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ABSTRACT

The bandwidth limitation on the reflection coefficient of circuits
containing a reactance limited negative conductance such as a tunnel diode
is derived, and the insertion loss method of modern network theory is
adapted to the synthesis of low pass ladder equivalents of amplifiers
containing thése elements. Amplifiers which have a considerable band-
width advantage over simple single tuned circuits, and which approach
the ultimate bandwidth limit as rapidly as possible as the number of

passive components is increased, are demonstrated.

Fundamental bandwidth limitations of three-frequency nonlinear
reactance amplifiers, parametric amplifiers, and non-inverting upconver-
ters are also found. A low pass ladder equivalent circuit and the
insertion loss method are shown to be useful tools for synthesis of
these amplifiers. Considerable bandwldth advantage over single-tuned
circuits is again demonstrated. Syntheses which yield the ultimate

bandwidth as the number of circult elements is increased are found.

These synthesis methods and the reverse predistortion technique
are used to synthesize stable amplifiers whose bandwidth capability

increases almost linearly with the number of active elements employed.

Relationships between physically achievable amplifier circuits
and the low pass equivalents are shown, and the general compatibility

of presently available active elements with these circuits is considered.
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Partial Tist of Symbols

pover attenuation ratioc

modulation factor for sinusoidal reactance
noise bandwidth

capacitance or capacitive reactance slope

differential capacitance of tunnel diode or an equivalent reac-
tance limited element

small frequency interval
Tchebysheff ripple factor
noise figure

conductance .

differential conductance of a tunnel diode or equivalent active
element

complex current coefficlient

Boltzmann factor in nolise expressions
inductance or inductive reactance slope
Series‘inductance of a tunnel diode
angular frequency

angular bandwidth not specifically connected with s single
response function

Butterworth angular bandwidth

Tchebysheff angular bandwidth

signal frequency of time varylng reactance amplifier
idler frequency of non-inverting upconverter

idler frequency of parametric amplifier (negative)

angular frequency of time varying reactance

band center frequencies of @ ,w;,® 45 and ®_q bands

pover gain



ii

q charge or complex charge coefficient

q, normalized loss factor of elements in a uniform loss network
o} voltage reflection coefficient |

PBo midband Butterworth p

Prg midband Tchebysheff p

Bﬁ RMS Tchebysheff p over the equal ripple band

s =1w complex angular frequency variable

complex location of mﬁh pole

8
pm
th
son complex location of n zZero
T transmissioné voltage gain between two elements normalized
so that |T|2 is power gain
T' or ;
T transmigssion under positive or negative loss conditions
- 7q
Ei RMS Tchebysheff T over the equal ripple band
T noise temperature
Ty source noise temperature
v complex voltage coefficlent
p4 admittance
Yc characteristic admittance
Z impedance
Zc characteristic impedance
Partial List of Subscripts
B, B funnel diode amplifier t
o o unnel diode amplifier types
5
D
B Butterworth L load
c characteristic P pump, pole
a gain s source

T tunnel diode or Tchebysheff
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CHAPTER I

INTRODUCTION

The recent discovery of the tunnel diode and the maser, and the
re-emergence of the principles of parametric amplification with
nonlinear reactances have led to a reconsideration of the performance
capability of negative resistance amplifiers. The characteristics of
avallable nonlinear reactors and negative resistance devices serve as
boundary conditions limiting the performance of systems containing
them. There is a need to translate these characteristics into equa-
tions and tables in order to facilitate their engineering application.
In the past attention has been focused mainly on noise performance.
This present work places the analytic emphasis on bandwidth in
attempting to give a theoretical‘but practical evaluation of the
system performance of these devices in terms of gain, béndwidth, noise
figurg, ;nd circuit complexity.

The approach here is to give first order synthesis procedures
for designing wide band amplifiers. Only physical amplifier configu-
rations which allow synthesis in terms of simple low-pass ladder
equivalent circuits are considered. In each problem presented thé
relation between the basic low pass ladder equivalent circuit and the
physical configuration of an amplifier is pointed out. This should
be sufficient to allow the first order design of a physical amplifier
from a knowledge of the elements in the low pass equivalent.

In no case in this work, hovever, is the synthesis of a low
pass equivalent ever carried to the point where all its elements are

determined. The object is to obtain as much information as possible



Do

about the bandwidth capabilities of the active elements. In this
light, only those parameters of the equivalent circuit which correlate
explicitly with the essential properties of the active elements are
actually calculated. The physical realizability of the other elements
required in the equivalent circuit is guaranteed indirectly by the
synthesis technique used.

For the design engineer then, the synthesis problem still lies
ahead. He can only find here synthesis procedures to be used and the
results he may obtain in terms of the properties of the active elements
and cirecuit complexity. It is hoped that the information contained in
thig work will increase his understanding of the capabilities of tunnel
diode and nonlinear reactance amplifiers. It is also hoped that the
results given will allow him to make a good preliminary cholce of an
amplifig? configuration which will meet his first order requirements in
terms of bandwidth and noise figure. He will then be in a position to
do an intensive analysis and synthesis directly in terms of a single
configuration. In doing this he can remove any approximations which
have been required in this more extensive than intensive work to treat
physical truths with mathematical simplicity.

A brief review of basic information on negative resistance and
nonlinear reactance smplifiers is presented here first. Some of the
problems which will be approached in succeeding chapters are suggested,
and some reason for the choice of the low pass ladder network formalism

is given.



1.1 The Tunnel Diode and Other Negative Resistance Devices

The tunnel diode (1,2) is a very heévily doped semi conductor
P-N junction. Under low forward bias conditions, current carrying
electrons may traverse the depletion layer which is normally fofbid—:
den to them on energy band consideratiohs, by quantum mechanical
tunﬁeling. A typical current voltage characteristic arising from
the prdcess is shown in Figure 1.1l. The shape éf this curve and the
résulting\differential negative conductance have no theoretical fre-
gquency variation for frequencies under iO+13 cps. The high doping
lévels and extremely narrow depletion layer give rise to appreciable
capacitance in parallel with the effegtive‘conduétance of the junction.
This capacitance is the essential bandwidth limiting féctor"of this
device. Taking into account ohmic losses and series inductance arising
’in packaging, we use the equivalent circuit shown iﬁ Figure 1.2 for the
tunnel diode (2). The noise generator LiN in parallel with -G, has

been found experimentally to be correctly given by the shot noise for-

mila (3)

2 .
oy = Ze IO ar | (1.1)

Several other negative resistance devices such as the maser and
the reflex klystron have models which are bandpass equivalents of the
internal tunnel diode. The analogies are close enough so that no mbre
need be said about them.

The negativé conductance can be used as a two-terminal amplifier.
However, the maximum gain bandwidth is always achleved by isolating

the generator from the load with a circulator. Under these conditions
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the power reflection coefficlent

Yé—Yg -
pp¥ = | ——— - (1L.2)
YO + Y

defined at the negative conductance is the power gain. Under single
tuning conditions the shunt capacitance of the tunnel diode limits the

half power gain bandwidth of the reflection to

W =g 1 (1.3)
3DB CT Ipol

giving rise to the common voltage gain~-bandwidth product. As will be

shown in Chapter IL, a more fundamental limitation on bandwidth is (L4,5)
e

G
JﬂZn lo] dw = _Ez . One can predict, then, a maximum bandwidth for con-
T

0
stant reflection Py 2

ﬁGT 1
B = e—
c CT in p

(1.h)

e}

The disparity between equations 1.3 and 1.4 is the motivation for the wide-
band tunnel diode amplifier syntheses in Chapter II. 1In this chapter
amplifiers with and without circulators are considered and the bandwidth
and nolse figure properties of several configurations are discussed. Fun-
damental limitations and practical difficulties due to the series induc-
tance of the tunnel diode package are also presented and discussed in
Chapter II.

In many potential applications the ultimate bandwidth of a single
tunnel diode may be too small at the required gain level. One must then
think of amplifiers containing multiple active elements. While single
negative conductance amplifiers containing perfect clrculators may be

easlly cascaded, it is more difficult in general to guarantee the
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stability of a cascade of stages containing only reciprocal elements.
One approach taken by Carlin (6) involves the synthesis of amplifier
stages whose input and output characteristic impedancesare real and

constant at all frequencles, so-called constant resistance networks.

He has shown that each stage has a powver gaiﬁ bandwidth integral

limitation
0
G
mp2 4 « X (1.5)
G 2C
0 T

These so-called constant resistance stages will not be simpleicon-
figurations such as ladder networks or their band pass equivalenté.
They must be networks of the lattice or twin or shunt tee vériety, and
may be physically difficult to achieve at high frequencies. In addi-
tion, they must contain at least two conductances. If one of these is
required to be passive, it may have a seriously degrading effect on
the noise figure.

Another épproach'commonly taken to the multiple élement ﬁrdblem
is the design of iterative circuité by image parameter theory. This
techniqﬁe, however, lends itself better to analysis than to synthesis
procedures. The gain or tfansmiésion of the overall circuit inclﬁding
terminations may be evaluated in terms of the pr;pagation constant and
charécteristic impedance of the basic section which are simply calcu-
lated. The reverse or synthesis process, however, camnot be carried
out except by trial and error, making the terminating sections diffi—
cult to design. |

In Chapter IV a synthesis of ﬁultiple element amplifiers by

"negative predistortion”, a technique suggested'by Weinberg (7) is



considered. Syntheses which give 60% of the bandwidth 1imitation
given in equation 1.5 are found and the method is apparentlykcapable
of achieving thé full integral limitatitn. The problems arising from
reflections in these circuits as well as the nolse figure properties
are also discussed. The synthesis 1s in terms of band pasé ladder
ﬁetworks which contain oné tunnel diode per section. These are
definitely simpler than Carlin's networks and should be physically

achievable in all frequency ranges.
1.2 Nonlinear Reactance Amplifiers

The power flow relations for a nonlinear readtance in the présence'
of excltation at two frequencies whose ratio is an irrational fractidn,
and all the multiple sum and difference frequencies have been given by
Manley and Rowe (8). In Chapter III we will consider two devices in
which onl& three of this infinite set are of major importance. In both
cases Qp will'be considered the pump frequency supplied by a local
oscillator. The signal frequency, w, < Qp as well as Qp s are con-
sidered poéitive; while the third frequency may be either positive,
w+l = wo+ Q_ or negative, w_l = wb_ Qp 5 depending on whether the
device 1s to be called, respectively, a‘non-inverting upconﬁerter or

a parametric amplifier.

The non-inverting upconverter obeys the power relations

EE -t
wo m+l
(1.6)
o _ %
w0



The device is unconditionally stable when imbedded in a linear passive

network and may give a maximum power gain

W
P = = b (1.7)

It is essentially a two port amplifier. The nonlinear reactance used

as a three frequency parametric amplifier obeys the power relations

o . __ -1
wo w—l
(1.8)
P P
L - __E
w Q
0 b

The fact that PO and P'l may be simultaneously negative allows
unlimited gain. In circuit terms this capability must appear as a
negative real part to the input immittance at the reactance terminals

at both W and o

17
The discussions of nonlinear reactance amplifiers in this work
are restricted to circuits containing noanlinear capacitances or
elastances whose time variétion due to the pump excitation at QP is
explicitly defined as
Cc (1 + cos @t + 06
S+ 5 o)

or

S t + 0
O(l + 1 cos Qp + p)

The choice as to which of these representations is best suited to s
given physical nonlinear reactance will depend on whether the parasitic

and packaging elements fit better into a parallel or series equivalent

circuit. The nonlinear capacitance of the back biased semiconductor
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diode, for instance, is usually associlated with series inductance and
resistance and the So représentation will be preferable. Results
for the two other types of nonlinear reactances can be obtained ffom
s consideration of these two and the application of the dwvality prin-
ciple. One may expect the bandwidth of parametric amplifiers and
upconverters to be limited in some way by the D.C. parameter Co or
SO . In Chapter III the same assumptions which are made by virtually
all workers in the field of three frequency parametric amplifiers and
upconverters lead to equivalent circuits for these devices. It is
shown that the parametric amplifier does have a gain bandwidth limita-
tion in the form of equation l.4. It is also shown that under some
circumstances it may be treated with complete analogy to the tunnel
diode, but that these conditions do not necessarily lead to a synthesis
that gives the greatest possible bandwidth for the least circuit com-
plexity.y In Chapter IV the conditions under which multiple element
parametric amplifiers can be synthesized by negative predistortion are

related.

1.3 The Lossless Low-Pass Ladder Network

The lossless low-pass ladder network has many advantages as a
basis for synthesis. It and its equivalents are realizable either
exactly or approximately in any frequency range with lumped, semi-
distributed and mixed elements. One bandpass approximant, the coupled
resonator circuit, can be built with coupled cavities or loaded trans-
mission lines and waveguides for operation at very high frequencies.
In addition the coupled resonator circuit allows a useful and somewhat
arbitrary impedance level transformation not achievable in other cir-

cuits. The second major advantage of the lossless ladder network in
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design is the fact that the synthesis méy be carried out simply and
directly starting from the poles or zeros of a desired response func-
tion. Physical realizability and stability arguments will remove any
arbitrary cholces in most of thé active networks. The simplicity of
the method will become clear in Section 2.1. |

An infinite variety of response functions are of course achievé
able in ladder networks. Certaih response shapes, however, have been
proven optimum for achieving desirable gain versus frequency relations
with the least circuit complexity. In some cases these optimum response
functions are also optimum for approaching the reflection coefficient

bandwidth limitations most rapidly as a function of circuit complexity.
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CHAPTER II

LADDER NETWORKS WITH TUNNEL DIODES IN TERMINATIONS

2.0 Introduction

The bandwidth over which gain can be obtained from a tunnel diode
can be assoclated qualitatively with the bandwidth over which its essen-
ﬁial reactance can be canceled by an external immittance. The accuracy
required of this cancellation must depend in some measure on the gain
desired. The ladder network has been successfully applied in the past
to impedance matching problems involving the cancelation of reactance
associated with passive conductances (9)a This success, plus the fact
that the well known methods of passive ladder network synthesis can be
applied to the active ne£work problem, suggests the synthesis of tunnel
diode amplifiers from the basic low pass configurations shown in Figure
2.1 A,B,C and D.

The power gain of all these configurations may be associated with
the reflection and transmission pover gains of the low pass circult
shown in Figure 2.2 A and B. This circuit provides a unified approach
to the synthesis of the networks in the four basic configurations. In
addition practical questions of stability, stability under variation of
the circuit elements, and "warm up" stability, may be answered in terms
of the basic circuit. The transformation of this basic low pass circuit
into 5 band pass equivalent aids in the construction of the band pass
equivalents of the four amplifier configurations.

The unification provided by the basic network does not extend %o
the calculation of amplifier noise figure. This will be done separately
for the various configurations. The reciprocity theorem (10) for net-

works containing bilateral elements will prove of extreme utility. This
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theorem states that the ratio of power delivered to resistor 1 to

povwer available from resistor 2, P o is equal to the ratio of power

Gl

delivered to resistor 2 to power available from resistor 1, PG21'

Pa1p = Fgo1 (2.1)

While the power available in a frequency range df from a passive
conductance at temperature n is well known to be KTR af ; a
definition may also be made for negative conductances through the
artificial use of an impedaﬁce negator as shown in Figure 2.3 A and B.
The power flowing out of the impedance negator is the negative of the
power flowing out of its termination. It is therefore appropriate to

L2
assoclate with —GT and ITN a negative available nolse power

2
ar
1 TN B
_uGT 3 ar = K( TT)df
2 (2.2
N dITN 1 )
Tt T & KK G

While the basic circuit approach deals with an idealized tunnel
diode containing only a negative conductange —GT in parallel with s
capacitance CT , presently available tunnel diodes also have series
inductance and resistance associated with packaging and bulk material
resistivity. The last section of this chapter will consider the com-
patibility of these elements with the basic configurations as well as
any new fundamental limitations which the inductance places on tunnel

diode amplifiers.
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2.1 Ladder Network Synthesis Procedure--A Review

Before considering the analysis of the basic network in Figufe
2.2, let us review some of the ncmenclature and techniques of ladder
network synthesis (11). Transmission gain is defined as the ratio of
pover delivered to one termination to power available from another and

is written as

T(iw) T(-iw) = T(s) T(~s) (2.3)

iw

The ratio of power reflected to power available from a termination is

p(iw) p(-iw) = p(s) p(-s) (2.1)

iw

The reflection coefficient between arbitrary admittances Ya and Yb

must be defined as

YZ(ios) - Yb(ia))
p(lw) = (2.5)
Ya(iw) + Yb(iu))

and is analytic in the s plane only when Ya is real. When Ya is
not real analyticity may be restored by writing Ya and Yb as ratios
of polynomials in iw and removing any phase rotation factors:

(s :
Na(lm) ) Nb(lw)

*
DX({w)  Dyliw)

pliw) =
Na(im_) Ny (1w)

D, (1w) N D, (iw)

Na(-s) D.b(s) - Nb(s) Da(—s) Da(iw) (2.6)
Na(s) Db(s) + Nb(s) Da(s)

iw

For lossless networks conservation of energy yields
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p(s) p(-8) |, + T(s) T(-8) |, = 1 (2.7)

and therefore for all values of s
p(s) p(-s) + T(s) T(-s) = 1 (2.8)

The reciprocity theorem indicates that T(iw) T(-iw) = is the same in
elther direction when the network contains bilateral elements. When
one of the terminations of the ladder network is negative, T(iw) T(-iw)
must also be negative. To avoid‘confusion, however, the siéﬁ and
absolute value will be used here.

Equation 2.6 greatly simplfies the synthesis of lossless iadders
operating between passive terminations by giving p(iw) almost

directly in terms of the transmission gain. Equation 2.5 gives

Yb 1 - p(s)
LA EINE) (2.9)

when Ya is real, and the continued fraction expansion of Yb/Ya
ylelds directly the ladder network elements normalized to Ya + Some
choice must be exercised in choosing the poles and zeros of p(s) .
In networks with passive terminations the numbers of poles and zeros
of p(s) are equal and must equal the number of reactances to appear
in the low pass ladder. The elements of the ladder will be physically
realizable if all the poles of p(s) are in the left half plane, LHP,
but its zeros can be chosen anywhere. In all cases the zeros of p(s)
defined at one termination are the negatives of the zeros of p(s)
defined at the other termination. Egquation 2.5 can be used to show
that the change in the sign of a termination simply inverts the ref;

lection coefficient and interchanges the poles and zeros.
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* *
~Ya Yb Ya - YBL Ya + Yb (5.10)
N .
; §(a+Yb ‘ Ya Yb

Thus, the zeros of the reflection coefficient at the active element
must be chosen in the LHP to guarantee that all other network elements
are positive. The poles of p(s) aré arbitrary but must be chosen in
the LHP for stability.

It was indicated in the introduction that the bandwidth limita-
tion on the reflection coefficiént at a negative conductance -G in

parallel with a capacitance C obeys the limitation

_[. m |p(w)]| aw = %? (2.11)
0

The frequency range over which p 1is large can be maximized by mini-
mizing the contribution of /4n p(w) to the integral elsewhere. Thus
outside the desired bandwidth of the reflection it is desirable to

have

lp@)|® = 1 IT(@)]* = o (2.12)

Fortunately, something is known of synthesizable response functions
which have desirable properties in the light of equations 2.11 and 2.12.
Of all transmission reéponse functions synthesizable with an N pole
ladder network, the ' Tchebysheff transmission response has the property
that it gives the fastest possible rate of cutoff of lT(iw)[2 outside
the passband consistent with a prescribed maximum deviation of

|T(iw)|2 and Ip(iw)|2 from their maximum values iTTO|2 and

2
!pTol within the passband (12). The Tschebysheff response functions
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are written as

2
) "T |
IT (iw)‘ - To
T > o
1+ ¢ TN(w/wT)
(2.13)
w
2 2 2 (—
oo+ e 15 (o)
CE) R N
14+ rd (=)
Ny
in which
2/ Wy 2 =1 ®
TN(E_)_ cos N cos . w < QT
T T
cosh2N coshml 2 w > wT
Op
and
2 2
Tpo = 1 Pro

This response is also commonly called equal ripple response with
€ known as the ripple factor and O, the ripple bandwidth.

2 2, ® , , 3
1+ € T5(—~) is a polynomial of order 2N in w/QT . Typical

N O

reflection response shapes and pole zero locations for N = 2 and 3
are shown in Figure 2.4. Because of its oscillatory nature and
because it may lead to extremely nonlinear transmission phase charac-
teristics, the 'Tchebysheff response is often dismissed in favor of
the Butterworth response. This transmission response has the maximum
nunber of zero frequency derivatives at the band center consistent with
the number of poles allowed (12). The Butterworth response functions

are written as
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2
. 2 lTBOl
ITB(lw)I = .
1+ (=
“B
(2.1k)
2 o\
+ (=
pg(ie)|? = ol (&
1+ ()
“8
in which ITB0|2 =1 1~ |pBO|2 . The Butterworth response, &lso

called maximally flat response, is a special case of the Tchebysheff
with € = 0 . The Buttervworth normalization ffequency Wy howeﬁer;
is the 3 db bandwidth of the transmission function. It may be said of
the Butterworth transmigsion response then, that it has the fastest
rate of cutoff at the band edge consistent with the flattest possible
gain at midband. Typical Butterworth reflection response characteris-
tics andypole zero locations for N = 2 and 3 are shown in Figure 2.5.
The Butterworth and Tchebysheff responses will form the basis
for the synthesis not only of the one and two element tunnel diode
amplifiers’discussed in this chapter but also for the nonlinear reac-
tance amplifiers to be discussed in Chapter IiI and the multi-element
amplifiers to be synthesized iﬁ Chapter IV. The analytic exﬁressions
for poles and zeros of these response functions will be réquired for

all further work end are given below in equations 2.15 through 2.18 (13).

