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Abstract 
 
How do cells integrate multiple, dynamic genetic circuits? I study this question in the context of the                 

alternative sigma factors of ​B. subtilis​. 

 

The first project proposes a novel mode of gene regulation called timesharing. The key idea is that a                  

limited resource is shared dynamically in time. Here we show that the alternative sigma factors of ​B.                 

subtilis use dynamic sharing to share a limited supply of core RNA Polymerase (RNAP). We show that 5                  

alternative sigma factors activate in pulses, and that these pulses operate in a competitive regime.               

Interestingly, we found that pairwise correlations between these sigma factors contained a mixture of              

positive and negative correlations, whereas one may naively expect all correlations to be negative. We               

show with a mathematical model that competitive pulsing can lead to non-intuitive sets of mixed               

correlations. 

 

The second project take a closer, quantitative look at sigma factor competition. Although competition              

between the housekeeping sigma and a single alternative sigma has been well studied, competition              

between alternative sigmas themselves has been relatively unexplored. To address this issue, we             

systematically investigated the pairwise competitive relationships between 7 alternative sigma factors in            

B. subtilis​. The main experimental tool was a 7x7 ‘deletion’ matrix of strains, where every matrix strain                 

was deleted for one sigma, and reported on another sigma via a fluorescent reporter. The deletion matrix                 

revealed that competition is highly asymmetric. Deletion of any given sigma factor increased σ​W activity,               

but did not affect other sigma factors. These results are recreated by a minimal mathematical model of                 

sigma factor competition, where importantly σ​W is relatively high in abundance but weak in affinity for                

core RNAP. We used the model to predict how overexpressing sigma factors affect each other, and these                 

predictions were matched by experiments. 
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The third project reports a novel activator for alternative sigma factors. Alternative sigmas factors are               

activated by many forms of stress, such as nutrient limitation, temperature shifts, and molecular stresses               

like antibiotics. Here we show that surprisingly, cell lysis causes adjacent cells to specifically activate σ​X​.                

This cell lysis-σ​X response is a general phenomenon, as it is observed under multiple experimental               

conditions. We show this relationship between cell death and σ​X is causal, since harvested cell extract                

activates σ​X​. Finally, we hypothesize that cell death and σ​X play an important role in biofilm wrinkle                 

formation.  
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Chapter 1.  Introduction 
 
I divide this Introduction into 3 parts, each part an Introduction for Chapters 2-4 of this thesis. Chapters                  

2-4 are the 3 main projects I present, which are: 

1) Molecular time-sharing through dynamic pulsing in single cells 

2) σ​W​ creates asymmetry in sigma factor competition 

3) Cell death activates σ​X​ in neighboring cells, a novel mode of sigma factor activation 

1.1 Molecular time-sharing through dynamic pulsing in single cells  
 

In the 1960’s, it had been shown that mixing purified RNA Polymerase (RNAP) with double-stranded 

DNA and ribonucleoside triphosphates in a test tube would result in RNA synthesis​1​. These experiments 

were exciting because they suggested a key fact now taken for granted, that RNAP performs the first step 

of the central dogma, transcribing DNA into messenger RNA (and that’s why the enzyme was so named). 

This discovery of RNAP’s central function opened up another important question: how does RNAP 

discriminate among different target DNA sites ​in vivo​? 

 

A clue to answering this question came from Richard Burgess and Andrew Travers in 1969, when they 

showed that a subunit of RNAP in ​E. coli​, which they deemed ​sigma factor​, was responsible for promoter 

recognition​2​. In their discussion they hypothesized that “switching sigma factor could provide the 

molecular basis for RNAP discrimination of target promoters”. This hypothesis provided an elegant 

solution to the RNAP promoter selectivity problem, where RNAP simply needed to switch to an 

alternative​ sigma factor to transcribe a different set of target genes. 
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This hypothesis was borne out when the first alternative sigma factor was identified by Richard Losick’s 

group in soil bacterium ​Bacillus subtilis​ in 1979​3,4​. They critically took advantage of ​B. subtilis​ cells’ 

ability to turn into ​spores​, hypothesizing that if alternative sigma factors existed, sporulation would 

represent an ideal space to identify them, as sporulation would likely utilize a very different set of sigma 

factors versus those used in exponential growth. This study resulted in the first identification an 

alternative sigma factor, named σ​B​. The alternative sigma factor stands in contrast to the ​housekeeping 

sigma factor, σ​A​, which is active during exponential growth (and which was first purified by Robert Tijan 

and Richard Losick​5​) 

 

In subsequent decades, a total of 17 alternative sigma factors have been identified in ​B. subtilis​, and each 

sigma factor is associated with different functions. Five of these 17 sigma factors are associated with 

sporulation, and the remaining 12 are associated with a variety of stress conditions. These sigma factors 

are generally inactive when cells are grown in rich media, and turn on in response to their cognate 

stresses. For instance, σ​B​ is known as the ​general​ stress response factor because it activates in response to 

variety of stresses, including heat, pH, and osmotic stress​6​. In contrast, other sigma factors respond to a 

more limited set of conditions. For instance, σ​V​ responds to lysozyme, an antimicrobial peptide, but does 

not otherwise activate in response to a variety of other stresses​7,8​. 

 

How are sigma factors activated in response to stress? There have been many studies exploring how                

sigma factors are kept inactive when not needed. One common theme that has emerged is that of                 

anti-sigma factors, proteins that bind 1:1 to sigma factors and effectively sequester them away from core                

RNAP, which work as follows. A sigma factor and its cognate anti-sigma factor are co-expressed, such                

that the anti-sigma factor concentration is greater than the sigma factor’s. In this case, the anti-sigma is                 

effectively sequestering sigma factor away from the anti-sigma factor. When the cell feels the requisite               
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stress, the anti-sigma factor releases the sigma factor such that the sigma factor is bound. There are a                  

variety of molecular mechanisms by which the anti-sigma factor ‘releases’ the sigma factor. For instance,               

the anti-sigma factor of σ​W is proteolytically degraded​9,10​. In contrast, the anti-sigma factor for σ​D is                

exported from the cell.  

 
In addition, it has become appreciated that core RNAP may exist in limited supply in ​B. subtilis​. Michael                  

Hecker’s group performed single cell proteomics on B. subtilis and found that measured the concentration               

of RNAP was less than the total concentration of sigma factors in single cells​11​. In a functional approach                  

to study sigma factor competition, a paper from Carol Gross’s group demonstrated that overexpression of               

σ​A downregulated the activity of another sigma, σ​H​, a result consistent with competition​12​. Outside of ​B.                

subtilis​, many papers have demonstrated in ​E. coli that overexpression or underexpression of one sigma               

results in the opposite effect in another sigma, another result that suggests sigma factors compete​13–15​. 

 
 
RNAP is not the only core enzyme that may shared inside the cell. Other examples of shared core                  

enzymatic machinery include protein degradation complexes and the ribosome. Here we study how cells              

approach the problem of a limited resource in the context of the alternative sigma factors of ​B. subtilis​,                  

which share a common pool of core RNAP. 

 

Studies of sigma factor competition typically assume that sharing of RNAP is static​16,17​. In these studies,                

the proportion of core RNAP taken up by any given sigma class is relatively constant over time. However,                  

previous work from our lab has shown that sigma factor activity can be time-dynamic​18​. That sigma                

factors can respond dynamically suggests that sharing of core RNAP can also be dynamic. 
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Here we propose a novel mode of sharing, which we call timesharing. In timesharing, a single class of                  

sigma takes up most of the available RNAP for some set amount of time, and then switches to another                   

class of sigma taking up most of available RNAP, and then this process repeats itself. This represents a                  

completely different approach to sharing a limited resource, since at any given moment of time, most of                 

the resource is devoted towards a single agent, rather than being spread across multiple agents. 

 

The experimental stress we use to induce sigma factors is the small molecule Mycophenolic Acid (MPA),                

which critically activates at least 5 classes of alternative sigma factors. And in this condition we make                 

three claims that together constitute Timesharing: 

 

1) Sigma factors activate in pulses. ​We follow 5 sigmas’ transcriptional dynamics with fluorescent             

reporters and single cell microscopy, and show sigmas’ activities in MPA is dynamic in time.               

Pulsing is a key feature of the time dynamic nature of Timesharing. 

2) Sigma factors compete for core RNAP. We present data that sigma factors compete for limited               

amounts of core RNAP in our conditions. 

3) Sigma factor pulses present with a mixture of negative and positive correlations. The negative              

correlations between sigma pulses represent different sigma classes accessing core RNAP at            

different times. With regards to the positive correlations, we show with a mathematical model              

that counter-intuitively, positive correlations can also arise in a timesharing system. 

 

Claims 1) and 3) above are novel results in ​B. subtilis​, whereas claim 2) regarding competition has been                  

well reported on in the microbiology literature. A more in-depth exploration of sigma factor competition               

is presented in Chapter 3. More broadly, we submit that this work is a novel mode of sharing in single                    

cells, and hope that these concept inform future work even in synthetic systems, where ever increasingly                
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complex circuits may begin to deplete common cellular resources. Finally, we emphasize that timesharing              

does not contradict previously reported modes of sharing core RNAP. Cells may choose different              

regulation modes in different contexts. 

1.2 σ​W​ creates asymmetry in sigma factor competition 
 
Although the literature on sigma factor competition is extensive, it is mostly focused on competition               

between the housekeeping σ​70 (of ​E. coli​) and one other alternative sigma. The underlying reason is that                 

the main question in the literature has been, how do alternative sigmas snatch away disproportionate               

amounts of RNAP from σ​70 as cells transition to stationary phase? Thus there are studies on competition                 

between σ​70 and σ​38​, σ​70 and σ​32 , and σ​70 and σ​54 ​13,15,19,20​, but few studies on competition between                   

alternative sigmas. In addition, much of the literature is focused on small molecules or proteins that can                 

shift the balance between σ​70 and the alternative sigmas, such as ppGpp and DksA​21​. But although a few                  

studies acknowledge competition between alternative sigmas can exist​15​, how alternative sigmas compete            

against each other has largely been unexplored. 

 

In addition, the vast majority of studies on sigma competition have been in ​E. coli​, but the number of                   

papers on competition in ​B. subtilis are quite few. In fact, I could only find 3 papers in sigma competition                    

in B. subtilis. Two papers from Michael Hecker’s group showed that in some media conditions, the total                 

concentration of all sigmas exceeded that of core RNAP​11,12,22​. And another study from Carol Gross’s               

group showed that overexpression of the housekeeping σ​A​ decreased activity of a σ​H​ reporter​12​. 

 

Taken together, the evidence is not completely convincing that competition exists in ​B. subtilis . For               1

instance, the measurements of RNAP and sigma concentrations are not sufficient to rule in competition.               

1 I do not have ​a priori​ reason why competition would exist in E. coli but not in B. subtilis. But it would not be 
surprising to me that different bacterial strains may choose different transcriptional strategies. 
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Although the numbers make competition plausible, they do not imply it outright. A complicating issue is                

that is unclear how many of the measured sigmas are functionally active. For instance, many sigmas have                 

cognate anti-sigmas, which would lower the number of sigmas actively attempting to bind RNAP. One               

might then imagine considering the quantity , i.e. comparing the number of      (N )N  
RNAP − Σ σ − N anti−σ       

core RNAP molecules to the total number of sigmas minus the total number of antisigmas. However, the                 

situation is even further complicated by the presence of anti-anti-sigmas​23​, many of whom are only               

putative​24​. Do to these issues, any measurements of molecule numbers are ideally accompanied by              

functional experiments ​in vivo​, where one shows that perturbation of sigma, by under or overexpression,               

has the opposite effect on another sigma. 

 

An example of such a functional experiment is the result that σ​A overexpression decreases activity of a σ​H                  

reporter​12​. But although this result is consistent with competition, it does not completely rule out other                

possible mechanisms. For instance, this effect could be due to a σ​A target gene antagonizing σ​H activity.                 

For instance, in E. coli σ​38 drives transcription of rsd, an anti-sigma for σ​70 ​14​. To be fair, there is no known                      

such antagonist between σ​A and σ​H​. But nevertheless, there are many possible pleiotropic effects besides               

competition that could account for the result that σ​A​ overexpression decreases σ​H​ activity.  

 

There are at least 3 ways around this problem of pleiotropic effects when studying competition: 

1) Overexpress a sigma factor whose DNA binding site is mutated such that it can no longer bind it                  

cognate DNA site, but whose RNAP binding site is intact. 

2) Study sigma factor competition in a cell extract system, e.g. TX-TL​25 

3) Systematically study all pairwise interactions between sigma factors. Broad inhibitory          

relationships between sigmas is more elegantly explained by competition than encoding of            

multiple negative regulators. 
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These approaches are not mutually exclusive, and would provide multiple, supporting lines of evidence. 

 

In this project, I take the 3rd strategy, and set out to answer whether 1) sigma factors compete in ​B.                    

subtilis​, and 2) if so, how alternative sigmas compete against each other. I consider 7 alternative sigmas of                  

B. subtilis activated by a single stress condition, namely the drug Mycophenolic Acid (MPA). I study how                 

these 7 sigmas interact ​in vivo via a ‘deletion’ matrix, in which I measure how the activity of any given                    

sigma responds to the effect of deleting any other sigma. In this way, I systematically study all 42                  

pairwise relationships between 7 sigmas, which represents widespread, quantitative study of sigma factor             

competition. 

 

The main claims are: 

1) The deletion matrix reveals that deletion of any sigma increases σ​W​ activity.  

2) A minimal mathematical model competition recreates the results of the deletion matrix.  

3) Finally, as this is a work in progress, I discuss the future direction of this project. 

 

1.3 Cell death activates σ​X​ in neighboring cells, a novel mode of 
activation for sigma factors  
 
There are two broad categories of sigma factors, the ‘housekeeping’ sigma and the ‘alternative’ sigma               

factors. Each bacterial species has one type of housekeeping sigma, e.g. σ​70 in ​E. coli or σ​A in ​B. subtilis​,                    

and this housekeeping sigma is responsible for most basal transcription inside the cell​26​. 

 

In contrast to the housekeeping sigma, a bacterial species can have many types of alternatives sigmas. For                 

instance, there are 17 types of alternative sigma factors in B. subtilis. These sigmas are called alternative                 
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simply because they are not the housekeeping sigma. And unlike the housekeeping sigma, these              

alternative sigmas typically are not active in rich media conditions, and activate in response to stress​27​. 

