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ABSTRACT 

This study is an investigation of the mixing of density-stratifie d 

impoundments by means of buoyant jets created by a pumping system. 

The deterioration of water quality which often occurs in d ensity- strati­

fie d lake s and res e rvoirs may be counte r acted by mixing. The physical 

aspects of the mixing proce ss are the primary concern of this study, 

although several implications r egarding change s in water quality are 

indicated. 

A simulation technique is d e veloped to predict the time - history 

of changes in the density-depth profiles of an impoundme nt during 

mixing . The simulation model considers the impoundment closed to 

all external influe nces except those due to the pumping system. The 

impoundment is treate d in a one-dime nsional sense, except for the 

fluid mechanics of the three-dime nsional jet and selective withdrawal 

of pumping system. The nume rical solution to the governing equations 

predicts density profile s at succe ssive time steps during mixing , given 

the initial density profile, the area-depth r elati on for the impoundment, 

the elevations of intake and j e t discharge tubes, and the j et discharg e 

and diameter. The change s due to mixing in the profiles of t emp eratur e 

and of a conservative, non- r e acting tracer can b e predicted al s o. 

The results of laboratory experiments and two fi e ld mixing 

experiments in which density-str a tifie d impoundme nts were mixe d 

using pumping systems show that the simulation t echnique pr edicts 

the response of the impoundme nt r e asonably well. 
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The results of a series of simulate d mixing expe rime nts for 

impoundments which have prismatic shape s and initially line ar 

density profiles are given in dime nsionle ss form. For these s p e cial 

conditions, the efficiency of the pumping syste m incr e as e d a s the 

jet densimetric Froude number d e cr e ased, and the time r e qui red for 

complete mixing was a fraction of the characteristic time , T ~ v-/Q 

(where v- is the impoundment volume included b e tween intake and j e t 

elevations and Q is the pumped discharge). 

Recommendations are made for the application of the 

generalized results and for the use of the simulation technique for 

lakes and reservoirs which are not closed systems. 
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CHAPTER 1 

INTRODUCTION 

1. 1 DENSITY-STRATIFIED IMPOUNDMENTS 

This study is an examination of artificial mixing of d ensity­

stratified (temperature-stratified) lakes and reservoirs by means of 

mechanical pumping systems . . This technique is one of s everal alter­

natives proposed to counter the d e t e rioration of water quality in 

impoundments which have b e come density-stratifie d. Abatement of the 

deleterious effects of density stratification on water quality is important 

not only in terms of immediate water supply requirements, but also in 

terms of long-range consequence s such as eutrophication. 

1. 1. 1 Background 

The phenomenon of tempe ratur e stratification of lakes and 

reservoirs has been observe d for several years . The cycle of the 

thermal regimes in impoundments in temperate climates include s a 

period in the summer during which vertical tempe rature gradients 

become large. This stratification persists until fall when the temper­

ature becomes uniform throughout the impoundment and the "fall over­

turn11 occurs. The tempe rature (and d ensity) stratification of the 

impoundment alters the fluid motion and material transport processes 

in the impoundment. The gravitational stability of the d e nsity strati­

fication tends to confine convective motions to horizontal planes and to 
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inhibit vertical turbulent diffusion processes. Often the vertical trans­

port is so arrested that little oxygen reaches the lowe r r egions of the 

impoundment. The resultant vertical profiles of temperature and 

dissolve d oxygen typically show a warm, well oxygenated region close 

to the surface (epilimnion) and a colder, oxygen scarce r egion n ear the 

bottom (hypolimnion). In some cases these two r egions ar e nearly 

isothermal but separate d by a thermocline region which may act as a 

barrier to transport due its large d e nsity gradient. The formation and 

development of temperatur e stratification for a particular impoundment 

is a complex process governed externally by meteorological conditions 

and hydrological processes, and internally by fluid motions and diffusion. 

Studies by Orlob (35), Dake and Harleman (14, 15), Huber and Harle­

man (22), and Wunderlich and Elder (57) have produc e d simulations of 

this process which permit pre dictions of the thermal structure of the 

impoundment to be made. · 

The lack of oxygen transport to the hypolimnion region of the 

impoundment while oxygen is being consumed in this r egion often results 

in anaerobic conditions in the hypolimnion. Under anaerobic conditions 

some chemical constitue nts of the imp oundment are r educ e d and appear 

in solution. Soluble forms of iron, manganese, and phosphorus are 

found in the hypolimnion in concentrations which are orders of magni­

tude higher than exist in epilimnion water. Anae robic d egradation of 

org anic matter can add ammonia and hydrogen sulfide to hypolimnion 

waters. Increased nutrients in solution frequently lead to alg a e blooms, 
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some of which produce taste and odor problems as well as becoming · 

the objects of degradation themselves when they sink to the hypolimnion. 

Reduced forms of iron and manganese, in particular, cause taste and 

odor problems. Detailed studies and observations of the chemical and 

biological changes that occur because of density stratification are 

reported and/or referenced by Wei be (54), Walesh (52), Churchill ( 11 ), 

and Symons ( 46 ). 

The deterioration of water quality in impoundments used for 

water supply may present serious operational problems. Water with­

drawn from the hypolimnion of such an impoundment may be unsuitable 

for use until given extensive treatment. Even if the noxious effects of 

hypolimnion water can be avoided during the period of stratification by 

withdrawing water from the epilimnion, the fall overturn may subject 

the entire impoundment to them until reoxygenation is complete. 

Impoundments which receive large inputs of nutrients and are subject 

to thermal stratification suffer doubly as the nutrients are kept in 

solution in the hypolimnion. This is the case of Lake Erie (28, 2 9) 

where concentrations of nutrients in the hypolimnion are often ten-fold 

those in the epilimr~.ion during the summer. The result of this condition 

is an accelerated rate of eutrophication of the lake. 

1. 1. 2 Alternative Solutions 

One obvious solution to the problem of deteriorated water 

quality is increased water treatment when the impoundment is tapped for 

water supply. While this expanded treatment may be costly, it can solve 

the water supply problem. However, the condition of the impoundment 
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itself is not improved. Thus, improving the quality of the water while 

it is in the impoundment has been attempted. Recognition of the need 

to plan for and to design methods for the treatment of water in the 

impoundment or for the prevention of density stratification has led 

several public agencies to review the possibility of incorporation of 

such systems in the original designs of reservoirs (37, 50). 

Two strategies have been employed to achieve improved water 

quality in the impoundment. One strategy is that of reoxygenating the 

impoundment waters, particularly the hypolimnion region, without 

necessarily altering or eliminating the density stratification. Several 

techniques have been used to accomplish this, including mechanical 

surface aerators (40), compressed-air diffusers (4), and devices for 

supersaturating the water with air or pure oxygen (43). The second 

strategy is to mix the impoundment so that the density stratification is 

eliminated or altered enough for the natural processes of convection and 

diffusion to provide the required oxygen. Attempts to artifically mix 

density-stratified impoundments have been of two types: 1) mixing 

caused by releasing compressed-air bubbles at depth; and 2) mixing 

caused by the discharge of buoyant jet of water into the impoundment. 

The compressed-air mixing techniques have been used to mix 

several impoundments. In some cases the compressed-air has been 

used to operate simple air-lift pumps at the bottom of the impoundment 

which act to induce mixing with an air-water mixture (4, 7, 10). In 

other cases the compressed-air is forced from perforated pipes or 

diffuser stones at the bottom of the impoundment to create air-bubble 
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plumes which induce mixing (21, 25, 30, 47, 48, 49). Many of the 

mixing attempts using compressed-air systems have been successful in 

eliminating the density stratification and in providing for reoxygenation 

of the hypolimnion. Attempts to mix some large reservoirs (30) have 

met with varied degrees of success. The principal feature of most 

compressed-air systems is the addition of a source of buoyancy, the 

air bubbles, which provides the vertical driving force required to 

initiate mixing. The reoxygenation which occurs in impoundments 

mixed with compressed-air systems seems to be due primarily to 

natural processes acting in the absence or reduction of density .strati­

fication. Aeration due to gas transfer from the compressed-air system, 

except in cases of large systems in relatively small impoundments, is 

a secondary effect, and alteration of the density structure is the primary 

function of the system. Several of the field applications of the com­

pressed-air techniques have been successful in preventing the formation 

of density stratification or in preventing its recurrence by intermittent 

operation after an initial mixing. 

Although several compressed-air systems are, or have been, 

employed to mix stratified impoundments (49), design information and 

criteria are scarce. Field experiments have permitted little control 

of the variables and have yielded little empirical data of a general 

nature. Laboratory experiments with compressed-air systems by 

Brainard (6) and Brush, et al. (9) isolate aspects of the problem, but 

they do not provide enough information for design. 
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The s e cond type of technique used in attempting to mix density­

stratified impoundments is that of the mechanical pumping system. It 

consists of a pumping apparatus which simply takes water from one 

elevation in the impoundment and jets it out at another. The operation 

of such a system is the obj ect of this study. 

l. 2 PREVIOUS WORK WITH PUMPING SYSTEMS 

The application of mechanical pumping systems for mixing 

impoundments has been more limite d than the us e of compressed-air 

systems. However , pumping systems may provide more efficient 

mixing than compress e d-air systems. And they may be bette r suited 

for mixing large impoundments than air systems. 

1. 2. 1 Mixing With Fixed Buoy ant Jets 

In 1954 Cooley and Harris ( 13) r eporte d on the design of 

a system using buoyant j e ts to prevent stratification in water supply 

reservoirs in London. The jet inflows were locate d along the bottoms of 

the reservoirs. Since the river water inflows were warmer than the 

hypolimnion waters of the '· r eservoirs, buoyant jets were created. The 

buoyant jet mixing successfully eliminated the d e nsity stratification and 

attendant wate r quality problems . Subsequently, j e t inlet structures 

were designed for other reservoirs specifically to cr eat e mix ing which 

would assure the pr e vention of density stratification (41). 

A similar, though untoward, situation exi sts in the storage 

res e rvoirs of many pumped-storage hydropower projects as pointed 

out by Reynolds (38 ). Typically, the lower d etention pond to which the 
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generators discharge is small and shallow. Temperatures of the water 

in this pond are larger than those in the hypolimnion of the deeper 

(upper) reservoir. When the wate r is pumped to the upper r eservoir 

for storage, a buoyant jet is create d as the water l eaves the penstock. 

Thus, the possibility of mixing of the storage res e rvoir due to regular 

return flows exists. 

l. 2. 2 Mixing With Pumping Syste ms 

A series of reservoir mixing experiments with pumping 

systems has been performe d by a group of investigators with t~e Federal 

Water Pollution Control Administration (23, 46, 4 7, 48, 49 ). Mixing 

using a similar technique has been accomplishe d in England (41). The 

pumping systems used by these groups were mounted on barges and 

were capable of being moved to various locations in the impoundment. 

Water was pumped from the lower reg ion of the impoundment and jetted 

in the upper region. The jet's negative buoyancy with r espect to the 

warm surface water causes it to move downward as well as horizontally. 

Such a pumping system could be operated in the revers e manne r; that 

is, withdrawal from the surface r egion and j et discharge into the bottom 

region. 

The mixings of density-stratifi e d impoundments using this type 

of pumping system showed that stratification could be eliminated after 

relatively short periods of pumping . Improvement of water quality was 

observed upon the elimination of d e nsity-stratification. Studies showed 

that intermittent pumping of the impoundme nt throughout the summer 
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could prevent the recurrence of density stratification. The important 

observation was made that the pumping system was mixing much 

greater volumes of water than that which pas sed through the pump. 

The volumes of water pumped were always less than the volume of 

the impoundment. 

While some data concerning the water quality paramet e rs were 

gathered for these mixings, little data conc e rning the physical mixing 

were obtained. The efficiencies of the systems were calculated based 

on the energies supplied and the energies added to the impoundz:nents. 

In some cases, unmixed lakes in the vicinity were observed in an 

attempt to separate natural on-going processes from the imposed 

mixing. However, consistent design criteria are difficult to extract 

from the field results and comparisons among mixings of differ e nt 

impoundments cannot b e made on a common basis. 

Some preliminary laboratory experiments with pumping systems 

were conducted by Brush, et al. (9 ). The mixing was characterized by 

parameters which were related to the total time for mixing of impound­

ments with discrete two-layer stratification. These parameters are not 

related. to the details of the mixing process, and the experimental 

results were scattered over a rather small range of the parame t e rs. 

The study was too limited to develop d e sign criteria, but it represents 

an attempt to generalize the physical aspects of the mixing process in 

terms of some dimensionless parameters. 
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1. 3 OBJECTIVES AND SCOPE OF PRESENT STUDY 

This study deals specifically with mixing by m e ans of m echanical 

pumping systems. It seeks to provide a simulation mod el for mixing 

with a pumping system which predicts the results of such mixing . The 

simulation model developed is limited to the physical aspects of the 

pumping and mixing processes and allows comparisons of results 

among pumping systems and with other mixing techniques. Simulation 

of the chemical and biological aspects of mixing may follow from an 

understanding of the physical mixing. Gene ralized r e sults which 

reflect the important parameters for the d esign of efficient pumping 

systems are sought from the simulation model and laboratory 

experiments . 

Chapter 2 presents the d e v e lopment of the simulation t e chnique. 

Equations governing the simulation are derived, and the fluid m e chanical 

features of selective withdrawal and buoyant jets coupled with these 

equations are discus sed. The numerical solution of the governing 

equations is treated as well as a physical explanation of the simulated 

mixing process. 

The redistribution of a conservative, non-reacting tracer by a 

pumping system can also be pr edicted by the simulation technique 

(Chapter 3). The use of temperature as a tracer and the incorporation 

of the nonlinear temperature-density relationship in the simulation is 

discussed. 
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The results of laboratory experiments a r e given in Chapter 4 and 

are compared with the re!';ults predicted by the s imulation technique. A 

discussion of the agreement b etween the experimental and simulated 

r e sults include s an evaluation of the as s umptions unde rlying the 

simulation model. 

The simulation r e sults are compar ed with field and laboratory 

experiments by other inve stigators in Chapte r 5 . 

Generalized results from several simulated mixing computations 

are given in Chapter 6. Dime nsionless parameters for the special case 

of an impoundment with an initially linear density profile are used in 

the presentation of the results of the simulations. The calculation of 

relative efficiencies and a g ross m e asure of the de gr ee of mixing 

(based on energy conside rations) allow an evaluation of the importance 

of the various dimensionless parame t e rs. This evaluation of the 

generalized solutions provides some fundamental d esi gn crite ria . 

A summary of the simulation technique and generaliz ed results, 

an evaluation of the applicability of the simulation technique to lakes 

and reservoirs, and recomme ndations for future research are given in 

Chapter 7. 
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CHAPTER 2 

SIMULATION ANALYSIS AND TECHNIQUE 

2. 1 FLUID MECHANICAL FEATURES OF PUMPING SYSTEMS 

A pumping system, for the purposes of this study, is simply the 

means of removing fluid from one elevation in a density-stratified im­

poundment and of returning it to another elevation in the form of a jet 

(Fig. 2. 1 ). In this sense, the pumping system is characterized by its 

properties of transport to and from the stratified body of fluid, and the 

details of its supporting structure and other hardware are not of 

primary concern. 

2. 1. 1 Description of the Fluid Mechanical Features 

In its natural state, without pumping, the impoundment may 

experience fluid motions induced by the wind, .the earth's rotation, 

local atmospheric pressure anomalies, inflows, and outflows. In 

addition to induced convective motions, radiation, evaporation, and, 

molecular and turbulent diffusion of heat and mass act to determine the 

density structure of the impoundment. 

Operation of the pumping system creates additional fluid motion. 

The clearly notable features of this motion are the buoyant jet generated 

at the discharge end of the system and the withdrawal layer established 

where the intake withdraws fluid selectively from a stratified environ­

ment (Fig. 2. 1 ). 
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The characteristic behavior of a turbulent buoyant jet in a 

density-stratified environment, as contrasted with a buoyant jet in a 

uniform environment, is that it does not extend to the surface, but 

rather reaches a maximum height of rise at some lesser elevation. 

The initial positive buoyancy of the jet, and any initial vertical mo­

mentum it might have by virtue of being inclined upward, is eventually 

counter-balanced by the heavier fluid (or negative buoyancy) that it 

entrains as it rises. When the fluid reaches the point of zero vertical 

momentum or the maximum height of rise , it possesses negative buoy­

ancy with respect to the density of the ambient fluid at that elevation 

and consequently flows downward and spreads horizontally, intruding 

into the ambient fluid at ·; approximately its level of neutral buoyancy. 

The essential function of the buoyant jet in the pumping system is to 

entrain fluid from the environment along its trajectory and to deliver 

this fluid to a different elevation in the environment at a volume rate of 

flow several times the initial rate. A more complete discussion of the 

mechanics of the buoyant jet is given in Sect. 2. 2. 4. 

The withdrawal of fluid from a stratified environment differs 

from withdrawal from an environment of uniform density in that fluid 

is removed from distinct layers of the environment and not from all 

parts of it. The essential characteristic of this feature of the pumping 

system is that withdrawal of fluid from the impoundment is restricted 

to a zone of limited elevations and densities. A more complete dis­

cussion of the withdrawal layer is given in Sect. 2. 2. 5. 
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In addition to the gross features of the pumping system d e scribed 

above, several other phenomena may affect the density structure of the 

impoundment'. Turbulent diffusion will be enhanced by shear at the 

interface of the intruding layer and the ambient fluid at the level of 

neutral buoyancy. Circulation patterns may be established by the 

entrainment of fluid by the jet. 

2. 1. 2 Relative Importance of Various F e atures 

That lakes and reservoirs generally remain density­

stratified for long periods during the summer, as previously discussed, 

is evidence that naturally generated fluid motions do not cause rapid 

mixing. Extreme natural processes can act to change the density 

structure of the impoundment rapidly. However, impoundments which 

experience such frequent and rapid natural mixing are unlikely candi­

dates for artificial mixing. The gravitational stability of the stratified 

impoundment makes the impoundment more conducive to horizontal 

fluid motions than to vertical ones. These horizontal motions contri­

bute to vertical mixing by shearing, but this effect seems small. 

While natural processes continually act to alter the density 

structure of the impoundment, an effective pumping system can also 

alter it. This study of the response of the impoundment to the pumping 

system supposes that the mixing due to the pumping system can be 

uncoupled from the natural mixing. Therefore, barring extreme natural 

mixing phenomena, the mixing will be governed largely by the buoyant · 

jet and selective withdrawal created by the pumping system. 
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2. 2 DEVELOPMENT OF ONE-DIMENSIONAL MODEL AND 

GOVERNING EQUATIONS 

The purpose of the simulation technique is to predict in a gross 

way the changes in density stratification during the mixing process. ". In 

particular, the time history of the density-depth profiles is sought. 

This is accomplished by developing a simple model of the pumping 

system and impoundment, which retains the components deemed 

essential to predicting the gross behavior. As a result, the complex 

fluid mechanical details are ignored or presented in crude fashion with 

the expectation that they will have little effect on the overall response 

of the impoundment to the mixing. The success of such simplification 

can be determined only by comparing the simulation model with experi­

mental data. 

2. 2. 1 General Assumptions 

The following assumptions are made for the simple simu­

lation model. They can be altered or made less restrictive should the 

need for more complex models be indicated by the results of this study. 

a) The stratified lake or reservoir is considered to be a closed 

system. Mass is conserved and no fluxes of energy are allowed through 

the impoundment boundaries, except those of the pumping system. 

Since the only influence on the density structure of the impoundment to 

be considered is the pumping system, the problem is an initial value 

problem. That is, the density-depth profiles for a given pumping 

system are determined by the initial density-depth profile. In the 
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physical problem, where tho density stratification h duo to temperature, 

this assumption will be valid if tho mixing proc nuds much more 

rapidly than changes in the heat budget. This will not always be the 

case. However, the present analysis isolates the e££ect of the pumping 

system from all variable external conditions. 

b) The surfaces of constant density (or isopycnic surfaces) of the 

stratified impoundment are assumed to be horizontal planes. This im­

plies that the densities at a given elevation are the same throughout the 

impoundment. The problem is now one-dimensional in that at a given 

time during the mixing pTocess the only variation in density occurs 

·vertically. The assumption is strictly correct under static conditions , 

as guaranteed by hydro.static equilibrium. Although it is obviously not 

corre~t directly in the buoyant jet, return flow layers, or withdrawal 

layer, it is assumed correct for the impoundment in a gross sense 

during mixing for the purpose of the simulation. 

The assumption of horizontal isopycnic surfaces has been used 

in other studies of the temperature structure of lakes and reservoirs. 

Orlob and Selna (35) and Wunderlich and Elder ·(57) have made similar 

assumptions for studies of lake and reservoir temperatures under 

natural and regulated conditions. While the assumption itself was not 

rigorously tes:ted, predictions of temperature structure using it have 

agreed well with field data. 

c) The relationship between the horizontal cross- sectional area 

of the impoundment and the depth is assumed to be known. This infor­

mation permits the analysis, though one-dimensional, to be applied to 



17 

impoundments with shapes which are not necessarily prismatic. Thus, 

for the purpose of the simulation, the impoundment is viewed as stack 

of horizontal layers of differing shape and area, each of which contains 

fluid of constant density throughout. 

d) The buoyant jet and withdrawal layer, the main features of 

the pumping system, are assumed to be the only components of the 

mixing process that require modeling in the simulation. As discussed 

in Sect. 2. 1, other features exist, but they are assumed of secondary 

importance or too complex to model. The mechanics of the buoyant 

jet and withdrawal layer themselves are treated in a three-dimensional 

manner, although their effects on the impoundment are treated in the 

one-dimensional manner assumed above. That is, the physical im­

poundment is separated conceptually into two regions: Region 1 is the 

stratified impoundment exclusive of the buoyant jet and withdrawal 

layer. It is viewed in a one-dimensional sense with the density at any 

elevation the same throughout the impoundment at that elevation. 

Region 2 consists of the buoyant jet and the withdrawal layer. The 

behavior of these elements is governed in part by the density profile in 

Region 1. Changes in Region 1 represent the response of the impound­

ment to mixing and are governed by the transfer of fluid between the 

two regions. 

2. 2. 2 Model and Equations 

A schematic diagram of the stratified impoundment as 

viewed in the one-dimensional sense is shown in Fig. 2. 2. The hori­

zontal cross-sectional area, A, is a function of y, the vertical elevation 
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y 

y 

(a) (b) 

REGION 2 

(c) 

Figure 2.. 2. Sketch of impoundment: (a) horizontal cross- sectional 
area, A, (b) vertical profile of density-stratifying 
agent, c, (c) elemental section 
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with datum at the bottom of the impoundment. Fig. 2. 2b shows an 

instantaneous vertical profile of the density- stratifying agent, c, either 

a concentration of mass or temperature. The stratifying agent, c, is 

both a function of elevation, y, and a function of time, t . 

