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ABSTRACT

How do we choose between different foods from a restaurant menu, or between a
vacation overseas and more money in our savings account? Certain mechanisms
in our brains allow us to make these and many other kinds of decisions effectively
and efficiently. In this dissertation, I describe three projects which aim to advance
our understanding of the systems and algorithms involved in the process of human

decision making.

Chapter 2 investigates the application of the attentional Drift-Diffusion Model to
a perceptual decision making task. Perceptual decisions requiring the comparison
of spatially distributed stimuli that are fixated sequentially might be influenced by
fluctuations in visual attention. We used two psychophysical tasks with human
subjects to investigate the extent to which visual attention influences simple percep-
tual choices, and to test the extent to which the attentional Drift-Diffusion Model
provides a good computational description of how attention affects the underlying
decision processes. We found that this model provides a reasonable quantitative
description of the relationship between fluctuations in visual attention, choices, and
response times. We also found evidence for the sizable attentional choice biases
predicted by the model, and that exogenous manipulations of attention induce choice

biases consistent with these predictions.

Chapter 3 compares two methods for fitting the parameters of the Drift-Diffusion
Model using experimental data. A large number of studies have proposed that
sequential integrator models of decision making, such as the Drift-Diffusion Model
and its variants, provide a simple computational description of the algorithms used
to make a large number of simple decisions. This is based on the fact that this
class of models has been able to produce reasonably accurate descriptions of how
choices, response times, and fixations are related to each other and to exogenous trial
parameters, in a wide range of tasks. A difficult step in those studies is the estimation
of a small number of free parameters to find the ones that explain the observed data
best. The estimation method used in most studies is computationally very expensive
since it approximates the likelihood of the observed data by simulating the model
thousands of times and then counting the frequency with which the outcomes match
the observed data. This problem is exacerbated with more complex models, such
as the attentional Drift-Diffusion Model, or models with collapsing bounds, which

contain a larger number of free parameters. We propose an alternative method for
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estimating the free parameters which relies on computing only the probability of
the actual observed data, bypassing the need for the additional simulations. We
present the results of simulation tests which show that our approach provides two
key advantages over the alternative widely used method: a smaller number of
experimental trials is needed in order to obtain comparable estimation accuracy, and

the execution time of the estimation algorithms is substantially reduced.

Finally, Chapter 4 studies simple economic choices involving two distinct classes of
valuation systems: an experiential system, which assigns value based on the history
of previous reward experiences with similar options, and a descriptive system, which
computes values using information about the options and environment available at
the time of decision. Although these two systems often assign similar relative
desirability to the different options, they do not always do so. When conflict arises
with the experiential system favoring one option and the descriptive system favoring
another, the brain needs to resolve the conflict to select a single option. We present
the results of a psychometric study designed to characterize the basic interactions

of these two valuation systems, with and without conflict.
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Chapter 1

INTRODUCTION

Imagine you are at your local diner, trying to decide on something to eat for dinner.
You browse through the menu, reading the names of familiar food items, many of
which you have tried in the past. It is possible that you know exactly what you
want to eat even before you look at the menu; perhaps if you eat spaghetti every
night, you decide you will eat spaghetti once again, without a second thought on the
matter. However, you may be in the mood for something else, in which case you
may remember times when you have had other dishes at that same diner, and how
much you enjoyed each of them, and that should help you make a decision. Or you
may want to try something new, in which case you may imagine how much you will

enjoy each item you are considering ordering.

Now suppose you are traveling through a new country, where you do not speak the
local language, and are unfamiliar with the local cuisine. Again you find yourself
at a restaurant trying to decide what to eat for dinner, but this time you have very
little information from previous experiences with the kind of food that is available.
How do you decide in this case? It may be useful to look at what other people have

ordered, and try to infer based on appearance and smell what you might like to eat.

The scenarios described above involve very simple every-day decisions, but they
show us that even simple problems such as deciding what to eat for dinner involve
deliberation, memory and construction of mental projections about the future. In
neuroscience, this corresponds to the idea that decision making recruits several
different cognitive processes taking place in the brain. The current dissertation
summarizes the results of three projects that contribute to the goal of characterizing
the neurocomputational basis of decision making. This first chapter provides some
context about the current state of the neuroscience literature on this and directly

related topics.

