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ABSTRACT

A disturbance-cancelling feedback transfer function is proposed
in a preliminary study for linear systems with constant coefficients,
This idea is then experimentally demonstrated.

In the main theory for more general systems, expressions are
obtained for a computer which generates a cancelling input from
measﬁrements of the disturbances. The cases where there are fewer
measurements than disturbances and also noisy measurements are treated.
Three schemes and a basis for comparison are given. An example is cal-

culated,
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I, INTRODUCTION

Much of the present automatic control design for engineering
systems is based on the assumption that the pertinent system proper-
ties are either known or may be specified precisely when the system
is designed. The accuracy of the system performance under this as-
sumption, i.e., the smallness of the dynamic error, then depends
solelj on the design of the gystem and is the central design objective.
Until recently the system accuracy requirement may not have been so
strict as to invalidate the basic assumption. However, when the re-
quired accuracy is extreme as in some of the modern guided engineering
systems, the basic assumption is not wvalid; it is necéssary to recognize
that the properties of the individual manufactured systems differ from
each other as well as the design specification, and furthermore that
any property in any one system will in general vary in time. These
deviations in the system properties limit the ultimate performance accu-
racy unless they are reccgnized.

At every time instant the properties of an individual engineering
system have definite values, of course; there are no intrinsic uncertain-
ties. The difficulty is to know these definite values at the time of the
control design. This is an impossibility if there are scatter and random
drifts. Actually this is just the situation encountered; manufacturing
tolerances introduce scatter and aging of the device introduces drift.
Furthermore the system properties may be affected by an enviromment that
changes in some random manner., Therefore in any real situation the only

means to have suffiéiently accurate information about the properties of



a system for very accurate control purposes is to cbntinuously'measure
the deviations in the pertinent properties of each individual engineer-
‘ing system during its operation. For very accurate controlled engineer-
ing systems these continuous measurements are a necessity. It is the

purpose of this thesis to explore and formulate a theory for such systems.



II. PRELIMINARY STUDY; LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS

Since a control system which contimiously senses and measures its
properties% during its operation is quite novel, it seems desirable to
first describe a rather naive treatment devoid of any mathematical or
conceptual complication, This preliminary study will then suggest
possible improvements and lead to more advanced ideas. In Part II then,
a study,‘both theoretical and experimental, of linear systems with nomi-
nally constant coeffiéients incorporating continuous measurement of per-

tinent system properties will be described.

2.1 System Description and Objective

The starting point of the discussion assumes that a control system
governed by linear equations with constant coefficients has been designed,
which satisfies the usual requirements of stability, speed of response,

and small dynamic error for certain types of inpu.ts.l’B’h

Undoubtedliy
one or more feedback loops have been used to meet the performance speci~
fications. Designate the transfer function of this system design as
G*(p). The function G%(p) is the ratio of the Laplace transform of the
output to the transform of the input with all initial conditions set to
zero; p is the transform parameter. A less elegant but equally adequate
definition is that G*(p) is the shorthand expression for the input-output

relation in which p is the operator ?§T and t is time.

+ For treatment of a related type of system see Ref. 1 Chap. 15, and
Ref, 2, :
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Howe%er any actual system built to have the desired transfer func-
tion G*(p) will necessarily have somewhat different properties because
- of tolerances in mamufacture and aging of the device. Furthermore be-
cause of envirommental changes and possible abuse these properties will
change with time. Designate the transfer function of this nonstandard
actual system G(p). G(p) then has the same form as G*(p) but somewhat
different coefficients which also change with time.

For some control applications fluctuation of certain system com-
ponents is not objectionable. An actuator which alone is incapable of
precise control because of drifting properties may render precise con-
trol when used with a feedback loop made up of precision elements. Just
the use of feedback then represents a significant advance toward precise
control. However the more ambitious objective sought here is beyond the
capabilities of fixed transfer functions in feedback loops as ordinarily

used, It is proposed that a disturbance-cancelling feedback loop incor-

porating a varisble transfer function be added to the nonstandard system

characterized by G(p) such that the system so modified always has the

*
standard transfer function G (p). Such a disturbance-cancelling system

always responds, statically or dynamically, in the standard predictable
manner.

In Fig. 1 the nonstandard system with fluctuating properties is
indicated in a block diagram by its transfer function G(p). Suppose
that a feedback loop having the transfer function H(p) is added, as indi-

cated in Fig., 2. The resulting system transfer function then is

G(p)
1 - G(p)H(p)
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’ +*
By setting this equal to the standard transfer function G (p), the

condition on H(p) is obtained below.

. G(p) - G%( )
1 - 6(p)H(p) P
H(p) = L (2.1)
T e o)

Obviously the instantaneous properties of the nonstandard system
must be contimiously measured and compared with the standard properties,
From this information the disturbance-cancelling transfer function is
generated by an appropriate computer. Fig. 3 shows the arrangement. The
properties of the nonstandard system are determined from its response to
test signals. The regular system input must not have components of the
nature of the test signals; this restricts the choice of the latter.
Filter No. 1 passes the regular system input unaltered but infinitely

attenuates the test signals; filter No. 2 does the opposite.

2.2 Experimental Demonstration

In order to demonstrate the ideas discussed in the previous section
an electrical disturbance-cancelling system was devised. A simple
resistance-capacitance network in series with a buffer amplifier (see
Fig., L) was chosen as the standard control system. The standard transfer
function then is

- X

* 1
Tp+1l



where the’standard time~constant T* is the resistance-capacitance pro-
duct. A disturbance was intentionally introduced in the time-constant
by varying the capacitance. Therefore the disturbed control system
transfer function is |

!

Tp + 1

G(p) =

Only a positive disturbance in T was used to simplify the instru-

mentation.
From Eg. (2.1) the feedback transfer function which must be

generated to cancel the disturbance is

Hq - 1 __1 I L
® = T T k) (2.2)

This was done with a network of the type shown in Fig. 5, which has
the transfer function,

=P

Tlp + 1
where T' is the resistance-capacitance product. Cancellation of the
unwanted denominator will be discussed later.

The diagram for the example system is shown in Fig, 6. The trans-

fer function designated H'(p) is

. "R - R% Bj_clp . (R - R*) Clp




Comparison of the mumerator of Eq. (2.3) and Eq. (2.2) shows that the
resistance R must be made proportional to t. The servo shown schemati-
: éally in Fig. 6 generates ihis resistance by positioning the arm of
potentiometer Rl which is ganged to the servo position-feedback potenti-
ometer R2 as indicated by the dashed line.
For any transfer function F(p) the ratio of the output amplitude
to the input amplitude for a sinusoidal input of angular frequency @ is
|F(ﬂn)|. Therefore the output amplitude of G(p) for a sinusoidal test

signal of amplitude Et and angular frequency'mt is

ek

: (2.L4)
|y + 1]

By lG(j‘”t)| =

The test signal angular frequency @ is chosen high enough to be beyond
the frequency range of the regular system input and such that @, » 1.

Then

B
By |G(i”t)| = ;igi

The high-pass filter in Fig., 6 passes the test signal unaltered in
amplitude into the rectifier which amplifies it by a factor K2 and

converts it to a d.c. voltage El' Thus

E,K K
E, = 7%2543 (2.5)
t



For the servo in equilibrium (no signal at its mixer),

E = ng E, (2.6)

0

But because the potentiometers are ganged,

6 _ R
W "R (2.7)
From Egs. (2.5), (2.6), and (2.7),
E o
R = otRlT
E KK
Then define (2.8)

* E6&tR1 *
B85

The servo thus generates a shaft position 0 and a corresponding re-
sistance R propertional to the disturbed time-constant v. The standard
time-constant 'r* is set into the system by rotating the case of potenti-
ometer R, as indicated in Fig. 6, Fig. 9, and Egs. (2.8)., Putting

Eqgs. (2.8) into (2.3) gives

#*
) EoKﬁmtTl (t=-Tt)p

EK, mprl

Hi(p) = (2.9)

where Tl = Rlcl.



The regular system input was assumed to extend over a frequency
range up to an arbitrary upper limit of 500 cycles-per-second. The
. low-pass filter should ideally pass the regular system input un-
altered. But over the system input frequency range the filter has

the approximate transfer function

1

— (2.10)
't2p + 1

Ff(p)

L1 + L3 + L5

5

where To =

In order to cancel the undesired time lags T, in H'(p) and T,

in Ff(p) the phase compensator was introduced. Its transfer function

is

T.pt+t1

F (p) = K ——

¢ 3" atptrl

3
%
where a = Eg—:—ﬁ; and 13 = R7CIO' For low frequencies,
Fc(p) = KBa [(1 - a) T3P + 1 ] (2,11)

Thus the transfer function for the nonideal low-pass filter; H'(p), and

phase compensator for low frequencies is

) EoKBKHQtTla 1-~-a) T3P +1

(t-7)p (2.12)
E&K (tp +) p+1l

H*(p) Ff(p)_Fc(p) =
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By adjusting the quantities in Eq. (2.12) so that

1 -a) Ty
—_— = ] (2.13)
Tt T
and
EK.KawTa
o3b®l (2.1L)
E %y
then
H(p) Fo(p) F_(p) = -%l-u-x"%p = H(p) (2.15)

The required feedback transfer function, H(p), as indicated in Eq., (2.2)
is thus realized.

