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Abstract

Two methods for solving the Schrddinger equation for one
dimensional, three atom, electronically adiabatic, reactive
collisions have been investigated. The first bifunctionate method
was proposéd by Diestler in 1969. It solves for vibrational
excitation probabilities by expanding two parts of the total
solution to the scattering problem in eigenfunctions of the
unperturbed diatoms. These diatoms are the target and product
diatoms in the reactive encounter. This formalism allows the
eigenfunction series representation of the total solution to decay
to zero in the interaction region of the reaction. Proposition
1 shows that this decay process is indicative of a failure in
Diestler's method which renders its solutions invalid.

A technique proposed as a means of solving the equations
governing nuclear collisions was also investigated. This
formalism, called the Method of Subtracted Asymptotics, has
been shown to be an application of the general mechanism of
eigenfunction expansion to the scattering problem. Because of
analysis problems induced by the extensive eigenfunction series
demanded by this method, the Method of Subtracted Asymptotics
is not an efficient or practical manner of solving the scattering
problem. This method is treated in part 2 of this work.

Tests used to varify the numerical accuracy of several
studies of the Method of Subtracted Asymptotics required the

values of several special functions on the complex plane. To
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meet these needs, algorithms which compute the value of a
complex number raised to a complex power, the Gamma
function, the Digamma function and the Hypergeometric.function
Were prepared. These algorithms are discussed and presented

in part 1 of this thesis.
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Introduction

The primary domain of this thesis is reactive, collinear,
electronically adiabatic, atom-diatom scattering. The central
goal of the numerical methods discussed in part two in this work
is the solution of the collinear scattering equations. The com-
plex functions of part one solve the Schrddinger equation for a
central, one dimensional barrier and two of the five propositions
which end this work support portions of the material in parts
one and two.

There are, however, a few segments of this thesis which
extend beyond the bounds of scattering theory. Appendix A of
part one presents a representation of the Hypergeometric
function which is of no utility in scattering studies and this ap-
pendix is therefore mathematics for mathematic's sake. Several
of the propositions are far removed from scattering theory.
They represent personal interests of the author.

Mathematical studies of quantum phenomena in reactive
scattering were initiated in the 1960's. Primarily, these studies
were undertaken because computers at last made the calculations
possible. A further motivation for this work was the need to
resolve the question of the applicability of classical mechanics
to chemical reactions. Quantum mechanics describes all
particle reactions correctly but it is a very intractable means
by which to do so. Hence, if quantum mechanics can be approx-

imated by classical mechanics for most atom reactions, a great



deal of complexity in the calculations can be avoided. A
significant number of trajectory studies on model surfaces
existed before quantum calculations were undertaken so compar-
son between quantum results and classical results for identical
systems depended solely on obtaining the quantum data. The bulk
of the work reported in this thesis was aimed at clarifying
quantum mechanical methods by which one could create quantum,
reactive, cross sections.

A number of systems which are currently the focus of
intense experiments await elucidating contributions from quantum,
reactive scattering calculations. Several studies at present ap-
pear to indicate that quantum phenomena control a major segment
of the physics of the three atom reactions. Thus, in molecular
beam studies, for example, classical mechanical models such
as ''stripping" and "harpooning'' will not yield a valid under-
standing of the processes leading to the final observed cross sec—
tions. Quantum studies will probably be needed to elucidate the
physics of gas flow chemilluminescence reactions. Vibrational
and rotational populations in lasers will also require quantum
treatment if current indications of failure by classical mechanics
for these systems are confirmed.

Before quantum mechanics can be fully applied to realistic
systems, questions about the validity of electronic adiabaticity,
oné dimensional atom impact and other approximations must be

answered. This study did not aid in the verification of the
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limits of classical mechanics nor did it test any of the dubious
approximations of quantum mechanics. Instead, the material
contained herein serves to remove two specious approaches to

the answers to these problems.



Part 1

Special Functions On The Complex Plane



Introduction

The solutions to most ordinary and partial differential
equations are not simple rational functions of the equation vari-
ables. Instead, a small group of the solutions to differential
équations can be represented as limited or infinite expansions
and most solutions exist only as a numerical table of function
values. Those functions which solve a differential relationship
and can be expressed in some closed form have been termed
special functions,

A large number of special functions are in common use in
scattering theory. The Hermite polynomials, Legendre poly-—
nomials, the Laguerre polynomials and the spherical harmonics
are all special functions which are basic to descriptions of quan-
tum scattering phenomena (Ey44). In the following five sections,
a group of special functions of a more limited applicability to
scattering phenomena are discussed and algorithms for preparing
values of these functions are presented.

All of these functions are prepared over their most general
range, the complex field. In section 1, the complex pewer func-
tion is described. The Gamma function is discussed in section 2
and its logarithmic derivative, the Digamma function, is treated
in section 3. Two forms of a hypergeometric function comprise
sections 4 and 5. A representation of Gauss' series, a hyper-—
geometric function, for the wunit circle of the complex plane is

the subject of section 4 while section 5 displays the formulas
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needed to analytically continue Gauss' series to the entire com-
plex plane.

These functions are all parts of the solution to the problem
of scattering from an Eckart barrier ( Ec30). This barrier

along the x axis has the functional form,

. 2mx/ 10
eZﬁ’x/Q

eZ‘n’x/ [}

2w/ 2 (1)

where ¢ is the width of the barrier and A and B are constants.

A
|

B
(1+ e

V(ix) =

The one dimensional Schrédinger equation for a particle

encountering this central potential is

2
[y + "l A ety + Ty + BH ¥ =0
2mx/4

where z = ~e . Transforming to the z plane gives

2 2
20 0 2mf Az Bz _
{22242, v Tl e e t EIN = 0,
If ¥ is taken to be
¥=2P(1-2)F(a, B;v;2),

then equation 2) can be written

2 o ~lr ~2ml? 2ml’E 2ml’B Y.
/ol 2% =0 (1 =) [T 2 (A - B) - SBE S - Tey)

(3}

Ey44 Henry Eyring, John Walter, George E. Kimball, Quantum
Chemistry, Chapter 4, John Wiley and Sons, New York, (1944).

Ec30 Carl Eckart, The Penetration of a Potential Barrier by
Electrons, Physical Review, 35, #11, 1303, (1930).

Sn52 Chester Snow, Hypergeometric and Legendre Functions
with Applications to Potential Theory, page 5, equation 12,
National Bureau of Standards, Applied Mathematics Series,
Vol. 19, (1952).
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By comparing terms between equation 3) and the general hyper-
- geometric equation form ( Sn52 )
- - - 4 -— - -
O L2 TR (1=) 2PV 2ay ] _ g Y 2R (g Ly @HRY 2,
| (4)
[(p+q—a)(p+q—ﬁ)+1&(7'1"p) salerpf-y-q) ]

z "1l -z

the six equations which define the parameters of the solution

¥(z) can be distinguished.

=_eZ1rx/lZ (5a)
Yy-2p=1 (5b)

o+ B -y =-2q=-1 (5¢)
(pfq-&)(pfq—3)=C(A-E) (5d)
p(y-1-p)=CE (5e)

q(a+Bf-7v-q)=CB (51)
2mf’ .
Here, C is defined by C = - /hz and h is Planck's constant.

The Eckart barrier problem of equation 2) was solved both
numerically and analytically, The hypergeometric function algo-
rithm of sections 4 and 5 was preparedv to check the results of
the compﬁter program which numerically integrated equation 2).
The other algorithms were created to supply function values
needed in calculating F(a, B;¥; z).

All of the algorithms presented here have been prepared in
the computer language Fortran IV. The programs were run on
the model 360-75 and the model 370-155 I. B. M. computers

under release 20.7.
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I. Comglex Numbers Raised to an Arbitrarz Complex Power

If x and y are real numbers, the number %Y is a well defined
real number. On the complex plane, this specificity disappears and,

if a branch cut is not imposed, the combination of complex numbers
P2y, 2,) = 7,22 (1)

is not well defined.

The ambiguityof the results of the operation of a complex
exponent is one example of a general phenomenon in complex functions.
Most functions on the complex plane are multiply valued. Their
answers are not completely fixed by the specification of the initial data.

This arbitrariness in complex arithmetic is caused by the closure
properties of the complex set. The set of complex numbers normally

used in complex arithmetic can be represented by

C0={z[z=rew,~1r< 6 = u} (2)

where a specific range has been chosen for the variable 6. When a
function operates on an element of C,, it relates one élement of the
range of the function, C,, to an element of the domain of the function,
D. The problem of closure associated with this process is that the
elements contained in D for a multiple-valued function will not all be
elements of C,. Some of the elements of D will have a § argument
that will exceed the bounds of C; and thus the function is not closed

over its range.
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Most techniques for closing a function on the complex set cause

uniqueness problems in the action of the function. These uniqueness
difficulties will be displayed by using the branch cut technique on the

power function. The definition of the power function, P(z,, z,) is

P(2,,2,) = 2,22 = eZ2l08. 2y (3)

Example 1: Calculate the value of (i”°)1/ e

In the real plane, (xy)]‘/ Y =x. The following calculation will
show that this pattern of behavior is not followed in a complex,

branched plane.

From (I 3)

30 _ eloLOg 't ool Log, 1+7/2i]

-
=e‘ﬂ'1.

This intermediate result

i = e (4)

shows why the definition of a branch on the complex spiral does

not remove all the difficulties encountered with the function P.

571

The complex number, e ", is not in the set of all complex

numbers

6

C0={z|z=rei, -7< 0 = 7},

* The definition of the complex logarithm is Log oZ = Inr + i6, z= reie.
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even though the two input terms to P, i and 10, are members

of this set. Thus, the function P is not closed over the set C,.
The result, emi, is usually represented as being in the set

C,. Thus, it is calculated modulo 27 and gives

el = ¢lT, (5)

i‘n’)l/m

The problem has been reduced to (e and an additional

application of P gives

(ei”)l/m = elog(‘fl)/ 10 _ eﬂ-’i/lo

cos /10 + i sin 7/10

.9511 + ,0390 i.

Therefore, for the real numbers, x and y

P(P(x,y), 1/y)=x

but
P(P(i, 10), 1/10) = .9511 + ,3090 i.

This calculation shows that the use of a branch cut for complex
calculation does not give all of the properties that are desired in an
arithmetic. ¥ However, virtually all work with complex functions is

~done with the aid of a branch cut and virtually all computer represen-
tations of complex numbers impose a branch cut. The problems of
phase specific answers and multiple roots which occur for the power
function when it is used with a branch cut are the reason that such a

basic routine is not already in existence.
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When faced with the problem of establishing a function which
mathematically might never give the specific answers wanted, compiler
programmers abandoned the area of complex arithmetic to the user.
Since the ability to raise a complex number to a complex power was
fundamental to all work done on the complex plane, an algorithm based
on the [ %,y] complex arithmetic of the FORTRAN language was pre-
pared. The routines of algorithran 1a and 1b calculate all answers in
in the C, set. Hence, the branch cut problems aluded to in Example

1 must be corrected by the user.

Mathematical Method:

The value of the complex number zlZ2 is calculated by
7z = elZ*log(z,))

This routine follows the convention that zero to the zero

power equals 1.
0.0 =1.0

Possible Errors:
Because of magnitude limitations on the exponential function,

the modulus of z,*log(z,) should be less than 175.

|z,*log(z,) | < 175.0

Accuracy:
All calculations indicate that 6-digit or 12-digit accuracy are

maintained by the single and double precision routines, respectively.
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II. The Gamma Function
The Gamma function is a generalization of the factorial
function‘
f(n) =n! =1%2... *n, (1)
and it extends the definition of the factorial to all non-integer
numbers of the complex plane. There are several representations
for I'(z) (3), but the function is usually defined by the integral

relation
o0 -
z) =f°e'TTZ'*dT Real (z)>0. 2)

The Gamma function is a single valued, analytic function on
the complex plane. Thus, it requires no branch cut for its
implementation. The function has a pole at all negative integers

and the origin,

Mathematical Method:

Two series representations are used to calculate the value
of the Gamma function in the two unit wide strip about the
imaginary axis defined by

-1 =Real(z') =1. (3)
All arguments are reduced to this strip by the use of the
recursion relations:
I'(z+n) = z*(z+1)*. . *(z#n-1)*T(z) Real(z)=0.0 (4)
or
I(z-n) =T'(z)/(z-1)*(z-2)*...*(z-n) Real(z) <D.0. (5)
When equations II 4) or TI 5) have reduced the complex
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variable, z, to its equivalent value within the domain of
equation II 3), the imaginary portion of the variable is used
to select which of the two series will be used to calculate the
function. |

Let the equivalent value of z within the domain of
equation II 3) be called z’. The imaginary part of z’ definas

the two domains,

Domain 1

|Imaginary(z') | <3.4 (6)
and
Domain 2

|Imaginary(z' ) I =23.4, (N

which are the zones of validily of the two series representations
of I'(z).

Within domain 1, the 26-term power series developed by
Davis (1), (2), is used to calculate the Gamma function. The

series form is
26

1/ T'(z) =Z aizi (8)
i=1

where the a, are monotonically decreasing functions of i. All
coefficients are listed, with references, in (2).

Domain 2 can be considered the asymptotic region of
the Gamma function and, therefore, an asymptotic expansion (4)
of the function is used to calculate I'(z) when z’ is in this

region. Up to 26 terms of the asymptotic form
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InTz') =@z -3)Inz’ + 3ln 2n) -z’

(9)

o0
+z Bam /[ 2m (2m-1) 2’ (Zm-l)]
m=1 |arg z’ |<w

may contribute to the preparation of the value of the function.
The Bernoulli numbers, B, used in this series are listed to

15 digit accuracy in Table I.

Possible Errors:

The use of the power series expansion to calculate I'(z)
can cause underflows for values of z within a radius of 10-3 of
any positive integer on the real axis,

Overflows may result if the argument passed to the
algorithm has a magnitude greater than 60. Such arguments
give results which are too large to be represented on most
computers.

A call to the program generating the Gamma function
which passes a negative integer or zero to the program will
cause the printing of an error message. The function will
return the value I'(z) = 1.0x 1085 4+ 0.0i upon receiving a

non-positive integer argument.

Ac curacy:

The accuracy of this algorithm has been tested by
comparison to the tables of reference (2). The accuracy of
these routines is not constant across the entire complex plane
but, in general, single precision results were found to match

published data to 6 significant figures while double precision
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,resu.lts duplicated published results to 10 significant figures.
As the value of the function argument, z, moves away
-from the real axis, the accuracy of all results decreases to
a minimum afxd then returns to the accuracy noted above. The
minimum in the accuracy of this algorithm occurs at
| Imaginary (z) | = 3.39.
The sixth digit of the values returned by both routines begins

to differ from published values when

| Imaginary(z) | =2.5.

At the value |Imaginary(z)| = 3.3,
the values returned by the algorithm are only valid to 4 significant
figures. Beyond [Imaginary(z)[ =A3.39', the accuracy of the results
increases until, at ]Imagina.ry(z)l = 4,0, the general comments made

above concerning accuracy are again applicable.

Relation to Factorial Notation:
The relationship between the Gamma function and the more

common factorial notation is:

I'(n+1) = n! n integer, n = 0.
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IT1I. The Psi Function

The Logarithmic Derivative of the Gamma Function

The appearance of a particular combination of functions in the
results of several diverse areas of mathematics often results in the
definition of a label which can be used to denote the particular function
combination every time it appears. The Psi function is such a label
and its notation, ¥(z), is used to denote a combination of Gamma
functions.

The Psi function is also known as the logarithmic derivative of

the Gamma function and the Digamma function. The definition of

¥(z) is:
¥(z) = d/dz [log, I(z)] = T'(2)/T(2) . (1)

Equation (III 1) explains why ¥(z) is called the logarithmic
derivative of the Gamma function. Its name, "Digamma Function, "
comes from the series of functions created by taking ntl order
derivatives of loge I'(z). This series of functions is called the
Polygamma function ladder and #(z) is the first of these functions.

As is generally true of derivatives, ¥(z) is less well behaved
than its integral. In the region, Real (z) > 0, ¥(z) is a monotonically
increasing function of z. Beyond the point z = 1, the rate of increase
of this function becomes very small.

However, in the half plane, Real (z) < 0.0, the function
resembles cotan (rz) and possesses poles at all non-positive integers
on the real axis. This behavior of the function dictated that an

asymptotic expansion be used to represent the function.
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The Psi function is a single-valued, analytic function on the
principal value, complex plane, C,. Therefore, no branch cut is
needed to define y/(z).
Mathematical Method

Calculations for any argument are carried out in the complex
half plane, Real (z) = 5.0. Here, the asymptotic expansion:

. oo
W(z)= Log, z - 1/(22) = J' B,p/nz®"), (2)
n=1

holds. The constant B,pn is the Bernoulli nmﬁber of order 2n. A com-
pilation and discussion of Bernoulli numbers will be found in (5). How-
ever, a more accurate calculation of these figures has been carried out
and the results are listed in Table 1.

If the argument passed to ihe routine is such that Real (z) < 0,

the reflection formula
Y(1-2z) = Y(z) + 7 cot (nz) (3)

is used to move thé calculation into the positive Real (z) half plane.
Should the argument received through a call to the routine or

the argument developed by the use of equation (III 3) lie in the region,
0 = Real(z) < 5,
the recursion relation
Ylz+1) = Y(z) + 1/2 (4)

is used to move the argument into the asymptotic region Real(z) = 5.0,

of the half plane, Real (z) > 0, where equation {II 2) holds.
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Possible Errors
N\MNWVW

~ The y function is highly oscillatory in the half plane, Real (z)
= 0. A request for the value of {(z) at a point in this half plane may
result in an underflow or overflow. Further, the y function has poles
at all negative integers and zero. A call for the value of /(z) at a
non-positive integer will result in the printing of an error message.

The value returned for y/(z) at such a point is

P(z) = 1.0 x 10° +0.0 i.
Accuracy

The algorithm wused to create the value of y/(z) has been found
to be accurate to six significant figures when calculated in single pre-
cision arithmetic. /' Values were checked against data compiled by
Davis (1).

A double precision form of this algorithm was found to match
compilations currently available, (1), (6), to the accuracy of the tables.
This gave a ten digit check on the accuracy of this algorithm.

These accuracy tests were made for values of the argument z

in the domain

|z| = s.0. (5)



19
IV. The Hypergeometric Function for Values Within the Unit Circle
on the Complex Plane.
The hypergeometric function, hereafter termed F(a, B; v; z),
is the solution to the hypergeometric differential equation. The most
compact form of the hypergeometric operator is due to Poole (7) and

takes the form:
L = z(1~z) d°/dz® + [y - (a+B+1)z] d/dz - aB. (1)
Fla, By v; 2) satisfies the homogeneous relation
L F(o, B; v; z) = 0. (2)

- The complex plane must be divided into two domains to achieve
a viable representation of the hypergeometric function. These two

regions are the closed bounded domain

2| =1, 3)
and the open infinite domain

lz| > 1. (4)

The treatment of the hypergeometric function given in this
section will pertain only to the urit circle, defined in equation(IV 3).
Since L is a second order, linear differential operator, there will be
two independent solutions defined by relation(IV 2). The solution to
(V 2) which is generally called the hypergeometric function was first
extensively investigated by Gauss (8). Because this function's develop-~

ment was largely dependent on Gauss' work, the function ,F,(o, B; v; z)
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treated here is often called Gauss' series to distinguish it from other

solutions to (IV 2). |
The second independent solution to IV 3)can be represented
by

4 of,(2) = R e o Fi(a+l-y, B+1-y; 2-y; z) largz|< 7, |2] = 1 (5)

where the principal value branch cut has been used.

| The solution to (IV 2)denoted by ,F,(e, B; v; z) is a single-
valued, analytical function in the domain considered and thus is regular
at the origin. Because of its single-valued nature, no branch cut need

be defined for this function within the unit circle. Since only hyper-

geometric series with two numerator parameters and one denominator
parameter will be considered, the subscripts, 2 and 1 on the funetion
label will be dropped. The numerator parameters of this function are
o and B. The denominator parameter of F(a, B; v; z) is y.

It should be emphasizéd that the term "hypergeometric function
is used here to denote that solution to equation (IV 2) which is regular at
all points within the unit circle and has been historically labeled Gauss'’
series. Other dependent or independent solutions of (IV 2), such as the

function of ,f, defined in equation (IV 5), are not treated in this discussion.

Mathematical Method
A representation for the hypergeometric function must be
developed within the domain of equation (IV 3). For the most general

case, F(a, B; v; z) will be defined by Gauss' series:

o0

Flo, B; v; 2) = ) apB 2"/[ynl] (6)
n=0
where



a, =1 @ = a*(a+1)*(%11+2)* e oo ¥(gin=-1) (N

andy isnot anon-positive integer. This series representation isthe most func-
tional form for F(o, B;¥; z) when a programable definition for the function is sought.

The specification that ¥ is not a non~-positive integer is required
because definition (IV 6) requires additienal restrictions in such a case.
There are three cases to consider when any of {a, 8, ¥} become

elements of the set of all non-positive integers, N:
N = {'n ln =0,1,2,3, "'}-

These cases are:

Case 1: The numerator parameters @ and/or B are elements of N.

Case 2: Only the denominator parameter, v, is an element of N.

Case 3: Parameters of each type, a and/or 8, and y are elements of
N.

Special treatment must be given to each of these parameter
combinations.

Case 1: When only thf—: numerator parameters, o and/or B, are negar
tive integers or zero, the function defined by (IV 6) becomes a
polynomial. Thié limited power series is a valid representa-
tion of F and is used as the hypergeometric function for this
case. |

Case 2: Whenever ¥ is an element of N, Gauss' series has a pole.

Hence, for ally = - n,

|Fa, B; v; 2)| = «. (8)

Rational functions can be developed which do not possess poles at

the non-positive integer values ofy but still satisfy (IV 2). Such
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functions are not treated by this algorithm. (see case 2, Section V).

Case 3. In the situation where there are elements of N amongst both
the numerator and denominator parameters, the relative
magnitudes of the parameters determine if the hypergeo-
metric function converges or has a pole.

Since the hypergeometric function is symmetric in a and B
Fla, B; v; 2z) = F(8, a; v; z), (9)

let o be the numerator parameter that is a negative integer.
If both @ and B are negative integers, then let e be the para-

meter value with the smallest magnitude.

la| = |8].

Case 3a. The numerator parameter has a smaller magnitude

than the denominator parameter

la| = v |

¢ =-m y:-(m+n)

m=0,1, 2, --- n=0,1, 2, ---

For this case, equation (V 6) still applies but a
formula must be defined to avoid ambiguity when
o =y =~=m. The definition of F(a, B; v; 2z) is
m
(~-m)_.(B)
F(-m, B -(m+n); z) = ), ————
-(m+n))_r!
o0 {(-(m+n)) |

¥ (10)
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Case 3b: The numerator parameter has a larger magnitude

than the denominator parameter
a] > ]

In this situation, the hypergeometric function has a
pole.

With the special integer cases treated, the hypergeometric
function is completely defined within the domain [z IS 1. The conver-
gence and accuracy of this function will be treated in section V since
this algorithm is a special case of F(a, 8; ¥; 2z) on the entire complex
plane.

Possible Errors

If the series calculation does not give a relative single
term contribution of 1.0 x 10”° or less after one hundred terms of
equation {V 4) have been calculated, the routine prints an error mes=-
sage and terminates the calculation. The value obtained by the one-
hundred term sum is returned as the estimate of the function.