The pumping system causes fluid to be removed, in effect, from 

the impoundment (Region 1) at various elevations and then to be injected 

back into the impoundment at other elevations. The withdrawal layer 

and buoyant jet (Region 2) remove or entrain fluid from the impound-

ment as a whole. This fluid is transported by the enlarging buoyant jet 

until it is discharged back into the impoundment as a whole at its 

neutrally buoyant level. The volume rate of flow per unit depth into or 

from the impoundment at a given elevation is q (y, t). It is positive for 
e 

fluid transported into the impoundment (Region 1) and negative for 

fluid extracted. 

Discharge of fluid into and from the impoundment at various 

elevations and th~ conservation of total mass require the fluid at some 

elevations to be moved up at a given time and at other elevations moved 

down. The effective transport velocity characterizing this vertical 

movement is v(y, t). 

Fig. 2. 2c shows schematically a horizontal cross-section of the 

impoundment at elevation y with area A, density-stratifying agent, c, 

and the flow 'per unit depth from Region 1 to Region 2, q . 
e 

Continuity requires that: 

a(vA) = qe(y, t) 
ay 

(2. 1) 
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Conservation of the density-stratifying agent, c, requires that: 

ac a 
Aat + ay (evA) = cqe (2. 2) 

Eq. (2. 2) is correct over the depth so long as the value of c associated 

with the fluid discharged into or from the impoundment at the elevation 

y is the same as the value of c at that elevation in the impoundment. 

This condition is satisfied in Regions 1 and 2 in terms of the density of 

the fluid, for fluid is discharged into and from the impoundment from 

the withdrawal layer and jet only at elevations of equal density. 

Combining Eq. (2. 1) and Eq. (2. 2) and simplifying leads to the 

following two governing equations: 

a - (vA) = q 
ay e 

(2. 1) 

ac ac -+v- =0. at ay (2. 3) 

It can be shown that Eqs. (2. 1) and (2. 3) follow from the full 

continuity and tracer conservation equations for an incompressible 

stratified fluid by integrating over the horizontal area, neglecting 

vertical diffusion in the impoundment (Region 1) and assuming small 

density differences to exist. 

The continuity equation relates the vertical transport velocity, 

v, to the transport from Region 2 to Region 1, q , at a given time. The e . 

discharge, q , is a function of the density profile in the impoundment at 
e 

a given time, as well as a function of elevation. Determination of q as 
e 

a function of y at a given time requires the knowledge of the behavior of 

the buoyant jet and withdrawal layer (Region 2) in the density profile in 

the impoundment (Region 1) at that time. 
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2. 2. 3 Physical View of the Governing Equations 

The solution of Eqs. (2. 1) and (2. 3) requires a knowledge 

of the vertical distribution of q , the discharge per unit depth to or 
e 

from the impoundment (Region 1 ), at a given time. An example of the 

vertical distribution of q at a particular time during mixing is given in e . 

Fig. 2. 3. The flows created by the pumping system are shown 

schematically in Fig. 2. 3a, and the corresponding distributionof q is 
e 

shown in Fig. 2. 3b. 

The entrainment of the jet (Region 2) from the impoundment 

(Region 1) is negative and is shown between elevations A and C. The 

detailed distribution of q over this zone is governed by the jet e 

mechanics and is given in Sect. 2. 2. 4. Elevation C is the level of 

neutral buoyancy, and the zone between elevations B and D contains the 

positive return flow from the jet into the impoundment. There is no 

transport of fluid from jet or withdrawal layer (Region 2) to the im-

poundment (Region 1) between elevations D and E. Selective with-

drawal creates the negative transport from the impoundment between 

elevations E and F. The specific shape of the q distribution in this 
e 

zone is given in Sect. 2. 2. 5. There is no further transport between 

regions from the top of the withdrawal layer, F, to the surface, G. 

Continuity requires that 

G 

I q dy = 0 
A e 

(2. 4) 

The integration of q over the withdrawal layer, E to F, yields -Q. , 
e J 

the discharge pumped from top to bottom. Similarly, integration of q 
e 
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over the zone between elevations C and D yields +Q.. The integration 
J 

of q from elevation A to elevation C equals zero, as the discharge 
e 

into the impoundment between B and C is just that fluid which was 

entrained from the impoundment by the jet between elevations A and C. 

The solution to Eq. (2. 3) requires that the vertical transport 

velocity, v(y, t) be known. The transport velocity at any elevation y 

for a particular time is given by the integration of Eq. (2 . 1) 

8(vA) 
ay = q e 

1 Jy 
v(y) = A(y) O qe (s) ds • 

(2. 1) 

(2. 5) 

Given the distribution of q over the depth at a particular time, the 
e 

transport velocity is found by Eq. (2. 5 ), and the distribution of v A is 

shown in Fig. 2. 3c. The transport velocity above the level of neutral 

buoyancy (elevation C) is positive (or upward) and below is negative 

(or downward). 

Sect. 2. 2. 4 and 2. 2. 5 contain the detailed descriptions of the 

buoyant jet and selective withdrawal mechanics necessary to present 

the distributions of q and v in quantitative terms. . e 

2. 2. 4 Buoyant Jet Mechanics Involved to Obtain q 

:r'he determination of the discharge or entrainment from 

. the impoundment into the rising round buoyant jet requires detailed 

knowledge of the buoyant jet. The trajectory must be found so that the 

entrainment q is known as a function of elevation. The elevation at e 
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which the density of the fluid in the buoyant jet is equal to that in the 

ambient fluid of the impoundment (i.e. the level of neutral buoyancy) 

must be known to locate the zone over which flow discharged back into 

the impoundment • . The velocity and width of the buoyant jet must be . 

known as a function of elevation to make the calculation of q , the fluid 
e 

entrained from the impoundment. 

The mechanics of buoyant jets and plumes in uniform or linearly 

stratified environments have been formulated and verified experiment-

· ally by several investigators. Vertical plumes (zero initial momentum) 

in a uniform environment have been studied by Schmidt (42) and by 

Morton, Taylor, and Turner (34). Vertical and horizontal buoyant jets 

(initial momentum) or forced plumes in a uniform environment have 

been studied by Abraham ( 1 ). Vertical buoyant jets in a linearly 

stratified environment have been studied by Morton (33 ). The general 

case of a buoyant jet inclined at any angle in a linearly stratified 

environment has been studied by Fan ( 18) and Fan and Brooks ( 19 ). 

Detailed explanations of the studies mentioned above and of additional 

theoretical and experimental studies can be found in Fan ( 18 ). 

The integral technique introduced by Morton, Taylor, and 

Turner (34) to solve the problem of the simple plume and used by Fan 

( 18) to solve the problem of an inclined buoyant jet in a linearly 

stratified environment is followed here. An abbreviated description of 

this technique, as it was applied by Fan ( 18) for the case of a linearly 

stratified environment is given here as a preface to the extension to the 

case of an inclined buoyant jet in an arbitrarily stratified environment. 

The solution to the latter is required for the mixing problem. 
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Fig. 2. 4 shows · schematically a turbulent, round buoyant jet 

inclined at the origin at an angle 90 with the horizontal. The environ­

ment is line~rly stratified. The general assumptions of the analysis 

are: 

1) The fluids are incompressible. 

2) The Boussinesq assumption requires that variations of 

density throughout the flow field are small relative to the 

reference density chosen. Thus, variations in density are 

neglected in inertia terms but included in gravity terms. 

3) The density of the fluid is assumed to be a linear function of 

either mass concentration (e. g. salt) or temperature for the 

range of variation. 

4) The flow is fully turbulent. This means that the analysis 

holds only in the zone of established flow and must be 

corrected to account for the zone of flow establishment 

near any finite size source. 

5) The longitudinal turbulent transport is small relative to 

longitudinal convection. 

6) The pressure throughout the flow field is hydrostatic. 

7) The curvature of the jet trajectory is small. 

8) The velocity profiles are similar at all eros s- sections 

normal to the jet trajectory. Also, the profiles for buoyancy 

and concentration of a tracer are assumed similar. The 

similarity assumption is met by using axisymmetric 

Gaussian profiles, as follows: 
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-ra /ba 
Velocity: u, (s, r) = u(s) e 

)i< 
(2. 6) 

Buoyancy: p >!<(s,r)- pj,<(s,r) _ p (s)- p(s) -ra/('b)a a - ._a _____ e II. 

-ra /().b)a 
Tracer: cJ:< (s, r) = c1 (s) e 

(2. 7) 

(2. 8) 

The terms uj,c' P!• p)~ and Cfc are the velocity, ambient density, 

density in the jet, and the concentration in the jet, respectively, and 

are related to the center line values u(s ), p (s) - p (s ), c 1 (s) by the 
a 

Gaussian form. The tracer c 1 is present in the jet only. The nominal 

half width of the jet is ./2b (=2cr), and 1 /A 2 is the turbulent Schmidt 

number, assumed constant. The reference density is p = p (0 ). o a 

9) The entrainment relation or volume flux derivative is given 

by the equation: 

dQ/ds = 2Tra.ub (2. 9) 

where Q is the volume flux and a is a coefficient of entrain-

ment, assumed constant. 

Using these assumptions, the conservation equations for mass, 

momentum, buoyancy, together with the geometric relations, are 

evaluated using the integral technique of Morton, Taylor, and Turner 

(34). This method yields the following equations (Fan, 18): 

Continuity d~ (ub2
) = 2a.ub (2. 10) 

d(u
2

b
2 

) x-Momentum ds - 2- cos 8 = 0 (2. 11) 
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y-Momentum (2. 12) 

Buoyancy (2. 13) 

Tracer (2. 14) 

Geometry 
dx 
ds = cos e (2. 15) 

£y= 
ds sin 8 (2. 16) 

where the seven variables u, b, 8, c 1 , (p -p), x, apd yare functions 
a 

of s only. 

Although closed form solutions to these equations are not 

possible, they can be solved by quadrature. For the case of a linearly 
dp 

stratified environment, d; = constant. For this case Fan ( 18, 19) has 

normalized these equations and presented nondimensional solutions, 

obtained by quadrature, as functions of two nondimensional parameters. 

While linearly stratified environments often occur or are closely 

approximated in many situations, many instances exist in which the 

stratification is clearly not linear. In the simulation model an initially' 

linear density profile will be shortly made nonlinear by the mixing 

process. In order to find the behavior of a buoyant jet, and hence its 

entrainment from the impoundment in the mixing simulation, the 

behavior of a buoyant jet in any stable arbitrary stratification must be 

determined. 
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A method of solution for the case of a buoyant jet an arbitrary 

density stratification has been determined ( 17 ). Since the density 

gradient dp /dy is no longe·r constant with elevation and along the jet 
a 

trajectory, the equations cannot be normalized as in the case of linear 

stratification. The solution is found in dimensional parameters. The 

equations for quadrature are obtained by simplifying Eqs. (2. 10) to 

( 2. 16 ) and are: 

db b (pa-p) - = 2a. - :::2 gA. 3 sin 9 ds u p 
0 

d9 _ 2 gA. 2 (Pa-P) 
ds - u 2 p cos 9 , 

= 

0 

dp 
. 9 a 20. ( ) 

sm dy - b Pa-P ' 

dx 
ds = cos 9 , 

.9.Y. - sin 9 , ds -

c1 ub2 = constant 

(2. 17) 

(2. 18) 

(2. 19) 

(2. 20) 

(2. 21) 

(2. 22) 

(2. 23) 

Since the integration of these equations by quadrature is a step-

wise calculation along the trajectory, s, it is possible to vary the 
dp 

density gradient, d;, in Eq. (2. 20) to match the local ambient density 

gradient at the elevation corresponding to that point on the trajectory. 

Therefore, the calculation of the jet parameters proceeds with continual 

adjustment of the ambient density gradient with changes in elevation. 
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The calculation is accomplished using a computer subroutine which 

employs the Runge-Kutta-Gill method of integration with an automatic 

control of the truncation error. A more detailed description of the 

calculation technique is given in Ref. ( 17 ). 

Initial values for the jet parameters and values for the constants 

a. and A are required to begin the calculation. Fan ( 18) found that an 

entrainment coefficient, a.= 0. 082, and a spreading ratio, A = l. 16, 

were satisfactory for his work with buoyant jets in a linearly stratified 

environment. While the technique proposed above for nonlinearly 

stratified environments has not been compared extensively with 

experiments, a comparison with an experiment by Hart (20) for a 

vertical buoyant jet is shown in Fig. 2. 5. The values a. = 0. 082 and 

A = l. 16 were used and the width (2b), maximum height of rise (point b), 

and neutrally buoyant level (point a) are predicted quite well. 

Since the solution outlined above is valid only in the zone of 

established flow (fully turbulent region), the initial values for b and 

(p - p) must be corrected to account for the zone of flow establishment. 
a 

For simple nonbuoyant momentum jets this zone was found by Albertson 

et al. (2) to extend 6. 2 source diameters from the source. Fan ( 18) 

showed that conservation of momentum between the source and zone of 

established flow requires that the initial value of b be D/j2, where D 

is the source diameter, and the initial value of (p -p) be (1 + A2 )/2A2 

a 

times the value at the source ( 17 ). While most buoyant jets associated 

with the mixing process described herein are initially horizontal so that 
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the zone of flow establishment does not require a correction to the 

vertical coordinates calculated, it should be recognized that for jets 

with an initiaf angle of inclination, 90 , the calculation begins at 

y = 6. 2 D sin 80 instead of y = 0. 

The purpose of the calculation of the buoyant jet parameters u 

and b is to allow the computation of the jet entrainment and thus the 

discharge per unit depth, q , from the impoundment. The volume flux 
e 

in the buoyant jet at any y is: 

" 1 (X) 2'1T~:c rdr = 'IT ub2 
• (2. 24) 

The entrainment into the jet (Region 2), -qe, is the change in volume 

flux during a change in distance 

(2. 2 5) 

as given in Eq. (2. 9 ). However, the integrated form of Eq. (2. 1) is 

required to obtain v(y) at a given time for the solution of Eq. (2. 3 ): 

(2. 5) 

The integral . on the right hand side of Eq. (2. 5) 

is the summation of all the jet entrainment up to the elevation y. This 

is simply the volume flux at y minus the initial fluid discharged, i.e. 

y 

S q (s) ds = -'!Tu(y) b 2 (y) + Q. (2. 27) 
o e J 

where Q. is the jet discharge at the origin. 
J 
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Therefore, 

v(y) = -A(~) [ 11' u(y) b
2 

(y) - oJ , (2. 28) 

over the trajeCtory of the buoyant jet only. 

Calculation of the buoyant j e t trajectory and p aramete rs 

provides information as to the e l e vation at wh ich fluid is dischar ged 

back into the impoundme nt and the rate at which this occurs. As pre­

viously discussed, and shown in Fig. 2. 5 and 2. 6, the buoyant j e t 

reaches a maximum height of rise at which the fluid in the j e t is 

negatively buoyant with respe ct to the ambient fluid at that elevation. 

This is the elevation of z e ro vertic al momentum and is predicted well 

by jet mechanics, although the similarity assumptions bre ak down. The 

fluid sinks back slightly to its l e v e l of neutral buoyancy and spre ads 

horizontally into the impoundment. Although mixing occurs as the 

fluid reaches this elevation, the level of neutral buoyancy can be 

approximated by that elevation at which the center line density in the 

rising jet is equal to the density of the environment. For the simulation 

model the level of neutral buoyancy (tnb) is defined as the e levation at 

which 

p(y) = pa(y) , (2.2 9 ) 

jet (Region 2) impoundment (Region 1) 

and the rp.te at which fluid is discharged to the impoundment as 

(2. 30) 
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2. 2. 5 Selective Withdrawal Mechanics Involved to Obtain q 

The extent of the selective withdrawal layer and the 

distribution of discharge from the impoundment in the layer are 

required to determine q for the simulation in this region. 
e 

A detailed account of the development of theoretical models for 

' selective withdrawal in discretely stratified and continuously stratified 

impoundments is given by Brooks and Koh (8). The case of a continu-

ously stratified impound!!lent is representative of the type of stratified 

situation often encountered in lakes and reservoirs. The special case 

of a weak, linear stratification was studied by Koh (27) and others, as 

this assumption makes the problem mathematically tractable. 

Experiments were performed by Dehler (16) to confirm the pre-

dictions of Yih (59) and others for the inviscid, nondiffusive selective 

withdrawal from a linearly stratified impoundment. The flow is 

· considered to be two-dimensional. The thickness of the withdrawal 

layer, o, for these experiments can be expressed as: 

where 

2. 7 ± o. 2 , 

J.. 
a 4 

a = (ie) 
1 dpa 

€ = -- = constant 
- Po dy 

(2. 3 1) 

(2. 32) 

(2. 33) 

g is the gravitational acceleration, q is the dischar ge per unit width, 

and e: is constant. This solution indicates no growth in the thickness of 
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the withdrawal layer with distance from the source, but the inviscid, 

nondiffusive conditions under which it was found make it essentially a 

near- sink solution. 

Koh (26, 27) studied the case of viscous, diffusive selective 

withdrawal from a linearly stratified impoundment. The steady 

equations of motion are linearized for the perturbation solution, and 

the solution is limited to low speed laminar-linear flow. The principal 

features of the solution are a similarity solution for the velocity 

distribution across the withdrawal layer and a withdrawal layer thick­

ness that increases as the one-third power of the distance upstream 

from the outlet. Laboratory experiments in which linear density 

profiles were created using both salt and temperature were performed. 

The theoretical results were verified and extended beyond the limits of 

the theory using the experime ntal results. 

Brooks and Koh (8) point out that selective withdrawals 

associated with lakes or reservoirs are likely to be turbulent due to 

their large scale or large Reynolds numbers. If turbulent resistance 

and mixing are neglected, an inviscid analysis results and, as suggested 

above, applies only near the outlet. However, vertical mixing may 

be important away from the outlet. Brooks and Koh (8) modified and ' 

extended Koh's results for a viscous, diffusive flow to the case of a 

turbulent, diffusive flow. Incorporation of turbulent exchange 

coefficients to replace the molecular viscosity and diffusion coefficients 

as well as some notions about self- generated turbulent flows lead to 
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results amenable to large scale flows. Thes e changes do not affect the 

similarity solution for the velocity distribution across the withdrawal 

layer, but they do provide new estimates of the layer thickness. Again, 

these results apply to two-dimensional flows in linearly stratified 

impoundments. The solutions for two zones beyond the region in which 

the inviscid solution would apply are as follows (8 ): 

for 2. 7 < 2.. < 13. 7 
a 

..:l.. ..:l.. 

-= a 
4 (X )4 8. 4 k 2 a: (2. 34) 

for 
6 > 13. 7 
a 

6 i (X)* a = 7. 14 k 2 a (2. 35) 

where a is defined by Eq. (2. 32) and x is the distance from outlet. The 

coefficient k 2 is a constant of proportionality used in defining a turbu-

· lent diffusion coefficient E as follows: 
m 

(2. 36) 

where u is the maximum velocity in the flowing layer of thickness 
max 

6. E is defined using u and 6 as the characteristic velocity and 
m max 

length scale, respectively. 

Though k 2 is regarded as a universal constant for flow in tur-

bulent withdrawal layers, its value is yet unde t e rmine d. Brooks and 

-2 
Koh present solutions based on a range of values for k 2 from 10 to 

-4 
10 , (see Fig. 2. 7), and an application to a field study r esulted in a 
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value for k 2 of 10 • 
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This produced a value of E of the order 8 cm2 I 
m 

sec which is within the region of values often calculated for the vertical 

diffusion of heat in lakes (35). Additional field data from studies on 

Tennessee Valley Authority reservoirs (51, 58), while too limited to 

-3 
confirm the theory, indicate that k 2 is of the order of 10 • 

The theoretical descriptions of withdrawal layers discus sed to 

this point have required that the density profile in the impoundment be 

linear. Since linear density profiles are not always present or approxi-

mated in lakes and reservoirs, there is strong interest in understanding 

the behavior of withdrawal layers in nonlinear, continuous density 

stratification. Theoretically, the analysis of the nonlinear case is 

quite difficult. 

Wood (55) has shown that similarity solutions for the velocity in 

the withdrawal layer exist when fluid is withdrawn from a reservoir 

into a contracting channel. Other studies (5, 24) using laboratory 

experiments as a guide have produced semi-empirical or trial and error 

solutions for withdrawal layer thickness. Lack of reliable field data 

has hindered verification-of these techniques. 

Changes in the density profile due to selective withdrawal are 

usually small relative to changes due to entrainment by the buoyant jet. 

This is so because the thickness of the withdrawal layer is usually a 

smaller portion of the depth than the vertical extent of the jet, and the 

discharge from the layer may be one or more orders of magnitude less 

than that eventually delivered by the Jet (Eq. 2. 27). For these reasons, 
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a rather simplistic model of the withdrawal layer is utilized in the 

simulation to calculate q for the withdrawal re gion. A more sophisti­
e 

cated approach is possible but not necessarily warranted. 

The withdrawal layer is assumed to be two-dimensional with the 

discharge per unit width defined as the pumped discharge divided by the 

average width of the impoundment at the elevation of the intake. While 

this assumption is not valid near the intake, limited field studies (51, 

53) show some justification for it away from the intake. For a given 

density profile, the withdrawal layer thickness, 6, is estimated by 

assuming a linear density gradient based on the gradient at the elevation 

of the center line of the outlet. A thickness near the outlet is calculated 

using the solution to the inviscid case given by Eq. (2. 31 ). The thick-

ness of a turbulent withdrawal layer at the greatest distance, x, in the 

impoundment from the outlet is calculated using Eq. (2. 34) or (2. 35) 

from Brooks and Koh (8 ). 
-3 

A value for k 2 is assumed of the order 10 • 

These two values for the thickness of the withdrawal layer are assumed 

to bound the range of the growing layer. For the purpose of the one-

dimensional simulation, the mean of these two values is used to 

represent, in a gross way, that part of the vertical profile over which 

selective withdrawal occurs. 

The velocity distribution across a withdrawal layer of this thick-

ness follows the similarity solution found by Koh (26) for the region of 

forward flow. It is symmetric about the center line of the withdrawal 

layer. Fig. 2. 8 shows Koh' s similarity solution for velocity, calculated 

numerically, for half the withdrawal layer thickness. This distribution 
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can be approximated by means of the polynomial 

where 

= u/u 
0 

= y/y 
0 

(2. 3 7) 

y and u are the layer half thickne ss and center line velocity, respect-
o 0 

ively, and y is measured from the layer center line. The discharge per 

unit depth from the impoundment through the withdrawal layer, -qe, is 

simply u times the average width at that elevation. 

As noted in Sect. 2. 2. 3, the integrated form of q or the 
e 

vertical transport velocity, v, is of primary interest for solution of the 

governing equations. Recall that 

(2. 5) 

For the calculation of v(y) in the withdrawal layer, this integral can be 

divided into two integrals: one from y = 0 to the bottom of the with-

drawallayer, yE, and one from the bottom of the withdrawal layer to 

any elevation in the layer: 

v(y) (2.37) 

However, as shown in Sect. 2. 2. 3 , the first integral is simply the total 

pumped discharge, Q., and 
J 
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Q. 1 Jy 
v(y) = *' + A (y} qe (s) d s . 

YE 

(2.38) 

The total discharge from the impoundment (Region 1) into the 

withdrawal layer (Region 2) is known, a priori, to be -Q., wher e as for 
J 

the buoyant jet case it must be calculated for each density profile . 