Butterworth poles:

s
PBm

“B

= (-1)™ sin(2m+l) '2111\? +1 cos(emtl) & (2.15)
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Butterworth reflection zeros:

"B _ o1/ [(-1)msin(2m+1) 5 + i cos(2m+1) —;N-} (2.16)

wp Bo

' Tchebysheff poles

. (-1)"(sinh % sinh™T %)(sin(2m+l)-§§)
T

_:S;_IE - g (2.17)
T

. i . .-1 } 7
+3j(cosh 5 sinh e)‘ (cos(2m+l —2-I—\T->

Tchebysheff reflection zeros
p

-1 "o 5
"E") (sin(2m+l) —Eﬁ)

= (2.18)

. 1 -1 Pr Bl
h = sinh —B A
+j (cos 5 sin - ) (cos(2m+l) 2N')

(-1)"(sinh N:E sinh

2.2 Normalized Bandwidth of Basic Ladder Network with One Active
Termination

It is appropriate to think of the circult parameters Gl and
Cl in the basic low pass ladder network of Figure 2.2 as determining

the bandwidth normalization factors Wy and O since these two
elements will be directly associated with the terminations of the four
amplifier configurations. The frequency normalization can be found
directly from the knowledge of the poles and zeros of pl(s) .without
carrying out the detalled continued fraction expansion of the ladder

by considering the evaluation of ¢ fn [—pl(s)]ds on the two contours

shown in Figure 2.6.
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From Pigure 2.2 the asymptotic dependence of pl(s) can: be evaluated.

G
1+ ——l
‘ sCl
lim - pl(s) = —
G
5 - 00 } 1
L- sC
1
(2.19)
2Gl
lim  4n - p.(8) = —=
8 - 00 e vsC1
On contour 1
oo 211G
: _ 1
jr in - pl(s)ds = + 2nd }: (Som— 8 m) (2.20)
Foo 1 " RHP s

Since for stability and physical realizability z:’ Som™ Spm =0, and

RHPp
since arg P is an odd function of s , this gives the fundamental
limitation
® nGl
_[ o (w)| & = —= (2.21)
o 1

and on contour 2

iOO o
2

) f i - o (s)ds = + en LZ@ (som ; spm) (2.22).

-100 1

In Equation 2.22 the left half plane 'singularities of pl(s) appear
and are taken as negative. The addition of equations 2.20 and 2.22

gives

&

(2.23)

.
£
=
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The RHP summation has been shown zero for stable physically realiz-
able response. The IHP summation can be evaluated for the Butterworth
and Tchebysheff roots given in equations 2.15 through 2.18 (13).

Closed form expressions for these summations lead to

G l/N .
1 1
mBCl ) 2 sin =z (pBO = (2.2
2N
G P «
e —L (sinh.l% sinh™t Lo sinh% sinh™ 2)
TL 2 sin &g (2.25)

For infinite N equation 2.24 becomes

Gy In o,

@Gy n

which agrees with equation 1.4 . Figure 2.7 shows abcl/Gl as a

function of for several values of N . Figure'2.8 shows wTCl/Gl

pBo

as a function of ET , the approximate root mean square average reflec-
tion coefficient over the Tchebysheff ripple band. Approximately
three decibel ripple was assumed and 62 taken as 1. The curves of
chCl/Gl for smaller € do not lie between the Butterworth and € =1

curve. Curves of for e <1, do, however, lie between

3DBCl/Gl
the Butterworth and € = 1 curves. The asymptotic values of the But-

fp
Similar arguments may be gpplied to pN(s) to calculate
GNﬁﬁBCN and GN/wTCN or RN/wBLN and RN/chLN as shown in Figure

2.2. The zeros and poles of DN(s) are in opposite half planes\giVing

terworth and Tchebysheff bandwidths are the same for pBo =
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S|y
QBCN odd
G
1
S S S S S | (2.26)
R , b1 Bo wa .
N 2 sin = 1 sin —
Q%IN even N N
O
¢yl Noaa .
= L (sinh Lginn™t 19 4 ginn L snnt &
RN 2 sin -— N € N €
B 2N
%LN even
G,  sinn ﬁl- sinh™t %
TG * bl ' (2.27)
7T sin ——

2N

The quantities GN/Gl and l/RNGl can be determined from the zero
frequeﬁcy reflection coefficient on which the inductors and capacitors
have no effect. Stability criteria manifested in the requirement

that the poles of Py be in the LHP require GN/Gl or l/RNGl to

be greater than unity. Using equation 2.5 to obtain these quantities
from the zero frequency reflection and using equations 2.11 to find the

Tchebysheff zero frequency reflection from Pro and € , one finds for

odd N ,
o) + 1
EE _ l Bol
G
1 iB 'pTo‘ - 1
(2.28)
EE ) |pTo| + 1
G
LT ‘pToi -t

and for even N ,
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‘pBo' + 1

RNGl B ‘DBOI

\/2 F,Vl 2"
Pro + €+ + €

5 5 — -
T V% € = /l+ e2
To

1

B0y

+

Because of the reciprocity under a change in sign of GN as
exhibited by equation 2.10, the network of Figure 2.2 with active
response may be completely synthesized in terms ofvan equivalent

passive circuit. The reciprocal of the active Butterworth response

is
® 2N 1.2 o \oN
1+ (=) (==)" + (=)
mB p:BO @B ) 1 l/N
= b4 U‘lB = (‘QB pBO (2'29)
2 Wy N o N v
o+ (D) 1+ ()
“B “p
Reciprocal Tchebysheff response is
L+eom 2(33-) —iz + el (=)
N ‘o 0 N ‘o 2
T _ To T '2 _ € 5
5 - 5 o 5 € - ) ( '30)
2, Lo , @ P
Pro * € Ty (mT) L+e™ T (wT) To

Tables or closed form expressions (14,15) for the elements of lossless
Butterworth and Tchebysheff filters are generally given for the case
where the zeros and poles are in the same or opposite plane, as wve
require, and equations 2.29 and 2.30 put the reciprocal of active res-
ponses. into the normal passive network form. Tchebysheff and Butter-

worth responses for both active and passive terminations may also be
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obtained with lossy reactances in the filter. Tables of network
elements given for passive responses as a function of element loss
factors cannot, however, be used to synthesize lossy networks with

an active termination.

2.3 Four Low Pass Amplifier Configurations

The bandwidth normalizations for the basic network of Figure 2.2
have been found in terms of the time constants of the terminations for
Butterworth and Tchebysheff reflection responses. The bandwidth and
noise figure of the four amplifier configurations in Figure 2.1 which
all use this same basic network can now be determined. For brevity,
these amplifiers will be called Type A, B, C and D referring to the
designation in Figure 2.1. The reflection and transmission factors
appearing in the following discussions are defined in this figure.

Although the ladder reactance network has been assumed lossless ih
previous sections, the effects of network loss on the noise figure will

be formulated here using T, as the temperature of the network. As

N
shown in the introduction an effective temperature T will be used
for the tunnel diode. The noise figure is written with respect to a
source temperature g rather than the standard 29OOK, and any amp-
lified noise arising from the load conductance is also considered when
important. ' The noise which the load would contribute to the output of

an ideal matched unilateral amplifier is subtracted from this contribu-

tion since it should not be considered as a detrimental factor.

2.31 Type A Reflection Amplifier with Circulator. The presence
of the ideal matched circulator in configuration A makes the power

gain P

. R . *
aA of the circuit equal to the reflection gain Py Py For
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¥*

a lossless ladder plpi = PPy

and the integral limitations on the
reflection coefficlent given in equation 2.21 are directly the limi-

tations on the bandwidth of this amplifier.

(2.31)

it

I—EO‘ !-EQ

oo}
jwﬂn PGA dw 21
0

The Butterworth or Tchebysheff responses therefore represent optimum
choices. Figures 2.7 and 2.8 can be used directly to find QBCT/GT'

or wTCT/GTle=l as a function of N , and @, = or Pp -
The circulator reflection amplifier differs from the other con-

figurations which will be analyzed in that its noise figure is fixed

by the configuration. We.calculate this noise figure by assuming

first an ideal matched clrculator and fhen adding the effects of at-

tenvation or mismatch. Using the reciprocity theorem, one may say that

the ratio of noise power transmitted to the circulator Pout T to

noise power available from -GT equals the ratio of power transmitted

to -G to power available from the circulator.

T
Pou.t T _ . ’TIE
K7, af (2.32)
T
Similarly reciprocity can be applied to calculate Pout N’ the noise
out due to losses in the network.
P ,
out N ) o
— = 4l 4 |TT -
Kty of T - eyl (2.33)

The noise figure of the amplifier relative to a source at temperature

T is
s
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Pou.t N * Pout T

F = 1 +
A 2
KTS df |QN!
2 2
I LT ll+‘T|*‘D|
R . 5 N (2.31)
Ts pN s le' ‘

The contribution to FA of attenuations Al and A2 in the circula-

tor at temperature Tc can novw be added by application of the noise

figure formula for cascade amﬁlifiers

B 2
Fl2 = Fl 5 (2.35)
Gy
using
' Tc 1 |
F,o= l*T(K“l) (2.36)
S 1
The result is
’ 2
T 1l - Al ﬂr |T|
L+ v 2
s 1 s Alle|
2 2
™ (LT - eyl . L1-A
8 logl ™ 24 s Akl eyl

1 2
rather than matched attenuations. Some further attention to the quan-

2
|

TC should be considered zero if A and A are mismatch losses

2
tity 1 + |T| - [pl will be given in section 2.5 .

In closing discussion of the Type A Amplifier, it is well to

point out that because of the circulator it is completely stable to

changes in the source and load impedance and may be cascaded at will.-
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Equations 2.26 or 2.27 give the maximum tolerable reactance of the
low-pass equivalent circulator or the slope of the reactance about
the center frequency, W of a bandpass circulator in terms of Pao

and N or Omy? N and € .

2.32 Type B Bilateral Reflection Amplifier. The amplifier

configuration of type B does not give exact maximally flat or equal
ripple response when synthesized in terms of section 2.2. The required
reflection poles and zeros to achieve this effect are not known in
general and can be calculated only with some difficulty. BSard (16) has

done this for N =2 and N = 3 maximally flat response. In terms of

pN the pover gain of configuration B 1is
GG
s L *
P, =———s (1L+p)(L+p0) (2.38)
GB 2 N N
(GS+ GL)

Having poles and zeros in opposite half planes, N will in general
exhibit a rapid phase change with frequency. Aséuming this phase change
roughly uncorrelated with the amplitude changes in Py the average

power gain over the band may be related to the average value of ipN|

e A
e T

GG
B ¥ —SL (145 (2.39)
@ (o o)

and the extra induced ripple or ratio of maximum to minimum gain is on

the order of

' (G + G )8
- L
PPy + 1+ 2V PPy _ ¢ V/ —ogp— *+ 1 (2.10)
B [‘“‘“‘ ' (Gt GrY 2 ’
prN + 1 = 2 pNN o [P (S L) -
G G;7§a
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For a given pN B PG in equation 2.39 has a maximum for C-S = G

L

1
By = 7 (1% ppep) (2.41)
max

The fundamental bandwidth limitation on bilateral amplifiers with flat
gain has been found by Youla and Smilen (5) to be
nGT/mCCT

e 1
G > =1 (2.42)

giving only very slightly higher bandwidth than would be predicted

using equations 2.41 and 2.21.

2
The quantity GSGL/(GS+ GL)~ will, however, be chosen on
noise consideration and may be considerably less than l/h for practi-
cal amplifiers. We therefore calculate noise figure before bandwidth.

Following the reciprocity technique used before,

P G
L 2
EgEE~§; TG +G 7] (2:43)
T
T L s
P G
out N L 2 2
—_— = e 1+ |T| - |p
K g dw GI,+ GS l I I N|

A third source of output noise, namely the amplified noise of the load

conductance must be taken into account. The power dissipated in G

L
due to its own noise current generator, INE = uKTL GL ar , is
6: )
Pout 1, = K7, & —s (1 + QN)(l + oy ) (2.44)

(GS + GL)
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Kv. df is generally subtracted from this as present in the load of

L

any ideal matched unilateral amplifier.

The noise figure is

2
. TT ‘T| GS+ GL
Fg = L+ ¥ )
S (l+pN)(l +pN) 8
2 2
L ll + ]2l oyl G * G
s (L N1agt) %
2
TL GL (GS + GL) N
" \Bs (G o) (Lrpg) (Lro D) (#)
A
For a lossless ladder FB may be written as
T 2 1 G+ G T. G
1.1 Pw- s L. L, L 1 .
s T @ s ¢
s (L+p_)(1+p%) s s s GB
N N
T G T G
T T L L 1
l+~r-é—+?(§—"§'—) (2.&6)
8 8 8 S GB

The last additive factor of the noise figure may be Qery important

since I, is frequently high. It may be reduced to zero, however,

or even negative, by choosing GL/GS to be on the order of the

reciprocal of the average power galn.,

The required Pho or 5& for a given average power gain can be

‘calculated from equation 2.39 once GL/GS is chosen on noise figure

considerations. The normalized bandwidth can then be found from

Figures 2.7 or 2.8, or equations 2.2k or 2.25. For GL/GS = 1/PG 5

the Butterworth derived bandwidth is
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ki
. - fE. 2 sin = (2.47)
‘e (324 2‘15'G)l/2N 1

approaching a limit for infinite N

Gp Opt

T =2 =
T zn(PG+ 2PG)

o =

Figure 2.9 shows the Butterworth bandwidth for ?é = 40 as a function
of the load noise contributlon factor o = g& - l/PG with N as a
parameter.

The results of computing the normalized bandwidth on this basis
which gives maximally flat response only in the high gain limit agree
very well with Sard's (16) results¥* down to EG = 10. It is implicit
in this derivation that the reactances associated with the physical

source and load generators can be accommodated by the configuration as

per equations 2.26 and 2.27.

2.33 Type C Transmission with Load in Parallel with Active

Element. With configuration C minimum phase power gain can be
achieved, and the Butterworth and Tchebysheff responses, insofar as they
are desired for band shaping, are optimum for utilization of the band-

width capabilities of the C_; G, G combination. The bandwidth

™ T L
s : Gp - G,
limitations on Py are now normalized to —

T

but the power gain

is greater than the transmission gain.

*Figure 7 of Sard‘'s paper showing Bandwidth vs. Gain for Bilateral Ref-
lection Type Negative Conductance Amplifiers for

_M4fs s
- 2 9
(GL+ Gs)

actually represents his calculations for p = 1.
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(2.18)

The possibility that G. 1is greater than G, will not be considered

L T
here since it gives rise to a very high noise figure and very small
bandwidth corresponding to a low noise situation in configuration D .

The noise figure may be calculated as before

Gr Op,
— .. *
Py~ K 7pdf TETRL (1 + )1+ p)
T UL
G
- L 2 p)
Pot = K Ty &F 6o G 1+ |77 - Ipll
G2
p SK T oaf —E (L4 o)1+ 0) .
out L L )2 1 1 (2.49)
(G- G,
l *
) T G (T+e) (1 + el
Fo=lv s (g=0 2 )
s T L |T]
2 2
1 -
. T - ey
s 7|
* -
T G (1+p (1 + 0 1
+ = | e = ) - = (2.50)
5 7" L || Pac

Since the zeros and poles of Py lie in the same half plane,
its net phase shift may be small over most of the frequency range. It
will be shown in a later section that designs in which the maximum
phase change exceeds 180O are impractical. For purposes of approxi-
mating Fc we assume here that arg Py is close to =n over the

bandwidth of the amplifier. It will usually be correct if P is
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small and will make little difference if pl is large. In this

approximation Fc for lossless networks can be written

T. G T G
o TP L L L B
Fc = 1+ R (G - P ) (2.51)
s 8 s

]
o]

which is the same as equation 2.46, the noise figure of the type B
amplifier.
For the lossless case the zero frequency power gain can be
written as
La_ G

I, 8

(2.52)
2
- GT)

P =
el
w=0 (qs+ GL

Using this equation and equation 2.48, Ppo = \/lTBOI -1 or

- [
Pp = ITT| -1 cen be calculated as functions of P, and

GL/Gs . The normalized bandwidths may then be found from the equations
or figures of section 2.2. Figure 2.10 shows the Butterworth transmis-

. . \ G, 1 .
sion bandwidth for P.= 40 as a function of Q= =— - =— . The

G Gs ~ Py
bandwidth of the type C amplifier generally shows a maximum for
GL/GS less than unity, but is in all cases slightly lower than for
type B émplifiers for equal gain, noise figure, and number of compon-
ents. These calculations for the bandwidth of the type C transmission
amplifier have also been done by Sard (16) for the maximally flat case
and the results for this case are identical.
The above calculations assume that the actual tunnel diode can

accomodate a load impedance directly in parallel with its internal

conductance and that the load impedance does not contribute any addi-

tional capacitance to Cp . As we shall see in section 2.8 some



Iy P

.0 /, —
\
e
8 — | T
| S \
3 T —
0 / T
.9
r—l -
OY
a
|
0.2
/—-
/ Ne=i
o /
0.05
0 0.2 0.4 0.6 08 1.0
= 6L !
Gs PG
Figure 2.10 Normalized bandwidth of Butterworth type C trensmission
amplifier for
P. = 40 versus a:f}—L—-.l_.
G Gs PG



D

band pass configurations of the tunnel diode and load or source imped-
ancekwill be analyzable on these terms without this direct but
physically impossible connection being required. In low-pass
clrcuits, however, or in extremely wide band amplifiers, the series
inductance of thertunnel diode may limit the practical accuracy of
this analysis of type C and D configurations. The effects of induc-
tance intervening between GT and GL or GT and Gs may be consi-

dered with results from section 2.6, but compensation for this element

nust be considered on an individusl case basis.

2.34 Type D Transmission Amplifier with Source in Parallel

with Active Element. The power gain in the type D amplifier is

Gs o
P l |T| (2.53)

GD lGT- Gs

The noise figure may again be evaluated from the components of the

output noise power.

G,
_ 2 T
Popp =~ K7pdf |7 IG —
T 8
¥*
?Out = Krpaf (L+ pN)(l +ey)
2 2
Pty = Ky df ’1 - |pN1 + |7 l Gy > Gy
2 2
Ky of ll o P I ' Gp < G (2.54)



2
Tp O Ty Lo leyl” 217 G - G
FD=1+——————+7T_—— 7 a
Ts s 8 ITI 5
*
L (1foN)(l+pN) oS | 1 255
Ts \T|2 Oy ‘ PG )

The poles and zeros of N lie in opposite half planes, and the
arg oy will vary by as much as 2Nwn over the passband. Except
for the N = 1 case in which types B, C;, and D are all the same, we
are justified in substituting for (1 + pN)(l + p§) its approximate

average value in the lossless ‘ladder case.

Jﬁ (1 + pN)(l + pg)dm = o, [ 1+ |Eﬁ|2]
0

wc = pnominal cutoff frequency or bandwidth.

As before, the required reflection coefficient for a given

power gain can be calculated with equations 2.52 and 2.53. For the

. . L . ;
GL/C-S in the configuration equal to a£76;- in the type C configu-

ration, the bandwidths are the same. For comparably low noise
figure, however, configuration D gives much lower bandwidth. Figure

2.11 shows the Butterworth bandwidth as a function of the load noise

factor o
o = (l+ Loyl ™ CGp- Gs) 1
= 5 - m—
|| Gs s
_2
~ N

!
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While this configuration gives generally lower bandwidth than the
others, 1t may have one advantage. In all other configurations signal
power must pass through the ladder network before reaching the nega-
tive conductance where amplification can occur. Here, the signal 1s
amplified first and losses in the ladder network would not ostensibly
contribute so heavily to the noise figure. This appears as the

Gp - Gg

factor i in the noise figure term due to ™ °
s

2.4 Three Configurations with Tunnel Diodes in Both Terminations

One may calculate the gain bandwidth capability of the ladder
network amplifier configurations when the capacitance of a second tun-
nel diode is used to fill the reactance requirements at the passive
termination. Figure 2.12 shows three such configurations which can
be called types A', B', and C'. These low-pass configurations are
theoretically achievable for odd N only. ©Some bandpass circuits will
be shown in section 2.5, however, which are bandpass approximants of
these configurations and yet may contain two tunnel diodes for even N .

