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ABSTRACT 

Given a variety k of algebras, among the interesting ques­

tions we can ask about the members of ?( is the following: does 

there exist a lattice identity ~ such that for each algebra A € 'l{, 

the congruence lattice 0(A) satisfies i$ ? This thesis deals with 

questions of this type. 

First, the thesis shows that the congruence lattices of rela­

tively free unary algebras satisfy no nontrivial lattice identities . 

It is also shown that the class of congruence lattices of semi­

lattices satisfies no nontrivial lattice identities. As a consequence it 

is shown that if 7.( is a semigroup variety all of whose congruence 

lattices satisfy some fixed nontrivial lattice identity, then all the 

members of /{ are groups with exponent dividing a fixed finite num- -

ber. In particular, the congruence lattices of members of 1'< are 

modular. 

Finally, it is shown that the varieties whose congruence lat­

tices satisfy one of a class of lattice identities of a fairly general form 

are in fact congruence modular. 
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INTRODUCTION 

A variety of algebras is a class of algebras closed under the 

formation of homomorphic images, subalgebras, and direct products. 

Equivalently, a class k is a variety if and only if X. is the class of 

all algebras of a given similarity type satisfying some set of identi­

ties. In particular, given a class J< 0 of similar algebras, we can 

form the variety ?<.; consisting of those algebras which satisfy each 

identity which holds in every algebra of J< 0 • Clearly J< 0 c J(~, and 

'k 0 is a variety if and only if i< 0 = l<;. 
If 'k is a variety and A an algebra in ?< , it may in general 

occur that A will satisfy some identities not satisfied by all the alge­

bras in 'k. This leads us to the notion of a X-free algebra. An 

algebra A E '}( is said to be ?<'-free if there exists a subset X CA 

such that (i) X generates A, and (ii) every map of X into an algebra 

in ?< can be extended to a homomorphism. A fundamental theorem 

of Birkhoff states that given a variety ?<. and an arbitrary set X, 

there exists a f< -free algebra generated by X, which we will denote 

For example, the class of all lattices forms a variety, and 

given a set X, we can form the free lattice FL(X). In addition to 

lattices, the following varieties will be of particular interest in this 

thesis: semilattices, semigroups, distributive lattices, modular 

lattices. 
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Given a variety '-<. of algebras, among the interesting ques­

tions we can ask about the members of ?< is the following: does there 

exist a lattice identity o such that for each algebra A E f<., the con­

gruence lattice 0 (A) satisfies o ? The classical theorems of this 

type state that the congruence lattice (normal subgroup lattice) of a 

group is modular, that the congruence lattice (lattice of two-sided 

ideals) of a ring is modular, and that the congruence lattice of a lat­

tice is distributive . This thesis will deal with some questions regard­

ing when the congruence lattices of algebras in a variety are all mod­

ular. (In this case, the variety is called congruence modular.) The 

results will be described more fully below. 

In Chapter I the basic theorems on varieties of algebras and 

free algebras are introduced. It is then shown that the congruence 

lattices of relatively free unary algebras satisfy no nontrivial lattice 

identities. 

Chapter II presents joint work of the author with Ralph Freese. 

The main result of this chapter is that the class of congruence lat­

tices of semilattices satisfies no nontrivial lattice identities. It is 

also shown that the class of subalgebra lattices of semilattices satis­

fies no nontrivial lattice identities. As a consequence it is shown that 

if Vis a semigroup variety all of whose congruence lattices satisfy 

some fixed nontrivial lattice identity, then all the members of V are 

groups with exponent dividing a fixed finite number. In particular, 

the congruence lattices of members of Y are modular. 
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The final result of Chapter II suggests a closer study of condi­

tions which imply congruence modularity. Necessary and sufficient 

conditions for congruence modularity were givep by Day [ 4] , and it 

was shown by Wille that the condition that the congruence lattices of 

the algebras in a variety satisfy a given lattice identity is determined 

by a weak Mal' cev condition [ 28, see also 22, 25]. In Chapter m 

it is shown that varieties whose congruence lattices satisfy one of a 

class of lattice identities of a fairly general form (see Theorem 3. 1) 

are in fact congruence modular. A similar theorem is proved for 

congruence distributivity. It should be noted that there are no known 

examples of varieties whose congruences satisfy some nontrivial lat­

tice identity which are not congruence modular. 
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CHAPTER I 

CONGRUENCE LATTICES OF RELATIVELY FREE 

UNARY ALGEBRAS 

An algebra A is an ordered pair (A0 , F) where A0 is some 

set and F is an indexed collection of operations on A0 , i. e. , F = 

{ fi : i E I} for some set I, and each f E F is a mapping of A0n(f) 

into ~0 for some finite integer n(f). As is customary, we will often 

write x E A to mean x E A0 • The algebras A = (A0 , { fi : i E I}) and 

B = ( B0 , { gj : j € J}) will be called similar (or of the same simi­

larity type) if I= J and n(fi) = n(gi) for all i E I. General informa­

tion about abstract algebras may be found in [ 9] or [ 11]. 

Let X be an arbitrary set and <l a class of similar algebras. 

If A is any algebra in q; , then the operations of A are im exed by 

the set I, and we may denote the rank function as n(i) (i E I) since it 

is independent of which algebra in q; we select. We define polyno­

mials of the type of ft over X to be the smallest set of formal expres­

sions such that: 

(1. 1) for each x EX, x is a polynomial; 

(1. 2) if p1, ••• , Pn(i) are polynomials, then fi (p1 , ••• , Pn(i)) 

is a polynomial. 

It follows from the definition that the polynomials over X form an 

algebra of the similarity type of <l, called the word algebra over X, 

and denoted W(X). 
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In view of the inductive definition of a polynomial, each poly­

nomial involves only finitely many members of X. These "variables" 

may be arranged into a sequence, say x = ( xP ... , xk) E xk. Then 

we may regard polynomials as functions p(x) on any fixed algebra A 

of (; according to the rule: if a = ( aP ... , ak) € A0k, then 

(1. 3) xi(a) = ai, 

(1. 4) fi (p11 ••• , Pn(i)) (a) = fi (p1 (a), ... , Pn(i) (a)) 

If a polynomial p involves k or fewer members of X, then p is 

called a k-variable polynomial. 

If p(x) and q(x) are polynomials over X, an algebra A of fl 

is said to satisfy the identity p(x) = q(x) if for every a E A0k we have 

p(a) = q(a). The class q; is said to satisfy an identity if every algebra 

in q; satisfies it. 

A class 'k of algebras is a variety (or equational class) if · 

there exists a set A of identities such that 'K is the class of all alge­

bras of a given similarity type which satisfy all the identities of A. 

We review some basic notions for the study of algebras. Let 

N ( y E r) be an indexed set of similar algebras. The direct product 

X Ai' is the algebra B = (Bo, F) where B0 is the full cartesian 
YE r 
product i r Ab , and the operations are defined com ponentwise, i. e. , 

if b11 ••• , bn(i) € B0 , then (fi (b1 , ••• , bn(i))i' = f{ (ht, ... , b~(i)). 
Given an algebra A = ( A0 , F), a subset B0 of A0 is called a 

subalgebra of A if Bo is closed under the operations of F, i. e. , if 

b € Bon(i) implies fi (b) € B0 for all i € I. 
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Given two similar algebras A = ( A0 , { fi : i E I} ) and B = 

(Bo, { gi : i E I}), we say that a mapping ~ of A0 into B0 is a homo­

morphism if for all i E I and for all aP ... , ~(i) E Ao, 

One easily verifies that varieties are closed under the forma­

tion of direct products, subalgebras, and homomorphic images. A 

fundamental theorem on varieties states the converse: if r<.. is a class 

of algebras closed under the formation of direct products, subalgebras, 

and homomorphic images, then ,'?<. is a variety [ 2] . 

Varieties of algebras were first studied as such by Birkhoff [ 2] . 

Central to the study of varieties is the study of relatively free algebras, 

i.e., algebras which are k-free for some variety !<.. It was soon 

realized that the existence of H -free algebras held for slightly more_ 

general classes 7./, today called universal Horn classes . We shall 

sketch the proof of this theorem below. 

