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ABSTRACT 

Chondroitin sulfate proteoglycans (CSPGs) play important roles in the developing 

and mature nervous system, where they guide axons, maintain stable connections, restrict 

synaptic plasticity, and prevent axon regeneration following CNS injury. The chondroitin 

sulfate glycosaminoglycan (CS GAG) chains that decorate CSPGs are essential for their 

functions. Through these sugar chains, CSPGs are able to bind and regulate the activity of 

a diverse range of proteins and through these interactions can regulate neuronal growth. 

These CS-protein interactions depend on specific sulfation patterns within the CS GAG 

chains, and accordingly, particular CS sulfation motifs are upregulated during 

development, in the mature nervous system, and in response to CNS injury. Thus, 

spatiotemporal regulation of CS GAG biosynthesis may provide an important mechanism 

to control the functions of CSPGs and modulate intracellular signaling pathways. Here, we 

will discuss these sulfation-dependent processes and highlight how the CS sugars on 

CSPGs contribute to neuronal growth, axon guidance, and plasticity in the nervous system.  

 Chondroitin sulfate proteoglycans (CSPGs) are a major barrier to regenerating 

axons in the central nervous system (CNS), exerting their inhibitory effect through their 

polysaccharide side chains. Chondroitin sulfate (CS) potently inhibits axon regeneration 

through modulation of inhibitory signaling pathways induced by carbohydrate binding to 

protein ligands and receptors. Here, we identify a novel carbohydrate-protein interaction 

between CS and EphA4 that inhibits axon regrowth. We characterize the mechanism of 

activation and demonstrate how carbohydrate binding induces phosphorylation of the 

intracellular kinase domain through clustering of cell surface EphA4. Collectively, our 

studies present a novel mechanism of EphA4 activation by CS independent of the canonical 

ephrin ligands and uncover the role of this interaction in inhibition of neurite regrowth after 
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injury. Our results underscore a mechanism of action by which carbohydrates can function 

as direct, activating ligands for protein receptors and provide mechanistic insights into the 

inhibition of axon growth by CS following injury to the CNS. 

Chondroitin sulfate proteoglycans (CSPGs) regulate neuronal plasticity, as well as 

axon regeneration and guidance through their ability to bind protein ligands and cell surface 

receptors. In this way, extracellular CSPGs can modulate the activity of intracellular 

signaling pathways. Here, a computational analysis of EphA4-CS interactions is performed 

to characterize the importance of key arginine and lysine residues towards CS binding, and 

to identify structural differences in CS-A, CS-C, CS-D, and CS-E docking to EphA4. 

Carbohydrate-induced Eph receptor clustering could be a general mechanism of Eph 

receptor activation. To identify additional Eph receptors that interact with CS, CS-E was 

docked to all EphA and EphB family members to predict relative binding affinities. The 

relative strengths of the predicted binding energies are: EphB4 > EphA8 > EphA1 > EphA3 

> EphB1 > EphB3 > EphA7 > EphA5 > EphA4 > EphA6 > EphB2 > EphB6 > EphA2. In 

addition, the arginine and lysine residues that mediate CS binding are identified for each 

Eph receptor. These computational predictions provide mechanistic insights into Eph 

receptor activation by chondroitin sulfate and have implications for inhibition of axon 

regeneration following injury to the nervous system and axon guidance during 

development. 
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Chapter 1: Sugar-Dependent Modulation of Neuronal Development, 

Regeneration, and Plasticity by Chondroitin Sulfate Proteoglycans  

Abstract 

Chondroitin sulfate proteoglycans (CSPGs) play important roles in the developing and 

mature nervous system, where they guide axons, maintain stable connections, restrict 

synaptic plasticity, and prevent axon regeneration following CNS injury. The chondroitin 

sulfate glycosaminoglycan (CS GAG) chains that decorate CSPGs are essential for their 

functions. Through these sugar chains, CSPGs are able to bind and regulate the activity of 

a diverse range of proteins. CSPGs have been found both to promote and inhibit neuronal 

growth. They can promote neurite outgrowth by binding to various growth factors such as 

midkine (MK), pleiotrophin (PTN), brain-derived neurotrophic factor (BDNF), and other 

neurotrophin family members. CSPGs can also inhibit neuronal growth and limit plasticity 

by interacting with transmembrane receptors such as protein tyrosine phosphatase σ 

(PTPσ), leukocyte common antigen-related (LAR) receptor protein tyrosine phosphatase, 

and the Nogo receptors 1 and 3 (NgR1 and NgR3). These CS-protein interactions depend 

on specific sulfation patterns within the CS GAG chains, and accordingly, particular CS 

sulfation motifs are upregulated during development, in the mature nervous system, and in 

response to CNS injury. Thus, spatiotemporal regulation of CS GAG biosynthesis may 

provide an important mechanism to control the functions of CSPGs and to modulate 

intracellular signaling pathways. Here, we will discuss these sulfation-dependent processes 

and highlight how the CS sugars on CSPGs contribute to neuronal growth, axon guidance, 

and plasticity in the nervous system.  
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Introduction 

Chondroitin sulfate proteoglycans (CSPGs) play critical roles in the developing 

central nervous system (CNS) and in response to adult CNS injury. During embryonic 

development, axons must elongate, navigate specific paths, and form synapses with their 

target neurons. To establish precise patterns of connectivity, a range of attractive or 

repulsive cues guide axons to their proper targets. Several families of extracellular 

receptors and their ligands are known to attract or repel growth cones, including netrins, 

ephrins, semaphorins, and slits.1,2 In addition to these prototypical axon guidance 

molecules, increasing evidence suggests that the chondroitin sulfate (CS) sugars on CSPGs 

can serve as guidance cues for growth cones and contribute to the formation of neuronal 

boundaries in the developing CNS.3–5 CSPGs are also major components of perineuronal 

nets (PNNs), where they play crucial roles in the maturation of synapses and the closure of 

critical periods by limiting synaptic plasticity.6–9 In the adult CNS, CSPGs are dramatically 

upregulated in the glial scar around injury sites, where they restrict synaptic and anatomical 

plasticity, neuronal regeneration, and repair.10–13 Enzymatic digestion of the CS GAG 

chains on CSPGs can promote axon regeneration, sprouting, and functional recovery in in 

vivo models of CNS injury, underscoring again critical roles for CS sugars. In this review, 

we will highlight the various functions of the CS sugars on CSPGs and how they contribute 

to neuronal growth, axon guidance, and plasticity in the nervous system. We will also 

discuss strong evidence that specific sulfated motifs within CS chains can serve as ligands 

for extracellular receptors, thereby enabling CSPGs to activate key signaling pathways 

important for neuronal development and function.  
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Structure of chondroitin sulfate proteoglycans  

CSPGs are composed of a core protein with one or more covalently attached CS 

GAG chains.11,14 They are major components of the extracellular matrix (ECM), where 

they provide structural support and modulate neuronal activity.8,11,15 In addition, some 

CSPGs are inserted into the membrane via a single membrane-spanning domain or a 

glycosylphosphatidylinositol (GPI) anchor, or are localized to secretory granules. The most 

abundant CSPGs in the CNS are members of the lectican family, which is composed of 

aggrecan, brevican, neurocan, and versican.16 Lecticans contain an N-terminal G1 domain, 

C-terminal G3 domain, and a central region decorated with varying numbers of CS chains 

(ranging from 1 to >100). Aggrecan, unlike the other lecticans, also contains a G2 domain 

following the N-terminal G1 domain.16 The phosphacan or receptor-type protein-tyrosine 

phosphatase zeta (PTP/RPTPβ) family, which consists of both transmembrane and 

soluble secreted forms, is expressed predominantly in the CNS and is found in neurons and 

astrocytes throughout development and adulthood.17,18 The small leucine-rich 

proteoglycans (SLRPs) such as decorin and biglycan have N-terminal binding sites for 1 

or 2 CS chains and leucine-rich repeats flanked by cysteine residues in their central 

domain.19 Another prominent CSPG in the nervous system is NG2, a transmembrane 

proteoglycan with a CS chain attached to its large extracellular domain.20 

Structure of chondroitin sulfate sugars 

Proteoglycan core proteins are decorated at certain serine residues with CS GAG 

chains via a tetrasaccharide linker. CS GAGs are linear polysaccharides comprosed of a 

repeating disaccharide unit containing N-acetyl-D-galactosamine (GalNAc) and D-

glucuronic acid (GlcA).21,22 Each chain contains up to 100 disaccharide units and 
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undergoes extensive sulfation in the Golgi by chondroitin sulfotransferases.23,24 The 

commonly occurring CS disaccharide units are characterized by the number and position 

of their sulfate modifications (Fig. 1.1a). For instance, the monosulfated CS-A and CS-C 

motifs contain sulfate groups at the 4-O and 6-O positions of the GalNAc residue, 

respectively, and are generated by the sulfotransferases chondroitin 4-O-sulfotransferase 

(C4ST) and chondroitin 6-O-sulfotransferase (C6ST), respectively (Fig. 1.1b). The 

disulfated CS-D unit is synthesized from the CS-C precursor via 2-O sulfation of the GlcA 

residue by uronyl 2-O-sulfotransferase (UST), while the CS-E unit is generated from a CS-

A unit by 6-O sulfation of the GalNAc residue by the sulfotransferase N-

acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST). Thus, a suite of 

sulfotransferase enzymes works in concert to produce a structurally complex, 

heterogeneously sulfated polysaccharide. This non-template driven process results in 

diverse patterns of sulfation that allow CS GAGs to interact with a wide range of proteins, 

including different growth factors, cytokines, and transmembrane receptors. 
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Figure 1.1: Biosynthesis of Chondroitin Sulfate motifs (a) Common sulfation motifs 

of chondroitin sulfate, which consists of the repeating disaccharide N-acetyl-D-

galactosamine-1,3)-D-glucuronic acid. n = 20-100. CS-A and CS-C are monosulfated 

at the 4-O and 6-O positions of GalNAc, respectively. CS-D is sulfated at the 2-O 

position of GlcA and 6-O position of GalNAc. CS-E is sulfated at the 4-O and 6-O 

positions of GalNAc. (b) Biosynthesis of chondroitin sulfate. A core tetrasaccharide 

(xylose (Xyl)-galactose (Gal)-galactose (Gal)-glucuronic acid (GlcA)) is appended to 

serine residues of the core proteoglycan. Chain extension is performed by chondroitin 

sulfate synthase (CSS) and chondroitin polymerizing factor (ChPF). The polysaccharide 

chains are then elaborated through sulfation by C4ST to generate CS-A or C6ST to 

generate CS-C, followed by GalNAc4S-6ST or UST to form CS-E or CS-D, 

respectively. 
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CSPG receptors  

Many of the diverse functions of CSPGs arise from their ability to bind a large 

number of protein partners. CSPGs interact with various proteins in the ECM, including 

fibronectin, laminin, neural cell adhesion molecule (NCAM), and neural glial cell adhesion 

molecule (NgCAM).25–27 Through these interactions, CSPGs can block laminin-mediated 

integrin activation, as well as cell adhesion molecules important for promoting neuronal 

migration and growth.28–30 CSPGs are also known to interact with a variety of growth 

factors, such as midkine (MK), pleiotrophin (PTN), nerve growth factor (NGF), and brain-

derived neurotrophic factor (BDNF), and in some cases can help assemble growth factor-

receptor complexes.31–35 In this way, CSPGs can modulate growth factor signaling 

pathways by presenting soluble factors to their cell surface receptors and/or potentially 

sequestering them from their cell surface receptors. It is becoming increasing clear that 

CSPGs can also interact with and modulate the activity of many membrane-associated 

proteins, including the protein tyrosine phosphatases PTPσ and leukocyte common 

antigen-related (LAR) and the Nogo receptors NgR1 and NgR3.36–39 For example, the 

interaction of CS and heparan sulfate (HS) GAGs with the thrombospondin repeats of 

semaphorin 5A (Sema5A) guides neurons in the developing diencephalon fiber tract, with 

each interaction resulting in different functional outcomes. While HS is required for 

Sema5A-mediated attraction, the interaction with CS converts Sema5A to a repulsive 

guidance cue, suggesting that neuronal responses to axon guidance cues can depend on 

their GAG binding status.40 We will highlight additional examples below where the CS 

sugar chains mediate the interactions and activity of CSPGs toward their protein partners.  
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Regulation of the ‘sulfation code’  

The sulfation profiles of CS are spatially and temporally regulated in a tissue-

specific and cell type-specific manner. In the nervous system, particular CS sulfation 

motifs are upregulated during early and postnatal development.33,41–44 For example, distinct 

immunohistochemical patterns are exhibited by monoclonal antibodies that recognize 

sulfated CS chains (antibodies CS-56, 2H6 and MO-225). Although these antibodies 

recognized a varied set of overlapping epitopes, each revealed distinct CS expression 

patterns in the brain.45 For example, the CS-56 and 2H6 epitopes were highly expressed in 

the postnatal day 7 (P7) mouse cortex and showed decreased expression in P12 and P20 

cortical tissue.22,33 In the cerebellum, CS-56 immunoreactivity was detected at P7 and P12 

but was absent at P20. Interestingly, the MO-225 epitope was not observed in the cortex 

but showed strong expression in the cerebellum at P7, P12, and P22.33,45 

Additional insights into the expression dynamics of CS motifs were obtained from 

high-performance liquid chromatography (HPLC) analysis of CS disaccharides following 

digestion of the GAG chains. The monosulfated CS-A motif was the most abundant motif 

in the embryonic mouse cortex and cerebellum, and its levels increased as development 

progressed.42,44,46 Expression of the CS-C motif was highest during embryonic 

development and steadily decreased through development, but it remained the second most 

abundant CS motif.42,44,46 Interestingly, the disulfated CS-E motif exhibited its highest 

expression in the embryonic mouse cortex, and its levels decreased into adulthood but 

remained higher in the cortex than in the cerebellum.42,44,46 In contrast, expression of the 

disulfated CS-D motif was highest in the cerebellum and peaked around P10.42,46 Notably, 

deletion of these highly sulfated motifs by genetic knockdown of the sulfotransferases UST 
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and GalNAc4S-6ST via in utero electroporation resulted in impaired migration of cortical 

neurons in vivo.42 Electroporated neurons accumulated in the lower intermediate zone and 

the subventricular zone and did not migrate radially in the neocortex.  

In addition to dynamic changes in CS sulfation, the expression of specific CS 

sulfotransferases is spatially and temporally regulated.42,43,45–48 Widespread mRNA 

expression of C4ST and GalNAc4S-6ST was observed in the cortex, hippocampus, 

cerebellum, striatum, and the olfactory bulb during postnatal development and into 

adulthood, while UST was preferentially expressed in the developing cerebellum.44,48 In 

the cerebellum, expression of GalNAc4S-6ST shifted during postnatal development from 

the external to the internal granular layer.46,48 This change in sulfotransferase mRNA 

expression profile matched the levels of CS-E expression observed by immunostaining and 

coincided with the migration and maturation of granular cells.48 

Interestingly, studies suggest that proteoglycans possess well-defined GAG 

sequences. For example, early studies demonstrated that the CS chains of phosphacan 

purified from P20 mouse brains contained a higher abundance of the CS-D motif compared 

to those of phosphacan purified from P7 and P12 brains, and accordingly, they exhibited 

higher binding affinity for the growth factor PTN.33 More recently, GAG fragments of 

similar size and charge were isolated from the heparan sulfate proteoglycan bikunin, and 

mass spectrometry sequencing revealed a single, defined sequence motif.49 

Together, multiple lines of evidence indicate that the sulfation patterns on CS 

chains are specific and highly controlled. Spatiotemporal regulation of CS GAG 

biosynthesis could provide an important mechanism to modulate the interactions and 

functions of CSPGs and activate intracellular signaling pathways. Moreover, the concerted 
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expression of particular sulfation motifs on different proteoglycan core proteins could 

provide an elegant mechanism to coordinate the activities of various CSPGs. In this review, 

we will discuss current hypotheses regarding CSPGs and evidence supporting an important 

role for the sulfated CS chains in mediating the diverse activities of CSPGs toward neurons. 

CSPGs as stimulatory cues for neuronal growth 

Although CSPGs are traditionally considered inhibitory molecules, they are 

sometimes expressed in growth-permissive regions, such as the neocortical subplate where 

thalamocortical afferent axons grow.50,51 As such, CSPGs do not always constitute a barrier 

to axon initiation or outgrowth and may also participate in axon extension and pathfinding. 

In fact, numerous studies have established the ability of CSPGs to stimulate neurite 

outgrowth in vitro, and their growth-promoting activity depends on the CS sugar chains.  

