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Abstract 

Two topics are discussed in this thesis. The first is the calculation of 

cosmological baryon number generation in the early universe . These cal­

culations are performed for a variety of SU(5) and SO( 10) unified models. 

The effects of superheavy fermions and charge conjugation symmetry are 

discussed in the context of S0(10) models. The second section contains 

an analysis of natural fermion mass and mixing angle relations in a grand 

unified model based on SO( 10). These relations are used to study neutri.i10 

masses and oscillations . Appreciable mixing is found only betweenµ and 

-r neutrinos . Spinor representations of the Lorentz group and of S0(10) 

are described in two appendices. 
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I. Introduction 

It now appears that we have a consistent description of all elemen­

tary particle interactions occurring at energies below ...., 100 GeV. The 

strong interactions between quarks are described by Quantum Chromo­

dynarnics (QCD) [ 1], while the weak and electromagnetic interactions 

between quarks and leptons are described by the Glashow-Weinberg­

Salam model [2] with quarks incorporated as in the scheme of Glashow, 

Iliopoulos and Maiani [3]. 

The fundamental principle underlying both these theories (and also 

Einstein's General Relativity) is that of gauge invariance. This principle 

requires the invariance of the theory under symmetry transformations 

which may be performed independently at each point of space and time. 

In QCD the symmetry group is SU(3)c and corresponds to unitary 

transformations among the three colors of otherwise identical quarks . In 

the Weinberg-Salam model the symmetry group is SU(Z)L®U(l)y and con­

sists of weak isospin transformations on the left-handed components of 

quarks and leptons and an additional phase transformation. 

At present, theories based on gauge symmetries are the only theories 

consistent with both relativity and quantum mechanics which are capable 

of both describing the observed interactions and dealing consistently 

with the infinities which arise in relativistic field theories. Attempts to 

describe the low-energy interactions as manifestations of a single under­

lying interaction are thus usually based on gauge theories. The strong, 

weak, and electromagnetic interactions can be successfully incorporated 
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into a gauge theory based on a single gauge group, G (e .g. SU(5) [ 4], 

SO(lO) [5], E(6) [6], etc .). which contains the symmetry transformations 

of SU(3)c and SU(Z)L®U(l)y as a subgroup. Such a theory has the virtue 

of possessing only a single gauge coupling constant. The difference in the 

coupling strengths of the strong, weak, and electromagnetic interactions 

is then accounted for by the phenomenon of asymptotic freedom: the 

coupling strengths for SU(3)c and SU(Z)L decrease at large energies 

(small distance scales) [7], while the coupling strength for U( l)y 

increases at large energies. The current values for the weak mixing angle, 

0w ~ 0.23, and the strong coupling constant, o..s ~ 0.2, suggest that all 

three coupling constants should become equal at an energy Mc ~ 1015 GeV 

[8]. At energies ~Mc. all gauge couplings are equal and any particles 

transforming among themselves under the action of G must be degen­

erate in mass. Unified gauge theories thus present an attempt to 

describe all elementary particle interactions up to energies at which 

quantum gravitational effects should become important, Mp"' 1019 GeV. 

At presently accessible energies the symmetries associated with the 

weak interactions and with any possible unifying gauge interactions are 

not apparent. Exact gauge symmetry requires the presence of massless 

gauge bosons (e.g. gluons for QCD or the photon for electromagnetism) . A 

treatment of the weak interactions and of unified gauge theories thus 

requires a mechanism which gives masses to the gauge vector bosons 

which mediate the interactions and thus "breaks" the gauge symmetry. 

The simplest mechanism for breaking the symmetries associated with 

unified gauge interactions involves the introduction of scalar fields 

termed Higgs bosons [9]. These Higgs bosons have minimum energy 

configurations in the vacuum which select a particular direction in the 



-3-

internal symmetry group space, and thus break the symmetry; much as 

the alignment of the individual atoms in a ferromagnet at zero tempera­

ture breaks rotational symmetry inside the magnet. 

There are three major tests of the idea of unification: nucleon decay, 

cosmological baryon number production, and relations between fermion 

masses and mixing angles . Since unified gauge theories generally include 

symmetry transformations which mix quarks and leptons, the gauge 

bosons of G with masses "'Mc will in general mediate both baryon and lep­

ton number violating reactions, which are, however, suppressed at acces­

sible energies by the large masses of the gauge bosons. As a result, these 

theories predict that nucleons should decay with lifetimes only slightly 

longer than the present experimental limit of 1030 years [ 10]. At the high 

temperatures present in the very early universe, the suppression due to 

the gauge boson masses should have been overcome and baryon and lep­

ton number violating reactions should have proceeded with rates compar­

able to those for baryon and lepton number conserving reactions. The 

baryon and ·lepton numbers of the universe may thus be determined by 

the structure of such a unified theory [11]. In addition to breaking the 

gauge symmetry, Higgs bosons are also presumed to be responsible for 

fermion masses . In most cases the coupling of Higgs bosons to fermions 

involves only a few independent coupling constants . As a result, unified 

theories usually give rise to relations between fermion masses and mixing 

angles [ 12]. 

In this thesis we will study cosmological baryon number production 

and relations between fermion masses and mixing angles in unified 

theories based on the Lle group SO(lO). The group transformations of 

these theories are rotations in a ten-dimensional internal symmetry 
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space . Fermion fields are usually placed in spinor representations of 

S0(10) , which are analogous to the spinor representations of the angular 

momentum group, S0(3). There were three main reasons for choosing 

S0(10) unified theories for these investigations. First, these theories 

include as a subset the simplest and most studied unified theories based 

on the group SU(5) , and thus incorporate the successful features of thes e 

theories. Second, several unappealing features of SU(5) models can be 

removed in theories based on SO(lO) . In particular, SO( l O) theories 

present a greater unification of the fundamental fermion fields by includ­

ing transformations among fermion fields which do not mix under the 

action of SU(5) . Finally, theories based on S0(10) predict a number of n ew 

phenomena, such as neutrino masses and oscillations, which are of great 

importance to our understanding of cosmology and elementary particle 

physics . 

Chapter II of this thesis discusses the constraints on unified gauge 

theories necessary to account for the apparent excess of baryons over 

antibaryons in the present universe . Sections 2 and 3 contain considera­

tions which are applicable to any unified theory, while Section 4 contains 

results for SU(5) models. Section 5 discusses the constraints on baryon 

number production which are peculiar to S0(10) models and presents 

results for several typical models. 

The first two sections of Chapter III of this thesis present a detailed 

unified model based on SO(lO) which successfully reproduces the 

observed fermion masses and mixing angles. This model is used in Sec­

tion 3 to study the neutrino masses and oscillations which are a distin­

guishing feature of S0(10) models . Section 4 contains a description of the 
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Higgs bosons necessary in lhis model to achieve the desired pattern of 

fermion masses. 
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II. Cosmological baryon number generation in unified 
models 

1. Introduction 

Grand unified gauge models typically attempt to combine quarks and 

leptons as elements of the same irreducible ·representation of some 

gauge group G (which must contain the observed low-energy symmetry 

group Gu:= SU(3)c ® SU(Z)L ® U(l)y) . The gauge bosons (which transform 

under the adjoint representation of G) induce transitions between 

members of an irreducible fermion representation. Hence some of them 

should mediate baryon (B) and lepton (L) number violating interactions, 

in which, for example, quarks decay into leptons and antiquarks (e .g. , 

uu-.. Cle+) . The limit of 103° years [1] on the lifetime of the proton sug­

gests, however, that any baryon-violating bosons should have masses 

~ 1014 Ge V . Direct evidence for such B-violating interactions must 

presumably come from observation of proton decay. However, if any B 

violation does occur, its suppression at accessible energies due to the 

large masses of the intermediate bosons, should have been overcome at 

the extremely high temperatures which existed in the very early 

universe . We will discuss the constraints on such B-violating processes in 

the standard hot big-bang cosmological model necessary to allow the 

apparent excess of baryons over antibaryons in the present universe. 

Even if the universe initially had a nonzero net baryon number, B­

violating interactions at very early times should relax the asymmetry 

away, leaving equal numbers of baryons and antibaryons. Then, when the 



-9-

universe cooled to a temperature ~ 50 Me V, the baryons and anti baryons 

would have annihilated away and the observed baryon number density 

nB/n7 ~ 10-9 could not be accounted for . To reconcile the possibility of 

rapid B-violating processes at very high temperatures with the apparent 

nonzero net baryon number of the universe, it may therefore be neces­

sary that a baryon asymmetry should have developed from the symmetri­

cal state present after any initial B had been erased . (The possibility of 

this phenomenon was suggested by A. D. Sakharov in 1967.) The genera­

tion of an asymmetry of the required magnitude places severe con­

straints on B-violating interactions, and therefore on grand unified gauge 

models. The purpose of this chapter is to provide a detailed and sys­

tematic description of these constraints . The basic physical phenomena 

involved in the generation of a baryon excess were discussed in [2] where 

several simple illustrative models were considered. We will treat more 

realistic and complicated gauge models, in which many of the parameters 

relevant to baryon number generation are determined by the basic struc­

ture of the models, rather than being arbitrary, as in the illustrative 

models of [2]. 

The generation of a baryon excess from a B = 0 state reqmres 

interactions which violate not only B but also CP (and C, T) invariance . 

This CP violation is probably not connected with that observed in the K° 

system, and in most grand unified models its magnitude is undetermined. 

In certain models, no such CP violation is present, while in others, the B 

generated is insufficient even if the CP violation is maximal. Such models 

(which include the minimal SU(5) model) may therefore be considered in 

disagreement with the standard cosmology. 
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If all the contents of the early universe were in thermal equilibrium, 

then no baryon asymmetry could arise even in the presence of B and CP 

violation (since in thermal equilibrium, no "direction of time" is dis­

tinguished, and CPT invariance renders the CP, T violations ineffective). 

However, massive particles, such as those expected to mediate B­

violating interactions, do not remain in equilibrium when the tempera­

ture of the expanding universe falls below their masses . For certain 

values of the masses, the resulting deviations from equilibrium may be 

sufficient to allow generation of the required baryon excess. 

Above, we mentioned gauge vector bosons as possible mediators of 

B-violating interactions. However, it will turn out that unless super-heavy 

(m ~ 10 10 GeV) fermions exist, gauge boson interactions alone provide 

insufficient CP violation to produce a baryon excess. Nevertheless, in 

most schemes, the spontaneous symmetry breakdown presumably 

responsible for the boson (and fermion) masses must be implemented by 

a Higgs mechanism. Usually many Higgs fields must be introduced to 

provide the required pattern of symmetry breaking, and a large fraction 

of them survive as physical particles. Typically, the Higgs particles have 

roughly the same masses and quantum numbers as the gauge bosons for 

whose masses they are responsible. Hence, some Higgs bosons should be 

capable of mediating B-violating interactions, which may also exhibit CP 

violation. However, models often sport huge numbers of Higgs scalar par­

ticles with a great variety of couplings: baryon asymmetry generation 

provides only a small number of constraints in the general case . In this 

section we consider specific models based on the groups SU(5) and 

S0(10). We begin by reviewing in Sections 2 and 3 some features of B and 

CP violation relevant to almost any model. Much of Section 3 represents 
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work done by D. Reiss and S. Wolfram and is included here for complete­

ness . Section 4 contains a brief description of the general procedure 

used to calculate the evolution of baryon number in realistic unified 

models and presents the results of these calculations for several SU(5) 

models. This section was written as a letter for submittal to Physical 

Review Letters in collaboration with E. Kolb, D. Reiss, and S. Wolfram and 

thus provides an overview of the main features of baryon number genera­

tion. Section 5 deals with the production of baryon number in SO(lO) 

unified models . Many details and extensions of the results presented here 

are discussed in [3]. 
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2. Forms of baryon number violating couplings 

All couplings must respect the SU(3)c and U(1)Q gauge invariances 

corresponding to color and electric charge conservation. In addition, at 

high energies E, the spontaneous breakdown of SU(Z)i gauge invariance is 

unimportant , and SU(2)i weak charge should be conserved up to 

O(mj/ E 2
) corrections . On the other hand, the observed conservation of 

baryon and lepton numbers at low energies is probably not a consequence 

of any gauge invariance, but rather results from the assignment of global 

quantum numbers to light particles . In this case, B and L can potentially 

be violated in the couplings of heavy particles . In this section, we discuss 

the possible forms of B-, L-violating couplings, and the constraints placed 

on them by SU(3)c ® SU(2)L ® U(l)y invariance [ 4]. We derive conditions 

under which B and L are separately violated, but some combination, usu­

ally B-L, is conserved. 

The generic constitution of the three known families of quarks (q) 

and leptons (l) is summarized in Table 2.1. In considering B, L violation 

at high energies, the masses of q, l may be neglected, so that the left­

and right-handed components of each fermion field may be treated 

independently. Table 2.1 gives the SU(3)c and SU(2)i representations 

under which each field transforms together with the weak hypercharge 

Y = /3 - Q assignment which specifies the final U(l) transformation pro­

perties. We assume, for now, that neutrinos are described by massless 

Weyl fields . As indicated by present experimental results, we take all 

left-handed components qL, LL to transform as doublets under SU(2)L and 

qn. lR to transform as singlets . It appears that the leptons of each family 

carry a distinct conserved flavor quantum number, but we shall have no 

cause to consider this . 
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Particles (SU(3) ,SU(2), U(l)] Antiparticles [SU(3) ,SU(2),U(1 )] I 

~L [1,2,1/2] [rct [1,2,-1/2] 

I 
I 

ER [1,1,1] E£ [1,1,-1] 

[i)1L [3,2,-1/6] ~~t [3,2, 1/ 6] 

UR [3 , 1,-2/3] U£ [3.1.213] 

DR [3,1,1/3] D£ [3.1.-113] 

Table 2 .1: The particles and antiparticles in a family, together with their 

quantum numbers (SU(3)c multiplicity, SU(2)L multiplicity and weak 

hypercharge Y = T3 - Q) . 
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The quarks in Table 2.1 are assigned baryon number B = 1 /3; the 

corresponding antiquarks are assigned B = -1 /3. The leptons are 

assigned L = +1, and antileptons L = -1. The ''baryon" and "lepton" 

numbers of other particles are determined by their couplings to these 

quarks and leptons. If all the quark-lepton systems to which a given par­

ticle couples have the same B and L, then that particle may usefully be 

assigned a definite B and L. However, some particles may couple to sys­

tems with differing B and L, in which case no single assignment of B or L 

suffices, hence Band Lare violated in the interactions of the particles. 

Tables 2.2 and 2.3 give the SU(3)c ® SU(2)L ® U(l)y quantum numbers 

for the possible quark and lepton systems to which vector and scalar 

bosons may couple. Lorentz invariance requires that renormalizable vec­

tor couplings have the form 1/!Jaµ.1/lb Vµ. and that renormalizable scalar cou­

plings have the form 1/!Jaz'·fb S where Vµ. and S are vector and scalar fields, 

respectively, and 1/la..b are spin 1 /2 fields (see Appendix A for notation) . In 

gauge theories such as the simplest Weinberg-Salam GIM scheme, only 

vector bosons of type V1 exist (see Table 2.2), since these contain the 

gauge bosons of SU(3)c, SU(2)L, and U(l)y. Hence each boson may be 

assigned a definite baryon number, and no B violation occurs. Various 

Higgs bosons could be added in an ad hoc manner but the usual doublet 

which corresponds to a scalar boson of type S 1 suffices both to give 

masses to the fermions and to break SU(2)L®U(l)y to U(l)Q· With only 

these bosons B and L are conserved by the Higgs sector as well. In grand 

unified gauge theories, it is common to include both fermion and antifer­

mion fields in the same representation of the gauge group . In these 

cases, bosons with couplings of types 3, 4 and 5 (S3 , V3 , .. • ) may exist. A 

boson with couplings of type 3 must be a color singlet: it may therefore 
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' ~ [SU(3) SU(2) U( 1 )] B L B-L 

I 
V1 zf.qq [8,3,0] 0 0 0 

[8,1,1 ] 

[8,1,0] 

[ 1,3 ,0] 

[1 ,1,1] 

[1,1 ,0] 

V2 q[ [3,3,-2/3] 1/ 3 -1 4/3 

[3, 1,-2/3] 

Vs ll [1,2,3 /2] 0 2 -2 

V4 lq [3,2,5/6] 1/3 1 -2 /3 

[3,2,-1 /6] 

V5 qq [6,2,-5/6] 2 /3 0 2/3 

[6 ,2,1/6] 

[3,2,-5/ 6] 

[3,2, 1/ 6] 

Table 2.2 : Quantum numbers for possible spin 1 (vector) pairs of quarks 

and leptons . Quantum numbers for individual q and l were given in Table 

2.1. 
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[SU(3),SU(2) , U( 1)] B L B-L 

S1 ll,qq [8,2,1/2] 0 0 0 

[1,2,1/2] 
' 

S2 q[ [3,2,-7 /6] 1/3 -1 4/3 

[3,2,-1/6] 

Ss ll [1,3,1] 0 2 -2 

[1,1,2] 

[1,1,1] 

S4 lq [3,3, 1 /3] 1/3 1 -2/3 

[3,1,1/3] 

[3, 1,4/3] 

S5 qq [6, 1,-4/3] 2/3 0 2/3 

[6,1,-1/3] 

[6,1,2/3] 

[6,3,-1 / 3] 

[3,3,-1/ 3] 

[3, 1,-4/ 3] 

[3,1,-1/ 3] 

[3, 1,2/ 3] 

Table 2.3: Quantum numbers for possible spin 0 (scalar) pairs of quarks 

and leptons. 
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not participate in couplings 4 and 5, and may thus be assigned a definite 

B. On the other hand, a boson may simultaneously exhibit couplings of 

types 4 and 5 . Such a boson therefore couples to systems with B = 1 /3 

and B = -2/3: it may therefore be assigned no definite B, and mediates 

B-violating interactions between quarks and leptons . However, although 

the separate B and L for cases 4 and 5 differ, the combination B-L is -2 / 3 

in both cases. Thus, SU(3)c ® SU(2)L ® U(1)y invariance and the restric­

tion to the observed fermion fields prevent couplings of bosons to quarks 

and leptons from violating B-1. At least for the purposes of these cou­

plings, such bosons may always be assigned a definite B-L. In what follo·ws 

we will denote the possible B violating-vector bosons by (X, Y) for the 

[3,2, -1/ 6] and (.x' , Y) for the [3,2,5/ 6]. The possible B-violating scalar 

bosons will be denoted by S ([3,1,113]), S 1 ([3,1,4/3]), and S 2 ([3,3 ,1/3]) . 

