie,	 S.	 A.,	 &	 Heinss,	 U.	 (1997).	 Treatment	 of	 sludges	 from	 on-site	
sanitation	—	 low-cost	 options.	Water	 Science	 and	 Technology,	 35(6),	 129-136.	
doi:10.1016/S0273-1223(97)00103-0	

Trench,	P.	C.,	Narrod,	C.,	Roy,	D.,	&	Tiongco,	M.	(2012).	Responding	to	health	risks	along	
the	value	chain.	Edited	by	Shenggen	Fan	and	Rajul	Pandya-Lorch,	93.		

U.S.	Environmental	Protection	Agency.	(1999).	Water	Efficiency	Technology	Fact	Sheet.	
Incinerating	Toilets.	Retrieved	from		

U.S.	 Environmental	 Protection	 Agency.	 (2003).	 Wastewater	 Technology	 Fact	 Sheet.	
Disinfection	for	Small	Systems.	Retrieved	from		

United	Nations.	(2016).	United	Nations	Millennium	Development	Goals.			Retrieved	from	
https://www.un.org/millenniumgoals/	

Water	Supply	and	Sanitation	Collaborative	Council,	&	World	Health	Organization.	(2005).	
Sanitation	and	hygiene	promotion:	programming	guidance.		

White,	 G.	 C.	 (2010).	White's	 handbook	 of	 chlorination	 and	 alternative	 disinfectants.	
Hoboken,	NJ:	John	Wiley	&	Sons.	



	 22	

Whitmore,	 T.	 N.,	 &	 Robertson,	 L.	 J.	 (1995).	 The	 effect	 of	 sewage	 sludge	 treatment	
processes	on	oocysts	of	Cryptosporidium	parvum.	Journal	of	Applied	Bacteriology,	
78(1),	34-38.	doi:10.1111/j.1365-2672.1995.tb01670.x	

WHO/UNICEF	 JMP.	 (2017a).	 About	 the	 JMP.	 	 	 Retrieved	 from	
https://washdata.org/how-we-work/about-jmp	

WHO/UNICEF	 JMP.	 (2017b).	Progress	 on	drinking	water,	 sanitation	and	hygiene:	 2017	
update	and	SDG	baselines.	

World	Health	Organization.	(2014).	Preventing	diarrhoea	through	better	water,	sanitation	
and	hygiene:	exposures	and	impacts	in	low-and	middle-income	countries:	World	
Health	Organization.	

World	 Health	 Organization.	 (2015).	 Progress	 on	 sanitation	 and	 drinking	 water:	 2015	
update	and	MDG	assessment.	

World	 Health	 Organization	 and	 UNICEF.	 (2014).	 Progress	 on	 Drinking	 Water	 and	
Sanitation	-	2014	update.			

	
	 	



	

	

23	

Chapter	2	 	

DESIGN	AND	PRELIMINARY	IMPLEMENTATION	OF	

ONSITE	ELECTROCHEMICAL	WASTEWATER	

TREATMENT	AND	RECYCLING	TOILETS	FOR	THE	

DEVELOPING	WORLD	
	

Clément	A.	Cid1	

in	collaboration	with	

Yan	Qu1	and	Michael	R.	Hoffmann1	

1Linde-Robinson	Laboratories,	California	Institute	of	Technology,	Pasadena,	CA		

	

	

Prepared	for	submission	to		

Environmental	Science:	Water	Research	and	Technology	

	

C.	A.	C.	is	the	principal	and	coordinating	author	of	the	manuscript.	C.	A.	C.	and	Y.	Q.	

designed	 and	 constructed	 the	 prototypes.	 C.	 A.	 C.	 directed	 the	 field	 testing	 and	

sampling	methods,	and	analyzed	and	interpreted	the	data.	M.	R.	H.	and	Y.	Q.	provided	

guidance	as	well	as	intellectual	and	writing	contributions.	 	



	

	

24	

2.1. Abstract	

Self-contained	 toilet	 wastewater	 treatment	 system	 prototypes	 based	 on	

electrochemical	oxidation	of	feces	and	urine	using	bi-layered	semiconductor	anodes	

([Bi2O3]z[TiO2]1-z/IrxTayO2/Ti)	have	been	designed,	constructed,	and	implemented	in	

regions	where	access	to	proper	and	sufficient	sanitation	is	limited.	Prototypes	were	

designed	 to	 fit	 in	 shipping	 containers	 in	 order	 to	 provide	 toilets	 and	 onsite	

wastewater	treatment	with	clean	water	recycling.	Units	were	designed	to	handle	the	

waste	of	25	users	per	day	(or	130	L	of	toilet	wastewater).	The	first	prototype	was	

tested	on	the	Caltech	campus	(Pasadena,	California)	followed	by	improved	second-

generation	prototypes	that	were	subsequently	installed	in	India	(Ahmedabad,	Gujarat	

and	 Kottayam,	 Kerala)	 and	 China	 (Yixing,	 Jiangsu)	 for	 open	 use	 in	 various	 public	

settings.	 The	 prototypes	 were	 able	 to	 provide	 for	 the	 disinfection	 of	 pathogens	

(<10	 MPN	 Total	 coliforms	 and	 <1	 MPN	 Fecal	 coliform	 indicator	 organisms	 per	

100	 mL),	 reduction	 of	 chemical	 oxygen	 demand	 (<100	 mg	 O2	 L-1),	 ammonia	

(<10	mg	N	L-1),	and	color	at	an	average	energy	consumption	of	35	Wh	L-1.	The	treated	

wastewater	was	recycled	for	use	as	toilet	flushing	water.		

Keywords	

onsite	sanitation;	electrochemical	wastewater	treatment;	chlorine	disinfection	
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2.2. Introduction	

In	 February	 2011,	 The	 Bill	 &	Melinda	 Gates	 Foundation	 (BMGF)	 announced	 a	

major	challenge	to	university	researchers	to	“Reinvent	the	Toilet.”	The	primary	goal	

of	the	BMGF	was	to	engage	universities	in	the	development	of	new	and	innovative	

methods	to	treat	human	bodily	wastes	at	the	site	of	origin	without	discharge	to	the	

ambient	 environment	 or	 discharge	 to	 conventional	 sewer	 systems,	 septic	 tanks,	

cesspools,	 or	 open	 drainage	 systems.	 The	 overarching	 goal	 of	 the	 BMGF	 Global	

Development	 Program	within	 the	 context	 of	 their	Water,	 Hygiene	 and	 Sanitation	

initiative	was	to	develop	practical	low-cost	solutions	that	could	be	implemented	in	

regions	of	the	world	that	lack	access	to	safe	and	affordable	sanitation.	The	primary	

challenge	was	to	develop	a	comprehensive	approach	to	design,	development,	testing,	

and	prototyping	of	systems	that	could	collect	and	process	human	waste	on-site	at	the	

source	of	origin	and	at	the	same	time	produce	useful	byproducts	including	fertilizer,	

mineral	salts,	energy,	purified,	and	disinfected	water	with	no	solid	or	liquid	discharge	

to	the	environment.	The	overarching	objective	is	to	provide	suitable	sanitary	systems	

for	the	2.6	billion	people	who	currently	lack	access	to	safe	and	affordable	sanitation	

(Figure	2.1).	A	cost	 constraint	was	set	at	a	maximum	of	$0.05	per	person	per	day	

include	capital	costs	and	operating	expenses.	

The	 development	 of	 integrated	 networks	 and	 facilities	 for	 the	 transport	 and	

subsequent	treatment	of	domestic	wastewater	has	been	a	key	factor	in	the	growth	

and	 development	 of	 modern	 urban	 environments.	 Sanitation	 has	 accompanied	

human	development	from	early	civilizations	with	rudimentary	systems	(De	Feo	et	al.,	

2014)	 to	 mid-19th	 century	 first	 large-scale	 sewer	 networks	 in	 American	 and	
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European	cities	(Burian	&	Edwards,	2002;	Gandy,	1999;	Kaika	&	Swyngedouw,	2000).	

Although	 a	 well-constructed	 modern	 urban	 sewer	 network	 can	 be	 hygienic	 and	

efficient	 due	 to	 economies	 of	 scale	 (Metcalf	 &	 Eddy,	 2014),	 they	 also	 have	major	

drawbacks,	which	include	nuisance	odors	from	improper	operation	and	maintenance	

(Boon,	 1995),	 local	 groundwater	 contamination	 due	 to	 leakage	 from	 improper	

connections	and	corrosion	of	pipes	and	concrete	sewers	(American	Society	of	Civil	

Engineers,	 2013;	 Eiswirth	 &	 Hötzl,	 1997),	 or	 prohibitively	 expensive	 capital	

investments	(Corcoran	et	al.,	2010).	

For	 these	 reasons,	 developing	 countries	 have	 often	 turned	 to	 non-sewered	

sanitation	 (NSS)	 systems	 for	 the	disposal	 of	 human	bodily	waste.	 Furthermore,	 in	

areas	with	limited	access	to	water,	technologies	have	traditionally	been	restricted	to	

dry	or	manual	pour-flush	types	of	 toilets	such	as	composting	toilets	or	pit	 latrines	

(Starkl,	Stenström,	Roma,	Phansalkar,	&	Srinivasan,	2013).	Although	these	waterless	

technologies	appear	attractive	because	of	their	limited	need	for	water,	they	do	not	

provide	the	olfactory	or	sanitary	comfort	of	flush	toilets	(Lin	et	al.,	2013).	In	addition,	

they	 are	 not	 always	 reliable	 for	 disinfection,	 pathogen	 removal	 (Montgomery	 &	

Elimelech,	2007),	or	for	preventing	subsequent	pollution	by	latrine	waste	soils	and	

groundwater	 (Dzwairo,	 Hoko,	 Love,	 &	 Guzha,	 2006).	 In	 areas	 that	 have	 access	 to	

water,	 decentralized	 toilets	 using	 flush	 technologies	 are	 most	 often	 connected	 to	

septic	tanks.	Septic	tank	treatment	systems	require	large	land	surface	areas	to	build	

effective	leaching	fields	that	are	necessary	for	the	safe	elimination	of	pathogens	(Title	

V	septic	system	in	the	United	States)	and	can	often	lead	to	fecal	contamination	of	local	
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water	 sources	 if	 improperly	 installed	 and	 maintained	 (Beal,	 Gardner,	 &	 Menzies,	

2005;	Yates,	1985,	1987).		

Therefore,	a	technology	capable	of	treating	and	recycling	toilet	wastewater	at	low	

cost	would	have	significant	advantages	over	traditional	NSS	solutions	(vide	supra).	In	

this	 regard,	 Radjenovic	 and	 Sedlak	 have	 identified	 electrolysis	 processes	 such	 as	

potentiostatic	electrochemical	oxidation	as	“potential	next-generation	technologies	

for	 the	 treatment	 of	 contaminated	 water”	 (Radjenovic	 &	 Sedlak,	 2015).	

Electrochemical	 oxidation	 of	 wastewater	 has	 been	 investigated	 for	more	 than	 30	

years	with	a	focus	on	organic	pollutant	degradation	(Comninellis,	1994;	Pletcher	&	

Walsh,	1990),	most	systems	rely	on	the	anodic	formation	of	free	hydroxyl	radical	OH˙	

from	 water	 oxidation	 or	 the	 direct	 oxidation	 of	 the	 compounds	 of	 interest.	 Both	

processes	 consume	 a	 lot	 of	 energy	 to	 achieve	 appropriate	 contaminant	 removal	

(Comninellis	&	Chen,	2009).		

Weres	and	collaborators	(Kesselman,	Weres,	Lewis,	&	Hoffmann,	1997;	H.	Park,	

Vecitis,	Choi,	Weres,	&	Hoffmann,	2008;	Hyunwoong	Park,	Vecitis,	&	Hoffmann,	2008)	

investigated	the	use	of	multilayer	semiconductor	anodes	to	generate	surface-bound	

hydroxyl	 radicals	 OH˙	 for	 organics	 degradation	 (Hana	 Park,	 Choo,	 Park,	 Choi,	 &	

Hoffmann,	 2013;	 Weres,	 2009;	 Weres	 &	 O'Donnell,	 2003).	 These	 multilayer	

semiconductor	 anodes	 have	 a	 low	 overpotential	 for	 the	 oxidation	 of	 chloride	 to	

chlorine	 (Cho	 &	 Hoffmann,	 2014).	 This	 capability	 makes	 the	 multi-layer	

semiconductor	 anodes	 particularly	 suitable	 for	 the	 direct	 formation	 of	 Reactive	

Chlorine	Species	 (RCS)	 from	 the	oxidation	of	 the	 chloride	naturally	present	 in	 the	

human	wastewater	(Cho	&	Hoffmann,	2015;	Cho	et	al.,	2014;	Huang	et	al.,	2016;	Yang,	
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Shin,	 Jasper,	 &	 Hoffmann,	 2016).	 Although	 the	 previously	 published	 laboratory	

results	have	shown	the	feasibility	of	anodic	oxidation	for	toilet	wastewater	treatment	

(Cho	et	al.,	2014;	Huang	et	al.,	2016;	Jasper,	Shafaat,	&	Hoffmann,	2016;	Yang	et	al.,	

2016),	 there	 is	 no	 literature	 available	 about	 the	 automated,	 autonomous	 on-site	

electrochemical	 treatment	 of	 toilet	 wastewater	 under	 actual	 field	 operating	 and	

testing	 conditions.	 Herein,	 we	 present	 the	 results	 of	 field	 studies	 employing	

electrochemical	wastewater	treatment	for	the	removal	of	chemical	oxygen	demand	

and	for	recycling	of	disinfected	and	clarified	water	for	use	as	toilet	flushing	water.		
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2.3. Guidelines,	materials	and	methods	

2.3.1. Health	considerations	for	an	onsite	wastewater	recycling	systems	

The	 primary	 sources	 of	 biological	 and	 chemical	 contamination	 entering	 onsite	

wastewater	 treatment	 systems	 are	 from	 human	 excreta.	 The	 amount	 and	 the	

composition	 of	 human	 excreta	 varies	 greatly	 from	 one	 individual	 to	 another	

(Wignarajah,	Litwiller,	Fisher,	&	Hogan,	2006;	Wydeven	&	Morton	A.	Golub,	1990)	

with	an	average	of	1	L	to	1.5	L	of	urine	and	300	g	to	450	g	of	feces	per	adult	per	day.	

Feces	 are	 often	 the	 major	 carrier	 of	 pathogens	 in	 human	 excreta	 (Sadowsky	 &	

Whitman,	 2010)	 with	 an	 average	 number	 of	 1011	 CFU	 (colony-forming	 units)	 of	

bacteria	per	gram	of	feces	for	a	healthy	adult	individual.	Given	that	pathogen	die-off	

times	in	untreated	human	excreta	are	between	one	and	three	months	for	bacteria	and	

viruses,	 and	 several	months	 for	 helminth	 eggs	 (Atlas,	 1984),	 a	 reliable	 and	 rapid	

removal	of	pathogens	down	to	acceptable	levels	is	crucial	for	the	success	of	an	onsite	

human	 wastewater	 treatment	 technology.	 For	 example,	 the	 World	 Health	

Organization	 considers	 that	 a	 safe	 pathogen	 level	 appropriate	 for	 water	 reuse	 in	

agriculture	 is	 less	 than	 1	 CFU	 per	 100	mL	 for	 typical	 indicator	 organisms	E.	 coli.	

(World	Health	Organization,	2006).	

When	onsite	wastewater	treatment	systems	are	installed	close	to	their	users	in	

order	to	minimize	installation	costs,	such	systems	can	become	potential	threats	to	the	

health	of	humans	living	nearby	when	the	wastes	are	not	properly	contained	(Hynds,	

Thomas,	&	Pintar,	2014)	or	sufficiently	treated.	Natural	barriers	such	as	the	leaching	

fields	 for	 septic	 tanks	or	 clay	or	 concrete	walls	 for	dry	 latrine	pits	 are	not	always	

effective	 barriers	 (Dzwairo	 et	 al.,	 2006;	 Graham	 &	 Polizzotto,	 2013).	 Risks	 of	
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contamination	are	further	increased	when	the	users	come	into	contact	with	effluent	

streams	(e.g.,	treated	water	and/or	biosolids)	produced	by	onsite	sanitation	systems.	

Thus,	 the	 treated	 and	 recycled	 waters	 that	 are	 processed	 onsite	 must	 be	 free	 of	

pathogens	 and	 have	 an	 acceptable	 physicochemical	 composition	 that	 meets	

conventional	water	quality	standards	for	reuse.	

However,	technical	standards	that	have	been	adopted	in	many	countries	help	to	

regulate	 the	 composition	 of	 recycled	water	 for	 domestic	 reuse	 but	 they	 are	 often	

limited	to	large	scale	indirect	and	direct	potable	reuse	of	conventional	wastewater	

treatment	plant	effluents	(ISO	16075-1,	2012)	or	the	treatment	and	reuse	of	non-fecal	

contaminated	 water	 (greywater)	 primarily	 from	 sinks,	 washers,	 and	 showers	

(NSF/ANSI	 Standard	 350).	 Therefore,	 a	 toilet	wastewater	 recycling	 system	 has	 to	

produce	 an	 effluent	 that	 does	 not	 damage	 the	 system	 itself,	 is	 safe	 for	 users,	 and	

contains	enough	residual	disinfecting	capacity	to	prevent	subsequent	chemical	and	

microbial	contamination	due	to	exposure	to	the	treated	and	recycled	water.	

In	addition	to	the	meeting	the	basic	sanitary	and	water	quality	requirements,	a	

self-contained	 toilet	 and	 wastewater	 treatment	 system	 for	 use	 in	 developing	

countries	needs	to	be	affordable,	durable,	and	functional	in	an	off-grid	environment	

with	limited	access	to	electricity,	fresh	water,	and	sewers.	

2.3.2. Choice	of	prototype	testing	locations		

Four	pre-alpha	prototypes	of	a	similar	design	(Figure	2.2)	were	tested	in	the	USA,	

India,	and	China	(Figure	2.1).	The	first	pre-alpha	prototype	was	tested	on	the	campus	

of	 the	 California	 Institute	 of	 Technology	 (Caltech)	 in	 Pasadena,	 California	 (PAS	

prototype,	Figure	2.2	a)	for	preliminary	data	gathering	and	early	design	adjustments;	
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two	additional	pre-alpha	prototypes	(AMD	and	KYM)	were	designed	and	built	on	the	

Caltech	campus	and	then	shipped	to	India	for	field	trials	in	two	different	locations.	

The	prototype	designated	as	AMD	(Figure	2.2	c)	was	installed	in	a	public	park	in	the	

city	of	Ahmedabad	in	Gujarat	State	of	northwest	India.	Ahmedabad	has	a	semi-arid	

climate	and	is	the	sixth	largest	city	of	India	with	more	than	6.3	million	inhabitants.	

The	 prototype	 designated	 as	 KYM	 (Figure	 2.2	 b)	 was	 installed	 in	 the	 campus	 of	

Mahatma	Gandhi	University	near	the	School	of	Environmental	Sciences	in	Amalagiri	

district	of	Kottayam	City	in	the	State	of	Kerala,	which	is	located	in	southwestern	India.	

Kottayam	has	a	tropical	climate	with	a	population	of	200,000	inhabitants.	A	fourth	

pre-alpha	prototype	was	constructed	and	tested	in	the	Municipal	Yixing	Elementary	

School	of	Yixing,	China	(YXG	prototype,	Figure	2.2	d)	in	collaboration	with	Yixing	Eco-

Sanitary	Manufacture	Co.		

2.3.3. Monitoring	and	evaluation	methods	

Chemical	oxygen	demand	(COD),	total	nitrogen	(TN),	total	suspended	solids	(TSS),	

and	 indicator	 organisms	 E.	 coli,	 Total	 coliform,	 and	 Fecal	 coliform	 bacteria	 were	

measured	to	assess	the	wastewater	treatment	efficacy.	Because	an	effective	removal	

of	pathogens	can	often	be	observed	when	COD	and	TN	decrease	during	the	course	of	

the	 treatment	 (Metcalf	 &	 Eddy,	 2014;	 Sharma,	 Tyagi,	 Saini,	 &	 Kazmi,	 2016),	 the	

measurement	of	indicator	microorganisms	was	limited	to	few	non-consecutive	days	

of	operation.		

The	voltage	at	the	electrodes	and	the	current	delivered	by	the	power	supply	to	the	

electrode	 arrays	 were	 continuously	 measured	 using	 a	 personalized	 data	 logger	

(Programmed	Scientific	Instruments,	Arcadia	CA)	at	regular	intervals	(e.g.,	every	10	
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seconds).	The	activation	and	deactivation	of	pumps	as	well	as	the	status	of	water	level	

sensors	were	monitored	and	recorded	using	the	same	data	logger.	At	each	recording	

time,	the	data	logger	stored	a	new	line	of	values	of	the	different	components	of	the	

system	in	a	daily	Comma	Separated	Values	(CSV)	file.	The	data	was	tagged	with	the	

local	time	and	date	and	stored	in	a	solid-state	device	in	the	computer	controlling	the	

system.	The	CSV	files	were	regularly	retrieved	by	an	operator.		

2.3.4. Analytical	methods		

COD	 was	 measured	 using	 a	 reflux	 digestion	 system	 with	 water	 condensers	

followed	 by	 titration	 according	 to	 Standard	 Method	 5220	 (Water	 Environmental	

Federation	&	American	Public	Health	Association,	2005)	or	via	colorimetric	method	

similar	 to	Hach	Method	 8000	 (Hach	 Company,	 Loveland	 CO).	 TN	was	 determined	

using	persulfate	digestion	(Hach	Method	10071).	Total	Kjeldahl	Nitrogen	(TKN)	was	

determined	by	distillation	(Indian	Standard	5194-1969).	Cl-,	NH4+	+	NH3,	Ca2+,	and	

Mg2+	 concentrations	 were	 determined	 by	 ion	 chromatography	 (Dionex	 ICS	 2000;	

AS19G	anions,	CS12A	cations).		

