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Abstract 

In this paper, we determine all simple groups with 9, 10 and 

ll conjugate classes. The method we use is a modification of an 

old method of Landau: Suppose G is a finite group with n 

conjugate classes K1, K 2 , ... , Kn. Then the class equation for G 

can be written in the following form 

n n 

1 = 6 !Ki I / I GI = 6 l/mi , 

i=l i=l 

where m. is the order of the centralizer of an element of K. , 
1 1 

and we choose the numbering so that I G I = m 1 _:::. m 2 > >m. 
n 

The method is to observe each solution and determine whether or not 

it corresponds to a simple group. 

The main direction of this research was to develop tests that 

reduce the number of solutions computed. These tests deal primarily 

with the way various prime powers divide the m.'s. These tests, 
1 

together with a method for generating solutions to the class equation, 

were programmed by the author in FOR TRAN for the IBM 3 70/155 

at Caltech. 

The computer time for the case n = 9 was 22 seconds, and for 

n = 10 .it was about 7 minutes. For n;:ll, the numbers involved were 

occasionally too large for the computer to deal with, and after 

producing several new tests, the computing time was 8 hours. 
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The effect of the computer programs was to produce a few 

hundred solutions of the class equation that it could not eliminate. 

These were then examined by hand in order to eliminate the ones 

that do not correspond to simple groups. During the eliminations 

by hand, new tests were tjiscovered that should be mechanized 

for higher values of n. 
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§ 1. Introduction. 

All finite groups with n _::: 8 conjugate classes are known (see 

Annaveddar (1), Poland (1), Miller (1), Burnside (1), p. 462). In this 

paper we determine the finite simple groups with 9, 10, and 11 

conjugate classes. We also recheck the simple groups with fewer 

than 9 conjugate classes. These are listed in a table at the end of §4. 

We suppose that G is a finite group with n conjugate classes 

We let x. E: K. be a representative for the ith class 
l l 

the class equation for G reads: 

I GI= 2:: h. = 2:: I Gj /mi and then 
l 

i i 

n 
(l. l) l = 2:: l/m. 

l 

i=l 

Equation (1. l) is our basic starting point for this problem. We 

arrange the classes in order so that IG I= m 1 ~ m 2 ~ · · · ~ mn' whence 

m
1 

is the least common multiple of the m.' s . The main difficulty 
. l 

with this equation is that there are far more solutions that are not 

groups than solutions that are. Here we say a solution "is" a group 

if there exists a group with the specified centralizer sizes. There 

may be more than one such 'group. Annaveddar (l) says that for n=8 

there are about 15, 000 solutions, and only 15 groups. 



2 

The method we use for solving equation (1. l) was originally 

developed by Landau (1) in order to prove that the number of groups 

with n conjugate classes is finite, and to establish some bound 

on the order of such groups. This method is easily programmed 

on a computer, using standard backtracking techniques. If we know 

mi+l' ... , mn, we can find some bounds on mi and we try each 

possible value. The number of tests this process requires is near 

the upper limit of what is presently feasible for a computer for 10 

and 11 classes; for 12 classes it seems to be beyond the limit. 

Accordingly, the main results in this paper deal with ways to 

eliminate certain configurations before they are completed to 

solutions of equation (1. 1). Here the assumption that G is simple 

gives us further restrictions on these configurations. For example, 

no finite simple group with n conjugate classes can have 

m =m 
1

=m 2 =4(Poland(l)) . 
n n- n-

If G is any non-abelian group, we have m > 2 and m
1 

> m , n- n 

so that ni < n - 1. It will turn out that we may assume 5 < m < n-2 n- n-

for a simple group, since the simple groups with 2 < m < 4 are all - n-

known. A computer is used to produce a relatively small list of 

solutions to equation (1.1) by the method described. These are then 

dealt with , again by computer, using many recent classification 

theorems about simple groups, and the results follow . 

In particular, almost every possible group order is less than 
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one million for n < 10 so we can use the results of Hall (2) , (4) to 

determine if the solution corresponds to a simple group. 

Theorem: The simple groups with 9 conjugate classes are L 2 (8) , 

L
2 

(13) , and A
7

. 

Theorem: The simple groups with 10 conjugate classes are M
11

, 

L
3 

(4) . 

Theorem: The simple groups with 11 conjugate classes are L 2 (17) 

and Sz (8) . 

The simple groups with fewer than 12 conjugate classes are 

tabu lated elsewhere . 



4 

§ 2. 1 Notation 

All groups we consider will be finite. 

/SI The number of elements in the finite set S. 
if(a) The set of primes dividing the positive integer a . 

if' The set of primes not in if 

a q The largest power of the prime q that divides the 

positive integer a; it is called the q-part of a . 

a , The largest divisor of the positive integer a that is rela-
q 

tively prime to the prime number q; it is called the q' -part 

of a. 

The centralizer in G of the nonempty subset A of a 

group H containing G(H will be understood, and usually 

equal to G). If the context allows, we may omit the 

subscript or the parentheses . Thus: CA, C(A) , CGA are 

all equivalent to CG(A). 

A similar convention applies to the following notations: 

The normalizer in G of the nonempty subset A of a 

group H containing G . 

The conjugate class of the non-empty subset A of a 

group H containing G(i.e. theset{AglgE:G\) . 

kG ( j y l) 

The set of non-identity elements of the group G . 
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In addition, we need names for some known simple and non-

simple groups. All the names are standard . The q will always 

denote a prime power representing a finite field of order q. 

The linear groups L (q) = PSL(n, q), SL(n, q), GL(n, q), and 
n 

PGL(n, q), the unitary groups U (q) = PSU(n, q) the alternating 
n 

groups An' the Mathieu groups M11 , M12 , M
22

, M2 3' M 24 , and the 

Suzuki groups Sz(q). 

Notation not explained here may be found in Gorenstein (l) 

or Huppert (1). 

§ 2. 2 

G 

n 

m . 
1 

K. 
1 

h. 
1 

x. 
1 

l. 
1 

Specific notation for thi.s problem. 

A finite group. 

A fixed integer ~ 2, usually 9, 10, or 11, representing 

the number of conjugate class es of G. 

mi = mi +l ~ the order of xi is ~the order of xi +l . 

For 1 ~ i ~ n, the ith conjugate class (in the ordering 

described above). 

I Ki I , for l ~ i ~ n, the number of elements of the class 

K .. . 
1 

An element of K., so that K. = kG(x.), and m.=j CG(x.) I 
1 1 1 1 1 

lcm (mi' mi+l' ... , mn) so that if we define ln+l = 1, we 

have l. = lcm(m., 1. +l) for 1 < i < n. 
1 1 1 



£. 
1 

6 

n 

\(1- L: 1 
) so that 

m. 
j=i J 

i-1 
and £. / 1. 

1 1 
= L: 

j =l 

l / m .. 
J 

£. /1. + 
1 1 

n 

I:· 
j=i 

l/m. = 1, 
J 

Thus this fraction 

us how big the m. must be for j < i. 
J 

§ 2 . 3 A s sumed results. 

We first list some relatively easy theorems that have grown 

up with this problem . 

(2. 1) Theorem (Burnside (1)) . 

If mn = 2f. IG I , then G has an abelian normal subgroup of 

order 2n-3 and index 2. 

(2. 2) Theorem (Poland (1) , Theorem 3. 2) 

If m = n-1, then G is not simple (Poland actually gives a 
n 

list of the groups here , but we are only interested in the fact that 

the y are not simple) . 

(2 . 3) Theorem (Burnside (1)) . 

If a prime, for j' then 
2 { !GI. Moreover , m. = p, some p 

J 

i I- 1 and P I mi => mi = P · 

(2.4) Theorem (Miller (2)). 

If m. = p for exactly b values of j I- l, then b ! p -1 and G 
J 

contains an element of order (p-1) / b . 

Remark: If b=p-1 in the previous theorem, G has a normal 

p-complement by a theorem of Burnside. We may therefore assume 

b ~ (p-1)/2. 
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(2 . 5) Theorem (Poland(l)). 

If mj = pq for j f- 1, and distinct primes p , q, then pq I mi 

for at least three values of i f- 1. 

Now we list some harder theorems about simple groups . 

