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ABSTRACT

The asymptotic behavior, with respect to the large parameter u,
of two solutions of gig + “2[.02 - x° + f(x,ﬁ')] y = 0 is given
where f(x,u') = O(i') is subjected to suitable hypotheses and all
variables are real. These solutions are approximated to by the para=-
bolic cylinder functions Dv(zfﬁi t) with v = 4 52-2- - % and t = B(x,0 ).
The function ﬁ(x,ﬁ') and the quantity a® are constructed as a part of
the analysis in which the parameter p is restricted in such a way

that v is bounded away from the positive integers. The relative error

of the approximating functions is uniform for all x.
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SECTION 1

INTRODUCTION

Investigations of the asymptotic solutions of ordinary dif-
ferential equations containing a large parameter are not news A
very good account of these investigations is contained in R. E.
Langer's Symposium Lecture of April 6, 1934 [1]* in which he dis-
cusses the work that had been done up to that time. Moreover, he
includes a very complete set of references. Of particular interest
is the work that had been done on functions with transition pointse

A region in which the solutions of a differential equation change
from monotonic to oscilleting is called a transition region. Although
the actual transition does not take place at a precisely defined point,
it is often convenient to determine one point of this region and call
it the transition pointe. Different asymptotic formulas for the same
function are obtained in intervals separated by the transition points,
and it is important to know how these asymptotic formulas in the sep-
arate intervals are related. This knowledge is usuelly supplied by
"connecting formulas" which are valid in the transition region. Uhere
the intervals of validity overlap, the "connecting formulas" are
asymptotically equivalent to the formulas previously obtained. In this

regard the work of Langer [2] should be mentioned in which he treated

* Numbers in brackets apply to references listed in the bibliographye
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a class of differential equations in the complex plane and containing
a complex parameter under rather general hypotheses. His results
include the case of one simple transition point. Also, Langer [3]
considered certain differential equations in which the dominating
term in the coefficient of the dependent variable has a double zero,
and [ﬁJ, he considered the case of a simple transition point directly.
'In this latter work the variable is real and the parameter complex.
Finally, in 1950, functions with one simple trensition point, in
which all variables are complex, were investigated by T. M. Cherry [5]
who treated the problem by a new method.

Generally speaking, all the methods used, including Cherry's, are
based upon the observation that "similar" differential equations are
satisfied by "“similar" functions. The use of the word "similar" will
become clear in the context. Consequently, the differential equation
being investigated is compared with a similar differential equation,
the solutions of which, along with their properties, are usually well
known. Then, the solutions of the two equations are compared in such
a manner that the values of the known functions may be used as approx-
imations to the values of the unknown functions.

The novelty of Cherry's method is the way he uses a certain trans-
formation by means of which the differential equation being studied may
be compared with the "most simple" similar equation. The construction
of the transformation is, naturally, an essential part of the problem.
Although uniform approximation to the unknown functions by means of

the known functions (with respect to the independent variable as the



parameter tends to infinity) has been obtained by other mathematicians,
the outstanding feature of Cherry's approach is the ease with which he
obtains this desirable property which is enjoyed by his approximations.

Various possibilities of Cherry's method were recognized by
Professor Arthur Erdéiyi who outlined how it could be applied to func-
tions with two transition points in his seminar in Asymptotic Theory
'at the California Institute of Technology in the spring of 1951. The
development of this idea will be carried out in this dissertation.
Naturally, all results pertaining to a single transition point may be
applied twice in the case of two transition points provided the coeffi-
cients of the differential equation meet the required hypotheses. How=-
ever, the present investigation copes with the case of two transition
points directly and gives very simple formulas for the asymptotic solu=
tions of the differential equation. It is felt that Professor Cherry's
paper is one of the more significant contributions to this type of
researche.

These investigations are not to be confused with the asymptotic
development of one special function, say the Bessel function, which is
treated by methods especially suitable to the function. With respect
to such developments it should be noted that Ne. Schwid [6] applied the
results of Langer [2] to Weber's equation (Section 2.3) and obtained
asymptotic formulas for the parabolic cylinder functions. Schwid's
results are subsequently used in the present investigation.

Real functions of a real variable with two transition points,

which satisfy a certain class of ordinary linear differential equations



of the second order containing a real, positive, large parameter, will
be studied. The asymptotic behavior of these functions with respect
to the large parameter is desired. The class of differential equations

has the form

2
dy , p2 le? = x* + f(x, ")y =0 (1.1)
dxz

where p is the large parameter, ¢ is a positive constant, and f is
subjected to suitable hypotheses among which is the requirement that

f= O(J'). However, the investigation will include the equation

2 v poa) § + [n,(0 + ()] 1= 0 (1.2)

where ho(x), like c® = x*, has, on the real axis, only two simple zeros
and is positive between the zeros. P,Q are also subjected to suitable
hypotheses; in particular P,Q are O(1) for large p. Appropriate trans=-
formations will reduce (1.2) to (1.1).
In equation (l.1), the outstanding characteristic, when u is
2

large, is the presence of the function c¢? = x*. The natural comparison

equation is

2

Q_% + p*(a® = t*)Ju=0 (1.3)
dt

The solutions of (l.1) are approximated to by the real valued parabolic

cylinder functions Dv(fﬁﬁ t) and DV(JTEE t) which are solutions of

(1.3), with t = @(x,'), the previously mentioned transformation, and

pa® 1

v=goge
When v is not a positive integer or zero, Dv(fii %) and DV(JVEI t)
form a fundamental set of solutions of the comparison equation (1.3)

since their Wronskian does not vanish, but when v is a positive inte-



ger or zero, Dv(fEE t) is a constant multiple of DV(JVEI t), (Section
2.3). Comparison of the solutions of (1l.1) and (l.3) requires asymp-
totic formulas for Dv(viu t) and Dv(-VEE t) when v is large. From
these formulas (Section 6) it is seen that when v is not a positive
integer or zero, Dv(:YEB t) is unbounded as t tends to * . This
behavior changes radically when v is a positive integer or zero for
then Dv(:VEH t) tends to zero as lt| tends to .

The comparison of the solutions of (l.1) and (1.3) will be
carried out with v bounded away from the positive integers so that
this exceptional behavior of the parabolic cylinder functions will not
occurs Actually in connection with the differential equation (l.1)
there are two distinct problems:s (i) the general case, which is inves=
tigeted in this thesis, and (ii) the special case, that is to say, the
characteristic value problem where the differential equation has a
solution which tends to zero as )x| tends to o« This occurs for
certain values of p such that v = %; - % becomes arbitrarily close
to, or equals a positive integer.

Work on problem (ii) will be continued, and it is hoped that
satisfactory results can be given in the near future. Also, applica-
tions of the results, particularly to suitable forms of the one-
dimensional Schroedinger equation, will be made in the future. It
is believed that solutions of the Schroedinger equation may be
obtained in more useful forms than those obtained by the presently
used WKB method (the historical development of this is also described

in Langer [1]) and possibly more quickly.



A summary of the results of this paper is given in Section 8.
The asymptotic formulas and conditions under which they are valid are
precisely stated there.

Notation. Capital letters A, Aj’ K, K, refer to constants which

J
are independent of u and x or t, and the same letter appearing twice
may represent a different constant each time. Arguments of the func-
tional symbols are usually suppressed, or only one of the two variables
may be shown when it is of primary interest. It is usually supposed
that p is "sufficiently large." Attention is called to the "+,0,-"

subscript notation which is explained in Section 2.2.



SECTION 2
DESCRIPTION OF THE PROBLEM AND PRELIMINARY TRANSFORMATIONS

2¢1 Description of the Problem.
An investigation will be made of the asymptotic formulas for the
solutions of the class of differential equations described by

% + P(x,i") % + [u’ho(x) + uQ(x.u")] T=0 (2.1)

where p is a sufficiently large, positive parameter, and P,Q are
analytic functions of x and ', real and regular for all real x and

© < p, £ pe The gssential feature is that the analytic function ho(x),
which is real and regular for all real x, has, on the real axis, only
two simple zeros b, < bz and is positive in the interval between the
Zeros.

Equation (2.1) may be converted by the transformation

Y =y exp(- %Jde) (2.2)
into
2 2 -
o R LXORT R § N PR (2.3)

and, since P,Q are regular functions of ' for My < By this last equa-

tion may be put into the form
2
:—x]"‘[ + h(x,u')y = 0 (244)
where h(x,j') is an analytic function of x and §', real and regular

for all real x and Ho S He It possesses the expansion

7



1 2 -n
h(x,u™") = > h (x)p (2.5)
n=o
in which ho(x) is the function described above, and the hn(x), o <n,
are analytic functions of x, real and regular for all real x.
When the transformation of the independent and dependent variables
%

t = f(x), u(t) = v(x) g'(x), (2.6)

in which 0 < #'(x) for all real x, is applied to

2
g—t-% + H(t)u = 0 (247)

the form of this equation is preserved, the result being

iy {[ﬁs(x) |81 0% + § Gix) - 2 Ex z}"‘o (2.8)

Since (2+4) is of the same form as (2.7), a transformation can be
constructed, independent of u, by means of which the coefficient of the
new dependent variable has the following property: in its expansion in
powers of ji', the coefficient of u? may be any desired function which,
like ho(x), has two real, simple zeros and is positive between the zeros.
The simplest function of this type is c¢® = z® where ¢ is a positive
constant. Consequently, the differential equation (2.4) may be con-
verted, by a transformation which will be determined in Section 2.2,

into the equation

2
§;¥ + uz[cz - 2?4+ f(z.u")]w =0 (2.9)

where f(z,i') is an analytic function of z and ji', real and regular for
all real z and Hy S He It possesses the expansion

m -
£(z,i0') = 2. £z (2.10)

n=1



The present investigation will therefore apply to the three equiv=
alent differential equations (2.1), (2.4) and (2.9). However, only the
simplest of these three equations, equation (2.9), will be treated in
detail. The desired results are approximations for the solutions of
(2.9) vhose relative error is O(y "), m being an arbitrary positive
integer. This error will be uniform for all real z with the exception
of two arbitrarily small intervals including the points z = * ¢, respec-
tively. The lengths of these intervals depend on pe.

In order to apply the results to equations (2.1) and (24), the
preliminary transformations previously discussed must first be used
in order to convert these equations into (2.9). It is necessary to

develop such a transformation for equation (2+4).

