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ABSTRACT 

The Cartesian Access Method (CARTA~) is a data 

structure and its attendant access program designed to 

provide rapid retrievals from a data file based upon multi­

dU.ensional keys; for example, using earth surface points 

defined by latitude and longitude, retrieve all points 

within x nautical miles. This thesis describes that data 

structure and program in detail and provides the actual 

routines as impleaented on the International Business 

Machine (IBM) System/370 series of computers. The search 

technique is analogous to the binary search for a linear 

sorted file and seems to run in O(log(N)} time. An 

indication of the performance is the extraction, in less 

than 25 ailliseconds CPO time on an IBM 370, Model 3033, of 

all points within a 10 ,000-foot circle from a geographic 

data base containing approximately 100,000 basic records. 
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CHAPTER I 

INTRODUCTION 

The age of information is upon us. Whether the com­

puter has been developed to allow us to manipulate that 

information or to generate it is a moot question at this 

time; ve do have large masses of data and must use the 

coaputer to manage them efficiently. The corporate data base 

has become an all-important entity in many, many cases, and 

the management and retrieval of information has become a far 

fro• trivial operation; witness the proliferation of data 

base management systems on the market today. I am not 

trying to address that massive subject; rather a small 

corner concerned vith the efficient searching and retrieval 

of pertinent information to answer some rather specific 

questions. 

It is extremely rare that a question is asked which 

requires access to an entire data base to develop the answer. 

In the vast majority of cases, ve only need to examine 

certain rather small subsets of the available data. Many of 

these instances involve the determination of a key value or 

a range of key values which are then used to access the 

appropriate record(s} to answer the original query. So far 
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these keys have been single-dimensional values used to probe 

a linear sequential file of some particular organization. 

There have been aany methods developed to solve these types 

problems; Knuth devotes an entire volwae to them (8). 

However, if the information is keyed by multi-dimensional 

values, such as points in Cartesian space or locations on 

the surface of the earth, existing methods do not readily 

lend themselves to answer questions of proximity or nearness. 

This paper presents a solution to the problem of 

efficient probes into multi-dimensional data using a method 

of quadrature to develop a data structure which has become 

very useful for questions such as: •which resorts are within 

a day's drive of my home?•; "How many doctors and dentists 

are located in the state of Arizona?"; •what types of 

navigation aids are available for an airline route from San 

Francisco to ftoscow?•, etc. I shall develop this structure 

and the implementation of some computer programs which 

provide the answers to these and other similar questions. 

The first of three main divisions of this thesis is a 

step-by-step development of the data structure and its algo­

ritha. In order to establish an initial environment, 

Chapter II briefly describes some geographic data files in 

use at Headquarters, Strategic Air Command (SAC) and the 

methods that vere used to query those files. After exami­

nation of the problem, the basic algorithm for our solution 
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is developed in Chapter III. This development is in one 

dimension, specifically the real line, as illustration to 

allow comparison with existing file search strategies, in 

particular the binary search scheme. As such, the algorithm 

and structure will appear very cuabersoae; the utility of 

the aethod becomes apparent in Chapter IV as the structure 

and algorithm are generalized to n dimensions. 

The second section of this paper covers the technical 

aspects of the actual implementation. Chapter v is intended 

as a user•s guide for the programmer/analyst who plans to 

use this n-dimensional programming techique to solve a 

specific problem. The implementation is as a subroutine, 

and this chapter describes the calling sequences and the 

results that are to be expected. Chapter VI goes into the 

internal workings of CABTAM and is maintenance information 

intended for the assembly level programmer vho wishes to 

both install the system on his own hardware and/or maintain 

it while in use. 

Once the reader is aware of the available operations, 

a series of examples is presented in the third section to 

deaonstrate the use of the system. Chapter VII describes 

a fev of the current application programs in day to day use 

at Headquarters SAC. These programs may prove to be useful 

to the reader in their own right, but the main purpose is to 

illustrate some aethods and show how the data structure may 
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be used. I hope that they will serve as jumping-off places 

for solutions to existing problems that had been deemed 

either unsolvable or too costly to solve using previously 

known methods. Chapter VIII concludes with some thoughts 

and recomaendations on possible future applications and 

improvesents. 

The appendices, with one exception, are listings of the 

programs that have been in use at SAC for the last year. 

Appendix B contains a detailed description of a distance­

calculation function or metric used to compute geodetic 

distances on the surface of the earth. This metric is used 

throughout the examples in Chapter VII. 
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CHAPTER II 

BACKGROUND AND PROBLEM ENVIRONMENT 

The data structure and access techniques as described 

in this thesis were developed primarily at Headquarters, 

Strategic Air Command, Oaaha, Nebraska, and specifically 

applied to geographic data files used by the Joint Strategic 

Target Planning Staff. These particular files are used as 

concrete examples and are not intended to imply that these 

are the only possible applications; the method may be 

applied to any multi-dimensional data file. 

The first file that was examined consists of approx­

imately 50,000 records describing points on the surface of 

the earth. ~ost of the information in each of these records 

is of no consequence to this discussion except for a unique 

21 character key which can be used for retrieval of a 

desired complete record, and the latitude and longitude 

which specify the location of the item on the earth. 

Queries against this file by location have been limited 

to saall areas which allowed use of a limiting procedure 

based upon a range of latitude values. This procedure 

started vith an external sort based on the concatenation of 
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latitude and longitude into a single key used for sort 

sequence. The resultant file vas then read a record at a 

time, checking for inclusion inside a gross "box" defined by 

constant latitude and longitude, storing candidate prime 

keys in an internal table. Since the file is sorted vith a 

major key of latitude, the read procedure is terminated vhen 

the input latitude is greater than the upper limit of the 

box. Note, however, that many records are read which will 

fail the gross longitude check. 

After the table of candidate keys is built in main 

me•ory, a finer discrimination is made with an appropriate 

metric to arrive at the final set of accepted records. Some 

applications are summarizations that permit the packaging of 

several distinct queries into a single program. Since each 

candidate may then be examined for each criterion, a large 

number of the disk input operations are eliminated. 

Bovever, this method is absolutely memory-bound and cannot 

afford a criterion resulting in a large candidate subset of 

the original file. 

An attempt at clustering has been applied to this geo­

graphic data resulting in an "island" system. These islands 

have been defined such that each island is disjoint from all 

others with a ainiaum separation between any two adjacent 

islands. The island assignment procedure is simply a scan 

through the entire file as described above, looking for the 
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island that is less than the miniaua distance away from the 

new point. Another way to consider the clustering is that 

an island is the collection of all those points that are 

within the maximum separation of another point. This does 

manage to cluster points in manageable groups in most cases, 

but occasionally islands grow to an unwieldy size. Those 

islands are then manually broken up by using a smaller 

separation distance. 

once the islands have been assigned, a non-trivial 

process, subsequent processing is usually done on an island 

basis. An application program is given an island to 

process, at which tiae all members of that island are read 

into •ain meaory and the necessary fine discrimination is 

applied to that subset. This methodology is not too 

unaanageable as long as the number of members does not get 

too large; anything over approximately 500 records begins 

to degrade performance. The island approach also limits the 

fine discrimination to a distance criterion no greater than 

the ainiaum separation between islands. If the desired 

distance is greater than the minimum separation, the method 

breaks dovn completely since the search area may need more 

than one island. 

A second major file concerns points used to describe 

country and coastal boundaries for mapping applications. 

This data set contains approximately 100,000 data points 
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and is stored in a sequence suitable for display on an x-y 

plotting device. The mapping software is capable of 

discarding those points outside of the area being mapped, 

but the entire file aust be read each ti•e, which drives the 

computing tiaes to rather large values. When maps are being 

prepared in a batch enYironment for hard-copy output to be 

produced on a flat-bed plotter, the high CPO time say be 

acceptable, but not in an interactive environment with maps 

to be displayed on a CRT device. The only known method of 

operation was to pre-build desired maps overnight, vhich 

restricted a user to those, and only those, maps. If, for 

any reason, the user changed his mind, new maps were not 

available until at least the next day. 

As can be seen, in many instances we have been strictly 

memory-bound for area type queries after reading the entire 

source file. The atte•pt at clustering the data has 

improved this to some extent, but only if the distance cri­

terion is not too great. Even so, programs have been 

required to define internal table space to allow for the 

aaxiaua size of a cluster and discriaination within the 

cluster required a distance calculation from the point of 

interest to every ae•ber of that cluster. The data 

structure and techniques described in the remaining chapters 

have removed these restrictions entirely. 
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CHAPTER III 

AN UNUSUAL DATA STROCTUBE 
POR THE REAL LINE 

The problem of retrieval of information from a large 

file is usually solved by determining a unique key for each 

record, imposing an ordering operator (>} on the key field 

and subsequently storing the data in a linear fashion on 

secondary storage. Retrievals may then be accomplished by 

several efficient search strategies, e.g., binary search, 

hashing, etc. If the individual records are substantial in 

size, indexes are useful in reducing secondary storage 

access time, but the problem of searching the index has not 

changed. 

An order is imposed upon the key values to increase the 

amount of available infoaration. A linear sweep of such a 

file may be terminated when the key value becomes greater 

then the desired argument, where a random ordering would 

require examination of every key value in the file. This 

linear probing of a sorted file results in an average access 

of H/2 records, where I is the total number of keys in the 

file of interest. A much faster technique is the so-called 

binary search, which probes the median record in a sorted 
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file and determines which half might contain the desired 

key, thus discarding the other half. Considering the 

reaaining sub-file as a file itself, the median record of 

the sub-file is then probed. This algorithm terminates 

successfully when the desired key is found, or terminates 

unsuccessfully when adjacent keys in the file bracket the 

desired value. The binary search algorithm accesses an 

average of approximately log2(N) records and is said to run 

in log(NJ time. These algorithms have an underlying 

assumption that the key values may be mapped one-to-one with 

a subset of the integers in a meaningful way which allows 

for the application of an ordering operator and subsequent 

sorting of the file. 

However, if the file consists of geographic data, for 

exaaple, with latitude and longitude for coordinates, the 

concept of ordering beco•es nebulous at best. It is true 

that on a general purpose computer, the latitude and 

longitude aay be defined in such a fashion as to each reside 

in a computer word of, say, 32 bits. These two computer 

words could be concatenated into a 64-bit key value, and 

the file could then be sorted accordingly. A problem arises 

when trying to decide which coordinate is to be considered 

as the •ajor portion of the key. If latitude is chosen as 

the aajor key, then data points with identical latitude will 

be "close• together in the file, but data points with iden­

tical lon9itude aay be •far" apart in the file structure. 
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Since points on the surface of the earth as denoted by 

latitude and longitude have their ovn problems in r~lation 

to a aetric, let us suspend consideration of geographic 

points for nov and concentrate on a Cartesian space, i.e., 

the cross product of the real line, in n dimensions. The 

si.llplest Cartesian space is the real line itself where 

n = 1. Thus, the following discussion will be limited to 

the one-dimensional case and may appear unnecessarily 

complicated at times, but remember that the eventual goal is 

the extension to n dimensions. 

Let us examine a binary search strategy as applied to a 

linear, sorted file. In particular, consider a "uniform 

binary searchN as described by Knuth [8,pg 413) using Shar•s 

modification. 

Given a table of records Rl, R2, ••• , Rm, whose key 

values are in increasing order Kl < K2 < ••• < Km, we can 

search for a specified argument K, using algorithm C: 

Cl[ Initialize] 

Seti:= 2**k where k = Llog2(m)~. 
(NB: Llog2(•)~ is the floor of log2(m) or the 

greatest integers log2(m); i.e., k = Llog2(m}~ 

is an integer such that k S log2{a) < k + 1.) 
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If K = Ki, algorithm terminates successfully. 

If K < Ki, set d := 2**k, go to C2. 

If K > Ki and a = 2••k, algorithm terminates 

unsuccessfully, 

but if • > 2**k, reset i := • + 1 - 2••j 

where j = Llog2 (m-2••k}-' + 1, 

(note that 2**k - 1 S m + 1 - 2**j s 2**k} 

set d := 2**j, and go to c3. 

C2( Decrease i] 

If d S 1, algorithm terminates unsuccessfully; 

else set d := d/2, 

set i := i - d, 

go to C4. 

C3[ Increase i] 

If d S 1, algorithm terminates unsuccessfully; 

else set d := d/2, 

set i := i + d, 

go to C4. 

C4[ Coapare ] 

If K < Ki, go to C2. 

If K > Ki, go to C3; 

otherwise K = Ki and 

algorithm terminates successfully. 
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The choice of the underlying storage organization for 

our table of records is a crucial consideration. If the 

table is small enough to be contained entirely within the 

priaary store of the computer, transformation of the index 

value i into a displace•ent into the table is a simple 

calculation. However, complete residence in primary store 

may be prohibitively restrictive, as a table of any 

appreciable size aust be on secondary storage. In addition, 

the transformation of the index into a displacement into a 

multi-dimensioned table becomes complex. For these reasons, 

and others as will becoae apparent later, I have chosen to 

store structural information in an explicit binary tree, 

with •odifications. Instead of the left and right links of 

the usual binary tree, I use the child and twin pointers of 

a ring structure or circular list. This ring structure as 

illustrated in figure 3-1* also includes the parentage 

information usually provided by an up-link without needing 

the additional pointer space in the record entry. A single 

bit in each record serves to indicate when a tvin pointer is 

in fact an up-link. It is also convenient to include an 

*The usual depiction of chains in linked lists in diagrams 
is from left to right. The usual representation of a 
negative nuaber in a general purpose computer is with a 
bit set to •1•. When a linked list chain is arranged in 
ascending order based on a bit string of arithmetic signs, 
ve then have an inversion between a picture of a line 
segaent and the corresponding list. I hope this will cause 
no problems to the reader. 
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explicit indication as to whether a particular record is the 

positive or negative child of its parent record. This 

indicator is a single bit in the one-dimensional case. 

Since the file is being stored as an explicit binary 

tree, note that additional records are being generated, and 

the concept of an "i-th" record for the algorithm becomes 

imprecise. Assuae for the moment that the key values (Ki) 

are integers uniformly distributed over the interval -x to 

+X where X = 2**x and x is the smallest integer greater than 

or equal to log2(max(fKiC)), i.e., 

x - 1 < log2(max(tKit}) ~ x. 

Then a root record with a key value of 0 and a delta of X 

defines the interval = O±X as a cover for all key values of 

interest, i.e., a line segment that contains all key values 

within it. Dividing the interval in half, the root segment 

now has a positive _child and a negative child at the next 

level of detail. In the ring structure under consideration, 

the positive child is reached fro• the child pointer of the 

root record, while the negative child is reached by following 

the twin pointer of the positive child. The negative child 

record vill have the parent indicator set shoving that the 

tvin pointer in that record points back to the parent, 

closing the ring. Carried to the logical conclusion. each 

record in the file defines a finite length line segment by 

specifying the center coordinate value and a delta or line 

length to either side of the center. 
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There are some important points to keep in mind about 

the line segaents as defined by the file records. The 

children of a given record subdivide the line segment as 

defined by the parent record. In particular, if ve consider 

a record as defining a set, which is exactly a line segment 

in the one-diaensional case, the set intersection of records 

connected by twin pointers is empty, vhile the union of 

those same records is identical to the parent record. These 

conditions of intersection and union also imply that the 

the intervals defined by the records are only half-closed, 

specifically, closed at the left end and open at the right 

end. As an example, assume that we have a set of key values 

such that -15 s Ki S +15. Then, x = 4, and the first few 

generated binary tree records are: 

Record num Key (Ki) Delta Twin ptr Child ptr Di rec 
1 0 16 2 
2 8 8 3 4 + 
3 -8 8 1• 6 
4 12 4 5 8 + 
5 4 4 2• 10 
6 -4 4 7 + 
7 -12 4 3* 
8 14 2 9 + 
9 10 2 4* 

10 6 2 11 + 
11 2 2 5• 

The asterisks in the tvin pointer column indicate the end of 

the ring, i.e., the parent pointer. Note that the delta 

value for each record defines the distance from the center 
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to either end of the line segment, i.e., delta is one-half 

the length of the interval. Graphically this can be 

represented by: 

Record DUa -16 -8 0 +8 +16 
1 ) 
2 ) 
3 ) 
4 [ } 
5 E ) 
6 [ ) 
1 [ ) 
8 E--> 
9 f--) 

10 E ) 
11 E ) 

If the key values are dense in the integers, i.e., the 

difference between consecutive keys is exactly one, then the 

length is halved each time ve follow a child link or 

descend one level in the tree. Also, if we follow the twin 

link, unless marked as an up-link, ve remain at the same 

level in the tree, but go to the complementary line segment. 

However, since key values are very rarely dense in the 

integers, stict adherence to the notion of equal deltas at 

the same level in the tree would result in extra nodes which 

have only one child instead of tvo. Therefore, ve eliminate 

an extraneous node by replacing it in the ring with its only 

child. Notice that nov delta values are not necessarily 

halved when following a child link, nor are they equal along 

a tvin chain. Thus, it becomes useful to explicitly carry 

the delta value in the record entry. 
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The binary tree as stored on a secondary storage medium 

contains two basic types of records: terminal records 

corresponding to the original data points, and internal 

nodes or branch points of the tree which have been generated 

due to the structure definition. Each record, accessed 

through a pointer of value P, consists of: 

1) a key or coordinate value of the center of the 

interval K (P) 

2) a delta value of one-half of the length of the 

interval 

3) a child pointer 

D (P) 

Child (P) 

Twin (P) 4) 

5) 

a twin pointer 

if the record is a terminal, additional data 

ger•ane to the original data record 

6) various flags, such as: 

a. node or terminal indicator 

b. end of twin chain in ring, and 

c. the sign of the difference between the record's 

coordinate and the coordinate of the parent of 

this record as a direction indicator Q(P} 

It is obvious that construction of this explicit binary 

tree generates overhead with the node records. Since extra­

neous nodes have been eliminated, any record with a non-null 

child pointer has tvo children. To determine just how much 

overhead is generated, let t be the number of terminals 
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present, and let x be the number of generated nodes. If t• 

and t• are subsets of t such that t• = 2**k' and t• = 2**k" 

for some integers k' and k•, then the nuaber of nodes 

generated for the appropriate subtrees are x• and x•. 

Applying the suaaation of a geometric progression with a 

ratio of 2, and noting that any two subtrees aay be 

connected with one additional node, we obtain: 

x• + x• = (t• - 1) + (t" - 1) + 1 = t• + t• - 1. 

By induction, then, 

x = t - 1. 

When storing the tree on a secondary storage medium, it is 

useful to have a master node, the root, at a location in the 

file that is always known. The only location that is always 

known is the first one; therefore, ve add an additional 

node to the structure as the master root record, which makes 

the total number of generated nodes equal to the number of 

terainal records. 
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Wi th the structure as just defined, the earlier search 

algoritha c is modified to give algorithm T to search for a 

given argument K: 

Tl[ Initialize J 

Set P := root. 

T2[ Compare J 

Set D : = K - K (P) • 

If D = 0 and D(P) = O, terminate successfully. 

[Record is a node if D(P} > O.] 

If D ~ O, go to T3; 

else go to T4. 

T3( D positive) 

If D ~ D(P), terminate unsuccessfully; 

else set P := Child(P), 

go to T2. 

T4[ D negative] 

If D < -D(P), ter•inate unsuccessfully; 

else set P := Tvin(Child(P)J, 

go to T2. 

When searching for a specific argllllent K, algorithm T 

aay seea unnecessarily complicated. However, if the search 

is for all records with key values in the range K ± d, 

algoritha T aay be extended in the following fashion with a 

stack, as algorithm R': 
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B 1 1[ Initialize] 

Set P := root. 

R 1 2[Coapare] 

Set I> : = K - K ( P) • 

If D ~ O, qo to R1 3; 

else go to R 1 4. 

R•3[D positive) 

If D ~ (d + D(P)), go to R1 6; 

else go to B'S. 

R '4[D negative) 

If D < -(d + D(P)), go to R1 6; 

else go to R'S. 

R1 5(Check overlap] 

If tDt ~ (d - D (P)), 

present entire subtree as successful, 

go to R'6; 

else set P := Child(P), 

push Tvin(P) to stack, 

go to R'2. 

R 1 6[ Pop stack) 

If stack is eapty, terminate; 

else pop P := top of stack, 

go to R'2. 
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Algorithm R• allows extraction of information from the 

binary tree structure. However, before any extractions can 

be performed, the tree aust be built. After initialization 

and definition of the file by writing a aaster node record, 

repeated insertions using algorithm r• will build the file. 

I•l[Initialize insert] 

Set K := key value of record to be inserted. 

Set P :=root (pointer to master node). 

1 1 2 Set D ·-.- K - K (P). 

Set Q := sign(D). 

If ID I < D (P) , go to 1 1 3. 

If ID I > D (P) , go to I'S. 

otherwise (IDt = D (P)) , so 

if Q = "+", go to r•s (open end of interval) ; 

else go to I'3 (closed end of interval). 

I• 3[ Inside ] 

Set p• := P. 

Set p := Child (P) • 

I•4[Walk ring] 

If Q = Q (P) , go to 1•2. 

If Q > Q (P), set P := Tvin (P) , ["+" < "-"] 

go to I 1 4; 

else CJO to r•s. 
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I'S[Outside; record(!) to be inserted was inside the 

line segment defined by node(P') and was on the Q 

side of the center of that segment. The existing 

child on that saae side, record(P), defines a line 

segment vhich does not include the nev record(I). 

Replace record(P) in the ring with a new node(P•), 

and aake the nev record(!) and record(P) children 

of node (P") • ) 

Set D(P") := D(P'). 

Set K(P") := K(P'). 

Set Q(I) := Q. 

Repeat [Adjust Becord (P") ] 

Set D (P") ·-.- D (P"} /2; 

If Q (I) = ..... , 
then set K (P") ·-.- K (P"} + D (P") , 

else set K (P") ·- K (P"). - D (P"l ; .-
Set Q (I) ·-.- sign (K (I) - K (P")} ; 

Set Q (P) ·-.- sign (K (P} - K (P"}} ; 

until Q (I} # Q (P) • 
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If Q (I) < Q (P) 

then 
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[ "+" < "-"] 

set Child(P") :=I, 

set Tvin(I) := P, 

set Twin (P) := p• and mark as parent; 

else 

set Child{P"} := P, 

set Tvin(P) :=I, 

set Tvin(I) := P" and mark as parent. 

The structure and techniques just described are much 

too complicated for efficient application to data keyed from 

the real line. However, the real line is simply the 

degenerate case of the eventual goal, n-dimensional space, 

and is described in detail for ease of illustration. As 

will be seen in the next chapter, the n-dimensional case is 

obtained from this development with quite simple extensions. 
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CHAPTER IY 

GENERALIZATION TO n-DI~ENSIONAL SPACE 

The last chapter discussed at some length a rather 

unusual data structure for information keyed by a single 

coordinate. In this chapter, I will present the extensions 

to the data structure and algorithms which provide for the 

n-diaensional case and give the rationale for the design. 

One of the •ore obvious questions concerns the use of a 

ring structure rather than the usual binary tree linkage of 

elements. After all, each record carries two link pointers 

while the ring has only two eleaents. The two pointers 

could just as well have been left and right links, elimi­

nating the requirement to walk over the positive record in 

order to access the negative record. However, in extending 

to a higher diaensionality, the number of pointers required 

to define the structure increases exponentially. 

In particular, in n-diaensional space, a given ring may 

contain up to 2••n entries. The ring structure allows this 

expansion of the nuaber of entries with no additional 

pointer requireaents, while a separate pointer in the record 

for each possible child rapidly consumes an inordinate 
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anount of space. The ring structure also accommodates the 

absence of records very nicely, while individual pointers 

would have null values in many cases. Then there are 

additional physical liaitations imposed by the computer 

hardware. As an exaaple, consider the IB~ 360/370 series of 

computers which use an address of 24 bits. If individual 

pointers vere carried in a record, an application vith 25 

diaensions, for example, would require a record format with 

2**25 pointers. This technique obviously would require a 

record auch greater in size than the entire available 

coaputer aemory. 

The overhead generated by the tree structure is a 

direct result of the node records that define the structure. 

This overhead has been min1-ized to an extent by elimination 

of extraneous nodes, i.e., those nodes which vould have only 

a single child. I have shown that in the one-dimensional 

case the nuabe~ of node records is equal to the number of 

terminal records. Por the n-diaensional case, this number 

becoaes an upper bound for the worst case situation where 

any given node has only tvo children. !ost nodes in the 

n-diaensional case will have more than two children; in 

other words, a twin chain will nor•ally be longer than two 

entries, but in no case will the length of the twin chain be 

greater than 2••n. 



-27-

The upper bound U for the nuaber of nodes in a file 

with t terminal records is exactly equal to t. The lower 

bound L is attained vhen every node has r = 2•*n children 

or the tvin chain length is r. As was done for the one­

di•ensional case, t could be broken down as a sumaation of 

integer powers of r, but since r subtrees would have to be 

joined under a junction node to maintain optimality, and we 

are only interested in a lover bound, it is convenient to 

assume that t is already an integer power of r- Using 

the sum of a geoaetric progression once again, now with a 

ratio of r between successive terms, the lower bound is: 

L = 1 + (t - 1) / (r - 1) • 

For an exaaple, assume n = 2 and t = 65,536 = 4••8. Then 

the upper bound U = t = 65,536 node records, while the lower 

bound L = 21,846 or roughly 0.3t node records. The approx­

imate range of 0.3t to 1.0t therefore indicates the actual 

number of nodes. Actual experience with a geographic data 

file has resulted in a file structure with approximately 

0.7t node records. 

These considerations, then, dictate the use of a ring 

structure while the record content as given in the last 

chapter is extended for n dimensions as: 

1) n key or coordinate values for the center of a 

(hyper-) square Ki (P) 

2) a delta value of one-half the length of a side 

D (P) 
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3) a child pointer Child (P) 

4) a twin pointer Twin (P) 

5) application dependent data for terminal records 

6) various flags: 

a. node or ter•inal indicator 

b. end of tvin chain indicator 

c. a quadrant indicator of n sign bits of the 

difference between each coordinate of the 

record and the corresponding coordinate of the 

parent record Qi (P) 

ls an example of the list structure compared to an 

actual square fro• a Cartesian space, see figure 4-1. 

Figure 4-la shows the example square, while figure 4-lb 

depicts the list as defined by the node and terminal 

records. The root node A defines the outer square which is 

then subdivided by the four children, B, c, D and E. The 

square defined by node E is then subdivided further by its 

children, F, G and z vhile the children of B, c and D are 

not shown. Node G is then subdivided even further by H, x 

and y. Again, the children of F and H are not shown. The 

terainal record z specifies the only data point in the "+-" 

quadrant of E, while the •--• quadrant is empty as indicated 

by the absence of a corresponding record in the list. 

Terainal records x and y likewise specify the only data 

points in appropriate quadrants of G. Overall, the process 
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of subdivision is continued until a quadrant of a given 

square contains a lone terainal record; a node record is 

never defined unless it would have at least two children. 

The n+l-tuple (Kl(P),K2(P), ••• ,Kn(P),D(P)}, where 

each coordinate Ki(P), in connection with D(P), defines a 

half-open interval as in the one-dimensional case, defines a 

square if n = 2, a cube if n = 3, and a hyper-cube if n > 3. 

Since a cube may be considered a hyper-square, and examples 

are presented in two dimensions much more facilely than in 

higher dimensions, r shall use the term square in the 

remainder of this paper to refer to the object defined by 

the n+1-tuple • . In a similar vein, I shall use the term 

rectangle vhen referring to the object defined by an ordered 

pair of n-tuples; the first n-tuple is a vector of 

coordinates defining the lover limits of the intervals or 

the lover left corner, while the second n-tuple is a vector 

of the upper limits of the intervals or upper right corner. 

Note that in the case of the rectangle, the intervals 

defining the sides are closed at each end. 

The rectangle is used pri11larily in conjunction with an 

area search request, algorithm R', but is also useful in 

the insertion scheme, algorithm I', by allowing the 

rectangle to degenerate to a point. In both instances, the 

algorithms essentially ask the question, "Does a square as 
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stored in the file intersect with the search rectangle? 

If it does, is the square totally inside the rectangle or 

vice versa?• Let•s examine the area search first. 

As will be seen when algorithm R• is extended to n 

dimensions, the question of intersection is as stated above. 

see figure 4-2 for some pictorial examples of possible 

situations with a search rectangle as defined by x. Squares 

A, B, c and D have non-empty intersections with X, but there 

is insufficient information to make a positive decision; 

the structure must be examined further at a finer level of 

detail. Square E has an empty intersection with rectangle 

X; therefore, ve may discard the entire subtree by 

proceeding immediately along the twin chain. Square F is 

totally enclosed by X; thus, the entire subtree may be 

accepted as aeeting the search criteria. 

Returning to square D for a moment, there is additional 

information available, namely only one particular child of 

the square could possibly be of use to the search request. 

As will be seen, determination of the intersection involves 

arithaetic on the coordinates; construction of a Q type bit 

string is very simple. If such a bit string is constructed 

for each of the linit vectors, high and low, and the bit 

strings are then identical, the only child of interest will 

be exactly that child with the same bit string Qi(P). 
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The search application uses an ordered pair of n-tuples 

or vectors to define the rectangle, while the insertion 

algorithm uses a single vector as input for the record to be 

inserted. If ve let that single vector be used twice, i.e., 

as a definition of a degenerate rectangle, the same set 

intersection function may then be used in the insertion 

algorithm. It vill turn out to be useful to allow insertion 

of terminal records vith identical coordinates, although 

differing ancillary data, which can be done by inserting a 

node record with a zero-valued delta and then chaining term­

inal records as children of that node. If the set inter­

section function is able to indicate whether the degenerate 

rectangle is totally inside the square and vice versa, and 

if both conditions are true, then the identity intersection 

would be indicated. Note that as a result of the half-open 

character of the square definition intervals and the closed 

nature of the rectangle defining intervals, the identity 

intersection technically could never occur. However, since 

computer arithmetic is finite in nature, the identity 

intersection can occur, but only when the intersection is 

between a degenerate rectangle and a node with a zero delta 

or a ter•inal, i.e., a data point, which is exactly the 

condition that the insertion algorithm will need. 
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Since the set intersection function is very important 

to both the search and insertion algorithas, and will be an 

extreaely high-use section of computer code, it is developed 

here in detail. 

Let the search rectangle X be defined by the ordered 

pair of n-tuples ( (x1,x2, ••• ,xn), (y1,y2, ••• ,yn)) where 

xi ~ yi. The square A fro• the file is defined by the 

n+l-tuple (a1,a2, ••• ,an,d), where the delta valued 2: O. 

[In the following, the symbol & is for logical "and"; 

the symbol I is used for logical "or".] 

1. At least part of the rectangle is outside of the 

square if the intersection of X and ~A is not e•pty. The 

intersection is not empty if there exists an i: 

(ai - d > xi) I (yi . > ai + d) I (ai + d = yi & d ' 0) • 

Rearranging terms, 

(ai xi > d) I (yi ai > d) t (yi - ai = d # 0) • 

Since d 2: 0 by definition, the two terms containing yi may 

be co•bined, giving 

(ai - xi > d) I (yi ai 2: d > 0) • 
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2. For the converse of condition 1, at least a portion 

of the square is outside of the rectangle if the intersection 

of A and -x is not empty, which is the case if there exists 

an i: 

(Xi > ai - d) I (a i + d > y i) • 

Rearranging teras, 

(ai - xi < d) I (yi ai < d). 

3. The intersection of the rectangle X with the 

square A is empty if there exists an i: 

(ai - d > yi) I (ai + d < xi} J (ai + d = xi & d :I 0) • 

Rearranging terms, 

(ai - yi > d) I (xi - ai > d) I (xi - ai = d # O} • 

As in condition 1, d ~ O allows the combination of the terms 

containing xi giving 

(ai - yi > d) f (Xi ai ~ d > 0). 

Pigure 4-3 shows a flow chart of INTERSECTION_FONCTION 

after combining the three tests; the two Q bit strings are 

also set as appropriate. 
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Algoritha I• may now be extended to n dimensions to 

give us algorithm I: 

I1[Initialize insert] 

Set Ki := coordinate values of record 

to be inserted. 

Set P := root (pointer to •aster node) .. 

!2 Execute INTERSECTION_FUNCTION (record(P),Ki,Ki). 

If "Ki is inside record(PJ", go to I3 .. 

If "Ki is outside record(P)", go to IS; 

otherwise an identity intersection, go to !Sa. 

I3[ Inside] 

Set p• := P. 

Set P := Child(P). 

14( Walk ring) 

If Qi = Qi(P), go to I2 .. 

If Qi> Qi(P), set P := Tvin(P}, 

go to 14; 

else go to IS. 

ISa(ldd a duplicate coordinate record) 

Set Qi := all •+•. 
If record(P) is a node, go to I7; 

else set p• := P, 

go to IS .. 