Role of CS sulfation patterns 

The stimulatory effects of CSPGs on cultured neurons vary with the CS sulfation 

pattern and neuron type. CS chains enriched in highly sulfated motifs have been shown to 

promote neurite outgrowth of embryonic neurons in vitro.52–59 For example, the 

phosphacan variant DSD-1-PG contains a specific sugar epitope, DSD-1, that stimulates 

the outgrowth of embryonic day 18 (E18) rat hippocampal neurons and E14 mesencephalic 

neurons.55,56 The growth-promoting effects of DSD-1-PG were blocked by removal of the 

sugar chains or by the monoclonal antibody (mAb) 473HD, which recognizes the DSD-1 

sugar epitope.53,55,57 Polysaccharides enriched in the disulfated CS-D sulfation motif 

inhibited the interaction of mAb 473HD and DSD-1-PG, suggesting that CS-D may 

compose part of the DSD-1 epitope.53,54,58 Further characterization of mAb 473HD 

demonstrated that it recognized the tetrasaccharide sequence A-D or D-A.60 Both CS-D 
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and DSD-1 interacted strongly with PTN (also known as HB-GAM) and promoted neurite 

outgrowth, at least in part, through those interactions.33,52 PTN induced cortical cell 

migration in vitro through the proteoglycan receptor RPTPβ, and this activity was blocked 

by the addition of RPTPβ antibodies, the tyrosine phosphatase inhibitor sodium vanadate, 

or exogenous CS.61 

Interestingly, while CS-D-enriched polysaccharides promoted the outgrowth of 

dendrite-like extensions in cultured embryonic hippocampal neurons, polysaccharides 

enriched in the disulfated CS-E motif promoted the outgrowth of a single, axon-like 

extension.57 Moreover, the activity of CS-E was not blocked by mAb 473HD, suggesting 

that a structurally distinct epitope from DSD-1 is responsible for the growth-promoting 

effects.54,58 Both CS-D- and CS-E-enriched polysaccharides bound preferentially to a 

variety of growth factors. MK and PTN appeared to have similar affinities for DSD-1, CS-

D, and CS-E but did not interact strongly with CS-A- or CS-C-enriched 

polysaccharides.31,33,62 Similarly, other neurotrophic factors such as NGF, BDNF, 

neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) showed preferential binding to CS-

E compared to CS-A or CS-C polysaccharides.32,34  

In addition to CS, GAGs such as HS and dermatan sulfate (DS) can also bind to 

growth factors, including MK, PTN, FGF, and BDNF, and promote neurite outgrowth.45,63–

65 Heparan sulfate proteoglycans (HSPGs) stimulated neurite outgrowth of cultured rat 

sympathetic neurons, spinal cord neurons, chick retinal neurons, and motor neurons in a 

GAG-dependent manner.66–69 Hybrid CS/DS chains, which are synthesized from CS 

through the action of chondroitin-glucuronate 5-epimerase to convert GlcA to L-iduronic 

acid (IdoA),22 have been shown to promote the outgrowth of embryonic hippocampal 
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neurons.57,59,64,70 Moreover, DS chains enriched in the disulfated DS-D and DS-E motif, 

but not the disulfated DS-B motif (sulfated at the 2-O position of IdoA and 4-O position of 

GalNAc), stimulated neurite outgrowth, highlighting the importance of the sulfate group 

position for the activity of GAGs.57,70 Interestingly, the DS-D and DS-E motifs also 

promoted the formation of an increased number of neurites per cell compared to CS-D and 

CS-E, respectively.57,64 Thus, CS and DS structures with the same sulfation patterns can 

exhibit different activities towards developing neurons. In the future, comparative analyses 

of various GAG families and their distinct functions or mechanisms will be important for 

understanding the physiological roles of GAGs during development and in the mature 

nervous system. 

Pure synthetic molecules for assessing structure-function relationships  

The structural complexity of CS GAGs renders it difficult to purify well-

characterized, homogeneous oligosaccharides and polysaccharides from natural sources. 

For instance, the CS-D polysaccharide used in the literature contains only ~20% of the CS-

D sulfation motif, with the CS-C motif constituting the majority of the polysaccharide.57 

Thus, from a purity and selectivity standpoint, chemically-synthesized GAG structures 

with defined sulfation motifs are crucial for studying the structure–function relationships 

of CS GAGs.21 To determine whether the growth-promoting activity of CS-E-enriched 

polysaccharides (which contain only ~60% CS-E) was due to the CS-E sulfation motif, 

defined tetrasaccharides were chemically synthesized.32,71  Interestingly, a tetrasaccharide 

structure was sufficient to promote neurite outgrowth, and only a tetrasaccharide 

containing the CS-E motif (E-E), not the CS-A (A-A) or CS-C motifs (C-C), strongly 

promoted the outgrowth of embryonic hippocampal, cortical, and dopaminergic 
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neurons.32,71,72 A different CS tetrasaccharide containing the same number of sulfate groups 

as CS-E had no appreciable effect on neuronal growth, indicating that the precise position 

of the sulfate groups was important.32 The CS-E tetrasaccharide bound preferentially to 

specific growth factors, including BDNF and MK, and the growth-promoting activity of 

the tetrasaccharide was abolished by the addition of function-blocking antibodies against 

these growth factors or their cell surface receptors (TrkB and RPTPβ/ζ, respectively).32,34 

Together, these results demonstrate that the specific sequence of the sulfate groups along 

the sugar backbone, rather than electrostatics alone, modulates GAG–protein interactions 

and can direct important neuronal signaling events. 
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Mechanisms of growth promotion 

Studies suggest that the CS chains on CSPGs promote neuronal growth in vitro by 

recruiting growth factors to the cell surface and facilitating interactions with their cell 

surface receptors (Fig. 2). CS-E polysaccharides can enhance the formation of 

neurotrophin-Trk complexes in a sulfation-dependent manner.34 For instance, CS-E-

enriched polysaccharides presented on a substratum increased NT-4/5-mediated TrkA 

activation in PC12 cells, while removal of endogenous CS chains by chondroitinase ABC 

(ChABC) reduced TrkA activation. A complex of CS-E with neurotrophins and their 

Figure 2.2: Modulation of intracellular signaling pathways by chondroitin sulfate. 

(left) CS chains can localize soluble ligands such growth factors to the cell surface and 

facilitate interactions with their cognate receptors. For example, nerve growth factor 

(NGF) signaling and neurite outgrowth are enhanced when CS-E is presented on the 

cell surface. (right) Alternatively, CS chains can directly interact with transmembrane 

receptors such PTPσ, LAR, NgR1, and NgR3, and affect intracellular signaling. For 

example, CS interacts with lysine-rich IgG domains of PTPσ and inhibits neurite 

outgrowth. 
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cognate Trk receptors was observed on CS GAG microarrays, and the colocalization of 

CS-E and TrkA increased in PC12 cells upon treatment with the neurotrophin NGF.  On 

the other hand, the addition of exogenous CS-E polysaccharides into the culture medium 

inhibited NT-4/5- and NGF-mediated TrkA activation, consistent with the mechanism that 

CS-E polysaccharides in solution can sequester neurotrophins away from the cell surface 

and prevent them from activating TrkA receptors. In addition to neutrophin-Trk complexes, 

contactin-1 (CNTN-1) has been identified as a receptor for CS-E.73 CNTN-1 regulates 

neurite outgrowth through the non-receptor-type tyrosine kinase Fyn. Phosphorylation and 

activation of Fyn was induced upon treatment with CS-E, but not CS-A or CS-C, 

polysaccharides. Antibodies against CNTN-1 inhibited CS-E-induced neurite outgrowth of 

embryonic hippocampal neurons. This stimulation was further inhibited when MK or 

BDNF antibodies were used in combination with CNTN-1 antibodies. Although it remains 

to be determined whether CSPGs modulate neurotrophin and CNTN-1 signaling in vivo, 

heparan sulfate proteoglycans utilize similar mechanisms for the regulation of numerous 

growth factors such as fibroblast growth factors, Sonic Hedgehog, and epidermal growth 

factor.74–76  

 As CS GAGs can modulate growth factor activation at the cell surface, the ability 

to engineer cells to express specific GAG structures would provide a novel means to 

control cell growth pathways.  Recent studies have explored the ability to promote neuronal 

growth through the cell surface presentation of particular sulfated GAGs.77 For example, 

liposomal-mediated delivery of CS-E, but not CS-A or CS-C, polysaccharides to cultured 

cortical neurons enhanced neurite outgrowth mediated by NGF.77 The presentation of CS-

E at neuronal cell membranes also stimulated NGF-mediated phosphorylation of Akt. The 
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observed sulfation-dependent results are consistent with the high affinity of NGF for the 

disulfated CS-E motif.34 In other studies, pluripotent embryonic stem cells engineered to 

display highly sulfated heparan sulfate underwent accelerated exit from self-renewal and 

differentiation into mature neuronal populations through increased activation of fibroblast 

growth factor/extracellular signal-regulated kinase (FGF/ERK)-mediated signaling 

pathways.78  These studies lend strong support to the mechanism that specific sulfation 

motifs on GAG chains can recruit soluble factors to the cell surface and facilitate activation 

of their receptors (Fig. 2). Thus, controlled expression of GAG sulfation patterns at the cell 

surface may afford regulation of growth factor binding sites and tune intracellular signaling 

in a cell-type specific manner. 

CSPGs as inhibitory cues for neuronal growth 

CSPGs have been well documented to act as inhibitory cues in a variety of neuronal 

contexts. During development, CSPGs delineate boundaries that prevent extending axons 

from crossing.3–5 In the mature system, CSPGs have been shown to restrict synaptic 

plasticity and help stabilize existing connections.9,10 Following CNS injury, CSPGs prevent 

axons from regenerating past the injury site to form functional connections.10–13 Although 

CSPGs were originally thought to function as non-specific, electrostatic or physical 

barriers to neuronal growth, it is becoming evident that the CS sugar chains on CSPGs can 

engage and modulate the activity of many inhibitory cell surface receptors. We will 

highlight recent studies that have demonstrated the importance of specific sulfation motifs 

in these systems. 
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Inhibition of neurite growth and axon elongation 

While many studies have noted the stimulatory effects of CSPGs on embryonic 

hippocampal neurons, other studies have reported that CSPGs can inhibit the outgrowth of 

dorsal root ganglion (DRG), retinal ganglion cell (RGC) and cerebellar granule neurons 

(CGN).5,36,56,79–83 The seemingly paradoxical activity of CSPGs appears to depend on the 

neuronal lineage, neuronal age, and expression of specific CSPG receptors. For example, 

certain CSPGs exhibit both stimulatory and inhibitory effects on neurons, depending on 

the neuron type.  Whereas DSD-1-PG promoted the outgrowth of embryonic hippocampal 

neurons as described above, it potently inhibited the outgrowth of neonatal DRG 

explants.56 In addition to their effects on neurite outgrowth, CSPGs also form an inhibitory 

barrier to elongating DRG, RGC, and CGN axons in vitro.5,36,84 This activity depends on 

the CSPG concentration: neurons grown on a step gradient of immobilized CSPGs 

extended their axons at a reduced rate for each successively increasing CSPG 

concentration.82 Interestingly, RGC neurons extended axons further than DRG neurons on 

these CSPG step gradients, highlighting cell type-specific responses.  

Many studies have established that CSPG-mediated inhibition occurs through 

activation of the small GTPase RhoA and its effector protein, Rho-associated, coiled-coil 

containing protein kinase ROCK.36,81,85 Activation of the Rho/ROCK pathway leads to 

phosphorylation of LIM domain kinase 2 (LIMK2), myosin light chain (MLC), and other 

downstream proteins that induce cytoskeletal rearrangements such as neurite retraction and 

growth cone collapse.86,87 CSPGs are also known to activate epidermal growth factor 

receptor (EGFR) pathways, and blocking the kinase activity of EGFR or mitogen-activated 

protein kinase (MAPK) reversed the inhibition by CSPGs.36,80,88 
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 The CS GAG chains on CSPGs are essential for the inhibitory activity of CSPGs. 

Enzymatic removal of the CS chains with ChABC rendered CSPGs significantly less 

inhibitory toward cultured DRG, RGC, and CGN neurons in neurite outgrowth and 

boundary assays.79,83,84,89 Genetic disruption of CS biosynthesis by deletion of chondroitin 

polymerizing factor (ChPF) also reduced the inhibitory activity of CSPGs.84 Specifically, 

CSPGs isolated from ChPF-deficient astrocytes failed to repel cultured CGN axons. 

Notably, decreasing the sulfation levels of CSPGs using the general sulfotransferase 

inhibitor chlorate reduced the ability of CSPGs to inhibit neurite outgrowth of DRG 

neurons.90  Although the inhibitory activity of CSPGs resides primarily in their sugar 

chains, some core proteins also exhibit inhibitory properties.66,91–93 For instance, the 

proteoglycan NG2 inhibited the outgrowth of neonatal CGN and embryonic DRG neurons 

even after ChABC treatment.79,83 Three independent domains within the extracellular 

portion of NG2 each exhibited comparable inhibitory activity as the full extracellular 

domain of NG2.83 Notably, only the activity of the central domain containing CS 

attachment sites was affected by enzymatic digestion with ChABC. In some cases, the 

interaction of CSPGs with cell surface receptors does not require the GAG chains. For 

example, the binding of phosphacan to N-CAM and Ng-CAM was not significantly 

reduced by ChABC treatment, and phosphacan lacking GAG chains still bound to neurons 

and inhibited neurite growth comparable to intact phosphacan.94,95 Thus, the core protein, 

in addition to the GAG chains, can contribute to the inhibitory functions of certain CSPGs.  

Below, we will focus on the importance of the CS chains and specific sulfation motifs in 

mediating the inhibitory effects of CSPGs in the context of visual plasticity and CNS 

injury. 
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CSPGs and visual plasticity 

During the critical period of development, the brain is most plastic, and experience-

dependent activity shapes neuronal connections.6,96,97 Sensory input during the critical 

period is required for the formation of functional neural circuits. In the mouse visual cortex, 

monocular deprivation during the critical period leads to a shift in the responsiveness of 

neurons toward the non-deprived eye.6,97 This shift in ocular dominance (OD) is not 

observed if monocular deprivation is performed after the close of the critical period, which 

is accompanied by a marked reduction in plasticity and the formation of perineuronal net 

(PNN) structures.98,99 PNNs, which consist of CSPGs, tenascin, link-proteins, and 

hyaluronic acid, surround the cell body and extend along the dendrites of inhibitory 

neurons expressing the calcium-binding protein parvalbumin (PV). They serve to restrict 

synaptic plasticity and stabilize the network of existing neuronal connections.6–9 The 

CSPGs in PNNs, and in particular, their CS sugar chains, are essential to the structure and 

function of PNNs. Digestion of the CS sugars by ChABC in the visual cortex reactivated 

critical period plasticity following monocular deprivation in adult mice.98,99 ChABC 

treatment also increased dendritic spine dynamics and density in the visual cortex in vivo 

and in hippocampal organotypic slices.99–101 These effects were prevented by pretreatment 

with β1-integrin blocking antibodies, suggesting that the increase in dendritic spine 

dynamics occurred through disruption of CSPG interactions with integrin and activation of 

β1-integrin signaling pathways (Orlando et al., 2012).101  Interestingly, CSPG interactions 

with hyaluronic acid (HA) chains are also required for the formation and stabilization of 

PNN structures. The N-terminal and C-terminal domains of lecticans allow these CSPGs 

to interact with HA and tenascins, two key components of PNNs.102,103 CSPG-HA 
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interactions are stabilized by link protein, and genetic deletion of link protein or enzymatic 

digestion of HA or CS resulted in the loss of PNNs.11,98,104,105  

 Specific sulfation motifs on CSPGs have been shown to regulate PNN formation 

and critical period plasticity.9 The sulfation patterns of CSPGs are tightly regulated during 

postnatal development in the mouse visual cortex. While 6-O sulfation of CS (CS-C) 

decreases, 4-O sulfation (CS-A) increases as the critical period comes to a close, resulting 

in an increase in the 4-O to 6-O sulfate (4S/6S) ratio.106 Transgenic mice overexpressing 

C6ST-1 retain a low 4S/6S ratio and develop fewer PNNs around PV neurons.106 Their 

PNNs are rich in CS-C and display a diffuse structure that is unable to tightly enwrap 

thalamocortical synaptic contacts. Importantly, the mice also exhibit persistent cortical 

plasticity into adulthood. When subjected to monocular deprivation, adult mice 

overexpressing C6ST-1 show ocular dominance plasticity similar to juvenile wild-type 

mice. Thus, the change from low to high 4S/6S sulfation ratio on CSPGs coincides with 

the close of the critical period when plasticity is restricted, and reducing this ratio can 

modulate PNN structure and enhance cortical plasticity. 

CSPGs are believed to regulate plasticity in a sulfation-dependent manner by 

localizing plasticity-restricting factors to PNNs.9,107 The transcription factor orthodenticle 

homeobox 2 (Otx2) is a key regulator of visual cortex plasticity.108,109 The localization of 

Otx2 to PV neurons occurs through binding of Otx2 to sulfated CS GAG chains. In 

transgenic mice overexpressing C6ST-1, Otx2 was not incorporated in PV neurons 

surrounded by PNNs enriched in CS-C.106 Otx2 fragments interact preferentially with 

highly sulfated CS-D- and CS-E-enriched polysaccharides.110 The localization of Otx2 to 

PV neurons was disrupted by blocking Otx2-CS interactions through intracortical infusion 
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of a CS-E hexasaccharide or an arginine-lysine rich N-terminal Otx2 fragment that 

interacts with CS-D and CS-E polysaccharides.110,111 Infusion of this N-terminal Otx2 

fragment, but not an alanine-containing mutant, also reopened critical period plasticity in 

adult mice.110 Thus, the accumulation of Otx2 within PV neurons is sulfation pattern-

dependent and appears to be mediated by highly sulfated CS sequences. Interestingly, the 

CS-E motif was also recently shown to interact with semaphorin 3A (Sema3A), a 

chemorepulsive guidance protein.112 Sema3A is enriched in PNNs, and ChABC treatment 

disrupted the localization of Sema3A to PNNs.113 Importantly, the abundance of Sema3A 

was reduced in PNNs during periods of enhanced synaptic remodeling in regions 

undergoing structural reorganization.114 These examples suggest important roles for CS 

sugars in the regulation of synaptic plasticity and highlight the potential to modulate 

plasticity by altering the sulfation patterns of CSPGs and their sulfation-dependent 

interactions.  

