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ABSTRACT

The Cartesian Access Method (CARTAM) is a data
structure and its attendant access program designed to
provide rapid retrievals from a data file based upon multi-
dimensional keys; for example, using earth surface points
defined by latitude and longitude, retrieve all points
within x nautical miles. This thesis describes that data
structure and program in detail and provides the actual
routines as implemented on the International Business
Machine (IBM) System/370 series of computers. The search
technique is analogous to the binary search for a linear
sorted file and seems to rum in O(log(N)) time. An
indication of the performance is the extraction, in less
than 25 milliseconds CPU time on an IBM 370, Model 3033, of
all points within a 10,000-foot circle from a geographic

data base containing approximately 100,000 basic records.
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CHAPTER I

INTRODUCTION

The age of information is upon us. Whether the com-
puter has been developed to allow us to manipulate that
information or to generate it is a moot question at this
time; we do have large masses of data and must use the
computer to manage them efficiently. The corporate data base
has become an all-important entity in many, many cases, and
the management and retrieval of information has become a far
from trivial operation; witness the proliferation of data
base management systems on the market today. I am not
trying to address that massive subject; rather a small
corner concerned with the efficient searching and retrieval
of pertinent information to answer some rather specific

questions.

It is extremely rare that a gquestion is asked which
requires access to an entire data base to develop the answer.
In the vast majority of cases, we only need to examine
certain rather small subsets of the available data. Many of
these instances involve the determination of a key value or
a range of key values which are then used to access the

appropriate record (s} to answer the original query. So far
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these keys have been single-dimensional values used to probe
a linear sequential file of some particular organization.
There have been many methods developed to solve these types
problems; Knuth devotes an entire volume to them [8].
However, if the information is keyed by multi-dimensional
values, such as points in Cartesian space or locations on
the surface of the earth, existing methods do not readily

lend themselves to ansver questions of proximity or nearness.

This paper presents a solution to the problem of
efficient probes into multi-dimensional data using a method
of gquadrature to develop a data structure which has become
very useful for questions such as: "Which resorts are within
a day's drive of my home?®; "How many doctors and dentists
are located in the state of Arizona?%; ®What types of
navigation aids are available for an airline route from San
Francisco to Moscow?®, etc. I shall develop this structure
and the implementation of some computer programs which

provide the answers to these and other similar questions.

The first of three main divisions of this thesis is a
step-by~-step development of the data structure and its algo-
rithm. In order to establish an initial environment,
Chapter II briefly describes some geographic data files in
use at Headquarters, Strategic Air Command (SAC) and the
methods that were used to query those files. After exami-

nation of the problem, the basic algorithm for our solution
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is developed in Chapter III. This development is in one
dimension, specifically the real line, as illustration to
allow comparison with existing file search strategies, in
particular the binary search scheme. As such, the algorithm
and structure will appear very cumbersome; the utility of
the method becomes apparent in Chapter IV as the structure

and algorithm are gemeralized to n dimensions.

The second section of this paper covers the technical
aspects of the actual implementation. Chapter V is intended
as a user's guide for the programmer/analyst who plamns to
use this n-dimensional programming techique to solve a
specific problem. The implementation is as a subroutine,
and this chapter describes the calling sequences and the
results that are to be expected. Chapter VI goes into the
internal workings of CARTAM and is maintenance information
intended for the assembly level programmer who wishes to
both install the system on his own hardware and/or maintain

it while in use.

Once the reader is aware of the available operations,
a series of examples is presented in the third section to
demonstrate the use of the system. Chapter VII describes
a few of the current application programs in day to day use
at Headquarters SAC. These programs may prove to be useful
to the reader in their own right, but the main purpose is to

illustrate some methods and show how the data structure may
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be used. I hope that they will serve as jumping-off places
for solutions to existing problems that had been deemed
either unsolvable or too costly to solve using previously
knowvn methods. Chapter VIII concludes with some thoughts
and recommendations on possible future applications and

improvements.