Using the normalized velocity profile for the withdrawal layer (Eq. 

(2.37}), thesecond term on the right sid~ of Eq. (2. 38) becomes, for 

the lower half of the withdrawal layer 

(2.39) 

The constant B is necessary because the full velocity profile calculated 

by Koh has a small region of revers e flow which is ne glected in this 

formulation. Choosing B. = 0. 96 makes the value of Eq. (2. 39) equal to 

Q , 

-0. 5 ~ at y* = 0 which is the cente r of the withdrawal layer. 

Therefore, for the lower half of the withdrawal layer 

Q. [ l 
V ( y )~ ) = ~ l. - 0. 9 6 ( 1 - Y * ) - 0. 0 3 12 5 ( 1-Y~c ) + 0 • 9 4 57 5 ( 1-Y~c ) - 0. 4 54 5 (1-y ~c ) J 

(2. 40) 

and for the upper half of the withdrawal layer 

v(y~,J = ~fy) ~·5-0. 96( 1-y)~ ) -0. 03125(1-y~c ) +0. 94575( 1-y~c ) -0. 4545( 1-y~ )J 
(2. 41) 

as shown in Fig. 2. 9. 
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Now, given the calculated withdrawal layer thickness, 2y , the 
0 

pump discharge, Q., and the area-depth relationship A(y), one can 
J 

' 
calculate the transport velocity, v(y), at a given time in the zone of 

selective withdrawal. 

2. 2. 6 Summary 

Sections 2. 2. 4 and 2. 2. 5 provide the descriptions of the 

buoyant jet and withdrawal layer which are required in the solution of 

the governing equations. The physical descriptions of the distributions 

of q and v for a particular density profile have been made quantitative. 
e 

Referring to Fig. 2. 3, the transport velocity distribution between 

elevations A and C is given by Eq. (2. 28). The integrated value of 

q between elevations C and E is constant, and v(y) = Q. I A(y). The 
e J 

transport velocity distribution within the selective withdrawal zone can 

be found using Eqs. (2. 40) and (2. 41). 

2. 3 SOLUTION OF GOVERNING EQUATIONS 

The solutions to the equations governing the simulation model 

are the density profiles in the impoundment during mixing._ A numerical 

solution to the governing equations, using the mechanics of buoyant jets 

and selective withdrawal described in Sect. 2. 2, provides the profiles 

at any time during mixing for a given pumping system and initial profile. 

2. 3. 1 Method of Solution 

not possible. 

The solutions of Eqs. (2. 1) and (2. 3) in closed -form are 

As shown in Sect. 2. 2. 4, q , the discharge into or from 
e 

the impoundment, must be calculated numerically in the region of the 
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buoyant jet for a given density profile . The refore, the vertical trans-

port velocity, v, is not available in clos ed-form and is a function of 

the density profile, c, as well as elevation, y, and time, t. Solutions 

to the governing equations are found using numerical techniques. For 

the general case of an arbitrary, but g ravitationally stable,, initial 

density stratification, the· governing equations cannot be normalized to 

produce a set of generalized solutions. Solutions for Eqs. (2. 1) and 

(2. 3) are found in terms of their physical dimensions. 

2. 3. 2 Finite Difference Solution 

A finite difference technique is employed for the numerical 

solution of the governing equations. An explicit scheme is us e d; that 

is, new values at a given point in time and space are ex pres sed in 

terms of values calculated previously at points in time and space. The 

choice of the differencing scheme and the space-time grid is made after 

an examination of the truncation error incurr e d and the stability of a 

particular scheme. Minimizing the truncation error improve s the 

approximation of the differential equation by the difference equation. 

Assuring a stable scheme guarantees that errors will not be amplified 

and that convergence to the solution is possible. A more rigorous 

explanation of these conditions is give n by Richtmye r and Morton (39) 

and examples of their significance in calculations for nonline ar partial 

differential equations are given by Liggett and Woolhiser (31 ). 

The transport velocity, v, can be found for a given d ensity 

profile from Eq. (2. 5), and the variable coeffici ent, v, in Eq. (2. 3) 

for the density-stratifying agent, c, is then determined. Thus, the 
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starting values for v are available for this initial value proble m. That 

the density profile must be known for v to be found dictate s an explicit 

scheme for the difference form of Eq. (2. 3 ). The explicit scheme 

employed to solve Eq. (2. 3) is shown in Fig. 2. 10. The inte rs e ctions 

of the time and space lines are the points at which v and c are calcul-

ated. The local space step or interval is h and the local time ste p is k. 

The differential equation 

oc oc + v- = 0 at ay 

is approximated by the following difference equation (for v > 0 ): 

ci,j+l- c . . -
l,J 

k h 

c. 1 . 
1- , J 

= 0 • 

(2. 3) 

(2. 42) 

The first subscript refers to the space variable, in this case elevation, 

and the second subscript refers to time. This scheme is explicit be-

cause the value of c at time j+ 1 is ex pres sed in terms of values of c 

and v at time j for which they have been calculated pre viously. Simi-

larly, for v < 0 in Fig. 2. 10: 

ci, j+l- ci,j ci+l,j- ci,j 
--~------~ + v ------------~ = k i+l,j 

0 . (2. 43) 
h 

The truncation error for this scheme is the diffe rence b e tween 

Eqs. (2 . 3) and (2. 42 ). A Taylor series expansion of c about the point 

(i, j) in the time and space variable yie lds 
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co 

c. '+1 = c .. + \ l,J l,J L 
n=1 

and 

co 

(n) 
c t (2. 44) 

(2. 45) 

· (n) (n) th 
where c t and c y are the n time and space derivatives, respect-

ively. Substituting Eqs. (2. 44) and (2. 45) into Eq. (2. 42) yields 

ci, j+ 1 - c. c. -ci-l,j l,j 
+ v. 1 . 

1, j 
k 1- , J h 

co co 

1 I kn (n) v . 1 . 

I 
n 

= k c t + 
1- , J 

(- 1 )n ~! 
n! h 

n=1 

Therefore, 

co 

Truncation Error = ~ L :~ 
n=2 

n=1 

(n) + vi-1, j 
c t h 

The differential Eq. (2. 3) requires that 

(n) an-
1 

( ac) 
c t = atn-1 -v oy 

(n) 
c (2. 46) 

y 

co 
n 

\ (- 1 )n !:!__ . c (n) 
L n! y 

n=2 

(2. 4 7) 

(2. 48) 

The truncation error to order n=2 using Eqs. (2. 4 7) and (2. 48) is 
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- .!. [(k ) - J ~ -!: IQy E.£] ( Truncation Error- 2 vi- 1,j vi- 1,j h aya zl.ot oy . 2.49) 

The first term of the truncation error is identically zero if, 

h 
k = vi-1,j • for v > 0 • (2. 50) 

[
av oc] . In the second term in Eq. (2. 49 ), the product at oy 1s usually small, 

oc ov . 
although it is difficult to bound as oy ca11 be large and at 1s r e lated to 

the density profile through the jet equations in a complicated way. 

Thus, the time step, k, must be made sufficiently small, in addition 

to the relation given in Eq. (2. 50), for the truncation error to be 

minimized. 

Similarly, for regions where v < 0, the truncation error is 

minimized by choosing 

for v < 0 (2. 51) 

and k (i.e. ~t) sufficiently small. 

The stability of the difference scheme is investigated to assure 

that errors are not amplified in the numerical calculation. The solution 

to the initial-value differential Eq. (2. 3) can be written as the Fourier 

series 

where: 

c = I A eim (y-vt) 
m 

A 
m 

m= -ClO 

1 Jd im = d c (y) e Y dy 
0 0 

(2. 52) 

(2. 53 ) 
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and c (y) is the initial distribution of c. Similarly a Fourier series 
0 

solution for the difference equation can be found. Consider the ex­

t im'h 
pression ctj = As e J , where A, s, and m are constants; h= /Jy, 

the space step, i = Ff; and j, t are the positions in space and time, 

respectively. If the expression Cg • is substituted into the difference 
"", J 

Eq. (2.. 42.), it satisfies the equation provided that S is given by 

s = s(m) 

And thus, 

co 

=I 
m=-co 

imjh 
e 

(2.. 54) 

(2.. 55) 

givE?s the exact solution to the difference equation, if Am is defined by 

Eq. (2.. 53). 

Because Eq. (2.. 55) is formulated by s e parating the space and 

time variables, each harmonic grows independently of the others as 

time goes on. s(m) is the growth factor for the amplitude of the mth 

harmonic for a time interval, k, and the corresponding factor for the 

d 'ff · a1 t• 1 t• · -imvk 1 erenh equa 10n so u 1on 1s e . A comparison of the two 

growth factors shows that they a gree through first order terms: 

s(m) = 1 k . vkhm2 + 
v 1m - 2. 

(2.. 56) 
-imvk . vmk2 

e = 1 - vk1m - - 2- + • • • • • 
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For any harmonic the two factors can be made to agree to a given 

accuracy by choosing k and h sufficiently small; however the re will 

always exist a harmonic, some high value of m, for which the growth 

factors disagree significantly. The Fourier series solution for the 

differential equation is assumed absolute ly conve r gent. The r efore for 

a chosen accuracy for the solution, harmonics above a sufficiently hi gh 

order are negligible in the true solution. The se high order harmonics 

can be falsified in the approximate or difference solution so long as 

they do not become amplified to the extent that they are no longer 

negligible. Therefore, if 

max l s(m)j ~ 1 (2. 57) 
m 

no harmonic is amplified, otherwise some harmonic is amplified ~ith-

out limit as time, t, increases. 

It can be shown that Eq. (2. 57) reduces to: 

and 

k v- ~ 1 
h for v > 0 

for v < 0 

(2. 58) 

(2.59) 

Eqs. (2. 50) and (2. 51) from the truncation error analysis and 

Eqs. (2. 58) and (2. 59) from the stability analysis require that 

h - fi::L_ 
k-M-vi-l,j for v > 0 

for v < 0 

(2. 60) 

(2. 61) 
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This condition means that the ratio of the space interval to time 

interval must equal the vertical transport velocity locally (~ = I v \ ). 

Requiring these relations for the difference equations, Eqs. (2. 42) and 

(2.43) become: 

ci,j+l = ci-l,j for v > 0 (2. 62) 

ci,j+l = ci+l,j for v < 0 (2. 63) 

Now, these simple relations indicate that the density-stratifying 

agent, c, at a given elevation and time is moved upward (or downward, 

if v < 0) exactly one space interval, b.y, in time 6t. This result is 

sound physically, for this is the distance through which a parcel of fluid 

containing c would move in time 6t. In addition, from the point of 

view of the numerical calculation, it minimizes the accumulation of 

truncation error which occurs for stable schemes with ~ < v and 

which appears as the''pseudo-dispersion" pointed out by Bella and 

Dobbins (3 ). 

For a given density profile at a given time, the vertical trans-

port velocity varies with elevation, y. Hence if the time step, 6t, is 

kept constant during the calculation, the space step, 6y, must vary 

with elevation. The result is a time - space grid on which time intervals 

are regular and space intervals are irregular. This is illustrated 

schematically in Fig. 2. 11. The irregular space intervals differ for 

each time step as each n~w density profile results in new values of v. 
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Eq. (2. 3) can be viewe d as a kine matic w av e e quation. It h a s 

one set of characteristics in the time -space plane with slope s £f = v 

along which c = constant. The nume rical calculation sche m e giving 

Eqs. (2. 62) and (2. 63) e sse ntially d e fines these characte ri s tics . Line s 

in the t - y plane which conne ct points of consta nt c trace out these 

characte ristics. 

2. 3. 3 Outline of Comput ation T e chnique 

Simulation of mix ing by a pumping system involve s the 

synthesis of the numerical calculation schem e and the knowledge of the 

buoyant jet and withdrawal laye r m e chanics describe d previously. Th e 

e ssential ingredients of the simulation have b een d e v e lope d, and how 

they are combined for the compute r program is presente d h e r e. The 

general structure of the pro gram i s d e scribed rathe r than its intricate 

details. A flow chart (Fig. 2. 12) shows the basic elements of the 

computation. A listing of the program is given in the Appendix. 

The initial density profile in the impoundme nt (Region 1) is 

introduced by giving density value s at uniformly space d inte rvals on the 

elevation axis. These intervals are chosen small e nough so that any 

gravitationally stable density profile can b e app rox imate d. The value s 

of the horizontal cross- sectional are a of the impoundme nt, A, a r e al s o 

introduce d on this y - axis. The e l evation of the intak e tube and di s cha r ge 

jet are specified relative to this ax is. 

The jet diameter, initial a ngle of inclination (usually z e ro) and 

dischar ge are specified. ·. The r e f e rence density, p , is chos en as the 
0 

ambient density at the elevation of the jet, and the initial den sity of the 
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Figure 2. 12 Outline of computation procedure 

FLOW CHART FOR COM PUTATION 

Enter i nformation about impoundme nt (Region 1) 

- initial density pr ofile 

- horizontal areas 

- values of p and A gi ven on a regularly spaced y-scale 

' I Plot out initial density profi le I 
+ 

Enter information about jet and withdrawal laye r (Region Z) 

- el e vation s of jet and intake tubes 

- width of impoundment at intake e levation 

- distance from intake to impoundment boundary 

- jet diameter , dischar ge , and initial angle of inclination 

• I Enter time step, 6 t, for calculation I 
t . I Integrate the jet Equatio':ls (Z. 17) - (Z. ZZ) by quadrature and calculate v using Equation (Z. ZS)r--

&t each s tep of integration up to the level of neutral buoyancy . 

• I Uae interpolation subroutine to get v' s for jet zone on the regul~rly spaced y-scale. j 
t 

I 
Calculate the mean withdrawal layer thickness from Equations (Z. 31) - (Z. 35) andj 

find v's on the regularly spaced y-scale using Equation s (Z.40) a nd (Z.41) • 

• 
Calculate v's for the zone between the level of neutr a l buoyancy and 

bottom of the withdrawal laye r according to Equation (Z. 64). 

• ~Find the d isplacements from the re gularly spaced intervals by 

I 6y = v 6t, thus creatin g a new y-s cale with irregular intervals • 

• Shift the density values from the old regularly space d y-scale to the cor r esponding 

displaced positions on the new irregularly spaced y-scale a ccording to Equations (Z. 6Z) 

and (Z. 63 ) to for in the new density profile after time step, 6t. 

+ I Find the new densities on the re gularly spaced y-scale by using the interpolation subroutine. I 
t I Compare the new density profile with the initial d e n sity p rofile and check the conservation of mass 

I - can calculate the increase in potential ene r gy of the system. 

t 
Output 

- plot and/or print out new density profile 

- print out ·r esult• of mass b a l ance &nd in c rease in potential energy. 
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jet discharge is the ambient density at the elevation of the intake tube, 

corrected for dilution in the zone of flow establishment. With these 

initial data, the jet traje~tory and parameters are calculated as des­

cribed in Sect. 2. 2. 4. The integration proceeds along the jet trajectory 

in intervals equal to or smaller than intervals on the vertical axis at 

which density data are specified. This allows the local ambient d e nsity 

gradient to be continually adjusted in the equations. But it means that 

the local vertical transport velocity in the impoundment (Re gion 1) due 

to jet entrainment (Region 2) is calculated (Eq. (2. 28)) at irregularly 

spaced elevations. 

The calculation of the jet parameters continues until the differ­

ence between the center line density of the jet and the ambient fluid at 

that elevation is zero (Eq. (2. 29)) or has just changed sign. This 

elevation is the location of the level of neutral buoyancy. It is assumed 

that thi& is the terminal level of the fluid in the jet, although, physically, 

fluid with negative buoyancy overshoots this level before reaching 

approximately this position. It is convenient for later calculations to 

have the values of the integrated jet entrainment known at regularly 

spaced elevations. An interpolation subroutine uses the integrated jet 

entrainment values calculated along the jet trajectory to find the values 

of jet entrainment and vertical transport velocity at regularly spaced 

intervals from the level of the jet up to the level of neutral buoyancy. 

The calculation of entrainment from the impoundment (Region 1) 

by flie withdrawal layer requires an estimate of its extent. The thick­

ness of the withdrawal layer is approximated by the mean of the inviscid 
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flow thickness, Eq. (2. 31), and the turbulent flow thickness Eq. (2. 34) 

E (2 35) d . ss d 1. S t 2 2 5 The two-dimensional or • q. . . , as 1scu e n e c . . · · 

discharge, q, required for these e quations is obtained by dividing the 

pump discharge by the average width of the impoundment at the elevation 

of the withdrawal tube. The required density gradient is chosen to be 

that gradient which exists in the impoundment at the elevation of the 

withdrawal tube. The calculation of the turbulent flow thickness 

requires . the distance from the withdrawal tube to the point for which the 

calculation is made. The distance between the withdrawal tube and the 

impoundment boundary toward which it is directed is used. The mean 

of the inviscid flow thickness and turbulent flow thickness is rounded off 

to an even number of space intervals on the y-scale. The vertical 

transport velocity in the impoundment (Region 1) due to the withdrawal 

layer (Region 2) is calculated at each of these intervals using Eqs . 

. (2. 40) and (2. 41 ). 

Between th~ level of neutral buoyancy of t~e jet and the bottom of 

the withdrawal layer (between elevations C and E in Fig. 2. 13), no 

transport of fluid occurs between the impoundment (Region 1) and the 

jet or withdrawal layer (Region 2 ). The integration of q from y = 0 
e 

to any elevation in this zone equals Q., since the return flow to the 
J 

impoundment (between elevations B and D) is simply the total volume 

flux entrained by the jet from the impoundment (between elevations A 

and C) plus the jet discharge, Q.. The vertical transport velocity in 
J 

the impoundment in this zone is then 
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Q. I A(y) 
J 

(2. 64 ) 

and it is calculated at each of the re gularly spaced intervals on th e 

y-scale in this zone. 

From the top of the withdr awal laye r to th e surfac e (between 

elevations F and G), there is no transport b e tween R egion 1 and R egion 

2. The inte gration of q from y = 0 to th e top of the w i th drawal laye r 
e 

equals zero, and further integration to the surface doe s not change the 

integration. Therefore, the v e rtical transport velocity b e twee n 

elevations F and G (Fig. 2. 13) is z e ro. 

Now the values of v e rtical transport v elocity a r e known at 

regularly spaced points on the y- axis. The velocitie s b e low the l ev e l 

of neutral buoyancy are ne gative and those above it ar e positive . The 

irregularly spaced displace ments, f::.y = v !::,t, a r e calculate d for a fixed 

time interval, !::.t. A value of f::.y i s calcula t e d a t each r egularly s pac e d 

point on the y-axis, as shown in Fig. 2. 14 . The distanc e f::.y is a b ove 

the regularly spaced points, if v is positive , an d b elow them, if v is 

n egative. A new set of irregularly spaced poin ts on the y-axis is 

defined by the points f::.y away from the r egula rly space d poin t s . The 

densities at these new points are th os e which existed at the r egula rly 

spaced points before the increase in time, f::. t, a s d e scribe d in Se ct. 

2. 3. 2. These density values ar e assigned to the n e w irregularly space d 

points. 

The physical significance of th is s hifting of d ensity values from 

the regularly spaced points to points f::.y away is mad e cle ar by looking 

at the level of neutral buoyancy. At this point (s e e Fig . 2. 14) the 
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separation of the positive and n egative velocities occurs. The ne gative 

(downward) 6y is such that the volume included between the l e vel of 

neutral buoyancy and this new elevation is just that required to contain 

the total fluid entrained by the jet in time 6t. The positive (upward) 6y 

is such that the volume included between the l e vel of n e utral buoyancy 

and this new elevation is just that require d to contain the fluid dis­

charged by the pump in time 6t. Since the density value shifte d to each 

of these new points after time 6t is that which existe d at the l e vel of 

neutral buoyancy, a re gion of constant density is formed between these 

points. This region corresponds exactly to the volume of fluid delive red 

by the jet in time 6t to the level of n eutral buoyancy (Eq. (2. 30)) and 

whose density was assumed to be the same as that of the ambient fluid 

at this elevation (Eq. (2. 29)). 

The density values for time 6t after the start of mixing are now 

known at irregular intervals on the y-axis. They are found at regular 

intervals by using an interpolation subroutine. The change in the 

density profile iri time interval 6t is shown schematically in Fig. 2. 13d. 

The calculation can now recycle and begin computations based on the 

new density profile. However, b efore recycling a check of the mass 

balance for the system is made by comparing the density profile just 

calculated to the initial density profile. 

2. 4 FLEXIBILITY OF COMPUTER SIMULATION 

Several extensions of and additions to the simulation t e chnique 

are possible. The basic structure of the simulation is such that 

changes are possible in the description of the buoyant jet or withdrawal 
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layer. Should one wish to consider a buoyant plume (no initial 

momentum} in place of a buoyant jet, the trajectory and entrainment 

calculations for a simple plume could replace those for the buoyant 

jet. Similarly, a more detailed model of withdrawal layer entrainment 

taking into account nonlinear density profiles, three-dimensional effects, 

or drag along the bottom (53) might replace the simple model pre­

sented here. A better approximation of the level of the spreading jet 

could be incorporated into the simulation. 

Additional modifications to the simulation model may make it 

possible to include factors which were neglected in the model presented 

here. Vertical diffusion of heat and mass might be included. The 

calculation of the redistribution of a conservative, non-:reacting tracer 

substance due to mixing is described in Chapter 3. This technique 

might be used to model temperature profiles, and thus permit the 

inclusion of the nonlinear temperature -density relation in the simulation. 

Coupling a comprehensive heat balance simulation (as studied for 

natural impoundments ( 14, 15, 3 5, and 57)) to the mixing simulation 

would yield a better approximation to the actual mixing process in the 

field. 
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CHAPTER 3 

MIXING OF A TRACER SUBSTANCE 

3. 1 EFFECT OF MIXING ON A TRACER 

The vertical r edistribution of the chemical and biological con­

stituents of an impoundment due to mixing has a strong influence on the 

water quality. Transport of dissolve d chemical constituents in a redu­

ced state to regions with higher dissolved oxygen content results in 

oxygenation and probably in precipitation from solution. Similarly, 

transport of water with high concentrations of dissolve d oxygen to 

regions of low concentrations of ox ygen may satisfy some of the oxygen 

demand there. Nutrients transported to the upper regions of the 

impoundment may stimulate the growth of the phytoplankton population. 

Also the mixing may result in a redistribution of phytoplankton for 

which temperature and light conditions e ither stimulate or retard 

growth. As the vertical profiles of the various chemical and biological 

constituents seldom resemble the density profile before mixing , the 

distributions of these substances during mixing are different from the 

density profiles produced. Moreover, the reactions among the various 

constituents during mixing are likely to modify their profiles in addition 

to the alterations caused by physical mixing. 
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3. 2 SIMULATION OF THE MIXING OF A CONSERVATIVE, NON­

REACTING TRACER 

The redistribution of a conservative, non-reacting tracer due 

only to the physical mixing process is considered as a first approxi-

mation to the complex processes involved. Such a tracer repr esents 

a dissolved chemical or biological substance which has little effect on 

the density of the solution relative to the effect of t emperature. The 

tracer remains in solution without combining with other substances. 