Disinfection	was	assessed	by	estimating	 the	quantity	of	 indicator	organisms	E.	

coli,	Total	coliforms,	and	Fecal	coliforms	with	the	following	respective	EPA	methods:	

1103.1	 (U.S.	 Environmental	 Protection	 Agency,	 2010a),	 9132	 (U.S.	 Environmental	

Protection	Agency,	1986),	and	1680	(U.S.	Environmental	Protection	Agency,	2010b)	

with	appropriate	dilutions.	Free	chlorine	(FC)	was	measured	by	reaction	with	N,N-

diethyl-p-phenylenediamine	 (DPD)	 indicator	 in	 accordance	with	 Standard	Method	

4500-Cl	G	(Water	Environmental	Federation	&	American	Public	Health	Association,	

2005)	 and	 Hach	 Method	 8021.	 Total	 chlorine	 (TC)	 was	 measured	 by	 the	
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Amperometric	Titration	Method	in	accordance	with	Standard	Method	408	C	(Water	

Environmental	Federation	&	American	Public	Health	Association,	2005).	

Cathodic	and	anodic	potentials	relative	to	Normal	Hydrogen	Electrode	(vs.	NHE)	

were	measured	using	a	3.5	M	Silver/Silver	Chloride	(Ag/AgCl,	E0	=	0.205	V	vs.	NHE)	

reference	electrode	 (RE-5B,	Bioanalytical	Systems	 Inc.,	USA)	connected	 to	a	 three-

electrode	 potentiostat	 (Biologic,	 France)	 measuring	 the	 potential	 between	 the	

reference	electrode	and	the	anode	used	for	chlorine	production	(see	below).	
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2.4. Design	of	the	self-contained	toilet	and	treatment	systems	

2.4.1. Sizing	considerations	

A	flow	diagram	of	the	overall	treatment	process	is	presented	Figure	2.3	and	Figure	

S2.1	 and	 a	 picture	 of	 a	 typical	 treatment	 system	 as	 installed	 in	 the	 field-tested	

prototypes	(PAS,	AMD,	KYM)	is	reproduced	Figure	2.4.	The	mix	of	urine,	feces,	and	

flush	water	(toilet	wastewater)	was	macerated	and	pumped	(Jabsco	Macerator	Pump	

18590-2094,	Xylem	USA	or	Saniflo	Sanigrind	Grinder	Pump	for	Bottom	Outlet	Toilets,	

SFA	France)	 into	a	1-m3	polypropylene	sedimentation	tank	for	a	residence	time	of	

𝜏bio	≥	7	days.	During	this	residence	time,	the	toilet	wastewater	underwent	decantation	

and	some	level	of	anaerobic	digestion,	similarly	to	a	septic	tank	(Whelan	&	Titamnis,	

1982).	The	prototypes	were	designed	for	treating	the	waste	from	approximately	25	

daily	uses:	this	is	the	equivalent	to	having	a	single	toilet	for	a	family	of	five	people,	the	

average	household	size	in	India	in	2011	(Ministry	of	Home	Affairs,	2011).	Each	of	the	

family	members	flushing	five	times	per	day	on	average	(Mayer	&	DeOreo,	1999)	with	

a	flush	volume	of	1.28	US	gallons	or	5	L	(US	EPA	WaterSense)	and	considering	that	

one	person	produces	approximately	1.5	L	of	urine	 in	one	day	(Putnam,	1971),	 the	

total	daily	volume	of	toilet	wastewater	to	treat	was	estimated	to	be	Vd	=	132	L	day-1	

so	the	sedimentation	tank	should	be	sized	to	hold	at	least	𝜏bio	*	Vd	≈	1	m3.		

After	decanting	in	the	sedimentation	tank,	the	toilet	wastewater	was	macerated	

and	 pumped	 (Jabsco	 Macerator	 Pump	 18590,	 Xylem	 USA)	 to	 an	 electrochemical	

reactor	 (ECR)	 system	(see	below	 for	description)	 for	batch	processing	at	 constant	

voltage	with	active	recirculation	(10	L	min-1)	during	a	period	𝜏elec,	the	electrochemical	
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residence	time.	The	working	volume	needed	for	the	ECR	VECR	was	determined	by	(eqn.	

1)	with	α	the	fraction	of	the	daily	time	during	which	the	ECR	is	running.	

𝑉()* =
,-

./	0	12324
(= 22	L)	 																													(1)	

After	electrolysis	 in	 the	ECR	 for	a	period	𝜏elec,	 the	water	was	 filtered	 through	a	

200	 µm-mesh	 microfiltration	 unit	 (Grainger	 USA).	 The	 treated	 effluent	 was	 then	

pumped	with	a	drain	pump	(Jabsco	PAR	Max	3,	Xylem	USA)	to	a	storage	tank	to	use	

for	flushing	the	toilet.	The	treated	water	tank	(TWT)	was	capable	of	storing	flushing	

water	for	one	day	of	operation.	Excess	treated	water	in	the	cycle	due	to	urination	and	

personal	 hygiene	 (e.g.,	 anal	 cleansing)	 was	 discharged	 from	 the	 system	 with	 an	

overflow	mechanism	 from	 TWT.	 Four	 complete	 toilet	 and	 associated	 wastewater	

treatment	and	recycling	systems	were	operated	 in	 the	US,	China,	and	 India	 (Table	

2.1).		

2.4.2. Electrochemical	reactor	system		

The	 ECR	 tank	 body	 is	 made	 of	 a	 poly(methyl	 methacrylate)	 (PMMA)	 welded	

together	(Nanopac.	Yongin-Gun,	South	Korea)	in	a	rectangular	cuboid	shape	with	the	

following	dimensions:	63.5	cm	*	35.6	cm	*	16.5	cm	(height	*	width	*	depth;	Figure	

S2.2).	Two	6-mm	thick	PMMA	plates	of	 respective	dimensions	25	cm	*	14	cm	and	

56	cm	*	14	cm	with	1.5	cm	diameter	holes	spaced	every	2.5	cm	were	used	to	hold	the	

electrode	array	in	place	at	a	distance	of	7	cm	above	the	bottom	of	the	ECR.	0.75-inch	

and	1-inch	diameter	National	Pipe	Tapered	(NPT)	thread	holes	were	drilled	on	the	

side	 and	 the	 bottom	 of	 the	 ECR	 tank	 to	 connect	 sampling	 ports	 and	 plumbing.	

Circulation	of	fluid	inside	the	ECR	tank	was	assured	by	a	brushless	centrifugal	pump	

(Fortric	 ZKWP04	 24V,	 Fortric	 China).	 The	 ECR	 tank	 was	 connected	 to	 the	 other	
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components	 of	 the	 system	 using	 braid-reinforced	 polyurethane	 hose	 or	 polyvinyl	

chloride	(PVC)	pipes	of	sufficient	diameter.		

At	the	core	of	the	ECR,	electrode	plates	were	assembled	as	an	array	in	alternate	

configurations	of	doubly-coated	anodes	sandwiched	between	two	stainless	cathodes	

(e.g.,	CAnCAn+1…C,	etc.)	where	each	electrode	plate	was	separated	by	a	3-mm	spacing;	

nylon	 screws,	 nuts,	 and	 washers	 were	 used	 for	 structural	 integrity.	 The	 arrays	

composed	of	eight	stainless-steel	(316	Grade)	cathodes	“C”	and	seven	doubly-layered	

semiconductor	 anodes	 “A”	 ([Bi2O3]z[TiO2]1-z/IrxTayO2/Ti)	 (Nanopac,	 South	 Korea)	

that	were	coated	on	both	sides.	The	manufacturing	process	and	the	effect	of	the	outer	

layer	composition	([Bi2O3]z[TiO2]1-z)	have	previously	been	described	in	the	literature	

(Cho	&	Hoffmann,	 2015;	 Yang	 et	 al.,	 2016).	 The	 total	 exposed	 surface	 area	 of	 the	

anodes	was	1.8	m2.	The	ECR	electrode	array	was	powered	at	an	electrical	potential	

between	 3.3	 V	 and	 3.5	 V	 using	 a	 potentiostatic	 power	 supply	 (Program	 Scientific	

Instruments,	USA).	

2.4.3. Automation	for	the	wastewater	treatment	and	recycling	

The	 daily	 number	 of	 users	 and	 the	 frequency	 of	 usage	 of	 the	 toilets	were	 not	

controlled	in	any	of	the	systems.	For	this	reason,	 it	was	necessary	to	ensure	that	a	

sufficient	amount	of	treated	water	was	available	for	flushing	at	all	time	to	support	the	

continuous	operation	of	the	treatment	system	without	direct	supervision.	This	was	

achieved	 with	 a	 computer-controlled	 automation	 algorithm	 (Figure	 2.3)	

programmed	 on	 a	 dedicated	 software	 package	 (Program	 Scientific	 Instruments,	

Arcadia	CA)	running	on	a	Panel	PC	PPC-L62T	(Advantech,	China)	with	Windows	7	

operating	system	(Microsoft,	USA).	Capacitive	level	sensors	CD50	DC	(Carlo	Gavazzi,	
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Italy)	 were	 used	 as	 triggers	 for	 the	 automation	 mechanism.	 Pumps	 with	 a	

programmed	maximum	 running	 time	were	 used	 as	 actions	 (e.g.,	macerator	 pump	

turns	 on)	 or	 as	 triggers	 when	 they	 changed	 state	 (e.g.,	 circulation	 pump	 stops	

running).	ECR	power	status	(or	change	of	status)	was	used	as	a	trigger,	an	action,	and	

a	feedback	for	the	automation	algorithm.	

The	algorithm	is	composed	of	two	main	parts	(Figure	2.3):	the	start	of	a	treatment	

cycle	(lines	1-3)	and	the	treatment	cycle	loop	(lines	4.1	–	4.5).	A	treatment	cycle	starts	

when	the	level	of	water	in	the	treated	water	tank	falls	below	the	sensor	TWT_S1	(line	

1),	 placed	 approximately	 at	 20%	 of	 the	 tank’s	 height.	 The	 macerator	 pump	 MP	

switches	on	for	a	fixed	duration	to	fill	up	the	ECR	tank,	the	ECR	power	supply	starts,	

and	the	circulation	pump	CP	starts.	At	the	end	of	the	treatment	cycle	(𝜏elec),	the	ECR	

tank	is	emptied	by	the	drain	pump	DP	into	the	treated	water	tank	TWT.	After	that,	if	

the	water	 level	 in	 TWT	 is	 still	 below	TWT_S1,	 a	 new	 treatment	 cycle	 begins.	 The	

treatment	cycles	will	continue	until	the	level	of	the	treated	water	tank	is	above	the	

TWT_S2	sensor,	positioned	close	to	90%	of	the	tank’s	height.	

2.4.4. Energy	distribution	across	to	the	system	

The	energy	consumption	of	the	entire	system	and	ECR	was	monitored	using	non-

invasive	current	sensors	installed	on	the	wires	connecting	the	control	system	to	its	

power	source.	The	power	source	was	a	combination	of	grid	electricity	at	220	–	240	V	

AC	when	available,	and	24	V	DC	power	source	from	a	330	W	solar	panel	(Xunlight,	

USA)	 stored	 in	 two	12	V	Blue	Top	 lead-acid	backup	batteries	 (Optima,	USA)	via	 a	

Conext	MPPT	60	PV	(Schneider	Electric,	Germany)	charge	controller	(Figure	S2.3).	A	
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backup	battery	recharge	was	also	implemented	using	a	TRUECharge	2	40	A	(Xantrex,	

USA)	battery	charger	connected	to	grid	electricity.		

2.4.5. Integration	

All	components	of	 the	entire	system	were	housed	 in	customized	steel	shipping	

containers	with	an	integrated	public	bathroom	when	necessary	(Figure	S2.4).	AMD	

and	PAS	prototypes	were	modified	10-ft	and	30-ft	long	containers	cut	from	standard	

length	20-ft	and	40-ft	international	shipping	containers,	respectively.	KYM	and	YXG	

prototypes	were	repurposed	20-ft	standard	shipping	containers.	All	containers	were	

insulated	 and	 retrofitted	 with	 in-wall	 electrical	 wiring	 and	 on-wall	 plumbing	 in	

copper,	 cross-linked	 polyethylene	 (PEX),	 or	 PVC	 pipes.	 Doors	 and	windows	were	

added	 to	 improve	 access	 to	 the	 treatment	 system,	 increase	 air	 circulation,	 and	

provide	a	physical	work	environment	for	sampling	and	on-site	measurements	(Figure	

2.4).		
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2.5. Results	and	discussion	

2.5.1. Free	chlorine	production		

Chlorination	 is	 a	 cost-effective	 way	 to	 remove	 pathogens	 in	 water,	 if	 allowed	

sufficient	contact	time	for	a	given	free	or	total	chlorine	concentration	(Baumann	&	

Ludwig,	 1962;	 White,	 1999).	 In	 our	 prototype	 systems,	 chlorine	 is	 continuously	

generated	via	the	electrochemical	oxidation	of	chloride,	(i.e.,	the	Chlorine	Evolution	

Reaction,	CER),	at	a	fixed	potential	3.5	V	±	0.25	V	across	the	electrodes.	The	CER	is	an	

apparent	first-order	reaction	with	respect	to	the	concentration	of	chloride	in	solution.	

In	a	large-electrode	array	(ECR)	as	shown	in	(Figure	S2.5),	the	CER	rate	is	shown	to	

vary	 from	11	 to	17	ppm	Cl2	min-1;	 after	 an	 extended	period	of	 operation	 the	CER	

stabilized	at	a	near	constant	level	(Figure	S2.6).		

Due	to	a	consistent	input	of	urine	into	the	system	,	the	[Cl-]	was	found	to	variable	

at	any	point	in	time,	in	part,	because	the	treated	water	that	was	recycled	also	allowed	

for	a	build-up	of	total	chloride	in	the	anaerobic	holding	tank.	Variations	in	[Cl-]	were	

observed	depending	on	the	type	and	frequency	of	usage	as	well	as	the	location	of	the	

unit	(Table	2.2).	In	theory,	when	the	system	is	running	at	full	capacity	after	an	initial	

set	 up	 period,	 the	 steady-state	 [Cl-]ss	 should	 be	 approximately	 equal	 to	 the	

concentration	of	chloride	in	urine,	which	ranges	between	53	mM	to	240	mM	(Putnam,	

1971).	However,	lower	concentrations	(typically	10	–	20	mM)	were	actually	observed	

(Table	2.2);	the	lower	concentrations	are	most	likely	due	to	the	use	of	excesss	non-

recycled	 water	 for	 additional	 flushing	 or	 for	 personal	 hygiene	 in	 the	 public	

bathrooms.		
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For	 an	 electrical	 potential	 of	 3.5	 V	 between	 the	 anodes	 and	 cathodes,	 the	

measured	anodic	potential	is	1.4	±	0.2	V	vs.	NHE.	This	potential	is	sufficient	for	the	

production	of	surface-bound	hydroxyl	radicals	on	titanium	dioxide	at	pH	between	6	

and	9	(Martinez-Huitle	&	Ferro,	2006;	Panizza	&	Cerisola,	2009)	but	is	not	sufficient	

to	generate	free	hydroxyl	radicals	(E0(HO˙)	=	2.31	V	vs.	NHE)	in	solution	(Augusto	&	

Miyamoto,	2011).		

The	detailed	electrochemical	surface	reactions	(Figure	2.6),	previously	identified	

and	 classified	 by	 Comninellis	 (Comninellis,	 1994)	 consists	 of	 a	 two-step	 electron	

transfer	for	the	oxidation	of	water	on	the	surface	of	the	metal-oxide	electrode.	In	the	

case	of	TiO2,	a	one-electron	surface	oxidation	of	water	locally	reduces	titanium	from	

Ti(IV)	to	Ti(III)	with	chemisorption	of	˙OH	(1);	then	the	surface	metal	hydroxy	adduct	

undergoes	 deprotonation	with	 the	 concomitant	 release	 of	 an	 electron	 (2)	 and	 the	

corresponding	oxidation	of	Ti(III)	back	to	Ti(IV)	coupled	with	the	formation	of	O2	or	

the	direct	surface	oxidation	of	organic	matter	(3).	Comninellis	has	also	shown	that	the	

metal-hydroxyl	 bond	 (>Ti(III)OH∙)	 can	 directly	 oxidize	 electron-donating	 organic	

matter,	 leading	 to	 subsequent	mineralization	 (4),	 or	 simply	oxidize	Ti(III)	 back	 to	

Ti(IV)	with	deprotonation	and	liberation	of	O2	(5).	In	the	presence	of	chloride	and	a	

sufficient	 concentration,	 the	 surface-bound	 hydroxyl	 radical	 of	 >Ti(III)OH∙	 can	

directly	oxidize	Cl-	to	form	Cl2	and	subsequently	HOCl	due	to	hydrolysis	of	molecular	

chlorine	(6)	(Cho	&	Hoffmann,	2014).	FC	is	defined	as	the	sum	of	concentrations	of	

hypochlorous	 acid,	 [HOCl],	 and	hypochlorite	 ion,	 [ClO-],	which	 are	 in	 an	 acid-base	

equilibrium	(HOCl	⇌	H+	+		-OCl,	pKa	=	7.53).		
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The	 measured	 CER	 rate	 in	 20	 mM	 NaCl	 solutions	 varied	 from	

11	±	0.5	ppm	Cl2	min-1	before	the	electrodes	had	any	contact	with	wastewater	and	

decreased	 to	7	±	0.7	ppm	Cl2	min-1	after	approximately	50	hours	of	electrolysis	of	

toilet	wastewater	(Figure	S2.6).	The	observed	decrease	 in	 the	rate	of	 the	CER	was	

most	likely	due	to	the	formation	of	a	layer	of	organic	compounds	on	the	surface	of	the	

anodes.	The	net	effect	was	a	reduction	in	the	CER	rate	by	almost	40%;	however,	after	

stabilization	of	the	CER,	the	removal	of	organic	matter	was	stable	(vide	infra).		

2.5.2. Removal	of	undesired	organic	and	inorganic	contaminants	

The	electrochemically	produced	FC	(Figure	2.5	(1))	can	oxidize	ammonia	to	form	

chloramines	(2)	while	also	oxidizing	organic	matter	(3)	present	 in	the	wastewater	

(Deborde	 &	 von	 Gunten,	 2008).	 The	 ammonia	 was	 present	 in	 the	 collected	 toilet	

wastewater	was	formed	primarily	from	hydrolysis	of	urea	(4).	Although	bicarbonate	

formed	from	the	hydrolysis	of	urea	combined	with	that	generated	via	the	oxidation	

of	 organic	 matter	 could	 interfere	 with	 the	 CER	 by	 adsorption	 on	 active	 anodic	

surfaces,	thereby	limiting	the	sites	available	for	the	oxidation	of	Cl-	to	FC.	The	increase	

in	 TC	 concentration	was	 correlated	with	 the	 removal	 of	 TN	 because	 formation	 of	

chloramines	 (Figure	 2.7).	 The	TC	 concentration	 reached	 a	 steady	 state	 due	 to	 the	

reduction	of	chloramines	to	N2	in	the	solution	as	well	as	the	reduction	of	ClO-	back	to	

Cl-	at	the	cathode	surfaces.	For	instance,	the	ammonia	monitored	in	the	YXG	prototype	

over	the	first	30	days	of	operation	(Figure	2.8)	showed	70%	of	NH3	removal	efficiency	

once	the	system	stabilized.	

The	 oxidation	 and	 mineralization	 of	 the	 organic	 matter	 (Figure	 2.5	 (3))	 was	

observed	through	the	decrease	of	COD	during	electrolysis	(Figure	2.7).	For	instance,	
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the	 COD	monitored	 in	 the	 AMD	 prototype	 over	 1000	 hours	 of	 operation	 showed	

between	 70%	 and	 80%	 removal	 efficiency	 when	 the	 chloride	 concentration	 was	

above	 500	 ppm	 and	 the	 applied	 potential	 was	 3.5	 V	 (Figure	 2.9	 and	 Table	 2.4).	

Furthermore,	COD	removal	kinetics	from	prototype	MGU	(designated	as	KYM	above)	

(Figure	 S2.7)	 were	 consistent	 with	 the	 first-order	 kinetic	 model	 expressed	 by	

Martinez-Huitle	 and	 Ferro	 (Martinez-Huitle	 &	 Ferro,	 2006)	 for	 transport-limited	

electrolytic	oxidation	with	fitting	coefficients	reproduced	Table	S2.1.		

2.5.3. Disinfection	

A	summary	of	disinfection	analysis	performed	at	the	MGU	(KYM)	unit	installed	in	

Kottayam,	India	is	reproduced	Table	2.3:	disinfection	occurred	after	2	to	3	hours	of	

treatment	(equivalent	to	10	–	20	Wh	L-1	electrolysis	energy),	as	indicated	by	the	levels	

of	the	major	indicator	organisms	being	below	the	detection	limit	(Fecal	coliforms	and	

E.	coli)	or	below	drinking	water	safety	standards	(Total	coliforms).	These	results	are	

in	accordance	with	the	amount	of	chlorine	and	chloramines	produced	as	well	as	the	

residence	time	 in	 the	ECR:	25	ppm	TC	assumed	to	be	mostly	chloramines	because	

breakpoint	chlorination	was	not	reached;	the	equivalent	contact	time	Ct	value	for	4	

hours	operation	was	greater	than	6,000	mg	min	L-1,	which	is	more	than	5	times	higher	

than	the	recommended	Ct	value	for	3-log	inactivation	of	Giardia	cycst	at	20°C,	and	

almost	10	times	of	recommended	Ct	value	for	4-logs	virus	inactivation	at	20°C	(U.S.	