 

The literature has identified a wide variety stress conditions that activate alternative sigmas. A commonly               

studied stress condition is stationary phase of bacterial growth, during which ​B. subtilis activates the               

general stress response sigma σ​B ​28​. In addition, nutrient limitation can induce sigma activity, e.g. nitrogen                

deprivation activates σ​Y . And heat shock activates σ​B​, while cold shock activates σ​L ​29,30​. Small molecules                 

or proteins are another major class of activators, and examples include: lysozyme induces σ​V ​31​, cell wall                 

antibiotics induce σ​W​ and σ​M​ ​32​, branched chain amino acids induce σ​L​ ​33​. 

 

Here I present a novel activator of sigma factors. I report that cell lysis causes adjacent cells to activate                   

σ​X​, a previously unreported activator for σ​X and more broadly for sigma factors. This effect is independent                 

of the cause of cell lysis, i.e. this effect exists in multiple experimental conditions. In addition, isolated                 

cell extract activates σ​X​, suggesting that cell lysis contains some chemical(s) or agent(s) that is a σ​X                 

activator. This effect is specific to σ​X​, as cell lysis only has minimal effects on other sigmas.  

 

The identity of the chemicals inside cell extract that activate σ​X is an open question. Previous studies                 

implicate multiple possible roles for σ​X​. σ​X has been implicated in defense against cationic antimicrobial               

peptides, and also against H​2​O​2 ​34 However, these roles overlap with other sigma factors. The identity of                 

the cell extract agent may not reflect either of these 2 possibilities and may be something else entirely. 

 

Finally, I hypothesize and discuss how cell death and σ​X may play a major role in wrinkle formation of                   

biofilms.  
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Chapter 2.  Molecular time-sharing through dynamic 
pulsing in single cells 
 

2.1 Abstract 
In bacteria, alternative sigma factors regulate diverse stress responses and developmental           

programs. Sigma factors share a common pool of core RNA polymerase (RNAP). Sharing has been               

assumed to occur through partitioning of RNAP molecules among sigma factors. Using quantitative             

time-lapse microscopy, we analyzed sigma factor activity dynamics in individual ​Bacillus subtilis cells             

under energy stress conditions. We found that multiple alternative sigma factors activated in ~1 hour               

pulses in a stochastic and repetitive fashion. Analysis of sigma factor pairs revealed that two sigma factors                 

rarely pulse simultaneously, and some pairs are anti-correlated. These results indicate that alternative             

sigma factor species effectively ‘time-share,’ or take turns utilizing, RNAP. Mathematical modeling            

revealed how time-sharing can emerge from noise-driven pulse-generating gene circuits actively           

competing for RNAP. Time-sharing provides a mechanism for cells to dynamically control the             

distribution of cell states within a population. Since core molecular components are limiting in many               

other biological systems, time-sharing may represent a general mode of regulation. 

2.2 Introduction 

Many core cellular components are shared among distinct regulatory factors or substrates in the cell. For                

example, the proteasome is shared by multiple substrate proteins, the ribosome by multiple mRNA              

species, and core RNA polymerase (RNAP) by multiple sigma factors in bacteria (Figure 2.1A,B). At               

steady-state, it is generally assumed that each substrate or factor utilizes an approximately constant              

fraction of core component molecules. In principle, however, sharing could occur ​in time​. In such a                
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time-sharing system, the core component would effectively take turns, interacting predominantly with            

only one or a few of its many potential partner species at any given time (Figure 1C). Despite the                   

familiarity of time-sharing strategies in engineered systems such as computers and communication            

networks, it is unknown whether, or how, time-sharing could occur in cells. 

  
In bacteria, alternative sigma factors represent a classic example of molecular sharing. They function as               

subunits of the RNA polymerase holoenzyme, directing it to specific sets of target promoters ​28,32,35–37               

(Figure 1A). Alternative sigma factors are typically regulated through cognate anti-sigma factors, which             

prevent their association with core RNAP. These anti-sigma factors can be inhibited by stresses to enable                

sigma factor activation ​38​. Recently it was shown that the alternative sigma factor σ​B in ​Bacillus subtilis is                  

activated in a sustained series of stochastic pulses in response to energy stress ​17,18​. These pulses represent                 

events in which many σ​B molecules simultaneously become active, associate with core RNAP to initiate               

transcription of target genes, and then deactivate. However, σ​B is only one of 17 alternative sigma factors                 

in ​B. subtilis ​38 (Table S1). It has remained unclear whether pulsing is specific to σ​B or occurs across the                     

broader set of alternative sigma factors, whether multiple sigma factors pulse under the same conditions,               

and how pulsing relates to the sharing of core RNAP. 
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Figure 2.1. Multiple alternative sigma factors pulse under energy stress​. (​A​) Alternative sigma factors bind               
core RNAP to activate target genes, including endogenous targets (left target) and the engineered fluorescent               
reporters used here (right target). (​B​) Multiple distinct alternative sigma factor species (colored shapes) share core                
RNAP (gray). The ‘housekeeping’ sigma factor σ​A (white) also utilizes core RNAP. (​C​) In principle, sigma factor                 
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species could share core RNAP either in concentration (molecular sharing, top) or in time (time-sharing, bottom).                
Only 3 distinct species are shown here for simplicity. (​D​) Fluorescent reporter expression shows heterogeneous               
activation of seven alternative sigma factors, as indicated, and homogeneous activation of σ​A (bottom right) under                
energy stress conditions. (​E​) The heterogeneous expression of YFP in ​D reflects pulsing of alternative sigma                
factors, but not the housekeeping sigma factor σ​A​, whose activity was more constant. Each plot shows sigma                 
factor activity time traces derived from analysis of the rate of production of corresponding fluorescent reporter                
genes in 3 different cell lineages (different line shades).  

 

2.3 Results 

To address these issues, we constructed a set of reporter strains, each containing a fluorescent protein                

gene specifically activated by one of the ​B. subtilis ​alternative sigma factors not involved in sporulation                

(Figure 2.1A and 2.S1A, Table S1). We analyzed these strains in a minimal medium containing 40 µg/ml                 

mycophenolic acid (MPA), a drug that reduces cellular ATP levels and stimulates a broad energy stress                

response ​39 (Figure 2.S1B). Single-cell analysis of these reporter strains revealed markedly heterogeneous             

activation of seven alternative sigma factors in these conditions (Figure 1D). The distributions of              

fluorescent protein expression exhibited long tails for some sigma factors (Figure 2.S1C), similar to those               

previously observed under conditions of pulsatile activation of σ​B ​18​. In contrast, the housekeeping sigma               

factor σ​A​, which has higher affinity for core RNAP and lacks an anti-sigma factor ​40​, was activated in a                   

more homogeneous manner, suggesting that this type of heterogeneous activation was not general to all               

sigma factors (Figures 2.1D and 2.S1C). 

 

To understand the dynamic origin of this heterogeneity, we used quantitative time-lapse fluorescence             

imaging on growing microcolonies of our fluorescent reporter strains on agarose pads. To quantify sigma               

factor activity (in contrast to sigma factor abundance), we extracted total fluorescent protein levels over               

time in each individual cell, and computed the instantaneous rate of fluorescent protein production from               

its corresponding target promoter, correcting for photobleaching and dilution due to cell growth ​41,42 (see               
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STAR Methods). This activity reflects the rate at which free sigma factor (not sequestered by its cognate                 

anti-sigma factor) can associate with available core RNAP and initiate transcription at target promoters. It               

therefore depends on sigma factor protein levels, anti-sigma factor levels, and the availability of core               

RNAP. This analysis revealed that the seven alternative sigma factors mentioned above were activated in               

a pulsatile fashion (Figures 2.1E and S1D). Pulses appeared to be generated stochastically, as no               

significant correlations were observed in sister cell pairs (Figure S2A), or between a parent cell and its                 

two daughters (Figure 2.S2B). Widespread stochastic pulsing of this type was not specific to              

MPA-induced stress, as stationary phase conditioned media also caused pulsing of many sigma factors              

(Figure 2.S3A), which did not require σ​B​, a factor previously shown to pulse (Figure 2.S3B) ​18​. 

 
Figure 2.2. Five alternative sigma factors exhibit pulsatile dynamics over extended timescales in the mother               
machine. (A) ​The mother machine microfluidic device enables long-term analysis of a single cell lineage, as a                 
single cell is maintained at the end of a channel (schematic, top, and image of cells in device, bottom). ​(B) ​Traces                     
showing dynamics of 5 pulsatile alternative sigma factors over >100 hours. The traces represent promoter               
activities of target promoters for the indicated alternative sigma factors. Cell cycles are indicated by alternating                
gray and white vertical regions. ​(C) ​Mean pulse dynamics for each sigma factor species. Pulses were aligned and                  
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averaged ​(n≥320). ​(D) Distribution of normalized pulse amplitudes for the indicated sigma factors. ​(E) ​Mean               
pulse durations, quantified as full-width at half maximum (FWHM) for each of the sigma factors. ​(F) Pulse                 
frequencies for the indicated sigma factors.  

 

We next sought to characterize the pulse dynamics more precisely. Because pulses occur much less than                 

once per cell cycle, this required analysis over many generations. Exponential accumulation of cells on               

agarose pads limits the number of generations that can be analyzed, and leads to non-stationary               

environmental conditions. To circumvent these issues, we turned to the mother machine, a microfluidic              

device that enables analysis of a single cell over many cell division events ​43–45 (Figure 2.2A). In the                  

mother machine, we observed qualitatively similar dynamics as on agarose pads, with 5 alternative sigma               

factors exhibiting pulsatile behavior (Figure 2.2B), with strikingly similar pulse shapes (Figure 2.2C) and              

amplitudes (Figure 2.2D). Pulse had durations on the order of 1 hour (Figure 2.2E) and varying                

frequencies (Figure 2.2F)​. ​σ​Y and σ​L ​were not active under these conditions, and were therefore not                

considered further.  

 

To understand how pulsing affects the mode of sharing of core RNAP, we constructed a mathematical                

model incorporating key regulatory features common to many alternative sigma factor systems (see             

STAR methods). These include transcriptional autoregulation, inhibition by a co-expressed anti-sigma           

factor, and activation by an input, here taken to be a molecular ligand that inactivates the anti-sigma factor                  

(Figures 2.3A and 2.S4A). We identified physiologically reasonable parameters (see STAR methods)            

sufficient to generate pulsing dynamics similar to those observed experimentally for an individual sigma              

factor (Figure 2.3B). In this regime, a stochastic burst of ligand production can suddenly reduce the                

activity of its cognate anti-sigma factor against the corresponding sigma factor. Autoregulation of the              

sigma factor operon initially amplifies the pulse by up-regulating expression of the sigma factor itself.               

Finally, the pulse eventually terminates itself through increased expression of the anti-sigma factor, which              
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is part of the sigma operon (Figures 2.3B and 2.S4B). These results show that the simple                

sigma/anti-sigma operon architecture is capable of generating pulsatile dynamics under physiologically           

reasonable conditions. 

 

We next asked how multiple pulsatile sigma factor species interact dynamically under conditions of              

limiting RNAP. We expanded the model to include five identical, but orthogonal, pulsatile sigma factor               

systems (Figure 2.3C). Additionally, to represent the constitutive, non-pulsatile σ​A ​(Figure 2.1E), the             

model also incorporated an additional sigma factor species with no anti-sigma factor. All sigma factors               

were coupled to one another exclusively through competition for limiting amounts of shared core RNAP               

(STAR methods). Such competition has been established in previous work ​12,46–48​, and is further supported               

by experiments in which ectopic expression of σ​B repressed σ​W and σ​D activity under these conditions                

(Figure 2.S5A, 2.S5B, 2.S5C). 
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Figure 2.3. A mathematical model shows time-sharing in alternative sigma factor dynamics. ​(​A​) Schematic 
of model of a single pulsatile alternative sigma factor species. The sigma factor autoregulates its own operon, 
which contains genes for the sigma factor and its cognate anti-sigma factor. An input, taken to be a small 
molecule ligand (black dot), induces pulses by inhibiting the sigma factor inhibitory activity of the anti-sigma 
factor. ​(B) ​The simple sigma factor model can generate a pulsatile response to a sudden increase in ligand. ​(C) 
Multiple alternative sigma factor circuits identical to the one in (A), along with a constitutive sigma factor 
representing σ​A​, are coupled through sharing of core RNA polymerase (gray arrows). ​(D)​ The multi-sigma factor 
model produces pulsatile dynamics of each alternative sigma factor (colored traces, left y axis) but more constant 
dynamics for σ​A​ (black, right y axis). ​(E)​ Histogram showing the mean fraction of sigma factors active during 
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pulses in the dynamics shown in (D). Most of the time, only one or two alternative sigma factors are active 
simultaneously. ​(F) ​Quantifying the co-occurrence of pulses (schematic). A pulse detection algorithm (Figure 
S1D) recognizes pulses in either of two sigma factors (vertical dashed lines, upper panel). Sigma factor activities 
at these points can then be plotted, as shown in lower panel. ​(G)​ Pulse amplitudes for all detected events, plotted 
as in the lower panel of F. Note the diagonal edge, representing the constraint of fixed total RNA polymerase. ​(H) 
Cross-correlation functions between the activities of two alternative sigma factors show anti-correlation between 
pairs of sigma factors when RNA polymerase is limiting (black) but not when it is in excess (gray). 
 

 

The model generated pulsatile dynamics for each of the alternative sigma factors, and an approximately               

constant activity for σ​A​, consistent with experiments (Figures 2.3D and 2.S5D). In this regime, nearly all                

core RNAP not bound to σ​A was occupied by just the 2 most active alternative sigma factors (Figure                  

2.3E). Furthermore, the sigma factors actively excluded one another, suppressing simultaneous pulses of             

multiple sigma factors (Figures 2.3F,G), and generating an overall anti-correlation in their activity when              

RNAP was limiting but not when it was in excess (Figure 2.3H). These anti-correlations arise because                

each sigma factor pulse reduces the amount of core RNAP available for other sigma factors over a typical                  

pulse duration (~1 hour). Subsequent termination of the pulse causes the sigma factor to relinquish core                

RNAP, allowing other sigma factors to initiate pulses (Figure 2.S4B,2.S5D). While the overall rate of               

pulsing in this parameter regime is controlled by underlying stochastic inputs, represented in the model by                

ligand species, the exclusion of simultaneous pulsing results from competition for core RNAP. These              

modeling results show that time-sharing dynamics can emerge from the combination of pulsatile             

activation dynamics from individual sigma factor operons and coupling through competition for core             

RNAP. 