Notice, however, that the unwanted time lag T, in the feedback

1
loop and T, in the forward loop are cancelled by a single phase compen-
sator for reasons of instrumentation economy. Thus although the ex-
ample system has the correct transfer function from the ocutput of G(p)
around the loop to the mixer, the unwanted time lag Ty from the output

of G(p) to the system output is over-compensated by the amount A

Ty
simple phase correction of the experimental data was required to account

for this forward loop over-compensation.



2.3 Experimental Results

The system parameter settings are given in Fig. 6., In the
.interest of obtaining the best system performance the parameters
were not initially set to satisfy the phase compensation condition
given by Eq. (2.13) and the loop gain condition, Egs. (2.14). In-
stead the system parameters were set to give minimum variation in
the input-output relation while varying T for a particular setting
of T* = ,18 milliseconds. The parameters then were not changed
during the remainder of the experiment. Using the values thus
determined, Egs. (2.13) and (2.1L) are checked below. An édditional
time lag Th = 6,14 microseconds was discovered in the amplifiers indi-
cated in Fig. 6 as having gains - Kl’ K3, and - Kh' Over the system
input frequency range their actual transfer functions are approxi-

mated by
K
! £ l

- TP+ 1 ’ TP ¥ T, amd - TP+l

The phase compensator must cancel these three additional time lags

also, so Eq. (2.13) is modified to include them as follows.

1 -a) T3

Tl + 12 + 3¢h

= 1 (2,13")
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Substituting the experimental settings from Fig. 6 into the phase

compensation condition, Eq. (2.13') gives

1 -a) T3 6

(1 - .2l1) x133 x 10°
T YT, 3T, (20 + 7.7 +19.2) x 10"

z = 1.16

The actual phase compensation required is thus 16 percent greater
than predicted. This excess is attributed primarily to additional,
small time lags due to stray capacity.

A similar check of the loop gain condition, Eq. (2.1lk), gives

Eof35P™% 20 x 3.10 x 5.08 x 2% x 10% x 20 x 1070 x 211

EX, vz x 20

= ,925

Instrument error is probably responsible for the 7.5 percent discrep-
ancy.

To evaluate the example system a 500 cycle-per-second sinusoidal
system input was used in each of ten runs, During any one run the
input remained constant while © was varied from .2 to .4 milliseconds
in .02 millisecond steps. The input was applied to the horizontal
deflection plates of an oscilloscope and the output to the vertical
plates as well as to an a.c, voltmeter, During each run the a.c. out-
put voltage and the absolute value of the sine of the phase angle ¢
between the input and output were recorded for each value of t. The
quantity | sin ¢| is equal to % where a and b are the dimensions of

the ellipse on the 6scilloscope shown in Fig; 10.
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During Run 1 the feedback loop was opened to record the effect
of variation of v on the measured quanfities. The data appear with
éalculated quantities on p. 92. The normalized output is obtained
by dividing the output voltage by the first reading of the run. 4

calculated phase shift, Coale? is obtained as

O = BTE. G (i)

1 :
= arg., ( e 71 ) where w is the angular

frequency of the system input. However because of the forward
loop over-compensation described at the end of Sec., 2.2 the measured
phase shift, ¢, differs from ®eale by an average of 5.1 degrees.,
This 5.1 degree correction was applied to the succeeding data of Runs
2 through lQ to obtain a corrected phase angle, Peor®

In Runs 2 through 10 the feedback loop was closed, and the capa-
bility of the system to cancel disturbances in t was checked for nine
values of the standard time constant % from .12 to .28 milliseconds.
After introduction of a disturbance in T, readings of output voltage
and l sin ¢| were taken after the transient in the disturbance-
cancelling action subsided. (This transient, extending over a frac-
tion of a second, is discussed briefly later.) The data appear on
pp. 93 to 101. The measured phase angle ¢ is corrected for the forward
loop over—compensation to give Poor® The phase angle appropriate to
the particular setting of t* appears in the last column on the data

sheets for comparison with Poor? and is given by



1k

3%
Pogre = arg. G (im)
ﬂmr* + 1

The significant experimental result is the excellent degree to
which the output was held constant, in both magnitude and phase angle,
while.r was varied., For no value of T* was there a perceptible vari-
ation of ¢ with v. For two values of T*, .24 milliseconds in Run 8
and .28 milliseconds in Run 10, there was a variation in output voltage
of .4 percent. The experimental results are shown graphically in
Fig, 11,

The measured phase angle, after correction for forward loop over-
compensation, should be equal to the phase angle appropriate to the T*
setting; that 1is, Peor and ¢calc should be equal., The phase angle

error, ¢ is tabulated below,.

cor ~ Pealc

Run T* Peor T Pealc
Milliseconds Degrees

2 12 -1.3

3 Ak ~1.0

L .16 - .7

5 .18 - .8

6 .20 - .7

7 $22 - W

8 o2l - .8

9 «26 .0
10 .28 ~1.8

This tabulation serves as a calibration of the t*% scale shown in Fig. 9.
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In ahy practical disturbance-cancelling systeﬁ the transient in
the cancellation must be short compared to a characteristic time of
- the disturbance. The cancellation transient for three step disturb-
ances in t was recorded for the example system. The output voltage
variation with time appears on the oscillograms in Fig, 12, The
upper envelope of the 500 cycle-per-second output signal is shown.
Since the cancellation transient is independent of T*, an arbitrary
setting was used. The transient for this example reflects primarily
the lag in the action of the servo which positions the feedback po-

tentiometer Rl'

2.1 Necessity for Modification of Concept for Complicated Systems

It is evident from the preceding sections that the generation of
a disturbancé—cancelling feedback transfer function from the system
response to test signals leads to a rather complicated system. The
concept, although shown to give good results for the very simple
example,'would be difficult if not impossible to implement for com-
plicated engineering systems. This naive and simple idea must be
modified to widen its scope.

It is desirable that the more general theory for the cancel-
lation of disturbances in control systems should not be limited to
systems for which the governing equations are linear. However we
observe that a well-designed engineering system will not have its
properties altered to a large degree by aging, drift, and environ-

mental fluctuations. Furthermore a good mamufacturing process ensures
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close adherence to the standard so that the resulting scatter of system
properties will be small, Hence well-ehgineered and well-made systems
ﬁiﬂl not deviate far from the standard. Consequently for systems
governed by nonlinear eguations we may linearize with respect to devi-
ations from the standard, neglecting second and higher order terms in
the deviations. These linearized equations will not have constant coef-
ficients, however; the more general theory which follows must therefore
treat linear systems with time-varying coefficients,

In the previous sections the nature of the disturbance was pre-
sumed to be a deviation of some parameter of the control system proper.
In practice these disturbances will be encountered along with dis-
turbances in the enviromment of the system which act through the latter
to produce an error. In the equations expressing the system error the
disturbances which cause it will be indistinguishable as to their origin,
In fact the boundary between the control system and its enviromment may
be difficult to define in some cases. Therefore in the theory which
follows, more general disturbances will be treated - namely, any dis-
turbances which degrade the system performance by causing an error in
the system output, regardless whether the origin of these disturbances
is considered to be in the control system proper, its enviromment, or
both,

The information basic to the cancellation of the disturbances in
an automatic_control system is the magnitude of these disturbances. The
means of obtaining these magnitudes - whether by the use of test signals,

direct measurement, or some other - is separate from a theory for the
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use of this information. Only the latier is our concern here;
attention in the following sections will therefore be directed

. ioward the use of this information. The instrumentation problem
involved in obtaining it is dismissed as something separate.

The theory must however take into account the following two
real situations:

A complicated engineering system has a great number of ele-
ments, each of which may fluctuate or differ from the standard and
cause an error in the system output. Measurement of each of a
great number of disturbances may not be feasible because of the
bulk and complexity of the required sensing and measuring equip~
ment., However certain overall system properties may be measured
instead, where a deviation in such an overall property reflects
the deviations of a number (in general, all) of the basic system
disturbances. The theory will therefore include the possibility
of having fewer measurements than disturbances.