(2 . 6) Theorem (Feit & Thompson (1) , see also Higman (1) , and 

Suzuki (3)) . 

If G is a non-abelian fini te simple group with a self-central ­

izing element of order 3 , then G == L 2 (5) or G =::L2 (7). 

(2. 7) Theorem (Suzuki (2) , Proposition 8 , page 268, see also 

last paragraph of introduction, page 255). 

If a simple group G has a self-centralizing element of order 4 , 

then it has a dihedral Sylow 2- subgroup of order 8 , and G =::A
6

, A
7

, 

or L
2 

( 7) . 

(2 . 8) Theorem (For a discussion see Sims. (1)) . 

The primitive permutation groups of degree .:=: 20 are all 

known . 

Remark: We may therefore assume that the maximal subgroups 

of G have index more than 20 . 

(2 . 9) Theo r em (Hall (2) , and (4)) . 

The simple groups of order < 43200 are known . 

The following result is a corollary of Theorem 3 . 1 of Hall (l) 

and the theo r em of Brauer /\~Reynolds given below" It is discussed 

afte r Theorem 3 . 1 of Hall (l) and in Hall (2) page 142 &: 149 . 
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(2. 10) Theorem. 

If G is simple group with l+rp Sylow p- subgroups, then 

p
2 I jGI implies r ~ p and p

2 ~ IGI implies r ~ (p+3)/2 or else 

one of the following occurs: 

(a) r =l and G == L
2

(p). 

(b) r = (p-3 )/2 and G ==L
2 

(2m) with p::;. 2m + 1. 

(2.11) Theorem (Brauer &Reynolds (1), see Hall (2), page 148). 

If G is a simple group with Pl jG I , then p
4 > p I implies p

2 ~ IG I . 

Furthermore, p
3 > IG I implies p > 3 and one of the following occurs: 

G ::= L 2 (p), 

or 

Remark: If p I IGI for a simple group G, then 2p(p+l) ~ IGI so if 

2 
IG I < (2p)(l+p(p+3 )/2) = p(2 + p + 3p) = p(p+l) (p+Z), and G is simple, 

then G is an L 2 (q) for some q. 

Now we list some hard theorems on numerical information 

about G. 

(2. 12) Theorem (Burnside (1), see also Gorenstein (1), page 131) 

A group G with / 1T ( IG I ) I~ 2 is solvable. 

(2. 13) Theorem (Thompson (1), see Gorenstein (1), page 2 59) • 

The order of a simple group is divisible by 12 or 320. 
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(2.14) Theorem (Thompson (1)) . 

If G is a simple group with Irr (IG I ) I = 3, then the three 

primes are 2, 3, and one of 5, 7, 13, 17 . 

(2.15) Theorem (Wales (1), Brauer (2)) . 

If I rr(IGI )I =3 for a simple group G, then for p e f 5, 7, 13,l7i, 

p
2 f I GI implies G is known. 

Theorems (2 .12) through (2. 15) are used by the program after 

a configuration is completed and a tentative group order is known . 

As the application of such results to this problem is clear, they will 

not be mentioned further . 
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§ 3. Outline of the method used. 

We build solutions lmdl _:::: i _:::: n to equation (1. 1) by what 

amounts to a sophisticated trial and error method . If we have 

m , m 1, ... , m.+l' m., we can find bounds on m . 1 as discussed 
n n- J J J -

in § 4, and then try each possibility. 

The major difficulty with applying a computer to this problem 

is the tremendous number of solutions to equation (1.1) . The number 

2n 
of solutions is bounded b y 2 (Landau (1) , see also Poland (1)) . 

It is therefore not feasible to determine all the solutions first, and 

then examine which are simple groups . 

Since we are assuming the solutions to represent the sizes 

of centralizers of elements in a simple group, we can apply many 

tests to the numbers to eliminate them as possible configurations . 

The main object is to recognize as early as possible when a sequence 

of numbers cannot be part of a solution for any simple group . We 

may cite in this regard an example mentioned before, that if 

m = m = m = 4 then no matter what values the remaining 
n n - 1 n- 2 ' 

m . 's have , we cannot have a simple group (Poland (1)) . 
1 

There are three programs involved . Each acts as a filter 

on the set of solutions . The first program applies the easy tests 

and eliminates most of the configurations. The second applies 

harder tests and leaves a few cases remaining . The third applies 

test to a certain special cas e where the other m e thods break down. 
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The result is a short list of possible solutions that must be dealt 

with by hand . We will describe the programs and illustrate the 

methods that were most effective in eliminating configurations by 

hand . 

The first program builds solutions and applies theorems (2. 3), 

(2.4), and (2. 5) in an attempt to eliminate configurations before they 

are completed to solutions . It may be noticed that these theorems 

are not very deep, but they still eliminate a significant percentage 

of the solutions to equation (1.1) . We call a solution a basic 

solution if it satisfies Theorem (2 . 3) and the remark after Theorem 

(2. 4). As an example of the effect of the first program, we mention 

the case n = 11. Out of 360 , 000 basic solutions, only about a 

thousand passed the tests this program applies. 

The second program takes solutions to equation (1. 1) which 

pass the first program's tests, and applies more sophisticated 

tests to eliminate the solution. This is the program that uses the 

deepest results from group theory. The majority of these concern 

the group order alone. 

· The third program is only used when some of the numbers get 

too large for our computer. When this situation arises, during the 

execution of the first program, it prints out information c:lescribing 

the problem. The third program reads this information and applies 

different tests to eliminate the case. 
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We describe the procedure used by the first program in more 

detail. We will consider a partial solution to equation (1.1) as 

a row of numbers m , m 1, ... , m., written on paper, with m at 
n n- J n 

the far left. We assume the paper to have n columns, labelled 

from n to 1 from left to right, with m. in the ith column. We vie.:v 
l 

the operation of the program as 11 filling in the columns. 11 

The program begins at the left, in column n, with a possible 

value for m (we have bounds on m from 9 4) . Then Lemma (4. 4) 
n n " 

is used to find an upper bound for mn-l' and the largest possible 

value for mn _1 is written in column n-1. 

The program can compute an upper bound for m 
2 

and 
n-

continue . At each stage, the theorems are applied to determine if 

it is possible to complete the partial solution to form a solution of 

equation (1.1) corresponding to a simple group. We will describe 

later how each theorem is applied . 

If it is possible to complete the solution (i.e., if the theorems 

are not contradicted), bounds on the next column are computed and 

the program tries the largest value for that column. 

If one of the theorems is contradicted , the program backs up to 

the previous column (this is what gives the process the name 

11 backtracking 11 ), and tries the next possible v.alue for that column. 

If there are no more possible values for that column, the program 

backtracks again and tries a different column. 
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There are two points at which this process breaks down. The 

first is when the program actually gets to a solution of equation (1.1) , 

and the second is when it tries to backtrack out of column n, after 

it has tried all possible values for m . 
n 

When a solution passes all of the tests applied by the first 

program, it is printed (for the second program) and the program 

backtracks from column 1. This means that the next possible value 

for m 2 is chosen . Thus the output of the first program consists 

of a list of solutions to equation (1. 1) that pass certain of the more 

basic tests. 

When the program tries to backtrack from column n, it has 

tried all of the possible values for m , so the program is done. 
n 

Theorem (2. 3) is tested two ways : first m. is examined to 
1 

find out if it is a prime, and then the program finds out if it is 

divisible by a prime p = m. , j > i . If m. is a prime , the prime 
J 1 

must be remembered to test more m. 1 s. If m. is divisible by 
1 1 

a prime p = m. with j > i, 
J 

then p = m . 
1 

or else the configuration 

is not part of a solution representing a simple group,. since it 

directly violates Theorem (2. 3). 

For Theorem (2 . 4) to be applied, it is not sufficient to just 

remember which primes occur . Each prime must be counted also. 

If a prime p occurs more than (p-1)/2 times, the configuration may 

be eliminated (see the remark after Theorem (2.4)). When the 

program gets to a solution of equation (1.1), the number of times the 
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prime p occurs (called b in Theorem (2 . 4)) is checked to find 

out if it divides p-1 and if some centralizer is divisible by (p-1) / b . 

This is the only use this first program makes of the existence of 

an element of order (p-1)/b. 

