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Abstract 

This investigation is concerned with the interaction - as far as 

load-absorption is concerned - of a pair of identical and parallel elastic 

filaments in a fiber-reinforced composite material. The filaments are 

assumed to have uniform circular cross-sections, are taken to be 

semi-infinite, and are supposed to be continuously bonded to an all­

around infinite matrix of distinct elastic properties. At infinity the 

matrix is subjected to uniaxial tension parallel to the fila1nents. Two 

separate but related problems are treated. In the first both filaments 

extend to infinity in the same direction and their terrninal cross-

sections are coplanar. In the second problem_ the filam ents extend to 

infinity in opposite directions and their terminal cross-sections need 

no longer be coplanar, the two filaments being permitted to overlap 

partly. An approximate scheme based in part on three-dimensional 

linear elasticity and developed originally by Muki and Sternberg is 

em.ployed in the analysis. The problems are ultimately reduced to 

Fredholrn integral equations which characterize the distribution of the 

axial fila1nent force. The integral equations are analyzed asymptotically 

and nmnerically. Results are presented which show the variation of 

filament force with position and the effect on this variation of various 

relevant geo1netrical and material properties, 
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Introduction. 

Fiber-reinforced con1posite materials have attracted much 

attention in recent years because their characteristically high 

strength-to-weight ratios often make thern ideal for use as struc-

tural components. Axnong such composites, those reinforced with 

discontinuous fibers - rather than continuous ones - are of particular 

interest, since s01ne high- strength fibers can be produced only 

in relatively short segments. :tv1oreover, short fibers are more 

adaptable for certain applications such as molding. 

