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ABSTRACT 

We have developed a numerical simulation of the charge trans-

fer in the overlapping gates charge coupled devices. The transport 

dynamics were analyzed in terms of thermal diffusion, self-induced 

fields and fringing fields under all the relevant electrodes and the 

interelectrode regions with time varying gate potentials. We have also 

developed a lumped circuit model of charge coupled devices. Using 
I 

this model simple analytic expressions describing the charge transfer 

\-Jith various clocking wavefonns are derived . This model cari be used · 

to study the charge transfer characteristics for other device struc­

tures, dimensions, clocking waveforms and. voltages, thus providing 

practical charge coupled device and circuit design tools. 

Using the numerical simulation and lumped circuit model,the 

influence of clocking waveforms and clocking schemes on CCD operation 

are studied. It is concluded that increasing the clocking scheme 

complexity allov1s a better control of the storage and transfer of the 

signal charge and hence improves the signal dynamic range and charge 

transfer characteristics. It is shrnvn that the performance of charge 

coupled devices is better with push clocks (that push the charge from 

one storage site to another) than wHh drop clocks (that create 

deeper potenti a·1 wells to transfer the s:harge). The performance of 

charge coupled devices is shown to be basically superior to the MOS 

bucket brigade. 

We have also developed a simple model to study the incomplete 

charge transfer due to trapping in the interface states. Incomplete 
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charge transfer due to trapping in interface states is shown to limit 

the performance of CCDs at low frequencies. The most dominant effect 

is trapping in the interface states under the edges of the gates 

parallel to the active channel. The influence of the device parameters, 

dimensions and clocking waveforms on the signal degradation is dis­

cussed. Design features of CCO structures which would reduce the 

incomplete charge transfer due to interface states are presented. It 

is shown that increasing the clock voltages, increasing the signal 

charge or using dynamic push clock reduces the incomplete charge tra·ns-
' 

fer due to interface states. 

The contents of this thesis have been published under the fol­

lovJing titles: 

11 Charge Transfer in Overlapping Gates Charge Coupled Devices 11 

A. M. Mohsen, T. C. McGill and C. A. Mead, Journal of Solid 
State Circuits, SC-8, No. 3, June 1973. 

"The Influence of Interface States on In comp·! ete Charge 
Transfer in Overlapping Gates Charge Coup 1 ed Devices 11

, 

A. M. Mohsen, T. C. McGill, Y. Daimon and C. A. Mead, 
Journal of Soli~ State Circuits, SC~S, No. 2, April 1973. 

11 Push Clocks: A new approach to charge coupled dev·ice 
clocking 11

, A. M. Mohsen, T. C. McGill,- M. Anthony and 
C. A. Mead, ~Bl. Phys. Letter~, ~' 4, February 15> 1973, 
pp. 172-175. 

11 Charge Transfer in Charge Coupled Devices 11
, A. M. Mohsen, 

T. C. McGill and C. A. Mead, ISSCC Digest of Technical Papers 
~' 1972, pp. 248-249. 

The contents of this thesis have also been presented in the 

following conferences: 
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"Physics of Charge Coupled Devices", Invited Review Talk 
given at the Gordon Research Conference, Meriden, New 
Hampshire, August 1972. 

"The Influence of Clocking \~avefonns on CCD Opera ti on 11
, 

presented at the International Device Research Conference 
at Edmonton, Canada, June 1972. 

"Charge Trans fer in Charge Coup 1 ed Devices 11
, presented at 

the International Solid State Circuits Conference, 
Philadelphia, Pa., February 1972. 

A motion picture simulation of the various stages of the charge trans­

fer process with two-phase and four-phase clocking schemes was produced 

directly from the results of the numerical simulation developed in this 

thesi~. The CCD movie has been presented in the conferences mentioned 

above and is included ·in the "Semiconductor Memory Course" prepared 

by Texas Instruments on video tapes. The CCD movie is published in 

the Jour~al of Solid State Circuits (June 1973) as three sequences of 

page-flip movie. 
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Chapter l 

INTRODUCTION 

The idea of making a shift register for analog signals and using it 

as a delay line dates back to the beginning of the fifties. (l) Sampled 

values of the analog signal can be stored in the form of charges on a 

series of capacitors. The transfer of charge between these storage 

capacitors can be·, controlled by switches driven by clock pulses. 13y 

analogy with the old fire-fighting method, in which buckets of water are 

pas sed along the line, circuits of this type were called "bucket 

brigade delay lines 11
• However, these delay lines have not come into 

general use because of the inevitable complexity and bulk of the 

switches. In 1969, Sangster(2) proposed an integrated circuit version of 

the bucket brigade del~y line with the advantages of low cost, high 

packing density and compatibility-with the existing semiconductor tech~, 

nology. Figure·(l) shows a two-phase MOS bucket brigade. Each stage 

consists of a MOS transistor and a storage capacitor. The signal charge is 

stored in the p-diffusion islands and the transfer of charge is 

controlled by the clock pulses, ¢1 and ¢2. 

In 1970, Boyle and Smith(3) showed that the signal charge packets 

could be stored and transferred in potential wells at the semiconductor-

insulator interface under electrodes without using p-diffusion islands 

as in the MOS bucket brigade. For efficient coupling of the potential 

wells at the interface tl1e electrodes should be closely spaced. The 

resulting structure is commonly known as the charge coupled device and 
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• is shown in Fig. (2c). In Fig. (2a) and (2b) the band diagram of a 

metal-insulator-n semiconductor is shown to illustrate the creation of 

potential wells at the interface when a voltage pulse is applied to the 

metal electrode. Minority carriers injected in reponse to a digita·1 or 

analog signal or generated by photons could be stored as charge packets 

in these potential wells resulting in a decrease in depth of the 

potential well. The storage and transfer of the charge packets are 

controlled by the clocking pulses driving the closely spaced electrodes 

as shown in Fig, (2c,d,e) where a three phase clocking scheme is used. 

S~ charge coupled devices (CCDs) are a new class of semiconductor 

structure operating in nonequilibrium. In essence CCDs are analog, 

dynamic, passive shift register that permits the design of complex 

functional devices. Currently there is a great interest in these 

devices as they have important applications for digital memories, self­

scanned imagers and analog signal ~rocessing. In order to design and 

properly operate charge coupled devices with optimum performance an 

understanding of the physical limitations on the performance of these 

devices is essential. 

From the operation of charge coupled devices, it is clear that the 

main limitations on the performance of these devices are due to the 

incomplete transfer of 1he signal charge; trapping of the signal charge 

in the interface states; thermal generation currents from the genera­

tion centers at the interface, the depletion regions, and the 

substrate and the noise generated during the storage and transfer of the 

signal charge along the interface. 
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In this thesis, we present a detailed study of the limitations on 

the performance of charge coupled devices due to incomplete free charge 

transfer and trapping in the interface states and their dependence on 

the device parameters and clock~ng waveforms. In our work we have con­

sidered the overlapping gate structure (shown in Fig. (3)) as it is 

presently the most technically promising structure for the large scale 

application of the devices. Compared to the simplicity of the three­

phase metal gate ccoC3,4) and the resistive gate ccoC5), the inter-

electrode spacing in the overlapping gate structure is reduced to an 

oxide thickness and the overlapping electrodes provide good control of 

the surface potential in the entire channel region, seal the active 

channel from any external tontaminations, shield out the charge 

repulsion,1 and thus enhance the charge transfer. Overlapped gate 

CCDs can be easily manufactured with two levels of metalization 

technology such as silicon gate and refractory gate technology. (6,7) 

The two levels of metalization also simplifies the layout of large CCD 

arrays. 

We have developed a detailed numerical simulation of the charge 

transfer process in the overlapping gate charge coupled devices. With 

some assumptions and approximations, which are shown to be well 

satisfied, we have solved the nonlinear nonlocal equations describing 

the transfer dynamics, under all the relevant gate electrodes and 

interelectrode regions with time varying gate potentials using a new 

finite difference scheme, the Box scheme.CB) We have developed a 

simple lumped circuit model of charge coupled devices. This model can 
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be used to study the charge transfer characteristics for other device 

structures, dimensions, clocking waveforms, and voltages, thus pro­

viding practical charge coupled device and circuit design tools. Using 

the numerical simulation and the lumped circuit model we have studied 

the influence of clocking waveforms and clocking schemes on the per­

formance of charge coupled devices and we present a fundamental compari ­

son of the performance of bucket brigade and charge coupled devices. 

Finally, we have developed a simple model to study the influence of 

trapping ·in the interface states on the incomplete charge transfer and 

present design features of CCD structures to reduce it. 
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Chapter 2 

THEORETICAL MODEL 

In this chapter we present the equations that describe the 

storage and transfer of charge in charge coupled devices. We also 

discuss the assumptions and approximations that we have used to reduce 

the nonlinear-nonlocal transport equations to nonlinear diffusion 

equations. 

In the calculations presented below we have considered p-channel 2 

devices with dimensions consistent with typical layout tolerances of 

silicon gate technology. One unit cell of the overlapping gate 

structure using silicon gate technology is shown in Fig. (3). 

2.1 Transport Equations 

The storage and transfer of charge along the insulator-semiconductor 

interface is described by the continuity equation: 

where 

an -a 
~=-J at ax x -~ at 

Trapping 

+~ 
at 

Th. Generation 

(1) 

(2) 

q is the surface charge density of the free minority carrier, Jx is 

the sheet current density, and ¢s is the surface potential. D and 

µ are the minority carrier diffusion and mobility at the interface 

respectively. x is the distance along the interface in the direction 
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of charge transfer. %t- is the rate of generation of 
Th. Generation 

surface charge due to thermal generation currents from generation 

centers at the interface, the depletion regions and the substrate. For 

a total delay time from the input to the output of the device much 

smaller than the storage time of the interface, the effect of thermal 
3 · 

generation can be neglected. 2-9.. 
Clt is the total rate of 

Trapping 
capture of the mobile carriers due to their interaction with the 

interface states in the band gap . Since the mobile carriers interact 

with interface states within an energy range of the order of thermal 

voltage and for the 101-1 interface state density obtainable with the 

present thermally grm'v'n silicon oxide, the rate of capture or emission 

of the mobile carriers by the interface states is smaller than the 

divergence of the sheet current density in Eq. (1). Thus one can 

obtain the free charge transfer characteristics by neglecting 

in Eq. (1) and solving the continuity equation. The 
Trapping 

effects of trapping on the incomplete charge transfer can then be 

calculated by studying the interaction of the mobile carriers with 

the interface states from the Shockley-Read-Hall equations 

together with the surface charge density profiles q(x,t) under the 

gates. Thus the free charge transfer continuity equation reduces to 

()<I> s 
The surface potential gradient ax 

(3) 

is due to the variable 
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surface charge density and the two-dimensional nature of the CCD 

structure. For given electrode potentials, device geometry, and 

charge density profile, the surface potential gradient is obtained 

from the solution of the two-dimensional Poisson equation. Thus a 

rigorous treatment of the free charge transfer problem would require 

the simultaneous solution of Eq. (3) and the two-dimensional Poisson 

equation. While this rigorous approach is conceptually possible, the 

cost of such an analysis leads us to seek some valid approximation to 

simplify the solution. 

2.2 Approximations 

The surface potential gradient due to variations in the surface 

charge density (self-induced field~) can be obtained, according to the 

standard gradual channel approximation.(9) In this approximation, we 

take the gradient of the surface potential ~s obtained from the one­

dimensional solution of the Poisson equation with the parameters of the 

solutions chosen to correspond to the one-dimensional cut through the 

structure. In Appendix I, we shawl using a Green's function solution of 

the two-dimensional Poisson equation for an arbitrary minority charge 

density profile, that the gradual channel approximation is reasonably 

accurate when the lateral variation of the various charges over a 

distance on the order of the depletion layer width is small. 

The surface potential gradient under the electrodes due to the 

adjacent electrodes (fringing fields) are obtained by solving the 

two-dimens"iona1 Poisson equation of the CCD structure. In Fig. (4) we 

have plotted the surface potential and surface potential gradient 
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along the semiconductor insulator interface. These plots were obtained 

from the soluiion ~f the two-dimensional Poisson equation(lO) of an 

overlapping gate CCD with the electode voltages corresponding to the 

last stages of the charge transfer and with most of the signal 

charge in the receiving storage electrode. The fringing fields in 

devices with dimensions consistent with typical layout tolerances of 

MOS technology are of the order of a few hundreds volts/cm. During 

the first stages of the charge transfer process the self-induced 

fields are typically few thousands volts/cm, therefore, the fringing 

fields are only important at the last stages of the charge transfer 

when the self-induced fields become very small. Accordingly the 

fringing field profile und.er the electrodes obtained from a two-

dimensional solution of the Poisson equation of the CCD structure with 

the gate voltages corresponding to the last stages of the charge 

transfer and with .most of the signal charge in the receiving electrode 

can be used during the entire charge transfer process. 

The two-dimensional solution of the Poisson equation for the 

overlapping gate structure shown in Fig. (4) illustrates that the 

surface potential under the interelectrode regions varies quite 

smoothly for different gate electrode potentials. Therefore we have 

used a smooth interpolating polynomial to approximate the surface 

potential in these regions. We have also- assumed a constant surface 

mobility to simplify the transport equations. The dependence of the 

surface mobility on the normal surface field and the surface 

potential gradient along the interface introduce negligibly small 
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error on the charge transfer characteristics of typical minimum 

t d . 4 geome ·ry ev1ces. 

2.3 Nonlinear Diffusion Equation 

In Appendix II, we show that according to th~ above assumptions 

the surface potential gradient under the gates or in the inter-

electrode regions can be written in the form 

a<I> 
a/ = L(x,t) + M(x,t) q + N(x,t) * ( 4) 

Substituting in Eqs. (3), the continuity equation reduces .to the non-

linear diffusion equation: 

~ = _i [ D 19. + µ q (L + Mq + N l._q_/\ I at ax 3x ax (5) 

If fringing fields under the gate electrodes are negligible then 

L = M = 0. 

The dynamics of the charge transport in each bit is thus described 

by equations similar to Eq. (5) with the appropriate functions, L, M, 

and N under the storage and transfer electrodes and the interelectrode 

regions. At the junction points between the different regions, the 

surface potential and surface charge density must be continuous and 

the current must be conserved. 

We have solved the set of nonlinear equations with the appropriate 

boundary conditions using a nevJ finite difference scheme, the Box 

scheme.CB )The numeri ca 1 formulation of the prob 1em 5 and its 

accuracy is treated in detail in Appendix III. · 
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Chapter 3 

FREE CHARGE TRANSFER 

~e have shown in Chapter 2. that the charge transfer dynamics in 

ti:~ bi t of the charge coupled device can be described by a nonlinear 

l !ffus ton equation. In this chapter we will present the results of the 

r~~ r lc al solutions of these nonlinear equations when the device is 

~~~ ra te d with different clocking schemes and waveforms. A comparison 

~ ' the charge transfer characteristics obtained from the lumped circuit 

r1.~;!:: i of the device developed in Appendix IV and V with the numerical 

rr~u l t s is also presented. 

l .l Push and Drop Clocks 

The closely spaced electrodes of the charge coupled device 

c ~~ be driven by clocking pulses that may have various shapes and 

'l.'-.h'efonns to control the storage and transfer of the charge along the 

ln tP rface. In general clocking pulse waveforms could be classified 

•~to two basically different types: drop clocks and push clocks. With 

! r e~ clock the signal charge is stored below a gate at a holding voltaqe 

ii which is a fraction of the largest clock voltage Vm that the 
~~ . . 

''·' st ructure can tolerate; charge transfer occurs when V is then m 
J;;: Hed to the adjacent gates, and the charge flows to the potential 

h!~\~um thus created. With push clocks the charge is stored under a 

·; ~~~ he ld at Vm, and transferred to a nearby gate , also at Vm, by 

·~ 1 ~ l n g the potential of the gate where the charge has been residing 

,1; ·!'•
1 thus 11 pushing 11 the charge to the next gate. Charge coupled devices 
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can be operated with two-phase, three-phase, or four-phase clocking 

schemes by push clocks, drop clocks, or a combination of push and drop 

clocks~ With three-phase and four-phase clocking schemes the 

electrodes of the overlapping gate structure are equal in size so that 

charge may be stored under each gate during the transfer process. 

Alternatively the upper electrodes may be made smaller and used to 

control the transfer of charge between the buried storage electrodes. 

In this case, four-phase, two-phase, and single-phase clocking schemes 

may be used to control the storage and transfer of charge for both 

serpentine and parallel signal flow. 

A detailed explanation of push clock operation and comparison with 

drop clocks can be made with the aid of Figs. (5), (6), and (7). These 

figures depict charge storage and transfer in three-phase, four-phase, 

and two-phase CCD 1 s respectively with both drop and push clocks. The 

particular clock voltages shown apply to the case of p-channel devices, 

in which all clock voltages are negative. Vm is the minimum (most 

negative) clock voltage that can be useds as determined by some con­

straint such as field oxide threshold; v1 is the holding voltage 

(in the drop clock case); and v2 is a resting (gate-off) voltage; 

thus V0 > v1 > V . 
~ m 

The drop clock case is shown first; the signal charge is stored 

under a gate at potential v1 (Figs. 5a> 6a, and ?a). To effect charge 

transfer, the voltage of the next gates is lowered to V (Figs. Sb, m 
6b~ and 7b); the charge flows to the local potential minimum 

thus created. In the push clock case, the signal 
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charge is initially held under a storage gate which is at Vm (Figs. 

5a 1
, 6a 1

, and 7a 1
). · At the beginning of the charge-transfer operation, 

the voltages of the next gates are lowered to V The potential 
m 

of the original storage gate is then gradually raised, and the charge 

stored there is pushed to the area under the next storage gate 

(Figs. 5b', 6b 1
, and 7b 1 

). As the potential of the original storage 

gate continues to rise, more of the charge under it is brought to a 

potential higher than that under the transfer gate, and so is able to 

flow to the next storage gate. Finally the original storage gate 

reaches its resting potential, v2. 

It can be seen from the preceding discussion that the push clocks 

allow a greater fraction of Vm to be used in storing the signal charge, 

and thus provide a greater dynamic range and signal to noise ratio 

than drop clocks. Also as will be shown in the next sections, the 

push clock scheme yields better charge- transfer efficiency at both 

high and low frequencies, and allows a definite advantage in high-

speed operation to be obtained from the use of a four- phase clock. 

In Figs. (6) and (7), it is clear that the charge transfer for the 

two-phase drop clock and four-phase drop clock are similar, therefore 

increasing the clock complexity from two-phase to four - phase v1ith 

drop clocks does not improve the performance of the device. How­

ever the push clock takes full advantage Df the more flexible 

control of the surface potential under the different electrodes. For 

example in Fig. (6a') during storage times the transfer gates can be 

turned off by the resting voltage v2 and the storage gates can be 
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heavily turned on by the minimum voltage V • The maximum signal charge m -
which may be stored under the storage gate is thus almost a full 

bucket. 6 Also, since the transfer gates are controlled independently, 

they can be turned on heavily during the first stages of the trans fer 

process, as shown in Figs. (6b') to enhance the rate of charge transfer. 

Thus increasing the clocking scheme complexity vlith push clock allows 

better control of the storage and -transfer of the signal charge and 

hence provides larger signal dynamic range, larger signal to noise 

ratio and better performance, especially at high frequency. 

The waveforms of the different phases of the dynamic push clocks 

must be overlapping. Since the rate of charge transport along the 

interface is finite the rise times Tr of the clocking pulse have 

minimum permissible values. If these values are exceeded the surface 

potential under the gates exceeds 2¢F and some of the signal charge 

will be injected into the substrate \'I/here it is lost by recombination. 

For example, the minimum rise time of the two-phase push clock is given 

by (as shovm in Eq. (20) below) 

1st1Tr est 1 T ...., 2 - -
rmin µ CTr • Ve 

where !Tr and !St are the lengths of transfer gate and storage gate. 

µ is the surface mobility. Cst and CT are the effective oxide and r. 
depletion layer capacity under the storage and transfer gates 

respectively. Ve is equivalent to the clocking voltage amplitude. 

For minimum geometry electrodes (,..,,,10 microns) and reasonable clock 

vo Hage amplitudes ( ...... 5 volts), T is much sma 11 er than the finite 
rmin 
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rise and fall times which are unavoidable in practical clock drivers 

(-tens of nanosecond). Hence, the finite rise and fall times that 

would delay the charge transfer with drop clocks are advantageously 

used with push clocks to push the charge from one storage site to 

another. 

A single clocking phase could be used to operate the device as 

shown in Fig. (8) . - In this case the same two-phase structure of 

Fig. (7) is used, and one of the clocking phases ¢2 is kept at a 

constant vo ·l tage v 1 , while the other phase ¢1 is changed between 

vm and v2. \vhen ¢1 changes from v to v2 the signal charge m 
is pushed from under qi 1 to under ¢2 in one half cycle . In the 

other half eye 1 e when qi 1 changes from v2 to vm the signal charge 

flmvs to the deeper potential well under <Iii • ' Instead of applying a 

bias voltage v1 on qi1, ion implantation or the charge storage 

properties of double dielectric structure could be used. As compared 

with the t\vo-phase and four - phase clocking scheme, the s i gna 1 phase 

clocking scheme utilizes a smaller fraction of the surface potential 

swing to store the signal charge and, therefore, the device will have 

smaller signal dynamic range, signal to noise ratio, and transfer 

efficiencies. 

3.2 Two-Phase Clocking Scheme 

In the two-phase clocking scheme only two clock phases are used 

to control the storage and transfer of charge along the interface. The 

asymmetry in the surface potential needed to provide the 

directionality of t~e signal charge transfer can be achieved by using 
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<I>1=Vm-'JfpoV2 <X>2=V1 <l>1=V2 <ii2=V1 

A-&AA 
~~~~~~'\~\\~~~~ ~~~~~~~~~~~~~ 

(a) (b) 

0 

( c) ( d) 

Figure 8. 
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a step in the channel oxide(?} or an ion implanted barrier(l 3) or the 

charge storage properties of double dielectric structures. (l 4) In this 

section we present some of the calculations of the charge transfer 

characteristics of t\w-phase overlapping gates CCDs v1here the asymmetry 

of the structure is achieved by a step in the channel oxide. However 

our results can be applied to all other structures with the appropriate 

modifications. 