If the value of the gamma parameter is a negative integer and
meets the specifications of case 2 or case 3b described above, a value

of
Fe, B: ~ng z) =1.0 x 10%® + 1.0 x 10%

is returned for the function.
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V. The Hypergeometric Function on the Complex Plane

When the differential equations of mathematical physics were
formulated in differential form in the late 1600's, it was assumed that
all problems representing a physical process could be solved with
appropriate combinations of elementary functions. The first indication
of the need for functions beyond those already known came in 1671 when
Newton (9) created a solution to several first order, differential
equations by infinite series.

This method provided representation for what later became
known as orthogonal polynomials and special functions. The hypergeo-
metric function originated as a real variable series representing a
solution to equation V&), When special functions were recognized as
entities distinct from their series representations, the complete hyper-
geometric function for the real line and the complex plane was defined.

The creation of F(e, B; v; z) for several computational tests
has followed this historical development. The function was first needed
within the unit circle on the complex plane and its series representation
was programed as described in section IV. Later work became depen-
dent on a representation of F(a, B;v; z) for the entire complex plane
and, therefore, an additional algorithm was developed to evaluate the
hypergeometric function in this region.

Thé formulas presented here represent an analytical continua-
tion of Gauss' series for all z. Other solutions to the hypergeometric
differential equation can be prepared by using appropriate linear com-

binations for the series parameters and multiplying the series value by
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an additional function of the independent variable, z.

Mathematical Method

The more expansive form of F(a, B;¥; z) is more difficult to
formulate than the algorithm of F(a, B; v; z) within the unit circle.
Several methods exist to create Gauss' series for the hypergeometric
equation, (IV 2), but the simplest route to the representation of

F(e, B;v; z) which is useful as an algorithm is by using the integral

1 T'(a+s) T(B+s) I'(-s)

B 27i P T(y+s)

(-2)® ds (1)

where sisacomplex variable and la.rg(-z) I < m.

Cogniiance of the branch cut that has just been defined is very
important. This cut must be kept for all complex functions that will be
used in the development of the hypergeometric function. The cut is
defined on the real axis from 1 to +« and is often called the f-cut. The
complex plane for the variable z is not defined in normal calculations

by this branch cut but rather, takes the form

z=reie -7 < 0 =,

Transforming z to the f~-cut gives

Zp =rei‘9 <27 < 6 <0,

This rotation of the complex plane about the origin defines all
functions involved in F(a, B;v; z) with respect to the same cut.

The integral function (V 1)satisfies equation (IV 2) for all z.

Thus, it constitutes a solution to the hypergeometric equation



26
and could be termed a hypergeometric function. Unevaluated, I does

not give a programable form to the solution of (V 2) it represents. The
integral I must be evaluated along some contour in the complex plane.
The choice of contours in the s plane is dictated by the singularities of
the gamma functions contained in I.

For !z |<1, the contour for I must contain all singularities of the
function I'(~s). These poles will be on the positive real axis so let the
contour, P, be any closed curve separating all integers on the positive
real axis from the poles of I'(a+s) and I'(B+s).
| By Cauchy's theorem, the complex integral of a function is the
sum of the residues of the function at its poles. The residue of I'(~s)
is (-1)®/nl, s =n, and thus,

T (a+s) I'(B+s) I'(~s) I'(a+n) I(B+n)

== 1/2mi -z)%ds = ) o
' (& fP Tly+s) (2)” ds nEO I'(y+n)n! o

lz| < 1. (2)

This relationship implies that I is the regular hypergeometric function
for the unit circle of the complex plane. Therefore, the integrall is
a representation of the regular solution of [V 2), and since I is an
analytic function of z, it represents F(o, B;v; z) for all values of z on

the surface Iarg(-z)[ < 7.

Solving the integral I for |z | >1, will yield a representation
of F for the unbounded section of the complex plane. To obtain

a solution of I for 'z {> 1, let the contour P enclose all first
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order poles of I' (@+s) and I'(3 +s). The special cases where a

contour encloses higher order poles will be treated separately.

Summing the residues of the integral at the poles of I'(¢v+8) and T'(B+s) gives:

o I'(8~a-~
1= ) [fom I{e+n) (-2)"*7H(-1)"/n1 (3)
n=0 T(y=-a~n)

B =B=n, 4\n
LIRS - (=1)"/n1
) n§0 Ty -6-n) i Tzl
or

B-a)y) (@ U-v+e),
T(B)Ty-a) pop (1-B+a) r1Z*

F(a, Byy;z) = (-2)"¢

T 5 BB,
T(@)Tly-p) po (1+B-0),x1Z°

+ (=2
I zZ l >1,

Thus, the extension of the hypergeometric function to the entire
complex plane is virtually complete. A discussion of the convergence of
I and the exact distribution of all contours is contained in (10).

The definition of equation (V4) holds for most values of the para-
meters o, B, v. Unfortunately, the difficulty of representing F outside
the unit circle predominately centers on the significant number of special
cases that arise for specific values of ¥, o or 8. Each of these specific
situations will be treated in turn and the formulas that result will be
detailed. In all of the discussion that follows, the domain of the indepen-
dent variable, z, will be |z| > 1.

Case 1: At least one of the numerator parameters, aor 8, is a non-
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positive integer.

For this situation, the series presented in equation (IV 6) ter-
minates after la[ + 1 or [ 6[ + 1 terms. This formula enters the
analytical continuation of the function at this point because of the pole
pattern of the integral, I.

When the contour, P, for the evaluation of I is drawn, it is
designed to isolate poles of I'(a+s), I'(B+s) and I'(~s). However, if
o or B = - n, then some poles coincide and a series of higher order
poles appear on the f-cut. The summation of these residue terms
shows that formula (IV 6) covers this special coincidence of poles.

For a=~n, |z|>1and |arg(-z)| < =,

n
F(-n, B; v; z) = ), E0y6) 2, (5)
0 11
Since F is éymmetric in its numerator parameters, no separate
definition is needed for 8 = - n,
Case 2. The denominator parameter, y, is a non-bositive integer.

The single analytic function F(a, 8; v; z) defined by the f-cut
on the z plane, has poles at all negative integer values of y. Thus,
F is a meromorphic* function of . Because of this behavior, the
standard function F(o, B; ¥; z) defined from integral (V 2) obeys the

condition

* A function of the complex variable z is said to be meromorphic in

a domain D if it is analytic in D except for a finite number of poles.
P231, MathematicsPictionary, Editors: G. James and R. C. James,

Van Nostrand, (1949).
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|F(q, B; -n; 2)| == n=0,1,2,.., (6)

) a, B not covered in the following cases and Yz The algorithm
meets the conditions of this case by returning a very large, first
quadrant, complex number as the value of F(o, B; v; 2).

There exist certain parameter combinations which allow y to
be a non-positive integer while Gauss' series remains finite. These
situations will be considered in the cases which follow.

An important formula associated with the parameter combina-
tion of case 2 should be mentioned. This relationship is the definition
of the hypergeometric function in terms of a quotient function,

Q(a, B; v; z). The definition of Q is
Q(a, B; v; z) = Fla, B; v; z)/Tw). (7

The combination of functions, F(a, B8; ¥; z)/T'(y), is an analytic
function of all of its parameters for all of their values and it has been
used by several authors (11) to define a finite value for the hypergeo-
metric function at the parametervaluesy =-n, n=0, 1, 2,... It
must be emphasized that these efforts to remove the poles of F(a, §;
v; z) on the ¥ plane are valid only within a loose definition of the term
"hypergeometric function.

Using this label to denote any function which satisfies the
hypergeometric equation (IV 2), allows Q(e, B; y; z) to be termed a
hypergeometric function. Gauss' series can then be used as the defini~
tion of a solution to (IV 2) but the limit of Q(a, B; ¥; z) can be inserted

in such a definition wheny = - n. The value of Q in this case (12) is
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(@) 1B
lim Q(e, B; v; 2) = 41Pne1 oot

F(a+n+l, B+n+l; n+2; z) (8)
o wcite 5 (n+1)1

See equation (IV7) concerning the notation (cv:)n +1°

The hypergeometric function programmed for the algorithm
defined here is Gauss' series as derived for all cases from integral I
of equation (V2). Values of the quotient function Q, at the appropriate
values of ¥ can be obtained by the use of this algorithm and the right
hand side of equation (V 8).

Case 3. The difference a-f is an integer.

It was noted previously that equation (V4) only applied when the
poles contained in the contour were firstorder. Whenla-—ﬁl =n, this
limit is broken and the representation of F(o, B; y; z) must be recal-
culated. This failure of (V4)is apparent in the structure of the equa-
tion itself. The multipliers I'(a~B) or I'(3-a) possess poles at the
non~positive integer values of their argument. Hence, whenever
a-fB is equal to an integer, at least one of these multipliers is infinite.

The alterations to derive a formula for this case must start
with the contour for integrating I in equation (V2). The contour is
normally set up to envelop the poles of I'(~s) or those of I'(a+s) and
I'(f+s). Each of these three sets of poles is assumed separate and
distinct. When a-f is an integer, some of the poles of I'(e+s) and

I(B+s) coincide. Since the poles are

s==(m+a) and s=~(m’+p),

then
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@-fB=n,

gives

s=-m=-(n+p) s=-m’'-4, (9)
where

? -
m, m’',n=0,1, 2, ...

For some values of s, both elements of equation (V 9) willbe satis-
fied simultaneously and this peoint will constitute a second order pole of I.
Thus the residue of I changes at these s values and correspondingly, the
formula for F(a, 8;v;2z) changes. If Iis integrated along a contour containing
al] poles of equation (V 9), the altered sum of all residues gives the
representation fiml (a): F(aer)

Flo, a+n; v; 2z) = Te)/[Tlem)(-2) { )} —E—— 2"  (10)
=0 I'ly-a~r)r!

o0

+1/[ Ty-a)(-2)"] ).

r=0 T! (@+r)!

(@) p(L=r+a)

z ¥ [Loge(-z) + Psi(r)]}

where Psi(r) = Y(l+n+r) + Y(1+r) = Y(o+r+n) = @(y~a-r=n). An alternative
formula for this case is derived in Appendix A.

This formula must be used to evaluate F(®, B; ¥; z) when
a-f=n, [z[ > 1, unlessy - a is also an integer. This parameter
pattern is treated in cése 4,

Case 4. The parameter difference @ ~ 8 and y - @ are both integer.

The behavior of F(a, B; v; z) in this case is determined by
the sign of the integer differencey - @. Let |@-8| =nandy - a=

m, n=0,1,2, -»e;m=1, 2,3, ---

Ifn=0, n~1=-1, then this sum is zero.
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In this situation, the negative integer difference of y-a allows
the use of an elementary transform on F(o, B; y; z) which creates a

polynomial form for the function. This result is detailed in case 5.
Let |e=~B|=nandy ~e=m. n,m=0,1, 2, ...

An exception to case 3 exists only if m =n + £ where £= 0, 1,
2, ... The term a has been taken to have the smaller magnitude of the
two numerator parameters. When these criteria are met, the function
of the contour integral I simultaneously has three poles. This
situation must be covered by a limiting process on equation (V10). The

result (13) is
lim F(a, @+n; y; z) =

y -~ anel (11)
2 (@), ,(r-01

Masn+L) / {(-z)a M(e+n) { (--)1)”""1(--4-1.)'n z : z"t
: ; e (n+r)ir!

E
. (=z)™0 ! (@) p{1=0=0)p

z T [Loge(-z)+Pzi(r)]*
(g+n-1)1 =0 ri(r+n)!

= (n-r-l){(a)r —pk
z

+ -

Pzi(r) = Yy(l+ntr) + Pp(1+r) = Yla+n+r) = Y(L=r).

Ifm > 0but m < n, then the formula of case 3 applies.

*If0=0, 0 ~-1=-1, then this sum is zero.

**Hm=0, m~1=-1, then this sum is zero.



33

Case 5. One or both of the parameter differencesy - a ory ~ Bis a
negative integer.

This occurence has already been alluded to under case 4.
Whenever one of the two parameter differences, y ~a@ ory ~ fis a
negative integer, an Euler transform of the hypergeometric function
can be completed. This transform creates a terminating polynomial
representation for F(a, 8; v; z). In general, this transform only
holds when lzl < 1 or the parameters meet the conditions of this

case.

The result of the transform is
y-a=-nor Y =~B=~-n' n, n' =1, 2,3, ...

Fo, B; v; 2) = (12" %P Fly-a, v-8; v; 2). (12)

Should it occur that y=-n and @ or 8=n’, then
y-a=-(n +n’).
However, this situation is still considered to represent a
negative integer value for y and nothing more. Hence, the
equations of case 2 apply and

|F@', B;-n;z) |= = (13)

The definition of the hypergeometric function is complete. The
complete list of all components of the algorithm for calculating
F(o, B; v; z) is presented in Table 2.
Tests of the Algorithm within the Unit Circle

The function F(e, B;¥; z) reduces to well known transcendental
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functions for specific choices of the parameters @, fandy if z is an
element of the domain Izl < 1. The equations resulting from this
reduction in form were used as tests of the validity of the algorithm

discussed in section IV.

The equations (14) used in verifying this algorithm were:

z F(3 % %; z’) = arc sin (2) (14)
z F(1, 1;2;2) = -Loge(l - z) (15)
2 F(-w/2, A-w)/23}; 2) = (1+2)" + (1-2)" (16)

[zl < 1, w unrestricted (it may be complex).
Tests of the Algorithm for the Full Complex Plane

The flexibility of the hypergeometric function makes it a diffi-
cult function to test. Few relationships of the function have sufficient
flexibility to cover all of its variations but a test was sought which
would hold in almost all cases.

The class of equalities termed quadratic transforms of F(a, B;
v; z) yielded a testing equation for the algorithm. A quadratic trans-
form of Gauss' series is a substifution of a second order polynomial
for the independent variable z, which establishes an equality between
the two resulting functions. A compact but lucid discussion of the
criteria governing the existence of a quadratic transform and a com-
pendium of quadratic transforms will be found in Oberhettinger and

Magnus (15).
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The quadratic transform used for all tests beyond the unit circle

was
w=[Vi-z ~1]/[Vi-z +1]. (17)

The utility of this mapping is shown in Figures 1 and 2. This relation-

ship maps all of the z plane into the unit circle on the complex w plane.

Within [w] < 1, the value of Gauss' series can be checked through

the relations defined previously. The equation of the transform (16) for a

given set of parameters and a set value of the variable z, is:
LTz "2 Vi-z-1

Fla, B; a+p+y; 2) = (—5—— F(20, o=p+3, a+p+3, - 1) (18)
-z+

By judicious choice of the two parameters, o and 8, all variations
in o, B, v and z could be checked. Approximately one thousand tests
of the routine were made.
Further Points on Quadratic Transforms

Several different quadratic transforms were tried as tests for
the hypergeometric function subroutine. All of these transforms were

based on the variable relationship of equation(V 17). Two transforms

F(2a, 20tley; v; W) = (1-w) 22 F(a, y-a+d; y; -4w/(w-1%)  (19a)

and
o =2a ey _
Fla, y-a+i; v; 2) = (—1—%)1—?—) F(20, 20+1-y; % 11 7‘+11)' (19b)
-7

contained in a major work in the literature on hypergeometric

functions (17) were found to be wrong.
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The error is introduced into these equations when the use of

an Euler transform necessitates creating the difference a-b where
a=vy b=a-+3.
The result is listed as
a~b=y-a+3
rather than the correct form
a-b=y-a-i.
The correct transforms are

F2a, 2a+1-y; v; W) = (1-w) 2% F(a, y-0-1;7; -4w/(w-1)))  (20a)

and
Flo, y-a-1; v; z)-(’-+V > F(za, 2a+1-y; y; L2271y (20m)
Vi-z+1

valid for all z

Accuracy of the Function
The algorithm prepared to calculate F(a, B; y; z) creates the

value of the function at any point within a mean relative error of 10”°
units, when single precision arithmetic is used. The double precision
routine contains an accuracy test for a mean relative error of 10~ units.
When this level of accuracy can not be achieved, the subprogram prints
an error message and returns the best approximation to the functions'

value that would be achieved with one hundred terms of the appropriate

series.
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Convergence of the Algorithm

The series representations derived from integral (V1) can be
shown to be absolutely convergent for all values of z save lz[ = 1.
In this numerical application where the hypergeometric function is
represented by a finite series, all representations have been found to
converge within a fixed tolerance for all values of z save those within
a certain distance on either side of the unit circle, ﬂz[ = L.

This region of divergence can be represented by
|zq] = 12 e(o B, ¥). (21)

As indicated by equation (V21), the region on the z plane in which
F(o, B; v; z) will be found to diverge is a function of the parameters,
o, B, and y.

In general, e(o, B, v) is quite small and ordinarily is less

than one tenth of a unit.

le(a, 8, ¥)| <0.1. (22)

However, as the number Real (y-a-5) becomes more negative,
€(a, B v) can exceed the bounds of equation (V22). The only definite
rule that defines the region of divergence. of this algorithm once
Real (y-a-B) has become less than -1 is that the more negative Real
(y-a-B) becomes, the greater the area of divergence in the z plane

becomes.
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Table 1

Values of the Bernoulli Numbers, ﬁn, to 15 Digits

Bn

. 66666666666667 x 10
.33333333333333 x 10~
.38095238095238 x 107
.33333333333333 x 10~
. 57575757575758 x 10
.53113553113553 x 10~
. 66666666666666
. 09215686274510
.497117179448622

. 29124242424242
.19212318840580
=g,
1,

65802531135531
42551716666667

1

x 10

x 10°
x 10°
4

x 10
x 10°

-l

[=

28
30
32
34
36
38
40

42
44
46
48
50
52

B

n

9. 72982310678161 x 10°

.01580873900642
.51163157670922
.29614643061167
.37116552050883
. 88332318973593
. 92965793419401

.41693047573682
.03380718540594
.11507486380820
. 20866265222965
. 50086674607696
.03877810148107

x 108
x 10"
x 10™
x 10"
x 10*

x 10%

x 107
x 10*
x 10%
x 10%
x 10*

x 10%°
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Fig:gre Ca,gtions

1. The z plane with a f cut.

2. The w plane showing the mapping w = (V1~z-1)/(V1i-z+1). Cor-

responding points in the two planes are indicated by the lettering.
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Figure 1



lwl =1

43

ffcut

Figure 2
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Appendix A. Alternative Representation for F(a, 8; v; z) when

la-g| = n and [z[>1.
The Barnes (18) integral

-1 r T I(~
I=pis [ (a+s)F§ﬁ:; (~s) [z} dl

(1)

is a convergent form of the regular hypergeometric function F(e, B;

v; z) for an appropriate infinite contour, ¢. Consider the evaluation

of I in the case loe-B[ = n for |z[> L
Under these conditions, two infinite sets of poles coalesce.

The poles are:

for I'(a+s) S

i

~-(f+a) $=0,1,2 ...
~(m+B) w=0,1,2 .04

1]

for (B+s) s

Since Ia-Bl = n, where o will be assumed to have the smaller

magnitude,

1]

£ = a+n implies s = =(f+a)

8 = ~(m+n+a)

are both poles of I. Thus, when £ = m+n, s is a pole of both gamma
functions and I has a second order pole.

Choose the contour ¢, such that all poles of I'(~s), the positive
integers, lie to the right of the contour and all poles of I'(@+s) and
T(B+s) lie to the left of c. This places the basic line of ¢ along the

imaginary axis. Complete ¢ so that it encloses all of the left hand poles.
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The integralI can be evaluated along ¢ by summing the residues

of I at all poles within ¢. For all points of s such that
s =~ (L+a)

put #<n, the integral I will possess a first order pole. There will be

n such poles from ¢ =0to £ =n ~ 1 and their summed residues are

I'(B+s)(=s) (~2)8 (~1)1 ’ (2)
27i vre
2=0 s=-(l+a)

Inserting the value of s at each pole gives

- n-1
-Sz! I‘(1+a)1"(n-!2) -0
2 g_;o M To-1-a) @

The second order poles will be evaluated next. Since the combined

function I'(a +8) I'(B+s) has a second order pole when s=-(n+f£+a),
for all £, the residue of this product function at each such point

must be calculated.

This can be accomplished by use of the integral form of the T

function. The representation is
I(z) = [, %L ar. (3)

The pole in the integral of equation (A 3) occurs at 7 = 0. Separate the

integral into two terms

I'(z) = P(z) + Q(z) (4)

= ﬁ,l e T%lar, ﬁwe"r 214,
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The term P(z) contains the pole of I'(z) when z = ~m, m =

0.1.2... Let thetwo gamma functions of I'(a+s)I'(f+s) be represented

in this form to give

T(a+s)T(B+s) = (P(a+s) + Q(a+s))(P(B+s) + Q(B+s)) =  (5)

P(a+s) P(B+s) + Q(a+s) P(B+8) + P(a+s) Q(B+s) + Q(a+s) Q(B+s).

when s = ~ (n+f+a), the first three terms of the right hand side of equa-
tion (A 5) possess poles. The residues at these poles can be calcula~-
ted by use of a Laurent series.

As an example of this process,consider the term P(a+s) Q(B+s).

P(o+s) Q(B+s) = Q(B+s) f- e T 7951 gy, (6)

T

Expand the function e” ' in its Maclaurin series,

¢o 2
e 7= Y (-1)3
il

j=0

and insert this expansion in equation (A 6). This gives

Q(B+s) Z _(;_'1);.];. ﬁ)l Tj+a+s-1 . %
=0

Then, by evaluating the integral on 7,

-1)] 1

jl j+ous

P(a+h) Q(B+s) = QB+s) T <
j=0

(8)
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Since s = - (n+{+a), when j = n+¢, one term of equation (8) has

q zero as its denominator. Hence, the residue at s = = (n+£+a) of

P(a+s) Q(B+s) is the coefficients of this pole term, which is

2
R = Q(B+s) (-1 /(2+n)1 (9)

For an analysis of the calculation of residues by Laurent series, see (19).
As was mentioned previously, equation (A 5) has three terms
which have poles when s = -~ (n+£+a).” R represents the residue of only
one of those three contributions. The series technique must be repeated
for P(a+s) P(B+s) and P(B+s) Q(a+s) to obtain the total residue of
T'(a+s) I'(B+s) at the pole point s = ~ (n+£+a).
However, there are an infinite number of such pole points cor-
responding to the infinite number of values of £, 2=0,1,2,... Summing
all total residues for all possible values of { yields the second order

pole contribution to the value of the integral 1.

-1ty TB+r)(z)"" 4
2mi

T(y-B-r)
r=0

o o0

, (0?1 )P oy, S =1
[(Q(vr)+go = z-r)(mr);*(Q(”) 'Z TR yril} (10)

'means {=r "means j=n+r

These two components combine to give the final form for the

hypergeometric function:

n~1
v o) = [ L0 ()" @ r'4+a)T'(n-10) -1 11
F(a, B; v; 2) E-I‘(a)I‘(B)]{( z) Ee T (z) (11)

v (o) f 3 DE0@™°
=0 Tly-8-0)



51

(VSO ey S DY 1
Q( ~p} ¥ Z mi m- ,Q m+ )7 + (Q(~£-n) + ]z—:o 71 -t-n )/Q']}’

’ means m= { ‘means j#n+{
The function Q(z) is the incomplete gamma function (21)

Q(z) = I'(z, 1) = ﬁoo e 7 'rz.'1 dr.