2.2 The Preliminary Transformation for Equation (2e4).
Introduce
Y
x = B(z), y(x) = w(z) p'(z)* (2.11)

into equation (2.4) which becomes, in view of (2.6,7,8),
iy, u’{h[tb(z)]ﬁ'(z)’ v G- 2 6laly, u"} w=o0  (2:12)

Now by (2.5) h[#(2)] = hO[ﬂ(z)] + 1%1 hn[ﬁj(z)] p . It will be shown
that a positive constant ¢ can be determined so that

ho[ﬂ(z)]ﬁ'(z)z = ¢? - 2% (2.13)
has an analytic solution @ which is real and regular for all real z.
Then the real zeros of the two functions c¢? - z*® and ho[b(zj]will
coincide so that §'(z) will vanish for no real z. Consequently, it is

assumed that positive roots are taken, implying O < f'(z) for all real
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ze Then (2.12) may be put into the form (2.9) as desired. It is evi-
dent that @(z) will be independent of pe Equation (2.13) is equivalent
to

h,(x) (g*;:)z =c? - 2% (214)

and, since ho(x) is positive for b, < x < b,, equation (2.14) may be

written in the two forms

Vve? - 2% 4z =Vh°(x) dx, b, <x<b,
Vz? - c? dz-l/-ho(x) dx, x <b, orb < x

2

Since the zeros of ho(x) correspond to those of ¢® - 2z*?, integrals of

these equations are

- b' !
Z X

A
o
-
]
A
[}
()

fZ/cz-cz dc’fﬂ/ho(z) dg, b,_<_x5_b2, =c<zZ<c
=c b,

z x
[VE R @ a bsx oss
c b,
which give the results
b [ R
'&'2' z? - c* + Cosh-l--g = - 325/ 8 "ho(E) dg (2015)
¥ =
where x < b,, 2z < =¢, 0 < Cosh-l-'g ,
X
EL; c? - z% + coS-l_,,g = : f ]/ ho(E) at (2.16)
b
i

=],
where b, < x<b,, =c<z<c, O0Z2cos -% < m, and
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x
f’;sz - c? - Cosh.l'g = .c%[ J-ho(i) dg (2417)
b,

vhere b, <x, c¢<z, Ogcosh-l'g.
Since x = b, and z = ¢ must correspond, these values may be sub=-

stituted into (2.16), and the positive constant ¢ is determined by
2 bz
=% f 1/h°(£) ar (2.18)
bl

With this value for ¢, it will be shown that equations (2.15,16,17)
determine an analytic function z = \//(x) which is real and regular for
4
all real x with the property that 0 < $¥/(x) for all real xe
2 2
c -
It follows from (2.14) that the quotient —E(J—j— is positive for
all real x and z since the zeros of numerator and denominator have been

made to correspond in such a way that the numerator and denominator

dx

always have the same sign. Therefore, when x and z are real g = dz

7
and \/’- gﬁ do not vanish and are always positive. That is, the
functions £ and ¥ will be monotonic increasing and inverse to one
another. Moreover, z = ¥ ¢ only when real x = b,, bpe

From (2.16) it follows that
x
-:1- c® = 2z* + cos 1--2' -“*%'/b Vho(E)dE
2

where m is introduced by using (2.18), and since coa-l-g =n=-cos 3

with 0 < cos-lg < m, this last equation becomes
>'¢
c%—‘lfcz - 2* = cos 1-3 = f—; Vh () aE (2.19)
b

where b, < x £ bz, =-c <z < ce This is equivalent to
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fz fof o g2 ag = fx /ho(g) df, b, <x<b, (2.20)
c b,

Since the analytic function ho(E) is regular for all real £ and has

simple zeros b, < ba' the following expansion is valid about b,:
U 3
Vh (€) = V=n(bz) (b, = £) " + ¢, (b, = E) "+ «ee, with h(b,) < O

Also Ve* - Cz may be expanded about { = ¢ giving

7c2 . 2;2 'ﬁ: (c‘ t)'/z'.' d‘(C‘ C)a/l"' seee

so that equation (2.20) gives

&V2¢ (o) . 4, (c-5)%* veu = &)-n! (b,) (bz-x)st*' £, (byex) #eee (221)

It follows from (2.21) that one may take

arg g;-zx 22 0 when x is sufficiently near b, (2.22)

When x < b, take arg (bz = x) = O. Then, from (2.22), arg (¢ - 2) = 0
and z < ¢« Let x be continued into the complex x-plane from the left
of b, around a semi-circular arc to the right of b,, either above or
below b, Then b, < x and arg (b, = x) = £ m so that, from (2.22),
arg(c - z) = £ n. It follows that ¢ <z, 1< %, and cos-lé is pure

imaginarye. The following relations are then valid:

m
Vet = 22 =v2% = & ™7, ¢ < 5 and b (€) = -h (£) ¢*1", b, < E-

These are introduced into (2.19) giving
Z 2 2 FiT -1z _ 2 x
szVz® =c®=-e "2cos o= ;;./r Vv -h (E) dE,
ba

-, m
- +- - -
and since cos 1% is pure imaginary, e ~% cos lé = Cosh lg » so that
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the last equation becomes

x
f% zz-cz-Coshlg =§;Li-ho(€)di, b, <x, c<z
2

which is identical with (2.17). Thus, by continuing x around b,, either
above or below b,, equation (2.16) goes over into (2.17).

When equation (2.16) is investigated at the points x = b, and
%z = =c, a similar discussion shows that, by continuing x into the
complex x-plane from the right of b, around a semi-circular path to the
left of b, , either above or below b, , equation (2.16) goes over into
(2.15).

In equations (2.15,16,17) let the left members be denoted by
F_(z), Fo(z) and F _(z) and the right members by W_, W, and W,
respectively, so that these equations become

W_=F_(z), W =F(z), W, =FUz) (2.23)

where the subscripts +, o or - are used in the following manner:
Subscript notation. The subscripts +, o or = shall mean that the
quantity bearing these subseripts is associated with the interval of
the real axis to the right, between, or to the left, respectively, of
the zeros of the function of interest.

Sometimes the subscript o is not intended to convey the meaning
of this subscript notation. This is evident in ho(x). From (2.15,16,17)

it follows that
Fi(z) = £1/a? - &2, Fi(a) = 57 - &, Fi(a) = 5747 - & (2.24)

and that F_, Fo and F_ are analytic functions of z, real and regular
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for all real z except z = * co It is seen from (2.24) that F!, Fé, and
F} vanish only for z = * ¢, i.es only when x = b, b, by a previous
remarke This means that equations (2.23) may be inverted in the
neighborhood of any z # * ¢ giving

s= B (W), 2=H(W), z=H(¥) (2.25)

where the H's are analytic functions of the W's, real and regular when
real z # * ¢, or when x # b, » bz. But since the W's are given by the
right members of (2.15,16,17), they have expansions similer to the
right member of (2.21) and are therefore analytic functions of x, real
and regular for ell real x except x = b , bz. Consequently, the H's
are analytic functions of x, real and reguler for all real x except

x = b, b,, and they will be denoted by ‘¥(x). Equations (2,25) then

become

2= Y (x), z= ¥(x), 2= Y, (2.26)

vhere ¥_ is defined by (2.15), Yg by (2.16), and 741 by (2¢17).
However, it has previously been shown that (2.16) may be continued
into (2.15) and (2.17)« This means that VJO may be continued into
¥  and ?b;. Therefore, these three functions are analytic continua=-
tions of each other and represent a single function f’(x). Moreover,
the functions are defined and have first derivatives at the points
x = b, b, so that these points must belong to the region of regularity
of ¥(x)e

Hence z = ¥(x) is an analytic function of x, real and regular
for 81l real x, with the property that 0 < Vy(x) for all real x as was

previously pointed oute This function is the solution of equation
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(2.13). Its inverse, x = f(z), is the desired transformation (2.11),
and is an analytic function, real and regular for all real z, with

the property that 0 < f'(z) for all real z. Referring to the state-
ment following equation (2.13), it is easily seen that equation (2.12)

may be reduced to the form

2
Q—% + p?le? = 2% + f(z,0")|w=0 (2.27)
dz

where f£(z,ii') is an analytic function of z and ', real and regular for
all real z and by S Mo This function possesses the expansion
-1 = -n
£(z,i') = 2. £ (2)p (2428)
n=]1
and will be subjected to suitable hypotheses. The investigation will

henceforth be confined to an equation of this form.

2.3 The Comparison Equation and Its Solutions.
Equation (2.27) will be compared with the equation
d*u

E;; + p*(a® =~ t*)Ju=0 (2.29)

which may be transformed into Weber's equation

2 2
fﬁ¥+(”+%'%)"'° (2.30)

2
where v = p %r - % » by the transformation

t =2, u(t)=w(z) (2.31)
2p

It should be noticed that the coefficients of the dependent
veriables in (2.27) and (2.29) have a common property. In their expan-

sion in powers of ﬁ', the coefficients of uz have only two simple zeros
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on the real axis and are positive between the zeros.

The parabolic cylinder functions Dv(z z), Qv_,(: iz) are solutions
of Weber's equation so that solutions of (2.29), using (2.31), are
D (xV2u t), D _ (21724 t).

Some properties of the parabolic cylinder functions Dv(: z) and
Dv_,(: iz) are [7,8&:

(1) They are integrsl functions of z

(1) D(a) = szfgé‘ll &™p (1) +o T"p _ (-1a) (2.32)

2n . :'ﬂi

"™ D (-2) + Py D, (~iz) (2.33)

v
(111) D _ (iz) = FTC% ez D (-z) - g D, (-1z)  (2.34)

(iv) They have the Wronskians

D(z) D(z)-D(z) =D (z) = —% (2.35)
D (z) D _ (12) - D_ (12) £-D (2) = -1 3 (2.36)

(v) If v is real, Dv(z) has [v + }J real zeros where [§ + i]
denotes the greatest positive integer less than v + 1 or zero.

From (2.35) it follows that Dv(z), Dv(-z) are linearly independent
if v is not a positive integer or zero. It follows from (2.36) that
Dv(z), Qv_'(iz) and Dv(-z), Qv_'(-iz) are linearly independent for all
values of ve

When v is not a positive integer or zero, the general solution of

the comparison equation is

u(t) = A,D (V24 t) + AzDv(-{;p. t) (2.37)
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(2.38)

NI

az
where vzu—z—-

In addition to the foregoing properties of the parabolic cylinder
functions, various asymptotic formulas and bounds for these functions

are needede These will be discussed in Section 6.



SECTION 3
HYPOTHESES FOR f(x,') AND CONSTRUCTION OF THE TRANSFORMATION

The differential equation to be investigated, (2.9) and (2.27),

in which the variables are renamed, becomes

d?y 2| .2 2 -1
ro [c - x* + £(x,p )]y =0 (3.1)

where the function f(x,;i') is subjected to the following

Hypotheses:
(1) f£(x,i') is an analytic function of x and ', real and regular

for all real x and Ko < p, and possesses an expansion of the form
- m -n
£(x,i') = 2. £ (x) @ (3.2)
n=1

where the fn(x) are analytic functions of x, real and regular for all
real Xe.

(i1) When x is real and x- *o, f(x,)') may be put into the form

£, i') =ax* + x4y + ox™, 0<n<1l (3+3)
Q0 Q0 (s3]
-1 =N =N
h = = = -
where t’.lu nz'l a b BM nZ=1 3!1}1 ’ Yp nZ'l Yot (3e4)

the series for a.“, [3u and ypl being convergente.
From hypothesis (ii) it follows immediately that in (3.2)

£, (x) = anx‘ *tpxty, * o(x ") as x » 20 (3.5)

18
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In order to compare (3.1) with the comparison equation
2
T8 e (e - tPu=0 (346)

this comparison equation will be expressed in terms of the variables

x and v by putting

5
t = f(x), u(t) =v(x) ' (x)" (3.7)
and using equations (2.6,7,8)s The result is
gzg % {;z(az - B2) B2 + % :" - % g;;} v=20 (3.8)

It is now required to construct the transformation t = @(x) and to
determine the quantity a® so that equations (3.1) and (3.8) will be
approximately the same. The required transformation may be taken in
the form
-1 == ) |
t=fB(x)= Blx,i') =x+ 2 £ (x)p (349)

n=1

The choice a®

= ¢® would seem to be the natural one at first glance.