  

These simulations provoke the experimental question of what dynamic relationships occur among the             

pulsatile sigma factors. To address this issue, we constructed a 5×5 ‘matrix’ of strains (15 strains in total,                  

i.e. the upper half matrix plus the diagonal), each of which containing a cyan fluorescent protein (CFP)                 

reporter for one sigma factor and a yellow fluorescent protein (YFP) reporter for a second (Figure 2.4A).                 
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The matrix also included ‘diagonal’ strains containing two distinguishable reporters for the same sigma              

factor to establish the upper limit of possible correlation ​49​. Finally, all strains contained a third                

fluorescent protein (mCherry) reporter for σ​A ​activity (see STAR Methods). Using the mother machine,              

we recorded movies of individual cells from each of these 15 strains (Figure 2.4B). We then quantified                 

mean fluorescence and protein production rates for all reporter pairs over time in each individual cell                

lineage (Figure 2.4C).  

 

 
Figure 2.4. A matrix of multi-reporter strains enables analysis of dynamic correlations between different              
alternative sigma factors. ​(​A​) A matrix of strains, each of which contains a chromosomally integrated CFP                
reporter for one sigma factor and a chromosomally integrated YFP reporter for another, along with mCherry                
under the control of σ​A​. (​B​) Filmstrip from a mother machine movie, showing one lane at 15 minute intervals.                   
P​B​-CFP is shown in red, overlaid with P​W​-YFP in the green channel (see Movie S3). Anti-correlations between                 
channels are apparent from the lack of cells showing similar intensities in green and red channels (i.e. yellow                  
cells). ​(C) ​Typical traces showing the dynamics of different pairs of alternative sigma factors, including strains                
with two reporters for the same sigma factor (top), and other pairs (lower 2 panels).  

 

Analysis of these traces provided the pairwise dynamic correlations across all five pulsatile sigma factors.               

As expected, strains with two reporters for the same alternative sigma factor showed strong positive               
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correlations (Figure 2.5A). By contrast, 4 of the 10 off-diagonal strains showed negative correlation              

between two different sigma factors, as predicted by the model (Figure 2.5A,B). These negative              

correlations were striking, given the many factors expected to positively correlate the signals, including              

extrinsic fluctuations in cell growth rate and global gene expression parameters (e.g. transcription and              

translation efficiencies) ​49–53​, and the co-activation of multiple sigma factors by overlapping stresses,             

including MPA ​18,39​. The same negative correlations also appeared when using a “pulse-triggered             

averaging” approach that specifically focuses on pulses ​54 (Figure 2.S6). Of the remaining 6 pairs, 5                

showed positive correlations that were significant, although substantially weaker than those observed for             

diagonal strains (Figure 2.5A). Finally, one sigma factor pair showed no strong correlation in either               

direction. Although exhibiting different signs and degrees of correlation, the absolute frequency of pulse              

coincidences was low for all pairs. This can be seen by plotting together the relative strengths of the                  

promoter activity pairs for all identified peaks (Figure 2.5C).  
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Figure 2.5. Dynamic correlations between sigma factors in the same cell. ​(A) ​The matrix of cross correlations                 
shows both positive correlations (green), negative correlations (red), and neutral correlation (blue). Each trace              
shows the mean cross-correlation (solid line) and the standard error of the mean (shading). ​(B) ​Diagram                
summarizing the pattern of correlations (colors as in A). ​(C) ​Scatter plots of pulse event amplitudes, as in Figure                   
3F. Note that sigma factor pairs show relatively few simultaneous pulse events.  
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Together, these results provide strong evidence for time-sharing under these conditions, but they also              

reveal a complex dynamical structure. This can be seen in the correlation graph (Figure 2.5B), where no                 

two sigma factors share the same pattern of correlations with other sigma factors ​55​. Even σ​B ​and σ​D​,                  

which show similar (though not identical) interactions with the other sigma factors, are anti-correlated              

with one another. Could such dynamic complexity arise from competitive interactions between sigma             

factors? To address this question, we constructed a minimal, analytically solvable model of sigma factors               

competing for a common pool of core RNAP, dispensing with the regulatory features incorporated in the                

computational model discussed above (Figure 2.S7A). We solved this model for an arbitrary number of               

sigma factors under the simplifying assumption of small equilibrium fluctuations (see STAR Methods).             

We obtained analytical expressions for the cross-correlation functions between all sigma factor pairs in              

terms of the binding/unbinding rates of the sigma factors to core RNAP and their abundances. These                

results show that competitive binding interactions alone are sufficient to generate complex correlation             

graphs with mixtures of positive and negative correlations (see STAR Methods). For example, in the case                

of three sigma factors, it is possible for two of the sigma factors, σ​1 and σ​2​, to exhibit positive correlations                    

with each other, and negative correlations with σ​3 (Figure 2.S7B,C). This occurs when σ​3 ​has slower                

binding and unbinding rates to core RNAP compared with those of the other two. In this regime, the                  

fraction of core RNAP bound by σ​3 fluctuates at a time scale longer than that of the other two sigma                    

factors. At shorter time scales, σ​1 and σ​2 are both more likely to be found bound to core RNAP when the                     

fraction of bound σ​3 is lower than its steady state value, resulting in a positive correlation between σ​1 and                   

σ​2 (Figure 2.S7D). The analytical minimal model thus demonstrates that complex correlation patterns,             

including positive correlations between certain pairs of sigma factors, can arise from competitive             

interactions alone, even without having to invoke extrinsic correlating factors (which could also exist). 
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2.4 Discussion 

Time-sharing causes cells to focus the limited resource of core RNAP on a few alternative sigma factor                 

regulons at a time, rather than spreading it across all sigma factors at lower, constant levels (Figure 2.1C).                  

Consider three hypothetical alternative sigma factors. With molecular sharing, all cells would exhibit             

relatively similar phenotypic states, with intermediate activities of each sigma factor, constrained by the              

total amount of core RNAP (Figure 2.6A, left simplex). By contrast, time-sharing causes sigma factor               

activities to mainly occupy the edges and vertices of the allowed state-space (Figure 2.6A, right simplex),                

and to dynamically transition from one such state to another in a stochastic fashion. 

  

 
Figure 2.6. Time-sharing affects the distribution of cell states in a population. ​(A) Two distinct modes of                 
sigma factor sharing (schematic). Competition for core polymerase restricts mean sigma factor activities to a               
subspace indicated by gray triangle, on which the sum of sigma factor activities is constant. In molecular sharing,                  
each sigma factor would be active at a constant, intermediate level, with all cells (yellow dots) in similar states. In                    
time-sharing, cells predominantly occupy the vertices and edges of the allowed subspace (yellow dots, right               
triangle), and switch dynamically among these states through pulsing. They are therefore distributed over a               
broader variety of expression states at any given time. (B) ​Because the timescale of pulses is comparable to the                   
cell cycle duration, cells tend to switch states from one cell cycle to the next (schematic). Here, colors indicate                   
activity levels of each of 3 sigmas, in a hypothetical 3-sigma factor system, following A. ​(C) A population of                   
time-sharing cells. As in B, colors indicate activities of 3 sigma factors. Due to stochasticity of sigma factor                  
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pulses, the distribution of cell states can recover within a cell cycle from a perturbation to the cell state                   
distribution (red arrow). ​(D) ​In the time-sharing system, dynamic switching among states enables changes to the                
environment to rapidly shift the population from one distribution to another (left and right spaces, schematic). 

 

Because the pulse durations observed here, of ~1 hour, are comparable to the duration of the cell cycle,                  

time-sharing can cause successive cell cycles to be dominated by different sigma factor programs and               

corresponding phenotypes (Figure 2.6B). Because of the stochastic nature of pulsing, this distribution is              

dynamic, allowing cells to control the distribution of activity states in the population, and regenerate the                

entire distribution of states after a perturbation (Figure 2.6C,D). The time-sharing dynamics observed here              

could thus enable cells to implement a multi-dimensional bet-hedging system in which environmental             

conditions modulate the relative numbers of cells in which different sigma factor combinations are active               

56–59​. Bet-hedging strategies can be advantageous when future events are uncertain ​60 and have been shown                

to evolve in variable environments ​61​. Pulsatile time-sharing could also provide other functional             

capabilities such as avoiding conflicts between incompatible regulatory programs, and increasing           

coordination of target operons by concentrating most target gene expression into brief periods of high               

sigma factor activation ​62–65​. 

  

Time-sharing strategies are common solutions to the allocation of limited resources in diverse contexts.              

For example, time division multiplexing is used in communication systems to share limited bandwidth by               

switching among different users ​66​. Similarly, time-sharing computer systems were developed to increase             

the efficiency of a core processor when the activities of individual users fluctuate ​67​. Because many                

cellular systems rely on shared molecular components operating in competitive regimes, time-sharing            

may represent a dynamic design principle employed more broadly by other molecular circuits in the cell.  
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2.5 Supplementary Figures 
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2.6 Assessing sigma factor correlation with RNA FISH 

2.6.1 Introduction 
 
Here I describe my efforts to use RNA Fluorescence In Situ Hybridization (FISH) to answer whether                

pairs of sigma factors are anti-correlated in their activities. Anti-correlation between sigma factors, as              

described previously in this chapter, is a central component of timesharing.  

 

I will start by describing the historical context for these FISH experiments. I had previously measured                

correlations between sigma factor activities using the ‘matrix’ of fluorescent reporter strains, where each              

strain reports on 2 alternative sigma factors using yfp and cfp (this is the same matrix described in this                   

chapter). These matrix strains were grown in liquid culture with 40 ​µg/ml Mycophenolic Acid (MPA),               

and then spotted onto agarose pads for microscopy. Quantification of the fluorescent signals revealed that               

sigma factors did not reveal any anti-correlation. 

 

However, the absence of anti-correlation was not definitive. There is an an important limitation to this                

experiment, which is that the yfp and cfp proteins are stable. This stability could lead to obscuring of any                   

weak negative correlations. To illustrate, let us consider the following scenario: Consider 2 sigma factors               

σ​1 and σ​2​, where they drive yfp and cfp expression respectively. And let’s say that a σ​1 pulse was                   

immediately followed by a σ​2 pulse, where importantly the two pulses do not overlap. The σ​1 and σ​2                  

pulses lead to production of yfp and cfp protein. But since these are 2 proteins are stable, they hang                   

around in the cell even when their respective pulses that generated have since ceased, meaning this cell                 

has both high yfp and cfp signal even though the underlying σ​1 and σ​2 pulses did not overlap at all. In                     

retrospect, this caveat would be much more convincing with mathematical modeling to demonstrate the              
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plausibility of this effect. Although the intuition behind this caveat is quite believable, whether the caveat                

would have strong enough effects to erase underlying negative correlation would be better demonstrated              

with a model. 

 

Yet this was the caveat that led to the birth of the RNA FISH experiments. The key idea in these                    

experiments is that transcripts in bacteria are relatively unstable, with a half-life of ~5-10 minutes. In                

addition, RNA FISH can quantify at least 4 different kinds of transcripts per cell by using different                 

fluorescent dyes, and even hundreds of transcripts with multiplexing.  

 

2.6.2 Results 

The first step in this subproject was to establish the RNA FISH protocol in ​B. subtilis​. Although this                  

protocol has previously been described in ​B. subtilis​, many protocols leave out key details and thus are                 

difficult to execute from scratch. Yet after many months and several people’s help, we were able to                 

successfully run RNA FISH in our ​B. subtilis​ strains (Figure 2.6.1) 

 

 
 
 

 
Figure 2.6.1. FISH specifically detects ​sigB transcript. (A) FISH signal from cells hybridized with probes that                
target ​sigB ​mRNA. (B) FISH signal from ​ΔsigB cells hybridized with probes that target ​sigB ​mRNA. Both panel                  
images are set to the same greyscale contrast. The cells in panel B have some minimal, diffuse signal which is                    
consistent with autofluorescence. ​B. subtilis cells grown in minimal media plus 40 ​µg/ml MPA to activate σ​B​.                 
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FISH probes were linked to Alexa 647. 

 
Using this protocol, we next asked whether σ​B and σ​W activities are anti-correlated when assayed by                

FISH. To answer this question, we took the matrix strain ​‘P​B​-cfp,P​W​-yfp’ and grew it in SMM plus 40                  

µg/ml MPA. Then we ran the FISH protocol to measure the ​cfp and ​yfp transcripts levels, which                 

respectively reflect σ​B​ and σ​W​ activity (Figure 2.6.2).  

 

The resulting data were quantified by first automatically segmenting individual cells on the phase channel               

images. From each cell, we quantified the transcript levels by ​taking the difference between the 95th                

percentile pixel brightness and the 50th percentile pixel brightness in the cell. We visually confirmed that                

this metric reflects the total number of transcripts per cell. The resulting scatter plot had a characteristic                 

‘L-shape’, suggesting that σ​B and σ​W do not typically pulse together ​(Figure 2.6.2B)​. To answer               

statistically whether σ​B and σ​W are in fact anti-correlated, we employed the Fisher Exact Test, which is a                  

categorical statistical test that can assess anti-correlation. When we applied it, however, we found that no                

evidence of anti-correlation ​(Figure 2.6.2B).  

 

The intuition behind this result can be found in the low frequency effect. The scatter in Figure 2.6.2B                  

contains very few points in the upper right quadrant, where the upper right quadrant represents cells that                 

are pulsing in both sigmas. However, the ​expected number of points in the upper right is ​also very low,                   

the frequency of high signal points in either sigma is very low. So although we don’t see many cells                   

pulsing together, we don’t expect that many cells anyway. One might argue that the statistical power of                 

the test is then low. However, the number of cells assayed in (Figure 2.6.B) is ~40,000. I argue that                   

40,000 cells is a sufficient number to assay for this potential effect. 
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Figure 2.6.2. σ​B and σ​W activity are not anti-correlated when assayed with FISH. ​(A) Sample image from                  
FISH against ​cfp and ​yfp transcripts in the matrix strain ‘P​B​-cfp,P​W​-yfp’. We probed against the fluorescent                
reporter transcripts rather than the endogenous ​sigB and ​sigW transcripts, since the ​cfp and ​yfp transcripts                
represent more pure reporters of σ​B and σ​W activity, respectively. The ​cfp and ​yfp ​probes were bound to Alexa 555                    
and Alexa 647, respectively. (B) Scatter plot of single cell σ​B and σ​W activity as measured by FISH. Each circle in                     
the scatter represents a single cell. The signal from each cell was quantified by taking the difference between the                   
95th percentile pixel brightness and the 50th percentile pixel brightness in the cell. There are ~40,000 cells in the                   
scatter. (C) P-values from a right-sided Fisher exact test are plotted. We ran the on the Fisher exact test on the                     
data in panel B. To run this test, we needed to first define 4 quadrants on the scatter plot, where the 4 quadrants                       
are defined by a horizontal boundary and a vertical boundary. We then counted the number of points in each                   
quadrant, and ran these counts through the Fisher exact test, which yielded a p-value. However, there are many                  
choices for how to define the vertical and horizontal boundaries. To account for all possible boundary choices, we                  
ran the Fisher test for a 2-d dimensional matrix of boundary choices. Thus each point in the panel C represents the                     
choice of vertical and horizontal boundary, and the color of that point is the resulting p-value. Importantly,                 
virtually none of the p-values are below 0.05. 