CSPGs and CNS injury 

CSPGs are dramatically upregulated in the glial scar, which forms in response to 

CNS injury.12,13,115 Comprised of reactive astrocytes, microglia, and ECM molecules, the 

glial scar serves as a major barrier to regenerating axons.11–13,115 It also functions to restrict 

anatomical plasticity by inhibiting collateral sprouting and synaptic reorganization.10–12 

Within 24 h after injury, reactive astrocytes begin to synthesize and secrete CSPGs in high 

concentrations into the glial scar, where they persist for months.116–118 One well-established 

strategy for overcoming the inhibition of the glial scar is localized delivery of the enzyme 

ChABC.119 ChABC digestion of the CS sugars on CSPGs induced axon regeneration 

following injury to the nigrostriatal, serotoninergic, or reticulospinal axon pathways.120–122 
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ChABC treatment also resulted in improved regeneration and functional recovery in 

several models of spinal cord injury.123–127 For example, mice treated with ChABC after a 

dorsal column crush injury exhibited growth of ascending sensory projections and 

descending corticospinal tract axons.124 Enhanced functional recovery of locomotor and 

proprioceptive behaviors was also observed.  In other studies, ChABC treatment increased 

conduction through intact fibers in the ventrolateral funiculus following unilateral 

hemisection of adult rat spinal cord.128 The remarkable effects of ChABC have been 

proposed to occur both through regeneration of corticospinal tract axons, as well as 

enhanced plasticity and sprouting of spared axons.  

Interestingly, enzymatic digestion of keratan sulfate (KS) GAGs using keratanase 

II (K-II) also led to axon regeneration and improved recovery of motor and sensory 

function following injury.129,130 KS, another component of the glial scar, is composed of 

repeating disaccharide units of galactose (Gal) and N-acetyl-D-glucosamine (GlcNAc), and 

it can be sulfated at the 6-O position of Gal and GlcNAc residues.131,132 KS digestion by 

K-II led to comparable effects on axon regeneration and sprouting as CS digestion by 

ChABC.129,130 The effects of digestion with K-II and ChABC on axon regeneration were 

not additive, as treatment with both K-II and ChABC did not result in improved axon 

recovery compared to either treatment alone.129,130 It is unclear whether CS and KS inhibit 

axon regeneration through common receptors or if KS-specific receptors also exist.  

In addition to enzymatic digestion of GAGs, genetic manipulation of CS sugar 

chains indicates a critical role for the sugars in inhibiting axon regeneration and plasticity 

after CNS injury. Mice lacking the enzyme chondroitin sulfate N-

acetylgalactosaminyltransferase-1 (CSGalNAcT-1), which appends the first GalNAc 
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residue to the core tetrasaccharide linker on CSPGs, synthesized less CS and exhibited 

reduced scar formation after a spinal cord compression injury.133 The mice also displayed 

enhanced axon growth and a larger area encompassing serotonin-positive (5HT(+)) 

terminals beyond the lesion site. Notably, CSGalNAcT-1 knockout mice showed improved 

motor function and more complete, faster recovery in motor function assays compared to 

mice treated with ChABC. Likewise, genetic deletion of N-acetylglucosamine 6-O-

sulfotransferase-1, an enzyme required for KS chain elongation, resulted in reduction of 

glial scar formation and promoted axonal regrowth of the corticospinal tract.134,135 

Given the importance of the CS sugars, understanding the functions of different CS 

sulfation patterns in the glial scar and characterizing their mechanisms of action may 

provide new therapeutic strategies for promoting neuronal repair. Several studies indicate 

that particular CS sulfation patterns are upregulated in response to CNS injury. In addition 

to enhanced expression of CSPGs, the sulfotransferases C4ST, C6ST, and GalNAc4S-6ST 

are upregulated at the injury site following cortical lesions in mice and rats.136–138 

Consistent with these observations, disaccharide analysis of CS polysaccharides isolated 

from injured issue showed increased levels of the CS-A, CS-C, and CS-E motifs.89,139 For 

instance, a large increase in total CS and CS-A expression was observed one day after 

dorsal hemisection injury in mice.89 Others studies revealed an increase in CS-C and CS-

E levels, but a decrease in CS-A levels, one week and one month after cortical lesion in 

rats.138 Increased CS-E expression was also observed by immunohistochemistry 2 weeks 

after an optic nerve crush injury, as well as 24 h after cortical stab and dorsal spinal cord 

injuries in mice.36 Comparison of these results are confounded by differences in the 

methods of CS analysis, the timing post injury, and the type of injury model. Nonetheless, 
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these studies all observe an increase in the total amount of CS and in general, an increase 

in the CS-E sulfation motif. Systematic investigations into the CS patterns in different 

injury models and at various times points post injury are required for a better understanding 

of the temporal dynamics of CS sulfation following CNS injury. 

Studies suggest that specific sulfation motifs within long CS polysaccharide chains 

enable CSPGs to interact with inhibitory receptors, possibly modulating the clustering 

and/or activation of those receptors (Fig. 1.2). Until recently, CSPGs were widely believed 

to inhibit axon growth through relatively non-specific mechanisms, such as steric blockage 

of the extracellular space, arrays of negatively charged sulfate, or steric hindrance of 

adhesive matrix molecules.139–141 However, recent studies suggest that CSPGs can interact 

directly with cell surface receptors expressed on injured axons and thereby activate growth-

inhibitory signaling pathways.142  Several important CSPG receptors have been identified, 

including the protein tyrosine phosphatases PTPσ and LAR and the Nogo receptors NgR1 

and NgR3.36,38,39,143 DRG neurons from PTPσ-deficient mice crossed CSPG-rich 

boundaries and exhibited improved neurite outgrowth in response to CSPGs in vitro.36,39,143 

Axons from PTPσ-deficient mice also extended further from the lesion site following a 

dorsal column crush injury. In a similar manner, modulating the activity of PTPσ using a 

peptide mimetic blocked CSPG-mediated inhibition and allowed DRG neurons to cross 

CSPG-rich barriers.144 Systemic treatment with this peptide following contusion spinal 

cord injury resulted in axon regeneration and recovery of locomotor function. It’s worth 

noting that PTPσ also binds to HS and this interaction promotes neurite outgrowth of 

cultured DRG neurons.143 Like Sema5A, PTPσ is another example where the neuronal 

response is dependent on its GAG binding status. Similarly, DRG and CGN neurons from 
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LAR-deficient mice exhibited increased neurite outgrowth when grown on a CSPG 

substratum compared to neurons from wild-type mice.38 As with PTPσ, blocking the 

activity of LAR using a peptide reversed the CSPG-mediated inhibition of neurite 

outgrowth in vitro and promoted axon growth and improved locomotor recovery in vivo 

following dorsal transection in mice. Likewise, genetic deletion of NgR1 and NgR3 resulted 

in improved neurite outgrowth of CGN neurons grown on a CSPG substratum and 

enhanced axon regeneration in mice following an optic nerve crush injury.37 However, 

complete recovery was not observed in either PTPσ-/- or NgR1-/-; NgR2-/-; NgR3-/- triple 

knockout mice, and NgR1-/-; NgR3-/-; PTPσ-/- triple knockout mice displayed increased 

optic nerve regeneration compared to knockout of NgR1, NgR3, or PTPσ alone, suggesting 

that the inhibitory effects of CSPGs in the glial scar are mediated through multiple different 

receptors.  

Importantly, the disulfated CS-E sulfation motif is critical for engaging these 

inhibitory CSPG receptors. PTPσ bound selectively to CS-E, but not to CS-A or CS-C, 

polysaccharides through its lysine-rich IgG domain.36 Moreover, the ability of CS-E 

polysaccharides to inhibit the outgrowth of DRG neurons was significantly attenuated in 

neurons from PTPσ-deficient mice.36 Interestingly, however, residual inhibition by CS-E 

(~22%) remained in PTPσ-deficient neurons, consistent with the idea that multiple 

different receptors interact with CSPGs to inhibit neuronal growth. NgR1 and NgR3 also 

interacted preferentially with CS chains containing the CS-E or CS-D motifs, but not those 

enriched in CS-A or CS-C, suggesting that these receptors also engage the CS-E structure 

on CSPGs.37  
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Additional evidence indicates that the CS-E sulfation motif is critical for the 

inhibitory activity of CSPGs. The CS-E motif has been shown to exert strong inhibitory 

effects on sensory neurons both in vitro and in vivo.36,136,139,145 Studies using CS-E-enriched 

polysaccharides and pure synthetic polymers containing CS-E showed that the CS-E motif 

was sufficient to inhibit CGN and DRG neurons in neurite outgrowth, growth cone 

collapse, and boundary assays.36,139,145 In contrast, CS-A- and CS-C-enriched 

polysaccharides and synthetic polymers had no appreciable inhibitory effects even when 

used at 10-fold higher concentrations or when combined with CS-E. Notably, CSPGs 

isolated from mice lacking GalNAc4S-6ST, the sulfotransferase that produces CS-E, 

showed significantly less inhibition of DRG neurite outgrowth.36 Similar effects were 

observed upon knockdown of C4ST or GalNAc4S-6ST in astrocytes: CSPGs isolated from 

these astrocytes lacked either CS-A and CS-E or CS-E alone, respectively, and were less 

inhibitory towards CGN and cortical neurons in neurite outgrowth and boundary 

assays.89,136 In contrast, reduced inhibition by CSPGs was not observed when C6ST-1, 

which produces CS-C, was knocked down.89 Importantly, blocking the CS-E, but not the 

CS-A, motif using a specific monoclonal antibody rescued the CSPG-mediated inhibition 

of DRG neurite outgrowth in vitro and promoted axon regeneration in vivo following an 

optic nerve crush injury.36 Interestingly, the CS-E-blocking antibody promoted 

regeneration in mice to a similar extent as complete digestion of CS chains using ChABC, 

suggesting that CS-E represents the major inhibitory determinant on CSPGs. The number 

of regenerating axons and the distance of regeneration was further enhanced by combining 

the CS-E antibody treatment with a small-molecule cyclic AMP analogue to activate 

intrinsic neuronal growth pathways. Given that CSPGs interact with several different 
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receptors, blocking the CS-E motif may be an effective means to target multiple inhibitory 

receptors simultaneously. 

Summary and conclusions 

CSPGs are key components of the developing and mature nervous system, where 

they guide developing axons, restrict synaptic plasticity, and prevent axon regeneration 

following CNS injury. The functions of CSPGs are mediated largely by the CS sugar chains 

that decorate them and the ability of these sugars to engage various protein receptors in a 

sulfation-dependent manner. The different sulfation patterns on CS chains are tightly 

regulated, and the spatiotemporal expression of sulfation motifs offers a means to modulate 

a diverse range of neuronal processes in a cell type- and tissue-specific manner. Highly 

sulfated motifs, such as CS-E and CS-D, are important for modulating the functions of 

CSPGs and their interactions with stimulatory growth factors and inhibitory cell surface 

receptors. Further studies of the spatiotemporal expression of CS sulfation patterns and the 

identification of their interacting protein partners will provide new insights into many 

important neural processes. This understanding, coupled with the development of methods 

to disrupt CS sugars and specific sulfation motifs, such as blocking antibodies or 

pharmacological agents, should provide novel approaches for promoting neuronal growth, 

regeneration, and CNS plasticity. 
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Chapter 2: Carbohydrate Induced Eph Receptor Clustering Inhibits 

Neurite Growth  

Abstract 

Chondroitin sulfate proteoglycans (CSPGs) are a major barrier to regenerating axons in the 

central nervous system (CNS), exerting their inhibitory effect through their polysaccharide 

side chains. Chondroitin sulfate (CS) potently inhibits axon regeneration through 

modulation of inhibitory signaling pathways induced by carbohydrate binding to protein 

ligands and receptors. Here, we identify a novel carbohydrate-protein interaction between 

CS and EphA4 that inhibits axon regrowth. We characterize the mechanism of activation 

and demonstrate carbohydrate binding induces phosphorylation of the intracellular kinase 

domain through clustering of cell surface EphA4. Collectively, our studies present a novel 

mechanism of EphA4 activation by CS independent of the canonical ephrin ligands and 

uncover the role of this interaction in inhibition of neurite regrowth after injury. Our results 

underscore a mechanism of action by which carbohydrates can function as direct, activating 

ligands for protein receptors and provide mechanistic insights into the inhibition of axon 

growth by CS following injury to the CNS.  
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Introduction 

Central nervous system (CNS) injury has lasting emotional and economic effects 

on patients and their loved ones. These debilitating injuries are characterized by impaired 

motor and sensory function due the failure of axons to regenerate past the site of injury1. 

Inhibition of axon regrowth has been linked to inhibitory extracellular matrix molecules 

produced in response to CNS damage2,3. Chondroitin sulfate proteoglycans (CSPGs) 

prevent axon regeneration and impede functional recovery following injury to the CNS. 

The inhibitory activity of CSPGs is primarily associated with their chondroitin sulfate (CS) 

polysaccharide side chains. In fact, in vivo digestion of CS chains using chondroitinase 

ABC (ChABC) promotes axon growth, sprouting, and plasticity in the CNS4,5. Importantly, 

our lab has previously shown that the CS-E sulfation motif is a key structural determinant 

contributing to the inhibitory activity of CS and that blocking this motif with a CS-E 

specific antibody can promote axon regeneration6. Thus, deciphering the underlying 

molecular mechanisms by which CS exerts its inhibitory effects may provide novel ways 

to promote functional recovery after injury. 

Recent work suggests CS actively inhibits axon regeneration through the direct 

engagement of soluble ligands and cell surface receptors via carbohydrate-protein 

interactions7,8. Moreover, targeting specific CS-receptors has emerged as a potential 

therapeutic avenue to promote axon regeneration following injury to the CNS9.  However, 

residual inhibition is frequently observed after deletion of individual CS-binding proteins, 

suggesting functional redundancy within the system10,11. Together, these results suggest 

that additional, unknown CS receptors contribute to the prevention of axon regrowth, 
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whose discovery could allow for a more complete understanding of the multifaceted 

inhibitory effects of CS.  

One class of receptors known to control proper development and maintenance of 

the nervous system are the Eph family of receptor tyrosine kinases12. Members of the Eph 

receptor family, including both EphA and EphB receptors, are upregulated after injury to 

the adult CNS, and these proteins have been implicated in the prevention of regeneration 

following injury13–15. Moreover, this family of receptors has been suggested as therapeutic 

targets for promoting regeneration following CNS injury16,17. In particular, the genetic 

deletion of the EphA4 receptors in mice led to an increase in neural regeneration and 

functional recovery after CNS injury18. In addition, pharmacological blocking of EphA4 

receptor activity after spinal cord injury allowed axonal regrowth, improved grip strength, 

and motor function in injured mice19–21. 

Here, we identify and characterize the mechanism of activation of a novel CS 

receptor important for inhibiting axon regrowth after injury. We demonstrate that CS 

binding to the extracellular domain of EphA4 promotes receptor clustering and 

phosphorylation of the intracellular kinase domain. Importantly, we demonstrate that this 

carbohydrate-protein interaction is functionally relevant using a microfluidics based 

axotomy assay; neurons expressing CS binding deficient mutants of EphA4 show 

improved regeneration when cultured in a CS rich environment. The combined results 

suggest that CS acts as a ligand for EphA4 and elicits an inhibitory response towards 

neurite growth, highlighting a new mechanism of activation for the Eph family of receptors 

and providing new functional insights into the molecular mechanisms of neural 

regeneration. 
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Results 

CS binds to EphA4 and inhibits neurite outgrowth 

We previously performed a pull down of CS-E binding proteins from rat brain 

homogenate enriched for membrane proteins to identify putative carbohydrate receptors6. 

In addition to the receptor PTPσ, this screen identified members of the Eph family of 

receptor tyrosine kinases, specifically EphA4. We first examined the potential interaction 

between CSPGs and EphA4. The complete ectodomain of EphA4 (residues 20-547), fused 

to the human immunoglobulin Fc domain to generate the fusion protein EphA4-Fc, bound 

strongly to biotinylated-CSPGs immobilized on streptavidin-coated plates (Fig. 2.1a). 

Binding was not observed for CSPGs pre-digested with ChABC to remove their 

glycosaminoglycan side chains, showing this binding was carbohydrate dependent. We 

turned to carbohydrate microarrays to explore the sulfation patterns responsible for CS-

EphA4 interactions. CS polysaccharides enriched in specific sulfation motifs were arrayed 

on poly-D-lysine coated glass slides and incubated with EphA4-Fc. Strong binding to CS-

E enriched polysaccharides was observed (Fig. 2.1b). The weakest binding was observed 

CS-A and CS-C, followed by CS-D and CS, a preparation containing a mix of sulfation 

patterns. A similar trend was observed for EphA4-Fc binding to biotinylated CS 

polysaccharides immobilized on streptavidin-coated plates (Fig. 2.1c). Kinetic analysis 

using surface plasmon resonance revealed that EphA4-Fc binds to CS-E polysaccharides 

with high nanomolar affinity (KD = 856 nM, Fig. 2.1d).  
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Figure 2.1: EphA4 binds the glycosaminoglycan side chains of CSPGs (a) EphA4-

Fc binds to CSPGs and CSPGs pre-digested with ChABC to remove GAG side chains, 

immobilized on streptavidin coated plates. Fc alone shows no binding to CSPGs. Bound 

protein detected with anti-human IgG Fc antibody conjugated to HRP (n=3, mean ± SD, 

error bars). (b) EphA4-Fc binds to CS-E-enriched polysaccharides on 

glycosaminoglycan microarrays printed with CS polysaccharides enriched in CS-A, -C, 

-D, and -E motifs (n=10 per condition, mean ± SD, error bars). (c) EphA4-Fc binds to 

biotinylated CS immobilized on streptavidin coated plates. CS polysaccharides are 

enriched in CS-A, -C, -D, and -E sulfation motifs. The amount of bound EphA4-Fc was 

detected using anti-human IgG Fc antibody conjugated to HRP. The experiment was 

performed in triplicate, and mean values (± SD, error bars) are shown. (d) Kinetic 

analysis of the interaction between EphA4-Fc and CS-E polysaccharides by surface 

plasmon resonance. CS-E polysaccharides were covalently immobilized onto the 

surface via reductive amination chemistry.  
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To explore EphA4-CS interactions in a more biologically relevant context, we 

examined whether EphA4-Fc interacts with CSPGs that are produced endogenously by 

astrocytes, a cell type that produces inhibitory CSPGs at sites of neural injury preventing 

axon regeneration. Importantly, Neu7 astrocytes express significant amounts of the CS-E 

motif22, a specific sulfation motif that potently inhibits axon regeneration and the motif 

identified to strongly interact with EphA4. EphA4-Fc, but not Fc alone, was found to bind 

astrocyte cultures, as shown by both enzymatic detection and immunofluorescence (Fig. 

