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ABSTRACT 

A theory for describing the elasticity of solids at 

simultaneous high pressures and high temperatures is developed 

by incorporating the fourth-order anharmonic theory of lat­

tice dynamics into finite strain theory. The theory is ap­

plied to the analysis of a variety of data for mgO, Si0 2 and 

NaCl, and the results for mgO and Si0 2 used as the basis of 

a discussion of the constitution of the lower mantle. New 

results are reported of measurements of elastic properties . 

of mgO shock-compressed to over 500 Kb. 

The condition that finite strain equations be frame­

indifferent is shown to require that only strain tensors be­

longing to a class of frame-indifferent strain tensors be 

used in finite strain expansions. It is shown that the 

generality of finite strain theory is not impaired by the 

inclusion of an explicit theory of thermal effects. Explicit 

equations for isotherms, isentropes and Hugoniots and for 

the effective elastic moduli of matArials of cubic symmetry 

under hydrostatic stress are derived. The primary parameters 

of these equations are related to the elastic moduli and 

their pressure and temperature derivatives in an arbitrary 

reference state using thermodynamic identities, some of which 

are derived here. 

Hugoniot data corrAsponding to different initial sample 
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densities of MgO, SiD2 and NaCl and original ultrasonic data 

of NaCl are used to test both the compressional and thermal 

parts of the theory, and to refine the equations of state of 

these materials. The frame-indifferent analogue, E, of the 

usual "Eulerian'' strain tensor, ~, is found to usually give 

faster convergence of finite strain expansions than the · 

''Lagranqian" strain tensor, ~· The effect of usinq differ­

ent strain measures on the values of parameters derived from 

data is demonstrated, and the adverse effects of using in-

appropriately derived parameters in extrapolation equations 

is demonstrated. Thermal effects in Hugoniot data are rea-

sonably well described, but higher-order anharmonic effects 

appear to be required in the theory in order to describe the 

high temperature ultrasonic and thermal expansion data. 

Mea sured velocities of rarefaction waves propogating 

into shocked MqO are in accord with a two-stage longitudinal 

(elastic)-hydrodynamic (plastic) decompression model, and 

constrain the high-pressure elastic moduli of MgO. 

The effects on the determination of the lower mantle 

constitution of temperature, varying composition, the pre-

senca of phases denser than oxides mixtures, and the presence 

of iron in the "law-spin" electronic state are estimated, 

and a trade-off between many of these factors demonstrated. 

Iron content could range between 6% and 15% by weight of reo. 

Silica content could range from 33% to 501o or more by weight. 
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Phases a few percent denser than nxides mixtures seem to be 

likely. The temperature is very indeterminate. 
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CHAPTER 1 

INTRODUCTION 

ThP. applicatinn nf the thenry nf equations nf state nf 

snlids tn the questinn of the internal constitution nf the 

earth was pinn8ered and admirably demonstrated by the work 

of Birch (1938, 1939, 1947), based nn the work nf Murnaghan 

(1937), which culminated in Birch's important 1952 paper 

(Birch, 1952). The main objective, and achievement, of this 

work was, of course, to account for the effects of ~ery large 

pressures upon the properties nf solids so as tn provide a 

basis fnr the comparison nf the properties of the earth's 

interinr with thnse nf substances measured in the labnratory. 

Annther result was the demnnstration that temperature is a 

significant, though secnndary, variable in the earth's interior. 

Birch estimated the temperature inside the earth tn range up 

tn several thnusand degrees centigrade. 

In nrder tn pursue the questinn of the earth's internal 

constitutinn, it is thus necessary to be able tn accnunt for 

the effects of simultanenus high temperatures and pressures. 

Then, nf course, the temperature becomes nne of the factors 

nf the earth's interior to be determined. Birch's (1952) 

apprnach was to make use of measurements nf thermal effects 

in solids at atmo~pheric pressure, a number of thermodynamic 



2 

identities, and snme calculatinns based on lattice models, 

to obtain e stimates of the effect of pressure on thermal ex­

pansion. This led to the conclusion that thermal expansion 

of silicates tends to decrease with increasing pressure at 

roughly the same relative rate as the compressibility de­

creases, and to the general idea that pressure tends to re­

duce the effects of temperature on the density and elasticity 

of solids. 

The state of the art remained more or less at this level 

until it was perceived by Thomsen (1970, 1972) that a well 

developed theory of thermal effects in solids, due to Leib­

fried and Ludwiq (1961) could be extended into the domain of 

finite strain, thus providing the desired description of ther­

mal effects at high pressures. In this theory the thermal 

effects and their pressure dep e ndence are governed by a few 

parameters which can be evaluat e d from currently available 

laboratory measurements for many relevant substances. 

In the meantime, a new technique, that of shock-waves 

in solids, was being applied to geophysically relevant mater­

ials (e.g., Al'tshuler et al., 1965; McQueen at al., 1967). 

The analysis of the results of these experiments, which in­

volve, simultaneously, high pressures and temperatures, relied 

heavily on Gruneisen's (1912) theory of thermal effects in 

solids, and in particular, on the Gruneisen parameter, 1(, 

which relates pressure and internal energy in this theory 
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(e. g ., Rice et al., 1958). Again, the pressure dependence 

of ~was a problem, and various approximations were invoked 

to estimate this (Slater, 1939; Dugdale and MacDonald, 1953). 

Leibfried and Ludwig (1961) showed that their theory led to 

a Mie-Gruneisen type of equation under suitable approxima­

tions. Thus Thomsen's (1970) extension of their theory to 

finite strains allowed the Gruneisen parameter to be calcu­

lated as a function of pressure, and the analysis of shock­

wave experiments was included in the same theoretical frame-

work. 

The purpose of this thesis is to re-derive, 

generalize and exploit Thomsen's (1970, 1972) theory. Thom­

sen (1970) claimed that the lattice dynamics theory, and hence 

his extension of it, could be written only in terms of a 

particular "Lagrangian" strain tensor, ~· This claim is un­

reasonable since the role of lattice dynamics in his theory 

is to make explicit the temperature dependence of finite 

strain equations which can be given implicit temperature de­

pendence by allowing parameters to depend on temperature. 

Th e generality of the finite strain equations should not be 

limited in this process. This expectation is verified in 

the re-derivation given here, as it is shown that the theory 

may be written in terms of any one of a whole class of 

"frame-indifferent" strain tensors, as is the case in finite 

strain theory. Equations in terms of two particular strain 
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tensors are developed as examples. 

The wide applicability of the theory, mentioned above, is 

demon s trated and exploited here in a series of analyses of 

different kinds of data - shock-wave, ultrasonic, static com-

pression, thermal expansion and calorimetric. These analyses 

yield new, and superior, determinations of the equations of 

state of MgO (periclase), SiD 2 (stishovite) and sodium chlor­

ide. ThP.y also present the opportunity for some general dis-

cu s sion of the problem of fitting and extrapolating data with 

particular analytic forms. Finally, the newly determined 

equations of state of periclase and stishovite are used as 

the basis for a discussion of the constitution of the earth's 

lower mantle. 

Chapters 2 to 5 present the theoretical development. 

In using the strain tensor ~' Thomsen (1970, 1972) fo~­

lowed the common practice of both lattice dynamics theory and 

continuum finite strain theory, in which ~ is usually invoked 

in order to assure the "rotational invariance" of the result-

ing equations. In Chapter 2, th e requirement that finite 

strain equations be invariant under changes of frame of ref-

ere nce is reviewed, and the necessary and sufficient condi-

tions for "frame-indifference" are obtained. 

In Chapter 3, the approximations made in Leibfried and 

Ludwig's (1961) lattice dynamics theory are discussed, and 
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that theory is extended to the domain of finite strain in 

the special case of isotropic stresses and strains. Pressure­

temperature-density equations of state are obtained in terms 

of three particular strain measures. 

In Chapter 4, equations for isentropes and Hugoniots 

are obtained from the above equations, which have the form 

of isotherms. Chapters 3 and 4 correspond to Thomsen's 

fir s t paper (Thomsen, 1970). 

Chapter 5, corresponding to Thomsen's second (1972) 

paper, gives the generalization of the above theory necessary 

to calculate effective elastic moduli as functions of density 

and temperature for the special case of hydrostatic prestress, 

but allowing arbitrary material symmetry. The specialization 

to cubic symmetry is given. 

Applications of the theory are qiven in Chapters 6 to 

10. 

In Chapter 6, an analysis of shock-wave data of MgO 

allows numerical evaluation of some of the differences be_ 

twe e n various equations, including Thomsen's (1970), a test 

of the thermal contribution to the pressure predicted by 

this theory, and a determination of the MgO equation of state. 

In Chapter 7 a large body of shock-wave and other data 

of Si0 2 is analysed to provide equations of state of stisho­

vite and a phase of about the density of coesite. The iden­

tificationof this phase requires some calculation and dis-
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cussion of the Si0 2 phase diaqram tn nne meqabar and several 

thousand degrAes Kelvin. 

Recent ultrasonic measurements nf the elastic properties 

of sodium chloride at simultaneously hiqh pressure and tem­

perature are analysed in Chapter 8 in terms nf the theory 

g iven in Chapter 5. This allows snme discussion of the 

accuracy of the thermal part of the theory. Combined with 

calorimetric ann thermal expansion data, these data are 

sufficient to prAdict the Huqoniot of sodium chloride. Com­

parison with Hugoniot data allows some discussion of the em­

pirical merits nf different strain measures and of the most 

advantageous methods of extrapolating such data to high pres­

sures. Using the Hugonint data as a constraint, the equation 

of state of sodium chloride is accurately determined to 300 

kilobars. 

Preliminary results are given in Chapter 9 of shock­

wave experiments on MgO which use a technique to measure 

elastic properties of substances under shock-compression. 

The analysis of these results requires a theory of the type 

given here to calculate elastic properties at high pressures 

and temperatures. 

rinally, in Chapter 10, the equations of state of MgO 

and Si0 2 determined in Chapters 6 and 7 are used as the basis 

of a discussion of the constitution of the earth's lower . 

mantle. 
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CHAPTER 2 

INVARIANT FINITE STRAIN MEASURES IN ELASTICITY 

AND LATTICE DYNAMICS 

Summary 

Some vagueness in the literature concerning the proper 

measures of strain which may be used in finite elastic strain 

theory and lattice dynamics is discussed. The requirements 

for strain-dependent quantities to be invariant under changes 

of frame of reference are briefly reviewed, and it is pointed 

out that the common practice of writing strain-dependent 

quantities explicitly in terms of the Lagrangian strain !:f. is 

sufficient, but not necessary, for them to be invariant. 

Invariance is assured if any nne of a class of invariant 

strain tensors is used for this purpose. The use of the 

non-invariant Eulerian strain tensor € in some applications 

has not usually led to difficulties because of the restricted 

situations which have been considered. Applications to more 

general situations would require the use of an inva,riant 

strain measure. An analo gous invariant strain tensor can be 

defined which reduces to the Eulerian strain tensor in the 

case of isotropic strain. 
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2.1 Introduction 

There seems to be some vagueness and ambiguity in the 

literature concerning the proper measures of finite strain 

which may be used in formulating theories of elasticity or 

lattice dynamics (Murna ghan, 1951; Toupin and Bernstein, 1960; 

Thurston and Brugger, 1964; Bru gge r, 1964; Thurston, 1965; 

Wallace, 1967; Born and Huang, 1954; Leibfried and Ludwig, 

1961; Ludwig, 1965; Thomsen, 1970). The common practice is 

to write expressions in terms of the "Lagrangian" strain, !J_ 

(defi ned below), with the comment that these expressions are 

thereby rend e red "rotationally invariant", and without any 

discussion of the necessity of this condition. The result 

is that it is easy to gain the impression that~ possesses 

some special property not possessed by any other strain 

measure. This is especially true, for instance, of Brugger's 

(1964) reference to the~ derivatives of internal energy, 

U, or Helmholtz free energy, A, as "thermodynamic elastic 

coefficients", and of Wallace's (1967) statement that U and 

A depend on the position in the current configuration only 

throuqh !J_ and the position in the initial configuration. 

Wallace goes on to assert that "this dependence is necessary 

and sufficient to insure rotational invariance" of U and A. 

It is easy to misinterpret this statement as implying that 

U and A must depend on 11- explicitly, when in fact rotational 

invariance is still assured if U and A depend on some strain 
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measure which itself depends only on!:/...· This point is trivial 

so long as one is content to use :!1. as a strain measure, but 

in some applications, such as geophysics, where large strains 

are considered, the differences between different strain 

measures are of practical importance (Thomsen, 1970; Murnaghan, 

1937; Birch, 1947) 

In the ge ophysical literature, on the other hand, the 

"Eulerian" strain, ! (also defined below), has been popularly 

used, due largely to the work of Birch (1947, 1938, 1952). 

The "Birch-Murnaghan equation" is derived by writin g the 

strain energy density as a third-order polynomial in §, 

and has been established as an empirically successful equation 

(Birch, 1947, 1938, 1952). The use of§_ deserves comment .in 

the prese nt context, since it doe s not, in fact, assure 

rotational invariance in general. This fact seems to have 

received little notice since the earlier work of Murnaghan 

(1937), apparently because his theory was immediately special­

ized to situations in which the invariance requirement was 

trivially satisfied (Murnaghan, 1937; Birch, 19A7, 1938). 

The question has recently been rai sed again by Thomsen (1970, 

1972) however, in the context of his work on incorporating 

some ge neral results of lattice-dynamics into the theory of 

finite strain. 

It is thus appropriate to point out that there exist 

two classes of strain tensors (Truesdell and Toupin, 1960, 
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sects. 32, 33), one consisting of tensors which are invariant 

under changes of frame of reference, and the other consisting 

of tensors which are not. Further, to every tensor which is 

not invariant (or "frame-indifferent" (Truesdell and Noll, 

1965 ) ) there corresponds a tensor which is frame- indiffer­

ent and to which the tensor reduces in some special situations, 

notably the case of isotropic st rain. The frame-indifference 

requirement has been fully discussed by Truesdell and Noll 

(19 65 , sects. 19, 26, 29) and a useful account is given by 

Mal vern (19 69 , sect. 6.7). A particular pair of strain ten­

sors has bee n discussed by Thomsen (1972). For the present 

discussion, some particular strain measures will be defined 

and the frame-indifference requirement briefly reviewed. 

2.2 Strain Measures 

A notation somewhat similar to that of Truesdell and 

Noll (1965) will be used. Attention will be confined to 

hyperelastic materials, i.e., those elastic materials for 

which a strain energy function e xists. Rectangular Cartes­

ian coordinates will be used, and initial and final con­

figurations will both be referred to the same coordinate 

frame. Denote the position vector of the initial position 

of a particle by ~ = (X1,X2,X3) and the position vector of 

the same particle after deformation by~= x1 ,x2 ,x3 ). Define 

the deformation gradient, F, by 
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(1) 

Indices i, j, etc., run from 1 to 3, and repeated indices 

are summed. F is assumed to have an inverse, which will be 

t r G r-1. dena ed by ~= _ = 
By the polar decomposition theorem (Truesdell and Noll, 

1965, sect. 23; Ericksen, 1960, sect. 43), [has two unique 

multiplicative decompositions: 

F::: fSU, F = V R (2) 

in which R is orthogonal and U and ~ are symmetric and posi-

definite. These are termed, by Truesdell and Noll, the LQ-

tation tensor, and the right and left stretch tensors, re­

specti vel y. From these can be defined the right and left 

Cauchy-Green tensors (Truesdell and Noll, 1965, sect. 23). 

(3) 

Some other stretch and strain tensors will now be defined, 

the analogous quantities defined, respectively, from g and V 

being carried in parallel. The inverses of C and 8 are 

b is the Cauchy deformation tensor (Truesdell and Toupin, 

1960, sect. 26). The Green-St. Venant strain tensor, £ 

(4) 
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(True s de ll and Noll, 1965, sect. 63), and its analogue are 

0= t(§-J.). 

E is the "La g rang ian" s tra in te nsor, ?). , discussed above. 

Corre spondin g to these, we have 

e = f(.!.- £) 

(5) 

( 6) 

d is the "Eulerian" strain tensor, e , discussed above. It 

i s a lso known as the Almansi-Hame l strain t e nsor. Th e anal-

ogou s s train t ensor~ was defined by Thomsen (1972) (his£). 

2. 3 Frame-Indiffere nce 

For a hyperelastic material, the Cauchy stress tensor, 

l• is g iven by (Truesdell and Noll, 1965, sect. 82) 

(7) 

where f is the density in the deformed configuration and 

cr( [) i s the strain energy function. Thermodynamically, cr can 

be identified with either the internal energy or the Helmholtz 

free energy. 

It is required that the constitutive r e lation (7) 

be invariant under change s of fram e of reference. 

It has been shown that this can be achieved by requiring 

cr\[.) to be "frame-indifferent", i.e., invariant under changes 

of frame of reference (Truesdell and Noll, 1965, p. 308). 
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Under a ge ne ral chan ge of frame of reference, the position 

vector x is transformed into ~*, where 

x"' = a -r Qx 
) ( 8) 

a is a constant vector and g is a constant orthogonal tensor. 

Takin g the gradient of (8) with respect to the initial posi­

tion !• and using the definitio~ (1) of [, it is seen that 

F transforms according to the relation 

QF -- (9) 

For ~([) to be frame-indifferent thus requires that 

a- ( ~ E) = ~ f f) . (10) 

Since Q is an arbitrary orthogonal tensor, we may take 

Q = R-1 = ~T, where R is defined by (2), and obtain (Truesdell 

and Noll, 1965, p. 308) 

crfE) = o-(Y) (11) 

i.e., the strain energy depends upon [only through the right 

stretch tensor U. Since the tensors £, £• f, and e are them-

selves functions of g, it follows that ~will be frame-indif­

f e r en t if it is a function of any one of these, or of any 

other such tensor which is a function of U. 

It is easy to see that this frame-indifference of ~ 

follows because the strain tensors g, £, etc. are themselves 
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frame-indifferent. Since F transforms according to (9), we 

see from the definition (3) that C transforms according to 

(12) 

so that C itself is frame-indifferent. It follows that the 

other tensors related to C are also frame-indifferent. 

The above result may be contrasted with that for V and 

the tensors derived from it. For instance, ~ transforms 

according to 

(13) 

so that 8 is not frame-indifferent. Defining C7 (~) = o- ([.), 

the requirement that 

($ ( §) (14) 

for arbitrary Q is just the requirement that the material 

described by ~(~) be isotropic (Truesdell and Noll, 1965, 

sect. 85). On the other hand, the requirement that 

QB ~..,..:: --- (15) 

is the requirement that the strain be isotropic (Truesdell 

and Noll, 1965, sect. 7). 

If the strain is isotropic, F is a scalar multiple of 

the unit tensor. In that case, rT = [., and all of the pairs 

of strain tensors defined in (2-6) are equal: s = c = r2 - ' 
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etc. 

2.4 Discussion 

Some general comments can now be made on the basis of 

the foregoing. The strain energy will be frame-ind~fferent 

if its s train-dependence is expressed in terms of one of the 

class of frame-indifferent strain tensors. Truesdell and 

Toupin (1960, sect. 32) have discussed the equivalence of 

strain measures, and they go on (ibid., sect. 33) to give 

examples of strain measures which reduce the classical strain 

tensor of the linear theory of elasticity for infinitesimal 
• 

deformations. Since, for many applications, strain-dependent 

quantities are expanded as a Taylor series in strain, this 

additional requirement is convenient in practice. The strain 

tensors £ and ~ (5, 6) are examples of this class of strains. 

Some more specific comments will now be made. 

The uniqueness of the pair of polar decompositions of F 

means that any one frame-indifferent tensor is a function of 

any other frame-indifferent tensor. This is the basis for 

the validity of Wallace's statement (1967), discussed earlier. 

In those cases where the Eulerian strain tensor, which is not 

frame-indifferent, has been used to describe isotropic strain, 

the correct generalization to general strain is through the 

tensor~, defined by (6), as has been pointed out by Thomsen 

(1972). 
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Murnaghan (1937) derived an expression for stress in 

terms of £ (his ~ ) but immediately specialized this to an 

isotropic medium to discuss applications. At the end of that 

paper he gives the expression for T in terms of E as 

(16) 

where cr.(£) = o-(E_). He also gives what he calls "the cor­

responding Eulerian equations" in terms of£ (his j): 

(17) 

where ~(£) = ~(E_). Thomsen (1972) uses, at one point, the 

closely related strain ~ (see equation 6) and the relation 

) 
(18) 

where o-1(~) = o-([). However, Thomsen, correctly, calls this 

a Lagrangian equation. The confusion of terms here should 

be clarified. In the sense that the frame-indifferent ten-

sors are functions of ~, which is defined with reference to 

the initial configuration, they are all "Lagrangian". Con-

versely, all of the non-frame-indifferent tensors are "Euler­

ian". Murnaghan's (1937) incorrect description of equation 

(17) as Eulerian was presumably due to the close relation of 

c to~· the frame-indifferent analogue of §..(see equation 6). 

Actually, Truesdell (1952, sect. 12) has pointed out that 

the terms "Eulerian" and "Lagrangian" are historically in-
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accurate, and has proposed, instead, the terms "spatial" and 

"material", respectively. 

Semantics aside, it is clear that all of the forms (16), 

(17), and (18) are frame-indifferent, and also that the strain 

~ is analogous to what is conventionally called the "Eulerian" 

strain, namely .Q. (or~). 

Birch (1947) developed expressions for the effective 

elastic constants of a medium of cubic symmetry under hydro­

static stress. His results are written in terms of both E 

and .Q. (his~ and f ~. That the expressions in terms of d 

are valid depends on the restricted situation which was con­

sidered and on the particular way in which they were derived. 

Firstly, Birch considered only strains which are a combina­

tion of an isotropic compression and a superposed arbitrary 

infinitesimal strain. These strains can be represented by 

a deformation gradient of the form 

F = F I + ~ (19) 

where F is a scalar, 1 is the unit tensor, and f is infin­

itesimal. From the definitions (3), we see that in this 

case 

(20) 
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while 

(21) 

To first order in [, (20) and (21) are the same . Birch then 

evaluated equation (17) for T in terms of£ to first order 

in f. The coefficients of the infinitesimal strains then 

yielded the effective elastic constants. The success of this 

procedure depends on having to go only to first order in [, 

since, to second order in [, Q is not frame-indifferent. 

In conclusion, the common practice of writing the 

equations of finite elastic strain o~ of lattice dynamics 

e xplicitly in terms of th e Lagrangian strain tensor~ is 

sufficient, but not necessary, to assure the frame-indiffer­

ence of those equations. Any frame-indifferent strain ten­

sor can be used for this purpose. The use of the non-frame­

indifferent Eulerian st\ain tensor £ in some applications 

has not usually led to errors because of the restricted 

situations which have been considered, but the extension of 

the se applications to more ge neral situations would require 

the use of a frame-indifferent strain tensor. 
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CHAPTER 3 

QUASI-HARMONIC FINITE STRAIN EQUATIONS OF STATE OF SOLIDS 

Summary 

Thomsen's "fourth-order anharmonic" theory, which ex-

plicitly evaluates thermal effects in finite strain equations 

of elasticity according to the fourth-order approximation in 

lattice dynamics, is reconsidered for the special case of 

isotropic stresses and strains. It is shown that the approxi­

mations made in the finite strain theory are independent 

from those made in the lattice dynamics theory, with the 

result that strain dependence may be described in terms of 

any frame-indifferent strain tensor, not just the "Lagrang-

ian" strain tensor, ,, and that the finite strain expansions 

may be taken to any order, not just the fourth. This result 

is valid for general stresses and strains. Illustrative 

equations are derived in terms of three strain measures, 

including ~ and the frame-indifferent analogue, f, of the 

"Eulerian" strain tensor, e. 

The reference state is here left arbitrary, 

rather than identifyin~ it with the "rest" state, a~ was 

done by Thomsen. This results in greater convenience in 

applying the equations. Not being restricted to fourth 
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ord Ar, the present equations do not depend for their appli­

cation on knowing the second pressure derivative of the bulk 

modulus. 
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3.1 Introduction 

In an important pair of papers, Thomsen (1970, 1972) 

has given a theory extending lattice dynamics into the do­

main of finite strain. Such a theory allows thermal effects 

to be explicitly accounted for at large stresses and in 

terms of a small number of parameters. However, Thomsen 

claims that such a theory can be written only in terms of a 

particular "Lagrangian" strain tensor,!/..., with the following 

reasoning. The "fourth-order" theory of lattice dynamics 

of Leibfried and Ludwig (1961) is based on a Taylor expan­

sion of the lattice potential energy,¢, in terms of atomic 

displacements which is truncated after the fourth-order 

terms. Finite strain equations of elasticity are based on 

a truncated expansion of the Helmholtz free energy, A, in 

terms of a strain measure (of which there are an infinity of 

possibilities). Since both microscopic thermal motions and 

a macroscopic homogeneous strain involve displacements of 

atoms, it follows, Thomsen argued, that in a theory which 

purports to describe both thermal and large strain effect~, 

the lattice dynamics and finite strain parts of the theory 

should both be based on expansions to the same order in 

terms of the same displacement measure, so that the same 

approximation is involved in each part of the theory. Thom­

sen (1970) concluded that~ was the appropriate measure. 