Environmental	Protection	Agency,	1999).	Similar	results	were	observed	in	AMD	and	

PAS	units.		
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2.5.4. Energy	consumption	

The	amount	of	electrical	power	drawn	by	the	electrode	arrays	and	by	the	overall	

system	was	measured	 on	 a	 regular	 basis	 (Figure	 S2.8).	 On	 average,	 35	Wh	were	

needed	 to	 treat	 1	 L	 of	 toilet	 wastewater,	 among	 which	 more	 than	 95%	 of	 the	

electricity	was	used	by	 the	electrochemical	 treatment	 itself	and	 the	remaining	5%	

was	used	to	compensate	the	power	supply	losses	and	to	power	the	pumps.	A	large	

share	of	the	energy	used	during	electrolysis	is	for	COD	removal,	especially	when	more	

than	 200	mg	 O2	 L-1	 removal	 is	 needed	 (Figure	 2.10),	 and	 the	 electrolysis	 energy	

consumption	is	between	30	and	40	Wh	L-1.	Despite	drastic	changes	in	the	input	COD	

level	and	over	the	course	of	close	to	700	h	of	toilet	wastewater	electrolysis,	the	COD	

removal	energy	requirements	remained	relatively	stable	at	approximately	10	Wh	L-1	

for	100	mg	O2	L-1	and	up	to	40	Wh	L-1	for	200	mg	O2	L-1	initial	COD.		

2.5.5. Applicability	of	the	technology	in	the	context	of	a	developing	country	

The	 AMD	 prototype	 unit	 was	 connected	 to	 a	 public	 toilet	 produced	 by	 ERAM	

Scientific;	the	“eToilet”	had	remote	monitoring	capacity.	All	of	the	eToilet	uses	were	

recorded	over	the	course	of	 the	testing	period	as	well	as	 the	number	of	 treatment	

cycles	logged	by	the	AMD	unit	(Figure	2.11).	The	treatment	capacity	of	the	unit	was	

adequate	 for	 the	 number	 of	 users	 since	 there	was	 no	 limitation	 in	 the	 number	 of	

eToilet	uses	from	lack	of	treated	water.	Issues	related	to	the	engineering	connections	

between	the	eToilet-AMD	unit	prevented	use	for	more	than	6	months.	Mechanical	and	

electrical	 issues	 detected	 by	 the	 maintenance	 engineer	 in	 residency	 on	 the	 AMD	

testing	site	were	solved	with	remote	or	on-site	assistance	of	the	authors.	The	parts	

that	 were	 replaced	 during	 the	 testing	 period	 included	 pumps	 that	 failed	 for	
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mechanical	 reasons	 and	 failures	 in	 the	 electrical	 energy	 storage	 subsystem	

(TRUECharge	 2	 40	A	 grid	 to	 24	 V	 converter	 and	 12	 V	 Blue	 Top	 lead-acid	 backup	

batteries,	Figure	S2.3).	The	mechanical	failures	of	the	pumps	were	due	to	fatigue	and	

solids	(sand)	abrading	the	impeller	and/or	the	diaphragms.	The	electrical	failures	of	

the	 energy	 storage	 subsystem	 were	 probably	 due	 to	 over-drainage	 events	 of	 the	

batteries	when	the	system	was	used	in	the	park	but	disconnected	from	the	grid	for	

very	 long	 periods	 (12	 hours	 or	 more)	 and	 several	 grid	 electricity	 failures.	 These	

issues	 highlight	 the	 necessary	 trade-off	 between	 increasing	 the	 overall	 capital	

expenditure	of	a	system	with	components	prone	to	less	failure	such	as	higher-grade	

pumps	or	sufficient	solar	panels	to	provide	a	backup	source	of	power,	and	managing	

the	operational	expenditures	due	to	frequent	replacement	of	parts	and	grid	electricity	

costs.	These	issues	also	highlight	the	necessity	for	frequent	monitoring	of	the	toilet	

wastewater	 treatment	 system	 in	 order	 to	 minimize	 the	 potential	 negative	 health	

impact	on	the	users.	A	solution	could	be	in	the	form	of	an	automatic	detection	and	

maintenance	system	that	could	investigate	the	status	of	the	treatment	system	via	a	

suite	of	sensors	and	potentially	self-repair	or	provide	a	step-by-step	guide	for	repairs	

that	necessitate	the	presence	of	a	technician	or	a	lesser	qualified	person.			

2.5.6. Possible	prototype	improvements	for	commercialization	

The	efficacy	of	the	electrochemical	treatment	technology	to	clarify	and	disinfect	

toilet	 wastewater	 by	 generating	 chlorine	 without	 addition	 of	 water	 or	 chemicals	

makes	this	technology	attractive	as	a	non-sewered	sanitation	system,	especially	since	

it	does	not	depend	on	the	type	of	toilet	used	(e.g.,	“western-style”	flush	toilet,	squat	

pan)	and	does	not	require	specific	training	or	any	change	of	behavior	of	the	user.		
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Nevertheless,	several	improvements	to	the	pre-alpha	prototypes	can	be	made	to	

increase	the	robustness	and	energy	efficiency	of	this	electrochemical	technology	to	

meet	the	goals	of	the	RTTC.	A	replacement	of	the	sedimentation	tank	at	the	input	of	

the	process	 (Figure	S2.1)	by	more	advanced	biological	pre-treatment	 technologies	

such	 as	 small-size	 coupled	 aerobic/anaerobic	 systems	 (Metcalf	 &	 Eddy,	 2014)	 or	

microbial	 fuel	 cells	 (Li,	 Yu,	 &	 He,	 2014)	 could	 effectively	 decrease	 the	 amount	 of	

undesired	organic	and	inorganic	contaminants	entering	the	electrochemical	reactor.	

This	approach	would	drastically	reduce	the	operational	expenses	of	 the	system	by	

lowering	the	amount	of	electricity	needed	to	complete	the	electrochemical	treatment.	

Also,	 the	 biosolid	 residuals	 from	 the	 pre-treatment	 step	 as	 well	 as	 the	 filtered	

materials	(Figure	S2.1)	should	be	properly	decontaminated	before	being	extracted	

from	the	system	via	a	targeted	decontamination	process	such	as	ohmic	heating	(Yin,	

Hoffmann,	&	Jiang,	2018).		
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2.6. Summary	

In	response	to	the	Bill	and	Melinda	Gates	Foundation	challenge	to	“Reinvent	the	

Toilet”,	our	research	group	at	Caltech	developed	several	self-contained,	decentralized	

waste	treatment	systems	that	were	designed	to	treat	human	domestic	toilet	waste	at	

its	 source	with	 discharge	 to	 the	 environment.	 After	 toilet	 flushing	 the	 discharged	

waste	is	stored	in	a	wastewater	tank.	After	some	decantation,	the	effluent	water	from	

the	wastewater	tank	is	pumped	into	an	electrochemical	reactor	array	upon	demand	

for	the	electrochemical	oxidation	of	the	residual	organic	and	inorganic	constituents.	

Disinfection	 is	 achieved	 via	 in	 situ	 chlorine	 generation	 resulting	 from	 anodic	

oxidation	 of	 chloride.	 Electrons	 released	 during	 anodic	 oxidation	 flow	 to	 the	

electronically	coupled	cathodes	to	produce	molecular	hydrogen	via	water	reduction.	

The	 sequential	 biological	 and	 electrochemical	 treatment	 reduces	 the	 COD	 and	

microbial	 levels	 to	 below	WHO	 agricultural	 reuse	 standards,	 while	 denitrification	

takes	place	due	to	breakpoint	chlorination.	In	the	field-level	prototype	systems,	the	

treated	 black	 water	 is	 recycled	 into	 flush	 water	 reservoirs	 without	 significant	

discharge	to	the	surrounding	environment.		
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Table	 2.1:	 Information	 about	 the	 different	 toilet	 wastewater	 treatment	 and	 recycling	 units	
installed	in	the	world.	

Configuration	 Ref	 Location	 Testing	period	 Average	daily	
usage	during	

testing	

Self-contained	 bathroom	 +	
wastewater	 treatment	 and	
recycling	unit	 in	 a	 shipping	
container	

PAS	 Pasadena,	USA	 06/2013	to	06/2016	 <5	

KYM	 Kottayam,	India	 04/2014	to	01/2016		 6	

YXG	 Yixing,	China	 12/2014	to	05/2015	 35	

Wastewater	 treatment	 and	
recycling	 unit	 connected	 to	
an	 “eToilet”	 public	 toilet	
(Eram	 Scientific,	
Trivandrum,	Kerala,	India)	

AMD	 Ahmedabad,	India	 04/2014	to	01/2016	 7	
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Table	2.2:	Typical	toilet	wastewater	composition	in	the	different	prototypes.		

Parameter	 Unit	 Prototype	reference	
PAS1	 AMD2	 KYM3	 YXG3	

COD	 mg	O2	L-1	 150-250	 100	 335	 550	
Cl-	 mmol	L-1	

11-20	 11	
15	 24	

NH3	+	NH4+	 mg	NH3	L-1	 80	 30-40	 235	 480	
PO43-	+	HPO42-	 mmol	L-1	 0.64	 	 -	 -	
Alkalinity	 as	
CaCO3	

mmol	L-1	 17	 -	 10.7	 27	

pH	 -	 8.3	 7.4	 7.5	 8.5	
1	after	16	months	of	collection	and	6	months	of	recycling	water,		
2	no	recycled	water	used		
3	after	2	months	of	running	
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Table	2.3:	Indicator	organisms	Total	coliform,	Fecal	coliform,	and	E.	coli	detection	test	results	
during	 electrochemical	 treatment	 cycles.	 Analysis	 performed	 by	 the	 Topical	 Institute	 of	
Ecological	 Sciences	 of	 Mahatmah	 Gandhi	 University	 (Kottayam,	 Kerala,	 India)	 and	 Albio	
Technologies	(Kochi,	Kerala,	India).		

Reaction	time	 Total	coliforms	 Fecal	coliforms	 E.	coli	
(energy	consumed)	 MPN/100ml	 MPN/100ml	 CFU/ml	

11/17/14	 	 	 	

0	h	(0	Wh	L-1)	 >1100	 >1100	 200	
2	h	(11	Wh	L-1)	 <1	 <1	 <1	
4	h	(22	Wh	L-1)	 <1	 <1	 <1	

3/28/15	 	 	 	

0	h	(0	Wh	L-1)	 >2400	 75	 Present	
1	h	(4.1	Wh	L-1)	 1100	 0	 Absent	
2	h	(8.2	Wh	L-1)	 23	 0	 Absent	
3	h	(12	Wh	L-1)	 15	 0	 Absent	

7/25/15	 	 	 	

0	h	(0	Wh	L-1)	 >2400	 120	 Present	
1	h	(6.7	Wh	L-1)	 1100	 75	 Present	
2	h	(13	Wh	L-1)	 93	 4	 Present	
3	h	(20	Wh	L-1)	 43	 3	 Present	
4	h	(27	Wh	L-1)	 9	 0	 Absent	

9/18/15	 	 	 	

0	h	(0	Wh	L-1)	 75	 0	 Absent	
2	h	(12	Wh	L-1)	 23	 0	 Absent	
4	h	(24	Wh	L-1)	 9	 0	 Absent	
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Table	 2.4:	 Typical	 wastewater	 quality	 parameters	 measured	 before	 and	 after	 a	 3-hour	
electrolysis	cycle	over	the	course	of	the	field	testing	of	the	AMD	prototype.	Values	are	average	
of	three	replicates.		

Date*	 COD	
	
(mg	O2/L)	

TKN	or	
NH3	
(mg	N/L)	

TSS	
	
(mg/L)	

Chloride	
	
(mg	Cl-/L)	

Total/Free	
Chlorine	
(mg	Cl2/L)	

	 Before	 After	 Before	 After	 Before	 After	 Before	 After	 Before	 After	
18/09/2014	 32	 -	 n.d.	 -	 -	 -	 -	 -	 -	 -	

14/10/2014	 100	 -	 31	 -	 100	 -	 -	 -	 -	 -	

03/11/2014	 90	 n.d.	 -	 -	 100	 50	 182	 35.1	 -	 -	

29/11/2014a	 43	 11	 15	 2	 -	 -	 100	 30	 -	 -	

23/02/2015	 100	 48	 -	 -	 -	 -	 -	 -	 -	 -	

27/08/2015	 -	 -	 -	 -	 -	 -	 -	 -	 0b	 39b	

09/09/2015	 -	 -	 -	 -	 -	 -	 -	 -	 5b	 21b	

01/12/2015	 240	 40	 43	 5	 -	 -	 -	 -	 9b	 25b	

16/01/2016	 223	 26	 -	 -	 -	 -	 235	 203	 <1c	 -	

02/02/2016	 371	 95	 -	 -	 -	 -	 886	 382	 <1c	 2.73c	

31/03/2016	 320	 50	 1.05d	 2.04d	 245	 87	 -	 -	 -	 -	

11/04/2016	 234	 56	 25d	 40d	 180	 35	 425	 390	 <1c	 <1c	

*Date	format:	dd/mm/yyyy)	

a	Analyses	performed	by	third-party	(Ahmedabad	Municipal	Corporation	Central	Lab).	Total	Nitrogen	

was	measured.	

b	Total	Chlorine	

c	Free	Chlorine	

d	Potential	Interference	for	Ammonia	measurement	
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Figure	 2.1:	 Percentage	 of	 a	 country’s	 population	 without	 access	 to	 safe	 sanitation	 in	 2015	
according	to	the	World	Health	Organization	(World	Health	Organization,	2015).	Location	of	the	
four	prototype	testing	sites	across	the	world:	PAS,	Pasadena,	California,	USA;	AMD,	Ahmedabad,	
Gujarat,	India;	KYM,	Kottayam,	Kerala,	India;	YXG,	Yixing,	Jiangsu,	China.		
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Figure	 2.2:	 Caltech	 Solar	 Toilet	 system	 prototypes:	 a)	 Prototype	 PAS	 (Pasadena,	 CA);	 b)	
Prototype	KYM	(Kottayam,	Kerala,	India);	c)	Prototype	AMD	(Ahmedabad,	Gujurat,	India);	d)	
Prototype	YXG	(Yixing,	Jiangsu,	China).	
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Figure	2.3:	System	flow	diagram	(top	left,	see	Figure	S2.1	for	volumes	and	residence	times)	with	
automation	 algorithm	 description	 for	 the	 onsite	 toilet	 wastewater	 treatment	 and	 recycling	
systems.	 Pumps	 are	 underlined.	 Capacitive	 level	 sensors	 are	 represented	 by	 red	 triangles.	
Brown	lines	illustrate	the	flow	of	untreated	wastewater	while	blue	lines	illustrate	the	flow	of	
treated	and	recycled	wastewater.		
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Figure	2.4:	 Photograph	of	 the	 layout	 of	 one	 of	 the	 self-contained	 electrochemical	 treatment	
prototypes	 installed	 in	 the	 field.	 The	 combined	 power,	monitoring,	 and	 control	 system	 are	
highlighted	in	red	dashes.	Refer	to	Figure	2.3	for	meaning	of	acronyms.	
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Figure	2.5:	Electrons	flow	and	main	chemical	reactions	in	the	ECR	illustrating	the	production	
and	the	fate	of	FC	during	electrochemical	treatment	(1)	–(3).	The	yellow	arrows	represent	the	
flow	of	electrons	in	the	electrodes	and	across	the	wires.		
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Figure	2.6:	Scheme	of	the	electrochemical	oxidation	of	organic	compounds	and	chloride	ions	on	
a	 metal	 oxide	 electrode.	 Adapted	 from	 Comninellis	 with	 the	 permission	 of	 Elsevier	
(Comninellis,	1994;	Panizza	&	Cerisola,	2009).	
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Figure	2.7:	Typical	evolution	of	the	COD,	TKN,	and	TC	during	the	treatment	of	toilet	wastewater	
in	AMD	prototype.	
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Figure	 2.8:	 NH3	 (top)	 and	 COD	 (bottom)	 averaged	 concentrations	 before	 (input)	 and	 after	
(output)	 a	 typical	 electrochemical	 treatment	 cycle	 of	 4	 hours	 with	 respective	 Removal	
Efficiencies	(RE)	for	30	continuous	days	of	operation	of	YXG	prototype.	Day	0	corresponds	to	
the	beginning	of	usage	of	the	prototype.	
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Figure	2.9:	COD	removal	efficiency	(RE)	and	output	COD	value	of	treated	toilet	wastewater	of	
AMD	prototype.	Effective	sampling	dates	are	written	vertically.		
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Figure	 2.10:	 COD	 removal	 at	 different	 levels	 of	 electrical	 energy	 consumption	 for	 toilet	
wastewater	of	original	COD0	value.	Extrapolation	 is	based	on	a	 first-order	kinetic	model	 for	
electrochemical	COD	removal,	see	Figure	S2.7	(Martinez-Huitle	&	Ferro,	2006).		
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Figure	2.11:	Recorded	monthly	usage	of	eToilet	(left)	and	electrolysis	treatment	cycles	during	
operation	in	Ahmedabad,	Gujarat,	India	(AMD).		
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2.8. Supplementary	figures	and	table	

	

	

Figure	S2.1:	System	flow	diagram	of	the	self-contained	toilet	electrochemical	treatment	system	
with	capacity	and	residence	time	of	the	relevant	components.	 	
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Figure	S2.2:	CAD	rendering	of	the	electrochemical	reactor	(ECR)	boddy	with	an	artist	view	of	
the	electrode	array	in	its	core.	
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Figure	S2.3:	Simplified	electrical	energy	flow	diagram	of	the	Caltech	Solar	Toilet.	 	
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Figure	 S2.4:	 Typical	 layouts	 of	 the	 self-contained	 electrochemical	 treatment	 systems	with	 a	
dedicated	bathroom	located	on	the	left	side	and	a	treatment	room	on	the	right	side.	 	

Top view



	

	

67	

	

	

Figure	S2.5:	Measured	CER	rate	(ppm	Cl2/min)	in	22	L	of	20	mM	NaCl	solution	as	a	function	of	
electrodes	 surface	 to	 reactor	 active	 volume	 (m2	 m-3).	 Linear	 regression	 equation:	
CER	=	8.3x	+	9.7	(R2	=	0.89),	x	is	the	electrode	surface	area	to	solution	volume	ratio.	Error	bars	
represent	±	one	standard	deviation	of	3	replicates.	
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Figure	 S2.6:	 CER	 rate	 determined	 in	 20	 mM	 NaCl	 after	 usage	 of	 the	 electrodes	 for	 toilet	
wastewater	treatment.	
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Figure	 S2.7:	 COD	 removed	 per	 Wh	 L-1	 during	 a	 treatment	 cycle	 (4	 h	 to	 6	 h)	 after	 specific	
acumulated	toilet	wastewater	electrolysis	time.		
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Figure	S2.8:	Recorded	electrolysis	voltage	and	current	of	the	ECR	during	a	typical	month	of	full	
usage	of	AMD	prototype.	Variations	in	cycles	are	due	to	ECR	turning	off	and	on	following	the	
automation	mechanism	Figure	2.3.	
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Table	S2.1:	Coefficients	obtained	by	computational	fit	obtained	by	Igor	Pro	6.37	(Wavemetrics)	
with	equation	(S1)	of	the	COD	removal	data	measured	after	the	specific	acumulated	electrolysis	
times	 (Figure	 S2.7).	 σ0,	 σ1,	 and	 σ2	 correspond	 to	 ±	 one	 standard	 deviation	 of	 C0,	 C1,	 and	 C2	
respectively.	

AET*	(h)	 C0	 C1	 C2	 A0	 σ0	 σ1	 σ2	

196	 227	 -147	 5.16	 5.77	 14.4	 16.5	 1.58	
324	 232	 -126	 8.75	 6.56	 1.27	 1.29	 0.22	
344	 188	 -78.3	 7.82	 5.27	 -	 -	 -	
436	 320	 -224	 55.2	 12.6	 83.7	 81	 29.6	
532	 255	 -224	 40.7	 7.33	 48.3	 44.9	 15.6	
544	 3.03E+05	 -3.02E+05	 6.46E+04	 7.50	 3.23E+08	 3.23E+08	 6.9E+07	
616	 286	 -178	 55.5	 7.40	 47.5	 45.7	 21.8	
640	 218	 -122	 26.4	 6.70	 30.6	 28.2	 13.5	
658	 135	 -64.9	 4.32	 6.30	 1.79	 2.43	 0.49	

	
*Accumulated	Electrolysis	Time	
	

COD	(removed) = 𝐶B + 𝐶Dexp(−(𝑥 − 𝐴B)/𝐴.)	 																													(S1)	 	
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3.1. Abstract	

Microbial	fuel	cell	(MFC)	systems	have	the	ability	to	oxidize	organic	matter	and	

transfer	electrons	to	an	external	circuit	as	electricity	at	voltage	levels	of	<1V.	Urine	

has	been	shown	to	be	an	excellent	feedstock	for	various	MFC	systems,	particularly	

MFCs	 inoculated	 with	 activated	 sludge	 and	 with	 a	 terracotta	 ceramic	 membrane	

separating	 carbon-based	 electrodes.	 In	 this	 article,	 we	 studied	 a	 MFC	 system	

composed	 of	 two	 stacks	 of	 32	 individual	 cells	 each	 sharing	 the	 same	 anolyte.	 By	

combining	the	current	produced	by	the	32	cells	connected	in	parallel	and	by	adding	

the	potential	of	both	stacks	connected	in	series,	an	average	power	density	of	23	mW	

m-2	was	produced	at	an	effective	current	density	of	65	mA	m-2	for	more	than	120	days.	