Fermi statistics require that S 1 and S 2 couple to fermions antisymmetri­

cally in family space . 

All known fermions carry nonzero charges under 

SU(3)c®SU(2)L®U(l)y. However, there may exist massive fermions which 

carry no absolutely-conserved quantum numbers . Such fermions (N) may 

mix with their antiparticles through Majorana mass terms (of the form 

mllI' f ). Clearly, they may not be assigned definite B or L. If the cou­

pling x--+ qN is present, then x--+ qN may be present also. Thus N does not 

carry a definite B-L: production and decay of N will lead to violations of 

B-L conservation. The allowed types of B- and L-violating bosons in this 

case are discussed in Section 5.2 in the context of SO( 10) grand unified 

models. 
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3. Basic parameters for baryon number generation 

3.1 General Results 

In this section we describe the calculation of the parameters which 

govern the generation of a baryon asymmetry from the basic couplings in 

a grand unified gauge model. 

The basic parameter which enters the Boltzmann transport equations 

of Sections 4 and 5 is the average baryon number produced in the free 

decays of an equal mixture of particles x and their CP-conjugate antipar­

ticles x: 

(3 .1.1) 

Here r(x-.J) denotes the partial width for decay of x to the final state f, 

rx is the total x decay width and B1 is the baryon number of the state f 

(so that B1 =-B1 ) . 

In treating the statistical mechanics of baryon number production it 

is convenient to choose a basis so that the x are mass eigenstates . We 

assume that the x have no CF-violating mixing (which is assured if x and x 
have distinct conserved quantum numbers) . Hence the decay process 

itself must exhibit CP violation in order for Rx. to be nonzero . As dis­

cussed below (and proved in general in Appendix B of [2]), this requires 

interference between the Born amplitude for the decay and a one loop 

correction with an absorptive part. In addition, the couplings of the par­

ticles participating in the decay must be relatively complex. 

We consider first the simplest nontrivial case: two massive bosons, X 

and Y, coupled to four fermion species i 1, i 2 , i 3 and i 4 , through the 
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vertices of Fig . 3.1 and their CP conjugates•. In the Born approximation , 

and the corresponding CP conjugated processes . We denote the coupling 

in, for example. the vertex Fig. 3. l(a) by <i2 jX ji 1> so that the CP­

conjugate coupling becomes <i2 JXJi 1> .-=<i1 J.xtji 2>. The quantity X here 

may be considered as a matrix of couplings in the 'space of possible fer­

mion states i; . Note that the set of vertices in Fig. 3.1 is invariant under 

the combined transformations XQY and i 1Qi4 . This invariance will be used 

below to obtain results for Y (Y) decays from those for X (X) decays. The 

couplings <i; IX 14 > do not include Lorentz structure which determines , 

for example, which helicity states of the fermions i; may contribute. 

Born approximations to the X and Y decay rates may be obtained 

directly from the vertices of Fig. 3. 1. For example 

(3 .1.2) 

Here !}2 accounts for the kinematic structure of the process X->ii[1; it 

gives the complete result if all couplings are set to one . From eqn. (3 . 1.2) 

it is evident that f(X -+i2i 1)nom = r(X -+i2i 1)Bom, and hence Rx vanishes in 

this approximation . To obtain a nonzero result for Rx. one must include 

corrections arising from interference of the one loop contributions shown 

in Fig . 3.2 with the Born amplitudes of Fig. 3.1. Consider, for example, 

the interference of the diagrams of Fig. 3 . l(b) and Fig . 3.2(a). The result­

ing term in the squared amplitude is shown as Fig. 3.3(a). There the 

•These vertices may be represented schematically by the interaction Lagrangian 

L .... ilXi 1+ilXi3+ifYi3+iJ:Yi4 +Berm.conj. 

where all Lorentz structure has been suppressed. 
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Figure 3.1: Couplings of bosons X and Y to fermion species i; in the sim­

plest case for which B generation is possible. These couplings correspond 

to possible decays of X and Yin the Born approximation. 
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Figure 3.2: One-loop corrections to the decay amplitudes for the bosons 

X and Y. The couplings of X and Y to the fermions ii are shown in Fig . 3.1 . 
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( b) 

(c) (d) 

Figure 3.3: Squared amplitudes for one-loop corrections to X and Y 

decays, obtained as interference terms between the diagrams of Figs . 3 .1 

and 3.2. The dotted "unitarity cut" specifies the physical final stale fer­

rnions. 
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dotted line is a "unitarity cut;" each cut line represents a physical on­

mass-shell particle. The amplitude for the diagram Fig . 3.3(a) is then 

given by 

(3.1 .3) 

where the kinematic factor I}P,34 accounts for integration over the final 

state phase space of i 2 and t 1 and over the momenta of the internal i 4 and 

i 3 . The complex conjugate diagram, Fig . 3.3(b), has the complex conju­

gate amplitude 

(3 .1.4) 

Introducing notations for quadratic and quartic combinations of the cou­

plings of Fig. 3.1 

'Zfi: = ('Zp;)t = I <4: !xii;> 1
2 = <ik lxli;><i; lxtlik> 

(3.1 .5) 

one may write the one-loop approximation to the X 4i2[ 1 decay rate 

obtained by adding the results (3.1.2), (3.1.3) and (3 .1.4) as 

(3 .1.6) 

In the Born approximation, the kinematic factors Ix are always real. 

However, the kinematic factors lXY for loop diagrams may have an ima­

ginary part whenever any internal lines have sufficiently small masses 

that they may propagate on their mass shells in the intermediate state 

(and thereby sample the 1/ie piece of the propagator 1/(p2 -m2 +it)) . In 
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the one-loop diagrams of Fig. 3.3, this occurs when the threshold condi­

tions 

(3 .1.7) 

and 

(3 .1.8) 

are satisfied . With light intermediate fermions, IXY thus always exhibits 

an imaginary part. 

We now consider the CP-conjugate decay X .... i 2i 1. To obtain the CF­

conjugate amplitude all couplings must be complex conjugated. The 

kinematic factors I are, however, unaffected by the CP conjugation (this 

is rnanif est in the fact that reversal of the direction of fermion lines in a 

closed loop does not affect the associated Dirac trace). Thus, to one-loop 

order, the complete result for r(X -.f~ 1 ) becomes 

(3 .1. 9) 

The diagrams for the decays X .... i 4[ 3 and X .... i 4i 3 are shown in Fig. 

3.3(c) and 3.3(d) respectively . The loop diagrams differ from those for 

the decays X .... i 2i 1 and X-.. i 2i 1 only in that the unitary cut is taken 

through the i 3 and i 4 rather than the i 1 and i 2 lines. In analogy with eqns. 

(3.1 .8) and (3.1.9) we thus obtain 

(3 . 1.10) 

and 

(3.1.11) 
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Using the results of eqns . (3.1.?) through (3.1.11) together with eqn. 

(3.1.1) we can compute the average baryon nwnber produced in the free 

decays of an equal number of X's and X's . The one-loop contribution to 

this asymmetry from the i 1[ 2 and [ 1i 2 final states is given by 

(H -B,) 
l2 •1 m[ . 1234] = -4 rx I IXY lm[01234] . (3 . 1.12) 

The analogous result for the 34 final state is 

(3 . 1.13) 

The kinematic factors lm[l}?34 ] and lm[I}f12] are obtained from 

diagrams involving two unitarity cuts (as in Fig. 3.4): one through the i 1 

and i 2 lines and the other through the i 3 and i 4 lines. The resulting quan-

tities are invariant under the combined interchanges i 1 ~ i 3 and i 2 ~ i 4 

and consequently are equal: 

(3.1.14) 

Hence RPI R}4 = (Bi
1 
-Bi

2
)1 (Bi, -B.;,

3
), as expected. Notice that, if all inter­

mediate fermions have zero mass, then the I»54 are completely indepen-

dent of their upper indices; corrections from fermion mass differences 

are of order (m1 /mx)2 . 
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Figure 3.4: "Double-cut" diagram representing the CP-violaling combina­

tion of amplitudes for X decay. The dotted lines denote "unitarity cuts." 
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Upon adding the contributions (3.1.12) and (3.1.13) we obtain the 

final result 

(3.1.15) 

The conditions for the kinematic factor Im[l}f34 ] to be non-vanishL.-ig were 

given in eqns. (3.1.5) and (3.1.6). A further condition for Rx to be non­

vanishing is that both X and Y interactions must violate baryon number. 

If X couplings were B-conserving, the two possible final states in X decay 

would have the same baryon number, so that 

(3.1.16) 

and Rx would vanish. Similarly, if Y couplings were B-conserving, 

(3.1.17) 

and Rx would again vanish. Thus both X and Y couplings must be B­

violating to obtain a non-vanishing Rx. This is as implied by the general 

theorem given in Appendix B of [2]. Notice that for (3.1.15) to be non­

vanishing, at least two of the i; must be distinct. 

The asymmetry Ry produced in Y and Y decays may be obtained 

from (3 .1.15) by the transformation X "* Y, i 3"+i4 , yielding 

(3.1.18) 

and so 

Rx/ Ry= -Im(l}f34)/ Im(IrJ42). (3.1.19) 
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It follows that the average baryon number produced in the free dec ay of 

an equal number of X, X , Y and Y is 

Even if the Rx and Ry are non-vanishing on their own, for the total to be 

nonzero the terms in the brace must not cancel. This requires that the 

particles X and Y be distinct either in mass or in the Lorentz structure of 

their couplings (e.g . one vector and one scalar) and that fx;tf y. The 

brace typically vanishes if X and Y are in the same irreducible represen-

tation of an unbroken symmetry group . 

If more than the minimal set of four fermion species are present, the 

result (3 .1.20) must be summed over all possible contributing ~i1 l . It 

must also be summed over all possibly (X, Y) pairs. Whenever particles 

have equal masses on the scale of mx, the corresponding kinematic fac-

tors may be factored out of the summation. 

The individual baryon asymmetry parameters Rx for X decays enter 

the complete Boltzmann transport equations discussed in Sect. 4 . These 

parameters alone determine the final baryon asymmetry only if back 

reactions (inverse decays) and 2-+2 scatterings are ignored . The total con­

tribution to the baryon asymmetry from decays of two species X and Y of 

bosons is thus not in general a simple sum of their corresponding param­

eters Rx and Ry: if X and Y have different masses, the extent of back 

reactions is different in the two cases. If, however, X and Y are degen­

erate in mass, the sum given in eqn. (3 .1.20) represents their total contri­

bution. 
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In the derivation of eqn (3.1.15) the particles ii were assumed to be 

light fermions of definite baryon number. The result nevertheless 

remains approximately valid for any particles ii so long as their masses 

are much smaller than mx . Some of the ii may for example be bosons , 

which enter through a three-boson coupling vertex, as illustrated in Fig. 

3.5. The Bi in eqn. (3 .1.15) should usually be replaced by the average 

baryon numbers generated in the decays of the corresponding ii . 

The discussion above concerns the one-loop contributions to baryon 

asymmetry. In the generic case, an asymmetry occurs at this order if it 

is to occur at any order. However, in some simple models (such as the 

minimal SU(5) model treated in sect. 4) the one-loop contribution van­

ishes, but there are higher loop contributions which are finite: in such 

cases the detailed analysis given above must be suitably generalized by 

summing over all possible unitarity cuts through the multiloop diagram. 

It should be noted that, although the analysis of this section has 

focused on baryon nUITiber, the expressions that we have derived are not 

restricted to that quantum number. The expressions may be used to 

describe the generation of any quantum number in the free decays of X, 

X, Y, or Y. Thus for example, to describe lepton number generation we 

need to replace the Bt's by the relevant lepton number assignments . 
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Figure 3.5: A diagram involving three-boson coupling potentially contri­

buting to CP violating X decays. 
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3.2 Consequences for gauge models 

In this section, we give some general results in gauge models for the 

value of the CF-violating parameter Im[O] defined by eqn . (3.1.5) . 

The couplings of gauge vector bosons to fermions (and Higgs bosons) 

may always be taken real and diagonal . Couplings of Higgs bosons to fer­

mions and to each other may, however, be complex and induce mixing . 

After spontaneous symmetry breaking, these couplings may give rise to 

CP violation and mixing in the fermion and Higgs boson mass matrices . If 

fermion masses are neglected, diagrams involving only fermions and 

gauge vector bosons (Fig. 3.6) can thus yield no CP violation. For CP vio­

lation to occur in the decays of superheavy bosons, it is thus necessary 

for either explicit Higgs bosons or superheavy fermions with complex 

mixing angles to be present. 

Some CP-violating effects involving Higgs bosons may be investigated 

before spontaneous symmetry breakdown. If a particular set of Higgs 

bosons allows CP violation in the unbroken theory, this CP violation will 

remain possible in the broken theory. 

Consider first the case of scalar boson (S) exchange in vector boson 

( V) decay, as illustrated in Fig. 3.7. The diagonal nature of the gauge cou­

plings requires that the fermions i 1 and i 2 lie in the same irreducible 

representation f 1 of the gauge group (and is and i 4 in f2). Scalar bosons 

contributing to Fig . 3. 7 must lie in irreducible representations Sa such 

that 

(3.2 .1) 

In the absence of spontaneous symmetry breakdown, there is no mixing 

between scalar bosons, and the exchanged S propagator must be 
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Figure 3.6: Diagram for vector (gauge) boson exchange in vector boson 

decay. 
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Figure 3.7: Diagram for scalar (Higgs) boson exchange in vector (gauge) 

boson decay. 
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diagonal. Hence in the notation of Seel. 3. 1, the coupling <i2 ! S l i 4> at one 

end of the exchanged S line is simply the hermitean conjugate of the cou­

pling <i3 I st li 1> at the other end: the product of these couplings is thus 

real, and no CP violation may occur. 

CP violation may be introduced into Fig . 3. 7 through mixing terms in 

the S propagator arising from spontaneous symmetry breakdovn1. Sym­

metry breakdown causes the exchanged mass eigenstate scalar boson S 

to become in general a linear combination of several components 1,-v-ith 

the same conserved charges. These components may occur within the 

same irreducible representation of the gauge group, or in different 

irreducible representations. If a model contains only a single B-violating 

Higgs boson no such mixing is possible, and CP violation cannot occur at 

the one-loop level through scalar boson exchange in vector boson decay. 

This is the case for the minimal SU(5) model discussed in Sect. 4. In the 

general case, we decompose the mass eigenstate field S into its unbroken 

group eigenstate components according to: 

(3 .2.2) 

We shall assume for now that just two components are present; the gen­

eralization to an arbitrary number will be immediate. In this case, 

Irn[01234]=Irn[ Tr[ <is I st li1><i2 IS li4> ]] 

=Irn[Tr[(a1 •<is JS[ Ji 1 >+a2"'<isJS~ \i1>) 

(3.2 .3) 

where we have dropped the real factor corresponding to the gauge boson 

couplings, and the trace represents a sum over all fermion 
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representations (usually "families"). Since i 1,i2cf1 and i 3 ,i 4cf2 , the cou­

plings <i2 I Sa I i 4> and <i 1 I Sa I i 3> are related by a real Cle bsch-Gordan 

coefficient: 

(3 .2.4) 

Hence 

(3 .2.5) 

Thus, ii C1= C2, Im[O] vanishes. This effect occurs when all Higgs bosons 

coupling to fermions have identical group charges, and are distinguished 

only by a "family" index. This is inevitable if all relevant Higgs bosons lie 

in replications of the same irreducible representation of the gauge group, 

and ii this representation contains only one B-violating component. 

Examples in which C1:;itC2 are the SU(5) model with a 5n and a 45n (Model 

III in Sect. 4) and the SO( 10) model with a lDH and a 120n or a 126n. In 

these models, CP violation may occur at the one-loop level from scalar 

boson exchange in vector boson decay. Notice that since in the absence 

of spontaneous symmetry breakdown, only one of the a.i is nonzero, the 

result (3.2.5) yields no CP violation in this case. 

The case of vector boson exchange in scalar boson decay (illustrated 

in Fig. 3.8) is exactly analogous to the case of scalar exchange in vector 

decay discussed above . When Fig . 3.8 contributes, it is often important 

by virtue of large value of the vector couplings relative to the scalar ones. 
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Figure 3.8: Diagram for vector (gauge) boson exchange in scalar (Higgs) 

boson decay. 
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We now consider CP violation arising from scalar boson (s') exchange 

in scalar boson (S) decay, as illustrated in Fig. 3 .9 . If only one B-violating 

Higgs boson is present, then the decaying and exchanged bosons must be 

identical, and the results of Sect. 3.1 show that Fig . 3. 9 can give no CP 

violation. This is the case for the minimal SU(5) model. (However, as 

described in Sect. 4, CP violation may occur in higher-order diagrams.) 