It is intended in this chapter to establish two main 
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points concerning this argument. The first point is that 

Thomsen employs a concept of consistency between the thermal 

and fi nite strain parts of the theory which is unnecessarily 

restrictive. Finite strain theory makes no assumptions 

about inter-atomic forces and no predictions about thermal 

effects. However, thermal effActs can be incorporated 

implicitly into this theory by supposing the ''constants" 

which occur in it to be temperature dependent. The role of 

the lattice dynamics theory is to make this temperature 

dependence explicit and specific. It is unreasonable that 

the generality of the finite strain part of the theory should 

be limited in this process, however approximate and limited 

the thermal part of the theory may be. In this chapter it 

will be pointed out that the approximations made in the two 

parts of the theory are in fact independent. If the approxi­

mations in the thermal part of the theory are poor, then the 

effect is to limit the range of temperatures over which the 

theory is useful. Within this temperature range, the finite 

strain equations are limited only by the approximation made 

in the truncation of the free energy expansion. A corollary 

of this is that the finite strain part of the equations 

need not be limited to being in terms of ~· 

The second main point is that even if Thomsen's more 

restrictive concept of consistency is adopted, ¥ is not the 

appropriate strain measure with which to describe finite 



26 

strain effects. Thomsen (1970) transforms his expansion of 

¢in terms of atomic displacements (his equation 17) to one 

in terms of ~ (his equation 20) but fails to note that the 

latter expansion involves a different approximation than the 

former since ~ does not depend linearly on atomic displace­

ments. 

The appropriate strain measure would have been Thomsen's 

''e" which is linear in displacements. However, the use of - , 
~ rai~es special difficulties. The common practice (eg. Born 

and Huang, 1954; Leibfried and Ludwig, 1961), which Thomsen 

(1970) followed, is to transform the expansion of ? to be in 

terms of ~· since ~ describes only pure strains, and, further, 

since this renders f invariant under changes of frame of 

reference (murnaghan, 1937; Truesdell and Noll, 1965; see 

also Ch~pter 2). If p is left in terms of ~, these require-

ments are not automatically accounted for in general, and 

additional explicit restrictions on the equations must be 

imposed (Leibfried and Ludwig, 1961). 

It has been pointed out in Chapter 2 that the use of 

~ is sufficient to· assure frame-indifference of p, but that 

it is only necessary to use any strain measure which is a 

function of ~only. This class of strain measures has been 

discussed in Chapter 2. 
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In this chapter, the incorporation of lattice dynamics 

into finite strain theory is reconsidered in the light of 

these points. It is necessary to go over the derivation of 

the equations in some detail in order to discuss these points. 

In this chapter, only isotropic stresses and strains will be 

considered, so that the rest of the treatment will be simpli-

fied and the essential points at issue will not be obscured. 

Equations in terms of three strain measures will be 

derived here: ~, ~, and f, the invariant analogue of the 

Eulerian strain tensor e (Thomsen, 1972; Chapter 2). The 

choices of ~ and f serve to relate this to previous work 

and as examples of the infinity of possible invariant strain 

measures. The thermal contributions take a simpler form 

when expressed in terms of e. 

A further difference from Thomsen's equations is that 

the reference state will here be left arbitrary, rather than 

identifying it with the urest" state as Thomsen (1970) did. 

The parameters of the equations will then be related to 

measured quantities, such as the bulk modulus and its pres-

sure and temperature derivatives, in the reference state. 

Two inconvenient aspects of Thomsen's (1970) equations are 

thereby avoided. Thomsen's procedure requires the solution 

of six simultaneous non-linear algebraic equations (his 

equations 40) in order to determine the rest-state parameters 

from room temperature data • . Further, Thomsen's insistence 
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on taking the finite strain equations to fourth-order means 

that the second pressure derivative of the bulk modulus is 

required, but this quantity has been measured for very few 

substances. Without this quantity, or some estimate of it, 

Thomsen's (1970) equations (40) cannot be evaluated nor his 

theory applied. In the present procedure, the reference 

state can be identified with that of the data, and the para­

meters evaluated with simple independent equations. The 

equations need only be taken to the order appropriate to 

the data. 

3.2 Strain Energy and Lattice Energy 

Consider, first, the point of view of finite strain 

theory. A hyperelastic material is defined (Truesdell and 

Noll, 1965, sect. 82) as an elastic material for which a 

strain energy function can be defined. This strain energy 

per unit mass,~, is, of course, a function of strain. To 

specify strain, and, at the same time, satisfy the require­

ment of invariance under changes of frame of reference, we 

may use any of the "invariant'' class of strain tensors dis­

cussed in Chapter 2. For instance, consider the strain ten­

sor e defined by (6) of Chapter 2, which is the invariant 

analogue of the commonly used ''Eulerian" strain i• It is 

convenient, for the remainder of this discourse, to use the 

notations of the geophysical literature or of Thomsen (1970, 
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1972), since it will be mainly these sources which are re-

ferred to henceforth. Thus, instead of ~' define f as follows. 

If ~ is the position vector of a point in the medium in a 

reference configuration and ~ is the position of the same 

point in some other configuration, then the displacement 

gradient, f, is defined through the relation 

X = fx · -- ) ( 1) 

The symmetric strain tensor E is then defined (Thomsen, 1972) 

as 

(2) 

In equations (1) and (2), the indices i,j,k, denoting com-

ponents with respect to rectangular Cartesian coordinates, 

run from 1 to 3, and repeated indices are summed. 

The Cauchy stress tensor, I• is given in terms of ~and 

f by (murnaghan, 1937; Truesdell and Noll, 1965, sect. 84) 

(3) 

where ~is the density of the material and l is the unit 

tensor. If ~is identified with the H~lmholtz free energy 

per unit mass, A, then the derivative in (3) should be taken 

isothermally, and the stress along an isotherm results; if 

~is identified as the internal energy per unit mass, U, 

then the derivatives in (3) should be taken isentropically, 
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and the stress along an isentrope results. 

In order to apply (3), we require an explicit functional 

dependence of <ron E. Since E is small when the "deformed" 

confi guration is close to the reference configuration, we may 

expand ~(f) as a Taylor series in E: 

(4) 

where Ofj = (~o-/~Eij), etc., and superscript "o" denotes 

evaluation at the reference configuration. Then aiJ., dJ "kl, lJ lJ 
etc ., are parameters, to be determined empirically, which 

characterize a given material. 

Now consider the point of view of lattice dynamics. The 

He lmholtz fr ee energy per unit mass, A, of a vibrating atomic 

lattice is (Leibfried and Ludwig, 1961) the sum of the 

vibrational energy per unit mass, As' and the static potential 

energy per unit mass,~. of the lattice when every atom is 

in its ~position: 

(5) 

The bar will henceforth denote evaluation in the mean con-

figuration. For the moment, consider just the form of¢. 

To describe the dependence of ~ on the instantaneous 

position of each atom, Thomsen (1970) gener~lized his dis­

placement gradient ~· where (his equation 1) 
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)(·-'X·== e ··X· 
L ' lJ J 

(6) 

as follows (his equation 18): 

(7) 

Here m = (m1 ,m2 ,m3 ) defines the u~it cell, and~ specifies 

the atom in that cell (Leibfried and Ludwig, 1961; Thomsen, 

1970). One could similarly generalize f and E: 

~ X~ F~ !1 
,.., 

- x-
X~ - ~ - ~~ /';( 

l ... ' J J 
(8) 

,..... 

i ( f1 !!1 M1 ~ F%; ~ M ~) r=- = ~ + f ~ 1:' - 11: ~ • 
J J ... t I< 

' 
( 9) 

For convenience, this notation may be contracted by replacing 

( ~, Ji• i ) b y C(, ( !!!. , ;«• j ) b y f, e t c • serve as 

well as e to describe the positions of atoms in the lattice, 
~fl 

we could expand f in terms of either of these; for example 

the generalized analogue of (4) would be 

(10) 

where P, 0 
, etc., are to be interpreted as the E derivatives 

K~ ~~ 

of ~ in this context. 

Although (10) is a valid representation of the depend­

ence of f on atomic positions, it does not give pin a form 

suitable for solving the equation of motion of the lattice, 
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which is, of course, the subject of the theory of lattice 

dynamics. In this theory, ? is expanded in terms of atomic 

di s placeme nts, u~ = x«- X~ (see Thomsen, 1970, equation 17): 

¢ = (11) 

If this expansion is truncated after the second order, the 

equation decouples into that for a system of independent 

harmonic oscillators - the modes of vibration of the lattice. 

If up to fourth-order terms are retained, then a perturba-

tion scheme may be used to relinearize the equation of motion 

(Leibfried and Ludwig, 1961; Ludwig, 1967). 

Now, from (7) we see that, since the reference position, 

is a constant, e is linearly related to uK. 
fl((J 

Thus, in 

( 1 1 ) , the u"" can be replaced by XI! e~ef1, etc., and an expan-

sion of r! in terms of e«f$ results (see Thomsen, 1970, aqua-

tion 19), which is identical to ( 1 1 ) • In particular, if (11) 

is truncated after the fourth order, say, then the expansion 

of (J in terms of e~,4 truncated after the fourth order is 

exactly equivalent. This is not true if ~ is expanded in 

terms of any displacement measure which is non-linearly re-

lated to uc~e, such as ~,<for EKtJ. Thus, (10) truncated after 

the fourth order involves a different approximation than does 

(11) truncated after the fourth order. This point ~as 

neglected by Thomsen (1970) when he transformed (and special­

ized) from his expansion (19) of ~ in terms of e to his T tcf! 
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expansion (20) in terms of the Lagrangian strain ~· which is 

related (non-linearly) to ~ through 

(12) 

For the purpose of deriving strain-dependent quantities 

from the lattice theory which are invariant under changes of 

frame of reference ("frame-indifferent"), the equations are 

usually transformed from ~- (or ~-) dependence to ¥-depend­

ence in this manner (eg. Leibfried and Ludwig, 1961, sects. 

8, 11; Born and Huang, 1954). Leibfried and Ludwig (1961, 

sect. 2) have considered the restrictions on the u~ deriva­

tives of f imposed by the frame-indifference requirement. 

According to the discussion of Chapter 2, restrictions will 

also apply in the case of a homogeneous strain, described 

by ~· and these will be satisfied only in such special cases 

as isotropic strain or an isotropic medium. Thus, in a 

limited sense, the expansion (11) can serve as the basis of 

both lattice dynamics and finite strain. 

Another reason for using other than ~ or ~ as displace-

ment measures, of course, is that the truncated expansions 

in terms of these may not be a suitable functional form. It 

has been established that expansions in terms of the Eulerian 

strain, ~, which is identical to E of (2) in the case of 

isotropic strain (see Chapter 2), are empirically preferable 

to expansions in terms of~· for instance (Birch, 1947, 1952). 
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To conclude this section, the frame-indifference re-

quirement, and possibly empirical preference also, requires 

that a strain measure other than ~ be used for describing 

strain dependence in general situations. The displacement 

gradient ~ can be used only for special applications. The 

consequences of such a transformation will be given below. 

3.3 Vibrational Enerqy and the mie-Gruneisen Equation 

The pertinent parts of the theory of anharmonic lattice 

dynamics will be briefly reviewed here, so that the approxi-

mations involved can be made explicit for comparison in the 

next section with the approximations made in finite strain 

theory. The problem of anharmonic lattice dynamics has been 

reviewed at length by Leibfried and Ludwig (1961) and Ludwig 

(1967), who give a general treatment of the "fourth-order" 

case, i.e., the case when terms up to the fourth order are 

retained in the expansion (11) of fin terms of u or the 

equivalent expansion in terms of e. The Hamiltonian of the 

lattice in this case can be written 

(13) 

where Ek is the kinetic energy, ~ = f~~e~~· etc., and H0 = 
Ek + f/;o + ¢2 is the Hamiltonian in the "harmonic approxima­

tion", i.e., when ~is truncated after the second order term. 
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The equation of moti on derived from (1 3 ) is non-linear be­

cause of the terms ¢3 and ¢4 • In order to re-linearize it, 

it is necessary to assume that ¢3 and ¢4 are small, so that 

a perturbation treatment can be used. The assumption made 

by Leibfried and Ludwi g is, in effect, that 

(14) 

(15) 

where S is small co mpared to unity. For a given mat e rial, 

for which¢ is fixed, the~:~, etc ., are fixed and (14) and 

(1 5 ) l imit the maqnitude of the e~~· i . e., (14) and (15) 

assume that th e amplitudes of th e thermal motions of the 

lattice are not too larqe. 

Leibfried and Ludwig (1961) th en show that the vib ra-

tional e ne r gy is given by 

where 

El ""-' ~'t E 
'2. 

E 
~ 

'V ~-z E 
2 

(17) 

E ,.., ~-...E 
' 2. 
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E2 is th e " qua s i-h a rmonic" vibrational energ y, i. e ., the har­

monic vibra tional en e r gy 

E = 2. 
(18) 

but with the eigenfr e qu e ncies (A). dependent on strain. In 
J 

(18), T is temperature, k is Boltzmann's constant,~ is 

Planck's con s tant and w. is the frequency of the jth mode of 
J 

vibration of the lattice. The summation is over all modes 

of vibration, of which there are 3N, where N is ·the number 

of atoms in the lattice. 2 Thew . are proportional to a linear 
J 

comb i nation of the second derivatives of ~ with respect to 

displacement, evaluated at the ~ positions of the atoms. 

Thus in the harmonic approximation, the w. ere constants 
J 

and E
2 

depends only on T. In the fourth-order approximation, 

· E
2 

depends on 

both temperature and strain. Expressions for E3 , E4 and E1 

are g iven by Leibfried and Ludwi g (1961), bu t for the pre-

s e nt we ne ed only note that E3 and E
4 

are temperature de­

pendent, while E
1 

is not. 

If we use equation (16) for the vibrational energy i n 

equation (5) for the Helmholtz free energy, then we include, 

approximately, both the strain and the temperature depend-

ence of A: 
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the particular strain measure is deliberately left unspeci-

fied at this stage. By taking successive strain derivatives 

of A, one obtains the stress (Cf. equation 3) and the elastic 

constants of second, third, etc., orders. By taking tempera-

ture derivatives of A and its strain derivative, one obtains 

the entropy, internal energy, specific heat, etc. 

The concern of this paper is primarily to derive ex-

pressions for the pressure as a function of strain and temper-

ature in the case of isotropic stresses and strains. There-

fore, we will proceed directly from (19) to an expression 

for the pressure, before considering in detail the expansion 

of (19). This will show explicitly the Mie-GrUneisen form 

of the equations derived later (Thomsen, 1970). 

In the case of isotropic stresses and strains, equation 

(3) reduces to 

p = (20) 

where P is pressure and V is (specific) volume. We will 

consider here just the isothermal pressure. Then we may 

identify ~in (20) as the free energy A given by (19), and 

the derivative in (20) is taken isothermally. From the 

expressions given by Leibfried and Ludwig, for £ 3 , £4 and £
1

, 

it can be shown (Leibfried and Ludwig, 1961, sects. 7, 10) 

that 
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(21) 

i.e., that these derivatives are third order in~. Thus they 

may be neglected, in accord with the perturbation expansion, 

and the fourth-order expansion of ?• which retained only 

terms out to second order in b· Thus, using (16), (19) and 

(21) in (20), we obtain 

p li 
dV ( ~ Ez) 

- ';)V T (22) 

In this approximation, only the "quasi-harmonic'' contribu-

tion, E2 , to the vibrational energy enters the pressure. 

In order to rewrite (22), we note the following rela-

tions. The internal energy, U, is defined thermodynamically 

as 

U=A+TS} 

where 

s :: - ( ~) 
v 

is the entropy. Using equation (5), we may identify the 

vibrational contribution, U , to U as 
s 

(23) 

(24) 
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= As- T S (25) 

( 
) E 

~ ;)~~ . ) ) 
j J I 

(26) 

it can be shown (Leibfried and Ludwig, 1961) that U is the 
q 

contribution to U
9 

(and hence to U) arising from E2 , i.e., 

it is the quasi-harmonic vibrational contribution to u. 

Now, defining )'and ~ as 

...J_ 

~ -'- ~ 
ol~w · 

0' u·o· '\.(.' 
J 

(27) = ut. = - u dkV ) J J J 
J ~ J 

we can write (22) as 

p -~ ~ 
d~w· ( J E2 ) 0( {1) •' +-:: 

ei.V d~Wj 
J 

- -~ +- ..L-~ a·u.· -t- 0 {S1
) v J J J 

- -1& r ~ utt- + 0 ( S1
) • (28) 

The last form of (28) has the form of the "Mie-GrGneisen 

equation", but we may note that it is only an approximation 

to the Mie-Gruneisen equation, which is 
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p + (29) 

The Mie-Gruneisen equation is derived from the assumptions 

that Us depends on V only through the ~, and that all of the 

w . have the same volume derivative. The quantity 1" in (29) 
J 

is the "Gruneisen parameter", defined, in accordance with 

this approximation, as 

d&w 
cl~V 

(30) 

where w is any w.. Comparison with (27) shows that Ymay be 
J 

ide n t if i e d as a me an of the "mode G rune is en p a ram e t e r s" 0' . • 
J 

The fourth-order approximation and the approximations 

made in (14) and (15) thus lead to a quasi-harmonic equation 

of state. The additional 11 Gruneisen" approximation 

yields a Mie-Gruneisen type of equation of state. 

3.4 Finite Strain Equations of State 

We now have, in (19) and (28), expressions for the free 

energy and the pressure which include both the static and 

vibrational contributions, and in which the vibrational con-

tribution is evaluated to within the approximations described 

above. Further, the strain dependence of both the static 
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ann vibratinnal cnntributions is implicit in these equa-

tion s , the latte r throuqh the strain dependence of the wj's. 
Th e ta s k of this section is to make this strain dependence 

explicit, keepin q in mind the limitations imposAd by the 

approximations already made. 

I s otropic s train is specified in terms of V, the 

specific volume. In terms of V, the strain measures to be 

used here are 

e .. -;:. e S ·· · e= (VI V
0
)'

1
' - I I 

~J LJ ) 
( 31 ) 

(; .. :. 
~) 

E &.· · 1-J ) E = ~ [1 - (v ;v0 r213
] 

) (32) 

1''= "1~ " 1 = -i:. [(v /Vo)213 
-1 J , lJ LJ (33) 

where V is the specific volume in the reference confiquration. 
o 

The strain dependence of the vibrational terms E
2 

and 

Uq is through the w.;, so it is made explicit by writinq, 

for instance, 

where g . and 
J 

here because 

this case. 

(34) 

h . are constants. The square of w· is expanded 
J J 

a simple interpretation of g ., and h . follows in 
J J 

The W~ are linear combinations of the second 
J 

derivatives of f• with re spect to displacements, evaluated 

at the mean confiquration (Leibfried and Ludwiq, 1961, p.304). 
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Since e is linear in displacements (see equation 6), it 

follow s from the definition s of g. and h . in (34) that they 
J J 

are, re s pectively, linear combinations of the third and 

fourth derivatives of¢, with resp ect to displacement s , 

evaluated at the me an configuration. Insertion of (34) into 

the de finition (27) of 71. leads to an expression for the 
J 

strain dependence of as: 

7 . ::: _ ( ' + e ) ( !:lj + h j e + . . . ) 
J (35) 

If th e Gruneisen approximation is extended, and it is 

assumed that all of the q. and h . are the same, the volume 
J J 

depend e nce of 7f is 

0 ::: (t-+e)f9 +he + ... J 
G(14-9e + -the 2o~- .. . ) 

(36) 

If analogous expansions in terms of~ and E are made, 

analogous expressions are obtained: 

= ( c.J t) 0 ( , +- 9 1/ E + t h II E l. + . . . ) ' 

( I +2 '1) ( 9' -t- h I '1_ + - - ·) 

~(t -t 9'1_ -t -t I-,',_'+~ ... ) 

(35a) 

(35b) 

(36a) 



It is easy to 

~'= 

h'= 

h" = 

43 

( I - 2. ~) ( 9 " +- h 
11 

£ + ~ · • ) 

6(1+ 9"£ + t h"E~+~ . . ) 

show that 

,, - 9 fj - ' 
h-9 ' 
h + 3' . 

Following a procedure similar to that 

equation(28), we can obtain (Leibfried and 

( d u, ) ~ d ~ wJ· { ) u2 ) 
= ;a;:v )~w· r ) .e.,.._ V T J ) 

- - L ¥· ( U · -I c) - • J J J 
J 

: - ¥(Ut- TCt) 
' 

(36b) 

(37) 

used in deriving 

Ludwig, 1961) 

(38) 

where the last step also requires the Gruneisen approximation, 

and C =~c. = ~(du ./~T)V is the quasi-harmonic contribution 
q J J J J 

to the specific heat at constant volume. Using these 

results, and equation (31), the expansion of E
2 

in terms of 

e, for example, is 

. . . . (39) 
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We may nnw use equation (39) for E
2 

and the expansi on of f 
in terms of ~ in equation (19) to obtain an expansion of A 

in terms of e. If this expansion is taken to fourth order 

and substituterl into equation (20), we qat, for the pressure, 

using equation (31), 

(40) 

where 

Cl.o = (#)0 +- { 9U'l.o (40a) 

a., ':: {~) +- ~(2h -9~Uq,- t. 92.-TCtto d ez. 0 I (40b) 

~J = f(~~)o + . . . 
(40c) 

ctq.. :::. J,(~) 
6 delf + · - ·. 

0 (40d) 

Equations (40) give the equation of state in the desired 

form - namely, the pressure as a function of strain and 

temperature. Before analogous equation in terms of ~ and E 

are given, the truncation of the expansion in (40) will be 

discussed. 

The relative smallness of the thermal contributions 
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mean s that they need not be carried for as many terms as the 

static contributions. Con s ide r, for instance, equation (40b). 

At hi gher t em perature s than the Debye temperature, Uqo is 

approximately linear in T, and C is approximately constant. 
qo 

The temperature is the macroscopic expression of the mean 

thermal vibration amplitude (temperature is proportional to 

energy which is proportional to amplitude squared, classic­

ally). The presence of h, involving fourth derivatives of 

p, and of g2 (q involves third derivatives of¢) inrlicates 
2 2- 2 

that these thermal terms are o(£ ) relative to (d ~/d e ) -

r ecall that S sp~cifies the magnitude of ; 3 and ¢
4 

relative 

to p2 , in effect. Similar arguments establish that the 

thermal contributions to subsequent terms (a 2 , a 3 , ••• ) are 

O(S 2 ) relative to the static contribution (the presence of 

an arbitrary factor in a
0 

depending on the choice of the 

reference state complicates consideration of this term). 

Thus, for instance, terms to O(e3 ) are included in (40), so 

2 
thermal terms to O(e6 ) need only be retained. In general, 

the expansion of the thermal contribution can be truncated 

two terms earlier than the expansion of the static contri-

bution. 



45b 

Equation (40) can be viewed from two slightly different 

viewpoints. On the one hand, it gives the pressure in two 

parts - that arising from the static lattice potential, and 

that arising from the lattice vibrations (Cf. the mie­

GrUneisen form, equation 28). One would thus expect it to 

be a reasonable approximation between absolute zero and some 

finite temperature. (Note that because of "zero point" vi­

brations, some approximation is involved even at absolute 

zero.) On the other hand, equation (40) has exactly the 

form which would result from expanding the strain energy 

function,~, to fourth order in e without considering ex-
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plicitly any temperature dependence. If o- is interpreted 

as the free energy at a certain temperature, then equations 

(40a-d), in effect, give, approximately, the temperature 

dependence of the coefficients in the expansion of ~at that 

temperature. Equation (40) could thus be expected to be a 

reasonable approximation within some range of temperatures 

about that temperature. (It should be remarked that since 

the approximation is poorer at higher temperatures, this 

range of temperatures will be smaller at higher temperatures.) 

From either point of view, the effect of the approximations 

made in the solution of the lattice dynamics is to limit the 

range of temperatures over which equation (40) is a reason­

able approximation. This is in accordance with the assump­

tion, implicit in (14) and (15), that the amplitudes of the 

thermal motions are not too large. On the other hand, the 

truncation of the expansion of A in terms of strain implies 

the assumption that the strain-induced displacements are not 

too large. The truncation of the expansion of A in terms of 

e after the fourth order in the derivation of (40) is coin­

cidental (it was done for empirical usefullness and for com­

parison with Thomsen's equations). If one wished to consider 

very large strains, then a different (or higher-order) form 

of A (or?) might be required, but if, at the same time, 

only a limited range of temperature needed to be considered, 

then the "fourth-order" approximation to the vibrational 



47 

effects might be quite sufficient. Hence, within the re-

strictions impo~ ed by the invariance requirement, any form 

may be assumed for A (or¢), and the fourth-order theory of 

lattice dynamics may be used to evaluate approximately the 

vibrational (or thermal) effects in the resulting finite 

strain equation. 

A "Lagrangian" equation of state can now be derived 

from (40) by using equations (31) and (33) to relate deri-

vatives with respect to~ to derivatives with respect to e. 

Retaining up to fourth-order terms, the result is 

(41) 

where 

(4la) 

(4lb) 

(4lc) 

(4ld) 



48 

A similar procedure, using equations (31) and (32), 

yields the fourth-order "Eulerian" equation (recalling that, 

for isotropic strain, Ei . = ~i . = E& .. ): 
J J lJ 

(42) 

where 

co - (~)0 +- i <:J u,_o (42a) 

c, - (ft~) .L ( I/' ) U - -.J-:/TC (42b) - + 4- ~ -9 .,~ lf- t_O 

c% a~ = ).. J +-'L.c,£ v - · - (42c) ) 

c'J (~) 7; d Sif-
0 

t- ___ (42d) 

Before some further remarks about these equations are 

made, in the next section, the parameters entering these 
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equations will be related to quantities which are commonly 

(or p~tentially) determined experimentally. By successive 

differentiation of equation (40), the isothermal bulk modulus 

Kr = -V(~P/~V)T' and its isothermal pressure derivatives, 

K~ = (aKr/~P)T, etc., can be obtained in terms of the a's. 