2.2a, b, c). The involvement of CS chains was confirmed by pretreatment of astrocytes 

with ChABC, which significantly reduced EphA4-Fc binding. Blocking the CS-E motif 

using a CS-E specific antibody significantly reduced the amount of surface bound EphA4-

Fc (Fig. 2.2a, d)  

We reasoned the observed interaction between EphA4 and CS may contribute to 

inhibition of neurite outgrowth. To determine the role of EphA4 in CS-mediated inhibition, 

we analyzed the neurite growth of dorsal root ganglion (DRG) neurons derived from 

EphA4-/- mice cultured on a substratum coated with CSPGs or CS-E-enriched 

polysaccharides (Fig. 2.3a, b). Deletion of EphA4 significantly attenuated CSPG- and CS-

E-induced inhibition of neurite outgrowth in DRG neurons, and inhibition is not observed 

for CSPGs pre-treated with ChABC. These results indicate that the EphA4-CS interaction 

inhibits neurite growth and may contribute to the CS mediated inhibition of axon 

regeneration in vivo. 
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Figure 2.2: CS expression and EphA4 binding to Neu7 astrocytes. (a) 

Representative immunofluorescence images of EphA4-Fc bound to the surface of Neu7 

astrocytes treated with ChABC to remove glycosaminoglycan side chains (top-right) 

and untreated control (top-left); EphA4-Fc binding is blocked by pre-treatment of Neu7 

astrocytes with a CS-E antibody (bottom-right) but not by isotype matched IgG control 

antibody (bottom-left) (scale bar, 50 μm). (b) Chondroitin sulfate expression on Neu7 

astrocytes. Representative immunofluorescence images of Neu7 astrocytes stained with 

anti-CS-E antibody. Control (left) and ChABC digested (right) to remove CS side 

chains (scale bar, 50 μm). (c) Fc does not bind to the surface of Neu7 astrocytes (scale 

bar, 50 μm). (d) Quantification of bound EphA4 to Neu7 cells treated with ChABC to 

remove glycosaminoglycan side chains, pre-blocked with isotype matched IgG control 

antibody, or αCS-E antibody; bound EphA4 detected using anti-human IgG Fc antibody 

conjugated to HRP (± SD, error bars, n = 3 per condition).  
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Figure 2.3: DRGs lacking EphA4 show improved neurite outgrowth when cultured 

on a substratum of inhibitory CS (a) Dissociated mouse P6 DRGs from EphA4-WT 

and EphA4-KO mice were cultured on a substratum of CSPGs or CSPGs pre-digested 

with ChABC to remove glycosaminoglycan side chains, or CS-E enriched 

polysaccharides. Neurons were cultured for 24 h and fixed and stained with anti-βIII-

tubulin antibody.  Representative images (scale bar, 100 μm) and (b) quantification of 

average neurite length (± SEM, error bars) from three experiments (n = 150-200 cells 

per condition). ANOVA analysis (F = 101.26, P < 0.0001) with post hoc Tukey’s HSD 

shows a significant effect between these groups (* P < 0.01). 
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CS induces EphA4 clustering and phosphorylation 

Eph receptor engagement with ephrin ligands results in clustering of the 

extracellular domain and phosphorylation of the intracellular kinase domain23,24. To 

investigate the ability of CS to activate EphA4, we first asked whether CS could cluster 

EphA4 in a similar manner to ephrin ligands. We developed a microscopy-based assay to 

visualize cell-surface EphA4 by inserting an N-terminal HA tag between the signal peptide 

and ligand binding domain, HA-EphA4. Immunofluorescence staining of unpermeabilized 

COS-7 cells that were transfected with this construct showed robust surface staining (Fig. 

2.4a,b). Furthermore, HA-EphA4 is uniformly distributed across the cell surface. To 

confirm clustering of HA-EphA4, cells were stimulated with pre-clustered ephrinA5-Fc. 

Immunostaining revealed the formation of distinct HA-EphA4 puncta on the cell surface, 

suggesting the presence of concentrated receptor clusters (Fig. 2.4c). Treatment of EphA4-

HA expressing cells with CS-E enriched polysaccharides revealed a similar punctate 

staining as ephrinA5-Fc treated cells. Importantly, receptor clustering is dependent on the 

glycosaminoglycan side chains. Distinct puncta are not present on cells stimulated with 

CSPGs pre-digested with ChABC. CS binding to EphA4 is sufficient to induce receptor 

clustering in a similar manner as its natural ligand, ephrinA5.  
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We next examined whether EphA4 clustering via CS could lead to increased 

tyrosine phosphorylation. COS-7 cells were transfected with full-length EphA4 containing 

a C-terminal Myc tag. Cells were stimulated with pre-clustered ephrinA5-Fc or CSPGs, 

total EphA4 was immunoprecipiated with an anti-Myc antibody, and tyrosine 

phosphorylation was assayed by Western blot (Fig. 2.5a). As expected, stimulation with 

ephrinA5-Fc increased tyrosine phosphorylation of EphA4. Excitingly, cells treated with 

CSPGs revealed an induction of tyrosine phosphorylation of EphA4. We next examined 

the sulfation dependency of EphA4 tyrosine phosphorylation by CS. Stimulation with 

Figure 2.4: CS clusters cell surface EphA4 (a) Full length EphA4 construct used in 

clustering assay. An N-terminal HA-tag was inserted between the signal peptide (SP) 

and the ligand binding domain of EphA4. (b) Cross-section (X-Z plane) of COS7 cell 

expressing EphA4 containing an N-terminal HA-tag. Only cell-surface EphA4 is 

detected. (c) Cell surface EphA4 is clustered by stimulation with EphrinA5-Fc, CS-E 

polysaccharides, and CSPGs but not by CSPGs pre-digested with ChABC to remove 

glycosaminoglycan side chains. N-terminal HA-tagged EphA4  was visualized by 

immunostaining with an HA antibody. Representative images showing maximum 

intensity projections of z-stacks of single cells (63x): full cell (top; scale bar, 20 μm) 

and zoom-in of boxed area (bottom; scale bar, 5 μm).  
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polysaccharides enriched in specific sulfation motifs revealed an induction of tyrosine 

phosphorylation when cells were stimulated by CS-E (Fig. 2.5b). A modest degree of 

phosphorylation was observed for cells stimulated with CS-D, mirroring trends observed 

in binding to these sulfation pattern enriched CS preparations. These results suggest that 

CS polysaccharides are sufficient to cluster and elicit tyrosine phosphorylation of EphA4, 

indicative of functional Eph receptor signaling clusters. 

Finally, we examined the role of CS-E in EphA4 phosphorylation in vivo. To test 

this, we used mice containing a targeted gene disruption of N-acetylgalactosamine 4-sulfate 

6-O sulfotransferase 15 (Chst15), the enzyme that generates CS-E via addition of a sulfate 

group to the 6-O position of GalNAc on CS-A. Consistent with in vitro results, removal of 

CS-E motif resulted in a reduction in tyrosine phosphorylation of EphA4 

Figure 2.5: CS induces tyrosine phosphorylation of EphA4 (a) Western blot of 

phosphotyrosine EphA4 (pTyr) and total EphA4 (Myc) immunoprecipiated with a Myc 

antibody from COS7 cells stimulated with EphrinA5-Fc and CSPGs, and (b) CS 

polysaccharides and CS enriched in CS-A, -C, -D, and -E sulfation motifs. (c) Western 

blot of phosphotyrosine EphA4 (pTyr) and total EphA4 (EphA4) immunoprecipiated, 

with an EphA4 antibody, from hippocampal lysates of WT and Chst15-/- mice. (d) 

Quantification of phosphotyrosine EphA4 from WT and Chst15-/- mice (n=3, mean ± 

SD, error bars). * P < 0.05, Student’s t-test. 
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immunoprecipiated from hippocampal lysates (Fig. 2.5c,d). Taken together, these studies 

demonstrate that the CS-E motif is sufficient to cluster and activate the receptor EphA4. 

CS binds distal to the canonical ligand-binding domain 

We next aimed to determine the site of CS-EphA4 interactions. We first generated 

electrostatic surface potential maps for EphA4 to provide insights into regions that may 

bind CS. Immediately evident is the localization of electropositive regions of EphA4 to the 

EGF and the two FN3 domains. In contrast, the ligand binding domain (LBD) and sushi 

domain are electronegative. We generated two different Fc fusion constructs of the 

ectodomain of EphA4, EphA4LBD-Fc (residues 20-209) and EphA4FN3-Fc (residues 210-

547). We first tested binding of these EphA4 truncations to biotinylated CS-E immobilized 

on streptavidin-coated plates (Fig. 2.6a). EphA4FN3-Fc bound strongly to CS-E enriched 

polysaccharides, comparable to the full ectodomain fusion protein, EphA4-Fc. The LBD, 

EphA4LBD-Fc, showed a significant decrease in binding to CS-E.  

We then examined if CS interactions with the fibronectin domains of EphA4 are 

sufficient to induce the clustering and phosphorylation of EphA4 in a cellular context. In 

the cell-surface clustering assay described above, COS-7 cells expressing EphA4ΔLBD 

(residues 210-986) truncation containing an N-terminal HA tag, HA-EphA4ΔLBD, were 

stimulated with pre-clustered ephrinA5-Fc or CS-E enriched polysaccharides (Fig. 2.6c, 

d). Here, we observed the formation of distinct puncta on the surface of cells stimulated 

with CS-E polysaccharides. However, stimulation with ephrinA5-Fc did not induce 

clustering of HA-EphA4ΔLBD, showing instead uniform receptor expression on the cell 

surface. To test if clustering of LBD truncation by CS results in tyrosine phosphorylation 

of EphA4, COS-7 cells were transfected with a LBD truncation containing a C-terminal 
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Myc tag, EphA4ΔLBD (residues 210-986), and stimulated with pre-clustered ephrinA5-Fc 

or CS-E enriched polysaccharides (Fig. 2.6b). Total EphA4 was immunoprecipiated using 

an anti-Myc antibody, and tyrosine phosphorylation was assayed by Western blot. As 

expected, this truncation was no longer phosphorylated in response to stimulation by 

ephrinA5-Fc. However, stimulation with CS-E polysaccharides still induces tyrosine 

phosphorylation of the intracellular kinase domain. These results suggest CS-E clusters 

and phosphorylates EphA4 independent of the ligand binding domain.   
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Figure 2.6: Receptor clustering and phosphorylation is independent of ligand 

binding domain (a) Ectodomain constructs EphA4-Fc and ΔLBD-Fc, but not LBD-Fc 

bind to biotinylated CS-E immobilized on streptavidin coated plates. Bound protein 

detected with anti-human IgG Fc antibody conjugated to HRP (n=3, mean ± SD, error 

bars). (b) Western blot analysis of full length EphA4 (left) and ΔLBD-EphA4 

immunoprecipiated with a Myc antibody from COS7 cells stimulated with EphrinA5-

Fc and CS-E polysaccharides. (c) Ligand binding domain truncation of EphA4 (ΔLBD-

EphA4) used in clustering assay. An N-terminal HA-tag was inserted between the signal 

peptide (SP) and the sushi domain of EphA4. (d) Cell surface ΔLBD-EphA4, containing 

the intracellular kinase domain, is clustered by CS-E polysaccharides, and CSPGs but 

not EphrinA5-Fc. Representative images showing maximum intensity projections of z-

stacks of single cells (63x): full cell (top; scale bar, 20 μm) and zoom-in of boxed area 

(bottom; scale bar, 5 μm). 

 



58 

 

 

Loss of CS binding prevents EphA4 phosphorylation 

To better understand CS interactions with EphA4, we utilized our recently 

developed GAG-DOCK methodology to identify glycosaminoglycan binding sites on 

proteins.25 The top docked poses all clustered to three regions of EphA4 outlined by the 

following arginine and lysine residues: site 1, K368, K376, R378, R466, and R496; site 2, 

R489, R492, K501, R516, and R538; site 3, K292, R311, R327, R357, and K394 (Fig. 2.7). 

The average SnapBE (snap binding E = complex E – protein E – ligand E) for site 1 (-283.3 

Figure 2.7: Computational docking of CS-E hexasaccharide (a, b, c) Computational 

docking of a CS-E hexasaccharide identified three potential binding sites, top five poses 

are shown on surface representation of EphA4 ectodomain with residues within 5 Å of 

ligand colored black. Zoomed in structure shows the top pose for each site. The SnapBE 

(snap binding E = complex E – protein E – ligand E) for top pose for each site (a) site 

1 = -290.2 kcal/mol, (b) site 2 = -265.9 kcal/mol, and (c) site 3 = -73.8 kcal/mol. (d) 

Summary for the three putative CS-E binding sites. The average SnapBE for the top 5 

poses, SnapBE for the top pose, and Arginine and Lysine residues found in these 

potential binding sites are listed.  
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kcal/mol) and site 2 (-260.6 kcal/mol) were significantly better than site 3 (-60.4 kcal/mol). 

We generated ectodomain EphA4-Fc fusion proteins with key arginine and lysine residues 

mutated to alanine to assess mutant binding to biotinylated CS-E immobilized on 

streptavidin-coated plates (Fig. 2.8a). Binding was significantly reduced for site 1, 

EphA45A:1-Fc, and site 2, EphA45A:2-Fc. However, residual binding to CS-E was still 

observed, likely due to binding from the non-mutated site. The site 3 mutant, EphA45A:3-

Fc, displayed similar affinity for CS-E as WT EphA4-Fc. The combined mutant of site 1 

and site 2, EphA410A-Fc showed an ever further decrease of CS-E binding, suggesting both 

of these sites contribute to binding. In fact, these two sites form a contiguous surface that 

wraps around the two FN3 domains of EphA4 (Fig 2.8c). Electrostatic surface potential 

map of the ectodomain of the combined mutant, EphA410A, reveals a shift from 

electropositive to electronegative character of this region (Fig. 2.8b). Moreover, binding to 

CSPGs produced by Neu7 cells is significantly reduced for EphA410A-Fc (Fig 2.8d, e). 

These findings suggest the set of arginine and lysine residues found in site 1 and site 2 

contribute to CS-E binding. 

We next examined the ability of CS to induce the phosphorylation of these CS-E 

binding deficient mutant EphA4. We generated a full length EphA4 constructs of the site 

1, site 2, and the combined site 1 and site 2 mutants to assess their ability to be 

phosphorylated by stimulation with CS-E polysaccharides (Fig. 2.8f, g). The individual site 

mutants of site 1 and site 2 show modest decrease in tyrosine phosphorylation but each are 

still activated by CS-E. Only the double site mutant showed a complete loss of tyrosine 

phosphorylation after CS-E stimulation. Importantly, these CS-E binding site mutants are 

still active and functional receptors. Ephrin-A5 induces comparable levels of tyrosine 
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phosphorylation of all EphA4 mutants used in this study. These results confirm that CS-E-

mediated EphA4 activation occurs through binding sites 1 and 2 identified using our 

computational method.   

Figure 2.8: Loss of carbohydrate binding attenuates EphA4 phosphorylation (a) 

EphA4 mutant binding to biotinylated CS-E immobilized on streptavidin coated plates; 

site 1 mutant, EphA45A:1-Fc (K368A, K376A, R378A, R466A, R496A); site 2 mutant, 

EphA45A:2-Fc (R489A, R492A, K501A, R516A, R538A); site 3 mutant, EphA45A:3-Fc 

(K292A, R311A, R327A, R357A, K394A); EphA410A-Fc (5A:1 + 5A:2) (n=3, mean ± 

SD, error bars). (b) Electrostatic potential map of the ectodomain for WT, 5A:1, 5A:2, 

and 10A mutants. (c) Site 1 and site 2 form a contiguous region in the fibronectin 

domains. Residues within 5 Å of ligand colored black and arginine and lysine residues 

colored cyan. (d) EphA4WT-Fc and EphA410A-Fc (5A:1 + 5A:2) bound to the surface of 

Neu7 astrocytes (scale bar, 50 μm). (e) Quantification of (d), bound EphA4-Fc detected 

by anti-human IgG Fc antibody conjugated to HRP (± SD, error bars, n = 3 per 

condition). * P < 0.01, Student’s t-test. Western blot analysis of full length EphA4 

mutants (WT, 5A:1, 5A:2, and 10A) expressed in COS7 cells and immunoprecipiated 

with a Myc antibody after being stimulated with (f) EphrinA5 and (g) CS-E 

polysaccharides. 
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CS binding deficient mutants show improved axon regrowth 

We ultimately wanted to examine the functional importance of the CS-EphA4 

interaction towards the growth of severed axons. To this end, we utilized an in vitro 

axotomy assay using a microfluidic cell culture platform26. These microfluidic devices 

contain separate compartments connected by microgroove channels that allow the growth 

of neuronal processes but not cell bodies (Fig. 2.9a). Neurons were cultured for five days, 

and allowed to extend their processes through the microgroove channels to the neurite 

compartment. Neurites were severed by aspirating media from the neurite compartment of 

the device without affecting the cell bodies. Media containing CS-E was added to the 

neurite compartment, and neurons were cultured for 24 h post-axotomy (Fig. 2.9b). We 

generated lentiviruses to expresses EphA4WT or EphA410A under the elongation factor-1 

Figure 2.9: Microfluidic Axotomy Assay (a) Microfluidic cell culture device for 

isolation of neuron soma from axons. Microgroove barriers prevent soma from entering 

channels (axon channels are 150 µm long). (b) In vitro axotomy assay. E16 cortical 

neurons from EphA4-/- mice transduced with lentivirus construct expressing EphA4WT 

or EphA410A under EF-1α promoter and GFP under CMV promoter. Neurons were 

cultured for 5 days in vitro (DIV) and axotomy pe2.rformed by aspirating media from 

the axon side. Neurons were cultured for 24 h post-axotomy and imaged (scale bar, 150 

µm). The number of axons that grew 150 µm, 300 µm, and 600 µm from the end of the 

microgroove barriers (represented by dashed red lines) were counted.  
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alpha (EF-1α) promoter and GFP under the cytomegalovirus (CMV) promoter (Fig. 

