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ABSTRACT

The positive column of a glow discharge is placed along
the axis of a cylindrical cavity excited in the TMgy;, mode.
The transmission of 3 cm waves through the cavity and the
shift in resonant frequency are observed as a function of dis-
charge current. It is shown that from these measurements val-
ues of the complex conductivity of the electron gas can be cal-
culated. Curves of the measured conductivity components as
functions of pressure and current are given. From theoretical
expressions for the conductivity values of electron density
are calculated. Langmuir probe studies are carried out and
adequate agreement is found. Finally, mean free path and mean
free time between collisions are calculated from the conduc-
tivity values and hence the variation of collision cross-sec-

tion with temperature is found.
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I. INTRODUCTION

A knowledge of the conductivity of an ionized gas is of
interest in several phases of microwave work, such as the de-
sign of TR tubes (1), as well as in many problems connected
with the study of the ionosphere (2); it has also acquired con-
siderable importance in guided missile work, since the conductiv-
ity of the rocket motor flame may cause malfunctioning of the
missile-ground radio link* (3,4,5). Some work has been done on
the behavior of gaseous discharges at microwave frequencies (8-
15), but published measurements of r.f. conductivity (16,17,18)
are restricted to lower frequency ranges.

A determination of conductivity at a wave length near 3 cm
is described here. A d.c. mercury vapor glow discharge was used
to supply the conducting gas which had the advantage that elec-
tron temperature and density could be determined by probe stu-
dies, using Langmuir's theory (19). In conjunction with a theo-
retical equation for conductivity (30) these measurements allow
one to make a check of the values for the conductivity obtained

experimentally.

ko A study is in progress at present at the C.I.T. Jet Propul=-
sion Laboratory to determine the conductivity of various jet
flames, using the method described in this thesis.
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II. EXPERIMENTAL TECHNIQUE AND APPARATUS

At this writing the use of a resonant cavity as a means of
applying a microwave field to a discharge is no longer a novel
idea. Various resonant structures have been used lately to
measure the dielectric constant of gases (21-28) and to study
breakdown and diffusion phenomena (9, 11-15). The method used
in the references cited is based on finding the cavity input ad-
mittance by the usual standing-wave ratio and phase measurements;
to determine complex conductivity in this way leads to rather in-
volved problems (cf. reference 29, pp. 23 énd 32). The scheme
described below is a transmission, rather than a reflection
method, and allows a relatively simple and straightforward de-
termination of conductivity to be made.

A schematic diagram of the experimental arrangement is
shown in Fig. 1. A cylindrical cavity was used (Fig. 2), de-
signed to resonate near a wave length of 3 cm. in the TMpjp mode.
Coupling to the wave guides was through circular irises in the
side walls. ©Small openings at the centers of the top and bottom
walls allowed Fhe discharge tube to extend axially through the
cavity; singg/tge mode used the cavity wall currents fall to
zero at the centers of the end plates, these apertures have no
appreciable disturbing effect. This was not immediately recog-
nized when this research was started, and early experiments
were made with a cavity using radial chokers designed to pre=-
sent a short circuit to 3 cm. waves and an open circuit to d.c.

(cf. reference 30, p. 359). In this way the top plate could
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be insulated from the rest of the cavity and the discharge then
took place between the top and bottom cavity walls. D.c. break-
down between the closely spaced radial chokeys gave considerable
trouble; moreover, the Q of this cavity was only about 700,
while a Q of about 3000 was obtained with the simpler cavity
shown in Fig. 3. Use of radial chokeys was hemnce abandoned.

A quartz tube, shown in Fig. 3, was used to contain the
glow discharge, after it had been found that even very thin-
walled pyrex tubes loaded down the cavity too much due to the
relatively high loss tangent of glass. Insertion of the quartz
tube reduced the cavity Q only by a few percent although its
high dielectric constant shifted the resonant wave length from
3 cm. to 3.55 cm. The bottom part of the tube was formed into
a bulb containing a small pool of distilled mercury. In the
experiment this bulb extended into an oilbath the temperature
of which was thermostatically controlled to :t%°c and could be
varied from room temperature to slightly above 200°C. The re-
maining portion of the tube, containing the actual discharge,
was placed in an oven the temperature of which was maintained
about 25°C above that of the oilbath in order to prevent un-
wanted condensation from occurring. Thus all condensation oc-
curred at the surface of the mercury pool whose temperature
then determined the pressure of the mercury vapor once equilib-
rium had been established. Since the tube had been carefully
evacuated, the mercury vaporpressure was also the total pres-
sure in the tube which could thus be determined by measuring

the temperature of the o0il bath.
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The high frequency excitation was obtained from a klystron
tube frequency-modulated at a 1000-c.p.s. rate by superposing a
small sawtooth voltage on the repeller potential; the same modu-
lation was also applied to the horizontal sweep of an oscillo-
scope. The output from the cavity was picked up by a orystal,
amplified, and applied to the vertically deflecting plates of
the oscilloscope. The resulting trace was thus a Q-curve, whose
height was proportional to the transmission in power through the
cavity since a square law crystal was used. A calibrated wave
meter placed between cavity and crystal introduced small "pips®
on the trace by means of which the resonant frequency and the Q
of the cavity could be measured. As shown below, measurement
of these three quantities-- effective Q, change in transmission,
and change in resonant frequency with discharge current-- suf-
fices to determine both real and imaginary components of the
conductivity.

For the purpose of carrying out probe studies a second dis-
charge tube was built identical to the one used in the cavity,
except for a fine probe wire extending radially into the middle

portion.
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III. THEORETICAL RELATIONS

As Nomenclature

teeeoo...transmission in power through the cavity, i.e., ratio

of output power from the cavity to available power.

relative transmission, i.e., ratio of transmission t

with discharge current flowing to zero-current trans-

mission.

Beoosooo.Tadius of cavity (1.15 cm).

heeo.....height of cavity (1.5 cm).

b.oe.....radius of conducting column (0.175 cm).

G;+Jc: ..complex conductivity of ionized mercury vapor,
mhos/meter.

Qgese-oc.othe Q of the unloaded cavity.

Qpecese:.Q of cavity with loading due to coupling to the extern-

al circuit through the irises.

Qgov-vv-o an iris loading Q defined by 1/Qp = 1/Q¢ + 1/Q .
Qlesces..Q of cavity loaded by the discharge (but not by irises).
wo,...,u.nominal resonant frequency of the cavity radians/second.

Wieeso...Tesonant frequency with discharge current flowing.
Af.......frequency shift due to discharge in c.p.s. =(wp-w,)/3T-
PeeoesoooVapor pressure, mm Hg.

Pogmin ne .electron temperature, °K.

Neoooooo.€lectron density, electrons/cms.

Xjees..-.a dimensionless parameter = (mwz)\g/sz), A being the

electronic mean free path; for mercury at 8460 Mc:

x1 = 1.2 x 108p™8 7-1,
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R dielectric constant of free space = 10~9/36T.

B o wmow s BT ?cz{we,); cf. Eq. (8).

e s enes i Wplin i) s

kg........wr(}‘_eo)%.

i SRR - W 5

Beosos.sooequivalent shunt susceptance of the cavity.

6,.......,loading factor (dissipation factor) of cavity due to
the finite conductivity of the walls; i.e., ratio of
equivalent conductance to equivalent susceptance.
(Note: 85: 1/Q) -

$

4o °e--input loading factor of cavity; i.e. ratio of conduct-
ance coupled to cavity from input end to the shunt
susceptance of the cavity.

82........output loading factor of cavity.

SL.....e..loading factor of cavity with irises = 1/Q;.

Jeeeoo....current density (amperes per sq. meter).

Aceeecoo..eloctronic mean free pathe

Meooeooooomass of neutral mercury atom.

Neosoossoomercury atoms per cms.

Keoooosoooelectron mobility.

Weeeovo..drift speed of electrons in a d.c. field (U= KE).

Teeoeoooo.mean free time of electrons between collisions.

Basehnan ..electronic collision cross-section.

Veossooseoelectron velocity

Pgeeesrre- .pressure at which O reaches a maximum (mm Hg.).

Ascovoso..probe area exposed to the discharge.

icececcoc.€lectron current collected by the probe.



P

igeeeec-+-discharge current.
Peoooos.sopower dissipated in the cavity.
(Note: Except where expressly noted otherwise, all formu-

las are in rationalized m.k.s. units.)