However, it is necessary to choose a® so that ﬁ(x,ﬁ') has no real

singularities. This requirement is met by taking

a® = ¢c* + f?i anu.n (3+10)
n=

in which the a, will be determined subsequently. Let the function

g(x,i') be defined by

= m n2 !
glx,i') = W () PP+ 3 6 - 2 ;5% - 13(e=x) - WPr(x,")  (3.11)
and note that the differentisl equations (3.1) and (3.8) would be
jdentical if g(x,)') were required to be zero, and that g(x,;') meas-

ures the discrepancy between these two equations. The equation

g(x,') = 0 is a non-linear differential equation for f(x,i')s This
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equation determines a system of equations for the ﬁn of (3.9) and the
an of (3.10)s Such formal series do not necessarily converge, but

-n
a p 4 where

m
-n 2
their first m + 1 terms, x + g;i ﬁn(x) b oand ¢ + & a

m is arbitrary, will be computed and retained since they make the
expansion of g(x,i') in powers of ji' begin with the term p—u*l. In
order to determine ﬁn' a,m + 1 < n, the remaining system of equations
for ﬁn and a will be modified so that (i) the series (3.9) and (3.10)

converge, (ii) g(x,i') = O(u-m+l)n

and (iii) g tends to zero as x
tends to *o. Consequently, the differentiasl equations (3.1) and (3.8)
will approximate each other very closely for large p and all real xe.

Introducing (342,9,10) into (3.11) and using the Cauchy product
for power series gives the result

X -n & -n X ot -n
g(x, II') = pz[z &np. - 2x Zl ﬂnp - Z (Z_ ﬂkﬂn-k) 1] ] +
n-

n=1 n=2 k=1

n=1 n=1 n=2 k=1

~1
+ u’{cz -x* + i a b = 2x f B - % (nZ 62 ) u-n] .

Q0 g . 8 n-1 oF
.[znzzlﬂ;’“ +> (X gL r'r-k)“J+

n=2 k=1

1‘” m,"” 3 l--l oon-l“" -nj,
3S g e S g -3[:;2 S, by ) u“]
-2 (23]
(14 f g -t Zl £oH (3.12)
n’

in which the coefficients of ﬁ-n, n=-=1,0,1l,ee0ey, m = 2 are set equal

to zero, giving a system of differential equations which determine the
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ﬁn and the an’ ns= l,...-’ m'

i 2(c? = x*)gr = 2xf,= f, - a, (3.13)
pos 2(c? - xz)ﬂ.", - 2xff, = s = a, = 2a, f! -
=(c? = X*)B12 + B2 + 4xp B (3.14)

and in general, for ﬂk

=k+2
M

: 2(c* - xz)ﬂfc ~ 2x¢k =g oy +F (3.15)

k k- Pk
where

P, (x) = j:l"b B - 2) By, - 2ayf ¢ uxdgy ]+
k=3-
1 él [2’5 ﬁxﬁk-j-r - ajﬁiﬁfc-j-r % 2"¢J¢ # i'c-j-r] *

k-

k=2 j-1 k=j=1
L5 s ;é,;aj_r)(hzfl Bty ) (3.16)

j=2 r=1

pk(x) & {Coefficient of p

in powers of ' of 5 e iz (3.17)

It is most easily seen from (3.13) that
P (x}= 0 (3.18)
and from (3.16) that Pk(x) is a polynomial with constant coefficients in
;dn, ¢1'1’ a and x, n = l,eceq, k=1. From the terms in (3.12) contain-
ing second end third derivatives it follows that
p,(x) = pp(x)= 0 (3.19)

and also from these same terms in (3.12) that pk(x) hes the form
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Polynomial with constant coefficients in
pk(x) = I'l’ I']'.’ 1'1", ns 1,..‘.' k - 2' (3.20)
It is quadratic in ﬂr'; and linear in ﬁr'xu'
Equations (3.13,14,15) may be used to successively determine
. S— ﬂm and &, ,eeee, & when appropriate boundary conditions are
imposed. These conditions will be chosen so that the ﬂk will have no
real singularities. It is sufficient to discuss the general equation

(3415) which mey be put in the two forms

ﬂ f (x)+P, (x)=p, (x)
Ve2-x? l - X k X - ak , Ix] < ¢ (3.21)
Ve xz 2 Ve2=x? 2 Ve2=x?

/) 2, (x)oP, (x}=p, (x)
1/xz__cz ¢.k % A I < el i El-‘ * + aL y ¢ < |x| (3e22)
x%=c? 2l x2=c? 2Vx?=c?

Integrating (3.21) gives the result

£, (E)+P (E) p, (E)
Ve * k dg - Xk cos 1% (3.23)
24 [ e 2 °° e

l-x <m

where =c¢ < x < ¢, 0 < cos "-§

from which a, can be determined by putting x = c¢ giving

e £.(5) »P ()~ p (E)
ak.;f ..li Jk p1$ dE (3.24)

n Jrsa——
iy c2 - gz
With this value for a and the subscript notation of Section 2.2,

where the function of interest is e¢® - x?, it follows from (3.22) that

(5)"’1’ (E)"Pk(ﬁ) ” ay
VYx2=c? g2 -c? 2V x*=c?

where x < =-¢, 0 < Cosh.l-zc‘

g (x) = Cosh =%  (3.25)
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from (3.23) that

£, ( )+P (£)-p, (€)
fx £)+R (€)-p, ( E__‘l_coa-l-g (3426)

o A =t
242 J=c Vf——:g— 27 P

-1
where ¢ < x < ¢, 0 < cos "=

and again from (3.22) that

_ a1 x5 E)1R (E)-p, () . -
B, 4 (x) Moo jC - dg + = Cosh "%  (3.27)

where ¢ < x, 0 < Cosh~1é

The functions ﬁk-’ ﬂko’ ﬁk assume indeterminate forms at x = % ¢,

+

but they may be defined there by their limiting values, obtained after

applying L'Hospital's rule. These definitions are

£ (~6) + P (c) - p (-o) -
B (-c) = g (-0) = Bk " P " (3.28)

() + B (e) - p,(c) -
Bl (o =, sl = R B © By (3.29)

It is easily shown that ﬁk-’ ﬂko’ and ﬁk+ are analytic continua-
tions of each other and are therefore elements of an analytic function
¢k(x), real and regular for all real x. This assertion is first
established for f, (x). All the functions involved in the definitions
of ﬂl-' ﬁlo’ and ﬂ'+ (3425,26,27) are analytic functions of x, real and
regular for all real x, except x = * ¢, and if x is continued into the
complex x-plane along a semi-circular path around * ¢, whether above
or below % c, ﬁro goes over into ﬂli, respectively. These functions

are defined at x = * ¢ by (3.29) and (3.28) so that * ¢ must belong to
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their region of regularity. This implies that ﬂl_, ﬁio’ and ¢,+ are
elements of an analytic function @, (x), real and regulsr for all real
X« The assertion follows for ﬁk(x) from (3.25,26,27) by induction.
Having determined the ﬂk’ 8» k = 10000, m, the system of differ-
ential equations (3.15) is modified, as mentioned on page 20, in order
to determine the remaining ﬂk, a . Thus, vhen m + 1 < k, the quantity
pk(x) in (3.15) is deleted so that dk, a, are given by (3.24,25,26,27)
after crossing out the pk(E) in these equations. This modification
is equivalent to deleting all terms in (3.12) which contain second
and third derivatives, when the differential equations for the ﬁk.
m +1 < k, are formed. As can be seen from (3.17) this is also equiv-
alent to using only the first m = 1 terms in the expansion of
gr- ﬁ'z in powers of J' for the determination of all the ﬂk’
a . Since a convergence discussion of the series for P and a*® is
difficult, this required result will be obtained from properties of
the functions themselves.
A differential equation which determines @ and a®, and hence all

the ﬂk’ a,» 1s easily constructed. For this purpose, define

Fk(x) = fk(x) - pk(x), k=1l,eee, m (3.30)

Fk(x) = fk(x), m+1lc<k (3.31)

first m=1 terms in
the expansion of

F(x,i') = Z F (™ = £(x,i') = |18 %_j (3.32)
n=1 2 8 4
in powers of p

and introduce (3.32) into (3.11) which gives, because of the above

modification, the following differential equation for f:



25

p(a? = #7) P12 = p3(c? - X*) - W¥F(x,i') = 0 (3.33)

Moreover, once the f, yess, qm and @, ,e.s, 8 have been determined,
F(x,4i') is a known analytic function of x and j', real and regular for
all real x and by S He

It will be shown that (i) the solution ﬂ(;ﬁ“) of (3.33) exists
and is an analytic function of x and p', real and regular for all real
x and p < p, and its expansion in powers of i has as coefficients
the ﬁk previously determined for k = l,ess, m, (ii) a® can be deter-
mined from (3.33) and is an analytic function of j', real and regular
for By S s having as coefficients in its expansion in powers of ﬁ'
the a, already computed, k = 1,+ss, m, and (111) 0 < @' for all real
x and p, < p so that t = #(x,i') is a reversible transformation with
respect to Xe

From (3.33) and (3.11) it follows that

" n2
g = 1IR30 e g

1 gm "2 < -n
Xt kb FeR 2 (et

and using (3.30,31) this last equation becomes

= 1 n? m -
glx,p') = % = - f T - W Zl P K n (3.34)
n=



SECTION 4
PROPERTIES OF THE TRANSFORMATION t = fB(x, ')

4Lel Behavior of the ﬁk’ k=1ye0ey m 85 X =+ *00.
For this purpose Hypothesis (ii) will be used. A detailed dis-
cussion will be given for @, (x). From equations (3.27,18,19)
x £ (£)dE a, =
Va2 - c? g, ,(x) = -2 | ===+ —Cosh™%, c<x (401)
I+ 2 ” Ez - o2 2 ¢

and, making use of (3e5), this equation may be put into the form

a + +
EERFICRETy ERE N g e 3 conn M -

cZ

1 @ f, (g) = G,Ez s fE - Y, (E 2
- 2_/0 r2 o ¢? ag 2./3[. T/Ez-c a5 (4e2)

giving, after integration, the result

-1

a B Cosh™~ & [}

B, (x) = _'x"é*"""""ﬁ'* Lo 4 07, es x o (L03)
x?=c? x*=c?
1 @ f,(E)"G,EZ"B,E‘Y,

vhere 6, = = 5/ d¥ (Led)

c £? - o*

a, ac* Y,

andw|=-2—'-—2""-'5- (4e5)

Differentiating (4.3) gives

-1x
Cosh w 5 .x
1 = - al - c)- ! - s + =2=7
E’H_(x) 7 w,x (xz-cz)!ﬁ* e ( ,cz)ai o(x *° ") (4+6)

26
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It follows from (3.16), but is most easily seen in the right member

of (3.14), that P,(x) is given by
P,(x) = =2a, @} + (x* = c?)B!? + #2 + 4xp, B} (47)

In order to compute P, up to terms of order O(x-n), ¢,‘2 must be
computed up to O(x 2 1), B2 up to o(x "), and @, 8! up to O(x-l-n).
Making these calculations with (4e3) and (46), and introducing the

results into (4.7) gives

a, 2
Payx) = 2ot v 2o, px- ot atet v 2oy ¢ B e o) (4es)

in which w, has been eliminated by using (4e5)

From equations (3.25), (3.18) and (3.19)

-c d , o
1x*-c? g _(x) = % fx ;'E_—%E - 22- Cosh 1-§ y X < =c (449)

into which (3+5) is introduced, the result, after integration, being

-1
ﬁ(x)= E'..x Cosh -g 8
(™

4 2 'iig® = of Vii-c?

