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Abstract

This investigation is concerned with the interaction — as far as
load-absorption is concerned — of a pair of identical and parallel elastic
filaments in a fiber-reinforced composite material, The filaments are
assumed to have uniform circular cross—sections, are taken to be
semi-infinite, and are supposed to be continuously bonded to an all-
around infinite matrix of distinct elastic properties. At infinity the
matrix is subjected to uniaxial tension parallel to the filaments, Two
separate but related problems are treated, In the first both filaments
extend to infinity in the same direction and their terminal cross-
sections are coplanar, In the second problem the filaments extend to
infinity in opposite directions and their terminal cross-sections need
no longer be coplanar, the two filaments being permitted to overlap
partly., An approximate scheme based in part on three-dimensional
linear elasticity and developed originally by Muki and Sternberg is
employed in the analysis, The problems are ultimately reduced to
Fredholm integral equations which characterize the distribution of the
axial filament force. The integral equations are analyzed asymptotically
and numerically, Results are presented which show the variation of
filament force with position and the effect on this variation of various

relevant geometrical and material properties,
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Introduction,

Fiber-reinforced composite mateArials have attracted much
attention in recent years because their characteristically high
strength~to-weight ratios often make them ideal for use as struc-
tural components, Among such composites, those reinforced with
discontinuous fibers — rather than continuous ones — are of particular
interest, since some high-strength fibers can be produced only
in relatively short segments., Moreover, short fibers are more
adaptable for certain applications such as molding,

In the present investigation we are concerned with the
interaction of adjacent filaments in a fiber-reinforced composite,
with emphasis on the load-absorption properties of discontinuous
filaments, In particular we wish to estimate that separation distance
between two parallel filaments at which the interaction effects are
negligible insofar as fiber load-absorption is concerned, With this
objective in mind we examine analytically two idealized but basic
problems in detail, Problem 1 consists of determining the response
to uniaxial tension at infinity of a composite comprised of two parallel
semi—infinite*, circular cylindrical elastic filaments bonded to an
infinite elastic matrix of distinct material properties, The circular
end sections of the filaments are coplanar, and both filaments lie on

the same side of the plane containing their end sections. The filament

sk
Discontinuous filaments of practical interest have length-to-diameter
ratios which may exceed 1000.



axes are parallel to the applied vuniaxial tension, We shall refer to
Problem 1 as the twin problem (see Figure 1).

In Problem 2 (the overlap problem) we again consider two
parallel semi-infinite circular cylindrical elastic filaments surrounded
by an elastic matrix and loaded at infinity by uniaxial tension parallel
to the filaments, However, the filament axes now extend to infinity in
opposite directions, and the circular ends of the filaments need not lie
in the same plane (Figure 2),

In both problems we shall assume perfect bonding between
filaments and matrix, and our analysis will be based on the assump-
tion of small deformations in both filaments and matrix, The
objective is to determine the variation with position of the axial force
within each filament, In particular we shall ascertain the rate at
which this force approaches its asymptotic value at infinity, as well
as the way in which this rate of approach is effected by the various
relevant material and geometrical parameters, The most important
parameter for present purposes is the separation distance between
the parallel fibers,

The two problems described above possess a useful symmetry
which assures that, in each problem, the distribution of axial filament
force is identical in the two fibers,

Problems involving load transfer in fiber-reinforced composites
in uniaxial tension have been the subject of several previous analytic
investigations, Dow [1] in 1963 and Rosen [2] in 1965 examined a

single filament of finite length on the basis of a one-dimensional
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treatment of both fiber and matrix, Their results include formulas
characterizing the distribution of axial force in the filament,

In 1970 Sternberg and Muki [3] consider a single semi-infinite
filament in an elastic matrix with the aid of a more refined model in
which the matrix is studied on the basis of three-dimensional linear
elasticity, while the fiber is treated as one-dimensional. In an effort
to confirm the validity of a model of this type for the single-filament
composite, Sternberg and Muki [4] had earlier studied the problem
of a doubly-infinite fiber in an infinite matrix subject to a loading
uniformly distributed over, and confined to, a single cross-section of
the filament., The problem was treated on the basis of two different
schemes, in one of which the filament was analyzed one-dimensionally
while the matrix was viewed as three-dimensional, In the second
scheme, both filament and matrix were examined on the basis of the
three»dimeﬁsional linear theory of elasticity. The agreement between
results obtained in [4] for the axial filament force using the two models
was quite favorable and lends substantial credibility to the approach in
which the filament is regarded as a one-~dimensional elastic continuum,
while the matrix is treated three-dimensionally, Such an approach,
as developed in [3], forms the basis for the formulation of both
problems considered in the present work,

In 1967 Cohen and Romualdi [5] examine the problem of multiple
fiber interactions in a composite subject to uniaxial tension. They
consider a periodic array of infinitely many parallel, identical

filaments and devise an approximate model in which fibers are treated



as one-dimensional, the matrix as three-dimensional. The analysis
is entirely numerical,

A finite-element, equivalent-stiffness scheme was used by
Chen [6] to investigate a problem of strength in uniaxial tension in a
composite containing parallel fibers of finite length. The maximum
stress in a fiber in such a configuration is calculated and compared
with that arising under the same conditions of loading when the fibers
are infinite in length,

In Section 1 of the present paper we formulate the two problems
with which we are concerned using the procedure of Sternberg and
Muki, The principal result in Section 1 is an integro-differential
equation governing the distribution of axial force in the filaments.
This integro-differential equation is reduced to a Fredholm integral
equation in Section 2, In Section 3 we utilize this integral equation to
d‘e’cerrnine.the asymptotic distribution of axial filament force far from
the ends of the filaments in the twin-filament problem (Problem 1).
We also determine in Sectio.;n 3 the singular asymptotic behavior of
the filament-matrix bond force near the ends of the filaments for
Problem 1., Section 4 is devoted to the numerical technique and
results for the twin-filament problem, while the overlapping-filament

problem is analyzed asymptotically and numerically in Section 5,



1., Formulation of the problem.

In this section we shall formulate both problems and derive the
basic equations which govern the distribution of load in each filament.
With this objective in mind we introduce the following notation (see
Figures 1 and 2), In terms of rectangular Cartesian coordinates X
X5, X3, the three-dimensional region occupied by filament 1 is
the semi-infinite right circular cylinder of radius a, described by

2, 2.2

Ole + X, <a, x32 0. In Problem 1 (the twin problem) filament 2
2_.2

occupies the semi-infinite cylinder OSX?+ (XZ—E) <a, x32 0, while in

Problem 2 (the overlap problem), filament 2 lies in the region

2 2. 2
Oﬁxl + (x2~£) <a

, —oo<x3éh. Thus in both problems, the filament
axes are separated by a distance f; it is assumed throughout that
£22a, In Problem 2, h stands for the overlap; ~co<h<oo. In both

problems we denote by R the open region occupied by the two filaments;

thus R is the union of two parallel semi-infinite cylinders, We note

that the origin of coordinates is at the center of the end of filament ‘1.
In order that we may treat the two problems simultaneously,

we find it convenient to introduce ’che following additional notation,

Let g be the vector from the origin to the center of the end section of

filament 2; thus g=(0, 4,d), where d=0 in Problem 1, but d=h in

Problem 2. Moreover, let y be a unit vector in the direction of the

axis of filament 2, so that y=(0, 0, j), where in Problem 1, j=1, while

in Problem 2, j = -1, TFinally denote by H; the closed circular disc

2
x‘£+xg Sa_z, X3 =2z, -00<2 <OO. Sinlilarly let Hi Stand fOI‘ the diSC



1+ (xz-_g)zs az, Xy = d+jz, ~oo<z<oo, Itis important to note that if

z=0, iy
z

X
3 Hz are the cross-sections at a distance z from the ends of
filament 1 and filament 2, respectively,

It is assumed that the materials comprising both matrix and
filaments are homogeneous, isotropic and elastic, For the matrix
material, El and v stand for Young's modulus and Poisson's ratio,
respectively, For the filament material, Young's modulus is denoted
by EZ‘ In the approximate treatment to be employed here, Poisson's
ratio for the filament material does not enter the analysis. We -
restrict our attention to pairs of materials for which E2>E1 >0
and -1<v<1/2, This is the case for all composite materials of
practical interest.