3.2.l Complete Charge Transfer Mode 

In the complete charge transfer modes the charge under the 

storage gate is transferred to the following gates; none is deliberately 

retained. 

(A) Drop Clock: With drop clock the signal charge is stored 

below a gate at a holding voltage v1 which is a fraction of the 

largest clock voltage Vm that the MOS structure can tolerate; charge 

transfer occurs when Vm is then applied to the adjacent gates and the 

charge flows to the potential minimum thus created. 

In Fig. {9) we have plotted the one-dimensional relation between 

the surface potential and the gate voltage for a polysilicon gate 
0 

with 1200 A oxide and for an aluminum gate with different oxide thick-

ness for a substrate doping of 8 x io14donors/cm3. Since in the two-

phase clocking scheme the surface potential under each successive set 

of transfer and storage gates is controlled by a single clocking voltage, 

the maximum amount of charge that can be stored under the storage 

gate without spill over and the fringing fields under it depend on the 

silicon oxide thickness under the transfer and storage gates. 
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Therefore, for optimum operation of the device, the oxide thickness 

under the storage and transfer gates should be properly chosen. 7 

We have simulated numerically the charge transfer characteristics 

for the device shown at the top of Fig. (10) clocked by square wave 

drop clocks with zero fall and rise times. 8 The transient currents 

at . the beginnjng and end of the aluminum transfer gate and the net 

current charging it are shown in Fig. (10). Zero time corresponds to 

the instant when ~2 decreases to vm starting the charge transfer. 

The current at the beginning of the gate increases from zero sharply 

to about 60 µamp and then decreases rapidly. The surface charge takes 

about 0.3 nanoseconds propagating under the transfer gate to reach 

its end. The transfer gate is charged rapidly during the first nano­

second and then is discharged slowly. In Fig. (11) a few frames are 

shown to illustrate the details of the charge transfer at its initial 

stages. A perfect sink at the end of the storage gate being discharged 

is formed after about 13 nanoseconds. The large surface potential 

gradient in the interelectrode regions between the transfer gate and the 

receiving storage gate sweeps out the minority carriers fast enough to 

create an almost perfect ~ink of charge there during all stages of the 

transfer. In Fig. (12) we have plotted the residual charge under the 

source storage gate as a percentage of a full bucket for two 

different initial charges equivalent to about 3 volts and 1 volt with 

a substrate doping of 8 x 1014donors/cm3 and l014donors/cm3. 

Consideration of the transient currents at the ends of the transfer 

gate and the surface charge and surface potential profiles under the 
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gates during the charge transfer show that the charge transfer divides 

naturally into sev~ral distinct stages. 

(i) In the first stage, the charge initially confined under 

the source storage gate spreads to charge up the adjacent transfer 

gate for a fraction of a nanosecond. 

(ii) In the second stage, the charge transfer is limited by 

the transport of charge across the transfer gate to the next storage 

gate. The transfer gate acts as a MOS transistor at pinch off 

with the storage gates as its source and drain. Thus the source and 

receiving storage gates are capacitors charged and discharged through 

the transfer channel. 

According to the lumped circuit model discussed in Appendix V 

the decay of the residual charge under the gates is described by 

-µCTrw 

= 2tTr [ 2KT(•mT - •mTo) + (•mr - •mTo)
2
] 

Ost = wist cst(~is - ~lso) 

2 
QTr :: 3 w£Tr CTr(¢mT - ¢mTo) 

(6a) 

(6b) 

(6c) 

(6d) 

where Ost and QTr are the total charge~ under the source storage 

gates and transfer gates. ¢ls · and ¢lso are the surface potential 

under the source storage gate with and without surface charge when its 

yoltage is equal to v1. ¢rnT and ~mr' are the surface potential 
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with charge at the beginning and at the end of the transfer gate 

respectively, and <PmTo is the surface potential under the transfer 

gate without charge when its voltage is equal to Vm. Cst and CTr 

are the effective oxide and depletion layer capacity under the storage 

and transfer gates. £St and £Tr are the lengths of the storage and 

transfer gates, W is the active channe 1 vii dth, and KT is the therma 1 

voltage. Since in this stage (<PmT - <PmTo) »KT, then for an 

initial total charge Q
0 

the residual charge under the storage gate 

decreases hyperbolically and is given by: 

(7) 

where Q' == wistCSt(¢1s0 - <PmTo), t 1 is the time at which the second 

stage starts and T2 is given by 

R (8) (Q + QI) 
0 

\vhere 

(9) 

When the charge under the storage gate decreases to a small value 

Q
0
', the discharge current becomes so small that the electric field 

in the transitional region between the source storage gate and the next 

transfer gate can sweep out the carriers fast enough to form an almost 

perfect sink· of charge there. 9 This brings the second stage to an 



end at a time t 2 given by 

Q - Q I 
0 0 

t2 = tl + T2 Q I + QI 
0 

For the device paramete~s given below: 

ist = 13.5 microns 
-8 2 CSt = 3.5 x 10 Farad/cm 

µ = 200 cm2/sec-volt 

£ = 7 microns l Tr 
-8 2 

CTr=l.45xlO Farad/cm J 

Po' -
.,...,..--.._..,... - 0. 48 VO lts 
Wtstcst 

(10) 

and for a signal charge equivalent to about 3 volts we obtain 

T2 ; 6.9 nsec and t 2 = 13 nsec . For a signal charge equivalent to 

about l volt, we obtain . . T2 ; 14.6 nsec and t 2 = 5.9 nsec. 

(iii} In the third stage the charge transfer is limited by the 

transport of charge out of the storage gate with an almost perfect 

sink at its end. The storage gate can be considered in this stage 

also as a capacitor discharged through a transfer channel which is 

the same storage gate. Thus according to the lumped circuit model it 

can be easily shown (or by expanding the denominator "in Eq. (.L\5-6)) 

that the residual charge under the storage during the first part of 

th·is stage (when \~,e,Q(~) >KT) decreases-almost hyperbolically with 
St St 

a time constant 1 3• So, 



Q I 

Q ( t) = _ __,_o"'------.­
( t - t2) 

1 +· 

2 
ist 

-32~ 

=------'3 Q I 

0 

(11) 

(12) 

where a · is·i constant of th~ order of unity (about l .2). During this 

stage the charge is spread over the entire gate even if fringing fields 

are appreciable. 

(iv) In the last stage of the charge transfer, the self-induced 

fields become negligible. The residual charge decreases exponentially 

with a time constant that depends on thermal diffusion and the fringing 

fields under the storage gate. 

For the device we have considered here and for a substrate doping 

of 8 x 1014 donors/cm3 and larger, fringing fields under the storage 

gate are negligible. For t > t 3 the residual charge under the 

storage gate decreases exponentially with the thermal diffusion time 

constant 
2 

_ .tst 
, - --- , where d 2.5 D 

(13) 

For the device we have considered and for substrate doping equal to 

1014donors/cm3, solutions of the two-dimensional Poisson equation at 

the end of the charge transfer show a minimum fringing field E . 
mm 

under the storage gate of about 70 volt/cm and an average value ~ 

of about 140 volt/cm. The fringing fields considerably enhance the 
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rate of charge transfer. The single carrier transit time across the 

storage gate ttr due to fringing fields is given by 

t = f tr 
over 
gate 

d = 1st = 1st2 

~ t µllcj> 
storage · µ 

( 14) 

length 

where t is the average fringing field under the storage gate, Acf> 

is equal to Eist and is related to the voltage drop across the 

storage gate due to fringing fields. 

Under the influence of the fringing fields, the charge profile 

under the storage gate starts to drift after a time t 3 = t 2 + ttr for 

about one single carrier transit time and then becomes stationary at a 

position that depends on the minimum fringing field Emin· The 

residual charge then decreases exponentially with a final decay time 

constant given approximately by 

( 15) 

The factor 4 in the second term is due to the large fields at the 

edges of the gate. For negligible fringing fields this factor takes a 

value of unity. The exponential decay is due to the diffusion at the 

tail end of the residual charge packet under the storage gate 

irrespective of the fringing field profile. Fringing fields alone, 

without diffusion and self-induced fields, will sweep out the residual 

charge under the storage gate in a single carrier transit time. 

The transition between the hyperbolic regime of the third stage 

and the exponential regime of the last stage of the charge is rather 
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broad and is best described by Eq. (A5-9) in Appendix V 

( 16) 

The dashed lines lO in Fig. (12) are obtained from Eq. (7) 

and (16) with the device parameters given in Eq. (10). 

(B) Push Clocks: With push clocks the charge is stored under a 

gate held at Vm which is the largest clock voltage the MOS structure 

can tolerate. The charge is transferred to a nearby gate also at Vm 

by raising the potential of the gate where the charge has been 

residing and thus pushing the charge to the next gate. 

For optimum operation of the device with two phase push in the 

complete charge transfer mode, the oxide thickness under the storage 

and transfer gates should be properly chosen. 11 

\•le have simulated numerically the charge transfer characteristics 

for several devices with various clocking waveforms. In Figs. (13) 

and (17) we show the transient currents at the beginning and end of 

the transfer gate, as well as the net current charging the region 

under the gate. The clock voltages and rise time as well as the oxide 

thickness under the transfer gates of the device are shown for each 

case at the top of the figures. Zero time coincides with the instant 

the clock voltage starts to increase to push the charge and starts the 

transfer. The currents are zero for the first few nanoseconds until 

the charge initially confined under the silicon storage gate can flow 
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to the next gates. This time delay depends on the clock rise time and 

the initial charge under the storage gate. In Fig. (13) we have 
0 

plotted the transient currents for a device with 4400 A oxide under the 

transfer gate and v1ith a clock rise time equal to 40 nanoseconds and a 

minimum voltage V equal to -15 volts. The currents at the m 
beginning of the transfer gate starts to increase at about 4.5 nano-

seconds reaching a maximum value of about 8 micro amperes, then it 

drops rapidly to zero at about 40 nanoseconds. The current at the end 

of the transfer gate has the same waveform but is delayed by 2.5 nano­

seconds due to the charge propagation under the gate. From Fig. (13), 

it is obvious that the transfer gate is charged up rapidly during the 

first few nanoseconds. After this period, the charge under it remains 

almost constant. It is discharged at about 40 nanoseconds. In 

Fig. (14) we have plotted the transient currents for the same device 

with a similar clocking waveform but the rise time is equal to 50 

nanoseconds. In this case the potential of the first phase of the 

clock ¢1, changes from the resting voltage v2 to the minimum 

voltage Vm ending the transfer at about 90 nanoseconds. The 

currents in this case have almost the same waveform but they drop 

rapidly to zero at about 49 nanoseconds. The small n2gative spike at 

about 90 nanoseconds is due to the flow of the charge in the transfer 

gate back to the preceding storage gate when the voltage of the first 

phase of the clock drops to Vm ending the transfer. 

In Figs. (15), (16), and (17) we have plotted the transients 
0 

current for a device with 3200 A oxide under the transfer gate using a 
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similar clocking waveform but the resting voltage is about -6 volts 

in the first two cases and -7 volts in the third case and the rise time 

is 13 nsec, 50 nsec, and 10 nsec, respectively. The current waveforms 

have essentially the same behavior except that they reach a maximum 

value of about 16 µamp then drop rapidly at 13 nsec in the first case, 

and in the second case they reach a maximum value of 5.5 µamp and drop 

rapidly at about 42 nsec. In the third case they reach a 

maximum value of 16 µamp and then drop rather slowly at about 10 nsec. 

In Figs. (18) and (19), we have plotted a few frames of the sur­

face potential and surface charge density profile for the cases shown 

in Fig. (14) and (17) respectively. In Fig. (20) and (21) we have 

plotted the residual charges under the source storage gate versus 

transfer time.for the cases shown in Fig. (13) and (15) respectively. 

From the plots of the transient currents at the end of the trans­

fer gate and the residual charges versus time and the surface charge 

and surface potential profiles under the gates one can identify several 

distinct stages of the charge transfer. 

(i) In the first stage, the surface potential under the 

storage gate containing charge increases as the storage gate voltage 

is increasing, until it becomes equal or less than the surface potential 

under the next transfer gate by (KT). Then the charge i niti a l_ly 

confined under the storage gate spreads to charge up the next transfer 

gate. The time interval of the first part of this stage depends on 

the amount of initial charge and the clock rise time as given below in 

Eq. ( 19) • 
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(ii) The second stage of the charge transfer is limited by the 

transport of charge across the transfer gate to the next storage gate. 

The transfer gate acts as a MOS transistor at pinch off, and the 

storage gate as its source and drain. For maximum rate of discharge 

in this stage, the gate voltage should be rising with a rate that 

keeps the surface potential under the storage gate at a value that 

does not exceed 2¢F to avoid injection of the signal charge into 

the substrate whPre ¢F is the Fermi potential of the substrate~ Since 

the surface potential under the gate varies almost linearly with the 

stored charge arid the gate voltage~ the maximum rate of charge transfer 

can be achieved by clocking 'v'Javeforms with ramps of a slope that 

matches the saturation current of the transfer gate. 

According to the lumped circuit model discussed in Appendix V 

the decay 6f the residual charge under the storage gate in this stage 

can be described by the follovJing equations: 

Qst = W£Stcst(¢s - 9so) 

2 
QTr = 3 W£TrCTr(¢mT - 9mTo) 

9mr' ; 9mro. 

( l 7b) 

( 17 c) 

(l 7d) 

where V and Vm are the voltages of the first and second phases, 

driving the . source storage gate·and transfer gate respectively. Bls' 
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s2s' BlT' and B2T are constants chosen to give the best linear fitting 

to the relation of the surface potential under the storage and transfer 

gates to the voltage applied to them. The rest of the notation is · 

similar to that in Eq. (6). For clocking waveforms with ramps or with 

sufficiently smooth driving functions 12 and for an initial charge Q
0 

the residual charge under the storage gate is given by 

(18a) 

where 

( l 8b) 

(l 8d) 

(18e) 

t 1 is the time at which the discharge current I starts to flow. The 

value of Q1 {t) is the minimum initial charge under the source storage 

gate which causes the discharge current I to start at time t. Hence, 

for a given initial charge Q
0

, t 1 is giv,i=n by 

It follows dir~ctly from Eqs.(18) that for a ramp clocking waveform 
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the minimum rise time Trlmin of the clocking voltage to prevent injec­

tion of the signal charge in the substrate is given by 

(20) 

where v2 and Vm are the resting and minimum voltages of the clock. 

For (t-t1) > T2 the residual charge under the storage gate decreases 

according to the v.iaveform of V(t). 

The parameters of the device used in the numerical simulation are 

given below: 

.Q,St = 13.5 microns, 9., = Tr 7 microns, 

est = 
-8 2 81s 0.9162, 3.14 x 10 F/cm, = (21) 

vm =·-15 volts µ = 200 cm2/volt sec~ 

0 

If the oxide thickness under the transfer gate is 3200 A and 
-8 2 v2 = -6 volts and Tr= 13 nsec, then CTr = 1.45 x 10 F/cm, 

Trlmin ~ 5.5 nsec, and T2 ~ 6.5 nsec. If the oxide thickness under the 
0 

transfer gate is 4400A and v2 = -3 volts and Tr = 40 nsec then 

CTr = l .32 x l0-8F/cm2, T I . - 21 nsec and T2 = 11.5 nsec . 
. r 1111 n 

( i i i ) In the third stage the clock voltages are nonchanging and 

the charge transfer is limited by the transport of charge out of the 

storage gate with an almost perfect sink a~ its end. The storage gate 

in this stage is discharged through itself as in the case of the drop 

clock. The residual charge under the storage gate Q(t) decreases 

during the first part of this stage hyperbolically with a time 

constant T .... 
.:> 
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t-t2 
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(22) 

where T3 = Q I 
.o 

and Q 1 

0 
is the total charge under the source 

storage gate when the perfect sink at its end is formed at time t 2. 

t 2 is approximately 13 equal to Tr and Q
0

1 is obtained from 

Eq. (18) with t = t 2• 

(iv) In the last stage the residual charge decreases exponentially 

vii th a time constant that depends on thermal diffusion and fringing 

fields under the storage gate as discussed above in Eqs. (13), (14), 

(15), and (16). 

3.2.2 Incomplete Charge Transfer Mode: 

In the incomplete (or residual) charge transfer mode, a bias charge 

is deliberately retained under the storage gates at each transfer. This 

can be achieved by controlling the resting surface potential under the 

storage gate relative to that under the next transfer gate at the end 

of the charge transfer process. In the two phase clocking scheme, for 

a given substrate doping and minimum voltage Vm the oxide thickness 

under the storage and transfer gates should also be properly chosen for 

optimum device operation in this mode. 

We have simulated numerically the charge transfer for the device 

shown at the top of Fig. (22) clocked by a two-phase push clock in 

the incomplete charge transfer mode with a bias charge equivalent to 
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about one volt. In Fig. (22) we have plotted the transient currents at 

the beginning and end of the transfer gate and the net current charging 

the region under the gate. The current at the beginning of the transfer 

gate starts to increase at about 4.5 nsec reaching a maximum value of 

about 8 µamp when the clock voltage stops, then the current decreases 

slowly. The current at the end of the gate has a similar waveform 

except it is delayed by about 2.5 nsec due to the charge propagation 

under the gate. We have plotted in Fig. (23) the residual charge under 

the source storage gate as a fr~ction of a full bucket versus transfer 

time for two different initial charges 0.6 and 0.4 of a full 

bucket. from the plots of the currents at the ends of the gates and the 

residual charges versus time and the surface charge and surface potential 

profiles under the gates one can easily identify distinct stages of the 

charge transfer. The first two stages are similar to the first two 

stages of the two-phase push clock case described above. The third 

stage starts when the clock voltage stops at time t 2 =Tr with a 

residual charge under the source storage gate equal to Q
0
'. The charge 

transfer in the first part of this stage (~it) C- Q' > 2KT) is 
St St 

similar to the charge transfer in the second stage of the two-

phase drop clock discussed above in Eqs. (7), (8), and (9). The 

residual charge is thus given by 

Q I - Q' 
Q(t) = _o-.-----.-· + Q' 

. (t~t2) 
l +--

'(3 

(23a) 
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T = 3 
(23b) 

Q' is the bias charge and is equal to W~tCSt(<PmTo - <Pl .so). This stage 

ends at time t 3 when 

R, R, c 
Q(t3) - Q' ~ WCSttSt . 2KT --+ t = t + St Tr St R. (24) 

_ 3 2 D CTr ' 

In the last stage of the charge transfer, the surface potential 

under the storage gate drops below that under the transfer gate . How­

evers the discharge current still continues to flow due to the thermal 

emission of the carriers under the storage gate over the potential 

barrier. The mobile charge under the transfer gate also becomes so 

small that thermal diffusion becomes dominant . Fringing fields under 

the transfer gate are usually small because the surface potential under 

the transfer gate and the preceding storage gate are almost equal. The 

residual charge under the storage gate in this stage decreases 

logarithmically with time. Using the lumped circuit described in 

Appendix V the charge transfer in the incomplete charge transfer mode is 

described by the following equations : 

(25b) 

(2Sc) 
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CTr ( <j>mT - cl>mTo) = Cst(<l>ls - <P1so) exp -(qimT - 4>1s)/KT); <1>mT
1 = cl>mTo 

(25d) 

[ l + KT l d ( <I> <I> ) _ [ l + Kt l 
<l>mT - ipmTo • ciT mT - mTo - «P1 s - <1>1 so 

(25e) 

Assuming a sufficiently large bias charge (Q' >> KT WistCSt) and 

2 
taking (<PmT + KT) (qimT + 3KT) ::: (<PmT + 2KT) , then the above equations 

reduce to 

(26) 

For (<PmT - <PmTo) < KT the residual charge under the source storage 

t . . b 14 ga e 1s given y 

where 

(27b) 
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If t > t 4 = t 3 + , 4 exp(Q' /Cst ~/,e,St KT), Eq. (25) reduces to 

\'/here 

(28b) 

However for a bias charge equivalent to one volt t 4 and , 5 are 

larger than the interface storage time(l 9) of the best thermally grovm 

oxide and hence that stage will never be reached practically. If 

fringing fields under the transfer gate are appreciable for a closer 

spacing device or a lower substrate doping~ then the above relations 

still hold except -f- is replaced by (-f- + µE) where E is the 
Tr Tr 

average fringing field under the transfer gate. 