F 0l ) a8 % w=pp (i)

where w, is given by (4.5) and

6. =1 (4411)

2
(e £,(€) - a,E% - B,E =

o £? - o

Substituting ﬁl_ ’ ﬁl‘_ into (4e7), and following the procedure stated

below (4.+7), gives the result

2
Po(x) = 2 a?x® + E a,B,x = % a+ & afc? + 2 q,y,+ Bf +0(x ) (4e12)

where, again, w, has been eliminated by (45)s Equations (4.8) and



28

(4012) show that P , and Pz- are identical, that is, P,(x) has the
form

P,(x) = A,x* +B,x + C, + o(x 1), as x - *ow (4413)

which is of the same form as the fz(x) given by (3.5)e Therefore, the
f, given by (3.25) and (3.27), using (3.19), will have the same form
as f,« Because of the form of ﬂ” in (4e3), the assumption is made

that Gosh-lié

)
- P Jud =1=7
felal =T e, Wi, g b etmg ) (4e14)

as x = 00, j - 1,0.--’1( -1

and the form of ﬂk L{x) will be established for all k by induction.

The functions ﬂj % and their first derivatives are substituted into
(3.16), the computations being similar to the procedure outlined below
(4¢7)s After a straightforward, but long calculation the result has
the form

Po(x) = Ax* + Bx +C_ + 0(x") (4215)
Differentiating (4.14) gives the results
B1u(x) = by + 0TI, A1) = 07T, B = ok ) (4a16)

which are introduced into (3.20) giving
Pa(x) = 0(x>7) (4+17)

If (4¢17), (4+15) and (3.5) are substituted into (3.27), the result
has the same form as the right member of (4e2) so that

Cosh"lé Gk %

‘dk'b(x) =bx+ec *q —“[';;:; +]/;2-c2 + O(x-l-n), as x » o (4.18)
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Equation (4.18) establishes by induction the form of ﬁk L(x), when
x » o, for all k in view of (4.3), (4.14), and (4.18). By noting the
form of ¢|- in (4+10) it can be established in a similar fashion that

the form of f#_(x), when x + -0, for all k is

Cosh-l-lg - . 11
ﬂk_(x) =bx+c - e e + x—k—z-c + 0(x ), as x » =0 (4.19)

The derivatives of lﬁk from (4.18) and (4.19) have the forms given by
(4+16)« When these derivatives are introduced into (3.20) the result
is

pk(x) = O(x-B-n), as x » *o (4.20)

4Le2 The Solution B(x) of Equation (3.33).

Equation (3.33) may be written
(a® = g2)g'? = (c® = x*) = F(x,i') = 0 (4e21)
It is necessary to discuss the behavior of the function
e = x* + F(x,u') (4+22)

which occurs in (4e.21)e It follows from (3.2,32) and (3.30,31) that
(4+22) is equivalent to

m
cz-x"-o-FEcz-xz+f+(F-f)=cz-x2+f-nZ=_1pnp.n (4e23)
and from (420) that
m

i) pnp.-n = 0(x ") ae x » 2o, b, sufficiently large (4e24)
n=1
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Equations (3.3) and (4.24) are substituted into (4.23) giving the result
e = x* +F=c?=x*+ auxz + 3px . +0(x") as x+ 2 ® (4+25)

For u  sufficiently large it follows from (344) that Iapl 3
IBu’ < 1 which, with (4.25), give the inequality

c®*=-x*+F<0, c<<[x|, p S ¥ (4e26)

Since the analytic function F(x,i') is real and regular for all real
x and p < 4, and possesses the expansion F(x,u') = égl F‘n(x)p.-n

by (3.32), it follows that uF is bounded for By S B X, £ x £ X, where
the numbers X, , X, are arbitrary, but in the present discussion are
chosen such that X, < -2¢, 2¢ < X,. Consequently, for Ko large
enough

[Fl <e® X, sx<X;y B < (4+27)

o
Then, it follows from (4.26) and (4.27) that the function ¢? - x* + F
is negative at least when 2¢® < x*, and from (4.27) that this function
is positive for [x| small enough. Moreover, 0 < ¢ + F < 2¢® by

(4+27) so that the function ¢ = x* + F of (4.22) has precisely two
real zeros which evidently depend on p and tend to % ¢ as u tends to
. The equation ¢® = x* + F(x,i') = O implies x = x(4') is an
analytic function of ', real and regular for By S Mo and consequently,

the zeros may be represented by the expressions
< -n x -n
x, =-=c+ D X, b Xg=ct > x ok (4+28)
n=1 n=1 &

These results may be summed up in the statement that when Mo is
sufficiently large and p < 4, the function ¢® = x* + F(x,u') of (4.22),

which occurs in the differential equation (4.21), has two real zeros
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given by (4.28) and has the property that ¢* - x* + F < 0, x < x, or
x, <xand 0<c®*-x*+F, x, <x< X, e

For a fixed value of u, a discussion of the solution f(x,ji') of
the differential equation (4.21) is identical with the discussion of
the preliminary transformation in Section 2.2. For, ¢® = x* + F(x,u')
is then a function of x alone with two real zeros and is positive
between them so that (4.21) is of the same form as the differential
equation (2.13). Therefore, the analysis of Section 2.2 applies to
the solution f(x,i') of (4s21), and it follows that for fixed p the
transformation t = f(x,1') is an analytic function of x, real and
regular for all real x. However, all quantities in (4.21) and the
limits of integration (4.28) depend on u and are analytic functions
of 'y real and regular for p, < p. Consequently, t = #(x,i') is an
analytic function of x and ji', real and regular for all real x and
Mo S My with the property that O < f'(x,i') for all real x and p < pe
From equations (2.15,16,17,18), in which the necessary changes have
been made, it follows that the elements f_, f_, #, of the function

PB(x,\') and the quantity a® are defined, respectively, by the equa-

tions
X, H
VP voomtd = B [T[e - - rit] @ 4e29)
x
where x < x,, f<-a, 0z C°3h-1'g

- n
;% Va2 - g + cos'1-£= fz-f [¢2 - €2 + (e, )] e (4+30)
xf

-1
wherex,f_xsxz. -a_<_¢_<_a, 0 £ cos 'gﬁ"
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Elp-v-con™d - % [T 2 - v e L)

a
xz

where x, <x, asf, 02 Cosh-lg

a? = % jfx’ (o - 22+ F(g,ﬁ')]i;: (4e32)

X,

where x,, x, in these equations are given by (4.28).

Finally, if @, @', and a® are expanded, uniquely, in powers of
' and substituted into the differential equation (4.21) or (3.33),
the coefficients of p-k must vanish so that the quantities ﬁk’ a0
k = 1l,eee, m, originally determined, are recovered. Moreover, the
series f# = x + é?l ﬁnu-n, a? = ¢ + gg anu-n converge. This

completely establishes the three assertions on page 25.

Le3 Behavior of @ as x » .
Introduce (4.25) into the integrands of (4.29,31) which become

1k

Yy, *c? a

- +
(1-a,)E?

z B -
[€2 - * - F(g,i")] = o, E,[l - (1-5;?5 - O(E ""’)]

since Iapl < 1 for Ko sufficiently large. Because |E| is large, this

equation gives

[er-ctorte, i = o, € - _Bu - e -
271-au 211-au £

B2 e
- % "'Ji-jz' + 0(g 5 M) (4e33)
(1~ap) £

so that (4.29,31), after integration, become, respectively,
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plogx*

Vet -1 8 _ _Bx Qg )(y st )ep)
g V#?-a® + a*Cosh -g V1 a, x? 1-,1“ (l-a )3&

1 * o(x) as x-=-c0 (4e34)

where eu_ = [ﬂlﬁz-az + a® Cosh ﬁ Yi-a J?"‘

ﬁux A(I'GP)(YF+C3)+ﬁﬁ

+ 1-% + A(l-ap‘)a/a log x] (4e35)
_ Bx  4(1-a,)(y, +c?)+p?
gV g*-a® - a*Cosh lg = {l~a, x* - - Lk = L log x +
1-a, 4(1-a,)"®

T * o(x™ as x » 0 (4.36)

where e ut

= %_,i’go [¢ Vg2-a? - azcosh”lg - t‘l-a.u x* +

1= - 2
" Bpx < 4( au)(yp c )+Bp

Vi-a, 4(1-a,) ™

log x] (4437)

The left members in equations (4e34,36) are large if and only if
| 8| 1s large. But this takes place only when |x| is large, and then
these left members may be written ¢2[1 + o(f 1-1'))] « Using this result

and taking the square root of (4.34,36) gives
1-n Pu ~1-n
¢[1+O(ﬁ5' )] = (1-q,, ) x [1 _l:a_f; + 0(x )] as x » oo (4.38)

It follows from this equation that @ and x are of the same order of

magnitude, that is
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€-01) as x » 2a0 (4+39)

Consequently, (4.38) gives the result

[

ﬁ*(l-au)Tx- Py

3" o(x™) as x » +o (4440)
2(1-a,) 4

The derivatives of @, from (4.40), are
' zl =1=n " =2=1
gr=Q=-q)"+0(x""), #*=0(x""),

gm = O(x‘B'n) as x » 200 (4e4l)

Returning now to the expression for g(x,u') given by (3.34), it
is evident that g is an analytic function of x and ', real and regular
for all real x and p, < pe This follows from the fact that § and its
derivatives are amnalytic functions of x and ﬁ*, real and regular for
all real x and u_ < B, and that the derivatives of the ﬂn, which occur
in the P,» are analytic functions of x, real and regular for all real
x, with p, = pz = O by (3.19). Moreover, the first m terms in the
expansion of g in powers of ji' cancel since § was constructed to insure
that this would occur. That is, pm-'g is an analytic function of x
and ji', real and regular for all real x and Fo < pe When real x is
bounded, all the functions involved in g of (3.34) are bounded, since

0 < @' for all real x. Consequently,

[e(x, )| <A™, X, 2x<X, b <u (4ed2)

where the X, , Xz of (4e27) are used. When |x| is large, it follows

from (3.34) and (3.19), (4.41,24) that
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leGei) | < Ay fx ™"
where Au is a function of u, and since um-'g is regular for Ko < p
lum-'g(x,i')l < um-'Aulxl-J-n 3 Amlxl-g-n as x = *oo (4e43)

A suitable adjustment of the constants in (4+42,43) gives the results

le(x,i")] < Amu'mﬂ. c=8sxsc+d B SH (Ledds)
letxi')| < 4™ X7, xsme-Borctsx uygh  (4ed5)

where the Am may depend on m, and § is an arbitrary positive number.