["+" < "-") 
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IS[ Outside; record(I) to be inserted was inside the 

square defined by node(P•) and was in the Qi guad­

rent of that square. The existing child in that 

saae quadrant, record(P), defines a square which 

does not include the new record(!). Replace 

record(P) in the ring with a new node(P"), and make 

the new record(!) and record(P) children of 

node (P").] 

Set D(P11} := D(P'}. 

Set Ki (P") := Ki (P'} • 

Set Qi (I) := Qi. 

Repeat [Adjust Record(P")] 

Set D(P11 ) := D(P")/2; 

Por i = 1 to n, do begin; 

If Qi (I) = •+ 11 , 

then set Ki (P"} := Ki (P .. ) + D (P") , 

else set Ki (P") : = Ki (P") - D (P") ; 

Set Qi (I) := sign (Ki (I} - Ki (P") J ; 

Set Qi (P) : = sign (Ki (P) - Ki (P"}) ; 

end; 

until Qi(I) # Qi(P). 
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then 
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[ "+" < "-"] 

set Child(P") :=I, 

set Tvin(I) := P, 

set Tvin(P) := p• and mark as parent; 

else 

set Child(P") := P, 

set Twin (P} := I, 

set Tvin(I) := p• and mark as parent. 
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Finally, ve generalize algorithm R' to the 

n-dimensional case of algorithm B: 

R 1[ Initialize ] 

Set P := root. 

(Li is the low limit vector, 

Hi is the high limit vector for rectangle X) 

B2[ Compare] 

Execute INTERSECTION_PUNCTION(Ki(P) ,Li,Hi). 

If "intersection of Ki(P) and Xis empty", 

go to R3. 

If •Ki(P) is inside x•, Present entire subtree 

as successful, 

go to R3; 

else (overlap) 

R3[ Pop stack] 

set P := Child(P), 

push Twin(P) to stack, 

go to B2. 

If stack is empty, terminate; 

else set P :=top of stack, (pop] 

go to R2. 
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CHAPTER V 

AN APPLICATION PROGBAM"ER 1 S VIEW 
OF CARTA!! 

The structure that has been defined in the last two 

chapters is concerned only vith a aulti-dimensional key 

value. Depending on the specific application, the full 

gaaut of additional information ranging from nothing, to a 

primary key into another file, to the entire data record 

could be carried in the structure. Since the proposed 

structure is applicable to aany situations, it has proven 

useful to design a program that is concerned only with the 

structure, letting the particular application provide the 

necessary drivers specific to their own data and use thereof. 

The data structure has been named a Cartesian Index as 

a result of one of the earliest applications, a latitude/ 

longitude index of a geographic installation file. This 

file consisted of records varying in length from 320 bytes 

to 4,600 bytes that were keyed by a 21-byte key for many 

purposes. The Cartesian file structure was built to provide 

rapid answers to area search questions, but once the instal-

lations were determined, additional information vas usually 

required. Therefore, the ancillary datua carried in the 
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Cartesia n file in the terminal records vas the 21-byte 

priaary key value to be used for access into the •aster 

file. The Cartesian file thus became a secondary index in 

tvo-diaensional space; hence the name Cartesian Index. 

The naae of the program used to probe the Cartesian 

Index derives from IBft terminology. IBM provides many 

different "access methodsM to process their various file 

structures and the program I am describing herein is 

intended to provide a aethod of access to the Cartesian 

Index file; the naae CARTesian Access Method (CARTAM) 

seeaed appropriate. In order to make CARTAM readily 

available to an end user, it is vritten as a subroutine, 

allowing the user's specific driver programs to be written 

in any language supporting a CALL function, usually a high 

order language. 

Communication between the calling program and CARTAM is 

through a set of calling arguments or parameters. Depending 

on the function being requested, CARTAM expects from one to 

six parameters as indicated by figure 5-1. (Function codes 

are described in detail later.) A 28-byte communication 

block is required for all requests and is used to pass 

control and status inforaation between the driver progra~(s} 

and CARTA!. It is the only parameter required when 

logically connecting or logically disconnecting a file or 

when deleting a record. When inserting data, CARTAa needs a 
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CALL CART AP! ( , , , , , , } 

(generic) pa rm COMP! OSER CO ORD LOW HIGH 
function cnt BLOK DATA YECTB DEI.TA LIP!S LI.MS 

LOAD 
OP Elf [ 11 • 
CLSE [ 1 1 * 
ISRT (3) • • • 
GR [6] * * • • • * 
Gr xx (4) • • * * 
CHNG (3) * • • 
DLET [ 1 l * 

Calling Sequence Requirements 

Figure 5-1 

vector of coordinate values and the ancillary data defined 

by the user to be stored in the terminal record. For all 

retrieval requests, CARTAM returns a user-data field, a 

vector of coordinate values and a single delta value. The 

GB request is treated in a special manner in that it is used 

to initiate a rectangle or area search which requires the 

tvo additional limit vectors defining the search rectangle. 

A change request applies to the user data only, but CARTA~ 

vas designed to also ensure that the coordinates of the 

ter~inal record vere not inadvertently changed by the driver 

program which is why the coordinate vector is a required 
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arguaent. on the other hand, deletion of a record, be it 

ter.inal or node, is an extreme change of coordinates and 

user data; there is no requireaent to pass additional data 

to CABTlft beyond the coamunication block. In all cases, 

CARTA! looks for the required number of parameters and 

ignores any additional arguments that may be supplied. 

CABTAM will also allow, as an optional zero-th parameter, a 

paraaeter count argument indicating the number of parameters 

to be used. If present, this parameter count will be used, 

and the actual number of arguments will not be checked 

further. Note also that if the parameter count is present, 

the total number of parameters is from two to seven, as 

opposed to one to six. 

Before any search queries can be answered, the 

Cartesian file aust be defined and initially loaded. It is 

assuaed that the data set has been allocated disk space; 

see appendix F. Definition of the file consists of telling 

CARTAM how aany coordinates are to be stored in a record, 

i.e., the dimensionality of the file, and the type of 

arithaetic to be used, such as integer or floating point. 

It vas intended that a Cartesian file should be loaded as a 

separate process, since certain efficiencies are gained 

thereby; thus, the use of the LOAD command to logically 

connect and define the file, followed by repeated use of the 

insert (ISBT) coamand to store data records. As this 

information is added to the Cartesian fi1e, a nev node 
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record is constructed if necessary to account for the 

structure and the nev terminal record is added; the relative 

byte address of the nev ter•inal is returned to the driver 

prograa for any use that is desired. The load process is 

terminated and the file is disconnected vith the CLSE 

coaaand. 

Once the file has been defined and loaded, subsequent 

processing is initiated with OPEN to logically connect it 

and any desired processing may then be performed. This 

would normally be retrieYals, but the maintenance functions 

of insert, delete and change are also permitted. The CLSE 

coaaand logically disconnects the file as before. 

This gives a very rough idea as to the various ways 

that CARTAM is called. Since the communication block is 

considerably more complicated than the remaining arguments, 

let ae defer its description for a moment and describe the 

foraats of the other parameters first. 

The parameter count is always an optional arqument in 

those languages that use the standard IB8 method of indi­

cating the end of a variable length parameter list, naaely 

the high order bit of the last address set to one. The IBn 

supported languages COBOL and FOBTBAI alvays flag the last 

address, vhile PL/I nor.ally does not. An assembly language 

programmer has the option of setting the bit or not as he 

chooses. If not, the parameter count argument aust be 
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supplied. The parameter count field, parameter 0, specifies 

the nuaber of additional parameters in the list. As such, 

it aust be a 32-bit fullword binary integer of the 

appropriate value. 

The user-data area, parameter 2, is an input argument 

to CARTA! for insertions and changes, and an output argument 

for all retrievals. The user data is variable in length 

with two 16-bit halfword binary integer fields in the 

communication block controlling the actual length of the 

user data. 

Since CABTAft allows aost of the modes of arithmetic 

normally used on the IBft 360/370 computers, the last four 

parameters must take into account the length of individual 

coordinate values. Por instance, if the arithmetic being 

used is halfword integer, the unit of size is two bytes, 

while double-precision floating-point arithmetic uses eight­

byte values. Therefore, the delta value is a single unit 

long as deterained by the aode of arithmetic vhile the 

coordinate vector and the low and high limit vectors are 

each n units long. The coordinate vector is an input field 

for insertions and changes, and an output field for all 

retrievals, as is the user-data area. The limit vectors are 

explicit input fields fo~ a rectangle search initiation (GR} 

and aust be distinct from the coordinate vector. They are 

not •oved to an internal area by CARTA~; the location 
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pointers are retained and the vectors repeatedly reaccessed 

during subsequent retrievals within the rectangle. Thus, the 

liait-vector values should not be modified during those 

retrievals except for unusual circumstances as they may be 

illplicit input fields for other retrieval requests. 

The reaaining paraaeter, the communication block, is 

diagrammed in figure 5-2 and is now descibed in detail 

below. Following the descriptions of the fields are the 

lists of valid function codes and status codes as returned 

by CARTlft. 

DDNA!E 

The eight-byte logical name of the file to be processed 

is stored in DDBAME. Since CARTAft must retain much aore 

than 28 bytes of bookkeeping information, e.g., file control 

blocks, buffers, stack, etc., the DDNAME also serves as a 

label for that additional main meaory area. 

Function Code 

The four-byte function code carries the request code 

telling CARTlft which function is to be performed. For 

retrieval requests it is probably better to consider this 

code as a concatenation of up to four subfunction codes. 

Valid function codes are described below. 
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DDNll!E 

(8 Bytes) 

Function Code 
(4 Bytes) 

Status Code 
(2 Bytes) 

!lode 

Relative Byte Address (RBA) 
(4 Bytes) 

HORT 

Pad 

Number of ' Number of 
Coordinates 

!!aximum User 
Area Length 

(ft UAL) 

Huaber of 
Disk Beads 

I Buffers 

True User 
Data Length 

(TODL) 

Number of 
Disk Writes 

Coaaunication Block (28 Bytes) 

Figure 5-2 
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Status Code 

The two-byte status code provides the indication as to 

the success or failure of the CARTA8 request. A value of 

EBCDIC blanks is returned if CARTA8 is able to perform the 

function as requested. Non-blank values signal unsuccessful 

· coapletion for a variety of reasons vhich may or may not be 

actual error conditions. A complete list of status codes 

follows the function codes. 

Node or Terminal Indicator (NORT) 

CARTAft returns a character to the driver program in 

HORT on successful retrieval requests to allow differenti­

ation between node and terminal records. The three possible 

values returned by CARTA~ are: 

1) N a node vas retrieved 

2) T a terminal record was retrieved 

3) X - a terminal record was retrieved, but the area 

intended to receive the user data was too short to 

accoaaodate all ancillary data as stored on the file. 
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Record RB.A 

A relative byte address (RBA) is used internally by 

CARTAft to build the structure pointers. Whenever CARTA~ 

successfully inserts or retrieves a record, the record RBA 

is also returned to the driver program for use if desired. 

A Get Direct retrieval function is provided to allow direct 

entry into the Cartesian Index file. Examples of the use of 

this value would be storage of the RBA in the master record 

of the primary file as a cross-reference, or temporary 

retention of the RBA for later retrieval of selected user 

data not initially needed. As a cross-reference example, 

consider obtaining a record from the primary file by some 

means other than coordinate search and then desiring to 

find all other records within a certain distance as defined 

by a metric on the coordinates. Use of the RBA to position 

directly to the corresponding terminal record in the 

Cartesian Index and then climbing the structure to the 

appropriate level may be auch faster than working down the 

tree from the root. 

The record RBA field is also used by CARTAe to return 

additional error inforaation whenever a disk operation was 

unsuccessful. Refer to (3,4] for an explanation of those 

codes. Finally, when the file is closed, CARTA!! returns the 

high used RBA as an indication as to the amount of space on 

the file that vas actually used. 
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!axiaua User Area Length (!UAL) 

The halfword integer in the !UAL field specifies the 

length of the area that is being provided by the user for a 

retrieval request. This number is the maximua number of 

bytes that CARTA! will return, see NORT above, and is also 

the length to which the user-data area will always be padded 

vith the pad character, see Pad below. 

True User Data Length (TUDL) 

The actual length in bytes of the character string in 

the user-data area is placed in the TODL field. This value 

•ust be filled by the driver program on an insert request. 

For retrieval requests, CARTA! stores the actual number of 

of data bytes, not counting pad characters, that have been 

placed in the user-data area of the driver program. This 

value vil1 never be set by CARTAe to a value greater than 

that currently stored in the !UAL field. 

Humber Reads, Writes 

Two halfword binary integer fields are incremented by 

CARTA! each tiae a physical disk read or write is perforaed. 

These fields are zeroed out during open processing. The 

fields are maintained and presented for information only. 
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The remaining field definitions have meaning only when 

CARTAM is requested to open the file: function code is LOAD 

for initial file load or OPEN. Other than the mode, these 

fields are alternate usages of the HORT and RBA fields. 

!!ode Indicator 

CARTAK allows the user to specify the type of arith­

•etic to be used for the coordinates by supplying a value in 

the mode indicator if the function is LOAD; otherwise, 

CARTAft returns an appropriate value based on the particular 

file. No further reference is aade to this field in subse-

quent calls. The four valid EBCDIC character values are: 

1) B for 16-bit halfword integer binary, 

2) p for 32-bit fullword integer binary, 

3) E - for 32-bit single-precision floating point, 

ii) D - for 64-bit double-precision floating point. 

Pad Character 

In aany cases, the user-supplied data being carried in 

the terminal records are variable-length character strings. 

On a retrieval request, the driver program specifies the 

length of the area that is being provided to receive this 

user data. When that area is too short, CARTAft so indicates 

with an -x• returned in MORT. However, vhen the area is 

longer than necessary, it will be padded out to the end with 

the character supplied in the pad field of the communication 

block. 
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Number of Coordinates 

The dimensionality of the space being represented is 

determined by the nu•ber stored in this halfword field, and 

is the nuaber of coordinates carried in a record of the file. 

The field is filled by the driver program if the function is 

LOAD and filled by CARTlM if the function is OPEN. 

A soaevhat arbitrary liait of 512 dimensions has been 

imposed, aainly because a limit aust be established some­

where. Storage •ust be allocated for the bit strings 

generated by IHTERSECTION_FUNCTION, and 64 bytes was chosen. 

A further limit is that the total length of a coordinate 

vector must be less than one-half the length of a physical 

record to allov storage of at least two logical records per 

physical record. 

Number of Buffers 

CARTAM obtains main memory from the operating system to 

use as buffers or page slots for disk input and output 

operations. The driver program •ay specify the maximum 

number of page slots that are to be acquired ($ 32} • CARTAM 

always tries to acquire at least four page slots. 
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Valid Function Codes 

LOAD 

LOAD indicates to CARTAK that the file is being defined 

and opened for the first time and that a series of 

insertions is forthcoming. The driver program must specify 

the aode of arithmetic and the number of coordinates to be 

stored. The data set referenced by the logical file name 

DDNA~E may be an empty data set or one that had previously 

been used. However, any information present in the file 

will be destroyed. 

If a file is opened for LOAD, the only valid commands 

are ISRT and CLSE. All others will be flagged as invalid 

and ignored • 

OPEN 

After a file has been defined, loaded, and closed again, 

subsequent processing is initiated with OPEN which logically 

connects the file to the program. All function codes are 

treated as valid, including ISRT which will extend the file. 

If the data set is eapty, the open processing vill fail. 

on return froa a successful open, CARTAK will have 

filled the mode and nuaber of coordinates fields of the 

the coaaunication block. A file aust be opened before any 

other function codes will be recognized. 
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CLSE 

CLSE requests a wrap-up, including final write of any 

modified records to disk. Upon successful return, the 

record RBA field will contain the high used RBA as an 

indication as to actual space utilization of the file. 

ISRT 

A new record is inserted as a terminal record with the 

ISR~ request. If necessary, a nev node record is also 

built. The RBA of the new terminal record is returned for 

the driver progra11•s use as desired. 

G~ 

This is a request to Get !aster node record; it would 

be used to start over at the root of the tree if performing 

a specialized search procedure. 

GP 

Cli•bing the structure to a higher level is accom­

plished by a Get Parent request. CARTAe retrieves the 

parent record of the last record retrieved. 

GT 

The next record at the same level in the tree is 

retrieved vith a Get Tvin request. 

GC 

The first record at the next level down in the tree is 

accessed through a Get Child request. 
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GD 

If the driver progra• has the record RBA available, 

the corresponding record from the Cartesian file may be 

retrieved directly with Get Direct. 

GN 

The Get Next record in hierarchical sequence function 

is defined as: If the previous record accessed has a child, 

get that child; if it has no child, get the next twin; if 

there is no twin, i.e., the end of the twin chain was 

reached, get the twin of the parent of the previous record. 

Repeated requests using GH will walk through the entire 

file structure in this sequence. 

GNT 

The sequence described for GN is modified by not 

retrieving the child of the previous record. GNT vould be 

used when it had been determined that a subtree is to be 

discarded. 

The last seven function codes, GM through GNT, are 

provided as pri•itives for the unusual application that 

needs to follow a peculiar search strategy. They vill each 

clear parentage if it had been set earlier. The first five 

of these codes aay also set parentage by adding a •p• as the 

third character of the code, i.e., G~P, GPP, GTP, GCP, and 



-57-

GDP. Parentage is set to limit a search to a particular 

subtree of the file structure and is primarily used with the 

next three function codes. 

GNP 

Unlike previous codes where a P in position three set 

parentage, Get Next in Parent uses a previously set paren­

tage to retrieve records in a hierarchical sequence within 

a specified subtree. The GN function will walk though to 

the end of the file regardless of the staring point, while 

repeated use of GNP will traverse only the subtree as 

defined when parentage was set. 

If parentage has been set by the GR function described 

belov, CARTA8 also performs a check using the 

INTERSECTION_FUNCTION to determine if the record intersects 

the search area. If the intersection is empty, the subtree 

consisting of the record and its children is automatically 

discarded and the twin record is immediately retrieved. If 

the record is a node and the intersection is limited to a 

single child of that node, that particular child is immed­

iately retrieved, and it is noted that there will be no twin 

of that record to be retrieved later. In both cases, the 

check by INTERSECTION_FUNCTION is reapplied before returning 

the record to the driver program. If the intersection is 

neither empty nor a single child, the record is returned 

with the appropriate information fields filled. 
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GNPT 

Get Next in Parent, Twin, modifies the GNP sequence by 

skipping the child retrieval and discarding the subtree. 

This is done when the driver progra• applies a finer 

discrimination on a record than CARTAft can apply such as a 

true circle search as opposed to a rectangle search. The 

decision was made to only perform the simple rectangle 

search within CARTAH since specific applications could 

conceivably use any type of aetric function for their 

discrimination purposes. 

GNPL 

When the driver program makes the determination that it 

really knows that a node record is acceptable, or, in other 

words, it wants all of the subtree's terminal records with­

out bothering to apply its discriminator, a Get Next in 

Parent, Leaves, series of requests will flush the subtree, 

presenting terminal records only. The term Leaves is used 

since the character T was used for Twin. 
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GR or GA 

An area search is initiated with either of the 

equivalent Get Rectangle or Get Area requests. The 

IBTERSECTION_PUHCTION will be used by CARTAa to check 

records during this GR and subsequent GNPx requests. The 

stack maintained by CARTA" is flushed and the search begins 

at the •aster or root record, setting parentage for GNPx. 

GR L 

If the rectangle search is the exact search required by 

the application, placing an "Ln in position four will direct 

CARTAa to only return the terminals that are found inside 

the search rectangle on subsequent GNP or GNPL requests. 

After a GR L request, GNP and GNPL are equivalent. 
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CHNG 

If a Cartesian file vas loaded with a substantial 

a11ount of ancillary data in the terainal records, it is 

useful to be able to aodify that information without having 

to reload the entire file. The CHaNGe request tells CARTAM 

to replace the user data in the terminal record that had 

·been retrieved on the previous call. CABTAM checks to see 

that the coordinates have not been inadvertently altered and 

that the nev data string is not longer than the original 

string. If the nev string is shorter, the terminal record's 

data area vill be padded out to the original length vith 

the pad character. 

DLET 

Any record in the Cartesian file may be DeLETed vith 

the exception of the master root record. The structure 

pointers are adjusted to logically re•ove the record and a 

check is made to see if the ring nov contains only one child. 

If so, the parent of the lone remaining child is replaced in 

its ring by that sole child. Por integrity, CARTAM requires 

that the record be retrieved on the previous call. Note 

that either terminals or nodes may be deleted; deleting a 

node effectively deletes the entire subtree. Note also that 

CABTAM has no space reclamation capability -- deleting a 

record removes it from the structure, but the space is then 

unavailable for any future use until the file is reloaded? 
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Status codes as returned by CARTA~ 

~ (Tvo EBCDIC blanks} CARTAft successfully completed the 

requested function. Nev information has been updated as 

appropriate. 

AD CART~ did not recognize the function code; invalid code. 

AI An error occurred while trying to open the file. 

A nuaeric error code [3, pgs 58-60) from the operating 

system has also been placed in the RBA field of the 

communication block. 

lJ A logical error was detected during a disk operation. 

A numeric error code [3, pgs 67-69) from the operating 

system has also been placed in the RBA field of the 

comaunication block as for AI. 

Aft 1 aode error was detected: not H, P, E or D. 

AO A physical error was detected during a disk operation. 

A message was written to the program log and a numeric 

error code [3, pg 70) has been placed in the RBA field 

of the communication block as for AJ. 

AX Too many coordinates were specified. The maximum is 

512 or a total coordinate vector length less than 

one-half of the length of a physical record. 
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cx An error was detected on a change request. The change 

aust be on a terminal that vas retrieved on the previous 

call, the length of the user data must be the same or 

less, and the coordinates must not have been altered. 

DX An error vas detected in a delete request. The record 

to be deleted aust haYe been retrieved on the previous 

call. The master root record cannot be deleted. 

GE The requested record was not found. GE is typically 

returned during GNPx processing. 

G8 There are no more records in the subtree being flushed 

by retrieving only terminals while using GNPL. 

II A duplicate record, coordinates and user data, was 

presented for insertion; the record was not inserted. 

IU The user-supplied data to be stored with the terminal 

record is too long. The total length of user data, 

corrdinates, and six bytes of structure data must be 

less than one-half the length of the physical record as 

stored on disk. 

SL A short parameter list was presented to CARTA~, e.g., 

calling CARTA~ with only the communication block and 

user data area, but not with the coordinate vector for 

an ISRT or CHBG. 
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CHAPTER VI 

INSIDE CARTAa 
POB THE 8AINTENANCE PROGRA8MER 

The previous chapters have developed the basic algo­

ri th• and described the program I call CARTAM from a point 

of view intended for a prospective user of the system. This 

chapter deals with the fine detail required by a programmer 

assigned the task of reiaplementing the system on different 

hardware or operating systea or fixing CARTAM should it 

break. 

The Cartesian Index file is a data structure maintained 

on a secondary storage medium, specifically a direct access 

disk or equivalent, which predicates usage of some sort of a 

disk address as the pointer value in the node and terminal 

records. The particular form of this disk address pointer 

depends upon the specific choice of the access methods as 

provided by IB~. Since we are concerned vith random access 

to disk, there are actually only a few access methods avail-

able. The most primitive method of disk I/O provided by IBM 

is the execute channel program (EXCP) access aethod. How-

ever, this is rather too primitive as I have no desire to 

reinYent such things as physical error handling routines, 
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etc. The next alternative is the Basic Direct Access ~ethod 

(BDA~) which would actually vork quite vell except that it 

does not handle variable length records with any great faci­

lity. If the records are defined as relatively large, then 

the internal blocking and deblocking could become soaewhat 

aessy, depending on the choice of notation for the record 

identification. As will be seen later, though, BDAft would 

have been quite acceptable. 

The iapleaentation of CARTAM as described here uses 

IBK•s Virtual Storage Access Kethod (VSAM) [3,4) for phys­

ical access to the disk file structure. VSAM was primarily 

intended as a high performance replacement for the Indexed 

Sequential Access Kethod (ISAM), but does provide support 

for three basic types of direct access file organizations 

which can be used for alaost any application. Since VSA~ 

is used for basic systea support in later versions of 

large operating systems as supplied by IBM, e.g., OS/VS2 

!ultiple Virtual Storage (KVS) , and it isolates a pr09ram 

fro• device dependencies better than other methods, it 

seeaed to be a good choice. 

The direct counterpart to ISAK as provided by YSAM is a 

key sequential data set (KSDS) which is used to store data 

ind~xed by a unique priaary one-dimensional key. However, 

the whole intent of this paper concerns multi-dimensional 

keys, so ve have no appropriate key to suggest use of a KSDS. 
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VSA8 also provides a counterpart to the BDA! file organi­

zation knovn as a relative record data set (RRDS). 

Unfortunately, an BRDS requires fixed length records which 

are referenced by •relative record numbers•, and the 

concerns of a BDA! data set are applicable here as well. 

The third structure supported by VSAM is an entry 

sequenced data set (ESDS) as a counterpart to the usual 

sequential fi1e organization. However, VSAM does allow 

rando• access to any position in the file by means of a 

four-byte relative byte address (BBA), which turned out to 

be ideal for ay purposes. An ESDS may be viewed as a unique 

virtual address space defined by a four-byte address ranging 

from 0 to 4,294,967,295. Early in the development process, 

it vas intended to store node and terminal records as 

distinct records maintained by VSAM. However, as the 

development proceeded and more of the performance options 

as provided by VSA!! vere incorporated, it became desirable 

to perfora blocking and deblocking within CARTAM rather than 

VSl!!. This becaae a very simple masking operation as VSAM 

stores inforaation on secondary storage in units of control 

intervals (CI) which may be almost any size from 512 bytes 

to 32,768 bytes, but are physically stored as multiples of 

a physical record vhich may be 512, 1024, 2048 or 4096 

bytes in length. one of the performance options used by 

CARTlM results in the see•ingly reasonable restriction 

of li.lliting the CI size to that of a physical record or a 
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aaxia ua of 4,096 bytes. Each CI requires a miniaum of seven 

bytes of control information, which leaves the remainder 

available for CARTAft's use. Thus, the largest record that 

aay be stored by CARTAft is 4,089 bytes, but a further limit 

is rather arbitrarily iaposed to limit a logical record to 

no more than half of a physical record in order to store at 

least two information records in one block. Keeping all of 

this in mind, CARTAft uses a VSAM ESDS as a logical memory of 

four billion bytes, storing the Cartesian Index file as a 

linked list with four-byte RBA pointer values. 

An inability to extend a data set•s space on disk is 

due to one of the performance options as used by CARTAK 

which prevents i•mediate usage of an eapty or newly defined 

VSA~ data set. Preformatting the data set with zero-filled 

records the first time an eapty data set is opened solves 

the initial problea, and once preformatted, all records in 

the file may be retrieved on a random basis by relative byte 

address. However, when the original space allocation is 

exhausted, the data set will not automatically overflow 

into secondary extents when records are being inserted. If 

space is exhausted, there is no choice but to reallocate the 

file with aore space and rebuild. As an indication of 

the actual utilization of the file space, the high used RBA 

is returned to the driver progra• when the file is closed. 
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Reflection at this point makes it obvious that the 

relative record organization of VSA~ or even the Basic 

Direct Access ftethod aay indeed be used. Careful selection 

of the physical record size to a proper power of two will 

allow CARTA! to operate with those file organizations with a 

ainiau• of change to the code. 

The Cartesian file is built with two basic types of 

records, nodes and terminals. As mentioned earlier, these 

records consist of: 

1) coordinate value(s), 

2) a delta value, 

3) a child pointer, 

4) a twin pointer, 

5) user data if a terminal, and 

6) various flags. 

If ve examine some of these items, ve find that first 

of all, a terminal record always has a null child pointer 

since terminal records are, by definition, those records 

with no children. The terminal record also corresponds to 

an original data point which has a delta value equal to zero, 

at least in teras of the file structure. The utility of a 

node or terminal flag nov becoaes apparent. A single bit 

se~es to indicate the presence of a child pointer and a 

delta value or the mutually exclusive user data with, of 

course, its length. 
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The delta value as carried in the record also deserves 

so•e attention. While studying the algorithas, it becomes 

apparent that delta should probably be an integer power of 

two. In particular, consider a specific application on the 

co•puter using integer arithaetic. If one starts with the 

smallest non-zero delta value and proceeds through the tree 

structure towards the root, the delta is obviously such an 

integral power of two. Equally obviously, traversing the 

tree in the direction away from the root requires integer 

powers of two in order to prevent "gaps" due to a truncated 

division. If we nov examine the usual internal represen­

tation of our delta value, we find that, for integer arith­

aetic, delta is stored as a fullword or halfword with 

only a single bit set to one somewhere in the (half)vord. 

A natural aethod of storing this number in less space is 

to use a logarithmic representation, specifically log to 

the base of two. The normal internal representation of a 

floating point value is noraalized hexadecimal vith an 

exponent and mantissa. For an integer power of two, this 

mantissa is given by a single hexadeciaal digit that is 

always in the leftaost position in the aantissa; only the 

12 high order bits of a floating point delta are ever other 

than zero. Thus, we can store our delta value in the node 

record in only 12 bits, leaYing the other 4 bits of a half­

word available for soae flags. Since a delta value is 

defined to be a non-negative number, I use the sign bit of 
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the representation to indicate whether delta is stored as a 

truncated floating point number or as a logarithm. There is 

an apparent ambiguity for a representation of zero, since 

it obviously cannot be stored as a logarithm. However, a 

"true zero• as used by IBft for both integer and floating 

point arithmetic is stored as all binary zeroes, so it works 

out very nicely. 

The Cartesian Index file records are now constructed as 

follows. The length of the user data stored in a terminal 

record is variable, but since a terminal has a defined 

delta of zero, we may carry the length of the user data in 

the space otherwise occupied by delta. The list pointers, 

of course, are each four bytes long, while coordinate values 

aay be tvo, four or eight bytes long, depending on the mode 

of arithmetic being used. Finally, after packing everything 

together into a record, ve have: 

f~I TWIN I COORDS ••• f~f CHILD f 
fOserData ••• t 

DLF is the delta/length and flags field, two bytes long. 

Expanding it out to the bit level: 

0 
10 

1 11 
1 451 

If bit 15 = •1•, then "end of set" or record is the 

last record on the tvin chain, i.e., 

TWIN actually points at the parent 

record, closing the ring. 
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If bit 14 = •1 1 , then this record is a node, and bits 

0-11 are the representation for delta. 

if bit 0 = •1•, then bits 2-7 are the log2(delta) 

and the antilog is obtained by 

shifting a value of 1 to the left 

this many positions, 

otherwise, bits 0-11 are to be moved to a 

work area and extended vith 

zeroes to arrive at a represen­

tation suitable for arithmetic. 

If bit 14 = •o•, then this record is a terminal and 

bits 0-11 represent a scaled binary 

integer value depicting the length of 

the user data string stored behind Q. 

Bits 12 and 13 are unused. 

The TWIN pointer is a four-byte field and is present in 

all records~ Actual interpretation is modified by bit 15 in 

the I>LF field. 

The COORDS field contains the coordinate vector for the 

record and is a*n bytes long where a = 2, 4 or 8 depending 

on the aode of arithmetic. 

Q is the quadrant indicator to label children of a 

parent node and is a bit string that carries the sign of 

the difference between coor.dinates of the record and the 

corresponding coordinates of the parent record. The length 
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of this field is q bytes where q = (n + 7)/8 using truncated 

integer division. The twin chain is also maintained in 

sorted order using the Q field as an ascending sort-key. 

The four-byte CHILD pointer appears only in node 

records and points to the first of tvo or more records at 

the next lower level in the structure. The coordinates and 

delta of the node record define a square that completely 

·covers al1 of its children. The records at the next lower 

level define a disjoint set of squares whose union is less 

than or equal to the parent square. 

Pinally, the user-data field is a variable length field 

carried in terminal records only. The actual length of this 

area is determined by the 12 high-order bits of DLP. 

The primary argument in the CARTAM calling sequence is 

the communication block, which is where CARTAM receives all 

request instructions and returns status and other infor­

aation. Figure 6-1 shows the assembly dummy control section 

(DSRCT) definition. As the DSECT is the assembly program's 

view of the communication block described in the last 

chapter, sost of the entries should be self-explanatory. 