We are now in a position to introduce the approximation scheme
used by Muki and Sternberg [3], [4] in their analysis of single-
filament problems, According to this scheme, the actual filaments
and the

are replaced by fictitious ones of Young's modulus E,-E

2 1

extended matrix (modulus El‘) is then assumed to occupy all space,
Thus the region R is simultaneously occupied by two elastic materials,

one with modulus E1 (the matrix) and one with modulus E --E1 (the

2
filaments), In the subsequent analysis the three-dimensional linear
theory of elasticity is assumed to apply everywhere in the extended
matrix, but the fictitious filaments are treated as one-dimensional,
Suppose @ is either 1 or 2 and consider a cross-~-section H: in

filament ¢, We assume that an axial force pf:(z) is transmitted by

fictitious filament @ across H(ZI; p,(z) is positive if it is tensile, In



addition, it is assumed that each fictitious filament is acted upon by a
""bond force' per unit length q:(z) arising from the presence of the
extended matrix, This bond force is positive if it points in the
direction of increasing z. In order to maintain equilibrium in each

fictitious filament we regquire that pS:, qiﬁ satisfy

z)-[—qg(z):O , 0<z< o ; (1. 1)

The stress-strain relations for the fictitious filaments are taken

in the form

1
—5 P

= Z—El)e*(z) , 0<z<o0, (1. 2)
Ta

where e:(z) is the extensional strain in fictitious filament o, and 2 is
the cross~section radius,

Let £ stand for the unit normal vectors associated with the
Cartesian frame, Then in the extended matrix we suppose that the
stress and strain tensor fields — denoted respectively by 9,(?5)’ e(x) —
arise according to the equations of the linear theory of elasticity* from
the following sources: (i) the stress Efj prescribed at infinity, (2) body
forces distributed uniformly over HS whose resultants over H; and Hi
are respectively qi(z)i3 and qi(z)E (3) terminal bond forces distri-
buted uniformly over H% whose resultants over H; and Hi are respec-
tively pi(O)i3 and pi(O)x.

Throughout the present work the prescribed stress at infinity

is taken to be uniaxial tension in the x3-direction.

e
We omit the explicit statement of these equations.
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The final ingredient required for the determination of the fields
of interest in the fictitious filament — extended matrix mixture is the

bond condition, It is required that the axial strain eg(z) in the fictitious

filament coincide with the average over Hg’ of the component €33 of the
strain tensor ¢ in the extended matrix, Thus
o 1
e, (z) = —= 633dA , 0=2z<o0, (1. 3]
a nrx
z
. —_— a o « .
Once the field quantities PosQyr €y s & have been determined,

the axial force distribution in an actual filament can be calculated from

«
Py and 63 3

extended matrix which forms the basis of the present model, the

In view of the superposition of fictitious filaments and

(64
axial force p (z) exerted across HZ in actual filament @ is taken to be

pa(z) = pi‘(z)-l— J 033dA . 0=z ., (1. 4)
- a

l'Iz
This completes the description of the model to be used in the present
analysis,
The solution of the field equations described above is
substantially simplified by the symmetry present in both Problems 1

and 2. Since in both cases the load at infinity is uniaxial tension,

symmetry immediately yields

p,(2) = P (2) =p,(2)
and 3 (1. 5)
PI(Z) = p’ (z) = p(z) , 0<z<oo

in both problems,
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Following Muki and Sternberg [3, 4], the first step in the
reduction of the problem as formulated above is based on Kelvin's
| solution to the concentrated force problem in linear elastostatics [7]
and leads to an integro-differential equation for the fictitious filament
load p*(z). For all 5%2, let é(ié:{{l), é(i{,;%) be the stress and strain
tensor fields, respectively, arising from a concentrated force of unit
magnitude acting at ;5: 0 in the direction -m, where m is a unit vector™,

By superposition,

5(x; m) :—1—2-J§( : dAY\
ma H
b xen! (1. 6)
1 o ~ 0
Ssm) = —5 [ Byimday
Ta II1 )
O

represent stress and strain tensor fields satisfying the equations of
linear elastostatics for all x not in chl) and correspond to a body force
uniformly distributed over the disc Hi whose resultant has unit
magnitude. The functions § and § have jump discontinuities across H(];
By a further superposition it follows that the stress tensor
,O:,(?S) and the strain tensor g(x) arising iﬁ the extended matrix from the
load at infinity E, the bond forces -q: and the terminal bond forces

pg'(O) are given by

© 1 A 2 1 ~
9(x) = 8-p,(0)8(x585) ~P(0)0(x-5:¥)+ | q,(2)0(x-ze,;e,)dz
bAS O b OH O, ~ ot

0 1, w2
+j q,(2)0(x-s-2zy;y)dz , = ¢ HO+HO , (1.,

o~ o ~

The direction »E1, rather than m, is chosen so that our notation and
and sign conven‘uons will conform to those in [3].
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e( =% 1(0)§(X e,)- 2(O)é(x—s )+ ® l(z)é(x—ze e,)dz
Ng_m_p* NN,N3 p* ~ Ao ~’N O q‘k ~ ~3’ 3

(00)
2 N i
+JO Ay (2)8(x-8-2zv;y)dz,, x£I0 +0 .  (1.8)

© .
For reference purposes we give here the formulas for g, ¢, which are
merely the stress and strain fields corresponding to a state of uniaxial
tension of magnitude GO in an isotropic, homogeneous medium

according to linear elastostatics:

© © UO :
%=ttt ¢ Syt E ]:(1+v)63163j—\)6ij]; (1.9)
61j is the Kronecker delta,
To obtain the integro-differential equation for P, We first
express qi, q% in (1,7), (1.8) in terms of P, by means of the filament
equilibrium equations (1, 1) and the symmetry relation (1.5), The

component €, ., of the strain tensor provided by (1. 8) is then substituted

33

into the bond condition (1. 3) to obtain the filament strain e*(z) Eei(z) =
2 ©

e*(z) in terms of ¢, p_(0), and (d/dz)p_(z). This in turn is substituted

into the filament stress-~strain relation (1.2) to obtain the integro-

differential equation, The result of these steps can be written in the

form

. e} ’
p,(2) = waZ(EZ-El){—E‘i - p,(0)&(z, 0) - jp,(0)e(z-d, 1)

-jo e(z-.-t,O)a-:—[p*(t)]dt~jJ e(z-d—jt,ﬁ)—&%—[p\b(t)]dt}, 0<z<00 |
. 0 8

(1.10)



o

Here

j=1, 4=0 in Problem 1 ; jz=~-1, d=h in Problem 2 (1. 11)

and the kernel function €(z, L) is defined as follows:

e(z, L) = —17 J 833(;5-11%2;533)(1_1&}( , z#0, L=20, (1. 12)

In (1.12), &,, is given in terms of Kelvin's strain field by the second

33
of (1.6).

Once p>b(z) is determined from (1. 10), the actual filament load

p(z) is found from (1.4), (1.7), (1.1) as follows:

plE) = p*(z)-i-‘n"az{cjo - p, (0)0(z, 0) - jp, (0)0(z~d, 1)

0

- JOOO"(z—t, O)%—E [p, (t)] dt
0

00
-jj o*(z-dnjt,ﬁ)g—t—[pd’(t)]dt}, 0<z<o0, (1.13)
0 ®

where

o(z, L) = lzj 6,505, 850 dA_, 240, L20. (1. 14)
T

Although strictly speaking the case E2 :E1 has been excluded,

it may be noted that (1, 10), (1. 13) formally yield

p.(z)=0 , p(z) :wazco , 0<z<oo, (1. 15)

if we set EZ :El .

As a final remark concerning the formulation of our problems

we note that the fictitious filament load at z =00 is not prescribed in



-14-

advance, but rather is determined from (1, 2), (l.3) and (1.9) to be

()_ O'E_%;_}::.l_
p*00~'rra & El .