We consider for now the case in which all fermions are effectively m ass­

less . Then, in analogy with (3.2.1), the contributing scalar bosons must 

appear in representations Ba such that 

(3 .2 .6) 

If all the left-handed fermions lie in the same complex irre.ducible 

representation, f, (or sequence of such identical representations), then 

f 1 = f 2 = f 3 = f4 = f and these constraints become 

r ® r c Sa. S:X."Sa. s~ (3 .2 .7) 

For low-dimensionality representations, this requires that sa and s~ be 

real representations . Hence in SO( 10) models, where all fermions lie in 

the 16 representation, only lOH or 120H may contribute to Fig . 3.9; the 

126n which appears in 161 ®161 is complex. (For high-dimensional fermion 

representations, some complex Higgs representations may satisfy (3 .2.8): 

an example is the 126H occurring in the symmetric product 1441 ®1441 of 

SO(lO).) After spontaneous symmetry breakdown, mixing between scalar 
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Figure 3.9 : Diagram for scalar (Higgs) boson exchange in scalar b oson 

decay. 
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bosons may occur, and the constraints (3 .2.6) are no longer applicable . 

Thus in both SU(5) models with several Higgs representations coupling to 

fermions, and in SO( 10) models, Fig . 3. 9 can yield CP violation. 

The discussion above has assumed that all relevant fermion species 

are effectively massless. With gauge groups such as SO( 10) or E(6) , it is 

common for fermions with SU(2)L singlet and thus potentially large mass 

terms to exist. Such fermions may introduce CP-violating effects into 

Figs. 3.6 through 3.9. These effects are, however, always suppressed by 

O(mj/mg) with m1 the mass of the superheavy fermion and mx the mass 

of the decaying boson. 
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4. Baryon number generation in realistic grand unified models 

Cosmology is potentially an important source of information on the 

baryon number (B) violating interactions expected in most grand unifie d 

gauge models. Any net B imposed as an initial condition on the universe 

should have been rapidly destroyed by any B violating interactions . To 

account for the observed baryon number density to photon number den­

sity ratio, nBln-y ~ 10-9
, a net baryon number must subsequently he.ve 

been generated. This requires, in addition to B violation, the violation of 

C and CP (and hence T) invariance, along with departures from thermal 

equilibrium [5,2]. The magnitude of the baryon excess generated depends 

sensitively on detailed features of the grand unified model considered . 

This letter outlines the complete calculation of nBln-y generation in 

specific grand unified models in the context of the standard hot big bang 

model of the early universe . The method we present allows for the exact 

treatment of an arbitrary number of superheavy bosons as well as the 

presence of non-thermalizing modes [6]. We summarize results for 

several realistic SU(5) models. Many details and extensions are discussed 

in ref. [3]. 

We denote heavy bosons generically by x and light fermions by a, b , .... 

The number density ~ of a particle i, and that of its antiparticle n:r are 

parameterized by i+=('Tt\+~)ln-y and L=('Tt\-~)/n-y. The time develop­

ment of these quantities is described by a set of coupled Boltzmann tran­

sport equations. For the heavy bosons these are [2,3] 

x+ = -~<r(x-..ab)> (x+-xf'l) (4.1) 
G,b 

x- = -~<r(x-..al> )> (x- - (a_+ b_) x!q) (4.2) 
Cl,b 
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where dots denote time derivatives and the expansion of the universe is 

accounted for through division by n 7 in the definitions of i±. The first 

terms on the right side of eqns (4.1) and (4.2) correspond to free decays 

of x and x with partial rates <f(x--+ab )> averaged over time dilation factors 

for the decaying x energy spectrum. The second terms account for back 

reactions in which the x decay products interact to produce x. The equili­

brium number density x!q is obtained by integrating the exp[ -E.x/ T] 

equilibrium Maxwell-Boltzmann phase space density (for T»mx. , 

x!q~l-(mxl2Tf, while for T«mx, x:q~exp[-mxlT]) . In equilibrium, 

X+=x!q and x+=D; the expansion of the universe produces deviations from 

equilibrium at temperatures, T "'mx. 

The densities of f errnion species develop according to 

j _ = I; <r(x--+ab )> (N1 Joo Hx+ - x!q) R(x-+ab) + Zx- - (a_+ b_) x!ql 
ci,b .x 

+ I; nci[{N,)00 -(N1 JcaJ !a_+b_-c_-d_l <\v\a'x(ab->cd)>, (4.3) 
Cl,b ,C ,d.)( 

where (N1 )00 denotes the number of particles of type f in the state ab. 

R(x--+ab) denotes the difference in branching ratios between the CP conju­

gate decays x--+a b and x--+a 6 divided by the full rate for x decay; it van-

ishes if CP is conserved. The first part of the first term on the right side 

of eqn (4.3) therefore represents the production of an asymmetry in fer­

mion number densities as a result of CP violating decays of a symmetrical 

x. x mixture . The second part causes asymmetries x- between x and x to 

be transferred to the fermions when the x ( x) decays. The third part 

gives a correction to the rate for inverse decays resulting from the devi­

ation of the fermion number densities from their equilibrium value . The 

second term in eqn (4.3) represents the production and destruction of 
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fermions by two-to-two scattering processes. a'x is the cross-section for 

this scattering mediated by x exchange, but with the term corresponding 

to a real intermediate x removed (since this is already accounted for by x 

decay and inverse decay processes) . 

The number of independent particle densities to be treated in eqns 

4.1 through 4.3 may be reduced by using unbroken symmetries (gauge * 

and global) . For non-Abelian groups, any asymmetries are shared sym­

metrically among members of each irreducible representation (if SU(2h 

is unbroken eL_=vL- but in general eL_tteR_). The unbroken symmetry 

may contain U( 1) factors; conservation of the corresponding charges 

reduces the number of independent particle densities . This number may 

be reduced further by considering only the heaviest family of fermions ; 

since the rates for reactions that produce asymmetries are always pro-

portional to Yukawa couplings of the scalars to fermions (see below), the 

changes in asymmetries occur fastest in the heaviest family . These 

asymmetries are quickly shared equally among all families through Higgs 

couplings between the different families. 

If only a subset of the interactions that may potentially contribute to 

eqn (4.3) are included there may be additional symmetries leading to 

further conserved combinations of fermion number densities (e.g ., TI con-

servation in the absence of Higgs-fermion couplings for the models dis­

cussed below) . 

Let Ji_ (i=l, · · · ,N1 ) be the remaining independent fermion asym­

metries and x~ (a.=1. ... , Nx.) the independent supermassive boson asym­

metries. It is convenient to form a set Q which consists of independent 

•For SU(5) this will usually be SU(3)®SU(2)L®U(l). while in other models it may 
be a larger symmetry (e.g ., SU(4)®SU(2)L® U(l)R in S0(10)) . 
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quantum number densities B, L, etc .. .. related to F=!fi_, x~l by a unitary 

transformation, Q=H F, F=H- 1 Q. 

The thermalization of a quantum number Qi through reactions of a 

particular boson X is given from eqn (4.3) by ¢L=2:; x!q M,.>j Q1, where 
x 

Mi1=2: llQdx-+f1c f 1 }<f{x-+f1c f 1 )>(H1cj1+H1j 1) and llQdx-+f1c / 1) represents the 
Jc ,l 

change in the value of Qi through the reaction x-+f1c f 1 . Boltzmann's H 

theorem requires that the eigenvalues of MX are all real and non-positive. 

Any zero eigenvalues reveal additional symmetries; the corresponding 

eigenvector of number densities is then conserved in x reactions (e .g. TI 

in vector boson exchanges in SU(5)). If this eigenvector is conserved in 

the reactions of all x species , then it represents a globally conserved 

quantum number (e .g. B-L in SU(5)) and results in a further reduction in 

the number of independent Qi . 

We consider three grand unified models based on SU(5) . In all cases 

each family of fermions transforms as a reducible representation 

(5 EBlO}i, labeled by the family index i. The following Higgs representa­

tions are taken to couple to fermions : in model I (minimal SU(5)), a single 

5 of Higgs, H 5 ; in model II, H 5 and an additional 5 of Higgs, H 5· ; in model 

III , Hf) and a 45 of Higgs, H 45. The Yukawa couplings in these models h ave 

the schematic form (Bi (Da)i1 101) Ha+(lOdUaJv 101) Ha· The suppressed 

(real) group coupling coefficients are different for a.=5 and for o:=45 (but 

may be factored out of the relevant expressions in models I and II where 

only a.=5 occurs) . 

It may be shown that a CP violating nonzero R(x-+ab) enters through 

an imaginary part of the product of the couplings in diagrams in which 

one boson is exchanged between the ab produced in the x decay. The 
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sum over a and b in eqn (4.3) runs over all types and families of fermions; 

thus for fixed fermion types the double cut diagram is proportional to a 

family space trace of coupling matrices . The gauge boson coupling 

matrix is proportional to the family space identity matrix; processes 

involving only vector bosons and massless fermions can thus give no CP 

violation in perturbation theory. Higgs bosons are required for CP viola-

lion and hence for baryon number generation to occur. 

In model I the first diagram exhibiting CP violation involves only 

Higgs bosons and is of eighth order in the Yukawa couplings [7,8,4]. It is 

proportional to the imaginary part of the family space trace, 

Tr [ UutUD2 utD2 ], suggesting the rough estimate R....,o..3 {mp/mwJ r;/ ( 128113 ) 

= 4x10-9 (mp/mw) 6 r;, with jr;j~l. where mp is the mass of the heaviest 

fermion . (Stability of the effective potential requires that mp~ v'3mw [9] 

and hence R~10-a £, making the production of an adequate baryon asym­

metry implausible in this model.) 

In model II, both H 5 and H 5. have only the single B-violating com­

ponent*, (3, 1, 1 /3): since 5 is a complex representation one may form 

complex linear combinations so that the (3, 1, 1 /3) in both 5 and 5' is 

separately a mass eigenstate . This suffices to show that no CP violation 

may occur for gauge boson decay with Higgs scalar exchange or (vice 

versa) . CP violation may occur at O(cx(mp/ mwJ2) through 5 decay with 5' 

exchange (and vice versa) [ 4, 10]. 

In model III, CP violation may occur not only through scalar exchange 

in scalar decay, but also through vector exchange in scalar decay (and 

•In this notation the first entry is the SU(3) multiplicity, the second is the SU(2) 
multiplicity and the last the value of the weak hypercharge Y normalized so that 
the charge operator is given by Q= TsL -Y. 
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vice versa). In the vector exchange case it is O{a..). H45 contains three B-

violating components: (3, 1,-2/3), (3, 1,-4/3) and (3,3, 1 /3). 

SU(3)c®SU(2)r®U(l)y symmetry allows the 15 independent fermion 

fields in the heaviest family of an SU(5) model lo be reduced to the set 

Ur. (uc Jr. (Dc Jr, Er and (Ec Jr (the subscript L denotes the left-handed 

helicity state and c denotes charge conjugation). The model contains a 

(3,2,5/6) of B-violating vector bosons X (with number densities 

parameterized by X_ and X+). We consider the case where there are ns 

(=1 or 2) scalars, S1, S 2 , .. ., Sns• transforming as (3,1,1/3) (with number 

densities parameterized by Si- and Si+). These models possess a locally 

conserved weak hypercharge, 

+Sn -· whose ini-s 

tial value we assume to be zero . The models exhibit two further zero 

eigenrnodes. The first is B-L 

-(De J1 _+(Ec Jr--2Er_-4X_-2s1_-2s2_- · · · -2Sns- and has zero eigenvalue 

(is conserved) in all boson interactions. A second zero eigenmode, 

n=-3(Dc Jr_-2Er-. is present if scalar-fermion interactions are removed 

[6]. n (termed "fiveness") corresponds to the net number density of the 

fermion species appearing in the 5 representation. A density n0 gen-

erated through Higgs decays would be distributed as B = -TI0 / 10, 

i1_=-n0 / 5 through TI-conserving X interactions . I1o may be destroyed 

through exchanges of light Higgs bosons. A convenient choice of indepen-

dent combinations of fermion densities is nBln-r= B = 

For model I, according to the estimate for R(S-+ab) given above, an 

adequate baryon number asymmetry will be generated only if very heavy 

fermions exist (mF""mw)•. Figure (4.la) shows the baryon asymmetry 

• Similar conclusions have recently been reached in ref [ 11 J. 
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Figure 4. la: Baryon number density as a function of the Higgs boson (S) 

mass generated in the minimal SU(5) model in which the heaviest fer­

mion has mass mF . Results are for o:= 1/ 40, mx= 5x 1014 GeV. The CP viola­

tion parameter t is unknown but less than 1. 
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(taking mx=5x10 14 GeV and cx=l/40) as a function of ms/mx for mFlmw= l 

and mFI mw=3 obtained by numerically integrating the Boltzmann tran­

sport equations 4 .1-4.3. When ms/ mx» 1, X exchanges thermalize the B 

produced in S decay to the value -n; 10; meanwhile, n is reduced by light 

Higgs interactions . The final B attained is determined by the reduction in 

n that occurs before X exchanges cease to be important and B becomes 

fixed. For ms/ mx<l the X is not effective in destroying the baryon 

number built up through S decay. The enhancement in the final value of 

B around ms/ mx=l is a result of the transition between these two 

regions. The dotted curve shows the final baryon number if all X interac­

tions are artificially set to zero . Figure (4.lb) shows the temperature 

(time) development of the quantum number asymmetries B, n and v_ for 

the case mFlmw=l. ms/mx=lO. The solid and dashed curves for B 

correspond to two extreme assumptions for X exchange cross-sections at 

high temperature, a"' o..2/ mg and a"' cx2/ T2 respectively. The final results 

are independent of this choice. We have also included the effects of the 

usual light Higgs doublet which can change n and v_, but not B. Figure 

(4. lc) shows the temperature development for the case mF/mw=3, 

ms/ mx= 10 with the solid (dashed) curves indicating the effect of includ­

ing (excluding) the destruction of n and !/_by the interactions of the light 

Higgs doublet. 

For model II the final baryon number density as a function of ms/ mx 

is shown in figure (4.2) for different choices of ms/ mx. Note that, when 

m 1=m2 , we have (assuming {I'51)eota.i =(rsJtota.i in the Born approximation) 

R(S 1--a.b )=-R(S2 --ab) and hence no B is generated . For ms(>mx the addi­

tional decay mode S,-+X +rp (where rp is a light Higgs boson) decreases the 

effective CP violation, R(S,-+ab ), in S.;, decay. For ms
2
>mx and ms 1>mx. 
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Fig . 4 . lc 

Figure 4.1 (b,c) : Evolution of independent quantum number densities as a 

function of temperature in the minimal SU(5) model. B denotes the net 

baryon number, 11_ the asymmetry between 'D and 11 densities and :I t he 

total asymmetry between fermion in the 5 and 5 representations of Sl'(5). 

lTieV = 1024eV. In these graphs the parameter E: has been scaled ou t. The 

dashed curve in (b) shows results Vvith a smaller high-energy X exch ange 

cross-section. The dashed curves in (c) are results obtained by negle ct ing 

light Higgs boson exchange processes. 
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Figure 4.2 : Baryon number density for an SU(5) model Vl-ith two baryon 

number violating Higgs bosons (s 1,S2 ) as a function of the S 1 mass for 

different choices of the S 2 mass . The results are for a=:; 4-0 and 

Mx=5x l 014 GeV. The CP violation parameter e is unknown but less than 1. 
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the final B is negative and determined by vector thermalization of the 

positive TI produced in 5 2 decay. For ms
2
>mx but ms

1
<0.lmx, the final 

baryon number is positive and determined mainly by inverse decays into 

S 1. The dominant term governing the time evolution of B for T~ms1 is 

iJ oc s~i <rs
1
>(14v_-l2B+7TI) with similar equations for ii_ and tL. Since 

TI>O, TI>v_ and Il>B, this term tends to drive B positive . In general there 

are three linear combinations of B, 1.1_ and n which decrease as pure 

exponentials until cut off at temperatures below m51 . Bis a linear combi-

nation of these three exponentials, and its final value depends sensitively 

on the initial values of n, v_ and B. For this reason, it is inadequate to 

assume that B is produced and damped in successive independent stages 

as in simple models which treat only one quantum number [2, 12]. For 

both ms
2
<mx and m 51 <mx inverse decays into 5 1 are no longer able to 

change the sign of the negative B produced through 5 2 decays and hence 

the final B produced is negative . 

The results for model III are complicated by the presence of addi­

tional sources of CP violation but are qualitatively similar to those of 

model II . The possibility of changes in the sign of B associated with 

detailed features of the boson spectrum indicates that no gener ic r ela­

tion may be found between the definition of "matter" as given for the 

K°-K° system and that determined from the cosmological baryon 

number asymmetry. 



-51-

5. Baryon Number Generation in SO(lO) models 

5.1 General Features 

Although SU(5) grand unified theories contain the fewest fundamen­

tal fields, they exhibit a number of perhaps undesirable features which 

may be avoided in models based on larg er gauge groups . One of these 

features is the assignment of fermions to the reducible representation 

5$10. AE a result of this assignment, some of the particles belong to 

different irreducible representations than their antiparticles. Also, 

although the anomalies cancel between the 5 and 10 representations of 

fermions, this cancellation appears rather artificial from the standpoint 

of SU(5). In addition, SU(5) models contain a global quantum number 

corresponding to the baryon number minus the lepton number, B-L . 

These features may be removed by embedding the SU(5) theory into a 

S0(10) theory with the fermions assigned to the spinor representation, 

16 (13]. The explicit forms of the SO(lO) representations and couplings 

discussed below may be found in Appendix B. 