Evaluating these and equation (40) at e = O, we can solve for 

the a's in terms of P
0

, K
0

, etc., where the subscript "o" 

denotes evaluation at e = 0 and the subscript "T" is dropped 

for now, obtaining 

(43a) 

(43b) 

(43c) 

(43d) 

Similarly, from equations (32) and (33), 

bo = -3 V0 Po , (43e) 

b, -= - "3 Vo (- 3 K0 + 3 Po), (43f) 

b'1. ::. -3Vo {!t KoK:- f Po)) (43g) 

b, :: -3 Vo [ -1 K: K ;' - f Ko I<': ( K: + r) 

+ "t Ko + ~ . ~]' (43h) 
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(43k) 

(43m) 

(43n) 

- !3:2- I< -t- !.EE P. J ~ 0 2 0 • (43p) 

To obtain g and h, we first differentiate equation (37) 

for and solve for g and h, obtaining 

(44) 

(45) 

C(0 can be obtained from the thermodynamic identity 
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?{ :: 
) 

(46) 

and the volume derivative of ~is given by the identity 

(Bassett et al., 1968) 

(
)1-..Y) = 
d .t.A v -r I +- &..,.. _ K: (J~Cv) 

, - J~VIJ 
(47) 

where 

$ - - _, (~) 
T - ()C K,.. d T p • 

(48) 

In these equations, CV is the specific heat at constant vol­

ume and o{ = ( ~V/dT) /V is the volume coefficient of thermal 
p 

expansion. 

Equations (43) to (48) determine the six equation of 

state parameters V
0

, a 1 , a
2

, a
3

, g and h in terms of the six 

laboratory quantities V K K' K" o<: and (dK/cH) • P o' o' o' o' p o . 

and a are determined by V and g through (40a) and (43a). 
0 0 

The procedure for determining the parameters is as 

follows. Assuming that V , K , K', K", ~and (~K/~T) are 
0 0 0 0 p 

known at some temperature T
0 

and zero pressure, then g and h 

(which are temperature independent) and a
1

, a 2 and a 3 can be 

evaluated, using (43-48), at T • This serves to define the 
0 
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reference state as P = 0, T = T , V = V • Then P (T ) = 0 = 
0 0 0 0 

a
0

(T
0
). Finally, a

0 
and a 1 , which specify the temperature 

dependence of the equations of state (40), (41) or (42), can 

be evaluated at any temperature Tusing (40a) and (40b): 

a.o(;)::: ao(To) 1" { ~[U~o(T) - U'lc(To)]) (49a) 

a., (T) :: ct., Cro) + t (:th-CJ'L.) [ u,_[r) - u'l.,{To) J 
t ')'L. [' c~() (T) - To c'lD {To)] . (49b) 

Of course, in this procedure, U and C must be known 
qo qo 

or estimated as functions of temp e rature. For many applica-

tions, the Debye or Einstein models can be used to estimate 

these. These r equire the empirical input of the character-

istic t e mperature of the solid. If more extensive empirical 

input of U and C is desired, the specifically anharmonic qo qo 

contribution to tHe U and C must be subtracted before such v 

data are used (Leibfried and Ludwig, 1961). This point is 

discussed further in the next section. 

Illustrative numerical applications of the equations 

derived in this section are given in Chapters 6 and 7. 

3.5 Discussion 

Firstly, some further comments on the approximations 

used in the derivation of these equations will be made. 

Equations (40), (41) and (42) are all derived from 
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fourth-order expansions (in terms of the appropriate strain) 

of the free energy. According to the discussion of the pre-

vious section, however, these expansions can, in general, 

be taken to any order. For example, if the "Eulerian" equa-

tion is truncated after the third-order term, and P is assumed 
0 

to be zero, the well known ''Birch-murnaghan" equation 

(murnaghan, 1937; Birch, 1938) results. The contribution 

of the present theory is to give, approximately, the explicit 

temperature dependence of such finite strain equations. 

The "mie-GrUneisen approximation" was invoked at several 

points in this derivation. Strictly,_ such a strong assump-

tion is not necessary. If we were to follow the procedure 

used in deriving the mie-Gruneisen form (28) of the equation 

of state, then we would define, in (38), another mean of the 

derivatives of the w ., and the corresponding summations could 
J 

thus be replaced. In general, however, these means bear no 

simple relation to each other. In the mie-Gruneisen approxi-

mation, all of the quantities being averaged are identical, 

and this difficulty is removed. An alternative, weaker 

assumption, discussed by Leibfried and Ludwig (1961), is to 

replace the means of these derivatives with the derivatives 

of the mean of thew~, which can be fairly easily calculated 
J 

from lattice models. Evidently, this approximation may be 

reasonable at very low or very high temperatures (relative 

to the Debye temperature), but will be poorer at intermediate 
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temperatures. We see, for instance, that this approximation 

leaves Y independent of temperature. At high temperatures, 

¥is observed to be fairly constant, but below the Debye 

temperature it usually becomes temperature dependent. 

The vibrational terms given here contain only the quasi­

harmonic contributions to the internal energy and the specif­

ic heat, but in the fourth-order theory of lattice dynamics 

there are additional contributions to these quantities from 

the terms E3 and E4 (see equations 16 and 23). To apply 

these equations in a manner fully consistent with the fourth­

order approximation, while making maximum use of available 

data, one should therefore evaluate the contributions from 

E3 and E4 and subtract them from measured values of the in­

ternal energy and specific heat to obtain the quasi-harmonic 

contributions. However, the contributions from E3 and E4 

are difficult to evaluate (Leibfried and Ludwig, 1961), so 

in practice it is much simpler to assume that the quasi­

harmonic contributions approximate the measured values. This 

is an approximation in the vibrational terms in addition to 

the fourth-order approximation, so it seems preferable, if 

the equations are applied in this way, to refer to them as 

"quasi-harmonic equations of state". 

The relation of Thomsen's (1970) equations to those 

given here should be clarified. Thomsen's equation (40) 

is analoqous to the present equation (41), in terms of~' 
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truncated after the fourth-order term. The only substantial 

difference is that the reference state has not been speci­

fied here, whereas Thomsen identified it with the stress­

free rest state of the lattice. From the point of view of 

lattice dynamics, the latter is the natural reference state, 

but if the present equations are viewed as finite strain 

equations in which thermal effects are (approximately) 

explicitly included, then the reference state is arbitr~ry 

(with the qualification that the approximation is poorer, 

further from the rest state). Considerable convenience 

accrues in some applications from identifying the reference 

state as that at which experimental data are available, 

since Thomsen's (1970) set of six simultaneous non-linear 

equations, relating his parameters to experimental quanti­

ties, is thereby avoided. 

The expressions (36), (36a) and (36b) for Y given here 

have a certain arbitrariness. It would be possible, for 

instance, to expand them to appropriate order in strain, or 

to do as Thomsen (1970) did, i.e., by analogy with the 

pressure equation, to retain the factor arisinq from the 

volume differentiation and expand the remaininq quotient. 

Thomsen's expression (43) for~, apart from the reference 

state, is 

(50) 
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where A= -(h1 
- g

2
)/18, which could be obtained from (36a). 

In principle, there is no reason to prefer any of these 

forms over the others, but some trial calculations indicate 

that equations (36~,(36a) or (36b) are less likely to give 

negative values of ~at large compressions than (50) or its 

analogues. 

Finally, some comments on the capabilitie s of the 

present theory. Thomsen (1972, p. 367) pointed out that 

althouqh this theory predicts that the elastic moduli (in 

the present case, K) are linear in T at high temperature and 

at constant volume, this does not imply linearity at cons-

tant pre s s ure . Thus, measured non-linearity with T of 

elastic moduli, taken at zero pressure, does not imply that 

a hiqher order thermal theory is required. However, Thomsen 

(1970, p. 2009, 2010; 1972, p. 370) qoes on to claim that 

non-zero values of ('~ 2 c A /d P d T ) , where c is an e 1 as t i c 
-~ ~~ 

modulus, do require a higher order theory for their descrip­

tion. It has been argued here that the Mie-Gruneisen 

equation is valid at arbitrary volumes; therefore, an arbit-

rary number of derivative s may be taken, and the thermal 

contribution will be included in these, although it will be 

0($ 2 ). Thus, thermal contribution to all pressure derivatives 

will r esult from this theory. Of course, the predicted 

value of the temperature coefficient may not agree with the 

measured values, but the mere existence of a non-zero 
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temperature cnefficient is nnt sufficient qrnunds fnr 

requiring a higher order thermal thenry. 

Similarly, a nnn-zero value of K~ does not necessarily 

require a fourth-order 8Xpan s ion in strain. for instance, 

a third-order expansion in e, so that a 3 = O, implies, from 

(43d), 

K K '' 0 0 -K K -1 --/( I ) 2.. 
0 0 'I } (51) 

which is not zero, in general. Of cours e , this ma y not give 

a suitable value of K~, in which case a fourth-order 

expansion in strain, or a third-ordAr one in t e rm s of a 

more suitable strain measure, i9 required. 
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CHAPTER 4 

ISENTROPES AND HUGONIOTS 

Summary 

Expressions are obtained for isentropes and Hugoniots 

in t e rms of the same parameters as entered the isothermal 

equations of state of the last chapter. The isothermal and 

isentropic bulk moduli and their first and second pressure 

derivatives are also related in accordance with the fourth­

order approximation of lattice dynamics. 
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4.1 Introduction 

Since expressions were obtained in Chapter 3 for the 

Helmholtz free energy and the pressure as functions of both 

specific volume and temperature, it is possible to derive 

expressions for any other (P, V, T) locus from these. No 

new parameters or approximations need be introduced in this 

procedure. Expressions will be derived here for isentropes 

and Hugoniots. 

4.2 Isentropes 

The Mie-Gruneisen equation (Chapter 3, equation 28) 

P arJ :r-u = -rv -+- v 'l ( 1) 

can be regarded as giving the pressure either as a function 

of strain and temperature, or as a function of strain and 

entropy. Thus an expression for the pressure along an isen­

trope can be obtained by expanding (1) in terms of strain 

at constant entropy. The tem~erature, or entropy, depend­

ence of (1) is through U • From the result (Leibfried and 
q 

Ludwig, 1961; compare equation 38, Chapter 3) that 

(2) 
) 

one can obtain the expansion of U in terms of e at constant 
q 
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entropy, fnr instance: 

The result of substituting (3) intn (1) is an equatinn of 

exactly the same form as (40) of Chapter 3: 

... ' (4) 

where the nP.w coefficients are 

a~s ( s) - c~: ~ {: 9U'to (4a) 

a..., s ( .s) - f: + {_(:th-9'1.)U1 P' (4b) 

a - .L r!''' (4c) 
2.S - ~ -t 

0 

a.l s :: I r; IV 6 0 + (4d) 

Equations (4) thus give the pressure along an isentrope in 

terms of the same parameters (name ly g, h, and the deriva-

tives nf f) as (40) of Chapter 3 for an isotherm • . 
Comparison with (40a-d) of Chapter 3 shows that only 

a 15 differs from its isothermal counterpart. As in the iso­

thermal case, the aNS can be written in terms of the isen­

tropic bulk modulus, K5 , and its isentropic pressure deriva­

tives. The results are of exactly the same form as (43a-d) 

of Chapter 3, but with isentropic quantities. These results 
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can be used to obtain expressions for the difference between 

the isothermal and isentropic bulk moduli and their respec-

tive derivatives. from the analogues of (43a-d) of Chapter 

3 we obtain, omitting "S" subscripts, 

: _.J-- a 
] V0 o , 

(5a) 

(5b) 

(5c) 

(5d) 

which are the analogues of (53a-d) of Chapter 3. Comparing 

(4a-d) with (40a-d) of Chapter 3, it can be seen that the 

only contribution to the differences (K
05

-K 0T)' etc., is 

from the differences (a 15-a1T). from (4b) and (40b) of 

Chapter 3 we get 

and substituting this into•(5b-d), 

(6a) 

(6b) 
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Using the identity 

= ( 7) 

where CV is the specific heat at constant volume and ~ is the 

volume coefficient of thermal expansion, (6a) becomes 

(assuming Cq ~ CV) which can be recognized as a special case 

of the identity 

K - v K '0 I KT • 
S "'T - ( 8) 

Equations (6a-c) arP-, of course, approximations to the exact 

relations according to the approximations made in the lattice 

dynamics theory, and discussed in Chapter 3. 

4.3 Hugoniots 

In principle, it is possible to relate derivatives along 

a Hugoniot to isothermal derivatives in a manner similar to 

that of the previous section, but since these relations are 

more complicated, it is easier to obtain the Hugoniot pres-

sure from the energy difference between it and some reference 

curve. Expressions for Hugoniots have been given, for instance, 

by Thomsen (1970), who related the Hugoniot to the static 

pressure -(n?/dV), and, for example, Ahrens et al. (1969) 

and McQueen et al. (1967), whn relate the Hugoniot to an 
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isentrope. Since the latter method does not require the 

interme diate calculation of the derivatives of ¢, and since 

the re s ults of the last section can be used, it will be used 

here. 

The Hugoniot equation derived here will be generalized 

to take account of possible initial porosity of the material 

or a phase change during the shock process. The term "high 

pressure phase" will be taken here to include the compacted, 

non-porous material in the case of initial porosity. 

Take the initial state of the material to be P = 0, 

V = V~, T = T
0

, the (P = O, T = T
0

) volume of the high pres­

sure phase to be V , and the final shocked state to be 
0 

(Ph' V, Th). The Rankine-Hugoniot equations give, in this 

case, 

(9) 

where U is the total internal energy, which, in the quasi­

harmonic approximation, is U = ? + Uq. Define the transi­

tion energy Et as 

(10) 

Et can be obtained from the enthalpy of phase change, if it 

is known. If there is no phase t .ransition, i.e., if there 

is only a reduction of porosity, then this can be taken as 

zero (the surface energy of the pores can be neglected; 
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Brace and Walsh, 1962). 

If the pressure and temperature on the isentrope centered 

at P = O, V = V0 are Ps and Ts' respectively, at V, then, 

from (1), 

(11) 

Ps can be calculated according to the previous section. from 

the identity 

( 
';)L/ _) 

P==- Wls, 

we see that 

v 
tJ U - U ( V, Ts) - U {V0 1 

T,) = - f. Ps cfV 
VC) 

Thus, for instance, if P is given in terms of e, 
s 

(12) 

(13) 

(14) 

Eliminating Uq~V, Th) between (9) and (11), using (10) 

and noting that ¢(V
0

) = 0, the final expression for the 

Hugoniot is 
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CHAPTER 5 

EFFECTIVE ELASTIC MODULI UNDER HYDROSTATIC STRESS 

IN THE QUASI-HARMONIC APPROXIMATION 

Summary 

Fnurth-order finite strain expressions for the effective 

elastic mnduli of a solid under hydrostatic stress are de­

rived from a general expression fnr effective elastic moduli. 

Expressions in terms nf the strains ~' f and ~ are given. 

The expressions are then written in terms of the moduli and 

their pressure rlerivatives evaluated at the reference state. 

The temperature dependence of these expressions is derived · 

frnm the fourth-order quasi-harmonic expression for the 

lattice vibration energy. Snme thermodynamic relations are 

derived which relate the parameters which specify the thermal 

effects tn the pressure and temperature derivatives of the 

elastic moduli at the reference state. General relatinns 

between isothermal and isentropic elastic moduli and their 

pressure and temperature derivatives are also given. Much 

nf the development i~ valid for materials of arbitrary 

symmetry, but the complete development is given only for 

materials nf cubic symmetry. 
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5.1 Intronuction 

The equations developed in Chapter 3 can be generalized 

in two ways - by including the effects of non-hydrostatic 

stress and by considering anisotropic materials. A number 

of authors have discussed the various ways in which general 

second- and higher-order elastic constants (which arise when 

arbitrary large stresses are considered) may be defined, 

and their relationship with the "effective" elastic moduli 

(which arise when infinitesimal stresses are added to pre­

vailing large stresses) (e.g., Thurston, 1964, 1965; Thurs~ 

ton and Brugger, 1964; Wallace, 1965, 1967; Thomsen, 1970; 

Sammis, 1971). In general, materials cannot sustain very 

large non-hydrostatic stresses and, especially in geophysics, 

the case of most ~nterest is that of an infinitesimal non­

hydrostatic stress superimposed on an arbitrarily large 

hydrostatic stress. Accordingly, equations will be developed 

directly for this spAcial case, without reference to the more 

general treatments. Although much of this chapter is valid 

for materials of arbitrary symmetry, parts of the treatment 

are greatLy simplified by considering only isotropic mate~-

als or materials of cubic symmetry, for which the response 

to a hydrostatic stress is an isotropic strain, which can 

be specified with a single scalar strain parameter. 

The treatment separates into three parts. First, the 

appropriate finite strain expressions for the effective 
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elastic moduli are deriverl and written in terms of the moduli 

and their pressure derivatives at zero pressure. Second, 

the temperature dependence of these expressions is derived 

from lattice dynamics. Third, some general thermodynamic 

relations are derived which relate the equation of state 

parameters to the elastic moduli and their pressure and 

temperature derivatives, and which relate isothermal and 

isentropic elastic moduli and their pressure and temperature 

derivatives. Some of these thermodynamic relations general­

ize those used in Chapter 3, and many of them have not been 

given before, to the author's knowledge. 

As in Chapter 3, it is convenient here to first derive 

expressions for thermal contributions in terms of ~' and 

then to derive nthers in terms of ~ and ~· In the 

special case of hydrostatic prestress, frame-indifferent 

expressions in terms of e can still be derived, although some 

care is required. 

This chapter corrects and generalizes the results of 

Thomsen (1972). The relation between these is the same as 

that between Chapter 3 and Thomsen (1970). The reference 

state is again left arbitrary. 
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5. 2 Effe ctive Elastic Moduli Under Hydrostatic Stress 

The e ffective elastic moduli can be defined either in 

terms of the response of a prestressed material to a further 

infinitesimal stress, or in terms of the equation of motion 

of small amplitude waves. In this section, exact general ex-

pressions for the effective elastic moduli under arbitrary 

prestress (e.g., Thurston, 1965; Wallace, 1967) are special-

ized to the case of hydrostatic prestress, and further, to 

the case of a material of cubic symmetry. They are also 

written explicitly in terms of the particular strain measures 

to be used here, and the parameters in these expressions are 

related to the pressure derivatives of the moduli. 

In order to obtain expressions in terms of ~ which are 

frame-indifferent, it is necessary to define some additional 

deformation measures. Consider a point in the material 

which, in the "natural", i.e., unstressed, state has position 

vector (referred to Cartesian axes) ~ = (a1 , a
2

, a 3 ). Denote 

its position vector after the material is subject to a hydro-

static stress as ! and its position vector after a further 

infinitesimal arbitrary stress has been imposed as x. Then 

the displacement gradients ~· ! and ~ may be defined by 

x· - c:t· ': 
t ' 

e . . ct. · 
") J 

:: .f .. ){. 
'J J } (1) 

)(' ' - >< · = u··X · (2) 
t " 'J J 
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where u . . is infinitesimal, all quantities are referred to 
lJ 

th e sa me Cartesian axes, and the summation convention is 

a ssum e d. If u . . is decompos ed into symmetric and antisymmetric 
lJ 

parts, sij and w .. , respectively, then (Wallace, 1967) 
lJ 

where 

u... = 
"J 

= 

s· · ..- w·· '-) LJ 

.L(S··~S·· 
:1. "J )C, 

From (3), we get that 

~u .. 
{ ( b~·lc ~jl ___!) 

= ..,. 
~ sttL 

~ ')u .. ) 
.J. -~J - = ~ s /c.t = ') u .. '\.. 

dsu "J 

w .. :: { ( lA .. - u. ·) 
~J ~J J L. 

~jlc ft.,) 1 

{ L ~~~k) . }IA.H 't' 

For general strains, the Cauchy stress is given by 

(Truesdell and Noll, 1965, sect. 82) 

T .. = 
IJ = ) 

(3) 

( 4) 

(5) 

(6) 

(7) 

where f is the density and A is the Helmholtz free energy. 

The effective elastic moduli are (Thurston, 1965) 
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)T.·. ,..... -'1 
rkp "e , .tp 

( 8) 

The moduli in (8) are isothermal or isentropic according to 

whether the derivative is taken isothermally or isentropically. 

In (7) and (8), 

F ·· :: f . . -r e .. :: 
~ J LJ '-J 

(9) 

The requirement that (7) be frame-indifferent has been 

shown (Noll, 1955; Truesdell and Noll, 1965) to be equivalent 

to the requirement that Tij be symmetric. If Tij = Tji' then 

~ .. - { ( TL.i i-T;·,·) ::- T· · (10) 
'J - '" 

. 
It has been shown by Thurston (1965) that in the special case 

' 
of hydrostatic prestress, 

= (11) 

Using (6), (10) and (11), the effective elastic constants 

under hydrostatic stress are 

: (12) 
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Substituting (7) into (8) and using the relations 

(Thomsen, 1972) 

we get 

Taking T . . = -P S. ., i.e., assuming hydrostatic pressure, lJ lJ 
this becomes 

Substituting (15) into (12), 

where 

(13) 

(16) 

(17) 

Expressions for the stress, T, and the elastic moduli, 

cijkl' will now be given ln terms of the strain tensors ~ 
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and f., where 

Yj t)' : ~ (e .. .,. 
'-J 

e· . 
J t T e ~c .. · ekj) (18) 

E .. : ~ ( f.·· ... f" - f,_k Fjk) (19) 
'-J \. &.J ., ' . 

It is emphasized again that ~and f. are but two examples of 

an infinity of possible frame-indifferent strain tensors. 

The expressions analogous to (7) and (16) are (Thomsen, 1972) 

(20) 
) 

(21) 

where 

(22) 

and 

(23) 

(24) 

where 

(25) 
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c; .. ::. 
C.J 
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d tl. _, 
)K ' 

J 
::: (26) 

The derivation of equations (16-18) is aided by the relation 

:: (27) ~ -

The expressions (16), (21) and (24) for the effective 

elastic moduli and (7), (20) and (23) for the stress aLe 

exact in general. ror them to be useful, however, explicit 

forms for the freA energy A are required, and a customary 

procedure is to expand A in terms of some strain measure. 

Expansions of A will therefore be taken in terms of ~' ~ and 

£, and these expansions will here be taken to fourth order. 

Since the truncations of the various expansions involve 

different approximations, the expressions in terms of the 

different strain tensors are no longer identicAl. This has 

some interesting consequences, as will be seen later, and it 

is the reason why the different expressions are developed 

in parallel here. 

At this stage the development is simplified by special-

izing to the case where the matArial has cubic symmetry. In 

this case the response to hydrostatic stress is isot r opic 

strain, so that the s~rain tensors reduce to scalar multiples 
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of the unit tensor. These scalar strains are (Thomsen, 1970, 

1972; Chapter 3) 

e ::: ( ;O I ~o )-1/3 -I (28) 

"i [ {f/fo)-
213

- I] , 
(29) 

Y[= 

E :: -i[ ( _ (~/f'o)4/3] (30) 

' 
where ~0 is the density at zero pressure. 

In accordance with these assumptions, we may now write, 

for instance, 

0 
s t.j'lc t + 

, 2 ~ 

s . . 4 e ~ t s "lc 4 e 
LJI<.c. tJ c 1 

(31) 

n where the sijkl are constants. Since the strain dependences 

of all of the elastic moduli are given by expressions of the 

same form, the indices can be temporarily supressed. By 

substituting (31) into (16), differentiating, and evaluating 

at e = O, the sn can be written in terms of the zero-pressure 

derivatives of the elastic constants (the implied s~jkl in 

the following equations should be understood as linear com­

binations of those in (31), such as occur in (12)): 

(32) 

s, - ~ . 0 } 
(33) 
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(34) 

where a prime denotes a pressure derivative, V = 1/~ is the 

specific volume, K = -V(}P/dV) is the bulk modulus, and 

subscript "o" denotes evaluation at zero pressure. With 

these assumptions and notations, equation (16) for the c's 

(still suppressing indices) reduces to the form 

c : f'o ( 1 + e r' ( 50 +- S1 e +- { S2 e ?..) - p \7 (35) 

Equations (32-35) thus give the effective elastic moduli in 

terms of e and the pressure derivatives of the elastic moduli 

evaluated at zero pressure. 

Analogous expressions in terms of 1 are: 

J-

t t:"L Y! 2-) c ~ fD ( I+ 2 ~) "&.. ( "f:0 ~ t:, '1 + - PS ) 

(36) 

with 

"to ::: vo ( co r Po s ) I (37) 

t, - - 3 V0 K 0 ( c: -t- ~) -'to ~ (38) 

t' '2. :: 
l. II 

1 K/ ( "t0 + t:,) - IJ.. 1; q Vo K0 C0 -t:o. I (39) 

Analogous expressions in terms of E are: 
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?( 
{ t'\. E -z.) - p 11 c :: !'o [ I - .( E) "1. { ro -r Y',E + ' 

(40) 

V'o :: Vo ( Co -t- PoL\) , (41) 

r, - - J V0 K0 ( c~ +- ~) + 7 V', } - (42) 

(43) 

Finally, note that, in particular, 

tJ" - () \72"1. = -I v2.3' J-- - 2_ 

" II ) 2.3 
(44) 

~II - bn _, s 2.3 - I ,, - = - ) ) II ) 23 

(45) 

~" ~'l. ~ "'l.."'l -I • :: -3 Cl, :: -I = " ) ) ~J' 

(46) 

5.3 Thermal Effects in the Quasi-harmonic Approximation 

In this section, the theory of anharmonic lattice dynam-

ics is used to obtain an expansion of the vibrational con-

tribution to the free energy in terms of general strains, and 

thence to evaluate the vibrational contributions to the 

effective elastic moduli. This treatment is a straight-

forward generalization of that given in Chapter 3 for the 

case of isotropic strain. 