1.1 Frameworks for the Study of Decision Making
In the past few decades, researchers in neuroscience, psychology, and economics
have dedicated considerable effort to the study of decision making, and have also

developed computational frameworks that aim to facilitate the analysis of the related
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experimental results (Kahneman and Tversky, 1979; Jerome R Busemeyer and
Johnson, 2004; Gold and Shadlen, 2007; Rangel, C. Camerer, and Montague, 2008;
Glimcher and Fehr, 2013). Despite this effort, much is still unknown about the exact
nature of the algorithms and computations taking place in the brain that allow us to

make even simple decisions.

Rangel and colleagues formalized a framework for the study of the neurobiology
of decision making (Rangel, C. Camerer, and Montague, 2008). They summarized
five main processes that presumably take place in the brain during the course of a
decision: representation (for a set of states and actions related to the decision), action
valuation (assigning a value to each possible action), action selection (comparing
the action values and generating a choice), outcome valuation (assigning a value
to the outcome of the selected action), and learning (updating the representation,
valuation and action selection processes according to the latest outcome). Each of
these processes has been extensively studied in the literature, both in humans and in
animal models. However, no consensus exists to date about the exact implementation
of these processes in the brain, about how much of the neural circuitry is shared
between them, and about whether the sequential organization described by Rangel

et al. is indeed an accurate representation (Kable and Glimcher, 2009).

Similarly, Kable and Glimcher collected evidence from several studies to support
their hypothesis of a two-stage neural mechanism for choice in primates, composed
of a valuation stage and a choice stage (Kable and Glimcher, 2009). According to
the authors, the valuation stage, in which values are assigned to alternatives, involves
the ventromedial sectors of the prefrontal cortex and parts of the striatum, while the
choice stage, in which an highly value option is selected and implemented, involves

lateral prefrontal and parietal areas which are also part of a sensory-motor hierarchy.

A central piece in understanding the mechanism of decision making is the process
through which values are constructed and compared against one another. Sequential
integrator models constitute one prominent class of models that propose a solution to
this problem. They involve the use of decision variables that accumulate evidence in
favor of each of the available options, until one variable converges to a hard threshold,
causing a choice to be made. In Decision Field Theory (DFT), for instance, Buse-
meyer and Townsend proposed a theoretical framework that uses such a sequential
sampling process to generate decisions (Jerome R Busemeyer and Townsend, 1993).
Using a similar approach, Ratcliff proposed the Drift-Diffusion Model (DDM) of
choice (Ratcliff, 1978; Ratcliff and Rouder, 1998; Gold and Shadlen, 2002; Ratcliff
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and McKoon, 2008), which is a simplification of the more general DFT where the
dynamics of the model are approximated by linear systems. Finally, Usher and
McClelland proposed the leaky competing accumulator model, a modification of
the DDM in which non-linear decision units are used, information accumulation is
subject to leakage, and representations of the alternative outcomes compete with
each other through a process of lateral inhibition (Usher and McClelland, 2001).

1.2 Perceptual versus Economic Choice

An important distinction made in the study of decision making is that of perceptual
versus economic (or value-based) decisions. While the former are about making
discriminations that are based on sensory properties of the options available (for in-
stance, deciding which of two circles is the largest), the latter involve making choices
based on preference with the aim of maximizing economic value (for instance, de-

ciding which of two brands of candy bar to eat or which of two slot machines to
play).