2.10a,b,c). We confirmed expression of EphA4WT, EphA410A, and GFP in transduced 

cortical neurons derived from EphA4-/- mice by Western blot and immunofluorescence.  

 

 

 

 

Figure 2.10: Lentivirus expression of mutant EphA4 receptor. (a) Lentivirus 

construct expressing full length EphA4WT and EphA410A  under Elongation Factor 1 

alpha (EF-1α) promoter and GFP under CMV promoter. (b) E16 cortical neurons from 

EphA4-KO mice transduced with lentivirus construct expressing full length EphA4WT, 

EphA410A  (with a C-terminal Myc-tag) under Elongation Factor 1 alpha (EF-1α) 

promoter and GFP under CMV promoter. Neurons were cultured for three days then 

fixed and stained with anti-GFP antibody and anti-Myc antibody (scale bar, 50 µm). (c) 

Immunoprecipitation using an anti-Myc antibody from neuronal lysates and analyzed 

by Western blot using an anti-Myc antibody. (d) Western blot of lysates using anti-GFP 

antibody.  
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We quantified the regrowth of neurons expressing WT and CS-binding deficient 

mutant EphA4 receptors following axotomy by counting the number of neurites that extend 

150 μm, 300 μm, and 600 μm from the edge of the microgroove channels. Importantly, no 

change in neurite regrowth was observed from unstimulated neurons expressing either 

EphA4WT or EphA410A (Fig. 2.11a,b). When media containing CS-E was added to the 

neurite compartment post-axotomy, we observed a significant decrease in regeneration of 

neurons expressing EphA4WT compared to those expressing EphA410A (Fig. 2.11c,d). At 

each measured distance from the microgroove channels, 150 μm, 300 μm, and 600 μm, 

neurons expressing EphA4WT exhibited impaired regenerative abilities. Most strikingly, 

neurons expressing EphA4WT showed no neurites that grew past 600 μm as seen with 

EphA410A-expressing cells. Together, these results show that preventing CS-E binding to 

EphA4 increases both the number and length of regenerating axons when cultured in a CS-

E rich environment, such as the glial scar. 
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Figure 2.11: Loss of CS-E binding promotes axon regeneration In vitro axotomy 

assay. E16 cortical neurons from EphA4
-/-

 mice transduced with lentivirus construct 

expressing EphA4
WT

 or EphA4
10A

 under EF-1α promoter and GFP under CMV 

promoter. Neurons were cultured for 5 days in vitro (DIV) and axotomy performed by 

aspirating media from the axon side. Neurons were cultured for 24 h post-axotomy and 

imaged (scale bar, 150 µm). The number of axons that grew 150 µm, 300 µm, and 600 

µm from the end of the microgroove barriers (represented by dashed red lines) were 

counted. (a) Neurons expressing EphA4
WT

 and EphA4
10A

 show similar axon regrowth 

following axotomy, in the absence of CS-E polysaccharides. E16 cortical neurons from 

EphA4-KO mice transduced with lentivirus construct EphA4
WT

 and EphA4
10A

 and GFP. 

(b) Quantification of (a), axon regeneration of in the absence of CS-E. (c) In vitro 

regeneration of EphA4-KO cortical neurons expressing EphA4
WT

 and EphA4
10A 

. 

Following axotomy, media containing CS-E polysaccharides was placed in the axon 

side and cultured for 24 h. (d) Quantification of (c), axon regeneration in the presence 

of CS-E polysaccharides. The average number of axons growing 150 µm, 300 µm, and 

600 µm from the end of the microgroove barriers from five independent experiments (± 

SD, error bars) are shown. * P < 0.01, Student’s t-test. 
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Discussion 

Chondroitin sulfate inhibits axon regeneration through its ability to engage cell 

surface receptors and soluble ligands found in the extracellular matrix8. This diverse set of 

interactions allows CS to activate intracellular signaling pathways both by immobilizing 

ligands at the cell surface and by directly activating receptor complexes. Here, we set out 

to identify and characterize novel CS-binding receptors that inhibit axon regrowth. Our 

work identified the EphA4 receptor as a novel pathway by which CS actively inhibits 

outgrowth. Upregulation and activation of EphA4 has previously been linked with the 

inhibition of axon regeneration, and our work highlights a new molecular mechanism that 

utilizes injury-induced extracellular carbohydrates.  

In particular, we demonstrate how the injury-induced CS-E sulfation motif binds 

electropositive residues in the extracellular domain of EphA4, induces the formation pf 

receptor clusters on the cell surface and stimulates phosphorylation of the intracellular 

kinase domain. Ultimately, this carbohydrate-protein interaction inhibits the regrowth of 

severed axons. Moreover, the inhibitory growth effect of CS-E on neurite outgrowth is 

strongly attenuated after genetic deletion of EphA4, illustrating the importance of this 

newly discovered carbohydrate-protein interaction. These studies elucidate the 

mechanisms of CS-mediated inhibition by identifying a novel CS receptor, EphA4, and 

characterizing a new mechanism of Eph receptor activation by carbohydrates found in the 

extracellular matrix post injury.  

The identification of a novel protein that mediates the inhibitory effect of CS 

advances our understanding of inhibition of axon regeneration and provide new therapeutic 

targets to promote recovery of axon growth after injury to the nervous system as observed 
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for other CS-activated pathways. In addition, we demonstrate how the identification of the 

molecular determinants of these carbohydrate-protein interactions afford additional ways 

to alleviate CS-mediated inhibition by targeting alternative mechanisms of EphA4 

activation. Blocking specific CS-protein interactions can promote regrowth in a manner 

that does not drastically alter the extracellular matrix like ChABC treatment, providing a 

more fine-tuned approach to modulating neurite growth.  

Together, our experiments detail the functional outcome of CS-E binding to EphA4 

within the adult CNS and provide a new mechanism for axonal inhibition after spinal cord 

injury. EphA4 has also been implicated in other biological contexts such as CST 

development27,28 and dendritic spine morphology29, highlighting possible further roles for 

this newly discovered carbohydrate-protein interaction. Moreover, the Eph family of 

receptors is the largest group within the receptor tyrosine kinase superfamily, and CS 

binding may not be relegated only to EphA4. Lastly, our work highlights how GAGs may 

more broadly act as active signaling molecules within the ECM through direct receptor 

engagement rather than simply structural elements or recruiters of soluble ligands. Our 

results open up exciting possibilities both to target novel, underlying mechanisms that 

prevent recovery after spinal cord injury and to better understand the broader roles of these 

near ubiquitous components of the ECM. 
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Materials and Methods 

Molecular Cloning: Mouse EphA4 (Accession: BC052164, IMAGE:6512978) was used 

in this study. EphA4 inserts were PCR amplified and cloned into pcDNA3.1/myc-His A 

vector (ThermoFisher) using NEBuilder HiFi DNA assembly cloning kit (New England 

BioLabs).  

Fc fusion protein constructs and production: pcDNA3.1 vector was digested with 

HindIII and AgeI, leaving the 6x-his tag but removing the myc epitope. The murine Ig 

kappa chain leader sequence followed by the human IgG1 Fc region, containing a HindIII 

between the leader sequence and the Fc portion, was cloned into pcDNA3.1 vector. For 

generation of EphA4-Fc fusion proteins, the ectodomain of EphA4, lacking the EphA4 

signal peptide (Residues 1-18) was PCR amplified and inserted between the Ig kappa chain 

leader sequence and the IgG1 Fc. This generates an EphA4-Fc fusion protein containing 

an C-terminal 6x-his tag. The following EphA4-Fc constructs were used in this study: 

 EphA4 Residues Mutations 

EphA4WT-Fc 19-547 None 

EphA4LBD-Fc 19-209 None 

EphA4ΔBD-Fc 210-547 None 

EphA45A:1-Fc 19-547 K368A, K376A, R378A, R466A, 

R496A 

EphA45A:2-Fc 19-547 R489A, R492A, K501A, R516A, 

R538A 

EphA45A:3-Fc 19-547 K292A, R311A, R327A, R357A, 

K394A 

EphA410:A-Fc 19-547 K368A, K376A, R378A, R466A, 

R496A, R489A, R492A, K501A, 

R516A, R538A 

 

Fusion proteins were produced by transiently transfecting DNA constructs into HEK293T 

cells using lipofectamine 3000 (ThermoFisher) following manufacturers protocol. 
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HEK293T cells were cultured in DMEM (high glucose, GlutaMAX; ThermoFisher) 

supplemented with Pen Strep (ThermoFisher) and 2% heat inactivated fetal bovine serum 

(FBS; ThermoFisher). Cells were cultured a total of 5 days post transfection and media 

containing secreted proteins was collected, and Fc fusion proteins were purified using Ni-

NTA agarose (Qiagen). The concentration of Fc fusion proteins was normalized based on 

Fc content.  

ELISA Binding Assays: CSPGs (Millipore Sigma: CC117) and CS polysaccharides (CS, 

CS-A, CS-C, CS-D, CS-E; Seikagaku) were biotinylated using EZ-Link™ Sulfo-NHS-LC-

Biotin (ThermoFisher) following manufactures protocol. Following biotinylation, excess 

reagent was removed using Amicon Ultra centrifugal filters with a 3K molecular weight 

cut off. For chondroitinase ABC digested CSPGs, CSPGs were first biotinylated and then 

digested with chondroitinase ABC (4 mU per μg CSPG; Millipore Sigma). Disaccharide 

units produced from chondroitinase digestion were removed by filtration through Amicon 

Ultra centrifugal filters with a 3K molecular weight cut off. Biotinylated CS preparations 

were normalized for uronic acid content using the carbazole assay30. For binding assays, 

biotinylated CSPGs and CS preparations were immobilized on streptavidin coated plates 

(20 μg/mL in PBS/0.05% tween for 2 h at RT; ThermoFisher). Plates were washed three 

times with PBS/0.05% tween before binding EphA4-Fc (1-20 μM in 0.1% 

BSA/PBS/0.05% tween for 2 h at RT) and then blocked (3% BSA/PBS/0.05% tween for 1 

h at RT). Bound EphA4-Fc was detected using goat anti-human IgG Fc-HRP conjugate 

(1:5,000 dilution in 0.1% BSA/PBS/0.05% tween, 1 h at RT; ThermoFisher) and visualized 

using TMB substrate and stop solution (R&D Systems) and the absorbance was read at 450 

nm was.   
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Neu7 Astrocyte Binding Assays: Neu7 cells were cultured in 96-well plates in DMEM 

(ThermoFisher) supplemented with 10% FBS (ThermoFisher). Prior to EphA4-Fc binding, 

Neu7 cells were washed with PBS, then fixed with 4% paraformaldehyde in PBS for 15 

min at room temperature, and washed with PBS. Cells were blocked with 5% BSA/PBS, 

and then incubated with EphA4-Fc at 4 uM for 3 h at room temperature. Cells were washed 

with PBS and bound EphA4-Fc was detected in two ways. For immunofluorescence, cells 

were incubated with Alexa Fluor 647-conjugated goat anti-human IgG secondary antibody 

(1:2000; ThermoFisher) for 2h at room temperature, washed with PBS and imaged at 20x 

magnification. For detection with HRP, cells were incubated with IgG Fc-HRP conjugate 

(1:2,000 dilution in 0.1% BSA/PBS, 1 h at RT; ThermoFisher) and visualized using with 

TMB substrate and stop solution (R&D Systems), and the absorbance was read at 450 nm 

was. For ChABC treatment prior to EphA4-Fc binding, Neu7 cells were incubated for 2 h 

at 37°C (100 mU ChABC per well). For antibody blocking experiments prior to EphA4-

Fc binding, Neu7 cells were incubated with CS-E antibody or IgG isotype matched control 

(Jackson ImmunoResearch) for 2 h at 37 °C (50 μg/mL in PBS).   

Lentivirus Cloning and Production: Lentivirus DNA constructs were generated using 

the system developed by Campeau et al31. This system is based on the Gateway cloning 

technology (ThermoFisher). Full length EphA4 constructs (residues 1-986), EphA4WT and 

EphA410A (containing the alanine mutations listed above), were cloned into pEF-ENTR A 

(addgene Plasmid #17427) entry vector digested with XbaI and BamHI. Entry vectors were 

recombined into the destination vector, pLenti CMV GFP DEST (addgene Plasmid 

#19732) using Gateway LR Clonase II Enzyme mix (ThermoFisher). For lentivirus 

production, confluent HEK293T cells were transfected with pLP1, pLP2, PLP/VSVG 
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(ThermoFisher), and pLenti using Lipofectamine 3000 according to manufacturer’s 

protocol. Media was collected and replaced at 36 h, 48 h, and 72 h post transfection. After 

collection, media was centrifuged at 500 g for 10 min a 4°C, and supernatants combined 

and filtered through a 0.45 μm cellulose acetate filter. Lentivirus was concentrated by PEG 

precipitation32. Briefly, 6 mL 50% PEG 6000, 2.55 mL 4M NaCl, and 2.74 mL PBS is 

added to 24 mL of filtered supernatant and mixed end-over-end for 1.5 h at 4°C. This is 

centrifuged for 15 min, 7,000g, at 4°C forming a white pellet which is then resuspended in 

1 mL of 50 mM Tris pH 7.4. Concentrated lentivirus was titrated by counting GFP positive 

cells 48 h after transducing COS7 cells.   

Microarray assays: Microarrays were generated as described previously33. Arrays were 

blocked with 10% FBS in PBS with gentle rocking at 37 °C for 1 h, followed by a brief 

rinse with PBS. EphA4-Fc was prepared in a solution of 1% BSA, PBS, added to the slides 

in a total volume of 100 µl at a concentration of 2 μM, and incubated at room temperature 

for 3 h.  The slides were washed with PBS, and then incubated with a Cy3 conjugated goat 

anti-human IgG antibody (Jackson ImmunoResearch; 1:5000 in 1% BSA, PBS) for 1 h in 

the dark with gentle rocking. Array was washed with PBS and scanned at 532 nm using a 

GenePix 5000a scanner.  Fluorescence quantification was performed using GenePix 6.0 

software (Molecular Devices).  Experiments were performed in triplicate, and the data 

represent the average of 10 spots per concentration averaged from the three experiments (± 

SEM, error bars). 

Surface plasmon resonance: All experiments were performed on a Biacore T100 at 25 ºC 

using a Sensor Chip CM5 with a running buffer composed of 0.01 M HEPES, pH 7.4, 0.15 

M NaCl, 3 mM EDTA, 0.05% Surfactant P20 (HBS-EP+). For the EphA4 and EfnA3 
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interaction with CS-E-enriched polysaccharides, all flow cells were activated with NHS 

and EDC following the manufacturer’s amine coupling protocol. Streptavidin (1 μM, 0.01 

M NaOAc, pH 5.0) was conjugated to the activated surfaces until saturation, followed by 

ethanolamine blocking. Biotinylated CS-E, composed of ~61.5% of the CS-E disaccharide 

motif, the remainder of which is a mixture of CS-A, CS-C, and unsulfated disaccharides, 

was immobilized to flow cell 2 to give an RL of 25 response units (RU); biotinylated CS-

C was immobilized to flow cell 4 to give a similar RL. Flow cells 1 and 3 were used as 

controls to subtract bulk response. EphA4-Fc or EfnA3-Fc was passed over the surface at 

25 ºC with a flow rate of 80 μL·min–1 for 240 s, and the dissociation monitored for 600 s. 

The resulting sensorgrams were analyzed using Biacore T100 evaluation software V2.0 

and fit to the heterogeneous ligand model with the value of bulk refractive index (RI) set 

to zero. 

DRG neurite outgrowth:  For CSPG and CS-E inhibition studies using DRG neurons 

from EphA4 +/+ and -/-, glass-bottom 96-well plates (Cellvis) pre-coated with Poly-D-

lysine (0.1 mg/mL; SigmaAldrich), were coated with 50 uL mixture of laminin (10 µg/ml 

in PBS; company) and CSPGs (5 ug/mL; company) or a mixture of laminin and CS-E 

(10ug/mL; company) for 2 h at 37 °C and washed with PBS. DRGs were dissected from 

P6 mice as previously described6. Briefly, dissected DRGs were incubated in 0.125% 

trypsin w/ EDTA (ThermoFisher) for 15 min at 37 °C, followed by collagenase 

(Worthington; 4 mg/ml) for 15 min at 37 °C, triturated to dissociate to single cell 

suspensions, and seeded at 2000 cells per well.  Cells were cultured for 24 h in Neurobasal 

(ThermoFisher) medium supplemented with GS21 (MTI GlobalStem) and GlutaMAX™ 

(ThermoFisher).  Cultured DRG neurons were fixed with 4% paraformaldehyde in PBS for 
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20 min at room temperature, washed with PBS and incubated for 1 h in blocking buffer 

(1% BSA, 0.1% Triton X-100, PBS) at room temperature, and then incubated with anti-

βIII tubulin (1:1000 in blocking buffer; Cell Signaling Technologies) overnight at 4°C, 

followed by Alexa Fluor 488-conjugated goat anti-mouse IgG secondary antibody (1:2000; 

ThermoFisher) for 2h at room temperature. Full wells were imaged using a Zeiss LSM 700 

microscope and the total length of neurites and total neuron number for each well was 

measured using MetaMorph Neurite Outgrowth software, and used to calculate average 

outgrowth length per neuron. For all neurite outgrowth experiments, we performed 

statistical analysis using the one-way ANOVA; n = >200 cells per experiment, and results 

from at least three independent experiments were reported. 