The appendices, with one exception, are listings of the
programs that have been in use at SAC for the last year.
Appendix B contains a detailed description of a distance-
calculation function or metric used to compute geodetic
distances on the surface of the earth. This metric is used

throughout the examples in Chapter VII.



CHAPTER II

BACKGROUND AND PROBLEM ENVIRONMENT

The data structure and access techniques as described
in this thesis were developed primarily at Headquarters,
Strategic Air Command, Omaha, Nebraska, and specifically
applied to geographic data files used by the Joint Strategic
Target Planning Staff. These particular files are used as
concrete examples and are not intended to imply that these
are the only possible applications; the method may be

applied to any multi-dimensional data file.

The first file that was examined consists of approx-
imately 50,000 records describing points on the surface of
the earth. Most of the information in each of these records
is of no consequence to this discussion except for a unigue
21 character key which can be used for retrieval of a
desired complete record, and the latitude and longitude

which specify the location of the item on the earth.

Queries against this file by location have been limited
to small areas which allowed use of a limiting procedure
based upon a range of latitude values. This procedure

started with an external sort based on the concatenation of
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latitude and longitude into a single key used for sort
sequence. The resultant file was then read a record at a
time, checking for inclusion inside a gross "box"™ defined by
constant latitude and longitude, storing candidate prime
keys in an internal table. Since the file is sorted with a
major key of latitude, the read procedure is terminated when
the input latitude is greater than the upper limit of the
box. Note, however, that many records are read which will

fail the gross longitude check.

After the table of candidate keys is built in main
memory, a finer discrimination is made with an appropriate
metric to arrive at the final set of accepted records. Some
applications are summarizations that permit the packaging of
several distinct queries into a single program. Since each
candidate may then be examined for each criterion, a large
number of the disk input operations are eliminated.

However, this method is absolutely memory-bound and cannot
afford a criterion resulting in a large candidate subset of

the original file.

An attempt at clustering has been applied to this geo-
graphic data resulting in an "island®™ system. These islands
have been defined such that each island is disjoint from all
others with a minimum separation between any two adjacent
islands. The island assignment procedure is simply a scan

through the entire file as described above, looking for the
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island that is less than the minimum distance away from the
new point. Another way to consider the clustering is that
an island is the collection of all those points that are
within the maximum separation of another point. This does
manage to cluster points in manageable groups in most cases,
but occasionally islands grow to an unwieldy size. Those
islands are then manually broken up by using a smaller

separation distance.

Once the islands have been assigned, a non-trivial
process, subsequent processing is usually done on an island
basis. An application program is given an island to
process, at which time all members of that island are read
into main memory and the necessary fine discrimination is
applied to that subset. This methodology is not too
unmanageable as long as the number of members does not get
too large; anything over approximately 500 records begins
to degrade performance. The island approach also limits the
fine discrimination to a distance criterion no greater than
the minimum separation between islands. If the desired
distance is greater than the minimum separation, the method
breaks down completely since the search area may need more

than one island.

A second major file concerns points used to describe
country and coastal boundaries for mapping applications.

This data set contains approximately 100,000 data points
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and is stored in a sequence suitable for display on an x-y
plotting device. The mapping software is capable of
discarding those points outside of the area being mapped,
but the entire file must be read each time, which drives the
computing times to rather large values. When maps are being
prepared in a batch environment for hard-copy output to be
produced on a flat-bed plotter, the high CPU time may be
acceptable, but not in an interactive environment with maps
to be displayed on a CRT device. The only known method of
operation was to pre-build desired maps overnight, which
restricted a user to those, and only those, maps. If, for
any reason, the user changed his mind, new maps were not

available until at least the next day.

As can be seen, in many instances we have been strictly
memory-bound for area type queries after reading the entire
source file. The attempt at clustering the data has
improved this to some extent, but only if the distance cri-
terion is not too great. Even so, programs have been
required to define internal table space to allow for the
maximum size of a cluster and discrimination within the
cluster required a distance calculation from the point of
interest to every member of that cluster. The data
structure and techniques described in the remaining chapters

have removed these restrictions entirely.



