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Abstract

For linear systems, robust analysis techniques are well developed. For non-
linear systems, they are not. Most nonlinear analysis techniques use extensive
simulation to examine system performance. However, these simulations do not
give guarantees, they only describe local performance.

This thesis presents a simulation technique, called robust simulation, that
answers the nonlinear robust analysis question. For an uncertain nonlinear
system and a set of initial conditions, robust simulation calculates the set of
all possible trajectories. By applying a measure to the set of all trajectories, a
performance guarantee is obtained. To allow efficient robust simulation, only
discrete time piecewise linear systems are considered. This class of systems
admits a wide variety of nonlinearities and can approximate generic nonlinear
systems to any degree of accuracy. To measure performance, a generalized
l norm is used. As in the linear case, the robust nonlinear analysis ques-
tion cannot be answered exactly. Instead, upper and lower bounds are cal-
culated. Many techniques, including traditional simulation, exist for finding
lower bounds. Robust simulation provides efficient methods for calculating an
upper bound.

Robust simulation also supports simulation when multiple models exist for
a single system. When modeling a physical system, any amount of complex-
ity is possible. Traditional simulation of these models with different levels of
detail yields different individual trajectories. Which is correct? By explicitly
quantifying the uncertainty as noise, robust simulation calculates sets of pos-
sible trajectories. For each model the result is guaranteed to contain the true
output. More detailed models yield smaller sets of possible trajectories.

To test the algorithms, robust simulation is applied to a variety of exam-
ples. Algorithm performance is generally very good. Three other applications
of robust simulation are also presented. In addition to measuring robust non-
linear performance, robust simulation also generates lower bounds for model
predictive control optimizations, verifies the stability of piecewise linear sys-
tems, and analyzes gain scheduled systems.
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Chapter 1

Introduction

Desktop workstations have greatly changed engineering and design. To reduce
both time and cost, engineers now use computer simulations instead of building
and testing prototypes. However, as systems become more complex, modeling
and analysis quickly become more difficult.

These two areas, modeling and analysis, are central to engineering. A
mathematical model of a physical system is constructed, and analysis is per-
formed to predict some quantity. However, the analysis results are highly
dependent upon the choice of model. When calculating the number of cars
that can fit in a cargo ship, only the mass and volume matter. However,
treating a car as just a mass and volume is useless when predicting traffic
patterns.

Obviously, the choice of model must be suited to the question at hand.
However, complex systems are often constructed by the interconnection of
simpler systems, and it is impossible to expect the engineer to know the correct
level of detail needed for each component in advance. If too much detail is
included, analyses will require extensive computation time. If too little is
included, the results will be meaningless.

Having multiple models for a single system introduces another concern.
Generally, simulation of two different models will yield two different results. If
both models describe the same plant, then this difference must be resolved, or
at least understood. One approach to this problem is to quantify the uncer-
tainties in the models and use a simulation method that explicitly accounts for

the uncertainties. Instead of a single result, the simulation technique returns
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a set of possible trajectories. In this setting, more accurate models have less
uncertainty and simulation yields a smaller set of possible trajectories.
Even if a suitable model is found, analysis is not a trivial task. In general,

one would like to answer the robust analysis question:

For a system with noise and uncertainty, what is the worst possible
performance?

The answer to this question is a guarantee; nothing can be worse than it. How-
ever, for practical systems, this question cannot be answered exactly. Compu-
tational requirements grow exponentially as the problem size increases.

All approaches taken to answer the robust analysis question share two com-
mon themes. First, no attempt is made to find the exact solution. Instead,
upper and lower bounds are computed and refined until the gap between the
bounds is small. Second, noise descriptions, uncertainty descriptions, system
representation, and performance measure are chosen to allow for computation-
ally efficient algorithms. In other words, the model choice is driven by analysis
concerns.

For linear systems, both theoretical and numerical results are well estab-
lished. For example, the p framework provides an efficient computational
approach for finding bounds on the worst-case performance [41]. However,
most complex systems are nonlinear and the linear frameworks do not extend
to the nonlinear setting. Existing robust nonlinear analysis techniques are
either computationally expensive or not applicable to general problems.

Instead of directly analyzing nonlinear a system, simulation is used to
characterize its behavior. However, individual simulations only give local in-
formation about the plant. By running large numbers of simulations, a feel
for the global system response is obtained, but no guarantees can be made.

Though simulation does not answer the robust analysis question, it does
give a lower bound. The worst case performance of a system is at least as
poor as the performance obtained from any single simulation. To obtain a
good lower bound, simulation and local optimization are repeatedly applied

and the worst performance is chosen. Recent work by Tierno has combined
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lower bound ideas from the g framework with nonlinear simulation to achieve
improved lower bounds with reasonable computations [36].

Nonlinear upper bounds have even fewer results. Most results are based
upon finding Lyapunov functions. In general, there is no systematic method for
finding a Lyapunov function. In the cases where numerical tools are applicable,
such as linear parameter-varying (LPV) techniques, the results are often very
conservative [5, 21]. The numerically tractable upper bound techniques share
a common theme: they cast the nonlinear system into a specific form that
is simple to analyze. Again, the analysis technique requires a special type of
model.

While the goal of a general nonlinear technique is unrealistic, finding a
nonlinear representation that both admits a wide class of nonlinear systems
and is numerically analyzable is not. This thesis presents one such class of
nonlinear systems and develops the corresponding tools to answer the robust
analysis questions. This class of systems also addresses issues related to model
libraries and simulation with uncertainty.

Thus, the problem of numerical nonlinear systems modeling and analysis

can be broken into two parts:

1. Nonlinear system representation

2. Numerical tool implementation

Before selecting a nonlinear system form, it is instructive to examine linear
system representations. Both transfer functions and state space descriptions
share a common trait: the complete behavior of the system is defined by a
small number of parameters. This finite data size allows the development of
efficient algorithms. On the other hand, general nonlinear systems require
an infinite amount of data. The flow at every point in time and state space
needs to be specified. In order to allow efficient numerical tools, the nonlinear
representation must have a finite and small size.

The choice of representation then drives the tool development. Represent-
ing linear systems by matrices led directly to eigenvalue and SVD analysis

techniques. Likewise, the use of polynomials in transfer functions led to the
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use of root finding and the Routh criterion. Ideally, the nonlinear form se-
lected will have well developed numerical tools already developed, though their
meaning may not be clear.

The framework presented in this dissertation uses a piecewise linear system
representation and linear programming. The analysis approach is a modifica-
tion of traditional simulation ideas. System behavior is analyzed by simulating
all possible trajectories at once. This technique, called robust simulation, is

the natural extension of simulation to robustness analysis.

1.1 Historical Context

From a control perspective, modeling and analysis to predict system perfor-
mance dates to the mid 1800s. During this period, the focus was on predicting
the stability of steam engine governors. In 1868, Maxwell introduced the idea
of modeling governors as linear differential equations. It was known that the
stability of a linear differential equation depended upon the value of the real
part of the roots of its characteristic equation, and Maxwell stated stability
conditions for models up to fifth order. In 1877, Routh developed the Routh-
Hurwitz stability criteria which allowed analysis of linear differential equations
of arbitrary order [3]. From the beginning, modeling was driven by the ability
to analyze the model.

In [4], Bode introduced the notion of robustness by defining gain and phase
margin. Though not mathematically rigorous, these practical measures al-
lowed designers to judge their margin for modeling error. In the early 1960s,
Zames developed a rigorous definition of robustness and introduced the small
gain theorem. Further developments focused on allowing robust analysis with
more versatile descriptions of noise and uncertainty and on design to optimize
robustness [40].

Extending the linear robust analysis methods to nonlinear problems has
yielded mixed results. While the theory extends, the computational properties
generally do not. For example, in [23], nonlinear robustness was characterized

by the solution of infinite dimensional nonlinear matrix inequalities (NLMIs).
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The equivalent linear problem requires solving finite dimensional linear in-
equalities (LMIs). While solution techniques for LMIs are well developed [13],
NLMIs can only be solved in special cases.

While robustness analysis theory was advancing rapidly, modeling theory
was not. In general, the linear input-output setting was, with small modifi-
cations, sufficient for analysis. However, in 1981, Sontag introduced the idea
of piecewise linear modeling of nonlinear systems for control purposes [33].
Rather than extend linear analysis techniques to a nonlinear setting, a linear
modeling framework was extended to a nonlinear setting. While piecewise
linear analysis theory could be stated elegantly, it was not computationally
practical.

Even with a well-developed linear modeling methodology, creating large
linear models from the interconnection of simpler systems introduces several
difficulties. Model reduction theory has formalized the creation of sets of
models of varying complexity. In [22], the issue of choosing the appropriate
model components for inclusion in a large system is addressed. However, the
results are mainly theoretical and their computation is difficult. This idea
of systematic large modeling is a new area of research and is being heavily
studied at Caltech under the virtual engineering project.

The ability to construct and analyze large nonlinear systems still remains
more art than science. Model creation relies on the skill and intuition of the
engineer. Analysis generally consists of large numbers of simulations with
randomly selected initial conditions, uncertainty, and noise. Analysis results
do not give guarantees; they only give an indication of typical performance.
This thesis develops a general modeling framework for which simulation gives
guarantees. The tools needed for systematic model creation are also presented.

It takes the art and turns some of it into science.

1.2 Contributions and Outline of This Work

This thesis takes several well-known ideas and uses them to numerically solve

the nonlinear robustness problem. In the process, a systematic technique
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for modeling nonlinear systems is developed. This framework and its anal-
ysis techniques are inherently suited to working with model libraries. This
methodology gives a mathematical foundation to the creation of complex sys-
tems from simple subsystems. While each individual idea is not new, their
combination represents a large advancement over the state-of-the-art.

Chapter 2 reviews the basics of simulation and introduces the idea of robust
simulation. Robust simulation is the simulation of sets through time and
allows the calculation of the guarantees required for robust analysis. The
modeling framework and basic algorithms needed to support robust simulation
are presented in Chapter 3. As with all successful analysis techniques, the
modeling framework is chosen to suit analysis. In this case, it happens to be a
framework that was first studied over a decade ago, piecewise linear systems.

After establishing the modeling framework, Chapter 4 describes the robust
simulation algorithm. Initially, an exact solution that exhibits exponential
computational growth is developed. From this exact solution, a conservative
approximation is derived. The approximation is refinable; if it is too conser-
vative a better result can be obtained systematically. Other techniques for
improving the results are also developed.

Analysis tools based upon robust simulation are developed in Chapter 5.
First, a generalized nonlinear cost suited to robust simulation is presented.
This cost allows more general performance measures than are available with
other techniques. Robust simulation is then applied to obtain an upper bound
on the worse case performance, measured in this cost. Several examples are
presented.

An analysis tool is only as useful as the models it can analyze. Chap-
ter 6 demonstrates that the piecewise linear framework has practical value. A
method for converting from nonlinear to piecewise linear is presented. The
piecewise linear form also gives a measure of the degree of nonlinearity of the
system. This nonlinear dimension is the key measure affecting the computa-
tion time required for analysis. Finally, several common nonlinearities and
uncertainties are presented in the piecewise linear framework.

Robust simulation also gives a mathematical foundation for multiresolution
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simulation. Asshown in Chapter 7, robust simulation allows the user to change
system models during a simulation and still obtain meaningful results. Since
robust simulation gives the set of all possible locations in state space, more
accurate models yield smaller sets of possible states. In traditional simulation,
two different, unique trajectories would result. Instead, robust simulation
calculates two sets of feasible trajectories.

Chapter 8 applies robust simulation and piecewise linear modeling to other
problems. Robust simulation can be thought of as a general optimization tool.
In this setting, it generates lower bounds for model predictive control design.
In a more straightforward application, robust simulation is used to verify the
stability of piecewise linear systems. Lastly, the ties between piecewise linear
system modeling and traditional gain scheduling are discussed.

This thesis closes with a summary of the results and future directions. One
area of future research, the extension to continuous time systems, is discussed

in some detail.






Chapter 2

Simulation and Computational
Complexity

Simulation is the use of a solution of equations to predict the response of a
physical system. Historically, simulation has been used when other analysis
techniques cannot be applied. Rather than explicitly calculate system behav-
ior, possible trajectories are used to infer system behavior.

Many forms of simulation exist. Scale models of airfoils are tested in wind
tunnels, and the results are used to predict the performance of the full sized
wing. Typically, simulation refers to the numerical solution of equations on a
digital computer. This notion of simulation will be used through the remainder
of this thesis.

Today, simulation is still widely used. Most models of realistic systems
are sufficiently nonlinear to preclude analysis. Often, design is done using
linear approximations and the final design is verified by simulating the model
with all nonlinearities included. The lack of analysis tools, not the benefits of
simulation, drive this design procedure.

Extensive simulation tools are available. Some tools, such as SIMULINK,
are general purpose tools that allow the simulation of a variety of systems.
Other simulation tools are tuned to fill specific needs. However, all tools hide
the mechanics of simulation from the user. While simulation has been studied
extensively, it is far from fool-proof. Even the simplest simulations can yield
misleading results.

This chapter begins with a brief introduction to standard simulation tech-

niques. The ideas are well known and can be found in many texts on numerical



10

analysis, such as [7] and [8].

2.1 Traditional Simulation

All simulation starts with a model of the physical process. Often, this model
is a nonlinear partial differential equation (PDE). The solution to an PDE,
denoted u(z, t), is defined over the continuum of space and time. Since, except
for special cases, analytic solutions cannot be obtained, numerical techniques
are needed. However, numerical solutions obtained from a digital computer
are fundamentally different from u(z,t).

Digital computers perform operations on finite data sets. The continuum
of space and time is infinite dimensional. To account for this limitation, the
original problem is discretized over both space and time. Instead of calculating
u(z,t) over the continuum, numerical methods return the solution evaluated
at a finite set of points.

Spatial discretization changes the PDE to an ordinary differential equation
(ODE). Typically, finite element methods are used for the discretization. More
advanced methods select the discretization adaptively. For some systems, the
spatial discretization step can be avoided by using a lumped parameter ap-
proximation. This common approximation uses idealized models, such as pure
resistors and massless springs, to directly construct an ODE.

In some cases, the ODE can be solved exactly. For example, the system of

linear differential equations

(1) = Az(t), 2(0) = zo

A

has the solution z(t) = e*xy. Thus, simulating a linear system is as difficult as

computing a matrix exponential. However, computing the matrix exponential
is numerically challenging. Small changes in At can lead to large changes in e.
In [25], Moler and Van Loan demonstrated nineteen methods for computing
the matrix exponential and their shortcomings. Even simple linear simulations
can be challenging.

When the ODE cannot be solved analytically, temporal discretization is
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also required. Like spatial discretization, many methods exist for discretiz-
ing time. While the simplest technique, Euler’s method, is rarely used, it

demonstrates the general idea. Starting with the nonlinear ODE

&(t) = f(t,z), to <t <ty, z(to) = o,

the objective is to find the solution z(¢). Unlike the linear case, z(t) is calcu-
lated at a finite number of time samples. The behavior between time samples
are approximated by interpolation.

Denoting w(t) as the approximate solution obtained by simulation, Euler’s

method starts with w(ty) = zo and iteratively applies the rule

w(t+ At) = w(t) + At x f(t,w(t)).

This rule is called the difference equation for Euler’s method. Euler’s method
uses only the previous value to compute the solution’s next value. During each
At time step, the derivative, f, is frozen. If f varies quickly relative to At,

large errors will occur.

Many other techniques have been developed to address the limitations of
Euler’s method. Taylor methods use higher order derivatives of f to reduce
errors. Runge-Kutta methods evaluate f at several ¢,w pairs when finding
w(t + At). Multi-step methods are similar to Runge-Kutta, but use past
values of w to compute the next value. Extensions to these techniques allow
varying the step size At. When f is changing rapidly, smaller steps allow more
accurate solutions.

All simulation methods return a numerical approximation to the true so-
lution. Every method works well for some problems and poorly for others.
For highly nonlinear systems, simulation results can be very misleading. For
chaotic systems, small changes in initial conditions cause large changes in the
solution. Errors due to finite precision computations can even affect the re-
sults. When using simulation, it is important to understand both the system

being simulated and the simulation method.
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The previously described simulation techniques generate a single approximate
solution for a single initial condition. Since initial conditions may vary and
are never known exactly, one is usually concerned with system response over
a variety of initial conditions. These traditional simulation techniques also
assume that the system is completely deterministic. Noise is either ignored or
a specific noise signal is chosen for the simulation.

Monte Carlo methods are used to extend traditional ODE simulation tech-

niques to uncertain systems. Consider the more general ODE
£(t) = f(t,z,n), to <t <t;, z(ty) € X, n € N.

This equation allows for both non-deterministic noise and uncertain initial
conditions. X, and N are sets of initial conditions and noises that define the
parameter space of the simulation. To completely understand system response,
the behavior at every zg, n pair must be calculated.

For most problems, the sets X and A are continuums and the simulation
of every zy,n pair is impossible. For example, NV is often the set of signals
with magnitude less than some bound. Similar to the discretization of PDEs,
the simulation parameter space is also discretized to allow analysis by a digital
computer. In Monte Carlo analysis, the discretization points are chosen ran-
domly. By simulating a large number of points selected from the simulation
parameter space, a description of the typical response is generated.

One example of Monte Carlo analysis is the estimation of 7. The area of a
circle is wr?, where r = (/z? + 22. By randomly selecting points in the square
|z1] < 1,]zs] < 1 using a uniform distribution and counting the number of
points that lie in the circle, 7 can be estimated. Since the square has area of 4,
one would expect that 7/4 of the points would lie in the circle. Table 2.1 shows
the results obtained using MATLAB’s uniform random generator for various
numbers n of randomly chosen points. As expected, small n do not yield
accurate results. However, as n increases, the approximation does not quickly

converge to m. Even though this Monte Carlo simulation was constructed to
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n T
10 2.4000
100 3.0400
1000  3.1480

10000  3.1460
100000  3.1464
1000000 3.1451
exact  3.1416

Table 2.1: Monte Carlo estimation of 7.

approximate 7, it is only as accurate as the random number generator.
While Monte Carlo analysis is a powerful analysis tool, it is important
to interpret the results properly. As previously demonstrated, results depend
upon the quality of the random number generator. Even with truly random
numbers, Monte Carlo analysis does not give global guarantees. The result
from the analysis is a set of possible trajectories. Each individual simulation
specifies the local behavior of the system. Nothing can be said about the
global response. Monte Carlo analysis characterizes the expected behavior of

the system. The extreme behavior is still unknown.