Let rt be a class of similar algebras. An algebra A is said 

to be q; -free if A E (; and there exists a subset X c A such that (i) 

X generates A, and (ii) every map of X into an algebra in tJ can be 

extended to a homomorphism. 

A universal Horn sentence is a sentence of the form 

(1. 5) V x E Aon : p1 (x) = q1 (x) and . . . and ~(x) = qk(x) 

~I\+ 1 (x) = qk+ 1 (x) 

where each pi' qi is an n-variable polynomial. An identity p(x) = q(x) 
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will be considered as a special case of a universal Horn sentence, 

since it may be written as 

(1. 6) "\/ x E Aon : Xo = Xo :::;> p(x) = q(x) . 

A class fl of algebras is a universal Horn class (or quasi­

variety) if fl is the class of all algebras of a given similarity type 

satisfying some collection of universal Horn sentences. Thus, in , 

particular, every variety is a universal Horn class. Universal Horn 

classes have been characterized in terms of intrinsic properties by 

Mal' cev [ 19] . 

A class of algebras is said to be nontrivial if it contains an 

algebra with more than one element. 

Given a set S, let Il(S) denote the set of partitions (equivalence 

relations) on S. There is a natural partial ordering on equivalence 

relations: if TT, p E Il(S), let 1T ~ p if x 1T y implies x p y. Under this 

ordering Il(S) forms a complete lattice with unit element 1 = 82 and 

null element 0 = { (x, y) E S2 
: x = y}. Furthermore, if we consider 

partitions as subsets of 82
, the meet of a set of partitions is precisely 

their set intersection, i. e. , x /\ P1· y if and only if x p
1
. y for all 

JEJ 
j E J. 

If P, 1T E Il(S) we define the relational product P;1T by r P:TT s 

if there exists t E 8 such that r p t 1T s . The formation of relational 

products is easily seen to be an associative operation. The relational 

product p;TT is not in general a transitive relation, however. We 

define (P;TT)n inductively: (P;TT)0 is the identity relation, and 
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(P;n)k+ 1 = (p;n)k; p;n . In Il(S) the join operation is given by 

(1. 7) r j'{J pj s if there exist tt, ... , tn _ 1 E S and 

In particular, 

j(l), ... , j(n) E J such that r = to Pj(l) t1 Pj(2) t2 ••• tn- 1 

Pj(n) tn = s. 

If p E Il(S) and s E S, then 

s/p = {x E S : x p s} . 

Throughout we shall use round symbols Cl , U for the set operations 

intersection and union, respectively, and sharp symbols /\ , V for 

the lattice operations meet and join. General information about lat~ 

tices may be found in [ 1 ] or [ 3 ] . 

A congruence relation on an algebra A is an equivalence rela­

tion on Ao which preserves the operations of F. More formally, an 

equivalence relation () is a congru~nce relation if for all i E I and for 

all a, b E Aon(i), if a1 () b11 ••• , an(i) 9 bn(i)' then fi (a1 , ••• , an(i)) () 

f.(b1 , ••• , b (.)). Thus for any congruence relation 9 we can form the 
1 n 1 . 

quotient algebra A/ e = (Ao I(), F) where Ao I e = { x/ () : x € Ao } ' and 

the mapping x-+ x/9 of A onto A/8 is a homomorphism. Conversely, 

if ; : A -+ B is a homomorphism, then 

(1. 8) ker ; = { ( x, y) E A0
2 

: ; (x) = ; (y)} 
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is a congruence relation on A, called the kernel of ~ , and ~(A) is 

isomorphic to A/ker ~. 

The congruence relations on A form a complete sublattice E>(A) 

of the partition lattice II(A0 ). In particular, the meet and join of a set 

of congruence relations are just their meet and join as equivalence 

relations. 

If ~ : A~ B is a homomorphism, then E> (~(A)) is isomorphic 

to the quotient sublattice 1/ker ~ of E>(A). 

If r is a ·collection of congruence relations on A, let /\ r 

denote /\ cp • There is a natural imbedding of A/ A r into X A/ cp, 
cpE r cpE r 

namely we map x E Ao into the vector { x/cp) cpE r. Then A/ Ar is 

called a subdirect product of ~A/cp} cp€ r . 
Theorem 1. 1: Let q; be a nontrivial class of algebras closed under . 

the formation of subdirect products. Then for any set X there exists 

a rt -free algebra generated by X. 

Proof: Let W(X) be the word algebra over X of the similarity type of 

the algebras of € . Let 

r = { cp € E>(W(X)) : W(X)/cp E q;}, 

and let () = !\ r. We will show that W(X)/8 is <C -free and generated 

by the classes x/8 (x € X). Since rt is nontrivial x/8 * y/e for x * y, 

and since X generates W(X), (i) of the definition of a fl -free algebra 

is satisfied. Any map of X into an algebra in q; can be extended to a 

homomorphism on W(X). The kernel of this homomorphism will be in 

r and hence will contain e, so that W(X)/O satisfies (ii). Finally, 
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we can represent W(X)/O as a subdirect product of the W(X)/cp (cp E r). 

Since C is closed under the formation of subdirect products, 

W(X)/ () € q; . 

It is clear from the construction that f (x) = g(x) holds in a 

rt -free algebra if and only if f(x) = g(x) is an identity in q; , i. e. , 

f(x) = g(x) holds in every algebra of q;. 

Corollary [ 7, 18]: Let 'H be a nontrivial universal Horn class. Then 

for any set X there exists an rt -free algebra generated by X. 

Proof: Let A be a subdirect product of algebras in 'N. The left .. hand 

side of an implication in a universal Horn sentence holds in A if and 

only if it holds in all the subdirect factors, in which case the right­

hand side will hold in all the factors, and hence in A. Thus A E 'H. 
(R. Lyndon has characterized the logical sentences which are 

preserved under the formation of subdirect products [ 15 ] . ) 

If € is a class of algebras closed under the formation of sub­

direct products, then the q; -free algebra generated by X will be 

denoted F ~ (X), and where there is no possible ambiguity we will write 

F(X) for Fq;(X). 

A lattice identity is an inclusion u ~ v, where u and v are 

lattice polynomials. Note that u ~ v is equivalent to the equation 

u A v = u, and that an equation u' = v' is equivalent to the conjunction 

of the two inclusions u~ ~ v' and u' ~ v' . A lattice identity u ~ v is 

said to be nontrivial if u ~ v fails in some lattice, or equivalently, if 

u ~ v fails on the generators of a free 1a ttice. The procedure for 

deciding whether or not a given lattice identity is nontrivial is due to 
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Whitman [ 26 ] . 

Theorem 1. 2: Let si(i = 1, ... , m), tj(j = 1, ... , n) e: FL(X), and let 

x, y € X. Then 

(1. 9) x ~ y iff x = y ; 
m 

(1. 10) i~l si ~ y iff there exists k € { 1, ... , m} such that 

s ~y. k . 
n 

(1. 11) x ~ Y t. iff there exists p € { 1, ... , n} such that 
j = 1 J 

x~~; 
n 

(1. 12) s1 ~ j ~l tj iff s1 ~ tj for all j € { 1, ... , n} ; 
m 

(1.13) i¥l si ~ t 1 iff si ~ t 1 for all i e:{l, ... ,m}; 

m , n 
(1. 14) i ~l si ~ j 'f 1 tj iff there exists k € { 1, ... , ~} such that 

sk ~ j ~ 1 tj ' 

or there exists p € { 1, ... , n} such that 

m 
.1\ 1 s. ~ L . 
1 = 1 -p 

Conditions (1.12) and (1.13) hold in any lattice, and conditions 

(1. 9), (1.10) and (1.11) hold in any relatively free lattice [ 14]. The 
' 

significance of (1. 14) is discussed in [ 5]. 

If q; is a class of algebras, let e (C) denote the class of all 

congruence lattices O(A) for A € q;. We say that 0(€) satisfies a 

nontrivial lattice identity o if every member of 0(<l) satisfies o. 
Let q;e denote the variety of algebras generated by a class q;, 

i. e. , q;e consists of those algebras which satisfy each identity which 

ho Ids in every algebra of q; • 
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Theorem 1. 3: Let t be a class of algebras closed under the forma­

tion of subdirect products, and let o be a nontrivial lattice identity. 