[NH3],	 TIC,	 COD,	 and	 TOC	 levels	 were	 monitored	 frequently	 to	 understand	 the	

chemical	energy	conversion	to	electricity	as	well	as	to	determine	the	best	electrical	

configuration	of	the	stacks.	Archaeal	and	bacterial	populations	on	selected	anode	felts	

and	in	the	anolyte	of	both	stacks	were	investigated	as	well.	Indicator	microorganisms	

for	 bacterial	 waterborne	 diseases	 were	 measured	 in	 anolyte	 and	 catholyte	

compartments	 to	 evaluate	 the	 risk	 of	 reusing	 the	 catholyte	 in	 a	 non-regulated	

environment.		
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3.2. Introduction	

Energy-recovery	from	waste	is	a	major	challenge	at	a	time	in	which	the	Earth’s	

resources	 are	 increasingly	 strained	 by	 human	 exploitation	 (Walther,	 2013).	 For	

instance,	a	2012	special	issue	of	Science	focused	on	“Working	with	Waste”	to	minimize	

the	use	of	raw	materials	(Wigginton,	Yeston,	&	Malakoff,	2012).	One	attractive	way	to	

recover	part	of	the	estimated	1.5	⋅	1011	kWh	of	chemical	and	physical	energy	lost	from	

the	 wastewater	 rejected	 annually	 in	 the	 United	 States,	 is	 through	 the	 use	 of	

respiration	of	microbes	in	microbial	electrochemical	technologies	(Bruce	E.	Logan	&	

Rabaey,	2012)	such	as	microbial	 fuel	 cells	 (MFCs).	However,	efficiently	 recovering	

useful	 amounts	 of	 energy	 from	 sewage	 at	 large	 scale	 treatment	 plants,	 is	 —at	

present—	 a	 suboptimal	 process	 because	 the	 nutrients	 containing	 most	 of	 the	

chemical	energy	of	the	wastewater	have	been	highly	diluted	in	the	sewers	(Jiang	et	

al.,	2011).	The	key	is	then	to	recover	the	chemical	energy	close	to	the	source	(e.g.,	the	

toilet)	 before	 dilution.	 Urine-diversion	 toilets,	with	 urine	 collection	 systems,	 have	

been	employed	in	certain	parts	of	the	World,	but	even	though	urine	is	pathogen-free	

for	 healthy	 individuals,	 its	 potential	 contamination	 with	 fecal	 material	 (Höglund,	

Stenström,	&	Ashbolt,	2002)	and	its	high	ammonia	and	mineral	content	often	prevent	

it	from	safe	and	user-friendly	nutrient	recovery	in	peri-urban	and	urban	communities	

(Bischel,	 Schertenleib,	 Fumasoli,	 Udert,	 &	 Kohn,	 2015).	 It	 has	 previously	 been	

reported	that	urine	can	successfully	be	used	as	a	direct	feedstock	for	certain	microbes	

(Ieropoulos,	Greenman,	&	Melhuish,	2012)	that	will	oxidize	some	of	its	nutrients	and	

transfer	electrons	to	an	inert	substrate	via	direct	or	indirect	processes	as	the	anodic	

part	of	a	MFC	system	(Lovley,	2012;	Schroder,	2007).	This	direct	energy	recovery	and	
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conversion	to	electricity	from	urine	has	shown	promising	results	in	standalone	MFC	

systems	 (Ieropoulos	 et	 al.,	 2012;	 Salar-García	 et	 al.,	 2017)	 with	 a	 high	 power	

production	per	biomass	for	terracotta	ceramic	MFCs	(Greenman	&	Ieropoulos,	2017).	

Such	systems	can	also	be	installed	in	an	onsite	self-contained	human	waste	treatment	

system	relying	on	electrolysis	to	remove	nitrogen,	chemical	oxygen	demand	(COD),	

pathogens,	and	to	recover	phosphorus	(Hoffmann	et	al.,	2013).	MFC	systems	can	also	

be	used	as	a	pre-treatment	for	COD	and	TOC	removal	of	urine	coming	from	waterless	

urinals	(Figure	S3.1).	In	this	article,	we	investigate	the	operation	of	a	MFC	system	for	

the	pre-treatment	of	human	urine	by	anodic	microorganisms	with	electrical	energy	

recovery.	While	this	usage	of	MFC	can	lower	the	energy	cost	for	treating	human	waste,	

it	 can	also	 recover	 electrical	 energy	 in	order	 to	divert	 the	urine	 flow,	making	 this	

approach	 an	overall	 energy	 gain	 for	 the	 entire	onsite	 self-contained	human	waste	

treatment	system.		
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3.3. Materials	and	methods	

3.3.1. MFC	stacks	

Two	versions	of	a	similar	design	of	MFC	stacks	were	employed	in	this	study.	The	

differences	in	the	design	are	highlighted	when	necessary.	Version	A	was	used	for	the	

bacterial	cross-over	and	current	efficiency	characterizations.	Version	B	was	used	for	

long	term	monitoring	with	electrical	energy	harvesting.		

Two	MFC	stacks	for	each	version	consisted	each	of	32	individual	cells	per	stack	(	

Figure	3.1	a)	separated	evenly	and	suspended	in	a	rectangular	tank	connected	to	a	

water-free	urinal	(	Figure	3.1	b).	A	gravity-driven	cross-flow	through	each	stack	was	

made	possible	by	placing	the	input	and	output	connection	at	the	outermost	parts	of	

the	rectangular	tank	(	Figure	3.1	c).	In	normal	operation,	the	input	of	the	top	stack	

was	connected	to	an	equalization	tank	equipped	with	a	level	sensor	commanding	a	

pump.	About	3.5	L	of	the	urine	drained	from	the	water-free	urinal	were	pumped	when	

the	level	of	urine	in	the	equalization	tank	reached	a	certain	height.	The	residence	time	

of	urine	in	the	equalization	tank	could	vary	from	few	hours	to	few	days	as	shown	by	

the	 recorded	 feeding	 intervals	 in	 Figure	 3.2.	 The	 output	 of	 the	 top	 stack	 was	

connected	to	the	input	of	the	bottom	stack	with	two	90º	bent	pipes	to	minimize	cross-

over	between	the	top	and	the	bottom	stack.	The	output	of	the	bottom	stack	drained	

by	gravity	into	a	tank	for	further	processing.	

The	cells	in	both	versions	A	and	B	were	similar	to	the	ones	described	by	Salar-

García	et	al.	(Salar-García	et	al.,	2017):	each	cell	had	a	terracotta	tubular	ceramic	tube	

of	150	mm	 length	and	42	mm	 internal	diameter	 (50	mm	outer	diameter)	with	an	

unknown	pore	size	(Weston	Mill	Pottery,	Newark,	United	Kingdom)	open	to	air	in	its	
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center	and	acting	as	an	ion-conductive	separator	between	anode	and	cathode.	Each	

anode	 was	 1000	 mm	 by	 260	 mm	 carbon	 veil	 (loading	 20	 g	 m-2,	 PRF	 Composite	

Materials,	Dorset,	UK)	folded	in	half	along	its	length	to	make	1000	mm	by	130	mm	

and	wrapped	around	the	outside	surface	of	the	terracotta	tubular	ceramic	tube.	This	

was	 held	 in	 place	 by	 a	 stainless-steel	 wire.	 The	 wire	 was	 physically	 holding	 the	

electrode	 against	 the	 terracotta	 tube	 and	 acted	 as	 a	 current	 collector	 connected	

directly	to	the	other	anodes	via	alligator	clips	and	metal	wires	(version	A)	or	through	

an	 electrical	 bus	 bar	 attached	 to	 the	 stack	 acting	 as	 the	 anodic	 current	 collector	

(version	B).	The	cathode	was	a	140	mm	by	130	mm	carbon	veil	with	micro	pores	

described	 elsewhere	 (Papaharalabos	 et	 al.,	 2013).	 The	 cloth	 was	 rolled	 along	 its	

length	 (140	 mm)	 and	 placed	 inside	 the	 terracotta	 tube	 in	 a	 manner	 intended	 to	

maximize	the	contact	with	the	ceramic	wall	while	reaching	the	bottom	of	the	tube.	

Alligator	 clips	 connected	 to	 each	other	 (version	A)	or	 to	 a	metal	 bus	bar	 cathodic	

current	collector	(version	B)	were	used	for	electrical	contact	with	the	cathode	cloth.		

The	 inoculation	 period	 was	 similar	 for	 version	 A	 and	 version	 B	 and	 lasted	

approximately	24	days.	Each	stack	was	first	inoculated	with	10	L	of	a	1:1	solution	of	

human	urine	and	activated	sludge	from	a	local	domestic	wastewater	treatment	plant	

treating	 mostly	 domestic	 wastewater	 (San	 José	 Creek	 Water	 Reclamation	 Plant,	

Whittier,	California,	USA)	for	3	days.	After	the	initial	addition,	3	to	6	L	of	urine	were	

added	to	each	stack	at	regular	intervals	(Figure	S3.2).	The	stacks	were	drained	of	the	

same	volume	before	urine	addition.	During	the	inoculation,	the	anodes	and	cathodes	

were	 connected	 to	 a	 4	 Ω	 load,	 and	 voltage	 across	 the	 load	 was	 recorded	 on	 a	

continuous	basis	via	an	automatic	data	logger,	vide	infra.	The	inoculation	period	was	
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stopped	 when	 the	 voltage	 across	 the	 resistor	 stabilized	 (not	 taking	 into	 account	

diurnal	variations)	(Figure	S3.2).		

3.3.2. Electronics	for	performance	monitoring	and	energy	harvesting	

The	 wires	 (version	 A)	 or	 metal	 bus	 bar	 (version	 B)	 from	 each	 stack	 were	

connected	directly	to	a	power	harvester.	The	power	harvester	did	not	contain	any	

active	electrical	components	but	facilitated	connecting	the	stacks	in	series	or	parallel.	

The	 electrical	 energy	of	 each	 stack	was	dissipated	by	 the	 ‘Joule	 effect’	 through	an	

adjustable	load	with	a	potentiometer	of	1	to	25	Ω	range	with	0.2	Ω	precision	(Digikey,	

USA).	The	electrical	potential	across	the	load	was	measured	and	recorded	every	ten	

seconds	by	a	two-channel	data	logger	(Programmed	Scientific	Instruments,	Arcadia	

California)	connected	to	a	Panel	PC	PPC-L62T	(Advantech,	China)	with	a	dedicated	

software	package	(Program	Scientific	Instruments,	Arcadia	CA).	The	potentiometers	

and	the	data	logger	electrical	connections	were	adjusted	to	fit	an	independent,	series,	

or	parallel	wiring	between	the	two	stacks.		

3.3.3. Solution	sampling	and	chemical	analyses	

Grab	samples	were	taken	from	approximately	10	cm	below	the	surface	of	each	

stack	through	a	hole	drilled	as	close	to	the	inlet/outlet	as	possible.	A	50-mL	plastic	

syringe	(BD,	Franklin	Lakes,	NJ)	connected	 to	a	15-cm	piece	of	Tygon	 tube	(Saint-

Gobain,	France)	was	used	to	collect	between	10	mL	and	20	mL	of	the	solution.	The	

syringe	and	the	tube	were	rinsed	with	ultrapure	water	and	dried	multiple	times	with	

several	suction/injection	movements	between	each	sampling.	After	the	last	sample	

was	taken,	the	syringe	and	the	tube	were	cleaned	with	a	10%	solution	of	bleach	and	
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rinsed	 several	 times	with	 ultrapure	water	 and	 then	 allowed	 to	 dry	 until	 the	 next	

sampling.		

Sampled	solutions	were	filtered	through	a	25-mm	Acrodisc	Syringe	Filters	with	a	

0.45-µm	 GHP	 membrane	 (Pall	 Corporation,	 Port	 Washington	 NY)	 and	 diluted	

appropriately	with	ultrapure	water	before	storage	at	4	ºC	and	analysis.		

COD	was	measured	in	duplicates	and	triplicates	via	the	colorimetric	method	Hach	

8000	 (Hach	 Company,	 Loveland	 CO).	 Ammonia	 [NH3]	 (measured	 as	 [NH4+])	 was	

determined	by	ion	chromatography	(Dionex	ICS	2000;	AS19G	anions,	CS12A	cations).	

TOC	and	TIC	concentrations	were	measured	with	an	Aurora	1030W	TOC	Analyzer	(OI	

Analytical,	College	Station	TX)	using	the	heated	persulfate	wet	oxidation	technique.		

3.3.4. Coulombic	efficiency	

Coulombic	efficiency	ε	for	COD	removal	(%)	was	determined	using	equation	(1)	

proposed	by	Logan	et	al.	(Bruce	E	Logan	et	al.,	2006)	with	the	approximation	that	the	

MFC	stacks	were	receiving	an	average	daily	flow	q	=	1	L	day-1.	Other	parameters	were	

M	 the	 molar	 mass	 of	 oxygen	 (M	 =	 32	 g	 mol-1),	 𝓕	 the	 Faraday’s	 constant	

(𝓕	=	96,500	C	mol-1),	and	b	the	number	of	electrons	exchanged	per	mole	of	oxygen	

reduced	 (b	 =	 4).	 I	 (A)	 was	 the	 averaged	 current	 going	 through	 the	MFC	 stack	 as	

determined	by	Ohm’s	law	(E	=	RI,	E	being	the	potential	(V)	across	the	resistor	R	(Ω)	

and	 I	 the	 current	 flowing	 through	R).	∆UVW	 (mg	O2	L-1)	was	 the	difference	 in	COD	

values	between	influent	and	effluent.	

𝜀 = YZ
𝓕[\∆]^_

∙ 100	 																													(1)	
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3.3.5. Analyses	of	biomass	in	suspension	

Three	catholyte	compartments	from	the	top	stack	(C1,	C2,	and	C3,	Figure	3.1	c)	

were	sampled	as	well	as	inside	the	anolyte	compartment	of	the	top	and	the	bottom	

stacks.	The	sampling	of	the	anolyte	was	performed	close	to	the	inlet	and	the	outlet	of	

the	top	stack	and	close	to	the	outlet	of	the	bottom	stack.	The	samples	were	taken	with	

a	similar	apparatus	previously	described.		

Bacterial	cross-over	between	anolyte	and	catholyte	was	assessed	by	estimating	

the	quantity	of	indicator	organisms	E.	Coli,	Total	Coliforms,	and	Enterococcus	with	the	

following	 respective	EPA	methods:	1103.1	 (U.S.	Environmental	Protection	Agency,	

2010),	 9132	 (U.S.	 Environmental	 Protection	 Agency,	 1986),	 and	 1600	 (U.S.	

Environmental	Protection	Agency,	2002)	with	appropriate	dilutions.		

3.3.6. Biological	analyses	of	the	anodes	

Bacterial	 population	 estimates	 on	 the	 sampled	 carbon	 veils	 that	were	 used	 as	

anodes	for	4.5	months	were	determined	by	staining	a	small	portion	of	a	carbon	veil	

anode	using	a	LIVE/DEAD	BacLight	Bacterial	Viability	Kit	L7012	(Molecular	Probes,	

Eugene	OR).	The	kit	contained	an	appropriate	mixture	of	SYTO	9	(excitation	at	about	

480	nm,	 emission	 in	 green	 at	 about	 500	nm)	 and	propidium	 iodide	 (excitation	 at	

about	490	nm,	emission	in	red	at	about	635	nm).	The	carbon	veil	was	infused	with	

enough	 volume	 of	 the	 dye	 mixture	 to	 cover	 all	 the	 veil	 sample	 following	 the	

manufacturer’s	recommendations.	The	dyed	veil	was	then	placed	on	a	glass	slide	and	

observed	 under	 a	 fluorescent	 light	microscope	 (Leica	 DMi	 8,	 Leica	Microsystems,	

Wetzlar,	 Germany)	 controlled	 by	 LAS	 X	 Expert	 software	 and	 equipped	 with	 the	
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following	fluorescence	filter	cubes:	DAPI	(blue	color),	FITC	(green	color),	and	RHOD	

(red	color).		

16S	rRNA	metagenomic	sequencing	was	performed	on	selected	anode	and	anolyte	

samples	based	on	the	analytical	method	developed	by	Kozich	et	al.	(Kozich,	Westcott,	

Baxter,	Highlander,	&	Schloss,	2013)	DNA	was	extracted	using	a	Mo	Bio	PowerWater	

DNA	 isolation	 kit	 (QIAGEN,	 Germantown,	 MD)	 following	 a	 modified	 extraction	

method	described	in	the	Supplementary	Information	section.		
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3.4. Results	and	Discussion	

3.4.1. Stabilization	of	MFC	performance	

The	electricity	produced	from	two	separated	MFC	stacks	(version	B)	connected	in	

series	was	monitored	continuously	over	the	course	of	160	days	(Figure	3.2).	 Input	

and	 output	 [NH3],	 TIC,	 COD,	 and	 TOC	 levels	 for	 both	 stacks	were	measured	 on	 a	

regular	basis	during	the	same	period	of	time	(Figure	3.3).		

After	the	initial	feeding	and	inoculation	period	of	24	days	(Figure	S3.2)	described	

earlier,	voltage	across	the	potentiometer	for	each	stack	remained	between	280	mV	

and	350	mV	(Figure	3.2)	with	 increases	of	30	±	10	mV	appearing	soon	after	some	

feeding	 events.	 This	 is	 in	 contrast	 to	 the	 rapid	 increase	 in	 cell	 voltage	 of	

approximately	100	mV	(Figure	S3.2),	observed	soon	after	a	feeding	event	during	the	

first	seven	days	of	the	inoculation	process.	The	lowering	of	the	potential	rise	over	the	

course	of	the	160	days	of	testing	can	be	explained	by	the	stabilization	of	the	biological	

community	of	the	MFC	stacks	as	observed	with	various	MFC	systems	in	the	literature	

(Paitier	et	al.,	2017).		

This	stabilization	 is	also	observed	relative	 to	some	of	 the	chemical	parameters	

measured,	particularly	[NH3]	and	TIC	(Figure	3.3	a	and	b):	after	the	initial	inoculation	

period,	[NH3]	stabilizes	at	210	±	20	mM	with	limited	variation	between	the	two	stacks.	

This	concentration	is	nearly	half	of	the	molar	equivalent	of	Total	Kjeldahl	Nitrogen	

(TKN)	present	 in	urine.	After	80	days,	 [NH3]	 in	 the	bottom	stack	was	 found	 to	be	

40	mM	higher	than	that	in	the	top	stack.	This	difference	in	[NH3]	is	probably	due	to	

two	factors:	the	evaporation	of	NH3	happening	in	both	stacks	not	necessarily	at	the	
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same	rate	(the	top	stack	is	open	to	air	while	the	bottom	stack	partially	sealed	under	

the	top	stack,	see		

	Figure	3.1	b)	 and	 the	 slow	hydrolysis	of	urea	 that	occurs	preferentially	 in	 the	

bottom	stack	after	a	longer	retention	time	(Udert,	Larsen,	Biebow,	&	Gujer,	2003).	The	

TIC	in	the	top	stack	was	slightly	higher	(0.2	±	0.1	g	C	L-1	=	22	mM	C)	than	in	the	bottom	

stack.	This	was	most	likely	due	to	the	formation	of	HCO3-	from	urea	hydrolysis,	which	

also	partially	accounted	 for	 the	40	mM	increase	 in	 [NH3]	between	top	and	bottom	

stacks.	

Contrary	to	the	stability	of	[NH3],	the	variability	in	COD	levels	over	the	160-day	

period	was	more	pronounced	(Figure	3.3,	c):	in	the	top	stack	the	COD	level	was	higher	

than	in	the	bottom	stack	by	2	g	O2	L-1	to	5	g	O2	L-1,	on	average.	This	indicated	active	

mechanisms	for	COD	removal	linked	with	the	presence	of	microbial	communities	that	

were	feeding	on	organic	compounds	from	urine.	Furthermore,	the	difference	between	

inlet	and	outlet	values	of	the	top	stack	of	2.4	±	1.2	g	O2	L-1	(e.g.,	days	55,	71,	96,	150	

and	157)	and	less	than	1	g	O2	L-1	for	the	bottom	stack	indicates	that	the	COD	removal	

activity	in	the	top	stack	is	not	as	uniform	as	in	the	bottom	stack.	Finally,	the	difference	

in	COD	value	between	the	outlet	of	the	top	stack	and	the	inlet	of	the	bottom	stack	is	

due	to	the	fact	that	despite	being	connected	hydraulically	in	series,	the	two	stacks	did	

not	share	fluids	continuously:	the	overflow	of	the	top	stack	drops	to	the	bottom	stack	

only	when	it	was	filled,	which	occurred	after	a	urine	feed	event	as	recorded	on	Figure	

3.3,	a).	The	rise	in	COD	values	near	140	days	could	be	explained	by	a	more	frequent	

number	of	feeding	events	or	a	decrease	in	microbial	activity	in	the	top	stack,	the	latter	

being	the	least	probable	because	the	voltage	of	the	top	stack	did	not	drop	(Figure	3.2).	
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The	variation	in	TOC	values	follows	closely	the	same	pattern	as	the	COD	values	

with	the	difference	between	inlet	and	outlet	values	of	the	top	and	bottom	stacks	of	

0.75	±	0.25	g	C	L-1	on	different	days,	 indicating	a	non-uniform	oxidation	of	organic	

matter	across	both	stacks.	TOC	levels	were	significantly	higher	in	the	top	stack	than	

in	the	bottom	stack	for	the	majority	of	the	samples	except	for	two	sampling	days:	day	

71	and	day	150.	The	drop	in	the	TOC	value	measured	on	these	two	days	did	not	seem	

to	be	part	of	a	trend	and	might	be	due	to	sampling	error.	The	sustained	difference	

between	 TOC	 levels	 from	 top	 to	 bottom	 stacks	 indicates	 a	 relatively	 high	

mineralization	process	and	is	consistent	with	microbial	respiration.		