When a static two-phase clock is used to oper~te the device in the 

incomplete charge transfer, the two first stages of the cha~ge transfer 

are sim"ilar to the tv10 first stages of the static drop clock in the 

complete charge transfer mode. Howe~er in the last stage, the residual 

charge in the incomplete charge transfer mode decreases logarithmically 

according to Eq. (27). 

3,3 Four-Phase Clocking Scheme 

In the overlapped gates charge coupled devices, four-phases may be 

used to control the storage and transfer of charge along the interface. 

Since each gate electrode is driven by a separate phase~ more flexibility 

in operating the device is expected. With four clocking phases the 
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polysilicon electrodes can be used to store the signal charge and the 

aluminum electrodes to control the transfer and .storage process, or 

both the polysilicon and aluminum gates can be used as storage sites . . 

The latter method requi~es four transfers per bit and the aluminum 

electrode should have the same areas as the polysilicon electrodes, but 

the former method requires two transfers per bit and the aluminum 

electrodes can have a smaller area. We will consider the first method 

as it requires less area per bit and results in less signal degradation 

due to incomplete free charge transfer. 

3.3.1 Complete Charge Transfer Mode: 

(A) Drop Clock. With the four-phase drop clock, the minimum and 

resting voltages (Vm' and v2•) of.the clock phases driving the 

transfer gates can be independently controlled whatever is the oxide 

thickness under the transfer electrodes for operation in the complete 

charge transfer mode. The stages of the charge transfer process are 

similar to the two-phase drop clocks. So increasing the complexity 

of the clock from two-phases to four-phases with drop clock does not 

improve the performance of the device. 

(B) Push Clock. Pu~h clocks take full advantage of the more flex­

ible control of the storage ~nd transfer of charge with the four-phases 

of the clock. At the top of Fig. (24), we show the device dimensions 

and the clocking waveforms vie have used in our computer simulation of 

the four-phase push clock. In Fig. (25) we have plotted the surface 

potential and surface charge density profiles during the charge transfer 

process. 
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Since with four clocking phases the preceding transfer gate can be 

turned off by the resting voltage v2•, the maximum signal charge that 

can be stored under the storage gate with its voltage equal to Vm can 

be almost a full bucket. In the two-phase clocking scheme, each set of 

transfer and storage gates is dr~ven by the same phase of the clock so 

the preceding transfer gate is turned on when the storage gate is turned 

on. Hence the maximum charge that can be stored with four-phase clock 

is larger than with two- phase clock for the same clock voltage amplitude. 

To transfer the charge for example, from under the first· storaga gate to 

the second one, ~ 2A and ~ 25 drops to Vm to turn on heavily the 

second transfer and storage gates. Then ~lS increases to push the 

charge from under the first storage gate to the adjacent gates. Then 

+2A increases to push the charge to the next storage gate. As ~ 2A 

reaches the resting voltage, v2•, the charge transfer ends and some 

of the residual charge under the transfer gate spills back to the 

preceding storage gate. The rate of rise of ¢2A should be sufficiently 

slow so that the amount of charge under the transfer gate which spills 

back to the preceding storage gate is small. Therefore, the rise time 

Tr of the transfer gate clock should increase with the increase of the 

clock bit time. 

In Fig. (24) we have plotted the transient currents at the beginning 

and end of the transfer gate. The current at the beginning of the 

transfer gate increases very rapidly with a rate that depends on the 

fall time of the clock. It reaches a maximum value of about 70 µamps, 

at 5 nsec when the transfer gate is completely on. Then it drops 
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rapidly reversing it~ sign when some of the residual charge under the 

transfer gate spills back to the preceding storage gate. The current 

at the end of the transfer gate has a similar waveform except it is 

delayed by l nsec due to charge propagation across the transfer gate. 

The second small peak at 10 nsec occurs when the transfer gate voltage 

starts to increase to push the charge to the next storage gate. In 

Fig. (26) we have plotted the residual charge under the storage gate 

for two different initial charges 0.75 and 0.35 of a full bucket. With 

the four- phase push clock, more charge can be stored and much faster 

rates of charge transfer in the first stages of the transfer process can 

be achieved since the transfer gates can be controlled independently. 

However, in the last stages of the charge transfer process, the residual 

charge decreases exponentially with a time constant that depends on 

thermal diffusion and fringing fields as with the two-phase clocks. 

3.3.2 Incomplete Charge Transfer Mode: 

In the incomplete charge transfer mode, a bias charge is left under 

the storage gate at each transfer. Whether push or drop four-phase 

clocks are used, the first stages of the charge transfer will be 

similar to those in the complete charge transfer mode. But in the last 

stage of the charge tra~sfer, the residual charge under the storage 

gate does not decrease exponentially as in the complete charge transfer 

mode, but it decreases logarithmically with a much slower rate. 

3.4 iignal Degradation 

Due to the incomplete transfer of charge from one storage site to 
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another the signal stored and transferred along the device will be 

degraded. 15 The charge transfer characteristics presented above show 

that for any finite transfer time there is a finite residual charge 

under the original storage gate. In Fig. (27) we have plotted the 

residual charge Qr due to incomplete free -charge transfer versus 

the initial charge Qi at various transfer times. The saturation 

characteristics of these plots are due to the strong nonlinearity 

inherent in the transport dynamics. The plots of the net residual 

.charge due to trapping in interface states versus the initial charge · 

show also the same saturation shape as will be shown in Chapter 4. For 

larger charge the residual charge tends to be less d~pendent on the 

initial charge. This saturation characteristic indicates that the 

signal degradation due to incomplete free charge transfer and trapping 

in interface states can be considerably reduced by using a circulating 

background charge or a "fat zero" to represent the zero signal. 

The net charge loss from a charge packet in one transfer event is 

the difference between the residual charge it lost in the original 

storage site and the residual charge it gained from the preceding charge 

packet. From Fig. (27), it is clear that for digital signals th~ worst 

bit pattern is v1hen a 11 one bit 11 follows a long series of "zero bits" 

or when a 11 zero bit 11 follows a long series of 11 one bits". Let t.Q be 

the difference in the residual charge due to a "one bit" and a 

"zero bit" resulting frt>m incomplete free charge transfer and trapping 

in the interface states. If Q. (l) and Q. (o) are the input charges 
in in 

which represent the one and zero bit~ then the worst case output charges 



-63-

(.) (.) 
0 Q) Q) 
Q) (f) Cf) 
Cf) c c c 

0 0 0 0 0 LO C\J 

(.) 
(!) 
(f) 

c 
0 
0 
t0 

1-
w 
~ 

{.() l.) 

o~ 
_J 
_J 
::) 

LD LL 
0 <t 

LL 
0 

q- z 
C)O 

l­o 
<! 
0::: 

t0 LL 
0 <! 

(f) 

<! 
(\j w 
o~ 

<! 
I 
u . 
_J 

. <! o_ 
1-
z 

LO <;j'" t0 C\J 0 O 

{z-01 x) 13>i:)n8 lln.:l \1 .:lQ f\JOll:)\1~.:l \1 S\1 38C:l\1HJ 1\1nOIS3C:l 

Figure 27. 



after n transfer are given approximately by 

Q ( 1 ) = Q . ( 1 ) _ MQ 
out rn 

Q ( o) = Q . ( o ) _ MQ 
out rn 

(29) 

and the output signal is given by 

Q ( 1 ) _ Q ( 0 ) = Q. ( 1 ) - Q. ( 0 ) - 2 n6Q . ( 30) 
out out 1n 1n 

Due to the saturation characteristics in Fig. (27), there exists 

an optimum fat zero charge Q. (o)I which results in maximum 
in opt 

output signal and is defined by · 

d 2n ~~ (6Q) + 1 = O 
dQ. \ 0 J 

rn 
( 31) 

The shape of the saturation characteristics in Fig. (27) indicates 

Q. · (o)I increases by increasing 
in 

opt 
that the optimum fat zero charge 

the clock frequency and the number of stages n of the charge coupled 

register and is independent of the size of the one bit . 

The signal degradation due to incomplete charge transfer is best 

described by the signal degradation factor E: which is defined by 

(32) 

where 6Qr is the difference in th~ residual charge . Qr due to a 

difference 6Q. 
1 

in the initial charge Qi. 

to its small signal value a, where 

dQ 
- r 

a. - dQ. 
1 

For sma 11 

(33) 
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In Figs. (28), (39), and (30) we have plotted the signal degrada­

tion factor due to incomplete free charge transfer versus transfer time 

for the drop and push two-phase clock in the complete charge transfer 

mode and for the two- phase push clock in the incomplete (or residual) 

charge transfer mode respectively. The signal degradation of the 

incomplete free charge transfer is due to an intrinsic transfer rate and 

due to the modulation of the device parameters by the signal charge being 

transferred. The intrinsic transfer rate is due to the finite carrier 

mobility and finite transfer time. The modulation effects are due to 

the dependence of the effective lengths of the gates, the effective 

capacitances per unit area and fringing fields under the storage and 

transfer gates on the signal charge being transferred. In Fig. (28), 

(29), and (30) the full line curves are the signal degradation due to 

the intrinsic transfer rate and the device parameters modulations, and 

the dashed line curves are the signal degradation due to the intrinsic 

transfer rate only. In the complete charge transfer mode (or CCD mode) 

the signal degradation due to incomplete free charge transfer decreases 

exponentially vJith time. But in the incomplete trci.nsfer mode (oY' 

bucket brigade mode), the signal degradation tends to a constant value at 

low clock frequency due to transfer gate length modulation and barrier 

height modulation (which modulates the residual or bias charge under 

the storage gates). 

In order to compare the performance of charge coupled devices with 

PUsh and drop clocks, we have plotted in Fig. (31) the signal degrada­

tion versus bit time for a two-phase push and drop clock. The device 
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dimensions and the clocking waveforms are shown at the top of Fig. (31). 

We have chosen a suitable background charge q to represent a 
0 

"fat zero 11 and a larger charge qs to represent the signal or one bit, 

as would be used for example to represent the zero and one bit in a 

digital serial memory. It is clear that the transfer efficiency is 

higher for the push clock. The improvement in transfer efficiency is due 

mainly to an important property of push clocks: The differences in the 

charge transfer characteristics and the mobile charge profiles under 

the CCD gates depending on whether a large or small charge is being 

transferred are minimized with push clocks. With a push clock the 

transfer of charge does not start until the surface potential under the 

initial storage gate is larger than that under the next transfer gate. 

This condition occurs earlier or later in the transfer cycle depending 

on whether more or less charge was originally stored. Thus provided the 

zero signal or zero bit is represented by a background charge, the charge 

profiles under the gates during the remainder of the transfer cycle are 

almost independent of when the actual movement of charge began: That 

is they are independent of the initial charge to be transferred. Hence 

the residual chargesafter each transfer with push clocks are almost 

independent of the initial charges. Therefore the signal degradation 

due to incomplete free charge transfer at high frequency is less when 

the device is operated with push clocks th~n when it is operated with 

drop clocks. 16 In Chapter 5, we will show that the signal degradation 

due to trapping in the interface states, which is dominant at low and 

moderate clock frequency, is also reduced by using push clocks instead 

of drop clocks. 
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In Fig. (31) we show also the signal degradation for the four-

phase push described in section (3.3.l B). It is clear that 

increasing the clocking scheme complexity from two-phase to four-phase 

improves the performance of the device at high frequency. This is 

because increasing the clocking scheme complexity allows a better control 

of the storage and transfer of the signal charge. This results also in 

a larger signal dynamic ran~e and larger signal to noise ratio. 
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Chapter 4 

TRAPP ING IN THE INTERFACE STATES 

The incomplete charge transfer due to trapping in interface states 

at the semiconductor-oxide interface imposes limitations on the perfor­

mance of charge coupled devices at moderate and low frequencies, where 

the incomplete free charge transfer is very small as shown in the pre­

vious chapter. I~ this chapter we use a simple and accurate model to 

study the incomplete charge transfer due to trapping in interface states 

and show its dependence on frequency, device parameters, dimensions, 

and clocking waveforms . 

4.1 · Jncomplete Charge Transfer Due to Trapping in Interface States 

If a voltage is applied to one of the storage electrodes of the 

charge couple device, a potential well is created at the interface, 

where signal charge can be stored. Some of this charge will be trapped 

in interface states . During the first stages of the transfer of charge 

to the next storage site, some carri~rs will also be trapped in inter-

face states under the transfer gates. In the last stages of the 

transfer process, the relatively large fringing fields under the trans ­

fer gates sweep out the mobile carriers very rapidly and the interface 

states then start to emit the captured carriers . According to the 

Shockley- Read-Hall rate equations, C2l) the emission time constant Te 

of the interface states varies exponentially with their energy level 

relative to the band edge. If the emission time constant of the 

interface states in a given energy range is smaller than the transfer 



-73~ 

time, then most of the trapped carriers in these states are emitted and 

can join the main packet. Interface states with an emission time con­

stant equal or larger than the transfer time will emit only a fraction 

of the trapped carriers. Since the storage gate is longer and has a 

thinner oxide than the transfer gate, the fringing fields under it are 

much smaller than under the transfer gate. The residual charge under 

the storage gate, in the last stages of the charge transfer process, 

decreases exponentially with a time constant that depends on thermal 

diffusion and the small fringing fields. Interface states continue to 

capture carriers from the residual signal charge until the residual 

charge becomes so small that emission from the traps becomes dominant. 

The non-emitted trapped carriers under the storage gate and the transfer 

gate are thus lost from the signal charge and will be emitted in the 

succeeding packets. If the next signal samples do not contain any 

charge~ the interface states continue to emit the captured carriers 

until a signal sample containing charge passes. Then the empty interface 

state fill by capturing carriers from that signal sample. After its 

transfer, the trapped carriers are emitted and so on. 

The charge captured by interface states from a large charge packet 

passing through the device is larger than the charge emitted into that 

packet, unless it has been preceded by an equal or larger charge 

packet. But the charge captured by interface states from a small charge 

packet passing through the device is smaller than the charge emitted 

into that packet, unless it has been preceded by an equal or smaller 

charge packet. Thus th~ interaction of the signal charge with the 
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interface states results in incomplete transfer of charge from one 

storage site to another and imposes limitations on the performance of 

the overlapping gates charge coupled devices. 

The signal degradation due to the trapping of carriers in the 

interface states can be considerably reduced by using the fat zero scheme. 

In this scheme the zero signal is represented by a small background 

charge or "fat zero" s so that charge packets are always flowing across 

the device. Hence the interface states under the storage and transfer 

electrodes are filled every cycle. The net charge trapped from a signal 

charge packet will then be the difference between the captured charge 

it lost at each transfer and the charge emitted into that packet, by the 

interface states under the storage and transfer gates, which was 

trapped from the preceding charge packets. Since for a sufficiently 

large fat zero charge the capture time constant of the interface state 

is very small (as discussed beiow) the interface states will be almost 

completely filled during each cycle and similar net trapping occurs 

during every cycle. The incomplete transfer due to trapping in inter-

face states is consequently reduced by orders of magnitude. 

4.2 Model and Approximations 

The interface states at the semiconductor-oxide interface are 

characterized by their density Nss(E) an& capture cros~-section 

oh(E). The capture and release of charge from these states is 

described by the Shockley-Read-Hall equation.(2l} Assuming a p-channel 17 

device and assuming that the interface is always kept under depletion 

to exclude the majority carrier and suppress any recombination 
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bet\l/een the trapped holes and electrons, the rate equation describing 

the occupation of the interface states at an energy E above the 

valence band is given by 

(34a) 

(34b) 

(34c) 

wher~ Nss is the interface state density (states/cm2 eV), nss is 

the density of fi1 led interface (states/cm2 - eV), and p is the 

dens"ity per unit area of the mobile holes in the valence band at the 

interface . crh is the trap capture cross-section for holes and Vth is 

the average thermal velocity of the mobile carriers . d is the average 

thickness of the inversion layer at the interface , Nv is the density 

of states in the valence band , and KT is the electron-volt equivalent 

of temperature. 

The first term describes the rate of capture of the mobile carrier 

and is proportional to the density p of the available mobile carriers 

and the density of the empty traps (Nsspnss). The second term 

describes the rate of emission of the trapped carrier. This term is 

proportional to the density of the filled 1nterface states and 

decreases exponentially as the trap energy increases. 

The total rate of capture of the mobile carrier is then given by 
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Rate of Capture = ~ = 
EJ .dnss 

dE , (35) - dt <ft 
capture 0 

where E
9 

is the energy gap. The mobile carrier continuity equation 

which describes the performance of the device is then given by 

(neglecting thermal generation currents) 

(36} 

capture 

where q is the surface charge density of the mobile carrier, e is the 

electronic charge, Jx is the sheet current density, and x is the 

distance along the interface. 

Thus, from the rigorous standpoint, the cont"inuity Eq. (36) should 

be solved simultaneously with the nonequilibrium rate Eq. (34) and (35) 

in the regions under the source and receiving storage gates and 

transfer .gate. While a rigorous t~eatment is ccnceptually possible, the 

uncertainty in the parameters characterizing the interface states makes 
•I such an elaborate calculation unwarranted. However, with suitable 

approximations one can make calculations which give qualitatively reliable 

and quantitatively suggestive estimates of the incomplete transfer due 

·to interface state trapping. 

When charge coupled devices are operated with the circulating 

background charge, interface states having an emission time constant 

larger than the cycle time remain almost completely filled all the time. 

These states capture carriers every cycle and do not get a chance to 

re-emit an appreciable fraction of the captured carriers during the 

cycle time. Interface states with an emission time constant much less 
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than the cycle time \'!ill be emptying and filling every cycle. These 

interface states have an energy of a few KT above the valence band edge 

(as shown below). Hence the interface states which make a substantial 

contribution to the incomplete transfer will be those with a time 

constant of the order of the clock cycle period and will lie within an 

energy range of the order of the thermal voltage. For the low inter­

face state density obtainable with the present thermally grown 

. d c22- 24 ) h '. f t . . . . 11 d t ox1 e, t e rate o cap ure or em1ss1on is quite sma compare o 

the other terms in Eq. (36). Thus, one can obtain an accurate solution 

by the following procedure. First, the term in Eq. (36) due to trapping 

is neglected and the continuity equation is solved to obtain the free 

charge transfer characteristics. The surface charge density profiles 

q(x,t) are then used with the rate Eqs. (34) and (35) to calculate the 

incomplete charge transfer due to trapping in interface states. 

The precise values of the interface state density Nss and capture 

cross-section oh of the interface states; their distribution in energy 

over the band gap; and their dependence on temperature, normal and 

tangenti a 1 surface fields are not well known, and vary strongly with the 

type and preparation of the oxide over the active channel of the 

device.C22-24 ) For our purposes here, we will take Nss and oh 

independent of all the above parameters. However, if the exact energy 

dependence of N
55 

and oh in the relevant part of the band gap is 

accurately known, it can be easily incorporated in this model. 

Consistent witf1 the same order of accuracy of the above assumptions, we 

can also use average values of the mobile carrier concentration and 
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neglect the effect of their spatial distribution under the electrodes, 

to further simplify the numerical calculation. 

4.3 Trap Occupation in Steady State and Transient 

In steady state, the trap occupation can be obtained from Eq. (33a) 

·and is given by 

(37) 

The interface states are in equilibrium with the mobile carriers. Their 

occupation is described by the same quasi-fermi level as the mobile 

carriers. 

. . K2 .. N • d 
E = KT .tn - = KT .tn _v_ 
f ~p p 

. (38} 

Following a sudden abrupt change in the mobile carrier concentra~ 

tion,say p
0 

to p1, the trap occupation changes to the new steady 

state value corresponding to the new mobile carrier concentration p1 
with an effective time constant given by 

•eff = K1p1 + K2 exp(-E/KT) 
1 (39} 

If the effective time constant of the interface states •eff is 

smaller than the time constant t measuring the variation of the mobile 

carrier density then the trap occupation reaches steady state very 

rapidly and effectively equilibrates with the varying carrier density. 