In keeping with the simulation mode l for d ensity- stratifying substances, 

the tracer is assumed to have the same concentration at a given 

elevation throughout the impoundment (exclusive of the jet and with-

drawal zones) at a given time. The distribution of the tracer con-

centration, c , is therefore one -dimensional and is expresse d as a 
s 

vertical profile (Fig. 3. 1 ). The vertical profile of the trac e r con-

centration at the start of pumping may have any shape. 

The tracer concentration c is now include d in the analysis for 
s 

the density-stratifying agent, c (Se ct. 2. 2. 2). The analysis is 

changed only by the addition of a conservation relation for the tracer, 

c (y, t). Conservation of the tracer requires that: s 

ac 
s 

at 
8(c v A) 

+ s = c >!<q • oy s e 
(3. 1) 

Eq. (3. 1) is similar to Eq. (2. 2) for the density-stratifying agent except 

that the right side of Eq. (3. 1) has the term c "''(q . The term c >~q s e s e 

represents the flux of tracer put into or taken from the impoundment 
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(Region 1) by the jet and withdrawal region. For the case of the 

density-stratifying agent, the conc e ntration in that term is the same as 

the concentration on the l eft sid e of the e quation because fluid is always 

taken from or put into the impoundme nt a t the same density as exists at 

that elevation in the ambient fluid. In the cas e of the tracer , concent-

rations in fluid taken from the impoundme nt by withdrawal and jet 

entrainment are those which exist in the ambient fluid. That is, 

for elevation A ~ y ~ elevation C 
(see Fig. 3. 1) • 

and elevation E ~ y ~ elevation F 

However, the concentration of tracer in the fluid returned to the im-

poundment by the jet at the level of neutral buoyancy is not necessarily 

the same concentration of tracer that exists in the ambient fluid at that 

elevation. That is, 

c >::(y, t) "f c (y, t) 
s s (3. 3) 

for elevation B ~ y s: elevation D (see Fig. 3. 1) . 

The concentration of trace r in this fluid depends on the conce ntrations of 

of tracer in the fluid withdrawn at the intake and in that e ntraine d by j e t 

from the impoundment. The conc entration of tracer in the fluid 

returned to the impoundme nt by the j e t at the level of neutral buoyancy 

(ytnb) for particular density and tracer profiles is: 

c s *(Ytnb' t) = 
JYtnb 

c (y,t) q (y,t) dy + c (intake, t) Q. 
0 s e s J 

JYtnb 
qe(y,t) dy + Q . 

0 J 

(3. 4) 
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where: 

Y = elevation of level of neutral buoyancy, tnb 

qe = volume rate of flow per unit depth entrained by jet, 

Q. = jet discharge. 
J 

Since c * = c for all elevations except the re gion where fluid is 
s s 

returned to the impoundment by the jet, Eq. (3. 1) becomes 

ac 8(c vA) 
s + --=-s__ _ c q at ay - s e (3. 5) 

for all y except between elevations B and D (Fig. 3. 1 ). Combining 

the continuity relation, Eq. (2. 1), with Eq. (3. 5) yields 

ac s 
at+ 

ac 
s v-- = ay 0 , (3. 6) 

for all y except between elevations B and D. Eq. (3. 6) is analogous to 

Eq. (2. 3) which is the governing equation for the density-stratifying 

agent. Therefore, the finite difference solution to Eq. (2. 3) now 

predicts the local displacements of the tracer profile also. Although the 

solution for tracer concentrations in the region of flow returned to the 

impoundment is not analogous to that for density, the concentration for 

this region is readily cC!lculate d using Eq. (3. 4). 

The computation technique r e quires little modification to 

accomodate tracer profiles, as all of the changes in the tracer con-

centration profiles are due to the same local displacements calculated 

for the density profile (with the exception of the concentration calculated 
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by Eq. (3. 4)). The technique outlined in Sect. 2. 3. 3 is followe d. Any 

initial profiles for tracer substances can be provided as input to the 

calculation. As mixing proceeds, the modified tracer profiles are 

calculated at progressive time intervals. 

An example of the effect of mixing upon the profile for a single 

tracer is shown in Fig. 3. 2. Profile s of tracer conc entration and 

density are shown for two times during mixing as w e ll as the initial 

profiles. The discontinuitie s in the slope of the tracer profiles during 

mixing are due to the fact that the tracer concentration in the fluid dis­

charged by the jet into the impoundme nt at the level of neutral buoyancy 

is not the same concentration that exists in the ambient fluid at tha t 

elevation. These discontinuities are smoothed out in the lower regions 

of the impoundment as the level of neutral buoyancy occurs at g reater 

elevations. 

3. 3 TEMPERATURE AS A TRACER AND THE NONLINEAR 

TEMPERATURE-DENSITY RELATIONSHIP 

The simulation technique was developed with the assumption that 

the density of the fluid is a linear function of salt conc entration or of 

temperature (see Sect. 2. 2. 4). The assumption is valid for salt con­

centrations over a large range (0-70 g rams/liter), but the assumption 

begins to break down for temperature over a rang e of 10°C at certain 

parts of the nonlinear temperature-density relationship (36). In parti­

cular, the range of temperatures (10°C - 30°C) often e ncounte r e d i n 

temperature-stratified lakes and res e rvoirs is larg e e nough to make the 

assumption of a linear tempe rature-de nsity r e l a tion invalid. 
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The effect of this assumption on the simulation results can b e 

determined by using temperatur e as a tracer substance in the simu-

lation. Whe n the assumption of a linear temperature-de nsity r elation-

ship is valid, the profiles of temperature are directly proportional to 

the density profiles. However, it was found that for surface t emper-

0 0 
atures about 30 C and bottom temperatures about 10 C the tempe rature 

profiles during mixing exhibited discontinuities at the level of neutral 

buoyancy. That is, the temperature of the fluid delivered to the im-

poundment by the jet of this eleva tion was not the t e mpe rature of the 

ambient fluid. The temperatur e profile records this anomaly b e cause 

the buoyant jet mechanics are such that buoyancy (based on density) 

flux is conserved while heat flux is not. 

The simulation technique can be modified to account for the non-

linear temperature-density relation and to conserve heat (adiabatic 

mixing). The nonlinear temperatur e -density relation 

. (3. 7) 

is made available by providing values at fixed intervals of tempe rature 

and using an interpolation subroutine. The initial t emperature profile 

is converted to a density profile using Eq. (3. 7 ). The buoyant jets 

mechanics (Sect. 2. 2. 4) are changed to conserve heat flux 

instead of buoyancy flux (based on d e nsity). Temperature is introduced 

in analogy to buoyancy (see Eq. (2. 7)): 

(3. 8) 



72 

where: T 0 = temperature of the ambient fluid 
a 

T 0 = ' temperature of the jet. 

The conservation of buoyancy flux (Eq. (2. 13)) is replaced by 

[ J l+A. 2 .., d T~ 
_i.. ub2 (T0

- T 0 ). = b.., 
ds a ~ uds ' (3. 9) 

and the density difference, (p - p ), required for the buoyancy force in 
a 

the jet dynamics is calculated from the temperatures 

( p - p) = ¢ (TO ) - ¢ (To ) • 
a a 

(3. 10) 

The jet equations, simplified for quadrature (Eqs. (2. 17) to (2. 23) ), 

remain the same with the exception of Eq. (2. 20) for (p - p) which is 
a 

replaced by: 

(3. 11) 

and 

(p -p) = ¢(To)- ¢(To). 
a a (3. 10) 

With the exception of these changes, the simulation is carried out as 

described in Chapter 2. 

Although the assumption of a linear temperature-density 

relationship is valid where "small" temperature differences are 

involved, care must be exercised in the application of the simulation 

technique to temperature-stratified impoundments as the temperature 
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diffe rence between the fluid at the surface and bottom may b e large 

enough to make this assumption invalid. If this is the case, the 

simulation should be modifie d to conserve h e at and account for the 

nonlinear tempe rature-density relationship as outline d above . This 

procedure was employed for simulations of themixing of t e mpe ratur e ­

stratified lakes in the analysis of some field expe riments in Chapter 5. 

3. 4 EXTENSION OF THE TECHNIQUE TO REACTING TRACER 

SUBSTANCES 

The simulation of the mixing of a conse rvative, non-reacting 

tracer substance predicts the redistribution of the tracer due to 

physical mixing, but in many case s reactions would occur among sub­

stances before the mixing was complete d. A more useful approximation 

to the situation which exists when reactions are possible makes use of 

the simulation developed for a non-r e acting trac er. Since the cal­

culation proceeds for fixed time i nt e rvals, it is proposed that the cal­

culation be halted after a g iven number of time inte rvals. The profile s 

of reacting substances at this time can provide the con c e ntr a tions 

required to make calculations of chemical r eactions among the various 

tracer substances. These calculations may change the total mass of 

given substance in solution and/or alter the concentration profile for 

that substance. The n e w concentration profile s which r e sult from 

these reactions may then b e e nte r e d into the simulation program, the 

density profile r emaining as it was when the s imulation was h alte d. 
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The mixing simulation is continue d for the give n time inte rval, and 

then it is stopped to allow the r e actions to be recalculated. Thus, in a 

stepwise manner the simulation for the non-reacting tracers may be 

used to provide an approximation to the actual situation where 

substances react during mixing • 

. .. 
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CHAPTER 4 

LABORATORY EXPERIMENTS 

4. 1 PURPOSE OF EXPERIMENTS 

Laboratory experiments were conducted in which density­

stratified impoundments were mixed by pumping. The objectives of 

these laboratory experiments were: 

1) to confirm the validity of the simulation model and its 

ability to predict the gross behavior of the mixing process; 

2) to demonstrate those phenomena associated with the mixing 

process which are not modeled by the simulation technique; 

and 

3) to investigate the effect of scale on the mixing process. 

The experimental procedure is discussed in Sect. 4. 2 and the 

experimental results and discussion of these results are given in Sects. 

4. 3 and 4. 4, respectively. 

4. 2 EXPERIMENTAL PROCEDURE 

Experiments were carried out in three laboratory impoundme nts 

of different shapes and sizes. Density stratification was produced in 

these impoundments by using salt (NaCl) water solutions. Mixing was 

accomplished by using a laboratory pump connected to the intake and 

discharge tubes in the tank. Concentration profiles were recorded at 

re gular time intervals during the mixing process. 



76 

4. 2. 1 Description of the Experimental Apparat us 

The three laboratory impoundments used w e re a 2-me ter 

tank, a 9-meter flume, and a 40-meter flume . The two flumes were 

closed off near their ends to form tanks and were horizontal for all 

experiments. Instrument carriage s were mounted on each tank to hold 

conductivity probes. Stationary instrument holders were us e d for 

positioning jet and withdrawal tubes and additional conductivity probes. 

Each tank had a glass -walled section permitting observation of the j et 

and withdrawal tubes. The laboratories in which the tanks wer e locate d 

were temperature-controlled. The physical dimensions of the impound-

ments are shown below: 

Tank Dimensions in Meters 
--- L e n gth Width Depth 

2 -meter tank 2.23 1. 08 0. 61 

9-meter flume 8.67 0. 61 o. 55 

40 -meter flume 36.32 1. 1.0 0.40 

The arrangement of a typical laboratory mixing experiment is 

shown schematically in Fig. 4. 1 and photo graphically in Fig. 4. 2. 

Copper tubes were bent to provide horizontal intake and discharge. The 

circulating pump was a Jabsco laboratory pump, Model P - 6-M6, run by 

a 1 /8-horsepower electric motor. The dischar ge was determined with 

a Fischer-Porter Tri-Flat Tube Flowrator (No. 3-F-3/8...:5). Both 

glass and steel spheres were used in the Flowrator to achieve the 

necessary range of discharge measurements (5-29 cm3 /sec) . The 
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flowmeter was calibrated with various salt solutions, and the dischar ge 

measurements were found to vary less than l% over the range of salt 

concentrations (0. 2-10 g/1} and temperatures encountered in the 

experiments. Since this variation was small, the discharge was not 

adjusted during an experiment, though the density of the fluid discharged 

through the flowmeter did change slightly during mixing. 

The positions of the withdrawal tube and jet dischar ge tube in 

the tank were varied. In all experiments the tubes were aligned one 

above the other in the same vertical plane. In most of the e xperiments 

the jet tube was positioned near the bottom of the tank and the with­

drawal tube was above it, near the surface. In the other experiments 

the positions of the tubes were reversed. The intake and outlet tubes 

were directed along the longitudinal center line of the tank near one end 

or at the center (Fig. 4. l ). Speciiic data regarding the location of the 

tubes, the hydraulic parameters, and initial density profiles for each 

experiment are given in Tables 4. l and 4. 2, Fig. 4. 9 and in Sect. 4. 3. 

4. 2. 2 Density Stratification 

Density-stratified environments were created in the labor­

atory impoundments by using specially prepared salt water solutions to 

achieve density differences and employing several mixing and filling 

techniques to produce vertical density gradients. 

The shape of the density-depth profile was dependent on the 

manner in which the tank was filled. Density profiles in lakes and 

reservoirs often exhibit a two-layer shape, that is, one region of 
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uniform density upon another. A two-laye r system was used for one 

experiment. It was produce d by simply spr eading a laye r of tap water 

carefully on a · layer of salt solution. 

The density profile s produced for all of the other experiments 

were continuous. Such stratification is common in natural impound -

ments. For many of the experiments d ensity profiles were nearly 

linear. Any continuous stratification of arbitrary shape was acceptable 

as an initial density profile for the nume rical simulation of the mixing 

process. 

Stratification for many of the experiments in the 2-me ter tank 

was accomplished by a technique allowing continuous fillin g (Fig. 4 . 3 ). 

A 600 liter polyethylene tank was filled with salt solution of concen-

tration, c . It was equipped with a propeller stirring device to k eep it 
0 

well-mixed. Tap wate r with conc entration c1 was dischar ged into this 

tank from a second tank at a constant rate . From this well-mixed tank 

was withdrawn salt solution of concentration c. A mass balance for 

the well-mixed tank shows that, if the dischar ge of tap wate r into the 

tank is one-half of the dischar ge from the tank, the resulting concen-

tration c will vary linearly in time from c to c 1 • These dischar ge 
0 

conditions were met by using flow meters and valve s for some case s. 

When the well-mixed tank and tap water supply tank had equal eros s-

sectional areas, a siphon between them satisfie d this dischar ge 

condition. The salt solution taken from the w ell-mixed tank was dis-

charged into the 2-meter tank by way of a floatin g radial spreader (see 

Fig. 4. 4) which was used to minimize the mixing during spre ading . 
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10702 

Figure 4 . 4 Photograph of surface spreading device 
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The density profiles generated by this continuous filling t ech.­

nique exhibited continuous density variation from bottom to top. 

Deviation from linear density-de pth profiles was often the r e sult of 

'filling so rapidly that the stirr e d tank did not r emain well-mixed and 

mixing was induced by rapid spreading in the tank. 

Stratification for experiments in the 9-meter flume, the 40-meter 

flume and some experiments in the 2-mete r tank was accomplishe d by a 

technique ·better suited for conta ine rs of large volume than the c ontin­

uous filling technique . This t echnique for gene rating linear profiles has 

been reported by Clark, Stockhaus e n, and Kenne dy ( 12 ). It exploits the 

fact that the turbulent .wake created by a moving plate perpendicular to 

the plane of discontinuity in a two-layer density profile, generates a 

density-depth profile which is nearly line ar (Fig . 4. 5 ). 

The two-layer density profile was formed in e ither of two ways. 

The first, described previously, involved simply spre ading the less 

dense layer upon the denser layer or injecting the denser fluid under a 

less dense layer. This method of achieving a two-layer syste m may 

require much time, when large volumes are involve d. Also, it may 

result in a surface of density discontinuity b e twee n layers which is not 

horizontal, if the spreading or injection of fluid causes conside rable 

mixing betwee n layers. A second method was found to be more 

efficient. .The tank was divide d in two by a temporary dam. The 

re gions on either side of this dam were filled with tap wate r to depth 

required for the mixing experiment. To one side was· adde d the amount 

of salt required to produce a salt solution of the maximum density 
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Figure 4. 5 Sketch of arrangement of plate towed through 
a two-layer system 
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desired for the experiment. Afte r this re gion had been mixed to 

uniformity by manual agitation with paddles, the d am was lifted and 

the resulting density underflow formed the required two-layer s ystem. 

Since each tank was equipped with an instrument carriage 

mounted on rails for longitudinal traverses, the mixing plate was 

attached to the carriage with a single vertical strut (Fig. 4. 5 ). The 

plates were approximately one centimeter shorter in length than the 

widths of the tanks in which they were use d. They were 10 c e ntimeters 

wide and 0 · 6 centimeters thick. The plate was positioned across the 

width of the tank, .as shown in Fig . 4. 5, with its center line at the inter­

face of the two-layer system. The carriage and plate were moved 

along the tank manually in the 2-meter tank and 9-meter flume , and by 

an electric motor in the 40-meter flume. The plate was moved at 

approximately 30 em/ sec in cases of depths of the order of 40 centi­

meters and at approximately 10 em/sec in cases of depths of the order 

of 20 centimeters. 

After the plate was towed through the two-layer system, the tank 

was left undisturbed for two to five hours to allow turbulent mixing to 

die out and hydrostatic equilibrium to be reached. The density profiles 

generated by this technique varied continuously from top to bottom and, 

in several cases, were nearly linear. 

4. 2. 3 Determination of Dens ity Profiles 

The salt solutions were made using tap water and Morton 

Culinox Food Grade Salt 11999 11
• The value of the density of the fluid in 

grams/milliliter was inferred from the salt concentration and tempe r-
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ature of the fluid using convenient tables prepared by Owe ns (36), 

based on data in International Critical Tables. The concentration of 

the salt solution was determined by measuring the conductivity of the 

fluid with conductivity probes calibrated with a set of standard 

solutions. The concentration of salts in the tap water (infe rred from 

conductivity measurements) varied among the experiments and was 

always less the equivalent NaCl concentration of 1 gram/liter. The 

maximum concentration of salt solution used was 10 grams /liter. 

Comparisons of density measurements using a pycnometer with 

tabulated density values show good agreement. 

The conductivity probes used were of two similar types. One 

type, developed at the Massachusetts Institute of Technology, c·onsisted 

• 
of platinum plate electrodes 0. 32 centimeters x 0. 32 centimeters x 

0. 76 millimeters placed 0. 32 centimeters apart at the base of a glass 

tube. This type of probe is shown in Fi g. 4. 6 and describe d by Koh 

(26). A second type of probe of similar design was constructed for 

this study. The electrodes were of the same size and spacing, but 

they were connected to short pure platinum wires which were silver 

soldered to copper wire leads which extended to the electrical connector 

at the top of the probe. These leads were insulated from one another 

by plastic tubing from the electrodes to the connector, and the glass 

tube containing them was not evacuated. Probes of both types 

measured approximately 50 centimeters from electrodes to connector. 

The electrodes were cleaned initially in chromic-sulfuric acid and 

platinized in the standard manner (44). The electrodes were kept in 
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SOLDERED CONNECTION 

DE KHOTINSKY CEMENT 
FILLER 

EVACUATED GLASS TUBE 1/411 I. D. 

TUNGSTEN LEADS 

PLATINUM ELECTRODES 

1/8" SQUARE 

LONGITUDINAL SECTION 

CROSS SECTION 

IMM 
6689 

F i gu re 4 . 6 Conduc tivity probe (from Koh (26) ) 
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distilled water when not in use and cleaned before each use in sulfuric 

acid by electrolysis. Platinization was repeated during the course of 

of the investigation whenever r e duced sensitivity was detected. No 

difference in the quality of performance was discerned between the two 

types of probes. 

The conductivity measurements were recorded by means of a 

two channel Sanborn 150 recorder with 1100 AS Carrier Pre-Amplifier. 

The probes were connected to the recorder through an external half­

bridge circuit as shown in Fig. 4. 7. 

The probes were calibrated by means of a set of standard salt 

solutions which varied in concentration from 0. 125 to 10. 0 grams/liter 

(a density range of 0. 99811 to 1. 00507 grams /milliliter at 21 °C). A 

typical calibration curve is shown in Fig. 4. 8. The calibration relation 

was nonlinear because the range of concentrations used was large. 

Since the time between successive measurements of the conce ntration 

profile in the tank was often hours, readjustment of the recorder's 

bridge was occasionally necessary. Therefore, calibration curves 

were obtained for each conductivity probe just prior to each measure­

ment of a concentration profile. Following each profile measurement, 

the baseline or lowest concentration for which the probe had been 

calibrated was checked. 

The probe wa-s held by a small clamp which was attached to a 

vertically traveling scale with vernier reading to ± 0. 01 centimeter. 

Vertical concentration profiles were measured by fixin g the probe at 

uniform vertical intervals and recording the conductivity measurement 
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at that position. Measurements were usually made from the s urface 

downward. Since fluid was displaced by the probe's downward move­

ment, a record of 30 to 40 seconds duration was made to allow r elative 

equilibrium to be reached. Ver tical profiles from the bottom upward 

were made occasionally to confirm the downward measurements, but 

the necessity of disturbing the upper region to ge t the probe to the 

bottom made this method l ess attractive. The length of time r e quir e d 

to make sufficient measurements to d e lineate the concentration profile 

clearly ~as a function of the depth and detail of the d ensity structure 

for each experiment. With the exception of the initial profile measured 

before pumping be gan, the time r e quired was of the ord e r of 10 to 15 

minutes. This time interval was always small r e lative to the time 

• required for significant and m easurable change s in the d e nsity profile 

to occur. 

Two conductivity probes w e r e used simultaneously during 

several experiments so that lateral gradients in d e nsity might be 

observed as well as vertical distributions. The l eads from each probe 

contained on-off switches. This allowed one probe to be off while the 

other was on and prevented any interaction of the e l ectric fields. Thus, 

vertical profiles were measured, at two diffe rent locations in the tank 

with measurements made alternately at the same elevations within 30 

to 40 s econds of each other. Fig. 4. 9 and Table 4. 2 indicate the 

locations of the probes relative to the jet and withdrawal tubes. 
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Table 4. 2 Summary of Locations of Jet and Intake Tubes and 
Vertical Density Profile Measurements 

Locations of Jet and Profiles 

Exper. Tank Location of Tube d d. Locations of Vertical w J 
Number Stations on <i, em fro~ bottom Profile Measurements 

Fig. 4. 9 Stations on <f. 

2m 2.00 m 0.24 45.0 0.22 m 

2 2m 2.10 m 3. 8 44.2 0. 30 m 

3 2m 2. 00 m 1. 0 25. 1 0. 30m 

4 

5 2m 2. 00 m 40.7 2.6 0. 30m 

6 2m 2.00 m 38. 0 2.4 0. 30m 

• 
1 2m 2. 00 m 41.4 0.43 0.30 m 

8 2m 2.10 m 30. 0 o. 11 0.10 m 

9 2m 2. 10m 40.0 0.43 0.10 m 2. 00 m off <t, 

10 2m 2. 10m 35.0 0.43 0.10 m 2. 00 m ofi Ct.. 