Then the following are equivalent: 

(1. 15) 0(<?;) satisfies o ; 
(1. 16) 0(<Ce) satisfies o ; 

(1. 17) 0(F t:(X)) satisfies o for every set X : 

(1. 18) 0(F c(Y)) satisfies o where Y is countably infinite ; 

(1. 19) 0(F C (E)) satisfies o for every finite set E. 

Proof: Since q; c te, (1.16) i~plies (1.15). Clearly (1. 15) implies 

(1. 17) and (1. 17) implies (1. 18). If E is finite and Y is infinite, 

then F c(E) is a homomorphic image of F <l(Y), so (1. 18) implies 

(1.19). It remains to show that (,1. 19) implies (1. 16). 

First we show that for any set X, F <l(X) is isomorphic to 

F <ee(X). For suppose W(X)/t/I € q;e. Let £J be as in the proof of 

theorem 1. 1. If t/11 (J, then there exist p(x), q(x) € W(X) such that 

p(x)/8 = q(x)/8 while p(x)/t/1:1: q(x)/1/1. But p(x)/8 = q(x)/£J means 

that p(x) = q (x) is an identity in every algebra of q;, and hence in 
' i 

every algebra of i q;e. Since W(X)/t/I € te, we must have 

p(x)/1/1 = p(x/1/1) = q(x/1/1) = q(x)/t/I 

where x/1/1 = (x1/1/I, ... , xn/t/I), a contradiction. Hence 1/1 ~ e. The 

proof of theorem 1. 1 now shows that F a(X) f:!f W(X)/£J ~ F q;e(X). 

Assume 0(F(E)) satisfies the nontrivial lattice identity u ~ v 

for every finite set E. Thus u and v are lattice polynomials in 
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variables xl' ... , xn say, and u f v in FL(X), where X = {x11 ••• , xn}. 

e e n Let A € C and let (} = (01 , ••• , On) E ('"'(A)) . Let a, b E A and suppose 

a u(B)b. ·we can decompose this relation into a finite number of sim­

pler relations by successively applying the following processes: 

(1. 10) Replace c w /\ w 2 ( 8) d by the relations c w 1 ( 0) d and 

c w2 (0) d . 

(1. 21) If c w1 Vw2 (8) d, then there exist elements c,, ... , ck- l 

€ A such that 

We may continue until we are left with a finite list of relations of the . 

form c Oi d where c, d € A and i € { 1, ... , n} . Let Y be the set of 

members of A involved in the list A of relations obtained from our 

original relation a u(8) b. Then Y is finite. Let Y* be a new set of 

symbols 

Y* = { y* : y € y} ' 

and form the rt -free algebra F(Y*). Let 7 be the homomorphism of 

F(Y*) into A generated by extending the mapping 70 (y*) = y for 

y* E Y*. Let <pi(l ~ i ~ n) be the congruence relation on F(Y*) 

generated by identifying all the members of Y* whose images under 7 

are identified by ei in the list A , i. e. , 
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cpi = V { 8(c*, d*) : c Oi d belongs to the list A} . 

Let cp = (cp11 ••• , cpn) E (0(F(Y*)))n. Then clearly a* u(cp) b*. Since 

0(F(Y*)) satisfies u ~ v, we have a* v(cp) b*. We now show that for 

any lattice word w and any s, t e F(Y*) we have s w(cp) t implies 

7 (s) w(O) 7(t). From this we will be able to conclude that a v(O) b, 

as desired. 

Let Ki = { (s, t) E (F(Y*)) 2 
: 7(s) Oi 7(t)}. Then Ki is a con­

gruence relation on F(Y*); in fact, if '1Ti is the canonical homomor­

phism of A onto A/ ei, then Ki is the kernel of the homomorphism 

'1Ti 7 of F(Y*) into A/ Oi. Furthermore, if c*, d* E Y* and c Oi d 

belongs to the list A , then c* Ki d*. Hence cpi ~ Ki' i. e. , s cpi t 

implies 7(s) oi 7(t). 

We now use induction on the complexity of the lattice word w 

to show thats w(cp) t implies 7(s) w(8) 7(t). If w = wI /\w 2, then 

s w(cp) t implies s wI (cp) t and s w2 (cp) t . By the inductive hypothesis, 

7(s) wI(O) 7(t) and 7(s) w2 (8) T(t), and thus 7(s) w(8) T(t). If w = w1vw2 

and s w(cp) t, then there exist sP ... , sk- 1 E F(Y*) such that 

By induction we obtain 

and thus 7(s) w(O) 7(t). This completes the proof of theorem 1. 3. 
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The argument of the or em 1. 3 is derived from an argument 

of Mal' cev [ 17 ] . Related results appear in [ 25] . 

The remaining theorems in this thesis will be stated in terms 

of varieties of algebras. In view of theorem 1. 3, corresponding 

theorems hold for arbitrary classes of algebras closed under the for­

mation of subdirect products. 

A fundamental theorem of Whitman states that every lattice can 

be imbedded in a partition lattice [ 27]. It follows that the class of 

all partition lattices satisfies no nontrivial lattice identities. In fact, 

every nontrivial lattice identity fails in Il(S) for some finite set S [ 23]. 

By a unary algebra we mean an algebra A = (A0 , F) such that 

each f E F is unary, i.e., n(i) = 1 for all i E I. 

Theorem 1. 4: Let )( be a non-trivial variety of unary algebras. 

Then for any set X, the partition lattice Il(X) is isomorphic to a sub'.'" 

lattice of the congruence lattice 0(F(X)), where F(X) is the '?<-free · 

algebra generated by X. 

Proof: We may assume IX I> 1. For ye X let S(Y) denote 

the subalgebra of F(X) generated by Y. Suppose z E S(x) n S(y) for 

some x, y EX (x '=I= y). Then there exist unary polynomials (composi­

tions) f and g such that z = f(x) = g(y). It follows that f(a) = g(b) 

is an identity in '}( . Hence z = f(x) = g(x) for all x E X, and 

z E n S(x). Let Z = nX S(x), and let T(x) = S(x)' Z. Then 
xEX XE 

T(x) =I=¢ since f<.. is non-trivial. Thus F(X) = Z U UX T(x), and 
XE 

the union is disjoint. We now exhibit a monomorphism of Il(X) into 

0(F(X)). Suppose 1T E Il(X), and let E1 (i E I) denote the equivalence 
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classes of 1T. The natural map of X onto I given by 

if x E E. 
1 

can be extended to an epimorphism of F(X) onto F(I). Note that if 

<p1T(u) = cp7T(v) where u = f(x) and v = g(y), then f(i) = g(j) where 

x E Ei' y E Ej. If i = j then f(a) = g(a) is an identity in k, and thus 

v = f (y). If i -:f:. j then f (a) = g(b) is an identity in I<, so that u = f(x) 

= g(y) = v. Thus the kernel of <p'IT is 

K1T = { (f(x), f(y)) : x 1T y and ,f E 3} 

where l denotes all unary polynomials of ;l(. In particular, µ7T 

restricted to Z is the identity relation on Z. It is easy to see that 

the map taking 1T to µ1T preserves order and the join operation. To 

conclude that the map is a lattice monomorphism of II(X) into 0(F(X)) 

it remains to show that 

Suppose (u, v) E µ'IT A µP. Then u = f(x) and v = f(y) where x 1T y, and 

u = g(s) and v = g(t) where s P t. If x -:f:. s or y -:/= t, then u E Z or 

v E Z, and hence u = v. If x = s and y = t, then x p y and (u, v) E 

Corollary: Let 'l< be a nontrivial variety of unary algebras. 