B. Calculation of the Real Component of Conductivity

An expression for t, the transmission in power through the
cavity, will be derived first. For this purpose the cavity is
assumed to be at or near the dominant resonant mode (TMyig), so
that it can be represented by a shunt resonant circuit to which
are coupled resistive input and output circuits as shown in the

accompanying sketch.

I1 B+ BST 8% 3-BE < 5B

EQUIVALENT SHUNT RESONANT CIRCUIT

When the cavity is excited by energy supplied from the input
circuit there exists in the cavity a certain amount of reactive
power, a fraction 50 of which is dissipated as losses in the
cavity itself; note that §_= 1/Q,- The symbol Qq is defined

here as the intrinsic Q, i.e., the Q without any external load-
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ing, to differentiate it from the more general Qp which is the
measured Q when the cavity is loaded down by external coupling.
Coupling to the external circuit then increases the loaded

§ to
6 = §,+ 6, +§, (1)

Physically the assumption underlying this expression is that
the distribution of electro-magnetic fields within the cavity
is not seriously altered by the input and output coupling de-
vices, an assﬁmption which is certainly valid as long as the
§'s are very small compared to unity. This requirement was met
in the actual experiment in which the &'s were of the order of
1074,

The available power in the above circuit is that delivered

in a matched condition, viz.,

12

P, = (g4m)° 6B = 153 (2)

while the power actually going into the load (52B) is

. I 12 g - 1% §
PL= (3p+sp 7358 "8B° @B &)
The transmission then comes out to be
£ = Phz 484, (4)

Py &

Next symmetrical conditions are assumed to exist making 81
equal to 6r This was insured by placing smooth padding attenu-
ators on either side of the cavity (cf. Fig. 1) so that the

cavity looks into Z,, the characteristic line impedance both
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ways. If now the symbols Qp and Qi are introduced, where
Q = 1/6L. and 1/Qp = 1/Q, + 1/Q;, the transmission can be writ-

ten as

t= (§7 = (1 q/q,)"2 (5)

Note that for any additional internal loading of the cavity, Q,
in (5) must be replaced by the corresponding (lower) Q. Thus
with discharge current flowing Eq. (5) becomes

t= (1w Q/Q)? (6)

For the cavity loaded by wall losses only, Q, may be ex-
pressed in terms of an equivalent shunt resistance R along the
cavity axis as (31)

- a8
Qo = 0.00531&R. (7)

The very small additional loading due to the presence of the
quartz tube can be assumed to be lumped into R, giving a slightly
lower effective Qgy- The conducting column is now assumed to in-
troduce an additional shunt resistance R! placed in parallel with
R:

R' = 52 o (8)

Thus the resultant Q becomes now

Q' = 0.00551¢ «—FR_, (9)

or using (7) to substitute for R:

A %%sqoh/’ﬁ'a bE)

Substituting this expression into Eq. (8), and using (8) to write



=10

R' in terms of &;, the resultant expression may be manipulated

into the following factored form:

i 2 -2
t2 (1 Q/Q)° (1 s 59282 ¢ o7) (11)

The first bracket is recognized as the transmission with no dis=
charge current flowing; using this as a base the second bracket
may be defined as a relative transmission, t,, in terms of which
g, can be expressed explicitly as:

-
9, = 0,00169%2 gi—(t,"2-1)mhos/meter. (12)

t, 1s readily determined, being simply the ratio of the height
of the Q-curve trace with discharge current flowing to that with
the glow turned off; for convenience and accuracy & meter ws ac-
tually used which was calibrated to read t, directly. Since all
quantities on the right-hand side of (13) can be measured, O,

may be found.

C. Calculation of the Imaginary Component of Conductivity.

From Maxwell's Field equation

_-_bﬁ . = _ - q-.: —
VXH-—-—;‘--‘ (0‘;+a,d'i")E-= o;E-o-awe,(le-wa_)E,

the out-of-phase conductivity component o] is seen to result in
an effective dielectric constant

€= € (1 + %;). (13)

Since o7 can be shown to be negative, being due to the inertial
lagging of the electrons behind the applied field, the dielectric

constant is reduced, decreasing the equivalent capacity of the



cavity; thus the effect of the glow discharge is to raise the
resonant frequency, as shown by Eq. (19) below.

To treat the cavity as a boundary value problem, it is
divided into two regions, where for 0 L p< b, €=¢€(1 +e&/we,),
while for b { P< a the dielectric constant is still ¢,. No ac=
count is taken of the narrow region filled by the quartz tube
which introduces a small constant frequency shift. For the in-
ner region the expressions for the fields will be of the same
form as for the usual TMy;g mode (cf. reference 30, p. 397):

Ezy = Jolkyp)s Hoy = (we, /ky)I1(kqp)e (14)

In the outer region Bessel functions of the second kind need
also be included, so that for b < p<a:
E,n = AJo(kgp) + BY.(kgp)

Bop = (We,/kp) [AJl(kzp) + BYl(kzp)] (15)

Three boundary conditions apply: at p= a, Ey,g = O, since the

tangential electric field must vanish at the surface of a con-
ductor; at P= b, EZ2 = Ezl and HQ ?l from the continuity
of tangential fields. Usng two of these relations to eliminate

the constants A and B, the third one may be used to obtain the

following equgtion:
1
J1(kob) Y.(koa)=J, (koa) Y, - &Y? J3(k1b)
Tolkgb) v, (kga)-Jorza) Y(kzb5 (é") Jo(k1D) W

The desired new resonant frequency is now contained implicitly

in kg and kj, and is solved for by plotting each side of (186)

seperately over a small range near w = w,, €,2¢€,, ki = kg
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From these curves the following linear approximations may be ob-

tained:

J1 (kD) E\e
g ® ° —)2 W
To(E;B) = 0-1860 4 0.1940 [ (eo) = _IJ

- w (17)
@ (xzb, kza) T 0.1860 - 4.388 = -1]
where @(kgb, kza) has been written for the left hand side of
Eq. (16). Since the change in ¢ due to 6, is of the order of

only 0.5 percent, one may write

'lQ - 2 Gr
(%) =(1+§%° = I+ 50e %

From a substitution of Egs. (17) and (18) into Eq. (16) the fol-
lowing first-order approximation is finally obtained for the
particular case at hand:

O, = -1.33 x 10°° x af mhos/meter (19)

The relation between O and frequency shift may be derived
more simply by an alternate method which makes use of the vari-
ation principle for electromagnetic problems, viz, that at

resonance

timej volumeg(%MHz-% € E‘?’) dv dt (20)
have a stationary value of zeroc. This is analagous to Hamil -
ton's principle in mechanics, the volume integrals of %/;Hz
and %G:Ez representing kinetic and potential energies respec-
tively. Since all time variations are sinusoidal, and H may
be replaced from Faraday's Law, Vx E =-3W}kH, this relation

can be rewritten as
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, f/;l; (vx E)z dv
Wr = _vol. - (21)
j eE dv
vol.

If the perturbation of the electric field due to the discharge
is not appreciable, only the denominator of this equation will
cause any change in the resonant frequency since € 1is reduced
in accordance with Eq. (13). Thus the effect on the resonant
frequency of any small changes in the dielectric constant can

be expressed by

j 6 E° dv
Wy _ vol. (22)
= =
° S eE? dv

vol.

Where in this case € is given by Eq. (13) over the region

0 < p<&b. It is seen that wp is most sensitive to changes

in e‘which occur in regions of high electric field strength
which is exactly the case here since the discharge tube is
placed along the cavity axis where E reaches a maximum. Final-
ly the square root may be expanded as in Eq. (18), so that (22)

becomes
b

3
Wo ZWp€, J«. ES PdP (23)
)

Taking E to be proportional to Jo(kp) as in the undisturbed

case, integration ylields the following result:

2 3
Af = = T (g) Jﬁ(kbL-& J1(kb)

4T e, J?. (ka) (24)

Making the appropriate numerical substitutions Eq. (24) is



found to agree within one percent with Eq. (19).