In this section the network will be assumed lossless and both
tunnel diodes are assumed to have the same time constant CT/GT and
noise temperature. The required calculations for bandwidth involve
the simultaneous application of equations 2.24 and 2.26, or 2.25 and
2.27. The method may be simplified for the A' and B' cases by calcu-
lating the increase in gain that may be obtained in these configurations
over that of type A emplifiers with the same bandwidth and noise figure.
In Figure 2.12A% the admittance level of the circulator is shown raised

over that in Figure 2.1A by GTN so that the same network and GTl
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give the same reflection response in both cases. The ideal noise

T

figure will also be essentially 1 + ;2 for both. The increase in
5]

gain of A' over A 1is the ratio p& pﬁ*,/pN p§ as defined in

Figure 2.12A'. This may be calculated to be

G, 2
1+ “%E (1 + QL)
o} N

or, neglecting l/pN

§ £

Dy P G 2

—— F g ) (2.57)
N "N 0

in which GO is the admittance level of the circulator in Figure 2.1A
Remembering that GTN/CTN = GTl/CTl 5 GTN/GO may be computed from

section 2.2 as a function Pro OF Ppy ° The resulting gain increase

factor is
1/ 2
o' pt¥ Ppo, = L
NN . N
NN 1 — (2.58)
Py P
N N pl/N+l
BoN

for Butterworth response, or

o
o' op. ¥ sinh = sinh™t _TON _ sinh = sinh™+ 1\ 2
e Y P € T ) (e
Py Py sinh % sinn™t PTON 4 ginn 2 sinh™T &
€ €

for Tchebysheff response.

Figure 2.12B' shows the admittance level of the load and signal
generator combination raised with respect to Figure 2.1B by GTN but
with the ratio of load to generator impedance maintained. For equal

noise figures and bandwidths equations 2.58 and 2.59 are again correct

for the increase in gain of the B' configuration over configuration B.
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The comparison of the type C' circuit to the type Cvis somewhat
more difficult to perform. Their noise performances are essentially
equal for equal gains and choices of GL/Gs o The calculations for
wBCT/GT have been done for Butterworth response using equations 2.60

through 2.63, below.

‘ . i
CTQ% _ GS— GTN 2 sin N ) GTl GL 2 sin B 2 60)
G Gy oWV 42 Gpp /N L1
o) o)
L G‘ G
L s
P = (2.61)
G lw=0 2
(GL+ G, C—TN- GTl?
Bo o - ¢
GS+ GL GTN GTl
T G .+ G T G
I i L ‘R A O
Fo o= 1l+= ~ = (5 = ) (2.63)
s s 8 s e

The increase in bandwidth capability was not significantly large in any

case; as one might expect. Figure 2.13 shows the normalized bandwidth

G 14
versus o =-—L7 - =t for P, = lo.
Gs Pg G

The power gain increase of these configurations with two tunnel
diodes over the comparable single diode configurations canmot exceed
four. Considering that the bandwidth in the single diode configurations

varies at least as slovly as P'l/u

o y this does not represent a very

large increase in gain bandwidth capability. The effort required to
it the second diode into a practical circuit may therefore not always
be worth while. On the other hand, the second diode acts as a preamp-

lifier of the signal before it enters the network and should reduce the
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effect of network losses on noise figure by something on the order

of the square roots of the factors given in equations 2.58 and 2.59.

2.5 Band Pass Equivalents

The basic low pass characteristics of the ladder circuit may
be translated to realizable band pass characteristics by the trans-

formation

Q
gt 0
s = 9 (._QO + -7 (2.64)

where s' ig the new band pass variable and no is the band center.
The new circuits are derived from those in Figures 2.1 and 2.2 by

placing a capacitor in series with every inductance L, and an induc-

i
tance in parallel with every capacitor Cj such that each branch is
resonant at QO. The band pass equivalent of & low pass ladder is
shown in Figure 2.14. This is sometimes called the band pass "constant

K"configuration. The response has geometric symmetry about the band

center so that

w.w. = 0 (2.65)

where Wy = Wy is equal to the characteristic bandwidth ®, = W or
®n of the low pass network. No contraction of the bandwidth occurs
in the transformation. The ratio of series to shunt inductance is on
the order of (Qo/mc)2 which makes the circuits as shown in Figure
2.14 sometimes physically difficult to achieve.

To transform the circuit in Figure 2.14 into one of many coupled

resonator configurations, we first add an ideal impedance inverter on

both sides of each series or shunt resonant branch and convert these
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Figure 2.15 Equivalents of Filgure 2.14 using ideal impedance inverters
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branches to their duals. Two examples are shown in Figure 2.15. An
ideal impedance inverter 1s described in image parameter theory as a
four-terminal network with characteristic or image impedance ZO and

a constant phase shift © = % % . Terminated by Zl’ such an element
exhibits an input impedance ZOE/ZlB l/Zl is physically realizable
as the dual hetwork of Zl . The four impedance inverters shown in

Figure 2.16 have constant phase shift © = + g ; but their image imped-
ance is only approximately constant in narrow band operation. ZO in
each case equals the reactance of the positive arm. Flux coupling may
also be used to achieve impedance inversion.

When a proper choice is made the impedance inverters of Figure
2.16 for inéertion into ‘the configurations in Figure 2.15, the negative
elements are absorbed into larger positive elements giving a realizable
circuit. Pigure 2.17a and b shows two coupled resonator configurations
which are achievable transformations of the basic low pass ladder.

For equal numbers of resonant branches the "constant k" and
coupled resonator configurations have the same number of reflection
poles and zeros..The transmission response T(s)T(—é) of the "constant k"
configuration has two zeros at s = o and s = 0 for each branch.
This is achievable in the coupled resonator only for an odd number of
resonators and when the resultant even number of coupling elements
igs split evenly between inductances and capacitances.

The elements of Figures 2.17a and b may be specified directly
in terms of a low pass ladder such as in Figure 2.2 (17) to make their
responses equivalent in the narrow band limit. For Figure 2.17a the

requirements are:
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Figure 2.17 Two coupled resonator bandpass approximants
to the networks in Figures 2.2 and 2.1k
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Each node resonates at QO when the other nodes sre shorted.

Lo 8, 50,

t i
Ei_ - f} . EE_ - ﬁE or Eﬁ (2.66)
c,’ e Cy

For Figure 2.17b the requirements are:
FEach loop resonates at QO with the other loops open circuilted.
11 it
°p % 1
C, " Q2 L.C
o 12

s etc.
12

(2.67)

The ratio of series to shunt elements in these configurations usually
comes out on the order of wc/ﬂo or Qo/wc rather than these factors
squared.

These relations do not completely specify the network elements.
Further specification may be obtained by demanding that the new network
transform impedance levels; that is, GN'/Gl' - n° GN/Gl . Further
specification is undoubtedly also obtained in removing the approximation
made in the impedance inverter insertion and synthesizing the network

more accurately and directly from the poles and zeros of the desired

reflection response. Cohn (18) has shown that Butterworth and Tcheby-
sheff coupled resonator designs with bandwidths greater than 20% are

achievable with lumped, waveguide,or coax elements.
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Exact low pass to multiple bandpass transformations similar to
equation 2.64 can be used to synthesize multiple bandpass negative
resistance amplifiers. Coupled resonator approximants for these
networki can also usually be found. In Chapter ILI some double pass
band networks are derived for use in wide-banding time varying reac-
tance amplifiers. These allow rather independent specification of
the network characteristics in the two bands and provide isolation.
They also allow the use of separate terminations for the two bands.
Direct transformations on s do not give these capabllities. As
will be seen in Section 2.8, double band operation is reguired in
order to obtain stable gain from a tunnel diode at frequencies above
its self-resonant frequency, 1/ VFEQEE;. Such networks may also be

useful for tunnel diode mixers with gain at two frequenciles.

In general, exact low pass to multiple pass transformations dis-
tribute the gain and bandwidth but preserve the integral limitations
of the active element. Reasonable approximants also have these
properties. Thus the basic bandwidth limitations found for the low-
pass structure of Figure 2.2 in terms of Gl/Cl and Py apply
equally well to bandpass circuits with the same Gl/Cl termination.
The actual mechanism used to achieve the transformation will depend

on the type of elements available in the desired frequency range.
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2.6 Sensitivity to Element Variation and Approximate Loss
Calculations

It will be of interest in amplifier design to know the approxi-
mate limits through which network elements can be varied without
causing instability and oscillation. We calculate here approximately

these limits for non-simultaneous errors in the ladder terminations.

Let us suppose that a network is designed to give a reflection

coefficient Py and transmission T. when terminated in an impedance

1
GO . The transmission for the same network terminated in

GO+ A Yo(s)' gives us a measure of the sensitivity to the error A YO .

This response is found to be (9)

T (s) T (s)
T (8) = —2—F (2.68)
, 1 - p(s) P, (s)
AY (s)
in which py(s) = 2
2G, + A Yo(s)
4e Re(G + A Y (8))
and Tg(s) =0 ° °

2G, + A Yo(s)

Except when p2(s) = 0 , the poles of T,, are the zeros of

1 - pl(s) 02(5) . For very small QE(S)’ these zeros must be in the
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left half plane since there must exist some small but finite
A Yo(s) ‘which does not lead to instability. These zeros may move

toward the s =iw axis as (s) is increased, and instability sets

Po

in when one of the zeros hits this axis. The critical value of

A Yo(s) for this is when
pl(s) pe(s) 1= 1 for some o 7 (2.69)

The magnitude of »p is nearly constant and large in a passband

1@

and generally decreases rapidly at the band edge. oo is presum-
iw

lf

ably a slowly varying function everywhere. If within the passband
1 . . \
P i( , no instability can occur. This sets an ap-
l Ciw pl(iw)'max
proximate limit on the critical magnitude of the error zSYO which

cannot cause instability

IA Yo'max s 2

< in passband. 2.70
¢ E inp (2.70)

llmax
This formula or its series equivalent may be applied at either ter-
mination. To a greater approximation the result is also correct for
any other branches of a low pass ladder circuit for which the termina-
tions are approximately Gb’ and to "constant k" bandpass equivalents.
It must be applied with care in coupled resonator configurations in
which impedance transformation occurs.

Using equation 2.68 as a guide, the engineer can set up rough
limits on the tolerable element errors in terms of system performance
degradation.

It is difficult to obtain useful results from a complete
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consideration of simultaneous element variations. One may guess,
however, that if the sum of the magnitudes of the fractional immi-
tance errors is within the limits prescribed for any single error,
no instability will result. It can be shown that the introduction
of uniform loss in all the ladder branches; that is, placing a re-
sistance Ri in serles with each Li and conductance Gi in
parallel with each Ci in a low pass circuit so that all Ri/Li and
Gi/ci are equal, cannot lead to instability. The introduction of
this loss is mathematically identical to evaluating real frequency

R

performance at s = iw + fi rather than at s = 1w . The real
i

frequency axis is thus moved away from left half plane poles and zeros
of the lossless system and no instability can ensue.

The effects of this uniform loss on the response can some-
times be removed by "predistorting” the lossless poles to the right.
We may make some evaluation of the effects of uniform loss when
this predistortion is not carried out, but must base the discussion
on results of Chapter IV. Figure 2.18 shows typical poles and Zeros
of Butterworth transmission and reflections and the distorted
5 = 5; f 4 axis .

In low pass circults 4, represents the inverse guality factor

of the network elements at the normalization or cutoff frequency ®,

= = = - (2.71)

For bandpass circuits 4 is associated with the inverse quality factor

of the resonant palrs or resonators.
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Figure 2.18

Lossless real Real frequency
frequency axis —= -%— oxls distorted for
® uniform loss
g = 1 ——
UJB S:i_-(.,l.)_+qo

Sketch showing poles and zeros of lossless Butter-
worth response and axis for evaluating response in
presence of uniform loss
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Qp,

o}

SIEO
o

Yonp (2.72)

o

Results in Chapter IV give us that for small qo and Butterworth

response
pB 2
\T\g | (e Zm)
y do ;) ~ b
n 5 = In = ¥ . —-Ngq (2.73)
‘TB\ w (g - PBm e
o m' o wB
oB 2
7t (g ~ ) q .
m'*o “mp LHPp, ~ k 0
fn - - N (2.74)
B 7 1/N
x (2fm PRo
m o, ‘LHP
B m
( SOBm) 2
Tty Wy RHPm I q
fn e i (2.75)
SOBm Tt pl N °
ﬂ:m( w )RHP Bo
B m

The effect of the loss on zero frequency transmission is

oy g
- g - e 7 (2.76)
i Blo

For the active termination reflection

5 ) thO

—_—= e X e (2.77)
o

2
o]

and for the passive termination reflection
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2 m,
N qo T npp N
5= e e o : (2.78)
e
o]

The quantities 1 + |T12 - |p1|2 and 1 + |T|2 -,‘QNIQ which appear in

noise figure calculations may thus be evaluated at midband frequencies

1+ ITI - |pl\2 -
a, q
Ly
4N do
] g, i a, ;;%7Nr
2 e 2 bl 0
1+ lTB‘O e ] ‘DNB ° . o (2.79)

Using the small qo approximation and 1 + |T 2 = Ipl‘§ s We have
o}
kg 2- i
2 2 0 N
b I 1 o B N CHRE Y (2.80)
o] (o]
1
g -
2 2 . _ o} N
1+ lT a - ey a, = - (pBO + 1) (2.81)

It is not known to whalt extent these formulas will be correct after pre-
distortion is used.

Eguations 2.73 through 2.75 have Tchebysheff complements. The
change in the transmission is computed with Tchebysheff poles in

Chapter IV.
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S
(2w |2
2 JTm )
s “r
fn S = — = - .6mNg (2.82)
2 pT 8]
TT xq - m
O mo
®p

The Tchebysheff reflection zeros have nearly the same angular spacing

as the Butterworth and an average radius

Pro 070
1 -1 VI | -1 -
cosh 3 sinh ¢~ + sinh N sinh e _1 (2pTo /v
2 2 €
Thus
g
% (q OTm) °
m'“o “dp /LHPp 8 q
o)
In S =N , (2.83)
7 ( OTm % P, M/
o )1rp (—=)
e ( i‘fr;ﬁﬂ) 2
m' %" @ /RHP 8 q
P T m - 2N ° (2.84)
n 80T k8 20 l;N i
st ( m) ( TO)
m m& RHPm €

2.7 Warm Up Stability

To make a useful amplifier containing a tunnel diode and based on
Figure 2.2, one must demand that -Gl be variable from zero to its
operating value without causing instability. Otherwise the quiescent
operating»point may be difficult to reach. This restriction is beyond

the scope of the previous analysis and must be considered separately.

The poles and zeros of the reflection coefficient at the active
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termination fall in the same half plane. TFor near unity reflection
the zeros approach the poles and Py has 1ittle phase shift. TFor

high reflection, the phase of may change from zero at the origin

to a peak of Nﬂ/Q st some value of w even though it again decreases
to zero at infinity.. The meaning of this in terms of Yl i’ the

admittance seen by =~G,, is clarified by Figure 2.19. These diagrams

l’

are in a sense Nyquist stability diagrams in which the locus of posi-

tive Gl is the positive real axis. The stability for Gl = GlO has

been guaranteed by the synthesis technique. Should Gl cross the con-~
tour instability occurs. An unstable range of Gl is exhibited in
Figure 2.19c. It is of use to calculate the critical value of Py at

a given N which gives the tangency of Y, (w) to the real axis

1
shown in Figure 2.19Db.
The straightforward analytic approach is to form the imaginary

part of Y in(w) and demand that its numerator polynomial be zero for

1
some real value of ® . The numerator is of order N - 1 in w2 and
the condition that it has a real o root ilmplies at least that the
discriminant (b2 - hac for a quadratic) vanish. This condition yields
an equation of order 2N in p%éN for Butterworth response. The method
is untenable in practice and a less difficult method has been found which
gives exact results for the Butterworth cases and limits for the
Tchebysheff cases. We consider the new reflection coefficient pl(m)'
obtained with a termination - aGlO in terms of the quiescent state
value pl(w) .
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p(s8) = -
* Glo *+ Ying ()
( py(s) -1
Y, ) = =
ing s) Dl(s) 1 (2.85)
p.(s) + 1
aG - G 1
10 10 plZsi + 1
p,'(s) = -
1 py(8) -1
aG + G e
10 10 pl(s) + 1

The poles of pi are the zeros of

(F52) (-0, () + 1 (2.86)

As a varies from 1 to -1 the roots of equation 2.85 move from the

poles of p.(8) 1o the zeros of p_(s) . The condition that Y;
1 1Ny

1
has a point of tangency to the real axis as in Figure 2.19b now
results in the condition that the contour, formed by the roots of
equation 2.86,has a point of tangency to the s = jw axis as shown

in Figure 2.20a. At this point,as well as everywhere on the contour,
arg -0y equals = . The analytic method of locating this point on

the Jjw axis and finding the value or values of P for which it exists
invol&es as much algebra as the previously suggested analytic method.
However, the problem may now be associated with more genefal techniques
in complex variables and,in particular, conformal transformations may

be used on both the pole zero configuration and the root contour. The

electrostatic analogy is helpful, and using it we sassociate the desired
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Figure 2.20 Showing the s plane root contour for Butterworth reflection
and illustrating the transformation s'ﬁgB = I s/wy

applied to a Butterworth pole zero configuration
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root contours with specific electrostatic flux lines between equal
positive and negative line charges corresponding to poles and zeros.

Figure 2.20 demonstrates the application of the transformation
1
_S..__.:’gn_s__
Wy wp |
zeros in the s' plane transforms into the Butterworth poles and zeros

to the Butterworth problem. The infinity of poles and

in the s plane. The root contour cannot be conveniently drawn in the

s' plane but from symmetry it is evident that any point of tangency to

1
the 1 %+ ori line must be at Re o~ = = fn o . In the s plane
2 wp 2N Bo
this is — = + ipl/ N The condition that arg -p, = x at
wp Bo 1

= + ipl/zN can be written analytically and the resulting transcen-
Bo

o

dental simplified sufficiently to yield a solution for the critical

values of PRo ° These are shown in Table 2.1

Table 2.1

Critical Values of Pao for

Warm Up Stability with Butterworth Response

Ppo Critical

o]
00
320
92
50

UnoFE oW IZ

i 8 : s' . . .
The transformation -- = sinh 5 is shown in Figure 2.21 applied to a

"
Tchebysheff pole zero system. The similarity of the transformed
Tchebysheff system to the transformed Butterworth may be used to estab-

lish some limits on the Tchebysheff critical reflection constants. We

compare the initial angle of the field line leaving point a at an
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Figure 2.21 Illustrating the transformation sﬁwT = sinh s'ﬁqr
opplied to a Tchebysheff pole zero configuration
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angle a for point a' which satisfies the conditions

Qo+ E:[arg(sa- spi)- arg(sa-soiﬂ = (2m+l)n , remembering that the

i
known root contour b - b' also satisfies this condition. For spacing
1 , .=1Pp 1 ., =11 1
T sinh & —== - 7 sinh ¢ equal to T In PRo ? the effect of the left

side poles and zeros in the Tchebysheff case is to decrease a, - The
Tchebysheff root contour will therefore fall inside the Butterworth
contour for equal pole zero spacings. We now have an upper critical

limit on Prg and € .

: 8]
. .=1 "To , =L 1
sinh e - simh g e = M P ritical
critical
o Pm. 2
To To 1 1 S
=+ B ) +1-n et 2 +1 2 i PBo critical
o)
TO+ 1 (T02
€ €
2 p .o
1 1 Bo critical (2.87)
-+ l+—-—2-
€ € critical

e = p
<« "To critical Bo critical .

In the limit of small ¢ , for which Tchebysheff and Butterworth

characteristics are identical, expression 2.87 gives the predictable
reswt  Ony oritical - PBo critical

2.8 Compatibility of Tunnel Diode Packaging Elements with Basic Con-

figurations

The basic integral limitation on the reflection coefficient of a

parallel negative conductance and capacitance
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and discussion of limitations due to inductance
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jf I [ nGT

M jp do = —=
C

0 ® T

can be generalized to include other reactance effects in a manner similar
to that used by Fano (9) on passive reflections. We consider

é Seﬂn(-pT(S))dS in which pT(s) is defined in Figure 2.22 and equa-
tion 2.88 and the contour is the s = iw axis and the infinite half

circle enclosing the RHP.