Then the congruence lattices of algebras in 'N generate the variety 

of all lattices. 
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CHAPTER II 

CONGRUENCE LATTICES OF SEMILATTICES 

A standard method of proving that a class of lattices satisfies 

no nontrivial lattice identities is to show that all partition lattices 

are contained as sublattices of lattices in the class. The congruence 

lattices of semilattices, however, are known to satisfy the universal 

Horn sentence: 

(2.1) \Jx, y, z: xi\ y =xi\ z =>x /\ (y V z) =xi\ y, 

as we will show in theorem 2. 2. It follows that the partition lattice on a 

three-element set (the five-element two dimensional lattice) is not 

isomorphic to a sublattice on the congruence lattice of a semilattice, 

and in fact is not a homomorphic image of a sublattice of the con­

gruence lattice of a finite semilattice. Nonetheless we shall show 

in this chapter that the congruence lattices of semilattices satisfy np 

nontrivial lattice identities. This solves problem 6 of [ 24]. Using 

a theorem of T. Evans [ 8], we also show that if Y is a variety of 

semigroups all of whose congruence lattices satisfy some fixed non­

trivial lattice identity, then all the members of V are groups with 

exponent dividfog a fixed finite number. 

A semilattice is a commutative idempotent semigroup. We 

may impose a partial ordering on a semilattice S by defining 

x < y if xy = x. 
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Under this ordering, any two elements x, y £ S have a greatest lower 

bound, namely their product xy. S is called a meet semilattice. It 

may be that x and y have a least upper bound w £ S; if so, we define 

x + y = w. 

Thus +is a partial operation on S, and x + y is called the join of x 

and y. If S is finite, and if x and y have a common upper bound, then 

x + y exists and 

x + y = rr{ z £ s: z > x and z 2- y}. 

The least element of a semilattice, if it exists, is denoted by 0 ; the 

greatest element, if it exists, by 1. 

(2. 2) 

(2. 3) 

A dual ideal of a semilattice Sis a set DC S satisfying 

d1' ~ £ D implies d1~ £ D; 

x .>-_ d £ D implies x E D. 

We will denote the principal dual ideal above x by 1/x, i.e., 

1/x = {z E S: z > x}. 

For reference we note that if x + y is defined, then 

1/x (\ 1/y == 1/x + y. 

If S and T are semilattices, then S x T will denote the 

(external) direct product of S and T. 
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The following theorem is basic to the study of semilattice 

congruences. 

Theorem 2.1 [ 21]: Let 2 denote the two-element semilattice. If 
""' 

S is any semilattice and D is a dual ideal of X, then the mapping µ.: 

S - 2 defined by 
""' 

µ(x) = 

is a homomorphisn. Thus 2 is the only subdirectly irreducible semi-
"' 

lattice, and the dual of 0(S) is a point lattice (0(S) is a copoint lattice) . 

Proof: For p.(x) µ(y) = 1 iff µ(x) = 1 and µ(y) = 1 iff x £ D and 

y € D iff xy € D iff µ (xy) = 1. 

Theorem 2. 2 [ 21]: If S is a semilattice, then 0(S) satisfies 

(2.1) I cpl\ 6=cpl\1fJ implies cpl\(e V 1/J = cpl\ 8. 

Proof: Let cpl\ e = cpl\ 1/1 = K. Suppose x, y £ S and x cpl\ (fJ V lfJ)y. 

Then there exist elements x11 • • •, xk-l £ S such that 

(2.4) x cp y; 

(2. 5) 

Note that for each i (0 ~ i ~ k) we have yxi cp xyxi. From (2. 5) we 

have yx1 fJ xyxi- Thus yx1 cpl\() xyx11 so yx1 K xyxi- Similarly, 

y~ 1fJ yx1 K xyx1 t/I xy~, soy~ t/; xy~, hence y~ K xy~. We continue, 

until for xk ( = y) we obtain y K xy. Symmetrically we obtain x K xy, 

so that x K y. Thus <p /\ (fJ V 1/J) = K. 
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We now state the main result of this chapter. 

Theorem 2. 3: Let o be a nontrivial lattice identity. Then there 

exists a finite semilattice S(o) such that o fails in the congruence 

lattice 0(S(o)). 

The theorem is an immediate consequence of lemmas 2. 1 and 

2. 4 to be proven below. 

Lemma 2.1: Let S be a finite meet semilattice, and letJ(S) be the 

lattice of (partial) join-subalgebras of S, with 0 E S considered as a 

distinguished element. Then the congruence lattice O(S) is dually 

isomorphic toJ (S). 

A partial join subalgebra of Sis a subset containing 0 and 

closed under joins, whenever they exist. 

Proof: The dual atoms of O(S) are the partitions 1/ld = (1/d)(S - 1/d) 

for 0 :/: d E S. On the other hand the atoms of J(S) are the sub algebras 

;d = { O, d} for 0 :/: d £ S. We want to show that the mapping l/ld - ~ci 

induces a dual ismorphism of O(S) ontoJ'(S). Since 0(S) is a copoint 

lattice and$ (S) is a point lattice, it is sufficient to show that their 

closure operati
1
ons are duals under the mapping, i.e., that 

1/1 > l/lct /\ • • • /\ l/ld c 1 k 

if and only if 

~ < ~d V .• ·V ~d 
c 1 k" 

This is equivalent to 
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if and only if 

where (du • • ·, dk) denotes the join subalgebra generated by 

{du • • ·, dk}. Notice that the equivalence classes of 1/Ja /\ • • · /\ 1/Ja 
1 k 

are 

<(\1/d. -v 1/d.) 
·1 1 ·1c J ]€ JE 

for IC { 1, • • ·, k}. If 1/Jc > 1/Ja /\ • • • /\ 1/Jd then each of these 
1 k 

classes is contained in either l/c or S - 1/c. Considered the 

1/Jd /\ • • • /\ 1/Jd - class which contains c. Then c is the least 
1 k 

element of that class, and thus 

c = L di for some I C{l, • • ·, k}. 
i€l 

Hence c E (du • • •, dk) . Conversely, if 

then 
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IC {1, • • ·, k}. Thus the congruence 

has one class equal to 1/c and the rest contained in S - 1/c. Hence 

This completes the proof of lemma 2.1. 

Suppose u < v is a nontrivial lattice identity, i. e. , u < v 

does not hold in a free lattice. Then we construct a finite semilattice 

S(u) (depending only on u) such that u < v fails in~S(u)). Combined 

with lemma 2.1, this will prove theorem 2. 3. 

Let X = { x, y, z • • • } be a countable set, and let FL(X) denote 

the free lattice on X. For each element u E FL(X) we will define a 

finite semilattice S(u). First of all we write each u £ FL(X) in canonical 

form. Then we define 

(2. 6) 

(2. 7) 

(2. 8) 

where 

S(x) = 2 for x £ X 
"" 

S(u1 V ~) = S(u1) x S(~) 

S(u1 /\. ~) = S(u1) x S(~) - r 

r = 1/(1, O)V 1/(0, 1) .. { (1, 1)}. 
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Let us look more carefully at the construction. If S(u1) and 

S(~) are lattices, then S(u1) x S(~) - r is meet-closed and has a 

unit element; hence it is a lattice. It follows by induction that S(u) is 

a lattice for each u € FL(X). We need to know how to compute joins 

in S(u). In S(u1 v ~) joins are of course taken componentwise. In 

S(u1 /\ ~) we have 

In any S(u) let us denote (1, 1) by 1. 

For each u £ FL(X) we now define a homomorphism cp u of FL(X) 

into S(S(u)). We do this by associating with each y E X a join­

subalgebra cpu(y) of S(u), and extending this map to a homomorphism 

in the (unique) natural way. Once again we proceed inductively, with 

u £ FL(X) written in canonical form. For y E X we set 

S(x) if y = x 

(2.10) <P x(y) -
o} if y f. x 

(2.11) 

(2.12) <Pu
1
/\ ~ (y) = {(ru r 2): r 1 € <Pu

1
(y) - {1}, r 2 E <,p~ (y) - {1}} 

V A (cpu1 (y), 'P~ (y)) 
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~ if 1 ~ A and 1 f_ B 

where A(A, B) = 
if 1 e: A or 1 E B. 

Our computations will be based upon the following lemma. 

Lemma 2. 2: If w e: FL(X), then 

(2.13) <Pu
1
V ~ (w) = cpu

1
(w) x rp~(w) 

(2.14) <Pu
1 
I\~ (w) -{1} = {(r, s) e: 'l'u

1 
(w) x <p~ (w): r =1= 1 and s =1= 1}. 

Proof: We prove (2.14); the p~oof of (2.13) is similar but easier. 