SECTION 5
DEVELOPMENT OF THE INTEGRAL EQUATION

Equation (3.1) will now be compared with (3.6), that is, with
the transformed form of (3.6) given by (3.8). Introducing (3.11)

into (3.1), the result is
2 (] "2
:—é + {u‘(az - g2)pr? *% - % %}y = glx, ')y (5.1)

in which the left member is identical with (3.8). Equation (3.8) has

fundamental sets of solutions given by

v, (x) = Dv[ﬁ'u' ﬂ(x)] ﬂ'(x#. va(x) =D [1@ #(x)] td'(x)é (542)
and

5, () = 0, [VZ #e] B, 5,00 = [-1F #x)] P (503)
which follow from (3.7) and Section 2.3. These pairs of solutions are
fundamental systems for the homogeneous equation belonging to (5e1).

Now let v(x) be any solution of (3.8)s. Then, formally, the

general solution of (5.1), and hence of (3.1), is given by

x
y(x) = v(x) + % fx [ (x)v, (€) = v, (v, (€] e®)y(E)ag  (5.4)
o
where X, is an arbitrary constant and

A= v (x)vi(x) - vz(x)V,'(x) (545)

A similar equation is obtained by barring all the v's and the A in

36
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conformity with (5.3). From (5.5) and (5.2)

=D [ﬁ px)] #'( -)é [1725 #(x] #r(xt -

-v-

- p,. [113 £ 8 & b [ px)] B (IE (5.6)

< 124 ,id da 3
e g:‘! [b 33; S dx ] [ﬁ ax %v = Dy ax g=

¢-”'=

= ;! 4D, -2y Q 1 d D { -‘._, -D,_, d D }
1
= ax a0Zs #) a2 #)
The last expression in brackets is the Wronskian of the parabolic

cylinder functions of argument V2i f. Therefore, by (2.36),

e Sl (5.7)

In exactly the same way, from (5.5) and (5.3)

A = .2, {-1 e'i'%} (5.8)

Introducing (5+2) and (5.7) into (5.4) gives the result

nle

! i

” {_D,,_, [1Z% g(x]] o, (V25 #(&)] -
X

o}

- o, [VZi #(x)]D,,_, [iﬁﬁ(i)]} gENE) 4 (5.9)

B (x)2g" (x)%
with a similar equation resulting from the use of the barred quantities
of (5-3) and (5.8).

After the existence of solutions of these integrel equations has
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been established, estimates of the integrels will be required. However,
the analysis will be facilitated if the solutions of (5.9) and (5.9),
hence of (3.1), can be expressed in terms of variables which make the
functions involved as simple as possible. This can be accomplished by
reversing the transformation t = @(x) of (3.9) which is allowable since
0 < @'(x) for all real x. For this purpose the following definitions

are made:

x=Yt) = g'®), Yi)-= 3.—(")'
(5.10)
£=Y¥()= g s), ¥i(s) = 5%—55

where x = ¥ (t) is the inverse of t = f(x)s Equation (5.9) then beccmes

vl )] re)d | iny ,t
PO W)l |, e b, (12 t)D (V25 s) -
vt o vt ft g AR S0 2

N D\r(ﬁ:1 t)gv.l(ih—u s): g[¥(s) ¥is)* ;}f(’:s))] 4

where, for convenience, further definitions are made:

a(s) = g[¥(s)] ¥ e)2z EEL (5.11)
# ()
[¥(+)] z
w(t) = ?——— v (t)] g [¥ () (5.12)
{ Y”(t) [ ] [ ]
u(t) = !—[;H— v[¥(t)] g I,"//(t)].‘i (5.13)
L

and, with these definitions, the integrasl equation becomes
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ing t
) = u(e) » 8T [0 (402 40,075 ) -

21 -

- 0, (1% +)0,_, (1125 5)] Gls)u(s)ds  (5.14)

Equations (5.10), (5.13) together are simply the inverse of the
transformation (3.7), by means of which (3.6) was converted into (3.8).

Consequently, w(t) satisfies the equation

2
§;¥ + [pz(az - t?) - G(t)] w=0 (5.15)

and u(t) is a solution of (3.6), which was discussed in Section 2.3.

Since (5.14) and (5.9) are equivalent equations, the existence of
a solution of the simpler equation (5.14) will be established, and then
an estimate of the integral will be madee.
Remark:s Because the analysis will be carried out in terms of the
variable t, it might seem more reasonable to construct originally the
transformation x = ¥(t) of (5.10) and hence, convert the differential
equation (3.1) into (5.15) at the very beginning. However, the function
¥(t) is not nearly as easily determined as f(x), the required manip-
ulations being much more complicatede.

The behavior of G(s) in (5.14) is required, and for this, the
results given by (4e44,45) will be usede It follows from equations
(4+29,30,31) that the points x = x,, x, correspond to the points

t =0 = -a, a. Then from (5.11) and (4.44) it follows that

-m+ |

ote) <A™y ~a-%= <ssa+= (5416)
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since ﬂ'[yy(si] is bounded and positive for s in the above interval,

and from (5.11) and (4.45) that

=3 1)
ots)] < 2™ LBl - < a 973,
g (g)?
sg-a-?l-;, a+}.:55 (5.17)

since, by (4.39), x and f = t, orEands, are of the same order and
prE) = -a) soe M= @ - ap® +o(s ).

It will be seen in Section 6 that Dv(fzﬁ t) tends exponentially
to zero as t tends to infinity. Consequently, to will be taken as
+o0 in equation (5.14) and u(t) = DV(VZ—p t)e In the corresponding
"barred" equation, t‘o will be taken as - and u(t) = Dv(-Yz—”' t)e

Making these changes, (5.14) becomes
in (o o)
w0 = D7 1) ¢ 12 F LT Dy o, w0z ) -

- D, (1V2u t)Dv(\iz—;l s)] G(s)w, (s)ds (5.18)

It is easily shown that the corresponding "berred" equation is

v

_i_gi"z t
(t) = D ) + L [yt e, 4728 s) -

- Dv_'(-ifii t)Dv(-fEE s)] G(s)w,(s)ds  (5.19)

If in (5.19) the transformation s = -, t = -7 is introduced,

the result is
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1 o177 (o
w(-T) = D) + 2 [ DbyfEre,, wEme -
T

- D, @Z 7D (V2 )] G- (- dar  (5.20)

Therefore, by associating uz(-7') with w, (t), it is sufficient to treat
equation (5.18) only. This will be done subsequently, but it is first
necessary to discuss the parabolic cylinder functions that occur in the

above integral equations.



SECTION 6
ASYMPTOTIC FORMULAS AND BOUNDS FOR THE PARABOLIC CYLINDER FUNCTIONS
6.1 A Summary of the Results of this Section.

The formulas which will be derived in this section are expressed
in terms of the quantity
n =3/ _X_

- . . Y_xz__ ),/——
pe 2 {ivea 4v+2 1°g(m* Ivi2 i & ’4\'*251 (6.1)

Notation. The symbol [Q] shall be used with the meaning

[Q]: Q+Z Ev

n=1

in which the En are functions of v and x« They are bounded for all

real x and o < v, £ Vs The expression a~f is used in the sense that
a

'B' - 1.
[fe ¥ ¢
D (x) ~ L i Vivez +42 < x (6+2)
1IE{A\NQ l)
[£%00 2
B x)ne =8 =1 L - Vivez +{2 < x (643)
r - lw+2 l)
v oLy -7
|D(x)| cavF e%e Vive2 < x < Vw2 + 72 (6e4)
v iy
(ix)| cavZTe? e i Vive2 < x < Vhve2 +42 (6.5)

-Vl
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v v !

|2y, ()] < a2 vET3 (2 -T2 cx <2 (6.6)
v v, !

,Dv(X)l <hezqyi'e Yive2 - {2 < x < Viv+2 (6.7)

1 M )
Dv(x) = (%)9_____\;_2_’_ {cos ﬁc', + O(v")} ~V4v*2 +Y2 < x gm-ﬁ (6.8)

(1~ By
3 v v,
vhere M = 28 g2 428 (6.9)
s &f70- .4 -lx _
125:, % Lv=x* + (v 2) sin 5= - 5 (6+10)
2 2l
Ip,(x)| <aeZv2"3 ~Vin¥2 +12 < x <Viv+2 - VZ (6.11)
3 2.2
D, (ix)| < Ae? vZ'3 ~Vov+2 +72 < x <Viv*2 -2 (6.12)
-3 ¥l
Io(x)] cae® V278 Vive2 < x < = Vive2 + V2 (6.13)
LY oy o= n
‘D‘,(I)l <e? v2+2{A,s Ly Gélsin vi| e x}
~Viv2-V2 < x < =Viv*2  (6.14)
v v
. P | vri -n, %
D_(x)~ —2y—t—r {9 [1]] e “* -2 sin vn[1]e }
v e = Ak
(Zviz = V) L

x < = Yive2 - 12 (6415)

642 %mﬁwaJﬂ,&quﬂinﬁehﬁwﬂfh&-25xgﬂ%5#ﬂ
The results of Schwid [6] will be used. These results are stated

for functions w,(z) and w2(z) which satisfy the equation



4,
2
g__;_f + (2V + ] = zz)w = 0 (6-16)
dz
The parabolic cylinder functions satisfy Weber's equation (2.30), that
is,
a*p x
g#(v#%-r)n’o (6'17)

which is transformed into (6.16) by the relation

= X 6.18
Pt (6.18)

Consequently, the pesrabolic cylinder functions can be expressed as a
linear combination of w, and w,. The relations (39) in [6) give the
results

v=1

D,., (1x) = FEIay {P("—;l) w (E) - 217§ + 1) wz(f_;)} (6419)

v=I

D,., (~1x) = FETy {r'("*l) w (&) e 240G + 1) wz({-%)} (6+20)

Introducing these expressions into (2.32) gives

V

D, (x) = F { (”ﬂ‘) cos '\"-“' W, (3-) + 2|'"(" +1) sin (—')] (6421)

Before Schwid's formulas for w, and w, are substituted into
(6419,21), the gamma functions which are present will be replaced by
their asymptotic representations. The following formula can be deduced

from [7] Chspter XII, page 263, example 44:

M(z +a) =T2n e-zzZ+a-é [1 + 0(z' )] y |argzl <m® (6422)



45

Making appropriate choices of z and a and introducing the resulting

expressions into (6.19,21) gives

b (1x) = 34 eF ¢ 3F {[1] v (&) -1 [ & wz(;;-%)} (6.23)
D, (x) = b ¥ 3 {[1] cos 3w (%) + [1] 125 e1n ¥ wz(%)} (624)
The interval under consideration is
Viv+2-T2<x<Viv+2+72 (6425)
and because of (6.18), formulas for w, (z), wz(z) are required for
Tov+1-1<z<V2v +1+1 (6426)

Schwid's results in Theorem V are stated for bounded E, but
Theorem 6 in Langer [2] contains these results as a special casee.
This latter theorem states that they are valid for general values of .
However, when the error term is large in comparison with the other terms,

these formulas are of little use here. Schwid states that

im :
v, (z) -)/27_“ o (%—)isizwl {cf, J_%(E) * G5 J*(E) + o(v' )} (6427)

in .
) =2 o ¢ (TiEn SR GRRAGE om} (6.28)

where
$ .
£ = 222 (sin 20 - 20), - RA1.29 -2 9 (6429)
8= cos t —E— (6.30)

Vv + 1
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and the C;k are bounded functions of v alone which are listed in [6]

Table 40

The numbers z occurring in (6.26) may be obtained by putting
z=V2v+1+p, -1<ps<1l (6.31)

From (6.31) and (6.30), it follows that

-] ﬁ 'Zﬂ g
e = 1+ ) = 1 + 0(vi) (6+32)
o (1% o) = (=21 o o)
and from (6.32) and (6.29) that
2 :
g = L2y + 1)F (2p)% 1 + 0(v)] (6+33)
(97 V2 (2 + 213* [1 + 054 (6434)

Asymptotic formulas for the Bessel functions [7] are

1(EFE -3) SHE-R .
J, (g) = -2 1+0(E ") 1+0(E )| as £ =+ (6.35)
:Eﬂﬁ 'JEGE [ £ ] {-—E [ £ ] sf > o
and J,.(E) = o(ng) as £ » 0 (6+36)
.