The	12-day	controlled	feeding	test,	performed	between	day	96	and	107	(Figure	

3.4)	with	frequent	chemical	monitoring	of	the	same	parameters	as	previously	cited,	

confirmed	the	limited	impact	of	a	single	feeding	event	on	[NH3]	and	TIC	(Figure	3.4	a	

and	b):	[NH3]	remained	at	210	±	10	mM	at	the	outlet	of	the	top	stack	and	175	±	5	mM	

in	the	bottom	stack	over	the	12-day	test	period	with	moderate	changes	due	to	feeding	

events.	The	highest	variation	in	[NH3]	occurred	at	the	inlet	port	of	the	top	stack:	[NH3]	

increased	after	4	days	of	fasting	to	220	mM	and	then	decreased	to	200	mM	between	

day	4	and	7	of	the	test.	This	pattern	reappeared	in	a	similar	fashion	after	the	second	

feeding.	This	slight	jump	in	[NH3]	was	probably	due	to	hydrolysis	of	urea	present	in	a	

higher	concentration	at	the	inlet	(when	fresh	urine	entered	the	system)	than	at	the	

outlet	with	slight	changes	(±	0.1	g	C	L-1)	of	similar	pattern	in	TIC	concentration	in	the	

top	stack.	This	increase	in	[NH3]	and	TIC	levelled	off	across	the	entire	stack	through	

diffusion.		
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Contrary	to	[NH3]	and	TIC,	the	difference	in	COD	and	TOC	levels	between	feeding	

events	(Figure	3.4	c)	and	among	top	and	bottom	stacks	is	more	consequential:	all	the	

inlet	 and	 outlet	 values	 showed	 a	 decrease	 short	 after	 the	 feeding	 followed	 by	 an	

increase	a	few	days	later.	The	highest	drop	in	COD	levels	was	observed	at	the	outlet	

of	the	stacks:	during	the	first	3	days	after	feeding,	the	COD	level	at	the	outlet	of	the	

top	stack	decreased	by	50%	from	8	g	O2	L-1	and	less	than	20%	at	the	inlet	of	the	same	

stack.	An	even	more	drastic	decrease	of	close	to	90%	from	4.2	g	O2	L-1	occurs	at	the	

outlet	and	the	inlet	of	the	bottom	stack.	After	reaching	their	respective	minima,	the	

COD	levels	increased	by	4	g	O2	L-1	for	the	top	stack	outlet	and	by	2	g	O2	L-1	for	the	

other	 sampling	 ports.	 TOC	 values	 followed	 the	 same	 trend	 but	 with	 less	 drastic	

changes.	 The	 increase	 in	 COD	 and	TOC	 levels	 followed	 by	 a	 decrease	 is	 typical	 of	

microbial	 oxidation	 of	 organic	 waste	 as	 observed	 in	 wastewater	 treatment	 batch	

processes	(Metcalf	&	Eddy,	2014).	Thus,	the	oxidation	of	organics	by	the	microbial	

community	 appeared	 to	 be	 the	 key	 driver	 for	 electricity	 production	 in	 both	MFC	

stacks.		

The	differences	in	the	microbial	community	on	the	anodes	and	in	the	anolyte	were	

determined	qualitatively	by	fluorescence	microscopy	(Figure	3.6)	and	quantitatively	

by	16S	rRNA	metagenomic	sequencing	and	sorting	into	operational	taxonomic	units	

(OTUs,	Figure	3.7).	Fluorescence	microscopy	pictures	of	the	anode	felt	show	a	large	

amount	of	dead	and	 live	microorganisms	 (Figure	3.6	a),	with	 live	microorganisms	

preferentially	 arranged	 along	 the	 fibers	 (Figure	 3.6	 b)	 in	 groups.	 Dead	

microorganisms	are	also	present	in	similar	areas,	thus	showing	an	active	microbial	

biota	on	the	anodes.	The	metagenomics	analysis	of	the	biota	on	the	anodes	and	in	the	
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unfiltered	anolyte	showed	different	OTUs	in	the	anolyte	of	the	two	MFC	stacks	as	well	

as	within	the	same	anode	(Figure	3.7).		

There	were	no	significant	differences	between	the	composition	of	the	OTUs	at	the	

outlet	and	the	inlet	of	a	specific	MFC	stack	except	for	the	following	groups:	Archea	and	

Clostridia	units	were	present	at	a	higher	levels	in	the	anolyte	of	the	bottom	stack	than	

in	the	top,	whereas	Gamma	Proteobacteria	and	Bacili	units	were	found	at	higher	levels	

in	 the	anolyte	of	 the	top	stack	than	 in	 the	bottom.	These	differences	 in	population	

might	have	been	due	to	an	adaptation	of	the	biota	in	suspension	to	the	different	types	

of	nutrient	mixtures	entering	the	stacks,	since	the	top	stack	inlet	received	urine	while	

the	bottom	stack	inlet	received	the	anolyte	(spent	urine)	from	the	top	stack	outlet.	

Furthermore,	 the	 sampled	 anodes	 from	 the	 top	 stack	 had	 large	 differences	 in	

distribution	of	OTUs	whether	they	were	sampled	close	to	the	inlet	(C1)	or	close	to	the	

outlet	(C3,		

	Figure	3.1	c)	or	whether	they	were	sampled	at	the	bottom,	middle,	or	top	of	the	

anode	 along	 its	 vertical	 axis:	 for	 instance,	 bottom	 samples	 for	 C1	 and	 C3	 had	 the	

lowest	 Bacteroidia	 percentage	 and	 the	 highest	 Clostridia	 percentage	 of	 their	

respective	anode,	while	bottom	and	middle	parts	of	C1	and	C3	had	higher	Bacili	levels	

than	the	top	of	their	respective	anode.	

Comparing	 the	 anodes	 and	 the	 anolyte	 showed	 no	 single	 emergent	

microorganism	that	could	exclusively	be	linked	to	the	electron-transfer	mechanisms	

between	bacteria	and	electrode.	Nevertheless,	the	amounts	of	Gammaproteobacteria	

and	Clostridia	OTUs	on	the	anodes	higher	than	in	the	top	anolyte	could	be	linked	to	

those	mechanisms.	Furthermore,	the	observed	differences	in	microbial	populations	
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revealed	an	adaptation	of	the	microbial	community	to	its	location	along	the	vertical	

axis	 and	 that	 adaptation	 was	 probably	 due	 to	 a	 non-uniformity	 of	 the	 nutrient	

concentration,	dissolved	oxygen	concentration,	and	current	density	along	or	close	to	

the	anode.	A	deeper	understanding	of	 the	microbial	communities	and	their	role	 in	

organics	 oxidation	 in	 a	 urine	 medium	 could	 potentially	 lead	 to	 greater	 energy	

production	and	COD	removal.	

3.4.2. Energy	recovery	to	electricity	

Three	electrical	configurations	for	MFC	stacks	(version	A)	were	tested	for	optimal	

electricity	generation	and	COD	removal:	an	independent	configuration	in	which	each	

stack	was	connected	to	a	potentiometer	of	resistance	R	=	12.5	Ω	for	14	days,	a	series	

configuration	in	which	both	stacks	were	connected	in	series	with	a	potentiometer	of	

resistance	R	=	25	Ω	for	two	periods	of	7	days	each,	and	a	parallel	configuration	 in	

which	 both	 stacks	 were	 connected	 in	 parallel	 to	 a	 potentiometer	 of	 resistance	

R	=	12.5	Ω	for	14	days.	The	external	resistance	values	should	have	been	different	for	

the	 three	 electrical	 configurations,	 and	 this	 was	 due	 to	 practical	 limitations	 and	

connection	error.	It	may,	nonetheless	help	to	explain	the	variation	in	the	observed	

behavior	of	the	two	stacks.	

The	 highest	 electrical	 power	 density	 averaging	 24	mW	m-2	 for	 each	 stack	was	

produced	when	the	two	stacks	are	electrically	separated	(Figure	3.5,	top	graph).	This	

value	 was	 within	 range	 of	 what	 has	 been	 found	 in	 the	 literature	 for	 similar	

configuration	(Liu	&	Logan,	2004;	Rabaey	&	Verstraete,	2005).	In	this	case,	there	was	

no	potential	or	current	limitation	that	occurred	when	stacks	were	connected	in	series	

(19	 mW	 m-2)	 or	 parallel	 (9	 mW	 m-2)	 configurations.	 The	 overall	 COD	 removal	
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obtained	with	 the	stacks	connected	 independently	or	 in	series	(Figure	3.5,	bottom	

graph)	 had	 the	 following	 pattern:	 the	 COD	 removal	 in	 the	 top	 stack	 was	 around	

25	±	5%	irrespectively	of	the	electrical	configuration	while	the	COD	removal	in	the	

bottom	stack	was	of	70%	when	 the	stacks	were	 independent	and	35%	when	 they	

were	in	series.	Moreover,	the	overall	COD	removal	of	the	MFC	system	was	80%	when	

the	stacks	were	 independent,	70%	when	the	stacks	were	 in	parallel,	and	 less	 than	

50%	when	the	stacks	were	connected	in	series.		

Combined	with	 power	 density	measurements,	 Coulombic	 Efficiency	 ε	 for	 COD	

removal	was	dependent	on	electrical	configuration	of	the	stacks:	the	lowest	overall	ε	

was	 obtained	 when	 the	 stacks	 were	 connected	 in	 parallel	 (ε	 ≈	 3%)	 while	 the	

maximum	overall	ε	was	obtained	when	the	stacks	were	connected	in	series	(ε	≈	15%).	

These	 results	 are	 in	 agreement	with	 those	of	Oliot	et	 al.	 on	 smaller	 scale	 systems	

(Oliot,	Etcheverry,	Mosdale,	&	Bergel,	2017);	 they	concluded	 that	configuring	MFC	

stacks	in	series	was	a	good	compromise	between	COD	removal,	power	density,	and	

Coulombic	Efficiency.	In	addition,	connecting	the	two	stacks	in	series	allowed	for	a	

higher	 output	 voltage	 and	 a	 more	 effective	 usage	 of	 the	 electrical	 energy	 by	

minimizing	conversion	losses	for	voltage	ramp-up	to	charge	a	battery.	

Had	the	stacks	been	connected	to	the	correct	resistance	values,	then	the	power	

output	of	the	second	and	third	configurations	(series	and	parallel)	would	have	been	

roughly	double	that	of	the	individual	stacks	when	running	independently;	the	series	

connection	would	have	produced	the	same	current	but	double	the	voltage,	and	the	

parallel	connection	would	have	produced	the	same	voltage	but	double	the	current.	

Both	parameters	have	been	shown	to	affect	COD,	efficiency,	and	even	killing	efficacy	
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of	 MFCs,	 when	 studied	 from	 a	 principal	 component	 analysis	 (PCA)	 perspective	

(Ieropoulos,	 Pasternak,	 &	 Greenman,	 2017).	 This	 could	 have	 been	 a	 key	 factor	 in	

changing	 the	 MFC	 behavior	 and	 will	 form	 part	 of	 our	 near-term	 experiments	 to	

corroborate.	

3.4.3. Bacterial	cross-over	

Catholytes	were	monitored	for	bacterial	cross-over	from	the	anolyte	that	contains	

urine	 and	 activated	 sludge	 to	 the	 catholyte	 compartments	 of	 the	 cells.	 Table	 3.1	

summarizes	the	occurrence	of	four	common	indicator	microorganisms:	E.	Coli.,	Total	

Coliforms,	Fecal	 Coliforms,	 and	Enterococcus	 in	 selected	 catholytes	 and	 anolytes	 in	

four	electrical	configurations	of	the	stacks	as	follows:	1)	at	open	circuit	for	7	days,	2)	

independently	connected	to	a	load,	3)	connected	in	series,	4)	or	in	parallel	to	the	same	

load.	 In	 all	 electrical	 configurations,	 the	 levels	 of	 detected	microorganisms	 in	 the	

anolyte	were	too	numerous	to	count	in	most	instances.	This	is	consistent	with	the	fact	

that	bacteria	derived	 from	activated	sludge	should	be	present	 in	 the	anolyte	at	all	

time.	

All	indicator	microorganisms	were	detected	in	all	three	catholyte	samples	when	

the	MFC	 stacks	were	at	open	 circuit	 for	7	days.	When	 the	 stacks	were	electrically	

connected	 in	 series	 or	 in	 parallel	 for	 14	 days,	 only	Total	 Coliform	 tests	 appeared	

positive	while	 the	 other	 indicator	 organisms	were	 not	 detected.	 The	 independent	

connection	of	the	stacks	for	7	days	showed	mix	results	with	Enterococcus	and	Fecal	

Coliform	below	detection	limits;	E.	Coli.	at	or	above	1	CFU	mL-1	 in	two	out	of	three	

catholytes.	Total	Coliform	tests	appeared	positive	in	all	instances.		
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Since	no	catholyte	is	intentionally	placed	in	contact	with	the	activated	sludge	and	

urine	mixture	of	the	anolyte	compartment,	bacterial	diffusion	through	the	terracotta	

membrane	is	the	probable	reason	why	all	the	indicator	microorganisms	are	detected	

in	 the	 catholyte	 compartment.	 Furthermore,	 for	 stacks	 at	 open	 circuit,	 there	 is	no	

electrical	potential	gradient	between	anode	and	cathode	and	diffusion	through	the	

terracotta	occurs	because	of	drying	on	the	cathode	(open	to	air).		

When	 anodes	 and	 cathodes	 are	 connected	 to	 a	 load,	 the	 cathodic	 reduction	 of	

oxygen	to	water	(eqn	2)	increases	the	pH	in	the	catholyte	(Kumar	&	Mungray,	2017)	

observed	 in	 this	 type	 of	 MFCs	 (Gajda,	 Greenman,	 Melhuish,	 &	 Ieropoulos,	 2016),	

making	 the	 catholyte	 less	 favorable	 for	 bacteria	 to	 grow	 (Thorn,	 Lee,	 Robinson,	

Greenman,	&	Reynolds,	2012).		

O2	+	4	e-	+	4	H+	→	2	H2O	 																													(2)	

There	is	no	significant	difference	between	the	electrochemical	potentials	at	each	

electrode	whether	the	stacks	are	electrically	connected	independently	or	in	series	to	

the	same	load:	the	difference	in	concentration	of	indicator	organisms	in	the	catholytes	

between	 independent	 connection	 and	 parallel	 or	 series	might	 be	 simply	 due	 to	 a	

longer	 period	 of	 time	 at	which	 the	 system	was	 run	with	 oxygen	 reduction	 at	 the	

cathode.		

The	minimal	bacterial	cross-over	during	operation	could	imply	that	water	present	

in	the	catholyte	compartment	could	be	used	beneficially;	however,	the	high	level	of	

Total	 Coliforms	 indicate	 that	 the	 catholyte	 water	 may	 contain	 pathogens.	 Direct	

contact	usage	would	not	be	recommended	but	indirect	usage	such	as	heavy	metals	

precipitation	 could	 be	 applied	 (Gajda,	 Stinchcombe,	 Greenman,	 Melhuish,	 &	
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Ieropoulos,	 2017).	 The	 low	 bacterial-load	 reduction	 of	 the	 anolyte	 makes	 the	

presence	of	a	post-treatment	option	such	as	electrochemical	oxidation	compulsory.		
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3.5. Conclusions		

• Continuous	 averaged	 power	 density	 of	 23	mW	m-2	 at	 a	 current	 density	 of	

65	mA	m-2	was	produced	for	more	than	120	days.		

• COD	and	TOC	removal	was	observed	concomitantly	with	power	production	via	

anodic	oxidation.		

• Bacterial	 cross-over	 between	 anolyte	 and	 catholyte	 was	 observed	 at	 open	

circuit,	 but	 fewer	 micro-organisms	 are	 detected	 when	 MFC	 stacks	 are	

electrically	connected	in	series	or	parallel.	

• A	 large	 diversity	 of	 microorganisms	 was	 observed	 on	 the	 anodes	 and	 in	

solution;	however,	electricity	production	could	not	be	linked	to	a	single	genus.	
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Table	3.1:	Bacterial	count	(CFU	per	ml)	of	Total	Coliform,	Fecal	Coliform,	Escerichia	Coli.,	and	
Enterococcus	indicator	microogranisms	for	different	electrical	configurations	of	the	stacks	in	
the	 following	 sequence:	 open	 circuit	 (7	 days),	 independent	 (7	 days),	 series	 (14	 days),	 and	
parallel	(14	days).		

Configuration	&	
Sample	type	

Total	
Coliform	

Fecal	
Coliform	

Escerichia	
Coli	

Enterococcus	

Urine	 n.d.*	 n.d.	 n.d.	 n.d.	
Open	circuit	 	 	 	 	

Top	stack	IN	 TNTC#	 TNTC	 TNTC	 TNTC	
Top	stack	OUT	 TNTC	 TNTC	 TNTC	 TNTC	
Bottom	stack	OUT	 TNTC	 TNTC	 TNTC	 2.2	
Catholyte	1	 n.d.	 22	 6.0	 39	
Catholyte	2	 4.0	 12	 5.0	 29	
Catholyte	3	 1.0	 10	 2.0	 3.4	

Independent	 	 	 	 	
Top	stack	IN	 TNTC	 n.d.	 TNTC	 TNTC	
Top	stack	OUT	 TNTC	 n.d.	 TNTC	 TNTC	
Bottom	stack	OUT	 TNTC	 TNTC	 TNTC	 8.0	
Catholyte	1	 >1.0	 n.d.	 1.0	 n.d.	
Catholyte	2	 TNTC	 n.d.	 n.d.	 n.d.	
Catholyte	3	 TNTC	 n.d.	 37	 n.d.	

Series	 	 	 	 	
Top	stack	IN	 6.0	 n.d.	 n.d.	 TNTC	
Top	stack	OUT	 n.d.	 n.d.	 n.d.	 TNTC	
Bottom	stack	OUT	 TNTC	 n.d.	 n.d.	 n.d.	
Catholyte	1	 n.d.	 n.d.	 n.d.	 n.d.	
Catholyte	2	 TMTC	 n.d.	 n.d.	 n.d.	
Catholyte	3	 n.d.	 n.d.	 n.d.	 n.d.	

Parallel	 	 	 	 	
Top	stack	IN	 TNTC	 TNTC	 TNTC	 TNTC	
Top	stack	OUT	 TNTC	 TNTC	 TNTC	 n.d.	
Bottom	stack	OUT	 TNTC	 n.d.	 n.d.	 n.d.	
Catholyte	1	 0	 n.d.	 n.d.	 n.d.	
Catholyte	2	 TNTC	 n.d.	 n.d.	 n.d.	
Catholyte	3	 3.0	 -	 -	 -	
*	non	detected;	#	too	numerous	to	count	
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	Figure	3.1:	a)	Picture	of	an	empty	terracotta	microbial	fuel	cell	with	the	anode	supported	by	a	
nickel-chromium	wire.	 b)	Two	MFC	 stacks	on	 top	of	 each	other	 fed	by	 gravity	 and	 installed	
behind	a	water-free	urinal	on	Caltech	campus.	c)	Top	view	of	the	MFC	stacks	(version	A)	with	
direction	of	the	gravity-fed	urine	flow	through	the	system.	Cells	C1,	C2,	and	C3	used	for	catholyte	
sampling	for	microbial	testing	(Table	3.1)	are	highlighted.	Sampling	points	for	the	anolyte	in	
top	and	bottom	stacks	are	marked	with	a	star.		
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Figure	3.2:	Voltage	across	the	bottom	and	top	stack	(version	B),	each	connected	to	a	separate	
4Ω	individual	load.	Recorded	urine	feeding	events	are	represented	with	vertical	red	bars.	
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Figure	3.3:	a)	[NH3],	b)	TIC,	c)	COD,	and	d)	TOC	levels	at	the	inlet,	outlet,	and	averaged	for	each	
MFC	stacks.	Recorded	urine	 feeding	events	are	represented	with	vertical	 red	bars.	Range	of	
values	measured	in	urine	samples	by	Putnam	et	al.	are	reproduced	in	a	yellow	pattern.	[NH3]	
pattern	is	based	of	Total	Kjehdal	Nitrogen	(TKN).		 	
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Figure	 3.4:	 Evolution	 of	 chemical	 parameters	 a)	 [NH3],	 b)	 TIC,	 c)	 COD,	 and	 e)	TOC,	 over	 the	
course	of	12	days	with	three	distinctive	“feeding	events”	(marked	“F”)	in	which	3.5	±	0.25	L	of	
fresh	urine	entered	from	the	top	MFC	stack	inlet.	
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Figure	3.5:	Top:	specific	power	density	(top,	mW	m2)	and	bottom:	COD	removal	afficiency	(bars,	
%)	and	Coulombic	efficiency	ε	(sticks	and	markers,	%)	for	different	electrical	configurations	of	
the	MFC	stacks	(version	A):	independent	for	14	days	(R	=	12.5	Ω),	in	series	for	7	and	14	days	
(R	=	12.5	Ω),	and	in	parallel	for	14	days	(R	=	25	Ω).		
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Figure	3.6:	Middle	 section	of	 a	 stained	anode	 (see	Materials	 and	methods	 section)	 revealed	
under	fluoresence	miroscopy	after	several	months	of	operation	in	the	top	MFC	stack:	a)	FITC	
and	RHOD	channels	combines,	b)	FITC	and	c)	RHOD	channels	at	higher	magnification	with	same	
contrast	and	brightness.	
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Figure	3.7:	 Proportion	of	 archeal	 and	bacterial	 population	 assigned	by	16S	 rDNA	 taxonomy	
analysis	into	operational	taxonomic	units	(OTU).	Only	OTUs	with	a	minimum	of	1%	occurance	
for	any	sample	are	represented.	See	Supporting	Information	for	details	on	the	DNA	extraction	
method.	
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3.7. Supplementary	figures	

	

Figure	S3.1:	Integration	of	the	MFC	stacks	within	the	treatment	scheme	of	the	self-contained	
wastewater	 treatment	 and	 recycling	 system	developed	 by	Hoffmann	 et	 al.	 (Hoffmann	 et	 al.,	
2013).	 	
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Figure	 S3.2:	 Potential	measured	 across	 a	 4	 Ω	 resistor	 for	 each	 independent	 stack.	 The	 red	
arrows	indicate	a	feeding	event:	each	stack	was	slowly	drained	of	the	anolyte	volume	written	
and	replaced	by	the	same	quantity	of	fresh	urine.		
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3.8. Supplementary	information:	protocols	

3.8.1. Genomic	DNA	extraction	protocol	(based	on	Mo	Bio	and	modified	by	the	

Orphan	research	group	at	the	California	Institute	of	Technology):	

Anode	felts	were	cut	in	pieces	of	0.5	cm	by	1	cm.	Each	felt	was	placed	in	a	15-mL	

conical	 centrifuge	 tube	with	 10	mL	 of	 a	 70%	ethanol	 solution	 in	 an	 ice	 bath.	 The	

mixture	was	sonicated	for	three	sessions	of	10	s	each	at	5	W	power	with	30	s	break	

between	sessions.	After	sonication,	the	felt	was	discarded	and	the	remaining	mixture	

was	 quickly	 filtered	 using	 a	 disposable	 filter	 funnel	 system	 with	 0.45	 µm	 filter	

membrane.	 Anolyte	 samples	 were	 directly	 filtered	 on	 a	 similar	 disposable	 filter	

funnel.		