In the present investigation we are concerned with the 

interaction of adjacent filaments in a fiber - reinforced composite, 

With emphasis on the load-absorption properties of discontinuous 

filaments. In particular we wish to estimate that separation distance 

between two parallel filaments at wliich the interaction effects are 

negligible insofar as fiber load-absorption is concerned. With this 

objective in mind we examine analytically two idealized but basic 

problerns in detail. Problem 1 consists of determining the response 

to uniaxial tension at infinity of a composite comprised of two parallel 

semi-infinite>:C, circular cylindrical elastic filaments bonded to an 

infinite elastic matrix of distinct material properties. The circular 

end sections of the filam.ents are coplanar, and both filaments lie on 

the same side of the plane conta ining their end sections . The filament 

~~~--~~~~~~~~~~~~~~~~~~~~~~--~~~~~~~~~~ 

>!C 
Discontinuous filaments of practical interest have length-to-diameter 
ratios which may exceed 1000 . 
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axes are parallel to the applied uniaxial tension. We shall refer to 

Problem 1 as the twin problem (see Figure 1 ). 

In Problem 2 (the overlap problem) we again consider two 

parallel semi-infinite circular cylindrical elastic filarn.ents surrounded 

by an elastic matrix and loaded at infinity by uniaxial tension parallel 

to the filaments. However, the filament axes now extend to infinity in 

opposite directions, and the circular ends of the filaments need not lie 

in the same plane (Figure 2 ). 

In both problems we shall assume perfect bonding between 

filaments and matrix, and our analysis will be based on the assump­

tion of small deformations in both filaments and matrix. The 

objective is to determine the variation with position of the axial force 

within each filament. In particular we shall ascertain the rate at 

which this force approaches its asymptotic value at infinity, as well 

as the way in which this rate of approach is effected by the various 

relevant material and geometrical paramete r s. The most important 

parameter for present purposes is the separation distance between 

the parallel fibers. 

The two problems described above possess a useful symmetry 

which assures that, in each proble1n, the dist r ibution of axial filament 

force· is identical in the two fibers. 

Problern.s involving load transfer in fiber-reinforced composites 

in uniaxial tension have been the subject of several previous analytic 

investigations. Dow [ 1] in 1963 and Rosen [2] in 1965 examined a 

single filament of finite length on the basis of a one - dimensional 
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treatment of both fiber and matrix. Their results include formulas 

characterizing the distribution of axial force in the filament. 

In 1970 Sternberg and Muki [3] consider a single semi - infinite 

filament in an elastic matrix with the aid of a more refined model in 

which the matrix is studied on the basis of three - dimensional linear 

elasticity, while the fiber is treated as one-dirn.ensional. In an effort 

to confirm the validity of a model of this type for the single-filament 

composite, Sternberg and Muki [ 4] had earlier studied the proble1n 

of a doubly-infinite fiber in an infinite matrix subject to a loading 

uniformly distributed over, and confined to, a single cross-section of 

the filament . The problem was treated on the basis of two different 

schemes , in one of which the filament was analyzed one-dimensionally 

while the matrix was viewed as three-dirn.ensional. In the second 

scheme, both filarnent and matrix were examined on the basis of the 

three-dimensional linear theory of elasticity. The agreement between 

results obtained in [ 4] for the axial filament force using the two models 

was quite favorable and lends substantial credibility to the approach in 

which the filament is regarded as a one - dimensional elastic continuum, 

while the matrix is treated three - dimensionally. Such an approach, 

as developed in [3 ], forms the basis for the formulation of both 

problems considered in the present work. 

In 196 7 Cohen and Romualdi [5] examine the problem of multiple 

fiber interactions in a composite subject to uniax ial. tension. They 

consider a periodic array of infinitely inany parallel, identical 

filaments and devise an app r oximate model in which fibers are treated 



-6-

as one-dimensional, the matrix as three-dimensional. The analysis 

is entirely numerical. 

A finite-element, equivalent-stiffness scheme was used by 

Chen [6] to investigate a problem of strength in uni axial tension in a 

com.posite containing parallel fibers of finite length. The maximum 

stress in a fiber in such a configuration is calculated and compared 

with that arising under the same conditions of loading when the fibers 

are infinite in length. 

In Section 1 of the present paper we formulate the two proble1ns 

with which we are concerned using the procedure of Sternberg and 

Muki. The principal result in Section 1 is an integro-differential 

equation governing the distribution of axial force in the filaments. 

This integro-differential equation is reduced to a Fredholm integral 

equation in Section 2. In Section 3 we utilize this integral equation to 

determ.ine the asymptotic distribution of axial filam.ent force far from 

the ends of the filarn.ents in the twin-filament problem (Proble1n 1 ). 

We also determine in Section 3 the singular asy1nptotic behavior of 

the filarnent-matrix bond force near the ends of the filaments for 

Problem. 1. Section 4 is devoted to the nurnerical technique and 

results for the twin-filament problem, while the overlapping-filament 

problem is analyzed asymptotically and nurn.erically in Section 5, 
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1. Formulation of the problem. 

In this section we shall formulate both problems and derive the 

basic equations which govern the distribution of load in each filament. 

With this objective in mind we introduce the following notation (see 

Figures 1 and 2). In terms of rectangular Cartesian coordinates x 1, 

x
2

, x
3

, the three-dimensional region occupied by filament 1 is 

the semi-infinite right circular cylinder of radius a, de s cribed by 

2 2 2 
o~ xl + x2 ~a ' x3 >- o. In Problem 1 (the twin problem) filament 2 

occupies the sem.i-infinite cylinder O~ xi+ (x2 - 1')
2 ~a 2 , x 3 >- 0, while in 

Problem 2 (the overlap problem), filament 2 lies in the region 

0:5:: xi+ (x2 -1')
2 ~ a 2

, -oo< x
3 
~ h. Thus in both problem.s, the filament 

axes are separated by a distance £; it is assumed throughout that 

1'>-2a. In Problem 2, h stands for the overlap; -oo<h<oo. In both 

problems we denote by R the open region occupied by the two filaments; 

thus R is the union of two parallel serni-infinite cylinders. We note 

that the origin of coordinates is at the center of the end of filament 1. 

In or<fer that we may treat the two problems simultaneously, 

we find it convenient to introduce the following additional notation. 

Let s be the vector from the origin to the center of the end section of ,..., 

filament 2; thus R,= (0, 1', d), where d = 0 in Problem 1, but d = h in 

Problem 2. Moreover, let z be a unit vector in the direction of the 

axis of filament 2, so that z= (0, 0, j), where in Problem 1, j = 1, while 

in Problem 2, j = -1. Finally denote by rr! the closed circular disc 

xi+x~$:a2 , x 3 =z, -oo<z<oo. Sirn.ilarlyletIT; stand for the disc 
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2 2 2 
x

1 
+ (x

2
-P) :-;:;; a , x

3 
= d + jz, -oo < z < oo. It is important to note that if 

z;;:: o, IT 1 , rr 2 
are the cross -sections at a distance z from the ends of 

z z 

filament 1 and filament 2, respectively. 

It is assumed that the materials comprising both matrix and 

filaments are homogeneous, isotropic and elastic. For the matrix 

material, E 1 and \J stand for Young's modulus and Pois son's ratio, 

respectively. For the filament material, Young's modulus is denoted 

by E
2

. In the approximate treatment to be employed here, Poisson's 

ratio for the filament material does not enter the analysis. We 