Each disturbance, a physical quantity, must be sensed and
measured by some imperfect device and transmitted to that part of
the control system which digests the disturbance measurements,

The theory which follows must allow for interference or the intro-
duction of noise into these information channels,

The preceding paragraphs are a rough indication of the con-
tent of the theory to be gradually built up in Part III, the main

part of the present investigation.
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ITIT, MAIN THEORY; LINEAR SYSTEMS WITH TIME-VARYING COEFFICIENTS

3.1 System Description and Objective

The engineering system to be treated here is one governed by a
set, of linear ordinary differential equations with time-varying coef-
ficients. The longitudinal guidance of a long-range rocket described
by H. S. Tsienl is an example of the automatic control of such an
engineering system., The problem undertaken here will be more vivid
and the motivation for many of the assumptions will be clearer if
the reader is familiar with this example,

According to the above, the equations expressing the intrinsic

physical laws governing the system may be written in the form

aE Y n+l
F-D Bk = D vy I, e (3.1)
k=1 i=1

where the Ej(t) are the P dependent variables describing the state or
configuration of the engineering system, the first n yi(t) are the
spurious unwanted inputs, and the coefficients Bjk(t) and rji(t) are
known functions of time. The input ynil(t) is of a different nature
than the other y's; it is an extra input, created by and under the

control of the cyberneticist. The object is to cancel the effect on

the system output of these spurious inputs, yi(t), i=1, «ee, n, by

appropriate generation of the cancelling input, Yoe (El. In the case

of the guided rocket the spuricus inputs are atmospheric disturbances
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}(in part), their effect on‘the system output is a range error, and the
cancelliﬁg input is é correction of the programmed elevator setting,
Notice that the Ej(t) as defined by Eq. (3.1) describe the effect
on the system of the unwanted disturbances only. By virtue of the
linearity of the governing equations this effect of the disturbances
is separated from the effect of the useful inputs which are introduced
to apcompiish the purpose of the engineering system. In the event that
the governing equations are nonlinear but the effect of the disturbances
is small, a set of equations like Eq. (3.1) approximately describing
this effect may be obtained by linearization,

Eq. (3.1) is first order, but higher order equations may be re-
2

duced to this form., For instance d EJ may be replaced by iﬁg by
dt? dt
adding the equation
dk.
R =
& "= " °

to the set.

Suppose that the system is in operation for the itime interval tl
to tz, but that the state of the system at the end of this interval only
is of interest. The state of the system is specified by the Ej's evalu-
ated at t = t,; define the system output (more specifically, the error)

due to the disturbances as

P
e = ; a5 E(ty) (3.2)
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The range error of a guided rocket may be written in this manner. The
nature of the output specifies the £l 3 's,

‘ In order to find the expression for the error & in terms of the
5

disturbances and cancelling input, we introduce the adjoint functions

N j(t) , which satisfy the set of homogeneous equations,

R

d\,

#*Z Py d = 0 L e, P (3.3)
k=1

Multiplying Eq. (3.1) by xj and Eq. (3.3) by & j» then adding and

summing over J, we obtain

P D I n+l ¢

d

x Z MES Y Z Z BreMEy = BacsBd) = > > Y5071
st 3=l k=1 isl j=1

The two parts of the double sum on the left cancel each other so that

v n+l P

d

ey Z )'jEj = Z a,y; where ai(t) = Z ¥ ji)‘ 3
j=1 i=l j=1

Integrating the above expression over the time interval tl to t2 we

obtain

t2 n+l

P - P
Z xj(tz) Ej(_tz) = Z xj(tl) Ej(tl) +5 Z a;y; dt (3.h)
j=1 j=1 tl i=1
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Notice that Eq, (3.3) does not specify the A's completely. From
the infinity of sets of solutions which satisfy Eq. (3.3) choose the set
‘such that xj(ta) = .ﬂ.j for j*l, «.., P . The left side of Eq. (3.h)
then is the error e.

If the system is put into operation in an undisturbed condition
Ej(tl) = 0 for all j, and Eq. (3.}4) becomes the desired expression

relating the error to the disturbances and the cancelling input:

t
2 n
e = S ( z ai(t) yi(t) + b(t) x(t)) dt (3.5)
ty i=1

In Eq. (3.5) the cancelling input yn#l(t) has been given the new symbol
x(t), and an+l(t) has been replaced by b(t).

Eq. (3.5) might have been the starting point of our discussion by
simply writing the error for a linear system as a superposition of

responses to impulsive disturbances. That is,

t
2 n
a(tg) = a(tl) + S ( Z ai(t,tz) yi(t) + b(t,tz) x(t)) dt
t i=]

where the ai(t,tz) and b(t,tz) are respectively the responses to unit
impulses for the corresponding disturbances and cancelling input. For
systems with time-varying coefficients these responses depend on two
parameters: +t, the time when the impulse is applied, and tz-t, the
time elapsed since application of the impulse. (For systems with con-

stant coefficients these responses depend on only one parameter, t2-t.)
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>If the system is put into operation in an undisturbed condition, then
s(tl) = 0, and if t2 is a fixed parameter so that dependence on t,
‘may be suppressed, then this error expression is the same as Eq. (3.5).
The disturbances yi(t), i=1, ..., n, are unknown functions of
time. As information available for use in the generation of a cancel~

ling input suppose m measurements, pi(t), are continuously made, where

n
() = e () x(1) + » e () 7)) i, eym (3.6)
=1

in which the c¢'s are known and may be functions of time., The linear
combination of the disturbances and also the cancelling input is sug-
gested by the guided rocket problem and is more general than separate
measurements of some of the disturbances (i.e., the special case cij =1
for i =3, = O fori# j). For instance W might be the difference
between an acceleration of an actual rocket and the standard rocket at
some time instant in the flight. The dependence of this acceleration
deviation on the atmospheric and other deviations (the yi) and the
elevator correction (x) is of the form of Eq. (3.6) - after lineari-

zation, if necessary.

3.2 Determinate Case; Equal Number of Measurements and Disturbances (m=n)

In this case Eq. (3.6) may be solved for the y; in terms of the p,
with x as a parameter and substituted into Eq. (3.5). The integrand after
this substitution is a function only of the measurements ui(t) and the

cancelling input x(t). In order to obtain a vanishing error the integrand
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mast be made to vanish at every time instant, since the measurements
are not known in advance. This specifies the cancelling input x(t)
as a function of the measurements ui(t) to ensure a vanishing system
error. It is presumed of course that Eq. (3.6) and the integrand of

Eq. (3.5) are linearly independent.

3.3 Indeterminate Case; Fewer Measurements Than Disturbances (m¢n)

-If there are fewer measurements than disturbances the latter are
undetermined by Eq. (3.6). The problem now is to generate a purpose-~
ful input x(t) from the insufficient number of measurements. It is
this problem which concerns the remainder of Part III; its consider-
ation is demanded by that practical situation where there are many
disturbances in the system, more than may be feasibly measured.

It is possible to generate a purposeful imput x(t) from the
indeterminate measurement information provided something about the
statistics of the disturbances is known or may be estimated. Three
criteria for the generation of the cancelling input from the dis-
turbance measurements will be presented; the first criterion is de-
scribed in this section, and the second and third in Secs. 3.6 and
3.8.

Suppose the joint probability density of the disturbances,
Po(yi’ cees Tp3 t), is known for every time instant in the interval
t, to t,. Then Po(yi’ . A t)dyi...dyn is the fraction of an
ensemble of systems for which the disturbances simultaneously lie in
the intervals oy to ¥ + dyi, cees Vp to Tn + dyn at time t. The

fact that Po depends upon time indicates the varying nature of the
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‘statistics of the disturbancés; we are not restricting the development
to time-stationary random variables. Consider the y; to be the axes
‘of an n-dimensional space in which we know Po at every time instant
from tl to t2. At some time instant during the operation of a single
control system the m measurements by at that time instant together
with x as a parameter define a hypersurface in the ¥ space through
Eq. (3.6). We thus know that this single engineering system is a
membér of a limited ensenble whose members lie on this hypersurface.

The first criterion for the generation of the cancelling input x is

that the average error expression integrand for this limited ensemble

must vanish. It should be noted that this limited ensemble at some
time instant is defined on the basis of the measurements only at the
game time instant; past measurement information is discarded.

We now define some notation and symbols to be used presently.

Let f designate the joint probability density’6 of the random
variables appearing in parentheses behind it, Thus f(xl, veey xn)
is the joint probability density of the random variables Xys sees Xpo
It is an abbreviation and an exception to the usual functional no-
tation,

Let £(x}, «ooy x| Xp41s oo xn) designate the conditional joint
probability densityé of the m random variables Xy eees X given para-

metric values of the remaining n-m random variables Xn41s *oes Xpo

- a single bar over a function of random variables
indicates the a priori ensemble average of this function of random

variables. It is obtained by multiplying the function of random
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variables by the a priori joint probability density of these random
variables and integrating o#er all possible vslues of each of the

llatter.