(1.16)

The ictﬁal filament load at z = oo is then found from (1. 16), (1.4) and

(1. 9) to be

=

p(oo) = waZO'O —E—l— . (1. 17)

We turn next to the analysis of the integro-differential

equation (1. 10),
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2. Reduction to a Fredholm integral equation,

In this section we will transform the integro-differential
equation (1, 10) and the formula (1, 13) for the filament load into more
convenient forms for further analysis*. We begin by obtaining explicit
representations for the kernels € and 0 defined in (1. 12) and (1. 14).

The axial strain and stress components associated with the
classical solution due to Kelvin [7] for the problem of a concentrated

force of unit magnitude in the Xy direction acting at the origin are

5
2
. _ B 1+v o (.1 g _[{-L
®33(8383) = "I VE; [2”'2\’) 53, (l§l>“x3 " <l25|>] ’
3

, > (2, 1)
s o a1 o (1 I 9.
033(5,33) = —81T(]-"V) [2(1"\)) 8X3<[§I>-X3 8X2(‘X]>] ?

3 7 J

E;é 0.
In order to obtain € and 0 from (1, 12), (l.14), we must first substitute
(2. 1) into (1, 6) to obtain the auxiliary functions & and &, After a

suitable interchange of integration and differentiation, this furnishes

2 \

A T & o __ 9

®33(2323) = G-V, [2(1_2\))8X3 Uil == "‘"Z'U(%% :
8x3

> &40, [2.2)

. 1 5 5°
33(5,33) :g;r"(-m Z(l«V)S‘%U(?E)'X:%"a';—Z"U(E) 3
3 /

where for all x,

“Much of the analysis in the present section is an extension of that
contained in [87.
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dA dA
: 1 b4 1 L *
=Tz 9] 12 2 52~ el
a = T
"ol R n [y =y )%+ Gy ) 55
Let
W(z, L) = -—lz— U(g-Lg,)dA, , L=0, allz (2.4)
: Ta Hl "
z

Then (1. 12), (1.14), (2.2) and (2. 4) yield

2 \
1+v ) 9
e(z,1) = mm[z(l-zwgng,m -2 W(z,L)] ,
5240, L20, (2.5)
1 9 5%
cm;L):g;ﬁf;;%(LanggszJA-zazzwuan -

In order to obtain a more explicit representation for U, and

sk

hence for W, we employ the formula
.J,.oo ~|x3!s 1/2

2 2
. e Jo{s[r +p —ercos(e—Cp):l ds

-1/2 -
[y Py el | A0, @.6)

where JO is the Bessel function of the first kind of order zero, and
xlzrcose R xZ:rsinG » yp=pcoso , yZ:psinCQ. (2.7)
Thus from (2. 3), (2. 6)

U(x) = -——1—'-2~ faj ZTT‘JWOOe"I}%IS JO{S[I'2+ p2 -2rpcos (G-CP):IUZ
ma~ 0 0 0 _

}pdsdpap,

x3;é0 : (2.8)

*Although (2.3) is an improper integral for x3:0, it can be shown that
U(x) is continuous at x3:0,

#*%kSee Watson [9], P. 384,



o 1P

We now employ the identity*

1/2

Jo{s[rz-k p2 -2rpcos (G-CP)] } = -TO(SI‘)JO(SD)

oo
+2 z J‘k(sr)Jk(sp) cosk(6-~p) (2.9)
k=1

in (2, 8), interchange the ¢~ and s- integrations, and integrate the series
termwise with respect to ¢, A final interchange or r- and s- integra-
tions gives

a -lx3ls

(00)
U(fi) = ’-—2- j j e Jo(sr)JO(sp)pdpds, X3 £0,

or

o -|x,|s T (as)
Ulg = "%{ 0 ¢ ’ LE L—ds, x,40, r:A/x?+x§. (2.10)™*

Using (2, 10) in (2, 4) yields, upon interchange of integration,

> 00 -lz]s Jl(as) 5 —>
Wi(z,L) = —;? J'O e =3 JJO<S x1+(x2—L) >dAg§ ds ,

H1

%
z4+0 , L.=20, (2.11)

The integral over H; in (2. 11) can again be evaluated with the aid of

(2. 9), Itis found that

jl Jo<s /x?-F(XZ—L)Z)dA%: 2v23, (as)T (sL) , (2.12)
i
z

“See Watson [97, p. 358.
ek . . . . x
“This representation for the Newtonian potential of a disc carrying a
uniformly distributed mass is due to Weber [10],
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so that

00 1 | —IZIS 2 sk
W(z,L) = -4j 5 © J (as)J (Ls)ds, ~o<z<on , L=20. (2.13)
0 (as) k &

Prior to substituting (2. 13) into (2.5), we introduce some

convenient auxiliary functions as follows. Define

00
) L5 2
Ao = ] e o7 at
>0, u=0, n=0,1,2,3. | (2.14)

It is easily observed that

oA '
A (= g7 (G = -A (G (2.15)
From (2. 13), (2. 14)
Wiz,1) = (—J—L L) ~-o<z<ow, L=20, (2.16)

Combining (2.16), (2.15) and (2. 5) yields the representations

e(z,1) :-—-—-—1-3L-y—-—o2»[2(1_2\))(sgnz ( z >+ % | (J__l. &)}

2(1-\))E11ra
e fraewmen, (e, 2+ (1 2]
(1-v)ra

z40, L=20, (2.17)
In the sequel we shall need the values of €0+, L), o(0+, L) for
L =0 and for I.=2a, Suppose first L=2a, From (2, 14) it then follows
that
0 Jz(t)

) - [P 4%, 2
Al(o+,a>_fo — J (Ft)at, L=2a. (2.18)

>':Although z=0 was excluded in deriving (2,13), the extension of this
result for W at z=0 is easily carried out by continuity,



e ] G

00
A2<o+,—li> . f 727 (%— >dt, L=2a . (2.19)
a. eO 1 oNa
We thus have
oA 00
Lov,2)= -2 ] o (L)
= (04, 2) = -2 : wa(2t)ar, L=2a. (2.20)

The integral on the right can be evaluated with the aid of a special case

of a formula due to Sonine (see Eq. (3), p. 411 of [9]):
2
J Jl(t)Jl(ct)dt:O if c=22, 2,21}
0

It then follows from (2, 20), (2, 21) that A1(0+ ,’%) is constant for L. =2a,
But by the analog of the Riemann- Lebesgue lemma for Fourier-Bessel

integrals (see [9], p. 457), A1(0+,-{-ai>-> 0 as L =00, We conclude that
£, .
A1(0+’E> =0 for L=2a, (2.22)

Since A2(0+ ,%) is finite by (2, 19), we conclude from an inspection of
(2.17), (2.22) that
e(0+,L) = o(0+,L) = 0 for L=2a. (2.23)

Now consider the case LL=0, From (2, 14) we have

(6.6) .
A_(C,0) = J P2 -Gt J’%(t)dt . (>0, (2.24)

0
These integrals were expressed in terms of complete elliptic integrals
in [3] using results obtained in [11], 1f K(k), E(k) are the complete
elliptic integrals of the first and second kinds, respectively, the

formulas in [ 3] furnish, for 0<{<oo,
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B+ g [KK)-E&)T,

wk
K 5 {2.25)
Ay (€, 0) = - —K(k)+ ¢ [K(9)-E(k)],
ok k¢ .
A4(C, 0) = = E(K) - 5= [K(K)-E@)], )
where
kK =k(f) = —2— , 0<(<o. (2.26)
a4 ¢
From these formulas and the properties
1 16
E(l)=1 , lim|K(k)-3slog—=|=0, (2.27)
k-1 [ e 1—k2]
there follows
-2 \
A, (€,0) = 3=+ o(l),
1
Al(g,O) :—2"-+ 0(1) A
5 as {=0+ . (2.28)
i
Ay (C,0) = —?[log —§-+2]+o(1) ,
1
Ay(€,0) = ZF+o(l), )
From (2, 28), (2, 17) we obtain in particular
lim ¢(z,0) = (1“2\’)(12”) ,  lim 0(z,0) = 12 ) (2.29)
z— 0+ 2(l-vira E z~ 0+ 2Tma

1
It may be remarked that e¢(z,L), 0(z,L) are odd functions of z
which are continuously differentiable for all z if 1.=22a; €(z,0) and

0(z,0) are continuously differentiable for z £0 but have jump
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discontinuities at z=0. This is to be expected in view of the physical

meaning of ¢(z,0), o(z,0).

