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ABSTRACT 

This thesis describes an investigation of the attenuation of 

strong earthquake ground motion in the 0. 4 to 16 Hz frequency band 

during the M= 6. 4, February 9, 1971, San Fernando, California earth­

quake. It is found that Fourier amplitudes of ground acceleration decay 

according to a simple expression incorporating a geometric spreading 

term, and a material attenuation term with constant specific 

attenuation Q. The scatter in the amplitude data about an expected 

level given by the simple decay expression is nearly constant with 

respect to both frequency and focal distance. Fourier amplitudes 

of acceleration corrected to a reference hypocentral distance agree 

well with those determined by a two-parameter source model of the 

San Fernando earthquake. Focusing of energy to the south by the 

southward propagating rupture is observed at frequencies below 8 Hz. 

The propagation of rupture was incoherent with respect to higher­

frequency components. 

The relationship between intensity of ground motion and site 

geology is examined. It is found that while, in general, sedimentary 

sites were accelerated more strongly than basement rock sites, no 

clear difference could be found between sedimentary sites classified 

as "soft" by Trifunac and Brady (1975) (generally recent alluvium) and 

those classified as having "medium 11 soil stiffness, generally consisting of 

older alluvium and sedimentary rock. The difference between amplitudes 

recorded on basement rock and sediments is more complex. In 

general, smoothed amplitude spectra from accelerograms recorded 
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on basement rock are lower than smoothed axnplitudes at corresponding 

sedimentary sites. However, basement site spectra show marked 

isolated peaks, as high as those from sedimentary sites at similar 

distances. This is attributed to the focusing effects of the irregular 

topography normally accompanying basement rock outcrops. In the 

frequency band considered, it is concluded that for the purposes of 

aseismic design of structures no discrimination should be made between 

the intensity of ground motion expected on basement rock, sedimentary 

rock, and coarse-grained alluvium typical of Southern California. 

The agreement between the recorded strong motion amplitudes 

and those predicted by a simple two-parameter source model suggests 

I 

that the model can be used for the assessment of strong ground motion 

to be used in design procedures. A procedure for estimating design 

earthquakes using the source model and the axnplitude decay expression 

is presented. 
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1. INTRODUCTION 

This investigation studies the high frequency components of 

strong ground motions, those in the frequency band of 0. 4 to 16 Hz, 

generated by the M= 6. 4, February 9, 1971, San Fernando, California 

earthquake. This earthquake is unique in that it was the first and, to 

date, the only earthquake to be recorded by a large number of 

strong-motion>!< accelerographs, with 241 accelerograms being 

recorded in all. This large body of data is particularly well- suited 

to the study of the propagation of strong ground motion, since the 

variables arising from the differences between one earthquake rupture 

mechanism and another are not present. The large number of 

recordings and particularly their spatial distribution, allows some 

details of the rupture itself to be studied. 

This investigation treats two specific problems in engineering 

seismology.>!< They are: (a) the decay of Fourier amplitude of ground 

acceleration as a function of both distance and frequency, and (b) how 

well average strong-motion amplitudes can be predicted by simple, 

recently-developed seismic source models. These problems are 

addressed in Chapters 2 and 3, respectively. It is found that the 

average Fourier amplitudes obey a simple decay expression and that, 

to within a factor of two to three, average amplitudes corrected to a 

reference hypocentral distance>:< agree with those predicted independ-

ently by ·a two-parameter source model. The engineering use of this 

-·-
.,,A glossary of terms may be found in Appendix 5. 
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information in predicting earthquake ground motion is illustrated 

by an example in Chapter 4. 

The frequency band of interest in earthquake engineering is 

governed by the natural frequencies of engineering structures. Long 

suspension bridges, for example, may have fundamental periods of 

vibration of as much as 20 seconds. Mechanical equipment and very 

rigid structures, on the other hand, have natural frequencies of up to, 

say 20 Hz. Thus the frequency band of engineering interest runs 

from approximately 0. 05 Hz to 20 Hz. 

The study was confined to the high frequency components of 

strong ground motion since there is an essential difference in 

complexity between high- and low-frequency components in both their 

generation and in their propagation. The criterion is wavelength. If 

the wavelength of the components being considered is long compared to 

the dimensions of the area ruptured, a simple waveform is emitted; 

the complexity of its subsequent propagation depends principally upon 

whether or not the wavelength is large compared to the dimensions of 

the inhomogeneities in its travel path. Hanks (l 974b ), finds that 

ground displacement wave forms (characterizing components with 

frequency, f::.;; 0. 3 Hz, say) from the San Fernando earthquake were 

propagated coherently>:< over distances of tens of kilometers. On the 

other hand, high frequency components are emitted erratically as the 

rupture progresses along the fault, and they are further modl.fied by 

inhomogeneities in the propagation path. Crouse (1973) observed that 

-·-
"'see glossary. 
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acceleration wave forms (characterizing components with f> 3 Hz, 

say) do not propagate coherently for distances of more than a few 

hundred meters. It is probable that the components contributing to 

ground accelerations recorded at a particular location and at a 

particular frequency result from the superposition of several different 

waves arriving by different propagation paths. It is unlikely that these 

waves will arrive in phase. More likely, they will interfere, causing 

relatively high amplitudes of ground acceleration at some frequencies 

and at some locations, and relatively low amplitudes at other fre­

quencies and locations. In these circumstances, while phase 

coherence is lost, it is possible that average amplitudes do propagate 

coherently, and, in fact, this is found to be the case in the data 

studied. Thus, op. the basis of previous observations that acceleration · 

waveforms do not propagate coherently, but in the expectation that 

their amplitudes might, Fourier amplitudes of accelerations were 

studied. 

The remainder of this chapter reviews some problems of 

engineering seismology, and describes some currently used methods 

of predicting future ground shaking for the purpose of designing 

earthquake resistant structures. 

1. 1. Some problems in engineering seismology. 

This section provides a background to the investigation that 

follows. · For a complete review of engineering seismology, reference 

may be made to Bolt ( l 970a, b), Housner ( l 973a), Hudson ( l 972a, 1974), 

and Newmark and Rosenblueth (1971). 
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An engineer wishing to design a building to withstand earth­

quakes must first estimate the strength and frequency content of the 

maximum ground shaking the building is likely to experience during 

its life. Providing such estimates is the principal problem in 

engineering, or strong-motion, seismology. Since small earthquakes 

are more frequent than large, the engineer would like to know the 

ground motion characteristics expected from a number of different 

sized events~ and the probability of occurrence of each. With this 

knowledge, the risk of damage can be compared with the cost of 

providing additional strength and insurance. However, the details of 

the cause and mechanism of earthquake rupture are not completely 

understood, and methods are not available for solving the resulting 

problem of wave propagation from the source through the laterally 

inhomogeneous earth's crust to a building site. Hence precise 

estimates of future earthquake ground motion cannot be made, and 

approximate methods that make use of available knowledge must be 

re sorted to. 

There are several ways in which ground motion can be 

characterized. The simplest is a single-parameter characterization 

of wave amplitude, often by peak acceleration. However, since the 

frequency content of seismic waves, as well as their strength, varies 

from earthquake to earthquake (Aki, l 972b) and is further modified 

during transmission (Bullen, 1963), this is not likely to be sufficient. 

Using peak values of acceleration, velocity, and displacement allows 

a three parameter representation of frequency content, and empirical 

relationships exist between these parameters and pseudo-velocity 
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response spectra for a damped, single-degree-of-freedom linear 

oscillator (Esteva and Rosenblueth, 1963; Brady and Trifunac, 1975). 

The characterization of ground motion by response spectra is 

extremely useful since they can be readily used in structural analysis 

(Hudson, 1956; Newmark and Rosenblueth, 1971). 

Power spect;ral density functions (or Fourier amplitude spectra) 

afford more complete representations than the three peak ground 

values, and can be used in structural analysis in various ways. The 

power spectral density can be used directly with random vibration 

theory to estimate the response of a single-degree-of-freedom 

oscillator (Caughey and Stumpf, 1961 ), the response of multi-degree­

of-freedom systems being obtained by modal superposition (Merchant 

and Hudson, 1962). Alternatively the power spectrum can be used to 

generate either a single artificial accelerog ram, or an ensemble of 

accelerograms with a statistical distribution corresponding to the 

uncertainties in estimating the effects of earthquake source and trans­

mission path (Jennings, et al., 1968). Response spectra may in turn 

be computed from these accelerograms, or the accelerograms may 

be used directly as input to a numerical structural model from which 

the distribution of response is determined. The latter use represents 

the most advanced technique currently in routine use in earthquake 

engineering (Housner, 1973b). 

As a matter of convenience in terminology, any such predicted 

ground motion will be referred to as a "design earthquake". 

Any procedure for estimating design earthquakes should be 

based as much as possible on what is known of the physics of the 
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several mechanisms causing the earthquake ground motion, and should 

resort to empirical methods only when physical understanding or 

computational capability fails. For research purposes, it is desirable 

that a procedure be separated into steps corre spending to the various 

related mechanisms contributing to generation and propagation of 

. earthquakes so that each step may be up-dated as further knowledge 

becomes available. 

The broad physical processes in the generation of an earth-

quake are as follows: 

(1) Large scale tectonic movements; these lead to stress build-up 

in the earth's crust and rupturing as a mode of stress relief. 

(2) The earthquake rupture mechanism. Since the triggering 

of rupture depends upon details of the mechanism itself, (2) is 

closely related to (1). 

(3) Propagation of seismic waves away from the source. 

In the design earthquake estimation problem, there are the following 

steps: 

,,, 

(1) Prediction of the spatial and temporal distribution of earth-

quakes with rupture mechanisms de scribed. by a particular 

set of source parameters.,~ 

(2) Obtaining an estimate of the seismic waves radiated from the 

source region, given a description of the rupture process by 

the source parameters. 

'''see glossary. 
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(3) Modification of both amplitude and frequency content of 

seismic waves during propagation between source and site, 

including the effects of local site conditions. 

The theory of plate tectonics (Jacobs, et al., 1974) provides 

a general understanding of why earthquakes occur, and explains why 

they are much more prevalent in certain regions of the world, along 

plate boundaries, than in others. But to make precise predictions 

of the occurrence and nature of earthquakes requires a much more 

complete understanding than exists at present of the cause of crustal 

plate movements, of the material properties and stress state in the 

crust, and detailed knowledge of rupture mechanisms. The theory 

does, however, allow the seismic and geologic history of a region to 

be used with more confidence in predicting earthquake return periods. 

However, long historic records, even where they exist do not provide 

a complete solution to the problem of estimating the likelihood of 

earthquake occurrence. For example, records have been kept of 

earthquakes for nearly 3000 years in the Kansu Province of China, yet 

for one 800 year interval, from 200 A. D. to 1000 A. D., earthquake 

activity was very low, with intensive activity both before and after 

that period (Mei, 1960). .Ambraseys (1961) has translated an historical 

record of earthquakes in the Middle East, and it shows a similar 

irregular history of activity. 

Some details of rupture mechanisms are not known, but it is 

accepted that shallow focus earthquakes, which, as the most damaging, 

are of prime interest to engineers, are the result of shear dislocations 

in the earth's crust under the stress field imposed by inter-plate 

movement (Reid, 1911; Housner, 1955; Steketee, 1958; 
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Jacobs et al., 1964). While no exact dynamic solutions exist for 

shear dislocation sources even under idealized material and geometric 

conditions (Randall, 1973), there is intensive geophysical research in 

progress into approximate source models, which capture the general 

features of the mechanism in a small number of source parameters . 

This work is reviewed by Brune (197lb) and Aki (1972a). 

Brune (1970, 1971 a) proposed a simple model from which a 

far-field ':< shear wave spectrum is obtained, given estimates of two 

independent parameters of the fault (e.g. seismic moment and source 

dimension; total dislocation and fault plane area). Results from 

Brune's model have been found to be in good agreement with inde-

pendent teleseismic observations over a wide range of the model's 

parameters (Randall, 1973). It does not follow that the model should 

also prove satisfactory in regions of strong ground motion where the 

far-field assumption is not so clearly satisfied. However, it is seen 

in Chapter 3 that amplitudes predicted by the model from independent 

estimates of the San Fernando earthquake sou!ce parameters are in 

good agreement with those observed from the strong motion data. 

While the model is quite simple, in that the amplitude spectrum is 

approximated by its high and low frequency asymptotes, its use in 

design earthquake prediction offers an advance over the use of 

magnitude alone, and brings the procedure closer to the underlying 

physics. 

,,, 

'•'see glossary. 
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The third problem, that of propagation of seismic waves 

through the earth's crust from an earthquake source to an engineering 

site, also is difficult to solve because of material inhomogeneity and 

irregular surface topography. At present, no analytical solutions 

exist for wave propagation th .rough a laterally inhomogeneous crust 

(Bolt, l 970a). There are numerical techniques available, but due both 

to cost and computational difficulties at pre sent they are feasible only 

for low frequency components with periods of a few seconds or longer 

(Mal, 1974). Furthermore, it is pointed out by Housner ( l 973a) that 

even if computation techniques did exist for the realistic strong motion 

propagation problems, there would be practical difficulties in applying 

them. Obtaining sufficient knowledge of the material properties and 

geometric configuration of the geology along the propagation path 

would be an almost impossible task, and well beyond the resources of 

a normal engineering project. As an illustration of this difficulty, 

consider a 5 Hz wave travelling through sediments at a velocity of, 

say, 1 km/sec. It has a wavelength of 200 meters. Since waves are 

scattered by inhomogeities with dimensions of the order of one wave­

length, the geology should be known to a resolution of better than 

200 meters. Housner concludes that a statistical approach to the 

propagation problem is necessary. 

A large number of the strong motion accelerograms from the 

San Fernando earthquake were obtained within fairly narrow ranges of 

direction from the epicenter, mainly to the south, but also in smaller 

groups to the north and south-east. These groups of accelerograms 

form excellent sets of data from which experimental studies of strong 
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motion propagation can be made with relative freedom from source 

details. 

1. 2. Previous attenuation studies and design earthquake estimation 

methods. 

Previous studies of the amplitude decay of strong ground 

motion generally involved only correlations between earthquake magni­

tude and recorded peak ground motion values, and did not consider 

details of the rupture mechanism and the geology of overall wave path 

between source and recording site. Many different expressions have 

resulted from these investigations. Generally, the decay of gronnd 

motion amplitudes has been accounted for by a factor of 1 /rn, where 

r is hypocentral distance and n is an empirical parameter adjusted to 

obtain the best fit of the ex.pres sion to the data set being studied. 

Scott ( 1972) was one of the first in earthquake engineering to employ 

two separate decay terms corresponding to the two physical phenomena 

contributing to amplitude decay: geometric spreading, and energy 

absorption or material attenuation by the travel path mediuID.. 

Prior to the 1971 San Fernando earthquake only a few strong­

motion recordings had been made of a single earthquake, and studies 

of earthquake ground motion had, of necessity, included measures of 

the source strength; Richter magnitude was generally employed for this 

purpose. However, single parameters do not adequately represent 

either the source or resulting ground motion, since the strength of 

both is a function of frequency. Further difficulties arise when corre­

lations are attempted between earthquake magnitude and peak ground 

acceleration since magnitude characterizes lower-frequency components 

than those developing peak acceleration (Trifunac, 1972 ). It should be 

pointed out, however, that early investigators did not have digital 
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computers to integrate accelerograms and compute Fourier spectra, 

and that peak acceleration and magnitude were the only parameters 

readily available. Models offering a more comprehensive source 

characterization are very recent, and are still at an early stage of 

development. 

An early design earthquake prediction method was given by 

Esteva and Rosenblueth (1963), who published a procedure for esti-

mating response spectra from peak ground motion values. The high 

frequency range of the response spectrum was scaled in proportion to 

peak acceleration, the intermediate in proportion to peak velocity, and 

the low frequency range of the spectrum according to peak displacement. 

They obtained expressions by regression analysis for the three peak 

values as functions of focal distance r, and earthquake magnitude M, 

from a set of data based mainly upon that of Housner (1961 ). The 

expressions are: 

and 

where 

2000 0. 8M a= --
2
-e 

r 

_ (-1-+_l) 1. 2M 
X- 1.4 2 e 

r r 

a is peak ground acceleration (cm/ sec2 ), 

v is peak ground velocity (cm/sec), and 

x is peak ground displacement (cm). 

( 1. 1 a) 

(I.lb) 

(1. le) 
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Noting that high-frequency components of ground motion give rise to 

acceleration peaks, intermediate frequency components to velocity 

peaks and low frequency components to displacement peaks, the 

increasing importance of magnitude with decreasing frequency can be 

seen in the equations. Larger magnitude earthquakes apparently 

radiate a greater proportion of low frequency wave components. Also, 

it can be seen from the exponents of r which include both geometrical 

and material attenuation effects that the rate of attenuation increases 

with increasing frequency; peak acceleration being attenuated more 

rapidly with distance than peak velocity, which in turn is attenuated 

more rapidly than peak displacement; 

The authors plot the peak acceleration and peak velocity data, 

normalized with respect to magnitude by multiplying the peak values 

. -0 8M -M 
by e · and e respectively, against focal distance. At a given 

distance, the normalized acceleration values are scattered over two 

orders of magnitude. The velocity data are less scattered, 

probably due to better correlation with M, and also to less sensi-

tivity of velocity peaks to variations in the source and the 

propagation path. If we denote expected values of peak acceler-

ation and velocity computed by equations (1. la), ( 1. 1 b) by a and v. 
respectively, and the corresponding realized values from the data by 

a and v, and define the uncertainty factors k and k by the 
a v 

relationships 

a 
k =-=-, a a 

v 
k - -v v 

(1. 2) 
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then the distributions of k and k can be computed. From the a v 

authors' confidence interval plots, the upper semi-intervals at 90 

percent confidence have the values k = 3. 8 and k = 2. 0. That is, 
a v 

there is a 90 percent probability that a recorded acceleration will be 

less than 3. 8 times the value predicted by equation (1. la). On this 

basis, peak velocities show only half as much scatter as peak velocity 

data. Nevertheless, these values both represent large uncertainties 

in values predicted by equations (1. la) and (1. 1 b). This is expected 

because of the number of different earthquakes involved in the study. 

Similarly large scatter is found in other measures of ground 

shaking; for example, in response spectra (Adu, 1971) and in the 

Fourier amplitudes of acceleration of this study. Particularly in high 

frequency components large uncertainties are associated with any esti-

mate of earthquake ground motion that can be made at the present time, 

and it is imperative that confidence intervals or some other measure of 

scatter be given with design earthquake estimates so that the structural 

designer is aware of this. 

Seed et al. (1969)proposedamethodforgeneratingdesignearth-

quakes based on the device of scaling existing accelerograms according 

to peak acceleration. The fir st step in this procedure is to estimate peak 

acceleration at a hypothetical bedrock-soil interface. The authors present 

an empirical relationship between magnitude, distance and peak accelera-

ti on on "bedrock 11 based on the same data as that of equation ( 1.1 a) but arbi­

trarily modified to give lower peak acceleration values with the rationale 

that the original data base included records from both soil and rock sites and 

that rock sites "ought" to have lower peak accelerations. The attenuation 

relationship has subsequently been revised by Schnabel and Seed (1973) to 

conform more to the San Fernando data. An existing accelerogram selected 

on a basis of magnitude, site, and distance similarity is then scaled to have 
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the same peak acceleration value in 11 bedrock11
• The greater attenuation 

of higher frequency components is allowed for to some extent by scaling 

the time base of the accelerogram according to 11predominant period11, 

a paranieter referred to in Gutenberg and Richter (1956). The scaled 

accelerogram is then used as input to the vertically-propagating shear 

wave model of Idriss and Seed ( 1968), to obtain an accelerogra:m of 

motion at ground surface. 

This procedure has found widespread use in engineering 

practice, despite its serious limitations. Chief among these are sole 

reliance upon peak acceleration to scale the ground motion, and use of 

the one-dimensional soil model whose assumptions of uniform hori-

zontal soil layers and vertical wave propagation are seldom met in 

practice. These points are taken up in Sections 1. 2. 1 and 1. 2. 2. 

Davenport (1972) obtained an empirical relationship between 

M and a, having the sanie functional form as that of Esteva and 

Rosenblueth (1963 ), but from a larger data set which included data from 

eleven earthquakes recorded since 1963. With data from a total of 

46 North and South American earthquakes, he found the following 

expression using a least- squares parameter estimation technique: 

a= 
r 

270 0. 8M 
1. 64 e (1. 3) 

For Davenport's data and equation (1. 3), the distribution of k , defined 
. a 

as before by equation (1. 2), was approximately log normal, with 

CJ1 k= 0. 74. The value of k (the subscript is no longer necessary) at 
oge 
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the upper limit of the 90 percent confidence interval computed from a 

log normal distribution with a 
1 

k = O. 74 is 3. 3, which is in reasonable 
oge 

agreement with the value of 3. 8 given by Esteva and Rosenblueth. Using 

data from the San Fernando earthquake only, but without further separation 

into groups according to source- station azimuth or site geology, he found 

the following relationship: 

a = 

with 0 1 k = 0. 46. 
oge 

r 

840 O. 65M 
1. 48 e ( 1. 4) 

Equations (1. la) and (1. 3) have the saxne magnitude d'ependence. 

However, their initial constants and exponents of r are quite different, 

with the larger constant of equation (1. la) being compensated for to 

some extent by a larger exponent of r. The difference between the 

two expressions can be seen by dividing equati~n (1. la) by 

equation ( 1. 3), which yields 

= 7.4 
o. 36 ' 

r 
(1. 5) 

where aE denot~s the peak acceleration value at distance r from 

Esteva and Ro senblueth' s relationship, and aD that from Davenport's 

expression. The ratio is plotted against distance in Figure 1. 1, where 

it is seen that for r::;; 100 km, Esteva and Rosenblueth's expression 

yields values at least 1. 5 times greater than those from Davenport's 

expression. The differences between these expressions are further 

demonstrated by Figure 1. 2 in which peak acceleration values computed 

from equations (1. la), (1. 3), and (1. 4), normalized with respect to M, 
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Figure 1. 2. Peak accelerations normalized w. r. t. M given by 
Esteva and Rosenblueth's (1963) equation (1. la) 
and Davenport's equation (1. 3), and (for San 
Fernando earthquake alone) equation (1. 4). 
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are plotted against the focal distance. The large differences between 

the expressions and the height of the confidence limits shows the 

amount of uncertainty involved. 

There is a lower scatter in peak accelerations from the Sari. 

Fernando earthquake alone, seen in the lower value of cr
1 

k" This 
oge 

suggests that further factors such as the overall propagation-path 

geology and details of the rupture mechanism contribute significantly 

to the recorded ground motion. Further uncertainties may be introduced 

by differences in instrument response. For example the 1. 1 g peak re-

corded at Pacoirna Darn would have registered . 60 to O. 7 g on the 

Japanese SMAC accelerograph (Hudson, 1972). 

A similar correlation has been made by Donovan (1973) using a 

data set that includes some Japanese and South Pacific earthquakes. 

There is an implicit assumption in empirical, statistical corre-

lations such as these that the greater the number of earthquakes included 

in the study the better. This is not necessarily so, because more earth-

quakes also means more variation in the data from variables (such as 

hypocentral depth and rupture mechanism) not considered in the simple 

correlations. The correct procedure is to select the events to be in-

eluded in the data set in such a way as to reduce the number of variables 

that should be considered. For this to be done, consideration must be 

given to the underlying physics of the problem. The validity of this point 

is illustrated by the differences in standard deviation between Daven-

port's study of the San Fernando data alone and that of the large group of 

earthquakes. 

Johnson (1973) presents an empirical method for obtaining 5 

percent critically damped pseudo-velocity response spectrum ordinates 
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S . as functions of magnitude and epicentral distance, s. At each of 
v 

14 discrete frequencies in the band 0.4 to 11. 0 Hz, he estimates the 

parameters C and a in the equation 

( 1. 6) 

using the method of least squares. His data are taken from 23 Western 

United States earthquakes (in large part, those used in the correlations 

described above), with magnitudes between 5 . 3 and 7. 7. Values of 

the attenuation exponents m, which are different for each frequency, 

are taken from a study of Lynch (1969) of response spectra of ground 

shaking due to nuclear explosions. The value of m varies from 

-1. 14 at 0. 4 Hz, generally decreasing, to -1. 40 at 18 Hz. As seen 

from the exponents of r in equations (1. 1), the variation in m again 

shows higher frequency components of ground motion being attenuated 

more rapidly with distance than the lower frequency components. 

Only two San Fernando earthquake records are included in 

Johnson's data, so his method is not greatly biased by that event. 

Six examples are given in which spectra are estimated for accelero-

grams not included in the data set. When compared with response 

spectra computed from the actual accelerograms, three are in good 

agreement, two are underestimated over a wide frequency band by a 

factor of about 2 to 3, and the sixth is overestimated by about the sam.e 

amount. Again, large uncertainties are associated with the predictions. 

Johnson's procedure is inconsistent in putting so much detail 

into the frequency dependence of the resulting spectrum., while at the 

same time using only a single source parameter M . However, it 
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does take into account the frequency dependence of attenuation; and 

a measure of the average frequency dependence of the source emissions 

of earthquakes in the data set is included in the coefficients C and Q'. 

This method compares favorably with the procedure of scaling 

according to peak acceleration, where each frequency component is 

scaled equally. 

1. 2. 1. Some shortcomings of magnitude-peak acceleration correlations 

Two deficiencies in empirical ground motion investigations 

employing M and a to represent the source strength and site motions 

respectively have been noted in the previous sections: (1) Because 

similarity with respect to frequency components is not pre served from 

one earthquake to another, a· singl'e parameter is insufficient to 

represent either source strength or ground motion; and (2) M and a, 

representing different frequency bands, are not strongly correlated. 

A particular shortcoming of the use of magnitude, pointed out 

by Housner (1965), arises from the way in which magnitude is 

determined. Magnitude is an arbitrary, relative instrumental measure 

of earthquake strength and is defined as the peak response recorded on 

a standard Wood-Anderson seismograph at an epicentral distance of 

100 km. Since instrmnents situated rriuch closer than 100 km to 

epicenters of large earthquakes go off-scale during the earthquake, 

magnitude determinations are usually made from observations at 

greater distances, corrected back to 100 km. Housner (1965) notes 

that at distances of 100 km or more, high frequency components of 

seismic waves have been attenuated and the peak instrument 



-20-

response is most probably caused by wave components with frequencies 

near or below that of the instrument's naturalfrequency. Thus, while the 

natural frequency of 1. 25 Hz gives the appearance that magnitude 

measures the center of the frequency band of general interest to 

engineers, in fact, due to high frequency attenuation, it actually 

measures lower frequency components. 

Furthermore, in some cases magnitude determinations are 

made from 20-sec1.md period surface waves, rather than the compo-

nents near 1 Hz from which local magnitude is determined. For example 

M=7. 7 for the 1952 Kern County earthquake, and M=7. l for the 1940 

hnperial Valley earthquake are both surface wave magnitudes deter-

mined at teleseismic distances. 

Peak ground accelerations, on the other hand, have been 

observed to develop generally at frequencies of 3 to 5 Hz or more (Brady 

and Trifunac, 1975) and, hence, depend on different components of 

ground motion than do magnitude estimations. Thus, the two 

measures are not necessarily related. 

The lack of correlation between M and a has been demonstrated 

by Donovan (1972) who fitted an attenuation curve with the same 

functional form as equations (1. la), (1. 3), and (1. 4) to a set of peak 

acceleration data from American and Japanese earthquakes. The 

standard deviation of the data scatter measured by log k was 
e 

crlog k = 0. 92. He then normalized the acceleration data with respect 
e 

to magnitude by dividing each data point by the magnitude term 

f th t 
. . 0. 58M 

o e at enuation curve equation, e The "best fit" curve was 
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then estimated again, and crlog k was found in this case to be O. 84. 
e 

Thus, normalizing the peak acceleration data to remove the influence 

of M resulted in a very small reduction in scatter, indicating a poor 

correlation between M and a . 

To sum up the foregoing, magnitude alone is not a good 

measure of the earthquake source, both because a single parameter 

does not provide an adequate spectral description and also because mag-

nitude as the parameter in particular measures mainly low-frequency wave 

components. Similarly, any single parameter does not adequately 

measure earthquake ground motion.; peak acceleration, measuring 

high frequency components, is an especially bad choice for a ground 

motion parameter, since, when correlated witp M, it tells little of the 

strength of intermediate and low frequency components which often 

have the greatest influence on the earthquake response of structures. 

1. 2. 2. One-dimensional modeling of local geology. 

Much attention has been given in recent years to modeling the 

effects of local soil conditions on incoming seismic waves by use of a 

simple one-dimensional shear wave model. This procedure has been 

applied in a wide range of situations, even though the assumptions upon 

which it is based are extremely restrictive. There is a growing body 

of evidence, reviewed by Salt (1974), that its range of validity is, in 

fact, much more limited than was first thought, and in alm.ost all 

circumstances its use is not justified. 

Several particular models have been put forward, differing in 

the way in which material and radiation damping are introduced, and in 
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whether the model is formulated for transient or for steady state 

excitation. All are based on the two assumptions: 

(1) that the soil occurs in uniform horizontal layers whose . 

lateral dimensions are large compared to their depth~ and 

(2) that the base of the soil layer system is excited uniformly 

in a horizontal direction. 

The latter assurrlption requires either vertically propagating shear 

waves or long wavelength Love waves. (Some models will also treat 

vertically propagating P-waves.) The reader is referred to Tsai (1969). 

for examples of advanced one.:.dirnensional models, C:tnd for a discussion 

of their relative merits. 

In general, motion at the surface of a . soil-layer system 

satisfying the two assumptions of this model, and in which soil ·stiffness 

increases with depth is amplified relative to the motion that would have 

occurred at the surface of the underlying stifferm~diurrl in the absence of the 

soil layers. For linear, elastic layers, large amplifications occur 

near the natural frequencies of the system, with little amplification 

occurring between them. However, the tendency for motions to be 

amplified is opposed by damping, which for most soils increases with 

strain level and also increases with decreasing soil stiffness (Seed 

and Idriss, 1970). For this reason, sites which, under low levels 

of shaking, may exhibit the narrow band amplification predicted by 

the model, do not necessarily show the same behavior under strong 

shaking. 

Practical criteria are needed for determining how closely the 

geometric assurrlptions must be met before the model can be applied, 
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and for what soil types, or range of soil properties, it may be used. 

At the present time no such rules are available. 

Experimental evidence from strong ground motion observati.ons 

does not resolve this problem, but it does put bounds upon it. On the 

one hand, there is clear evidence that _amplification by a well-defined 

soft soil layer is the cause of narrow band spectral peaks at about 

0 . 4 Hz in ground motion records made at Mexico City (Zeevaert, 1964). 

Similarly, amplification by a soft layer of younger bay mud beneath 

the Southern Pacific Building, San Francisco, accounts for pronounced 

spectral peaks near 0. 9 Hz during the 1957 San Francisco earthquake 

(Borcherdt, 1970). On the other hand, however, there is a growing 

number of studies citing situations in which the type of behavior 

expected from the one-di~ nsional shear model did not occur. Some 

of these are noted below. 

Tsai (1969) analyzed two separate shocks from the 1968 Borrego 

Mountain, California, earthquake, recorded at San Onofre, California 

at a distance of 1 .10 lan. Although the shocks were separated by about 

six seconds, both originated in the same area and thus both traveled 

essentially the same path to the recording site. Tsai could find no 

similarities in their spectra and hence concluded that the differences 

between the recorded motions were due entirely to their respective 

source mechanisms. 

Udwadia (1972) analyzed 15 different strong motion accelero­

grams recorded at El Centro, California, from earthquakes occurring 

over a wide range of distances and directions from the recording 

station. He could find no recurring peaks in their Fourier amplitude 
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spectra. He concluded that the source mechanism and overall 

propagation path played the major role~ in determining the nature 

of ground shaking at El Centro. 

Hall et al. (1973) noted that if amplification did occur according 

to the simple shear model, then both horizontal components of ground 

motion records should be affected. They searched 20 strong motion 

recordings (those in Part~ Volume IV of Hudson, ed., 1972) and 

could find no pronounced spectral peaks that were common to both 

horizontal components of the same record. They concluded that the 

one-dimensional model was adequate for predicting .site effects only 

at exceptionally soft sites. Trifunac and Udwadia (1974) reached a 

similar conclusion from the study of a different group of Southern 

California strong motion accelerograph records. 

Further insights into the complexity of the local geology 

problem, even with relatively simple geometric configurations, have 

been provided by Trifunac (1971) and Wong and Trifunac (1974). They 

consider the problems of semi-cylindrical and semi-elliptical sediment 

filled valleys in a half- space respectively, subjected to harmonic 

SH-wave excitation. Both the material filling the valley and the half 

spaces were assumed to be homogeneous, isotropic and linearly 

elastic. They found complicated wave interference within the valley, 

and a highly variable pattern of amplification along the valley surface, 

strongly dependent on the direction of the incoming waves. Peak 

arnplifications of the order of 10 were found; however it is likely that 

lower amplifications would be observed under transient excitation 

(Wong and Jennings, 1975) or when damping is present in the valley 
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material. It is clear from these models that wave propagation in 

sediment-filled valleys is very complicated. In real valleys with 

less regular basement rock-sediment interfaces, and with inhomo­

geneous valley materials, more complex interference patterns can 

be expected. Since the direction of approach of future earthquake 

wave motion is not likely to be known in advance, precise determinis­

tic computations of the effects of local geology on high frequency ground 

motion components when the soils and their geometric configurations 

are not uniform, is clearly impossible. The suggestion by Housner 

( l 973a) that a statistical approach be taken, indeed seems to offer 

the only hope for estimating the effects of propagation path geology 

on the high frequency components of strong ground motion. 
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2. ATTENUATION OF STRONG GROUND MOTION 

FROM THE SAN FERNANDO EARTHQUAKE 

In this chapter, propagation of the high frequency components 

of strong ground-motion from the M = 6. 4, February 9, 1971, San 

Fernando California earthquake is studied by observing the behavior 

of Fourier amplitudes of acceleration computed from the horizontal 

components of 95 strong motion accelerograms recorded within 

200 km of the epicenter. Correlations are made between the Fourier 

amplitudes and overall propagation path geology between the source 

and station, local site geology, and average source- station azimuths 

of groups of records in approximately the same direction from the 

epicenter. 

Many strong motion accelerograms recorded in the United 

States, including those from the San Fernando earthquake, have 

been digitized and published by the California Institute of Technology 

:Sarthquake Engineering Research Laboratory (EERL). Each accel­

erogram has been assigned a reference number by the EERL, for 

example, C041, from the Pacoima Dam during the San Fernando 

earthquake. These numbers will be used throughout this text to identify 

both the record itself, and the recording station or site. The "C" in 

this example signifies that the record appears in Part C of the appro­

priate volume. Four volumes of data derived from the digitized 

accelerograms have been, or are in the process of being, prepared~ 

Volume I, consisting of the uncorrected accelerograms; Volume II, 

consisting of corrected accelerograms, velocities, and displacements; 
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Volume III, consisting of response spectra; and Volume IV, Fourier 

amplitude spectra. For further details of the series as a whole, 

reference may be made to Hudson (1969). 

In this study, use will be made of the corrected accelerograms, 

found in Volume II of the series, Strong Motion Earthquake Accelero­

grams (Hudson, et al., 1971 ), and of Fourier amplitudes of accelera­

tion found in Volume IV of the series (Hudson, ed., 1972). Also 

some preliminary work is described which made use of peak values 

of ground displacement, velocity and acceleration from Volume II. 

Henceforth these volumes of data will be referred to simply as 

Volume II and Volume IV. 

The ground velocities and displacements given in Volume II 

were obtained from the accelerations by an iterative procedure of 

integration and baseline adjustment. Details of the digitizing, 

correction and integration procedures are given in Part A of Volume IL 

The principal corrections are for long period errors in the digitized 

records and for recording instrument response characteristics. Errors 

in the corrected, digitized accelerograph data have been analysed by 

Trifunac et al. (1973) and Hanks (1973) who have concluded that the 

corrected records represent the ground motion faithfully in the 

frequency band 0. 125 Hz to 25 Hz, and that for accelerograms 

recorded on 6 in. and 12 in. paper (about 50 percent of the San 

Fernando records) the lower limit may be extended to 0. 07 Hz. 

Evidence of digitizing noise was found in the high frequency 

components of low amplitude records in the course of this study. It 

will be observed in plots of the 16 Hz Fourier amplitude data, where 
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digitization noise is seen to dominate the signal at epicentral distances 

greater than 60 km. 

2. 1. Preliminary study. 

Before starting on the large amount of computing necessary to 

obtain Fourier transforms of the set of 95 accelerograrns, a prelim­

inary study of a smaller group of records was made, using computed 

data already available. This preliminary study brings out some 

essential features of strong ground motion propagation and is 

described below. 

When peak accelerations from the San Fernando earthquake 

are plotted against focal distance, · they show considerable amounts of 

scatter. (See, for example, Hudson, 197-Zb Figure 3.) In order to 

find if some of the scatter could be attributed to variations in azimuth, 

data recorded over a fairly small range of source -station azimuths, 

south-east of the epicenter, were examined. Site locations are shown 

in Figure 2. 1. 

The peak value data taken from Volume II are shown in 

Figure 2. 2, where they are plotted against epicentral distances. By 

comparison with Figure 3 of Hudson ( 1972) it can be seen that the range 

of scatter of the peak accelerations in Figure 2. 2 is smaller by a 

factor of about 0. 6 than that of the complete set of San Fernando 

accelerograms. Thus variations with azimuth in such factors as 

source radiation and overall propagation path geology do appear to 

influence the intensity of strong ground motion. 
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It is seen from Figure 2. 2 that the peak displacement data are 

more scattered than peak velocities, which, in turn, are more 

scattered than peak accelerations. This is in contrast to the data 

of Esteva and Rosenblueth (1963) in which peak accelerations were 

more scattered than peak velocities. Since their data had been 

normalized with respect to magnitude, this may be due to a closer 

relationship between magnitude and peak velocity than between 

magnitude and peak acceleration. However, that exph.ins only the 

wider scatter seen in Esteva and Rosenblueth1 s peak accelerations, 

which were obtained from many earthquakes. It does not explain why 

in Figure 2. 2 the acceleration peaks are less scattered than the velocity 

peaks, since they are obtained from the same earthquake. Furthermore 

they were recorded within a narrow range of azimuths, eliminating 

source-station direction as a variable. The principal variable 

remaining is local geology, in this instance referring to the 

upper 10 to 15 km of the crust. From an examination of the Volume II 

plots of acceleration, velocity and displacement -in which the peak 

values are marked-it is seen that acceleration peaks occur early in 

the accelerograms, peak displacements generally occur 

several seconds later, with velocity peaks occurring between the two. 