That is, if • > •efP then 



K e-E/KT 
2 

(40) 

Tbus , the- quasi-fermi levels of the traps follows the quasi-fermi level 
' 

of; thB ~mobiJe . carriers. 

(41) 

On-c.tbe cother ·hand, · if • < 'eff, then the trap occupa.ti on fails to 

'f6llow : the ':variation of the mobile carrier. If we let 

X..;: p(t) ~» ~2 exp(-E/KT), then this occurs when the mobi"le carrier 

cdenstty:'fal1s .to a ievel such that 

(42} 

rfeorcc·harge transfer from under a gate~ we can define two regimes. 

rF.i~ r:-s.t, -. 1-1f1en K1p(th > 1, the mobile charge is ·in effective equilibrium 

\Wlth "d:he .:trapped charge·. The tota 1 number of trapped carriers Ptr is 

~gJ.v.:en :by 

(43} 

Ser:ond,, when K1p(th < 1, the mobile charge is no longer in equilibrium 

;with the trapped charge. If we 1 et t 4 be. the time the emission 

mec.hanism becomes dominant, then for t > t 4 the trap occupation is 

given by 

N 
n s s ( t ) ~ __ __,.,.i<2~e--:· x-~-.,,...C --==E_,,,/ K=\ T::-.-)-. 

1 + y1t4} --
• exp(··{t-t4 )~ exp(~ E/KT)) 

(44) 
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and the interface states start to empty with a time constant that 

increases exponentially with the trap energy. The total number of 

trapped carriers is given by 

j t > t4 

(45) 

So in this case the interface states above Ef ~ KT ~n K2(t-t4} are 
; 

almost full and thdse below it are nearly empty. The last terms in 

Eqs. (43) and (45) shows the dependence of the interface state 

occupation on the mobile carrier density. . 

4.4 J..rappin9-J.Ii Interface States Under the_Storage Gates 

When a signal charge packet is stored under the storage gate, an 

the interface states trap carriers and are fi 11 ed very rapidly dovm to a 

quasi-ferrni level given by Eq. (38). As the charge transfers to the 

next storage site, the residual charge decreases. In the complete 

charge transfer mode the transfer of charge at the end of the charge 

transfer process (say after a time t 3) becomes limited by thermal 

diffusion and fringing fields. The residual charge under the storage 

gate is then given by 

{46) 

where the characteristic time constant , depends on diffusion and 

fringing fields. 

Since the fringing fields under the storage gate are relatively 

small giving ·a rather large value of t~ and since the charge p(t3) 
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;s relatively large, the inequality 

is satisfied at the beginning of this time interval. Hence, the mobile 

charge is in equilibrium with the trapped charge. However, at later 

times the free carrier density may fall to such a value that the inter-

face states are no longer in equilibrium with the free carriers and the 

interface states begin to simply emit the charge trapped in them. This 

state pertains for times t such that 

(48) 

If the clock frequency f 0 is such that the charge transfer ends 

at a time t less than t 4, then the interface states will remain 

filled down to an energy defined by Eq. (41). When the next charge 

packet arrives, it fills all the interface states~ and after it trans­

fers the total number of tra~ped carriers is given by Eq. (43) with the 

proper value of p(t). So, when the device is operated with a 

circulating background charge, or 11 fat zero", the net charge trapped 

from a signal charge packet is maximum when it is preceded by a fat 

zero and is given by: 

( 49) 

where Aqst is the net charge trapped per transfer~ Ast is the area 

of the storage gate, p
0
(t} and ps(t} are the residual charge under 

the storage ~ate at th~ end of the transfer time t for the fat zero 
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charge and the signal charge, respectively. When the difference 

between is relatively small, 

Ps(t) - po(t)) 
p

0 
t 

then 

(50) 

It follows from Eqs. (46} and (50) that the net charge trapped is 

almost independent of frequency. In addition all the interface states 

above an energy E1 , where 
i 

' 
(51) 

will always be filled with captured holes. If the charge transfer ends 

after a· time t > t 4, then in the complete charge transfer the inter­

face states under the original storage gate continue to emit the trapped 

charge for one whole transfer (or (m-1) transfer times for m trans­

fers per cycle). This released charge is added to the next packet 

transferred into this storage bucket. When the next charge packet comes 

along, all the interface states are filled again. After this charge 

packet transfers, the interface states start to emit and so on. So when 

the device is operated with a circulating background charge, the net 

charge trapped from a signal charge packet at each transfer, for transfer 

time t > t 4 + T , is also maximum when preceded by a fat zero and can 

be obtained directly from Eq. (45). 

l<ist = e R Ast Nss KT (t-~4 JK1 [ p3
4

) - p
5 
h

4
J] ' (5Z) 

where p
0
(t4) and ps(t4) are the residual charge under the storage 

gate after a time t 4 (as defined in Eq. (48)) for the fat zero charge 
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and the signal charge~ respectively, and R is a fraction given by 

(53) 

m is the number of transfers per bit. If t 4 is smaller than the 

cycle time, then t 4f 0 < l 

between ps(t4) and p
0
(t4) 

- l and for m - 2,R ~ 2 . If the difference 

is relatively small, then 

(54) 

Thus~ for transfer times t > t 4 + T, the net charge trapped per trans­

fer decreases almost directly with the clock frequency. Also~ all the 

interface states above an energy E1 are filled with captured holes, 

E1 is almost independent of the signal charge and is given by 

(55) 

4.5 Trapping in Interface States Under the Transfer Gates 

The surface potential and the surface potential gradient under the 

gates of an overlapping gate charge coupled device along the silicon­

silicon oxide interface are plotted in Fig. (4). These plots are 

obtained from a solution of the two-dimensional Poisson equation for 

substrate doping of 8 x l014;cm3 and lo14;~m3 . The electrode voltages 

correspond to the last stages of the charge transfer with a signal 

charge in the receiving storage gate. Since the transfer gate is 

shorter and has a thicker oxide than the storage gate, the fringing 

fields under it are much larger than under the storage gate. Typical 
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values of single carriers transit time under the transfer gate are of the 

order of a few nanoseconds. 

When a signal charge packet transfers from one storage site to the 

next, interface states under the transfer gate trap some of the charge 

during the first stages of the transfer process. Since fringing fields 

under the transfer gates are relatively large, the mobile carriers are 

swept out very rapidly and the emptying of the interface states begins 

earlier in the transfer process. Thus for all transfer times t of 

interest 

(56} 

The trapped carriers emitted before the transfer ends will join the main 

packet. During the last times of the cycle, a larger fraction y of 

the emitted carrier will drift bacb1ards to join the succeeding packet of 

charge~ and a smaller fraction (l-y) will drift forward to join the 

original packet of charge. Because of the asymmetrical surface potential 

distribution y is greater than one half. Then in the next cycle, during 

the transfer of the next packet of charge, the interface states under 

the transfer gate capture some charge, and so on. From the plots of the 

average mobile carrier concentration under the transfer gates for a 

two-phase overlapping gate CCD in Figs. (32). and (34), it is clear that 

the interface states will capture carriers for a time interval bt. 

During that time interval an average carrier concentration Pav may be 

defined. The traps fill with an effective time constant Teff given by 
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1 eff = 
l (57) 

The filling probability or the fill factor F of the traps is given by 

""' llt/T ff 
F = (1 - e e ) (58) 

For transfer times t > t 4tr the interface states empty according to 

Eq. (44) and the total trapped carriers is given by Eq. (45). When the 

device is operated with a circulating background charge or fat zero, the 

net charge trapped from the signal charge in interface states under the 

transfer gates is maximum when it is preceded by a fat zero and is 

given by 

(59) 

where R is a fraction given by Eq. (53). Pavo s Pavs are the average 

mobile carrier concentration under the transfer gate during the inter-

val bt for a background charge and a signal charge respectively. F
0

, 

F
5 

are the filling probability as defined by Eq. (58) for a background 

charge and a signal charge respectively. Atr is the area under the 

transfer electrodes and t 4 , t are the times at which the 
tro 4trs 

emptying of the i nterfa.ce states start for the background charge and the 

signal charge. 
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Two special cases are of interest. First, if the fill factors 

Fs and F0 are less.than one and unequal, then the first hJO terms 

dominate. For y = 1 and t4 

liqtr = eAtr Nss KT (F s 

For f 0t4 << 1 and m = 2, 
tr 

::: t4 
tro trs 

- F 
0

} in m 

Eq. (59) reduces to 

(1 - f t ) o 4tr 

c - mf t 4 ) 0 tr 

(60) 

Second~ if the f111 factors are equal to one ·(g__ » 1\ , then 
. Teff I; 

Eq. (59) reduces to: 

where 6(t4) is the difference in the time t 4 at which the emptying 

of the interface states start for the signal charge and the background 

charge. 

In the first case, the net charge trapped is almost frequency 

independent. While in the second case it i~creases almost linearly 

with frequency. 

All the interface states under the transfer gate above an energy 

E1 are filled with captured holes. E1 is almost independent of the 
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signal charge but depends on the clock frequency and is given by 

(62) 

4.6 Trapping in the Interface States Under the Edges Of the Gates 

Trapping in the interface states under the edges of the storage 

and transfer gates also add to the incomplete charge transfer. Since 

the precise area covered by the charge being transferred at the inter­

face depends upon the surface potential profiles under the gates which 

in turn depends on the surface charge density, the number of interface 

states at the edges which come in contact with the charge is dependent 

upon the amount of surface charge. The surface potential profile for 

a given surface charge density and sequence of potentials applied to 

the gate electrodes is obtained by solving the two dimensional 

Poisson equation for the CCD structure. Solutions to this equation 

along and perpendicular to the active channel show that fringing 

fields penetrate under the edges of the gates for a distance of 

approximately a depletion layer thickness. The onset of these fringing 

fields define the spatial .extent of the mobile charge . For fixed 

voltages applied to the gates, the depletion layer thickness and the 

penetration of fringing fields increase with decreasing surface charge. 

Hence a small surface charge is confined to a smaller area at the 

interface than a larger charge . 

In the treatment of trapping and release of charge by these inter­

face states , we must distinguish between the interface states at the 

gate edges parallel to the channel from those at the gate edges 
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perpendicular to the channel. 

In the case of the interface states at the edges perpendicular to 

the channel, the signal charge or the background charge flows over the 

interface state during every cycle. Thus the interface state can cap­

ture carriers from both the signal charge and background charge. Hence, 

the filling and emptyfog of these interface states is similar to that 

under the transfer gates. 18 

The net charge trapped from a signal charge in the interface 

state under the perpendicular edges when the device is operated with fat 

zeros is maximum when it is preceded by a fat zero. If the probabi1 ity 

of filling of the interface states by the background charge is less than 

unity, then from Eq. (60) 

where A is the area under the perpendicular edges and F is the 
e~ o 

fill factor for the background charge defined by Eq. (5~. In the 

case F
0 

is almost equal to unity, then from Eq. (61); 

In the case of the interface states parallel to the edges we must 

distinguish between the drop clock and the push clock. With drop clocks 

the signal charge is stored below a gate at a holding Voltage v1 
which is a fraction of the largest clock voltage Vm that the MOS 



~89-

structure can tolerate; charge transfer occurs when Vm is then 

applied to the adjacent gates, and the charge flows to the potential 

minimum thus created. With push clocks the charge is stored 

under a gate held at Vm' and transferred to a nearby gates also at 

Vm, by raising .the potential of the gate where the charge has been 

residing and thus 11 pushing 11 the charge to the next gate. Charge 

coupled devices can be operated with two-phase, three-phase, or four­

phase clocking schemes by push clocks, drop clocks 9 or a combination 

of push and drop clocks. 

So with drop clocks, the charge transfer is effected by creating 

deeper potential wells under the next gates; and the background charge 

does not flow over the edges of the·gates parallel to the channel. 

Thus the interface states under the parallel edges capture carriers 

from the signal charge but do not trap any carriers from the background 

charge; and the parallel edges are residual areas of the active channel 

that the background charges cannot reach. For example, after a signal 

charge is transferred from under the storage gate, the interface 

states under the parallel edges of this gate continue to emit the 

trapped carriers until the next signal charge passes, then the interface 

states fill again. The net charge trapped from the signal charge in 

the interface states under the parallel edges of the storage and trans­

fer gates increases with increasing the number of fat zeros preceding 

it. This is unlike the net trapped charge in interface states under 

the storage gates, transfer gates, and the perpendicular edges which is 

almost independent of the number of fat zeros preceding the signal charge. 
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The net charge trapped in the interface states under the parallel 

edges increases logarithmically with the clock frequency (similar to 

the charge trapped when no fat zeros are used as shown below). For 

digital signals, the net traoped charge per transfer in the interface 

states under the parallel edges from the first 11 one bit 11 preceded by 

n "zero bits 11 can be easily obtained from Eq (45) zero · · 

bqe,, = e KT(Nss Aste" + Ns/ sAtr,, l .tn [("zero; o l /m t4e .. v 
(65) 

where Ast" and AtrH are the area of the edges parallel to the 

channel under the storage and transfer gates respectively. t is 4e 11 
the time at which the emptying of the interface states under the 

parallel edges start. 

to 

For f t 4 « 1 · o e" and m = 2 Eq. (65) reduces 

/J.q - eKT(N sA te + N F At ) R.n(2n + l) (66) eu s s H ss s re" zero 

In this case, all the interface states under the parallel edges above 

an energy E1, where for "zero>> l 

El = KT rn K2 (cnzero + l) ~ o - ~4e .. ) (67) 

are filled with the captured holes. 

But with push clocks, the trapping effects under the parallel edges 

-are reduced. The charge transfer characteristics and the charge profiles 



-91-

under the gates for the signal charge and the fat zero charge tend to 

be more similar with push clocks. hence the interaction of the traps 

with the mobile carriers of both charges is almost the same. For 

example, with the two-phase push clock, the charge transfer does not 

start until the surface potential under the storage ga~e is larger than 

that under the next transfer gate for both the fat zero charge and the 

signal charge. Hence the fat zero ~harge covers almost the same area 

covered by the signal charge at the interface under the storage gates 

before the charge transfer begins. Thus with push clocks, the behavior 

of most of the parallel edge area of the storage gates is similar to 

the behavior of the perpendicular edges and hence is described by 

Eqs. (63) and (64}. So the effective area of the parallel edges under 

the gates that interact with the mobile carriers according to 

Eqs. (65) and (66) is much smaller with push clocks than with drop 

clocks. 

4.7 Numerical Results 

Whe~ the device is operated with a circulating background charge 

the tota1 net charge trapped from a large charge packet in interface 

states at each transfer is obtained by summing the different contri­

butions obtained above 

(68} 

The same net charge Aq is emitted to the.background charge by the 

interface states when it is preceded by a large signal charge. The 
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influence of this incomplete charge transfer due to trapping in inter­

face states on the signal degradation is best described by the signal 

degradation factor e, 

(69) 

Where qs is the signal charge and qo is the background charges so 

qs ::: eAstPs and qo = eAatPo· E:St~ etr ' E e.t' E: e II are the signal 

degradation factors due to trapping in interface states under the 

storage gate, transfer gate and the perpendicular and para 11 el edges of 

the gates respectively. Ps and p
0 

are the mobile carrier density 

for the signal charge and the background charge respectively. 

We have evaluated the relative magnitudes. of the signal degrada-

tion factors for an overlapping gate charge coupled device with 

dimensions consistent with typical layout tolerances of silicon gate 

technology. The storage polysilicon gates are 14µ long and 8µ apart. 

The channel width is 8µ. The results in Figs. (32), (33) ~ (34), and 

(35) are taken from a detailed numerical solution of the transport 

dynamics in p-channel devices with a substrate doping of 0 .8 x l015;cm3 

and minimum geometry dimensions operated in the complete charge trans-

fer modes described in Section 3.1. In Figs. (32) and (33) the 

average mobile carrier concentration under.the storage and transfer 

gates are plotted versus time when a two-phase drop clock is used. The 

same plots for a two-phase dynamic push clock are shown in Figs. (35) 

and (36). 

In Table r, we have listed the values of the quantities used to 
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evaluate the signal degradation from the above equations. An average 

value of Nss and ah was taken in agreement with the published values 

in the literature.C22- 24 ) With a substrate doping of 0.8 x l015;cm3 

and for the minimum geometry dimensions, fringing fields under the 

storage electrodes are negligible.Clo) Hence the time constant of the 

exponential decrease of the residual carrier under the storage gate is 

2 the thermal diffusion time constant Td = .e,Si /2.5 D. The time 

intervals tit (which are the times the carriers spend under the 

transfer gates and the perpendicular. edges} are taken from Figs. (32) 

and (34). Zero fall and rise time for the two-phase drop clock and 

zero fall time and 13 nsec rise time for the two- phase push clock were 

used in the numerical simulation of the charge transfer characteristics 

shown in Fig. (33) to (35). For larger rise and fan times, the values 

of tit are larger. ·The fill factors F
0 

and Fs are then calculated 

using an average carrier density un~er the tra~sfer gates during the 

time intervals tit from Figs. (32) and (34). They are almost unity for 

the drop and push clocks. Hence Eqs~ (61) and (64) should be used to 

estimate t.qtr and tiqe.J... The value of n in Eq. (66) was taken zero 
unity to give the minimum value of £ • The ratio of the area of the 

e II 
edges to the storage gate area depends on the width of the channel W, 

the lengths of the storage and transfer gates, and the substrate doping 

concentration. The values of AStEJ/Ast' Atre/Ast arid Ae/Ast are 

taken from surface potential plots of the solutions of the two-

dimensional Poisson equation of the device similar to thos~ in Fig. (4). 

With push clocks, the effective area of the parallel edges unde r the 
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storage gates that interacts with the mobile carriers according to 

Eqs. (65) and (66) was taken one-tenth of the total parallel edge area 

under the storage gates. Actually a smaller value is expected because 

of the neutralization .effect mentioned above during the pushing of the 

charge. 

In Table II we have listed the values of E t' Et , E , E and s r e 11 eJ. 

E for the static drop and dynamic push two - phase clock at a frequency 

of ' one megacycle for the l!linimum geometry device. In our ca 1 cul ati ans, 

we chose a suitable background charge to represent a fat zero (ep
0

) 

and a large charge to represent the signal charge (eps) as would be 

used for example to represent the zero and the one bit in a digital 

serial memory. In Figs. (36) and (37) we have plotted the signal 

degradation factor due to incomplete free charge transfer and due to 

trapping in interface state versus frequency. Several conclusions 

become apparent for this particular device. Trapping effects due to 

the interface states under the storage gate are larger than those under 

the transfer gate and under the perpendicular edges of the storage 

gate. 19 Trapping in interface states under the parallel edges of the 

gates is dominant at low .frequencies. Also the incomplete charge 

transfer due to trapping in interface states when the device is 

operated with push clock is much less than when it is operated 

with drop clock. At low tlock frequencies the signal degrada-

tion due to trapping interface states is larger than that due to 

incomplete free charge transfer. But at high frequency, the device 

performance is limited by the free charge transfer process, 
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Tl\OLE I 

Values of Parameters and Constants Used in the Calculation 

K · C 1/25 cru2/sec. 1 

p = s 6.25 x 1011 ;cm2 

Po 
c 1. 79 x 1011 ;cm2 

Pav s = 0. 5 x 1 011 I cm2 

Pav o = 0.27 x 1011 ;cm2 

I 11 2 Pav s = 0.6 x 10 /cm 

I 11 2 Pav 0 = 0.4 x 10 /cm 

7 vth = 10 cm/sec. 

0 

d = 25 A 

-8 2 C
0 

c 2.86 x 10 F/cm 

Static Drop Clock 

Pav edge= 1.57 x 10
11

;cm
2 

·Ps(t4)-Po(t4) -2 
Po(t

4
) = 1.75 x 10 

·.s(t4 ~ = 6 nsec. 

t.ttr = 35 nsec. 

-t.teo = 7 nsec. 

Dynamic Push Clock 

Pavledge = 2.45 x 10
11

;cm
2 

Ps(t4)-Po(t4) 10-2 
p (t ) = 1.75 x 

0 4 

.s.(t4) = 1.5 nsec 

Atre u + Astenleffective 1 

st w = 811 ., 200 

t - 150 nsec 3 

t ., 117 nsec 

t 4 jtr f! 35 nsec 

F = l - e-?G = 
s 

F = 1 - e-4l ~ 1 
0 

Atre u + Aste 11 

Ast w = 8µ 

t 4ltr = 45 nsec 

F = 1 - e-118 = l s 

F = 1 - e-72 = 1 
. 0 

t.teo ;; 13 nsec 

=to 
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It should be emphasized that the results shown in Figs. (36) and 

(37) are for a minimum geometry overlapping gate charge coupled devices 

under a specific set of operation conditions. The specific values of 

the signal degradation due to trapping in interface states depend on 

the device geometry and the operating conditions. So care should be 

taken in extrapolating the specific values of the signal degradation 

factors in Figs. (36) and (37) to other CCD structures with other 

dimensions under other operating conditions. The equations derived in 

the above Sections should be used with the device and model parameters 

appropriate to each case. 

