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ABSTRACT

A theory for describing the elasticity of snlids at
simultanenus high pressurses and high temperatures is developed
by incorporating the fourth-nrder anharmnnic thenry nf lat-
tice dynamics into finite strain theory. The theory is ap-
plied to the analysis of a variety nf data for MgO, 5i0, and
NaCl, and the results for Mg0 and 5102 used as the basis nf
a discussinn nf the constitutinn nf the lnwer mantle. New
results are repnrted of measurements of elastic properties.
of MgO0 shnck-cnmpressed tn nver 500 Kb.

The conditinn that finite strain equatinns be frame-
indifferent is shown tn require that nnly strain tensnrs be-
longing tn a class nf frame-indifferent strain tensnrs be
used in finite strain expansions. It is shown that the
generality of finite strain thenry is nnt impaired by the
inclusinn of an explicit thenry nf thermal effects. Explicit
equations for isotherms, isentrnpes and Hugnnints and for
the effective elastic monduli nf materials of cubic symmetry
under hydrnstatic stress are derived. The primary parameters
of these equatinns are related to the elastic moduli and
their pressure and temperature derivatives in an arbitrary
reference state using thermndynamic identities, some nf which
are derived here.

Hugnnint data correspnnding tn different initial sample
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densities of Mg0, S5i0, and NaCl and nriginal ultrasnnic data
nf NaCl are used tn test bnth the compressinnal and thermal
parts of the thenry, and to refine the equatinns nf state nf
these materials. The frame-indifferent analogue, E, of the
usual "Eulerian" strain tensnr, €, is found tn usually qive
faster cnnvergence nf finite strain expansinns than the
"Lagrangian" strain tansnr,'g. The effect nof using differ-
ent strain measures nn the values of parameters derived from
data is demonstrated, and the adverse effects nf using in-
appropriately derived parameters in extrapnlatinn equationns
is demonstrated. Thermal effects in Hugonint data are rea-
snnably well described, but higher-order anharmonic effects
appear tn be required in the thenry in nrder to describe the
high temperature ultrasnnic and thermal expansinn data.

Measured velncities of rarefactinn waves prnpngating
into shocked Mg0 are in accord with a twn-stage longitudinal
(elastic)-hydrodynamic (plastic) decompressinn mndel, and
constrain the high-pressure elastic mnduli of MgO.

The effects non the determinatinn of the lower mantle
constitution nf temperature, varying componsition, the pre-
sence nf phases denser than nxides mixtures, and the presence
of iron in the "low-spin" electrnnic state are estimated,
and a trade-nff between many nf these factnrs demnnstrated.
Iron cnntent could range between 6% and 15% by weight nf FeO.

Silica content cnuld range from 33% tn 50% or more by weight.
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Phases a few percent denser than nxides mixtures seem to be

likely. The temperature is very indeterminate.



IT.

III1.

Iv.

viii

TABLE OF CONTENTS

INTRODUCTION
References

INVARIANT FINITE STRAIN MEASURES IN ELASTICITY
AND LATTICE DYNAMICS

Summary
l. Introduction
2. Strain Measures
3. Frame-Indifference
4. Discussion
5. References

QUASI-HARMONIC FINITE STRAIN EQUATIONS OF
STATE OF SOLIDS

Summary
1. Introductinn
2. Strain Enerqy and Lattice Enerqy

3. Vibratinnal Energy and the Mie-Griuneisen
Equation

4., Finite Strain Equations nf State
5. Discussion
6. References
ISENTROPES AND HUGONIOTS
Summary
l. Introduction

2. Isentropes

Page

11
13
16
20

22
24

28

34
40
51
S7

58
59
59



UI.

ix

TABLE OF CONTENTS (continued)

3. Hugnniots
4, References

EFFECTIVE ELASTIC MODULI UNDER HYDROSTATIC
STRESS IN THE QUASI-HARMONIC APPROXIMATION

Summary
1 Introduction

2. Effective Elastic Moduli Under Hydrostatic
Stress

3. Thermal Effects in the Quasi-Harmonic
Approximation

4, Thermndynamic Relations
5. Discussion
6. References
EQUATION OF STATE OF MgO
Summary
1. Introduction
2. Determination of Equatinns nf State

3. Comparison and Discussion of Equations of
State

4, References
Tables

Figures

Page
62
65

66
67

69

77
85
95
97

98
g8
a8

100
104
105
107



VII.

VIII.

TABLE OF CONTENTS (continued)

EQUATIONS OF STATE AND PHASE EQUILIBRIA OF
STISHOVITE AND A COESITE-LIKE SiOp PHASE
FROM SHOCK-WAVE AND OTHER DATA
Summary
1. Introduction
2. Equatinns of State - General Discussion
3. Equations of State - Stishnvite
4, Equations of State - "Coesite"
5. S5i0p Phase Equilibria
6. Discussion
7. References
Tables

Fiqures

HIGH PRESSURE AND TEMPERATURE ELASTICITY
OF NaCl

Summary
1. Introduction
2. Methnd nf Analysis nf Ultrasnnic Data
3. Results nf Analyses
4, Discussionn
5. References
Tables

Figures

Page

111
112
115
118
125
127
134
135
138
146

155
157
162
165
171
178
180
187



IX.

xi

TABLE OF CONTENTS (continued)

MEASUREMENT OF ELASTIC PROPERTIES OF MgO
UNDER SHOCK COMPRESSION TO 500 Kb.

Summary
l. Introduction
2. Experimental Arrangement
3. Samples
4., Results
5. Discussion
6. Conclusions
7. References
Tables
Fiqures
CONSTITUTION OF THE LOWER MANTLE
Summary
1. Introduction

2. Equations of State of Dense Oxides,
Mixtures and Silicates

3. Constitution of the Lower Mantle
4. Conclusion
5. References

Tables

Fiqures

Page

208
209
209
212
212
216
220
222
224

226

233
235

236
239
245
250
253
255



CHAPTER 1

INTRODUCTION

The applicatinn nf the thenry of equations of state of
snlids tn the question of the internal constitutinn nf the
earth was pinneered and admirably demnnstrated by the work
of Birch (1938, 1939, 1947), based on the wnrk of Murnaghan
(1937), which culminated in Birch's important 1952 paper
(Birch, 1952). The main nbjective, and achievement, of this
wnrk was, of conurse, ton account for the effects of very large
pressures upnn the prnperties nf snlids sn as tn provide a
basis fnr the comparison nf the properties nof the earth's
interinr with thnse of substances measured in the laboratory.
Annther result was the demnnstration that temperature is a
significant, though secnndary, variable in the earth's interior.
Birch estimated the temperature inside the earth to range up
tn several thnusand deqrees centigrade.

In nrder to pursue the questinn of the earth's internal
constitution, it is thus necessary to be able tn account for
the effects of simultanenus high temperatures and pressures.
Then, of course, the temperature becomes nne of the factors
nf the earth's interior to be determined. Birch's (1952)
apprnach was to make use nf measurements nf thermal effects

in snlids at atmogpheric pressure, a number of thermndynamic



identities, and snme calculatinns based nn lattice mndels,

to obtain estimates nf the effect nf pressure on thermal ex-
pansinn. This led to the conclusion that thermal expansinn
nf silicates tends tn decrease with increasing pressure at
roughly the same relative rate as the compressibility de-
creases, and to the general idea that pressure tends tn re-
duce the effects 6F temperature nn the density and elasticity
of solids.

The state of the art remained more nr less at this level
until it was perceived by Thomsen (1970, 1972) that a well
developed thenry nf thermal effects in snlids, due to Leib-
fried and Ludwig (1961) cnuld be extended into the dnmain nf
finite strain, thus providing the desired descriptinn nf ther-
mal effects at high pressures. In this thenry the thermal
effects and their pressure dependence are governed by a few
parameters which can be evaluated from currently available
labnratnry measurements for many relevant substances.

In the meantime, a new technique, that of shonck-waves
in snlids, was being applied tn genphysically relevant mater-
ials (e.g., Al'tshuler et al., 1965; McQueen et al., 1967).
The analysis nof the results nf these experiments, which in-
volve, simultanenusly, high pressures and temperatures, relied
heavily on Grineisen's (1912) thenry of thermal effects in
snlids, and in particular, on the GrUneisen parameter, 7,

which relates pressure and internal enerqy in this theonry



(e.q., Rice et al., 1958). Again, the pressure dependence
of ¥ was a prnblem, and various apprnximatinns were invoked
to estimate this (Slater, 1939; Dugdale and MlacDonald, 1953).
Leibfried and Lud@ig (1961) showed that their theory led to
a Mie-Gruneisen type of equatinn under suitable approxima-
tions. Thus Thomsen's (1970) extensinn of their thenry tn
finite strains allowed the Grineisen parameter to be calcu-
lated as a function nf pressure, and the analysis of shock-
wave experiments was included in the same theoretical frame-
work .

The purpnse nf this thesis is tn re-derive,
generalize and exploit Thnmsen's (1970, 1972) theory. Thom-
sen (1970) claimed that the lattice dynamics thenry, and hence
his extension of it, could be written nnly in terms of a
particular "Lagrangian" strain tensor, *. This claim is un-
reasnnable since the rnle of lattice dynamics in his theory
is to make explicit the temperature dependence of finite
strain equatinns which can be given implicit temperature de-
pendance by allowing parameters to depend on temperature.
The generality of the finite strain equations shnuld not be
limited in this process. This expectatinn is verified in
the re-derivation given here, as it is shown that the thanry
may be written in terms of any one nf a whole class nf
“"frame-indifferent" strain tensnrs, as is the case in finite

strain thenry. Equatinns in terms nf two particular strain



tensors are develnped as examples.

The wide applicability of the theory, mentinned above, is
demonstrated and explnited here in a series nf analyses of
different kinds nf data - shnock-wave, ultrasonic, static com-
pressinn, thermal expansion and calorimetric. These analyses
yield new, and superinr, determinatinns nf the equatinns of
state of Mg0 (periclase), 5i0, (stishovite) and sodium chlor-
ide. They alsn present the opportunity for some general dis-
cussion nf the problem of fitting and extrapolating data with
particular analytic forms. Finally, the newly determined
equatinns of state of periclase and stishovite are used as
the basis fnr a discussion of the constitution of the earth's
lower mantle.

Chapters 2 to 5 present the theoretical development.

In using the strain tensnr‘y, Thomsen (1970, 1972) fol-
lowed the common practice of both lattice dynamics theory and
continuum finite strain theory, in which # is usually invnked
in order to assure the "rotational invariance" of the result-
ing equatinns. In Chapter 2, the requirement that finite
strain equations be invariant under changes of frame of ref-
erence is reviewed, and the necessary and sufficient condi-
tinns for "frame-indifference" are obtained.

In Chapter 3, the approximations made in Leibfried and

Ludwig's (1961) lattice dynamics theory are discussed, and



that theory is extended tn the domain of finite strain in

the special case nf isntropic stresses and strains. Pressure-
temperature-density equatinns nf state are nobtained in terms
nf three particular strain measures.

In Chapter 4, equations fnr isentropes and Hugoniots
are nbtained from the abnve equations, which have the form
of isotharms. Chapters 3 and 4 correspnnd to Thomsen's
first paper (Thomsen, 1970).

Chapter 5, corresponding tn Thamsen's second (1972)
paper, gives the generalizatinn nf the above theory necessary
to calculate effective elastic moduli as functions of density
and temperature for the special case of hydrnstatic prestress,
but allowing arbitrary material symmetry. The specialization
tn cubic symmetry is given.

Applicatinns nf the theory are given in Chapters 6 to
10.

In Chapter 6, an analysis nf shonck-wave data of MgO
allows numerical evaluation of some of the differences be.
tween varinus equatinns, including Thomsen's (1970), a test
of the thermal contribution tn the pressure predicted by
this theory, and a determination of the Mg0 equatinn of state.

In Chapter 7 a large bndy of shock-wave and other data
nf Si02 is analysed to prnvide equations of state of stisho-
vite and a phase of abonut the density of cnesite. The iden-

tificatinnnf this phase requires snme calculation and dis-



cussion nf the Si02 phase diagram tn nne megabar and several
thousand degrees Kelvin.

Recent ultrasonic measurements nf the elastic properties
nf sndium chloride at simultanenusly high pressure and tem-
perature are 3na)ysed in Chapter 8 in terms nf the theory
given in Chapter 5. This allows some discussinn of the
accuracy nf the thermal part of the theory. Combined with
calorimetric and thermal expansion data, these data are
sufficient to predict the Hugonint of sodium chloride. Com-
parison with Hugnnint data allows snme discussion nf the em-
pirical merits nf different strain measures and of the mnst
advantageous methods of extrapnlating such data to high pres-
sures. Using the Hugonint data as a constraint, the equation
nf state of sodium chlnride is accurately determined to 300
kilobars.

Preliminary results are given in Chapter 9 of shnck-
wave experiments nn Mg0 which use a technique to measure
elastic properties nf substances under shock-compression.

The analysis of these results requires a theory of the type
given here tn calculate elastic properties at high pressures
and temperatures.

Finally, in Chapter 10, the equatinns of state of MNgO
and SiD2 determined in Chapters 6 and 7 are used as the basis
of a discussion of the constitution nf the earth's lnwer

mantle.
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CHAPTER 2

INVARIANT FINITE STRAIN MEASURES IN ELASTICITY

AND LATTICE DYNAMICS

Summary

Some vagueness in the literature concerning the proper
measures of strain which may be used in finite elastic strain
thenry and lattice dynamics is discussed. The requirements
for strain-dependent quantities tn be invariant under changes
nf frame nf reference are briefly reviewed, and it is poninted
out that the common practice nf writing strain-dependent
quantities explicitly in terms of the Lagrangian strain 3_15
sufficient, but not necessary, fnr them to be invariant.
Invariance is assured if any nne nf a class of invariant
strain tensnrs is used for this purpnse. The use of the
non-invariant Eulerian strain tensor € in snme applications
has not usually led tn difficulties because of the restricted
situations which have been considered. Applicatinns to more
general situations wnuld require the use of an invariant
strain measure. An analngnus invariant strain tensor can be
defined which reduces to the Eulerian strain tensor in the

case of isotropic strain.



2.1 Introduction

There seems tn be some vagueness and ambiquity in the
literature concerning the proper measures of finite strain
which may be used in formulating theories.of elasticity or
lattice dynamics (Murnaghan, 1951; Toupin and Bernstein, 1960;
Thurston and Brugger, 1964; Bruqgger, 1964; Thurston, 1965;
Wallace, 1967; Born and Huang, 1954; Leibfried and Ludwig,
1961; Ludwiq, 1965; Thomsen, 1970). The common practice is
to write expressions in terms of the "Lagrangian" strain, %
(defined below), with the comment that these expressinns are
thereby rendered "rotationally invariant"”, and without any
discussion of the nacessity nf this condition. The result
is that it is easy to gain the impression that 7 possesses
snme special property not possessed by any other strain
measure. This is especially true, for instance, of Brugger's
(1964) reference to the 7 derivatives of internal energy,

U, or Helmholtz free enerqy, A, as "thermndynamic elastic
coefficients", and of Wallace's (1967) statement that U and
A depend on the position in the current confiquration only
through » and the position in the initial configquration.
Wallace gnes on to assert that "this dependence is necessary
and sufficient to insure rotational invariance" of U and A.
It is easy to misinterpret this statement as implying that

U and A must depend ongg_exglicitly, when in fact rotatinnal

invariance is still assured if U and A depend on some strain
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measure which itself depends only on 2. This point is trivial
so long as one is content to use mas a strain measure, but

in some applications, such as geophysics, where large strains
are considered, the differences between different strain
measures are of practical importance (Thomsen, 1970; Murnaghan,
1937; Birch, 1947)

In the genphysical literature, on the other hand, the
"Eulerian" strain, € (also defined below), has been popularly
used, due largely to the work of Birch (1947, 1938, 1952).

The "Birch-Murnaghan equation" is derived by writing the
strain enerqgy density as a third-order polynomial in €&,

and has been established as an empirically successful equation
(Birch, 1947, 1938, 1952). The use of € deserves comment in
the present context, since it does nnt, in fact, assure
rotational invariance in general. This fact seems to have
received little notice since the earlier work of Murnaghan
(1937), apparently because his theory was immediately special-
ized to situations in which the invariance requirement was
trivially satisfied (Murnaghan, 1937; Birch, 1947, 1938).

The question has recently been raised again by Thomsen (1970,
1972) however, in the context of his wnrk on incorporating
some general results of lattice-dynamics into the theory of
finite strain.

It is thus appropriate to point out that there exist

two classes of strain tensors (Truesdell and Toupin, 1960,
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sacts. 32, 33), one consisting of tensors which are invariant
under changes of frame of reference, and the other connsisting
nf tensnrs which are not. Further, to every tensor which is
not invariant (or "frame-indifferent” (Truesdell and Noll,
1965) ) there corresponds a tensor which is frame- indiffer-
ent and to which the tensor reduces in some special situations,
notably the case of isotropic strain. The frame-indifference
requirement has been fully discussed by Truesdell and Noll
(1965, sects. 19, 26, 29) and a useful account is given by
Malvern (1969, sect. 6.7). A particular pair of strain ten-
sors has been discussed by Thomsen (1972). For the present
discussion, some particular strain measures will be defined

and the frame-indifference requirement briefly reviewed.

2.2 Strain Measures

A notatinn snmewhat similar tn that of Truesdell and
Nnll (1965) will be used. Attention will be confined to
hyperelastic materials, i.e., thnse elastic materiais for
which a strain enerqgy function exists. Rectangular Cartes-
ian coordinates will be used, and initial and final con-
figurations will both be referred to the same coordinate
frame. Denote the position vector of the initial position
of a particle by X = (X1,X2,X3) and the position vector of
the same particle after deformation by x = xl,xz,x3). Define

the defnrmation gradient, F, by
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_E - 9'“4'.){5 :» ) ) -

F.. - X - )_x.l' (1)
X; -

Indices i, j, etce, Tun from 1 ton 3, and repeated indices

are summed. F is assumed tn have an inverse, which will be

denoted by G: G = F-1,

By the polar decomposition thenrem (Truesdell and Noll,

1965, sect. 23; Ericksen, 1960, sect. 43), F has two unique

multiplicative decompositions:
F=RU, F=YR, (2)

in which R is nrthognnal and U and V are symmetric and posi-
definite. These are termed, by Truesdell and Noll, the ro-

tation tensor, and the right and left stretch tensors, re-

spectively. From these can be defined the right and left

Cauchy-Green tensors (Truesdell and Noll, 1965, sect. 23).

C=U"=FF B=V': EFT=RCR". (3)

-—

»

Some other stretch and strain tensors will now be defined,
the analogous quantities defined, respectively, from U and V
being carried in parallel. The inverses nof C and B are

o E-r: E—:F-r'r

—_— — —

=66, b=B8'=g6. (4)

b is the Cauchy defnrmatinn tensor (Truesdell and Toupin,

1960, sect. 26). The Green-5t. Venant strain tensor, E
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(Truesdell and Nnll, 1965, sect. 63), and its analnque are

E=3(¢-1) =29y D= 4%(8-1), (5)

’

E is the "Lagrangian" strain tensor,:n y discussed abnve.

Corresponding to these, we have

e= $(1-¢) d=3(1-b)= € . (6)

) —

d is the "Eulerian" strain tensor, € , discussed above. It
is alsno known as the Almansi-Hamel strain tensor. The anal-

ogous strain tensor e was defined by Thomsen (1972) (his E).

2.3 Frame-Indifference

For a hyperelastic material, the Cauchy stress tensor,
T, is given by (Truesdell and Noll, 1965, sect. 82)
T _ 30 |7
T = pF J(E) = pF(3E) (7)
where P is the density in the deformed cnnfigquration and

o(F) is the strain energy function. Thermodynamically, o can

be identified with either the internal enerqy or the Helmholtz

free energy.
It is required that the constitutive relation (7)
be invariant under changes of frame of reference.
It has been shown that this can be achieved by requiring
o(F) tn be "frame-indifferent”, i.e., invariant under changes

of frame of reference (Truesdell and Noll, 1965, p. 308).
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Under a general change of frame of reference, the position

vector x is transformed into x*, where

x¥ = a + Qx (8)

a is a constant vector and Q is a constant orthogonal tensor.
Taking the gradient of (8) with respect to the initial posi-
tion X, and using the definition (1) of F, it is seen that

F transforms according to the relation

F'. = QE . (9)

For o(F) tn be frame-indifferent thus requires that

o (E¥) c(QF) = o(F). (10)

Since Q is an arbitrary orthogonal tensor, we may take
Q = ﬂ'l = ET, where R is defined by (2), and obtain (Truesdell

and Noll, 1965, p. 308)

c(F) = o(U) , (11)

i.s., the strain enerqy depends upon F only through the right
stretch tensor U. Since the tensors C, c, E, and e are them-
selves functions of U, it follows that o will be frame-indif-
fFerent if it is a function of any one of these, or nf any
other such tensor which is a function of U.

It is easy to see that this frame-indifference of o

follows because the strain tensors U, C, etc. are themselves
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frame-indifferent. Since F transforms according to (9), we

see from the definition (3) that C transforms according to

E# - (Fb)TF# ” F‘r’g'rgf - ETF - _C_ (12)

- - - = )

so that C itself is frame-indifferent. It follows that the
other tensnrs related to C are also frame-indifferent.

The above result may be contrasted with that for V and
the tensors derived from it. For instance, B transforms

according to

8" = F(E*)T= QFFa@" = @B8@" (13)

so that B is not frame-indifferent. Defining o(B) = & (F),

the requirement that
5(e9BQ") = &(B) (14)

for arbitrary § is just the requirement that the material
described by &(B) be isntropic (Truesdell and Noll, 1965,

sect. 85). On the other hand, the requirement that
@Ee" = B (15)

is the requirement that the strain be isotropic (Truesdell
and Noll, 1965, sect. 7).
If the strain is isotropic, F is a scalar multiple of

the unit tensor. In that case, LT = F, and all of the pairs

of strain tensors defined in (2-6) are equal: B = C = 52,
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etc.

2.4 Discussion

Some general comments can now be made on the basis of
the foregoing. The strain energy will be frame-indjifferent
if its strain-dependence is expressed in terms of one of the
class of frame-indifferent strain tensors. Truesdell and
Toupin (1960, sect. 32) have discussed the equivalence of
strain measures, and they go on (ibid., sect. 33) to give
examples of strain measures which reduce the classical strain
tensor of the linear theory of e}asticity for infinitesimal
deformations. Since, for many applications, strain-dependent
quantities are expanded as a Taylor series in strain, this
additional requirement is convenient in practice. The strain
tensors £ and e (5, 6) are examples of this class of strains.
Some more specific comments will now be made.

The uniqueness of the pair of polar decompositions of F
means that any one frame-indifferent tensor is a function of
any other frame-indifferent tensor. This is the basis for
the validity of Wéllace's statement (1967), discussed earlier.
In those cases where the Eulerian strain tensor, which is not
frame-indifferent, has been used to describe isotropic strain,
the correct generalizatinn to general strain is through the
tensor e, defined by (6), as has been pointed out by Thomsen
(1972}
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Murnaghan (1937) derived an expression for stress in
terms of E (his:g ) but immediately specialized this to an
isotropic medium to discuss applications. At the end of that

paper he gives the expression for T in terms of E as

T e 2FC 3’5-{5) E* (16)

P

where G(E) = 45(5). He also gives what he calls "the cor-

responding Eulerian equations” in terms of c (his j):

T=-2063,()6 (17)

—_ )

where E%E) - g(i). Thomsen (1972) uses, at one point, the

closely related strain e (see equationn 6) and the relation

-6 (10
where <ng) = o(F). However, Thomsen, correctly, calls this

a Lagrangian equation. The confusion of terms here should

be clarified. In the sense that the frame-indifferent ten-
sors are functions of 23, which is defined with reference to
the initial configuration, they are all "Lagrangian". Con-
versely, all of the non-frame-indifferent tensors are "Euler-
ian". Murnaghan's (1937) incorrect description of equation
(17) as Eulerian was presumably due to the close relation of
c to e, the frame-indifferent analogue of £ (see equation 6).
Actually, Truesdell (1952, sect. 12) has pointed out that

the terms "Eulerian" and "Lagrangian" are historically in-
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accurate, and has proposed, instead, the terms "spatial" and
"material", respectively.

Semantics aside, it is clear that all of the forms (16),
(17), and (18) are frame-indifferent, and alsn that the strain
e is analogous to what is conventionally called the "Eulerian”
strain, namely d (or €).

Birch (1947) developed expressions for the effective
elastic constants of a medium of cubic symmetry under hydro-
static stress. His results are written in terms of both E
and d (hisjﬁ and € ). That the expressions in terms of d
are valid depends on the restricted situation which was con-
sidered and on the particular way in which they were derived.
Firstly, Birch considered only strains which are a combina-
tion of an isotropic compression and a superposed arbitrary

infinitesimal strain. These strains can be represented by

a deformation gradient of the form

F= Fl+f (19)

- )

where F is a scalar, 1 is the unit tensor, and f is infin-
itesimal. From the definitions (3), we see that in this

case

C= F'l + FIF+£fT) + £7F (20)
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while

. 2
B= F% vy FIf + ¢ re" (21)

To first order in f, (20) and (21) are the same. Birch then

avaluated equation (17) for T in terms of d to first order

in f. The coefficients of the infinitesimal strains then
yielded the effective elastic constants. The success of this
procedure depends on having to go only to first order in f,
since, to second order in f, d is not frame-indifferent.

In conclusion, the common practice of writing the
equations of finite elastic strain o of lattice dynamics
explicitly in terms of the Lagrangian strain tensor:ﬁ is
sufficient, but not necessary, to assure the frame-indiffer-
ence nf those esquations. Any frame-indifferent strain ten-
sor can be used for this purpnse. The use of the non-frame-
indifferent Eulerian strain tensor € in some applications
has not usually led to errors because of the restricted
situations which have been considered, but the extension of
these applications to more general situations would require

the use nf a frame-indifferent strain tensor.
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CHARPTER 3
QUASI-HARMONIC FINITE STRAIN EQUATIONS OF STATE OF SOLIDS

Summary

Thomsen's "fonurth-order anharmonic" theory, which ex-
plicitly evaluates thermal effects in finite strain equations
of elasticity according to the fourth-order approximation in
lattice dynamics, is recnnsidered for the special case of
isotropic stresses and strains. It is shown that the approxi-
mations made in the finite strain thenry are independent
from those made in the lattice dynamics theory, with the
result that strain dependence may be described in terms of
any frame-indifferent strain tensor, not just the "Lagrang-
ian" strain tensor, 4, and that the finite strain expansions
may be taken to any order, not just the fourth. This result
is valid for general stresses and strains. 1Illustrative
gquations are derived in terms nf three strain measures,
including 4 and the frame-indifferent analogue, E, of the

"Eulerian" strain tensor, €.