CO!U!BLOK 

CBDDNA!!E 
CBPU IfC 
CBFUNC1 
CBPUNC2 
CBPUNC3 
CBFUNC4 
CBSTATUS 
CBl!ODE 
CBNORT 
CBRBA 
CB!!AXUDL 
CBTROODL 
CBtGETS 
CBIPOTS 

* 
CBPAD 
CBIXS 
CBIBUFRS 

DSECT 
USI!IG 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 

*,R11 
CL8 
OCL4 
c 
c 
c 

· c 
CL2 
c 
x .,. 
B 
H 

· a 
H 

SPACE 
REDEFINITION 
ORG CBNORT 
DS C 
DS H 
DS B 
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DDNA!!E OF PILE 
POHCTIOlf CODE 

RETURN STATUS 
ftODE OP ARITHftETIC 
HODE/TER!!INAL INDICATOR 
RBA OP RECORD RETRIEVED/INSERTED 
ftAXI!O!! LENGTH OF USER ABEA 
TRUE LENGTH OF USER DATA 
COUNTER FOR VSAM "GETS" 
COUNTER POR VSAM •PUTS" 

IN EFFECT WHEN FUNC = "LOAD•/"OPEN" 

USER DATA AREA PAD CHARACTER 
t COORDINATES 
t PAGING BUFFERS TO BE USED 

DSECT of Communication Block 

Figure 6-1 

In order for CARTA!! to operate, it needs a fair amount 

of additional •ain memory for control blocks, buffers and 

bookkeeping information. CARTA!! must also be prepared to 

operate on more than one file at a time for the driver 

applications. Therefore, CARTA!! obtains additional main 

•emory for . each file that is opened. The character string 

passed in as a DDNl!E is used as a label to identify that 

block of •e•ory as it pertains to any particular file. 

These blocks are linked on a bi-directional list and the 

proper file control area as defined in figure 6-2 is 



FCBAREA 

FCBLABEL 
PREVFCB 
NEXTFCB 

DSECT 
USING 
DS 
DS 
DS 

*,R12 
CL8 
A 
A 
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LABEL IS PILE DDNAME 
BACKWARD AND 

FORWARD LINKS 

IFGACB DSECT=NO GENERATED ACB 
IFGRPL DSECT=NO GENERATED RPL 
DS OD 

LNACBAR EQU IFGRPL-IPGACB 
LNRPLlR EQU *-IPGRPL 

CI SIZE 
AV SP AC 
ENDRBA 
LRECL 

DS 
DS 
DS 
DS 

MVNODCS DS 
DS 

BCDADD DS 
DS 

CURRBBA DS 
BUPR@ DS 
tSUBPOOL DS 
LNGBUF DS 
PB IO RT DS 

DELWK DS 
PRNTDEL DS 

SPLT!!SKS DS 
CU!SK DS 
DSPMSK DS 

DS 

LODEARGS DS 
LODECI DS 
LODEDSP DS 

DS 

p 
p 
p 
p 

CONTROL INTERVAL SIZE 
AVAILABLE SPACE 
ERDING RBA 
LOGICAL RECORD SIZE = CISIZE-7 

l(NODEABEA) FOB MVCL INST 
P (PLLNOD) 
A 
P (CHLDUDit) 

p 
A 
ox 
p 

A 

D 
D 

OXI.6 
p 

B 

B 

OXL6 
p 
H 

H 

RBA OP RCD W/ CORE ADDR IN RCDADD 
LOCATION AND 

LENGTH OP PAGING AREA 
TOP OP LRU RING 

EXPANDED DELTA FROM RETRIEVED RCD 
EXPANDED DELTA FOR NODEAREA 

MASKS TO SEPARATE REA'S INTO 
CONTROL INTERVAL RBA 

AND DISPLACEMENT 

UNUSED 

SEPARATED RBA TO BE LOADED 

OllUSED 

DSECT of FCBAREA 

Figure 6-2 (Part 1 of 3) 



DIRE Ci 

l!ISCPLGS 
ISRTONLY 
PILEXTHD 
FR ST IS RT 
SEBDPAD 

XTRAFRPI 

SETI' REGS 

SETPADDR 
GRXL@ 
GRXBii 
GR PL AG 
TBl!ONLI 
TPIPPRNT 
STKPRNT 
STKTOP 

SETPLGS 
SNGLCHLD 
EMPTYSET 
ENOTINX 
XNOTINE 
QSTRL 
QSTRH 
QSTRO 

DS 

DS 
EQD 
EQU 
EQD 
DS 

DS 
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(MAXtBFRS)XL(L 1 DIRECTRY) PAGING DIRECTORY 

XL3 MISCL FLAGS 
B9 10000000• FILE OPENED FOR LOAD 
B1 01000000 1 PILE HAS BEEN EXTENDED 
a•ooooooo1• FIRST INSERTION HAS NOT BEEN DONE 
C PAD FOR USER DATA AREA 

1 

DS XL4 1 80• R3 EX !ASK FOR BIT STRING 
DS P•O• R4 COORDINATE VECTOR INDEX 
DS l{QSTRL) RS BIT STRING ADDRESS 
DS F R6 INDEX INCREMENT 
DS F R7 INDEX LIPIIT VALUE 
DS 1 R8 A (SET&M .O) 
DS 1 R9 LOW SEARCH COORDINATES 
DS 1 RlO HIGH SEARCH COORDINATES 
EQU B9 10000000 1 IF SET, DOING "GR• SEARCH 
EQU a•o1000000• IP SET, WANTS TERPIINALS ONLY 
DS H POINT IN STACK OP TEMP PARENT 
DS H POINT IN STACK OP PARENT 
DS H TOP OF STACK 

DS x•o• ZEROES TO CLEAR BIT STRINGS 
DS X SET INTERSECTION FUNCTION FLAGS 
EQU B•lOOOOOOO• INTERSECTION IS ONE CHILD ONLY 
EQU B•ooooo100• INTERSECTION IS E~PTY 
EQU B1 00000010 1 SO~E OP •SQUARE" OUTSIDE 
EQU B1 00000001 1 SOME OF SEARCH OUTSIDE 
DS XL64 BIT STRINGS 
DS XL64 OP DIFFERENCE SIGNS 
DS XL64 

DS 
DS 

D 
D 

UNUSED 
PER!ANENT PIECE OP STACK 

STACK DS 128D 
•-STACK ftlXSTKL EQtJ 

DSECT of FCBAREA 

Figure 6-2 (Part 2 of 3) 
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FILECNTL DS XL32 PILE CONTROL INFOR~ATION 
ORG PILECNTL 

BIOS DR BA DS p CURRENT HIGH USED RBA 
FLl!ODE DS c H I F l E I D 

DS c UNUSED 
PLtCOOR DS H :I COORDINATES 
PLLCY DS H (FLICOOR} * (FLLCOOR} 

DELTA@ EQU 0,2 12 BITS 
RCDFLGS EQU 1,1 4 BITS 
PARENT EQU B1 0001 1 END OF TWIN CHAIN 
NODRCD EQU B 1 0010 1 RECORD IS A NODE 
TWIN@ EQU DELTA@+L 1 DELTAi,4 TWIN POINTER 

(ISBT USES) 

COORDSi EQU TWINi+L 1 TWINi START OF COORDINATE VECTOR 
*QSTR@ EQO COORDSm+(FLLCV) 
QSTRLM1 DS H Q STRING LENGTH MINOS 1 
CHLDODi DS H CHILD PTRIUSER DATA DISPLACEMENT 
FLLHOD DS H TOTAL LENGTH OF A NODE RECORD 
* = L 1 DELT!@+L 1 TWIHi+(FLLCV)+(QSTRL~1+1)+L 1CHILDPTR <= 2000 

• 
ORG 

NODEAREA DS 
FCBLNG EQU 

ORG 
RPU!SG DS 

SO FAR 16 BYTES ARE LEFT 

XL2000 NODE CONSTRUCTION WORKSPACE 
•-FCBLABEL HOPEFULLY < 4096 
•-132 
CL132 1 RPL KESSAGE AREA' 

DSECT of PCBAREA 

Figure 6-2 (Part 3 of 3) 

located each time CARTAM is entered. If a file control area 

cannot be located and the function code is other than OPEN, 

LOAD or CLSE, a status code of 'AD• is returned indicating 

an invalid function code. If an area is located and the 

function code is OPEN or LOAD, a status code of 'AD' is 

again returned. 
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FCBAREA defines an area of main memory that is acquired on 

a page boundary, i.e., an even multiple of 4096. This is 

the aain work area for CABTA~ for the particular file being 

processed. 

FCBLABEL is the file name from the communication block and 

is used as the identifying label for the work area. 

PRE'lFCB and NEXTFCB are forward and backward links for the 

work area(s) and are anchored inside CARTAM directly. since 

the register save area is also inside CARTAM, CARTAM is not 

re-entrant, but is serially re-usable. 

IFGACB and IFGRPL are IB!! supplied definitions of the access 

control block and request parameter list for the VSAM access 

method. CISIZE through LRECL receive information about the 

file for later use. ENDRBA indicates whether the data set 

already has information or if it must be preformatted; if 

so, AVSPAC is used to find out how long the data set is. 

The four vords be<Jinning at MVNODCS are set up to load the 

control registers for an !!VCL or CLCL instruction, each of 

which requires two addresses and two lengths. The fourth 

register also carries a pad character as the high order byte. 

CURRRBl is used to retain the RB! of the most recently 

accessed terainal or node record. It is primarily used for 

checking on a delete or change request. 
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BOFRi, tSUBPOOL and LHGBUF refer to the additional main 

memory obtained for input/output buffers or the paging area. 

PRIORT points at the top of the priority ring that is main­

tained for the paging directory (DIREC@) in a least recently 

used (LRU) manner. 

DELWK is the work area for an expanded delta so that it may 

be used in arithmetic stateaents. It is filled in the LODE 

routine every tiae a nev record is accessed. PRNTDEL is the 

corresponding expanded delta value for the record being con­

structed in HODEAREA. 

SPLT8SKS is composed of CIMSK and DSP~SK which are used to 

split an RBA pointer into an RBA address of the control 

interval and a displacement. DSPMSK = CISIZE - 1 because 

CISIZE is an integer power of two as defined by VSAK. Then, 

CIMSK is simply the one's complement of DSPKSK. 

The masks are used as logical "andR masks against LODECI and 

LODEDSP which compose LODEARGS. The paging directory is 

then searched for LODECI; if not there, the oldest slot is 

picked to read in the proper control interval. The trans­

lation is co•pleted by adding LODEDSP to the page frame 

address to arrive at the main memory address of the data 

record being referenced. 

MISCFLGS are aiscellaneous flags; use is obvious. 



-78-

ITRAFRM is an extension of the paging directory. IBM 

provides a PGBLSE macro to specify release of a virtual 

aeaory area. This aacro is used in the input/output routine 

as an attempt to gain efficiency by releasing a virtual page 

just prior to a read operation so that the operating system 

will not bring that page in from paging store simply to 

write over it vith a nev record from disk. The parameters 

for PGRLSB are the low address and the high address plus one 

of the area to be released; these addresses are exactly the 

page frame addresses as stored in the paging directory for 

the page slot being released along with the address of the 

next slot. XTRAFRM provides that "next slot" frame address 

for the last paging directory entry. 

SETFREGS through GRXH@ are preset values for the general 

purpose registers R3 through RlO used in the set intersec­

tion function. R3 contains a one bit mask to set a position 

in the Q bit string as addressed by RS. R4 is the index 

into the various coordinate vectors and is incremented by 

the value stored in R6 in a BXLE instruction. R7 contains 

the limit for B4, i.e., (R7} = n• (R6) - 1. RS has the 

address of the entry point into the appropriate arithmetic 

dependent code while R9 and R10 point at the lover and upper 

liait vectors. The set function also assumes that Rl points 

at the current node or terainal record being examined. 

SETFLGS carries the results of the set intersection function 

while QSTBH and QSTRL haYe been set according to the arith-
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aetic differences during the course of the calculations. 

QSTRO is used only during insertions to adjust the coordi­

nates of the new node record being built as a parent. 

T!PPRHT holds the location in the stack that is to be 

considered a teaporary parent for the purpose of presenting, 

without further checking, all terainal records in a subtree 

that has been accepted. 

STKPRHT holds the location in the stack that is to be 

considered the parent leYel for Get Next within Parent pro­

cessing vhile STKTOP always points at the top of the stack. 

STACK is a 128 entry stack used to remember the parent 

backtrack chain along vith the next twin entry. The parent 

backtrack trail is retained primarily for insertions to 

climb the parent chain in hopes that consecutive insertions 

were relatively •close• to each other, thus reducing chain 

chasing as much as possible. The twin pointers are retained 

for GNP processing to negate the requireaent for input of a 

parent record solely to retrieve the twin pointer when 

accessing the parent's tvin. Each entry in the stack is tvo 

words: the left word carries the parent backtrack trail, 

the right word carries the next tvin. Upon exit from CARTA~, 

the top entry of the stack has zero in the left position; 

the right word has the child pointer of the record being 

returned to the driver program, which is zero if the record 

is a ter•inal. The second entry down in the stack has the 
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RBA of the record being returned as the left side value 

which vil1 be the parent as the stack grows. The right side 

of this stack entry is the twin pointer from the returned 

record unless the record is aarked as the end of a twin 

chain. in vhich case. zero is stored. This entry is always 

the next twin for GBP. As the stack is popped, either 

because the child value at the top was zero or the subtree 

is being bypassed. the twin value is picked up from the 

right side and stored in the left side. The twin and child 

pointers of that new record are then stored as before. 

Obviously. if the twin pointer was zero. the stack is simply 

popped one aore level. 

FILECNTL is a 32 byte area of control information to be 

stored on the file at RBA = o. This information is derived 

fro• data provided vhen the function code was LOAD and then 

stored in the file. When the function code is OPEN, these 

32 bytes are retrieved from the file and stored here. Only 

16 bytes are used at this time. 

HIUSDRBA contains the number of bytes used by CARTA~ for 

insertions. It is the actual RB! of the next available byte 

in the YSlft file and is obtained and updated whenever a nev 

record is inserted. If it has changed since the file was 

opened. the control information is rewritten to the file. 

FLftODE holds the EBCDIC character defining the mode of 

arithmetic: H, F. E or D. 
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FLICOOR is a halfword integer value specifying the number 

of coordinates (n) in a coordinate vector. 

PLLCV contains the actual length of a coordinate vector 

in bytes. (PLLCV) = (PLiCOOR) * 2, 4 or 8 as appropriate. 

DELTAi through COORDSi are symbolic equates defining the 

internal record structure. QSTRi vould be an equate to the 

beginning of the Q bit string in the record, but, due to the 

variable length of a coordinate vector, is stored as a value 

equal to COORDSi plus the length of a coordinate vector. 

QSTRL~1 holds the length of the Q bit string less one. The 

IBK execute instruction requires this value for proper oper­

ation. (QSTRLM 1) = ( (FLtCOOR) - 1) /8 using integer di vision. 

CHLDOD~ has the displacement to the child pointer for a node 

which is also the displacement to the user data for a term­

inal record. (CHLDUD@) = (QSTR@} + (QSTRLMl) + 1 

PLLBOD holds the total length of a node for this file. The 

value stored in PLLBOD is 4 more than that in CHLDUD@. In 

order to be able to store at least two logical records per 

physical record or control interval, the total length must 

be less than an arbitrary 2000 bytes or one-half the 

physical record length, whichever is smaller. 
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NODEABEl is work space to remember the contents of a 

possible parent record for insertions. That information is 

then aodified while constructing the actual record that is 

to be entered into the file. RPLasG is an overlay of the 

last 132 bytes and is used only by VSAM to return an error 

message. If sach an error had occurred, any temporary 

record would be useless anyway. 

Appendix A contains the entire assembly listing of the 

CARTAM routine. Within the routine are several logical 

units that are described here. 

The LODE section of code is a closed subroutine to con­

vert an BB! to a aain aeaory address. The RBA is split into 

a control interval RB! plus a displacement into that CI. If 

the CI is already in memory, it is logically moved to the 

top of the LBU ring, the displacement is added to the proper 

frame address in Rl, the delta is expanded, the twin pointer 

fro• the record is inserted in R2, and control is returned 

to the point of call. If the CI was not in aain memory 

already, the oldest slot is determined from the end of the 

end of the LRO ring and the CI in that slot is written to 

disk if it had been modified. The new CI is then read into 

the fraae and treated as above. The logic of this section 

of code was •odeled after the pa9ing scheme as described in 

in BEL Paging Services [9]. 



-83-

The overall logic of CARTAM is actually quite simple. 

On entry, a search is made for the proper FCBAREA, building 

a new one if necessary, the function code is examined, and 

control is transferred to the appropriate section. aost 

retrievals eventually go through the RTNVALS section which 

aoves the coordinate vector to the driver program's area 

along with the user data if the record was a terminal. The 

area receiving the user data is padded out with the pad 

character in any case. The expanded delta value is also 

placed in the proper location and the NORT indicator is set. 

A Get Master record is a request for the master node 

and would be issued if the driver program wished to restart 

an unusual search strategy. The stack pointers are reset to 

put the aaster RBA in the master (-1} position of the stack 

which is then adjusted with twin and child pointers as usual. 

The RBA for a Get Direct request probably will not be 

found in the stack, but the stack is checked just to make 

sure. Mote that a GD request will probably flush the stack 

which must be considered in Get Parent and Get Next 

requests. 

The Get Twin and Get Child requests are simple pops of 

the stack. If a zero value is picked up after the pop, an 

indication of no record found is returned: STATUS = GE. 

The Get Parent is slightly aore co•plicated due to the 

possibility of GD requests flushing the stack. If the stack 
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is exhausted during the pop operation, the twin chain must 

be followed to find the next parent record. All of the 

requests so far described aay set parentage, in vhich case 

the location in the stack of the record being returned is 

stored in STKPRNT as a parent marker. 

The Get Next and Get Next in Parent operate in a 

similar fashion except that GNPx will terminate at the 

parentage as stored in STKPRNT while GN will continue 

through the tvin chains even after the stack is exhausted. 

GNPx processing is also slightly more co•plicated because 

the INTERSECTION_PUHCTIOH is used if the search had been 

initiated by a GR request. If the INTERSECTION_PURCTION 

determines that only one child of a node is useful, that 

chil.d is retrieved iaaediately and the next twin entry in 

the stack for that record is cleared, indicating no further 

records a1ong that chain. If the record is a node and the 

fourth position of the function code is an "Lft, a branch is 

taken to the top of this section of code to immediately 

retrieve the next record. 

The insertion alqorith• atte•pts to take advantage of 

resident records and any actual proximity of consecutive 

inputs by popping the stack, using the parent backtrack 

trail. The stack is repeatedly popped until a node record 

is found vhich defines a square that actually contains the 

point X which is to be inserted. INTERSECTION_FUNCTION is 
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invoked in each instance with the X coordinate vector used 

as both the low and high limit vectors. When a good parent 

has been found, CARTAM turns around and descends the tree 

structure. Since a node P was found that contains X, it is 

known in which direction X lies in relation to the center of 

P because INTERSECTION_FUNCTION sets QSTRH and QSTRL in the 

FCBAREA. Thus, CARTAM walks the child;tvin chain looking 

for the child with a aatching Q string. If no record is 

found with a matching Q string, X is inserted as a terminal 

record in the proper position in the chain. 

If a record c was found with a matching Q string, 

INTEBSECTION_FUNCTION is invoked again to determine if X is 

inside c. If truly inside, CARTAM treats record c as the P 

node and loops back to continue with the descent. If the 

intersection vas empty, a new node must be constructed to 

replace c in the chain ve have been following. This new 

node becoaes the parent of c and the new terminal X and the 

coordinate values of the new node are adjusted to ensure 

that C and X have differing Q strings in relation to their 

new parent. 

If the intersection of C and X vas an identity inter­

section, the coordinates of X matched the coordinates of c 

and c is either a terminal or a node with a zero-valued 

delta. If c is itself a terminal, it is replaced in its 

chain vith a new node with a delta defined as zero and both 
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c and I are chained as children of that new node. If c was 

a node with zero delta, X is siaply added as another child. 

In this case, all children, including c and x, have 

identical Q strings, indicating an all positive direction. 

Change and delete requests require that the record be 

retrieved on the imaediately preceding call to CARTAM. A 

change allows only the user data to be modified and it must 

not be extended. To ensure that a change request is not 

incorrectly used to change coordinates, CARTAM requires the 

coordinate vector which aust still agree with the record in 

the file. If the coordinates still match, and the record is 

is indeed a terminal, the user data is aoved from the driver 

program's area into the file record, replacing the user 

defined data in entirety. 

Only terainal records may be changed, but both terminal 

and node records may be deleted. A record is logically 

deleted by adjusting the pointers to skip over it. space is 

not reclaimed! After the pointers have been adjusted, the 

length of the chain is examined to ensure that the chain is 

at least two mesbers long. If the chain has only one member. 

the parent of the chain is replaced in its ring by the sole 

remaining child. 
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CHAPTER VII 

CARTA!'! Ilf USE 

The preceding discussion gave some general search 

algorithms with no particular rationale behind them. Let us 

look at some specific applications that have been imple­

mented at Headquarters, Strategic Air Comaand. Our computer 

environment is an IBP! System 370, P!odel 3033, using OS/VS2, 

P!ultiple Virtual Storage C"VS) as the operating system. 

Secondary storage consists of IBP! 3330 P!odel 1 and P!odel 11 

disks and IBP! 3350 disks. In all of my examples, the data 

are points on the surface of the earth defined by latitude 

(lat) and longitude (lng). 

The first file is stored on 18 cylinders of a 3330 disk 

voluae and contains roughly 100,000 terminal records as data 

points, each carying an average of 15 bytes of user-defined 

information. The latitude and longitude in this file are 

stored as arc seconds in signed binary integers with the 

convention of north and east positive. The driver program 

to load this file executes in approximately 55 seconds of 

central processor (CPO) tiae and 15 minutes elapsed time in 

our normal batch production multi-programming environment. 
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The aetric function used to calculate distance on the 

earth is an iaplementation of a great elliptic evaluation 

which provides geodetic distance in meters; see appendix B 

for a discussion of YECTOR. Since this metric function 

tends to be expensive in computation, an estimator value has 

been devised which provides an estimated radius in meters of 

a circle guaranteed to completely enclose the square defined 

by a node or ter•inal record•s coordinates. The value of 

this estiaator E is: 

E = 45.0 > 43.645 = sqrt(2)*(1852 meters/60 arc secs} 

(1852 meters per nautical mile; 

1 nautical mile per arc minute; 

1 arc •inute per 60 arc seconds) 

It aight see• that a better estimate of the radius for 

a circumscribing circle could be obtained by using VECTOR 

to aeasure the distance froa the center of the square to the 

lover left corner for example. Unfortunately, so•e of the 

nodes near the root of the tree carry latitude values in the 

range of 1450. With VECTOR calculating geodetic distance, 

a such saaller nuaber than expected is the result. Since 

search strate9ies vil.1 not be attempting any accurate deter­

mination of the inclusion of an area inside a node-defined 

square, rather the reverse, the upper bound approach with 

E vas chosen. 



-89-

Probably the simplest application of CARTAM is to 

search for those data points within an arbitrary circle. 

As a first approximation to the desired circle with center 

coordinates (latO,lnqO), define a search rectangle to 

enclose the final desired circle. The delta latitude value 

is the appropriate number of arc seconds equivalent to the 

circle radius (DO) , while the delta longitude is that same 

number of arc seconds divided by the cosine of the latitude 

to allow for convergence at the poles. Therefore, the limit 

vectors are: 

lvec = (latl,lngl) and hvec = (lath,lngh) where 

latl = latO - DO, lngl = lngO - (DO/cos(latO)), 

lath= latO +DO, lngh = lngO + (DO/cos(latO)). 

See figure 7-1 for the conditions that will be tested by 

algorithm CS below. Within the diagram: 

line AX = DELTA (A) * E 

line BY = DELTA (B) * E 

line CZ = search radius = DO 

line CA = VECTOR distance from c to A 

line CB = VECTOR distance fro• c to B 

square A is inside search circle because 

CA < CZ - AX 

AX < CZ - CA 

AX < - (CA - CZ) 
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Circle Search Conditions 

Figure 7-1 
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square B is outside search circle because 

CZ < CB BY 

BY < CB - CZ 

Moving •GR" to the function code initially, ve have: 

Repeat 

CALL CARTA!! (CO!!M_BLOK, USER_DATA, 

COORDS, DELTA, 

lvec, hvec) ; 

if STATUS_CODE = SPACES, then begin; 

Set AX := E * DELTA; 

Set CA := VECTOR(lat0,lng0,lat1,lng1); 

if AX ~ CZ - CA, then begin; 

/* square A for example */ 

Set FUNC := 1 GNPL'; 

repeat 

if TERMINAL, then 

Present terminal records 

as successful; 

CALL CARTAM (COMM_BLOK, USER_DATA, 

COORDS, DELTA) ; 

until ST!TUS_CODE # SPACES; 

Set FUNC := 'GNP '; 

if STATUS_CODE = •Ga•, then 

Set STATUS_CODE := SPACES; 

end; 
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else 

if AX < CA - CZ, then 

Set FUNC := 1 GNPT 1 ; 

/* discard subtree (square B) */ 

else 

Set FUNC := 'GNP 1 ; 

/* to examine next level down */ 

end; 

until STATUS_CODE # SPACES; 

This algorithm asks CARTAM for successive nodes and 

tenainals inside an initial search rectangle. As a record 

is returned by CARTAH, it is checked to see: 

1) if it is entirely within the final circle, then all 

terainals of the subtree are presented as found; 

2) if it is entirely outside the final circle, the 

subtree is discarded; 

3) if neither condition is met, the tree structure is 

descended one aore level to examine the children. 

The process is continued until no aore nodes or terminals 

remain in the search rectangle to be exaained. see 

appendix G for a COBOL program written for this task. 

This particular driver program vith the highly original 

name of OHETE~E (variant of ONETIME} has been used exten­

sively as a test vehicle during the development of CARTAM. 

It was written to display the results of a primitive circle 
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Performance Statistics 

Number of 
search points 1 50 100 200 300 400 

8 page slots 

CPO seconds 
for run .19 1.38 2.60 5.01 7.47 9.89 

CPU seconds/ 
search point .19 .0243 .0243 -0242 .0243 .0243 

Nuaber of reads/search point 
ainiaua 22 16 16 16 16 16 
a ode 22 24 24 22 24 24 
mean 22 24.04 24.09 24.01 24.02 24.30 
maxiaua 22 32 34 34 41 51 

16 page slots 

CPO seconds 
for run .19 1.29 2.41 4.55 6.98 9.78 

CPO seconds/ 
search point .19 .0224 .0224 .0219 .0227 .0240 

Nuaber of reads/search point 
mini11ua 21 15 15 15 15 15 
mode 21 23/24 20/23 20 22 23 
mean 21 22.28 22.23 22.14 22.19 22.43 
maximua 21 30 30 30 35 36 

32 page slots 

CPO seconds 
for run .20 0.95 1-69 3.17 4.83 6.55 

CPO seconds/ 
search point .20 .0155 .0151 .0149 .0155 .0159 

Nuaber of reads/search point 
mini mu• 21 1 1 0 0 0 
mode 21 10 12 12 11/12 12 
mean 21 11. 74 11.15 10.69 10.77 10.68 
aatlmu11 21 21 21 21 25 25 

Figure 7-2 
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search as applied against the installation index file. 

Input is the Cartesian Index file which is to be searched, 

and a file of control cards, each of vhich contains the 

latitude and longitude of the center of a search circle. 

Test runs have usually been made with a 10,000 foot radius 

for the search. The overall logic consists in reading a 

control card, searching the Cartesian file for all data 

points within 10,000 feet and printing the accepted records. 

This procedure is then repeated for each card in the input 

file. Figure 7-2 presents a table of selected statistics as 

an indication of performance. The table is cumulative in 

nature; the different lengths of runs are from termination 

at specified numbers of control cards. For example, the 

statistics for 300 points were obtained by extending the 200 

point run by 100 more points. The entries for number of 

reads are the nu•bers of physical disk accesses that vere 

made for each control card read during the run. 

An obvious extension to the circle search is a search 

for those installations inside the area defined by the 

aatheaatical union of k circles as shown in figure 7-3a. 

We modify algorithm cs by defining the search rectangle to 

include all circles and checking distances to the center of 

each circle instead of just the one; initially setting a 

flag to indicate •outside-all-circles•, a loop is executed 

on the metric. Once again moving "GR• to the function code 

initially, ve nov have: 
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+ 

+ 
+ 

+ 

t 

Inclusion Area Search Example 

Figure 7-3a 

+ + 

+ + 

Exclusion Area Search Example 
Figure 7-3b 

+ 



-96-

Set ACCEPT_SQUARE := •inside-a-circle"; 

Set REJECT_SQUARE := "outside-all-circles"; 

Repeat 

CALL CARTAft (CO!ft_BLOK, OSER_DATA, 

COORDS, DELTA, 

lvec, hvec) ; 

if STATUS_CODE = SPACES, then begin; 

Set AI := E * DELTA; 

Set flag := •outside-all-circles"; 

for i = 1 to n, do begin; 

if 

Set CA := VECTOR(lati,lngi,lat1,lng1}; 

if AX ~ CZ - CA, then 

Set flag := "inside-a-circle• 

else 

if AX > CA - CZ, then 

Set flag := "overlap-a-circle"; 

end; 

flag = ACCEPT_SQUARE, then begin; 

Set FU?iC ·-.- 'GNPL I; 

repeat 

if TERftINAL, then 

Present terminal records 

as successful; 

CALL CARTAa ccoaa_BLOK, USER_DATA, 

COORDS, DELTA) ; 

until STATUS_CODE # SPACES; 
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Set FUNC := 'GNP •; 

if STATUS_CODE = 1G~ 1 , then 

Set STATOS_CODE := SPACES; 

end; 

if flag = REJECT_SQUARE, then 

Set FUNC := 'GNPT'; 

/* discard subtree */ 

else 

Set FUHC := 'GNP •; 

/* to examine next level down */ 

end; 

unti1 STATUS_CODE # SPACES; 

The converse exclusion search strategy as shown in 

figure 7-3b is identical except that "inside-a-circle" is 

now the discard criterion, while •outside-all-circles" 

becoaes the present successful terminals. Note that the 

distance check loop •ay be terminated i.Ilnediately if the 

flag ever becoaes •inside-a-circle•. If the loop terminates 

with the flag still set at the initial value, the subtree is 

to be discarded. A rather neat prograJDing dodge is to use 

CARTA8 1 s function-code as the flag for the various 

conditions. Appendix B contains the COBOL progra11 which 

performs this sort of search. 
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Algorithm cs may also be readily extended to provide a 

band search, at least in Cartesian space with a Euclidian 

•etric [d : SQRT(x2 + yz) ]. A band search is defined as the 

retrieval of all records within a given distance of a 

straight line passing through an appropriately defined "GR" 

search rectangle. As an example in two dimensions and 

assuaing the appropriate units, the equation of the line is 

given by: Ax + By + c = O. Normalizing this equation by 

dividing by the SQRT(AZ + B2) results in a metric function 

where the distance is determined by: d = ax + by + c. The 

estimator E for a square defined by a file record is then 

given by: E = tat + lbf, vhich, when multiplied by the 

delta of the file record, gives the distance from the center 

of the square to a line parallel to the search line and that 

also passes through an appropriate corner of the square. 

Therefore, by replacing the two lines of algorithm cs as 

read: 

Set AX ·-.- E * DELTA; 

Set CA ·-.- VECTOR(lat0,lng0,lat1,lng1); 

with: 

Set AX ·-.- (far +- 'b r> * DELTA; 

Set CA ·-.- ta*Xl + b*Y1 + CH 

we DOV have a band search for Cartesian space with a 

Etlclidian aetric. 
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Since CARTAft leaves the limit vectors available to the 

driver prograa at all times, a soaevhat more extensive 

modification of algorithm cs suggests itself for a nearest 

neighbor search, by continually reducing the size of the 

search circle. As the search circle can be legitimately 

reduced only when a terminal record is examined, initialize 

the function code to 'GR L' to retrieve terminals only. 

Then the following algorithm will find the closest terminal 

record within an initial distance CZ: 

latl := latO - CZ; 

lath := latO + CZ; 

lngl := lngO - CZ/cos(latO); 

lngh := lngO + CZ/cos{latO}; 

CALL CARTAft(CO!M_BLOK, USER_DATA, 

COO RDS, DELTA, 1 vec, h vec) ; 

Set function code := 'GNPL'; 

while STATUS_CODE = blanks do begin; 

Set CA := YECTOR(lat0,lng0,lat1,lng1); 

if CA < CZ then begin; 

Set CZ := CA; 

latl := latO - CZ; lngl ·- lngO - CZ/cos(latO}; .-
lath := latO + CZ; lngh ·- lngO + CZ/cos (la tO) ; .-
Save terminal information; 

end; 

CALL CARTA!(COMM_BLOK, USEB_DATA, 

COO RDS, DELTA) ; 

end; 
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When this algorithm terminates, the last terminal 

record saved vill be the terminal closest to the initial 

search coordinates. Conceptually, terminals in the upper 

right quadrant ("++" direction) are successively examined, 

reducing the size of the search circle (probably) each time, 

until the closest terainal in that quadrant is found. Then 

examination of the reaaining quadrants proceeds very quickly. 

One final example has to do with a plotting application, 

in particular the presentation of aaps with various levels 

of detail upon a graphical display device. If a particular 

area of the world were to be presented every time maps were 

requested, it would be a simple matter to construct a sub­

image for display and call it up from secondary storage as 

required. However, if the areas to be •apped are defined by 

limits specified at run-time along with user-determined 

levels of detail, the number of pre-built maps becomes 

prohibitive due to the geometric explosion of combinations. 

