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Abstract 
 

The unique body kinematics of jellyfish embodies the most intriguing form of biological 
propulsion, which makes jellyfish a promising resource for developing new locomotion systems.  
Instead of the conventional Eulerian method, we take an unprecedented Lagrangian approach by 
tracking individual fluid particles around a swimming jellyfish over a finite time interval.  
Specifically, we utilize the Lagrangian coherent structures (LCS) in the flow field to investigate 
the flow characteristics around a jellyfish.  LCS are separatrices or invariant manifolds, which 
separate the flow field into distinct regions.  To locate the LCS in the flow, we employ the 
concept of the finite-time Lyapunov Exponent (FTLE), which measures the rate at which 
particles diverge from each other, and LCS are identified as the high-value ridges in the FTLE 
field.  This method is implemented and validated by analysis on two-dimensional vortex dipole 
flow, two-dimensional experimental time-series data, and Hill’s vortex sphere.  This method is 
expected to extract LCS from three-dimensional experimental time-series data. 
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Chapter 1 
 

Introduction 
 
 
 
1.1 Background 
 
Jellyfish form a vital component of ocean 
ecology and also preserve one of the most 
ancient forms of biological propulsion 
(Figure 1.1).  Their simple anatomy and body 
kinematics make them a promising candidate 
for studies aiming to discover new loco-
motion systems.  Empirical observations and 
theoretical modeling have demonstrated that 
jellyfish use the formation and shedding of 
vortices to move and capture preys.  In fact, 
much of the experimental work on jellyfish 
swimming has been approached from a 
perspective of the vorticity dynamics around 
the jellyfish [8].  

Increasingly, many dynamical systems, 
such as the flow field around a jellyfish, are 
determined not by analytically defined model 
systems, but by data from experiments or 
large-scale simulations.  In the past, analyses on fluid flow have been performed primarily in the 
Eulerian frame, in which measurements are taken at fixed locations in space.  The standard tool 
for flow field measurements is digital particle image velocimetry (DPIV), which quantifies the 
velocity field of the flow in an Eulerian frame of reference.  To compute the instantaneous force 
and moment created by the swimming animal, the calculation of the vorticity field is needed [7].  
Although the vorticity field can be simply deduced by taking the curl of the velocity field, the 
vorticity dynamics around swimming animals, with the exception of a steady flow, involves 
either measurement of the boundary layers on the animal, replacement of animal body with 

Figure 1.1  Aurelia aurita, also known as moon 
jellyfish, swims via full body undulations that 
create vortex rings of alternating rotational 
orientation during the swimming cycle. 
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equivalent system of vortex sources, or measurements on the surface of a control volume with 
length scales an order of magnitude larger than the animal itself [8].  In principle, the calculation 
of flow dynamics around the boundary layer is a rather time-consuming process, and the 
vorticity field usually cannot be well resolved at the interface between the animal and the 
surrounding water while maintaining a full-field view of the flow [2].  The large domain size 
required by the control volume also prolongs the overall computation.  All of these conditions set 
restraints on the Eulerian approach to the animal swimming problem.  

 
 

1.2 The Lagrangian Coherent Structures 
 
In light of these limitations, it is clear that an alternative approach is necessary.  The major 
challenges presented in the Eulerian method lie in the need to identify consistent boundaries in 
the flow field on which to evaluate the equation of motion.  The boundaries of the control 
volume consist of either the fluid-solid boundary represented by the animal surface or a virtual, 
fluid-fluid boundary around the swimming animal [8].  The former boundary can be easily 
identified given the geometry of the animal surface, and the latter case can be determined by an 
innovative technique, which is the central subject of this thesis project.  Instead of the Eulerian 
approach, we take the Lagrangian perspective, tracking particles in the flow field to allow a more 
precise flow characterization than the traditional methods.  Recent applications of similar 
Lagrangian analysis have demonstrated that there exist some virtual yet physically meaningful 
fluid-fluid boundaries in aperiodic flows [11], which are very common around many swimming 
animals.  These boundaries are identified as Lagrangian coherent structures (LCS).   

LCS is a concept originating in the study of dynamical systems.   These coherent 
structures are generally known as invariant manifolds or separatrices [11] in the phase space of a 
time-dependent system.  They mark the borders where no trajectories pass through, and therefore 
separate the flow field into dynamically distinct regions.  To locate the LCS in the flow, we need 
to first employ the concept of the finite-time Lyapunov exponent (FTLE), which measures the 
rate at which particles diverge from each other at a given time and location.  Intuitively, two 
particles can be traced along two adjacent trajectories for a finite time period, and the evolution 
of the displacement between the two particles can be evaluated.  The FTLE is then computed 
from the ratio of the final displacement over the initial displacement [10].  Hence, particle 
trajectories will diverge at a location with a high FTLE value, and FTLE can be recognized as 
the degree of “stretchiness” of the flow field at a fixed point over a finite period of time.  
Furthermore, if particles are traced forward in time, the resulting FTLE value is called the 
forward-time FTLE.  Similarly, tracing the trajectories backward in time will result in the 
backward-time FTLE.  To calculate the LCS, we can obtain the FTLE field from the flow data 
and identify the ridges of high FTLE values as the LCS.  Because of the time-dependent nature 
of FTLE values, LCS computed from the forward-time FTLE field is called the forward-time 
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LCS (fLCS) (or repelling LCS), and the backward-time FTLE field leads to reverse-time LCS 
(rLCS) (or attracting LCS) [8, 10].   

Consider a generic hyperbolic point in a 
time-independent dynamical system and its 
associated stable and unstable manifolds (Figure 
1.2).  If we follow the trajectories of two points 
that are initially on either side of a stable manifold 
(at location A along the green and red trajectories) 
forward in time, then the two points will 
eventually diverge from each other.  Likewise, if 
we start tracing two points on either side of an 
unstable manifold (at location B along the green 
and blue trajectories) backward in time, then the 
points will diverge from each other.  Therefore, 
fLCS are the analogous stable manifolds which 
repel nearby trajectories for a time-dependent 
system; similarly, rLCS are the unstable manifolds 
that attract nearby trajectories in the flow field.  
The derivation of FTLE and the identification of 
the LCS in the flow field is a rather complicated 
process and is explained later in Chapter 2.   
 