 
We next wondered whether the transcriptional burstiness combined with the short half-life of transcripts 

could be obscuring our assay for negative correlation. To control for this possibility, we ran the FISH 

experiment on the matrix strain ​‘P​W​-cfp,P​W​-yfp’​. If burstiness is not playing a major role, then we expect 

cfp​ and ​yfp​ transcripts levels to be well correlated with each other. However, we observed cells high in ​cfp 

signal but low in ​yfp ​signal, and vice-versa (Figure 2.6.3).  
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Figure 2.6.3. Transcripts of ​cfp and ​yfp ​are not well correlated when when driven by σ​W​. ​(A) Scatter plot from FISH                     
against ​cfp and ​yfp transcripts in the matrix strain ‘P​W​-cfp,P​W​-yfp’. Each circle in the scatter represents a single cell, whose                    
coordinate are determined by its ​cfp and ​yfp transcript levels. Transcript levels were quantified by taking the difference                  
between the 95th percentile pixel brightness and the 50th percentile pixel brightness in the cell. Since cfp and yfp transcription                    
are driven by the same sigma, we expect their respective transcript levels to be well-correlated. In the scatter plot, this would                     
manifest as all dots lying on a diagonal line. However, there exist points in the scatter than are high in ​cfp but low in ​yfp​, and                          
vice versa.  

 
This lack of correlation raised the possibility that any negative correlation could be obscured. For               

instance, let us consider a cell that is pulsing in σ​1 but not in σ​2​. This is a cell exhibiting anti-correlated                     

sigma activity. But assayed by FISH, it’s possible the σ​1 signal would appear ‘off’, and the σ2 signal                  

would also be off. Thus FISH would tell us this cell is off in both signals. By reducing the number of                     

anti-correlated cells and increasing the number of cells in which both signals are off, any underlying                

negative correlation could be obscured. However, admittedly this argument would be more convincing             

with a simulation; in addition, it could also be a cell pulsing in both σ​1 and σ​2 appears to be pulsing in                      

only one of them. In any case, we moved on to experiments with the mother machine, which for various                   

reasons are preferable to the FISH experiment for our purposes. 

 

2.6.3 RNA FISH Protocol 
 
The protocol for RNA FISH in B. subtilis is described below. All other procedures not listed here were as                   

described in this study. 

  

General Considerations: Try to buy components that are nuclease-free, e.g. water and PBS. Many steps               

involve spinning cells, and removing supernatant. I try to be relatively aggressive in removing the               

supernatant since we are working with relatively small volumes. FISH probes from Stellaris and the               

Alexa series dyes have worked well for us. Many thanks to Timur Zhiyentayev, on whose protocol this                 

document is heavily based. 

  
Selected Reagents and Product Numbers 
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70% HB Buffer: 1 part dextran sulfate, 2 part Nuclease-Free H​2​O, and 7 part formamide, 
all by mass 
35% HB Buffer 1 part dextran sulfate, 5.5 part Nuclease-Free H​2​O, and 3.5 part 
formamide, all by mass 
  Above 2 solutions can be kept at -20 C for a few months. 
  
Lysozyme           ​http://www.epibio.com/enzymes/lysozymes/ready-lyse-lysozyme-solution​, store at -20 C 
Dextran Sulfate  Sigma ​D4911 
Formaldehyde    polysciences.com, #18814 
  

Cell Preparation 
Grow 10 ml of cells in orbital shaker until OD ~0.3 
  
Fix cells 
 Add 5.5% formaldehyde directly to your culture flask, s.t. the final formaldehyde concentration is 
0.5% 
 For instance, if your culture volume is 10 ml, then add 1 ml of 5.5% formaldehyde 
 5.5% Formaldehyde solution is diluted from 16% stock solution using PBS 
 Mix culture by shaking the flask by hand, I generally avoid vortexing in case this affects the cell 
internal state 
  
Spin down cells, 2.5 min at 6000 rcf -->  Remove supernatant --> Resuspend pellet in 1 ml 0.02 SSC. Use 
pipet to resuspend pellet 
  
Spin down cells, 2.5 min at 6000 rcf --> Remove supernatant --> Resuspend cells in 200 µl of MAAM 
(4:1 methanol/acetic acid mixture by volume). Use pipet to resuspend pellet. 
 MAAM can be kept at -20 C. 
  
Cells can be kept in MAAM at -80 C for 1-2 days without loss in RNA hybridization efficiency. 
  

Cell Hybridization and Washing 
Spin cell suspension(50-100 µl), remove sup, and resuspend thoroughly in 50 µl of 70% hybridization 
buffer. 
  
Heat for 1 hr at 65 C to denature target nucleic acid. (not necessary for RNA FISH, may be necessary for 
DNA FISH) 
 You may want to test this step for yourself. 
  
Spin down cells in tabletop centrifuge, remove sup, and replace 70% hybr buffer with 100 µl of lysozyme 
for 10 min at RT. 
 Consider 35,000 U/µl stock solution from Epicentre to be 100X. 
 Dilute 100X solution to 2X using 0.02 SSC. 
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Spin down cells in tabletop centrifuge, remove sup, add 50 µl of 70% hybr buffer. Then add 50 µl of 35% 
hybr buffer. Mix using Pipet Tip 
  
Add 1 µl of probe solution, and resuspend cells using pipet. 
  
Wrap tube in foil, incubate at 37 C on orbital shaker for 3 hrs. Then Image! 
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2.7 Materials and Methods 

2.7.1 Table of Strains and Plasmids 
 

 
Identifier Plasmid Source Identifier 

Plasmid 1 ppsB::P​trpE​-mCherry ErmR This work Plasmid 1 

Plasmid 2 sacA::P​?​-yfp CmR This work Plasmid 2 

Plasmid 3 amyE::P​?​-3Xcfp SpectR. This work Plasmid 3 

Plasmid 4 amyE::P​hyperspank​-sigB Spect​R This work Plasmid 4 

Plasmid 5 pyrD::P​B​-cfp kanR This work Plasmid 5 

 
ID Bacterial Strain Genotype Construction/Source 

PY79 
trpC2 (this genotype omitted in derived 
strains, below) BGSC 1A776 

JP1 ppsB::P​trpE​-mCherry ​PhleoR 68 

JP2 JP1;ytvA::NeoR JJB751→JP1 (NeoR selection)​68  

JP3 JP2;sacA::P​B​-yfp CmR Plasmid (2)→JP2 

JP4 JP2;sacA::P​M​-yfp CmR Plasmid (2)→JP2 

JP5 JP2;sacA::P​W​-yfp CmR Plasmid (2)→JP2 

JP6 JP2;sacA::P​X​-yfp CmR Plasmid (2)→JP2 

JP7 JP2;sacA::P​D​-yfp CmR Plasmid (2)→JP2 

JP8 JP2;sacA::P​L​-yfp CmR Plasmid (2)→JP2 

JP9 JP2;sacA::P​Y​-yfp CmR Plasmid (2)→JP2 

JP10 JP2;sacA::P​A​-yfp CmR Plasmid (2)→JP2 

JP11 JP3;rsbU-rsbX::TetR 
68 
68 

JP12 JP4; sigM::TetR 69 

JP13 JP4; sigW::ErmR 69 

JP14 JP6;sigX::SpectR 70 

JP15 sigD::TetR 71,72 

JP16 JP7; sigD::TetR JP15→JP7 (TetR selection) 

JP17 JP1; sacA::P​L​-yfp CmR JP8→JP1 (CmR selection) 

JP18 JP17;sigL::KanR 29 
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JP19 JP1; sacA::P​Y​-yfp CmR JP9→JP1 (CmR selection) 

JP20 JP19;sigY::KanR 73 

   

   

JP21 JP3;amyE::P​B​-3Xcfp SpectR Plasmid (3)→JP3 

JP22 JP3;amyE::P​M​-3Xcfp SpectR Plasmid (3)→JP3 

JP23 JP3;amyE::P​W​-3Xcfp SpectR Plasmid (3)→JP3 

JP24 JP3;amyE::P​X​-3Xcfp SpectR Plasmid (3)→JP3 

JP25 JP3;amyE::P​D​-3Xcfp SpectR Plasmid (3)→JP3 

JP26 JP4;amyE::P​B​-3Xcfp SpectR Plasmid (3)→JP4 

JP27 JP4;amyE::P​M​-3Xcfp SpectR Plasmid (3)→JP4 

JP28 JP4;amyE::P​W​-3Xcfp SpectR Plasmid (3)→JP4 

JP29 JP4;amyE::P​X​-3Xcfp SpectR Plasmid (3)→JP4 

JP30 JP4;amyE::P​D​-3Xcfp SpectR Plasmid (3)→JP4 

JP31 JP5;amyE::P​B​-3Xcfp SpectR Plasmid (3)→JP5 

JP32 JP5;amyE::P​M​-3Xcfp SpectR Plasmid (3)→JP5 

JP33 JP5;amyE::P​W​-3Xcfp SpectR Plasmid (3)→JP5 

JP34 JP5;amyE::P​X​-3Xcfp SpectR Plasmid (3)→JP5 

JP35 JP5;amyE::P​D​-3Xcfp SpectR Plasmid (3)→JP5 

JP36 JP6;amyE::P​B​-3Xcfp SpectR Plasmid (3)→JP6 

JP37 JP6;amyE::P​M​-3Xcfp SpectR Plasmid (3)→JP6 

JP38 JP6;amyE::P​W​-3Xcfp SpectR Plasmid (3)→JP6 

JP39 JP6;amyE::P​X​-3Xcfp SpectR Plasmid (3)→JP6 

JP40 JP6;amyE::P​D​-3Xcfp SpectR Plasmid (3)→JP6 

JP41 JP7;amyE::P​B​-3Xcfp SpectR Plasmid (3)→JP7 

JP42 JP7;amyE::P​M​-3Xcfp SpectR Plasmid (3)→JP7 

JP43 JP7;amyE::P​W​-3Xcfp SpectR Plasmid (3)→JP7 

JP44 JP7;amyE::P​X​-3Xcfp SpectR Plasmid (3)→JP7 

JP45 JP7;amyE::P​D​-3Xcfp SpectR Plasmid (3)→JP7 

   

   

JP46 JJB213; rsbU-rsbX::TetR 68 

JP47 JP1 ; rsbU-rsbX::TetR JP46→JP1 (TetR selection) 

JP48 JP47; amyE::P​hyperspank​-sigB Spect Plasmid (4) above→JP47 

JP49 JP48; pyrD::P​B​-cfp KanR Plasmid (5)→JP48 
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JP50 JP49; sacA::P​W​-yfp CmR Plasmid (2)→JP49 

JP51 JP49; sacA::P​D​-yfp CmR Plasmid (2)→JP49 

JP52 JP50; hag::ErmR BGSC BKEHAG→JP50​74 

JP53 JP51; hag::ErmR BGSC BKEHAG→JP51​74 

   

   

JP54 JP11;hag∷ErmR BGSC BKEHAG→JP26 ​74 

JP55 JP16;hag∷ErmR BGSC BKEHAG→JP26 ​74 

JP56 JP21;hag∷ErmR BGSC BKEHAG→JP31 ​74 

JP57 JP26;hag∷ErmR BGSC BKEHAG→JP36 ​74 

JP58 JP31;hag∷ErmR BGSC BKEHAG→JP41 ​74 

JP59 JP17;hag∷ErmR BGSC BKEHAG→JP27 ​74 

JP60 JP22;hag∷ErmR BGSC BKEHAG→JP32 ​74 

JP61 JP27;hag∷ErmR BGSC BKEHAG→JP37 ​74 

JP62 JP32;hag∷ErmR BGSC BKEHAG→JP42 ​74 

JP63 JP23;hag∷ErmR BGSC BKEHAG→JP33 ​74 

JP64 JP28;hag∷ErmR BGSC BKEHAG→JP38 ​74 

JP65 JP33;hag∷ErmR BGSC BKEHAG→JP43 ​74 

JP66 JP29;hag∷ErmR BGSC BKEHAG→JP39 ​74 

JP67 JP34;hag∷ErmR BGSC BKEHAG→JP44 ​74 

JP68 JP35;hag∷ErmR BGSC BKEHAG→JP45 ​74 

 

2.7.2. Strain and Plasmid Construction 
 
Bacillus subtilis Strains were from the PY79 genetic background, and the list of strains used is given in                  

the Key Resources Table. Many starting strains/genomic DNA were kind gifts of C.W. Price (see               

references below), and many sigma factor deletion strains were kind gifts from John Helmann. Several               

strains were obtained from the Bacillus Genetic Stock Center (BGSC), and their strain codes are noted in                 

the Key Resources Table. 
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In above table, in the column labeled “Construction Procedure”, the ‘​→​’ symbol indicates an integration               

event from plasmid or genomic DNA into the strain after the arrow. For example, in strain JP2, the                  

construction procedure is listed as “​JJB751​→​JP1 (with Neo​R selection)​”, meaning that the genomic DNA              

of JJB751 was prepared and transformed into JP1 with selection on neomycin.  

 

Antibiotic resistance was switched using a previously described antibiotic switching vector system ​71​.             

Deletions were made by replacing genes of interest with a selection marker via a linear DNA fragment                 

homologous to the region of interest.  

 
All plasmids were cloned using ​E.coli strain DH5α and a combination of standard molecular cloning               

techniques and non-ligase dependent cloning using Clontech In-Fusion Advantage PCR Cloning kits.            

Plasmid constructs were integrated into ​B. subtilis chromosomal regions via double crossover using             

standard techniques. The following list provides a description of each plasmid constructed, with details on               

integration position/cassette and selection marker given at the beginning. Note that all plasmids below              

replicate in ​E. coli​ but not in ​B. subtilis​. 

Plasmid list: 

1) ppsB::P​trpE​-mCherry Erm​R - This plasmid was used to provide uniform expression of mCherry              

from a σ​A​-dependent promoter, enabling automatic image segmentation (cell identification) in time-lapse            

movie analysis. A minimal σ​A promoter was used from the ​trpE ​gene and cloned into a vector with ​ppsB                   

homology regions ​68​. The original integration vector was a gift from A. Eldar ​75​. For some strains, the                  

selection marker was subsequently changed, in ​B. subtilis, ​to either ​Kan​R​ ​or ​Phleo​R​. 