Expressions will first be developed in terms of e with-

out regard to the frame-indifference requirement. This will 

then be accounted for by a redefinition of parameters. Also, 
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the dP.rivation will initially be for the isothermal moduli. 

Expre s sions for the isentropic moduli will then be noted. 

The squares of the lattice eigenfreque nci es w\.1 are 

proportional to linear combinations of the se cond derivatives 

of ¢ with r espect to displacements (Leibfried and Ludwi g , 

1961) . Ge neralizino th8 expansi on (34) of Chapter 3, we may 

wri te 

(47) 

where the G~j and H~jkl are constants (G:j shnuld not be con­

fused with the deformation g radient defined by (26)). Since 

the "quasi-harmonic" vibrational energy, A
2

, depends on the 

s train only through the Wv, the strain dependence of A
2 

is 

. v " controlled b y the G . . and the H. 'kl" As was don e in the 
1 J 1 J 

case of isotropic strain (Chapter 3) , A
2 

may be expanded in 

terms of e. The result, using the mie-Gruneisen approxima-

tion, '\) " in which the Gij and Hijkl are assumed to be independ-

ent of' V, is 
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where 

(49) 

is the vibrational contribution to the internal energy in 

this approximation, and 

(50) 

i s the vibrational contribution to the specific heat at con­

stant volume in this approximatio~. The expansions (47) and 

(48) terminate twn t erm s ea rlier than the expansion of ~ , 

as in Chaptt:n 3. From equa-

tion (48) we see that 

(51) 

(52) 

(53) 

etc. The third and fourth derivatives of A with respect to 

~ have no vibrational contributions in this approximation. 
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Comp a ri ng with equation (31), we see that this is also true 

1 2 
of sijkl and sijkl• The vibrational contributions to the 

0 effective elastic moduli come from sijkl and from the pres-

sure term in equation (35). Equations (51) and (52) thus 

specify the temperature dependence of the pressure (Chapter 

3) and the effective elastic moduli through U and TC qo qo 

The constants G . . and H . 'kl can be related to a genera1-
1J lJ 

ized Gruneisen parameter and its strain derivative. A gen-

eralized Gruneisen parameter can be defined thermodynami-

cally as 

(54) 

The correct microscopic definition of the Gruneisen parameter 

must be found so as to be consistent with this definition. 

From (19) of Chapter 3 and (7), 

li r .. ::. I' cl. lJ u .. 
I.J 

By defining 

" "V = () .. 
LJ 

.J. 
l.. 

(55) 

(56) 

and substituting into equation (55), we can get, using the 

Mie-Gruneisen approximation (Leibfried and Ludwig, 1961; 



Chapter 3), 

::: - /.) y .. 
r LJ 
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to which (54) reduces in the present approximation. 

(57) 

Now, substituting the expansion (47) into the definition 

(56), and suppressing the i nd ex v (i.e., using · the Mia-

Gruneisen approximation), the Gruneisen parameter becomes 

':l. 

(·j = -i ( ~l.k +elk)~: (GJ·k +- HJ.k"""" e,..~) · (58) 

Evaluating this and its derivative at e = 0, one can derive 

that 

0 -:.-:z¥ .. 
LJ 

H L.J. 1.( = - 2 . ( } ¥ ~.·,; ) +- ~ ·. G - £; . ~ . 
I( ~ekl o 'J kt ,,e Jk. 

(59) 

(60) 

Now, as with (6), frame-indifference requires that"'¥ . . = 
lJ 

~ 1 • Thus, by analogy with (10), (59) should actually be 

replaced by 

(61) 

where 
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(62) 

Similarly, by analog y with (12), define 

(63) 

so that, using (6), 

h·. = 
t 1 1< l 

From the symmetry properties of g .. and h , it can be seen 
l J ijkl 

that the frame-indifference r e quir ement has reduced the num-

ber of ind ependent consta nts. Apa rt from the obvious sym-

me try of (64), it may easi ly be s hown, from (47) and (63), 

that hijkl = hklij• 

If the medium has cubic symmetry, then the numb er of 

independent compone nts is further reduced. oij' in analogy 

to the stress tensor (Cf. 54), reduces to a scalar multiple 

of the unit tensor (Leibfried and Ludwig, 1961): 

(65) 

hijkl' in analogy to the second-order elastic constants, has 

three independent components, which, in the Voigt notation, 

may be called h11 , h12 and h
44

• From (47), (62) and (63) it 
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can be seen that the "bulk" parameters g and h (Chapter 3) 

are relat ed to gij and hijkl by 

9 ~L·~ == q . -
) '-i -

I 

"if) ~ -· 
1-J I 

(66) 

h - t'\·.·kk - 3(11, +zhn)· - - (67) 

Then (64) g ive s 

h, .:::: -:z(~) T 
gl. ~ 

~ s,, q 3 ) 

0 

(68) 

h,l. = -2( ~·) + 
9'l. -, 

d s 2 2 q 0 

(69) 

h4-{f = -2. -C¥") d s l.3 0 

9 
6 • (70) 

Al s o, (52), (61) and (64) gi ve , using the Voi g t notation, 

0 - ¢,~ + -t ( 2 h II - 9 z.; q) u 'l 0 - ~ ( 9 ?./ 9) T c f" ) (71) s" -
0 

fj,o2 + i.(2.h,1.- q/q) Uifo - i-{9z./q)TC~o (72) s,z ::. 
) 

so 
lf.(f = ¢:{f +- -f. hf#.{f Llqo 1 

(73) 

wher e ~ is the appropriate 
«-(1 

combination of derivatives of ¢. 
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The vibrational contributions to the expressions (36) 

and (40), in termg of ~ anrl E, for the effective elastic 

moduli enter through the t~~ of (37-39) and the r~~ of (41-

43). These are qiven by expressions analnqous tn (71-73) for 

the sn with h' 
K~ f lttf 

and h " 
"ll 

replacing hl(,d' ' where 

I 

- -t ( 9 ~t sj k !JjJ ~;k ) (74) 
h ij lc~ = h ij fc.( 't" 

" %-( ~;l ~J·k 9,/J s,.") ) (75) "',·j kl = h~·J·Icl + t-

(compare with equations ( 37) of Chapter 3). 

Note that the parameters ai' defined in (40) of 

Chapter 3, are related to the n (Voigt notation) by s 
#C.fl 

a, - 3 ( s~, +- :l. so ) (80) - 11 

a.l.. :: :J ( , 
~ s, + z s :~) ( 81 ) 

.l- ( l. + s 2 ) 
a.'J = 2.. S I I '2. I'\. 

( 82) 

n 
Identical relations hold between the bi and the t~~· and 

between the ci and the 
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Equations (48), (52) and (71-73) all involve isothermal 

derivatives. To derive the corresponding isentropic deri-

vatives, note the following result, due to Leibfried and 

Ludwig (1961; equation 2 of Chapter 4): 

(~~) 
~ e~j s 

.J... r; .. u . 
'L lJ 't (83) 

Then the analogues of (52) and (71-73) are 

~e .. deke = 
lJ s,o 

( 84) 

(7la) 

SO$ 
= l'l 

(72a) 

$OS = 4-4 
(73a) 

Note that there is no difference between s~: and its iso­

thermal counterpart, and thus no difference between c!4 and 

cr4 • This is a well known result. 

5.4 Thermodynamic Relations 

In the "isotropic strain" theory of Chapter 3, the 

Gruneisen parameter and its volume derivative were related 
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to the bulk modulus and its pressure and temperature deriva-

tives through thermodynamic identities. These identities 

must be generalized for the present treatment. Also, al­

though the relations between isothermal and isentropic quan-

tities can be obtained from the previous section according 

to the quasi-harmonic approximation, the general exact rela-

tions will be derived here for comparison. The initial part 

of the treatment given here is similar to that given by 

Mason (1950) . 

The infinitesimal symmetric strain s . . defined by (4) 
lJ 

will be used in this section. The temperature and entropy 

will be denoted by e and~. respectively, to avoid confusion 

with s tress and strain. 

It is convenient to consider first the relation between 

isothermal and isentropic elastic moduli. From the first and 

second laws of thermodynamics, the change of internal energy 

per unit volume of a system in a reversible process is given 

by 

(85) 

where the stress and strain are written in the Voigt notation. 

The Helmholtz free energy A is defined by 

A U- Bcr 
I 

(86) 

whence 
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dA :: T · d s · - rs d B l ( ) ( 87) 

and 

( 88) 

With si and e as independent variables, we may write 

(89) 

where 

(90) 

using equation (88). In a rev e rsible process, th e quantity 

of heat absorbed by the system is 

(91) 

from which we can make the identification 

(9?) 

where I' is density and Cs is the specific heat at constant 

strain. In an isentropic process, i.e., d ~ = O, the change 
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in tempera ture is, fro m ( 89 ), 

de = f) A.,· d s . 
I' Cs ' 

(93) 

Now, again in terms of s. 
1 

and 9, the change in stress is 

dT · =:: l c~. d.s· 
lJ .J 

- A· ciB 
l 

(94) 

where 

(95) 

is the isothermal elastic modulus. Thus, using (93), the 

isentropic change in stress is 

dT· = L 

e c.. + 
LJ 

from which the isentropic elastic modulus is 

CT c ... = 
(J 

t} 
c. .· + 

LJ 

(96) 

(97) 

Using the chain rule of differentiation, we see that 

t} 
OC · C. •• J 

J '-J 
(98) 
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wher e ~- is the thermal expansinn t e nsor. 
1 

Next, consider the Grun e isen parameter and its strain 

de rivativ e s. From the th e rmodynamic definition (54) of the 

generalized Gruneise n paramet e r (using the Voi g t notation, 

and recalling that U is now e nergy per unit volume), 

y. = 
' 

::: 
l) 

VK · c . . ;c) 
) t.) s 

which generalizes the usual Gruneisen relation. 

(99) 

Equation (99) can be differentiated with respect to sk, 

and, using the relations 

(100) 

where 

k = 4- , s-, G, 
(101) 

and 

(102) 

(using equation 90), the result is 
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li D {). ?f · ~ + 
t lc de 

(103) 

where 

Qlc bk ( } ~ Cs) - -
~ 5 k e - (104) 

D~ = _ y_ ( ~.c~k) . 
tk Cs ~ e I 

(lOS) 

The following identity was also used in deriving (103): 

(106) 

Relations between the derivatives of the isothermal 

and isentropic elastic moduli can be derived as follows. De-

fine 

Differentiating (107), and using (103), 

59 
( R . - A-~ •• Q ) rtk c.jn r·t1 n 1 

(108) 

where 
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-1 
( C

9
) '· 1 

- t) 
(109) 

e 
i.e., sij are the isothermal elastic compliances, and 

(110) 

(111) 

where a comma preceeding a subscript denotes differentiation 

with respect to the corresponding stress component. 

Similarly, differentiating (107) with respect toe, and 

using (106), 

(112) 

The relations developed so far in this section, i.e., 

equations (97), (99), (103), (108) and (112), are completely 

general in that they refer to a material of arbitrary sym-

metry under an arbitrary stress. They will now be special-

ized to the case of a material of cubic symmetry under a 

hydrostatic stress. As was pointed out in section 2, only 

one strain parameter is required in this case, so that the 

application of these relations is simplified. Of course, 
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the r esulting relations can also be further specialized to 

the ca se of an isotropic material. 

Under cubic symmetry, the thermal expansion tensor be-

comes 

(I( · = .J-«.i· 
t 3 l (113) 

Thus, 

(114) 

where K& is the isothermal bulk modulus, and 

({ ~ . 
L 1 

( 11-5) 

(116) 

Note, in particular, that Al = A_ 2 = _p, and ~4 = 0. 

Under hyrlrostatic stress, T. = -P6. , where Pis th e 
1 1 

pressure, and the strain of a material of cubic symmetry can 

be specified by the specific volume V. Thus 

cy ~. 
t } (117) 

~ D .. -
LJ -

(118) 
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e 
wher e $. . is the generalized isothermal analogue of the 

lJ 
And e rson-Gr~neisen parameter (Gr~neisen, 1912; Anderson, 

1967). With these r esults, equation (103) becomes 

( ~ '?{·) () s; e = (119) 

There are three independent derivatives of ~ in this case, 

just as there are three independent components each . of c~. 
lJ e 

and ~i j • Note that Q does not contribute to ( d ~/'as 4 ) • It 

may also be noted that this derivative is non-zero, even 

though under cubic symmetry ~ is zero. This is because the 

strain s 4 destroys cubic symmetry, thus allowing d4 to vary 

from zero as s 4 varies from zero. From (119) 

(120) 

where 

To specialize equations (108) and (112), note first 

that 
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Rt'ik sk R ~ · S· ( a~l') S (121) .:: G ~ ') ~ v B t ' ~j t J ) 

and 

(dJ-tc:j) 
}P 8 

~ (~)8 ~; ~J· .:: - ( R- 3 )-4- Q) I 1 K. tJ ~ t.' ~J· 

- -t [ 2 {~ t ~) e - ~ ~~.· fj (122) -

The specialization of equation (112) is 

(123) 

Finally, note that equation (120) involves the deriva-

tives of the isothermal elastic modulus, whereas it is usually 

the derivatives of the isentropic modulus which are measured 

experimentally. The conversion from the temperature deriva-

tive of one to the other involves (~;U/~9) , which involves 
p 

P )A/ d P )9 , which in turn in v o 1 v e s ~ ~ E quat ions ( 118 ) , ( 12 0 ) , 

(122) and (123) can be solved for (d;u/JP)
8 

in terms of just 

derivatives of isentropic quantities: 

(;'P)e :: ~~ { 2 (~ ~~)e - Q + T (; ~r)P 
-a[ I+ ( ~i1)v + znt:~)J] (124) 
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5.5 Di s cussion 

The comments made at the end of Chapter 3 concerning 

the independence of the approximations made in the thermal 

and finite strain parts of the theory, the Mie-Gruneisen 

approximation, the evaluation of U and C , the relationship 
q q 

of this work to that of Thomsen (1970, 1972) and the capa-

bilities of this theory all apply here in the more general 

case. In particular, note that this theory predicts that 

the cK~ are non-linear in temperature at high temperature 

and constant pressure (Thomsen, 1972), and that the 

(d2c /~P~T) are non-zero, in general. 
«($ 

The more general theory given here contains the special 

theory of Chapter 3, which can be obtained through the rela­

tions (66),~ (67) and (80-82). It is thus a theory of great 

utility which is capable of describing the effects of shock 

compression and hydrostatic compression, as well as giving 

the elastic constants as functions of pressure and tempera-

ture. The application given in Chapter 8 demonstrates this 

utility. 

The primary parameters which enter these equations are 

n ( n n) () () the sD<..-/> or t<~~~:,A, or roc:.f$ of 35 , the g~~e and hct:,.O of 62 

and (63), in (51), (61) and (64) and the density, ~0 , in 

the reference state. These are related to a similar number 

of sec o n d a r y p a r a me t e r s : t n c ~~ , c ; 11 etc • , t h rough ( 3 2- 3 4 ) , 

to the thermal expansion tensor,~~, through (61) and (99) 
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and to the temperature derivatives ;of the elastic moduli 

through (64) and (103). In the case of cubic symmetry and 

hydrostatic stress, the vnlume coefficient of thermal expan­

sion,~. enters through (115), and the temperature deriva­

tives of c~# through (68-70) and (119). The evaluation of 

these parameters follows a scheme analogous to that outlined 

at the end of Chapter 3. 
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CHAPTER 6 

EQUATION OF STATE OF MgO 

Summary 

Ultrasonic, thermal expansion and calorimetric data 

for MgO are used to evaluate the parameters of third-order 

equations of state of MgO. 

The equations of state are 

tested and refined with Hu goniot data. The third-ordAr "E" 

Hu goniot is much closer to the rlata than the third-order "r(' 

Hu goniot. Inclusion of fourth-order terms allows both "E" 

and "yt" Hugoniot~ to fit the data within their scatter. The 

separation of Hugoniots corresponding to different initial 

densities is predicted within the accuracy of the data by 

the thermal part of this theory. 
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6.1 Introduction 

In this and the next chaptP.rs, the theory developed in 

Chapter 3 fnr isotropic stresses and strains is applied to 

particular materials. Ultrasonic, thermal expansion and 

calorimetric data for MgO are sufficient to evaluate the 

equation of state parameters of MgO. The equations of state 

thus determined are sufficient to predict Hugoniots of MgO. 

Shock-wave data can then be used to test and refine these 

equations of state. Comparisons will be given of the thermal 

ann finite strain parts of the equations of state resulting 

from the use of different strain measures, and of the theory 

of Chapter 3 with that of Thomsen (1970). 

6.2 DetP.rmination of Equations of State 

The elastic moduli of single-crystal MqO have been 

measured as a function of pressure and temperature by Spetz­

ler (1970). The bulk modulus and its first pressure and 

temperature derivatives can be det~rmined from such measure­

ments. The parameters determined by Spetzler (1970) are 

listed in Table 6.1, along with the density, thermal expan­

sion coefficient and specific heat of MgO, from the indicated 

sources. 

ThP.se parameters were used in (43-48) of Chapter 3 to 

determine the parameters of the equations of state (41) and 

(42), in terms of 1 and E, respectively. Since the second 
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pressure nerivative of the bulk modulus, K", is not given, 

only the third-orderversions of these equations are deter­

mined in this way. 

Using the 300°K isotherms given by (41) and (42) of 

Chapter 3, the corresponding isentropes and Hugoniots were 

calculated according to Chapter 4. 

6.3 Comparison ann Discussion of Equations of State 

The fact that both the finite strain and the thermal 

parts of the equation of state are determined, ~o that Hugo­

niots can be calculated with reasonable accuracy, means, in 

effect, that extrapolations of the lower pressure data 

(specifically, the ultrasonic data) can be tested against 

Hugoniot data. 

Carter et al. (1971) have given data for a series of 

MgO Hugoniots, corresponding to different initial nensities 

of the MgO samples. The lower initial density Hugoniots 

obtained by them are offset to higher pressures, and hence 

hi gher temperatures, than the single-crystal Hugoniot at 

the same density. These nata thus provide a test of both 

the finite strain and the thermal parts of the present theory. 

First, consider the finite strain part of the theory. 

In Fig. 6.1 are shown the single-crystal Hugoniot data of 

Carter et al. (1971), along with the corresponding third­

order Hugoniots calculated in terms of both the ~ and E 
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strain measures. It can be seen that the "E" Hugnnint is 

considerably closer to the rlata than the "'Y{" Hugnnint. This 

is an example of the empirical superiority of the "E" equa-

tinns which was, of course, pointed nut by Birch (1947, 1952), 

and is the reason for the subsequent popularity of the 

"Birch-Murnaghan" equatinn (Birch, 1938). 

Also shown in Fig. 6.1 are fourth-order ~and E Hugnniots 

in which K" was determined by requiring a least-squares fit 
0 

of the calculated curve to the data. The resulting values 

of (K K") are given in Table 6.2. Clearly, the fourth-order 
0 0 

~and E Hugoniots fit equally well within the scatter of the 

data. 

Comments on two important points can be made here. 

Firstly, it is clearly desirable to use an equation of state 

which involves the least number of disposable parameters, 

while still giving an acceptable representation of data. The 

greater success of the third-nrder E equation indicates 

faster convergence of the expansion in terms of E than that 

in terms of~· While there is no guarantee that this rapid 

convergence will continue to higher orders, it is certainly 

more reasonable to assume this about the E expansion than 

the ~ expansion, and E therefore appears to be a more useful 

strain measure than ~· 

The second point is that the value of K K" obtained 
0 0 

depends on the equation used to fit the data (Table 6.2). 
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It is, o f course, a general property of truncated series 

exp a ns ion s t ha t t he h ig he r-nrder coe ff i ci ent s a re l es s we ll 

determined e mpirica l ly , but it is onn that SAnms to have 

rece ived little notice in the context of finite strain 

expansions. This point will be considerod more fully in 

Chapter 8. 

The thermal part of the equation of state will now be 

discussed. The volume dependence of ((resulting from 

equations (36, 36a, 36b, and 50) of Chapter 3 is shown in 

Fig. 6.2. For the rang e of compressions shown, the differ­

ences are not large. At larger compressions, ogiven by (50) 

will be the first to become negative. 

The isentropic parameters were calculated from the 

isothermal ones according to th e relations (6a-c) of Chapter 

4. The values are given in Table 6.3. Note that we are not 

considering the "mixed" quantities, . such as (~Ks/~P)T, but 

only the purely isothermal or isentropic ones, such as 

(~Ks/~P)s. Evidently, the difference between isothermal and 

isentropic quantities is not ve ry significant for the higher 

order quantities. 

In Fig. 6.3, th e MgO isentrope calculated according to 

these parameters is given relative to the isotherm. The 

Hugoniot corresponding to the single-crystal initial density 

is included for comparison. 
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As mentioned previously, the Hugoniot data for 

different initial densities provide a test of the thermal 

part of the theory. " The fourth-order E equations, with K0 

evaluated from the single-crystal Hugoniot data (Table 6.~), 

were used to calculate the corresponding family of Huqoniots. 

These are compared with the data in Fig. 6.4. There is 

considerable scatter in the data, but the separation of the 

various Hugoniots is quite apparent. The calculated 

Huqoniots reproduce this separation within the scatter of 

the data. The fourth-order ~equations would have yielded 

slightly smaller separations, as shown by the extrapolations 

of ~in Fig. 6.2, and would thus appear to be sliqhtly less 

successful in explaining the data, but the evidence is 

marqinal. 

In conclusion, the finite strain extrapolations of the 

Mie-Gruneisen equation developed here appear to explain the 

available MgO Hugoniot data quite successfully. The strain 

parameter E appears to be more empirically successful than~· 
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TABLE 6.1 

Zero pressure elastic and thermodynamic data 

of magnesium oxide at 300°K. 

fo(g/cm3)a,b 3.584 

Kar<mb) 
b 

1.605 

K' b 
OT 3.89 

(~KOT/~T)p (Kb/°K)b -0.272 

« ( 10-6 oK-l)a,b 
0 

31.5 

Cv(l06 erg g-1 OK-l)C 9.25 

a. Skinner (1957) 

b. Spetz1er (1970) 

c. Victor & Douglas (1963) 
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Table 6.2 

Values of K K" of MgO Determined 
0 0 

from Hugoniot Data 

Strain 
measure 

'1 
E 

Table 6.3 

K K" 
0 0 

10.53 

-1.08 

Isothermal and Isentropic 

IYigO Parameters 

Isothermal 

Isentropic 

K 
0 

( IYib) 

1.605 

1.628 

K ' 0 

3.89 

3.85 

K K II 
0 0 

-1.08 

-1.05 
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CHAPTER 7 

EQUATIONS OF STATE AND PHASE EQUILIBRIA OF STISHOVITE AND 

A COESITE-LIKE Si02 PHASE FROm SHOCK-WAVE AND OTHER DATA 

Summary 

Shock-wave, static compression (X-ray), ultrasonic, 

thermal expansion and thermodynamic data are simultaneously 

inverted to determine the equations of state of stishovite 

and a coesite-like Si02 phase. All of the stishovite data 

except the thermal expansion data are found to be satisfied 

by a mie-Gruneisen type equation of state with a zero pressure 

bulk modulus, K, of about (3.50 + 0.1) megabar, a pressure 

derivative dK/dP of 3.3 t 1 and a Gruneisen parameter, ini­

tially 1.25 t 0.1, ~hich decreases slowly with compression. 

The volume coefficient of thermal expansion at ambient con­

ditions is found to be (13 t 1) x l0-6/°K, compared to 

(16.4 t 1.3) measured by Weaver. Some Huqoniot data of 

Trunin et al. for very porous quartz have densities very 

close to that of coesite. However, a calculation of the 

coesite-stishovite phase line shows that the coesite-like 

phase persists to about twice the predicted transition pres­

sure at 10,000°K. It is suggested that the discrepancy can 

be explained if this phase is interpreted as a liquid of 

about coesite density. 
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7.1 Introduction 

Since the discovery of the dense high-pressure silica 

polymorph stishovite (Stishnv and Popova, 1961), and its 

subsequent identification in natural silica from a meteor 

crater (Chao et al., 1962) and as the dense phase obtained 

in the shock-wave experiments of Wackerle (1962) by McQueen 

at al. (1963), a variety of experiments have yielded a con­

siderable amount of data on stishovite. To date, these in­

clude more shock-wave, static compression (X-ray), thermo­

dynamic, thermal expansion and, very recently, ultrasonic 

data. These data, with their sources and other relevant in­

formation, are summarized in Table 7.1. A succession of 

analyses of these ·data has accompanied their accumulation 

(Anderson and Kanamori, 1968; Ahrens et al., 1969; Ahrens 

et al., 1970). This paper is another in this succession. 

The Gruneisen parameter, t(, is an important quantity 

which characterizes thermal effects in the equation of state. 