This suggests that the high frequency components contributing to the 

development of acceleration peaks (frequencies above 5 Hz; Brady 

and T rifunac, 1975) travel a larger proportion of their propagation 

paths in basement rock whereas to some extent, the middle range 

frequencies at which velocity peaks develop, and particularly the low 

frequency components developing peak displacements travel 
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considerable distances as surface waves in the low-velocity surface 

sediments. The relatively low scatter in acceleration peaks may 

then be attributed to their more uniform, basement-rock travel paths. 

On the other hand, the anomalous appearing growth in peak 

displacement from sites GllO to F086 has been attributed by Hanks 

(l 974b) to the development of surface waves. At station GllO (The 

Jet Propulsion Laboratory, Pasadena) which rests on a small depth 

of alluvium relative to the wavelengths developing displacement peaks, 

Hanks identified the displacement waveform as predominantly one of 

body wave arrivals. As the waves move out across the increasing 

depths of sediment in the San Gabriel Valley and Los Angeles Basin . 

(see Figure 2. 7), surface waves are seen to develop in the displacement 

records with increasing amplitudes until site F086, the Vernon CMD 

Building, is reached. At this point the Basin sediments are 20, 000 feet 

deep (Yerkes et al., 1965) and should contribute to the formation of 

Love waves. Beyond Vernon, wave dispersion and geometric 

attenuation apparently dominate, and the displacement peaks again 

decay with increasing epicentral distance. The high amplitude at 

station C048, the Holiday Inn, 8244 Orion Boulevard, Los Angeles, can 

also be explained by the development of surface waves across the deep, 

sediment-filled San Fernando Valley (Drake and Mal, 1972). 

As with the peak displacements, peak velocities increase, 

rather than decay, with distance from GllO to F086, but the increase 

is not as marked as that seen in the peak displacements. Since peak 

velocities are developed by higher frequency components of motion 

[approximately 0. 3 to 3 Hz (Brady and Trifunac, 1975)] than peak 



-33-

displacements, it appears that the influence of surface waves is not 

as strong in this mid-frequency range as it is at the lower frequencies 

characterizing peak displacements. 

In a homogeneous, isotropic, linearly elastic, unbounded solid, 

except at small distances, body-wave amplitudes decay by geometric 

spreading in proportion to the inverse of distance from the earthquake 

source. Surface-wave amplitudes on a similarly idealized half space 

decay in proportion to the inverse of the square root of distance (see 

Bullen, 1963, for example). Energy absorption by the propagation 

medium furth.er attenuates the amplitudes of waves travelling in real 

materials. This effect is referred to as material damping or material 

attenuation. The curves plotted in Figure 2. 2 enable a comparison 

to be made between the ob served amplitude decay and that expected in 

an idealized solid. 

Because of the amount of scatter in the peak displacement 

values, it is difficult to tell whether or not they are better fitted by 

the curve whose ordinate.s are inversely proportional to epicentral 

distance or by that with ordinates proportional to the inverse of the 

square root of epicentral distance. The general trend in velocity 

peaks is more clearly proportional to the inverse of epicentral 

distance. Peak acceleration data appear to decay at a greater rate 

than the inverse of epicentral distance. Since peak accelerations are 

developed by high frequency components (~ 5 Hz, Brady and T rifunac, 

1975), this suggests the presence of some frequency-dependent material 

attenuation. Development of surface waves does not appear to be 

reflected in peak acceleration values. The high values in records 
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Gl 10 and Gl06 are consistent with lower material attenuation expected 

from crystalline rock propagation paths. No definite explanation has 

been found for the differences in records Gl07 and Gl08, which were 

recorded within 1000 feet of each other on the Caltech carnpus. The 

main differences in amplitude spectra of the two records occur 

between 3 and 6 Hz, with Millikan Library (Gl 08) spectra being 

stronger. A possible, simple explanation is that standing surface waves 

were formed in the soil between the Library basement and the deep 

basements of the adjacent buildings. Distances and wave velocities 

are consistent with this hypothesis. 

The presence of material attenuation apparent in the peak 

acceleration data of Figure 2. 2, was investigated further using root 

mean square (r. m. s.) acceleration values from the same group of 

accelerograrns. The r. m. s. accelerations were obtained from an 

unpublished study of accelerogram correlation functions begun by 

H.-Y. Ko and R. F. Scott, and continued by the writer. R. m. s. 

accelerations were available from N-S, E- W, and from radial and 

transverse components. In order to elim.inate the component orientation 

with respect to the source-station direction as a variable, transverse 

components were chosen for study rather than N-S or E-W components. 

The logarithm of r. m. s. acceleration, normalized for the effect 

of an assumed body-wave geometric spreading (inverse of distance) are 

plotted against epicentral distance, s, in Figure 2. 3. Although 

including considerable scatter, the data again show a well-defined 

straight-line falloff with epicentral distance, represented by the equation 
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(2. 2) 

where (a) is r. m. s. acceleration and c 1 and c 2 are constants. 

This expression is consistent with body-wave amplitude decay 

expressions commonly used in seismology, where c 2 = Trf /13 is 

employed, 13 being shear wave velocity and 1 /Q a dimension-

less constant, the specific attenuation (Knopoff, 1964). 

Since the r. m. s. acceleration is a frequency-averaged 

quantity, it would be expected that r. p:l. s. accelerations are less 

scattered than peak accelerations. Comparing Figures 2. 2 and 

2. 3, this is seen to be so. If it is assumed that the average frequency 

characterized by the r. m. s. acceleration is 5 Hz, and assuming a 

shear wave velocity 13 of 3. 0 km I sec, the slope of the solid line in 

Figure 2. 3 corresponds to a value of Q = 400. To show the effect 

of changes in the value of Q, the dotted line is drawn for a value 

of Q = 800 and the dashed line for a value of Q = 160 both for an 

assumed f = 5 Hz. Alternatively, for constant Q = 400, the dotted 

line corresponds to a frequency of 2. 5 Hz and the dashed line to a 

frequency of 12. 5 Hz. 
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The conclusions of this preliminary investigation may be 

summed up as follows: 

1) Peak ground displacements do not show a regular pattern of 

attenuation with increasing epicentral distance. Their values are 

·influenced by the development of surface waves in deep, relatively 

soft surficial soil layers, and they show much more scatter than 

peak velocities and peak ·accelerations : Their mean trend cannot 

be well described by a geometric spreading term such as the. inverse 

of either epicentral distance or of its square root. 

2) Peak ground velocities are clearly influenced by the 

development of surface waves but not to the same extent as peak 

displacement values. Surface waves do not dominate peak velocities, 

and with considerable scatter, their amplitude decay is proportional 

to the inverse of epicentral distance. 

3) Peak and r. m. s. ground accelerations follow a well-defined 

pattern of attenuation with distance; the rate of fall-off is greater 

than the inverse of distance, and is consistent with an exponential 

material attenuation term with Q of about 400, in addition to a 

spherical spreading term proportional to the inverse of epicentral 

distance. 
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From this limited set of data it appears that the propagation 

of low frequency components of strong ground motion is dominated by 

generation of surface waves depending upon path geology and epicentral 

distance. The higher frequency components, however, which 

contribute to peak velocities and peak s.ccelerations, behave in a 

· much more regular manner, decaying steadily with distance and 

exhibiting less scatter; part of the scatter in these data is caused, 

but not dominated, by surface waves. These observations suggest 

that studies of strong ground motion attenuation should deal separately 

with the low frequency band, where surface waves are an important 

factor, and with the intermediate and high frequency bands, where a 

much more regular amplitude decay behavior is observed. The 

remainder of this chapter describes an empirical and much more 

detailed study of the amplitude decay of strong ground motion from the 

San Fernando earthquake, in the higher frequency band, from 0. 4 to 

16 Hz. 



-39-

2. 2. Main study: the data set. 

Of the 229 strong motion accelerograms from the San Fernando 

earthquake, 101 were recorded at ground level, mostly in building 

basements, within a radius of 209 km of the epicenter (Hudson, 1971). 

Of these, 95 were included in the set of corrected accelerograms 

-published by the Earthquake Engineering Research Laboratory; the 

remaining six records were of very low amplitude, and were not 

processed to the Volume II stage. Fourier amplitudes of the horizontal 

components of these 95 accelerograms form the data set for this study. 

The recording sites, labelled by their Caltech reference numbers, are 

shown in Figure 2. 4 and are listed in Table 2. 1. 

Two separate sets of Fourier amplitude data were derived 

from the set of accelerograms. One was taken directly from 

Volume IV which presents Fourier transforms of the corrected 

accelerograms given in Volume II. Details of the transform computa­

tions using the Fast Fourier Transform algorithm are given by 

Trifunac and Udwadia (1972) in Part A of Volume IV. 

Since accelerographs are usually oriented so that the accelero­

gram component directions coincide with the principal axes of the 

building in which they are located, the horizontal accelerogram 

components in the Volume II data are randomly oriented with respect 

to the earthquake source- station direction, or azimuth. In order to 

eliminate component orientation as a variable, a set of rotated 

accelerograms was computed from the Volume II records having 

radial and transverse components parallel and perpendicular to the 
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source-station direction. To eliminate two further variables, the 

instrum.ent triggering time and the record length, a 15-s·ec ond length 

of accelerogram was taken, starting at the S-arrival. The choice of 

15 seconds as the sampie length was somewhat arbitrary, the main 

consideration being the inclusion of the duration of faulting, which 

has been placed at between 8 and 12 seconds (Hanks, l 974b) . S-wave 

arrivals were read from the corrected accelerograms according to 

the technique described by Hanks (1974b). In a few records the 

S-arrival was uncertain, and the selected times have been noted as 

such in Table 2. 1. Apart from these cases, the arrival times 

listed in Table 2 . 1 are thought to be accurate to within 0. 2 seconds . 

As an example of a 15- second-long rotated accelerogram, the Pacoima 

Dam record is shown in Figure 2. 5. It is interesting to note that the 

peak acceleration in the transverse component is 1370 cm/sec
2 

(1. 4g), 

compared with the highest peak in the original components of 

2 
1148 cm/sec (1. 15 g). 

Fourier transforms of the 15- second accelerograms were 

computed by the same programs used by the EER Lin the routine 

computations for the Volume IV series. These programs are 

described in detail, and listed, by Trifunac and Lee (1973) . The 

definition of Fourier transform used throughout this work is given by 

the equation 

00 

g(f) = J g(t) e-Z'ITift dt (2. 3) 
-00 

where g(f) is the transform of the function g(t), i = ~.r-T and f is 
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Figure .Z. 5. Rotated, 15-second long Pacoirna Dam accelerogram. 
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frequency in Hertz. If x(t) is an accelerogram of finite length T, 

such that 

x(t) = 0 for t < 0 and t> T , 

then from equation (2. 3), its transform x(f)' is given by the 

expression 

(2. 4) 

The computer subroutine used for m:unerical computation of the trans-

form returns transform values at the discrete frequencies !). ~ B, 

n = 0, 1, 2, ... , m where 

1 
~B = T 

and m is such that m ~ B s; 25 Hz. 

The Fourier amplitude of acceleration X(f), which is used 

throughout the following study, is the modulus of the complex 

Fourier transform, x(f). That is 

X(f) = lx(f)j. 

(2. 5) 

Since this chapter principally studies the decay of Fourier amplitude 

with hypocentral distance r, X(f) will often be written with a second 

argument, as X(f, r). To avoid the continual use of the lengthy phrase 

"Fourier amplitude of acceleration,'' "Fourier amplitude, 11 or simply . 

"amplitude, 11 will be used in its place. VVhen the tiine function trans-

formed is not acceleration and this is not clear from the context, the 

time function will be mentioned specifically. 

The Fourier amplitude spectra of the rotated, horizontal 

components of the Pacoiina Dam accelerogram are shown in Figure 2. 6. 
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Figure 2. 6. Fourier amplitude spectra of the horizontal 
components of the accelerogram in Figure 2. 5. 
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2. 3. Data smoothing. 

It can be seen that the Fourier amplitude spectra in Figure 2. 6 

·consist of fairly smooth underlying functions rising to maxima 

between 2 and 4 Hz and then decaying with increasing frequency; 

superimposed upon these are apparently random, rapidly-fluctuating 

functions. The amplitude of the fluctuations appears to be in proportion 

to the amplitude of the underlying smooth function. This pattern of 

rapid fluctuations with frequency, superimposed on a smooth base 

function is observed in all Fourier amplitude spectra of earthquake 

ground accelerations. 

An explanation for this is that the underlying shape is deter­

mined by the general features of the earthquake source and propagation 

path, while the rapid fluctuations result from both irregularities in 

the source motions, and from the inhomogeneities along the propagation 

path. The path inhomogeneities cause reflection, refraction and wave 

scattering, with the result that at any given frequency, wave com­

ponents arriving by different paths, with different phase angles, 

interfere in a random manner, constructively at some frequencies 

and destructively at others. If this is indeed the explanation for the 

spectral fluctuations, then by the same argum.ents, the fluctuation 

should be random in space as well as in frequency. 

This hypothesis suggests that the data be examined for: 

(1) a simple, average attenuation behavior, that can be interpreted 

in terms of average behavior of crustal rocks, and 

(2) a statistical description of the variation, or scatter, of 

individual data points about the mean behavior. 
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The basic data set of this study are Fourier amplitudes of 

accelerations sampled at six discrete frequencies: 0. 4, 1. 0, 2. 0, 

. 4. 0, 8. 0 and 16. 0 Hz at 95 locations. As a measure of the average 

amplitude trends, smoothed samples were obtained by taking a simple 

unweighted average at each sampling frequency, over 2M+l amplitude 

points, i.e. the central data point and M points to each side. After 

some experimentation, de scribed in Appendix 1, a value of M = 5 was 

chosen for the 15-second records, giving the average over 11 

frequency increments. From equation (2. 5) it is seen that this 

corresponds to a resolution bandwidth, B = 11/15=0. 73 Hz. This 
e 

data set was labelled M5Hl5 where MS refers to the smoothing 

interval discussed above, "H" implies that hypocentral distances are 

used in any calculations requiring source distance, and 11 15 11 refers 

to the 15-second sample length. In order to study the scatter, a 

second data set was prepared from the 15-second record amplitudes, 

with no smoothing. 

labelled MOHl 5. 

F o r this set , B = 1 IT = 0. 0 6 7. 
e This set was 

A third data set was prepared from the Volume IV Fourier 

amplitudes of the full-length accelerograms. After further experi-

mentation with resolution bandwidth, it was found that smoothing over 

21 amplitude data at each sampling frequency appeared to be about 

optimum. In this case, since T varies from record to record, M= 10 

does not correspond to a constant B . Since most records are longer 
e 

than 30 seconds, generally B < 0. 73 Hz, the value for smoothing the 
e 

15-second data. This data set was labelled Ml OHIV. 
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2. 4. Data groups. 

In order to correlate amplitudes with transmission path 

geology and with source-station azimuth, three groups of sites 

were formed. 

Most of the San Fernando earthquake data were recorded to 

the south of the epicenter, and the 71 sites with source-station 

aximuths, cp, in the range 130 to 200 degrees form the first group. 

These sites are shown in Figure 2. 4, and are listed with amplitude 

data obtained from them in Tables AZ. 1, A2. 4 and A2. 5 in 

Appendix 2. 

The general geologic features of the Los Angeles region are 

depicted in Figures 2. 4, 2. 7 and 2. 8. The dominant geological 

features are the great depths of sediments, of up to 30, 000 feet, 

in the Los Angeles Basin and in the San Fernando Valley. A cross­

section along line A-A' (Figure 2. 4) reproduced from Duke et al. (1971 ), 

is shown in Figure 2. 8. The section illustrates the complex pattern 

of faulting, depression and uplift of basement blocks, and highly 

deformed sedimentary strata. Of the 71 stations in the southern 

group, three are on basement rock and the remainder are on varying 

depths of sediments. 

The second group is formed from sites north of the epicenter, 

with source-station azimuths in the range 310 to 360 degrees. The 

locations of these sites are shown in Figure 2. 4. Of the 9 sites, 4 are 

on crystalline basement rock, one (Jl 41) is in the San Andreas Fault 

zone, and the remainder are on sediments ranging in thickness from 
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15 feet (Ml 79) to lZ, 000 feet (E071). The northern sites are listed 

in Table AZ. Z of Appendix Z. 

The third group is formed from sites generally to the 

south-east of the epicenter, with azimuths in the range of 90 to 150 

degrees. Twelve sites from the southern group were also placed in 

this group, in order to include the basement rock sites Gl 06. This 

gives a more even distribution of basement sites with distance, 

making a better study of attenuation along crystalline rock paths 

possible. These sites are listed in Table AZ. 3 of Appendix Z. 

Z. 5. The southern data. 

The following general observations can be made from 

Figures Z. 9(a) through (f) showing the southern group M5Hl5 data 

plotted against r at each sampling frequency: 

(1) The data, with the exception of the labelled data points 

discussed separately, in each figure fall within fairly well 

defined bands, which decrease monotonically with increasing 

distance. 

(Z) The rate of decay in amplitude increases with increasing 

frequency. 

(3) The amount of scatter in the data is nearly constant with 

respect to changes in both frequency and distance. 

(4) There is no consistent difference between transverse and 

radial am.plitudes. 

Viewing these data as a whole, they give the general 

impression of quite regular behavior even allowing for the nonuniform 
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distribution of recording sites with distance. The suggestions made 

in Section 2. 3, that propagation of strong motion might be described 

by an underlying, simple and regular pattern of behavior, upon which 

is superimposed a random pattern of scatter, do seem to hold. 

2. 5. 1. Data winnowing. 

There is considerable scatter in these data, and records 

giving extreme amplitudes were investigated to determine if they 

had been modified by any extraneous processes. As a result, the 

points marked in the figures by a superimposed cross and labelled, 

e.g. NI 95 Figure 2. 9(a), were excluded, or winnowed, from the data 

used in determining attenuation parameters, and in analyses of the 

scatter. The excluded data are listed in Table 2 . 2. 

With the large number of data points - 852, from the six 

frequency samples from both components at 71 sites - removal of 

these 31 data has little effect on the overall trends in the data group 

as a whole, but it does affect the statistics of the scatter, since most 

of the winnowed data have extremely high amplitudes. All of the 

winnowing can be justified on physical grounds, except perhaps for 

FOSS, where some judgment was required. 

Fourier spectra of the horizontal components of record F088, 

from the Glendale Municipal Services Building, are shown in 

Figure 2. 10. The narrow band peaks between 1 to 1. 5 Hz are far 

more pronounced than those in any other record among the 95 ground­

level accelerograms studied. More typical ground level spectra, 

recorded at approximately the same epicentral distance, and on 
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TABLE 2. 2. 

Data winnowed from southern group 

Record Frequency Reason 

F088 1, 2 Hz Apparently influenced by 
building response 

N185 4,8,16Hz Instrument on crest of 
earth dam with fundamental 
frequency fo~ 3. 0 Hz. 

Nl86 8, 16 Hz Instrument on crest of 
earth dam with fundamental 
frequency fo~ 5. 5 Hz. 

C048 } 
Exceptionally high ratio of 

8, 16 Hz 
sediment to basement path 

Jl45 caused unusually high 
attenuation . 

F087 
..., 

Hl24 

Ml80 

Nl91 >- 16 Hz 
Data at digitization noise 

Nl96 level. 

0124 

0205 

P220 

Ll 71 
All frequencies s n-arrival dominates. 

Nl95 
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FOURIER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERATION FOLLOWING S-ARRIVAL 
5AN fERNfNJO EARTHQUAKE fEB 9. 1971 - 0600 PST 
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FOURIER AMPLITUDE SPECTRUM OF 15 SEC Of. ACCELERATION FOLLOWING S-ARRIVAL 
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25 

Figure 2. 10. Note unusually high spectral peaks for a building 
basement record. 
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similar depths of sediment (about 4000 feet) are shown in Figure 2. 11. 

Peaks such as those seen in the F088 spectra are more typical of 

records made on upper floors of tall buildings, where resonant 

response of the structure causes amplification or a narrow band, or 

bands of frequency components. A typical upper story spectrum is 

shown in Figure 2. 12. The Glendale building has three stories in the 

form of an open square supported on four steel columns above an open 

courtyard. Thus the lateral stiffness is relatively low, and the center 

of gravity relatively high. Although no detailed analysis has been 

made, a fundamental frequency of around 1 Hz would be possible for 

such a structure. Soil-structure interaction is unlikely, however, in 

view of the flexibility of the superstructure, so that the influence of 

the building's own response on the recording in the basement should 

be minimal. A tentative explanation has been given by Lord (1974). He 

suggested that motion of an adjacent, massive, concrete shear-wall 

structure-the Public Services Building-was transmitted to the 

basement floor of the Municipal Services Buil.ding to which the accelero­

graph is fixed. Since the adjacent building has a basement which 

abuts on (but is not in rigid contact with) the basement in which the 

instrument is situated, transfer of motion is quite possible . It is 

Lord's opinion that resonant motion at about 1 to 2 Hz in a rocking 

mode would be consistent with the physical characteristics of the 

adjacent building. Because of the atypical appearance of the spectra, 

and because of Lord's explanation, it is assumed that the high spectral 

peaks do not have a geophysical origin, and consequently dat;::i. at 1 and 

2 Hz from F088 were taken out of the set. 
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Records Nl85 and Nl86 were made on the crests of long earth 

dams. The Whittier Narrows Dam, Nl86, is 56 feet high and several 

thousand feet long. Using Ambraseys' (1 960) shear wedge model and 

assuming a shear wave velocity of 800 ft/sec, the computed funda­

mental frequency of the dam is 5. 5 Hz. As the estimate of shear 

wave velocity may be considerably in error, 4 Hz data and above 

were deleted. Similarly, the fundamental frequency of the 99 feet 

high, 2610 feet long, Carbon Canyon Dam, Nl85, was computed to 

be 3. 1 Hz. Spectra of this record have several strong peaks at 

frequencies above 2. 5 Hz. Data from 4 Hz and above were deleted. 

At 16 Hz, and to a lesser extent at 8 Hz, the amplitude data 

at the two sites on deep sediments in the San Fernando Valley, C048 

and J145, were well below the average trends in amplitude. The 

upper trace of the fault causing the San Fernando earthquake is shown 

in Figure 2. 8. The hypocenter has been placed at between 8 andl3 km 

deep by various investigators (Hanks, 1974a), and therefore about 

one third to half of the ruptured fault is shown in Figure 2. 8. Regard­

less of the true value of hypocentral depth, it is ·seen that a large part 

of the propagation path to these sites (C048 and J145) is through 

sediments. With the exception of C048 and J145, typical propagation 

paths for southern group sites pass through crystalline basement rock 

for distances of a few to many tens of kilometers, followed by a few 

kilometers or less through sediments. The average attenuation 

behavior, and the parameters estimated to describe it, reflect the 

response expected from mixed-geology paths where the major part 
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of the path is through crystalline rock. Since greater material 

attenuation is expected in sediments, and because this will be 

more marked at high frequencies, the 8 and 16 Hz data from C048 

and Jl45 were deleted. 

The sudden flattening of the amplitude data in Figure 2. 9( f) 

at hypocentral distances greater than 60 km suggests the presence 

of noise. The noise ranges shown in Figure 2. 9(f) have been 

obtained by Berrill and Hanks (1974) from the results of an 

experiment by Trifunac et al. (1973) who measured digitization 

errors in the routine data processing. It was found that the 

principal source of high frequency errors in the EERL digitized 

accelerograms was operator error in positioning the digitizing 

machine cross-hairs. When the results of the experiment are 

scaled according to the digitization rates of the 15-second 

' 
accelerograms, the noise levels shown in Figures 2. 9(e) and (f) 

are obtained. In view of the agreement between the 16 Hz data 

at r > 60 km and the experimental noise levels, it was assumed 

that these data were due principally to noise. Accordingly, 

16 Hz data from the group of records, F087 through P220 in 

Table 2. 2, were taken out of the set. 

At hypocentral distances of between 110 km and 130 km, 

strong phases reflected from the Mohorovicit discontinuity 

have recently been observed by seismologists and in some cases, 
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these phases dominate the record at the time of the direct shear 

wave arrivals. This may account for the anomalously high 

values at Nl 95 and also at Ll 71 which fall within these distances. 

Accordingly, data from these sites were excluded from the 

set. 

2. 6. An amplitude decay expression . . 

The regular trends observed in Figure 2. 9 together with 

the results of the preliminary study, suggested that an attempt 

be made to match the general trends in the amplitude data with 

a decay expression including a 1 /r geometric spreading term, 

together with an exponential mate rial attenuation term of the 

form given in equation (2. 2). The curves in Figure 2. 9 are 

drawn from the following equation incorporating these spreading 

and :r;naterial absorption terms: 

X(f, r) = A(f)e -(nfr/Q(3) 
r (2. 6) 

where 

X(f, r) is Fourier amplitude of acceleration, 

f is frequency in Hertz, 
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r is hypocentral distance, 

A(f) is a measure of source excitation strength, 

l /Q is the apparent specific attenuation, and 

13 is shear wave velocity. 

Values of Q and of A(f) at the six sampling frequencies, used in 

drawing the curves from equation (2. 6), will be obtained from the 

data by a least- squares parameter e stirnation technique. 

Except for the points at r;;::: 60 k:m at 0. 4 and 1 Hz, it is seen 

that the curves follow the underlying trends in the data as well as 

they can l:le defined in the presence of the considerable scatter. · · 

Furthermore, the low values of the 0. 4 and 1 Hz data beyond 60 km 

are found to be caused by waves at these frequencies dispersing 

outside the 15-second sampling window. When the full-length record 

amplitudes are used, their average levels follow the attenuation 

curves well throughout the distance range. 

Expressions such as equation (2. 6) are widely used in 

seismology (Bullen, 1963; Knopoff, 1964) to account for amplitude 

losses. The geometric spreading and material absorption terms are 

now discussed in more detail. 

2. 6. 1. Geometrical attenuation. 

An earthquake source, buried in an infinite homogeneous, 

isotropic linearly elastic solid gives rise to two sets of body waves; 

one set travelling outward with dilatational, or P-wave, velocity a, 
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the other travelling outward with shear wave or S-wave velocity 13. 

These waves are the so-called far-field radiation of the earthquake; 

their amplitudes decay as 1/ r and dominate the displacement field 

for distances such that 

Kr>> 1 (2. 7) 

where K = 2rrf/ c is the wave number, and c is either et or 13 depending 

on whether P or S-waves are being considered. Conversely, when 

Kr<< 1, the near-field components of the displacement field, the 

"static" displacements, dominate. These amplitudes decay in pro­

portion to l/rZ (Haskell, 1964). 

In our case, we are considering wave components with 

frequencies at or above 0. 4 Hz. If we assume a shear wave velocity 

in crystalline rock of 3. 2 km/sec, then from inequality (2. 7), the 

l/r-shear wave components will govern when r» 1 km. Similarly, 

assuming a= 5. 5 km./ sec, r >> 2 km as sure s dominance of the 

1 /r..,.dilatational wave components. Since at the closest recording 

site, the Pacoima Dam (C041 ), has r = 15. 9 km, these conditions 

should both be satisfied, at least for the initial rupture, to which the 

hypocentral distance r is referred. As the rupture of the San 

Fernando source progressed upwards on the fault, it passed within 

about 4 km of the Pacoima Dam (Hanks, 1974a), and it is likely that 

l / r
2 

decaying components contribute at least partially to the recorded 

ground motion at the dam. Furthermore, it is unlikely that in these 

circumstances the idealization of the rupture surface as a point source 

implicit in equation (2. 6), is valid. In the particular case of the 

San Fernando earthquake, the assumption of a point source is perhaps 
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not unrealistic even for the Pacoima Dam, since Hanks (l 974a) has 

found that approximately 80 percent of the energy release occurred in 

the i.nlmediate hypocentral region. In general, the assumption of a 

point source is considered valid for r greater than dimensions of 

the earthquake source. 

Returning to the general discussion of geometric spreading, 

body waves reaching a free surface interact with the surface giving 

rise to surface waves. Since surface waves only exist close to a 

surface, they spread in two di.nlensions; hence at large distances 
1 

from the source their amplitudes decay in proportion to l / r 2 (see, 

for example, Bullen, 1963; Tolstoy, 1973). 

From the way in which the curves drawn with a l /r geometric 

spreading term in Figures 2. 9, match the trend of the data, it appears 

that surface waves with their much smaller rate of decay, do not make 

a major contribution to acceleration amplitudes at the frequencies 

considered. 

2. 6. 2. Material attenuation. 

Wave propagation in real media is accompanied by a dissipation 

of energy which cannot be explained by geometric spreading, or 

radiation losses alone. In solids, it is considered that the dissipation 

mechanism is principally frictional (Bradley and Fort, 1966) but 

viscous effects must also be present. Knopoff (1964) reviews the 

topic of material attenuation, and reports that experimental data 

from a large number of tests on different materials show that material 

dissipation in solids, including rocks, can be described mathematically 
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over a wide range of frequencies, by a constant specific attenuation, 

I /Q. He notes, however, that no simple rheological model has been 

found corresponding to constant specific attenuation. 

The specific attenuation may be defined as follows. Let 

.6E be the energy dissipated per cycle of oscillation in a unit volume 

of material, and let E denote the peak energy stored in that volume 

during a cycle. Then Q is defined by the relationship 

(2. 8) 

That is, l/Q is the ratio of energy dissipated per radian to the peak 

energy stored during a cycle of vibration . Let the phase angle of the 

motion be rb. Then from equation (2. 8), 

(2. 9) 

Consider a harmonic wave with wave number K 

propagating at velocity c' and with space coordinate s' then 

dr/J /ds = K . Using this relationship, equation (2. 9) may be integrated 

to obtain 

E(s) = E e-{Ks/Q) = E e-( 2'ITfs/Qc) (2. 10) 
0 0 

where E
0 

is the peak energy of the wave at distance s = 0 . Since the 

peak energy stored is proportional to the square of the amplitude, 

a( s), of the motion, aniplitude attenuation is given by the equation 

(2.11) 

where ao is the amplitude at distance s = 0. 
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Bradley and Fort (1966) summarize from the literature the 

following observed properties of material attenuation in rocks: 

(1) Dissipation is less for a single crystal than for an 

aggregate of crystals. 

(2) The rate of energy dissipation decreases with increasing 

pressure, suggesting that dissipation is related to the 

proportion of voids in the rock. 

(3) On the basis of only a small amount of data, it appears 

that attenuation is insensitive to temperature. 

(4) The limited amount of investigatio·n on the effect of strain­

amplitude on dissipation suggests that dissipation is virtually 

-4 
independent of amplitude for strains less than 10 (Mason, 1958). 

Some idea of the · shear strain dependence of dissipation in 

granular sediments can be obtained from Figure 10 of Seed and 

Idriss, (1970) which summarizes test data from several sources for 

sands and for mixed sands and gravels. The damping ratio, yvhich 

is proportional to 1 /Q (Knopoff, 1964), for dense sands and gravels 

appears to be strain-independent for strains less than about 5 x 10-
3

. 

For looser materials (sands with a 40% relative density, for example), 

damping exhibits strain dependence for strains above 5 x 1 o-4 Since 

it is improbable that rock behavior becomes nonlinear at lower strains 

than for soils, it is assumed that the 10-
4 

criterion for rock given in 

item (4) is conservative. 

Since granular materials in the Los Angeles region generally 

-4 . 
are dense, a strain of 10 appears to be a good criterion for the 

onset of the influence of strain level on dissipation for sediments arid, 

recalling item (4), also for crystalline basement rock. 
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Estimates of peak strains e: , during the San Fernando max 

earthquake for eight sites with a wide range of hypocentral distances 

are given in Table 2. 3. The peak strain values shown were computed 

from peak displacement data taken from the integrated displacement 

records in Volume II of the EERL series Strong Motion Earthquake 

Accelerograms (Hudson et al., 1971 ). In the computations, it was 

assumed that the displacement peaks resulted from a single harmonic 

wave travelling with a velocity of 3. 2 km/sec in basement rock and 

i km/ sec in sediments. The period of the actual displacement 

waveform at the peak displacement was measured between three 

adjacent zero crossings of the integrated displacement curves. These 

periods are shown in the third column of Table 2. 3, and since all 

were close to 5 seconds, that value was used throughout the computa-

tions. At' distant stations, the peak displacement occurred outside 

the IS-second time window following the S-arrival. In these cases, 

peak strain levels were computed for both the 15-second window 

and for the entire record. The second to last column in Table 2. 3 

shows the average, d , of all displacement peaks occurring during 
max 

the 15 seconds following the S-arrival. The last column shows the 

resulting strains, € . Since it is unlikely that peak displacements 
max 

are the result of a single harmonic wave, it is, therefore also unlikely 

that peak strains will occur at a single point in the medium. Hence, 

the strain levels given in the table, . based upon this assumption, should 

overestimate actual values. 

Alternatively, peak strain estimates may be obtained by con-

sidering them to be caused by a single travelling wave u(t, r) such that 
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u(t, r) = g(r-ct) (2. 12) 

where c is wave velocity. Peak strain, e: , may be obtained by 
max 

differentiation as follows: 

I. OU I 1 I OU I = 
e:rnax = 8r = 2 8t 

· max max 

v 
c 

where v is again peak ground velocity. Taking values of peak ground 

velocity from the Volume II series and using the same wave velocities 

as in Table 2. 3, peak strains of about twice the values given in the 

-4 -4 
table are obtained. For example, e: = 3 x 10 , 3 x 10 and 

max 

1. 4 xlo-4 are obtained for sites C041, C048 and Gl07 respectively. 

Except at the two closest stations, Pacoirna Darn (C041) on 

crystalline basement rock and the Holiday Inn (C048) on deep 

-4 
sediments, the computed strains are below the 10 criterion. Thus 

the effects of material nonlinearity should be confined to the immediate 

focal region, and conwarisons in the majority of the data should be 

unaffected by material nonlinearity. It is seen in Figures 2. 9(e) and 

(£) that the amplitudes at 8 and 16 Hz are relatively low at the two 

sites, C048 and Jl45, on the deep sediments of the San Fernando 

Valley within 25 km of the epicenter. This may be due to higher 

specific attenuation (lower Q) due to material nonlinearity, or it may 

simply be caused by the greater than usual ratio of sedimentary path 

length to basement rock path length, with the sediments and basement 

having different, but constant Q's. · The latter cause was assumed in 

excluding the data at these frequencies. 

However even these data (C048 and J145) show no extreme 

departures from the behavior of the data set as a whole. From this 
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observation, and from the computed strain levels, it can be concluded 

that while material nonlinearity may be very important close to the 

focus, at hypo central distances of 20 km or more it does not appear 

to be a major factor. 

2. 6. 3. Least-squares estimation of parameters. 

Let X .. denote an observed Fourier amplitude value at frequency 
lJ 

f. and hypocentral distance r., taken from the data set. Let X(f., r.) 
1 J 1 J 

denote the corresponding value predicted by equation (2. 6). As in 

Chapter 1, let the uncertainty factor k be defined by 

(2. 13) 

The pattern of scatter in the semi-log plots in Figures 2. 9 together 

with Davenport's (1972) observation that the scatter in peak acceleration 

data ·has a lognormal distribution, suggests that the distribution of 

log k for this data may also be approximately Gaussian. In that case, 
e 

the best estimate of the parameter Q and the values of A(f) at the 

six discrete sampling frequencies in equation (2 . 6) will be those which 

minimize 

6 n 

~ =I I (logekij)
2 

(2. 14) 

i=lj=l 

over the. data set (Tukey, 1965), where 6n is the number of data. In 

effect, this minimization scheme puts equal weight on each data point. 

Since clearly anomalous data have been winnowed, and because the 
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scatter appears fairly constant with respect to variations in distance 

and frequency, equal weighting of data is a reasonable practice. 

Substituting from equations (2. 6) and (2. 13) into equation (2. 14), we 

get 

6 n 

ip =I I 
i=lj=l 

[log X .. -log X(f., r.)] 2 
e lJ e i J 

6 n 'll'f.r. 2 
= \ \[log X .. -(log A.-log r.- QlAJ)J l l e iJ e l e J "" _ 

i=lj=l 

(2. 15) 

where A.= A(f.) and f. takes the values:O. 4, 1, 2, 4, 8 and 16 Hz for l l l 

i = 1, 2, ... , 6 respectively. The values of Q and A. to minimize ip 
l 

for the various data sets. were found using a standard least squares 

technique. 

2. 7. Attenuation parameters for southern data. 

In this section an empirical description of the average amplitude 

attenuation is obtained by estimating the parameters which 11best fit 11 

the relationship of equation (2. 6) to the southern group data. Statistics 

of .the scatter about this average will be examined. Estimates of the 

source strength function A(f) will also be obtained from the parameter 

estimation procedure, and will be discussed separately in Chapter 3. 

2. 7. 1. Average attenuation. 

Using the method described in Section 2. 6. 3, the values of Q 

and A. shown in Table 2. 4 were obtained for M5Hl5 data from the 
l 

southern sites. A value for shear wave velocity !3 of 3. 2 km/sec has 
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TABLE 2. 4. 

Attenuation parameter estimates, M5H15 data, southern group. 

Parameter Value 90% confidence interval 

Q 330 310-360 

1050 cm/ sec 91 0 - 12 0 0 cm I sec 

-·-1440 1240 - _-·-

1490 1280-1700 

1440 1230-1630 

1100 920-1230 

370 300-410 

-·-'''None found. 
>:::::::: 

The subscripts 1, 2, .. ., 6 refer to the frequencies 0. 4, 1, 2, 
4, 8 and 16 Hz respectively. 
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been assumed. The method of confidence interval computation is 

described by Marquardt (1964). The curves shown in Figures 2. 9 

r~sult from the substitution of these values into equation (2. 6) 

It has already been noted that, particularly at high frequencies, 

the curves fit the trend of the data closely. It would be difficult to 

improve on the fit at frequencies of 2 Hz and above, either by free­

hand sketching or by using a higher order attenuation expression, and 

further complexity would not be justified by the amount of scatter. 

Agreement between the I Hz data (Figure 2. 9(b)) and the curve is 

not as good as at higher frequencies. At this frequency, data recorded 

at hypocentral distances beyond 60 km is generally overestimated by 

about a factor of two. But these discrepancies are still within the 

general pattern of scatter. 