2) sacA::P​?​-yfp Cm​R ​- ​Target promoters of each alternative sigma factor, ? = B, D, L, M, W, X, Y, A                    

were cloned into the EcoRI/BamHI sites of AEC127 ​75​. For σ​A​, a minimal σ​A promoter was used from the                   

trpE ​gene​68​. Target promoter sequences for alternative sigmas are described in a later section. 
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3) amyE::P​?​-3Xcfp Spect​R​. ​Target promoters of each alternative sigma factor, ? = B, D, L, M, W, X,                 

Y, were cloned into the EcoRI/Nhe1 sites of plasmid amyE::3XCFP ​Spect​R​68​. This plasmid, based on               

pDL30, contains 3 separate copies of ​cfp​, each with its own RBS. Target promoter sequences are                

described in a later section. 

4) amyE::P​hyperspank​-sigB Spect​R ​- The coding region of sigB, along with a 5’ transcriptional             

terminator, was cloned behind the ​P​hyperspank ​IPTG-inducible promoter in plasmid pDR-111 (gift of D.              

Rudner, Harvard). 

5) pyrD::P​B​-cfp kan​R​. Target promoter of σ​B​, followed by the CFP fluorescent protein gene, was              

cloned into the EcoRI/BseRI site of the ECE171 plasmid ​76​. 

 

Target Promoters for Sigma Factors 

Below is a list of the promoters used to report on each sigma factor’s activity. Each sequence below                  

contains a binding site for the given sigma factor, and were cloned into the requisite targeting plasmid.                 

Note restriction enzyme sites are ​not ​included in the displayed sequences. 

  

1) σ​B​ : Sequence was chosen from the σ​B​ binding site upstream of the ​rsbV​ gene ​77,78​. 

5’-GTTTCTTGGAGCGTCCTGATCTGCAGAAGCTCATTGAGGAACATATGTGTTCCTCTGCGCAGGAAATGGTCAAA

AACATTTATGACAGCCTCCTCAAATTGCAGGATTTTCAGCTTCACGATGATTTTACGTTAATTGTTTTGCGGAGAAA

GGTTTAACGTCTGTCAGACGAGGGTATAAAGCAACTAGTGATTTGAAGGAAAATTTG - 3’ 

 

2) σ​D​: Sequence was chosen from the σ​D​ binding site upstream of the ​flgB​ gene ​79 

5’ – TTTTGCATTTTTCTTCAAAAAGTTTCAAAAATGCCGAAAAGAAAGGAGAAAAAACAGAAATTCTG –3’ 

  

3) σ​L​: Sequence was chosen from the σ​L​ binding site upstream of the ​ptb​ gene ​33​. 
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5’- 

AATATGGCCTTGCAAATGAAGGCATGCAATAATTTGCAGAATAAACGCAAACATCTGCACGAATGTTTCGGTATAC

CTGGTATGACAGCACCCTTAAGAGCTGGCATGGAACTTGCATAATAAAAGGCGGAG – 3’ 

 

 4) σ​M​: Sequence was chosen from the σ​M​ binding site upstream of the ​sigM ​gene ​80​. 

5’ – TTTGCATGTAATGTGCAACTTTAAACCTTTCTTATGCGTGTATAACATAGAGG-3’ 

  

5) σ​W​: Sequence was chosen from the σ​W​ binding site upstream of the ​ydbS ​gene ​81​. 

5’ – TTAAGAATGAAACCTTTCTGTAAAAGAGACGTATAAATAACGACGAAAAAAAG – 3’ 

 

6) σ​X​: Sequence was chosen from the σ​X​ binding site upstream of the ​sigX ​gene ​82​. 

5’ – TTGTAATGTAACTTTTCAAGCTATTCATACGACAAAAAAGTGAACGGAGGG – 3’ 

 

7) σ​Y​: Sequence was chosen from the σ​Y​ binding site upstream of the ​sigY ​gene ​73​. 

 5’ – GAATTGTAAAAAAGATGAACGCTTTTGAATCCGGTGTCGTCTCATAAGGCAGAAAAACA – 3’ ​ww 

 

2.7.3. Microscopy and Sample Preparation 
 

All data were acquired using a CoolSnap HQ2 camera attached to a Nikon inverted TI-E microscope,                

equipped with the Nikon Perfect Focus System (PFS) hardware autofocus module. Molecular Devices             

commercial software (Metamorph 7.5.6.0) controlled microscope, camera, motorized stage (ASI          

instruments), and epifluorescent and brightfield shutters (Sutter Instruments). For experiments in liquid            

culture and agarose pads, epi-illumination was provided by a 300 W Xenon light source (LamdbaLS,               

Sutter instruments) connected via a liquid light guide into the illuminator of the scope. Between days,                

relative lamp intensity levels were monitored by taking an image of fluorescent beads and measuring their                
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mean intensity. Exposure times were then adjusted to keep per exposure light levels constant between               

experiments. For experiments in the mother machine, epi-illumination was provided by a solid state white               

light source (Lumencor SOLA, Lumencor SOLA). Phase contrast illumination was provided by a halogen              

bulb to allow verification of cell focus and cell shape. Temperature control was achieved using an                

enclosed microscope chamber (Nikon) attached to a temperature sensitive heat exchanger set to 37 °C. All                

experiments used a Phase 100x Plan Apo (NA 1.4) objective. Chroma filter sets used were as follows:                 

#41027 (mCherry), #41028 (YFP), and #31044v2 (CFP). The interval between consecutive imaging was             

15 minutes. 

 

Unless otherwise noted, cells were grown in Spizizen’s minimal media, or SMM ​83​, which uses 0.5%                

glucose as the carbon source, and tryptophan (50 μg/ml) as an amino-acid supplement. Mycophenolic              

acid (MPA) was dissolved in DMSO and diluted 1000 fold into working concentrations in liquid and pad                 

conditions. IPTG was dissolved in H​2​O and diluted 1000 fold into working concentrations.             

Concentrations of 0.1% DMSO were not found to affect cell growth or σ​B​ activity. 

 

Samples were prepared following a time-lapse microscopy protocol described previously​84​. A stab from a              

glycerol stock was inoculated into SMM, placed into a 30 C shaking incubator, and grown overnight.                

Cells were then diluted back to a final concentration of 0.01 OD​600 in a total volume of 2 ml of SMM.                     

Cells were then grown in a 37 °C shaker for 3 hours.  

For liquid culture experiments, MPA (MP Biomedicals cat #194172) was then added to the culture to a                 

final concentration for 40 μg/ml. Cells were returned the 37 °C shaker for 3 hours, after which 2 μl of                    

culture was spotted onto an agarose pad. Agarose pads were constructed of 1.5% low melt agarose                

solution in PBS, and then imaged. 
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For time-lapse movies, cells were spotted on solidified 1.5% low melt agarose in SMM pads. MPA was                 

also added to the pads to final concentration of 40 μg/ml. These prepared pads were then enclosed in                  

coverglass bottom dishes (Wilco #HBSt-5040), sealed with parafilm or grease to  

prevent evaporation, and then imaged. 

 

Sample preparation for stationary-phase (conditioned medium) experiments 

Conditioned medium was prepared growing PY79 wild-type B. subtilis strain in 2 ml of LB at 37 °C for                   

4.5h. Then, this culture was diluted in 23 ml of fresh LB and was grown at 37 °C for 17.5h. After this,                      

cells were removed by centrifugation (at 5000 rpm for 10 min) and the supernatant was sterilized by                 

filtration (using 0.2 μm pore-size filters) and stored at −80 °C. This conditioned media protocol was                

defined previously ​85​. 

 

Cells were grown from glycerol stocks in LB until OD​600 1.5-3.5, then diluted back into LB (1:10) in PBS                   

to an OD​600 of 0.05. This culture was grown at 37 °C for a minimum of 4 hours and a maximum of 7,                       

when cells were diluted to an OD​600 of 0.8-0.1 with conditioned medium (1:45) in PBS for imaging. 1.5%                  

low melting agarose pads were prepared with conditioned medium (1:45) in PBS. After allowing cells to                

equilibrate for 2-3 hours, time-lapse acquisition was started. 

Sample preparation for Mother Machine Experiments 

Wafer Construction 

Silicon wafers were constructed using photolithography by Shivakumar Bhaskaran at the Searle            

CleanRoom Manager at the University of Chicago. The CAD file for the design was a kind gift from                  

Richard Losick and Johan Paulsson ​86​.  

 

Chip Construction 
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Mother machine chips were constructed by first mixing Sylgard 184 (Dow Corning) Parts A and B in                 

ratios of 10 to 1 by weight, respectively. Both parts were thoroughly mixed together, and then degassed in                  

a vacuum chamber (Welch 256413-01) for 1 hr or until there was no visual sign of bubbles. The PDMS                   

mixture was poured onto a wafer that had been placed into a ‘boat’ of aluminum foil, then baked at 65 °C                     

overnight. The solidified PDMS was then carefully peeled off the wafer, cut with a scalpel to isolate the                  

device, and fluidic inlets and outlets were created with with a 0.5 mm diameter hole punch (World                 

Precision Instruments). 

 

Chip Bonding to Coverslip 

Glass coverslips (#1.5 Gold Seal 3416) were cleaned by sonicating in an Isopropanol Bath for 30 minutes,                 

then sonicating in deionized water 3 times for 30 min. The microfluidic chips were cleaned simply by                 

applying and removing Scotch tape multiple times. Chips were bonded using a plasma cleaner              

(Autoglow) with an attached O​2 tank, at 50 W for 6 seconds, and was performed at the Micro Nano                   

Fabrication Laboratory at Caltech. The chip-coverslip complex was then baked at 85 °C overnight.              

Importantly, we found using O​2 with the plasma cleaner strengthened the bond between the glass               

coverslip and PDMS chip.  

 

Cell preparation and Cell Loading onto Chip 

Cells were grown from glycerol stocks in SMM at 30 °C overnight. Cells were diluted to 0.01 OD​600 in                   

the morning, and then grown for 3 hours at 37 °C. MPA was then added to a final concentration of 40                     

μg/ml, and then the culture was grown at 37 °C for another 6 hours. Cells were then pipetted into the chip                     

inlet by utilizing gel loading tips (Molecular BioProducts 2155). To ensure cell entry into the narrow side                 

channels of the chip, the entire coverslip and chip assembly was placed into a custom adapter ​86​, and then                   

spun in a tabletop microcentrifuge (Eppendorf 5424R) for 10 min at 3000 rcf.  
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Fluidic inlet and outlets 

Fluid flow was driven by a syringe pump (NE-1600, syringepumps.com), which can drive up to six 10-ml                 

syringes (BD 309604) in parallel. Unless otherwise noted, we used a flow rate of 1.5 μl/min. We used                  

Tygon tubing (Saint Gobain AAD04103) for all tubing purposes. A blunt end needle (McMaster-Carr              

75165A681) interfaced between the syringe and the tubing, and the same blunt end needle (with luer lock                 

tip removed) interfaced between the tubing and the chip.  

 

Media driven by the syringe 

Unless noted otherwise, the media used in the mother machine was SMM, supplemented with i and 100                 

μg/ml BSA (Sigma A7906). 

 

The exception was the competition assay in the mother machine. Syringes were initially loaded with the                

media as described above, namely SMM + 40 μg/ml MPA + 100 μg/ml BSA. But in the middle of                   

acquisition, they syringes were switched to new syringes that contained the same media, excepted              

supplemented with additional 1 mM IPTG. 

 

Mother Machine Microscopy 

The coverslip/chip apparatus with attached fluidic inputs and outputs was fixed to the microscope stage               

insert (I-3014, ASI Imaging) using lab tape, and then imaged as described in the Microscopy section. 

 
Competition Assay in the Mother Machine 

Cells were loaded into the mother machine as described above.  

Multiple σ factor simulation 
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We constructed a model to simulate the activity of five identical, independent σ factor pathways,               

interacting only through their association with shared RNA polymerase core (R). The main features of the                

model are: 

● Transcriptional autoregulation. Each sigma factor comprises an operon containing the σ factor (S​i​,             

where i = 1, 2, … 5) and its cognate anti-σ factor (A​i​). This operon is activated by its own σ factor. A                       

sixth σ factor with no anti-σ is considered, representing the housekeeping factor σ​A​.  

● Inhibition by a co-expressed anti-σ factor. The σ factor binding to its cognate anti-σ prevents it from                 

associating with RNAP. 

● Limiting levels of RNAP resulting in competitive binding between σ factors. 

● A ligand that sequesters its cognate anti-σ. A common feature among extra-cytoplasmic (ECF) sigma              

factors is that in most cases the anti-σ is a transmembrane protein that only releases its cognate sigma                  

factor when it receives a certain input from the extracellular environment ​87​. Hence, we implemented              

a ligand (L​i​) in our model responsible for sequestration of its cognate anti-σ to allow for the release of                   

the corresponding σ factor. 

This minimal structure is sufficient to generate pulses in the σ·RNAP complex concentration that cause 

the alternative sigma factors to time-share core RNAP. 

An additional equation (equation S2, below) simulates σ​A​, the main - or housekeeping - σ factor. Its                 

structure resembles that of the alternative σ factors, but without an anti-σ factor or corresponding ligand.                

The removal of the anti-σ factor results in a non-pulsatile and constitutive σ​A​·RNAP concentration. 

The transcription terms for σ factors and anti-σ factors are assumed to be linear, as are all degradation                  

terms. The positive transcriptional regulation is modeled with Michaelis-Menten kinetics. σ​A is assumed             

to be expressed at a level larger than the alternative σ factors, thus effectively avoiding competing with                 

them. Negative regulation occurs by way of sequestration, with linear rates for complex association and               
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dissociation. Importantly, the sigma-RNAP complex produces more anti-sigma than sigma, a feature            

consistent with experimental measurements​88​. This relative advantage in anti-sigma production allows           

anti-sigma levels to 'catch up' to sigma levels and terminate the pulse. The ligand concentration was                

generated in bursts distributed randomly and uniformly over time, and exponentially distributed in             

magnitude. This was motivated by previous observations ​89–91 that cellular protein concentrations follow a              

gamma distributed Ornstein-Uhlenbeck (GOU) process. This implementation allows for independent          

manipulation of burst size and frequency. To optimize computational efficiency, ordinary (not stochastic)             

differential equations were solved between the stochastic ligand bursts in the discretized stochastic GOU              

process. 

The following ODEs describing the dynamics for each species and their complexes were solved              

numerically in MATLAB using a variable step BDF method         

(​http://www.mathworks.co.uk/help/matlab/ref/ode15s.html​). Parameters can be found in the table below.         