This function can be evaluated by several standard mathematical tech-

niques (21).
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Part II

The Method Of Subtracted Asymptotics



90

1: Introduction

Efforts to solve the quantum equations governing the collision of
three atoms below the three~separated—-atom threshold are generally
centered about some specialized technique for solving second order,
linear, partial differential equations in a small, bounded geometry.
The study of quantum effects in chemical reactions described here,
follows this pattern in that it is predominately a study of a method
for solving the three—atom Schrddinger equation rather than a study
of the three—atom collision itself.

The concentration on methods, whenever an attempt is made
to solve the three-atom collision equations with a minimum of ap-
proximati‘ons, is brought about by the complexity of the equations
and the poor state of numerical solution techniques. Extended
studies of quantum effects in chemical reactions can only be under-
taken once the difficulties of time and cost which currently plague
such studies are resolved.

The study of the Method of Subtracted Asymptotics (M. S. A.)
was undertaken in a search for mechanisms which would resolve
the numerical restraints currently blocking the investigation of
reactive collisions.

Historical Background

The Method of Subtracted Asymptotics developed from a sym-—
biotic interaction between two research groups. One of the basic
Concepts of this technique was developed by F. S. Levin who was

aLthE!mpting t o solve electron—hydrogen scattering problems at
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Brookhaven National Lab_oratory. Levin proposed ( Leb65 ) ( Lebb6a),
that the incdming flux or source term be subtracted out of the total
golution of the scattering equations. Both of the ofiginal papers
by Levin were a formal treatment of atom—electron scattering in
which the sectioning of the solution into a source part and a
scattered part served only to identify the roles played by these
elements of the solution in the scattering equations.

The suggestion that the scattering wavefunction be broken into
parts was selected as a fundamental tool for solving the scattering
equations by the research group of B. N. Zakhariev* at the Joint
Institute for Nuclear Research, Dubna, U.S.S.R. In their earliest
work ( Amb66 ) on a formalism that evolved into the Method of
Subtracted Asymptotics, Amirkhanov, Zhigunov and Zakhariev
proposed that the asymptotic behavior of reacted fragments of the
total reactive collision solution be subtracted out of the complete
wavefunction and the remaining portion of the solution be treated
as the wavefunction for an inelastic collision problem.

Both Levin and Zakhariev et al ( Leb6b, Ef67a) applied the
solution sectioning proposal to the problem of developing solutions
which obeyed the Pauli Principle for identical particle collisions.
Thereafter, Zakhariev and coworkers adopted their formulation of
Levin's original concept as a general mechanism for treating

Teactive systems.

—

" .
Other possible translations are: B. N. Zakharev, B. N.
Zakhar'ev, B. N. Zakharye anc¢ B. N. Zakharyev.
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Despite their dependence on the concept of sectioning the
scattering solution, the equations of Levin and Zakhariev differ in
several respects., Levin's work concentrates on subtracting out
the incoming, entrance channel flux, thus creating coupled integral
equations which he proposes to solve iteratively. Zakhariev re-—
moves all rearranged particle configurations from the total solution
to yield a set of equations which demand a single channel, one
configuration function to satisfy them. Zakhariev then proposes
to expand this function in eigenfunctions obtained from the asymp-
totic potential of the single rearrangement channel for which his
function is created.

Additional treatment of the equations for removing altered
configurations from the total scattering solution lead to a complete
set of equations which Efimenko, Zhigunov and Zakhariev ( Ef67b)
presented as a general method for solving scattering problems
involving rearrangements of the target.

The Method of Subtracted Asymptotics was published in
several journals ( Za67, Ef68a, Ef68b) after being sectionally
described in the research reports cited above. The historical
development of the Method of Subtracted Asymptotics fragments
after the publication of the technique. To clarify the proposals
which constitute M. S. A., the eguations from referance Ef68b will
be presented here. This will predicate the detailed analysis of
the formalism contained in later sections.

Let @ or P denote possible bonding configurations of the
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three atoms of Figure 1. The eigenfunctions of each diatom in any
of the possible configurations, @, will be defined by
o__a.o
by Py =€ ¥ -

The total solution to the reactive scattering problem will be

¥, Prepare another function & such that

0 for Ra"w,
Lim® = lim ¥ v RB"’oo B=c ,
0 ¥V R,™0
B

and define the difference between ¥ and ® to be
x=%-o,
The function ® is a known function which is second order
differentiable and satisfies the boundary conditions for all reacted
configurations of the system. Solve for X by expanding X in the

asymptotic eigenfunctions of the @ channel:
X:ng‘(Ra) ¢
n
When the expansion representing X is placed in the Schrddinger
equation;
(-E)¥ = (X+r E) (x+&) =0,
a coupled inhomogeneous set of differential equations results.
Zakhariev proposed that integration of this set of equations would
vield functions which solve the reactive collision equations. Section
2 investigates these equations in greater detail. A more complete
Specification of the formalism proposed by Zakhariev et al is not
needed at this time since most applications of this method have not

used the minute structure of the M., S. A, equations.
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After the complete description of the Method of Subtracted
Asymptotics was published, Zakhariev and others used various
parts of the formalism in other work. The complete formalism
contained in Zab67, Ef68a and Ef68b was never used on any system
with a well known, theoretically determinable answer.

In his doctoral thesis, Efimenko ( Ef68c) used the split
solution technique and the Kohn Variational Principle to treat
reactions with particle redistribution with variation methods.

This material was published in 1970 ( Ef70 ) but the variational
formulas were never numerically applied to a reaction.

One numerical calculation which used a large body of the
features of M. S, A, was a nucleon—deutéron collision done by
Zakhariev, Pustovalov and Efros ( Za68a). The major alteration
of the formulas used in this reaction was the use of the hyper-
spherical harmonics as an expansion set for the reaction. The
implications of this choice of eigenfunctions will be discussed in
section 5. This work was also reported in Zab68b and Zab9.

Other workers began to select portions of M.S.A. for incor-
poration into their theoretical treatments as early as 1969. Austern
( Au69 ) used the Method of Subtracted Asymptotics to extend the
Sasakawa theory for elastic collisions to reactions. This was a
bPurely formal treatment.

The split solution, wvariational principle formulas prepared by
Efimenko were used by Zakhariev and coworkers ( Za70 , ZaT7l )

to establish bounds on the probability matrix for reactive encounters.
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This work, as were virtually all others using M.S. A., was wholly
theoretical in scope.

V. D. Efros contributed to the initial introduction of hyper-
spherical harmonics into Zakhariev's equations. These functions
replaced the asymptotic eigenfunctions originally proposed as an
expansion basis for the M.S. A, solution. He further adjusted the
founding principles of the original formalism by introducing a
variational principle into his later work on nuclear scattering
( Ef71 , Zh71 ).

A final use of the method investigated here was prepared by
Kitazoe. Kitazoe ( Ki72 ) created an operator formalism for
nuclear reactions which has as its novel point the use of sectional
solutions and asymptotic eigenfunctions from each rearrangement
channel. His work is thus ancther formulation of M.S. A.

A review of all of the references that comprise the history
of the Method of Subtracted Asymptotics shows that no well posed,
simple system which has been solved theoretically has ever been
treated by this method. Thus, there has never been an established
result which the solution generated by M., S. A, was reqﬁired to
duplicate. The analysis of the method which follows, fills this
gap.

The Zakhariev Formulas: A Special Case of a More General Method.

The Method of Subtracted Asymptotics sprang from a synthesis
of the basic ideas of subchannel decomposition and Levin's split

Solution proposal. It is, however, neither a new nor novel method.
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The formulas which make up the Method of Subtracted Asymptotics
are, for certain special potentials, an application of the technique
of eigenfunction expansion. This general method will be discussed
priefly at this juncture.

This treatment of eigenfunction expansion techniques for
poundary value problems follows that given by Collatz ( Co060).
A solution ¥, will be sought to the linear, homogeneous, boundary
value problem:

L{¥]=0 in B, (1a)

Ui{\Il]z v, on T (i=1 to k), (1b)

where B is the region which the solution ¥ occupies, I is a
boundary of the region B, and L and Ui are linear differential
expressions which constitute the differential operator and boundary
conditions, respectively,

It will be assumed that the boundary conditions,

Ui[\If]z v, on T' (i=1 to k), (2)
render the solution unique. The problem will first be reduced to
one with homogeneous boundary values. Thus, let ® be a function
which satisfies the inhomogeneous boundary conditions of
equation 1,2). Also, let ® possess derivatives of sufficiently
high order so that L[@} exists. Then the function

u=W% -9,
satisfies a linear, boundary value problem with homogeneous
boundary conditions, namely

Lgu]= r= L[\I’} ~L3;@}== —Lg@} in B, (3a)



97

Uful=0 on T (i=1 to k). (3b)
To complete the solutioﬁ to equation 1.1), assume that the
eigenfunction pfoblem equivalent to equation 1.1) possesses a
complete system of eigenfunctions A;, A;,... corresponding to the
eigenvalues Ais Azgeees
LiAl=2A, in B, (4a)
UfA,]=0 on I'(i=1 to k).  (4b)
Presuming that the function r can be expanded in a uniformly

convergent series, define the expansion of r to be
o0

r=‘; c. A_. (5)
L, m “Tm
m=1l
Then, since
L—{u]= r;

the value of u is

u =z (cm /Am) Am.

m=1

The boundary value problem is therefore solved because
¥ =q+u (6a)
implies

m m m

-
L[@]=L{<1>]+L[u]=—r+Zx (c_ /XA _)A_ =

=47 iy o)
-r+r=0 in B

and
vlel=uflel+ulul=v,+0 on T (i=1 to k). (6¢)
A specific application of this general treatment of boundary

Value problems requires the specification of a region, B; the
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boundary, I; a differential operator, L; and a set of boundary
conditions Ui[‘If] = Vi (i=l to k). There must also exist a
second order differentiable function ® which satisfies the boundary
conditions of the differential equation and the differential relation-
ship must represent a particular class of eigenvalue problems.

The eigernfunctions for the differential operator must exist in
the region B and must form both a distinct spectrum of functions
and 2 complete set. Finally, an application of this formalism is
predicated on the ability to expand the inhomogeneity, r, in a
uniformly convergent series of eigenfunctions.
Notation Needed to Apply the General Method

’For a linear, electronically adiabatic, reactive, three atom
collision, Figure 1 presents important notation and the definitions
of atom order used in this work., Figure 2 motivates the defi-
ition of I' and B by showing the geometry of the coordinate space
in which the reaction océursa In atom-diatom collisions, the
"interaction region' constitutes the zone denoted by B. This

definition is displayed graphically in Figure 2, The boundary I' is

choosen to be the two labeled, parallel lines of Figure 2 which
bound the interaction region in the reactive channel.
The differential operator for the interaction of three, linearly
oriented particles is the Schrddinger operator,
L =% - E.
Before further statements can be made about eigenfunction

expansions in scattering theory, several definitions must be
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established. The term ''channel' will be used to denote a
particular distribution of the particles of an interaction into
widely separated, noninteracting aggregates which are character=-
jzed by specific quantum or momentun states.

There are two channels in the collinear collision. They
are the entrance channel, denoted AB + C and the reacted channel,
denoting an A + BC configuration, The term ''subchannel" will
refer to one particular distribution of energy into the quantum
states and momentum values of the aggregates undergoing
collision. Having oscillator AB in state n with atom C possessing
momentum k defines one particular subchannel of the entrance
channel. See Mob65a for further comments on the definition of
channels.

Each subchannel has a definite status in any collision. If
the colliding system could exist in some specific subchannel at
the total energy gi’lven for the collision, then that subchannel is
termed open. If it is energetically impossible for the system to
exist in a given subchannel, that subchannel is termed closed.
Closed subchannels are also called virtuals.

With this terminology established, the process of estab-
lishing that the Method of Subtracted Asymptotics: is an appli-
cation of the eigenfunction expansion formalism can continue.

The boundary conditions of this collision are that the total,
one entrance subchannel solution for the collision, behaves as a

superposition of 1) a unit incoming flux, and, 2) an outgoing



100
flux scattered into all open entrance subchannels in the entrance
channel. In the reacted channel, the solution behaves as an out-
going flux in all open subchannels.
In traveling wave form, the mathematical embodyments of

these conditions are:

entrance
_ —ik;x ik:x
\I‘i = 5ij e -g- Rij e ) ¢j(xlz): (7a)
reacted
¥ = R, 5% 3, (xm) (7b)
1 R P, (xz3).
In standing wave form, they become
entrance
\I'i = (61j sm(kix) + Rij cos(ij) qu(xlz), (8a)
reacted
- B ’y &
\I’i = Rij cos(ij ) O (x23). (8b)

These equations define the general boundary relations,
u.[¥].

Only the boundary condition function, ® of the eigenfunction
expansion formalism is,as yet, undefined. This function will be
specified for the sample cases treated in section 4. With the
exception of &, all .parts of the general formulas of the eigen-
function expansion method have been‘ related to their specific
counterparts in the one dimensional scattering equations of the
Method of Subtracted Asymptotics.

However, the implications of this part matching between

the general formalism and the scattering application of this
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formalism show a major flaw in the Method of Subtracted
Asymptotics. Efimenko, Zhigunov and Zakhariev proposed that
the final solution to the problem, termed u in the general
treatment and X in Ef67b, Zabé7, Ef68a, and Ef68b, be expanded
in eigenfunctions of the diatom, (Pj(xlz). The general method of
eigenfunction expansions shows that the expansion set must be
the set of eigénfunctions determined by the boundary I' and the
region B,
(€ - E) Ai(Xlz) = Ai Ai(xlz) . in B,
Ui[Ai(XIZ)] =0 on I' (i=1 to k).

The diatom eigenfunctions are specified by the region A of Figure
2y

For most systems Zakhariev, Zhigunov and Efimenko
proposed to treat with the Method of Subtracted Asymptotics,
the expansion in the set {qu(xn)} will provide a solution which
does not cover the region B and, therefore, does not solve the
scattering problem. In all cases where the set equality

{Ai(xlz)} = {(PJ (Xlz)}

does not hold, the Method of Subtracted Asymptotics, as
originally proposed, will give incorrect results for the problem
considered.

While the equations prepared by Efimenko, Zhigunov and
Zakhariev have never been tested to determine the capacity of
M. S. A. to solve the scattering problem, the parent technique

of eigenfunction expansion has been tested in several applications
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where the solution to a partial differential equation was needed.

The text Differential Equations and Applications by Scarborough

(Sc65) contains treatments of the equations govering mechanical
motion, vibration, support stress and electrical circuits using
the eigenfunction expansion technique. The problem of distortion
of prisms is solved using eigenfunction expansion in Co060. The
same problem is solved using a different technique in Smé65.
Finally, in a text by Sobolev (So064), a hyperbolic, partial differ—
ential equation is solved using the expansion method.

In section 2, the Method of Subtracted Asymptotics is
presented in detail with the correct eigenfunction set for the
formalism, the {Aj(xlz)}, used in the formulas. In section 3,
various numerical methods for solving the coupled differential
equations of the scattering problem are defined and compared.
From these numerical techniques, the Gordon method was chosen
as the mechanism for solving the differential equation. The
application of this method to two potential models in reactive
scattering is described in section 4. The conclusions |
concerning the applicability of the Method of Subtracted

Asymptotics are contained in section 5.
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2: Detailed Equations for the Method of Subtracted Asymptotics

The Method of Subtracted Asymptotics was posed as a
general technique for solving the three-dimensional form of the
three particle, Schrédinger equation for energies below that
required for the separate existence of the three atoms. The
ability of this method to treat arbitrary particle, two-particle
oscillator encounters is directly attributable to the formalism's
removal of the 'boundary conditions relating to two of the three

possible outcomes of a low energy collision.

C+ AB — C+ AB maintained (la)
C+ AB— CA+ B removed (1b)
C+ AB—- CB+ A removed {1c)

The representation of the Method of Subtracted Asymptotics
presented here will not be a general three-dimensional form of
the scattering equations. Since the utility of this method was
never established, the method was applied to several simple,
well investigated, model problems. A great deal of the simplicity
of the model collisions treated in section 4 comes from
restricting the three colliding particles to a collinear configu-
ration, Figure 3 compares the three dimensional particle.
configuration to the collinear particle configuration.

All of the equations of this section apply only to a collinear,
electronicelly adiabatic,three—atom collision. These equations are
the basis of the computations contained in section 4.

Notation and Terminology:

The asymptotic form of the wavefunction describing a free
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particle involved in an interaction is usually posed in traveling

wave form:

-ik kx

i) = Kig T0F g P REE 2)
The complex arithmatic of this function can be avoided in
numerical computations by using standing waves for all repre-
sentations of the free particle's wavefunction (Tr70, GuT72a).
In standing wave form, equation 2.2) becomes
f(x) = A’ sin{kx) + B’ cos(kx). (3)

The coefficients A’ and B’, of the standing wave are
conventionally represented in an R matrix. A definition of the
R matrix is contained in Moé65b. A slight change in the notation
used for the R matrix will be made in this work to distinguish
between matrix elements specific to the reacted channel and
those of the entrance channel. Elements of R which describe
reacted amplitudes will be denoted Eij while inelastic amplitude
elements will keep their standard notation of Ri" This dis~
tinction will permit. a clear formulation of the collision equations.

The coordinates used for these equations are the reduced,
mass dependent coordinates previously used in both inelastic and
reactive problems (Gu72b, T269 ). The two reduced coordinate

sets are

1) Entrance
: 1
X = (12 3/ 112)2 [Xg=(m,X, + myx,)/ (m, + m,)] (42)

x’z = Xz - x1 (4b)
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2) Reacted
Ty = % = X i)
K = (agy o/ Ha)? [%, = (g%, + myx,)/(my + m)]  (5b)
where
'“ij = mirnj/(m1 + mj)
Mo, e = m (m, + m,)/(m; + m, +my),

In these coordinate schemes, the hamilonian for the
reaction can be written in the two forms:

entrance channel

2 2
%, =00+ Usa = P02 Vi, 312)] (6e)
reacted channel
¢ ‘[67 2+az/ 2 = 2H23/, V(x, xp)] (6r)
r 0x’" 7 70xp h LA

In the asymptotic region of the collision, these hamiltonians
can be reformulated into a kinetic energy term and the
hamiltonian of the two particle oscillator. The oscillator hamil-
tonians are

entrance channel

2 >
By = (U2 - PPV (x12)) (7e)
and reacted channel
_ o5 _ 223
b = (/o2 g2 V (x23)) (7x)

The operators he and hr define the two sets of eigenfunctions

{cbj(x,z)} and {¢k(x33)} by the relations:
entrance channel

2
{52 = 2122 (V (312) =€)} ¢4 (x12) = 0 (8e)
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and reacted czlannel
{%2 = 2H2h2 (v (x3) ~ € )} G lma) =0 (1)
The asymptotic region will be defined as that zone of the
potential surface for which
Vix, x12) = V(x2) (%e)
or
V(x5 %23 ) = V(x23). (9r)
An alternative statement of the definition of the asymptotic
region which is very useful in defining the boundary I', is that
the asymptotic region is that zone of the potential surface
within which the lines connecting points of equal potential
(equipotential lines) are perpendicular to the oscillator's
coordinate, xj; or xz3. The ferm interaction region will apply
to all areas that are not asymptotic.
In all discussions of the formalism of the Method of
Subtracted Asymptotics, the notation for the number of subchan-
nels used in any decomposition will be:

P = the number of open entrance subchannels,

Q

the number of open zreacted subchannels,
W = the number of total entrance subchannels used in an
expansion.

The Formalism.

The problem to be solved in the interaction region, the

domain B for scattering, can be expressed as

(€ - E)‘Ifn =0 in B, (10a)
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Ui[\I’n] =‘I’in=($i(xz3')§incos(kix') on I'=x°", (i=l to Q), (10Db)
\Itin=¢i(x12)(61nsin(kix)f Rimcos(kix)), (i=1 to P) on x° (10c)
The two points x° and x°’ denote the start of the asymptotic
region in the entrance and reacted channels, respectively. The
value x°’ defines the line I needed in the Method of Subtracted
Asymptotics.

This general statement of the scattering problem is not as
complete as possible. In time independent scattering theory,
which equation 2.10) represents, the energy E is taken as a
fixed parameter of the system. Fixing E allows all energetically
accessible states of the system to be populated.

This implies that the target diatom is not restricted to be
in state n as the unscattered beam of incoming atoms moves
towards it. The target can instead, be in an array of states
j=1to P, limited only by the inequality EPSE.

Thus,there are P solutions to equations 2.10), each char-
acterized and distinguishable by the fact that the unit incoming
flux of free atoms is impacting on the diatom while that oscil-
lator is in a particular state, j=1 to P.

In later portions of this study, the fact that there exists
P solutions to this problem must be taken into account, Initially,
however, only one representative solution, \Ifn, of the set of
solutions {\IFJ} will be used in the discussion of reactive
encounters.

The single solution ‘I’n, will be obtained by using the eigen-

function expansion technigque. The first step in this technique is
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to choose a function that will make the boundary conditions on I'
homogeneous. The boundary condition function, <I>n, must be
second order differentiable and must span the interaction region.

The general conditions on <I>n are

lim &, =0 (11a)
and : 0
}{j;nix:il)n = JZ\IJR_JH 6j(X23)COS(ijF). (11b)

These conditions have been met by preparing a function @;1 in

the form

M
‘I’;I=Z x D;th(ng,)gi(x',). (12)

i=1 j=

(==

The integer M defines the degree of expansion of <I>n in an
independent function set. The functions {Kj(ng)} are the
eigenfunctions of the interaction region prepared by imposing
zero boundary conditions at x%33=0 and x=x°, The functions
{gi(x’)}are a linearly independent set of functions of x’ which
span the region from x' =0 to x' =T =x°/,

It is important to note that @n, as shown in equation 2, 11b),
is dependent on the unknowns {I?Jn} Thus, the expansion of
equation 2., 12) matches only the functional nature of the complete
function ® . By multiplying @; by the R matrix elements
{an}, <I>n is formed as shown in equation 2. 11h).

This specification of ¢I>n by its satisfaction of the two con-
ditions of equation 2,11) can be posed in an alternative form.

Let <I>n be defined for all x,3 such that
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@n(x' yX23)=0 for x> x°,
yet @h satisfies equation 2,11)., Then for x'> x°', take @n to
be the asymptotic form of \Ifng which equation 2.11b) says it
must be at I'=x°’., However, <I>n must go to zero at x'=0and x,;
=0, and contains the unknowns {I_{jn}.

Hence, match the functional part of <I>n, fﬁj(ng,)cos(ij' ),
to a set of functions of the form

‘I):in = x' Djnxj(xm ) gi(x'_) at T,
so that a continuous function is formed for all x’. Multiplying
this '"continuation function', @;, by :Ig gives the @n needed to
solve the boundary condition of equation 2. 10b).

Completing the definition of <I>n is now a matter of preparing
the eigenfunctions {Ki(xz?,)}, which are dictated by the potential
surface, V(x',x;3); choosing the expansion set {gj(x')}; and
calculating the matching condition constants D§n' As will be seen
later, the final step of calculating the D;n occurs in the analysis
of the total wavefunction.