Similar recording is done fo.r pairs of primes in accordance 

with Theorem (2. 5) . H an m. = pq for distinct primes p and q, 
1 

then the centralizer it represents must be cyclic, so that elements 

of order p, q, and pq exist in G with pq dividing their centralizers . 

(This is , in fact, a proof of the theorem) . This means that as the 

program determines each m., it keeps track of which prime pairs 
1 

occur and ho w many times each pair occurs. These numbers are 

then tested when the configuration is completed to a solution. 

Occasionally , during the backtracking, we recognize a 

situation that only arises due to the computer being used: when some 

m . is too large, we cannot trust the machine to do the arithmetic 
1 

properly. Fortunately , this situation can be predicted and then 

dealt with by the special third program, which has to somehow avoid 

using the numbers . This program will be described after the second 

one . This situation is recognized when the lower bound on some 

is too large. For technical reasons, the bound we use is 32768 . 

This case only happens for m 4 , m 3 , or m
2

, when n ~ 11, but it 

m. 
1 

14 
gives possible group orders up to 10 No simple groups with fewer 

than 12 conjugate classes occurred among solutions of equation (1. l) 

that produced this anomaly. 
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(3 . 1) Example . 

We will illustrate the process by worki ng the case n = S. 

In order to avoid triviality, we restrict ourselves to using the easy 

theorems (2 . 1) through (2 . S) . We a l so allow a weak condition 

similar to (2 . 8) , which says that a simple group has trivial center , 

so the index of the centralizer of a nont rivial element is at l east 2 . 

This means we may take x = 2 for Lemma (4. 4) and we get: 

for 2 .::: i .::: S , l i +/ f i +l < mi .::: ( i - l / 2 ) 1 i + / f i +l . We also use ( 2 . 1) 

and (2.2) to get 3 .:::ms.::: S. - 2 =3 , so ms= 3. 

We write the columns as follows: 

s 4 3 2 l 

m 

f 

1 

u 

v 

The integer at the top of each column is t h e subscript , and the 

letter at the left of each row is the variable . The variables m, f , 

and l are defined earlier (in § 2 . 2) , and we repeat the definitions 

here: mi is the size of the ith centralizer, li = lcm {mi ' mi +l ' , .. ,mnl' 

n i-1 
and f. is chosen so that f./1.=l L l/m. = L l/m .. We also set 

1 1 1 J J 
j=i j=l 
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v. = l.+1/£.+l and u. = v.(i 1/2), so that for i = 2, 3,4 we have 
1 l 1 1 1 

v. < m. < u . 
1 . l - 1 

Since m
5 

= 3, we get: 

5 4 3 2 1 

m 3 

£ 2 

l 3 

u 5l. 
4 

v 1± 

According to the description, we choose the largest possible 

m 4 , which is 5 . This gives: 

m 

£ 

1 

u 

v 

We 

m 

£ 

l 

u 

v 

5 

3 

2 

3 

4 

5 

7 

15 

5l. 
~, 

l f: 

3 

5. 3 

2. 1 

We try m
3 = 5 

get: 

5 4 3 

3 5 5 

2 7 4 

3 15 15 

5.25 5.3 

l. 5 2.1 

2 l 

and compute £3, 13' u2' v2. 

2 l 

5 . 6 

3.75 

Now m3 = 5 implies m2 .::: 5 and Uz = 5. 6 ~ m2 < 5, 

so m2 = 5, but this contradicts (2. 4 ). Thus the possibilities for m2 



17 

are exhausted, so we backtrack to column 3 q.nd change m 3 . Since 

m
4 

= 5 .:::_ m
3

, we cannot reduce m
3

, so we backtrack another 

column and reduce m 4 . We get: 

m 

f 

1 

u 

v 

the 

m 

f 

1 

u 

v 

5 4 

3 4 

2 5 

3 12 

51 
4 

1 

3 

6 

2 . 4 

2 

We first try m3 = 6. 

following configuration: 

5 4 3 2 

3 4 6 

2 5 3 

3 12 12 

sl-4 6 6 

1- '-., 2.4 4 

l 

This giv es f 3 = 3, 13 = 12. This gives 

l 

We again try m 2 = 6, and get the solution (3,4, 6, 6,12)to equa­

tion(l.l). The prime pair 2· 3=6 occurs only twice, so this solution 

contradicts (2 . 5). We therefore backtrack to column 2, and since 

m3 = m2, we cannot reduce m2, so we backtrack to column 3 . We 

reduce m3' and we get: 

5 4 3 2 1 

m 3 4 5 

f 2 5 l3 

1 3 12 60 

u 5'1-4 6 6 . 9 
b 1 J~ 

-~ 
2 . 4 4.9 
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We try m
2 

= 6 , and this gives £
2 

= 3, 1
2 

= 60, so this does 

not give a solution of (l. l) . We backtrack and reduce m
2 

to 5. This 

gives : 

m 

f 

l 

5 4 

3 4 

2 5 

3 12 

3 

5 

13 

60 

2 

5 

1 

60 

l 

We have a solution (3, 4, 5, 5, 60) to equation (l. l), which we 

print , and then backtrack to column 2. Since m
3 

= m
2

, we backtrack 

to column 3 and reduce: 

m 

f 

1 

u 

v 

gives : 

m 

f 

1 

5 4 

3 4 

2 5 

3 12 

s+ 4 

i t 

N ow 

5 4 

3 4 

2 5 

3 12 

3 

4 

2 

12 

6 

2 . 4 

m =9 2 

3 

4 

2 

12 

2 l 

9 

6 

contradicts 

2 1 

8 

1 

24 

(2 . 3) since ms= 3 . Then m
2 

We get a solution (3,4 ,4,8 , 24), print it and continue. 

We backtrack to column 2, reduce m 2 to 7 , and get: 

m 

1 

5 

3 

3 

4 

4 

12 

3 

4 

12 

2 

7 

84 

1 

= 8 
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We do not get a solution here. We further reduce m 2 to 6, 

but this contradicts (2 . 3) again . We backtrack to column 3, find 

it can't be reduced , and backtrack again . We get m 4 = ms = 3, and 

by (2 . 4) , this is impossible for a simple g r oup. We must 

backtrack to column 4. Since ms= m 4 , we cannot reduce m 4 , 

so we backt r ack again . We reduce ms to 2 , and by (2 . 1) , we may 

quit. This ends the first program , producing 2 solutions. 

Since we are not allowing the program to use theorems (2. 6) 

through (2 . 12) , we assume that we must deal with the two solutions 

by hand . 

We can use more complicated theorems to show that there 

is one simple group of orde r 60 given by the first solution, and that 

the second solution does not give a simple group. In fact , we can 

show it gives s4 . 

We now describe the second program. It is given some solu­

tions of equation (1.1), and wants to decide if the solutions repr esent 

simple groups or not. It is interesting to note that the easiest 

theorems to apply are the hardest to prove. For instance, theorems 

(2. 12) through (2 . lS) are easy to apply, since we only need to factor 

the group order, but they definitely include the deepest theorems 

used here. 

In order to make the testing faster here , we use the program 

to search for "new 11 simple groups rather than simple groups . 

For instance , if we get a group order of 20 , 160 , we stop, because it is 
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known that there are just two non-isomorphic simple groups of that 

order, namely A
8 

and L
3

(4). We use in this respect some very 

recent results. The two most basic - - these are also the two that 

eliminate the most configurations - - concern themselves solely with 

the group order and do not consider the other m.'s. 
1 

The first is a 

theorem of P . Fong (2 , see also Fong (1), Hall (3)) and the second 

is a theorem of M . Hall, Jr . (4, see also Theorem (2 . 9)). 

(3. 2) Theorem . The simple groups whose order is not 

divisible by 64 are known. 

(3 . 3) Theorem. 
6 

If the order of a simple group is l e ss than 10 , 

then either the group is known or else it has one of the following 

orders (there follows a short list of possible group orders, the 

smallest of which is 43200) . 

We used an earlier version of this program for n ~ 10 , where 

we only assumed that the group order was divisible by 32 and that 

it was more than 20, 000.. The program returned only 3 numbers as 

possible group orders: 20 , 160, 40,320, and 87,360 . The simple 

groups of order 20, 160 are known . There are no simple groups 

of order 40, 320, and we also easily eliminate 87,360 =2 6 .3 . 5 · 7 · 13 

as a possible group order with the techniques used by Hall (2). 