2.3 Robust Simulation

Robust simulation addresses the local nature of traditional simulation and
Monte Carlo analysis. Instead of calculating a single trajectory, robust simu-
lation finds a set of possible trajectories. For some volume in the simulation
parameter space, robust simulation returns all possible trajectories for every
point in the volume. From this single simulation, every potential result is
generated. Thus, the global behavior of the system can be analyzed.

Robust simulation is the natural extension of simulation to systems with
noise and uncertainty. In the linear setting, robust analysis techniques guar-
antee performance for sets of systems. Robust simulation takes traditional

simulation ideas, and applies them to sets of nonlinear systems. While the
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idea is simple, its execution is not. There has been little success in robust
simulation.
One recent success involves the analysis of linear hybrid systems, which

have the form
=4 (2.1)

where the A; are constants defined over different regions of the state space.
This type of system has a constant derivative that changes at discrete locations
in state space. One example of a linear hybrid system is a billiard ball rolling
without friction. The ball has constant velocity until it bounces off the side
of the table. After a rebound, the velocity changes to a new constant. For
this class of systems, robust simulation algorithms have been developed. The
analysis techniques calculate all possible reachable states from a specified set
of initial conditions [1].

However, most systems of interest cannot be accurately approximated by
systems in the form of (2.1). Around equilibrium points, most systems exhibit

linear behavior, not constant behavior. A piecewise linear form of

i = Az + A (2.2)
is much more versatile. Both analytic properties and simulation techniques
for this system representation are areas of active research [17, 30].

At the heart of robust simulation is the ability to work with sets of trajec-
tories. By manipulating sets of possible trajectories, global properties can be
obtained. Working with sets adds two computational issues: set representa-
tion and set mapping. The goal of this work is to present a robust simulation
technique that is applicable to a wide class of systems and yields guarantees
with reasonable computational cost.

In developing the robust simulation framework, it is important to focus
on the added difficulty of robust simulation. All of the previously described
simulation techniques require both spatial and temporal discretization. The
robust simulation technique developed minimizes those concerns and focuses

on the set mapping and representation issues.
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Time discretization issues are avoided by considering only discrete time
systems. Spatial discretization is addressed by restricting the class of nonlin-
ear systems considered. To achieve efficient robust simulation, discrete time
piecewise linear systems are used. As shown in the following chapters, this
form allows easy manipulation of sets and efficient computer implementations

and admits a very wide class of nonlinearities.



16
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Chapter 3

Piecewise Linear Systems

Piecewise linear (PL) systems are a natural extension of linear system ideas
to nonlinear problems. In different regions of state space, the system follows
different affine state update laws. This class of systems has several beneficial
features. PL systems are easy to implement and simulate, they can exhibit
very complex behavior, and they facilitate nonlinear modeling. However, since
analyzing PL systems is comparable to analyzing general nonlinear systems,
very few analytical results exist.

Though conceptually simple, PL systems are computationally hard. Over
a decade ago, Sontag suggested the use of discrete time PL systems for non-
linear regulation [33] and developed a PL algebra [34]. However, no practical
computational tools were developed. Recently, Pettit and others have studied
continuous time PL systems. While algorithms verifying the stability of these
systems have been developed, they can require enormous computation time
[30]. In fact, Sontag demonstrated that computing practically all interesting
PL system properties is NP-hard [35].

One area where the piecewise linear representation has been successful is
circuit analysis. Any continuous resistive nonlinear circuit can be modeled to

any accuracy by a continuous piecewise linear equation of the form
o
f(@)=a+ Bz +> cl{a,z) — Bi| = 0. (3.1)
i=1
However, not every piecewise linear function can be written in this form [9,

10]. One requirement of (3.1) is that f(z) is continuous. In many control

applications, including gain scheduling, f(x) is inherently discontinuous. This
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continuity restriction makes the circuit analysis approach to piecewise linear
analysis unsuitable for general use.

While analyzing general PL systems is very difficult, manipulating them
is not. Traditional simulation of discrete time PL systems only requires basic
matrix operations. PL systems also have very simple set mapping properties;
a convex polyhedron maps to a finite set of convex polyhedra. This property
is crucial to efficient robust simulation, and motivates the study of this class
of systems. Furthermore, set mapping requires only basic matrix operations
and the solution of linear programs.

As described in Chapter 6, PL systems also provide a framework for ro-
bustly modeling nonlinear systems and measuring their complexity. A PL
system is completely described by a finite amount of data, usually represented
as a set of matrices. Though their representation is simple, their behavior can
be arbitrarily complex. In fact, almost every nonlinear system can be approx-
imated arbitrarily closely by a PL system. Thus, any nonlinear system can be
efficiently represented and manipulated in a digital computer. The PL model
also provides a natural measure of the complexity of the system.

Though there is little hope of finding algorithms that give exact solutions to
any PL problem in reasonable time, PL systems are still very useful. Almost
all computations can be accomplished with widely available software tools,
so algorithm development is greatly simplified. PL systems also provide a
framework for a variety of complex modeling and simulation tasks. While
exact solutions are always prohibitively expensive, approximate solutions are
often reasonable. Asshown in later chapters, approximate solutions to stability
and performance problems are readily obtained.

This chapter focuses on piecewise linear systems and simple manipulations
of them. It begins with the definition of a PL system and a discussion of
computational complexity issues related to algorithm development. Several
efficient basic algorithms for manipulating PL systems are then presented.
These are then used to develop the PL system set mapping algorithm. The
chapter closes with a set mapping example and a physically motivated PL

system.
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3.1 Definitions

By convention, all vector spaces are finite dimensional real spaces denoted R",
where 7 is the dimension of the space. A separating hyperplane is the set of
all points x € R” satisfying the linear mapping (d,z — p) = 0 with d,p € R"
and the usual inner product. With this definition, d is a vector normal to the
hyperplane and p is a point on the hyperplane. The positive closed half space
is defined as the set of all points satisfying (d, z — p) > 0. The normal vector,
d, points into the closed half space.

A closed polyhedron is the intersection of a finite number of positive closed
half spaces. By construction, all polyhedra are convex. A bounded closed
polyhedron is one with finite volume. For a polyhedron to be bounded, it
must be the intersection of at least n+ 1 half spaces (to define a simplex). All
polyhedra are assumed to be closed, unless otherwise noted.

A discrete time piecewise linear system is a nonlinear system that follows
different affine state update laws in different regions of the state and input
space. All PL systems are assumed to be discrete time unless otherwise noted.
More specifically, a PL system with n states, m inputs, and p outputs is
defined over Z C R™™ where Z is the union of a finite number, of closed
polyhedra, denoted R;, ¢ € 1...l. In region R;, an affine map denoting the

state transition is defined by
z[k + 1] = A;zlk] + A; + Byulk]
B} , (@[k], ulk]) € R; (3.2)
ylk] = Ciz[k] + C; + Dulk]
where ulk] € R™ is an input vector, z[k] € R" is the state vector, and all
matrices are the appropriate sizes. For simplicity, it is assumed that the regions
do not intersect, except perhaps on a set of zero measure. In other words, R; N
Rj,i,5 € 1...1,7 # j has zero volume. While the R; are typically connected,
it is not a requirement.
This definition simplifies computer implementation, but leads to a minor
technical problem. Since the polyhedra are closed and may share boundaries,

the mapping is not always well defined on the boundaries. The mapping is well

defined almost everywhere. One solution to this, the approach taken in [33],
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is to specify the polyhedra by (d,z — p) > 0 and (d, x — p) = 0. However, this
approach greatly complicates algorithm development and implementation.

Another solution, the one used throughout this thesis, is to allow the map-
ping to be multivalued on the boundaries of R;. While it is possible to create
a PL system that exploits the behavior on the boundaries, this is generally
not the case. For models of physical systems, the flows in each region near a
common boundary are often similar. This approach also allows the removal
of requirement that R; N R; has zero volume for i # j. If this intersection
has volume, the mapping for points in the intersection is not uniquely defined.
One interpretation of this multivalued update rule is that the system behavior
is chosen from a set of possible rules. However, this work does not focus on
systems with non-deterministic update laws, and they will not be considered
further.

Most of the algorithms developed later also apply to PL time varying sys-
tems, where both the update laws, the region boundaries, and the number of
regions are functions of k. The notation S; denotes a finite set of polyhedra

in Z at time j.

3.2 Computational Complexity

In many problems, a formula for the solution cannot be written explicitly.
Instead, the problem is considered solved when an efficient algorithm returning
the solution exists. For example, many control problems can be written as
the solution of LMIs [6]. Since efficient algorithms for solving LMIs have
been recently developed [26], posing a problem as the solution to an LMI is
equivalent to solving it.

An efficient algorithm is defined as one whose time complexity function
grows polynomially with problem size. The time complexity function measures
computation time as a function of problem size. A function f(n) is called
O(g(n)) whenever there exists a function g(n), constant ¢, and problem size

ng such that f(n) satisfies

0< f(n) <ecg(n), ¥n > ng > 0.
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Algorithm Size n
Complexity 10 20 30 40 50
o 10 20 30 40 50
(n) seconds seconds seconds seconds  seconds
o 2) 10 40 1.5 2.2 4.2
n seconds seconds minutes minutes minutes
o 3) 10 1.3 4.5 11 21
n seconds minutes minutes minutes minutes
o 6) 10 11 2.0 11 1.8
n seconds minutes hours hours days
2. 4. 3.4 350
o(2") 10 8 0 0

seconds  hours months centuries centuries

Table 3.1: Comparison of polynomial and exponential time growth rates.

When f(n) is an algorithm’s time complexity function and g(n) is a polynomial
function, the algorithm is called a polynomial time, or efficient, algorithm.
When the time complexity function cannot be bounded by a polynomial, the

algorithm is called an exponential time algorithm [15].

The difference between the two classes of algorithms is profound when solv-
ing large problems. Table 3.1 shows computation time as a function of problem
size for several algorithm complexities. For polynomial time algorithms, com-
putation time grows reasonably. If a given problem can be solved in seconds, a
problem four times larger can typically be solved in minutes. For exponential
time algorithms, this is not the case. Even if a small problem can be solved in

seconds, a problem four times larger can take centuries to solve.

In order to solve problems of large size, polynomial time algorithms are
required. Fortunately, a large number of problems can be solved in polynomial
time. Most matrix operations, such as least squares, singular values, and
eigenvalues, are O(n®), where n is the larger of the number of rows or columns

in the matrix [16].

However, a large class of problems, called NP-complete, cannot currently

be solved in polynomial time. It is still unknown if polynomial time algorithms
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exist for NP-complete problems, though it is generally accepted that they do
not. This class includes many well known problems, such as the traveling
salesman problem and integer linear programming. Another important class
of problems is those that are at least as hard as the NP-complete problems.
This class, called NP-hard, consists of all problems that include NP-complete
problems as special cases. A detailed discussion of NP-complete problems and
other computational complexity issues can be found in [15].

The main result from this complexity analysis is that efficient algorithms
cannot be found for NP-complete and NP-hard problems. Since these prob-
lems cannot be solved efficiently, approximate solutions must be obtained. In
[35], Sontag demonstrated that PL analysis problems are NP-hard. Thus, PL
algorithm development focuses on finding efficient, approximate solutions.

One other important requirement for efficient analysis is that the problem
can be described by a polynomial amount of data. Storage requirements are
as important as computation time. Problem representation is especially im-
portant when describing nonlinear systems. Describing a flow by individual
values at each point in the state space is equivalent to gridding a parameter
space. Gridding an n-dimensional space with & grid points in each direction
requires k" values. Small increases in problem dimension lead to unreasonable

storage demands.

3.3 Basic Algorithms

Though there is little hope for finding efficient algorithms for PL analysis,
inefficient algorithms are easily developed. From these exponential time al-
gorithms, efficient approximations can then be derived. This section presents
the building blocks for PL algorithm development. Each algorithm presented
efficiently solves a single, simple PL problem. By piecing these algorithms
together, more challenging analysis questions can be answered.

The first step in algorithm development is to define the problem representa-
tion. A polyhedron is defined by the intersection of ¢ positive half planes, each

identified by d;, p;,¢ € 1...c. After rewriting the definition of a positive half
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Name  Size Description

D ¢ xn Vectors normal to each hyperplane bounding the region
P c¢x 1 Distances from each hyperplane to the origin

A n X n  Linear portion of the state update law

A n x 1 Constant portion of the state update law

B n X m Input portion of the state update law

C p X n Linear portion of the output rule

C p x 1 Constant portion of the output rule

D p x m Feedforward portion of the output rule

Table 3.2: Matrices needed to describe one region of a piecewise linear system.

plane as (d;,z) > (d;, p;) and scaling the normal vectors so that (d;,d;) = 1,
the polyhedra can be stored as the two matrices

dy I <d1,p1> ]
d da,
p=|%| p=| (3.3)
L dC . L <dcvpc> |

where D € R™ and P € R®!. This representation minimizes storage re-
quirements and facilitates computations by not explicitly storing the p;. How-
ever, a point on the hyperplane can always be found in O(n) computations,
though the point might differ from the original p;.

A PL system is merely a set of polyhedra and associated mapping laws.
Thus, a PL system can be completely described by specifying the eight matri-
ces in (3.2) and (3.3) for each of the [ regions. A summary of these matrices
and their sizes is included in Table 3.2. While “D” represents two different
matrices, its meaning will always be clear from context. Assuming that ¢ ~ n,
which is generally true since for simplexes ¢ = n + 1 and for hyperrectangles
¢ = 2n, and that the system has a reasonable number of inputs and outputs,
storage requirements are O(In?).

There are two important features of this representation. First, the com-

plete nonlinear behavior is specified by a finite amount of data. Second, the
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data size grows polynomially with respect to all system parameters. As the
state dimension, grows, storage requirements grow quadratically. As the sys-
tem becomes more nonlinear (I grows), storage requirements grow linearly.
Systems with dozens of states and hundreds of regions can be stored on home

computers.

Since this representation consists solely of matrices, most operations on
polyhedra and PL systems are naturally written as matrix algebra and solu-
tions to linear programs. Linear programming is an optimization technique

that solves

min 'z

Dx > P

where Dz > P is an element-by-element inequality. The set Dz > P is iden-
tical to the polyhedron definition (3.3). Several techniques exist for solving
linear programs. Classical techniques, such as the simplex method, gener-
ally require few computations, but exhibit exponential computational growth
for worst case problems. The simplex algorithm solves most problems with
O(n*) computations, though some problems require O(n2”) computations.
In 1984, Karmarkar introduced an effective interior-point method which cal-
culated the solution in polynomial time [20]. Continued development has led
to primal-dual algorithms which solve linear programs with O(n®) computa-
tions, assuming that the number of constraints in D grows linearly with n.
Many primal-dual algorithms are generally much faster than O(n®) and are

comparable to the typical performance of the simplex algorithm [39].

The following six algorithms are some of the most basic PL system oper-
ations. They are used to develop more complicated analysis techniques. The
computational complexity of each algorithm is presented as either an operation
count or the number of linear program solutions needed. For the complexity
measures, it is assumed that ¢ ~ n. For all operations, storage requirements

are at worst O(In?).
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Function value=Inside(p,P,D)

P :=Dxp
For i from 1 to ¢
If (P'(3,1) < P(i,1))
value = false
return
value = true

Table 3.3: Region identification pseudocode.

Region identification

In order to do any work with PL systems, one must determine if point p lies in
polyhedra R. Fortunately, verifying this requires only one matrix multiplica-
tion and an element-by-element comparison of two vectors. This calculation,

whose pseudocode is given in Table 3.3, requires O(n?) operations.

Emptiness of polyhedra

Given a polyhedra defined by D and P, is the polyhedra empty? If there exists
a point p such that element-by-element comparison D x p > P is true, then
the polyhedra is not empty since p is inside the polyhedra. Finding this p is

equivalent to finding a feasible point of a linear program.

Redundant constraints

Identifying redundant constraints in a polyhedra requires finding the optimal
solution to a set of linear programs. Given a non-empty polyhedra with ¢
constraints, the object is to find a new representation, D', P’, that defines
the same volume with fewer constraints. This is accomplished by removing
redundant constraints from the original D, P.

The idea of the algorithm, shown in Table 3.4, is to compare the original
polyhedra to a new polyhedra D,,, P,, that has one constraint, (i, P, removed.
The two polyhedra are identical if

. S5
z,Df,ISfZPw (d,x) > p
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Function [D', P'}J=Redundant(P,D)

D'=D P =PForifromctol
D,, = D' with constraint 7 removed.
P, = P’ with constraint ¢ removed.
p= minmypwxzzpw Dl(’i, :) X T
If (p > P(i,1))
Note: the constraint is redundant
D' =D,
P =P,

Table 3.4: Redundant constraint removal pseudocode.

The solution to this linear program, denoted poy, is the point in the new poly-
hedra that is as far as possible in the direction opposite the constraint. If
Popt < P, then the optimal solution is a point in the new polyhedra, but not in
the original polyhedra, implying that the constraint is not redundant. How-
ever, if po,: > P, then the constraint was not active in the original polyhedra,
and can be removed without affecting the volume of the polyhedron.

If the constraint is redundant, then the constraint is removed and the
polyhedra D,,, P,, is used for remaining calculations. This process is repeated
for each constraint in the polyhedra. The whole calculation requires solving ¢

linear programs.

Traditional simulation

Simulating a PL system also only requires basic matrix operations. However,
since the update law may be multivalued at some points, the implementation
of the algorithm can affect the results. At each time step, the first task is to
choose the state update law. The simplest method for this is to search for
regions that contain the current point, and stop after the first region is found.
When the regions are searched in a deterministic order, this approach also
makes the system deterministic. As implemented in Table 3.5, the regions R;
are searched sequentially and the simulation process is repeatable. A more

complex method could find all valid update laws and choose between them
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Function [states,output]=Simulate(zy, ¢, System, u)

states = [ |
output = [ |
For t' from 0 to ¢
r=20
For [’ from 1 to [
If Inside(X (t'), })l/, Dl/)
r=1
Break
If (r==0)
Error: Point outside of PL system
Break
states = [states; z.);
output = [output; C,z. + C, + D,u(t')]
T, = Ayze + A, + Bou(t)

Table 3.5: Traditional simulation pseudocode.

according to some rule. Once the update law is chosen, the law is applied
and the process repeats for the next time step. Simulation for ¢ time steps is

O(tin?).