The boundary condition function @n, is dependent on two
sets of unknown constants, {ﬁjn} and {D;n} But, since the
Schrédinger equation contains a linear operator, (JC-E), these
constant unknowns of <I>n will not be affected by any manipulations
of the diffefentia_l equation. Therefore, <I>n will be assumed to
satisfy the boundary condition of equation 2. 10b}) via its unknown

constants and the expansion in eigenfunctions will be undertaken.

A general solution
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v =& +X (13)
n B, H

is. being sought for the Schrddinger equation. The function <I’n
has satisfied the reacted boundary condition at I' so that Xn is

the solution to the inhomogeneous, inelastic problem
(EC-E)Xn=-($C—E)<I>n in B, {14a)
Xin= 63(x12) (85 sin(l;x) + Ry cos(k;x)) (=1 to P), (14b)
Ul(Xn) = Xin(X’,Xz3) =0 on I'= Xo’. (14C)

The inhomogeneity of eguation 2. 14a) arises naturally

(SC-E)(‘I’H)=(3C“E)(<I>ann)=0 -
— (X-E)X_=-(%-E)&_,

from the requirement that @n{{x',x%) satisfy only the boundary
condition at I'. The function tI>n(x',x;,;3) does not satisfy the
differential equation,

The major thesis of the method of eigenfunction expan-
sions can now be brought to bear on the solution of the Xn
relation, equation 2.14)., The desired function, Xn’ will be
found in terms of the eigenfunctions, Aj(xlz), which span the
domain B in the direction x3;. This eigenfunction set is defined
by the equatiOJza,

{a/axfz - 2l gt (V°(X,X12)‘€j )} Aj(X12)=0- (16)

Equation 2.16) contains the full interaction region potential,
V(x,x;,). Since V(x,x;,) will in general vary along the x
coordinate, the eigenfunction set {Aj(xlz)} will, in general, be

functions of the coordinate x also,



111

The additional coordinate dependence of {Aj(xn)} has been
suppressed in the notation for the eigenfunction set. However,

the practical implications of the variation of the {Aj(xlz)} are

not suppressible and these effects significantly alter the mathe—
matical techniques used to solve the Xn equation. |

The variation of the eigenfunction set {Aj(xm)} with x
mandates that Xﬁ be composed of expansions in a series of dif-
ferent eigenfunction sets, {Aj(xlz)}{n. Each of these eigenfunction
spectrums solves equation 2.16) for a small domain of the x
variable,

a=x=h.
To continue the expansion sb?.ution, Xn’ beyond this region, [ap b],
a new set of eigenfunctions sstisfing equation 2. 16) for the poten-
tial
1
Vix,x12) 39b=x=c,

must be created. The propagation of Xn over small regions of
the x coordinate must be continued for the entire interaction
region,
The Eigenfunction Expansion

Only the specification of an exact potential surface, V(x,x5;),
in equation 2'. 16) obstructs a complete evaluation of the eigen-
functions {Aj(xlz)}n The {Aj(xlz)} of whatever V(x,x;,) is
chosen for the problem will be used to expand X, (x,x;,) into

an eigenfunction series,

xn(xsxxz) =§ffjn(X)Aj(X12 ) (17)

i=l
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Place the expansion of equation 2,17) into equation 2. 15).

(%-E)ffjn(XEAj(xR) =-(¥X-E)®_ (18a)

e
or ]

W
2 2
) ) - Zu.]_z - z .
{ /axz + /axiz /ﬁZ(V(X:XIZ) E)} fjn(X)AJ(XIZ)
j=1
{18b)
==(}-E)d
n
Add and subtract the function

=g (Vo (x32) - €)

from equation 2,18) and project the resulting formula on the set
{Ap(xlz)} for fixed x to obtain
* ,
0 fpn(x)/axz E Zulz/ﬁzf j’(‘)PA\P(xlz)(V(x,xlz) -V (x,%12) - E
j=1
%€ A (xp Ydraf. (x)} == A (= H-E)® (x',x,3)dx
. J) J( 12 ) dxpp Jn( )} fO P( 12 ) ( ye ( 23 ) dxyz
for p=1 to W, (19a)
Equation 2.19a) plus the boundary conditions
Xin= ¢i(x12) (6;n sin(knx)-f- Rin cos(kix ) on x° X, (0)=0 (19Db)
completely determine the expansion coeffecients {fjn(x)}. In
later equations, the notation
T .
V.. = A V{ x, - Yoz, -E+€.)A, d
PJ(X) f(; p(Xlz)( (x,x2) (x, x12) _ J) J(Xlz) X312
will be used to represent the integrals containing the potential
function.
The solutions to equation 2.19) will be obtained by one of
the several numerical techniques discussed in section 3. The
basic theory of solution combination that permits the numerical

techniques to seek wavefunctions with arbitary boundary behavior
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at x° will be presented at this point since it controls the struc-
ture of the analysis equations.
The Principle of Superposition

An ordinary, linear, differential equation of order n has n
linearly independent solutions from which any solution to the
equation can be prepared. This is not true for a partial differ—
ential equation., For the linear partial differential equation, only
the Principle of Superposition holds.

The Principle of Superposition allows the solution to a
linear partial differential equation containing N separate, non-
homogeneous restrictions (differential relations and boundary
conditions) to be solved by a set of N separate solutions to a
lesser problem. Each function of the set of N solution functions
is of a form such that each distinct solution satisfies one dis-—
tinct inhomogeneous condition out of N such conditions and also
satisfies the homogeneous form of the other N-1 conditions. The
total solution is then the sum of these particular N solutions (We-
65a).

The Superposition Principle allows the full solution to
equation 2,19) to be broken up into homogeneous terms and inho-
mogeneous terms. Because of this separation, equation 2.17)
can be rewritten as

w
X (x2) = ) (5020 + (2 A, (). (20)
n jn 4 J

i=1

Here, the inhomogeneous function fj[(x) solves one portion
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of equation 2.19). The homogeneous function, fjl;:l(x), solves the
homogeneous form of equation 2.19a), namely:

azf;n(x)/axz - 2haz/, ij(X)fj};(x)} = 0 (p=1 to W),

j=1 {21a)

Xin(x’ X12) = qbi(xlz)(éinsin(knx) + Rin cos(k;x)). at x=x° (21D)
The homogeneous and inhomeocgeneous parts of the expansion for
Xn( X, X32 ) are manipulated differently during the construction of
the total wavefunction, Hence,the logic and formalism for cre-
ating these two solution types will be expounded separately so
that the methods involved in forming fj}:l(x) and f;(x) are made
clear.
The Homogeneous Solution

The homogeneous solution to the inelastic scattering problem
represented by equation 2.21) is obtained by superposition of
linearly indepeﬁdent solution vectors. These sclution vectors
solve equation 2, 2la) but do not solve equation 2,21b).

The entire collection of W functions {fjl;ll(x),jzl to W}
constitutes one solution vector. For most inelastic scattering
problems (Bab65, Di68a, Go69), a total of W such solution vec-
tors are prepared in such a manner that the wronskian of
these W solutions is not zero at any point within B, the inter-
action region. A non-vanishing wronskian for the W groups,
{{fj};(x), j=1 to W}; n=1 to W}, is achieved by replacing the
bOundary conditions of equaticn 2.21b) by a set of linearly

independent boundary conditions., The independent boundary
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conditions permit the numerical method being used to generate
linearly independent solutions.
The Inhomogeneous Solution

The inhomogeneous solution to equation 2.19) is also a sum
of separate solution terms. The creation of the inhomogeneous
.solution is a straightfoward application of the Principle of
Superposition.

The inhomogenaity of equation 2.19a) is a sum of separ—
ate integrals of the form

‘f A (Xlz)(«'»‘c E)® (x,x23)dxip=
(22)
zz f A (Xlz)(ﬁc E)XD A(Xzs)gk(x)dxlz-
1=1 k=1

The Superposition Principle states that a particular solution
to the total inhomogeneous equation is a sum of functions, each

one of which solves a single term inhomogeneous equation of the
type

2
DIL;{EB f;kl(x)/a #12/ j" v (X)fkl(x)} =

f A (xmwc E}xA(xB»gk(x)dxlz.
One solution vector for the inhomogeneous equation is, therefore,

Q M
{f}(x)} =zz f;kl(x). (24)

1=1k=1

Presuming that some numerical technique has been applied

(23)

to the homogeneous and inhomogeneous equations and the pre-
scribed solutions have been generated, a set of W + 1 solution

Vectors are now at hand to solve the inelastic scattering problem
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of equation 2.19). These solution vectors are the W homogen-
eous solutions {{fjlllt(x),j =1 to W}; k=1to W} and the one
particular inhomogeneous solution, {t?(x), j=1to W}.

Before further manipulations of this solution set are made,
the significance of the "solution vectors'" will be specified so
that the precise meaning of the constructs being used in these
equations will not be lost. A solution vector, as an ordered
sequence of functions in one wvariable, is a convenient representa-
tion for one solution to a two variable partial differential equation.
The solution vector is composed of the expansion coefficients of
an eigenfunction series representation of one solution to the
differential equation,

X{(x, x12) o Fj(X)¢j(X12 ).

i=1

The fact that the Fj's satisfy a differential equation or are
functions of the variable x is important only in calculating these
terms. The set of W expansion coefficients called a solution
vector above, can also be looked on as a state vector in Hilbert
space (Be68). This view is, however, the most obtuse vantage
point available for discerning the role of the Fj(x) set as expan-
sion coefficients.

The Method of Weighted Residuals

The W + 1 solutions will be combined to create the single

set of eigenfunction expansion coefficients shown in equation 2,17)

by using equation 2.20). Because of the methods used to con-
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struct the W + 1 solution vectors, the function:

> iy s S
h
z (§(x)+ ) o L3 (x)) A, (xz) (25)
j=1 k=1

solves equation 2,19a) and the constants ¢, are available to meet
the boundary conditions of equation 2.19b). This process of
golution recombination is a well established technique for solving
partial differential equations. The procedure of developing a
solution of the partial differential equation from a constant coef-
ficient series of independent solutions to that equation is some=—
times termed the Method of Weighted Residuals (Fi72a)., This
method has been applied in virtually every area of science in
which partial differential equations are encountered.

The techniques for insuring minimization of the expansion
constants, such as the Trefftz method (Cob60b), are seldom
applied to the scattering equations. Instead, matrix matching
equations have heretofore been used to obtain the set of c's,
These matrix methods constitute the analysis equations.

The Analysis:

Two separate approaches to the problem of obtaining the
elements of the R matrix {rom the Method of Subtracted
Asymptotics' solution have been investigated. The first analysis
technique was suggested by Zakhariev in the original publications
on M, S. A. (Ef68a, Ef68b). The second technique was developed
to overcome the restrictions of the first analysis method.

The first analysis method can be presented only after a

compact notation is defined for the components of the two parts



118

of the wavefunction, @n(x',ng) and Xn(x, x12). The definitions

will start with the components of ‘I>n( x', %33 ) within the interaction
region.
Here, from equatmns 2.11b) and 2.12), the form of @ is
® (X X3 ) —z Z < D} Aj(Xza)gi(X')-

jn
3111

Define the vector Rn as that sequence of elements such

that
=D p—
R. =R. , j=1to Q.
jn Jjn
The matrix 21 will be such that
A | ?
Pjn_Djn’ j=1to Q,

while the vector of eigenfunctions for the reacted channel at T’

=
will be A,
=
Aj = Aj(x23). j=1to Q.
The functions gi(x') will be gathered into a matrix, 9, so that
- ’ s _
gij—gi(x)sij, i=1 to M.,

The value of @n(x', X,3 ) then becomes
P p:') 1=$
® (x,x3)=x"R DAG. (26)
n nA~ ~
For the entrance channel, Xn will have several vector com-—
Ponents also. The homogeneous solution vectors {{fjl;l(x), § =l

to W}; n=1to W} will be lumped into a matrix, Fh, so that
F2 =Bz, i=1to W.
~Jn n

The particular solution of the inhomogeneous equation can also

be expressed as a matrix, Fli with the definition
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Fiie = (%) T}

j=lto W, k=1to Q, i=1 to M,
where j is the subchannel eigenfunction index for the entrance
channel, k is the eigenfunction index for the reacted channel
and i is the index of the expansion function in @n to which this
solution corresponds. As equation 2.27) implies, the particular
inhomogeneous solution is independent of the total solution index,
n. The constants which multiply E‘Ii introduce a dependence on
n in the inhomogeneity.

The set of combination constants called for by equation

2,25) will be grouped together as a vector, E’n,

—_—

n in i=1to W,
and the eigenfunctions of the interaction region will compose the

—_
vector A,

K} = Aj(xlz), J =1 to W, (28)
The full solution to equation 2.19) becomes
M
i Y
X =AK{F°C +Z rlip! R }
n -~ n ~ ~ n
i=1

in this notation.

The boundary conditions of equation 2,19b} and 2.11b) will
also be posed in vector form. The elements of the R matrix in
the entrance channel form the vector ﬁn’

R, =R,
jn jn.
The two sets of asymptotic eigenfunctions, (pj(xm) and {b_j(xza),

form the two vectors



120

-

.= O.(x

‘FJ ¢J( 12)
and

-9

. = @.(xz3),

¢3 it 23)
valid in the entrance and reacted channel asymptotic regions,
respectively. Also needed to represent the asymptotic wave-

function, \I’n, are the diagonal matrices of standing waves,

§jk(X) = sin( ij)ajk (29a)

ij(X)= COS(ij)ij {(29b)
and

Ej}:(x') = cos(ij') 5jkn {(29¢)

Equations 2.29b) and 2.29c) are not ment to imply that
kj(entrance channel) = kj(reacted channel) though this may occur
in some cases of the scattering problem. The definition of the
wave vector, kj’ at any point is .

kj :{Zulz/ﬁg(E - € - V(x,x12) + Ve(x,x2))]2
or

1

kj = Z“ZVEZ(E‘ € - V(X':Xzs)f Ve(x,x23))] %,
with the jgl— eigenvalue of the entrance or reacted channel set of
eigenvalues represeﬁted by Ejﬁ,

The boundary conditions of the scattering solution are

expressible as

¥ (x,:2) = lx) {8()6% + SR} at x =x° (30a)
and
= =
\T!n(x',ng) = ¢(x23)9(x')Rn at ¥ = x°'., (30b)

The vector 5n is a vector of P elements, only one of which is
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non—-zero. <The single non-zero element is a Kronecker delta

function,
—

§% =5 .
n nn

The total wavefunction ‘Ifn representing a unit flux, incoming

amplitude in entrance subchannel n, must be expressible as

\I'n=fI>n-f-Xn. (31)
For ‘I'n to be continuous over the entire path of the reaction, the
representations of equations 2,30) and 2.31) must match at the
two lines x = x° and %' = x°',

Zakhariev proposes that this condition be met by a term
by term matching of the two functional relations established by
setting @n(x',ng,) + Xn(x,xlz) equal to the representations of
equation 2, 30) at the appropriate lines. This implies

—
- N n — P
‘bn(x',xza) + X (x,x12) = ¢(X123{§(X)5 “ E(X)Rn} at x = x° (32a)
and
. — =
® (5, %23 ) + X, (%, %12) = zﬁ(xzﬂg(x')Rn at x' = x*, (32b)

The term by term matching of the functions at the inter-—
action region boundary is achieved by creating the W distinct
equations made by multiplying equation 2.32a) by each element
of a; and the Q distinct equations made by multiplying equation

=
2, 32b) by one element of ¢, then integrating the equations on
Xy Or Xz3, respectively.

Generally, the number of unknowns contained in equation

2, 32) will exceed the number of equations generated by term by

term matching, Zakhariev suggested that the unitarity condition



122

which the R matrix satisfies be imposed as additional restraints
in the analysis to complete the set of analysis equations. These

unitarity conditions are
P

K. 2 k., =2 _ _
z J/k Rj.n + Z J/k Rjn =1, n=1toP,
=t " =t " (33)

The unitarity conditions and the term by term matching
conditions provide one possible set of analysis equatioms.

Another system of analysis equations can be prepared by the
expansion of the interaction region solution at the regional
boundaries.

This second method, the expansion technique for creating a
set of analysis equations, has been used in several studies of the
gquantum scattering equations (Di68, Bab65, Le68a). The basic
concept of this approach to scattering analysis is that all parts of
the solution created in the interaction region are to be repre-
sented in a function expansion of the form

¢(x2){8(x) A+ C(x)B} (34)
at the boundary x = x°. The matrices é and E contain constants.

The expression of the total interaction region solution in

the form of equation 2.34) is accomplished by expanding each

part of the solution in a distinct series. Thus, at x = x°,

23 A = h— Ii iz
@n(x’,xm)-f-xn(x,xm)=x’KRnP ng{g C,+) F'D Rn}.
Hence, if Resl

= P
#K G =PBlxe){S(x) A+ C(x)B ], (352)
B FP=Flm2){S(x) A, + C(x) By } (35b)
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and

EF'=Faa) {8(x) Ap+ (=) B}, (35¢)
' for (i =1 to M)

then, by the definition of \If at x = x°,

axu){S(x)a +C(X)R } ¢(X12){S(x pf pt + f}hfj’ +
M

n~ n
M
DR ]+ c(x)B R Dl+ B, C + BiDi_T{:)]} 36)
AI ~ ~Pp nA~ .Ah n ~IR n ° (
i=1 i=1

By the linear independence of the two standing wave com-

ponents of this equation, S(x\ and C(x), it must occur that

M

—

R .z & sl =3 1l

5 _ﬁ"pRnP fé'hcnfzn P Rn (37a)
i=l

and M
= _ o = i = i i
R, =B F,0'+5,T,+) BD'F,. G

Equation 2, 37) must be solved in conjunction with the continuity
condition at I':
— —

@n(x',xm) = $E(X')§n =\Pn(x',x23) on I, (38)
to obtain values for the unknowns _é)n’ Pi for i=1 to M, E—;n and
E)n' The values determined with equations 2.37) and 2. 38)
represent the simplgst approximation to the true solution to
the differential equation. Generalized least squares (Fi72b) or
Trefftz condition (Tr26, Tr28) analysis could also be used to
obtain a better approximation to the vector 'C’n and, consequently,
a better approximation to the other unknowns. However,

numerical stability problems preclude the use of these approaches

to the exact solution.,
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Equations 2.37) and 2. 38) constitute a complete set of
analysis equations. There is no need to impose time rever-—
svability or unitarity constraints on the B matrix under this form
of analysis. Further, as will be detailed in section 4, Zakariev's
proposal for solution analysis restricts the number of subchannels
that can be used in developing the solution, Xn. Since Xn is an
eigenfunction expansion solution, this is a very serious limit-
ation on the solution of the partial differential equation. No
such restriction on the number of eigenfunction terms which may
enter into Xn(x, X312 ) through equation 2.17) arises in the second
analysis technique.

The analysis equations complete the formulas of the
Method of Subtracted Asymptotics and add the final elements to
the formalism for applying the technique of eigenfunction expan-
sion to scattering problems. The numerical capabilities of
this system have been tested and the results of these tests are

contained in the following sections of this work,
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3: Numerical Techniques for the Solution of Coupled Ordinary

Differential Equations

The Method of Subtracted Asymptotics reduced the solution
of the SChrb‘dinger equation, equation 2.10), to a set of coupled,
ordinary differential eqi;\ations with two point boundary conditions,
a.s shown in equation 2.19). These coupled equations must still
be solved by some numerical technique. The choice of this nu-
merical method is not dictated by the formulas of section 2 but
can be chosen on the basis of speed and accuracy in solving
coupled differential equations.

The mechanisms for solving an equation set similar to
equation 2.19) divide roughly into two groups. The groups are
differentiated by the types of boundary condition data they will
accept. Those numerical techniques which use the value and the
derivatives of the desired solution at one point to determine the
total solution will be termed Cauchy techniques. The second
group of numerical methods require the value of the total solution
at several points or lines of the boundary of the region considered.
This second group of methods may also create a solution for
which only a derivative of the solution at several points or lines
is known. These methods are termed Dirichlet techniques when
solution values are known and Neumann techniques when solution
derivatives constitute the boundary data.

The first group of numerical formulas, Cauchy Data techni-

ques, are usually used to solve hyperbolic or parabolic differential
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equations. Elliptic differential equations, such as the Schrd&dinger
equation, with Cauchy boundary value data are termed not 'pro-
perly posed’, a definition first used by Hadamard ( Ha23 ).
Cauchy boundary data do  not restrict the solution to an elliptic
partial differential equation so that slight changes in the boundary
c.onditions cause slight changes in the solution ( We65 ). Thus,
Cauchy methods have a tendency to diverge when used to solve
scattering problems. This behavior mandates that stabilizing trans-
forms be introduced into any Cauchy method applied to an elliptic
system.

An elliptic partial differential equation with Dirichlet or
Neumann boundary value data represents a ''properly posed' pro-—
blem. Further, scattering problems virtually always have their
boundar‘y value data in Dirichlet form. For this reason, Neumann
data, which is a knowledge of the solution's derivative at several
points or lines, will not be considered in this section.

Dirichlet methods are the standard methods for solving
ordinary, coupled, differential equations from an elliptic partial
differential equation. These numerical regimes are both very stable
and very extensively investigated.

In each of the two classes of numerical methods, there are
a multitude of techniques which could be applied to the problem
of equation 2.19)., Thinning this polyglot of methods down to a
few particularly useful formalisms is easy if eguation 2.19) is

taken to be an inelastic scattering problem. Numerical methods
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for inelastic scattering constitute a small subset of each of the
two classes of boundary value methods considered here. The
viable Cauchy techniques will be treated first, followed by a
short investigation of useful Dirichlet techniques.

As these numerical methods are discussed, it will initially
be assumed that the system of equations being solved is homogen-
eous. Consideration will be given to any adjustments that must
be made to each numerical method to enable it to treat an in-
homogeneous equation set in a separate portion of the discussion
of the techniques of each boundary condition class,

Cauchy Methods:

One of the first studies of the quantum, inelastic scattering
of atoms was performed using a method termed DRILL ( Ri68 ).
DRILL uses a simple predictorcorrector integration formula such
as the Adams-Moulton or Milne equations ( Ca69 ), with periodic
transformations of the soluticn to remove any instabilities that may
develop in the solution matrix.

This method has been superceded by two other techniques
and is mentioned here predominately for its historical significance.

In 1968, Lester and Bernstein ( Leb68a) published an appli-
cation to the rotational scattering problem of an integration tech-
nique developed by Rene de Vogelaere { Vo55 ). This mode of
solving the coupled, ordinary equations of the scattering problem
makes specific use of the absence of a first derivative term in

equation 2.19). Such specific optimization of the integration method
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makes the de Vogelaere formulas a very efficient means of sol-
ving the scattering equations { Na6l , Leb68c).
If the coupled relationships of equation 2.19) are rewritten

as

2
0 £ (x) _ . -

. tin /axz =F(x £ (x), £, (x),...,f (x)), i=1toW, (1)
and a third index is added tc all functions such that

Fy = Fylmg+ibsfy, (e £ o(x)en, £ o(x))  (2D)

where h is the step size of the integration, then equation set 3. 1)

is solved by successive applications of the formulas:

2
— 1 ? h _
fin,1(%) =& ((x) +3hE (x)+ 7/ (4F, - F, 4

2
h
_ ’ \
fin,l(x) - fin,o(x)-?- hfin,o(x) + /6(Fi,o + ZFi,%)
1
? - 7
fin,l(x) - fin,o(x) + /6h(Fi,0 4_-4Fi,§fFi,1)

Comparison of equation 3, 1) to equation 2.21a), the homogeneous

form of equation 2.19), shows that the function Fi 3 is merely
3

the sum of coupling terms:

W
212 2 h
a8 /, Vit =) (=)
k=1

formed from the eigenfunction series representation of the solu-
tion to the partial differential equation and evaluated at the jg}—
integration point, x = x4, + jh.