So far , these tests have only considered the group order. The 

number of possibilities remaining is now small: for n ~ 10, there 

are about 100 more cases and for n = ll there are about 400 . 
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The program now performs a Sylow center test, determining 

some orders of elements. This test eliminates all of the remaining 

cases for n < 10 and reduces the number of cases for n = ll to 

about 150. 

Suppose that a prime p has its highest power (i.e. I GI ) 
p 

dividing only one of the m. 1 s with i f 1. Then the corresponding ' 
1 

class is easily seen to be the only class of elements that can be in 

the center of a Sylow p-subgroup of G. In particular, the elements 

in such a class must have order p. This eliminates a configuration, 

for instance, when two different primes have their highest powers 

occuring once only and for the same m .. 
1 

This condition is checked for all primes dividing I GI . It 

sometimes occurs that we have a prime p such that every m. for 
1 

which if 1 and Pl mi is assigned to a prime different from p by 

the above condition. Then no element is in the center of a Sylow 

p-subgroup of G and therefore the configuration is eliminated. 

The third program accepts as input a partial solution 

! md n ~ i ~ r l where r = 3, 4, or 5 . Its purpose is to either 

eliminate the partial solution or compute m 1 . 
r-

For r = 5, the program does nothing, since the cases it 

could eliminate have restrictive hypotheses that don't apply very 

often. 

For r = 4, the third program can use Lemma (4.11) to 

eliminate some configurations. 
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For r = 3, the program uses lemmas (4 . 7) and (4. 8) to 

produce a (usually short) list of possible values for m
2

, together 

with factorizations of m
2 

that give the group order m
1

. The group 

order is printed when it isn't too large for the computer . 

If the group order is not too large for the computer , the 

solution can be tested in the same way as the first and second pro~ 

grams test solutions. If the group order is too large, most of the 

tests can still be applied , but they take more time to compute , so 

not all of them a r e used . 

The first program thus leaves two kinds of configurations . 

There are some solutions to (l. 1) that pass the tests that the first 

program applies, and there are some partial solutions that pass 

some of those tests . The second and third programs deal with these 

two cases, respectively, reducing them to manageable proportions . 

The last cases were eliminated by hand, using the techniques 

listed in the following lemmas . After these lemmas are some 

examples of the eliminations for n= 11. 

(3 . 4) Lemma . Suppose m. 
1 

has r different prime factors for 

some i f l. Then we have at least Zr - 1 different orders of non-

trivial elements in G . 

Proof: Write m . = 
1 

r a . 
J TI p. 

j =l J 
with the p.t s 

J 
distinct primes and the 

a. 1 s positive integers . Then some element of prime order 
J 
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(Say xk' k < i since it may be chosen to be a power of xi) has 

its centralizer divisible by 
r 
TI p.. Say xk has order p

1
. 

j =l J 
Then 

there are elements yj of order pj with p1 I I Cyj I for j -f .1. 

We have therefore constructed 2(r-l) elements of order different 

from p1 and so we have at least 2r-l elements of different orders. 

This is therefore a generalization of Theorem (2. 5) . 

When we use this lemma, we will usually use the list of orders 

needed, and try to show that we have more necessary orders than 

classes to assign to them. 

(3. 5) Lemma . 

have order p. 

Proof: Let x have order p, x e P , a Sylow p-subgroup of G. 

2 
If x E: z p' then p < Cx' s 0 p I I ex I . If x I ZP, then 

<x, ZP > < Cx and < x, ZP> has order at least p
2 

For instance, if we assume G is simple, then 4 I !GI so a 

centralizer of order 2p for an odd prime p must correspond to 

an element of order p or 2p. 

(3. 6) Lemma. If a prime p occurs b > l times, we must have 

((p-1)/b)+b <n. 

Proof: If the prime 2 
p occurs as an mi, we have p f I GI by 



24 

Theorem (2 . 3), and if it occurs b times , then there are b . classes 

of p-elements , so if P is a Sylow p-group of G, !NP/CPI =(p-1)/b . 

Then a theorem of Brauer (1) implies that the principal p-block has 

(p-1) / b + b ordinary irreducible char acters , so (p-1) / b + b .:Sn, 

since the number of ordinary irreducible characters in all of the 

blocks is n . 

We can get more information here sometimes ; when we can 

show CP f P, since then there is more than one p-block of defect l. 

This limits the possible primes even further. However this is hard 

to show, since if CP f P, no m. = p. We do know that for 
J 

l_:::b_:::p-1, P~ + b2:2,/P"=T , sothatwemayassume p_:::l+n
2

/ 4 

for each prime that occurs to the first power . 

We now list some examples for n = 11. In each case, we list 

several values and show that this list of 

numbers is not the first part of the list of centralizer sizes for a 

new simple group. 

The eliminations illustrated are configurations that the computer 

did not eliminate . The techniques used were developed during this 

research . 

(3. 7) mu 

5 5 7 7 

m 
5 

32 66 
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Here we use Lemma(3.4) with i = 4, r = 3 . No m . with i > 5 
1 

has two primes dividing it, so the 2r - 1 = 5 classes implied by the 

lemma must occur among the three classes F:
4

, :K
3

, and E
2

, which 

is not pas sible . 

(3 . 8) 

7 8 9 13 

Now we compute f
5
/1

5 
= 41/32 760 (see 5, 2 . 2 for notation), 

so Lemma (4. 4 ) implies m
4 

cannot be 13. Therefore Lemma (3. 6) 

with b=l gives 13 _::: 11, a contradicition. 

(3 . 9 ) 

9 9 11 

Here f
5

/ 1
5 

= 4 / 3465 so m
4 

cannot be 11 by Lemma (4. 4 ). 

Thus we have by Theorem(2 . 4) an element x of order 10, and 

since 51 ICxl and 5 f I Cxj, we contradict Theorem (2. 3). 

(3. 10) mll 

6 6 7 18 20 

Now 9 I m 5 1 I GI so the centralizers of order 6 must be 

centrali z ers of elements of order 6, so x 11 , x
10

, x
9

, x
8 

have order 

6 by Lemma(3. 5) . Since we have 5 j m 4 , we have x
4 

of order 10 

(it can't have order 20 since that would require x
3

, x
2 

to have 
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orders 10, S, 4, and 2 with S dividing the centralizers) . Since we 

need elements of order S and 2 with 20 dividing the centralizer, 

x 2 and x
3 

have orders 2 and S or S and 2 , respectively. Thus xS 

can ' t have order 9 or 18 or 6, since each requires an element of 

order 3 with 18 dividing the centralizer . For example, if xS has 

order 6, x: has order 3 and CxS ~ c.x; Therefore xS has 

order 3 . 

We claim x
6 

has order 2. Order 12 is out since it requires 

an element of order 4 with 12 dividing the centralizer. Order 6 is 

out since it implies 12 divides the centralizer of an element of 

order 3. Order 3 is out by Lemma(3 . S) since 9 I I GI . Order 4 

is out since if 3 divides the centralizer of an element of order 4 , 

there is an elE;ment of order 12 . 

The orders of the elements of G are now known : 

6 6 6 6 7 

XS 

2 3 10 

x
3 

and x
2 

2 and S or 

Sand 2. 

There are no elements of order 4 in G, so a Sylow 2 -group 

P is elementary abelian . Since x
6 

has order 2, P ~ C(x
6

), so 

I PI = 4, and C P == P x Z 3 . 

Since not all involutions are conjugate , NP / CP has order 1, 

and so NP = CP. Burnside's theorem implies G has a normal 

2-complement. 



27 

(3 . 11) m7 

7 52 

W e know xS has order 2 , 4 , 13 , 26 or S2 . If 2 or 4 , then 

there must b e an element y of order 26 or 52 whose 13th power 

is xS ' so Cy 5 Cx
5

, which is clearly impossible . If x 5 has 

2 4 
ord e r 13, there is an element y of order 26 or 52 with y or y 

conjugate to x
5

. Again Cy5 CxS ' which is impossible . Ther efore 

xS has order 26 or S2 . If it has order S2, we need elements of 

orders 26 , 13,4 , and 2 with S2 dividing their centralizers, so thes e 

four orders must occur in the three classes K
4

, K
3

, and K
2

, a 

contradiction . 