We now turn to the derivation of the Fredholm integral equation

to which (1. 10) is equivalent, ILet

u
I
p N

be a dimensionless filament coordinate and define a dimensionless

filament separation distance A by

_ L
A= <. (2.30)

Further, set

Py (2)

Ag(C, M) =1 —W

’

z2l, L0, A=2 (2.21)
Z
AL, Y =1 BEL

in which p*(oo), p(oo) are given by (I.16), (1.17), respectively. In
(2.31) we have indicated explicitly the dependence of A and A on the
(dimensionless) separation constant A, Note that A, and A are
expected to be small for large {. If the first of (2,31) is used to
express p*(z) in (1, 10) in terms of Ay, the integral in (1. 10) may be
integrated by parts to remove the derivative of A,. (The discontinuity
in €(z,0) at z = 0 must be borne in mind during this process.) The result

is

[-——2-——1--————~ +2e_(o,0)} AL(C, N =¢e(al,0)+je(al ~d,al)
ma”(E,-E;) ‘

0
- af A>,,(T,)\) [é(aC -aT,0)+é&(al-d - ja']‘,ak)] dr, 0<C<c0.
g CF

(2.32)
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where, according to (1.11),

j=1,d=0 in Problem 1 ; j==1,d=h in Problem 2 .

The kernel ¢ is given by the first of (2, 17), and

. _oe
e(z,L) —EE(Z,L) .
If we set
S I ¢ E0¢ -1
ﬂ—a b - 1 ’ - 1‘_\)

and introduce the functions

K(G,M) = —Tra3Elé(aC,au) «  &#0, y=0

£(C,u) =Ta’E e(al,ap) ,  w<C<co, P20

the integral equation (2.32) can be written in the form

(‘”“LV%T) AL(C,N) = £(C,0)+ 3£(C-m, \)

(2.33)

(2. 34)

(2.35)

(2.36)

(00]
+j Ay (m, MK (C-T,0) +K(g-n-jT,\)]dT, 0<{<o00, 25A<00. (2.37)
0

This is the integral equation to be solved for A>:<(C,>\).

Once A'*(Q,)\) is determined, A({,A) is found from an integral

formula derived from (I.13) by an argument analogous to that used

above to obtain (2,37) from (1. 10). The result is

Y—YTA(C,M =g(€,0) +jg(C-m,A)

00
+J A (T, MIX(C-7,0)+ ¥(C-n-j7,\)]dT, 0<(<o0, 2€A<0c0, (2.38)
0

where
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¥ (Cu) = -ra>Salan), (40, uzo0,
) (2.39)
g(C,u) =wa"o(aCap), =-oo<f<oo, u20,
énd
5(z,1) = 8;’ (z,L). (2. 40)

The functions K, L, f and g can be expressed in terms of the
functions An by means of (2. 17), (2. 15). Thus it follows

K(CH) = griy (-4, el + e la e Lw ]

C4£0, u=0, (2.41)
i)

¥ (C,m) T 2(1-v)

s [a-zvnydcLw+ el deLw ]

HGm) = g7 [2(1-2v)(sgnO (le )+ C1, e

~0<f <00, u=0 .

2(60) = gy [2(1-W(sgnO)A (I Ly + ey e lw],
(2. 42)
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3. Asymptotic analysis of the twin problermn,

In this section the asymptotic behavior for large and small z of
the filament force p(z) is determined for Problem 1 (the twin problem),
We begin with an analysis appropriate to large z,

As a necessary preliminary step we first derive the asymptotic
form of the rela‘a;,ive load deviation A, for the fictitious filament (see
(2.31)). Since it is desirable that the asymptotic approximation for p be
uniform in the dimensionless separation distance A, we find it convenient
to introduce the following notation. Let (C,u) be a function defined for
>0 and =y For any real number n we shall write

O(C,1) = Oy (CR) as (-0

if there exist constants M and Qo (both independent of ) such that

o, =™ for €=2¢,, nzuy, .
Similarly we write

P(E,1) = 0 (C) as [-~oo

if Q_ntp(g,u) tends to zero as ( tends to infinity, uniformly in py for uzuo,
When the subscript u is omitted from the order symbols O, o, it is
understood that the relevant asymptotic estimate holds merely for each
fixed p= M, -

In order to study the asymptotics of the integral equation (2.37)
for by and the integral representation (2,38) for A, it is first necessary
to find the behavior for large { of the kernels K, ¥ and the functions f, g
occurring in_t‘nesé equations, According to (2.41), (2.42) this can be

done once the corresponding information concerning An(C,u) is obtained,
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From (2. 14)

f 2727 21 odr, ¢>0,u20,0=0,1,2,3. (.

Since

2
2 t
JE) =S+ x(t), =20,

where; for some constant k>0 and for all t=0,

| x(t) | < kt* (3.
we may write (3. 1) as
0
(Y :HO e 7 e + R (Gu) 6.
where
R_(C,u) = Jootn'z St (6)T(ut) dt >0, u=0 3
a(Ck) = ] e T b e, TR (3.

Now (3. 2), (3.4) and the fact that !Jo(ut)lgl for all £t20, w20 furnish

the estimate

00
nt2 -Ct .. k(nt2)!
[Rn(C,u)l Skfo P et = M—gn+3 ) (3.
It follows that
An(C, ““'I tn QtJ (ut)dt + Ou(C-n-z') as {~oo for pu=0, (3.

The integral in (3. 6) can be evaluated™ to give the following results,

1)

4)

*see [121, p. 182,
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3 3“ .U- "6
A (C:u): 1-5 ><T > + O (g )5
3 ég4 < 22 éz u Y,

Thus the estimates (3. 7) are uniform in ¢ for y =0,

From (3.7), (2.41), (2.42) we next find

' 5/2 A
1+ -4y uZ 2\ 4
£(C0) = \’{H '”l-—}HH—) +0 (%),
ZCZ 4(1-v) CZ CZ u
g(Cu) = —==Y [H e “ZKHE—Z—)—S/ZW(C"E) >
BT N A= .
3
(G = O (€77,
-3
¥(CN = 0 (C77), )

as (—oo, u20.

as (~o0.

(3.7)

We now turn to an asymptotic analysis of the integral equation

(2.37). Our procedure makes use of an approach which was developed

by Muki and Sternberg [13] for the asymptotic analysis of a class of

integral equations, For Problem 1, reference to (2.33), (2.35) shows

that the integral equation (2. 37) reduces to
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00
<w+—}—-—>A\b(§,)\):f(§,0)+f((§,>\)+f Ay (T, VIK(C-T,0) + K(G-T,1) ]dT,
, =L o

0<{<o0, A22. (3.9)
We assume the existence of a solution A, of (3, 9) with the following
properties,
(i) For each 222, A,(C,A) is continuously differentiable in {
for >0; lim A_(C,)) exists,
-0+
(ii) There is a constant M, independent of A, such that

lagenls™m, C=0, r=22. (3. 10)

(iii) There exist a # >0 and a function §({, \) such that

ALY = CT(EN+0 (E77,
- as {—oo (3.11)

% -%-1
E‘E_(C’M =0, (€ ¥i

where 8((C,7) is uniformly bounded for sufficiently large ( and
A=22, and the lim &({,\)#0 for A=2,

€~ o0
Now consider the integral

00
HCN = | AL MKE-mNdT, (=20, A=z, (3.12)
i |

and, for {>4, decompose I as follows,

Tw Ty $ L, R T &0, , (3. 13)

where

/¢
LGN = | K(C-5NA(rNdr,

0 (3. 14)
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g-/¢
LGN =] RE-m NN T,
/e
¢ C=4, \22, (3. 14)
LGN = | RK(E-m A dn T, > .
C- /¢