The obvious soultion is to build the maps upon request. 

Our second example file is built in the Cartesian Index 

fonaat for this purpose, containing as data the set of 

plottable points defining coastal and country boundaries. 

There are approximately 100,000 points in this file also, 

but this time our latitudes and longitudes are single 

precision floating point numbers expressed as arc radians. 

The ter•inal user-defined infor•ation contains a sequence 
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number for its relative position along the plotted line 

as well as a coastal/country boundary indicator. once the 

application program determines the aap limits from the user 

for the session, CARTAM is requested to retrieve those 

points within the rectangle defined by those limits. Using 

the user-defined data stored with the terminal records, 

these points may then be sorted internally, plotted and 

displayed on the screen. 

Using CARTAK to retrieve map points for construction of 

background maps has resulted in a drastic reduction in map 

preparation time. This is aptly illustrated by a comment in 

an internal docuaent, STAKPS Graphics Utilities User's 

Manual, 1 February 1977. •since creation of an image of a 

aap background requires a considerable amount of time (up to 

five minutes CPU) it would be impractical and inefficient to 

build these backgrounds on-line. • •• the time required to 

build the maps vould prohibit using them on the system." 

While the •five minutes• refers to CPU time for an IBM 

system 360, ftodel 85, and current experience has been on a 

System 370, Model 3033, the same map backgrounds are nov 

being built in roughly five seconds elapsed time. The per­

formance has improved to the extent that pre-built maps are 

no longer used; in fact, as the application user desires to 

exaaine a smaller area, the map limits are recomputed and 

the aap backgrounds are completely redone each time. 
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CHAPTER VIII 

ASSESS!ENTS AND RECOftftENDATIONS 

The past fev chapters have described the use of the 

CARTA! routine and the associated Cartesian Index File with 

soae examples of actual applications. These examples have 

been liaited to two dimensions, specifically latitude and 

longitude on the surface of the earth, but there has been no 

intention to imply that CARTAM is limited to tvo dimensions. 

Hor is it necessary that the coordinate values carry the 

same units, such as arc measure in the case of latitude and 

longitude. l better separation would be obtained if each of 

the coordinates are scaled such that the ranges of values 

are approximately the saae, but, again, there is no hard and 

fast requirement imposed by CARTAM. As an example, the 

installation file that was described earlier can very easily 

be defined with three coordinates instead of tvo by adding 

a coordinate carrying a numeric representation of a category, 

for instance. Effectively, this would separate the instal­

lations into categorical layers which may prove extremely 

useful in some cases. Since CARTA! does not apply any 

specific metric function to the records, the number and type 
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of coordinates is totally at the discretion of the user who 

aay then apply whatever metric function is deemed appro­

priate for discriaination. 

A final thought has to do with possible optimizations 

of the Cartesian file for large read-only applications. The 

file as built by repeated insertions tends to have pointer 

chains spread randoaly over the file, which increases the 

number of physical retrievals from secondary storage. One 

possibility vould be to recopy the Cartesian file once it 

had been coapletely loaded. The initially-loaded file vould 

be read in the Get Next hierarchical sequence and copied in 

that order onto the final file. This would allow any 

searches using the •GHP• philosophy to proceed in a mono­

tonic manner through the final Cartesian file. The other 

alternative might be to recopy the initial file in such a 

way as to group as •any nodes of the saae level on the same 

physical record (control interval) as possible, building a 

many-way tree a la Knuth [8, pg 471). The usefulness of this 

· •ay be open to conjecture if the majority of the searches 

are small circle searches, since this type of search 

proceeds down a single path of the tree for several levels. 
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The CARTA! routine has proven itself as a very useful, 

generalized aethod to construct a aulti-dimensionally-keyed 

file and provide extreaely rapid access to desired records 

therein. The programs have been implemented in de•onstrated 

efficient code and have proved themselves in a variety of 

complex applications. With the help of this document, 

additional applications of these techniques should be very 

straightforward with implementation in a ainimua of time. 
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CART.U! 

&C 
&J 
&K 

&C 
.A 
&K 
&J 
.GO 
&C.&I 
&I 

&LBL 
&LBL 

&LBL 
&LBL 

.LD1 

.SKLD 
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APPENDIX A 

CARTA!! SOURCE 

TITLE • PROGRA1' TO HANDLE N-DI!!ENSIONAL INDEX * 
MACRO DEFINITIONS• 

!ACRO 
REQOATE &N 
LCLA &I,&J,&K 
LCLC &C 
SETC 1 R1 

SETA 6 
SETA 2 
!IP (T 1 &N EQ 1 0 1 ) .A 
SETC 1 &N' 
AIP ( 1 &C• EQ 1 !' 1 ) .GO 
SETA 1 
SETA 15 
AHOP 
EQU 
SETA 
lIP 
ftEND 

l!ACRO 
ZR 
SR 
1'EHD 

!ACRO 
LP AGE 
DS 
AI:F 
AIP 
All" 
LR 
AGO 
L 
BAL 
ftEHD 

&I 
&I+&K 
(&I LE &J} .GO 

&R 
&R,&R 

&PG 
OH 
{T'&PG EQ 1 0 1 ).SKLD 
( 1 &PG• (1, 1) NE • ( 1 ) .LD1 
( 1 &PG 1 EQ 1 (R1) ') .SKLD 
B1,&PG (1) 
.SKLD 
R1,&PG 
R14,LDPAGE 



&LBL 
&LBL 

.LDl 

.SKLD 

&C 
SET& M .Ort 

.M1 
&A 

SET&M .O!! 

~2 
&L 
&c 

SET& l! .oa 

.!3 
SET&r! .OM 

.!4 

.l'!S 
SET&l!.00 

.MED 
SET&!! .00 

.MALL 

.l'!ALLP 
SET&!!.01 
SET&!!.02 

lUCRO 
!!PAGE 
DS 
!IP' 
All" 
lIF 
LR 
AGO 
L 
BAL 
ft END 

!UCRO 

&PG 
OH 
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(T 1 &PG EQ 1 0 1 ) .SKLD 
('&PG' (1, 1) NE '( 1 ) .LD1 
( 1 &PG 1 EQ • (R 1) 1 } .SKLD 
Rl,&PG(l) 
.SKLD 
R1,&PG 
R14,!!KPAGE 

SETFONC &!! 
LCLC &A,&C,&L 
OSIHG SET&!!.O!!,R8 
AIF ( 1 &M. HE •p ') .rn 
SETC 1 L1 

!!VC 0(4,RS) ,DELWK 
AGO .MS 

SUBJECT OP EXECUTE IN RTNVALS 

ANOP 
SETC 
!IP' 
l'SVC 
AGO 
ANOP 
SETC 
SETC 
!IF 
l!VC 
AGO 
AIP' 
!!VC 
AGO 
!NOTE 
AGO 
ANOP 
L 
SRA 
.lll' 
BHP 
AGO 
lNOP 

•&!!' 
c•&e • NE •a'> .1'!2 
0(2,RS),DELiK+2 SUBJECT OP EXECUTE IN RTNVALS 
.MS 

•&!!. 
•&!!. 
( I & !! • NE I E I ) .!! 3 
0(4,RS),DELWK SUBJECT OF EXECUTE IN RTNVALS 
.l!ED 
( 1 &!! 1 NE 'D') .!4 
0(8,RS},DELWK SUBJECT 
.!!ED 
8,'BAD TYPE CODE' 
.HD 

OP EXECUTE IN RTNVALS 

RO,PRNTDEL 
R0,1 HALVE DELTA 
( 1 &!' ME 1 F 1 ) .MALL 

SET&!! .8 
.MALLF 

L&l! O,PRNTDEL 
B&M.R 0,0 
LT&!.R O,O 

HALVE DELTA 

BZ SHUDBVR 
AHOP 
ST&L 
L&L 
EX 
BHO 

O,PRNTDEL 
O,PRNTDEL 
R3,DELSIGN 
•+6 

ADD OR 
T!! QSTRO-QSTRL(RS),O 
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LB&L.R 0,0 SUBTRACT DELTA BASED ON BIT STRING 
l&A 0,COORDSi(B4,Rl) 
ST&A O,COORDSi(R4,Rl) 

SET&ft.0 L&A O,COORDS@(R4,Rl) COORDINATE IN PILE EI 

SET&!! .1 

SET&r!.2 

SET&l!.3 

SET&!!.4 

SE'f&ft .S 

SET&ft .6 

SET&l!.7 

SET&!! .8 

SETNTRY!! 
SETNTRY1 
SETBTRY2 
SETNTRY3 
.liD 

S&l O,O(R4,R10) COORDINATE FROM SEARCRJISRT XH 
BP SET&!! .2 
Bft SET&l!.1 
C&C O,DELWK (EI - XH) = 0 
BL SET&f!.3 
B SET&ft.4 

LP&L.R 0,0 (EI - XH) < 0 
C&C O,DELWK 
BL SET&f! .3 
OI SETFLGS,XNOTINE PART OP SEARCH OUTSIDE 
B SET&ft.4 "SQUARE" 

EX R3,NEGHI 01 QSTRH-QSTRL(RS) ,0 
C&C O,D.ELWK (EI - XB) > 0 
BBH SET&!! .3 
OI SETFLGS,E!!PTYSET INTERSECTION IS EMPTY 
OI SETFLGS,EBOTINX PART OP "SQUARE" OUTSIDE 

L&A 0,0 (R4,R9) LOW SIDE SEARCH COORDINATE XL 
S&l O,COORDS~(R4,R1) .FILE COORDINATE EI 
BP SET&!! .6 
BZ SET&ft .5 
EX R3,NEGLO OI QSTRL-QSTRL(RS) ,0 
LP&L.R 0,0 (XL - EI} < 0 
C&C 
BL 
BER 
OI 
BR 

C&C 
BL 
OI 
OI 
BR 
AIP 
BZ 
L 
SRL 
B 
EQO 
EQU 
EQO 
EQU 
DROP 
!!END 

O,DELiK 
SET&f!.7 
R14 
SETFLGS,XNOTINE 
R14 

O,DELWK 
SET&l!.7 
SETFLGS,E!!PTYSET 
SETFLGS ,ENOTINX 
R14 
( •&! • HE •P 1 ) .lfD 

SBUDNVR 

PART OF SEARCH OUTSIDE 

INTERSECTION IS E~PTY 
PART OF "SQUARE" OUTSIDE 

RO,PRHTDEL FULL iOBD INTEGER INFINITE DELTA 
R0,1 APPEARS TO BE NEGATIVE 
SET&f! .O 1 
SET&ft.Oft-SET&!.Oft 
SET&M.00-SET&M.Ol! 
SET&f!.02-SET&!!.O!! 
SET&l! .0-SET&P! .Ol! 
RS 

OFFSET FOR EX IN BTNVALS 
OUTER LOOP OFFSET IN F4A 
IBBER LOOP OFFSET IN F4A 
LOOP OPFSET IN INTRSECT 
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* PUNCH A LINK EDITOR CONTROL CARD TO FORCE PAGE ALIGNMENT 

CARTA!! 

ID 

PAST ID 

PAM AD DR 
PAR!!CNT 

SAYEPPRO 
SAYEPPR2 
SETFSAVE 

X'.l'NDSAVE 
LODESAVE 

MASTER PG 

!AXIBFRS 
!IlllBPBS 

SHUD!VR 
STKOYP'LO 

PUNCH I PAGE CARTA!!' 

TITLE I 

CSE CT 
USING 

PROGRA! TO BANDLE N-DIMENSIONAL INDEX' 

B 
DC 
DC 
PRINT 
ST!! 
LR 
STD 
STD 
CNOP 
BAL 
DROP 
USING 
DC 

DC 
EQU 

DC 
DC 
DS 
ORG 
DS 
DS 
ORG 
DC 

•,B15 
PASTID 
AL 1 (L 'ID) 
C1 CARTAI!.&SYSDATE •• &SYSTIME 1 

HOGEN 
R14,R12,12(R13} 
R14,R13 
FO,SAVEPPRO 
P2,SAVEFPR2 
0,4 
R13,PASTCONS 
R15 
•,R13 
18P'0 1 

A (0) 
PARMADDR,1 

n•o• 
D1 0 1 

10P 
SETPSAVE 
p 
7F 

A (L 1 PILECNTL) 

SAVE AREA 

RBA OF MASTER PAGE 

REQUATE 
REQOATE P 

EQO 32 
EQtJ 4 

ABE ID 97,DUrtP,STEP 
ABEND 24,DU!!P,STEP 

MAXI!UM NUMBER OF BUFFERS 
MINIMUM NU~BER OP BUFFERS 



COKl!!BLOK 

CBDDIIAl!!E 
CBPUllC 
CBPONCl 
CBFUHC2 
CBPUNC3 
CBPONC4 
CBSTATUS 
CBl!!ODE 
CBNORT 
CBRBA 
CBlUXUDL 
CBTRUUDL 
CBIGETS 
CBIPUTS 

* 
CBPAD 
CBIXS 
CBIBOP'RS 

DIRECTRY 
RBA 
FRI! 
P'LGS 
CH'fLADDR 
FWD 
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TITLE I PROGRAft TO HANDLE N-DIMENSIONAL INDEX 
WORK AREA DEFINITIONS' 

DSECT 
USING *,R11 
DS CL8 
DS 0CL4 
DS c 
DS c 
DS c 
DS c 
DS CI.2 
DS c 
DS I 
DS F 
DS H 
DS H 
DS H 
DS H 

REDEFINITION 
ORG CBNORT 
DS C 
DS B 
DS H 
ORG 

EQU 0,16 
EQU 0,4 
EQU 4,4 
EQD 8,1 
EQO 8,4 
EQD 12,4 

DDN AME OF FILE 
FUNCTION CODE 

RETURN STATUS 
MODE OP ARITBl!!ETIC 
NODEfTERl!!INAL INDICATOR 
RBA OF RECORD RETRIEVEDlINSEBTED 
!!AX LENGTH OF USER DATA AREA 
TRUE LENGTH OP OSER DATA 
COUNTER FOR VSAM "GETS" 
COUNTER FOR VSAM "PUTS" 

IN EFFECT WHEN FUNC = •LOAD"r•oPEN" 

OSER DATA AREA PAD CHARACTER 
# COORDINATES 
I PAGING BUFFERS TO BE USED 

RBA OF PAGE IN PRAl!!E 
FBAl!!E CORE ADDRESS 

CORE ADDRESS OF VSAI!! CONTROL INFO 
FWD LINK OH LRU RING 
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FCBAREA DSECT 
OSilllG *,R12 

FCBLABEL DS CL8 LABEL IS FILE DDNAME 
PREVFCB DS A BACKWARD AND 
NEXT PCB DS l FORWARD LINKS 

IFGICB DSECT=NO GENERATED ACB 
IFGRPL DSECT=NO GENERATED RPL 
DS OD 

LNACBAR EQU IFGRPL-IPGACB 
LIRPLAB EQO •-IPGRPL 

CI SIZE 
AVSPAC 
EN DR BA 
LRECL 

DS 
DS 
DS 
DS 

MYNODCS DS 
DS 

RCDADD DS 
DS 

CURRBBA DS 
BOPB@ DS 
ISUBPOOL DS 
LNGBOP DS 
PRIORT DS 

DELWK DS 
PRNTDEL DS 

SPLTl'!SKS DS 
CIMSK DS 
DSP!!SK DS 

LODE AB GS 
LODE CI 
LODEDSP 

DIREC~ 

DS 
DS 
DS 
DS 
DS 
DS 

lUSCPLGS DS 
ISRTOlfLI EQU 
PILEXTND EQD 
l'RSTISRT EQO 
SENDPlD DS 

p 
p 
p 
p 

CONTROL INTERVAL SIZE 
AVAILABLE SPACE 
ENDING BBA 
LOGICAL RECORD SIZE = CISIZE-7 

A(NODEAREA) FOR MVCL INST 
F (PLLNOD) 
A 
P (CHLDUDii) 

F 
1 
ox 
F 
A 

D 
D 

OXL6 
p 
H 

H 
OXL6 

F 
B 

BBA OP RCD W/ CORE ADDR IN RCDADD 
LOCATION AND 

LENGTH OF PAGING AREA 
TOP OP LRU RING 

EXPANDED DELTA FROM RETRIEVED RCD 
EXPANDED DELTA FOR NODEAREA 

!!ASKS TO SEPARATE RBA'S INTO 
CONTROL INTERVAL RBA 

AND DISPLACEMENT 
UNUSED 
SEPARATED RBA TO BE .LOADED 

H UNUSED 
(l'!AXIBPRS}XL(L'DIRECTBY) PAGING DIRECTORY 

XL3 ftISCL FLAGS 
B'10000000 1 FILE OPENED FOR LOAD 
B1 01000000 1 FILE BAS BEEN EXTENDED 
s•ooooooo1• FIRST INSERTION HAS MOT BEEN DONE 
C PAD FOB OSER DATA AREA 

XTRAPBft DS l 

SETPREGS DS 
DS 
DS 

XL4'80 1 

P''O • 
1 (QSTRL} 

R3 EX ftASK POR BIT STRING 
R4 COORDINATE VECTOR INDEX 
RS BIT STRING ADDRESS 



DS 
DS 

SETPADDR DS 
GR XL it DS 
GRXBi DS 
GRP'LlG EQO 
TR!ONLY EQU 
TMPPRHT DS 
ST.KPRHT DS 
STKTOP DS 

DS 
SETFLGS DS 
SHGLCHLD EQO 
Er!PTYSET EQtJ 
ENOTINX EQU 
XNOTIHE EQO 
QSTRL DS 
QSTRH DS 
QSTRO DS 

DS 
DS 

STACK DS 
!UXSTKL EQU 

PILE CH TL DS 
ORG 

HIUSDRBA DS 
PLft.ODE DS 

DS 
PLICOOR DS 
FLLCV DS 
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P R6 INDEX INCREMENT 
P R7 INDEX LIMIT VALUE 
1 RS A(SET&r!.O) 
A R9 LOW SEARCH COORDINATES 
1 R10 HIGH SEARCH COORDINATES 
B1 10000000 1 IP SET, DOING •GRM SEARCH 
B1 01000000' IP SET, WANTS TERMINALS ONLY 
H POINT IN STACK OP TEMP PARENT 
H POINT IN STACK OF PARENT 
H TOP OP STACK 

x•o• ZEROES TO CLEAR BIT STRINGS 
X SE'!' INTERSECTION FUNCTION FLAGS 
B1 10000000 1 INTERSECTION IS ONE CHILD ONLY 
B 1 00000100 1 INTERSECTION IS EMPTY 
B1 00000010' SOME OP •SQUARE" OUTSIDE 
B1 00000001' SOME OP SEARCH OUTSIDE 
XL64 BIT STRINGS 
XL64 OP DIFFERENCE SIGNS 
XL64 

D 
D 
128D 
•-STACK 

XL32 
PILECBTL 
F 
c 
c 
H 
H 

UNUSED 
PERMANENT PIECE OF STACK 

FILE CONTROL INFORMATION 

CURRENT HIGH USED RBA (ISRT USES) 
H t F I E I D 
UNUSED . 
t COORDINATES 
(FLICOOR) * (FI.LCOOR) 

DELTAi EQU 0,2 12 BITS 
RCDFLGS EQU 1,1 4 BITS 
PARENT EQU B1 0001' END OF TWIN CHAIN 
HODRCD BQO B'0010' RECORD IS A NODE 
TWIBi EQU DELTAi+L 1 DELTA@,4 TWIN POINTER 
COORDSi EQO TWINi+L'TWINi START OF COORDINATE VECTOR 
•QSTRi EQO COORDSi+(PLLCV) 
QSTBLMl DS H Q STRING LENGTH MINUS 1 
CHLDUDi DS H CHILD PTRfOSER DATA DISPLACEMENT 
l'LLNOD DS B TOTAL LENGTH OF A NODE RECORD 
* = L 1 DELTAi+L'TWili+(PLLCV}+(QSTRLM1+1)+L 1 CHILDPTR <= 2000 

.. 
OBG 

NODE AREA DS 
!'CBLHG EQO 

OBG 
RPIJ!SG DS 

SO FAR 16 BYTES ARE LEFT 

XL2000 NODE CONSTRUCTION WORKSPACE 
*-PCBLABEL HOPEFULLY < 4096 
•-132 
CL132 1 BPL "ESSAGE AREA' 
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TITLE 1 PROGRAM TO HANDLE N-DiftENSIONAL INDEX * 
CART Aft CSECT 
PASTCONS ST 

ST 
ST 
L 
CLI 
BNE 
L 
LA 
ST 
L 
B 

PASTPC LA 
LA 

CNTPC T!! 
BO 
LA 
LA 
BCT 

STPCT STC 
!VC 
L 
USING 
LA 

FINDPCB LR 
L 
CLC 
BH 
BLR 
CLC 
BE 
B 
DROP 

LTORG 

NULLABEL DC 
DC 
DC 

ENDLABEL DC 
DC 
DC 

INITIAL ENTRY' 

B13,8(R14) LINK SAVE AREAS 
B14 ,4(R13) 
Rl,PARftADDR SAVE PARAftETER LIST ADDRESS 
R11,0(R1) 
O(R11),0 OPTIONAL PAR! COUNT PRESENT? 
P.lSTPC 
R15,0(R11) PARAftETER COUNT 
R1,4(R1) 
Rl,PARMADDR STEP PAST COUNT 
R11,0(R1) ADDRESS OF COftftBLOK 
ST PCT 
B15,1 COUNT PARAMETERS 
R0,5 NEED AT ftOST 6 
O(R1) ,B 1 10000000 1 

STPCT 
R1,4 (Rl) 
R 15, 1 (R15} 
RO,CNTPC 
R 15, P AR!!CNT 
CBSTATUS,=C' ' INITIAL GOOD RETURN STATUS 
R9, =A (NOP'CB) 
NOFCB,R9 
R12, NULLA.BEL 
R8,R12 
R12,NEXTFCB LOOK FOR PROPER P'CB 
CBDDNAftE,FCBLABEL 
PINDFCB 
R9 NOT ON CHAIN; GO ~AKE A NEW ONE 
CBFUNC,=C'CLSE' IS ON CHAIN; R12 IS NOW BASE 
CLSE 
CHKPUNC 
R9 

2F 1 0 1 

A (0) 
A (ENDLABEL) 
2P 1 -1 1 

1 (NULLABEL) 
A (0) 

HEAD AND 

TAIL FOR PCB CHAIN 



!!KPAGE 

LDPAGE 

LODE 

LOD1 

LODS 

LOD7 

LOD8 
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TITLE 1 PROGRA!! TO BANDLE N-DI~ENSIONAL INDEX * 

!!VI 
B 

!!VI 

ST!! 
ST 
ST 
STH 
NC 
BZ 
LA 
L 
LTR 
BZ 
LR 
LR 
CLC 
BRE 
OI 
!!VC 
!!YC 
ST 
L 
AH 
ST 
ZR 
T!! 
BNO 
T!! 
BO 
L 
H 
B 
IC 
LA 
SLL 
ST 
Lft 
L!! 
L 
Tft 
BNOR 
ZR 
BR 

CONVERT AN RBA TO A CORE ADDRESS' 

LOD5+1,X 1 PO• 
LODE 

LODS+1,x•oo• 

R14,B4,LODESAVE 
Rl,CURRRBA 

ftABK A CI AS ftODIPIED 

LOAD ONLY; WILL NOT BE CHANGED 

Rl,LODECI BBA OF CI + 
B1,LODEDSP DISPLACE!!ENT 
LODEARGS,SPLT~SKS 

LERADXTO ZERO RBA IS AN ERROR 
R4,PRIORT-PWD START AT TOP OF PRIORITY LIST 
RO, FWD (R4) 
RO,RO 
LOD2 CI WAS NOT IN CORE 
B3,R4 
B4,RO 
LODECI{3) ,RBA(B4) 
LODl 
PLGS(R4),*-* ~ARK IF NECESSARY 
PWD(L 1 FWD,R3),FWD(B4) RESET LBU LIST 
PWD(L 1 FWD,R4),PRIORT 
R4,PRIORT 
B1,PB!!(R4} GET CORE ADDRESS 
R1,LODEDSP 
R1,RCDADD 
R2 
RCDFLGS(Rl),NODRCD 
LOD8 TERMINAL HAS NO DELTA STORED 
DELTAa(R1) ,B 1 10000000 1 

LOD7 STORED AS LOG2 
R2,DELTA@ (Rl) 
R2,=X 1 PFP00000 1 CLEAR GARBAGE 
LOD8 
R15,DELTA@(R1) TAKE ANTILOG2 
B2,1 
R2,0 (R15) 
R2,DELiK STORE EXPANDED DELTA 
R14 ,RO,.LODESAVE 
R3,R4,.LODESAVE+20 
B2,TWINi(R1) EXIT WITH TWIN PTR IH R2 
RCDFLGS(R1) ,PARENT 
R14 
B2 ZERO B2 FOR END OF TWIN CHAIN 
R14 



LOD2 LA 
MODCB 
Tl! 
BZ 
NI 
L.l 
AH 
STH 
PUT 
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R2,.IFGRPL 
RPL=(R2),AREA=(*,FRM(R4}) ,ARG=(S,RBA(R4}) 
FLGS(Rq),X 1 F0 1 IS IT MARKED? 
LOD4 
PLGS(R4),X 1 0P 1 CLEAR !ARK FLAG 
R14,1 
R14 ,.CBIPU'l'S 
R14,CBIPUTS 
RPL=(R2} WRITE OUT MODIFIED CI 

LOD4 !VC RBA(L'RBA,R4),LODECI RBA OP CI TO READ 
L.l Rlq,.1 
AB R14,.CBIGETS 
STB R14,CBIGETS 
L RO,.PR!(R4) TRY TO TELL MVS NOT TO BOTHER 
L R1,FRM+L 1 DIRECTRI(B4) PAGING IN AREA 
PGRLSE LA=(O),.HA={1) 
GET RPL= (R2) 
B LOD5 

XTLS'l' EXLST LERAD=(LERADXT,A) ,SYNAD=(SYNADXT,.A) 

LERADXTO LA R0,.16 LOGICAL ERROR EXIT 
ST RO,CBRBA 
B LEBADXTl 

LERADXT SHOWCB RPL=(l},lREA={S,.CBRBA} ,.LENGTH=4,.FIELDS=PDBK 
LERADXTl MVC CBSTATUS,=C 1 AJ' 

B B'l'N 

SYNADXT !VC 
LH 
STH 
LA 
f!VC 
WTO 
MVC 
B 

WTOMSG WTO 

LTORG 

RPL!SG+10(2),WTO!SG+2 PHYSICAL ERROR EXIT 
R15,.RPLf!SG+4 
R15,RPL!SG+8 
R15,.RPLMSG+4(R15) 
0(4,R15),.WTO!SG+8 
MP=(E,RPLMSG+8) DISPLAY ERROR MESSAGE ON JES 
CBSTATUS,=C 1 AO' LOG 
RTN 

'1234 1 ,ROUTCDE=(11) ,DESC=(6),MF=L 
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TITLE • PROGBlft TO BANDLE N-DiftENSIONAL INDEX * 
PERFORft REQUESTED RETRIEVE FUNCTION' 

CHKPUBC LB B7,PLLCY LENGTH OF COORD VECTOR 
LH R8,QSTRL!1 LENGTH OF Q BIT STRING - 1 
CLC CBPUNC,=C 1 ISRT 1 

BE ISRT 
T! !ISCFLGS,ISRTONLY 
BO HOTG 
L R1,RCDADD 
ZR B15 SHOULD BE 1 •G• REQUEST 
CI.I CBPUNC1,C•G• 
BH HOTG 
BL CHKDLCH 
CLI CBPUNC2,C 1 A' 
BL lfOTG 
CLI PAR!ClfT,4 
BL SHRTLIST 
IC R15,CBPUNC2 
IC R15,CftDTBL(R15) 
B llOTG (B 15) 

C!DTBLX DC 
C!DTBL EQO 

ORG 
DC 
ORG 
DC 
ORG 
DC 
ORG 

SHBTLIST ftVC 
B 

NORCD eve 
B 

POPIT ZR 
LH 
AB 
Bl!R 
STH 
L 
BR 

CBKDLCH CLC 
BE 
CLC 
BE 

BOTG l!VC 
B 

64x•oo• 
C!DTBLX-C 1 A1 +1 
C!DTBL+C 1 A1 C1 ABCD 1 

ALl(GR-NOTG,0,GC-NOTG,GD-NOTG) 
C!DTBL+c•n• C'!NOPQR' 
ALl(G!.-NOTG,GN-BOTG,0,GP-NOTG,0,GR-NOTG} 
Cl!DTBL+C 1 T1 

ALl(GT-lfOTG) 

CBSTATUS,=C 1 SL 1 TOO PEW lRGO!ENTS 
RTB 

CBSTATUS,=C 1 GE 1 

RTB 

BO POP STACK FOR !!OST •G• REQUESTS 
R14,STKTOP 
R14,=1L2(-L 1 STACK) 
B15 
R14,ST1CTOP 
R0,ST1CK+4(R14) 
B15 

CBFUBC,=C 1 CHNG 1 

CHRG 
CBPUNC, =C•DLET' 
DLET 

CBSTATUS,=C 1 AD' INVALID CODE 
BTl\1 
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GP BAL R15,POPIT POP CHILD 
Bl! HOR CD 
BAL R15,POPIT POP TWIN 
B!! HOB CD 
BAL R15,POPIT POP TO PARENT 
B!! GPHS 
L RO,STACK (R14) 
B GET IT 

GPNS L RO,TWIB@(Rl) RAH OUT OP STACK ENTRIES 
LTR BO,RO 
BZ lfOBCD FOLLOW TWIN CHAIN BACK OP 
Tl! RCDPLGS(Rl),PARENT 
BO GET IT HERE IT IS 
LPAGE (RO) 
B GPHS 

GT BAL R15,POPIT POP CHILD OPP STACK 
Bl! lfORCD THEN POP TllIN 

GC BAL R15,POPIT POP TOP OP STACK 
Bl! llORCD 
LTR BO,RO 
BZ IIORCD 
B GET IT 

GR B GRCODE AREA SEARCH INITIALIZATION 

GN CLI CBl'UlfC3,C 1 P 1 GET NEXT 
BE GNPCODE (WITHIN PARENT) 
BAL R15,POPIT 
BNf! GNOOl 
Tl! RCDPLGS(R1) ,NODRCD STACK WAS EMPTY; 
BlfO GHT FOLLOW CHILD CHAIN 
LH R15,CHLDUD@ 
L RO,O(RlS,Rl} 

GN001 LTR RO,RO 
BZ GNT 
CLI CBPUNC3,C'T 1 IS SUBTREE TO BE SKIPPED? 
BNE GET IT 

GNT BAL R15,POPIT YES; SKIP SUBTREE 
BM GIITNS 
LTR RO,RO 
BZ GBT 
B GET IT 

GNTBS L BO,STACK STACK WAS El'!PTY; 
GHTNS1 LTR RO,RO FOLLOW TWIN CHAIN 

BZ HOR CD 
LP!GE (RO) 
L RO,TWINii (Rl) 
Tl! RCDPLGS(R1) ,PARENT 
BO GllTNSl 
B GET IT 



GM 

GD 

GDLOOP 

L 
!!VC 
B 

LH 
LH 
L 
xc 
BXLE 
CL 
BBB 
STB 
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RO,!ASTERPG GET !ASTER PAGE 
STKTOP,=AL2(-L 1 STACK) 
GET IT 

B15,=AL2(-L 1 STACK) GET DIRECT 
R14,STKTOP CHECK STACK TO SEE 
RO,CBRBA IP IT IS THERE 
STKTOP,STKTOP 
B14,B15,GETIT 
RO,STACK (R14) 
GD LOOP 
B14,STKTOP START STACK WITH THIS RECORD 

GETIT XC GRXL~(L 1 GRXL@+L 1 GBXH~+L 1 T~PPRNT+L 1 STKPRNT) ,GRXI.a 
LPAGE (BO) 
BAL R15,PUSHTW PUSH TWIN OF LATEST RECORD 
CLI CBPOBC3,C'P' PARENTAGE TO BE SET 
BHE GETITNC 
STB R14,STKPBNT REnE!BER PARENTAGE POSITION IN 
CLI CBPUBC4,C 1 L 1 STK 
BBE GETITHC 
STB R14,T!PPRNT 
OI GRXHii,TR!OHLY 

GETITNC BAL R15,PUSHCH POSH CHILD OP LATEST RECORD 
RTNVALS L R3,PARftADDR 

L! R4,B5,8(R3) A(COORDVEC,DELTA) 
L R15,SETFADDR 
EX O,SETNTRYft(RlS) AN nvc INST TO MOVE DELTA 
LA R6 ,COORDSii (Rl) 
LR B5,B7 
!VCL R4,R6 novE COORDINATE VECTOR 
L B4,4(R3} A(USERDATA) 
LB BS,CB!AXUDL 
LB R14,CHLDUD~ NOW TO ~OVE USER DATA 
AR R14,R1 
ZR R15 
!VI CBNORT,C'N' INDICATE A NODE FOR STARTERS 
Tfl RCDPLGS(Rl},NODRCD 
BO flVUDAT NONE TO ftOVE 
!VI CBNORT,C•T• 
LH R15,DELTAi(R1) LENGTH OF USER DATA (*16) 
SBL RlS,4 DIVIDE BY 16 

ftVUDAT STH R15,CBTRUUDL 
ICfl R15,B'1000 1 ,SENDPAD LOAD PAD CHARACTER 
!V~L R4,R14 !OVE USER DATA AND PAD AREA 
BBL *+8 
flVI CBNORT ,c•x• WAS A SHORT (TRUNCATED) MOVE 

RTNRBA ftVC CBRBA,CURRRBA RETURN RBA TO CALLER 
RTN LD PO,SlVEFPRO 

LD P2,S!VEPPR2 
L R13, 4 (R13) 
RETURN (14,12),T,RC=O 



PUSH CH ZR 
ZR 
Tf! 
BHO 
LB 
L 

PUSHTW LB 
CH 
BB 
ST 
ST 
LA 
STB 
BR 

POPITP ZR 
LB 
CB 
BHH 
CB 
BNH 
AH 
B! 
STB 
L 
BR 

GNPG!! XC 

GR CODE 

T! 
BHO 
BI 
ftYC 
B 

CLI 
BL 
L 
ftYC 
!!VI 
IC 
CLI 
BlfE 
01 
!!VI 
l'!VC 
LPAGE 
B 
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RO ZERO TO LEFT SIDE 
R2 
RCDPLGS(Rl) ,NODRCD CHILD (IP ANY) TO RIGHT 
PUSHTW SIDE 
R2,CHLDODi 
R2,0 (R2,R1) 
R14,STKTOP IP POSHING TWIN, CURRENT RBA 
R14,=lL2(ftlXSTKL-L•STACK) IN LEFT SIDE 
STKOVPLO BECO!ES PARENT 
RO, STACK (R14) FOR ALL ABOVE IT 
R2,STACK+4(R14) IN STACK 
R 14 ,L •STACK (R 14) 
R1'1,STKTOP 
R15 

R2 
B14,STKTOP 
R14,T!PPRNT 
GHPG!! 