We have then that xS has order 26, so that among jx4 , x 3 , x 2 } 

there are elements of orders 13 and 2 with S2 dividing the 

centrali z ers . 

We compute fs/ls = 99 / 3640 , so using Lemma (4 . 4), we get 

m
4 

< 112 . Now using m 4 _::: S2 , we have f4 / 14 _::: 29 / 3640, so 

m3 ~ 260 . 

If a prime Pl I GI with p ~ i 2, S, 7, 13 \, then we have p 

divides exactly one of m
2

, m
3

, m
4 

since two of the orders are 

known . We then have that the corresponding m. must be a power 
1 

of p. 

If 13
2 f I GI , then the group C(xS) contains a Sylow 
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13-subgroup P of G, so that CP contains x
5

. Therefore CP > P, 

so there are at least two 13-blocks of defect l(Brauer (l) . ) . 

Since any 13 -block of G of defect l has at least 7 characters, 

we have at least 14 characters here, contradicting n = 11. Therefore 

Since there is only one class of elements of order l3, and 

since an element of order 13 has a centralizer whose order is 

divisible by 4, we have that the centralizer of an element of order 

2 
13 has order at least 4· 13 = 676>260 . Therefore, we must have 

x 2 of order 13, so x
3 

or x 4 has order 2, with 13 dividing the order 

of Cx3 or Cx4 . By Theorem (3 . 4), there is an element of order 

2 with 64 dividing the centralizer order. Since 13· 64 > 260, we 

cannot have the same class for these 2-elements, so x
3 

and x
4 

both have order 2, with 26 dividing one centralizer order and 64 

the other . 

Therefore I G/ = 2a 5 · 7 l3b, with a~6, b~2, since no 

other prime can occur in / GI . 
The multiples of 64 that are less than 260 are 64 , 128 , 192, 

and 256 . Since 3 f I Gj , no centralizer can have order 192, so 

one centralizer (either C(x
3

) or C(x4 )) has order 2a, with 

6 < a < 8 . 

Similarly, for 26 we wa.1t a multiple of 26 between 52 and 260 

with no primes except 2, 13 . The only possibilities are 52, 104, 208 , 
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so this centralizer has order 2 s · 13, 2 < s < 4. 

r b 
Now m 2 = 2 . 13 for some r ~ l, since no other prime 

can occur. We have a~ r ~ 1, since a Sylow 2-subgroup of C(x2 ) 

is contained in a Sylow 2-subgroup of G. Then since f/1 5=99/3640 , 

we have : 

99 / 13 · 35 · 8 = l / 2a +l / 2s · 13+l/ 2r·13b +l/ !G/ 

If we multiply the above equation by I GI , we get 

99 · 2a- 3 . 13b-l=5·7 · 13b+za-s. 5 . 7 . 13b-1 +2a-r . 5 . 7 +l 

Now taking residues modulo 13, we have (recall b ~ 2) 

a-r · 
0 = 2 · 3 5 + 1 (mod 13 

4. 2a-r =:l =:40 (mod 13) 

a-r 
2 =: 10 =: 1024 (mod 13) 

a-r = 10 (mod 12). 

But 8>a>r>1 implies 7 >a -r > 0 , so this configuration 

is eliminated . 

The last two examples illustrate the application of Lemma (4 . 8) 

to these problems. 

(3 . 12) mll 

6 6 6 6 10 10 10 32 
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. 5 5 
Here 13 = 38880 = 2 · 3 . 5. Since 486 = 2 · 3 

5 
divides 

I GI , the sixes must correspond to elements of order 6 by 

Lemma (3. 5). Since we assume 641 I Gj by (3 . 2), and since 64[ 13 , 

we have 64 I m 2 and x
2 

has order 2 . Therefore m
3 

must be the 

centralizer of a central element in a Sylow 3 -group, so x
3 

has 

order 3. Now the sixes imply that there is an element of order 2 

with 3 dividing the centralizer, so 3 I m
2

. 

Now I x 7 , x
6

, x 5 \ must have orders 5 and 10, so we may 

assume x 7 ha:;; order 10 and x
5 

has order 5. Then x
6 

has order 

5 or 10. If x
6 

has order 5, then all elements of order 10 are 

conjugate to. x
7

, so all elements of order 5 are conjugate to x
2
7 . 

This contradicts the fact that here we have two classes of elements 

of order 5. 
2 

Therefore x
6 

has order 10 and 5 [ m 2 . 

We take Lemma (4 . 8) with p = 2, m
2 

= 2a+b c , 
b a 

13 =2 (?, -1) c, 

c is odd and b=S. Since 15! m 2 , 151 c, so 2a-ll3
4

. Therefore 

2a a = 2 , 5. 34 a 
1, =5 35 which - 1 = 3, c = or 2 - 1 = a = l, c 

' ' 

gives m2 = 27. 5 34 or 26. 5 3 5 . Then 

I GI= 2
7

. s . 3
5 

= 155,520 <10 6 , 2 6 . 3 5 . s = 77,760 <10 6 , 

and both of these orders are not on the list of Theorem (3 . 3). 

A nice alternative to this elimination uses the results of 

a b 
Brauer (2) on simple groups of order 2 3 5. For the configuration 
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above, we have one class of elements of order 5, so there is an 

element of order 4 normalizing a Sylow 5-group. This must be 

conjugate to x 4 . Note that we can now say that G has two 5-blocks 

of defect l. Since m 2 cannot have a prime divisor other than 

2,3, 5, we have I Gj =2a3b5 with a~ 6, b > 5. There is no such 

simple group. 

(3 .13) 

6 6 8 14 96 686 

5 
Here 13 = 32928 = 2 · 3 Now since m = 3 

686 = 2 . 73 

x 5 must be an element of order 14. We again as s.ume 64 j I GI 

by Theorem (3.2), and since 64 % 13' we have 64j m 2 and x 2 has 

order 2 . Then x
3 

has order 7, and so 7j m 2 by Theorem (2. 5) . 

To apply Lemma (4. 8), we have p=2 again , and 

' 

5 3 b a a+b 
1
3 

= 2 · 3 · 7 = 2 (2 -l)c, c odd, and m 2 = 2 c. Since 7lm2 , ?le. 

Therefore, 2a -1 I 3 · 7
2

. There are three solution to this condition : 

a I 2 a= 1,2, and 3. These give 2 - 1 1 21, so 7 jc. Therefore, since 

c ! m 2 , x 2 of o r der 2 commutes with a 7- subgroup of G of order 49 . 

Since there is only one class of 7 -elements in G, all have order 7, 

so this group of order 49 is elementary .abelian. But now we have 

an abelian group of order 98, so there is an element of order 14 with 

a centralizer divisible by 98, which is not possible . Thus this 

c onfigur a ti on is eli::nina ted. 
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9 4. Bounds 

We have seen that for a finite simple group, we have 

2 < mn < n-1 (Theorem (2.1) and (2. 2)). We will show that we may 

assume 4 < m < n-l. This gives a bound for m as required by 
n n 

the algorithm of the first of the three computer programs. We will 

also derive bounds for each m. 1·n terms of m m m for . . +l ' ... ' l ' 1 1 n- n 

2 < i < n-1. 

(4. l) Lemma . If G is a finite simple group with n conjugate 

classes, and if m < 4, then G is known . n-

Remark: The program uses this result by as surning 5 < m < n - 2 
n-

(see Theorem (2. 2)). 

Proof: We will show that if m = 3, there is a self-centralizing 
n 

3-element, and all such groups are classified (Feit and Thompson(!)) . 

If mn = 4, then the possible Sylow 2-subgroups are found, and the 

simple groups for each type of Sylow 2-group have been classified . 

If some m. = 3, then G has a centralizer of order 3, so 
J 

G has a self-centralizing Sylow 3 -group of order 3 by Theorem (2 . 3) . 

Then Theorem (2 . 6) implies G is isomorphic to L 2 ( 5) with 5 

classes , or L 2 (7) with 6 classes. 