00
16N = J"g K(C-1, VA (r, Ndr, )

We shall show that, as{-oo, I3 and 14 predominate in the asymptotic

behavior of I, First consider Il’ From (3, 10),
/C
lenlsm] TIE-r 0] ar
, 0
</ M max [K(C-T,K)I

o<t </C

=/CM max [&mN)],
C-/C=T=¢(

so that, by the third of (3, 8)

-5/2

(6N = 0 (£77%) as (oo, (3.15)

In the second integral in (3. 14) we make use of the first of
(3. 11) and the uniform boundedness of § to write, for sufficiently
large C,

C-/¢
IIZ(C,X)ISAO _[ |K(c-7, 0|7 " ar
/C

for some constant AO , independent of A, From the third of (3, 8) it

follows that, for sufficiently large (,
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C-v/¢C
IIZ(C,MISAI f (C-7)"" v "dr (3. 16)

/C

where the constant Al is independent of A, Estimation of the explicit
integral in (3. 16) then shows that

L(C,N) = o (¢7") if 0<ns3,

as (—oo, (3.17)
L,(CA) = ou(g”3) if u>3

For the integral 13 in (3. 14) a more detailed analysis is

necessary. We set T={-s and obtain

/C
LGN = | K(N8,(C-5,0ds
0 ‘ |

/C /¢
SALUGN] Kis,Nds +] K(s, NIAL(C-5,0-8,(C,N ] ds
| 0 %

or
(0]
1,(60) = (6 0] s, 10s + 300, (3. 18)
where
00 /C '
5,060 = -a 00 | e, nast | K, 0IA,(C-5,0-8,(C 0] ds. (3. 19)
7 ¢

By virtue of the third of (3. 8), the first of (3. 11), and the uniform
boundedness of §, we conclude that the first term on the right in (3, 19)

s -X
is ou(C ) as {—»o0., Moreover,
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/e
1] Kes, M0 (C-5,0 - A, (61 Jas |
0

<f max [A, (Ea0y- cx!}f K(s, M) ds
0<s</(C
oA,
</  max |z (s,0] ] [|K@s,N]ds
¢-/g=ssg OC J

ek
<{s, I ke nlasf e 2,

where the constant B is independent of A, and use has been made of
o
the mean value theorem of differential calculus and the second of (3,11).

00
Further, jo ]K(s, )\)lds can be shown to be uniformly bounded with the

use of (2, 41), (2.15), and (2. 28) for A=2 and -1<v<-§~, It follows that
— -K el
J3(C,7\) =0 (C7) as {~oo,
and hence, from (3, 18)
0 -
13(C, A) = Ag(GN) Jo K(s,)\)ds+ou(g ) as {—~oco. (3.20)
An analysis similar to that applied to I3 can be used to show
that
: oo » ]
1,(C = A*(CA)JO K(s, Nds+0,(C" as (oo, (3.21)

Combining (3, 15), (3.17), (3.'20), (3.21) in (3. 13), (3. 12)

provides the useful formula

loo) ' © -% -2
‘fo AL (T, MKE-T, }\)dT:ZJO K(T,\)dT AL (CN)+o (E ) +0 (C77)

as C-o00, A22, (3,21)
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In an entirely similar way it may be shown that

@ © -% -2
| A vr-n,00dr = 2] K(r,00ar a0 N +o (€40 (C7F)
0 0

as (=o0, A22, (3. 22)
The integrals of K appearing on the right in (3. 21), (3. 22) may be

evaluated with the aid of the first of (2. 36), (2.23), and the first of

(2.29). Thus
o) 00
‘J1 K(T,O)d']’:UJ/Z 5 JK(T,)\)CIT:O 5 )\22, (3,23)
0 0

where w is given by (2.35). Using (3. 23) in (3.21) and (3. 22) we obtain

0O
J Ay (T, N K(C-7,0) +K(C-1, ) JdT = wA (T, \) + ou(g"")+ou(g“2)
0

as C—-o00, A22, (3. 24)
We now return to the integral equation (3, 9) and let {~oo. It
follows from (3, 24) and (3. 9) that A(C, A\) satisfies

(0 T25) 2,060 = K0+ N +ua(r, N o (€ o (¢72)

as (=00, A22, (3.25)

Substituting from the first of (3. 11) into (3. 25), we obtain
U U2
B{Cs ) = {Y-1)C [f(C,0)+f(€,>\)]+ou(l)+ou(C ) as C-o00, A22, (3.26)

We now determine the value of # as follows, Suppose first that n>2,
Then (3.26) and the first of (3. 8) show that §({,A) =0 as {-oo,
contradicting the boundedness of § (Assumption (iii)). On the other
hand, if #x<2, (3; 26) and the first of (3. 8) can be seen to contradict

the assumption lim §({,A) #0. We conclude that
C-o0
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% =2

and hence from (3. 26), (3. 11) that
AL(EN = (r-DIHE0+EC N 40 (€77) as Cmoo, A22.  (3.27)

It follows from (3.27) and (3. 8) that
-5/2

1+v 1-4vy % )\2 ~2
A*(Q,X):(Ynl)__._ 1+[1+W__ m:]<1+__> +o. (C7)
ZC,Z 4(1-v) CZ CZ

as (=00, A\22, (3.28)
An argument analogous to that used above to derive the
asymptotic representation (3, 28) for A, can be applied to (2. 38)
(specialized for Problem 1) to obtain the corresponding result for the
relative load deviation A in the actual filament. The result of these

computations is

AE 3 = (=) 228y . li-2y)

2¢% | 2v(1-v%)

2 e [ 1-4 (114vy) e e
o a2y +__{1- v, v(ltdy H 1+___>
[ 2v(1-v7) ¢ BV a2 ¢

+ 0 (C7) as (=00, A22 (3.29)

The asymptotic formula (3.29), when combined with the definition
(2.31) of A(C,)), furnishes the asymptotic behavior for large z of
actual filament lcad p(z). In terms of the actual coordinate z=2a( on
the filaments, the actual separation distance 4, the filament radius a,

and the two moduli El and E,, we have
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z) _1. 2 1 (14+v) _3_-_2_ 1~w_1_ v(1-2v)
p(oo) El 2 ZZ E2 2(1_\)2)
5/2
Ey via-2v) . 2 [ 1-4v . Bl y(i+ay) 7
Y-g ot aunt e o e
2 2(1-v°) 2% BV By 40009 2
+ ou(z— ) as z=oo, 222 ; (3.30)

the uniformity in (3. 30) refers to the parameter { on the interval f=22a,
Recall from (1. 17) that p(oo) :TrazooEz /El . The asymptotic formula
(3.30) for p(z) is our principal result for large z in the twin filament
problem.

If we set £=00 in the uniform estimate (3. 30) we obtain

E, -E E 2
pz) 1___2.___1._1_+_v[_ F1 M]a_mu(z-z) ag oo, (5, 31)

Equation (3. 31) is the result for a single filament obtained by Sternberg
and Muki [37.