The reference state is here left arbitrary,
rather than identifying it with the "rest" state, as was
done by Thomsen. This results in greater convenience in

applying the equations. Not being restricted to fourth
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nrder, the present equations do nnt depend for their appli-
cation nn knowing the second pressure derivative nf the bulk

modulus.
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el Introduction

In an important pair of papers, Thomsen (1970, 1972)
has given a theory extending lattice dynamics into the do-
main of finite strain. Such a theory allows thermal effects
to be explicitly accounted for at large stresses and in
terms of a small number of parameters. However, Thomsen
claims that such a theory can be written only in terms of a
particular "Lagrangian" strain tensor,»?, with the following
reasoning. The "fourth-order" theory of lattice dynamics
of Leibfried and Ludwig (1961) is based on a Taylor expan-
sion of the lattice potential energy,¢ s in terms of atomic
displacements which is truncated after the fourth-order
terms. Finite strain equations of elasticity are based on
a truncated expansion of the Helmholtz free enerqy, A, in
terms of a strain measure (oF which there are an infinity of
possibilities). Since both microscopic thermal motinons and
a macroscopic homogeneonus strain involve displacements of
atoms, it follows, Thomsen arqued, that in a theory which
purports to describe both thermal and large strain effects,
the lattice dynamics and finite strain parts of the theory
should both be based on expansions to the same order in
terms of the same displacement measure, so that the same
approximation is involved in each part of the theory. Thom-
sen (1970) concluded that » was the appropriate measure.

It is intended in this chapter to establish two main
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points concerning this argument. The first point is that
Thomsen employs a concept of consistency between the thermal
and finite strain parts of the theory which is unnecessarily
restrictive. Finite strain theory makes no assumptions
about inter-atomic forces and no predictions about thermal
effects. However, thermal effects can be incorporated
implicitly intn this theory by supposing the "constants"
which occur in it to be temperature dependent. The role of
the lattice dynamics theory is to make this temperature
dependence explicit and specific. It isbunreasonable that
the generality of the finite strain part of the theory should
be limited in this process, however approximate and limited
the thermal part of the theory may be. In this chapter it
will be pointed out that the approximations made in the two
parts of the theory are in fact independent. If the approxi-
mations in the thermal part of the theory are poor, then the
effect is to limit the range of temperatures over which the
theory is useful. Within this temperature range, the finite
strain equations are limited only by the approximation made
in the truncation of the free energy expansion. A corollary
of this is that the finite strain part of the equations
need not be limited to being in terms ofzy.

The second main point is that even if Thomsen's more
restrictive concept of consistency is adopted, ? is not the

appropriate strain measure with which to describe finite
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strain effects. Thomsen (1970) transforms his expansion of
¢ in terms of atomic displacements (his equation 17) to one
in terms of ¥ (his equation 20) but fails to note that the
latter expansion involves a different approximation than the
former since # does not depend linearly on atomic displace-

ments.

The appropriate strain measure would have been Thomsen's
"e", which is linear in displacements. However, the use of
e raises special difficulties. The common practice (eg. Born
and Huang, 1954; Leibfried and Ludwiq, 1961), which Thomsen
(1970) followed, is to transform the expansion of ¢ to be in
terms ofjg, since # describes only pure strains, and, further,
since this renders ¢ invariant under changes of frame of
reference (MUrnaghan, 1937; Truesdell and Noll, 1965; see
also Chapter 2). If g is left in terms of g, these require-
ments are not automatically accounted for in general, and
additional explicit restrictions on the equations must be
imposed (Leibfried and Ludwig, 1961).

It has been pointed out in Chapter 2 that the use of
y is sufficient to assure frame-indifference of @, but that
it is only necessary to use any strain measure which is a
function 0F1¥ only. This class of strain measures has been

discussed in Chapter 2.
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In this chapter, the incorporation of lattice dynamics
into finite strain theory is reconsidered in the light of
these ponints. It is necessary to go over the derivation of
the equations in some detail in order to discuss these points.
In this chapter, only isotropic stresses and strains will be
considered, so that the rest of the treatment will be simpli-
fied and the essential points at issue will not be obscured.

Equations in terms of three strain measures will be
derived here: #’ e, and E, the invariant analogue of the
Eulerian strain tensor &€ (Thomsen, 1972; Chapter 2). The
choices of L/ and E serve to relate this to previous work
and as examples of the infinity nf pnssible invariant strain
measures. The thermal cnntribﬁtions take a simpler form
when expressed in terms of e.

A further difference from Thomsen's equations is that
the reference state will here be left arbitrary, rather than
identifying it with the "rest" state as Thomsen (1970) did.
The parameters of the equations will then be related to
measured quantities, such as the bulk mndulus and its pres-
sure and temperature derivatives, in the reference state.

Two inconvenient aspects of Thomsen's (1970) equations are
thereby avonided. Thnmsen's procedure requires the solution
of six simultaneous non-linear algebraic equations (his
equations 40) in order to determine the rest-state parameters

from room temperature data. Further, Thomsen's insistence
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on taking the finite strain equations to fourth-order means
that the second pressure derivative of the bulk mndulus is
required, but this quantity has been measured for very few
substances. Without this quantity, or some estimate of it,
Thomsen's (1970) equations (40) cannot be evaluated nor his
theory applied. In the present procedure, the reference
state can be identified with that of the data, and the para-
meters evaluated with simple independent equations. The
equations need only be taken tn the order appropriate to

the data.

3.2 Strain Eneragy and Lattice Energy

Consider, first, the point of view of finite strain
theory. A hyperelastic material is defined (Truesdell and
Noll, 1965, sect. 82) as an elastic material for which a
strain enerqy function can be defined. This strain enerqgy
per unit mass, oo, is, of course, a function of strain. To
specify strain, and, at the same time, satisfy the require-
ment of invariance under changes of frame of reference, we
may use any of the "invariant" class of strain tensors dis-
cussed in Chapter 2. For instance, consider the strain ten-
sor a8 defined by (6) of Chapter 2, which is the invariant
analoqgue of the commnnly used "Eulerian" strain €. It is
convenient, for the remainder of this discourse, to use the

notations of the geophysical literature or of Thomsen (1970,
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1972), since it will be mainly these sources which are re-
ferred to henceforth. Thus, instead of g, define E as follows.
If X is the position vector of a point in the medium in a
referance conFigu;ation and x is the positinn of the same

point in some other configuration, then the displacement

gradient, f, is defined through the relation

!'l(zf’_‘ ’ X‘-XL-: 'F,:J'XJ'_ (l)

> t

The symmetric strain tensor E is then defined (Thomsen, 1972)
as |
E= t(f +£7-££7); Ey= fy;+ o - fucki). &
In equations (1) and (2), the indices i, j,k, denoting com-
ponents with respect to rectangular Cartesian coordinates,
run from 1 to 3, and repeated indices are summed.
The Cauchy stress tensor, T, is given in terms of o and

E by (Mmurnaghan, 1937; Truesdell and Noll, 1965, sect. 84)

o
T =pl-fTREN-1) 5 Ti= plSi—t)BE )6 - Fmi) , (D)

where 0 is the density of the material and 1 is the unit
tensor. If o is identified with the Helmholtz free enerqgy
per unit mass, A, then the derivative in (3) should be taken
isothermally, and the stress along an isntherm results; if

0 is identified as the internal enerqy per unit mass, U,

then the derivatives in (3) should be taken isentropically,
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and the stress along an isentrnpe results.

In order to apply (3), we require an explicit functional
dependence of 6 on E. Since E is small when the "deformed”
configuration is close to the reference confiquration, we may

expand o(E) as a Taylor series in E:
o 0 .
0'{5) = 0%+ Cr;‘j Ef)' + { o—t'jk( E‘J E“‘e > (d)

where 635 = (ao/éEij), etc., and superscript "o" denntes
3* 0% jk1e

etc., are parameters, tn be determined empirically, which

evaluation at the reference configuration. Then a?

characterize a given material.

Now consider the point of view of lattice dynamics. The
Helmholtz free enerqgy per unit mass, A, of a vibrating atomic
lattice is (Leibfried and Ludwig, 1961) the sum of the

vibratinnal energy per unit mass, A and the static potential

S’
enerqy per unit mass, 5, of the lattice when svery atom is

in its mean position:

A= ¢ + A3 . (5)

The bar will henceforth denote evaluation in the mean con-

figuration. For the moment, consider just the form of ¢.
To describe the dependence of ¢ on the instantaneous

position of each atom, Thomsen (1970) generalized his dis-

placement gradient e, where (his equation 1)
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x, - X; = e X, (6)
as follows (his equation 18):
M
B - X2 = eRE XX (7)
t L Lt ) J

Here m = (ml,mz,m3) defines the unit cell, and u specifies
the atom in that cell (Leibfried and Ludwiq, 1961; Thomsen,

1970). One could similarly generalize f and E:

el < B mn .5
xpmo- Xm = Fapmxp (8)
¢ v t ) J
V_’!.L‘-" MM mm LM
Ef = L(fhm v Fup-fuufupm), (9)
. vy J t k )k

For convenience, this notation may be contracted by replacing
(m”ﬂ,i) by o, (ﬂn/hj) byfg,etc. Since ﬁW@ or E@g serve as
well as qmc to describe the positions of atoms in the lattice,
we could expand P in terms of either of these; for example

the generalized analoque of (4) would be

¢ & ¢o L ¢(/3£xﬂ ri «dFE Exﬂ EVF+"' y (10)

where ¢°” etc., are tno be interpreted as the E derivatives
ﬁﬂ, ’ p @
of ¢ in this context.
Although (10) is a valid representation of the depend-
ence of ¢ on atomic pnsitions, it dnes nnt givaiﬁ in a form

suitable for solving the equation of motion of the lattice,
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which is, of course, the subject of the theory of lattice
dynamics. In this theory, ¢ is expanded in terms of atomig

displacements, u, = x, = Xg (see Thomsen, 1970, equation 17):

p= 4+ $ou, + % :ﬂu‘uﬂ+..- ) (11)

If this expansion is truncated after the second order, the
equation decnuples into that for a system of independent
harmonic nscillators - the modes of vibrationn of the lattice.
If up to fourth-nrder terms are retained, then a perturba-
tion scheme may be used to relinearize the equation of motion
(Leibfried and Ludwiq, 1961; Ludwig, 1967).

Now, from (7) we see that, since the reference position,
X,y is a constant, qmdis linearly related to u,_. Thus, in
(11), the u, can be replaced by Xﬂqu, etc., and an expan-
sion of ¢ in terms of eer results (see Thomsen, 1970, equa-
tinn 19), which is identical tn (11). In particular, if (11)
is truncated after the fourth order, say, then the expansion
of ﬁ in terms of q%dtruncated after the fourth order is
exactly equivalent. This is not true if ¢ is expanded in
terms of any displacement measure which is non-linearly re-

lated to u_, such as Thus, (10) truncated after

f;(ﬂnr Ea:,a

the fourth order invonlves a different apprnximation than does
(11) truncated after the fourth order. This point was
neglected by Thomsen (1970) when he transformed (and special-

ized) from his expansion (19) of ¢ in terms of qtho his
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expansion (20) in terms of the Lagrangian strain 2 which is

related (nnon-linearly) tn e through

)?':J' ! {'(eb‘)' + e,": + eké ek)') . (12)

For the purpose of deriving strain-dependent quantities
from the lattice theory which are invariant under changes of
frame of reference ("frame-indifferent"), the equatinns are
usually transformed from e- (or g—) dependence to g-depend-
ence in this manner (eg. Leibfried and Ludwig, 1961, sects.
8, 11; Born and Huang, 1954). Leibfried and Ludwig (1961,
sect. 2) have considered the restrictions on the u, deriva-
tives of ¢ imposed by the frame-indifference requirement.
According to the discussion nf Chapter 2, restrictions will
also apply in the case of a hnmngenenus strain, described
by e, and these will be satisfied only in such special cases
as isotropic strain or an isotropic medium. Thus, in a
limited sense, the expansion (11) can serve as the basis of
both lattice dynamics and finite strain.

Another reason for using other than u or e as displace-
ment measures, of course, is that the truncated expansions
in terms of these may not be a suitable functional form. It
has been established that expansions in terms of the Eulerian
strain, €, which is identical to E of (2) in the case of
isotropic strain (see Chapter 2), are empirically preferable

to expansions in terms nF'¥, for instance (Birch, 1947, 1952).
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Tno conclude this sectinn, the frame-indifference re-
quirement, and pnssibly empirical preference alsn, requires
that a strain measure nther than e be used for describing
strain dependence in general situations. The displacement
gradient e can be used only for special applications. The

consequences of such a transformation will be given below.

3.3 Vibrational Enerqy and the Mie-Gruneisen Equation

The pertinent parts nf the theory of anharmonic lattice
dynamics will be briefly reviewed here, so that the approxi-
mations involved can be made explicit for comparison in the
next section with the approximations made in finite strain
theory. The problem nf anharmnnic lattice dynamics has bean
reviewed at length by Leibfried and Ludwiq (1961) and Ludwig
(1967), who give a general treatment of the "fourth-order"
case, i.e., the case when terms up to the fourth order are
retained in the expansion (11) of ¢ in terms of u or the
equivalent expansion in terms of g. The Hamiltonian of the

lattice in this case can be written

H

Ek+ ¢o+¢l*¢1+¢3 *¢4

1]

H, +.¢, + ¢y + P2 (13)

where Ek is the kinetic energy, ?& = ﬁ:deﬁd, etc., and H0 =

Eie * ¢U + ¢2 is the Hamiltonian in the "harmonic approxima-

tion", i.e., when ¢is,truncated after the second order term.
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The equation of motion derived from (13) is nnn-linear be-
cause of the terms ¢3 and ¢§. In order to re-linearize it,
it is necessary to assume that ¢3 and ¢2 are small, so that
a perturbation tre;tment can be used. The assumption made

by Leibfried and Ludwig is, in effect, that

l¢3, et S,Hol ) (14)

[ ¢ ~ §°|H,| , (15)

where & is small compared to unity. For a given material,
for which ¢ is fixed, the éﬁ;, etc., are fixed and (14) and

(15) 1imit the maqgnitude nf the Bt ?

assume that the amplitudes nf the thermal motions of the

i.e., (14) and (15)

lattice are not too larqge.

Leibfried and Ludwig (1961) then show that the vibra-

tinnal energy is given by

As = E,(¢) + E;(¢:) + ElPe) *Efo,MJ + 0(57), (16)

where

E,~ SE,
£, ~ SE, , (17)
E, ~SE
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E2 is the "quasi-harmonic" vibrational enerqy, i.e., the har-

monic vibrational enerqgy
E, = kT%_._ogn[Z sinh [{‘ﬁwj/k"f')] i (18)

but with the eigenfrequencies aﬁ dependent on strain. In
(18), T is temperature, k is Bnltzmann's constant, # is
Planck's constant and “ﬁ is the frequency of the jth mode of
vibration of the lattice. The summation is over all mndes

of vibration, of which there are 3N, where N is the number

of atoms in the lattice. The(u§ are proportional to a linear
combination of the second derivatives of ¢ with respect to
displacement, evaluated at the mean positions of the atoms.

. Thus in the harmonic approximation, the “ﬁ are constants

and E, depends only on T. In the fourth-order approximation,

2

E2 depends on

both temperature and strain. Expressions for E3, £, and E

4 1
are given by Leibfried and Ludwig (1961), but for the pre-
sent we need only note that E3 and E4 are temperature de-
pendent, while E1 is not.

If we use equation (16) for the vibrational enerqgy in
equation (5) for the Helmholtz free energy, then we include,
approximately, both the strain and the temperature depend-

ence of A:
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Alstrain, T) = @ (strain) + Ag(strain, T) ; (19)

the particular strain measure is deliberately left unspeci-
fied at this stage. By taking successive strain derivatives
of A, one nbtains the stress (Cf. equation 3) and the elastic
constants of secnnd, third, etc., orders. By taking tempera-
ture derivatives of A and its strain derivative, one obtains
the entropy, internal enerqy, specific heat, etc.

The concern of this paper is primarily to derive ex-
pressions for the pressure as a function of strain and temper-
ature in the case of isotropic stresses and strains. There-
fore, we will proceed directly from (19) to an expression
for the pressure, before considering in detail the expansion
of (19). This will show explicitly the Mie-Griineisen form
of the equations derived later (Thomsen, 1970).

In the case of isotropic stresses and strains, equation

(3) reduces to

v

(o
P=-35v » (20)

where P is pressure and V is (specific) volume. We will
consider here just the isothermal pressure. Then we may
identify ¢ in (20) as the free energy A given by (19), and
the derivative in (20) is taken isothermally. From the

E

expressinons given by Leibfried and Ludwig, for E and E

3’ "4
it can be shown (Leibfried and Ludwig, 1961, sects. 7, 10)

1’

that



38

(.i_i-l)r ) (%E—Va)_r ) (%‘?)T ~ 0(§%) i (21)

i.e., that these derivatives are third order in §. Thus they
may be neglected, in accord with the perturbation expansion,
and the fourth-order expansion of ¢. which retained oanly
terms nut to second order in §. Thus, using (16), (19) and

(21) in (20), we obtain
VE, 3
P= -3 - (59, + o). (22)

In this approximation, only the "quasi-harmonic" contribu-
tion, EZ, to the vibrational energy enters the pressure.
In order to rewrite (22), we note the following rela-

tions. The internal enerqy, U, is defined thermodynamically

as
Uu=A+TS, (23)
where
g —(%‘i}v (24)

is the entropy. Using equation (5), we may identify the

vibratinnal contribution, Us' to U as
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U= U=-¢ = A, -TS . (25)

Defining Uq as

£ - 5(2%),

J

it can be shown (Leibfried and Ludwig, 1961) that uq is the
contribution to U, (and hence to U) arising from Eyy i.ee,
it is the quasi-harmonic vibratinnal contribution tn U.

Now, defining 9 and 25 as

e >
= U IwY = - 3 W gy (27)
we can write (22) as

dE

Fe =3~ dev (J&LZJ-) + 0(5)

I

_i['g 4 '(7% 7““:,' + 0[53)

J

= -+ Tl + 0157). (28)

The last form of (28) has the form of the "Mie-Grineisen
equation”, but we may nonte that it is only an approximation

to the Mie-Gruneisen equation, which is
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P = _é{—% +-\j/7_us' (29)

The Mie-Gruneisen equation is derived from the assumptions
that US depends nj V only through the “ﬁ’ and that all of the
W have the same volume derivative. The quantity 77 in (29)
is the "Grineisen parameter", defined, in accordance with

this approximation, as

c(-gvtw
d n V !

7 = - (30)
where w is any aﬁ. Comparison with (27) shows that ¥ may be
identified as a mean of the "mode Gruneisen parameters" 33.

The fourth-order approximation and the approximations
made in (14) and (15) thus lead to a quasi-harmonic equatinn
of state. The additionnal "Grineisen" approximation

yields a Mie-Grineisen type of equation of state.

3.4 Finite Strain Equations nof State

We now have, in (19) and (28), expressions for the free
enerqgy and the pressure which include both the static and
vibrational contributions, and in which the vibrational con-
tribution is evaluated to within the approximations described

above. FfFurther, the strain dependence of both the static
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and vibratinnal contributinns is implicit in these equa-
tinns, the latter thrnugh the strain dependence nf the uﬁ’S.
The task of this sactinn is tn make this strain dependence
explicit, keeping in mind the limitatinns impnsed by the
apprnximatinns already made.

Isntropic strain is specified in terms nof V, the

specific volume. In terms of V, the strain measures tn be

used here are

\f

e b €= (V/Vo)’/a-l, (31)

t.J. 7

E.e £8.; E=2[1-(v/v,y] (32)

4 v

=8 p =il -], (33)

where Vn is the specific volume in the reference cnnfiquratinn.
The strain dependence nf the vibratinnal terms E2 and
Uq is through the uﬁ, sn it is made explicit by writing,

for instance,

k2

wi = (W)(1+9e v thes...) (34)

)

where gj and hj are constants. The square of “5 is expanded
here because a simple interpretation nf qj and h, follows in
this case. The ug' are linear combinations nf the secnnd
derivatives nf ¢, with respect to displacements, evaluated

at the mean confiquration (Leibfried and Ludwiq, 1961, p.304).
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Since e is linear in displacements (see equatinn 6), it
fnollows from the definitions nof qj and hj in (34) that they
are, respectively, linear combinatinons of the third and
fourth derivatives of ¢, with respect tn displacements,
evaluated at the mean confiquratinn. Insertion of (34) into
the definition (27) nf Z} leads tn an expression fnr the
strain dependence nf 33:

v = . (1+re)g + h;e + s

J

(35)
61+ g,e +{hj-ez+ e )

Lf the Grineisen approximation is extended, and it is
assumed that all nf the Qj and hj are the same, the volume

dependence nf 7 is

y o _ (te)la+rhesr...) (36)
6(1+ge + +he®s...)

If analongous expansinns in terms nF'7 and £ are made,

analogous expressions are nbtained:

wi = (W), (149 +4h pte ) 5501
= (W), (1+g"E+¢th"E +.. ) (35b)

’ 4 % %4
¥ = ('+17)(9 + 7 ) (36a)

6+ 9 + 2 hytell)
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(=28 9"+ hE 4+ ...)

36b
6(’4\—3”6 + %LHEQ."“‘) ( )
It is easy to show that
g'= gt =g,
h'= h-9, (37)
h/rz h +:39

Fonllowing a procedure similar te that used in deriving

equation(28), we can nbtain (Leibfried and Ludwig, 1961)

e

dﬁw
Y], = STV (5as),

i

fr

- JZ Vj(u,)' ~-rcj)

= —-?’(LJ - TC

where the last step alsn requires the GrUineisen approximation,

and Cq =§c_ = z(Bu‘/BT)U is the quasi-harmonic contribution
J J d

to the specific heat at constant vnlume. Using these

results, and equatinn (31), the expansion of E2 in terms of

e, for example, is

EZ(GIT) = E.L(O}T) + ‘-f.guioe

(39)

. . .

b ‘;[(2""92)“ o~ 317— C10]62 + .
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We may now use equation (39) for £, and the expansinn of ¢

2
in terms of & in equation (19) to obtain an expansinn nf A
in terms of e. If this expansion is taken to fourth order
and substituted intn equation (20), we get, for the pressure,

using equation (31),

"t /A
Ple,T) = -EE (32),

e o LEE)
TV (a,+ ae+a,e" +a, e+ )) -
wherse
o, = {gg’)o + +qlso (40a)
- e

% = (A—E%)o * 4lzh 9)(”90‘#3“”%’ y (40b)

. 4fd’8

¢

0. - 2[4
4 6(494)04- o (404)

Equations (40) give the equation of state in the desired
form - namely, the pressure as a function of strain and
temperature. Before analogous equation in terms of 7 and E
are qiven, the truncation of the expansion in (40) will be

discussed.

The relative smallness nf the thermal contributinns
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means that they need nnt be carried for as many terms as the
static contributions. Cnnsider, fnr instance, equation (40b).
At higher temperatures than the Debye temperature, an is
approximately linear in T, and qu is approximately constant.
The temperature is the macroscopic expression of the mean
thermal vibration amplitude (temperature is proportional to
enerqgy which is propnrtional tn amplitude squared, classic-
ally). The presence nf h, invnlving fourth derivatiyes of

¢, and of q2 (q involves third derivatives nf¢@ ) indicates
that these thermal terms are 0(52) relative to (d257d52) -
recall that § specifies the magnitude of ¢, and g& relative
to ﬁz. in effect. Similar arquments establish that the
thermal contributinns tn subsequent terms (32' Aqs wnng HEB
0(52) relative tn the static contributinn (the presence of

an arbitrary factor in a_ depending on the chnice nf the

0
reference state complicates consideratinn of this term).
Thus, for instance, terms to 0(93) are included in (40), sn
thermal terms to 0(982) need nnly be retained. In general,
the expansion of the thermal coentribution can be truncated

two terms earlier than the expansion nf the static contri-

bution.
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Equation (40) can be viewed from two slightly different
viewpoints. O0On the one hand, it gives the pressure in two
parts - that arising from the static lattice pntential, and
that arising from the lattice vibrations (Cf. the Mie-
Griineisen form, equation 28). One wonuld thus expect it to
be a reasonable approximation between absnlute zern and some
finite temperature. (Note that because of "zern point" vi-
brations, some approximation is involved even at absolute
zero.) On the other hand, equation (40) has exactly the
form which would result from expanding the strain energy

function, 0, to fourth order in e without considering ex-
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plicitly any temperature dependence. If g~ is interpreted

as the free enerqgy at a certain temperature, then squations
(40a-d), in effect, give, approximately, the temperature
depsndence of the coefficients in the expansion of o at that
temperature. Equation (40) conuld thus be expected tn be a
reasonable approximation within some range of temperatures
abnut that temperature. (It should be remarked that since
the approximation is poorer at higher temperatures, this
range of temperatures will be smaller at higher temperatures.)
From either pnint of view, the affect of the approximations
made in the solutinn nof the lattice dynamics is to limit the

range of temperatures over which equation (40) is a reason-

able approximation. This is in accordance with the assump-
tion, implicit in (14) and (15), that the amplitudes of the

thermal motions are not too large. On the nther hand, the

truncation of the expansion of A in terms of strain implies

the assumption that the strain-induced displacements are not

too large. The truncatinn of the expansion of A in terms of
e after the fourth order in the derivation of (40) is coin-
cidental (it was done for empirical usefullness and for com-
parison with Thomsen's equations). If one wished to consider
very large strains, then a different (or higher-nrder) form
of A (or¢) might be required, but if, at the same time,

only a limited range of temperature needed to be considered,

then the "fourth-order" approximation to the vibrational
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effects might be quite sufficient. Hence, within the re-
strictions impnsedby the invariance requirement, any form
may be assumed for A 0nr¢), and the fourth-order theory of
lattice dynamics may be used to evaluate approximately the
vibrational (or thermal) effects in the resulting finite
strain equation.