restrict our attention to pairs of rnaterials for which E 2 >E 1 >0 

and -1<\J< 1/2. This is the case for all composite materials of 

practical interest. 

We are now in a position to introduce the approximation scheme 

used by Muki and Sternberg [3 ], [ 4 J in their analysis of single-

filament problems. According to th.is scheme, the actual filaments 

are replaced by fictitious ones of Y oung 1 s modulus E
2

-E
1

, and the 

extended matrix (modulus E 1) is then assum.ed to occupy all space. 

Thus the region R is simultaneously occupied by two elastic materials, 

one with modulus E 1 (the matrix) and one with modulus E
2

-E 
1 

(the 

filam.ents). In the subsequent analysis the tb.ree-dim.ensional linear 

theory of elasticity is assumed to apply everywhere in the eh.'iended 

rnatrix, but the fictitious filaments are treated as one-dhnensional. 

Suppose a is either 1 or 2 and consider a cross-section 11a, in 
z 

filament CL. We asswne that an axial force pcx,(z) is transmitted by 

* 
fictitious filam.ent a. across 11~; p~(z) is positive if it is tensile. In 
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addition, it is assumed that each fictitious filament is acted upon by a 

11 bond force'' per unit length q~(z) arising from the presence of the 

extended matrix. This bond force is positive if it points in the 

direction of increasing z. In order to maintain equilibrium in each 

fictitious filament we require that p~, q~ satisfy 

(1. 1) 

The stress-strain relations for the fictitious filarn.ents are taken 

in the form 

1 Cl Cl 
--p (z)=(E

2
-E 1 )e...,(z) , Q:o;;z<oo, 

2 
.,, ,,. 

7T a '•' 
( 1. 2) 

where e~(z) is the extensional strain in fictitious filament a,, and a is 
"' 

the cross-section radius. 

Let e. stand for the unit normal vectors associated with the 
"'l 

Cartesian frame. Then in the extended matrix we suppose that the 

stress and strain tensor fields - denoted respectively by cr(x), e(x) -
rvrv rv~ 

arise according to the equations of the linear theory of elasticity~~ from 

00 

the following sources: (1) the stress£ prescribed at infinity, (2) body 

forces distributed uniforinly over TIO: whose resultants over rr 1 and rr2 
z z z 

are respectively q>~(z)~ 3 and q~(z);'[,. (3) terminal bond forces distri-

buted uniformly over na. whose 
0 

1 2 
resultants over TI and 11 are respec-z z 

tively p>;(0)~ 3 and p;(O)z. 

Throughout the present work the prescribed stress at infinity 

is taken to be uniaxial tension in the x
3 

-direction. 

* We omit the explicit statement of these equations. 
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The final ingredient required for the determination of the fields 

of interest in the fictitious filament - extended matrix mixture is the 

bond condition. It is required that the axial strain e~(z) in the fictitious 
'I' 

filament coincide with the average over IT~ of the component e33 of the 

strain tensor E: in the extended matrix. Thus 

o::;:z<oo. ( 1. 3) 

Once the field quantities p°', q~, e~, a,£ have been determined, * .. ,... .... ... ""J 

the axial force distribution in an actual filament can be calculated from 

Cl 
p* and cr

33
. In view of the superposition of fictitious filaments and 

extended inatrix which forms the basis of the present model, the 

axial force pa.(z) exerted across Ila. in actual filament a is taken to be 
z 

o::;;z<oo. ( 1. 4) 

This completes the description of the model to be used in the present 

analysis. 

The solution of the field equations described above is 

substantially simplified by the symmetry present in both Problems 1 

and 2. Since in both cases the load at infinity is uniaxial tension, 

symm.etry immediately yields 

2 
p_,,(z) '-=p_,_(z) 

... ,... ... .... 

and ( 1. 5) 

1 2 
p (z) = p (z) - p(z) 

in both problems. 
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Following Muki and Sternberg [3, 4], the first step in the 

reduction of the problem as formulated above is based on Kelvin's 

solution to the concentrated force problem in linear elastostatics [ 7] 

and leads to an integro-diffe rential equation for the fictitious filament 

load p,.,(z). For all x I= 0, let 8-(x; m), e(x; m) be the stress and strain 
"" ,-..,/ ,..._,,....,, ,....,., r-.J,..._, ,...., ,,, 

tensor fields, respectively, arising from a concentrated force of unit 

magnitude acting at x = 6 in the direction -m, where mis a unit vector'~. 
r...J ,-...../ l"J ,......,, 

By superposition, 

,. . . 1 I 0 cr(x ; m) = --2 O'(x-y ; m) dA 
Ft.Jrv ,..._, "'-'""'"' r.J Y 

Tia nl 
0 

€(x; m) = _!_2 J E:(x-y; m) dA 
,...,,..., ,..., TTa ITl"""',...., ,..., y 

0 

1 
x ~IT • 
,.... 0 

( 1. 6) 

represent stress and strain tensor fields satisfying the equations of 

linear elastostatics for all x not in n1 
and correspond to a body force 

,...., 0 

uniformly distributed over the disc rr 1 
whose resultant has unit 

0 

magnitude. The functions Q_·and£ have jurnp discontinuities across n!. 
By a further superposition it follows that the stress tensor 

,<!(~) and the strain tensor,£(~ arising in the extended matrix from the 

ro a 
load at infinity Q, the bond forces -q,,, and the terminal bond forces 

">' 

p~(O) are given by 
'•' 

J('X) 2 
+ q (z)&(x-s-zv;v)dz, 

:;.~ ,....,rv,.._, ""rv 
0 

1 2 x9:11 +TI 
"' 0 0 

( 1. 7) 

* The direction -m, rather than m, is chosen so that our notation and 
and sign conventions will confor'?n to those in [3]. 
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S
(X) 

• ClO 1 "' 2 ,., . 1 "' e:(x\ =E:-p (O)e:(x;e
3
)-p (O)e:(x-s;v)+ q (z)e(x-ze 3 ;e 3 )dz 

rv~ ~ * "'"",-...,.> * """-'"'rv Q >~ ,...._,,.....,"""" 

Joo 2 ,.. . . ,,. IT 1 IT2 
+ q.,(z)e::(x-s-zv;v)dz,, Xy: + . 

:i:&' l'Vl'Vl"'V ,-V/">.J 0 0 
0 

(1. 8) 

co co 
For reference purposes we give here the formulas for £, ~ , which are 

merely the stress and strain fields corresponding to a state of uniaxial 

tension of magnitude a in an isotropic, homogeneous medium 
0 

according to linear elastostatics: 

co 
a .. = o.

3
o.

3
cr 

lJ 1 J 0 

o .. is the Kronecker delta. 
lJ 

( 1. 9) 

To obtain the integro - differential equation for P,.,, we first 
..... 

express q
1

, q: in (1. 7), (1 . 8) in terms of p_., by means of the filament * ..... ..... 
equilibriurn equations (1. 1) and the symmetry relation ( 1. 5 ). The 

component e:
33 

of the strain tensor provided by (1. 8) is then substituted 

into the bond condition ( 1. 3) to obtain the filament strain e ..... (z) = e .. :(z) = 
... .-I' . 

2 (X) 

e ... ,(z) in terms of e:. p (0), and (d/dz)p (z). This in turn is substituted 
,,... • ~' . >:< 

into the filament stress-strain relation (1 . 2) to obtain the integro-

differential equation. The result of these steps can be written in the 

form 

. {cr 
p (z) =Tia2 (E

2
-E 1) Eo -p,,,(O)e:(z,0) - jp,(O}e:(z - d,.€) * . 1 ..... >~ 

J(X) d J(X) d } 
- e(z.,.t,O)dt[p,_(t)]dt-j e(z-d-jt,.e)dt[p,,,(t)]dt, O<z<oo. 

0 . >,.. 0 ..... 

(1. 10) 
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Here 

j = 1 , d = 0 in Proble1n 1 ; j = -1 , d = h in Problem 2 (1. 11) 

and the kernel function E:(z, L) is defined as follows: 

e(z, L) = ~ Jl 833(~-L~2; ~3) cl.Ax 
1Ta II ,..., 

z-/:. O , L~ O • ( 1. 12) 

z 

In (1. 12), 8
33 

is given in terms of Kelvin's strain field by the second 

of (1. 6). 

Once p,_,(z) is determined from (1. 10), the actual filament load 
~.-

p(z) is found from (1. 4) , (1. 7), (1 . 1) as follows: 

where 

- fna(z-t, 0) ~t [p~:/t)] dt 
0 

- j s:(z-d-jt,£) ~t [p:{~(t) J dt} 0 < z < 00' 

z-/:.0, L~O. 

(1.13) 

(1. 14) 

Although strictly speaking the case E 2 = E
1 

has been excluded, 

it may be noted that (1. 10), (1. 13) formally yield 

p(z)=O, 
~~ 

if we set E
2 

= E
1

. 

2 
p(z) = 1Ta (J 

0 
O<z<oo (1. 15) 

As a fina l remark concerning the formulation of our problem.s 

we note that the fictitious filam.ent load at z = oo is not prescribed in 
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advance, but rather is determined from (1. 2), (1. 3) and (1. 9) to be 

(1. 16) 

The ~ctual filament load at z = oo is then found from (1. 16), (1. 4) and 

( 1. 9) to be 

(1.17) 

We turn next to the analysis of the integro-differential 

equation (l. 10). 
