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ABSTRACT 

With ever-increasing computing power, simulations of larger, more complex systems 

are becoming more and more feasible. The ability to model systems, especially those 

not easily studied in the laboratory, is desired. But with these strictly computational 

problem there comes a question of accuracy. In this paper, a well-studied polymer, 

polymethylmethacrylate (PMMA), will verify the computational results obtained for 

polymers which are less easily (if at all) studied experimentally. Assuming that a 

small sample accurately represents the system as a whole, energy calculations with 

the simulation engine Cerius2 will be used to determine a cold compression curve, 

followed by a series of molecular dynamics calculations to determine the Griineisen 

parameter. These calculations may be compared with the ample experimental ev­

idence available for PMMA, providing a calibration for those substances (such as 

Kel-F) which cannot be studied experimentally. Further basis for comparision can be 

obtained using various viscoelastic and thermodynamic properties. Additionally, the 

Griineisen parameter may be used to revese the traditional experimental approach to 

calculate the Hugoniot data, providing further basis for comparision and an opportu­

nity for improving the accuracy of the model. 
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CHAPTER 1 

INTRODUCTION 

In the last twenty years, computing power has grown to allow modeling of extremely 

complex systems, creating strides in pharmaceutical development and protein folding. 

These advances can also be applied to non-biological situations. Careful creation of a 

model combined with equally thoughtful choice of a force field can produce accurate 

simulations for these complex systems. 

This study attempts to evaluate one such material, the polymer polymethyl­

methacrylate (PMMA), through a specially optimized model space and the more 

standard exponential-6 force field. Data from these calculations are used to develop a 

cold compression curve. Using this as a starting place, additional molecular dynamics 

calculations provide data points to fit to the Mie-Griineisen Equation of State, which 

leads to a calculation of the Griineisen parameter, G (V, T). 

PMMA is also well-studied experimentally, providing a basis for the accuracy of 

computational studies. The computational value of G can be compared to values 

obtained in lab from experimental determination of the Hugoniot. Since this calcu­

lation is virtually unbiased by systematic laboratory error, a good comparision can 

be made by reversing this lab technique and calculating the Hugoniot equations from 

the Griineisen parameter. 

The design of numerical engineering models for high explosives involves the devel­

opment of approximated and exact solvers for the Euler equations governed by high 

explosive equations of state. This Mie-Griineisen Equate of State will contribute to 

this goal by providing a connection between the computational calculations and the 

experimental data. 

To calculate an Equation of State by any method requires not only algorithms but 

also an understanding of the thermodynamic background. Although the theoretical 

formulas are simple, the calculations are not. These calculations combine theory from 
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almost every aspect of physics. The force field is a purely classical entity, while the 

velocity auto correlation depends on both statistical and quantum mechanics. 



CHAPTER 2 

THERMODYNAMICS 

2.1 Mie-Griineisen Equation of State 

For this calculation, the data generated was fit to the Mie-Griinheisen Equation of 

State by assuming a temperature T = 0 K, varying the volume V (and thus the 

pressure P) of the system, and finding the minimum energy E for that case. 

P(V) = P0 + G(JT) [E(V) - E 0 ] 

P0 and E0 are determined by this equation, in addition to the Griineisen parameter 

G(V,O) for this specific case. This equation of state is intended for the reactants of a 

mixture. 

2.2 Cold Compression Curve 

The calculation began by detmining the cold compression curve, or the relationship 

betwen pressure, energy and volume at fixed temperature T= 0 K. This provides 

values E 0 and Va for later calculations. 

2.3 Griineisen Parameter 

The Griineisen parameter, G(V, T) is defined as: 

G(V,T) = ~~' 

which can be considered as: 
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G(V,T) 

2.4 The Hugoniot Equation 

The Hugoniot equations are used to describe the behavior of a material through 

which a shock wave has passed. These equations link the pressure P, internal energy 

E, and density pin front of a shock wave (uncompressed: P0 , E0 , p0 ) to values after 

the shock front has passed (compressed: P, E, p). The density is expressed as the 

specific volumes V = 1/ p and V0 = 1/ p0 for the compressed and uncompressed cases, 

respectively. In a laboratory experiment, initial pressure, energy, and density before 

the shock are known values, while the respective values after the shock are unknown 

quantities, as are the shock velocity U and particle velocity up behind the shock front. 

The Hugoniot equations are then written as: 

(P + P0 )(Va - V)/2 

E - E 0 can also be determined from the Mie-Griineisen equation: 

E - Eo = V(P - Po)/G 

Experimentalists frequently use Hugoniot curves to determine the Equation of 

State. In this case, the Equation of state eventually will be used to compute the 

Hugoniot curves. 