The study of perceptual decision making has been a major focus of the animal re-
search in neuroscience (Newsome and Pare, 1988; Newsome, Britten, and Movshon,
1989; Roitman and Shadlen, 2002; Hanks, Ditterich, and Shadlen, 2006). One pop-
ular paradigm that has been used in several experiments with non-human primates is
the random dot motion task, first described by Newsome and colleagues (Newsome
and Pare, 1988; Newsome, Britten, and Movshon, 1989). In this task, the animal
sees a screen with several moving dots. A certain percentage of the dots moves in
a specific direction, while the remaining ones move randomly, and the animal must
decide which is the net direction of movement (left or right) by shifting its gaze
towards one of two locations. The percentage of cohesively-moving dots in a par-
ticular trial determines the level of difficulty of the decision. Using this paradigm,
researchers have determined that neurons in the macaque extrastriate cortex carry
critical information about motion direction which allows the animal to report its
decision through eye movement (Newsome and Pare, 1988; Salzman, Britten, and
Newsome, 1990; Salzman, Murasugi, et al., 1992; Britten et al., 1992; Celebrini and
Newsome, 1994; Celebrini and Newsome, 1995). Using the same task, Roitman and
Shadlen found evidence for a process of accumulation of visual information in the
macaque lateral intraparietal cortex (LIP), where neuronal activity during stimulus
viewing predicted both the decision and the time required to reach it (Roitman and
Shadlen, 2002). Later, Hanks et al. established a causal link between LIP neu-

ronal activity and motion discrimination choices by stimulating LIP neurons and
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observing an increase in the proportion of choices toward the response field of the
stimulated neurons (Hanks, Ditterich, and Shadlen, 2006).

In humans, researchers have used neuroimaging data to investigate the mechanisms
of perceptual decision making. For instance, Heekeren et al. used a categorization
task with fMRI and found evidence that perceptual decisions are computed by
integrating evidence from sensory processing areas, and that this integration may
occur in dorsolateral prefrontal cortex (Heekeren et al., 2004). This result was in
line with a study in monkeys which suggested the same mechanism in a similar area
of cortex (Kim and Shadlen, 1999).

Whereas in perceptual decisions there is usually a correct answer which is inde-
pendent of the decision maker’s preferences, in economic or value-based decisions
this is not the case. Choices that are based on the preference of the subject making
the decision have been the focus of behavioral economics and the emerging field
of neuroeconomics (Kahneman and Tversky, 1979; C. Camerer and Hua Ho, 1999;
Wu, Delgado, and Maloney, 2009). Many interesting results related to how hu-
mans make decisions have been obtained, such as choice irrationalities and decision
biases (Kahneman and Tversky, 1979), which are not typically found in the percep-
tual domain. Among the effects commonly observed are loss aversion, in which
subjects exhibit greater sensitivity to losses than to equivalent gains when making
decisions (Kahneman and Tversky, 1979; Novemsky and Kahneman, 2005; Rabin,
2000; Abdellaoui, Bleichrodt, and Paraschiv, 2007); hot hand fallacy (Gilovich,
Vallone, and Tversky, 1985; Ayton and I. Fischer, 2004; Croson and Sundali, 2005),
which corresponds to a positive recency effect; gambler’s fallacy (Tversky and Kah-
neman, 1971; Ayton and 1. Fischer, 2004; Croson and Sundali, 2005), which is a
negative recency effect; and preference reversals, in which the preference for one
option over another changes depending on context (Grether and Plott, 1979; Green
et al., 1981; Tversky, Slovic, and Kahneman, 1990). In addition, evidence from
neuroimaging studies in humans indicate an important role of emotion regulation
processes subserved by the insula and areas of prefrontal cortex during economic
decisions (Sanfey et al., 2003; Bechara and A. R. Damasio, 2005; Koenigs and
Tranel, 2007).

It remains an open question how much overlap there is between the algorithms used
by the human brain to make perceptual and value-based decisions, although some
evidence for a common mechanism has been recently described (Polania et al.,

2014; Frydman and Nave, 2016). Polania et al. obtained electroencephalography
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(EEG) recordings during a task using both perceptual and value-based decisions
based on the same stimuli (Polania et al., 2014). The authors found parietal gamma-
frequency oscillations in both types of choice, supporting an evidence accumulation
process in that area, and a similar frontal signal present during value-based decisions
only. They also found that fronto-parietal gamma coupling related to the accuracy
of value-based decisions only, and thus concluded that while parietal regions may
encode a common decision variable in perceptual and economic choices, frontal
regions perform an additional evidence accumulation process that is unique to the

economic case.