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2. Reduction to a Fredholm integral equation. 

In this section we will transform the integro-differential 

equation (1. 10) and the formula {l. 13) for the filament load into more 

convenient forms for further analysis*. We begin by obtaining explicit 

representations for the kernels e and cr defined in (I. 12) and (I. 14) . 

The axial strain and stress components associated with the 

classical solution due to Kelvin [7] for the problem of a concentrated 

force of unit magnitude in the -x
3 

direction acting at the origin are 

(2. 1) 

&33<~;2,3) = - i 12(1-v) _a (-, 1 )- x L(_1 )] 
81T ( 1 - \!) L 8 x3 ~ I 3 8 x; I ~I ' 

x/; 0. ,.,, 

In order to obtain e and CJ from (1. 12), (I. 14), we must first substitute 

(2. 1) into (1. 6) to obtain the auxiliary functions & and 8. After a 

suitable interchange of integration and differentiation, this furnishes 

where for all ~, 

,,, 

'"Much of the analysis in the p re sent section is an extension of that 
contained in [8]. 
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dA · ] Ir if U(;is) = ---z- --- - --
rra Til l~-rl - rra

2 
nl 

0 0 

Let 

dA 
y 
AJ (2.3)>!< 

W(z, L) = ~ J U(~-L.£, 2 ) dAx , L ~ 0 , all z . 
- rra rrl l'V 

(2.4) 

z 

Then (1. 12), (1. 14) , (2. 2) and (2 . 4) yield 

l+v ~ 8 a2 ~ 
e ( z, L) = 8rr ( l _ v) El l2 ( 1 -2 v) -0 z W ( z , L) - z 

8 
z 2 W ( z, L ~ , 

z f:. 0 , L :::: 0. (2. 5) 

In order to obtain a more explicit representation for U, and 

hence for W , we employ the formula*>:< 

where J is the Bessel function of the first kind of order zero, and 
0 

(2. 6) 

x 1 =rcos9 , x 2 =rsin8 , y 1 =pcoscp, Yz=Psincp. (2 . 7) 

Thus fro1n (2 . 3 ), (2 . 6) 

1 JaJ2rrJoo -- lx3 ls { [ 2 2 Jl/2} 
U(;is)=---

2 
e J

0 
sr +p - 2rpcos(8-cp) pdsdcpdp , 

rra 0 0 0 

x
3 

f:_ 0 , (2 . 8) 

>!<Although (2.3) is an improper integral for x
3

=0 , it can be shown that 
U(;is) is continuous at x

3 
=0 . 

>:<>'.<See Watson [9], p . 384. 
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We now employ the identity>/: 

{ 
2 2 ]1/2} 

J
0 

s[r +p -2rpcos(8-c.p) =J
0

(sr)J
0

(sp) 

00 

+2 l Jk(sr)Jk(sp)cosk(9-cp) (2.9) 

k=1 

in (2. 8), interchange the cp- and s- integrations, and integrate the series 

termwise with respect to cp, A final inte-rchange or r- and s- integra-

tions gives 

U(x) 
"' 

2 JooJa -lx31 s 
= -z- e J (sr)J (sp)pdpds, 

a 0 0 ° 0 

or 

2 Joo -I x3 I s J 1 (as ) 
U(x)=- ..:.. e J(sr) ds, 
~ a 

0 
o s 

(2. 10 )>!<>): 

Using (2. 10) in (2 . 4) yields, upon interchange of integration, 

2 Joo -I zls J 1 (as) J ( J 2 2) 
W(z,L) = --7 e J s x1 +(x2 -L) dA ds , 

0 
as 1 o x 

Tia ~ rr 
z 

z f.O , L:?:O. (2. 11) 

The integral over IT 1 m (2 . 11) can again be evaluated with the aid of 
z 

(2. 9). It is found that 

(2 . 12) 

";'"' . 

"see Watson [ 9] , p. 358 . 
:::<";:~ 

This representation for the Newtonian potential of a disc carrying a 
uniformly distributed mass is due to Weber [lOJ. 
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so that 

J
oo 

1 
. - I z Is 

2 
W(z,L)=-4 2 e J

1
(as)J

0
(Ls)ds, 

0 (as) 
-oo<z<oo , L:?:O (2.13)* 

Prior to substituting (2. 13) into (2. 5 ), we introduce some 

convenient auxiliary functions as follows. Define 

Joo n-2 -Ct 2 
A (C,µ) = t . e J 1 (t)J (µt) dt , 

n 
0 

o 

C>O, µ:?:O, n=O, 1,2,3. (2.14) 

It is easily observed that 

8/1. 
An(C,µ)= acn(C,µ) = -/l.n+1<C.µ). (2. 15) 

From (2. 13 ), (2. 14) 

W(z,L) = -4/\ (hl, L), -oo<z<oo, L:?:O. 
o a a 

(2. 16) 

Co1nbining (2.16), (2.15) and (2. 5) y~elds the representations 

e(z, L) = l+\J 
2 

l2(1-2v) (sgn z )J\l (hl , L) + '!:..f\
2 
(hl, L)~, 

2(1-\J)E 1Ta L a a a a a ~ 
1 

1 [ (hl L) z (_hl L)~ cr(z,L) = 2 2(1-\J)(sgnz)/l. 1 , - + -:-fl.2 ,- , 
2 ( 1 _ \! )1T a a a a a a 

zf-0, L:?:O. (2. 1 7) 

In the sequel we shall need the values of €(0+, L), 0'(0+, L) for 

L = 0 and for L:?: 2a. Suppose first L:?: 2a. From (2. 14) it then follows 

that 

f. L) Joo J~ (t) (L ) 
A 1 \o+ , a = o -t- Jo a-t dt , L:?:2a. (2. 18) 

>'' 
''Although z=O was excluded in deriving (2.13 ), the extension of this 
result for W at z=O is easily carried out by continuity. 
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(2. 19) 

We thus have 

aAl ~ L) 1 Jco 2 (L ) - o+ - = - - J (t) J -t dt 8L • a a 1 1 a • 0 . 
L~2a. (2. 2 0) 

The integral on the right can be evaluated with the aid of a special case 

of a formula due to Sonine (see Eq. (3), p. 411 of [9]): 

Jco 2 
J

1
(t)J

1
(ct)dt = 0 if c~2. 

0 
(2.21) 

It then follows from (2. 20), (2. 21) that A 
1 
(o+, :) is constant for L ~ 2a. 

But by the analog of the Riemann- Lebesgue lemm.a for Fourier-Bessel 

integrals (see [9], p. 4 57), A
1 
(o+, ~) ..... 0 as L -+ oo. We conclude that 

A1(o+, :) = O for L?:'.2a. (2. 22) 

Since A
2 
(o+,:;;:) is finite by (2. 19), ~e conclude from an inspection of 

(2 . 17), (2 . 22) that 

e:(O+, L) = a(O+, L) = 0 for L ~Za. (2. 23) 

Now consider the case L = 0. From (2 . 14) we have 

(2. 24) 

These integrals were expressed in terms of complete elliptic integrals 

in [3] using results obtained in [11]. If K(k), E(k) are the com.plete 

elliptic integrals of the first and second kinds, respectively, the 

formulas in [3] furnish, for 0<,<co, 
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' 4 ,z A0 (C, 0) = -z- + 31Tk E(k) + 31Tk [K(k)-E(k)] , 

A
1 
(C 0) = ~ - 1T(k [K(k)-E(k)] , 

(2.25) 
k 2 J A2 ((, 0) = -1TK(k) + 1Tk [K(k)-E(k) , 

k kC [ J A3 (C 0) = 1TC E(k)- 21T K(k)-E(k) , 

where 

(2.26) 

From these formulas and the properties 

E( 1) = 1 lim [ K (k) - ~ log ~ J = 0 , 
k~l 1-k 

(2.2 7) 

there follows 

4 
A (C,O) =-

3 
+ o(l), 

0 1T 

as C ~o+ . (2. 2 8) 

From (2. 28), (2. 17) we obtain in particular 

1. ( O) (l-2v)(l+v) 1m E: z, = 2 
z~o+ 2(1-v)1Ta E

1 

lim CY(z,O) = ~. 
z->0+ 21Ta 

(2.29) 

It may be remarked that E:(z, L), a(z, L) are odd functions of z 

which are continuously differentiable for all z if L;;::: 2a; E:(z,O) and 

o-(z,O) are continuously differentiable for z /:. 0 but have jump 
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discontinuities at z=O. This is to be expected in view of the physical 

meaning of E:(z,O), cr(z,O)'. 

We now turn to the derivation of the Fredholm integral equation 

to which (1. 10) is equivalent. Let 

be a dimensionless filament coordinate and define a dimensionless 

filament separation distance A. by 

P. A.= a 
(2. 3 0) 

Further, set 

p.._(z) 
= l __ .... , __ 

p*(ro) 

(2.31) 

6.(C A.)= 1 -~ ' p(oo) , 

in which p>l:(oo), p(oo) are given by (f.16), (1.17) , respectively. In 

(2. 31) we have indicated explicitly the dependence of 6.,, and 6. on the 
>,, 

(dimensionless) separation constant A. Note that 6.,., and 6. are 
'•' 

expected to be small for large C. If the first of (2. 31) is used to 

express p (z) in (1. 10) in terms of 6.,,,, the integral in (1. 10) may be * ~ 

integrated by parts to remove the derivative of 6.*. (The discontinuity 

in e(z,O) at z = 0 must be borne in mind during this process.) The result 

is 

-as: 6. >l: ( T, A. {e (a ' - a 'T, 0) + 8 (a C - d - j a 'T, a A)] d 'T, 0 ~ C ~ oo. 

(2.32) 
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where, according to (1. 11), 

j = l, d = 0 in Problem l , j = -1, d = h in Problem 2 . (2. 3 3) 

The kernel 8 is given by the first of (2. 17), and 

• a e 
e(z, L) = az (z, L) . (2. 34) 

If we set 

'(\ _ d Ez (l+v)(l-2v) 
·1 - a ' Y= El ' W= 1-v (2.35) 

and introduce the functions 

(2. 36) 

2 
f ( C, µ) = 1T a E 

1 
E: (a C, ap) , oo<C <co , µ;;:: o 

the integral equation (2. 32) can be written in the form 

+ f0

L\:<(T,A)[K(C-'i,O)+K(C-TJ-jT,A)]dT, o:::::C<oo, 2:::::A.<oo. (2.37) 
0 

This is the integral equation t~ be solved for /::. ,,(C, A). >,, 

Once .6.~~(C, A) is determined, /::.( C, A) is found from an integral 

formula derived frorn (1. 13) by an argument analogous to that used 

above to obtain (2. 37) from (1. 10). The result is 

y ~ 1 !::. ( C, A.) = g ( C, o) + jg ( C- ri, A.) 

where 
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U-(C,µ) = -1Ta
3

o(aC,aµ), C/:O, µ~o, 

2 
g(C,µ) =1Ta cr(aC,aµ), -oo<C<oo, µ~O, 

(2. 39) 

and 

• aa 
C!'(z,L) = az (z,L). (2. 40) 

The functions K, L, f and g can be expressed in terms of the 