Activation Assays: COS-7 cells were transfected with full length EphA4 using 

Lipofectamine (ThermoFisher) and cultured for 2 days in DMEM (ThermoFisher) 

supplemented with 10% FBS (ThermoFisher). Prior to stimulation, cells were serum 

starved for 8 h by replacing media with DMEM supplemented with 1% FBS. Cells were 

stimulated medium to fresh medium containing CS-E (Seikagaku; 10 µg/ml) or Efn-Fc 

proteins (R&D systems; 1 µg/ml) and incubating for the time described at 37 °C. Cells 

were lysed with cold lysis buffer consisting of PBS with 1% Triton X-100 with protease 

inhibitor cocktail (Roche) and phosphatase inhibitor mixture. Lysates were clarified via 

centrifugation. For each sample, 50µl of protein A/G agarose (ThermoFisher) was added 

to an Eppendorf along with 1 µg of myc antibody (Cell Signaling Technology). Clarified 

lysate was added, and incubated at 4 °C with rotation for 2 h. Agarose was washed 3 times 

with lysis buffer, boiled with 2X loading dye (30 µl of 100 mM Tris, 200 mM DTT, 4% 

SDS, 0.10% bromophenol blue, 20% glycerol), and the eluate was resolved by SDS-PAGE 
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and transferred to PVDF membrane.  Phosphorylated EphA4 was detected by 

immunoblotting with an anti-phosphotyrosine antibody, PY20 (1:1,000; BD Biosciences) 

following the manufacturer’s protocol.  After scanning, membranes were stripped 

(NewBlot 5X PVDF stripping buffer; LI-COR) and re-blotted with anti-EphA4 antibody 

(ThermoFisher). 

Computational Docking: Crystal structure of the EphA4 ectodomain was used for 

docking studies (PDBID: 4M4R, chain A). This structure was prepared for docking by first 

performing sidechain optimizing on all residues using the SCREAM methodology and then 

subjecting these structures to brief minimization to relax unfavorable contacts. The detailed 

docking methodology is outlined elsewhere(GAGDock-REF). Briefly, a CS-E 

hexasaccharide was docked to the entire ectodomain surface of EphA4 to identify putative 

binding regions. Next, putative regions are subjected to an additional round of docking to 

more completely sample ligand conformations. Top poses were briefly minimized post 

docking to further optimize ligand-protein interactions. The interacting residues for each 

putative binding site were determined by analyzing the top five poses for each region to 

identify residues found within 5Å of the ligand.  Images were created using PyMOL 

(Schrodinger, LLC), and the electrostatic maps were derived using Adaptive Poisson-

Boltzmann Solver (APBS) software34. 

Microfluidic Axotomy Assay: Commercially available microfluidic devices containing a 

150μm barrier were used for these studies (Xona Microfludics). Microfluidic devices were 

mounted in individual wells of a 6-well glass-bottom plate (Cellvis) that were pre-coated 

with Poly-D-lysine. Devices were prepared following manufactures protocol. Briefly, 

devices were conditioned by adding media to the soma side and incubating for 60 minutes 
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at 37°C, followed by the addition of media to the axon side and incubation at 37°C until 

use. Cortical neurons were dissected from EphA4-/- mice as previously described35 and 

cultured in Neurobasal medium supplemented with GS21 and GlutaMAX™. Following 

dissection and dissociation of cortical neurons, cells (4 million/mL concentration) were 

transduced with lentivirus at a multiplicity of infection (MOI) of 10 and incubated at RT 

for 20 minutes. Prior to plating transduced neurons in microfluidic devices, excess media 

in the device was removed from both the soma and axon sides. Neurons were plated in the 

top chamber of the soma side (20 μL, 80,000 neurons/well) and incubated for 20 minutes 

at 37°C. Following plating, 150 μL of media was added to the soma and axon side. Neurons 

were cultured for 5 DIV before performing axotomy experiments. Axotomy was performed 

by aspirating media from the bottom chamber of the axon side of the device, this process 

removes all media from both chambers of the axon side26,36. This was repeated a total of 

three times by replacing media in the top chamber and aspirating media form the bottom 

chamber. Finally, media containing CS-E (10 μg/mL) was added to the axon side, devices 

were returned to the incubator, and neurons were cultured for an additional 24 hrs. Devices 

were imaged prior to axotomy, immediately post-axotomy, and 24 hrs post-axotomy and 

neurons visualized by their expression of GFP.  The degree of regrworth was quantified by 

counting the number of processes that extend 150 μm, 300 μm, and 600 μm from the edge 

of the axon barrier.  

 

 

 

 



80 

 

Chapter 3: Computational Characterization of Eph Receptor 

Interactions with Chondroitin Sulfate   

Abstract 

Chondroitin sulfate proteoglycans (CSPGs) regulate neuronal plasticity, axon regeneration 

and guidance through their ability to bind protein ligands and cell surface receptors. In this 

way, extracellular CSPGs can modulate the activity of intracellular signaling pathways. 

The receptor tyrosine kinase EphA4 was identified as a CS receptor. CS interaction with 

EphA4 induces receptor clustering and phosphorylation of the intracellular kinase domain. 

Importantly, this CS-EphA4 interaction leads to the inhibition of axon regeneration. Here, 

a computational analysis of EphA4-CS interactions is performed to characterize the 

importance of key arginine and lysine residues towards CS binding, and to identify 

structural differences in CS-A, CS-C, CS-D, and CS-E docking to EphA4. Carbohydrate 

induced Eph receptor clustering could be a general mechanism of Eph receptor activation. 

Here, CS-E was docked to all EphA and EphB family members to predict those that may 

bind to CS. The relative strengths of the predicted binding energies are EphB4 > EphA8 > 

EphA1 > EphA3 > EphB1 > EphB3 > EphA7 > EphA5 > EphA4 > EphA6 > EphB2 > 

EphB6 > EphA2. In addition, the arginine and lysine residues that mediate CS binding are 

identified for each Eph receptor. These computational predictions provide mechanistic 

insights into Eph receptor activation by chondroitin sulfate and have implications for 

inhibition of axon regeneration following injury to the nervous system and axon guidance 

during development. 
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Introduction 

Chondroitin sulfate proteoglycans (CSPGs) play diverse roles in the developing and 

mature nervous system.1,2 CSPGs affect biological processes through their interactions 

with a diverse set of protein-binding proteins. In this manner, CSPGs can modulate 

intracellular signaling through binding cell surface receptors and soluble protein ligands 

found in the extracellular matrix.3 To date, over 400 glycosaminoglycan (GAG) binding 

proteins have been identified including numerous chemokines and cytokines, growth 

factors and morphogens, extracellular structural proteins, and single-transmembrane 

signaling receptors.4 The ability to characterize GAG-protein interactions is central to 

understanding the mechanisms of action of this important class of biomolecules.  

Eph receptors make up the largest family of receptor tyrosine kinases.5 Eph 

receptors are involved in many different physiological processes involved in the 

development of the nervous system, including cell patterning guidance attraction, and 

repulsion.6 In addition to their roles in development, the Eph receptors are involved in the 

maintenance of the mature nervous system, through regulation of synaptic connections.7,8 

Importantly, members of the Eph family have been implicated in inhibiting axon 

regeneration following injury to the nervous system and have been identified as potential 

therapeutic targets for promoting regrowth and functional recovery.9–11 EphA and EphB 

receptors are upregulated following injury in numerous animal models including optic 

nerve injury, spinal cord injury, and traumatic brain injury.12 Of the Eph receptors, the role 

of EphA4 in inhibiting axon regeneration is the most thoroughly studied. Genetic deletion 

of EphA4 promotes axon regeneration following spinal cord injury in mice.13 Importantly, 
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knockout of EphA4 leads to recovery of motor function. As outlined in Chapter 2, CS 

clusters and activates EphA4 and inhibits axon regeneration.  

GAG-protein interactions are difficult to characterize using traditional biochemical 

techniques because these carbohydrates have high degree of structural complexity due 

varied stereochemistry, chain lengths, and patterns of sulfation. We recently developed a 

computational approach to identify and characterize GAG binding sites on a target 

protein.14 This approach, GAG-Dock, was validated against known GAG-protein crystals 

structures and accurately reproduces (< 1 Å RMSD) the crystal structure. GAG-Dock 

successfully identified the heparin and chondroitin sulfate binding sites of the axon 

guidance proteins, protein tyrosine phosphatase σ (RPTPσ), and Nogo receptors 1-3 

(NgR1-3). The accurate identification of CS binding sites will aid the understanding of CS 

mediated processes and in the development of therapeutics that specifically disrupt target 

CS-protein binding sites.  

Here, a computational analysis is performed to characterize Eph receptor 

interactions with chondroitin sulfate. First, CS-A, CS-C, CS-D, and CS-E hexasaccharides 

will be docked to EphA4 to characterize differences in CS-EphA4 interactions due to 

specific sulfation patterns. Next, CS-E hexasaccharides were docked to all members of the 

broader Eph family to identify those likely to bind CS-E, and putative CS-E binding sites 

are predicted for each. 
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Results and Discussion 

CS-A, CS-C, CS-D, and CS-E Docking to EphA4 

As noted in Chapter 2, docking of a CS-E hexasaccharide identified two binding sites for 

EphA4. The two binding sites are outlined by the following arginine and lysine residues: 

site 1, K368, K376, R378, R466, and R496; site 2, R489, R492, K501, R516, and R538. 

To understand how specific sulfation motifs affect CS-EphA4 interactions, 

hexasaccharides of CS-A, CS-C, and CS-D were docked to site 1 and site 2 of EphA4. The 

top pose for each ligand docked to EphA4, ranked by snapbe (snap binding E = complex 

E – protein E – ligand E), are shown for site 1 (Fig. 3.1) and site 2 (Fig. 3.2); this data is 

further summarized in Fig. 3.3. For site 1, monosulfated disaccharide motifs CS-A (-150.0 

kcal/mol; Fig. 3.1a) and CS-C (-157.6 kcal/mol; Fig. 3.1b) have similar docked energies. 

Of the disulfated disaccharide motifs CS-D (-259.3 kcal/mol; Fig. 3.1c) and CS-E (-290.3 

kcal/mol; Fig. 3.1d), CS-E has stronger predicted docked energy. For site 2, CS-A (-169.7 

kcal/mol; Fig. 3.2a) has a stronger predicted energy than CS-C (-139.4 kcal/mol; Fig. 3.2b). 

The disulfated disaccharide motifs CS-D (-242.2 kcal/mol; Fig. 3.2c) and CS-E (-265.9 

kcal/mol; Fig. 3.2d). Predicted binding energies were stronger for CS-C, CS-D, and CS-E 

hexasaccharides docked to site 1 than site 2 (Fig. 3.3a,b). However, CS-A has a stronger 

binding energy for site 2 than site 1.  
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Figure 3.1: CS-A, CS-C, CS-D, and CS-E hexasaccharide docking to site 1 of 

EphA4 The top docked pose is shown for each hexasaccharide docked to site 1 of 

EphA4. Site 1 is located in the first Fibronectin type-III domain of EphA4 and contains 

the following Arginine and Lysine residues important for CS binding: Lys368, Lys376, 

Arg378, Arg466, and Arg496. The predicted snapbe (snap binding E = complex E – 

protein E – ligand E) for top pose for each site: (a) CS-A: -150.0 kcal/mol, (b) CS-C: -

157.6 kcal/mol, (c) CS-D: -259.3 kcal/mol, and (d) CS-E: -290.3 kcal/mol.   
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Figure 3.2: CS-A, CS-C, CS-D, and CS-E hexasaccharide docking to site 2 of 

EphA4 The top docked pose is shown for each hexasaccharide docked to site 2 of 

EphA4. Site 2 is located in the first Fibronectin type-III domain of EphA4 and contains 

the following Arginine and Lysine residues important for CS binding: Arg489, Arg492, 

Lys501, Arg516, and Arg538. The predicted snapbe (snap binding E = complex E – 

protein E – ligand E) for top pose for each site: (a) CS-A: -169.7 kcal/mol, (b) CS-C: -

139.4 kcal/mol, (c) CS-D: -242.2 kcal/mol, and (d) CS-E: -265.9 kcal/mol.   
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Interesting differences in the protein-ligand interactions arise due to the structural 

placement of the sulfate groups of CS. For site 1, the top docked pose for CS-D (Fig. 3.1c) 

has two sulfate groups, from the internal disaccharide unit, pointing away from the protein 

into the solvent. While the top docked pose for CS-E (Fig. 3.1d) has all sulfate groups 

engaging the protein, resulting in a stronger binding energy than CS-D. For site 2, the top 

docked pose for CS-D (Fig. 3.2c) has the sulfate groups on the terminal disaccharide units, 

of both ends, directed away from the protein. CS-E (Fig. 3.2d) is able to adopt a 

conformation where all sulfate groups are able to engage with the protein, again resulting 

in a stronger predicted binding energy. The interaction energy between CS-E and arginine 

and lysine residues found in the binding site is lower than that of CS-D (Fig. 3.3c). 

Likewise, CS-E has stronger coulombic and hydrogen-bonding interactions with the 

protein than CS-D. Structural differences in the placement of sulfate groups constrain 

ligand-protein interactions and are attributed to the stronger predicted energy for CS-E than 

CS-D even though they are equally charged hexasaccharides.  
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Figure 3.3: Summarized docking data for CS-A, CS-C, CS-D, and CS-E 

hexasaccharide docking to EphA4 (a) The snapbe for the top five poses for each 

ligand docked to site 1 and site 2 of EphA4. (b) The average snapbe for the top five 

poses and the snapbe for the top pose for each ligand docked to site 1 and site 2 of 

EphA4. (c) Energy decomposition for ligand interactions with arginine and lysine 

residues: site 1 (Lys368, Lys376, Arg378, Arg466, and Arg496) and site 2 (Arg489, 

Arg492, Lys501, Arg516, and Arg538). The average van der Waals (vdW), coulombic 

(coulomb), hydrogen-bond (hb), and total for each ligand-residue interaction are shown.   
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CS-E docking to EphA4 Mutants 

The experimental binding of EphA4 mutants is highlighted in Chapter 2. These studies 

confirmed the importance of arginine and lysine residues found in site 1 and site 2. Binding 

was significantly for site 1 mutant (K368A, K376A, R378A, R466A, and R496A) and site 

2 mutant (R489A, R492A, K501A, R516A, and R538A), but residual CS-E binding was 

observed for each mutant. Importantly, the site 1 and site 2 combined mutant showed a 

further decrease in CS-E binding. In silico mutations were performed to understand the 

contributions of key arginine and lysine residues towards predicted CS-E docking energies 

(Fig. 3.4a,b). CS-E was docked to three EphA4 mutants 5A:1 (site 1 mutant: K368A, 

K376A, R378A, R466A, and R496A), 5A:2 (site 2 mutant: R489A, R492A, K501A, 

R516A, and R538A), and 10A (combined site 1 and site 2 mutant). The individual mutants, 

5A:1 and 5A:2, show decrease in predicted binding energy compared to WT. While the 

site 1 and site 2 combined mutant, 10A, shows an even further decrease in predicted CS-E 

binding energy. These computational findings mirror the experimental binding affinities, 

where individual site mutants show residual CS-E binding but the combined mutant shows 

a complete loss of CS-E binding. The combined results confirm the importance of these 

key arginine and lysine residues towards CS-E binding.  
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Figure 3.4: CS-E docking to EphA4 mutants (a) Snapbe plotted for the top fifteen 

poses for CS-E docking to WT, 5A:1 (site 1 mutant: K368A, K376A, R378A, R466A, 

and R496A), 5A:2 (site 2 mutant: R489A, R492A, K501A, R516A, and R538A), and 

10A (combined site 1 and site 2 mutant). (b) Average snapbe of the top fifteen poses for 

CS-E docking to EphA4 mutants.  
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Per-Residue Energy Decomposition of EphA4 

Computational approaches can be used to characterize the relative importance of specific 

residues towards CS binding. Residue specific contributions towards CS binding are 

difficult to measure experimentally. To better understand CS-EphA4 interactions, per-

residue energy decomposition was performed on arginine and lysine residues found in site 

1 (K368, K376, R378, R466, and R496) and site 2 (R489, R492, K501, R516, and R538). 

These methods calculate the individual contributions towards ligand binding from 

coulombic, hydrogen bonding, and van der Waals forces for each residue. Per-residue 

energy decomposition was performed for the top five poses of CS-A, CS-C, CS-D, and 

CS-E docked to site 1 and site 2 of EphA4, Fig. 3.5, 3.6, 3.7).  

The dominant contribution towards CS-E binding comes from coulombic interactions (Fig. 

3.5b, 3.6b). For site 1, the relative importance of each residue towards CS-E binding is: 

R378 > K368 > R496 > R466 > K376 (Fig 3.5a). For site 2, the relative importance towards 

CS-E binding is:  R489 > R538 > R492 > R501 > R516 (Fig. 3.6a). Per-residue 

decomposition provides insight into differences in predicted binding energies for the 

equally charged hexasaccharides CS-D and CS-E. For site 1, the residues K368, R376, and 

R378 have slightly stronger interactions with CS-E than CS-D. While R466 has similar 

interactions with CS-D and CS-E. However, residue R496 has significantly stronger 

interactions with CS-E than CS-D. For site 2, the residues R489 has slightly stronger 

interactions with CS-E than CS-D and R492 and R501 have slightly stronger interactions 

with CS-D then CS-E. The major differences occur with residue R516 and R538, these 

residues have significantly stronger interactions with CS-E than CS-D, and likely account 

for stronger predicted binding energy for CS-E than CS-D. Per-residue energy 
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decomposition provides a framework for understanding how CS-protein interactions are 

affected by sulfate placement.    