Ahrens et al. (1970), returning to the method used by McQueen 

et al. (1963), determined the values of rat large compression 

from the difference in pressure between Hugoniots correspond­

ing to different initial densities. This method is prefer­

able to that used by Anderson and Kanamori (1968) and Ahrens 

at al. (1969), who used the "Slater" or "Dugdale-MacDonald" 

formulae for the volume dependence of ~(Slater, 1939; Dug­

dale and MacDonald, 1953). These formulae have been severely 
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criticized because they fail to take account of the frequently 

large pressure dependence of the shear modes of vibration 

(Knopoff and Shapiro, 1969). Fitting these results with the 

functional form 

(1) 

where V is specific volume, A is a constant and subscript 

"o" denotes zero pressure, Ahrens et al. (1970) adjusted 0a 
until the volume coefficient of thermal expansion, « , ob-

tained from the identity 

« :: ) (2) 

and using Ks determined from the shock-wave analysis, agreed 

with the measured value. (The value used was the preliminary 

value oC = 15 x lo-6j°K obtained from Weaver by personal com­

munication. Cf. Table 7.1.) In equation 2, Ks is the isen­

tropic bulk modulus, f is the density and Cp is the specific 

heat at constant pressure. 

Since that analysis, several new sets of data have been 

published. The data of Trunin et al. (197la) greatly extend 

the pressure range of the Hugoniot data, and those of Trunin 

et al. (197lb) extend the range of initial porosities. The 

resultant wide spread of the Hugoniots provides stronger 

constraints on ~. Also, Mizutani et al. (1972) have measured 

ultrasonically the compressional and shear wave velocities of 
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stishovite, providing another constraint on Ks• 

In addition to benefiting from the newly available data, 

and using a different form of the equation of state, the pre­

sent analysis determines simultaneously the "compressional" 

and "thermal" parts of the equation of state by adjusting 

simultaneously all free parameters to give a "least-squares" 

fit to all of the data. This procedure accomplishes implicitly 

the two sequential stages of the analysis of Ahrens et al. 

(1970). 

Trunin et al. (197lb) noted that the Hugoniots of their 

most porous quartz samples achieved densities significantly 

less than that of stishovite, and that these Hugoniots extra­

polated approiimately to the zero pressure density of coesite. 

On this basis they identified these Hugoniots as represent-

ing the coesite phase. Although, at room temperature coesite 

is stable in the approximate pressure range 30 to 70 kb, 

between the stability fields of quartz and stishovite, it 

has not previously been observed in shock-wave experiments, 

the transformation usually being directly from quartz to 

stishovite. There is sufficient other coesite data (Table 7.2) 

that, combined with these Hugoniot data, and assuming that 

they do indeed represent coesite, the equation of state can 

be approximately determined. The success of this procedure 

seems to support the coesite identification, but other cal­

culations suggest otherwise, as will be seen. 
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Trunin at al. (197lb) also calculated approximate Hugoniot 

temperatures and suggested that the boundary separating the 

coesite and stishovite fields in a pressure-temperature plot 

represented the coesite-stishovite phase transition line. 

Hugoniot temperatures have been recalculated here, and in 

addition, the coesite-stishovite phase line has been inde­

pendently calculated from the equations of state of the two 

phases (again, assuming the coesite identification). There 

is a large discrepancy between the two approaches. It is 

suggested that the new phase may in fact be a liquid of 

approximately the density of coesite, rather than coesite 

itself. Since some of the properties of this liquid are un­

known, it is necessary to proceed as if the phase were solid 

coesite, and to examine the plausibility of the results. 

7.2 Equations of State - General Discussion 

The procedure used here to determine the equation of 

state was to calculate, according ~o chapters 3 and 4, all 

relevant quantities, such as Hugoniots, isotherms, bulk mod­

ulus, etc., and to adjust the equation of state parameters 

so as to obtain a weighted least-squares fit to the data. 

The weighting basically was according to the estimated stan­

dard error of the data, but was also adjusted in some cases, 

as will be seen, to preferentially fit some of the data. 

The specific heat at constant ·volume, required in these 
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equations, has been approximated here by the Oebye model. A 

discussion of the inadequacy of the Oebye model for a number 

of minerals is given by Kieffer and Kamb (1972). Their re­

sults indicate that the Oebye model is fairly good for stisho-

vite, but less good for coesite. In view of the other un-

certainties in the equations of state, particularly that of 

coesite, the errors arising from the use of the Oebye model 

are considered acceptable. 

Hugoniot temperatures are calculated according to a 

method given, for example, by Ahrens et al. (1969). For this 

calculation, the volume dependence of the Oebye temperature 

e0 is required. Since eo is defined in terms of a charac­

teristic frequency of lattice vibration, it must have the 

same volume dependence as the lattice frequencies. Thus, for 

consistency with equation 34 of chapter 3, 

(3) 

Some general features of the silica Hugoniot data and a 

representative set of calculated Hugoniots and isotherms are 

illustrated in Fig. 7.1. ~ost of the Hugoniot data radiate · 

from either of two points - the coesite and stishovite zero-

pressure densities, respectively. This is the basis of the 

identification by Trunin et al. (197lb) of the Hugoniots of 

the two most porous silica samples as being in the coesite 

phase. This identification will be discussed subsequently; 
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in the meantime, the phase will be referr e d to as "coesite". 

The Hugoniots of successively more porous silica, start-

ing at zero porosity, become successively steeper up to the 

initial density, f~• of 1.77 g/cm3, whose Hugoniot is nearly 

vertical on this plot. The 1.55 g/cm3 initial density Hugoniot 

data are at densities lower than, but fairly close to, the 

zero-pressure, 300°K stishovite density, while the 1.35 and 

1.15 g/cm3 initial density Hugoniots are less steep ' and cen­

tered about the coesite density. The t'~ = 1.55 g/cm3 Hugon­

iot may represent a mixture of "coesite" and stishovite 

(Trunin et al., 197lb). This point will be discussed further 

below. 

The calculated Hugoniots shown in Fig. 7.1 (stishovite, 

case 2 and "coesite" case 1, discussed below) reproduce 

these features fairly well. However, the coesite-stishovite 

transition is not predicted by these calculations. Thus, 

"stishovite" Hugoniots corresponding to all seven initial 

porosities are shown. The three "most porous" Hugoniots 

are notable for having negative slopes - there is a critical 

initial density for which the Hugoniot is vertical. The two 

"most porous" Hugoniots are shown dashed, since they clearly 

fail to represent -the corresponding data. The I'~ = 1. 55 g/cm3 

Hugoniot data approach, but do not agree very well with, the 

corresponding calculated stishovite curve shown in Fig. 7.1. 

Only the two "most porous" "coesite" Hugoniots are shown in 
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Fig. 7.1. The others will lie between these and the 3QQOK 

isotherm (shown short-dashed) and clearly will not coincide 

with the corresponding data. 

The details of the analyses will now be discussed in­

dividually for stishovite and ''coesite", and the effects of 

various assumptions made in the analyses will be noted. How­

ever, it will be seen that the above general picture is not 

greatly perturbed. 

7.3 Equations of State - Stishovite 

The results of three different analyses of the stisho­

vite data will now be given. In the first case, standard 

errors of the pressure of each set of compression data (shock 

and static) were estimated and the data weighted accordingly. 

(The quantity minimized was ~(pr - Pi)2fo!, where PT is the 

calculated pressure, Pi the observed pressure, ~i the esti­

mated standard error and the summation is over all data 

points (see, for example, mathews and Walker, 1965).) Al­

though K0 is known approximately from the ultrasonic measure­

ments of mizutani et al. (1972), it was preferred to deter­

mine it independently from the compression data. Thus the 

quantities K0 , K~, K; and (aK/dT)p were determined from the 

compression data, V0 and «were taken from Table 1, and Cv 

was calculated from the Oebye model. For the calculation of 

Cv, the Debye temperature given by ·Kieffer and Kamb {1972) as 
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the high temperature limit of the data of Holm et al. (1967) 

was used. The estimated standard errors are listed in Table 

7.3, the resulting values of the parameters and their cal­

culated standard errors are in Table 7.4 (case 1), and the 

calculated Hugoniots and the 300°K isotherms are compared to 

the Hugoniot data in Fig. 7.2. It can be seen that this 

solution does not fit the Hugoniots of the more porous samples 

very well at all. This is partly because of the greater 

density of data points on the lower porosity Hugoniots and 

partly because the value of 1'0 is constrained to a high value 

by the value of ~used and the value of K0 required to fit 

the lower porosity Hugoniots. 

As a first step to improving the fit of the higher 

porosity Hugoniots, ~was allowed to be determined by the 

compressipn data along with the other parameters previously 

determined. The results are given in Table 7.4 (case 2) 

and illustrated in Fig. 7.1, the stishovite curves used in 

that figure being those corresponding to the present case. 

Lowering the value of~ to 13 x l0-6/°K has lowered ~ to 

1.3 and significantly improved the fit to the higher poro­

sity Hugoniots. However, the full range of the Hugoniot 

data is not shown in Fiqs. 7.1 and 7.2. The data of Trunin 

et al. (197la) and Trunin et al. (197lb) extending up to 6.5 

Mb for the initial densities 1.77 and 2.65 g/cm3 are shown in 

Fig. 7.3. The corresponding calculated Hugoniots and 3QQOK 
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isotherm of the present case are also shown (case 2). The 

1.77 g/cm3 Hugoniot curve does not fit the corresponding 

datum at 2.3 Mb very well. 

To further improve the fit to the higher porosity Hugoniots, 

the Hugoniot data were assigned new standard errors so as to 

weight the ''porous" data more heavily relative to the other 

data. The new set of standard errors are given in Table 7.3. 

The results are given in Table 7.4 (case 3) and illustrated 

in Figs. 7.3 and 7.4. Fig. 7.3, in particular, shows that 

the fit to the 1.77 g/cm3 Huqoniot data h~s improved. The 

value of «has decreased further to 12 x l0-6/°K. 

The values of the zero pressure bulk modulus, K0 , range 

from 3.42 to 3.55 Mb for the three cases considered. These 

fall within the range 3.46 ~ .24 Mb given by Mizutani et al. 

(1972) for the isentropic bulk modulus determined from 

elastic wave velocity measurements. The 3000K isotherms for 

these cases also agree well with the static compression 

data of liu et al. (1971). These are shown in Fig. 7.5, to­

gether with the three calculated isotherms. Also shown in 

Fig. 7.5 are the static compression data of Bassett and 

Barnett (1970). These have been discussed by liu et al. 

(1971), who suggest that the five highest pressure data 

points are systematically low because the anvils of the 

tetrahedral press used by Bassett and Barnett (1970) may 

have come into contact at about this pressure. These points 
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were not used in the present analysis. The calculated iso­

therms agree with the remaining data within the scatter of 

the data. 

For the record, the last two cases were rerun with K0 

given the fixed value 3.45 mb, which gives an isentropic bulk 

modulus very close to that given by Mizutani et al. (1972). 

(In all of the cases given here, the isentropic bulk modulus 

is about 0.02 Mb greater than the isothermal bulk modulus.) 

The results are given in Table 7.4 as cases 4 and 5 . The 

changes from the previous solutions are small. The standard 

errors given in Table 7.4 are calculated using the error 

0.24 Mb given by Mizutani et al. for the bulk modulus. 

In view of the current discussion of the relative merits 

of the "Lagrangian" and the "Eulerian" formulations of finite 

strain (Thomsen, 1970, 1972; Ahrens and Thomsen, 1972; Chapters 

2 and 3), the dependence of th e above results on the form of 

the equation of state should be tested. This was done using 

a Lagrangian isotherm (Thomsen, 1970; Chapter 3), but keep-

ing equation 36 of chapter 3 for o. This does not correspond 

to the Lagrangian equation used by Thomsen (1970) and Ahrens 

and Thomsen (1972), who used a different expression for ~ 

(Thomsen, 1970). This has been discussed previously (Chapters 

3 and 6). In any case, using a different equation for ¥ 

should yield a significantly different value only for 

(~K/)T)p, for which we have no other control. Cases 2 and 3 
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were repeated using the Lagrang ian isotherm. The results 

are g ive n in Table 7.4 as cas e s 2a and 3a. The values of K0 

I " are comparable, K0 somewhat lower, K0 K0 much higher and the 

other parameters comparable to the corresponding values in 

cas e s 2 and 3. In particular, the value of~ is very little 

changed -- it is still much lower than the value given by 

Weaver (1971). 

A h r e n s e t a 1 • ( 1 9 7 0 ) i n t e r p r e ted the fJ1; = 1 • 9 8 · g / c m 3 

data as indicating a reversal in the slope of the Hugoniot 

at about 1.2 Mb (see Fig. 7.1). A criterion was given which 

relates the density at which the slope of the Hugoniot be-

comes infinite to the value of ~at that point: 
I 

71' = 2/(f/ fo 
- 1). However, it can be seen from an equation for the 

Hu goniot (e.g., Chap t er 4) that the Hugoniot pressure also 

becomes infinite at this density; in other words, the Hugon-

iot pressure assymptotes to infinity rather than "bending 

over''. This interpretation biased the high pressure values 

of ~to lower values, since it favored an interpretation in 

which the Hugoniots were crowded together at these compressions. 

The discrepancy between the results of Ahrens et al. (1970) 

and those of this study is due partly to the last effect, 

partly to the fewer data available at the time and partly to 

the higher value of ~used. Case 1 given here is closer to 

the solution of Ahrens et al., and shows similar effects. 

The main limitation of the present analysis is probably 
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the use of an equation based on the mie-GrUneisen approxima­

tion, which allows no temperature dependence of Y. At temper­

atures below the Debye temperature, r is probably temperature 

dependent because of mode under-saturation, and at very high 

temperatures (greater than several thousand degrees K, say), 

it is possible that we are dealing with a fluid phase (see 

later) which has a different value of r. In the former con­

nection, it is interesting to note that Nicol and Fang (1971), 

measuring Raman spectra, have observed a negative mode 7 for 

a mode of rutile, which is isostructural with stishovite. 

The temperature dependence of ~ is dominated by the 

temperature dependence of cp and possibly of r (see equation 

46, Chapter 3). Weaver (1971) notes that his value of 

~ = (~.c/~T)p/oe2 = 33! 17 seems too small - it implies 

(d~/~T)v = -5 x lo-3j°K, a value which is sufficient to re­

duce ~ to zero within 300°K. With (a~/,T)v = O, Weaver 

estimates € = 190 ! 20. If we take Weaver's ~ value of 

~in the range 300-900°K, i.e.,«= 18.6 x l0-6/oK, to apply 

to 600°K, and combine it with the 300°K value of 13 x l0-6/oK 

found here, we get e = 100, approximately. This is an inter­

mediate valuo, implying a moderate value of (~¥/~T)v• Of 

course, it has not been determined whether this would be 

allowed by Weaver's data. 

To conclude this section, it appears that most of the 

relevant stishovite data, with the exception of~. can be 
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incorporated with reasonable accuracy into the mie-Gruneisen 

type of equation of state used here. Although case 3 gives 

the best fit to the Hugoniot data, the Mie-Gruneisen equation 

is probably a poor approximation over the range of tempera-

tures involved in these data. Thus case 2, which is based 

on data at more moderate temperatures, is probably the pre-

ferable solution. 

An analysis by E. K. Graham (unpublished manuscript, 

1972) of some of the stishovite Hugoniot data analyzed here 

yielded the values K0 = 3.35 mb, K~ = 5.5 and ~0 = 1.64. A 

high value of K~ was also obtained by Ahrens et al. (1970) 
I 

(K 0 = 3.0, K0 = 6.9, r 0 = 1.58). Although some differences 

between these anafyses and the present one are due to the 

different equations used, a critical difference is that 

cases 2 and 3 of the present analysis rely on the Hugoniot 

data of the more porous samples to constrain r, whereas 

the others rely on Weaver's (1971) coefficient of thermal 

expansion. The effect of these different approaches can 

be seen by comparing case 1 with cases 2 and 3, above. Case 

1 also relies on Weaver's data. The preference for case 2 

rests on the critical assumption that the Gruneisen parameter 

does not vary greatly with temperature at very high tempera-

tures. 
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7.4 Equations of State - "Coesite" 

This section will proceed on the assumption that the 

Hugoniots of the most porous quartz samples represent coesite. 

The difficulties raised by this assumption, and an alter­

native interpretation, will be discussed in the next section. 

Because of the smaller range and quantity of "coesite" 

data, it is not possible to determine as many parameters of 

the equation of state as it was for stishovite. Since the 

data extend to only about 15 per cent volume compression, it 

is not necessary to use the full ''fourth-order" finite strain 

equation (Equation 42, Chapter 3), so the "e3" term is here 

assumed to be zero. Since there is not a large range in 

the initial porosities of the Hugoniot data, the volume de­

pendence of~. and hence (~K/~T)p, cannot be well determined. 

Conversely, the value of (~K/dT)p does not strongly affect 

the equation of state in this range. A value of -0.05 Kb/OK 

was therefore assumed. This value of (dK/~T)p gives values 

of bT in the range 5 to 10, a range which seems reasonable 

on the basis of a few other examples, including stishovite 

(see, for example, Anderson et al., 1968; Roberts and Ruppin, 

1971). V0 and~ were taken from Table 2 and Cv was calculated 

from the Debye model. 

It can be seen from Fig. 7.1 that the~~= 1.35 g/cm3 

Hugoniot data are considerably scattered and that they do 

not trend towards the coesite density of 2.91 g/cm3. This 
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may be because there has been a partial conversion to the 

stishovite phase. When compared to the~~ = 1.15 g/cm3 

Hugoniot data, the lower three points in particular are 

seen to deviate towards higher densities. Two cases were 

therefore treated, one including these three points and the 

other excluding them. 
I 

Initially, both K0 and K0 were allowed to be determined 

by the Hugoniot and static compression data. The results 

are given as cases 1 and 2, Table 6, case 1 excluding the 

three doubtful Hugoniot points and case 2 including them. 

The "standard errors'' used to weight the compression data 

are given in Table 5. Case 1 is illustrated in Fig. 1, and 

case 2 in Fig. 6. The bulk moduli in these two cases are 

significantly above the value of 0.97 Mb measured ultra­

sonically by Mizutani et al. (H. Mizutani, private communi­

cation, 1972), so a third case was run with K0 fixed at this 
~ 

value and allowing only K0 to be determined by the compres-

sion data (Table 6, Fig. 6). From Fig. 6 it can be seen 

that case 3 does not fit the static compression data of 

Bassett and Barnett (1970) very well, and it falls below 

most of the corresponding Hugoniot data. 

The scatter in the Hugoniot data, and the uncertainty 

in their interpretation, are such that they cannot definitely 

be said to be discordant with case 3, but the discrepancy 

between case 3 and the static compression data seems to be 
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significant. Because of this, the equation of state of 

coesite must remain somewhat uncertain at this stage. 

7.5 SiD2 Phase Equilibria 

Using the equations of state just given, the Gibbs free 

energies of "coesite" and stishovite can now be calculated, 

and the "coesite"-stishovite transition pressure calculated 

es a function of temperature using the condition that the 

Gibbs free energies of the two phases ere equal at the phase 

transition. 

For detailed comparison, the Hugoniot temperatures, 

which were calculated approximately by Trunin et al. (197lb), 

have been calculated according to the method described earlier. 

The results, plotted versus Hugoniot pressure, are shown in 

Figs. 7.7 and 7.8. It is notable that the 5.5 Mb point is 
I 

over 40,000°K, and the fa = 1.77 point at 2.3 Mb is over 

30,000°K. The temperatures are only changed by a fe~ percent 

by using the different equations of state given in the pre-

vious sections. A greater uncertainty in the points is due 

to the scatter in Hugoniot pressures, but this would only 

cause the points to move along the Hugoniot locus, which, 

in a P-T plot, is approximately radial from the initial point. 

In Fig. 7.8, the boundary between the "coesite" and 

stishovite fields, shown by the dashed curve, is closely 

defined by the f~ = 1.77 and 1.55 g/cm3 Hugoniot points, 
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which, as was discussed earlier, both show signs of involving 

a mixture of the two phases. 

The Gibbs free energy is defined by 

G : H - r S : U + PV - T S (4) 

where H is the enthalpy and S the entropy. G has the property 

(see, e.g., Slater, 1939) 

(~J :: v ~ p T • 
(5) 

We wish to evaluate Gat the state (P,V,T) starting from the 

state (O,V 0 ,T0 ). (Atmospheric pressure can be ignored here.) 

This will be done via the state (P 0 ,V0 ,T) where P0 (T) = P(V 0 ,T). 

I.e., by first rafsing the temperature at constant volume 

and then compressing isothermally. From equation 4, 

G (V0 ,T) = C (Vo, To) +- [u(v~,T)- U(Vd, To)] 

+ ~ (T) V0 - [ T S { VC), T) - 7;, S { V0 , T 11 ) j } ( 6 ) 

and from equation 5, upon integration, 

~ (V, T) : 
P(T) 

G { v, I 1) + ( v ( P', T) J p' 
Jpoli) 

(7) 

Denoting the difference between the stishovite and cos­

site Gibbs free energies at the state (V 0 ,T0 ) by ~G0 , i.e., 
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where superscripts "s" and "c" denote stishovite and coesite, 

respectively, and defining AH 0 and ~S0 similarly, equation 

4 gives 

~H0 and ~S0 can be found from the results of Holm et al. 

(1967). At 298°K, they give JH 0 = 10.58 Kcal/mole = 

( 8) 

7.36 x 109 erg/g and AS 0 = 13.01 cal/mole °K = -2.09 x 106 

erg/g °K. 

Now from equation 6, using equation 8, we obtain 

G5 (Vos,T)- C.c(Vo',T) :: P,lT)( vos-V~'J-+- Us{VOSJ T)- U'lVp',T) 

- T [ S '{V /,I) - 5 c { V0e, T)] . ( 9 ) 

To evaluate this, we need U and S as functions of T for both 

stishovite and coesite. These are known accurately (Holm 

et al., 1967) only up to 350°K. However, the difference 

us(V~,T) - Uc(v~,T), and the analogous difference for S, can 

be approximated as being constant above about 350°K, for the 

following reasons. The specific heats, CP, of stishovite 

and coesite given by Holm et al. (1967) converge towards 

each other above about 150°K. Also~ at 3000K, Cp differs 
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from C by about 0.6 per cent for stishovite and about 0.1 
v 

per cent for coesite. Thus the Cv will also converge at 

higher temperatures. Since U and S are integrals of Cv' 

Us - Uc will approach a constant value at higher temperatures, 

as will ss - sc. Thus, the differences in U and S in equa­

tion 9 can be replaced by their values at 298°K. Noting, 

finally, that LIU
0

:::: a1H
0

, equation 9 becomes 

(10) 

Returning to equation 7, the integral is more easily 

evaluated here by noting that 

(11) 

Equations 7, 10 and 11, and equation 3 for an isotherm, 

allow the Gibbs free energies of "coesite" and stishovite to 

be compared. 

The phase line resulting from these calculations is 

shown in fig. 8. The error bars shown represent the varia-

tions due to the use of the alternative equations of state 

given in the previous sections. The uncertainty due to 

the approximations used for us - uc and ss - sc is difficult 

to estimate, but should not be greater than a few percent. 

Errors of 5 percent in us - uc and ss - sc would cause errors 

of about 1 percent and 3 percent, respectively, in the 
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calculated transition pres s ure at 10,000°K. 

As can be seen in rig. 8, the calculated phase line 

deviates considerably from the line separating the 11 Coesite" 

and stishovite Hugoniot fields. The difference is about a 

factor of two in temperature, which would seem to be well 

outside the range of uncertainties of the calculations. If 

this is correct, it means that the "coesite" phase obtained 

in the shock-wave experiments is metastable. This is a 

surprising result, as it might have been expected that the 

high temperatures involved would have promoted the transition 

to stishovite. 

An alternative interpretation of the data is suggested 

by re-examining ri~. 8, where the lower pressure, quartz­

liquid-gas region of the phase diagram is also shown (Levin 

et al., 1969; JANAr Tables, 1965). The "coesite 11-stishovite 

Hugoniot boundary intersects the calculated phase line at 

about 2,500°K, which is comparable to the melting tempera-

ture of quartz. Is it possible that the "coesite" is the 

liquid phase? 

The plausibility of this hypothesis can be tested using 

the "Clausius-Clapeyron" relation for the slope of a phase 

line: 

(12) 
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where .. Ll" denotes the change through the phase transition. 

Let us apply this at the hypothetical coesite-stishovite­

liquid triple point at 125 Kb, 2,500°K. ~e know that the 

volumes of coesite and the liquid must be very similar at 

this pressure because of the agreement between the coesite 

static compression data and the "coesite" Hugoniot data 

(see Fig. 6). If the difference in their volumes is zero, 

equation 12 shows that the coesite-liquid phase line is 

horizontal in Fig. 8 - also shown by the line labelled "1" 

in Fig. 9, which illustrates the relevant region of the phase 

diagram in more detail. If the difference in volumes is not 

zero, the slope of the phase line can be estimated as follows. 

The coesite-stishovite phase line is still fairly well deter­

mined below the triple point. The coesite-stishovite 

volume difference is about 0.09 cm 3/g. The entropy differ-

ence is then, from either the slope of the phase line 

(0.02 Kb/°K) and equation 12 or the approximation made in 

the previous section, about 2 x 106 erq/g °K. Assuming the 

liquid-stishovite volume difference to be also about 0.09 

cm3jg, the slope of the liquid-stishovite phase line (0.06 

Kb/°K) and equation 12 give the liquid-stishovite entropy 

difference as about 5 x 106 erg/q °K. Combining these results, 

the liquid-coesite entropy difference is about 3 x 106 erg/g OK. 

From Fig. 6 we can estimate a reasonable maximum volume 

difference between coesite and the liquid to be about O.fll 
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cm3/g. Equation 12 then gives a slope of about 0.3 Kb/°K -

line "2" in Fig. 9. Line "3", having the same slope as the 

stishovite-liquid phase line, would imply that coesite would 

have a volume similar to that of stishovite, which is clearly 

unreasonable. 