 
1.3 Existing Applications of Lagrangian Coherent Structures 
 
1.3.1  Monterey Bay Ocean Current 
 
The Lagrangian coherent structures (LCS) have been used primarily to better understand 
transport and mixing processes or to identify fluid structures in various kinds of flows.  One 
interesting application of LCS is in the analysis of flow transport in the ocean.  Although models 
of ocean currents have been studied for years, only simple analytical model or coarse flow 
measurements were available to marine biologist [6].  Fortunately, since the recent introduction 
of High Frequency Radar technology, which is often referred to as CODAR for COstal raDAR, 
high-resolution real-time ocean velocity measurements have become available (Figure 1.3).  One 
location that CODAR has been installed is around Monterey Bay, California.  Figure 1.3 (a) 
shows a snap shot of the CODAR velocity data during August 2003, and Figure 1.3 (b) shows 
the forward-time FTLE field obtained from the CODAR data at that particular moment.  There is 
an LCS which extends across the mouth of the bay and forms an invisible boundary across the 
bay.  Particles on the right of the LCS will stay inside the bay and re-circulate, while particles to 
the left of the LCS will continue down the California coast. 

Figure 1.2   Two points from either side of the 
stable manifold (green and red trajectories) will 
diverge from each other if tracked forward in 
time; two points from either side of the 
unstable manifold (green and blue) will diverge 
from each other if tracked backward in time. 



- 4 - 

For marine biologists, this invisible boundary is extremely important because it controls 
the flow of water as well as pollutants.  Near the middle of the bay, a power plant releasing warm 
waste water can raise the average temperature of the bay high enough to kill many native ocean 
animals.  Depending on which side of the sewage pipe the boundary lies on, the waste water will 
either flow out to the sea, where its effect will be negligible or re-circulate into the bay and heat 
it up [6].  Hence, LCS allow scientists to model the complex flow of water in the bay and suggest 
a strategy for minimizing the damaging effects of the effluent from the power station. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
1.3.2   Flow Over An Airfoil  
 
In addition, the application of LCS has been extended to the identification of unsteady separation 
profiles over airfoils.  For most airplanes, flow separation over the wings leads to stall.  
Therefore, such behavior is very undesirable and airfoils are typically designed to avoid 
separation.  However, recent developments in the field of aerodynamics have led to a new way of 
controlling air flow which actually induces separation over the top of an airfoil.  An example of 
this is the GLAS-II airfoil [2] (Figure 1.4).  This airfoil geometry has been used in the area of 
active flow control where an oscillatory blowing valve is placed on the surface of the airfoil to 
provide regulated pressure oscillations by means of blowing or suction.  This enables control of 
the separation and many other aerodynamic properties such as lift and drag.   

However, engineers have argued for years on how to even define separation.  The only 
consensus is that flow separation involves the ejection of air along some path away from a 
surface.  Therefore, the separation profile behaves like an unstable manifold that repels particles 

Figure 1.3  The picture on the left (a) illustrates a snap shot of the velocity field around Monterey 
Bay measured by CODAR.  The picture on the right (b) shows the corresponding forward-time 
FTLE field calculated from the given velocity field.  The forward-time LCS can be identified as the 
red line crossing the bay vertically. 

(a) (b) 
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near the separation point.  As previously mentioned, the region around an unstable manifold will 
generate high value ridges in the backward-time FTLE field.  The velocity field for flow over a 
GLAS-II airfoil has been simulated by numerical methods and provided by Jeff Eldridge [2].  In 
Figure 1.4a, a snap shot of the simulated velocity field is shown, and the corresponding 
backward-time FTLE field is shown in Figure 1.4b.  As we can see from the contour plot of the 
FTLE field, the backward-time LCS is highlighted as the red line in the flow field.  Hence, given 
the exact location of the separation profile, aeronautical engineers can easily identify the 
separation point and control the flow.   
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Figure 1.4  The picture on the left (a) illustrates a snap shot of the velocity field around a GLAS-II 
airfoil.  The picture on the right (b) shows the corresponding backward-time FTLE field calculated 
from the given velocity field.  The backward-time LCS can be identified as the red line extending 
from the upper surface of the airfoil. 
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Chapter 2 
 

Technical Approach 
 
 
 
2.1 Experimental Setup 
 
2.1.1  Potential Flow Models 
 
LCS have previously been used to analyze dynamical systems identified by highly dense 
experimental data, such as the CODAR measurements, and direct numerical simulations, such as 
the GLAS-II airfoil data, but have not been applied to biomechanical data, or any small scale 
experimental time-series data.  Because there has not been any previous research on LCS 
identification in the Lagrangian framework, we are compelled to concentrate on a few 
intermediate steps before solving the three-dimensional LCS extraction problem.  Therefore, we 
start with analysis of both planar and three-dimensional steady flow models. 

Since jellyfish generate vortices underneath their bodies to propel upward, we first 
investigate a two-dimensional vortex flow to simulate the flow around a swimming jellyfish.  In 
this case, the flow around a vortex dipole is simulated (Figure 2.1 (a)) and Lagrangian particles 
are distributed around the dipole.  In this model, two vortex sources with equal but opposite 
vorticity strength are placed along the x-axis and equidistant from the origin.  Lamb et al. (1932) 
provides the model for a potential flow around a vortex dipole in the Cartesian coordinate [7]:  
 

 

 

 
where u and v represent the x and y components of the velocity vector, respectively.  a is the  
distance of the vortex sources from the origin. The strength of the vortex source pair is specified 
by .  Furthermore, in order to implement an algorithm that can be used on three-dimensional 
experimental data, Hill�’s vortex sphere is studied extensively during the course of the thesis 

(2.1) 
 
 
(2.2) 
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Figure 2.1 (b) shows the velocity field and several streamlines in the flow field.  In this model, a 
uniform flow passing over a three-dimensional vortex dipole is simulated.  The combination of 
the uniform flow speed and the vorticity strength of thedipole will determine the size of the 
vortex sphere.  Peng et al. (2007) provides the model for this spherical vortex flow in the 
cylindrical coordinate system ( ) [8].  Since this flow model is asymmetric around the z-axis, 
the  component of the velocity vector is zero: 
 

 

 

 

 
where  and  are the r and z components of the velocity vector, respectively.  R equals to the 
radius of the sphere, and U is the speed of the external flow.   