Intersection of polyhedra

The intersection of two polyhedra is the intersection of the positive half spaces
that define each of the polyhedra. For two polyhedra defined by D!, P! and

D?, P?| the intersection is also a polyhedra and can be written as

After forming the intersection, it is necessary to check if the intersection is
empty and if any constraints are redundant. Assuming that forming the in-
tersection requires copying D', P! and D?  P? into a new polyhedron, this al-
gorithm is O(n?). Under certain circumstances when copying is not required,

the intersection can be formed in constant time.
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Bounding polyhedra

Though the union of polyhedra is not a polyhedron, the union can be bounded
by one. Given a set of j polyhedra denoted D*, P*  the objective is to find a
polyhedron D, P that satisfies

D*¥ P*CD,P kel...j.

For the bounding polyhedron, the choice of D is arbitrary. In many cases, one
would like the convex hull of the D¥, P*. However, the computations required
to find the convex hull of a set of arbitrary polyhedra grows exponentially.
Typically, D is chosen to be a hypercube with additional faces. The added
hyperplanes can be taken from the D* or chosen by other means.

Once D is chosen, linear programming is used to find P. Each element of
P is given by

(i, pi) = min, min (d;, ).
If D has c constraints, finding the bounding polyhedron requires solving cj

linear programs.

3.4 Mapping of Sets

The key to robust simulation is the ability to map sets efficiently, and PL
systems provide this. A PL system maps a polyhedron to a set of polyhedra
with reasonable computational cost. This is because the affine mapping of a

polyhedron is a polyhedron.

Affine maps of polyhedra

The first step in deriving a PL mapping algorithm is calculating the mapping
of a single polyhedron. Given a polyhedra D, P and an affine map

&= Az + A, (3.4)

find the new, mapped polyhedra D, P.
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The mapping algorithm is derived from the definition of the polyhedron.
For any hyperplane bounding the polyhedron,

(di, z) > (d;, pi)

is satisfied for x = p; + di- + ed; where (d;,di*) = 0 and € > 0. When € = 0,
(di, ) = (d;, p;) and when € > 0, (d;, z) > (d;, p;). Applying (3.4) to z yields

(di, Ap; + Ad- + eAd; + A) > (d;, Ap; + A), € > 0

which reduces to

<dAi, Adi‘) + €<dAi, Adz> Z 0, e > 0.

This is solved by setting
Cii = C¥A+tdi, a>0

where A* is the transpose of the pseudo-inverse. Since (d;, d;) = 1 is required,
« is chosen such that

N A-Hdz_

e ————HA"‘tdZ[]Q (35)

This step assumes that ||A*%d;||; is nonzero. The case ||A*d;||, = 0 is discussed
later.

When A is invertible, each element of P can be calculated directly by
the formula (d;,p:;) = (di,p;) + (d;, A). However, when A is singular, this
formula does not hold. For noninvertible A, P is constructed through linear

~

programming. Each (d;, p;) is the solution to the linear program
S i
(di, pi) = Juig, d; Az + (d;, A). (3.6)

This linear program is also valid for invertible A, but the direct calculation is
far more efficient.

Two other changes are required when A is not invertible. If any d; are in
the null space of A, (3.5) is undefined. Those d; in the null space A do not

constrain D, P and are omitted. Additional hyperplanes are also added to
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E, P to account for the left null space of A. Denoting each basis vector of the

left null space of A by NV;(A"), the mapped volume is given by

4] [ (dup)
ds (da, ﬁ)
dc' <dc’apc’>
D=| M(AY |, P=| (M(4), A) (3.7)
—N1(AY) {(~ ( H, A)
N (AY) (Nr ( Y, 4)
| —N(4Y)) (=N (AY), )]

where r is the rank of the left null space of A and d;,p;, i € 1...¢ are the
hyperplanes whose normal vectors are not in the null space of A. Though the
mapping was derived for square A, (3.5), (3.6), and (3.7) apply to arbitrary
affine maps.

When A is invertible, computing the affine map of a polyhedra is O(n?).
When A is not invertible, O(n) linear programs must be solved. If the same
mapping is applied repeatedly, the pseudo-inverse and null spaces can be com-
puted once and stored for future use. These calculations require finding the
singular value decomposition (SVD), which is also O(n?). Storing these inter-
mediate calculations greatly reduces total computations, since calculating the
SVD is roughly as expensive as the matrix multiplications needed to form D

and P for invertible A.

Uncertain affine maps of polyhedra

The second step in deriving a PL mapping algorithm is calculating the mapping
of a single polyhedron D*, P subject to an additional offset. This offset is
unknown, but is contained in the polyhedron D%, P*. The result from this
mapping is the set of all possible mappings of D*, P for any input u in D*, P*.
Geometrically, this mapping is the set mapping of Az + A convolved with the
set Bu. At each point in the set Az + A, a new set is formed by adding all
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points in the set Bu. Intuitively, this can be thought of as a noisy set mapping.
The result consists of all points reachable by the mapping for any allowable
noise.

Specifically, given two polyhedra, D*, P* C R"™ and D%, P* C R™ and the

affine map

Az + A+ Bu, (3.8)

I

z
find the new polyhedron D, P that consists of all £ that satisfy this mapping

for x € D*, P* and u € D", P*. This mapping can be rewritten as a new

mapping
i= {A B} + A (3.9)
u
of the augmented polyhedra
D* 0 P
D= , P =
0 D¢ p

Written in this form, the uncertain affine polyhedral mapping is a direct ap-

plication of the previously described affine polyhedral mapping.

Inverse affine maps of polyhedra

Given a polyhedra D, P and a mapping of the form (3.4) it is possible to find
the set D, P that map into D, P. Essentially, finding the inverse affine map is
accomplished by running the affine map algorithm in reverse. The same ideas

apply and the inverse mapping rules are
Atd,

dy = e 3.10
[EZa (10
(diyp;y =  min diAx, (3.11)
D(Az+A)>P
and
(dl- [ (d1,p1) ]
d ds,
p=|®|, p=|\tP) (3.12)

dc’ <dc’ 3 pc’>
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where 7 is the rank of the null space of A and d;,p;, 7 € 1...¢ are the
hyperplanes whose normal vectors are not in the left null space of A. The
structure of these equations is similar to that of the forward mapping, but
has one key difference. In (3.7), D is augmented with direction in the left
null space of A. These vectors correspond to directions that can never be
reached through the mapping. Conversely, any direction in the null space of
A is unconstrained in the inverse mapping. Those vectors for which (3.10) is
undefined are omitted from (3.7).

For uncertain affine maps, this algorithm returns the set of all x,u that
can map into D, P. Accounting for input constraints requires intersecting D, P
with the input constraints D*, P*. Using the notation from (3.9) and denoting
the constrained polyhedra by D', P', this is given by

0 D* Pt

As when forming the intersection of any polyhedra, it may be necessary to
check for redundant constraints.

The inverse uncertain affine mapping has a different meaning than the
forward mapping. The forward mapping is the set of all points that can be
reached for x € D*, P® and v € D* P*. The inverse mapping returns the
set of z such that there is some u that maps z into D, P. For many z, the
mapping may lie outside of ﬁ, P for some u.

Calculating the inverse mapping is computationally identical to finding the

forward mapping.

Piecewise linear system set mappings

Once the affine mapping of a single polyhedra is defined, the algorithm for PL
system set mapping is straightforward. Since a polyhedra may lie in several
regions of a PL system, different portions of it are subject to different affine
maps. One simply has to calculate the mapping of the polyhedra restricted to
each region of the PL system.

The result of the mapping of a single polyhedron is a set of at most [
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Function [Sets|=Simulate(P, D, System)

Sets =[]

For I’ from 1 to [
[P;,D;] = Intersect(P,D, Ry)
If (Empty(P;,D;)) continue.
{Isz,bz] = Mapping(H,Di,Ay,Ay)
Sets = [Sets; P;,D;]

Table 3.6: PL system set mapping pseudocode.

polyhedra. For notational simplicity, consider the set mapping of a piecewise
linear system with no inputs. As shown in Table 3.6, the first step of the
algorithm is to determine if the original polyhedra intersects a region of the
PL system. If the intersection is non-empty, then the mapping is calculated.
This process is repeated for each of the [ regions in the system.

Computing the PL system map requires forming [ intersections of poly-
hedra and mapping them. Both checking for redundant constraints and the
mapping step require the solution O(n) linear programs. Thus, the algorithm

as a whole requires solving O(in) linear programs.

3.5 Examples

The following two examples demonstrate many of the algorithms developed.
The first example illustrates the differences between the forward and inverse
affine maps. Several polyhedral manipulations are described in detail. The
second example demonstrates how PL systems arise in practice and exam-
ines some PL properties. Both examples demonstrate ideas central to robust

simulation, the topic of the next chapter.

A noninvertible affine map and its inverse

To demonstrate the affine set mapping properties, consider the mapping

y-—‘[l 1]33—{—1
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of the polyhedron D®, P* given by |||l < 1. Written in the form of (3.3),

1 0 -1
-1 0 -1

D* = , P =
0 1 -1
0 1] 1]

Applying the forward mapping algorithm given by (3.5), (3.6), and (3.7)
to D*, P® yields
pr=|'], p=]|?
-1 -3
which can also be written as —1 < y < 3. For this mapping, A** has full row
rank so no additional constraints are added to DY, PY. The inverse mapping

of D¥, PY denoted D*, P* is

1 1 9
] )33/ —_ E % p* '—\/—
1 1 ’ )

As shown in Figure 3.1, D®, P ¢ D*,P¥. D%, P* is the set of all points
that map into DY, PY while D*, P* is a set of points that maps into DY, PY.

Since A does not have full rank, these set differ.

A simple PL system

Piecewise linear systems arise naturally from even the simplest nonlinearities.
In Chapter 6, a catalog of common PL nonlinearities is presented. In this ex-
ample, one of the most common nonlinearities, a saturation, is interconnected
with a linear system and properties of the resulting PL system are examined.

The unstable linear system with saturating input

zlk+ 1] = (1) i zlk] + (1) sat(u[k])
ylk] = z[k]
-1 ifu< -1,

sat(u) =qu, if-1<u<l,

1, ifu>1
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Dml, Pm/

Figure 3.1: Original region and inverse mapped region.

is an unstable PL system with [ = 3. One might attempt to stabilize the
system by ignoring the saturation and designing a controller for the resulting

linear system. One such controller,
ulk] = = |05 15| ylk

yields the closed loop system

(1 2 0
skl + | |, [0.5 1.5 2kl < -1 (Ry)

0 1 1

_1 2

zlk+1] = xk], —1..<_{0.5 1.5} alk] <1 (Ry)

—0.5 —0.5

1 9 0 (3.13)
(k] + : {0.5 1.5|zk] > 1 (Rs)

[0 1 1
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Figure 3.2: Piecewise linear regions.

The closed loop PL system also has three regions, as shown in Figure 3.2.
While the open-loop system’s regions were aligned with the coordinate axis
corresponding to u, that is not the case for the closed-loop system. For this
example, a coordinate transformation could realign the region boundaries with
the coordinate axes. In general, realignment is not possible.

Due to the nature of the piecewise linear nonlinearities, there are an infinite

number of controllers that yield the same close-loop system. For example, the

controller
'—1, [0.5 1.5] z[k] > 1
U[k]=<-[o.5 1.5] y[k], —13[0.5 1.5Jx[k]§1
L [0.5 1.5} z[k] < ~1

also gives the same closed loop equations. Another feature, which will be
shown in Chapter 6, is that the interconnection of PL systems is a PL system.

Traditional simulation of the system, shown in Figure 3.3, is straightfor-
ward; one first determines the applicable state update rule and then applies it.
For example, the initial condition z[0] = [-1 — 1.5] is in region 1 and follows

the update rule in (3.13). Thus, z[1] = [-4 — 0.5]*. This trajectory, shown for
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Figure 3.3: Traditional simulation of a PL system.

13 time steps, traverses all of the regions before settling in region 2. Though
this system converges to the origin exponentially, stability issues will not be
addressed until Chapter 8.

To complete the example, a PL set mapping is demonstrated. The initial
set Sy, shown by dotted lines in Figure 3.4, is the square |z|,, < 1. Since S,
lies in all three regions, its mapping, denoted S, is a set of three polyhedra.
The set So N R, is a triangle and maps to the shifted and stretched triangle
shown by a dashed line. The set Sy N R; is a parallelogram and maps to the
parallelogram shown by the dash-dotted line. The set Sy R3 is a triangle and
maps the the stretched triangle shown by a dash-dotted line.

In this example, S; maps to a connected set of polyhedra. This occurs
because the state update law is continuous along switching boundaries. In
general, the state update law is discontinuous along the boundaries and the

mapping results in polyhedra that do not share boundaries.
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Figure 3.4: Piecewise linear system set mapping.
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Chapter 4

Robust Simulation

As introduced in Chapter 2, robust simulation is the extension of traditional
simulation ideas to systems with uncertainty and noise. While traditional sim-
ulation maps a single initial condition and noise signal into a unique trajectory,
robust simulation generates all possible trajectories for a set of initial condi-
tions and noise signals. By calculating all possible trajectories, many problems
can now be solved through simulation. In Chapter 5, robust simulation is used
to obtain nonlinear performance guarantees. In Chapter 7, meaningful results
are obtained when simulating multiple models of the same system. These

types of questions cannot be answered with traditional simulation techniques.

The key difference between robust simulation and traditional simulation is
the mapping of sets. In fact, in its simplest form, robust simulation can be
viewed as an exercise in set manipulation. As time flows, regions of state space
are propagated into new regions of state space, and the results are stored.
While intuitively simple, the process is technically daunting. Both system
description and set representation play large roles in determining the efficiency
of the algorithms.

Two commonly used set descriptions are both compact and easy to manip-
ulate. Ellipsoids can be represented by a point and a matrix. Convex polyhe-
dra can be represented by a list of hyperplanes. Both of these representations
generally require O(n?) numbers to describe a set. Other common represen-
tations, such as defining a region by its vertices, can require huge amounts of
resources. For example, defining a hypercube by its vertices requires O(n2")

storage.
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The system representation is also critical to algorithm success. Ideally,
set representation is preserved after a set mapping. For example, linear sys-
tems map ellipsoids to ellipsoids and polyhedra to polyhedra. Nonlinear sys-
tems map ellipsoids into arbitrary shapes. As previously shown, discrete time
piecewise linear systems map polyhedra into sets of polyhedra.

The choice between continuous and discrete simulation is also important.
On digital computers, continuous simulations are actually discrete simulations
with small time steps. The choice of time step size plays a large role in the
accuracy of the simulation. Various schemes exists for selecting time step size.
Some give a uniform time step, while others adaptively choose and appropriate
step size. By considering only discrete simulations, this issue is removed.

In the following, robust simulation algorithms are developed for discrete
time piecewise linear systems. As shown in Chapter 6, this class of systems
allows a very rich class of nonlinearities, yet has attractive representation and
set mapping properties. With this choice, one can focus on set mapping, which
is the key difference between robust simulation and traditional simulation.

This chapter begins by defining the robust simulation problem. From the
definition, an exact, exponential time algorithm is constructed. Next, the exact
algorithm is used to derive efficient approximations. Methods for improving
the approximation are then presented. The chapter closes with an example
that demonstrates the exact algorithm and the conservatism added by the

approximate algorithm.

4.1 Problem Statement

Robust simulation answers the following question:

For a set of initial conditions and noise signals, what is the set of
all reachable states?

Specifically, for a discrete time piecewise linear system of the form (3.2), with
initial conditions in the set of bounded polyhedra Sy and inputs in the time-
varying convex polyhedron U[k], what is the set of all possible final conditions

after f time steps, denoted S;?
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By solving this problem at each time ¢, 0 < ¢ < f, the set of all possible
trajectories is calculated. Though the initial condition set S is allowed to be a
set of polyhedra, it may also be a unique point. While ¢[k] allows time-varying
input constraints, often it is a ball in /.

By robustly simulating in reverse time, the following question can also be
answered:

For a set of final conditions and noise signals, what are all possible
initial states that can reach this set?

This is equivalent to the previous problem, except time flows backwards. For
a given final condition set Sy, S is calculated to be the set of all points z
for which there exists a u[k] € U[k] that maps z into S; in f time steps. As
shown later, solving the reverse time problem is nearly identical to solving the
forward time problem.

The notation Sy denotes a set of convex polyhedra at time k. Some of
these polyhedra may have zero volume, or even be individual points. S is
an approximation such that Sy C S;. T denotes a single polyhedron in the
set S;. The mapping of a single polyhedron restricted to region ¢ of the PL
system, T'N R;, is called T;. Tj; is the mapping of T; N R; by the region j’s

update rule.

4.2 Exact Solution

Calculating Sy from Sy requires the repeated calculation of S,y from Sj.
This is a direct application of the PL system set mapping algorithm derived
in Section 3.4. At each time step, the set of all reachable states is found. This
set is then used to find the set of all reachable states at the next time step.
Robust simulation in reverse time, which requires calculating S;_; from Sy, is
identical except the PL system inverse set mapping algorithm from Section 3.4
is used.

While the exact solution can be computed, it has exponential growth. In
one time step, a PL system can map a single polyhedron into a set of [ poly-

hedra. Assuming that S is a single polyhedron, S} may contain ! polyhedra.
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t=20
t=1
t=2
t=3

Figure 4.1: Exact robust simulation algorithm example.

Thus, S; can contain up to [? polyhedra, and in general, S, can contain [*
polyhedra.

An example of this behavior for a PL system with 3 regions is depicted in
Figure 4.1. Sy consists of a single polyhedron, T, that intersects all 3 regions of
the PL system. In one time step, each of the TN R; maps to a new polyhedron,
yielding 3 polyhedra at time ¢ = 1. Each of the three polyhedra in &; also
intersects all regions of the PL system. Repeating the mapping step gives S,
which contains 9 polyhedra. Assuming that each polyhedron in S, intersects
all regions of the system, S; contains 27 polyhedra.

In general, exponential growth is unacceptable. A practical algorithm must
be able to solve a slightly larger problem with a reasonable growth in compu-
tation time. For robust simulation of PL system with [ regions and n states

over t time steps, computational cost is O(I'n°) and storage requirements are
O(l'n?).

4.3 Approximate Solution

To avoid exponential growth, an approximate solution is derived that both
returns all possible trajectories and has polynomial computational growth. In
the exact solution, the exponential growth is caused by the increasing number

of polyhedra in S;. Rather than allowing ¥ polyhedra in S, the number of
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Figure 4.2: Approximate robust simulation algorithm example.

polyhedra is required to be no larger than a given bound, denoted T.