 

 

 

 

 

 

Figure 3.5: Per-Residue Energy Decomposition for site 1 The ligand interaction 

energy for each arginine and lysine residue found in the CS binding site for the top five 

poses of CS-A, CS-C, CS-D, and CS-E hexasaccharide docked to EphA4. Energetic 

contributions for (a) total, (b) coulombic, (c) hydrogen-bond, and (d) Van der Waals 

towards CS-EphA4 interactions with Lys368, Lys376, Arg378, Arg466, and Arg496.    
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Figure 3.6: Per-Residue Energy Decomposition for site 2 The ligand interaction 

energy for each arginine and lysine residue found in the CS binding site for the top five 

poses of CS-A, CS-C, CS-D, and CS-E hexasaccharide docked to EphA4. Energetic 

contributions for (a) total, (b) coulombic, (c) hydrogen-bond, and (d) Van der Waals 

towards CS-EphA4 interactions with Arg489, Arg492, Lys501, Arg516, and Arg538.  
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Figure 3.7: Per-Residue Energy Decomposition for site 1 and site 2 The ligand 

interaction energy for each arginine and lysine residue found in the CS binding site for 

the top five poses of CS-A, CS-C, CS-D, and CS-E hexasaccharide docked to EphA4. 

Energetic contributions for total, coulombic, hydrogen-bond, and Van der Waals 

towards CS-EphA4 interactions for site 1 (Lys368, Lys376, Arg378, Arg466, and 

Arg496) and site 2 (Arg489, Arg492, Lys501, Arg516, and Arg538). 
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CS-E Docking to EphA and EphB Family 

Members of the EphA and EphB family of receptor tyrosine kinases are essential for the 

proper development and function of the nervous system. In response to injury, EphA and 

EphB receptors are broadly upregulated in the injured tissue. Here, a CS-E hexasaccharide 

was docked to the ectodomain of all EphA and EphB family members. The relative 

strengths of the predicted binding energies are: EphB4 > EphA8 > EphA1 > EphA3 > 

EphB1 > EphB3 > EphA7 > EphA5 > EphA4 > EphA6 > EphB2 > EphB6 > EphA2 (Fig. 

3.8a,b). As noted, EphA4 and EphB3 are CS-E binding proteins with predicted snapbe of 

-270.3 kcal/mol and -319.0 kcal/mol, respectively. This data suggests all Eph receptors 

with lower snapbe than EphA4 (EphB4, EphA8, EphA1, EphA3, EphB1, EphB3, EphA7, 

and EphA5) are predicted to be CS-E binding proteins. Likewise, EphA6 (-237.4 kcal/mol) 

has a similar snapbe to EphA4 and potentially binds CS-E. The Eph receptors EphB2 (-

91.5 kcal/mol), EphB6 (-12.8 kcal/mol), and EphA2 (2.1 kcal/mol) are predicted to not 

bind CS-E. Indeed, experimental evidence shows EphB2 does not bind CS-E.   

In addition to predicting which Eph receptors bind to CS-E, docking also identified the 

likely CS-E binding sites. The putative binding site for each receptor was characterized by 

identifying arginine and lysine residues found within 5Å of CS-E ligand form the top 15 

poses (Fig. 3.8b). For three receptors, EphA3, EphA4, and EphB1, two potential binding 

sites were identified.  
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Figure 3.8: Summarized docking data CS-E hexasaccharide docking to EphA and 

EphB family members (a) The snapbe for the top fifteen poses for each ligand docked 

to EphA1, EphA2, EphA3, EphA4, EphA5, EphA6, EphA7, EphA8, EphB1, EphB2, 

EphB3, EphB4, and EphB6. Receptors are graphed in order of average snapbe, lowest 

to highest. (b) The average snapbe for the top fifteen poses. Arginine and lysine residues 

found within 5Å of ligand are listed for each Eph receptor.  
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EphA1 

EphA1 is not currently known to be upregulated following injury to the nervous, but is 

involved in central nervous system disorders including multiple sclerosis and 

glioblastoma.15,16  EphA1 is predicted to be the third strongest CS-E binding protein with 

an average snapbe of -427.8 kcal/mol (Fig. 3.8b). The likely CS-E binding site is found in 

the second fibronectin domain and is outlined by the following arginine and lysine residues: 

R375, K389, K455, K458, K459, R472, R474, R501, and R542 (Fig. 3.9).  

 

Figure 3.9: CS-E hexasaccharide docking to EphA1 (a) Electrostatic surface 

potential of EphA1. (b) The top five poses clustered to the second fibronectin domain 

of EphA1. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues R375, K389, K455, K458, K459, R472, 

R474, R501, and R542, with a predicted snapbe of -427.8 kcal/mol.  
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EphA2 

EphA2 is upregulated in the cortex following subdural hematoma in rats.17 EphA2 is 

predicted to be the thirteenth strongest CS-E binding protein with an average snapbe of 2.1 

kcal/mol (Fig. 3.8b). EphA2 is very electronegative and predicted to not bind CS-E. The 

top docked poses clustered to a region in the fibronectin domain and weakly interacts with 

the following arginine and lysine residues: R475, K477, and K521 (Fig. 3.10).  

 

 

Figure 3.10: CS-E hexasaccharide docking to EphA2 (a) Electrostatic surface 

potential of EphA2. (b) The top five poses clustered to the second fibronectin domain 

of EphA2. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues R375, K389, K455, K458, K459, R472, 

R474, R501, and R542, with a predicted snapbe of -427.8 kcal/mol.  
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EphA3 

EphA3 is upregulated in numerous injury models of the CNS. Following spinal cord injury, 

EphA3 is upregulated in astrocytes, oligodendrocytes, and motor neurons.18,19 EphA3 is 

upregulated in retinal ganglion cells following optic nerve injury, and upregulated in 

hippocampal and cortical neurons following brain injury.17,20,21 EphA3 is predicted to be 

the fourth strongest CS-E binding protein. EphA3 has two potential binding sites each with 

an average snapbe of -280.2 kcal/mol and -361.5 kcal/mol (Fig. 3.8b). The first CS-E 

binding site is located in the EGF/sushi domain of EphA3 and contains the following 

Figure 3.11: CS-E hexasaccharide docking to EphA3: site1 (a) Electrostatic surface 

potential of EphA3. (b) The top five poses clustered to the EGF/sushi domain of EphA3. 

Residues within 5Å of ligand (dark grey) and arginine and lysine residues within 5Å 

(cyan). (c) Zoom-in of binding site showing top pose. The predicted binding site 

contains the arginine and lysine residues R265, R273, K285, K288, K314, K354, and 

R353, with a predicted snapbe of -280.2 kcal/mol. 
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arginine and lysine residues: R265, R273, K285, K288, K314, K354, and R353, with an 

average snapbe of -280.2 kcal/mol (Fig. 3.11). The second CS-E binding site is located in 

the second fibronectin domain of EphA3 and is outlined by the following arginine and 

lysine residues: K472, K476, R487, R509, R511, R521, and K522 with an average snapbe 

of -361.5 kcal/mol (Fig. 3.12).  

 

 

 

Figure 3.12: CS-E hexasaccharide docking to EphA3: site 2 (a) Electrostatic surface 

potential of EphA3. (b) The top five poses clustered to the second fibronectin domain 

of EphA3. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues K472, K476, R487, R509, R511, R521, 

and K522 with a predicted snapbe of -361.5 kcal/mol. 
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EphA4 

EphA4 is upregulated in both astrocytes and motor neurons following injury to the spinal 

cord, and in hippocampal neurons after brain injury.18,21  In addition, genetic deletion of 

EphA4 promotes axon regeneration and recovery of motor function following injury to the 

spinal cord.13 Importantly, EphA4 mediated inhibition of axon regeneration can be reversed 

through therapeutic intervention.22,23 EphA4 is predicted to be the ninth strongest CS-E 

binding protein. CS docking to EphA4 is more thoroughly analyzed in the preceding 

sections. Briefly, top poses docked to EphA4 clustered to two, each with an average snapbe 

Figure 3.13: CS-E hexasaccharide docking to EphA4: site 1 (a) Electrostatic surface 

potential of EphA4. (b) The top five poses clustered to the first fibronectin domain of 

EphA4. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c)  Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues K368, K376, R378, R466, and R496, with 

a predicted snapbe of -290.3 kcal/mol.  

 



101 

 

of -270.3 kcal/mol and -251.8 kcal/mol (Fig. 3.8b). The first CS-E binding site is located 

in first fibronectin domain of EphA4 and contains the following arginine and lysine 

residues: K368, K376, R378, R466, and R496, with an average snapbe of -260.9 kcal/mol 

(Fig. 3.13). The second CS-E binding site is located in the second fibronectin domain of 

EphA4 and is outlined by the following arginine and lysine residues: R489, R492, K501, 

R516, R538 (Fig. 3.14).  

 

 

 

 

Figure 3.14: CS-E hexasaccharide docking to EphA4: site 2 (a) Electrostatic surface 

potential of EphA4. (b) The top five poses clustered to the second fibronectin domain 

of EphA4. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues R489, R492, K501, R516, and R538, with 

a predicted snapbe of -265.9 kcal/mol.  
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EphA5 

EphA5 is upregulated following spinal cord injury and brain injury in astrocytes and 

hippocampal neurons, respectively.18,21 However, EphA5 is downregulated in optic nerve 

injury models.24,25 EphA5 is predicted to be the eighth strongest CS-E binding protein with 

an average snapbe of -299.9 kcal/mol (Fig. 3.8b). The likely CS-E binding site is found in 

the second fibronectin domain and is outlined by the following arginine and lysine residues: 

K478, K479, K481, K511, R555, and R556 (Fig. 3.15). 

 

Figure 3.15: CS-E hexasaccharide docking to EphA5 (a) Electrostatic surface 

potential of EphA5. (b) The top five poses clustered to the second fibronectin domain 

of EphA5. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues K478, K479, K481, K511, R555, and 

R556, with a predicted snapbe of -299.9 kcal/mol.  

 



103 

 

 

EphA6 

EphA6 is upregulated in astrocytes, oligodendrocytes, and motor neurons following injury 

to the spinal cord, and upregulated in hippocampal neurons post-brain injury.18,21 EphA6 

is predicted to be the tenth strongest CS-E binding protein with an average snapbe of -

237.4 kcal/mol (Fig. 3.8b). The likely CS-E binding site is found in the EGF/sushi domain 

of EphA6. This region is outlined by the following arginine and lysine residues: R279, 

K291, K294, K320, R329, R359, and K360 (Fig. 3.16). 

 

Figure 3.16: CS-E hexasaccharide docking to EphA6 (a) Electrostatic surface 

potential of EphA6. (b) The top five poses clustered to the EGF/sushi domain of EphA6. 

Residues within 5Å of ligand (dark grey) and arginine and lysine residues within 5Å 

(cyan). (c) Zoom-in of binding site showing top pose. The predicted binding site 

contains the arginine and lysine residues R279, K291, K294, K320, R329, R359, and 

K360, with a predicted snapbe of -237.4 kcal/mol.  
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EphA7 

EphA6 is upregulated in astrocytes, oligodendrocytes, and motor neurons following injury 

to the spinal cord.18 Importantly, blocking activation of EphA7 spinal cord injury results in 

significant recovery of hindlimb function in injured rats.26 EphA7 is predicted to be the 

seventh strongest CS-E binding protein with an average snapbe of -304.6 kcal/mol (Fig. 

3.8b). The likely CS-E binding site is found in the second fibronectin domain and is 

outlined by the following arginine and lysine residues: K479, K483, R486, R488, R516, 

and R529 (Fig. 3.17). 

Figure 3.17: CS-E hexasaccharide docking to EphA7 (a) Electrostatic surface 

potential of EphA7. (b) The top five poses clustered to the second fibronectin domain 

of EphA7. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues K479, K483, R486, R488, R516, and 

R529, with a predicted snapbe of -304.6 kcal/mol.  
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EphA8 

In spinal cord injury models, EphA8 is upregulated in astrocytes, oligodendrocytes, axons 

in ventrolateral intermediate cells, and motor neurons.18 EphA8 is predicted to be the 

second strongest CS-E binding protein with an average snapbe of -468.1 kcal/mol (Fig. 

3.8b). The likely CS-E binding site is found in the second fibronectin domain and is 

outlined by the following arginine and lysine residues: K479, K481, K475, K490, R512, 

R514, and R521 (Fig. 3.18).  

Figure 3.18: CS-E hexasaccharide docking to EphA8 (a) Electrostatic surface 

potential of EphA8. (b) The top five poses clustered to the second fibronectin domain 

of EphA8. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues K479, K481, K475, K490, R512, R514, 

and R521, with a predicted snapbe of -468.1 kcal/mol.  
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EphB1 

EphB1 EphB1 is predicted to be the fifth strongest CS-E binding protein. EphB1 has two 

potential binding sites each with an average snapbe of -354.2 kcal/mol and -363.3 kcal/mol 

(Fig. 3.8b). The first CS-E binding site is located in the first fibronectin domain of EphB1 

and contains the following arginine and lysine residues: K362, R364, R367, R368, and 

R372, with an average snapbe of -354.2 kcal/mol (Fig. 19). The second CS-E binding site 

is located in the second fibronectin domain of EphB1 and is outlined by the following 

Figure 3.19: CS-E hexasaccharide docking to EphB1: site 1 (a) Electrostatic surface 

potential of EphB1. (b) The top five poses clustered to the first fibronectin domain of 

EphB1. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues K362, R364, R367, R368, and R372, with 

a predicted snapbe of -354.2 kcal/mol.  
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arginine and lysine residues: R470, R485, R507, R509, K516, and K520, with an average 

snapbe of -363.3 kcal/mol (Fig. 3.20).  

 

 

 

 

 

 

 

Figure 3.20: CS-E hexasaccharide docking to EphB1: site 2 (a) Electrostatic surface 

potential of EphB1. (b) The top five poses clustered to the second fibronectin domain 

of EphB1. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues R470, R485, R507, R509, K516, and 

K520, with a predicted snapbe of -363.3 kcal/mol.  
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EphB2 

EphB2 is predicted to be the eleventh strongest CS-E binding protein with an average 

snapbe of -91.5 kcal/mol (Fig. 3.8b). Indeed, EphB2 has been experimentally confirmed to 

not bind CS-E.27 The top docked poses all clustered in the second fibronectin domain and 

is outlined by the following arginine and lysine residues: K476, K487, R509, R511, R518, 

and K522 (Fig. 3.21). 

 

 

Figure 3.21: CS-E hexasaccharide docking to EphB2 (a) Electrostatic surface 

potential of EphA1. (b) The top five poses clustered to the second fibronectin domain 

of EphB2. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues K476, K487, R509, R511, R518, and 

K522, with a predicted snapbe of -91.5 kcal/mol.  
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EphB3 

Following injury to the spinal cord, EphB3 is upregulated in astrocytes and ventral root 

axon, and is upregulated in the cortex following subdural hematoma, a traumatic brain 

injury model.17,18,28,29 EphB3 is predicted to be the sixth strongest CS-E binding protein 

with an average snapbe of -319.0 kcal/mol (Fig. 3.8b). EphB3 has been confirmed as a CS-

E binding protein.27 The likely CS-E binding site is found in the first fibronectin domain 

and is outlined by the following arginine and lysine residues: R336, R355, K370, K371, 

R373, R386, R415, K429, R435, and R473 (Fig. 3.22). 

Figure 3.22: CS-E hexasaccharide docking to EphB3 (a) Electrostatic surface 

potential of EphB3. (b) The top five poses clustered to the first and second fibronectin 

domain of EphB3. Residues within 5Å of ligand (dark grey) and arginine and lysine 

residues within 5Å (cyan). (c)  Zoom-in of binding site showing top pose. The predicted 

binding site contains the arginine and lysine residues R336, R355, K370, K371, R373, 

R386, R415, K429, R435, and R473, with a predicted snapbe of -319.0 kcal/mol.  
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EphB4 

EphB4 is predicted to be the strongest CS-E binding protein with an average snapbe of -

483.1 kcal/mol (Fig. 3.8b). The likely CS-E binding site is found in the second fibronectin 

domain and is outlined by the following arginine and lysine residues: R444, R491, R495, 

R483, K486, K498, R499, and R510 (Fig. 3.23). A role for EphB4 in nervous system injury 

has not been thoroughly explored, but its strong predicted interaction may be important for 

other systems during development and cancer progression.5,7  

 

Figure 3.23: CS-E hexasaccharide docking to EphB4 (a) Electrostatic surface 

potential of EphB4. (b) The top five poses clustered to the second fibronectin domain 

of  EphB4. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues R444, R491, R495, R483, K486, K498, 

R499, and R510, with a predicted snapbe of -483.1 kcal/mol.  
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EphB6 

EphB6 is predicted to be the twelfth strongest CS-E binding protein with an average snapbe 

of -12.8 kcal/mol (Fig. 3.8b). EphB6 is predicted to not bind CS-E. The top poses were 

found to cluster in the second fibronectin domain and are outlined by the following arginine 

and lysine residues: R492 and R542 (Fig. 3.24).  