A "Lagrangian" equation of state can now be derived
from (40) by using equations (31) and (33) to relate deri-
vatives with respect tu‘7 to derivatives with respect to e.
Retaining up to fourth-order terms, the result is

ptar) = - Lzl (34),

3V, 27

- U226, + b+ biyte b,77),

(41)
where
bo = (75), + ¢ gUy, (41a)
b = (§5) vitn-u, -4 gTC,, (41b)
3
by =§(f,2: / oo (41c:).
, [

by = -(;( "z*)o + .., (41d)
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A similar procedure, using equations (31) and (32),

yields the fourth-order "Eulerian" equatinn (recalling that,

for isotropic strain, Eij = eij = Esij)'
5/2
_ (1-2E) (Aﬁ.)
P(C,T)= = 3V, DET
s/
- J— LL;-Z‘/—EL(CO+C,E+C,E?+C,EJ)J (42)
o
where
d
¢, = (3%)0 + 39 u?" . (42a)
- (d? ’
= (7)) + 4 (xh"-9) Uy, -t 2 TCy, (42b)
- (48
€z = f—(de’)a L (42¢)
d?
Cy = 'g(jéfr)o o (42d)

Before some further remarks about these equations are

made, in the next section, the parameters entering these
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equations will be related to quantities which are commonly
(nr potentially) determined experimentally. By successive

differentiatinn of equation (40), the isothermal bulk modulus

Kt -U(DP/BU)T, and its isnthermal pressure derivatives,

/
Ky

(AKT/BD)T, etc., can be nbtained in terms of the a's.
Evaluating these and equation (40) at e = 0, we can snlve for

the a's in terms of Po. K_s etc., where the subscript "o"

0
denotes evaluatinn at e = 0 and the subscript "T" is dropped

for now, nbtaining

Qa = = Vo Po ) (433)
a, = -BVD(—SKO +2P0) . (43b)
a, = -3Va(—;’_-KoK:-—%K,+PO), (43c)

ay = =3V [-2KIK) - EK, K/ (KJ-1) -K,].  (439)

Similarly, from equatinns (32) and (33),

b, = -3V, P, , (43e)
b, = —3Ve(-3K, +3P,), (43F)
b, = —2Vo (£ KK -5 P), (439)

by = 3V [~ KIK! - 2K K (KL )

+ %:K,+'—E-R,], (43n)
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¢, = -3V, F,, (43k)
¢, = —3Vo(-3K,+ 5P,) (43m)
¢,z =3V [2K,K, -1eKe+ ZP,) (43n)
ez =3V [~ KK - 2 K K (K-

A L?—R,J ’ (43p)

To nbtain g and h, we first differentiate equatinn (37)

for and snlve for g and h, nbtaining
9= —-67, , (44)

h = 3[:3(:%6;3%;27_ + 9 -1 ] ‘

U, can be obtained from the thermodynamic identity

(45)
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Y = Xigilfl;. , (46)
v

and the volume derivative nf 2" is given by the identity

(Bassett et al., 1968)

LY / )-evlcv
(M,\v)r: "”ST’K-r"(;env)T; (47)
whers
/ 3 K )
I Rarall Bt (48)
ST OCKT-(QTP'

In these equatinns, CV is the specific heat at constant vol-

ume and o = (bV/BT)p/U is the vnlume cnefficient of therha;
expansion.

Equations (43) tn (48) determine the six equation of
state parameters Un’ a» 32’ a3, g and h in terms nf the six

laboratory quantities Uo’ K

0

» K2y KMy ocand (aK/aT)p. -

and a are determined by V_ and g through (40a) and (43a).
The procedure for determining the parameters is as

follows. Assuming that V_, K, K!, K&, o and (aK/aT)p are

o’
known at snme temperature To and zero pressure, then g and h

(which are temperature independent) and a., a, and a, can be

1’ 2
evaluated, using (43-48), at T,- This serves to define the



5l

reference state as P = 0, T =T, V=V . Then PD(TO) =0 =

aD(TO). Finally, a, and a;, which specify the température

N

dependence of the equatinns of state (40), (41) or (42), can

be evaluated at any temperature T using (40a) and (40b):

a(T) = a,(T,) +49[Ug,(T) ’f/fqo("'.,)]) (49a)

a,(T) a, (To) + ﬁ(lh'gz) [uqo{r) - ugo[To)J

U]

w & gt [TC?,(T) ~ Ty G [Te) ] . (49b)

Of cnurse, in this procedure, qu and qu must be known
or estimated as functinns of temperature. For many applica-
tions, the Debye or Einstein mndels can be used tn estimate
these. These require the empirical input nf the character-
istic temperature of the snlid. If more extensive empirical
input of qu and qu is desired, the specifically anharmonic
contribution to the U and CV must be subtracted before such
data are used (Leibfried and Ludwig, 1961). This point is
discussed further in the next section.

Illustrative numerical applications of the equations

derived in this section are given in Chapters 6 and 7.

3.5 Discussion

Firstly, some further comments on the approximations
used in the derivation of these equations will be made.

Equatinns (40), (41) and (42) are all derived from
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fourth-nrder expansinns (in terms nf the appropriate strain)

nf the free ensrgy. Accnrding tn the discussion nf the pre-
vinus section, hnwever, these expansinns can, in general,

be taken to any order. For example, if the "Eulerian" equa-
tion is truncated after the third-order term, and Pn is assumed
to be zern, the well known "Birch-Murnaghan" equatinn
(Murnaghan, 1937; Birch, 1938) results. The cnntribution

nf the present thenry is tn give, approximately, the explicit
temperature dependence of such finite strain equations.

The "Mie-GrUneisen approximatinn” was invnked at several
pnints in this derivatinn. Strictly,. such a strong assump-
tinn is not necessary. If we were tn follow the procedurse
used in deriving the Mie-Griineisen fnrm (28) of the equatinn
nf state, then we wnuld define, in (38), another mean of the
derivatives nf the “ﬁ’ and the corresponding summations could
thus be replaced. 1In general, hnwever, these means bear no
simple relation to each nther. 1In the Mie-Gruneisen approxi-
matinn, all of the quantities being averaged are identical,
and this difficulty is removed. An alternative, weaker
assumptinn, discussed by Leibfried and Ludwiq (1961), is to
replace the means nf these derivatives with the derivatives
nf the mean of theco%, which can be fairly easily calculated
from lattice mndels. Evidently, this approximation may be
reasonable at very low or very high temperatures (relative

tn the Debye temperature), but will be poorer at intermediate
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temperatures. We see, for instance, that this apprnximation
leaves ¥ independent nf temperature. At high temperatures,
¥ is nbserved tn be fairly constant, but belnw the Debye
temperature it usually becnmes temperature dependent.

The vibratinnal terms given here contain nnly the quasi-
harmnnic cnntributinns tn the internal enerqy and the specif-
ic heat, but in the fnurth-nrder thenry of lattice dynamics
there are additinnal contributinns to these quantities from
the terms E3 and Ea (see equatinns 16 and 23). Tn apply
these equatinns in a manner fully consistent with the fourth-
nrder apprnximatinn, while making maximum use nf available
data, none shnuld therefnre svaluate the contributinns from
E4 and E4 and subtract them from measured values nf the in-
ternal enerqy and specific heat tn nbtain the quasi-harmonic
contributinns. However, the contributions from E3 and E4
are difficult to evaluate (Leibfried and Ludwig, 1961), so
in practice it is much simpler tn assume that the quasi-
harmonic contributions approximate the measured values. This
is an approximatinn in the vibratinnal terms in addition to
the fourth-nrder apprnximatinn, so it seems preferable, if
the equations are applied in this way, to refer tn them as
"gquasi-harmonic equatinns nf state”.

The relation nf Thnmsen's (1970) equatinns to thonse
given here should be clarified. Thomsen's equatinn (40)

is analngnus tn the present equatinn (41), in terms nF'v,
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truncated after the fnurth-nrder term. The nnly substantial
difference is that the reference state has nnt been speci-
fied here, whereas Thomsen identified it with the stress-
free rest state of the lattice. From the point of view of .
lattice dynamics, the latter is the natural reference state,
but if the present equatinns are viewed as finite strain
equations in which thermal effects are (apprnximately)
explicitly included, then the reference state is arbitrary
(with the qualificatinn that the approximation is pnonrer,
further from the rest state). Cnnsiderable convenience
accrues in some applicatinns from identifying the reference
state as that at which experimental data are available,
since Thamsan's (1970) set nf six simultaneous non-linear
equatinns, relating his parameters to experimental quanti-
ties, is thereby avnided.

The expressions (36), (36a) and (36b) for ¥ given here
have a certain arbitrariness. It would be pnssible, for
instance, to expand them tn appropriate order in strain, or
to do as Thomsen (1970) did, i.e., by analogy with the
pressure equation, to retain the factor arising from the
volume differentiatinn and expand the remaining quntient.
Thomsen's expressinn (43) for 7, apart from the reference

Btate’ is

7= (v/v) (7, + 32y), (50)
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where A= -(h’ - g2)/18, which could be nbtained from (36a).
In principle, there is no reasnn to prefer any of these
forms over the others, but some trial calculatinns indicate
that equations (36),(36a) nr (36b) are less likely to give
negative values nf 2” at large compressions than (50) or its
analnques.

Finally, snome comments nn the capabilities nof the
present thenry. Thomsen (1972, p. 367) pointed nut that
although this thenry predicts that the elastic mnduli (in
the present case, K) are linear in T at high temperature and
at constant volume, this dnes not imply linearity at cnns-
tant pressure. Thus, measured non-linearity with T of
elastic moduli, taken at zero pressure, dones not imply that
a higher nrder thermal thenry is required. However, Thomsen
(1970, p. 2009, 2010; 1972, p. 370) gnes nn to claim that
non-zern values of (Bzcﬂd/BPQT), where Cog is an elastic
modulus, dn require a higher nrder theonry for their descrip-
tion. It has been arqued here that the Mie-Gruneisen
equation is valid at arbitrary volumes; therefnre, an arbit-
rary number of derivatives may be taken, and the thermal
contributinon will be included in these, althonuoh it will be
0(52). Thus, thermal contributinn to all pressure derivatives

will result from this theory. Of conurse, the predicted

value of the temperature cnefficient may not agree with the

measured valuss, but the mere existence nf a non-zero
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temperature cnefficient is nnt sufficient grnunds for
requiring a higher order thermal thenry.

Similarly, a nnn-zern value of K; dnes not necessarily
require a fourth-order expansion in strain. For instance,
a third-onrder expansion in e, sn that ag = 0, implies, from

(43d),

KoKy = =K (K =1) =%, (51)

(]

which is not zero, in general. Of course, this may not qgive
a suitable value of K;, in which case a fourth-order
expansinn in strain, or a third-nrder one in terms of a

more suitable strain measure, is required.
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CHAPTER 4

ISENTROPES AND HUGONIOTS

Summarz

Expressinns are nbtained for isentropes and Hugnnints
in terms of the saﬁe parameters as entered the isnthermal
equations nf state of the last chapter. The isnthermal and
isentrnpic bulk moduli and their first and secnnd pressure
derivatives are alsn related in accordance with the fourth-

order approximatinon of lattice dynamics.
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4.1 Intrnductionn

Since expressinns were nbtained in Chapter 3 for the
Helmhnltz free energy and the pressure as functions of both
specific vnlume and temperature, it is possible to derive
expressions for any other (P, V, T) locus from these. No
new parameters nr approximations need be introduced in this
procedure. Expressinns will be derived here for isentropes

and Hugonnints.

4.2 Isentropes

The Mie-Gruneisen equation (Chapter 3, equation 28)

P: -—% ‘f’%ui (1)

can be reqgarded as giving the pressure either as a function
of strain and temperature, or as a function nf strain and
entropy. Thus an expression for the pressure along an isen=-
trope can be obtained by expanding (1) in terms of strain

at constant entropy. The temperature, or entropy, depend-
ence of (1) is through Uq. From the result (Leibfried and

Ludwig, 1961; compare equation 38, Chapter 3) that

(%%#95 - —-%;(J% ) (2)

one can nbtain the expansinn nf Uq in terms nf e at cnnstant
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entrnpy, for instance:

uqf{ﬁ,&') - uto‘* 2 3“?,"8 & ?(Zh'gl)uio et 4 ... . (3)

The result of substituting (3) intnm (1) is an equatinn of

exactly the same fnrm as (40) nf Chapter 3:

e)'z 2 z
P{e,s) - -%r{aos + € + A€ F a.rfe ¥ s (4)

where the new conefficients are

Qps(S) = ¢, + % 9Ugo (42)
a’lS(s) = ¢: + J[,-(zh—gi) uqo ) (4b)
a,,= 3 ¢°m+ pue g (4c)
asg= 7+ ... (4d)

Equatinns (4) thus give the pressure alnng an isentrope in
terms of the same parameters (namely g, h, and the deriva-
tives nF?S) as (40) nof Chapter 3 for an isotherm.

Comparisnn with (40a-d) .nf‘ Chapter 3 shows that nnly
ajg diFf‘ers from its isnthermal cnunterpart. As in the isn=-
thermal case, the ayg can be written in terms of the isen-
tropic bulk modulus, KS' and its isentropic pressure deriva-

tives. The results are of exactly the same form as (43a-d)

nf Chapter 3, but with isentrnpic quantities. These results



61

can be used to nbtain expressions for the difference between
the isothermal and isentrnpic bulk mnduli and their respec-
tive derivatives. From the analoques of (43a-d) of Chapter

3 we nbtain, omitting "S" subscripts,

P, = - }L&; ay , (5a)
Ko = v, (@ -290), | (5b)
KoKe = =357, (24, =3, +44d,) (5¢)
Ko K, = ;,ﬁ'/; [éa_., + (3K, -1)(2a,-a,) ] (5d)

which are the analoques nf (53a-d) of Chapter 3. Comparing
(4a-d) with (40a-d) of Chapter 3, it can be seen that the
only ;ontributinn to the differences (KDS-KDT), etc., is
from the differences (als-alT). From (4b) and (40b) of

Chapter 3 we get

2
a—;g" a,r = #32TC10 = q?’ TC?"

?

and substituting this into’'(5b-d),

YT C
- e
’ ’ ¢
Kos Kos = Kor Kov = Kos— IKor (6b)

’ 78/
KDS {KOJ Ko;)/" KOT(KOT KOT) - "Z?" (KOS - KﬂT) . (6C)
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Using the identity
yc, = VeKy (7)

where CU is the specific heat at constant vnlume and &« is the

volume coefficient nof thermal expansion, (6a) becnmes

Kos = Kor = “o'a:;TKo-r

)

(assuming Cq z:CV) which can be recognized as a special case

of the identity

K=Ky = =7TT Ky, . (8)

Equatinns (6a-c) are, nf course, approximations tn the exact
relatinns accnrding to the approximations made in the lattice

dynamics theory, and discussed in Chapter 3.

4.3 Hugnnionts

In principle, it is pnssible to relate derivatives along
a Hugoniot to isothermal derivatives in a manner similar to
that of the previnus saqtinn, but since these relations are
more complicated, it is easier to obtain the Hugonint pres-
sure from the energy difference between it and some reference
curve. Expressions for Hugoniots have been given, for instance,
by Thomsen (1970), who related the Hugonint to the static
pressure -(d¢/dv), and, for example, Ahrens et al. (1969)

and McQueen et al. (1967), whn relate the Hugonint to an
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isentrope. Since the latter methnd dnes not require the
intermediate calculation of the derivatives of ¢, and since
the results of the last section can be used, it will be used
here.

The Hugnnint equatinn derived here will be generalized
to take accnunt nf possible initial pnrnsity of the material
nr a phase change during the shock process. The term "high
pressure phase”" will be taken here ton include the cnmpacted,
non-porous material in the case of initial pornsity.

Take the initial state of the material to be P = O,

Vo= T=T,, the (P =10, T-= Tn) volume of the high pres-

1
n'
sure phase to be Uo’ and the final shnocked state tn be

(Ph, v, Th)' The Rankine-Hugoniot equatinns give, in this

case,
u(v,T) - u(v, ,7,) = 5 P(V,-V), (9)

where U is the tntal internal energy, which, in the quasi-

harmonic approximation, is U = ;+ Uq. Define the transi-
tinn enerqgy Et as
’
E, = U(V%,T,) -Uulv,,7,). (10)

Et can be nbtained from the enthalpy of phase change, if it
is known. If there is nn phase transitinn, i.e., if there
is only a reduction of porosity, then this can be taken as

zero (the surface energy of the pnres can be neglected;
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Brace and Walsh, 1962).
If the pressure and temperature on the isentrope centered

at P = 0, V = Vo are PS and TS, respectively, at V, then,

from (1),
r s
Ph— Ps . V[UQ(V)Th) e ui(v) Ts)] (11)
Ps can be calculated according to the previnus sectinon. From
the identity
au)
P= -(av ¢ (12)
we see that
Vv
8U=E UVT)-UMT) = - Pdv. a3
V;
Thus, for instance, if PS is given in terms of e,
Lg _e? (14)

2 ' 3
ALl = aose+-{a,se +-§a.ue+¢,, N

Eliminating Uq(V, Th) between (9) and (11), using (10)

and noting that ¢(U0) = 0, the final expression for the

Hugoniot is

Pl 1~ Z(%-)] (15)

1"

P,-;‘;(AUert).



65

4.4 References

AHRENS T. J., ANDERSON DON L. and RINGWOOD A. E., Rev.

Geophys. 7, 667 (1969).
BRACE W. F. and WALSH J. B., Am. Mineral. 46, 1111 (1962).

LEIBFRIED G. and LUDWIG W., Solid State Physics (Edited by

Bradley) 12, 275, Academic Press, New York (1961).

McQUEEN R. G., MARSH S. P. and FRITZ J. N., J. Geophys. Res.

72, 4999 (1967).

THOMSEN L., J. Phys. Chem. Solids 31, 2003 (1970).




66

CHAPTER S

EFFECTIVE ELASTIC MODULI UNDER HYDROSTATIC STRESS

IN THE QUASI-HARMONIC APPROXIMATION

Summary

Fourth-order finite strain expressions for the effective
elastic mnoduli of a snlid under hydrostatic stress are de-
rived from a general expression fnr effective elastic mnduli.
Expressinns in terms nof the strains /2 E and & are given.
The expressinns are then written in terms of the mnduli and
their pressure derivatives evaluated at the reference state.
The temperature dependence nf these expressions is derived-
from the fnurth-nrder quasi-harmonic expressinn for the
lattice vibration energy. Snome thermodynamic relatinns are
derived which relate the parameters which specify the thermal
effects tn the pressure and temperature derivatives of the
elastic moduli at the reference state. General relatinns
between isothermal and isentropic elastic moduli and their
pressure and temperature derivatives are also given. Much
nf the development is valid for materials of arbitrary
symmetry, but the complete development is given only for

materials nf cubic symmetry.
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5is 1 Intrnduction

The equatinns develnped in Chapter 3 can be generalized
in two ways - by including the effects nf non-hydrostatic
stress and by considering anisntropic materials. A number
nf authnrs have discussed the varinus ways in which general
secnnd- and higher-nrder elastic constants (which arise when
arbitrary large stresses are cnnsidered) may be defined,
and their relatinnship with the "effective" elastic mnduli
(which arise when infinitesimal stresses are added tn pre-
vailing large stresses) (e.q., Thurston, 1964, 1965; Thurs-
tnon and Brugqger, 1964; Wallace, 1965, 1967; Thnmsen, 1970;
Sammis, 1971). In general, materials cannot sustain vary
large non-hydrnstatic stresses and, especially in geonphysics,
the case of most interest is that nf an infinitesimal non-
hydrnstatic stress superimposed nn an arbitrarily large
hydrostatic stress. Accordingly, equatinns will be developed
directly for this special case, without reference to the more
general treatments. Althnugh much nf this chapter is valid
for materials nf arbitrary symmetry, parts nf the treatment
are greatly simplified by considering nnly isntropic materi-
als or materials nf cubic symmetry, fnr which the respnnse
to a hydronstatic stress is an isntropic strain, which can
be specified with a single scalar strain parameter.

The treatment separates intn three parts. First, the

appropriate finite strain expressinns for the effective
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elastic mnduli are derived and written in terms nf the moduli
and their pressure derivatives at zero pressure. Second,
the temperature dependence of these expressinns is derived
from lattice dynamics. Third, snme general thermodynamic
relatinns are derived which relate the equation of state
parameters to the elastic mnduli and their pressure and
temperature derivatives, and which relate isnthermal and
isentropic elastic moduli and their pressure and temperature
derivatives. Snme of these thermndynamic relations general-
ize those used in Chapter 3, and many of them have not been
given before, to the author's knowledge.

As in Chapter 3, it is convenient here tn first derive
expressinns for thermal contributions in terms of e, and
then tn derive others in terms nij and E. In the
special case of hydrostatic prestress, frame-indifferent
expressinns in terms nof e can still be derived, although some
care is required.

This chapter corrects and generalizes the results of
Thomsen (1972). The relatinn between these is the same as
that between Chapter 3 and Thomsen (1970). The reference

state is again left arbitrary.
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5.2 Effective Elastic Mnduli Under Hydrostatic Stress

The effective elastic moduli can be defined either in
terms of the respnnse nf a prestressed material ton a further
infinitesimal stress, nr in terms of the equation of motion
of small amplitude waves. In this section, exact general ex-
pressions for the effective elastic moduli under arbitrary
prestress (e.qg., Thurston, 1965; Wallace, 1967) are special-
ized to the case of hydrostatic prestress, and further, to
the case nf a material of cubic symmetry. They are alsn
written explicitly in terms of the particular strain measures
to be used here, and the parameters in these expressions are
related tn the pressure derivatives of the moduli.

In nrder to obtain expressions in terms of e which are
frame-indifferent, it is necessary to define snme additional
deformation measures. Consider a pnint in the material
which, in the "natural", i.e., unstressed, state has position
vector (referred to Cartesian axes) a = (al, a,s a3). Denote
its position vector after the material is subject to a hydro-
static stress as X and its position vector after a further
infinitesimal arbitrary stress has been imponsed as x. Then

the displacement gradients g, f and u may be defined by

x
|
&
"
\\]
_
"
H
X

¢ ¢ v OHxy o (1)

(2)

‘_’(
[
X
"
<
x
-~
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where Uij is infinitesimal, all quantities are referred to

the same Cartesian axes, and the summation convention is

assumed. If uij is decompnsed into symmetric and antisymmetric
parts, 5 and wij' respectively, then (Wallace, 1967)
M‘_J' — de + W‘-J‘
- L . ¢
= I(So, + 5L Wn) - le) ) (3)
where
T v - ci e ok . »
Wy FENE u.u) ) Wed = ‘(“u ”Jt)- (4)
From (3), we get that
duU,;
—— b ’
SSey 7-(5{k Sjl + S,k ft-[) . (5)
P Yo D 2 2 )
For general strains, the Cauchy stress is given by
(Truesdell and Noll, 1965, sect. 82)
SA VA
ty D“;', T ﬁ J l.? T ) ( )

whare/o is the density and A is the Helmhnltz free enerqgy.

The effective elastic moduli are (Thurston, 1965)
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3Ty,

)TI..J‘ —
S P e, (8)

e, = gz F
Y4 du,, k
The moduli in (8) are isnthermal nr isentrnpic according to

whether the derivative is taken isothermally or isentrnpically.

In (7) and (8),

2%y
Fﬁ = &J,.eg = ey (9)

The requirement that (7) be frame-indifferent has been
shown (Nnll, 1955; Truesdell and Nnll, 1965) tn be equivalent

to the requirement that Tij be symmetric. If Ti' = T.., then

J ji’
W = 4 - - . 10
'gt) — 2 ( TI,.J' + 73 L ) = 7—ll.,,l e ( )

It has begn shown by Thurston (1965) that in the special casse

of hydrnstatic prestress,

oT..
c.. = .. = C.. . (11)
t)kd o Syy Lkt

Using (6), (10) and (11), the effective elastic constants

under hydrostatic stress are

—

AT 3T 3T ST
c‘:'kl = & i + i + - o SZ‘J‘ ) . (12)
) UL, YUy, dUxp Lk
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Substituting (7) into (8) and using the relations
(Thomsen, 1972)

o= -phe s da,c Fee, (13)
we get
. A
Cc‘,‘k.e = F Fop Fon €, €0 - T:'jfke + T 80 - (14)
Taking Tij = 'p‘%j’ i.e., assuming hydroﬁtatic pressure,

this becnmes

2

>
C&,‘u = p Fyp Fo, 2e;, €, ~P(8:c 850 = 805 Sxe) . (15)

Substituting (15) inte (12),

[ A A

oy Fop Few dep e, *+ FpFendes o,

2 -a'!/q

: B i S A W)
+ FipFun 3¢, 3¢5, + Fip Fin 3¢, 3¢, | = P VL (16)

where
fo = Ji(gt.z SJ—[ +* JJ.K Sl'l) - SW Skl ’ (17)

Expressinns for the stress, T, and the elastic moduli,

€3kl will now be given in terms of the strain tensors;y
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and E, where
- 2+ T .«
’)7':)- = 1[8‘1 + 6“ + e’“- €kJ) y (]_8)

E{j = % fiy + Fie - Fb Fie) . (19)

It is emphasized again that '_yand E are but twn examples of
an infinity of possible frame-indifferent strain tensors.

The expressinns analogous tn (7) and (16) are (Thomsen, 1972)

2A
Tu.'j = 2 Fou 1Y n Fin - (20)
A k2
t k€ = f kp >7m )77?1 F}w‘:llg = P Sc'j ) (21)
where
k¢
SL'J = & Sje + 050k — S0 ;i Ske (22)
and
YA
TL'j =/ Gm{ p) ok Gn,' ) (23)
_RA__ L2
cfjk.t = /')le: ka )Emn>EP1 G"J é;i,( - PAI:J ) (24)
where
Ak£ - gc'k %‘l - S:,'ﬂ S - Jc‘j Ske (25)
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and

G. = 5. _ f 5 = ;;{ = (F7)

' 3 5 ' G (26)

The derivatinn of equatinns (16-18) is aided by the relation

2

2
Pk )‘Fpe !

- (27)

= B8
e

The expressinns (16), (21) and (24) for the effective
elastic mnduli and (7), (20) and (23) for the stress are
exact in general. Fonr them to be useful, however, explicit
forms for the free enerqy A are required, and a customary
procedure is tn expand A in terms of some strain measure.
Expansinns of A will therefore be taken in terms of e, 7] and
E, and these expansions will here be taken to fourth order.
Since the truncatinns nf the varinus expansions involve
different approximatinns, the expressinns in terms of the
different strain tensors are no longer identical. This has
some interesting consequences, as will be seen later, and it
is the reason why the different expressinns are developed
in parallel here.

At this stage the development is simplified by special-
izing to the case where the material has cubic symmetry. In
this case the response tn hydrostatic stress is isntropic

strain, sn that the strain tensors reduce to scalar multiples
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of the unit tensnr. These scalar strains are (Thomsen, 1970,

1972; Chapter 3)

e=(r/p)" - k&)

)

t((p/a) 0], .
1= (e/a)] e

where o is the density at zero pressure.