Figure 2.1  The streamlines and the velocity field plots for (a) a vortex dipole flow and (b) Hill�’s 
vortex sphere.  The separatrix for vortex dipole is highlighted as the cyan-colored ellipse and the 
separatrix for Hill�’s vortex sphere is a sphere centered on the origin with radius 1. 

(b) (a) 

(2.3) 
 
 
 
 
(2.4) 
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As the Lagrangian particles move along the trajectories given by the flow models, their 
positions over a time interval are tracked and used to compute the FTLE field in the specified 
domains.  The resulting LCS can be compared with the analytical answer to these models.  The 
results can also be used to answer these following questions:  How many Lagrangian particles 
are required to provide a precise measurement of the LCS around a swimming animal?  How 
long should the particles be tracked in order to reveal the LCS?  And how frequently should we 
track the particles?    
 
2.1.2  Flow Measurement by Particle Tracking 

 
The answers to the these questions are vital to the 
design of an experiment currently conducted by the 
research group led by Professor John Dabiri from the 
Graduate Aeronautical Laboratory of California 
Institute of Technology (GALCIT).  In this case, we are 
studying unsteady flow around jellyfish and the vortex 
rings generated beneath their bodies which force the 
surrounding prey within the reach of their tentacles.   

In the experiment, a large number of tracers are 
deployed in the flow around a swimming moon jellyfish 
(Figure 2.2).  Defocusing Digital Particle Image 
Velocimetry (DDPIV), an extension of the planar DPIV 
technique to the third dimension [9], is used to measure 
three-dimensional positions of all particles over a finite 
time interval.  The tracer particles used in the 
experiment are 14 micron (diameter) silver coated glass 
beads. Their low density allows them to suspend in 
water and minimize the gravitational effect on the 
particle velocity.  The luminous nature of the glass 
beads also enhances the accuracy of the DDPIV measurements.  However, these particles need to 
be tracked to obtain their corresponding trajectories.  An algorithm called Polynomial Fitting 
with Gaussian Weight (PFGW) is used in the experiment to identify each tracer particle.  This 
algorithm is designed to track the motion of low-contrast particles against a background with 
large variations in light levels.  The method is based on a polynomial fit of the intensity around 
each tracked particle, weighted by a Gaussian function of the distance from the center [10].  It is 
especially suitable for tracking small and dense particles such as endogenous particles in the cell.  
The small size of the tracer particles, hence, further facilitates the performance of the tracking 
algorithm. 

Conventionally, FTLE fields have been calculated from the velocity field measurements 
typically taken by DPIV in an Eulerian frame [3, 5, 8].  However, the Lagrangian method 
introduced in this thesis computes the FTLE field from a time-series of particle trajectories.  The 
data output of this experiment consist of three-dimensional trajectories in the flow field and their 

 
Figure 2.2  Lagrangian particles 
(small dark circles) are deployed 
around a jellyfish in a specified 
domain. 
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tracking indices.  The resulting FTLE field will reveal surface-like coherent structures that 
separate the flow field into distinct regions.  If the conventional Eulerian method were to be 
adapted, the computation of FTLE field from the full three-dimensional velocity field would 
require lengthy integrations of each particle trajectory.  Consequently, it would take days to 
complete the computation for the three-dimensional FTLE field at just one time frame.  In 
contrast, in the Lagrangian approach, the position of each particle is measured over time.  The 
FTLE value at a given point would be obtained from the change of distance between two close-
by particles over that time interval.  The distance between any pair of adjacent particles at the 
specified time frame can be conveniently calculated by retrieving their positions.  Therefore, the 
Lagrangian method simplifies the FTLE computation by avoiding the most time-consuming 
process (i.e. integration of particle trajectories) and significantly reduces the overall run time.  
Although this method is computationally inexpensive, compared to the dense velocity field data, 
the particle trajectory data are rather sparse.  In parts of the flow field where Lagrangian particles 
are unavailable, this method simply cannot provide enough information to deduce the FTLE 
value.  Yet, despite the limited abundance of prey particles, the measured data is sufficient to 
obtain the local maxima in the FTLE field, thus revealing the LCS in the flow field.  Chapter 3 
will provide additional detail discussion about the results obtained by the Lagrangian method.  
 
 
2.2 Analytical Methods 
 
2.2.1 Finite-time Lyapunov Exponent (FTLE) 
 
By tracking each Lagrangian particle in the flow over a finite period of time, the position of each 
particle along a trajectory at any time in that interval is given.  A flow map can be used to map 
fluid particles from their initial positions at time t0 to their locations after a finite time interval T 
at t0+T.  If the initial position of a particular particle at t0 is given as , the particle after 
a time interval T can be tracked by the flow map, 
 

. 

 
We use   to represent particle trajectory with initial condition  as a function of 
time t.  Assume a trajectory starts slightly away from a reference trajectory , with a small 
perturbed initial position  at time t0, this trajectory will evolve with a vector 
displacement 
 

 

 
with respect to the reference trajectory , as illustrated in Figure 2.3.   
 

(2.5) 

 (2.6) 
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To quantify the linear transformation between the initial and the final displacement 
vectors, we can linearize the flow map around  by expanding Equation 2.6 in a Taylor series 
and dropping the high order terms to yield: 
 

 

 

The resulting first-order factor  is the state-transition matrix, which can also be called the 

deformation gradient tensor, usually denoted by  [12].  This matrix contains 
information about the expansion, contraction, and rotation of the initial displacement vector due 
to the deforming nature of the flow around x0.  The magnitude of the final displacement vector 
can be obtained by taking the norm of the following inner product: 
 

 

                                                                       . 