The definition of fi’n j(x'ﬁ is that of the standard derivative,

2

14 7 = a
fin,j4%) = /ax(fin(x))x:xo+jh
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The point x, should not be confused with the point x° of section
2. The notation x, is used here to denote an arbitary point along
the x axis at which the integration was initiated.

While de Vogelaere's method is a Cauchy technique, the
applications of this method to rotational scattering have not
included any renomalization formalisms ( Le68b ). This par-
ticular propagation sequence has sufficient stability to solve
some problems without developing linear dependence in the sol-
ution set,

A second method which makes specific use of the absence
of a first derivative term in the closed, coupled equations of the
scattering ‘problem is the reference function technique, first
applied to the inelastic scattering problem by Gordon ( Go69 ).
This mechanism for integrating the coupled, differential equations
makes use of a reference equation to develop sectionally valid
solutions to the full equation set.

The reference equation for the inelastic scattering equation
is a second order differential equation with a polynomial approx-
imation for the potential term. The two basic approximations
for the potential term are to represent ij(x) as a constant or
a linear function of x,

ij(x) = ij (3a)
or
v .(x§=dpjx-§-epj, (3b)

Bj
over a small region of the x axis. The total homogeneous
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equation then reads

W
0%t (x), . _ 21 z i}
{ pn /axz /ﬁz cpjfj (x)} =0 (4a)
j=1
or
o "«;W
£ (x) 2l _
{ pn /axz /ﬁz_édl[ dpjx-%- epj]fjn(x)} = 0., (4b)
J:
The two relationships 3.4a) and 3.4b) possess analytic

solutions. These solutions are the harmonic functions and the
Airy functions,

{ sin(kx), cos(kx)} (5a)
and

{ Ai(kx), Bi(kx)}, (5b)
respectively., These reference functions are used to approximate
the true solution to equation 2.19) in a small segment of x,

asx =b,
chosen such that the polynomial expansion of the potential matrix
element given in equation 3. 3) holds to within a fixed error,E€.

When all parts of the x axis contained in the interaction

zone have been used to create a reference function solution to
equation 3.4), these separate solution parts are meshed into one

continuous solution.

Since Gordon first applied the reference function technique
to the rotationally. inelastic scattering of three atoms in 1968,
this method has gained rapid acceptance as a mechanism for
solving the coupled scattering equations. In 1970, Krauss and

Mies ( Kr70 ) published a calculation of electron-diatom cross
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sections about the 2 e. v. resonance of e N, which were prepared
with reference function methods. The method has been applied
to rotational, three atom scattering by Wolken, Miller and
Karplus ( Wo72 ), to rotational, vibrational, three atom scattering
by Wagner ( Wa72 ), and to reactive, collinear, three atom
scattering by Middleton and Wyatt ( Mi72 ). This integration
technique has also appeared { Al72 ) as part of a formalism for

solving time dependent Hartree—Fock perturbation equations.

Inhomogeneous Equations of the Method of Subtracted Asymptotics

The inhomogeneous equations of the Method of Subtracted
Asymptotics have not been specifically treated in the previous
discussion of the numerical methods. For the de Vogelaere
method of solving the coupled differential equations, the inhomo-
geneity causes no change in the formalism. The inhomogeneous.
function is absorbed into the functions Fi of equation 3,1) and
a particular solution to the non-homogeneous equation is
generated.,

Gordon's reference function formalism is also capable of
solving the non-homogeneous problem but additional theory is
needed to obtain a particular solution to equation 2.19). The
methodology which enabled the Gordon technique to solve an in-
homogeneous problem is termed the Variation of Constants
technique ( Cobla ).

Before a Variation of Constants formula may be.used for

an inhomogeneous, ordinary differential equation, the independent
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solutions to the homogeneous form of the equation must be
known. The reference functicns of equation 3.5) provide a
homogeneous solution set which meets this requirement.

Using the homogeneous solution sets, the general solution

to the coupled equations is peosed as

upn(x) sin(kpx) -i.- vpn(x) cos(kpx) (6a)
or
upn(x) Ai(kpx)«l.-vpn(x) Bi(kpx), (6b)
p=1to W,

The insertion of the functions of equation 3.6) into the appropriate
relationship of equation 3.5) yields a first order, coupled equa-
tion for the wvariable multipliers upn(x) and vpn(x)., Once these
equations are integrated, a particular solution to the inhomo-
geneous problem is known.

If a Cauchy method is used to solve the coupled equations,
then a particular form of the analysis equations must be used.
to define the unknowns of the scattering problem. All of the
analysis equations of section 2 should be posed as relationships
between the value or derivative of the interacticn zone solution,
@nf Xn’ and the respective value or derivative of the asymptotic
solution, \lfn. These equations are imposed at the two lines

o

which mark the start of the asymptotic region, x° and x* ,

Dirichlet Methods

The most common Dirichlet technique for a homogeneous,

ordinary differential or elliptic, partial differential equation is the
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finite difference method ( Ca59%b ). The solution to the differ-
ential equation set is obtained by approximating the result of
all differential operators by a linear combination of the solution
to the equation set. Thus, for example, a second order differ-—

ential operator at the point xj becomes ( Ab68 ),
2
2 0 f(x,) _ R .
h J/axz-f(xj h) Zf(xj;ff(xjfh) (7)

where h is the step size of the integration.

This process of replacement of differential operators by
linear combinations of the solution is continued at all points
of the variable within the boundaries of the region treated. At
the bound'aries, the solution components f(xb) are known by
boundary conditions and thus, the operator expressions can be
solved recursively for a total solution.

Finite difference techniques were used by Mazur and Rubin
to solve the time dependent Schrodinger equation for a collinear,
reactive collision in 1959, Mortensen and Pitzer ( Mob62, Mob68 )
alsb treated the reactive, collinear collision with finite difference
techniques. Diestler, Gutschick and McKoy ( Di69a, Di68b, Gu70)
treated both the inelastic and the reactive quantum equations for
three atom collisions with a discritization technique. However,
this numerical method is very expensive, very slow and super-
ceded by another far better formalism for solving the inelastic
scattering equations. Hence, it was not considered as a means
of solving equation 2.19).

A method far more effective than the finite difference ap-
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proach to the Dirichlet problem was developed by B. Numerov in
1933 ( Nu33 ). AAs is true of the Gordon and de Vogelaere meth-
ods, this integration formula is specificly adapted to sets of
coupled differential equations which lack a first derivative.

The Numerov method was developed to treat the orbits of
comets and planets ( Col0, Ja24 ) but the occurence of second
order differential equations throughout physics lead to an appli-
cation of this technique to arbitary sets of coupled equations
( Ha57, Ha65 ). If the notation

= 2l

is introduced for the elements of the potential matrix, then the

Numerov propagation equation for equation 2.19) can be written

W W
i n Z i 5,2
E (8 = /12 Tl R MV e (X p4y ) = (28, + T B Ty (e W (x )
k=1 k=1
W , (8b)
i, h, o,
fz( S /2 T (K1 ) e (B )
k=1
where h is the step size of the integration, and
X 11 = %o -?-(m-?-l)h. (8c)

Equation 3. 8) is one portion of a matrix relation that determines
W independent solutions, {{fjn(_;c), j=1 to W};n =1 to W}, in
one integration.

The Numerov method has been applied to several branches
of scattering theory. The method was applied to quantum physics
in the late 1950's by three separate groups seeking to solve the

radial Schrddinger equation (Ru56, Sk59, Co6lb). Two studies
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by Marriott have been particularly important in initiating the
scattering application of this technique. In 1957, Marriott pub-
lished ( Ma57 ) a study of the decay of electronically excited helium
under electron bombardment in which the integro-differential
scattering equations were solved by the backward substitution
method. Later Marriott ( Mab64 ) applied this same technique to -
the problem of collisional excitation of carbon monoxide. A
slight adjustment of this formalism yields the Numerov method
and, in 1965, Barnes, Lane and Lin ( Ba65 ) reported electron
excitation cross sections for sodium prepared using this techni-
que.

The more general formalism for solving the equations

representing the perturbation of systems with qu 4

and 3p* con-
figurations by an electron, with the Numerov technique was
published by Smith, Henery and Burke ( Sm66 )in 1966, The
work of Smith, Henery and Burke was the final stepping stone
which lead to the application of the Numerov method to diatomic
collision problems. Lane and Geltman (Lab67 ) performed calcu-
lations on rotational excitations of diatomic molecules by elec—
trons with the Numerov method and Allison and Delgarno ( Al67)
used this technique to solve atom-=diatom rotational excitation
equations.,

Inhomogeneous Equations

An inhomogeneous function in the set of coupled differential

equations treated merely adds one known term to the right hand
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side of equation 3, 8b) for the Numerov technique. Thus, this
method can also be used to solve the inhomogeneous differential
equations.

Another Dirichlet method for solving the inhomogeneous
equations of the Method of Subtracted Asymptotics that was given
serious consideration was the use of orthoginal functions to
create the particular solution needed by expansion in a series of
known functions. The functions chosen for this approach to the
inhomogeneous problem were the set of Chebyshev polynomials.
These functions have been extensively used to obtain representa-
tions of solutions to differential equations ( Fo68).

Analysis

To obtain a complete closed set of analysis equations from
a Dirichlet solution using the analysis techmnique proposed by
Zakhariev, equation 2.32) must be augmented by the unitarity
condition given in equation 2.33) and a set of relationships based
on the symmetry type of the three atom collision. If the linear
collision is symmetric about the central atom,

A+ A=A+ A,
or
AB + A—A + BA,
then the R matrix symmetry condition

R.. =R,
ij ji

and



137

can be imposed to force the number of unknowns from the anal-
ysis relations to equal the number of restrictions bounding them.

If the collision is not symmetric,

A+ BC—AB+ C,

then Zakhariev proposed ( Ef68b ) that the T operator matrix
relation

Ty =/ 8gVg¥ar,
be used to obtain the additional restrictions needed to calculate
the reaction probabilities. The T operator is defined in Mob5c
and Wub2. Formulation of a reactive scattering problem with the
aid of the T operator allowed Baer and Kouri ( Ba7l, Ba72a ) to
obtain reaction probabilities for a very simple, predominately
analytic, model problem. In general, however, the use of the T
operator or its matrix equivalent is not a practical numerical
technique.

The expansion analysis represented by equations 2.35) and
2.37) can be applied to a Dirichlet scattering sclution by satis-—
fying the decomposition expression, equation 2.35), at two points.
This specifies the constants in the expansion of each part of the
total interaction solution, allowing equation 2.37) to be solved
for the R matrix elements.

Conclusions

Only three numerical integration schemes are sufficiently

efficient to be used to solve the coupled equations developed in

the execution of the Method of Subtracted Asymptotics. These
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schemes are the de Vogelaere method, the Gordon method and
the Numerov method.

The Gordon method and the Numerov method were given
serious consideration as possible formalisms for solving equa-
tion 2.19). Because of its sectional analytic solutions and,
therefore, because of the ability to use the variation of constants
technique as a solution to the inhomogeneous equations consid-
ered, the Gordon method was chosen as the numerical integration

technique used for this study of the Method of Subtracted

Asymptotics.
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4: Applications of the Method of Subtracted Asymptotics

The Method of Subtracted Asymptotics was originally inves-
tigated to determine if it could be effectively applied to the pro-
blems of electronically adiabatic, three atom, reactive collisions.
There are several light atom reactions which apparently contain
significant quantum effects. Studies by Miller and Rankin ( Mi71la)
have compared classical H-Cl, results to the quantum studies of
Miller and Light ( Mi71b), using the same potential surface, and
have found that the classical and quantum results disagreed.
Similar work has been done on the reaction F + H; ( Sc73 ) and
the exchange reaction H; + H ( Bo71, Bo73 ).

Three reactions have thus indicated that quantum phenomena
control some of the reactions currently being investigated by
molecular beam techniques(An69,Sc70, Web67). Further, a potential
surface has been prepared for an Hj; reactive collision by Shavitt,
Stevens, Minn and Karplus ( Sh68a, Shé68b) and a potential surface
has been derived for the Hp~F reaction by Bender, Pearson, O'Neil
and Schaefer ( Be7l , Be72 ).

Therefore, rapid numerical techniques which solve the
reactive, three atom Schrddinger equation will allow an extensive
investigation of the exact processes involved in a chemical reaction.
The Method of Subtracted Asymptotics, an untested method in
chemical scattering, seemed to have a possibility for solving the
equations for a collinear, reactive collision in a minimum amount

of time. This prospect of a rapid numerical method initiated this
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investigation.

While later investigations were to be aimed at the reactive
systems previously mentioned, the initial calculations attempted
with M. S. A. were done on a very simple model problem. The
model system selected was the one dimensional collision of a
particle with a two particle square well oscillator. This model
system had been extensively investigated by Tang, Kleinman and
Karplus (K169, Ta69 ) in 1959 and Locker and Wilson ( Lo70 )
in 1970.

The coordinates and potential surface for this system are
displayed in Figure 4. A constant value was used as the inter—
action potential for .the three colliding atoms and the interaction
region eigenfunction expansion set, {Ak(xij)}’ was a set of vari-
able width square well functions. The formulas for the eigen-

functions in the x,3 direction, as a function of x', are

x’ value X,; maxima
1) 0=x'=%x,/h, X5 = -(hy/hg )X’
2) %o/hy <x'=3xp Xps = (%o - hx')/h,
3) =xp<x’ Xpg = U

oscillator function

1) (-2hg /heX' )% sin(-mwhg /hexy Xz3)

2) (2h,/(xo- hx'))Zsin(mmh, /(xe- hx’)x,,)
1

3) (2/0)2 sin(mw/2 x,,)
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where £' is the width of the oscillator's well, x° and x°' are

defined in Figure 4 and the hi mass constants are

M =m,; +m,; + m,

h, = = m,/(m, + m,) hg = (m, + mg)'l(mlmgM/Ms)%
h, = = my/(m, + m,) h6=-(m2+m3)"‘(m2m3M/m1)%
by = ~[m,m,M/m,]%/ (m, + m,) h, == m,/(m, + m,)
h, = {(m, + mg)Eme;sz}% ~1g/ hg =-my/(m, + m,)

(m, + ms)imams/mzm}%}

A Gordon propagator using a constant potential term (see
equation 3.3a) was programed for this system. The programing
and numerical treatment of this model were probed and adjusted
for a considerable period but no convergence pattern or valid
results could be obtained from the integration program. Because
the integrator for this problemn was a very extensive and involved
package, no direct cause could be established for the failures of
the computer program.

Since the Tang, Kleinman and Karplus square well reaction
probabilities could not be duplicated by integration of the equa-
tions of the Méthod of Subtracted Asymptotics, it was concluded
that an error or a numerical problem existed at some point in
the formulation of the scattering equations. However, the com-
plexity of the Tang, Kleinman and Karplus (T.K.K. ) model ob-
fuscated the difficulty in the numerical solution of the collision
equations. Hence, a simpler model problem was selected for

treatment by M.S. A, It was hoped that the necessary clarifying
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insights needed to correct the treatment of the T.K.K. model
could be obtained from a simpler system. This hope was ill-
founded and as the latter portion of this section will show, M. S. A,
or eigenfunction expansion cannot practicably be applied to the
scattering problem.

The second model chosen for consideration was the infinite
central mass form of the particle, two-particle-square-well
collision., This model was first used by Hulbert and Hirschfelder
( Hu43 ) to depict a2 chemical reaction independent of rotational and
electronic excitations. It has since been investigated by several
researchers using different techniques ( Ro70 , Ba72 , Di69 ).

Upon taking a limit on a three particle system as the
central mass goes to infinity, a great deal of simplification occurs
in the equations governing the collision. The hamiltonian for this

collision, when posed with a constant interaction potential VO, is
2 2
_ro d _2
3c"[ /axz‘{.' /ayz /ﬁZ(VO)]. (1)

The scaled coordinate set for this system is defined by Figure 5.
With the channel widths taken as T for both entrance and exit
channels, the eigenfunction equations for the asymptotic wave-—

functions describing the two possible diatoms are

1
2

2
[ %2 - €180x) =0 Fiix)=C/)? sinix),  (2a)

=

]

2
[%h,2-€18(5) =0 @ly) = (7% sinliy), @)

€5 = s (2c)
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Because of the geometry apparent in Figure 5, the set of
interaction region eigenfunctions, {Aj(y)}, coincides with the
asymptotic entrance channel eigenfunctions, {(bj(y)}. The regu-
larity of this geometry and the use of a constant interaction
potential also removes the subchannel coupling terms which make
the independent solutions of equation 2.19) full vectors. The
independent solutions for the infinite central mass model are
single functions and the full set of solutions forms a diagonal
matrix,

The boundary condition function, ®(x, y), also reduces
greatly for this model. Let the total reduced energy for the

collision be taken as

0.5=<E=<2.0 (3)
where
I 2
E - {8Mﬂ/h2)E'.

Here M' is the mass of the free particle, taken as 1 for these
calculations, and E' is the absolute energy. Under this energy
limit, only one subchannel is open in each channel. This implies
that the sum over all subchannels in equation 2, 12) consists of

only one term so that ®(x,y) becomes
M

Q}(x,y)=§mz yDiﬁl(X)gi(y) (4)
i=1

For the work with the infinite, central mass model, the
functions gi(y) were taken to be powers of the variable y when the

Zakhariev analysis technique was used. Thus

g;(y)=yi™?



144

and
M

= 1 e i
®1(x,y)=Rszn¢1(X)y. (5)
i=1
Operating on @ (x,y) with (J(-E) shows that the inhomo-

geneity generated by this function is a simple polynomial-oscillator
function product. This inhomogeneity is to be removed by a
solution created through an expansion in the eigenfunctions of the
interaction region. Assuming Zakhariev's direct matching anal-
ysis formulas will be used tc determine the elements of the R
matrix, the restrictions which must be met to create a balanced,
well posed set of equations for solving the scattering problem will
be investigated at this point. Concentrating on how the analysis
formalism effects the X portion of the Method of Subtracted
Asymptotics solution will show that the term by term Zakhariev
analysis cannot solve the scattering problem.

Equation 2. 32) shows the matrix form of the term by term
analysis. In order to expose the full significance of this analysis
formalism, the energy restriction of equation 4. 3) will momen~
tarily be dropped. There wiil be P open entrance subchannels,

Q open reacted subchannels and W subchannel terms used in the
X expansion in the equations formulated here.

Consider the entrance channel relation, equation 2. 32a) and
the derivative with respect to x of this relation. If one distinct
element of the set of (W+w) entrance channel asymptotic eigen—

functions is multiplied into these two equations and the result is
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integrated over all y, two sets of subchannel equations are obtained.
The set from equation 2, 32a) contains WXP separate restrictions
while the equation set obtained from the derivative of equation
2.32a) will contain (W+w )X P restrictions on the unknowns of the
scattering problem.

This process of projecting the matrix analysis equations on
the asymptotic eigenfunctions of the reaction must be repeated at
the boundary line of the reacted channel. There (Q+q) subchannel
eigenfunctions will be used to convert equation 2.32b), and its
derivative with respect to y, into two sets of equations. Equation
2, 32b) provides QXQ equations while its derivative breaks down
into (Q+q)XQ equations.

If the unitarity condition of equation 2.33) is imposed, it
provides P additional equations.

The unknowns of this problem are the WXDP elements of the
recombination matrix, 9; the PXP elements of the B matrix; the
QX P elements of the Ematrix and the MXQXQ elements of the
D matrices contained in @

To obtain a solution that is not a least squares fit to the
set of equations created in this analysis, the number of equations
must equal the number of unknowns in the equations, This im-~
plies that

(q-P)IXQ+ (W+1l+w-P)XP = (M-2)xQ% (6)

Equation 4.6) displays the crux of the problem in Zakhariev's

analysis. If the number of eigenfunctions used to create the X
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solution is to be increased, then beyond the point at which equation
4,6) forces q and w to be set to zero, increases in W mean in-
creases in M, the number of terms in ®(x,y). Since H(x,y)
does not satisfy the differential equation, the additional terms in
this function appear in the inhomogeneity contained in the equation,
for X.

Thus, X(x,y) is required to solve a more extensive inhomo-
geneous equation., Obviously, the greater complexity of the X
equation will necessitate the use of more eigenfunctions in X
to achieve a given accuracy. This makes any effort to obtain
a converged X function cyclic. To calculate a more accurate X,
the expansion level, W must be increased. Because of equation
4,6), this correspondingly increases M, making Ql(x,y) more
complicated and thereby lowering the accuracy of X(x,y).

If this cyclic process is to be avoided, a limit must be set
on M. Such an expansion maxima totally destroys any possibility
of achieving an accurate solution to the scattering equation be-
cause sufficient eigenfunctions cannot be introduced into X.

Table 1 lists a series of results that were obtained with the
Zakhariev form of the M.S. A. equations. The results show

the rapid divergence of this type of analysis. The small number
of eigenfunctions used in this calculation do not allow the proba-
bilities to approach the known values for the infinite central mass,

square well, three particle collision.
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The Expansion Analysis

The expansion analysis characterized by equations 2.35) and
2.37) was developed to circumvent the major flaw of the term by
term analysis; namely, the strict restriction of the degree of ex-—
pansion in X by other portions of the scattering solution. An
analysis technique which wouid allow an arbitary number of
eigenfunction terms to be placed in X was created by the asymp-
totic decomposition of all functions contributing to X at the en-
trance boundary.

Again using the P, Q, W notation for the number of sub-
channels appearing in the Method of Subtracted Asymptotics
solution, the ''balanced'' equation set condition for the expansion
analysis becomes:

qP = P'+20°-PQ. (7)

The degree of expansion of the X function, W, does not appear in
this equation. It is unlimited and can adopt any value needed to
create a converged form of the entrance channel solution, The
integer M also does not appear in equation 4,7). It is therefore
independent of any efforts made to analyse the scattering solution
and can be given any convenisnt value which allows a continuation
of ® across I', the eigenfunction boundary. A value of two was
chosen for M,

The @ (x,y) function used with the expansion analysis was:

®, = y[ D sin(Ki y)+ D cos(Kiy)] $u(x)Run  (8)

The set of homogeneous functions which satisfy equation 2.21a)
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as altered for the infinite central mass model are the harmonic
and hyperbolic functions defined in ( Di70 ). The open and virtual
particular solutions to the inhomogeneous equation resulting from
the ® function of equation 4. 8), are shown in Table 2.

These functions were created by Cauchy propagation. and were
analysed under the expansion analysis formulas of equation 2. 35).
The manipulation of these solutions dictated by the expansion
analysis formulas was carried out with several numerical tech-
niques. The techniques were changed when each method failed
to provide the needed convergence capacity required to solve the
analysis equations.

The first formula programed to solve the nonlinear analysis
equations was Newton's method ( Bo66 ). The iterative formula-—
tion of Newton's equations with a Jacobian adjustment of the in-
itial solution guesses failed to converge when more than two
eigenfunctions were used in the X expansion.