At O. 4 Hz (Figure 2. 9(a) ) the differences between data and curve 

are more pronounced. An explanation may be found in the dispersion of 

waves outside the 15-second window. This supposition is supported by 

observing that Fourier amplitudes from sites beyond 60 km computed 

from the full-length records do not fall below the attenuation curves 

as we see here. This is seen in Section 2. 7. 7. Since simple surface 

wave dispersion leads to a retardation of the high frequency components, 

and not the low frequency components (Bolt, 197.0a), surface wave 

dispersion by itself is not the mechanism that is seen in .Figure 2. 9(a) 

and 2 . 9(b). However, the presence of surface waves at low frequencies 

only is consistent with the observations here, since, because of their 

lower velocities in general and particularly in sediments, they will 

arrive later than body waves. 
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2. 7. 2. Scatter in the smoothed data. 

The uncertainty factor k, defined by equation (2. 13), is used 

as a measure of scatter. Histograms showing the frequency distri­

bution (using ''frequency" in the . statistical sense) of k at each sampling 

frequency for the smoothed data of the southern group are given in 

Figure 2. 13. The arithmetic mean k, standard deviation crk and 

third moment mk for each sampling frequency are given in Table 2 . 5. 

They are based on the attenuation parameters given in Table 2. 4. The 

shapes of the distributions are fairly constant, but the 8 and 16 Hz 

data show a slightly wider spread about their mean values, which in 

each case are approximately unity. 

It is seen in Table 2. 5 that k is not equal to unity. The reason 

for this is found in the lea st- squares estimation of the attenuation 

curves obtained by the minimization of I:( log k)2. This results in the 

average value of log k tending to z era, which is equivalent to the 

geometric mean kG, of k tending to unity. Since from the properties 

of mean values, k ~kG, with equality only if all k 1 s are equal, values 

of k greater than one are expected. 

It was noted earlier that higher-frequency components of 

seismic waves should be more susceptible to wave scattering by 

virtue of their shorter wavelengths, and that this was expected to be 

one of the causes of scatter in Fourier amplitude data. In view of the 

forty-fold increase in frequency from 0. 4 to 16 Hz, the increased 

spread in .e.he distributions of k at higher frequencies is remarkably 

small. 
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The histogram in Figure 2. 13(g) shows the frequency distri-

bution of k for data from all sampling frequencies taken together. It 

is seen that this histogram is a good approximation to any of those 

from individual frequency samples. (Note that Figure 2. 13(g) is the 

upper figure on the page. ) 

2. 7. 3. Relative amplitudes of radial and transverse components. 

It was observed in Section 2. 5. 2. that there is no apparent 

systematic difference in amplitude between radial and transverse com­

ponents. This observation is confirmed by the statistics of the k-factor 

distribution for the two components of smooth, 15-second amplitude data 

shown in Table 2. 6. The transverse amplitudes are stronger on the 

average by less than 5 percent. They are also more scattered, as seen 

in a 10 percent higher average standard deviation. These differences 

are small and about the same as those that occur between different 

frequency samples. For engineering purposes, in view of the much 

greater uncertainties in estimating design earthquakes (for exa1nple, 

in predicting the earthquake recurrence and source parameters) these 

differences are not considered significant. No separation of components 

will be made henceforth. 

Possible reasons for this are (a) that the San Fernando rupture 

mechanism had almost equal components of strike- and dip-slip dis­

location, and (b) that scattering by propagation path inhomogeneities 

further r.educed differences between components. 

2. 7. 4. Engineering significance of resolution bandwidth. 

The foregoing discussion of scatter in Fourier amplitude 

ordinates has been concerned with the M5Hl 5 amplitude data, which 

is smoothed over a bandwidth of 0. 73 Hz. 
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TABLE 2. 6. 

k-factor statistics for radial and transverse components 

separately, for smoothed, southern 15 - second data 

Radial component Transverse component 
f 

(Hz) k ak ~ k (Jk mk 

0.4 1. 06 0.40 -1. 7 1. 01 0.40 -1. 9 

1 1. 00 0.37 -1. 4 1. 17 0.51 -2.5 

2 1. 13 0.40 -2.0 1. 06 0.39 -1. 6 

4 1. 05 0.42 -1. 6 1. 11 0.45 -2.0 

8 1. 08 0.51 -2.0 1. 14 0.52 -2.2 

16 1. 13 0.49 -2.2 1. 11 0. 60 -2. 5 

Combined 
1. 07 0.43 -1. 8 1. 12 0.48 -2. 1 samples 
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It is obvious from the appearance of an unsmoothed Fourier 

aro.plitude spectrum (Figure 2. 6, for example) that the distribution 

of scatter in Fourier amplitude data is highly dependent upon the 

re solution bandwidth. Hence, for a statistical distribution of scatter 

to be of use in structural design, the smoothing bandwidth used in 

obtaining the statistics should be equivalent to the range of frequency 

components making the principal contribution to the response of the 

structure. 

The half-power bandwidth, t:i.f, is a commonly used measure of 

the bandwidth making the chief contribution to the response of a 

structure. Let y be the amplitude of response of a structure, and 

y be the amplitude of a resonance peak at frequency f , as 
max n 

shown in Figure 2. 14; then .6.f is defined as the width of the resonance 

.peak at the half-power points where y == y lfi. In the case of a 
max 

viscously-damped structure, it can be shown (e.g. Thomson, 1965) that 

(2.16) 

where C is the fraction of critical viscous damping . 

Since C is fairly constant for many structures, the effect of 

chal).ge in natural frequency is to change the width of frequency band 

sampled. It is seen from equation (2. 16) that for a given value of (, 

the half-_Power width increases in direct proportion to natural 

frequency. Hence, structures with high natural frequencies should be 

less susceptible to spectral peaks and troughs, since from equation (2.16) 

they respond to a wider frequency band and because scatter is nearly 
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FREQUENCY, f 

.6£ defined as the width of the resonance curve 
at the half-power points, Ymax1J2:. 
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independent of frequency for a constant smoothing bandwidth. Values 

of C • computed from equation (2. 16) and corresponding to a 6£ of 

o. 73 Hz, equal to the smoothing bandwidth of the M5Hl 5 data, are 

shown in Table 2. 7. Values of ' for .6.f = O. 06 7 Hz, the bandwidth 

resolution of the raw Fourier amplitudes from the 15-second data 

before smoothing, are also shown in Table 2. 7. Since equivalent 

viscous damping of 2 to 5 percent of critical is typical for many 

structures, it can be seen that only at higher frequencies do typically 

damped structures respond to as wide a bandwidth as the re solution 

width of the smoothed data. Thus, the distributions of scatter found 

for the smoothed data are applicable to structures with 2 to 5 percent 

critical damping only at frequencies of about 8 to 16 Hz. From Table 

2. 7 it is seen that structures with natural frequencies of about 1 Hz 

and levels of damping in the typical 2 to 5 percent range will respond 

to a frequency band of about 0. 07 Hz, which is near the bandwidth 

resolution of the MOH15 data. Structures with natural frequencies 

near 1 Hz, therefore, will be subject to the scatter seen in the 

unsmoothed Fourier amplitudes, examined below. 

2. 7. 5. Unsmoothed Fourier amplitude data. 

Unsmoothed Fourier amplitude data from the southern group of 

15-second accelerograms are listed in Table A2. 4, Appendix 2, and 

are plotted against hypocentral distance in Figures 2. 15. These data, 

labeled MOH15, are considerably more scattered than their smoothed 

counterparts, but they do show the same general attenuation trends 

observed in the smoothed data. The attenuation curves shown have 

the same parameters as those in the plots of smoothed data. The 

parameters A. and Q estimated by the least-squares method from 
1 
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TABLE 2. 7. 

Fraction of critical damping for single-degree-of-freedom 

oscillator with natural frequency f 0 

and half-power bandwidth ~f 

Fraction of critical damping, ~ 
f 0 (Hz) 

~£ = 0. 73 Hz ~f = 0. 067 Hz 

0.4 0.91 0.084 

1. 0 0. 37 0.034 

2.0 0. 18 0.017 

4.0 0.09 0.008 

8.0 0.045 0.004 

16.0 0.023 0.002 
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.the unsmoothed MOH15 data are shown in Table 2. 8. These values 

are fairly close to those from. the M5Hl5 data shown in Table 2. 4, 

buttheirconfidence intervals are considerably wider. The resulting 

Jc-values for the MOHl 5 amplitudes are not greatly different when 

computed from the parameters in Table 2. 4 or from those in Table 2. 8. 

Since it is considered that the smoothed amplitudes (M5Hl 5) give 

more reliable estimates of Q and A., the values from Table 2. 4 were 
l 

used in computing the k-values for the MOH15 amplitudes. Histograms 

showing the frequency distributions of k for the MOH15 data are given 

in Figures 2. 16, and the individual k-values are listed in Appendix 3. 

The greater scatter is reflected in flatter, more widely-spread distri-

butions, and is shown quantitatively in the standard deviations of k. 

Again, the distributions at different frequencies are quite similar, as 

can be seen from the statistics given in Table 2. 5. For comparison, 

the histogram of k for the sixfrequency samples combined is shown as 

Figure 2. l 6(g) on the same page as the corresponding histogram from 

the M5Hl5 data, Figure 2. 13(g). 

2. 7. 6. Effect of resolution bandwidth on scatter in Fourier amplitudes. 

The effect of re solution bandwidth on scatter of Fourier 

amplitude data is seen in Figure 2. 17, in which accumulated relative 

frequency ("frequency" being used in the statistical sense) is shown 

for both the smoothed and unsmoothed data. 

In view of the large number of data, these curves should 

closely approximate the cumulative probability distributions for k 

corresponding to the two resolution bandwidths. They can, therefore 
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TABLE 2. 8. 

Estimated parameters from MOH15, 

southern data 

Parameter Value 90% confidence interval 

Q 370 330 - 430 

J, ....... , ... 

Al 
,,, 

960 cm/ sec 750 -
.. , ..... , .. 

-

,r.,.J.,. 

Az 1280 990 -
.. , ........ 

-

A3 1130 870 - 1460 

A4 1120 870 - 1460 

AS 830 630 - 1070 

A6 250 190 - 330 

"'The subscripts 1, 2, ... , 6 refer to the frequencies 0. 4, 1, 2, 4, 
8 and 16 Hz respectively. 

~::~::: 

None found. 
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(a) 0. 4 Hz 
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k = 1.24 
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5 

Figure 2. 16. Scatter in southern MOH15 data shown by 
distribution of k. 
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-k = 1.06 
O"k = 0.79 

mk =-3.2 
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Figure 2. 16. Continued. 
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(e) 8. 0 Hz 

2 
k 

(f) 16. 0 Hz 

-k = I. I 
O"k = o. 74 

mk =-3.1 
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-
k = I. 10 

erk = o;."5 
mk =-3.1 
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Figure 2. 16. Continued. 

5 

5 



-104-

l{) 
• rt') - -"- "-.. .. 

'+- c+-- - ·O ~ x IX • 
rt') ... 

II 0:: 
.:II:: 0 

I.() t-
.a (.) N <{ 

LL . 
I'-
.-f 

0 >-
. 

N • 
N I- (!) 

I-< z :l - 0.0 

<( 
...... 
~ 

l.() r-.. a:: - w 
u 

0 
z 
=> • 

L_ __, _ __L_ _ __L _ __L_L_. _.,,,__...._~____... __ 

0 
• 

CO <..O "3'" N () 
., 1lf. 0 • • 

0 0 0 0 0 

A~N3n0_:1~~ 3/\l_l"Jl3t! 
CJ3J r/1nv'~n8::)~ 



-105-

be used to compute confidence limits for Fourier amplitude estimates 

obtained from equation (2. 6). 

For example, consider a given earthquake specified by its 

source strength function A(f). Suppose a value of Fourier amplitude 

of ground acceleration x
0

.
90

(f, r) is sought at hypocentral distance r 

and frequency f, for which the probability is 90 percent that this 

value will not be exceeded during the earthquake. That is, x0•
90 

(f, r) 

is sought such that 

Prob[ X(f, r) < x
0

.
90

(f, r)] = 0. 90 ( 2. 1 7) 

Suppose further, that the value should correspond to a half-power 

bandwidth of 0. 73 Hz. The value of x
0

.
90 

(f, r) can be obtained by 

first finding the expected value X(f, r) from equation (2. 6). Then from 

Figure 2. 17, the uncertainty factor k is found, corresponding to the 

accumulated relative frequency of 0. 90. From the MSH15 curve for 

which Be= 0. 73 Hz, the value of k 0 .
90 

is 1. 7. Then from 

equation (2. 13) defining k, we find 

x 0 .
90

(f, r) = 1. 7 X(f, r) , (2. 18) 

the value required. In a real situation the source strength would not 

be known precisely, and uncertainties associated with it should also 

be considered. 

For engineering use, scatter distributions for several values 

of f and t:::.f/f are presented in Appendix 4. A worked example is 

presented in Chapter 4 using the results of this study to arrive at a 

design earthquake. 



-106-

2. 7. 7. Attenuation of full-length accelerogram amplitudes. 

So far amplitude data from the rotated, 15-second samples 

have been studied. It is of interest to compare the attenuation of 

Fourier amplitudes computed from the full-length records with that 

of the 15-second data. These data are available directly from the 

EERL, on a master tape of Volume IV data. 

Smoothed Fourier amplitudes of the full-length accelerograms 

from the southern sites are listed in Table A2. 5, Appendix 2, and 

are shown in Figure 2. 18, where they are plotted against hypocentral 

distance. The smoothing procedure which results in variable 

resolution bandwidths has been described in Section 2. 3. Estimates 

of the parameters Q and Ai obtained from the MlOHIV data by the 

least-squares procedures of Section 2. 6. 3 are listed in Table 2. 9 

helow. The solid curves plotted in the figures result from the 

substitution of these parameter values into equation (2. 6). The 

attenuation curves from the M5Hl5 data are shown by dashed lines, 

for comparison. 

The value of Q = 330 is the same as that obtained from the 

15-second record data. Only at 0. 4 and 1 Hz is there any difference 

in the values of A.. It can be concluded from this that essentially all 
1 

the ~nergy in components with frequencies at and above 2 Hz is 

contained within the 15-second window following the S-arrival. This 

implies that these components are not dispersed outside the 15-s econd 

window and also that the energy content of the P waves coming in 

before the S-arrival is small. 
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TABLE 2. 9. 

Estim.ated parameters for smoothed, 

Volume IV data, southern group 

Parameter Value 90% confidence interval 

Q 330 310-360 

...,,. .. , ... 
A 

"l"'"I.,. 

1460 ( 105 O)>:~ cm I sec 1260-1700 
1 

A2 1640 (1440)>:~ 1460- none found 

A3 1490 1270-1730 

A4 1460 1240-1680 

AS 1070 900-1220 

A6 370 310-440 

~c 

Value for 15-second data (from Table 2. 4). 
~:~* 

The subscripts 1, 2, ... , 6 refer to the frequencies 0. 4, 1, 2, 
4, 8 and 16 Hz respectively. 
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At I Hz and below the situation is different. Comparing . 

Figures 2. 9(a) and 2. l 8(a) it is seen that: 

(1) data points from the full-length records at these frequencies are 

generally higher than those from the 15-second records, 

(2) they follow a simple attenuation curve given by equation (2. 6) 

much more closely than do the 15-second data, and 

(3) they do not have the relatively low amplitudes found in the 

15-second data at large focal distances. 

From these observations it is concluded that (1) even though surface 

waves are apparently contributing to ground motions in the 0. 4-1 Hz 

range, geometric attenuation can be described by a l/r term through­

out the 0. 4-16 Hz frequency band; and (2) low amplitudes noted at 

0 . 4 and 1 Hz in the 15-second data at large hypocentral distances 

are due to part of the wave motion at these frequencies being dispersed 

and arriving outside the 15-second sampling window. 

The scatter in these (Ml OHIV) data is quite similar to that of 

the smoothed, 15-second amplitudes. This can be seen from the 

values of k, crk and mk in Table 2. 5, and from the accumulated 

relative frequency of k, which shows the distribution of k from the 

six sampling frequencies combined, plotted in Figure 2. 17. 

2. 8. Attenuation of the northern data. 

Unlike the southern group of sites in .which almost all sites 

have sedimentary surface geology, nearly half the accelerograph 

sites in the northern group are on crystalline basement rock, and 

it is possible to estimate a value of Q for propagation paths entirely 
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in the basement. However, since there are only 9 sites in the group, 

estimates of parameters cannot be made with nearly as much 

confidence as they were from the southern group. The 9 stations are 

.listed in Table 2.10 together with a brief description of site geology, 

taken from Hudson (1971), a Woodward-' Lundgren (1973) report and 

USGS Map OM-125. An additional record, D056, Castaic, is included 

in the table and the attenuation plots for comparison, but is not used 

in estimating parameters for the group, since it lies at an azimuth 

well separated from the rest of the group. 

It is interesting to correlate features of the amplitude spectra 

from the rotated, 15-second records, shown in Figure 2. 20, with 

propagation path geology. The general amplitude level at site J144, 

Figure 2. 20(a), on several thousand feet of sediments and at a hypo­

central distance of 27 km is about twice that of the next further site, 

Jl43 (Figure 2. 20(b)) on basement rock at a distance of 30 km. While 

the spectra of Jl43 and nearby J142 on weathered basement rock differ 

in the frequencies at which individual peaks occur, their average 

levels are quite similar. Note the strongly fluctuating peaks even in 

these spectra from basement rock sites. Both components have 

similar strengths. The following site, J141 at a distance of 32 km 

has quite different spectra which are dominated by strong peaks at 

1-2 Hz. Above 2. 5 Hz, the general spectral levels are similar to 

those at the preceding sites, but the peaks below 2. 5 Hz are more 

than 100 percent higher than peaks near these frequencies, in spectra 

from nearby sites. Since this site is located on the San Andreas Fault, 

these peaks are quite probably due to the presence of waves trapped 
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FOURIER AMPLITUDE SPECTRUM OF IS SEC DF ACCELERATION FOLLOWING S-ARRIVAL 
SRN FERNANDO ERRTHOURKE FEB 9, 1971 - 0600 PST 

14Jl44 71.009.0 LRKE HUGHES. RRRRY STRTJClN 12, CRL. COMP RRDIRL 

FREQUENCY - CPS 

FOURIER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERATION FOLLOWING S-RRRIVAL 
SRN FERNRNOO ERRTHOURKE FEB 9, 1971 - 0600 PST 

l4Ji44 71.009.0 LAKE HUGHES. ARRAY STATION 12. CAL. COMP TRRNS 
200.--,--,~.---,-~.--.~.--,--,~.---,-~.--.~....---,.--,,---,--~~~-.~....---,.-~r--,--~ 

100 

5 
FREQUENCY - CPS 

Figure 2. 20 (a) 
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FOURlER AMPLITUDE SPECTRUM OF 15 SEC ClF ACCELERATION FOLLOWING S-RRR!VAL 
SflN FERNRNOO EARTHQUAKE FEB 9, 1971 - 0600 PST 

111Jill3 71.012.0 LAKE HUGHES , ARRAY STATJON 9. CAL. COHP RAOJRL 

FREQUENCY - CPS 

FOURlER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERATION FOLLOWING S-RRRIVAL 
SflN FERNANDO EARTHQUAKE FEB 9, 1971 - 0600 PST 

lll1ill3 71.012.0 LAKE HUGHES, ARRAY STATJON 9, CAL . COMP TRANS 

FREQUENCY - CPS 

Figure 2. 20(b). 
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FClURIER AMPLITUDE SPECTRUM CJF 15 SEC CJF ACCELERATJClN FClLLCJWING S-ARRIVAL 
SAN FERNANDO EARTHQUAKE FEB 9, 1971 - 0600 PST 

14J142 71.065.0 LAKE HUGHES, ARRAY STATION 4, CAL. CONP RAOJAL 

5 
FREGlJENCY - CPS 

FClURIER AMPLITUDE SPECTRUM CJF 15 SEC CJF ACCELERATJCJN FClLLCJWING S-ARRIVAL 
SflN FERNANDO EARTHQUAKE FEB 9, 1971 - 0600 PST 

14J142 71.065.0 LAKE HUGHES , ARRAY STATION 4. CAL . CONP TRANS 

FREOOENCY - CPS 

Figure 2. 20(c). 
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FOURIER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERATION FOLLOWING S-ARRIVAL 
SAN FERNANDO EARTHQUAKE FEB 9. 1971 - 0600 PST 

14J141 71 .152.0 LAKE HUGHES. ARRAY STATION 1. CAL. COMP RADIAL 

15 20 
FRECl.JENCY - CPS 

FOURIER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERATION FOLLOWING S-ARR!VAL 
SflN FERNANDO EARTHOURKE FEB 9, 1971 - 0600 PSf 

14Ji41 71 .152.0 LAKE HUGHES, ARRAY STATION 1, CAL. COMP TRANS 

20 
FREGlJENCY - CPS 

Figure 2. 20(d). 
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FOURIER AMPLITUDE SPECTRUM CF 15 SEC CF ACCELERATION FOLLOWINGS-ARRIVAL 
SAN FERNRNOO EARTHQUAKE FEB 9, 1971 - 0600 PST 

110207 71.175,0 RESERVOIR, FAIRMONT RESERVOIR, CAL. COMP RADIAL 

f 

20 
FREOOENCY - CPS 

FOURIER AMPLITUDE SPECTRUM CF 15 SEC DF ACCELERATION FOLLOWING 5-RARIVAL 
SAN FERNANDO EARTHQUAKE FEB 9, 1971 - 0600 PST 

110207 71.175.D RESERVOIR, FAIRMONT RESERVOIR, CAL. COMP TRANS 

FREOOENCY - CPS 

Figure 2. 20(e). 
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FOURJER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERATION FOLLOWING S-RRRIVAL 
SAN fERNANOO EARTHQUAKE FEB 9, 1971 - 0600 PST 

14fi04 71.146.0 OSO PUMPING PLANT, GORMAN. CAL. COMP RAOlAL 

s 10 IS 20 
fREIXJ£NCY - CPS 

FOURJER AMPLITUDE SPECTRUM OF 15 SEC OF RCCELERRTJON F~LLOWING S-RRRIVRL 
SAN fERNANDO EARTHQUAKE FEB 9. 1971 - 0600 FST 

14fi04 71.146.0 OSO PUNPlNG PLANT. GORMAN, CAL. COMP TRANS 

25 
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Figure 2. 20(£). 
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FOURJER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERATION FOLLOWING S-ARRIVAL 
SAN FERNANDO EARTHQUAKE FEB 9, 1971 - 0600 PST 

}qfi02 7!.Jq3.0 FT. TEJON, TEJON, CAL. COHP RAOJR... 

20 
FREOUENCY - CPS 

FOURJER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERATION FOLLOWING S-ARRIVAL 
SAN FERNANDO EARTHQUAKE FEB 9, 1971 - 0600 PST 

!ijFi02 71.Jq3.0 FT. TEJON, TEJON, CAL. COMP TRANS 

20 
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Figure 2. 20(g). 
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FOURlER RMPLJTUOE SPECTRUM OF 15 SEC OF RCCELERATJON FOLLOWJNG S-RRRJVAL 
5AN FERNANDO EARTHQUAKE FEB 9. 1971 - 0600 PST 

l4Ml79 71.061 .0 TEHACHRF'J FUHFING PLANT, C.W.R . SITE. GRAPEVINE. CAL . COMP RADIAL 

5 
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FOURIER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERRTJON FOLLOWING S-RRRJVAL 
SAN FERNANDO EARTHQUAKE FEB 9, 1971 - 060D PST 

14Mi79 71.061.D TEHACHAPI PUMPING PLANT. C.W.R. SITE, GRAPEVINE, CAL. COMP TRANS 
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Figure 2. ZO(h). 
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FOURIER AMPLITUDE SPECTRUM OF JS SEC OF ACCELERATION F.OLLOWING S-ARRIVAL 
SAN FERNANDO EARTHQUAKE FEB 9 , 1971 - 0600 PST 

lllE 71 71.004 .0 WHEELER RJOGE. CAL. COl1P RADIAL 
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Figure 2. 20(i). 
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in the fault fracture zone. Continuing to the next site, 0207, the 

Fairmont reservoir, the spectrum of the transverse component is 

similar to those of the closer, basement rock sites, but with a generally 

lower level of amplitude consistent with its greater focal distance. 

The radial component, however, shows two broad spikes centered 

around 1 Hz and 4 Hz. Since the instrument is located on basement 

rock and not on the dam, no explanation can be found for these peaks, 

which are 2. 5 to 4 times the height of the generai level of the spectrum. 

The general pattern of higher spectral amplitudes at sedimen­

tary sites than at basement rock sites of comparable focal distance 

continues to be evident in the remaining four sites of the group. These 

are Fl04 and E071 on deep sediments, and Fl02 on crystalline 

basement rock. Site Ml 79 has a 15 foot layer of alluvium overlying 

basement rock. This should affect only high frequencies, since for 

example, assuming a shear · velocity of 600 feet/ sec, the fundamental 

natural frequency of shear vibration of the alluvial layer is 10 Hz. 

Since 600 feet/ sec is a low, but not unreasonable value for recent 

alluvium, it is quite likely that the relatively high spectral level above 

about 7 Hz is caused by local amplification. However, below this 

frequency, the record should reflect essentially basement rock 

behavior. 

2. 8. 1. Winnowing the northern data. 

Let us fir st examine J14 l, site No. 1 in the Lake Hughes 

accelerograph array, to see if an explanation can be found for the high 

spectral peaks between 0. 5 and 2 Hz in both components. The 
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a.ccelerograph is located in the Lake Hughes Township Post Office. 

The town is situated on the floor of a south-eastward trending valley 

which coincides with the San Andreas Fault, and which has been 

formed by it. At Lake Hughes, topographical maps show the width 

of the valley ranging from approximately 600 to 1000 feet, and this 

is probably the approximate width of the fracture zone of the fault 

a.t this point. A geologic cross-section through the fault some miles 

to the south-east (Woodward-Lundgren, 1973) shows the fault zone to 

be approximately 1000 feet wide, containing fracture material between 

vertical faces of sound granitic basement rock. It is probable that a 

similar configuration exists at Lake Hughes. The log of a water 

well drilled in the fault zone approximately 200 feetwest of the accelero­

graph site and included in the Woodward-Lundgren (1973) report sheds 

light on the nature of the fault zone material. It records an 860 feet 

thick layer of sands and clay over harder sand layers. Duke et al. (1971) 

conducted a seismic survey of the surficial soils at the site and found 

a= 1870 ft/ sec and f3 = 1070 ft/ sec for these soils. 

Assuming that the sides of the fault fracture zone are, in 

fact, vertical and consist of sound rock and that the base of the 

860 foot softer layer is horizontal and that material below this level 

is substantially stiffer than that above it, the upper layer of the 

fracture zone may be approximated by a long, rectangular elastic 

body with three rigid boundaries and a free surface. Wood (1973) has 

solved the plane strain vibration problem for such a body. As 

noted above, the width of the valley floor at Lake Hughes lies between 
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about 700 and 1000 feet. Since the presence of the fault has created 

the valley, it is reasonable to assume that the fault zone width at 

Lake Hughes is also in this range. Assuming for convenience a 

width equal to the depth of the soft fault-zone layer, that is 860 feet, 

and assuming elastic constants corresponding to the wave velocities 

noted above, the lower several natural frequencies of the fracture zone 

calculated from Wood's results are shown in Table 2. 11. The 

amplitude spectrum of the N21E accelerogram component which is 

approximately transverse to the fault at Lake Hughes, is shown in 

Figure 2. 21 with the natural frequencies from Table 2. 11 super­

imposed. The agreement between spectral peaks and the computed 

natural frequencies is remarkably good and it suggests that the 

anomalously high peaks at J141 were, indeed, caused by resonant 

response of the soft, crushed material in the fault shatter zone. 

Because of the nonlinearity of soil materials, it is probable that the 

response of higher modes would be severely damped, and this appears 

to be the case, since the spectral peaks are much less pronounced at 

frequencies above about 2 Hz. 

While it is probable that the aetual fault zone width is within 

the range defined by the valley topography, the assumed value of 

860 feet may well be incorrect, thus the effect of an error in the 

as Sumption should be examined. If the actual width were greater, it 

can be seen from Wood's Figure 3. 2, that the fundamental frequency 

f
11 1 

would decrease slowly to a limiting value of nearly half that 

shown in Table 2. 10, i.e. to about 0. 31 Hz. Thus the effect on our 



-129-

TABLE 2. 11. 

Estimated lower natural frequencies of San Andreas Fault 

fracture zone at Lake Hughes 

Mode Frequency f Hz 
nmnber n,m' 

~ 1 2 3 4 5 6 7 8 

1 0.65 1. 0 1. 4 1. 5 2. 2 2.3 2.9 3. 1 

2 1. 1 1. 6 2 . 0 2.3 2 . 7 2. 7 3.2 3.4 
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argument of underestimating the fracture zone width is not great. 

However, widths less than the assumed value may cause large 

increases in the fundamental frequency. A width of 500 feet, for 

exam.ple, gives f
1 1

=1 Hz. At smaller values, fault width becomes , 
the gov~rning dimension, and f 

1 1 
tends to increase in inverse , 

proportion to fault width. 

From this analysis, it is reasonable to as surne that the 

relatively high spectral peaks below about 3-5 Hz are caused by the 

unusual site conditions, and accordingly 0. 4, 1, and 2 Hz data were 

taken out of the northern set. 

Anomalous peaks in the spectra of 0207 and Ml 79 were noted 

in the previous section. Some data from these records were also 

removed during parameter estimation. All data eliminated from the 

northern set are shown in Table 2. 12. 

2. 8. 2. Attenuation of northern data. 

Smoothed Fourier amplitudes at 0. 4, 1, 2, 4, 8, and 16 Hz 

from the northern group of 15-second accelerograms are plotted 

against hypocentral distance in Figure 2. 22. Data points from base-

ment rock sites are marked by a shaded background. Points 

excluded from the set are plotted but are labeled and have a cross drawn 

over them. 

Several observations can be made from these figures. As 

before, the data show an overall pattern of attenuation with increasing 

distance and increasing frequency. With fewer data, the trends are 

not as regular, but they are pre sent. 
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TABLE 2. 12. 

Data winnowed from northern group 

Record Frequency Component 

J141 0. 5, 1, 2 Hz both 

0207 0. 5, 1, 4 Hz radial only 

Ml79 8, 16 Hz both 
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At the lower frequencies, 0. 4 to 4 Hz, sites on sediments show 

consistently higher spectral amplitudes than those on basement rock. 

At 8 and 16 Hz there is little apparent d:lstinction, but values of k 

in Table 2. 14 do show that on the average, the sediment site amplitudes 

are higher. From these diagrams, and from the corresponding 

spectra in Figure 2. 20, it appears that propagation through sedimentary 

paths in this region results in a broad-band amplification of ground 

motion, which is particularly marked in frequency components below 

about 8 Hz . At higher frequencies this is not so apparent, possibly 

due to greater material attenuation of the high frequency components 

(note that f occurs as a multiplier in the attenuation exponent of 

equation (2. 6). ] 

The attenuation curves from the southern group M5Hl5 data 

are shown in Figure 2. 22 by the broken lines with long segments. 

These are the same as the solid line curves plotted in Figure 2. 9. 

Generally the data, even from sedimentary sites, fall below these 

curves, indl.cating that less energy was radiated to the north than to 

the south. This point is investigated further in Chapter 3. 

Because of the small number of data, it is difficult to compare 

the scatter with that of the southern data. However, excluding 

D056 which may be influenced by its different source -station .azimuth, 

the amount of scatter appears comparable to that of the southern 

M5Hl5 data. 

Using the least-squares parameter estimation procedure 

described in Section 2. 6. 3, the parameters given in Table 2. 13 were 
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obtained from the M5Hl5 data of the northern group. Two estimations 

were made, one from the basement rock sites alone, and the second 

from the complete group. The solid lines in Figure 2. 22 are given by 

parameters obtained from the entire group, and the broken line with 

short segments, is from the basement rock parcuneters. 

Note that tbe solid curve representing the average amplitude 

of all sites in the group is generally higher than the curve for basement 

sites alone, by a factor of about 1. 5 to 2. This implies that on the 

average, the sediment sites are accelerated more strongly. 

The significance of the A.' s being smaller than for the southern 
. l 

group is discussed in terms of a propagating rupture, in Chapter 3. 

It is seen in the following section that the basement data are 

much less scattered than the complete group. On the assumption, 

then, that the A.' s from basement groups are a better estimate of the 
l 

true A(f), the value of Q for the complete group was estimated again 

by the least-squares procedure, with the Ai's held fixed at their 

basement rock values. A Q of 400 was found; but the scatter was 

greater, with O'k = 1. 05 for the combined frequency samples, compared 

with ak=O. 84 for the entire group (see Table 2.14). 

When weighing the reliability of these results, the small 

number of data should be kept in mind. In such a small set, a few 

extreme points can change the results quite significantly. As an 

illustration of this, consider the data from E071, Wheeler Ridge at 

r = 87 km. From Figure 2. 22(e) and (f) it is clear that the high 

amplitudes from E071 at 8 and 16 Hz are the reason for the lower 

rate of attenuation, and thus large Q value, of the solid curve. If it 
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were not for these high values, the solid curve representing the overall 

attenuation of the group would be much closer to the broken line 

representing basement rock site behavior. In a larger data set, 

such as the southern group, extreme values in a few data are out­

weighed by the regular behavior of the majority of data. (This can 

be demonstrated with the southern data by leaving in the winnowed 

points - but not the noisy ones - during the least- squares run. The 

resulting parameters are hardly changed at all.) 

2. 8. 3. Scatter in the northern data. 

Statistics of k describing scatter in four subdivisions of the · 

northern data group are given in Table 2. 14. Histograms depicting 

the distribution of scatter for the combined frequency samples are 

shown for each subdivision in Figures 2. 23. The following conclusions 

can be drawn from the distribution of the k-values: 

(1) Data from basement sites only is much less scattered, with 

ak = O. 58, than the entire group of data, for which CJk = 0. 84. 

(2} However, even the basement sites alone show more scatter 

than the southern MSHl 5 data as a whole, for which ak = 0. 46. 

COinparing the standard deviation of the basement k's in 

Table 2. 14 with those of the MSHlS southern data in Table 2. 5 

at each sampling frequency, it is seen that while the northern 

basement ak' s are fairly constant with respect to frequency, 

the southern group ak' s increase with increasing frequency. 

At 16 Hz, both values are about the same, with the lower 

frequency components of the southern group being less 
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scattered than their northern, basement counterparts. This 

cannot be simply related to overall path geology, since the 

northern sedimentary data are much more scattered again. 

(3) The high average value of k= 2. 16 for sedimentary sites alone 

with respect to the basement attenuation curves indicates that, 

in this group at least, but probably in general, sedimentary 

sites were more strongly accelerated than basement sites. 

From Table 2. 13, it is seen that this effect is greatest at low 

frequencies and decreases, but is still present, at higher 

frequencies . The high values of k, erk and m 3 at 16 Hz 

are caused almost entirely by data from site E071, which are 

anomalously high, but no reason could be found for their 

exclusion. 

2 . 9 ~ South-eastern group. 

The other area in which several records were obtained from 

the San Fernando earthquake within a narrow range of source-station 

azimuths, is to the south-east of the epicenter. Seven stations have 

source-station azimuths between 90 and 125 degrees and hypocentral 

distances ranging from 45 to 109 km. Five of these stations are on 

basement rock, one (Nl87) on the crest of an earth dam, and two on 

sediments of about 1000 feet thick. In order to include a further 

basement site, Gl06, closer to the epicenter, the south-eastern 

boundary of the group was extended to a line from the epicenter with 

an azimuth of 150 degrees. This added several sites in the easternmost 

part of the southern group, bring the total number of sites in this 



>- 20 
(.) 
z 
w 
::> 
0 
w 10 
a:: 
LL 

0 

(a) Complete group. 

12 

>-u 8 z 
w 
::> 
0 
w 4 
a:: 
LL 

0 

-145-

I 

(b) B;;i.sement rock sites only. 
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Figure 2. 23. Scatter in northern M5Hl5 data, shown by dis­
tribution of k, for the six frequency samples 
taken together. 
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group to 17. The sites included, and the amount of overlap among the 

· groups can be seen in Figure 2. 4. The sites are listed in Table 2. 15 

with a brief description of site geology. The M5Hl5 Fourier amplitudes 

of acceleration studied in this section are listed in Table AZ . 3 of 

Appendix 2 . 

2. 9. 1. Winnowing the south-eastern data. 

Some Fourier amplitude data obtained from records Nl85, Nl86, 

Hl24, Ml80 and F087 were excluded from the southern data group and 

are also excluded from this group. Reasons for this have been given 

in Section 2. 5. 1. In addition, some data points from other accelero­

grams were excluded. 

The first, Nl87, the San Antonio Dam, shows several pro­

nounced spectral peaks at 2. 5 Hz and above. Assuming 13 = 1000 ft/ sec, 

a fundamental frequency of 2. 5 Hz was computed using 

Ambrasey 1 s (1960) shear wedge model. This suggests that the peaks 

are caused by resonant vibration of the dam. Accordingly, the 4, 8 

and 16 Hz components of Nl 87 were deleted from the data set. 

The 0. 4 and 1 Hz amplitude data were excluded from both 

components of record Hl21, The Sears Building, Alhambra. There 

are pronounced peaks in the 12th floor record spectra near 0 . 4 and 

from 1-2 Hz, and these show up in both radial and transverse com­

ponents of the rotated basement record. Because of the coincidence 

of roof and basement peaks, it was suspected that some structural 

response was recorded by the basement instrument. However, as 

Crouse (1973) points out, even in relatively simple situations it is 
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TABLE 2.15 . 

South-eastern sites 

Hypocentral Site - station 
Record distance azimuth Site geology 

{km) {degrees) 

GllO 34. 1 138 200-300 ft alluvium over 
basement rock 

Gl06 38.4 144 Granitic basement 

Gl08 41. 8 140 1000 ft alluvium 

Gl07 41. 8 139 1000 ft alluvium 

H121 45.0 147 4000 ft sediments 

P221 45 , 2 125 Basement rock 
{instrument near dam 
abutment) 

N186 55.6 137 8000 ft of sediments. 
Instrument on crest of 
56 ft high earth dam 

P223 66.2 123 Volcanic inclusions and 
shale 

M183 72 . 0 94 Alluvium veneer over 
basement 

M184 72.0 94 Alluvium veneer over 
basement 

Nl87 73. 3 113 Approx. 150 ft alluvium 
over basement. 
Instrument on top of 
160 ft high earth dam. 