1.3 Value Representation

It is generally believed that, in any kind of economic decision, one requirement is
that the brain must be able to evaluate the alternatives in order to compare them and
make a choice. This hypothesis has led to the search for value and expected reward
representation in the primate brain. A study in non-human primates has shown,
for instance, that neurons in the orbitofrontal cortex encode the value of offered
and chosen goods during economic decisions, independently of visuospatial factors
and motor responses, meaning that these values do not modulate activity related to

sensory or motor processes (Padoa-Schioppa and Assad, 2006).

In humans, the search for value representation in the brain has been performed
particularly through the use of functional magnetic resonance imaging (fMRI) tech-
nology (J. P. O’Doherty, 2004; Gottfried, O’ Doherty, and Raymond J Dolan, 2003).
Several fMRI studies have established, for instance, that the subjective value of po-
tential rewards is explicitly represented in the human brain. This has been observed
for different sensory modalities, such as taste (O’Doherty et al., 2001; Small et al.,
2003; J. O’doherty et al., 2004; Todd A. Hare et al., 2008), olfaction (Gottfried,
Deichmann, et al., 2002; Rolls, Kringelbach, and De Araujo, 2003; Anderson et al.,
2003), somatosensory (Rolls, J. O’Doherty, et al., 2003), auditory (Blood et al.,
1999), and visual (Aharon et al., 2001; J. O’Doherty et al., 2003), as well as for
financial rewards (Elliott et al., 2003; McClure et al., 2004; Knutson et al., 2005;
N. D. Daw, J. P. O’doherty, et al., 2006; Kable and Glimcher, 2007).

Evidence for a common currency that allows for comparison between potential
rewards of different types has also been found. Montague and Berns developed a
computational model that predicted that neural activity in the orbitofrontal-striatal

circuit may support the conversion of reward values into a common scale, allowing
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for the comparison between future actions or stimuli. More recently, Chib et al.
found that an area in the ventromedial prefrontal cortex correlates with valuations for
different categories of goods (Chib et al., 2009), and McNamee et al. found a region
in medial prefrontal cortex where such value representations were independent of
stimulus category (McNamee, Rangel, and J. P. O’doherty, 2013), supporting the
idea of a common currency that allows for comparison of goods across categories.

1.4 Drift-Diffusion Models

In light of the extensive experimental support for the idea that a process of evidence
accumulation takes place in the brain during decisions, researchers in neuroscience
have developed sequential integrator models of choice that aim to make predictions
for choice and response time in several decision tasks. An important family of
these models, known as the Drift-Diffusion Model (DDM) (Ratcliff, 1978; Ratcliff
and Rouder, 1998; Gold and Shadlen, 2002; Ratcliff and McKoon, 2008), has
been successfully applied in the analysis of data from a large variety of tasks
with non-human primates (Shadlen and Newsome, 2001; Gold and Shadlen, 2001;
Ratcliff, Cherian, and Segraves, 2003; Churchland, Kiani, and Shadlen, 2008; Kiani,
Hanks, and Shadlen, 2008; Bennur and Gold, 2011; Shadlen and Kiani, 2013),
humans (Heekeren et al., 2004; Philiastides, Ratcliff, and Sajda, 2006; Tosoni et
al., 2008; Ho, S. Brown, and Serences, 2009; Krajbich, C. Armel, and Rangel,
2010; Krajbich and Rangel, 2011; Krajbich, Lu, et al., 2012; O’connell, Dockree,
and Kelly, 2012), and rodents (Brunton, Botvinick, and Brody, 2013; Erlich et al.,
2015).

In monkeys, electrophysiology recordings have indicated that neural activity in parts
of the brain involved in the selection and preparation of eye movements reflects both
the direction of an impending gaze shift and the quality of the sensory informa-
tion that motivates that response. This has been shown in the lateral intrapariental
area (Shadlen and Newsome, 1996; Shadlen and Newsome, 2001), superior collicu-
lus (Horwitz and Newsome, 1999; Ratcliff, Cherian, and Segraves, 2003), frontal
eye field (Bichot and Schall, 1999), and dorsolateral prefrontal cortex (Kim and
Shadlen, 1999). The time course of the neural response recorded in these areas
supports the idea that they accumulate sensory signals relevant to the selection of a

target for an eye movement.