CHAPTER III

AN UNUSUAL DATA STRUCTURE
FOR THE REAL LINE

The problem of retrieval of information from a large
file is usually solved by determining a unique key for each
record, imposing an ordering operator (>} on the key field
and subsequently storing the data in a linear fashion on
secondary storage. Retrievals may then be accomplished by
several efficient search strategies, e.g., binary search,
hashing, etc. If the individual records are substantial in
size, indexes are useful in reducing secondary storage
access time, but the problem of searching the index has not

changed.

An order is imposed upon the key values to increase the
amount of available information. 1A linear sweep of such a
file may be terminated when the key value becomes greater
then the desired argument, where a random ordering would
require examination of every key value in the file. This
linear probing of a sorted file results in an average access
of N/2 records, where N is the total number of keys in the
file of interest. A much faster technique is the so-called

binary search, which probes the median record in a sorted
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file and determines which half might contain the desired
key, thus discarding the other half. Considering the
remaining sub-file as a file itself, the median record of
the sub-file is then probed. This algorithm terminates
successfully vhen the desired key is found, or terminates
unsuccessfully when adjacent keys in the file bracket the
desired value. The binary search algorithm accesses an
average of approximately log2(N) records and is said to run
in log (N} time. These algorithms have an underlying
assumption that the key values may be mapped one-to-one with
a subset of the integers in a meaningful way which allows
for the application of an ordering operator and subsequent

sorting of the file.

However, if the file consists of geographic data, for
example, with latitude and longitude for coordinates, the
concept of ordering becomes nebulous at best. It is true
that on a general purpose computer, the latitude and
longitude may be defined in such a fashion as to each reside
in a computer word of, say, 32 bits. These two computer
words could be concatenated into a 64-bit key value, and
the file could then be sorted accordingly. A problem arises
vhen trying to decide which coordinate is to be considered
as the major portion of the key. If latitude is chosen as
the major key, then data points with identical latitude will
be ®close®™ together in the file, but data points with iden-

tical longitude may be ®far*" apart in the file structure.
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Since points on the surface of the earth as denoted by
latitude and longitude have their own problems in relation
to a metric, let us suspend consideration of geographic
points for now and concentrate on a Cartesian space, i.e.,
the cross product of the real line, in n dimensions. The
simplest Cartesian space is the real line itself where
n = 1. Thus, the following discussion will be limited to
the one-dimensional case and may appear unnecessarily
complicated at times, but remember that the eventual goal is

the extension to n dimensions.

Let us examine a binary search strategy as applied to a
linear, sorted file. In particular, consider a "uniform
binary search®™ as described by Knuth [8,pg 413 ] using Shar's

modification.

Given a table of records R1, R2, ... , Rm, whose key
values are in increasing order K71 < K2 < ... < Km, we can

search for a specified argument K, using algorithm C:

Ci[ Initialize]
Set i1 := 2%**k where k = tlog2(m)2.
(NB: tlog2(m)+ is the floor of log2(m) or the
greatest integer < log2(m}); i.e., kX = tlog2 (m}J

is an integer such that k £ log2(m) < k + 1.}
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If K Ki, algorithm terminates Successfully.

If K < Ki, set 4 := 2%%k, go to C2.
If K > Ki and m = 2**k, algorithm terminates
unsuccessfully,
but if m > 2**k, reset i :=m + 1 - 2%*j
wvhere j = tlog2(m-2**k}s + 1,
(note that 2%*k - 1 < m + 1 — 2*%j < 2%%k)

set 4 := 2**j, and go to C3.

C2[ Decrease 1i]
If d < 1, algorithm terminates unsuccessfully;

else set d == 4/2,

C3[ Increase 1]
Ifd £ 1, algorithm terminates unsuccessfully;
else set 4 := d/2,

set i :=1 + 4,

go to C4.