- a double bar over a function of random variables

at some time instant indicates the a posteriori ensemble average of
this function of random variables, given a set of measurements
(Eq. (3.6)) at that time instant. This average is obtained by multi-
plying the function of the random variables by the conditional joint
probability density of the random variables, given the measurements,
and integrating over all possible values of the random variables but
not the measurements. Such an average at some time instant then is
a function of the measurements at the same time instant. This average
is defined and used only when the random variables over which the
average is carried are all evaluated at the same time instant.

Using the error expression (Eq. (3.5)) and the notation just
defined our criterion for the generation of the cancelling input'be-

comes,

n

+ = Q
Z 8;y; * bx

i=1

Since the cancelling input is not a random variable but a parameter
which is generated from measurements which are the same by definition
for all members of the ensemble included in the double bar average,

the double bar need not be extended over x. Thus the criterion for the
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generation of the cancelling input is

n

EE: ay; * x = O (3.7)
i=1

Even if the a priori averages, §;, of each of the disturbances is zero
the a posteriori averages, ;z, - the averages, given the measurements -
will not in general be zero. The cancelling input thus cancels this a
posteriori bias. Such a cancelling input is justified at the moment
only on the basis of its intuitive appeal. Ultimate acceptance or
rejection of a cancelling input generated according to this criterion

for a particular problem must be based on a comparison of the cancel-

lation effectiveness for each of the three criteria to be presented.
Tt will be convenient to express the average in Eq. (3.7) in a

new set of random variables, Ny related to the original random vari-

ables, Vis according to

ny o= ZE: ¢35 73 i=l, ceay n (3.8)

where 53 is the same as in Eq. (3.6) for i =1, ..., m; for
i=m+1, ..., n the ¢'s may be chosen arbitrarily beyond the require-

ment that the set given by Eq. (3.8) must be linearly independent. Let

the inverse relations be
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The joint probability density P of the new random variables 156

Plngy wver 15 8) B B(3g, eees 75 8 OG0 o000 T
B(ﬂl, ss ey Tln)

(3.10)

after Eq. (3.9) has been substituted in the right side.

Changing variables in Eq. (3.7) gives

i=l j=1
n
and if EE: a, dij = “j this becomes
i=1l

n
Z agmy +bx = 0 (3.11)
J=1
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Comparing Egs. (3.6) and (3.8) we see that the m measurements
together with the cancelling i@ut x regarded as a parameter fix
ﬂl, sees Moo The remaining random variables over which the average
in Eq. (3.11) must be carried are Ty41> *++» Ny Therefore Ea. (3.11)

may be written

© ©
S...j’ Z @,n, f('qmﬂ, evey nn| Ths eees nm) dnmﬂ...dqn +bx =0
-0 -0 i=l

where Ny THy TCy X for i =1, ..., m. But we have the identityé,

f(nl, cees M)

f(nmﬂ, cens nnl Tys eees nm) = 3 po

S...y f('ql, cossy nn)drym_l...dnn
- -

where in this case,
f(nl, csoy nn) = P('ﬂl, *s ey nn; t)
Combining the last three equations gives the expression for the generation

of the cancelling input x(t) from the m measurements ui(t) at the same

time instant:
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«

(o 0] (s.9]

| S cee 5 a4ny P(nl, cees M3 t) &nm+1...dnn
oo - 3L ‘

+bx = 0
@ @
S LA R J S P(nl, LA RS ] ‘r‘n; t) d'r‘ln+1...d']n
. -0 -0
where n, =, = €5 X for i=1, ..., m (3.12)

Eq. (3.12) is mechanized by a computer, and therefore is called
the computer equation., When the function P is specified for a par-
ticular problem, Eq. (3.12) is solved by any suitable means for x as
a function of the m measurements, ui, and time + as a parameter, The
computer then is constructed so that at any time instant it carries
out the logical processes - the manipulation of the By - dictated by
this equation; i.e., it continuously solves for x(t), using the m
“measurements ui(t) continuously supplied to it. The computer ideally
generates the cancelling input instantaneously from the measurements.
Practically this means that the computing time or computer lag must
be short compared to a time characteristic of the random disturbances.

The flow of information for the entire system is shown in the
block diagram in Fig., 13. The mixing of the n random disturbances
and cancelling input according to Eq. (3.6) is inherent. (See the
explanatioh following Eq. (3.6).) The i th transducer semses p,,
the i th quantity to be measured, and converts it to a form - an

electrical voltage, perhaps - acceptable to the computer. The
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transducers and the information channels between the transducers and
the computer are assumed perfect and undisturbed in this section; the
éomputer receives the measurements without time lag or error of any

kind.

3.4 Noisy Measurements

In Sec. 3.3 it was assumed that the computer receives perfect
measurement information. Let By the i th combination of the dis-
turbances and cancelling input, be designated the i th signal where
the term is used generally here to include disturbances and a cancel-
ling input of any physical form, electrical and otherwise. In Sec. 3.3
then, the computer receives the m signals without error of any kind.

Suppose now that before the i th signal reaches the computer some
noise, ns, is added to it. The computer now receives the signal-plus-
noise, “i" where

p,i‘ = ¢ n, - (3.13)

The m pi'(t) are now the measurements. The noise may have its origin
in the transducer which senses the signal as a physical variable and
converts it to a form acceptable by the computer, or it may be intro-
duced in the transmission of the signal from the transducer to the

computer, or it may be the combination of both., Whatever its origin,
let n, be the difference between the i th input to the computer, ui',

and the i th signal, by See Fig. 1Lh. Let
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N(p-l', cees '3 My, eeey B t)

be the known conditional joint probability density of the signals-
' plus-noise, given the signals. The noises considered here are random
vafiables of a nature similar to the y's or n's; they are not time
stationary random variables; hence the dependence of N on t. Notice
that the noisesg are not necessarily independent of each other or the
signals; N depends on the 2m parameters, ul', eony um', Hys eoes Boo
and also time. If the noises are independent of the signals then N
will depend on the m parameters, (pl'-ul), ceey (um'-um), and time.
If in addition they are independent of each other then N may be
written as a product of m functions, the i th of which depends on
- .

(y'-ny) and time.

The criterion for generating the cancelling input x(t) from

the measurements received by the computer is

n
Z oy +bx = 0 (3.11)
j=1

Because of the unknown noise components the m measurements, ui', do
not fix Ths eees T, 38 in the last section. Recalling the definition

of the double bar average we write Eq. (3.11) as

[ o] oon
S eee jjzl amny £y ooy 'qn| Hy's e w') dnjeeedn 4 bx = 0

(3.1k)
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To o6btain f, the conditional joint probability density of

Ts eees M5 given ', ooy p !, in Eq. (3.1h) write the identitiesé,

f('ﬂls sees My I “'l" seey l-’-m') =

f('ﬂl, ey T]n, P—_L', seey lJ-m')

= - (3.15)
5 vee Sf(nl, cees My gt eeey p.m') dnyeeedn
- -

and
T(Mys eees Moy By's eees w') = f(nl, cees nn)f(ul', cees p,m'|n1, coes M)

(3.16)

By definition,

P("’)l, eees M3 t) = f(nl, coes nn) (3.17)

N(py's ees Hy's Bys enes By B) = £y 'y eeey um'l Mys eees W)
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But from'Egs. (3.6) and (3.8),

. * M, *Cg
l”"1 nl :LOx

" Then
N(u.l', esey llm'; nl+clox’ XN XY Tlfﬂ+cmox’t) = f(l“"l'.’ A | “’m' nl,’ seey T]m)

Specification of parametric values for M2 ***2 Np does not «ffect the

conditional joint probability density of ul', seey um' so that
N(“j_" ..., um‘; 'ﬂl"'clox, LR RN T"n{"cmox,t’) = f(pl', LA ] “-m, I .ql, *e sy nn)

(3,18)

Combining Egs. (3.15) through (3.18) gives

O IO I

P(nys weesm 38) Ny weey b 'smtey X, veny N, *C, Xs t)
© @

5... 5P(n1, ceey 'r1n;t) N(p.l', coesly '5My ey X, ...,'qm'l'cmox,t)dnl...dnn

= Q¢ - Q0

(3.19)
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Eq. (3.1k) into which Eq. (3.19) has been substituted is the expression
for the generation of the canceiling input x(t) at every time instant
Ifrom the m signals-plus-noise,-ui'(t) at the same time instant; this is
the computer equation.

Fig. 1l shows the flow of information in a block diagram of the
system. The mixing of the n random disturbances, yi(t), and the cancel-
ling input, x(t), according to Eq. (3.6) to yield the m signals, ui(t),
is inherent in the system. The transducers (not shown in Fig. 1) con-
vert the signals to a form acceptable to the computer to which the trans-
ducer outputs are then transmitted. In this operation random errors or
noises are added, the sum of these in any one channel being the noise,
ni(t). Egs. (3.14) and (3.19) together with P and N for the problem at
hand, when solved for x as a function of the ui' and t as a parameter,
specify the construction of the computer so that it continuously generates
the cancelling input x(t) from the m noisy measurements, ui'(t), continu-
ously supplied to it.