The MATLAB codes for the model simulation and analysis are available upon request. 

Alternative σ factors (S​i​): 

transcription + positive auto-regulation + complex dissociation + complex association + 
degradation 

[RS] [RS] [SA]dt
d[S]i = αs + βs i + krs− i + ksa− i (S1) 

                                 [R][S] [S] [A] [S] − krs+ i − ksa+ i i − δs i  

Housekeeping σ factor (S​A​): 

transcription + positive auto-regulation + degradation 

[RS] [RS] [R][S] [S]dt
d[S]A = αsA + βsA A + krsA− A − krsA+ A − δsA A (S2) 

Anti-σ factors (A​i​): 

transcription + up-regulation + complex dissociation – complex association – degradation 

[RS] [SA] [AL]dt
d[A]i = αa + βa i + ksa− i + kal− i (S3) 

50 

https://paperpile.com/c/2QUPe4/z7hIy
https://paperpile.com/c/2QUPe4/PM8JM+NdTzf+y0ZKH
http://www.mathworks.co.uk/help/matlab/ref/ode15s.html


                         [S] [A] [A] [L] [A]  − ksa+ i i − kal+ i i − δa i  

RNA polymerase​⋅​σ factor complex (RS): 

complex association – complex dissociation – degradation 

[R][S] [RS] [RS]dt
d[RS]i = krs+ i − krs− i − δrs i (S4) 

RNA polymerase​⋅​σ​A​ complex (RS​A​): 

complex association – complex dissociation – degradation 

[R][S] [RS] [RS]dt
d[RS] = krsA+ A − krsA− A − δrsA A (S5) 

Anti-σ factor​⋅​σ factor complex (SA): 

complex association – complex dissociation – degradation 

[S] [A] [SA] [SA]dt
d[SA]i = ksa+ i i − ksa− i − δsa i (S6) 

Ligand (L): 

complex dissociation – complex association – degradation 

[AL] [A] [L] [L]dt
d[L]i = kal− i − kal+ i i − δl i (S7) 

Anti-σ factor​⋅​ligand complex (AL): 

complex association – complex dissociation – degradation 

[A] [L] [AL] [AL]dt
d[AL]i = kal+ i i − kal− i − δal i (S8) 

The free amount of RNAP is given by the conservation law 

 [  R  ] = Rtot − ∑
 

i
[RS]i (S9) 

where the sum runs over all sigma factors, including the housekeeping sigma factor. 

Finally, the dynamics of the ligands are modified by adding the random quantity ε​0 
(exponentially distributed) at random times T​0​ (uniformly distributed) throughout the simulation. 

L(t)(t)→L(t) εL +  0  (S10) 

 

Model interactions and rate parameter values. 
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Reaction Parameter Description Reactant(s) Value 

Basal 
transcription 

α​s Basal rate alternative σ factor 1.5 nM/min 

α​sA Basal rate 
housekeeping σ​A 

factor 180 nM/min 

α​a Basal rate anti-σ factor 0.6 nM/min 

Up-regulation 

β​s Transcription rate alternative σ factor 0.06 min​-1 

β​sA Transcription rate σ​A  6×10​-4​min​-1 

β​a Transcription rate anti-σ factor 0.09 min​-1 

Association 

k​rs+ Binding rate RNAP, σ factor 0.03 nM​-1​min​-1 

k​rsA+ Binding rate RNAP, σ​A​factor 0.3 nM​-1​min​-1 

k​sa+ Binding rate 
σ factor, anti-σ 
factor 0.024 nM​-1​min​-1 

k​al+ Binding rate 
anti-σ factor, 
ligand 0.018 nM​-1​min​-1 

Dissociation 

k​rs- Unbinding rate 
RNAP•σ factor 
complex 0.3 min​-1 

k​rsA- Unbinding rate 
RNAP•σ​A​factor 
complex 0.003 min​-1 

k​sa- Unbinding rate 
σ factor•anti-σ 
factor complex 0.06 min​-1 

k​al- Unbinding rate 
anti-σ factor•ligand 
complex 0.03 min​-1 

Degradation 

δ​s Degradation rate alternative σ factor 0.0167 min​-1 

δ​sA Degradation rate 
housekeeping σ​A 

factor 0.0167 min​-1 

δ​a Degradation rate anti-σ factor 0.0167 min​-1 

δ​rs Degradation rate 
RNAP•σ factor 
complex 0.0167 min​-1 

δ​rsA Degradation rate RNAP•σ​A​complex 0.0167 min​-1 

δ​sa Degradation rate 
σ factor•anti-σ 
factor complex 0.0167 min​-1 

δ​al Degradation rate 
anti-σ factor•ligand 
complex 0.0167 min​-1 

δ​l Degradation rate ligand 0.0167 min​-1 

Total RNAP R​tot Concentration RNAP 12.6μM 

Burst size ε​0 Concentration ligand 10 µM 

Burst frequency T​0 Rate ligand 3.33×10-3min​-1 
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2.7.4 Quantification and Statistical Analysis 

Image Analysis for Liquid Culture Snapshots 

Quantitative image analysis of microscopy images was performed in MATLAB as described previously             

92​. Briefly, the constitutive mCherry was used as a segmentation channel, and cell edges were detected                

using a Laplacian of Gaussian filter. The segmentation masks identified with mCherry were then used to                

extract cell fluorescence values from other channels. 

 

Image Analysis for Agarose Pad Movies 

Quantitative movie analysis used custom image analysis code, namely the Schnitzcells software written in              

MATLAB, as described in previous work ​84​. Briefly, cells were segmented on the constitutive mCherry               

using edge detection with a Laplacian of Gaussian filter. Cell masks were then manually corrected,               

tracked, and then the cell tracks were further manually corrected, all using Schnitzcells. 

 

Image Analysis for Mother Machine Movies 

Each microscope image contained multiple subchannels. We used custom MATLAB code to            

automatically identify subchannels, and crop them out into new image files. This was important not only                

to follow cells in individual subchannels, but to reduce the computational load of segmentation (described               

below). 

 

Cell segmentation was accomplished using the Trainable Weka Segmentation plugin in Fiji, and was              

automated using a custom Beanshell script inside Fiji. We were careful to train the plugin to accurately                 

separate adjacent cells. Cell tracking of the mother cell was done in MATLAB, where for every frame we                  

simply took the mother cell at the ‘end’ of the channel. This tracking method produced accurate tracks                 
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except in cases of cell death or flickering segmentation, where a cell very dim in mCherry could be                  

segmented in one frame but not the next, leading to a tracking error. Next, extraction of cell fluorescence                  

and other cell properties such as cell length were done in MATLAB. 

 

To account for tracking errors, we used a custom Graphical User Interface (GUI) in MATLAB, based on                 

one used previously ​93​. By manually searching for obvious errors in cell length, we manually marked                

problematic tracks in the GUI to be excluded from any further analysis. 

 

Promoter Activity Calculation 

Calculation of single-cell promoter activity, also called σ activity, is similar to previously reported              

methods ​68​, and was calculated in the same way for both agarose pad and mother machine movies. Here                  

we provide a brief overview of these calculations. 

 

We are interested in finding the instantaneous rate of fluorescent protein production in individual cells.               

We calculate this quantity from timelapse microscopy by taking a time derivative of the fluorescent               

protein level in the cell. Consider a timelapse movie of a single growing ​B. subtilis ​cell expressing ​yfp​.                  

For the moment, let us ignore cell division, so we are simply considering the cell as it elongates along its                    

major axis. We denote the total fluorescence of the cell , the ​yfp promoter activity (i.e. production          (t)T        

rate) , and the photobleaching rate of ​YFP . Note that and are functions of time, and that (t)P        γ    (t)T   (t)P        

includes YFP degradation as well as photobleaching, although the degradation rate is typicallyγ               

negligible. These variables are related to each other as follows: 

 
(t) (t) T (t)T ′ = P − γ  

 
Here, the symbol denotes a time derivative, and computing evidently requires measurement of the  ′         (t)P       
time derivative . Although we could try to differentiate from microscopy data, this can be  (t)T ′        (t)T        
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sensitive to cell segmentation errors. As an alternative, we can replace with , where           (t)T   (t) (t)V (t)T = M   
is the mean fluorescence of the cell, and is the cell volume. In addition, since ​B. subtilis(t)M          (t)V           

grows lengthwise, we replace with , where ​c is a constant and is the measured cell    (t)V   (t) L(t)V = c        (t)L      
length at time . The value of should be approximately equivalent to the cell’s cross-sectional area, but   t     c            
we will omit in further calculations, since it will only change the final values by a constant factor, and   c                  
fluorescence units are arbitrary to begin with. After substituting these 2 relationships into the above               
equation for , we can solve for :(t)T ′ (t)P   

  (t) (t) T (t)T ′ = P − γ  

(t) γM (t)V (t)(M (t)V (t))′ = P −   

(t)V (t) (t)V (t) (t) γM (t)V (t)M ′ + M ′ = P −   

(t)L(t) (t)L (t) (t) γM (t)L(t)M ′ + M ′ = P −   

(t) (t)L(t) (t)L (t) M (t)L(t)P = M ′ + M ′ + γ  

Promoter activity   (t) (t) M (t)≡ L(t)
P (t) = M ′ + M L(t)

L (t)′
+ γ  

 
This final equation enables us to calculate the ​promoter activity​, or ​σ ​activity​, defined as , or the               L(t)

P (t)    

production rate per unit length of the cell, in terms of observables. σ activity can be interpreted as the                   

approximate protein production rate per chromosomal equivalent, allowing comparison of protein           

production through all points in the cell cycle. To compute time derivatives, the measured values of                (t)M  

and were first smoothed to reduce noise (MATLAB ​smooth function with Lowess algorithm). For , (t)L               γ  

we used a value of 0.05 as described previously ​68​. 

 
Pulse Identification for Agarose Pad Movies 

To automatically identify pulses from the promoter activity traces, we used custom MATLAB software ​68​.               

The code first identified local maxima (peaks) in the traces of promoter activity vs. time. A point in the                   

trace was deemed a peak if its height was the largest within a window of 7 frames (frames were separated                    

by time intervals of 10-15 min depending on the movie). In other words, a peak at time ​t​k must have                    

height greater than all heights at times ​t​k-3 through ​t​k+3​. For peaks near the start or end of the trace, the                     

window size was decreased as necessary, e.g. a peak at timepoint ​t​3​ was compared against ​t​0​-​t​6​. 
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To suppress peaks arising from random fluctuations, the code utilized 2 additional parameters: 1)              

amplitude and 2) amplitude relative to baseline. The amplitude was defined as the height of the peak                 

minus the average height of the 2 flanking minima surrounding the peak. The amplitude relative to                

baseline was defined as the height of the peak divided by the average height of the 2 flanking minima.                   

The code rejected potential peaks whose amplitude is below the defined threshold of 7.5 arbitrary               

units(a.u) The code also rejected peaks whose amplitude relative to baseline was less than 0.5 a.u.. These                 

two thresholds were chosen to avoid peak detection in timelapse data from a non-pulsatile P​hyperspank​-yfp               

strain induced with IPTG, where the IPTG level was such that the average activity of the P​hyperspank​-yfp was                  

equal to that of the P​B​-yfp strain at 40 μg/ml MPA. Note the P​hyperspank​-yfp strain in movies shows only                   

small fluctuations that are qualitatively distinct from the large pulses from the alternative sigma factor               

reporter strains. The results of automatic pulse detection were checked against raw data and the promoter                

activity traces and showed good agreement with manual identification of pulses. 

 

Pulse Identification for Mother Machine Movies and Pulse Characteristic Calculations 

Pulses were identified from promoter activity traces using MATLAB’s findpeaks function, where the             

minpeakdistance option was set to 5 to prevent double-counting peaks, and the minpeakheight option was               

set to 1.7 standard deviations above the mean activity to suppress detection of small fluctuations. Pulse                

identification showed good agreement with manual inspection of pulses. 

 

Pulse characteristics were also found with MATLAB’s findpeaks function, which has as output options              

the peak widths and peak amplitudes. The average pulse shape (Figure 2C) was found by taking each                 

pulse, subtracting its baseline, and then dividing by the amplitude. The baseline was calculated by               

subtracting the pulse’s max value from the amplitude outputted by findpeaks. Data was pooled across               
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multiple matrix strains carrying the same fluorescent reporter for any given sigma factor, resulting at least                

320 pulses per sigma factor. The normalized pulse amplitude distributions (Figure 2D) were calculated by               

first dividing each sigma's set of pulse amplitudes by its mode, and then plotted the resulting distribution                 

function. 

 

Cross correlation functions, Pulse Triggered Averaging, and L-plots 

All figure panels for the cross correlation functions (Figure 5A), pulse triggered averages (Figure S6) and                

L-plots (Figure 5C) were calculated from the same underlying dataset, namely from the matrix strains               

grown in the mother machine. For each matrix strain, we obtained at least 73 single cell traces that                  

typically grew for at least 30 cell cycles. 

 

Cross correlation functions (ccf) were calculated using MATLAB’s xcov function, with option ‘unbiased’             

enabled, and was performed on mean fluorescence rather than promoter activity traces. To correct for               

long-term changes in sigma activity, the mean time trace was first subtracted from each trace. The ccf for                  

each trace was calculated separately, and the resulting set of ccf’s was averaged for Figure 5. Each                 

average ccf shown was calculated from at least 73 single cell traces. 

 

The pulse triggered average plots (Figure S6) were also calculated from mean fluorescence traces, done as                

follows. Each time trace of mean fluorescence was first converted to Z-scores by subtracting the mean                

trace and then dividing by the standard deviation. Then peaks were computationally identified for one               

sigma (the ‘trigger’ sigma), and for each peak a time window in the other sigma (the ‘plotted’ sigma) was                   

extracted. Importantly,the time window was centered at exactly the peak in the ‘triggered’ sigma. All such                

extracted time windows were averaged and then plotted. To be clear, the plots in (row 1, column 5) and                   
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(row 5, column 1) were generated from the same underlying dataset, namely time traces from the P​B​-cfp,                 

P​D​-yfp strain. Each trace is the average of at least 75 peaks, and the shaded error bars are s.e.m.. 

 

The ‘L-plots’ in Figure 5C were made from promoter activity traces, where pulses were identified with                

MATLAB’s findpeaks function, in which the minpeakheight option was set to 3 standard deviations              

above the mean activity. Each point in the scatter represents a timepoint in which findpeaks identified a                 

peak in either the CFP or YFP promoter activity traces (or both). 
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Chapter 3 σ​W​ creates asymmetry in sigma factor 
competition 
 

3.1 Results 
 
In this project, we ask a very simple question: do ​B. subtilis ​sigma factors compete for limited supply of                   

core RNAP? Although the literature on competition is extensive, most studies have been conducted in               

E.coli​, and there are only a few studies in ​B. subtilis​. Moreover, although these studies in ​B. subtilis                  

suggest the existence of competition, they do not strongly rule it in​94​. 