Lines "1" and "2" both extrapolate to the range of 

melting temperatures of quartz. There is a difficulty, 

thoug~, since a similar set of relationships would hold at 

the quartz-coesite-liquid triple point, which would lead us 

to predict a slope of the quartz-liquid phase line which is 

rather different from the one shown. However, we may observe 

that the liquid would have to vary continuously from a 

density of about 2.2 g/cm3 at zero pressure (the density of 

fused quartz) to about 3.1 g/cm3 at 100 Kb. This would cause 

the phase lines to be concave downwards (in Fig. 9) in this 

range, and might allow these relationships to hold without 

contradiction. 

The preceeding discussion is intended as a plausibility 

argument. It is concluded that it must be considered a 

serious possibility that a coesite-like · liquid phase was 

produced in the shock-wave experiments. 

Returning, finally, to the coesite-stishovite phase 

line below the hypothetical triple point, the calculated 

transition pressure at 3000K is 78 Kb. This is in reasonable 

agreement with the value 69 Kb estimated from their experi-
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mental r esults by Akimo t o and Syono (1969). It may also be 

compared with their values 85 to 95 Kb calculated using a 

rough estimate of the coesite compressibility. 

The average slope of the phase line is about 0.023 Kb/°K, 

which compares very well with the value 0.024 Kb/°K found by 

Akimoto and Syono (1969). 

7.6 Discussion 

The determinations of the equations of state of stisho-

vite and "coesite" accomplished here depend a lot for their 

success on the ability to incorporate a variety of data, 

which constrain different aspects of the equation of state, 

into a single consistent equation of state. In this respect 

there is nothing unique about the particular equations used 

here. For instance, a combination of the Birch-Murnaghan 

equation and equation (1) for Y would have served just as 

well. (The comments in Chapters 6 and 8 concerning the de-

pendence of derived parameters on the form of the equations 

used should be born in mind, though.) The present contribu-

tion in this regard is merely to point out and demonstrate 

an approach which could, and should, have been used much 

more widely. A further, more thorough, demonstration and 

discussion of this approach is given in Chapter 8. 
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TABLE 7.3 

Standard errors (Mb) assumed for the 

stishovite compression data. 

Data Cases Cases 
1 • 2 and 4 3 and 5 

51 0.3 0.5 

52 0.2 0.2 

53 0.2 0.1 

54 0.3 0.5 

55 0.3 0.5 

56 0.6 1.0 

57 0.3 0.3 

58 1.0 0.5 

59 1.0 0.1 

510 1.0 1.0 

X1 0.015 0.015 

X2 0.015 0.015 
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TABLE 7.5 

Standard errors (Mb) assumed for the 

"coesite" compression data. 

Data 

511 

512 

513 

X3 

Error 

0.20 

0.10 

0.10 

0.02 
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TABLE 7.6 

"Coesite" parameters for various cases. 

Case 

1 

2 

3 

K 
n 

(IYib) 

1.27 

1. 36 

0. 97 ** 

K I 
0 

5.6 

4.1 

7.3 

-0.05 

-0.05 

-0.05 

* Assumed values, see text. 

** Fixed value (Table 2). 

0.43 

0.46 

0.33 

d ln ¥' 
d ln V 

-0.04 

1.2 

-0.15 

4.9 

4.6 

6.4 
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Hypothetical Si0 2 
Phase Diagram 
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Q::: COESITE 
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Fig. 7.9. Hypothetical silica phase diagram. Lines labelled 
1, 2 and 3 correspond to different assumptions about the 
relative densities of coesite and the liquid (see text). 
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CHAPTER 8 

HIGH PRESSURE AND TEMPERATURE ELASTICITY Of NaCl 

Summary 

The quasi-harmonic finite-strain equations for the effec-

tive elastic moduli at high pressures and temperatures are 

applied to the analysis of sodium chloride ultrasonic data 

in the pressure range 0-8 Kb and the temperature range 300°K-

8000K, zero pressure thermal expansion data and Hugoniot data 

up to 260 Kb. The theory can give a reasonable representa-

tion of the high-temperature ultrasonic data, but systematic 

discrepancies, especially in the thermal expansion at high 

temperatures, are attributed to anharmonic effects of order 

higher than those included in the theory. The effect of 

using different strain measures on the values of derived STP 

parameters is demonstrated. The Hugoniot data are used to 

test extrapolations of the ultrasonic data. The adverse 

effects of using inappropriate parameters in extrapolation 

equations are demonstrated. finite strain expansions in terms 

of the frame-indifferent analogue, E, of the Eulerian strain 

tensor f are found to be empirically superior to expansions 

in terms of the Lagrangian strain, ~· in this application. 

The Hugoniot data are used, finally, to constrain the equa­

tion of state of sodium chloride at high pressures. A 300°K 
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isotherm rlerived in this way a g r ees closely with some recent 

detP.rminations from the same Hu goniot data and from static­

compression X-ray data, but deviates slightly from others 

calculated from atomic force models. The accuracy of the 

present isotherm is estimated as 1.5% to 200 Kb, 3% at 300 

Kb, with the pressure under-estimated by perhaps a few kilo­

bars at higher pressures because of the limitations of the· 

present thermal theory. 
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8.1 Introduction 

The abundant high quality data which is available for 

sodium chloride allows a demonstration of the application of 

the theory developed here, a test of the approximations made 

in this theory, a discussion of methods of analysis of equa­

tion of state and elastic data, and an accurate determina­

tion of the sodium chloride equation of state. 

The elastic properties of sodium chloride have recently 

been measured throughout the pressure-temperature region 

0 to 8 Kb and 300 to 800°K using an ultrasonic interfero­

metric technique (Spetzler et al., 1972). These measure­

ments are of sufficient accuracy to determine the second 

pressure derivative of the elastic moduli. The elastic modu­

li had previously been measured at 195°K and 295°K as func­

tions of pressure (Bartels and Schuele, 1965), and at zero 

pressure between 300 and 1100°K (Slagle and McKinstry, 1967). 

Static compression measurements using a piston displacement 

method have been made to 100 Kb by Bridgeman (1940, 1945) 

and to 45 Kb by Vaidya and Kennedy (1971). Static compres­

sion measurements using X-rays have been made by Pe~ez­

Albuerne and Drickamer (1965) to over 200 Kb. Shock com­

pression measurements have been made by fritz et al. (1971 ). 

The s~ecific heat of sodium chloride has been measured by 

K8lley (1934) and the thermal expansion by Enck 

and Dommell (1965). 



158 

Sodium chloride is commonly used as a high pressure 

standard, so an accurate determination of its pressure-den­

sity relation is desirable. Decker (1965, 1971) and Weaver 

et al. (1971) have investigated the accuracy with which this 

can be determined. Their determinations depend critically 

on the values of the equation of state parameters, especially 

the elastic moduli and their derivatives, as well as on the 

functional forms assumed. 

Beyond the determination of the equation of state of 

sodium chloride in particular, the determination of equations 

of state in general, and of equations of state parameters, 

deserves some critical comment. Ideally, a particular form 

of equation of state would be assumed which was capable of 

describing all thermo-elastic and calorimetric properties of 

a substance, and then all available relevant data would be 

used to determine any disposable parameters in this form. 

The resulting equation of state could then be used with maxi­

mum confidence for interpolation and extrapolation, provided 

that the functional form assumed was appropriate enough so 

that all data could be fit to within experimental error. 

Since the accurate calculation of equations of state of solids 

from fundamental quantum mechanical theory is beyond present 

capabilities, the functional forms to be used in the above 

empirical approach are not known, and appropriate forms have 

themselves to be determined empirically. · This flexibility 
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in the choice of functional forms has two important practical 

consequences. firstly, extrapolations based on different 

functional forms diverge from each other. Secondly, the 

values of parameters determined by the above method depend 

on the functional form assumed. 

Common practice departs in several important respects 

from this ideal procedure. firstly, data are separately 

analyzed and reduced to parameters as they are accumulated. 

Secondly, these parameters are used indiscriminately in the 

reduction of other, independent, data, and in various extra­

polation formulae. The effect of using different functional 

forms on extrapolations has often been discussed (e.g., 

Weaver et al., 1971), but the effect of using different func­

tional forms on the values of parameters is usually not con­

sidexed. Also, the possibility of inconsistenci e s between 

the various functional forms assumed in different parts of 

the complete equation of state are obscured in this piece­

meal approach. 

Two kinds of functional forms are used in equations of 

state. The first kind includes those forms which have some · 

physical basis, such as the Coulomb electrostatic potential. 

These, by definition, have the potential of giving insight 

into the physical processes involved but the disadvantage 

of being too inflexible if not all relevant physical processes 

have been considered. In this case, unrealistic values of 
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parameters would be obtained. The second kind includes those 

forms based on some kind of series expansion. These have 

greater flexibility and can give an accurate representation 

of data, but they have the disadvantage of involving, po­

tentially, a large number of parameters and of giving no 

physical insight . 

In the particular case of sodium chloride, Slagle and 

McKinstry (1967) represented their data as a polynomial of 

elastic moduli versus temperature. Spetzler et al. (1972) 

represented their data as a polynomial of frequency versus 

pressure and temperature, and Bartels and Schuele (1965) use 

a polynomial of frequency versus pressure. Vaidya and Ken­

nedy (1971) used a polynomial of volume versus pressure, 

while Perez-Albuerne and Drickamer (1965) assumed a particu­

lar interatomic force model and a particular approximation 

to the thermal pressure. Fritz et al. (1972) used a poly­

nomial in shock velocity versus particle velocity to repre­

sent the sodium chloride Hugoniot, and made very specific 

(though reasonable) assumptions, through the Gruneisen para­

meter, concerning the thermal pressure, to obtain an isotherm. 

Enck and Dommell (1965) used a polynomial of the coefficient 

of thermal expansion versus temperature to represent their 

data. In their calculations of sodium chloride isotherms, 

Decker (1965, 1971) and Weaver et al. (1971) assumed partic­

ular interatomic force models, various approximations for 
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the th e rmal pre ssure and took parame ters from a variety of 

sources. 

The th e ory of equations of state developed in this the­

sis is capable of representing all of the data discussed 

above. It is neither unique nor the most complete that 

could be used. The strain dependence is based on a poly­

nomial of the Helmholtz free energy in terms of strain. It 

thus has the flexibility and lack of physical assumptions of 

the series expansions, discussed above, in this respect. 

Further, there is great flexibility in the choice of strain 

measure s, as was discussed in previous chapters. The temper­

ature dependence is based on a theory which, while very gen­

eral in a c e rtain - sense, makes specific approximations which 

limit both its flexibility and the number of parameters in­

volved. It may also give some physical insight, i.e., some 

indication of the validity of the approximations mad e . 

Th e pre s e nt application is, to the author's knowledge, 

th e first time in which such a quantity and vari e ty of data 

have been considered in t e rms of a single equation of state. 

An analysis of the ultra sonic data of Spetzler et al. (1972) 

is the basis of the discussion. These data determine the 

pressur e and temperature dependence of the elastic moduli 

of sodium chloride. Combined with the zero pressure, room 

temperature value of the thermal expansion coefficient, all 

of the equation of state parameters are thereby determined. 
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The effect on the values of the parameters of using differ­

ent functional forms will be illustrated by using both the 

"E" and "'r{" strain measures. Extrapolations to high pressure 

using these two examples will be compared and tested with 

Hugoniot data. These extrapolations will also be compared 

with those obtained by substituting the parameters of Spetz­

ler et al. (1972) directly into the E and ~equations. Cal­

culation of the room temperature isotherm will also allow 

comparison with static compression data in these cases. The 

adequacy of the thermal part of the theory will be discussed 

in terms of the fit to the ultrasonic versus temperature 

data of both Spetzler et al. (1972) and Slagle and McKinstry 

(1967) and to the thermal expansion data of Enck and Dommell 

(1965). 

8.2 Method of Analysis of Ultra s onic Data 

The ultrasonic measurements of sodium chloride by Spetz­

ler et al. (1972) consist of frequencies measured along a 

series of isotherms as a function of pressure up to about 

8 Kb, and at zero pressure as a function of temperature. 

Four modes of propagation were measured. These are identi­

fied in Table 8.1. Since the four mode frequencies depend 

on only the three elastic moduli of sodium chloride, the 

three elastic moduli are overdetermined by these data. 

As supplied to the author, the basic frequency data for 
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each mode consisted of frequency versus temperature at zero 

pressure normalized to the 300°K value, and frequencies ver-

sus pressure along various isotherms, the latter frequencies 

being arbitrary multiples of the fundamental frequency of 

the particular path being measured (Spetzler at al., 1972). 

These were normalized in the present analysis to the zero 

pressure, 300°K value as described below. The absolute 

values of the elastic moduli are fixed by the zero pressure, 

room temperature values of the mode sound velocities given 

by Spetzler at al. (1972). These, and the derived values of 

the elastic moduli, are given in Table 8.1. 

The sound velocity, Vi' in a particular mode of propa­

gation is related to the appropriate combination, C., of 
l 

elastic moduli by 

V.· ::: L 
( 1) 

where f is density, and the resonant frequency, r
1

, over a 

path of length L is 

F· = t. 
rt V~ I L ) ( 2) 

where n is an integer. Denoting values in a reference state 

by subscript "o", and noting that in a crystal of cubic sym-

metry under hydrostatic pressure 

(3) 
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(1) and (2) give 

( F ; ) r ) {. J-, I' Fo ~ - C / C 0 ~ • { ~ /!'o . (4) 

Equation (4) thus relates the normalized frequencies to the 

elastic moduli and density. 

The elastic moduli can be calculated according to the 

theory given in Chapter 5. Since, in this theory, strain · 

(or density) and temperature are the independent variables, 

rather than pressure and temperature, the normalized fre-

quencies must be calculated as follows. First the density 
. 

at which the calculated pressure equals the observed pres-

sure is determined. The elastic mnduli can then be calcu-

lated at this density. The zern pressure density and elastic 

moduli can also be calculated as a function nf temperature 

in this way. 

Once the normalized frequencies were determined for a 

gi ven isotherm, the observed frequencies were scaled so as 

to obtain a least-squares fit with the calculated values. 

Thus only the pressure derivatives of the moduli were deter-

mined at this stage. 

The thermal expansion data were not included in their 

nri g inal density versus temperature form, but through the 

volume coefficient of thermal expansion given by Enck and 

Dommell (1965). This departs from the ideal procedure dis-

cussed in the previous section, but, on the one hand, the 
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data are not publish ed in their original form, and on the 

other, the thermal part of the present theory is apparently 

not sufficient to describe them completely anyway, as will 

be seen. The specification of the thermal part of the theory 

is completed by fitting of the theory to the frequency ver­

sus temperature data, at both zero and higher pressures. 

The equations were fitted to the data in a maximum like­

lihood sense, i.e., in a weighted least-squares sense with 

the weighting according to the variance of the data. Ini­

tially, all of the ultrasonic data were weighted equally, but 

the weighting is useful for preferentially fitting parts of 

the data, and for including other types of data, such as 

Hugoniot data, in · the fitting procedure. The parameters 

which gave the best fit to the data were determined itera­

tively using an automatic computation algorithm. 

8.3 Results of Analyses 

It was found that not all of the ultrasonic data could 

be fitted within the experimental error by the present equa­

tions. figs. 8.1 to 8.3 show the result of fitting the 

fourth-order "E'' equations to the ultrasonic data. fig. 8.1 

shows the normalized frequency versus pressure data and the 

corresponding calculated curves for modes 1, 2 and 4 (Table 

8.1). fig. 8.2 shows the same for mode 3 and the normalized 

zero pressure frequency versus temperature data and curves. 



166 

In Fi g . 8.3, th e Hu goniot extrapolated from this fit is com­

pared to the data of Fritz et al. (1972). The specification 

of this case is s ummarized in Table 8.3 as Case 1, and its 

parameters are given in Table 8.4. Close inspection of Figs. 

8.1 and 8.2 s hows that the curvature of the frequency-pres­

sure data has not been exactly matched. 

The reason for this became evident when only the low­

pressure ultrasonic data in the temperature range 300°K to 

500°K were allowed to constrain the temperature dependence 

and only the room-temperature isotherm data were allowed to 

constrain the pressure dependence. This case is given in 

Tables 8.3 and 8.4 (Case 2) and illustrated in Figs. 8.4 to 

8.6. The room-temperature isotherm data are now more closely 

fitted, but at the expense of all of the higher temperature 

data. The Hugoniot extrapolated from this case is very close 

to the data (Fig. ·8.6). 

The thermal part of this theory is evidently insuffi­

cient to accurately describe the data. This can also be 

seen from other data. In Fig. 8.7, the elastic modulus 

versus temperature data of Slagle and McKinstry (1967, cal­

culated from their polynomial fits to their data) are com­

pared to the corresponding curves calculated from Case 2 

(solid lines). The same divergence at high temperatures is 

evident. Also shown in Fig. 8.7 are the (dashed) curves 

obtained by requiring the present equations to fit all of 
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Spetzler at al.'s (1972) zero-pressure data. This fit is 

illustrated in Fig. 8.8, for the zero-pressure and mode 3 

ultrasonic data, and given as Case 3 in Tables 8.3 and 8.4. 

It is notable that the high-pressure, high-temperature ultra­

sonic data are still not fit very well, but the close match 

between Case 3 and the data of Slagle and McKinstry (1967) 

demonstrates the consistency between the two data sets at 

zero pressure. 

These cases also illustrate Thomsen's (1972) point that 

the elastic moduli at constant pressure are not necessarily 

linear in temperature, and they show the significant extent 

to which the temperature dependence at zero pressure depends 

on the pressure derivatives of the elastic moduli (Cf. Table 

8.4). 

The thermal expansion predicted by Case 2 was calculated, 

and is compared in Fig. 8.9 with the data of Enck and Dommell 

(1965). Since these authors gave a polynomial for the linear 

relative expansion coefficient, (dL/aT)pL
0

, where L is a 

dimension of the sample and L
0 

is its value at 298°K, it was 

necessary first to integrate this to obtain L(T)/L
0

, and then 

to calculate the usual linear coefficient (~L/dT)/L, from 

which the volume coefficient, ~= (ovj~T)/V, and volume ex-

pansion could be obtained. The values of « and density ob­

tained from Case 2 deviate significantly from the data at 

high temperatures. Note that this error does not have very 
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much effect on the elastic moduli derived from the ultra-

sonic data, since the density enters equation (4) only in 

the l/6th power. Decker (1971) also found that the thermal 

expansion data and the high-temperature elastic moduli data 

could not be simultaneously fit. 

Turning now from the thermal to the "compressional" 

part of the theory, note that for Hugoniot extrapolations 

it is more important to have a good fit to the frequency-

pressure data than to the frequency-temperature data, since 

the thermal contribution to the Hugoniot pressure at 300 Kb 

is found to be only about 40 Kb. Thus Case 2 is more appro-

priate than Cases 1 and 3 for the Hugoniot extrapolation. 

It has already been remarked that Case 2 gives a Hugoniot 

which closely approaches the data (Fig. 8.6). 

In Figs. 8.10 and 8.11 and Tables 8.3 and 8.4 (Case 4), 

the corresponding analysis in terms of the fourth-order "~" 

equations is presented (only the high-pressure ultrasonic 

frequencies for mode 3 are illustrated since they are quite 

representative). The same comments apply to the thermal 

part of the ~-equations in Case 4 as apply to Case 2 for the 

E-equations. The Hugoniot extrapolation is not quite so 

successful in this case, however (Fig. 8.11). 

A stronger test of the relative empirical merits of the 

E and ~ strain measures is to use only the "third-order" 

form of the finite strain equations. These are given as 
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Cases 5 and 6, respectively in Tables 8.3 and 8.4 and figs. 

8.12 and 8.13. The third-order "E" Hugoniot, fig. 8.12, is 

clearly superior to the third-order "'" Hugoniot, fig. 8.13. 

The fit to the high-temperature ultrasonic data for Case 5 

is similar to that for Case 2, but Case 6 fits worse than 

Case 4. 

The isothermal extrapolations to high pressure of the 

effective elastic moduli are illustrated in fig. 8.14 for 

Cases 2, 4, 5 and 6. The fourth-order extrapolations are 

reasonably close, ·but, curiously, the third-order E extra­

polation of c 44 deviates the most from the others, while the 

third-order 1 extrapolations of c 11 and c12 deviate the most 

from the most from the others. E may not be superior in all 

situations. 

The price paid for using values of parameters which are 

not appropriate to the equations used for extrapolation is 

illustrated by Cases 7 and 8, in which the parameters given 

by Spetzler et al. (1972) were used in the fourth-order E 

and ~ equations, respectively. The extrapolations of the 

effective elastic moduli are compared in fig. 8.15. The~­

extrapolations have not changed much, but the [-extrapola­

tions have been drastically affected. Case 7 is further 

illustrated in figs. 8.16 and 8.17. The Hugoniot extrapola­

tion has also been considerably altered (fig. 8.17), and 

even the high temperature data are poorly fit (Fig. 8.16). 
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The sharp curvature in the elastic moduli curves (Fig. 8.15) 

is due to the pressure varying more slowly with density at 

200 Kb (Fig. 8.17). 

By using the Hugoniot data as an additional constraint, 

rather than as a test, the equation of state of sodium chlo­

ride can be more accurately determined at high pressure. Be­

cause of the evident superiority of E as a strain measure, 

this was done with the fourth-order E equations, using the 

same set of ultrasonic data as in Case 2. The result is 

given as Case 9 in Tables 8.3 and 8.4. The fit to the Hugon­

iot data is shown in Fig. 8.18. A fuller tabulation of de­

rived reference state quantities is given in Table 8.5 for 

this case, and the 300°K isotherm is briefly tabulated in 

Table 8.6. 

As a check on the accuracy of the thermal part of the 

equation of state, and hence of the derived isotherm, the 

Hugoniot data were combined with all of the ultrasonic data 

(Cf. Case 1) to determine the equation of state. This is 

given as Case 10 in Tables 8.3 and 8.4. The deviation of 

the derived isotherm from that of Case 9 is shown in Fig. 

8.19. They are within about 1 Kb to pressures up to about 

220 Kb. The Hugoniot data, which extend up to 264 Kb, con­

strain the isotherm to about 230 Kb. The Hugoniot data are 

fitted in Case 9 with a standard deviation of 2.5 Kb, and, 

in Case 10, of 2.8 Kb. Thus the error in the thermal correc-
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tion from the Hugoniot to the 300°K isotherm is probably less 

than the error due to the scatter of the Hugoniot data. As­

suming the Hugoniot data have no systematic errors, the ac­

curacy of the isotherms given here should be about 3 Kb at 

200 Kb, or about 1.5%. 

8.4 Discussion 

The data used here have been sufficient to test both 

the thermal and compressional parts of the present theory. 

These aspects of the theory will now be discussed. 

The thermal part of the theory, i.e., the ''fourth-order" 

anharmonic theory of Leibfried and ludwig (1961), seems to 

over-estimate the anharmonic effects, as witnessed by the 

temperature-dependence of the elastic moduli (Fig. 8.7), and 

the coefficient of thermal expansion (Fig. 8.9). This is 

surprising, since it might be expected that the Gruneisen 

approximation, which may well be inaccurate below the Debye 

temperature, would be reasonably accurate at temperatures 

substantially above the Debye temperature (Leibfried and Lud­

wig, 1961). It is even more surprising in view of Spetzler 

et al.'s (1972) calculation showing the Gruneisen parameter, 

((, to be almost independent of temperature at constant volume 

and high temperatures, as predicted by the fourth-order · 

theory - this calculation, however, appears to be in error 

because they used incorrect values for the specific heat. 
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Their tabulated zero-pressure values of the specific heats 

at constant pressure and at constant volume, Cp and CV, re­

spectively, areplotted in Fig. 8.20, along with the data for 

Cp of Kelley (1934). At high temperatures, their values of 

Cv decrease, rather than approaching the Dulong-Petit value 

of 0.854 J/g °K. Also shown in Fig. 8.20 are the values of 

Cv obtained from the Debye model (used in this study) and 

from the Cp data. These are in quite close agreement. 

When the specific heats of Kelley (1934) are used to 

calculate ~as a function of temperature, it is found that 

({is almost constant at zero pressure (Fig. 8.21). This 

contrasts with the conclusion of Spetzler at al. (1972) that 

there is an increase in oat zero pressure because of the 

decrease in density (Fig. 8.21). It also implies that o 
decreases substantially as temperature increases at constant 

volume, contrary to the prediction of the fourth-order theory, 

the assumption of the Mie-Gruneisen equation, and the volume-

only dependence of¥ derived here (Fig. 8.21). 

The most likely explanation of this behaviour may be 

that anharmonic effects of order higher than the fourth are· 

large, and partly cancel the lower-order effects. Thus a 

higher-order, and substantially more difficult, theory may 

be required. Another possibility, that thermally induced 

lattice defects may be affecting the results, seems unlikely. 

This possibility was invoked by Enck and Dommell (1965) to 
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explain what appeared to them to be a too rapid increase of 

the thermal expansion coefficient. Thermally induced Schottky 

defects have been invoked to explain the conductivity of 

sodium chloride (Eitzel and Maurer, 1950), but it was shown 

by Fischmeister (1956) that there was no detectable differ-

ence between the macroscopic and microscopic thermal expan-

sion coefficients, and in any case, the effect would be in 

the wrong direction to explain the present discrepancies 

(i.e., defects would increase the thermal expansion). 

The ultrasonic data of Spetzler et al. (1972) yield 

non-zero values of (d2 c«~/dPdT), as can be seen directly 

from the data, e.g., in Figs. 8.1 and 8.2. As discussed in 

Chapters 3 and 5, this does not necessarily imply that a 

higher-order theory is required. This claim was made by 

Thomsen (1970, 1972), and repeated by Spetzler et al. (1972). 