CHAPTER 3 

MODELING METHODS 

Any classical computational simulation of discrete bodies consists of two parts: the 

model and the force field. The model contains position, mass, charge, and other 

fundamental qualities of the atoms being modeled. The force field describes their 

motion due to one another's influence, or due to the influence of external conditions 

such as temperature and pressure. 

3.1 The Model 

The model in this case was built using an algorithm developed by Mario Blanco of 

the MSC which produces a randomly-distributed sample with the correct density. 

Initially, the only data given to the computer are the atomic charges, the sizes of the 

atoms and their masses. Then, polymer chains are assembled from these elements 

(H, C, 0 in the case of PMMA) under periodic boundary conditions. 

The building algorithm starts with one-half of the required density, runs a simple 

minimization to find the lowest energy configuration of the system, and performs a 

brief NVT (constant-volume, constant-temperature) molecular dynamics calcuation. 

These two steps are repeated until the experimental density is reached. The NVT 

calculation intoduces a random element into the sample, so that no two samples 

generated by this algorithm will be the same. 

Since micromodeling techniques are being used to describe macroscopic quantities 

of material, this variation between "samples" is important. A more complete cal­

culation than that presented here would cover several such models. Unfortunately, 

computer speed and hard drive size limited the scope of this calculation. 
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3.2 The Force Field 

If the model represents the ingredients of a recipe, the force field is the directions. 

The force field specifies functional forms of components of the energy expression, 

parameters for the fuctional forms and instructions for assigning functional forms and 

parameters. In other words, the total energy of the system is expressed as combination 

of terms such as hydrogen bonding, torsional energy, van der Waals forces, etc. 

There are numerous advantages to classical forcefield-based calculations. Forcefield­

based simulations can handle larger systems more quickly than equivalent quantum 

calculations. In addition, forcefield calculations can be broken down into component 

energy, providing a wider scope of analysis. For example, a calculation can target 

torsional energy or non-bond energies, a distinction that is not always easy to make 

in quantum simulation engines. Finally, because the forcefield is specifed by these 

components, constraints are easily imposed on the system: atoms can be locked into 

place, energies can be directed towards a certain value. 

A well-chosen forcefield will describe entire classes of molecules with reasonable 

accuracy. Some forcefields , such as the Universal Force Field (UFF), cover the entire 

periodic table with lower accuaracy than those designed for a smaller set of atomic 

types. 

3. 2.1 Choosing a Force Field 

For this calculation, the Dreidung-exponential 6 Force Field ( exp6) was used. Exp6 

was developed at the MSC, and is intended for use with plastics. The general formula 

is: 

molecule 

L (Eb+ Eo +Erp+ Einv + Enb +Ee + Ehb) 
molecule 
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Each of these E terms or functional forms calculates a specific type of energy, as 

defined below. 

3.2.2 The Chemical Bonding Functional 

The bonding energy is given by: 

where r is the distance between bonding atoms, kb is a constant and r 0 is the 

minimum distance allowable. This term determines the energy between bonded atoms 

i and j. It can also be thought of as a stretching energy term. Unlike the Morse term, 

this harmonic potential does not allow unrealistic bondlengths. 

3.2.3 The Valence Angle Functional 

The energy in a specific angular configuration is given by: 

where ()0 is the angle of minimum energy and k8 is a constant. This term gives 

the energy of a certain angle between three atoms i, j, k, which are not necessarily 

bonded. 

3. 2.4 The Torsion Functional 

The torsional energy, the energy in planar angles of clusters of atoms, is given by: 

E'P = ~kcp(l + cos(m(<pijkl +</)offset ))), 

where </Joffset is the minimum energy planar configuration of atoms i, j, k and 1 

and k'P is a constant. 
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3. 2. 5 The Inversion Functional 

Inversion energy, or the energy of out of plane torsions is given by: 

where K inv is a constant, and 'I/Jo is a minimum configuration. 

3. 2. 6 The van der Waals Functional 

The interactions between atoms i and j at large distances, i.e., non-bonded atoms, 

or van der Waals forces , are given by: 

E - A -Bd; · - cd-6 
nb - e 1 ij ' 

a modified Lennard-Jones potential. This van der Waals term is the key motivation 

behind use of this force field. Unlike a Dreidung-Lennard-Jones force field, this van 

der Waals term has a gentle ascent, which creates a more accurate simulation of 

close-packed atoms. 