G
1+ — 4 1
%0 2(L+ L)C
5
lim - pT(s) = Lp
S = @ G 1
1 - LA
8C

T sE(LP+ L')cT

Gy Gy Gy
lim  fn - pT(S) = 2 (SC - =3 — + — 3) (2.89)
- {
5 — 00 T s (Lp+ L )cT 357Cp,
i o
Integrating. around the circle at infinity with s = % e O, ds = % ei de

o G
we have ﬁ-ES Er-ds = 0 and

T 2 G 1 1, 6p.2

f W fn Ipwlda) = ﬂ_’T' L + L')C '§ ( T)

0 P
7
3 (2.90)
3 RHP pm om)

Integration of % gn (-p)ds around the LHP gives

7 2 G 1 1,872 r oy 3 3
"i!” o tnlp,[an = Cq (Lp+ LT)Cy ~ E(EE) - {Spm - som)
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Just as GT/CT was determined in Section 2.2 from the pole and
zero locations of the desired response, here we may further determine
(Lp+ L')CT . Equation 2.90 sets an upper limit on Lp which cannot
be exceeded if the desired low pass response is to be achieved. The

minimum value of the left hand integral for reasonably flat low pass

w? G
C T
response over & bandwidth o is —35— «= I
] 3 T
G, G, G, 3
2x T T 1 1T
o, > & < & Ty Toe - =z ) (2.92)
c 3 CT T Lp% L LT 3 CT
) 2
W= G, 2 w 4np 2
L 2 1,7
et M 2 s () or -5 @+ (=) (2.93)
pmax T T e

Green's (15) closed form Butterworth and Tchebysheff formulas yield

(1 - p_1_/1\1)2 . upl/N i X
1 P Bo Bo N I
- — (2.9%)
LpCfQB b sin 7y sin o
sin T P
1 2 2N 2 3 . i -1 "To
;TE;Z:E £ ;;——35 (cos T + (81nh.N sinh —=
pT T "oy
0, 2
1 11 (sinh % sinh™t —%-9 - sinh ﬁl- sinht % )
X {sinh § sinh 2+ - I
b sin = sin =

2N N
(2.95)

For stable bandpass response about center frequency QO

(0.¢]

jop]

Q .
fmg n ipw|da) 2’[ 95 ﬂn!pwidw ~ a§ n—i— (2.96)
0 0
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and equation 2.90 Dbecomes

G
o " T 1 1 %m0
&% T % T ((Lp+ L0, 3 &) (2.97)

This may be interpreted as meaning that for stable operation, the self
1 )1/2

resonant frequency of the tunnel diode QT = (—TT—6- must be at
p T

least as high as the center frequency of the amplifier. The impossi-

bility of bandpass operation above ., does not extend to multiple

T

bandpass operation. Consider an amplifier design which divides

p(w) into passbands centered at Q. and Q, such that

1 2
KGT
gnp(w)Aw :(l—X)_.___
1 1
T
and (2.98)
nGT
4n p(wg) Ao, = X —5=
T
Equation 2.90 is then written as
G G G, 2
2 2 T T 1 1,7
(1- X)aT + X0 J = { ; - 2 {x) ] (2.99)
[ 1 2] Cp Cop (i%+ L )cT 3 Cp

The greatest gain and bandwidth at Qs is obtained when Ql is zero
and equation 2.99 gives X , the reduction factor of the gain bandwidth
integral relation which must be taken to get stable amplification above
the self-resonant frequency of the tunnel diode.

Eguation 2.90 also sets an upper limit on Lp above which no

stable operation of a tunnel diode in an otherwise passive circuit is

oo
2
possible. Since [ o zn’pl@m must be positive, either
o
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1 -1 (EE)Z

3 3 .
.- is positive or 2: 8 - 8 is positive,
(L + LY)C 3 Cp REp. PO om
p T m

or both. We have seen that no E: 8oy CBR exist. Therefore, when
RHP

(Lp+ L') > 3CT/GT2 , the tunnel diode circuit of Figure 2.22 is unstable
independent of the nature of passive Y'(s)

These arguments about Lp are based on the assumption that it
is a truly lumped inductance. The integrals are not correct for the
distributed inductance of transmission lines and muét be applied with
care in this case. It is likely that when the packaging structure of
g tunnel diode need not be specifically analyzed as a transmission line
in the design of an amplifier, then these limitations will apply.

In the low pass amplifier models which do not require the load or
generator conductance to parallel GT equations 2.94 and 2.95 indicate
the extent to which series inductance may be accommodated for Butter-
worth and Tchebysheff response. When the load or generator conductance

must appear in parallel with G the approximate stability analysis

T b4
given in Section 2.5 will indicate the stability tolerance on Lp .

When Lp is one-tenth this value it is not likely to depreciate the
performance badly. The magnitude of the effect of series resistance

RB may be determined in the same way.

For bandpass circuits the normal low pass to bandpass transformation
requires an inductance L = l/QiCT to shunt GT and CT as in Figure
2.23a. -An equivalence between this circuit and that of Pigure 2.23b is
found, however, which tolerates Lp to about l/Q?CT and does not

change GT/CT . This transformation is exact and leads to an element

ratio Lé/Li not much different than the original LE/Ll . It has
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already been suggested that this ratio becomes too large in narrow
band amplifiers with "constant k" configurations.

For narrow bandpass operation it 1s possible to represent the
parallel conductance and capacitance of the tunnel diode by an approxi-
mate series resistance and capacitance as shown in Figure 2.24. The
representation can be made exact at the band center, s = iQO o, and is
good for s = iQO . The series resistance RB’ as well as any
generator or load resistance, can be accommodated directly in previously
discussed amplifier configurations when this representation is used.
When amplifiers are synthesized on this basis, however, it will in
general be necessary to check the second order terms of the series rep-
resentation approximation.to guarantee that they do not severely affect
the actual response. The approximation will not, in general, be useful
for high fractional bandwidth amplifiers, and the use of the equiva-

lence shown in Figure 2.23 is preferable for that case.
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CHAPTER IIT

bGAIN AND BANDWIDTH IN NONLINEAR REACTANCE AMPLIFIERS

3.0 Introduction

That the bandwidth of nonlinear reactance amplifiers depends on
the number of tuning elements in the amplifier clrcuit was recognized
by Seidel and Herrmann (19). They postulated that maximally flat
reflection response would be obtained in degenerate parametric ampli-
fiers, and that with N control factors or independent reactance
slopes at their disposal, the first 2W-2 coefficients of a Taylor
series expansion of the power gain could be set to zero at the band
center. They found mB pi/N to be an invariant for constant N and
felt that this indicated finite bandwidths could be obtained at un-
limited galin by choosing sufficiently large N. Their failure to
find a logarithmic relation between 0 and a% was due to‘the inabi-
lity of their analysis to yleld values for the non-zero coefficients
in this Taylor expansion.

Matthei (20) has attempted a design of wide band multiply tuned
parametric amplifiers by using the D.C. reactance of the nonlinear
reactor as an element of a filter circuit whose input admittance, in-
cluding this reactance, is nearly constant in a desired band. He has
chosen to synthesize these filters as matched Tchebysheff bandpass

networks whose transmission response with the correct passive termina-

tion is
7" - -
1+ € TNCTT-

These filters he finds, when inserted into parametric amplifier circults,
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do not gilve adequately smooth gain response, and it is necessary to
insert further reactances to shape’the galn. Matthel's procedure is
basically a "cut and try" method which does nof attempt to approach an
optimum synthesis based on a recogﬁition of a fundamental bandwlidth
limitation and in terms of the circuilt complexity.

In this chapter we will make essentially the same assumptions
as Herrmsnn and Seidel and Matthel have made in their works. Somewhat
greater space will be expended with fundamental and background material
to remove from the complete e@uations of nonlinear reactance amplifiers
all factors except those essential to the synthesis of parametric amp-
lifiers and upconverters in thelr simplest form. Many of these factors
can be latef reinstated ds perturbations.

The resulting first order theory, plus assumptions which are
necessary for an analytic treatment of a two-frequency problem, do lead
to a definite bandwidth limitation for the parametric amplifier. A
consideration of some physical requirements of an amplifier operating at
two frequencies further delineates this limitation. The low pass ladder

network is again chosen as a configuration for synthesis.

3.1 Basic Equations of Nonlinear Reactance Amplifiers

Let us consider a nonlinear capacitance

= cv) (3.1)

in the presence of a large "pump” voltage Vp(t) and a vanishingly
small signal voltage dV(t). As long as q(t) is analytic,it may be

expanded in a Taylor series about Vp(t) as
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Vp(t)

qp(t) + dq(t) = q, + ‘[' c(v)av + C[Vp(t)]

1 4 2
Sy 0| T (3.2)
Iy
For dv(t) small, it is correct to write
Vb(t)
a(t) = a + f a(v)av
dq(t) = C[vp(t)] av(t) (3.3)

effectively separating the pump excitation equations from the small sig-
nal equations. The guantity C[Vp(t)] is called a time varying

cgpacitance and in this work will be given explicit time dependence,
C[Vp(t)] = o(t) = Co(l + 7 cos ﬂpt) , 1<l (3.4)

In a similar manner the large and small signal equations of a noenlinear

elastance %% = 8(q) can be separated to give
qp(t)
Vp(t) = V_ + _[ﬂ S(q) da
av(t) = S[qp(t)] (3.5)

and we will consider only the case
S[qp(t)] = 8(%) = So(l + m cos th) (3.6)

The small signal voltage, charge, and current can now be written

as a summation of cisoidal functions with complex coefficlents:
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o i®%+na)t -i®%+nm)t
av(t) = v, e Py vt e p
n=-00 o
@ i{w +n0 )t ~i(w +n0 )t
dq(t) = z: q, e © Py Qe ° p
n==00
00 i(w0+ nw )t -i(cno+ nw )t
di(t) = ie Py 1¥ e P (3.7)
==00

i

in vwhich one of the frequenciles ® wb+119p s ususlly ® s is asso- ‘
clated with a single small signal source in the system. In this work
both ® and Qp are taken as positive and w < Qp « There is, how-
ever, some significance to negative frequencies in time varying reactance
amplifier equations and the general formulation methods of circult
analysis with complex variables can be used only when negative frequen-
cles are allowed.

The clrcult equations for a time varying capacitance
Co(l + 1 cos th) in parallel with an admittance Y'(w) and a current
generator EIm cos(wb+11wp)t as shown in Figure 3.1 can now be separ-

ated by harmonic components. The time dependence is then removed giving

the set of equations 3.8 and their complex conjugates.

1

I
n o n 3
1w, (Co + 1w )Vh *2 Co(Vn+l * Vn-l)
n n
Y o= Y(icn)'wn (3.8)

Desoer (21) has pointed out that an equivalent network can be drawn for
such a system of equations in which the Vn can be associsted with

node voltages. Such a network is shown in Figure 3.2. It is useful as
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c(t))-;;‘{

dq(t) =
c(t)av(t)

Y? .
(wo . nwp)

@QI cos w
n P

av(s)

Figure 3.1 An equivalent circult leading to equations 3.8

IO imot
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Figure 3.2 A section of a network whose loop equations are the same
as equations 3.8

Lo et I, doy®
1d E;;
N P4
| 20 i
i i
Yt ! 1 biys
o c a 1
—+ G 12 o 2 fi-— + C
iwo s | : ﬂbi‘ o)
I !
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o in iin

Figure 3.3 First order network extracted from Figure 3.2
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an aid in visualizing the effects of eliminating most of the frequencies
® from first order consideration in a synthesis technique. It is

- seen in Figure 3.2 that unless the shunt branches are near resonance,
Yo
1oy
higher impedance levels. For first order synthesis we will make the

that is, + Co(l4-q) = @ , the series branches represent much

assumption that those branches whose frequencies are of fundamental

interest, ® and ® 4 for the non-inverting upconverter, or o, and

) 1 for the parametric amplifier are near resonance and that all other

branches are effectively short circuits. These other shunt branches can
then be trested as perturbations after the general Yn are. calculated
from the resulting first order synthesized network. The equivalent
circult resulting from this approximation is shown in Figure 3.3 in
which o, may be elther ® . or ®w . . Input admittances Y ,  and

i 1 +1 o in

Yi in and reflection coefficlents Py and py 8s shown in this

figure may be written out as

¥ 2 Y 2
y - ci _ ci
o in v o+ im. @ Ty
i 1 o 1
y @ y 2
: _ ci ci C
Y™ o, o T (3-9)
o T %% &% © : :
in which Y = = (3¢ )2 w0
ci 2 o i 0.
2 2
Y
v* . ¢t v* Yci
o, =t i T .10
o Y b4 p'= Y 2 3‘10
v 4 _ci L vy 4+ _ci
o i Y

Yi_ ' o



-83-

When W, = ) is negative both Yo 4n and Yi in have negative real
parts and the reflection coefficients are greater than unity. The powver

flow from Re YO to Re ¥, can be shown to obey the Manley Rowe rela-

i
tions, snd in all cases l%l = lpil . Thus we may write
o
2 i 2
T 15 = =@ - |o|9)
o
»
2 2
|7y, | ﬁ (1 - ol | (3.11)

Anslogous equations and equivalent representations exist for the
analysis of the time varying elastance So(l + 1 cos mpt) . Postulat-
ing such an element in serles with an impedeance 2Z'(w) and a voltage
generator 2V cos (wo+ nwp)t as shown in Figure 3.4, one finds thg har-

monic components of the charge through S(t) to obey the equations'

<
It

n (So+ ia)an'l)qn * !é: So(qnntl + qn-l)

N
]

Z' (iw) ©

(3.12)
This results in an equivalent circult representation in which the a,
are loop charges as shown in ‘Figure 3:5. The assumption of resonance

in the o and Wy = 0T ® ‘branches again Jjustifies the removal
of the other frequency effects to first order giving the equivalent

circuit of Figure 3.6. As analogues of equations 3.9 and 3.10 we have

g 2 7 2
7, - ci - ci
o in ' S 7 (3.13)
z,'+ 2 1
i iw
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2V cos (n t
dq(t) dv(t)
5(t) dq(t)

z' (w )

Figure 3.4 An equivalent circuit leading to equations 3.12

o 2l + L 0, Z'l g 25 + o2 + Lo, 2,
8o(1+1) 8,(1+1) (l+n) So(L+1) 8o(1 +7)
-2 -SS 91 'g So %, 12] So 9y gso L)
| Lo |
O Tt

e}

Figure 3.5 A section of a network vwhose loop equations are the same
ag equations 3.12

o
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| ]
] |
{ . J ¥
imOZO +So : Eso : i(niZi + 8
| {
| |
| b I\ 4 |
{ {
. {
! =pwe e '
Z Z
ino in 1

Figure 3.6 Filrst order network extracted from Figure 3.5
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ZCi Ci2
Z = = (3.13)
i i S
B % By
o iw

in which 2z ° = (3g ) L
o]

el 2 o wfn
4 2 Z 2
ci g * ci -7 *
z, ~ o Zs 1
g = 5 ) Di > B — (3.1&)
z i Zci
ZE— + ZO 7 + Zi
i o]

Equations 3.1l are also valid for this circuit.

The essential properties of the sinusoidal capacitance nCO;cos th
and elastance nSO cos th working into admittances at frequencies R
and w, = ®_ + Qp are the properties of the center T and = sections
in Figures 3.3 and 3.6. Tﬁesa properties may be better delineated by
looking at equations 3.9 through 3.14. They are seen to be impedance

inversion with or without negation depending on the sign of w, , and a

i
unilateral gain mechanism which we may call Manley Rowe amplification. A
four-terminal network representation of these mechanisms is shown in
Figure 3.7. The Manley-Rowe amplifier does not change impedance levels
and may therefore be removed from reflection coefficient synthesis prob-
lems.

The assumption that YO and Yi or Zi are resonant allows us
to calculate roughly the perturbations due to neglected frequencies. Let

us consider, for example, the degenerate parametric amplifier for which

wo and -0 1 are approximately Qp/Z . The resonance condition demands
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Impedance ' Manley Rowe Ampli-
Inverter fler

Figure 3.7 A four-terminal equivalent circult of sinusoidal
reactance operating between admittaences at @
and w,
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that an inductance L = l/Coﬂg parallel CO . Inserting the admittances

Y#l and Y_,_2

into Figure 3.2, one finds the perturbing admittance at,vmo and

of this parallel combination at mo + mp and wo - amp
1

A R 2 1 2
to be approximately -iw (4)° ¢  and -iw ,(d)° ¢ . Thus the pertur-

o2 o} -1'2 o)

bation appears as a negative capacitance and decreases the effective
D.C. capacitance C_ by (g)2 C, - Since n will in practice rarely
exceed one-half, this perturbation is likely to give a negligible in-
crease in bandwidth capability. In highly sensitive amplifiers, however.
this effect may be important for accurate circuit aligonment. A similar
calculation may be done on a series basis with SO assumed in series

5 .
with an inductance SO/(QP/2) to make Z_ and Z_, resonant at

1
Qp/2 . The resulting perturbation impedance to be added to ZO due to
5
yA is approximately -iw (-H)2 — 2 . This perturbation appears as
+1 0'2 3 2
: [(‘é)ﬂp]

a negligible negative inductance which is down by a factor (g)2 from
that already in the circult.

For nondegenerate. operation, more must be known about the ampli-
fier circuit but the perturbations are generally on the same order of
magnitude. Only in the case where Qp/wo is very large (qw_l E’w+l)
are the perturbations likely fb become so large as to invalidate the
syntheslis procedure.

Throughout the following sections, admittances Yo and Yi will
be assumed regonant at frequencies QO and Qi . It will also be
necessary in most analytic work to take the factor o Ly appearing in
Zci‘ and Yci as a constanﬁ QOQi over the amplifier passband. The

actual variation of &bmi ¢an probably be incorporated in intensive
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synthesis focused on special cases. It is appropriate to evaluate
here the conditions when this may be necessary.
For the upconverter p may be written from equation 3.10 as
™y - @) - () (wo . -0a.)
o “+1 20 o +1 20 o +1 o +1

o = (3.15)
e} 2 2
Yo Y+l * (%Co) Qon+l + (%Co) (wow+l - Qog+l)

N ¥ -~ 1 2 ) -
For a matched amplifier synthesis Y Y, = (500) QOQ+1 and the ref

lection'A;po due to the variation of wom is approximately

+1
po, = & ol (3.16)
o +1
For w+l >>‘wb
rp, = (1 - ;—)5;—) = %29—?;;9 | (3.17)

The maximum value of Apo occurs when e is at elther band edge and
A P max is therefore recognizable as one-fourth of the fractional
bandwidth of the amplifier

W
1 co _ 1 .
éﬁpo < =T -5; = 3 fractional B.W. (3.18)

Thus even with upconverters whose fractional bandwidth is unity, the
effect of this approximation is very small. In a similar fashion the
reflection coefficient of the parametric amplifier can be written ap-
proximately in terms of the synthesized reflection coefficient Py and

the error QOQ_l - wow_l as
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p = IR - (3.19)
1 o
I 4 -
p0

For the degenerate (QO = Q_l) cese, Q0 ; -®w . 1is always very

small. For the worst case, when _Q—l‘>> ~Qo 5 We may arbitrarily

stipulate that the effects of the approximation become. important when

Q81 = 0Ly _ 1

2Qo Q—l gpo

product below which the approximation is reasonably good.

at the band edges. This defines a gain bandwidth

®
53 = fractional B.W. < %— (3.20)

o o]
In most amplifier synthesis the fractional bandwidth will be limited
to something under 2/pO by other factors, and this approximation will
cause little trouble.

In the following work Yci and ZC2

i
replaced by QOQ

, unless explicitly written

out, will be assumed to have @0

i i°



3.2 Required Symmetry ‘and the Ladder Network Representation

The analytic treatment of time varying reactance devices demands

that further restrictions be made on the immittance functions

, S
t 1 H e} : [} O
YO = YO + imOCO ’ Yi = Yi + iwico s ZO = ZO + IE; s and Zi = Zi'+f5;

beyond that already made in section 3.1 concerning resonance proper-
ties. The most commonly made assumption is that these functions ex-
hibit exact complex conjugate symmetry ebout thelr respective band
center frequencies @  and O, , i.e., YO(iQO + o) = [Yo(mO ~w)1¥ .
This assumption not only makes possible mathematical synthesis tech-
nigues but also can be realized approximately in the simplest physical
circuitry. Although it is not clear to what extent this assumption
narrovws the possibilities of time varylng reactance amplifier synthesis
and removés interesting results from our view, we shall nevertheless
make it here. This allows us to choose as the complex frequency vari-
able

= i [6)} - °
s ( ; QO) (3.21)
where QO is the @ band center frequency. Using the relationship
between IRy and Qp of section 3.1 we have also

i(a)i - Qi) = i(wo + Qp - Q ¥ np) = s (3.22)

In order to apply to time varying reactance amplifiers the low pass
ladder network formalism established in Chapter IT we now restrict the
form of Yo and the other lmmittance functions to that defined below.

Over the range of s values with which the synthesis procedure is to

be directly concerned, let the immittance functions be written as a
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continued fraction expansion of reactance slopes about thelr resonant
center frequencies. This means choosing the immittance functions as
bandpass equivalents of input impedances to low pass ladder networks.

The forms of these immittance functions are written below.

i So
Zq = Lt n T
ig +s
o
sL + R + L
10 10 sC 20 + GEO + 1



Y, = Y! +1iw C, =
i o 1
i0.+ 8
1
1
sC + G =
1i 1i sL21 + R2i + 1
8Cyy* Gy (3.25)
i so
2y =2 *'{E; =
iai+s
sl + R + 1
1i 1i sC21 + G21 + 1

sLy+ Ryy (3.26)

In these formulas-the GN and RN should be associated with neﬁwork
terminations. The other conductances and resistances represent losses
in the network. BRExcept for Rl and’ Gl which represent parasitic
losses in the nonlinear reactance element, circuit losses will not be
considered in this work. The first reactive terms in each of these
expressions, clo and Cli’ or Llo

the necessity of bringing Co or SO to resonance at two fregquencies

and Lli’ must somehow be fixed by

QO and Qi .