After	 filtration,	 the	 filter	membrane	was	carefully	 inserted	 in	 the	5-mL	Mo	Bio	

PowerWater®	Bead	Tube	with	the	top	(cell)	side	of	the	membrane	facing	inwards.	

After	adding	1	mL	of	Mo	Bio	PowerWater®	PW	1	 solution	at	65	 ºC,	 the	 tube	was	

briefly	vortexed	and	incubated	at	65	ºC	for	10	min	in	a	heat	block.	At	the	end	of	the	

incubation	period,	the	tube	was	attached	vertically	using	Mo	Bio	Vortex	Adapter	and	

vortexed	at	maximum	speed	for	5	min.	The	tube	and	its	content	were	then	centrifuged	

at	4,000•g	force	for	1	min	so	all	the	supernatant	could	be	transferred	to	an	autoclaved	

2-mL	centrifuge	 tube	and	 centrifuged	at	13,000•g	 force	 for	1	min.	The	 rest	of	 the	

protocol	 was	 identical	 to	 steps	 11	 through	 24	 of	 the	 Experienced	 User	 Protocol	

published	by	Mo	Bio	(Mo	Bio,	2015).		
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3.8.2. 16S	 rRNA	 gene	 sequencing	 and	 processing	 from	Case	et	 al.	 (Case	 et	 al.,	

2015):	

Preparation	for	sequencing	of	the	V4	region	of	the	16S	rRNA	gene	was	performed	

with	 universal	 primers	 according	 to	 the	 protocol	 recommended	 by	 the	 Earth	

Microbiome	 Project	 (http://www.earthmicrobiome.org/emp-standard-

protocols/16s/)	(J	Gregory	Caporaso	et	al.,	2012;	J.	Gregory	Caporaso	et	al.,	2011),	

with	minor	modifications	described	elsewhere	(Mason	et	al.,	2015).	Raw	sequences	

were	generated	on	an	Illumina	MiSeq	platform	at	Laragen,	Inc.	(Los	Angeles,	CA).	In-

house	data	processing	was	completed	in	QIIME1.8.0	and	included	joining	paired	ends,	

quality	 trimming,	 chimera	 checking,	 97%	 OTU	 clustering,	 singleton	 removal,	 PCR	

contaminant	removal,	0.01%	relative	abundance	threshold	removal,	and	rarefaction	

to	16,051	sequences	per	sample.	Taxonomic	assignments	were	generated	according	

to	 an	 appended	 version	 of	 the	 Silva	 115	 database	 (for	 details,	 see	 (Mason	 et	 al.,	

2015)).	
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4.1. Abstract	

Electrolysis	 of	 toilet	 wastewater	 with	 TiO2-coated	 semiconductor	 anodes	 and	

stainless	steel	cathodes	is	a	potentially	viable	onsite	sanitation	solution	in	parts	of	the	

world	without	 infrastructure	 for	 centralized	wastewater	 treatment.	 In	 addition	 to	

treating	 toilet	 wastewater,	 pilot-scale	 and	 bench-scale	 experiments	 demonstrated	

that	electrolysis	can	remove	phosphate	by	cathodic	precipitation	as	hydroxyapatite	

at	no	additional	energy	cost.	Phosphate	removal	could	be	predicted	based	on	initial	

phosphate	and	calcium	concentrations,	and	up	to	80%	total	phosphate	removal	was	

achieved.	 While	 calcium	 was	 critical	 for	 phosphate	 removal,	 magnesium	 and	

bicarbonate	had	only	minor	impacts	on	phosphate	removal	rates	at	concentrations	

typical	of	toilet	wastewater.	Optimal	conditions	for	phosphate	removal	were	3	to	4	h	

treatment	at	about	5	mA	cm-2	(~3.4	V),	with	greater	than	20	m2	m-3	electrode	surface	

area	 to	 reactor	 volume	 ratios.	 Pilot-scale	 systems	 are	 currently	 operated	 under	

similar	conditions,	suggesting	that	phosphate	removal	can	be	viewed	as	an	ancillary	

benefit	 of	 electrochemical	 wastewater	 treatment,	 adding	 utility	 to	 the	 process	

without	 requiring	 additional	 energy	 inputs.	 Further	 value	 may	 be	 provided	 by	

designing	reactors	to	recover	precipitated	hydroxyapatite	for	use	as	a	low	solubility	

phosphorus-rich	fertilizer.	

Keywords	

Electrochemical	precipitation;	phosphorous;	phosphate	removal;	wastewater;	
onsite	sanitation		
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4.2. Introduction	

Discharge	of	phosphorus-containing	wastewater	to	surface	waters	can	cause	algal	

blooms,	 leading	 to	 growth	 of	 toxic	 cyanobacteria,	 hypoxia,	 and	 disruption	 of	 food	

webs	(Conley	et	al.,	2009;	Correll,	1998).	At	the	same	time,	phosphorus	is	a	limited	

resource	 with	 an	 average	 price	 that	 has	 nearly	 tripled	 between	 2005	 and	 2015	

(World	 Bank,	 2015),	 making	 the	 recovery	 of	 phosphorus	 from	 waste	 crucial	

(Karunanithi	et	al.,	2016).	Toilet	and	domestic	wastewater	are	an	important	source	

of	 phosphorus,	 as	 up	 to	 22%	of	 the	world’s	 consumption	 of	 phosphorus	 could	 be	

recovered	from	human	urine	and	feces	(Cordell,	Rosemarin,	Schröder,	&	Smit,	2011;	

Mihelcic,	 Fry,	 &	 Shaw,	 2011).	 Recovery	 of	 phosphorus	 from	 toilet	 wastewater	 or	

septic	 systems	 could	 therefore	 reduce	 phosphorus	 pollution	 as	 well	 as	 reduce	

dependency	on	imported	mineral	phosphate	in	countries	where	access	to	affordable	

fertilizers	is	limited	(Simons,	Solomon,	Chibssa,	Blalock,	&	Lehmann,	2014).	

Enhanced	 Biological	 Phosphorus	 Removal	 (EBPR)	 may	 provide	 effective	

phosphorus	recovery	in	centralized	wastewater	treatment	processes	(de-Bashan	&	

Bashan,	2004),	but	in	rural	communities,	small	onsite	sanitation	systems	(e.g.,	septic	

tanks,	 latrines,	or	cesspools)	make	this	technology	challenging	without	engineered	

processes	 to	 maintain	 the	 correct	 microbial	 population	 (Oehmen	 et	 al.,	 2007).	

Phosphorus	 recovery	 in	 rural	 communities	 can	 be	 accomplished	 via	 forced	

precipitation	 as	 struvite	 (NH4MgPO4∙6H2O)	 or	 hydroxyapatite	 (Ca5(PO4)3OH),	 but	

these	strategies	typically	require	separation	of	urine	and	feces,	addition	of	chemicals,	

or	 use	 of	 sacrificial	 electrodes	 that	 further	 complicates	 and	 increases	 the	 cost	 of	
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existing	wastewater	treatment	strategies	(Fumasoli,	Etter,	Sterkele,	Morgenroth,	&	

Udert,	2016;	Hug	&	Udert,	2013;	Morse,	Brett,	Guy,	&	Lester,	1998).	

Electrochemical	systems	have	previously	been	suggested	for	phosphorus	removal	

from	 wastewater.	 Electrochemical	 coagulation	 of	 phosphate	 from	 synthetic	

wastewater	 has	 been	 achieved	 using	 sacrificial	 aluminum	or	 iron	 anodes	 (Lacasa,	

Cañizares,	Sáez,	Fernández,	&	Rodrigo,	2011;	Tran,	Drogui,	Blais,	&	Mercier,	2012),	as	

well	 as	magnesium	anodes,	which	allowed	 for	 struvite	 recovery	 from	ammonium-

containing	solutions	(Kruk,	Elektorowicz,	&	Oleszkiewicz,	2014).	However,	this	type	

of	 electrode	 is	depleted	by	oxidation	and	needs	 to	be	 replaced	on	a	 regular	basis.	

Alternatively,	an	alkaline	catholyte	chamber	separated	 from	the	anode	by	a	cation	

exchange	 membrane	 has	 been	 incorporated	 into	 an	 electrochemical	 system	 to	

homogeneously	precipitate	phosphate	as	hydroxyapatite	from	synthetic	wastewater	

(Gorni-Pinkesfeld,	Shemer,	Hasson,	&	Semiat,	2013).	Electrochemical	deposition	of	

struvite	directly	onto	a	nickel	cathode	has	been	demonstrated	in	synthetic	solutions	

containing	magnesium,	ammonium,	and	phosphate,	due	to	the	increased	pH	near	the	

cathode	surface	(Wang,	Hao,	Guo,	&	van	Loosdrecht,	2010).	However,	these	systems	

provided	phosphorus	removal	alone	and	none	of	these	studies	investigated	authentic	

toilet	 wastewater	 or	 utilized	 a	 system	 that	 was	 practical	 for	 toilet	 wastewater	

treatment.	

Onsite	 electrochemical	 wastewater	 treatment	 is	 an	 appealing	 technology	 for	

small-	 and	 medium-sized	 treatment	 and	 recycling	 systems,	 providing	 treatment	

without	requiring	construction	of	traditional	wastewater	infrastructure	(Comninellis	

&	Chen,	2010).	One	promising	electrochemical	treatment	system	under	development	
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by	Hoffmann	et	al.	(Hoffmann	et	al.,	2013)	couples	stainless	steel	cathodes	to	stable	

layered-layered	 semiconductor	 anodes	 ([Bi2O3]z[TiO2]1-z/IrxTayO2/Ti)	 (Cho	 &	

Hoffmann,	 2014,	 2015;	 Yang,	 Shin,	 Jasper,	 &	 Hoffmann,	 2016)	 treating	 the	 toilet	

wastewater	in	a	sequential	batch	reactor	at	constant	potential	(3.5	±	0.25	V)	with	a	

typical	residence	time	of	3	to	4	h.	Bench-scale	experiments	and	long-term	field-testing	

have	shown	effective	wastewater	disinfection	due	to	generation	of	hypochlorous	acid	

from	 the	 oxidation	 of	 chloride,	 as	 well	 as	 reduction	 of	 chemical	 oxygen	 demand,	

transformation	of	trace	organic	chemicals,	and	removal	of	ammonium	via	breakpoint	

chlorination	(Cho	&	Hoffmann,	2014;	Cho	et	al.,	2014;	Huang	et	al.,	2016;	J.	T.	Jasper,	

Shafaat,	&	Hoffmann;	Yang	et	al.,	2016).	

The	purpose	of	 this	study	was	to	evaluate	 the	potential	 for	phosphate	removal	

from	human	wastewater	during	electrochemical	treatment	using	the	same	combined	

anode-cathode	system	previously	shown	to	provide	efficient	wastewater	treatment	

(Cho	&	Hoffmann,	2014;	Cho	et	al.,	2014;	Huang	et	al.,	2016).	Phosphate-containing	

precipitates	were	 identified	and	phosphate	removal	efficiencies	were	measured	 in	

authentic	 and	 synthetic	 toilet	 wastewater.	 Experiments	 in	 synthetic	 wastewater	

allowed	quantification	of	the	effects	of	 ion	composition,	buffering	capacity,	current	

density,	and	electrode	surface	area	to	volume	ratio	on	phosphate	removal	kinetics	

and	equilibria.		
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4.3. Materials	and	methods	

4.3.1. Materials	

All	reagents	were	of	analytical	grade	or	higher	purity.	Solutions	were	prepared	

using	18	MΩ	Milli-Q	water	from	a	Millipore	system.	

Toilet	 (human)	wastewater	 containing	an	uncontrolled	mixture	of	urine,	 feces,	

and	 flushing	 water	 was	 taken	 from	 a	 previously	 described	 public	 recycling	

wastewater	 treatment	 system	 located	 on	 the	 California	 Institute	 of	 Technology	

campus	(Pasadena,	CA)	via	a	macerator	pump	(J.	T.	Jasper	et	al.,	2016).	The	residence	

time	 in	 the	wastewater	 tank	was	 approximately	160	d.	 Synthetic	wastewater	was	

formulated	to	replicate	the	ionic	composition	and	pH	(8.3)	of	the	toilet	wastewater	

(Table	 4.1)	 by	 dissolving	 the	 following	 salts	 in	 water:	 NaCl	 (17.1	 mM),	 NaHCO3	

(4.7mM),	NaH2PO4∙H2O	(0.6	mM),	Na2SO4	(2.1	mM),	MgCl2∙6H2O	(0.8	mM),	CaCl2∙2H2O	

(1	mM),	KCl	(3.6	mM),	(NH4)2SO4	(0.9	mM),	NH4HCO3	(12.1	mM),	and	KOH	(2.5	mM).	

Ion	concentrations	were	adjusted	to	test	the	effect	of	individual	ions	on	phosphate	

removal	rates.	

Electrode	 arrays	 consisted	 of	 mixed	 metal	 oxide	 anodes	

(Bi2O3]z[TiO2]1-z/IrxTayO2/Ti)	 and	 stainless	 steel	 cathodes	 (Nanopac,	 Korea)	 and	

were	similar	to	those	developed	by	Weres	(Weres,	2009;	Weres	&	O'Donnell,	2003)	

and	 used	 in	 previous	 electrochemical	 wastewater	 treatment	 studies	 (Cho	 &	

Hoffmann,	2014;	Cho	et	al.,	2014;	Huang	et	al.,	2016;	J.	T.	Jasper	et	al.,	2016;	Justin	T.	

Jasper,	Yang,	&	Hoffmann,	2017).	
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4.3.2. Pilot-scale	experiments		

Pilot-scale	experiments	were	performed	in	batch	mode	in	a	40-L	acrylic	reactor	

(22	 L	working	 volume)	mixed	with	 a	 circulation	 pump	 (10	 L	min-1),	 as	 described	

previously	(Hoffmann	et	al.,	2013;	Huang	et	al.,	2016).	Electrode	arrays	(7	anodes	and	

8	cathodes)	were	sandwiched	with	a	3	mm	separation.	The	active	geometric	anodic	

surface	area	was	1.8	m2,	giving	a	surface	area	to	effective	volume	ratio	of	80	m2	m-3.	

Pilot-scale	experiments	were	conducted	using	a	potentiostatic	power	supply	coupled	

with	a	data	logger	(Program	Scientific	Instruments,	USA)	with	a	potential	set	between	

3.3	V	and	3.5	V.	Ion	recoveries	as	precipitate	were	calculated	in	select	experiments	by	

calculating	 ion	 masses	 in	 the	 formed	 precipitate	 (Figure	 S4.1)	 using	 the	 average	

precipitate	 composition	 and	 comparing	 those	 masses	 to	 ion	 removal	 from	 the	

aqueous	phase.		

4.3.3. Bench-scale	experiments	

Bench-scale	experiments	were	conducted	to	study	the	role	of	ionic	composition,	

buffering	capacity,	and	current	density	on	phosphate	removal	kinetics	and	equilibria	

using	anode	and	cathode	pieces	cut	from	a	pilot-scale	array.	The	electrode	spacing	

(3	mm)	and	electrode	surface	area	to	volume	ratio	(~35	m2	m-3)	were	comparable	to	

the	 pilot-scale	 system.	 The	 electrode	 array	was	 either	 operated	 potentiostatically	

(typically	 3.5	 V	 between	 anode	 and	 cathode)	 or	 galvanostatically	 (~10	 mA	 cm-2;	

3.75	mA	mL-1)	using	a	battery	cycler	(Neware,	China).	Experiments	were	conducted	

in	open	beakers	with	magnetic	stirring	(600	rpm).		

The	role	of	wastewater	composition	was	studied	by	varying	calcium,	magnesium,	

phosphate,	and	bicarbonate	concentrations	over	the	range	of	values	expected	in	toilet	
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wastewater	 (i.e.,	 typical	 values	 present	 in	 human	waste	 diluted	 approximately	 10	

times	by	 flushing;	Table	 S4.1	 and	Figure	 S4.2).	 The	 role	 of	 buffering	 capacity	was	

studied	by	adding	borate	 (0	 -	100	mM)	 to	 synthetic	wastewater	at	pH	8.3.	No	 ion	

interactions	with	borate	were	predicted	by	Visual	MINTEQ	3.1	software	(Gustafsson,	

2014).	 The	 effects	 of	 wastewater	 volume	 to	 electrode	 surface	 area	 ratios	

(~10	–	35	m2	m-3)	were	studied	by	adjusting	the	solution	volume	while	using	the	same	

size	 electrodes.	The	 effects	 of	 current	density	were	 investigated	by	 increasing	 the	

current	density	galvanostatically	(~3	-	55	mA	cm-2;	1	-	20	mA	mL-1).	Energy	efficiency	

of	phosphate	removal	was	calculated	based	on	the	final	phosphate	concentration	and	

the	total	amount	of	electrical	energy	consumed.	

4.3.4. Precipitate	solubility	measurements	

Precipitate	scraped	from	the	stainless-steel	cathodes	or	collected	from	the	pilot-

scale	reactor	bottom	was	rinsed	with	deionized	water	and	dried	at	70	°C	overnight	

before	being	ground	for	analysis.	The	solubility	product	constant	(Ksp)	of	the	collected	

precipitate	was	measured	in	dilute	phosphoric	acid	solutions	(~0.1	mM)	adjusted	to	

pH	6	with	sodium	hydroxide,	as	described	previously	(McDowell,	Gregory,	&	Brown,	

1977).	Precipitate	(0.1	g)	was	added	to	vials	(25	mL)	capped	with	minimal	headspace.	

Vials	were	mixed	on	a	rotisserie	for	8	d	at	22	°C	and	solid	precipitate	remained	at	the	

end	of	the	experiment.	The	Ksp	for	hydroxyapatite	was	calculated	according	to:	

Kbc = (Ca.e)f(PO/hi)h(OHi)	 																													(1)	

Solubility	indices	(SI),	as	defined	by	equation	2,	and	ion	activity	products	(IAP)	

were	calculated	using	Visual	MINTEQ	3.1	software	(Gustafsson,	2014),	accounting	for	

ion	pairs	 (e.g.,	CaPO4-).	Equilibrium	calculations	and	supersaturated	conditions	 for	
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various	minerals	were	determined	using	the	same	software,	taking	into	consideration	

ion	concentrations	listed	in	Table	4.1.	

SI = log IAP − logKbc	 																													(2)	

4.3.5. Analytical	methods	

X-ray	 powder	 diffraction	 spectra	 (Philips	 PANalytical	 X'Pert	 Pro	 X-ray)	 were	

collected	for	crystal	phase	analysis.	Thermogravimetric	analysis	was	conducted	for	

moisture	content	determination	and	qualitative	mineral	identification	(Perkin	Elmer	

STA	 6000).	 Scanning	 electron	 microscope	 imaging	 and	 energy	 dispersive	

spectrometry	(SEM/EDS;	Zeiss	1550VP	Field	Emission	with	Oxford	X-Max	SDD	X-ray)	

were	used	 for	 surface	 topography	 and	 elemental	 analysis.	A	 “site”	 represented	 an	

indistinguishable	agglomerate	of	amorphous	or	crystallized	material.		

The	 chloride,	 sulfate,	 nitrate,	 phosphate,	 ammonium,	 potassium,	 calcium,	 and	

magnesium	contents	of	collected	precipitates	were	determined	by	dissolution	in	1	M	

sulfuric	acid	or	1	M	nitric	acid	and	analysis	by	ion	chromatography	(Dionex	ICS	2000;	

AS19G	anions,	CS12A	cations) (American	Public	Health,	1995). Precipitate	carbonate	

content	 was	 determined	 by	 manometric	 carbon	 dioxide	 measurement	 following	

dissolution	in	acid	(6	M	HCl)	(Loeppert	&	Suarez,	1996). 

Samples	for	aqueous	ion	concentrations	were	diluted	(10	-	25x)	and	measured	by	

ion	chromatography	as	described	above.	
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4.4. Results	and	Discussion	

4.4.1. Phosphate	removal	during	pilot-scale	treatment	

Electrolysis	 of	 collected	 toilet	 wastewater	 in	 the	 pilot-scale	 onsite	 treatment	

system	resulted	in	removal	of	total	phosphate,	magnesium,	and	calcium	over	the	5	h	

treatment	cycle	(Figure	4.1;	50%	total	PO43-	(PO43-T),	89%	Mg2+,	42%	Ca2+	removed).	

Total	 phosphate	 removal	 was	 similar	 to	 predictions	 based	 on	 initial	 calcium	 and	

phosphate	 concentrations	 (see	 below).	 Breakpoint	 chlorination	 was	 achieved	 in	

approximately	4	h	with	complete	ammonia	removal	(White,	2010)	and	subsequent	

production	 of	 free	 chlorine	 (Figure	 S4.3).	 Concurrent	 with	 electrolysis,	 a	 greyish	

precipitate	 flaked	 off	 the	 stainless-steel	 cathodes	 into	 solution	 (Figure	 S4.1).	

Precipitate	recovered	from	the	cathodes	and	the	bottom	of	the	reactor	after	treatment	

accounted	for	more	than	90%	of	the	calcium	and	total	phosphate	removed	based	on	

the	measured	precipitate	composition.	Pilot-scale	phosphorus	removal	was	therefore	

primarily	attributed	to	electrochemically-induced	precipitation.	