3.2. 7 The Couloumb Functional 

The charge of the atom is considered in this functional, 

E - 9i!li 
E - cd;j) 

for the electrostic interactions between atoms i and j, with charges q and separating 

distance d ij . 

3.2.8 The Hydrogen Bond Functional 

Finally, a special term is used to describe the Hydrogen Bonds in this simulation: 

E F G 
hb = df2 - dlO · 

tJ iJ 

This augments the electrostatic description of the hydrogen bond. 
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3.3 Minimization 

In order to obtain the initial structures it is neccessary to calculate the cold com­

pression curve, which requires minimizing the energy of the system. Throughout the 

molecular dynamics calculation, the default smart minimization algorithm of Cerius2 

is used or slightly reorder the atoms and mimic actual time evolution. It combines 

Steepest Descent, ABNR Newton, Quasi-Newton and Truncated Newton methods to 

obtain the system of minimum energy. This is the most effcient method in terms of 

computation time available for this simulation engine at this time. 

3. 3.1 Steepest Descent Method 

A line search changes the atomic coordinates to a new lower-energy structure. Es­

sentially, it consists of a one-dimensional minimization along a vector determined at 

each iteration. Extensive line searches are inefficent for locating the minimum energy 

precisely, but they allow rapid progress towards the minimum. A Steepest Descent 

search, the first step in the smart minimizer, is a line search along the direction of 

the local downhill gradient. Eachline search produce a direction perpendicular to the 

previos gradient, but the directions oscillate towards the minimum. 

3.3.2 Adopted Basis Newton-Raphson Method 

The Adopted Basis Newton-Raphson Method (ABNR) is designed to take advantage 

of the accurate Newton-Raphson Method without the large storage requirements of 

that method. 

The general steps of any Newton-Raphson method are: 

• Supply an initial guess r 0 . 

• Test for convergence. 

• Compute an approximate Hessian A that is positive definite. 

• Solve for the search direction Pk such that 
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where 'Pk is some prescribed quantity that controls the accuracy of the computed 

Pk· 

• Compute an appropriate step length >.k so that the energy decreases by a suffi­

cient amount. 

• Increment the coordinates: 

• Go to the second step. 

This method avoids the intensive memory requirements of the pure Newton­

Raphson method by constructing the second derivative matrix from the change in 

the gradient vectors , and has a special routine to identify and avoid saddle points in 

the energy equation. It has a linear convergence. 

3.3.3 Quasi-Newton Method 

The quasi-Newton-Raphson method also uses the gradients of previous iterations 

to direct the minimization along an efficient pathway. Instead of calculating the 

Hessian, it uses a matrix which approximates the inverse of the Hessian in the limit of 

convergence. this matrix is also always positive-defined and symmetric, so successive 

steps always minimize the energy. This method is very inefficient in areas of rapidly­

changing gradient. 

3.3.4 Truncated Newton-Raphson Method 

Finally, to obtain the most precise minimization, the Truncated Newton-Raphson 

Method is utilized . It is memory-intensive, as it actually calcuates the second deriva­

tives to generate the Hessian. This makes it more stable than previously discussed 

methods. In addition, tolerance for convergence is dependent on proximity to the 

minimum. It is more efficient to begin with many poorly-defined Newton steps than 

to take fewer well-defined steps, because convergence improves as you approach the 

minimum value. 
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3.4 Molecular Dynamics 

Molecular dynamics (MD) calculations solve the classical equations of motion for an 

N-atom system, with atomic interactions dictated by the forcefield. These simulations 

are useful when studying the time evolution of a system at a non-zero temperature. 

In this case, the MD calculations generate a statistical ensemble from which various 

thermodynamics properties can be calculated. 

Molecular dynamics typically is concerned with solving the familiar: 

The force on an atom can be computed directly from the derivative of the potential 

energy (as specified int he force field). 

The coordinates and velocities of any atom in the system can be determined for 

any subsequent time. A trajectory is the complete record for the entire dynamics run. 

Cerius2 uses the Verlet leapfrog algorithm to integrate the equations of motion. 

It requires modest computations, modest memory and allows a large timestep. 

3.4.1 NVT dynamics 

Ideally, the simulation would be carried out as a constant temperature , constant 

pressure (NPT) ensemble, which most resembles laboratory conditions. However, 

this is unfeasible due to the non-periodic nature of the model, and computational 

limits. Instead, the constant-temperature, constant-volume ensemble is employed. 

By considering a series of volumes, calculations for 8E I ar and 8P I ar can be made, 

resulting in an accurate computation with less strain on the computing resources. 

Dynamics simulations normally have 2 stages, equilibration and data collection. 