11 9m 8.47 m 35. 6 0.43 0.82 m 4.47 m 

12 9m 8. 40 m 35.7 0.43 1. 25m 4. 50 m 

13 9m 8. 35 'ffi 35. 8 0.43 1. 25m 4. 50 m 

14 9m 5. 67 m 36. 3 0.43 0.98 m 8.10 m 

15 9m 5. 69 m 5. 3 40.7 0.97 m 8. 00 m 

16 9m 8. 35m 20.0 0.43 1. 10m 4. 50 m 

17 40 m 17.4 m 19. 0 0.43 3.34 m 18.50 m 33.66 m 

18 40 m 18.5 m 19.0 0.43 3. 50 m 18.50 m 33.50 m 
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The temperature of the fluid in the tank was m e asured during 

each experiment with an 8-inch Weksler 15° -32°C mercury the rmo­

m~ter with divisions of 0. 1° C. The temperatures of the fluid in the 

2-meter tank and 9-meter flume were generally uniform and constant 

throughout the tanks. Detailed temperature measureme nts w e r e made 

in the 40-meter flume where unsteady vertical and longitudinal t e mper-

ature gradients were found to exist. 

The density values inferred from the conductivity measur e ments 

reflect small variations in recorded conductives, calibration curves, 

and temperature measurements. The accuracy of the density value s is 

estimated to be ± 1 x 10-
4 

grams/milliliter. This estimate is for the 

relative densities of any one experiment. Although the absolute d e nsity . ' 

values may be less accurate b e cause tap water conductivities were 

assumed due only to concentrations of NaCl, the relative densities 

govern the mixing process. 

4. 3 EXPERIMENTAL RESULTS 

4. 3. 1 Presentation of Typical Experime ntal R e sults 

Results from several mixing experiments are presented 

m Figs. 4. 10 to 4. 30. The results are in the form of depth-density 

profiles at various times during the mixing process. The hydraulic 

data and locations of the probes, jet, and withdrawal tubes for each 

experiment are given in Tables 4. 1 and 4. 2, respectively. 

The density profiles d e t e rmine d in the experiments ar e indicated 

by the data points. Each point represents the density, as inferre d 

from the conductivity measurements, at a given elevation, location in 
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the tank, and time. A set of points for a give n dimensionle s s time 

t/T d e fines the measured profile at that time . The dimensionles s 

t ime is defin~d as t, the time elaps e d since the start of pum ping , 

divide d by T, a characteristic time for the s ystem. This ch aracte r­

istic time, T, is found by dividing the volume of the tank b e tween th e 

elevations of the jet and withdrawal tube s by the pump dischar ge. The 

d e nsity values are expressed i n the form (p-I) x 1000, whe r e pis the 

density of the fluid and I is an arbitrary constant of ord e r grams/ 

milliliter which allows the product (p-I) X 1000 to be a positive numbe r 

of order 1 gram/milliliter. This notation provid e s conve nie nt 

expression of the d e nsities and d e nsity diffe r e nces encounte r e d in 

the experiments • 

.A..ccompanying each set of experime ntal points is the d e nsity 

profile predicted by the simulation t e chnique for that time . The 

measured initial density profile is p rovid e d as in put to the simulation , 

and density profiles at any time after pumping b egins are gen e rate d by 

the simulation technique. Only those density profile s at times corr e s­

ponding to expe rimentally m e asur e d profile s ar e pre s ented: 

The vertical location and insid e diamet e rs of j e t and withdrawal 

tubes are shown to scale on the d ensity profile s. The r e sults pre s ente d 

include experiments from the 2 -meter tank (Ex p e rime nts No s . 5, 6, 7, 8 , 

9, and 10), 9-mete r flume (Ex p e rime nts Nos. 12, 13, 14, 15, -and 16) and 

40-mete r flume (Experiments Nos . 17 and 18). For s e v e ral exp e ri­

ments (Nos. 10, 12, 13, 14, 17, and 18 ) density profile s measure d simu­

ltaneously at different locations with the tank are pre s e nte d. 
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4. 3. 2 Ge neral Description of R e sults 

The de gree of agre e ment between the density profile s 

measured and those predicted by the simulation varies from experiment 

to experiment. However, a general description of the results will be 

presented and particular exceptions will be noted. 

The initial density profile for each experiment was measured 

just prior to the beginning of pumpin g. If the fluid in the tank w e r e in 

hydrostatic and thermodynamic equilibrium, the initial d e nsity profil e s 

would be identical at all locations in the tank. The r e sults for experi­

ments in which simultaneous initial density profiles were m easure d at 

two or more locations show that this was not always the case. The se 

differences in the initial density profiles in the same tank w e re most 

apparent in the 9-meter and 40-meter flumes. The initial d e nsity 

profiles selected as input for the simulation r esults pres ent e d usually 

were chosen to approximate one of the initial profile s measure d. 

Therefore, in experiments where density profiles provided ar e for two 

or more locations in the tank, the simulation results are the same for 

both locations as the same initial profile was used. An exception to this 

practice is Experiment No. 10 for which the simulation at each location 

is based on the particular initial d e nsity profile measured at that 

location (see Figs. 4. 15 and 4. 16 ). 

Most of the density profile s were measure d at inte rvals on the 

order of hours, so that clearly d e tectable change s in the profile could 

be discerned. As a result of this, many of the details of the change 

. in the initial profile due to e ntrainment by the buoyant jet cannot be 
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d e t e cted in the first profile afte r pumping had b egun. Most r esults 

show that the density profile n e ar the j e t is n e arly uniform b y this 

time. Experiment No. 6 (Fi g. 4 . 11) was arranged so that s e v e r al 

d e nsity profiles in the lower r egion of the tank w e re m e asure d s h o rtly 

after pumping had begun. Although the quantitative a gr eem e nt b e tween 

experiment and simulation is not particularly good, the changes of the 

initial density profile during mixing are in qualitative a gr e ement. 

Simulation results plotted at more freque nt intervals than those pre ­

sented show these details to a g r e ate r d egr e e. 

In Fig. 4. 11 the profiles produc e d by the simulation extend 

pnly to the center line of the dischar ge j e t tube and do not r e ach the 

bottom of the tank. The simulation technique incorporates the 

assumption that entrainme nt by the jet f rom the ambient e nvironme nt 

occurs at elevations along the c ent e r line t raj e ctory of the jet. Thi s 

assumption is quite good as the buoyant j e t axis b e comes v e rtic a l, but 

it is clear that while the axis i s n e arly horizontal s ome e ntrainme nt 

will occur below the jet center line. For most of the expe riments the 

jet was sufficiently n e ar the bott om of the t ank tha t, for the purposes of 

the simulation, it was assume d to b e at the bottom. H e nc e , most 

simulated density profiles e xtend from the s urface to the bottom. 

Fig. 4. 23 shows the r e s ults of Expe rime n t No . 15 i n which the 

jet was located near the surface and the withdrawa l tube was locat e d 

near the bottom of the tank. Both experimenta l and simula tion r e sults 

look similar, though inverted, to the results of othe r expe riments . 
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The general characteristics of the a gr eem ent b e tween experi­

mental and simulation results for given location in the tank ar e 

summarized here. The a gr eem e nt in the r egion of the d e n s ity p r ofil e 

which has been influenc e d by the buoyant j e t is satisfa ctory. Afte r the 

initial stages of mixing, densitie s ar e uniform over much of thi s 

region. The r egion of transistion b e tween the zone influe nc e d b y th e 

buoyant jet and the zone of no entrainme nt, or purely kinematic 

motion, shows a marked differ enc e b e twe en experimental and s imu­

lation results. Simulation results in this re gion display a discontinuity 

in the slope of the density profile . This occurs becaus e the simulation 

is constructe d under the assumption that the jet spreads uniformly 

across the impoundment at the level of neutral buoyancy. Expe rime ntal 

r es ults in this r egion of the densit y profile generally do not demonstrate 

this discontinuity. Moreover, m e asured d e nsity profile s usually 

extend beyond simulated profiles in this r egion. In the zone of kine ­

matic motion, where the initial profile is simply shifte d upward, e x­

perimental r esults show better a gre e ment with simulation results at 

elevations near the withdrawal re gion than near the re gion influe nced 

by the jet. This i s due to the tendency of experimental profiles to have 

the region of jet influence e xtende d further than the simulation. The 

changes in the d ensity profile in the withdrawal re gion are small 

relative to the effects of the buoyant j e t in other parts of the profile. 

Expe rimental results agree qualitatively with simulation results, if 

not quantitatively. Gene rally, experimental profile s in this r egion s h ow 
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a gr eement with the simulations with regard to the location of the top 

of the withdrawal layer as the e l evation beyond which the profile does 

not change. 

The d iffe r ences among density profiles taken at several 

locations in the tanks during mixing experiments are shown for Experi-

ments Nos. 10, 12, 13, 14 , 17, and 18 in Figs . 4 . 15 and 4 . 16; 4 . l7 and 

4. 18; 4. 19 and 4. 20; 4. 21 and 4 . 22; 4 . 25 , 4 . 26, and 4. 27; and 4. 28 , 

4. 29, and 4. 30; r espectively. The purpos e of these measurements 

was to investigate the validity of the assumption that the isopycnic 

surfaces are horizontal planes. As pointed out previously, the initial 

d ensity profiles measured in some experiments indicate that this 

condition did not exist initially as require d by hydrostatic equilibrium 

probably because of heat exchange with the laboratory environment. 

As a r esult of this initial dis equilibrium, it is difficult to distinguish 

d e viations from horizontal i sopycnic surfaces due to the mixing pro-

cess from those due to the initial density structure . 

Comparisions of density profiles at different locations in the 

tanks show that at a given time during mixing the isopycnic surfaces 

are generally not hori zontal planes. The longitudinal variations of 

density along the tank at a given elevation and time are generally not 

extr e m e. Longitudinal d ensity gradients based on the data from 

measured vertical density profile s (corrected for temperature differ -

-4 -5 
ences ) wer e less than 10 g /ml/m and, average gr adients were 10 

-6 
to 10 g /ml/m. 
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The effect of the location and orientation of the pumping system 

is e vident in the measure d d ensity profiles for some experiments . No 

density profiles ar e presente d which wer e measured directly in or i n 

the vicinity of the buoyant jet, as thes e profiles obviously h a v e local 

disturbances not representative of locations r emote f rom the j e t . H ow­

ever, d e nsity profiles equally far r emove d from the jet also indicate 

sloping isopycnic surfaces. Consider profiles from Experiment No. 17 

at Sta. 3. 34m (Fi g. 4. 25) and Sta. 33. 66m (Fig. 4. 2 7 ). The j e t was 

directed from Sta. 17. 40m toward Sta. 3. 34m durin g mixing . It is 

seen that the lowe r re gion of the profile at Sta. 3. 34m is more n e arly 

uniform than the same region at Sta. 33 . 66m. Similar r esults are 

noted for Experiment No. 18 (Figs. 4 . 28 and 4 . 30) which was also 

performed in the 40-meter flume . The results from experiments in 

the smaller tanks do not exhibit the effect of jet location in any clear 

or consistent manner, though profiles differ longitudinally in the tank. 

4. 4 DISCUSSION OF RESULTS 

The d ensity profiles m easur e d during mixin g experiments and 

the corresponding simulated profiles provide information on the issue s 

posed as the experimental obj ectives . The exp e rimental r e sults supply 

a wide range of conditions a gainst which the assumptions and r e sults 

of the simulation technique ar e t e sted . 

The establishment of an initial d ens ity profile with h oriz on tal 

isopycnic surfaces throughout the tank was r e quir ed as the prope r 

-initial condition for the simulation. That this condition did not exist 
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for some experiments makes evaluation of the experimental results 

relative to the simulated results difficult. For most expe riments, 

however, the essential features of the mixing process were not greatly 

affected by this slight alteration in initial condition. 

A related problem is that of maintaining a do sed system during 

the mixing process. For the experimental technique employed, this 

me ant maintainin~ the salt solution at a constant temperature through­

out the tank during mixing. This was accomplished in the 2-meter tank 

and 9-meter flume, but it was not accomplished in the 40-meter flume 

for Experiments Nos. 17 and 18. Table 4. 3 shows the history of 

temperature measurements at various depths and locations during 

Experiments Nos. 17 and 18. Longitudinal and vertical temperature 

gradients existed in this tank due to differences in temperature 

between the water and air and due to variations in air temperature 

along the flume. Temperature m e asurements were used in addition to 

conductivity measurements to calculate the density profiles for these 

two experiments. However, fluxes of heat into or from the tank set up 

density gradients which induced motions independent of the mixing 

process. Wben viewing the measured profiles, the effect of these 

motions cannot be uncoupled from the mixing. 

The quality of the measure d results depends on the reliability 

and representativeness of the individual density determinations; in 

addition to violations of the required initial and boundary conditions. 

Changes in calibration of the conductivity probes during the measure­

'ment of a vertical profile due to electronic changes in the recorder 
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T abl e 4 . 3 De t a ile d T empe ratur e Data F or Exper iment s Number 17 
a nd 18 

E xperiment No . 17 

Time Station 
t /T Air 

o. 33 . 66 m 18 . 9 
18 . 50 m 19. 0 

3 . 34 m 17. 8 

0. 13 5 33 . 66 m 18. 9 
18 . 50 m 19 . 1 

3 . 34m 18 . 9 

0. 2 70 3 3. 66 m 17. 9 
18 . 5 0 m 19 . 2 

3. 34m 19. 8 

E x pe riment No. 18 

T ime Station 
t/T Surface 

o. 33 . 50 m 19 . 8 
18 . 50 m 18 . 8 
3. 50 m .17. 2 

0 . 135 33. 50 m 19.4 
18 . 50 m 18 . 8 
3 . 50 m 17 . 0 

0.270 33. 50 m 19. 6 
18. 50 m 18. 7 
3. 5 0 m 17. 6 

Note : At 20° C for distilled water 

~ ~ = -. 00020 (°C )-
1 

0 Temperature - C 
Surface Mid- d epth Bottom 

20 . 3 20. 8 21.3 
19 . 3 20 . 1 20.7 
18. 3 18 . 5 18 . 9 

20 . 4 20. 6 21. 1 
19 . 9 20 . 3 20.4 
18. 4 18. 9 19 . 1 

20 . 7 20 . 9 21. 1 
20 . 2 20 . 2 20 . 6 
18. 9 19 . 8 19. 9 

0 T emper ature - C 
1/ 3 Depth 2 / 3 Depth Bottom 

20.0 20 . 1 20. 5 
19. 2 19. 5 19. 9 
17 . 7 18. 5 19 . 2 

19 . 7 20.0 20.3 
19 . 2 19 . 3 19. 3 
17 . 8 18 . 6 18. 6 

19 . 9 20 . 0 20. 3 
19 . 4 19 . 4 19. 5 
18 . 6 19 . 0 18. 8 
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were possible. The effect of these changes was minimized by a check 

of one point on the calibration curve after each profile. The time 

require d to take the measurements r equir ed for a complete p rofile 

was k e pt small relative to mixing time scales ( t::,t/ T < . 02 ), as 

mentioned previously. Strictly though, points at top and bottom of a 

profile were measured at different times, while corresponding simu­

lation results were all for the time midway through the measured 

profile. 

A more important and less well understood aspe ct of the 

measurements is their representative nature. The particular shape 

of the end of the conductivity probes used is such that fluid might be 

partially trapped between the e l ectrodes as the probe is moved down­

ward. The mixing caused by fluid motions around the probe and 

between the electrodes add e d to the integrated nature of the measure­

ments over the electrode area. Though diffe r e nces between m easured 

and simulated results are in gen e ral in the opposite sens e, this may be 

due to other factors and the e ffect of trapping may be obscured. More­

over, that this integrated measurement "at a point" was r epresentative 

of the other points in the plane at this elevation is questionable. The 

previous description of longitudinal d ens ity gradients documents this 

problem. The simulated de nsity profiles have been calculated so that 

their accuracy in terms of additional or reduction of mass to the system 

is about 5% or less. Comparisons of mass cons ervation based on 

measured profiles with that calculated for simulated profiles often show 
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that such accuracy is not available for some measured profiles and 

indicate that longitudinal gradients and I or m e asurement inaccuracies 

exist. 

To this point the results have been discussed in terms of the 

experimental approximations to the required initial and boundary con­

ditions and of the validity of the measurements themselves. The 

experiments point to aspects of the simulation which do not model 

exactly the physical mixing process. The inability of the simulation 

to include or model properly these phenomena is cause for some of 

the disagreement between experimental and simulated results. 

The simulation procedure models the withdrawal region in a 

simple and imperfect manner. The experimental results show 

scattered agreement with simulated densities in this region, but 

greater precision in simulating the withdrawal layer would have 

little or no effect on the simulated profile as a whole. 

Proper simulation of the buoyant j e t mechanics 1s important 

as the jet influences the changes in the density profile more than any 

other component of the system. The location of the jet origin has an 

effect on the simulated profiles. As explained previously and illust­

rated in Fig. 4. 11 for Experiment No. 6, the simulation predicts no 

change in the density profile b elow the jet origin. Experiments show 

that jets which are near the tank bottom, though not on it, do mix the 

region below their origin. Therefore , mass balances made for the 

tank over the entire depth do not a gree with those made for simulate 9 

profiles. Most experiments were made with the jet very near the 



12 7 

bottom, and the corresponding simulations were made assuming the 

origin of the j et to be at the bottom of the tank. This approximation 

to the experiments assures simulated results in which the lower re gion 

of the tank was influenced by the j e t. However, it r esults in a level of 

neutral buoyancy lower than if the jet were not on the bottom and may 

account in part for the simulated d ensity profiles being below experi­

mental profiles in the region near the level of neutral buoyancy. 

The buoyant jet mechanics us e d in the simulation are appro­

priate for a jet in a fluid of infinite extent, and the fact that the j e ts in 

the experiments were near a solid boundary was not incorporate d in 

the simulation. It would be difficult to assess the effect of the wall 

and to modify the simulation to reflect it, but the wall probably r educes 

jet entrainment initially in the experiments with the result of higher 

jet penetration. This could also contribute to the disagreement between 

experimental and simulated profiles in the region of the level of neutral 

buoyancy. 

The location of the level of neutral buoyancy was chosen for the 

simulation as that elevation at which the center line density of the 

buoyant jet equals the density of the fluid in the impoundment. Phy­

sically, the jet fluid has v e rtical momentum at this e l e vation and 

continues above this elevation before coming hack down to r est at a 

level of neutral buoyancy. The actual l evel of neutral buoyancy is 

difficult to predict as the similarity analysis breaks down here and the 

mixing that occurs is complex. It may be that, for the horizontally 

discharged buoyant jet used for the pumping system, the e l evation 
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chosen as the n e utrally buoyant l e v e l is too low. An elevation some­

whe re between the point chosen and the maximum h e i ght of rise of the 

jet may be a better representation of the l e vel of neutral buoyancy. 

Such a choice would promote closer a greement between experimental 

and simulation results in this region of the density profiles . 

The simulation technique treats the lateral spreading of the jet 

at the level of neutral buoyancy in a simple manner. The fluid 

delivered to this elevation is assumed to be spread uniformly across 

the impoundment instantaneously. In computational terms, the volume 

of fluid delivered in time step, 6t, is made to occupy a depth, 6d, in 

the impoundment. Physically, the problem of a neutrally buoyant fluid 

intruding into a density stratified environment is complex. Determin­

ation of the speed with which a front moves outward from the j e t is 

complicated by the possibility of a change from turbulent to laminar 

flow. Such spreading also involve s mixing caused by the shearing of 

the intruding layer. Also, the jet fluid which spreads laterally may not 

be uniform in density throughout the layer as assumed for the simu­

lation. An experimental study of intruding layers by Wu (56) showe d 

that internal waves are generated, further complicating analysis. An 

analysis of a slow speed, creeping flow intruding layer by List (32) 

makes it clea:r that the complexity of even this simplified case 

precludes the inclusion of a proper d e scription of the spreading in the 

simulation. The mixing caused by the spreading jet may provide the 

explanation of the smooth transition between the regions of jet influence 

and purely kinematic motion in the experimental density profiles, which 
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was noted to contrast with the discontinuity in slope in the simulation 

results. The finite time required for the spreading j e t to extend 

across the entire impoundment undoubtedly adds to the production of 

longitudinal density gradients in the impoundment. The effect of 

spreading was most evident in the experiments in the lar ge flume at 

high values of a shape parameter S (volume divided by the depth cubed). 

The experimental results have b een described and compared 

with the density profiles produce d by the simulation technique. The 

discrepancies between the density profile s have bee n attributed in part 

to experimental difficulties and in lar ge measure to the simplified 

nature of the simulation mode. Although the differences are real, the 

simulation technique does predict reasonably w e ll the changes in the 

density structure of the impoundment during the mixing process for the 

experiments performed. The prediction of these changes, in a gross 

sense, is good and often quite accurate in detail. 
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CHAPTER 5 

FIELD AND LABORATORY EXPERIMENTS 

BY OTHER INVESTIGATORS 

There are few reported mixing expe rime nts which e mploy 

mechanical pumping systems. R e porte d fi eld mixing experiments on 

lakes and reservoirs using this technique ar e limited to a series of 

experiments by a g roup of investigators from the F ederal Wate r 

Pollution Control Administration (23, 46, 47 and 48) and the mixing 

of some water supply reservoirs in England (41 ). A laboratory study 

of an exploratory nature which employed pumping , among other 

techniques, was reported by Brush, et al. (9). Comparisons of some 

of the results of these studies with the r e sults of simulated mixing 

experiments are presented in this chapter. 

5. 1 FIELD EXPERIMENTS 

The field experiments by the Federal Water Pollution Control 

Administration (FWPCA) provide the more detailed information of the 

two reported field experiments, and they will be conside red h e re. A 

large portion of the data gathered during these studie s was relate d to 

water quality, though the time-histories of the temperature-depth pro­

files are available for some experiments. 
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5. 1. l Summary of Mixin g Expe rime n t s 

Six fie ld experiments w e r e conducte d by the F WPCA 

group at five small lakes. Prior to mix ing , e ach lake was obs e rve d to 

b e t e mperature- stratifie d with density p rofile s wh i ch usually w e r e 

continuous from surface to bottom. The mixing was accomplishe d with 

a barge-mounted pumping system which withdre w wate r from n ear the 

bottom of the lake and discharged it horizontally n e ar the surface . 

Essentially the same equipme nt w a s u sed for all of the exp e rime nts. 

Some general featur e s of th e lakes and the mixing are sum­

marized in Table 5. L Steward H ollow L ak e was mixe d twic e . The 

parameters S, F, and .P are the impoundment shape paramete r, 

densimetric Froude numbe r for the jet (bas e d on the initial d ens ity 

profile), and the plume parame t e r, r e spe ctive ly. The s e parame t e rs 

are discussed in detail in Chapter 6 with regard to generalize d solutions 

and are presented here for reference only. The parameter t >:< is 
max 

the normalized mixing time, 

t * = t Q/¥-max max (5. l) 

In most cases the lakes were of uniform t emperature vertically, 

when mixing was stopped. Initial and final tempe rature prof ile s w e r e 

reported for all mixings, and t e mperature profile s during mix ing were 

reported for the mixing of Ve suvius Lake and Boltz Lake. At Ve suvius 

Lake vertical tempe rature profile s were reported at four different 

locations in the lake for approximate ly the same time s during the 
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experiment. The mixing experiment at Boltz Lake was accompanie d by 

observations of the natural changes in stratification of a lake of similar 

size in the vicinity. This was the only experiment for which a control 

lake was studied. 