1]

In accordance with these assumptinns, we may now write,

for instance,

¥ A o / 2 2
vesve, o Sike * Siwe® * tSee, (31)

where the sgjkl are constants. Since the strain dependences
nf all of the elastic mnduli are given by expressions of the
same fnrm, the indices can be tempnrarily supressed. By
substituting (31) into (16), differentiating, and evaluating
at e = 0, the s, can be written in terms of the zero-pressure
derivatives of the elastic constants (the implied ngkl in
the fnllowing equatinns shnuld be understood as linear com-

binations of those in (31), such as occur in (12)):
so - vo (Co * PO V) ) (32)

Si= =3V, K,(¢el +7)+ S, (33)

)
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s, = QVoK, e = (3k)=1)(5 - 5,), (34)

where a prime denntes a pressure derivative, V = lAp is the
specific vnlume, K = =V(3P/3V) is the bulk mndulus, and
subscript "n" denntes evaluatinn at zero pressure. With
these assumptinns and nntations, equation (16) for the c's

(still suppressing indices) reduces tn the form
- 2
c = /Jl+d [ 5 + ae+%ge) - PV (35)

Equations (32-35) thus give the effective elastic moduli in
terms of e and the pressure derivatives of the elastic moduli
evaluated at zero pressure.

Analogous expressions in terms of v are:

G = f’a(“z’?){(to + T+ ffx’f) - PS’ W8]
with

to= V(¢ +PS), (37)

t,= -3V, K, (¢c]+§) ~-t,, (38)

tas 9VK'c,” - 3K (t,+t) -t —t,. (39)

Analogous expressions in terms of E are:
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4
C-'-'/oo["zg)z(ro*"‘nE + ;‘_r‘_Ez)-—PA ) (40)
vz V(¢ + Pa), (41)
ro= =3VoK,(Co+ L) 77, (42)
Y. = VVBK:C: ‘JK:(rl‘7r%)*”6r"“7rP- (43)
Finally, note that, in particular,
Wzo , V==, We=1%, (44)
L 22 23 _ (45)
oy = | ) Sif s -, Sz: =1,
] 22 13 (46)
A" :-—3) ai, = -1, sz = =1,

5.3 Thermal Effects in the Quasi-harmonic Approximation

In this section, the thenry of anharmonic lattice dynam-
ics 1is used to nbtain an expansionon of the vibrational con-
tribution to the free energy in terms of general strains, and
thence to evaluate the vibrational contributions to the
effective elastic mnduli. This treatment is a straight-
forward generalization of that given in Chapter 3 for the
case of isotropic strain.

Expressinns will first be developed in terms of g with-
out regard to the frame-indifference requirement. This will

then be accounted for by a redefinition of parameters. Also,
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the derivation will initially be for the isnthermal mnduli.
Expressinns for the isentropic moduli will then be Hoted.

The squares of the lattice eigenfrequencies w,  are
proportinnal to linear combinatinns nof the second derivatives

of ¢ with respect tn displacements (Leibfried and Ludwig,

1961). Generalizing the expansinn (34) of Chapter 3, we may

write
i 2 V 5. P R . 47
‘J\Jv - (O\)v )0 ( | + Cl.) e‘j + 2 Hljké et)‘ ekt) 3 ( )
v v v
where the G, . and H, . are constants (G, . should nnt be con-
ij ijkl 1]

fused with the deformatinn gradient defined by (26)). Since
the "quasi-harmnnic" vibratinnal energy, A2, depends nn the
strain only through the W,, the strain dependence of A

215

controlled by the'Gzj and the HY As was dnne in the

ijkl”®

case of isotropic strain (Chapter 3), A, may be expanded in

2
terms of e. The result, using the Mie-Gruneisen approxima-

tion, in which the G°, and H .
ij T

ikl are assumed to be independ-

ent of Vv, is

JeT) = AJT) + +6;U,, e

# [ (2H 00 = 6,600)Ups = 656, T Cpu] €y €t » (48)



where

U, = A - T(3) | (49)

o/

is the vibrational cnntributinn to the internal energy in

this approximatinn, and
20y
Cq = )TV (50)

is the vibrational contributinn tn the specific heat at con-
stant volume in this approximation. The expansinns (47) and
(48) terminate twn %erms earlier than the expansion nof ¢ ’

as in Chapter 3. From equa-

tion (48) we see that

YA _(d & A
(Te'.';)a B (Ig;)o R A T (51)
A d*¢ )
(Be;J-)eu)o - ( de;;de, ./,
* -l:l: (zHc','k( -Gdj Gu)u?a ~% G;‘,' er Tqu y (52)
VA d3¢
de .. de , € ) = ( e of de ) T (53)
Yy ké mn/, de‘_:' ekl mn /o, ¢ ’

etc. The third and fourth derivatives of A with respect to

e have no vibrational contributions in this approximation.
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Comparing with equation (31), we see that this is also true

and s?. The vibrational cnntributions tn the

sl .
ijkl ijkl
effective elastic mnduli come from ngkl and from the pres-

of

sure term in equatinn (35). Equations (51) and (52) thus
specify the temperature dependence of the pressure (Chapter
3) and the effective elastic moduli through an and Tan.

The cnnstants Gij and Hijkl can be related to a general-
ized GruUneisen parameter and its strain derivative. A gen-
eralized Gruneisen parameter can be defined thermodynami-

cally as

3T
wy = -V(S'ULJ)P_ ' ks

The correct microscopic definition nf the Grineisen parameter
must be found sn as tn be consistent with this definition.

From (19) of Chapter 3 and (7),

- d¢ d o wy ( 3 Ay )
Ti= Adu; * LY duy (3dw,) s (59)
By defining

y® o= -4 d&mw:’

L d u‘:"

) (56)

and substituting into equation (55), we can get, using the

Mie-Grineisen approximation (Leibfried and Ludwig, 1961;
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Chapter 3),

3T,
(56), = -~ (s7)
v/e K

to which (54) reduces in the present approximation.
Now, substituting the expansion (47) into the definition
(s6), and suppressing the index v (i.e., using the Mie-

Gruneisen approximatinn), the Gruneisen parameter becomes

2

Y- = 'i {S- +et-k) s (G + H. emn) . (58)

4y Lk w? A Jkmn

Evaluating this and its derivative at e = 0, none can derive

that
G[j s 1T B’::. 3 (59)
Hijee = ‘2.( :_g:e)o F GG~ Ge ik (60)
Now, as with (6), frame-indifference requires that Z}j =
331. Thus, by analoqy with (10), (59) should actually be

replaced by

9LJ = -~ 2 b/"’ (61)

LA |

where
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e o= .
9;) - 2 (Gl.j 1 GJ"" ' (62)
Similarly, by analngy with (12), define
- = <+ .
huk( & (HL')kl ¥ HL'J'[k t Hjik! r H)'L'[k) , (63)

so that, using (6),

3
. - - Zu .
h‘lkl 2 (3 S'ke) T 91.; Ixe
0
-k : . Coc ' ,
% (9&’ St 9 Siet Ge S * Y Jcé’) . (64)
From the symmetry properties of gq,. and h, . _, it can be seen
1) ijkl

that the frame-indifference requirement has reduced the num-
ber of independent constants. Apart from the obvinus sym-
metry of (64), it may easily be shown, from (47) and (63),
What Ny gy = Meigp

If the medium has cubic symmetry, then the number of

h

independent components is further reduced. ?Ej' in analogy
to the stress tensor (Cf. 54), reduces to a scalar multiple

of the unit tensor (Leibfried and Ludwig, 1961):

V= TS (65)

) 0
hijkl' in analngy to the secnnd-order elastic constants, has
three independent components, which, in the Vnigt notation,

may be called h,;, h,, and hya+ From (47), (62) and (63) it

4
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can be seen that the "bulk" parameters g and h (Chapter 3)

are related to gij and hijkl by
g = Sii » 9‘”) = "3'79 gt'j 3 (66)
- = 67
h = 14‘.‘.“( = @[k, +2h,2), (67)
Then (64) gives
)X“ 92 9
hH - _2( Su)a T 9 T E (68)
¥y, .
h, = 2( g”)o % g’ (69)
2 V3 9
= =2 —= s g
Mo (3 gzg)a 4 (70)

Also, (52), (61) and (64) give, using the Voigt notation,

sn = @ +w(2h, g7, - $(97/9) T Cpo, (1)
S:az = qﬁ"’z + -f,/z hn -gz/q) u?o 2. ﬁ[gz/q)TC’?p , N
S:l} = ¢:¢ o _Zf h‘_@"’io ) . (73)

where ¢u/3 is the appropriate combination of derivatives of ¢.
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The vibratinnal contributinns tn the expressinns (36)
and (40), in terms of Y and E, for the effective elastic
moduli enter thrnugh the tg nf (37-39) and the r‘:d nf (41-

a
43). These are given by expressions analnaonus to (71-73) for

the s"‘; , with h‘:ﬁ and h'; replacing h,  , where
hiie = e -5 (905K v 35 Sk ) » (74)
hike = hie + T(90e85% + 90 8) ) (75)
(compare with equatinns (37) of Chapter 3).
Note that the parameters a;, defined in (40) of
Chapter 3, are related tn the S:ﬂ (Voigt nntatinn) by
By = 3(571 *2572)) (80)
a, = %(S:r L 25:1) ) (81)
a; = L(sh +=25). (82)
Identical relatinns hold between the bi and the t:ﬂ, and

between the c., and the r" .
b <3



85

Equations (48), (52) and (71-73) all involve isothermal
derivatives. To derive the corresponding isentropic deri-
vatives, nnte the following result, due to Leibfried and

Ludwig (1961; equation 2 of Chapter 4):

2U Py
(ae‘.‘-) = % 6. U, (83)
0’s
Then the analoques of (52) and (71-73) are
» U
. N _ _ (84)
( 8 “ke)s,a = % Ugo (2 Hijep = Gy Gee)
S = ¢° « % (2h, -9Y4)Ug., (71a)
os 7
Sia = ¢loz + % /2h:1"92/7)blyo ) (72a)
s2% = Gl + t b, Uy (73a)

Note that there is no difference between 522 and its ison-

thermal counterpart, and thus nn difference between c® and

44
cz;. This is a well known result.

5.4 Thermodynamic Relatinns

In the "isntropic strain" theory of Chapter 3, the

Gruneisen parameter and its volume derivative were related
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to the bulk modulus and its pressure and temperature deriva-
tives through thermodynamic identities. These identities
must be generalized for the present treatment. Alsn, al-
though the relations between isnothermal and isentrnpic quan-
tities can be obtained from the previnus sectinn according
to the quasi-harmnnic approximation, the general exact rela-
tions will be derived here for comparison. The initial part
nf the treatment given here is similar te that given by
Mason (1950).

The infinitesimal symmetric strain S j defined by (4)
will be used in this sectinon. The temperature and entropy
will be denoted by © and 0, respectively, to avoid confusion
with stress and strain.

It is convenient to consider first the relation between
isnthermal and isentrnpic elastic moduli. From the first and
second laws of thermodynamics, the change of internal energy

per unit velume of a system in a reversible process is given

by

d U

1l

T ds; + 9':(0', (85)

where the stress and strain are written in the Voigt notation.

The Helmholtz free energy A is defined by
A = (/- 60 : (86)

whence
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and
24) 24
Ty = \3s/g 0’=’(ae$- (88)
With S and @ as independent variables, we may write
X 2%) o
do = ;dsi + (a s e (89)
where
26 0T
A= (-) = - (____‘) (90)
¢ 25; o >0 s )

In a reversible process, the quantity

using equatinn (88).
of heat absorbed by the system is

Koy
diy = edo = QAJC{S" + 9(3‘?0’)5 de (91)
from which we can make the identification
(if) = ~S (92)
26/¢ o

is the specific heat at constant

where /Dis density and CS
= 0, the change

strain. In an isentropic proncess, i.e., do
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in temperature is, from (89),

RN (93)

do = --{-‘7{:0{5‘:.

Now, again in terms of S; and &, the change in stress is

th‘ = C,e--ds' - )b (94)
¥ J t
where
& < (2
v ( 35/ o (95)

is the isnthermal elastic mndulus. Thus, using (93), the

isentropic change in stress is

-] oA, 4. (96)

h
O
+

dT,

from which the isentropic elastic modulus is

A
o = cf. e i (97)
) ) f’cs

Using the chain rule of differentiation, we see that

v

L
s

l

T') °, . (98)
0

Q

- (39,0
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where qi is the thermal expansinn tensor.

Next, consider the Griuneisen parameter and its strain
derivatives. From the thermodynamic definition (54) of the
generalized Grineisen parameter (using the Vonigt notation,

and recalling that U is now energy per unit volume),
°oT; 20
3, (3
¢ de/ JUE

= V/\"/CS = Vx‘c?j/cs ) (99)

J

which generalizes the usual Grlneisen relation.

Equation (99) can be differentiated with respect to S\ ?

and, using the relations

(%—‘gk)e = VS, | (100)
where
S = | if k= 1,2,3
e = 0 f k= 4,5,6, LA
and
550, = - (%Y
d5y /g ) ) (102)

(using equation 90), the result is



L @
?fc) = TR, + o . w.{ﬁc‘k (103)
ésk . t Lk J )T;- o ’
where
ddn C
Qk - Sk = ( bsk )9 ) (].UA)
®
o _ _y_(i-_c_fk)
DCk = c. p I_. (105)

The following identity was also used in deriving (103):

(‘3‘5)2 - (;_;)-r - A‘.(%ﬁ)o' (106)

Relations betwaen the derivatives of the isnothermal
and isentropic elastic mnduli can be derived as fnllows. De-

fine
o . - .
Moo= 5= el o= N/l = 6pC N YL (107)
Differentiating (107), and using (103),
M P
ANy o - . (108)
()Tk)e - S""(R‘i" M Q")'

where
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¥ EJF) = 0)”/
Sy = (; iy (¢ )u,- ) (109)
i.e., 5;3 are the isnothermal elastic compliances, and
3(¥%:¥;)
— b
= 110
Rt:jk = G/OCS [ BSk ]9 (110)

6 N6 6 )
= 2%&@<+QPAJUK+9f%D&*Vthﬂ+AUC%I’ (111)

where a comma preceeding a subscript denotes differentiation
with respect to the corresponding stress compnnent.
Similarly, differentiating (107) with respect to &, and

using (106),

(;%%Tz/“d['*/jﬁ::s)é] + 6pC; [2—%%';)}; 9)1,,(;4“1:;3) . (112)

&

The relations developed sn far in this section, i.s.,
equatinns (97), (99), (103), (108) and (112), are completely
general in that they refer to a material of arbitrary sym-
metry under an arbitrary stress. They will now be special-
ized to the case of a material nf cubic symmetry under a
hydrostatic stress. As was pointed out in section 2, only
one strain parameter is required in this case, so that the

application of these relations is simplified. O0Of course,
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the resulting relations can alsn be further specialized to
the case of an isotropic material.

Under cubic symmetry, the thermal expansion tensor be-

]

comes
dénV
PR s o - —_—
&K = 3“St ) L xt-é—L- = (39 )T ' (113)
ThUS,
Lo o . ® ¢ o« @ el _ P :
xl - ?CQ'SJ = ?(Cu*zcaz)gi = KKQS'- = A3 ) (114)
where K6 is the isnthermal bulk mndulus, and
3 o Kg e .
¥, = = §; = Y§; (115)
My = e XOKyE 5 = w8, (116)

Note, in particular, that /ull =/l112 = M, and,uaa = 0,

Under hydrostatic stress, Ti = -pSi, where P is the
pressure, and the strain of a material of cubic symmetry can

be specified by the specific volume V. Thus

@, (117)

I
r
)
—
VALY
= <ﬁ
m\’
S
FM
1
D
o
™

1"
I

e
D . (3__'3‘,) - ¥ S°. (118)
P
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e
where Sij is the generalized isothermal analoque of the
Anderson-Gruneisen parameter (Gruneisen, 1912; Anderson,

1967). With these results, equation (103) becomes

'BBI) & dc®.

=) = [ 985 « 55 - (5) ] (119)
‘ ) .

(?asJ o 2P /o

There are three independent derivatives of 3; in this case,
just as there are three independent cnmponents each of cfz

and S;}. Note that Q does nnt contribute to (éiz/Bsa). It
may also be noted that this derivative is nnn-zero, even
though under cubic symmetry ?; is zern. This is because the
strain Sa destroys cubic symmetry, thus allowing ?2 to vary
from zero as S4 varies from zero. From (119)

(%)6 = 7[@ " 56-(%-',5,9)a], (120)

(2]

P e
h = .
where $ (.Sll + 2512)/3
To specialize equations (108) and (112), note first
that

k k
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T
Rt.J'k Sk = Rst"gj = 6/“(2&4V)9 stj ’ (121)
and
QM IM\ .. - _[Ipo L Ce
(S'EJ)B_ ()P)g §;§ = —(R-3m@)/3K, 5,5,

I

..A)”{L[ {:217"; Q]S 5. (122)

The specialization of equation (112) is

L4

3) = 400+ (59, ra(3),] 230 oo

Finally, note that equation (120) involves the deriva-
tives of the isothermal elastic modulus, whereas it is usually
the derivatives of the isentropic modulus which are measured
experimentally. The conversinn from the temperature deriva-
tive nf one to the other involves (D,u/De)p, which involves
()/u/ap)e, which in turn involves S'oi Equations (118), (120),
(122) and (123) can be solved for (%M/ép)a in terms of just

derivatives of isentrnpic quantities:

Ba), = 4 (205, - - + 35,
-13’[‘ + (%“:%’)V + 2(233%]} (124)
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5.5 Discussion

The comments made at the end of Chapter 3 concerning
the independence of the approximations made in the thermal
and finite strain parts nf the thenry, the Mie-Grineisen
approximation, the evaluation of Uq and Cq, the relationship
of this work to that of Thomsen (1970, 1972) and the capa-
bilities nf this éhenry all apply here in the more general
case. In particular, note that this theory predicts that

the C.o are non-linear in temperature at high temperature

8
and constant pressure (Thomsen, 1972), and that the
(329M6/3P3T) are non-zern, in general.

The more general theory given here contains the special
theory of Chapter 3, which can be nbtainéd through the rela-
tions (66),*(67) and (80-82). It is thus a theory of great
utility which is capable nf describing the effects of shock
compressinon and hydrostatic compression, as well as giving
the elastic constants as functions of pressure and tempera-
ture. The application given in Chapter 8 demonstrates this
utility.

The primary parameters which enter these equatinns are

the Slﬁ (or tgﬂ’ nr q;d) nf (35), the g, and h, o 0f (62)

&
and (63), in (51), (61) and (64) and the density, Lo in

the reference state. These are related ton a similar number

of secondary parameters: tn Cog *

to the thermal expansion tensnr, «,, through (61) and (99)

céﬁ etc., through (32-34),
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and to the temperature derivatives iof the elastic moduli
through (64) and (103). In the case nf cubic symmetry and
hydrostatic stress, the vnlume conefficient of thermal expan-
sion, a4y enters tHrough (115), and the temperature deriva-
tives nof Ceg through (68-70) and (119). The evaluation of
these parameters follonws a scheme analogous to that nutlined

at the end of Chapter 3.
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CHAPTER 6

EQUATION OF STATE OF mMgO

Summary

Ultrasnnic, thermal expansinn and calorimetric data
for Mg0 are used to evaluate the parameters nf third-nrder
equatinns nf state nf MgO.

The equations of state are
tested and refined with Hugnnint data. The third-nrder "E"
Hugonint is much clnser tn the data than the third-nrder “v"
Hugnnint. Inclusinn nf fnurth-order terms allnws bnth "E"
and "7" Hugnnints to fit the data within their scatter. The
separatinn nf Hugnnints corresponding tn different initial

densities is predicted within the accuracy of the data by

the thermal part of this thenry.
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6.1 Intrnductinn

In this and the next chapters, the theory develonped in
Chapter 3 fnr isntropic stresses and strains is applied tn
particular materials. Ultrasnnic, thermal expansinn and
calorimetric data for MgO are sufficient tn evaluate the
equatinn nf state parameters nf MgO. The equatinns nf state
thus determined are sufficient tn predict Hugnniots nf MqO.
Shnck-wave data can then be used tn test and refine these
equatinns nf state. Cnmparisnns will be given nf the thermal
and finite strain parts of the equatinns nf state resulting
from the use nf different strain measures, and nof the theory

nf Chapter 3 with that of Thomsen (1970).

6.2 Determinatinn nf Equatinns nf State

The elastic mnduli nf single-crystal MqO have been
measured as a functinn of pressure and temperature by Spetz-
ler (1970). The bulk mndulus and its first pressure and
temperature derivatives can be determined from such measure-
ments. The parameters determined by Spetzler (1970) are
listed in Table 6.1, along with the density, thermal expan-
sion cnefficient and specific heat nf MqO, from the indicated
SNUTCes.

These parameters were used in (43-48) of Chapter 3 tn
determine the parameters nf the equatinns nf state (41) and

(42), in terms of 7 and £, respectively. Since the second



100

pressure derivative nf the bulk mndulus, K", is nnt given,
nnly the third-nrderversinns of these equatinns are deter-
mined in this way.

Using the 3007K isntherms given by (41) and (42) of
Chapter 3, the cnrrespnnding isentrnpes and Hugnnints were

calculated accnrding tn Chapter 4.

6.3 Comparisnn and Discussinn nf Equatinns nf State

The fact that both the finite strain and the thermal
parts nf the equatinn nf state are determined, so that Hugn-
ninots can be calculated with reasonable accuracy, means, in
effect, that extrapnlations of the lnwer pressure data
(specifically, the ultrasonic data) can be tested against
Hugnnint data.

Carter et al. (1971) have given data for a series of
Mg0 Hugnnints, cnrrespnnding tn different initial densities
of the Mg0 samples. The lower initial density Hugnnints
nbtained by them are nffset tn higher pressures, and hence
higher temperatures, than the single-crystal Hugnnint at
the same density. These data thus prnvide a test of bnth
the finite strain and the thermal parts of the present thenry.

First, consider the finite strain part nf the thanry.
In Fig. 6.1 are shown the single-crystal Hugoniot data of
Carter et al. (1971), alnng with the cnrresponding third-

nrder Hugnnints calculated in terms nf both the w and E
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strain measures. It can be seen that the "E" Hugonint is
cnnsiderably clnser tn the data than the "7" Hugnnint. This
is an example nf the empirical superiority nof the "E" equa-
tions which was, nf course, pninted out by Birch (1947, 1952),
and is the reason for the subsequent pnpularity of the
"Birch-Murnaghan" equatinn (Birch, 1938).

Alsn shown in Fig. 6.1 are Fnurth-nrdar-v and E Hugnniots
in which K; was determined by requiring a least-squares fit
nf the calculated curve to the data. The resulting values
nf (KDKS) are given in Table 6.2. Clearly, the fourth-order
L] and E Hugonints fit equally well within the scatter nf the
data.

Comments nn twn impnrtant pnints can be made here.
Firstly, it is clearly desirable tn use an squatinn nf state
which involves the least number of dispnsable parameters,
while still giving an acceptable representatinn nf data. The
greater success of the third-nrder E equation indicates
faster cnnvergence of the expansion in terms of E than that
in terms nf'7. While there is nn quarantee that this rapid
convergence will cnntinue tn higher orders, it is certainly
more reasnnable tn assume this about the E expansinn than
the | expansinn, and E therefnre appears tn be a more useful
strain measure than 7.

The secnnd pnint is that the value nf KnKS nbtained

depends nn the equatinn used tn fit the data (Table 6.2),



102

It is, of cnurse, a general propaerty nf truncated series
expansions that the higher-nrder coefficients are less well
determined empirically, but it is one that seams tn have
received little notice in the cnntext nf finite strain
expansions. This point will be considered more fully in
Chapter 8.

The thermal part of the equatinn of state will now be
discussed. The volume dependence nf 7 resulting from
equations (36, 36a, 36b, and 50) of Chapter 3 is shown in
Fig. 6.2. Fnr the range nf compressions shown, the differ-
ences are not large. At larger compressinns, 2 given by (50)
will be the first tn becnme negative.

The isentropic parameters were calculated from the
isnthermal ones accnrding tn the relatinns (6a-c) nf Chapter
4., The values are given in Table 6.3. Nnte that we are not
considering the "mixed" quantitises, such as (BKS/BD)T, but
only the purely isothermal or isentropic ones, such as
(BKS/BP)S. Evidently, the difference between isnthermal and
isentropic quantities is nnt very significant for the higher
order quantities.

In Fig. 6.3, the Mg0 isentrope calculated according to
these parameters is given relative to the isntherm. The
Hugoniot corresponding to the single-crystal initial density

is included for comparison.
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As mentinned previnusly, the Hugonint data for
different initial densities pronvide a test of the thermal
part of the thenry. The fourth-nrder E equatinns, with Kg
evaluated from the single-crystal Hugnnint data (Table 6.2),
ware used to calculate the correspnnding family nof Hugoniots.
These are compared with the data in Fig. 6.4. There is
considerable scatter in the data, but the separatinn nf the
various Hugonints is quite apparent. The calculated
Hugonints repronduce this separatinn within the scatter nf
the data. The Fnurth—nrder'7 equations wonuld have yielded
slightly smaller separatinns, as shnwn by the extrapnlations
of ¥ in Fig. 6.2, and would thus appear to be slightly less
successful in explaining the data, but the evidence is
marginal.