We proceed by induction on the length of w. For w = y £ X the lemma 

is immediate from the definitions. Now note that since 0 E T for 

every T e:$(S(u), we have 

T1 VT2 = {t1 + ~: t1 E T 11 t2 E T2}. 

Hence if w = w1 V w2, then by (2. 9) we have 

<P U1 /\ ~ (w) - {1} = 'l'u1 /\ ~ (w1)V <Pu1 /\ ~ (w2) - {1}. 

= { (ru S1) + (r2, S2): (r1, s1) e: <Pu1/\ ~ (w1), 

(r2,~) £ 'l'u1 /\~(w2), r 1 + r2 :f: 1, s1 + s2 # 1}. 

By the inductive hypothesis we have 
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for i = 1, 2 and hence 

<Pu
1
/\ ~(w) - {1} = {(r, s) £ <Pu

1
(w) x <P~(w): r # 1 ands =1 1}. 

On the other hand, if w = w1 I\ w2 , then 

and the conclusion of the lemma follows. 

Lemma 2. 3. If w £ FL(X), then 1 £ <Pw(w). 

Proof: As usual we proceed by induction on the length of w. If 

w = y £ X the lemma follows from the definitions. If w = w1 V w2 , 

then 1 £ <l'w. (w i) (i = 1, 2), and thus by (2.13} we have 
1 

from which it follows that 

If w = w1 I\ w2 , we can again assume 1 € <pw (w.) for i = 1, 2. 
i 1 

We need to show that 

We prove a slightly stronger statement: if 

then 

1 £ <Pw (u), 
1 
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1£<Pw/\w(u). 
1 2 

If u = y £ X this is immediate. Suppose u = u1 V ~· Then 

and hence 

1 = t1 + ~' where t. E <p (u.). 
1 w 1 

If t 1 # 1, ~ # 1, then by (2.14) we have 

= <pw /\ w (u). 
1 2 

If t. = 1 for some i then by induction 1 E <Pw (u.) implies 
1 1 1 

1 E <Pw I\ w (ui)C <Pw /\ w (u). 
1 2 1 2 

Suppose u = u1 /\ ~. Then 

By induction 

for i = 1, 2 and we are done. 

Lemma 2.4. Ifu £. v in FL(X), then 1 £ cpu(v). 
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Assume we have proven lemma 2. 4. Then lemmas 2. 3 

and 2.4 combine to yield: 1 £ <Pu(v) if and only if u ~ v in FL(X). 

Hence <Pu(u)C <Pu(v) if and only if u < v in FL(X), and theorem 

2. 3 follows. 

Proof of 1 emma 2. 4. Suppose the lemma is false. Let u be a word 

of minimum length such that 1 £ <Pu(v') for some v' such that 

u £ v' in FL(X). Let v be of minimal length such that u £ v and 

1 £ <Pu(v). We will show that these conditions lead to a contradiction. 

The cases 

u £ X, or u = u1 V ~' 

and 

are easy to handle. Let us assume, then that u = u1 /\ ~ and 

v = v1 V v2 • Then since u £. v we have 

Since 

there exist ti E <Pu (vi) such that t 1 + ~ = 1. If ti = 1 for some i then 

by the minimal length of v we have u < vi' a contradiction. Thus 

t. # 1 and by (2.14) we can write t
1
. = (r., s.) where r. £ cp (v .) and 

1 1 1 1 U1 1 

s. E <p, (v.). Now either r 1 + r 2 = 1 in S(u1), which means 
1 Va. 1 
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and hence u < v, or s1 + s2 = 1 and~ < v. Both these statements 

are contradictions. 

Since the semilattices S(u) constructed above are in fact 

lattices, they are join semilattices. Thus, the above proof shows 

that any nontrivial lattice identity fails in the subalgebra lattice of 

some finite semilattice. 

Now the congruence lattices of lattices satisfy every nontrivial 

lattice identity, while those of semilattices satisfy no identity. It 

is reasonable then to ask if there is some "natural" restricted class 

er: of semilattices such that the congruence lattices of semilattices 

in CC satisfy some lattice identity. 

One such class is known [ 6]. A simple argument based on 

lemma 2. 1 shows that 0 (S) is nonmodular if and only if S contains 

a pair of noncomparable elements with a common upper bound. Hence 

8(8) is either nonmodular, or else it is isomorphic to the Boolean 

algebra of subsets of some set. 

On the other hand, the semilattices S(u) constructed in the 

proof of theorem 2.3 are in fact lattices; in particular, the join of 

every pair of elements is defined. It follows from theorem 2.1 

that S(u) can be imbedded as a join semilattice into a Boolean 

algebra B(u). Considering B(u) as a meet semilattice, we see that 

every nontrivial lattice identity fails in the (semilattice) congruence 

lattice of some finite Boolean algebra. 
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We can now prove an interesting corollary about varieties 

of semigroups. Let R denote the two-element semigroup with 

multiplication law xy = y; L the two-element semigroup with· multi­

plication law xy = x; and C the two element semigroup with 

constant multiplication. The following theorem is due to T. Evans [8]. 

Theorem 2.4: If a nontrivial variety ofsemigroups does not 

contain R, L, C, or ~' then it is a subvariety of ~' the variety 

of groups of exponent dividing n, for some finite n. 

Proof: Let Y be a nontrivial variety of semigroups not containing 

R, L, C, or 2. Consider Fy (1). Either ...... 

(2.15) F(l} is infinite cyclic, or 

(2.16} xn = ~ for some n > k > 1, or 

(2. 17) xn = x for some n > 1. 

If (2.15) holds, let () be the congruence which collapses 

{~ : k > 1}. Then F(l)/e ~ C. If (2.16) holds, let S be the sub­

algebra of F(l) generated by ~-l, and let <p be the congruence on S 
0 (k-l} which collapses {xl : j > 1}. Then S/'f' ~ C. Hence we can 

assume (2.17). 
2 

Consider F(2). If n =2 (x = x), then the elements x, xyx 

generate 2 if they are distinct. Hence we must have xyx = x. 
"' 

Then the elements x, xy generate R if they are distinct. If they are 

not distinct, then Y satisfies xy = x, and F(2) ~ L. Hence n > 2. 
n-1 n-1 n-1 n-1 Now if x = y , then x is a unit element (yx = 

n . n-2 n-1 n-1) y = y) and every element is invertible (yy = y = x , 
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hence Y c;:_ Bn-l · 
n-1 n-1 n-1 n-1 Suppose x #- y . Then x and y are distinct 

idempotents in F(2) ((xn·l)2 = xnxn- 2 = xxn- 2 = xn-l) which we 

can denote e, f. Now the elements e, (efe)n-l generate 2 if they 
"' 

are distinct, hence we can assume (efe)n-l = e. Then the elements 

( )n-1 n-1 n-1 ef , e generate R unless (ef) = e.· Symmetrically (fef) = 

f and the elements (ef)n-l, f generate L unless (ef)n-l = f. But 

then e = (ef)n-l = f, contrary to hypothesis. 

Now if T is a semigroup in the variety generated by R, L, 

or C, then 0(T) is just the partition lattice on T. Hence theorems 
I 

2. 3 and 2. 4 combine to give the following corollary. 

Corollary. If Vis a semigroup variety of all whose congruence 

lattices satisfy some fixed nontrivial lattice identity, then Y is a 

subvariety of 1!l n for some finite n. 
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CHAPTER III 

VARIETIES WHOSE CONGRUENCES SATISFY CERTAIN 

LATTICE IDENTITIES 

In this chapter we show that varieties whose congruence 

lattices satisfy one of a class of lattice identities of a fairly general 

form (see theorem 3.1) are in fact congruence modular. A similar 

theorem is proved for congruence distributivity. 

Throughout this chapter 7< will represent an arbitrary 

variety of algebras. 

If w £ FL(X), then var(w) is the set of members ofX which 

appear in the canonical expression of w. 

If p £ Il(S) and SC U, then pis the member of II(U) given by 

p = { (x, y) : xpy in S or x = y} . 

If <P: X - II(S) and S ~ U, then we define ~: X - Il(U) by 

~ (x) = p where p = q>(x). 