ILow pass ladder networks representing these immittance functions

can now be added to the four-terminal network of Figure 3.7 to give an



over-all low pass equivalent of the parametric amplifiers or non-
inverting upconverters to be synthesized. Figures 3.8 and 3.9 show
such equivalent circuits. The wy circult has beén converted by the
impedance inverter to 1its positive or negative dual. The Manley Rowe
amplifier is represented by the dotted line M-R across which power
gain wi/mo takes place from left to right or gain mo/mi from right
to left. The properties of these equivalent circuits and syntheses
using them will be discussed in later secfions. It is pertinent to
state now, however, that any fundamental bandwidth limitations which
arise in this lossless circuit must be normalized in terms of the fixed

' 2 2
elements C, and Cli/Yci or L, and Lli/Zci . The only possi-

lo 1o

ble conmbinations which have the dimensions of angular frequency are
2
Ry

v - Vo, ¢, T N o'
lo "1i ‘/Clocli

(3.27)

Mol

o

=)
©

and

22| S Vie a,| |
I 1. = 5 . (3.28)
J/ e

Lip by 195 |

[N F=]
o
@]
e

Ly 1o
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-95-

3.3 Physical Configurations which Approximate Low Pass Ladder Networks

in One or Two Frequency ﬁands

The aim of this section is to give physically realizable circult
configurations which approximate as closely as possible the conditions
laid down in section 3.2. It is hoped that these conditions will appear
more reascnable in the light of their physical embodiments. Some rela-
tion between C_ and \/C  C,, and between S and /I, L, 1is also
sought so as to further our knowledge of bandwidth limitations in time
varying reactance amplifiers.

In the so-called "degenerate"” parametric amplifier with QO = —Q_l
filter networks with only one complex conjugate symmetric passband are
required. The "constant k" bandpass configuration or any of the coupled
resonator configurations (see Figures 2.1k - 2.17) both fulfill the
symmetry conditions exactly in the narrow band limit and reasonably well
otherwise. For a "constant k" configuration CO must be the capacitance
of the first shunt resonator or SO the elastance of the first series

resonator. The admittance slope of the first resonator at QO is to be

associated with ClO and Cli and is given by 200 for the shunt cases

. = ¢ = 2C (3.29)

For the series case an inductance Lo = 80/95 must appear in series with

SO and the reactance slopes about QO are

280
L, = L = — (3.30)
a .

o}

Just as the "constant k" bandpass configuration is derived from the low



=06

pass ladder by the transformation s' — Qo(§~ + 1;) 5 other transforma-
tions may be found which convert low pass ladders into multiple bandpass

ladders. The transformation

(52 + 09)(s° + 0°)

R e} i :

s 5 5 (3.31)
s(s™ + a, )

converts a low pass ladder with first element CO into a double passband
Jadder with first element CO « Pigure 3.10 illustrates this. This trans-
formation also yields the desired symmetry about QO and Qi in the

narrow band limit and the admittance slopes C and C are given

1o 1i
respectively by
ds'C 02 - 92
c - o) = o i O)C
lo ds IQ 2 270
o Q- Q
r o
ds'Co Qi - Qs
Ciy = 5o = 2m—3)C, (3.32)
1 & -9,

A fundamental principle of conservation of bandwidth is embodied in this

transformation resulting in the relation

1 1 1
¢ Y@ T : (3.33)
lo 1i o
2 Qg + 05
The minimum value of C, C is obtained when = ———w—— for which
lo 11 r 2
Clo and Cli are equal.
c. ¢ - 1607 (3.34)
lJo 11 o
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A transformation can also be found to change a low pass ladder
whose first element is a unit series inductance into a double bandpass
filter whose first section contains a series elastance So .

2 2 2 2 2
8.9 (s°+ QO)(S + Qi)

o2 (52+ Qi)s

g! -

(3-35)
Q N

e N O
o)

This is illustrated in Figure 3.11. The slope parasmeters are found to

be
2 2 2
Llolﬂinol _ 2, |Qi‘ ~ Qo)
S - 2 2
o lo,o | e - af
2 2 2
5 o0 |9i12-9§
Qi Llo
Writing K ='T—§—§—- (3.37)
Q
1178y
one can show that
2
)
K+ 1
% = — = (3.38)
Q o
[e] K + -Q—
i
and
: 2.2 2
L. L., |e%as| L(K + 1)
lo71il o i
5 = (3-39)
S K

o}

This has a minimum value of 16 at K = 1. Figure 3.12 shows the func-
1

O
EETU

2
equation 3.28, as a function of K = Q] Llo/ﬂiLli .

, which appears in bandwidth normalization
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Figure 3.10 Illustrating a low pass to double bandpass transformation
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Figure 3.11 Illustrating a low pass to double bandpass transformation
which results in a serles elastance S0
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The limitations on the minimum values of CloCli and LloLli s
while derived here from double bandpass transformations, appear td
be much more generals They are, in a sense, fundamental expressions
of conservation of bandwidth for resonant elements. The maximum
values of the frequency normalization factors given in equations 3.27

and 3.28 cannow be found. They have the same maximum for both the

shunt and series derived circuit:
(pN max g V 8 9 (3.L0)

One other case of interest is that in which the series inductance
assoclated with S_ - is greater than the value 8 92’/ Inzlﬂg
o : or 1%
demanded by the transformation 3.35. More elastance Sé must then
be added in series with SO to bring the physical element to double
resonance and the effective value of n 1is reduced by the factor

2 2,2 2 , 2
QDszr/szo Q] in which @

D is the self-resonant frequency of So and

its associated series inductance.

Q%S‘li Q%Qf
Bt o= 55 for 55 ¢ 1 (3'”’1)
Q. Q, Q_
o i o i
By is still maximized by K = 1 and its maximum value is
2 2 2
: 7 0 0 n o “p o 840
= e = 4 z
O oy 557 3 for Q 5 (3.42)
\ QT o Qs +0
o 1 i o]

The double bandpass circuitry leaves something to be desired in
termg of flexibility. It restricts discusslon to situations in which

the idler and signal frequenclies have the same number of tuning
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elements, and it is not completely compatible with separate terminations
for these two frequencies. A more general approach is shown in Figures
3.13 and 3.14 in which a doubly resonant section containing the time
varying element 1s placed between two single passband filters. The
elements of the double tuned section must be chosen to resonate near

Qo with the input immittance of the Qi filter and to resonate near

Qi with the input immittance of the QO filter. The limitations expres-

sed 1n equations 3.32, 3.33, and 3.34 for C and Cli’ and in eqguations

1o

3.36, 3.37 and 3.39 for Llo and. Lli are still approximately correct

for these new configurations. To indicate this more clearly for one
cagse we consider the circult in Figure 3.14b. The formulation of the
coupled resonator configdration, as in Chapter II, deménds that loop O
of Figure 3.14b be resonant at QO when loop 1 18 open. At this fre-
guency, the input impedance to the Qi filter is essentially set at

iQOLcli. The application of this same condition at Qi demands that

loop O resonate at Qi with Jloop 2 open. The input impedance of the

QO filter at Q4 is essentially iQiLcl . The simultaneous application
o)

of these resonance conditions demands that the double tuned section in

series with both Lc and Lc .

be resonant at both & and Q. . The
1i (o] 1

lo
configuration of these elements, however, is exactly that of Figure 3.11,
and the reactance slope limitations found for this figure are therefore

applicable directly.
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Figure 3.13 "Constant k" filters at QO and Qi joined at a double
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a double tuned section
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3.4 The Non-inverting Upconverter

A rather complete analysis of the gain and noise figure capabili-
ties of the upconverter ingluding series or shunt losses in the
nonlinear reactance has been given by Leenov (22). In this section
the bandwidth capability of the device will be explored, neglecting
these losses. Figures 3.7, 3.8 and 3.9, in which w; = and

+1

2 2 .
Y and Zc+ are positive, have been derived as equivalent circuits

c+l 1
of the upconverter. No integral limitation on the bandwidth of the
upconverter has yet been shown in the literature. A non-rigorous
derivation of the bandwidth over which the upconverter equivalent cir-
cult can be perfectly matched is given below. It definitely proves
that no limitation in the form of an integral of the logarithm of the
reflection coefficlent exists.

The basic problem here is to transmit power from an arbitrary
network through a fixed L,C segment of a ladder into a second arbitrary
network. Let us suppose the arbitrary networks to be infinite iterative
chains of shunt capacitances and series inductances very slightly lossy,
but otherwise identical to the fixed L,C section. We know from image
. parameter theory (29) that the frequency range over which power can
flow unreflected through the fixed section of this iterative circult is
the frequency range over which the image or characteristic impedance of
the network is real. The characteristic impedance of a basic L,C section

is y ’ )
\/iwL N (icqu2 (3.43)

iwC

and is real between angular frequencies + 2/y LC and - 2/y LC . In
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terms of this, characteristic bandwidth limits may be written for the

fixed sections of Figures 3.8 and 3.9

ﬂ \/Q Q.4

® = (3.44)

l +]

WA s )
@ = 2 9 (3'”‘5)
\/Qoa+l\/Llo 1 +1

How fundamental the above bandwidth limitation is, 1s open to some
question. Even if it is basic, it is not clear how to approach it with
the least number of elements. This leaves us with little alternative
but to synthesize the networks shown in Figures 3.8 and 3.9 for various
transmission responses to see vwhether any of them approach or exceed the
bandwidths expressed in equations 3.4k4 and 3.45. Table 3.1 shows the

results of synthesis based on Tchebysheff transmission

|2 1
14 e? 2L

N wr

by the frequency ratio Q+l/9.o . The three decibel down bandwidth is

IT The actual gain is of course higher than this

shown normalized to the bandwldth factors in equations 3.44 or 3.L45.

N represents here the total number of reactances in the equivalent cir-
cuits, and r represents the position of the first fixed reactance, ClU
or L, , relative to the @ = termination. For r = N/2 the bandwidth
does indeed approach that calculated on the image impedance argument.
The Butterworth bandwidth is 71% of its maximum value at N = 2 and
jumps to 93% at N = k4 .

The even ordered ladder network equivalents synthesized on this
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TABLE 3.1
o Yoou e . Vil Vo,
DB
3DB ZHCOVfagazl 3 2n 8
Ripple
€ inDB N r=1 r=2 r=3 r=4 r=5 r=¢6
0 0 707
> 2 875
i
0 0 707 .707
' 1 3 L1775 775
1 77 77
o} 0 595 925 -595
b .76 .915 .76
8 .9 8
0 0 50 .9 9 50
1 5 .79 <935 :935 .79
1 3 .815 .93 .93 815
0 0 L2750 .825 .965 .825 L275
6 79 9l .98 9l 79
1 3 .82 .86 .955 .86 .82
0 o} 3475 0 LT75 .9h5 945 .75 3475
7 .79 el .965 .965 .oh .79
1 3 .825 .9hs5 .965 .965 .95 .825
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basis have an interesting symmetry property; one half is the dusl of
the other half. In terms of an upconverter with equal order of signal
and idler tuning, this means Yo(s) is proportional to Y+l(s). The

reflection coefficient as defined in equation 3.10 is

% 2
Yo - Yo/ Y,

2
Yo * Yci/Y+l

2
and 1is zero when Yi Y =Y . Since for the above mentioned cases

+1 c+l
YO is proportional to Y+l’ we have actually synthesized networks for
which ifolg is approximately constant in the passband.

Green's (15) closed form expressions for Tchebysheff and Butter-
worth ladder network elements can be used to calculate the bandwidth
capabilities of the mismatched upconverter in which the gain is always
less than Q+1/Qo . The bandwidth is found to increase very slowly as
a function of reflection coefficient for certain values of r , but the
results are not inportant enough to include here.

For lossless upconverters two types of bandwidth limitation have
thus been found. One is the physical limitation on the product of the

first reactance slopes at QO and Q+ . The second is the mathemati-

1

cal limitation on the bandwidth of power transmission through an L,C
section. Neither of these limitations is actually a consequence of
choosing the low pass ladder network formalism, but both depend on the
requirement of complex conjugate symmetry on YO and Y+l or ZO and
Z+l°

The technique of syntheslizing upconverters when the loss
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conductances associated with the time varying reactance are not negli-
gible must deviate from the line established here. Maximum gain and
minimum noise considerations and compromises will usually predetermine
the iméedance levels of the o and ®, 4y terminations. This removes
from the bandwidth optimization problem the flexibility of choosing
Llo and Lli or ClO and Cli so as to minimize their product
without delineating any other properties of the equivalent circult. It
appears likely that a four reactance equivalent circuit will still be
sufficient to approach the ultimate bandwidth capébility of the lossy
upconverter, and it is quite possible that a "cut and try" technique

will give the fastest results for this case.
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3.5 Fundamental Parametric Bandwidth Limitations

The essential difference between the parametric amplifier and the
non-inverting upconverter is that the impedance inverter shown in
Figure 3.7 is also & negator. This leads to efiective negative ter-
minationg and reactances in the equivalent circuits of Figures 3.8 and
3.9, in which chi and Zcmi are negative. The negative termination
leads to a larger than unity reflection coefficient in the circuit. The
negative reactances prevent the zeros of the reflection coefficient
from being in one plane only. To show this, let us consider the experi-

ment shown in Figure 3.15 in which a network N, with a single negative

L

reactance (here taken as series inductance) is joined to an arbitrary

but physically realizable and linear passive network, N The reflec-

o ¢
tion coefficients at both ends of each network, and the transmission

coefficients are measured with the networks terminated in arbitrary

resistances RO . No generality is lost here since N may contain

2
ideal transformers. The transmission TlE of the composite network
with terminations RO is then calculable in terms of the characteristics
of the separate networks (9).

Tl(s) Tz(s)

T, ,(8) = (3.47)
1 00(0) pyle)

The magnitude of p, is always less than unity when evaluated on the
1

s =iw axis. It has a single pole which must lie in the RHP. has

Po
poles only in the LHP because it is physically realizable; 1ts magnitude
is also less than one on the s = jo axis. The response poles of the

composite network are seen from equation 3.47 to be the zeros of
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3.15 Illustrating the definitions of the response functions of the
partial sections of a composite network
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1- pl(s) p2(S) . We apply the Nyquist (23) criterion to this function.
The number of clockwise encirclements which the complex plane plot of
pfs)pé}ﬂ evaluated for the closed contour s = iw and the infinite
circle enclosing the RHP, makes about the point +1 is equal to the
difference between the number of RHP poles and RHP zeros of

1 - pl(S) pg(s) . The function pl(im) pg(iw) is physically restricted
to be less than unity. The asymptotic value of pl(s) pz(s) for in-
finite s can equal +1 if the asymptotic behavior of pi(s) and

p2(s) is the same. This corresponds to having the input reactances
approach the same value (both inductive or capa-

of both N and N

1 2

citive), and the number of poles of T12 is one less than that of
Py Py For our purposes in dealing with ladder networks the asymp-
totic input reactances are not of the same kind, and pl(s) p2(S) is
asymptotic to ~1l. The Nyquist contour cannot encircle +1; therefore,
the number of RHP poles of T, Pp,s OF pig is equal to the number of
RHP poles of pl(s), namely one for the simple N, taken.

This theory may be applied to successively larger segments Nl

of a ladder network until N represents the whole network. The

1
result is that the number of RHP response poles of a passively term-
inated ladder network is equal to the number of negative reactive
elements in it. InkChapter ITI we have seen that the poles and zeros
of a reflection coefficient defined at a termination invert when the
sign of the termination is reversed. Thus the number of RHP zeros in
the reflection coefficient at a negative termination of a ladder net-

work is equal to the number of negative reactances in the ladder net-

work.
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In Chapter II formulas such as equation 2.23 were developed

to give the inverse time constants

Al
i
N

of the end sections of lossless ladder networks in terms of the posi-
tions of the poles and zeros of the reflection coefficient. 1In that
chapter T was negative at one end of the ladder and positive at the
other. In the lossless equivalent circuits of the parametric ampli-
fier, Figures 3.8 and 3.9, both of the terminating time constants are
positive even though some of the elements are negative. In terms of
the zeros and poles of the reflecﬁion at the negative termination in

these figures, we may write

- QGN“l 2RN‘1 = }:(-s + 8
Ta1 i CN-1 . Iy @t o™ om)
(3.48)
2 2GNO 2RNo _
. T C or - z:(_ Som ~ om
To No LNo m p

The poles must all be in the left half plane from stability considera-

tions.

z: - Spnl >0 (3.49)
m

Equation 3.48 places an upper limit directly on }: Som if both T

and T are to be positive.

|§ Son| < L° ®pm (3.50)

m
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Equations similar to 3.50 can be found to relate the time constants

of any adjacent pairs of elements to summations of the pole and zero
positions and summations of odd powers of the pole and zero positions
(9). These equations would further delineate the pole zero restric-
tions in terms of the positive and negative element positions in the
equivalent circuit. These restrictions are all in a sense nonholonomic
boundary conditions and are difficult to apply in a synthesis‘procédure.
Considerable difficulty is experienced if one tries to write down the
general relations, and they will not be given here. One interesting
case should be mentioned, however. If it be required that a reflection
response function have equal but unspecified numbers of RHP and LHP
zeros, the choice of these zeros in positive and negative pairs will
make all the %; Som and %; s§§+l equal to zero. This choice of
zeros makes equations 3.50 and the like compatible with a configuration
in which all the elements to one side of center are positive and all to
the other side are negative. This cholce is otherwise somewhat
restrictive, however. It demands that one half be the negative dual

of the other half. It is suspected that for an infinite network with
equal numbers of negative and positive elements grouped by sign to be
stable, the cholce of real conjugate zeros is not only sufficient but
also necessary.

It is the essential presence of these RHP reflection zeros in
parametric amplifiers which makes difficult the production of a funda-
mental bandwidth theorem in integral form. The reflection coefficient
P, may, however, be factored into a part P10 which contains all the

zeros and a part Po0 which is more in the form of the reflection
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coefficient from a pure negative conductance and does not have RHP
singularities.

(s) Y_y(8) + (B¢ )® loo |

Y (s) ¥ (s) - (g ¢,) lo @1l i

) Yy (0) + B0 oyl VIE VIO () Vlew, |’
¥ + U 2
(Vi) Vi) + Qo low 1) Y 1,60 V) - o) Ve,

P10 P20 (3.51)

We can show that P10 i8 not highly dependent on the form of Yo(im)
and Y_l(iw) when Poo is large and that the frequency range over which
n P is large is limited.

For reasonably high Pog y v must be approximately

(—g CO) V |u> W and plO can be written as

o) R
(L +2— 10,° %y
P10 = oo .2 (3.52)
10 1
(2 + e B)
(o]

. ; _ * - . ;
in which « = arg YO Y and B = arg Pog The factor P10 is thus

-1

seen to be maximized at a value near 1/2 for o = arg Yz(iw)Y_l(iw) =0

for arg¥ = arg Y

it
nofi-

P10
max

This relation holds only in the region where Py is high. The error at

midband wheré YO and Y—l are expected to be real is about * l/épf
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' 1 1
+ L ;
The error is always less than & > TE;:EY in the passband if

arg Yo(ib) = arg Y _(iw). Thus the factor Py contributes a factor

1

of L/2 to Py if the optimum choice arg YO = arg Y 1 is made. For

other cholces is less but can be expected to vary slowly.

P10
The factor p20 then contributes the large amplitude factor and

shaping to p_

o Poo “has been written so that all its singularities

are poles of Py - It therefore has no RHP singularities. Pog is in

almost the same form as the reflection coefficlent from a tunnel diode.

The asymptotic dependence of \/Yo(s) \/Y_l(s) is S\/Clo Cl.-l .

\/lwdm l|’ however, is neither constant nor analytic in the s plane.

When \/Yo(s) Y 1(5)' approaches reasonably close to its asymptotic value

at frequencies ﬂo + wa and Q-lft g which are not very different from

Q,O and Q-l , We are Jjustified in taking \/‘mow-ll = \/lﬂog-ll over
the frequency range QO + wa . Then by analogy with equations 2.20 and

2.21

O =

O
Q- w VClo Cl—l

o a

1

Q.+ o
o, @ ex dc¢ Viaa |
2 o]
[ mloyla

(3.53)

Presumsbly by proper choice of Yo(s) and. Yl(s) 5 En[pgol can be
made constant over a bandwidth ®, and zero elsewhere giving rise to

the bandwidth limitation for flat gain.

x 1% V%0 (3.54)

nnC
U.)c t"
parametric
V CioCy g #0 2py,

A similar result based on the series clrcuit with So(l+-n cos th)

gives
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_ﬁnso
w, = ' (3-55)

VIiOLl—l'V'QoQ-lr‘zn 2po

Inserting the minimum values of ClO Cl-l and LlO Ll=4. for the

nondegenerate case, one finds

Viea |
o, = — (3.56)
c N

fn 2po

For the degenerate case, the bandwidth is twice as large.
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3.6 Degenerate and Pseudo-Degenerate Cases

There are four reasons one can find for assuming that the choice
Y l(s) =B Yo(s) will lead to an ultimate bandwidth synthesis of a

parametric amplifier. First of all, YO and Y_ share completely

1
equal value in the reflection coefficient. It is most frequent in
physical problems that the maximum of a quantity with respect to two
variables of equal value occurs when these variables are set equal. This
very weak argument 1s bolstered by the fact that it is preferable to
have arg Yo(iw) = arg Yl(iw) as shown in the previous section. The
choice Y_l(s) =B Yo(s) gives the equivalent circult of Figure 3.8
negative dual symmetry about the middle and gives Py positive and
negative pairs of zeros. To show this directly, it is necessary to

restore the analytic properties of p  as written in equation 3.51 by
o q

writing Yo(ia)) = Po(iw) / Qo(iw)

D Phm) 7, 0) + 8, 0) GIr,,[F g
o T 3 P_(i0) P_(1w) - q_(iv) Qo(i‘”)iYc_lle o (1) .