functions A by means of (2. 17), (2. 15). Thus it follows 
n 

K( C,µ) = 2 t:~v) [(l-4v)A2 de I,µ)+ le I A3 de!,µ)] , 

U(C,µ) = 2 (l~v) [(l-2v)A2 dcl,µ)+lclA3 dcl,µ)J, 

£( C,µ) = 2 ~:~v) [2 ( l-2v)(sgnC)A 1 de I,µ)+ eA2 de!,µ)] , 

g( C. µ) = 2 (l
1
-v) [z (1-v)(sgne)A 1 de I,µ)+ CA2 de I,µ)] , 

(2. 42) 
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3. Asymptotic analysis of the twin problem. 

In this section the asymptotic behavior for large and small z of 

the filament force p(z) is determined for Problem 1 (the twin problem). 

We begin with an analysis appropriate to large z. 

As a necessary preliminary step we first derive the asymptotic 

form of the relative load deviation .6* for the fictitious filament (see 

(2.31)). Since it is desirable that the asymptotic approximation for p be 

uniform in the dimensionless separation distance A., we find it convenient 

to introduce the following notation. Let c:p( C,µ) be a function defined for 

C>O andµ:?:µ . For any real number n we shall write 
0 

if there exist constants M and C (both independent of µ) such that 
0 

Similarly we write 

if ,-nc:p(C,µ) tends to zero as C tends to infinity, uniformly inµ forµ::?:µ . 
0 

When the subscript u is omitted from the order symbols 0, o, it is 

understood that the relevant asymptotic estimate holds merely for each 

fixedµ::::µ . 
0 

In order to study the asymptotics of the integral equation (2.37) 

for .6* and the integral representation (2.38) for 6., it is first necessary 

to find the behavior for large C of the kernels K, 'JI and the functions f, g 

occurring in these equations. According to (2.41), (2 .42) this can be 

done once the corresponding information concerning An(Cµ) is obtained. 
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From (2. 14) 

Joo n-2 - Ct 2 
A (C,µ) = t e J 1 (t)J (f1t) dt , 

n 
0 

o 
C>0,µ:::-:0,n=O,l,2,3. (3.1) 

Since 

where, for some constant k >0 and for all t '20, 

(3. 2) 

we may write (3. 1) as 

1 J00 
n -Ct A (C,µ) = 4 t e J (µt)dt + R (C,µ) n 

0 
o n 

(3. 3) 

where 

Joo n-2 -Ct 
R ( C,µ) = t e r(t)J (µt) dt , n 

0 
o C>o, µ:::-:o . (3. 4) 

Now (3. 2), (3. 4) and the fact that I J 
0

(µt)I:s::1 for all t :::-: 0, µ '20 furnish 

the estimate 

(3. 5) 

It follows that 

The integral in (3. 6) can be evaluated:..'< to give the following results. 

>!' 
'see [ 12 ], p. 182. 
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asC->oo. 
2 2)-5/2 

1 1 µ µ -5 
!l.2(C,µ) = -3 f1-2 2)(1 +2 + o (C ) ' 

2C \ ( ' u 

(3. 7) 

~ 2 ( 2)-7/2 3 3 µ µ -6 
11.3 ( C, µ) = -:f 1- 2 2) I + 2 + 0 ( C ) ' 2, ' c u 

Thus the estimates (3. 7) are uniform inµ for µ ~ 0. 

From (3. 7), (2. 41), (2. 42) we next find 

2 ~ 2)-5/2 2-v l-2v µ µ - 4 
g( c. µ) = 2 [1 + 2 (2- ) -:2] 1+2 + 0 ( c ) ' 

4(1-v)C " C C u 
(3. 8) 

-3 
K( (,µ) = 0 ( C ) , u 

-3 
U' ( C, :A.) = 0 ( C ) , u 

as C-•co, µ <!: 0. 

We now turn to an asymptotic analysis of the integral equation 

(2. 37). Our procedure rnakes use of an approach which was developed 

by Muki and Sternberg [ 13] for the asymptotic analysis of a class of 

integral equations. For Problem 1, reference to (2. 33), (2. 35) shows 

that the integ1·al equation (2. 37) reduces to 
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We assume the existence of a solution L.,,, of (3 . 9) with the following 
'•' 

properties . 

(i) For each /,~ 2 1 L.*(C, /..) is continuously differentiabl e in C 

for ~ > 0; lim L.,,,( C, /..) exists . c .... o+ ,,, 

(ii) There is a constant M; independent of A, such that 

(iii) There exist a tt > 0 and a function o( C, /..) such that 

A. -x. ,. ,.-'K L..,,(C, )=C o(.,,,A.)+o(-., ), 
~ u 

as C->oo 

(3. 10) 

(3 . 11) 

where o( C, /..) is uniformly bounded for sufficiently large C and 

/..:?:2, andthe limo(C,A.)fOfor/..::::2. c _, (X) 

Now consider the integ r al 

and, for C >4, deco1npose I as follows. 

where 

Jc 
I 1(C,/..) = s K(C-1",/..)t::,.>.1:(rr,A.)d-r, 

0 

(3. 12) 

(3. 13) 

(3. 14) 
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1
3

(,,A) =I' K(C-T,lc)6~<('T",A)dT, 
C-IC 

(3. 14) 

cont. 

We shall show that, as,-•m, 1
3 

and 14 predominate in the asymptotic 

behavior of I. First consider 1
1

. From (3. 10), 

IC 
111 {C, A) I ~MI IK(C-T, \)I dT 

0 

~ICM max !K(C-T,A)I 
O~'T' ~IC 

=ICM max !K(-r,A)I, 
c-lc ~'T"~c 

so that, by the third of (3. 8) 

(3. 15) 

In the second integral in (3. 14) we make use of the first of 

(3. 11) and the uniform boundedness of o to write, for sufficiently 

large C, 

for so1ne constant A , independent of A. From the third of (3. 8) it 
. 0 

foliows that, for sufficiently large C, 
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(3. 16) 

where the constant A
1 

is independent of A. Estimation of the explicit 

integral in (3. 16) then shows that 

For the integral 1
3 

in (3 . 14) a more detailed analysis is 

necessary. We set 'r = C- s and obtain 

or 

where 

(3. 17) 

(3. 18) 

By virtue of the third of (3. 8) , the first of (3 . 11), and the uniform 

boundedness of o, we conclude that the first term on the right in (3. 19) 

- X, ,. 
is o ( C ) as 'I:> ->oo. M:oreover, 

u 
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/C IJ K(s,:\)[~'>~(C-s,:\)-.6.*(C,:\)]ds I 
0 

where the constant B is independent of:\, and use has been m2.de of 
0 

the mean value theorem of differential calculus and the second of (3.11). 
00 

Further, J, IK(s, :\)Ids can be shown to be uniformly bounded v;;rith the 
0 

1 
use of (2. 41.), (2. 15 ), and (2. 28) for A~ 2 and -1< v<z. It follows that 

and hence, from (3. 18) 

(3. 20) 

An analysis similar to that applied to r
3 

can be used to show 

that 

(3.21) 

Combining (3.15), (3. 17), (3.20), (3.21) in (3.13), (3.12) 

provides the useful formula 

as C ... oo , A~ 2 • (3.21) 
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In an entirely similar way it may be shown that 

as C-+oo, A.::::2. (3. 22) 

The integrals of K appearing on the right in (3. 21 ), (3. 22) may be 

evaluated with the aid of the first of (2. 36), (2 . 23), and the first of 

(2. 29). Thus 

00 l K(T,A) d'T' = 0, 
0 

(3. 23) 

where w is given by (2. 35). Using (3. 23) in (3. 21) and (3. 22) we obtain 

(3. 24) 

We now return to the integral equation (3. 9) and let C ..... oo . It 

follows from (3. 24) and (3. 9) that L .,( C, A.) satisfies >,, 

(3 . 2 5) 

Substituting from the first of (3. 11) into (3. 25), we obtain 

We now determine the value of x. as follows. Suppose first that x. > 2. 

Then (3. 26) and the first of (3. 8) show that o(C, A.) .... ro as C ->oo, 

contradicting the boundedness of o (Assumption (iii)). On the other 

hand, if X.<2, (3. 26) and the first of (3. 8) can be seen to contradict 

the assum.ption lirn. o(C, A.)-/:. 0. We conclude that 
, ..... 00 
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x, = 2 

and hence from (3. 26 ), (3. 11) that 

(3. 2 7) 

It follows from (3. 2 7) and (3. 8) that 

as C->oo, A.~2. (3.28) 

An argument analogous to that used above to derive the 

asymptotic representa tion (3. 28) for !:::..,,, can be applied to (2. 38) 
' •' 

(specialized for Problem 1) to obtain the corresponding result for the 

relative load deviation !:::.. in the actual filament. The result of these 

computations is 

!:::..(C,A.) = (Y-1) 1+~{1 - \J(l- 2 ~) 
2c 2y(l-\J ) 

+ [i _ \J( 1-2\J) + £{ 1-4\J + \J( 1+4v) }] 
2Y(l-\J2) C2 4(1-v) 4Y(l-v2) 

-2 + o ( C ) as C ->oo , A.~ 2 . u 

~ A.2)-5/2} 
l+­,2 

(3. 29) 

The asymptotic formula (3. 29), when combined with the definition 

(2. 31) of !:::..( C, A.), furnishes the asyn1ptotic behavior for large z of 

actual filament load p(z). In terms of the actual coordinate z = aC on 

the filaments, the actual separation distance P., the filament radius a, 

and the two n1oduli E 1 and E
2

, we have 
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~ = 1 _ 2 1 (l+v) ~ 1 __ l v(l-2v) E -E 2 ~ E 

p(oo) El 2 z2 Ez 2(1-v2) 

-2 + o (z ) as z .... oo, f:?:2a; 
u 

(3. 30} 

the uniformity in (3. 30) refers to the parameter P. on the interval P.:?: 2a. 

2 
Recall from (1. 17) that p(oo) =rra cr

0
E 2 /E 1 . The asymptotic fornJ.ula 

(3. 30) for p(z) is our principal result for large z in the twin filarnent 

problem. 

If we set P.= oo in the uniform estimate (3. 30) we obtain 