In cnnclusion, the finite strain extrapnlations nf the
Mie-Gruneisen equation developed here appear tn explain the
available Mg0 Hugnnint data quite successfully. The strain

parameter £ appears to be more empirically successful than-v.
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TABLE 6.1

Zero pressure elastic and thermndynamic data

of magnesium oxide at 300%K.

po(a/en®)2® 3.584
Kgr(Mb)® 1.605
Ky 3.89
(3K /37), (kb/%k)® -0.272
« (107° 9 =dysb 31.5

CU(IU6 erg g_l OK-I)C

a. Skinner (1957)
b. Spetzler (1970)

c. Victor & Douglas (1963)
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Table 6.2

Values of Knkg nf MgO0 Determined

from Hugnnint Data

Strain
[1]
measure KoKo
7 10.53
E -1.08

Table 6.3

Isothermal and Isentrnpic

MgO0 Parameters

K K/! K K"
n 0 00
(Mb)
Isothermal  1.605 3.89 -1.08

Isentropic 1.628 3.85 -1.05
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Fig. 6.2. Ceomparisnn of % from equatinns (36), (36a),
(36b) and (50) of Chapter 3, in tsrms of e, w, and E,

respectively. Equatinn (50) was given by Thomsen (1970).
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CHAPTER 7

EQUATIONS OF STATE AND PHASE EQUILIBRIA OF STISHOVITE AND
A COESITE-LIKE SiOp PHASE FROM SHOCK-WAVE AND OTHER DATA

Summary

Shock-wave, static compression (X-ray), ultrasonic,
thermal expansinon and thermodynamic data are simultaneously
inverted to determine the equatinns of state of stishovite
and a coesite-like Si0y phase. All of the stishovite data
except the thermal expansinn data are found to be satisfied
by a Mie-Gruneisen type equation nof state with a zern pressure
bulk modulus, K, of about (3.50 *+ 0.1) megabar, a pressure
derivative dK/dP of 3.3 + 1 and a Gruneisen parameter, ini-
tially1.25%* 0.1, Wwhich decreases slowly with compression.
The volume coefficient of thermal expansion at ambient con-
ditions is found to be (13 £ 1) x 10-6/9K, compared to
(16.4 * 1.3) measured by Weaver. Some Hugoniot data of
Trunin et al. for very porous quartz have densities very
close to that of coesite. However, a calculation of the
coesite-stishovite phase line shows that the coesite-like
phase persists to about twice the predicted transition pres-
sure at 10,000°9K. It is suggested that the discrepancy can
be explained if this phase is interpreted as a liquid of

about coesite density.
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7.1 Introduction

Since the disconvery of the dense high-pressure silica
polymorph stishovite (Stishnv and Popova, 1961), and its
subsequent identification in natural silica from a meteor
crater (Chao et al., 1962) and as the dense phase obtained
in the shock-wave experiments of Wackerle (1962) by McQueen
et al. (1963), a variety of experiments have yielded a con-
siderable amount nof data on stishonvite. To date, these in-
clude more shock-wave, static cnmpression (X-ray), thermo-
dynamic, thermal expansion and, very recently, ultrasonic
data. These data, with their snurces and other relevant in-
formation, are summarized in Table 7.l1l. A succession of
analyses of these data has accompanied their accumulation
(Anderson and Kanamori, 1968; Ahrens et al., 1969; Ahrens
et al., 1970). This paper is another in this succession.

The Grineisen parameter, 77, is an important quantity
which characterizes thermal effects in the equation of state.
Ahrens et al. (1970), returning to the methnd used by McQueen
et al. (1963), determined the values of ? at large compression
from the difference in pressure between Hugoniots correspond-
ing to different initial densities. This method is prefer-
able to that used by Anderson and Kanamori (1968) and Ahrens
et al. (1969), who used the "Slater" or "Dugdale-MacDonald"
formulae for the volume dependence of 7 (Slater, 1939; Dug-

dale and MacDonald, 1953). These formulae have been severely
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criticized because they fail to take account of the frequently
large pressure dependence of the shear modes of vibration
(Knopoff and Shapiro, 1969). Fitting these results with the

functional form

Y = VO(V/VO)A, (1)

where V is specific volume, A is a constant and subscript
"o" denotes zero pressure, Ahrens et al. (1970) adjusted 75
until the volume coefficient nof thermal expansion, o , ob-

tained from the idéntity

YeC
& = —/#:;—S-—P' ) (2)

and using Kq determined from the shock-wave analysis, agreed
with the measured value. (The value used was the preliminary
value o= 15 x 10‘6/°K nbtained from Weaver by personal caom-
munication. Cf. Table 7.1.) In equation 2, Kg is the isen-
tropic bulk mndulus, L is the density and Cp is the specific
heat at constant pressure.

Since that analysis, several new sets of data have been
published. The data of Trunin et al. (197la) greatly extend
the pressure range of the Hugoniot data, and those of Trunin
et al. (1971b) extend the range of initial porosities. The
resultant wide spread of the Hugoniots provides stronger
constraints on 2. Also, Mizutani et al. (1972) have measuread

ultrasnnically the compressional and shear wave velocities of
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stishovite, providing another cnnstraint on Kg.

In addition to benefiting from the newly available data,
and using a different form of the equation of state, the pre-
sent analysis detafminas simultaneously the "compressional”
and "thermal" parts of the equation of state by adjusting
simultanenusly all free parameters to give a "least-squares"”
fit to all of the data. This procedure accomplishes implicitly
the twn sequential stages nf the analysis of Ahrens et al.
(1970).

Trunin et al. (1971b) noted that the Hugoniots of their
most porous quartz samples achieved densities significantly
less than that of stishovite, and that these Hugonints extra-
polated approximately to the zero pressure density of coesite.
On this basis they identified these Hugoniots as represent-
ing the coesite phase. Although, at room temperature coesite
is stable in the approximate pressure range 30 to 70 kb,
between the stability fields of quartz and stishovite, it
has not previously been observed in shock-wave experiments,
the transformation usually being directly from quartz to
stishovite. There is sufficient other coesite data (Table 7.2)
that, combined with these Hugoniot data, and assuming that
they do indeed represent coesite, the equation of state can
be approximately determined. The success of this procedure
seems tn support the coesite identification, but other cal-

culations suggest otherwise, as will be seen.



119

Trunin et al. (1971b) also calculated approximate Hugoniot
temperatures and suggested that the boundary separating the
coesite and stishovite fields in a pressure-temperature plot
represented the coesite-stishovite phase transition line.
Hugoniot temperatures have been recalculated here, and in
addition, the coesite-stishovite phase line has been inde-
pendently calculated from the equations of state of the two
phases (again, assuming the coesite identification). There
is a large discrepancy between the two approaches. It is
sugqested that the new phase may in fact be a liquid of
approximately the density of coesite, rather than coesite
itself. Since some of the properties of this liquid are un-
known, it is necessary to proceed as if the phase were solid

coesite, and to examine the plausibility of the results.

7.2 Equations nf State - General Discussion

The procedure used here to determine the equation of
state was to calculate, according teo chapters 3 and 4, all
relevant quantities, such as Hugoniots, isotherms, bulk mod-
ulus, etc., and to adjust the equation of state parameters
so as to obtain a weighted least-squares fit to the data.
The weighting basically was according to the estimated stan-
dard error of the data, but was also adjusted in some cases,
as will be seen, to preferentially fit some nf the data.

The specific heat at constant volume, required in these
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equatinns, has been approximated here by the Debye model. A
discussion of the inadequacy of the Debye model for a number
of minerals is given by Kieffer and Kamb (1972). Their re-
sults indicate thaf the Debye model is fairly good for stisho-
vite, but less good for coesite. In view of the other un-
certainties in the equations of state, particularly that of
coesite, the errors arising from the use of the Debye model
are considered acceptable.

Hugoniot temperatures are calculated according tn a
method given, for example, by Ahrens et al. (1969). For this
calculation, the volume dependence of the Debye temperature
6p is required. Since &p is defined in terms of a charac-
teristic frequency of lattice vibration, it must have the
same volume dependence as the lattice frequencies. Thus, for

consistency with equation 34 of chapter 3,
217
6y (V)= 6,(V,)[1 + ge + the” )", (3)

Some general features of the silica Hugoniot data and a
representative set of calculated Hugoniots and isntherms are
illustrated in Fig. 7.1. Most of the Hugoniot data radiate
from either of two points - the cnesite and stishovite zero-
pressure densities, respectively. This is the basis of the
identification by Trunin et al. (1971b) of the Hugoniots of
the two most porous silica samples as being in the coesite

phase. This identification will be discussed subsequently;
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in the meantime, the phase will be referred to as "coesite".

The Hugonints of successively more porous silica, start-
ing at zero porosity, become successively steeper up to the
initial density,/oa, of 1.77 gq/cm3, whose Hugoniot is nearly
vertical on this plot. The 1.55 g/cm3 initial density Hugoniot
data are at densities lower than, but fairly close to, the
zero-pressure, 3000K stishovite density, while the 1.35 and
1.15 g/cm3 initial density Hugoniots are less steep and cen-
tered about the coesite density. The /0; = 1,55 g/cm3 Hugon-
iot may represent a mixture of "coesite" and stishovite
(Trunin et al., 1971b). This pnint will be discussed further
below.

The calculated Hugnniots shown in Fig. 7.1 (stishovite,
case 2 and "coesite" case 1, discussed below) reproduce
these features fairly well. However, the coesite-stishovite
transition is not predicted by these calculations. Thus,
"stishovite" Hugoniots corresponding to all seven initial
porosities are shown. The three "most porous" Hugoniots
are notable for having negative slopes - there is a critical
initial density for which the Hugoniot is vertical. The two
"most porous” Hugoniots are shown dashed, since they clearly
fail to represent .the conrresponding data. Thefoé = 1.55 g/cm3
Hugoniot data approach, but do not agree very well with, the
corresponding calculated stishovite curve shown in Fig. 7.1.

Only the two "most porous" "coesite" Hugoniots are shown in
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Fig. 7.1. The others will lie between these and the 3000K
isotherm (shown short-dashed) and clearly will not coincide
with the correspnonding data.

The details of the analyses will now be discussed in=-
dividually for stishovite and "coesite", and the effects of
various assumptions made in the analyses will be noted. How-
ever, it will be seen that the above general picture is not

greatly perturbed.

7.3 Equations of State - Stishovite

The results of three different analyses of the stisho-
vite data will now be given. In the first case, standard
arrors of the pressure of each set of compression data (shock
and static) were estimated and the data weighted accordingly.
(The quantity minimized was :E(pg - pi)z/cg, where p§ is the
calculated pressure, pj; the observed pressure, o3 the esti-
mated standard error and the summation is over all data
points (see, for example, Mathews and Walker, 1965).) Al-
though K5 is known approximately from the ultrasonic measure-
ments of Mizutani et al. (1972), it was preferred to deter-
mine it independently from the compression data. Thus the
quantities Kg, K;, Kg and (SK/BT)p were determined from the
compression data,'\lD and o« were taken from Table 1, and Cy
was calculated from the Debye model. For the calculation of

Cys» the Debye temperature given by Kieffer and Kamb (1972) as
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the high temperature limit of the data of Holm et al. (1967)
was used. The estimated standard errors are listed in Table
7.3, the resulting values nof the parameters and their cal-
culated standard errnrs are in Table 7.4 (case 1), and the
calculated Hugonints and the 300°K isotherms are compared to
the Hugnniot data in Fig. 7.2. It can be seen that this
snlution does nnt fit the Hugonints of the mnre porous samples
very well at all. This is partly because of the greater
density of data points on the lnwer pornsity Hugoniots and
partly because the value of ?B is constrained to a high value
by the value of « used and the value of K5 required to fit
the lower porosity Hugoniots.

As a first step tg improving the fit of the higher
pnrosity Hugoniots, o was allnwed to be determined by the
compressipn data along with the other parameters previously
determined. The results are given in Table 7.4 (case 2)
and illustrated in Fig. 7.1, the stishovite curves used in
that figure being those cnrresponding to the present case.
Lowering the value of o to 13 x 10°8/%K has lowered 7, to
1.3 and significantly improved the fit to the higher poro-
sity Hugnniots. However, the full range of the Hugoniot
data is not shown in Figs. 7.1 and 7.2. The data of Trunin
et al. (1971a) and Trunin et al. (1971b) extending up tn 6.5
Mb for the initial densities 1.77 and 2.65 g/cm3 are shown in

Fig. 7.3. The corresponding calculated Hugnniots and 3009K
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isntherm of the present case are alsn shown (case 2). The
1.77 g/cm3 Hugoniot curve does not fit the corresponding
datum at 2.3 Mb very well.

To further imﬁrove the fit to the higher porosity Hugoniots,
the Hugoniot data were assigned new standard errors so as to
weight the "porous" data mnre heavily relative to the nther
data. The new set of standard errors are given in Table 7.3.
The results are given in Table 7.4 (case 3) and illustrated
in Figs. 7.3 and 7.4. Fig. 7.3, in particular, shows that
the fit to the 1.77 g/cm3 Hugoniot data hés improved. The
value of & has decreased further to 12 x 10'6/°K.

The values of the zero pressure bulk modulus, Kg, range
from 3.42 to 3.55 Mb for the three cases considered. These
fall within the range 3.46 ¥ .24 Mb given by Mizutani et al.
(1972) for the isentropic bulk modulus determined from
elastic wave velocity measurements. The 3009 isotherms for
these cases also agree well with the static compression
data of Liu et al. (1971). These are shown in Fig. 7.5, to-
gether with the three calculated isotherms. Also shown in
Fige 7.5 are the static compression data of Bassett and
Barnett (1970). These have been discussed by Liu et al.
(1971), who suggest that the five highest pressure data
points are systematically low because the anvils of the
tetrahedral press used by Bassett and Barnett (1970) may

have come into contact at about this pressure. These points
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were not used in the present analysis. The calculated iso-
therms agree with the remaining data within the scatter of
the data.

For the record, the last two cases were rerun with Kj,
given the fixed value 3.45 Mb, which gives an isentropic bulk
modulus very close to that given by Mizutani et al. (1972).
(In all of the cases given here, the isentropic bulk modulus
is about 0.02 Mb greater than the isnthermal bulk modulus.)
The results are given in Table 7.4 as cases 4 and 5. The
changes from the previous solutions are small. The standard
errnrs given in Table 7.4 are calculated using the error
0.24 Mb given by Mizutani et al. for the bulk modulus.

In view of the current discussion nf the relative merits
of the "Lagrangian" and the "Eulerian" formulatinns of finite
strain (Thomsen, 1970, 1972; Ahrens and Thomsen, 1972; Chapters
2 and 3), the dependence nf the abnve results on the form of
the equation of state should be tested. This was done using
a Lagrangian isotherm (Thomsen, 19703 Chapter 3), but keep-
ing equation 36 of chapter 3 for 2. This does not correspond
to the Lagrangian equation used by Thomsen (1970) and Ahrens
and Thomsen (1972), who used a different expressinn for ¥
(Thomsen, 1970). This has been discussed previnusly (Chapters
3 and 6). In any case, using a different equation for 2
shonuld yield a significantly different value only for

(DK/BT)D, for which we have nn nther control. Cases 2 and 3
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were repeated using the Lagrangian isotherm. The results
are given in Table 7.4 as cases 2a and 3a. The values of K,
are comparable, Ké somewhat lower, Kan much higher and the
other parameters comparable to the corresponding values in
cases 2 and 3. In particular, the value of o¢ is very little
changed -- it is still much lower than the value given by
Weaver (1971).

Ahrens et al. (1970) interpreted tha/q;= 1.98'g/cm3
data as indicating a reversal in the slope of the Hugoniot
at about 1.2 Mb (see Fig. 7.1). A criterion was given which
relates the density at which the slope of the Hugonint be-
comes infinite to the value of 7 at that pnint: 7= 2/(,0/,00'
- 1). However, it can be seen from an equation for the
Hugoniot (e.g., Chapter 4) that the Hugonniot pressure alsn
becomes infinite at this density; in other words, the Hugon-
iot pressure assymptotes to infinity rather than "bending
over". This interpretation biased the high pressure values
of ¥ to lower values, since it favored an interpretation in
which the Hugoniots were crowded together at these compressions.
The discrepancy between the results of Ahrens et al. (1970)
and those of this study is due partly to the last effect,
partly to the fewer data available at the time and partly to
the higher value of of used. Case 1 given here is closer to
the solutinn of Ahrens et al., and shows similar effects.

The main limitation of the present analysis is probably
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the use of an equation based on the Mie-Gruneisen approxima-
tion, which allows nn temperature dependence of 7. At temper-
atures below the Debye temperature, 7 is probably temperature
dependent because of mode under-saturation, and at very high
temperatures (greater than several thousand deqrees K, say),
it is possible that we are dealing with a fluid phase (see
later) which has a different value of 2. In the former con-
nection, it is interesting to note that Nicel and Fong (1971),
measuring Raman spectra, have observed a negative mnde 7 for

a mode of rutile, which is isostructural with stishovite.

The temperature dependence of &« is dominated by the
temperature dependence of C; and possibly of ¥ (see equation
46, Chapter 3). Weaver (1971) notes that his value of
€= (3x/3T)p/c? = 33 + 17 seems tonsmall - it implies
(3¥/3T),, = =5 x 10-3/9K, a value which is sufficient to re-
duce ¥ to zero within 3009%. With (379/2T), = 0, Weaver
estimates € = 190 * 20. If we take Weaver's mean value of
ocin the range 300-900°K, i.e., oc = 18.6 x 10-6/9K, tn apply
tn 600°K, and combine it with the 300°K value of 13 x 10'6/°K
found here, we get € = 100, apprnximately. This is an inter-
mediate value, implying a moderate value of (3%/3T),. Of
course, it has not been determined whether this would be
allowed by Weaver's data.

To cnnclude this sectinn, it appears that mnst of the

relevant stishnvite data, with tha exceptinn nf «, can be
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incorpnrated with reasonable accuracy intn the Mie-Gruneisen
type 6F equation of state used here. Although case 3 gives
the best fit to the Hugoniot data, the Mie-Grineisen equation
is probably a poonr approximatinon over the range of tempera-
tures involved in these data. Thus case 2, which is based

nn data at mnre mnderate temperatures, is probably the pre-
ferable solution.

An analysis by E. K. Graham (unpublished manuscript,
1972) of snme of the stishnvite Hugonint data analyzed here
yielded the values Ko = 3.35 Mb, K{ = 5.5 and 7, = 1.64. A
high value of Ké was also obtained by Ahrens et al. (1970)
(Kg = 3.0, Kg = 6.9, T, = 1.58). Although some differences
between these analyses and the present one are due to the
different equations used, a critical difference is that
cases 2 and 3 of the present analysis rely nn the Hugoniot
data of the more porous samples to constrain 77, whereas
the others rely on Weaver's (1971) coefficient of thermal
expansion. The effect of these different approaches can
be seen by comparing case 1 with cases 2 and 3, above. Case
1 also relies non Weaver's data. The preference for case 2
rests on the critical assumptinn that the Griineisen parameter
does not vary greatly with temperature at very high tempera-

tures.
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7.4 Equations of State - "Coesite"

This section will proceed on the assumption that the
Hugoniots of the most pornus quartz samples represent coesite.
The difficulties réised by this assumption, and an alter-
native interpretation, will be discussed in the next section.

Because nf the smaller range and quantity of "coesite"
data, it is not possible tn determine as many parameters of
the equation of state as it was for stishovite. Since the
data extend to only about 15 per cent vnlume compressinn, it
is not necessary tn use the full "Fnurth—brder" finite strain
equation (Equation 42, Chapter 3), so the "e3" term is here
assumed to be zern. Since there is not a large range in
the initial pnrosities of the Hugoniot data, the volume de-
pendence nf o, and hence (DK/BT)D, cannot be well determined.
Conversely, the value of (3K/3T), does not strongly affect
the equation of state in this range. A value of -0.05 Kb/OK
was therefore assumed. This value of (?K/DT)p gives values
of ST in the range 5 to 10, a range which seems reasonable
on the basis of a few other examples, including stishovite
(see, for example, Anderson et al., 1968; Roberts and Ruppin,
1971). Vo and o« were taken from Table 2 and C, was calculated
from the Debye model.

It can be seen from Fig. 7.1 that the,oé = 1.35 g/cm3
Hugoniot data are considerably scattered and that they don

not trend towards the cnesite density of 2.91 g/cm3. This
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may be because there has been a partial conversion to the
stishonvite phase. When compared to the PG = 1,15 g/cm3
Hugnniot data, the lower three pnints in particular are
seen tn deviate towards higher densities. Two cases were
therefnre treated, nne including these three pnints and the
other excluding them.

Initially, both Ko and K. were allowed tn be determined
by the Hugoniot and static compression data. The results
are given as cases 1 and 2, Table 6, case 1 excluding the
three doubtful Hugnniot pnints and case 2 including them.
The "standard errors" used to weight the compressinn data
are given in Table 5. Case 1 is illustrated in Fig. 1, and
case 2 in Fig. 6. The bulk moduli in these two cases are
significantly above the value of 0.97 Mb measured ultra-
sonically by Mizutani et al. (H. Mizutani, private communi-
cation, 1972), so a third case was run with Ko fixed at this
value and allowing only Ké to be determined by the compres-
sion data (Table 6, Fig. 6). From Fig. 6 it can be seen
that case 3 does not fit the static compression data nof
Bassett and Barnett (1970) very well, and it falls below
most of the corresponding Hugonniot data.

The scatter in the Hugoniot data, and the uncertainty
in their interpretation, are such that they cannnt definitely
be said to be discordant with case 3, but the discrepancy

between case 3 and the static compression data seems to be
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significant. Because of this, the equatinn of state of

coesite must remain snmewhat uncertain at this stage.

7.5 Si02 Phase Equilibria

Using the equations of state just given, the Gibbs free
energies of "coesite" and stishovite can now be calculated,
and the "coesite"-stishovite transition pressure calculated
as a function of temperature using the condition that the
Gibbs free energies of the twn phases are equal at the phase
transition.

For detailed comparison, the Hugoniot temperatures,
which were calculated approximately by Trunin et al. (1971b),
have been calculated according to the method described earlier.
The results, plntted versus Hugoniot pressure, are shown in
Figs. 7.7 and 7.8. It is notable that the 5.5 Mb pnint is
over 40,000°K, and the,Oé = 1.77 point at 2.3 Mb is over
30,000°K. The temperatures are only changed by a few percent
by using the different equations of state given in the pre-
vious sections. A greater uncertainty in the points is due
tn the scatter in Hugoniot pressures, but this would only
cause the points to move along the Hugoeniot locus, which,
in a P-T plot, is approximately radial from the initial point.

In Fig. 7.8, the boundary between the "coesite" and
stishovite fields, shown by the dashed curve, is closely

defined by the f% = 1.77 and 1.55 g/cm3 Hugoniot points,



128

which, as was discussed earlier, both show signs of involving
a mixture of the twn phases.

The Gibbs free enerqgy is defined by
G= H-TS = U + PV -TS | (4)

where H is the enthalpy and S the entropy. G has the property

(see, 8.9., Slater, 1939)

38), - v.

We wish tn esvaluate G at the state (P,V,T) starting from the
state (0,Vy,T5). (Atmospheric pressure can be ignored here.)
This will be done via the state (Pg,Vg,T) where Po(T) = P(Vq,T).
I.e., by first raising the temperature at constant volume

and then compressing isnthermally. From equation 4,
G(V,T)= G(Ve,T,) + [U(V,T) - Ulv,,T,)]

+ P(T)V, -[TS(V.,,T) = 7;5‘(V,,,T.,)] i (6)

and from equation 5, upon integration,

P(T)
G(v,T) = G(V,,T) + J‘P( )V(P')T') dP’ | (7)
ol T,

Denoting the difference between the stishovite and coe-

site Gibbs free energies at the state (Vo'To) by AGD, i.ee,
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BG,= G(VY,,T,) - G(V,,T,),

where superscripts "s" and "c" denote stishovite and coesite,
respectively, and defining 4H_  and ASD similarly, equation

4 gives
AG, = OH, - T,A48, . (8)

AHg, and ASO can be found from the results of Holm et al.
(1967). At 298°K, they give AH_ = 10.58 Kcal/mole =
7.36 x 10° erg/g and AS_ = 13.01 cal/mole ° = -2.09 x 106

erq/q %K.

Now from equation 6, using equation 8, we nbtain

G (VET) = 6°VE,T) = PUTIVS-V)) « UV T) - Us(vys,T)

- T[S T) - SV, T)]. (9)

To evaluate this, we need U and S as functions of T for both
stishovite and coesite. These are known accurately (Holm

et al., 1967) only up to 350°K. However, the difference
US(Ug,T) - UCKVE,T), and the analogous difference for S, can
be approximated as being constant above about 350°K, for the
following reasons. The specific heats, Cp, of stishovite
and coesite given by Holm et al. (1967) converge towards

each other above about 150°K. Also, at 300°9K, Cp differs
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from Cv by about 0.6 per cent for stishovite and about 0.1
per cent for coesite. Thus the C,6 will also converge at
higher temperatures. Since U and 5 are integrals of C ,

US

- U® will apprnach a constant value at higher temperatures,
as will $°% - SC., Thus, the differences in U and S in equa-
tion 9 can be replaced by their values at 2989K. Noting,

finally, that 4U =~ 4H_ , equation 9 becomes
s
G (V' T) = 6V, T) = P (V5-V5) + AN, - T A4S, (10)

Returning tn equation 7, the integral is more easily
evaluated here by noting that

P y Vo
f VdP = p(v"'r)dv'-r vP -V, P, . (11)
P, vV

Equations 7, 10 and 11, and equatinn 3 for an isntherm,
allow the Gibbs free energies of "coesite"” and stishovite to
be compared.

The phase line resulting from these calculations is
shown in Fig. 8. The error bars shown represent the varia-
tions due to the use nf the alternative equations nf state
given in the previous sections. The uncertainty due to
the approximations used for US - U® and SS - SC is difficult
to estimate, but should nnt be greater than a few percent.
Errors nf 5 percent in US - U® and $% - SC would cause errors

of about 1 percent and 3 percent, respectively, in the
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calculated transitinn pressure at 10,000°K.

As can be seen in Fig. 8, the calculated phase line
deviates considerably fram the line separating the "coesite"
and stishovite Hugonint fields. The difference is abnut a
factor of twn in temperature, which would seem to be well
outside the range of uncertainties of the calculations. If
this is correct, it means that the "cnesite" phase obtained
in the shock-wave experiments is metastable. This is a
surprising result, as it might have been expected that the
high temperatures invnlved wonuld have promoted the transition
tn stishonvite.

An alternative interpretatinn of the data is suggested
by re-examining Fig. 8, where the lower pressure, quartz-
liquid-qgas reginn of the phase diagqram is alsn shown (Levin
et al., 1969; JANAF Tables, 1965). The "cnesite"-stishnvite
Hugonint boundary intersects the calculated phase line at
about 2,500°K, which is comparable to the melting tempera-
ture nf quartz. 1Is it possible that the "cnesite" is the
liquid phase?

The plausibility of this hypnthesis can be tested using
the "Clausius-Clapeyron” relation for the slope of a phase

line:

w

dP 45 (12)
dT 4

\

<
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where "A" denotes the change through the phase transition.