The removal of the phase rotation factor Qo(iw)/Qi(iw) puts o in
proper form for the association of s with iw and -s with (iw)*.
Then it is seen that Py has real conjugate zeros. Thus, as has been
mentioned in the previous section, there is no incompatibility between
an equivalent circuit with equal numbers of positive and negative reac-
tances‘and the choice Y_l(s) =B Yo(s). None of these arguments, how-
ever, can be used to prove that the cholce Y ., =B YO will give a

1
synthesis which approaches the ultimate bandwidth most rapidly as a
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function of circuit complexity. The fourth argument in favor of this

choice 1s that it is the only basis on which we can presently synthe-

size the admittance function \/Yo(s) \/Y_l(s) from the reflection

factor

nof=s

VY (8) VY_[(s) + 3 }/Iﬂon_ll

p2o ®

Vi () Vi i(s) - 3¢, /e

o}

og'-lI

s

In this section, therefore, we consider lossless ladder equivalent
networks for which Y_l(s) =B Yo(s) or Z_l(s) =B Zo(s) . We call
this the pseudo-degenerste case unless QO = -Q_l « Then B =1 and

we have the degenerate case.

When Y . =B YO ; the QO reflection coefficient

1
% - 2
Yo(s) Y_l(s) + IYC_1|
o= . 5 may be equivalently written as
* 1 * 1
Pot Poy 1 Yo T TE ch—l‘ N Yo - VR ch—ll
P = —™3—— = 3 (3.58)

1 1
O el v+ VB ch-li
The two guantities Py and Post represent respectively the reflection
coefficients between Yo and negative or positive conductance
T |YC‘_1| / VB . The minus sign is used here to indicate gain. It is
clear that Pt will contribute very little to the gain of the ampli-

fier and may be neglected in the synthesis. Then since Yo(s) is in

ladder network form with first element sC the synthesis of Yo(s)

10’
from P,. WAy be carried out in a manner identical to that used in

Chapter II. In order that Y_l(s) = B Yo(s) » G _; must equal BC,,.

o) can be treated as the reflection from a termination with
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¢, Vieg,l

't B ; -
T | rrective (3.59)
ctiv
erective VCio ©1 1
Similarly for the series derived circuit
i
R _ 2 So
- T - (3.60)

ffecti
effective \/Iﬂog—ll VLlOLl -1

We have also the relation po = % p . Equations 2.24 and 2.25, or

Figures 2.7 and 2.8 may be used to calculate the Butterworth and

Tchebysheff reflection bandwidths with the substitutions

Gy nc Viea | 19

= = 0 = or ° (3.61)

G :
1 VCio G113 / Tyoly 1 19,0 ]

and
1
Pprarametric = 2 Ptunnel diode (3.62)
The Butterworth bandwidth
nc_ Viea .| 2sints
o 0 = 2N
Wy = (3.63)

VCio %121 (EDBo)l/N‘ L

is asymptotic to the ultimate bandwidths calculated in the previous sec-
tion.

Having synthesized the parametric amplifier on this approximate
basis, one may well inguire as to the exact response functions to be

expected. Where are the RHP zeros of Po caused by the negative
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‘reactances in the equivalent circuit? From equation 3.58 we can see
that the synthesis of p_ establishes all of the poles of o . Half
of these poles are zeros of Py and half are the poles of I It
has already been demonstrated that the zeros of Po must be in real
conjugate pairs. This condition implies that the numerator of the
exact response function pO(S) po(_s)liw is a perfect square. Let us

2
suppose we have synthesized 'po~l ~to have Butterworth response

2 w 2N
Pop * (5E)
in which N is the number of elements in the equivalent
1+ (EL)EN

B

ladder for YO or one-half the total number of reactances in the total

equivalent circuit. Then the actual transmission response must be

(3.64)
1 o 2N

1+ ) (—
po-B aé

(1,+(£Q)EN)

T
with [T |

o(s) p(~s) + T(s) T(~s) = 1 , we have

not yet known. From the conservation of energy formula

1
| |T élg + l+v(£L)2N) 1+ == (EL)EN)
o (8) p (-S)l - B PoB B (3.65)
0 0 iw o
2N
(1+(—‘-‘3) )1+~—1—-2(—‘9- )
“B Po-B “B
The demand that the numerator is a perfect square determines
1
o) + 2
2 o-B  p
v - 0-B
‘TOB +1o= S (3.66)

and the true response is found to be
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(1 oy | @
(DO—B +2 /DO_B) . p 1 ((fb") )
p(8) p (=8) |y, = °oB B (3.67)
1 w——)gN) 1+ — (w—-)ZN)
+ ((EﬁB + pO_B2 o

A similar form can be established if Py is synthesized to have

Tchebysheff response.

o

ooy + (e, o) 2 ..

T R

() p (-8)| = 2 for

o (s) b (=3)| = 5 (3.68)
| -0 2 2.0 .} € 2 w
(1 +€ Ty (5-;)) (;1 + 5 Ty %)
po---'I‘

Some physical significance can be attached to the writing of Py
+
Po- T Poyt
2

bandwidth relations for the parametric amplifier. The Manley-Rowe rela-

as and to the factor of two in general which has crept into
tions demand that the ratio of power into or out of the time varying
reactance at Qo to power in or out at Q-l is lno/ﬂ_ll o The Manley-
Rowe relation does ﬁot predict the direction of:power flow and one might
suspect that there should be two normal modes in every circult, each
characterized by the Manley-Rowe power relations but differing in the
direction of power flow. Two modes have already been found; reflection
of a signal from a generator at Qo , and reflection of a signal from a
generator at @ ., . The two new modes we seek must be a linear combina-

1

tion of these two or vice versa. The two new normal modes, therefore,
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require generators at both QO and € 1 It is instructive to find

these modes for the degenerate case and the results will also be’useful
in Chapter IV.

We consider the time varying capacitance (Con cos  t + ©_) in
iwgt + €4 P P
the presence of two voltages VO e and
+Lm_lt - G-l a
V__l e and calculate the current I(t) = i c(t) v(t)

neglecting all frequencies but o and w_q -

iwot +im lt
I(t) = Ie +Iqe =
ivt i(e -0 )
| -1
5 1wOCOV_l e e +
io .t -i(6_-0) (3.69)
3 -1 0
5 Lm_lC V e e
V.4 i(e - @ 1" 0 )
We define admittances AY =1 /V =iw C 1 = h ©  and
o] o' o oo 2 VO
; 1 v, ~1(@p- o ;- @O)
ﬁxY_l =1 /V_l = iw_lCO 57 - © . In the parametric

amplifier these admittances LxYO and AY_ essentially terminate the

1

wo and W networks as shown in Figure 3.16. The power flows out of

1
&Xo and AY_l always satisfy the Manley-Rowe relation directly. We
are therefore free to choose V_l and VO and search for the corres-
ponding values of Eo and E-l . For this pseudo-degenerate case in
which Y =B Y_, Ve first choose V_,/V_ = such that AY = and AY_

are negative real and in the ratio AYO/zSY_l =1/B . We assume some

1

values E; and E—l are found which are compatible with the required

v
-1
v

+
and go on to try [xYO and LAY_I 5 positive real and in the same
o ,
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Ryo “e
—_—) O T 1
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|
o I 1
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e T
<l
Y«l = BYo

Figure 3.16 Illustrating the isolation of two modes in the
degenerate or pseudo-degenerate parametric
amplifier.
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\
ratio, 1/B . This requires a 180° phase shift of T with respect
v, . o |+
to g==| . New values E' and E., will be found. The ratios of
(8] -
!EOI to IE_ll in the two experiments must be the same since under

conditions of equal reflection coefficient at QO and @ the

-1’
available power from the two generators must also satisfy the Manley
Rowe relations. The transmission coefficlents which relate Eo to
VO and E-l to V-l in the two circuits must be identical in each
case because of the circuit degeneracy. In the second experiment

v /VO 1s shifted 180° with respect to its phase in the first experi-

o - -+ ’
ment and E_l/IEO must be simllarly related to E_l/ E: 5

- +
-1 - - -]

g g
@] o]

We have thus found two normal modes characterized by a change in sign

of EO/E 1 and a change in sign of ZXYO snd AY . The reflection

1

coefficients in the two modes are reciprocals because of the change in

sign of AYb. These appear to be the fundamental normal modes of the
iw t

degenerate amplifier. A generator Eoe © alone couples to both of

these modes equally giving rise to the representation

When unsymmetrical losses GlO and Gl.-l spoil the degeneracy es-
tablished by Y_l(s) =B YO(S) , the parametric amplifier reflection
coefficient may still be separated approximately into passive and

active parts. The reflection gain in the W, filter is
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* 2
o (¥ - G ) (BY + 6 )+ [Y ] ]
° (Y. + 6, )BY +a, )-|v .]|° B
o] 10 o 1-1 c~-1
2
¥y . |° & G
Y* Y 4+ c-1' "1071-1 1-1 v - o ¥
N o0 B B B o i0"o
2 2 * o
v 4 iYc-l[ _ GMDGl-l. 4 Yo"Yo (G, + Gl-)
oo B B 2 10
BG, .+ G BG,- G, , 2 |Y F?
Y* - 10 1 -1 + ( 10 L -l) c=1
X o] B 2B B
BG, .+ G BG, - G .2 |¢¥ |2‘
y 420 11 |/ (Z0” T1-1" el
o 2B 2B / B
BG G, -G, 2 2
o - 10 611 V4BG10 1-1) +A|Yc—l‘
o 2B 2B B
+ , >
BG, -G . 2 Y
N T M S O vé 10" "1-1, 4_‘ e
o] 2B 2B B
= (p )P, +0,,) . (3.70)

The first factor can again be thought of as a coupling factor dividing
the voltage of a generator into two modes; one of which gives active

reflection and the other passive. For G that is when

1.1 = B0

and YlO s this factor

¢! and GlO are in the same ratio as Y

1-1 -1

has magnitude one-half. For small Gl_l and GlO not in this ratio
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B

=~ G0

o1l

Gl—l
(3.71)
2

in the passband. For the reflection coefficlent in the idler or 0

1
network, everything is the same except GlO and Gl 1 must be inter-
changed in Peo to produce Pey For small Gl -1 and Glo

G
O 1.2
~ 1 ‘
b .= =1 +.vG§ A0 B (3.72)
ci 2
2ly, 4|
c=1

The reflection coefficient at the ideal time varying reactance

‘terminals can also be written simply by changing the sign of GlO in

the numerator of Pog A1l these equations can be corrected for the

1

responding impedances.

series case with Z_ = BZO by changing all admittances to their cor-

The use of equation 3.70 to synthesize approximate Butterworth or
Tchebysheff reflection coefficients is straightforward. One neglects
the passive reflection part and synthesizes YO from p, as with

tunnel diode amplifiers. With YO asymptotic to SClO and

B =0 _,/C, the effective
%0 % %0 G112 5
c._ '3 "3 Ac ) jaa .|
G_ 710 "1-1 10 14 2 o© o -1 73)
B — T ] = + C C (3' 3
C 5 2 10 "1 -1

The reflection bandwidth capability as a function of circuit complexity

N can be obtained from equations 2.24 and 2.25 or Figures 2.7 and 2.8
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by assoclating _Gl/cl in these with twice the -G/C given in equation
3.73 and requiring that

1
2 ptunnel diode .

Pparametric

Peo Ptunnel diode

The nondegenerate parasmetric amplifier can also be used as a trans=-
mission amplifier between a signal source at R and a load at w_q -
In the lossless case this transmission gain is given simply by the Manley—

Rowe frequency ratio w l/wo times the transmission gain in the equivalent

clrcuit.

ITO -l|2 = (l - |pol2)—(':)"]; (3°7h)

In the lossy case the transmission will still be approximately Butterworth
or Tchebysheff because the synthesis technique fixes the critical trans-
mission pole positions exactly. The magnitude of this transmission at
midband as a function of Py is best evaluated in the lossy case by

using Figure 3.8 or 3.9 directly.
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3.7 Some Nondegenerate Cases

In the previous section we found a synthesis procedure which
yielded gain bandwidth relations which were asymptotic to the apparent
ultimate limitation of the parametric amplifier. This synthesis, how-
ever, was restricted to situations in which the number of tuning
elements in the idler circuit equalled the number of tuning elements
in the signal circuit. Moreover; it required that the ratio of signal
terminating admittance to idler terminating admittance GNO/GN_l be
equal to the ratio of the reactance slope parameters ClO/Cl—]_’ or for
the series circult, RNO/RN_l = LlO/Ll-]_' The noise figure optimiza-
tion problem for the logsy case usually results in an optimum choice
for the Grl\ro/c;rl\]_l or RNO/RN_l (see section 3.8). If this does not
correspond to an optimum choice of C,./C; ; or L, /L with res-

1-1

pect to minimizing the products C.. C or L then some

10 "1 -1 LlO 1-1’

"other" synthesis technique which does not require GNO/GN-1= ClO/Cl 1
may give a wider bandwidth. It has not been shown that this synthesis
gives greatest bandwidth for a given total network complexity. No more
general synthesis technique has yet been found, however, and it is pos-
sible that no synthesis techniques can be found which will allow the
independent specification of ClO/Cl 1 and. GNO/GN-l and approach the
ultimate bandwidth limitation at the same time.

Two special case synthesis techniques which result in Butterworth
or Tchebysheff response will be given here. Let us consider the general
symmetric‘matched ladder network with N odd and its perturbatioh as
shown in Figure 3.17. In the perturbed network, half the ladder has been

shifted in impedance level by the factor A . The reflection coefficients
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RIS S

S
It
&

Figure 3.17 A perturbation of a symmetric network leads to a
parametric amplifier configuration for negative A
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of the two ladders may be written in terms of the input impedance

Z = P(s)/q(s) of the half ladder as

P(s) Q(-8)~ q(s) P(-8) q(iw)
2+ 2P(s) Q(s) (L)

I
i
e

A7, - 7% AP(s) q(-s) -q(s) P(-s) q(iw)
Pt = = (3.75)
(L+4)z P(s) Q(s)(1 + A) Q*(1w)

It is noticed that the poles of p' and p are the same for any value
of A even i1f it is negative. Therefore, if the transmission response
of the s&mmetric ladder is Butterworth, the response of the new ladder
is élSO‘Butterworth and ‘stable. Weinberg (24) has shown that the reflec-
tion coefficient zeros produced by this method of designing a mismatched
filter from a matched symmetrical network always alternate from the left
to right half plane in order of the magnitudes of the real parts such
that }:som = 0 . Thus equation 3.50 is satisfied for all o, .

The configuration for negative A is that of a parametric amplifier
equivalent circult with one tuning element or reactance more or less in

the QO netvwork than in the  , network. The product LOC£QE or

-1

o T
and by associating the elements of Figure 3.17b with Figure 3.8 or 3.9,

Lon2 can be obtained from Green's (15) formulas for ladder networks,

the bandwidth capability of this synthesis‘can be evaluated in terms of

1 -4
1+ A

the reflection coefficient pé = . The results in which N 1is

now the total number of reactances in the equivalent circuit are:
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2 stn™/? 1%-2- 5 0 Ve |
B T o] Ve, o
PBo 10 71 -1
or /
. 1/2 N-2 =
2 sin 5 3 nSO (3.76)
V1 + feg,| \['QOQ-&l Vit
nc, Ve |
. 1/2 N-2 x
sl o V%10 €11

“p = 2 N-on .2 N-on . L T Tz 37
Y1+ |OT0‘ (sin T %°° Iy + 3 sinh 5 sinh E)

The quantities ClO/GNO) ((}N_l/cl _) and (LlO/RNO) (RN_l/Ll _q) which
were required to be unity in the pseudo-degenerate synthesis have been
, ‘ 1
evaluated approximately and are on the order of if:fTE;T or 1+ |po|
depending on whether the QO network has one less or one more tuning
element than the Q-l network. This ratio is thus again fixed by the

configuration but at a different value than for the pseudo-degenerate

case.

One last situation which we may consider is that in which either
the signal or idler is single tuned and the other frequency has N tuning
elements. We attempt a synthesis based on the approximation

sC
1 =L (1. L1y (3.78)

G .+ sC G_4 G_,

p, can now be written as



p)
Y
1 Y, ;| €1 4
— - sC._ + (1 - )
Z*' lo G-—l Gl “l
(]
(3.79)
1 IYeo11? o 8Cy 1
7700 e o)
%o -1 1 -1
The effective -G/C of this reflection is
p)
-y |
G l -1
T 81 1 2 (3-80)
G_1Cqp + = ¥ 4
-1
which has a broad maximum for
c
1 -1
G.= Y .|/ (3.81)
-1 c-1 ClO
of
a -y Fc Viaa |
_G c-1 0 o -1 (3.82)
G .

2V 0l g 2 VC% 4

The maximum is wide enough so that except at very high gain with very
high N , the approximation in 3.78 does not affect the response. The

Bubtterworth bandwidth based on equation 3.82 is

AT PR
wB ) 2 sin 5N 200 QOQ_l
= I7W
Ppo ~ L VOC%

(3.83)

in which N is one less than the total number of reactive elements in

the equivalent circuit. The quantity (C GNO)(GN__l/Cl {0 or its equi~-

lO/

valent for a series derived result is required by this synthesis to be

nearly unity except at very low Py
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3.8 Comparison of Nondegenerate and Pseudo-Degenerate Results

Figure 3.18 shows the normalized parametric amplifier Butterworth
derived bandwidth plotted against 'NT s, the total number of reactive
elements in the equivalent circuit, for pp = 4, 8, and 16. It can
be seen that both of the nondegenerate syntheses yleld comparable or
higher bandwidths than the pseudo-degenerate for NT under six. This
figure indicates that while the pseudo-degenerate synthesis is the only
one found which is asymptotic to the ultimate bandwidth limitation, it
is not optimum in the sense of giving the greatest possible bandwidth
for a given circuit complexity. Neither are the syntheses in section 3.7.

There seems to be a fundamental difference between the wide banding
achieved by the method based on Figure 3.17 and the other procedures. The
pseudo~degenerate synthesis and the synthesis based on the approximation
in equation 3.78 both place equal emphasis on the bandwidth limitations

due to C and C

10 1.1° All other elements in the circuit are used to

tune out the combined effects of these two elements. The essential dif-

ference in the third synthesis technique can be seen from Figure‘3.l7b.

Let us say that LO/2 (L+4) represents the effects of €, ;, and Cl/A
the effects of Clo’ For high gain, A ¥ -1, LO/2 (L+4) is almost
negligible. The method of broadbanding is not so much tuning as

it is one of direct cancellation. The effects of Cl ] are minimized
with respect to and at the expense of those due to ClO° A third reac-
tance is then inserted in an attempt to cancel the effects of ClO'

The choice of Butterworth or Tchebysheff response in this cancella-

tion scheme are incidental. It is unlikely that they are optimum. No

method of constructing general realizable response polynomials which
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2.0

NARNA

0

O Pseudo degeneratfe
O Based on fig. 3,17

A Based on approximation 3,78

0.05

Figure 3.18 Comparison of pseudo-degenerate and non-degenerate
bandwidths for Ppo™ b, 8, 16
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resulti{nthis cancellation +type phenomena for an arbitrary splitting

of the number of negative and positive elements has been found. Several
other Butterworth zero distributions have been tried. In general they
fail to satisfy equations 3.50 and the like and at low gain result in

configurations in which the positive and negative elements alternate.