 

  

 

 

 

Figure 3.24: CS-E hexasaccharide docking to EphB6 (a) Electrostatic surface 

potential of EphB6. (b) The top five poses clustered to the second fibronectin domain 

of EphB6. Residues within 5Å of ligand (dark grey) and arginine and lysine residues 

within 5Å (cyan). (c) Zoom-in of binding site showing top pose. The predicted binding 

site contains the arginine and lysine residues R492 and R542, with a predicted snapbe 

of -12.8 kcal/mol.  
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 Conclusions 

CSPGs inhibit axon regeneration, in part, through their ability to engage cell surface 

receptors and soluble ligands found in the extracellular matrix.3,30 This diverse set of 

protein binding partners allows CS to affect cell state through the modulation of 

intracellular signaling pathways. Several transmembrane receptors including receptor 

protein tyrosine phosphatases, RPTPσ and LAR, and Nogo receptors, NgR1 and NgR3 

have been identified as CS-E binding proteins that inhibit axon regeneration.31 In Chapter 

2, EphA4 was identified as a receptor of CS. The receptor tyrosine kinase EphA4 receptor 

has various roles in the development and regulation of the nervous system, and inhibiting 

axon regeneration after injury to the CNS. We found that EphA4 binds with high affinity 

to the glycosaminoglycan chains of CSPGs. This work presents a computational analysis 

of EphA4 interactions with the sulfated motifs CS-A, CS-C, CS-D, and CS-E. The 

identification and characterization of CS interactions with cell surface receptors advances 

our understanding of inhibition of axon regeneration following injury to the CNS where 

CS-E expression is upregulated, and provides us with the opportunity to develop therapies 

for the recovery of axon growth after injury to the nervous system. 

Eph receptor activation by ephrin ligands occurs through a receptor clustering 

mechanism that results in tyrosine phosphorylation of the intracellular kinase domain.6 We 

identify a similar mechanism of activation by CS-E and demonstrate its ability to cluster 

cell surface EphA4. Importantly, receptor clustering by CS-E results in elevated levels of 

tyrosine phosphorylation of EphA4, suggesting CS-E induces the formation of active 

EphA4 signaling clusters. This work performed computational docking to identify 

potential CS binding Eph receptors. The relative strengths of the predicted binding energies 
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are EphB4 > EphA8 > EphA1 > EphA3 > EphB1 > EphB3 > EphA7 > EphA5 > EphA4 > 

EphA6 > EphB2 > EphB6 > EphA2. Carbohydrate induced Eph receptor clustering could 

be a general mechanism of Eph receptor activation with implications for axon guidance 

and regeneration, regulation of synaptic plasticity, and cancer metastasis.  
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Methods 

GAG-Dock Summary. These methods are outlined futher.14 This involves a two-step 

process for each GAG-protein complex, we first identify likely GAG binding sites on the 

target protein using coarse docking and then we re-dock using find docking to identify 

strongly bound poses. In the first step, for “coarse-docking” we dock a single GAG 

conformation to the entire protein surface to identify likely binding sites. This 

configuration is chosen by minimizing the ligand in the solvent. Here, docking to the 

‘alanized’ structure allows us to quickly scan the entire protein for putative GAG binding 

sites by optimizing the long-range Coulomb interactions. In the second step, for “fine-

grained” we re-dock to the best coarse regions to identify specific, strongly bound poses. 

In this step, we sample ligand conformations more completely allowing rotations about 

single bonds to accommodate the intrinsic flexibility of the GAG ligand. We selected 12 

conformations to have low energies while remaining diverse, as described under ligand 

preparation. Then do rigid docking of this ensemble of 12 GAG ligand conformations. 

Finally, all final energies for all poses for all 12 conformations are ranked together by total 

energy and the best 100 are minimization before identifying the top docked structure for 

each GAG-protein complex. These methods are detailed further below and in the SI. 

System Preparation All Eph receptors were prepared in the manner as follows. The 

extracellular portion was modeled using SWISS-MODEL with EphA4-EfnA5 (PDBID: 

4M4R4A) co-crystal structure used as the template.32,33 The structures were minimized in 

vacuo using the DREIDING force field.34 The following protein sequences were used for 

modeling: EphA1 (uniprot ID Q60750), EphA2 (uniprot ID Q03145), EphA3 (uniprot ID 

P29319), EphA4 (uniprot ID Q03137), EphA5 (uniprot ID Q60629), EphA6 (uniprot ID 
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Q62413), EphA7 (uniprot ID Q61772), EphA8 (uniprot ID O09127), EphB1 (uniprot ID 

Q8CBF3), EphB2 (uniprot ID P54763), EphB3 (uniprot ID P54754), EphB4 (uniprot ID 

P54761), and EphB6 (uniprot ID O08644).  
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Appendix A: Retinal Axon Guidance by Synthetic Chondroitin Sulfate 

Polymers 

Chondroitin sulfate proteoglycans (CSPGs) are critically important for the proper 

development of the nervous system.1,2 These proteoglycans can serve as positive and 

negative guidance cues, attracting or repelling extending axons and direct axons to their 

correct downstream synaptic targets.3 The precise targeting of extending axons is essential 

for the formation of a correctly function mature nervous system. Our lab previously 

demonstrated the importance of the CS-E motif towards the guidance of extending retinal 

ganglion neurons. CS-E polysaccharides repulse retinal axons originating from ventral 

tissue, but has no effect on retinal axons from dorsal tissue.4 Here, the ability of CS mimetic 

polymers to guide extending retinal axons was tested using the stripe assay. These mimetic 

polymers have been shown to recapitulate the biological activity of natural CS.5 For 

example, CS-E mimetic polymers inhibit dorsal root ganglion neuron growth similar to 

CS-E polysaccharides isolated from natural sources.  

The stripe assay is a common test for retinal axon guidance.6 In this assay, CS—E 

polysaccharides or CS-E mimetic polymers were mixed with bovine serum albumin labeled 

with Alexa Fluor-488 (BSA-488) are flowed through a microfluidic device containing 50 

μm wide channels spaced 50 μm apart (Fig. A.1a). This process results in efficient 

immobilization of the putative guidance molecule and BSA-488 in stripes on a glass 

coverslip (Fig. A.1b). Following stripe printing, whole retina, dissected from E7 chick, are 

flat-mounted for tissue slicing along the dorsal-ventral axis (Fig. A.1c). Tissues strips are 

placed on the glass coverslip perpendicular to the printed stripes (Fig A.1d). Extending 
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axons grow preferentially on the more permissive stripes, the experimental or control 

stripes.  

 

Figure A.1: Stripe Assay, assessment of Axon guidance of retinal neurons. Axon 

guidance molecules are immobilized in stripes on glass coverslips, retinal tissue 

explants are mounted perpendicular to the printed stripes, and as axons extend they are 

attracted, or repelled from the printed stripes. (a) Microfluidic devices containing 50 

μm wide channels space 50 μm apart. Devices are placed on a glass coverslip, and a 

solution containing the putative axon guidance molecule, and bovine serum albumin 

labeled with alexaflour-488 (BSA-488), is flowed through the device and immobilized 

on the glass coverslip (scale bar, 50μm). (b) Representative stripes containing BSA-488 

and CS polysaccharides immobilized to glass coverslip (scale bar, 50μm). (c) Chick 

retinal tissue post dissection is flat-mounted for slicing along the dorsal-ventral axis. (d) 

Schematic of stripe assay, dorsal-ventral tissue strips are mounted on pre-printed stripes 

containing BSA-488 and CS polysaccharides. Retinal tissue explants are cultured for 

48 hr, fixed, and stained with Rhodamine B isothiocyanate.  
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To assess the guidance properties of CS mimetic polymers, the stripe assay was 

performed using CS-E polysaccharides or CS-E mimetic polymers. Both were efficiently 

immobilized on glass coverslips. As noted, previous work demonstrated ventral retinal 

axons, but not dorsal axons, are guided by CS-E polysaccharides.4 These results were 

reproduced using CS-E polysaccharides in this study (Fig. A.2a). Tissue originating from 

the dorsal portion of the retina grow non-discriminately across CS-E polysaccharide 

printed stripes. While extending ventral axons are guided parallel to the printed CS-E 

polysaccharide stripes. CS-E polymers also guided ventral axons (Fig. A.2b). Extending 

ventral axons are guided as they grow on stripes printed with CS-E polymers. However, 

ventral axons are also guided by CS-E polymers. These results suggest the guidance 

activity of CS-E polymers does not fully recapitulate the activity of natural 

polysaccharides. Nerveless, CS-E mimetic polymers elicit a similar response towards the 

guidance of extending retinal axons.  
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Figure A.2: Retinal Axon Guidance by Cs Mimetic Polymers The stripe assay was 

used to test axon guidance of retinal neurons by CS mimetic polymers. (a) 

Representative images of stripe assay with immobilized CS-E polysaccharides. Ventral 

retinal axons, but not dorsal, avoid stripes printed with CS-E polysaccharides. (b) 

Representative images of stripe assay with immobilized CS-E mimetic polymer. Dorsal 

and ventral axons both are guided by printed CS-E mimetic polymers (scale bar, 

100μm).  
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Methods 

Stripe Assay Square 22 x 22 mm acid washed glass coverslips were coated with poly-D-

lysine (0.1 mg/mL in PBS). The coverslips were wash three times with PBS and three times 

with water, and allowed to air dry in the hood. Sterile microfluidic devices were mounted 

on the glass coverslips and connected to a syringe pump through the inlet and outlet valves.6 

The printing solution (containing chondroitin sulfate polysaccharide or mimetic polymer 

0-20 μg/mL, laminin 10 μg/mL, BSA-488 10μg/mL, and 0.05% tween in PBS) was flowed 

through the device at a rate of 50 μL/h overnight. Microfluidic devices were removed from 

coverslips, and coverslips were washed three times with PBS and coated with laminin (10 

μg/mL in PBS) for 2 h at room temperature, and then washed three times with PBS. Retina 

were dissected, flat-mounted, sliced, and cultured as previously described.4 Retinal tissue 

was cultured on the printed coverslips for 36 h, before fixing and staining with rhodamine 

B isothiocyanate. Coverslips were imaged using an LSM 700, and images were prepared 

using ImageJ.  
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Appendix B: Disaccharide Analysis of the Visual Cortex of 

Sulfotransferase Knockout Mice 

CSPGs are also major components of perineuronal nets (PNNs), where they play 

crucial roles in the maturation of synapses and the closure of critical periods by limiting 

synaptic plasticity.1–4 PNNs, which consist of CSPGs, tenascin, link-proteins and 

hyaluronic acid, surround the cell body and extend along the dendrites of inhibitory 

neurons expressing the calcium-binding protein parvalbumin (PV). They serve to restrict 

synaptic plasticity and stabilize the network of existing neuronal connections.1–4 The 

CSPGs in PNNs, and in particular, their CS sugar chains, are essential to the structure and 

function of PNNs. Digestion of the CS sugars by ChABC in the visual cortex reactivated 

critical period plasticity following monocular deprivation in adult mice.5,6 

Specific sulfation motifs on CSPGs have been shown to regulate PNN formation 

and critical period plasticity.4 The sulfation patterns of CSPGs are tightly regulated during 

postnatal development in the mouse visual cortex. While 6-O sulfation of CS (CS-C) 

decreases, 4-O sulfation (CS-A) increases as the critical period comes to a close, resulting 

in an increase in the 4-O to 6-O sulfate (4S/6S) ratio.7 Transgenic mice overexpressing 

C6ST-1 retain a low 4S/6S ratio and develop fewer PNNs around PV neurons.7 Their PNNs 

are rich in CS-C and display a diffuse structure that is unable to tightly enwrap 

thalamocortical synaptic contacts. Importantly, the mice also exhibit persistent cortical 

plasticity into adulthood. When subjected to monocular deprivation, adult mice 

overexpressing C6ST-1 show ocular dominance plasticity similar to juvenile wild-type 

mice. Thus, the change from low to high 4S/6S sulfation ratio on CSPGs coincides with 



127 

 

the close of the critical period when plasticity is restricted, and reducing this ratio can 

modulate PNN structure and enhance cortical plasticity. 

To explore the role of the CS-A and CS-E motifs in regulating neuronal plasticity, 

we utilized Chst15 (CS-E knockout), and Chst11 (CS-A knockout) mice.8,9 The Chst11 

mouse is a conditional knockout in the brain under the nestin promoter, while the Chst15 

mouse is a constitutive knockout. Here, the disaccharide content of the visual cortex was 

analyzed for Chst11 knockout, Chst15 knockout, and wild type mice at the postnatal day 

0, 7, 14, 28, and 60. Glycosaminoglycan side chains were isolated form the visual cortex 

and digested with chondroitinase, and disaccharides were labeled with 2-aminoacridone 

and quantified by HPLC.10 The analysis is summarized in Figures B.1, B.2, and B.3. 

Interestingly, Chst11 knockout mice have significantly less total CS (Fig. B.2a). This is 

consistent with reports that this sulfotransferase is involved in chain elongation as Chst11 

knockout cells produced shorter CS chains than wild type.11 The Chst11 knockout mouse 

has significantly reduced levels of CS-A, and increased levels of CS-C and unsulfated CS. 

Likewise, Chst11 and Chst15 knockout mice have no detectable levels of CS-E. These 

initial findings confirm the loss of specific sulfation patterns in sulfotransferase knockout 

mice. Namely, these mice lack the CS-A and CS-E motifs, sulfation patterns important for 

regulating neuronal plasticity, and provide a platform for studying the roles of these 

sulfation motifs in neuronal plasticity. 
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Figure B.1: Disaccharide Analysis of Chst11 and Chst15 Knockout Mice. 

Glycosaminoglycans were isolated from the visual cortex of Chst11 knockout, Chst15 

knockout, and wild type mice, digested with chondroitinase ABC, and disaccharides 

were analyzed by HPLC. The disaccharides are expressed as pmol/mg of dried tissue 

homogenate, and as a percentage of the total disaccharide content. This analysis was 

performed on tissue dissected from P0, P7, P14, P28, and P60 mice, and represent the 

average values from three mice. N.D. = not detected.  
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Figure B.2: Disaccharide Analysis of Visual Cortex. Glycosaminoglycans were 

isolated from the visual cortex of Chst11 knockout, Chst15 knockout, and wild type 

mice, digested with chondroitinase ABC, and disaccharides were analyzed by HPLC. 

The disaccharides are expressed as pmol/mg of dried atissue homogenate. This analysis 

was performed on tissue dissected from P0, P7, P14, P28, and P60 mice, and represent 

the average values from three mice. (a) Total disaccharide content, (b) CS-A (ΔDi-4S), 

(c) CS-C (ΔDi-6S), (d) CS-D (ΔDi-diS
D
), (e) CS-E (ΔDi-diS

E
) content in the visual 

cortex. CS-E disaccharides were not detected in Chst11 or Chst15 knockout mice. 

Chst11 knockout mice have less CS per mg of dried tissue homogenate than WT or 

Chst15 knockout mice.  
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Figure B.3: Disaccharide Analysis of Visual Cortex as Molar Percentage. 

Glycosaminoglycans were isolated from the visual cortex of Chst11 knockout, Chst15 

knockout, and wild type mice, digested with chondroitinase ABC, and disaccharides 

were analyzed by HPLC. The disaccharides are expressed as pmol/mg of dried tissue 

homogenate. This analysis was performed on tissue dissected from P0, P7, P14, P28, 

and P60 mice, and represent the average values from three mice. (a) CS-A (ΔDi-4S), 

(b) CS-C (ΔDi-6S), (c) CS-D (ΔDi-diS
D
), (d) CS-E (ΔDi-diS

E
) content in the visual 

cortex. CS-E disaccharides were not detected in Chst11 or Chst15 knockout mice.  
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Methods 

GAG Purification. The visual cortex was dissected, placed in a 2 mL dounce and 

homogenized in acetone. The sample was centrifuged at 4,000 x g for 2 min, supernatant 

discarded, and pellet washed three times with cold acetone, then allowed to air dry. The 

pellet was resuspended in digestion buffer (100 mM Tris pH 7.4, 20 mM CaCl2, with 5 

mg/mL Pronase; Sigma Aldirch). Samples were digested at 55 °C for 24 h. DNase was 

added and samples digested for 1 h at 37 °C. Samples were pelleted at 15,000 x g for 10 

min, supernatant transferred to a 10,000 mw cutoff spin column and buffer exchanged to 

50 mM Tris pH 7.4, 200 mM NaCl by repeated centrifugation and concentration of the 

sample. Samples were collected, made to 2 mL total volume, and passed over 0.5 mL of 

pre-equilibrated DEAE Sepharose resin. The resin was washed with 10 column volumes 

using 50 mM Tris pH 7.4, 200 mM NaCl. The GAGs were eluted with 6 column volumes 

of 16% NaCl, buffer exchanged to water using 10,000 mw cutoff spin column, and then 

lyophilized. GAGs were dissolved in 50 μL 25 mM Tris pH 8.0, 30 mM NaOAc. The 

uronic acid concentrations of the samples were determined using the carbazole assay. 

Disaccharide Analysis. Disaccharide analysis was performed as previously reported.10 The 

GAGs (50 µL) were diluted to 200 µL with the same buffer and digested with 50 mU of 

chondroitinase ABC (Seikagaku) at 37 °C for 24 h. The reaction was put into a 3,000 

MWCO spin filter, centrifuged at 12,000 x g for 10 min, and the eluate was collected. This 

procedure was repeated twice more by adding 200 µL of water to the retentate. The eluates 

were pooled and lyophilized. For 2-aminoacridone (AMAC) labeling, 5 µL of a solution 

containing 0.1 M AMAC in 3:18 glacial acetic acid:DMSO was added to 1 µg of CS 

disaccharide and incubated for 15 min at room temperature. 5 uL of 1 M NaBH3CN was 
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added, and the reaction was incubated for 4 h at 45 °C. The reaction was quenched with 

1:1 DMSO:water and analyzed by HPLC with a Poroshell 120 EC-C18 column (4.6 x 50 

mm) with the following method at a flow rate of 1 mL/min and detection at 428 nm: linear 

gradient of 98% 60 mM NH4OAc and 2% MeCN to 70% 60 mM NH4OAc and 30% 

MeCN for 50 min, followed by 15 min of 98% 60 mM NH4OAc and 2% MeCN. P-values 

were determined using one-way ANOVA with Tukey’s HSD post hoc analyses, and the 

results from three experiments were shown. 
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