At each time step, 3’; 2 & is formed before the mapping step is applied.
:9; is restricted to have at most I polyhedra. When S; contains more than
I" polyhedra, some polyhedra are combined to form S\k Heuristics guide both
the choice of polyhedra to be combined and the method of combination. Any

technique that ensures S, C 3; is allowed.

Figure 4.2 demonstrates the approximate algorithm for a PL system with
3 regions and I' = 1. Since &, consists of a single polyhedron, T, S, =
3’(\). Identical to the exact solution example, T intersects all 3 regions of the
PL system and, in one time step, maps to three new polyhedra. Instead of
mapping each of the three polyhedra in S; to form S,, the three polyhedra are
combined into one new polyhedra, S.. 8, is then formed from the mapping of

—

S;. This process is repeated until the final time is reached.

At each time step, the number of polyhedra in S is limited to T'l. This
limitation ensures polynomial growth, but also adds conservatism to the al-

gorithm. When combining polyhedra to form :S‘;, additional volume is added
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to the polyhedra. S, contains all states reachable at time k plus additional
regions of the state space that cannot be reached. The added conservatism is
directly related to the additional volume in Si.

Each polyhedron in 3’; is calculated by applying the bounding polyhedra
algorithm given in Section 3.3 to a set of polyhedra chosen from S;. Assuming
that the number of constraints in each bounding polyhedron is proportional
to n, forming Sk requires solving O(I'In) linear programs. Calculating Sk,
from &, is a direct application of the piecewise linear system set mapping
algorithm presented Table 3.6. Since this mapping is performed for each of
the [' polyhedra in gk, this step also requires solving O(I'In) linear programs.
When applied over k time steps, the approximate robust simulation algorithm
requires the solution of O(I'kin) linear programs. Since robust simulation at
time £ is based only on the results from time k£ — 1, storage requirements do
not grow with time. Storage requirements, dictated by the size of the results
from the piecewise linear system set mapping step, are O(T'In?).

These computation and storage requirements assume that the polyhedra
have a fixed number of constraints. In general, the PL system set mapping
adds constraints to each polyhedron at each time step. Assuming that the
number of constraints defining each region R; of the PL system is O(n), the
polyhedra in S; will have O(kn) constraints. However, when S, is formed
by the bounding algorithm, the number of constraints can be selected. By
choosing a fixed number, the polyhedra in Sy will have O(n) constraints and

this additional computational dependence upon time is eliminated.

4.4 Algorithm Refinements

One of the main features of the approximate solution is that it can be system-
atically refined to obtain the exact solution. Less conservative solutions are
obtained by increasing both I" and the number of constraints in the polyhedra
S Assuming that Sy is a single polyhedron, the exact solution is obtained
when I' = [* and each polyhedra is allowed to have an unlimited number of

constraints. Intermediate solutions are obtained by letting ' =17, 0 < v < k.



45

The choice of polyhedra for combination during the formation of 5‘;, is
also dictated by 7. In essence, v is a memory parameter. Polyhedra with sim-
ilar history are combined, and 7 determines the length of history considered.
Polyhedra with the same mapping history are combined when creating Se. vy
is the number of mappings considered during the combination step. Using
the individual polyhedral notation T;; ., polyhedra having identical indices
T3, jis,... iy are combined. In Figure 4.2, v = 0 and all polyhedra are combined
at each time step; the mapping history is completely ignored.

In addition to giving the exact solution after a finite number of refinements,
this approach also has intuitive justification. If the PL system has nice dy-
namics, then an initial condition set distorts slowly. For a discretization of a
continuous time system, the next state is very similar to the previous state.
States that follow similar mappings have similar values, so their combination

should add little extra volume.

4.5 Heuristics

Two of the steps in the approximate solution are heuristic based. The first
heuristic step, the selection of polyhedra for combination, has already been
discussed. One systematic method for selection was presented, though other
methods are equally valid.

The second heuristic step is calculating the combination of the polyhedra.
Ideally, the combination step forms the convex hull of the polyhedra. The
convex hull adds the smallest possible volume and thus is the least conservative.
However, finding the convex hull of a set of polyhedra exhibits exponential
growth. One exception is if each polyhedra in the set is a simplex, then the
convex hull can be found in polynomial time. However, simplexes are rarely
used in practice.

Since the convex hull cannot be found with reasonable computations, a
bounding polyhedra is formed. Both the number and choice of bounding
hyperplanes have a large impact on results. Generally, one includes as many

surfaces from the original polyhedra as possible. However, when bounding [
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polyhedra, each additional hyperplane requires solving [ linear programs. A
large number of bounding hyperplanes can yield a very good approximation of
the convex hull, but extensive computations are required. A small number of
bounding hyperplanes is simple to compute, but can lead to very conservative
results.

Several hyperplane selection methods have been tested, and no method is
always the best. However, all successful methods share some common traits.
When v > 0, some mappings of the boundaries of the regions R; are included.
The first step of the mapping algorithm is the formation T'N R;. Whenever
TNR; # T, some of R;’s boundaries are active constraints. Since some
boundaries are usually active, their mappings are likely to be constraints on
some of the polyhedra being combined to form §k As v grows, multiple
mappings of boundaries are included.

However, only a few multiple mappings are included. Repeated application
of (3.5) in the same region is a power iteration for calculating the eigenvector
associated with the maximum eigenvalue of A;?. Repeated mappings yield
very similar directions which cause numerical sensitivity problems in linear
programming algorithms. Including all bounding hyperplanes for each poly-
hedron in the combination can also exhibit similar problems.

In general, one wants to include a large number of hyperplanes that form
the convex hull. This requires including the hyperplanes from the original
polyhedra that form the surface of the convex hull. Calculating which hyper-
planes are on the convex hull is prohibitively expensive. However, including
too many hyperplanes leads to both excessive computations and numerical
instabilities. In practice, including mappings of region boundaries along with
all hyperplanes from a few polyhedra yields good results.

Another method for reducing the conservatism is to split Sy into separate
polyhedra and perform robust simulation separately on each polyhedron. The
results from each simulation are then combined to form the final result. This
idea is the basis of branch and bound, and is discussed in more detail in
Section 5.3.

One final note is that for a linear system, the exact solution is obtained for
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[' = 1. For a linear system, a single polyhedra maps to a single polyhedra so
there is no growth in the number of polyhedra at each time step. In addition,
the system has only one region, so no additional bounding hyperplanes from

region boundaries are added during the mapping step.

4.6 Example

The critical step of the robust simulation algorithm is the combination of
polyhedra to avoid exponential growth. This step adds conservatism to the
result while ensuring that the result contains all reachable states. This example
demonstrates that process.

Consider the robust simulation of

1 0 0.25
zlk] + if[10]z <0, (R
0 0.75 0
zlk+1] =1 ¢
0.5 -0.5 -2
zlk] + if [10]z >0, (Ry)
| 0.5 0.5 0

for 2 time steps. This system has no underlying physical meaning. It is selected
to demonstrate the potential for exponential growth in the exact solution and
the conservatism added during combination step. For this example, I’ = 1.

The initial condition set, Sy, shown in Figure 4.3, is ||z]|c < 1. In one
time step, this maps to two overlapping rectangles, shown by dashed lines in
Figure 4.3. The next step of the robust simulation algorithm is to form S,
from S;.

One possible :5’\1, denoted 51: , is formed by bounding S; by a rectangle
whose sides are aligned with the coordinate axes. As shown in Figure 4.4a, this
bounding set contains S; (the shaded area) but also contains large additional
areas of state space. With only four constraints, this is one of the simplest
bounding polyhedra. However, it is also very conservative.

A second, less conservative possibility, denoted gl\b , is obtained by including
all directions contained in the S;. This set of directions also includes mappings

of the boundary between R; and R,. This polyhedron is constrained by the
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Figure 4.3: S; (dotted) and &; (dashed).
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eight directions
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(4.1)
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Sk k-
S st

The first four directions are from the mapping of S; N R; and the second four
directions come from Sy N Rp. As shown in Figure 4.4b, two of the constraints
are redundant; gl\b has only six active constraints. This set adds much less
extra area, and is far less conservative.

One possible measure of conservatism is obtained by comparing the areas
of S, and &;. 81 has an area of 2.0625. The simple bounding approximation,
31: , has an area of 3.0625, nearly 50% larger than the true value. g;, with
four additional constraints, has an area of 2.25, less than 10% larger than the
true value.

Figure 4.5a shows the calculation of S; from &;. Since both rectangles
in S; intersect R; and R, the exact solution has four polyhedra in S,. In
the figure, the dashed lines are the mapping of S; N R; and the dotted lines
show the mapping of &; N R;. This mapping demonstrates two features of
robust simulation. First, though S; consisted only of rectangles, S, has two
rectangles, a triangle, and a trapezoid. The PL system maps polyhedra to
polyhedra; it does not preserve their shape. Second, each of the four polyhedra
in &, intersects both R; and Ry. If the robust simulation continued for another
time step, the exact solution for 83 would contain eight polyhedra. This is the
exponential growth problem previously described.

The exponential growth is avoided by calculating S, from S,. Figure 4.5b
shows the calculation of S, from gl\a The shaded area is the exact solution for

S, and the dashed and dotted lines are the mapping gl\a intersected with 2y
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(a) Exact (b) From 3: (¢) From ‘ST,)
Figure 4.5: The three potential sets for S,.

and Ry, respectively. As intuitively expected, the large areas of unreachable
state space in 51: map to large areas of unreachable space in the approximation
of Sy. Using the same notation as Figure 4.5b, Figure 4.5¢ shows the calcula-
tion of Sy from S:l\b . Since this mapping started with the less conservative set
S,, it contains much less unreachable region of state space.

The main property of the polynomial growth robust simulation algorithm
is that the results contain all reachable states. As shown in Figure 4.5, the
approximate solution contains the exact solution. Different heuristics for cal-
culating Sy affect the conservatism in the results, but this property is pre-
served. Measuring the conservatism in the algorithm is difficult. For this
two-dimensional example, the exact solution and areas of polyhedra are sim-
ple to calculate. For systems with larger state dimension, these calculations
are prohibitively expensive. The next chapter introduces methods for mea-
suring system performance through robust simulation. These methods also
indirectly measure the conservatism of robust simulation, and in general, the

results are very good.
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Chapter 5

Nonlinear Performance Analysis

For most linear and nonlinear systems, it is impossible to answer the robust
analysis question. Finding the noise and uncertainty that yield the worst per-
formance is generally a non-convex optimization problem. Instead of solving
the problem directly, numerical approximations are used. Traditional simula-
tion i1s one common technique that is used to characterize performance. Any
system can be analyzed through simulation, though interpreting the results
can be difficult.

Traditional simulation describes the system’s behavior for one initial con-
dition, uncertainty value, and noise signal. Little can be inferred about the
system response for other values of noise, uncertainty, and initial state. Each
individual simulation is a lower bound on the worst system performance. The
only information known about the worst possible performance is that it is at
least as bad as any single, traditional simulation.

An extension of the traditional simulation idea is Monte Carlo analysis.
The system is repeatedly simulated with randomly chosen initial condition,
noise, and uncertainty values. Each simulation gives a lower bound on the
worst case performance and the set of simulations gives a picture of typical
performance. However, no guarantees can be made. In [36], the worst Monte
Carlo performance was consistently 20% more conservative than lower bounds
found by other techniques.

Neither Monte Carlo analysis nor other lower bound techniques answer the

robust analysis question. Monte Carlo analysis generates results like

For 95% of all noise signals and uncertainty values, the performance
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is less than J..

Other lower bound techniques, such as gradient descent and power iteration,

state

There exists a noise signal and uncertainty value with performance
of J..

These statements about performance are not guarantees. The desired result is

For all noise signals and uncertainty values, the performance is less
than J,.

If the set of possible performances is viewed as a probability distribution,
then the robust analysis question is concerned with the tail. Monte Carlo
analysis gives the shape of the distribution. Other lower bound techniques
find individual points in the tail. The robust analysis question finds the end
of the tail.

Solving the robust analysis question requires making a statement about
all possible trajectories. Robust simulation provides all possible trajectories.
By attaching a measure to the robust simulation results, a global performance
guarantee is obtained.

As with all analysis techniques, the performance measure used is compro-
mise between physically motivated traits and mathematical convenience. The
first part of this chapter describes tube cost, an extension of linear norm ideas
to the PL setting. This measure fits naturally within the robust simulation
framework and includes the I, norm as a special case.

The second part of this chapter describes nonlinear performance guarantees
and their interpretation. These guarantees are an upper bound on the worst
possible performance and also provide a method for evaluating the conser-
vatism of the robust simulation algorithm. This conservatism and limitations
in lower bound algorithms can lead to a large gap between the bounds. One
method for reducing this gap is presented. The chapter closes with some ex-

amples.
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5.1 The Tube Cost

The tube cost is a nonlinear measure of signal size. Though not a norm in the
traditional sense, it can be viewed as a generalization of the [, norm to the
piecewise linear setting. It allows nonlinear scalings; doubling a signal may
not double its cost. It allows sets of signals to have the same value; many
signals can have 0 tube cost. Due to its piecewise linear nature, the tube cost
can be computed with only basic matrix operations and linear programming.

The tube cost is defined as
lulle = max{0, max(d;{£], ulk] — w;[4])} (5.1

where the d; are a set of direction vectors and the u; are a a set of nominal
bounding trajectories. The d,[k], u;[k] can be thought of as a set of hyper-
planes. When the trajectory lies in the negative half space defined by the pair,
no penalty is assessed. When the trajectory lies in the positive half space, it
may contribute to the tube cost since (d;[k], u[k] — u[k]) > 0.

While the tube cost gives a useful measure of the size of a signal, it does
not satisfy the norm properties described in [12]. In fact, the only property it
satisfies is ||ul|; > 0. All trajectories contained in the closed negative halfspaces
defined by d;[k], u;[k] have ||u|; = 0. Because of this property, neither the
linear scaling property or parallelogram relationship hold. Though ||u||; = 0,
lu + u||: = ||2u||; may be much larger than zero. This nonlinear behavior gives
the tube cost much of its flexibility.

Though the tube cost is not suited to traditional analysis techniques, it
fits nicely within the robust simulation framework. The definition is based
upon polyhedra, and applying the cost to sets requires the solution of linear
programs. For ease of computer implementation, the tube cost parameters are

usually written as two matrices

di[k] up [k]

pir= | #M | o= |

d[k] u[k]
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Function value=Tubecost(S,D,U)

value = 0
For i from 1 to ¢
test = max,ecg(d;,x — u;)
If test > value
value = test

Table 5.1: Tube cost pseudocode.

Calculating the tube cost requires solving ¢ linear programs for each polyhedra
in the set of reachable states at each time step. An algorithm for calculating
the tube cost for a single polyhedron S at one time step is given in Table 5.1.
Calculating the tube cost for a single trajectory only requires basic matrix

operations.

Example: a step response

Measuring the performance of a step response demonstrates the versatility of
the tube cost. In many applications, one initially wants to allow limited over-
shoot and undershoot without penalty. Later, small errors are lightly penalized
while large errors are heavily penalized. For this example, the requirements

are as follows:

e Unit penalty for overshoots larger that 20% for k € 0...5.
e Double penalty for u[k] < 0 for k € 0...5.
e Unit penalty for errors greater than 5% for k € 6...100.

e Triple penalty for errors greater than 10% for k£ € 6. .. 100.

These requirements can be written as

1.2
DJk] = U= | k€05
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0.5} Dotted lines are values from the constraints.
Solid line is the max over all consraints.

u[k]=1, except for k=6

The tube norm (solid)
o o
w >
1

o
o

0.1} il

1
u[6]

Figure 5.1: The tube cost for various step responses.

and
[ 1] (1.05]
-1 0.95
D[k] = , Ulk] = , k€6...100. (5.2)
3 1.1
_—3_ i 0.9 ]

Thus, any trajectory in the set

0<ulk]<12 k€0...5
0.95 < ulk] < 1.05, k € 6...100

has tube cost of zero. Figure 5.1 shows the tube cost for a step response that
is 1 everywhere except at k = 6. Each row in (5.2) corresponds to a linear
segment in Figure 5.1. The maximum over all segments, shown by a solid line,
is the tube cost. For 1.05 < u[6] < 1.125, ||ul|; = u[6] — 1.05. For u[6] > 1.125,
lull: = 3(u[6] — 1.1). This piecewise linear error is the added flexibility from
the tube cost. True norms cannot give this behavior and satisfy the linear

scaling property.
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Example: the [, norm

The o, norm, defined as

Julloo = max [ulK])

is a special case of the tube cost obtained by setting
0
Dik] = , Ulk] = ,Vk,
0

with I being the identity matrix and 0 being the zero matrix, both of appro-

priate sizes.

5.2 Nonlinear Performance

Since the nonlinear robust analysis question cannot be solved exactly, upper
and lower bounds on the worst performance are computed. Several techniques
exist for efficiently calculating good lower bounds. Robust simulation provides
an efficient algorithm for calculating an upper bound.

The upper bound, denoted J,, is a statement about the global performance
of the system. This statement must hold for all possible trajectories. Since
the result of robust simulation is the set of all possible trajectories, a global
performance guarantee is obtained by applying a measure to these results.

The choice of measure must be compatible with the robust simulation
framework. The tube cost is one such measure. Other common measures
are either incompatible or may lead to extremely conservative results. Many
common norms, such as /; and [y, require knowing the entire trajectory to
calculate the norm. However, robust simulation gives sets of reachable states,
not information about individual trajectories. While a bound on the [; norm
can be found by selecting the worst point at each time step, this may be
very conservative since it assumes that the worst trajectory attains the worst
value at every time step. Finding the worst [5 signal suffers from the same
limitation, and in addition, finding the largest I, point in a set is a non-convex
optimization problem which is not computationally practical. Finding the

lo norm does not suffer from these limitations. The [, norm depends only
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upon the largest value of the signal and the largest [, point in a set can be
found through linear programming. As previously shown, then I, norm is a
special case of the tube cost.

Even when using the tube cost, J, may still be very conservative. Since
the results from robust simulation include infeasible trajectories, J, may be
substantially larger than the worst possible signal. While there is no feasible
trajectory with performance worse than J,, there may be no feasible trajectory
with performance of €J,, for an arbitrarily small € > 0.