(3.31) 

Equation (3. 31) is the result for a single filament obtained by Sternberg 

and Muki [3]. 

If P. is fixed in the inte.rval [Za, oo), we obtain the nonunifonn 

estimate 

as z ->OO , P. fixed , 2a~P.<oo. (3. 32) 

We note that the fixed-P., two fila1nent estinJ.ate (3. 32) differs frorn. the 

single filament result (3. 31) only in that the coefficient a~ in (3. 32) is 
z 

twi~ the corresponding coefficient in (3. 31 }. It should also be 

observed that, according to (3. 32), p(z)/p(oo) is independent of P. for 



-34-

large z in the twin filament problem, up to and including terms of 

-2 order z . 

In both the single and twin filan1ent problems, 1 - p(z) /p(co) 

-2 tends to zero like z , and in both problems increases as the modulus 

ratio y = E 2 /E 1 
increases for sufficiently large fixed z. Further 

comparisons between the single- and twin-filament problem will be 

deferred until the next section, which is devoted to a discussion of 

numerical results. 

We turn briefly to the question of the behavior of p(z) for small 

z. While it does not seem possible to obtain p(O) directly from (2. 38) 

and the second of (2 . 31), or (1. 13), it is possible to determine the 

qualitative behavior of the derivative p(z) of p(z) as z ->O, If to the 

Assumptions (i) - (iii), Page 2 7, concerning the solution 6. ,,(z, A) of the 
~.-

integral equation we add the additional a ssumption th at, for some 

k> 1 and independent of A., there exists a constant M, independent of 

A., such that 

it is possible to prove that p(z,£) satisfies~:< 

£e_( ) l-2v a 
Q z,f = 2(1 ) p,.,(0,£) log - + 0(1) as z ..... o+, vz -'J :ra ,,. z 

(3. 33) 

uniformly in£, f:::?:2a. Apart from the potential dependence of p.,, (0,£) 
"' 

on £, (3. 33) is the same result obtained for the single filament 

* In this section we have explicitly indic ated the dependence of p and 
P~~ on £ as well as z. 
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problem by Sternberg and Muki in [3]. The analysis required to 

establish (3 . 33) is similar in broad outline to that employed in [3] 

and will be omitted from the present work. 

In view of the equilibrium equation (1. 1) for the fictitious 

filaments, it is natural to regard 

q(z,f) = -* (z, £) 

as the bond force per unit length acting on an actual filament. The 

estimate (3. 33) shows that this actual bond force becomes logarith-

mically infinite at the end of a filament unless p...,(O,f) = 0. Based on 
. ... ... 

the nuinerical calculations to be described in the following section, 

p*(O, P.) is not expected to vanish. 
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4. Numerical procedure for the calculation of the filament force. 
Discussion of results for Problem 1 (the twin problem). 

A. Num.erical procedure . To determine the distribution of the actual 

filament force for Problem 1, we must first solve the integral equation 

(3. 9) for .6>:<. This solution is then utilized in the integral represen-

tation (2. 38) for .6, the relative filament force deviation (see (2.31)). 

A numerical procedure similar to that used by Sternberg and Muki [3] 

will be iemployed to calculate .6>:< and .6.. This procedure is described 

below. 

As a preliminary step, it is necessary to establish an asymptotic 

estimate for the kernel K appearing in the integral equation (3. 9). From 

(2. 41) and (3. 7) we find 

(4. 1) 

We also recall the asymptotic behavior of the solution .6,,, of (3 . 9); 
'I' 

according to (3. 28), 

(4. 2) 

where 

l+v l -4v A. A. 
{ 

2 2 -5/2} 
&(C,A) ~ (Y-1) z- I+ [1+ 4 (1-v) (2 J (I+ CZ) (4. 3) 

Our analysis of the integral equation begins by writing (3. 9), 

restricted to the interval Q-:;: C :;;;N, in the form 
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+ J + r +I 6>):('f,A)[K(C-T,0)+K(C-'f,A)] d'f". { 
N N+C oo } 

o ..,N N+C 

(4. 4) 

Here N is a positive number to be determined. For fixed large N the 

integral from N + C to oo in (4. 4) is easily shown to be small by making 

use of (4 . 1), (4. 2) and (4. 3). This suggests truncating the integral 

equation (4. 4) by dropping the term involving the integral from N+ C 

to oo. Moreover, in the integral from N to N + C, we replace 6:\< by 

o/ C2
, rn.aking use of the fact that N is large . The integral equation 

which is to be solved numerically is thus 

(w+ y= 1 ).6*(C,A.) = f(C,O)+f(C,A.)+J(C,A.) 

N 
+ J _6.>:< ( 'f', A.) [K ( C- T, 0) + K ( C- T, A.)] d T , 

0 . 

O~C~N, 

where f is given by the first of (2. 42), and 

JN+C o(T A) 
J ( C, A) = 2 . [K ( C -T, 0 ) + K ( C -T, A.) ] d T , 

N "!" 

(4. 5) 

(4. 6) 

in which o is given in (4 . 3 ). In all calculations to be described below, 

it was found that N = 15 ff-1 is suitable. 

Let us now introduce a set of meshpoints (Ci }~1 which partition 

the interval [O,N] where 0 = c1< C2< ... < CQ= N. Our objective is to 

approximate the integral equation in (4. 5) by means of a set of linear 
,, 

algebraic equations for the values of 6,,,( C, A) at the meshpoints . It will ... , 

be necessary to evaluate the functions£ and K that appear in (4 . 5) at 
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certain arguments associated with the meshpoints. Using (2. 41) and 

(2. 42 ), we can express f( C,µ) and K( C,µ) in terms of the functions 

/\ (C,p)(n=l,2,3) or, ifµ= 0, in terms of the complete elliptic integrals 
n 

using (2. 25 ). Further, we can approximately evaluate J( C, A.) at every 

meshpoint C.<N by applying the trapezoidal rule to (4. 6). When 
l j 

-\ 

C. = N (i =0), K(C-'F,0) has a logarithmic singularity within the range 
l 

of integration in (4. 6) (see (2. 41) and (2. 28)). This singularity must 

first be extracted and integrated analytically before the trapezoidal 

rule is applied to the remainder of the integral. 

The evaluation of the integral in (4. 5) at a meshpoint Ci could 

be performed using the same technique as that described for the 

evaluation of J. However, it is possible to reduce the error in the 

numerical integration for a given set of meshpoints and eliminate the 

necessity of special treatment of the singularity in K by adopting a 

piecewise linear (or polygonal) approximation for l.:\« The integration 

can then be performed analytically between each pair of meshpoints, 

making use of the identities, 

c. 
J l K ( s • µ l d s = £ ( ck. µ) - f ( ci, µ l • µ :<:: o . 

ck 

c. 
J \K(s,µ)ds = f3(Ck,µ) -f3(C.,µ), µ':2:0, c l 

k 

where f is known from (2. 36) and 

(4. 7) 

(4. 8) 

(4. 9) 

Equation (4. 9) follows fron:i (2. 41) and (2. 15). This integration results 
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in a linear combination of the values .6.>:<(Ci,1) .so that (4.3) reduces to 

the following linear system of algebraic equations 

Q c 
+ \ Jn (m r+b lK(C.-T,O)+K((.-'f,A)J dT, L C n nL i i 

n=2 n-1 

/t~2, (4. 10) 

where 

b = l,.,( C , It) - ,. m . n .,, n "'n n (4. 11) 

,.. 
Once L~»:< has been determined from (4. 10) and (4. 11), a similar 

numerical procedure can be applied to the integral representation 

(2. 38) for 6. Using the second of (2. 31 ), we can finally compute the 

actual filament force p(z). 

B. Results for the twin-filament problem. We now turn to a 

discussion of the numerical results for Problem 1 (the twin-filament 

problem). Figur es 3 and 4 show the variation of the normalized fila-

ment force p(z) / p(oo) with distance along the filaments for separation 

distances P.=2.2a and P.= Sa, and for several different stiffness ratios Y. 

Pois son's ratio for the matrix has the value V = 1/4 throughout. Also 

plotte d in these figures are the corresponding results for a single 

semi-infinite filament obtained by Muki and Sternberg [3] and recon-

finned by the present calculations. We note that the differences 

between the single-filarnent and the twin-filament cases are quite 

small even when the filaxnents are within one fifth of a radius of each 
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other (1! = 2. 2a), Figure 3. The difference between the forces as 

compared to the forces themselves never exceeds 15% for the values 

of stiffness ratio considered here. These differences become smaller 

still as the separation distance p_ increases. In fact, the single-