Let us apply this at the hypothetical coesite-stishovite-
liquid triple point at 125 Kb, 2,500°K. We know that the
volumes of coesite and the liquid must be very similar at

this pressure because nof the agreement between the coesite
static compression data and the "coesite" Hugoniot data

(see Fig. 6). IFf ihe difference in their volumes is zero,
equation 12 shows that the coesite-liquid phase line is
horizontal in Fig. 8 - also shown by the line labelled "1"

in Fig. 9, which illustrates the relevant region of the phase
diagram in more detail. If the difference in vnlumes is not
zero, the slope of the phase line can be estimated as follows.
The coesite-stishovite phase line is stili fairly well deter-
mined below the triple point. The cnesite-stishovite

volume difference is about 0.09 cm3/q. The entropy differ=-
ence is then, from either the slope of the phase line |
(0.02 Kb/%K) and equation 12 or the approximation made in

the previous section, about 2 x 106 erg/q °K. Assuming the
liquid-stishnvite volume difference to be alsn about 0.09
cm3/g, the slope of the liquid-stishovite phase line (0.06
Kb/PK) and equation 12 give the liguid-stishovite entropy
difference as about 5 x 106 erq/q °K. Combining these results,
the liquid-coesite entropy difference is about 3 x 106 erg/q %K.
From Figs 6 we can estimate a reasonable maximum volume

difference between coesite and the liquid to be about 0.01



158

cm3/q. Equation 12 then gives a slope of about 0.3 Kb/%K -
line "2" in Fig. 9. Line "3", having the same slope as the
stishovite-liquid phase line, wnuld imply that coesite wnuld
have a vnlume similar to that of stishovite, which is clearly
unreasnnable.

Lines "1" and "2" both extrapolate to the range of
melting temperatures of quartz. There is a difficulty,
though, since a similar set of relationships wnuld hnld at
the quartz-coesite-liquid triple point, which would lead us
to predict a slope of the quartz-liquid phase line which is
rather different from the one shown. However, we may observe
that the liquid would have tn vary continunusly from a
density of about 2.2 g/cm3 at zero pressure (the density of
fused quartz) tn about 3.1 g/cm3 at 100 Kb. This would cause
the phase lines to be concave downwards (in Fig. 9) in this
range, and might allow these relationships tn hnld without
contradiction.

The preceeding discussinn is intended as a plausibility
argument. It is cencluded that it must be considered a
serinus pnssibility that a conesite-like liquid phase was
produced in the shock-wave experiments.

Returning, finally, to the coesite-stishovite phase
line below the hypothetical triple point, the calculated
transition pressure at 300K is 78 Kb. This is in reasonable

agreement with the value 69 Kb estimated from their experi-
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mental results by Akimoto and Syonno (1969). It may also be
compared with their values 85 to 95 Kb calculated using a
rough estimate of the coesite compressibility.

The average slope of the phase line is about 0.023 Kb/°K,
which compares very well with the value 0.024 Kb/PK found by
Akimoto and Syono (1969).

7.6 Discussinn

The determinations of the equations of state of stisho-
vite and "conesite” accomplished here depend a lnt for their
success on the ability to incorpnrate a variety of data,
which constrain different aspects nf the equatinn of state,
into a single consistent equation of state. In this respsect
there is nothing unique about the particular equations used
here. For instance, a combinatinn of the Birch-Murnaghan
equatinn and equatinn (1) for ? would have served just as
well. (The comments in Chapters 6 and 8 concerning the de-
pendence nf derived parameters on the form of the equations
used should be born in mind, though.) The present contribu-
tion in this regard is merely tn point out and demonstrate
an approach which could, and should, have been used much
more widely. A further, more thorough, demonstration and

-

discussion of this approach is given in Chapter 8.
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TABLE 7.3

Standard errors (Mb) assumed for the

stishovite compressinn data.

Data Cases Cases
1, 2 and 4 3 and 5
S1 0.3 0.5
52 0.2 0.2
S3 0.2 0.1
S4 0.3 0.5
S5 Ba3 0.5
S6 0.6 1.0
S7 0.3 0.3
S8 1.0 0.5
S9 1.0 0.1
S10 1.0 1.0
X1 0.015 0.015

X2 0.015 0.015
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TABLE 7.5

Standard errors (Mb) assumed for the

"coesite”" compression data.

Data Error
511 0.20
512 0.10
S13 0.10

X3 0.02
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TABLE 7.6

"Coesite" parameters for various cases.

Cass K, K (éﬁn) * w
(Mb) 3T / p
1 1.27 5.6 -0.05 0.43
2 1.36 4,1 -0.05 0.46
3 0.97%* Tad -0.05 0.33

* Assumed values, see text.

##% Fixed value (Table 2).

-0015
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Fig. 7.2. Stishovite Hugoniot data and calculated
Augoniots and 300°K isotherm from case 1 (Table 7.4).
Symbols as in Fig. 7.1.
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Fig. 7.3. Stishnvite very high pressure Hugnnint data and
calculated Hugonints and isntherms from case 2 (snlid) and
case 3 (dashed). Only the Hugnniots corresponnding to initial

densities 2.65 and 1.77 g/cm3 are shonwn. Symbols as in Fig.
T.1.
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Figq. 7.4. Stishovite Hugnniot data and calculated Hugnnints

and 300”K isotherm from case 3 (Table 7.4). Symbols as in
Figs« 7:la
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Fig. 7.5. Stishovite static compressinn data conmpared to
300”K isntherms calculated from cases 1, 2 and 3.
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Figqs. 7.6. "Conesite" Hugoniot data and calculated Hugoniots
and 300K isotherm frnm cases 2 and 3 (Table 7.6). Symbols
as in Figs. 7.1 and 7.5.
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Fig. 7.7. Stishovite and "cnesite" calculated Hugonint
temperatures vs Hugoniot pressure. Box is shown enlarged
in Fig. 7.8. Symbols as in Fig. 7.1.
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CHAPTER 8
HIGH PRESSURE AND TEMPERATURE ELASTICITY OF NaCl

Summary

The quasi-harmonic finite-strain equations for the effec-
tive elastic moduli at high pressures and £emperatures are
applied to the analysis of sodium chloride ultrasonic data
in the pressure range 0-8 Kb and the temperature range 300%K-
800°K, zero pressure thermal expansion data and Hugoniot data
up to 260 Kb. The theory can give a reasconable representa-
tion of the high-temperature ultrasonic data, but systematic
discrepancies, especially in the thermal expansion at high
temperatures, are attributed to anharmonic effects of order
higher than those included in the theory. The effect of
using different strain measures on the values of derived STP
parameters is demonstrated. The Hugonint data are used to
test extrapnlations of the ultrasonic data. The adverse
effects of using inappropriate parameters in extrapnlation
equations are demonstrated. Finite strain expansions in terms
of the frame-indifferent analngue, E, of the Eulerian strain
tensor € are found to be empirically superior to expansions
in terms of the Lagrangian strain,'g, in this application.
The Hugonint data are used, finally, to constrain the equa-

tion of state of sodium chloride at high pressures. A 300°K
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isntherm derived in this way agrees closely with snme recent
determinatinons from the same Hugonint data and frnm static-
compressinn X-ray data, but deviates slightly from others
calculated frnm atomic fnrce mondels. The accuracy of the
present isotherm is estimated as 1.5% to 200 Kb, 3% at 300
Kb, with the pressure under-estimated by perhaps a few kilo-
bars at higher pressures because of the limitations of the-

present thermal theory.
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8.1 Intrnduction

The abundant high quality data which is available for
sndium chloride allows a demonstratinn of the application of
the thenry developed here, a test nf the approximations made
in this theory, a discussion of methods of analysis of equa-
tinn nf state and elastic data, and an accurate determina-
tion of the sodium chlnride equation of state.

The elastic properties of sonodium chloride have recently
been measured thrnughout the pressure-temperature reqinn
0 to 8 Kb and 300 to 800°K using an ultrasonic interfero-
metric technique (Spetzler et al., 1972). These measure-
ments are nf sufficient accuracy to determine the secnnd
pressure derivative nf the elastic mnduli. The elastic modu-
li had previously been measured at 195°K and 295°K as func-
tions of pressure (Bartels and Schuele, 1965), and at zern
pressure between 300 and 1100°K (Slagle and McKinstry, 1967).
Static compression measurements using a piston displacement
methnd have been made to 100 Kb by Bridgeman (1940, 1945)
and to 45 Kb by Vaidya and Kennedy (1971). Static compres-
sinn measurements using X-rays have been made by Perez-
Albuerne and Drickamer (1965) to nver 200 Kb. Shock com-
pression measurements have been made by Fritz et al. (1971).
The specific heat of sodium chloride has been measured by
Kelley (1934) and the thermal expansion by Enck
and Dommell (1965).
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Sodium chloride is cnmmnnly used as a high pressure
standard, so an accurate determination of its pressure-den-
sity relation is desirable. Decker (1965, 1971) and Weaver
et al. (1971) have investigated the accuracy with which this
can be determined. Their determinations depend crftically
on the values nf the equation of state parameters, especially
the elastic moduli and their derivatives, as well as on the
functional forms assumed.

Beyond the determinatinn of the equatinn nf state of
sodium chloride in particular, the determination nf equations
nf state in general, and nf equations of state parameters,
deserves some critical comment. Ideally, a particular form
nf equation of state wonuld be assumed which was capable of
describing all thermo-elastic and calorimetric properties nof
a substance, and then all available relevant data would be
used tn determine any disposable parameters in this form.

The resulting equation of state could then be used with maxi-
mum confidence for interpolation and extrapolation, provided
that the functional form assumed was appropriate enough so
that all data could be fit to within experimental error.

Since the accurate calculatinn of equations of state of sonlids
from fundamental quantum mechanical theory is beynnd present
capabilities, the functinnal forms to be used in the above
empirical approach are not known, and appropriate forms have

themselves to be determined empirically. - This flexibility
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in the chnice of functional forms has twn important practical
consequences. Firstly, extrapolations based nn different
functional forms diverge frnm each other. Secondly, the
values of parameters determined by the above method depend

on the functionnal form assumed.

Common practice departs in several impnrtant respects
from this ideal pfocedure. Firstly, data are separately
analyzed and reduced to parameters as they are accumulated.
Secondly, these parameters are used indiscriminately in the
reduction of other, independent, data, and in various extra-
polation formulae. The effect of using different functional
forms on extrapnlations has often been discussed (e.g.,
Weaver et al., 1971), but the effect of Qsing different func-
tional forms nn the values of parameters is usually not con-
sidered. Alsn, the ponssibility of inconnsistencies between
the various functional forms assumed in different parts of
the cnmplete equation nf state are nbscured in this piece-
meal approach.

Two kinds of functional forms are used in equations of
state. The first kind includes those forms which have some
physical basis, such as the Coulomb electrostatic potential.
These, by definition, have the potential of giving insight
into the physical processes invnlved but the disadvantage
of being ton inflexible if not all relevant physical processss

have been considered. In this case, unrealistic values of
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parameters would be obtained. The second kind includes those
forms based nn some kind nf series expansinn. These have
greater flexibility and can give an accurate representation
of data, but they have the disadvantage of invelving, po-
tentially, a large number of parameters and of giving no
physical insight.

| In the particular case of sndium chloride, Slagle and
McKinstry (1967) represented their data as a polynomial of
elastic mnduli versus temperature. Spetzler et al. (1972)
represented their data as a ponlynomial of frequency versus
pressure and temperature, and Bartels and Schuele (1965) use
a polynomial nf frequency versus pressure. Vaidya and Ken-
nedy (1971) used a pnlynomial of volume versus pressura,
while Perez-Albuerne and Drickamer (1965) assumed a particu-
lar interatomic force model and a particular approximation
to the thermal pressure. Fritz et al. (1972) used a poly-
nomial in shock velocity versus particle velocity to repre-
sent the sndium chloride Hugoniot, and made very specific
(though reasonable) assumptions, through the Griuneisen para-
meter, concerning the thermal pressure, to obtain an isntherm.
Enck and Dommell (1965) used a ponlynomial of the coefficient
of thermal expansinn versus temperature to represent their
data. In their calculations nf sndium chloride isntherms,
Decker (1965, 1971) and Weaver et al. (1971) assumed partic-

ular interatnmic force models, various approximatinns for
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the thermal pressure and took parameters from a variety of
sourcés.

The theory of equations of state developed in this the-
sis is capable of representing all of the data discussed
above. It is neither unique nor the most complete that
could be used. The strain dependence is based on a pnly=-
nomial of the Helmholtz free enerqgy in terms of strain. It
thus has the flexibility and lack of physical assumptions of
the series expansions, discussed above, in this respect.
Further, there is great flexibility in the choice of strain
measures, as was discussed in previonus chapters. The temper-
ature dependence is based on a theory which, while very gen-
eral in a certain sense, makes specific approximatinns which
limit both its flexibility and the number of parameters in-
volved. It may also give some physical insight, i.e., some
indication of the validity of the approximations made.

The present application is, to the author's knowledqe,
the first time in which such a quantity and variety of data
have been considered in terms of a single equation of state.
An analysis of the ultrasonic data of Spetzler et al. (1972)
is the basis nf the discussion. These data determine the
pressure and temperature dependence of the elastic mnduli
of sodium chloride. Combined with the zero pressure, room
temperature value of the thermal expansion coefficient, all

of the equation of state parameters are thereby determined.
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The effect on the values of the parameters of using differ-
ent functional forms will be illustrated by using both the
"£" and "y" strain measures. Extrapnlations to high pressure
using these two examples will be compared and tested with
Hugoniot data. These extrapnlations will also be compared
with those obtained by substituting the parameters of Spetz-
ler et al. (1972) directly into the E and % equations. Cal-
culation of the room temperature isntherm will also allow
comparison with static compression data in these cases. The
adequacy of the thermal part of the theory will be discussed
in terms of the fit to the ultrasonic versus temperature
data of both Spetzler et al. (1972) and Slagle and McKinstry
(1967) and to the thermal expansion data of Enck and Dommell
(1965).

8.2 Method of Analysis nof Ultrasonic Data

The ultrasonic measurements of sodium chloride by Spetz-
ler et al. (1972) consist of frequencies measured along a
saries of isotherms as a function of pressure up to about
8 Kby, and at zero pressure as a function of temperature.
Four modes of propagation were measured. These are identi-
fied in Table 8.1. Since the four mode frequencies depend
on nnly the three elastic moduli nf sodium chloride, the
three elastic moduli are overdetermined by these data.

As supplied to the author, the basic frequency data for



163

gach mnde consisted of frequency versus temperature at zero
pressure normalized to the 300°K value, and frequencies ver-
sus pressure along various isotherms, the latter frequencies
being arbitrary multiples of the fundamental frequency of
the particular path being measured (Spetzler et al., 1972).
These were normalized in the present analysis to the zero
pressure, 300° value as described below. The absnlute
values of the elastic monduli are fixed by the zero pressure,
room temperature values of the mode sound velocities given
by Spetzler et al. (1972). These, and the derived values of
the elastic moduli, are given in Table 8.1.

The sound velocity, Ui, in a particular mnde of propa-

gation is related to the appropriate combination, Ci’ of
elastic moduli by
1/a
V; = (CL//O) ) (1)

where,p is density, and the resonant frequency, Fi' over a

path of length L is

F. = n V& /l_ ) (2)

L

where n is an integer. Denoting values in a reference state
by subscript "o", and noting that in a crystal of cubic sym-

metry under hydrostatic pressure

-1
L/Lo = (P/A) /3, (3)
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(1) and (2) give

(FIR), = [c/e)* (pfa)” (4)

Equation (4) thus relates the normalized frequencies to the
elastic monduli and density.

The elastic moduli can be calculated according to the
theory given in Chapter 5. Since, in this theory, strain-
(or density) and temperature are the independent variables,
rather than pressure and temperature, the normalized fre-
quencies must be calculated as follows. First the density
at which the calculated pressure equals the observed pres-
sure is determined. The elastic mnduli can then be calcu-
lated at this density. The zern pressure density and elastic
mnduli can also be calculated as a function of temperature
in this way.

Once the normalized frequencies were determined for a
given isotherm, the observed frequencies were scaled so as
to obtain a least-squares fit with the calculated values.
Thus only the pressure derivatives of the moduli were deter-
mined at this stage.

The thermal expansinon data were not included in their
nriginal density versus temperature form, but through the
volume coefficient of thermal expansion given by Enck and
Dommell (1965). This departs from the ideal procedure dis-

cussed in the previnus sectinn, but, on the one hand, the
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data are not published in their original form, and on the
other; the thermal part of the present theory is apparently
not sufficient to describe them completely anyway, as will

be seen. The specification of the thermal part of the theory
is completed by fitting of the theory to the frequency ver-
sus temperature data, at both zero and higher pressures.

The equations were fitted to the data in a maximum like-
lihood sense, i.e., in a weighted least-squares sense with
the weighting according to the variance of the data. Ini-
tially, all of the ultrasonic data were weighted equally, but
the weighting is useful for preferentially fitting parts of
the data, and for including other types of data, such as
Hugoniot data, in the fitting procedure. The parameters
which gave the best fit to the data were determined itera-

tively using an automatic computation algorithm.

8.3 Results of Analyses

It was found that not all of the ultrasonic data could
be fitted within the experimental errnr py the present equa-
tions. Figs. 8.1 to 8.3 show the result of fitting the
fourth-order "E" equations to the ultrasonic data. Fig. 8.1
shows the normalized frequency versus pressure data and the
corresponding calculated curves for modes 1, 2 and 4 (Table
8.1). Fig. 8.2 shows the same for mode 3 and the normalized

zero pressure frequency versus temperature data and curves.
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In Fig. 8.3, the Hugonint extrapnlated from this fit is com-
pared to the data nf Fritz et al. (1972). The specification
of this case is summarized in Table 8.3 as Case 1, and its
parameters are given in Table 8.4. Close inspection of Figs.
8.1 and 8.2 shows that the curvature of the frequency-pres=-
sure data has not been exactly matched.

The reason for this became evident when only the low-
pressure ultrasonic data in the temperature range 300°K to
500°K were allowed to constrain the temperature dependence
and only the room-temperature isotherm data were allowed to
constrain the pressure dependence. This case is given in
Tables 8.3 and 8.4 (Case 2) and illustrated in Figs. 8.4 to
8.6. The room-temperature isntherm data are now more closely
fitted, but at the expense of all of the higher temperature
data. The Hugoniot extrapolated from this case is very close
to the data (Fig. '8.6).

The thermal part of this theory is evidently insuffi-
cient to accurately describe the data. This can also be
sgen from other data. In Fig. 8.7, the elastic modulus
versus temperature data of Slagle and McKinstry (1967, cal-
culated from their polynomial fits to their data) are com-
pared to the corresponding curves calculated from Case 2
(solid lines). The same divergence at high temperatures is
avident. Alsn shown in Fig. 8.7 are the (dashed) curves

obtained by requiring the present equations to fit all of
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Spetzler et al.'s (1972) zero-pressure data. This fit is
illustrated in Fig. 8.8, for the zero-pressure and mode 3
ultrasonic data, and given as Case 3 in Tables 8.3 and 8.4.
It is notable that the high-pressure, high-temperature ultra-
sonic data are still not fit very well, but the close match
between Case 3 and the data of Slagle and McKinstry (1967)
demonstrates the consistency between the two data sets at
zZero pressure.

These cases also illustrate Thomsen's (1972) point that
the elastic moduli at constant pressure are not necessarily
lingear in temperature, and they show the significant extent
to which the temperature dependence at zero pressure depends
on the pressure derivatives of the elastic moduli (Cf. Table
8.4).

The thermal expansion predicted by Case 2 was calculated,
and is compared in Fig. 8.9 with the data of Enck and Dommell
(1965). Since these authors gave a polynomial for the linear
relative expansinn coefficient, (BL/BT)pLD, where L is a
dimension of the sample and L is its value at 298%, it was

necessary first tn integrate this to obtain L(T)/L and then

D’
to calculate the usual linear cnefficient (9L/OT)/L, from

which the volume coefficient, o= (dV/3T)/V, and volume ex-
pansion could be obtained. The values of « and density ob-

tained from Case 2 deviate significantly from the data at

high temperatures. Note that this error does not have very
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much effect on the elastic moduli derived from the ultra-
snnic data, since the density enters equation (4) only in
the 1/6th powsr. Decker (1971) also found that the thermal
expansinn data and the high-temperature elastic moduli data
could not be simultaneously fit.

Turning now from the thermal to the "compressional"”
part of the theory, note that for Hugoniot extrapolations
it is more important to have a good fit to the frequency=-
pressure data than to the frequency-temperature data, since
the thermal contribution to the Hugoniot pressure at 300 Kb
is found to be only about 40 Kb. Thus Case 2 is more appro-
priate than Cases 1 and 3 for the Hugoniot extrapolation.
It has already been remarked that Case 2 gives a Hugoniot
which closely approaches the data (Fig. 8.6).

In Figs. 8.10 and 8.11 and Tables 8.3 and 8.4 (Case 4),
the cnrresponding analysis in terms of the fourth-order "7"
equations is presented (only the high-pressure ultrasonic
frequencies for mode 3 are illustrated since they are quite
representative). The same comments apply to the thermal
part of the 7-equations in Case 4 as apply to Case 2 for the
E-equations. The Hugoniot extrapolation is not quite so
successful in this case, however (Fig. 8.11).

A stronger test of the relative empirical merits of the
£ and Ui strain measures is to use only the "third-order"

form of the finite strain equations. These are given as
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Cases 5 and 6, respectively in Tables 8.3 and 8.4 and Figs.
8.12 and 8.13. The third-order "E" Hugoniot, Fig. 8.12, is
clearly superior to the third-order "n" Hugoniot, Fig. 8.13.
The fit to the high-temperature ultrasonic data for Case 5
is similar to that for Case 2, but Case 6 fits worse than
Case 4.

The isothermal extraponlations to high pressure nf the
effective elastic moduli are illustrated in Fig. 8.14 for
Cases 2, 4, 5 and 6. The fourth-nrder extrapolatinns are
reasnnably close, but, curiously, the third-nrder E extra-
polation of Cas deviates the mnst from the others, while the
third-order 7 extrapolations of Cy1 and 12 deviate the most
from the most from the others. E may not be superior in all
situations.

The price paid for using values of parameters which are
not appropriate to the equations used for extrapolation is
illustrated by Cases 7 and 8, in which the parameters given
by Spetzler et al. (1972) were used in the fourth-order E
and ] equations, respectively. The extrapolatinns of the
effective elastic mnduli are conmpared in Fig. 8.15. The -
extrapnlations have not changed much, buL the E-extrapnla-
tions have been drastically affected. Case 7 is further
illustrated in Figs. B8.16 and 8.17. The Hugonint extrapola-
tion has also been considerably altered (Fig. 8.17), and

even the high temperature data are poorly fit (Fig. 8.16).
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The sharp curvature in the elastic moduli curves (Fig. 8.15)
is due to the pressure varying more slowly with density at
200 Kb (Fig. 8.17).

By using the Hugnnint data as an additional constraint,
rather than as a test, the equatinn nf state of sndium chlo-
ride can be more accurately determined at high pressure. Be-
cause of the evident superiority of E as a strain measure,
this was done with the fourth-order E equations, using the
same set of ultrasonic data as in Case 2. The result is
given as Case 9 in Tables 8.3 and 8.4. The fit to the Hugon-
iot data is shown in Fig. 8.18. A fuller tabulation of de-
rived reference state quantities is given in Table 8.5 for
this case, and the 3007k isotherm is briefly tabulated in
Table B8.6.

As a check on the accuracy of the thermal part of the
equation of sﬁgte, and hence of the derived isotherm, the
Hugonint data were cnmbined with all nf the ultrasonic data
(Cf. Case 1) to determine the equatinn nf state. This is
given as Case 10 in Tables 8.3 and 8.4. The deviation of
the derived isotherm from that of Case 9 is shown in Fig.
8.19. They are within about 1 Kb to pressures up to about
220 Kb. The Hugoniot data, which extend up to 264 Kb, con-
strain the isntherm to abnut 230 Kb. The Hugoniot data are
fitted in Case 9 with a standard deviation of 2.5 Kb, and,

in Case 10, of 2.8 Kb. Thus the error in the thermal correc-
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tion from the Hugnnint tn the 300°K isntherm is probably less
than the errnr due tn the scatter nf the Hugnnint data. As-
suming the Hugonnint data have no systematic errors, the ac-
curacy of the isntherms given here shonuld be abnut 3 Kb at

200 Kb, or about 1.5%.

8.4 Discussion

The data used here have been sufficient tn test both
the thermal and compressinnal parts of the present theory.
These aspects of the theory will now be discussed.

The thermal part of the theory, i.e., the "fourth-order"
anharmonic theory of Leibfried and Ludwig (1961), seems to
over-estimate the anharmonic effects, as witnessed by the
temperature-dependence of the elastic moduli (Fig. 8.7), and
the coefficient nof thermal expansion (Fig. 8.9). This is
surprising, since it might be expected that the Grineisen
approximation, which may well be inaccurate below the Debye
temperature, would be reasonably accurate at temperatures
substantially above the Debye temperature (Leibfried and Lud-
wig, 1961). It is even more surprising in view nf Spetzler
et al.'s (1972) calculation showing the Grilineisen parameter,
¥, to be almnst independent nf temperature at constant volume
and high temperatures, as predicted by the fourth-nrder
theory - this calculat;on, however, appears to be in error

because they used inconrrect values for the specific heat.
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Their tabulated zern-pressure values of the specific heats

at constant pressure and at constant volume, Cp and C re -

v’
spectively, areplotted in Fig. 8.20, along with the data for
Cp of Kelley (1934). At high temperatures, their values of
Cy decrease, rather than approaching the Dulong-Petit value
of 0.854 J/q k. Also shown in Fig. 8.20 are the values of
Cy obtained from the Debye model (used in this study) and
from the Cp data. These are in quite close agreement.

When the specific heats of Kelley (1934) are used to

calculate ¥ as a function of temperature, it is found that

¥ is almost constant at zern pressure (Fig. 8.21). This

contrasts with the conclusinn nf Spetzler et al. (1972) that
there is an increase in 2 at zero pressure because of the
decrease in density (Fig. 8.21). It also implies that &
decreases substantially as temperature increases at cnnstant
volume, contrary to the predictinn of the fourth-order theory,
the assumption nf the Mie-Grineisen equation, and the volume-
only dependence of ¥ derived here (Fig. 8.21).

The most likely explanation of this behavinur may be
that anharmonic effects nf order higher than the fourth are
large, and partly cancel the lower-order effects. Thus a
higher-order, and substantially monre difficult, theory may
be required. Another possibility, that thermally induced
lattice defects may be affecting the results, seems unlikely.

This pnssibility was invoked by Enck and Dommell (1965) to
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explain what appeared to them tn be a tnn rapid increase of
the thermal expansion coefficient. Thermally induced Schottky
defects have been invoked to explain the conductivity of
sodium chloride (Eitzel and Maurer, 1950), but it was shown

by Fischmeister (1956) that there was no detectable differ-
ence between the macroscopic and microscopic thermal expan-
sion coefficients, and in any case, the effect would be in

the wrong direction to explain the present discrepancies
(i.e., defects would increase the thermal expansinn).