5. 1. 2 Comparison of Fi eld Data and Simulation R e sults 

Although the field e xperiments do not provide all of the 

boundary conditions and the closed system posed by the assumptions 

underlying the simulation technique, the simulation was applied to the 

mixing of Vesuvius Lake and Boltz Lake. 

The temperature profiles measured during the field experiment 

at Vesuvius Lake and the profiles predicte d by the simulation technique 

are shown in Fig. 5. 1. The simulation technique was modified to 

conserve heat and to account for the nonlinear temperature-dens ity 

relationship, as suggested in Sect. 3. 3. The t e mperatur e profiles were 

calculated as well as density profile s for comparison with measured 

data. The initial temperature profile was measured at the pump site 

just prior to the beginning of pumping. The area-de pth relationship for 

Vesuvius Lake was chosen to be linear in close agreement with 

measurements (45). The pump discharge was fixed at 6. 4 cfs, as 

reported, though this dischar ge was dete rmine d under different con­

ditions. The experimental temperature profiles shown were take n afte r 

2. 5 -days and 8. 5 -days of pumping at a point approximately a quarte r of 

a mile from the pump site and at right angles to th e dir ection of 

discharge . Temperature profile s at the three other stations in the lake 
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TEMPERATURE - C 

Me a s u red and s i mul a t e d t emperature p rofiles f o r 
FWP CA fi e ld ex pe r iment a t Ves uvius L ake 
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indicate the existance of longitudinal gradients (about 2°C/mile), though 

the profiles are quite similar. Temperature profiles generated by the 

simulation are shown for 2. 5 -day intervals from the beginning of 

pumping. 

The agreement between experimental and simulation results is 

better for the 2. 5-day profile than the 8. 5-day profile. In particular, 

the agreement between the 2. 5 -day profiles is good in the lower part of 

the lake. The fact that the field experiment is not closed to external 

influences probably accounts for the lack of agreement between field and 

simulation profiles near the surface and after 8. 5 -days pumping. The 

experiment was conducted in late September, when cool evenings might 

have as much, or more, effect on lowering surface temperatures than 

the pumping system. In terms of a heat balance, experimental t emper­

ature profiles for 2. 5 and 8. 5 -days reflect decreases in heat relative 

to the initial profile of temperature. The simulation technique was, 

however, designed for a closed (adiabatic) system. 

Temperature measurements at Boltz Lake are shown with 

simulation results in Fig~ 5. 2. Again, simulation results were obtained 

using the simulation technique modified to include the nonlinear temper­

ature-density relationship. The pumping system for this experiment 

was the same as that used at Vesuvius Lake, although the withdrawal 

tube was lengthened. Temperature measurements were reported (47) 

for five elevations in the lake for each of five weeks of pumping. These 

measurements were made at the pump site. Similar measurements 

were reported for the control lake . A linear area-depth r elationship 

was assumed for the simulation (45 ). 
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The agreement between experimental and simulation r esult s is 

not good. The measured data are not always consistent in tha t some 

measurements at a given elevation indicate increases in t emperatur e 

followed by decreases in temperature a week late r. The measurements 

show that the bottom region becomes warmer than the simulation 

predicts. Heat balances relative to the initial t emperature profile 

reflect increases in heat for profiles during pumping. The measure­

ments at the control lake do not indicate enough increase in temp era­

tures in the bottom region due to natural processes to account for these 

results. A probable explanation is that the measurements taken at the 

pump site indicate a greater degree of mixing than exists elsewhere in 

the lake. The experiment at Vesuvius Lake indicates that the measure­

ments taken at locations other than the pump site show a lesser degree 

of mixing. Similar results were noted for some laboratory experiments 

discussed in Chapter 4. 

The validity of the simulation technique cannot be adequately 

verified from these two experiments, though the effects of the closed 

system boundary condition and one dimensional aspects of the simulation 

model can be observed. 

5. 2 LABORATORY EXPERIMENTS 

The pumping experiments reported by Brush, et al. (9) were of 

an exploratory nature. A circular tank 12 feet in diameter and 3 feet 

deep was filled with a layer of salt solution upon which a layer of fresh 

water was spread. It was estimated that a pycnocline was formed over 
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one-eighth of the total d e pth. No measure ments of d ensity profile s 

were reported, but one layer was dye d and sampl e s of wate r we r e 

withdrawn at various elevations to e stimate the progress of mix ing . 

Mixing experiments were performed using withdrawal tubes and j e ts 

at various elevations in the tank. The total pumping times r e quir e d 

for complete mixing w e re reporte d b as e d on the dye sample s. 

The pumped discharg e and tank volume were h e ld cons tant for 

all experiments; and the characte ristic time (¥-/Q) to pump this volume 

was 265 minutes. The mixing time s varie d from 31 minute s to 75 

minutes depending on the location of jet and intake , and dimensionless 

mixing times, t >:C , were 0. 12 to 0. 28. The densime tric Froude 
max 

number for the jet based on the initial profile was F = 80 for all 

experiments. 

The simulation technique was e mployed to model expe rime nt 

"Run No. f". For this experime nt the j e t was locate d near the bottom 

of the tank and an intake was flo a t e d n e ar the surface . Simulate d d e nsity 

profiles from the elevation of the jet to the surface ar e shown in Fig . 5. 3. 

Density profiles are shown for 6-minute intervals up to 42 minute s, the 

reported time for complete mix ing . The simulation r e sults do not show 

complete mixing. The high Froude numbe r (F = 80) and small t a nk pro-

bably result in circulations and turbule nt mix ing which ar e not include d 

in the si~ulation model. The rates of mix ing induc e d by thes e motions 

may be large enough to account for the more rapid mixing obs e rve d. 
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Figure 5. 3 Simulated dens i ty profiles for 11Run No. f 11 of 
Brush, et al. (9) 
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The comparisons of simulated mixing experiments with a f e w 

field and laboratory experiments by other inves tigators do not show 

good agreement. In the case of the field experiments, the effects of the 

environment external to the impoundment may account for the lack of 

agreement. Coupling the simulation t echnique to a simulation of the 

reservoir heat budget may provide clos e r agreement with the field 

measurements. Better a greement with the laboratory experiment used 

for comparison may require modification of the simulation t e chnique to 

account for induced circulations not model e d by the simulation. In 

summary, although the few mix ing experiments presented in this chapter 

do not add to the verification of the simulation technique , they do not 

confute it as the boundary conditions often were not comparable and the 

data may not have been repres e ntative of the impoundme nt r e sponse to 

mixing. 
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CHAPTER 6 

IMPLICATIONS OF SIMULATION TECHNIQUE 

6. 1 PURPOSE 

The purpose of this chapter is to demonstrate the use of the 

simulation technique to generate numerical mixing experiments and to 

analyze the results of these experiments to provid e some general con­

clusions about the mixing proc ess . 

The ability of the simulation technique to pre dict the time -history 

of the d e nsity-depth profile s of a laboratory impoundment during mixing 

has been established in Chapter 4. The boundary conditions and other 

assumptions required for the simulation are somewhat ideal r e lative to 

those which might exist during the mixing of an impoundment in the 

natural environme nt. However, the fact that the simulation is uncoupled 

from external influences and produces the response of the impoundment 

to the pumping system only makes the simulation a useful tool. The 

simulation technique provides a means of systematically investigating 

the effects on the mixing process of variations in the components of the 

pumping system. 

6. 2 GENERALIZED SOLUTIONS 

The simulation proce dure accepts any g r a vitational stable initial 

density profile as input. The area-depth relationship may be any 

arbitrary continuous function. The simulation of the mix ing process is 
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an initial value problem. That is, for a given impoundment geome try 

(area-depth relationship) and pumping system (jet and intake e l evations, 

jet diameter, and jet discharge), the response is uniquely d e termin e d 

by the initial density profile. An initial density-depth profile which is 

linear allows a generalization of the pumping system parame t e rs and 

the response of the impoundment. Wbile the case of an initially linear 

density profile may not be the rule in natural impoundme nts, approxi-

mations to it frequently exist. Moreover, the results of these general-

ized problems yield information concerning the importance of the 

various components of the pumping system and the strategy for efficient 

mixing which may be independent of this particular choice of initial 

density profile. 

6. 2. 1 Dimensional Analysis for Initially Line ar Profiles 

A schematic diagram of the pumping system for an 

impoundment which initially has a linear density profile is shown in 

Fig. 6. 1. The pumping system is shown with the withdrawal tube near 

the surface and the jet tube at the bottom, although the analysis is valid 

for the reverse setup. The jet tube need not be positioned at the bottom, 

though, as described previously, the simulation assumes. that the jet 

does not influence the region below the jet center line. 

The initial density profile is characterized by the density differ-

ence, /'::,p, between the elevations of the withdrawal tube and the j e t and 

by the refe rence density, p (density of fluid dischar ged initially). The 
0 

following physical variables describing the initial profile and fixed 

components of a particular pumping system were used for the dimen-

sional analysis: 
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initial g radient of unit weight (normalized) 

d distance b e tween jet and withdrawal tubes 

volume of impoundment over the depth, d 

Q pumped dischar ge at jet 

v initial velocity of j e t 

The following physical variables describing the d e nsity profiles 

during the mixing process w e r e used for the dimensional analysis: 

y elevation above the jet center line 

t time since the beginning of pumping 

normalized density at any y and t 

A dimensional analysis using these physical variables yields the 

following six dimensionless parameters: 

y >:<:yld 

t >!< = t I T = Qt I¥ 

(p-po\ 

p- Po -
g --; 

p>!< 
Po 

=-- = 
b.p dp 

.:.K __ ad 

Po dy 

normalized e l evation 

normalized time 

normalized density 

jet densimetric Froude 
numbe r 

( 6. 1) 

(6. 2) 

( 6. 3 ) 

(6. 4) 
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where nominal jet diameter ( 6. 5) 

P= 
Q = Q plume parameter (6. 6) 

( _g_ 6 )t d 5 I 2 
p p 

0 

\f s = d3 shape paramete r (6. 7) 

Note that F and P are used throughout as initial values based 

on the initial density profile. 

The dimensionless parameters p>:< andy* define a normalized 

density-depth profile at any dimensionless time, t>:<. The characteristic 

time for the problem, T, is defined as the time required to pump the 

volume of the impoundment, ¥-, which is included between the planes of 

the jet and withdrawal tubes. Therefore, 

p>:c = f (y'~, t>:c, F, P, S) . ( 6. 8) 

The parameters F and P characterize the buoyant jet in the 

initially linear density profile. Since the simulation is an initial value 

problem, F and P characte rize the mixing process also. Fan ( 18) has 

shown that the buoyant jet in a linearly stratified environment is charac-

terized by two parameters, a jet Froude Number, 

( 6. 9) 
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where (p2 - p1 ) is the initial density difference between the fluid dis-

charged from the jet and the ambient environment, and a stratification 

parameter, 

P2 - P1 
T =--­

f 
(6. 10) 

dp 
where d; is the density gradient in the ambient fluid. For the 

pumping system shown in Fig. 6. 1 and considered in the dime nsional 

analysis, 

= 

and 

' 

Thus, for the mixing system Ff and Tf become 

and 

v F = __ ......;._ _ __,... 

f ( g )'b. 
- b.p D 
Po 

d T =­
f D 

The parameters F and P can be expressed as 

and 

F-F - f 

p = ('Tr)F T -5/2 
4 f f 

( 6. 11) 

(6. 12) 

(6. 13) 

(6. 14) 
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demonstrating that F and P characterize the buoyant jet for the 

pumping system. The composition of these parameters is now such 

that the discharge velocity (or diameter D) appears only in F, and the 

depth d only in P. 

The dimensionless parameter P is the only parameter required 

to characterize a simple plume in a linearly stratified environment. 

This has been shown by Morton, Taylor, and Turner {34) in the dimen­

sionless solution to the problem. A simple plume has no initial mo­

mentum flux and is the limiting case of the buoyant jet as the d ens i­

metric Froude number, F, goes to zero. The r efore, as the initial 

buoyant jet for the pumping system becomes more plume -like 

(i.e. F ..... 0 ), the parameters required to characterize the r e sults of 

mixing are reduced by one. For this case, F and P can be replaced 

by the plume parameter, P, alone. That is, 

(6. 15) 

The dimensionless parameter S reflects the shape or aspect 

ratio of the impoundment. Large values of S indicate shallow impound­

ments of large area, and small values indicate r e latively de ep impound­

ments of small area. The parameter S is of interes t because the 

response of the impoundment to the pumping system may depend on the 

distance of its boundaries from the jet and intake tubes. As pointed out 

in Chapter 4, the experiments in the longest flume (40 meter) with the 

highest experiment S values demonstrated isopycnic surfaces which 
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were not horizontal. While experime ntal r e sults w e r e in ge n e r a l 

a g r e eme nt with the simulation results, the effe cts of the finite t ime 

required for changes to propagate across the impoundme nt w e r e 

observed. 

That the simulation t e chniqu e does not accoun t for th e fini te 

time required for horizontal spreading was discus s e d in Chapters 2 and 

4. The one-dimensional natur e of the sim ula tion mod el prohibits the 

inclusion of this effe ct. The r e for e , the shape par a m e t e r, S, i s n o t a 

governing parame t e r for the simula tion model of an impoundment wh ich 

has an initially linear d e nsity profile othe r than a s it affe cts the with-

drawal layer thickness. This can b e d emonstrate d more rigorous ly by 

examining the governing equations of the simulation model, 

o (vA ) 
ay = q e 

ac + v E.£ = 0 at ay 

(2. 1) 

(2. 3) 

These equations can be normalized using the physical variable s of the 

dimensional analysis to yield the following equations : 

a (v~:<A~!< ) = 
ay>:< (6. 16) 

(6. 17) 



where: y * = y/d 

t '>'< = t/T 

c * = c/c 
0 

Ad 
A * = v:-

q d 
q~ = ~ and, 
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The shape factor, S, doe s not appear as a parameter in thes e equations 

or their initial and boundary conditions. 

The entrainment from the impoundment, qe' is calculated us ing 

the mechanics of buoyant jets and selectiv e withdrawal. The buoyant 

jet in a linearly str~tified environment is not characte rized by S but 

only by F and P as shown previously. 

The only influence S has on the s i m ulation results occurs 

indire ctly in the dete rmination of the thickness of the withdrawal r egion. 

As discussed in Se ct. 2. 2. 5 , the thickness of the withdrawal region i s 

determined in the simulation by the average of the thicknesses calculated 

for a two-dime nsional flow u s i ng an inviscid theory near the withdrawal 

tube and using a turbulent flow theory near the boundary of the i mpound-

ment. The two-dimensional discharge is determined by dividing the 

pwnped discharge by the average width of the impoundment at the 

elevation of the intake . The width of the impoundment and the distance 

from the intake to the impoundment boundary are related to S indirectly. 
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However, the influence of the parameter S upon simulation results 

for cases with initially linear density profiles was found to be small 

because withdrawal region size is affected only indirectly by S and 

because the withdrawal region its elf exerts only a small effect on the 

density profile as a whole. 

The dimensional analysis indicates that for cases with initially 

linear density profiles the result s of the sim.ulation technique can be 

presented uniquely in a generalized way. Density-depth profiles are 

plots of p>!< and y>!< at various times, t>!<. Each such time-history of 

mixing is a function of the initial densimetric Froude number, F, and 

the plume parameter, P. The shape factor, S, is neglected for the 

reasons discussed above, although it may influence actual mixing 

results. An example of the results of a simulated mixing experiment 

in generalized form is shown in Fig. 6. 2. 

6. 2. 2 Potential Energy Increase 

The mixing process increases the potential energy of the 

impoundment. As mixing proceeds and the density profile changes, the 

center of mass of the impoundment moves upward while the total weight 

remains constant for a closed system. The increase in potential 

energy of the impoundment is the product of the weight of the fluid m 

the impoundment and the increase in elevation of the center of mass. 

Consider the volume of fluid v:- to be affected by the mixing 

process to be that region over the distance d included between p lanes 

at the elevations of the withdrawal and jet tubes. The area- d epth 
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relationship is given as A(y), and the mean density in this region is p . 
m 

The center of mass for this region given any density profile p (y) is a 

y c. m. 

where 

d 
= p 1 y. s Pa (y) A(y) y dy 

m 0 

1 J d = v- 0 pa(y) A(y)dy. 

(6. 18) 

( 6. 19) 

For the particular case of an initially linear density profile and 

a prismatic impoundment (constant area), Eqs. 6. 18 and 6. 19 ar e easily 

evaluated. While impoundments of constant area over the depth are not 

usually the case, the analysis of this situation is uncomplicated and the 

results are informative. For this particular case, referring to Fig. 6.1, 

the center of mass is 

y c. m. ' (6. 20) 

where 

(6.21) 

When mixing is complete and the density is uniformly p over the 
m 

depth, d, the center of mass is 

d 
y = • . c.m. 2 (6.22) 



152 

The r e fore, the change in e l e vation of the center of mass of the im-

poundment from the initial linear density stratification to the completely 

uniform condition is 

6y c. m. 
6p d 

=--
Pm 12 

(6.23) 

and in the increase in potential ener gy acquired i s 

6P. E. = 
6pgd¥-

12 (6. 24) 

The increase in the potential energy of the impoundment is 

calculated at regular time inte rvals during the simulation of the mixing 

process. The ratio of the increase in potential energy at any particular 

time to the increase in potential energy r equire d for compl ete mixing, 

as given in Eq. (6. 24), is a measure of the d egr ee to which mixing has 

proceeded. This ratio, the fraction of requi red potential energy 

increase for complete mixing, takes the range of values from 0. 0 to 

slightly greater than 1. 0. The uppe r limit is not exactly e qua l to 1. 0 

as the withdrawal region affe cts the d e nsity of a small part of the 

impoundme nt above the center line of the withdrawal tube . 

This ratio is a gross measure of the mix ing process as the 

dimensionless density-de pth profiles are not uniquely reflected by this 

number. It is possible to have several profile time-histories of the 

mixing process which differ in shape and d etail, y e t which have reached 

identical fractions of the required p otential energy increase . A plot of 

this quantity as a function of dimensionles s time , t*, for a particular 
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mixing simulation of a prismatic impoundment is shown 'in Fig. 6 . 4. 

Such curves always indicate a d ecreasing rate of potential energy 

increase as the mixing process continues to completion. 

Since this analysis has b een carried out for prismatic impound­

ments with initially linear profiles, the r esults apply exactly to the 

inverse type of pumping system, that is, a revers e d pumping direction 

so that the jet is discharged near the surface. The governing equations 

for the buoyant jet in a linear density profile are the same for this case, 

and simulated density profiles are the same though inverted. 

6. 2. 3 Effect of the De nsimetric Froude Number 

The densimetric Froude number based on the initial 

linear density profile, F, and the plume parameter, P, characterize 

the initial buoyant jet, the stratification, and the simulation results. 

In particular, the Froude number indicates the nature of the buoyant 

jet relative to its limiting cases: F = oo, a simple momentum jet and 

F = 0, a simple plume. 

The effects on simulation results of changes in only the Froude 

number, F, are illustrated by the following simulation experiments. 

The impoundments were assumed prismatic and linearly stratified 

initially. The plume and shape parameter were fixed at P= 1. 092x 10- 3 

S = 2929. 7, respective ly, for four mixing simulations. The Froude 

numbers were F = 1. 0, 3. 0, 12. 0, and 24. 0, a range from weak to 

strong j e ts. In terms of the physical variabl es of the pumping system, 

this range of Froude numbers was achieved by holding all independent 

variables the same, except for the diameter and initial velocity of the 

jet. 



154 

The results of three of these simulation experiments arc shown 

in dimensionless form in Figs. 6. 2 and 6. 3. The density-depth profiles 

are shown at ~he same dimensionless times for all simulations. The 

density profiles indicate that the pumping systems with large Froude 

numbers, F = 12. 0 and 24. 0, mix the lower regions of the impoundment 

rapidly. The density profiles are nearly vertical in this region for 

F = 24. 0, while they have considerable gradients at the same time, t ~:<, 

for F = 1. 0. The simulation results for F = 1. 0 show that the effects of 

mixing reach slightly higher elevations in the impoundment than do the 

simulations for larger Froude numbers. These r e sults are consistent 

with the behavior of buoyant jets in a linearly stratified environment. 

Jets with large F entrain fluid rapidly at the beginning of their tra­

jectories and reach a maximum h e ight of rise at elevations which are 

lower than those attained by jets with small F which entrain fluid l ess 

rapidly. Figs. 6. 2 and 6. 3 show, however, that by the time t >:< = 0. 225 

(last profile calculated), the density profiles do not differ substantially 

among these three simulations. 

The effects of the Froude number on the mixing process can be 

viewed in terms of the increases in potential energy of the impoundment, 

as suggested in Sect. 6. 2. 2. Fig. 6. 4 is a plot of the fraction of the 

potential energy increase requir ed for complete mixing v ersus the 

dimensionless time of mixing, t ':' , for four simulations for F = l. 0, 

3. 0, 12. 0, and 24. 0. This time -history of the increase in potential 

energy shows that the larger Froude numbe r systems r esult in larger 

increases in potential energy throughout the mixing process. However, 
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the differences in the fraction of required potential e n e r gy i n cr ease 

among the four simulations are small. By the time that the mixing 

is 80% completed, the differences in completion among these simu-

lations are less than 3%. 

The fact that essentially little difference exists among the 

simulation results for this range of Froude numbers raises the question 

as to which pumping system is the most efficient. The resp ons e of the 

impoundment to systems of various Froude numbe rs has b een shown in 

terms of the increases in potential energy, but the inputs of ener gy 

have yet to be discus sed. It is difficult to determine in gen e ralized 

terms the input energy requir ed to drive a particular pumping system. 

A major portion of the loss e s in a system are unique to the particular 

pumping system and its d etaile d d es i gn. While consideration of these 

details is important to the design of a particular pumping system, the 

purpose of this analysis is to find results which will guid e the general, 

rather than detailed, design of the system. For this r eason, the 

following treatment of the energy inputs to the pumping s ystem will be 

somewhat idealized so that gen e ral criteria conce rning the efficiency 

of the system can b e formulated. 

Considering the initial density profile shown in Fig. 6. 1, the 

pumping head due solely to the pres sure difference caused by the 

density stratification between the intake and jet is 

(6. 25 ) 
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and the required power is 

G = Q H = Qdg 6P 
p ~ p 2 (6. 26) 

The power requirement is quite small because 6p is small. This term 

is based on the initial density profile and decreases as the mixing 

proceeds because the density profile become s mor e uniform and 6p 

decreases. 