3.9 Configurations and Noise Figure

The nondegenerate parametric amplifier can be used elther as a
reflection amplifier with or without a circulator or as a transmission
amplifier operating between a source generator at QO and a load at Q-l.
The single element reflection amplifier configurations of Figure 2.1 in
Chapter II and the subsequent analysis of the relation between actual
gain and reflection gain in that chapter, can be applied straightfor-
wardly to the reflection parametric amplifiers. The noise figure
equations in Chapter IT can also be applied directly if we can write an
effective temperature for the effective negative conductance. At midband
this can be done by inserting noise generators in Figure 3.8 or 3.9 which
results in Figure 3.19. The effective temperature of each element is
given the same subscript as the element. The line MR shown in these
figures illustrates a hypothetical plane at which Manley Rowe amplifica-
tion takes place. Power flowing from right to left across this line is
multiplied by QO/Q_l while power flowing in the other direction is mui
tiplied by Q_l/QO . Thus in evaluating the effective temperature of
=G ; the temperatures of Q_

eff
(o]
QO/Q

1 elements will become multiplied by

1 The effective input conductance for Figure 3.19a is
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2
EN =
LLKTlOIBRlO
2
Po| f10 Ty = i 2 .
i 7, @ YKr, B —= T B N
ci 1, 2 Ni© 2
| ci Zci
|
R M ‘R (Ag)?
effo 7 D _ 2 g
el - Q@
o'l

Figure 3.19 Midband equivalent circuits with nolse generators
derived from Figures 3.8 and 3.9
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G ;58)4'
O +

This conductance has an effective temperature

+
o . Ty 1%t e Bye1 Mo G0l Cyg* & 1)
[V + 2 ’
S Y B B il 51 Yooy L (3.89)
eff, , G. (G . +¢C_ )
- 10°71-1" N-1
., |°
c-1

The results for the series derived circult can be obtained by replacing

all the above conductances with the comparable resistances.

The degenerate case needs separate consideration. Here GNO and
GN-l represent the same elements physically,as do. GlO and Gl.-l'»Wé

hold to the equivalent circuit of Figure 3.19, however, and consider ®

to represent frequencies below QP/E and w to represent frequencies

1
above QP/Z . Since the actual physical output response of the amplifier

to a signal at ab is the amplified signal plus the idler contribution

at o 1= wo - Qp/2 , the power gain between any element and the load is

double that predicted from the equivalent circuit. This does not change

the ratioc of power out due to GlO and Gl to amplified thermal

-1
power from the source in GNO' The main thing to be decided is how %o

treat the noise from GN When it is not known whether the signal to

-1°
be amplified is above or below QP/E, GN-l represents increased signal
gathering capability. 1In noise figure calculations, therefore, Ty o1

of equation 3.85 should be set to zero. The noise figure may then be
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calculated assuming that the noise power available from the source is
2KTB rather than 1K1B, effectively decreasing the noise figure of the
d%maﬁemmﬁmrwmw&tca@mw%knm%&mmmamuﬁﬂ

with Ty 1T 0 . When, however, it is known that the signal presented

to the amplifier is definitely below QP/2 , G represents a noise

N-1
source. without signal gathering capability and must be treated as such.
Figure 3.19 may be used equally well to calculate the noise
figure of transmission amplifiers at midband. One calculates the trans-

2
mission gain between GN » and 'GJ.-l/IYc—ll as well as the

0’ %10
reflection gain between -GN_l/ fYc_llg and itself. Using the power
avallable from each element and the gain from the element to

—GN_l/ |Yc~l|2’ one may feadily construct the noise figure. The proce-
dure is equally useful for the non-inverting upconverter if the negative
signs are removed. The full equations will not be given here.

For the parametric amplifier synthesis techniques given in previous
sections in which the elements Gy 3 and GlO were included, the
midband noise figure calculation is nearly correct over the whole pass-
band. For those synthesis techniques which do not so readily adjust
themselves to the inclusion of the losses in the nonlinear reactance, the
midband result must be used cautiocusly.

Without going into any more detail, one may still say from Figure
3.19 or equation 3.85 that for the production of a minimum noise ampli-

fier, there 1s an optimum choice for G This choice will depend

N-1°

If

very much on the temperature of G relative to G N-1

N-1 1-1°

is higher than the minimum noise will be obtained for rather

1-1°
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small GN—l . If, however, TN_l is lower than Tl 1’ a larger value
of GN-l will be chosen. Thus the problem of simultaneous optimlzation

of bandwidth and noise figure is a complicated one. The problem is best
approached by trying to find optimum bandwidth syntheses under the

assumption that G is predetermined, It 1s hoped that the fundamental

N-1
information about parametric amplifiers given in this chapter will in the
future be an ald to finding solutions to this very general but also very

complicated problem.



=139~

CHAPTER IV

SYNTHESIS OF NEGATIVE RESISTANCE AMPLIFIERS WITH
SEVERAL ACTIVE ELEMENTS BY PREDISTORTION

When amplifier bandwidth greater than that obtainable with a .
single active element is desired, it is necessary to find methods of
cascading active elements in such a way that the net gain bandwidth
capability increases. It has already been mentioned that amplifiers
with circulators can be dlrectly cascaded and that bilateral constant
resistance stages are being considered by Carlin (6). An interesting
approximate approach to the design of such stages is synthesis based on
insertion of negative conductance elements in the arms of a guarter-wave
coupled hybrid. This waé proposed by Autler (25) and has been success-
fully used by Sie (26,27). An idealized equivalent circuit of such an
amplifier stage is shown in Figure 4.1. Each stage requires two
matched active elements. The power gain is equal to the reflection gain
at elther of the negative conductances, and therefore the gain per tunnel

diode has the integral limitation

OIQ
H I3

(k.1)

ola

@
jﬂnPé/gdw =
0

Such stages may be individually widebanded in a way very similar t§ that
given in Chapter II or they may be used in a stagger tuned cascadeQ The
extent to which the circuit approximates a constant resistance section,
however, does depend on the approximation with which a quarter wave hybrid
can be bullt and widebanded.

This chapter will deal with amplifiers whose effective active
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3/4

R L

dn, &
Network
with Active
Elements

Figure 4.1 Quarter wave coupled hybrid network for approximating
a constant resistance amplifier stage, P, = Ipllz
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elements are negative conductances in parallel with capacitors and
negative resistances in series with inductances. Only configurations
which are analyzable on the basis of the negative uniform loss low pass
ladder with resistive terminations as shown in Figure 4.2 will be con-
sidered explicitly for synthesis. Recognizing that the immittance of

each lossy element iani + Ri or iwCi + Gi can be written as

sL, R or sC G .
10+t i mw'kﬁl (h.2)
i

it can easily be seen that when all the reactances have the same loss or
dissipation factor, G/C, analytic response functions of s are simply
related to the lossless response functions by the transformation s - s-%%.
The technique of precompensating lossless response functions so that this
transformation yields a desired lossy response is called predistortion.
Its use in negative resistance amplifier synthesis was suggested by
Weinberg (7). Figure 4.3 shows predistorted Butterworth poles for an

N = 3 network with negative loss elements.

Weinberg has also suggested synthesis using the Darlington (28) pro-
cedure for relating lossless to lossy response when the inductors do not
have the same dissipation factor as the capacitors. The method is only
applicable to analytic network functions which do not depend on terming-
tions. Two transformations of s are required; one shifting s by the
average 1osé factor of the two kinds of elements; the second shifting 52
by the square of half the difference in loss factors. The complexity of

the double transformation and the fact that it cannot be used on transmis-

sion gain response functions.make it rather difficult to apply in amplifier
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Figure 4.2 A lossy resistance terminated, low pass ladder network
lossless ; G, = Ri = 0
Uniform Loss ; ALl G,/C, = Ri/Li = G/C

Darlington
Non-uniform Loss:; All Gi/ci

i

a¢/c , all R,/L, = R/L

Iterative with lossless and matching sectionsy all Li’ Ci’ Gi’
' and, Ri from m to p are equal, all other Gi and Ri
are zero.
s=1 -q s =12
ay o] Wy
/ “8
B ®pBm %
Re s
_—/
real frequency axis 1 is for
for wniform negative —3 real irequency axis 1o

loss, —G/C = -0 lossless network

Figure 4.3 TIllustrating N = 3 Dubtervorth poles predistorted for
uniform negative loss, -G/C = =y,
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synthesis.

A third synthesis method for multi-element amplifiers is to imbed
identical reactance limited active elements in an iterative or pericdic
network. The characteristic ilmpedance and transfer constant of such a
network are easily calculated from image parameter theory. The transfer
constant is not generally well’behaved, becoming large at the band
edges. The characteristic impedance is also badly behaved at the band
edges. It becomes passively unrealizable and cannot be approximated in
these regions. The frdblem of designing passivevterminations to limit
band edge galn peaks and guarantee stability is a difficult one. It

must be solved by trial and error.
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h.1 Integral Iimitations and Noise Figure

An interesting integral limitation will be developed below for
'cascade two-port networks. It will show, in a sense, that the bandwidth
limitation of transmission amplifiers designed by any of the above
methods is the sum of the bandwlidth limitations of the active elements.
We consider a resistance terminated two-port network made up of lossy
two-port stages of the general types shown in Figure 4.L. The divisions
are made so that each stage is as simple as possible but with the res-
triction that for infinite s +the two admittances seen by breaking the
network at a Jjunction are not both zero or both infinity. We will con-
sider the ratio of the lossy transmission gain T'(s) +to the lossless
transmission gain T(s). The latter may have zeros on the s = iw axis
and poles in the LHP. We restrict T'(s) also to have LHP poles. Each
zero of T'(s) and T(s) can be causally related to a single stage such
as a shunt inductance, series capacitance, parallel resonant series
branch or series resonant shunt branch. The difference in the real parts
of corresponding zeros of T'(s) and T(s) is always equal to the sum
of loss factors of the elements causing the zero. Thus for a section
with shunt inductance L, in series with -R, , T(s) has a zero at
s =0 and T'(s) has a zero at s = + Ri/Li°

The ratio of lossy transmission to lossless transmission can be

written as

s
TES; B mesg - SI')m T(n (S - 8 ) (h’.3)
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.
L

be

L.k General low pass and bendpass lossy filter sections
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T'(s)

Integrating /n _5757 on the s = iw axis and closlng the con-

tour about the RHP, we have

f In % = _125 EI;(SI')m— Spm)— g- (Sclm_ Son) T Z (Sc‘)n- son)
0 n (b.h)

The first two summations can be calculated with the successive use of

the transmission formula for cascade two ports

) Tl(s) TE(S)

T in which T

12 s 10’ Tl’ T2, pl, and p2 are defined

1-p,(8) py(s)

in Chapter III, Figure 3.15.

T ,(s) T, (s) T, 1-p;(s) pi(s)
—_— e = —_— ——e
IR O R O B 10 B S E AP O

may equate the asymptotib dependence of the two sides of the equation for

Writing /n In one

large s . Because of the division of sections made on the network in
Figure 4.4, the asymptotic values of pi‘pé and P1Pp are never =1 ;
in addition; 1t can be directly shown that

L - pi(s) pi(s) K,

In is of the form 1 - 9 Sl SR The asymptotic
1 - p,(s) pyls) s

dependences of the other terms above have non-zero coefficients for the
1/s terms. These coefficlents are equal to the summation of zero minus

pole shifts and, equating them, one has

- ¢ - - H —
ngé (8,n10™ Son12) m%% (5 pm12 SpmlE)

- i - 1 - - v - - $
2; (sonl Sonl) * 2; (Son2 SonE) 2; (spml Sp ) g; (Spm2 Spm2)

(L.5)
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The successive application of equation 4.5 in analyzing a network such
as in Figure 4.4 can directly prove that the first two summations in
equation 4.4 are equal to the total of the corresponding summations for
the simple two-port sections. These latter are easy to calculate. TFor
example, in the low pass network of Figure 4.2 for which there are no
transmission zeros, the pole shifts of the individual sections are equal

to the loss factors of the individual elements. For this network

[ﬂn T () w=-273 ---Gi!r---Ri (k.6)
T(w) -T2 0 Ci Li .
0

It can be shown that loss in elements which cause transmission zeros

contributesbnothing to the first two summations in equation 4.4. Those

R G
zero-causing elements which have negative loss factors == L
Lil.o C1l-0
do, however, contribute to the third summation.
2: 23 Ri Gi y
(s =8 ) == (=1 +==| ) .7
RHPn on on Li -0 Ci -0
T (w)

In general, half of the integral of /n ——YEJ dw due to these loss
elements falls in the frequency range where T(w) is very small, i.e.,
the region of a zero of T(w). The actual contribution of these ele-
ments to the gain in the region where T{w) is not small is thus essen-
tially the same as given in equation 4.6 for pole producing elements.
There is no term in equation L.7 for positive losses which shift real
axis zeros into the LHP. Such elements make |T'(w)/T(w)] >1 near
zeros of T(w)‘ and |T'(m)/T(®)|<Ll near poles of T(w) . The net
effect on the iniegral is zero. BSections which have three reactances

of the same kind such as the L, Lj’ L section in Figure h.h, arise

1J
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in the coupled resonator configuration. The contribution to

H
n %%f%.dw from the zero shift in this section falls in the frequency

range of the zero of T(w) and is generally not useful for gain. The
contributidn'elsewhere due to losses Ri, Rj’ and Rij can be evaluated

in terms of an effective loss factor for the section.

R R
R _ i J ij
Lleff 13 L * L L. * I, L, (4.8)
L+ £7%, LJ+LiL Liytist
137 73 17 M 1T

In most cases Lij is much less than Li and Lj’ and R has only

13
. s R

a small contribution to Tlesr i3

From the above theory one can write an exact integral‘limitation

T'(w
on —T%S%l in terms of the loss factors of the network elements. A

simpler but slightly approximate integral relation which takes into ac-
count only contributions of losses to the passband gain and not to the
gain near the zeros of T(w) can also be written from the above theory.

This limitation has more meaning in the synthesis problem.

00

G R
T‘(w)l x i i R
f T(w) 5 L ¢, L Lleff 14 (k.9)
0
not including re- including zero- contributions
gions near zeros of  causing elements from coupling
T(w) sections

The various methods of synthesis, uniform predistortion, non-uniform
predistortion, and iterative design,differ in the number of passive

elements required for a fixed number of active elements. They differ in

how near unity T(w) can be maintained over the amplification band.
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They may differ in the possibility that In

T'(w)l may change sign over
T(w)

the range of ®w . TFor instance, networks with uniform negative loss
1
have E«g§)} >1 for all o . The maximum bandwidth for flat gain
Té is obtained if T(w) = 1 1in the passband and has a limitation on
the characteristic bandwidth ® , ® = i & —=— . On the other
¢ C C znTé
hand, the one and two active element transmission amplifiers considered
N Tt (w)
in Chapter II may definitely have

£ 1 outside the passband.

T(w) ™

The above limitation on wc does not hold for these amplifiers. The
situation: for non-uniform loss and iterative design is not yet known.

It is expected, however, that in these we will in general have

IT'(w)

T(w)
integral bandwidth capability of active networks designed by the three

> 1 for all ® . Thus while in the sense of equation 4.9 the

methods mentioned is the sum of the loss factors of the active elements,
the above differences make a detalled comparison difficult.
For the uwniformly negative lossy low pass ladder network, integral

limitations cen also be found on the reflection coefficients at the ter-

minations. For equal loss factors - %
G G
f S - - e - ? @ -

Py, _ ( som C ° Spm Pg S %m Cy,° spm

— = ) ( ) s —==x_( )( ) (4.10)

P P« Py gy s -G 's-s

m C om pn G om

where the Som are the zeros of pL o The logarithms of these functions

are to be integrated around the RHP. Only the RHP singularities will
contribute and these must be identified. Positive 5om will lead to
RHP poles and zeros of pi/pL « Negative Som give RHP poles and zeros
of pé/pS . RHP singularities are also possible for pi/pL when —G/C

is less than negative s_ , and for p;/ps when G/C is greater than
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positive s . For stability s and 8 + & cannot be 1in the
om pm pm C

RHP. We find that

(e 0] ' ‘
! (w)
in L dw G
pp, (@) L"¢ "L
0O
O

t
=
£
]
-+
=~

p' (w)
(.11)

§
=
A

alo
b
=

NL = number of RHP zeros of Pr

NS = number of RHP zeros of Pyq

NS + NL = N = number of network reactive elements

KL = % g£ - , Where soxL sre LHP zeros of pL

located between the g = iw and

8 = 1w - % axes.

If one of the network terminations, say R, , is infinite or zero,

L
making T =0, T' =0, p, = 1, pf =1 and Py = 1, equations 4.11
give an integral limitation of the uniform negative loss ladder as a

reflection amplifier.

QO
fﬂn}pé(w)!gdw - ol (k.12)
0

If a transmission amplifier such as the general configuration in
Figure 4.2 contains only negative resistance or conductance elements

and these all have the same negative effective temperature, the

-.TT 3
noise figure can be calculated directly from a knowledge of the load

reflection coefficients, p£ s and the tramsmission gain T!' by using
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the reciprocity theorem. The ratio of noise power out due to the ith

element to noise power available from the ith element is equal to the

transmission gain between the load and the ith element.

Pout 5 Povwer dissipated in Gi or Ri

- Power available from R

Therefore, for all elements at the same temperature =T s
z: p Kr aF Power dissipated in all negative elements
. R = KT °
out i T Pover availsble from R.

Applying conservation of energy to the circuit, one sees that the power
dissipated in all negative elements is negative and equal to the negative

of the power dlssipated in RS plus the power reflected back into RL

minus the original power avallable from R Inserting this into the

e
usual definition of noise figure and including the reflected load noise

we have

2 *
T )% o -1 7 (ol - L(pr*-1) -1
F = l+j'r—‘( 2L + — L g (h'l3)
8 IT'I s 1T'|

This discussion of noise figure has been placed before g detalled
consideration of the synthesis technique to illustrate the following
important p01nt: The noise figure of the unilateral amplifler,in which
all active elements have the same noise temperature depends critically
on the reflection coefficient at the load end. It does not depend at
all on the reflection coefficient at the signal generator. In the syn-
thesls of a multi-element smplifier by the predistortion technigue,‘the

zeros of the two reflection coefficients can be chosen rather arbitrarily.
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The choice which minimizes ! aglso minimizes the noise figure, but
pL g 3

will simultaneously maximize pé .

4.2 Uniform Predistortion Synthesis of Tunnel Diode Bandpass Amplifiers

The tunnel diode 1s not directly compatible with the circuit of
Figure 4.2. The coupled resonator bandpass equivalents of Figure M.E,
however, do accommodate active elements which are all of the same kind.
The resonators may be drawn as parallel capacitance, inductance and
negative conductance vwhen the tunnel diode inductance is itself negli-
gible. Otherwise, series equivalents of the tunnel diéde as given in
section 2.8 can be fitted into a coupled resonator configuration with
series resonators. The coupled resonator with negative uniform loss
resonators can probably be synthesized by direct predistortion of the
poles of a coupled resonator configuration. In this section, however,
we will rely on the equivalence between low pass ladders and the coupled
resonator bandpass configuration which was established in Chapter II.

We consider, then, as an equivalent representation of a physically
realizable bandpass configuration, the circuit of Figure L4.2. Both the
capacitance negative conductance branches and the inductance negative
resistance branches represent tunnel diodes with all Ri/Li and
Gi/Ci equal to —GT/CT . GT may also include any extraneous positive
losses in the physical circuit and has s negative effective temperature

-7 as shown in the introduction to Chapter IT.

T
The uniform negative predistortion technique will now be applied
to the low pass equivalent circuit in Figure 4.2 with uniform negative

loss. Butterworth and Tchebysheff response with € = 1 are explieitly
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chosen in this work, but the method is quite genersl and linear phase
or any other response_whose poles are known can be used. The poles of
the response function of a lossless ladder network are chosen to be the
pole configuration of the desired gain response but shifted to the left
by‘én amount GT/CT . By equation h.z the subsequent evaluation of the
real frequency performance of the uniform loss network is made on the

G,

s = iw - = axis giving the desired response. Figure 4.3 shows a

Cp

typical predistorted Butterworth pole configuration and the distorted

real frequency axis. The diagram is normalized to Wy and the normalized

G G,
pole shift is q = ——— . A similar normalization, q = —ie , will
° Cp o ap Gy’
be used for the Tchebysheff response.
The lossless transmission response may be evaluated on the
8 = i'gi or 8 =1 axis as
T
T
2 2 8o - Qlol2
IP(@)|" = To = 2 (b.1k)

0 m + 2

‘S " pm qolii’i
)

in which the Spm are now the normalized LHP pole locations given by

equations 2.15 through 2.18. The gain with negative loss is evaluated

., W
on the 8 =1 — = 9, axls as

. 2 .2 ’ m 0
Tt ()| = 5 T 2 5 (4.15)

The normalization factor T§ controls the realizability of the lossless

network with passive components and terminations. For the completely
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passive network to exist, the lossless transmission gain must be less
then wnity, |T(w) |2 £1, all ® . For the Butterworth and 0dd N
Tchebysheff response, the maximum of ]T(w)}g occurs at ® = O and

i max 1 . PFor even Tchebysheff response this is not true for very
small a, ; but has been found to apply in all cases in which the
average gain ITI2 is greater than hez, For our purposes such is
always the case, and we take Tg £ 1 .