To elicit the structure of SO(lO) it is useful to decompose SO(lO) with 

respect to SU(5): 

SO( 10)::>SU(5)®U( 1) (5 .1.1) 

while the chiral structure is most easily seen by using the decomposition 

SO( 10) ::>SU( 4 )®S U(2)L ®S U(2)R (5 .1.2) 

where SU(4) is the Pati-Salamgeneralized color group [14], 

SU(4)::>SU(3)c®U(l). (5 .1.3) 
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The U(l) factor in this embedding is proportional to B-L so that the glo­

bal B-L symmetry present in SU(5) models is gauged in SO(lO) models . 

S0(10) is automatically anomaly-free as are all SO(n) groups for n>6 . This 

is due to the fact that the symmetric product of the adjoint representa­

tion with itself does not contain the adjoint and hence the d-coefficienls 

vanish. 

In discussing the decomposition of SO( 10) representations we will use 

the following notation: representations of SU(4)®SU(2)L®SU(2)R will be 

enclosed in round brackets:(m,nL,nR) with m, nL. and nR indicating the 

representations of SU(4), SU(2)i, and SU(2)R respectively. Representa­

tions of SU(4)®SU(2)L®U(l)R will be enclosed in angle brackets : <m ,nL, 

QR> with the last entry indicating the value of the U(l)R charge operator, 

T3R, normalized to be ±1/ 2 when acting on an SU(2)R doublet. Finally, 

representations of SU(3)®SU(2)i®U(l)y will be enclosed in square brack­

ets: [m,nL,Qy] with the last entry indicating the value of the hypercharge , 

Y, normalized so that the electric charge operator is given by Q= TsL -Y. 

Y may also be written in terms of T3R and B-L, Y = -~B-L) - TsR · 

In SO( 10) models each family of left-handed fermions is assigned to 

the 16-dimensional complex spinor representation of SO(lO) vvi th the 

right-handed CP conjugate states assigned to the 16. The 16 has the 

chiral decomposition 

16 = (4,2, 1) +' (4, 1,2) (5 .1.4) 

while with respect to SU(3)®SU(2)r®U(l)y we have 

16 = [3,1,2/3] + [3,2,-J/6] + [3,1,-113] + [1,2,1/2] + [1.1.-1] + [1.1.0]. (5 .1.5) 

It is evident that the 16 contains the usual quark and lepton fields per 
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family : UJ,, UL,DL,D£,EL .VL.E£ ; as well as an additional field which is neutral 

with respect to SU(3)®SU(2)L®U(1)y . This may also be seen from th e 

SU(5) decomposition 

16 = 10 + 5 + 1. (5 .1.6) 

We will denote this extra field by NE. As can be seen from the decomposi­

tion (5.1.4) it provides a charge conjugate partner for the left-handed 

neutrino and thus allows a 111w=1/2 Dirac mass term for the neutrino . 

The potential disaster of neutrino masses of order the M w = 1/ 2 breaking 

may be avoided if the N£ acquires a very large M w=O Majorana mass, J.JN 

[ 15]. The neutral lepton mass matrix will then have the form (assuming 

three families ) 

(5 .1.7) 

with mq a three by three matrix with entries of order the observed quark 

masses and MN the three by three Majorana mass matrix for the NZ. For 

MN»mq the six eigenvalues of this matrix are given approximately by the 

three eigenvalues of MN. which are the masses of the N£ ; and the thr ee 

eigenvalues of the matrix m[MJi1Tn..q, which are the light neutrino mas ses. 

As a result of this mechanism, S0(10) models naturally predict the 

existence of neutrino masses and hence neutrino oscillations. 

The vector bosons transform as the 45-dimensional adjoint represen­

tation of SO( 10) with the chiral decomposition 

4-5v = (6,2,2) + (15,1.1) + (1.3.1) + (1.1.3) (5.1.8) 

The last three representations correspond to the gauge bosons of 

SU(4),SU(2h. and SU(2)R respectively. The (6,2,2) contains the usual 



-54-

leptoquark-diquarks (X,Y) of SU(5) transforming as [3,2,5/6] under 

SU(3)®SU(2)r®U(l)y, their antiparticles; and an additional doublet of 

leptoquark-diquarks, (X',Y'), transforming as [3,2,-1 /6], and their 

antiparticles . The gauge bosons of SU(4) contain the gluons of SU(3)c and 

an additional color triplet field transforming as [3,1,2/3], which we 

denote by V. The gauge bosons of SU(2)R transform as [1,1,-1], [1,1,0], 

and [1,1,1] and will be denoted by W,W0 , and W respectively when no con­

fusion with the gauge bosons of SU(2)r is possible. 

The Higgs content of S0(10) models is dictated by the need to break 

S0(10) down to SU(3)c®U(l)Q and by the desire to obtain the observed 

masses and mixing angles of the fermions . Higgs fields which can couple 

to fermions appear in the product 

1£3®16 = (10 +126)s + (120)A (5 .1.9) 

where S (A) indicates that the representation appears in the symmetric 

(antisymmetric) product. These representations have the chiral decom­

positions 

10H = (6,1,1) + (1,2,2) (5.1.10) 

120H = (15,2,2) + (6,3,1) + (6,1,3) + (10,1,1) + (10,1,1) + (1,2,2) 

and 

126H = (15,2,2) + (10,3,1) + (10,1,3) + (6.1,1). 

The 10H contains the weak doublet, rp, plus its antiparticle, as well as a 

B-violating scalar transforming as [3, 1, 1 /3] , which we denote by S, and 

the antiparticle of the S. If only the 10H contributes to fermion masses 

then the tree level mass relations 



-55-

(5 .1.11) 

hold at the unification scale for each family. Attempts to fit the observed 

mass spectrum more accurately generally lead to models with a rather 

baroque Higgs sector [16,17]. The couplings of the fields in the 120H and 

126H will be discussed in Sections 5.2 and 5.3. 

Higgs fields which do not couple to fermions are also required in 

SO(lO) models in order to achieve the desired breaking. Representations 

commonly used are a 45 with the decomposition given in (5 .1.8) , and a 54 

with the chiral decomposition 

54H = (20,1,1) + (6,2,2) + (3,3,1) + (1,1,1) . (5 .1.12) 

In contrast to SU(5) models, SO(lO) models allow the possibility of 

intermediate mass scales in the region between 300 GeV and 101:: GeV. If 

SO(lO) breaks first to SU(4)®SU(2)r®SU(2)R or to SU(4)®SU(2)r®U( l h 

before breaking to SU(3)®SU(2)r®U(l)y then fits to the weak mixing angle 

suggest that there may exist mass scales as low as 1010 GeV. Let Mv and 

Ms be the masses of typical B- violating vectors and scalars respectively 

and define MR to be the scale at which SU(2)R breaks to U(l)R and Mc to 

be the scale at which SU(4) breaks to SU(3)c®U(l) . The nonobservation of 

proton decay requires that Mv ~ 4x1014 GeV and Ms ~ 2x1012 GeV. The 

experimental constraints on MR and Mc are much less stringent. Nonob­

servation of muon and electron number violating decays such as K°4µ- e+ 

gives a lower bound of about 104 GeV for Mc while limits on the strength of 

right-handed weak currents require only that MR ~ 200-300 GeV. Theoreti­

cal fits to cx.8 and the weak mixing angle give a minimum value for Mc of 

about 1010 GeV with typical values being ..... 1012 GeV for SO(lO) broken first 

to SU(4)®S'U(2)i®U(1)R· If SO( 10) breaks first to SU(4)®SU(2)r®SU(2)R 
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then typical values are Mc .....,10 12 GeV and MR~1010 GeV. 

The production of a net Bin SO(lO) models may thus take place at a 

temperature at which the unbroken symmetry is larger than 

SU(3)®SU(2)r®U(l)y. In the following sections we discuss the production 

of baryon number in models with SU(4)®SU(2)r®SU (2 )R, 

SU(4)®SU(2)L®U(l)R, and SU(3)®SU(2)L®U(l)y unbroken gauge sym­

metries at the temperatures relevant to baryon number production . 

Since the generator of U(l)R is proportional to B-L, the first two of these 

possibilities forbid a Majorana mass for the Nf,. In these cases the NJ, may 

carry conserved quantum numbers . In particular, it must be assigned 

B-L value +1. With SU(4)®SU(2)L®SU(2)R effective symmetry the pres­

ence of an unbroken charge conjugation symmetry forbids the produc­

tion of a net baryon number . As discussed in Section 3, this charge con­

jugation symmetry constrains the temperatures to which 

SU(4)®sU(2)L®SU(2)R symmetry may persist if the theory is to produce 

an adequate baryon number. 

Finally, we mention that use of a 126n opens up the possibility of 

spontaneous CP violation at temperatures comparable to the unification 

mass [ 17]. This is caused by a phase in the vacuum expectation value of 

the 126n due to terms in the Higgs potential of the form 

(5. 1.13) 

The relevance of this mechanism for B production is discussed in [3]. 
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5.2. B, B-L Violation 

In this section we extend the analysis of Sect. 2 to include an SU(5) 

singlet fermion NL([1,1,0]) . We first suppose that the Nf, has a large 

Majorana mass so that it may carry no quantum numbers as would be the 

case if the effective symmetry were SU(3)®SU(2)L®U(1)y. The additional 

vector and scalar products of fermion fields not appearing in Tables 2.2 

and 2.3 are given in Table 5.1 along with their values of B and L . There 

are, of course, no new B-violating bosons . However, comparison of Tables 

2.1, 2 .2, and 5.1 shows that the X' vectors and S scalars are now capable 

of violating B-L due to their interactions with Nf, . In addition, there are 

(B-L)-violating vectors transforming as (3, 1. -2/3] and [ 1, 1, 1] which are 

gauge :fields for the SU(4) and SU(2)R subgroups of S0(10) . The additional 

(B-L)-violating scalars transform as [ 1. 2, 1 /2] (the ordinary Higgs doub­

let of SU(2)L ® U(l)y ), [3, 2, -116] and [1, 1, 1]. These scalars appear in 

the following SO( 10) representations which may couple to fermions: 

(1,2,1/2] J 10, 120, 126 

(3,2,-1/6] J 126 

[ 1, 1. 1] J 120' 126' 

(5 .2.1) 

If the effective symmetry is SU(4)®SU(2)L®S U(2)R or 

SU(4)®SU(2)i®U(1)R then a Majorana mass for the Nf, is forbidden by the 

SU(Z)R or U(1)R symmetry and this analysis must be modified . If the 

effective symmetry is SU(4)®SU(2)£®SU(2)R. then as discussed in Section 

5.3, the presence of an unbroken charge conjugation symmetry forbids 

the production of any baryon nwnber. We thus consider B violation in a 

theory with effective SU(4)®SU(2)L®U(1)R symmetry. 
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[SU(3),SU(2), U( 1)] B L B-L 

Ve.Se qN [3,2,-1/6] 1/3 0 1 /3 

[3, 1,-2/3] 

[3,1,1/3] 

V7,S7 lN [ 1,2, 1 /2] 0 1 -1 

[1,1,1] 

Va.Sa NN [1,1,0] 0 0 0 

Table 5 . 1: Quantum numbers for possible vector and scalar fields ·which 

couple to singlet fermions N and either quarks q or leptons l. 
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As indicated by (5.1.4), the fermions then fall into three irreducible 

representations per family: 

161 = <4,2,0> + <4.1.112> + <4.1.-1/ 2> 

which contain the fermion fields in the form 

<4.2,0> = (UL.VL.fh.EL) 

<4. L 112> = (DJ,.EE) 

<4.1.-112> = (UJ,,N£) 

(5 .2.2) 

(5.2 .3) 

with the arrow indicating a color triplet. The unbroken gauge symmetry 

guarantees the equality of number density asymmetries of members of a 

given irreducible multiplet . For a given color of each quark we thus have 

the relations 

(5 .2.4) 

with ~ the number density per color of species i. Although UL- = DL- as a 

consequence of the unbroken SU(2)r symmetry, we will write both UL­

and DL- in order to make the charge conjugation symmetry discussed in 

the next section evident. Since an asymmetry in EE requires an equal 

asymmetry in each color of DE, etc ., the baryon number is given by 

B = DL- + UL- - DE- - UJ,_ (5 .2 .5) 
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Following the earlier discussion we find that the possible B-violat ing 

vectors transform as <6,2, 112> and correspond to the (X,Y) and (X' ,Y' ) 

doublets discussed earlier. The possible B-violating scalars transform as 

<6,1,0>, which contains the Sand its antiparticle; <6,1 ,1>. which contains 

the S 1 and its antiparticle as well as an additional field; and <6,3,0>, 

which contains the S 2 and its antiparticle. Scalar representations 

transforming as 10 under SU(4) contain B-violating scalars after breaking 

to SU(3)®SU(2)L®U( l)y has taken place but these representations may 

not violate Bat the level of SU(4)®SU(2)£®U( l )R· 

In considering the production of baryon number in this model it is 

useful to define a new quantum number, e, defined to be 

(5 .2.6) 

0 is the total asymmetry in the left-handed fermion fields . The chiral 

structure of vector couplings requires that e be conserved by all vector 

interactions. It may, however, be violated by Higgs scalar interactions 

and is thus analagous to the TI quantum number introduced for the S U(5) 

models in Sect. 4 
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5.3. C, CP Violation 

The generation of a net baryon number from symmetrical initial con­

ditions requires the presence of both C and CP violation . In 

SU(2)L ® U(l)y weak interaction models and SU(5) grand unified models 

no C operator may be defined since there is no left-handed anlineutrino 

to form the charge conjugate partner of the left-handed neutrino . In 

larger models, such as SO( 10) or E(6), each fermion has a potential 

charge conjugate partner or is an eigenstate of C and a C operation may 

be defined which is a symmetry of the unbroken theory [18]. The produc­

tion of a C-odd quantum number (such as B or L) in these models there­

fore depends on the interplay between the sources of C violation and the 

processes which violate the quantum number under consideration. 

The lack of B production in a C-symmetric theory may be seen by 

considering the decays of B-violating bosons x and their antiparticles x as 

well as the decays of their charge conjugate partners '>f and '){' . The B 

produced by the decays of an equal mixture of x and x into the specific 

final state i 1i 2 and the charge conjugate decays of '>f and'){' into the state 

i~ i~ is proportional to the quantity (see eqn. 3.1.12) 

(5 .3.1) 

I represents an integral over the intermediate momenta and final stale 

phase space for the decay and 0 is a product of the relevant couplings . 

The lowest order contributions to I and 0 are discussed in Section 3. Jc 

and OC are the corresponding quantities for the charge conjugate reac­

tion. In a C-symmetric theory, J =Jc and 0 = OC, while since B is C-odd, 

B"
8 

= -B,~ and ~1 = -B,1 causing Ri 2 + (R] 2 )c to vanish. 
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We now restrict our attention to S0(10) grand unified mod els . The 

presence of a C partner for the neutrino, NI = vI , allows the definition of 

a C operation for all left-handed fermion fields appearing in the theory . In 

terms of the SU(4) ® SU(2)r ® SU(2)R subgroup of S0(10), C interchanges 

the two SU(2) 's, as well as conjugating them, and also complex conjugate s 

the representations of SU(4). C invariance may be broken either by th e 

presence of different masses for the vL and NI or through mass splittings 

between bosons and their charge conjugate partners. It may be shown 

that all C violation in the fermion mass matrix must lie in the part of the 

126 representation of S0(10) which gives a huge Majorana mass t o Nf 

[ 18]. This C-violating mass term allows for the production of a nonzero B 

even if the decaying boson is degenerate in mass with its C partner sinc e 

Im! is no longer equal to Jmlc . Expanding I and 1c in powers of MNI Mx 

gives 

(5 .3.2) 

where MN is the Majorana mass of NI and Mx is the mass of the decaying 

boson. 

If all asymmetries can be expressed in terms of C-odd quantum 

numbers then (5 .3.2) constrains the possible values of MNI Mx if we 

demand that the theory be able to produce the observed baryon a sym­

metry [19]. However, in the general case, asymmetries which have no 

definite behavior under C must be considered. Examples are v_ and TI in 

the case of SO(lO) broken to SU(3)c ® SU(2)L ® U(l)y (see Sec . 5 .4) or e in 

the case of SO(lO) broken to SU(4) ® SU(2)L x V(l)R (see Sections 5.3 and 

5.5). Large asymmetries in such quantum numbers may be produced 

even if the theory is in a C-conserving phase (e .g . SO(lO) broken to 
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SU(4)®SU(2)L®SU(2)R)· These asymmetries may later be converted into a 

baryon asymmetry by B-violating reactions which occur in a C-violating 

phase of the theory. These reactions will be able to produce a sufficient 

baryon asymmetry only if there exist B- violating bosons with masses less 

than the transition temperature between the C-conserving and C­

violating phases of the theory. For S0(10) .... SU(4)®SU(2)L®SU(2)R the 

SU(4)®SU(2)L®SU(2)R symmetry must not persist to temperatures belovv 

"'1012 GeV if an adequate Bis to be produced. 

C may also be violated in phases in which the NJ, is effectively mass­

less through C-violating boson mass splittings . An example of this is dis­

cussed in Sec. 5. 5 where B generation is considered in an SO( 10) model 

broken to SU(4) ® SU(2)L ® U(l)R . In order for a nonzero B to be pro­

duced in such models , the bosons with masses different from their charge 

conjugate partners must also be B-violating . These bosons may then con­

vert asymmetries in non-C-odd quantum numbers, such as e, into asym­

metries in B at a rate proportional to their mass splitting . In the case of 

SO(lO) broken to SU(4)®SU(2)L®U(l)R, this requirement places nontrivial 

constraints on the Higgs content of the model as we now discuss . 