Energy losses due to the exit loss, friction, b ends in the pipe, 

and other fittings contribute to the pumping h ead, but they are difficult 

to treat in a general way. For this simple model such loss e s are 

considered to be proportional to the velocity head at the jet so that 

(6. 27) 

and the power requirement is 

(6. 28) 

where 13 = a coefficient > l. 0. 

For the purpose of comparing the efficiencies of these three 

pumping systems of varying Froude number, the input e n e rgy for the 

systems is chosen as 

Input Energy = (Gp + GL) t (6. 2 9) 

where: 

6p is fixed at the initial v alue 

t - time fr'om the b eginning of pumping. 
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The efficiency of the system is d efined as follows: 

Efficiency = M!:IP.E. (6. 30) 

where t:.P. E. = potential energy increase required for complete 

mixing (Eq. 6. 24) 

M = fraction of t:.P. E. reached in time, t. 

The efficiency (Eq. 6. 30) can be normalized and written in 

terms of the dimensionless parameters: 

M 
Efficiency = 1 (6. 31) 

Using this definition with f3 = l. 0 for the sake of comparison only, 

efficiencies of the three pumping systems with F = 24. 0, F = 12. 0, 

and F = l. 0 were 0. 041, 0. 105, and 0. 465 , respectively. The system 

with F = l. 0 was approximately ten times as efficient as the system 

with F = 24. 0. These efficiencies have no meaning in an absolute sense 

because of the artificial nature of the definition of efficiency (Eq. 6. 30 

with f3 = 1. 0). They are meant to be viewed only in a relative sense. 

It is clear from the normalized form of the efficiency (Eq. 6. 31) 

that the efficiency increases as the Froude number decreases. For 

fixed plume parameter, P, the fraction of the requir ed potential energy 

increase, M, varies only slightly with F at a given t>~ (see Fig. 6. 4); 

thus d ecreased F must result in increased efficiency. 
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The interpretation of thes e efficie ncy calculations in a rela tive 

sense leads to the conclusion that the lower the Froude numbe r, all 

other parameters fixed, the greate r the efficiency of the system. In 

terms of the physical variables for the thr e e pumping systems 

examined, the large Froude numbers represente d large velocity heads 

and a large input of kinetic energy. However, the simulation demon­

strates that the response of the impoundment to the increased input of 

kinetic energy is such that the efficiency is less than that for lower 

values of F. As the Froude number is decreased and approaches zero, 

the buoyant jet becomes more like a simple plume. A simple plume 

has no initial momentum flux, and the input energy to drive a simple 

plume pumping system is entirely potential. For this case (F .... 0 ), 

p>!c = f (y>~, t >~, P) . (6. 32) 

Although low Froude number jets provide for more efficient 

pumping systems than high Froude number jets, there may be cases 

for which high Froude number systems are preferable, though less 

efficient. A situation in which it is necessary to mix the region near 

the jet outlet as rapidly as possible is an example of such a case 

(contrast cases for F = l. 0 and F = 24. 0 in Figs. 6. 2 and 6. 3). 

6. 2. 4 Results of Ge neralized Simulations 

Since pumping syste ms with low Froude number, plume­

like buoyant jets have been shown to be the most efficient ones, a series 

of simulation experiments with low Froude number were performed. 
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The impoundments for these expe rime nts are assume d to b e prismatic, 

and the initial. profiles were linear. The Froude number was h e ld 

fixed at F = 3. 0. This value of the Froude number is larger than the 

smallest value, F = l. 0, used in Sect. 6. 2. 4. The fraction of r e quired 

potential energy increase versus time for F = 3. 0 and F = l. 0 is shown 

in Fig. 6. 4. The efficiencies for these two cases at t >!< = 0. 225 were 

0. 359 for F = 3. 0 and 0. 465 for F = l. 0. The value F = 3. 0, though 

resulting in a slightly less efficient system, was chosen because it 

represents a plume-like case which still allows for the small amount 

of initial momentum flux that exists for any real pumping system. A 

true plume pumping system would require an extre mely large jet 

diameter to discharge the required flow at sufficiently low velocities. 

For Froude numbers, F = 3. 0 and lower, the buoyant jets are 

very much plume-like and are characterized only by the plume para-

meter, P (see Eq. 6. 32). The dimensionless density profiles 

generated by the simulation expe riments are characterized by the 

plume parameter alone, since F is small and S is not a significant 

governing parameter in the simulations. Simulation experiments were 

-6 -1 performed over a range of the parameter P, from 10 to 10 • To 

demonstrate that the shape factor, S is not a governing parameter for 

the simulated 'mixings, experiments with S values of 500 and 50, 000 

were simulated. 

The dimensionless density profiles for simulation experiments 

-6 -2 
for which S = 500 and P ranges from 2. 5 x 10 to 2. 5 x 10 are 

shown in Figs. 6. 5, 6. 6, and 6. 7. The density profiles are plotted at 
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intervals of time, t >:C, of 3. 75 x 10-2 . This series of mixing simu-

lations indicates that the impoundment is not as uniformly mixed near 

the bottom for the high values of the plume paramete r, P, as it i s for 

the low values of P. High values of the plume parameter als o r esult 

in 1arger withdrawal regions about y'~ = 1. 0 than do low value s . After 

the mixing process has progressed beyond t ':' = 0. 15, the r esulting pro-

files do not differ greatly from one anothe r in a gen e ral s ense for the 

range of P values. Fig. 6. 8 shows the time -history of the incr e ases 

in potential energy, M, for each simulation r e l ative to that required 

for complete mixing. The larger the plume parameter, P, the g reate r 

the increase in potential energy for any give n time , t>:c, Howeve r, the 

difference in potential energy increases, M, among the mixings for 

this range of P values is less than 10%. 

The series of dimensionless profiles for simulation experiments 

-4 -1 
for which S =50, 000 and P range s from 1. 16 x 10 to 1. 16 x 10 

are shown in Figs. 6. 9 and 6. 10. A plot of potential energy increases 

versus time is shown in Fig. 6. 11 for S =50, 000. As predicted the 

simulation results show negligible effects due to the change in the shape 

parameter, S. The variations in the density profiles and potential 

energy increases due to changes in the plume parameter, P, follow the 

patterns outlined above for the seri e s for which S = 500. 

The results of several simulated mixings are summarize d in 

Fig. 6. 12. The dimensionless time, t >:c , for given fraction of the 

required potential energy increase is plotted against the plume para-

meter, P. This plot shows that the shape parameter, S, is not a 
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governing parameter for the simulated mixings as results for all S 

values lie on the same curves. The high values of P, in the rang e 

examined, indicate smaller dimensionless times, t >:' , for a given 

fraction of potential energy increase than do the low values. However, 

over the range of P values presented, the dimensionle ss times for a 

given amount of mixing vary less than 10%. This indicates that the 

time, in dimensionless· terms, r equired for mixing is nearly independ­

ent of the plume parameter. 

6. 3 IMPLICATIONS OF SIMULATION FOR THE DESIGN OF PUMPING 

SYSTEMS 

The results of the simulated mixing experiments in generalized 

form provide some guidelines for the design of efficient pumping 

systems. However, these results must be applied with caution because 

of the simplified form of the simulation technique. The generalized 

solutions were calculated for prismatic shaped impoundments with 

initially linear density profiles. In particular, most solutions repre­

sent cases where the densimetric Froude number is F = 3. 0. The 

simulation results do not account for the effect of the shape parameter, 

S, on the mixing process. Despite these limitations, some general 

conclusions can be drawn from the s imulation r esults which s u ggest 

strategies for the design of mixing systems. 

The experiments summarized in Fig . 6. 12 indicate that, for low 

Froude numbers and over a wide range of plume parame ters, the 

dimensionless time in which 80% of the potential energy increase 
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required for complete mixing is attained is t >:~ = 0. 210 ± 0. 020. In 

physical variables, 

Qt 
v- (6. 2) 

For t>:c = 0. 210, the time, in real units, for mixing to be approximately 

80o/o accomplished is 

t = 0.210T 
v­= 0.210 Q (6. 33) 

If one uses this measure of 80% completion of mixing , the 

choice of the mixin·g period (t) and the volume (Y-) dictate the required 

discharge (Q) for the pumping system. Eq. (6. 33) is so simple an 

expression that the options for adjusting t and/ or ¥ are a matter of 

proportionality. For instance, for a fixed volume, t is inve r sely 

proportional to Q and can be increas e d or de.creased accordingly. 

Another option is to divide the impoundment into n regions , e ach with 

volume ¥-/n and each provided with a pumping syste m. Such an 

arrangement could r e duce the time of mixing, t, for the whole 

impoundment or reduce the r equire d discharge for each of the 

individual pumping systems. This type of design might be prudent for 

impoundments for which the shape factor, S = v- /d3
, is large. The 

value of S would the n b e reduced by a factor of n. The r e duce d late ral 

dimension of each region would yield clos e r agreement b etween simu-

lation results, which take inadequate account of lateral spreading, and 

physical results, in which lateral spr eading may b e importan t. This 

partitioning would lead to more uniform mixin g of the impoundment. 
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Given the discharge, Q, for a particular pumping system, the 

choice of the discharge j e t diameter fixes the d ensimetric Froude 

number for the system. The effects of various Froude numbe rs for a 

particular system have b een discussed in detail in Se ct. 6. 2. 3. In 

terms of the response of the impoundment, it was shown that the l a r ge r 

the Froude number, the greater the increase in pote ntial ener gy of the 

impoundment after a fixed time of pumping. However, calculations of 

efficiencies showed that high Froude number systems were less 

efficie nt than low Froude numbe r (F < 3. 0) syste ms. It is possible 

that an efficient pumping system in t e rms of e n e rgy may not b e the 

criterion by which to design. If the impoundment were to be mixed 

very rapidly, an increased Froude number for a system of fixed dis­

charge could decrease the mixing time at the expense of efficiency. 

The range of t * for 80% completion of mixing for Froude numbers 

F = 1. 0 and F = 24. 0 is shown in Fig. 6. 4 for a particular plume param-

eter, P. These two points give a n indication of the shift of the 80% 

curve in Fig. 6. 12 with Froude numbe r. Should a d es i gn obje ctive be 

to mix the fluid at a particular elevation with the fluid at other 

elevations, this could be accomplished most readily by placing a high 

Froude number jet at that e levation. 

Since the simulated mixings were performed for prismatic 

impoundments with initially line ar stratification, the results apply to 

systems in which pumping is from top to bottom and in which pumping 

is from bottom to top. These results do not apply to impoundments for 

the area is a function of depth, though sim ulated mix ing can b e per -
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formed for this case. Typically, the area of the impoundment 

increases from the bottom upward. In situations in which this 

departure from a prismatic impoundme nt i s marked, pumping from top 

to bottom may prove the b etter strategy. A system with the jet at the 

bottom would be advantageous in this case because the lower r egion of 

the impoundment would respond to the mixing more rapidly than the 

upper region as the volume of this region is smaller. In a given time 

a zone of greater vertical extent would be affected by mixing with the 

jet at the bottom than with the jet near the surface . From a wate r 

quality perspective, the elimination of stratification throughout the 

bottom zone of the impoundment would p e rmit increased diffusion of 

oxygen into the zone where it would be most beneficial. 

The simulated mixing results, though calculated for prismatic 

impoundments with linear profiles initially, may serve as guides for a 

prismatic impoundment with an initial profile which can be approxi­

mated by a linear profile. For two-laye r stratification or other highly 

discontinuous stratifications, the results have little meaning. The se 

special cases can be the objects of other series of generalized or 

individual simulations. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

Prior to this study most of the information conc e rning the use of 

pumping systems to mix d ensity-str a tifie d impoundme nts was l imite d to 

the results of a few field experime nts. Thes e experiments (revie we d in 

Chapter 1) demonstrated·. that pumping systems w e r e succe ssfully us e d 

to alter or eliminate density stratification and that significant b e neficial 

water quality changes often accompanied the mixing . Howe v e r, the se 

experiments provided few observations about the physical processes 

governing the mixing and, as a result, furnish sparse information useful 

for predicting the results of mixing. 

7. l CONTRIBUTIONS OF THE PRESENT STUDY 

The two main contributions of this study are: 

1) the development of a simulation technique for the prediction 

of changes in the density structure of an impoundment due to 

mixing by a pumping system, and 

2) the presentation of generalized r e sults (in t e rms of dimen­

sionless parameters) for spe cial conditions to a s e r i es of 

mixing experiment simulations. 



177 

7. 1. 1 The Simulation T e chnique 

The simulation technique developed in Chapte r 2 pr edicts 

the time-history of the density profiles in an impoundme nt which is 

mixed by a pumping system. The simulation mode l is a closed-system; 

that is, it includes only the effects of the pumping system on the im­

poundment and excludes the effects of natural influence s on the d e nsity 

structure. The impoundment is divided conceptually into two regions: 

Region 1 is the stratified impoundment exclusive of the buoyant jet and 

withdrawal layer, and Region 2 includes the buoyant jet and withdrawal 

layer, the principal features of the pumping system. The impoundment 

(Region 1) is treated in a one-dimensional sense, and the buoyant jet 

and withdrawal layer (Region 2) are modeled in a three-dimensional 

sense. The response of the impoundment to the pumping system is 

determined by the transport of fluid between these two regions. 

The simulation model requires as input a description of the 

initial conditions and of the pumping system. Any initial density profile 

in the impoundment can be provided. The area-depth relationship for 

the impoundment, the elevations of the jet and intake tubes, and the jet 

discharge and diameter are required. Given this information, the 

simulation predicts the density profiles at successive time steps during 

the mixing process. 

The redistribution of a conservative tracer substance due to 

mixing can be predicted (Chapter 3). Temperature can be us e d as the 

tracer, and the nonlinear temperature -density relationship can be 

accounted for in the simulation as described in Chapter 3. 
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Laboratory studies (Chapter 4) of the mixing of density­

stratified impoundments by pumpi n g indicate that the simulation. te chni­

que predicts the gross featur e s of mixing r e asonably w e ll. The com­

parisons of experimentally dete r m ine d d e nsity profile s with simu lation 

predictions show some disagreement in the d e tails of the profile s. The 

nature of these disagreements b etwee n expe rime ntal and sim ulation 

results and the explanation of why they occur is given in Se ction 4. 4. 

Comparisons of the results of two field mix ing studies with 

simulation predictions (Chapte r 5) w e r e inconclusive. The impound­

ments studied were subjected to natural changes in the heat budget in 

addition to mixing by the pumping syste m. The simulation model did 

not account for this effect, and the agreement between field and simu­

lation results was not good. 

The simulation technique consistently predicted the gross 

response of stratified impoundments to mixing by pumping systems for 

laboratory experiments at three different scales (Chapter 4). For the 

case of closed-systems, the simulation technique provides a g ood 

approximation to the response of the impoundment to mixing and a basis 

for comparison of the effects of different types of pumping systems. 

The applicability of the simulation technique to cases of mixing lakes and 

reservoirs which are clearly not closed-systems is discussed in 

Sect. 7. 2. 
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7. 1. 2 The Generalize d Solution s 

A series of simula t e d mix ing e xpe riments wer e compute d 

for prismatic shaped impoundme nts which had linear d en s ity profile s 

initially (Chapter 6). The results of the se e xpe rime nts we r e presente d . 

in generalized form and ~eveal characte ristics of the pumping system s 

which may guide the development of d e sign criteria for efficient mixing 

systems. 

A dimensional analysis for this particular type of impoundment 

and initial density profile showed that the density profiles during mixing 

could be given in the general form, 

p>!c = f {y>:c, t >'.c , F, P, S) ( 6. 8) 

· where: 

p* = normalized d e nsity, Eq. ( 6. 3) 

y* = normalized e l evation, Eq. ( 6. 1) 

t* = normalized time, Eq. (6. 2) 

F = jet densimetric Froude number, Eq. (6. 4) 

p = plume parame t e r, Eq. ( 6. 6) 

s = shape paramete r, Eq. (6 . 7) . 

A measure of the deg ree of the complete ness of mixing is the 

increase in potential energy of the impoundme nt at any time r elative to 

the total increase required for comple t e mixing . The efficiencies of 

several pumping syste ms were analyzed based on this m e asure of 

response of the impoundment relative to a theoretical input energy. 
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Efficiency, as defined here, d ec r eas e d with increased d ensimetric 

Froude number, F. It was concluded that systems with weak buoyant 

j e ts (low F) were most efficient, and generalize d r e sults were cal-

culate d for cases with F = 3. 0. Also, the shape paramete r, S, was not 

found to be a primary parame t er for the simulation mode l, though it 

probably has an effect in the actual mixing process. 

The results of low F mixing experiments are shown in Fig. 6 . 12 

and 

(6. 32) 

for these case s. The plume paramete r, P, also has only a small 

effect on the results; for instance, the dime nsionless time, t * , r equired 

for 90% completion of mixing (in terms of pote ntial energy increases) 

-6 - 1 
varies less than 20o/o over the r ange of P from 10 to 10 • This 

means that the change s of the dime nsionle ss d e nsity profile s with 

dimensionless time are practically the same for all P whe n F is small, 

i. e. , 

(F < 3) 

and that at approximately t >~ = 0. 25 the impoundment is n e arly mixed. 

The value of t >:c is much less than 1 du e to the large lower laye r entrain-

ment of the buoyant jet. 

The solutions for this par t icula r case of initially linear density 

profiles in prismatic impoundments point to two broad desig n crite ria: 
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1) All other paramete rs remaining fixed, the efficiency of the 

pumping system increases as the densime tric Froude numbe r, 

F, decreases . 

2) The time for complete mixing d epends strongly on t ':' , or in 

physical units on T = Y-/Q, the characte ris tic time for the 

system. Although the value s of t '~ calculated for this special 

case do not apply to all initial profiles, an e stimate of the 

time required for mixing probably can b e based on a fraction 

of T. 

7. 2 APPLICATION OF SIMULATION TECHNIQUE TO LAKES AND 

RESERVOIRS 

The application of the simulation technique and the generalized 

results obtained in this study to the mixing of lakes and r ese rvoi rs by 

pumping systems is possible with certain r e strictions. The assumptions 

underlying the simulation mode l must be recognized for us eful 

application of the simulation t e chnique . 

The simulation model is a closed-system and accounts only for 

change s in the density profile due to the pumping system. Often 

natural changes in the impoundment heat budget occur during mixing 

and can alter the effect of the mix ing due to pumping. This was evid ent 

in the limited comparisons of field and simulation r esults discuss e d in 

Chapter 5. Unless the simulation of the mixing system is couple d with a 

simulation of the effects of a changi ng heat budget, conclusions based on 

the pumping simulation alone must be tempered with judgments about the 

influe nce of these effects. 
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The approximate time r equired to mix the impoundment com-

pletely is necessary if one is goin g to estimate the effect of natural 

changes on the simulation predictions. This time, t , can be found max 

from the generalized results (Fig. 6. 12), if the impoundment is nearly 

prismatic in shape and the initial density p rofile can b e approximated 

by a linear profile. If the generalized r esult s cannot be us ed , the 

characte ristic time, T = Y-/Q, provide s an order of magnitude approxi-

mation to t . The field experiments with pumping systems show max 

(Table 5. 1) that 

t>:c = t IT < o. 3 
max max 

and simulation computations show t ~:c of this order. An approxi-
max 

mation of t based on a fraction of T should indicate whether the 
max 

time required for mixing is large or small relative to the time scal e of 

natural changes in the density profile . Should the time r equired for 

mixing by the pumping system be s mall r e l a tive to that r equired for 

natural changes, the simulation m odel can be applied dir ectly. How­

ever, should the mixing time b e large r elative to that r e quired for natural 

changes, the results provide d by the simulation t echnique must be 

viewed accordingly. For instanc e, the simulation result s fo r a lake 

which is loosing h eat due to natur a l processes will provide a cons e r-

vative estimate of the requi r e d rnixing time. The reverse would b e true 

for a lake subjected to large net inputs of heat. 
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The application of the gener alized r esults (Fig . 6. 12 ) r equires 

that the jet densimetric Froude number F be ~ 3. If the shape of the 

impoundment or initial density prof ile are such that the g eneralized 

results are not applicable and the full simulation technique must be 

used, low values of F are recommended for effici ent pumping systems . 

Laboratory .experiments showed (Chapter 4) that for l arg e 

values of the shape parameter , S, l a t eral density gradients existed in 

the impoundment contrary to the one-dimensional assumption underlying 

the simulation model. In the interest of b etter mixing and more appro-

priate application of the simulation t echnique, impoundments with large 

S values (large area, but r elatively shallow) might b e divided into two 

or more regions each with its own pumping system as suggested in 

Sect. 6. 3. 

The choice of the pumpe d discharge, Q, may be d e t ermined by 

the estimate of the time , t , in which the m ixing must be accom-max 

plished. The effects of changes in the e l e vations of the jet and intake 

tubes, discharge jet diameter, and changes in the initial d ensity profile 

can be found in a broad sense from the generalized results (Chapter 6) 

or for a particular case from the simulation t echnique (Chapters 2 and 

3 ). 

7. 3 RECOMMENDATIONS F OR FUTURE RESEARCH 

The simulation model proposed in thi s study establish es the 

frame work to which additions or modifications can provide mod el s for 

the simulation of related problems. 
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The value of coupling a simulation of an impoundment heat 

balance to the pumping system simulation has been mentioned pr e viously. 

Because the solution to the pumping system model is a stepwise solution 

in time, the possibility of alternating changes in the density profile due 

to external effects with changes due to the mixing by pumping exists . 

Similarly, the redistribution of a reacting tracer substance (as dis-

cus sed in Chapter 3) can be handled by alternating changes due to the 

effects of chemical and biological reactions with those due to mixing. 

The mixing of a reservoir due to the discharge of inflow by a 

jet (38) can be studied by adjusting the simulation model to allow for 

variable storage and by removing the withdrawal zone if necessary. 

The mixing of a density- s tratifie d impoundme nt by r e leasing 

compre ssed-air bubbles n e ar the bottom might b e modeled by r e moving 

the withdrawal zone and replacing the buoyant jet m echanics of entrain ­

ment with those of an air-bubble plume in a stratifie d environment. The 

simulation of the air-bubble mixing system would p e rmit comparison 

of the relative efficiency of this type of system with that of the pumping 

system. 