In humans, fMRI and EEG evidence provide some support for a similar process

taking place in the human brain during perceptual decisions. Heekeren et al. used
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a categorization task with fMRI and found that activity in an area of dorsolateral
prefrontal cortex was greater during easy decisions than during difficult decisions,
covaried with the difference signal between two category-selective regions in the
ventral temporal cortex, and predicted behavioral performance in the task (Heekeren
etal.,2004). Philiastides et al. used a cued paradigm with EEG and identified a com-
ponent in the EEG data reflecting task difficulty that arose about 220 milliseconds
after stimulus presentation, between two components predictive of decision accu-
racy, supporting the time course of an evidence accumulation process (Philiastides,
Ratcliff, and Sajda, 2006).

More recently, studies have begun to uncover behavioral and neural evidence for
accumulator processes during economic decisions in humans (Krajbich, C. Armel,
and Rangel, 2010; Hunt et al., 2012; Philiastides and Ratcliff, 2013). Because
traditional evidence accumulator models describe differences in activity between
different populations of selective cells and ignore nonselective activity, these models
cannot make predictions for imaging data. To get around this issue, Hunt et al.
developed a biophysical implementation of a competition model and used it to make
explicit predictions for magnetoencephalography data collected during a value-based
decision task. The authors found that parietal and prefrontal signals matched closely
with the predictions of this model, indicating a process of evidence accumulation

taking place in those areas.

Because many decision tasks require visual fixations on spatially-distributed stim-
uli, the DDM has been extended to incorporate overt attention in the form of
visual fixations, leading to the development of the attentional Drift-Diffusion Model
(aDDM) (Krajbich, C. Armel, and Rangel, 2010). In the aDDM, the value of items
gets discounted if they are not currently being fixated by the subject. This model has
been previously shown to make better predictions for choices and response times
than the traditional DDM, in the context of value-based decisions in humans (Kra-
jbich, C. Armel, and Rangel, 2010; Krajbich and Rangel, 2011; Krajbich, Lu, et al.,
2012). In Chapter 2 I present a study that using the aDDM to make these same

predictions for perceptual decisions.

1.5 Learning
In many decision situations, we may want to base our choice on the outcome
of similar past decisions in an attempt to maximize our utility from the current

outcome. This allows us to use information we have learned in the past to make
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better decisions in the present moment. For this reason, the study of decision making

is closely linked to the study of learning.

The field of reinforcement learning (Sutton and Barto, 1998) provides us with a
framework for modeling how systems (such as a machine, a person or an animal) can
make predictions about future outcomes based on previously experienced rewards,
therefore optimizing their choices. Neurophysiology recordings from dopaminergic
neurons in the macaque brain show evidence for a prediction error signal that is
compatible with reinforcement learning models. And many experiments in humans
show that reinforcement learning models can accurately describe learning behav-
ior (Frank, Seeberger, and O’reilly, 2004; Schonberg et al., 2007; Bogacz, McClure,
et al., 2007; Gershman, Pesaran, and N. D. Daw, 2009; Glascher, N. Daw, et al.,
2010; N. D. Daw, Gershman, et al., 2011), indicating that learning algorithms
implemented by the human brain are compatible with the reinforcement learning

framework.

Another important framework in the study of learning is that of Bayesian inference.
Many researchers argue that the brain represents uncertainty about its environment,
and the success of Bayesian methods in modeling human behavior in perception
and sensorimotor control supports the idea that the brain represents sensory infor-
mation probabilistically, in the form of probability distributions (Knill and Pouget,
2004). Behavioral experiments have confirmed that human observers not only take
uncertainty into account in a wide variety of tasks, but do so in a way that is nearly
optimal (Knill and Richards, 1996; Beers, Sittig, and Der Gon, 1999; Ernst and
Banks, 2002; Kording and Wolpert, 2004; Stocker and Simoncelli, 2006). In ad-
dition, a study by Ma et al. suggests that the variability in neuronal populations
represents probability distributions over stimuli, which the authors call probabilistic

population codes (Ma et al., 2006).