POP STACK POR GNP PROCESSING 

!ARKED AS TE!P PARENT? 
YES 

R14,STKPRNT MARKED AS PARENT? 
NOR CD 
R14,=AL2(-L 1 STACK) 

YES 

HORCD STACK IS EMPTY 
R14,STKTOP 
R2,STACK+4 (R14} 
R15 

T!PPRNT,TMPPRNT PINISHED SUBTREE 
GRXHi,TR!!ONLY 
HOR CD 
GRXHi,:t•PF•-TRMONLY 
CBSTATUS, =C 1 G1' • 
RTB 

PAR!CBT,6 AREA SEARCH SETOP 
SHRTLIST 
R15,PAR!!ADDR 
GBILi(L 1 GRXLi+L 1 GRIHi),16(R15} ADDRS OP LI!IT 
GRXHi,GRPLAG VECTORS 
TftPPRBT(L 1T!PPRNT+L 1 STKPRNT),T~PPRNT 
CBFUHC4,C 1 L 1 

•+8 
GRXHi,TR!!OtfLY 
SETPLGS,0 
STKTOP,=AL2(-L'STACK) 
8ASTERPG START WITH !!ASTER PAGE 
GHP4 



-120-

GNPCODE l!VI 
BAL 
CLI 
BHE 
T!! 
BO 
STH 
OI 
B 

SETFLGS,O 
R15 ,POPITP 
CBFUNC4,C 1 L 1 

GNPO 
GRXH@,TRl!O!lLY 
GIIP2 
R14,Tl!PPR1fT 
GRXB@,TR!!ONLY 
GBP2 

LAST BCD READ IS TO BE MARKED 
TO RETRIEVE ALL TER!!INALS OF 

SUBTREE 

GNPO 

GNPl 
GNPOCO 
GNP2 

GNP4 

GHPS 

CLI 
BNE 
!!VI 
BAL 
LTR 
BZ 
LPAGE 
Tr! 
BBO 

CBFUNC4,C 1 T 1 IS CHILD SUBTREE TO BE 
GNP2 DISCARDED? 
SET!'LGS,O 
R15,POPITP 
R0,R2 
GBP1 
(RO) 
SET!'LGS,SNGLCHLD LOOKING FOR A SINGLE CHILD? 
GHP4 

LA R14,COORDSa(R7,Rl) 
EX R8,CLQRL CLC 0(0,R14),QSTBL 
BL GNP2 NOT YET 
BH GBPl !ISSED IT 
ZR R2 FOUND IT; NEED NO MORE 

BAL 
!!VI 
Tl! 
BNO 

R15,PUSHTW 
SETFLGS,0 
GRXH@,GR!'LAG 
GNPS 

GR PROCESSING? 

BAL B15,INTRSECT 
B GBPl +0 EMPTY INTERSECTION; DISCARD 
CLC QSTRL,QSTRH +4 
BHE *+8 
OI SETFLGS,SNGLCHLD 

BAL 
Tl! 
BNO 
Tl! 
BO 
Tl! 
BO 
B 

R15,PUSHCH 
RCDFLGS(Rl),NODRCD 
RTNYALS RETURN ALL TER!!INALS 
SETPLGS,SNGLCHLD IP ONLY ONE CHILD OF 
GNPOCO INTEREST, GET IT I!!ftEDIATELY 
GRXHi,TR!!ONLY 
GNPl CALLER WANTS TERMINAL OHLY 
RTNVALS 



CLQRL 
NEGLO 
BEGBI 
DELSIGN 
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TITLE 1 PROGBA" TO BANDLE N-DII!ENSIONAL INDEX 
INSERT FUNCTION' 

CLC O(O,R14),QSTRL 
OI QSTRL-QSTBL(R5) ,O 
OI QSTRH-OSTRL(RS) ,O 
T!! QSTRO-OSTRL(RS),O 

ISRT CLI PARI!CBT,3 
SHRTLIST 
R15,PAR!!ADDR 

BL 
L 
L 
L 
LA 
ST.I! 
T!! 
BO 
LB 
AH 
SLL 
c 
BHH 

ISBT07 !!YC 

ISRT08 

ISRT09 
ISRT10 

ISRT 12 

* 

B 

T!! 
BNO 
HI 
LPAGE 
BAL 
NOP 
B 

BAL 
BAL 
BB!! 
ZR 
STH 
L 
LPAGE 
BAL 
B 
TM 
BHO 
B 

R6,4~B15) ADDRESS OP USER DATA 
R4,8(R15) ADDRESS OP COORDINATE VECTOR 
R5,0(R4) 
R4,B5,GRXL() 
CBTRUUDL,B 1 10000000 1 

ISRT07 UD TOO LONG 
R15,CBTRUUDL 
R15,CHLDUDit 
R15,1 TOTAL LENGTH KOST BE LESS THAN 
R1S,LRECL HALP OP THE LRECL 
ISRT08 
CBSTATUS,=C'IU' USER DATA TOO LONG 
RTN 

!ISCPLGS,PRSTISRT 
ISRT09 
l!ISCPLGS,X'FP'-PRSTISRT 
l!ASTERPG PIRST INSERTION 
RlS,CALCQSTR 
0 
P6HEWTB!! 

ON A LOAD 

R15,POPIT TOP OP STACK IS PROBABLY ZEROS 
R15,POPIT 
ISRT12 
R11.& 
R14,STKTOP 
R9,ST1CK-L 1 STACK(R14} CLII!B PARENT DIRECTION 
(R9) UNTIL NODE CO~PLETELY COVERS 
RlS,IBTBSECT NEW COORDS 
ISRT10 +O 
SETPLGS,ENOTIBX +4 
ISRT10 
B2 



B2 

C3 

QE 

Lft 
!!VCL 
!!VC 
LH 
BAL 
LTR 
BZ 

LP AGE 
L.l 
EX 
BH 
BE 
ST 
ST 
LTR 
BBZ 
B 

LA 
EX 
BAL 
IOP 
T!! 
BZ 
BO 
ST 
ST 
B 
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R2,R5,!!VNODCS 
R2,R4 
PRNTDEL,DELWK 
R10,STKTOP 
R15,POSHCH 
R9,R2 
SHUDNVR 

RE!!E!!BER CONTENTS OF NODE 
AS PROBABLE PARENT 

(R9) LOOK FOR CHILD IN SA"E DIRECTION 
R14,COORDSa(R7,Rl) AS HEW COORDINATES 
R8,CLQRL CLC 0(0,R14),QSTRL 
F6NEWTR!! !!ISSED IT 
QE 
R9,STACK(R10) NOT YET 
R2, STACK+4 (Rl 0) (PUSH TWIN) 
R9,R2 
C3 
F6BEWTRM NOT ON CHAIN INSERT TER!!INAL 

B14,COORDSa+HODEAREA(R7} 
B8,MVQBL 
RlS,CALCQSTR ARE NEW COORDS INSIDE RECORD? 
0 
SETPLGS,E!!PTYSET+ENOTINX 
XE!!ATCH MATCHING POINT COOBDS 
F40 NO; E"PTY INTERSECTION 
R9,STACK(R10) YES; TOTALLY INSIDE 
R2,STACK+4 (R10) 
B2 

CALCQSTB LA 
B 

R14,QCALC 
INTRO 

CALC A FULL Q BIT STRING 

INTRSECT LA R14,IHTRTEST EXIT !!!ED. IF NO INTERSECTION 
IBTRO ST! R3,B10,SETFSAVE 

L!! R3,R10,SETFREGS 
!!VC SETFLGS(L 1 SET'FLGS+L 1 QSTRL+L 1 QSTRH+L'QSTRO),SETFLGS-1 

B SETHTRY3(R8) 
INTRTEST TM SETPLGS,E"PTYSET 

BO IBTREXIT EXIT TO +O IF E~PTI 
QCALC SRA R3,1 

BNZ INTRLOOP 
Ll R3,B 1 10000000' NEXT BYTE ON Q STRING 
Ll RS, 1 (RS) 

IHTRLOOP BXLE R4,R6,SETNTRY3(R8) 
Ll R15,4(R15) EXIT TO +4 IF FOLL LOOP WAS RON 

INTREXIT L! R3,R10,SETFSAVE 
BR B15 



P40 

P4A 

F4B 

P4C 

P4D 

XEPUTCH 

ST ft 
!!VC 
LA 
EX 
LA 
ST 
LA 
Lft 

l!VC 
!!VC 
Lft 
BAL 
SRA 
BHZ 
LA 
LA 
BXLE 
CLC 
BE 
ST 
CLI 
BNE 
L 
LH 
LA 
SRA 
BNZ 
STH 
inc 
Ll! 
B 

Tl! 
BO 
Lft 
!VCL 
xc 
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B1,R10,SETPSAVE 
TWINi+NODEAREA,TWINi(Bl) 
R14,COOBDS@+MODEABEA(R7) 
B8,!!VQLR 
Rl,COORDSii (Rl) 
R1,GRXL~ 
R1,HODEAREA NODEAREA HOLDS NEW NODE INFO 
R6,R10,SETPREGS+12 

QSTRO,QSTRL 
SETPLGS(L•SETPLGS+L•QSTRL+L'QSTRH),SETFLGS-1 
B3,B5,SETPREGS 
R14,SETNTRY1(R8) ADJUST COORDS IN NODEABEA 
R3,1 !HD CALCULATE Q1 S 
F4B 
R3,B•10000000• 
RS,1 (RS) 
R4,R6,SETNTRY2(R8} 
QSTRL,QSTRB 
F4A STILL SAftE Q, ADJUST AGAIN 
R10,GRXLi RESET GRXLii 
SETNTRY1+L 1 SETP00(R8) ,X'8A' •sRA" OPCODE? 
P'ID 
R14,PRNTDEL 
R15,=XL2•7F00 1 CALC LOG2(DELTA) 
a1s,x•100 1 (R15) 
R14, 1 
P'4C 
R15,PRNTDEL 
DELTAa(2,Rl),PRNTDEL 
R1,R10,SETPSAVE QSTRL IS FOR LAST RECORD READ 
PSNEWNOD QSTRH IS FOR NEW TERMINAL 

RCDPLGS(Bl) ,NODBCD COORDS !!ATCH W/ DELTA = 0 
XE!!ATCHO 
B2,R5,!!VNODCS RECORD IS A TERMINAL; 
R2,R4 NEED A PARENT NODE W/ DELTA 
DELTA@+NODEAREA,DELTA@+NODEAREA OF ZERO 



FS!E WNOD OI 
LH 
BAL 
CLC 
BH 
BE 
L 
ST 
B 

XE!!ATCBO ST 
ST 
LH 
BAL 

P6l!CHTRl! L 
F6!!CHLP LPAGE 

LH 
LB 
LR 
LB 
AR 
CLCL 
BE 
ST 
LTR 
BNZ 

P6NEiTRI! LH 
AH 
!!VI 
!VO 
LA 
LR 
L 
LR 
!!VCL 
EX 
BAL 
LH 
LR 
l!VCL 
B 

I.ISTAT l!VC 
B 

r!VQRL !VC 
!!VQLR l!VC 
!!VQMB !5VC 
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RCDPLGS+NODEAREA,NODRCD 
B1,PLLNOD LENGTH OP A NODE 
R14,XTHDSLOT 
QSTRL,QSTRH 
P6NEWTBI! NEW TERMINAL GOES FIRST 
F61!ClfTRl! IP EQUAL, ~UST BE DUP COORD 
R15,STACK+4(R10) HEW TERl!INAL GOES SECOND 
R15, STACK (R 10) 
P6HEWTRl! 

R9,ST!CK(R10) RECORD IS A NODE i/ DOP COORD 
R2,STACK+4(R10) CHILDREN 
R10,STKTOP 
B15,POSHCH 

R0,STACK+4(R10} OH DUP COORDS, CHCK USER DATA 
(BO) 

R15,CBTRUUDL 
R14,R6 
R5,R15 
R4,CHLDUDi 
B4,Rl 
R4,R14 
II.STAT DUPLICATE RECORDS; NO INSERTION 
RO,STACK (R10) 
R0,R2 
P6!!CHLP 

Rl,CBTRUUDL 
Rl,CHLDUD~ TOTAL LENGTH OP A TERMINAL 
RCI>FLGS+NODEAREA,0 
DELTA@+NODEAREA,CBTROUDL USER DATA AREA LNGTH 
R4,COORDSa+NODEAREA 
R5,B7 
R2,GRXH~ 
R3,RS 
R4,R2 ftOVE COORDINATE VECTOR IN 
R8,8VQHH ftVC O(O,R4} ,QSTRH 
R14,XTNDSLOT 
RS,CBTROUDL R4 IS ALREADY SET 
B7,R5 
R4,R6 "OVE USER DATA IN 
RTHRB! 

CBSTATUS,=C 1II 1 

RTHRBA 

0(0,R14},QSTRL 
QSTBL (0) ,O (R14) 
0 (0, R4), QSTRH 



XTBDSLOT ST 
OI 
L 
LB 
HR 
AR 
c 
BlfH 
LR 
11 
AL 

XTBDO AR 
ST 
LB 
CB 
BL 
L 
ST 
LTR 
BZ 
!!PAGE 
!VC 
ST 
Tl! 
BNO 
BI 
OI 
B 
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R14,XTNDS.lVE 
!ISCPLGS,FILEXTHD 
R4,HIUSDRBA NEXT AVAILABLE RBA 
R5,DSP!!SK 
R5,R4 
RS,Bl 
RS,LRECL ROOM IN CI? 
XTNDO YES 
R5,R1 BO, 
R4,CI!SK STEP TO NEXT CI 
R4,CISIZE 
R1,R4 
Rl,HIUSDRBl NEW AVAILABLE RBA 
R10,STKTOP IF DOING ISRT, STACK 
R10,=.lL2(L 1 STACK) SHOULD NEVER HAVE < 1 ENTRY 
SBUDNVR 
Rt,STACK-L 1 STACK(R10} 
R4,STACK-L 1 STACK(R10) NEW RECORD GOES TO LEFT 
R1,R1 . SIDE 
XTBD1 
(R1) IHSERT NEW RECORD ON TWIN CHAIN 
TVIB~+NODEAREA,TWIN@(Rl) 
R4,Tli;Ilf~ (Rl) 
RCDFLGS(R1),PARENT 
XTifD2 
BCDPLGS(R1),X'PF 1 -PARENT BCD JUST LINKED TO 
RCDFLGS+NODEAREA,PABENT WAS END OF TWIN CHAIN 
XTBD2 



XTND1 

XTND2 

XTND3 

!!PAGE 
LB 
L 
ST 
LA 
ST 

T!! 
BIO 
LB 
ST 
!!PAGE 
!!VC 
ST 
TM 
BNO 
or 
OI 
LA 
EX 

ST 
LA 
BAL 
!!PAGE 
L 
L 
L 
AR 
!VI 
STH 
STB 
SR 
STB 
L~ 

T!! 
BNO 
LR 
ftVCL 
L 
BR 
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STACK-2*L 'STACK (R 10) 
B14,CHLDUDi 
R2,0(B14,Rl} 

INSERT NEW RECORD AS 
FIRST CHILD OF PARENT 

B4,0 (R1lf,R1} 
R14 ,NODEAREA 
R2,TWIN@ (R14) 

RCDPLGS+NODEAREA,HODRCD 
XTND3 
Rllf ,CBLDUDi 
B2,RODEAREA(R14) 
(R2) 
TWIHi+HODEAREA,TWIN@(Rl) 
R 4, TWIN~ ( R 1) 
RCDFLGS(R1) ,PARENT 
•+8 
BCDFLGS+NODEAREA,PARENT 
RCDPLGS(R1) ,PARENT 
R14,COORDSi(R7,R1) 
R8,!!VQRL KYC 

R2,STACK-L 1 STACK+4(R10) 
Rl,NODEAREA 
R15,PUSBCH 

0(0,R14),QSTRL 

(R4) LOAD AND PlARK NEW er 
R15,LRECL 
R14,PRIORT 
R14,FRM (R14) 
B14,R15 POINT AT AND THEN 
O(R14),0 ADJUST VSA!! CONTROL INFORMATION 
RS, 1 (R14) 
RS,3 (R14) 
RlS,RS 
R15,5 (R14) 
R2,R5,MVNODCS 
RCDFLGS+NODEAREA,NODRCD 
•+6 
R5,R3 FULL LENGTH IF NODE 
R4,R2 
R14,XTHDSAYE 
R14 
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TITLE ' PROGRA!! TO HANDLE N-DIMENSIONAL INDEX * 
CHANGEtDELETE FUNCTIONS• 

CHNG CLI PlR!!CNT,3 

CHNGX 

DLETX 

DLET 

DLET01 

BL SHRTLIST 
CLC CBRBA,CURRRB! MUST HAVE JUST BEEN RETRIEVED 
BNB CHHGX 
Tft RCDFLGS(R1) ,NODRCD 
BO CBBGX CAN'T CHANGE DATA ON A NODE 
L R9,PAlHfADDR 
L R6,8 (R9) 
LR R3,R7 
LA R2,COORDS@(R1) 
CLCL R2,R6 ENSURE COORDINATES WEREN'T CHANGED 
BNE CHNGX 
LB RS,DELT!i(R1) 
SRL R5,4 

.L R6,4 (R9) 
LB R7,CBTRUUDL 
CLR R7,R5 CHECK LENGTH 
BH CHJIGX 
!PAGE CBRBA 
LH R4,CHLDUDi 
AR R4,R1 
ICft R7,B 1 1000 1 ,SENDPAD 
ftYCL R4,R6 REPLACE USER DATA FIELD 
B BTN 

l!VC 
B 

!!VC 
B 

L 
CL 
BHH 
CL 
BRE 
xc 
LH 
!!VC 
L 
LR 
SH 
BIU! 

ZR 
L 
T!! 
BO 
LP AGE 
B 

CBSTATUS,=C'CX' 
RTN 

CBSTATUS,=C'DX' 
RTB 

R6,CBBBA 
R6,!!ASTERPG CAN'T DELETE MASTER RECORD 
DLETX 
R6,CURRRBA !!UST HAVE BEEN JUST RETRIEVED 
DLETX 
CBRBA,CBRBA 
R9,CHLDUDi 
RCDPLGS+RODEAREA,RCDFLGS(R1) SAVE FLAG 
R3,TWIBi(R1) ARD TWIN POINTER 
R10,STKTOP 
R10,=AL2(3*L'STACK) 
DLET03 

B10 PARENT NOT IN STACK 
RO,TWINi(R1) WALK TWIN CHAIN TO FIND IT 
RCDFLGS(Rl) ,PARENT 
DLET02 FOUND IT 
(RO) 
DLET01 



DLET02 

DLET03 

ST 

LP AGE 
ST 
LA 
EX 
l!YC 
CL 
BNE 
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RO ,STACK (R10) 

STACK(RlO} STARTING AT PARENT OP "X", 
R2,STACK+ll (B10) (ENSURE PRNT'S TWIN IN STACK) 
R14,COORDSi(R7,R1) LOOK POR PREDECESSOR 
BS,ftVQLB !!YC QSTRL(O) ,O(R14) 
QSTRH(TiIBa+L•TWIN~),O(R1) SAVE Q, TWIN PTR, 
B6,0 (R9,B1) FLG 
DLETTWI!I 

DLETCHLD !!PAGE 
ST 
LPAGE 
LTR 
BZ 

STACK (R10) 
R3,0 (R9,R1) 
(R3) 
R2,R2 
LOHETWIH 

PARENT WAS PREDECESSOR; !!ARK 
SUCCESSOR IS NOW FIRST CHILD 

WHOOPS; LONE REl!AINING CHILD 

DLETTWIN 

DLETT1 

DLET?f VR 

DLETT2 

DLETT3 

ST R3,STACK+L 1 STACK+4(R10) DELETED RECORD WAS 
ZR RO FIRST OP ONLY TWO CHILDREN. LEAVE 
ST R0,STACK+L•STACK(R10) STACK W/ SUCCESSOR AS 
LA R15,2*L'STACK(R10) FIRST (UNRETRIVED) CHILD 
STH R15,STKTOP OP PARENT OP "X" 
B RTB 

L 
LR 
LPAGE 
CLR 
BE 
LTR 
BNZ 
ABEND 

ST 
!PAGE 
ST 
Tl! 
B!IO 
OI 
ZR 
CLR 
BE 
ST 
ZR 
ST 
ST 
LA 
STH 
B 

RO,O (B9,R1) 
R4,RO 
(BO) 
R2,R6 
DLETT2 
RO,R2 
DLETT1 
95,DOMP,STEP 

PARENT NOT D!"!!EDIATE PREDECESSOR 
REl!EftBER FIRST CHILD 
WALK TWIN CHAIN 

RO,STACK+L•STACK(R10) SAVE IN LEPT SIDE OF 
(RO) STACK 
R3,TWIN@(R1} 
RCDFLGS+IODEABEA,PARENT WAS 11xn ON END OF 
DLETT3 CHAIN? 
RCDFLGS(R1),PARENT 
R3 
R4,R0 IS PREDECESSOR FIRST CHILD? 
LOHECHLD YES 
R3,STACK+L•STACK+4(R10) LEAVE STACK i/ 
RO PREDECESSOR II PLACE OF "I", BOT SHOW 
R0,STACK+2*L'STACK(R10) NO CHILD AS CHILD OF 
R0,STACK+2*L 1 STACK+4(R10) PRED(X) HAS BEEN 
R15,3•L 1 STACK(R10) PRESENTED EARLIER. 
R15,STKTOP 
RTN 
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• 
LOIETWIN "PAGE (R3) 

RECORD DELETED WAS ONE OF ONLY TWO 
ON CHAIN 

PREDECESSOR IS PARENT ZR R4 

LOHECHLD HI 
MVC 
JII 
oc 
LA 
EX 
L 
AR 
BBi! 

ZR 
LOHE01 L 

TM 
BO 
LP AGE 
B 

LOlfE02 ST 

LOBE03 

LONE OS 

LONE10 

LONE 11 

LONE12 

L 
LP AGE 
ST 
CL 
BE 
L 
LA 

LP AGE 
CLR 
BE 
LTR 
BHZ 
B 

ST 
LTR 
BBZ 
ST 
LA 
LR 
B 

ST 
ST 
Ll 
STH 
!!PAGE 
ST 
B 

RCDPLGS(Rl) ,X 1 PF 1 -PARENT REPLACE 
TWIWi(L 1 TWINi,R1) ,TiINi+QSTRH TWIN POINTER, 
BCDPLGS+QSTRH,PAREHT 
RCDPLGS(L 1 RCDPLGS,R1),RCDPLGS+QSTRH ITS FLAG, 
R14,COORDSa(R7,R1) AND Q STRING 
R8,l!VQRL !YC 0(0,R14},QSTRL 
R5,STACK(B10) RBA OF PARENT TO BE REPLACED 
R10,=1L2(-L 1 STACK) 
LOlfE03 

R10 
RO,TWIWi(Rl) 
RCDPLGS(R1) ,PARENT 
LONE02 
(RO) 
LOBE01 
RO, STACK (R10) 

RO, STACK (RlO) 
(RO) 
R2,STACK+4(R10) ENSURE PARENT'S TWIN IN STACK 
RS,O (R9,R1) 
LOBE10 REPLACED PARENT FIRST ON CHAIN 
RO,O(R9,R1) 
R9,TWilfii 

(RO) 
R5,R2 
LONE10 
RO,R2 
LORE OS 
DLETNYR 

REPLACED PARENT IS ALONG TWIN CHAIN 

R4,STACK+L 1 STACK(R10) STORE PREDECESSOR IN 
R4,R4 STACK 
LOHE11 
R3,STACX+L 1 STACK+4(B10) PRED(X) IS A PARENT 
R15,2*L 1 STACK(R10) SUCCESSOR IS NON-NOLL 
Rl&,R3 
LOHE12 

R3,STACK+2*L 1 STACK(R10) PRED(X) IS NON-NULL 
R3,STACK+2*L 1 STACK+4(R1~ SOCC IS NOLL 
R15,3*L 1 ST1CK(R10) 
R15,STKTOP 
(RO) 
R4, 0 (R9,R1) STORE AS CHILD OB TWIN 
RTB 
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TITLE 1 PBOGRA~ TO HANDLE ff-DIMENSIONAL INDEX * 
!ODE DEPEIDEBT "SET• FUNCTIONS' 

LTORG 

PUSH PBINT 
PRINT GEN 

SETPUHC P 

SETFUBC H 

SETPUNC E 

SETPUffC D 

POP PRINT 

TITLE • PROGRA! TO HANDLE N-DI~ENSIONAL INDEX * 
IBITIALIZATION SECTION' 

USING HOPCB,B9 
CLC CBPUNC,=C 1 CLSE' DID NOT FIND 
BE RTlf 
CLC CBPUHC,=C 1 0PEN 1 

BE NEW PCB 
CLC CBPUNC,=C 1 LOAD 1 

BNE NOTG INVALID FUNCTION CODE 
LH R2,CBIXS 
CH R2,=AL2(8*L 1 QSTRL) 
B11H CBK!IODE 
!VC CBSTATUS,=C 1 AX 1 

B RTN 
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CHKl!'JODE CLI 
BL 
CLI 
BH 
CLI 
BNE 

CBMODE,C 1 D1 

l!ODEERR ERROR 
CB!!ODE,C 1 H1 

MODEERR ERROR 
CB!!ODE,C 1 G1 

NEW PCB 
l!'JODEERR l!'JVC 

B 
CBSTATUS, =C 1 AM' 
BTN 

NEWP'CB 

AXEBR 

LB R7,SPFCBLNG+2 
GETMAIN RU,LV=(R7},BNDRY=PAGE,SP=SUBPOOLI 
LR R6,R1 
LA R14,CBDDNAl!'JE 
LA R15,L 1 CBDDHAKE 
l!'JVCL R6,Rl4 
ST Rl,NEXTFCB-FCBAREA(R8) 
ST R1,PREVFCB 
ST R12,NEXTFCB-FCBAREA(R1) 
LR B12,R1 
ST RB,PREVFCB 
GENCB BLK=ACB,DDNAl!E=(*,CBDDNAKE),EXLST=XTLST, * 

LENGTH=LHACBAR,WAREA=(S,IFGACB), GEN AN ACB * 
!AREA=(S,RPLl!'JSG) ,l!'JLEN=LeRPLMSG, FOR FILE * 

CLC 
BE 
!!VI 
l!VC 
STB 
ZR 
IC 
SLL 
LB 
S'l'H 
LB 
MH 
STH 
BCTR 
SRL 
STH 
LA 
STH 
LA 
CH 
BNH 
l!YC 
B 

MACRF=(CNV,DIR,ICI,IN,OUT,UBF) 
CBFUHC,=C 1 0PEN 1 

OPENINIT 
l!'JISCFLGS,ISRTONLY+FBSTISRT 
FU!ODE ,CBMODE 
R2,FLICOOR 
B3 
R3,CBl!'JODE 
R3,3 MODE CHARACTER * 8 
R4,l!'JODETBL-8*C 1 D1 +6(R3) INFINITE DELTA/FLAGS 
R4,DELTA@+NODEAREA FOR !!'JASTER RECORD 
R4,l!'JODETBL-8*C'D'+4(R3) LENGTH OF COORDINATE 
R4,FLtCOOB 
R4,FLLCV LENGTH OF COORDINATE VECTOR 
R2, 0 FLOOR ( (tX+7} /8) - 1 
R2,3 = FLOOR ( (IX-1) /8) 
R2,QSTRLl!'J1 LENGTH OF Q BIT STRING ~!NUS 1 
B5,L 1 DELTA@+L 1 TWIN~+l(R4,R2) 
B5,CHLDODm DISPLACEMENT TO CHILDfUSER DATA 
B5,4(R5) 
R5,=AL2(L 1 NODEAREA) 
STLNOD 
CBSTATUS,=C 1 AX 1 

CLSB3 
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STLHOD STH RS,PLLHOD FINAL NODE LENGTH 
LA R5,L 1 PILECNTL(B5) 
ST RS,HIUSDRBA 
xc XTNDSAVE,XTNDSAVE 
Ll R8,CARTINIT 
BAL R 10 ,OPNil'lIT 
CLC HIUSDRBA,LRECL 
BB AXERR LRECL TOO Sl'ULL 
Lft R4,R6,CISIZE 
LTR R6,R6 
BNZ CLSINIT 
BCTR RS,O EMPTY DATA SET; PREFORMAT cr•s. 
L R2,PRIORT 
l!ODCB RPL=PRPL,AREALEN=(*,CISIZE), * RECLEN=(*,LRECL) ,AREA=(*,FR!!(R2)) 

INITLOOP PUT RPL=PRPL 
BXLE R6,R4,INITLOOP 

CLSINIT CLOSE CARTilfIT NOW DOWN TO WORK WITH REAL ACB 
LA R8,IPGACB 
BAL R6,P!ODOPH 
L R3,l!ASTERPG 
!!PAGE (R3) INITIALIZE MASTER PAGE 
LR R4,R1 
SR R4,B3 
L R5,LRECL 
LA B14,PILECNTL 
L B15,BIUSDRBA 
l!VCL B4,R1'4 
B FIBI NIT 

l!ODETBL DC A(SETDOM) ,a•oa•,XL2'7F83' D 
DC A(SETEOM) ,B'04 1 ,XL2'7F83 1 E 
DC l{SETF0l!),H 1 04 1 ,XL2 1 9F03 1 F 
DC 2P'0' G 
DC A(SETHOM) ,B 1 02 1 ,XL2 1 8F03• H 



* OPENINIT LA 
BAL 
L 
LP AGE 
LR 
SR 
KYC 
!VC 
MVC 

FINillIT l'!VC 
ST 
!!VC 
BAL 
ZR 
IC 
SLL 
LA 
ZR 
LA 
LH 
LB 
BCTR 
L 
ST!! 
LA 
LH 
L 
LH 
ST!! 
B 

!!ODO PH !!ODCB 
OPEN 
LTR 
BZR 

SHOW CB 
!!VC 
B 

RB,IPGACB 
RlO ,OPlHNIT 
R3,1USTERPG 
(R3) 
R4,R1 
R4,R3 
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OPEN AN EXISTING FILE 

PILECNTL,0(R4) BRING IN FILE CONTROL INFO 
CB!!ODE,PLMODE RETURN !!ODE 
CBtXS,FLICOOR & I COORDS 
SENDPAD,CBPAD SAVE USER AREA PAD CHARACTER 
R3,STACK-L 1 STACK KASTER PAGE RBA IN PERM STK 
STACK-L 1 STACK+4(L'TWINi),TWINi(R1) 
R15,PUSHCH 
R15 
R15,FLMODE 
R15,3 
R3,B 1 10000000 1 PRESET REGS FOR "SET" FUNCTION 
R4 INDEX 
R5,QSTRL A(Q STRING) 
R6,l'!ODETBL-8•C'D'+4(R15} INDEX STEP 
R7,FLLCV 
R7,0 INDEX LIMIT 
R8,MODETBL-8*C 1 D1 (R15} A(!!ODE SPECIFIC CODE} 
R3,R8 ,SETFREGS 
R2,NODEAREA A(NODEAREA) 
R3,FLLBOD L 1 NODE 
R4,RCDADD !(CURRENT RECORD) 
RS,CHLDUD• L'NODE W/O CHLD PTR OB USER DATA 
R2,R5,MVNODCS PRESET VALUES FOR l'!VCL INSTRS 
RTN 