D. Theoreticel Expressions for Conductivity

If a high frequency electric field is applied to an ionized
gas, the resulting oscillatory motion of the free electrons will
give rise to an alternating current. In general this current
will not be in phase with the electric field; if it is written
as

J= OE (35)
Then this behavior may be described by a complex conductivity
0 = o, + §0, . Two limiting cases for o are well known:
for high frequencies and low pressures there is practically no
energy loss due to electron collisions and hence the current is
in quadrature with the field (Or = 0). The equation of motion

of an electron under these circumstances is given by

mZ = eE = eEgy exp (Jwt) (26)

for an electric field in the z direction. The current density

is then simply
- e ek y - ne®
J = nei = ne(yyg) = -Jwr E (27)

whence the conductivity is , by Eq. (25):

2 P
o = _jRe or O = . &~ (28)

The other limiting case occurs at low frequencies and high pres-

sures in which case the average velocity of the electrons, 2,
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is simply related to the electric field by the electron mobility,

K, so that

J = nez = nekE (29)
or

= 0z nex = SET A0, (50)

where Langevin's mdbility formula (32) has been made use of in
the last expression.

In order to treat the more general intermediate case it is
first necessary to find the velocity distribution function for
the free electrons. Let f(v,, Yy vy)avy dvy dv, be the num-
ber of electrons having velocity components about Vxs Vys Vg,
falling within the element dvy dvy dv, (or ve 8in0a @ a0 av)
in velocity space; f is not a function of the coordinates (in
physical space) since diffusion and similar phenomena are dis-
regarded here, the electron concentration n being assumed uni-
form over the volume considered. The function f is determined

from Boltzmann's transfer equation (33):

e df | of =[zi}
e

W v, et CLlat (31)

of
Here 7t represents a smooth time rate of change caused by the

variations in the electric field E which is epplied in the z di-
rection;‘:ggle represents the rate of change occasioned by elas-
tic collisions, in-elastic collisions being neglected since the
electric field is assumed to be relatively weak. The general
procedure now, following Lorentz (34, 35), is to expand f in a

series of Legendre functions in cos 0= vz/v:
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f(v, v,) = fo(v) + Pl(c039) f1(v) « Pz(cos 9)fg (v) #..0

£,(v) » (vy/v) fl(v) % 5% (323)

The first term determines the random distribution in velocity,
while the second term represents the electron "drift" in response
to the applied field. Higher terms do not correspond to any
simple physical property of the distribution and are neglected.

In order to carry through the solution of Eq. (31) using
Eq. (33) it is found necessary to make one of two simplifying
assumptions: the electronic mean free path, )., is independent
of the electronic velocities; or the mean free time, T , between
collisions is constant. The meaning of these two hypotheses is
perhaps best seen by considering the general relaticn

NgA=1 (33)

where N is the number density of obstacles (i.e., mercury atoms
in this case), q the electronic collision cross-section which
is in general a function of the electron velocity v. Constant
A thus implies constant q. On the other hand, since T= )-/v,
constant T would mean that q is inversely proportional to v.
The actual behavior of q has been the subject of considerable
research (38). It has been found experimentally (37) that for
the monatonic gases that are the vapors of the metals, q first
decreases rapidly with velocity and then remains quite constant
at high electron temperatures. As will be shown in Section IV,
the results of this investigation show that hN and q do not
change over the range of electron temperatures encountered.

An expression for complex conductivity has been derived by

H. Margenau (20, 38, 39) which is exact for the case in which
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>\does not vary with v (ise. pA equals a constant, independent

of the electron temperature). He writes Eq. (32) in the form

f=f£5(v) + (zé) [ F1(v) cos wt + Gy(v)sin wt] (34)

since the applied field, Ejcos wt, will induce the corresponding
frequency in the fl(v) of Eq. (32) which, in genersl, will have
one part in phase with the field and another part out of phase.

Margenau then shows that fe has a Maxwellian distribution,
3/2 3

£ = n(m/aTk 12 exp(-BE2) (35)

provided the a.c. field is not too strong; specifically if

B, <2\ ST (36)

He further finds that

G = Wr}’ F (37)
and fi1 = -\7%57\ %_f‘,? eTE- (38)

Knowing f;, the complex conductivity is obtained in a manner
analagous to that employed below for the case of constant T .

Margenau's final result for the complex conductivity is

3
o= & iy (Kt IV m )] (o9)

Whe re
&
X x]

®
Kn(xy) = J £ e ™ dx (40)
o

K5 and K3, have been plotted by Margenau. For xj—e and x; =0
the above expression approaches the two limiting cases given in

Egs. (28) and (30), although in the latter case the numerical
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factors differ by about ten percent. For mercury vapor at
8460 Mc, the effective resonant frequency of the cavity with the

tube inserted, the above expression becomes®:

o = 4.38 x 10'10(n/pT%)K2(x1)-j 4.81 x 10"7(n/p2T)K%(xl)
(3%)
A plot of o ve. pressure at constant frequency shows that
.0, decreases monotonically, starting with the value ezn/mw at
very low pressures and going to zero as weZA./QkT at high pres-
sures; the real component of the conductivity falls to zero at

both very low and very high pressures; a maximum is predicted

(17) for:
13 1
wA= 6.8 x 10"V(kT) (c.g.s.) (41)
A more convenient form of this equation is the following:
p> T = 570,000 (41a)

Here P, is the pressure in mm Hg at which O, maximizes.
It may now be of interest to carry through a treatment

analagous to Margenau's, but considering T to be constant.

Note that
{ A

where 5 is the average collision frequency and v the electron
velocity; the fact that A /v is independent of v will be seen
to simplify this derivation. Now a.c. current density J = nev,

where ?; is the instantaneous average drift velocity of the

* The value for the mean free path of mercury used here and
elsewhere was taken from reference 43, p. 23.
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electrons given by the average over all velocity space:

© T T

- . 1

¥, ;J J J v, f v® dv sin©d® ae (43)
o ) o

The distribution function f is given by Eq. (33), but only the
second term, (vz/v)fl(v), is used here since f,(v) does not
contribute to the a.c. current density. Writing v, = v cos©
in the integrand, the integrations over polar angle @ and

azimuth«? in velocity space may be performed, leaving
<<}

- _ 4r 3
vy = E ‘f f1(v)v® av (44)
(o]

If now f; is replaced from Eq. (38), the current density be-

comes

ey
1
o]
@
<
1]

(-]

- 4TeSE \ . Of

z ~ " gm ‘[ 1 + gw(<;%7772 vS av (45)
0

Since ’UZ'X/V is not a function of v in this treatment, the

integration is readily carried through:

@
J%&Q viav = vzfo
Q

-5‘5 fovzdv (46)

0 o

The first term is zero at both limits for all physical distri-
bution functions. The second term has the value 3n/4W quite
independently of the actual form of fo; this follows from the
fact that the distribution function must be normalized to the

electron concentration, i.e.,
o)

n= 41?[ fo v dv (47)

o
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Upon rationalizing Eq. (45), the resulting expression for the
conductivity becomes simply:

o= /8 = en (1-1wT)T (48)

m 1 ¢+ wer o

It is of interest to note here that this or a very similar
result could have been obtained by a much simpler, though less
rigorous method. The equation of motion of an electron in an
alternating field may be written as

m% « gz = eE, exp (jwt) (49)
where gz is a friction term representing the effect of repeated
collisions. This simple equation allows the conductivity to be

found immediately:
3 3
o = 2 - __ne - 1 - e n
nez/E 3 g T’T-‘}ﬁ— _""g (50)

Hulbert (40) and others have used a suggestion of Lorentz to

the effect that g = 2m/T . The justification for this expres-
sion is seen readily if one considers the motion of an electron
in a steady field where inertia effects do not enter. Then the
average drift speed, W , will be such that g w = eEs- but the
drift speed is also related to E by the electron mobility, XK:

= ¢ E& ¢ (51)

W= XKE = ¢ =

s
1>
=i

Here ¥V denotes the average thermal velocity and ¢ is a numerical
factor varying between 0.5 and 1.0 depending on the assumptions
made in the statistical analysis of the motions of the electrons

and molecules (see reference 36, pp. 600 et seq.). If all
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electrons are assumed to have identical free paths and thermal
velocities, then c¢ obviously equals one half, since (eE/m)T‘
is the terminal velocity just prior to a collision which is
here assumed to destroy all momentum in the direction of the
field; hence g = m/c1tT = 3m/r. A somewhat more realistic der-
ivation which takes into account the distribution of free paths
(reference 368, p. 47) yields ¢ = 1 and thus g = m/T . If
this is now substituted into Eq. (50), Eq. (48) is obtained.
The exact agreement is, of course, rather fortuitous, for more
precise derivations of K using the elastic collision theory of
Langevin (41,42) give a value of about 0.75 for c.