C4f Compare ]
If X < Ki, go to C2.
If K > Ki, go to C3;
othervise K = Ki and

algorithm terminates successfully.
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The choice of the underlying storage organization for
our table of records is a crucial consideration. If the
table is small enough to be contained entirely within the
primary store of the computer, transformation of the index
value i into a displacement into the table is a simple
calculation. However, complete residence in primary store
may be prohibitively restrictive, as a table of any
appreciable size must be on secondary storage. In addition,
the transformation of the index into a displacement into a
multi-dimensioned table becomes complex. Por these reasomns,
and others as will become apparent later, I have chosen to
store structural information in an explicit binary tree,
with modifications. Instead of the left and right links of
the usual binary tree, I use the child and twin pointers of
a ring structure or circular list. This ring structure as
illustrated in figure 3-1* also includes the parentage
information usually provided by an up-link without needing
the additional pointer space in the record entry. A single
bit in each record serves to indicate when a twin pointer is
in fact an up-link. It is also convenient to include an
*The usual depiction of chains in linked lists in diagrams
is from left to right. The usual representation of a
negative number in a general purpose computer is with a
bit set to ®1®*. When a linked list chain is arranged in
ascending order based on a bit string of arithmetic signs,
we then have an inversion betvween a picture of a line

segrent and the corresponding list. I hope this will cause
no problems to the reader.
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explicit indication as to vwhether a particular record is the
positive or negative child of its parent record. This

indicator is a single bit in the one-dimensional case.

Since the file is being stored as an explicit binary
tree, note that additional records are being generated, and
the concept of an ®i-th"®™ record for the algorithm becomes
imprecise. Assume for the moment that the key values (Ki)
are integers uniformly distributed over the interval -X to
+X where X = 2*#x and x is the smallest integer greater than
or equal to log2(max ({Kif}), i.e.,

x - 1 < log2(max (IKi}}) < x.
Then a root record with a key value of 0 and a delta of X
defines the interval = 0+X as a cover for all key values of
interest, i.e., a line segment that contains all key values
within it. Dividing the interval in half, the root segment
nov¥ has a positive child and a negative child at the next
level of detail. In the ring structure under consideration,
the positive child is reached from the child pointer of the
root record, while the negative child is reached by following
the twin pointer of the positive child. The negative child
record will have the parent indicator set showing that the
tvin pointer in that record points back to the parent,
closing the ring. Carried to the logical conclusion, each
record in the file defines a finite length line segment by
specifying the center coordinate value and a delta or line

length to either side of the center.
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There are some important points to keep in mind about
the line segments as defined by the file records. The
children of a given record subdivide the line segment as
defined by the parent record. In particular, if we consider
a record as defining a set, which is exactly a line segment
in the one-dimensional case, the set intersection of records
connected by twin pointers is empty, while the union of
those same records is identical to the parent record. These
conditions of intersection and union also imply that the
the intervals defined by the records are only half-closed,
specifically, closed at the left end and open at the right
end. As an example, assume that vwe have a set of key values
such that -15 < Ki £ #15. Then, x = 4, and the first few

generated binary tree records are:

Record num Key (Ki) Delta Twin ptr Child ptr Direc

1 o 16 e 2 i
2 8 8 3 4 +
3 -8 8 1* 6 =
4 12 4 5 8 +
< 4 4 2% 10 -
6 -4 4 7 +
7 -12 4 3% =
8 14 2 9 +
9 10 2 4% -
10 6 2 11 +
11 & 2 5% =

The asterisks in the twin pointer column indicate the end of
the ring, i.e., the parent pointer. VNote that the delta

value for each record defines the distance from the center
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to either end of the line segment, i.e., delta is one-half
the length of the interval. Graphically this can be

represented by:

Record num =16 -8 0 +8 +16
1 { )
2 3 )
3 £ )

4 i}
5 )
6 P
4 =y
8 )
9 )