 
In the above expression, the symmetric matrix  
 

 
 
is the finite-time right Cauchy-Green deformation tensor [12].  The matrix  is a rotation-
independent measure of deformation [11]. Since  is an n-dimenstional, symmetric, and positive 
definite matrix, it has n real, positive eigenvalues [13, 14].  In addition, because our study 
focuses on 3-dimensional flow field, all vectors and matrices discussed in this paper are assumed 
to be 3-dimensional (n = 3).   

Figure 2.3  This figure illustrates the reference trajectory , the adjacent 
trajectory , and the displacement vector between them . 

 (2.8) 

 (2.9) 

 (2.7) 
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Let  be the maximum eigenvalue of the Cauchy-Green tensor.  From Equation 
2.8 and 2.9, it can be deduced that  represents how much the initial displacement 
vector  can be stretched at time t, if  is aligned with the eigenvector associated with 

.  The final displacement vector, therefore, has maximum magnitude equal to 

 
 

 
We can further relate the flow field at x(t0) to a finite-time Lyapunov exponent, defined as 
 

 

 
where T = t – t0 is the finite time duration over which deformation is measured.  As previously 
mentioned, the finite-time Lyapunov exponent (FTLE) provides a measure that quantifies how 
trajectories diverge from each other at a particular position in a flow field.  In other words, if  
is aligned with the eigenvector associated with , then the maximum stretching  
of the displacement vector occurring from t0 to t = t0 +T can be derived from Equation 2.11: 
 

 
 
Namely,  is called the finite-time Lyapunov exponent because it represents the exponent of 
the stretching factor  that quantifies the transformation between the initial and final 
displacement vector.    

Taking T>0, the local maxima in the FTLE field indicate the locally maximum trajectory 
divergence in the flow field; particle trajectories tend to repelled from these locations.  If these 
local maxima merge together and form into ridges, these ridges then act as high impedance 
barriers in the flow field where no particle pass through.  As discussed previously, these ridges 
are the forward-time Lagrangian coherent structures (LCS).  Similarly, taking T<0, the high 
FTLE value ridges will reveal the backword-time LCS [12].  According to Shadden et al. (2005) 
and Peng et al. (2007), the estimated fluid flux across an LCS is, in fact, negligible.  Hence, the 
LCS can be indeed treated as ideal material lines in the flow field.   
 
2.2.2 FTLE Approximation with Gaussian Weight 
 
To calculate the FTLE field, a non-inertial Eulerian frame is laid over the flow field around the 
swimming animal as shown in Figure 2.4.  At each grid in this steady frame, the nearby 
Lagrangian particles are located within a searching range r0, which is determined by the average 
particle density of the entire flow field.  The positions of all possible combinations of particle  

 (2.10) 

 (2.11) 

 (2.12) 
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pairs are tracked over a time interval T.  For each pair of tracers i, the corresponding FTLE is 
calculated from the following expression, similar to Equation 2.11:   
 

 

 
As shown in Figure 2.4, T is the finite time interval, and   and  represent the 
initial and final displacement vectors between the pair of particles, respectively.  Furthermore, a 
probability factor pi is assigned to the corresponding particle pair i, according to the following: 
 

 

 
where r0 is the searching range, and ri symbolizes the distance between the specified Eulerian 
grid and the midpoint of the pair of particles.  Hence,  
 

 

Figure 2.4  This diagram illustrates the algorithm that computes the FTLE value at a specific 
Eulerian grid point (left).  The grid size and the searching range in the diagram are not drawn to 
scale relative to the size of the illustrated jellyfish.  The searching range is defined by r0, and r1 is 
the distance between the Eulerian grid point and the midpoint of the first traced particle pair (right).  

 
(2.14) 

 (2.13) 

 
(2.15) 
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gives an estimate of the FTLE field at the grid point .  In this equation, the collective 
FTLE contributions from all combinations of particle pairs around  is divided by the sum 
of the corresponding probability factors to give the �“expected value�” of the FTLE field at the 
given grid point.  Considering Equation 2.14, which is simply a variation of the Gaussian 
distribution, Equation 2.15 implies that the pair with a midpoint closer to the grid point would 
have a greater contribution towards the overall FTLE value at the grid point.  However, this 
algorithm provides an estimation of the FTLE value at each grid point based on the trajectory 
divergence of the surrounding particles.  Although this method cannot provide exact FTLE value 
at each grid, the �“expected value�” of FTLE is sufficient to reveal the high-valued ridges, thus 
identifying the LCS in the flow field.   
 
 
2.3 Implementation:  The Graphical User Interface 
 

Figure 2.5  The picture shows the outlook of the graphical user interface design that is developed by 
the author.  With this software package, people with different background are able to use the 
algorithm described in the previous section. 
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In an attempt to implement the algorithm described in Chapter 2.2, the author developed a 
software package that computes FTLE field of a specific region from a time-series trajectory data 
set.  The software package is a MATLAB graphical user interface (GUI) which is designed to 
facilitate future experiments on animal swimming and provide a visual platform that people from 
different fields can access.   

Figure 2.5 illustrates the outlook of the GUI program.  The GUI is divided into two main 
portions.  The part on the right allows the users to specify various conditions for FTLE 
calculation such as the grid size, data type, integration length, searching range etc.  The part on 
the right allows the users to determine the type of plot to appear on the screen.  Once the data is 
loaded into the program, the users can plot either the particle trajectory or the calculated FTLE 
field.  The text bar on top of the plotting region will show the current status of the GUI, whether 
it is loading the trajectory or calculating the FTLE field.  Furthermore, by using the menu bar on 
the top, the users have the options to load experimental data, save the analysis results, change the 
colormap of the contour plot, and many other functions.  The input data format for this GUI 
program is the coordinate of the tracer particles followed by the particle index and time frame 
label.  Due to the inevitable tracking error, not every particle�’s position is tracked in all time 
frames.  The missing trajectory data will be approximated by cubic interpolation, which is 
implemented in the �“Synchronize Trajectories�” push button command.   