If there is no noise then N is a product of Dirac delta-functions,
N(iy 'y wens 005 by eees By B) = 80t = ) enabli ! = 1)

Substitution of this into Egs. (3.1L) and (3.19) yields Eq. (3.12), the

result of the last section.
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3,5 Example; Calculation of the Cancelling Input

In order to show the nature of the computer equation (Eq. (3.1k)
into which Eq. (3.19) has been substituted) for one common case, this
equation will be obtained for an example in which the disturbances
and noise have the often~encountered Gaussian distributions. The re-
sult of this calculation will then suggest the next criterion for the
generation of a cancelling input from the measurement information.

Let z(t) be the output of a control system governed by the
equation,

2

(7112 * yl(t)) i‘% ¥ ((Tl vt y2(t)) @ ( i YB(t)) z = x(t)

subject to the initial conditions,

2(t) =2, g-g

t=0 t=0

N e

The T's are constants; yl(t), yé(t), and ys(t) are small random dis-
turbances such that yi(t)<K'r1T2, yz(t)<K (Tl + T2), and yé(t)<K:L;
x(t) is the cancelling input introduced to cancel the effect of the
disturbances on the output and is of the same small order of magnitude,
Let z(t) = zo(t) + g(t) where &(t) & zo(t) and is the effect of

the disturbances. Then zo(t) satisfies the equation,
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with the initial conditions,

dz

Zo(t) =2, dat

t=0 t=0

and £(t) satisfies the linearized perturbation equation,

2

T, T 932+(¢ sa) s =-dz° (t)-d—zﬁ (£) = z_y,(£) + x(¢)
1% .7 17 % & 5 1 at Y2 '3 x

dt dt
with the initial conditions,

de
e(t) =0, F =0
+=0 =0

If h(t) is the response to a unit impulse for the above équation

then
t
2 dzzo dz,
8(1:2) = 5 h('bz— t) (- ;—2_ L@ T " I3 ¥ dt
o
or
i
g = 5 (alyl + a,y, * 875 + bx) dt (3.20)
)

Thus the expression for the error at some time instant t2 is expressed

in the general form treated in the previous theory. For this example,
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and

.2 + 1,7, 2
Ty =T : 2"

Then in Eq. (3.20),

a, () = - (g +h,e™ra e ™) 1=123

where v =

t . t2
T %+ T, T 2 -'?-2"

R e

. 2

'rlZ+'cl'x:2Z T.

A_'u'ﬂ'r?('t:--ﬂ:)ze '!.'2('1.'-fr:)2e
1 2 1 2 2 1

t

. 2

A,l o 'I:ZZ + 1:11:22 . 'rl
2 2 2
T, (72-4:1)

by

Al o 1:12 + 1:11:22 . T,
13 2 N2
_ . “(t,~t,)
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A3

.
1:12 + 'tl'czz Ty
2
Ty ('rz-'cl)
L
'1:22 + 'rl'r2Z . 1‘1
2
Ty (Tpry)
.
'rlz + '1:11:22 . 1:2
2
T (’52-':1)
. L5
1:12 + 71122 . 1:1 .
2
(vy=ry
.
'!:22 + 'rl'rzZ 1:1
-7 °
(12-11)
.
le *-11722 12

2
('1:2-1:1

38

i
TLt Tl T
"—"—""——'—"—2 e
Ty (T9=7)
.5
1:22 + 'cl'tzz . 12
2
(72-71)

(3.21 Cont'd)
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and
v v
T T
1 2
b(t) Bje  +B,e.
where
b b
e Tl e 12
B - and B, =
B1 1:2-1:1 2 1:2—ftl

The quantities tabulated below appear in later expressions.

"2 A2 oyt
2 2 12 2
S— a; (t) at (Aiz + 2A12Ai3) ty * oy ( -1)
(o]
A . 2vt 2A._A vt
..._1'2_.(3 21y 1L 12 (002 L)
2y Y
2A. A, - vt
+ il 13 (e 2 - 1)
¥
T
1
S ai(t) b(t) dt - 'cl(AilBl + Aiz BZ)(e -1)
.
%
1 2
As0B (Y+Ef)t2 Ty
== (e - 1) + wy(a,3B) + 4;B,)(e © - 1)
e
1
1
A58, ( Tz)tz
rox e -1
-‘Y"";—

2

(3.21 Cont'd)

(3.22)
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N %
by o 22 2 2.2
2 Y5 T T5B, Ty
S b“(t) at = 3 (e -1) + 5 (e -1)
(o]
1.1
BB GrE) b
22 1 2 -1)
1.1
Ty To

(3.22 Cont'd)

Suppose that each of the three yi's are measured separately;
thenm =n = 3, andcijslfori=j, =0 for i # j in Eq. (3.6).
No change of variable is necessary; Ny TV Sy and a, = a, in
Egs. (3.8) and (3.11).

Let the disturbances be independent, time-stationary, and
1,6

Gaussian ?" with zero means so that

2
3 7
2
P(m, ny, my5 ) = P (3, ¥ps ¥33 t) = T o 291
0. \Von
i=l i

(3.23)

and supposé that the measurements each contain noise (Sec. 3.l4), these
noises also being independent, time-stationary, and Gaussian with zero

means, Then



(P-i"t-&i)z

3 20.'2
N(iy "oty ' sty ' 51y 5Hp5Hg, ) = ]_r *

._..];-__— e
1
LA B

(3.2h)

In Egs. (3.23) and (3.24) o; is the mean deviation of the i th dis-
turbance, Tss and ai' is the mean deviation of the i th noise,
n, = ui' - M3 1_].designates the continued product.

Upon substituting Egs. (3.23) and (3.2}4) into Eqs. (3.1kL) and

(3.19) the cancelling input is obtained as

3 2
o, a,(t)
1 1
) = <D =7z W (3.25)
i=Ll i i

where ai(t) and b(t) are as given in Eq. (3.21), If there is no noise
then each of the oi' is zero, and Eq. (3.25) causes the integrand to

vanish in Eq., (3.20) to give no sysgem error. If for some measurement
0.

there is extreme noise so that 1 5 = 0 then that measurement is
g !
i aiz
unreliable and is discarded. The factor 53 thus appears to
g, +a.t
i i

assgsess the reliability of the corresponding.measurement.
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Eq. (3.25) is the computer equation for this example, and from
it the system block diagram, Fig. 15, is constructed. The computer
multiplies the i th measurement, ui'(t), by the time-varying factor,

2
o, ai(t)

2, 2
o, "+o, b(%)

then adds the results for each of the three channels to generate the
cancelling input, x(t). These time-varying factors are information
built into the computer or stored in the computer memory before
operation of the system,

The nature of the functional dependence of the cancelling input
x on the measurements pi' depends on the probability densities P and N.
These latter functions represent fairly detailed information about the
gstatistics of the disturbances and noises, and in any practical situation
they must be found by statistical experiment which may be difficult and
tedious. In the example just described the cancelling input is a linear
combination of the measurements, a result of the Gaussian probability
densities. This result suggests an alternative. Let the cancelling
input be a linear combination of the measurements for every problem,
without regard for the probability densities of the disturbances and
noises., The weighting of each measurement may then be adjusted to give
the least mean square system error. This idea is exploited in the next
few sections; in Sec. 3.6 the weighting of each measurement is constant

during the time interval of system operation, and in Sec. 3.8 it varies.
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3.6 Carcelling Input, Second Criterion

Reviewing briefly, we have the expression for the control system

error as

%
2 n .
g = S (Z ay, * bx) dt (3.5)

tl i=1

where the yi(t) are the n random disturbances which degrade the system
performance, x(t) is the cancelling input which is to be generated in
some manner to eliminate or reduce the effect of the y,, and ai(t) and
b(t) are known functions of time specified by the nature of the con-
trolled engineering system. As information available for the generation

of x we have m quantities, uk(t),

n
b © Z i T3 k=1, cecpm - (.26
=

which are continuously measured and transmitted to the computer. (We
suppose now that the quantities to be measured, the by aTe linear
combinations of the disturbances but not the cancelling input, x; i.e.,
we have put ¢, =0 in Eq. (3.6), to simplify the development which
follows.) But in the process of measuring each e and transmitting it

to the computer some noise, ny s is added to it. The computer thus
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receives the m gquantities, uk', where

. n
p_kl = pk-t-nk = chi yi+nk k"l, eosy M (3-27)
i=1

As suggested by the example in the last section let the computer
generate the cancelling input as a linear combination of the measurements,

the uk'; i.e., let

m
x(t) = > g ' (1) (3.28)
k=1

where the g's are those which result in the least mean square system
error. In this section the g's are constant throughout the time

interval of system operation; the purpose of this section then is to

find those constant g's which result in the least mean square system

error, With the result of this calculation Eq. (3.28) is the computer
equation for generating the cancelling input from the measurement
information according to the second criterion.