With the failure of the Newton technique, an algorithm
developed by M. J. D. Rowell (Ra69a ) was used to solve the
analysis problem. This algorithm used several gradiant methods
to create a numerical approximation to the solutions of the equa-
tions it treated. The additional numerical capacity of this sub-
routine did allow larger expansion forms of the X solution to be
solved. However, even a six subchannel calculation containing
one open subchannel in each rearrangement channel and five

virtual substates in the X expansion, yielded probabilities which
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bore no relation to the published values ( Ta69, Di69).

A final technique that was used to check the results of the
iterative methods already discussed was basic factorization and
reduction of the analysis equations. This was accomplished by
symbolic manipulation of the analysis relations using the computer
language Reduce ( He70 ). The resulting factered equation was
solved with Muller's root sorting method ( Mu56 ). |

After all of the analysis investigations had failed to yield
the expected answer for a low energy, one open subchannel per
channel, infinite central mass collision, the route of this inves-
tigation was altered so that the problem could be approached
with a goal of determining the possibility of convergence of this
method to the published result. Since the Method of Subtracted
Asymptotics creates an eigenfunction expansion solution to the
Schrodinger equation, the degree of the expansion needed to
solve the partial differential equation to a given accuracy was
calculated.

If the total solution to the Schrédinger equation is & + X,

then the error integral

ez=f[ (3«3~E)<I>+($C-—E)X]2d7 (9)

represents the error over the entire interaction region for the
solution to the Schrddinger equation. Equation 4.9) is a func-
tion relationship and is independent of any constants that must be
determined through solution analysis. Hence, the accuracy of

the solution prepared by the Method of Subtracted Asymptotics
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can be tested at various levels of expansion for the X function.

Other calculations on the three atom scattering problem
have established the accuracy bounds on numerical scattering
solutions that must be met to provide valid results for the
scattering parameters. By applying these accuracy criteria to
the error values determined through equation 4.9), the degree
of expansion needed to obtain a viable solution to equation 2.19)
can be established.

The calculations of Wagner ( Wa72 ) and Truhlar ( Tr70a )
have been conducted with solutions of less than 4% error. As
an upper bound on the accuracy that must be demanded of the
total solution, a value of 5% relative error in the numerical
solution was chosen. The formula used to calculate the relative
error contained in the Method of Subtracted Asymptotics solution

was

1
€ ={f[ (GC—E)<I>-‘+ (i}C-E)X]sz}z/ f(&C—E)cb ar.

An energy spectrum for the relative error for three dis-
tinct levels of expansion of the X function is shown in Figures 6,
7, and 8. The constant potential was set to zero for these
calculations, After the inclusion of 5 subchannels in the expan-—
sion, Figure 6 shows that the total solution has,at a few points
of the energy spectrum, achieved the accuracy needed to solve
the scattering problem. Figures 7 and 8 show that the basic 5%
relative error criteria is not met at all points of the energy

spectrum until 12 eigenfunctions are included in the expansion.
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Thus, to prepare an energy spectum for the infinite central
mass, square well collision at energy values such that one sub-
channel is open in each channel, requires an eigenfunction ex-
pansion which includes between 7 to 11 virtual states, depending
on the energy of the calculation.

The analysis of such a large set of solutions,even for a
one open subchannel case, is not possible. Numerical stability
problems in the treatment cf the analysis equations become
very pronounced when large numbers of expansion eigenfunctions
enter the equations., It becomes completely impossible to deter-—
mine the primary unknowns, the R matrix elements, in these
equations because the elements Rij or Eij are of order unity in
an equation set dominated by large virtual wavefunctions.

Finally, a numerical method which must introduce approx-
imately nine virtual states for each open state that appears in a
scattering calculation is totally useless as a practical solution
mechanism., Such an eigenfunction spectrum can be completed
( Wi65, Coblb, Me70 ) but other methods mentioned heretofore
for treating the reactive scattering problem can solve the colli-
sion equations with much less effort., On the basis of these
stability and efficiency problems, the effort to solve the scat-
tering equations with the Mefhod of Subtracted Asymptotics
was abandoned.

The major flaw in the method proposed by Efimenko,

Zhigunov and Zakhariev and herein shown to be an eigenfunction
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expansion technique, is that the introduction of an inhomogeneity
into the Schrédinger equation by the boundary condition solution,
®, mandates that a large number of states must be included in
the expansion solution, X. The degree of eigenfunction expansion
needed to satisfy the total equation is so large that gross effi-
ciency and propagation problems can not be avoided. This

feature of the method is discussed in detail in the next section.
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5: Conclusions

The major motivation for this research into the Method of
Subtracted Asymptotics was to obtain a treatment of the reactive
scattering problem which could use asymptotic eigenfunctions to
reduce the quantum partial differential equation to a series of
coupled equations. These coupled equations could then be rapidly
solved by a propagator technique.

The Method of Subtracted Asymptotics has been abandoned
because it cannot meet these criteria. The method fails in each
of the particular aspects for which it was investigated.

The Method of Subtracted Asymptotics will not permit the
solution of the Schrddinger equation with asymptotic channel
eigenfunctions within the interaction zone of the three particle
collision. Because this technique is an application of the for-
malism of eigenfunction expansion, the eigenfunctions which are
used to solve the wave equation must be calculated at each point
of the channel being treated. The need to generate an eigen-
function set {Aj(x)} for each step taken down the propagation
channel makes this method far more involved and cumbersome
than it was originally expected to be.

Perhaps the most serious difficulty with this method arises
from the need to solve an inhomogeneous equation using an eigen-
function expansion method. Until the full solution to the wave
equation is made homogeneous, the function ®+ X cannot possibly

solve the Schrddinger equation. Thus, until the expansion, X,
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' becomes extensive enough to virtually completely remove the
function (¥-E)® from the differential equation, the Method of
Subtracted Asymptotics solution will remain invalid. Since the
inhomogenaity contains both the Laplacian of ® and the product
of a normally very convoluted potential surface and P, the ex-—
pansion for X will always be of high degree.

To solve such an extended eigenfunction expansion for the
scattering problem would require a numerical propagation tech-
nique of exceptional stability., While transform techniques allow
a large expansion problem to be solved, the efficiency of such
propagation is still quite low and therefore, the Method of
Subtracted Asymptotics will, a priori be significantly slower than
existing techniques ( Mi72, Ra69b, Mi7la, Mi7lb, Sc73).

When the numerical solution to the coupled equations created
by this method are complete, the final difficulty of analysis must
be faced. The general formalism of eigenfunction expansion is
usually used when just a solution is sought to a partial differential
equation., Thus, a function satisfying the partial differential equa-
tion is the sole goal of most applications of eigenfunction expansion.
In the scattering problem, a solution to the differential relationship
is needed but the constant elements of the R matrix are the ulti-
mate goal of a scattering calculation. Major problems arise when
an attempt is made to remove the small constants of the R matrix
from the total two part solution. This solution is dominated by

the large virtual eigenfunction terms of the X expansion and these
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terms obscure the desired results.

While the Method of Subtracted Asymptotics can be dis—
missed as a practical method, the formalism of this method,
with the eigenfunction adjustments discussed in section 1 added,
can be used to treat certain phenomena in rearrangement scat—-
tering if appropriate caution is exercised. Caution is called for
in the application of this formalism because of the needs of this
method in the interaction region of the reactive encounter.

In the interaction zone, this method depends on a specific
set of functions, the {Aj(x)}. To apply the Method of Sub-
tracted Asymptotics to a particular problem or a distinct class
of problems, the potential surface of the interaction zone must
first be carefully defined and bounded. It must ther.l be proven
that there exists a set of eigenfunctions {Aj(x)} on this surface
with some chosen boundary, I' (see Ti62). Further, before
any theoretical manipulations can be undertaken, it must be
shown that the eigenfunction spectrum is complete (Ka57 ).

Having established existence and completeness for the
eigenfunction set {Aj(x)}, it must finally be established that
there exists a convergent ( Br26a ) eigenfunction expansion in
{Aj(x)} of any solution to the scattering equation. If at all
possible and, in all probability, if anything of any wvalue is to
be proven about the scattering solution, it should also be estab-
lished that the eigenfunction expansion is uniformly convergent
( Br26b ). Only when all of these criteria are met can a the-

oretical investigation of the scattering problem be undertaken.
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The Method of Subtracted Asymptotics has been used by
severai investigators ( Za7l, Za70, Ki72, Au69, Ef70) to
establish bounds on the scattering matrix, to create projection
operators, to apply variation principles and to manipulate other
theoretical constructs in rearrangement scattering. These studies
have not met any of the criteria specified above and virtually
all of these works have not used the interaction zone eigenfunction
set., As a result, the proofs presented in the above works are
invalid and must be corrected to meet the basic requirements
demanded by all eigenfunction expansion methods.

The single numerical application of the Method of Sub-
tracted Asymptotics is the study of the low energy neutron-
deuteron collision published by Zakhariev, Pustovalov and Efros
( Zab8a ). The set of expansion functions, {Aj(x)}, used in
this work are the set of hyperspherical harmonics. These
functions are the set of angular functions solving LaPlace's
equation on a six dimensional sphere ( Si66, Re69, De59, Deb60).
They are the six dimensional anolog of the set of spherical
harmonics on the standard three dimensional sphere.

The choice of hyperspherical harmonics as an expansion
set corresponds to placing the expansion eigenfunction boundary,
I', at infinity. The inhomogeneous function expansion is still
bounded, however, because outside the interaction region, the
inhomogeneity and the inhomogeneous solution go to zero.

A major defect in this numerical study is the use of only

one eigenfunction to complete the expansion of the propagated
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solution. As this work has indicated, a number of eigenfunction
terms are needed to complete a solution to the equations of the
Method of Subtracted Asymptotics. The decision to use only one
eigenfunction term was probably not freely made by the authors
but was instead, probabily mandated by analysis restrictions.
The differences found between the scattering lengths calcu-
lated in Za68a and those determined by experiment were attri-
buted to the absence of tensor forces in the potential used in
this study. While there may be some truth to this claim, in-
clusion of tensor nuclear forces will not remove the failures of
minimal eigenfunction expansion which undoubtably play a role
"in the deviant results prepared for the neutron-deuteron collision.
The formalism of eigenfunction expansion, as emperically
developed by Zakhariev et al, has been applied to the three
particle Schrdédinger equation, has been tested extensively, and
has been found wanting. The Method of Subtracted Asymptotics
is not a correct method, and, when corrected, is not a wviable

method for solving the reactive scattering equation.
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Table 1

E = .55 units

Eigenfunction Terms in X,
W= 1 2 3 4
Riu Ri  Rn Ru Ru Ry Ru Ru Rp
M= 0 .486

2 715 .99 .715 .5699 = -

3 — .716 .699 .715 .699 ,715 .699
4 - - Diverged .715 .699
5 2t - == Diverged

M = The number of expansion terms in @,

>"".L"l'lese data from Tab69,

als
R

Ry

. 876
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Figure Captions

Figure l: The geometry of three collinear particles with three

possible coordinate. sets is depicted. These coordinate pairs

are [ x, x12], [ %, %3] and [ x12, x2].

Figure 2: A typical contour, potential energy plot of the poten-
tial surface for three arbitrary, interacting atoms with
energy plotted out of the page. The coordinate set [xlz, xz3]

is depicted as orthogonal for convenience.

Figure 3: The three dimensional geometry of a colliding set of
three particles (3b) is compared to a collinear collision,
three particle geometry (3a). The notation of {3b) follows

the definitions given by Miller ( Mi69 ).

Figure 4: The geometry of the potential surface for three col-
liding, finite mass particles with two particles bound in an
infinite square well of width { is shown. The [ x,x12] and
Ex’ ,xz3]_-.coordinate sets are depicted as orthogonal cartesian

coordinates in this figure.

Figure 5: The geometry of the potential surface for a three
particle collinear collision with the bound two particle pair

contained in an infinite square well is displayed. The
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central particle in the collision is assumed to have an

infinite mass. The scaling equations for the coordinates

Do

1
are ¥ 2 . GAF -
y = (/m:) X3z and x = ( /m3) X230

Figure 6: A plot of relative total solution error with respect
to total energy of collision. Five subchannels were used
in this computation. This solution has a 5% relative error

for some points between E =1.0 and E = 1.5,

Figure 7: In this relative error—energy plot, nine subchannel

states have been used in the X €xXpansion for this calcula-

tion.

Figure 8: A total of twelve subchannel states have been included
in the eigenfunction expansion to complete this plot. The
solution has less than 5% total relative error at almost

all points of the energy spectrum for this degree of ex-

pansion.
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ABSTRACT OF PROPOSITION ONE

A bifunctionate method for solving the collinear, three atom
Schrédinger equation proposed by Diestler in 1969 is wrong.
The method fails because the closed coupled equations it solves
possess eigenfunction decay points within the interaction region.
A bifunctionate method is proposed which will correctly solve the

equations for reactive scattering.
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Proposition: The bifunctionate solution method for solving the
collinear, three atom Schrédinger equation published by
Diestler (Di69 ) is wrong., The method introduces sperious
nodes into the reactive scattering wavefunction. A correct
bifunctionate method is proposed. This method requires

solution part recombination at a sectioning line.

In 1969, Dennis J. Diestler ( Di69 ) proposed a method for
solving the collinear, three atom Schrdédinger equation for
energies below the three particle threshold. This method was
based on a proposal to create the scattering solution in two
parts, each part of the total solution constructed by an expansion
in asymptotic eigenfunctions. This formalism for solving the
second order partial differential equations of scattering is
wrong.

A brief outline of Diestler's proposals will be presented
before the deficiencies in this formalism are described. The
collinear collision equations will be posed in the (x3, %23)
coordinate scheme previously used in reactive scattering studies
( Di68a, Di68b, Tr70). As has been done previously, these
coordinates will be assumed orthoginal.

In figure 1.1, a typical potential surface for the reactive,
collinear encounter is shown with several important coordinate
lines added. The lines £;, and {,3; denote the lines of decay of

the bound state asymptotic eigenfunctions in the x;, channel and
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and the xz3 channel, respectively. At the lines of decay, all of
the functions of the discrete eigenfunction set can be taken to
be zero. The terminology x;, channel and x,; channel will be
used to denote regions of the potential surface where Xij
describes the free atom position in the three atom system.

Diestler's paper describes a method for preparing the
total solution to the scattering equations by the Method of
Weighted Residuals ( Fi72 ). The novel feature of Diestler's idea
is coﬁtained in the manner in which he proposes to create the
primative solutions that are later linearly combined to meet the
boundary conditions. ¥Each primative in this approach to the
final solution, is created in two related parts. The first part
of the solution is constructed by solving the close-coupled equa-
tions obtained by expanding part 1 of the complete primative in the
asymptotic eigenfunctions of one channel. One half of the total
primative is thus represented by a sum of products of single
variable functions,

If it is assumed for the sake of clarity, that the first
part of the primative was created in the x;;3 channel, then this
solution segment will die out beyoud the line £;3. This behavior
is incorporated into the total mechanism for solving the partial
differential equation by using the line £,; as a limit point for an
expansion of the second part of the primative solutic-m.‘

The second part of the primative is also created by an

expansion in asymptotic eigenfunctions but in this case, the ex-
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pansion set is the set of oscillator eigenfunctions of the remaining
channel. This would be the x;, channel asymptotic eigenfunctions
under the expansion convention just adopted. The second part of
the single, full solution being created is related to the first part
of this same solution by matching the two series expansions in
value and derivative at the line £,s.

The close-coupled equations which can be obtained from the
Schrédinger equation and the eigenfunction expansion of part two
must be solved before the part two solution is complete. The
closed coupled equations for the expansion coefficients were to
be solved by a propagator method of arbitary type. Diestler in-
dicated that the x;3 channel equations should be ‘solved from the
zero value of the x;3 coordinate while the x;, channel equations
were to be propagated in value and derivative from the line, {,s.

Once one primative was developed by Diestler's technique,
the process was repeated to create a set of such primatives.
These primatives were then to be linearly combined to solve the
complete scattering equations by use of the Method of Weighted
Residuals.

The Flaw in This Formalism:

The invalidating feature of Diestler's method appears in
the method by which the primatives of his formalism are created.
If these primatives were valid solutions to the partial differential
equation, then the linear combination of the primative set by the

Method of Weighted Residuals would yield a correct complete
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scattering solution. As will be shown shortly, each primative
this technique creates is not a solution to the differential rela-
tionship and it is for this reason that the method fails.

Since each primative solution is here asserted to be invalid,
all features of the primative combination procedure and all as-
pects of the linear independence of the primative set can be
ignored, This study will concentrate on the construction of one
primative using the regime prescribed in De69.

The two part Diestler solution will be denoted ®;(x1z, x23)
+ ®,(x12, x23). The channel specificity already presented in the
description of Diestler's method will be used for this discussion
of the failure of this formalism. Thus, ®(x),, x;3) is expanded
in the eigenfunction set {qu(xlz)} and ®,(x;;, x;3) is created in
the set of {?ﬁk(xn)} functions. The equations for these two

functions are
N

®1(x12, x23) =z fi(xzs)¢i(xlz)
i=1
and

[
®a(x12, %23) =§ gj(xlz)$j(xza)-
j=1

The function ®,(x;3, X23) spans the x;; channel from x,3 = 0 to
X3 = X33, an asymptotic value. The function ®,(x;,, x3) con-
tinues the primative from £,3 to x;3, an x;, channel asymptotic
value.

It now becomes imperative to consider what happens to

®,(x12, Xp3) as x32 — L,3. At this line, the function ®;(x;2, Xz3)
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goes to zero. However, the reason that ®;(x;;, x3) has a node
at £,3 is not evident from the potential surface, differential equa-
tion or boundary conditions of the scattering equations. The
cause of ®1(xy2, X33)'s node is independent of all of these fea-
tures of the scattering problem. The node appears solely
because this part of the primative solution was expanded in
asymptotic eigenfunctions of the x,3 channel.

As the line f,;3 is approached, the eigenfunctions of this
expansion decay to zero. Thus, the representation of the prima-
tive is failing at the line {,3 and a node appears in this function
solely because the incorrect expansion set has been used to
construct ®(x;;, %x3). This error is compounded by the contin-
uation of the primative from the line {,;.

The node at £,; is taken as a correct compoﬁent of the
primative when the second part of the solution is calculated.
Thus the failure of the eigenfunction representation of a true
solution to the scattering equation is continued by the connection
process proposed for the two primative parts.

An Analytic Calculation:

A proof of the failure of the Diestler method can be con-
structed from the uniqueness principle for elliptic partial differ-
ential equations. This analysis is based on the work of E. Hopf
(Ho27, Beb4 ) who showed that elliptic, partial differential, bound-
ary value problems have unique solutions.

Consider the surface of Figure 1.2. ®Here the infinite po-
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tential surrounding the reacted channel makes the asymptotic
regions of both channels square wells. An infinite central mass
has been assumed for this collision model so the coordinates x
and y are orthoginal. The width of the two equivalent channels
is denoted by £ and the magnitude of £ is such that { is less
than the interaction region limits, x° and y°.

The Schrddinger equation in the mass scaled coordinates

Y 1
y=-my 2%, X=1m; 2 Xz (1)
is
-y Y 3
[z + “/a2 = g2 (Vizs ~EN]® =0 2)

where the interaction potential, Vj;z3, will be taken to be a con-

stant. Use the coordinate transform

[y

2 2,2
r=[(x-x%)"+(y-y)] (3a)
=]
0=tan ([x-x1/y-v1), (3b)
to pose the Schrédinger equation as
13 2 19 2
[r ", )+ 2592 - Fy2(Vizs - E)]¥ =0 (4)
This equation will be solved by separation of variables with

the separation constant labled A. Define the constant
2
mf = - /ﬁZ(Vlzs - E)
so that the differential relationship becomes

[r“"; 2R(r)+ oL R(r)+ri(z -V 2)R(r)] =0
or ‘ or . r (5a)

2
[ Vg2 +A1T(8) =0 (5b)
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where
¥(r,0) =R(r)T(0). (5¢)
1
Apply the coordinate scaling r’ = zlzr to equation 5a) to

obtain the set of equations
2
0 0 by
[ 2% g2 + 2" Ty + 221 = Tu2) R(2') = 0, (62)

2
[ %pg2+ 21 T(68) = 0. (6b)

These are Bessel's equation ( Gr3l ) and the free wave

equation ( Abb64 ), respectively. The solutions of these equations

are
{3,(c"), Y (")}
and
{ sin(k0), cos(k0)},

where

ki =2
and

zf2 = A,

The value of A will be taken to be 1. Also, the irregular
Bessel function will be elminated from the solution set and a
solution to equation 6) will be taken to be

U(r,0)=1J:(r"){sin(8) + cos()}. (7)

By the boundary conditions at r; and r;, it must occur that
L

1
= 2
zlzrl and z; r; are zeroes of the Bessel function. These zeroes

will be taken to be the first two sequential zeroes of the regular

Bessel function. Hence,
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fi=

2
Zi1 ry = 3. 83171 (88.)
and
3
2y rz = 7. 01559, (8b)

Equation 8) defines the values of E and Vj;s.
With the solution of equation 7) established, let the full

Schrodinger problem be rewritten

.y 2’ 2
[ /5y2 + “/ay2 = 12 Vizs - E)] ¥ = 0, (92)
¥(ry,, 6)=0 =\1]?(rz, 6), (9b)
¥(x,, o) = Ta(%2L) cos(0), (9¢)
U(x, yo) = J1lypzr) sin(m/2). (9d)

Equation 9) defines one unique solution to the elliptic
partial differential equation, namely the function in equation 7).
With this unique solution established, the numerical form of this
solution will be prepared using the Diestler method.

The asymptotic eigenfunctions {(i)j(y)} and {a;k(x)} are
square well functions. These functions thus form two infinite,
denumerable, complete sets. The solution to the scattering
problem of equation 9) can be expanded in a uniformly convergent,
variable coefficient series of these functions.

The first part of the Diestler solution will be developed in

the x direction. Therefore,
[> o]

éx(x,y)=z £(x)o.(y) (10)
i=1

The boundary conditions on ®,(x,y) are that at x3,
1

X3 = (rzz -12)59
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®)(x3,y)=0 (11a)
and at x = x3,
®1(x5,y) = J2(r") cos(0). (11b)
By inserting the expansion of equation 10) into equation 9a), a
set of closed coupled equations for the fj(x)'s is generated.
These equations are
2 [ o}
0 2 2/
[ Yy 2f (x)+ %2 (E+e€_)E_(x) - /ﬁzz SO (7 )WVizsd (y) dy £ (x)]

i=1
=0, m = 1to o, (12)

Equation 12) will be solved by the Numerov method with
the boundary conditions of equation 11) to determine the set of
expansion coefficients {fm(x)}.

The expansion for & (x, y) must now be continued from the

line y = £. The expansion for the second part of the function
is "
®y(x,y) ':Z g;(v) d,(x)
j=1

Since the expansion for ®;(x,y) goes to zero at y = {, the
boundary conditions on ®,(x,y) are
®,(x,L)=0 (13a)
and
®5(x,y0) = Ju(x") sin(m/2) (13b)
The closed coupled equations for the expansion coefficients,
g(y), are

2 ©0
[ %/ 2 ly) + % (B + € g, (y) - 2/ﬁ221f¢k(x)vm¢j<x)dxgjm]
J:



=0, k = 1 to oo, (14)

Again, eéuation 14) with the boundary conditions of
equation 13) will be solved by Numerov propagation. This com-
pletes the solution by Diestler's technique.