Nl85 76.7 137 18, 000 ft of sediment. 
Instrument on 99 ft high 
earth dam. 

Hl24 77. 3 141 16, 000 ft of sediments 

Ml80 85. 3 146 10, 000 ft of sediments 

F087 89.4 146 9, 000 ft of sediments 

FlOl 108.4 111 Approx. 1000 ft of 
sediments 

0206 109. 0 108 Approx. 1000 ft of 
sediments 
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difficult to identify the existence of soil- structure interaction effects, 

let alone estimate their magnitude. In the southern group, only in 

clear - cut cases of external modification were data winnowed. However, 

in smaller groups like this, extreme values such as those in Hl21 

have much greater influence on the general trend, and it was judged 

prudent to exclude them. 

The data winnowed from the south-eastern group are listed m 

Table 2. 16. 

2. 9. 2. Attenuation in south-eastern group. 

Smoothed Fourier amplitudes from the south-eastern group of 

15 second accelerograms are shown in Figure 2. 24 plotted as a function 

of frequency and hypocentral distance. As with the two previous data 

groups, it can be seen that amplitude attenuates with increasing 

propagation distance, and that the rate of attenuation increases with 

frequency. The attenuation curves shown in the figures were obtained, 

as before, from least- squares estimates of the attenuation pa'rameters 

which are listed in Table 2. 1 T. The solid line is drawn from the 

parameters obtained from the group as a whole, and the broken line 

with short dashes from basement rock site data only. Average 

amplitude from the southern group is shown by the broken line with 

long dashes . Again, it is seen that the general trend in amplitude 

attenuation is adequately predicted by the attenuation expression of 

equation (2. 6). 

As found in the northern data, amplitudes recorded on sedi­

mentary sites tend to be higher than those from basement rock sites 
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TABLE 2. 16. 

Data winnowed from south-eastern group 

Record Frequency Component Reason 

.Hl21 0. 4, 1 both Influenced by structural 
vibration 

N185 4, 8, 16 both Influenced by dam 
response 

Nl86 4, 8, 16 both Influenced by dam 
response 

N187 4, 8, 16 both Influenced by dam 
response 

F087 16 both Digitization noise 

H124 16 both Digitization noise 

M180 16 both Digitization noise 
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at low frequencies (see Figures 2. 24(a) and (b)) and in general, little 

different from basement rock amplitudes at high frequencies (see 

Figures 2. 22(c), (d), (e) and (f)). 

In view of the wide confidence intervals reflecting a small 

number of scattered data, the difference between the Q of 350 from 

the northern data and Q of 550 found here is not surprising. In fact, 

there are not enough data in either group to determine a basement Q 

very precisely. However, in view of the smaller confidence interval 

of the value from the northern group (270 to 500 vs. 450 to 800), 

and the better agreement of the northern value with Q = 330 for the 

southern data whose propagation paths are largely through basement 

rock, more reliance should be placed upon the northern value of 

Q = 350. 

The higher values of A
1

, A 2, and A
3 

determined from the 

complete group of sites, together with a higher Q, implies that 

sedimeri.tary sites are accelerated more strongly than basement sites 

in the 0. 4 - 2 Hz frequency band. In fact, sedimentary sites were shaken 

more strongly than basement sites throughout the frequency range; 

this can be seen from Table 2. 18 showing statistics of k for various 

sub-groups. The value of k for the six sampling frequencies combined 

is 30 percent higher for sedimentary sites than for basement rock sites 

when both are computed relative to the basement attenuation curve. 

The difference is greatest at 0 . 4 Hz where k is 90 percent larger for 

sedimen.tary sites; the difference dee rease s with increasing frequency 

until at 16 Hz the two k values are nearly equal. The low k values for 
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sedimentary sites at 8 Hz and correspondingly high values for 

basement sites are caused by spectral peaks at 8 Hz in record P221. 

This also causes the high value of k = 3 . 5 in histogram (b), Figure 2 . 25. 

Since the record was made on basement rock some distance away from 

an abutment of the Santa Anita dam, Arcadia, California, its exclusion 

from the set is difficult to justify. However, the 8 Hz component 

does appear to be anomalously high, possibly due to vibration of the 

· concrete arch dam being transmitted to the accelerograph. Conse­

quently, · there is reason to doubt the statistics at 8 Hz and we may 

say that in general, sedimentary sites were shaken more strongly 

throughout the frequency band of 0 . 4to16 Hz . 

Scatter, as measured by crk , and seen in the histograms in 

Figures 2. 25, does not exhibit the large increase from basement 

rock sites to sedimentary sites that was seen in the northern data. 

Values of 0 . 51, 0. 5 2, 0. 66 for the combined frequency samples were 

found for the basement sites alone, the complete set, and the sedimen­

tary sites alone, respectively; these values indicate much less scatter 

in the south-eastern group than the corresponding values of 0 . 58, 0.84 

and 1. 81 from northern data. No explanation has been found for these 

quite different behaviors. 

2. 10. Relationship between site geology and ground motion intensity. 

It was noted in Chapter 1 that , in general, incoming wave 

motion tends to be amplified by the presence of soft surface layers, 

but that this tendency is opposed by greater energy di'ssipation 

in softer soils . Analysis of the effects e x pected at a particular 
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Figure . 2. 25. Scatter in south-eastern M5Hl5 data shown by 
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site is normally not practicable due to the complications caused by 

material inhomogeneities and irregular geometric configurations of 

the site soils. Obtaining yalues of the material properties of the 

soils adds a further difficulty, which is compounded by evidence that 

the behavior of large masses of soil.is quite different to that of a 

small laboratory sample. Thus it is not clear if, under strong ground 

motions, we should expect 

(a) Sedimentary sites to record stronger accelerations than 

similarly located basement rock sites, and 

(b) Marked differences in recorded amplitudes of acceleration to 

exist among sedimentary sites of different soil stiffnesses. 

Clearly these are questions of considerable importance in earthquake 

engine.ering. Some answers are indicated in the present study as follows. 

The large number of sites recording the San Fernando earth­

quake allows correlations to be made between recorded amplitudes 

and surface geology at the site. With average levels of Fourier 

amplitude defined by the attenuation curves, any correlation between 

ground-motion intensity and geology should be reflected in the k-values. 

Trifunac and Brady ( 1975) have compiled a list of descriptions 

of local geology at a large number of strong-motion accelerograph 

sites, and have correlated peak ground motion values and Modified 

Mercalli intensities with geologic type. They have classified local 

geology into three broad groups: 11 soft" sites, in the Los Angeles 

region usually recent alluvium, as class O; sites of "intermediate" 

soil stiffness, usually sedimentary rock, as class l; and "hard" 

basement rock sites as class 2. While this is not a fine division, and 
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the classification of any individual site may be in error, over the 

large number of data we have, average geologic properties should be 

· well-defined, and any correlations between intensity of motion and site 

g-eology should emerge. 

The unsmoothed, MOH15 amplitude data from the southern 

sites were sorted according to site classification, and values of k 

computed for each site. Statistics describing the distribution of k 

in each class are shown in Table 2. 19. It is seen that the "medium" 

sites were accelerated slightly more strongly, by 5 percent, than the 

"soft" sites; the medium data are also slightly more scattered than 

the "soft" site data. Thus in answer to question (b) above, it does 

not appear that sediment type, classified according to stiffness, has 

any net effect on strong groun d motion amplitudes. 

The answer to question (a) is much more complicated, since 

the behavior of individual sites appears to be strongly influenced by 

topography. We have observed that, in general, sedimentary sites in 

the northern and south-eastern groups recorded higher amplitudes 

of acceleration than corresponding basement rock sites. From 

Tables 2. 14 and 2. 18 it is seen that, averaged over the entire frequency 

range, amplitudes on sediments to the north were 60 percent higher 

than on basement rock, and to the south-east they were 30 percent 

higher. The differences between these two values cautions against 

too much generalization; but it does appear that, on the average, 

sediments recorded stronger motion than hard rock sites. 
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How.ever, this is not the impression given by the data for 

"hard" sites in Table 2. 18. The average amplitudes at the three sites 

in this group (C041, Gl06 and 0198) are higher, and more scattered 

than those of the two sedimentary groups. Table 2. 20 shows the 

individual k-values for these sites. The two sites, C041 and 0198, 

which show average k's above the general level of the southern 

group, are both situated in mountainous terrain. Several authors 

have investigated the effect of high topographic relief on the Pacoima 

Dam record, C041, and have concluded that the mountain and canyon 

topography did modify the record in a complex manner (Wong and 

Jennings, 1975). This is reflected in the k-values, which suggest 

constructive interference resulting in amplification of motion at some 

frequencies and destructive interference at others . In general, 

topography affects components with wavelengths equal to or less than 

the dimensions of the topographic object. Since record 0198, Griffith 

Park Observatory, was recorded at the crest . of a mountain with a 

base width of several kilometers, it is probable that it, too, underwent 

modification resulting from irregular site topography and this view is 

reinforced by an average k of 1. 44. On the other hand, Gl06, the 

Caltech Seismological Laboratory which is sited on a low hill without 

the extremes of relief found at the other sites, recorded much lower 

am.plitudes, with k = 0. 5 3. The relatively mild topographic relief is 

suggested as the reason for the low amplitudes, which are well below 

the general trend in southern amplitudes. However, even a relatively 

regular site such as this is not free from pronounced spectral peaks 
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TABLE 2.20. 

k-values from MOH15 data at basement 

rock sites of the southern group 

f C041 G106 0198 

(Hz) R T R T R T 

0.4 1. 24 1. 35 0.21 0.64 0.46 0.64 

1 2.23 3.87 0.20 1. 42 1. 39 2.20 

2 0.75 4.55 0. 34 0.32 2. 16 2.01 

4 2.06 0.86 1. 26 1. 08 0.54 1. 21 

8 2.62 0. 33 0.88 0.38 0.72 2.05 

16 0.96 1. 24 0.26 0.70 3. 39 2.70 

Average 1. 65 2.03 0.53 0.76 1. 44 1. 80 
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as is seen from Figure 2. 26. Since outcrops of basement rock are 

usually accompanied by high topographic relief, for purposes of 

assessing seismic risk the behavior of site 0198 should be taken as 

no,rmal in the absence of further data. (Because of its proximity to 

the source, and extreme relief, C041 cannot be considered typical. ) 

To sum up these observations on the effect of site geology, it 

appears that, in general, sedimentary sites were accelerated more 

strongly than basement rock sites, particularly at lower frequencies, 

say below 2 Hz, and that within the range of generally coarse-grained 

sediments found in the Los Angeles region, no marked difference in 

intensity of shaking can be seen between sites on recent alluvium and 

those on sedimentary rock. However, all records obtained on the 

three basement rock sites available for comparison have pronounced 

spectral peaks, which can be as high as those expected on sediments 

at comparable distances . From the point of view of engineering risk, 

therefore, any distinction on the basis of the geologic types found in 

the Southern California area does not seem justified . 

2 . 11. Conclusions from Chapter 2. 

The principal conclusion of this chapter is that, while there is 

considerable scatter in the Fourier amplitudes of acceleration studied, 

their average amplitude decay can be described very well, throughout 

the 0. 4 - 16 Hz band considered, by a simple body-wave decay 

expression, with geometrical spreading accounted for by employing the 

reciprocal of distance and with a constant Q material attenuation term. 

Furthermore, when the amplitude data are smoothed over a constant 
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FOURIER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERATION FOLLOWING S-ARRIVAL 
SAN FEANANOO EARTHQUAKE FEB 9, 1971 - 0600 PST 

!ijG106 71.018.0 CALTECH SEISMOLOGICAL LAB .• PASAO:NA, °'-... COHP RADIAL 

5 10 15 20 
fAEIJJENCY - CPS 

FOURIER AMPLITUDE SPECTRUM OF 15 SEC OF ACCELERATION FOLLOWING S-ARRIVAL 
SAN fEANANOO EARTHQUAKE FEB 9, 1971 - 0600 rsr 
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Figure 2. 26. Notice spectral fluctuations and high peak near 
4 Hz. 
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bandwidth at each sampling frequency, the scatter distribution does 

not change markedly with either frequency or distance. 

The following specific conclusions may be stated: 

(1) the average Fourier amplitude can be described by the 

expression 

X(f, r) = A~f) e-(1Tfr/Q13) (2. 6) 

(2) No significant difference could be seen between amplitudes of 

radial and transverse components. 

(3) For the southern group, in which most of the data lie, a Q of 

330 was found, with the 90 percent confidence interval of 

310-360. (13 was assumed equal to 3. 2 km/sec throughout.) 

(4) The much smaller numbers of data in northern and south-eastern 

groups did not allow such a precise determination of Q. Also, 

both these groups contain several basement rock sites, whereas 

the southern group has only three basement sites in a total 

of 71 sites. For the complete northern set, Q = 700 with a 

90 percent confidence interval of 500-1500. For the complete 

south-eastern set, Q = 860, with a 90 percent confidence interval 

of 700-11 SO. 

(S) For basement rock sites only, the following values of Q were 

found for the northern and 

Q 

350 

550 

south-eastern data groups: 

90 percent confidence 
interval 

270-500 

450-800 

(N) 

(S-E) 
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The paucity of data and the fairly large amount of scatter 

show in the difference between the values, and in the wide 

confidence intervals. 

(6) Scatter in the data is conveniently measured by an uncertainty 

factor k, given by equation (2. 13), where 

k = ~(f, r) 
X(f, r) 

X being a data point at frequency f and focal distance r, 

and X(f, r) the value predicted by the decay expression rule at 

(f, r). The statistical distribution of k is fairly constant with 

respect to frequency; for unsmoothed southern data from the 

15- second accelerograms, the standard deviation of k, 

crk = 0. 78, and the distribution tapers off much more quickly 

at high values than does the corresponding lognormal distribution. 

With smoothing over a band of 0. 73 Hz, the distribution is much 

tighter, with crk = 0. 46. 

(7) Ainplitudes at 0. 4 and 1 Hz computed from the 15 second records 

are lower than those from full length accelerograrns, indicating 

that for f :s: 1 Hz there is dispersion of energy outside the 

15 second sampling window. No indication of this was found 

in the 2 Hz and higher frequency samples. 

(8) The average intensity of ground motion was stronger to the 

south of the epicenter than at a comparable distance to the 

north. Intensities to the south-east were between those to 

the north or south. 
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(9) The re appears to be no justification for saying that soft 

sedimentary sites in the Los Angeles region are shaken more 

strongly than sedimentary sites of intermediate soil stiffness. 

(10) The average spectral level of accelerations recorded on a few 

crystalline rock stations does appear to be lower than that 

recorded at similar focal distances on sediments. However, 

the peaks of the few basement rock spectra available are 

relatively high, and peak amplitudes from basement sites are 

often comparable to those recorded on sediments at similar 

distances. This suggests that the seismic risk on basement 

sites, particularly those with high topographic relief, is no 

less than on sedimentary sites. 
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3. THE SAN FERNANDO EARTHQUAKE SOURCE 

In Chapter 2 the decay of X(f, r} was the primary cone ern, 

given some particular source excitation A(f}. In this chapter, A(f) 

is considered in more detail, particularly how observed A(f) agrees 

with A(f) predicted by simple source models of the San Fernando 

earthquake. 

The discussion draws upon the results of geophysical investi­

gations of earthquake rupture mechanisms, and since some of these 

are not well-known in the engineering literature, a brief summary 

is considered to be in order. 

3. 1. Seismic ::;;ource models. 

Recent, intensive research into the nature of the earthquake 

source has resulted in several different models relating the radiated 

seismic wave field to details of the rupture mechanism. Since 

detailed knowledge of the failure mechanism leading to crustal earth­

quakes is presently not available, all source models are to some 

degree approximate. In this section, some results providing exact 

solutions to assumed, and in some cases quite specialized, rupture 

conditions are first summarized; then approximate models are discussed 

with emphasis upon the intuitively derived, but very successful, two­

parameter source model introduced by Brune (1970). 

Maruyama (1963) and Haskell (1964) have presented exact 

solutions for the dynamic displacement field resulting from the sudden 

appearance of an arbitrary dislocation in an infinite, homogeneous, iso­

tropic, linearly elastic solid. Haskell goes on to specialize his solution to 
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the case of a propagating, ramp-function dislocation, and uses this 

example to discuss the amplitude spectru:m of radiated seismic waves . 

· He demonstrates that above a certain 11corner frequency 11 f , which is 
. 0 

proportional to the inverse of fault length, Fourier amplitude spectra 

of far-field displacement waves exhibit a rapid fall-off of amplitude 

with increasing frequency which, in the case of the ramp-function 

dislocation, is asymptotic to cf-
2

, where f is frequency and c is 

· some constant. This is illustrated schematically in Figure 3. 1. 

[Hanks and Wyss (1972) show that for the radiated energy to be bounded, 

the exponent of f must be less than -1. 5.] From the data of Thatcher 

and Hanks {1973) it is seen that frequencies of interest in engineering 

(say, 0. 05 to 20 Hz) are near or, more often, above the corner 

frequencyfor M7 earthquakes. Thus details of the spectrum for f:::::f
0 

are of prime interest to earthquake engineers. 

Haskell also demonstrates that coherent, or uniform, propagation 

of rupture has the effect of focusing energy in the direction of rupture 

propagation, and he provides an alternative derivation of the classical 

work of Ben-Menahem (1961) on this topic. Since, as we shall see, 

focusing of energy by rupture propagation had a marked effect on the 

strength of ground motions recorded south of the San Fernando 

epicenter, this well-known seismological phenomenon deserves 

consideration in earthquake engineering. 

The focusing effect of a propagating rupture is superimposed 

upon the four-lobed radiation pattern, usually denoted by Q.Gcp' expected 

from a dislocation source, and serves to modify it by increasing the 



2 

r 1 

-;:I o '-'qO c;1 
L 

0 
(!) -2 
0 
_J 

-4 
-4 

Figure 3. 1. 

r 

0 
6-2 
0 
...J 

-4 

-175-

-2 0 2 4 6 
LOG 10 (f/fo) 

Displacement amplitude spectrum of far-field 
shear waves. Brune's expression (equation (3. 1)) 
shown by the broken line. 

-2 0 2 4 6 

LOG10 (f/fo) 

Figure 3. 2. Far-field amplitude of acceleration spectrum 
corresponding to Figure 3. 1. 
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a.:m.ount of energy emitted in the direction of rupture propagation, at 

the expense of that emitted in the opposite direction. An explicit 

expression for ~Sep can be found,for example, in Randall (1973a). It 

has been observed that the classical radiation pattern ~ is often 
Sep 

not well-developed, particularly near its nodes where it is very 

sensitive to variations in direction. This is physically reasonable, 

since a fault is unlikely to be perfectly planar and ~Sep is based on an 

assumed point source. This problem is further discussed by Hanks 

and Wyss (1972). In the case of the data used in this study, no well-

defined pattern emerged in a plot of individual, decay-corrected 

Fourier amplitudes of acceleration from the southern set. By 

averaging amplitudes within smaller ranges of azimuth than those of 

the three groups employed in this study, some details of a radiation 

pattern modulated by rupture propagation effects may be found. 

Randall ( 1966) and Archambeau ( 1968) pre sent exact solutions 

for the elastic radiation in an idealized, infinite elastic solid resulting 

from the sudden relaxation of stress within a finite-volume source 

region in a pre-existing stress field. Because precise details of the 

real rupture mechanism are not known, assumptions are again neces:-

sary. In Archambeau 1 s solution, assumptions are made about the shape 

and size, as functions of time, of the region in which stress relaxation 

has occurred. 

Because detailed understanding of the rupture mechanism is 

lacking, and because of the complexity of the mathematics in the exact 

solutions for the idealized rupture mechanisms discussed above, many 
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attempts have been made to relate the principal features of the 

radiated seismic wave field to a few parameters describing the 

average properties of the rupture process. Brune (1971 b) and 

Aki ( l 972a) review the considerable number of investigations 

made into simple source models, and consequently a general 

review is not attempted he re. Instead, the principal results of 

a simple two-parameter model are presented. 

Brune (1970, 1971 a) proposed a simple model relating 

the Fourier amplitude spectrum of far-field shear wave dis-

placement, O(f), in an infinite, homogeneous, isotropic elastic 

solid to two independent parameters of the dislocation source. 

The asymptotic form of Brune's spectrum provides a close 

approximation to the exact solution of Randall (1966) for a 

spherical relaxation source. 

Brune' s expression for the far-field Fourier amplitude of 

shear displacement, O(f) , is as follows: 

00 
O(f) = ---

l+(f /f0 )
2 (3. 1) 

where 0 0 is the displacement spectrum ordinate at zero frequency, 

f is frequency, and f 0 is the spectral corner frequency considered 

in more detail below. Equation (3. 1) is plotted in Figure 3. 1, together 

with its asymptotes. 
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The low frequency asymptote, given by the constant value of 

0
0 

in Figure 3. 1, is related to the source parameter seismic moment 

M (note that M is not magnitude, for which the symbol M, without 
0 0 

subscript, has been used) by the expression (Keilis-Borok, 1960): 

(3. 2) 

where r is the hypocentral distance, µ is the shear modulus, f3 is 

the shear wave velocity, and Reep is the radiation pattern. Seismic mo-

ment is defined in terms of the average dislocation u , or fault 

offset, and fault area S (of arbitrary shape) by the expression 

(Aki, 1966 ): 

M = µuS 
0 

(3. 3) 

Randall (1973b) points out that when motions at the source are 

uni-directional toward the position of final equilibrium, a physical 

condition expected of a rel~ation or dislocation source, 

O(f) :::;; 0 . 
0 

(3. 4) 

Thus the spectrum is bounded by its low-fre9uency asymptote. 

The corner frequency, f , marking the inter section of the low­
o 

and high-frequency asymptotes, is proportional to the inverse of the 

fault dimension R, which, in the simple model, is taken to be the 

radius of the equivalent circular area. With a conservation of energy 

a.rgument,B rune (1970) (corrected by Brune, 1971 a) determines the 

constant of proportionality, obtaining an expression for f in terms 
0 

of R as follows: 

2'ITf = 2. 34(3 
o R (3. 5) 
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By physical argmnents, Brune obtained a high-frequency 

asymptote proportional to f-y, with y = 2, as shown in Figure 3. 1. 

Randall (1973a} notes that the exponent y is related to the nature of 

the highest order singularity in the dislocation ti:me function, and 

that, in general, instantaneous relaxation sources should have the 

value of y = 2. However, the vafoe of y = 2 applies only to 

instantaneous rupture. A coherently propagating rupture, in addition 

to focusing energy in the direction of propagation as discussed above, 

introduces a further factor of f- l into the high-frequency amplitudes. 

For an instantaneous relaxation source, the resulting high frequency 

spectral asymptote is thus proportional to f-
3 

A further para!Deter, the static stress drop !::.CJ, is often used 

in seismological studies, and it is related to M and R through 
0 

Keilis-Borok' s ( 1959) res'l!lt for a plane circular fault on which shear 

traction drops from some value CJ to (CJ -f::.CJ) • Namely, 
0 0 

Five separate source parameters have been introduced above 

in the discussion of the two-parameter source model; only two of 

which (excluding one or other of the equivalent pair R and S) are 

independent: 

u average fault dislocation 

s fault area 

seismic moment (M = uuS) 
0 

R (equivalent) source dimension 

static stress drop 
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The spectral parameters: 

no the zero-frequency limit of the displacement 

amplitude spectrum 

f 0 corner frequency 

may be expressed in terms of any independent pair of source 

parameters. In addition, shear modulus U and the shear wave 

velocity 13 enter as physical constants. 

Rupture propagation was also discussed, but it is not 

considered in the simple model. Parameters describing the 

direction and velocity of rupture should be included in a more 

comprehensive model. Similarly, the spectral parameter "I 

depends sensitively on further details of the faulting model, and 

is generally not well defined by observations (see, for example 

Thatcher and Hanks, 1973 ). 

Seismic moment, M
0

, being related directly to 0 0 is 

a convenient choice for the low-frequency parameter and can be 

determined from field observations of fault area and offset (Hanks, 

l 974a) or from teleseismic records (for example, Wyss and Hanks, 

1972). 

Determination of the high frequency end of the spectrum is 

less certain, since it depends more upon fine details or dynamics 

of the rupture process (Haskell, 1964). Brune' s model points 

to high frequency amplitudes determined by 0
0 

, "I= 2, 

and f 0 , obtained from R by equation (3. 5 ). However, both 

f
0 

and 'Y also depend upon the further variables of direction and 
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coherence of rupture propagation (Haskell, 1964), the shape of the 

fault plane (Savage, 1972), and details of the dislocation time-function 

(Haskell, 1964; Randall, l 973a). Thus ' until the rupture process is 

better understood,specification of high frequency spectral amplitudes 

by the two-parameter model is essentially empirical. In contrast to 

the pessimistic picture given by this caveat, it has been found that 

predictions by the two-parameter model agree well with observations 

of earthquakes whose parameters vary over a large range of values. 

For large earthquakes with 6. 4<M<7. 2, Hanks and Wyss (1972) 

and Wyss and Hanks (1972) have found agreement to within a factor of 

2 to 3 between values of M and R from field observations and those 
0 

predicted by the two-parameter model from teleseismic observations. 

Randall (1973a) cites similar agreement for smaller earthquakes. 

Source parameter determinations for southern California 

earthquakes have been made by Hanks and Wyss ( 197 2), Thatcher and 

Hanks (1973), Tucker and Brune (1973), Hanks et al. (1975), 

Trifunac (1972) and Thatcher (1972). Within the framework of the 

two-parameter model, Hanks and Thatcher (1972) and Thatcher and 

Hanks (1973) explore the relationships between M and f , and 
0 0 

several other, commonly-used source parameters, including local 

magnitude ML. [ML is also related to R and .60 by Randall (l 973a).] 

In their second paper, Thatcher and Hanks examine 138 recordings of 

California shocks in the magnitude range of 2 to 7. Although data are 

sparse for larger earthquakes, the larger shocks had stress drops, 

.60, in the range of 1 to 100 bars. From equation (3. 6) it can be 



-182-

seen that this observation presents a strong argument against the 

practice of scaling earthquake sources by a single parameter. 

In an engineering context, application of Brune' s (1970) theory 

to strong-motion problems has been discussed by Trifunac (1973), and 

it has been used by Hanks (1975) to estimate long-period ground 

motions in the Los Angeles Basin from a great earthquake on the 

San Andreas fault. 

Fourier amplitudes of displacement have been considered in the 

preceding discussion, following the custom of the seismological 

literature. However, · since the strong-motion data are in units of 

amplitude of acceleration, it is appropriate to consider the corresponding 

acceleration amplitude spectrum. 

Let A(f) denote the Fourier amplitude of acceleration of the 

simple source model, corresponding to a given O(f). (As with X, 

the bar above the A signifies that A(f) is predicted by a model, rather 

than .obtained from observed data.) Then an expression for A(f) m 

terms of 0 and f may be obtained from equation ( 3. 1) using the 
0 0 

identity 

Substituting from equation (3. 1) into equation (3. 7) yields 

0 (21rf )
2 

A(f) = o o 
l+(f /f}

2 
0 

From equation (3. 8) it can be seen that A(f) has a constant high 

frequency asymptote A given by the expression 
0 

. 2 
A 0 = (2rrf

0
) 0

0 

(3. 7) 

(3. 8) 

(3. 9) 
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The acceleration and a low frequency asymptote proportional to f
2 

spectrum and its asymptotes are shown in Figure 3. 2. 

Substituting from equations (3. 2), (3. 3), and (3. 5) into 

Equation (3 . 9) yields 

Since S =1TR2
, A is a function of the single source parameter u, 

0 

and is given by the expression 

A = 1. 3 7 (3u 6t. 
o r 9cp 

(3. 10) 

Thus, within the framework of this simple theory, the high-frequency 

asymptote is related to the single source parameter u. This presents 

the immediate question of how can the . high-frequency, or "most-

dynamic", components of the spectrum depend solely on the static 

dislocation, u? The answer to this apparent discrepancy is found in 

the implicit assumption in the model, that the static stress drop !::.a, 

,;,,hich is related to u (Knopoff, 1958), is equal to the effective stress 

a , acting during fault movement. Effective stress, which is related 
e 

to the dynamics of faulting (Kanamori, 1972) and thus to the non-zero 

frequency components of motion, is defined as the difference between 

the initial shear stress a 
0 

acting on the fault before rupture and the 

functional shear stress of resisting motion during faulting . Thus 

a =a -af. It is not necessary that a = !::.a. How ever, within the e o e · 

uncertainties in their determination, 6cr~ a has been found for the 
e 

San Fernando earthquake by Trifunac (1972) and for the 1943 Tottori, 

Japan, earthquake by Kanamori (1972). 
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The empirical nature of the simple model is well illustrated 

by equation (3. 10). Consider, for example, two rupture events, one 

consisting of five independent dislocations of adjacent fault segments, 

each of area 20 km 2 and each with offset "U. From equation (3. 1 O) the 

total high frequency amplitude from this multiple event should be five 

times that of a second event, consisting of a single, coherent rupture 

- 2 
of u over a fault area of 100 km . This essentially empirical nature 

of the simple model should be kept in mind, particularly in the 

engineering applications suggested in the following chapter. 

From equation (3. 5) and the relationship between magnitude M 

and source dimension R of Randall (l 973a) or from the data of 

Thatcher and Hanks (1973) it can be seen that for M:<:: 5, it is likely 

that the corner frequency f will be below O. 4 Hz. In the case of the 
0 

M = 6. 4, San Fernando earthquake, f ~ O. 1 Hz, and the frequencies 
0 

considered in this study are well above the corner frequency. Thus an 

expression in terms of A for Fourier amplitudes of acceleration, 
0 

A(f), predicted by the sourc·e model should be useful. Substituting 

from equation (3. 9) into (3. 8) yields 

A 
A(f) = --

0
-­

l+(f /£)
2 

0 

(3. 11) 

In conclusion, the following expressions for f and A are repeated 
0 0 

here for completeness: 

f = 2. 34@ 
o 2rrR (3. 5) 

(3. 10) 

3. 2. Comparison between predicted and observed acceleration spectral 

amplitudes. 

The physical significance of A(f) can be seen from equation (2. 6) 
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. when X(f, r) is evaluated at a hypocentral distance of r = 1. In this case 

A(f) ~ X(f, r) (3. 19) 

Expression (3. 19) would be exact if the material attenuation term 

- ( rrfr I 013) , 
e were exactly equal to 1 at r = 1 km. The greatest error 

occurs at f = 16 Hz, in which case, for r = 1, Q = 330 and 13 = 3. 2 km/sec, 

e -(lTfr /Q!3) = O. 95. This error is small compared with the other un-

certainties in determining A(f)~ Thus, physically, A(f) determined 

from a set of data is the average Fourier amplitude of acceleration 

of the data, corrected for material attenuation and geometric spreading, 

and referred to an imaginary focal sphere of radius 1 km. 

Estimates of A(f) for each data group have been obtained at the 

six sampling frequencies during the least-squares estimation of attenua-

tion curve parameters. , These estimates, taken from Tables 2. 4) 2. 9, 

2. 13 and 2. 1 7 are plotted in Figures 3. 3, 3. 4 and 3. 5. 

The reason for the difference between the two curves from the 

. southern M5Hl 5 and M 1 OHIV data in Figure 3. 3 has been discussed in 

Chapter 2, where it was attributed to dispersion of long period wave 

components outside the 15-second sampling window. The difference 

is not great, but since some energy is lost .from the 15-second records, 

the .t1"ace from the full-length records will be used in the comparisons 

that follow. 

Estimates of A(f) for the northern data are shown in Figure 3. 4. 

The apparently higher average amplitude values for basement rock 

site data compared with the group a 's a whole, at 8 and 16 Hz, are a 

result of the parameter estimation process, rather than an indication 

of any real difference. This can be seen from Figures 2. l 9(c) and (f). 

If anything, the basement amplitudes are lower at these frequencies, 

but the group as a whole is better fitted in the least-squares sense 
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. by a higher value of Q and lower values of A 5 and A 6 (recall that 

A
5 

= A(8} and A
6 

= A(l6)). At the lower frequencies, the effect of 

material attenuation is not so great, and for f s; 4 Hz the A(f) curves 

shown in Figure 3. 4 should reflect the relative amplitudes faithfully. 

To a lesser extent the same effect is seen .in the south-eastern data 

in Figure 3. 5. Little, if any, real difference can be found between 

the amplitudes at basement rock sites and those of the group as a 

whole, in Figures 2 . l 8(e) and (f). Yet in Figure 3. 5 at 8 Hz and 

above, there is a 70 percent difference between the basement rock 

curve and the curve for the complete group shown in Figure 3. 5. 

Since basement rock amplitudes show much less scatter than 

amplitudes from the complete northern and south-eastern groups of 

data, estimates of A(f) from basement rock data only are considered 

to be more reliable than those from the complete data groups . The 

basement-rock only estimates of A(f) will be used for these two 

groups in the comparisons that follow. 

Independent estimates of the source para:meters of the San 

Fernando earthquake are available from (a) teleseismic observations, 

(b) field observations of the surface trace of the fault and (c) the 

distribution of aftershocks. These data are summarized by Wyss and 

Hanks (1972). Choosing from their summary, seismic moment, 

26 
M = 10 dyne-cm and rupture region radius R = 12 km as repre-

o 

sentative values of two parameters, (we may equally as well have 

chosen the fault area, and average displacement, for exa:mple) O 
0 

and f
0 

can be calculated from equations, (3. 2) and (3. 5) respectively. 

Assuming 13 = 3. 2 km/sec and µ = 3x10
11 

dynes/cm
2

, equation (3. 2) 
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gives O = 830 R cm-sec at r = 1 km. Substituting R = 12 km into 
o ecp 

equation (3. 5) yields a corner frequency of f = 0. 10 Hz, which is 
. 0 

below the 0. 4 to 16 Hz range of our data. Thus the flat A(f) accelera -

tion spectrum seen in Figure 3. 3, out to 8 Hz which corresponds to 

f- 2 behavior in a displacement spectrum, is consistent with the f-
2 

high frequency asymptote of Brune 1 s model. 

Substituting for O and f in equation (3. 8) and approximating 
0 0 

·the effect of the free surface by multiplying by a factor of two yields 

the source model estimate of A(f)""' 670 cm/ sec for f:2: 0. 4 Hz and 

r = 1 km. In obtaining this value, the further assumption of Reep= 1 

was made. In the case of the southern group this is a good as sump-

tion since the maximum ·of Re modulated by rupture propagation 
. cp 

. does lie to the south. The difference between emission of energy to 

the north and to the south is discussed further below. The approxi-

niation for the free- surface effect by multiplying by a factor of two is 

a commonly-used one (e.g. Trifunac, 1972) but is rigorous only in the 

case ·of SH-waves. 

Thus values of A(f), predicted by the asymptotes to 

equation (3. 8), are shown by a solid line in Figure 3. 6 which is 

compared with estimates of A(f) from the strong-motion data. Two 

points requiring discussion arise from Figure 3. 6. First, there are 

differences among the three A(f) functions themselves estimated from 

the three groups of strong motion data. Second, . is their relationship 

to the source model prediction A(f). 

On the first point, the question arises of whether the differences 

at low frequencies reflect a greater propagation of energy to the south 
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of the epicenter by the rupture mechanism, or the difference is a 

consequence of wave amplification by the deep s.edimentary deposits 

in the Los Angeles Basin. While it is impossible to resolve this 

question beyond any doubt, there are reasons, given below, to suppose 

that the San Fernando, source did, in fact, radiate more energy to the 

south than to the north. The pattern seen in Figure 3. 6 is consistent 

with rupture initiating at depth at the northern end of the northward 

dipping fault and then propagating upward and southward along the 

fault, focusing energy to the south. Southward propagation of the 

San Fernando rupture has been postulated by others (e . g. Trifunac, 

1974). Such a focusing effect requires coherent propagation of rupture 

for the constructive and destructive wave interference responsible for 

focusing to take place. Bearing this in mind, the following explana-

tion can be given for the converging curves in Figure 3. 6 

observed A(f) from the three data groups. 

showing the 

If the rupture propagation velocity appears constant when 

it is averaged over a certain length of fault, then waves of that 

length (or greater) should interfere and give rise to a definite 

focusing pattern. But if, when viewed over shorter distances, 

the rupture propagation appears quite erratic, interference 

can not take place. From the curv es in Figure 3. 6 showing 

the three values of A(f) , it appears that for wavelengths cor­

responding to O. 4 Hz, the San Fernando rupture propagated quite 

coherently, and a definite focusing of energy to the south took place. 

However, as frequency increases, and in effect the "smoothing 

distance" dec reases, the rupture appears to p r opagate less and less 
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coherently with the result that less interference takes place, until 

at f = 8 Hz rupture appears to be quite incoherent, and nearly equal 

amounts of energy are radiated in the three directions studied. 

Evidence that amplification by sediments was not the major 

cause of the higher average level of accelerations recorded to the south 

can be found in Table 2. 14. Here it is seen that sedimentary sites in 

the northern group were accelerated, on the average, 2. 2 times more 

strongly than the basement rock sites of that group. Yet there is a 

factor of 10 difference between the southern and northern curves at 

0. 4 Hz in Figure 3. 6; thus a difference by a factor of nearly five 

remains. It is not until f> 4 Hz that the two curves come to within a 

factor of 2 of one another and amplification by sediments of the Los 

Angeles Basin can be invoked as a likely cause of the differences in 

A(f}. 

A comparison between amplitudes recorded on rock to the north 

and to the south of the epicenter supports the assertion that more 

energy was radiated to the south. Figures 3. 7 show amplitude data 

points from basement rock sites to the south of the epicenter and also 

the attenuation curves for the basement rock sites of the northern data 

group (short dashes) and for the south-eastern group (long dashes). 

The solid line shows the average amplitudes of the M5Hl5 southern 

group as a whole. In the range 0. 4 to 4 Hz, all the southern data 

(P221 and P223 from the south-eastern group are included, as are 

Gl 10 and NI 91 which are sited on relatively shallow depths of sediment) 

are above the average arriplitudes of the northern basement sites, by 
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an average factor of about 3. - Thus at these frequencies, radiation 

was apparently stronger to the south. At 8 and 16 Hz little if any 

difference can be seen between the southern and northern basement 

sites. This is consistent with the hypothesis that coherence of 

rupture is lost at 8 Hz and above. 