For convenience in the calculation to follow we rewrite Eq. (3.27)

as

mm
TR Z Cyy Ty k=1, eee, (3.29)
i=1

where n, = Ypey ~and Cpy = O for all id n except 1 = n + k.

For i =n + k, Cx(n + k) ~ 1.
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We ‘also rewrite Eq. (3.5) as

t2 n+m
(03 ey roa G.30
tl i=l

where a, = 0 for i) n. Combining Egs. (3.28), (3.29), and (3.30)

gives

i=1 k=1

2 ném
.S Z(a +ngkck)y dat
%

The system error squared is

n+m

1;2 1-'2 n+m
2 ‘5 5 2 2 & ”’Z Beies) (2 "bZ Bgeqy) Ty o e
oY

(
1 i=1 j=1 k=1

where the asterisk to the upper right of a quantity means that it is
evaluated at time t', and its absence means that the quantity is

evaluated at time t. The mean square error for the ensemble then is

% % omn
2.,5 5 ZZ(a»,ngkki)(awzglN)R (t,8') dt dt!
B i<l 3 k=1

(3.31)
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where ¥, v, = ¥;(8) 7,(¢1) = Ry5(4,81)

The R's are correlation functions, and are the statistical information
necessary for. generating the cancelling input according to the second
criterion. The only unknowns in Eq. (3.31) are the g's which are
constants; the double integration over t and t' may be regarded as
having been carried out, so that Eq. (3.31) is an algebraic function

of the g's. Those g's which minimize 62 are specified simply by

putting
7z
25 3 = 0 foreachp=1, ses, M
g
Thus
t2 2 nm n+m
55 ZZ(“”’Z%« ey (begy) Ry (14)
1 v I

m
¥*
+ (bcpi)(aj-l'b:L-l glcnj) Rij(t,t')) dt dt'

pal’ ooc’m

If in the second term of the double summation we interchange the

dunmy variables of integration, t and t', and also interchange

the summation indices, i and j, we obtain
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t2 t2 n+m n+m %
o 15 ST S e (el o
' %,

tl 1 1-1 j=1
P = 19 scey I
But
= = = 1
Ryy(6,81) = 73(8) 7,(8) = yy(01) 3y (k) = Ryj(a0,e)
So
m n+m n+m t2 t2
Z gy S S b(t)b(t')cki(t)cpj(t’)Rij(t,t') dt dt!
k=1 i=l j=1 t, t

'—l

)

}nzn

i=1

to bo
5 S ai(t)b(t')cpj(t‘)Rij(t,t')dt at!

oY

Cle
[

P=1l, ceey, m (3.32)

The summation over i on the right is extended only to n since a; = 0

for 1 D n. Eg. (3.32) is a set of m linear equations for the m g's

. e e 2
which minimize ¢ .
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Those constant g's resulting from the solution of Eq. (3.32),
when used with Eq. (3.28), specify'the.cancelling input as a function
.of the measurements at every time instant in the interval tl to t2
according to the second criterion.

Fig. 16 shows the ﬁlock diagram for the system. Since the g's
are constants the computer performs the very simple operation of
weighting and adding the m measurements, the weighting of each
remaining the same throughout the interval of system operation.- The
statistical information necessary for the calculation of this weight-
ing - the g's - is the correlation functions. 8ince these functions
are averages they appear to be less specific (and somewhat different)
information than the probability densities P and N, and may possibly

be more readily cbtained.

3,7 Example; Calculation of the Cancelling Input Using the Second

Criterion

We wish to particularize Eq. (3.32) for the g's for the example
given in Sec. 3.5. For this example, m = 3, n = 3, and the a's and b
are given in Eq. (3.21). In Eq. (3.29) V), =M & = O and Yg = Dy
so that

€17 = Cy) T Cpp = Cpg =33 " C3¢ = 1

and all other c's are zero. Because each of the disturbances and
noises is independent only the autocorrelation functions of the
disturbances, Rll; R, and Rqq, and of the noises, th, R55’ and

R66’ are different from zero. Suppose for this example these
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autocorrelation functions are

_2lt-t]
| 2 T
R (tt") = 3 (6) (7)) = o e
_ 2=t
' (r 2 T2
Rop(tst1) = 7,(t) 7,(¢7) = 0, e
_2le-t'l
2 T3

RBB(t,t') = y3(t) yB(t') = o e

_ 2le-tl
T 1
Ry () = 3 (8) 3,8 = n®) m) = qrfe 7
_ 2ht-t
T !
Reg(6,81) = 75(8) 7(t) = my(8) my(s) = ofe
_ 2le=tl
2 T3

] f 1 = 1
Reo(tyt ) yé(t) y(t') n3(t) n3(t ) a'C e
(3.33)
where the ad's are defined by Eqs. (3.23) and (3.2L), and the T's
are indicative of the memories of the disturbances and the T'’s of

the noises,
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For the example Eq. (3.32) gives

Yy 5

J{ J; ap(t) b(t') Rpp(t,t') dt dt!
0O 0

€p

N
J; J{ b(t) v(t') ( Rpp(t,t') + R(p+3)(p+3)(t,t') ) dt dt!
o O

p =1,2,3 (3.34)

Using the a's, b, and R's given by Egs. (3.21) and (3.33) in the above
expression gives the g's. But suppose that the memory times of the
disturbances and noises are short compared to the time required for
appreciable variation of the a's, b, and the time interval of system
operation; i.e., that the T's and T'’s in Eq. (3.33) are small compared
to T, T,, and %, in Eg. (3.21). If only first order terms are retained
the resulting g's are those obtained by replacing the autocorrelation
functions in Egs. (3.33) and (3.3L) by Dirac S-functions. We now make

this approximation; let

Ry, (4,8") a,°r, 6(t-t")

2
] = -t 1
R22(t,t ) 02 T2 &(t=t1)

1 = 2 -—
R33(t,t ) oy T3 5(t-t')

th(t,t‘) = °1'2T1' 6(t-t')

2

ng(t,t') = 0,'"T," 6(t-t")

Réé(t,t‘) = 03'2T3' 5(t-t") (3.35)
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(The coefficients'of thé §-functions are-adjusted'so that the area
under the curve of an actual'auﬁocorrelation function in Eq. (3.33),
plotted versus t for parametriec t', say, 1is the same as the area
under the corresponding approximation to this autocorrelation function
in Eq. (3.35).)

Substituting Eq. (3.35) into (3.3kL) gives

)

S a (6)p(t)at

PP 2 p=1,2,3 (3.36)

and putting this result into Eq, (3.28) yields the cancelling input

as

t

2
a, (t)b(t)dt
3 ai2Ti ‘E' ”
x(t) = -Z S by '(8) (3237
= %% 7% 4 ”
S v2(t) dt
(8]

where the integrals are as tabulated in Eaq. (3.22). Fig. 17 shows the

block diagram for the system.
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3.8 Cancelling Input, Third Criterion

In this section we again propose that the computer generate the
cancelling input as a linear combination of the measurements, where

this combination now varies with time. That is, let

m
x() = > hy(8) w (%) (3.38)
k=1 .
so that
. t2 t2 n+m n+m m
2 -5 Z (a, +bZ hyoys)(ay +bz FCADE X
tl tl i=l j=1 k=1
(3.39)

as in Sec. 3.6 except that the h's vary during the time interval t, to

t The purpose of this section is to find those variable h's which

o
- minimize 82. With these h's available, Eq. (3.38) is the computer
equation for continuously genefating the cancelling input from the
measurement information according to the third criterion.

Suppose that the h's which appear in Eq. (3.39) are those which
minimize ?. If to each hk(t) we add an arbitrary function akhi(t)

where ek is a parameter, then 32 must be minimum when 81 E oLee = am =0,
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Adding these arbitrary functions we obtain

t2 t’2 n+m n+m .m
SS ai+bz(hk+akhk')°ki)
tl t, 1=l j= k=1
%*
(a + bZ (h + ey hy 1) % 3 ) Rij(t,t.') dt at’
9=1

The condition for minimum 62 is expressed by putting

3.2
=0 P=1l, eoep
a& E. = =g =0
p l LR m
Thus
t'2 t2 n+m n+m m
¥*
= 1 [
0 S S ((ai+ b Z h cki)(bhp cpj) Rij(t,t )
t’l ’r.l i=1 j=1 k=1

m
3*
+_(bhp' cpi)(aj+ bzl h_!c_!j) Rij(t,t')) dt dt!

for each p =1, ..., i and arbitrary h'’s.
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Interchanging dummy variables of integration t and t' and also the
summation indices i and j in the first term of the double summation

and using the fact that Rji(t‘,t) = Rij(t,t') (see Sec. 3.6) gives

t2 n+m n&m m

3
5 hp cpi(aj+bz hy cjj) Rij(t,t ) dat dt
t) Q=1

P=1l, seey m

or
2 n+m Yo nem

0 aS bhp' Zcpl(j Z(a +bZhjz Y ) Rij(tt ) dt') dt
ty i=1 ty

p=1l, «oo, m (3.L40)

But hp'(t) is an arbitrary function of t so that in order to satisfy

Eq. (3.40) the rest of the integrand must be identically zero for any

t. Thus

ném 2 n+m

S e >j<a+bzh£c1> Ry (68 a0
i=l tl

p=1’ coc,m
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or
n¥m m '
Z (t)ZZj— (t)b(‘b)cnj(t)R (t,t') dt'
i=1 j=1 9==11-,

n+m

Z pl(‘o) Z 5 a4 (t') Ry (t. t') au! (3.41)

i=1 j=1 t

forp=1, «v., m and any t. The summation over j on the right is
extended only to n since ay = 0 for j ) n.