Field experiments with mixing systems on lakes and reservoirs 

are difficult to conduct. However, a n effort should be made to gathe r 

data important to underst~nding the physical processes of mixing as well 

as the results of such mixing on the chemical and biological constituents 

of the impoundment. Density or t emperature profiles measured 
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simultaneously at several locations i n the i1npoundment during mixing 

provide information necessary to improve the simulation model and 

other predictive technique s. Heat budget data would be useful for 

testing the validity of a coupled heat budget and pumping system 

simulations. 
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NOTATION 

A horizontal cross- s e ctional area of impoundment 

A coefficient defined by Eq. (2. 53) 
m 

A:~ normalized area, Ad/Y. 

a characteristic length for withdrawal layer, defined by 
Eq. (2. 32) 

b nominal half-width of jet (j2b = 2cr) 

b half-width of jet at the e nd of the zone of flow e stablishme nt 
0 

c density-stratifying agent, conce ntration of mass or 
temperature 

cl 

cl * 
c s 

c :.:c 
s 

D, 

d 

d . 
J 

dt 

d w 

E m 

D. 
J 

center line concentration of tracer in jet only 

local concentration of tracer in jet only 

tracer concentration in the impoundment 

tracer concentration in return flow from jet into the 
impoundment 

initial jet diameter 

vertical distance between intake and jet tubes 

elevation of jet tube 

total depth of impoundment 

elevation of intake or withdrawal tube 

eddy diffusivity for turbulent withdrawal layer 



F 

Ff 

GL 

G 
p 

g 

HL 

H 
p 

h 

I 

i, j 

k 

kl, k2 

.{, 

M 

m 

(n) 

p 

Q, Q. 
J 

q 

qe 

q * e 

187 

NOTATION (Continue d) 

jet densimetric Froude number, defined by Eq. (6. 4) 

Froude number used by Fan (18), defined by Eq. (6.9) 

power r equirement due to pumping head, defined by 
Eq. (6. 28) 

power requirement due to losses, defined by Eq. (6. 26) 

acceleration due to gravity 

losses proportional to velocity head 

pumping head due to pressure difference, defined by 
Eq. (6. 25) 

local space step, · 6 
y 

arbitrary constant of order 1 g/ml 

indicies for space and time coordinates 

local time step, 6t 

constants of proportionality, defined by Eq. (2. 36) 

time coordinate 

fraction of t:,P. E. reached in time t 

integer, order of harmonic 

order of derivative 

plume parameter, defined by Eq. (6. 6) 

discharge from jet 

two-dimensional flow in withdrawal layer 

volume rate of flow per unit depth to impoundment (Region 1) 

normalized q , q d/Q 
e e 



r 

s 

s 

T 

t 

t max 

u 

u 
0 

v 

v* 
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NOTATION (Continued) 

distance measured from jet axis 

shape parame ter, define d by Eq. (6. 7) 

parametric distanc e along the jet axis 

characteristic time , V/Q 

stratification parameter us e d by Fan ( 18 ), defined by 
Eq. (6. 10) 

center line temperature of j e t 

local temperature in jet 

temperature of ambient fluid 

local ambient fluid t emperature 

time, usually from the beginning of pumping 

normalize d time , t/T 

maximum pumping time 

normalized maximum pumping time, t /T max 

jet v e locity along cente r line; velocity in withdrawal laye r 

local jet velocity 

normalized velocity in withdrawal laye r 

center line velocity of jet at the end of the zone of flow 
establishment; c e nte r line velocity in withdrawal layer 

volume of impoundment included between intake and j et tubes 

vertical transport velocity; in Chapter 6, initial jet v elocity 

normalized transport velocity vV/Qd 



X 

y 

Y c. m. 

a 

'Y 

lit 

lly 

[IP. E. 

6 
p 

e: 

e 

1T 
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. NOTATION (Continued) 

coordinate axis for the jet in the horizontal plane 
from the jet origin ; horizontal distance from intake for 
withdrawal layer 

elevation above bottom of impoundment 

normalized elevation, y/d 

normalized elevation in withdrawal layer, 2y I 6 

elevation of the cente r of mass of impoundment 

elevation of the level of neutral buoyancy 

coefficient of entrainment 

a coefficient 13 > 1 

specific weight 

local time step 

local space ste p 

change in potential ener gy, defined by Eq. (6. 24) 

initial ambie nt density diffe r e nce between the inlet and jet 
tube elevations 

thickness of withdrawal layer 

density g radient parameter, define d by Eq. (2. 33) 

angle of inclination of jet axis r e lative to horizontal 

initial angle of inclination of jet axis relative to horizontal 

jet spreading ratio between buoyancy (or t emperature) 
and velocity profiles ( 1/A 2 = turbule nt Schmidt numbe r) 

3. 1416 . ... 



p, P· 
J 

¢ 
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NOTATION (Conti nued) 

cente r line jet density 

density of ambient (impoundment) fluid 

local ambient density 

local d e nsity within the jet; in Chapter 6, the normalized 
density 

m ean d ensity, d efine d by Eq. (6. 19 ) 

refe r enc e d ens ity 

functional r e lationship of t emperatur e to d ensity 
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APPENDIX 

Listing of Compute r Program Outline d in Section 2. 3. 3 

(The impoundment a nd pumping system data 

are for Expe rime nt Numbe r 13 ) 



200 

// SI<4E JOH C ~ l40l , JlH),c;, l •lliiMAOIS , M~vLt:V~L• I 

II S~ T TIME• I I O , O I, Kf.G I UN •I 7.~K 
II ST E ~1 tXF.C FOR TGCLr. 
1/FIIKT, SYSIN llll 9 

C TH I S PROGf(AM I S ~ llR ~X P ~K . 

C THI S I'KilGRA M FI NDS THE Nt: W 
C INCLINt U RIIClYAN f J~ T 1"1 Ml 
C YC 11 • CENHIILINE VELOC IT Y 

NU . I3 WITH .lli T AT THe; AI'ITTIJM 
O~NSIT V ~KUF I LE AFTF. K TIME UF.LTAl 
A~HIT~A~ Y ~~~OFIL~ 

C YC7.l • JET NOMINAL HALF WIDTH 
C Yl41 • THETA , THE ANGLE OF Ct:NTtR LINE FilUM HOKIZfJNTAL 
C YISI • X COURU 
C Y C b I • Y COIIRO 
C ALPHA • ENTRA IN~ ~Nf COt:~F . 

C SCHMO • TIIR HULENT SCHMI D NIJMf\ER 
C TENTIIIMI • I:NTK AT NONIIN I FOHM Y 

C CTEN TCMI • I NTERI'IILATtD ENTR AT IINIFORM Y 
C WRGYIMI • NUNUNI~O~M Y 
C Cf(R TYCMI • UN IFOJ<;~ Y 
C GR All • ACCEL OIJE TO GRAVITY 
C KHOII • RFFt:K~NCE llENS I TY 
C IJENGKU • LOCAl. llENS I TY GKALll t NT 
C X : I) I STANCE Til 1\0IJNOAkY FROM INTAKE 
C INTA KE • POINT OF I NTAK~ c i.E VAT ION 
C YSTEP • VeRT ICAL SPACING INT ER VAL 
C WIOTH • WIDTH OF R~S~RIIIl l ~ AT INTAK E 
C AV ETHK • AI/EII ROIJNOED OFF WITH LAYER 
C CRRTYIMI • VF.RT ICAL COORD ZERO AT 
C ENTHJ • I NTEGHATEil J ET t:~TRAINME NT 
C ENTRW • INTEG~ATEO WITH0RAWAL 1- l 

ELEIIA T I•'J'l 
THICKNESS 
f\OTTOM 
1-l 

C ENTRO • INT EGRATED ZEKO E~ TKAINMENT REGION 1+1 
C ENTR • SliM OF All. INTEG>{AT EO EN TRA INMENT 

Il l MENS I ON Y(hi,YOUT ( b) , YNEW I 125 1 l , OENGR0 ( 25Dl , ENTRI251 l ,ENTRJI251 l 
1, ENTRW I 2 S 11 , EN fRll C 2i 11 ,CRR T Y ( 25 11 ,.., RGY I 2i 11 ,AilE A I 25 1 l, TENTR I 25 11 oil 
2ELI 2S il,YNEW I 3000 l,VI 25 1lo AMDEN I 25 1l,OEN I 251l oD ENEWI3DOD I,ODI3l 

DIM ENSI ON VO~ ~LC2SOl 
O IM~NS I UN DE NII 2S i l 
OIM ENS I IlN BSTllP C2l , RF."'TI{I 2l,HY31 2 l 
RE All(~, I 01 ) 0 I ~JET , 1) I AI< , THc T All , RHOO,OENOI F 
f(cAU I S olOO l GK AII,AL ~HII , SCHMi l 
REA0 ( ~ 0 HO I l VSTEP , WIOTH,X , INTAKF 
II.EADI~.20 1) I)F.LTAS , •>EI_TAT , LI MT IM,INTVAL 

201 FORMAT C2t' IO. S , 2 14 1 
WRITEII>, 300 l 
WRI TE ( b,1SDI OI SJET , OIAM , THETAO, RHOO , OE NOIF 
WRITE Cb, 2~0l GR AV, AL PHA , SCHMil 
WH I TEib , ~04l VSTEP,WI DT H,X , IN TAK~ 
WRI TE I 1> , 25 1) llELf AS,Il O: LTA T ,LJMT IMoiNTVAL 

2~1 ~U~MAT I1H O , SX , 7HOF. LTA5• , F10.5,5X ,7HDELTAT •,F 10.S,SX,7HLIMTIM •oi4o S 

1X,7HINT\IAL• ,l 4 l 
M c I NTAKE 
NUT I I<E • 0 
NUINT • I NTII AL 

C GEN ER ATE THE AMO ENS FOR THI S CASE OF LIN E A~ STRAT , - ~ II F. RY 0.2CM 
C THE DENS I TY • 1. 0000000 + IAMOE N * IOOO.l 

A MOEN I 11 • ' 3 , 70 
00 701 L•2 , 1A 

701 AMOENILl • AHO~N (L-11- , 04 88Rd H9 
AMOEN I 19 1 •2 , 62 
no 707. L• 20 ,7 11 

702 AMOENILl • AMilEN IL-11- , 0 13 
AMDEN I79) • '.,04 
IHl 703 LcHO ,I OB 

703 AMOEN ILI • A"O~N IL-1)- . 0 1&33333 
AMOENI 10'1l • 1 . ~5 

on 704 ~·1 10.1 68 
704 AMOEN ILl • AMOEN IL-11- , 0085 

Ml(lF.N IIb9 l • 1.04 
00 705 L• l70.190 

70S AMOEN ILl • A~U~NI L-1 1 - . 0 1 ~18 1 818 
AMO EN I I 'Ill • O.b4 
DO 706 L• l92 . 7.1b 

70b AMilENIL) • AMOEN IL-Il- ,003 07&973 
00 707 L•2 17, 2S1 

707 AHOENILl • O. Sb 
DO 50S L•1 , 25 1 

505 UEN 11Ll • AI<OEN IL) 
C GENE~ AT€ THE AR EAS 1'01( THIS CASE ALL AI\ E E•liJA L 

00 14 L• 1, 2S I 
14 A~EAI Ll• 52852 ,3 2 

C.RRTVIII•O.O 



OIJ 59 N • 2,~51 

Y~ • N - 1 
59 C~RTYINI • v~•YSTEP 

1)1)111 . 0 
IJD I ? I • 0 
OUil l • 0 

201 

CALL LAKEI.(O,,l,,50 , ,0,.l 2 . 5 , ) , 7lHIJISTAN •:O: AHIIVE .JF.T C~ o+ 21 o01 
CALL LAflf.L(12,So 1. , o ,) , 4 , () , H, 7), 7, lbHIOENSITY- 1 IX IOOO,-Ib o l l 
CALL XYPLO TI 2, 1o CR~TY,A~IJEN , iO •• -I0.,0 .1,4.loOO,Ol 

1 b,O, llfl 1 I' I • 1 , 2' I 
ENT I\JI I ):ll , O 
~'ITRWIJ l •0 ,0 

11 ENTo\IJI I 1•0 , 0 
llE'IIJ IF • IIA~OEN III- A~UEN(l'ljTAKF.ll/lOOO.I• I (J , +ISCH~D .. 2li/12 .•1 S 

1CHM 0""2) )) , 
HNTR I 1 l • OJ SJCT 
W~C.V I 1 l • 0 . 0 
011 12 J • 1o250 

1 2 DENGRO I Jl • (A~O~N IJ+I l - A~D~NIJl l/ lOO . O 

C INTE(;RATIIIN llF JET ENTI<.AIN Mf.'ljT 
COEFF • GI<.AV•ISCH~IJ••21/~HOIJ 

VI I ) • D I SJE T / I l . 14 1 S927• 1 0 1 A~""2l/4 , 01 
Yl21 •O I AM/1, 4 14 214 
Yl31 • OF.NOIF 
Yl41 • THETAQ•l .141?927 /1 HO , 
Yl51 • 0,0 
Y(,O,) • o .o 
T • 0 , 0 
I • 1 
CA LL OEQI K, b, T , Y, YOIIT , DELTAS, 5 . E-b I 

100 GO TO (10,20,20 , lOI.K 
10 YOOTI11 • I -2 . •ALPHAOYI 11/YI 7.1 1+1 2 . •COEFF*Yili•SI"'IYI4 l 1/YI 111 

YOOTI21 • 1 2 , 0ALPHAI-ICOEF~ov ( 21*Yil i*SI~IYI4li/~YI11••21 I 
YDOTI31 • I I 1.+1 SCHMD••21 I •DE...,GRUI I I*S I NIY1 41 I/I SCH~D••21 1-12.• 

1AL PHAOY I3l/YI 2 1 I 
YOriTI4l • 12.•COEFFI•YI31•COSIYI4li/I YI IIU2) 
YDOTISI • CflSIYI411 
YOOTibl • S I N I YI4ll 
CALL OE02 1£100 , &130 1 

20 IFI IO,OE- 1>51 - VIlli 21 o23,23 
21 KEN TRI II • Jl , 1415927 .. Y( li*IYI2l"* 2 11 - •l 1S.JH 

llSTQP III • Ylbl 
I\Y311l • Yl31 
I FIY ibi-CRRTV II+11l 21o2b o 2b 

?b TENTRII+1 1• 1 l .1415927*Y I11•1YI 21••2 11-D1 SJET 
WI<.GYI 1+11 • Ylhl 
1• 1+ 1 

27 CALL OE011£100) 
130 CONTINU E · 

GO TO 27 
23 J FIYibl - CRRTYI 1+11 I 52 1,522 ,5 22 

522 I • I+ 1 
WRG Y I I I • Y I'> I 
HNTR III • ll .J41S9270YIII•IY121-*21l- lliSJET 

521 8STIJP I2l • Ylhl 
t\ENTR I2l • (3 .1415927 •Y (JI • IYI 21H2 l l - OISJET 
HY3 1 2 1 • Yl 3 1 
KSI7.E • I 
A~TIIP • YNTEo\PIKY3 , r!STIIP,0.0000000,7.,1) 
AENTR • YNTERI'It<STOI' , IIENTR,ASHIP,2,1 l 
J • 1 

3 1 ENTI<. JIJI• YNT~RPIWKC.Y , TENTR,tKRTY I JioK~IZ E , 5 1 
ENTo\JIJI • - ENfkJIJ I 
I~IJ-KS I Ztl 3l o13,33 

32J•J+I 
GIJ TO 31 

C NOW CA LCIILAl E WI THOKAWA I. 1.4VER A'IO INT F.GR ATE 
33 DISC • OISJF T/WIOTH 

C CA LC OF I NVI SC JU THICKNESS 
A = II 0 1 SC••21fiC.RAV• I-OENC.I<.O II NTAKF.I/RH00)1)•• , 2S 
THKINV • 12,7)0A 

C CAL C IIF TIIRII THICKNtSS Kl • 10E-3 
I F IIX/A)-,0,000,) bO,hO,b1 

1>0 THKTIIR • A•R , 4*1 I .Oill*X/AI•• . 25) 
r;n TO b2 

lol T>iKTIIR • A•7.14*11,0010X/Al*0,33) 
1>7 AVETH~ • IT>i~INV + TH~TU~)/2,0 

~ lHK • IIAV ET HK/2,01/YSTF.PI+O,S 
ATHI( • MTHr<. 
AV ~ THK • ATHK•2.0*YST~~ 



C: LOC4l f. 1\lllliiM !IF WITHU~~WAL LAV oR 
VlNlAK • C~~lY(MI 

YKAWL • YI NT 4~ - IAv F. THK/ 2 ,01 
K=IYkAWL/VSTEPI+I,~ 

KIIO'f • K 
YlAWL • VINTAK • IAV~ THK/ 2 . 0 1 
L • IVTAWL/VST ~ PI+1.5 

t TI W = L 
011 1>3 J • K ,M 

202 

VSlAR • IVINT AK - CRRTV IJII/I AV~l HK *O,SI 

~3 tNT~WIJI • -1.9~•11.-VSTAR)I-1. 03 12~ •fi,-IYSTA~••'.III+I,94S75~11.­

IIY STAR*'"3 111-I ,4545~1 I.-IYSTA R.,.4 1 I I 
Ull b4 J = M •'· 
I • I 7•~11 - J 

b4 ~NT~W IJI • -1.0 - EoHOIWIII 
Ill) n~ J •K ol 

b~ ENT~WIJI • E~TRWIJI '"OlSJc T 
C ASSir.N INlE GRATtO VALIJ~ TU PlJSil iVE ENTRAIN, Rt:I;ION 

N• KSIZ E+I 
Dll bh J •N ,L 

bb ENTIIOIJI • DI SJ ET 
lllJ b7 J•l. 251 
ENlii(JI = ENT~JIJI+ "NTRWIJI+E NTRUIJI 

b1 VIJ) • ENlRIJI/ AREA IJI 
NBEGIN • ~SIZ E + 1 
KSIZEI • KSIZ E - 1 
Vlll • IDE I.TATI•I-ENT ~JIKSIZ E II 
KSIZE1 • KSIZE - I 
00 400 L•I,KSIZE I 

400 VULELILI • DELTASOAK~AIKSIZ E -LI 

l • I 
403 IFIVIIL..;VOL ELILII 401,40 1,402 
402 VOL • VOL-VO~ELILI 

L • L + I 
I F I L .G T. KS I Zc II Gn TO 111 
GO TO 403 

711 WRITEib,7121 
712 FIJRMA liiH0,40HMIJVf <;REATE~ THAN KSIZE DE LTAl TOO I.ARGF. I 

STO~ 

40 I C1JNll NUE 
flO 70 L = I,KSIZ ~ 

70 V~LILI • -VILI 
I = I 

71 YN EWIII • CRRTYIKSIZE+I-11 - IVF.LIKSI ZE +I-II•OELTAll 
IFIYNF.WIII - 0,01 72 ,73,74 

74 I • I + I 
Gll HI 71 

72 CORD IS • CRR TYIKSIZE•1-I I - IYN EW I I Ill 1.-1 IV EL IKSIZF.+7-I 1-VELI KS IZ 
I E+ I - III •DEL TAT/Oe LTASIII 
YNH/f I I • 0.0 
GO HI 120 

73 YN F.'<I I I • 0.0 
120 NMI\ ER • I 

011 124 L•I,NMRER 
124 YN EW11LI • VN EW I~I 

1111 l;>i I. • I,NMRF.R 
121 YNF>i( L) • YN ~ W11"1MII~R + I - Ll 

NMB~R I • NM»E~ + I 
NMI\ ER7 • NMIIF.~ + 2 
YNF I<INMK ER1 I • ASTllP - I IA ENT R/A~EAIKSIZE I I»OELTAT I 
YN F.W INMI\ER2 1 • AS TOP + II D I SJF.T /ARcA IKSI~ " II*Uf.LT~TI 

KTOP = LTIIP - KSIZE 
Tlll 30 1 L=1, o<TIIP 
SPACF = VIKSIZ F. +LI•IlF.LTAT 

301 YN F. WINMK EMZ + ll • CR~TYIKSIZ~ + Ll + SPACE 
LIMIT • NMR ERZ + KTOP 
00 1?3 L•l , 2 ~1 

123 DENILI ~ AMDEN I L) 
DENEW!il • YNT"RPIC~RTY,DE~ , Cil~D I S.Z5 1.!1 
IJII 122 L•7,NMI<ER 

17 2 DF.N F. WI LI • 11EN IK~I ZS - ~Mf<~M + ~~ 

llf NF. WINMf<ER1 I • YNT t~ ~~ C~I<T Y, Ot:N,ASTII~,251 , 1 1 

I)ENF WINM~ c R Z I • •lEN~..,(NMKt RI I 
n11 175 L • 1,KTII~ 

17~ U~NFWINM~ ER2 + Ll • O~NCKSIZ ~ + ll 
Ull I 7b L • I , L HlP 

171> DENILI • niTF.~PCVNEW,IlENEW,C~RTY(L),LJMITol) 

I • I 
SliM • O,Cl 



,. 

S61 SUM I • UEN C I I - DEN I C I I 
SUM = SUM + SIJM1 
IFCSUM1- 0.01 S08,ShO,S60 

~08 I • I + 1 
c;u TO 561 

560 SUMA • SUM - SUM! 
11 c I + 1 
DO SOh I • II, 2 51 

203 

506 SUM • SUM + I OEN I I I - DEN 1 C I I I 
ERROR • 1-100,/SUMAI•f SUM-( .S•(l)ENI 11-UEI'II( li+OEN(2511-DEN1 1251111 
ll 
KEPT~K • NOTIME + 1 
WHITE(6,5701 ER~UR ,KEPTRK 

570 FO~MAT(lH0,27HPE~CENT ERROR MASS 8ALANCE•,F1Q,S·,7X,21HNUMEIEI\ OF Tl 
IME STEPS•, I 41 
NIITIME • NOTIM'= + I 
IFINUTIME-NOINTI 163,164,164 

163 00 I~ S L•l,251 
InS AMDENILl • DENILI 

C.Q TO 166 
ln4 CONTINUE 

IFINOTIME-L IMT IMI 167,16H,16A 
167 CALL XYPLOTI2S1,CRRTY,DEN,S0.,-10.,0.I,4.1,DD,OI 

Oll 1~'1 L• 1, 251 
169 AMDEN(LI • DEN CLI 

NOINT • NCJINT + INTVAL 
GO TO 166 

168 CALL XYPLOTI2S1,CRRTY,DEN,S0,,-10.,0.1,4,1,UO,II 
STOP 

30 WHITE (I>, 600 I 
STOI> 

101 FORMATI3FlO.S,2F10.71 
200 FORMA T(3 F10.41 
801 FOKMAT13 F9 ,4,131 
300 FURMATI1HI,42HTHIS PHOGRAM FINUS THE NEW DENSITY ~RUF IL EI 

ISO FORMAT( 1HO,SX,7HDI SJc T=,FlO.S,5X,SHD IAMc, F 10.5,SX,7HTHETAQ•,FIO.S, 
15X ,SHRHOOc ,Fl0.7,SX,7HOENUIF=,F 10.71 

250 FORMAT( 1HO,SX,SHf,RAV•,FI0.4, SX ,6HALPHA•,~l0.4,5X,6HSCHMO•,F10.4) 
804 FORMATIIHO,SX,6HY STEP• ,F9.4,5X,6HWIDTH•,F9.4,SX,2HX•,F9.4,SX,7HINT 

1AKE=,I31 
HOh FURMAT(IHO,IIX,1HM,7X,7HCOURO Y,I2X,4HV(Yll 
80H FORMAT(IOX,(4,5X,F9.S,SX,F1 5 .HI 
600 FORMAT(22H ERROR RETURN FROM DEO) 

END 

//GO.SYSPLTON DO SYSOUT•N 
1/GO.SYSIN DO • 

23.94 0,849 o.o 1. 00370 0.04 
980. 0.082 1.16 
0.2 60.96 827. 180 

.2 120. l10 30 
II 