The ultrasonic data of Spetzler et al. (1972) yield
non-zern values of (quwe/BPBT), as can be seen directly
from the data, e.g., in Figs. 8.1 and B8.2. As discussed in
Chapters 3 and 5, this dnes not necessarily imply that a
higher-nrder theory is required. This claim was made by
Thomsen (1970, 1972), and repeated by Spetzler et al. (1972).
The only strong evidence that a higher-order theory is re-
quired is the temperature-dependence of ¥ discussed above.

Compressional effects in sodium chloride seem tn be
described better in terms of E than in terms of'7, as was
found for MgO0 in Chapter 6. The extrapolationn of C44 SeOMS
to be an exception to this. The empirical tests of E and‘7
in this Chapter are superior tn those of Chapter 6, since
the ultrasonic data were extrapnlated directly, rather than
by using parameters derived by other methods. The faster

convergence of expansinns inm terms nf E can be seen by cnm-
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. n
paring the primary equation of state cnefficients, r“/,and

t" , which are tabulated in Table 8.5 (r" , Case 9) and

3’ wa’
Table 8.7 (g: , Case 4). The t:p increase much mnre rapidly
with n than dn the rék.

The perils nf using inapprnpriate parameters in extra-
pnlatinn equatinns are mnst graphically demnnstrated by Case
7, in which the parameters of Spetzler et al. (1972) were
used in the fourth-order E equatinns (Figs. 8.15, 8.17).

This is nnt meant tn imply that the parameters of Spetzler
et al. (1972) are wrong, or inaccurate. In fact, they are
probably mnre accurate at STP than thnse derived here, since
a mnre flexible equatinn was used to derive them. However,
a less flexible equatinn wnuld tend tn average nver the
range nf the data, sn that a median value (say at 4 Kb)
rather than an extremal value (zern pressure) wnuld be more
apprnpriate.

The fnurth-nrder extrapnlatinns nf the effective elastic
mnduli (Fig. B8.14) dn not predict the vanishing nf Cyq Near
the pressure at which sndium chlnride transforms to the
cesium chloride structure (300 Kb, Bassett et al., 1968).
The finite strain extrapolation by Thomsen (1972) and the
lattice mndels of . Sammis (1971; Spetzler et al., 1972) both
predict that c,, vanishes in the range 300 to 500 Kb. The
present extrapolatinns differ from that of Thomsen (1972)

in the terms retained in the expansion of the pressure enter-
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ing the expressinns for the effective elastic moduli (Chap-
ter 5, equatinns 35, 36 and 40). Here, the pressure term
was truncated after the secnnd-nrder strain terms (in the
"fourth-nrder" case), to match the truncation of the first
term in these equatinons. Thomsen (1972), on the other hand,
included third-order strain terms in the pressure, thus tak-
ing the twn terms in the effective elastic moduli to differ-
ent orders in strain. The highest-nrder strain term is thus
incomplete, and the extrapnlation may be less accurate as a
result.

The mnst preferable nf the present analyses, Case 9,
summarized in Table 8.5, is mnst deficient in the thermal
part of the thenry, as discussed abnve. (Note that the slas-
tic moduli, Tables 8.2 and 8.5, were determined as the least-
squares fit to the four mnde velocities given in Table 8.1.
These values differ slightly from those of Spetzler et al.,
1972.)

Several other recent determinations of the room temper-
ature isotherm nf sodium chloride are compared with that of
Cases 9 and 10 in Fig. B8.19. Thnse of Decker (1971) and
Weaver et al. (1971) are significantly below the Case 9 isn-
therm, while thnse nf Perez-Albuerne and Drickamer (1965)
and Fritz et al. (1971) agree within 1 Kb tn nver 200 Kb.
Case 9 was derived from the Hugnnint data of Fritz et al.

(1971), and those authnrs assumed a vnlume dependence of
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Zvery similar to that obtained here (Fig. 8.21) tn derive
their isntherm, sn the agreement is tn be expected. Although
it was shown by Weaver (1971) that the equatinns of state nf
Weaver et al. (1971) and Decker (1971) give reasonable agree-
ment with the combined Hugonint data of several authors, the
data nf Fritz et al. (1971) have the least scatter of any
set, and they are nnt fit very well by their equations. The
possibility nf systematic errnr in the lowest Hugnniot points
of Fritz et al. (1971), suqggested by Weaver (1971), due to
shear strength effects, wnuld probably have very little effect
on the present results. It can be seen in Fig. 8.18 that
these data are slightly abnve the fitted Hugoniot curve, and
that they are not fit any better than in Case 2 (Fig. 8.6),
for instance. The differences between the Case 9 isotherm
and those of Weaver et al. (1971) and Decker (1971) is prob-
ably due tn the functinnal fnrms assumed by them for the
inter-atomic pntentials. Those forms wnuld appear to be
slightly less successful, empirically, than the expansion

in terms of E.

At lower pressures, the Case 9 isotherm fits the static
compression data of Bridgeman (1945) better than the data of
Vaidya and Kennedy (1971). The "fixed pnints" corresponding
to the Bi I-II, Ba I-II and Bi III-IV phase transitinns are
fit within the error of their determination (Jeffery et al.,
1966).
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Finally, the apparent temperature dependence of the
Gruneisen parameter indicated by the data may mean that 27 has
been over-estimated here. The isnthermal pressure would then
have been underestimated, especially at higher pressures,
where greater thermal correctinns from the Hugonint are in-

volved. This error wonuld be of the order of a few kilobars.
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TABLE 8.2

Fixed sndium chloride equatinn of state parameters
at rnom temperature, atmnspheric pressure.

Density®

Volume cnefficient nof
thermal expansion

Debye temperatureC
Mean atomic weight

Elastic mndulid
(isentropic)

Specific heat at
constant pressuree

Rubin et al. (1961).

from Cn.

Da0oo

Barron et al. (1964)

Enck and Dommell (1965).

2.164 g/cm3

o

o= 119.5 x 10~°%/%

6p = 280°K
M = 29,22
€y, = 0.4951 Mb
Cip = 0.1285 Mb
Chq = 0.1276 Mb

K = 0.2507 ‘Mb

6
Cp = B.63 x 10 erg/gDK

Spetzlgr et al. (1972) (see text).
Kelley (1934).
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TABLE 8.3

Specifications of different analyses of sodium chloride
data. Data fitted in each case are denoted by "X".

Case Data Set Strain
Measure
Ultrasonic Hugoniot
P =0 P =0 P=0 P >0
0

T¢500°k  T>500°k  T=300°% T>300%

A X X X X - E
2y 5 X - X - - E
3 X X X - - E
4, 6 X - X - - '7
7 - = - - - E

10 X X X X X E

* Parameters of Spetzler et al. (1972) used.
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TABLE 8.5

Derived sndium chloride parameters+ at 300°K,
zero pressure, from Case 9.

¥, = 1.608 g = =9.65 A= «Kp = 2.84 x 1072 Kb/K
11 12 (x"e)aa Bulk
ces (Mb) . .495 .128 .128 251
cIﬂ (mb) .481 .115 .128 .237
(dcs, /2P)+ 11.46 2.13 0.36 5.24
(bciﬂ /3P)+ 11.56 2.23 0.36 5.34
(3cs, /3T)p (Kb/"K) -.364 .014 -.033 -.112
(Bc:ﬂ/aT)p (Kb /%K) - -.039 -.033 -.165
KT(BZCL /2p2) * . =352 B2 . =841 -10.5
sl‘ 14 .65 1. 3% 1.16 5.80
d 1n Ty /d 1n V 3.95 0 0.81 1.32
hea 0.86 10.34 -0.99 64 .6
rgf, (Mmb)#* .223 .053 .059 .986
Tyq (Mb) -1.26 -0.03 0.62 -1.98
rzﬂ (Mmb) -10.75 0.17 1.65 -5.20

+ All quantities are defined in Chapters 3 and 5.
* This was assumed equal tn the derivative nf C:d'

** Sgg Chapter 5, equations (80-82) for definitions of bulk
quantities.
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TABLE 8.6

SDDOK sndium chloride isotherm and the Grineisen
parameter from Case 9.

- Y p
(g/cm”) (Kb)
2.163 1.651 0
T 1.516 17
2.4 1.428 32
2.5 1.348 50
2.6 1278 70
2. 1.214 92
2.8 1.157 117
2.9 1.105 144
3.0 1.059 174
= 1% | 1.017 206
I ) 0.978 240
3.3 0.943 277

3.4 0.911 216
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TABLE 8.7

Primary equation of state parameters from Case 4 (7).

11
0
t‘ﬂ (Mmb) “ 222
1
tuwg (mMb) -4.,29
g
tue (Mb) 60.90

(e, @)
12 44
.053 .059
-0.42 -0.51
2.63 5.61

Bulk

.985

-7|7D

33.08
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188

TEMP  (DEG K)J

300 400 ?OO ?OO ?OO ?OO__

1,0
i

Q4 -
S°| =
=
) /

L oo
L =
L.I_D /
o . | I I | -
© 0 2 U 6 8 10

PRESSURE  (KB)

Fig. 8.2. Normalized ultrasonic data (symbnls) and fitted
curves from Case 1. Frequency-pressure data are for monde 3.
Symbnls in zern-pressure frequency-temperature data dennte
different mndes and correspnnd tn those for frequency-pres-
sure data (Cf. Fig. 8.1).
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Fig. 8.3. Sodium chloride Hugonint data of Fritz et al.
(1671) (circles) compared with thenretical Hugonint curve
extrapolated from Case 1.
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Fig. 8.5. Ultrasonic zern pressure frequency-temperature
and mnde 3 frequency-pressure data cnmpared with curves
from Case 2. Symbols as in Figs. 8.1 and 8.2.
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(1965).
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curve.
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Fig. B8.13. Hugonint data and Case 6 extrapolated Hugnnint
curve.
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curve.
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Fig. B8.19. Deviation of other determinatinons nf the NaCl
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is the isotherm nf Case 10. Other data are discussed in the
text.
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Fig. B8.21. Comparison of different sndium chlnride Griinei-
sen parameters. Those nf Case 9 (snlid curve) and Case 10
(long-dashed) and Fritz et al. (shnrt-dashed) are assumed

to depend only nn density. The dnts (Spetzler et al.) and
crnosses (this study) are the density dependence at zern pres-
sure (i.e., varying temperature) calculated from nther data.
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CHAPTER 9

MEASUREMENT OF ELASTIC PROPERTIES OF MgO

UNDER SHOCK COMPRESSION TO 500 Kb

Summarz

The velncities nf rarefactinn waves in shnck cnmpressed
Mq0 were measured by observing the reduction nf the shnck-
front velncity near the sample edges due to the rarefaction
waves propngating from the edges. The extent of this "edge-
effect" is difficult tn determine accurately because nf its
emergent nature. Arranoements mnre sensitive to changes in
shnck=front velncity yielded rarefactinn wave velncities
clnse to predicted longitudinal velncities in the shncked
state. Velncities reduced tonwards the hydrndynamic snund
speed in the shocked state were nbtainmed from less sensitive
arrangements. These results suppnrt a twn-stage lnngitu-
dinal-hydrodynamic model of the decompression. The measured
longitudinal velncities are cnnsistent with secnnd pressure
derivatives nf the elastic moduli, c¥ ., given by K c¥. =

ij 0 1ij
-1 ¥ 15, where K is the bulk mndulus.
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9,1 Introductinn

Direct measurement nof elastic properties of snlids using
ultrasnnic techniques have sn far nnly been made up tn about
10 kilobars pressure. At higher pressures, infnrmation about
elasticity is usually nnly nbtained indirectly by differen-
tiating pressure-density relatinns nbtained from static coms<
pressinon X-ray measurements or derived from shock-wave Hugnn=-
int data. The Hugnniot data require thermal correctinns at
high pressures, as illustrated in Chapters 6 and 7, and, in
either method, only the bulk mndulus is nbtained. Consider-
able accuracy is also lnst because the derivative nof the data
has tn be taken. It is desirable, therefore, tn have a methnd
nf obtaining more direct measurements nf elasticity at high
prassure. The develnpment and initial results of such a

method are described in this Chapter.

9.2 Experimental Arrangement

The methnd cnnsists nf measuring the speed of a rare-
faction wave which propogates from the sides nf a sample intn
the region behind a shock wave. Such a method has been ap-
plied by Al'tshuler et al. (1960) to the measurement of
elastic properties of metals. The configquratinn of the sam-
ple and waves are illustrated in Fig. 9.1. A shnck wave is
generated at the lower surface of the sample (in the presant

case, by impacting a projectile). As the shock front pro-
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oraesses upwards, a lateral rarefactinn prnpngates intn the
shncked reqginn from the sides of the sample, which are un-
constrained. This rarefactinn reduces the pressure at the
shock front, and hence slnws the shnck frnnt. The result is
an "edge-effaect" on the shonck front, which lags behind near
the sides of the sample, as shown.

The object nf the experiment is to measure the furthest
lateral distance to which this edge effect has propngated
when the shnck front reaches the tnp surface of the sample.
At any interinr pnint, the first rarefaction signal to arrive
is that propngating from the lnwer corner of the sample. At
later times, rarefactinns from higher up the sides nf the
sample will arrive. The locus of pnints nf intersectinn of
this first rarefactinn wave with the shnck frnnt is a straight
line, which makes an angle,a« , with the sides nf the sample.
Simple genmetrical relations, illustrated in Fig. 9.1, re-
late the rare?actinn velncity, V, the shock-frnnt velocity,

u

g» and the particle velocity, up, behind the shock front:
L
U. - w,\2 72
V= Us[tanlx + (—‘————f) . (1)
Us

The anqgle o¢ is determined from the extent nf the edoe effect
at the tnp surface nf the sample. The measurement nf this
quantity is nnw described.

A mirrnr is placed a small distance from the top sur-
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face of the sample, as shown in Fig. 9.2, with the silvered
surface facing the sample. The mirror is illuminated and
viewed through a slit onriented acrnss the sample, as shown.
The image nof this slit is reconrded by a streak camera, which
streaks the image nof the slit transversely across a'phntn-
graphic plate (Ahrens et al., 1971). As the shock front
reaches the top surface nf the sample, the free surface mnves
upward at approximately twice the particle velncity behind
the shnck front (e.q., Rice et al., 1958). The free surface
preserves the shock-frnnt profile, since the material near
the edges begins moving at a later time. As the free sur-
face subsequently impacts the mirrnr, the reflectivity of
the mirror is destrnyed and the recnrded streak image of the
slit is progressively cut off. The process is illustrated
in Fig. 9.3. Typical streak recnrds are shown in Figs.
9.4a-c. The prnfile of the shock front is thus recnrded by
the streak recnrd, and the extent of the edge effect can be
measured.

The sample is mounted on a tungsten "driver plate"
(Fig. 9.2), which is impacted by a tungsten "flyer plate"
mounted in the tip nf the prnjectile. The projectile veln-
city is measured just prior ten impact (Ahrens et al., 1971),
and the pressure, P, and particle velocity in the sample is
calculated by the impedance matching method (Walsh and Chris-

tian, 1955) using pressure-particle velocity curves of tung-
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sten (McQueen et al., 1970) and Mg0 (Carter et al., 1971).
The shock velncity can then be nbtained from the Rankine-

Hugnnint relatinn
U. = ==, (2)
where f% is the zern pressure density of the sample.

9.3 Samples

Results are repnrted here for five pnlycrystalline and
three single-crystal samples of MgO. The polycrystalline
samples were genernusly supplied by Dr. T. Vasilns nf Avco
Corpnration. The samples described and measured by Spetzler
(1970) and Schreiber and Anderson (1968) were obtained from
the same source. The MgO0 single-crystals were purchased
from Nortonn Research Cnrpnratinn. All faces nf the crystals

were (100) cleavage planes.

9.4 Results

A basic difficulty of this methnd is the emergent na-
tuyre nf the edge effect - its exact beginning is difficult
tn pick (Figs. 9.4a-c). Some variatinns in the target ar-
rangement were therefore explored in an effonrt to maximize
the accuracy nf the measurement.

The amplitude nf the "wings" nn the streak recnrd can
be increased by increasing the separatinn of mirror and

sample. The streak recnrd measuraes the transit time nf the
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shnck thrnugh the sample, ts’ plus the time for the free sur-
face to reach the mirrnr, tF’ If the sample thickness is h
and the mirrnr-sample separation is z, then the total time
is

t=t5+t$='a:+j‘. (3)

In snlids, Us is approximately linearly related to up (Beages

Rice et al., 1958):

U, = C, + sup (4)

S

where C_ = ()P/)(O)S is the "bulk snund speed” and s is a con-

stant. Using (4) in (3),

sz
t = - + 3
uS Z(us- Co) ’ (5)
and

dt h_ T —

s - )
U, T T Ug T 2(Ug-¢)T (6)
For Mg0, C, = 6.74 mm.//usec., s~ 1.3, and in these experi-

ments, U, = 8.7 mm./usec., typically. Thus, in these units,

2L _o0i3h — obz . (7)
s

o/

Thus a small increase in z can significantly increase the

sensitivity of the transit time tn changes in the shnck velon-
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city.

Typical sample thicknesses in these experiments are
h = 4-5mm. Four of the shnots repnrted here had z = 0.76mm.,
sufficient for the "free-surface effect" tn be significant.
Fig. 9.4a shows the streak record for nne of these (A257).
A central linear portinn of the streak cutoff, cnrresponding
to a centralplanar section of the shnck front, is nnt clearly
discernible, and a slight curvature persists across the cut-
off. For the planar sectinn tn be nbliterated by the edge
effect would have required a rarefaction velncity nf at least
14.7Km/sec., which is very unlikely (Cf. later results). It
was therefore thought that this might be due to the free sur-
face defnrming befnre it hit the mirrnr. The free-surface
transit time was abnut 0.25 Usec. In this time a cnmpres-
sinnal wave in MgO0 conuld travel the order nf 2.5 mm. and a
shear wave the nrder of 1.0 mm., sno there may have been suf-
ficient time for effects to propngate intn the central region
from the sample edges. A shot (A258) was therefore fired
with z = 0.13 mm., giving a free-surface transit time nf
about .04 usec. The resulting streak recnrd is shown in
Fig. 9.4b. (z was not reduced tn zern because nf the pre-
sence nf an elastic precursor tn the main shnck front. This
causes the free surface tn mnve about .05 mm. before the
main shock reaches it. With z = 0.13 mm., nnly the effect

of the main shock was recnrded.) The central region is nn-
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ticeably mnre linear in this case.

The relevant specificatinns and the results fonr the
shots repnrted here are given in Table 9.1. The rarefaction
velncities obtained are plntted against pressure in Fig. 9.5.
It can be seen that the shots with z = 0.76 mm. (sniid cir-
cles) gave fairly cnnsistent velncities near 12 Km./sec.,
while shot A258 (z = 0.13 mm., npen circle) gave a much
lower velncity. This will be discussed belnw.

All nof the above shnts were on the polycrystalline sam-
ples. The remaining shots (A263, 266, 267) were on the sin-
gle crystal samples and with intermediate values of z. A
typical recnrd (A266) is shown in Fig. 9.4c and the specifi=
cations and results are given in Table 9.1 and Fig. 9.5
(trianqles). These shnts gave intermediate veloncities. The
accuracy of the results is impared somewhat by the presence
nf low-angle irreqularities in the cutoff (Fig. 9.4c) the
origin of which is not clear.

The "half error bars" in Fig. 9.5 have the following
significance. The velncities given in Table 9.1, and the
ponints in Fig. 9.5, result from the best estimate of the be-
ginning nf the emergent edge effect. Bnunds on these values
ware nbtained by picking pnints at which an edoe effect de-
finitely existed. The points picked are indicated in Figs.
9.4a-c. The errnr bars were extended down to the resulting

lower bounds on the velncities. Upper bounds tn the velo-
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cities nbviously cannnt be estimated.

9.5 Discussinn

This method of measuring the rarefactinn velncities
requires a comprnmise between the low sensitivities obtained
with small mirror-sample separations and the larger uncer-
tainties, apparently caused by free-surface deformatinn, ob-
tained with larger mirror-sample separatinns. The more sen-
sitive experiments yielded very reasonable, though nnt very
accurate, results, as will be discussed below. Snme earlier
experiments were performed with an aluminum foil (.015 mm.
thick) stretched over the sample. This foil was spalled off
the sample by the emerging shnck wave and subsequently im-
pacted the mirror. However, these experiments were evidently
also affected by deformatinns of the foil during transit,
since the resulting velncities were not very consistent and
in the lnw range of 10.5 to 11.5 Km./sec., despite the lar-
ger (0.76 mm.) mirror-foil separation used. A superior methnd
would be tn use a material of lnw nr zern rigidity tmn receive
the momentum of the free surface. A layer of liquid, as de-
scribed by Al'tshuler et al. (1960), or a powder wnuld prob-
ably serve this purpose.

The velocities measured here are consistent with the
decompressional behavinur of solids inferred by Al'tshuler

et al. (1960) and nbserved directly by Kusubnv and van Thiel
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(1969). In this picture, the decnmpressinn nccurs in two
stages - first a lonngitudinal elastic decnmpressinn tn a
critical deviatnric stress, fnllnwed by a hydrndynamic or
"plastic" decompressinn. Al'tshuler et al. (1960) observed
rarefaction velncities in liquids which correspnnded clnsely
to the hydrodynamic snund speed of the cnmpressed liquid,
while in solids the observed rarefactinn velncities were
cnnsiderably faster than the estimated hydrndynamic snund
speeds. Kusubov and van Thiel (1969) observed the compres-
sinn and decnmpressinn of aluminum using pieznresistive man-
ganin gauges. The decnmpressinn was nbserved ton prnceed in
two stages, nne travelling at approximately the longitudinal
elastic velocity, and the nther, identified by an increase
in the rate of decompressinn, travelling at abnut the bulk
sound speed. As discussed by Al'tshuler et al. (1960) and
Kusubov and van Thiel (1969), this twn-stage decompressinn
cnrresponds clnsely tn the nbserved behavinur of snlids under
compressinn, in which a longitudinal elastic wave preceeds
the main “plastic" shock wave (see alsn, for example, Ahrens
et al., 1968).

Al'tshuler et al. (1960) nbserved that in liquids the
nnset of the edge effect due tn lateral rarefactinns was
quite sharp, while in snlids it was more emergent, as nb-
served in this study. Combined with the nbservatinn of

Kusubnv and van Thiel (1969) that the elastic rarefaction
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accounts for only 30% of the decompressinn, this sugqgests
that in the less sensitive arrangement (smaller z, shnt A258)
it was mainly the effects nf the plastic decompression which
were nbserved, while the mnre sensitive experiments were
able to detect the onset nf the elastic decompressinn.
Comparisnn with predicted values nof the elastic and
hydrndynamic velncities in the shncked states suppnrts this
interpretatinn. These quantities were predicted by taking
the ultrasnnically measured elastic moduli nof MgO and their
pressure and temperature derivatives (Spetzler, 1970) and
extrapolating them tn high pressures and temperatures using
the theory given in Chapter 5. The required data are given
in Table 9.2. Third-order extrapnlatinns in terms of both
the "E" and "y" strain measures of Chapter 5 were used. In
additinn, since € = K Kp = -1 (Chapter 6), where K, is the
zern-pressure bulk mndulus and a prime denntes a pressure
derivative, a fourth-order "E" extrapnlatinn was made with

fij = Kncij = -1, where Cyj

isnthermal extrapnlatinns of the effective elastic mnduli

are the elastic moduli. These

are shown in Fig. 9.6. Since cnnsiderable heating accom-
panies shnck-cnmpression, a thermal correctinn has tn be in-
cluded tn nbtain the mnduli in the shncked state. The ther-
mal correctinns in a typical case are shnwn in Fiq. 9.7. The
average lnngitudinal velocity, V , (appronpriate tn the pnly-

crystalline samples) resulting from the fourth-nrder "E"
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extrapolation is shown in Fig. 9.5 (snlid lines; the third-
nrder "E" extrapnlatinn is very similar - Fig. 9.6). For
the single crystals, since the sample faces were (100) crys-
tal planes and tana = 1, the appropriate longitudinal velo-
city is that for the [llU] crystal direction, which is

Viig = [(c11 + Cyp * 2ca4)/2fﬂﬁ. This velocity is shown for
the fourth-order "E" extrapolatinn in Fig. 9.5 (lnng-dashed;
see also Fig. 9.7). Fonr the accuracies of the present mea-
surements, the distinction between these velocities, and the
anisotropy of the velocity in the single crystals, is unim-
portant. The [110] velocity from the third-order "%" extra-
pnlation is alsn shown in Fig. 9.5 (short-dashed).

In Fig. 9.5 it can be seen that the velocities obtained
using the greatest mirror-sample separation (z = 0.76 mm.)
correspond closely to the longitudinal velocities of the
fourth-order "E" extrapolation, while that nbtained using
the smallest separation (z = 0.13 mm.) is nnly sliahtly
above the bulk sound speed. Those with intermediate separa-
tion are intermediate between these. Evidently the initial
effects of the longitudinal decompression were nnot observed
in the less sensitive (smaller z) experiments, as surmised
earlier.

The faster velncities nbtained are much mnre consistent
with the third-nrder "E" extrapolation than the third-nrder

-7“ extrapolation (Figs. 9.5, 9.6). Assuming that they do



220

represent the longitudinal velncity, these data can be used
to put constraints nn the second pressure derivatives of the

elastic moduli. In Fig. 9.5, the velncity for £

110
a}(‘fu ST 2%,,) = ~10 is shown (dash-dnt). A bound of

rilD Z -15 is estimated from the data.

Finally, snme nbservations by Hauver and Melani (1970)
deserve comment here. These authors nbserved an emergent
edage effect in optical measurements of shocked sodium chln-
ride. They calculated a rarefaction velocity close to the
bulk sound speed of NaCl. Since they nbserved directly the
change in reflectivity of the free surface of the samples,
this is in accnrd with the present observatinns. They also
noted that in the range of the phase transition from the B1
tn the B2 phase the edqge effect had a much sharper nnset,
and the calculated rarefaction velocity was considerably re-
duced. This is in accord with the nbservations by Al'tshuler
et al. (1960) of fluids, and suggests that a loss of rigidity
accompanied the phase change. Alsn, as pninted nut by Hauver
and Melani (1970), the edqe effect is a much more sensitive
indicator of phase changes in shock compressinn than is pro-

vided by the accompanying Hugonnint offsets.

9.6 Conclusions

It can be concluded from these results that

a) Mg0 remains in the solid state under shock compression ta
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500 Kb.

b) a twn stage decompressinn fraom the shocked state, invnl-
ving an initial longitudinal decnmpressinn tn a critical
deviatoric stress, follnwed by a hydrndynamic decnmpression
to zero stress, is connsistent with the observations reported
here.

c) values of fij:z'-l are consistent with the best estimates
nbtained here for the longitudinal velocities of Mg0 between
300 and 500 Kb. A bound of $(%,, +&, + 2?;’44) = -15 is esti-
mated from the data.

d) extrapnlations in terms of the "E" strain measure are em-
pirically more successful than thnse in terms of "®".