Eq. (3.11) is a set of m integral equations of the first kind
for the m h's, Little may be said about a general inversion of this
set; the obtaining of solutions in most cases must be by series
expansions or numerical computation. However, a case of practical
importance may be treated very simply. Suppose that the memory times
of the disturbances are short compared to the times required for ap-
preciable variation of the a's, b, c's, presumably the unknown h's,

2 1
when t and t' are nearly equal, and Eq. (3.41) may be written

and also the time interval t, - t;. Then R, j(t,t') is non-zero only
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| S ndm nm
Z pl(1;) ZZ hn(t) b(t) cﬂj(t) 5 Rij(t £1) at!
i=1 j=1 8=1

Z ¢ s () Za (t) j Ryy(,47) dt!

i=l

P"l, eesy I (30)-12)

Note that for any t not too close to the ends of the time interval

tl to tz,

t2 o0
5 Rij(t,t‘) at' = 5 Rij(t,t') at! (3.43)
by o

This is true under the assumption of short memory times for the dis-
turbances and noises. Then Rij is non-zero only for t'!' near t, hence

non-zero only inside the interval tl to tz as long as t is not too close

to tl or t2 - or more precisely as long as t - tl or t2 -t is not as
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small as the memory times of the disturbances and noises. Since
these memory times have been assumed to be small compared to the
interval t, to t,, Eq. (3.11) holds for most of the interval,

Modification of Eq. (3.h2) using (3.L43) yields

P

n+m n+m ©
b(t) Z hn(t) Z Z (t) cgj(t) 5 Rij(t,t') dt!
4=1 i=1 j=1 —o
nfm n
= - ZZ 1t ay (t) 5 B, (t t1) dt'
i=l j=1
p=1l, ceopm (3.hl)

for short memory times. The variation of

e o]

5 Rij(t t1) dte

=

with time t reflects the variation of the statistics of the disturbances

and noises. This variation is presumed to be no more rapid than the
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variation of the a's, b, and c's so that the h's resulting from the
solution of Eq. (3.hl)) vary slowly compared to the variation of

Rij(t,t'), as assumed earlier. It should be noted that

b

1 1
S Rij(t,t ) dt
Y

varies rapidly for t near tl or tz so that the h's calculated from

Bq. (3.43) also vary rapidly for t near 1, or t2. This rapid vari-
ation of the h's near the ends of the time interval tl to tz is in
contradiction to our original assumption about the h's; hence the
modification of Eq. (3.42). The effect of this modification on the
system mean square error is small since Eq. (3.L)y) modifies the h's
only over a small fraction of the time interval of system operation
tl to t2 (of the order of the ratio of the disturbance and noise
memory times to this t, = %y interval).

Eq. (3.L4}) constitutes a set of m linear algebraic equations
for the m h's which may be simply solved.

Those variable h's resulting from the solution of Eq. {3.l1) or
(3.44), when used with Eq. (3.38), specify the cancelling input as a
function of the measurements at every time instant in the interval
tl to t2
block diagram.

according to the third criterion. Fig. 18 shows the system
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3,9 Example; Calculation of the Cancelling Input Using the Third

Criterion

In this section we wish to apply the result of Sec. 3.8 to the
example given in Sec. 3.5. That is, we wish to calculate those vari-
able h's which when used in the computer equation, Eq. (3.38) s give
the least mean square error for this example. In Sec. 3.7 we sup-
pose that the memory times of the disturbances and noises for this
exaﬁple were short compared to the times required for appreciable
variation of the a's and b, and the time interval t, - %,; Eq. (3.44)
is therefore applicable. Using Eq. (3.4Y) for this example (see param-

eter listing in Sec. 3.7) gives

Q0

a(®) j ) abr
o Rpp(t,t ) dt
hp(t) - - = Q0

a
5(Rpp(t’t') ¥ R(1;>+3)(1:a+3)("”t')) de!

-

p=1,2,3

Substituting for the autocorrelation functions (Eq. (3.33) or (3.35))

in the above gives

2

- o T '
X a,(t)
¢ T+g VT !

P P P P b(t)

hp(t) = p=1,2,3
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and putting this result into Eq. (3.38) yields the computer equation,

3 2
0.°T a,(t)
x(8) = - D L1 L () (3.15)
g 2.4 g, 1°T, b(¢) T
i=l i i i i

The system block diagram is shown in Fig. 19.

3.10 Comparison of Criteria; Mean Square Error

In the previous sections of Part III three criteria have been
presented for the use of the disturbance measurements to generate a
cancelling input. The cyberneticist designing a disturbance~-cancel-
ling system must choose one of these (or find a criterion better than
each of the three presented here). On what basis should he make his

choice? It is proposed that that criterion which gives the least

mean square system error be used to generate the cancelling input.

While this is not an unusual basis for such a choice it should be
recognized that it may not always be appropriate. Frequent large
errors yield a large mean square error, and frequent small errors,

a small mean square error. Smallness of the mean square error there-
fore is a good basis for judging the performance of an engineering
system when frequent largé errors are objectionable while frequent
small errors are not. This is certainly the situation in many cases.

However when frequent small errors are not relatively unobjectionable,
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when errors of one sign are much more objectionable than the other,
_when an error of a magnitude less than some limit is completely
acceptable and greater than this limit completely unacceptable, then
smallness of ihe mean square error may not be an appropriate basis
for judgment of system performance. In this section, then, the mean
square system error is compared for each of the three criteria (and
for no cancelling input at all) under the assumption that this is an
appropriate basis for comparison,

The mean square error for no cancelling input is the same as
that for the second or third criterion in which the g's or h's in
the computer equation are put identically to zero. Since the g's
or h's calculated according to the second or third criterion are
those which give the least mean square error, any set of g's or h's
not all zero resulting from this calculation must give a mean square
system error less than that for no cancelling input at all., However
any attempt to show that the first criterion always yields a mean
square error no greater than that for no cancelling input is in vainj;
this will be shown presently.

From the formulation of the second and third criteria we know
immediately that the third always leads to a smaller mean square error
than the second (except in that improbable case where the h's calcu-
lated according to the third criterion are constants which must then
be the same as the g's calculated according to the second criterion),
But because the first criterion is based on the instantaneous joint
probability densities of the disturbances and noises (P and N in

Eg. (3.19)) and is quite different from the second and third which
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depend on correlation functions, any general comparison of the mean
‘square error using the first criterion.with that resulting from the
second or third appears rather difficult. However in any given prob-
lem in which the necessary statistical information is provided, the
mean square error may be calculated and compared for each of the three
criteria and the one yielding the least chosen. This comparison will
now be made for the example system treated in Sees. 3.5, 3.7, and 3.9.
The mean square error for no cancelling input at all is included in
this comparison to show the relative reduction of the mean square
error resulting from the use of each criterion and to verify for one
example some of the statements in the preceding paragraphs.

For no cancelling input at all x = O in Eq. (3.20) so that the

system error is

t

2 3
g = -g. :E: a.y; at
=1
o

i
Squaring,

v 1

e2=5"§

(o]

3

3
*.v. 7 at at
S5 e

i=l j=1

and averaging,
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. Bt
5

3 3
:E: :E: aiaj*ﬁij(t,t') dt dtt

i=1 j=1

and using the fact that the y; are independent random variables so

that only the autocorrelation functions are different from zero gives

)

3
:E: a;a; R, (b,81) at dt!

11l

O &

i=]
o

Substituting for the R's from Eq. (3.35) yields the mean square

error,

3 2
2 = :E: cizTi j' aiz(t) dt (3.L46)
i=1 .

for no cancelling input.
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In order to calculate the mean square error for the first
criterion Eq. (3.1L) and (3.19) are solved for x in terms of the
pi', using P and N for the problem at hand; this is the computer

equation. For our example,

: °12 &5
= - PR - A— —_— '
i=1 i i

Then use of Egs. (3.6) and (3.13) with the computer equation yields
x as a function of the y's and n's, the disturbances and noises.