10 I

11 I

If the key values are dense in the integers, i.e., the
difference between consecutive keys is exactly one, then the
length is halved each time we follow a child 1link or
descend one level in the tree. Also, if we follow the twin
link, unless marked as an up-link, we remain at the same
level in the tree, but go to the complementary line segment.
Hovwever, since key values are very rarely dense in the
integers, stict adherence to the notion of equal deltas at
the same level in the tree would result in extra nodes which
have only one child instead of two. Therefore, ve eliminate
an extraneous node by replacing it in the ring with its only
child. Notice that now delta values are not necessarily
halved when following a child link, nor are they egqual along
a twin chain. Thus, it becomes useful to explicitly carry

the delta value in the record entry.
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The binary tree as stored on a secondary storage medium
contains twvwo basic types of records: terminal records
corresponding to the original data points, and internal
nodes or branch points of the tree which have been generated
due to the structure definition. Each record, accessed

through a pointer of value P, consists of:

1) a key or coordinate value of the center of the
interval ' K (P)

2) a delta value of one-half of the length of the

interval D (P)
3) a child pointer Child (P)
4y a twin pointer Twin (P}

S5) if the record is a terminal, additional data
germane to the original data record
6) various flags, such as:
a. node or terminal indicator
b. end of twin chain in ring, and
c. the sign of the difference between the record's
coordinate and the coordinate of the parent of

this record as a direction indicator ¢ (P)

It is obvious that construction of this explicit binary
tree generates overhead with the node records. Since extra-
neous nodes have been eliminated, any record with a non-null
child pointer has two children. To determine just how much

overhead is generated, let t be the number of terminals
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present, and let x be the number of generated nodes. If t°
and t® are subsets of t such that t®* = 2#%%k® and t* = 2%*k®
for some integers k® and k™, then the number of nodes
generated for the appropriate subtrees are x®* and x".
Applying the summation of a geometric progression with a
ratio of 2, and noting that any two subtrees may be
connected with one additional node, we obtain:

X® 4+ X% = (¢° - 1} + (t* - 1)} + T = t? + t® -~ 1,
By induction, then,

x =t - 1.

When storing the tree on a secondary storage medium, it is
useful to have a master node, the root, at a location in the
file that is élways known. The only location that is always
known is the first one; therefore, we add an additional
node to the structure as the master root record, which makes
the total number of generated nodes equal to the number of

terminal records.
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With the structure as just defined, the earlier search
algoritha C is modified to give algorithm T to search for a

given argument K:

T Initialize]

Set P := root.

T2[ Compare ]
Set D := K - K(P).
If D =0 and D(P) = 0, terminate successfully.
[ Record is a node if D(P} > 0.]
If D2 0, go to T3;

else go to T4.

T3[{ D positive]
I£f D 2 D(P), terminate unsuccessfully;
else set P :=:= Child (P},

go to T2.

T4[ D negative]
If D < -D(P), terminate unsuccessfully;
else set P := Twin(Child (P)},

go to T2.

When searching for a specific argument K, algorithm T
Bay seem unnecessarily complicated. However, if the search
is for all records with key values in the range K & 4,
algorithm T may be extended in the following fashion with a

stack, as algorithm R®':
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R*1[Initialize]

Set P := root.

R*2[Compare ]
Set D := K -K(P).
If D 20, go to R*3;

else go to R4,

R®3[D positive]
If D2 (d +# D(P)), go to R*6;

else go to R®5.

R*4[D negative]
if DL ~-(d + D(P}}), go to R%*6;

else go to RS,

R*5[Check overlap]
If D) < (@ - D(P}),
present entire subtree as successful,
go to R®6;
else set P := Child (P},
push Twin (P} to stack,

go to R®'2.

R*6[Pop stack]
If stack is empty, terminate;
else pop P := top of stack,

go to R*2.
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Algorithm R®* allows extraction of information from the
binary tree structure. However, before any extractions can
be performed, the tree must be built. After initialization
and definition of the file by writing a master node record,

repeated insertions using algorithm I® will build the file.

I®*9fInitialize insert]
Set K := key value of record to be inserted.

Set P := root (pointer to master node) .

I'2 Set D :

K - K(P).
Set Q := sign(D}.
If |ID} < D(P}, go to I*3.
If D} > D(P), go to I*'5.
otherwise (}D} = D(P}))}, so
if Q = ®*+®, go to I'S (open end of interval);

else go to I'3 (closed end of interval).