The behavior of O with changes in frequency or pressure
predicted by Eq. (48) is quite similar to that found from Eq.
(39). The real component of conductivity reaches a maximum
now when

wT = 1 (52)

or when

wA= ¥ = (8kT/Trm)% 2 5.29 x 1015(1:'1')%, (c.g-s53)
a result not very different from Eq. (41). Both equations are
seen to place the maximum of conductivity nearly at that value
of the pressure for which the mean free time between impacts
is equal to a half-period of the a.c. field; such a result is
expected since Iy reaches a maximum when electron collisions
take the most energy out of the field, i.e., when the elec-
trons are allowed to acquire a maximum of kinetic energy be-

tween collisions.
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E. Miscellaneous Formulas

ls Probe Studies®

In order to make possible a comparison of measurement and
theory it was necessary to determine two parameters of the gas
discharge which enter into the equation for conductivity, name-
ly the electron temperature and the electron density. Follow-
ing Langmuir, the procedure used was essentially one of vary-
ing the potential of a small probe wire extending into the
plasma and studying the probe current as a function of the
probe voltage.

Now Boltzmann's relation shows (43) that over a certain
region of probe voltage the electron current collected is pro-
portional to exp (eV/kT), V being the probe voltage measured
relative to the plasma potential. If the logarithm of this
current is plotted against voltage the slope of the resulting

linear curve is then given by

d(ln i) - _e = 11,700 (54)
dv KT T

A plot of i versus V on semi-log paper is thus seen to afford
a simple means of determining T, the electron temperature.

Note that the total probe current measured must be corrected
for the positive ion current in ordér to obtain the electron
current. This is done in the usual manner by extrapolating
the purely ionic current measured at very negative probe poten-

tials into the "Boltzmann region" (cf. reference 19, Fig. 6.8).

* For derivations of the formulas given in this section as
well as for background material on this method the reader is
referred to the original papers by Langmuir (reference 19).
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If the probe is made positive relative to the plasma poten-
tial then Langmuir has shown that at sufficiently high values
of probe current the square of the probe current is a linear
function of the probe voltage, the slope of the i2 versus V
line being |

S = 4AR.I<e/ kT (55)
where A is the probe area and I the random electron current
density, given by

I= % nev (56)

If Eqs. (53) and (54) are now combined and the average thermal
electron velocity V replaced by (8kT/wm)%, the electron density

may be solved for:
1
n = £§~ (88)2 (57)

Electron density is thus determined once the slope 8 is meas-

urede.

Be Theoretical Equations for Electron Temperature and Density

As a check on the values of T and n as obtained from probe
studies, theoretical formulas for these quantities will be used.

As regards the temperature, the following relation can be
shown (44) to hold:

(eVi/kT)exp(eVi/kT) = 1.16(10) ¢ p2p? (58)

Here Vi is the ionization potential (10.38 volts), ¢ is a con-
stant of the gas (0.11 for mercury), and b is again the radius
of the discharge tube. A plot of Eq. (56) as a function of
the pressure, p, is shown in Fig. 7.

An approximate formula for the electron density can be
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found by combining a number of equations derived in reference
44. For a cylindrical discharge tube (Egq. 179, Vol. II¥:

n=3i/(1.36 eub?) (59)
The drift speed w is given by (Eq. 2359, Vol. I)%:

W

1]

(2£)5(or )® (S22 (60)

where, in turn, (Eq. 181, Vol. II)#

E=1.85 x 1074 (f)% T/\ (61)
and f represents the fraction of energy lost by an electron in
a collision with a stationary gas molecule; for mercury,

f = 5.5 x 1075, Combining all these equations, one finally
obtains

n= 7(10)15 1 (1)-% (62)

id being the discharge current in amperes.

Se Criterion for Applicability of Maxwellian Distribution

It was pointed out that the expression for the conductiv-
ity given in Eqg. (39) holds only if the a.c. field does not
exceed a certain critical value given in Eq. (38). If the
field should be appreciably stronger, then the energy distribu-
tion of the electrons is no longer even approximately Maxwel-
lian, and the resulting expressions for the conductivity (20)
can only be evgluated by numerical integrations. It is thus
of importance to investigate whether or not Eq. (36) was satis-
fied in the present experiment.

The electrical field strength inside the cavity can be

% Refers to reference 44.



estimated from the cavity Q and from P, the power dissipated in

the cavity. From the definition of Q, the energy stored in the

cavity is
Ug = QP/w (63)
In terms of the field strength, Up is given by
o
Ug = J e E2qv = J%:e [EmJo(kp)]2 3phdp = ‘n'athlz (}szt)eE,?1
)
vol. o (64)

where E, is the electric field along the cavity axis. Solving
for Em and substituting the appropriate numerical values one
obtains

e
E, = 2.8(10)5(QP)% = 1.5(10)°(p)° volts/meter (85)

for a Q of about 3000, as measured. Only a rough estimate can
be made for the value of P: the klystron set put out about

one milliwatt which was passed through approximately 20 db of
padding, giving P = 10~° watts and hence Ep = 500 volts/meter.
If now the measured values of electron temperatures are substi-
tuted intoc Eq. (36), the critical value of field strength is
found to be very nearly this same value. Since at all points
off the cavity axis, E { E;, Eq. (38) is seen to be at least

approximately satisfied.
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

Typical curves of t, and (t;é -1) taken at one mm. Hg
pressure are shown in Fig. 3. Actually, the procedure followed
in general was not to plot tr, but rather to compute (t;% -1)
for each experimental point and to plot this value directlys
the resulting graphs always came out to be very nearly straight
lines which are more easily fitted to somewhat scattered points.
The almost linear relaticnship between (1:'1'._é -1) and discharge
current is as predicted by Egs. (13), (39), or (48) and (62),
which show that

1 .
(t‘f-l)rvo; ~n ~1i

where the tilde indicates proportionality. Slight curvatures
were observed, particularly in the low current region. These
are probably due to a corresponding variation of electron
density with current which has been observed by several investi-
gators.® Plots of frequency shift against current, such as the
one shown in Fig. 4, alsoc show the expected linear character,
although again exhibiting some curvature near the origin.

By taking transmission and frequency shift date at various
pressures, plots of conductivity vs. pressure with current as
parameter may be obtained using Egs. (13) and (19). Such
curves are shown in Figs. 5 and 6. The real conductivity com-
ponent is seen to maximize at pressures around 8 mm Hg. Cor-

responding values of electron temperature may be calculated

* See, for example, Fig. 8 of reference (18); or a plot of
the data of Table XIII in reference (19).
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from this by Eq. (4la); they are shown in curve C, Fig. 7. Al-
so shown there are the values of electron temperature found by
probe measurements, as well as a theoretical temperature plot
using Eq. (58).

Figure € shows a maximum occurring also in the imaginary
conductivity component. Now if o7 is plotted against pressure
at constant electron density, rather than at constant current,
Eq. (39) or Eq. (48) predicts a monotonic decrease with pres-
sure starting from the maximum value of ezn/mw. Hence the ob-
served falling off at lower pressures is apparently due to a
similar decrease of electron density at these pressures. To
check this assumption values of o&;/n and O7/n were calculated
from Eq. (39a), using the measured temperatures shown in Fig.
7A. By dividing these two quantities into the measured values
of o, and gy , respectively, the electron density is obtained.
Curves of density calculated in this manner are plotted in
Fig. 8 for a discharge current of 100 ma; the postulated de-
crease in density at low pressures is clearly shown. Density
values obtained from probe studies are also shown in Fig. 8
and the agreement is seen to be quite good. At the large
probe currents required (cf. page 33) the discharge became un-
fortunately quite unstable for pressures above 2 mm Hg so that
a complete check of the electron density curves could not be
carried through. A further check on the density values of
Fig. 8 is afforded by Eq. (82) which predicts electron densi-
ties varying between 506(10)9 and 8.0(10)9 for the electron

temperatures of Fig. 7; considering the many crude assumptions
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that lead to this equation, the agreement is again quite ade-
quates

As has been mentioned, the value for the electronic mean
free path used in Eq. (39a) was taken from reference (43) and
may well be quite inaccurate here. Fortunately, however, it
is possible to determine the true m.f.p. from the conductivity
measurements themselves. If the ratio o7/0; is formed,
then from Eq. (39) this is seen to be a function of the para-
meter xj only:

o7/ = -(xy)%K,, (x;)/Kg(xy) (66)

Values of Xy corresponding to the experimentally observed val-
ues of 6{/0; can therefore be found from a plot of Eq. (88),
and hence the m.f.p. is determined:

A= (BxlkT/wzm)% = 1.035(10)'5(x1T)% cm (67)

Carrying through this procedure the plot of A versus T shown
in Fig. 9 is obtained. If these values of A are now used to
re-determine the electron density then the same curve of n
versus pressure is, of course, obtained from both 67 and O ;
it falls about midway between the curves of Fig. 8 and is shown
in Fig. 10.