1.6 Multiple Decision Systems

Taking into account the many experiments in human learning and decision making,
it becomes apparent that there is not a single system responsible for the computation
of all kinds of decision. Rather, experimental evidence points to the existence of
multiple systems, with different parts of the literature focusing on different aspects
of the dissociation between them (Kahneman, 1973; Anthony Dickinson, 1985;
Sloman, 1996; Greer and Levine, 2006). Furthermore, recent experiments have

focused on understanding how the brain allocates control between these different



9

systems in order to make better decisions according to environmental context, pre-
vious experience, available cognitive resources, among many other factors (N. D.
Daw, Niv, and Dayan, 2005; Glischer, N. Daw, et al., 2010; N. D. Daw, Gershman,
etal., 2011; Otto, Gershman, et al., 2013; Lee, Shimojo, and J. P. O’Doherty, 2014;
Akam, R. Costa, and Dayan, 2015; Kool, F. A. Cushman, and Gershman, 2016;
Kool, Gershman, and F. A. Cushman, 2017).

In the learning and decision literature, one largely studied dichotomy is that between
a model-free system, which relies on previous experiences (rewards) to compute
the current value of the available options, and a model-based system, which uses
planning and a model of the environment to choose the best option (Ray J Dolan
and Dayan, 2013; J. P. O’Doherty, 2015; Doll et al., 2015). A common approach for
dissociating between these two systems with human subjects is the two-step Markov
decision task (N. D. Daw, Gershman, et al., 2011). In this task, the subject must
make two consecutive binary decisions. In the first stage, each choice has a high
probability of transitioning to one of two second-stage states (common transition),
and a low probability of transitioning to the other state (rare transition). In the
second stage, each choice is associated with a probability of obtaining a reward,
and these probabilities drift slowly and independently over time. The subject’s
consecutive choices allow researchers to identify whether the strategy being used
is model-based or model-free. For instance, if the subject makes a choice on the
first stage and a rare transition occurs, leading to a reward on the second stage, a
model-free strategy will lead to a higher probability of making the same choice
on the first stage, since a reward was obtained. On the other hand, a model-based
strategy will lead to a higher probability of choosing the alternative option on the
first stage, since the subject has access to a model of these transitions and knows that
the alternative option is the one more likely to take them to the rewarded state. This
task has been used in many studies (N. D. Daw, Gershman, et al., 2011; F. Cushman
and Morris, 2015; Otto, Gershman, et al., 2013; Otto, Raio, et al., 2013; Glascher,
N. Daw, et al., 2010), although some have criticized its ability to reliably dissociate

between the two learning strategies (Akam, R. Costa, and Dayan, 2015).

In the study of the model-based vs. model-free dichotomy, a common theme is that
of an efficiency-cost trade-off. Whereas the model-free system is computationally
cheaper and more unreliable, and is therefore able to generate faster decisions
but with a higher risk for errors, the model-based system tends to provide more

reliable choices but at the same time incurs a significantly higher computational
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cost (Gershman and N. D. Daw, 2012), which can lead to longer decision times as
well as higher energy expenditure. Several studies have made use of this trade-off to
develop computational models that aim to describe how the brain switches between

these two systems.

Another instance of a dual decision system is one stemming from the behavioral eco-
nomics literature, and relates to an experiential vs. a descriptive mode of computing
option values (Kahneman and Tversky, 1979; Barron and Erev, 2003; Hertwig,
Barron, et al., 2004; Jessup, Bishara, and Jerome R Busemeyer, 2008; Hertwig and
Erev, 2009; FitzGerald et al., 2010). In an experiential setting, the subject relies on
values learned from experience which must be retrieved from memory at the time of
choice, whereas in a descriptive setting the subject computes option values from in-
formation that is explicitly described at the time of choice. In behavioral economics,
several studies have described a phenomenon called the description-experience gap,
in which consistent choice differences are found depending on how the alternatives
are presented to the subject (Barron and Erev, 2003; Hertwig, Barron, et al., 2004;
Hertwig and Erev, 2009). Looking at risk, subjects choosing between descriptive
options tend to be risk averse in the gain domain and risk seeking in the loss domains,
as predicted by Prospect Theory (Kahneman and Tversky, 1979), whereas in expe-
riential choices this effect is reversed. In terms of probabilities, another prediction
of Prospect Theory is that subjects tend to overweight low probability events and
underweight large probability events when those events are fully described, but the

opposite is true when subjects learn about these events from experience.