If ¢ is fixed in the interval [2a, oc0), we obtain the nonuniform

estimate
E -E E 2
2L -1 Ly [1 . -"—(—1—‘3;—’1]35+o(z‘2)
pleo 1 2 2(1-v") 1z

as z-o0o , [fixed , 2a<f<oo. (3.32)
We note that the fixed-~4, two filament estimate (3, 32) differs from the

single filament result (3. 31) only in that the coefficient é—z—
z

twice the corresponding coefficient in (3, 31). It should also be

in (3. 32) is

observed that, according to (3. 32), 'p(z)/p(oo) is independent of ¢ for
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large z in the twin filament problem, up to and including terms of
order z"z,

In both the single and twin filament problems, 1 -p(z)/p(w)
tends to zero like Z-Z, and in both problems increases as the modulus
ratio Y= E, /E1 increases for sufficiently large fixed z, Further
comparisons between the single- and twin-filament problem will be
deferred until the next section;.' which is devoted to a discussion of
numerical results,

We turn briefly to the question of the behavior of p(z) for small
z. While it does not seem possible to obtain p(0) directly from (2. 38)
and the second of (2, 31), or (1.13), it is possible to determine the
qualitative behavior of the derivative p(z) of p(z) as z=0, If to the
Assumptions (i) - (iii), Page 27, concerning the solution A*(z, A) of the
integral equation we add the additional assumption that, for some
k>1 and independent of A, there exists a constant M, independent of

)\, such that

oo 0A, k
T lsrenl acem, =2,
0 9¢

it is possible to prove that p(z,f) satisfies™

ap _ o 1-2v a -
- (z,10) = Zi-vma p*(o,ﬂ) log - + O(1) as z =~ 0+, (3. 33)

uniformly in f, £>2a., Apart from the potential dependence of p_(0,¥)

on £, (3.33) is the same result obtained for the single filament

“In this section we have explicitly indicated the dependence of p and
Py on £ as well as z,
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problem by Sternberg and Muki in [3]. The analysis required to
establish (3.33) is similar in broad outline to that employed in [3]
and will be omitted from the present work,

In view of the equilibrium equation (1. 1) for the fictitious

filaments, it is natural to regard

a(z,0) = - 32 (z, 9

as the bond force per unit length acting on an actual filament, The
estimate (3, 33) shows that this actual bond force becomes logarith-
mically infinite at the end of a filament unless p*(O,JZ) =0. Based on
the numerical calculations to be described in the following section,

P4 (0, £) is not expected to vanish,
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4, Numerical procedure for the calculation of the filament force,
Discussion of results for Problem 1 {the twin problem),

A. Numerical procedure, To determine the distribution of the actual

filament force for Problem 1, we must first solve the integral equation
(3.9) for Ayx. This solution is then utilized in the integral répresen—
tation (2, 38) for A, the relative filament force deviation (see (2.31)).
A numerical procedure similar to that used by Sternberg and Muki [3]
will be employed to calculate Ay and A, This procedure is described
below,

As a preliminary step, it is necessary to establish an asymptotic
estimate for the kernel K appearing in the integral equation (3.9)., From
(2.41) and (3. 7) we find

K(C,u):-?—é—\-)--FO(Q—S) as (=0 , for each u=0 . (4. 1)

We also recall the asymptotic behavior of the solution Ay of {3,9);

according to (3. 28),

A*(Q,K) = G(CQZ,M -Fou(g—z) as (o, Az22, (4.2)

where

-5/2

2 2
8(C,N) = (Y-1) —I-—er—\i{l+[1+ Z‘l('f—:j) %2—} <1+%>
C

} . (4. 3)

Our analysis of the integral equation begins by writing (3. 9),

restricted to the interval 0<{ <N, in the form
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<w+ 7%_1_>A*(g, \) = £(C,0)+£(C, )

N+L o0
+{I + l" +f }A>}<(T9>L)[K(C"T,O)+K(C)“T,>\)] d‘T 3
0 °N N+C

0<(<N. (4. 4)

Here N is a positive number to be determined, For fixed large N the
integral }rom N+ C to oo in (4.4) is easily shown to be small by making
use of (4.1), (4.2) and (4. 3). This suggests truncating the integral
equation (4. 4) by dropping the term involving theintegral from N+ (
to co. Moreover, in the integral from N to N+ {, we replace A, by
6/C2 , making use of the fact that N is large, The integral equation
which is to be solved numerically is thus

(04 72) Al C M) = K600+ £(C, N+ 3(C Y

O

NA
+j A>"(T’X)[K(g"T:O)HFK(C—T:)\)]d’T ?
0 ;

0<C<N, (4. 5)
where f is given by the first of (2,42), and
N+C
sen =] AN R (Cor, 04 K(C-T, 1] dr (4.6)
N T ,

in which § is given in (4, 3). In all calculations to be described below,
it was found that N=15/Y-1 is suitable,

Let us now introduce a set of meshpoin‘ts {Ci }?:1 which partition
the interval [0,N] where 0= €1< C2<. .. < CQ:N. Our objective is to
approximate the integral equation in (4. 5) by means of a set of linear
algebraic equations for the values of A*(Q,X) at the meshpoints, It will

be necessary to evaluate the functions f and K that appear in (4. 5) at
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certain arguments associated with the meshpoints, Using (2.41) and
(2. 42); we can express f((,u) and K((,u) in terms of the functions
An(g,u)(nzl,z,i’,) or, if u=0, in terms of the complete elliptic integrals
using (2.25). Further, we can approximately evaluate J((,A) at every
meshpoint Qi<N by appl}ring the trapezoidal rule to (4.6). When

Ci =N (i :b), K({-7,0) has a logarithmic singularity within the range

of integration in (4, 6) (see (2.41) and (2.28))., This singularity must
first be extracted and integrated analytically before the trapezoidal
rule is applied to the remainder of the integral,

The evaluation of the integral in (4. 5) at a meshpoint 'Ci could
be performed using the same technique as that described for the
evaluation of J, However, it is possible to reduce the error in the
numerical integration for a given set of meshpoints and eliminate the
necessity of special treatment of the singularity in K by adopting a
piecewise linear (or polygonal) approximation for /:S*. The integration
can then be performed analytically between each pair of meshpoints,

making use of the identities,

&
f K(s,u)ds = £(&,u) - £(C,0),  u=0, (4. 7)
G
¢ _
‘[C sK(s,u)ds = B({,1) - B(C 1), w=0, (4. 8)
k

where f is known from (2. 36) and

Blow = g {Pn,dchw+ el lelndebwea ehw] }. @9

Equation (4. 9) follows from (2,41) and (2. 15). This integration results
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in a linear combination of the values Z'S*(Ci,,z) so that (4.3) reduces to

the following linear system of algebraic equations

o

[7}1‘“” A*(Ci,?x) = £(C,,0) +£(C, M)+ T(E, M)

Q ¢
n
+ Z jg (mn'r+bn)l:K(§i—'T,0)+K(Qi—‘r,>\):] dr, A=z2, (4. 10)
n=2 n -1
where
A*(Cns >\)'A>}<(€n_1’ >\) A
m_= e , b= AlC N -C m . (4. 11)

Once A* has been determined from (4, 10) and (4. 11), a similar
numerical procedure can be applied to the integral representation
(2.38) for A, TUsing the second of (2. 31), we can finally compute the

actual filament force p(z).

B. Results for the twin-filament problem. We now turn to a

discussion of the numerical results for Problem 1 (the twin-filament
problem), Figures 3 and 4 show.’che variation of the normalized fila-
ment force p(z)/p(o) with distance along the filaments for separation
distances f=2,2a and = 5a, and for several different stiffness ratios Y.
Poisson's ratio for the matrix has the value v=1/4 throughout. Also
plotted in these figures are the corresponding results for a single
semi-infinite filament obtained by Muki and Sternberg [3] and recon-
firmed by the present calculations., We note that the differences
between the single-filament and the twin-filament cases are quite

small even when the filarnents_ are within one fifth of a radius of each
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other (E:Z;Za), Figure 3, The difference between the forces as
compared to the forces themselves never exceeds 15% for the values
of stiffness ratio considered here. These differences become smaller
still as the separation distance f increases, In fact, the single-

and twin-filament cases are essentially indistinguishable for £=20a
over the range of z/a and Y= EZ/El covered in Figures 3 and 4,

We also observe from Figures 3 and 4 that p(z)/p(oo) does not
vanish as z tends to zero, Thus a portion of the load absorbed by the
filament is transmitted directly to its end. This portion of the absorbed
load decreases with increasing stiffness ratio Y:EZ/E1 as is clear
from the figures under discussion.