Finally the electron density may also be found from the
conductivity formula given in Eq. (48). The mean free time, T,
must first be determined for this purpose, but this is readily
done since Eq. (48) shows that

6;/6y = = wWT (68)

Using this result, Eq. (48) can be solved for n, giving
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n= 1.87(10) (GE* > ) o; electrons/cm (89)

The values of n determined in this manner are also shown in

Fig. 10 and are practically identical with those obtained above
by using Egs. (39), (66), and (67). This is of some importance,
since not only is Eq. (69) much easier to use, but it also al-
lows a determination of electron density from the conductivity
measurements alone without knowledge of the electron tempera-
ture.

The values of mean free path and mean free time between
collisions are shown in Fig. 9. From these two curves the
question raised in Section II-D regarding the dependence on
temperature of the collision cross-section is readily answered.
For if the cross-section, g, would decrease with increasing
electron velocity them pA\ should show an upward trend in ac-
cordance with Eq. (33). Actually, however, p}. fluctuates a-
bout a mean value of approximately 0.0095 cms mm Hg; while pv,
on the other hand, shows a definite falling off with temperature.
The ccnclusion to be drawn is then that p). and q do not change
over the range of electron energies encountered here. If this
is true, then, since T= >\/v, pT should be proportional to
1/v or (T)‘%. Such a curve is shown on the diagram fitted to
the experimental points. The fit is fairly good; an exact a-
greement should perhaps not be expected, since pT was calculat-
ed from an expression which is actually not applicable in this

casee.



A

V. PFIGURES

CRYSTAL
KLYSTRON | PAD 7\ PAD <i>
O ﬂ

OSCILLATOR —————\\i//*
ABSORPTION
CAVITY  \WAVEMETER
1000 CPS. g <:> v | @ J
MODULATOR[—> <

(]

L5 5}

SCOPE AMPLIFIER

. Schematic diagram of experimental arrangement.



-31-

avity

s}
AV

o
~oe

FrIG.



0.8 <
06 “0\%\&>
0.4 2

0.2

o

/

0 Ol 2 03 04 05 06 07 08
DISCHARGE CURRENT, ma.

0.0

FIG, 3. Transmission characteristic at 1 mm hg pressure.



-3 -

10
O /
8
s J/g
E 6 //
T /
wn 0/0
> 4
O o
Z (o}
L
=5 P
o o
L
o : . .
' 0 0.l 0.2 03 04 05

DISCHARGE GURRENT, ma.

FIG. 4. Frequency shift at € mm Hg pressure.



O,‘*IOZ’, mhos/meter
N

2 /f/// ~
OO 2 4 6 8 10 12
PRESSURE, mm Hg

1/ g

N
o e [T
2

% ol T T—C

S 2 a2 6 8 10 12 14 16 18 20
PRESSURE, mm Hg

ol0®%, mhos/meter
IN
\
\‘t

FIGS. 5 AKND 6. Conductivity versus pressure: A. discharge
current=130 ma; B. discharge current=100 pma; C., discharge
current=70 pmua.



O

ELECTRON TEMPERATURE, °K

FIG. 7. hlectron temperature: A. from probe studies;

4 S} 8 10
PRESSURE, mmHg

B.

theo=-

retical curve; C. from conductivity measurements (correspond-

ing to 7.9 mm Hg <n <8.7

o s
mm Hg).



ELECTRONS/CM?

=3I

|0°
PN
|6
//////////(/”A
|2 //
A ////
8 e
o from o;
4 i o from o
A + from probe studies
e,
O
0 2 3 4 5 6 i

PRESSURE, mm Hg

FIG. 8. klectron density versus pressure.



-3 -

§?|4- 5
E |
E |p x\
(&) \Q\O
371 +\o\
:9 10 - S + + i
o " *
Q

8

o pT

T 6 .
£ PA
E
£ 4
o
m9 2
3

@)

8 1) 10 I 12 13 14 15

ELECTRON TEMPERATURE x10°, °K

FIG. 9. llean free path and mean free time.



ELECTRONS /CM?

x| 0°
- P
|6 7
/>
|2 7

//A{/ * pA constant

8 o pt constant —
+ from probe studies

g 5

0 2 3 4 5 6 7 8 9 10
PRESSURE, mm Hg

FIG, 10. Electron density.,



Pg. 39 is missing from the archival copy.



(1)

(2)
(3)

(4)
(5)
(8)

(7)
(8)

(9)
(10)

(11)
(12)
(18)
(14)
(15)
(16)
(17)

(18)
(19)
(20)
(21)

240

VI. REFERENCES

Margenau, McMillan, Dearnley, Pearsall, and Montgomery;
Phys. Rev., 70, 349 (1946).

L.H.R. Mimno; Rev. Mod. Phys., 9, 1 (1937).

F.M. Gager; "Propagation of Electromagnetic Waves
Through Propellant Gases", NRL Report No. R-3197, (1947).

W.C. Hodgson, "Attenuation by Jet Exhaust", NRL Report
No. R-3078, (1947).

H.T. Budenbom, "Radar Effects of Missile Flame", NRL
Case 28500-4 (1948).

D.E. Kerr and S.C. Brown, Bull. Am. Phys. Soc., 22,
28 (1947).

L. Goldstein and N.L. Cohen, Phys. Rev., 73, 83 (1948).

H.A. Prowse and B. Cooper, Nature, London, 1861, 310
(1948). -

D.Q. Posin, Phys. Rev., 73, 496 (1948).

8.C. Brown and J.J. McCarthy, Rev. Sc. Inst., 19,
851 (1948).

M.A. Herlin and S.C. Brown, Phys. Rev., 74, 291 (1948 .
M.A. Herlin and S.C. Brown, Phye. Rev., 74, 910 (1948).
M.A. Herlin and S.C. Brown, Phys. Rev., 74, 1850 (1948).
MacDonald and S.C. Brown, Phys. Rev., 75, 411 (1949).
M.A. Biondi and S.C. Brown, Phys. Rev., 75, 1700 (1949) .
A. Sz&kély, Ann. d. Phyeik, 3, 112 (1939).

E.V. Appleton and F.W. Chapman, Proc. Phys. Soc. (Lon-
don), 44, 246 (1932).

A. Székély, Acta Phys. Austriaca, 3, 23 (1949).

I. Langmuir, Gen. Elec. Rev., 37, 449, 538, 616 (1924).
H. Margenau, Phys. Rev., 89, 508 (1948).

C.K. Jen, J. Appl. Phys., 19, 649 (1948).



(22)

(33)
(26)

(27)
(28)
(29)

(30)
(31)
(32)

(33)

(34)
(35)
(36)

(37)
(38)
(39)

(40)
(41)
(42)

(43)

" .
C.H. Collie, J.B. Hasted, and P.M. Ritson; Proc. Phys.
Soc. (London), 60, 71 (1948).
G.E. Crouch, J. Chem. Phys., 16, 364 (1948).

T.W. Dakin and C.N. Works, J. Appl. Phys., 18, 789
(1947).

C.N. Works, J. Appl. Phys., 18, 605 (1947).
F. Borgnis, Helv. Phys. Acta, 2, 149 (1949).

S.C. Brown et al., M.I.T. Research Laboratory of Elec-
tronics, Technical Report No. 66 (1948).

S. Ramo and J.R. Whinnery, "Fields and Waves in Modern
Radio" (John Wiley and Sons, New York, 1944).

J.G. Brainard et al., "U.H.F. Techniques", (McGraw-
Hill Book Co., Inc., New York, 1942), p. 33l.

K.K. Darrow, "Electrical Phenomena in Gases" (Williams
and Wilkins Co., Baltimore, 1932), p. 200.

8. Chapman and T.G. Cowling, "The Mathematical Theory
of Non-Uniform Gases" (Cambridge University Press, New York,
1939), p. 46.