The present results largely confirm brevinus nbservatinns
of the decompressinn of shocked snlids. Refinement nf the
technique should allow mnre accurate determinatinns nof the
elastic properties of shocked snlids, and promises tn be a

useful tonl with which tn detect high-pressure phase changes.
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TABLE 9.2

Equatinns nf state parameters of MgO.

2, (a/cm?)? 3.584
oc, (1078 /%) 31.5
cy (10° erg/g %)° 9.25
Elastic moduli and derivatives®:
(i, j)
11 12 44
S j (mb) 2.974 0.956 1.562
Bci]-
: 8.70 1.42 1.09
2P ;
dc. . :
Y[ (Kb /%K) -0.606 0.074 -0.103
o T P

a) Skinner (1957).
b) Victor and Dnuglas (1963).

c) Spetzler (1970).
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fig. 9.1. Configuration of shnck and rarefactinn waves pro-
duced by passage nf shock wave from lower surface of sample,
and geometrical relationship nf wave and particle velncities.
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Fig.'9.2. Target arrangement for detectinn nf lateral rare-
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Fig. 9.3. Schematic illustration nf the recording by a
streak camera of the prngressive cutnff of the image of the
slit through which witness mirrnr is viewed.
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A266

Fig. 9.4. Streak records obtained with different mirror-sample

separations: (a) 0.76 mm., (b) 0.13 mm., (c) 0.25 mm. Samples

(a) and (b) were polycrystalline, sample (c) single-crystal
(see Table 9.1).
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Fin. 89.5. Measured and extrapnlated rarefactinn velncitiss.
Snlid circles: pnlycrystal, z = 0.76mm. Open circle: pnly-
crystal, z = 0.13mm. Trianales: sinnle crystal, z = 0.25mm.
Snlid curves: fourth-nrder "E£* extrapnlatinns of C and Vi
(poly.). Lnno-dashed: V| in [110] directinn. Shonrt-dashed:
third-nrder "9" V . Dash-dnt: fourth-nrder "E" with

rllo =2 -10.
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Fig:. 9:6s Isnthermal extrapnlatinns nf effective elastic
mnduli of MqO. Heavy snlid curve: fourth-order "£"; light
snlid: third-order "E"; light dashed: third-nrder "7".
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CHAPTER 10
CONSTITUTION OF THE LOWER MANTLE

Summary

Equatinns nof state nf Mg0 (periclase) and 5i0, (stishn-
vite) and estimates nf the equatinn nf state of FeO (wistite)
are used to calculate the density, o, and seismic parameter,
¢, at high pressures and temperatures of model mineral assem-
blages of the.lower mantle. These are compared to the o and
¢|1F the lower mantle, deduced from seismic nbservations, to
determine the required compnsition nf the mndels. The affects
of temperature and phase changes are estimated. It is found
that there is a trade-off between temperature, phase and
Mg/Si molar ratin. These quantities are alsn uncertain be-
cause of uncertainty of ¢ of stishovite at high pressures.
With wide limits placed nn temperature, the mnst likely models
are found to be a mixture nf oxides, or equivalent single
phase, nf abnut pyrnxene stoichiometry, nr phases a few per-
cent denser than the nxides mixtures with stonichinmetries
ranging between nlivine and pyroxene. The irnn content nof
the mndels depends somewhat nn the assumed phase assemblage.
The uncertainty in lower mantle densities also contributes
to its uncertainty. The oxides mixtures require 12-14% by

weight nf FeO. The denser phases require 7-12% by weight.
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The latter, especially, are cnmparable to the iron content of
pyrnlite and that deduced for the upper mantle. If iron is
present in the low-spin electrnnic state, these estimates
cnuld be reduced by nne third to nne half. On the nther hand,
Hugnnint data nf dunites wnuld imply abnut 5% by weight more

Fe0D and snomewhat more 5102 than the abnve inferences.
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10.1 Introduction

The determinations, in Chapters 6 and 7, of the equations
nf state of Mg0 (periclase) and 5i0, (stishovite) are of
particular significance tn the study nf the earth's lower
mantle. In his important discussionn of the cnnstitution of
the earth, Birch (1952) concluded that the density and elas-
ticity of the lower mantle could be approximated by the prop-
erties of a mixture of the dense nxides of magnesium, sili-
con and iren. Since then a number of attempts have been made
to refine this interpretation, more recently by Ringwood
(1969, 1970), Wang (1970, 1972), Anderson and Jordan (1970)
and Al'tshuler et al. (1972b). A chief concern of these
studies was to determine the amount of iron in the lower
mantle. Each, however, involved assumptinns about nther
aspects nf the constitutinn nf the lonwer mantle. For instance,
Ringwood, Wang and Al'tshuler et al. all assume particular
values for the ratio (Mg + Fe)/Si, only Ringwond seriously
considers the possibility nf phases denser than the nxides,
and only Wang attempts to avoid making specific assumptions
about the temperature of the lower mantle.

In this chapter the starting point nf the discussion
is the assumption that the lower mantle can be represented
as a mixture of Mg0 (periclase), Si0, (stishovite) and FeO
(wiistite), but estimates are made nf the effects of the

assumed temperature and phase assemblage nf the lower mantle.
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Direct comparison of the density and elasticity of models

of the mantle with the nbserved properties of the lower

mantle at the appropriate high pressures and temperatures
allow the determination of the relative proportions of the
oxide components - i.e., of the mnlar ratios Fe/(Mg + Fa)

and (Fe + Mg)/Si. An estimate of the dependence of the in-
ferred compositinon on assumed temperature and phase assem-
blage is pbtained. The effects of uncertainties in the equa-
tions of state of the compnnents and in the lower mantle prop-

erties are alsn estimated.

10.2 Equations nf State nf Dense Oxides, Mixtures and

Silicates
The equations of state of periclase and stishovite deter-
mined in Chapters 6 and 7 were used to calculate a set of

isotherms for each. The seismic parameter,n¢, where

2

= Ks/pP = Vp-

£vi, (1)

and Ks is the isentropic bulk modulus,,p the density, Up the
compressional elastic velocity and Vs the elastic shear velon-
city, was calculated along these isotherms. The second equal-
ity in (1) means that ¢ can be calculated for the earth,

for comparison (e.g., Birch, 1952). The calculated density
and ¢ of periclase along the 300°K, Z,OUODK and 3,UOD°K iso-

therms are shown in Fig. 10.1. For comparison, the 2,000°K
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quantities of Al'tshuler et al. (1972a, b) (estimated from
their gentherm using their estimates of the effects of tem-
perature) are also shown. In Fig. 10.2, the same quantities
are shown for stishovite calculated from the equation of
state denoted as Case 2 in Chapter 7. Fonr comparison, the
2,DDUOK quantities calculated from Cases 1,3 and by Al'tshuler
et al. (1972a, b) are alsn shown (Al'tshuler et al.'s 2,000%
density is nearly identical to that of Case 2, and is there-
fore not shown in Fig. 10.2). Estimates nf the 2,UUDOK quan-
tities for wustite, based on the density and bulk mndulus
measured by Mizutani (P = 5.84 and K = 1.74 for Fe'gaﬁ;
Mizutani et al., 1972) and twn estimates of dK/dP, are
shown in Fig. 10.3, with the values given by Al'tshuler et
al. (1972a, b).

The uncertainty in the equation of state of wustite is
probably larger than the spread in the curves of Fig. 10.3,
but since estimates nf the amnunt of FeD in the mantle range
from 10 to 20 mole percent, the effect of this uncertainty
is not large. The mnst important uncertainty still seems to
be in the stishovite equatinn of state. The author's pre-
ference is for Case 2, but uncertainties of up to 2% in den-
sity and 10% in ¢ within the pressure range of the mantle
have to be acknnwledged.

Since Birch's (1952) suggestinn that the lower mantle

resembles a mixture of dense oxides, a number of silicate
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phases have been prnpnsed as having the property that their
density is very close tn that nf the isnchemical mixture of
compnnent nxides (e.g., Ringwond, 1969, 1970). Thus, although
a single phase rather than a mixture might exist in the mantle,
the idea nf representing mantle properties as a combination
of thnse of noxides would still be valid. On the other hand,
it has been suggested (e.q., Ringwnnd, 1969, 1970) that sili-
cate phases slightly denser than the isochemical mixture of
their component oxides might also exist in the mantle. The
properties of these phases shnuld alsn be estimated.

The density of a mixture is calculated here by taking
the mnlar averaoe of the molar volumes of the components.
Varinus schemes fnr estimating the compressibility nf a mix-
ture have been propnsed. Fonr instance, Al'tshuler et al.
(1972a) take weight averages of 140K3, while Anderson (1969)
proposed that the compressibility of many silicates and nxides
is given approximately by taking the mnlar average of ¢ of
their component oxides. Since the differences between such
schemes are probably less than the uncertainty in the com-
ponent properties in the present case, the simple scheme of
Andersnon (1969) will be used here.

The effect of a phase change on compressibility can be
estimated from empirical trends. Birch (1961) demnnstrated
that the compressinnal elastic velncities, Vp, of many sili-

cates and oxides depend primarily on their density and mean
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atomic weight, M, and only secondarily on the specific com-
positinn and crystal structure. Similar relatinnships have
since been pointed nut for ¢ (Andersnn, 1967a, 1969) and the
bulk snund speed, C = ¢4:(MCQueen et al.,.1964; Wang, 1968).
In Fiqg. 4, ¢ and o are plotted for a number of nxides and
silicates. The examples nf the a«¢-quartz-conesite-stishnvite
and a-fayalite-¥-fayalite sequences suggest a trend fnllowed
by substances undergning phase changes. A serises of points
are also shown in Fig. 4 cnrrespnnding tn mixtures nf peri-
clase, stishovite and wiustite of nlivine, pyroxene and gar-
net stoichinmetries. It can be seen that the slopes of the
lines joinihg these tn their observed low-pressure forms agree
fairly well with the slopes of lines joining nbserved pnly-
morphs. The value of ¢ of phases denser than the oxides
mixtures are therefore estimated here by constructing a line
nf the apprnpriate slope through the calculated mixed oxides
point and reading off the value of @ at the density predicted
for the denser phase. By applying these methnds at various
pressures, the properties of these phases can be estimated

as functinns nf pressure.

10.3 Constitution nof the Lower Mantle

In Fig. 10.5 the calculated pressure (or depth) depen-
denceof‘¢ and 0 of stishovite and periclase at Z.DOUOK are

compared to the pressure dependence of ¢ and 0 of several
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earth models deduced frnm seismic nbservations. Note that

the temperature nf the latter curves are unknown. The den-
sity models BII (Birch, 1964) and HB (Haddnn and Bullen, 1969)
were derived with the aid of snme physical assumptinns, al-
though the latter were adjusted tn fFit snome data nn the free
earth oscillatinns. In the Jordan models (Jordan, 1972), on
the other hand, the only constraints nther than seismological
data concern the smonthness of the distributinns within each
region.

In Figs. 10.6 tn 10.8, ¢zwm L of the earth are compared
with ¢ and p estimated for varinus hypothetical phase assaem-
blages at pressures nf 0, 0.5 and 1.0 megabars. These Fiqures
require some explanatinn befnre their interpretatinn is dis-
cussed.

The ¢1p pnints nf periclase and stishovite are plotted
for a "base" temperature: in Fig. 10.6 (zero pressure) this
is 300°k, and in Figs. 10.7 and 10.8 it is 2,000°K. The ef-
fect nof a temperature increase on these points is shown by
the short-dashed arrows. In Fig. 10.6, the temperature in-
crease is from 3009 to 2,000°K; in Figs. 10.7 and 10.8, it
is from 2,000k to 3,000°K. Properties of oxides mixtures
at the base temperatures, calculated according to the last
section, are jnined by the snlid lines. Compnsitions corres-
ponding tn olivine stoichinmetry, i.e., (Mg, Fe)zsiﬂa. and

pyroxene stoichiometry, i.e., (Mg, Fe)SiUS, are shown. Irnn
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molar ratins X = Fe/(Fe + Mg) ranging frem X = 0 to X = .5
are spanned by these lines. The "nlivine" lines conuld cnrres-
pond to oxides mixtures or to a single phase having the
strontium plumbate structure (Ringwood, 1§69, 1970). The
"nyroxene” lines conuld correspond to an oxides mixture or

to a mixture of "nlivine" and stishovite. No single phase
of the mixed oxides density has been proposed fnr this stni-
chiometry. The dashed lines parallel to the snlid lines are
estimates nf the properties nf slightly denser phases of
corresponding stnichinmetries. The dense "olivine”" lines
could represent a single phase having the KzNiFa structure,
nr possibly the calcium ferrite structure, with densities

4% to 7% denser than the nxides mixtures (Rinqwond, 1969,
1970). The dense "pyroxene" line could represent a phase
having the perovskite structure, up tn 7% denser than the
nxides mixtures. The dense "nlivine" lines conuld also re-
present a mixture of this phase with (Mg, Fe)0 in the rock-
salt structure (i.e., a solid snlution of periclase and
wistite; Ringwond, 1969, 1970). The existence of these phases
is still hypothetical, and prnbably depends partly on the
presence nf other constituents, such as calcium, aluminum
and ferric iron. Their estimated densities are alsn snme-
what uncertain (Ringwond, 1969, 1970). Nevertheless, the
axamples given here will serve to illustrate the effects to

be expected from the presence of sﬁch phases, and perhaps to
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indicate the likelihond of such phases existing in the mantle.

The ¢-p points of selected earth models are plotted in
Figs. 10.6 to 10.8. The effect of a temperature decrease on
the mantle pnints was estimated from the effects of the tem-
perature increase (by the same amount) shown for periclase and
stishovite. The upward short-dashed arrows thus indicate the
effect of a temperature correction of the mantle to the base
temperature of the figures. In Figs. 10.7 and 10.8, Jordan's
(1972) model Bl and Haddon and Bullen's (1969) model are
shown. In Fig. 10.6, however, extrapolation to zero pressure
of the lower mantle properties is required. Such extrapola-
tions were given by Anderson and Jordan (1970) for the BII
model, which is ¢lnse to Jordan's mndel Bl, and the model of
Bullen and Haddon (1967), which is close to the model HB of
Haddon and Bullen (1969). These extrapolations are shown in
Fig. 10.6.

We can now proceed with the interpretation of Figs. 10.6
to 10.8. Nnte, firstly, that, in accordance with Birch's
(1961) basic observation, the estimated trajectories due to
temperature correctinn, phase change and change in the Mg/Si
ratio all have roughly similar slopes. A trade-nff of these
factors is thus possible. The iron content, on the other
hand, is not very dependent on the other factors.

If, for example, one fixes the composition and phase

assemblage, then the other factors can be determined. Thus,
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if it is assumed that the mantle is an oxides mixture of
pyroxene stnichiometry, then the required mantle temperature
ranges from about 2,DDUOK to 3,0000K, and the mnlar ratio

X = Fe/(Mg + Fe) is about 0.17 to 0.20. By assuming the
mantle to be hotter, it can be represented as having nlivine
stoichiometry in the K2NiF4 (or similar) structure, with

X 2~ 0.10, or a pyroxene stnichiometry in the perovskite
structure, with X &£ 0.15. The required temperatures, de-
duced from fFigs. 10.6 tn 10.8, are plotted in Fig. 10.9.

The corresponding cnmpositions are given in different ways
in Table 10.1.

Even apart from the trade-off between temperature, com-
position and phase assemblage, the temperatures dstermined.
in this way are clearly highly uncertain, mainly because of
the uncertainty of ¢ for stishovite. A 10% uncertainty in
¢0F stishovite would cause roughly a l,DUUOK uncertainty
in temperature. The iron content, expressed as the molar
ratio Y = Fe/(Mg + Fe + Si) is fairly independent of all of
these factors, although it depends somewhat on the assumed
phase (see Table 10.1). It is also uncertain becauss of
the uncertainty in the density of the mantle. An uncertainty
nf 1% in mantle density would imply an uncertainty nf about
0.02 in Y.

If it is assumed, for the moment, that the equatinns of

state and assumptions used here are substantially conrrect,



244

someg models of the mantle appear more likely than others.

For instance, a mixture of oxides nof olivine stoichiometry
would imply temperatures from l,OUOOK to about 2,0000K, a
range which is unacceptably low nn the basis of more reliable
estimates of temperature in the upper mantle. For example,
Anderson's (1967b) and Graham's (1970) estimates of tempera-
tures in the transitinn zone, and Clark and Ringwnod's (1964)
oceanic geotherm are shown in Figq. 10.9. The temperatures
obtained for the nther three mndels mentinned abnve are more

reasonable, the "

pyroxene-pernvskite phase" temperatures
possibly being a little high. Upper bounds on the mantle
temperature are difficult to obtain. Suitable bounds would
be the melting temperature of appropriate silicates or the
melting temperature of iron at the center of the earth, but
these are very uncertain. Uffen (1952) estimated the melting
temperature of the mantle to be abnut 5,000°K at the core-
mantle boundary. Higgins and Kennedy (1971) have estimated
the melting temperature of iron as a function of pressure.
Their values at the conre-mantle boundary and the center of
the earth are, respectively, 3,7DDDK and 4,3000K, and are
shown in Fig. 10.9.

Also shown, for comparison, are the temperature profiles
assumed by Reynolds and Sumners (1969), and subsequently
by Al'tshuler et al. (1972b), and that deduced by Wang (1972).

Wang's (1972) determination is based on a comparison of the
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shock-wave equatinns nf state nof Twin Sisters and Hortonalite
dunites (McQueen et al., 1967; Wang, 1968) and the lower
mantle. He thus assumes that an nlivine stonichiometry is
apprnpriate and that the phase achieved in the dynamic shnck
compression is the same as that existing under the static
conditions of the lower mantle. The uncertainties arising
from the latter factors have been demnonstrated here, and
shnuld be added tn his stated uncertainties of *8007K. He
also assumed that the temperature gradient shonuld be adiabatic.
The temperature profiles deduced in the present study
tend to have super-adiabatic gradients. We may nnte that a
temperature pronfile very similar to that of Reynolds and
Sumners (1969) would be nbtained for a pyrolite compnsition
in the phases denser than the oxides mixture (Ringwond, 1969,

1970).

10.4 Conclusion

The trade-nff demnnstrated here between compnsitinn,
temperature and phase assemblage of the lnwer mantle means
that none nof these can be determined very well. The irnan
content is better determined: the molar ratio Fe/(Mg + Fe + Si)
is found tn be about 0.05-0.10 in this study, depending mainly
on the assumed phase assemblage. The ratio Mg/Si can range
between that for olivine or pyrnxene stnichiometries, or

even more silica rich, according tn this study. The phase
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assemblage wonuld appear to be at least as dense as the isn-
chemical oxides mixture, with pnssibly an assemblage a few
percent denser than this being favored. The temperature is
very indeterminate, being very sensitive both to the trade-
off with the other factors and to the uncertainties in the
value of ¢ of stishovite at high pressure. At this stage it
wnuld appear to be more useful to try to find nther bounds
nn the temperature, so as tn limit the nther factnrs, rather
than to try to determine temperature by the methnds used here.

Recent determinations of the irnn content of the lower
mantle have been discussed by Al'tshuler et al. (1972b).
They note a trend converging towards 13-15% by weight, in
agreement with their own determination, especially in the
work of Al'tshuler et al. (1965), Wang (1968) and Reynolds
and Sumner (1969). The present study suggests that these
determinations may be dependent on the assumed phase assem-
blage. Thus the assumption of mixed oxides yields 12-14% by
weight, while the assumption of denser phases yields 7-12%
by weight. The difference between these determinations de-
pends on the relative effect of the relevant phase changes nn
density and ¢, but since these are unknown, this additinnal
source of uncertainty in the iron content of the lower mantle
must be acknnwledged.

Anderson (1970), Anderson and Jordan (1970) and Andersnn

et al. (1971) deduced iron contents of the lower mantle in
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the range 12-18 mnlef%. These higher values apparently re-
sulted partly from the use of density mndels which extra-
pnlate tn fairly high densities (especially mndel CIT 200204),
and partly from the use of the Hugnnint data of Twin Sisters
and Hortnnalite dunites (see belnw). Phases denser than
mixtures of the dunites and stishovite were not cnnsidered.
The Hugnnint data of the dunites (McQueen et al., 1967)
are impnrtant additinnal connstraints on the equations of
state nf high pressure phases in this range of compositions.
Their compatibility with present predictinns and the effect
of using them as a base reference instead of the oxides have
been estimated as follows. Previous studies (e.g., Ahrens
et al., 1969; Davies and Anderson, 1971) have suggested that
they were in a phase comparable to mixtures of nxides. Ac-
cordingly, the mixed nxide zern pressure densities were as-
sumed. Gruneisen parameters, which are unknown, were assumed
to have values of about 1.0 and 1.5, with d 1n2/d 1n V & 1.0.
The Hugonionot data were then used to determine the bulk modu-
lus and its pressure derivative. The complete sets of equa-
tion of state parameters are given in Table 10.2. Isotherms
calculated from these cases were used to plot ¢-/>points in
Figs. 10.6 to 10.8. At zero pressure, Fig. 10.6, ¢ tends to
be higher than predicted for Twin Sisters dunite, which has
the approximate formula (MQ.BBFB.IZ)zsiﬂa' while it agrees

quite well with the prediction for the Hortonalite dunite,
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(NQ‘ASFB'SS)ZSiﬂa. At higqh pressures, Figs. 10.7 and 10.8,
both ¢ and o tend to be lower than predicted, althnugh ¢ is
snmewhat uncertain because of the uncertainty in ?. If the
dunites are used as a base tn estimate mantle cnmpositions,
then at high pressure larger prnpnrtions of bnth Sif]2 and
FeD are nbtained (assuming that the dunites are indeed in a
phase cnrrespnnding tn nxides mixtures). In particular, the
value nf X would be increased by about .05, corresponding
to an increase nf about 5% by weight nf Fe0 to values closer
to those of Andersnn et al.

The estimates of irnn content determined here from the
nxide equations of state are lower than those of Anderson
et al., and slightly lower than that of Al'tshuler et al.
(1972b), especially if the dense phase assemblage is assumed,
as suggested by Ringwnod (1969, 1970). In fact, the iron
cnntents in the latter case are quite clnse tn those nf
Ringwnod's (1970) pyrnlite (8.5% FeO + Fe,04 by weith) and
Graham's (1970) determination of the upper mantle iron cnn-
tent (12% Fe0 by weight). A uniform iron content through-
nut the mantle would thus be permitted by this study. It
has already been noted that a silica content comparable to
that of a pyrnlite (about 40 mnle%) and a phase assemblage a
few percent denser than the oxides mixture would imply a
quite reasnnable temperature distributinn.

It has been suggested (Strens, 1969; Davies and Anderson,



249

19713 Gaffney and Andersnn, 1972) that iren might undergn an
electronic spin transitinn in the lower mantle, reducing the
radius of the ion, increasing the density of the material,
and possibly requiring a new crystal structure. An octa-
hedral coordination of the iron is probably required to pro-
duce spin transition, and nnt all candidates for dense phases
have any or all iron in octahedral sites (Gaffney and Ander-
son, 1972). An extreme case is probably nbtained by assum-
ing that the iron occurs as Fe0 in the rocksalt (wistite)
structure, in which it is all nctahedrally conrdinated. Ac-
cording ton the discussionon nof Gaffney and Anderson (1972),
the effect of a spin transition would be to increase the
density of the FeO from about 5.9 g/cm> to about 7.5 g/cm>,
while the value of ¢ would not be greatly increased. The
only significant effect from this is that the estimates of
iron content are reduced by about half. As nnted, this is
an extreme estimate, so a probable range of irnn contents
would be 9-10% by weight for the nxides mixtures and 6-8%

by weight for the denser phase assemblages. Thaese bracket

the iron content of pyrolite (Ringwood, 1969, 1970).
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Fig. 10.1. Calculated isnthermal densities and seismic pa-

rameters, ¢ , nf Mg0. Dashed curves are 2,000°K values from
Al'tshuler et al. (1972).
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Fig. 10.2. As in Fig. 10.1, but for stishovite. Short-

dashed curves are 2,000°K values from Cases 1 and 3 of Chap-
ter 70
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Fig. 10.3. Estimated 2,000°K values of density and ¢ for
Fel using dK/dP values of 3.5 and 4.0. Dashed curves are
2,000°K values of Al'tshuler et al. (1972).
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Figq. 10.4. Zero-pressure values of density and ¢ of various
oxides and silicates (snlid circles). Open circles are es-
timated values for mixtures of MgO, FeO and Si0» (stishn-
vite) of nlivine, pyrnxene and garnet stoichinmetries.

Snlid and dashed lines of pnsitive slope join real or hypo-
thetical polymorphs. Dashed lines of negative slope join
isnmorphs formed by irnon substitution. After Davies, 1972,
unpublished manuscript.)
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Fig. 10.5. Comparison of Mg0 and stishovite with mantle
mndels - Al, Bl, B2, Jordan (1972); AJ, Andersnn and Julian
(1969); HB, Haddnn and Bullen (1969); BII, Birch (1964).
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Fig. 10.6. Zern-pressure density and ¢ of mndels BII and HB
compared with 300°K values for Mg0, stishnvite, mixed oxides
(snlid lines) and pnst-mixed-nxides (dashed) of nlivine and
pyroxene stoichinmetries. Numbers give the mnlar ratin
Fe/(Mg + Fe). Alsn shown are derived values far Twin Sisters
dunite (plusses) and Hortonalite dunite (crnsses) Cases 1

and 2 (Table 10.2). Dashed arrnws indicate calculated ef-
fect nof temperature change indicated in legend.
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Fig. 10.7. As in Fig. 10.6, but at 0.5 Mb pressure and
2,0000K, and with mndels Bl and HB. Different stishnvite
cases are labelled S1, S2 and 3. Al'tshuler et al.'s (1972)
stishnvite and Mg0 ponints are labelled SA and A, respectively.
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Fig. 10.8. As in Fig. 10.7, but at 1 Mb pressure and 2,000°K.
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Fig. 10.9. Temperatures inferred for different compnsition
and phase combinations compared with other estimates nf man-
tle temperatures - triangles: Anderson (1967b); errot flag:
Graham (1970); W: Wang (1972); RS: Reynnlds and Sumners
(1969); arrows: estimates of melting temperature of iron at
the inner-nuter core boundary (C) and the core- mantle bound-
ary (C-M) by Higgins and Kennedy (1971).