Equation (3. 33) predicts an infinite initial slope for all the
curves in Figures 3 and 4, although the curves themselves do not
clearly reveal this phenomenon with the existing scale, This infinite
slope corresponds to infinite bond-force density at z=0 and arises
because of the assumptions of small elastic deformations and a perfect
bond between filaments and matrix,

Varying Poisson's ratio for the matrix was found to produce an
insignificant effect on the difference between the single~ and twin-
filament cases,

In Figure 5 the normalized filament force p(z)/p(oo) is again
plotted as a function of position along the filament for £=2,2a, but
here we have included the uniform asymptotic results given in (3.30),
For a given z the quality of the asymptotic approximation decrease

as the stiffness ratio increases,
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Figure 6, which is based on a stiffness-dependent contracted
length scale z/a/y-1 , reveals more explicitly how the stiffness ratio
affects the rate at which p(z)/p(o0) approaches one,

In order to illustrate more clearly the previously noted small
effect of varying £, we have plotted the cases corresponding to
2=2.2a, 3a, 5a, 20a for EZ/E1:5 and EZ/EI =100 in Figures 7 and 8.
The simple filament case also appears in these figures, In Figure 7
the curve for f=20a is omitted since it in fact coincides with the
single-filament case, The value of p(0) is apparently unaffected by
the variation in f, so that the force transmitted to the end of the fila-
ment would seem to be essentially the same in either the twin-filament
or single-filament configuration for the ranges of the parameter
appropriate to Figure 7.

The asymptotic force p(oo) which a filament carries is
proportional to the filament stiffness, However, it is clear that the
rate at which p(z)/p(o) approaches one decreases as the stiffness
ratio Y= EZ /E1 increases., In order to quantify this more clearly and
facilitate comparison corresponding results obtained in [3] for the
single filament case, we introduce the characteristic length b through
the requirement

p(b) = 15 ploo) .

In Figure 9 we have plotted b/a versus the stiffness ratio Y:EZ/EI

for £=2.2a, 3a, Sa, 20a and for the single filament case, It may be

remarked that b is essentially linear in ¥ for ¥ > 100,
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5. Analysis and results for the overlap problem,

In this section the asymptotic character of the filament force
p(z) for large and small z is determined for Problem 2 (the overlap
problem), The numerical procedure employed in the overlap problem

is briefly discussed, as are the associated numerical results,

A. Asymptotic analysis for large z, As in Section 3 our procedure

makes use of an approach to the asymptotic analysis of a class of
integral equations which was developed by Muki and Sternberg [137].
As a preliminary step to finding the asymptotic result for p(z), we
first derive the asymptotic form of the relative load deviation Ay for
the fictitious filament (see (2.31)), For Problem 2, reference to

(2.33), (2. 35) shows that the integral equation (2, 37) reduces to

(00}
(ot 75-)4\*(@) = £(G,0) - £(C-M N 4] A (MIK(C-7,0)4+ K (G-, )] dr
0

0<{<o0, A\22, -00<N<00 ., (5. 1)
While it does not seem possible to derive an asymptotic approximation
for A, which is uniform in A and 7, it is possible to deduce an asymp-
totic formula for fixed X and n. We assume the existence of a solution
A, of (5. 1) with the {ollowing properties for each X and 7

(i) A*(C) is continuous for (=0,

(ii) There exists an >0 and a constant ¢ £0 such that

C -0

A0 = gto(C™ s (oo (5. 2)

*

In the notation employed in this section, we have suppressed the
dependence of Ay and A on the parameters X and N, corresponding
respectively to the dimensionless separation and overlap,
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We shall proceed as in Section 3 by first determining the behavior for
large ( of the integral occurring in (5. 1); and then deducing the
asymptotic form of Ay by balance-of-terms in (5, 1), Since parts of
this asymptotic analysis are similar to that described in detail in
Section 3, we shall only outline the corresponding steps,

Consider the integral
00
J(C) = J‘ A:k(T)K(C'T’O)dT ] CZO 3 (5- 3)
0

and for {>4, decompose Jas follows,

I= 8+, 8+, , (5. 4)
where
/e |
3,00 = | As(nE(c-r,0)dr
0
C-/¢
50 = [ Agmr(c-T,0)ar,
/e

>4, (5. 5)

¢
3,00 = | Ax(mK(C-T,0)ar
-/ ¢

(00
3,(0) = Jg A(TK(ET.0pdT,

The following estimates, valid for fixed A and 1, can be established

by arguments similar to those presented in Section 3,

90 =0(C?) as (oo, (5. 6)
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o -3 -a ,
K(C,O)J Ag(T)dT +0(C ")+o(C ) as C=oo , ifa>1,
0

I, (C) = (5.7)

o(C—OC) as C=oo , if o<a<l.
. (64

3,(0) = A0 ] K(1,00a7+ o(C™) as =00, (5. 8)
0
® -8

3,00 = 8400 | K(1,00a7 +0(C% a5 C-co. (5. 9)
0

Collecting (5. 6), (5.7), (5.8), (5.9) in (5.4) provides the formulas

00
I(C) = 244 () JmKw,O)dfr +K(G0) | Ag(m)dT +0(CTH+0(C7)
0 0

100)
2A>:<(C)J‘ K(T,0)dT 4+ ofC 3) as (=-oc0 , ifO<a<l,
0

o
—~
EY

0

The integrals of K appearing in (5, 10) can be evaluated by using the
first of (3.23),

00
f K(1,0)dT = 2. (5.11)
0

(o)
The asymptotic behavior for large ( of % Ax(T)R(GHT-1, A) dT
can be determined in a similar way, except that in this case we need

only partition the range of integration into the two subintervals [0,/(]

and [/, o). It may be shown that
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o0 -3 &,
KXQ,OLf Ag(T)dT +0(C Yy+o(C ) if a>1,
0 .

100
| Agmr(grr-nhar =
0 -0

o(C

) if O<a<l,

as C-oc0. (5.12)

The first of (3. 8) can be used to show that

4

1+\)T]+O(C—) as (-oo,

C3

1

£(C,0) - £(C-n, \)

for each fixed n, fixed Az=2. (5. 13)
We now return to the integral equation (5. 1) and examine its
behavior as {—o., Making use of (5.13), (5.12), (5.11), (5.10), (4.1)

and (5.3), we find that (5. 1) yields either

o0
(04 20)8400) = - B nt way e+ 2EA [TA (ryar

Lk ¢ S
3 “a .
+o(C ")+o(€C 7) as =00 , ifa>1, (5.13a)
or
(w+ —,Y—f—i->A*(g) - --lg-%\im WAL +0(C%) as oo , O<a<l . (5. 13b)

Equations (5.13 a, b) now permit us to determine the exponent & in the

asymptotic formula (5. 2) for A, provided Ay satisfies
00
zj Ag(TydT - £ 0, (5. 14)
0
If (5. 14) holds, then (5,13 a, b) are easily shown to imply that

. OO
a=3 , c:(y-lﬂl+v4%f A*ﬁﬁdf-wﬂ, (5, 15)
0
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If, on the other hand, (5. 14) is not satisfied, then (5. 13 a, b) only show
that >3,

It must be emphasized that the condition (5. 14) depends on a
global property of the unknown solution A,(C) of (5.1). Analytical
effo;rts to determine whether (5, 14) holds have thus far been unsuc-
cessful, At this stage we are therefore only able to make the following
assertion about the asymptotic behavior of Ay(() for large {: For fixed

n, -oo<n<oo, and fixed A22,

A4 (€) = (Y-léélbw) [ZJ:OA*(T)dT-ﬂ}f o(C™?) as C—»oo,\
- -
LR ELLE S
2 o
Ax(C) = o(€ 7) as (~oo if ZJO Ag(T)dT -1 =0,

There may be values of the various material and geometrical para-
meters which are such that (5. 14) fails, In such a case the second of
(5. 16) shows that A*(Q) tends to zero faster than §-3; otherwise the
first of (5. 16) holds. We have separated the two cases in (5, 16) only

for emphasis; they can clearly be combined into the single statement

QO
A4 (0) = w-nﬂig’l[zj“ A,,<('r)dfr-n}+o(€"3> as (-0,  (5.17)
0

¢

with no restriction like (5. 14),
An argument analogous to that used above to derive the
asymptotic representation (5. 17) for A, can be applied to (2. 38)