4.4.2. Characterization	of	precipitated	hydroxyapatite		

Precipitate	collected	from	the	pilot-scale	electrochemical	reactor	was	primarily	

composed	of	hydroxyapatite	(Ca5(PO4)3OH),	based	on	X-ray	diffraction	spectroscopy	

(Figure	4.2).	The	crystallinity	of	the	precipitate	was	found	to	be	significantly	higher	

than	hydroxyapatite	formed	by	homogeneous	precipitation	in	synthetic	dairy	manure	

wastewater	(Cao	&	Harris,	2007),	as	evidenced	by	resolution	of	peaks	at	2ϴ	values	of	

28°,	29°,	31°,	and	32°.	

In	addition	to	phosphate	(30	±	2%	by	mass)	and	calcium	(18	±	1%	by	mass),	the	

precipitate	was	composed	of	chemically-bound	water	(8	-	20%	by	thermogravimetry;	
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Figure	 S4.4),	 magnesium	 (6	 ±	 1%),	 carbonate	 (6	 ±	 1%),	 silicate	 (9	 ±	 3%),	 and	

undissolvable	material	(3	-	6%;	Table	4.2).	Magnesium	and	carbonate	are	commonly	

observed	 to	 substitute	 for	 calcium	 and	 hydroxide,	 respectively,	 in	 hydroxyapatite	

(Amjad,	Koutsoukos,	&	Nancollas,	1984;	Cao	&	Harris,	2007;	Golubev,	Pokrovsky,	&	

Savenko,	 1999;	 Ito,	Maekawa,	Tsutsumi,	 Ikazaki,	&	Tateishi,	 1997)	 and	may	 affect	

precipitation	kinetics.	Silicate	is	known	to	substitute	for	phosphate	in	hydroxyapatite	

(Ca10(PO4)6−x(SiO4)x(OH)2−x)	(Gibson,	Best,	&	Bonfield,	1999)	and	was	only	observed	

in	 reactors	 sealed	 with	 silicon	 grease.	 Chloride,	 sulfate,	 nitrate,	 ammonium,	

potassium,	 and	 sodium	 were	 not	 present	 in	 collected	 precipitates	 in	 significant	

amounts	(less	than	1%	by	mass),	as	expected	for	hydroxyapatite.	

SEM/EDS	mapping	of	collected	precipitate	revealed	a	homogeneous	distribution	

of	elements	with	phosphorous,	calcium,	and	magnesium	in	all	deposits	(Figure	S4.5).	

Scanning	of	several	particles	showed	ratios	of	Ca/P	=	1.5	±	0.3,	Mg/P	=	1.0	±	0.2,	and	

O/P	=	5.0	±	1.6.	The	low	Ca/P	ratios	observed	as	compared	to	pure	hydroxyapatite	

(Ca/P	 =	 1.67)	 could	 be	 explained	 by	 substitution	 of	 magnesium	 for	 calcium	 and	

silicate	for	phosphate	((Ca+Mg)/(Si+P)	=	1.7	±	0.2).	

The	 measured	 Ksp	 of	 the	 electrochemically	 deposited	 hydroxyapatite	

(5.0	 ±	 0.5	 ×	 10-47)	 was	 significantly	 larger	 than	 literature	 values	 for	 pure	

hydroxyapatite	 (3.04	 ±	 0.25	 ×	 10-59)	 (McDowell	 et	 al.,	 1977),	 likely	 due	 to	

incorporation	of	magnesium,	carbonate,	and	silicate	(Sprio	et	al.,	2008).	For	example,	

incorporation	 of	 a	 similar	mass	 percentage	 of	 carbonate	 (i.e.,	 ~4%	 by	mass)	 into	

hydroxyapatite	can	increase	hydroxyapatite’s	Ksp	by	more	than	8	orders	of	magnitude	

(Ito	et	al.,	1997).	Electrochemically	deposited	hydroxyapatite	solubility	may	also	have	
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been	lower	than	that	of	pure	hydroxyapatite,	since	it	was	not	completely	crystalline	

(Figure	4.2).	

Although	no	precipitation	was	observed	before	electrolysis	(Dai,	Lu,	Peng,	Yang,	

&	Zhsssu,	2017),	the	collected	toilet	wastewater	(Table	4.1)	was	supersaturated	with	

respect	to	aragonite	and	calcite	(SI	≈	0.9	and	1.1),	disordered	and	ordered	dolomite	

(SI	≈	1.7	and	2.2)	(Spanos	&	Koutsoukos,	1998),	α	and	β	tricalcium	phosphate	(SI	≈	2.2	

and	2.9),	tetracalcium	phosphate	(SI	≈	2.3),	and	pure	hydroxyapatite	(SI	≈	12),	which	

was	the	thermodynamically	favored	mineral	phase.	However,	toilet	wastewater	was	

slightly	 below	 saturation	 with	 respect	 to	 the	 measured	 solubility	 of	 the	

electrochemically-formed	precipitate	(SI	=	-0.2).	

4.4.3. Phosphate	removal	equilibria	and	kinetics	

4.4.3.1. Phosphate	removal	in	synthetic	versus	authentic	wastewater	

Synthetic	 wastewater	 was	 used	 to	 determine	 the	 effect	 of	 wastewater	

composition	 ([Ca2+],	 [Mg2+],	 [HCO3-],	 and	 [PO43-]	T),	 buffering	 capacity,	 and	 current	

density	on	phosphate	 removal	 (Figure	S4.6).	Despite	 the	 lack	of	organic	matter	 in	

synthetic	 wastewaters,	 which	 may	 reduce	 hydroxyapatite	 formation	 rates	 (Cao,	

Harris,	Josan,	&	Nair,	2007),	calcium,	magnesium,	and	total	phosphate	removal	was	

found	 to	be	comparable	 to	 that	observed	with	authentic	 toilet	wastewater	 (Figure	

4.3).	 In	 both	 cases,	 the	 collected	 precipitate	 exhibited	 similar	 compositions	 to	

precipitate	formed	in	the	pilot-scale	reactor	(data	not	shown).	The	XRD	spectrum	of	

a	stainless	steel	cathode	after	consecutive	synthetic	wastewater	electrolysis	cycles	

also	 exhibited	 similar	 peaks	 as	 the	 precipitate	 formed	 in	 the	 pilot-scale	 reactor	

(Figure	S4.7).	The	majority	of	the	phosphate	removed	was	recovered	as	a	precipitate	
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on	the	cathode	(70-100%),	indicating	that	phosphate	removal	was	primarily	due	to	

hydroxyapatite	 formation.	 Synthetic	wastewater	was	 therefore	 taken	 to	be	a	good	

proxy	for	genuine	toilet	wastewater	for	these	experiments.	

4.4.3.2. Extent	of	phosphate	removal	

In	 synthetic	wastewater,	 percent	phosphate	 removal	 at	 equilibrium	 (~3	 -	 4	h)	

could	 typically	 be	 predicted	 (Figure	 4.4)	 based	 on	 initial	 calcium	 and	 phosphate	

concentrations	 by	 solving	 the	 simultaneous	 equations	 for	 the	 hydroxyapatite	

solubility	 product	 (equation	 1)	 and	 the	 mass	 balance	 for	 calcium	 and	 phosphate	

removal	(equation	3)	at	a	cathodic	pH	of	about	9.4	(Table	S4.1).	

f
h
[PO/hi]q,B − [PO/hi]q,rst = [Ca.e]B − [Ca.e]rst 			 (3)	

However,	 for	 low	ratios	of	 calcium	 to	 total	phosphate,	phosphate	 removal	was	

greater	than	predicted.	This	may	have	been	due	to	precipitation	of	calcium-phosphate	

minerals	poor	 in	calcium,	such	as	amorphous	calcium	phosphate	 (Ca3(PO4)2·nH2O;	

Ksp	=	2.49	×	10-7),	dicalcium	phosphate	dihydrate	(CaHPO4·2H2O;	Ksp	=	1.26	×	10-7),	

and	 others	 (Cao	 et	 al.,	 2007).	 Other	 deviations	 between	 predicted	 and	 observed	

percent	 phosphate	 removal	 could	 be	 explained	 by	 the	 presence	 of	magnesium	 or	

variations	in	the	applied	current	density	(see	below).			

Based	on	equations	1	and	3,	high	phosphate	removal	is	predicted	at	high	initial	

calcium	concentrations	and	high	initial	ratios	of	calcium	to	phosphate	concentrations	

(Figure	4.5).	Reliance	on	high	calcium	concentrations	for	efficient	phosphate	removal	

is	 a	 limitation	 of	 this	 technology.	 However,	 urine	 in	 toilet	 wastewater	 typically	

contains	 sufficient	 calcium	 to	 achieve	 greater	 than	 50%	 phosphate	 removal	 (i.e.,	

~1	mM	following	~10x	dilution	by	flushing)	(Putnam,	1971).	
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4.4.3.3. Electrochemical	phosphate	precipitation	rates	

In	 synthetic	 wastewater	 initial	 electrochemical	 phosphate	 precipitation	 rates	

(kini)	were	determined	based	on	calcium	and	phosphate	concentrations	during	the	

first	3	h	of	 treatment	 (Figure	S4.6).	 Initial	phosphate	precipitation	rates	 increased	

from	 about	 0.05	 to	 0.25	 mM	 h-1	 with	 the	 product	 [Ca2+][PO43-]	 (Figure	 4.6),	 as	

expected	based	on	 a	 homogeneous	hydroxyapatite	 precipitation	model	 previously	

developed	by	Inskeep	and	Silvertooth	(Inskeep	&	Silvertooth,	1988):	

u[vwx]
uy

= kr Ca.e PO/	hi 	≈	ksts		 (4)	

Above	[Ca2+][PO43-]	values	of	0.4	mM2,	however,	initial	phosphate	removal	rates	

were	constant	at	about	0.25	mM	h-1,	suggesting	that	 initial	precipitation	was	mass	

limited	 only	 at	 low	 calcium	 and	 phosphate	 concentrations.	 In	 all	 cases,	 though,	

removal	rates	were	sufficient	to	reach	equilibrium	within	3	to	4	h,	which	is	a	typical	

treatment	 cycle	 for	 disinfection	 and	 ammonium	 removal	 during	 onsite	

electrochemical	wastewater	 treatment	 in	 the	 system	developed	by	Hoffmann	et	al	

(Cho	&	Hoffmann,	2015;	Justin	T.	Jasper	et	al.,	2017).	

4.4.3.4. Effect	of	magnesium	on	phosphate	removal	

Adsorption	 of	magnesium	 onto	 actively	 growing	 crystals	 during	 homogeneous	

hydroxyapatite	precipitation,	and	subsequent	substitution	of	magnesium	for	calcium,	

has	been	shown	to	reduce	hydroxyapatite	growth	rates	and	increase	hydroxyapatite	

solubility	 (Amjad	 et	 al.,	 1984;	 Fuierer,	 LoRe,	 Puckett,	 &	Nancollas,	 1994;	 Okazaki,	

Takahashi,	 &	 Kimura,	 1986).	 However,	 effects	 were	 generally	 significant	 only	 at	

concentrations	 above	 1	mM	 (TenHuisen	 &	 Brown,	 1997),	 which	 is	 the	maximum	
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magnesium	concentration	 expected	 in	 toilet	wastewater	 assuming	 about	10	 times	

dilution	by	flushing	water	(Putnam,	1971).	

As	 expected,	 electrochemical	 treatment	 of	 synthetic	 wastewater	 with	 1	 mM	

calcium,	 0.6	 mM	 phosphate,	 and	 varying	 magnesium	 concentrations	 up	 to	 1	 mM	

showed	 no	 significant	 change	 in	 initial	 phosphate	 removal	 rates	 (Figure	 4.7a)	 or	

percent	phosphate	 removal	 (Figure	4.8a).	 In	 fact,	 at	 calcium	concentrations	below	

1	mM	with	0.5	mM	total	phosphate,	phosphate	removal	percentages	were	higher	than	

predicted	based	on	calcium	concentrations	alone	in	the	presence	of	1	mM	magnesium	

(Figure	4.8b,	compare	experiments	B,	C,	and	D	with	1	mM	Mg2+	to	F,	K,	and	G	with	

0	mM	Mg2+).	This	may	have	been	due	to	magnesium	compensating	for	the	deficiency	

in	 calcium.	 Magnesium	 is	 therefore	 not	 expected	 to	 hamper	 electrochemical	

phosphate	removal	at	concentrations	typical	of	toilet	wastewater.	

4.4.3.5. Effect	of	bicarbonate	on	phosphate	removal		

Toilet	wastewater	stored	in	onsite	treatment	systems	will	produce	bicarbonate	

due	 to	 hydrolysis	 of	 urea	 (Udert,	 Larsen,	 &	 Gujer,	 2006).	 Previous	 studies	 have	

reported	reductions	in	homogeneous	hydroxyapatite	precipitation	by	more	than	40%	

with	addition	of	carbonate,	due	to	reduced	hydroxyapatite	crystallinity	(Cao	&	Harris,	

2007;	Cao	et	al.,	2007;	Kapolos	&	Koutsoukos,	1999).	Bicarbonate	may	also	reduce	

hydroxyapatite	precipitation	by	increasing	the	buffering	capacity	(β)	of	wastewater,	

inhibiting	 the	 increased	 cathodic	 pH	 that	 initiates	 precipitation	 (Shirkhanzadeh,	

1998).	

As	 expected,	 phosphate	 removal	was	 significantly	 reduced	 at	 high	bicarbonate	

concentrations	(i.e.,	57	±	3%	removal	at	60	mM	HCO3-	vs.	~70	-	75%	removal	at	16	to	
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30	mM	HCO3-;	Figure	4.8c).	Phosphate	removal	rates	were	also	slightly	reduced	at	

60	mM	bicarbonate	 (Figure	4.7b),	 although	 the	difference	was	not	 significant	 (i.e.,	

0.13	±	0.04	mM	h-1	at	60	mM	HCO3-	vs.	0.17	-	0.23	mM	h-1	at	16	-	30	mM	HCO3-).		

The	effect	of	bicarbonate	on	phosphate	removal	was	attributed	to	the	increased	

solubility	of	carbonate-substituted	hydroxyapatite,	as	bicarbonate	is	not	predicted	to	

increase	 buffering	 capacities	 sufficiently	 to	 affect	 phosphate	 removal	 at	

concentrations	 typical	 of	 toilet	 wastewater	 (i.e.,	 <100	 mM).	 This	 assertion	 was	

supported	by	experiments	in	buffered	synthetic	wastewater	with	buffering	capacities	

ranging	from	3.6	to	25	meq	L-1	pH-1	(0	–	100	mM	borate)	at	pH	8.3.	Buffering	capacity	

(β)	was	calculated	by	equation	5:	

β = ..h		U}	~�,} v�

(~�,}	e	 v� )�s 		 (5)	

where	Ci	and	Ka,i	 are	 the	concentration	and	acid	dissociation	constant	of	 species	 i,	

respectively.	Phosphate	removal	rates	were	only	affected	at	buffering	capacities	of	

14.2	meq	L-1	pH-1	and	above	(50	–	100	mM	borate;	Figure	S4.8).	This	was	considerably	

higher	 than	 the	 buffering	 capacity	 of	 toilet	 wastewater	 at	 elevated	 bicarbonate	

concentrations	(i.e.,	5.6	meq	L-1	pH-1	at	60	mM	HCO3-;	7.4	meq	L-1	pH-1	at	100	mM	

HCO3-).	

4.4.3.6. Effect	 of	 current	 density	 and	 treatment	 volume	 on	 phosphate	

removal	

Increasing	 current	 density	 increases	 the	 rate	 of	 proton	 consumption	 at	 the	

cathode,	and,	depending	on	the	buffering	capacity	of	the	wastewater,	can	therefore	
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increase	 the	pH	near	 the	 cathode	 (Dahms	&	Croll,	 1965),	 favoring	hydroxyapatite	

precipitation.	

As	expected,	 initial	phosphate	removal	rates	(Figure	4.7	c)	and	total	phosphate	

removal	(Figure	8	d)	increased	from	about	50%	with	an	initial	rate	of	about	0.1	mM	h1	

at	2.6	mA	cm-2	to	greater	than	75%	with	an	initial	rate	of	about	0.25	mM	h-1	at	15	mA	

cm-2.	Increases	in	surface	area	to	synthetic	wastewater	volume	ratio	augmented	the	

rate	of	phosphate	removal	(Figure	4.7	d)	but	did	not	change	significantly	affect	the	

amount	 of	 energy	 required	 per	 volume	 of	 wastewater	 (Figure	 S4.9	 inset).	 For	

example,	 achieving	 60%	 total	 phosphate	 removal	 required	 30	 ±	 5	 kWh	m-3	 at	 all	

surface	area	to	volume	ratios	tested,	but	occurred	after	about	7	h	at	10	m2	m-3	and	

after	only	2	h	at	34	m2	m-3.	

4.4.4. Design	and	operation	considerations	

During	pilot-scale	experiments,	electrochemical	phosphate	precipitation	resulted	

in	 scaling	 on	 the	 cathode	 (Figure	 S4.1),	 which	 subsequently	 fell	 into	 solution	 as	

approximately	 1	 cm2	 flakes.	 Although	 cathodic	 scaling	 did	 not	 adversely	 affect	

wastewater	 treatment	 over	 short-term	 tests	 (i.e.,	 less	 than	 200	 treatment	 cycles),	

complete	 cathode	 coverage	 by	 the	 precipitate	 during	 long-term	operation	may	be	

problematic.	 Sustainable	 phosphate	 removal	 therefore	 requires	 electrode	

maintenance	to	remove	and	collect	deposited	precipitate.	Although	electrodes	can	be	

cleaned	 manually,	 this	 process	 could	 also	 be	 accomplished	 automatically	 by	

periodically	polarizing	the	hydroxyapatite-coated	stainless	steel	plates	anodically.	In	

addition,	post-treatment	hydroxyapatite	collection	could	be	automated,	for	example	

by	 incorporating	a	 funnel	 into	 the	bottom	of	electrochemical	 reactors,	providing	a	
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phosphorous-rich	 precipitate	 that	 could	 be	 used	 as	 a	 fertilizer	 at	 minimum	

cost.(Moriyama,	Kojima,	Minawa,	Matsumoto,	&	Nakamachi,	2001)	

In	addition	 to	human	waste	 in	onsite	 toilet	 treatment	systems,	electrochemical	

treatment	would	likely	be	effective	for	other	phosphate-rich	waste	streams	including	

agricultural	wastes,	such	as	animal	husbandry	wastewater.	Dairy	manure	waste	has	

a	 similar	 composition	 to	 toilet	wastewater(Cao	&	Harris,	2007)	and	 in	addition	 to	

phosphate	 removal,	 electrochemical	 treatment	 provides	 disinfection,	 nitrogen	

removal,	and	chemical	oxygen	demand	reduction	with	no	additional	electrochemical	

energy	costs.	
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Table	 4.1:	 Composition	 of	 toilet	 wastewater	 in	 onsite	 wastewater	 treatment	 system	 and	
buffering	capacity	of	relevant	species		

Component	 Value	a	 Buffer	capacity	(βi)	b	

Ca2+	 1.0	mM	 0	

Cl-	 24	mM	 0	

HCO3-	+	CO32-	 17	mM	 0.79	meq	L-1	pH-1	

K+	 6.1	mM	 0	

Mg2+	 0.8	mM	 0	

Na+	 27	mM	 0	

NH4+	 13	mM	 2.71	meq	L-1	pH-1	

PO43-	T	c	 0.6	mM	 0.09	meq	L-1	pH-1	

SO42-	 3.0	mM	 0	

COD	d	 320	-	380	mg	O2/L	 -	

pH	 8.3	 -	

a	Collected	after	180	d	of	operation.	b	At	pH	8.3.	c	Total	phosphate.	d	Chemical	oxygen	demand.		 	
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Table	4.2:	Collected	precipitate	composition	

Component	 %	Mass	 Detection	Method	

Ca2+	 18-19%	 IC;	SEM-EDS	

Mg2+	 5-7%	 IC;	SEM-EDS	

PO43-	T	 27-32%	 IC;	SEM-EDS	

CO32-		 6±1%	 Acid	digestion	

SiO42-	a	 9±3%	 SEM-EDS,	assuming	Si	is	SiO4	

H2O	 8-20%	 Vacuum	oven;	TGA	

Organics;	un-digested	
material	

3-6%	 Filter	acid-dissolved	precipitate	
solution	

Total	 72-103%	 	
a	 SiO42-	 was	 only	 detected	 in	 samples	 collected	 from	 a	 silicon-grease	 sealed	 electrochemical	

reactor.	 	
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Figure	 4.1:	 Mg2+,	 Ca2+,	 PO43-T,	 and	 ammonia	 (NH4+	 +	 NH3)	 percent	 removal	 during	
electrochemical	 treatment	 (3.3	 V;	 50	 A)	 of	 toilet	 wastewater	 ([Cl-]	 =	 80	mM)	 in	 pilot-scale	
reactor.	Initial	ion	concentrations	are	indicated	in	the	legend.		 	
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Figure	4.2:	X-ray	diffraction	spectrum	of	collected	precipitate.	Overlay	of	pure	hydroxyapatite	
with	highest	peak	normalized	to	600	a.u.	(ICSD#	24240	and	PDF#	01-073-1731)	is	in	red	sticks.		
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Figure	 4.3:	 Percent	 PO43-T,	 Ca2+,	 and	 Mg2+	 remaining	 during	 potentiostatic	 electrochemical	
treatment	 (3.6	V;	 ~18	mA	 cm-2)	 of	 genuine	 toilet	wastewater	 (filled	markers)	 and	 synthetic	
wastewater	(empty	markers)	with	similar	ionic	compositions.	[PO43-]T,0	≈	0.5	mM;	[Ca2+]0	≈	1.3	
mM;	[Mg2+]0	≈	1.3	mM.	Error	bars	represent	±	one	standard	deviation	of	3	replicates.		
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Figure	4.4:	Measured	vs.	 predicted	percent	 total	phosphate	 removal	 following	 galvanostatic	
electrolysis	 (4	 h;	 10	 mA	 cm-2).	 Error	 bars	 represent	 ±	 standard	 deviation	 of	 3	 replicates.	
Experiments	are	referenced	by	letter	and	are	described	in	Table	S4.1.		 	
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Figure	4.5:	Predicted	percent	 total	phosphate	removal.	Predictions	are	based	on	solving	 the	
simultaneous	equations	1	and	3	at	varying	initial	total	phosphate	and	calcium	concentrations	
and	a	cathodic	pH	of	9.4.	
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Figure	4.6:	Initial	rate	constants	(kini)	for	the	formation	of	hydroxyapatite	during	galvanostatic	
electrolysis	 (10	 mA	 cm-2)	 as	 a	 function	 of	 [Ca2+]0[PO43-]0.	 The	 fit	 equation	 was	 determined	
empirically	using	Igor	Pro	6.37	(Wavemetrics).	Error	bars	represent	±	standard	deviation	of	3	
replicates.	Experiments	are	referenced	by	letter	and	are	described	in	Table	S4.1.	
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Figure	4.7:	Intial	phosphate	removal	rate	following	galvanostatic	electrolysis	(4	h;	10	mA	cm-2	
unless	 noted	 otherwise)	 as	 a	 function	 of	 (a)	 [Mg2+]0;	 (b)	 [HCO3-]0;	 (c)	 electrolysis	 current	
density,	 j;	 and	 (d)	 electrode	 surface	 area	 to	 volume	 ratio.	 Error	 bars	 represent	 ±	 standard	
deviation	of	3	replicates.	Experiments	are	referenced	by	letter	and	are	described	in	Table	S4.1.	
(b):	buffering	capacity	𝛃	(meq	L-1	pH-1)	is	noted	in	brackets.	 	
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Figure	4.8:	Measured	percent	total	phosphate	removal	following	galvanostatic	electrolysis	(4	
h;	10	mA	cm-2	unless	noted	otherwise)	as	a	function	of	(a)	[Mg2+]0;	(b)	[Ca2+]0;	(c)	[HCO3-]0;	and	
(d)	electrolysis	current	density,	 j.	Error	bars	represent	±	standard	deviation	of	3	replicates.	
Experiments	are	referenced	by	letter	and	are	described	in	Table	S4.1	and	Figure	S4.2.	 	
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4.6. Supplementary	figures	and	table	