The two solutions, ¥ and ®; + &, should be equal because
they meet the same boundary conditions and satisfy the same
differential equation. However, the function ¥ has no zeroes in
the interaction region. There are no nodal lines for this func-
tion anywhere within the finite potential area.

The Diestler solution ®; + $,, has a node at the line y = £.
The two solutions are therefore not equivalent. Hence, by the
uniqueness property of the elliptic partial differential equation,
one of these solutions must be wrong.

The erronious solution is the eigenfunction expansion
solution created by Diestler's method, thus showing that the
asymptotic expansion method Diestler proposed is wrong.

Q. E. D.

Validating Adjustments for a Bifunctionate Method

While the two part solution prepared by Diestler is invalid,
a two segment solution can be proposed that will solve the reac-
tive Schrddinger equation. The two parts of the final primitive
will be channel specific for the collinear potential surface of
Figure 1.1.

The two halves of the final primitive will be generated in

the same way so the generation technique will be detailed for
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only one part of the total solution. ILet the primitive wavefunction
be V=c;®1 + c,P,. The function ®; will be generated in the
entrance channel from the asymptotic line x;3 to the sectioning
line x33=x32. The solution must be created by a Cauchy technique
from value and derivative data specified at Xz3 = X3 Or must be
generated such that Cauchy data can be evaluated at the sectioning
line xp3=x3,. Thus, the means of generating ®; can be certain of
the numerical methods described in section 3 of Part II of this
thesis.

A coupled channels integration will ordinarily not be a pos-
sible means of solving for the solution parts ®; and ®,. The
partial differential equation will norirnally have to be solved with~-
out eigenfunction expansion techniques in the quadrilateral region
bounded by the entrance channel, x;3 and the sectioning line.

Once the two sets of primitive halves, ®; and &, have been
generated, the two sets are recombined into one set of complete
primitives by matching the two sets of functions in value and
derivative at the sectioning line x;3= x3,. This matching process
is accomplished with a set of constant multipliers which multiply
the two matrices, ®; and ®,. Upon specifing the constants which
appear in the matching condition equations, a full set of primi-
tives is ready to be manipulated to the standard scattering
boundary conditions.

The asymptotic boundary conditions for the reactive scattering

problem will be met by the use of the Method of Weighted Resid-
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uals. This recombination process operates on the complete

primitive set just composed from the two partial primitive sets.
The two part solution method has been used by Smith and

Burke ( Smb61l ) to iteratively solve the integro-differential equa-

tions of electron scattering. It can equally well be applied to

the three atom reactive scattering problem to solve the Schrddinger

equation. Such an application should give a convergent, bifunc-

tionate solution method for quantum, reactive encounters.
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1: Figure Captions

Figure 1.1: A typical potential surface for a three atom, col-
linear collision is contour plotted in this figure. The
lines of decay for the asymptotic eigenfunctions of the
entrance and reacted channel, labeled f£,; and £;, respec-

tively, are shown in the plot.

Figure 1.2: The potential surface for the system treated with
Diestler's Bifunctionate Solution Method. The value of the

potential outside the channel is infinity.
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ABSTRACT OF PROPOSITION TWO

The compound 1, 1-bis (4-chlorophenyl)-2,2,2- Trichloro-
ethane, commonly called D.D.T., has been shown to stimulate
the breakdown of estrogenic and androgenic steroids in certain
species of the animal classes Aves and Mammalia. D.D.T. will
cause steroid imbalance in humans and, at certain periods of
development, permenant damage will result from exposure to

D.D.T.
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Proposition: 1,1-bis(4 chlorophenyl)-2,2,2-Trichloroethane,
commonly called D.D.T., will cause metabolic upsets in
the developing male human fetus by accellerating the de-
composition of and inhibiting the capacity to store, andro-

genic hormones.

Over the past 15 years, it has become apparent that many
species of preditory birds and game fowl were undergoing catas-
trophic reductions in their populations (1-5). A few of the birds
involved were the Bermuda Petel (Pterodroma cahow) (6), the
American Woodcock (Philohela minor) (2), the Peregrine Falcon
(Falco peregrinus) (7), the Bald Eagle (Haliaeetus leucocephalus)
(8), and the Golden Eagle (Aquila chrysaetaes) (9). On the
basis of isolation of their habitat and breeding grounds or because
of legal protection, these population declines did not appear to be
directly related to the hostile actions of man.

Investigations traced the population declines back to a lack
of breeding success caused by nesting failures in the afflicted
species. As the cause of this nesting failure was sought, it be-
came apparent that starting in 1946 there had been a sudden sharp
drop in the calcium content and hence the structural capacities of
the egg shells of the affected birds. The D.D.T. content of the
eggs and parent birds was, in all cases, high (1-12). Further
studies showed that there existed a correlation between the con-

centration of D.D.T. or its metabolites in th viable young or
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eggs of the affected species and the rate of reproduction failure
(13, 14). It was also demonstrated that there was a correlation
between the incidence of breeding failure in some of the affected
birds and the amount of D.D.T. expended in their local environ-
ment in a given year (2).

This statistical information lead to controlled feeding exper-—
iments in which D.D.T. and D.D.E. in concentrations of 3 parts
per million induced eggs with 13.5% thinner shells which broke
6 times as often and produced less than half as many healthy
offspring when compared to controls (15, 16, 17). These findings
as well as the observed behavior of the birds themselves (18),
all indicated an disruption of the calcium metabolism of the en-
dangered species. This metabolic upset was caused by D.D.T.

Attempts were now made to determine how D.D.T., altered
calcium metabolism. Examination of the route of calcium through
the bodies of most birds showed that the steriod hormone estro-—
gen (178 estradiol) was instrumental in controlling the retention
of calcium and its incorporation into the egg. This fact and the
discovery (19) that p,p' D.D.T. induced a delay in ovulation in
the Bengalese Finch (Lonchura stritata), apparently by affecting
hormone balance, lead to studies by Peakall (20) which showed
that D, D.T. induced hepatic (liver) enzymes in pigeons which
broke down the hormone estrogen.

Once the causual process by which D.D.T. promoted popu-

lation declines in the class Aves was understood, similar effects
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were rapidly discovered in other species. In 1967, Walsh, Levin
and Conney (21) showed that hepatic enzyme induction by D.D.T.
also took place in rats. D.D.T. has been shown to produce the
same biological phenomena in male beagle dogs (22).

On the basis of this data, it was proposed (23) that D.D.T.
would produce biological disruptions in humans by inducing andro-
genic and estrogenic steriod imbalance.

This imbalance would result from distuptions in the pathway:

chlosterol L bile acids — bt corticoids — androgens — estrogens
which occurs in cattle, rats, man and other mammals. By hepa-
tic enzyme induction, D.D.T. would cause a concentration change

in one of the compounds of the synthesis chain:

4
progestosterone — 170hydroxyprogesterone — A androstene-

3, 17dione — 178 hydroxyandrost—4—en—3-one.

This proposal was verified by the development of impotence
in farmworkers caused by exposure to D.D.T. (24). While this
particular result of enzyme induction bf D.D.T. is obviously
neither desirable nor appreciated by those parties afflicted, it is
not the worst biological effect that can be expected.

Upon discontinuing exposure to all pesticides and administra-
tion of methyl testosterone (methyl 178 hydroxyandrost—-4—en-3-one)
Espir et al (24) found that normal sexual function returned to all
those who had been adversely influenced by the pesticide. Such

reversable effects are not expected at all stages of human devel-



207
opment.

“For the human fetus or the young child, the disruption of
normal hormone balance will, in all probability, result in per-
menant and irreversable damage to the developing individual.

The embryo will receive a significant exposure to D.D.T. through
the mother's circulatory system:. This exposure will be inhanced
by the uterotropic action of D.D.T. (25). The nursing baby will
receive a level of D.D.T. two to four times federal pesticide
residue limits from his mother's milk (26, 27, 28). The total
effects of these exposures will depend on the magnitude of the
amount of D.D.T. consumed.

To accertain what biological effects D.D.T. might have on
a human fetus, studies should be undertaken on a small population
of rats. However, only one half of the rat population, the male
fraction, would be used to define D.D.T. induced anomalies.

At the present tirhe, studies on the effects of D.D.T. on
estrogen levels in rats, mice and humans indicate that this chlor-
inated hydrocarbon induces a variety of responces in the blood
stream concentration of this steroid. Because D.D.T. does not
initiate a predictable process of biological events when influencing
estrogen levels and because of the complexity of estrogen related
events which do occur when D.D.T, is introduced into an organ-
ism, studies of the steroid concentrations of females will not be
undertaken. Instead, the behavior of testosterone levels in males

under the influence of D.D.T. will be studied.
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D.D.T. has a straight forward effect on ambiant blood con-
centration of testosterone. By inducing the hepatic enzyme test-
osterone hydroxylase, D.D.T. causes testosterone to be decom-
posed by the liver at a faster than normal rate. This causes a
drop in testosterone concentration in the blood.

It could be argued that significant biological effects will not
be found in this study because of the feedback loop nature of most
biological systems. Viewing the concentration of testosterone in
the blood as one component of a feedback system indicates that
the lowering of testosterone levels in the blood will initiate a
release of more testosterone, thus righting the hormone balance.
This process actually occurs in the mature human and it is pro-
babily partially responsible for the fact that D.D,T. effects in
the mature male have been found to be only temporary (24).

In the fetus, however, a significant backup supply of test—
osterone is not available. Worse yet, D.D.T. has been shown
to reduce vitamin A levels in the liver. Vitamin A plays. a key
role in maintaining the seretory integrity of prostatic epithelial
cells (29). By removing the prostate gland as a storage unit
for testosterone, D.D.T. would completely immobilize any feed-
back loop adjustments to ambiant steroid blood concentration.

A wide variety of results are expected from the lowered
testosterone levels in a male fetus. D.D.T. has already been
shown to produce striking inhibition of testicular growth in cock-

erels (30) and it is anticipated that delayed or inhibited testicular
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growth will be encountered in the fetii of mothers given a diet
tainted with D.D. T,

D.D.T. is also expected to interfere with the development
of the prostate gland and to cause cirrhosis phenomena in the
liver. By influencing the body's supply of vitamin A, D.D.T.
may cause eye damage and poor vision.

Finally, because a definate timetable of development exists
for most mafnmals, D.D.T. may cause biological sequence pro-
blems in offspring chronically exposed to this chemical. By in-
hibiting changes in hormone concentrations or restricting the
development of the glands important in producing or maintaining
these hormone concentrations, 1,1-bis (4 chlorophenyl)-2, 2,2
Trichloroethane may significantly alter the normal maturation of
a chronically exposed individual.

To prove the causual relations asserted above, a chronic
exposure study will be done on a bifurcated colony of rats con-
sisting of exposed and control groups. The experimental proce-
dure will follow that of Phillips et al (29) with organ studies
performed as described in (23). The anticipated organ metabo-
lites are 70,68, and 16 @ hydroxytestosterone, A16 androsten-3 a-
ol, 17a hydroxy~5a-androst-l-en-3-one, androsterone, epiandro-
sterone, 178 hydroxy-5ca&-androstan—3-one, 5@ androstan-3a-17p
diol and their accompanying side products. The sacraficed ani-
mals will be drawn from the male fraction of an 120 rat colony,

a colony size needed to insure a 95% certainty level in any bio-
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logical differences found.

Female rats in the colony will be sacrificed as necessary
to conduct fetal studies of D.D.T. effects occurring during ges-
tation. = The total time needed to obtain conclusive results from
this investigation will vary from a year to a year and a half,

depending on the outcome of the initial experiments.
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2:List of Formulas

(ce _CH-cay

l,1=bis (4-chlorophenyl)=2,2,2-Trichloroethane
Synonyus 3 DDT ; p,p'DDT

(ce —} cH-cHel,
2

l,l-bis(4-chlorophenyl)-2,2-dichloroethane
Synonyms : DDD; p,p' DDD

\ CHel,
ce H

- 1=(4-Chlorophenyl), 1-(2-Chlorophenyl), 2,2-dichlorethane
Synonym? o,p’DDD

7 o=ca,

2,2-bis(4-chlorophenyl)=-1, l-dichloroethene
Synonym DDE

iaﬁ estradiol
Synonym: . Estrogen
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lp hydroxy androst-4-en-3-one
Synonym ¢ Testosterone

706 173 dehydroxy androst-4-en-3-one

Synonym: 7¢¢ hydroxytestosterone
| oH
o OH
16, 135dehydxoxyandzost-4-en-3-one
Synonym: 16 ¢ hydroxytestos terone
OH

OH
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- ]
17«¢ hydroxy-5a-androst-l-en-3-one

3 hydroxyandrostan-17-one
Synonym: Epiandrosterone

OH
5« androstan-3«, 178 diol
_ HO

64, 1? dehydroxyandrost-=4-en-3-one

Synonym¢ - 68 hydroxytestosterone ; : l ,OH
OH



androste=l6-en-3=01

Ho

3x hydroxyandrostan-17-one
Synonym: Androsterone

17’ hydroxy=-5Saandrostan=-3-one

214
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ABSTRACT OF PROPOSITION THREE

Complex number calculations are currently conducted on a
single complex plane with a branch cut. As a result, uniqueness
and closure problems arise in arithmetic operations. A computer
language COMPLEX is defined which removes the numerical diffi-
culties of calculations on the complex plane by operating on the

Riemann Spiral.
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Proposition: A specially designed computer language, COMPLEX
can remove the uniqueness and reversibility problems

which currently plague calculations on the complex plane.

The set of complex numbers commonly used in studies of
functions on the complex plane is not a closed and unique set.
This set is actually one small subset of the full set of complex
numbers obtained by applying the restriction,

Co ={zlz=rei6',. .-1r<051r }, (1)
to all- complex numbers. The set G, ié the sfandard X+ 1ly com~
plex plane. |

However, standard operations on the elements of C, yield
results which are not elements of the set C, (Mc50). Consider
as an example of this phenomena, the problem of raising i to the

tenth power.

10 _ 10 Logi_ i5m
1 = e = e e

Even though 10 and i are elements of C,, the result of raising i
to the tenth power, e1 5 ‘n_', is not an element of C,. Using the
definition

i6

Cn={z|z=re", (2n-1)m<O=(2n+1)7}, (2)

To specify the infinite sequence of complex sets, Cp, allows e15ﬂ
to be fixed as a member of the set C,.
The lack of a closure property in each set C, is usually

skirted by defining a branch cut on the complex plane (Ne61, Ne70).

The branch cut is nothing more than a .rule by which the results of
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any operation on the elements of Cpn are reduced to a representa-
tion in elements of C,. The rule for the set C; would be that
all calculations must be performed modulo 27. Thus,

i5m7 im

e —e ,

.10
and i can be represented as an element of C,. Unfortunately,
branch cuts cause uniqueness problems on the complex plane
because
1 L.

/ Y
(ilo) 10 () 1%~ 9511+ .0390i .

In a numerical calculation, the imposition of a branch cut must
be very carefully applied. As the above example shows, random
application of a branch cut results in data which is incorrect by
a phase value. Because a branch cut must be consistantly ap-
plied and this ''consistancy'' is based on the ultimate goal of the
calculation as well as past calculations performed on the data,
branch cuts cannot be readily imposed in computational treatment
of a problem on the complex plane.

The Riemann Spiral:

The difficulties of manipulating complex values on a computer
can be removed by performing all calculations on the Riemann
Spiral (Ah53, Ah71). The Riemann Spiral is one representa-
tion of the set of all complex numbers. Tile concept of the
Riemann Spiral was disclosed by Bernhard Riemann in his inau-—

gural dissertation, Grundlagen fur eine allgemeine theorie der

Functionen einer veranderlichen complexen Grosse, published on

December 25, 1851. A diagram of the structure of the spiral
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is shown in Figure 3.1. The spiral is the concatination of all
elements of the infinite sequence of sets, Cn’ into one set ®&.

The set ® is closed under addition and multiplication, is
infinitely non-denumerable and is unique under its two set
operations ( Ha6l ). These properties are sufficient to resolve
the ambiguities of computer calculations on the complex plane
and they can be applied to this problem via the computer com-—
piler COMPLEX,

The computer language COMPLEX will be a scientific, numer-
ical calculation language designed to conduct its analyses on
the Riemann Spiral. Basic to this language is the representa-
tion of all numbers as a three element array. All numbers
manipulated by.this language are treated as full complex numbers
with no integer or real numbers maintained as a separate sub-
set of numerical data.

Any number will be an ordered string of three elements.
The sequence of parts in the number will be

(X, Y, n). (3)
The values X and Y are the components of the representation
z = x + iy while the third element, n, is the value of the sub-
script of the set of definition 2), Cn" to which z = x + iy belongs.
No number will be overtly represented in the syntax of the
language as a three element array, Instead, for each numerical
variable encountered in a source deck, the COMPLEX compiler

will establish three ordered storage locations which will represent



222

that particular numerical data element for the duration of the
calculation. These three storage elements will be manipulated
as a unit in all, save a very few, calculations.

The compiler's addition and additive inverse operation are
conducted on the number form of equation 3). The definition
of the result is

2+ &g = (x1, y1, m)+ (xz, y2, mz2) = (x oz Y1t e 0ot nz).
The additive idenity element will be (0,0,0).

The multiplication and multiplicative inverse operation will
be conducted on number elements in their polar form. The
definition of the result is

lei(ZnﬂT + 91 ) % rzei(anﬂ' + 92) Zei(Z[nl +n2]1T +91f92 )°

212z = r =rr
The multiplicative idenity element will be (1, 0, 0).

The syntax of the language COMPLEX will be based on the
language FORTRAN IV ( An66 ). A submitted source package
must contain a main program while any specialized operations
can be included in the source package as functions or subrou-
tines. Any statement must be contained on one standard computer
card with the statement beginning in or after column 7 and ex-
tending toward but not into column 73. Statements can be con-
tinued over several cards by a column 6 entry in the continua-
tion cards.

Parsing of the source input will be done by bounded con-

text analysis by precidence (Ch59, F163, F164). Declarations

will be handled with a symbol table (F161, Evé64)., The preci-
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dence hierarchy for this language is

a)
b)
c)
d)
e)
f)
g)
h)

i)

Evaluation of subroutines or functions.
Evaluation of unitary minius.
Exponentiation.
Divide.
Multiply.
Subtract.
Add.
Logical operations:
1. Less Than
2. Less Than or Equal To
3. Equal To
4. Not Equal To
5. Greater Than

6. Greater Than or Equal To

7. Not
8. And
9. Or

Equate variables.

Character recognition will be achieved by binary cut, digital

comparison. The parentheses pair () act as delimiters on the

precidence parsing with the parse proceeding from the innermost

expression outward (Sa60 ). Elements of equal precidence in a

given statement will be evaluated from left to right in order of

appearance in the statement.
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Two degrees of accuracy may be specified in any numerical
calculation. These accuracy levels will be the single and double
precision arithemetic modes of computition and they will provide
m digit and 2m digit accuracy, respectively. Since all numbers
manipulated by C.OMPLEX are three term, ‘complex numbers,
the single and double precision labels provide the only numerical
variable types in this language. Real and integer variables may
not exist.

All numbers, arrays and expressions will be processed to
machine code by the compiler and organized and sequenced with
Thunks (In6l ). A set of special functions titled, REAL, IMAG
and SET access the X value, the Y value or the n value of any
complex number treated by this language. All llogical compari-
sons of ma/gnitude such as ''greater than'' or 'less than'' will be
done in real arithmatic. The one exception will be the compari-
son ''equal to'. Two numbers will be equal only if all three of
their corresponding parts are equal.

The base used to represent all input material, the byte
length of data, the exponent and sign convention and the size
limit on data are all system dependént items. They will there-
fore vary from machine to machine. All m\zmerical data read
into the compiler must consist of ordered, three element strings.
There will be no default options to compact a numerical data set

save the

blank field = understood zero



225

rule already present in several languages (IB71, Wib6 ).

The three element rule will affect DATA and assignment
statements. Each assigned number will be an ordered sequence
of three numbers separated by commas, giving the assignment
the form:

Variable = #. ##, #.##, #i# ;
An error statement will be triggered by any input process which
does not bring in a complete set of three numbers for each
variable to be assigned.

The language COMPLEX will transfer all data between
program sections by location (IB70 ). There will be no data
transfers by form or value.

With this computer language, the uniqueness and branch
cut problems formerly encountered in calculations in complex
arithmatic are vanquished. The language COMPLEX allows
numerical calculations in the complex field to be conducted in

the same manner as any other computer calculation.
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3: Figure Caption

Figure 3.1: The Riemann Spiral showing sets C_;, C,, C,.

The element (r, 8) is a member of the set C,.
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ABSTRACT OF PROPOSITION FOUR

Several basic concepts have been used to explain the growth
of suburban zones about the metropolitan centers of the United
States. These explainations have generally ignored the economic
forces generated by industrial decentralization Iand thus imply
that the movement of population to the suburbs is promoted gen-—
erally by class or racial forces or by repugnant characteristics
of the urban region. As industry moves to the suburbs, the
availability of suburban employment draws people from the urban
core and therefore, industrial relocation acts as a significant

cause of urban to suburban population movement,
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Proposition: At some point in time during the development of a
suburban residential ring about a typical core city, indus-
trial decentralization and the availability of suburban jobs
becomes a significant force in drewing population into the

suburban region.

In recent years, there have been many fundamental changes
in the structure of American society. To effectively discuss one
particular structural characteristic, the current agglomeration
pattern of a population in an urban region, a number of definitions
must first be established.

The population éenters treated in this discussion will be
the 247 Standard Metropolitan Statistical Areas of the 1970 United
States Census ( US67, US72 ). The term urban area will gener-
ally be applied to that region within the jurisdictional boundaries
of the c.ity or cities comprising the core unit of the Standard
Metropolitan St‘atistical Area (SMSA). The term suburb will be
applied to all parts of the SMSA not contained in the core city
or cities (US68 ).

Changes in a person's usual place of residence are gener-—
ally broken into two types. The first type of change is the local
move, a change of residence in the same community. The se-
cond type of move is migration, changes of community as well
as residence. The current Bureau of the Census classification

of mobility status and type of mobility ( US63 ) is
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Mobility Status Type of Mobility
8 Living in same house Nonmover
II. Living in different Intracounty mover

house in same county
III. Living in different county Migrant
A, Same State Intrastate migrant
B. Different .State Interstate migrant
1. Contiguous States &

2. Noncontiguous States .

For the purposes of this study, each change of residence
considered will be a local move within one SMSA from the urban
core of this SMSA to its suburban aresa. Because of the extent
of most Standard Metropolitan Statistical Areas, these local moves
will represent all classes of the Bureau of the Census mobility
status listing.

Past Mobility Models

From 1930 onward, the suburban ring of most United States
SMSA's gained a larger fraction of the total population growth of
the entire area thar; did the core city. Table 4.1 shows the
rapid population increase in the suburban region of U.S. metro-
politan areas by both race and census year. The Population
listing shows the rapid increase in numbers of people outside
the central city. The Percent of Change listing of’Table 2k, 1
shows the differential rate of increase of urban versus suburban

population while the Percent by Race and Percent by Residence



233

and Race Tabulations show that this has been an overwhelmingly
caucasian movement. Bogue et al established in 1953 that this

developing residency pattern was the result of shifts in popula-

tion from the urban cores of the SMSA's to their suburban rings
( Bo53, Bo57).