(specialized for the overlap problem) to obtain the corresponding
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result for the relative load deviation A in the actual filament., The

result of this computation is

2 Y-1 1 -3
A(g ( JA ydT - ﬂ)[Y 1) (1+v) + -Z-TT'“—-)-:IT —g——§+o(g ) as C,—-»OO .
(5. 18)
Fromthis asymptotic result and the definition (2. 31) of A((), the

asymptotic character for large z of the actual filament force p(z)

follows. Recalling that z =a(, we have

p(z) Y-1 _ Lon Ly 2=V X.’.‘...i__
sl [(Y 1)(1Tv)¥2(1_V)J - 3[f Ay (T)dT - n}

z

+o(z 7) as z 00, (5. 19)

Once again the asymptotic formula (5. 19) for p(z)/p(c0) involves
the unknown integral of A, over the interval [0,00). While this
diminishes the utility of the formula somewhat, it nevertheless remains
useful in connection with the numerical procedure to be described in the
sequel,

One important feature of the asymptotic representation (5. 19)
should be noted, The ratio p(z)/p(oo0) may exceed unity for large z if
(Zfooz*('i‘)d'r -1Nn) is negative, Thus (5, 19) suggests the possibility that
in the overlap problem the filament loads may exceed their values at
infinity, in contrast to the situation in the twin~filament problem,

This phenomenon is discussed further in connection with the numerical

results,
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B. Asymptotic analysis for small z, As in the twin-filament problem

it does not appear to be possible to obtain p(0) analytically from (2, 38)
and the second of (2,31). On the other hand, an asymptotic estimate
for small z of the derivative of p(z) — and hence of the bond force in
the actual filament — can be obtained from (1. 13) by an argument
entirely analogous to that used in Section 3 to derive (3, 33)., Ifitis
assumed that the solution A, of the integral equation (5. 1) has the

property that
k

‘dC<oo

me‘ dA*(Q)
o 146

for some constant k>1, it is possible to prove that p(z) satisfies

d -8y a .
dz(z) = STouraP, (0 log S+0(1) as z~0t , h,f fixed, £22a. (5.20)

This is the same as the corresponding result (3, 33) for Problem 1,
except that p,(0) in (5. 20) may depend on the overlap h as well as the
separation f, Moreover (5,20) may not hold uniformly with respect

to h and ¢,

C. Numerical procedure, The numerical scheme used to determine

A*(C), A(C) and p(z) in the present problem is essentially the same as
that described in Part A of Section 4 for the twin filament problem,
The integral appearing in (5. 1) is again broken up into integrals over
the subintervals [0, NJ, [N, N+C] and [N+(, 00), where N is large. The
integral from N+ to oo is again discarded, and the integral from N to

N+( is analyzed with the aid of the asymptotic estimate (5. 17). The
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integral from 0 to N is evaluated by means of a polygonal approximation
procedure analogous to that used in connection with the approximate
evaluation of the integral in (4. 5),

The second step in this process — that of analyzing the integral
from N to N+ — requires a more elaborate analysis than the corres-
ponding step in Problem 1 because of the presence of the integral of
the unknown solution in the asymptotic estimate (5.17)., This difficulty
is overcome by noting that, according to (5, 17),

l00) N
J Ay (T)dT :I A, (T)dT
0" 0

00 00 2
+ (Y—l)(1+\))J‘ [ZJ Ay (s)ds - ﬂ} 5 +0o(N' ") as N-oo.(5.21)
N 0 T
00
Solving (5.21) for [(') A, (T)dT yields

D (y-1)(1+V) + [’NA (T)ydr
I(D ZNZ uo %
0 - 1~ (Y“l)(1+\))

2
N as N-oo ,

+o(N'2) (5.22)

In the numerical procedure, the error term o(N_Z) in (5.22) is dropped
and the integral from 0 to N of A, is discretized by means of the
trapezoidal rule, Thus, in contrast to the situation in Problem 1,

that portion of the integral in (5. 1) arising from the interval [N, N+C]
contributes to the unknowns in the system of linear algebraic equations

which is ultimately obtained for the values of A, at the meshpoints,
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D. Results for the overlapping-filament problem, We now turn to a

discussion of the numerical results for Problem 2., Figures 10 through
13 show the variation of the normalized filament force p(z)/p(oo) with
distance along the filament for a fixed separation distance £=2.2a; the
overlap increases from h=0 in Figure 10 to h=20a in Figure 13, In each
figure curves are shown for various values of the stiffness ratio

Y:E2 /El’ and for each stiffness ratio the corresponding curve for the
single-filament case is also presented., The latter curves represent
the results of Sternberg and Muki [3] and were reconfirmed by the
present calculations,

No in‘;eresting effect on the load-absorption curves was obtained
by varying Poisson's ratio for the matrix., All results in Figures 10 -
17 correspond to the value v=1/4,

A comparison of Figures 10 through 13 clearly reveals the
effect of progressively increasing overlap. In the first of these figures,
corresponding to zero overlgp, the load absorption characteristics of
a filament in Problem 2 are éeen to be qualitatively the same as those
of a single filament. The principal quantitative difference between the
two cases is the faster approach to its terminal value of the ratio
p(z)/p(o0) in the overlapping-filament case.

In Figure 11 (overlap h=6a) the load-absorption curves for the
overlapping filaments begin to reflect some features not present in the
single-~filament problem, particularly at the lower stiffness ratios.

The curve for Y=2, for example, shows a relatively sudden increase

in load absorption rate at a value of z/a slightly less than the dimensionless
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overlap distance h/a=6, Moreover the values of p(z)/p(ow) associated
with the curves corresponding to Y=2 and ¥ =5 exceed unity over part
of the range of z, This phenomenon, the possible occurrence of which
was anticipated fromthe asymptotic analysis, becomes more
pronounced, at a given stiffness ratio, as the overlap is increased
to h=12a (Figure 12) and ultimately to h=20a (Figure 13), Thus the
"overshoot'" — in which p(z)/p(c0)>1 — appears to be increasing with
increasing overlap and decreasing with increasing filament stiffness,
In order to interpret the behavior described above, we single
out the overlapping-filament curve corresponding to Y=2 in Figure 12,
In one of the given filaments — lé’c us say filament 1 — the ratio p(z)/p(o0)
behaves for small z almost exactly like that for a single filament,
increasing rapidly with z/a until it achieves a value of approximately
0.97, corresponding to a value of z/a of about 5. Thus filament 1 has
almost "forgotten' the presence of its own end at z =0 when z/a=>5
and, furthermore, has taken little notice up to this point of filament 2
which is only one fifth of a radius away (£=2.2a), In Figure 12 for
Y =2, filament 1 begins to feel the effect of the end of filament 2 when
z/a=5 and starts to diverge from the single-filament curve, At a
value of z/a of roughly 11, a further rapid increase of p(z)/p(w) takes
place, reflecting the strong local effect which the end of filament 2
exerts on filament 1., (Recall that for this curve the dimensionless
overlap has the value h/a=12,) One would thus expect that the behavior
of the load-absorption curve under consideration for values of z/a

greater than approximately 11 should be very close to that of a doubly-
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infinite filament in the presence of a semi-infinite filament. One
would presumably conclude that, in the presence of significant overlap,
p(z)/p(o0) in a given filament always exceeds unity near the end of a
neighboring filament.

Figures 14 - 17 show that the effects described above are
substantially diminished when the separation between filaments is
increased to £= 5a; and have virtually disappeared when f=20a, even
for an overlap of h=20a,

There are some general observations which can be made from
these figures, Near the end of a filament, say filament 1, an adjacent
filament has little effect on the load-absorption curve of filament 1,
which is very much like that of a single semi-infinite filament., On the
other hand, where a nearby filament terminates, then there is a strong
local effect on the load-absorption curve of filament 1, In addition, it
would seem that the overlapping-filament configuration reduces the
distance required for a filament to absorb a large fraction of its

asymptotic load, thus decreasing its "ineffective length'',
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