H.A. Lorentz, "The Theory of Electrons" (B.G. Teubner,
Leipzig, 1909), p. 371.

P.M. Morse, W.P. Allis, and E.S. Lamar; Phys. Rev., 48,
413 (1935).

L.B. Loeb, "The Kinetic Theory of Gases" (McGraw-Hill
Book Co., Inc., New York, 1934), p. 55.

R.B. Brode, Rev. Mod. Phys., 5, 357 (1933).
H. Margenau, Phys. Rev., 73, 297 (1948).

H. Margenau and L.M. Hartman, Phys. Rev., 73, 309
(1948).

E.O. Hulburt, Phys. Rev., 29, 706 (1937).
P. Langevin, Ann. Chem. Phys., 5, 245 (1905).

K.T. Compton and I. Langmuir, Rev. Mod. Phys., 2, 304
(1930).

J.D. Cobine, "Gaseous Conductors" (McGraw-Hill Book
Co., Inc., New York, 1941), p. 139.



-l 2w

(44) von Engel and Steenbeck, "Elektrische Gasentladungen',
(Verlag Julius Springer, Berlin, 1932), Vol. II, p. 85.



VII. APPRNDIX,

(Publications)

ilost of the research of this thesis has been deswibed
in an article which appeared in the Journal of Applied
Physics. A brief general description of this work was also
written for the periodical "Physics Todavy". A paper cover-
ing some gas kinetic aspects of this investigation, written
jointly with Prof. henry lMargenau of Yale University, is to
appear in the Physical Review later this year; only a copy

of the first draft, since modified, is shown here.
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Measurement of the Complex Conductivity of an Ionized Gas at Microwave Frequencies™
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The positive column of a glow discharge is placed along the axis of a cylindrical cavity excited in the TMo10
mode. The transmission of 3-cm waves through the cavity and the shift in resonant frequency are observed
as a function of discharge current. It is shown that from these measurements values of the complex con-
ductivity, oy+i0i, of the electron gas can be calculated. Curves of the measured conductivity components as
functions of pressure and current are given. Using a theoretical formula for the conductivity (see reference 6)
values of electron density can in turn be calculated from both o, and ¢;. Langmuir probe studies are carried
out to check the results obtained, and adequate agreement is found.

L. INTRODUCTION

KNOWLEDGE of the conductivity of an ionized

gas is of interest in several phases of microwave
work, such as the design of TR tubes,! as well as in many
problems connected with the study of the ionosphere.?
Some work has been done on discharges supported by
microwave energy,® but published measurements of
conductivity? are restricted to frequency ranges below
10% c.p.s.

The present paper describes a determination of con-
ductivity at a wave-length of about 3 cm. A d.c. mercury
vapor glow discharge was used to supply the conducting
gas. This has the advantage that the electron tempera-
ture and density can be determined by probe studies,
using Langmuir’s theory;® in conjunction with the
theoretical equation for conductivity® these measure-
ments allow one to make a check of the values for the
conductivity obtained experimentally.

* Part of a thesis to be submitted by the author to the Graduate
School at the California Institute of Technology in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy.

*# General Electric Charles A. Coffin Fellow, 1947-1949.
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II. EXPERIMENTAL APPARATUS

A schematic diagram of the apparatus is shown in
Fig. 1. The cavity used (Fig. 2) was designed to resonate
near 3 cm in the TMj;o mode. Coupling to the wave
guides was through circular irises ; small openings at the
centers of the top and bottom walls allowed a quartz
discharge tube to extend axially through the cavity.
Since in the mode used the cavity wall currents fall to
zero at the centers of the end plates, these apertures
have no appreciable disturbing effect. The quartz tube
contained a mercury glow discharge whose vapor pres-
sure was varied between 1 mm Hg and 18 mm Hg.

The high frequency excitation was obtained from a
klystron tube frequency-modulated at a 1000-c.p.s. rate;
the same modulation was also applied to the horizontal
sweep of an oscilloscope. The output from the cavity
was picked up by a crystal, amplified, and applied to the
vertically deflecting plates of the oscilloscope. The re-
sulting trace was thus a Q-curve, whose height was
proportional to the transmission in power through the
cavity since a square law crystal was used. A calibrated
wave meter placed between cavity and crystal intro-
duced small “pips” on the trace by means of which the

KLYSTRON
OSCILLATOR
. \_/ ABSORPTION
CAVITY WAVEMETER
]
ICOO CPS. | @ vy | ©
MODULATOR ——
SCOPE  AMPLIFIER

Fi16. 1. Schematic diagram of experimental arrangement.
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Fic. 2. Cavity and discharge tube.

resonant frequency and the Q of the cavity could be
measured. As shown below, measurement of these three
quantities—effective (), change in transmission, and
change in resonant frequency with discharge current—
suffices to determine both real and imaginary com-
ponents of the conductivity.

For the purpose of carrying out probe studies a second
discharge tube was built identical to the one used in the
cavity, except for a fine probe wire extending radially
into the middle portion.

III. THEORETICAL RELATIONS
A. Nomenclature

lowsmens transmission in power through the cavity, i.e.,
ratio of output power from the cavity to
available power.

b o mcw e s relative transmission, i.e., ratio of transmission
¢t with discharge current flowing to zero-cur-
rent transmission.

a....... radius of cavity (1.15 cm).

b height of cavity (1.5 cm).

b.. .~ ...radius of conducting column (0.175 cm).
o,+10;. .complex conductivity of ionized mercury

vapor, mhos/meter.

Q....... ratio of resonant frequency to band width be-
tween half-power points; specifically the Q of
the unloaded cavity.

Qr......Q of cavity with loading due to coupling to the
external circuit through the irises.

Qi ... an iris loading Q defined by 1/Q,=1/041/0Q..

Q'......Q of cavity loaded by the discharge (but not
by irises).

W . nominal resonant frequency of the cavity
radians/second.

wy......resonant frequency with discharge current
flowing.

Af. oo frequency shift due to discharge in c.p.s.
=1/27(w,— wo).

P vapor pressure, mm Hg.

1126

Lo v electron temperature, °K.
e, electron density, electrons/cm?.
For e v a dimensionless parameter= (mw?\/2kT), A\

being the electronic mean free path; for mer-
cury at 8460 Mc: x;=1.2X108p~2T1,

€l eo(140:/wep) ; cf. Eq. (8).
Ri...... wr(pe

Esic wmme w-(neo)?

k 2.405/a

B. Calculation of the Real Component
of Conductivity

The transmission through the cavity is given by’

t=(1-01/Q¢=(1+0:/Q) . 1)

For a cavity loaded by wall losses only, Q may be ex-
pressed in terms of an equivalent shunt resistance R
along the cavity axis as®

a
Q:().OOS31I—R. 2)
1

The small additional loading due to the presence of the
quartz tube can be assumed to be lumped into R, giving
a slightly lower effective Q. The conducting column is
now assumed to introduce an additional shunt resistance
R’ placed in parallel with R:

ho1
—— @3)

0% o,

Thus the resultant Q becomes now

24

: a
Q'=0.00531-+—— 4)
h R+R' .

or using (2) to substitute for R;
_— Q | ‘;
1+1880%/R'a

£

4

()

This then is the expression which must replace the Q
appearing in (1) whenever the cavity is loaded by the
discharge ; carrying through this substitution, and using
(3) to write R’ in terms of o,, the resultant expression
may be manipulated into the following factored form:

bZ -2
1= (1+Q,-/Q)—2(1+592;Qw,) . ©6)

The first bracket is recognized as the transmission with
no discharge current flowing; using this as a base the
second bracket may be defined as a relative transmis-

7 G. L. Ragan, Microwave Transmission Circuits (McGraw-Hill
Book Company, Inc., New York, 1948), p. 654.

8 J. G. Brainerd ¢ al., U.H.F. Techniques (McGraw-Hill Book
Company, Inc., New York, 1942), p. 331.
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sion, {,, in terms of which o, can be expressed explicitly
as:

a 1
or= 0.00169; —(,*—1) mhos/meter. (7

L

l, is readily determined, being simply the ratio of the
height of the Q-curve trace with discharge current
flowing to that with the glow turned off ; for convenience
and accuracy a meter was actually used which could be
calibrated to read ¢, directly. Since all quantities on the
right-hand side of (7) can be measured, ¢, may be found.