ACB=(R8),DDHAME=(*,CBDDNAME) 
( (R8) ) 
R15,R15 
B6 
ACB=(R8),AREA=(S,CBRBA} ,LENGTH=4,FIELDS=ERROR 
CBS TA TUS, =C 1 AI' 
CLSE3 
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OPNINIT BAL B6,l!ODOPN 

SETFRM 

SHOWCB ACB=(RS) ,AREA=(S,CISIZE),LENGTH=12, * 
FIELDS=(CINV,AVSPAC,ENDBBA) 

L R6,CISIZE 
BCTR R6,0 
STH R6,DSPMSK RBA DISPLACEMENT MASK 
L R14,ENDLABEL 
XR R14,R6 
ST R14,CIMSK 1 1 5 COMPLEMENT OF DSPMSK 
SH R6,=H 1 6 1 

ST R6,LRECL 
LH RO,CBIBUFRS LOAD I BUFFER PAGES BEING REQ. 
XC CB#GETS(L 1 CBIGETS+L'CBIPOTS),CBIGETS 
CH R0,*+10 
BNH *+8 
LA RO,ftAXIBPRS 
l!B R0,CISIZE+2 
ST B0,PRNTDEL+4 MAXIMUM AMOUNT OP CORE REQ. 
LA RO,ftINIBPRS 
KH RO,CISIZE+2 
ST RO,PRNTDEL MINIMUM AMOUNT OP CORE REQ. 
LA RS,PRNTDEL 
LA R3,BUPR@ 
GETMAIH VU,LA=(RS),A=(R3) ,BNDRY=PAGE,SP=SUBPOOLI 

L R1,BUPR@ 
L R14,CISIZE 
L R 15, L?IGBUF 
l!VI ISUBPOOL,SOBPOOLi 
SR R15,R14 
AR R15,R1 
LA R3,DIRECit 
ST R3,PRIORT 
L RO,ENDLABEL LOAD A MINUS 1 

LR 
LA 
Ll 
ST!! 
BXLE 
I.C 
ST 
GEN CB 

BR 

R4,R3 INITIALIZE PAGING DIRECTORY 
R2, 0 (R6,R1) (R 1) + (LRECL) 
R3,L'DIRECTRY(R4) 
R0,R3 ,RBA (R4) 
Rl,R 14 ,SETFBl! 
PWD(4,R4),FWD(R4) CLEAR LAST LINK 
Rl,PRft(R3) STORE IN XTRAFR! FOR PGRLSE 
BLK:RPL,ACB=(S,IFGACB), GENERATE AN RPL 
LENGTH=LNRPLAR,WAREA:(S,IFGRPL), 
ftSGAREA=(S,RPL~SG),~SGLEN=L 1RPL!SG, 

AREALEN=(*,CISIZE}, 
OPTCD=(CNV,DIR,SYN,NUP) 
RlO 

* • • 
* 



CLSE 

CLSEO 

CLSEl 

CLSE2 

CLSE3 

CLSEll 

PIVC 
T!! 
BNO 
M.PAGE 
s 
!!V'C 
LA 
L 
T!! 
BZ 
MOD CB 
HI 
PUT 
L 
LTR 
BNZ 
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CBRBA,BIUSDRBA 
!!ISCFLGS,FILEXTND 
CLSEO 
ftASTERPG 
R1, !USTERPG 
BIUSDRBA-FILECNTL(L'HIUSDRBA,Rl) ,BIUSDBBA 
R4,IFGRPL 
R2,PRIORT 
FLGS(R2),X'F0 1 

CLSE2 
RPL=(B4),AREA=(*,FB!!(R2)) ,ARG=(S,RBA(R2)} 
FLGS(R2),X'0F 1 

BPL=(R4) WRITE OUT ANY M.ARKED CI'S 
R2,FWD (R2) 
R2,R2 
CLSE1 

LA R4,IFGACB 
CLOSE ((R4)} 
L RO,LllGBUF 
LTR RO,RO 
BZ CLSE4 
L R1,BUFR@ 
FREEftAI!f R,A={l),LV=(O) 
LPI B14,R15,PREVFCB 
ST R14,PREVFCB-FCBAREA(R15) 
ST R15,BEXTPCB-FCBAREA(R14) 
L BO,SPFCBLNG 
FREEPIAIN R,A=(R12),LV=(O) 
B RTN 

CABTINIT ACB 
PRPL RPL 

PIACRF=(ADR,SEQ,NCI,OUT,NUB) ,EXLST=XTLST 
ACB=CARTINIT,OPTCD=(ADR,SEQ,NUP,MVE}, 
ARG=XTNDSAVE 

SUBPOOLI EQU 
SPFCBLNG DC 

LTORG 
END 

17 SOB POOL NUMBER 
ALl(SUBPOOLi) ,AL3(FCBLNG} 

* 
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APPENDIX B 

Subroutine VECTOR 

VECTOR is a subroutine written as an imple1tentation of 
the Schrieter-Thoaas aethod to co•pute the great elliptic 
distance and normal section azimuth between two sets of 
geodetic coordinates on a selected spheroid. The method vas 
obtained froll ACIC Technical Report Number 80, •Geodetic 
Distance and Azimuth Computations for Lines over 500 Miles.• 
The following comments vere extracted from that report 
concerning "Types of Positions". 

If the results of a distance and azimuth compu­
tation are to have any meaning, the terainal points 
used as basic data must be geodetically related, i.e., 
the end points must be derived from field measure1tents 
originating from a fixed point and computed along a 
common surface (ellipsoid) • The starting point is 
usually defined in terms of latitude and longitude, 
either astronoaical or geodetic, and the ellipsoid by 
the parameters a and b. If the initial point is fixed 
astrono1tically, the surfaces have what is known as an 
astro-orientation. Geoaetrically, this means that the 
geoid and ellipsoid surface coincide at that point and 
the fixed starting position is common to both surfaces. 
To the geodisist it means that the norital to the ellip­
soid coincides vith the local vertical at that point 
and the components of the deflection of the vertical 
are zero. The astro-geodetic orientation differs froa 
the preceding in that it compensates for the surface 
departure by correcting the angles between the geoaet­
rical. normals and the true local verticals. 

Positions on the earth's surface defined vith 
respect to such initial quantities fora a geodetic 
system or datua. Those deriTed froa different datums 
are unrelated and consequently are unusable for inverse 
co11putations. The results would be in error and the 
magnitude of the error would correspond to the effect 
of the differences in the intial quantities of their 
datua. Certainly, accurate distance and aziauth cannot 
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be expected if the terminal points of the line are 
referred to different ori9ins and possibly computed 
along different surfaces of unequal size. 

Generally, the positions available for an inverse 
computation are of three types: 

a. Geodetic positions such as described above. 
b. Astronomic positions, latitude and longitude of 

which have been derived instrumentally by direct 
observations of celestial bodies. 

c. !ap positions obtained from cartographic 
sources. 

Type a. are the most accurate although one very 
seldom finds tvo points as videly separated as 6000 
miles referred to the saae datUlll. The second type, b., 
astronomic points, refer to positions on the geoid and 
should not be used since the geoid is not a geoaetrica1 
surface. To use these for computational purposes is to 
assume that the two surfaces are coincident and the 
definition of each point identical on both surfaces. 
This assumption could easily result in distance errors 
as large as tvo kilometers vhich are as likely to occur 
on 500 aile lines as for the 6000 mile lines. 

Map positions are adequate as basic data for such 
computations if they have been taken from large scale 
maps (1:50,000 or greater) of geodetic accuracy. It is 
difficult to say precisely what effect such points 
would have on the accuracy of the final results for the 
length and azimuth of the line. However, assuming the 
terminal points to be charged with a 25 aeter error, 
the corresponding errors are approximately one second 
in azimuth and a maxiaua of fifty meters in distance. 

The following derivation has been extracted fro• the 
ACIC report, rearranged and expanded to better relate to the 
actual subroutine. symbols in capital letters are actual 
labels of variables as they appear in VECTOR for the aost 
part. 

PHI 1 = <P 1 initial latitude 

PHI2 = <P 2 terainal latitude 

LA!!DA 1 = A.1 initial longitude 

LAl!DA2 = A.2 terainal longitude 

DELAMD = !:::.\ = A.2 - A 1 
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(Note: The report shows A. 1 - A. 2 , but the sign convention 
there is positive west; VECTOR uses positive east.) 

SINDL = sin (6A.) 

SIN2DL = sin2 (6A.) 

COSDL = cos (6A.) 

TANBl = tan(S 1 ) = (b/a)•tan(¢ 1 ) 

TANB2 = tan(S 2 ) = (b/a)•tan(¢ 2 ) 

where 

and 

a is the semi-major ellipsoid axis 
b is the semi-minor ellipsoid axis 
f = (a-b}/a is defined as the flattening 

(Note that many ellipsoids are defined in terms of 
a and 1/f .) 

Then b/a = (a-a+b)/a = a/a - (a-b)/a = 1 - f. 

Q = tan(¢1)/tan{¢2) 

QINV = 1/Q = tan(¢ 2)/tan(¢1) 

= f (b/a) •tan(¢ 1 ) J • ( (b/a) •tan(¢ d J 

D 1 = Q - cos ( 6 A.) 

D 2 = Q1NV - cos(6A.) 

s = Q• {D 2 2 + sin2 (6A.)} = (1/Q) • {D 1 2 + sin2 (6A.) J 

= (1/Q} •[ {Q - cos (6A.)} 2 + sin2 (6A.) ) 

= (1/Q)•{Q2 - 2•Q•cos(6A.) + cos2(6A.) + sin2(6A.)J 

:: (1/Q} • (Q2 - 2•Q•cos (6A.) + 1) 

:: Q - cos(tiA.) + 1/Q - cos(6A.) 

PS = P•S 



-139-

[ Hold in floating point register F6 the value 

JI = (2•D1 •Dz)/(P+cos (6A.) J J 

cot (6cr) = {P+cos (6A.) }/{fPS+sin2 (6 A. )'J 

COT2SG = cot2 (6cr) = {P+cos (t,;\)} 2/ {PS+sin2(LH)1 

(then H • = 1.5• (0-1/Q) 2 /{1+cot2 (6cr) J ] 

given 1/n = (2 + 1/n0 ) • {PS+sin2 (6 A. ) J /PS - 2 

no = (a-b) / (a+b) 

1/'Jl 0 = (a+b) / (a-b) 

= (a+b + a-b) / (a-b) - 1 

= 2•a/ (a-b) - 1 

= 2/f - 1 = ELLIP 

1/n = (2+ELLIP)•{PS+sin2(6A.)}/PS - 2 

= [ (2+ELLIP). {PS+sin2 (6A. )} J/PS - 2•PS/PS 

= ( (2+ELLIP) • {PS+sin 2 (6A. ) J - 2•PS ]/PS 

n = PSI[ 2• {PS+sin2 (6A.)} + ELLIP• {PS+sin2 (6 A. )) - 2•PS] 

= PS/[ ELLIP• {PS+sinZ (6A}} + 2•sin2 (6A. ) ] 

I = 1 - n + ( 5/4) •n 2 

= [(5/4) •n - 1) •n + 1 

COTDW = cot (6w) = cot (6cr) •ff - 2•J - (3/2) •HJ 

= cot(t.cr)•[I - (n/S)•(2•D 1 •D 2 )/{P+cos(6A.)} 

- {n/S} ih {1.5• (Q-1/Q} 2J/{1+cot2 (6cr)}] 

= cot(t.cr)•{I - (n/S)•J' - (n/SJ2•H'J 

= y'cot2(t.crf•[I - (n/S)• {J' + (n/S}•H'J] 

t.w = cot-• (COTDW) 

DSTNCE(in meters} = I•a•t.w 
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In all of the calculations, 6A is to be the polar 
angle< TI (180°}. But since cos(2TI - a} = +cos(a) and 
distance calculations used on1y sin 2 (6A}, where 
sin(2TI - a) = -sin(a), the direction of 6A has aade no 
difference so far. However, azimuth calculations need the 
proper sign on sin(6A). Note first that if 6A is zero, the 
heading is to be determined by comparing the aagnitude of 
initial and terminal latitudes. If ¢z ~ ¢i, aza = 0°, else 
azm = 180.0°. If 6A is not zero, but sin (6A} is zero, i.e.,. 
6A = TI,. azm = o.oo. 

It turns out that no adjustaent need be made to the 
sign of sin(6A). First consider the line on the surface of 
the earth that is being measured. Since 6A = Az - Al and a 
positive east convention bas been assumed, 6A > TI only when 
the line being measured crosses the international date line. 
Here 6~. > TI would indicate using the identity 
sin(2TI - a) = -sin(a), since the polar angle of interest is 
2TI - 6A. However, due to crossing the date line, the sign 
of this angle is wrong according to a positive east 
convention. Thus the desired angle is actually -(2TI - 6A) 
or 6A - 2TI, but the -2TI may be dropped. Therefore, we end 
up with sin (6A) again and no further adjustments need be 
made to calculate the aziauth as: 

cos cs 1). {tan cs 2) -tan cs 1) •cos (6A) J. r 1-e2cos2 cs 1) I 

sin (6A) 

where E 12 is the elliptic arc forward azimuth (heading) 

and ez is the major eccentricity squared 

ESQD = ez = (aZ - b2}/a2 

cos(Si) = ycos 2 (S1>' 

cosZ(Si) = 1/sec2(Si) = 1/{l+tan2(Sl)J 

1 - ezcosZ(S 1) = 1 - e2/(l+tan2(S1JJ 

= {l+tan2 CS 1) -e2J /{l+tanz (Si)} 

cos (S 1) •yl-ezcosz (Si>' = y{secz (S 1) -e21jsec2 (Si) 

(
{tan (S 2 )-tan CS 1 ) •cos (6A) J •ysec2 (Si) -ez') 

E
12 

= cot-i 
sin foA} •sec 2 (S 1 ) 

The arccot function returns an ang1e between -rr and TI. 
if E12 < O, add 2TI to give a heading between o0 and 3600. 
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When the coordinates are expressed in degrees, minutes 
and seconds, linkage in a calling program is made by: 

CALL VECTOR (alatd,alat11,alats,alond,al.on11,alons,alonev , 
blatd,blata,blats,blond,blonm,blons,blonev, 
dstnce,( head, ]i) 

where: 

alatd, alata, alats - latitude of the initial point in 
degrees, minutes, seconds (4-byte 
arguaents) 

alond, alona, alons - longitude of the initial point in 
degrees, minutes, seconds (4-byte 
arguments} 

alonev - heaisphere of the initial longitude point; 
•w• is vest. (1-character argument) 

blatd, etc. - latitude, longitude and hemisphere of the 
terminal point 

dstnce the computed distance between point •a• and 
point 'b' (single or double precision real/ 
coap-1 or comp-2 (see i below)} 

head - the forward azimuth measured clockwise from 
north. If head is omitted or is initialized 
to a value of 999.0, the aziauth computation 
is suppressed. (single or double precision 
real/co•p-1 or comp-2 (see i below}} 

i the unit of measure that dstnce and head are to be 
coaputed in; i is defined as a four byte argument, 
but is actually interpreted as two halfwords, i' 
and ift with coapatibility to a fullword integer. 
If the lower (bytes 3 and 4) halfword, i" < O, 
then dstnce is returned as a double precision real 
(coap-2) value, otherwise as a single precision 
(coap-1) value. The units are based on the abso­
lute value where: 

ti• I = 1 returns 
2 
3 
4 
else 

nautical miles, 
feet, 
statute 11iles, 
kilometers, 
aeters. 
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If the upper (bytes 1 and 2) halfword, i• < O, 
then head is returned as double precision real 
(coap-2), otherwise as a single precision value. 
The units returned are specified by the absolute 
value where: 

fi't = 0 or 1 returns 
2 
3 
else 

degrees, 
minutes, 
seconds, 
radians. 

If coordinates are expressed as deqrees, minutes and 
seconds and are grouped in a 16 word array of 4-byte argu­
ments arranged as: 

array (01) 
(02) 
(03) 
(04) 
(05) 
(06) 
(07) 
(08) 
(09) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
( 16) 

alatd 
alat11 
ala ts 
alatns 
alond 
alonm 
alons 
alonew 
blatd 
bl a ta 
bl a ts 
blatns 
blond 
blonm 
blons 
blonew 

then use the calling sequence: 

CALL VECTOR (array,dstnce,(head,]i) 

Words 4, 8, 12 and 16 of the array are 14 (Hollerith} or 
PIC X(4) character data with blank fill. 
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When the coordinates are expressed in radians or 
coaposite arc seconds, the linkage is: 

CALL VECTOR (alat,alon,alonev,blat,blon,blonew, 
dstnce ,[head, ]i) 

where alonev, blonev, dstnce, head and i are as described 
above and alat, alon, blat and blon are the latitude and 
longitude of the initial and terminal points in units of: 

1) radians if in floating point 
2} arc seconds if in binary integer. 

A variant of this call is: 

CALL VECTOR (alat,alon, blat,blon, 
dstnce ,[head, Ji) 

where longitude hemisphere indicators are omitted and the 
latitude and longitude are signed values with north and east 
as positive. 

Known Limitations 
Accuracy has been tested only to 6000 statute miles. 

Due to the ratios of tangents that are calculated, points 
that are exactly on the equator (0°} and mathematically 
•close" to the poles (±90°} will cause an abort due to a 
divide by zero check. However a latitude close to the 
equator may be specified as approximately in the range of 
10-10 arc seconds to prevent the divide by zero condition. 

Remarks 
The arguments listed as "4-byte argumentsn may be 

either single precision real/comp-1 or signed binary full­
word integer/comp. There is one exception: if the latitude 
and longitude are being supplied as arc radians, and the 
distance is being requested in double precision, then the 
latitude and longitude are also assuaed to be double 
precision values. The results are always returned as 
floating point values, either single precision/coap-1 or 
double precision/coap-2 as requested by the signs of i• 
and i". 

The alias RADVEC aay be used in place of VECTOR in any 
of the calls described. 
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APPENDIX C 

VECTOR SOURCE 

VECTOR TITLE '*** SUBROOTINE(S) VECTOR/RADVEC ***' 
*AUTHOR: ftAJ. S. V. PETERSEN, HQ SAC/ADINSD; EXT. 3952 
* DATE WRITTEN: 1 HOV 76 

* REFERENCE: ACIC TECHNICAL REPORT NUl'JBER 80, 
* "GEODETIC DISTANCES AND AZIMUTH COMPUTATIONS 
* POR LINES OVER 500 MILES" 

* DISTANCES ARE CALCULATED AS A GREAT ELLIPTIC, USING THE 
* SCHREITER-THOKAS KETHOD AS DESCRIBED IN APPENDIX I OP THE 
*REPORT. SOKE OP THE COMPUTATIONS HAVE BEEN ~ANIPULATED 
*INTO A DIFFERENT FORK TO FACILITATE PROCESSING. 
* SOKE ERRORS ALSO APPEAR IN THE WRITE-UP, WHICH HOPEFULLY 
* HA VE BEEN CORRECTED. 

* IP THIS ROUTINE IS ASSEMBLED WITH AN ASSEKBLER THAT ALLOWS 
* THE •SYSPARK" OPTION, THE SPHEROID USED POR A BASE OF 
* CALCULATION !'JAY BE CHANGED AT ASSEl'JBLY TIME. ENTER THE 
* NAKE OF THE DESIRED SPHEROID AS THE SYSPARK VALUE AS: 
* SYSPARft(AIRY) 
* SY SPARK (A.!'! .S .) 
* SYSPARl'J(BESSEL) 
* SYSPARft(CLARK 1866) 
* SYSPARl'J(CLARK 1880) 
• SYSPAR!!(INTERNATIONAL) 
* SYSPlR!! (HAYFORD) SAKE AS INTERNATIONAL 
• SYSPAR!!(KRASSOVSKY) 
* THE DEFAULT SPHEROID IS THE CLARK 1866 DATUM. 



&IB!360 

.I BE CO 
&AIRY 

.IBEC1 
&Al!S 

.IREC2 
&BESSEL 

.IREC3 

.IREC3A 
&CLK1866 

.IREC4 
&CLK1880 

.IRE CS 

.IRE CSA 
&HAYFORD 

.IREC6 
&KRSVSKY 
.IREC99 

GBLB 
SETB 
GBLB 
GBLB 
AIP 
AIF 
SETB 
AGO 
AIF 
SETB 
AGO 
AIF 
SETB 
AGO 
AIF 
ANOP 
SETB 
AGO 
AIF 
SETB 
AGO 
AIP 
AIF 
!NOP 
SETB 
AGO 

&IBl!360 SET TO l FOR USE ON 360 
0 
&AIRY,&AMS,&BESSEL,&CLK1866,&CLK1880,&HAYFORD 
&KRSVSKY 
(&IBM360) .IREC3A NO &SYSPARl! ON 360 
( 1 &SYSPARM 1 NE 'AIRY').IRECl 
1 
.IREC99 
( 1 &SYSPARM 1 NE 1 A.M.S. 1 ).IREC2 
1 
.IREC99 
( 1 &SYSPARM 1 NE 'BESSEL').IREC3 
1 
.IREC99 
( 1 &SYSPARM 1 NE 'CLARK 1866 1 ).IREC4 
CLARK1866 IS THE DEFAULT DATUM 

1 
.IREC99 
( 1 &SYSPARM 1 NE 'CLARK 1880') .IRECS 
1 
.IREC99 
('&SYSPARM' EQ 'INTERNATIONAL') .IRECSA 
( 1 &SYSPARM 1 NE 'HAYFORD') .IREC6 

1 
.IREC99 
( 1 &SYSPARM 1 

1 
NE 1 KRASSOVSKY'}.IREC3A AIF 

SETB 
ANOP 
PUNCH 1 ALIAS RADVEC' 
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VECTOR CSE CT 
USING *,R15 
B PASTCOHS 
DC AL 1 (L 'VCTID) 

VCTID DC C1 VECTOR/RADVEC' 
lIF (&IBP! 360) .SKDT 
DC c•.&sYSDATE •• &SISTIP!E' 

.SKDT !NOP 
RADVEC EQU VECTOR 

ENTRY RADVEC 

SAVEAREA DC 9D•O• 

OHIT DC D1 1852.' P!ETERS/HAOTICAL P!ILE 
DC D'0.3048' l!ETERS/l"OOT 
DC D 1 1609.34 4 • ~ETERS/STATUTE MILE 

· DC D' 1000 •• PIETERS/KILOMETER 
NU HITS EQU (*-UNIT) /8 

PI DC D•3.141592653589793238462643• 
TWOPI DC D1 6.283185307179586476925286• 
RADDEG DC D1 57.29577951308232087679816' DEGREES/RADIAN 

DC D1 3437.746770784939252607890 1 lUNUTES/RADIAN 
DC D1 206264.8062470963551564734' SECONDS/RADIAN 

NA OHS EQU (*-RADDEG)/8 

UHZR1 DC XL8'4E00000000000000 1 

DL40VPI DC XL8 1 41145F306DC9C883 1 4/PI 

PO EQU 0 
P2 EQU 2 
F4 EQU 4 
P6 EQO 6 
RO EQU 0 
Rl EQU 1 
R2 EQO 2 
R3 EQU 3 
R4 EQU 4 
RS EQU 5 
R6 EQO 6 
R7 EQU 7 
RS EQU 8 
B9 EQU 9 
R10 EQU 10 
Rll EQU 11 
B12 EQU 12 
R13 EQO 13 
R14 EQU 14 
R15 EQU 15 
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CONST DC D1 4.848136811095359936E-6 1 

DC D1 60.0 1 

DC D1 60.0 1 

ACTC1 DC XL8 1 BP1E31FF1784B965 1 

ACTC2 DC XL8 1 COACDB34COD1B35D 1 

ACTC3 DC XL8'412B7CE45APSC165 1 

ACTC4 DC XL8 1 C11A8P923B178C78 1 

ACTCS DC XL8'412AB4PD5D433PP6 1 

ACTC6 DC XLB 1 C02298BB68CFD869 1 

ACTC7 DC XL8 1 41154CEE8B70CA99 1 

ONE DC D1 1 .. o• 
ACTC9 DC IL8 1 411BB67AE8584CAB' SQRT (3) 
ACTD1 DC D•o.o• 

DC XL8 1 C0860A91C16B9B2C 1 -.52359884 
PIOV2 DC XL8'411921PB54442D18 1 PI/2 

DC XL8 1 4110C152382D7365 1 

ACTCE DC XL4 1 0E000000 1 

ACTCP2 DC XL4 1 F2000000 1 

ACTC3A DC XL4 1 3A100000' 
AC'l'C40 DC XL4 1 40449851' 

SCA DC XL8 1 3778PCEOESAD1685 1 SIN 
DC XL8 1 B66C992E84B6AA37 1 cos 

SCB DC XL8 1 B978C01C6BEF8CB3 1 SIN 
DC XL8 1 387E731045017594 1 cos 

sec DC XL8 1 3B541EOBP684B527' SIN 
DC XL8'BA69B47B1E41AEF6 1 cos 

SCD DC XL8 1 BD265A599CSCB632 1 SIN 
DC XL8 1 3C3C3EAOD06ABC29' cos 

SCE DC XL8 1 3EA335E33BAC3FBD 1 SIN 
DC XL8 1 BE155D3C7E3C90F8 1 cos 

SCP' DC XL8 1 C014ABBCE625BE41 1 SIN 
DC XL8 1 3P40F07C206D6AB1' cos 

SCG DC XL8 1 40C90PDAA22168C2 1 PI/4 SIN 
DC XL8 1 C04EF4P326P91777' cos 

PIOV4 EQO SCG 
ZERO EQU ACTD1 

TCTA DC IL8 1 C41926DBBB1P469B 1 

TCTB DC XL8 1 4532644B1E45Al33' 
TCTC DC XL8 1CSBOP82C87113B68 1 

TCTD DC XL8 1 C58AFDD0A41992D4 1 

TCTE DC XL8 1 44APPA6393159226 1 

TCTP' DC IL8 1 C325FD4A87357CAF' 
TCTG DC XL8 1 422376F171F72282' 
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* REFERENCE ELLIPSOID CONSTANTS 

* * A = SE~I-KAJOR AXIS (METERS} 
* P = FLATTENING = (A-B)/A 
* PINV = 1/F 
* ESQD MAJOR-ECCENTRICITY SQUARED 
* = (A**2 - B**2)/A**2 
* BOVRA SEMI-MINOR/SEMI-MAJOR = 1 - F 
* NO = (A-B)/(A+B) 
* ELLIP = 1/NO = 2*FINV - 1 
• • • 

A 1/F B 

• RECl AIP (NOT &CLK1866).REC2 
.RECDF ANOP 
* CLARK 1866 

F 
E**2 

• 6378206.4000 294.978698 6356583.8000 .00339007530393 
* .00676865799729 

A DC D•6378206.40 1 

ESQD DC D'.00676865799729 1 

BOVRA DC D'0.99660992469607• 
ELLIP DC D1 588.957396• 

AGO .REC99 
.REC2 AIP (NOT &HAYFORD).REC3 
* INTERNATIONAL (HAYFORD) 
* 6378388.0000 297.000000 6356911.9461 .00336700336700 
* .00672267002233 

A DC D1 6378388.00• 
ESQD DC D'0.00672267002233 1 

BOVRA DC D'0.996632996632996632 1 

ELLIP DC D1 593.0 1 

AGO .REC99 
.REC3 AIF (HOT &KRSVSKY}.REC4 
* KRASSOYSKY 
• 6378245.0000 298.300000 6356863.0188 .00335232986926 
• .00669342162297 

A 
ESQD 
BOVRA 
ELLIP 

DC 
DC 
DC 
DC 
AGO 

D'6378245.0 1 

D'0.00669342162297' 
D'0.99664767013074 1 

D1 595.6 1 

.REC99 
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.REC4 AIF (NOT &CLK1880).REC5 
* CLARK 1880 
* 6378249.1450 293.465000 6356514.8695 .00340756137870 
* .00680351128285 

A 
ESQD 
BOVRA 
ELLIP 

.RECS 
* AIRY 

DC 
DC 
DC 
DC 
AGO 
AIF 

D1 6378249.1450' 
n•.00680351128285' 
D'0.9965924386213• 
D1 585.930 1 

.REC99 
(NOT &AIRY) .REC6 

* 6376542.0000 299.300000 6355237.1487 .00334112930170 
* .00667109545840 

A 
ESQD 
BOYRA 
ELLIP 

.REC6 

DC D1 6376542.00• 
DC D'.00667109545840 1 

DC D'0.9966588706983• 
DC D'597.60 1 

AGO .REC99 
AIF (NOT &AftS).REC7 

* A .PI .S. 
* 6378270.0000 297.000000 6356794.3434 .00336700336700 
• .00672267002233 

A DC D1 6378270.00• 
ESQD DC D'0.00672267002233' 
BOVRA DC D'0.996632996632996632' 
ELLIP DC D1 593.0 1 

AGO .REC99 
.REC7 AIF (NOT &BESSEL) .RECDF 
* BESSEL 
* 6377397.1550 299.152813 6356078.9628 .00334277318503 
• .00667437223749 

A 
ESQD 
BOVRA 
ELLIP 

DC 
DC 
DC 
DC 

.REC99 Alf OP 

0 1 6377397.1550 1 

D'.00667437223749 1 

D'0.99665722681497 1 

0 1 597.305625• 
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WKlBEA DC D'0' 

COORDS DS OD 
LAMDA2 DC D'O' LONGITUDE TERMINAL POINT 
PHI2 DC D•O• LATITUDE TERMINAL POINT 
LA!!DA 1 DC D1 0' LONGITUDE INITIAL POINT 
PHI1 DC D•O• LATITUDE INITIAL POINT 

SINDL DC o•o• SIN (DELAMD) 
SIN2DL DC 0 1 0 1 SIN**2 (DELAMD) 
COSDL DC o•o• COS (DELA.MD} 
TANBl DC D'0' TAN (BETA 1) = (B/A) *TAN (PHil) 
TANB2 DC D 1 0 1 TAN (BETA2) 
s DC D 1 0 1 Dl + D2 
PS DC 0 1 0 1 P*S 
DELA.l'!D EQD LAl'!DA 1 LA.l'!DA2 - LAMDA 1 
COT2SG EQU LAMDA2 COT**2 (DELTA_SIGMA) 
TB2 EQU COT2SG TEMP STORE 
COTDW EQU COT2SG COT(DELTA_OMEGA) 
TANPH1 EQU LAMDA2 TAN (PHil} 
Dl EQU LAMDA2 Q - COSDL 
SWITCH EQU s 
I EQU PS 1 - N + 1.25*N**2 
IJH EQU s I - 2*J - 1.S*H 

TEl!P2 DC D'O' 
PCOSDL DC p1Q I P+COS (DELAMD) (NEED THE SIGN) 
SCQ EQU PCOSDL+3 

MIN!! DC XL4'35400000 1 

C24l'!8 DC P 1 24,-8 1 



PAST CONS 

CNTPRl!S 

EOFLST 

* 
BTBL 

* 
WBNGNBR 

NOHE AD 
NOBE AD@ 

-151-

STM R14,R12, 12 (R13) 
LR R2,R13 
LA R13,SAYEAREA 
DROP R15 
USING SAVEAREA,R13 
ST R2,4 (R13) 
ST R13,8 (R2) 
,.VI SWITCB,O 
LM R4,RS,c2qaa 
LA R6,STORAD 
LR R2,Rl COUNT THE NUMBER OF PARMS 
LA R11',4 PASSED 
LA R15,(17-1)*4-8(R1} 
T!! a (R2) ,x •ao • ABSOLUTE MINIMUM IS THREE 
BO EOPLST 
BILE R2, R 14 ,CNTPR!!S 
B WlUlGNBB 

LM R10,R12,0 (B2) A(DSTNCE,HEAD(?) ,IUNIT} 
SR R2,R1 
SRL R2,2 
IC R14,BTBL(B2) 
B WRNGNBR(R14) 

IABGS = 3, 4, 5, 6, 7, 8, 9, 
DC 
DC 

DC 
DC 
B 

LR 
EQO 
LA 
IC 
B 

AL1(NOBEAD@,ARG4@,0,NOHEAD@,ARG7@,NOHEAD@,ARG9@} 
AL1(0,0,0,0,0,0,NOHEAD@,ARG17@,0) 

10 --- 15, 16, 17 
I'B2E0 1 ,H'32' THIS INVALID OPCODE TERMINATES 
CL32 1 WRONG NU!BER OF ARGUMENTS PASSED' 
RTN 

R10,R11 OPTIONAL AZIMUTH PARAMETER MISSING 
NOHEAD-WRNGNBR 
R11,=E 1 999.0 1 SUPPRESS THE CALCULATION 
R14,BTBL+l(R2) 
WRNGNBR (R 14) 



* • • 
ARG17 
ARG17i 
DP!SBAD 

CNVRT17 

CV17POSI 
CV17R 
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VECTOR (ALATD,ALATP!,ALATS, ALNGD,ALNGM,ALNGS,AEW, 
BLATD,BLAT!,BLATS, BLNGD,BLNGM,BLNGS,BEW, 
DSTNCE, <HEAD,> IUNIT} 

LA 
EQU 
LD 
LA 
L 
LA 
l'!YC 
TP! 
BM 
BZ 
L 
LPR 
ST 
PIVI 
OI 
AD 
MD 
BXH 
BR 

R14,DMSRAD 
ARG17-iRNGNBR 
FO,ZERO 
R3,16 
R15,0 (Bl) 
R1,4(R1) 
WKAREA (4) ,O (R 15) 
WKAREA,X 1 FF'' 
CV17R 
CV17POSI 
RO,iKAREA 
RO,RO 
RO,WKAREA 
WKAREA,X 1 80 1 

VKAREA,X•46 1 

FO,WKAREA 
FO,COHST {R3) 
R3,R5,CNVRT17 
R6 

INDEX 

MOVE IN VALUE 

REAL*4 
POSITIVE INTEGER*4 
NEGATIVE INTEGER*4 

P!AKE NEGATIVE 
INTEGER. MAKE AN UNNORI'! REAL 

TO CHECK EAST/WEST AND STORE. 