 

B. subtilis represents an attractive system to study competition between sigma factors. ​B. subtilis has 12                

alternative sigma factors not involved in sporulation, and many are active in the same experimental               

condition (Figure 3.1A, Figure 2.1A). In this study, we focus on 7 alternative sigmas factors, σ​B​, σ​D​, σ​L​,                  

σ​M​, σ​W​, σ​X​, and σ​Y​, which are all active in minimal media plus 40 μg/ml MPA.  

 

We started investigating competition by asking, how does removing one class of sigma factor affect the                

activity of another sigma factor? For instance, how would removing σ​B from ​B. subtilis affect the                

remaining sigmas, such as σ​M or σ​X​? If sigmas compete for RNAP, then removal of one class of sigma                   

factor would free up more core RNAP for the other classes of sigmas; thus the other sigmas should                  

become more active. However, if sigmas do not compete for RNAP, then removal of one class of sigma                  

factor should have little effect on the others.  

 

To systematically remove individual classes of sigma factors and study their effect on other sigma factors,                

we constructed a 7x7 ‘deletion’ matrix of strains. Each matrix strain is genetically deleted for one sigma                 
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factor, and also reports on the activity of another sigma factor, where activity is read out via a fluorescent                   

reporter. Sigma deletions represent a perturbation that is of physiological dosage, unlike overexpression             

experiments that may produce a protein to expression levels well beyond its natural range. We grew these                 

strains in SMM plus 40 μg/ml MPA, an experimental condition shown in Chapter 2 to broadly activate                 

many sigma factors, and then used fluorescence microscopy to quantify sigma-driven fluorescence. 

 

The expected result if competition exists, and if all sigma factors have roughly equivalent properties, is                

that deletion of one sigma should result in a small increase in another sigma’s activity (Figure 3.1.1.B).                 

For instance, we consider 7 classes of sigmas, σ​1 through σ​7​, that share a limited amount of core RNAP,                   

whose quantity we designate with . Then each of σ​1 through σ​7 receive amount of core RNAP. Now     R         7
R       

if we remove σ​1 from the system, the remaining 6 sigma factors each receive amount of core RNAP,              6
R      

which is ~17% increase over how much core RNAP each sigma factor had originally (Figure 3.1.B) 

 

But the experiments showed us something quite different. Deletion of most sigma factors resulted in               

strong upregulation of σ​W activity, but had relatively minimal effect on the other sigmas(Figure 3.1C). In                

addition, deletion of σ​D resulted in most other sigmas becoming upregulated. The effects in the deletion                

matrix outside of the ∆​sigD row and the σ​W column are clustered around 1, implying that there is no                   

overall bias when the effects outside the ∆​sigD row and the σ​W column are considered together (Figure                 

3.1D) Together, these results suggested a strong asymmetry exists in the system, an effect that would be                 

missed in a less systematic study focusing on only one or two sigma pairs.  
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Figure 3.1. σ​W​ behaves asymmetrically in sigma factor competition.​ (A) Cartoon of sigma factors competing 
for core RNAP. (B) Schematic of expected results from deletion matrix. Each colored entry in the grid represents 
a single deletion matrix strain. The color represents the fold change in sigma factor activity upon deleting another 
sigma factor. Without competition, we expect non-diagonal matrix entries to be 1, represented by green. With 
competition, we expect a change of ratio of 1.17 (see main text), represented by yellow. Notice the diagonal 
elements should be 0, represented by blue. (C) Experimental results from the deletion matrix. (D) Histogram of 
the ratios shown in panel C, except the ​∆sigD row and the σ​W​ column values have been removed. (E) 
Histogram of cell areas for the various sigma deletion strains. The outlier histogram is for the ∆sigD 
strain. 

 
 
Next, we asked whether sigma deletions have any pleiotropic effects, which would complicate the              

interpretation of the deletion matrix results. To assess for pleiotropy, we extracted cell size from the                

microscopy images, and asked whether the sigma deletions had any effect on cell size. We plotted the                 

histogram of cell sizes for each of the sigma factor deletion strains (Figure 3.1.2). We found that deleting                  

sigD significantly increased cell size, but the other sigma deletions did not. Since cell size is associated                 

with increased transcriptional and translational capacity, it is difficult to interpret the ∆sigD row in terms                

of competition. We therefore do not consider this row in further calculations. 
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The deletion matrix with a ‘column’ effect (Figure 3.1.1C) can be explained by 2 possible mechanisms.                

The first possible mechanism is that most alternative sigma factors drive production of a negative               

regulator of σ​W​. In this scenario, deleting any sigma would reduce the cellular concentration of this                

putative σ​W negative regulator, thus allowing σ​W to be more active. There could be a single negative σ​W                  

regulator that is driven by many sigma factors, or alternatively, there could many negative σ​W regulators,                

each driven by one or more different sigma factors. However, there are no known negative regulators of                 

σ​W​ that would fit into this mechanism (though that does not preclude its existence). 

 

In contrast, we can consider a second mechanism: The observation that deleting most any sigma has the                 

same pattern of effect in the deletion matrix suggests that every sigma is acting through some common                 

mechanism or molecule. The natural candidate for this common molecule is core RNAP, since all sigma                

factor bind to this molecule. This mechanism is appealing because it does not invoke many putative                

negative regulators of σ​W​, and can potentially explain all of the data with only sigma factors and core                  

RNAP. 

 

To quantitatively explore how competition alone could give rise to the deletion matrix, we constructed a                

minimal mathematical model of sigma factor competition, in which 7 classes of sigma factors compete to                

bind core RNAP (Figure 3.2A). The model consisted of 7 chemical reactions, and we solved the                

concentrations of each component at steady state, using parameters set at physiologically reasonable             

levels​11,22,95​. Importantly, all sigma factors were symmetric with respect to one another, meaning the              

deletion matrix from this model must be symmetric.  

 

We then asked in the model whether we could reproduce a deletion matrix with a strong ‘column’ effect,                  

specifically by adjusting the affinity and abundance of only one sigma factor. We undertook a parameter                
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search in the model, varying one sigma factor’s affinity and abundance, and asking how these variations                

affected the deletion matrix (Figure 3.2B). And we found one region in parameter space that could                

reproduce the deletion matrix (Figure 3.2B,C).  

 

This region in parameter space was to take one sigma factor, and reduce its affinity by a factor of 10 and                     

increase its abundance by a factor 3. These changes are well within reported differences in sigma factor                 

affinities​95​. This ‘weaker’ sigma is weaker at competing against the other ‘generic’ sigmas, so it is                

generally less able to bind to core RNAP, and leads to the ‘column’ effect in the deletion matrix. 

 
 

 
 
Figure 3.2. Model of asymmetric sigma factor competition. ​(A) The toy model considers 7 reactions, for 7 
sigma factors interacting with a limited supply of core RNAP. (B) Parameter search results. The model started 
with all sigmas symmetric, with the parameters listed in panel A. The parameter search was done by varying the 
parameters for only 1 sigma factor, called σ​W​. More specifically, the parameter search was on a grid, where one 
axis is σ​W​ affinity for core RNAP, and the other axis is σ​W​ abundance. Notice in the left matrix that low σ​W 
affinity leads to the desired effect, where deletion of any sigma leads to high fold change in σ​W​ activity (with the 
obvious exception that deleting σ​W​ leads to a fold change of 0 for σ​W​ activity). Similarly, the right matrix shows 
that at low affinity and high abundance for σ​W​, deleting any sigma leads to relatively lower fold change in a non- 
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σ​W​ sigma.  (C) The deletion matrix from the toy model, using the parameter values identified from panel B. All 
sigmas are symmetric in the model except for σ​5​, which has lower affinity and higher abundance compared to the 
other sigmas.  

 
Although the model faithfully reproduced the main features of deletion matrix, we tested it further by                

using it to make predictions. In particular, the model predicts that overexpression of a generic sigma has                 

different effects on the weak sigma versus another generic sigma (Figure 3.3A). According to the model,                

overexpressing a generic sigma has little effect on another generic sigma, but strongly represses the weak                

sigma. We then tested the veracity of these predictions experimentally. We overexpressed σ​B​, one of the                

generic sigma factors, and measured the effect on σ​W​, the weak sigma, and on σ​D​, σ​M​, and σ​X​, generic                   

sigmas (Figure 3.3B,C). And we found that the experiments matched the model’s predictions.             

Overexpression of σ​B inhibited σ​W activity but not the other sigmas. We emphasize that the model’s                

parameters were set to match the deletion matrix data, and not to these overexpression experiments. And                

together, these experiments represent a partial ‘row’ of an overexpression matrix. In the overexpression              

matrix, every strain overexpresses one sigma factor and reports on another sigma. 
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Figure 3.3.  Predictions from the toy model match experiments.  ​(A) Prediction from the toy model for sigma 
overexpression experiments. Overexpression of a ‘generic’ sigma factor strongly decreases σ​W​, the weak sigma,as 
seen in the red curve). However, the same perturbation has minimal effects on another generic sigma. (B) Effect 
of σ​B​ overexpression on σ​W​ and σ​D​ activity. Notice σ​B​, a generic sigma, inhibits σ​W ​but not σ​D​, consistent with the 
prediction in panel A. (C) Effect of σ​B​ overexpression on σ​M​ and σ​X​ activity, in the left and right plots, 
respectively. The left plot, for instance, contains two histograms, and each histogram is the single cell distribution 
of σ​M​ driven fluorescence. The two histograms differ in that they compare zero vs max σ​B​ induction. Notice that 
σB induction has little effect on σ​M​ and σ​X​ (D). Prediction from the toy model for the effect of σ​W​ overexpression 
on other sigmas. This prediction has not been confirmed experimentally. 

 

3.2 Discussion and Future Directions 
 
Together, our results suggest that core RNAP is limiting in ​B. subtilis​. We systematically explored all                

pairwise functional relationships between 7 alternative sigma factors using our deletion matrix. The             

deletion matrix revealed that deleting most any sigma factor preferentially increases the activity of one               

sigma factor, σ​W​. We then demonstrated with a simple mathematical model that these results are               

consistent with competition for core RNAP, where one sigma factor has relatively low affinity but high                
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abundance. We further tested the model’s predictions by investigating a row of the overexpression matrix,               

and showed that the model’s prediction are matched by experiment.  

 

We note that all of these results could in theory be the result of specific regulation between σ​W and the                    

rest of the sigmas, and that we do not rule out this possibility per se. However, we would argue that our                     

interpretation explains the experimental results in terms of known parameters and interactions, whereas             

the specific regulation hypothesis requires invoking multiple, putative regulatory connections. 

 

We also report the surprising finding that sigma factor competition is highly asymmetric, where σ​W is a                 

‘weak’ factor in a sea of ‘generic’ sigma factors. This can create an odd situation where 2 sigmas                  

seemingly do not compete with one another, even when core RNAP is limited. That is, overexpression of                 

a generic sigma depletes σ​W from core RNAP before affecting any other sigma (Figure 3.3A,B,C). Indeed,                

a study that focuses on competition between generic sigma factors could mistakenly conclude that              

competition for core RNAP does not even exist. In this way, the fraction of core RNAP bound by σ​W                   

represents a ‘free pool’ that is easily accessible to the other sigma factors. Why the cell would have σ​W                   

stand apart in this way is an open question. 

 

That the toy model can reproduce the main experimental features of the model is surprising, since it                 

effectively ignores many layers of sigma factor regulation. Many sigma factors are positively and              

negatively regulated, and each sigma factor typically has idiosyncratic regulation. However, the system             

behaves in a fashion where average sigma competition can be simply explained by effective abundances               

and affinities, without need to include the various feedback loops and regulatory arrows. Although these               

kinds of regulations are surely important at the single cell level​68​, here we propose that they may not have                   

a strong effect on average sigma behavior. 
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In future work, we propose to systematically explore the rest of the overexpression matrix. Although we                

have experimentally tested one ‘row’ of an overexpression matrix (Figure 3.3), it would be informative to                

measure the other rows. In particular, we expect the overexpression matrix to have a ‘column’ effect,                

where overexpression of most any sigma strongly inhibits σ​W but not the other sigmas. One interesting                

row to investigate is be the σ​W overexpression row. The model predicts an interesting effect of σ​W                 

overexpression, where σ​W has little effect on the other sigmas until its levels reach some threshold, and                 

then transitions to sharply inhibiting the other sigmas (Figure 3.3D).  

 

Future work would also include measurements of sigma factor binding affinities and abundances,             

specifically to examine whether σ​W indeed has lower binding affinity core RNAP, and whether it is more                 

relatively more abundant. However, the interpretation on σ​W abundance may be difficult. Due to the               

presence of anti-sigmas and anti-anti sigmas, it is hard to estimate from abundances alone how much σ​W                 

is actually actively competing for core RNAP.  

 

Additional modeling work could include 1) modeling the effect of σ​A​, the housekeeping sigma factor, and                

2) systematically varying the amount of total RNAP to ensure these results are not dependent on the                 

specific choice of total RNAP, and 3) relating these modeling results back to the full model described in                  

Chapter 2. 

 

It is quite possible, however, that the affinity of σ​W for core RNAP is not appreciably lower than those of                    

the other sigmas, and that the underlying mechanism is something different entirely. In this case, we will                 

examine other differences between sigma factors as the source of the asymmetric competition. In              

particular, we plan to consider the the feedback loops and additional interactions that we so blithely                

67 



brushed away a few paragraphs ago. For instance, in the full model of sigma factor activity shown in                  

Chapter 2, it is possible to recreate the column effect of the deletion matrix by reducing the positive                  

feedback strength of σ​W (result not shown here). Thus we emphasize that there are multiple possible                

mechanisms that could underlie asymmetric competition, and we leave it to future studies to elucidate               

which are the most significant. 

 

3.3. Materials and Methods 
 
All experimental methods were as in Chapter 2.  