The only strong evidence that a higher-order theory is re-

quired is the temperature-dependence of adiscussed above. 

Compressional effects in sodium chloride seem to be 

described better in terms of E than in terms of~· as was 

found for MgO in Chapter 6. The extrapolation of c44 seems . 

to be an exception to this. The empirical tests of E and 1 
in this Chapter are superior to those of Chapter 6, since 

the ultrasonic data were extrapolated directly, rather than 

by using parameters derived by other methods. The faster 

converqence of expansions in terms of E can be seen by com-
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paring the primary equation of state coefficients, r~f1 and 

t:f3' which are tabulat e d in Table 8.5 (r;,a' Case 9) and 

Table 8.7 (t;(-f' Case 4). The t~{l increase much more rapidly 
n 

with n than do the rep • 

The perils of usino inappropriate parameters in extra-

polation equations are most g raphically demonstrated by Case 

7, in which the parameters of Spetzler et al. (1972) were 

us ed in the fourth-order E equations (figs. 8.15, 8'.17). 

This is not meant to imply that the parameters of Spetzler 

et al. (1972) are wrong, or inaccurate. In fact, they are 

probably more accurate at STP than those derived here, since 

a mor e flexible equation was used to derive them. However, 

a l ess flexible equation would tend to average over the 

ran qe of the data, so that a median value (say at 4 Kb) 

rather than an extremal value (zero pressure) would be more 

appropriate. 

The fourth-order extrapolations of the effective elastic 

moduli (fig. 8.14) do not predict tho vanishing of c 44 near 

the pressure at which sodium chloride transforms to the 

cesium chloride structure (300 Kb, Bassett et al., 1968). 

The finite strain extrapolation by Thomsen (1972) and the 

lattice models of . Sammis (1971; Spetzler et al., 1972) both 

predict that c44 vanishes in the range 300 to 500 Kb. The 

present extrapolations differ from that of Thomsen (1972) 

in the terms retained in the expansion of the pressure enter-
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in g the e xpressions for the effective elastic moduli (Chap­

ter 5, equations 35, 36 and 40). Here, the pressure term 

wa s truncated after the second-order strain terms (in the 

''fourth-order " case), to match the truncation of the first 

term in these equations. Thomsen (1972), on the other hand, 

included third-order strain terms in the pressure, thus tak­

ing the two terms in the effective elastic moduli to differ­

ent orders in strain. The hi ghest-order strain term is thus 

incomplete, and the extrapolation may be less accurate as a 

result. 

The most preferable of the present analyses, Case 9, 

summarized in Table 8.5, is most deficient in the thermal 

part of the theory, as discussed above. (Note that the elas­

tic moduli, Tables 8.2 and 8.5, were determined as the least­

squares fit to the four mode velocities given in Table 8.1. 

These values differ slightly from those of Spetzler at al., 

1972.) 

Seve ral other recent determinations of the room temper­

ature isotherm of sodium chloride are compared with that of 

Cases 9 and 10 in rig. 8.19. Those of Decker (1971) and 

Weaver et al. (1971) are significantly below the Case 9 iso­

therm, while those of Perez-Albuerne and Drickamer (1965) 

and rritz at al. (1971) agree within 1 Kb to over 200 Kb. 

Case 9 was derived from the Hugoniot data of rritz at al. 

(1971), and those authors assumed a volume dependence of 
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~ver y similar to that obtained here (Fig. 8.21) to derive 

their isotherm, so the ag reem e nt is to be expected. Although 

it wa s s hown by Weaver (1 971) that the equations of state of 

Weaver et al. (1971) and Decker (1971) give reasonable agree­

ment with the combined Huqoniot data of several authors, the 

data of fritz at al. (1971) have the least scatter of any 

set, and they are not fit very well by their equations. The 

possibility of systematic error in the lowest Hugoniot points 

of fritz et al. (1971), suggested by Weaver (1971), due to 

shear strength effects, would probably have very little effect 

on the prese nt results. It can be seen in Fig. 8.18 that 

th ese data are slightly above the fitted Hugoniot curve, and 

that they are not fit any better than in Case 2 (fig. 8.6), 

for instance. The differences between the Case 9 isotherm 

and those of Weaver et al. (1971) and Decker (1971) is prob­

ably due to the functional forms assumed by them for the 

inter-atomic potential s . Those forms would appear to be 

slightly less successful, empirically, than the expansion 

in terms of E. 

At lower pressures, the Case 9 isotherm fits the static 

compression data of Bridge man (1945) better than the data of 

Vaidya and Kennedy (1971). Th e "fixed points" corresponding 

to the Bi 1~11, Ba I-II and Bi III-IV phas e transitions are 

fit within the error of their de termination (Jeffery at al., 

1966). 
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Finally, thA appar e nt t e mperature dependence of the 

Gruneisen paramet e r indicat ed by the data may mean that o has 

b e en ov e r- e stimated here. Th e isothermal pressure would then 

have been underestimated, especially at higher pressures, 

where greater thermal corrections from the Hugoniot are in­

volved. This error would be of the order of a few kilobars. 
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TABLE 8.2 

Fixed sodium chloride equation of state parameters 
at room temperature, atmospheric pressure. 

Densitya fo = 2.164 g/cm3 

Volume coefficient nf 
thermal expansionb 

c Debye temperature 

Mean atomic weight 

Elastic modulid 
(isentropic) 

Specific heat at 
constant pressure8 

a Rubin et al. (1961). 

M = 29.22 

ell = 0.4951 

cl2 = 0.1285 

c44 = 0.1276 

K = 0.2507 ' IYlb 

b Enck and Domme1l (1965). 
c from cp. 
d Spetzler et al. (1972) (see text). 
e Barron et al. (1964); Kelley (1934). 

Mb 

Mb 

fllb 

.... 
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TA BLE 8 . 3 

Sp ec ifica t i ons of dif fe r e nt analyses of sodium chloride 
data. Data fitted in each case are denoted by "X". 

Case Data Set 

Ultra s onic Hugoniot 
p = 0 P=O P~O p > 0 

1 X X X X 

2, 5 X X 

3 X X X 

4, 6 X X 

7* 

8* 

9 X X X 

10 X X X X X 

* Parameters of Spetz1er at al. (1972) used. 

Strain 
Measure 
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E 
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1 
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TABLE 8.5 

Derived sodium chloride parameters+ at 300°K, 
zero pressure, from Case 9. 

0'0 = 1. 608 

c;f! (Mb) 

c T ( IYlb) 
¥ 

(C)c;,. /dP) T 

(~cJ~ /OP)T 

g = -9.65 

(oc;~ /dT)p (Kb/°K) 

('~cJ,4 /dT)p (Kb/°K) 

K (a2cT /~P2) * T fllfJ T 

~T 
~ 

d ln ?f~fl /d ln V 

h"~ 

r~,a (IYlb)** 

( IYlb) 

11 

.495 

.481 

11.46 

11.56 

-.364 

-.417 

-25.2 

14.65 

3.95 

0.86 

.223 

-1.26 

-10.75 

12 

.128 

.115 

2.13 

2.23 

.014 

-.039 

-3.2 

1. 37 

0 

10.34 

.053 

-0.03 

0.17 

( «, t1 ) 
44 

.128 

.128 

0.36 

0.36 

-.033 

-.033 

-2.1 

1.16 

0.81 

-0.99 

.059 

0.62 

1.65 

+ /\11 quantities are defined in Chapters 3 and 5. 

* This was assumed equal to the derivative of c:
11

• 

Bulk 

.251 

.237 

5.24 

5.34 

-.112 

-.165 

-10.5 

5.80 

1.32 

64.6 

.986 

-1.98 

-5.20 

** See Chapter 5, equations (80-82) for definitions of bulk 
quantities. 
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TABLE 8.6 

300°K sodium chloride isothe rm and the Gruneisen 
parameter from Case 9. 

~ 3 p 
(g/cm ) (Kb) 

2.163 1.651 0 

2 .3 1.516 17 

2.4 1.428 32 

2.5 1. 348 50 

2.6 1.277 70 

2.7 1. 214 92 

2.8 1.157 117 

2.9 1.105 144 

3.0 1.059 174 

3.1 1.017 206 

3.2 0.978 240 

3.3 0.943 277 

3.4 0.911 316 
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TABLE 8.7 

Primary equation of state parameters from Case 4 (~). 

( ac, f1 ) 

11 12 44 Bulk 

to 
11Cf1 

( IY!b) .222 .053 .059 .985 

1 
( IY!b ) t "'.4 -4.29 -0.42 -0.51 -7.70 

2 
ttC,4 ( IY!b ) 60.90 2.63 5.61 33.08 
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Fig. 8.1. Normalized sodium chloride ultrasonic frequency­
pressure data of Spetzler et al. (1972) (symbols) compared 
with fitted theoretical curves from Case 1. Modes 1, 4 and 
2 (top to bottom) and room-temperature to 800°K isotherms, 
at 100°K intervals (upper to lower) are shown. 
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different modes and correspond to those for frequency-pres­
sure data (Cf. Fig. 8.1). 
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Fig. 8.5. Ultrasonic zero pressure fr e quency-temperature 
and mode 3 frequency-pressure data compared with curves 
from Case 2. Symbols as in Figs. 8.1 and 8.2. 
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from Case 4. 



197 

0 
0 ~--------------~--------------~--------------~ 
(Y') 

0 
Lf) 

N 

Wo 
O:: Ln 
:::J .-. 
c.n 
c.n 
w 
0:: 
CLo 

0 
.-. 

0 
Lf) 

0 

2.0 2.5 
DENSITY 

3.0 
C G/CC) 

3.5 
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Fig. 8.13. Huqoniot data and Case 6 extrapolated Hugoniot 
curve. 
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Fig. 8.19. Deviation of other determinations of the NaCl 
room temperature isotherm from that of Case 9. Solid curve 
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text. 
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CHAPTER 9 

~EASUREMENT OF ELASTIC PROPERTIES OF MgO 

UNDER SHOCK COMPRESSION TO 500 Kb 

Summary 

The velocities of rarefaction waves in shock compressed 

MgO were measured by observing the reduction of the shock-

front velocity near the sample edges due to the rarefaction 

wav e s propoqating from the edges. The extent of this ''edge-

effect" is difficult to determine accurately because of its 

e me r gent nature. Arranoements more sensitive to changes in 

shock-front velocity yielded rarefaction wave velocities 

clo s e to pre dicted lonqitudinal velocities in the shocked 

state. Velocities reduced towards the hydrodynamic sound 

speed in the shocked state were obtained from less sensitive 

arrangements. These results support a two-stage longitu-

dinal-hydrodynamic model of the decompression. The measured 

long itudinal velocities are consistent with second pressure 

derivatives of the elastic moduli, c~ ., given by K c~. = 
lJ 0 lJ 

-1 ~ 15, where K is the bulk modulus. 
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9.1 Intronuction 

Direct measurement of elastic properties of solids using 

ultrasonic techniques have so far only been made up to about 

10 kilobars pressure. At higher pressures, information about 

elasticity is usually only obtained indirectly by differen­

tiatin g pressure-nensity relations obtained from static com~ 

pression X-ray measurements or derived from shock-wave Hugon­

iot data. The Hugoniot data require thermal corrections at 

high pressures, as illustrated in Chapters 6 and 7, and, in 

either method, only the bulk modulus is obtained. Consider­

able accuracy is also lost because the derivative of the data 

has to be taken. It is desirable, therefore, to have a method 

of obtaining more direct measurements of elasticity at hig~ 

pressure. The development and initial results of such a 

method are described in this Chapter. 

9.2 Experimental Arrangement 

The method consists of measuring the speed of a rare­

faction wave which propagates from the sides of a sample into 

the region behind a shock wave. Such a method has been ap­

plied by Al'tshuler et al. (1960) to the measurement of 

elastic properties of metals. The configuration of the sam­

ple and waves are illustrated in Fig. 9.1. A shock wave is 

generated at the lower surface of the sample (in the present 

case, by impacting a projectile). As the shock front pro-
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q resses upwards, a lateral rarefaction prnpngates into the 

shocked reg ion from the sides of th e sample, which are un-

constrained. This rare faction reduces th e pressure at the 

shock front, and henc e slows th e shock front. The result is 

an " edge-effect" on the shock front, which lags behind near 

the sides of the s ample, as shown. 

Th e object of the experiment is to measure the furthest 

lateral distance to which this edge effect has propogated 

when the s hock front reaches the top surface of the sample. 

At any interior point, the first rare faction signal to arrive 

is that prnpnqa ting f rom th e lower corner of the sample. At 

later times, rarefactions from hi gher up the sides of the 

sample will arrive. Th e locus of points of inte rs e ction of 

this first rarefac tion wave with the shock front is a straight 

line, which mak es an angle, oc, with the si des of the sa mple. 

Simple geometrical relations, illustrated in fig. 9.1, re-

late the rarefaction velocity, V, the shock-front velocity, 

Us' and the particle velocity, up' behind the shock front: 

( 1) 

The anq le ~ is determined from the extent of the edqe effect 

at th e top surface of the sample. The measurement of this 

quantity is nnw d Ascribed. 

A mirror is placed a small distance from the top sur-
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face of the sampl e , as shown in Fig. 9.2, with thP. silvered 

surfa c e facin g the sample. The mirror is illuminated and 

vi ewed throu gh a slit oriented across the sample, as shown. 

The image of this slit is recorded by a streak camera, which 

s tr eaks th e image of the slit transversely across a photo­

g raphic plate (Ahr P.ns e t al., 1971). As the s hock front 

r eaches the t op surface of the sa mple, the free surface moves 

upward at approximately twice the particle vP.locity behind 

the s hock front (e. g ., Rice et al., 19 58). The free surface 

preserves the shock- fr ont profil e , si nc e the materia l nea r 

th e edge s beg ins moving at a later time. As the free sur­

face subsequently impacts the mirror, th e reflectivity of 

the mirror is destroyed and the recorded streak image of the 

s lit is pro g ressively cut off. The process is illustrated 

in Fig . 9.3. Typical streak records are shown in Figs. 

9 .4a-c. The profile of the shock front is thus recorded by 

the streak record, and the extent of the edge effect can be 

measured. 

The sample is mounted on a tungsten "driver plate" 

(F ig . 9.2), which is impacted by a tun gsten "flyer plate" 

mounted in the tip of the pro jectile. The projectil e velo­

city is mea s ured just prior to impact (Ahrens e t al., 1971), 

and the press ure, P, and particle velocity in the sample is 

calculated by the impedance matching method (Walsh and Chris­

tian, 1955) using pressure-particle velocity curves of tung-



212 

sten (McQueen et al., 1970) and MgO (Carteret al., 1971). 

The shock velocity can then be obtained from the Rankine-

Hugoniot relation 

(2) 

where fo is the zero pressure density of the sample. 

9.3 Samples 

Re s ults are reported here for five polycrystalline and 

three single-crystal samples of MgO. The polycrystalline 

samples were generously supplied by Dr. T. Vasilos of Avco 

Corporation. The samples described and measured by Spetzler 

(1970) and Schreiber and Anderson (1968) were obtained from 

the same source. The MgO single-crystals were purchased 

from Norton Research Corporation. All faces of the crystals 

were (100) cleavage planes. 

9.4 Results 

A basic difficulty of this method is the emergent na-

t~re of the edge effect - its exact beginning is difficult 

to pick (Figs. 9.4a-c). Some variations in the target ar-

rangement were therefore explored in an effort to maximize 

the accuracy of the measurement. 

The amplitude of the "wings" on the streak record can 

be increased by increasing the separation of mirror and 

sample. The streak record measures the transit time of the 
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shock throug h the sample, t , plus the time for the free sur­s 

face to r each the mirror, tf. If the sample thickness is h 

and the mirror-sample separation is z, then the total time 

is 

t .z 
+ 

:t U..p (3) 

In solids, U is approximately linearly related to u (e.g., 
s p 

Rice et al., 1958): 

( 4) 

where C = (~P/~f) is the "bulk s ound speed" and s is a con-a s 

stant. Using (4) in (3), 

t :. _b_ s z 
us + :t(Us- Co) (5) 

and 

at ~ s z 

)U$ 
::::. us :t(Us- Co)2 ( 6) 

For MgO, C0 = 6.74 mm.~ec., s ~ 1.3, and in these e xperi­

ments, Us~ 8.7 mm./~sec., typically. Thus, in these units, 

~ -O.OIJh- O. tbi! ( 7) 

Thus a small increase in z can significantly increase the 

sensitivity of the transit time to changes in the shock vela-



214 

city. 

Typical sample thicknesses in these experiments are 

h = 4-5mm. Four of the shots reported here had z = 0.76mm., 

sufficient for the "free-surface effect" to be siqnificant. 

Fig. 9.4a shows the streak record for one of these (A257). 

A central linear portion of the streak cutoff, corresponding 

to a centralplanar section of the shock front, is not clearly 

discernible, and a slight curvature persists across the cut­

off. For the planar section to be obliterated by the edge 

effect would have required a rarefaction velocity of at least 

14.7Km/sec., which is very unlikely (Cf. later results). It 

was therefore thought that this might be due to the free sur­

face deforming before it hit the mirror. The free-surface 

transit time was about 0.25JLsec. In this time a compres­

sional wave in mgo could travel the order of 2.5 mm. and a 

shear wave the order of 1.0 mm., so there may have been suf­

ficient time for effects to propogate into the central reqion 

from the sample edqes. A shot (A258) was therefore fired 

with z = 0.13 mm., giving a free-surface transit time of 

about .04~sec. The re~ulting streak record is shown in 

Fig. 9.4b. (z was not reduced to zero because of the pre­

sence of an elastic precursor to the main shock front. This 

causes the free surface tn mnve about .05 mm. before the 

main shock reaches it. With z = 0.13 mm., nnly the effect 

of the main shock was recorded.) The central region is nn-
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ticeably mor e linear in this case. 

The relevant specifications and the results for the 

shots report e d here are given in Table 9.1. The rarefaction 

velocities obtained are plott ed against pressure in rig. 9.5. 

It can be seen that the shots with z = 0.76 mm. (soiid cir­

cles) gave fairly consistent velocities near 12 Km./sec., 

while shot A258 (z = 0.13 mm., open circle) gave a much 

lower ·velocity. This will be discussed below. 

All of the above shots were on the polycrystalline sam­

ples. The remaining shots (A263, 266, 267) were on the sin­

g le crystal samples and with intermediate values of z. A 

typical record (A266) is shown in rig. 9.4c and the specifi­

cations and results are given in Table 9.1 and rig. 9.5 

(triangles). These shots gave intermediate velocities. The 

accuracy of the results is impared somewhat by the presence 

of low-angle irregularities in the cutoff (rig. 9.4c) the 

origin of which is not clear. 

The "half error bars" in rig. 9.5 have the following 

significance. Thfr velocities given in Table 9.1, and the 

points in rig. 9.5, result from the best estimate of the be­

ginninq of the emergent edge effect. Bounds on these values 

were obtained by picking points at which an edge effect de­

finitely existed. The points picked are indicated in rigs. 

9.4a-c. The error bars were extended down to the resulting 

lower bounds on the velocities. Upper bounds to the vela-
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cities obviously cannot be estimated. 

9 . 5 Di scu ss ion 

Thi s me thod of me a s uring the rarefaction velociti e s 

r e quires a compromise be tween the low sen s itivities obtained 

with small mirror-sample separations and the larger uncer­

tainti es , apparently caused by free-surface deformation, ob­

t ai ne d with large r mirror-sample separations . The more sen­

s itive expe rim e nt s yielde d very rea s onable, thouqh not very 

accurate, re s ults, as will be discussed below. Some earlier 

experime nts were performed with an aluminum foil (.015 mm. 

thick) stretched over the sample. This foil was spalled off 

the sample by the emerg ing shock wave and subsequently im­

pacted the mirror. However, these experiments were evide ntly 

also affected by deformations of the foil during transit, 

since th e r e sulting velociti e s were not very consistent and 

in the low range of 10.5 to 11.5 Km./sec., despite the lar­

ger (0.76 mm.) mirror-foil separation used. A superior method 

would be to use a mat e rial of low or zero rig idity to receive 

the mom e ntum of the free surface. A layer of liquid, as de­

scribed by Al'tshuler et al. (1960), or a powder would prob­

ably serve this purpos e . 

The velocities measured here are consistent with the 

decompressional behaviour of solids inferred by Al'tshuler 

et al. (1960) and observed directly by Kusubov and van Thiel 
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(1969). In this picture, the decompression occurs in two 

stages - first a lon o itudinal elastic decompression to a 

critical deviatnric stress, followed by a hydrodynamic or 

"pla sti c" decompression. /\1 't shu ler et al. (1960) observed 

rarefaction velocities in liquids which corresponded closely 

to the hydrodynamic sound speed of the compressed liquid, 

while in solids the observed rarefaction velocities were 

considerably faster than the estimated hydrodynamic sound 

s pe eds . Kusubov and van Thiel (1969) observed the compres­

sion and decompression of aluminum using piezoresistive man­

qa nin ga uges . The decompression was observed to proceed in 

two stages, nne travelling at approximately the longi tudinal 

elastic velocity, and the other, identified by an increase 

in the rate of decompression, travelling at about the bulk 

sound speed. /\s discussed by /\l'tshuler et al. (1 96 0) and 

Kusubov and van Thiel (1969), this two-stage decompression 

corresponds closely to the obse rved behaviour of solids under 

compression, in which a longitudinal elastic wave preceeds 

the main "plastic" shock wave (see also, for example, Ahrens 

et al., 1968). 

/\l'tshuler et al. (1960) observed that in liquids the 

onset of the edge effect due to lateral rarefactions was 

quite sharp, while in solids it was more emergent, as ob­

served in this study. Combined with the observation of 

Kusubov and van Thiel (1969) that the elastic rarefaction 
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accounts for only 30% of the decompression, this suggests 

that in the less sensitive arrangement (smaller z, shot A258) 

it was ma inly th e effects of the plastic decompression which 

were ob served , while the more sensitive experiments were 

able to detect the onset of the elastic decompression. 

Comparison with predicted values of the elastic and 

hydrodynamic velociti e s in the shocked states supports this 

interpretation. These quantities were predicted by ' taking 

the ultrasonically measured elastic moduli of MgO and their 

pressure and temperature derivatives (Spetzler, 1970) and 

extrapolating them to high pressures and temperatures using 

the theory given in Chapter 5. The required data are given 

in Table 9.2. Third-order extrapolations in terms of both 

the "E" and .. , .. strain measures of Chapter 5 were used. In 

addition, since r = K K" ~ -1 (Chapter 6), where K is the 
0 0 0 

zero-pressure bulk modulus and a prime denotes a pressure 

derivative, a fourth-order "E'' extrapolation was made with 

~ij = K0 clj = -1, where cij are the elastic moduli. These 

isothermal extrapolations of the effective elastic moduli 

are shown in ti g . 9.6. Since considerable heating accom-

panies shock-compression, a thermal correction has to be in-

eluded to obtain the moduli in the shocked state. The ther-

mal corrections in a typical case are shown in tig. 9.7. The 

averaqe longitudinal velocity, VL' (appropriate to the poly­

crystalline gamples) resulting from the fourth-order "E" 



219 

extrapolation is s hown in fig. 9.5 (solid lines; the third­

order "E" extrapolation is very similar - fig. 9.6). for 

the single crystals, since the sample faces were (100) crys­

tal planes and tan~ ~ 1, the appropriate longitudinal velo­

city is that for the [11~ crystal direction, which is 

VllO = [Cc11 + c 12 + 2c44 )/2f]t. This velocity is shown for 

the fourth-order "E" extrapolation in fig. 9.5 (long-dashed; 

see also fig. 9.7). for the accuracies of the present mea-

surements, the distinction between these velocities, and the 

anisotropy of the velocity in the single crystals, is unim­

p o r t a n t • T h e [ 11 0] v e 1 o c i t y f rom t h e t h i r d - o r de r " '7" ex t r a -

polation is also shown in fig. 9.5 (short-dashed). 

In fig. 9.5 it can be seen that the velocities obtained 

using the g reatest mirror-sample separation (z = 0.76 mm.) 

correspond closely to the longitudinal velocities of the 

fourth-order "E" extrapolation, while that obtained using 

the smallest separation (z = 0.13 mm.) is only sliohtly 

above the bulk sound speed. Those with intermediate separa-

tion are int e rmediate between these. Evidently the initial 

effects of the longitudinal decompression were not observed 

in the less sensitive (smaller z) experiments, as surmised 

earlier. 

The faster velocities obtained are much more consistent 

with the third-order "E" extrapolation than the third-order 

"~" extrapolation (figs. 9.5, 9.6). Assuming that they do 
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represent the longitudinal velocity, these data can be used 

to put constraints on th e second pressure derivatives of the 

e l a stic modul i . In fi g . 9.5, the ve locity for rllO = 

'(S'll + r12 + 2~44 ) = ... 10 is s hown (dash-dot). A bound of 

~llO ~ -15 is es timat e d from the data. 

finally, some observations by Hauv e r and Melani (1970) 

de se rve comment here. These authors obs e rved an emergent 

edg e effect in optical measuremenls of shocked sodium chlo-

rid e . They calculated a rare faction velocity close to the 

bulk sound speed of NaCl. Since they observed directly the 

change in r e flectivity of the free surface of the samples, 

this is in accord with the pr e sent observations. They also 

not e d that in the ran ge of the phase transition from the 81 

to the 82 phase the edg e e ffect had a much sharper onset, 

and the calculated rare faction velocity was considerably re-

duc e d. This is in accord with the observations by Al'tshuler 

et al. (1960) of fluids, and suggests that a loss of riqidity 

accompani e d the phas e change. Also, as pointed out by Hauver 

and Melani (1970), the edge e ffect is a much more sensitive 

indicator of phase changes in shock compression than is pro-

vided by the accompanying Hugoniot offsets. 