If s, t £ S, then we let t(s, t) denote the principal equivalence rela­

tion 

~ (s, t) = { (x, y): {x, y} = { s, t} or x = y}. 

The main purpose of this chapter is to prove the following 

theorem. 
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Theorem 3. 1: In FL(X) suppose a0 , • • • , ak (k ~ 1) are joins of 

members of X. Let w E: FL(X) be such that w £ a0 and a0 /\ w <i. 
k 
V (a0 /\ oi). Then if 6(K) satisfies the lattice equation 
i=l 

k 
(3.1} 0'0 /\ w ~ V (a0 /\ a.) 

. 1 1 l= 

e (~) is modular. 

Before proving the theorem we make a couple of comments. 

(1) If we write the modular law as 

xi\ [ (x/\ y) V z] ~ (x/\ y) V (x/\ z) 

then it is in the form of (3. 1). 

(2) If k = 1 the relation (3 .1) becomes Go/\ w ~ Go /\ a1' which is 

equivalent to O'o /\ w :E; O'p Now in FL(X) we have O'o /\ w £ 0 1 ; 

applying Whitman's conditions this is equivalent tow£ a1 and var(0o) 

\var(o1) "#c 13. We show that as a lattice identity O'o /\ w ~ a1 implies 

x = y, or equivalently, that 0 0 /\ w ~ 0 1 fails in the two-element 

lattice 2={O,1}. Consider the homomorphismµ.: FL(X) - 2 ...... ...... 

defined by 

µ.(x) = 0 if x £ var(o1) 

µ(x) = 1 if x E: X \ var(o1). 

Clearly µ.(Go) = 1 and µ.(a1) = 0. We want to show that µ.(w) = 1. 

In fact, we have p.{v) = 1 if and only if v £ O'i- Recall that if 

y € X then y £ 0'1 iffy I. var(o1); v1 V v2 £ 0 1 iff v1 £ 0 1 or 
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v2 £ a1 ; v 1 /\ v2 £ 0-1 iff v 1 £. a1 and v2 £. a1 (because a1 is a join of 

members of X). The claim now follows by induction on the complexity 

of v. 

The proof of theorem 3.1 requires several lemmas. We 

give a different proof of lemma 3. 1 from that of a stronger theorem 

in [ 10], one which we will be able to modify for use in lemma 3. 3. 

Lemma 3. 1: Let 0'1' • • •, am be joins of members of X and let 

w E FL(X) be such that w £ ai (i = 1, • • •, m). Then there exist a 

finite set S(w), elements s1' ~ £ S(w), and a homomorphism <Pw= 

FL(X) - II{S(w)) such that 

(3. 2) 

(3. 3) 

(s1's2 ) £ <Pw(w) 

(s1 , ~) i <Pw(ai) (i = 1, • • •, m). 

Proof: We induct on the complexity of w. For w = x £ X set 

S(x) = { s1' ~} and let 

<P x(x) = (su S2) 

'Px(y) = (s1) (~)for y £ X'\.{x} 

and extend this map to a homomorphism. Clearly (3. 2) and {3. 3) 

are satisfied. 

Suppose w = w1 V w2 • Then the condition w £ ai (i = 1, • • •, m) 

means that for each i there is k{i) £ { 1, 2} such that wk(i) £ ai. Then 

by induction there exist (disjoint) finite sets S(w 1) and T(w2 ) and homo­

morphisms 'Pw : FL(X) - II(S(w1)) and <Pw : FL(X) - II(T(w2)) satisfying: 
1 2 
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Now we set~ = t1 and let U(w) = S(w1) V T(w2 ). For x E X we set 

<pw(x) = fPw (x) V <P-w (x), 
1 2 

and extend this mapping to a homorphism. Clearly 

for all v £ FL(X) (i = 1, 2). Thus we have 

and (s1' ~) t: cpw(w). Observe that if 

then 

Thus 

P=P1V···Vp n 

cp (a.) = V <p (x) 
w 1 x E var(a.) w 

1 

= V q, (x) V V q, (x) 
x £ var(a.) Wi x E var(a.) W2 

1 1 
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Suppose k (i) = 1. Then 

Similarly, if k(j) = 2, then s1 f. t /cp (a.). 
"2 w 1 

Suppose w=w1 /\w2 • Then w £.a. (i=l, •••,m)implies w1 £.a. and 
1 1 

w2 £. ai (these are in fact equivalent because of the form of the ai). 

By induction there exist (disjoint) finite sets S(w1) and T(w2 ) and 

homomorphisms <Pw : FL(X) - II (S(w1)) and <P : FL(X) - II (T(w2 )) 
1 W2 

satisfying: 

(s11 ~) £ <Pw (w1) and (s1, ~) i <Pw (qi) (i = 1, • • •, m) 
1 1 

(t11 ~) £ <Pw (w2 ) and (t11 ~) i <Pw (qi) (i = 1, • • ·, m) 
2 2 

Now we set s1 = t 1 and ~ = ~' and let U(w) = S(w1) V T(w2 ). 

For x £ X we set 

<l'w(x) = q,w (x)V ~w (x) 
1 2 

and extend this mapping to a homomorphism. As before we get 

for all v £ FL(X) (i = 1, 2). Thus (s11 ~) E cpw(w). Also arguing 

as before we get 

so that, in particular, 
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which does not contain~ or~. Thus (s1 , ~) i. <Pw(ai). 

This completes the proof of lemma 3. 1. 

Lemma 3. 2: Let <To, .. 0 , ak (k>l) be joins of members of X. Then 

the following are equivalent in FL(X): 

k 
(3. 4) w £ Go and <To /\. w £ V (a0 /\. a.) 

. 1 1 l= 

(3. 5) 

Proof: Applying Whitman's conditions repeatedly, and dropping 

superfluous relations, we see that 

if f 

if f 

k 

{

w i <To and 

and a0 /\ w $- ai (i = 1, • ••,k) 

there exists Yo £ var(a0 ) such that Yo J' V (a0 /\a.) 
f-. 1 1 l= 

iff 
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f w $. ai (i = O, •••,k) and O"o $._ai (i = 1, •••,k) 

land there exists Yo £ var(a0 ) such that Yo $__ (Uo /\ ai) (i = 1, • • ·, k) 

iff 

k 
w $. ai (i = O, •••,k) and there exists y0 € var(aa)\ ':) var(ai). 

1=1 

Lemma 3. 3 : Let O"o, • • •, ak(k.} 1) be joins of members of X and 

let w E: FL(X). Suppose w $. ai (i = O, • • ·, k) and var(a0 ) '-. 

.~ var(ai) "# ¢. Then there exists a finite set S(w), elements 
i= 1 
Su s2 £ S(w), and a homomorphism <f'w: . FL(X) - n (S(w)) such that 

(3. 6) 

(3. 7) 

(3. 8) 

Proof: We will first prove lemma 3. 3 with (3. 7) replaced by 

(3. 7) I 

Then the original statement can be derived as follows. Let <f'w be a 

homomorphism satisfying (3. 6), (3. 7)', and (3. 8). Let 

k 

Yo € var(Uo)"- V var(a.) . 
. 1 1 l= 

Set 
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1/lw(Yo) = <P w(Y 0) V ~(s1' s2) 

1/Jw(x) = <Pw(x) if x € X '-{y0 }. 

and extend to a homomorphism. Then clearly 1/Jw satisfies (3. 6), 

(3. 7), (3. 8). 

Again we induct on the complexity of w. For w = x E X the 

homomorphism <Px defined in lemma 3.1 satisfies (3. 6), (3. 7)', (3. 8). 

Suppose w = w1 /\ w2 • Then w1 and w2 satisfy the hypotheses of 

lemma 3. 2, and by induction there exist homomorphisms cpw : 
1 

FL(X) - Il(S(w1)) and <Pw : FL(X) - Il(T(w2 )) satisfying (3. 6), (3. 7)', 
2 ! 

(3. 8) for w1 and w2 , respectively. The construction used in this 

case in lemma 3.1 preserves the properties (3. 6), (3. 7)', (3. 8) using 

just the arguments given there. 