To help measure the conservatism in the upper bound, a lower bound,
denoted J, is also calculated. Lower bounds can be obtained by a variety of
methods. Traditional simulation of a random initial condition and noise signal
gives one. Improved lower bounds can be found through gradient descent algo-
rithms and Monte Carlo techniques. Recently, better nonlinear lower bounds
have been obtained through power iteration methods [36]. However, lower
bounds never give guarantees on worst case performance. They are simply the
value obtained from a single traditional simulation.

Given a required performance threshold J., there are three possible results.
If J, < J., then the performance threshpld is achieved for all possible signals.
If J; > J., then there exists at least one noise and initial condition that does
meet the requirement. When J; < J. < J,, no conclusion can be drawn.
The worst known signal meets the performance requirement, but there is no
guarantee that all signals meet it.

The gap between .J, and J; is important. When J; ~ J,, the worst known
signal has performance roughly equal to the guarantee. When the gap is large,
little can be said about the true worst case performance. When J, < J, < Jg,
the gap is critical. In order to determine if the performance requirement is

met, the gap must be reduced.

5.3 Branch and Bound

The gap between J; and J, depends upon both the lower bound and the upper

bound. As described in Section 4.4, increasing vy is one systematic method for
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reducing the conservatism in robust simulation which leads to a better upper
bound. However, it is also very expensive. Increasing v by 1 increases the
number of polyhedra allowed in the set of reachable states :9; and the total
computation time by a factor of /. Changing - also has no effect on the lower
bound. If the upper bound is good and the lower bound is poor, increasing ~y
will have little effect on the gap.

Branch and bound is one method for improving both the lower and up-
per bounds that generally gives good results without excessive computational
growth. While branch and bound only guarantees convergence with exponen-
tial computational growth, in many instances it performs well. More details
about the algorithm and proofs of convergence properties can be found in [28].
Only the basic algorithm is presented here.

The main idea behind branch and bound is that multiple applications of
the bounding algorithms over smaller parameter spaces are less conservative
than a single application over a larger parameter space. Instead of looking at
a single large problem, many small problems are considered and the results
are combined.

To present the algorithm, several definitions are needed. P, is the set of
initial conditions and all possible noises and uncertainty. This polyhedra is the
parameter space upon which branching is performed. P is a set of polyhedra
that may contain the worst case signal. P; is a single polyhedra contained in
P. The upper and lower bounds for a single polyhedron are J,(F;) and Ji(P;),
respectively. J, and J; are largest upper and lower bounds of all P; € P.

There are three main steps to the algorithm, which is given in Table 5.2.
The stopping criterion determines when the algorithm terminates. As pre-
sented, the algorithm stops when the gap between the bounds is €. If meeting
a performance threshold J. is the objective, then the algorithm terminates
when J, < J.or J; > J.. In practice, the algorithm also terminates after a
specified number of branches.

The next major step is to find all regions where the global maximum can-
not occur. If J,(P;) < .Jj, then it is impossible for the worst signal to lie

within P; and P; is removed from P. This pruning step is the key difference
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P:—Po, ju:OO, j1=’-—0
While J, — J; > ¢, (stopping criterion)
Ju = max; Jy(B,)
j1 = max; J](H)
For each P; € P, (pruning step)
If L(P) < Ji, then remove P; from P.

~

Select a P; such that J,(P;) = J,), (branching step)
Partition F; into P;; and P, 3 according to some method.
Add })i,l and ,PL',Q to P.

Remove P; from P.

Table 5.2: Branch and bound algorithm.

between branch and bound and simply gridding the parameter space. Only
those regions which may contain the worst signal are searched.

The final step is the branch. One polyhedron with J,(P,) = J, is divided
into two smaller polyhedra. These two smaller polyhedra are added to P and
the original, larger polyhedron is removed. The process then repeats, until the

stopping criterion is satisfied.

5.4 Examples

To demonstrate the nonlinear performance algorithms, a set of random systems
was generated. Continuous fifth order linear systems with one input were
randomly generated and discretized. A saturation nonlinearity was placed on
the input and a state feedback LQR controller was then designed, ignoring
the saturation. The resulting closed loop systems had five states and three PL
regions. All simulations shared the same initial condition set, ||z[0]||, < 1.3.
This class of systems is neither the hardest nor the easiest class of problems
known. These systems demonstrate the algorithms and have properties that
are typical of physically motivated problems. In particular, the state update
law is continuous across region boundaries. While continuity across boundaries
is not a generic property, the flows in each region near a boundary are typically
similar.

All upper bound calculations were performed with v = 1. Increasing vy
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did not lead to large improvements in the upper bound. The lower bound
calculations are a combination of Monte Carlo methods and gradient descent.
Random points in the parameter space are selected, and gradient descent is
applied until a local maxima is obtained. While computationally expensive,
this lower bound technique generally gives good results. The main purpose of
these examples is to demonstrate the upper bound algorithm, not to achieve
tight bounds with little computation.

It is important to consider the purpose of the upper bound algorithm.
Robust simulation is used to guarantee performance when the system exhibits
good nominal performance. If the system is nominally unstable, then there is
little value in calculating the worst case performance. For this set of systems,
nominal instability was defined as J; > 10.

The first example indirectly measures the conservatism in the robust sim-
ulation algorithm. A stable PL system was selected and the exact robust
simulation algorithm was compared to the approximate solution with v = 1.

The relative error, defined as

Hxsimu]a.tedlloo - Hmexactlloo

erxactlloo ’

is shown in Figure 5.2. For this system, the difference between the exact
solution and approximate robust simulation is negligible. This means that
little additional volume is added at the extreme points of the robust simulation.
Nothing can be said about regions of state space closer to the origin.

While Figure 5.2 demonstrates that robust simulation can perform well
and tight performance bounds can be obtained, it does not demonstrate the
average performance of the algorithm. As a second test, two hundred randomly
generated systems were analyzed. Robust simulation with v = 1 was used to
calculate the upper bound and Monte Carlo techniques combined with gradient
descent were used to find the lower bound. The performance measure was
[1[30]]oo-

Figure 5.3 is a plot of the distribution of the ratio J;/J,. Ideally, the two
bounds are identical and the ratio is always 1. As shown by the solid line, for

90% of the runs, the ratio was larger than 0.9.
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Figure 5.2: Relative error of robust simulation.

For the 20 systems where the ratio was less than 0.9, branch and bound
was applied. The branch and bound algorithm terminated when either the
ratio reached 0.9 or 50 branches were taken. As shown by the dashed line,
branch and bound greatly improved the results when the initial gap was large.
After applying branch and bound, only 12 runs had a ratio less than 0.9. Also,
the worst ratio improved from 0.27 to 0.63.

To gain more insight into the different methods for reducing the gap be-
tween J, and .J), one system with a large gap was examined in more detail.
Robust simulation with different values of v was applied to this system, which
has J; = 1.87. The results, shown in Table 5.3, demonstrate that increas-
ing 7 improves the upper bound. However, increasing v by one only yields a
small reduction in J, while roughly doubling the required computation time.
Branch and bound with v = 1 yields much better results with fewer compu-
tations. Computation times were obtained from simulations performed on a

Sun UltraSparc 2 with a 170 MHz processor.
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Figure 5.3: Nonlinear performance bound ratios.

algorithm computation time bound
vy=1 15 seconds 5.38
vy=2 2 minutes 4.41
vy=3 5 minutes 4.09
vy=4 10 minutes 3.83
v =25 18 minutes 3.64
branch and bound 13 minutes 2.07

Table 5.3: Computation times for robust simulation.
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Chapter 6

Piecewise Linear Modeling

System modeling is often more art than science. There are a variety of frame-
works available, and each has its own advantages. While piecewise linear mod-
eling is not a new idea, it has seen limited use due to lack of computational
tools. With the introduction of robust simulation and nonlinear performance
guarantees, the case for PL. modeling framework becomes much more com-
pelling.

In addition to facilitating numerical analysis, PL models admit a broad
set of nonlinear systems. As introduced in Chapter 3, saturation is exactly
represented by a PL system. Many other common nonlinearities, ranging
from hysteresis to dead zone, are also naturally PL. Additionally, there are no
continuity requirements for PL systems. Discontinuous switching systems are
easily described in the PL framework. Input constraints are handled exactly;
no approximations are necessary.

PL systems also facilitate the blending of theoretical models with experi-
mentally identified models. Each region of a PL system describes the system’s
local behavior independently of the other regions. If one has detailed knowl-
edge of the behavior of the system in a region of state space, the information
can be immediately incorporated by adding additional regions to the PL sys-

tem.

However, most systems are not strictly PL. To account for this, a standard
representation for a PL system is developed and a systematic technique for
converting a general system to a PL system is presented. Various forms of

uncertainty can also be cast in the PL setting. This PL approximation of a
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general, uncertain nonlinear system, called a PL cover, has one critical prop-
erty. A performance guarantee for the PL cover is also a guarantee for the
original system.

This chapter begins by defining the standard form for piecewise linear sys-
tems, the PL linear fractional transformation. Next, a method for converting
general nonlinear systems to PL systems is presented. This method is robust in
that guarantees from the PL approximation also hold for the original system.
From the standard PL form, a measure of the degree of nonlinearity, called
the nonlinear dimension, is developed. This nonlinear dimension determines
the computational cost of analysis. Various forms of uncertainty, such as un-
modeled dynamics and real parameter variations, are also cast as PL systems.

The chapter closes with a list of common nonlinearities that are naturally PL.

6.1 Piecewise Linear LFT

All successful modeling frameworks have a standard building block for creating
complex systems. Linear simulation packages generally use a transfer function
and state space representation. In many robust control methodologies, the
linear fractional transformation (LFT) is used. In the robust linear setting,
the LFT allows the conversion of a variety of problems to a form where one
analysis tool is applicable. In the piecewise linear setting, the LFT gives similar
benefits.

The nonlinear LF'T, shown is Figure 6.1, separates the linear portion of the

system, including states, from the nonlinearities. It is defined as

7 U

T =me)

y u (6.1)

@=N(9)

where M (z) is a linear system and N is a stateless nonlinearity. The only
restriction on NV is that it is solely a function of its current inputs. All state
information is contained within the linear system M (z).

The idea of separating the linear portion of the system from the nonlin-

ear portion appears in a variety of nonlinear analysis techniques. Once this
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Figure 6.1: Nonlinear LFT.
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Figure 6.2: Piecewise Linear LFT.

separation is made, analysis methods can focus on the nonlinearity N and its
interactions with the linear system M (z). Typically, restrictions are placed on
N to simplify analysis and M(z) is left untouched.

When N is a piecewise linear function, a PL system is obtained and robust
simulation can be applied. The piecewise linear LFT (PL-LFT), shown in

Figure 6.2, restricts the nonlinearity to be of the form
Na(9) = Ci¥ + D'y (6.2)

where CN¥ and DY implicitly are functions of z and u. In each region R;
of the state and input space, the nonlinearity follows a different affine rule.

Expanding (6.1) into its piecewise linear form yields

y =1 C1 Dy Dy )
(6.3)
Yy Cy Dy Dy U

i=C)Y+ DN
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and gives insight into the behavior of PL-LFTs. First, all of the standard LFT
interconnection rules apply. The interconnection of two PL-LFTs is a PL-LFT.
Thus, complex PL systems can be built from the interconnection of simpler PL
systems. Second, the PL-LFT is well-posed when I — D;; DY is invertible for
every D¥. For most systems, D;; = 0 since the nonlinearity generally does not
feed into itself and the LFT is well-posed. While problems, such as algebraic
loops, can occur when interconnecting PL systems, these are the same type
of problems that occur with the interconnection of linear systems. Third, the
PL-LFT yields a PL system in the form of (3.2). Assuming that the PL-LFT

is well posed, (6.3) can be written as

R _ . x|k
zlk + 1] A+ B DNC, B, DNCY¥ By,+B,DNDy 4]

Y 02 -+ D21f)lNCl Dng}VC—'ZN D22 + D21D£VD12

DY = D¥N(I — D;;DN)™!

which has the expected PL form. Also, any PL system in the form (3.2) can
be written as a PL-LFT in the form (6.3).

6.2 Piecewise Linear Covers

When forming the PL-LFT from the nonlinear LFT, NV is required to be piece-
wise linear. However, many nonlinearities, including all differentiable nonlin-
earities, are not PL. To account for this, a piecewise linear cover of the original
nonlinearity is needed.

A piecewise linear cover of N, denoted N , is a combination of a static
piecewise linear nonlinearity and a convex set of noises A/ such that there

exists n € N satisfying
N(@) = Nu(9) + Di'n = C)Y + D'j + D¥n, v§.

The matrix D} is a noise scaling and typically N is l,. Simply stated, for any

possible input sequence ¢, there exists a noise sequence n such that N (g,n) =
N(3).
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Figure 6.3: A nonlinearity.

Since the original nonlinearity N is contained in the set of nonlinearities
defined by N, any sufficient analysis condition for N is also sufficient for N.
For example, robust simulation gives sufficient performance conditions for PL
systems. Through the use of PL covers, it can give performance guarantees for
any nonlinear system. This allows arbitrary nonlinear systems to be analyzed
in the PL framework. The idea of covering the true nonlinearity by one that
can be analyzed is used in several other nonlinear techniques, such as LPV.

As an example, consider the nonlinearity

R cosy if -7 <y <,
N(j) = (6.4)
-1 otherwise,

shown in Figure 6.3. While portions of this nonlinearity are PL, the region

—m < ¢ < is not. A trivial cover,

~

N(g,n) =n, n € l, (6.5)

completely ignores the nonlinearity and exclusively uses noise to account for its

behavior. By choosing the noise n = N(§), the requirement N(§) = N(§,n)
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is satisfied. A slightly less trivial cover,

-1, ifg<—n
N@n)=4n, if-n7<§<m,nE€lo (6.6)
-1, ifg>n

has three PL regions and captures the piecewise linear regions exactly while

ignoring the nonlinear cosine portion. The cover

'4

—’1) if g < —T

i 0.7246 + 1.1382 + 0.1382n,  if —7 < § < 0

N(gvn): y N E g,
—0.72469 + 1.1382 + 0.1382n, if0<gyg<n 6.7)

\—1, ify>n

uses four PL regions and captures some of the cosine behavior. As shown in
Figure 6.4, the regions § > 7 and § < —n are captured exactly by N while the
cosine portion is covered by two PL regions. In the cosine regions, the nominal
PL value is shown by a dashed line and the extreme values obtainable for any
noise are shown by a dotted lines. As required, every value of the original
nonlinearity lies within the dotted lines. Also note that the PL cover (6.7) has
discontinuities at § = +m. There are no continuity requirements on PL covers
and continuous nonlinearities can have discontinuous covers.

The PL cover defines a set of nonlinearities that contains the original non-
linearity. Any sufficient analysis condition must hold for all nonlinearities in
the set. If this set is large, then analysis results are likely to be conservative
since the result holds for every nonlinear system in the set. One measure of the
size of the set is the amount of noise needed to create the cover. More noise
leads to larger sets of nonlinear systems contained in the cover. For example,
any nonlinearity with output bounded by -1 and 1 is included in the cover
(6.5). This cover has D = 1. The cover (6.7) has DY = 0 in two regions and
DY =0.1382 in two regions. As shown in Figure 6.4, it covers a much smaller
set of nonlinearities.

When forming the PL cover, the size of DZN can be reduced by increasing

the number of regions. The benefit from adding one region can be enormous.
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Figure 6.4: A nonlinearity and one possible cover.

Adding one region to (6.6) results in (6.7) and reduces the largest noise by
a factor of seven. However, increasing the number of regions increases the
computation time required for analysis.

There are always infinitely many possible covers for any nonlinearity. Those
presented in this example demonstrate the idea of a cover; they do not have
any special properties. Algorithms for creating PL covers, the effects of con-
servatism in the covers, and the use of sets of covers of a single nonlinearity

are discussed in Chapter 7.

6.3 Nonlinear Dimension

The dimension of a system is a measure of its size. It is the key parameter
that affects computational cost during numerical analysis. For linear systems,
the number of states is the dimension of the system. While increasing the
number of inputs or outputs has some affect on numerical analysis, changing
the state dimension has the largest effect. For example, verifying the stability

of a linear system requires finding the eigenvalues of an n x n matrix, which
is O(n?).
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For nonlinear systems, the state dimension is not as useful. Small increases
in the state dimension can have both large and small effects on computational
cost. Even systems with small state dimension can be very difficult to ana-
lyze. A measure of the amount of nonlinearity in the system and its effect on
computational requirements is desired. The PL-LFT indirectly gives one such
measure. The nonlinear dimension, v, is defined as the minimum number of
linearly independent variables needed to recreate (6.2) exactly. This nonlinear
dimension is analogous to the number of parameters needed when using LPV
techniques.

Recreating (6.2) requires identifying the different PL regions R;. As shown
in Table 3.3, this requires repeated evaluation of (d}, z) where d} is the jth
normal vector defining region R; and z € R™"™. The components of z orthog-
onal to all of the dj never contribute to the region identification and can be
ignored. Thus, finding v is equivalent to finding the largest linear subspace
Z C R™™ guch that

(di,z)=0Vz ¢ Z.

The nonlinear dimension is the dimension of Z. Z is simply the space spanned

by the d%. Using the notation from (3.3), another definition is
J

v=rank| . (6.8)

As an example, consider the system (3.13). To differentiate between PL
regions, both states are required. However, (6.8) has rank of one for this
example, so ¥ = 1. Examining the region boundaries reveals that only the
linear combination [0.5 1.5]z[k] is evaluated when identifying regions.

For robust simulation, computations grow exponentially with v. Though
computations grow polynomially with the number of regions in a PL system,
[ increases exponentially as v grows. For example, a system with a single
saturation, like (3.13), has ¥ = 1 and | = 3. A system with two indepen-

dent saturations has v = 2 and | = 9. A generic system with m saturating
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inputs has v = m and [ = 3™. PL covers exhibit identical exponential be-
havior. Forming a PL cover is equivalent to gridding the nonlinearities and
approximating them by a finite number of PL regions. When covering a non-
linearity with dimension v, dividing each dimension into k segments yields k¥
PL regions.

Any technique that requires gridding the nonlinearities also exhibits ex-
ponential growth as the number of nonlinear variables increases. To avoid
gridding, some techniques approximate the nonlinearities by arbitrary oper-
ators. However, these coarse approximations can be very conservative. For
example, traditional LPV analysis treats the nonlinear parameter variations
as arbitrary operators. The analysis results are conservative, but require little
computation. LPV analysis with parameter rate bounds requires gridding the
parameter space. The results are less conservative, but computations grow
exponentially with the number of parameters. In both cases, computations
grow polynomially with state dimension [29].