Remarks. It follows easily from (6.33) that £ is a bounded function
of v in part of the interval -1 < B < 1 and unbounded in the remainder.
When B is negative, E is real by (6.33). Then, for unbounded E,

Jz-'g(E) = O(Ei) by (6.35)e At worst, when B = =1, Jié(z) = O(V-i)

and the error term in (6.27,28) remains small in comparison with
i.(E,) When B is positive,  is pure imaginary by (6.33). Then,

when E is unbounded, the function e 1€ \hich oceurs in (6.35) is

large. That is, the error in (6.27,28) is again small in comparison
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with J _;(E). Consequently, equations (6.27,28) give useful results
in the interval of (6.26,31).

Equations (6.27,28) may be put into the form

v (z) =1/§ o vE & 5 (2,v) T, (2,v) (6437)
v (3) -{3_3!- of% ¥ 7% 5, (,9) T, (5,9) (6+32)
were  8,(av) = ()} %—;{—i , Sataw) = (5 27' (6-39)
(o) = gF ot foR 100 + 2 5,0 + o(i)] (6440)
nG) = 8 B 1) ¢ T 500 + owi)} (6.41)

in which E:k = Yav + 1 G:k . [6] Table 4, is a bounded function of v
alone.

From (6.33,34) it follows that S, and S, are bounded and from
(6+35,36) that T, and T, are bounded. Consequently, bounds for w,(z)

and wz(z) are
|w,(z), < Av® |e-iE|, lw,(2)] < A\;"—le-izl,
Vav +1 - 1<z <V2v +1+1 (6e42)

From (6.33), E is real when =1 < B < O so that [e-iEl = l. Then,

from (6.42) and (6.31)

lwl(z)l < Avi, Iwz(z)l <av?, Yav+l-1<z<Vov+1 (6+43)

Introducing these results into (6.23,24) and using (6.18) gives (6.6,7).
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When O < B < 1, it follows from (6.32,33) that © and g are pure
imaginary. The transformation (6.18) is inserted into (6.30) in which

the relation € = 1ax, where ax is real and positive, is used. The

result is
a_ = Cosh + —= (644d)
x v + 2
Then (6.29)1 becomes
= %(2» +1) (Sinh 20 - 2a ) = in, (6445)
- 2y ¢+ 1 3
where N, 7 (Sinh 2ax 2ax) (6.46)

and (6.1) follows from (6.44,46)s Equations (6.42) become, in terms

of nx
3 L 0 nx
|w.(5&)| < Avte T, [ —-)l <avle ™, Yive2 <x< Yiv+2 + Y2 (6.47)
2

which, when introduced into (6.23), give (6+5).
A satisfactory bound for Dv(x) cannot be obtained from (6.27,28)
in the intervel of (6.47) so that the required bound will now be

derived from Whittaker's integral [7] which is

2 (o)
D (x) = - Mva) o3 j " axp(ext - £ (=) at
Q0

|arg(=t)] < = (6+48)

The function f(t) = -xt - —- - (v + -) log(=t) has saddlepoints given

by £'(t) = - %(t2 +xt v+ 5) = 0 vwhich are t = = % * %V x2=(4v+2).

The saddlepoint of interest is t = = % + % x*=(4v+2). Put
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t =X 2V - (w+2), Vivezex (6249)

so that t  is non-negative. The integration in (6+48) 1is carried out

as follows:

+ 2in
(o) i t, ) toe . @ o
o] © t t ezi“ ’
o (o)

inm

In these integrels substitute =t = se ~ , =t = toeie(-ﬂ <8<m)),

and -t = sei“, respectively. Then

t @ 2 on
J[ ° = -e(V+l)1“‘/r exp(=xs - %r) s ¥ as
(e’] t

Qo - Q0 2 -

and J[ g™ 8 (v41)in J/. exp(-xs - %r) s ¥ las
t e t

o

e i - g%\ =y=i
so that [ - f = =21 sin(v + 1)m / exp(~xs - £)s" V"' ds
i 2
[a's) t t

21m
OB

which gives the result

t o0
L2 &
o toezi"

The second integral on the right of (6.50) is

tZ
5 =2 exp(-xt = 37) (6451)

v
vt
o

in
t e? n o
f © = - [ exp[f(-toeie)] T, e17 iae
t -
(o]

L

The real part of the function f(-toeie) has a maximum at the

saddlepoint, that is, when © = 0. Then this integrel gives the result
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N t2
| f - ' < 2 t;" exp(xt, = —29) (6+52)
t

(o]

Since (6.52) is larger than (6.51), the bound for Dv(x) of (6.48) 1

tz
le(x), < A (v + l)t;v exp(= {- *xt - -22), Viv + 2 < x (6+53)

where the constant A is less than 3m for large v. From (649)

t.,-; - Bl '23: :(i'v +2) which with t is introduced into (6.53). The

result may be put in the form

b, )] < & Ll §[x +F—L-wa] [ Y
v = exp 2 AV 2
(v+ z)E V4v+2 {ZT:E

and finally

ml(l [N 4

ID (x)l < Af"(vﬂ) {‘”x ' % log [x + VP x? -(4\:1-2)] Vivez

‘\/l.v+2
(6.54)

where 7, is given by (6+1)s Replacing the gamma function by its
asymptotic form (6.22) and omitting the second term in the exponent

gives (6.4) -

6.3 Asymptotic Formulas for Dv(x), I_J_v_'(ix) in the Interval Yiv+2 +¥2 < x.
The results of Schwid fé] Theorem I may be used, since asymptotic

forms for w,(z), w,(z) are required in the interval
T2v +1 +1 <32 (6455)

because of (6.18). In this interval £ is unbounded as can be seen from

(6¢33)e These results are
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w,(z)~ ...Lz..l % 21"[1] elf - 2fsin ¥ 2 ﬁ;} (6+56)
2(2v+1 1)
¥
wp(z)~ —— L = A8 [] [cos v g]e-iﬁ (6457)
2G - 1 | T2 1’2v+1

where the coefficients B;k from [b] Table 2 have been used, since by
(6430,29) arg £ = % so that h = o from Schwid's relation (14).
However, the coefficients of eiE in (6.56,57), which are listed in
this Table 2, contain the ambiguous symbols (-l)z and (= l)v;'. They
must mean ezi y © Shin y respectively, as in (6.56,57). This interpre-
tation is deduced from (6.27,28) since these equations are valid for
unbounded E, as previously mentioned, and are therefore valid in the
interval (6.55). When the asymptotic formulas for the Bessel functions
(6.35) are inserted in (6.27,28) these equations are asymptotically
equivalent to (6.56,57) only if the above meaning is attached to the
ambiguous symbols.

Using the relation z = f% from (6.18) and the definition of n,

from equations (6.46) and (6.1), equations (6.56,57) become

w, (&)~ 1 '}i“ [l] "x - 2[sin v E] enx (6.58)
"2 2( x| 1)"4' R . 2 5
Lv+2
V=1
2 2 m X
W, (JL — & 1] e X4 == [cos v -] e (6.59)
7.:%2' 1)% [ Y2ya1 [ Y2y .

These functions are substituted into (6.23) giving the equation
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3 v -n
D _, (1x)~ = = : : o2 ([ ~[1])e * -
212 v'z"'i(f;—z w3

- 2i( [cos v?n.] - i[sin !'2’-‘-]) enx

and since the first term in the braces is asymptotically negligible
equation (6.3) is obtained. Now put (6.58,59) into equation (6.24)

from which it follows that

v v
2 g2 >im i vy Tk
D_(x)~ vz 2 <5 qe? ([1] cos - = 1 [l] sin =) e +
s 2(-%5 - 1)* £ 2
Lvt2
¢ 2(otn 2 [soo 2] = [otn 2] cos 2 o
sin 2= |cos 3 sin | cos 77) e

n
and since Dv(x) -+ 0 as x » o0, the coefficient of e X must vanish,

not only asymptotically but exactly. This leaves the result (6.2).

6.4 Asymptotic Formulas and Bounds for Dv(x), Pv-l (ix) in the Interval
Vive2 +V2 < x < {Zv#2 -V2.

The results of Schwid's Theorem 3 hold in the right half plane and
within the eircle |x|) = Yiv + 2. Watson [9] derived corresponding
results which hold within the circle |x| = 2¥v, and consequently yield
a single pair of formulas which cover the interval under consideratione.

Watson's formula for Dv(x) is

i
D (x) = r'(\rﬂ)_.gi < {cos ! + 0 (-—gf——'{_) (6.60)
® o W (4v=x*)

¥t 2 F
X
ﬁvz(l-[m)
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where ﬁ; is given by (6.10). As x approaches # 2W the error becomes
large, and it is necessary to check the order term in (6.60) at the

end points of the interval being considered. At these points the
y+l-=- sz;i_
F(E - 1)
valid throughout the interval.

Jd
order term is O ( = 0(v¥), and therefore (6.60) is

From Watson's result (Eﬂ pe 140) a bound for Qv_'(ix) is easily
obtained. It should be noted in this reference that when -2y < x < 2Vv,

y = 1B, so that Watson's asymptotic formula for Qv_'(ix) yields

¥ o_vhe
|9v-'(ix)' SAgi-—v——:-__i_’ '“ﬂ"‘z"’ﬁsxf_ik\’* -5 (6.61)
a-x%)*
yAY

The error term in Watson's formula for D _ (ix) is identical with that
in (6.60), and consequently, the bound (6.61) is also valid throughout
the interval under consideration. Also, only a bound for D _ (ix) is
needed in this investigation so that the asymptotic formula is not
stated.

The asymptotic formula (6.60) shows that Dv(x) oscillates in the
interval under consideration. The coefficient of the braces of (6.60)
takes its greatest value at the endpoints of the interval. This value

is

vti 4

v o 3
C(v41) o2 v*  _ 3 ¥ ,,i'r*é[l % o(;,i)]
v 2 (\2vel - 1):

which, essentially, is used in the following
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Definition:

]
nje

(6462)

M, will be called the modulus of D (x) when - Vive2 +72 < x < Viv+2 V2.
2_'
Using M, equation (6.60) gives (6.8). Finally, (1 - f;)‘ i
smallest when x is an endpoint of the interval in (6.62), taking the

92v+1 - 1%

value (————=) . Introducing this value into (6.8) gives (6.11)

and into (6.61) gives (6.12).