C. Calculation of the Imaginary Component
of Conductivity

From Maxwell’s Field equation

aD o
VXH=—4(o,+i0,)E= UTE+iw€0(1+—)E,
ot

(o1

the out-of-phase conductivity component ¢ is seen to
result in an effective dielectric constant

%5
€1=€0(1+ ) (8)
wWeEp

(Note: Rationalized m.k.s. units are used.) Since o; can
be shown to be negative, being due to the inertial
lagging of the electrons behind the applied field, the
dielectric constant is reduced, decreasing the equivalent
capacity of the cavity; thus the effect of the glow dis-
charge is to raise the resonant frequency, as shown by
Eq. (12) below.

To treat the cavity as a boundary value prob-
lem, it is divided into two regions, where for 0<p<d,
&= eo(1+ 0/ wep), while for b<p<a the dielectric con-
stant is still €. No account is taken of the narrow region
filled by the quartz tube which introduces a small
constant frequency shift. For the inner region the ex-
pressions for the fields will be of the same form as for the
usual TMo;o mode:

EzIZJO(klp))

\\x .
06 S
0.4 S\\> 2

0.2 L

/

0 0l ® 03 04 05 06 07 08
DISCHARGE CURRENT, ma.

Hy= (wél/kl)]l(klp)- (9)

1.0 ]

0.8

0

0.0

Fic. 3. Transmission characteristic at 1 mm Hg pressure.
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In the outer region Bessel functions of the second kind
need also be included, so that for < p<a:

E22= A]o(kzp)‘i'"Byo(kzP):
Hyo= (weo/k)[ AT 1(k2p)+ BV 1(k2p)].

Three boundary conditions apply : at p=a, E,,=0; at
p=0b, Exn=E, and Hy1=Hgy,. Using two of these to
eliminate the arbitrary constants 4 and B, the third one
may be used to obtain the following relation which con-

tains the desired resonant frequency implicitly in
kl and kz:

]1(k2b) Yo(kga)—.fo(kzd) Yl(kzb) _ ( 61)% ]1(k11))
To(Beb) Vo(ksa) — To(kaa) Vo(ksb) To(kd)

(10)

(11)

€0

Both sides of this equation may be linearized over a
small region near e;=e¢, ki=£ks, w,=wo; after some
numerical work this leads to the following first-order
approximation for the particular case at hand:

o;=—1.33X107°Af mhos/meter. (12)

An alternate method of deriving a relation between
frequency shift and ¢; makes use of the variation
principle for electromagnetic problems (analogous to
Hamilton’s principle in mechanics), viz., that

f f (32— 1 uH?) dvdl

time volume

have a stationary value of zero. Since all time variations
are sinusoidal, and A may be replaced from Faraday’s

e R o 1
; /
(&
= 8 /
L6 7
L /
wn o/6
> 4
(]
S P
W
o 2
O o
w
x
-0
0 Ol 0.2 03 04 05
DISCHARGE CURRENT, ma
F16. 4. Frequency shift at 2 mm Hg pressure.
Law, VXE= —iwuH, this relation can be rewritten as

f 1(V>< E)%dv

ol M

f elf2dy

vol

-
o=

(13)

Assuming that the perturbation of the electric field due
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to the discharge is not appreciable, it is seen that the
effect on the resonant frequency of any small changes in
the dielectric constant can be expressed by

1

f GoEQ‘d‘Z)
1

= (14)

)

el?-dv

where in this case € is given by Eq. (8) over the region
0< p<b. Since the change in e due to o; is of the order
of only 0.5 percent, one may write 1/(140:/we)?
=1—0¢,/2we, obtaining:

f (0s/ weo) Exdv
Wr— Wo 101
a8
f Exdv
vol
b
f Jo*(kp)pdp
—0; Yo
= —_— (15)
€0 &
f Jo*(kp)pdp
0
Hence
1 o £b\2J2(kb)+JT12(kD)
Afm—— (—) - (10)
2 2(.0060' a le(kd)

Making the proper numerical substitutions, Eq. (16) is
found to agree within one percent with Eq. (12).

D. Theoretical Expression for Conductivity

A theoretical expression for the complex conductivity
of an ionized gas has been derived by H. Margenau.® For
mercury vapor at 8460 Mc, the effective resonant fre-

1128

Fics. 5 anp 6. Conductivity versus pressure: A. discharge cur-
rent=130 pa; B. discharge current=100 pa; C. discharge current

quency at the cavity with the tube inserted, this
expression becomes :?

n
ot10;=4.38 10710
pT*

n
— 481X 107"—Ky(xy), (17)
p*T

where

K (xl) f ‘ X,
X —l—x1

o

7
I
1l

o
T

IS
|
|

ELECTRON TEMPERATURE, °K
o

O

4 6 8 12

PRESSURE, mm Hg

10

(@]
N

Fre. 7. Electron temperature: A. from probe studies; B. theo-
retical curve (see reference 11); C. from microwave measurement%
(corresponding to 7.9 mm Hg<p0<8 7 mm).

® The value for the mean frec path of mercury was taken from
J. D. Cobine, Gaseous Conductors (McGraw-Hill Book Company,
Inc., New York, 1941), p. 23.
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K, and Ky, have been plotted by Margenau. The
contribution of the mercury ions can be shown to be
negligible due to their large mass; hence only effects due
to the electrons are actually observed.

The real component of the conductivity falls to zero
at both very high and very low pressures; a maximum is
predicted® for

wA=6.8X108(kT)} (c.g.s.) (18)

which corresponds very nearly to the condition of the
mean free time of an electron between collisions being
equal to the period of the electromagnetic wave. For
mercury at the frequency used (16) becomes:®

poT'= 570,000, (19)

where po is the pressure in mm Hg at which ¢, maximizes.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Typical curves of ¢,, ({,—1), and Af as a function of
discharge current are shown in Figs. 3 and 4. Since o,
and o, have been found to be proportional to ({,*—1)
and Af, respectively, these curves show that there exists
a very nearly linear relationship between conductivity
and current. This same conclusion is arrived at by the
analytical conductivity expression, Eq. (17), which
shows ¢ to be proportional to the electron density #,
which in turn varies approximately linearly with dis-
charge current. The slightly curved portion in the low
current region is most probably due to a similar varia-
tion at 7 with current.!

By taking transmission and frequency shift data at
various pressures, plots of conductivity wvs. pressure
with current as parameter may be obtained through use
of Egs. (7) and (12) (Figs. 5 and 6). The real con-
ductivity component is seen to maximize at pressures
around 8 mm Hg. Corresponding values of electron
temperature may be calculated from this by Eq. (19);
these are shown in curve C, Fig. 7. Also shown there are
values of electron temperature found by probe measure-
ments as well as a theoretical temperature plot.!

Iigure 6 shows a maximum occurring also in the
imaginary conductivity component. Now if ¢, is plotted
against pressure at constant electron density, rather
than constant current, Eq. (17) predicts a monotonic

10 Curvatures similar to the ones observed can be seen also in
plots of # vs. current in the following : A. Szekely, Ann. d. Physik 3,
112 (1929), Fig. 8; I. Langmuir, see reference 6, Table XIII,
v. Engel and Steenbeck, Elektrische Gasentladungen (Verlag
Julius Springer, Berlin, 1932), Vol. I, p. 186, Vol. IT, p. 110 (1934).

1y, Engel and Steenbeck, see reference 10, Vol. II, p. 85.
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I'16. 8. Electron density versus pressure.

decrease with pressure starting from a maximum value
of ¢n/mw. Hence the observed falling off at lower
pressures is apparently due to a similar decrease of
electron density at these pressures. To check this
assumption values of ¢,/% and ¢;/n were calculated
from Eq. (17), using the measured temperature shown
in Fig. 7B. By dividing these two quantities into the
measured values of o, and o, respectively, the electron
density is obtained. Curves of density calculated in this
manner are plotted in Fig. 8; a systematic discrepancy
of about 20 percent is noticed between values found
from using o, and the ones obtained from o; As a
further check electron density was also found from
probe measurements (see Fig. 8). This method involved
plotting probe current squared against probe voltage; at
sufficiently high values of probe current this results in a
straight line from whose slope electron density may be
determined.!® At the large probe currents required the
discharge became unfortunately quite unstable at pres-
sures above 2 mm Hg, so that a complete check of the
electron density curves could not be carried through.
The agreement found in comparisons of experiment
with theory, as shown in Figs. 7 and 8, is probably as
good as may be expected from a study of this kind.
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Conductivity at Microwave Frequencies

If a high frequency electric field is applied to an ionized
gas, the resulting oscillatory motion of the free electrons
will give rise to an alternating current. At very low gas
pressures the inertia of the electrons causes this current
to lag ninety degrees behind the electric field; as the
pressure, and hence the density, is increased, frequent col-
lisions of electrons with gas atoms will produce an energy
loss which must be supplied by a component of current in
phase with the field. This behavior may be described by
assigning a complex conductivity to the ionized gas whose
real and imaginary components correspond to the in-phase
and out-of-phase current components. A knowledge of this
conductivity is necessary in the analysis of ionosphere
problems and in several phases of microwave work, such
as the switching or modulation of large amounts of micro-
wave power by means of relatively low energy gaseous
discharges.