Suppose w = w1 V w2 • Then we must alter the construction 

as follows. Si nee w2 V w2 I:.. °i (i = O, • • •, k), for each i there is 

17(i) £ {1, 2} such that w
71

(i) £ ai. For convenience we can assume 

71(0) = 1. Now by induction (for w1) and lemma 3.1 (for w2 ) there 

exist (disjoint) finite sets S(w1) and T(w2 ) and homomorphisms 

<Pw : FL(X) - Il(S(w1)) and cpw : FL(X) - TI (T(w2 )) satisfying: 
1 2 
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Now let S' (w1) be another copy of S(w1), disjoint from S(w1) and 

T(w2 ). Set ~ = t1and ~ = s1 ', and let U(w) = S(w1) V T(w2 ) V S' (w1). 

For x £ X we set 

<Pw(x) = <Pw (x) V q,w (x) V $:n (x) 
1 2 1 

and extend to a homomorphism. Arguing as in lemma 3.1, 

from which we readily obtain (3. 6), (3. 7)' , (3. 8). 

Now with a partition p £ Il(S) we may associate a congruence 

relation 9(p) £ e (F'J(. (S)) given by 

6(p) =V { 6(s, t): s, t £ S and spt}. 

Then given a homomorphism cp: FL(X) - II(S) we may construct a 

homomorphism 1/J: FL(X) - 6 (F°k (S)) by defining 

tf;(x) = 6(<P(x)) for x E: X 

and extending naturally. 

Lemma 3. 4: (1) If w £ FL(X), then i/J(w) > 6(cp(w)). 

(2) If a is a join of members of X, then i/J(a) = 6(cp(a)). 

Proof: Observe that for p, • £ II(S) we have 
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O(p V tr) = O(p) V 8(11) 

e(p I\ 1T) < e(p) I\ e(1T). 

Now we prove (1) by induction on the complexity of w. If w = w1 V w2 , 

then 

t/l(W) = 1/1(W1)V1/J(W2) 

> fJ(<P (W1)) V 8(<P(W2)) 

= 9(<P(w1)V <P(W2)) 

= 9(<P(W)) 

with equality holding in case w is a a, thus proving (2). If w = w1 /\ w2 , 

a similar calculation yields (1). 

The next lemma provides a .piore useful description of 8(p) 

for p £ II(S). We employ the following canonical homomorphisms: 

fl: W(S) - F(S) and 71(s) = s for s £ S, 

11': W(S/p) - F(S/p) andfl'(s/p) = s/p for s £ S, 

p*: W(S) - W(S/ p) and p*(s) = s/ p for s £ S, 

8*: F(S) - F(S/p) and B*(s) = s/p for s E S, 

W(S) --11-~F(S) 
p* ~ 1]' J, 8* 

W(S/p) )'F(S/p) 

Note that the kernel of 8* is 8(p). 
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Lemma 3. 5: Let p e II{S) and tu~ e F1( (S). Then t1 e{p) ~ if and 
-1 -1 

only if there exist f1 E 11 (t1), ~ e 1J (~) such that fl' p* (f 1) = 

17 1 p*(~), i.e., such that f1(s/p) = ~(s/p) is an identity inK. 

Proof: We must show that 71 1 p* = e*q • Let 

T = { t E W(S): 71' p*(t) = 6*71 (t)}. 

Clearly S CT, and since by definition fl, 17 1
, p*, 8* are homomorphisms, 

T is a sub algebra of W(S). Hence T = W(S). 
-1 

Thus, if f, g E' 1J {t), then fl' p*(f) = lJ*(t) = 11' p*(g), so that 

we may in fact choose any f1 £ .,,-\t1), ~ e .,,-\~). The lemma now 

follows since ker(B*) = 8(p). 

Lemma 3. 6[ 4]: In FK. (4) set 

/3 = 8(Xg, ~) 

')' = 8(XuXg) V fJ(~, ~). 

Then e (1<') is modular if and only if (x1' ~) e f3 V (a/\y). 

Proof: If e (1() is modular, then since a ~ f3 we have 

(xu ~) E a I\ (/3 Vy) = f3 V (a/\ y). 

Conversely, suppose (xu ~) £ f3 V (a/\ y). Then there exist elements 

tu • 0 
•, tn-l E F(4) such that 
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Applying lemma 3. 5, there exist four•variable polynomials 

f0 , • • ·, fn such that the following identities hold in 7( : 

(3. 9) fo = Xu fn = ~; 

(3.10) fi_ 1 (xu~,:K..J,X3) = f1 (xu~,:K..J,:K..J) if i is odd; 

(3.11) fi-l (Xu Xu :K..J, :K..J) = fi(Xu Xu :K..J, :K..J) 

These conditions are equivalent to 

(3.12) 

(3.13) 

fo =Xu f = ~; , n 

(3.14) fi-l (xu ~' :K..J, Xs) = fi (xu ~' :K..J, :K..J) if i is odd; 

(3.15) fi-l (xuX..uXu~) = fi (xu~,xu~) if i is even; 

Now let A£ 7C and let <{J, 6, tfJ £ 0(A) with cp ~ 6. We want to show 

that <P /\ (6 V t/J) < 6 V (<P /\ t/J). Let~ = (tfJ;6)k; tfJ so that 

and 

Now 
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Asswne 

and suppose 

a cp (\ 6k+l d, 

say 

a Ak b 6 c 1J1 d. 

Note that 

c Ak d and b cp c. 

Let ui = fi(a, d, b, c) forO <i< n. Then Uo =a, un = d. If i is odd, 

then by (3.14) we have 

Similarly, by (3.13) for all i (0 < i < n) we have 

Also, for all i (0 ~ i ~ n) since a Ak b and c ~ d we have 

Thus, if i is even, 
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By the inductive hypothesis, 

u. 1 e v (cp /\ ,,,) u .. 
1- .,, 1 

Combining these relations, we see that 

(a, d) = (u.,, un) E £J V (cp /\ tf;). 

Thus 

cp (\ Ak+l C (J V (cp /\ 1/1) 

and by induction 

cp (\ Am C (J V (cp /\ 1/1) 

holds for all m. Hence 

and e(A)is modular. Since A was arbitrary in 1<, 6(1() is modular. 

Proof of theorem 1: Let e (1() satisfy the equation (3. 1). Define 

S(w) and cpw: FL(X) - Il(S, w)) as in lemma 3. 3. Then e (F 'K (S(w))) 

satisfies (3. 1) so that 

(su ~) £ <Pw(O'o) /\ cpw(w) 

C e(cp w<Ga /\. w)) 

< 1/1(00 /\ w) 
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k 
< t/AV (ao /\ ai)) 

i=l 

k 
= V (1/J(a0 ) /\ 1/J(ai)) 

i=l 

k 

= ~l [ 8(<Pw(a0 )) /\ 8(<Pw(ai))]. 

Thus there exist elements ti E: F(S(w)) (i = O, • • •, n) satisfying 

{3.16) 

(3. 17) 

(3.18) For each i (1 < i ~ n) there exists j(i) £ { 1, • • •, k} such that 

t. 1 8(<P (o.(.)))t .• 
1- w J l l 

Now let ~j be the homomorphism of F(S(w)) onto F{4) determined by 

E.(s1) = X1 
J 

E·(~) = ~ 
J 

~j(s) = Xs ifs E (s1/<Pw(aj)'\_ {s1}) 

~j(s) = ~ otherwise. 

Note that, in view of (3. 8) of lemma 3. 3 

We will now show that (xu ~) E f3 V (a/\ y) where a, (3, y are as in 

lemma 3. 6. Clearly, 
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by (3.16) above. Since for all j {l < j < k) 

~-(s.) = x. (i = 1, 2) 
] 1 1 

we have, for any pair j, j' £ { 1, • • •, k}, 

~j(s) f3 ;j, (s) for all s £ S(w). 

Fix j and j', and let 

T = { t £ F(S(w)): ~j(t) {3 ~j' (t)}. 

Since the ~j's are homomorphisms, T is a subalgebra of F(S(w)). 