9.6 Conclusions 

It can be concluded from these results that 

a) mgO remains in the solid state under shock compression to 
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500 Kb. 

b) a two stage de compression from the shocked state, invol­

ving an initial long itudinal decompression to a critical 

deviatoric stress, follow ed by a hydrodynamic decompression 

to zero stre ss, is consistent with the observations reported 

here. 

c) values of ~ij ~ -1 are consistent with the best estimates 

obtained here for the longitudinal velocities of mgO between 

3 0 0 and 50 0 K b • A bound of t ( ~ 11 + ~12 + 2 ' 4 4 ) ~ -15 i s est i­

mated from th e data. 

d) ex trapolations in terms of the "E" strain measure are em­

pirically more s ucc ess ful than those in terms of "'Y/"· 

The present results l a r ge ly confirm previou s observations 

of the decompre ss ion of shocked solids. Re finement of the 

technique should allow more accurate determinations of the 

elastic properties of shocked solids, and promises to be a 

useful tool with which to detect high-pressure phase changes. 
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TABLE 9.2 

Equations of state parameters of MgO. 

Po 
(g/cm3)a 

"'o 
(10-6/oK)a 

Cv 
6 

( 10 erg/g oK)b 

Elastic moduli and rl . t. c er1va 1ves : 

11 

cij (Mb) 2.974 

(
ocij) 

d p T 
8.70 

-0.606 

a) Skinner (1957). 

b) Victor and Douglas (1963). 

c) Spetzler (1970). 

3.584 

31.5 

9.25 

( i' j) 
12 

0.956 

1.42 

0.074 

44 

1.562 

1.09 

-0.103 
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Shock front 
Unshocked 

region 

Rarefaction 
wove 

Shocked region 

· / 2 (Us - Up)2 

V = Us vton a + Us 

r ig . 9 .1. Configuration of shock and rarefaction waves pro­
duced by pa ssag e of shock wave from lower surface of sample, 
and ge ometrical relationship of wave and particl e velocities. 
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rig. 9.2. Target arrang ement for detection of lateral rare­
faction waves . 
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Sample 

Witness 
Mirror 

STREAK RECORD OF SAMPLE IMPACT 

rig. 9.3. Schematic illustration of the recording by a 
st r ea k camera of the progressi ve cutoff of the image of the 
slit through which witness mirror is viewed. 
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A258 

I I I I 

A266 

Fig . 9.4. Streak records obtained with different mirror-sample 
separations: (a) 0. 76 mm., (b) 0.13 nun . , (c) 0. 25 mm . Samples 
(a) and (b) were polycrys talline, sample (c) single-crystal 
( see Table 9 .1) . 
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MgO, 300 °K 
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moduli of Mq O. Heavy s ol id curve : fourth-or de r " E" ; liq ht 
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Fig. 9.7. Effect of temperature correction on elastic 
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CHAPTER 10 

CONSTITUTION Of THE LOWER MANTLE 

Summary 

Equations of state of MgO (periclase) and SiD 2 (stisho­

vitP.) ann estimates of the equation of state of feD (wustite) 

are used to calculate the density,~, and seismic parameter, 

P• at high pressures and temperatures of model mineral assem-

blages of the . lower mantle. These are compared to thep and 

f of the lower mantle, deduced from seismic observations, to 

detP.rmine the required composition of the models. The effects 

of temperature and phase changes are estimated. It is found 

that there is a trade-off between temperature, phase and 

Mg/Si molar ratio. These quantities are also uncertain be­

cause of uncertainty off of stishovite at high pressures. 

With wine limits placed on temperature, the most likely models 

are found to be a mixture of oxides, or equivalent single 

phase, of about pyroxene stoichiometry, or phases a few per­

cent denser than the oxides mixtures with stoichiometries 

ranging between olivine and pyroxene. The iron content of 

the models depends somewhat on the assumed phase assemblage. 

The uncertainty in lower mantle densities also contributes 

to its uncertainty. The oxides mixtures require 12-14% by 

weight of FeD. The denser phases require 7-12% by weight. 
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The latter, especially, are comparable to the iron content of 

pyrolite and that deduced for the upper mantle. If iron is 

present in the low-spin electronic state, these estimates 

could be reduced by one third to one half. On the other hand, 

Hugoniot data of dunites would imply about S% by weight more 

FeO and somewhat more Si0 2 than the above inferences. 
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10.1 Introduction 

The determinations, in Chapters 6 and 7, of the equations 

of state of MgO (pericla se ) and Si02 (stishovite) are of 

particular significance to the study of the earth's lower 

mantle. In his important discussion of the constitution of 

the earth, Birch (1952) concluded that the density and elas­

ticity of the lower mantle could be approximated by the prop­

erties of a mixture of the dense oxides of magnesium, sili­

con and iron. Since then a number of attempts have been made 

to refine this interpretation, more recently by Ringwood 

(1969, 1970), Wang (1970, 1972), Anderson and Jordan (1970) 

and Al'tshuler et al. (1972b). A chief concern of these 

studies was to determine the amount of iron in the lower 

mantle. Each, however, involved assumptions about other 

aspects of the constitution of the lower mantle. ror instance, 

Ringwood, Wang and Al'tshuler et al. all assume particular 

values for the ratio (Mg + re)/Si, only Ringwood seriously 

considers the possibility of phases denser than the oxides, 

and only Wang attempts to avoid making specific assumptions 

about the temperature of the lower mantle. 

In this chapter the starting point of the discussion 

is the assumption that the lower mantle can be represented 

as a mixture of MgO (periclase), Si0 2 (stishovite) and reO 

(wustite), but estimates are made of the effects of the 

assumed temperature and phase assemblage of the lower mantle. 
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Direct comparison of the density and elasticity of models 

of the mantle with the observed properties of the lower 

mantle at the appropriate high pressures and temperatures 

allow the determination of the relative proportions of the 

oxide components- i.e., of the molar ratios Fe/(Mg + Fe) 

and (Fe + Mg)/Si. An estimate of the dependence of the in-

ferred composition on assumed temperature and phase assam-

blage is obtained. The effects of uncertainties in the aqua-

tions of state of the components and in the lower mantle prop-

erties are also estimated. 

10.2 Equations of State of Dense Oxides, Mixtures and 

Silicates 

The equations of state of periclase and stishovite deter-

mined in Chapters 6 and 7 were used to calculate a set of 

isotherms for each. The seismic parameter,¢, where 

"~- !Lv2 Vp 3 $ > ( 1) 

and Ks is the isentropic bulk modulus,~ the density, Vp the 

compressional elastic velocity and V the elastic shear velo­s 

city, was calculated along these isotherms. The second equal-

ity in (1) means that~ can be calculated for the earth, 

for comparison (e.g., Birch, 1952). The calculated density 

0 0 0 and ~of periclase along the 300 K, 2,000 K and 3,000 K iso-

o 
therms are shown in Fig. 10.1. For comparison, the 2,000 K 
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quantities of Al'tshuler et al. (1972a, b) (estimated from 

their geotherm using their estimates of the effects of tem­

perature) are also shown. In Fig. 10.2, the same quantities 

are shown for stishovite calculated from the equation of 

state denoted as Case 2 in Chapter 7. For comparison, the 

2,000°K quantities calculated from Cases 1,3 and by Al'tshuler 
0 

et al. (1972a, b) are also shown (Al 'tshuler et al. 's 2,000 K 

density is nearly identical to that of Case 2, and is there-

fore not shown in Fig. 10.2). 
. 0 

Est1mates of the 2,000 K quan-

tities for wustite, based on the density and bulk modulus 

measured by Mizutani (f = 5.84 and K = 1.74 for Fe. 98o; 

Mizutani et al., 1972) and two estimates of dK/dP, are 

shown in Fig. 10.3, with the values given by Al'tshuler et 

al. (1972a, b). 

The uncertainty in the equation of state of wustite is 

probably larger than the spread in the curves of Fig. 10.3, 

but since estimates of the amount of FeD in the mantle range 

from 10 to 20 mole percent, the effect of this uncertainty 

is not large. The most important uncertainty still seems to 

be in the stishovite equation of state. The author's pre- . 

ference is for Case 2, but uncertainties of up to 2% in den­

sity and 10% in ~within the pressure range of the mantle 

have to be acknowledged. 

Since Birch's (1952) suggestion that the lower mantle 

resembles a mixture of dense oxides, a number of silicate 
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phases have bee n proposerl a s having the prop e rty that their 

den s ity is ve ry close to that of the isochemical mixture of 

compon e nt oxides (e.g., Rin gwood, 1969, 1970). Thus, although 

a single phase rather than a mixture might exist in the mantle, 

the idea of representing mantle properties as a combination 

of those of oxides would still be valid. On the other hand, 

it has been suggested (e. g ., Ringwood, 1969, 1970) that sili­

cate phases slightly denser than the isochemical mixture of 

th e ir component oxides might also exist in the mantle. The 

prop e rties of these phase s should also be estimated. 

The dens ity of a mixture is calculated here by taking 

th e molar averag e of the molar volumes of the components. 

Various schemes for estimatinq the compressibility of a mix­

ture have been proposed. For instance, Al'tshuler et al. 

(197 2a ) tak e weig ht avera ges of 1/IKs, while Anderson (1969) 

propo sed that the compressibility of many silicates and oxides 

is g iven approximately by taking the molar average of ~ of 

their component oxides. Since the differences between such 

s ch e mes are probably less than th e uncertainty in the com­

pon e nt properties in the present case, the simple scheme of 

And e rson (1969) will be u se d here. 

The effect of a phas e chan ge on compressibility can be 

estimated from empirical tre nds. Birch (1961) demonstrated 

that the compressional elastic velocities, Vp, of many sili­

cates and oxides depend primarily on their density and mean 
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atomic we i ght, M, and only secondarily on the specific com-

position a nd cry sta l structure. Similar relationships have 

since be e n pointed out for 1 (And e rson, 1967a, 1969) and the 

bulk s ound sp e ed , C =~~( McQuee n et al., 1964; Wang, 1968). 

In Fi g . 4, ¢ and~ are plotted for a number of oxides and 

silicates. The e xampl es of the oc-quartz-coesite-stishovite 

and ~-fayalite-6-fayalite sequences suggest a trend followed 

by substances und e r g oing phase changes. A series of points 

are also shown in Fig. 4 correspondinq to mixtures of pe ri-

cla se , stishovite and wUstite of olivine, pyroxene and qar-

ne t s toichiometri e s. It can be s e en that the slopes of the 

lines j oining these to their obse rved low-pressure forms agree 

fairly we ll with the slopes of lines joining observed poly­

morphs. The value of¢ of phases denser than the oxides 

mixtures are therefore estimated her e by constructing a line 

of the appropriate slope through the calculated mixed oxides 

point and reading off the value of ~ at the density predicted 

for the de ns e r phase. By applying these methods at various 

pressures, the prop e rties of these phases can be estimated 

as functions of pressu r e . 

10.3 Constitution of th e Lower Mantle 

In Fig. 10.5 the calculated pressu re (or depth) depen­

dence of¢> and;> of stishovite and periclase at 2,000°K are 

compared to the pressure dependence of f and ~ of several 
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ear th models deduced from seismic observations. Note that 

the temperature of the latter curves are unknown. The den-

sity morlels BII (Birch, 19 64) a nrl HB (Haddon and Bullen, 1969) 

were derived with th e aid of s ome physical assumptions, al-

thou gh the latter wer e adjusted to fit some data on the free 

earth oscillations. In the Jordan models (Jordan, 1972), on 

the other hand, the only constraints other than seismological 

data concern the smoothness of the distributions within each 

region. 

In Figs. 10.6 to 10.8, ¢and!' of the earth are compared 

with ¢and~ estimated for various hypothetical phase assem­

bla ges at pressures of 0, 0.5 and 1.0 megabars. These Figures 

r equ ire some explanation before their interpretation is dis-

cussed. 

The ¢-~points of periclase and stishovite are plotted 

for a "base" temperature: in Fig. 10.6 (zero pressure) this 

is 300°K, and in Figs. 10.7 and 10.8 it is 2,000°K. The ef-

feet of a temperature increase on these points is shown by 

the sh ort-dashed arrows. In Fig. 10.6, th e t e mperature in­

crease is from 300°K to 2,000°K; in Figs. 10.7 and 10.8, it . 
. 0 0 
1s from 2,000 K to 3,000 K. Properties of oxides mixtures 

at the bas e temp e rature s , calculated according to the last 

section, are joined by the solid lin es . Compositions corres-

ponding to olivine stoichiometry, i.e., (Mg, Fe)
2
Si04 , and 

pyroxene stoichiometry, i.e., (Mg, Fe)Si03 , are s hown. Iron 
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molar ratios X = Fe/(Fe + Mg ) ran~ in g from X = 0 to X = .5 

are spanned by th e se lines. The "olivine" lines could corres­

pond to oxid es mixtures or to a single pha se having the 

strontium plumbate structure (Ringwood, 1969, 1970). The 

"pyroxene" lines could corre s pond to an oxides mixture or 

to a mixture of "olivine" and stishovite. No single phase 

of the mixed oxides density has been proposed for this stoi­

chiometry. The dashed lines parallel to the solid lines are 

estimates of the properties of slightly denser phases of 

corresponding stoichiometries. The de nse "olivine" lines 

could represent a single phase having the K2NiF 4 structure, 

or possibly the calcium ferrite structure, with densities 

4~ to 7% denser than the oxides mixtures (Ringwood, 1969, 

197 0 ). The dense "pyroxene" line could represent a phase 

having the perovskite structure, up to 7% denser than the 

oxides mixtures. The dense "olivine" lines could also re­

present a mixture of this phase with (Mg, Fe)O in the rock­

salt structure (i.e., a solid solution of periclase and 

wGstite; Ringwood, 1969, 1970). The existence of these phases 

is still hypothetical, and probably depends partly on the 

pre se nce of other constituents, such as calcium, aluminum 

and ferric iron. Their estimated densities are also some­

what uncertain (Ringwood, 1969, 1970). Nevertheless, the 

examples given here will serve to illustrate the effects to 

be expected from the presence of such phases, and perhaps to 
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indicate the likelihood of such phases existing in the mantle. 

The ¢-~ points of selected earth models are plotted in 

Fiqs. 10.6 to 10.8. The effect of a temperature decrease on 

the mantle points was estimated from the effects of the tem­

perature increase (by the same amount) shown for periclase and 

stishovite. The upward short-dashed arrows thus indicate the 

effect of a temperature correction of the mantle to the base 

temperature of the Figures. In Figs. 10.7 and 10.8, Jordan's 

(1972) model 81 and Haddon and Bullen's (1969) model are 

shown. In Fig. 10.6, however, extrapolation to zero pressure 

of the lower mantle properties is required. Such extrapola­

tions were given by Anderson and Jordan (1970) for the BII 

model, which is close to Jordan's model Bl, and the model of 

Bullen and Haddon (1967), which is close to the model HB of 

Haddon and Bullen (1969). These extrapolations are shown in 

Fig. 10.6. 

We can now proceed with the interpretation of Figs. 10.6 

to 10.8. Note, firstly, that, in accordance with Birch's 

(1961) basic observation, the estimated trajectories due to 

temperature correction, phase change and chanqe in the Mg/Si 

ratio all have roughly similar slopes. A trade-off of these 

factors is thus possible. The iron content, on the other 

hand, is not very dependent on the other factors. 

If, for example, one fixes the composition and phase 

assemblage, then the other factors can be determined. Thus, 
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if it is assum e d that the mantle is an oxides mixture of 

pyroxene s toichiometry, then the required mantle temperature 
0 0 

ran ges from about 2,000 K to 3,000 K, and the molar ratio 

X = Fe/(Mg + Fe) is about 0.17 to 0.20. By assuming the 

mantle to be hotter, it can be represented as having olivine 

stoichiometry in the K2NiF 4 (or similar) structure, with 

X ~ 0.10, or a pyroxene stoichiometry in the perovskite 

structure, with X Z 0.15. The required temperatures, de-

duced from Figs. 10.6 to 10.8, are plotted in Fig. 10.9. 

The corresponding compositions are given in different ways 

in Table 10.1. 

Even apart from the trade-off between t e mperature, com-

position and phas e assemblage, the temperature s determined. 

in this way are clearly hig hly unc e rtain, mainly because of 

the uncertainty of ~ for stishovite. A 10% uncertainty in 

~of stishovite would caus e rou ghly a l,000°K uncertainty 

in t emperature. The iron cont e nt, expressed as the molar 

ratio Y = Fe/(Mg + Fe + Si) is fairly independent of all of 

the se factor s , although it depend s somewhat on the a s sumed 

pha s e (s e e Table 10.1). It is also uncertain because of 

the uncertainty in the density of the mantle. An uncertainty 

of 1% in mantle density would imply an uncertainty of about 

0.02 in Y. 

If it is assumed, for the moment, that the equations of 

state and as s umptions used here are substantially correct, 
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some models of the mantle appear more likely than others. 

Fo r in s tance, a mixture of oxides of olivine stoichiometry 
0 0 

would imply tempAratures from 1,000 K to about 2,000 K, a 

range which is unacceptably low on the basis of more reliable 

estimates of temperature in the upper mantle. For example, 

And e r s on's (1967b) and Graham's (1970) estimates of tempera­

tur es in the transition zone, and Clark and Ringwood's (1964) 

oceanic geotherm are shown in Fig. 10.9. The temperatures 

obtained for the other thr ee models mentioned above are more 

r easonable, the "pyroxene-p e rovskite phase" t e mperatures 

pos sib ly being a littl e hi gh. Upper bnunds on the mantle 

t e mperature are difficult to obtain. Suitable bounds would 

be the melting temperature of appropriate silicates or the 

melting temperature of iron at the center of the earth, but 

th ese are very uncertain. Uffen (1952) e stimated the melting 

0 
temperature of the mantle to be about 5,000 K at th e core -

mantle boundary. Hi gg ins and Kennedy (1971) have &stimated 

the me lting temperature of iron as a function of pressure. 

Their values at the core-mantle boundary and the center of 
0 0 

th e earth are, resp e ctively, 3,700 K and 4,300 K, and are 

shown in Fig. 10.9. 

Also shown, for comparison, are the temperature profiles 

assumed by Reynolds and Sumners (1969), and subsequently 

by Al'tshuler et al. (1972b), and that deduced by ~ang (1972). 

~an g 's (1972) determination is based on a comparison of the 
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shock-wave equations of state of Twin Sisters and Hortonalite 

dunites (McQueen et al., 1967; Wang, 1968) and the lower 

mantle. He thus assumes that an olivine stoichiometry is 

appropriate and that the phase achieved in the dynamic shock 

compression is the same as that existing under the static 

conditions of the lower mantle. The uncertainties arising 

from the latter factors have been demonstrated here, and 

should be added to his stated uncertainties of :soo°K. He 

also assumed that the temperature gradient should be adiabatic. 

The temperature profiles deduced in the present study 

tend to have super-adiabatic gradients. We may note that a 

temperature profile very similar to that of Reynolds and 

Sumners (1969) would be obtained for a pyrolite composition 

in the phases denser than the oxides mixture (Ringwood, 1969, 

1970). 

10.4 Conclusion 

The trade-off demonstrated here between composition, 

temperature and phase assemblage of the lower mantle means 

that none of these can be determined very well. The iron 

content is better determined: the molar ratio Fe/(Mg + Fe + Si) 

is found to be about 0.05-0.10 in this study, depending mainly 

on the assumed phase assemblage. The ratio Mg/Si can range 

between that for olivine or pyroxene stoichiometries, or 

even more silica rich, according to this study. The phase 
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as s emblage would appear to be at least as dense as the iso­

chemical oxides mixture, with possibly an assemblage a few 

percent denser than this beinq favored. The temperature is 

very indeterminate, being very sensitive both to the trade~ 

off with the other factors and to the uncertainties in the 

value of ¢ of stishovite at high pressure. At this stage it 

would appear to be more useful to try to find other bounds 

on the temperature, so as to limit the other factors, rather 

than to try to determine temperature by the methods used here. 

Recent determinations of the iron content of the lower 

mantle have been discussed by Al'tshuler et al. (1972b). 

Th e y note a trend converging towards 13-15% by weight, in 

agreement with their own determination, especially in the 

work of Al'tshuler et al. (1965), Wang (1968) and Reynolds 

and Sumn e r (1969). The present study suggests that these 

determinations may be dependent on the assumed phase assem­

blage. Thus the assumption of mixed oxides yields 12-14% by 

weight, while the assumption of denser phases yields 7-12% 

by weight. The difference between these determinations de­

pends on the relativ e effect of the relevant phase changes on 

density and 1• but since these are unknown, this additional 

source of uncertainty in the iron content of the lower mantle 

must be acknowledged. 

Anderson (1970), Anderson and Jordan (1970) and Anderson 

et al. (1971) deduced iron contents of the lower mantle in 
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the ran ge 12-1 8 mole%. These higher values apparently re­

sulted partly from the use of density models which extra­

polat e to fairly high densities (e s pecially model CIT 200204), 

and partly from the use of the Hu goniot data of Twin Sisters 

and Hortonalite dunites (see below). Phases denser than 

mixtures of the dunites and stishovite were not considered. 

The Hu goniot data of the dunites (McQueen et al., 1967) 

are important additional constraints on the equations of 

state of high pr e ssure phases in this rang e of compositions. 

Th e ir compatibility with present predictions and the effect 

of using them as a base reference instead of the oxides have 

been es timated as follows. Previous studies (e.g., Ahrens 

et al., 1969; Davies and Anderson, 1971) have suggested that 

they were in a phase comparable to mixtures of oxides. Ac­

cordingly, the mixed oxide zero pressure densities were as­

sumed. Gruneisen parameters, which are unknown, were assumed 

to have values of about 1.0 and 1.5, with d ln ~/d ln V Z 1.0. 

The Hu goniot data were then used to determine the bulk modu­

lus and its pressure derivative. The complete sets of equa­

tion of state parameters are given in Table 10.2. Isotherms 

calculated from these cases were used to plot ?-~points in 

Figs. 10.6 to 10.8. At zero pressure, Fig. 10.6, f tends to 

be higher than predicted for Twin Sisters dunite, which has 

the approximate formula (Mg. 88Fe. 12 ) 2Si04 , while it agrees 

quite well with the prediction for the Hortonalite dunite, 
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(Mq . 45Fe . 55 ) 2Si0 4 • At hi gh pressures, Figs. 10.7 and 10.8, 

both ¢and~ tend to be low e r than predicted, althouqh ~is 

somewhat uncertain because of the uncertainty in a. If the 

dunites are used as a ba se to estimate mantle compositions, 

then at hi gh pressure larger proportions of both SiD 2 and 

FeD are obtained (assuminq that the dunites are indeed in a 

pha se corresponding to oxides mixtures). In particular, the 

value "of X would be increased by about .D5, corresponding 

to an increase of about 5% by wei ght of FeD to values closer 

to those of Anderson et al. 

The estimates of iron content determined here from the 

oxide equations of state are lower than those of Anderson 

et al., and slightly lower than that of Al'ts~uler at al. 

(1972b), especially if the dense phase assemblage is assumed, 

as suggested by Ringwood (1969, l97D). In fact, the iron 

contents in the latter case are quite close to those of 

Ringwood's (197D) pyrnlite (8.5% FeD + Fe2D3 by weight) and 

Graham's (197D) determination of the upper mantle iron con­

tent (12% FeD by weight). A uniform iron content through­

nut the mantle would thus be permitted by this study. It 

has already been noted that a silica content comparable to 

that of a pyrolite (about 4D mole%) and a phase assemblage a 

few percent denser than the oxides mixture would imply a 

quite reasonable temperature distribution. 

It has been suggested (Strens, 1969;· Davies and Anderson, 
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1971; Gaffney and Anderson, 1972) that iron might undergo an 

electronic spin transition in the lower mantle, reducing the 

radius of the ion, increasing the density of the material, 

and possibly requiring a new crystal structure. An octa­

hedral coordination of the iron is probably required to pro­

duce spin transition, and not all candidates for dense phases 

have any or all iron in octahedral sites (Gaffney and Ander­

son, 1972). An extreme case is probably obtained by assum­

ing that the iron occurs as FeD in the rocksalt (wustite) 

structure, in which it is all octahedrally coordinated. Ac­

cording to the discussion of Gaffney and Anderson (1972), 

the effect of a spin transition would be to increase the 

density of the FeD from about 5.9 g/cm3 to about 7.5 g/cm3 , 

while the value of f would not be greatly increased. The 

only significant effect from this is that the estimates of 

iron content are reduced by about half. As noted, this is 

an extreme estimate, so a probable range of iron contents 

would be 9-lDfo by weight for the oxides mixtures and 6-8% 

by weight for the denser phase assemblages. These bracket 

the iron content of pyrolite (Ringwood, 1969, 197D). 
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dashed curves are 2,000°K values from Cases 1 and 3 of Chap­
ter 7. 
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rig. 10.9. Temperatures inferred for different composition 
and phase combinations compared with other estimates nf man­
tle temperatures - triangles: Anderson (1967b); errot flag: · 
Graham (1970); W: Wang (1972); RS: Reynolds and Sumners 
(1969); arrows: estimates of melting temperature of iron at 
the inner-outer core boundary (C) and the core-mantle bound­
ary (C-m) by Higgins and Kennedy (1971). 