An experimental determination of complex conductivity
at ten thousand megacycles has recently been made by
placing a direct current glow discharge along the axis
of a cylindrical microwave cavity. It was shown that both
conductivity components can be calculated by determin-
ing two quantities: the relative change in transmission of
three centimeter power through the cavity, and the shift
in its resonant frequency, both measured as a function of
discharge current and gas pressure. The experimental
technique used can be extended so that high speed tran-
sient phenomena may also be investigated. Thus if the
discharge current is suddenly stopped, the resultant de-
ionization can be investigated by means of a suitable
oscilloscope presentation of the output signal from the
cavity, from which values of electron density versus time
may be deduced. Since at the high frequencies used the
relatively massive ions are not measurably affected by
the microwave fields, only effects due to the free electrons
are observed, leading to a great simplification in the in-
terpretation of the results. Finally, the cavity technique
may be used to study the behavior of dielectrics at micro-
wave frequencies, simply by replacing the discharge tube
by a columnar sample of the dielectric substance of inter-
est; accurate determinations of dielectric losses can thus
be made. F.P.A.
Measurement of the Complex Conductivity of an lonized

Gas at Microwave Frequencies. By Fred P. Adler. J. App.
Phys. 20: 1125, November, 1949.
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Electron Conductivity and Mean Free Paths

by
Fred P. Adler, California Institute of Technology
and

Henry Margenau, Yale Universitys

e

Lbetract
fean free path and elcctron density arc calculatca
frou mecasurementes on the complex conductivity of a Jdigchar

Formulas boeed on two alternative assumptions are tceated

m

o
mn
(@]

acainst c¢xperimental facts

=

ne onstancy of mean frce
peth (indcvendencs of electron velocity), the othsr is con-

gtancy of mean free time,

In a recent naperl, devoted to the mcasurcment of comple

l. ¥ F. idler, Je Appe Fhys. 20, 1125 (1949)

electron conductivitice in a positive column of a glow dis-

char::c, attention has been called to the opportunitics which

3
!

guch cxpcriments hold for gaining information about kinctic

proccegecs taking plac

fe]

o
(i

in the conducting gas. It wag glown
that clcctron densitics can h¢ computed from the imazirary

ag wzll sg the real part of the conductivity when ths wueen
frece »ath ie given independently, and that the densitice agree
tolzrably wecll., The purposc of the presgent note iz to indi-

cate how the mean free path iteclf can be detcrmined from such

ate
XS
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neasurcments, and what light this sheds on other qucstiocons of
interest in the kinetic thecory of discharges.

°

The formula® used in the ana lysis of the experiasnte

2+ . l'urgenau, Phys. Reve 69, 508, (1946)

undcr digcuseion wag based on the assumption of a constant

mean frcc path of the clectrons: N is not a function of
A:A._..

o o

clectren velocities v :and hence independent of the temscre-

turc, T. This ie not generally true. An alternative and

cqually simple supposition i

[¢3]

constancy of the mean froe time

T, which is N/v. What these hypotheses mean fundamantally
is geen from the general relation

NagnN=1 (1)
in which N is the number density of molcculog intercepting the
clectrons (in thie instance Hg atoms) and q the collicion
crosgg gection, a function of ve It is clear that constoney
of NWimplies a constant q, whereas constancy of T recuires

q to bc¢ proportional to v=l, We ehall discuss thesc two

o

alt:rnative

)]

in sequencee

I NS const., the complex conductivity is given by

4 gl
& e(z'wﬁzkﬁ")‘e [KZ(I’*I) 1x12K5/2(x1)] g s-i07  (2)

ag was gkovn in reference 2., Here xq = miPA= ¢ This

: 2KT
formle ig exact provided the distribution function for tiIc
clectrons ig Maxwellian, and T is the clectron temperaturce,

In reference 1, T was measured by probe methodese. The ratio

=— 1g a Tunction of x; alcne, and it is plotted in that articlc.
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The experimental ratio leads therefore at once to knowledge
of xy and if T is known, tc ™. Furthecrmore if the prcmise,
™= const, is true, the values thus determined should not vary

with T,

13
bde

he situation is somewhat different if T = const, and
the arnalysis of reference 2 must be modified. Indsed the

conductivity forrmla is then rwch simplerd, Zge. 15 of tle

o

3. The result we are about to derive has been clearly recog-
nizcd by the workers at MeI.Te, and is, in fact, implicit
in some of the formulas they have used. See for instance
S. Co Brown and A. D. MacDonald, Phys. Reve 76, 1629 (1949)

carlier paper becomes e
/2 o
- 2 = v
Anfo = = ip ya? -
6({1157e) 5
with
0oz, 1 MyT?
6k 1+woere-
Hge 1% stands as written, but Eqe. 27 takes the form
- Bt 3
17 e T2 fo
When this ie inserted in Eq., 25, thore resulte for the current
A2 BT
T =" %— {COSLutﬂﬂqt sinxut}
l'i-wé’l:'g

and honee for.the complex conductivity4

4e This ies very eimilar to the Lorentz formula for the con-
ductivity of electrcnss It results if the friction con-
gtant, g, in the equation of motion is equated to 1

o— = 1 2% (1-1 wT). (3)



wid] o
Here the ratio g;*, which is w?, leads directly to
ro

the determination of %+ If the assumption T= const. is
trus, tlhe ratio test will thus reveal ite Both T and ™
arc, of course, inversely proportional to the pressure of the
gas carrying the discharge, as is evident from Eqe 1l

In Fig. 1 the experimental data are plotted acainst

the clecctron tempcraturc, the upper curve repres ent1n” p?

b 3

the lower pNe The pf -values were obtained by usin~ the re-
lation 0% /6, = w?, and it is seen that the upper curve ho=-
lice its premise, the constancy of p¥. However, p™N, which
wag computed from Eq.2, is scattered in random fashion about
a constant value.

ving thus cstablished the approximate validity of
our first alternative, we may use the data to determine the
G ncon free path of elecctrons in Hge It turne out to
be 9.5 x 1079 cm at 1 mm pressure.

This pro..dure does not prove that ™ is truly independen.
of velccities, a result which would be very surprisin: in view
of other factse What it means ies that at low electron
vclocities such as those to which ocur temperatures corrcspond,

the avecrage of N\ over the range of velocities comprised in

-

the lexwell distribution is constant. Broded® has measured

50 Ro 1"'..?. El"ﬁdc, RCV. "Jiod. Pl’lys. é, 25'7 (1953)

-

collision probabilities of electrons in Hg for energi:s some-

what higher than ours. His values show a rapid drop between



B4 =

energics of 1 and 2 volts; they corréspond to an avsragc
between 1/3 and 1/2 of the value herc obtained. If thcse
infsrences are to be in harmony, the collision probability
muet hove a maximum in the'region where Brode's measurcnénts
begin cnd drop te low values at smaller energicse.

There is some internal consistency in the two curves
of ™Muze 1o To be sure, the upper one is not to be trusted
in detcil since the theory yiclding it is not correct. - But

a

the trend is proper: if M is constant, ¥ must decrzosc with ve

+1

then the mean free path is determined from the rotio

61/<Ups the density c¢f clectrons follows uniquecly froa the

measurcments, and the ambiguity inhsront in Fig. 8 of rcference
é is sliminated. Fige 2 shows the rssults (black dots). IT
the simpler formula (3) were chosgen in analyzing thd data,

the circles would result. Thus it is seen that the -¢lectron

denegity ie not very seensitive to the kinetic assumptions by

which it ig derived.
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