I*3[Inside]
Set P* := P.
Set P := Child(P) .
I'4fwalk ring]
If Q = Q(P), go to I'2.
If Q > Q(P), set P := Twin(P), [R4® ¢ Bwam)

go to I®4

else go to I'S.
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I*5f{Outside; record (I) to be inserted was inside the
line segment defined by node(P®} and was on the Q
side of the center of that segment. The existing
child on that same side, record(P), defines a line
segment which does not include the new record(l).
Replace record (P) in the ring with a new node (P®),
and make the new record (I) and record (P} children
of node (P™) . ]

D(pP*).

Set D(p®} =

Set K (P™) K(P*).

Set Q(I) := Q.
Repeat [Adjust Record (P™) ]
Set D(P™) := D(P™)}/2;
If Q(I) = ®maw,
then set K(P®) == K(P®} + D(P"),

else set K(P®} := K(P®™) - D(P");

Set Q(I) := sign(K(I} - K (P"®});
Set Q(P) := sign(K(P} - K (P")}) ;'

until Q(I) # Q(P) .
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I*6[Adjust pointers]

If Q(I) <
then
set
set
set
else
set
set

set

The structure

Q (P) [rem < M=)

Child (p"™) := I,
Twin (I} == P,

Twin (P) := P® and mark as parent;

Child (p™ := P,
Twin(P) := I,

Twin (I) := P"™ and mark as parent.

and techniques just described are much

too complicated for efficient application to data keyed from

the real line. However, the real line is simply the

degenerate case of

the eventual goal, n-dimensional space,

and is described in detail for ease of illustration. As

will be seen in the next chapter, the n-dimensional case is

obtained from this

development with quite simple extensions.
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CHAPTER IV

GENERALIZATION TO n-DIMENSIONAL SPACE

The last chapter discussed at some length a rather
unusual data structure for information keyed by a single
coordinate. In this chapter, I will present the extensions
to the data structure and algorithms which provide for the

n-dimensional case and give the rationale for the design.

One of the more obvious questions concerns the use of a
ring structure rather than the usual binary tree linkage of
elements. After all, each record carries two link pointers
while the ring has only two elements. The two pointers
could just as well have been left and right links, elimi-
nating the requirement to walk over the positive record in
order to access the negative record. However, in extending
to a higher dimensionality, the number of pointers required

to define the structure increases exponentially.

In particular, in n-dimensional space, a given ring may
contain up to 2**%n entries. The ring structure allows this
expansion of the number of entries with no additional
pointer requirements, while a separate pointer in the record

for each possible child rapidly consumes an inordinate
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amount of space. The ring structure also accommodates the
absence of records very nicely, while individual pointers
vould have null values in many cases. Then there are
additional physical limitations imposed by the computer
hardwvare. As an example, consider the IBM 360/370 series of
computers which use an address of 24 bits. If individual
pointers were carried in a record, an application with 25
dimensions, for example, would require a record format with
2#*25 pointers. This technique obviocusly would require a
record much greater in size than the entire available

computer memory.

The overhead generated by the tree structure is a
direct result of the node records that define the structure.
This overhead has been minimized to an extent by elimination
of extraneous nodes, i.e., those nodes which would have only
a single child. I have shown that in the one-dimensional
case the number of node records is equal to the number of
terminal records. Por the n-dimensional case, this number
becomes an upper bound for the worst case situation where
any given node has only two children. Most nodes in the
n—-dimensional case will have more than two children; in
other words, a twin chain will normally be longer than two
entries, but in no case will the length of the twin chain be

greater than 2%#*n.
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The upper bound U for the number of nodes in a file
with t terminal records is exactly equal to t. The lovwer
bound L is attained when every node has r = 2**n children
or the twin chain length is r. As was done for the one-
dimensional case, t could be broken down as a summation of
integer powers of r, but since r subtrees would have to be
joined under a junction node to maintain optimality, and we
are only interested in a lower bound, it is convenient to
assume that t is already an integer power of r. Using
the sum of a geometric progression once again, now with a
ratio of r between successive terms, the lower bound is:

L=1+(t-MNN/(r -1.
For an example, assume n = 2 and t = 65,536 = 4*%8_, Then
the upper bound U = t = 65,536 node records, while the lower
bound L = 21,846 or roughly 0.3t node records. The approx-
imate range of 0.3t to 1.0t therefore indicates the actual
nusber of nodes. Actual experience with a geographic data
file has resulted in a file structure with approximately

0.7t node records.