Under the embedding SO(lO):::>SU(4)®SU(2}L®SU(2)R the 45v adjoint 

representation of gauge vector bosons has the branching given in (5.1.8) . 

The color triplet SU(2)L doublet B-violating bosons (X, Y) and (X, Y) and 

their antiparticles combine to form the (6,2,2) representation . With our 

conventions the (X,Y) have electric charge (-4/3,-1 /3) and the (X',Y') have 

electric charge (-1/3,2/3) . Charge conjugation takes x .... x, y_._x, ;(_.y, 

and y' ... Y. B production through vector boson reactions therefore 

requires a mass splitting between the (X,Y) and (X',Y') doublets. This will 

in general be the case if SO(lO) is broken to SU(3)®SU(2)L®U( 1)y. 
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However, if SO( 10) is broken only to SU(4)®SU(2)L®U(1)R. then the (6,2,2) 

splits into <6,2, 1 /2> and the CP-conjugate state <6,2,-112> and as a 

result there is no mass splitting. The B-violating vector bosons will there­

fore be unable to produce a net B in their decays or to convert an asym­

metry in 0 into an asymmetry in B. 

The Higgs representations which may couple to fermions form the 

representations of SU(4)®SU(2)L®SU(2)R given in (5.1.10). With SU(2)R 

broken to U{l)R the bosons which can have masses different from their C 

partners are the (6,3,1) and (6,1,3) appearing in the 120H, and the (10,3,1) 

and (10,1,3) appearing in the 126H. The usual color triplet, B-violating 

boson S appears along with its antiparticle in the (6, 1, 1) representation 

and is thus an eigenstate of C (under C, S _.5 ). The ( 10,3, 1) contains a 

boson which may violate B if the effective symmetry is 

SU(3)c®SU(2)L®U(l)y . However, as discussed previously, these bosons do 

not violate B if the effective symmetry is SU(4)®SU(2)L®U(l)R. The only 

Higgs bosons which may violate B and have masses different than their 

charge conjugate partners are the (6,3, 1) and (6, 1,3) which occur in the 

120H. With SU(2)R broken to U(l)R these fields break up into <6.1,±1>. 

which we denote by S1; <6.1.0>. which we denote by S; and <6,3,0>. which 

we denote by sc. Note that for these fields to be present there must exist 

more than one family of fermions since the 120H couples to the antisym­

metric product of 161 ®161 . 

We now discuss the possible CP-violating decays for SO( 10) models 

broken to SU(3)®SU(2)L®U(l)y or to SU(4)®SU(2)L®U(1)R. If the effective 

symmetry is SU(3)®SU(2)L®U(l)y, then the NJ, has a large Majorana mass. 

If this mass is significantly less than the mass of the decaying boson, x. 

then the quantity Rf governing the production of B through x decays will 
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be negligible due to (5.3.2).lf transitions between N£ and NR due to the 

Majorana mass term occur at a faster rate than other transitions involv­

ing the N£ then the N£ will have an effective lepton number of zero and 

Rf-L will be non-zero.In addition to B and B-L, it is convenient to con­

sider the quantum numbers TI and v_ defined in Section 6. RI' and R{­

are not constrained by the charge conjugation symmetry and will in gen­

eral be non-zero . The Rx will in general recieve contributions from scalar 

exchange in vector decay and vice versa and also from scalar exchange in 

scalar decay and vector exchange in vector decay in a generic SO( 10) 

model. For simplicity we have included only the contributions from scalar 

exchange in scalar decay in the calculations of Section 5.4 . The inclusion 

of other sources of CP violation increases the complexity of the results , 

but introduces no qualitatively new results . 
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5.4 B Generation for S0(10)-+SU(3) ® SU(2}L ® U(l)y 

In this section we describe the calculation of baryon number genera­

tion in S0(10) models where SU(3) ® SU(2)L ® U(l)y is the effective gauge 

symmetry at temperatures relevant to baryon number production. We 

assume that all B production occurs in this phase but this need not be 

the case . If S0(10) breaks first to a larger group and then to 

SU(3)®SU(2)1®U(l)y at a temperature at which B violating processes are 

still important, then the equations presented here may be used with the 

proper initial conditions to track the subsequent production and thermal­

ization of the baryon number. If S0(10) breaks first to SU(5) and then to 

SU(3)®SU(2)L®U(l)y, then fits to the weak mixing angle suggest that 

Mx ~ 0.5 IleV = 5x1014 GeV but do not constrain the values of Mx.,MwR or Mv. 

Below we will usually choose the values MwR = Mv = Mx = 10 Tie V. 

N decay is potentially an important mechanism for production of B, 

L, etc . in these models. The N have two distinct types of decay modes . 

The first are two-body decays 

N-+erp,e~ (5.4 .1) 

withe=~) . rp =[~:]where rp is the usual SU(2)L ® U(l)yweak doublet. The 

width for this decay is 

(5.4.2) 

where Mq is the mass of the relevant charge 2/3 quark and Mw is the mass 

of the usual weak boson. The N may also undergo three body decays 

mediated by exchange of a supermassive boson, :S, in SO(lO) but not in 

SU(5) 
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N ..... qqq , qql , · · · (5 .4 .3) 

with q a quark and 1 a lepton. These decays have typical widths given in 

analogy to µ decay by 

(5 .4. 4) 

As long as mN ~ m 2 these decays will be completely swamped by the 

decays N ..... e rp , e~ . Since the decays given by (5.4.1) violate L but n ot B, 

N decay may contribute to the production of a net L but will be corn-

pletely ineffective in producing baryon number. In models containing 

SU(5) singlet fermions where the decays given by (5.4 .3) dominate , N 

decay may produce a net B and may also produce entropy which will t end 

to dilute any existing B. The requirement that these decays should not 

generate excessive entropy provides constraints on the masses and life-

times of such fermions [20] . 

We shall consider a definite but presumably typical SO( 10) model in 

which two 10H couple to fermions . The mass eigenstate B-violating Higgs 

bosons will be denoted by S and s·. We include CP violation only for 

exchanges of S in s· decay and vice-versa. 

For comparison with the SU(5) results, we choose to track the quan­

tum numbers B, B-L. TI and 1.1_ with TI defined to be -1 for fermions in the 

5 representation of SU(5) (Df .EL.VL) and zero for all other fermion fields 

and 1.1_ defined to be + 1 for 1.1L and zero for all other fermion fields . TI is 

conserved by the gauge bosons of SU(5) since they couple only to 51 ® 51 

and 101 ® 101 , but will be violated by the gauge bosons of SO( 10) not in 

SU(5). The quantum number assignments for the various fields are given 

in Table 5.2. SU(2)L invariance requires that X'_ = y '_ , x_ = y_ and 
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Field SU(3)®SU(2)L®U(l)y B B-L n E 

UJ, [3, 1,2/ 3] -1/3 -1/3 0 0 

DL , UL [3,2,-1/6] 1/3 1/3 0 0 

D£ [3, 1.-1/ 3] -1/3 -1 /3 -1 0 

EL.VL [1,2, 1/ 2] 0 -1 -1 1 

N£ [1.1,0] 0 0 0 0 

X,Y [3,2,-5/ 6] - -2/3 0 -
X.Y [3,2,-1/ 6] - - - -

v [3, l,-2/ 3] 1/3 - - -

WR [1.1.-1] 0 - - 0 

s [3.1.1/ 3] - - - -

(/) [1.2.-1/ 2] 0 - - -

Table 5.2: Quantum numbers for fields relevant to baryon number pro­

duction for S0(10) ... SU(3)®SU(2)L®U( l )y. 
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DL - = UL -. in what follows we write only X and )( and treat S U( 2)L as an 

additional degeneracy for the vector bosons . 

The quantum number densities divided by the photon number den­

sity are given in terms of the particle number asymmetries by 

B-L = DL- + UL- - UL- - Di- + Ef, _ - EL- - VL - - 4X_ (5 .4 .5) 

B = DL- + UL- - Ui- - Di - + V_ (5 .4 .6) 

(5 .4. 7) 

(5 .4.8) 

We use the constraint that the total hypercharge be zero 

1 1 1 1 . 
Y = o = -.:znL- - zuL-+ 2UL- - Di - - Ei- + Z£L + ~L- + 5X_ - x_ (5 .4. 9) 

-zv_ - w_ + s_ +s~ 

and SU(2)L invariance to reduce the number of quantities that we need 

consider . Solving for the fermion asymmetries in terms of the quantum 

numbers and the boson asymmetries gives 

UL-= DL - = ~ [(B-L)+B-TI - ~ l)_-x_+x~ + v_+ w _-s_-s~] (5. 4.10) 

uf,_ = ~ [2(B-L)-B-n-2x_+2x~+5v_+2w_-2s_-s~] (5 .4.11) 

(5.4.12) 

EL- = (B-L) - B + v_ + 4X_ + v_ (5 .4.13) 

(5.4.14) 
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These relations along with the decay modes of the X, X', WR, V, S, and 

S' bosons given in Table 5 .3 give the following set of equations for the 

time rate of change of the number densities. 

X+ = -<fx>(X+-X~.'l) (5.4.15) 

+ <fs>[(S+-~11 )RU-s- + ~ s~q(4X-+6V-+(B-L)-6B)] 

+ 4n~ <lvloi>[X'._+11X-+ W-+10V--S--S'._+2v-+4(B-L)-8B] 
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Boson Decay Mode Partial Width B B-L TI E 

ELDR,vLDR 1/4 1/3 -2/3 0 1 

X,Y U£ Uf?, ULD!? 1/2 -2/3 -2/3 0 0 

DLER,ULER 1/4 1/3 -2/3 0 0 

EL URYL UR 1/4 1/3 -2/3 -1 1 

X.Y DLNR, ULNR 1/4 1/3 1/3 0 0 

DE U]?,Df,D]? 1/2 -2/3 -2/3 -1 0 

DRE£ 1/4 1/3 4/3 1 0 

v 11]? UL,Ef?DL 1/2 1/3 4/3 1 -1 

URNL 114 1/3 1/3 0 0 

WR URDL 3/4 0 0 -1 0 

NREE 1/4 0 1 0 0 

DLllL, ULEL 1/4 1/3 -2/3 -1 1 

ERUR 1/8 1/3 -2/3 0 0 

s Uf?D'i? 1/4 -2/3 -2/3 0 0 

UI,DJ, 1/4 -2/3 -2/3 -1 0 

DRNR 1/8 1/3 1/3 1 0 

Table 5 .3 Quantum numbers and partial widths for supermassive boson 

decay modes 
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- 4n6 < lvla' x·>[X'_-x_-s_-s.:_ + w _-2v_+2v_+(B-L)+4B] 

+3W-+5V--TI- ~ v_+3(B-L)+B)] 

-25~ -TI+6(B-L)-B)] 

- 21'lt < lvl a'x·>[7X.'.. -?X_-75_-75.:_ +7 W _+10V_-4IT-2v_+7(B-L)+4B] 

- nb< lvl a'v>[BX.'..+4X_+8W _+2ov_-ss_-8S.'..-4TI+l l(B-L)-4B] 

- 21'lt <l via' r>[2X' _+lOX-+2 W _+BV--25--25.'.. +4v-+5(B-L)-4B] 

- 71.6h4< l vi a' s+s·>[12X-+8TI+Bv-+3(B-L)] 

-2S--25.'..+2W_+5V_-TI- ~ v_+2(B-L)-B)] 

+ <fs>(S+-St,,)R;-+ ~ s_- ! st,,(X.'..-x_-s_-s.:.+w_+v_-n+v_+(B-L)+B)] 
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+ 2nb <I JI la'x>[3X'... -15X-+3 w _+6V--3S--3S'...-4TI-10v_] 

+ 2nb <I 11 I a' " .. >[5x.:.-5x_-5s_-5s.:_+5w_+14 v_-4TI-Bi1_+5(B-L)-4BJ 

+ 2nb <Iv I a'v>[ 4X.:_ -4x_-4s_-4S'...+4 w _+7V_-4TI-5v_+4(B-L)+B] 

1 +4 W--7V--IT- -v-+4(B-L)+B)] 
2 

+ <fv>[(V+- ~.,)RP+ i.. v_- .L ~11(2x.:. +iox_+z w _+5v_-2s_-2s.:. -n+5(B-L)-B)J 
2 4 

+ <fr>[( w +-W~q)RV- ~ w _- ! w~ (2x.:.-2x_-2s_-2s.:. +2 w _+5v_+11_+2(B-L)-B )] 

- 2nb <I vi a' x·>[7x.:.-7x_-7s_-75.:_+7 w_+10v_-4TI-211_+7(B-L)+4B] 

- 71.l> <I vi cr'v>[BX'_ +4X-+8 w _+2ov_-as_-as'...-4I1+ ll(B-L)-4B] 

- 2nb <I vi a' r>[2x.:. +10x_+2 w _+8 v_-2s_-2s:.. +411_+5(B-L)-4B] 

+ 71.l> h 4 < I JI I cr's+s'>[32X.:_ +4X_+32 w _+80 v_-32S _-32S .:_ -40I1 +4(B-L )-16B] 

The total widths for vector and scalar decay are given by 

rv = aMv/3 (5 .4.16) 
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with ex= g 2/ 4rr ~ l/ 40 where g is the SO( 10) coupling constant and h is 

the Yukawa coupling of the Higgs scalar to the heaviest family of fer­

mions. For simplicity we take the Yukawa couplings of S and s· to be 

equal with 

h = gMF 
v'ZMw 

(5.4.17) 

where MF is an effective quark mass of the heaviest family at the scale 

"'Mx . The cross sections for two to two scattering processes not already 

included as successive inverse decay and decay processes are given by 

• _ 2 [ s 1 s (s -M~)2 2 1 
Iv I av - rro: M~(s +Mp) + 3 [(s -Mp)2+ M~f~]2 + ~+ Mp 

with 

1 s3(s -M§)2 
+--------l 

2 [(s-M§)2 M§r~] 

and the interference term given by 

1 
Iv I O'w = l6rrs2 

+ Ms log( M§ ) M$ log( M}. ) ~ 
s-M§ s-M§. 

M§-M§ 

3o:h2 

Jvla,, = ~· 

(5.4.18) 

(5.4.19) 

(5.4.20) 

(5.4.21) 

(5.4.22) 
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In these formulae, subscripts indicate the type of exchanged boson, and 

vs is the c .m.s. energy in the collision. The widths and cross-sections in 

(5.4.14) are averaged over an equilibrium Boltzmann distribution for the 

initial particles, as indicated by the angle brackets . The effects of 

screening on the two to two cross-sections due to a background gas are 

discussed in Section 4 . Here we assume that the cross-sections have 

their free form. The effective CP violation parameters, R~, are given by a 

sum of the decay modes for x. weighted by the value of Q created in the 

decay and multiplied by an overall factor corresponding to the multipli­

city of the decaying boson. This gives 

R/ = 2R(X-+ELDR) - 4R(X-+ U£Df?) + 2R(X-+DLER) 

R§- = 2R(X-+EL UR) - 4R(X-+D£Df?) + 2R(X-+DLNR) 

(5 .4.23) 

R[ = 2R(S-+DLvL) + R(S-+ER UR) - 2R(S-+Uf?Dk) - 2R(S-+U£D£) + R(S-+DR NR ) 

R§--L = -4R(X-+EL UR)+ 2R(x'-+DLNR) - 4R(X-+D£Dk) 

R~-L = 4R( V-+DREE) + 4R( V-+Ef?DL) + R( V-+ URNf,) 

Rlj-L = R( W -+NREf,) 

Rf-L = -4R(S-+DLvL) - 2R(S-+ER UR) - 2R(S-+ UJ?Df?) 

-2R(S-+U£D£) + R(S-+DRNR) 
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If we ignore the effect of the Nf, mass then for a lOH we have 

(5.4.24) 

so that RJ and Rff vanish in this limit as expected. Using (5.4.24 .) we find 

(5.4.25) 

with the same relations holding for S replaced by s·. R(S -+DL vL) and 

R(S'-+DLvL) may be written in terms of an unknown CP violating phase E: 

using the results and notation of Sect. 3 as 

(5 .4.26) 

where a is the gauge coupling constant at the unification scale, O:"'l/ 40, 



-77-

M,~BO GeV is the mass of the weak gauge boson and M1 is the effective 

mass of the heaviest family at the unification scale . We take 

M1 1 Mw!:!!l/20 . 

In Sect. 5.3 we showed that the SO( l O) model discussed here can gen­

erate directly only asymmetries in B-L, v_ and TI; asymmetries in B m ay 

arise only indirectly through conversion of these quantum nlliu.b er s by 

inverse decay and 2 ..... 2 scattering processes. Figure 5.1 shows the final 

baryon number and B-L generated in this model, together with the value s 

of v_ and TI obtained by neglecting low temperature light Higgs boson 

exchanges. The results assume M5 ·= 1I1e V. For Ms>M5 ·, B-L ,TI, and E are 

produced dominantly through the CP-violating decays of the S with t heir 

signs and magnitudes determined by the relations (5 .4.24) . At Ms =Ms· the 

contributions from S decay and s· decay exactly cancel and no asym­

metries are produced. For 0.1 Tie V ~Ms ~ M5 ., s' decays dominate and 

since R(S-+DLEL) is opposite in sign to R(S'-+DLEL) the values of the quan­

tum numbers produced differ in sign from the case Ms>M5 .. For 

Ms<O.lTieV, inverse decays into S tend to damp the asymmetries pro­

duced through s· decay. The final values of the quantum numbers in this 

case depend sensitively on the values initially produced through s· decay . 