6+5 Asymptotic Formulas and Bounds for Dv(x) in the Interval
x<=Yiv +2 +V2.

These relations may be obtained by expressing Dv(x) in terms of
D (-x) and D _l(-ix), in which 7%4v *+ 2 = Y2 < =x, and using the for-
mulas already developed in the interval fZ;_:—— 2 < =x. For this

purpose, equation (2.33) is put into the form

V""

Dv(x) = eWi Dv(-x) -fﬁ%.sin vir[ (v +1) e 2 TR v_'(-ix) (6.63)

Then, equation (6.13) follows from (6.63) into which (6.6,7) are
inserted. Similarly, (6.14) follows from (6.63) and (6e¢4,5)e

Finally, equation (6.15) follows from (6.63) and (6+2,3)e



SECTION 7

SOLUTION OF THE INTEGRAL EQUATION

7.1 Notation and Remarks.

Equation (5.18) may be put into the form

i!
wit) = Dv(JEE t) +.%§:“2 Jroo K(p,t,8)G(s)w(s)as (7.1)
o Jt

where

(1) K(uyt,s) =D (V2p t)D,_(172k s)-D ({2u )0, _(iT2p t)  (7.2)

2

(1) v = %r - % from (2.38) is bounded away from the positive

integers

(1i1) from (5.16,17) it follows that

[+ 0)
f 1 |Q'S)'lds <K =K p,.mﬂ (7.3)
a‘.{—:}j, K
—
f \C [—-(—)-G = ]ds <k =k g (7.4)
-0 S 1)
|G(5)| = KME K P-m+'s [s] £ a "'{J'—TL (75)

Remarks:

(i) The arbitrary integer m designates the number of approximat=
ing functions computed for equation (3.9) which may be written
Blxyi') =x + B ' + eeee * Qmu-m + 0(p ™ '), However, when the

number of functions used is O or 1, it follows from (3.34) and

55
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(5016,17) that in (7.3,4,5) the right members may be replaced by
o

(11) For brevity, the asymptotic formulas and bounds for the
parabolic cylinder functions will be expressed in terms of x and ye.
Therefore, the following notation will be freely used:

x=V2pt, y=V2us (7.6)

in which x is not the x occurring in the transformation B(x,i' )e

(i41) With this notation, the transition points t = % a of
equation (5.15) correspond to the transition points x = Vv + 2
of Weber's equation, (2.30).

(iv) The asymptotic behavior of w(t) will be described in the three
intervels t < -a - %ﬁ , A %ﬁ <t<a- %E , and a + %ﬁ < t,
but the asymptotic behavior in the transition region will not be
obtained.

(v) In the notation of (7.6), substitute (2.33,34) into (7.2).

The result is

K(u.n '{%) = [D (-x)D ( -iy) - D (-y)Dv_l( ix)] (2e(v+%)"isin v =1)

(7.7)
7.2 The Solution in the Interval
a+{:"—=p_<_t or Tiv+2+V2<x (7.8)

Since (6.2) indicates Dv(x) never vanishes in the interval (7.8),

the integral equation (7.1) may be treated in the form
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e

in¥ D (V2 s)
w(t) =1 + 28- zfoo _!_‘}-_E.i K(pyt,s)G(s) —u(s) ds (7.9)
D (12u t) 2p Jt Dv(ﬁ t) Dv(wl'z_u s)

For brevity, the following definitions are mades

) =il 7.10)
( D, (124 t) (

D,(V2u s)

K(pytys) (7.11)
Dv(ﬁi t) Gz

E(H’tos) -
Using these definitions, equation (7.9) becomes

i y
Wit) =1 + 1‘-:—“2];'00 I_((p,t,s)G(s)W(s)ds (7.12)
M

In order to carry out the usual iteration process, the functions

wk(t) are defined by the relations

ine
wk(t) =1 + iz:“z-/tw K(pyt,s) G(s)wk_' (s)ds,

wo(t)z 0, k= 1,2,see (713)

From these relations it follows that

W, (t)s 1 £Yed4)
and that
in% o _
W, (8) = W (t) = (i-:;;‘ ft K(nyt,8)6(s) (W, (s) = W _ ()] ds (7.15)
From (7.11,2,6) it follows that
- x J H QV"(ix)
K(py = V-;_—u) =D (y) D, (1y) - D (y) —-1:(;)— (7.16)
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and from (6.2,3) that

K(p X, L) <
YV T |

From (6.1) it is easily seen that 7, is an increasing function of x
so that the above bound is simply increased by replacing ny by nx.

For t < s implies x < y, and therefore - ny. The result is

Ky, %=, L) < —-A (7.17)
2 12n y[Mz ;;

The quantity in parentheses in the denominator of (7.17) is smallest

when y = Yiv+2 + V2. Introducing this value gives the result
y

’n ﬂ
which becomes, using (7.6)
F
A
K(pytys) Ay £ =gt (7.19)
[Fe)] < Zo s~ s

since p, v are of the same order by (2.38).

The iteration in (7.15) may now be performed. The steps are

3
[W,(t) = W, (t) < MK ¥ (7.20)
which follows from (7.14,19,3). Now assume
[ (6) = W, (0] < (a i# )< (7.21)

and then (7.15) gives the result

3
[Wer (2] = W (8] < (A %) (7.22)
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In virtue of (7.20,21,22), equation (7.22) is established by induction
for all k. Hence, the sequence Wk(t) converges uniformly in the

3
interval of (7.8) provided AKpﬁ* < 1 which is certainly true when

Ko < p is sufficiently large. Then
W(t) = 30w (t) (7.23)

is the solution of (7.12), since the uniform convergence permits the
appropriate limits to be taken on both sides of (7.13). It also

follows from (7.22,23) that

W(t) = 1By (4) = (t) + Z [, (2) = W ()],

n-+o n

but wo(t) = 0 by (7.13) so that

3 = AI (7‘24)

is
lw(tl<z lk"'l wk(t)lsl-AK -2

Introducing this bound for W(t) into (7.12) gives the desired result
3 S -y
lwee) - 1| < a5 f [%ﬂl ds < AT R (7425)
£

From this equation and (7.10) it follows that

4

1oy (7426)
D,(125 t) e

7.3 The Solution in the First Transition Interval.

This interval will be treated in the two parts

A
o

(a)a5t5a+1,-l—_p, (b)a-}—ﬁ-gt_
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Part_(a): a<ts<a +'%ﬁ or Y4v +2<x< v +2+72 (7.27)

Let the bound for Dv(X)' given by (6.4), be denoted by Bv(x). Then

equation (7.1) may be put into the form

1
w(t) =Dv(‘r2—"; t) .,.i..e_j:ﬂ-}faﬁ B (ﬂ s) K(p,tsG(s) w(e) is
B(2u t) B (VZit) f2u “t B (ﬁ t) B,(12u )

. D\’(V2pai +v2) w(a + -‘,—]ﬁ)

-1 (7.28)
B,(V2u t) Dv("2uaz +V2)

The existence of a continuous solution w(t) is assured by the classical
theory of the Volterra integral equation, since all the functions
involved are continuous, and the interval is finite. From (7.2) and

(6e4y5)

B (7) D, (4x)]
5.0 K v—éu —é) < B,(y) [, (x| + B,()? S

‘ =21 +277x b
<vé(a, v e T F) s m® (7.29)
where the last inequality is obtained from the same argument as the
one leading to equation (7.17). It follows from (6.4) that

DV(VZUaz + Bv(fém +2 +V2)
B, (V25 t) 5 " Py - ymary) £ 1 (70300
v

<

so that with (6.4) and (7.29,5,30,26), equation (7.28) gives the result

) - <1+Avtp , SuP il (a+}—=-a)+Azp-m+$
B, (Y24 t) B,(V2p t) g
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: .5
Since p, v are of the same order, A,vzp" Kp = A, p¢ Kll' and this
quantity is less than one for Mo sufficiently large. The last equa=-

tion then gives the bound

-m+z|
w(t) ’ L+ A

supl < p < A (7+31)
B,(Zn t) 7 1 - Alep{
Introducing (7.31) and the foregoing bounds into (7 «28) gives the
result

w(t) Dv(‘[é—p‘ t) = -m+y

]
- -m+
<A,u{Kp+Azu taap T

B,(Y2u t) B, (Y2u t)

agtga*""'flﬁ (7.32)
Part (b): a-“}ﬁ.gtga orf4v+2-(§5x§‘/4v+2 (7433)

Using the M, of (6+9), equation (7.1) may be put into the form

v
w(t) _ D, (Y2p t) iz ra <Ta)
M M, +\f2_p jt K(pyt,s)G(s) M, ds +

Bv(‘ 2}Laz) wla) Dv('}zllaz)]
+ -

(7434)
M, Bv('JZpaz) Bv( 2ua®)
Dv(ﬁz t) o
From (647,9) ]S Av (735)
v
From (7.2) and (6+6,7) | K(upt,s)| < av' ¥ (7.36)
v,y
From (6e4,1) B (v +2) = A v:iEg 2
Bv(fzpaz) B (Yiv + 2) 3
so that ¥ = <Av® (7.37)

v v
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Introducing these bounds, together with (7.5,32), into (7.34) gives
Wit : - -2 t - “m+ 3
I—I&—llg A,v8+ A, v szp sup |!1'SI_)"[& - (a = 1—--“)] + A, v%um ¥
v v

ik
Since p,v are of the same order, A, vy

_'l
’ K =A p®K which is less
B2 M

than one for Ko large enough, so that

A p + A [}
sup I__(__)_w L l & - A 7 < A pa (7.38)
i’ I-1

Using this inequality, (7.34) gives the result

w(t) nv(van t)
MV MV

_u _23 I e
SAVEE kB A, oF By AR (7439)

This completes the treatment of the first transition interval.

Te4 The Solution in the Interwval

-a+%=u_<_t5a-%p or =Yiv +2 +V2 < x<Viv +2-V2 (7.40)

It follows from the differential equation (5.15) that w(t) is an
oscillating function in this interval. The zeros of w(t) cannot be
expected to coincide with those of Dv(fia t), (68), and consequently
the quotient, D_-:L%%-t_) is unbounded in this interval. For this
reason, w(t) and the error will be compared with the "modulus" M, .