These considerations, then, dictate the use of a ring
structure vhile the record content as given in the last
chapter is extended for n dimensiomns as:

1) n key or coordinate values for the center of a

(hyper~) square Ki(P)

2) a delta value of one-half the length of a side

D (P)
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3) a child pointer Child (P)
4) a twin pointer Twin (P}
5) application dependent data for terminal records
6) various flags:
a. node or terminal indicator
b. end of twin chain indicator
c. a quadrant indicator of n sign bits of the
difference between each coordinate of the
record and the corresponding coordinate of the

parent record Qi (P)

As an example of the list structure compared to an
actual square from a Cartesian space, see figure 4-1.
Figure 4-1a shows the example sgquare, while figure 4-1b
depicts the list as defined by the node and terminal
records. The root node A defines the outer square which is
then subdivided by the four children, B, C, D and E. The
square defined by node E is then subdivided further by its
children, P, G and z while the children of B, C and D are
not shown. Rode G is then subdivided even further by H, x
and y. Again, the children of P and H are not shown. The
terminal record z specifies the only data point in the "+-%
quadrant of E, while the ®—® guadrant is empty as indicated
by the absence of a corresponding record in the list.
Terminal records x and y likewise specify the only data

points in appropriate quadrants of G. Overall, the process
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of subdivision is continued until a quadrant of a given
square contains a lone terminal record; a node record is

never defined unless it would have at least two children.

The n+i1-tuple (K1(P) ,K2(P},e-=,Kn(P),D(P})}, where
each coordinate Ki(P), in connection with D(P}, defines a
half-open interval as in the one-dimensional case, defines a
square if n = 2, a cube if n = 3, and a hyper-cube if n > 3.
Since a cube may be considered a hyper-square, and examples
are presented in two dimensions much more facilely than in
higher dimensions, I shall use the term square in the
remainder of this paper to refer to the object defined by
the n+1-tuple. . In a similar vein, I shall use the term
rectangle when referring to the object defined by an ordered
pair of n-tuples; the first n-tuple is a vector of
coordinates defining the lower limits of the intervals or
the lower left corner, while the second n-tuple is a vector
of the upper limits of the intervals or upper right corner.
Note that in the case of the rectangle, the intervals

defining the sides are closed at each end.

The rectangle is used primarily in conjunction with an
area search request, algorithm R®, but is also useful in
the insertion scheme, algorithm I®*, by allowing the
rectangle to degenerate to a point. 1In both instances, the

algorithms essentially ask the gquestion, "Does a sqguare as
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stored in the file intersect with the search rectangle?
If it does, is the square totally inside the rectangle or

vice versa?® Let®s examine the area search first.

As will be seen when algorithm R®* is extended to n
dimensions, the question of intersection is as stated above.
See figure 4-2 for some pictorial examples of possible
situations with a search rectangle as defined by X. Squares
A, B, C and D have non-empty intersections with X, but there
is insufficient information to make a positive decision;
the structure must be examined further at a finer level of
detail. Square E has an empty intersection with rectangle
X; therefore, we may discard the entire subtree by
proceeding immediately along the twin chain. Square P is
totally enclosed by X; thus, the entire subtree may be

accepted as meeting the search criteria.