A similar phenomenon was noted in Sect. 4. 

For Ms :<; 5Tie V, B production in Fig . 5.1 is dominated by inverse decay 

and 2-+2 scattering processes mediated by X . Inspection of the X inverse 

decay terms in (5.4.15) (or of the decay modes given in Table 5.3) reve als 

that the combination of quantum numbers (B-L)-B+v_ is conserved in 

these processes . Hence if only X exchange occurred, the final equili­

brium values of quantum numbers would be nonzero and given by 
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Figure 5.1: Final quantum number densities (scaled by the CP violation 

parameter t) generated in an SO(lO) model with no intermediate effective 

symmetry larger than SU(3)c®SU(2)£®U(1). Results for II and v _ are 

obtained neglecting effects of light Higgs boson exchange at low tempera­

tures . Sands· are mass eigenstate lOH Higgs bosons . 
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B = Tio 
2 

Tio v =--- 2 

(B-L) = 0 

(5 .4.2?) 

where TI 0 is the initial value of TI generated through S decays. Since TI0 <0, 

the X processes tend to produce a negative B. For 0.2 Tie V < Ms < 5 Tie V, 

asymmetries are produced through S and s· decays at temperatures 

below the X mass where X reactions are negligible . In this case B is dom-

inantly produced through processes involving the X boson. Conservation 

of TI in X reactions leads to the equilibrium values (c .f. Sect.4) 

1 v = -~o - 5 

1 1 
B = -l(j-Ilo + t<-B-L)o 

(5.4.28) 

Since RP = 5RJ- L the contributions to B tend to cancel and the resulting 

B is small. The fact that the X and X tend to produce B of the opposite 

sign is a consequence of charge conjugation symmetry. As discussed in 

Sect . 5.3, unbroken C invariance would yield Mx=Mx and would cause the 

contributions of X and X to B production to cancel. For Ms < 0.2 Tie V, B 

production is dominated by inverse decays into S. When Ms is sufficiently 

small, all asymmetries are reduced to zero. 

If both the S and s· are sufficiently light then B may also be pro-

duced directly since in this case the cancellation due to the charge con­

jugation symmetry is less effective . 

The results of Fig. 5.1 demonstrate that the model considered in this 
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section can generate sufficient B to accord with present observations, 

even though no B is produced directly through CP-violating decays . The 

magnitude and sign of the resulting baryon number depend sensitively, 

however, on the Higgs structure and the masses of the B violating­

bosons. 
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5.5 B production for S0(10)-+SU(4)®SU(2)L®U(l)R 

As described in Section 5.3, the production of baryon number in a 

S0(10) model with SU(4)®SU(2)L®U(l)R effective symmetry requires the 

presence of a 120H with a C-violating mass splitting between two of its B-

violating components. Since the 120H cannot on its own account for 

observed fermion masses•, we include also a 10H· We shall consider only 

those components in 120H which may attain a C-violating mass splitting, 

and may thus contribute directly to B production. 

The equations presented here may also be used to track the evolution 

of assyrnetries produced in earlier stages. In particular, with effective 

SU(4)®SU(2)L®SU(2)R symmetry no B may be produced due to the unbro-

ken charge conjugation symmetry. This restriction does not apply to 

asymmetries in 0 . The equation used here may be used to consider the 

subsequent conversion of 0 to B when C is broken. With effective 

SU(4)®SU(2)L®U(1)R symmetry, B may be produced directly through 

decays of 'S and 'Sc. C symmetry implies that S decays may produce no 

net B (since S-+S under C), while the B produced through S decays must 

be opposite in sign to that produced in sc decays. To illustrate the 

conversion of e to B we will suppose that no B is produced directly 

through boson decays. This would be the case if assymetries are pro­

duced dominantly through S decays but thermalized by the S and sc 
bosons. 

The quantum number assignments for the various fields are given in 

Table 5.4. In this table a field stands for the asymmetry per member of an 

irreducible multiplet of SU(4)®SU(2)L. We will assume that the total 

• Since the 120n couples antisymmetrically to fermions, it must yield an antisymmet ric 
fermion me.ss matrix with a zero eigenvalue for at least one out of three families. 
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Field SU ( 4)®S U(2)L®U( l)R B e 

DL,UL <4,2,0> 1/4 1/4 

D£ <4.1,1/ 2> -1/4 1/4 

U£ <4.1.1/ 2> -1/4 1/4 

x <6,2,-1/ 2> 0 

WR <1,1,1> 0 0 

s <6,1,0> 
...... 
S1 <6. 1, 1> 

,...., 
s <6,1,0> 

sc <6,3,0> 

rp <1,2,112> 0 

Table 5.4: Quantum numbers for fields relevant to baryon number pro­

duction for S0(10)..,.SU(4)®SU(2)L®U(l)y 
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We will take S1 to be degenerate in mass with S in what fcllo'"-s. S i:c:ce 

B is determined by the mass splitting between S and ',Sc this c:10ice 

should have little effect on the final results . 

Figure 5.2(a) shows the final baryon number generated in this ::nodel, 

for a variety of values of Ms. Ms and Msc Figures 5.2(b) and (c) shov• th e 

development of B and e in two characteristic cases, and indicate the 

dominant processes in each temperature range . An asymmetry in 0 is 

produced by S, S and sc decays. An asymmetry in B must then be ge n­

erated by conversion of this asymmetry. Only S and ',Sc interactions 

violate C and thus may contribute to B . 

In Figure 5.2(b), Ms>M;s0 >M5, so that 'Sc inverse decays fir st convert 

the positive e produced in S decay into a negative B . As the temperature 

falls below the S mass, inverse decays into S dominate and B is driven 

positive . When e is driven negative by s and ',Sc decays the s inve r se 

decays drive B negative again yielding a negative final baryon numb er . 

For M~c < Ms, the roles of S and ',Sc are reversed and the final baryon 

number is positive . 

Figure 5.2(c) shows the development of e and B when !J5>";15 =.:;f -sc . 

The final B produced is positive since Msc <M;s . The B produced in sc 
decays is reduced by S inverse decays. For M80 <Ms, Bis produced after 

the effects of S inverse decays are important and as a result the final 

baryon number is large than in the previous case . 

Although the sign and magnitude of the final B depend sensitively on 

the masses and couplings of the Higgs bosons, as long as there exists a 

120n with a small mass splitting between its S and sc components, a 

baryon number compatible with present observations may be produced . 
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Boson Decay Mode Partial Width B 0 

x DJ? UL 1/2 -1 /2 0 

DR UL 1/2 1/2 0 

WR Df, UR 1 0 0 

DL UL 1/4 1/2 1/2 

s Df, UL 1/4 -1/2 1/2 

Df? Uf? 1/4 -1/2 -1/2 

DR UR 1/4 1/2 -1 /2 

....., 
1/2 1/2 S1 Df, Df, -1/2 

UR UR 1/2 112 -1/2 

s Df, UL 1/2 -1/2 1/2 

DR UR 1/2 1/2 -1/2 

DL DL 1/6 112 1/2 

UL UL 1/6 1/2 1/2 

sc DL UL 1/6 1/2 1/2 

Df? Df? 1/6 -1/2 -1/2 

Uf? Uf? 1/6 -1/2 -1/2 

DJ? Uf? 1/6 -1/2 -1 /2 

Table 5.5: Quantum numbers and partial decay widths for supermassive 

bosons for S0(10)-+SU(4)®SU(2)L®V(l)R. 
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Using the partial widths given in Table 5 .5 gives 

RJ = 12R(S ~DL UL) (5 .5 .3) 

R/ = 6R(S~D£UL) 

Since light Higgs, ~ . exchange violates e, it presumably domina te s 

these CP violation parameters . For simplicity we take the Yukawa cou-

plings of the 10n and 120n to be equal in magnitude and given by 2~ ;~: . 

We then have 

(5 .5.4) 

"" Mr 
R(S~Df,UJ,) = -211a:~lm15~ 

R(S' -.D'bDRc) = -2rra: Mt Im! 
"' 3 Mw c sc111 
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charge associated with U(1)R is zero. The decay modes of the X. W,S,S,S 1 , 

and sc bosons given in Table 5.5 give the following set of equations for the 

time evolution of the various number densities: 

(5.5 .1) 

-12n0 <I LI I a$>B+ 6[ n0 <ILIIai
1
>+n0 <I LI I ai> ](0-B)- 12n0 <I LI! a~c >(0+ B) 

- 12n0 <Iv I a$>0-6[ n0 <I LI I ag
1
>+n11 <Iv I ag> ](0-B) 

1he averaged widths and cross-sections appearing in these equations are 

given in Section 5.4. The effective CP violation parameters are 
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Figure 5.2a: Baryon number density (scaled by the CP violation p ar e.me­

ter E) generated in an SO(lO) model with an SU(4')<8}SU(2h®U(1)R int er­

mediate effective symmetry for a range of S, S and sc masses. S and sc 
are mass eigenstate Higgs bosons occuring in 120y, while S is a Higgs 

boson from lOy . 
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Figure 5.2b: Processes governing the temperature evolution of qua:Lltum 

number densities for Ms=1.0TieV=1015GeV, Ms=O.lCTeV and M.sc=D.2I1eV. 
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Figure 5.2c: Processes governing the temperature evolution of quantum 

number densities for M3'=0.1TieV and Ms=Msrc =O.OlTieV. 
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III. Masses and mixings in an SO(lO) unified model 

1. Description of the model 

The main weakness of all grand unified theories is the specification of 

the symmetry breaking mechanism which is responsible for the fermion 

masses and mixing angles. Here we will rely on explicit Higgs bosons for 

this purpose . In general. the couplings of such bosons to fermions and lo 

each other are completely undetermined. In order to obtain testable 

predictions from the model to be considered one must impose con­

straints on these couplings. One of the few ways of imposing such con­

straints is to demand that the model be natural in the technical sense . 

That is, the results of the model must depend only on the symmetries 

and representation content of the model and thus be insensitive lo small 

changes in the fundamental parameters of the theory. In practice this 

requires the imposition of various discrete symmetries which forbid cer­

tain couplings to all orders of perturbation theory. If these symmetries 

are broken by terms in the Lagrangian of dimension less than four , then 

corrections to any relations obtained from the discrete symmetries will 

be finite and calculable but not necessarily small. In what follows we will 

find such "soft" breaking of discrete symmetries to be unnecessary. 

One may also obtain relations between physical parameters by 

requiring that only some of the possible vacuum expectation values 

(v.e.v. 's) of the Higgs fields be realized. In this case naturalness demands 

that the assumed pattern of v .e .v. 's be possible for a finite range of 
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parameters in the Higgs potential. 

In grand unified theories with explicit Higgs bosons one must demand 

that certain combinations of parameters in the Higgs potential cancel to 

an accuracy of 1 part in 1030 in order to explain the difference between 

the scale of SU(2)L®U(l)y breaking ("'102 GeV) and the unification scale 

( "'1015 GeV ) [ 1]. This cancellation obviously violates the requirement of 

naturalness. This may betoken the bankruptcy of grand unified mod els 

with explicit Higgs breaking or of the requirement of naturalness . On the 

other hand, such a delicate cancellation seems to be required in an 

apparently different context in order to explain the smallness of the 

cosmological constant when compared lo the naturally expected scale. In 

any event, the explanation of such a gauge hierarchy remains as the out­

standing problem facing grand unified model enthusiasts . 

In what follows we present a unified model based on the gauge group 

50( 10) which reproduces the observed fermion masses and mixing angles 

in a technically natural way . The price for this success is high . The Higgs 

sector of our theory will contain 830 independent degrees of freedom! 

Nevertheless, the model makes a number of predictions which depend on 

having a phenomenologically successful fit to the fermion masses. Here 

we will concentrate on an analysis of the charged fermion mass matrices 

(Section 2) and on the predictions for neutrino masses and neutrino oscil­

lations (Section 3) . In Section 4 we present an analysis of the Higgs poten­

tial and comment on the constraints that naturalness imposes. Other 

features of the model are discussed in detail in [2]. A general introduc­

tion to S0(10) may be found in Section 5.1 of Chapter II . Appendix B con­

tains explicit forms for the couplings described here. 



-94-

The particle representations appearing in the model are as follows*: 

Spin 1: adjoint of vector bosons "'45v 

Spin 1 /2: three families of fermions"' 16: 16 1, i62 , 163 

Spin 0 : 54, two re8.l lO's ( 101 and 102 ), three 126's : 1261, 1262 , 1263 

The Lagrangian contains the usual gauge couplings, the Higgs self cou­

plings described in Section 4, and the following set of Yukawa couplings: 

where A,B,a,b ,c, and dare undetermined Yukawa coupling constants. ·we 

take them to be real so as to avoid hard CP violation. This form for the 

Yukawa couplings is maintained by two continuous global phase sym­

metries, X and Y, which are summarized in the following table. 

x 
y 

-3/2 

1 

1/2 

-1 

163 

-1/2 

0 

1 

0 

-1 

0 

1 

-2 

0 

-1 

In order to avoid massless Goldstone-Nam bu bosons when these sym­

metries are broken by the Higgs vacuum expectation values ( v.e .v.'s), X 

and Y must be broken by explicit terms in the Higgs potential. In order 

to maintain the form of the Yukawa couplings, this breaking must leave 

remnant discrete symmetries which forbid the terms not already 

included in Ly. We find it possible to arrange this due to a marvelous pro­

perty of the 126 Higgs field : the four times symmetrized product (126)$ 

•We thank H. Georgi for pointing out to us that naturalness in this model requires 
the use of a 54H rather than a 45H. 
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contains one 50(10) singlet. By including the terms (126 1) 4 and ( 1262)4 in 

the Higgs potential we can break X to a mod-4 discrete symmetry and Y 

to a mod-8 symmetry. These two discrete symmetries suffice to maintain 

the naturalness of the Yukawa couplings . The additional Higgs self cou­

plings are chosen so as to honor these symmetries. 

We take the Higgs fields to develop the following v.e .v.'s . 

!::.ht= 0: <54> "'24 of SU(5) 

<1261> "' 1 of SU(5) 

<126 1> "'5 of SU(5) 

<1262> "'45 of SU(5) 

<126s> "'5 of SU(5) 

(1.2) 

( 1. 3) 

This choice is made for the specific purpose of reproducing the observed 

fermion mass spectrwn and achieving the symmetry breaking of SO( l O) 

down to SU(3)c®U(l)Q· However, these v.e.v.'s must be realized for a finit e 

range of parameters in the Higgs potential. Since the form of the Higgs 

potential is dictated in part by the discrete symmetries discussed above, 

this turns out to be a nontrivial constraint. Section 4 contains the explicit 

form of the Higgs potential and the demonstration that the above v.e .v.'s 

can be naturally maintained. 
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2. Mass matrices for charged fermions 

The Dirac mass terms for charged fermions all transform under 

SU(2)L as M w = 1/ 2 since the left-handed components of the fields 

transform as SU(2)L doublets while the right-handed components are 

singlets . The Mw = 1/2 v.e.v .'s in our model are 

(2 .1) 

<1261> = te -iu (along 5) (2 .2) 

<1262> = se -ix (along 45) (2 .3) 

<1263> = qe -iµ, (along 5) (2 .4) 

It is helpful to remember that in terms of the SU(5) decompositions a 

v.e .v. along the 5 contributes equally to charge 2/ 3 masses and neutral 

Dirac masses, a v.e.v. along the 5 contributes equally to charge -1/ 3 and 

charge - 1 masses, and a v.e .v. along the 45 contributes to charge -1/ 3 

and charge -1 masses with relative weight -3 for leptons . This last factor 

of -3 is due to the fact that the 45 v.e.v. lies along the / 15 generator of 

SU(4) in the chiral decomposition of SO(lO) (see Chapter II , Section 5 .1 ) 

which is proportional to B-L . We thus obtain the following m ass 

matrices : 

O Rei.,, O 

M-11s = Rei1' Seix 0 
0 O Tei.,, 

0 Rei.,, 0 
M _1 = Rei.1' -3Se"X 0 

0 0 Tei.,, 

for charge -113 quarks (2 .5) 

for charge -1 leptons (2.6) 
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o Pe 0 ' 0 
M 213 = Pe o, 0 Qe iµ for charge 2/ 3 quarks 

0 Qeiµ Vei.,.. 

Above we have set 

R = ar, T = br, S = cs , Q = dq 

and 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

In order to diagonalize these matrices it is convenient to first remove 

the phases through a redefinition of the left and right-handed com­

ponents of the fermion fields . We thus set 

(2.11) 

(2.12) 

0 p ~ M - it.L p Q Q ib.R 
2/3 - e e 

0 Q 
(2. 13) 

where tliL. tliR. !::.L, and !::.R are three by three real diagonal matrices with 

entries determined by the phases appearing in J.L113 , M _1, and M 21 s. To 

diagonalize these matrices we set 

- T • ( ) M-113 = R-113 d:iag -ma.'ms.1nti R-vs (2.13) 

(2.14) 
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- T . 
M 213 = R 2/ 3 dwg ( 771.u , -me , 771.t ) R 2/ 3 (2 .15) 

where the bar indicates the matrices with the phases removed and the 

R's are three by three orthogonal matrices . We find that 

-771.a = (5 - .../ 5 2 + 4R2)/ 2, '1ns = (5 + ..J 5 2 + 4R2)/ 2, mb = T (2.16) 

and 

'me = (-35 + .../952 + 4R2)/ 2, -mµ = (-35 - .../952 + 4R2)/ 2, m'T = T (2.17) 

which gives the 5U(5) relation mb = m'T [1,3], and the Georgi-Jarlskog rela­

tions, ma'lns = m 6 mµ, (ma - ms) = 3(m8 - mµ) [ 4] which lead to the approx­

imate relation 

mµ 9'171.s 
(2.18) 

which should be essentially independent of scale since it involves a ratio 

of quark masses. The rotation matrices in (2.13-15) are given by 

cos19c -sin19c 0 

R-1/ 3 = sin19c cos19c 0 

with tan19c = .../771.a/ '171.s and 

0 0 

cos(3 sin(3 OJ 
R - 1 = -sin(3 cos(3 0 

0 0 1 

1 

(2.19) 

(2.20) 

with tan(3 = ..Jme / mµ- The rotation matrix R 213 has a more complicated 

form which is given exactly in [5]. To 0(771.u/771.c) it is given by 

!1 o o I 
R2/ 3 = 0 c~sa. . sina. 