Equation (7.1) becomes
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2

¥, g
ﬂﬂ,Ddﬁ3”+1é%j*
Mv Mv fi; t

F Ky tys)0(s) HE) as +
v

1
wia = =) p (V2pa? - 12)
B
Mv - v Mv (7.41)

+

From (6.11), Dv({z—p t)

M,

< A, and from (6.11,12), |K(u,t,s)’ < sz-a:

Inserting these bounds together with (7.5,39) into (7.41) gives the

relation

t -5 -3 wit -m+ 5
20 < o, it o (5] G0 o, 08

i 3
and because p,v are of the same order, A, v¥ut Ku = Az p¥ Ku which

is less than one for Ko large enoughe This gives the result

e
A, + A; p ol

swp |48 < <4 (7.42)
v ‘

- i
1 A2 KM p%
and again using (7.41) gives

D (V2p t) ]
w( 2_ v -m+
My -——ﬁ:““—* < AKyp + A

£
=m+ g
"

(7.43)

which may be written

m+"5’-
olp 8),

L - L
-a +.ﬁ£t£a T (7e44)
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7.5 The Solution in the Second Transition Interval.
This interval will also be treated in the two parts

(a) -ag‘c.g-ax+%'rl (b) -a-—l‘-lf_tg-a
Part (a)s -a::_1-,_<_-.s.+%E or Vv +2<x<-Tv+2+12  (7.45)

Equation (7.1) is put into the form

]
D ({2u t) inYy rept=
wit) v = s, le 2f T K(p,t, s)G(s)-ﬂg—lds +

Mv Mv {Z_u t

w(=a + f_];ﬁ) Dv(- 2ua® +V2)

¢ — - g (7.46)
v v
From (6.9,13) l @ (747)
MV
and from (7.7) and (60637)
’ _"_ —— 7.
|K(u = ﬁ)[ (7.48)

These bounds, and (7.5,43), with (7.46) give the relation

. 5
iM|<A v +A vru K suplﬂi(,l-t’-)'l [-a+"l'ﬁ- (-aﬂ *A,uﬂma
v

-
Since p,v are of the same order, A v© y. Kp =4 pe Kp which is less
than one for Ko sufficiently large. Therefore, this last equation

gives the result

AvZ* .
sup |4 | < ey & A g7 (7.49)
v l=-A K p



65

Inserting this last result into (7.46) gives

D (V2u t) 2 N 5 5
Me) v D A KSR e, (TE S
v v
-t € b€ - b (7.50)
sttty

It is necessary to distinguish between integral and non-integral
v in the remaining discussion of the integral equation. The behavior
of Dv(x) changes radically when x < -¥4v + 2 according as one or the
other subsists, as is easily seen from equation (6.63)s Consequently,
the restriction that v be bounded away from the positive integers

will be used in the subsequent analysis.

Part (b): -a-%f_tg-a or =Y4v +2-Y2 <x<=Viv+2 (7.51)

Let the bound for Dv(x). (6<14), be denoted by Cv(x). Since

sin vr is bounded away from zero, it then follows from (6.14) that

.
g = (7.52)

+

nje
N

le(x)] <C,(x) = A e-'* v

Making use of the quantity Cv(x), equation (7.1) may be put into the
form
y

12n -a C (12p
w(tl = DV( k t) P _Qi“f/ @ _!..(__Lf..). K(p,t,s)G(s) ds +
c,(2ut) ¢ (2ut) T2u Yt c (2 t) ¢,(V2u s)

% _.L [EL‘&). L M] (7.53)

C, (V2 t) M, M

e
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From (7.7), (6-[”5) and (7052)

Cv(y)

K(py == r [A exx:(--?n + 2n_y) + Az]

ﬂf_u

It follows from t < s that x < y, =y £ =x so that ‘n_y E Ny ® There=~

fore, replacing n-y by 'n_x merely increases the bound. Consequently,

(Y) ]
K(p, ==, L)) < (7.54)
W T
It follows from (6+9) and (7.52) that
M M
¥ < X _i (755)

c,(2p t) ~ 5‘,(-\/2@')

since =¥2ua® corresponds to =I4v+2 and M., = 0 at this point by (6.1).

Substituting these bounds and (7.5,50) into (7.53) gives the result

| _’ -
reaed EER P ULE LS sup]—l’-m-][-a- (-a—-lfu)]+sz3um'
c, (2 t) c,(T2p t)

l 5
and since A,v® e K = A‘ﬁer <1 for p sufficiently large

(t) 1+ Ayp ke
u { —— < A (7456)
c (vf— t) 1 - Alpf K,

Putting (7.56) into (7.53) gives the desired inequality that

<AV R +Av3 -m*§ <A TF

w(t) = D (TZ— t)
c,(Zu t) ¢ (Y2u t)

-a = —1-_<_ t <-a (7.57)

=

This completes the treatment of the second transition interval.



67

7.6 The Solution in the Interval
‘bs—a~—1_/ﬁ- or x<=Viv+2-Y2 (7.58)

1
From (6.15), bounds for Dv(x) and m may be obtained. Since

sin vr is bounded from zero

-y 3 Nx
2
IDv(x)l < A xzv - % (7.59)
ez~
and
£ F
% ; My - 1) 1
D_(x)] = Yy N . vri .
12 e 2 y2 'ffsin\m[l]ex-e [1] e 7%
V2
2 F
A=t 1y 1
=y -2n_
e ® v? 1-4e *
1
so that the bound for is
vaxj
i =7
_J(_r X \F e X
lD % l < A(4v+2 - 1) v v (7.60)
v e 2 y2

-217
since A2 e X <1 for Ko sufficiently large. This assertion is valid

because e -x is greatest when x = “Viv + 2 - Y2, and for this point
Ny is an unbounded function of v in virtue of (6.45) and the remark
following equation (6.36). Since Dv(x) never vanishes in the interval
(7.58),as can be seen from its asymptotic formula (6+15), equation (7.1)

is put into the form
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i A p (Y2p )
__W_(_t_)____ =1 + 1'.2... - ﬁJ.- —__—_P-— K(p, ,B)G(S) —..__(_l_ ds +
D,(V2k t) V2p Jt D, (124 t) D,(2u s)

1
) c,(-Y2pa® -v2) w(=a - 7=) i D (2ua* -72) -

p, 02k t) [ o (Vaua? -V2) c (-2u? -T2)

From (7.7) and (6.2,3)

=

K(y—_' \'— ¢
# 2u V2u { 1)¢

Av+2 (4v+2 -

.[k, exp(=n_, * n_y) + A, exp(--n_y + n_xi] (7.62)

and this equation combines with (7.59,60) to give

D (y)
K(p,
E'T"T ( .{‘; .{';

- i
v e

S Rl )
+

From t < s, it follows that x < y, =y < =x so that 'n__y < ‘n__x
Hence, the right member of the above relation is simply increased if

n—y is replaced by Ny Consequently,

D(y)
Ky, X, L)
B P et

z L -
(s yrre i 1)°

in which the last quantity on the right is obtained from the same

argument as the one leading to equation (7.17). Therefore,

L OLILLI— A (7.64)
Y K(pyty8) | < = .
D\,(ﬁ t) ' ¥ (-8)
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Cv(-v.?p.az -V2)

A bound for is needed which, in terms of x, is
D, (V2u t)
C (-V4v+2 - 12) C (=Viv+2 = V2) :
y D ( ) _<_ ¥ E Avw (7065)
WX [, (-Vave2 - V2)|

This follows from (7.52,60) provided (7.60) increases as (=x) decreases.

But this is easily seen when the notation of (6.46) is used, since

2

i
z N
X Ll - o 2yl -
(4\"’2 -1) e = exp[ == (Sinh 2a__ 2a_x) +

1
+ % log Sinh a-x]

and

d 2v+1 1 )
7 () [— 7 (Sinh 2a__ =~ 2a__) + 7 log Sinh a_x]

- Cosh a_ da__
= [-(2v#1) sink® a__ &

"% Simna__ |d(-x)

da

i =X =X
LT (wr2) | T

- [— % [ =(4v+ 2)] +

The braces have the value

-1 + 2 Vay+l) +% Y2vel + 1 r <0
(1 + 2V2v+l)

da
when =x = Y4v+2 +’/—§, and O < R}i)aluays, so that the above derivative

is negative at -x = Viv+2 + V2 and decreasses as x decreases, remaining
x =N

-x
negative. Hence, ( -1) e increases when -x decreases as

ol
Lv+2
required.
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Introducing (7.64,4,65,57) into (7.61) gives the relation

-2 - B
D, (V24 t) p,(Y2p t)[ ¥
-

and since A p* K, <1 for u, sufficiently large

}ueid
w(t) 1+ A vy

D, (V2u t)

sup < < A (7.66)

-3
1 = A, Ku Ths

Inserting this bound into (7.61) gives

L
-a-
_3 Jm 2 el N
|—l"-(l)-—-1’_<_A,p*f |9§l|d3+sz‘pm*+gmm*8 (7.67)
D, (24 t) %

and finally

_ﬂ.‘&)__ =l"'0(p,.m+g), ts-a-

(7.68)
D, (12p t)

Al



SECTION 8
SUMMARY

All the results and the conditions under which they are valid
will be summarized here.
In this investigation uniform asymptotic formulas have been

obtained for two solutions of the differential equation

gﬂxz[c‘-xg +f(x,u")]y=0 (3.1)
in which p, a large positive parameter, is restricted as in (2.38)
below, ¢ is an arbitrary positive constant, and f(x,4') is subjected
to the following
Hypotheses:

(1) £(x,i') is an analytic function of x and ji', real and regular
for all real x and o < By S B where Ko is sufficiently large. This

function possesses the expansion

Q0
£lx ') = 2 £ (x) p° (3.2)
n=1

where the fn are analytic functions of x, real and regular for all
real X.

(11) When x is real and x- *o, f(x,i') may be put into the form

£lxyi') =ax® +Bx+y + ox™, 0<n<1 (3.3)

71
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T A
where a = ap , B = Bu 'y v = Y, B (3.4)
L B = S

the series for au, 3u and Yu being convergent.
Asymptotic formulas for two solutions of (3.1) which may be

deduced from the analysis of Sections 5 and 7 are

5 )8 (0F = [V2 A [1 + o™ H], o6 sx (8.1)

'é -m-&‘
y, (x)f'(x)" = Dv[\fZ—p. ﬂ(x)] + MVO(p J), -c+85<x<c=-5 (8.2)

fnvbich B o¥ 3+d o,
Y, () () = D, [vzr ﬂ(x)] [1 + O(u"“"r)]. xg=c=8 (8+4)
and
7, (08 0F = D [ B(x] [100(™)], ¢+ x (8.5)

! El
Ya(x)p (x)I = Dv[-@ ﬁi(x)] + Mvo(p-m+'), -c+0<x<c=-8 (8.6)

in which M, is given by (8.3)

yz(x)ﬁ'(X)% = Dv[-ﬁ ﬂ(x)] [1*0(u-m+i)] y XE=g=f (8.7)
where

5 = \;J:p +0(i") (8.8)

v= %; - % (2.38)

in which the values of p must be such that v is bounded away from the

positive integers.
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foe
a® = ¢ + :E a k ae?as aF *eesot a M ®eo(p™") (3.10)
n=1

in which the & , n=l,..., m are given by (3e24).

o.0)
B(x) = Blx,i') = x + Zlﬂn(xm"“ = x+f @t BT 0GTTY) (349)
n=

in which the ¢n’ n=l,..., m are given by (3.25,26,27) and termwise
differentiation is wvalid.

Remarks The arbitrary integer m designates the degree of the approx-
imation made to the comparison equation (3.6) by the functions ﬁn and
the numbers a . In the case of the Oth and lst approximations, equa-
tions (8.1,2,4,5,6,7) may be used with m_= 2.in the order symbol.

As x » *oo, B(x) and @'(x) have the forms

g(x) = (1L-a )i'x - %t o(x ™M) (440)
H 2(1 - ap)

Fr(x) = (1= a ) + oGt (4edd)
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