If some m. =4, we have m. =I C(x.)j, where x . E: G. Let P 
J J J J 

be a Sylow 2-subgroup of G containing x .. 
J 

Then C (x.) has order . p J 

4 also. Now by a theorem in Huppert (1, Satz III . 14. 23 page 375), 



33 

P must have maximal class. So either P is abelian of order 4, 

or P is non-abelian and a theorem in Gorenstein (1 , Theorem 5. 4 . 5 

page 194) implies P is dihedral, generalized quaternion, or semi-

dihedral. 

The simple groups with these Sylow 2 - subgroups are all 

known by various deep classification theorems. Rather than refer 

to these, we use relatively straightforward arguments to eliminate 

most cases. 

If C(x.) is cyclic , then x . must have order 4, since 
J J 

ZP c C(x.) and x. has order 2 imply P is cyclic, so that G 
J J 

has a normal 2 -complement. Then x . is an element of order 4 which 
J 

. is self-centralizing, so Theorem (2. 7) implies G=:=L
2

(7) , A
6

=:=L
2

(9), 

or A
7

. 

We may therefore suppose that C(x.) is a Klein 4-group. 
J 

Then we have an element x € P of order 2 with CG (x} a non- cyclic 

group of order 4. Since a generalized quaternion 2-group has only 

one involution , P is dihedral of order at least 4 or else P is 

semi-dihedral of order at least 16. We eliminate all of these 

possibilities except P = Cx by various fusion arguments. 

If P is semi-dihedral, Proposition 1 of Alperin-Brauer-

Gorenstein (1, page 10, see also exercises 6 and 7 on page 265 of 

Goren stein (l)) imp.lies G has one conjugate class of involutions. 

Then x must be in the center of some Sylow 2-group, so ! CGxj ~ 16, 

a contradiction. 
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If P is dihedral of order at least 8, Theorem 7. 7. 3 (i) of 

Gorenstein (1, page 262) implies G has one conjugate class of 

involutions. Therefore I ex I ..'.:: 8' a contradiction. 

We must therefore have P = Cx is non-cyclic of order 4. 

Now easy fusion arguments (Theorem 7. 7. l(i), page 260 of 

Gorenstein (l)) give that G has one conjugate class of involutions 

Now NGP satisfies the hypotheses of Theorem 9. 2.1 of 

Gorenstein (1, page 306), so NGP is a strongly embedded subgroup 

of G. Then Theorem 9. 2. 2 of Gorenstein (1, page 308) with 

H = M = NG P and C = P < H gives : 

[G ; NGP] _:::1 + IPI =5, so I GI_::: 60, and since G is assumed 

to be simple, G ===: A 5 . 

Therefore all of the simple groups with an 

known. 

m . = 3 or 4 are 
J 

We note that Suzuki (2, and l, Lemma 4) determines all of the 

2-groups with a centralizer of order 4, and W. J. Wong (1, 2) 

determines G/ o2, (G) for an arbitrary group with a centralizer of 

order 4. Here 021 (G) is the unique maximal normal subgroup of 

G of odd order. 

(4. 2) Conjecture. If m = n-2, for a simple group G with 
n 

n conjugate classes, then G ===:L
2

(2m) with n = 2m + 1 > 5. 
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The groups L 2 (Zm) have n = Zm + 1 conjugate classes and 

and m = n-2. 
n 

(4. 3) Conjecture. If m = n-3 for a simple group · G with 
n 

n conjugate classes, then G ::=L
2

(q) with q =Zn - 5 > 5. 

The groups L 2 (q) have n = (q +5)/2 and mn = n-3. 

Now that Lemma (4.1) gives us a bound on mn, we consider 

the problem of bounding m. for 2 < i < n-1. We suppose that x 
1 

is a lower bound for the size of a non-trivial conjugate class, so 

that all centralizers of non-identity elements have index greater 

than x. 

(4. 4) Lemma. Suppose 2 _::: i _::: n -1, and that mi+l' ... .' mn 

are known. Then we have bounds on m. 
1 

Proof : First recall the definitions. 

are the centralizer orders, 1. = lcm(m. , m.+l' ... , m . ) 
1 i i n 

m 
n 

= lcm (m., 1. +l), where 1 +l= 1, and £. is determined by the equation 
i i . n i 

n 
f./1. 

l 1 + . ~ . 1/ m j = 1. 
J = l 

Since m. > m. for 1 < j < i, we have l/m. > l/m. for 
J- l - 1- J 

l<j< i. Then equation (1.1) gives: 
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i n 
1 = ~ l/m. = l/m1 + ~ l/m. + ~ l/m. 

J J J 
j j=2 j=i+ 1 

~ l/m1 + (i-1) / mi + 1 - f i+/\+i ' 

s o that 

< l/m1 + (i - 1)/m. < l /xm. + (i -1) /m . 
- . l - l l 

< (l +x(i -1))/xm. = (i-1 + l / x) / m . . 
- l l 

Thus the right-hand half of the inequality is proved . Now 

In particular , for i= 2 we have 1/ m
1 

+ 1/ m 2 = f
3

/ 1
3 

and 

We mention here that we use x as a lower bound for the index 

of a centralizer , although we computed it as a lower bound for the 

inder of a subgroup. This bound may be expected to be a poor 

bound, and for the known simple groups with few conjugate classes, 

it is so . 

A table follows of simple groups with 11 or fewer conjugate 

classes . 
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Smallest Index Smallest Index 

Group n of a Centralizer of a Subgroup 

A 5 5 12 5 

L
2 

(7) 6 21 8 

A6 7 40 6 

L
2 

(11) 8 55 12 

L
2 

(8) 9 56 9 

A7 9 70 7 

L
2 

(13) 9 84 14 

Mll 10 165 11 

L
3 

(4) 11 315 21 

L 2 (7) 11 144 18 

S z(8) 11 455 65 

Since m
2 

is the last centralizer order chosen by the first 

program, we try to find more restrictive conditions for the primes 

dividing m 2 . These conditions are used by the second and third 

programs to eliminate configurations. 

We first prove a preliminary lemma: 

(4. 5) Lemma. Suppose p is a prime dividing m 1 = I GI and 

exactly one other m. . Then a Sylow p- group P of G is elementary 
1 

abelian, self-centralizing, and disjoint from its conjugates. 

Furthermore, I Pl= mi, I NGPI = IP/ (/ P! -1), and 

/GI= /NGPj(r!J?/+1) forsome~nteger r> 0. 
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Proof: Let p j mi for if 1 ( p always divides m
1 

if it divides 

any m.), so that p V m . for j f 1, i. Let P be a Sylow p- subgroup 
1 ~ J 

of G and let x e ZP, x / 1. Then p j j Cx I I I G I , so I Cx I = m .. 
1 

If any prime q -=/=- p divides m., there is an element 
1 

y e Cx of 

order q, and thus x e C(y) implies p I lcyj, which is impossible . 

Thus we have mi = I P j is a power of p. 

Since every element of p# is conjugate to every other, P 

must have exponent p . Therefore if p = 2, P must be abelian. 

We show that P is abelian if p is odd . Sirice all elements of (Z P) # 

are conjugate in NP , I NP/ PI > l . In fact , NP is transitive on 

(ZP)# since all elements of I ZPI # are conjugate in G (7 . l. l page 

240 Gorenstein (1)) . Therefore I ZP I - 1 j j NP j , and therefore 

21 jNPI . Let y eNP have order 2. Then yJ P, andy induces an 

automorphism of P . Since x e p# implies C(x) is a p-group, 

Cp(y) = 1, so y induces a fixed-point-free automorphism of P of 

order 2. Then Theorem 10 . l.4 of Gorenstein (1, page 336) implies 

P is abelian . 

Now all elements of p# are conjugate in G, so they are 

conjugate in NP, and therefore j P/ -1 I I NPj . Since every 

non-trivial element of NP/ P acts fixed-point-freely on P, we have 

NP/P acting regularly on p#, so I NPj = I Pj (I Pj -1 ) . 
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Finally, we note that if P and Q are Sylow p- subgroups 

of G with y E: Pn Q, then y -f 1 implies P, Q _::: C(y) since P and Q 

are abelian, and so P = C(y) = Q, since C(y) is a p-group. 

Therefore P -/:- Q implies P n Q = 1 and so P is disjoint from its 

conjugates . Then we have that the number of Sylow p-subgroups 

in G is (G : NP] = 1 (mod I PI ) . 