0 -sma. cosa. 
(2. 21) 
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We define the mass eigenstates by 

(2 .22) 

with EL, DL, and UL being weak eigenstate three-component vectors in 

family space. Using (2 .11-2.15) we find that the weak charged current is 

given in terms of the mass eigenstates by 

(2.23) 

The phase matrix e i(~rt.L) appearing in the charged quark current is in 

general nonzero so our model exhibits CP violation. 

Due to the presence of the <5> v.e .v. in the 1261, the model makes no 

prediction for the t quark mass . However, it is measured indirectly since 

the strength of the b ->c transition depends on the ratio me I Tnt . Our mix­

ing matrix gives a lifetime for the B meson of TB = m, I me 4.45x 10- 15 sec . 

to be compared with the existing experimental limit TB~ 10-11 sec. This 

model gives the successful Oakes relation for the Cabibbo angle, 

tan219c = ma! m 5 . The effects of the mixing angle {3 appearing in the lepton 

sector will be discussed in the next section where we explore the conse­

quences of these mass and mixing relations for the neutral sector of the 

theory. 
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3. Mass matrices for neutral fermions 

Perhaps the most interesting consequence of SO(lO) grand unified 

models is the prediction of nonzero neutrino masses and hence the pos si­

bility of neutrino oscillations. In this section we present an analysis of 

neutrino masses and mixings which is applicable to any SO(lO) model and 

then consider the predictions that our model makes for these 

phenomena. 

In what follows we will assume for definiteness that fermions come in 

three families that are simple replications of the lowest mass family. The 

generalization of the analysis presented here to an arbitrary number of 

families is immediate . Appendix A contains a brief review of the possible 

fermion mass terms allowed by Lorentz invariance . In the notation used 

there we can write the mass term for the three light left-handed neutri­

nos (v0 , vµ,. v7 ) and the three superheavy SU(5) singlet fermions 

(Ne, Nµ, , N 7 ) in the form 

(3.1) 

where tL is a six-component vector tl = (N[,Ni.NJy[yl,yf ) with the 

superscript T indicating transposition, and M0 is a six by six complex 

syrnrnetric matrix: 

[ 

M(O) M(l/2)] 

Mo = M(112)T M(1) (3 .2) 

where the MWwl are three by three matrices, the superscript standing for 

their transformation properties under SU(2)L . Since Mo is symmetric , 

M(o) and MC1l are also symmetric matrices. 
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M(l) corresponds to direct Majorana mass terms for the light neutri­

nos and in general may receive contributions from 126H's with vacuum 

expectation values along the 15 of SU(5). In order to be in agreement with 

the experimentallirnits on neutrino masses, such vacuum values must be 

much less than the M II' = 1/ 2 breaking terms and are thus usually taken 

to be zero. If M(o);tO, then M(i) may in general receive contributions from 

radiative corrections. It may be shown that these corrections are usually 

much less than the !::.! II' = 1/ 2 values divided by the bJ w = 1 values and 

hence may be safely ignored. 

In SO(lO), the Ml!'= 1/ 2 mass matrices of the charge 2/3 and charge 

0 sectors are related by Clebsch-Gordan coefficients : the 10, having its 

v.e.v. along the ( 1,2,2) in the chiral decomposition gives equal weight to 

leptons and quarks, while the 126 with its M II' = 1/ 2 v.e.v. along the 

(15,2,2) gives leptons a factor of -3 relative to the quarks . We thus identify 

0 
Af(v 2J = Pei>-. 

0 
-3Qeiµ. (3.3) 

by comparison with the matrix in (2.13). In terms of the light quark 

masses we have 

(3.4) 

P=[~m~~r 
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The form of M(o) is dictated solely by the v.e.v. of the 126 1 along the 

b.lw = 0 direction. Using the couplings given in ( 1. 1) we find 

0 jfoi( 0 

(3.5) 

where 

.A= Ak lJ =Bk (3.6) 

and the b.lw = 0 v.e .v . of the 1261 is 

(3 .7) 

The six by six neutral lepton mass matrix is thus symmetric and in gen­

eral complex, allowing for CP violation. Its diagonalization proceeds as 

outlined in Appendix A. We write 

Mo= urnu, (3 .8) 

where D is a diagonal matrix with real positive entries and U is a unitary 

matrix, ut U = 1. 

The formidable algebraic task of handling a six by six matrix is some­

what alleviated by the fact that the entries in M( 112) are much smaller 

than the entries in M(o), as a result of the gauge hierarchy. Let us set 

Af(l/2) = £.fJ(l/2) (3.9) 

where .fJ(ll 2) is of the same order of magnitude as M(o) and £ measures 

the relative strength of the Mw = 1/ 2 to b.lw = 0 breakings, 

Afw=112 
£= ----« 1 

l::.lw=O 
(3 .10) 



-103-

We then set 

(3. 11) 

where the three by three matrices U11 , U22 , U12, and U 12 are of the same 

order of magnitude , and 

(3 .12) 

where D1 and D 2 are three by three diagonal matrices of the same order 

of magnitude. Then, as a consequence of the unitarity of U and of the uni­

tary congruence (3.8), we obtain the set of three by three matrix equa-

lions 

and 

M"'r112)rMrol -1M"'r112) _ ur D u 
--22222 

(3.13) 

(3.14) 

with U11 and U22 being unitary matrices to O(t2) . This last equation is the 

matrix equivalent of the Gell-Mann, Ramond, Slansky mechanism. From 

(3.13) we can solve for U11 and D1. Next, we solve the three by three 

congruence problem (3 .14) to find U22 and D2. 

Clearly, D1 gives the masses for the heavy neutrinos while t 2D2 gives 

the masses for the light neutrinos. In terms of physical mass eigenstates, 

'l{lm, it is easy to see that the leptonic charged current is given by 

. 1m U i~LRT Em 0( 2) :J µ = v aµ 22e -1 L + t (3. 15) 

where vL is a three-component vector with entries corresponding to the 
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From (3 .12) we see that 

~ 
0 0 

D1 = -A ~ 
O B 
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e'U2 1 1 0 l 
U 1 = ~ -1 1 O 

0 0 v'2 
(3.16) 

so that we have two heavy right-handed neutrinos of mass M1 =A and one 

of mass M2 = lJ . ( The negative sign in front of the second eigenvalue can 

be absorbed by a chiral transformation on N µ , the heavy neutrino eigen­

state associated with the second family .) 

We now consider the diagonalization of the light neutrino mass 

matrix, 

(3.17) 

By taking the determinant of Mv we find that the light neutrino masses 

must obey the constraint 

(3.18) 

where the overall phase has been absorbed in U22 . Using (3.3) and (3.5) 

we find that 

0 p2;.A 
Mv = e it., P2/ A 9Q2eiµ/ lJ 

0 -3Q(PI A+ VI lJ) 

0 
-3Q(PI A+ VI B) 

v21 lJ 
(3.19) 

where all but one of the phases appearing in M 11 have been absorbed by 

redefinition of the light neutrino fields by a factor e i~" with <Pv a three by 

three real diagonal matrix. The remaining phase appearing in the 2-2 
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entry cannot be removed without complete diagonalization of M v· For 

simplicity we will take µ = 0. In general , the light neutrino masses and 

mixing angles will be functions ofµ. Forµ= 0, U22 is an orthogonal matrix 

to 0(f;2) which we parametrize as 

U22 = -s 1c 3 c 1c 2c 3-s 2s 3 c 1s 2c 3 +c 2s 3 

-S1S3 C1C2S3+S2C3 C1S2S3-C2C3 

(3.20) 

An analytic solution for U22 and D2 is rather complicated and unen-

lightening . Instead, we will analyze the eigenvalues and mixing angles for 

two limiting cases that illustrate the general features and then present 

the results of a numerical solution. It is convenient to take the light neu-

trino masses to depend on Tn.u.mc. and me through P,Q , and V, and on the 

ratio r =MN I MN =Al B with the overall scale set by A. 
• T' 

We first suppose that the right-handed neutrino masses obey a family 

hierarchy similar to that for the observed leptons and quarks so that 

r "'Tn.ul me « 1. In the approximation that 

we then find that 

T?nt'Tnu 
9A 

with the mixing angles given approximately by 

(3.21) 

(3.22) 

(3.23) 

so that appreciable mixing exists only in the µ-T sector. If mv and rnv 
µ 'T 
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saturate the cosmological bound 2=mv :::;; 100 e V [ 6], then we find 

m.v, "' 3. 75 e V for 1nt = 25 Ge V. 

On the other hand, if the right-handed neutrino masses are all equal , 

so that r = 1, we then find in the same approximation that 

187nt V mc3'm.u 

.A (1nt +9Tnc) 

with the mixing angles given by 

(3.24) 

(3.25) 

so that again appreciable mixing exists only between the µ and T neutri­

nos. If mv saturates the cosmological bound then for 1nt = 25 Ge V we find 
'T' 

that mil ~ 1x10-3 eV. Note that for r = 1, mil differs from the case r « 1 
• µ. 

by a factor of Sv~ me which is independent of r and which varies only 
mi+ 1'nc 

from 0.98 to 0.82 for 1nt between 20 and 50 Ge V. We thus find that for all 

values of r, mil is essentially constant and therefore provides the best 
µ. 

measurement of the mass scale for the right-handed neutrinos . Numeri-

cal results for the masses and mixing angles are given in Table 3.1 for r 

varying from 10-4 to 1, and for m, = 20, 25, and 30 Ge V. We find that the 

previous approximations are good to about 10% when applicable . In Table 

3.1 the mass scale for the neutrinos is determined by the parameter 

a= MN 11010 GeV =Al 1010 GeV. The value of a in SO(lO) theories depends • 
both on the breaking scheme and on the values of the Yukawa couplings . 

It has been suggested that the right-handed neutrinos may acquire their 

masses only through radiative corrections [ 10]. In this case a depends 

also on undetermined parameters appearing in the Higgs potential. 
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"'1 (Ge V) log10T amv. amv 
µ am"r ~1 ~2 ~3 

20 -4 9 .91Xl0-B 0.148 0 .154 0.0054 1.548 2.378 

20 -2 2 .02X10-B 0.147 0 .759 0.0041 0 .9217 2.965 

20 0 2.50X10-B 0.147 6 1. 3 0.0041 0 .7277 3.138 

25 -4 l.24xl0-7 0.164 0.173 0 .0048 1.538 2.386 

25 -2 2 .09X10-B 0.160 1.05 0 .0039 0 .8223 3.015 

25 0 2.48X10-B 0.159 89.0 0.0039 0 .6644 3 .1 36 

30 -4 1.49x10-7 0.178 0 .190 0.0043 1.527 2.395 

30 -2 2.14xl0-6 0.170 1.39 0.0037 0 .7462 3.048 

30 0 2.47X10-B 0.168 122 0.0037 0.6154 3.134 

Table 3.1: Masses and mixing angles for light neutrinos as a function of 

r = MN I MN and top quark mass ffit. MN, is the mass of the i 'th supermassive 
e T • 

right-handed neutrino field . m 11, is the mass in electron volts of the i'th neu­

trino . a = MN I 1010Ge V. The mixing angles are given in radians . • 
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Neutrino oscillations are governed by the mixing matrix 

(3.26) 

which appears in the leptonic charged current (see e .g. [7]) . The proba­

bility of finding a weak eigenstate neutrino Lit (i.e . the neutrino that would 

accompany the lepton l in a weak decay) at a time t in a beam of momen-

tum p which consisted of Lit · at t =O is given by 

n (t) "'}(, }(,• • -i(E, -E.)t 
'l'l = L.J l'i !iKi'J Ki1 e 1 ( 3. 27) 

i,j 

In the relativistic limit, (Ei.-Ei )t = 2lR where R is the distance from the 

source of the beam and 

(3.28) 

is the oscillation length. 

In principle, the CP violating phases appearing in (3.27) are measur­

able since they affect the cosine dependence of the probability for neu­

trino oscillations [8]. In practice, such phases will be very difficult to 

measure and we will ignore them in what follows . To a good approximation 

we can set 19- 1 =O so that 

I 
cos{3 

K = sin{foos19 
sin{3sin19 

-sir$ 0 
cos{3cos'!9- sin't9 
c os{3sin't9 -c os't9 

(3.29) 

with 19 = 192 + 19-3 and tan{3 = VTna Imµ as before. In this model the neutrino 

oscillations are thus parametrized by the three squared mass differences 

of the neutrinos and by the mixing angles 19 and {3. Since mil «mil ,mil, e µ .,. 

we give in Table 3 .2 only the difference m~ -m~ and the value of 19 for the .,. µ 
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mt (Ge V) log10r a;2om2 ,, 
20 -4 0.002 0.785 

20 -2 0 .554 0.747 

20 0 3758 0 .722 

25 -4 0.003 0.785 

25 -2 1.077 0.696 

25 0 7921 0.659 

30 -4 0.004 0.785 

30 -2 1.903 0.653 

30 0 14884 0.608 

Table 3.2: Parameters for neutrino oscillations. om 2 is the difference of the 

squared masses of Vµ and vT. 19' is the mixing angle connecting weak and mass 

eigenstates. 
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same range of r and 1nt as in Table 3.1. 

The results obtained here depend to some degree on the simple form 

of M(o). However, the general features of small ve mass and appreciable 

mixing only between 1.1µ and 1.17 are tied to the dependence of the neutrino 

masses and mixing on the charge 2/ 3 quark mass matrix. This depen­

dence is a general feature of all SO(lO) grand unified theories. 
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4. Analysis of the Higgs potential 

In our model, the Higgs potential consists of all the SO(lO) invaria..11t 

quadratic, cubic and quartic interactions among the 10,54, 1261, 1262 , and 

1263 Higgs fields which also preserve the global X and Y symmetries 

defined in Sec . 1 of the Yukawa terms mod-4 and mod-8 respectively. For 

convenience we split the potential up into terms that involve only one 

type of field and terms with several Higgs fields. 

The simplest term is the one involving only the 54 . From the pro­

ducts 

(54 © 54)s = 1 + 54 + 660 + 770 (4.1) 

and 

(54 © 54 © 54)s = 1 + 54 + 54 + · · · (4.2) 

where the dots stand for representations other than 1 or 54, we see that 

the most general form for this term is 

V:;4 = [ 54©54, 54©54©54, (54©54)f,(54©54)~)] (4.3) 

Here (54 © 54)~ denotes the square of the projection of 54 © 54 onto the 54. 

The cubic term can be forbidden by the discrete symmetry 54~-54. 

The form of the term involving the 10, Vic , is dictated by SO( l O) 

invariance and by the (X, Y) value of (1,0) for the complex 10 . We use the 

products 

10 © 10 = (1 + 54)s + (45)A (4.4) 

and 

10© 10© 10 = (120)A + (210 + 10)s + (320 + 320 + 10 + lO)M (4 .5) 
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where the subscript M denotes mixed symmetry. Since there are two 

real 10's ( or one complex 10 ) , we have at most two quadratic invariants 

and six quartic invariants . Imposing X mod-4 reduces this to one qua­

dratic invariant ( 10 ® 10 ) and four quartic invariants . These are of the 

form 

It is easy to see that the other possible quartic invariant (10® Til)t can be 

expressed in terms of the other four . The last two quartic invariants 

respect X mod-4 and serve to avoid the massless Goldstone-Nambu boson 

that would otherwise ensue when the global X symmetry is spontaneously 

broken. 

The terms in the potential that involve only one kind of 126 are more 

complicated. For the moment we neglect the (X, Y) symmetries and con­

struct the most general potential containing only one type of 126. We will 

have use of the products 

126@ 126 = (54 + 1050 + 2772 + 4125)s + (945 + 6930)A (4 . 7) 

and 

126 ® 126 = 1 + 45 + 210 + 770 + 5940 + 89 10. (4.8) 

Note that although the 126 is complex, only the 1050, 2772, and 6930 are 

complex. The number of independent quartic invariants is given by the 

number of times the 126 appears in the the products 126 ® 126 ® 126 and 

126 ® 126 ® 126. The techniques used to calculate the relevant part of 

these products are discussed in [7]. The task is easier when only one 126 

is present. The result is that the 126 appears once in the symmetric 
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product 126 ® 126 ® 126 and four times in 126 ® 126 ® 126. We thus have 

(4 .9) 

(126 ® 126)1050 ® (126 ® 126)1050, (126 ® 126)4125 ® (126 ® 126)4125, (126 ® 126)g,.) 

There will be a set of such terms for each of the 126 's. The 1261 with 

(X,Y) = (-1,0) will have a (1261) 4 term which breaks X mod-4 and preserves 

Y; the 1262 , with (X,Y) = (1.-2) has a term (1262)4 which turns out to be the 

only term in the potential that breaks Y mod-8, thus avoiding a massless 

Goldstone-Nambu boson associated with the breaking of the global Y sym­

metry. The 1263 with (X,Y) = (0,-1) does not have a quartic term of this 

form since this term does not conserve Y mod-8. 