However, this algorithm does not include the calculations of the LCS splines from FTLE 
fields, the procedure that can be accomplished by a variety of informal methods including 
thresholding or graphical feature extraction. Although rigorous methods have been implemented 
in the past [3~5], for practical purposes, identification of LCS from well-resolved FTLE fields is 
relatively insensitive to the current implemented method [12].  Furthermore, since MATLAB is 
not the most efficient programming language, a significant improvement on the performance will 
be expected if the GUI is written in other programming language such as C or C++. 
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Chapter 3 
 

Results and Discussion 
 
 
 
3.1 Two Dimensional Steady Flow:  Vortex Dipole  
 
First, in order to verify the current algorithm, we concentrated on investigating the case of planar 
flow around a vortex dipole.  Figure 3.1 (a) shows the forward-time FTLE field calculated from 
the position data of the Lagrangian particles at t = 1; (c) shows the corresponding backward-time 
FTLE field of the vortex dipole flow; (b) and (d) plot the corresponding FTLE field at after 39 
time steps.  The Lagrangian particles in this case start at lattice grid points with 0.1 unit spacing.  
The FTLE field plots at t = 1 look much smoother and more precise than the result obtained at t 
= 40.  This phenomenon is caused by the evolution of particle arrangement over time.  At t = 1, 
the Lagrangian particles are distributed evenly at the lattice points.  At t = 40, the particles have 
moved along their prescribed trajectories, and their arrangement would appear rather random, 
especially near the centers of the dipole (Figure 3.2 (b)).  Furthermore, the FTLE field at t = 40 
exhibits a few spots with exceedingly high value.  Because some particles are clustered closely 
together, the initial distances between pairs of particles are extremely small.  Such small 
perturbation implies a rather large final to initial distance ratio which would result in a large 
FTLE value.  To further illustrate the point, the “hot spots” in the FTLE field in Figure 3.1 are 
matched with the clusters of tracer particles in Figure 3.2.  The FTLE values obtained from the 
current algorithm are approximated values and they are only evaluated to reveal the locations of 
the local maxima in the FTLE field.  In Figure 3.1, the regions with locally high FTLE values 
join to form an oval ridge that coincides with the dipole boundary indicated by the streamline 
plot in Figure 2.1 (a).  Therefore, the results confirm that the current algorithm can identify the 
coherent structures of the flow field accurately.   
 
3.1.1 Comparing the FTLE field:  The Norm Method 
 
Furthermore, to set up the experiment for this project, the ideal tracer density should be 
estimated to precisely display the LCS in the flow field.  This problem can be easily resolved by 
further analysis on the flow over a vortex dipole.  Figure 3.3 displays the FTLE field of a vortex 
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dipole flow deployed with tracers of various densities.  By superimposing the theoretical LCS 
and the calculated FTLE field, Figure 3.3 demonstrates that regions with high FTLE values can 
be recognized accurately with a wide range of particle densities.  Taking the extreme case with 
particle spacing of 0.4 (which translates to particle density of 6.25), the “patches” of high FTLE 
value roughly match with the theoretical answer although the algorithm yields rather coarse 
results.   

However, determining the ideal particle density by looking at the FTLE field of the test 
cases is a rather arbitrary process.  If an exact solution to the FTLE field exists, the limit of the 
resulting FTLE field of the current algorithm as the particle density approach infinite will be  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) 

Figure 3.1  The 
FTLE field of vortex 
dipole flow:   
 

(a) plots the 
forward-time FTLE 
field of the vortex 
flow at t=1.   (b) 
plots the forward-
time FTLE field at 
t=40.  
 (c)  plots the 
backward-time 
FTLE field of the 
vortex flow at t=1.   
(b) plots the 
backward-time 
FTLE field at t=40.   
 
The finite time 
interval the FTLE 
values are evaluated 
over is 300 time 
steps. The tracer 
particles start at 
lattice grids with 0.1 
unit spacing and 
have a density of 
100 per unit area 
approximately. 

(d) 
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(d)
Figure 3.2  These two 
figures plot the position of 
the tracer particles moving 
in a vortex dipole flow at 
(a) t=1 and (b) t=.  The 
particles starts are initially 
distributed evenly over a 
lattice grid, then move 
along their corresponding 
trajectories illustrated in 
Figure 2.1(a).   

Figure 3.3  Forward-
time FTLE plot for 
vortex dipole flow with 
different tracer 
densities at t=1.  The 
integration time 
interval is 300.  The 
actual solution to the 
LCS in the flow is 
plotted in red for all 
different cases. 
 

(a) spacing=0.4, 
density=6.25 . 
(b) spacing=0.2,     
density =25. 
(c) spacing=0.1, 
density=100. 
(d) spacing=0.025, 
density=1600. 

(c) (d) 

(a) (b) 
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extremely close to the solution.  To assess the effect of tracer density on the FTLE field, we 
developed a method to compare the FTLE field of different test cases quantitatively:  The value 
matrix of the FTLE field computed from each test case is resized into a n-dimensional vector 

, and the norm of the row vector is calculated from the following 
equation:  .  We can deduce from this formula that if the entry values of 
two vectors are very close to each other, the norm of the two vectors will be very close also.  
Figure 3.4 plots the FTLE field norm of each test case against the particle density.  As the plot 
shows, the norm of the FTLE field quickly approaches an equilibrium value as the particle 
density increases.   
 
Figure 3.3 and 3.4 demonstrate a wide range of results that can be obtained from the current 
algorithm.  Although we wish to see the extremely precise answer shown in Figure 3.3(d), the 
number of tracers suggested in this case (~40,000) is very difficult to attain, and the increased 
number of tracers will prolong the overall computation and possibly interfere the flow.  Using 
excessive number of tracers would also be hard for the particle tracking algorithm to track each 
tracer accurately.  Since our objective is to visualize the LCS in the flow field, we only need to 
clearly identify the locations of the local maxima.  According to Figure 3.3 and 3.4, a particle 
density around 150 per unit area is sufficient to extract the desired result.   