4.8 Discussion 

The analysis and results given in the above Sections reveal some 

important and general features of the incomplete charge transfer due to 

trapping in interface states in charge coupled devices. In this Section 

we discuss some of these important features: Such as the relative con­

tribution to the signal degradation of the interface states under the 

storage and transfer gates and their edges; the influence of clocking 

waveforms and voltages, device dimensions and parameters on the incom­

plete charge transfer due to trapping in interface states, and design 

features of CCD structures to reduce it. 

When charge coupled devices are operated with fat zeros trapping in 

interface states under the edges of the gates parallel to the channel 

is the dominant effect at low frequencies. The parallel edges are the 

areas parallel to the channel at the interface under the storage and 

transfer gates which are covered by the signal charge and are not 
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60residuol 
SIGNAL DEGRADATION FACTOR= 

6Qiniliol 
........... TRAPPING IN INTERFACE STATES UNDER THE PERPENDICULAR 

EDGES OF THE GATES 
- ··- TRAPPING IN INTERFACE STATES UNDER THE PARALLEL 

ED GES OF THE GATES 
------ TRA PPING IN INTERFACE STATES UNDER THE 

TRANSFER GATES 
--- TRAPPING IN INTERFACE STATES UNDER THE 

STORAGE GATES 
-·- INCOMPLETE FREE CHARGE TRANSFER 
--- TOTAL 

Figure 36. 
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covered by the background charge. The interface states under the 

parallel edges capture charge from the signal charge only. The 

resulting signal degradation is almost frequency independent, varies 

inversely with the channel width, and depends on the information content 

of the signal. At 1ow frequency the signa1 degradation due to trapping 

in the interface states under the storage gates, the transfer gates 

and the perpendicular edges is relatively smaller. These interface 

states capture charge from both the signal charge and the background 

charge. Hence the background charge is effective in reducing the 

effect of trapping in these interface states on the incomplete charge 

transfer. For a sufficiently large background charge the effective time 

constant of the interface states is typically a fraction of a nanosecond. 

With the finite rise and fall times obtained with the practica1 clock 

drivers, and for the minimum geometry CCD devices we have considered, 

these interface states can equilibrate with both the signal charge and 

background charge. This leads to a smal1 signal degradation which is 

directly proportional to frequency. 

From the equations derived in Sections 4.4, 4.5 and 4.6 and 

Chapter 3, we may conclude that increasing the clock voltage amplitude 

and the signal charge reduces the incomplete transfer due to trapping 

in interface states and the incomplete free charge transfer. Clocking 

waveforms that tend to reduce the incomplete free charge transfer by 

making the charge transfer for large and small charge similar will also 

reduce the incomplete charge transfer due to trapping in interface 

states because the effective parallel edge area is reduced and the 
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charges under the storage and transfer gates, and the time at which 

emptying of the interface states begins tend to be less dependent on the 

initial charge. For example when the device is operated with a two­

phase push clock, the incomplete charge transfer due to interface state 

is reduced by over an order of magnitude over that when it is operated 

with static drop clock. If the device is operated in the complete 

charge transfer mode the other details of the clocking waveforms such 

as its rise time and waveshape affect mainl1 the time interval ~t the 

charge spends under the transfer gate and the time t 4 at which the 

interface states starts to empty. For example if the rise time 

increases ~t and increase and the signal degradation due 

to the interface states under the storage gate increases slightly. The 

signal degradation due to interface states under the transfer gates and 

the perpendicular edges e:tr and e:e.l also increase very slightly if 

L\t --- >>l, 
Teff 

but decrease if the fill factor and F
0 

are less than 

unity. 

Certain design features of CCD structures may reduce the incomplete 

charge transfer due to the interface states. A wide active channel 

increases the signal charge relative to the net charge trapped in the 

parallel edges and hence reduces the signal degradation factor at low 

frequencies. 20 Thinner oxide over the active channel increases the 

oxide capacity and the signal charge density. Thus , the net charge 

trapped under the storage gates, transfer gates~ and the perpendicular 

edges decreases, and the area of the edges is reduced. A higher 
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substrate doping reduces the edges area, but also reduces the fringing 

fields under the storage gates and hence decreases the rate of free 

charge transfer. A structure with a high substrate doping (or channel 

stop diffusion) and a low doping under the active channel reduces the 

parallel edge area and increases the fringing fields at the same time. 

The large fringing fields reduce the incomplete free charge transfer at 

high frequency. The net charge trapped under the transfer and storage 

gates is also reduced as the interface states start to empty earlier 

in the transfer process. The perpendicular edge area is increased in 

this structure, but since in the overlapping gate CCD the effect of the 

perpendicular edges is relatively small, the overall effect of interface 

states on incomplete transfer is reduced at low frequencies. Such a 

structure can be easily achieved with ion implantation or otherwise. 

Reduction of the signal degradation due to trapping in interface states 

.can be also achieved by decreasing the interface state density Nss for 

example by using (100) instead of (111) substrate. Moving the charge 

packets in potential wells in the bulk rather than at the interface as in 

buried channel cco( 2?) eliminates the incomplete charge transfer and 

fluctuation noise due to trapping of the signal charge in the interface 

states. Since trapping in the defect states of the buried channel is 

expected to be much smaller than interface state trapping, the signal 

degradation in buried channel charge coupled devices is much smaller 

than in surface channel CCD. 

The signal degradation due to trapping in interface states limits 

the performance of CCD devices at low frequency, bu t at high frequency 
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the signal degradation due to incomplete free charge transfer is dominant. 

According to the simple model we have considered, the capture cross-

section crh and the interface state density N were taken constant 
SS 

for simplicity. Actually the variation of Nss and ah with energy 

will change the frequency dependence of the signal degradation due to 

trapping in interface states from that plotted in Figs. (36) and (37). 

However the frequency dependence of the signal degradation factor due to 

the interface states will still be weaker than that due to incomplete 

free charge transfer. The latter changes very rapidly with frequency, 

for example in Fig. (37) it changes by more than four orders of magni­

tude over only one decade of frequency. 

So far, we have assumed that the background charge and the signal 

charge are sufficiently .large that the interface states under the 

transfer gates, and the perpendicular edges can effectively equilibrate 

with the mobile carriers. However, if the background charge, or, the 

capture cross-section crh' or the time interval ~t the carriers spend 

under the transfer gates and the perpendicular edges is too small, then 

these interface states cannot equilibrate with the mobile carriers in 

transit. The fill factor F
5 

and F
0 

are thus less than unity, and 

the first two terms in Eq. (59) dominates at sufficiently low frequency. 

In this case the contribution to the signal degradation from the inter­

face states under the perpendicular edges and the transfer gates tends 

to a constant value at 10\'l frequency given by Eq. (60) and (63). This 

contribution is due to the difference in the filling probabilities of 

the interface states for the background charge and the signal charge. 
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The contribution to the signal degradation from the interface states 

under the parallel edges and the storage gates increases also by decreas­

ing the background charge. However the trapping in the interface states 

under the para"llel edges still remain the dominant effect especially 

from minimum geometry devices. 

If the storage and transfer gate lengths are reduced, the time 

interval L'lt that the charge spends under the transfer gate decreases 

and the relative area of the perpendiculaf edges increases. Also the 

time t 4 at which the emptying of the interface states starts to 

decrease. Thus e:st slightly decreases but e:e.t. increases, e:tr 

decreases very slightly in the case L'lt/-r eff » l, but increases con~ 

siderably if the fil"ling probabilities Fs and F
0 

are less than unity. 

The signal degradation due to the parallel edges 

dominant effect decreases also very slightly. 

e: which is the en 

The interface states under the storage gates, the transfer gates 

and the perpendicular edges can capture carriers every cycle from the 

signal charge and the fat zero charge. Hence the interface states 

with energy levels above E1 (given by Eqs. (51), {55), (62), and 

(67)) do not get a chance to re-em·it the captured carriers and are 

filled all the time. The interface states v-1ith energy between the 

valence band edge and the energy E1 will be emptying and filling 

. every cycle. 21 For example for d·igital signals, the net trapped 

charge from the first "one bit" in the interface states under the 

storage and transfer gates and the perpendicular edges is almost 

independent of the number of preceding "zero bits 11
• Bu t the net 
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trapped charge from the first "one bit" in the interface states under the 

parallel edges, increases logarithmically with the number of preceding 

"zero bits". If a two-phase device is operated with no fat zeros, then 

the net trapped charge per transfer from the first "one bit" preceded by 

n "zero bi ts" can zero be easily obtained from Eq. (45). 

-t4st) /( z} 
0 

- t4st) 
I 
{~zero + 112 

\ f o 

+ eA KT N e SS 

df t 1 d, 1 
an or 4st < 2f 0 an c4tr « 2f 0 

(70) 

The above result could be used to measure Nss by measuring the slope 

of the charge loss versus in "zero' However, Eq. (70) shows that the 

so measured value of N
55 

is some average value of N
5
s under the 

transfer and storage gate. A typical value of the signal degradation 
".I 

factor e at each transfer in this case is ·about 10-0
, if nzero is 

equal to unity . 

Measurements of the signal degradation factor in charge coupled 

devices are difficult and require long register strings for a good 

accuracy . The signal degradation factor due to incomplete free charge 
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transfer at high frequencies were measured by J.E. Carnes and\~. F. 

Kosonocky( 2B) using a 64 bits two-phase overlapping gate shift register. 

They measured a signal degradation factor of l0-4 at one mega cycle. 

Using feedback to increase the effective number of transfers, P. A. 

Levine( 2g) measured a signal degradation of 3 x 10-5 at 200 Kilocycles 

and 9 x 10-6 at 10 Kilocycles. Presently, the experimental data of 

the signal degradation factor in the overlapping gate charge coupled 

devices are relatively sparce. So experimentally,. the precise values 

of the signal degradation due to trapping in the interface states at low 

frequencies and its frequency dependence are not presently well known. 
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Chapter 5 

CONCLUSION 

We have developed · a detailed numerical simulation of the transport 

dynamics in terms of charge motion due to thermal diffusion, self-induced 

fields and fringing fields under all the relevant electrodes and inter­

electrodes regions of charge coupled devices. This numerical simulation 

is a simple mathematical model that can be used to study the free charge 

transfer characteristics of different device structures with various 

clocking schemes and waveforms. We have a1so presented the charge 

transfer charact~ristics of overlapping gate charge coupled devices 

clocked with two and four-phase clocks and various waveforms. 

The charge transfer with three-phase and single-phase clocking 

schemes can be readily understood from the results of the numerical 

simulation of the charge transfer with two and four-phase clocking 

schemes. The charge transfer with a single-phase clocking scheme can be 

easily deduced from the charge transfer with the push and drop two­

phase clocks. The charge transfer with dynamic three- phase push clock 

also follows from the charge transfer with the four-phase push clock. 

We have shown that the charge transfer in the overlapping gate 

structure divides naturally into several distinct stages. In the first 

stages, the storage gates are like capacitors charged and discharged 

by the transfer ga t es which limit the transfer rate. The overlapping 

transfer gate shields out the repulsive forces of the surface charge in 

transit and enhances the rate of charge transfer . The nonlinearity due 
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to the self-induced fields is dominant in these stages and the charge 

transfer depends on the clocking vrnveforms. In the two-phase clocking 

scheme the transfer gates are like MOS transistors at pinch off, and 

the storage gates are the sources and the drains. In these stages the 

transferred charge increases according to the portion of the clock 

voltage waveform that pushes the charge from one storage site to 

another for the push clocks, or according to the portion of the clock 

voltage waveform that creates the deeper potential well for the drop 

clocks. 

The last stages of the charge transfer process depend on whether 

the device is operated in the complete charge transfer mode or in the 

incomplete charge transfer mode. During the last stages of the 

complete charge transfer mode the rate of charge transfer in the over­

lapping gate structure depends on how fast the storage gates can be 

discharged. The transfer gates in this structure are usually 

shorter and have larger fringing fields, and the charge transfer across 

the transfer gates is much faster than the charge transfer out of the 

stor~ge gate. In the last stage, the residual charge under the storage gates 

decreases exponentially with a time constant that depends on fringing 

fields and thermal diffusion. For strong fringing fields, the final 

decay time constant Tf is· a fraction .of the single carrier transit 

time across the storage gate. In this case the exponential decay is 

due to the diffusion at the tail end of the residual charge packet under 

the storage gate. In the incomplete charge transfer mode, the charge 

transfer is very similar to the charge transfer in the MOS bucket 
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brigade. (30) In this case, the charge transfer in the last stage is 

dependent on the transfer gate length. The residual charge under the 

storage gate decreases logarithmically, due to the thermally emitted 

carriers from the residual charge that diffuses across the transfer 

gate to the next storage gate~ 

The time constants of all stages of the charge transfer are propor­

tional to the product of the storage gate and transfer gate lengths or 

the storage gate length squared, and the inverse of the surface 

mobility. In the first stages, the time constants are proportional to 

the inverse of the portion of the clock voltage used to store the 

signal charge. In the last stages the time constants are proportional 

to the inverse of the thermal voltage or the voltage drop across the 

gates due to fringing fields. 

We have shown also that the charge transfer characteristics calcula­

ted from a lumped circuit model of ·the overlapping gate charge coupled 

devices agree with the results of the numerical simulation r- According 

to this model, the charge transfer dynamics could be described by the 

charging and discharging of lumped capacitors through lumped transfer 

channels. This is possible because the charge redistribution time of 

the surface charges under the CCD gates is orders of magnitude smaller 

than the transfer times of interest and therefore the surface charge 

profiles under the gates reach rapidly steady state. The lumped circuit 

model can be used to derive the charge transfer characteristics for 

other device structures and dimensions with various clocking waveforms 

and voltages, thus providing practical charge coupled device and 
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circuit design tools. 

We have also calculated the signal degradation due to incomplete 

free charge transfer from the charge transfer characteristics obtained 

from the numerical simulation or the lumped circuit model of the free 

charge transfer process. These calculations show that the signal 

degradation of the incomplete free charge is due to an intrinsic transfer 

rate and due to the modulation of the device parameters by the signal 

charge being transferred. The intrinsic transfer rate is due to the 

finite carrier mobility and finite transfer time. The modulation 

effects are due to the dependence of the effective lengths of the gates, 

the effective capacitances per unit area and fringing fields under the 

storage and transfer gates on the signal charge being transferred. 

Calculation of the signal degradation due to incomplete charge 

transfer shows also that the performance of the overlapping gate charge 

coupled devices is better than the MOS bucket brigade. At very high 

clock frequency the signal degradation due to incomplete free charge 

transfer in the MOS bucket brigade is almost the sam~ as in the over­

lapping gate CCD. But at moderate and low clock frequency the signal 

degradation in the MOS bucket brigade is larger than in the overlapping 

gate CCD. The MOS bucket brigade always operates in the incomplete 

charge transfer mode; the p islands are storage buckets with undefined 

bottoms that always contain residual charge. So the residual charge 

decreases logarithmically with time and the signal degradation tends to 

a constant value at low clock frequency due to transfer gate length and 

barrier height modulation. But the overlapping gate charge coupled 
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devices can be operated in the complete charge transfer mode. So the 

residual charge decreases exponentially and the signal degradation due 

to incomplete free charge transfer (intrinsic transfer rate and device 

parameters modulation) also decreases exponentially with time. The 

signal degradation due to trapping in the interface states, which is 

the dominant effect in the overlapping gate CCD at low clock frequency, 

is also less than the signal degradation in the MOS bucket brigade 

at low clock frequency. 

Using a simple model we have estimated the signal degradation to 

interface states trapping in overlapping gates charge coupled devices 

operated with a background charge taking into account the re-filling 

of the interface states during transfer. The incomplete charge 

transfer due to interface states limits the performance of these devices 

at low frequencies. The most dominant effect is trapping in the 

interface states under the parallel edges (the areas parallel to the 

active channel at the interface under the storage and transfer gates 

which are covered by the signal charge and are not covered by the 

background charge). For a sufficiently large background charge the 

interface states under the storage gates, transfer gates, and the 

perpendicular edges of the gates can effectively equilibrate with both 

the signal and background charge. Hence the incomplete charge trans­

fer due to trapping in these interface states varies almost directly 

with frequency and becomes very small at sufficiently low frequency. 

Some design fea t ures of CCD structures were shown to reduce the 

incomplete charge transfer due to interface state trapping . We have 
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shown also that increasing the clock voltages or increasing the signal 

charge or using push ~lock instead of drop clocks reduces the incomplete 

charge transfer due.to interface states trapping. 

We have shovm al so "'that the key features of the push clocks are that 

a larger portion of the clocking voltage is used to store the signal 

charge; hence larger signal tharges can b~ transferred resulting in larger 

signal dynamic range and signal to noise ratio. Also with push clocks 

the characteristics of the charge transfer are almost independent of the 

value of the signal charge than with drop clocks. Hence the residual 

charges after each transfer are much less dependent on the initial charges, 

and the interaction of the different charges with the interface states 

is more similar. This results in better performance at both high and 

low frequencies. The pushing of the charge from one storage site to 

another is eas'ily achieved bythe finite fall and rise times which are 

unavoidable in practical clock drivers. 

In addition we have shown that increasing the clocking scheme 

complexity, from single-phase to two-phase to four-phase clocking 

scheme, allows a better control of the storage and transfer of the 

signal charge and better device performance. Increasing the clocking 

scheme complexity is important in applications requiring larger signal 

dynamic range, larger signal to noise ratio, and higher frequency 

range. 
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APPENDIX I 

Green Function Solution of the Potential in a MIS Structure 

Consider a MIS structure as shown in Fig. 38. The 

insulator-semiconductor interface, and the insulator-metal interface 

are parallel to the y-z planes . It is desired to estimate the 

surface potential and the surface potential gradient at the semi-

conductor-i nsu·1 a tor interface, for an arbitrary surface charge 

density profile q(y) and a voltage VG on the metal electrode. 

Although the Poisson equation for this problem is nonlinear in 

the semiconductor region, we may still solve it as a linear equa-

tion using the depletion approximation. First, let us calculate 

the potential and electric field at any point (x,y) in the semi-

conductor region due to a linear charge of unit strength, i.e. 

one Coulomb/cm, at a point (x', y') parallel to the z-axis. The 

semiconductor region, in this case, is treated as a dielectric 

' of permittivity El. The resulting potential function G(x,y,x' ,y') 

is the Green function solution of the two-dimensional Poisson 

equation of the structure. Assuming the metal plane is at ground 

potential' the desired potential function can be calculated by 

the method of images. Since the boundary conditions at both the 

insulator-semiconductor interface and insulator-metal interface 

should be satisfied, an infinite series of image line charges are 

required t~ calculate the potential function in each region. It 

can be shown that the Green function in the semiconductor region is 

given t3l) by 
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- l . £ 1 - £2 2 2 
G(x,y,x' ,y') = -4 - { + £n [(y - y') + (x + x')] 

1f£1 E;.I 8 2 

48 1£2 k1 £1 - e:2 m-1 2 
- ( ) in [ (\I -y I ) 2 £ + £ J 

(t:l + £2) m= l 2 

+ {x + x' + 2md
0

)
2]} . (Al-1) 

Where d
0 

is the insulator thickness. 

If the point (x,y) lies at the semiconductor-insulator interface, 

then substituting in Eq. (Al-1) we get: 

00 

~ £1 - 8 2 1 2 2 
Lt (- )m- £n[(y - Y') + (x' + 2mdo) ]} 
m=l 8 1 + £2 

(Al-2) 

The Green function of the surface potential gradient along 

the semiconductor-insulator interface is given by 

~y G { 0 ,y 'x I ,y I ) 

The surface potential for·a surface charge density profile q(y') and 

a gate voltage VG is given by (neglecting the fixed insulator- semicon­

ductor in terfacf~ charge q
55

, and the difference in the meta 1 and 
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-f<x> 

~s(y) = ¢(0,y) = VG·+ J G(osy,o,y' )q(y'}dy' + 
_,IX) 

+co ~Jy') 
+ J dy dx' G(o,y,x' ,y'} eN 0 

-= 0 

(Al-4) 

where N0 is the donor concentration for n-semiconductor . X0(y) is 

the depletion layer thickness defined by the implicit relation: 

-t= 

~(x0 sy) =VG+ J G(x0,y,o,y') q(y')dy' 

+co XoC.v,) 
+ J dy' J G(x0 ,y,x' ,y')eN0dy' = O 

. -= 0 

It can be shown from (Al-1) and (Al-2) that 

G ( x ,y 'x I ,y I ) = G ( x -x I ' y-x I ) 

+co 

f 
d

0 
1 

G(x ,y ,o ,y' )dy' = - = -C 
r::2 0 

+oo d 1 

f G(o,y,x',y')dy' - 0 
-- -£2 - co 

_co 

+oo 

• f ~X ,y ,XI ,y I ) dy I : 0 
...co 

(Al-5) 

(Al-6a) 

(Al - 6b) 

(Al-6c) 

(A1-6d) 
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Nhere C

0 
is the insulator capacity per unit area. In the case 

Nhen q(y) is a constant , using Eqs. (Al-4), (Al-5), and (Al-6), 

the surface potential is given by 

(Al-7a) 

= 0 (Al-7b} 

Equations (Al-7a and b) are the one -dimensional solutionsof the 

Poisson equation using the depletion approximation for the MIS 

structure. C32 ) For a given surface charge density profile, the sur­

face potential gradient can be obtained according to the gradual 

channel approximation by differentiating (A1 - 7a) 

(Al-8) 

A more accurate estimation of the surface potential gradient can 

be obtained from Eqs. (A1~4) and (Al -6) . 