Since the vanguard studies of Goodrich and Thorthwaite
( Go36, Th34 ) on population migration, a number of social models
explaining regional movement have been put forward.

A number of these explainatory descriptions of population
movements have applied directly to the area of urban to suburban
population flow.

The majdr concepts of each of four ideologies which have
been used to explain urban to suburban moves will be discussed.
These four ideologies are

A) White Flight movement

B) Change of Life moves

C) Rural to Metropolitan migration

D) The Urban Draw, Suburban Flow Process.

The White Flight image of why suburbs grow is based on
the idea that the caucasian fraction of the population, moves to
the suburban ring of the metropolitan area to escape the taxes,
the conjestion and the minority groups which are all increasing
in the city. The pattern of racial segregation implicit in Table
4.1 is projected to 1985 in Table 4. 2. Because of the rapid

separation of the races that these data portend, the concept that
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the caucasian groups are vacating the urban regions was given
gross statistical credance. In actuality, as Table 4.3 displays,
the process of suburban movement was not so much an effort at
racial separation as it was a process of economic separation.

The Change of Life picture of urban-—suburban residence
change is based on the belief that at certain transition points in
every individual's life, his or her probability of changing abode
is high. This causual concept of mobility has been investigated
for several movement initiating transitions. Reaching the age of
legal adulthood is a well established transition point for initiating
migration ( Sh65). Marriage is a second force which promotes a
change of residence ( US71 ). One final period specific change
which often causes a move is the birth of an additional child
( Ne70 ). Life cycle influences upon mobility are extensively an-
alysed in Sp70.

The Rural to Metropolitan migration of the U.S. population
has become a very small part of the total migration flows that
compose our population movement. The reason that rural to
metropolitan migration has become an insignificant feature of
total population mobility is simply that the U.S. rural population
has become so small that it lacks sufficient numbers to influence
migration rates. A discussion of rural-metropolitan migration
patterns will be found in US65. The forces which have replaced
rural to metropolitan migration as a source of metropolitan

growth. are natural increase, intermetropolitan migration and
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. immigration ( Co72 ).

A recent phenomena in metropolitan growth has been the
Urban Draw, Suburban Flow Process ( Mo72b). In this sequence
of moves, the population tends to flow from one urban area to
another in the first phase of the migration process. Soon there-
after, however, the same group of movers change their residence
to an area in the\ suburbs of the SMSA, There are some indica-
tions at the present time that the standard rural to metropolitan
migration of the past two centuries has been absorbed into this
two step settlement process.

The current models for population relocation definately ex—
plain a significant portion of the urban to suburban population
flow that is occuring in the United States. Yet there do appear
to be other forces that are drawing people out of the core cities
of most SMSA's. One such force of fairly recent vintage is, I
suspect, the economic drawing power of suburban industry.

Economic motivation for a change of residence is well es—
tablished as an initiator of migration ( Go36 ). While the origin-
al concept that IL.abor flows from economically depressed areas
to economically pProsperous areas has been shown to be too sim-—
plistic to describe most migration processes ( Lab67, Mo72 ), jobs
and increased employment potential are well established motiva-
tors of migration ( Sa64 ). Coupling this datum with comparisions
of the 1963 and 1967 Census of Manufacturers ( US66, US71b)

suggests that suburban growth is now continuing because personnel
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are being recruited from urban cores for jobs in suburban indus-
tries. The two Censuses of Manufacturers and other independent
data ( Ne67 ), show that industry is moving out of the city. As
major industries move into the suburban ring and service indus-
tries arise to cater to the needs of the suburban population, job
opportunities appear in the suburban region of each Standard
Metropolitan Statistical Area. These job openings will be filled
by both suburban residents and residents of the urban core.

Once the economic force of available jobs has arisen in the
suburban area, a movement of place of residence from the urban
core to the suburban ring will occur as the mobile group locates
near its place of employment. While proximity to employment is
normally not a major criteria which is weighed in making a move
( Bu69 ), the additional attractive features of the suburban location
will weigh heavily in favor of a change of residence.

To date, no study has been made of the significance of the
suburban movement of population initiated by the decentralization
of industry. Such a study can be conducted in several stages to
clarify what fraction of suburban movement is due to the economic
opportunities of the! suburB.

The first stage of this study can be conducted on data for
industrial decentralization from the Department of Labor and on
data for urban to suburban residential change from the Bureau of
the Census. The general feature of identical flow directions has

already been established ( Ne67, Ho68 ). A time correlation on
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this data will provide the final feature needed to complete this
stage of the study.

The second phase of this investigatidn will be an analysis of
the address changes of the workers of a statistically representative
group of recently established suburban industries. This test of the
suburban, economic draw idea should disclose that a significant
fraction of urban to suburban relocations occurred after suburban
employment was obtained.

If the expected results are found in the first two sections
of this inquiry, then a final motivation check will be made on a
representative sample of workers in the relocated industries.

This inquiry into the duration of the individual's current place of
residence and the motivation for any changes of residence will
completely define the contribution industrial development in the
suburbs is making to urban core depopulation. This final study
will be done either by mailed questionnaire or personal interview.

Several issues of social policy that are presently receiving
wide attention mandate that the forces promoting population move-
ment to the suburbs be fully understood. A classic example of
these issues is thevcurrent debate over land use policies. The
question of whether statewide zoning and regional development
control will be benificial or inhibitory should not be resolved in
a state of ignorance of the basic migratory process.

Similarly, the recommendations of the National Commission

on Urban Problems ( Co69a2) and the proposals of the National
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Commission on the Causes and Prevention of Violence ( Co69b)
would be affected significantly if suburban industrial draw is
shown to be a major cause of residency change. Under Fair
Employment Practices hiring, the racial communities of the
United States will be desegregated by the steady movement of

urban minority labor to suburban employment.
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ABSTRACT OF PROPOSITION FIVE

The two non-linear, multiloop feedback systems constructed
by J. W. Forrester to model social structures are critically
examined for their modeling capacity. The lack of a spacial
structure, insufficient proof of causality in the models' analytic
structure, a complete lack of calibration and an exceedingly sim-
plistic form for the models, all mandate that the two systems are
inadequate to represent the structures they are supposed to
describe. These models will more accurately describe the be~
havior of the represented social structures if a spacial distribution
is built into the models and both are calibrated to the structures

they are designed to mimic.
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Proposition: The Forrester social models contained in Urban

Dynamics and World Dynamics have serious deficiences in

structure. These deficiences can be partially alleviated by
installing a spacial dimension in the models and calibrating

them to the modeled structures.

A fundamental advance occurred in the study of many com-
plicated orginizational structures in 1948 when Norbert Wiener
( Wi48 ) authored an elucidation of the principles of feedback sys-—
tems and thereby founded the dicipline of Cybernetics. Since many
complicated systems involve man himself, the systems analysis
approach to many areas of human endevor was adopted rapidly.

The earliest applications of systems modeling to the organ-
izational structure of society were in the area of traffic analysis.
Static models of regional traffic flow ( Mi54, Zeb2 ) greatly
enhanced the predictive capacity of Highway Planning Departments
and resulted in far better engineering in the resulting highway
systems.

The same forces which drove highway engineers to model
their traffic arteries prompted Regional Planning Commissions to
model more compléte social systems. Several static city models
were created in the early 1960's in an effort to predict the com-
mercial and residential patterns that arose in an urban area under
specific pelicy decisions. These initial models, of which the

CATS model ( Habl, Ch60 ), the POLIMETRIC model ( Bo62, Seb6,

De64 ) and the Pittsburg model ( Lo64 ) are exemplary, were
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static, socio—economic urban models which attempted to predict
the aggregate behavior of urban populations. The static nature
of these models made it very difficult to model time dependent
social phenomena however, and therefore, dynamic social models
were developed in the period from 1965 to 1970.

There are three major dynamic, regional models of an urban
system. These models are Crecine's Time—-Oriented Metropolitan
Model ( Cr68 ), Batty's Spacial Dynamic Model ( Ba7l ) and
Forrester's Urban Dynamic model ( Fo69 ). The modeling of social
and interpersonal processes has been applied to areas other than
urban structure. Examples of systems analysis in other areas are
the administration studies by ..T. T. Dorsey (Do58 ), the studies
of international relationships by M. A. Kaplan ( Kab7 ), the crime
rate analysis of R, L. Kyllonen ( Ky67 ) and the racial distribution
studies of S, L. Levine ( Le68 ). Since I wish to analyse
Forrester's models of social structure, I have concentrated on the
most comparable social models published, namely the urban and
regional models just mentioned. To facilitate an analysis of the
two Forrester models, their gross features will be presented.

Two Social Models}

Two social system models which were used to represent
1) an urban area and 2) the world, were published by Jay W,
Forrester in 1969 and 1971 ( Fo69, Fo7l ), respectively. These
two models were termed preliminary by Forrester and were

published because, in Forrester's words, '"Only with wider com-
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ment and criticism can the methods, the assumptions and the
results be adequately evaluated.’ This discussion is intended

to be an overall critique of the Forrester social modeling method,
continuing, in a hopefully more rational way ( Sh71, Le72 ), the
analysis of the capacities of Forrester's social models and the
place of these models amongst other simliar constructs.

The two social models exhibited by Forrester are both
multi~loop, non-linear feedback systems, though the two system
ﬁodels described are fairly simple systems. The urban model
is an open system with one major feedback loop with its envi-
ronment. The world system is a closed system.

Descriptioh of the Urban Model

The urban model is a dynamic system with nine level ele-
ments and twenty two rate elements. The level elements are
composed of three groups:

a) Business
b) Housing
c) Population,
each of which is broken into three subgroups. The list of

"level elements is

al) New Enterprise b3) Underemployed Housing
a2) Mature Business cl) Managerial-Professional
a3) Declining Industry Personnel

bl) Premium Housing c2) Labor Personnel

b2) Worker Housing c3) Underemployed Personnel,
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The twenty two controlling rate elements are
1) Underemployed Personnel Birth Rate
2) Underemployed Personnel Arrival Rate
3) Underemployed Personnel Departure Rate
4) Transition Rate from Underemployed to Labor Level
5) Transition Rate from Labor to Underemployed Level
6) Labor Personnel Birth Rate
7) Labor Personnel Arrival Rate
8) Labor Personnel Departure Rate
9) Transition Rate from Labor to Management-Professional Level
10) Management-Professional Birth Rate
11) Management-Professional Arrival Rate
12) Management-Professional Departure Rate
13) Premium Housing Construction Rate
14) Premium Housing Obsolescence Rate
15) Worker Housing Construction Rate
16) Worker Housing Obsolescence Rate
17) Low Cost Housing Program Construction Rate
18) Slum Housing Demolition Rate
19) New Enterprise Decline Rate
20) New Enterprise Construction Rate
21) Mature Business Decline Rate
22) Declining Industry Demolition Rate.
Connecting these two types of system elements are a series

of information channels which constitute the control and response
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portion of the feedback system. The three classes of information
channels in a feedback system are:

1) Equilibrium Processes: These processes keep the
system static. An equilibrium process constitutes a
negative feedback loop.

2) Hemostatic Processes: These processes try to maintain
equilibrium in the face of disturbances from the environ-
ment or other feedback loops. A hemostatic process
constitutes a negative feedback loop.

2) Morphogenetic processes: These processes regulate
against certain kinds of disturbance but increase organ-—
ization in the system by responding to disturbances in
the environment. A morphogenetic process constitutes a
positive feedback loop.

The urban model contains examples of all three classes of infor-
mation channels. The complete structure of the information
channels for the urban model is discussed in Appendix A of Fo69.
The Business and Housing level elements of the urban
model have their respective subgroups connected by time depen-
dent unidirectional ;flows. The Population group of level elements
has its subgroup connected by time dependent and social depen-—
dent flows,
Description of the World Model

The complete system structure of Forrester's world model

is shown in Figure 5.1. There are 5 level elements, 7 rate
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elements and 48 information channel elements in this simplified
model. The 5 level elements are

a) Population c) Natural Resources

b) Capital Investment d) Pollution

e) Fraction of Capital Devoted To Agriculture,

while the 7 rate elements are
1) Birth Rate 3) Pollution Generation Rate
2) Death Rate 4) Pollution Absorption Rate
5) Natural Resource Usage Rate
6) Capital Investment Generation Rate
7) Capital Investment Discard Rate.
The 48 information channels can be decerned in Figure 5. 1.
Forrester has performed a number of long term projection
calculations with the two models he created. The primary thrust
of his computations has been policy analysis but, as the following
critique will show, the form of the social models makes any
conclusions obtained from their use of very, very doubtful
validity.
Analysis
The system characteristics of the two dynamic models just
described will be reviewed under the six system dimensions estab-—
lished by Britton Harris ( Ha67 ). These structural dimensions
are
1) Descriptive versus Analytic

2) Holistic versus Partial
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3) Macro versus Micro
4) Static versus Dynamic
5) Deterministic versus Probabilistic

6) Sumultanious versus Sequential,

Descriptive versus Analytic

A descriptive model is one which repeats the history of
the actual structure for a specific period of time. An analytic
model performs the activities of the modeled structure at any
point in time and, 'in its extream case, for any environmental
conditions the structure could encounter.

Forrester's models are both analytic. They are proportedly
designed to give a first approximation to the actions of an urban
area or the world under certain conditions. An analytic model
is only useful if all of the causual relationships and dynamic
relationships of the modeled structure are clearly understood.
This is obviously not the case in large, aggregate, social struc-
tures. Hence, Forrester's models far outstrip the current
knowledge of urban or regional interactions and thus, are con-
structed oﬁ very unstable foundations.

The causual organization of a model can be partially ver-
ified by 'calibrating' the rr}pdel to the known behavior of the
modeled structure. Forrester does note that he has attempted
to calibrate part of his urban model to his mental image of how a
city behaves. In chapter 2, page 14 of Fo69, he states:

"When first modeling a social system it is usually best to
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model the general class of system rather than a specific
system. Here, this means a model to represent the central
processes common to all urban areas rather than to repre-
sent those of a specific area. The general model will be
simpler and more basic because it omits the peripheral
considerations that may be special to a particular place.
It focuses on those system components that are always to
be found interacting in urban growth and stagnation. The
model should include only those processes necessary to the
creation and correction of urban decay.'
In chapter 3, page 38 of Fob69, Forrester states:

""The stages of an urban life cycle within a period of
250 years occur starting with empty land, growing to full
land occupancy, maturing through a rapid realignment of
internal urban balance, and emerging into an equilibrium
characterized by stagnation with its unemployment, faltering

industry, and increased taxes.'

Forrester has thus calibrated his metropolitan model to a
personal conviction of how an arbitary, representative metropolis
should behave. The fact that his url;an model then decays over
a prolonged period constitutes merely a self-fulfilling prophasy.
Above and beyond the lack of a specific metropolitan area to
which he could calibrate the descriptive phase of his model,
Forrester also makes gross and simplistic assumptions about the

causual structure of both of his models. He makes a similar
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sequence of arbitary assumptions to select his ''central processes
common to all’”, I have found no agreement in the literature
beyond a majority concensus on the significance of economics

and population, on the topic of what constitutes central urban or
regional elements. The question of how significant social elements
knit themselves together to form a process is completely unans-—
werable at the present time.

Additionally, it should be noted that the calibration process
is usually conducted by extensive regression analysis on the
parameters of the system model ( Ba7l ). Forrester chooses his
parameters arbitarily.

Because of their simplicity, their arbitary causality and
variable selection and the lack of distinct calibration, Forrester's
models fail completely as the analitical models they portend to be.

Holistic versus Partial

A holistic model is one which considers not only the total
environment but the totality of ultimate effects, both direct and
indirect, of given policies. A partial model concentrates on one
particular subsystem of the total system and measures its changes
while the remainder of the system'vis static.

Forrester poses his systems as holistic as seen by the fact
that only one environmental feedback channel exists in the two
models. This posture, in view of the very low degree of resolu-
tion in the models and the simplistic structure of the systems is

extreamly inappropriate.
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Before examining the completeness of the models, I will
mention the boundary problems of Forrester's urban model.
Stafford Beer's ( Be59 ) injunction to experimenters concerning the
scale of a system is, 'The system we choose to define is a sys-—
tem because it contains interrelated parts, and is in some sence
a complete whole in itself," For Forrester's urban model to be
a complete holistic system, it must be self-determining, which,
he argues ( See pages 17 and 18, Fo069. ), it is. However, both
current city behavior and other specialists (Fr65) imply that metro-
politan behavior is strongly controlled by regional and national
policy.

Any holistic model must represent several areas of human
endeavor. These areas have been termed environments and I will
analyse the other aspects of Forrester's holistic models under
the environment catagories defined by McLoughlin and Webster
(Mc70 ). These catégories are:

a) The Political Environment

b) The Economic Environment

c) The Technological Environment

d) The Attitude Environment.

The Political Environment

The major action of the political environment is to convert
the system into an adaptive system. Neither of Forrester's sys—
tems has any major components to act as a policy making body.

Hence, the models carry forward the same policies and this,
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coupled with their analytical dynamic nature, causes the models
to diverge.
The Economic Environment

The degree of resolution of the economic aspects of For-
rester's models is exceedingly poor. Those economic variables
that are included in the models are very simplistically related.
Major economic motivators such as wages, spending patterns and
savings are not treated at all by these systems. Further, For-
rester never distinguishes between basic variables which are
independent of economic or social control and gravity variables
which are drawn to various areas or levels by the basic variable
changes. An example of this process would be the capacity of
a major industry, a steel mill, to draw secondary commercial
investment, restaurants and filling stations, to its periphery.
The Technological Environment

Technology has a pronounced effect on the structure of
societies. However, the major medium through which technology
acts, the spacial dimension, is missing from both of Forrester's
models. Societies cover a specific land area and a good model
must represent this spacial distribution. Further, there are
strong indications that the social and spacial structures of cities
are both involved in hemostatic processes ( Beb62 ) and, as Batty
( Ba71 ) notes, up to half of all cﬁanges in a systvem are changes
in location rather than changes in levels of the system.

Technology should also have a noticeable impact on com-
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munications, resource flows and productivity. These levels are
almost completely ignored by the models, however.
The Attitude Environment

The significance of social attitudes in maintaining order in
a society is a topic of extensive debate in the social sciences.
At present, most individuals have avoided any explicit value
variables in the models currently in operation. All models are
governed by an implicit set éf values and have a value structure
which has controlled the models' development. As has already
been noted, Forrester's urban model has an urban decay value
system as an implicit component of its structure.

Macro versus Micro

A macroscopic model deals with variables which measure
a total of a particular element.. Microscopic models deal with
each individual contribution to a system element.

Forrester's models are decisively macroscopic. This has
generally been the case in all models that have been built. How-—
ever, the degree of resolution of Forrester's work is so low that
he must, if his social systems are to be taken seriously, treat
his system components far more microscopically.

Static versus Dynamic

A static model either develops results for one particular
time or projects its input data to some future time by a system
of fixed formulas. A dynamic model propagates its input data

forward in time, allowing the data to adjust the model's behavior
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sequentially as the system advances. to a final time status.

Forrester's models are complete analytical, dynamic models.
While this class of models is undoubtably the most appropriate
means of representing social structures, the models of this class
are very unstable. ' Analytic, dynamic models require closure
in the system and thus, tend to center all controls within the
model. Hence, if one level or flow of the system becomes un-
balanced, any model which is not strongly self-equilibrating will
degenerate. Forrester's world model behaves in precisely this
manner.

Something that is missing from these systems is a set of
gravity models for some of the subsystems of the total construct.
Gravity models operate by exerting a constant functional effect
on one or a series of system elements. Forrester makes no
use of gravity subsystems,.

Deterministic versus Probabilistic

A deterministic model is a definate cause and effect model.
A probabilistic model assigns a series of outcomes, each weighted
with a definate probability, to each cause.

The models discussed here are deterministic. Considering
the simplicity of these models, this is an appropriate nature for
the systems. However, certain features of the models, such as
the decline of businesses in the urban model, should be treated
stochastically even with the models' present level of aggregation,

As the models become more resolved, more system elements
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will have to be treated in a probabilistic manner.
Simultanious versus Sequential

This classification distinguishes models on the basis of the
manner in which their equations are solved. Simultanious models
seek values for all variables at once.: Sequential models evaluate
system elements in a definate order.

Both social models discussed here are sequential models.
Unfortunately, they lack a major feature that a sequential model
structure admits very easily. This feature is time delay or, its
converse, reaction time. Forrester has :insta.lled a few time
delays which control perception of certain model conditions by
other parts of the model. But, he has few processes in his
models which sequentially contribute to flows at a time dependent
rate after a major system adjustment has occurred. These flow
contributions, which are usually exponentially decaying in time,
constitute residual changes caused by the system adjustment.

Those reaction times which do appear in Forrester's models
are arbitarily chosen. This is a crucial flaw in the models
since, '""Evidence from analogous (or homomorphic) systems which
are adaptive and open suggests that the patterning of inter—element
connections, and especially the different reaction times involved,
are crucial to the understanding and modelling of system structure
and behavior, including reactions with the environment."” (page 388,
Mc70).

As this step by step inspection of the two Forrester models
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has made clear, these systems are very poorly equipped to sim-—
ulate the behavior of large social aggregates. Of the time depen-
dent models which have been developed in the past six years,
Forrester's models fail to meet moré criteria, make more un-
supported assumptions, and have a more simplistic structure than
those of Crecine or Batty. The major flaws in Forrester's work
are the lack of spaciality, the lack of calibration and the intense
but ambiguous analiticity of the models. For these reasons,
Forrester's models cannot be considered even basic representa-
tions of the social structures they are intended to mimic and

their predictive capacity is, in all probability, mnil.

Changes In The Models

As the preceding critique has shown, a significant body of
modeling research indicates that alterations must be made in the
structure and applications of Forrester’s models. As has been
indicated, many adjustments are needed in the feedback systems.
However, only two major cha;nges will be proposed at this time.

The first alteration to the models centers on the structures
of the models themselves. The two feedback systems must have
a spacial distribution built into them. The extension of the sys-
tem level variables over a two dimensional zone will si_multaneously
make the macroscopic aspects of the models far more microscopic
while it requires the inclusion of transport and communications
mechanisms. While this is not the only structural change the

Forrester models should absorb, it will provide one major alter-—
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ation serving to make the models more faithful to the modeled
structure.

The second change to the Forrester models concentrates on
the treatment of the models' parameters and causal structure.
The two systems must be calibrated to the observed behavior of
the social structures they model., This calibration cycle will
require both adjustments in the numerical values of the parame-
ters of the systems and changes in the causal relationships in the
systems. The urban model should be calibrated to two cities'
historical behavior for the periods for which such data are
available. The partial systems in the world system must be
calibrated to the corresponding processes in the world. This
calibration program is currently underway in a research project
conducted by D. H. Meadows and coworkers ( Me72 ).

I wish to emphasize that these two changes are, of them-
selves, only a start in what must be a continuing procedure of
system additions. The two adjustments proposed are only a

first step in creating more realistic social models.



269
Figure Caption

Figure 5.1 This Figure contains a graphic form of the Forrester
World Model. Flow rates are encapsilated in pentagons. Level
variables are displayed in rectangles. The information system is

represented by circles and dotted lines.
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