The actual transmission gain |Ti'!2 can now be evaluated from
equation 4.15. For a given 4 the gain is maximum for T? =1 . The
reflection zero positions will vary with Ti s, however; and some
Ti < 1 may make a better overall amplifier. The midband gain increase

T;,ﬂTOI as a function of q, cen be found approximately for the But-

terworth case. Here

1 2m+1
10 >y
Sop, = © - e , m=0 to N-1 (4.16)
m
1,2
To , ' C.lo
fn 2| = 2, 2m (1 + —5-)
oiB m e
qO q'O
in (l + -—]—_D——) 4 BT ()—hl'i)
e e I |
Té ) —i@m
I == g 2q_ ) e (4.18)
0'B m .

-i8
E: e ™ is the sumation of the Butterworth poles and is given by
m

]_/sj_n %\I— N Then
In .‘].jé ° o~ 2q0 - 2GT 1 :
B sin —— - wBCT in X (M.l9)
o i S sin B
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For large N

T
o]

o]

2
In

it

=Y R

(4.20)

G
]
B Sp*p

No approximation has been found for the analogous Tchebysheff rela-

tion. The average value of the Tchebysheff gain increase

T' |2 7'
2 -2  have been calculated numerically for various a
ole=1 ol|B

and N . The results are shown in Figures 4.5 and 4.6. Equation L4.20

and

holds fairly well for N > 2 and the Butterworth curves are asymptotic
T2
o)

To B

fairly well by

to in = b aNg_ . The Tchebysheff curves for N> 2 are glven

it |2
n = = .bnn g (4.21)
T 0
ole=1
C 1 T2
Figure 4.7 shows ® == = = plotted against N for 2 and
c g T
T 0 o|B
T |2 .
5 = 100 . The ultimate flat gain limitation from equation 4.6
ole=1

Cfmc/GT =,EE§§66 is also shown.

It is important to compute the zeros of the reflection coefficients
from the predistorted poles. The zero positions are reguired not only
to continue the synthesls procedure to the point of calculating the ele-
ments of the low pass equivalents but also for computing reflection gain

which enters into the nolse figure and to test the sensitivity of the

network to errors. The zeros of
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Figure 4.5 Normalized Midbend power galn for predistorted N-pole
Butterworth response versus g = GT/wBCT



«157=

/ %

/

200

.'I.'u
To

//
LY
| //

= _GT
Yo
wtCT

Figure 4.6 Normalized average power galn for predistorted N-pole

3 db ripple Tchebysheff response versus Q= G /mTCT
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Figure 4.7 Normalized characteristic bandwidth versus N for
Butterworth, Tchebysheff and ideal responses giving
20 db average gain.
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p(s) p(-s) = 1 - T(s) T(-s) =

2
- + - - + - T -
kL4 (S I$] g )( S S q ) 3¢ I$) q

(k.22)

- 8 + -8 - +
ﬁm(s pm qo)( 8 Spm qo)

are the full zero complement of both reflection coefficlents oL and

Py - The zeros of P can be chosen from these in an arbitrary fashion
as long as only one of each real conjugate pair is taken and complex con-
Jugate symmetry is maintained. The remaining zeros belong to Py Unless

otherwise specified, or, will be assumed here to have only LHP zeros. When

2
To = 1 , there is always a palr of roots of equation h22 at s =0 .

j 2
These move rapidly toward 4+ d, as TO is decreased. As Ti goes to

zero, the LHP zeros approach the poles. Figure L4.8a shows the Butterworth

T2

= =100 for N =14 . One
B

LHP pole distribution predistorted so that T
set of reflection zeros for Ti =1, 1N2, and 1/2 are shown in the

o}

LHP. This choice gives minimum reflection coefficient pi on the

s =1 %— - q axis. Figure 4.8b shows the reflection zeros in the RHP
B

corresponding to the reflection at the opposite termination. The reflec-
tion coefficient at any point s = iw - 4 is the product of the dis-
tances to the zeros divided by the product of the distances 1o the poles.

2
It can be seen that the reflection gain with zeros in the LHP, |p£[ , 18

on the order of unity. The reflection gain for zeros in the RHP , Ipélz,
112

is on the order or higher than %— This situation has been found in
o

all the cases computed. Figure 4.9a,b shows the analogous case for the

T

2 = 100. The ratio

Tchebysheff 3 db ripple response with N = 4 ,

2 |2 ©
i %— is in general larger for Tchebysheff response.
(o]

of !pé to
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While the magnitudes of the reflection coefficients at the two termina-
tions may be equalized somewhat by other cholces of the zero distribu-

tions, the product of these reflection gains is invariant and when
T )

To

The sensitivity to variation of a termination may be predicted

averaged over the band. is generally greater than

from equation 4.23 below.

T (s) T (s)
1 (s) = 2 (4.23)
1-py(s) p,ls)

where Tl is the calculated transmission for the correct termination

GO 3 T12 is the transmission to termination Gl which is different

G -G
o .
Pp= T T 1S the reflection between G_ and G (k.2k4)
o] 1
and
2 VGfao o
T, = ——=— is the trensmission between G_ and G, . (k.25)

Go + Gl

As long as 1P remains less than unity at all frequencies, the poles
will remain in the left half plane, and the transmission reduction factor

is given by

Tlg(w) ] 2/ G G (4.26)
T (o) (G + )= (G- Gp)p; (@) : '
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t 1 - .
When pl(w) is not large, Tle/Tl is rather insensitive to G_ G,

The  reflection coefficient lp&J Wwhose zeros and poles are shown
in Figures 4.8a and 4.9a is generally less than or on the order of
unity, not only over the passband, but also outside it. Having zeros

in: the LHP only, obeys the integral limitation

L
(e 8)
Jr‘@n
O\

KL is given in equation 4.1l and may be zero if T

enough so that fr, has no zeros between the s = i

pi(®)
oy, ()

w = K (4.27)

is chosen small

o N

g

+ qo axes. At the
other termination pé ywhich has only RHP zeros, is generally larger

than unity everywhere and obeys the limitation

e8]

Jf In
0

The amplifier is rather sensitive to an erfor in this termination.

pL(w)

p (@)

dw = Nx g  + K (u.28)

The sensitivities to variation of the terminations as well as the
respective reflection coefficients may be equalized somewhat by some
other choice of the zero distribution at the expense of the noise figure.
In general, the sensitivitles to source and load variation of these
multi-element amplifier designs seems to be about the same as.for é
single active element amplifier having the same noise figure contribution
from reflected load noise. The only great advantage of these particular
multi-element designs then is that the bandwidth increases directly with
the number of active elements specified.

It is apparent from the previous section that for minimizing the
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product of the reflection coefficients at both terminations or for
obtaining maximum bandwidth capability per active element, predistorted
Butterworth or Tchebysheff response may not be the best choices. The

two objectives above are not completely compatible. From equation 4.9
one can see that for maximizing'the amplification bandwidth, T(w) should
be unity over the band. This would require the zeros of p(s) p(-s)‘ to
be near the passband region of the s = 1w axis. From equation 4.11 it
can be seen that this cholce of zeros would give rather large K, and

L

KG « In genéral the introdﬁction of uniform loss in a network whose
lossless refleétion zeros are near the passband region of the s = iw
axis leads to a gain response severely peaked at the band edges. While
the reflections are low over most of the active passband, so is the gain.
A possible approach to the problem of minimizing both reflection
coefficients simulbtaneously is to find lossless response fuﬁctions, all
of whose zeros lie on the s = iw + G/C axes, aﬁd whose poles lead to
reasonably flat and stable T'(w) on the distorted real frequency axes.
Such response functlons are not known. They may, of course; be generated
by trial and error; that 1s, by choosing zeros and generating the poles
from the relation p(s) p(-s) + T(s) T(-s) = 1 . Some complexity may be
removed by demanding that the network be even ordered with dual symﬁetry
about the center. The search isythen'limited to finding a reflection
coefficient p(s) whose zeros lie in real conjugate pairs and whose
poles have the desired properties. Such a reflection coefficient can be

written in terms of the properties of the half network, thus simplifying

the order of the problem.

There is no assurance that pole zerc distributions which give low
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Pl and pé and well behaved T' can be found nor that the resulting
bandwidth will be reasonably close to the ultimate theoretically obtain-
able. Nevertheless, the search for such distributions may be a good way
of spproaching an optimum synthesis of multi-element networks.

The synthesis results of this section can also be used in the con-
struction of multi-element reflection amplifiers having apprdximately
Tchebysheff or Butterworth reflection response. We consider the reflec-
tion zeros obtained from equation k.22 when Ti goes -to zero. - The LHP
zeros can be seen to fall directly on the LHP poles, and the RHP zeros
are the réal conjugates of the LHP zeros. The reflection coefficient
which has LHP zeros and poles has magnitude unity on both the s = iw
and s = iw - % axes. This means that the synthesized resistance for
this termination is either zero or infinity. The reflection coefficient
with RHP zeros evaluated on the & = iw axis also has unity magnitude.

This reflection coefficient is large, however, when evaluated on the

G

s = in - g axis. Its magnitude at midband can be evaluated from Figures
2
{
4.5 and 4.6 reading the ordinate as |p'|o rather than %— The
0

reflection poles, being much closer to the s = iw - % axis than the
zeros, are more important in determining the actual response shape. The
reflection response shapes for Butterworth and Tchebysheff predistorted

poles are therefore approximately Butterworth or Tchebysheff.
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4.3 Predistortion Synthesis of Multi-element Parametric Amplifiers

The uniform predistdrtion synthesis technique used for tunnel diode
amplifiers in the previous section can also be applied to parametric
amplifiers if, as in Chapter IIT, normal modes can be found in which the
effects of the time varying elements are describable in terms of real
admitbances at two frequencies. 1In this section we consider reguirements
for the isolation of such normal modes in multi-element amplifiers. Only
time varying capacitors will be used here, but the approach is easily ‘
generalizable to networks containing other types of time varying reac~
tances either alone or in combination. One may guess that the symmetry
conditions for the multi-element network will be essentially the same as
required for the degenerate and pseudo-degenerate syntheses of Chapter

I1T.

We consider a network containing time varying elements

Ci‘l + qi cos(abt + Qpi) in parallel with effective loss conductances

GOi and G—li at the two band center frequencies QO and Q_lA.

Such networks are shown in Figure 4.10. Across each of these elements
iw t - lt

will appear voltages Voi e ° and V 11 © " . Neglecting other

frequencies, the current through each of these elements 1s

1wot 1m_lt
Ioi e + I_li e =
ie iw £
(G, V, +10CV +-LinCV e Plye ©
N -i@Pl 1m_lt
+ (G_li v_li+ m__lc v_l + 5 in €,V s © Je (4.29)

Then
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Figure 4.10 Possible degenerate and non-degenerate parametric
amplifier configurations containing time varying
capacitances Ci(l+ n, cos th + Gpi)
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Figure 4.11 Required o, and ® 5 equivalent circuits for isolation
of modes with real AYO and AYi
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I,
oi
— = iwai + A Yoi =
oi
W v 1i 10
- Pj_
rboci * Goi * Lmoci 2 V. €
oi
I
11
VT M0 ATy -
-11
TBi Voi -6
, et pi (k.30)
iw_lCi‘+ G-li + 1(1)_10i 5 vj;; e

To achieve the pseudo-degenerate symmetry requirements we demand
that two low pass equivalent circults can be drawn whose low pass prop-

erties are analogues of the QO and @ centered properties of the

1

physical network. Such analogues of Figure L.10 are shown in Figure

4.,11. The varisble

5 = i(wb- QO) = i(w_l -0 ) (4.31)

-1

is used as in Chapter III. The elements Coi and C_ are presumably

1i

again related to reactance slopes in the two band network and have the
same product limitation as found in Chapter III. The circuits of Figure
4.10 can be made identical with the equivalent circults of Figure 4.1l
in the narrow band limit.

When the 'QO and Q . networks of Figure 4.1l are identical

1

except for an admittance level ratio C ., = BC , , and a possible dif-
-11 oi

ference in the sign of the n/2 radians phase shift in the impedance

inverters, the choice Al;li = B‘QYoi can be seen to be consistent

with the choice AY’l, and AY , real if and only if © .- © ., is
-1i ol pd pi
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equal to the sum of the phase shifts of the Qo and Q—l impedance
inverters connecting the ith and jth elements. For the circuits

shown in Figure 4.10 and h.ll, ij— @Pi must be + x. Had the series
coupling branch in Figure 4.10 been chosen to resonate between QO and

|Q such that the effective coupling were inductive in one band and

el
capacitive in the other, the required Gpj- @Pi would be zero.

Having found configuration conditions which lead to real AsYi,

one may now calculate these admittances for the two modes. The excita-

tion of each mode by a generator at @ or 0 can also be computed.

oY, Cany ;
The effective loss factors o and —g——— are required to be
ol -1

equal. The factors of two were inserted in the above expressions so

that these loss factors when inserted in the theory of previous sections

give the correct @ or § . bandwidth for € ., and C _., defined on
o] -1 ol -1i
s reactance slope basis. Neglecting the variation of w 1 and wb
across the bands as in Chapter II, we have
Vi VO
-1 —
+ - 1Q C
a T P 2 33 - Yol v X
E i: = C ‘ = ¢ . ( '32)
ol -1i
G 2 1
v G, + G—li (Goi - -li)» aQ
-1 oL TR .1 B -1 1 L
— + _— [ ————— + o— o ( °33)
Yo IT 100, 7 i\ (@ e on.)f &1 B
o 1 i o 1 'i

where the minus signs refer to the mode with negative loss factors and

consequent. transmission gain.
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Cot  C.is Coi1Co11

2 2 ’
G G G, G..2 «q,c./lee
ol -1i T/ ol ~1i 4+ -t i ‘ ) nl‘ (L. 34)

The effective terminations in Figure 4.10 and the terminations shown in
Figures 4.11 at Q. and ©_, must also be in the ratio GO/G 1= 1/B if

these modes found above are to exist. A current generator at w_ couples

to both the amplification and aﬁtenuation mode. The ratio of the excita-

tions 1s
v
2
I, v
_Ano- _  _-ll- (4.35)
in o+ Vo
Voil+

and the fractional efficiency of input power coupling to the amplification

mode is
v 2
o)
. 2 k] -
A - in o~ - o A , (k.36)
o= Tin o ¥ Tmo 4 v, v,
V—l - V-l +

A , A 1.7 and A are simply obtained from equation 4.36 by change of

0+ 1+

subscripts.

When the % , 88 given in equation U.34 are the same for all
gections of the parametric amplifier network, a uniform predistortion -
synthesis is possible and the results of section 4.2 are directly appli-
cable. Equation 4.34 is, however, applicable for non-uniform loss
synthesis also.

When it is not necessary to include the attenuating mode in noise

figure calculations, an effective temperature can be written for the

effective negative conductance at wb .

-~
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Goi/Co:'L
= oF of L,
Ty eff ® 0= G Toi T fo1-

2C |1

G T 14 (4.37)

For G ,/C, =G_1,/C_;; , this becomes

. - 1 Goi/Coi T +
i eff|w Sy oi
Q 2C|i-

This noise temperature may be used in the noise figure calculations of

T 1 (4. 38)

section k.1. The noiseless attenuations AO& and A 1- as well as

noise from the Q_l terminations must also be accounted for in the
noise figure.

The consideration of conditions under which multi-element para-
metric amplifiers can be designed by negative loss factor synthesis
techniques sppears to place very tight symmetry conditions on the
properties of the physical circult. These tight conditions are probably
more necessary for the mathematics of the synthesis than for the actual
amplifier. It is expected that in physical amplifier configurations
such as the network of Figure 4.10 which only approximate the required
symmetry, exact mode voltage ratios Vo/v—l can be found which are
imaginary at the band centers and which are elsewhere slightly rotated
in phase. This adds reactance of the same sign to AYO and ;AY_l
tending to restore the symmetry. A small rotation of Vo/V-l does not
change the effective G/C to first order. It is very difficult to cal-

culate these effects exactly, however, or to give limits on the asym-

metries which will not greatly alter first order predicted response.
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CHAPTER V

SUMMARY AND SUCGESTIONS FOR FURTHER WORK

Fundamental bandwidth limitations of the tunnel diode and
similar reactance limited negative conductances have been established
in Chapter II. The consideration of lossless ladder networks terminated
in such elements has been shown to yleld syntheses of amplifiers whose
bandwldths approach these limits as rapidly as possible as the number
of passive circuit components is increased. In addition to synthesis
in terms of low pass networks, several qﬁestions of practical importance
have been raised and answered, such as: the limitations imposed by a
second essential reactance in the active element equivalent circuitj
warm up stability; and the relations between the low pass ladder and
simple bandpass networks.

There are still two large areas in the general problem of tunnel
diodes in ladder networks whose consideration may lead to useful and
interesting information. One is the general consideration of the capa-
bilities of tumnnel diodes appearing elsewhere than in network termina~
tions. The problem has only been touched upon in Chapter IV, where a
nevw integral theorem was derived and in which special case configura-
tions analyzable on a uniform loss basis were discussed. The general
problem and even the special case of a single tunnel diode imbedded in
a passively terminated ladder network are much more difficult to solve.
The simple synthesis procedures used in this work cannot be applied.
The second problem area suggested by this work is the consideration of

the tunnel diode terminated ladder network whose elements are uniformly
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lossy. The transmission amplifiers of Chapter II can be synthesized
to give Butterworth or Tchebysheff response by predistortion under
these conditions. There is, however, no guarantee that these response
functions will be best suited to simultaneous optimization of band-
width and noise figure. The reflection amplifiers in Chapter II cannot
be synthesized to give exact Tchebysheff or Butterworth response by
predistortion. New response functions must be found which have’
desirable characteristics from three possible points of view, band
shaping; bandwidth, and noise figure.

In Chapter IIT fundamental bandwidth limitations of three—frequency
nonlinear reactance amplifiers have been derived in a somewhat less
general or figorous way -than for tunnel didde amplifiers. These limita-
tions were found to be of two types: a limitation on the minimum product
of the two reactancé élope parameters obtained in resonating the D.C.
reactance at two frequencies, and the limitation which this product
imposes on the bandwidth of the idealized active element with no D.C.
reactance. With the exception of the degenerate parametric amplifier
synthesis the syntheses given in Chapter III are somewhat inadeguate.
They are not optimum in a sense of approaching the ultimate bandwidth
most rapidly as a function of network cbmplexity. They do not allow the
independent specification of the ratios of signal to’idlef load impedance
and the first signal to idler reactance slopes. Thus, while some
progress has been made here on the general problem of nonlinear reactance
amplifier synthesis, there is still much work left to be done. Further
work in this area should attempt to remove the above difficulties. In
addition, it may be profitable to reconsider the basic symmetry assump-

tions made in Chapter III and either prove or disprove that this of all
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possible physically realizable assumptions leads to the greatest band-
width limit and the fastest approach to this limit as a function of
netvork complexity.

In Chapter IV multi-element tunnel diode and parametric amplifier
configurations which could be analyzed by reverse predistortion were
considered. The objects of choosing such configurations were achieved.
It was shown that amplifiers whose bandwidth increased almost linearly
with the number of components are obtainable, and syntheses giving sixty
percent of the maximum bandwidth obtainable with wniform negative loss
configurations were demonstrated. A significant problem with the trans-
mission amplifier synthesis as performed in Chapter IV was the resultant
high reflection coefficients. It was shown that the reflection coeffi-
cient could be reduced to about unity at the load termination, minimizing
the noise figure, but only at the expense of raising the reflection co-
efficient at the input termination. This results in high sensitivity
to a change in the source impedance. It was proposed that this 4iffi-
culty might be removed by a better choice of transmission function. It
is possible that this difficulty does not arise in synthesis by the
Darlington method of non-uniform predistortion. Both of these approaches
to multi-element amplifier design need further consideration.

Throughout this work certain approximations or distortions have
been necessary to describe the simplest physical amplifier configurations
in terms of the simple low pass network. These have been mostly pointed
out already in the text. There has been no mention, however, of the
circuitry required to provide excitation in the form of D.C. bias or

pump power to the active elements, or the effects which this circuitry
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might have on other properties of the active elements.

Ideally speaking, excltation can be applied through extremely
narrow band, high Q filters whose presence should not affect the
properties of the signal circult. In practice, the exciting circuitry
can usually be deslgned so that its effects can be treated as pertur-
bations to elements already required by the signal circuit. In a good
design these perturbations should not occur as changes in the essential
reactance of the active elements, since this may reduce bandwidth capa-
hility, nor as lossy elements which may deteriorate noise performance.

The excitation problem, like most of the approximations made in
this work, will have to be considered on a single case basis. These
"cases", however, need not be so restrictive as to imply the design of
a specific special purpose amplifier. The present work has attémpted
to treat amplifiers in any freqﬁency range. The words "wide band" and
"narrow band" have been used here with no guantitative values attached
to them. There is much specific synthesis information which can be
compiled when the frequency range, and therefore the characteristics
of avallable elements both active and passive, are known. There is
much still to be said about configurations and their desirability,
expecially in relation to constructional problems. There are approxi-
mations to be removed, many of which can be treated when the frequency
range and fractional bandwidth are known.

It appears likely that such "common denominators" can be used as
a basis for obtaining further design information for tunnel diode and
variable reactance amplifiers. It is hoped that the information given

here and the methods employed will pave the way for the future compila-

tion of true design data for these devices.
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