It is interesting to note that except at 0. 4 Hz, and to a lesser 

extent at 1 Hz, the basement-site amplitudes are evenly scattered 

above and below the solid line in Figure 3. 7, depicting the average 

behavior of the southern group as a whole. This suggests that high 

frequency components are less sensitive to geologic structure than 

low frequency (0. 4 to 1 Hz) components. 

Returning to Figure 3. 6, it is seen that A(f) estimated by the 

source model from equation (3. 8) falls below A(f) from the southern 

group of strong motion data by a factor of nearly 2. 2. Considering 

the approximations involved in the model, together with the scatter m 

the strong-motion data, this is, however, close agreement. 

Further evidence that the A(f) th curve in F'igure 3. 6 faith-
sou 

fully rep re sen ts the strength of the seismic energy radiated to the 

south can be found in a comparison between this curve, and the 

amplitude of ground displacement spectrum from a Wood-Anderson 

seismograph at Pasadena, shown in Figure 4 of Wyss and Hanks ( 1972). 

Making appropriate conversions between displacement and acceleration 

spectra and scaling to a common distance r, it is found that the 

southern A(f) from the strong-motion data agrees closely with the 

amplitude spectrum from the Pasadena Wood-Anderson record, which 

was obtained on sound crystalline rock. 
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An explanation for the high value of A(f) may lie in the 

suggestion of Hanks (l 974a), that the San Fernando faulting was 

. initiated by an extremely energetic, but localized rupture in the 

hypocentral region. He estimates the following source parameters 

for this initial event: 

M 
0 

R 

O. 85 to 1. 7X 10
26 

dyne/cm 

3 to 6 km 

26 
Taking the source parameters of the initial event as M = 1X10 

0 

dyne/cm and R = 6 km, for example, leads to the same low-frequency 

asymptote as before, but extended upward, now to a corner frequency 

of O. 2 Hz. The corresponding spectrum., which for f> 0 . 2 Hz is 

about 50 percent higher than before, is shown by the dotted line in 

Figure 3. 7. Hanks attributes the occurrence of the highly energetic 

initial r~pture to a very non-uniform distribution of strain energy in 

the fault region. 

A third point to note from Figure 3. 6 is the marked fa 11-off 

in amplitudes with frequency for f above about 8 Hz. In the exact 

solution of Randall (1966) for a spherical relaxation source, there 

are periodic windows in the high-frequency spectral amplitudes, 

where amplitudes go to zero. This may be the effect seen in the A(f) 

values above 8 Hz although the fall-off in Figure 3. 6 is not consistent 

with the spectrum. from Randall's model when corrected to the corner 

frequency of this study. However, the San Fernando earthquake 

clearly did not have a spherical · source, and given a more realistic 

model of faulting, the observed fall-off in the A(f) values may contain 

useful seismological information. It should be noted that Crouse (1973) 
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observed the same phenomenon. He suggested that it might be caused 

in part by the fact that most strong-motion accelerographs are situated 

in building basements which often have dimensions of the order of 

the wavelength of 8 Hz components, and thus the rigidity of the base­

ment floor would tend to impede transmission of these and higher 

frequency components. However, he rejected this idea as the complete 

cause of the spectral fall- off since it was also evident in free-field 

record spectra. 

It is encouraging that the two estimates for A(f) enclose the 

observed spectral levels, but their difference is indicative of the lack 

of precision inherent in the two-parameter model. The strong initial 

rupture hypothesis serves to further illustrate the complexity of 

actual rupture mechanisms, and indicates the detail required in any 

model that is to predict seismic radiation accurately. Clearly more 

than two parameters are required, and with the amount of re search 

now being made into tectonic processes in general, and rupture 

mechanisms and material behavior of rvck in particular, there is 

considerable hope that better understanding and more comprehensive 

models will be forthcoming. In the meantime, it is heartening that 

the simple two-parameter model has been able to recover the overall 

spectral features at both teleseismic and strong-motion distances. 

From the results of this study, and those cited above, it appears that, 

given two independent source parameters, A(f) can be predicted to 

within a factor of about two to three. 
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An example is given in Chapter 4 of the use of the simple 

source model, together with the attenuation expression and scatter 

statistics of Chapter 2, to predict a design earthquake. 

3. 3. Conclusions from Chapter 3. 

The conclusions of the previous section may be summed up as 

follows. 

(l} The nearly flat Fourier amplitude of accele'ration "reference11 

spectra A(f} obtained from the strong-motion data in the 

frequency band 0. 4 - 8 Hz correspond to high frequency 

asymptotes proportional to f-
2 

in an amplitude of displacement 

spectrum. This in turn suggests a rupture mechanism involving 

a sudden drop in (shear} traction (Brune, 1970; Randall, 1973a) . 

(2) The two-parameter far-field shear wave model estimated the 

average strong-motion amplitude spectrum to within a factor 

of 2 to 3. As a corollary, stations at 10 km (Pacoima Dam) 

or more from the San Fernando earthquake epicenter may be 

considered to be effectively in the far-field. 

(3) Stronger 11 reference 11 spectral amplitudes, A(f), were re corded 

to the south of the epicenter than to the north. The main cause 

of this was attributed to propagation of the rupture mechanism 

from north to south, causing focusing of energy southward. 

However, some contribution from amplification by the Los 

Angeles Basin sediments cannot be ruled out. 

(4) The divergence at frequencies below 8 Hz of A(f) from the three 

different data groups, and their near-coincidence at frequencies 
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above 8 Hz, suggest that the rupture propagation became 

coherent when viewed over distances larger than the wavelength 

of 8 Hz components. On the other hand, it was incoherent 

when viewed over distances equal to the wavelength of com­

ponents with frequencies greater than 8 Hz. 

(5) The magnitude of the uncertainties involved in spectral 

predictions - and hence in design earthquake estimates - should 

be emphasized. At present, uncertainties in the source model 

alone of the order of two to three are apparent. These are 

large by the standards of engineering where safety factors 

of generally much less than two are normal. Even when more 

comprehensive models incorporating a larger number of 

source parameters are a vi lab le, accurate estimates of 

seismic radiation will still be difficult. It is hard to see, for 

example, how the massive, localized initial rupture proposed 

for the San Fernando earthquake could be predicted in advance. 
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4. AN EXAMPLE OF DESIGN EARTHQUAKE ESTIMATION 

In this chapter, the practical engineering problem of estimating 

a design earthquake is considered. In Chapter 1 some discussion was 

made of the shortcomings of presently used procedures. The method pro­

posed here, using the results of the previous two chapters, offers an 

alternative to them, While it still models the physics underlying the 

generation and the propagation of strong earthquake motion very 

approximately, it is considered to be an improvement on the previous, 

completely empirical, methods. 

The specific problem addressed is to estimate the Fourier 

amplitude of ground accelerations at a known distance from a fault 

rupture, given estimates of the faulted area and average surface 

offset. The method is to use the simple two-parameter source model 

discussed in Chapter 3 to estimate the source excitation strength A(f), 

and then to use the amplitude decay expression and scatter statistics of 

Chapter 2 to obtain expected amplitudes of ground acceleration at the 

site. The procedure is explained by way of an example. 

The largest earthquake against which the two-parameter 

model has been tested is the M = 7. 2 Dasht-e-Bayaz, Iran, earth­

quake of August 31, 1968 (Hanks and Wyss, 1972). Since the model 

is essentially empirical, it may not be appropriate for larger 

earthquakes. Difficulties may arise from (a) the elongated 

rupture area of larger earthquakes which violates the · 

assumption of a circular fault surface, (b) the assumption of 

a point source implicit in equation (2. 6) (this does not, apparently, 
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cause difficulties for r <:: 16 km in the case of the San Fernando earth­

quake) , and (c) the effect of rupture propagation. Further discussion 

of these problems is beyond the scope of this study. However, the 

point that geophysical source models have much to offer earthquake 

engineering remains valid, and it is expected that realistic source 

models applicable also to M> 7 earthquakes will one day be available 

to engineers. 

The wave propagation link in the design earthquake estimation 

chain, given by the amplitude decay expression of equation (2. 6) is, 

of course, quite general, provided appropriate values of Q are 

known. For larger earthquakes, the decay expression can be incor­

porated into integral representations of moving ruptures as well as to 

large fault areas in a straightforward manner. In this case, for 

r :::;;R, the geometric spreading factor will be more complicated than 

the simple l/r term of equation (2. 6), with details coming from the 

integration. Scott (1972) has suggested a way in which the effect of 

finite fault size may be accounted for and yet a simple geometric 

spreading expression retained. 

For the San Fernando earthquake, the amplitude decay 

expression .of equation (2. 6) appears to be vali~ for r::::: 16 km (the 

Pacoima Darn hypocentral distance). Since the source dimension R 

has been estimated as 12 km a tentative simple criterion of r > 1. 5 R 

for the validity of equation (2. 6) for near-circular faults is suggested. 

A further question normally considered in design earthquake 

estimates is that of the effect of the surface geology at the site. The 



-204-

statistical studies of Chapter 2 show that for practical purposes, 

within the range of surface geologies found in the Los Angeles region, 

there was no difference in intensity of recorded strong ground shaking 

among sites with "soft", "intermediate'' or "hard" surficial geology. 

It is considered that this conclusion may be generalized to other 

geographical regions with coarse-grained, generally dense, sediments 

or stiffer surface formations. How far these conclusions may be 

applied to softer sediments is, for the present, a matter for specula­

tion. The soft clay formations at Mexico City and the San Francisco 

bay muds are clear exceptions. Because of the nmnber of variables 

involved, it is likely that this question will remain open until a 

sufficient number of strong-motion accelerograms are recorded on a 

wide variety of geologic formations. 

4. 1. Worked example. 

It should be noted at the outset that the procedure below 

applies only to the frequency range of this study, i.e. to 0. 4 s: fs; 16 Hz, 

arid to ground motion effectively in the far-field, i. e. r :::> 1. 5 R, say. For 

prediction of low-frequency (f < 0. 4 Hz) components of ground motion 

and of motions in the near-field, the reader is referred to Hanks {1975) 

and Trifunac (1973) respectively. 

Suppose that an estimate is sought for a design earthquake 

resulting from rupture on a fault passing within 50 km (the perpendicu­

lar distance from site to fault) of a building site. Suppose,furthermore, 

that the fault has a history of strike-slip movement and that conservative 

estimates of the expected length L, and depth of rupture h, and 



-205-

surface offset u are available as follows: 
max 

L = 40 km 

h = 12km 

Umax = 40 cm. 

The average dislocation u is obtained from Knopoff' s (1958) result 

for ·strike-slip dislocation as 

- 1r u = -
4 

u ~ 3 0 cm . 
max 

(In the case of a thrust fault, Starr's (1928) result of u~3/4 u 
max 

should be used.) These parameters correspond roughly to an 

25 
M

0
=4. 3Xl0 dyne-cm or ML=6 . 5 shock. 

Assume that the site is situated in a coarse-grained, sediment-

filled valley in Southern California. A value of specific attenuation Q 

of 330 is chosen from the results of this study. 

Following Hanks and Wyss (1972), the source dimension for a 

rectangular fault is taken to be 

R = L/2 = 20 km. 

rather than the radius of the equivalent circle. Assuming the 

normally-used values of f3 and µ. for the upper crust, the computations 

commence with the follow:ing informat10n: 

(a) Source parameters 

R = 20 km 

u = 30 cm 

(b) Specific attenuation 

Q = 3 30 
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( c) Physical constants 

11 
µ, = 3 X 10 dyne/cm 

f3 = 3. 2 km/ sec. 

I. Determination of A(f). 

follows 

The corner frequency f is found from equation (3. 5) as 
0 

f 0 = ~·1Ti: 13 = 0. 060 Hz . 

From Figure 3. 1 it is seen that A(f) is essentially constant for values 

of f/f
0
> 5, say, and is given by A

0
• Since this procedure is limited 

to f~ 0. 4 Hz, we have for this earthquake f/f ~ 7. Thus to a good 
0 

approximation, A(f)=A , for all f>0.4 Hz. Using equation (3.10), 
0 

and incorporating a factor of two to account for the effect of the free 

surface, and evaluating A at r = 1 km we obtain 
0 

A = 2. 72j3u ~ 
o r 9cp 

A = 2 . 72(3. 2 km/ sec)(30 cm) R 
0 I (1 km) er(\ 

r= 1 km '+' 

A I = 2 60 R Ori\ cm/sec. 
0 r= 1 km 0 '+' 

Since it has been assumed that the fault break occurs on the section of 

fault nearest to the site, Reep= 1 exactly. (See e. g. Randall, 1973a 

for an explicit expression for Reep·) However it is not known how well 

Reep is developed in strong ground motion, and until more information 

is available, the use of Reep= 1 in all circumstances is recommended. 

In Chapter 3 it was noted that agreement has been found by 

several investigators between model predictions and independent 
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observations of A(f) to within a factor of two to three. Thus a factor 

of, say, three should be applied to the predicted A(f) to account for 

uncertainties in the model. (It should be noted that an even greater 

uncertainty factor should be applied to currently used magnitude to 

peak acceleration correlations, since their physical basis is 

weaker than that of even the two-parameter model.) 

Thus the final estimate of A(f) =A evaluated at r = 1 km is 
0 

A(f) = 780 cm/ sec , for 0. 4 Hz sf s 16 Hz. 

IL Allowance for amplitude decay during propagation. 

Recall equation (2. 6): 

X(f, r) = A(f) e -('!Tfr I Ql3) 
r 

(2. 6) 

Substituting for A(f), 13 and Q and r into equation (2. 6) yields the 

following expression for expected Fourier amplitudes at the site 

X(f, 50 ) = 7:6 e-(50f/33013) 

which gives 

X(f,50) =15.6 e-0.047f cm/sec for 0.4Hzsfsl6 Hz. 

This expression is shown in Figure 4. 1. 

III. Allowance for the uncertainties in the wave propagation. 

At this point we have an expression for the expected, or average, 

Fourier amplitude of ground acceleration as a function of f, at the site. 

This does not, however, allow for the random nature of wave propaga-

tion through the earth's crust. The randomness in propagation is 

expressed in the scatter seen in the Fourier amplitudes plotted in 

Chapter 2. The statistical character of the scatter has been described 
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by the distribution of k-values, which in turndepends upon the smooth-

ing effect of structural damping. The accumulated relative frequency 

curves are recomputed in a convenient form for engineering use and 

are given in Appendix 4. In effect, they provide the probability of 

occurrence of a given value of k [denoted in the plots in Appendix 4 

by F(k).]. 

Thus, depending upon the risk of earthquake damage considered 

acceptable, a value of F(k) is chosen and the corresponding value of 

k read from the appropriate curve in Appendix 4. The expected 

amplitude, X(f, r), is then multiplied by k to obtain an estimate of 

Fourier amplitude which has the probability F(k) of not being exceeded 

during the earthquake. Since frequency f and the amount of damping 

in the structure enter as parameters in the k-value distributions, they 

must be known for this final step in estimating the design earthquake 

to be performed. 

For example, suppose we are interested in the response of a 

structure in the nth mode with natural frequency f = 1 Hz, say, and 
n 

with equivalent viscous damping t;: equal to 2 percent. From 

equation (2. 16), namely, 

~f 
f = 2( (2. 16) 
n 

where .6f is the half-power bandwidth of the resonance peak at f , 
n 

we find that 

ff= 0. 04 
n 

Suppose further that we wish to have 90 percent confidence that our 



-210-

amplitude estimate x
90

(1, SO) will not be exceeded. From the curve 

in Figure A4. 2 corresponding to y = 0. 04 (the assumption of y = f:::J./f n 

is discussed in Appendix 4) and fn = 1 Hz, we find that k
90 

= 2. 1 . 

From equation (2.13) defining k, we find that 

x
90

(1, SO)= k
90

X(l, SO) 

= 2.1XIS.6e-o.04 7 

= 31. 3 cm/ sec . 

Thus, given values of the fault parameters, an estimate of 

amplitude of ground acceleration specifying the design earthquake has 

been made, and the random nature of the propagation path has been 

considered. Recalling that the study of high frequency components of 

. ground motion was confined to Fourier amplitudes rather than using 

accelerograms themselves in the time domain, or amplitudes and 

phases in the frequency domain, this is strictiy as far as the ground 

motion estimating process can be taken. hnproved source modelling 

in particular, may improve the quality of these estimates, but as long 

as phase inf~mation is random at the frequencies considered, a more 

complete description of ground motion than that given by Fourier 

amplitude is not possible. Thus the geophysical problem of esti;mating 

a design earthquake has been solved, albeit in an approximate manner. 

4. 2. Suggestions for the step from amplitude of ground motion to 

structural analysis. 

Since the specification of design earthquakes by their Fourier 

amplitudes is not customary in ea:rrthquake engineering, some suggestions 

of how they might be applied to structural analysis will be given. 
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· The now fai;rly extensive compilation of existing accelerograms 

could be searched for one, or preferably several records meeting the 

estimated Fourier amplitude requirements. This might be done by 

searching for suitable Fourier spectra in Volume IV of the Caltech 

EERL series (Hudson, ed., 1972) and then using either the accelero-

grams themselves as input to the structural analysis or using the 

response spectra computed from the accelerograms and available in 

Volume ID of the EERL series. 

To obtain estimates of structural response analytically from 

Fourier amplitudes of ground acceleration.the theory of random 
,l 

vibrations (Crandall and Mark~ 1963; Lin, 1967) is required. It is 

customary in random vibration theory to use one- sided power spectral 

density G(f), rather than Fourier ampiitude, and estimates of G(f) 

may be obtained from Fourier amplitude by the relationship (Bendat 

and Piersol, 1971 ): 

2 ' ' 2 
G(f, r) = T I X(f, r) \ (4. 1) 

e 

where T is the t:i.rne lengt1\ of record from which X(f, r) is computed. 
e 

In the case of earthquake amplitudes, some care is required in select-

illg T . Equation ( 4. 1) assumes that the time function, in this case 
e 

acceleration, from which X(f, r) is computed is stationary and ergodic 

and that it is computed from a sample of length T . In an earthquake, . . e 

the principal contribution to X(f, r) comes from a finite duration of 

strong acceleration following the S-arrival, which has a fairly uniform 

overall amplitude. Given the hypothesis that the length of this period 

of strong acceleration corresponds to the duration of fault rupture, 
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rupture duration is an appropriate choice for the value of T . If it 
e 

is further assum.ed that the rupture is unilateral and proceeds at near 

the shear wave velocity, 

T e 
2R 

=13 (4. 2) 

Thus power spectral density of acceleration may be estimated 

from 

G(f, r)::: : I X(f, r) 1
2 

(4. 3) 

obtained by substituting equation (4. 2) into (4. 1). 

Caughey and Stumpf (1961) solved the problem of the transient 

response of a damped, single-degree-of-freedom oscillator to 

stationary, Gaussian random input,given its power spectral density. 

Thus, knowing G(f, r) and Te, and making the assumption that the 

ground motion is Gaussian, in effect a response spectrum ordinate is 

obtained. 

Jennings et al. (1968) generated artificial accelerograms 

from sections of stationary, Gaussian random processes with a 

specified power spectral density. Using the same procedures, a 

single accelerogram or an e.nsemble of ar~icial accelerograms could 

be generated, with power spectral density appropriate to the parti-

cular site and fault rupture. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER RESEARCH 

5. 1. Summary and conclusions. 

This investigation has examined the high frequency components 

(0.4Hz~f~l6Hz) of strong ground motion from the 1971 M=6.4 

San Fernando, California earthquake. The study was confined to the 

high-frequency components since there is an essential difference in 

complexity between high- and low-frequency components of strong 

ground motion in both their generation and their propagation. It has 

been observed elsewhere that at low frequencies, relatively simple 

waveforms are generated, and that these may propagate coherently 

for tens of kilometers. On the other hand, the high-frequency com­

ponents considered here do not possess simple waveforms and do not 

propagate coherently over any significant distance. This is attributed 

to (a) the more complex emission of high-frequency components 

by the source and to (b) the sensitivity of the high-frequency 

components to propagation path inhomogeneities. Since these complex­

ities result in a loss of phase coherence, the study was confined to 

Fourier anlplitudes of ground acceleration. Samples at frequencies of 

O. 4, 1, 2, 4, 8 and 16 Hz were studied. 

It was found' that, with considerable scatter, the amplitudes 

follow a simple body-wave decay rule, and that the pattern of scatter 

is well-defined by the large number of data in the study. Azimuthal 

variations in average amplitudes were found, and these are attributed 

chiefly to the focusing effect of the southward propagation of rupture 
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during the San Fernando earthquake. This observation has important 

implications for earthquake engineering. Neglect of possible focusing 

effects may lead to greater realized ground motions than expected, and 

conversely, high amplitudes caused by rupture propagation in observed 

data may erroneously be attributed to other effects. This could 

happen with the San Fernando data, with the generally higher 

amplitudes recorded in the Los Angeles Basin sediments bein_g cited as 

proof of the existence of large site amplification effects. 

In fact, a statistical study of the relative intensities of ground 

motion at the 71 sites studied south of the epicenter generally in the 

Los Angeles Basin revealed essentially no difference in behavior 

between soft, generally alluvial sites and stiffer sites, generally on 

sedilnentary rock. Furthermore, scatter in the few data available 

from basement rock sites showed that, from the point of view of 

seismic hazard, basement rock sites need not be treated differently 

from sedimentary sites. 

Estimates o.f source excitation obtained from the strong-motion 

data agree well with (a) estimates from teleseismic observations, and 

(b) a prediction made by the simple two-parameter source model. 

This is a useful result for earthquake engineering, since the simple 

source models offer an alternative to the presently used and far from 

ideal practice of scaling design earthquakes according to magnitude. 

An example was worked predicting a design earthquake, using the two­

parameter model, the amplitude decay rule, and the amplitude scatter 

statistics. 
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The following specific conclusions may be stated: 

1. In the frequency range 0. 4:5: f:5: 16 Hz and for hypocentral distances 

r in the range of the study, 16:5: r~ 120 km, with considerable scatter 

Fourier amplitudes of acceleration X(f, r) from the San Fernando 

earthquake show a monotonic decay with both increasing distance and 

increasing frequency. This decay may be described by the expression, 

equation (2. 6) 

(2. 6) 

where X(f, r) denotes average Fourier amplitude of acceleration at 

frequency f and hypocentral distance r, A(f) is a measure of the 

source excitation, 1 / Q is specific attenuation, and 13 is shear wave 

velocity. 

2. For the mixed basement rock-sediment propagation paths of the 

southern group of sites, Q = 330 was found using a least-squares 

parameter estimation procedure, within a 90 percent confidence 

interval of 310 to 36 0. 

3. The scatter about the mean amplitude given by equation (2. 6) was 

measured by an uncertainty factor, k, defined by 

(2.13) 

where X is an amplitude data point, and X is the corresponding 

average value predicted by equation (2. 6). The distribution of k was 

found to .depend strongly upon the resolution bandwidth B of the 
e 

amplitude sample. For constant B at each sampling frequency, the e 

scatter distribution was nearly independent of frequency. For 
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B = 0. 73 Hz, the k-values from the southern group of data had the 
e 

following statistics: 

arithmetic mean, 

standard deviation, 

third moment, 

k = 1. 09 

crk = 0. 46, and 

mk = -2. 0. 

In view of the large variations in the depth of sediments upon which 

these data were recorded, the scatter is remarkably consistent, and 

indicates that sediment depth had little effect on the records. 

4. Much smaller groups of data north and also south-east of the 

epicenter were studied. Because of the small number of records in 

these groups, results from them do not have the same statistical 

significance as those from the large southern group. Nevertheless, 

these groups also showed a regular decay in amplitude with both 

distance and frequency. Determinations of Q were not as certain 

as in the case of the southern group. Both groups contained fair 

distributions of basement rock sites, and values of Q for propagation 

paths entirely in basement rock were determined. For basement rock 

sites of the northern and south-eastern groups, Q = 350 and Q = 550 

were found respectively. The 90 percent confidence intervals for 

these values were wide, being 2 70 to 500 and 450 to 800 respectively. 

5. The source excitation term A(f) in equation (2. 6) was also 

estimated from the strong-motion Fourier amplitude data. At 0. 4 Hz, 

the value of A(f} th was about ten tiine s strong er than that of sou 

A(f) th' with the south-eastern value being in between. The nor 

differences among the A(f) values determined from the three groups 
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diminished with increasing frequency, until, at frequencies of 8 Hz 

and above, they were ahnost identical. This behavior is consistent 

with the fault rupture initiating at depth on the northward dipping fault, 

and propagating southward (and upward), with the velocity of propaga­

tion being sufficiently coherent for interference to take place between 

wave components with frequencies below 8 Hz, resulting in the focusing 

of energy toward the south. However, the progress of rupture was, 

apparently, sufficiently incoherent or erratic, so that for components 

with frequencies greater than 8 Hz, interference did not occur. 

6. In the northern and south-eastern groups, amplitudes recorded on 

sediments were generally higher than those recorded on basement rock 

by a factor of about two. This effect was more marked in the 0. 4 and 

1 Hz components, and decreased with increasing frequency. In the 

larger southern group, with only three basement rock sites, no 

difference in amplitude was found between sedimentary sites witl;i "soft" 

surface geology and 11intermediate 11 site geology as classified by Trifunac 

and Brady (1975). Furthermore, spectral peaks in the three basement 

rock sites were generally as high as or above the average amplitude 

level of the southern group as a whole. This suggests that amplifica­

tion by irregular, but well-defined, surface topography typical of base­

ment rock outcrops poses as much of an engineering problem as does 

amplification caused by stiffness contrasts in sediments. On the basis 

of this study, no grounds could be found for treating sites on alluvium, 

sedimentary rock, and basement rock differently in estimating de sign 

earthquakes. 
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7. Values of source excitation A(f) estimated by a simple two­

parameter source model agreed with those observed from the strong 

motion amplitudes, to within a factor of about two to three. This 

offers considerable promise for a more rational design earthquake 

estimation procedure than those currently used. A worked example 

showed how this might be done. However, the empirical nature of the 

two-parameter model should be kept in mind in engineering applications. 

8. The considerable scatter in the data, and the uncertainties involved 

in source strength estimations deserve mention. The prediction of 

earthquake ground motions cannot be done precisely, and this should 

be borne in mind by those carrying out the subsequent structural 

design work. 

5. 2. Recommendations for further research. 

(1) In the southern group of sites there were conclusive grounds 

for eliminating all of the winnowed data except those from the 

Glendale site (F088). Since the extremes of the distribution of k-values 

depend quite critically upon the winnowing, it is of some importance 

to resolve the cause of the anomalously high amplitudes recorded at 

1 and 2 Hz at Glendale. Furthermore, if the anomaly has a geo­

physical cause, that in itself should make an interesting study. 

Vibration tests of both the Municipal Services Building itself, and the 

adjacent Public Services Building should resolve whether or not the 

structural response of either building was responsible for the anomaly. 

(2) Similar remarks apply to the high k-values from the 

Wheeler Ridge site (E071) at 16 Hz, and from the Fairmont Reservoir 

(0207) ·at 0. 4, 1 and 4 Hz. 
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(3) The spotty distribution of recordings shown in Figure 2. 4 

indicates the non-uniform distribution of strong-motion accelerographs 

in the Los Angeles region. A better distribution of instruments would 

not only record more earthquakes, but also would enable the rupture 

process to be studied in more detail. The successful application of 

earthquake engineering depends upon both the estimation of design 

earthquakes, and the subsequent structural analysis. The behavior of 

buildings during earthquakes is now relatively well understood. 

However, it should be clear from this study that the same cannot be 

said of the seismological phenomena contributing to earthquake ground 

motion. It therefore seems reasonable, that some portion of the funds 

now being spent in placing instrwnents on the upper floors of tall 

buildings would be better spent in improving the distribution of ground 

level or free-field instruments. Similarly, there seems little point 

in placing an instrument on the crest of a dam when there is no instru­

ment at the base or in the nearby free field to record the dam excitation. 

Specifically, a more even distribution of accelerographs, 

particularly those with radio time-signal capability, should enable 

better investigations to be made of: 

(a) The rupture mechanism, in particular the study of fine 

details of the dislocation time-function, 

(b) details of rupture propagation~ in particular, the velocity 

and coherence of propagation, and how this acts to modify 

the classical radiation pattern, Reep' at frequencies of 

engineering interest (i. e. say 0. 05 to 20 Hz). 
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(4) A closer examination of the San Fernando strong-motion 

data could be made for details of the radiation pattern, to study both 

its frequency and directional dependence. 

(5) Consideration should be given to model studies. While 

these may not give quantitative information, they should lead to a 

better qualitative understanding of the rupture process, and point to 

improved wajs of using existing and future seismological data. 

(6) The marked drop-off in A(f) values at frequencies above 

8 Hz may contain useful information about details of the San Fernando 

source, and may be worthy of consideration by theoretical seismolo­

gists. 

(7) Further checks of simple source model against existing 

and future strong-motion records should be made if it is to be used 

with confidence in design earthquake prediction. 
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APPENDIX 1: SMOOTHING BANDWIDTH 

In smoothing Fourier amplitude spectra to bring out general 

trends, a balance should be struck between the reduction of the 

apparently random fluctuations of individual spectrum ordinates about 

the smoother, underlying base function, and the introduction of bias 

errors into the base function itself. This point is illustrated in 

Figure Al. 1, in which the underlying base function has been sketched 

by hand. It can be seen that smoothing by averaging over a bandwidth 

B centered about the frequency f
1 

results in a bias error b , in 
e e 

the smoothed estimate of the base function at f
1 

. In general, bias 

errors will be introduced by smoothing whenever the base function 

has a non-zero second derivative. 

To determine the minimum amount of smoothing required to 

reduce the random fluctuati9ns in the spectra without introducing 

large biases, the following simple experiment was performed. 

Twelve spectra were selected at random from the set of 15-second 

· accelerogram spectra, and they were smoothed over N = 2M+l spectral 

points at each of the Q.iscrete sampling frequencies used in the study: 

0. 4, 1, 2, 4, 8, and 16 Hz. The resulting ave raged amplitude 

ordinates (X), were plotted against N, for N in the range of 1 to 49. 

Three typical plots are shown in Figure Al. 2. It can be seen that for 

small N the random fluctuations in the spectra cause large changes m 

(X) with N. But by about N = 11, (X) has settled down, and little 

appears to be gained by further. srnoothing. Similar behavior was 

also observed in the other 9 spectra tested; in all cases N = 9 or 11 
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FOURIER AMPLI.TUDE SPECTRUM OF 15 SEC 0:= RCCELERATJCN FCJLLCJW!NG S- ARRI VA!_ 
SRN FERNRMDO EARTHQUAKE FEB 9, 1971 - 0600 PST 
ENGINEERING BUILO!t\G, 5RlffA RNA, ORANGE CIJUNT'l', CAL. COr<.f' TRANS 
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Figure Al. 1. Illustration of bias error, be, introduced to 
the smoothed spectrum ordinate at f 1 by 
smoothing over bandwidth, Be. 
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appeared optimum, and N = 11 (M = 5) was chosen for smoothing 

the 15-s econd spectra. 

A similar experiment was made with the full-length Volume IV 

spectra, and N = 21 (M = 10) appeared optimum, and was used through­

out for smoothing the Volume IV data. 
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APPENDIX 2: LISTINGS OF FOURIER AMPLITUDES 

The various sets of Fourier amplitude data used in this 

investigation are listed below. Details of their computation and 

smoothing are given in sections 2. 2 and 2. 3 of Chapter 2. 

Section 2. 3 refers to Appendix 1. 
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fOJklEk AM~LITUDE UF ACCELEKAT!UN ICM/ScCI 
I o<.HI 10.4 rill l.i. Hl I 12 HLI l't Hll Id Hll 

C04l k lo 
C04l T lo 
CO,_b R lb 
C.048 T lb 
C051 R 45 
C051 T 45 
Cll54 R ,_4 
C054 T 44 
00:>7 R 39 
0057 T 39 
OJ5iS R 39 

·ooso T 39 
Ju59 R 42 
0059 T <t2 
JOo2 k 45 
L>Ou2 T 45 
00o5 R 42 
00b5 T 42 
00b8 R 37 
OObB T 37 
E072 R 42 
E072 T 42 
E075 R 42 
E075 T 42 
E078 R 45 
Eu78 T 45 
EJ&3 K 42 
E083 T 42 
FJ8b R 51 
FOSb T 51 
F087 R 89 
F087 T 89 
FOB& R 37 
FOSS T 37 
FOb9 R 4b 
F089 T 4b 
Fun R 45 
F.092 J 45 
FU95 R 40 
F095 J 40 
F098 R 45 
FQ.98 T 45 
Fl\15 R 41 
Fl05 T 41 
GH)b R 38 
GlOb T 38 
Gl07 i'. 42 
Gl07 l 42 
(;108 k 42 
Gl\18 J 42. 
Gl 10 R J4. 
GllO T 34 
Glli. ~ 45 
1..112 r 4:, 
Hll!> k 32 
till5 T J2 
Hl18 k 52 
rill& T 52 
Hill k 45 
Hl21 T 45 

92.700 
114. JOU 

70.iJU 
55. 100 
<:i.7uu 
27. JJO 
25.ZJJ 
:n.soo 
27.<tOO 
4 o. 800 
21l,40U 
43. ,:jiJO 
3 o. bUO 
ia.2uo 
26.7UU 
29.500 
27.30J 
43.401) 
16.UOO 
27 9'00 
24,bUJ 
40.0UJ 
3o•ouo 
33.000 
21.000 
28.000 
30 .... 00 
30. luO 
24.'tOO 
29.'7JO 
3.b5u 
6,!5U 

3b.b00 
30. 700 
26.900 
33. bOO 
20, 7UO 
22. ti JO 
29.500 
26 • .:wu 
24.30J 
36. ~JO 
ll.30u 
14.<tOO 

8. ,:joO 
12.3UO 
16,lJU 
lo.aoo 
22.bOU 
22.suo 
10. 5uo 
17.9Ju 
24,'t,H) 
30.7Uu 
55. 3UU 
..10. 2.iu 
14 • .l.J.i 
L;. lJ(J 

19. """ 
2ts. '::>vV 

• ~ATA PCINT NUT USED 

i.3't.OOO 
2bj. oou 

79.900 
77. 400 
zo.900 
4:>.30J 
..13. 31.iv 
43.tlOO 
33.800 
55. lJO 
.;:,. 900 
5o.900 
.B.JOO 
18.700 
29.2JO 
5ti. 7 00 
37.lOU 
36. 0,00 
17.500 
.:.1 • .300 
3b.500 
31. 700 
49.100 
4.;.. 700 
28.'tOO 
45.700 
't5.b00 
4b,OOO 
z,.900 
't0.800 

s.220 
7. bbO 

115.000* 
65.700* 
:is. 500 
49.90J 
U.900 
32.400 
32. 100 
4u .... oo 
;a,. oOO 
'>7.bOO 
12.300 
16.oOO 
io.uoo 
24,!'>UO 
34.600 
35,300 
'tJ .2 00 
't6.900 
2 ..... 00 
Ju.'100 
.!. 1, l OU 
40,600 
3'7. l UO 
l. <;.~OU 
l 't. rlOJ 

L5,400 
,o. 700 
Sb.l.00 

bb,2uO 
236,0uu 

81.200 
69.uuo 
39,6u0 
24. ll;J 
't3.20J 
Ld,JUJ 
36.ouo 
27 .'tuO 
33.900 
3b, 3u0 
2b.lOJ 
15. 900 
£8.2JU 
40.400 
43. :.00 
2.8. 90 0 
30. luU 
19.700 
35,0uO 
23.300 
44.300 
27.100 
26.2ou 
2L.6UO 
52.2JO 
2 7 .2u0 
23.auo 
2 7. 500 
11.2uo 

·11.iuo 
66,buO« 
S7,500• 
31.%0 
30.800 
13.ouJ 
l 7. 300 
35. 11.J 
1 b. OuO 
3'>.100 
43.7u0 
13. 40 0 
lb,buO 
21.6uU 
22 .200 
32.3u0 
26.2uo 
30.7UO 
3 7. Juo 
l 9. 200 
20. 4(JJ 
32 • .iuo 
22.<;0U 
41, <iucr 
'tO. 3u0 
l4.4u0 
14,ouu 
31. -.ou 
2o.'•vU 

13-.. ouo 
10.00J 
J7.oOJ 
3~.JJJ 
LO.uOJ 
l't.oou 
19.lOJ 
£1>.5UJ 
21.100 
30.80J 
4 ..... 00 
40.JOJ 
l7.40J 
17. 300 
26.JJJ 
;>o.UOO 
lb •. 900 
.u .100 
19. 900 
11. oou 
11. 40J 
16.300 
22.auo 

, ,.!J.30v 
15. b(J 0 
u.:;uu 
30. bOO 
21.000 
19.300 
2U.600 
4.24J 
7.290 

J't. ilOJ 
2't.5UO 
18. 7uO 
19.700 
12.90J 
lb.90\) 
15.oOO 
l't.aou 
22.600 
.L3.2JO 
23. 30J 
13. 3uu 
41.-JOU 
48. 700 
lb.7UU 
lo.9JO 
.lo.oJJ 
't5,lJU 
J9.500 
)u. ouo 
9.42J 

10,,00 
63 • .!.vJ 
31..bOv 
b.9~U 

lO,'tOJ 
i ... 1.tuV 
22.9uu 

b9.700 
5t!.200 
11.ouo• 

tl. 88()• 
l0,6UJ 
lv.300 

7. 'tUO 
7, 520 

10.700 
B.1>80 

27.300 
21. 700 
21.901) 
15.200 

7. 790 
14.dOJ 
5. ti50 

l u. 90J 
5.750 
9.070 
d.300 
5. 560 
8.350 

10.'tOO 
ll>.800 
12.soo 
17. 10.i 
21. JOO 

5.530 
5.450 
3. u,;,o 
2.580 
9. 't7J 

l7. 2\JO 
8.380 
9. ,}40 
't.140 
4. 57u 

10.aJO 
4.aoo 

14.300 
13.400 
4.800 
7.tl30 
7 • .!~O, 
9.120 
b.b40 
9.940 
5.'t8U 
1i. 7.so 
a. u,o 
a.120 

1J,3JO 
1. 540 

i. 7. dUO 
l.U. :>.JO 
2.o7u 
2.J20 
ti.})0 

i.b.LOJ 

llb Hll 

l~.500 
lb. tlOU . 
l.12J• 
J..l~J• 
l. tl 10 
l.3b0 
0.%5 
(J. 761 
o. 595 
o. 71!> 
2.1.su 
1.;;~o 