and twin-filament cases are essentially indistinguishable for£= 20a 

over the range of z/a and Y= E 2 /E1 covered in Figures 3 and 4. 

We also observe from Figures 3 and 4 that p(z)/p(oo) does not 

vanish as z tends to zero. Thus a portion of the load absorbed by the 

filament is transmitted directly to its end. This portion of the absorbed 

load decreases with increasing stiffness ratio Y = E 2 /E 1 as is clear 

from the figures under discussion. 

Equation (3. 33) predicts an infinite initial slope for all the 

curves in Figures 3 and 4, although the curves themselves do not 

clearly reveal this phenomenon with the existing scale . This infinite 

slope corresponds to infinite bond-force density at z = 0 and arises 

because of the assumptions of small elastic deformations and a perfect 

bond between filaments and matrix. 

Varying Poisson's ratio for the matrix was found to produce an 

insignificant effect on the difference between the single- and twin­

filament cases. 

In Figure 5 the normalized filament force p(z) I p(oo) is again 

plotted as a function of position along the filament for p_ = 2. 2a, but 

here we have included the uniform asymptotic results given in (3.30). 

For a given z the quality of the asymptotic approximation decrease 

as the stiffness r a tio incre ases. 
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Figure 6, which is based on a stiffness -dependent contracted 

length scale z/a..ry::T_, reveals more explicitly how the stiffness ratio 

affects the rate at which p(z)/p(oo) approaches one. 

In order to illustrate more clearly the previously noted small 

effect of varying f, we have plotted the cases corresponding to 

f= 2,2a, 3a, Sa, 20a for E 2 /E 1 = 5 and E 2 /E 1 =100 in Figures 7 and 8. 

The simple filament case also appears in these figures. In Figure 7 

the curve for f = 20a is omitted since it in fact coincides with the 

single-filament case. The value of p(O) is apparently unaffected by 

the variation in f, so that the force transmitted to the end of the fila-

ment would seem to be essentially the same in either the twin-filament 

or single-filament configuration for the ranges of the parameter 

appropriate to Figure 7. 

The asymptotic force p(co) which a fila1nent carries is 

proportional to the filament stiffness. However, it is clear that the 

rate at which p(z)/p(oo) approaches one decreases as the stiffness 

ratio Y = E 2 /E 1 increases. In order to quantify this more clearly and 

facilitate comparison corresponding results obtained in [3 J for the 

single filament case, we introduce the characteristic length b through 

the requirement 

9 p(b) = TO p(oo) 

In Figure 9 we have plotted b/a versus the stiffness ratio y = E
2 

/E
1 

for f = 2.2a, 3a, Sa, 20a and for the single filament case. It may be 

remarked that b is essentially linear in Y for y > 100. 
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5. Analysis and results for the ovei:lap problem: 

In this section the asymptotic character of the filament force 

p(z) for large and small z is determined for Problem 2 (the overlap 

problem). The numerical procedure employed in the overlap problem 

is briefly discussed, as are the associated numerical results. 

A. .~symptotic ana~ysis for lar~ A~ in Section 3 our procedure 

makes use of an approach to the asymptotic analysis of a class of 

integral equations which was developed by Muki and Sternberg [ 13]. 

As a preliminary step to finding the asymptotic result for p(z), we 

first derive the asymptotic forn-i of the relative load deviation 6.,,, for 
'•' 

the fictitious filarnent (see (2.31 )). For Problem 2, reference to 

(2. 33), (2. 35) shows that the integral equation (2. 37) reduces to 

(w+ y= 1 )6.>:<(() = f(C,O)-f(C-Y1,A)+J
00

6.>:<(T)[K(C - T,O)+K(C+T-Y),A)] dT 
0 

o:::;;C<oo, A.~2, -oo<ri<oo. (5.1)* 

While it does not seem possible to derive an asymptotic approximation 

for 6.,,, which is uniform in A and Y), it is possible to deduce an asymp-,,, 

totic formula for fixed A and Y). We assume the existence of a solution 

6,,,, of (5. 1) with the following properties for each A and 11: ... , 

>:< 

(i) 6..,,(C) is continuous for c~o. 
'" 

(ii) There exists an a> 0 and a constant ct 0 such that 

(5. 2) 

In the notation employed in this section, we have suppressed the 
dependence of 6.>:< and 6. on the parameters A and 11, corresponding 
respectively to the dimensionless separation and overlap. 
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We shall proceed as in Section 3 by first determining the behavior for 

large C of the integral occurring in (5. I), and then deducing the 

asymptotic form of .6* by balance-of-terms in (5, 1), Since parts of 

this asymptotic analysis are similar to that described in detail in 

Section 3, we shall only outline the corresponding steps. 

Consider the integral 

c~o. (5. 3) 

and for C >4, decompose J as follows. 

(5. 4) 

where 

I
C-.fC 

J2 ( C) = .6~:' ( T )K ( C- r, 0 ) d '1° , 

.re 
C>4. (5. 5) 

c 
J 3 (C) = J .6:.."(T)K(C-r,O)dT, 

C-.fc 

The following estimates, valid for fixed A and fl, can be established 

by argurnents similar to those pres e nted in Section 3. 

( 5. 6) 
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C->oo , if a>l, 

( 5. 7) 

(5. 8) 

( 5. 9) 

Collecting (5. 6), (5. 7), (5. 8), (5. 9) in (5. 4) provides the formulas 

as '->oo if a> 1, (5. 10) 

as '->oo if 0< ()'., ~ 1 . 

The integrals of K appearing in (5. 10) can be evaluated by using the 

first of (3. 23), 

Joo K(T,0) d'f' = ~. 
0 

(5. 11) 

00 
The asymptotic behavior for large (of r .6.~:<(T)K(~+T-11, A) dT 

~10 

can be determined in a similar way, except that in this case we need 

only partition the range of integration into the two subintervals [O, IC] 

and [IC, oo ). !t 1nay be shown that 
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as C ->oo . (5. 12) 

The first of (3. 8) can be used to show that 

l+v ,.-4 . 
f((,O)-f(C-n,A.)=--

3
n+O(.,, ) as 

c 
for each fixed n, fixed A.~ 2. (5. 13) 

We now return to the integral equation (5. 1) and examine its 

behavior as C->oo. Making use of (5.13), (5.12), (5.11), (5.10), (4.1) 

and (5.3), we find that (5. 1) yields either 

-3 -0. + o(( ) + o(C ) as ,C-+co , if o:.> 1, (5. 13a) 

or 

(5. 13b) 

Equations (5.13 a, b) now permit us to determine the exponent Cl in the 

asymptotic formula (5. 2) for L::,.>!< provided 6:.:, satisfies 

(5. 14) 

If (5. 14) holds, then (5. 13 a, b) are easily shown to imply that 

0:.=3 (5.15) 
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If, on the other hand, (5. 14) is not satisfied, then (5. 13 a, b) only show 

that a.> 3. 

It must be emphasized that the condition (5. 14) depends on a 

global property of the unknown solution £:.~:<(C) of (5. 1). .Analytical 

efforts to determine whether (5. 14) holds have thus far been unsuc-

cessful. · At this stage we are therefore only able to make the following 

assertion about the asymptotic behavior of £:.*( C) for large C: For fixed 

fl, -m < 11 < oo, and fixed A :2: 2, 

L'.*(C) o (Y-l~~l+v) [zs;L'.*(')dT-~J+o(C 3 ) as C~ro, 

if 2J
00

£:.*('f) dr - ri ./:. O; 
0 (5. 16) 

There may be values of the various material and geometrical para-

meters which are such that (5. 14) fails. In such a case the second of 

(5. 16) shows that 6,.,(C) tends to zero faster than ,-3 ; otherwise the 
'•' 

first of {5. 16) holds. We have separated the two cases in (5. 16) only 

for emphasis; they can clearly be combined into the single statement 

(5. 1 7) 

with no restriction like (5. 14). 

An argurn.ent analogous to that used above to derive the 

asymptotic representation (5. 17) for£:.* can be applied to (2. 38) 

(specialized for the overlap problem) to obtain the corresponding 
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result for the relative load deviation b. in the actual filament. The 

result of this computation is 

(Joo )Ir 2-·V JY-1 I -3 
D.(C) = 2 

0
D.>tr)dT-fl ~Y-l)(l+v)+ 2 (l-v) y -z3+o(( ) as ( .... oo. 

( 5. 18) 

From this asymptotic result and the definition (2. 31) of b.( C), the 

asymptotic character for large z of the actual filament force p(z) 

follows. Recalling that z = aC, we have 

3 [ Joo J p(z) Y-1 2-v Y-1 a --- = 1 - - l( y - 1) ( l+ \!) + ---J - - 2 b, ( T) d T - Tl 