Thus

0,2 a
1

3

i

x = - ——s = (y. * n,

_Za_zm_,e B 73 ¥ ny)
i=1 i i

Substitution of this in the error expression, Eq. (3.5) or Eq. (3.20)

for this example, gives

t
2 3 03,2 012
e = :E:(au y. - a n ) dt
‘S’ ig 2, a.'2 i ig 2, o 2 1
i=l i i
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Squaring and averaging yields

3
ZE: ( ) -S'Jg' a,a, R (t t') dt dt!
+a'

i=

g,
: (0210. ) Sf 3585 R(143) (343)(Bs4) b b
i

where the notation of Eq. (3.33 ) has been used. Substituting for the

autocorrelation functions from Eq. (3.35) gives the mean square error,

cizwi'
_ 3 1+ ;"ﬁ%f' t, ,
2 i i 2 a. (%) at (3.47)
e = 53 o T :
N g,
i=1 (l + _E > ) o
ol
i

for the cancelling input generated according to the first eriterion.

We note that as long as




66

the i th'term in Eq. (3.47) is less than the corresponding term
in Eq. (3.46). If |

the opposite is true., Although this latter condition would not be

anticipated often in practice it demonstrates the possibility that

a cancelling input generated according to the first criterion can

give a greater mean square error than no cancelling input at all.

This defect of the first criterion seems attributable to its formu-
lation on the basis of the instantaneous relationship of the dis-
turbances and noises (i.e., P and N) without regard for the relation-
ship of these random variables from one instant to the next (i.e.,
the correlation functions for this example).

To compute the mean square error for this example according to
the second criterion, Egs. (3.35), (3.36), and the parameters given
for this example at the beginning of Sec. 3.7 are substituted into

Eq. (3.31). The result is

1> 2

% ( ai(t)b(t)dt)
3 2 2T
=z 2 2 9ty o
g = Zoi Ti S a; (t)at - 5 5
: g.°T.+ g t°T,1 b
1 1 1

i=1 i
Le j; b2 (1) dt

o

(3.18)
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for the bancelling}input generated according to the second criterion.
Since the second term in the square bracket represents the subtraction
of a non-negative quantity from the first, this mean square error is
never more than that given by Eq. (3.46) for no cancelling input at all,
For the third criterion Egs. (3.35), (3.L5), and the parameters

given at the beginning of Sec. 3.7 are substituted into Eq. (3.39). The

result is
1
2 . E e c,2T,S a.2(t) dt (3.49)
1 1 1
i=1 % T3
1+ 5 o

o VT,
1 1

for the cancelling input generated according to the third criterion.

Because the factor

the mean square error above is never more than that given by Eq. (3.L6)

for no cancelling input at all,



68

T¢ compare the mean square error for the third criterion

(Eq. (3.49)) with the first (Eq. (3.L7)) we write

so that

=
+
N
po
no
+
P
Q
H
N
g
/A

[

+
—
3|

+*
rarf
[ S

o]
}-J
N
+*

——
.Q

n
~——

or
o 2Ti'
1+ 5

1 a "7,

i “i
012'1‘1 = aiz 2

Yt 1*;7)

i i i

Thus for this example the mean square error for the third criterion
is less than or equal to that for the first. This result is expected
gsince the computer equations for each are of the same form but with
parameters (i.e., the h's ) for the third adjusted to give the least

mean square error,
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In éomparing the mean square error for the third criterion to
‘that for the second (Eq. (3.48)) we use Schwarz's inequality for

continuous ai(t) and b(t):

ts 2 by o
(5 ai(t) b(t) d’o) § S ai2(t) dtS b2(4) dt
(o] (o] (o] )

This inequality and Egs. (3.48) and (3.19) show that for this example
the mean square error for the third criterion is less than or equal
to that for the second, as anticipated,

For this example the cancelling input generated according to the
third criterion thus yields the least mean square error and is the

gsystem that should be adopted. This system is shown in Fig, 19.

3,11 Remarks on Obtaining the Required Statistical Information

The design of the computer which generates the cancelling input
from the measurements is specified by the computer equation. This
equation depends on statistical data of the disturbances - joint proba-
bility densities for the first eriterion and correlation functions for
the second and third - which must be obtained by appropriate statis=-
tical experiment before the computer may be designed. It is not in-
tended to discuss here the design of experiments to yield these proba-

bility densities and correlation functions; this section will serve
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only to boint out certain aspects of the problem énd to refer to
‘pertinent literature,

Much of the literature treats time-stationary random processes
where observaﬁion of an‘ensemble of systems may be replaced by obser-
vation of a single system for a long period of time, Here we have
not festricted the development to time-stationary processes. For
instance the joint probability density of the atmospheric disturb-
ances in the flight of a long-range rocket certainly varies if the
vehicle leaves the atmosphere during part of its flight. DBut it still
is not necessary to fire a suitably large number of test vehicles for
ensemble measurements. At any fixed point on the known standard tra-
jectory the atmospheric disturbances are time-stationary; but they
vary from point to point, so that as the vehicle moves along its tra-
jectory it encounters non-stationary disturbances. If there is no
relation between the time of initiation of the flights and the dis=-
turbances then it is only necessary to obtain the joint probability
density of the atmospheric disturbances by appropriately long obser-
vations at fixed points along the standard trajectory. By changing
the parametric dependence of this joint probability density on the
location along the trajectory to the corresponding time that a stand-
ard vehicle is at this location, the desired time-varying joint proba-
bility density is obtained. For this example then, a stationary aspect
of the disturbances allows an ensemble observation tc be replaced by
a time observation, even though the desired statistical information is

apparently non-stationary. The same technique of substituting a time
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observation for an ensemble oEservation may be employed to obtain the
correlation functidns for the atmospheric disturbances in this example,

In many cases the noises in the information channels toc the com-
puter will be independent of the disturbances being measured. Then
the statistical data for the noises may be obtained from observations
of the outputs of these information channels (i.e., the computer in-
puts, ui'(t)) in the laboratory with no test input disturbances being
applied. In cases where the noises depend on the disturbance inputs
but the memory times of the noises are short compared to those of the
disturbances, then the noises really depend only on the instantaneous
levels of the disturbances rather than the statistical nature of their
variation. The statistical data for the noises may then be obtained
approximately from observations of the information channel cutputs
while applying steady disturbance test inputs. The most difficult
(and probably infrequently encountered) case where the noise and dis-
turbance memory times are of the same order of magnitude, the statis-
tical data for the noises must be obtained while disturbance fest in-
puts of the statistical nature to be encountered by the system are
applied.

The matter of arguing from the experimental data to the desired
gtatistical quantity is the problem of statistical inference; see Ref. 6
which lists further references extensively. For random processes as-
sociated with electrical equipment see Ref. 7, and with aeronautics,
Ref. 8. Unfortunately most of the literature treats time-stationary
random processés; for non-stationary processes the cyberneticist is
left with the definition of the desired statistical quantity and his

ingemiity.
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- IV, CONCLUDING REMARKS

L.l Summary; Further Research

The preceding development is motivated by the conviction that the
design of automatic control systems under the assumption that the sys~
tem properties are known or may be specified precisely is inadequate
when performance accuracy requirements are strict. It is pointed out
that these properties have random deviations that degrade the system
performance to an extent that becomes more serious as the required
performance accuracy becomes extreme. For these extremely accurate
control systems the continuous measurement of the deviations of the
properties of each individual system is a necessity; the theory pre-
sented treats the use of these measurements to cancel the effect of
the deviations on the system performance, But this theory is not yet
complete; in the following paragraphs some areas for further research
are designated.

When the third criterion is used to generate sa cancelling input
from a rumber of noisy measurements equal to the number of disturbances,
the computer then serves as a filter to reduce the effect of these noise
components added to the disturbance measurements. The theory of Sec. 3.8
restricts the computer equation (the input-output relation of the filter)
to a variable~coefficient linear relation of the inputs and output but not
time~derivatives of these. A more elegant computer eguation would in-
clude these time-derivatives, The result would be a multiple-input

filter for linear systems with time-varying coefficients, related to
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N, Wienér's optimum linear filterl’9 with constant coefficients for
~time-stationary inputs and noise, and to the extensionlo of Wiener's
work to time~varying filters for non-stationary inputs and noise.
This effort would be part of a very important search for more sophis-~
ticated use of the measurement information to generate a cancelling
input.

- Previous to Sec. 3.Lh the computer was assumed to receive perfect
measurement information. Then in Sec. 3.L the measurement information
was corrupted by the addition of noise by the transducers or in the
information channels between the transducers and the computer. The
investigation might be extended to include the effects of time-lags
in the transducers; i.e., the itransducer may have some tran§fer func-
tion other than a constant. In order for the transducer outputs to
be useful, such time-lags should, of course, be small compared to the
characteristic memory times of the disturbances being measured; it is
suggested that the effect of these time-lags be quantitatively investi-

gated.
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