-too 
a<I>s - f G ay - ~( 0 ,y ' 0 ,y I } q (y I } dy I 

·t-«> XD(y'} 

+ I d I I ()G, I I N d I y ~o ,y,x ,y Je 0 x 

0 (Al-9) 

The first term in the above equation represents the repulsive force 

due to the non uni form surface charge q (y), screened by the meta 1 

electrode. The second term represents the repulsive force from t he 

ionized fixed impurity atoms due to the nonuniform depeletion region 

thickness. Let us consider t he first term,from Eq . (Al-3) 



.. i22-

aG, , ) lfo ,y ,o,y 

{Al-10) 

For the silicon oxide, silicon substrate 

Thus the successive terms in the above series decrease rapidly. 

So the Green function (aG/ay) decreases rapidly within a region of a 

· few d
0 

from y, how:::ver not as rapid as it would be if E: 2 = s1 . . 

Hence, we may expand q(y') as a Taylor series about y . Since (aG/ay) 

is odd, all even terms in the expansion vanish. If the variation 

of the surface charge q(y) is small over a distance on the order of 

a few oxide thicknesses d
0

, 

may be neglected. Hence. 

(a 3q(y')/ay' 1 and higher derivations 

-t= -t= . £:;i_ 

I ~ 0 ,y '0 ,y I ) q (y I ) dy I ::: + ~ I G ( 0 ,y '0 ,y I ) dy I = ~ 
~ ~ 0 

(A 1-11) 

This is the result obtained in the first term of the one-dimensional 

solution in Eq. (/ll-8}. So if the variation of the depletion layer 

width is neglected, the surface potential gradient obtained by 

differentiating the one-dimensional solutiDn in Eq. (Al-7a) includes 

the charge repulsion effect~ and gives a reasonably accurate estimate 

Of the self-induced fields when the lateral variation of the surface 

charge density over a distance on the order of several oxide thick­

ness is small. The error in this estimate depends upon the charge 
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profile and may be positive or negative. 

Similarly the contribution of the second tenn in Eq. (Al-9) can 

be shown to be almost equal to the value obtained from the second term 

of the one-dimensional solution in Eq. (Al-8) when the lateral varia­

tion of the charge over a distance on the order of the depletion region 

thicknes~ is small. 

The surface charge density profiles under the CCD gates show 

that, dur"ing the charge transfer, the surface charge density varies 

slowly under the electrodes but rapidly in the interelectrode regions. 

So the gradual channel approximation gives accurate estimates of the 

self-induced fields under the electrode. As discussed in Chapter 3 

and IV~ t~e charge transfer in all stages is limited by the transfer 

of charge across the transfer gates or out of the storage gate. Hence, 

the error in estimating the self-induced fields in the interelectrode 

regions has a negligible effect on the overall charge transfer charac­

teristics. 
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APPENDIX II 

Derivation of the Surface Potential Gradient under the Gate 

Electrodes and in the Interelectrodes Regions 

The one -dimensional solution of the Poisson equation using the 

depletion approximation gives the following relation between the sur­

face potential ¢
5 

and the surface charge density( 3) q : 

l] (A2-l) 

£s 
where B = - eN d . 

£ox D o 
VG is the voltage applied to the electrode, 

VFB is the flat band voltage, C
0 

is the oxide capacitance per unit 

area, e is the electronic charge, N0 is the donor concentration, 

d
0 

is the oxide thickness and Xd is the width of the depletion 

region. £
5 

and £
0
x are the dielectric constants of silicon and 

silicon oxide respectively. The equilibrium surface charge density 

q
0 

is equal to C
0

(VTh- v6) where VTh is the threshold voltage. If 

the surface charge profile q is not uniform then according to the 

gradual channel approximation, the surface potential gradient is given 

approximately by 
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where c0 i s the depletion layer capacity. For typical oxide thick­

ness (<V100J - 4.500A), substrate doping {rv1014-1016;cm3) and electrode 

voltages t he above relations can be simplified to 

a<Iis = l .£.9.. 
ax c ax (A2-3) 

where <Ps0 is the surface potential with no charge. C is an effec­

tive capacity given by 

(A2-4) 

where 2¢F is the surface potential at equilibrium and F is a fac­

tor less than unity to reduce the error in this approximation to less 

than a few percent. Numerical ca.lculations using values of the self­

induced fields given in Eqs. (A2-2) and (A2-3) show almost no 

difference in the charge transfer characteristics. Since the latter 

expression is simpler, we will use it below. 

If fringing fields under the electrodes are appreciable, then 

¢so and q
0 

are functions of time and the spatial coordinate x 

and are given by 

¢ (x,t) = ¢ (t} - J Efr(y) dy so so (A2-5) 
x 

q 
0 

( x , t ) ·- C 
0 

{ [ 2 ¢ F- <P s 
0 

( x , t ) ] + 12£ s e N 0 [ 11 <P s 
0 

( x , t )T -/ j 2 ¢Fl } 

(A2-6) 

where Efr(y) is the fringing field profile obtained from the solu­

tion of the two dimensional Po·isson equation and ¢ (t) is given by 
so 

Eq. (A2-1) with q = 0 . The surface potential under the electrode 
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is thus given by 

(A2-7) 

In the interelectrode regions the surface potential is also given by 

(2¢F - P(x,t))q 
¢5(x,t,q) = P(x,t) + c( t) x, (A2-8) 

where P(x,t) and C(x,t) are the surface potential with no charge 

and the equilibrium surface charge density respectively, both approxi-

mated by a smooth interpolating polynomial. From Eqs. (A2-7) and 

(A2-8} the surface potential gradient under the electrodes and in the 

interelectrode regions can be written in the following forro 

a¢s a 
~x,t,q) = L{x,t) + M(x,t)q + N(x,t) ~ (A2-9) 
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APPENDIX I II 

Numerical Solution 

We have shown that the continuity equation describing the 

dynamics of the charge transport in charge coupled devices under the 

~lectrodes and the interelectrode regions could be reduced to the 

nonlinear diffusion equation 

aL _ a .95L , . , ~ 
~t - 3x [D3x + vq (L(x~t) + M(x~t)q + N(x,t) ax )] {A3-l) 

where q 1 is the surface charge density. Before proceeding with the 

numerical formulation and solution of the problem, it ·is convenient 

to scale the variables according to the following definitions 

and -r - L - to (A3-2) 

The units L V q and t
0 

are chosen to be as natural to the 
0' 0' 0 

problem as possible 

L
0 

= 1 micron V = 1 Volt 
0 

8 2 Lo 
q

0 
= 10- Coulomb/cm and t

0 
= µ-V 

2 

0 

The nonlinear diffusion equation in (A3-1) scales to: 

£9. = .L [a Q9_ + q(l(y ·d + m(y T) q + k(y ·r) 2-9.)] aT 8Y ay ' ' ~ ay 

(A3-3) 

(A3-4) 
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where 

a = KT/Vo 

Lo 
1 (y, T) = l (X, t )y , 

0 
k(y,T) 

L q 
= M(x,t)vo o 

0 
q . 

= N(x,t)V0 

0 

(A3-5) 

Thus the dynamics of the charge transfer in each bit of 

the charge coupled device ·is described by equations similar to 

Eq. (A3-4) with the appropriate functions 1, m and k u~der the storage 

and transfer electrodes. In the intere1ectrode regions the nonlinear 

diffusion equation can be written in the following form 

2-9. - Lr £9. (. ( ) ( ) ( ) £.g_,] d - ayia ay + q a y,T + $ y,T q + y y,T ayl (A3-6) 

At the junction points between the different regions, the surface 

potential and surface char~e dens"ity must be continuous and the 

current must be conserved. From the details of the charge storage 

and charge transfer shown in Figs. (11),88),(19) and (25) for the problem 

of charge transfer inside one bit of the device continuity condHions 
p 

between the left end of the first transfer gate and the right end of 

the second storage gate could be used. But for the problem of charge 

transfer from the first storage gate to the second storage gate in 

the first half cycle, boundary conditions that describe the fact that 

the current at the left end of the first s..torage gate being discharged 

and the right end of the second storage being charged are zero, should 

be used. In this case the boundary conditions are 
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[ 2-9.. ( + 2-9..)J ::: 0 a ay + q al + s, q. Y1 ay 
(A3-7) 

at y = y J+l 

for all times. The charge transfer in the second half cycle can be 

handled in a similar way. 

We have used a new finite difference scheme, the Box 

scheme,(B) to solve the above set of nonlinear equations. One of the 

basic ideas of this scheme i~ to write the system of the nonlinear 

partial differential equations in the form of a first order system. 

Thus derivatives of the surface charge density, which is the function 

we are solving for, with respect to the spatial coordinate must be 

introduced as a new unknown function. With the resulting first order 

system and on an arbitrary rectangular net, simple centered difference 

quotients and averages at the midpoints of the net rectangles and the 

net segments are used to get accurate finite difference equations of 

order O(h2) + O(~t2 ). The resulting difference equations are highly 

implicit and nonlinear. Newton's method is employed to solve them 

using a block-tridiagonal factorization technique. This scheme has a 

number of very desirable.features that made it very suitable for 

solving the system for nonlinear diffusion equations describing the 

charge transport dynamics of CCD. These features are 

(i) it is simple, easy to program, efficient and stable, 

(ii} it has second order accuracy wHh nonuniform nets. This 

is especially important, as small net spacing can be used in the 

interelectrode regions, where the surface charge density is changing 
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rapidly, while large net spacing can be used in the other regions 

where the surface c~arge density gradient is small. 

(ii) Both the surface charge density and surface charge 

density gradient are approximated with the same accuracy. This is 

again especially important since the current continuity at the bound ­

aries between the different regions involves the surface charge 

density and its gradient. 

Numerical Formulation 

· A crucial step in the numerical procedure is to reformulate 

the problem in terms of a first order system of partial differential 

equations. For this purpose we introduce a new dependent variable 

v(y,T) so that Eqs. (A5-6) or (A5-7) can be written as: 

~ = .L Ia v + q(l + mq + kv)] 
dT 3y 

Let the net points be given by 
Yi = 0 Y. = Y. 1-th., j = 2 ,3 --- J + l 

J J- J 

(A3-8a) 

(A3-8b) 

(A3-9) 

The net spacings, hj and (LT)n, are completely arbitrary and may have 

large variations. This is especially important in the charge transfer 

problem. In the interelectrode regions, where the surface charge 

density changes rapidly, the spatial net spacing can be small while 

in the other regions, where the surface charge density gradient is 

small, the spatial net spacing may be large. 
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The quantities (q,v) will be approximated at points (yj' Tn) 

of the net by net functions denoted by (q~, v~). He also employ the 
J J 

following notation, for points and quantities midway between net 

points and for any net function (lj) 

- ~ - -2
1 

{y . + y . 1 ) 
J J-

n - ~ 
( b) 1 . \ :: -

2
1 (1 ~ + 1 ~ - l ) , 1 ~ , :: 

2
1 (1 ~ + 1 ~ l )( A3- l 0) 

J - J J J - ">2 - J J-

The difference equatiorts which are to approximate (A3-8) are now easily 

formulated by considering one mesh rectangle as in Fig. (39). We 

simply approximate (A3-8a) using centered difference quotients and 

averages about the mid-point (y. · 1 , Tn) of the segment p2p3. 
J - "2 

Similarly (A3-8b) is approximated by centering about the mid-point 

(y. , , T 1 ) of the rectangle p1p2p3p4. The only ambiguity or 
J - ">2 n - "2 

choice in the above indicated approximations concerns the nonlinear 

( )n - ~ tenns. We may take averages of products, as in q v ~ qv j _ ~ , or 
. n - ~ n • ~ · products of averages, as rn qv ~ q. 1

2 v. ,2. Si nee the former 
J-"2 J - ">2 

is simpler, in the computations reported here we have used it. Thus 

the difference approximations to (A3-8) are: 

(a) 

(b) 

n - n v. -- Dy qJ. 
J - ~ 

·- DY-[a v + lq + mq2 + kqv)Y11 
- ~ 

~ ~ 
(A3-ll) 
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Figure 39. 
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Using the notation defined in Eqs. (A3-10 and (A3-ll) can be re -

written: 

1( n n ) ( )-1( n n ) (a) -2 v . +v. 1 = h. q.-q. 1_ 
J J- J J J-

( )-1[1 n n ) lr n-1 n-1 (b) 6T ~2 q. + q. 1 - ~q. + q. l)J = n J J- J J-

{ ) -1 lr n n n n( n)2 n( n n)] h. {21-a v. + l. q. + m. q. + k. q. v. 
J J JJ JJ JJJ 

lr n ..1. 1 n n + n ( 2 ) n kn ( ) n ] 
- 21-a vj-1 ' j-1 qj-1 mj-1 q .j-1 + j-1 qv j-1 

Eqs. (A3-11) and (A3-12) are imposed for j = 2,3, --- J + 1 (except 

at the junction points between the different regions). Since we 

( n-1 n-1) b f . (n n) assume qj , vj to e known or 1 s J s J + l and qj' vj to be 

unknown for 1 ~ j $ J + 1, we rewrite Eq. (A3-12) 

~(n n)_(n n) (a) 2 v.+v . 1 - q -q. 1 J J- n J-

[ n n n n( n)2 n( n n)] (b) a v. + 1 . q. + m q. + k. q. v. I 
J JJ 11J JJJ 

[ n n n n ( n )2 n ( n n h . - a v . 1 + 1 . 1 q . 1 + m . 1 q . 1 + k . 1 q . 1 vJ. -1 ) ] I J J- J- J- J- D- a- J-

1 [n n] n-1 h. - {~ ) q~ + q. l = T. , 
J Tn J J- J - "2 (A3-13) 
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where 

h. +[a vry-11+1~-,1 q~-11 + mjn-ll{qry-1)2 + kry-ll{q~-11 vJ~--11)]/ 
J J- J- J- - J-1 J- J-

l [ n-1 n 1 h. - (~T ) qJ. + q.- J 
J n J-1 

(A3-14) 

The boundary condiUons at the extreme ends y1 and YJ+l can be 

similarly written 

n n n · · 
+ YJ+l (qJ+l VJ+'I) = 0 at y = YJ+l (A3-15) 

At the junctions between the different regions, the spatial net is 

chosen such that two net points coincide there, ~.g. yi = y1_1 where 

Y; denotes the net points at the different junctions. Since the 

interpolating function Ps(x,t) and C(x,t) in Eq. (A2-14) were chosen 

to approximate the surface potential with no charge and the equilibrium 

surface charge density smoothly, the continuity of the surface potential 

and surface charge density at the junction point requires: 

n n q. = q. 1 
1 1-

) h. = 0 
l 

(A3-l6) 

The conservation of charge across the junction point requires 
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[a v~ + l~ q~ + m~ (q~} 2 + kry (q~ v~)] = 
l 11 l l l 11 

[av~ l +a~ l q~ l + S~ 1 (q~ 1)2 + y~ 1 (q~ l v~ 1)] (A3-17) 
1- 1- 1- 1- 1- 1- 1- 1-

where the appropriate functions (1 ,m,k) and (a,S,y) have to be used 

according to the junction point under consideration. Eqs. (A3-16) 

and (A3-17) describe the continuity and charge conservation to the 

same order of accuracy of the finite difference equations in (A3-14). 

Solutions of the Finite Difference Equations 

If we assume (q1~ 1 , v~-l) to be known for 1 s j s J + 1 

then Eqs. (A3-13), (A3-15), (A3-16) and (A3-17) are a system of 

(2J + 2) nonlinear equations for the determinations of (2J + 2) 

unknowns (q1, v1), 1 s j s J + l. We shall solve this nonlinear 

system by means of Newton's method. Fo~ simplicity of notation we 

shall write the unknowns at t = Tn ~s (q1, v1) ~ (qj~ vj). Then the 

system of Eqs. (A3-13), (A3-16) and (A3-l7) can be written as: 

h. 
(a) q~-q. 1 --1.2 (v.+v.

1
)=0 

J J- J J-

( b) [a v . + 1 . q . + m . q . 2 + k . q . v . ] I h . - [a vJ. _ 1 + 1 . q . 1 + 
J J J. J J J J J J · J J-

m. 1 q . 12 + k . 1 q . 1 v . 1 ]/ J- J- J- J-· J-

1 h . - 'f""A:':l" 
J \f\T/n 

n-1 
[qJ. + q:i-1] = T. i 

v J - "2 
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(c) q. = q. 1 , h. = O 
l 1- 1 

(d) av.+ 1 .q. + m.q. 2 + k.q.v. =av. 1 +a. 1q. 1 + $. 1(q. 1)2 
l 1 1 1 1 l 1 l 1- 1- 1- 1- 1-

+ Y· 1{q. 1 v. 1) ,_ 1- 1- (A3-18) 

where (a) and (b) apply for j = 2,3, ~-- J + l except at the junction 

points. (c) and (d) apply at the junction points between the different 
'1 

regions only. Similarly the boundary conditions -· in (A3-15) can be 

written as 

2 
(a) av, + (al)l ql + cs,), ql + (yl)l ql v, = 0 

(b) a vJ+l + (ci.4)J+1 qJ+l + (B4)J+l q~+l + (y4)J+L qJ+i vJ+l = O 

(A3-19) 

We note that T~-~ ~ involves only known quantities if we 

assume the solution is known at T = Tn-l. To solve (A3-18) and 

(A3-19) by Newton's method we introduce the iterates qj(i), vj(i) 

i = 0,1,2, ..• with initial values; say: 

(o) _ qn-1 
qj - j v.(o) = v~-l for 1 ~ j ~ J + 1 

J J 
(A3-20) 

For higher order iterates we set 

(A3-21) 

Then we insert these expressions in place of (qj9 vj) in equation 
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Eqs. (A3-18) and, drop the terms that are quadratic in oqji), ovj 1). 

This procedure yields. the following linear system: 

{b) oq~i) e~i) + ov~i} ~~i) - oq~i) e~i) - ov~;) ~;) = t~i) 
J J J J J-1 J J-1 J J - ~ 

(c) oq. - oq. 1 = o; h. = o 
l l - 1 

( d) aq ~;) e ~ i) + ov ~ i) <P ~ n - c;q. ei;) - ov ~ i) ~ i) = di) 
1 l 1 1 1-1 1 1-1 l 1 - ~ 

(A3-22) 

where (a) and (b) hold for j = 2,3, --- J + l except at the junction 

points while (c) and (d} hold only at the junction points between the 

different regions. Here we have introduced: 

(a) r ~ i) 
1 

= q ~ i) - q \ i) + h. v ~ i ) 
_J ~ ~ J-1 J J J - ~ -

(b) e\i) = [2 q~i) m. + v(nk. + l .]/h. - (Mn)-l 
J J J J J J J 

(c) ~~i) =[a+ q~i) k.]/h. 
J J J J 

{d) ~i) = [2 qj~1 mj-1 + v1~1 kj-1 + lj-1]/hj + (~Tn)-1 

(e) ~i) = [a+ q~i) I ]/h 
'f'J J-1 'j-1 j 
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(i) (i) (i) 2 q(.i) v<.n]/h. 
+[a vj-1+ 1j-1 qj-1 + mj(qj-1) + kj-1 J-1 J-1 J 

(g) e~i) = [l. + 2 m.q~i) + k. vP)J 
1 · 1 11 l 1 

-( i) . ( i ) ( i ) e. = [a. 1 + 2 f3. 1 q. 1 + Y· 1 v. l] 1 1- 1- 1- 1- 1-

~~i) = [a+ Y· q~i)] 
1 1-l 1-l 

(i) (i) ( (i))2 (i) (i)J 
+ [a v · 1 + a· 1 q · 1 + B · · 1 q · 1 + Y · 1 q · 1 v · 1 1~ 1- 1- 1- 1- 1- 1- 1-

(A3-23) 

Following the same procedure for the boundary conditions in (A3-19), 

we get: 

(a) oq(i) e(i) + ou(i) ¢(;) = t(i) 
1 0 l 0 0 

(b) oq(i) e(i) + ou(i) ~(i) = t{i) 
J + 1 J + 2 J + 1 ~J + 2 J + 2 (A3-24) 
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(b) ¢(i) =a+ (v ) q(i) 
0 'l · 1 1 

{A3··25) 

The l"inear system in (A3 ... 22) and (A3-24) can be solved in an extremely 

efficient manner since it has a block tri-diagonal structure. To 

clarify the solution procedure we write our system in matrix-vector 

form. There are many ways in which this can be done. They are all 

equivalent and merely amount to different permutations of the equations 

or the unknowns or both. We will describe here the formulation and 

procedure we employed in our calculations. 