Also S(w) C. T; hence T = F(S(w)). In particular, 

For x, y £ F(S(w)) define 

Clearly 71j is a congruence relation on F(S(w)). From (3. 7) of 

lemma 3. 3 and the definition of ~j we verify that for s, s' £ S(w), 

Thus 
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and 

Then (3. 1 7) yields 

Applying the same argument toy and (3.18), we obtain 

Thus we have 

~·(•)(t. 1> 'Y ~·(•)(t.). J 1 1- J 1 1 

X1 = ~j(l}(t0 ) a/\y ~j(l)(t1) {J ~j(2)(t1) 

a/\y ~j(2)(~) • • • ~j(n)(tn) = ~· 

By lemma 3. 6, 0 (P(') is modular. 

The following application of the arguments of theorem 3. 1 

yields an interesting corollary. 

Theorem 3. 2: The following conditions are equivalent: 

(3.19) e (r0 is modular. 

(3. 20) a (F(') satisfies the equation. 

(*) x/\ [ (x/\ y) V (x/\ z) V (y /\ z)] < (x/\ y) V (x/\ z). 
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(3. 21) There exists a positive integer rt and five-variable poly­

nomials fo, • • •, fn in the word algebra of 1( such that 

(i) 

(ii) 

fo = p, fn = q 

fi(p,p,r,r,r)=p(O< i< n) 

(iii) fi-l (p, q, p, p, q) = fi (p, q, p, p, q) if i is odd; 

fi-1 (p, q, p, q, q) = fi (p, q, p, q, q) if i is even. 

Corollary: Congruence modularity is determined by two-variable 

identities. 
I 

The conditions for congruence modularity given by Day [ 4] 

involve three-variable equations. McKenzie has shown that a lattice 

L satisfies the equation (*) if and only if the lattice (3. 22) is not a 

sublattice of L[ 20]. 

(3. 22) 

Proof of theorem 3. 2: Modularity implies (*), so (3. 19) implies 

(3. 20). To see that (3. 20) implies (3. 21), we apply the Mal'cev 

argument with 
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<p(x) = {p, q) (r, s, t) 

<{J(y) = {p, r, s) (q, t) 

cp(z) = {p, r)(q, s, t) 

To see that (3. 21) implies (3.19), we set 

~i{p) = X1 

~/r) =:Ks 

~1 (s) = :Ks 

~.(q) = ~ 
1 

~i (t) = ~ (i = 1, 2) 

~2(s) = ~ 

and apply the argument in the proof of theorem 3. 1 with p, q playing 

the roles of s11 s2 respectively. 

We can prove a similar theorem for congruence distributivity. 

Theorem 3. 3: In FL(X) suppose CTo, • • •, ak (k > 1) are joins of 

members of X. Suppose w E FL(X) is such that var(w) {\ var( Go) = f3 

and 

k 

<Yo /\w£ ~1 (ao /\ ai). 

Then if 0(=() satisfies the lattice equation 

e (1() is distributive. 

The proof is a modification of theorem 3. 1. The construction 

used in the proof if lemma 3. 3 can be applied to give lemma 3. 7. 
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Lemma3.7: Letw, ai(i=O, ···, k)beasintheorem3.3. Then 

there exist a finite set S(w), elements Su s 2 E: S(w), and a homo­

morphism 'f'w: FL(X) - Il(S(w)) such that 

(3. 23) 

(3. 24) 

(3. 25) 

(su ~) E: cpw(w) 

'Pw(O'o) =~(Su~) 

Lemma 3. 8 [ 12]. In F1( (3) set 

')' = 8(~, JS) 

Then e U() is distributive if and only if (Xu~) E (a/\ {3) v (a/\y). 

Proof: If 0 ( J() is distributive, then 

(xu ~) £ a/\ ({3 Vy) = (al\ /3) V (a/\ y). 

Conversely, suppose 

Then, applying lemma 3. 5, there exists a positive integer n and 

three-variable polynomials f0 , • • ·, fn in the word algebra of K such 

that 



(3. 26) 

(3. 27) 

(3. 28) 
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fa = Xu fn = ~; 

fi(x1 , Xu Xs) = x1 for 0 < i < n; 

fi-1 (xu ~' x1) = fi(xu ~' x1) if i is odd; 

fi_ 1 (xu~'~) = fi(xu~'~) if i is even. 

Now let A be any algebra in 1<. , let s, t £ A and let 

cp, 6, 1/1 € 0 (A). Suppose (s, t) £ q> /\ (6 V 1/1). Then there exist 

elements Su • • •,s2m-l £ A such that 

(3. 29) 

(3. 30) 

s cp t 

We now consider the elements fi (s, t, sj) (0 < i < n, 0 < j < 2m). 

For j odd (3. 30) yields fi(s, t, sj-l) (J fi(s, t, sj); similarly, for j even 

fi(s, t, sj_1) lJI fi(s, t, sj). Also, in view of (3. 27) and (3. 29) we have 

fi (s, t, sj) cp fi (s, s, sj) = s for all i, j. Combining these relations and 

using (3. 28) we form the sequence 

• • • f1(s, t, s2m_1) q>/\ lJI f1(s, t, t) = ~(s, t, t) 

q> /\ 1/1 ~(s, t, s2m_1) • • • ~ (s, t, s 1) cp /\ 6 ~ (s, t, s) 

= f3 (s, t, s) q>/\ 6 f3 (s, t, s 1) • • • fn (s, t, z) = t 

where z is either s or t depending upon whether n is odd or even. 

Thus e (A) is distributive. Since A was arbitrary in 1(, 0(7() is 

distributive. 
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Proof of theorem 3. 3: Proceeding as before, we obtain the 

conditions 

(3.31) 

(3.32) 

(3. 33) for each i (1 < i < n) there exists j(i) £ { 1, • • •, k} such 

that 

which are easily seen to be equivalent to (3.16), (3.17), (3.18). We 

now define homomorphisms ~i' "i' Ti' and µi (1 < is_ n) of F(S(w)) 

onto F(3) by extending the mappings 

x1 if s € s/c;ow(o-j{i)) 

~i (s) = x.z if s E S:?lc;ow(o-j{i)) 

Xs otherwise 

x1 if s E s/c;ow(o-j{i)) (\ s/c;ow(o-j{i+l)) 

1Ji (s) = x.z if s £ ~/'l'w(o-j{i)) 

~otherwise 

x1 if s E s/c;ow(O'j{i)) (\ s/c;ow(O'j{i+l)) 

ri(s) = Xz ifs E ~/c;ow(O'j{i)) (\ s2/<Pw(aj(i+l)) 

Xs otherwise 
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x1 if s € sif cpw(aj(i+l» 

µi(s) = ~ if s £ S:al<Pw(aj(i)) f'\ S:al<Pw(aj(i+l)) 

x3 otherwise. 

Note 

~.(s ) = t].(s ) = r.(s ) = u..(s ) = x.... (p = 1, 2). 1 p 1 ~ 1 p .~l p p 

In view of (3. 24) we have for s, s' £ S(w), 

(s,s') £ <Pw(O"o) implies ~(s) er ~(s') 

for~ £ {~i',.,i' Ti' IL;_}. Arguing as with a in the proof of theorem 

3.1, (3. 32) yields 

Hence 

for 

From the definitions of ~i' 17i, ri' I\ we see that 

for all t £ F(S(w)). Let ~"i be the kernel of ~i' i.e., for x, y, £ 

F(S(w)), 
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xx. y if ~.(x) = ~.(y). 
1 1 1 

From the definition of ~i we see that 

whence 

In particular, 

~.(t. 1) = E.(t.). 
1 1- 1 1 

Combining these relations yields 

~.(t. 1) = ~ .(t.) a/\(3 77.(t.) 
1 i- 1 1 1 1 

Thus (xu ~) € (a/\ (3) V (a/\ y), and e (}::'._) is distributive. 

Corollary: Let m n denote the n+2-element two-dimensional lattice, 

and 115 the five-element nonmodular lattice. If e (}() is contained 

in the lattice variety generated by mn for some finite n, or in the 

lattice variety generated by 7? 51 then e (I() is distributive. 
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Proof: By [ 13], /7? n satisfies the identity 

(3. 34) x /\ V (y. v y.) < V (x/\ y.). 
l<i<j<n 1 J i<i<n 1 

Also, "11 5 satisfies each of these identities for n > 2. 
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