Furthermore, investigations on other vital elements of the experiment, such as the grid 
resolution, the time step size, and the tracking time, are also performed to assess their effect on 
the output.  However, the analysis on these control variables is neglected due to their minimal 
effect on the output.  Specifically, time step size is a very important component in the Eulerian 
method because it determines the error size of the flow map integration.  However, in the current 
algorithm, the exact location of each tracer particle is measured.  As a result, the error due to 
flow map integration is eliminated and so is the effect of time step size on the output.  For the 
analysis on the grid resolution, because the FTLE fields for the test cases have different 

Figure 3.4  The norm of 
the FTLE field plotted 
against the particle 
density.  The tested data 
points are plotted in red 
stars and connected by 
blue segments. As the 
particle density increases, 
the norm of the FTLE field 
will reach an equilibrium
value.
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dimensions, the norm method cannot be applied to the results.  Although by intuition, a greater 
grid resolution usually leads to a more precise answer, it adds extra burden on the computation 
process.  Therefore, it is simply a matter of optimization, and the ideal grid resolution would be 
determined by the time frame and the desired accuracy of the experiment.  Moreover, the effect 
of tracking time on FTLE field for vortex dipole flow is 
also insignificant because the flow model is steady and 
the LCS in the flow field are stationary.   In contrary, for 
an unsteady flow, the tracking time heavily influences 
the output and its effect is further discussed in Chapter 
3.3.   

Lastly, most of the results demonstrated so far 
have obtained from a even distribution of tracer particles.  
Yet the particle placement in a realistic situation would 
appear rather chaotic.  Figure 3.5 shows the FTLE field 
calculated from a random initial tracer arrangement with 
particle density of 100 per unit area.  Although the result 
appears less smooth and has many more high FTLE 
value “hot spots” than the even distribution with the 
same particle density (Figure 3.3 (a)), it is able to 
recognize the regions with high FTLE value and reveal 
the corresponding LCS.  Therefore, the final result of 
the algorithm is insensitive to the initial arrangement of 
the tracer particle. 
 
 
3.2 Three-dimensional Steady Flow:  Hill’s Vortex Dipole 
 
Because the current algorithm will be applied to three-dimensional time-series data, it is 
necessary to test the algorithm on a three-dimensional flow model.  As a classic flow model, 
Hill’s vortex sphere naturally becomes the candidate for the test model.  In the case illustrated by 
Figure 3.6, tracer particles are randomly distributed in a rectangular volume at frame 1 (t = 1) 
with the density of 500 particles per unit volume.  They then move along their prescribed 
trajectories based on Equation 2.3 and 2.4. The plots in Figure 3.6 shows the positions of the 
tracer particles at (a) t = 1, (b) t = 25, and (c) t = 51.  According the plot, the particles that start 
within the vortex sphere are trapped in the sphere; the particles outside the sphere at t = 1 will 
move down stream past the sphere.  The surface of the vortex sphere serves as the material 
surface that separate the flow field into two distinct regions.  Therefore, the LCS of this three-
dimensional flow model is the surface of the vortex sphere.  However, visualizing a three-
dimensional FTLE field is a rather challenging task because it is unfeasible to generate a three-
dimensional contour plot on a sheet of paper.  Nonetheless, in the current algorithm, because the 

Figure 3.5  Forward-time FTLE 
field for a vortex dipole flow with 
random initial tracer distribution.  



- 20 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6  These three figures plot the position of the tracer particles moving in a flow pass over 
Hill’s vortex sphere at (a) t = 1, (b) t = 25, and (c) t = 51.  The particles starts are initially distributed 
randomly in a rectangular volume, then move along their prescribed trajectories illustrated in Figure 
2.1 (b).  The particle density is 500 per unit volume.

(a) (b) (c) 

(a) (b) (c) 

(d) (e) (f) 

Figure 3.7  Forward-time FTLE plots for Hill’s vortex sphere with different tracer densities at t =1.  
The tracking time interval for all plots is 150. The particle density is 5 per unit volume for figure (a), 
(b) and (c); the particle density is 50 per unit volume for figure (d), (e) and (f).  (a) and (d) show the 
FTLE field on the x-z plane; (b) and (e) show the FTLE field on the y-z plane; (c) and (f) show the 
FTLE field on the x-y plane. 
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FTLE field of the flow field is actually computed over an Eulerian grid (p.11).  We can specify a 
plane parallel to one of the three principal planes (y = 0, x = 0, and z = 0) and plot the FTLE 
values on that surface.  Figure 3.7 shows the forward-time FTLE field of trajectory data with 
different particle densities (50 and 500 per unit volume) calculated on the x-z, y-z, and x-y plane.  
The high-value ridges in each of the plots all have a circular outline, which is exactly the 
intersection between the spherical LCS and the specified plane.  Even for the case with very low 
particle density (Figure 3.7 (a) ~ (c)), one can roughly identify LCS from the plotted FTLE field.  
Therefore, the results further confirm that the current algorithm can accurately identify the 
coherent structures of the flow field in three-dimensional domain.   
 However, from Figure 3.7 (a), (b), (d), and (e), it is not hard to notice that the LCS 
become discontinuous near the z-axis, and the LCS on the x-z plane and y-z plane look more like 
two arcs than a circle.  According to the velocity field described by Equation 2.3 and 2.4, as r, 
the distance between the particle position and the z-axis approaches zero, both ur and uz become 
zeros and ur collapses to zero much faster than uz does. Thus, the particles near the z-axis will all 
move vertically with extremely low speed, and the trajectory divergence between any two 
particles near the z-axis will not be great enough to induce any high-FTLE-valued ridge. This 
conclusion is further confirmed in Figure 3.7 (c) and (f), where the LCS on the x-y plane is a 
complete circle and FTLE value approaches zero near the center (x = 0, y = 0).   
 According to the two-dimensional flow model, the ideal particle density is between 100 
and 150 per unit area.  If we extrapolate the result from the two-dimensional flow model to the 
third dimension, then a particle density from 1000 to 2000 particles per unit volume will yield a 
desirable result.  This implies the minimum number of tracers required to run the experiment is 
approximately 80,000, which is nearly an astronomical number for an experiment for small scale 
flow measurement.  As mentioned in 
Chapter 3.1, such large number of particles 
is hard to attain; it will prolong the 
computation and possibly affect the fluid 
flow.  Therefore, various particle densities 
that are more realistic to achieve in an 
experiment are tested.  From Figure 3.7, we 
can see that the particle density of 500 is 
adequate to locate the LCS accurately.  
Furthermore, the norm method is performed 
on the test cases to assess the effect of 
tracer particle density.  Figure 3.8 provides 
the plot of the FTLE field norm for each 
test case versus the particle densities, and 
the plot also suggests that a particle density 
between 500 and 1000 will give a plausible 
estimate to the exact FTLE field. 