	
Figure	S4.1:	Dried	stainless	steel	cathode	after	more	than	800	h	of	toilet	wastewater	
electrolysis.	Most	of	the	precipitate	from	the	bottom	of	the	electrode	had	fallen	off	during	
transporting	and	dismantelling	the	electrode	array.		
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Figure	S4.2:	[Ca2+]0,	[Mg2+]0,	[PO43-]T,0,	[HCO3-]0,	and	current	density	j	(log10	scale)	for	each	set	
of	triplicate	experiments	reported	in	Table	S4.1.		 	
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Figure	S4.3:	Ammonia	(NH4+	+	NH3),	Mg2+,	Ca2+,	total	PO43-,	NO3-,	and	free	chlorine	(HOCl	+	ClO-)	
concentrations	during	electrochemical	treatment	(3.3	V;	50	A)	of	toilet	wastewater	([Cl-]=80	
mM)	in	pilot-scale	reactor.	
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Figure	S4.4:	Thermogravimetric	analysis	of	the	precipitate	collected	from	the	electrochemical	
reactor	(thin	line)	compared	to	calcium	carbonate	(thick	line).	
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Figure	 S4.5:	 SEM/EDS	 mapping	 of	 precipitate	 collected	 from	 stainless	 steel	 cathodes	 after	
several	cycles	of	toilet	wastewater	electrolysis.	 	
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Figure	S4.6:	 [Ca2+],	 [Mg2+],	 and	 [PO43-]T	during	bench-scale	 synthetic	wastewater	electrolysis	
experiments.	 Experimental	 conditions	 for	 each	 test	 are	 detailed	 in	 Table	 S4.1.	 Error	 bars	
represent	±	one	standard	deviation	of	3	replicates.	
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Figure	 S4.7:	 X-ray	 diffraction	 spectrum	 of	 a	 stainless	 steel	 cathode	 after	 four	 consecutive	
electrolyses	of	synthetic	wasteater.	Peaks	with	an	asterisk	are	from	the	stainless	steel.	Overlaid	
red	 sticks	 shows	 pure	 hydroxyapatite	with	 the	 highest	 peak	 normalized	 to	 600	 a.u.	 (ICSD#	
24240	and	PDF#	01-073-1731).		
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Figure	S4.8:	Percent	Ca2+,	Mg2+,	and	PO43-T	removal	after	potentiostatic	treatment	(3	h;	3.6	V;	
~18	mA	cm-2)	of	synthetic	wastewater	buffered	with	sodium	borate.	Buffering	capacities	(β)	of	
the	solutions	are	noted	in	brakets.	[Ca2+]o	≈	1.0	mM;	[Mg2+]o	≈	0.8	mM;	[PO43-]o	≈	0.5	mM;	initial	
pH	=	8.3.	Error	bars	represent	±	one	standard	deviation	of	6	replicates.	
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Figure	 S4.9:	 Percent	 phosphate	 removal	 during	 galvanostatic	 electrochemical	 treatment	
(10	mA	 cm-2)	 of	 different	 electrode	 surface	 area	 to	 volume	 of	 synthetic	 wastewater	 ratios:	
34	m2	m-3,	23	m2	m-3,	14	m2	m-3,	and	10	m2	m-3.	Inset:	Energy	per	volume	of	wastewater	required	
to	 achieve	 50%	 (green	 triangles),	 60%	 (red	 squares),	 and	 70%	 (black	 circles)	 phosphate	
removal	for	the	different	volumes	of	synthetic	wastewater.	Error	bars	represent	±	one	standard	
deviation	of	3	replicates.	
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Table	S4.1:	Experimental	conditions	for	synthetic	wastewater	tests	

Ref	#	 [Ca2+]0	
mM	

[Mg2+]0	
mM	

[PO43-]T,0	
mM	

TIC0	a	
mM	

j	b	
mA	
cm-2	

pHfin	
calculated	c	

%Ca2+	
removed	

%PO43-T	
removed	

A	 1.04	 0.00	 0.99	 16	 10	 9.3	 82	±	6	 55	±	3	
B	 0.34	 0.99	 0.50	 16	 10	 9.5	 50	 44	
C	 0.57	 0.94	 0.49	 16	 10	 9.6	 66	 62	
D	 0.84	 0.94	 0.49	 16	 10	 9.2	 52	 61	
E	 1.07	 0.00	 0.59	 16	 52	 9.7	 81	±	5.6	 82	±	2.5	
F	 0.54	 0.00	 0.56	 16	 10	 9.7	 78	±	0.5	 55	±	2	
G	 0.19	 0.00	 0.59	 16	 10	 9.6	 41	±	4	 24	±	4	
H	 1.45	 0.96	 0.62	 17	 9	 9.0	 47	±	3	 75	±	8	
I	 0.85	 0.24	 1.23	 60	 11	 8.8	 53	±	3	 25	±	8	
J	 0.89	 0.00	 1.10	 16	 10	 8.9	 66	±	8.5	 33	±	6	
K	 0.96	 0.00	 0.53	 16	 10	 9.5	 71	±	3	 76	±	9.5	
L	 1.05	 0.35	 0.59	 16	 10	 9.4	 69	±	3	 77	±	3	
M	 1.05	 0.68	 0.56	 16	 10	 9.6	 74	±	3	 84	±	4	
N	 0.99	 1.06	 0.53	 16	 10	 9.4	 62	±	6.6	 78	±	7	
O	 1.10	 0.00	 0.57	 30	 10	 9.6	 74	±	5	 71	±	3	
P	 1.10	 0.00	 0.61	 60	 10	 9.4	 67	±	4	 57	±	3	
Q	 0.15	 0.05	 1.30	 16	 10	 9.4	 40	±	3	 17	±	0.6	
R	 0.15	 0.15	 0.60	 16	 10	 9.6	 38	±	3	 19	±	6.7	
S	 0.92	 0.00	 0.53	 16	 3	 9.0	 55	±	1.5	 50	±	3.7	
T	 0.95	 0.00	 0.52	 16	 5	 9.6	 78	±	2.8	 75	±	1.6	
U	 0.99	 0.00	 0.45	 16	 4	 9.3	 67	±	3.2	 63	±	1	
V	 0.99	 0.00	 0.45	 16	 6	 9.3	 74	±	3.1	 77	±	3	

a	Total	Inorganic	Carbon	TIC0	=	[HCO3-]0	+	[CO32-]0.		b	current	density.		c	The	cathodic	pH	was	
estimated	assuming	that	the	solution	at	the	cathode	surface	was	equilibrated	(SI=1)	with	respect	to	
electrochemically	precipitated	hydroxyapatite	(Ksp	=	5	10-47)	and	that	[Ca2+]	and	[PO43-]	at	the	
cathode	were	the	same	as	measured	in	solution	at	the	end	of	the	experiment	(when	ion	
concentrations	had	stabilized).	
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5.1. In	summary	

This	 thesis	 is	 based	 on	 the	 pursuit	 of	 bringing	 an	 appealing,	 adequate,	 and	

sustainable	 sanitation	 solution	 for	 people	 lacking	 access	 to	 safe	 sanitation.	 In	 the	

following	paragraphs,	I	recapitulate	the	main	findings	and	potential	future	directions	

of	 the	 research	 described	 in	 Chapter	 2,	 3,	 and	 4.	 I	 also	 describe	 the	 barriers	 to	

adoption	of	the	Solar	Toilet	technology	and	how	they	are	addressed.	Finally,	 I	give	

ideas	on	potential	use	of	the	electrochemical	treatment	technology	in	other	systems	

than	Solar	Toilets.	

The	 findings	 in	 Chapter	 2	 gave	 us	 a	 better	 understanding	 of	 the	 treatment	

technology	under	testing	conditions	close	to	the	potential	usage	of	 the	technology.	

The	prototypes	of	the	electrochemical	wastewater	treatment	system	–	or	the	Caltech	

Solar	Toilets,	tested	in	the	US,	China,	and	India	–	proved	to	be	working	reasonably	

well.	 The	 field	 testing	 confirmed	 the	 efficacy	 of	 disinfection	 as	 well	 as	 ammonia	

oxidation	to	chloramines	by	electrochemically	generated	reactive	chlorine	species	as	

previously	measured	in	laboratory	conditions	(Cho	&	Hoffmann,	2015;	Huang	et	al.,	

2016).	The	electrolysis	process	also	oxidized	organic	contaminants	quantified	by	a	

removal	 of	 chemical	 oxygen	demand.	Nevertheless,	 the	 efficacy	of	 electrochemical	

oxidation	comes	at	a	relatively	high	energy	cost	(30-40	Wh	L-1	of	toilet	wastewater)	

compared	 to	 standalone	 biological	 treatment	 systems	 which	 can	 be	 an	 order	 of	

magnitude	lower	(Metcalf	&	Eddy,	2014).		

One	 approach	 to	decrease	 the	 energy	 cost	 associated	with	 the	 electrochemical	

oxidation	of	organic	species	was	discussed	in	Chapter	3.	The	use	of	microbial	fuel	cell	

systems	 fed	 by	 human	 urine	 from	 a	 water-free	 urinal	 proved	 to	 be	 a	 successful	
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pretreatment	step.	The	microbial	fuel	cells	enabled	the	removal	of	more	than	50%	of	

the	 chemical	 oxygen	 demand	 from	 urine	 before	 it	 entered	 the	 electrochemical	

reactor.	Although	the	catholyte	produced	inside	the	microbial	fuel	cell	ceramic	tubes	

was	less	contaminated	by	bacteria	from	the	seeding	sludge	than	the	anolyte	(urine),	

the	catholyte	could	not	be	guaranteed	to	be	pathogen-free.	Therefore,	 it	cannot	be	

reused	for	irrigation	because	of	the	risk	of	human	contact.	One	possible	reuse	found	

by	Gajda	and	coworkers	(Gajda,	Greenman,	Melhuish,	&	Ieropoulos,	2016)	would	be	

to	use	the	alkaline	catholyte	as	a	precipitation	agent	for	removing	heavy	metals	from	

contaminated	waters.	Its	reuse	as	a	caustic	solution	for	destruction	of	helminth	cysts	

can	also	be	envisaged.	Finally,	with	added	electronics	developed	by	Ieropoulos	and	

coworkers	(data	not	published),	 the	microbial	 fuel	cell	system	produces	electricity	

that	is	harvested	and	stored	in	a	battery	in	order	to	power	a	pump	for	approximately	

two	minutes	a	day.	This	pumping	 is	 sufficient	 to	make	 the	microbial	 fuel	 cell	pre-

treatment	step	energy	neutral	or	even	energy	positive	when	the	energy	needed	for	

chemical	oxygen	removal	by	electrolysis	is	taken	into	accounted.		

The	 potential	 for	 nutrient	 recovery	 and	 reuse	 caught	 my	 attention	 when	 I	

observed	a	white	precipitate	forming	on	the	stainless-steel	cathodes	and	inside	the	

electrochemical	 reactor	 after	 multiple	 electrolysis	 cycles.	 Later,	 I	 identified	 the	

precipitate	as	Mg-containing	hydroxyapatite.	I	investigated	precipitation	kinetics	as	

well	as	the	maximum	percent	PO43-	recovery	as	described	in	Chapter	4.	The	initial	

concentration	of	PO43-	and	Ca2+	in	toilet	wastewater	played	a	major	role	in	the	initial	

precipitation	 kinetics	 and	 the	 final	 amount	 of	 precipitated	 PO43-	 that	 could	 be	

recovered.		
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5.2. Barriers	to	wide	adoption	of	the	technology	

5.2.1. Is	the	lack	of	social	status	surrounding	toilets	a	problem?	

I	believe	that	the	Caltech	Solar	Toilet	 technology	developed	in	this	 thesis	has	a	

great	potential	 for	bringing	a	high	 level	 of	 sanitation	 service	while	 requiring	 little	

energy	and	no	water.	A	high	quality	sustainable	treatment	system	could	make	toilets	

be	appealing	objects	that	lead	to	a	higher	social	status	and	a	better	life	for	people	to	

adopt	 them	(Barrington	&	Bartram,	2017).	Cell	phones	are	objects	of	 social	 status	

recognition	and	they	are	seen	by	a	lot	of	people	living	in	poverty	as	a	way	to	increase	

their	standard	of	living	(Aker	&	Mbiti,	2010;	Sam,	2017).	

This	social	phenomenon	has	been	illustrated	with	the	quasi-ubiquitous	usage	of	

cell	phones	in	developing	countries	in	recent	years.	For	instance,	India	has	seen	an	

exponential	growth	in	cell	phones	subscriptions	from	approximately	0	to	more	than	

900	million	between	1995	and	2014,	while	 the	number	of	people	practicing	open	

defecation	merely	decreased	from	680	to	600	million	(Figure	5.1).	The	rather	slow	

decrease	 in	 open	 defecation	 in	 India	 despite	 multiple	 government	 programs	 to	

subsidize	sanitation	adoption	(Hueso	&	Bell,	2013)	might	come	for	the	fact	that	there	

has	not	been	a	technology	that	people	would	adopt	as	fast	as	they	adopted	cell	phones.	

Therefore,	the	Caltech	Solar	Toilet	as	a	standalone,	low-energy	requirement	product	

that	can	enable	the	use	a	hygienic	and	non-odorous	flush	toilet	without	consuming	

water	might	be	considered	as	aspirational	as	a	cell	phone	can	be.			

5.2.2. A	smart	maintenance	system	for	a	truly	sustainable	solution	

It	is	a	challenge	to	manufacture	a	product	with	very	little	defects	and	it	is	an	even	

greater	challenge	to	provide	a	simple	and	effective	repair	solution	when	failure	arises,	
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especially	 in	the	case	of	onsite	toilet	wastewater	treatment.	 If	 the	system	fails,	 the	

repair	 has	 to	 be	 done	 quickly,	 otherwise	 its	 users	 will	 not	 be	 able	 to	 go!	 The	

understanding	 of	 the	 technical	 challenges	 encountered	 during	 prototyping	 and	

testing	(Chapter	2)	have	led	to	a	detailed	Failure	Mode	Effects	Analysis	of	the	Caltech	

Solar	Toilet.	The	information	gathered	by	the	Failure	Mode	Effects	Analysis	can	be	

combined	with	a	suite	of	sensors	and	data	processing	units	to	understand	the	failure	

of	the	toilet	systems	when	deployed.		

The	 many	 years	 of	 field	 testing	 taught	 me	 that	 a	 lack	 of	 skilled	 maintenance	

professionals	makes	repair	of	the	Caltech	Solar	Toilet	problematic.	Most	repairs	are	

simple,	requiring	only	a	screwdriver,	yet	without	interactive	instructions,	units	could	

not	be	serviced	easily.	For	this	reason,	a	Smart	Maintenance	Solution	called	“Seva”	

(service	in	Hindi)	is	currently	in	development	with	the	help	of	Cody	Finke,	Anastasia	

Hanan,	 Eitam	 Shafran,	 and	 Hugo	 Leandri.	 This	 initial	 idea	 won	 first	 prize	 in	

Vodafone's	Wireless	 Innovation	Project	competition	and	 is	now	in	the	prototyping	

phase.		

The	system	uses	an	array	of	 inexpensive	sensors	(water	 level,	pressure	sensor,	

ORP	sensor,	turbidity	sensor,	etc.)	placed	at	different	steps	of	the	process	(Figure	5.2).	

An	inexpensive	computer	and	controller	module	named	the	“Seva	Module”,	consisting	

of	 a	 Rasperry	 Pi	 3	 (Raspberry	 Pi	 Foundation,	 United	 Kingdom)	 coupled	 with	 an	

Arduino	platform	(Arduino,	Italy),	is	reading	signals	from	the	sensors	embedded	in	

the	 treatment	system.	The	Seva	Module	 is	 then	able	 to	determine	 if	 the	 treatment	

system	has	 failed,	 and	how.	 It	 then	automatically	 sends	a	 text	or	audio	 cell	phone	

message	to	a	trained	operator,	 letting	the	operator	know	that	he/she	should	come	
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and	 repair	 the	 toilet.	 An	 application	 running	 on	 the	 operator’s	 smartphone	 can	

provide	the	operator	with	step-by-step	pictorial	instructions	on	how	to	replace	the	

broken	part.	Thus,	 the	Seva	Module	technology	has	the	potential	 to	create	 jobs	for	

low-skilled	operators	and	ensure	 that	 the	users	have	uninterrupted	access	 to	 safe	

sanitation.		

5.2.3. Standardization	can	boost	the	market	for	onsite	sanitation	systems	

The	 development	 of	 new	 technologies	 for	 treating	 human	 waste	 under	 the	

“Reinvent	the	Toilet	Challenge”	set	by	the	Bill	&	Melinda	Gates	Foundation	is	leading	

to	 new	 products	 entering	 the	 sanitation	 market.	 Although	 the	 total	 addressable	

market	is	huge	with	4.5	billion	potential	customers,	their	willingness	and	their	ability	

to	pay	a	premium	for	effective	sanitation	is	not	trivial.	This	barrier	could	overcome	

by	 making	 sure	 products	 are	 safe	 and	 effective.	 This	 is	 best	 done	 by	 setting	 an	

international	standard	that	guarantees	the	quality	and	effectiveness	of	products	or	

services	(ISO,	2011).	

The	International	Organization	for	Standardization	(ISO)	is	the	most	recognized	

international	 standardization	 body	 with	 162	member	 countries.	 An	 ISO	 standard	

under	 project	 number	 PC	 305	 is	 currently	 being	 developed	 for	 the	 purpose	 of	

guaranteeing	a	quality	of	 treatment	wherever	a	qualified	sanitation	unit	would	be	

installed.	 This	 ISO	 standard	 focuses	 on	 the	 “requirements	 for	 the	 quality	 of	 the	

outputs	from	the	sanitation	system	(that)	are	given	for	solid	and	liquid	discharges	as	

well	as	odor,	air,	and	noise	emissions.”	I	am	one	of	the	experts	who	has	developed	the	

requirements	 for	effective	onsite	sanitation	systems	that	would	be	qualified	under	
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this	new	standard.	The	Draft	International	Standard	has	been	submitted	to	ISO	and	is	

currently	being	reviewed	by	all	ISO	member	countries	before	voting.	 
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5.3. Applicability	of	the	electrochemical	technology	to	other	industries	

As	the	electrochemical	oxidation	of	chloride	to	reactive	chlorine	species	is	very	

effective	 for	 ammonia	 removal	 and	 disinfection	 of	 human	 wastewater	 but	 it	

consumes	 a	 high	 amount	 of	 electrical	 energy,	 especially	 if	 high	 amounts	 of	 COD	

removal	are	needed.	We	can	envisage	this	technology	to	be	used	for	other	types	of	

wastewater	 than	 toilet	 waste.	 The	 work	 I	 performed	 under	 EPA-SBIR	 grant	

EPD14026	demonstrated	that	nitrogen	removal	and	disinfection	of	household	septic	

systems	 can	 be	 obtained	but	 are	 limited	due	 to	 the	 low	 chloride	 concentration	 of	

domestic	waste	(less	than	100	ppm	[Cl-]).	One	approach	to	solve	this	problem	could	

be	to	divert	a	portion	of	the	domestic	wastewater	that	has	a	high	[Cl-]	and	[NH3]	to	

the	electrochemical	system	while	the	rest	would	remain	in	the	septic	system.	Other	

usages	of	 the	 technology	could	 focus	on	types	of	wastewater	where	disinfection	 is	

crucial,	 such	 as	 industrial	 laundry,	 food	 industry,	 or	 localized	 generation	 of	 an	

oxidizing	solution	for	cleaning	purposes.		
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Figure	 5.1:	 Indian	 population,	 number	 of	 open	 defecators,	 and	 cellular	 subscriptions	 in	 the	
country	between	1995	and	2014.	(World	Bank,	2016)	
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Figure	5.2:	Simplified	flow	diagram	of	the	Caltech	Solar	Toilet	with	sensors	(purple	and	yellow)	
placed	at	different	steps	of	the	process	
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