(4. 6) Three Cases. We will describe three possible divisions 

of our arguments, depending on the prime powers dividing m
1 

and 1
3

. 

Recall that m
1 

= lcm (m
2

,1
3

) by definition, and that this implies 

rr(m
1

) = rr(m
2

) Urr(1
3

). 

Case I. m
1 

= 1
3

. This is equivalent to m
2 

j 1
3 

since 

m
1 

= lcm(m2 , 1
3

). 

Case II. m 1 > 13' but Tr(m1) ~ rr(l 3 ). This means that all primes 

dividing m 2 also divide 1
3

, but that one or more of the primes 

dividing m 2 has a higher power in m 2 than in m
3

. 

Case III. m
1 

> 1
3

, and rr(m
1

) i_ rr(l3 ) . 

We first note that exactly one of these cases holds for any 

given group G. For each of the cases, we will derive certain 

numerical conditions on G which have the property that they may 

be tested without knowing m
2 

or m 1. In fact, they will produce for 

any sequence m 3 , m 4 , ... , mn' all possible values of m 2 and m 1 that 

give solutions to equation (1.1) corresponding to a simple group. 
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The program uses this division into cases as follows : 

when it has determined m , m 
1

, ... , m
3 

, it checks the numerical 
n n-

conditions derived from Case I. If these are satisfied, the program 

determines the possible values of m
2

, and prints each solution with a 

message indicating that it is a Case I solution. It then checks the 

numerical conditions derived from Case II, and prints out the 

possible solutions. This avoids the problem of determining whether 

or not it is possible for two non-isomorphic simple groups to have 

the same values m 3 , m 4 , .. . , mn, and yet have one solution be of 

Case I and the other of Case II. 

As we s·hall show, Case III cannot occur for a simple group, 

so the program does not check the conditions for Case III. 

(4. 7) Lemma . If G is a finite group with n conjugate 

classes satisfying Case I, then there is a positive integer a such 

Proof: 1
3 

= m
1 

implies m 2 ! 13
, so let 1

3 
= am2 for a positive 

integer a. Then 1/ m 1 + 1/ m 2 = £3/13 implies l/a m 2 + 1/ m 2 = 

The program tests this case by checking whether f
3
-l I 1

3 
and 

1
3

_'.::(f
3
-l)m

3
. 

(4. 8) Lemma . If G i s a finite group with n conjugate classes 

satisfying Case II, then there is a prime power pa> 1 and a 
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positive integer d such that f
3

p a = 1 + 1
3

/ d, and p I d I 13 . 

Proof : We have 1T(m
2

) :=: 1T(l
3

) and m
1 

> 1
3

, so at least one prime p 

has In fact, there is at most one such prime p, since 

if q is any prime for which (m2 )q > (1
3

)q, x 2 is in the center of a 

Sylow q-subgroup of G. 

f2 /12 = l/m1 ~ f 3/1 3 - l/m2 implies d/m213 = f 3 /1
3 

- l/m
2

, so 

f
3

m 2 - 1
3 

= d. Now f
3 

(m
2

/ d) -(1/ d) = l, so that gcd (f
3

m
2

/ d, 1
3

/ d) = 1, 

and therefore 1r(m
2

/d) n1T(l
3
/d) = ¢. Since m

2 
has rr(m

2
) :=_ rr(l

3
) 

by hypothesis, we have : for every prime q dividing m
2

/ d 

(by assumption it must divide 13 ), dq = (13 )q' so that (m2 )q > (13 )q. 

From the above paragraph, we see that m 2 / d must be a prime 

a a / power p , and we must have f
3

p = 1 + 1
3 

d. 

Remark. The programs test this lemma in the following form 

a 
p . 

(4. 9) Lemma. If G is a finite group with n conjugate classes 

satisfying Case III, then (1+13 )/f3 is a prime power pa> m
3

, 

and pa - l I f
3 

- 1. Furthermore, G satisfies the conclusions 

of Lemma (4. 5). 

Proof: We have 1T(m2 ) $ rr(l
3

), so that there is a prime Pl m 2 
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only. Thus G satisfies the hypotheses of Lemma (4. 5) with i = 2. 

We have by definition l/m
1 

+ l/m2 = f
3
/ly Then Lemma (4. 5) 

a a 
so that 13 is (p -1) (1 + rp ). Thus , 

/ aa a /a/ 1 p (p - 1)(1 + rp ) + 1 p = f 3 13 

a a a a Za a a 
1 + 13 = f3 p , so f 3p = l+ (p -l)(rp + 1) = 1 + rp - rp + p - 1, 

a a 
so f3 = rp - r + 1 and p - 1 I f3 - 1. The lemma is proved. · 

(4.10) Theorem. Case III of (4. 6) does not occur for a simple 

group. 

Remark . If G is an arbitrary finite group satisfying Case III, 

then the Sylow p-group is normal. This is proved by a slight 

extension of the proof below. As we do not use it in this work, we 

do not prove it here . 

Proof of (4.10) Our proof is based on the following theorem of 

Z as s enhaus : 

Theorem (Passman (1), Theorem 20. 5, page 263) . If G is 

sharply triply transitive, then G is not simple (all such groups are 

known, but this fact suffices). Here a sharply triply transitive 

group is a triply transitive group in which the stabilizer of three 

points is trivial. 
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We have the following situation : a Sylow p-group P is 

elementary abelian, self-centralizing, disjoint from its conjugates, 

and it has order q = pa . If x e p#, then C(x) = P, so if x is a 

I I I 4 p-element in G, Cx = m 2 = q. Also, NP P is regular on P ' , 

so jNP/ = q(q-1). 

Now I GI= q(q-1)(1 + rq) and P <PG ~r > 1. We have x eG# 

implies I CG(x) I < IP I = q since IP I = m 2 and m 2 is the largest 

nontrivial centralizer. Since IZG I = 1 is odd, a theorem of Brauer 

and Fowler (Gorenstein (1), Theorem 9.1. 6,page 303) implies 

3 ://, 3 
IG I < iCG(x) I for some x e G ' Therefore IG I < q . 

Thus r = 1 and IG I= q(q-1) (q +l). This is the expected order 

for sharp triple transitivity, so we look for a set of l+q elements. 

We consider the action of G on the Sylow p- subgroups of G. 

This action is certainly transitive, and the stabilizer of a point P 

is NP. Now Proposition 17. 2 of Passman (1, page 181) implies 

NP is a Frobenius group with complement R (say) of order q-1. 

We claim NP is transitive on the q Sylow p-subgroups 

of G different from P. In fact, P is transitive on the Sylow 

p- subgroups different from P, since x e P fixes a Sylow p-subgroup 

Q of G implies x e NQ, but x is a p-element of NQ implies 

x e Q implies x E: p n Q = 1. Therefore the stabilizer in p of a 

Sylow p-group Q 'f P has order 1, so the orbit containing Q has 
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size q and must therefore contain all of the other Sylow p-groups . 

Now let S he a two-point stabilizer and suppose one of the 

points is P. Then S < NP and IS I = q-1, so IS I = IR I implies 

S is conjugate to R in NP by the Schur':"Zassenhaus theorem . 

Therefore R is also a two point stabilizer, say of P and Q :f P . 

A three point stabilizer, with one of the points equal to P, 

is the intersection of two distinct conjugates of R. Say R fixes 

P and Q
1 

and S fixes P and Q
2

. Then R, S _:::NP, so R is 

conjugate to S in NP, so R n S = 1, since R is the Frobenius 

complement in the Frobenius group NP. Since IR I = q-1, this 

implies R is transitive on the q-1 Sylow p-groups it does not fix, 

so we are done. 

Remark. 

Case I 

Group 

A7 

A9 

Case II 

Group 

L
3 

(3) 

u
3 

(3) 

Cases I and II of (4 . 6) do occur rn simple groups 

Order = 13 

2520 

20160 

Order 

5616 

6048 

m2 

36 

108 

m2 

54 

108 

f 3 

71 

113 

f 3 

35 

19 

a 

70 

112 

13 

1872 

2016 

a 
d p 

3 36 

3 54 
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Remark. One might prove (4.10) using Theorem 9.1. 7,page 304 

of Gorenstein (1). Using the notation there, we have b :5_ q, c < q, 

I G/ = q(q - 1) ( 1 + rq) :5_ b(b - 1) (c + 1) , which implies b = c = q. 