Figure 3.8  The norm of the FTLE field plotted 
against the particle density.  The tested data points 
are plotted in star and connected by blue segments.  
As the particle density increases, the norm of the 
FTLE field will reach an equilibrium value.
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3.3 Two-dimensional Unsteady Flow:  Flow around Jellyfish 
 
The Lagrangian method has shown promising results in analytical models of steady flows in both 
two and three dimensions.  However, the type of flow expected in an experiment of animal 
swimming measurement is rather unsteady and unpredictable.  Also, there has not been a 
developed method that can analytically determine the LCS around a swimming animal.  Since 
FTLE field calculation on a three-dimensional time-series data has never been accomplished, 
verifying the algorithm with three-dimensional experimental data seems unfeasible.  Nonetheless, 
the Biological Propulsion Lab at Caltech has used DPIV to measure the two-dimensional 
velocity field around a swimming jellyfish.  The LCS around a swimming jellyfish has also been 
extracted from the velocity data via the Eulerian method.  Therefore, the two-dimensional PDIV 
data is tested in our current algorithm, and the results obtained by the Eulerian method will be 
used to validate the current algorithm.   
 In order to simulate a Lagrangian approach to the experiment, tracer particles are seeded 
in the velocity field, and their trajectories are integrated over a finite time interval to resemble a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9  These figures plot the velocity field (red vectors) from the previous PDIV measurement 
on a swimming jellyfish at t = 1, t = 51, t = 101, and t = 151.  During the experiment, a moon 
jellyfish enters from the upper right hand side of the field and propels downward.   The tracer 
particles are seeded in the velocity field, and they are marked as black dots in these plots.  The 
tracers have a density of 30 particles per unit.   
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time-series data.  Figure 3.9 shows the plots for the positions of the tracer particles at various 
time frames.  The velocity field at each frame is also plotted on the same figures.  In this 
simulated experiment, particles with density of 30 per unit area are seeded around a jellyfish, and 
the jellyfish propels toward the bottom the domain by generating vortices underneath its body.  
During the process, the silhouette of the jellyfish becomes more and more visible as the particles 
are pulled towards the jellyfish and adhere to the bell due to the viscous effect of water.  The 
layer of particles does not only outline the bell of jellyfish, but also the wake beneath it.  
Evidently, these wakes form a fluid-fluid boundary, where particles cannot pass through, and this 
observation is confirmed in the FTLE field plots in Figure 3.10, where LCS are identified.  
Figure 3.10 (a) and (b) plot the forward-time FTLE field at t = 51 and t = 51, and Figure 3.10 (c) 
and (d) plot the back-ward FTLE field at t = 121 and t = 171.  The invisible boundary where 
tracer particles adhere to is revealed as the reverse-time LCS (rLCS) (Figure 3.10 (c) and (d)) 
because these particles are pulled onto the wake-formed boundary by the swimming jellyfish, 
and by definition (pg. 3), rLCS are the separatrices that attract surrounding trajectories.  At later 
time frames of the experiment (i.e. t = 121 and t = 171), the flow under the belly of the jellyfish 
is actually enclosed by the rLCS.  Since particles cannot pass through LCS, jellyfish generate 
vortices beneath them not only to help with their movement, but also trap the preys into the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.10  These plots illustrate the FTLE field of the flow around a swimming jellyfish.  The 
tracking time interval for all plots is 120, and the tracer density is at 30 particle per unit area.  (a) 
and (b) show the forward-time FTLE field at t = 1 and t = 51; (c) and (d) show the backward-time 
FTLE field at t = 121 and t = 171.  A total of 200 frames of data are available.   

(a) (b) 

(c) (d) 
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region within the reach of their tentacles.   In addition to the rLCS, Figure (a) and (b) show the 
forward-time LCS (fLCS) around the jellyfish.  In fact, the fLCS reveal a unique feature of the 
flow around jellyfish—lobes.  They are the long and narrow channels above the bell of the 
jellyfish that guide material into the region enclosed by the rLCS.  As a result, the tracer particles 
are pulled towards the bell through the paths created by the lobes.   As a matter of fact, similar 
results can be found in previous works, such as Peng et al. (2007) and Shadden et al. (2006), 
using the Eulerian method, which further confirms the accuracy of our results.   

However, the fFTLE field plots expose a major disadvantage of the Lagrangian method.  
Because the FTLE value at each grid point highly depends on the presence of the nearby tracer 
particles.  The region with no particles floating around will simply return zero for the FTLE 
value.  Although rLCS are always visible because they attract surrounding particles, fLCS are 
much more difficult to identify since they repel nearby trajectories.  As shown in Figure 3.10 (b), 
the lobes are simply curtailed because the particles that are originally on the bottom right of the 
domain are pulled towards the jellyfish.  In a real experiment, the jellyfish will be swimming 
when the sensors start collecting data.  The initial placement of the particles will not be as 
uniformly distributed as the particles in the simulation due to the vortices constantly coming off 
the edge of the bell.  This phenomenon presents a challenge to the design of the experiment and 
will be an excellent subject for future study.  
 