Returning to square D for a moment, there is additional
information available, namely only one particular child of
the square could possibly be of use to the search request.
As will be seen, determination of the intersection involves
arithmetic on the coordinates; construction of a Q type bit
string is very simple. If such a bit string is constructed
for each of the limit vectors, high and low, and the bit
strings are then identical, the only child of interest will

be exactly that child with the same bit string Qi(P).
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Conditions for Intersection

Figure 4-2
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The search application uses an ordered pair of n-tuples
or vectors to define the rectangle, while the insertion
algorithm uses a single vector as input for the record to be
inserted. If vwe let that single vector be used twice, i.e.,
as a definition of a degenerate rectangle, the same set
intersection function may then be used in the insertion
algorithm. It will turn out to be useful to allow insertion
of terminal records with identical coordinates, although
differing ancillary data, which can be done by inserting a
node record with a zero-valued delta and then chaining term-
inal records as children of that node. If the set inter-
section function is able to indicate whether the degenerate
rectangle is totally inside the square and vice versa, and
if both conditions are true, then the identity intersection
would be indicated. Note that as a result of the half-open
character of the square definition intervals and the closed
nature of the rectangle defining intervals, the identity
intersection technically could never occur. Hovever, since
computer arithmetic is finite in nature, the identity
intersection can occur, but only when the intersection is
between a degenerate rectangle and a node with a zero delta
or a terminal, i.e., a data point, which is exactly the

condition that the insertion algorithm will need.
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Since the set intersection function is very important
to both the search and insertion algorithms, and will be an
extremely high-use section of computer code, it is developed

here in detail.

Let the search rectangle X be defined by the ordered
pair of n-tuples ((x1,x2,.-.,%X0n),(Y%,Y2,..-,¥Y0n}) where
xi € yi. The square A from the file is defined by the
n+1-tuple (al,a2,...,an,d}, vhere the delta value 4 2 0.
[In the following, the symbol & is for logical ™and®™;

the symbol | is used for logical *"or®.]

1. At least part of the rectangle is outside of the
square if the intersection of X and -2 is not empty. The
intersection is not empty if there exists an i:

(@i - d > xi) | (yi >ai +d) } (@i +d =y1i €643 # 0).
Rearranging terms,

(@i - xi >d)y |} (yi —-ai > 43 ) (yi —ai =43 # 0}.
Since d 2 0 by definition, the two terms containing yi may
be combined, giving

(@i - xi > d) | (yi —ai 24 > 0).
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2. Por the converse of condition 1, at least a portion
of the square is outside of the rectangle if the intersection
of A and ~X is not empty, which is the case if there exists
an i:

(xi > ai - d) ) (ai + d > yi).
Rearranging teras,

(ai - xi < d) | (yi —ai < d).

3. The intersection of the rectangle X with the
square A is empty if there exists am i:
(@i - d > yi) ) (@i + d < xi} } (@i + d =xi &€ 4d # 0).
Rearranging teras,
(@i — yi > d) | (xi —ai >d) | (xi —ai =4 # 0).
As in condition 1, 4 2 0 allows the combination of the terms
containing xi giving

(ai - yi > d) | (xi —ai 2d > 0).

Pigure 4-3 shows a flow chart of INTERSECTION_FUNCTION
after combining the three tests; the two Q bit strings are

also set as appropriate.
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----- check high limit

-(ai-yi) Set yoi
< <
(yi-ai) =0
2 >
(1)X - in A (2)A -~ in X jp=g¢ (3) Empty
check low limit

-{xi-ai)

Set xQi

</////
(xi-ai) :d

(2)2 -~ in X |t (3) Empty

Y

Flow Chart of INTERSECTION_FUNCTION

Pigure 4-3
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Algorithm I® may now be extended to n dimensions to

give us algorithm I:

I Initialize insert]}
Set Ki := coordinate values of record
to be inserted.

Set P := root (poimter to master node) .

I2 Execute INTERSECTION_PUNCTION (record (P},Ki,Ki).
If "Ki is inside record(P})®™, go to I3.

If "Ki is outside record (P} ", go to I5;

othervise an identity intersection, go to I5a.

I3[ Inside]
Set P* := P.
Set P := Child(p) .
I4f walk ring]
If 0i = Qi(P}), go to I2.
If 0i > Qi(P), set P := Twin(P), [ram C mon]
go to I4;

else go to IS5.

I5a[Add a duplicate coordinate record]
Set Qi := all =+»,
If record (P) is a node, go to I7;
else set P* := P,

go to I5.
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I5f Outside; r<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>