Similar computational reductions can be achieved for robust simulation by
choosing the complexity of the PL covers. The various covers of (6.4) demon-
strate this process. The simplest cover (6.5) approximates the nonlinearity as
a noise. With this cover, the original nonlinear system is reduced to a linear
system with noise and v = 0. The less conservative covers (6.6) and (6.7) both
have v = 1.

Two properties of v merit mentioning. Linear systems have v = 0. Since
a linear system has no bounding polyhedra, (6.8) reduces to the rank of an
empty matrix. The interconnection of PL systems cannot create additional
nonlinear variables. In other words, for the interconnection two systems I and

J, viry < vr+vy. This follows directly from the interconnection properties of
LFTs.

6.4 Unknown Real Parameters

One common form of model uncertainty is an unknown real parameter. For

example, due to temperature variations, a circuit’s resistance may be known
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to lie within a bounded range. Consider an unknown gain which obeys the

rule
y=ku, k=k=+6, 10] < ks

where 4 is time varying. Though this gain cannot be represented exactly as a
PL system, it can be approximated to any desired accuracy by a PL cover.
The PL representation is developed by separating the gain into two parts:
the constant gain and the uncertain term. The constant gain, ku, is a linear
system. The uncertain term, du, accounts for the unknown behavior of the

gain. A PL cover for the uncertain term is given by
du = C(u)ksn, |n| <1 (6.9)

where C' is a piecewise constant nonlinearity with |C(u)| > |u|. One nonlin-

earity meeting this requirement is

,

3 if-3<u< -2,
2 if-2<u<l,
Clu)y=41 if-1<u<1,
2 ifl<u<?,

3 if2<u<s3,

;
One feature of this cover is that it has an infinite number of regions. However,
with bounded u, only a finite number of regions are required.

The entire uncertain gain can be written as the PL system
y = ku+ C(u)ksn, |n| < 1.

The uncertain gain is the parallel interconnection of a linear system and a PL
system with v of 1. The interconnection is also as PL system with v of 1.
The accuracy of the cover is determined by the number of levels in Q. More

regions in () leads to a less conservative result.
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This example is typical of uncertainty modeling in the PL setting. Uncer-
tainty is represented by the addition of I, noise with gains that scale according

to a PL function.

6.5 Unmodeled Dynamics

Like unknown real parameters, unmodeled dynamics are also approximated

by PL systems. Consider the causal norm bounded operator
y = Au, ||A]; < 1.

This operator has the property that its output at any time has magnitude
equal to or less than the largest input it has seen.

The PL representation cover is given by

zlk + 1] = max(z[k], ulk])
y[k] = C(max(z[k], ulk]))n, n € I

where C is as specified in (6.9). As shown later in this chapter, max is a PL
nonlinearity. This cover has v = 2 and [ = 2Ic where I is the number of
regions in C.

Unknown real parameters and unmodeled dynamics are very similar. In
both cases, the output is a noise multiplied by C. However, unmodeled dy-
namics require the addition of a state which holds the size of the maximum
input seen. This cover can also be thought of as the interconnection of a

maximum element and an uncertain gain.

6.6 Piecewise Linear Catalog

Two common PL nonlinearities, saturation and maximum, have already been
introduced. Many other common nonlinearities are also PL. The section
presents simplified versions of several common nonlinearities. More complex
forms, such as saturations with different slopes can be constructed by slightly
modifying those presented here. In all cases, the PL-LFT representation is

trivial to construct, and is omitted.
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Saturation

The linear saturation

-1 ifu< -1,
y=sat(u) =qu if-1<u<l,

1 ifu>1,

is exactly represented by a PL system with no states, three regions, and v of

one.

Rate saturation

A rate saturation requires an additional state that stores the previous value
of the output. At any time step, the output can change by at most a fixed

amount. One implementation of the rate saturation is the PL system

zlk + 1] = z[k] + sat(u[k] — z[k])
ylk] = z[k] + sat(u[k] — z[k])

which has one state, three regions, and v of one.

Absolute value

The function y = |u] is exactly represented by the PL system

) ifu>0,
y =
—u  otherwise,

which has no states, two regions, and v of one.

Dead zone

A dead zone, shown in Figure 6.5, is the interconnection of a saturation and

a linear gain. It can be implemented as

U
= u — usat(—).
Y=1U— US (Uc)
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Figure 6.5: Dead zone.

Alternatively, it can be written as
u+u. ifu<—u,
¥y=140 if —u, < u < u,
u—u, ifu>u,.

Both representations have no states, three regions, and v of one.

Quantization

Quantization can also be captured exactly by a PL nonlinearity. For example,

the simple quantization law
y=Q(u) =u—umod1

can be written as the PL system

-1 if-1<u<0,
y=40 if0<u<l,

1 ifl1<u<?2,
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which has no states, an infinite number of regions, and v of one. The number
of regions can be limited by restricting the size of the input. Alternatively,
the portions of the quantization element can be covered by one region and

additive noise. More details are presented in Section 7.2.

Maximum and minimum

The function y = max(uy, us) is exactly represented by the PL system

up  if up > u,
y =
ug otherwise,
which has no states, two regions, and v of one. In general, the maximum or
minimum of n inputs is a PL system with no states, n — 1 regions and v of
n—1.

Maximum and minimum are unique in that the number of regions [ grows
linearly with v. These functions do not require gridding the input space to rep-
resent the nonlinearity. Instead, the n-dimensional input space is partitioned
into n regions. Due to this special structure, efficient analysis is possible even

when v is large.

Hysteresis

Hysteresis, shown in Figure 6.6, is another common PL nonlinearity. It is
modeled using one binary state variable. This state, which only takes values

of -1 and 1, determines the output curve. One possible PL representation is

zlk+1]=<1 ifu>u,

z[k] otherwise.

yosat(%52e) if afk] < —1,

ylk] = { yosat(Ltie) if z[k] > 1,

2uc

Yosat(z—)  otherwise.
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Figure 6.6: Hysteresis.

This definition also accounts for improper initialization of the state variable
by selecting the most appropriate output for z[k] # +1. When —1 < z[k] < 1,
a standard saturation element is assumed.

Hysteresis, which has v of two, demonstrates the gridding of the nonlinear
space needed to account for complex nonlinearities. Each of the three regions of
z[k] is partitioned into five regions depending upon u, yielding a total of fifteen
regions. However, with different assumptions on the behavior for z[k] # +1

and the values of u. and u,, [ can be reduced to six.

Multiplication

Though many common nonlinearities are naturally piecewise linear, multipli-
cation is not. In order to account for nonlinearities such as y = u?, PL covers
are needed.

A PL cover for y = ujuy requires two quantization elements @, and Q-

that satisfy

U = Ql(ul) +e1, ler] < By

ug = Q2(u2) + €2, |ea| < Fs.
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Using these quantizations and simple algebraic manipulations, one PL cover
for the multiplication y = uju, is given by

g = QI(UI)UQ + Q2(U2)E1n1 + E1Eyng, ni,ng € lw. (6.10)

This cover has v of two, requires two additional noise inputs, and ! depends
upon the number of regions in the Q; and Q.

This cover can be simplified by choosing Q, such that |ug| < Ey. With this
requirement, Q(u3) = 0 Vuy and (6.10) reduces to

Z; = Q(U,l)’U,Q -+ E1E2n, n e loo

which has v of one and requires only one additional noise input. This is another

example of how v can be affected by choosing a coarser PL cover.
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Chapter 7

Hierarchical Modeling and
Multiresolution Simulation

Analysis results are only as good as the model being analyzed. For most phys-
ical systems, any level of detail can be included in the model. Some simulation
packages even provide sets of models for common components. For example,
SPICE has several models of many common semiconductor components [37].
In the previous chapter, PL covers of general nonlinearities were introduced.
Since the PL cover is not unique, many valid covers exist for every nonlinearity.
These covers also form a set of models for a nonlinear system.

When two or more models for a given item are available, some method
is required to choose the correct one. When building large systems from the
interconnection of smaller parts, small changes in one component can have
large effects on the overall system. There are many heuristics for choosing the
level of detail to incorporate in a large model. In short, one wants to include
the phenomena that greatly affect simulation results and ignore those that do
not. With too much detail, simulations can take a long time to compute. With
too little detail, the results are meaningless.

In some simulation methods, the complexity of the model is varied as the
simulation progresses. These techniques, known as multiresolution simula-
tion, attempt to use extra computation only where it gives a large benefit.
Multigrid methods, one form of multiresolution simulation, change the spatial
discretization of the original model dynamically. Multigrid methods have been
particularly successful when simulating partial differential equations [11].

Both multiresolution simulation and heuristic based model selection can
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greatly reduce computation time. However, they fail to address the same

underlying problem:

When multiple models exist for a single system, which gives the
correct simulation result?

There are other limitations to these techniques. When switching between
models in a multiresolution simulation, initial values must be chosen for the

new model.

Even if only one model exists for each component, building large mod-
els from simpler systems can introduce errors. The assumptions made when
modeling one subsystem may be incompatible with those of another. For
example, when modeling a flexible aircraft wing, one would like to mix struc-
tural dynamics with quasi-static aerodynamic modeling. However, the forces
calculated from the quasi-static aerodynamic model induce oscillations in the
wing, which violate the quasi-static assumption. To account for these types of
problems, the assumptions and associated uncertainty in each model must be

quantified and the simulation technique must use the additional information.

Robust simulation and the PL modeling framework address these issues.
PL modeling explicitly quantifies uncertainty as noise. Robust simulation gives
the set of all possible states, rather than a single value. By using these two
techniques, one can build sets of models for a complex system and perform
multiresolution simulation in a mathematically sound manner.

This chapter focuses on creating model hierarchies and interpreting their
simulation results. It does not address issues related to building models of
physical systems. Methods for selecting the appropriate model fidelity are
addressed in [22]. First, model hierarchies are defined and two examples are
presented. From these ideas, robust multiresolution is developed. Changing
models during simulation fits naturally within the robust simulation frame-
work. The chapter closes with two examples that demonstrate the problems
encountered with sets of models and the potential benefits from multiresolu-

tion simulation.
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7.1 Hierarchical Modeling

When creating a mathematical model of a physical system, any degree of
complexity is possible. When developing models for interconnection with other
systems, the degree of accuracy needed is not known in advance. Effects
critical to one system may be superfluous to another. Thus, a set of models
with varying degrees of accuracy is needed. These models must also be useful
for computation.

In order to choose between models in the set, a hierarchy is needed. Each
model must have a measure of its fidelity and complexity. For LTI systems,
the state dimension is often used to measure complexity. For uncertain linear
systems, the hierarchy is not as obvious. The tradeoff between additional
states and additional uncertainty is not clear. The hierarchy does not need to
be, and rarely is, a complete ordering.

Model hierarchies are an area of active research in the computer graphics
community. One example is the use of wavelets to create sets of models of
three-dimensional objects for on-screen rendering. By varying the number
of wavelet coefficients used during the reconstruction, the accuracy of the
reproduction is varied. Typically, as an object moves toward the foreground

of an image, more wavelet coefficients are used to display finer detail [32].

Developing model hierarchies for robust analysis and simulation has its own
set of requirements. The model description must grow reasonably as problem
size increases. In computer graphics, all problems are in 2 or 3 dimensions.
The uncertainty in the model must also be explicitly quantified. For general
nonlinear system, the PL modeling framework meets both of these require-
ments.

The third, and most important, requirement is consistency. Each model in
the set must accurately describe the system. Specifically, given the true model

of the system
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and the set of models

e

[k +1] = fu(zilk], u[] []),uenyieXi’wiGWi

yz[k] = gi(wi [kL u[k]’ wz[k])

then for each 7 there must exist values of w; that if x;[0] = 2;(z[0]) then
yi[k] = y[k] for all k and all possible inputs u. The function z; is a mapping that
allows for differing state dimension and coordinates frames. Simply stated,
with the appropriate additional input signal w;, each model in the set will
yield the true output y when driven by the input u. However, in practice, one

never knows the true model.

This is, in essence, the model validation problem. For PL systems, verifying
consistency is NP-hard. However, sets of consistent models can be constructed
by using PL covers. Given a nonlinear system in the LFT form (6.1), any PL

cover, by definition, satisfies
N(g,n) = N(9) (7.1)

for some n. Letting z; be the identity, y; = y trivially when n satisfies (7.1)

and the PL cover is consistent with the original nonlinear system.

This method for constructing consistent sets of models does not allow for
varying state dimension or coordinate frames. It requires that all models
in the hierarchy have identical linear portions M(z). Even though the state
dimension is fixed, different PL covers can greatly affect computation time. As
shown in Chapter 6, the nonlinear dimension is the key parameter affecting

computations. The PL cover allows selection of v.

The hierarchy for a set of PL covers is determined by v, [, and the amount
of noise needed to create the cover. However, none of these measures gives
an absolute ordering. A model with [ = 3 can yield much better simulation
results than a model with [ = 200 if it captures the important nonlinearities.
Similarly, the regions where noise is added are as important as the amount of

noise added.
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7.2 Hierarchy Examples

As previously mentioned, verifying that two models are consistent is very hard,
while constructing consistent models is not. To demonstrate this, two examples
of model hierarchies for common nonlinearities are presented. The saturation
example constructs a set of PL models that cover a continuous nonlinearity
with varying amounts of additive noise. In the quantization example, all mod-
els have the same amount to noise, but different regions of state space have
less noise added. While these examples do not address the issues of changing
state dimension, they demonstrate the ideas of hierarchical modeling, includ-

ing localizing where a model is accurate.

Saturation
Though the smooth saturation nonlinearity
2
y = —arctanu, (7.2)
s

shown by the solid line in Figure 7.1, is not piecewise linear over any region,
it can be closely approximated by a PL system. Since the output of (7.2) is
bounded by -1 and 1, the trivial cover

y=0u+n,|n| <1 (7.3)

is a consistent model of the saturation. This cover, which uses noise to ac-
count for the entire nonlinear behavior, is identical to (6.5), the cover for the
cosine bump from Section 6.2. While (7.3) does not describe the behavior of
the nonlinearity, it does describe its bounds. This cover is useful when the
saturation has little effect on the overall system.

To develop PL covers with multiple regions, assumptions on the covers’
forms are needed. First, all regions of the cover will have the same amount of
additive noise, and this amount will be minimized. Second, the cover will be

symmetric about v = 0. Using these assumptions,

—054+05n u<0
Y= Jn| <1 (7.4)

0.5+ 0.5n u>0
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Output

Figure 7.1: The arctan saturation and a 3-segment PL cover.

is the cover containing two regions. This cover gives only slightly more infor-
mation than (7.3). The output of this cover depends only upon the sign of the
input.

A more common approximation uses three segments to approximate the

saturation. This cover, shown in Figure 7.1, is given by

—0.87+0.13n u< —2.32
Yy=1038u+0.13n -232<u<232,[n|<1L (7.5)
0.87+0.13n u > 2.32

The dotted lines indicate the extreme values obtainable for any value of n.
As required by a PL cover, there is always a noise that lets the cover equal
the output of the true system. Unlike (7.4), this cover is continuous and
the nominal value is smooth in a neighborhood about u = 0. Note that the
saturated regions, |u| > 2.32 are not nominally equal to the saturated values.
They are offset to minimize the amount of noise needed to cover the true
saturation (7.2).

While increasing the number of regions reduces the amount of noise needed,

the reductions do not follow any pattern. Cover (7.5) has roughly half the noise
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Output

Input

Figure 7.2: 5-segment saturation approximation.

of (7.4), which has half the noise of (7.3). However, the four segment cover

’

—0.89+0.11n u< —278

0.28u — 0.11 +0.11n 278 <u <0
y =4 nl <1 (7.6)
0.28u+0.114+0.11n 0 <u <278

0.89 +0.11n u>2.78

only reduces the required noise by roughly 20%. The five segment cover, shown

in Figure 7.2,

¢

—0.95 + 0.05n u < —6.14
0.06u — 0.55 + 0.05n —6.14 < u < —1.29
Y = 40.49u + 0.05n ~1.29<u<129 ,n|<1 (7.7)

0.06u+0.554+0.05n 1.29<u<6.14

0.95 + 0.05n u>6.14

requires 55% less noise than (7.6).
These five covers are consistent representations of the original nonlinearity

(7.2). Covers with larger [ require less noise, but may require more compu-
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tation during robust simulation. For this example, a natural hierarchy is the
number of regions or the amount of added noise. Since adding a region to
each cover reduces the required additive noise over the entire input space, us-
ing more regions will generally yield a less conservative result. However, the
improvement from using more complex covers cannot be predicted solely from
the amount of noise added. It is also a function of the cover’s interaction with

the rest of the system being simulated.

Quantization

Due to the finite resolution of digital systems, quantization nonlinearities oc-
cur in almost every application. Usually, they are ignored since the errors
introduced are generally small. Using the PL modeling framework, their exact
behavior can be easily incorporated into system models when appropriate.
As shown in Section 6.6, quantization is represented exactly by a PL system
with an infinite number of regions. A more general form of the quantization

nonlinearity is
y=u—(uv—g;)modg — g, —¢ < g <0 (7.8)

where g, is the difference between quantization levels and ¢, is used to set the
center of each quantized value. Even when u is bounded, the exact represen-
tation can have a large number of regions. For example, if ¢, = 0.1, then a PL
mapping valid for |u| < 10 requires 200 PL regions.

A much simpler model for the quantizer is

y=u—qc—%’—+%n; In| < 1. (7.9)

Like (7.3), this cover completely ignores the nonlinearity by covering it with
noise. More accurate covers treat the nonlinearity exactly in some region, and

cover the rest of the nonlinearity with noise. For example, the approximation

U—QC"%+%n7 x<QC7‘n|S1

y= u—(u—QC)mOdQT"'CIGa QC<$§Qr+qc>’n]§1

u_qc“%+%nv x>Qr+Qc (710)
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captures the nonlinearity exactly in the range ¢. < z < ¢, + ¢..

Other covers are formed by capturing the nonlinearity exactly in different
regions of the input space. Each cover has the same maximum amount of
additive noise, g,/2. However, some regions in each cover require no noise. By
carefully selecting the noise-free regions, simulation results can be improved

without excessive additional computations.

7.3 Multiresolution Simulation

Ideally, additional detail is added to models only where it is needed. Generally,
this added detail yields better simulation results at the expense of additional
computations. However, modeling detail may be needed in different regions
of the model at different times duriflg the simulation. Including all details at
every time step may give excellent simulation results, but may also require
excessive computations. Multiresolution simulation is one way of addressing
this problem.