We define the two dimensional vect9rs o~i) and T~i) and 
-J ~J 

the 2 X 2 matrices LJi) and RJi) by: 

oq ~;) 
J 
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e ~ i) <I> ( i ) -(i) 
j <I> • 

J J 

(b) R ~ i} = di) = (A3-26) J h. J ·~ 
1 -t 2 

In terms of these quantities the system (A3-22) can be simply written 

as: 

j = 2,3, --- J + l (A3-27) 

We also write the boundary conditions in (A3-24) in a matrix-vector 

form 

NJ·+
1
· 6(i) = t(i) 
~J+l J+2 (A3-28) 

where we have introduced the row matrices 

M = (e(i) <l>(i)) 
0 0 0 

(A3-29) 

Now the complete linear system in Eqs. (A3-27) and (A3-28) which is 

just (A3-22) and (A3-24) in compact form, can be written in compound 

block-matrix-vector notation as 
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where 

0 

L ( i) R(i) 
w(;) 

- 2 2 
(b} = -L ( i) R( i) (A3-30) 

' J+l J+l 

\ 

~( i) 
-1 

0 (;) 
( i) 

!2 
o(i) -2 s(i) = = ( i) 

0 ( i) !J+l 
J+l 

It is now clear that the non-zero elements in the coefficient matrix 

above are clustered about the diagonal. We have used a block­

tri diagonal factori za ti on scheme _to solve the system (A 3-30). 

The coefficient matrix w(i) is of order 2J~2 and the vectors 

~(i) and ~(i) have also this dimension . . We decompose w(i) into 

2 X 2 blocks starting with the upper left hand corner. We also write 

sCi) in terms of (J+l) vectors of dimensions 2; this is already done 

for 6(i). Thus we rewrite (A5 -30b) as: 
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A (i) 
1 

c ( i) 
1 

0 

B(i} A (i) c ( i) 

wCi) = 
2 2 2 

(a) 
B~i) A~ i) di) 
J J J 

0 s< i) 
J+1 

A (i) 
J+l 

where: 

e<i) <l>(i) 
h. 

l - _J_ 

A(i) = 
0 0 

A~ i) = 
2 

(b) 
0 ·-( i) . --( i) J -e (;) -~i) " 82 -¢2 J+l J+l 

2 $ j $ J 

l 
hJ+l 

;..-2-

A (i) = 
J+l 

e ( i) 
J+2 

<l> ( i) 
J+2 

h. 

B ~ i) = 
- l - _J_ 

(c) 2 for 2 $ j ::; J 
J 0 . 0 

- l 
hJ+l 

( . ) --2 
B \, = 
J+l 0 0 



0 

sC i) 
-1 

(e) s(i) = s(i) 
-2 

s~i) = 
-J 

s ( i) 
J+l 
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0 

,f, ( i) 
'f'J+l 

(A3-3l) 

The system (A3-30) using the structure (A3-31) can be solved by a 

standard block tri-diagonal factorization procedure. (33 ) For com­

pleteness we include here the relevant recursions. We determine 

2 X 2 matrices oji) and EJi) from the relation 

(b) o(i) = A~i) - B~i) E~i) 
J J J J-1 

2 ~ j ~ J+l (A3-32) 

. As these ~atrices are computed the matrices Aji) and cji) can be 

e 1 imi nated from the· computer storage as they wi 11 no 1 anger be re­

quired. Next we compute the intermediate vectors zii) from the 
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forward recursion: 

Finally the solution components 0Ji) are obtained from the backward 

recursion: 

(A3-34) 

It is to be noticed that (A3-32a) requires A(i) to be nonsingular. 
. 1 

To summarize, one iteration step of Newton's method is 

carried out as follows: 

(i) The r3-~ ~are computed from Eq. (A3-14) only once for 

all of the interations 

(ii) Using the latest iterate, the quantities {r~i) 1 , 
J - "'2 

tji~ ~}and {t~i), tJ~~} are calculated from Eqs. (A3-23) and (A3-25). 

This determines the inhomogeneous terms ~Ji) in Eq. (A3-31). 

(iii) The matrix elements for · {AJi), sji) , cji)} are next 

determined from Eqs. (A3-31) and (A3-23). 

(iv) The factorization procedure can now be carried as out-

1 i ned in Eqs. (A3-32), (A3-33) and (A3-34) to determine {q~i+l), 
J . 

vji+l)} as in (A3-21). 

These calculations are repeated till some convergence 

criterion ii satisfied . In most of cour calculations we have used 
I 
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the surface charge density as the confergence criterion. Iterations 

were stopped when 

l ~ j ~ J+ l (A3-35) 

It should be noted that Newton's method converges quadratically if 

the initial guess is not too far from the solution. Actually three 

or four iterates were sufficient in most of our calculations to 

achieve the required accuracy. 

For the charge transfer problem, within one bit of the CCD 

structure shown in Fig. (4} four hundred net points were enough to 

solve the nonlinear set of equations under all the electrodes. The 

net spacing varied widely from 10-4 microns to ~micron. In this way 

the surface charge density change from one net point to the next is 

about the same. With this nonuniform net a high accuracy is obtained 

with great economy by using the box scheme as .mentioned before. The 

time steps were automatically adjusted by the program such that con­

vergence is achieved after three or four iteration steps at most. 

Finally it is possible to estimate the en-or of the numerical 

solution. Actually there are several kinds of error to consider. 

(i) The truncation error arises from the replacement of. 

the continuous differential equations by finite difference equations. 

The exact numerical solution of the difference equations in (A3-ll) has 

second order accuracy, i.e. O(h2) + 0(6T2) for both the surface charge 

density and its gradient even v1ith the nonuniform net spacing used. 

The easiest method to check the accuracy of the solutions is to 

reduce the net spacing and compare the resulting solutions. Agreement 
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down to the sixth digit was observed with the chosen net spacing. 

Although Richardson extrapolation could have been used to reduce the 

number of mesh points for the same accuracyp we didn't use it in most 

of our calculation to keep the problem simple. 

(ii) The round off error arises from representing the 

numbers in the computer by finite number of digits. To reduce the 

round off error, most of the arithmetical operations and computations 

were done in double precision. Using single precision variables 

affected the iteration convergence at the latter stages of the charge 

transfer due probably to the accumulation of the round off error. 

(iit) Iteration error results from the fact that our iteration 

procedure is terminated after a finite number of iteration steps. 

Note that the order of accuracy mentioned in (i) assumes that exact 

solutions of the difference equations are achieved. Accumulation of 

the iteration error may considerably degrade the charge conservation 

. implied behind the set of nonlinear diffusion equations or their 

finite difference approximations. However, one of the virtues of 

Newton's method is that with quadratic convergence, the iteration error 

can easily be reduced to the same order of magnitude as the truncation 

error. If the initial error in the iteration scheme (i.e., in the 

initial guess) is such that lqj - qj0 )1 = 0(6T) and lvj - vj 0 )1= 0(6T), 

which is obvious from Eq. (A3-2~, then by quadratic convergence of 

Newton's method it follows that lq. - q~i)i = 0[(6T) 2(i)]. Thus if 
J J 

the tolerated errors are to be (6T2m), it requires only i = l + ~~ ~ 

iterations to be consistent. In practice we se1dom required more 

than three iterations. 



-147-

APPENDIX IV 

Steady State Current and Charge under the Transfer Gate 

Assuming that the charge redistribution time under the transfer 

gate is much sma11er than the transfer times of interest, then the 

current across it and the charge under it can be approximately derived 

by a steady state approach. 

The relation between the surface potential and surface charge 

density under the transfer gate according .to the gradual channel 

approximation is given by 

(A4-l) 

where <l>T and <l>To are the surface potential under the transfer gate 

with charge and with no charge respectively, q is the mobile surface 

charge density, CTr is the effective oxide and depletion layer 

capacity under the transfer gate. The current I under the transfer 

gate is given by . 

aq a<I>T 
I = W(-D - - µq -) ax ax (A4-2) 

where D and µ are the surface diffusion constant and mobility 

respectively, and W is the channel width. If fringing field~ under 

the transfer gateare negligible Eq. (A4-2) may be rewritten as: 

' 
(A4-3) 

where KT is the thermal voltage. If we let the surface potentia1 

at the beginning and end of the transfer be <l>T and <Pf , then 
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assuming the current I across the gate constant and integrating Eq. 

(A4-3) we get 

(A4-4) 

and 

3 3/2 KT (¢+-<I>r0 ) 

{(¢T-¢To)+ 2KT+(<I>-f-¢To)[l+(<I>T-¢To)+ (<I>T-<I>To)J} 

QTr=~ tTrwcTr(<I>T-<I>To) ------'-------------­
{(<I>T-<I>To) + (<PT -¢To)+ 2KT} 

(A4-5) 

where ,Q,Tr is the length o~ the transfer gate and QTr is the total 
. 18 

charge under the transfer gate, In the case the surface charge 

density at the end of the transfer gate is very small (as in 

the two-phase clocking scheme) then ¢~ ~ ¢To and the above 

equations reduce to 

(A4-,6) 

(A4-7) 

If (4> ·T - ¢ To) >> KT , the above equations redt.ce further to: 
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(A4-9) 

The current formula in Eq. (A4-8) is the quadratic relation of the 

MOS transistor at pinch off, and the factor (2/3) in Eq, (A4-9) is 

due to the square root dependence of the surface charge density q 

on the distance from the end of the transfer gate . 

If (¢ - ¢ ) < (2KT), 
T To 

then the charge transport under 

the transfer gate is mainly by diffusion, and the above equations 

reduce to 

I = (A4-10) 

(A4-11) 

The factor (1/2) in Eq. (A'4-10) is due to the linear dependence of 

the surf ace charge density q on the distance from the end of the 

transfer gate. 

If the fringing fields under the transfer gates are 

appreciable then the above current relations still hold approximately 

after replacing (KT) and (D/9.,Tr) by (KT + tTrE) and (D/9.,Tr + µE) 

respectively, where E is .the average fringing field weighted by 

the surface charge density profile under the transfer gate. 
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APPENDIX V 

Lumped Circuit Model of Charge Coupled Devices 

The detailed numerical solution of the transport dynamics 

with various clocking waveforms show that during the different stages 

of the charge transfer process the surface charge profiles under 

the gates take almost a steady shape. The response time of the 

charge distribution under the gates is of the order of the dielectric 

relaxation time of the surface minorit.y carrier. {34 ) During all the 

stages of the charge transfer the surface charge density is suffi­

ciently large that the response time is orders of magnitude smaller 

than the transfer times of interest. Hence it is possible to describe 

approximately the details of the charge transfer dynamics with various 

clocking waveforms by means of a lumped circuit model which consists 

of lumped capacitors charged and discharged through lumped transfer 

channels (MOS transistors). 

As discussed in Section 3.2 and 3.3 in the first stages of 

the charge transfer process, the rate of charge transfer is limited 

by the transport of charge across the transfer gate and depends 

strongly on the clocking waveforms. Due to the relatively large 

carrier concentration under the storage gates, a very small gradient 

in the quasi-fermi level Ef under the storage gates is sufficient to 

balance the discharge current. Thus the surface potential and the 

mobil~ carrier concentration under the storage gates are almost 

constant. So the total charge under the source and receiving storage 
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respectively, where the surface potential with and without charge 

under the source storage gate are <Ds and <D50 and under the receiving 

storage gate are <Ii$ and ¢$
0 

respectively. The transfer gate acts 

as a MOS transistor with the source and receiving storage gates as 

its source and drain. The quasi-fermi level may be assumed constant 

across the transitional region between the source storage gate 

and the transfer gate during the first stages of the charge transfer 

process as this region extends over several times the mean carrier 

free path and the mobile carrier concentration there is relatively 

large. Therefore the surface potential at the end of the source 

storage gate <Ds is related to the surface potential at the beginning 

of the transfer gate ¢T by 

(A5-1) 

and 

(A5-2) 

<DT and ¢To are the surface potential under the beginning of the 

transfer gate with and without charge. For (<PT - <DT
0

) >> KT and 

(<D5 ~ <I>s
0

) >> KT the above equations reduce to: 

<DT ;: <Ds (A5-3) 

and 

(A5-4) 
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If the mobile carrier concentration in the transitional region 

between the transfer gate and the receiving storage gate is also 

relatively large (as in the four phase clocking scheme) then the 

surface potential at the end of the transfer gate ¢f i: related to 

the surface potential at the beginning of the receiving storage gate 

¢$ by similar relations. The total charge under the transfer gate 

QTr and the current I across it are given by Eq. (A4-5) and (A4-4). 

So, according to this lumped circuit model the total charges under 

the storage and transfer gates are related to the surface potentials 

by lumped capacitors, of almost constant values, which are charged 

and discharged through lumped transfer channels with discharge 

current that depend mainly on the difference between the surface 

potential at the ends of the transfer channels. The charge transfer 

dynamics could be simply described by a first order nonlinear differ­

ential equation given by: 

¢I ;; ¢I 
T S 

(A5-5a) 

(A5-5b) 

(A5-5c) 

(A5-5d) 

(A5-5e) 
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where KT is the thennal voltage and Q
0 

is the initial total charge. 

<Pro, <P
50 

and <I>s
0 

depend on the c 1 ock voltage waveforms. In the 

two-phase clocking scheme, there is usually a large surface potential 

gradient between the transfer gate and the receiving storage gate. 

The transfer gate thus acts as an MOS transistor at pinch off and 

<PT = <Pro· In this case the current I and the total charge under the 

transfer gate QTr are given by Eqs. (A4-6) and (A4-7). The solutions 

of the charge transfer characteristics using the lumped circuit model 

for a two phase drop clock and push clock discussed in Section 3.2 

give good agreement with the numberical solution of the transport 

equations given in Eq. (A-5). 

During the last stages of the charge transfer, when the 

device is operated in the complete charge transfer mode, the charge 

transfer is limited by the transport of charge out of the storage 

gate with an almost perfect sink at its end. In this case also the 

storage gate can be considered as a capacitor discharged through a 

transfer channel which is the same storage gate. Assuming a constant 

steady current across the storage gate, the total charge under it 

QSt and the discharge current I are given by Eqs. (A4-6) and (A4-7) 

respectively. Solving the discharge equation I = -(d/dt)QSt gives 

approximately: 

(AS-6) 
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wbere T = !~t/20 and Q
0 

is the initial total charge under the gate 

when this stage of the charge transfer process starts at time t 3. 

The assumption of a cnnstant steady current across the 

storage gate is expected to be reasonably good when the nonlinear 

terms due to the self-induced fields are dominant. But since the 

effects of the boundary conditions, the fringing fields, the shape 

of the mobile carrier concentration profile under the gates are not 

properly considered in the above derivation, the time constant T of 

the exponential decay of the charge should be modified. Analytic 

solutions of the charge transport dynamics including thermal diffusion 

and fringing-field drift only with the appropriate boundary conditions 

h th th f . 1 d t . t . . . t l (1°) by s ow at e 1na ecay ime constan T is given approx1ma e y 

(A5-7) 

where ~in is the minimum fringing field under the storage gate, Td 
2 is the thermal diffusion time constant and is equal to (41st/nD) 

The factor 4 in front of the second term is due to the large fields 

at the edges of the gate, and for zero fringing field this factor takes 

a value of unity. Accordingly Eq. (A5-6) could be modified to: 

(As-sr 
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The factor Tf/Td in the denominator is included in order not to 

modify the original equation for (t-t3) < Tf' as the effect of the 

fringing-field drift is expected to be smaller than the self-induced 

drift in this period. 

Using Eq. (A4-6) and (A4-7) the charge under the transfer 

gate is described approximately by 

(A5-9) 

where Eis the average fringing field weighted by the surface charge 

density profile under the transfer gate. Using Ricatti 's sub­

stitution, this equation could be solved by the WKB method. (l 5) How-

ever, an approximate solution can be obtained fn the overlapping 

gates structures as the transfer gates are usually shorter and have 

larger fringing fields than the storage gates. So the carriers are 

swept rapidly from under the transfer gate and for transfer time of 

practical interest, the solution simplifies to 

dQ t 
Q ;: T ( - dSt) Tr Tr (A5-l0) 

where TTr is the single carrier transit time under the transfer 

gate and is given by TTr = (iir/2µ(KT + fiTr)). 



APPENDIX VI 

Transient Occupation of the Interface States 

If the mobile carrier concentration p(t) is varying with time, 

then the transient average occupation of the interface states at an 

energy E above the valence band is obtained by integrating the rate 

Eq. (1). Assuming p(t) »KT • N then we get: 
SS 

• t 

f p(t') 

t• 

exp[ ~ (K1p(v) + K2 exp(-E/KT)) 
0 . 

0 

N 
SS +---------

K2 exp(-E/KT) 
l+-·----­

Klp(o) 

for t > o (A6-l) 

If p(t) = p(t
3

) exp(-(t-t
3
)/t) for t > t

3
, then 

n
68

(t) " K1N
88 

exp [-K1 p(t3 ) T(l - exp(-(t-t
3
)/T)) - K

2
(t-t

3
) exp(-E/KT)J 

t 

J p(t') exp [ K1p(t3 ) •(l - · exp(-(t 1-t
3
)/t) + K

2
(t'-t

3
) exp(-E/KT)J dt' 

t3 

+ --:-s_se_x_p--(--E-/K-"I-')- exp [-Klp(t3) 1:(1 - cxp(-(t-t3)/t)) 
1 + . 2 . 

K p (t ) 
1 3 

- K2(t-t3) exp(-E/KT)l for t > t3 

(A6-2) 
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'his can be easily reduced to 

N + ____ s_s ___ _ 
K

2
exp(-E/KT) 

1 + Klp(t3) 

(A6-3) 

where E (x) is the exponential integral of order c defined by 
c 

and 

n (t) "' 
SS 

E 

c 

ro 

::: f ex:e c~xv) dv 
c 1 v .· 

= T K2 e 
-E/KT 

then the asymptotic expansion of E (x) 
c 

E (x) "" 
c 

-x 
e 
x + c 

Eq, (A6-3) reduces to 

N N 
SS SS ' . - + --------

. K
2

exp (-E/KT) . K
2

cxp (-E/KT) 
l+----- l+ ) . K1p(t) K p(t 

1 3 

exp(-E/KT)l ... K
2 

' (t-t ) . 3 

(A6.,..4) 

(A6c-5) 

can be used: 

(A6-6) 

(A6-7) 
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Two special cases are of interest. First, if K
1
p(t

3
)T > 1, then the 

second term is negligible for t > t 3 + t, and Eq. (A6~7) reduces to 

N 
SS 

n (t) = --------
ss K exp(-E/KT) 

1 +-2--~-­
Klp ( t) 

(A6-8) 

Thus the interface states have a small effective time constant Teff and 

can equilibrate very rapidly with the mobile carrier. Assuming a con-

stant interface state density N states/cm
2 

eV and a constant capture 
SS 

cross-section the total density of trapped carriers P 
tr 

is 

given by 

E 
g 

J n (t) dE 
SS 

0 

= N KT ~n 
SS K2 

(l + K p ( t) ) 
1 

If l._ < '1 < ..1-. exp (E · /KT) , then 
K

2 
K

1
p(t) K

2 
g 

Second, if K1p(t)T ~ 1 Eq. (A6-7) reduces to 

n 
SS 

t ~ t 4 

. (A6-9) 

(A6-10) 
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where t 4 is the time the emission of carriers. becomes dominant and the 

refilling of the traps becomes negligible. It is given by 

(AG-11) 

Similarly integrating Eq. (t\6;10) 
1 

we get 

1 1 
If ~ < t-t < -,- exp (E /KT) 

K
2 

4 1\.
2 

g 
and then we may use the 

asymptotic expansion of the exponential integral for small and large argu-

ments to get 

(A6-12) 
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1. The maximum current that can be transferred across an inversion 

layer produced by a metal gate of length t and width W is given 

approximately by (as shown in Appendix IV) 

I ~µCH ~ 2 
2t 0 

where C is the oxide capacityµ is the surface mobility and ~o 

is the surface potential without charge. If an inversion layer 

is produced by a constant normal field in a gap of length i and 

width W on a substrate of doping N0 then the relation between the 

surface potential ~S and surface charge q is given by 

where ~o is the surface potential without charges ss is the 

semiconductor dielectric constant and e is the electronic charge. 

then using the gradual channel approximation, it can be 

shown that the maximum current that can be transferred by the 

inversion layer under the gap is approximately given by: 

µC W 
I I = g__ _D_ cp2 

3 t 0 

where c0 is the depletion 1 ayer capacity under the gap with no 

surface charge. Thus the presence of a metal gate over the in­

version layer shields out the charge repulsion and increases the 

maximum rate of transfer of charge by the ratio of the oxide to 

the depletion layer capacity which is typically about an order 

of magnitude. 
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2. The calculations and results presented here can be applied to 

n-channel devices after the proper scaling of the transfer times · 

by the surface mobility ratio of the electrons and holes and the 

use of the appropriate values of the threshold and flatband voltages. 