In the initial equilibriation stage, velocities are randomly assigned to the component 

atoms, according to the Maxwell-Boltzman distribution about the desired temper­

ature. Convergence is highly dependent on the simulation, the force field and the 

model. 
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3.4.2 Nose-Hoover Thermostat 

In order to control the temperature of the simulation a thermostat is needed. In 

Cerius2, there are several options, including Nose-Hoover. 

Nose-Hoover dynamics produces true canonical ensembles in both coordinate space 

and in momentum space. A fictitious degree of freedom is added to the system under 

consideration to represent the system's interaction with the heat bath. These new 

equations of mass are solved, and if the forcefield is correct, the constant-energy 

dynamics (NYE) will produce the canonical ensemble (NVT) of the real system. 

Because the Nose-Hoover method produces evenly spaced trajectory points , it is useful 

for studies which will involve autocorrelation. 

3.5 Quantum Correction 

Force fields are an entirely mechanical approach to predicting the behavior of large 

systems. Because forcefields are based on observations, quantum effects are empir­

ically included. This means that the forcefield approach is limited-for example, 

acid/base reactions are not easily modeled using this method. While simulations 

have the advantage of being free of laboratory bias, they can suffer from forcefield 

bias. 

For some calculations, it is possible to calculate the quantum effects on the energy 

calculations. A technique has been derived from spectral analysis of the trajectory. 

The correction is based on the approximation that anharmonicities mainly affect the 

lower frequencies of the power spectrum, where the system behaves almost perfectly 

classically. Meanwhile, the higher frequencies, where the deviation from classical me­

chanics is greatest, have suffciently harmonic atomic motions that harmonic quantum 

corrections apply. 



CHAPTER 4 

CALCULATIONS AND CONCLUSIONS 

Polymethylmethacrylate (PMMA) is a polymer, of density 1.06 g/cc. This model 

began at initial coditions, T = 0 K, P = 0 GPa, N = 1452 atoms ( 780 H, 480 C, 192 

0). The initial unit cell was 24.16A x 24.53A x 25.28A. Throughout all calculations, 

N, the number of atoms, remained constant. 

4.1 Cold Compression 

For the cold compression curve, minimized energies were recorded at P = 0-8GPa, 

and every 4 GPa after that to 64GPa. 
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Pressure, G Pa Volume/SY Energy Kj/mol 
0 15104.7 26572.7 
1 14054.8 35321.5 
2 13038.2 43325. l 
3 12327.5 50734.3 
4 11926 .1 57850.5 
5 11542.2 64673.7 
6 11237.8 71287.6 
7 10949.4 77734.0 
8 10689.6 84013.0 
12 10048 .0 83845.6 
16 9470.75 108543 
20 9123 .35 131733 
24 8775.08 153542 
28 8549.55 174598 
32 8319.21 194984 
36 8117.70 214909 
40 7934.44 234374 
44 7790.00 253337 
48 7627.76 271964 
52 7521.07 290257 
56 7383.58 308257 
60 7281.86 325964 
64 7180.95 343545 

Table 4.1: Cold Compression Curve Data 

Cold Compression Data 
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Cold Compression Fit-Birch Munagham 
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Clearly visible in this typical calculation is the initial equilibration, followed by rapid 

convergence. 
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Clearly visble are the two peaks: one high frequency, one low frequency. 

NVT dynamics trajectories using Nose-Hoover thermostat were calculated for 6 
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volumes over 100-700K. To equilibrate, the simulation ran for 5ps without writing a 

trajectory, and for 15ps with a trajectory, allowing ample time for convergence. To 

take advantage of this accuracy, the pressure was obtained by averaging the running 

average pressure over the last 5 ps of the simulation. 
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Pressure- Volume Isotherms for PMMA 

pmmaEOS2.nb 
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Energy-Volume Isotherms for PMMA 
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4.2 Conclusions 

At present, the data for the PV iso therms and the EV isotherms seems a bit messy. 

The linear fit to obtain the Griineisen is neccessarily inaccurate, since the Griineisen 

parameter changes with the viscoelasticity of the material. At present, the nature of 

this dependence is not understood well enough to accurately model the effects. 

Gcoeff = -0.0516948 + 0.0989553X 
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Preliminary linear fit for the Gruneisen Parameter of PMMA 

pmmaEOS2.nb 
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4.3 Further Work 

Obviously, all of these numbers need to be compared to experimentally determined 

numbers . In addition, if this is a correct equation of state for PMMA, it should 

be possible to accurately compare the Hugoniot curve and other thermodynamic 

properties. 



Hugoniot Curve obtained from calculated G{V, T) 
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