Instead of using a single model for the entire simulation, the model is se-
lected dynamically during the simulation process. Model details are included
only where and when they are needed. While multiresolution simulation may
reduce errors with reasonable computational cost, two problems are intro-
duced. First, when switching models, the current state of one model must be
used to initialize another model. If the models have different state dimensions,
this is not trivial. Second, the results must be properly interpreted. One must
understand how results change when models with less fidelity are simulated.

Robust simulation addresses both of these problems. When switching be-
tween models that share the same state variables, initialization is trivial. At
each time step, robust simulation returns the set of all possible states. As long
as each model in the hierarchy is a consistent cover, any model can used at any
time step and the result is guaranteed to contain the true result. Typically,
models with less additive noise give smaller regions of state space during robust
simulation. Since the final result for simulation of any model in the hierarchy

is a set of points reachable points, interpreting the results is straightforward.
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The result is the set of all possible final conditions. More accurate models
should return smaller possible regions.

While robust simulation greatly simplifies the implementation and inter-
pretation of multiresolution simulation, many details are not trivial. When
switching between covers with different state spaces, mappings between the
state spaces are needed. If the state dimension increases, then the mapping
must initialize new states. To maintain the analysis guarantees of robust sim-
ulation, this initialization must return the set of all possible values of the new

states.

7.4 Examples

Hierarchical modeling and multiresolution simulation fit naturally within the
PL modeling and robust simulation framework. To demonstrate these ideas,
three examples are presented. The first two examples show how different
models can yield acceptable results in one simulation and unacceptable results
in another. The third example demonstrates multiresolution simulation. By
switching to a more accurate model during the middle of the simulation, results
are greatly improved with only minor added computational cost.

In Section 7.2, five covers were developed for (7.2). While some covers
barely resembled the original saturation nonlinearity, they still may give ac-

ceptable results. Consider the stable system
2
z[k + 1] = 0.4z[k] + 0.05= arctan u[k] (7.11)
s

with the feedback law u[k] = —z[k]. This system is open loop stable, and the
input has very little control authority. All simulations are for 5 time steps
starting from x[0] = 100.

The first simulation of (7.11), whose results are shown in Table 7.1, uses
(7.3) to approximate to cover the saturation. For this system, covering the
nonlinearity by noise gives reasonable results. The final result, 0.942 < z[5] <
1.107, differs by only 5% from its center value and, as expected, contains the

exact result of 0.956. Note that for the first few time steps, the lower bound
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time step lower bound exact upper bound

0 100 100 100
1 39.95 39.95 40.05
2 15.93 15.93 16.07
3 6.32 6.32 6.48
4 2.47 2.48 2.64
) 0.94 0.96 1.11

Table 7.1: Simulation results for cover (7.3).

cover [ lower bound upper bound

(7.3) 1 0.942 1.107

(74) 2 0.942 1.024

(7.5) 3 0.942 0.963

(7.6) 4 0.946 0.964

(7.7) 5 0.953 0.961
exact 0.956

Table 7.2: Ranges for z[5] for various covers.

is, after rounding, identical to the exact value. This is because the worst case
noise, which yields the lower bound on the range, is also the value needed to
make the approximation match the true model.

Table 7.2 summarizes the simulation results for each cover. Covers (7.3),
(7.4), and (7.5) all yield the same lower bound. This is because the set of
feasible states is always in the first region of these covers and all covers allow
-1 as a possible output. The upper bound varies because the range of possible
outputs in the regions varies. When simulating with (7.4), the saturation
output lies in the range —1 < y < 0. When simulating with (7.5), the range
is reduced to —1 < y < —0.74. By reducing the additive noise in the cover,
the set of possible states is reduced.

The robust simulation results for (7.6) demonstrate two additional features
of PL covers. First, the set of reachable states lies in two different regions of

the cover during the simulation. This leads to the tighter lower bound. Second,
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Saturation Model minz[50] max z[50]

Model (7.3) -284 2170
Model (7.4) -12.5 998
Model (7.5) -0.464 137
Model (7.6) -3.4 e-4 90.0
Model (7.7) 0128  0.128
Exact 5.97e-11 6.50 e-8

Table 7.3: Simulation results for the unstable system.

the upper bound for this cover is larger than the upper bound for (7.5). The
set of nonlinearities contained in (7.6) is not a subset of (7.5). For example,
at u = —2.5, (7.6) allows outputs of —0.92 < y < —0.70 while (7.5) allows
outputs of —1 <y < —0.74. However, since both simulations generate sets of
all reachable states, the intersection of the results is also a set of all reachable
states. Thus, the results from the simulations using (7.5) and (7.6) can be
combined to yield the tighter result 0.946 < z[5] < 0.963.

The five segment cover (7.7) has the tightest results. This is expected,
since this cover adds much less noise than any of the other covers. For this
simulation, all five covers give good results. This is because the nonlinearity
does not play a large role in the output of the system.

In the second example, the nonlinearity is crucial and different covers yield
dramatically different results. The nominally unstable system

zlk + 1] = 1.1z[k] + %arctan ulk] (7.12)

is stabilized about the origin by the feedback law u[k] = —z[k]. What values
can z[50] attain if 7.5 < z[0] < 8.57 Note that for z > 9.32, the system is
unstable.

Table 7.3 shows the robust simulation for each of the five saturation cov-
ers. Though covers (7.5) and (7.6) appear to cover the nonlinearity without
excessive noise, they are too conservative for this simulation. The true system
maps the range 7.5 < z[0] < 8.5 to a small region near the origin. These

covers do not. Only (7.7) clearly demonstrates that the system is stable for all
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dotted: exact set of reachable states
solid: set of reachable states obtained when
simulating the 5 segment cover

i L i 1

£ H 1. i 1 3
0 5 10 15 20 25 30 35 40 45 50
time k

Figure 7.3: Comparison of exact simulation and cover (7.7).

initial conditions in the range. As shown in Figure 7.3, the robust simulation
results for (7.7) are somewhat conservative. At every time step, the range of
reachable states always contains the exact solution, as required.

Figure 7.3 also demonstrates one limitation of the modeling framework.
Since the noise can be a constant input, the simulation never converges to a
single equilibrium point. At best, the result is a ball about an equilibrium
point. For this example, £ = 0 is an equilibrium point and, as shown by
Figure 7.3 and Table 7.3, simulation using (7.7) converges to the set |z| <
0.128. This value can also be derived by examining the behavior of the cover
around the equilibrium point.

The set of all possible equilibrium points is obtained by setting z[k + 1] =
z[k] and finding the set of z that satisfy this requirement for some value of n.

For (7.12) approximated using (7.7), this is given by
z[k] = 1.1z[k] — 0.49z[k] + 0.05n, |n| < 1.

Simple algebra yields |z[k]| < 0.128, which is the result obtained by robust
simulation. It is impossible to find a tighter bound using this cover.

A third example demonstrates multiresolution simulation. Consider the
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nominally unstable system with a quantized input
zlk + 1] = 1.92[k] + q(u[k]) (7.13)

where ¢(z) = z— (z+0.05) mod 0.1+0.05. While g can be exactly represented
as a PL mapping, it has 10 PL regions for every unit of state space. A model
valid over the range |z| < 100 has 2000 regions.

Using (7.9), a simple cover for the quantizer is
¢(z) =z +0.05n, |n| < 1. (7.14)

Closing the loop with negative unity feedback and using the cover (7.9) for

the quantization results in the stable system
zlk + 1] = 0.9z[k] + 0.05n[k], |n[k]| < 1 Vk. (7.15)

Robust simulation of the initial condition set |z[0]| < 100 for 150 time steps
using (7.15) yields |z[150]] < 0.50. This is the smallest result obtainable
when robustly simulating (7.15). The exact solution, obtained by robustly
simulating the 2000 segment exact PL model of the quantization, is |z[150]| <
0.095. |

However, calculating the exact solution is incredibly expensive. Simulating
the exact model for one time step requires more than ten times the compu-
tations used during the entire 150 time step simulation of (7.15). While the
2000 segment model is very accurate, the additional accuracy comes at great
cost.

Since the coarse simulation converges to the region |z| < 0.50, it is likely
that more detail is needed in this range. The thirteen segment PL cover, pre-
sented in Table 7.4, exactly captures the quantization over the range —0.55 <
r < 0.55. Robust simulation using this cover yields |z[150]] < 0.095, the exact
solution. This simulation requires roughly nine times as many computations
as when simulating with (7.15).

Substantially fewer computations are required when the simulation changes
the quantizer cover midway through the run. After simulating the first 100

steps using (7.9), the range |2[100]| < 0.51 is obtained. This region is then
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r

z+0.05n, z>0.55 |n|<1
0.5, 0.45z <z < 0.55
0.4, 0.35z < < 0.45
0.3, 0.25z < x < 0.35
0.2, 0.15z <z <0.25
0.1, 0.05z <z < 0.15
q(z) = 10, —0.05z < z < .05
—0.1, —0.152 <z < —0.05
—0.2, —-0.25z <z < —-0.15
—0.3, —-0.35z <z < —0.25
—0.4, —0.452 <2 < —-0.35
—0.5, —0.55z <z < —0.45
|z + 0.05n, z < —0.55, |n| <1

Table 7.4: Thirteen segment quantization cover.

used to initialize a simulation using the thirteen segment cover. Simulating
the last 50 time steps with the less conservative model gives the final result
of |z[150]| < 0.095. This is less than one fifth the size of the result when only
using (7.9) and is also the exact solution.

This multiresolution simulation requires less than half the computations
used when simulating solely with the thirteen segment cover. Simulation us-
ing (7.9) reduces calculations by more than a factor of ten during the first 100
time steps. As shown by this example, the use of model hierarchies and mul-
tiresolution simulation can greatly reduce computation time without affecting

results.
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Chapter 8
Other Applications

Robust simulation and PL modeling can be applied to a variety of other prob-
lems. One view of PL analysis is that it is a way to generate bounds for
non-convex optimizations. The first application, done in collaboration with
James Primbs, uses this idea to generate lower bounds for model predictive
control design. Robust simulation can also be used to examine nonlinear sta-
bility. Since all trajectories are calculated, unstable ones can be identified.
This is the topic of the second application. The third application discusses the
problem that motivated the development of the robust simulation algorithm,
gain scheduling. Many other uses exist for robust simulation and PL modeling.

This chapter introduces three of them.

8.1 Model Predictive Control Lower Bounds

Model predictive control (MPC), also known as receding horizon control, is a
technique where an on-line, open-loop control problem is solved at each time
step [14]. Using the current state, an input sequence is calculated to minimize
a cost while satisfying specified constraints. Only the first element of the
sequence is used, and then the algorithm is applied again, beginning at the
new current state. For general nonlinear systems, this technique results in a
constrained non-convex optimization [24]. At each time step, a local minimum
of the cost is found, but no information about the global minimum is provided.

By restricting the class of systems considered, iterative robust simulation
can be used to find a lower bound on the global minimum. If the MPC cost

and the robust simulation bound are similar, then additional optimization
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will yield little benefit. If they differ greatly, then additional optimization
may yield large improvements. Robust simulation results also generate initial
conditions for additional optimization runs, which will generally converge to a

better local minimum.

Problem statement

At each time step, MPC control algorithms attempt to solve

zlk + 1] = f(x[k], ulk])
(8.1)
min J(z, u).
In some special cases, this is a convex optimization that can be solved exactly.
For most problems, including those with nonlinear f and constraints on xz and
u, a global minimum cannot be found.

The goal of this algorithm is to find a cost Jj such that
0 S Jlb < Jopt S Jmpc

where J,,; is the global solution to (8.1) and Jy,, is a local solution to (8.1). A
secondary goal of the algorithm is to reduce the gap between J;, and J,,,.. This
problem is very similar to the robust analysis problem solved in Chapter 5.
The main difference is that for MPC, the cost is being minimized. Jmpe 1 the
cost from a single, known feasible trajectory and is analogous to the robust
analysis lower bound. Jj is analogous to the robust analysis upper bound.

In order to apply robust simulation analysis techniques to the MPC prob-
lem, the problem must be cast in the PL setting. This setting has two main
differences from the standard MPC form. First, polyhedral inputs constraints
are required. Generic MPC allows arbitrary inputs. Second, the cost being
minimized must be suitable for robust simulation. MPC typically minimizes a
quadratic cost. For robust simulation, the tube cost (or I, norm) is required

and no input penalty is assessed.

Algorithm

By definition, there are no feasible trajectories with J < .J,, and at least

one trajectory exists that attains J,,. If it can be shown that no feasible
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trajectories exist with cost less than or equal to.J, then Jy, is a lower bound
on Jo,. This is accomplished by iterative robust simulation.

The first step is to construct an MPC control sequence and calculate its
cost, Jmpe. Since this is a feasible trajectory, it provides an upper bound on
Jopt- Initially, Jp = 0, since 0 is always a lower bound.

The second step is to choose a cost Jpom, Jis < Jnom < Jmpe, and determine
if any feasible trajectories meeting that cost exist. This is accomplished using
a modified robust simulation algorithm that calculates the set of states that
can be reached at each time step while satisfying the cost constraint.

Since level sets of the tube cost are polyhedra, the set of reachable states
meeting the cost constraint is also a set of polyhedra. Denoting the set of all
states meeting the cost constraint by Sy, at each time time step the set of
states reachable at time k£ + 1 is found by mapping the set :S'; N Sjpix)- If this
set is empty, no feasible trajectory satisfying J < J,,,, exists and the robust
simulation algorithm step is terminated.

If no trajectory satisfying J < J,,mn exists, then J,,mn is a lower bound
on Jo,. If robust simulation generates potential trajectories that meet the
cost constraint, then two options exist. Either the results from the robust
simulation can be used to find a better MPC sequence (reduce J,.) or the
robust simulation step can be repeated with a smaller J,,,. The algorithm
terminates when one is satisfied with Jy. Typically, this is when Jy,,c — Jjp is

small.

Example

Consider the piecewise linear system

zlk] + 0.15ulk], z[k] <1
zk+1] =
z[k] + ulk], zlk] > 1

with input constraints |u[k]| < 1 and the MPC problem of minimizing the cost

J = max{0.1z[1], z[2]}
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Figure 8.1: Cost J as a function of u[1] and u[2].

subject to 2[0] = 0.95. The cost, J, as a function of the control inputs u[1] and
u[2] is shown in Figure 8.1. Any optimization scheme using a gradient descent
algorithm and starting from u[l] < 1/3 will fall into the local minimum at
u[l] = u[2] = —1. MPC based control schemes are vulnerable to failures of
this sort in their optimization step [27].

The local minimum at u[l] = u[2] = —1 has a cost J = 0.65. This is more
than a factor of 6 greater than the global minimum cost of 0.1, which occurs
at u[l] = 1/3,—1 < u[2] < —0.9.

Starting the MPC optimization from u[1] = u[2] = 0 converges to the local
minimum, resulting in Jp,,. = 0.65. Iterative robust simulation gives a lower
bound of Jy, = 0.099. The gap between Jy,,. and Jj indicates that the MPC
solution may only be a local minimum.

To improve Jy,,., branch and bound is used. A single branch on u[1] yields
Jip = 0.5 for u[l] < 0 and Jj, = 0.09 for u[l] > 0. During the branch and
bound step, no attempt is made to find the largest Jy,. The purpose is to find
good initial conditions for MPC optimization. From these results, it is likely

that the optimal solution has u[0] > 0.

A point in the middle of the likely region is used to initialize the MPC
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optimization. Starting a gradient descent algorithm from u[1] = 0.5,u[2] = 0
quickly converges to the global minimum, giving a new cost Jy,,. = 0.1. Since

Jip & Jmpe, further optimizations will yield little benefit.

While this is a simple optimization problem that is easily solved by grid-
ding the parameter space, it demonstrates the functionality of the algorithm.
Robust simulation indicated that the MPC solution might be caught at a local
minimum. Through branch and bound, a better initial condition was obtained

and the MPC solution was greatly improved.

8.2 PL Stability

In [35], Sontag conjectured that verifying the stability of PL systems was
undecidable. Though exact stability conditions cannot be computed, separate
necessary and sufficient conditions have been developed. Two fundamentally
different approaches have been taken. One set of conditions is based upon

LMIs. The second set of conditions is based upon robust simulation.

The LMI approach requires finding a single, quadratic Lyapunov function
for the PL system. However, for many stable systems, no quadratic Lyapunov
functions exist and this technique is inconclusive [18]. Recently, the existence
of a piecewise quadratic Lyapunov function has been cast as the solution to an
LMI [17]. While piecewise quadratic Lyapunov functions are a large improve-
ment, they still suffer from the same limitations. Many stable PL systems do
not admit piecewise quadratic Lyapunov functions. These algorithms are also
single step methods. When the results are inconclusive, nothing can be done

to improve them.

The robust simulation based method does not have these limitations. When
results are inconclusive, less conservative robust simulation algorithms can be
used. This method examines all feasible trajectories over a finite time horizon.
Though infinite time horizon problems may be undecidable, finite time horizon
problems are generally decidable. If the trajectories satisfy certain conditions,

stability (or instability) is inferred.
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Robust simulation based algorithm

The robust simulation based algorithm examines generalized finite time hori-

zon stability, specifically:

Do all states in a set of convex regions Sy map into a set of convex
regions Sy in ¢ time steps?

With a careful choice of Sy, stronger notions of stability can be inferred. If
Sy is known to be invariant, then Lyapunov stability is implied. If Sy is
known to be invariant and a quadratic Lyapunov function exists for Sy, then
quadratic stability is implied. The latter case occurs frequently, often when
0 C 8§ C R, for a fixed i. Answering this question is a direct application of
‘robust simulation, which calculates all possible trajectories for a set of initial

conditions.

A sufficient condition for generalized stability is obtained by robustly simu-
lating S for ¢ time steps, yielding the set of all reachable states, S;. If S, C Sy,
then the stability condition is satisfied. Since robust simulation is conserva-
tive, S; also contains states that cannot be reached from Sy. This condition

only guarantees stability; if it is not met, nothing can be inferred.

A necessary condition for generalized stability is found by robustly simulat-
ing Sy for ¢ time steps backwards in time, yielding the set S;_,. If Sy € 854,
then the system is unstable. When Sy Z Sy_;, some point in Sy does not map
into Sy after ¢ time steps. Since Sy_, contains states that do not map into Sy,

this is only a necessary condition.