• 
* 

ARG7 
ARG7ii 

ARG9 
ARG9@ 
RADS EC 

ARGSEC 

STORAD 

STVL 
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VECTOR (LATR1, LNGR1, <AEW,> LATR2, LNGR2, <BEW,> 
DSTNCE, <HEAD,> IONIT) 

LA 
EQO 

LA 
EQU 
L 
LA 
TPl 
BNM 
SDR 
LE 
T!! 
BNOR 
LD 
BR 

L 
LPR 
ST 
!!VI 
TM 
BNO 
II 
LD 
zim 
BR 

XI 
BNZ 
L 
LA 
CLI 
BNE 
LCDR 
STD 
BXH 
B 

R6,STVL 
ARG7-WRNGNBR 

R14,RADSEC 
ARG9-iRNGNBR 
R15,0 (R1) 
R1,4 (Rl) 
O(R15),X 1 PF' 
ARGSEC 
FO,FO 
PO,O (R15) 
2(R12),X'80 1 

R6 
PO,O (R15) 
R6 

RO, 0 (R15) 
RO,RO 
RO,WKAREA 
WKAREA,X 1 46' 
0 (R 15) , X' 8 0 ' 
•+8 
WKAREA,x•so• 
FO,WKAREA 
FO,CONST 
R6 

SWITCH,1 
STVL 
R15,0 (Rl) 
Bl, 4 (Rl) 
O(R15),C'W' 
STVL 
P'O,PO 
PO,COORDS (R4) 
R4,R5,0 (R14) 
DONECVRT 

LOAD A SINGLE PRECISION RADIAN 
INPUT VALUE UNLESS THE DISTANCE 

IS REQUESTED IN DOUBLE PRECISION 

REAL*8 RADIANS 

INTEGER SECONDS 

MAKE NEGATIVE 

CONVERT TO RADIANS 

BRANCH ON LATITUDE 

COMPLEMENT ON WEST 

(FO) = COORDS (0) = LAP!DA2 



* 
ARG4 
ARG4@ 

* ARRDf!S 

CNVRT4 

CV4POSI 
CV4R 

WORS 

* 
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VECTOR (LTLNARR, DSTNCE, <HEAD,> IUNIT) 

L 
EQO 
LA 

LD 
LA 
MVC 
LA 
Tl'J 
Bf! 
BZ 
L 
LPR 
ST 
~VI 

OI 
AD 
l'JD 
BXH 
CLI 
BE 
CLI 
BNE 
LCDB 
STD 
LA 
BXH 
B 

R 15 ,O {Rl) 
ARG4-WRNGNBR 
R1, 4(R1) 

PO,ZERO 
R3,16 
WKAREA (4) ,O (R 15) 
R15,4 (R15} 
WKAREA, X •pp• 
CV4R 
CV4POSI 
RO,WKAREA 
RO,RO 
RO,WKAREA 
WKAREA,x•ao• 
WKAREA,X•46• 
PO,WKAREA 
F0,CONST(R3) 
R3,R5,CNVRT4 
0 (R 15) , C' S ' 
WORS 
o (R 15) ,c•w • 
•+6 
FO,PO 
PO,COORDS {R4) 
Rl5,4 (R15) 
R4,R5,ARRDl'JS 
DONCVRT 

ARRAY OP 16 WORDS; SAl.'JE 
ORDER AS 
ARG17 PARMS, BUT ADD A 
WORD FOR LAT NORTH/SOOTH 

REAL*4 
POSITIVE INTEGER*4 
NEGATIVE INTEGER*4 

MAKE NEGATIVE 
INTEGER. l'JAKE AN UNNORl.'J REAL 

IGNORE E, N 
COMPLEMENT WEST, SOUTH 

(FO} = COORDS(O) = LAl.'JDA2 
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DONE CV RT DS OH 

* LD FO,LAl'!DA2 
SD PO,Ll!!DA 1 
STD FO,DELAl'!D POLAR ANGLE 
BNZ KALLSIN 
STD PO,SINDL SIN (0) = 0 
STD PO,SIN2DL 
LD F6,PHI1 IS THIS A ZERO DISTANCE CALL? 
CD F6,PHI2 
BE STD ST YES 
LD PO,ONE cos (0 ) = 1. 
B STCOSDL 

KALLSIN LA B15,4 SINE OP NEGATIVE VALUE 
Bl'! •+6 
SR R15,R15 SINE OP POSITIVE VALUE 
BAL R7,SC1 
STD PO,SINDL 
!!DR FO,PO 
STD FO,SIN2DL 
LD FO,DELA!!D 
LA R15,2 COSINE OF VALUE 
BAL R7,SC1 

STCOSDL STD PO,COSDL 
LD FO,PHil 
BAL R7,TANG 
Tl'! PHI1,x•eo• 
BNO •+6 
LCDR PO,PO 
STD FO,TANPHl 
l'!D PO,BOVRA 
STD P'O,TANBl PARAl'!ETRIC LATITUDE 
LD P'O,PHI2 
BAL R7,TANG 
Tr! PHI2,X'80 1 

BNO •+6 
LCDR PO,FO 
LDR P6,PO 
LD P4,TANPH1 
DDR P6,F4 QINV = 1/Q 
DDR F4,PO Q = TAN (PHI 1) /TAN (PBI2) 
l'!D PO,BOVRA 
STD PO,TABB2 
l'!D P'O,TANB1 (PO) = p 
LDR F2,F4 
SDR F2,F6 (P2) = Q - 1/Q 
SD F4,COSDL (F4) = D1 
STD P4,D1 
SD P6,COSDL (F6) = D2 
ADR P4,F6 
BZ SZE RO 
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STD F4,S s = D1 + D2 
!!DR F4,FO 
STD F4,PS P*S 
LTDR F4,F4 
BNP SZERO 
AD F4,SIN2DL PS + SIN**2 (DELAl!D} 
AD FO,COSDL p + COS (DELA!!D) 
STE FO,PCOSDL 
DDR F6,FO D2/(P+COS(DELA~D}) 
P!D F6,D1 Dl* 
ADR F6,F6 2* 
f!DR FO,FO (P+COS(DELA!!D))**2 
DDR FO,P'4 /(PS+SIN**2(DELA!!D}) 
STD FO,COT2SG = COT**2{DELSIGMA) 
AD PO,ONE 
MDR F2,P2 (Q-1/Q) **2 
DDR P2,P'O / (COT2SG+1) 
rm P2,=n•1.s• 1.5• "H" 
P!D P'4,ELLIP 
AD 1'4,SIN2DL 
AD P4,SIH2DL 
LD PO,PS 
DDR PO,F4 (FO) = N 
LD F4,=n•1.2s• ( 1.25 
P!DR F'l,FO *N 
SD P4,0NE -1) 
!DR F4,FO *N 
AD P4,0NE +1 
STD P4,I = I 
DD FO,S (PO} = N/S 
P!DR F2,FO 
ADR P2,F6 
MDR P2,FO 
SDR Fll,F2 
LD F2,COT2SG 
BAL R7,SQT 
!!DR FO,F4 
LD F2,0NE 
BAL R7,ACT 
Tl! PCOSDL,x•ao• 
BNO CAL CL 
SD PO,PI 
LPER PO,PO 

CALCL P!D FO,I 
CA LC LE l!D FO,A (PO) = DISTANCE IN ~ETERS 

LH R15,2 (R12) CHECK DISTANCE UNITS 
LPR R15,R15 
BZ STD ST 
c R 15, =l (NU NITS) 
BH STD ST 
SLA R15,3 
DD PO, UNIT-8 (R 15) 
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STDST Tl'! 2 (R 12) , X' 8 0 ' 
BNO STD STE 
STD PO, 0 (R10) RETURN AS "DSTNCE" VALUE REAL*8 
B CHKAZM 

STDSTE DS OB 
AIP (&IBPI360) .V1 
LRER FO,FO ON A 370, WE CAN ROUND NICELY 

.v1 STE PO,O(R10) RETURN AS "DSTNCE" VALUE REAL*4 

CHKAZl'! CLC 0 (4,Rll) ,=E 1 999.0 1 AZil'!UTH DESIRED? 
BE RTN 

LD P4,SINDL 
LPDR FO,P4 
BliZ CALCHEAD 
LD F6,PHI1 SIN {DELAPID) = 0 
T!! COSDL,X'80' 
BNO CHO 
LCER P6,P6 (POLAR ANGLE IS PI) 

CHO CD F6,PHI2 IF COS(DELAMD)*PHil < PHI2 
BHH STHD HEAD = o.o; 

LDPI LD PO,PI ELSE HEAD = 180 
B STHDPI 

CALCHEAD LD P2,TANB1 
l!DR F2,!'2 
AD P'2,0NE 
MDR F4,P'2 SINDL*SEC2B 1 
STD F4,SINDL 
SD F2,ESQD 
STD F2,TB2 
BAL R7,SQT 
LD P'4,TANB2 
LD F6,TANB1 
MD F6,COSDL 
SDR P'4,P6 
!!DR FO,F4 
STD P'O,TB2 
LD F2,SINDL 
LPER P2,F2 
LPER FO,!'O 
BZ CH1 
STE F2,TEMP2 
L R14 ,TEI!P2 
STE PO,TEMP2 
s B 14, TE!!P2 
c R14,ACTCE 
BNH CH2 

CH1 LD PO,PIOV2 
B CHSGH 
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CH2 TM TB2,x•so• 
BNO CHA CT 
c R14,ACTCF2 
BL LDPI 

CH ACT BAL R7,ACT 
CHSGN Tl! TB2,x•so• 

BNO *+10 
LCDR PO,FO 
AD FO,PI 
TM. SINDL,X 1 80 1 

BNO *+10 
LCDR FO,FO 
AD FO,TWOPI 

STHDPI LB R15,0{R12) CHECK AZIMUTH UNITS 
LPR B15,R15 
BZ STCNV GIVE DEGREES ON 0 OR 1 

* COULD BE A 1 IP A NEGATIVE FULL WORD WAS GIVEN AS FLAG 
BCTR B15,0 
c R15 ,=A (NAUNS) 
BHL STHD RADIANS ON ALL ELSE 
SLL R15,3 

STCNV ftD F0,RADDEG(R15) 
STHD Tl! o {R12) ,x•ao• 

BNO STHDE 
STD FO,O (Rll) 
B RTN 

STHDE DS OH 
AIP (&IBM360) • V2 
LRER FO,PO ROUND ON A 370 

.V2 STE FO, 0(Rl1} 

RTN L R13,4(R13) 
RETURN (14, 12) ,T,RC=O 

SZERO LD FO,ZERO 
Tl! COSDL,x•eo• 
BZ STD ST 
LD F0,=D 1 3.1362 1 ELLIPTIC CIRCUMFERENCE 
B CAL CLE 



SQT 

SQT1 

LPDB 
BZR 
SB 
IC 
LA 
SRDL 
STC 
LE 
l!YC 
AE 
!!E 
LTR 
BN!! 
AER 
AER 
DER 
AUR 
H.BR 
LER 
DER 
AUR 
BER 
LDR 
DDR 
!WR 
BDB 
DDR 
SDR 
BER 
SU 
AO 
ADR 
BR 

LTORG 
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FO,P2 
R7 
R14,B14 
B14,TB2 
B14,x•31• (R14} 
R14, 1 
R14,TB2 
F6,TB2 
TB2+1(3),=X 1 423A2A 1 

F6,TB2 
P6,=X •48385F07• 
R15,R15 
SQT1 
1'6,P6 
P6,1'6 
P2,F6 

SQUARE ROOT FUNCTION 
RETURN ON ZERO 

P6,P2 
P6,P6 
F2,PO 
P2,F6 

REFINE USING HERON'S METHOD 
(NEWTON-RAPHSON} 

P6,F2 
P6,F6 
P2,PO 
P2,F6 
F6,P2 
F6,P6 
FO,P'6 
F0,F6 
FO,PO 
P0,TB2 
PO,TB2 
!'O,P6 
R7 
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SCl BAL R14,0CTANT SINE/COSINE 
LA R15,8 CALC COSINE? 
Tl! SCQ,X 1 03 1 

Bl! scs YES 
SB R15,R15 NO, CALC SIN 

scs CE P4, PUN!! 
BH SC6 
LD PO,ZERO 
B SC7+2(R15) 

SC6 !!DR PO,PO 
LDR P2,FO 
l!D PO, SCA (R15) 
AD PO,SCB (R15} 
MDR PO,F2 
AD PO,SCC (R15) 
l!DR PO,F2 
AD PO, SCD (R15) 
!!DR PO,P2 
AD FO,SCE (R15) 
!!DR PO,P2 
AD FO,SCP (R15} 
!!DR PO,P2 
AD PO,SCG (R15) 
B SC1(R15) 

SC1 !!DR PO,P4 POR SIN 
B sea 
HOPR 0 SPACE TO 8 BYTES 
l!DR FO,F2 
AD PO,ONE 

sea Tl! SCQ,X 1 04 1 IS SCQ 4 TO 11 
BZR R7 
LCDR PO,PO 
BR R7 

OCTANT LPDR FO,PO 
l!D FO,DLZIOYPI 
CE FO,ONE 
BL OCTl 
LDB P4,PO 
Ai P4,URZR1 
STD P4,TEMP2 
AD F4,UNZR1 
SDR FO,F4 
AL R15,TEMP2+4 

OCT1 STC R 15 ,SCQ 
T!I SCQ,X 1 01 1 

BZ OCT2 
SD PO,ONE 

OCT2 LPDB F4,PO 
BR Rl4 
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TANG SR R15,B15 TANGENT FUNCTION 
BAL R14,0CTANT 
LD F2,TCTG 
LD F6,0NE 
CE F4, l'!INI! 
BL TCT2 
!!DR FO,PO 
LDR F6,PO 
AD P6,TCTP 
MDR P6,PO 
AD P6,TCTE 
!!DB F2,FO 
AD P2,TCTA 
f!DR P2,FO 
AD P2,TCTB 

TCT2 !!DR F2,PO 
AD F2,TCTC 
l!DR PO,P6 
AD PO,TCTD 
!!DR PO,P4 
T!! SCQ,I'03' 
B!! TCT3 
DDR PO,F2 
B TCT4 

TCT3 DDR P2,PO 
LDR PO,P2 

TCT4 Tl! SCQ,X 1 02 1 

BZR R7 
LCDR PO,FO 
BR R7 
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ACT CDR PO,F2 ARCCOTANGENT FUNCTION 
BH ACT02 
BL ACT01 
LD P0,PIOV4 (X) = 1, LOAD PI/4 AND RETURN 
BR R7 

ACT01 DDR PO,F2 
LA Rl,16 
B ACT03 

ACT02 DOB P2,PO 
LDR PO,F2 
SR R1,R 1 

ACT03 LA R14,ACTD1 
LD P4,0NE 
CE PO,ACTC3A 
BNH ACT OS 
CE PO,ACTC40 
BNH ACT04 
LDR F2,FO 
!ID PO,ACTC9 
SDR FO,P4 
AD P2,ACTC9 
DDR PO,P2 
LA R14 ,8 (R 14) 

ACT04 LDB P6,FO 
!!DR PO,PO 
LD P4,ACTC7 
ADR F4,PO 
LD P2,ACTC6 
DDR P2,.F4 
AD F2,.ACTC5 
ADR P2,PO 
LD F4,ACTC4 

ACTOS DDB P'4,P2 
AD P4,ACTC3 
ADR F4,PO 
LD P2,ACTC2 
DDR P2,P4 
AD F2,ACTC1 
!!DR PO,F2 
!!DR PO, P'6 
ADR F0,F6 
SD PO, 0 (R 1,R 14) 
LPEB PO,.FO 
BR B7 

END 
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APPENDIX D 

COPY BOOKS FOR COBOL PROGRAMS USING CARTA~ 

CARTCB07 CO~ftUNICATION BLOCK. 

05 DDNA!E PIC X(8) VALOE 1 GEOINDEX 1 • 

05 FUNCTION-CODE VALUE 1 0PEN 1 • 

10 FUNCTION-CODE-1 PIC X. 
10 FUNCTION-CODE-2 PIC X. 
10 FUNCTION-CODE-3 PIC X. 
10 FONCTION-CODE-4 PIC X. 

88 CONTINUE-WALK VALUE ' ' 
88 DISCARD-SUBTREE VALUE 'T'. 
88 KEEP-ALL-CHILDREN VALUE 'L'. 

05 STATUS-CODE PIC XX. 
88 GOOD-CARTAM-OPEN VALUE ' ' 
88 SOCCESSPUL-CARTAM VALUE ' ' 
88 MORE-PATH VALUE ' ' 
88 END-OF-PARENT VALUE 'GE'. 

05 MODE-INDICATOR PIC X. 
05 USER-DATA-PAD-CHARACTER PIC X VALUE ' ' 
05 MORT-INDICATOR REDEFINES OSER-DATA-PAD-CHARACTER 

OS 

PIC X. 
88 NODE 
88 TERMINAL-ELEMENT 
88 TERMINAL-W-SHORT-KEY 

OPEN-INFO-AREA. 
10 NUMBER-OF-COORDINATES 

VALUE 
VALUE 
VALUE 

'N'. 
'T'. 
•x•. 

PIC 9(4) COMP SYNC VALUE 2. 
10 MAX-NUMBER-BUFFERS 

PIC 9(4) COMP SYNC VALUE 32. 
05 RECORD-RBA REDEFINES OPEN-INFO-AREA 

PIC 59(9) CO~P 
05 MAX-USER-AREA-LENGTH PIC 9(4) COMP 
05 TRUE-USER-DATA-LENGTH PIC 9(4) COKP 
05 NUMBER-YSAM-READS PIC 9(4) COMP 
05 BUftBER-VSA"-iBITES PIC 9(4} COMP 

SYNC. 
SYNC VALUE O. 
SYNC VALUE O. 
SYNC VALUE O. 
SYNC VALUE O. 
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CARTFNCS CAB TU! FUNCTION CODES. 

01 CARTA!!-FUNCTION-CODES. 
03 CARTAM-OPEN PIC xx xx VALUE 'OPEN'. 
03 CART AM -LOAD PIC xx xx VALUE 9 LOAD '. 
03 CARTA!!-ISRT PIC xx xx VALUE 9 ISRT 1 • 

03 CARTAM-CHNG PIC xx xx VALUE 'CHNG•. 
03 CARTAM-DLET PIC xx xx VALUE 'DLET'. 
03 CARTAM-cLOSE PIC xx xx VALUE 1 CLSE •. 
03 GR PIC xx xx VALUE 'GR • 
03 GRL PIC xx xx VALUE 'GR L 1 • 

03 GI! PIC xx xx VALUE 'GM • 
03 Gl!P PIC xx xx VALUE 1 GMP '· 
03 GNP PIC xx xx VALUE 'GNP '. 
03 GNPT PIC xx xx VALUE 1 GNPT 1 • 

03 G?IPL PIC xx xx VALUE 1 GNPL'. 
03 SUB-FUNCTIONS. 

05 88-CONTINOE-WALK PIC X VALUE I • 
05 88-DISCARD-SUBTREE PIC X VALUE 'T' • 
05 88-KEEP-ALL-CHILDREN PIC X VALUE •t•. 
05 FILLER PIC X VALUE • I 

03 GP PIC XXXX VALUE 'GP • 
03 GPP PIC XXXX VALUE 'GPP • 
03 GT PIC XXXX VALUE 'GT • 
03 GTP PIC XXXX VALUE 'GTP ' 
03 GC PIC XXXX VALUE 'GC t 

03 GCP PIC XXXX VALUE 'GCP • 
03 GN PIC XXXX VALUE 'GN' ' 
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APPENDIX E 

INDEX LOAD PROGRAM SOURCE 

IDENTIFICATION DIVISION. 
PROGRAM-ID. NTBNDLIX. 
DATE-WRITTEN. NOY77. 
DATE-COMPILED. 

ENVIRONMENT DIVISION. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 
SELECT NTB-FILE ASSIGN TO NTBVSA~ 

ORGANIZATION IS INDEXED 
ACCESS IS SEQUENTIAL 
RECORD KEY IS V-NTB-KEY 
PILE STATUS IS PILE-STATUS. 

SELECT NDL-FILE ASSIGN TO NDLVSA~ 
ORGANIZATION IS INDEXED 
ACCESS IS SEQUENTIAL 
RECORD KEY IS V-ZBKEY 
FILE STATUS IS PILE-STATUS. 
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DATA DIVISION. 

FILE SECTION. 

FD HTB-FILE 
LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 0 RECORDS 
RECORD CONTAINS 276 TO 4596 CHARACTERS 
DATA RECORD IS VSAM-NTB-RECORD. 

COPY VSAr!NTB. 

66 V-IBLATLNG RENAMES V-IBLAT THRO V-IBLNG-DIR. 

FD NDL-FILE 
LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 0 RECORDS 
RECORD CONTAINS 340 TO 1840 CHARACTERS 
DATA RECORD IS VSAM-ZB-ZO-RECORD. 

COPY JLPVZBZO. 

66 V-ZBLATLNG RENA~ES V-ZBLAT THRO V-ZBLNGSGN. 
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WORKING-STORAGE SECTION. 

77 EOF-SWITCH PIC 9 VALUE o. 
88 EOF VALUE 1. 

77 RETURN-STATUS PIC X(OLI) VALUE SPACES. 
88 SUCCESSFUL VALUE • 0000 •• 

11 DISPOSITION PIC x (03) VALUE 1 SHR•. 

11 PILE-STATUS PIC x {02) VALUE SPACES. 

01 COMMUNICATION-BLOCK. 
COPY CARTCB07. 

01 OSER-DATA-AREA. 
05 KEY-FEEDBACK-AREA. 

10 ?lDL-KEY. 
15 ISL PIC 9 (5). 
15 DGZ PIC x (3} • 
15 REV PIC x. 

10 PILLER PIC X (15) • 
05 FILLER REDEFINES KEY-FEEDBACK-AREA. 

10 NTB-KEY. 
15 ISL PIC 9 (5) • 
15 CAT PIC 9 (5) -
15 iAK PIC 9 (4) -
15 BEN PIC x (6) • 
15 ELT PIC x. 

10 PILLER PIC x (3) -
66 NDL-IGZ RENAl!ES ISL OF NDL-KEY 

THRO DGZ OP NDL-KEY. 



-168-

01 COORDINATE-VECTOR. 
05 NDX-LAT PIC S9 (9) COMP SYNC. 
05 NDX-LON PIC S9 (9) COMP SYNC. 
05 BOX-DELTA PIC S9 (9) COMP SYNC. 

01 WK-LAT-LNG. 
03 WK-LAT. 

05 WK-LATD PIC 9 (02) VALUE o. 
05 WK-LATl'I PIC 9(02) VALUE o. 
05 WK-LATS PIC 9 (02) VALOE o. 
05 WK-LAT-DIR PIC I (01) VALUE SPACE. 

03 WK-LONG. 
05 iK-LOHGD PIC 9 (03) VALUE o. 
05 WK-LONG!! PIC 9(02) VALUE o. 
05 WK-LONGS PIC 9 (02) VALUE o. 
05 WK-LONG-DIR PIC X(Ol) VA LOE SPACE. 

01 ALLOCATED-DSM. 
03 PILLER PIC x (04) VALUE 1 JLP.•. 
03 FILLER PIC x (08) VALUE 1 VSAMNDL.•. 
03 FILLER PIC x (05) VAL OE 'ZBZ0. 1 • 

03 REV-POR-DSN PIC x (01) VALUE "B' • 
03 PILLER PIC x (01) VALUE SPACE. 

01 DD-RAl!!E PIC x (08) VALUE 1 NDLVSAM I 

01 DUf!l!!Y-DD-NAME. 
03 PILLER PIC x (07) VALUE 'DUMKYDD'. 
03 DUMMY-DD-NAME-REV PIC x (01) VALUE 'B'. 

01 VALUE-OP-BEV-TABLE PIC X(03) VALUE 'BCD'. 
01 TABLE-OF-REV-VALUES 

REDEFINES VALUE-OF-REV-TABLE. 
03 REV-LETTER PIC I OCCURS 3 TIMES 

INDEXED BY REV-NDX. 

01 ACCUMULATORS. 
03 ONE-CON 
03 TOTAL-ISRTS 
03 TOTAL-GETS 
03 TOTAL-POTS 

PIC S9(06} COMP SYNC VALUE +1. 
PIC S9(06) COMP SYNC VALUE +0. 
PIC S9(06) COMP SYNC VALUE +O. 
PIC S9(06) COMP SYNC VALUE +0. 
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PROCEDURE DIVISION. 

000-0PEN-IHITIALIZE. 
MOVE 24 TO MAX-OSER-AREA-LENGTH. 
!OVE 'LOAD' TO FUNCTION-CODE. 
ftOYE 1 F 1 TO MODE-INDICATOR. 

* OPEN INDEX PILE FOR INTEGER COORDINATES. 
CALL 1 CARTA8 1 USING COMMUNICATION-BLOCK. 
MOVE +21 TO TRUE-USER-DATA-LENGTH. 
ftOVE 1 ISRT 1 TO FUNCTION-CODE. 

010-0PEN-PILES. 
OPEN INPUT NTB-FILE. 
PERFORM 100-CONVERT-CALL-NTB THRO 100-EXIT 

UNTIL EOF. 
MOVE +9 TO TRUE-USER-DATA-LENGTH. 
PERFORM 200-0PEN-C'LOSE-NDL-FILES THRO 200-EXIT 

VARYING REV-HDX FROM 1 BY 1 
UNTIL REV-NDX > 3. 

900-LAST-CALL-TO-CARTOR. 
DISPLAY 'TOTAL I READS = 1 TOTAL-GETS, 

•, TOTAL I WRITES = • TOTAL-PUTS, 
1 , TOTAL I INSERTS= 1 TOTAL-ISRTS, ' 1 

!OVE 1 CLSE 1 TO FUNCTION-CODE. 
CALL 1 CARTAM 1 USING COMMUNICATION-BLOCK. 

GOBACK. 

100-CONVERT-CALL-NTB. 
BEAD NTB-FILE 

AT END 
MOVE 1 TO EOP-SWITCH 
CLOSE NTB-PILE 
GO TO 100-EXIT. 

MOVE V-IBLATLNG TO WK-LAT-LNG. 
MOVE V-NTB-KEY TO NTB-KEY. 
PERFORM 500-CONVERT-CALL THRO 500-EXIT. 

100-EXIT. 
EXIT. 
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200-0PEN-CLOSE-NDL-FILES. 
~OVE REV-LETTER (BEV-NDX) TO REV-FOR-DSN, 

DUMMY-DD-NAME-REV. 
CALL 1 ALLOCD 1 USING RETURN-STATUS, 

DD-NAME, 
ALLOCATED-DSN, 
DISPOSITION. 

IP SUCCESSFUL 

ELSE 

MOVE 0 TO EOP-SWITCH 
OPEN INPUT NDL-PILE 
PERFORM 300-CONVERT-CALL-NDL THRO 300-EXIT 

UNTIL EOF 
CALL 1 DEALLC 1 USING RETURN-STATUS, 

IP SUCCESSFUL 
NEXT SENTENCE 

ELSE 

DD-NAME 

DISPLAY 'STATUS = <•, RETURN-STATUS, 
'>, DDN =',DD-NAME 

~OVE •0000 1 TO RETURN-STATUS 

DISPLAY 'STATUS = <', RETURN-STATUS, 
•>, DDN = ', DD-NAME, 
1 , DSN = 1 , ALLOCATED-DSN 

~OVE •0000 1 TO RETURN-STATUS. 
CALL 'DEALLC' USING RETURN-STATUS, 

DUfU!Y-DD-NUIE. 
IP NOT SUCCESSFUL 

DISPLAY 'STATUS = <•, RETURN-STATUS, 
1 >, DDN = 1 , DUMMY-DD-NAME 

!OVE •oooo• TO RETURN-STATUS. 
200-EXIT.;. 

EXIT. 
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300-CONVERT-CALL-NDL. 
READ HDL-P'ILE 

AT END 
MOVE 1 TO EOF-SWITCH 
CLOSE MDL-FILE 
GO TO 300-EXIT. 

MOYE V-ZBLATLNG TO WK-LAT-LNG. 
!OVE V-ZBKEY TO HDL-IGZ. 
MOVE V-ZBREV TO REV OP' NDL-KEY. 
PERFORM 500-CONVERT-CALL THRU 500-EXIT. 

300-EXIT. 
EXIT. 

500-COHVERT-CALL. 
COMPUTE NDX-LAT = (60 * WK-LATD + WK-LATP!) 

* 60 + WK-LATS. 
IP' WK-LAT-DIR = 1 5 1 

COMPUTE HDX-LAT = - NDX-LAT. 
COKPUTE NDX-LOR = (60 * WK-LONGD + WK-LONGM) 

* 60 + WK-LONGS. 
IP' WK-LONG-DIR = 'W' 

COMPUTE NDX-LON = - NDX-LON. 
CALL 1 CARTAM 1 USING COMMUNICATION-BLOCK, 

USER-DATA-AREA, 
COORDINATE-VECTOR. 

ADD IU!BER-VSAM-iRITES TO TOTAL-POTS. 
ADD NUMBER-VSAM-READS TO TOTAL-GETS. 
MOVE ZEROES TO NU!BER-VSAM-iRITES, 

NU!BER-YSAM-READS. 
IP SUCCESSFUL-CARTA! 

ADD ONE-COH TO TOTAL-ISRTS 
ELSE 

DISPLAY 'STATUS CODE = ( 1 STATUS-CODE, 
'>, KEY = <', 

KEY-FEEDBACK-AREA '>.•. 
500-EXIT. 

EXIT. 



//DFDLGEO 
//STEPCAT 
//SY SPRINT 
//VSNTB 
//SY SIN 

DEFINE 

/* 
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APPENDIX F 

VSA! PILE DEFINITION EXA~PLE 

EXEC PG~=IDCAMS,REGION=256K 
DD DISP=SHB,DSN=AMASTCAT 
DD SYSOOT=A 
DD UNIT=3330,VOL=SER=VSAM02,SPACE=(TRK,1) 
DD * 
CLUSTER(-
NAME{VSAM.NTB.GEONDX}-
PILE (VSNTB) -
VOLUME (VSAM02) -
CYLINDERS(15)-
SHAREOPTIONS(1}-
CISZ(4096)-
NOHINDEXED-
RECORDSIZE(4089 4089)-
SPEED-
UHIQOE-
OWNER (ADWNSD)) -
DATA(-

NAME(VSAM.NTB.GEONDX.DATA))­
CATALOG(AMASTCA~ 
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APPENDIX G 

CIRCLE SEARCH PROGRA.!t SOURCE 

ID DIVISION. 
PROGRA8-ID. ONETEP!E. 
DATE-WRITTEN. MAY 77. 
DATE-COP!PILED. 
REMARKS. 

ENVIRONP!ENT DIVISION. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 
SELECT COORD-FILE ASSIGN TO UT-S-DATAIN. 
SELECT PRINT-FILE ASSIGN TO OT-S-PRINTER. 

DATA DIVISION. 
PILE SECTION. 

FD COOBD-FILE 
LABEL RECORDS ABE STANDARD 
BLOCK CONTAINS 0 RECORDS. 

01 FILLER PIC X(SO). 

FD PRINT-PILE 
LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 0 RECORDS. 