3.3.1 Modeling 

The modeling considered 8 chemical species, RNAP and 7 classes of sigma factors, the latter denoted σ​1                 

through σ​7​. Each sigma factor could bind to RNAP, where the binding equilibrium was governed by                

dissociation constants K​1 through K​7​, for σ​1 through σ​7 respectively. The abundance of each sigma factor                

was initially set at 1 μM, the abundance of RNAP at 4 μM, and all dissociation constants at 1 nM, which                     

are physiologically reasonable​48​. Thus the system was governed by 7 chemical equations shown below: 

 

 

Chemical Equations and Initial Parameter Set.​ All dissociations constants were set at 1nM, all total 
sigma abundances at 1 μM, and the total RNAP abundance at 4 μM.  
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Analysis of the system above, as well as all other analyses, was done at steady state. To solve for the                    

steady state of the system, each equation above was first re-arranged to be expressed in terms of the                  

RNAP-σ complexes. For instance, the equation for σ​1​ was re-arranged as below:  

 

Rearrangement of the equilibrium binding equation for σ​1​.​ The term σ​1​, which represents the 
concentration of free σ​1​, has been replaced by a term representing the difference between the total σ​1 
concentration and the complex σ​1​R. Similarly, the term R, which represents the concentration of free 
RNAP, has been replaced with a term representing the difference between the total RNAP 
concentration and the sum of all concentrations of σ​1​R through σ​7​R. 

 

The same rearrangement shown above for σ​1 was then done for all 7 sigma factors, leading to the below                   

system of 7 equations: 

 

 

69 



 

System of 7 equations​. Each equation is simply the re-arrangement of the chemical equilibrium 
equation of a sigma factor binding to RNAP, and there are 7 total equations for 7 sigma factors. 

 

 

The above system of 7 equations has exactly 7 unknowns, namely σ​1​R…σ​7​R. All other terms are either                 

equilibrium constants, the ​total concentration of a sigma factor, or the total concentration of RNAP, all of                 

which are predetermined values. The solution of this system is the steady state values of σ​1​R…σ​7​R. To                 

find this solution, we used the vpasolve command in MATLAB 2016a. Any results from vpasolve that                

contained negative or complex solutions was discarded. 
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For any sigma factor, the two ‘knobs’ that can affects its behavior are its total abundance and its K​D​.                   

These two knobs were systematically varied to search for a parameter regime that replicated the effects of                 

the experimental knockout matrix. Finally, yo model the deletion of any sigma factor, the system of                

equations was simply solved for remaining 6 sigma factors rather than 7.   
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Chapter 4. Cell death activates σ​X​ in neighboring cells, a 
novel mode of sigma activation 

4.1 Introduction 
Alternative sigma factors respond to a wide variety of stresses. For instance, the general stress response                

factor σ​B of ​B. subtilis activates when cells enter stressful stationary phase​28​. σ​B also activates in response                 

to heat and ethanol stress​96​. Similarly, σ​L protects against cold stress​33​, whereas σ​Y responds to nitrogen                

deprivation​97​. Sigma factors also respond to a wide variety of small molecules or proteins: σ​V protects                

against lysozyme​98​, and σ​W​ and σ​M​ against  cell wall antibiotics induce σ​W​ and σ​M​ ​99​. 

 

Here we report a novel activator of sigma factors. We show that cell lysis causes adjacent cells to activate                   

σ​X​, which is a previously unreported activator for σ​X and more broadly for sigma factors. We observe this                  

effect in multiple experimental conditions. In addition, isolated cell extract activates σ​X​, suggesting that              

cell lysis contains some chemical or agent that is a σ​X activator. This effect is specific to σ​X​, as cell lysis                     

only has minimal effects on other sigmas.  

 

Unlike Chapter 2, this chapter is unpublished work. I end the chapter with discussion on the future                 

directions for this project. In particular, I propose that cell death and σ​X act in concert to form wrinkles in                    

biofilms.  

4.2 Results 
This project was borne out of a screen, where we were testing different chemical compounds for their                 

effects on sigma factors. One of the compounds we tested was the antibiotic bacitracin, which was                

previously reported to activate σ​X in batch culture experiments​70​. Since previous studies have shown that               
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sigma factors activate heterogeneously at the single cell level (see Chapter 2), we asked whether               

bacitracin could have interesting effects on σ​X when studied in single cells. To examine the single cell                 

activity of σ​X​, we obtained timelapse microscopy of growing microcolonies of the P​X​-yfp reporter strain,               

grown on agarose pads supplemented with Spizizen’s Minimal Medium (SMM-Agarose pads) and 30             

µg/ml bacitracin.  

 

And we observed something unexpected. We found that cell lysis precedes activation of σ​X in cells                

neighboring that lysed cell (Figure 4.1A). Within 15 min of a cell lysis event, we saw clear activation of                   

σ​X in neighboring cells. We next asked how long σ​X is active following a cell lysis event. To do so, we                     

calculated the derivative of the yfp fluorescent signal, since the yfp protein is stable. We call this                 

derivative the ‘promoter activity’. These calculations revealed that the σ​X activity post-lysis lasts for              

roughly 90 min (Figure 4.1B). We believe this timescale is set by the cell lysis contents being diluted out                   

into the rest of the agarose pad. In addition, every cell lysis event we observed led to increased σ​X activity                    

in neighboring cells. Conversely, we also found that for every cluster of cells simultaneously active in σ​X​,                 

there was at least 1 cell lysis event preceding it within 45 min. However, σ​X activity was not strictly                   

dependent on cell lysis (Figure 4.1A), as we observed cells active in σ​X that had not been previously                  

exposed to a cell lysis event. 
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We then wondered whether this cell death and σ​X effect is dependent on bacitracin at all. To answer this                   

question, we obtained timelapse movies of the P​X​-yfp reporter strain, except this time we did not add any                  

bacitracin. Cells were grown on SMM-agarose pads with no otherwise stress added. And we found that                

cell death precedes σ​X even without any otherwise stress (Figure 4.2). These results suggest that the link                 

between cell death and σ​X is a general phenomenon not dependent on any particular experimental               

condition. 
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We have so far demonstrated that cell lysis events precede σ​X activity in neighboring cells, but this                 

temporal correlation does not imply causation. To explore this potential causal link between cell death               

and σ​X , we turned to a cell lysis experiment. We reasoned that if cell lysis causes σ​X to activate in nearby                      

cells, then we should be able to recreate this effect by harvesting our own cell lysate and then adding it to                     

our P​X​-yfp reporter. We grew liquid, batch cultures of wildtype ​B. subtilis ​cells and then harvested the cell                  

lysate with sonication. We added this harvested cell lysate in various amounts to our P​X​-yfp reporter, and                 

found that cell lysate activates σ​X dose-dependently (Figure 4.3). In addition, we observed minimal effects               

on other sigma factors (Figure 4.3). This cell lysate experiment on σ​X was repeated multiple times, but the                  

effect on the sigmas besides σ​X was only repeated once. So it remains to be determined whether the small                   

effects on the other sigmas in Figure 4.3 are reproducible. 
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4.3 Future Directions 
One possible future direction is to identify the agent in the cell lysis extract that is activating σ​X​. The                   

categories of possible agents include nucleic acids, proteins, sugars, cell wall fragments and even lytic               

viruses. A virus is an attractive possibility, since the observation of cell lysis begs the question, what                 

causes the cell to lyse in the first place? One possibility is a virus, and that σ​X is protecting against the                     

released lytic viruses. However, it is also possible that bacterial cells ‘age’, and that the old pole cells are                   

the ones that are more likely to lyse than their younger counterparts. It has previously been reported that                  

σ​X​ protects cationic antimicrobial peptides, and also against H​2​O​2​
34​. But the agent in the cell extract  

 

76 

https://paperpile.com/c/2QUPe4/Jlex


A second possible direction is to explore the functional roles could exist for this link between cell death                  

and σ​X​. And we found in the literature an interesting possible function in the context of biofilm wrinkle                  

formation. ​B. subtilis colonies when grown in the right conditions exhibit interesting 3D-structures known              

as ​wrinkles (Figure 4.4A), and it is an open question how these these tortuous wrinkle formations are                 

formed.  

 

One recent study demonstrated that localized, massive cell death precedes wrinkle formation​100 (Figure             

4.4B). In addition , they showed induction of cell death in a particular spot in the biofilm induced                  

wrinkles at that spot. Separately, another group showed that genetically deleting ​sigX causes loss of               

wrinkle formation​101​ (Figure 4.4.C). 

 
We propose that σ​X provides the missing link between cell death and and wrinkle formation. We                

hypothesize that a localized area of massive cell death in the biofilm leads to upregulation of σ​X activity in                   

nearby cells, and that σ​X activity plays an important role in forming the wrinkle structure. In particular, we                  

propose the following studies: 
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1) ​Test in the context of biofilms whether cell death causes σ​X to activate in neighboring cells​. These                  

experiments would mimic the experiments described in this chapter, except done in the context of               

biofilms. It is important to confirm that the link between cell death and σ​X activation exists in biofilms.                  

For instance, the cell lysate in small microcolonies may contain chemical compounds not present in the                

cell lysate from biofilm cells. In addition, there is a subtle technical reason why the link may not exist in                    

biofilms. The experiments described in this chapter used the ​B. subtilis strain PY79, but studies with                

biofilms use ​B. subtilis strain 3610​100​. This is chiefly because strain 3610 has the ability to form biofilms                  

while PY79 does not. And different ​B. subtilis ​strains can exhibit different sigma factor responses to the                 

same stress​29​, raising the possibility that PY79 exhibits the link between cell death and σ​X​, but strain 3610                  

does not. 

 

2) ​Explore the link between cell death and σ​X in wrinkle formation: Here we propose experiments to                 

elucidate how these cell death and σ​X​ interact to drive wrinkle formation. 

 

One possible role for σ​X is that it controls rate of cell death in biofilms. In this scenario, deleting ​sigX                    

leads to decreased cell death, which in turn leads to loss of wrinkles. To test this possibility, we will                   

compare the rates and spatial patterns of cell death in wildtype vs ​sigX ​deleted biofilms.  

 

A second possible role for σ​X is that activates genes important for wrinkle formation in cells around the                  

site of cell death. To test this possibility, we will perform wrinkle induction experiments in biofilms with                 

the ​sigX deletion background. Induction of wrinkle formation has previously been reported, where             

inducing cell death in biofilms leads to wrinkle formation at the site of induced cell death​100​. We will                  

induce localized cell death in ​sigX deleted biofilms, and observe whether wrinkles from at the site of cell                  

death. The lack of wrinkle formation would implicate σ​X as necessary in post-cell death context. Finally,                
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we would propose a rescue experiment, where we induce both cell death and ectopic σ​X in cells                 

surrounding the induced cell death site. However, this experiment may be technically challenging. 

 

A third possible role for σ​X is in wrinkle maintenance. In this scenario, the wrinkles may form normally                  

without σ​X​, but become smoothed without σ​X to maintain them. This seems unlikely because if true it                 

would have been noticed by other groups, but we mention it for completeness. 

4.4 Materials and Methods 
Refer to Chapter 3, both strains and methods are identical to the ones used in that chapter. 
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Chapter 5 Conclusion 
 

5.1 Summary 
In this thesis, I described two projects studying how sigma factors interact with each other, and one                 

project on a novel activation mode and potential function for σ​X​.  

 

The first project proposed a novel mode of sharing limited enzymatic machinery that we call timesharing.                

We showed the alternative sigma factors of ​B. subtilis activate in pulses, compete with another, and have                 

a complex mix of positive and negative correlations. We demonstrated with a mathematical model that               

mixed correlations are actually consistent with competition, a counterintuitive result that may be relevant              

to other studies. 

 

The second project showed that competition between sigma factors is highly asymmetric, where σ​W is the                

weakest sigma. We suggest with a mathematical model that the underlying mechanism is reduced affinity               

of σ​W for core RNAP, paired with increased abundance of σ​W​. The model was fitted to the deletion matrix                   

data, and its prediction for a subset of overexpression experiments was matched by the data. However, we                 

emphasize there are other mechanisms consistent with competition that could also generate the deletion              

matrix. 

 

The third project demonstrated that cell death activates σ​X in nearby cells. This effect was general across                 

many experimental conditions, and also specific to σ​X​. These results suggest that σ​X could be the missing                 

link between cell death and biofilm wrinkle formation. 
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5.2 Future Work 

Here I leave questions to be addressed by future studies  

 

For Chapter 2: 

● How do pulsing, the mixed positive and negative correlations, and the deletion matrix integrate together?               

This work is actually ongoing, in the full model of sigma factor pulsing from Chapter 2, we have identified                   

a parameter regime that reproduces all 3 observations of pulsing, mixed correlations, and the striking               

column effect in the deletion matrix. 

● What is the functional role of pulses? It has not been shown that sigma factor pulses perform any function.                   

One can imagine adding stress to a population of cells, and observing that cells in the middle of a sigma                    

pulse survive cells not pulsing. 

● How can timesharing be leveraged for synthetic biology? Timesharing can be used to create a               

heterogeneous population of cells from the same underlying genome, thus avoiding problems in mixed              

populations of bacteria where a subpopulation will drop out. This is a project in search of the right context.                   

I toyed with the idea of using two negatively correlated sigma factors to drive two different metabolic                 

programs of glucose and xylose metabolism, as these two metabolic programs are typically at the same                

time in a single cell.  

● Is pulse generation truly stochastic? The mother machine data for the first time tracks sigma factor activity                 

over long timescales, enabling analysis of the interpulse time durations. 

● Do two component response regulators exhibit interesting single cell dynamics? Although activity the two              

component response regulators have been studied in population averages, their single cell responses remain              

unclear. 

● More generally, how do we efficiently identify interesting single cell dynamics for future study? The current                

method of finding a project is slow. One adds a few different stress to a few different fluorescent reporters                   

and looks for interesting dynamics or heterogeneity. This inefficient search makes it difficult to identify               
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new areas for studies of single cell dynamics. A multiplexed screen with a library of reporters paired with a                   

library of stress compounds may be one approach. 

For Chapter 3: 

● What is the overexpression matrix of sigma factor competition? The overexpression matrix would             

complement the deletion matrix. More detailed predictions are discussed in Chapter 3. 

● What are the relative binding affinities and abundances of sigma factors? These measurements would              

support or rule out the toy model in Chapter 3. 

● Why would cells want to have σ​W be an effectively weak sigma? That σ​W is relatively weak may suggest it is                     

the least important for survival. A study of growth rates of the sigma factor deletion strains in a wide                   

variety of stresses may help answer this question. 

For Chapter 4: 

● What is in cell lysate that activates σ​X​? One can imagine a fractionation approach that narrows down the                  

identity of the causative agent in cell lysate.  

● How do cell death and σ​X​ interact to form wrinkles?​ This was discussed in detail in Chapter 4. 

● Do lysates from other bacterial organisms activate σ​X​? ​Alternatively, lysates from other organisms may              

activate different sigma factors. 

● How is σX changing cells’ behavior to make them more likely to form wrinkles? 
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