p(oo) y L 2(1-v) y z3 

0 
>:< 

-3 + o(z ) as z ->OO. (5. 19) 

Once again the asymptotic formula (5. 19) for p(z) / p(ro) involves 

the unknown integral of b.>:< over the interval [O,oo). While this 

diminishes the utility of the formula somewhat, it nevertheless remains 

useful in connection with the numerical procedure to be described in the 

sequel. 

One important feature of the asyrnptotic representation ( 5. 19) 

should be noted. The ratio p(z)/p(oo) may exceed unity for large z if 
(X) 

(2f
0

D.>:<('f') d r - fl) is negative. Thus ( 5. 19) suggests the possibility that 

in the overlap problem the filament loads may exceed their values at 

infinity, in contrast to the situation in the twin-fila1nent problem. 

This phenomenon is discussed further in connection with the numerical 

results. 
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B. Asyme_totic analysis for small z. As in the twin-filament problem. 

it does not appear to be possible to obtain p(O) analytically from (2. 38) 

and the second of (2. 31 ). On the other hand, an asymptotic estimate 

for small z of the derivative of p(z) - and hence of the bond force in 

the actual filament - can be obtained from ( 1. 13) by an argument 

entirely analogous to that used in Section 3 to derive (3. 33). If it is 

assumed that the solution .6.>:< of the integral equation (5. 1) has the 

property that 

for ·some constant k > 1, it is possible to prove that p(z) satisfies 

dp(z) -- l-2v (0) lo a+ 0(1) o+ 
dz 2(1-v)1raP>:< g z as z-. ' h,£ fixed, £:?:2a. (5. 20) 

This is the same as the corresponding result (3. 33) for Problem 1, 

except that p,,,(O) in (5. 20) may depend on the overlap h as well as the 
'•' 

separation£. Moreover (5. 20) may not hold uniformly with respect 

to h and £. 

C. Numerical procedure. The numerical scheme used to determine 

.6.~<(C}, .6.(C) and p(z) in the present problem is essentially the same as 

that described in Part A of Section 4 for the twin filament problem. 

The integral appearing in (5. 1) is again broken up into in,tegrals over 

the subintervals [O, N], [N, N+C] and [N+C, oo), where N is large. The 

integral fro1n N+C to oo is again discarded, and the integral £ro1n N to 

N+C is analyzed with the aid of the asymptotic estimate (5. 17). The 
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integral from 0 to N is evaluated by means of a polygonal approximation 

procedure analogous to that used in connection with the approximate 

evaluation of the integral in (4. 5) . 

The second step in this process - that of analyzing the integral 

from N to N+C - requires a more elaborate analysis than the corres-

ponding step in Problem 1 because of the presence of the integral of 

the unknown solution in the asymptotic estimate (5. 17). This difficulty 

is overcome by noting that, according to (5. 17), 

00 
Solving (5.21) for r ~,,,('T)d'T yields 

clo '•' 

N 
_ _'!L2(Y-l)(l+v)+ r ~_,,(T)d'l" "o ,,. 

ZN --- + o(N-Z) 
(Y- l){l+v) 1 - -----~--=---...... 

NZ 

(5. 2Z) 

as N->co 

-2 In the numerical procedure, the error term o(N ) in (5. ZZ) is dropped 

and the integral from 0 to N of~~~ is discretized by means of the 

trapezoidal rule . Thus, in contrast to the situation in Problem 1, 

that portion of the integral in (5. 1) arising from the interval [N, N+C] 

contributes to the unknowns in the system of linear algebraic equations 

which is ultimately obtained for the values of ~:>;~ at the meshpoints. 
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D. Results for the overlapping-filament problem. We now turn to a 

discussion of the numerical results for Problem 2. Figures 10 through 

13 show the variation of the normalized filament force p(z)/p(co) with 

distance along the filament for a fixed separation distance P.= 2.2a; the 

overlap increases from h=O in Figure 10 to h=20a in Figure 13. In each 

figure curves are shown for various values of the stiffness ratio 

Y = E
2 

/E
1

, and for each stiffness ratio the corresponding curve for the 

single-filament case is also presented. The latter curves represent 

the results of Sternberg and Muki [3] and were reconfirmed by the 

present calculations. 

No interesting effect on the load-absorption curves was obtained 

by varying Poisson's ratio for the matrix. All results in Figures 10 -

17 correspond to the value v = 1/ 4. 

A comparison of Figures 10 through 13 clearly reveals the 

effect of progressively increasing overlap. In the first of these figures, 

corresponding to zero overlap, the load absorption characteristics of 

a filament in Problem 2 are seen to be qualitatively the same as those 

of a single filan1ent. The principal quantitative difference between the 

two cases is the faster approach to its ternlinal value of the ratio 

p(z)/p(co) in the overlapping-filament case. 

In Figure 11 (overlap h = 6a) the load-absorption curves for the 

overlapping filaments begin to reflect some features not present in the 

single-filament problem, particularly at the lower stiffness ratios. 

The curve for Y = 2, for example, shows a relatively sudden increase 

in load absorption rate at a value of z/a slightly less than the dimensionless 
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overlap distance h/ a= 6. Moreover the values of p(z) /p( co) associated 

with the curves corresponding to y = 2 and Y = 5 exceed unity over part 

of the range of z. This phenomenon, the possible occurrence of which 

was anticipated from the asymptotic analysis, beco1nes more 

pronounced, at a given stiffness ratio, as the overlap is increased 

to h= 12a (Figure 12) and ultimately to h=20a (Figure 13). Thus the 

11 overshoot 11 
- in which p(z) /p(oo) > 1 - appears to be increasing with 

increasing overlap and decreasing with increasing filament stiffness. 

In order to interpret the behavior described above, we single 

out the overlapping-filament curve corresponding to Y = 2 in Figure 12. 

In one of the given filaments - let us say filam.ent 1 - the ratio p(z)/p(oo) 

behaves for small z almost exactly like that for a single filament, 

increasing rapidly with z/ a until it achieves a value of approximately 

0.97, corresponding to a value of z/a of about 5. Thus filament 1 has 

almost 11 forgotten 11 the presence of its own end at z = 0 when z /a= 5 

and, furthermore, has taken little notice up to this point of filament 2 

which is only one fifth of a radius away (£ = 2.2a). In Figure 12 for 

Y = 2, filament 1 begins to feel the effect of the end of filament 2 when 

z/a= 5 and starts to diverge from the single - filament curve. At a 

value of z/a of roughly 11, a further rapid increase of p(z)/p(ro) takes 

place, reflecting the strong local effect which the end of filament 2 

exerts on filament 1. (Recall that for this curve the dimensionless 

overlap has the value h/a = 12.) One would thus expect that the behavior 

of the load·· absorption curve under consideration for values of z /a 

greater than approxim.ately 11 should be very close to that of a doubly -
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infinite filament in the presence of a semi-infinite filament. One 

would presumably conclude that, in the presenc e of significant overlap, 

p(z}/p(oo) in a given filament always e x ceeds unity near the end of a 

neighboring filament. 

Figures 14 - 17 show that the effects described above are 

substantially diminished when the separation between fil a ments is 

increased to f. = 5a, and have virtually disappeared when f. = 20a, even 

for an overlap of h = 20a. 

There are some general observations which can be made from 

these figures. Near the end of a filament, say filament 1, an adjacent 

filament has little effect on the load-absorption curve of filament 1, 

which is very much like that of a single semi-infinite filament. On the 

other hand, where a nearby filament terminates , then there is a strong 

local effect on the load-absorption curve of filament 1. In addition, it 

would seem that the overlapping-filament configuration reduces the 

distance required for a fila1nent to absorb a large fraction of its 

asy1nptotic load, thus decreasing its "ineffective length". 
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