We now consider terms involving two types of Higgs bosons. First, 

from (4 .1) and (4.4) and using (X, Y) conservation we easily see that 

Again, the cubic terms can be removed by a discrete symmetry for the 

54. Second, from (4.1) and (4.8) it is easy to see that we have 

Vi26-54 = [(126 ® 126)1 ® (54 ® 54)1. (126 ® 126)770 ® (54 ® 54)770) (4.11) 

for each 126. Other possibilities are ruled out by the discrete (X, Y) sym­

metries. Third, using (4.4), (4.7), and (4.8) and 

10 ® 126 = 1050 + 210 

we have 

Vio-12e
1

=[(10®10)1®(1261®126)i. (10 ® 10)45 ® (1261 ® 1261)45 , 

(10 ® 10)54 ® (1261 ® 1261)54] 

(4.12) 

( 4 .13) 
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as well as quartic terms linear in the l OH : 

and 

( 4. 14) 

( 4.15) 

(4.16) 

(4.17) 

Finally, we have terms that involve the different 126H's; they are of 

the form 

( 4.18) 

There are three such terms corresponding to different values of (i ,j) and 

from (4 .7) and (4.8) we see that we have at most six different couplin g 

schemes for each, for a total of eighteen terms! There is also one other 

term which has the form 

( 4.19) 

The potential thus consists of five quadratic invariants, one for each Higgs 

representation, and fifty-nine independent quartic invariants , not count­

ing those linear in the 10s and the 54H · 

Without entering into the details of the potential to a greater degree, 

we can check whether or not our set of vacuum expectation values can be 

maintained in perturbation theory. The procedure is the following : 

expand any Higgs field about its v.e.v. and check that the magnitude of 

the v.e .v 's can be adjusted so that the potential does not contain any 
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terms linear in the expanded fields. This must shown to be possible for a 

finite range of the parameters in the Higgs potential. If a particular linear 

term comes only from one invariant, or if the above constraints are 

incompatible with one another, the postulated set of vacuum expectation 

values is not natural . It should be mentioned that arranging a natural set 

of v.e .v's that depends on the interplay between the discrete symmetries 

of the potential and the couplings allowed by gauge invariance is a non­

trivial task. We will demonstrate the consistency of our v.e .v's only to 

lowest order in the gauge hierarchy. 

In our case it is convenient to expand the fields in terms of their 

SU(5) components. As an example we set 

( 4 . 20) 

( 4. 21) 

etc . and check that it is possible to choose the v.e .v. 's so that terms 

linear in the {"'s , x's , ... vanish. This is a terrible task which is somewhat 

alleviated by enforcing a gauge hierarchy: some of the v.e.v.'s are much 

smaller than others . Call the small (large) v.e.v. 's v ( V). When we expand 

the potential and look at the linear terms we demand that they be me.d e 

to vanish to each order in v and V . As an example, the terms of O(vlf.2) 

coming from the invariant 10 ® 1261 ® 1261 ® 1261 contains a term linear in 

X5 and to this order it is the only such term in the potential. Hence it 

would have been unnatural to require that the 1261 have a v.e.v. along the 

SU(5) singlet only. The term linear in x45 corning from this term is of 

O(v 3
) and there are other terms of this order in the potential so that we 

need not require that the 1261 have a component along the 45 of SU(5) as 
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well. The presence of the <5> in the 1261 is crucial since it prevents the 

model from predicting too low a mass for the t quark. 
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Appendix A:. Conventions for Fermion Fields 

We describe spin-1 /2 fermions by two-component fields of definite 

chirality: left-handed fields are denoted 'I/IL and right-handed fields 1/;R . 

For massless fermions, chirality and helicity are equivalent and the two 

chirality states are independent. Only one of the states need therefore 

be present in a model (for massless neutrinos vR is absent) . 

For the two-component fields, 'if;f, denotes the left-handed antiparticle 

of 'iflR, while 'if/!? denotes the right-handed antiparticle of 'iflL · For fields in 

which both helicity states are present, parity (P) serves to interchange L 

and R components, while charge conjugation (C) interchanges particles 

with antiparticles of the same chirality, according to : 

u2 is a Pauli matrix. These transformations are summarized in Figure A. 1. 

Note the important feature that while the definition of individual C and P 

transformation properties require the presence of both L and R states , 

CP transformation properties may be defined for massless particles with 

only a single helicity state. 

The two-component fermion fields may be collected into a four-

component Dirac spinor describing a fermion of arbitrary helicily: -¥= w~ l · 
It is convenient to take the Dirac gamma matrices which act on this spi­

nor in the Weyl representation: 
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Figure A.1: Charge conjugation (C), Parity (P), and CP transformations 

among left and right-handed components of particles (~). and antiparti­
cles (~c) . 
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. [o -
0
ai] 

'l= ai (A.1) 

with ui (i= 1. 2, 3) the usual Pauli matrices. (This representation differs 

from the more usual Dirac representation simply by the interchange 

The kinetic energy term in the fermion Lagrangian is given by 

(A.2) 

Fermion fields for which both helicity slates are present may give a 

Dirac mass term 

(A.3) 

If only one helicity is present, say 1/IL, no Dirac mass term may be con­

structed , but a Majorana mass term is still possible : 

(A.4) 

Here the charge-conjugate four-component spinor 'fc is given by 

(A.5) 
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For a fermion field with only a single helicity state , it is sometimes 

convenient to define a four-component Majorana spinor 

(A.6) 

in terms of which the Majorana mass term becomes ';~M-.f:!M · Since 'fM 

involves only four real degrees of freedom, one can find a representation 

of the 1 matrices, termed the Majorana representation, in which 'fM and 

the Dirac equation are purely real. 

Note that fields with Majorana mass terms may not carry any U( l )Q 

charges since the mass term is not invariant under the phase transfor­

mation 1/JL ..... eiaQ1/IL . Fermion fields with Majorana masses therefore lead to 

violation of lepton number and hence the possibility of neutrino oscilla-

tions . 

In grand unified theories it is convenient to deal only with left-handed 

spinors 1/JLi. 1/JL2, · · · with some of the 1/1.La corresponding to left-handed 

particles while others correspond to left-handed anti-particles which are 

related lo the right-handed components of particles through the opera-

tion of charge conjugation. It is therefore clear that a Dirac mass term of 

the form 1/111/IR + h .c . can be reinterpreted as an off-diagonal Majorana 

mass term involving only left-handed fields of the form 1/J[a21/Jj, + h.c . with 

1/Jj, = a21/J R. 

In theories with both Dirac and Majorana masses present it is con­

venient to write all mass terms in terms of left-handed fields so that the 

most general mass term is given by 

a,b = 1...N (A.7) 
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where Mab is in general a complex symmetric N by N matrix . The diago­

nal entries of M correspond to true Majorana mass terms while the off­

diagonal entries may be reinterpreted as Dirac masses . 

Under the CP transformation 

(A.8) 

so that (7) is CP-invariant only if M is purely real. In the general case M 

may be diagonalized using Schur's theorem [ 1] which says that a complex 

symmetric matrix may be diagonalized by means of a unitary 

congruence: 

M = urnu (A.9) 

with U a unitary matrix and D a diagonal matrix with real positive 

entries. The entries of D may be obtained as the square roots of the 

eigenvalues of the matrix M• M since 

(A. 10) 

which has manifestly positive eigenvalues. From (9) we see that the fer­

mion mass eigenstates are given by 

(A. 11) 
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Appendix B: Spinor Couplings 

Explicit construction of the gauge and Yukawa couplings in SO ( l O) 

gauge models requires a study of how the various irreducible representa­

tion (irreps) are built up from products of the spinor irreps . Since there 

has been recent interest in the use of orthogonal groups for model build­

ing [2] , we first present a general analysis for SO(N) [3] before specializ­

ing to SO ( 1 O) . 

1. SO (N) for N even, N = 2n 

The spinor irreps of S0(2n) are most easily studied by introduction of 

generalized Dirac I' matrices. We introduce 2n quantities r i,i= l.. .2n that 

convert the basic quadratic form into the square of a linear form: 

This requires that 

(B .2) 

(We indicate commutation by square brackets and anticommutation by 

wavy brackets .) For S0(2n) the ri may be represented by 2nx2n matrices . 

If R E:S0(2n) then the 2n xzn matrices S(R) such that 

i = l...2n (B.3) 

form a zn-dirnensional representation of S0(2n) which we denote by b. . 

The generators of this representation are given by 

1 ')' .. = ~r. r .J 
~ Z1 ,. J (B.4) 

as can be seen by writing for an infinitesimal rotation Rii ~ oii + G>ii , with 
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G.) . • 

r.>;.i = -r.>ii· We then have S(R) !:! l+i ~; I:i:i so that 

where we have used (B.2) and (B.4) . The generators in (B.4) satisfy the 

commutation relations 

(B.6) 

Since all the S(R) commute with f 2n+i = (-i)2nr1 · · · r2n, !::. is reducible 

into two irreps, !::.+ and /::._, each of dimension 2n- 1 formed by projection 

. 1±r:m+1 
with 

2 
. For n odd, !::.+ and !::._ form complex irreps and are 

equivalent to the complex conjugates of each other . For n even, !::.+ and!::._ 

form two inequivalent irreps with the complex conjugate of each being 

equivalent to itself . For n even, if we write n = 2m then for m even, !::.+ 

and !::._ form real representations (also called orthogonal like representa­

tions) with 

(B.?) 

where the subscript S indicates the symmetrized product. Form odd, !::.+ 

and /::._ form pseudoreal representations (also called symplectic like 

representations) with 

(B .8) 

where the subscript A indicates the antisymmetrized product. 

The r matrices for S0(2n) may be built up inductively from those for 

S0(2n-2). A convenient basis in which r:m+ 1 is diagonal with +1 in the 

first n diagonal entries and -1 in the last n is given by 
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i = l,2,. .. ,2n-2 (B .9) 

where I\, i=l,2,. .. 2n-2 are the r matrices for S0(2n-2), 

f'2n-i = (-i)nf\ · · · f 2n-2 and aa. a=l.2,3 are the usual Pauli matrices . The 

induction starts at n = 1 with r 1 = a 1.r2 = a2 . 

In the above representation of the r matrices the generators are 

given by 

(B .10) 

where aij and ai} are the zn - 1x2n- 1 matrix generators of b.+ and b,_ respec­

tively . In terms of ~TS defined by 

we have 

~rs= ~!\,f's] r,s = l...2n-1 

a + - a- - ~ 
TS - "1 - Lors 

a + - a- - ~ r2n - - r2n - l r 

T,S = l. .. 2n-1 

T = l.. .2n-1 

(B .11) 

(B .12) 

To construct the scalar, vector, second-rank tensor, etc. representa­

tions from the spinor representations we consider a 2n-component 

covariant spinor 'I/la. transforming under the representation b.: 

(B .13) 
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and a zn-component contravariant spinor <fJa transforming under the con­

tragredient representation ~: 

(B.14) 

The representations 6 and Z are unitarily equivalent as is evidenced by 

the existence of a matrix C such that 

(B.15) 

or using (B.3), cri c-1 = rt In our representation of the r matrices 

c = [~ ~] = c-1 . (B .14a) 

The scalar is formed from 1/Ja and r,oa as 

(B.16) 

while the vector is formed by 

(B.17) 

To see that this is indeed the vector note that under 1J;~S1/J, rpr ~r,or s- 1 we 

have 

(B.18) 

using (B .3). The second-rank antisymmetric tensor is formed by 

(B. 19) 

etc . Note that we have 

(B.20) 
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so that C'lj; transforms as a contravariant spinor and we may form the 

antisymmetric tensor representations as 

(B .2 1) 

etc. In general we have 

(B .22) 

where T-;, is the antisymmetric tensor representation of rank i. Any 

representation T1 gives rise to another representation T2n-J through the 

S0(2n) invariant relation 

(B.23) 

where a.i 
1 
... ii transforms under T1 and t-;,

1 
... i2r1 is the totally antisym­

metric symbol on 2n indices . We thus have T211 _1 ..... T1 upon restriction to 

proper orthogonal transformations. For improper orthogonal transforma-

tions, T2n-J ..... -T1 . The tensor representation Tn of dimension (~) splits 

into two irreps T,,t and T;; of dimension t{~) according to the S0(2n) 

invariant decomposition of a tensor of rank n, a = a+ + a-, with 

(B .24) 

The representations T; and Tn- are real for n even and the complex conju-

gates of each other for n odd. 

Upon splitting !:>. into !:>.+ and f>._ we have the following decomposition 

for the products appearing in~®!:>.: 

(B.25) 
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{)._ ® /::,_ = To+ T2 + · · · (n even) 

(B .26) 

/::,_@ {)._ = Ti + Ts+ · · · (n odd) 

/::,_ ® b.+ = To + T 2 + · · · 

2. SO(N) for N odd, N = 2n + 1 . 

In this case we take the 2n+1 quantities ri . i=1 .. 2n+1 defined in (B .9) 

and define the representation S(R) through the correspondence (B.3) a s 

before but now with i=l .. . 2n+1. This zn-dimensional spinor representa­

tion D. is irreducible and real (orthogonal like) for n=3,4,7,8,11 ,12, ... and 

pseudoreal (symplectic like) for n=5 ,6,9 ,10,13,14, .... The matrix C defined 

in (B.14) satisfies 

(B .27) 

and thus serves to relate covariant and contravariant spinors only for n 

even. For n odd the matrix cr2n+i must be used for this purpose . The 

various antisymmetric tensor representations are then constructed as 

before and we have 

8 ® 8 = To + Ti + · · · + Tn (B .28) 



-129-

3. SO( 10) . 

In accordance with our previous discussion we take the 32 by 32 r 
matrices for SO(lD) to be 

ri : al® G1 ® G1 ® G1 ® G1 (B.29) 

r2 : a l ® G1 ® G1 ® G1 ® G2 

rs = a1®a1®a1®a1®as 

r4 = a 1 ® a 1 ® a1 ® a2 ® 1 

r:; = a 1 ® a 1 ® a 1 ® a3 ® 1 

re =a1®a1®a2 ® 1 ®1 

r7 =a1®a1®a3 ®1 ® 1 

ra =a1®a2 ®1 ®1 ® 1 

rg =a1 ®a3 ®1 ®1 ®1 

r10=a2®l ®1 ®1 ®1 

with f 11 = G3 ® 1 ® 1 ® 1® 1. The generators for the 32-dimensional Spinor 

representation are given by 

(B.30) 

Since SO(lD) has rank five there are five diagonal commuting generators 

which form the Cartan subalgebra of SO(lD). In our basis they are given 

by 

I:12 : 1 ® 1 ® 1®1 ® G3 (B.31) 

I;34 = 1 ® 1 ® 1 ® G3 ® G3 
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l:5s = 1® 1 ® as® a3 ®1 

Upon projection with ~ (l±f11), the 32-dimensional spinor represen­

tation breaks up into two irreps, 16 and 16, with the 16 being equivalent to 

the complex conjugate of 16. If we follow the conventional assignment of 

the left-handed fermion states to the 16 then the 16 contains the right­

handed CP conjugate states. 

The product 16 ® 16 then transforms as a Lorentz scalar and contains 

the SO(lO) antisymmetric tensor representations of odd raruc 

16 ® 16 = T1 + T3 + Tt = 10 + 120 + 126 (B.32) 

while the product 16 ® 16 transforms as a Lorentz vector and contains the 

antisymmetric tensor representations of even rank: 

16 ® 16 = T0 + T2 + T4 = 1 + 45 + 210. (B.33) 

If 1/IL is a column vector containing the 16 left-handed two component fer­

mion fields, 1/IL"'16, then the coupling to the gauge fields is given by 

(B.34) 

with aµ.= (1,ai) acting on Lorentz indices and Dµ. =aµ.+ ig;cib A'ff where 

A'jf = -A!a. a,b = 1.. .10 are the 45 vector gauge fields . 

The S0(6) "'SU(4) subgroup of SO(lO) is generated by amn m,n = 1..6. 

The S0(4) "'SU(2}L®SU(2)R subgroup has the generators 
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'T'tL. (R) = l_ .,ijk a6+j .6+k ± l_ .Ji+i.10 ,; J. k - l' 2 3 
Jr 8... 4 U- "• ' - ' ' (B.35) 

where with this normalization Tt(R) is ±1/ 2 when acting on a SU(2)r(R) 

doublet. The SU(3)c subgroup of SU(4) is generated by 

while the U(l) generator in SU(4) not in SU(3)c is given by 

The hypercharge, Y, is a linear combination of B-L and TP,, 

1 Y = --(B-L) - T~ 
2 

(B .36) 

(B.3?) 

(B.38) 

The electric charge is given as usual by Q = T}! - Y. With these assign­

ments and the representation of the r matrices given by (B.29) the fer­

mions are embedded in the 16 as 

(B .39) 

where b ,r, and g are color labels. 

In order to write the Lorentz scalar, SO(lO)-invariant Yukawa cou­

plings we first introduce a 32-component spinor ~ = ref]. If fPa' a = 1 ... 10 

is a scalar transforming as a 10 under SO(lO) then according to (B .16) the 

Yukawa coupling of fPa is given by 

(B.40) 
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where a2 is a Pauli matrix acting on Lorentz indices . The coupling to 

if'[a.b ,c] "' 120 is given by 

(B .41) 

while following (B.21) the coupling of if'[~.b.c,a ,e]"' 126 is given by 

(B .42) 

In the representation (B.29) we have 

(B .42) 

with 'la a 16 by 16 matrix and -yJ the hermitean conjugate of 'la. . We can 

then write the couplings of the 10, 120, and 126 as 

(B .43) 

and 
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