3. Thermal generation and leakage currents impose a limit on the 

maximum delay timP. and the minimum clock frequency of the 

device. 

4. Carrier mobilities at the Si-Si02 interface are approximately 

constant up t~ a nonnal surface field Qf 1.5 x 105 Volt/cm 
. . . 12 2 (11) corresponding to a surface carrier concentration of 10 /cm . 

Therefore, for mobile carrier concentration equal or less than 
12 2 10 /cm , the reduction in the surface mobility due to the nonnal 

surface field is small . . The carrier velocity in silicon saturates 

at a critical field around 5 volts/micron~ 12 ) During the charge transfer, 

the surface potential gradient usually does not exceed one 

volt/micron except in the interelectrode regicin between the 

transfer gate and the receiving storage gate, where it may reach 

about 10 volts/micron. Since the maximum sheet current density 

is about fevJ µamp/micron, and the mobile carrier concentration 

in this region is smaller by more than an order of magnitude than 

that under the gate electrodes, the changes in the mobile 

carr·ier concentration in this region due to velocity saturation 

has negligible effects on the charge transfer characteristics. 

5. The box scheme has very desirable features that made it suitable 

for solving the set of nonlinear diffusion equations describing 

the charge transport dynamics in CCD. For example, second order 

accuracy can be achieved with non uni form nets. Thus small net 

... 
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spacing can be used in the interelectrode regions where the sur­

face charge density is changing rapidly, while a large net spacing 

can be used in the other regions where the surface charge density 

gradient is small. Also both the surface charge density and its 

gradient are approximated with the same accuracy. Thus the charge 

flow across the boundaries between the different regions is con-

served to the same order of accuracy of the surface charge under 

the electrodes. 

6. A full bucket is the equilibrium surfaGe charge density under the 

storage gate electrode with its voltage equal to Vm. 

7. For example, in applications requiring maximum charge to be trans­

ferred along the device (such as digital serial memories and 

analog delay lines) and if the oxide thickness under the storage 
0 

gate is 1200A, then to operate the device in the complete charge 

transfer mode with two-phase drop clock the optimum oxide thickness 

under the transfer gate is about 3200A for V = -15 volts and a . m 
substrate doping of 8 x lo14;cm3. In other applications such as 

low level injection CCD imagers it may be more important to maxi­

mize the fringing fields under the storage gate. In this case 

thicker silicon oxides under the storage and transfer gates with a 

low substrate doping may optimize the performance of the device. 

8. For rise and fall time comparable or larger than the transfer times 

of interest the same equations given with the push clocks below in 

Eqs. (17) and (18) could be used. 

9. The value of Q~ at which the perfect sink at the end of the storage 

gate becomes a good approximation unfortunately cannot be defined 
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precisely. It can be estimated approximately by assuming that the 

almost perfect sink is formed, when the surface charge density in 

the transitional region is about a fifth of its value under the 

storage gate. Assuming the average surface potential gradient in 

the transitional region is ~¢/f'>.x where 6¢ is the difference in 

surface potential with no charge under the source storage gate 

and transfer gate and 6x is the spatial extent of the transitional 

region (which is equal to about a depletion layer thickness), 

then Q6 is given by solving 

Although the approximate values of Q6 and t 2 may lead to about 15% 

error in defining the onset of the last two stages, this is a much 

better approximation than using the perfect sink assumption at the 

end of the storage gate from the beginning of the charge transfer 

process. 

10. The good fitting in Fig. 12 to the numerical solution is partly 

because the precise values of Q6 and t 2 could be obtained from the 

time evolution of the numerically calculated surface potential pro­

files under the gates. 

11 . Note that in the overlapping 9ate two phase structure, the asymmetry 

is obtained by the step in the oxide under the two electrodes 

connected to the same phase, therefore a larger signal charge 

could be stored under the storage gate with push clock than with 
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drop clocks. Also the maxi~um signal charge increases as the 

oxide thickness increases. The limits on the oxide thickness 

under the transfer gates are imposed by the following two factors: 

First, as the oxide thickness under the transfer gates increases 

the maximum current that can be transferred across it, which is 

the saturation current of a similar MOS transistor, decreases. 

Thus the rate of charge transfer during the first stages of the 

transfer process decreases. Second, if the oxide is too thick the 

regions under the transfer gates will go into majority carrier 

accumulation, when its phase voltage is at the resting potential 

v2. Thus the majority carriers fill the traps and recombination 

centers at the interface and may recombine with the signal minority 

carriers during the charge transfer. The charge loss in this case 

is not as severe as th~ case when the regions under the storage 

gates are driven into accumulation,(lS) because the signal charge 

does not spend as much time under the transfer gates as it spends 

under the storage gate. This phenomena does not impose severe 

limitations, but it is preferable to keep the regions under the 

transfer gates always depleted to avoid the second order effects 

of charge loss especially for long registers. 

12. For arbitrarily smooth waveforms solution of Eq. 18 can be easily 

obtained analytically using Ricatti 's substitution and the WKBJ 

method.(l 5) The final ~olutions are similar to the results re­

poreted by K.K. Thornber(l?) for the MOS Bucket Brigade. For 

sinusoidal drive functions the solutions can be written in terms 

of Mathieu functions. We mean by sufficiently smooth drive 
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function that the time dependence of 

is much smaller than that of (¢mT - cI>mTo) 2. 

13. Actually the perfect sink may be formed before or after the clock 

voltage stops changing. The value of t 2 unfortunately cannot be 

evaluated precisely and this may lead to about 10% error in locat­

ing the exponential tail of the last stage of the charge transfer. 

If t 2 >Tr, then after the clock voltage stops the residual charge 

under the storage gate decreases hyperbolically with a time con~ 

stant T2 as given by Eqs. (7),(8) an.d (9). If t 2 <Tr then the 

perfect sink is formed before the .clock voltage stops. In Fig. 

(21) the good fitting to the numerical solution is because the 

precise values of t 2 could be obtained from the numerically cal­

culated surface charge profiles under the gates. 

14. The residual charge under the source storage gate during the last 

two stages (after the clock voltage stop) given by Eqs. (23) and 

(27) can be approximately described by one equation if we assume 

that 

Then Eq. (27) can be ~olved to give: 

Q(t) ~ Q' + 
Q I - Q I ( t - t2) 
o(t - t2r- KTVJiStCSt/,n(l + T } 

1+---
T 



where 
T = 

-l66-

2ist£Tr est 1 
µ "cT;" """'Q 0-.-, ---q-· 

wist est 

15. For example at the end of the device the amplitude of the output 

of digital signals will decrease with increasing clock frequency 

and the output of analog signals will have frequency and phase 

dis to rt ion. ( 18) 

16. Note that the two-phase drop clock used in Fig. (31) has zero rise 

and fall times. Any finite rise and fall times of the pulses of 

the drop clock will delay the charge transfer, hence the shown 

results actually over-estimate the performance of the device with 

drop clocks at.high frequency. But with push clocks, the finite 

rise times are advantageously used to push the charge from one 

site to another. 

17. The same discussion and analysis given below holds for n~channel 

devices. In this case the mobile electrons interact mostly with 

interface states near the conduction band edge. 

18. Note that in this case, since the signa) charge reamins under the 

storage electrode for one whole transfer time, the probability of 

filling the interface states by the signal charge Fs is equal to 

unity. As discussed in Section 4.5, we may also obtain the average 

mobile charge density under the edges Pav,edge and Pavo and the · 

time interval 6t for which the background charge is in contact eo · 
with the edges from the charge transfer dyna.mi cs and the surface 

charge density profile of the signal charge under the electrodes. 

19. This is.actually due to the foll~wing reasons. First, for a 
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sufficiently large background charge, the mobile carriers during 

the first stages of the charge transfer process effectively 

equilibrate with the interface states under the transfer gates 

and the perpendicular edges. Second the area under the transfer 

gates and the perpendicular edges in the overlapping gate struc­

ture is usually smaller than the area under the storage gates. 

Third, because of the larger fringing fields under the transfer · 

gates and the perpendicular edges, the mobile carriers are swept 

out very rapidly and the emptying of the interface state begin 

earlier in the transfer process. But under the storage gate 

the residual charge decreases with a relatively large time con­

stant. The interface states under it continue to capture carriers 

from the residual charge and the quasi-fermi level follows the 

quasi-fermi level of the residual charge. When the residual 

charge becomes small enough, emission from the traps becomes 

dominant. This results in a change of the slope of the signal de­

gradation due to trapping in interface states under the storage 

gates versus clock frequency as shown in Figs. (36} and (37). 

20. Increasing the active channel width increases also the signal to 

noise ratio and dynamic range of the CCD. The noise introduced to 

the signal charge in the storage process through the leakage and 

thermal generation current is proportional to the square root of 

the gates area. The noise introduced during the transfer process 

through the fluctuations of the carriers trapped in the interface 

states and th rough therma 1 noise (suppressed trans fer loss fl uc­

tuati ons) is also proport"ional to the square root of the gates 
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area.( 25 ,26 ) But the signal charge is directly proportional to 

the gate area. Hence the dynamic range and signal to noise 

ratio can be increased by increasing the active channel width 

of the device without degrading its high frequency performance. 

21. Thus the incomplete charge transfer due to trapping in interface 

states under the storage and transfer gates and the perpendicular 

edges is due to the variable mean occupation of the state with 

energy close to r1. Therefore the values of Nss and ah at 

the energy E1 should be used to estimate the trapping effects 

in these states. 

22. Note that the last term in Eq. (A4-5) is a very slowly varying 

function taking a value between 3/4 and 3/2 depending on the 

va.lue of (illmT - qimTo) and (<P~1T - illmTo) . so, taking the 

value of this term unity is a good approximation to simplify 

the· solution of the differential equation (A5~5) for any clock-

ing waveforms. 
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FIGURE CAPTIONS 

Figure 1. (a) An equivalent circuit of a two-phase MOS bucket brigade 

device. Storage utilizes the gate to drain capacitance 

which is enlarged in the bucket brigade structure. The 

two phases ¢1 and ¢2 control the transfer of charge 

from one storage capacitor to another. 

(b) and (c) Structure of a two-phase bucket brigade device 

built with p-MOS technology and silicon gate technology 

respective 1 y. 

Figure 2. Energy level diagram of a metal-insulator-n semiconductor 

(a) when a voltage pulse has just been applied to the metal 

electrode 

(b) after the accumulation of some minority carrier at the 

insulator-semiconductor interface 

(c) schematic cross section of a three-phase charge coupled 

devi'ce structure. The electrodes are pulsed in the 

sequence ¢1¢2¢3 . 

Figure 3. One unit cell of the overlapping gate structure using the 

silicon gate technology. 

Figure 4. Plots of the surface po ten ti a 1 and surface po ten ti a 1 grad­

ient along.the silicon-silicon oxide interface obtained 

from the solution of the two-dimensional Poisson equation 

of the structure in Fig. 3 with minimum geometry dimensions. 
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The thickness of the polysilicon and the aluminum electrodes 

is 0.5 micron. The electrode 

voltages correspond to the latter stages of the charge trans­

fer. A signal charge of about 5.5 volts is in the receiving 

storage electrode. The substrate doping is Bx 1014donors/cm3 

in Fig. ·2a and 1014donors/cm3 in Fig. 2b. 

Figure 5. Storage and transfer of charge in three-phase overlapping 

gates charge coupled devices. Surface potential . ¢s with and 

without charges are plotted along the interface. (a) and (b) 

are for three phase drop clocks, (a') and (b') are for three 

phase push clocks: 

Figure 6. Storage and transfer of charge in four phase overlapping gates 

charge coupled devices. Surface potentials "' with and 'l's 

without charge are plotted along the interface. (a) and (b) 

are for four phase drop clocks, (a 1
) and (b 1

) are for four 

phase push clocks. 

Figure 7. Storage and transfer of charge in two phase overlapping gates 

charge coupled devices. Surface potentials "' with and 'l's 

without charges are plotted along the interface. (a) and (b) 

are for two phase drop clocks, (a') and (b') are for two phase 

push clocks. 

Figure 8. Storage and transfer -0f charge in an overlapping gates charge 
coupled device using single phase clocking scheme. 
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Figure 9. Plots of the one-dimensiona1 relation between the surface 

potential ¢s and the gate voltage for a polysilicon gate 

with 1200R and aluminum gates with different oxide thick­

ness. The substrate doping is 0.8x io15donors/cm2 , 

Q
5
s = 3. 1 x 10 11 / cm3. 

Figure 10. Transient currents at the beginning and end of the transfer 

gate and the net current charging the region under the gate. 

The de~ice shown at the top of the figure is operated with 

drop two-phase clocks Vm=-15 volts, v1 =. -7 volts. Signal 

charge equivalent to about 3 volts. Channel width W = 8 microns. 

Figure 11. Frames to ·illustrate the charge transfer at its initial 

stages for the device shown in Fig. 10 operated with drop 

two-phase clock. The horizontal axis represents the dis­

tance along the interface. The vertical axis at the bottom 

of each frame represents the surface charge density of the 

mobile carrier Q in normalized units. The vertical axis 

at the top of each frame represents the gate vo 1 tage V 

from 0 to -15 volts. The vertical axis at the middle of 

each frame represents the surface potential ¢ from 0 to 

-15 volts. The upper line represents the surface potential 

v.iith charge; the lower 1 i ne represents the surface paten-

tia l with out charge, so the difference between the two lines 

is proportional to the surface charge density. Zero time 

corresponds to the instant when ¢2 decreases to Vm start­

ing the charge transfer. The time of each frame is shm·m at 
its upper corner. 
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Figure 12. The residual charge under the storage gate as a percentage 

of a full bucket for two different initial charges equiva­

lent to about 3 volts and one volt versus transfer time. 

The full line curves are for a substrate doping of 

Bx lo15donors/cm3 and lo14donors/cm3. The dashed line 

curves are obtained from Eqs. (7) and (16) according to the 

lumped circuit model. V = -15 VO 1 ts. m 

Figure 13. Transient currents at the beginning and end of the trans­

fer gate as well as the net current charging the region 

under the gate for the device shown at the top of the 

figure operated with two-phase push clock. Zero time 

coincides with the instant the clock voltage starts to 

increase to push the charge. Vm = -15 volts. Signal 

charge is equivalent to about 7 volts, channel width W = 8 microns. 

Figure 14. Transient currents for the device shown at the top of the 

figure operated with push two-phase clock. Vm = -15 volts. 

Signal charge is equiv~lent to about 7 volts, channel width 

W = 8 microns. 
Figure 15. Transient currents for the device shown . at the top of 

the figure. Two-phase push clock is used. 

T = 13 nsec. V = -15 volts, v1 = -6 volts, W = 8 microns. r m 

Figure 16. Transient current for the device shown at the top of the 

figure operated with two-phase push clock. T =lOnsec., r 

V
111 

= -15 volts, v1 = -6 volts, channel width W = 8 microns. 
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Figure 17. Transient currents for the device shown at the top 0f the 

figure operated with two-phase push clock. Tr = 10 nsec., 

Vm = -15 volts, v1 = -z volts, channel width W = 8 microns. 

Figure 18. Frames to illustrate the charge transfer for the device 

with 4400R oxide under the transfer gate operated with 

two-phase push clock and rise time Tr= 50 nsec. The 

frame fonna t is the same as that of Fig. 1,1. 

Figure 19. Frames to illustrate the charge transfer for the device 

with 3200~ oxide under the transfer gate operated with 

two-phase push clock. Tr = 10 nsec. The frame format is 

the same as that of Fig. 11. 

Figure 20. Residual charge under the storage gate as a fraction of a 

full bucket for different initial charges versus transfer 

time, using two-phase push clocks with a rise time 

Tr = 40 nsec. The dimensions of the device used are shown 

at the top of the figure. 

Figure 21. The residual charge under the storage gate as a percentage 

of a full bucket for a device· with 3200E under the transfer 

gate. The full line curves are for a substrate doping of 

8 x1014donors/cm3 ~ c:nd 1014dono1s/cm3. The dashed line 

curves are obtained from Eqs. (16) and (18) according to 

the lumped circuit model. Vm = -15 volts, Tr= 13 nsec. 
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Figure 22. Transient currents for a two-phase push clock in the 

incomplete charge transfer mode. T = 27 nsec. 
r 

Vm = -15 volts, v1 = -7 volts, channel width W=B microns. 

Figure 23. The residual charge as a fraction of a full bucket for two 

different initial charge 0.6 and 0.4 of a full bucket 

versus transfer time. The device is operated with two­

phase push clock in the incomplete charge transfer mode. 

The dimensions of the device used are shown at the top of 

the figure. The dashed 1 ine curves are obtained from 

Eqs . (18), (23) and (27) according to the lumped circuit 

model. 

Figure 24. Transient currents at the beginning (full line curve) and 

end (dotted line curve) of the transfer gate for the four-

phase push clock shown. The dimensions of the device used 

are shown at the top of the figure. 

Figure 25. Frames illustrating the charge transfer with four-phase 

push clock. The frame format is the same as that of Fig. 

11. 

-figure 26. The residual charge under the storage gate for two dif­

ferent initial charges 0.75 and 0.35 of a full bucket 

versus transfer time with the four-phase push clock. The 

dimensions of the device and the clocking waveforms used 

a re shown at the top of the f igure. 
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Fi gure 27. Residual charge versus initial charge at different transfer 

times for two-phase push clock. 

Figure 28. Signal degradation factor due t-0 incomplete free charge 

transfer versus transfer time for a two-phase drop clock. 

The device dimensions and clocking waveforms are shown at 

the top of the figure. The substrate doping is 

8x 1014donors/cm3. The dashed line curve is the signal 

degradation due to intrinsic transfer rate. The full line 

curve is the signal degradati6n due to the intrinsic trans­

fer rate and the device parameters modulation. 

Figure 29. Signal degradation due to incomplete free charge transfer 

versus transfer time for a two-phase push clock. The 

device dimensions and clocking \'JaVeforms are shown at the 

top of the figure. The substrate doping is 

8xlo14donors/cm3. The dashed line curve is the signal 

degradation due to the intrinsic transfer rate. The full 

line curve is the signal degradation due to the intrinsic 

transfer rate and the device parameters modulation. 

Figure 30. Signal degradation due to incomplete free charge transfer 

versus transfer time for a two-phase push clock in the 

incomplete or residual charg~ transfer mode. The device 

dimensions and clocking \'Javeforms are shown at the top of 

the figure. The substrate doping is 8 x1014donors/cm3. 

The dashed line curve is the signal degradation due to the 
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intrinsic transfer rate. The full line curve is the 

signal d9gradation due to the intrinsic transfer rate and 

the device parameters modulations. 

Signal degradation due to incomplete free charge transfer 

versus bit time for a two-phase drop and push clock. The 

device dimensions and clocking waveforms are shown at the 

top of the figure, the substrate doping is 8x1014donors/ 
3 cm . The full line curve is the signal degradation with 

push clock and the dotted line curve is the signal 

degradation with drop clocks. The signal degradation 

with the four-phase push clock at 15 Megahertz shown in 

Fig. 26 is indicated by the cross point in the figure. 

Figure 32. Average carrier concentration under the transfer gates 

versus transfer time for the fat zero and signal charges. 

A two-phase drop clock with zero fal 1 and rise time is 

used. Vm = -15 volts, v1 = -7 volts. 

Figure 33. Average carrier concentration under the storage gates 

versus transfer time for the fat zero and signal charges. 

A two-phase drop clock with zero fall and rise times is 

used. Vm = -15 volts, v1 = -7 volts. 

Figure 34. Average carrier concentration under the transfer gates 

versus transfer time for the fat zero and signal charges. 

A two-phase push clock vJith zero fal 1 time and 13 nsec 

rise time is used. V "' -15 VO 1 ts m ' 
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Figure 35. Average carrier concentration under the storage gates 

versus transfer time for the fat zero and signal cha~ge. 

A two-phase push clock is used. 

vm = -15 volts, v2 = -6 volts. 

T = 13 nsec, 
r 

Figure 36. Signal degradation factors versus clock frequency for the 

minimum geometry device operated with a two-phase drop 

clock. 

Figure 37. Signal degradation factors versus clock frequency for the 

minimum geometry device operated with a two-phase push 

clock. 

Figure 38. Metal-insulator semiconductor system. The potential at 

any point in the semiconductor (x,y) due to a line charge 

parallel to the z axis at (x 1 ,y•) is calculated using the 

method of images. 

Figure 39. Net rectangle for difference approximations. 