.).7ob 
0.55,} 
l.21J 
1.1ao 
0.40b 
o.782 
1.01u 
o. 5,.., 
1.500 
l.bdO 
l.05J 
.i.o54 
1.080 
o. 97b 
l. 61 a 
1.170 
0.59J 
0.032 
0.18'>* 
u.LH* 
o.949 
i.oao 
2.4il0 
l.OlU 
l .400 
t .34J 
u. <373 
:1.aa1 
l. 32U 
3.'tJO 
o. 777 
o.59a 
l .59U 
l. 500 
o. 9bl 
l. 520 
0.7bl 
l.lOJ 
J.200 
3.020 
l .2 70 
l. 860 
2.dOJ 
O.b30 
u.46.1 
u.LoJ 
l. 7'>v 
£.110 

TABLE AZ. 1. M5Hl5 Fourier amplitudes of acceleration, 
southern group. 
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RlCO"O R fOJRltr.. AMPLl TUUE Uf ACi;t:LC:RAT!U~ ICH/!>t:LI 
lKHI 10.4 HLI ll. Hll 12 HZI (4 Hl) ( 8 till Cl b till 

Hl.24 R 77 6.U90 1.020 a. 5ou 9.441.l 2.NO 0.191• 
ril24 T 77 5.7.>0 7.970 14.UJO 1.1.lOJ .!.. 730 0.177• 
112tl ~ J9 23.4UO 22.soo 24.lUO 9.49.J 5. 81.0 0.072 
1128 T 39 llobUO .:5.900 l4.7UO ll. 40U o. l l O 0.395 
1131 R 40 24.11.lu 21. dOJ 2d.6JiJ 24.70U 15.!UU o.843 
1U1 T 4U 20. J.UU 24.80u 47. 5UO 4do900 l7.3JO lo l.!.J 
IU4 R 41 22 •• ::00 21.100 23. oou 12. d(,J o • .:..cso 1.140 
llJ4 T 41 21.000 l 1. 2 00 34. lLiiJ J.ll.duO o.57U o.832 
1137 R 32 63. oOO 72. 600 34. 8vu 27. 7UO l bo 500 3.190 
1137 T J2 2l.4UU 30. 900 34. 600 I. 9. 500 14.~0U 2.360 
Jl45 il. 28 6 9. 8JO 7u.:; oo 35.dUU .<::S. 2.JU 9.u!O* u.<s57• 
Jl.45 T 28 44.700 5\J. 5 00 43.6UO 3u. :.oo 12. 7UU* 0.877• 
Jl.48 f< 42 33.oOO 47.500 ~6.duO 24.2UU l d. 4li0 1..150 
JJ.48 T 42 30. llU.J ;;2. t!OU 29 .1uu 3J. 9JU. 1£.oJO l.29J 
Ll66 R 33 l 9.'JOU 29.400 23. <;uu 2U.90ll 10.800 1..210 
Ll66 T 33 111. 90U 3U.50() 34.000 49.500 8.dOO 1. 7lu 
L17l R 140 3.310• b. OBO* 4.170* 2.oau• v.645* O.Od'>* 
Ll 71 T 140 2.640* S.310* 4.460* .<.. 4oO* l. 3.20• 0.101• 
Ml7o R 4S 41•4JU 49.100 24. 5u0 J.0.0UU 13. Buu l .23v 
Hl7o T 4S 39. lUO 3o.900 22.2ou 9. 7't0 s.100 o. 729 
14180 k 8S 4.lOO 1.210 11.. 5Ju 7.5uu l.o9U 0.192* 
MlS-0 T 85 o. 51.1) 7.610 7.870 o.7JO l.dau 0 .174• 
Nld5 R 77 3.ll70 o.750 11.. 900 21. 300* ll.100* u.581* 
Nl&5 T 77 4.30U 5. 710 l6.3uo 28.<>Uu« 7.lli;U« u. 729* 
Nl8b R 5o l S. 3JO 15.000 u. 7uu 21>. 7vv"' 9.450* u .851* 
Nl&o T So 15.oUO 16.400 22.70U 17.2(,0• 15. 800* o. 746• 
iU88 R 41 .!. s. 8UO 2.2:.400 lt1.8UU 3<:.7UU ll.lUu 1.580 
Nl68 T 41 20.2ou l 7. 300 21.800 19. oOO 10.000 0.88b 
Nl 91 R 69 3.571.J 9.0'7() 'l.97v 7.9UO 1.740 0. 184• 
Nl9l T 69 5.51U lJ.. 00i) 7. Bou 7.480 2.320 .:i.1o_j• 
Nl92 R 43 31.oOU 43.100 14. 60l) 9.750 1.<::. 200 2.140 
Nl.92 T 43 32.400 41.0JO 26.500 15.SUO 15. 500 l. sou 
Nl% R 77 12.'tUO l'tovOO 10.100 7.940 2.4tl0 0.244* 
NI.% T 77 9.13() lts.500 18.300 12.100 2.240 0.227* 
Nl95 R 123 5. 590* 13.500" ll.4UU* o.45U* 3.960• o.ia:i* 
Nl95 T 123 5 • .!.UU• l<t.900• 17.600« 7. 970• 4.350• 0.211.• 
0198 f< 36 21.bUO 42~90() 65. 700 34 •. 't(;U 7.8SO 3.25U 
0198 T 3o . 19.400 52.500 4 5. 800 39.90J 9.560 3. 711) 
0199 .R 44 30.9()0 43.000 33.30u 30.700 lS.700 l. 73J 
0199 T 44 31.500 55. s 00 48.100 30.700 23.400 0.099 
0204 R 75 8. HO 6.260 8.4't0 7.160 1.540 0.167• 
020<t T n 6.000 10.300 10.SuO s. 780 l. HO 0.100• 
Ui05 R 75 a. 58u d. 7 20 lo. Suu e..160 2.490 u .146* 
OJ.OS T 75 s ... 60 8.320 13. sou 7.400 l. 500 0.124• 
P214 k 39 23.ilOU _jJ.900 46.70() 42.20.J b. 890 l •. HO 
Pil4 T 39 30. 9v0 !>8.SOU 32. 5Li0 32. ilOU Lh400 1.540 
P217 R 42 29.200 4l.l0U 39. 200 16.600 8.410 J. 1>15 
Pd 7 T 42 31. 4UU 41. l 0() 16.100 13.JOU 1.sso 0.631 
P220 R 97 S.4>0 8.o8U 10. 30U 8.420 2. i)90 O.lStl• 
f.(l0 T 97 6.72u 11. 3UJ 13.3uv 6.J9U 2.43U U.lS4* 
P231 k 53 17.JOU 17. oou 13. 700 6.lbO 2.JoO J.46'1 
P231 T S3 1.2. bOO l 7. 000 16.900 6.140 3.J70 0.431 
w.::33 k 32 4 S. 7v>:J 39.'>00 60.6vu 67.300 lS.200 J.91() 
IUJ3 T 32 JS.200 28.600 .. 0. 600 48.tlUU 17.200 6.250 
IJ23b k 37 15.400 15.200 ll. 700 28.dGU 11. 700 l.950 
Q.:!.36 T 37 24.ovu 35.50U 27. sou 19.&UU ll. 600 l.901.) 
1.1.::39 R 41 31.<>UO 21.600 39.700 24. "t-OU 19.400 2.230 
lolZ.39 T 41 31 •. rno 3U.50U 38.0UO 29.700 1.4.200 l.14U 
.J.(41 ~ 44 29.4Ull ~'t.3UO 38.JOU 16.SOO 10.700 u.923 
lol241. r 44 Ja ... uo 5o.500 l 7. 500 lo.60\J l.!.. 5UO l.3~U 

• UATA l'OlNT NOT US Ev 

TABLE AZ. 1 Continued 
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kECCJilO R fLhliUEk Al'4Pl I TUOt: Ut- ACCi:LiKATION IC.11/SECJ 
tKMl Ill.It HL l 'l Hl I 12 Hll , .. Hll to Hll 

R244 ii 4't 2 .... wu 211.900 39.30ll 17. lJu 6.dlO 
R2't't T 't4 27.'tUU 't4. tlOO 28.t!UO U.JllJ 5. 790 
K2'tb k 38 l2.4vU 3 ti. b 00 lti. 3uu l.tl. \,)\,)\,) 8. "' () 
R.246 T 38 35 . uuv .H ... oo .c'4. ouu l2 • tlJU 9.'t20 
R249 R 41 29. :mo i'f.500 u.zou lo. :>vu s. 710 
Rl49 T 'tl 19. 7UU lo. l vll 15.luJ 7. 77U 12. 2ull 
R.!51 R 44 L!>. LUU 34 ... uu 5b.2llO l3. ~JJ 4. 520 
k.l :H T 44 31.bJO 5o. 7 OU 32.4UU L7.4UU 9.oOJ 
R.<53 R 44 2 7. sou 4't.500 4 9 . uuu ~7.suu lb.!100 
R.:5l> T 44 J5. t!OU 45.300 3tl.luu 42.tlJU 14.00U 
S25!> R 41 31. Sull ll.bOO 25.Juu 2:>.UuU l3.4UO 
S255 T 41 3 7. bUU .H. ooo 40.000 .6.oOO 12.000 
Sl5tl R .. 1 30.bUO 33.900 25.900 9.9l.U 3 •. no 
S2 58 T 47 24. oUU i;b.200 l4.7uu 12.tlUU 4.UbO 
S2bl R 42 2b. Suu .a. ooo 2't.5UO lo.uuU 11. :;ou 
S2ol T 42 24. 700 26.oOJ 23.100 17.UOJ 9.J60 
S265 R 42 29.7uu 4.:o. oou 24.700 21.400 1J.4UO 
S2b5 T 42 32.400 3't.80U l6.6UO 24.000 20.dOU 
S2bb R 42 3J.oUO 49.500 3s.ouo 21 • .LUv .1.1.~oo 

S2bb T 42 3:>, 9UO 43.2 00 35.lUO 31,UOU 9 ... 10 
Slo7 k 54 17.JUO 1 .... 900 17.3uu u.200 s. 400 
S2b1 T 54 15 • .LUO <.O. 000 14.0uU .l0.4UU tl.480 

• DATA POINT NOT US Eu 

TABLE A2. 1 Continued 

SAN FcRNANOO EAkTHJUAKc 
310 < PHI < 36J OEGREES 
15 StCuNO SAMPLt 

1 b CUMl'uNEt·<I S 

RECO~D R fUURIER AHPLITUOE UF AC.CLLEKATIUN lCM/SECI 
(KHI 10.'t Hll 11 Hll (2 hll (<o Hll 18 Hll 

c07l R 
E071 T 
Fl•U R 
Fl 02 T 
Fl04 R 
Fl 04 T 
J141 R 
Jl41 T 
Jl4Z R 
Jl42 T 
Jl4~ R 
Jl43 T 
Jl44 k 
Jl44 T 
Ml 7<; R 
Hl 7<; T 
U207 R 
0207 T 

87 
1H 
70 
70 
54 
54 
32 
32 
30 
30 
JO 
30 
27 
27 
72 
72 
35 
35 

3.nu 
2 ..... 0 
l. HU 
l • 75U 

io. 2 ;i.i 
12. 5JO 
13 • .lllO" 
14.,0u~ 

10.lUU 
3-<><>0 
9. 410 
4.Uc>U 

12.<tUO 
5. 7~0 
l.d8U 
l. 81 i) 
7. 9ou• 
3.olo.)* 

* DATA POINT NOT USED 

4.lBO 
4.520 
l.250 
.l.OOJ 

15.oOO 
l't.300 
61.l.JOJ• 
39.90v" 
zu.100 
8.590 

10.600 
9.750 

20.100 
.l3.ZOO 

1. 340 
1.610 

l!l. 700• 
7.3 80• 

2. lltlO 
4. 220 
l.7uo 
2.e.:iu 

11. 200 
16.100 
34. 7u.J• 
3J.7uU"' 
29. 5uu 
9. 500 

l0.9UU 
11. 3uO 
19.SOU 
19.ZuO 

2. 7'7U 
4.510 

U. !>iJO 
7.or.o 

3.24\l 
4.3uo 
5.530 
3.nu 

21.2uu 
10.dvO 
16.200 
i7.701) 
22.400 

6.910 
11.1ou 
14 • .10J 
!>7.30U 
61.400 
.l.Slu 
3,U40 

3J.1UO* 
10.llOU• 

.l.oJO 

.l.450 
2.680 
2 • .l<tO 
<t,290 
3.9.20 
4. 51 a 
d,tlt>O 

3.l,30U 
l 7. 600 
9.J50 
'i.140 

16.lUO 
16.lllO 

't. 31 O• 
5. 520• 
5.600 
5.910 

116 Hll 

u. ti'+'.> 
l).tl77 
1).957 
1.320 
1. 5 lll 
J..341) 
u.ildO 
1.190 
l .83U 
l .92u 
u. 7'1b 
ll .8~5 
o. 92cl 
O.'fl.:o 
1.370 
1.82() 
1.330 
1.830 
2.390 
l.o'JO 
u.auo 
o. 738 

( l 6 Hl) 

0. 7d9 
0.39o 
0.23.2 
J.21'1 
O.<t24 
u. 529 
Q.42d 
v.6u5 
5.140 
2. 57.:l 
2.910 
s.asu 
4.32u 
't.4d0 
l,Oju• 
a. 792" 
.l .1"0 
a. 753 

TABLE A2. 2. M5Hl5 Fourier amplitudes of acceleration, 
northern group. 
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SAN ffkNANOO EA~THOUAKt 
90 < PHI < 150 UoGREES 

l::i .:>t:COND SAMt>U: 
34 C.PHPLINEll.T:> 

llfC.ORO R HllJi'l I t.R AMPLITUDE OF AC~cl l:kA Tl iJN ICH/SE.;J 
IKHI l0.4 Hll 11 Hll 12 Hll , .. Hll ( t! Hl) (16 Hll 

fOd7 R d9 3.6!>u 5.220 11. 200 'to.l40 3.030 0.189• 
fOS7 T t!9 o. l:>v 7.660 ll. lvu 1.l'N 2.:HIU 0.1!'3• 
f 101 i'( !08 2.'HV 3.920 6.6.lO l U.t>OJ 3.920 0.221 
FlOl T 108 2.14v 4.100 8. 7,,J 5. esZO 2.:>20 0.1 a'.> 
Gluc. · R 38 tl,3bU l0.000 21.600 4l.90J 7.25V 1.590 
t,;1 Ob T 38 12.300 2 .. ·• 500 a.zuv .. <!, 70U 9.120 l.5UO 
Gl07 k 42 16, llJU 3't. 61)0 n. 3uo 16. 700 6.040 J.961 
Gl07 T 4Z l6.6uu 35.,, 00 <:6.2uu 16. 90J 9,940 1. '.>21.i 
Gl oa R 42 22.biJU 43.200 30. 700 26.600 5.4t!O 0.761 
Gl08 T 42 22.bOU 46,900 ..;7,0uO 't'.>. 700 b. 780 1.100 
GllO I\ 34 l0.5uO 24.400 19.Z()J 39.500 6,lbO J,200 
GllO T 3't l7.'1JIJ 30.900 20.4vv 36.00U 8.120 .J.620 
H121 T 45 26; 500~ 56. 1.00• 2d.9u0 £2.9UU 16.200 <:.uo 
Hl2l R 45 19.900• l5. 700" 31.400 14.'tOO a.350 1 • 75U 
Hl24 R 77 6.090 1.o211 8.51>0 'i.440 l..190 0.191* 
Hl24 T 77 5. 1:.0 7.970 14.00U 11.1uo 2.130 0.177• 
HlclO k 85 4 • .2ou 7.270 11. 5Uv 7. 500 1.090 0.19}.$ 
Ml60 T 85 6.510 7.610 7.870 6. 700 1. asu 0.174• 
MlcB R 72 3.52v 8.640 u.Jov 1.110 4.l 7u 0.684 
Ml83 T 72 2.3'tu 4.460 u. 000 ll.. oUO 3,4.lO o. 793 
Ml84 I\ 7Z 3. 79v 8.960 12.800 a.U90 3.d60 0.5ll 
i'\184 T 72 2.350 4.410 1 o. 700 16.2(10 3. 790 O.bl2 
Nl 85 T 77 4.300 5. 710 16.31.JU 28. 800• 7. Jt!o'" o. 729* 
Nl85 R 77 .:i. 87v 6,750 1l.9u0 n. 30v* ll .l 00* o.561* 
Nl86 R 56 15.300 15.000 13. 700 26. 700• 9 ... 50• 0.8:>1• 
Nlo6 T 56 15. 60u 16.400 22 • 71.JU 17.ZCO* 15. 800• o.746" 
Nltl7 R 73 3 .• 030 5.870 11. 800 l <J. auo~ 9. 1'10• 0. 553• 
Nl87 T 73, 2.640 5.430 11. 700 lZ.600* · 9.o40• a.60o• 
DlOb i'( 109 4.44.J 8.970 11. 7u0 lu.600 2.'HO o.196 
0206 T 109 4.o'tV a.210 14.400 9 •. 400 2.260 0.135 
"221 R 45 bob4U o.250 9.0SU 1-'• 'JOO l 7. JOO 3.llu 
P.:Zl ' 45 7.6tW 6,800 7.250 ..t:>.400 37.500 2.2b0 
P223 'R 66 5.7b0 12.300 14.luO 4 ... 7iJ 6.540 0.24:> 
Pl23 T 6b 5.17U 9.b80 14.100 1. J60 5.070 0 • .246 

• DATA POINT NOT USED 

TABLE A2. 3. M5Hl5 Fourier amplitudes of acceleration, 
south-eastern group. 



SAN FEl\NANOO EARTHUUAK~ 
lJU < PHI < ZUJ J~j~~E~ 
UNSMOOTHLJ115 S~CLNU SAMPLE 
lio2 CUllt'uNENTS 

~l:CORO R 

-230-

FUUKlER AMPLITUDE OF ACCELER~TlU~ IC~/SECI 

(KMI I0.4 Hll (l Hll 12 tall 14 HLI 11> Hll 

C04l k lb 
C041 T . 1 b 
C048 k lt:> 
C048 T 26 
C05l R 45 
C051 T 45 
C054 R 44 
C054 T 44 
0057 R 39 
0057 T 39 
.0058 R 39 
0058 T 39 
0059 R 42 
0059 T 42 
OJ6<: i( 45 
0062 T 45 
OObS R 42 
00b5 T 42 
001>1i k 37 
OO<>b T 3 7 
E072 R 42 
E072 T 42 
E07~ R 42 
E075 T 42 
E078 R '>5 
E078 T 45 
E083 R 42 
eoa3 r 42 
F08b I\ 51 
FOSb T 51 
FU1i7 R 89 
F087 T 89 
F01i6 R 37 
FOBS T 37 
FOB9 R 4b 
F069 T 46 
F092 R 45 
F092 T 45 
f095 k 40 
F0.95 T 40 
F096 R 45 
Fu98 l 45 
Fl05 R 41 
F!05 T 41 
Gl06 R 38 
Gl Ot> l 38 
GI u7 R 42 
G107 l 42 
Gl<lb R 42 
Gl O& T 42 
GllO I\ J4 
GHO r 34 
Glll R 45 
l>UZ T 45 
HUS R 32 
HU~ l 32 
rHltl k !:i2 
11111> l ~2 

Hld k '>5 
HLd T 45 

79. suu 
8b.70u 

3.53U 
b. tl70 

64.900 
2ll. 100 
69. 000 
39.5UU 
47.4u0 
28 • .21.iO 
43.llOU 
25. l(,Q 

39.3UU 
1S.4UO 
5 7. 5UU 

b. 730 
55. lUJ 
3J.8UO 
17. lJU 
2b. 40U 
l 7. 400 
21.uoo 
45.00U 
18.900 
77 • .200 
34,3UO 
'>5.100 
32.800 
43.'tGU 
l 8a 4UU 

3aolU 
b • .230 

.2'o. Suu 
l 7.300 
8b.t!llll 
29. 900 
56.80u 
13. 600 
59.4UO 
27.80U 
70. 40U 
35.tlOO 
18.lUO 
10. ilVU 

5.4:>U 
lb.6UU 
25.100 

7,7tH) 
3l.4UU 

· JZ.oUu 
8.S'>U 

27.500 
11.crno 
37du0 
49.~Uu 
.!4.400 

3o4.>U 
l.U4U 

50.luU 

"'· ..::.81.1 

• UATA PCINT NuT U5c0 

193.000 
.>J4. OOJ 

54.100 
61.aoo 

7. SjU 
.a.2ou 
07.400 
41.lOJ 
36. 900 
46.40U 
38.000 
4".000 
45.900 
£4.200 
,9.1ou 
71.300 
37.40J 
ol.UOO 
15.500 
33. 4vu 
2l.60U 
36.600 
81.100 
'>4.'tOO 
1.2.700 
32. 700 
2:.. '700 
78. 5 00 
32.900 
o:>.300 

3. 730 
4.560 

141>.000'" 
58.600• 
65;suo 
90.90U 
12.300 
55.200 
17.400 
51.91.iO 
49.000 
75.lUO 
13.400 
lb.SOU 

l>.700 
48.200 
b9.000 
72.600 
60.000 
t:>l. 000 
11. 1U\J 
i 7 •. lOO 
34.lOu 
39.ilOU 
6b.800 
11:1.300 

tl.770 
<o.340 

B.lUO 
'to.400 

6 l .BOU 
375.01.h.l 

19.0UU 
bl.00u 
15.<hJO 

·22.uuu 
59.9vU 
a.nu 

24.30u 
s.3 .. o 

lo. 60 0 
14. 5u0 

3. b30 
9.45u 

25.9uJ 
42.0UO 
30. BOU 
lb. 7u0 
15. 30J 
13. 7UO 
51.900 

4.2ts0 
24.000 
32. 400 
,4.70U 

8.52U 
90. 600 

4.930 
13. 500 
24.Zuu 
19.IUU 
8.270 

53.400• 
16. 900• 
73. lUO 
5<1.800 

b. b'>J 
13.200 
2b.4UU 

9.2vo 
21 ... ou 
53.400 

6.1:13U 
7.560 

l0.2uO 
9.5o0 

39. 700 
48.0uO 
32.lUO 
29.3u0 
l2 • .3u0 
42 • .<uu 
:'>6. Si.JO 
14. buu 
55. <;uU 
2 5. 7uv 
25.buu 
13. bOO 
22 .1uu 
a. Sl 0 

154.JOU 
o<t. illJ 

9.100 
4l.4uJ 
l 1>. 1;v0 
u. 900 
L3. 700 
3.23J· 

67 • .20U 
9.9'tJ 

3u.ooo 
4o • .<:uC> 
31.0JO 
23.0UU 
l4.7uJ 
19.900 
jb.4UU 
2.4UJ 
d.940 
o.394 

lU. 900 
.29.300 
23.lOJ 
.26.0JO 
18 • .200 
.H.100 
3il.30U 
64.70U 
12.00U 
12.oOO 
9974J 

11.600 
17.40\l 
45.900 
.d • .2JO 
13.UOO 
u.uuo 
12.duO 
3u.40J 

7.31u 
18.bUU 
12.100 
2o.400 

9. 19J 
30.50U 
26.200 
ll. 000 
b.blU 

24.7UU 
10. 700 
.H.'•vU 
32.20U 
d.490 

12. 7vv 
l '1. lOJ 
;o.ouO 
9.5~U 

8. 4'1U 
1. /4U 

5.2. 40.J 

l2j.OOO 
15.400 

o.21U* 
l O. UOO• 
11.100 
l 'I. 100 
5. nu 
4.aoo 
.2.o20 
1.730 

39.'tOO 
22.bOO 
l9.70U 
ld.200 
5.d70 

12.200 
i0.300 
12.9UO 

5. !l30 
6.lbO 

lo. 2 00 
3.480 
o. 71>3 
8 ... 20 

20.4UU 
9.\,)60 

16.300 
l3.L00 

o.2bO 
5.400 
2.040 
3.120 
a.suo 

17.700 
5.22J 

11.400 
tl.tHO 
b.790 
1.9'>0 

10.200 
2.bbO 
7. 't30 
4.610 
2.8'10 

10 • .ZUO 
4.4tl0 

u.1ou 
2. 030 
2 .<100 
4. 530 
tl.250 
4 • .190 

lo. 400 
J.l. 2JU 
lu.·400 

ti. 010 
2ol00 
2.110 
d.J7u 

'"· •uo 

'16 Hl I 

10. sou 
13.jJJ 

O.b2\I• 
2.vdU• 
l .23u 
l. bl u 
v.581 
o.;;u 
J.341 
l.190 
l.930 
2.d20 
u.053 
l.U3U 
J.595 
0.90& 
u.794 
J.69" 
l.3b0 
1.210 
l.39() 
l. 770 
1.200 
(). 71,3 
1.110 
0.93J 
l.720 
lo5b0 
l .O~v 
0.5b'1 
G.l.2l* 
u. 071• 
0.977 
1.180 
la60U 
" .. 230 
3.31() 
l • .>bv 
1.340 
o. 77i;s 
u.70b 
2. 710 
.J.570 
U oii3 7 
u.407 
i. uo 
U.810 
0.80b 
l .3 1tv 
2 .140 
l.99u 
'-•HJ 
u.<184 
U.631 
v. lbl 
"• t.bb 
v.lb4 
v. '>'t 7 

'. bil.u 
l.Juu 

TABLE A2. 4. MOHl 5 (Unsmoothed) Fourier amplitudes 
of acceleration, southern group. 
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IU:CORO R fUJk lf:t-. AllPLITUOE Of Al.~tL C:kA Tlt.Jt'o I Cll/ SECI 
CKHI 10.'t Hll ll Hll u Hll ' .. Hll 'd Hll I 16 Hll 

Hll4 R 77 7.lc.O 6. 790 2.4<>0 7. 080 4.930 0.364• 
Hl24 r 77 3 • .!.:hi J. 21rn 14.000 15.7uo l.040 0.21.,, .. 
ll..1.8 R 39 213,1>00 .H.200 L2,7u0 6. 740 4. 7<.u 0.617 
uza r 39 48.200 l7.000 9.1 70 10. 5UU 8. 't9U u.307 
11'>1 R 40 55. :;uu 2.310 80.600 29.8UJ 1 .>. lOU 1,U90 
1131 T 4U l l. 50U 41.300 z3. 7ou JO,lOU !l.230 1. 530 
U34 R 41 46.J.JU 6.540 22.3uu 19,7uJ 7. 300 1.540 
U34 T 41 Hl,bUU u. 401) 20.3uO U.8JJ :..050 o. 75-i 
1137 R 32 41.'iOU 'i7.400 46.900 II. <>UU I 7. 300 2.<>0U 
1137 T J2 l6.9UO 25. 4 Ou 49.6UO 25.7UU 19.700 u.758 
Jl4~ R 28 .; 7. 700 2 7. 900 64.50u 56.2UO 8,56U• 0.679• 
Jl45 T 28 24.<>UO 6J.300 11.suu j<j,l)l)J z. 560• 2.u10 .. 
Jl48 R 4l 4l.3uu i.6.100 77,800 lv.duu 11. 90u 0,241 
Jl48 r 42 16. :.uo 27.oOO 77. 61.JO .:."t.500 4.190 2.oiu 
Ll66 " 33 11. sou l6,6UU 22.4UU U.9UJ 8. 940 u.955 
Ll66 T 33 20. 500 l>.840 l4,9UU 54.JJO 5.450 l .9lll) 
4.111 R 140 0.9:>3* 6.170• 1. 6d u• ..1.. loO• 0.865• 0.031• 
Ll71 T l4U 2. 490• 9. 540* 5.950* o. 7; 1• l. 130• u.111• 
11176 R 45 68, 40u 7u,900 17. 500 l.89J 16.400 1.010 
Hl 71> T 45 21.duu e>.oou 17.100 7 • .iou 13. 700 u.35£> 
HloO R 85 3. ;10 4.830 13. 5uo 11.9l0 1.560 0,264• 
11180 T 65 8,'t9U 3.280 6,bbO 14,400 2.660 0.184• 
Nl85 R 77 2.Jlli s.soo 11.000 14.300• 13. 5JO• 1.040• 
Nl85 T 77 z.a:io 1. 760 15. 3U 0 2;; • .;ou• 6.9oJ• l.5!0* 
Nl 81> R 56 15.400 18.300 9.75() 31.700¥ lJ, cOO• a.sou• 
Nl8b T 51> 19. 3uu 20. :mo lJ.suo 27.5uv• 17.900* u.901* 
Nl~B R 41 4.:1.600 13.oOO 16.80\) 30. JuO 2.450 O.c3!i 
Nlb6 T 41 14,<>UU lb.lUO 20.4u0 9.410 s. 520 0.742. 
Nl91 ii. 6.9 2.1.0 5.000 l9,3uv l. lilJ l.930 o.oso• 
Nl 'il T 69 4.100 25.600 12.300 o.630 1.110 0.190* 
Nl92 R 43 5 9, 7 uo 60.100 22.6.JO d.4jO l<J.100 0.899 
NB2 r 43 46,900 66.200 46,51JO 29.500 28.000 o. 745 
Nl95 R 123 .;.15u• 12 .'100• 26.3uu• 7.l<JO* 5. 740* u. l 7.j* 
Nl95 r J.23 3. 4tlu~ 9.700* :H.50J* 5,090" 4. 62U• 0.289• 
N196 R 77 2.6't0 19.300 20.100 a.110 2 .670 0.191* 
l'il% T 77 13. Su(i 19.300 24.9u0 4.720 l. llu u.2s1• 
Ol.98 R 36 12,6<lu 5u.200 10.100 14.IOJ 9.2::>0 6,LIO 
019<1 T 36 l 7. oOO 79.600 65. 400 31.700 2.b. jOJ 4.95J 
0199 R 44 5l.6uu 39.600 58.%0 62.20() 29.JOO 2.130 
0199 T 44 24,00u 111 •. 100 47,600 14. 30.0 21.300 l .11u 
0204 R 75 4.220 J.380 5. 33"0 4.740 1.560 u.173• 
0204 r 75 6. 680 tl,920 15.ouu 2.11u 1·,o40 0,085• 
0205 ii. 75 5.290 11. 500 5. 420 6.2.70 2.260 0.094* 
U205 T 75 4,640 5.650 22.1uo 15.300 2.110 \). 12.9• 
Pll4 k 39 31.000 14.900 40.601.l 4U.l00 <>.940 l .900 
P214 T 39 22.10.; 95.900 5 l. suo 2.2, 9UJ 9.420 l. 050 
P217 R 42 41. c.OO 2:0.900 33.100 b.600 s. Hu 1.430 
Pd7 r 42 14,0UO 15.500 16.buO 10. lvO 11. 300 l .63v 
P220 k 97 3.160 6. 750 a.200 15. LOu o. 42 !I 0.051• 
P<.LU r 97 5. 510 u. 800 6.5&0 4.67J 2.590 0,1L0"' 
P231 K 5.:1 11. duo 5.540 9.3:00 11. j0() 0.499 O. lll 
P231 T 53 13 • .:uu 13.1 Ou 15. cOO J.5JO u. 551 0,3 73 
l.l233 k 32. l 7. 000 74,301) 59. 200 J4.&0J a.ooo .:1.31>0 
•J.:33 T 32 85.2UO 18.500 116.000 1.:1. c.ou 9.740 0.482 
il4'31> k 37 1. 9<.v 33 .• 900 21.lOU lb. 70J 20.200 ·4. Hu 
Q.<i6 T .:17 3.4% 43.401) 10.000 2 7, 1>0U 29. 501) 2.090 
i.U39 k 41 .15, ovU 6.27J 7.7uu .:ICl.100 13. 900 ..1..1.<U 
U<:.>9 T 41 3 7. l. JO ·;!.7.600 31. 400 L<>. 500 lL.200 0,685 
l.l24l R 44 34,7UO Jl.600 21>. 700 lo.71JJ 13. juO O.b9b 
1.1241 T 44 21.uuu 47.SOu 4.5u0 9.J.::u l.<.500 •• 3lu 

• IJATA Pu INT N.JT USED 

TABLE AZ. 4 Continued 
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t<EC.OKD R FJU1<.IH AMl'L l TUD~ Uf ACCcLEKATIU1~ ICH/StCJ 
I KM) 10.'t Hll ( l Hll 12 Hil 14 Hll Id Hll I lo Hll 

Rl't<t · ~ 44 80.7ou u. 91)0 4l.60U l 6. 7CO 5.000 o.19b 

"'"" T .... 'tll • .2Uu 5'>. l OU 8.o .. u jb • . h)J a. 5':1J 0.470 
t<i46 R 38 44.ouo .2.;.t!OU 15. 900 lo.JUJ 7.690 0. 372 
R.!46 T 38 19. 10u· 44.000 l2.d00 3L.7vu 9.zuo l.990 
kl't9 k 41 40. 4UO 31. 900 lt!. 4UJ 14. 30J l0.;100 l • .!40 
K.<'t9 T 41 l l. l:IUO .23.2UJ 5.541,) l.IJ.OvJ 9. 770 J.3t15 
t..2:>1 ... 44 73.<IUU 50.oOu 49.0uO jf>. uuv .:,. ubO u. 775 
R.2 51 T 4't 41 • ..:oo 77.SOu <.7.luU ll. JJJ 4.9.lu u.JJ4 
K25J R 44 l4.7UU 55.000 lJ. jUO 2tl. 00\) 18.300 2.1au 
kl 53 T 44 l6.2uv b5. 700 bJ.2vV .!1>.LO\) 19.300 2.1 su 
5,55 f< 'tl 16.lvU ll.300 ll.2uv 39.bOJ lo.oJO u.6'19 
S.255 T 41 61:1.4Ju 17. t>OU '39.9u0 o.:!.~UU 13. BOO u.510 
S258 R 47 42. 800 £4.bUO 34.5u0 ld.9JU l. ~9\) 0.485 
Sl5B T 47 15.JOU o.:. ... oo 12.2(;J .!.>.7uu 5. 040 0.353 
S.261 R 42 43.'tuO 22.500 2.510 7.lllJ 15.ooo l.520 
S26l T 42 15. ou o 1.200 .:>9.000 28.lUJ 7.750 l .d70 

·Sli>5 k 42 50.5:lll 43.500 2 7. OuO 5.:>so 14. 500 2.290 
S.265 T 42 Ja. luO 70.100 7.d!:>J l9.30J 21.400 2.220 
SZ66 R 42 54.7vO 47. dOO 57.BuO 27.50J 7 .250 4.lOU 
S2b6 T 42 B.J70 4o.30u 19. 7u0 z:..ooo l 7. 50 0 l.090 
S..:67 R 54 12. 70J 10.900 4.5.:.J 9.0.lJ ;;.270 Uob46 
S267 T 54 a.sou 9.b60 io.2ou b.770 6.4b0 O.b.07 

* DUA POINT NUT lJSED 

TABLE A2. 4 Continu.ed 
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SAN fckNA~Uu EARTH~UAKE 
lJO < PHI < 200 DEGREES 
FULL RECORDS - SMOOTHED 
l't2 Ci.lHPUJlitNTS 

.UCO~D COMPONENT R fOURIER AH~LlfULJE OF ACCELERATION ICH/ScCI 
dEARINli I KHI lOo't Hl) I 1 Hll I 2 Hll '" rill (o Ud I lb 11l) 

C.041 lb4 lb 173.uoo 248,00U lc.5,uJU l.>0.000 tl3.40J le>. 7JO 
C.041 254 16 77.tiOO l H. uuo .!Ll3. LlUJ lu5.0UO 6 7. JOO 14.lJU 
C04ll 0 26 lO'o.uOO bb.300 6o.5JU 37.4UO l.2.bOU* 1.310• 
CO'oll 270 26 111,UOO 57.100 .;2 ... 00 3Ll.2JU 8.170• 1.170• 
CO:H 36 't5 £9.200 39.5UO 2 5. 3u.J 15 • .!00 15. GOO l.t.50 
C051 306 45 u;ooo 42,JOO .<9.31.lO 19.3JO 9.c50 l. 510 
C054 30tl 44 .zc. ... oo 58. tlOO 40.500 17.000 <>.141.l 0.9;><. 
Cl.J54 216 44 .:i2.500 36.800 £7.SJO 40.200 d.550 o. 734 
0057 lBO 39 't2. l 00 39. aou 39.3UO 35.JOO le1.100 0.371 