Since b and c are orders of centralizers, respectively, of an 

involution and of an element of odd order, we get an immediate 

contradiction unless r = 0, whence (as advertised) P <l G. 

(4. 11) Lemma . If G is simple and if a prime p divides m
3 

and 

does not divide 14 , then either m 2 and m 3 are powers of p, or 

else the conclusions of Lemma (4. 5) hold for p and m 3 . 

Proof: If x 3 is not a p-element, then q I I x 3 I for some prime q fp. 

Then there are classes of elements of orders pq, p, and q, with pq 

dividing their centralizers. Since this is impossible by hypothesis, 

we have x 3 is a p-element . The same argument shows we cannot 

have a prime q f p dividing m 3 . Therefore, m 3 is a power of p. 

If p I m 2 , then the above argument shows that m 2 is also 

a power of p. If p ! m 2 , then p divides m 1 = I GI and m 3 

and no other m ., so Lemma (4 . 5) can be applied. 
1 

(4.12) Conjecture . The only simple groups G satisfying the 

hypotheses of Lemma (4.11) have m 2 = m 3 and G ==: L
2 

(q), where 

q =l (mod 4). 
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The groups L 2 (q) with q = l(mod 4) satisfy the hypotheses 

of Lemma (4 .11) and have m 2 = m
3 

= q. 

We now prove some related results that do not affect the 

performance of the program. 

(4.13) Lemma. Let G be a finite non-abelian simple group in 

which y e G and s an integer implies ys = 1 or s 
C(y ) = C(y). 

m Then G :==L2 (2 ) for some m > 2. 

Proof: We will show that if x e G#, C(x) is nilpotent. Then a 

classification theorem finishes it. 

Let x e G #= and consider the cyclic subgroups of G 

containing x. Then any such subgroup M is in Cx so 

x e M = <y> implies 
s 

x = y f: 1, so Cx = Cy = CM. 

If M and N are two cyclic subgroups containing x, then 

'CM = Cx = CN, so that M and N centralize each other . Therefore, 

if y and z in Cx have order relatively prime to the order of x, 

they commute, since zx and yx generate cyclic subgroups of 

G containing x. 

Thus if x has prime order p, the set of elements of order 

prime to p forms an abelian n?rmal p-complement Dx of Cx. 

We claim that if x f. 1, Cx is nilpotent, and if jCx I has more 

than one prime divisor, Cx is abelian. If we prove these claims 

for elements x of prime order, we will be done, since every 

centralizer is the centralizer of an element of prime order. 
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So let x have prime order p . If Cx is a p-group, we are 

done, so we assume q I JCx 1 where q is a prime different from p . 

Let y e Cx have order q. Then since x and y are both powers 

of yx , Cx=Cyx=Cy. 

The Sylow p-subgroup S of Cx is contained in Dy, so it 
p 

must be abelian . Since Dy is abelian, we have S char Dy 
p 

char Cx implies S is characteristic in Cx. Since the Sylow 
p 

q- subgroup S of Cx is in Dx , we have that S is a characteristic 
q q 

abelian subgroup of Cx . Since all of the Sylow subgroups of Cx 

are normal, Cx 1s nilpotent. Since each Sylow subgroup is abelian, 

Cx is abelian . 

Now we have the centralizer of every non-identity element 

is nilpotent. Therefore (see Goren stein (1) , page 416), a theorem 

of Suzuki implies that G is isomorphic to one of the following 

m m 
groups : L

2
(2 ), Sz(2 ), L 2 (p) with p a Fermat or Mersenne 

prime, L
2

(9) , or L
3

(4) . 

If a Sylow 2-subgroup P of G has exponent 2 , it is abelian 

m 
and G must be L

2 
(2 ) . We may therefore assume that P has 

exponent 4 or more, so that 
2 2 

P = < Y I Y e P > j 1. Then since 

P
2 

is obviously characteristic in P , P
2n ZP il , so if x e P

2 n ZP 

with x f l, we have x = y
2 

for some y e P . But x e ZP implies 

P c Cx = Cy2 = Cy implies y e ZP. Thus ZP n P 2 
= (ZP)

2
. 
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m 
Now the groups Sz(2 ), L 3 (4), L

2
(p), andL

2
(9)allhave 

2 2 non-abelian special Sylow 2-groups, so that ZP = P f- 1 and (ZP) =l. 

The lemma is complete. 

We now use the lemma to prove a fact, which says roughly, 

if all the centralizers are small, we know the group . 

(4 .14) Theorem. Let G be a finite simple group with n 

# conjugate class es and with I Cx I < n for all x E: G ' . 

m m 
n=Z +l_'.::5 and G===L

2
(2 ). 

Then 

Proof : We will show that a group G satisfying the hypotheses of 

this theorem also satisfies the hypotheses of Lemma (4.13) . 

We know n _'.:: 5 for a simple group, and we have m
2 
~ n by 

hypothesis. We show first that m
2 

= n. So suppose m
2 
~ n-1. 

Then m. < n-1 for i > 2 and we get 
1-

l/mi _'.:: l/n-1 

n n 

l = :Z l/mi = l/m1 + :Z l/mi_'.:: l/m1 + (n-1)/(n-l) >l, 

i=l i=2 

a contradiction, so mz = n . 

We also know m < n-2 by Theorem (2 . 2) . We find a lower 
n-

bound for m . 
n· 

l/mi _'.:: l/n for i > 2 gives 

n n-1 
l= :Z l/mi=l/m1 + ~ l/r\+l/mn_:::l / m 1 +(n-2)fa+l/mn' 

i= 1 i~ 
so 2/n _::: l/m1 + l/mn > l/mn, so mn > n/2. 
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Now we have n 2: mz 2: mi 2: mn > n/Z, for all i > 1, so if 

s 
and y j= 1, s s 

C(y ) ::J C(y) and [C(y ) : C(y)] <Z, 

s 
so C(y ) = C(y). The hypotheses for the previous lemma are 

satisfied and we are done. 

The groups LZ (Zm) have the property of the theorem. 

(4. 16) Conjecture . Let G be a finite simple group with n 

· t 1 d · th I C I < Z for all x ,.. G f,o • conJuga e c . asses an w1 x _ n "' Then if 

'.'\ X E: for which I Cxl > n, with q = Zn -5 . 

The groups Lz (q) have n = (q + 5) /z and all of the centralizers 

of order less than Zn. 
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Table I: The simple groups with n _::: 11 conjugate classes. 

n 

5 

6 

7 

8 

9 

10 

11 

I Gj 

60 

168 

360 

660 

504 

1092 

2520 

7920 

20160 

2448 

29120 

G 

A
5 

Ai PSL (2, 4) FO::lPSL (2, 5) 

PSL(2, 7) A:1 PSL (3, 2) 

A
6 

R=1PSL (2, 9) 

PSL (2, 11) 

PSL (2, 8) 

PSL (2, 13) 

A7 

M
11 

(Mathieu Group) 

PSL (3, 4) 

PSL (2, 17) 

Sz(8) (Suzuki Group) 
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Table II : The known simple groups with n conjugate classes, 

12 < n < 21. 

n 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

3420 

5616 

443,520 

6048 

6 072 

20100 

126000 

7800 

95040 

l 75, 560 

9828 

4080 

12180 

14880 

G 

PSL (2, 191_ 

PSL (3, 3) 

M
22 

(Mathieu Group) 

PSU (3,3) 

PSL(2, 23) 

A
8 
~PSL (4, 2) 

PSU (3, 5) 

PSL (2, 25) 

M
12 

(Mathieu Group) 

J 
1 

(Janka Group) 

PSL (2 , 2 7) 

PSL (2,16) 

PSL (2, 29) 

PSL (2,31) 

181440 A
9 

25920 

25308 

604800 

PSU (4,2) ~ Sp4 (3) 

PSL(2,37) 

HJ(Hall-Janko Group) 
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Note on Table II: There are no known simple groups with 13 or 19 

conjugate classes. I suspect that the table is actually complete up 

to n = 14 or 15, and that therefore there are no simple groups with 

n = 13. 
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