3.3.1 Particle Density Normalization 

 
Although Chapter 3.1.1 has extensively discussed the effect of particle density in a two-
dimensional flow, the ideal density obtained from the simulations cannot be directly applied to 
the experiment.  A conventional dimensionaless scaling parameter such as the Reynolds number 
cannot be used since potential flows are inviscid.  However, the result obtained from two-
dimensional flow model can be roughly translated into experimental study via a normalization 
method.  According to the streamline plot of the vortex dipole flow in Figure 2.1 (a), the 
diameter of the oval vortex shell ( ) is approximately 2.  Since the shape of the region 
enclosed by the bell and the wake-formed boundary of a jellyfish roughly resembles an oval 
shape (Figure 3.10 (d)) and the width of the shape ( ) is about 6.  If we multiply the particle 
densities from both types of flows by the square of the corresponding characteristic lengths, then 
the resulting densities should be a set of normalized values ( ). Hence,  
 

 
 

where the normalized particle density can be defined as the number of particles per region of 
interest.  The variations of Equation 3.1 will allow us to calculate the ideal density for the 
experiment from the density for the vortex dipole flow:   
 

 

  
 
(3.1) 

  
 
(3.2) 
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For example, a particle density of 50 in the vortex dipole flow should be equivalent to 5.6 
particles per unit area in the flow around a jellyfish.  If we inspect the FTLE plot in Figure 3.3(b) 
(50 particles per unit area) with Figure 3.11(a) (5 particles per unit area), the clarity and precision 
of the LCS highlighted in the respective flow fields are roughly equal due to the same 
normalized particle density.  Figure 3.12 (a) plots the FTLE field norm for the flow around a 
jellyfish versus the particle densities; Figure 3.12 (b) plots the normalized FTLE field against the 
normalized particle density for both vortex dipole flow and flow around a jellyfish.  The FTLE 
field norm is normalized by dividing it by the predicted equilibrium value obtained from 
exponential fitting.   The obvious similarity between the two curves further verified the proposed 
theory. 

However, the LCS in the flow around a swimming animal are much more intricate and 
require much more precision than the simple oval-shaped LCS in the vortex flow.  In Figure 3.11,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11  These plots illustrate the forward-time FTLE field of the flow around a swimming 
jellyfish at t = 1.  The tracking time interval for all plots is 120, and the tracer densities are at (a) 
30 particle per unit area, and (b) 5 particles per unit area.  

(a) (b) 

(b) 

Figure 3.12  FTLE field norms plotted against the tracer particle densities.  (a) shows the forward-
time FTLE field versus the particle density for the flow field at t = 1; (b) plots the normalized 
FTLE field norm against the normalized particle density. 

(a) 
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the lobes extending from the top of the bell can be clearly identified in plot (b) but are smeared 
into one thick strip in plot (a), which has a much lower density.  Therefore, in order to ensure 
accuracy of the flow measurement, a particle density higher than the prediction based on the 
analytical flow model should be considered for the experimental data collection.  
 
Lastly, the effect of tracking time (or integration length in the Eulerian method) on the FTLE 
field is extensively investigated for the two-dimensional unsteady flows.  According to Equation 
2.11, the tracking time appears in the denominator of the expression that evaluates the FTLE at 
each grid point.  Since the logarithm of the trajectory divergence is divided by the tracking time, 
which outgrows a logarithmic function, the longer the tracking time is, the less the resulting 
FTLE value at every grid will be.  Therefore, the increased tracking time will scale down the 
FTLE field norm value.  The norm method, hence, is no longer valid to provide the quantitative 
assessment of the effect of a tracking time on the output.  Nevertheless, qualitative comparisons 
between different FTLE field plots are legitimate to provide additional insights on the effect of 
tracking time on the results.  Figure 3.13 (a) (b) and Figure 3.10 (c) (d) illustrate the FTLE field 
computed at the same time frames but with different tracking time.  By observation, a longer 
tracking time will result in a more precise and accurate measurement on the LCS location in the 
flow.  In Figure 3.13 (a), the high value ridges in the FTLE field does not extend as far down-
stream as the rLCS of the other case, where the LCS actually encloses a region beneath the 
jellfish.  In Figure 3.13 (b), when tracking particles backward in time, the portion of the separatix 
on the bell surface actually becomes a low-valued FTLE trench.  Since the particles are tracked 
for such a short time (T = 70), the particles around the low-FTLE-valued may have adhered to 
the top surface of the jellyfish.  As the particles are washed away from each other by the stream 
of water pulled down by the jellyfish, their trajectories will diverge and result in the low value 
trench in the FTLE field.  Conclusively, a longer tracking time will ensure a much more 
thorough LCS extraction in the flow field.      

Figure 3.13  These plots illustrate the backward-time FTLE field of the flow around a swimming 
jellyfish with a short tracking time length of 70 frames at (a) t = 121, and (b) t = 171.  Compare 
them with Figure 3.10 (c) and (d).  

(a) (b) 
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Chapter 4 
 

Conclusion and Future Work 
 
 
 
Using an innovative analytical tool, the Lagrangian coherent structures for different types of 
vortex flows (both steady analytical models and unsteady experimental data) are measured and 
analyzed by tracking Lagrangian particles in the flow field.  Through parameter variations such 
as the tracer particle density and the tracking time length, the results obtained by the presented 
algorithm are verified by either theoretical solutions or results from previous works.  Although 
the LCS extracted by the Lagrangian method may not be as precise as similar results from 
previous works such as Shadden et al. (2005) and Peng et al. (2007), the Lagrangian method 
significantly simplifies the computation without sacrificing the overall accuracy of the results 
because it avoids the lengthy integration of the entire flow map.  The substantial curtail of the 
computational cost allows the possibility of performing LCS extraction on three-dimensional 
time-series data within a reasonable time frame by using a personal computer.  Also, the generic 
nature of the algorithm allows us to perform LCS extraction on any two or three-dimensional 
time-series data, not just fluid flow measurements.   
 However, the Lagrangian method does present a few concerns on the design of the 
experiment on three-dimensional flow measurement currently conducted by the research group 
led by Professor John Dabiri.  First, the results presented in the thesis suggest a normalized 
particle density of about 7000 per unit volume is required to achieve a desirable output.  Using 
such large number of particles in the experiment will prolong computation, raise ambiguity for 
particle tracking, and even distort the entire fluid flow.  The analysis on the presented algorithm 
also suggests that the tracking time will have to be sufficiently long to yield plausible results.  
Yet, a great portion of the experimental measurements are obtained as auxiliary data that keep 
tracks of the particle trajectories and only a small portion of the data are used to visualize the LCS.  
 Nonetheless, the current algorithm has shown promising results in simulations.  Further 
measurements on three-dimensional flows around swimming animals, such as the moon jellyfish, 
will be performed in the near future to continue our quest to understanding the dynamics of 
animal swimming. This will motivate further investigations on vortex flows, the dominant flow 
pattern for biological propulsion, which will influence the development of new locomotion 
systems.   
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