· 0057 90 39 32.000 49.600 2 7 .200 28.400 !l. 400 o. 781 
0056 180 39 ::H • .:j,QQ 38,50v 40.200 46.71.lO 44.600 1.560 
0058 90 39 32.700 4b.l00 36:200 . 44.lUO 25.200 1.290 
0059 314 't2 32.700 30.400 19.100 18.100 11. 71.lJ o. 6Jl 
0059 224 42 37.700 24.000 15.400 16.300 £ l .300 O.So4 
00b2 322 45 23.900 38.201) 2.1. 41.lU 21 ... 00 4.910 1.390 
00b2 232 45 21.100 51. i>OO 34.5\JO J4 •. rno l l. 6UU l. <.10 
00b5 180 42 36.600 39,701) 39,,WO a. 100 7.l'tO 0.470 
0065 270 42 .. 2.:rno 46.900 36.400 22.500 9 • .!5U 0.4o5 
0068 0 37 18.llUO 18.000 "'l• 7UO l 7 .l uo 6,48\.l O, Si:>O 
00<>8 90 37 36 .. WO 34.700 21. luO 11.~oo .;.a5u O.liu2 
E07" 285 't2 Jl.800 31. 900 23.suo ld.oUO 9. 980 l • .<40 
E072 15 42 31.100 54.SOU 29.500 17.600 . 11.000 O.S50 
eon 0 '+2 53.400 50.300 't7.4UO 2l,3UO 8.260 0 ,650 
Ev75 270 42 .H.oOO 52.200 39,.;oo 29.auo 11. 4uu 0.648 
E07il 310 '+5 29.500 43,00U 26 •• mo !l.l.10 12.100 o.&J7 
E078 220 45 36.600 28.400 12.100 19.400 18.600 l. 730 
EU83 180 42 :.'t.C.00 53.000 5'+.100 30,701.l 11>.iUO 1. 4 70 
EOa3 90 42 2't.d00 49.900 21 •. wo 28.100 13.bOO 1.310 
F0&6 211 51 24.900 52.00v 26.4JO 22.400 5. 610 o. ~78 
F086 187 51 16.500 23 .. rnu 19.9.00 19.30\.l 3.690 0.446 
FOt17 176 tl9 10.900 15. oui.; l3 .zoo 1.120 3.300 o.1a2• 
F087 266 89 lb.'tOLl 13. 900 13.300 3.530 l.990 0.179• 
FCBB · 110 37 43.700 132.00u• 105,00U• 20.500 17.100 o. 6.30 
FOSS 200 37 37.SOO 93.BOU• 58.100* 29.400 13. 500 O.e44 
F089 127 46 31.600 63.300 38.90() 29,ZUO 8.'t20 io 130 
F089 217 46 37.t!OO 35.30u 17.300 12.500 8.170 1.130 
f ·092 ll8 45 211.100 34.500 13.900 12.30() 4. 780 l.ldO 
Fu92 208 45 26.700 2£.40\.l 15.900 1 7 ,<;l)Q <t. l 7u 1.510 
F0.95 92 40 29.'iOO 55.20U l'#.300 14. ouO 4, 850 1.190 
Fo95 182 40 .:16.uOO 44.bvO 't4.400 lb.200 9.50() O. S38 
f098 127 45 d.500 'tB.700 36.500 23.2 uo 13.00i.l 2.100 
FO'IS 217 't5 39 • .:00 30.600 37.400 31.5UO 8. J30 2.130 
Fl05 1110 41 l 7. &O 0 12.90U ll.100 2&.900 3.560 o. 712 
FlO, 90 41 17 • .200 19.70U l0,30U l".6UO o.730 0.550 
G10b 180 38 10.600 lb.ZOU 1u.1ou £6.2\JO 5.260 1.1 i.O 
Gl06 270 38 17.iOO 33.100 21>.100 54.900 7.290 1.360 
Gl 07 0 42 16.800 30.500 2J.3(J0 16.900 9.03J 1.780 
Gl07 90 42 25.300 41.900 39,tlUO 14.700 7.89U 0,693 
Gl08 0 4.2 2ll.600 28.900 37.400 .:ll.400 b.660 l,lJO 
Gl 011 90 42 35.oOO 65.iOU 67.900 17.800 1.c,20 O.b40 
GilO 98 34 1.>,':iOO 26,JOO 11. 900 59.5()0 11. 800 3.u:;o 
GUO 18& 34 .:3.900 .H.oOO 15. 2(;0 31to900 6. l t>U 4.o40 
Gll2 38 45 26.100 44.3(;u 24 • .:0u 9.77U 12.00ll l.600 
Gl 12 JUll 45 _j4,400 35.50u t. 3. 4 00 12 .ooo 9.9UO l. <; 50 
Hll5 11 32 lUl.000 39 .1uu 45,0ou 59.2 .JO lb, bOo.l 3.140 
Hil5 21>1 32 12,<tOO 41,,Uu 4u,1ou 27,tlo.JO b.810 o.&l9 
Hll8 135. 5.l 2 o. 300 19,SUU lli.bOU 12 ,J JO .2.44() o ..... 4 
Hllb 225 52 z1.1uo 15.uOO lJ.9UU b.160 :3. 38\.l u. 319 
H!2l 270 4~ 4£.uUO 5£, 4UV 23.4 JO 20,4UO lJ.iUO 1.920 
I'll il l!lO 4!:> .e:6.;,oo 32.700 .. u.:.oo .u .2 00 · ~. 500 l.690 

• OATA POINT NuT l.SEU 

TABLE A2. 5. Ml OHIV Fourier amplitudes of acceleration, 
southern group. 
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REC:O~O C:CHPUi'lENT R FOURIER AHPLITJOE UF ACCELE~ATION I CH/ SEC I 
SEAR IN~ IKHI 10.4 Hl I 11 Hll Ii Hll I 't Hl I 16 till 111> Hll 

Hl24 270 77 9.780 9.950 11.940 9.020 3.070 o.194• 
HlC'.lt 180 77 11. oOO 9.9.Zu 15.100 !l.-.JO 2.i;oo 0.2 .. s• 
lllf:I 0 39 l4. 900 22.'tJU 24.UUv 1.2.3 JO 5. 810 0.665 
llZ8 270 J9 z 1. 000 24.ovu 19.Zvv lJ.000 o.5JO o.eol 
1131 50 .. o 30.500 26. BOU 31. 7 uo 41.300 lo. 900 1. 5 7() 
l 131 no 40 2t! ... ll0 29.00u ..18.7UU 27.JOO L 0. 3 00 0.657 
ll31t 54 41 J3.'t00 20.100 JS. Uull l3 .1 JJ 5. 320 lo'tOO 
ll::t4 l't4 41 32.200 22.800 z ~. !l00 13 .900 lo. 200 l.020 
1137 99 32 tl3.500 'to.Ollu 34.40U 2'>.500 lo. 50J 1.510 
1137 189 3.2 lvS.uOO o2.4UO J 7. 5Uv Jd.400 lb.9lhl 3.570 
Jl't5 180 28 109.uOO 4b. dOU 44.200 JO.OJO u. 700• o. 776• 
JJ.45 .270 l8 J..::9.u00 't3. _,011 .:2.<1uo '>l.7UO 10.JUO• 1.020• 
Jl't8 0 42 29.900 37.JOU ld.'tOv l3. 700 17.ooo 1.410 
Jl4tl 270 42 28.900 34. suu J0.300 35.300 13. 7Vi) l. 810 
ll66 0 33 10.1100 23.700 l6.ov0 16.0JO 9.260 1.200 
ll<>o 270 33 lt!.'tOO 29.200 't.2.30() 52.300 7.780 2.000 
Ll 7l 33 140 6 . 790* 7.561.l* 4.150* 2.000• 1 • .291.l• 0.118• 
ll7l 303 140 6.4 70• 8.820• 6. 2 so• 2.720* l. loO* 0.079* 
Hl 71> 37 45 J8.600 30.0l)I) 14.91.lO 9.04J 10.200 0.952 
Hl76 127 45 .29.11)0 68.lOU .24.oOll l ... ooo 4.440 0.872 
HltlO 180 85 ll.oOO 10.600 15. :.oo 11.:.00 l.440 0.285• 
Hl80 .270 85 16.900 13.70u 10.700 5.410 1.210 0.152* 
Nl8S 130 77 o.970 8. Ool.l ll.70U ld.9UO* 15.100• 0.588• 
Nl85 220 77 7.140 a.320 15.300 37.0UO* o. 44U~ 0.794* 
N.1.!l6 143 56 2.1..ouo 15. l UU 18.71.lO l7.9UO• 12.400• 0.754• 
Nl86 233 56 2't. 900 11. 70() <.2.501} ll.900• 17.duO• O. 4Y0* 
Nl88 54 41 Jl .JOO 20.000 16.900 15. 400 12.3uu l.490 
Nl88 324 41 30. 500 24.200 l 'i. 51)0 .jl.700 7.230 0.936 
Nl91 65 69 14.900 17. bOO .5. 950 6.330 l. 800 o. 134* 
Nl9l 155 69 l.2.100 20.500 L:>. 8 UO 4.270 l.660 0.103• 
Nl92 29 43 3d.o00 30. 80u l!! .300 14.200 1.2.200 1.690 
Nl92 299 43 35.oOO 48.0llO 21.200 10. :rno 14.21.lO 1.940 
Nl95 33 123 lo.900• 2:0.aoo• l5 • .20v* 6.560* 4. 2 70¥ 0.237 .. 
Nl95 303 123 ll.bOO* 2 3. 9UO* 17.400" 5.310* 4.U90" 0.321* 
Nl9b 2114 77 2.J.JOO 26.50u 14.800 13.900 l.9bU 0.241• 
iH96 154 77 l 7. 900 24.JOO <.2.400 9.4't0 .2.020 u.191* 
ul98 180 36 29.400 54.100 04.500 32 .'tUO a.3oo 3.940 
u19b 270 36 17.900 64. 000 51.5l.lv 43.40U 13. 700 4. 740 
0199 28 44 39 ... oo 29.800 33.8uo 24.JOO u. 700 l.620 
0199 298 44 32.100 75.500 4d.4UO 45.900 l 7. 91)1) 1.090 
0<.04 0 75 .i:0.900 12.600 l u. 401) 9.340 l.bSO 0.164* 
0204 90 75 20.500 16.400 .1.2.000 o.·l 70 l.:>30 o.o9a• 
0205 339 75 18.600 11.2ou 9.850 3.480 l.8.20 o.oaa• 
u205 249 75 15.500 13. 100 ld.uOO 7.b50 l. 430 0.157* 
P214 .269 39 34.400 75.400 3 7. 2 OU 32.100 15.000 1. l80 
P214 179 39 35.700 43.30i.. 4 3. l .iv 5i.800 5.570 l.430 
P2J.7 180 42 40. i>OO 44.200 41.ll.lO L1. l 00 9.140 o. 776 
Pll 7 90 42 28 .2 00 47.20U 19.UOO 14.400 7. 950 0.656 
1'2.20 180 57 ll.500 15.900 b.<:160 9.8.!0 l.47J 0.144• 
P2.20 90 97 l!l.:000 17. 200 13. ~00 5.290 2.930 0.164*' 
P2JI 0 53 29.oOO 17.4Uu u. 3vl.l 6.130 2.'t60 o. 280 
l'ZJl no 53 21. 900 20.900 lb.400 6.840 2.u60 0.380 
Q233 192 32 79.100 44.100 ~b.30u o4.~00 14. 2 00 3. 250 
Q2H 282 32 65.100 33.80v ~ :,. 400 46.800 lJ. ZOO 6.260 
Q..::36 ldO 37 28.900 J5.700 2'>. 900 .26.100 23.700 l.940 
'1lJ6 90 H 16.bOO 21. sou 13. 700 27.41.lO 13. bllO 1.900 
1,)2311 180 41 311.500 2J,70(J :,9,900 2..i. !> OO l 7 ... ou 2.290 
Q2J9 90 41 30.000 35.300 Jo •. mo .l9. 5UO lo.400 1.250 
1,)241 37 4 .. 40. 700 34.00u ld.luo ·111.200 15.uOU l. 890 
l,)l4l 307 44 .jlJ.400 49.lOU 3U.20(J l:>.21.lO 1.i..20 1.350 

• OA TA l'ullli T NOT oSEO 

TABLE AZ. 5 Continued 
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Ri;CllkO COMPONENT R FOURIER AMPLITUOE OF ACCEL~RATION l::M/S!:Cl 
ilEAR l'l(i C KIO 10.4 Hl I ( l Hll IL Hll (4 Hl) Ill Hll llb Hll 

R24't 3J7 4't 2d .400 S0.30U 31.400 ll.8JO b.4bJ 0.952 
R24't 217 't4 42.uUO 36.4UO 4£.L.JU 30.400 b.190 0.112 
R.21to ltlO 38 27.lUO 43.uuu 28.llJO B.L\)U lo. !:>1)0 l.UC>O 
RL'-6 90 39 41.uUO 48.00U .23. 1>.JU 2l.4UO 7. 730 l.21>0 
R249 44 41 3 5.400 21.sou .Lt!.500 13.40U ll .10\) l.'t40 
IU't9 13" 41 3U.900 27.60U 20 ... ul) 11.uoo 'l.030 l.450 
R2Sl 37 44 37.dOU 34.900 411.dOLl 2 7 .OUJ 1.010 l.'t70 
RlSl 127 44 £8.uOO 59. 40U 4d. 200 22.uou 7.150 U.795 
R253 330 44 .H.400 52.400 46.SUU 44.5UO 14. 200 2.ouo 
R253 240 44 43.500 J9.90u 3't.20J 34. bUO 14.~U\l 2.'tUO 
S255 8 41 40.!iOO 36.000 2 5. 7l)U £4. ll)O l 4.1>0\) o. 772 
S255 278 41 45.400 32 • ..:ou 42.tH)l) £6.200 9. UtlO 0.914 
S258 29 47 L.9.oOO 30.500 .Ll.ooO l J. 31)0 3.3<>0 0.698 
:i258 119 47 34.900 43.60U :U .40U lL.000 ... ~40 1.090 
S.261 59 42 42.300 33 .400 19.600 ld.3UO 10.UOO l.ooo 
S261 329 42 26.700 22.600 2t..800 12.300 12.200 l.480 
S2b5 180 42 29.£00 34.800 <.l.4uv L\l.200 15.000 l. 210 
S26S 270 42 31. !>00 31.200 19.4JO 22.BJO 19.300 l.700 
S266 0 lo2 47.tlOO 43.oOO 3 7. <>OJ 25.9.JO l J. 9JO 2. 720 
S4:6b 270 42 34.900 56.l()(, 4U. OUO :::.i. 7110 9.270 1.750 
Sl67 0 54 24.000 23.301) lo. 300 9.2411 4.470 0.591 
SLb1 90 54 31.loOO 25.501) l tl.OOU d.320 6.340 0.893 

* 01.TA POlNT NOT US Eu 

TABLE A2. 5 Continued 
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APPENDIX 3: LISTINGS OF UNCERTAINTY FACTORS, K. 

The uncertainty factors, k, introduced in Chapter 2 and 

computed from equation (2. 13) provide a quantitative measure of 

how each site behaved relative to its group as a whole during the 

San Fernando earthquake. This information may be of use in 

future investigations of either individual sites or classes of sites. 

A complete listing of the k-values used in this study is 

given below. The amplitude decay parameters from which the 

k-values were computed are given in the table caption. For 

convenience of presentation, . the Ai values are given in vector 

notation thus: 
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SAN fEKNANDO EAKTHiJUAt<.E 
130 < PHI < 20J DE~~EE~ 
lS ~ECuNU SAHPlc 

Rt.r.urUl R UNCcRTAINTY FACTOK,t<. 
IKMI (0 • .+ Hll ll Hll I 2 hl I 14 HlJ I 8 Hl I I lb HlJ 

Cu4l T lb 1. 7d J. 01 2.87 l. 72 1.24 1.56 
C041 R lb l. .4:. l.. 5; o.so 1.79 l. 49 1.44 
(;0411 T 2b 1. 4.2 l. 50 l.'t5 u.do ..... ~9· o • .<9• 
C0411 R 26 l .tl3 '• 55 1. 70 o. 9.2 0.4tl* 0.27• 
Jl45 T 28 l o24 loUb l oOO O.tll U.63• 0.25• 
Jl45 R 28 l. 94 l.48 Oo Sl Oo uB 0.4:>• 0.25• 
H1l5 T 32 o. 97 U.4!i 1. 08 1.02 0.06 0.33 
Hl15 R 32 l. 77 o. 95 1. l .< lo05 ~oll lo 12 
U37 T 3.! Oo6ll Oo75 Oo93 Oo63 Oo93 Oo94 
"1<!33 T 32 1. 22 Oob9 lo30 lo jtl lo us 2. 50 
iJ4:33 R 32 l.46 o. 90 l. 62 2.16 1.14 l.5b 
IlJ7 k 32 l.03 1. 1b Oo93 Oo90 l.03 l.28 

· ut.t. R 33 Oobb o.74 0.66 u. 71 u.H 0.55 
Ll66 T 33 C.6.2 uo77 Oo94 l.67 00511 Oo74 
GllO T 34 o.c.1 o.so 0.59 1.27 0.57 1.69 
GUO R 34 0.31> u.o3 u.55 i • .;9. o. :)7 lo50 
ul98 T 36 Oo7U l.45 1.41 1. 5.! o. 7., 2.02 
Ul98 k 36 o. 79 1.19 2o02 l. 31 u.61 l. 77 
Fi.186 r 37 lo 14 l. 87• 2.79• u.97 i.4U 0.63 
iJ.<36 k 37 0.57 0.43 o. 37 1. 14 o. 95 1.15 
0068 T 37 l. 0.2 u.b<J u.63 0.44 0.74 o. 50 
0068 R 37 Oo60 u. :>O Oo96 o.79 0.47 o.!>9 
~23o T 37 0.92 l.Ol 0.89 o.1a l. 7o ~.12 
F088 R 37 1.36 3.28• .2.12• 0.99 o. 77 o. 56 
GlOo T 38 0.47 o. 72 u.73 '· (Jl o. 78 0.95 
k246 R 36 Oo8b l .13 0.93 0.74 u. u. 0.61 
Rl4b T 38 lo34 i.10 0.79 0.94 0.01 Oo64 
GlOo R 38 Oo32 u.2-> o. 71 l. 73 o. 62 1. Ol. 
0058 T 39 lo7u l.72 1. 23 l. 73 2.50 \l.95 
P214 R 39 o.94 1. 02 1. 59 lo t>l Oob2 0.91 
i)Ci57 T 39 l.bl 1.07 0.93 1.32 Oo7cl o. 49 
0058 R 39 1.04 l. 09 1.15 .L.90 2.4b 1. 47 
0057 k 39 1. Ob l.02 1.24 l. 19 0.9b 0.41 
1128 k 39 0.9.2 O.bcl 0.82 0.41 o.52 0.4b 
Pll4 T 39 l.22 l. 7tl 1.10 l.41 l • .21 1.05 
1128 r 39 0.85 o.1a o. 50 o. 49 o. 55 0.21 
l 1Jl T 40 0.81 o. 77 0.% 2.11:1 l.64 o. 82 
1431 R 40 o.97 o. b6 l.oo 1.10 1.43 0.1>2 
F095 T 40 l.Oo l.2b 0.56 O.b6 0.45 0.65 
f09!> R 40 lo 19 l. uo 1.23 o. 7U J. • .:>2 0.64 
R249 R 41 1.2.2 J.94 0.80 o. 11, 0.87 1.19 
l.1239 R 41 l.3L u.o9 l.43 1.13 1. 93 l. 1b 
Nl88 R 41 l. 07 v.7i O.b8 1.51 lolu 1.25 
S.2 55 R 41 1.31 0.110 0.91 l.15 l.3J o. 63 
Nl88 T 41 Oo84 (J. 55 o. 79 0.91 o.99 o. 70 
Fl05 K 41 0.47 o.~Y 0.48 1. L)O o.4o 0.61 
l 13't k 41 0.9.< 0.67 0.83 o.59 J.64 0.90 
R249 T 41 I). !1.2 o. 58 o. 55 0.36 1 • .21 1.06 
fl05 T 41 Oo60 o.5J 0.60 O.bl Oo70 o. 47 
i.llJ9 T 41 l.Ju U.97 1.37 1 •. 17 l. 'tl 0.9u 
1134 T 41 C.90 o.55 1.23 u.t17 o·.os 0.66 
5255 T 41 l. 5o 1.05 1. 45 1.18 1.19 o. o5 
Gl07 k 42 0.6~ l.14 lo20 O.tlO O.b9 o.·Si . 
00!>9 T 42 Oo 7tl u.ol o. 59 u.o., lo 59 0.47 
E063 T 42 lo2d 1.51 l 0 01 l." l 2.19 o. 99 
OIJ59 i( 42 l.3J l.. vtl o. 97 0.1>:> L.29 Uo6!:> 
Pd7 r 4.! 1.34 l.H 0.60 o. o.< o. 82 o. 5;i 
P.:17 i( 42· lo.24 1.38 l. 4b u.N u.1:ii! o. 5.! 
S.<bb il 4.2 1 .4.) i. c>3 lo 42 l. Ul l • .24 .<.OJ 
lilOb T 42 0.97 1. 54 1 • .jo 2.19 o. 7 L Oo'i3 

• !JATA PUll\l NUT 1..Stu 

TABLE A3. 1. k-values for M5Hl5 data, southern group. 
Q= 330, ~= (1050, 1450, 1450, 1450, 1100, 
370) 
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RECORD R. UNCERTAINTY FACTOk,K 
(KM) co • .+ HLI I l Hll (2 Hl) "' Hll CS Hll I lb Hl l 

l>l\l8 It 42 0.% l. 4.2 l. l 4 1 • .27 o.57 O.t>5 
G107 r 42 0.7.2 l.lo 0.9ti u.tH 1. 04 l.29 
EU75 T 42 1.41 lo44 1.01 lo .31 lo 0-1 0.5, 
E075 R 42 1.57 1.ol l.b5 l .(;9 o. d7 o. t!9 
Eu72 T 42 1. 70 1.04 u.a1 v. 71! o. Sil 1.42 
E07<: R .. 2 l.. Oo i • ..:o 1.30 o. 5!> J.a1 1.27 
S"ol R 42 1. lJ 0.!19 0.91 u.79 1 •. .!O 1. lo 
Jl411 T 42 1. 31 1. Ot! l.OS lob2 1.;H 1.94 
J1"8 R 42 1.43 1. So · l. 37 1. lo 1.9.2 o. 97 
0065 l 42 l .85 •• 18 i. cis 1.ll 1.14 0.66 
DOb5 R 42 lo lb l • .2.2 l.b2 0.01 0.6l. 0,34 
S2bo T 42 1.4 .. 1. 42 1.31 l.4!:$ 0.9d 1. 4.3 
S2o5 T 42 l.3d 1.14 ll.62 1.15 2.11 ;.. 55 
S2b5 R 42 1 • .27 1.38 0.92 1. 0.2 l.40 1.13 
S261 T 42 1. 05 0.87 O.Bb 0.81 u.95 1. 54 
E083 R 4;. l • .29 1.50 1.94 1.47 1.78 l .JC) 
Nl92 T 43 1.4.2 l • .;d 1.0.2 o. 7il l. 70. t •. H 
Nl92 R 43 1 • .39 l. 4;; o.5o 0.48 1.33 1.95 
tl.251 R 44 1.12 t.19 .2.22 1.21 o. 5.2 0.% 
C054 R 44 i.n 1. 15 1. 71 0.':18 o.ss 0.96 
Q.i:41 T 44 1. 72 1. 9o 0.69 0.115 1.43 l.3c> 
R.4:;53 R 44 1.23 l. 54 1. 93· l. 93 1. 93 1.79 
0199 T 44 1.41 1.9.! 1.90 1. 58 2.bB 0.08 
0199 R 44 1. 3tl l.49 1.31 1.58 l • tiO 1.69 
R244 T 44 1 . 2.:l 1.55 1.14 1.13 0.60 o. 80 
R.244 R 44 l.Od •• o3 1. 55 0.88 u. 78 0.83 
C054 T 44 1.41 1. 52 lo 12 l.J6 0.1:16 o.74 
R253 T 44 1.61) 1.57 1.50 i.20 1. 61 1. iH:s 
R251 T 44 l. 41 J..9o 1.28 l. "el 1.10 lo lb 
Q241 · R 44 1.32 1.19 1.51 o. 65 1.23 0.90 
Ll062 K 45 l.U l..04 l.15 lo JS 0.94 i. 27 
Hl.d T 45 l •. H l. 99 l. l 7 i.22 l. 95 2.21 
11121 R 45 0.91 u.91 · 1.28 o. 77 l. Qi) 1. 83 
Gll2 T 45 1. 41 1.44 0.93 o.56 0.91 1. 95 
Gll2 R 45 1.12 U.'16 1. 31 o. 50 1 • .24 l.33 
E0711 T 45 l .2t! l.t>.2 0.92 "· 72 1. 50 t. 02 
C051 T 45 1.25 1. 61 1.00 o.7d 1.24 1.43 
E078 R 45 1.24 1.01 1.06 0.63° 2. 02 l. 13 
C05l ~ 45 o.99 IJ. 96 l.61 1. iJ<'> l.27 1. 90 
f098 T 45 1.69 l. 69 1.78 0.97 1. 61 3. 57 
FU98 R 45 l. U u.11 ... l .39 l • .20 l. 72 1. 38 
MU6 T 45 l. 79 1.31 0.90 o.sz 0.97 o.76 
Hl76 R 45 1.90 l. 74 l.00 u. 53 l.66 l.29 
F092 T 45 1.05 t. l:. 0.10 0.90 IJ. 55 1. 41 
F092 R 45 u.95 O.!H 0.55 u.o9 o. 50 1. 4 7 
00o2 T 45 1.35 .2.0!l 1.64 l. ·H 1. 7b 1.24 
fl.189 T 46 l. Sti l. tlL 1.29 loUll 1.25 l. 14 . 
FOi:\1 II. 46 1.20 l • .2" 1. 33 1. 03 1.05 2. 7<; 
5258 T 47 1. 1'1 1.35 0.63 o.73 o.5.> 1, 10 
!>.258 R 47 l. 4 7 l.2o l.U u.5b 0.44 1.12 
F08o T 51 1. 57 1. b7 l. 31 1.33 O. 8b 1.00 
FOd6 R 51 l.28 u.94 1.14 1.25 v.01 o.93 
HUii T 52 o.1v J.b5 0.69 o.o<J 0.3!1 0.46 
Hll8 R 52 o. 7o .:i. bl 0.10 0.46 O.'t4 0.7tl 
P.231 T 53 0.6~ 0.1.; 0.85 0.42 o. 53 o. 7ti 
P.231 R 53 0.':15 o. 7.> 0.69 0.4L Ll.41 0.85 
5267 T 54 O.b't v. till o. 72 u.74 lo 52 l.43 
5£67 k 54 0.9, v.87 o. 89 0.00 0 .'17 1.,, 
Nlilb l Sb O.S.J u.75 l. 23 1.30* 3. 07• 1.65• 
Nl86 k So O.<i~ o.c>11 o.74 2.v2• l.t;'t• 1. 88• 

• OAlA PUINI NUT u5Eu 

TABLE A3. 1 Continued 
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RE CORO R iJNCEkT AlhTY FACTOk,K 
CKHI co.~ Hll 11 HJ:I I 2 11ll I 4 HLI Ill Hll '16 Hll 

Nl9l T 69 0,4\) 0.64 0.51 0.111 0.76 0.5£• 
Nl9l R 69 0,26 0.53 o. 72 O,db 1),57 0.93• 
0205 T 75 0.44 o.54 l.09 o • .;,4 0.02 o. 91• 
0.205 R 75 C.6~ o.56 o. 85 u. rn l.02 l.07• 
020't T 75 0.4d o,o7 I). 88 o. 7J 0.62 o.79• 
U21)4 R . 75 0.67 .i. 41 .i.bo u ... l o.oJ 1 • .ZJ• 
Hl4':4 T 77 c. 47 o.53 lold l.48 loLl 1.4 7• 
Hl24 R 77 o. 51) 0.47 0.12 1. 26 l • .23 l.59• 
td96 T 77 0.75 l.L4 · l.54 l.01 0.99 1.80• 
Nl96 R 77 l.02 u.94 l. 36 l. IJI> 1.10 z. 03• 
Nlil5 T 77 o.3:> o.38 l. :n 3.d4• 3. 13• 6. 05* 
Nl85 R 77 o.32 o ... s l.00 2. 84• 4.91• 4. 82• 
14180 T 85 0.60 0.58 u. 77 l. O'J l. ll 2.34• 
HlBO k ll5 0.39 o.55 1.12 l.LZ l.00 2. 51:!• 
FOll7 f< 89 o. ;;5 u.42 1.17 o. 76 2.01> 3.22* 
F087 T 89 0.60 0.01 l.16 l.Jl) 1.76 2.1>1• 
PZ20 T S7 o. 72 l.Ol l.59 l • .ib £.ld 't. 20* 
P~20 R S7 o.5o u. 7o l.2J i.00 1. 88 s.12 • 
Nl95 r 123 o. 73• 1.83• 3.12* 2.95• 9.24* 25.Jl• 
Nl95 R 123 O. N• 1. 65• 2. 02* .2 • .;8• 8.41"' a .• 19* 
Ll 71 T 140 0.41• o. 7b• l.00• 1 .. u .. 4.79• 31. ll * 
L171 " 140 o. 54• u.09¥ 0.93* 1. ll7* 3.07" 27.41* 

• DATA POINT NOT USEU 

TABLE A3. 1 Continued 
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SAN FE~NA~JO EARTHQUAKE 
uo < PHI < zoo OE: GR HS 
UNSMUUTHtO,l~ SECuNll SAMl'lt 

RECORD R UNCERTAINTY FACTOK,K 
CKMI CO.'f-HLI ( l Hll 12 Hll (4 Hl.) (tl Hll (lb Hll 

CO'tl R lb 1.2 .. 2.23 o. 75 2. Oo 2.b2 0.98 
.C04l T 16 l ·.35 3.ti7 4.55 o.db 0.33 1.24 
Cl.lit8 R 2b 0.09 1.05 0.40 0.22 0.2 7• 0.15* 
C04tl T 2b o.1t1 1 •. <0 1.28 1.04 U.44* 0.51• 
J 145 R 28 2.u o.59 1.47 l. 52 0 . 4,j• 0.20• 
Jl45. T 28 0.68 1.33 0 ~.27 l.o:; o.13• 0.5tl* 
1137 T 32 "· 5'> 0.62 1.33 O.dJ 1.23 0.30 
Hll5 T 32 0.78 u.44 0.69 1.19 o.5..i 0.21 
Hll5 R 32 l. 5d l. b1 l.'<9 u·. o.Z i.28 0.<)6 
i,1233 T 32 2. 7l u.45 3.10 0.42 u.1>1 0.19 
1137 R 32 1.34 2.37 1.25 0.38 1. 08 1.04 
Ql33 R 32 o.s .. l.&o 1.58 1.13 u.5o 1.34 
Ll66 T 33 o. blj U, l 7 0.41 1.83 o.36 0.86 
Ll66 R 33 0.3d 0.42 0.62 o. 47 "· 59 o. 41 
iiUO R 34 0.29 ei.30 0.35 l.U o. 5d 0.9J 
GllO T 34 C.94 u. 97 1.21 1.13 u.31 2.21 
Ul98 K 36 0.4t> 1.39 2.16 0.54 o. 72 3.39 
0198 T 36 O.b<t l.20 2.01 l.21 2.05 2.10 
Q.236 T 37 O.lJ 1.24 u,32 1.Hi .2.41 1.23 
Q23b k 37 0.2'1 0.'11 0.67 O.b6 l. b5 2. 42 
F088 T 37 o. 6'> 1. 67* 0.54* 1.82 1.44 0.69 
0068 T 37 0.9tl 0.95 0.44 o. 02 0.67 o. 71 
F088 k 37 0.91 4.16* 1.70• o,o9 o.69 o.57 
006& R 37 0.64 0.4<t 0.49 o.36 0.48 o.ao 
GlOb T 38 O.b<t l.42 0.32 l.O& o.38 0.10 
R21t6 R 38 1. 72 o. 70 o. 52 o. 74 O.bo Oo24 
i<2'tb T 38 o. 75 lo29 0.42 1. JS o.79 1.26 
Gl06 R 31:1 0.21 u.20 o.34 1.21> 0.88 0.26 
0057 T 39 loll l.46 0.18 Oo43 0.16 Oo8l 
0058 T 39 C.99 1.27 0.49 1. 98 2.04 l. 92 
Pll4 T 39 0.89 2.90 1.75 o.i;a o.&5 0.72 
Pd4 R 39 1.22 0.45 l.38 1. 72 1),63 1.98 
0057 R 39 1.87 1.12 o.8J 2. 88 0.24 Oo23 
1128 .R 39 l.U 1),94· o. 77 0.29 0.43 Oo42 
0058 R 39 l. 72 l.15 0.36 1. 2'> 3o55 1.32 
ll26 T 39 1.90 0,8L Oo31 0.45 o. 77 Oo2l 
1131 T 40 Co 67 lo 2tl Oo83 l ,;;4 0,78 lo 12 
f095 T 40 l. 12 lool 0.32 0.33 0.97 o.57 
fU95 k 40 2.40 0.54 0,93 l.J5 0.18 Oo98 
1131 k 40 2,24 0.01 l.. 82 1. J3 1.2'> 0.80 

, R249 R 41 1066 1,21 0.66 0.06 2.02 0.98 
'1239 R 41 1.07 o.2u Oo28 lo39 lo38 l.67 
5255 R 41 0,61:1 0.6!l Oo44 l.&3 lo67 u.55 
Nl88 k 41 l .1:11 u.4J 0.61 1.40 0.24 o. 50 
l'Hl:ltl T 41 0.61 Vo 51 o.74 o.4j u.85 0.59 
Fl05 R 41 Oo 71> u.43 0.25 lo22 0 , 46 0.45 
1134 R 41 l o92 0.21 OoSl 0.91 o. 73 lo 21 
llJ4 T 41 Oo 77 Oo36 o. 73 Uob4 0,38 0.60 
R249 T '<l o. 53 u.74 0.20 0.46 u.97 o. 3u 
Qd9 T 41 l. 54 Uo 88 lol3 lo 2<. 1.21 Oo5<t 
~£55 T 41 2. 84 0.56 1.44 2o c!9 1.37 0.41 
F 10!> T 41 O.<t5 o. 5J 0.27 Oo45 0.2'/ Dobb 
0059 T 42 o. bb u. 79 0.35 1.10 lo 90 Oo .87 
EOb3 T 42 lo 40 ,.58 Ool8 3.10 1 . 37 lo32 
P217 T ~2 U.6U Vo 51 0.62 u.4u lol8 lo 3b 
p,17 ~ 42 l. 77 v. 7t1 1.23 OoJ~ u.94 1.21 
S2<>6 I< 4L 2oH l. 5 7 2 .1 s lo 3.c: o. 76 J.4d 
C:.lOb r 42 . lo 39 ,.uv l. 09 Oo~l uo47 l. 8 l 
C:.lOb K 41. lo 3d l. 'i 7 1.20 lo ld Oo29 l. l 't 
C.l 07 T .. 2 o.JJ ,.JB 1.79 

u. ''" 
(),JU u. 6d 

• OATA POINT NUT UHU 

TABLE A3. 2o k-values MOH15 data, southern group. 
Q= 330,. A= (1050, 1450, 1450, 1450, ,.._, 
1100, 370) 
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kC:CORO R UNCtkT AINTY FACTOF<.,K 
IKHI t O • .+ Hll ti Hll C2 Hll (lo , Hll (8 HH t 16 Hll 

EC7!> T 'r2 o.a1 l.'t6 l.ll l.l4 u.s8 0.65 
'1107 R 42 l. 07 l.l 1 l.48 o.5.s l • "" 0.69 
E075 K 42 1.92 .!..66 0.89 l.11 0.08 l. 02 
E072 T 42 0.11'1 1 • .!.U 0.16 l.4u O.J6 1. 5U 
con R 42 ~. 7't u.71 1.93 o. 52 l. U6 1.111 
S2ol R io2 l.S:> o. 1 .. 0.09 l). j 1 1. 57 1.2;< 
J hcl T 42 o. 71) IJ.91 2. 90 J.O't U.44 1. 70 
Jl48 K 42 1. 76 IJ. Sb 2.90 o.;.z . l .2't 0.21 
0065 T 42 l .4't l.00 0.62 u.11 1.35 0.7b 
00b5 R 42 2.35 l.23 1.15 l.74 i. u1 0.67 
S26b T 42 o. 3't l. 52 o.n l • ..!O l.83 1.77 
S2o5 T 't2 l. b2 2. 57 0.29 0.9..: 2.23 1.88 
S265 R 42 2.1:; 1.43 l. 01 0.21 l. 51 1.9'+ 
S2&l T 42 0 ~ 6o "·'-" l.45 l.35 0.81 l. 59 
Eo83 R 42 l. 92 o. 85 3.37 l.d3 1.91 l.4o 
0059 R 42 l.o7 l.51 0.14 l. 'to 3. lu 0.05 
Nl9l. T 't3 2. us l..23 l.78 lo't6 3.u6 0.68 
Nl92 R 43 2.01 ~.03 0.87 o ... " lo 76 o.il2 
R251 .. 44 3.30 1.75 l .93 l.o:> o. "1 o. 1b . 
C054 k 't4 3. 09 ~.3,j 2.37 o. 70 O.b6 0.57 
Q.241 T 44 0.9't l.o:. 0.18 o. 1ta 1. 43 l.28 
K253 " 4't o.o~ l.90 u.41 l .4't 2.10 2.12 
0199 T 't4 l.07 L.81 l. 88 O,H 2.4't l.08 
0199 R 44 2.31 1.37 2.33 3.20 3. 33 2. 08 
R2io4 T 't4 l.dO 2.os a.32 1.87 a.99 0.46 
R244 R .. 4 3.61 0,41 1.6·4 lo't7 0.57 a. 7!1 
cas<t T 44 1.77 l. 't2 a.34 a.11. a.55 a.so 
R253 T 44 a. 73 2. i!.1 2.5a l • .:>5 2.21 2. io 
R251 T 44 1. 8't 2.68 1.07 0.43 0.5b a.33 
Q24l R 4't 1.55 i.a9 1.05 o • .;o 1.55 a.68 
0062 R 45 2o6't l. a-5 1. 05 a.78 o. 71 a.6£ 
Hl2l T 45 0.4j l.65 0.35 2. 79 l. 79 2.41 
Hl2l R 45 2.30 l.ld a.9a 0.41 a.97 2.81 
C051 T 45 1.29 0,97 0,89 0.63" 2.29 1.69 
Gll.2 T 45 1. 71 1.41 a.59 0.68 l. 47 0.66 
Gll2 R 45 3. 30 1. 21 2.30 0.45 1.25 o. 93 
EOltl T 't5 l. 57 l.lb a.35 l.65 1.09 o. 98 
E07b R 45 3.5't (j,45 l.ao a.97 2.45 l. lb 
Ca51 R 45 2,98 a. 28 a.64 ei.o9 .<.as 1.29 
f098 T 45 l.o't 2.01 2.11 a.64 o.89 2. 64 
F098 R 45 -3.2J J..74 l.ll o.99 u.32 0.74 
141 76 T 45 i.ao o. 21 0,69 a.J8 l.65 a.37 
1417& R 45 3.14 2. 73 0.11 0.10 l. 97 l. ao 
F092 T 45 o. b3 J.. 96 a. 54 u.08 v.a2 1.43 
F092 R 45 2.00 v.44 a.21 0.69 l. a6 3.io1 
00&2 T 45 o. 31 2. 53 l. 7l l.u6 l. 47 a.95 
FJ89 T 46 1, <tO J.31 2.46 o. 7l 1.43 2.51 
f089 I< 4b ... 07 .c:. j8 3.05 l.17 a.6& l.1$0 
szss · T 47 o.H l.d 7 0.52 l.35 a.ob a.43 
S2S& "' 47 2 .Ob v.92 l.48 l.oa a.21 a. 58 
FOtl6 T 51 o. 96 "'• 68 l.15 0.02 0.0:; a.90 
FJ8b R 51 2.28 1.35 a~64 CJ. 7& 0.98 1.66 
Hll8 T 52 a. 06 J.27 a.68 o.57 a.35 a.93 
HJ.18 R 52 o. ltl 0.3 t 1.25 a.b4 a.36 a.45 
P23l T 53 a. 72 0. :>CJ a. 78 a.l.4 0.09 0.68 
l'lJl R 53 C.64 u~~4 0.47 a. 5'-l o.a9 0.22 
Slbl T 54 a.49 i),43 o. 52 u. 'tb l. lb" 1.18 
S2o7 R 54 o. 71 <J.4d 0.23 0,04 o. 5o l. 2S 
Nlb6 T So l. l.< v. c,; o.75 2. Oil"' Jo4b• lo 9<; * 
Nl&b R So a.89 "·a .. 0.53 Z.l'i* 2.6;• 1.77• 