If the sufficient condition fails and the necessary condition is satisfied, no
conclusion can immediately be drawn. In this case, more accurate robust
simulation is needed. Since robust simulation gives the exact answer after
a finite number of refinements, stability can always be verified in finite time.
However, computations grow exponentially as the robust simulation algorithm

is refined and calculating the exact solution can be prohibitively expensive.
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Example

Bounded noise cannot destabilize a stable linear system. For a nonlinear sys-
tem, the amount of noise can affect stability. This example demonstrates that
a PL system can be destabilized by the addition of bounded noise. While the
result is not surprising, this example provides a test of the stability algorithms
and illustrates the difference between nominal stability and robust stability of
PL systems.

Consider the PL system

Aoz[k] if |z1] < 0.1,
zlk +1] = { Ayz[k] + A, + Bin[k] if 7, < —0.1,

Azx[k] -+ /_12 if T > 01,
where
09 0O 10 - 0.1 - —-0.1
A(): 7A1:A2: 7A1: ;A2:
0 0.9 0 1 0.1 0.1

For the stability question, the initial region, Sp, is the rectangle ||z||o < 10
and the final region, S, is the rectangle ||z]|ooc < 0.1. The number of time
steps, t, is 100.

With no noise (B, = [0 0]!), the system satisfies the robust simulation
based sufficient condition and is stable. As shown in Figure 8.2, flows starting
with |z;| > 0.1 move towards z; = 0, and then converge to the origin. In fact,
once |z;| < 0.1, the state converges to the origin quadratically.

When bounded noise is added as B; = [0.1 0], the system is destabilized.
By choosing an initial condition with z; < —0.1 and a noise signal n[k] =
—1 Vk, the system diverges, as shown in Figure 8.3. This system fails both

the sufficient condition and the necessary condition.

8.3 Gain Scheduling

Success with gain scheduled controllers motivated the initial development of

robust simulation. On the Caltech ducted fan experiment, gain scheduled
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controllers were both easy to design and had exceptional performance [19].
Repeated experiments demonstrated that results were insensitive to the type
of switching used. Both smooth transitions between controllers and abrupt
changes yielded similar results. When using abrupt switching, simplified mod-

els of the closed loop system are piecewise linear.

While robust simulation of the simplified PL systems gave insight into the
nonlinear performance, it did not give guarantees. The development of PL
covers allowed for exact analysis of gain scheduled systems. When the gain
scheduled controller switches abruptly, the controller is a PL system. The
interconnection of this controller with a PL cover of the nonlinear plant results
in a PL system, which can be analyzed through robust simulation. If smooth
switching is desired, the controller can also be approximated using a PL cover.

This approach to analyzing gain scheduled systems differs greatly from
other existing methods. Robust simulation explicitly considers the nonlinear-

ities’ dependence upon the state variables. LPV techniques ignore the state
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Figure 8.3: PL system trajectory with noise.

dependence by allowing the scheduling variables to change arbitrarily quickly.
LPV techniques that bound the parameters’ rates of variation exhibit expo-
nential computational growth in the number of parameters. Other techniques
require that the scheduling variable vary slowly [31].

The PL modeling framework also greatly simplifies the modeling process.
Both slowly varying and LPV techniques place requirements on the form of the
system. Generally, the model must be differentiable. PL models are allowed to
be discontinuous. This facilitates the combination of experimentally identified
models and theoretically derived models. When better information is obtained,
one simply adds additional regions to the model. No curve fitting or parameter

tuning is needed.

Though robust simulation has not been used to analyze any large, phys-
ically motivated gain scheduled systems, it provides a solid foundation. The
key limitation, especially when compared with LPV is that it does not provide

a method for control synthesis.
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8.4 The Caltech Ducted Fan

Thus far, robust simulation has only been applied to relatively simple systems.
This example applies these techniques to the simplified dynamics of the Cal-
tech Ducted Fan experiment, which is described in more detail in [19]. By
examining this more complex, physically motivated example, insight into the
algorithm’s practical value is obtained. In addition, some limitations of the
current approach are demonstrated.

Simplified continuous time dynamics are given by

U1 COS T3 — U SiN I3

571 - —‘d.Tl +
m
. U1 SN T3 + Uz COS T
m
. mgl i " T
I3 = ———ging -1
3 7 3 U

where g is the acceleration due to gravity and d, [, m, r, and J are physical
parameters determined by the experiment’s mass and geometry. Full state
output is assumed. Though not explicitly shown, inputs u; and u, have mag-
nitude saturations.

The first limitation encountered is that robust simulation cannot be applied
to continuous time systems. Some method is needed to convert (8.2) to a
discrete time PL system. To achieve this, a time step of 0.05 seconds is chosen
and Euler discretization is applied. In addition, cosine and sine are replaced

by piecewise linear approximations. These dynamics are given by

x1[k + 1] = z1[k] + 0.05z4[k]
z3lk + 1] = xs[k] + 0.05z6[k]

walk + 1] = m3[k] + 0.05 (—dx4[k] N u1 k] CPLT:LUQ[]{?] SPL) (8.3)

1[k] spL ;Uz[k] CPL>

zelk + 1] = zg[k] + 0.05 <—ﬁjg—l SP1L, +—3u1)
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Figure 8.4: Comparison of continuous and discrete models.

where cpy, and spy, are 16-segment PL approximations of cos z3[k] and sin z3[k]
defined over the range —1 < z3[k] < 1. The resulting model has 144 regions
and v = 3. The saturations on u; and u, each add one nonlinear direction.
Since both cpp, and sp;, are functions of x3, only one additional nonlinear
direction is required.

It should be noted that (8.3) is an approximation of (8.2); it is not a cover.
To verify that both models have similar behavior, a single linear controller
was designed and several trajectories were simulated. Two such trajectories, a
step and a ramp, are shown in Figure 8.4. For both trajectories, the discrete
time simulation results, shown by solid lines, nearly match those of the orig-
inal model, shown by dashed lines. The behavior for one model qualitatively
describes the behavior of the other. However, guarantees for (8.3) do not give
guarantees for (8.2). To make the results more meaningful, a discretization
technique that preserves guarantees is needed.

Given (8.3), robust simulation is used to predict the worst possible step

performance when starting in the region

]Hl() 10 20 20 20 50] x[O]“ <1

o0
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Time horizons of 1 second (20 time steps) and 5 seconds (100 time steps) are
considered. In both cases, ||z1[¢s]]|c is the performance measure.

After roughly 15 time steps, the robust simulation algorithm diverged. Due
to limitations of the algorithm implementation, described below, the degree of
approximation 7y could not be increased beyond 1 for this model. Branch and
bound also did not converge within a reasonable number of branch steps. To
better understand the limitations, a simpler model was studied.

One key limitation of the algorithm implementation is its memory man-
agement. The implementation allocates memory for all I”*! possible volumes
in advance. It assumes that one region can map into every other region of the
system. While this is true for generic PL systems, discretizations of continu-
ous time systems typically map only into adjacent regions. If the regions are
created by gridding the nonlinear dimension, as is the case with this example,
each region has 3” — 1 neighbors and robust simulation requires at most 3"7{
volumes. Since most volumes are generally empty, memory requirements can
be further reduced by dynamically allocating the volumes when needed. For
this example, the current implementation uses 20 MB of memory for v = 1.
For v = 2, 3 GB of memory are required. An implementation designed for
discretizations of continuous systems would require less than 4 MB for v = 1
and less than 100 MB for v = 2. Experiments indicate that dynamic allocation
of volumes will further reduce these requirements by a factor of 27.

Eliminating the saturations reduces the number of regions to 16 and allows
more experimentation with the algorithm. For this simplified model, which has
v of 1, robust simulation over a 1 second time horizon converged. The robust
simulation results along with a lower bound obtained by Monte Carlo methods
and gradient descent are shown in Figure 8.5. The lower bound is shown by a
dashed line, and the remaining lines are upper bounds obtained for -y of 1, 2,
3, and 4. As expected, larger v give tighter bounds.

Though robust simulation gave good results for 20 time steps, the algorithm
diverged before completing 100 time steps. The results for the 5 second time
horizon are shown in Figure 8.6. Though none of the runs converged, increasing

7 delayed divergence substantially. Due to the previously described memory
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constraints, v was limited at 4. Computation time was not a limiting factor.
For v = 3, robust simulation for the 53 time steps shown required 18 minutes
on a Sun UltraSparc 2 with a 170 MHz processor. For v = 4, 26 minutes
were needed to simulate 65 time steps. Due to the relatively short simulation
horizon and the high cost of algorithm initialization, computation times for
smaller values of v are not meaningful.

The effects of branch and bound were also examined. When robust sim-
ulation converged, branch and bound improved the results. However, branch
and bound had no effect on algorithm convergence. This experience is similar
to that seen for other bounding algorithms. Branch and bound is beneficial
only when the underlying bounds are good. Branch and bound has little effect
when the bounding algorithms fail.

The main conclusion from this example is that increasing the number of
polyhedra allowed when forming the approximation has a large effect on al-
gorithm convergence. However, once the algorithm converges, additional in-
creases give limited benefit. As previously shown in Table 5.3, branch and
bound may be a more computationally efficient method to reduce conservatism
for simulations that converge.

A second conclusion is that efficient algorithm implementations are needed.
Discretizations of continuous time systems do not exhibit the worst case algo-
rithm behavior and the implementation should take advantage of this. More
efficient memory management will increase the size of the problems that can

be considered. Computation times remained reasonable for all simulations.
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Chapter 9

Conclusions

The preceding chapters presented robust simulation and described its uses.
This final chapter summarizes these results and suggests future research di-

rections.

9.1 Summary

Simulation has historically been the most common method for analyzing non-
linear systems. When no other analysis technique was applicable, one could
always use simulation. However, traditional simulation methods give inher-
ently local results. Many interesting analysis questions require global results,
something traditional simulation cannot provide.

Robust simulation addresses this problem. Instead of calculating individual
trajectories, sets of trajectories are simultaneously found. In the linear setting,
robust analysis makes guarantees about sets of systems. Robust simulation
allows these guarantees to be made for sets of nonlinear systems.

Simulating sets also has intuitive justification. If a system is uncertain,
traditional simulation generates one of many possible outputs. Robust simu-
lation generates all possible outputs. When simulating a set of systems, the
natural result is a set of trajectories.

As with all analysis techniques, the system representation is chosen to fa-
cilitate computation. For robust simulation, the discrete time piecewise linear
model representation is chosen. Chapter 3 describes these systems and de-
velops basic algorithms for their manipulation. As shown in Chapter 6, this

class of system admits a very rich set of nonlinearities. Subject to a minor
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technical condition on continuity, any nonlinear system can be approximated
to any desired accuracy by a PL system.

In Chapter 4, efficient robust simulation algorithms are developed. While
calculating the exact solution requires an exponential number of computations,
approximations can be found in polynomial time. These approximations main-
tain the property that the result contains all possible trajectories. If the ap-
proximations are too conservative, the simulation can be systematically refined
until the exact solution is obtained.

Chapter 5 uses these algorithms to solve the nonlinear robust performance
problem. By applying a measure to the set of all possible trajectories, a
performance guarantee is obtained. The measure used is the tube cost, an
extension of the [, norm to the PL setting. Though not a true norm, the tube
cost is a very flexible tool for evaluating performance.

Robust simulation also provides a foundation for interpreting simulation re-
sults when multiple models exist for a single system. In traditional simulation,
each model returns a different result. In robust simulation, each model returns
a set of possible trajectories. If both models describe the same system, then
intersection of the sets of possible trajectories is not empty. Generally, more
accurate models return smaller sets of trajectories. These ideas are formalized
in Chapter 7.

Chapter 7 also presents multiresolution simulation. The ability to dynam-
ically change models during simulation is a direct result of simulating sets.
The result at any time step can be used as the initial condition for simulating
any model one time step forward. The technique does not provide guidelines
for model selection; it only gives the ability to change models. As long as
all models correctly describe the same system, the results are guaranteed, by

construction of the algorithm, to be meaningful.

9.2 Future Directions

Robust simulation has been successfully demonstrated on a large number of

small problems. Mixed results were obtained on larger, physically motivated
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problems. While the technique shows promise, additional software develop-
ment is needed.

Further study of the various heuristics is warranted. Increasing the number
regions allowed in the approximation S greatly improves convergence. How-
ever, the only heuristic studied has been the systematic increase of 7. Other
methods could yield similar benefit with less cost.

To gain acceptance, the modeling framework must both be powerful and
easy to use. Currently, complex PL systems must be created by hand. This
tedious process would be greatly simplified by a graphical system building
package. Other modeling issues include exploiting nonlinear structure and
finding guidelines for choosing the number of regions and level of detail needed
in PL covers.

Perhaps the largest limitation of robust simulation is that it only applies
to discrete time systems. The ideas extend to continuous time systems, but
the modeling framework does not. For practical robust simulation, efficient set
mapping is required. In continuous time, PL systems do not map a polyhedron
to a set of polyhedra.

To develop a robust simulation algorithm for continuous time systems, a
different system representation is needed. Over any time interval, continuous
affine systems map a polyhedra to a polyhedra. This behavior can be exploited
using a locally affine representation. Polyhedra are simulated using an affine
law with additive noise for a chosen time interval. After each time interval,
a new affine flow, amount of noise, and time interval are chosen for each
polyhedron and the step repeats. If too much noise is needed, the polyhedron
is divided into two smaller polyhedra.

This takes advantage of the locally affine nature of any continuous non-
linear system. However, it is not a convenient representation. The amount
of noise added depends both upon the size of the polyhedra and the time for
which the flow must hold. For a short time around a small neighborhood of a
point, a nonlinear system behaves like an affine system. As the time duration
and size of the volume increase, the nonlinearities become more prominent.

Representing this information efficiently is difficult at best.
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There are two halves to the robust analysis problem: the upper bound
and the lower bound. This work has examined the upper bound. While an
efficient upper bound algorithm is essential, without a good lower bound the
robust analysis question cannot be answered. The lower bounds in this thesis
were found through a mix of Monte Carlo simulation and gradient descent.
While better methods, such as power iteration techniques, exist, they are not
compatible with the tube cost or l,-induced norm. Though the Monte Carlo
technique was sufficient for the small problems presented, larger problems will

need more efficient algorithms.
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Appendix A

Robust Simulation Software

This appendix briefly describes the robust simulation software used through-
out this thesis. Each of the algorithms presented in Chapters 3 and 4 is
implemented, though the implementation may differ slightly from the presen-
tation in this thesis. In all cases, the implementations are provably correct.
Information about the most recent version of the software may be obtained by
contacting the author via e-mail at kantner@alumni.caltech.edu.

This appendix begins with a brief description of the software implementa-
tion. This section also gives insight into the issues encountered during software
design and testing. The second section describes the representation of PL sys-

tems. The appendix closes with a description of the analysis programs.

A.1 Design and Implementation

The robust simulation software package can be divided into four main sections:
matrix tools, linear program solvers, polyhedra tools, and robust simulation
algorithms. Each of these sections is roughly independent of the others. As
long as the interface remains unchanged, the underlying software may change.
To reduce the coding requirements, existing software packages were used when-
ever possible.

Since robust simulation uses only real arithmetic, matrix tool development
was greatly simplified. Simple operations, such as multiplication and trans-
pose, were implemented directly. The freely available matrix library LAPACK
[2] was used for more complex operations, such as inverse. File input and out-

put routines support both an ASCII format and MATLAB’s binary format.
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Linear programs were solved used the convex optimization package LOQO
[38]. LOQO uses an infeasible primal-dual interior-point method and is ca-
pable of solving problems with hundreds of variables in seconds. The robust
simulation software accessed LOQO directly through its subroutine library.
LOQO is freely available to universities; commercial users must purchase a
license.

The polyhedra tools were built using the matrix tools and the linear pro-
gramming subroutine library. To ensure independence from an LOQQO’s inter-
face, an additional layer was inserted between the polyhedra tools and LOQO.
This layer standardizes the interface to the linear program solver. Any change
in LOQO only requires a change to the additional layer; the polyhedra tools
are unaffected. This also simplifies the use of other linear program solvers.

The robust simulation algorithms were designed to facilitate experimen-
tation with different heuristics. Each heuristic was encapsulated in its own
subroutine, and switching between them was accomplished through command
line arguments. The software also provided extensive logging capabilities so
results can be monitored during individual simulations.

The robust simulation software consists of over 10000 lines of ANSI C
code, excluding LAPACK and LOQO. Since exact solutions to robust simu-
lation cannot generally be computed, testing and debugging posed additional
challenges. The robust simulation software provides guarantees on system
performance. In order for the guarantees to hold, the software must also be
guaranteed to function correctly. Three approaches were taken to ensure soft-
ware correctness.

First, algorithm requirements were generated and assertions were used to
verify that the requirements were satisfied. It was assumed that LAPACK
and LOQO both gave correct answers. While the specification process is time
consuming, it guarantees software correctness. In general, problems resulted
from improper specification, not from coding errors.

Second, examples for which the exact solution could be tested were cre-
ated. For the matrix tools, polyhedra tools, and linear program solver, exten-

sive testing was performed. For the robust simulation algorithm, only small
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problems could be solved exactly. These tests verified that each component of
the software worked properly.

Finally, numerical tests were performed on larger problems. LOQO results
were verified against results from a different linear program solver. The robust
simulation code was tested by verifying that the upper bound was greater than

the lower bound for all problems.

A.2 Model Representation

A PL system is stored as a set of files. The main file is contains a list of the files
that define each region. Each region is defined by a single file that contains
the bounding polyhedra and state update law stored as matrices. These files
are loaded using the matrix tools and can be either in ASCII or binary format.
More details are included with the software documentation.

Model creation is one of the most difficult tasks encountered when using the
robust simulation software. No tools exist to automate the creation of complex
systems. Since the software can read MATLAB data files, small amounts of
automation are possible. For example, the 200 random tests performed in

Chapter 4 were generated using a MATLAB script.

A.3 The Executables

Four main commands comprise the robust simulation software package.

e simulate performs traditional simulation of the system for a specified
initial condition and input sequence.

e lowerbound uses a combination of Monte Carlo and gradient descent
methods to find a lower bound on system performance.

e upperbound uses robust simulation to find an upper bound on system
performance. The degree of accuracy v may be specified as an argument
to the command.

e branchbound uses robust simulation and branch and bound to find an
improved upper bound.



116

Each command takes the main file of the PL system, the number of time
steps, and a file containing the initial conditions as arguments. Each command
also has additional arguments, described in the software documentation, that

control other algorithm parameters.
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