01 PRINT-REC PIC X ( 132} • 
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WORKING-STORAGE SECTION. 

01 COPH!UNICATION-BLOCK. 
COPY CARTCB07. 

01 CONTROL-CARD. 
03 CNTRL-RADIUS COMP-1 SYNC VALUE +3.0E+3. 
03 CNTRLCRD-RADIUS-SECS COMP-1 SYNC. 
03 CITRLCRD-RADIUS-IN-ftETERS COMP-1 SYNC. 
03 CBTRL-UNITS PIC XX VALUE 1 MT'. 

88 NAUT-MILES VALUE 'NM'. 
88 KILO-METERS VALUE 1 Kft'. 
88 PEET VALUE 1 FT 1 • 

88 METERS VALUE 1 MT 1 • 

COPY CARTFNCS. 

01 COORD-WORK-AREA. 
03 PILLER PIC x (8) VALUE SPACES. 
03 ADN-NUMBER PIC x (4) VALUE SPACES. 
03 FILLER PIC x (21) VALUE SPACES. 
03 LAT-IN. 

05 LAT-DEG PIC 99 VALUE ZEROS. 
OS LAT-ft IN PIC 99 VALUE ZEROS. 
05 LAT-SEC PIC 99 VALUE ZEROS. 

* 05 LAT-NS PIC x VALUE SPACES. 

* 88 SOUTH VALUE 1 S 1 • 

03 LON-IN. 
05 LON-DEG PIC 999 VALUE ZEROS. 
05 LON-MIN PIC 99 VALUE ZEROS. 
05 LON-SEC PIC 99 VALUE ZEROS. 
05 LON-EW PIC x VALUE SPACES. 

88 WEST VALUE 1 W1 • 

03 PILLER PIC X (33) VALUE SPACES. 

01 KEY-FEEDBACK-AREA. 
05 NDL-KEY. 

10 ISL PIC 9 (5) • 
10 DGZ PIC x (3) • 
10 REY PIC x. 

05 PILLER PIC x ( 15) • 
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01 RESULT-AREA. 
03 INPUT-TO-OUTPUT. 

05 PILLER PIC x (8) VALUE SPACES. 
05 A DH-OUT PIC x (4) VALUE SPACES. 
05 FILLER PIC x (68) VALUE SPACES. 

03 PILLER PIC X(2) VALUE SPACES. 
03 IGZ-OOT. 

05 REV PIC x. 
05 PILLER PIC x. 
OS ISL PIC ZZZZ9. 
05 DGZ PIC xxx. 

03 PILLER PIC X (3) VALUE SPACES. 
03 DIST-OUT PIC ZZZ,ZZ9.9 VALUE • o.o•. 
03 PILLER PIC X VALUE SPACES. 
03 DIST-UNITS PIC XX VALUE SPACES. 
03 FILLER PIC X {26) VALUE SPACES. 

01 LIMIT-VECTORS. 
03 LOW-LU!ITS. 

OS LOW-LAT PIC S9 (8) COMP SYNC. 
05 LOW-LON PIC S9 (8) COMP SYNC. 

03 HIGH-LIMITS. 
05 HIGH-LAT PIC S9 (8) COl'!P SYNC. 
05 HIGH-LON PIC S9 (8) COMP SYNC. 

01 WORK-AREA. 
03 LATR CO~P-2 SYNC VALUE ZERO. 
03 LATO PIC S9{8) COMP SYNC VALUE ZERO. 
03 LONO PIC S9(8) COMP SYNC VALUE ZERO. 
03 CABTAM-COORDINATE-VECTOR. 

05 LATl PIC S9(8) COMP SYNC VALUE ZERO. 
05 LON1 PIC S9{8) COMP SYNC VALUE ZERO. 

03 DSTNCEl COMP-1 SYNC VALUE ZERO. 
03 AZIMUTH1 COMP-1 SYNC VALUE 9.99E+02. 
03 DSTNCE2 COMP-1 SYNC VALUE ZERO. 
03 ESTIMATOR COMP-1 SYNC VALUE 4.SE+Ol. 
03 MDX-DELTA PIC 59(9} COMP SYNC. 
03 ANSWER-FACTOR COMP-1 SYNC VALUE ZERO. 
03 IPLAG PIC S9(8) COMP SYNC VALUE +5. 
03 ONE-CON PIC 59(8} COMP SYNC VALUE +1. 
03 8AX-B-G-CELLS PIC 59(8) COMP SYNC VALUE +100. 
03 SECRAD CO~P-1 SYNC VALUE .48481368E-05. 
03 NOM-ADN5 PIC 59(4) COMP VALUE +1000. 
03 NONE-FLAG PIC X VALUE LOW-VALUES. 

88 NOHE-IN VALUE HIGH-VALUES. 
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01 HISTO-GRAM SYNC. 
03 H-G-!HN 
03 H-G-KAX 
03 H-G-CELL-ZERO 
03 H-G-CELLS PIC 
03 B-G-CELL-KAX 

LINKAGE SECTION. 
01 PAR!!-FIELD. 

PIC 59 (8) COr!P. 
PIC 59 (8) COMP. 
PIC S9(8} COMP. 

59(8) COMP OCCURS 100 
PIC 59(8) COMP. 

03 PARK-LENGTH PIC 9(q) COMP. 
88 VALID-PARM-PASSED VALUE 7. 

03 PARK-RADIUS PIC 9(5). 
03 PARK-UNITS PIC XX. 
03 PARM-BOPPERS PIC 99. 
03 PARK-NUM-ADNS PIC 999. 

Til'!ES. 
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PROCEDURE DIVISION USING PARM-FIELD. 

0000-DRIVER. 
MOVE 24 TO MAX-OSER-AREA-LENGTH. 
MOVE CARTAM-OPEN TO FUNCTION-CODE. 
IP PARM-LENGTH NOT < 9 

MOVE PARM-BUFFERS TO ftAX-NOMBER-BOFFERS. 
CALL 1 CARTAM 1 USING COMMUNICATION-BLOCK. 
IF NOT GOOD-CARTAM-OPEN 

DISPLAY 'BAD OPEN RETURN CODE' 
GOBACK. 

OPEN INPUT COORD-FILE 
OUTPUT PRINT-PILE. 

MOVE ALL LOW-VALUES TO BISTO-GRAM. 
MOVE +1000000 TO H-G-MIN. 
IF PARM-LENGTH NOT < 1 

MOVE PARM-RADIUS TO CNTRL-RADIOS 
MOVE PARM-OMITS TO CNTRL-UNITS. 

IF PARM-LENGTH NOT < 12 
MOVE PARM-NUM-ADNS TO NUM-ADNS. 

IP' NAOT-!ILES 
COMPUTE CNTRLCRD-RADIUS-SECS = 60.0 * 

(CNTRL-RADIUS) 
MOVE +1852.0 TO ANSWER-FACTOR 

ELSE 
IP KILO-METERS 

ELSE 

con.POTE CNTRLCRD-RADIUS-SECS = 60.0 * 
(CNTRL-RADIUS I 1.852} 

MOVE +1000.0 TO ANSWER-FACTOR 

IF FEET 

ELSE 

COMPUTE CNTRLCRD-RADIOS-SECS = 60.0 * 
(CNTRL-RADIUS I 6080.0) 

MOVE +0.3048 TO ANSWER-FACTOR 

COMPUTE CNTRLCRD-RADIUS-SECS = 60.0 * 
(CNTRL-RADIUS I 1852.0} 

MOVE +1.0 TO ANSWER-FACTOR. 
COMPUTE CNTRLCRD-RADIOS-IN-~ETERS = 

CNTRL-BADIUS * ANSWER-FACTOR. 
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0100-PROCESS-LOOP. 
READ COORD-FILE INTO COOBD-WORK-AREA 

AT END GO TO 0100-FINISH-UP. 
ftOVE CNTRLCRD-RADIUS-SECS TO HIGH-LON. 
MULTIPLY HIGH-LON BY +1.1 GIVING HIGH-LAT. 
COMPUTE LATO = (LAT-DEG * 60 + LAT-MIN) * 60 

+ LAT-SEC. 
* IP SOUTH COMPUTE LATO = - LATO. 

COMPUTE LONO = (LON-DEG * 60 + LON-ftIN) * 60 
+ LON-SEC. 

IF WEST COMPOTE LONO = - LONO. 
COMPUTE LATR = LATO * SECRAD. 
CALL 'BAFSID' USING LATR, HIGH-LON. 
COMPUTE LOW-LAT = LATO - HIGH-LAT. 
COMPUTE LOW-LON = LONO - HIGH-LON. 
COMPOTE HIGH-LAT =LATO + HIGH-LAT. 
COMPOTE HIGH-LON = LONO + HIGH-LON. 
WRITE PRINT-REC FROM COORD-WORK-AREA 

AFTER ADVANCING 3 LINES. 
MOVE SPACES TO RESULT-AREA. 
MOVE CNTRL-ONITS TO DIST-UNITS. 
MOVE ADN-NOftBER TO ADN-OUT. 
MOVE HIGH-VALUES TO NONE-FLAG. 
MOVE ZERO TO NUMBER-VSAM-READS. 
MOVE GR TO PONCTION-CODE. 
CALL 1 CARTA1'! 1 USING COMMUNICATION-BLOCK, 

KEY-FEEDBACK-AREA, 
CARTAM-COORDINATE-VECTOR, 
MDX-DELTA, 
LOW-LIMITS, 
HIGB-LilUTS. 

PERFORM 0200-WALK-PATB THRO 0200-WALK-PATH-EXIT 
UNTIL NOT MORE-PATH. 

IF NONE-IN 
MOVE CNTRL-RADIUS TO DIST-OUT 
MOVE 'NONE IN 1 TO IGZ-OUT 
WRITE PRINT-REC PROM RESULT-AREA. 

IF HOl!BER-VSAM-READS > H -G-MAX 
MOYE NUMBER-VSAa-READS TO H-G-MAX. 

IF NUftBER-VSAa-READS < H-G-MIN 
!OVE HU!BER-VSAft-READS TO H-G-MIN. 

IF NOMBER-VSAM-READS < ONE-CON 
ADD ONE-COB TO H-G-CELL-ZERO 

ELSE 
IF NUMBER-VSAM-READS > MAX-H-G-CELLS 

ADD +1 TO H-G-CELL-MAX 
ELSE 

ADD +1 TO H-G-CELLS (NU~BER-VSAM-READS) • 
SUBTRACT 1 FROM HOM-ADNS. 
IP Nml.-ADNS > 0 

GO TO 0100-PROCESS-LOOP. 
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0100-.FilfISH-UP. 
DISPLAY 'MIN I READS = ', H-G-MIN, 

1 ; MAX t READS = 1 , H-G-MAX, 
'; CELL(O) = 1 , H-G-CELL-ZERO, 
1 ; CELL(101) = 1 , H-G-CELL-MAX. 

IP H-G-MAX > 100 
MOYE +100 TO H-G-KAX. 

PERFORM H-G-DISPLAY VARYING NUMBER-VSAM-READS 
PROM 1 BY 1 UNTIL NUMBER-VSAl!-READS > H-G-IUX. 

!OVE CARTAK-CLOSE TO FUNCTION-CODE. 
CALL 'CARTA!' USING COMMUNICATION-BLOCK. 
CLOSE COORD-FILE 

PRINT-PILE. 
GOBACK. 

H-G-DISPLAY. 
DISPLAY 1 CELL(', NUMBER-VSAM-READS, 1 ) = 1 , 

H-G-CELLS (NUMBER-VSAM-READS). 
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0200-WALK-P!TH. 
MOVE GNP TO FUNCTION-CODE. 
MULTIPLY MDX-DELTA BY ESTIMATOR GIVING DSTNCE2. 
CALL 1 VECTOR 1 USING LAT1 LONl 

LATO LONO 
DSTMCEl !FLAG. 

SUBTRACT CBTRLCRD-RADIUS-IN~ETERS FROM DSTNCE1. 
IF DSTNCE2 < DSTNCEl 

MOVE 88-DISCABD-SUBTREE TO FUNCTION-CODE-4 
ELSE 

IP DSTNCE2 NOT > - DSTNCE1 
MOVE 88-KEEP-ALL-CHILDREN TO FONCTION-CODE-4 
PERFORM 0300-KEEP-ALL THRO 0300-KEEP-ALL-EXIT 

UNTIL NOT MORE-PATH 
MOVE 88-CONTINUE-WALK TO FUNCTION-CODE-4. 

CALL 1 CARTAM 1 USING COMMUNICATION-BLOCK, 
KEY-FEEDBACK-AREA, 
CARTAM-COORDINATE-VECTOR, 
NDX-DELTA. 

0200-WALK-PATH-EXIT. 
EXIT. 

0 300-KEEP-ALL. 
IF TRUE-USER-DATA-LENGTH = 9 

CALL 1 VECTOR 1 USING LATO LONO 
LAT1 LONl 
DSTNCE1 !FLAG 

MOVE CORR NDL-KEY TO IGZ-OUT 
DIVIDE DSTNCE1 BY ANSWER-FACTOR 

GIVING DIST-OUT 
MOVE LOW-VALUES TO NONE-FLAG 
WRITE PRINT-REC FROM RESULT-AREA 

AFTER ADVANCING 1 LINE. 
CALL 1 CARTAM 1 USING COMMUNICATION-BLOCK, 

KEY-FEEDBACK-AREA, 

0300-KEEP-ALL-EXIT. 
EXIT. 

CAB TAM-COORDINATE-VECTOR, 
HDX-DELTA. 
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APPENDIX H 

INCLUSION/EXCLUSION AREA SEARCH PROGRAM SOURCE 

ID DIVISION. 
PROGRAl'!-ID. XCLODOR2. 
DATE-WRITTEN. ftAY 77. 
DATE-COMPILED. 
REl'!ARKS. 

ENVIRONMENT DIVISION. 

INPUT-OUTPUT SECTION. 

PILE-CONTROL. 
SELECT CNTRLCRD ASSIGN TO OT-S-CONTROL. 
SELECT LAUNCH-POINT-FILE ASSIGN TO UT-S-LAUNCH. 
SELECT SORT.ED-FILE ASSIGN TO UT-S-SRTNULL. 
SELECT SORTED-OUTPUT-PILE ASSIGN TO UT-S-NTBS. 
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DATA DIVISION. 

FILE SECTION. 

SD SORTED-FILE. 
01 SELECTED-RECORD. 

03 PRil!ARY-KEY PIC x (21) • 
03 FILLER PIC x (15) • 

FD CNTBLCRD 
LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 0 RECORDS. 

01 FILLER PIC X(80). 

FD LAUNCH-POINT-FILE 
LABEL RECORDS ARE STANDARD 
RECORD CONTAINS 21 CHARACTERS 
BLOCK CONTAINS 0 RECORDS. 

01 LP-DATA PIC X(21). 
• READ INTO LP-DATA-AREA. 

FD SORTED-OUTPUT-FILE 
LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 0 RECORDS. 

01 OUT-REC-S PIC X(36). 

WORKING-STORAGE SECTION. 

01 SIXTY PIC S9 (8) CO!!P 
01 COl!MONICATION-BLOCK. COPY CARTCB07. 

01 NDX -VECTORS. 
05 MDX-LAT PIC S9 (8} 
05 NDX-LON PIC 59 (8) 
05 MDX-DELTA PIC S9 {8) 

01 LI!!IT-VECTORS. 
05 LOW-LilUTS. 

10 LOW-LAT PIC S9 (8} 
10 LOW-LON PIC S9 (8) 

05 HIGH-LIMITS. 
10 HIGH-LAT PIC S9 (8) 
10 HIGH-LON PIC S9 (8) 

SYNC VALUE +60. 

COMP SYNC. 
COMP SYNC. 
COl!!P SYNC. 

COMP SYNC. 
COMP SYNC. 

COl!!P SYNC. 
COMP SYNC. 
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01 CNTRLCRD-IN. 

* COLS 1 2 3 4 5 

* 12345678901234567890123456789012345678901234567890 
• > 2500Kft 55N+/-2S 090E+/-090 ISLEIISLEI 

* LAT LONG LOW HIGH 
03 FILLER PIC X. 

88 EXCLUSION-AREA-SEARCH VALUE I) I• 

88 INCLUSION-AREA-SEARCH VALUE '<' -
03 FILLER PIC X(LI). 
03 CNTRL-RADIUS PIC 9 (5} • 
03 CNTRL-UNITS PIC XX. 

88 NAOT-ftILES VALUE 'NM'. 
88 KILO-.l!ETERS VALUE 'KM'. 
88 FEET VALUE 'FT'. 
88 METERS VALUE 'MT'. 

03 FILLER PIC X (S) • 
03 CNTRL-CENTER-LAT-DEG PIC 99. 
03 PILLER PIC x. 

88 CNTRL-SOUTH VALUE •s •. 
03 FILLER PIC XXX VALUE •+/-'. 
03 CNTRL-DELTA-LAT PIC 99. 
03 PILLER PIC X. 
03 CNTRL-CENTER-LON-DEG PIC 999. 
03 FILLER PIC x. 

88 CNTRL-WEST VALUE 'W' • 
03 PILLER PIC XXX VALUE •+/-'. 
03 CNTRL-DELTA-LON PIC 999. 
03 PILLER PIC x (4} • 
03 !UN-ISLE PIC 9 (5} • 
03 MAX-ISLE PIC 9 (S) • 
03 FILLER PIC x (3}. 
03 LP-DATA-AREA. 

05 LATD PIC 99. 
05 LAT!'! PIC 99. 
OS LATS PIC 99. 
05 NS-DIR PIC x. 

88 LP-SOUTH VALUE •s•. 
05 PILLER PIC x. 
05 LOND PIC 999. 
05 LON! PIC 99 . 
05 LONS PIC 99. 
05 Eil-DIR PIC x. 

88 LP-WEST VALUE 'W'. 
05 LP-RADIUS PIC 9 (S) • 

03 FILLER PIC X (6) • 
01 CNTRLCRD-TRANSPORl'! REDEFINES CNTRLCRD-IN PIC x (80} • 

COPY CARTFNCS. 
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01 RESULT-AREA. 
03 KEY-OUT. 

05 ISL PIC 9 (5) • 
05 P'ILLER PIC x (16} • 

03 LAT-OUT. 
05 LAT-DEG PIC 99 VALUE ZEROS. 
05 LAT-MIN PIC 99 VALUE ZEROS. 
05 LAT-SEC PIC 99 VALUE ZEROS. 
OS LAT-NS PIC x VALUE SPACES. 

03 LOH-OUT. 
05 LON-DEG PIC 999 VALUE ZEROS. 
05 LON-MIN PIC 99 VALUE ZEROS. 
05 LON-SEC PIC 99 VALUE ZEROS. 
05 LON-EW PIC x VALUE SPACES. 

01 WORK-AREA. 
03 LATR COMP-2 SYNC VALUE ZERO. 
03 MAXIMUM-RADIUS-IN-METERS COMP-1 SYNC. 
03 CNTRLCRD-RADIUS-IN-METERS COMP-1 SYNC. 
03 ABS-LAT PIC 9(8) COMP SYNC VALUE ZERO. 
03 DSTICE1 COftP-1 SYNC VALUE ZERO. 
03 SECRAD COftP-1 SYNC VALUE .48481368E-05. 
03 DSTNCE2 COMP-1 SYNC VALUE ZERO. 
03 ESTIMATOR COMP-1 SYNC VALUE 4.SE+Ol. 
03 LAT-LNG-WORK-AREA PIC S9(8} COMP SYNC VALUE ZERO. 
03 IP'LAG PIC 59(8) COMP SYNC VALUE +5. 
03 TOTAL-NUMBER-READS PIC 59(6} COMP SYNC VALUE ZERO. 
03 MIN-ISLE-NUMBER PIC 9 (5) COMP-3 VALUE ZERO. 
03 MAX-ISLE-NUMBER PIC 9(5) COMP-3 VALUE ZERO. 
03 NUMBER-RECORDS PIC 9(5) CO~P-3 VALUE ZERO. 
03 NOHE-P'LAG PIC X VALUE LOW-VALUES. 

88 NONE-IN VALUE HIGH-VALUES. 
03 OUTSIDE-ALL-CIRCLES PIC X VALUE SPACE. 
03 INSIDE-A-CIRCLE PIC X VALUE SPACE. 
03 LP-END-PLAG PIC XXX VALUE SPACES. 

88 END-OF-LPS VALUE 'END'. 
03 NUMBER-OF-LAUNCH-POINTS USAGE INDEX. 

01 LAUNCH-POIBT-DATA SYNC. 
03 LP-TABLE OCCURS 100 TI!ES INDEXED BY LAUNCH-POINT. 

05 LP-LAT PIC S9(8} SYNC COHP. 
05 LP-LON PIC 59(8) SYNC COMP. 
05 LP-DELTA-LAT PIC S9(8) SYNC COMP. 
05 LP-DELTA-LON PIC 59(8) SYNC COMP. 
05 LP-RADIUS-IN-METERS SYNC COMP-1. 
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PBOCEDORE DIVISION. 

0000-DRIVER. 
CALL 1 TIMEAX 1 USING INTERVAL. 
MOVE 21 TO MAX-USER-AREA-LENGTH. 
MOVE CARTAM-OPEN TO PUNCTION-CODE. 
CALL 1 CARTA8 1 USING COMMUNICATION-BLOCK. 
IP NOT GOOD-CARTAM-OPEN 

DISPLAY 'BAD OPEN RETURN CODE' 
GOBACK. 

OPEN INPUT CHTRLCRD. 

0000-CNTL-LOOP. 
READ CNTRLCRD INTO CNTRLCRD-IN 

AT END MOVE CARTAM-CLOSE TO FUNCTION-CODE 
CALL 'CARTA!' USING COMMUNICATION-BLOCK 
CLOSE CHTRLCRD 
GOBACK. 

TRANSFORM CHTRLCRD-TBANSPORM FROM SPACES TO ZEROES. 
MOVE MIN-ISLE TO MIN-ISLE-NUMBER. 
MOVE MAX-ISLE TO MAX-ISLE-NUMBER. 
MULTIPLY CNTRL-CENTER-LAT-DEG BY 3600 GIVING NDX-LAT. 
IP CNTRL-SOUTH COMPOTE NDX-LAT = - NDX-LAT. 
MULTIPLY CNTRL-DELTA-LAT BY 3600 GIVING NDX-DELTA. 
C~MPUTE LOW-LAT = NDX-LAT - NDX-DELTA. 
COMPUTE HIGH-LAT = NDX-LAT + NDX-DELTA. 
MULTIPLY CNTRL-CENTER-LON-DEG BY 3600 GIVING NDX-LON. 
IP CNTRL-WEST COMPUTE NDX-LON = - NDX-LON. 
MULTIPLY CNTRL-DELTA-LON BY 3600 GIVING NDX-DELTA. 
COMPOTE LOW-LON = NDX-LON - NDX-DELTA. 
COMPUTE HIGH-LOH = NDX-LON + MDX-DELTA. 
MOVE CNTRL-RADIUS TO LP-RADIUS. 
~OVE ZEROS TO CNTRLCRD-RADIUS-IN-METERS, 

MAXIMUM-RADIUS-IN-~ETERS, 

NUMBER-RECORDS. 
IP INCLUSION-AREA-SEARCH 

MOVE 88-DISCARD-SDBTREE TO OUTSIDE-ALL-CIRCLES 
MOVE 88-KEEP-ALL-cHILDREH TO INSIDE-A-CIRCLE 

ELSE 
MOVE 88-KEEP-ALL-CHILDREN TO OUTSIDE-ALL-CIRCLES 
MOYE 88-DISCARD-SUBTBEE TO INSIDE-A-CIRCLE. 

SET LAUHCH-POIHT TO 1. 
PERFORM 0010-CNVRT-COORDS THRU 0010-EXIT. 
MOYE !AXIftDft-RADIOS-IN-ftETERS 

TO CNTRLCRD-RADIOS-IN-METERS. 
MOVE ZERO TO MAXIMUM-RADIUS-IN-METERS 

IF LP-LAT (1) = ZERO 
OPEN INPUT LAUNCH-POINT-FILE 
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PERFORM 0010-READ-LADNCH-POINTS THRU 0010-EXIT 
VARYING LAUNCH-POINT FROM 1 BY 1 
UNTIL (LAUNCH-POINT > 100) OR END-OF-LPS 

CLOSE LAUNCH-POINT-PILE. 
ftOVE HIGH-VALUES TO MONE-FLAG. 
MOVE GR TO FUNCTION-CODE. 
SORT SORTED-FILE ON ASCENDING KEY PRIMARY-KEY 

INPUT PROCEDURE CARTAM-RETRIEVAL 
GIVING SORTED-OUTPUT-FILE. 

DISPLAY 'PINAL STATUS = 1 , 

'; NUM READS = 1 , 

•; t INSTS = 
GO TO 0000-cNTL-LOOP. 

• , 

0010-READ-LAUNCH-POINTS. 
READ LAUNCH-POINT-FILE 

AT END 

STATUS-CODE, 
NUMBER-VSAM-READS, 
NUMBER-RECORDS. 

ftOVE 'END' TO LP-END-FLAG 
GO TO 0010-EXIT. 

TRANSPORft LP-DATA FROM SPACES TO ZEROS. 
ftOVE LP-DATA TO LP-DATA-AREA. 
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0010-CNVRT-COOBDS. 
SET NUMBER-OF-LAUNCH-POINTS TO LAUNCH-POINT. 
IF LP-RADIUS = ZERO 

MOYE CNTBLCRD-RADIUS-IN-METERS TO 
LP-RADIUS-IN-METERS (LAUNCH-POINT) 

ELSE 
IP HAUT-MILES 

COMPUTE LP-RADIUS-IN-METERS (LAUNCH-POINT) = 
LP-RADIUS * 1852.0 

ELSE 
IP KILO-METERS 

COMPOTE LP-RADIOS-IN-METERS (LAUNCH-POINT) = 
LP-RADIOS * 1000.0 

ELSE 
IP PEET 

COMPUTE LP-RADIOS-IN-METERS (LAUNCH-POINT) = 
LP-RADIOS * 0.3048 

ELSE 
~OVE LP-RADIUS 

TO LP-RADIOS-IN-METERS (LAUNCH-POINT) • 
IP LP-RADIUS-IN-METERS (LAUNCH-POINT) 

> MAXIMUM-RADIUS-IN-f!ETERS 
MOVE LP-RADIUS-IN-METERS (LAUNCH-POINT) 

TO MAXIMUM-RADIUS-IN-METERS. 
COMPOTE LP-LAT (LAUNCH-POINT) 

= ((LATD * 60 + LATM) * 60 +LATS). 
IP LP-SOUTH 

COMPUTE LP-LAT (LAUNCH-POINT) 
= - LP-LAT (LAUNCH-POINT) • 

COMPUTE LP-LON (LAUNCH-POINT) 
= ((LOND * 60 + LONM) * 60 +LONS). 

IP LP-iEST 
COMPUTE LP-LON (LAUNCH-POINT) 

= - LP-LON (LAUNCH-POINT) • 
COMPOTE LP-DELTA-LAT (LAUNCH-POINT) ROUNDED = 

34 * LP-RADIUS-IN-l!ETERS (LAUNCH-POINT) • 
MOVE LP-LAT (LAUNCH-POINT) TO ABS-LAT. 
IF ABS-LAT + LP-DELTA-LAT (LAUNCH-POINT) < 324000 

COMPUTE LATR ROUNDED 
= LP-LAT (LAUNCH-POINT) * SECRAD 

CALL 'HAPSID' USING LATR. 
LP-DELTA-LON (LAUNCH-POINT) 

ELSE 
KOVE 1500000 TO LP-DELTA-LON (LAUNCH-POINT) • 

0010-EXIT. 
EXIT. 
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CARTA!-RETRIEVAL SECTION. 

WALK-RETRIEVAL-PATH. 
CALL 1 CARTAft' USING CO!ftUNICATION-BLOCK, 

KEY-OUT, 
MDX-VECTORS, 
NDX-DELTA, 
LOW-LIMITS, 
HIGH-LIMITS. 

IP NOT MORE-PATH 

ELSE 
GO TO CARTAM-RETRIEVAL-EXIT 

MOVE GNP TO FUNCTION-CODE 
!OYE NDX-LAT TO ABS-LAT 
IP (ABS-LAT + NDX-DELTA) NOT > 324000 

* INITIALIZE TO OUTSIDE-ALL 
MOVE OUTSIDE-ALL-CIRCLES TO FUNCTION-CODE-4 

MULTIPLY NDX-DELTA BY ESTIMATOR GIVING DSTNCE2 
PERFORM 0200-CHK-LPS THRU 0200-CHK-LPS-EXIT 

VARYING LAUNCH-POINT FROM 1 BY 1 UNTIL 
(LAUNCH-POINT > NUMBER-OF-LAUNCH-POINTS) 

IF KEEP-ALL-CHILDREN 
PERFORM 0300-KEEP-ALL THRO 

0300-KEEP-ALL-EXIT UNTIL NOT MORE-PATH 
IF STATUS-CODE = 1 GM 1 

MOVE 88-CONTINUE-WALK TO 
TO FUNCTION-CODE-4 

MOVE SPACES TO STATUS-CODE. 

GO TO WALK-RETRIEVAL-PATH. 
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0200-CHK-LPS. 
COMPUTE ABS-LAT = NDX-LAT - LP-LAT (LAUNCH-POINT) • 
IF ABS-LAT NOT > 

BDX-DELTA + LP-DELTA-LAT (LAUNCH-POINT) 
COMPUTE ABS-LAT = NDX-LON - LP-LON (LAUNCH-POINT} 
IF ABS-LAT :SOT > 

NDX-DELTA + LP-DELTA-LON (LAUNCH-POINT) 
CALL •VECTOR• USING NDX-LAT 

NDX-LON 
LP-LAT (LAUNCH-POINT) 
LP-LON (LAUNCH-POINT) 
DSTNCE1 !FLAG 

SUBTRACT LP-BADIUS-IN-METERS (LAUNCH-POINT) 
PROM DSTNCE1 

IF DSTNCE2 NOT > - DSTNCE1 

ELSE 

TOTALLY INSIDE A RANGE CIRCLE 
MOVE INSIDE-A-CIRCLE TO PUNCTION-CODE-4 
SET LAUNCH-POINT 

TO NUMBER-OP-LAUNCH-POINTS 

IF DSTNCE2 > DSTNCE1 
OVERLAPS A RANGE CIRCLE 

MOVE 88-CONTINUE-WALK 
TO FUNCTION-CODE-4 

IF DSTHCE2 > PIAXIPIUl!-RADIUS-IN-METERS 
SET LAUNCH-POINT TO 

HUMBER-OF-LAUNCH-POINTS. 
0200-CHK-LPS-EXIT. 

EXIT. 
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0300-KEEP-ALL. 
IP (NOT NODE) AND (ISL NOT < MIN-ISLE-NUMBER 

AND NOT > MAX-ISLE-NUMBER) 
MOVE LOW-VALUES TO NONE-FLAG 
PERFOR! 0350-EXPAND-COORDS 

THRO 0350-EXPAND-COORDS-EXIT 
RELEASE SELECTED-RECORD PROM RESULT-AREA 
ADD +1 TO NUMBER-RECORDS. 

CALL 'CARTAM' USING COMMUNICATION-BLOCK, 
KEY-OUT, 
MDX-VECTORS, 
NDX-DELTA. 

0300-KEEP-ALL-EXIT. 
EXIT. 

0350-EXPAND-COORDS. 
IP NDX-LAT < 0 

CO!PUTE LAT-LNG-WORK-AREA = - NDX-LAT 
MOVE 1 S 1 TO LAT-NS OF LAT-OUT 

ELSE 
MOYE NDX-LAT TO LAT-LNG-WORK-AREA 
MOVE 1 N• TO LAT-NS OP LAT-OUT. 

DIVIDE LAT-LNG-WORK-AREA BY SIXTY 
GIVING LAT-LNG-WORK-AREA 
REMAINDER LAT-SEC OP LAT-OUT. 

DIVIDE LAT-LNG-WORK-AREA BY SIXTY 
GIVING LAT-DEG OF LAT-OUT 
REMAINDER LAT-MIN OF LAT-OUT. 

IP NDX-LON < 0 

ELSE 

COMPUTE LAT-LNG-WORK-AREA = - NDX-LON 
MOVE 1 W1 TO LON-EV OP LON-OUT 

MOVE NDX-LON TO LAT-LNG-WORK-AREA 
MOVE 1 E 1 TO LON-EV OP LON-OUT. 

DIVIDE LAT-LNG-WORK-AREA BY SIXTY 
GIVING LAT-LNG-WORK-AREA 
REMAINDER LON-SEC OP LON-OUT. 

DIVIDE LAT-LNG-WORK-AREA BY SIXTY 
GIVING LON-DEG OF LON-OUT 
REMAINDER LON-BIN OF LON-OUT. 

0350-EXPAND-COORDS-EXIT. 
EXIT. 

CARTAM-RETRIEVAL-EXIT. 
EXIT. 
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APPENDIX I 

FORTRAN SUBROUTINE TO EXPAND LONGITUDE 

SUBROUTINE BAPSID (ALAT, ISID) 
ISID = ABS(1.1*ISID/COS(ALAT)) 
RETURN 
END 