* OA TA Pll!NT NllT v Sl:O 

TABLE A3. 2 Continued 
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REC.UKO R UNCE:R TAINTY FACTOr.,K. 
CKMJ C0.4-Hll (l Hi.I I l. Hll h ' HO Id Hi.I I lb Hll 

Nl 91 T o9 0.3U 1. Su o. 88 o. 72 0.36 l.OO• 
Nl91 R 69 0.15 "·'" 1.39 o. u 0.63 v.41• 
Ol.05 T 75 0.37 o. 3 7 1.79 1. 9't u.87 0.95• 
ul.05 i\ 15 0.4l. u.74 0.44 O.dO o. 'l3 O.b9• 
0204 r 75 o. 5.> u. 5d 1. Z2 0 • .:11 0,1>1 0.02• 
02()4 R 75 O.l't u.22 0.43 0.60 0.64 1.27• 
Hll4 r 71 o.n 0.2.2 1.18 l.. lU 0.4o 2.32• 
Hll.4 K 77 o.59 U.45 0.21 o. 94 l.. 18 3.u2 • 
Nl% T 11 1.14 1.29 2.10 tJ.bj 0.49 2.Ub• 
Nl9b R 77 0.22 l. l.9 l. 74 1.ud 1.18 l. 59• 
Nl115 T 77 0.2,; u.ll. l.29 3.19• ). Ot!* ll.. 5'>• 
Nld5 R 11 0.19 0.3 7 0.93 1.91• 5.97• 8.b3• 
IU8LI T 85 o. 7<1 0.2s ll.b5 l.. 33 1. o9 2.47• 
Hl 80 R 85 0.30 u.37 1.32 1.45 0.9l. 3. 62• 
FU117 R 89 0.35 u.30 2.00 l.73 lodO 2.011• 
F087 T 89 O.oU v.37 O.Sb 2.07 2.12 l.21• 
Pl.20 r 97 0.5'7 l.Uo 0.78 1.00 2.33 3.27• 
Pi'20 R 97 0.34 u.oo 0.98 3.l.5 0.38 1. ;;9. 
t-1195 T ll.3 O.'t-l• 1.19• l>.b4* 1.88• 9.81• 34.oo• 
Nl95 R 123 1.29* .i.. 5ti* 4. bo• ;..o5• 12.19• 20.75• 
Ll71 T 1"0 o . 'tl. lo 'tl.I* 1.33• o.3a• · 4.10• 34. 19• 
L171 R. 140 0.10• u.91* 1.76• 1.17* 3.21* 9. b1• 

• DATA Pu INT NOT \JSEO 

TABLE A3. 2 Continued 
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SAN FERNANDO EARTHQUAKE 
130 < PHI < 200 OEG~Et~ 
fUll RECUkDS - ::.MUUTHbJ 

RECO~O CCHPO:>!ENT R UNCERJAINTY FACTuR,K 
SEAR l;>;G IKHI 10.4 Hll '1 HZI IL Hll l<t HZI 18 HZI llb HZ) 

C041 164 l!> l .'l't 2. 54 1. 95 1. 83 1.83 l. 74 
C04l 254 lb u. 87 l. 75 2 .... 0 1.3'1 1 • .,7 l.31 
C0<,8 0 26 1.93 1.14 l.3o u. 91 0.57• 0.32• 
C048 270 2b L.05 0.98 0.66 0.11 o. 37• U.213• 
J1"5 lllO 21l 2.1s 0.137 U.98 o.ou O.b5• O.LL* 
J1"5 270 28 2.58 0.80 0.51 1.12 o. 51• 0.29• 
1137 189 32 

'· "l 
l.34 O.'H 1.23 l.09 1.42 

Hll5 281 32 l. bS O.B9 1. Ob o. 89 0.57 0.3!> 
Hll:> 11 3.2 2.3 .. 0.84 1.17 1. '10 l. 07 1. 25 
Q233 282 32 l.5o 0.11 l .J9 l.:>o o.s5 2,50 
1137 99 32 1.92 0.99 0.89 o.79 O.b1 0.60 
Q233 192 32 1.112 0.95 1. 4b 2.01 0.'H 1.30 
ll6b 270 33 0.44 0.65 1.14 1.75 o. 53 0.8b 

. Ll66 0 33 0.4.J o. 53 o.7t> 0.54 o. 63 0.52 
Cil 10 98 34 o. 39 O.bO 0.11 2. 08 O. Bit l.44 
GUO lBB 34 o. 59 o. 77 o ... 2 l. 22 0.44 2.2!> 
Ol 9e lBO 36 0.76 1.32 l. 93 l. 23 o. 66 2.11t 
Ol9B 270 3b 0.47 1.56 1. 54 1. b .. l.09 2.51 
Q236 90 37 0.45 o.ss 0.42 1. OB l. lS l.11 
Q236 lBO 37 0. 77 0.90 0.93 l. 03 l.9B l. 14 
FOBS 200 37 1.00 2.36• l.60• l. 16 l.U 0.49 
006B 90 37 o.97 0.87 O.b5 O.lt1 o. 74 0.47 
Fli88 110 37 1.17 3.33• 3.25"' O.ill 1.43 ·0.52 
006B 0 37 0.50 0.45 0.9B 0.6S o.54 0.50 
Gl06 270 3il 0.49 0.66 0.90 2.25 0.64 -0. B6 
R246 .lBO 3!1 o. 75 1.12 0.92 0.79 o. 92 0.67 
R246 90 3S 1.13 1.25 o.7b 0.88 o. 6B O.B 
G106 180 38 0.29 0.42 0.3<t 1. 07 o. 46 0.10 
0057 90 39 o. 91 l.33 o.90 1.21 i.05 0.53 
0058 90 39 0.93 1.23 1.26 1.8B 2. 33 o.8a 
P214 179 39 1.01 1.16 1.42 z.20 0.52 o.97 
P214 269 39 0.97 2. 01 l.n l . ·37 1.39 0.87 
0057 160 39 1.19 l.06 1.30 l.49 1.67 0.25 
1128 0 39 o. 71 0.60 0,79 o.52 o.54 0.59 
0058 18.0 39 1.06 1.03 1 •. n 1.99 4.13 1. 07 
11211 270 39 o. 76 0.66 0.63 o.55 0.60 0.45 
1131 320 40 o. 83 o.so 1.32 1.21 1.eo 0.48 
F095 182 40 l.05 l.23 1.51 o. 72 o. 92 0.69 
F095 92 40 0.87 1. 52 0.66 0.64 0.47 o.a1 
1131 50 40 U.B9 0.74 l • .)B. 1. 82 1.64 1.15 
R249 44 41 l. 06 0.62 0.65 0.61 l.13 1.13 
Q.!39 lBO 41 1.15 0.67 1. 40 0.94 l. 77 1.80 
5255 8 41 1.21 1.02 0.90 1.10 l. 51 o. 61 
N.l8B 54 41 o.93 0.57 o. 59 o. 71 1.25 1.17 
Nl88 324 41 0.91 0.68 0.69 1.45 o. 74· · o. 73 
Fl05 lBO 41 o. 53 0.36 0.39 1.23 0.36 o.56 
1134 54 41 1.00 0.57 l • .l3 0.60 o, 51t 1.1::> 
1134 144 <tl 0.96 0.64 0.91 0.6<t 1. 04 0.00 
R249 134 41 0.92 0.18 0.12 o.50 o.n l.14 
Q2J9 90 41 o.9o l.00 1. 28 1.35 l. b1 0.98 
5255 27B 41 1.36 0.91 l. 50 l.20 0.93 0.12 
fl05 90 41 o. 51 0.56 o.;i. 0.90 0.6~ o. 43 
0059 224 42 l.15 0.70 0.5o o. 71 2. 211 o. 73 
E083 90 42 0.76 1.45 0.99 1.33 l. 48 1. 11 
P217 90 42 o. 116 1.37 u. b9 O.btl O. d!> 0.55 
P2l7 180 44! 1.25 l.2B 1.49 O.til o. 96 0.65 
5;1:66 0 42 l.4o 1.27 1.36 1.23 1.17 2.29 
G108 90 4l 1.10 1.89 2.46 o. 85 o. 7S 0.54 
G108 0 42 0.00 0.84 l.$5 1.35 0.11 o. 93 
G107 90 42 u. 77 1.22 1.44 u.10 0.84 0.75 

* OATA POINT NUT USED 

TABLE A3. 3. k-values, Ml OHIV data, southern group. 
Q = 330, ~ = (1460, 1640, 1490, 1460, 
I 070, 3iO). 
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UCO'l.O COMPONENT R UNCERIAINTY fACTO.{,K 
tlEAi\ ING ( Kiii IJ.+HLI 11 1'1ll 12 "" , .. Hll I 8 HLI 116 Hl) 

E075 270 '>l. 0.97 1. 52 l.42 1. '>l. 1.22 0.55 
1>107 0 '>.! J. !'>l 0.89 O.tl'> o.so O.'H 1. 50 
E075 0 '>.! l.o'> l.46 1.12 1.01 o. 88 o. 55 
E07.! 15 '>l. 0.95 1.59 l.1l7 o.a5 1.2!> 0.80 
EJ72 285 '>l. l.l.o o. 93 0.115 I). tltl 1. 07 1.05 
S261 59 42 1.30 0.97 u. 71 o. 117 1.07 1.35 
Jl4tl 271) 42 0.89 l.Ol 1. 10 l obO 1.,., l.5J 
Jl't8 0 '92 J.92 l. 08 l.J3 1.13 1.82 1.19 
0065 270 '9.2 1.30 1.36 l. 32 1.u1 0.99 J.39 
0065 lt!O '92 1.12 l.15 1 ..... 2 1.08 o. 7b 0.40 
S2bb 210 4l. 1. 07 l.63 l. 4:, l. 51 0.99 l. '96 
S265 271) 42 u.96 Oo91 o. 11J l.08 2.01 1.43 
S.!65 180 42 0.89 l.01 Q. 7t1 0.96 1.61 1.02 
S2bl 329 42 o.a2 0.66 0.97 o.58 1. 31 l. 25 
EOtl3 180 42 1. 05 l. 54 1.96 1.46 l.94 1.24 
0059 314 42 i.oo o.sa o.o9 0.86 1.25 o. 53 
Nl92 299 43 1.12 1.43 0.79 o.51 1.59 1.76 
Nl92 29 H 1.22 0.92 a.oil Oo70 1.37 l.53 
R251 37 41t 1.22 1.07 1.87 1. 38 o.a2 l.'93 
C054 308 44 IJ.85 l.ao 1.56 o.a1 o. 72 J.93 
Q2 .. l 307 44 0.98 1. 50 . l. 16 o. 77 o. 83 1.31 
il.Z5J 330 44 l .IJl l.60 1.79 2.21 l.67 l.94 
0199 298 4't lo03 2o3l 1. tl6 2o34 2.10 l.Ob 
0199 28 44 1.27 0.91 1.30 l.2l. 1. bl l. 5i:l 
R244 217 44 l.35 1.11 o.a5 1.55 o. 73 0.75 
R244 307 44 0.91 1. 54 l. 44 O.bO o. 76 0.93 
C054 218 41t l.05 1.13 l.06 2.05 l. 01 o. 71 
R253 240 44 1.40 l.22 lo 31 lo 76 lo 71 2.33 
R251 127 41t 0.90 1. 82 l. 85 1.12 0.84 o. 77 
Q2'91 37 '94 1.31 l.04 0.10 0.93 lo 76 l.84 
0062 322 45 0.79 l.20 o.85 1.13 0.60 l.45 
Hl.!l 180 't5 u. ii 7 lo03 l.n l. 43 1.11 1.76 
Hl2l 270 45 .L.38 1. 64 0.92 1.08 l.63 2.00 
C051 306 '95 o. 73 1.33 1.16 t.02 1.19 l. 58 
Gl 12 308 45 1.13 1.11 0.92 u • .03 1.22 2.03 
Gll2 38 45 0.8b 1.39 0.96 o.52 1.4& l.67 
E07!1 220 45 1.21 0.89 0.46 1.02 2.29 i.ao 
E07tl 310 45 0.97 1.35 l. 04 0.43 1.49 O.d4 
C051 3.b 45 0.96 1.24 1. oo' 0.80 1.85 1.72 
f0<,;8 217 45 l. 29 o. 96 1. 48 1. 66 l.tl3 2.21 
f098 127 45 o. 77 1.53 1.44 1.22 1.60 2.19 
I'll 76 127 45 0, 9c 2.14 0.97 0. 77 o. S5 0.91 
1'1176 37 45 1.21 0.94 o. !>9· 0.48 1.26 o. 99 
f092 208 4S 0.86 o. 70 0.63 o. 94 o. 51 1. 58 
F092 111:1 '95 0.93 l ~08 o.ss 0.65 o. 59 1.23 
0062 232 45 o. 91 1. 63 1.36 1. 81 1.43 1.26 
f069 217 46 1.28 1. 14 o. 70 o. c.8 1.13 1.26 
f1J89 127 46 1.07 2. 04 l. 5!1 1.59 l. 09· · 2.38 
S258 119 '+7 1.21 l.'94 o. 89 0.68 0.46 1.31 
S25tl 29 47 1.02 1.01 u.99 0.58 0.4; 0.8'9 
F08b 187 Si. u. 62 0.84 u.92 1.21, o'.59 0.10 
F08b 277 51 0.94 1.88 l.23 

l. "" 
0.90 1.38 

Hl18 225 52 u.111 O.Sb O.bo o. '<l 0.57 0.66 
Hll8 135 52 0.76 o. 73 0.89 o. 82 Oo'>l o. 7S 
P23l 270 5j l. 10 0,79 0.90 0.47 0.37 o.6a 
P.231 0 51 l. lb 0.66 0.65 o. 42 o. 43 0.50 
S267 90 54 lo26 o. <;9 o. 90 Q,j9 1.16 1.72 
S267 0 5'9 0,96 0.90 u.82 0.6S o. 8.1 1.14 
Nl86 2B 51> l.04 o. 71 1.18 1.64• 3oSS• l. Oil* 
Nl8b H3 SI> u. 8!1 O.bl o. 98 2. 09• 2.47• l.66• 

• OArA POINT NOT USED 

TABLE A3. 3 Continued 
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_RECCJRU COMPUNEl<T R UNCERlAll<TY fACTOK,K 
t1EAR11<G (KMl (U.'f HLl ( 1 Hll (l. Hl) I 4 Hl I I ti HL l (le> HlJ 

1091 155 b9 o.oJ l.Ob 0.9b 0.4b o.51> 0.52• 
Nl91 b5 b9 0. 711 o. 91 0 ... 2 I). btl U.biJ O.b7* 
llC::US 249 75 u. ti .. o. 75 l.42 0.9b O.bv l.14• 
1.1205 .H9 7~ 1.07 O.b4 o. 711 O.'-'tt o. 71> O.b4• 
0204 90 75 l.18 0.94 0.'15 o. 76 o. 64 o. 71• 
IJ4:!04 0 75 1.20 o. 7.2 0.02 1.17 0.19 1.19* 
Hl.24 l8U 77 0.69 0.59 l. l.'t l.11 1 • .27 2. 02• 
Hll't 271) 11 I). 51:1 0.59 O.dl l.19 l. 39 l.60* 
Nl9b 194 77 l. 0<> 1.44 1.a:; 1 • .25 1.19 1.57• 
Nl9b 2o4 77 1.3tl 1.57 1 • .21 1. S't 0.9U 1.98• 
Nl t15 220 17 I). 'tl 0.49 .L.4'5 4.<>3* 2.91• 6,5.)• 
Nltl!'> 130 77 J. 41 0.48 i.v4 .2. ~o· b. 83• 't.84* 
1'1180 270 85 l.12 0.92 l.Ol o. 87 O.H 2.02• 
1'1lt10 181) 85 o.7il 0.11 1 ... 7 l. 1:13 0.87 3. 7-i* 

. FOil7 176 8~ u.76 1.06 l. 34 l.3o 2.30 3.07* 
F087 26b 89 1.14 0.98 1. J.5 0.62 l.39 3.1).2• 
P..?20 90 97 1.11 1.36 1. bl l.12 2.6~ 't.42• 
PUO 1130 97 0.9b 1.26 0.80 z. 01:1 1 • . H 3. So* 
N195 303 12:. 1.17•. 2.59• .2.99• .2.13* B.87* 37.96* 
Nl9:i 33 123 1.10 .. 2.58* 2. 61• 2 ... 1• 9.2b* 28.03* 
Ll 7J. 303 140 u.7o• 1.14* 1.35* l. 39* 4. 30* 24.07• 
ll 71 33 141) 0.80• o.98* o.90* 1.04:!• 4. 78* 35. 11* 

* IJATA POINT NOT USEO 

TABLE A3. 3 Cqntinued 

SAN FtRNANOU £ARTH~UAKc 
310 ~ l'Hi < J<>U OEvKEb 
15 StCvND SAM~Le 

RECO~O K UNCck T AINTY FACTUk,K 
IKMl co.+ HO ( l Hll 1.2 Hll ('. Hll (8 Hll (lb Hll 

Jl4't R 27 1.6.! l.81 l.38 i. • .. 0 1 . J2 l. 73 
Jl44 T 27 o. 75 '-• v3 1.3o 4.l.3 l. 3.! l. tlO 
Jl'tj T 30 o. 59 l).'.15 0.90 o. dJ O.db 2.79 
J 1-+~ R 30 l.47 l.9b .!.34 l •. H 3. 04 '-· '+4 
Jl43 R 30 l.J7 i. v3 O.Bb I).(;:. v.dd l.3d 
Jl'tl T 30 o.53 O.l:S4 o.75 o ... 1 l.b~ l. 22. 
Jl4l R 32. i.. lb• "• l.9* 2.95* 1 • ..>.:> -0.4o 0.2; 
Jl41 T 32 .2. 21"' 4. lb* 2.d7• 1. 1.! o. 91 0.32 
0207 T 3!> O.b2* 0.8:.• o. 72 u.76* 0.61:! o. 4b 
0207 R 35 l.Jo• 2..14• 1. 08 2.33• U.b5 0.10 
fl04 T 54 3. 3J 2.. 59 2.45 l.30 U. Sb 0.76 
FlO'+ R 54 2. 72 .!.63 l. 70 2.55 o.94 0.61 
fll)<. R 70 0.41 .... 30 o.35 o.94 0.90 0.6:> 
fl OZ T 70 O.bl 0.411 o. 58 0.54 o.1s o. 57 
Ml79 K 72 O.bd O.H o.59 o.su l. 52* 2.94• 
M179 T 72 o. b5 0.40 o.96 o.54 l. 95• 2.u• 
E071 T 87 l.29 l.3il 1.13 0.99 l. 2.3 l. 85 
Eo7l R 87 l. 41 1. 2tl o. 77 0.1~ l.32 3.6o 

* PATA POINT NOT USCil 

TABLE A3. 4. k-values, M5Hl5 data; complete 
northern group. Q = 700, A= (210, 
320, 410, 600, 440, 120) 

,..., 
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SAt. ~cRNANJU EARiH~UAKt 
310 ~ PHl < 3o0 LJ~.;RH5 

15 SEC UNO SAMl'LE 

RECORD R uNCE!o.TAlNiY FACiORri<. 
(KIO (O.+Hll ( l Hll (l. HZ.I 14 Hll (ti HZI (lb Hll 

Jl4..: R 30 l.9tl 2.'rl 2.7b l.bb 2.bO 1.79 
Jl'r3 r JO O.SJ l.lt! l.Ob i.us u. 74 2.04 
Jl4£ T 30 o.1z l..04 0.89 O.H l. 42 · 0.89 
Jl43 k 30 l.84 l. 2tl l.V2 O.SL u.75 l.Ul 
0201 R 35 l.SJ• l .C>8• 1. 29 3.U3• . 0.~9 o. 58 
U2a7 T H a.BJ• l.Ob• a.t!7 u.99• a.t..1 a.Jo 
Fl02 T 1a o. tl:> O.b3 0.18 U.dS l .os 1.10 
Fla2 R 70 0.65 0.40 0.47 1. 51 l.25 1.17 

• OATA POINT NuT USEU 

TABLE A3. 5. k-values, M5Hl5 data, basement rock 
sites in northern group. Q = 350, 
A= (160, 270, 380, 570, 740, 340) 
~ 

SAN FEkNANUO EARTHQUAKE 
310 < PHI < JoU DEuRE:E~ 

l, SECuNO SAMl'Lc 

f\ECOkD R UNCE:HAlNTV fACTOk,K 
(Kl'il 10.4 HZ.I ( l Hll ( .2 Hl I (4 hll (l) Hll llb HZ.I 

Jl44 R 27 .2.17 L .L.4 l.b2 J.o9 1. 09 1. 18 
Jl4'r T 27 l.Ol ..:.51 1. 59 5.LS i. 09 l.U 
F104 T 54 4.5b J. 34 3.11 1.->0 o. 9d o. 99 
Fl04 .l. 54 J. 1l .hb'+ 2.17 3.7<. 1. Jd o. 79 
11179 R 72 o. 94 U.44 o.so o.dl 2.11• 5. 97• 
Ml 7'i T 72 0.90 u. 53 l.29 v.d7 L. 7d• 4.~u· 

E071 T 87 i. 81 l. tl 7 l.59 1.77 z.10 5.4J 
EOH R a.1 1.98 l. 73 1.08 1.J4 ~.2b 10. 7o 

• DATA Pi.llNT NUT UStO 

TABLE A3. 6. k-values for sedimentary sites in northern 
group, computed with respect to basement 
rock curves, M5Hl 5 data. Q = 400, 
f:, = (160, 270, 380, 5 70, 740, 340) 
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SAN Ft~NANOU EARTH~UAKt 
.HO < PHJ < 3ov Di:GRtES 
15 Sl~~NO SAMPLt 

Rii.CORD R Ut.CERTAINTY FACTOi<,I<. 
(KM) (0.4 Hll Cl Hll (2 Hll (4 Hl I I 8 Hll (lo Hll 

Jl44 R 27 2.11> 2.l.I. 1.56 3.jl o.98 0.9b 
Jl44 T 27 l.Ov 2.47 1.55 ... '>9 u.98 l.00 
J.1.43 T 3u Q.N 1.16 l .03 l.uo u.66 l.b3 
Jl42 R 3u l. 9o L.4u 2.69 l. :.1 2.32 l.43 
Jl43 k 30 l. 83 l .2 7 J.9'1 u.7o . iJ.o7 o.a1 
JL4.2 T 30 o. 71 L.03 v.<H o. 'ttl 1.21 0.11 
Jl<tl R 32 2 .. 74* 7. 71• 3.40* l.L3 0.3o 0.14 
Jl4l T 3l 2. •>:>• 5. 11)• 3.31* l • .;5 u. 71 0.19 
0<:07 T 35 O. Bl• l. 04• O.b4 0.93• I). 55 0.30 
0207 R 35 l.SL• 2.04* 1.25 2.ci4* o. 5l 0.4:> 
Fl04 T 54 4. SJ 3.25 2.96 1. 71 u. i>o 0.66 
fl04 R 54 3.67 3.55 2.06 3.36 O.bS 0.53 
fl OZ "' 70 0.64 0.3B 1).44 1.33 o. 97 0.69 
fl02 r 70 O.SJ i.l. 61 0.73 o. 17 1).81 o.o5 
Hl 79 R 72 0.92 i).'t2 0.75 o. 71 l.bb* 3.49* 
Hl 79 T 72 O.B~ 0.51 1.21 o.76 z.13« 2.63• 
eon T 87 1. 77 1. 79 l.4o .1.. !>l 1.52 2. 82 
EOH R 87 1.94 l.6b 1.00 1.1-t l .b3 5.62 

• DATA PU INT NUT USEL> 

TABLE A3. 7. k-values, M5Hl5 data, northern group. 
Q= 400, !J= (160, 270, 380, 570, 740, 
340). This is the "best fit'' Q with ~ 
s~t to basement values. 
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SAN ftRNANUO EARTHQUA~c 

90 <. Ptt1 < lSO DE:GH.tS::. 
1!> SEC UNO SAHPLc 

RE.COil.O R UNCE.RTAINTY FACTOt<,I<. 
11<.H) I Oo 4 Hll 

' l 
Hll I.! Hll 14 HLI (8 Hl) I 16 Hl) 

GUO T 34 1. SJ. lo <>6 o. 70 lol7 o.i.s lo C.4 
GllO R 3't O.iH 1.33 o.o<> l.J9 ll. o5 1.45 
GlOb R 38 O.N I). 0 l ll. 84 l .od 0.1>7 o. 80 
Glllb T 38 1. 17 J.o 50 Oo6b lo'i5 Ooll5 0.8l 
Gl07 R 42 l.o'Y l.35 l.40 u. 75 . o. 1l 0.02 
G107 T 42 lo7b z.39 1.13 0.71> ;..06 u.98 
Gl08 T 42 2.J9 J. 11> lo60 l.06 Oo 7l o. 7l 
GlOtl R 42 2.37 2.93 1.33 l .lll o.sa 0.49 
P4:<:1 T 45 o. 81> 0.51) o.34 l.1>3 4.39 1.65 
Hlll T 45 3.21* 4o 09* l.35 1.12 1.90 lo54 
1'221 R 45 O.h 0.4b 0.42 I.loot! l.03 2.2t1 
Hl2l R 45 2.24* lot17* lo 46 o. ·1.i 0.98 1.28 
Nl86 T Sb 2.20 l.51 l. 35 l.10• i.54• 0.83* 
Nl8b R 56 2.11> i. Jo ;). 81 io 71 • lo52* 0.95• 
P2l3 T 66 o.e6 lo Ob loOl u.5t1 1.05 0.39 
P.223 R ob o.9o l.J5 lo02 0.35 l. 78 0.39 
Hl84 T 72 o. 4.> u. 53 0.85 lo43 llo9l 1.11 
IU84 R 7.2 Oob9 l.08 lo02 Oo 72 Oo93 l. 00 
Hl83 T 72 Oo43 Jo54 Oo87 loll u.&2 lo 52 
M18-'> R 72 Ooo4 l.04 lo OS Vo o3 i.oo 1.31 
Nl67 T 73 Oo5J Oo6b 0.94 l.15• l.3b* 1.20• 
Nl87 R 73 Oo5b v. 72 0.95 1.79* 4:.40* .l.09• 
H124 R 77 l • .20 o. 91 Oo73 Oo 91 ll.75 0.43• 
Nl 85 R 77 Oo1b 0.87 1.02 2.1)6.• lo98• lo 31 • 
Nlt15 T 77 o.a4 Oo 74 l.40 lo 7'1• lo90• 1.64• 
Hl24 T 77 loll l.OJ 1.20 1.1)8 Oo 73 Oo40• 
Ml8U T 85 1. 42 lo lo v.76 0.74 0.60 Oo 50• 
Ml 80 R as O.'H lo05 loll o.oJ vo54 Oo55" 
fU87 R 89 0.83 Oo79 lo 14 u.51) loo:; Oo bl« 
f-087 T 89 l.40 lo 16 lol3 Oo86 0.89 o. 49• 
f-101 R 108 Oo 83 o. 74 Oo8b lo bo lo9b lo.23 
flOl T 108 Oo60 Oo 77 l. l.3 Oo9l lo26 lo03 
0206 1 109 lo3l lo5o .1088 lo49 lol5 Oo77 
0206 It 109 l o.2b 1o70 1. 53 l. 68 lo4d loll 

• [)4TA POINT NUT L SED 

TABLE A3. 8. k-values, M5Hl5 data, complete south-
eastern group. Q = 860, ~= (410, 650, 
1070, 1130, 580, 140) 
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SAN ftRNANDO tARfH~UAKE 
9Q < i'Hl < 150 OE GREE:> 

15 StCONO SAMPLE 

Kl.:.IJKO R UNC!:RTAINTY fACTOI.., I<. 

CKHI (0.-f Hll (l HL) U Hll , .. Hll 18 Hll Ut> HlJ 

Glut> R 38 l.U o. 711 l.01 lob9 u. 51 o;. 71 
Gluo T JS l.b7 1. '71 1.04 1097 0.64 I.I.bl 
P221 R 45 1.07 0.!>9 0.51 o. 70 l. :><l 1.99 
P.<a1 T 45 l.llt u.o4 ().41 loC>l:I J.4~ l.45 
PU.3 T 66 1 • .25 l.3d 1 • .26 O.b3 (). <;l o.-..z 
P4:.23 R bb 1.39 J..h 1 • .27 o. Jd 1. :>4 u.-..z 
Hl1U R 72 o ... 3 1.36 1.33 u.10 (). 89 . 1.5() 
IU84 T 72 0.6.2 u .. o~ l. 07 1.56 0.81 1.3:> 
Kld4 R 72 l. llu L. 41 1.28 iJ.H J.83 1.15 
IUS~ T 72 a.bl u.70 1.10 l. 23 il. 73 1.74 
NL87 F. 73 0.81 0.94 l • .20 1. 97• .2. 15• 1 • .27• 
Nlll7 T 73 0.76 u.d7 1.19 1 •. 27• 2.12• 1.39• 

• DATA POINT NOT USEO 

TABLE A3. 9. k-values, M5Hl 5 data, basement rock sites 
of south-eastern group. Q = 550, ~ = (290, 
520, 930, 1230, 930, 250) 

SAN FERNANUU EARTH~UAK~ 
~o < PHl < 150 lJEuREE~ 

15 S!:1.iJNO SAMPL~ 

R!:CORO R UNCEl<TAINTY FAC TCr" I<. 
(KIO 10.+ HZI I! HLI (.2 lill ,,. 

~ll. l 18 HZ.I (lb lill 

GUO 1 34 2.10 2.15 0.84 1.27 J.48 1 • .29 
.;uo R 34 l.27 1.69 0.79 1.J'J o ... d 1.14 
GlO!I T 4l. 3.43 4. Or! · 1.94 2.10 o.ss o.ol 
Glu7 .. 42 2.42 J.ul l.b9 0. 77 o.; .. o.53 
lllll8 R 42 3.40 3. 1b· 1. 61 1. 22 u ... s 0.42 
Glll7 T -.2 2.!>.2 3.07 1.37 0.78 0.81 0.84 
H.l.21 R 45 ~ • .21• 4.41• 1.78 o. 7 (.. u. lb 1.1.: 
Hlll T 45 4.60• ,.2.b• l. b4 1. ls 1. 41! l.35 
Nl8b T 56 3.11 1.95 l.67 l.lb* 2.10• 0.81 * 
N.lBb R 56 3.lU 1. 78 l. 01 1.d1* l .l.5* 0.<;3• 
Hl2.lt R 77 1. 73 1.19 0.93 l. 0;.! 0.69 0.!>2.* 
Hl24 T 11 l .6J 1.35 1.52 i • .:u U.b1 ll.41!* 
Nl85 R 71 l.lll 1.15 l. 29 .2.3u• <..73• 1.57• 
Nl115 T 77 l .2.2 IJ.97 l. 77 ).10• 1. 74• l.98• 
11111c. f< d5 l.~ .. l • .:is 1.42. 0.94 o.51 0. 7i..* 
Mll:IO 1 85 2.06 1.4:> 0.97 0.1:1 .. o. 57 u. b!>• 
Fu87 T 89 2 .o~ 1.53 l.'t5 0.'>9 "· ci 7 0.67'<' 
FOo7 ii. &9 1.21 ~.05 l.47 o.· 56 l. 02 il. 83• 
fl()l R 108 1.2.2 u. 99 . 1. 13 2..00 2. 09 .l. 02 
F 101 T 108 O.Bd 1.03 1.48 1.10 •• ~4 1.69 
0.20b T 109 l.9.2 2.09 2..48 l.!10 l • .lJ l.2d 
02.0b R 109 l.84 2. .2.8 2.01 2. il.i 1.59 l. 86 

• !)ATA POINT NOT useu 

TABLE A3. 10. k-values, M5Hl5 data, sedimentary site 
itl south-eastern group, computed with 
respect to basement rock decay curves. 
Q = 550, A= (290, 520, 930, 1230, 930, 
250) ~ 
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APPENDIX 4: K- VALUE DISTRIBUTIONS 

FOR ENGINEERING APPLICATION 

The effect of smoothing bandwidth B on scatter in the 
e 

amplitude data has been discussed in Chapter 2. In order that the 

statistics of scatter observed in the San Fernando data may be rnore 

easily applied to engineering design problems, the distribution of 

k-values for the southern group of Volume IV Fourier amplitudes of 

acceleration has been recomputed for a variety of frequencies and 

values of y, where y is defined as 

B 
e 

y=y 

As before, f is frequency in Hz. 

(A4. 1) 

If the assumption is made, as discussed in Section 2. 7. 3, that 

B corresponds to the half-power bandwidth, 6f, of a resonance peak 
e 

at frequency f, then y may be related to the fraction of critical 

equivalent viscous damping ~, through equation ( 2. 16). That is 

C, = ~y (A4. 2) 

Figures A4. 1 show the accumulated relative frequency distributions 

F(k) of k at the six sampling frequencies and for the values of 

y = 0. 04, 0. 1 and 0. 2. Only one plot is shown for f = 8 and 16 Hz 

since their distributions coincide. 

It is seen from the figures that: 

(a) the amount of scatter decreases with increasing structural 

damping, represented by y , and 

(b) the scatter decreases with increasing frequency when constant 
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B /f smoothing is employed. e . 

Since '= 0. 02 is a fairly common value of damping in real structures, 

the large uncertainties shown by they= 0. 04 (C= 0 . 02) curves, 

particularly at low frequencies, is noteworthy . 
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APPENDIX 5: GLOSSARY AND LIST OF SYMBOLS 

Coherence: Used loosely, coherence implies regulatory or con­

sistency. More precisely, two functions are said to 

be coherent if their frequency contents are similar. 

Engineering or Strong-Motion Seismology: That part of seismology 

dealing with the study of earthquakes sufficiently 

close to the fault rupture that ground motion is strong 

enough to pose a threat to engineering structures. 

Epicentral, Focal and Hypocentral Distances: The point on a fault at 

which rupture initiates is known as the focus or hypo­

center. · The point on the ground surface directly 

above the focus is known as the epicenter. Distances 

referred to these points are known as focal, hypo­

central and epicentral distances respectively. 

Far Field: 

Magnitude: 

Near Field: 

A point at distance r is said to be in the far field 

with respect to a fault rupture if Kr>> 1, where K 

is the wave number, and if r /R » 1, where R is 

the source dimension. Conversely, a point is said 

to be in the near field if either Kr<< 1 or r/R << 1. 

In this study magnitude, M, refers specifically to 

local magnitude (Richter, 1958) unless otherwise 

stated. 

See far field. 
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Strong (Ground) Motion: Strong ground motion is a general term 

referring to ground motions strong enough to pose 

a threat to engineering structures. In effect, this 

implies peak accelerations of a few percent of 

gravity, or more. 

Source Parameters: A set of several parameters which measure 

the average properties of the fault rupture mechanism. 

The rupture mechanism,in general, is referred to as 

the earthquake source. 
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List of Symbols 

A(f) 

A. 
1 

A(f) 

a 

a( s) 

B e 

c 

c 

D 

E 

F 

f 

G(f) 

g(t) 

g(f) 

h 

k 

Source excitation in equation (2. 6) 

A(f) evaluated at sampling ,frequency £. 
1 

A(f) predicted by the two-parameter source model 

The high f reg ue nc y limit of A(£) 

Peak ground acceleration 

Wave amplitude (used in this sense in equation (2. 11) 

Root mean square acceleration 

Resolution bandwidth 

A parameter in equation (1. 6) 

Wave velocity 

Constants in equation (2. 2) 

Fault offset 

Peak ground displacement 

Peak stored energy 

Accumulated relative frequency (frequency here is used 
in the statistical sense) 

Frequency (in Hertz) 

Corner frequency 

Natural frequency of m, nth mode of vibration 

Power spectral density 

An arbitrary time function 

Fourier transform of g(t) 

Fault depth . 

Uncertainty factor 

Uncertainty factor for predicted accelerations 



k v 

M 

M 

m 

N 

l/Q 

r 

s 

s v 

s 

t 

T 

T e 

u 

u max 

v 

X(f, r) 

X(f, r) 
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Uncertainty factor for predicted velocities 

Arithm.etic mean of k 

Geometric mean of k 

Fault length 

Local magnitude 

A measure of Fourier amplitude smoothing (see N, below) 
(used in Section 2. 3 and Appendix 1) 

Seismic moment 

Exponent of s in equation ( 1. 6) 

Thi rd moment 

The number of raw spectral ordinates averaged to obtain 
a smoothed Fourier amplitude value; N = 2M+l 

Specific attenuation 

Radiation pattern 

Focal distance or, equivalently, hypocentral distance 

Fault area 

Pseudo-velocity response 

Epicentral distance 

Time 

Time length of accelerogram 

Length of strong-motion part of accelerogram 

Average dislocation 

Maximuni dislocation 

Peak ground velocity 

Fourier amplitude of acceleration 

Fourier amplitude of acceleration predicted by 
equation (2 . 6) 



x(f) 

(x) 

y 

Ymax 

Ct 

y 

y 

L!iB 

µ 

I 

(J 
log k e 
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X at 90 percent confidence level 

Ground acceleration 

Fourier transform of x(t) 

Root mean square acceleration 

Relative displacement of a single - degree-of-freedom 
oscillator 

Maxirnum relative displacement 

P-wave velocity 

A parameter in equation ( 1. 6) 

Shear-wave velocity 

Exponent of f (in Chapter 3) 

Ratio of resolution bandwidth to frequency (in Appendix4) 

Frequency increment 

Static stress d!OP 

Peak strain 

Fraction of critical viscous damping 

Wave number 

Shear modulus 

Summation 

Effective stress 

Standard deviation of k 

Standard deviation of log k 
e 

The function minimized in the least- squares parameter 
estimation 

Phase angle 
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Source-station azimuth 

Fourier amplitude of displacement 

Low frequency limit of O(f) 
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