The differences between descriptive and experiential decision making have also been
studied in the neuroscience literature (Jessup, Bishara, and Jerome R Busemeyer,
2008; FitzGerald et al., 2010). Jessup and colleagues performed a behavioral
study and found that feedback had an critical role in determining whether subject
overweighted or underweighted probabilities, regardless of whether or not fully
descriptive information was presented (Jessup, Bishara, and Jerome R Busemeyer,
2008). In an fMRI study with humans, FitzGerald et al. found differential sensitivity
to learned and described values and risk in brain regions associated with reward
processing (FitzGerald et al., 2010), concluding that the neural encoding of decision
variables was strongly influenced by the manner in which value information was

presented to the subjects.

An interesting question that arises from the study of multiple learning and decision

systems is that of arbitration. How is control allocated to each decision system?
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Do they compete or cooperate? Several studies have attempted to understand this
process (Lee, Shimojo, and J. P. O’Doherty, 2014; Doya et al., 2002; N. D.
Daw, Niv, and Dayan, 2005; Beierholm et al., 2011; Economides et al., 2015;
Russek et al., 2017; Kool, F. A. Cushman, and Gershman, 2016; Kool, Gershman,
and F. A. Cushman, 2017; Miller, Botvinick, and Brody, 2017). Notably, Lee
and colleagues found evidence for an arbitration mechanism in the human brain
that allocates control over behavior to the model-based and model-free systems as
a function of their reliability (Lee, Shimojo, and J. P. O’Doherty, 2014). Kool et
al. (Kool, Gershman, and F. A. Cushman, 2017) studied the same arbitration process
under a cost-benefit framework, suggesting that humans perform on-line cost-benefit

analysis to switch between learning systems.

1.7 The Value of Behavioral Studies in Understanding the Brain

Despite not providing us with any direct measurements of neural activity, behavioral
studies can aid our understanding of the brain mechanisms related to decision
making in several ways. First, computational models that attempt to explain complex
cognitive processes can make very precise predictions about the resulting behavioral
data, therefore testing these predictions through behavioral metrics can help us to
rule out certain models, compare across different models, and adjust the existing
models when necessary. Second, we can establish a precise correspondence between
behavioral phenomena observed in human and animal studies. When studying
animal models, it is possible to perform sophisticated clinical and causal tests by
relying on techniques such as genetic mutations, pharmacological interventions,
and optogenetics, but in most cases these tests are not available when dealing with
human subjects. Behaviors such as choices, response times, and visual fixations can
be easily recorded from both humans and animals and used as a bridge across the
phenomena observed in each species. Moreover, reflexive behaviors such as heart
rate, skin conductance, blink rate, and changes in pupil size and reactivity can be
used to provide further insight about the neuro-psychological state of subjects during
different experimental conditions. Finally, in some cases the models being tested
cannot make predictions for imaging data, so using behavioral data can provide
validation for the effectiveness of the model in explaining choice mechanisms. This
is the case for the DDM, which relies on the difference in neural activity between
cell populations, and not on the kind of averaged response that is obtained from
techniques typically used with humans, such as fMRI and EEG. Because single-unit

recordings can be extremely difficult to obtain from human subjects, it is helpful to
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test the predictions of this model on choice and response time data obtained from

behavioral studies.

1.8 Developmental, Clinical and Comparative Aspects

The present dissertation describes two empirical studies for which data was collected
at the California Institute of Technology in Pasadena, California. It is critical
to note that this data was taken exclusively from a WEIRD (western, educated,
industrialized, rich and democratic) population (Henrich, Heine, and Norenzayan,
2010). Furthermore, most of the subjects tested were in early adulthood, and were
either undergraduate or graduate university students at a science and technology-
focused institution. This means that, like most scientific results currently obtained
at research universities, the results presented here are limited by the biases intrinsic
to the sample population. Therefore, it is important to consider how the process of
decision making in general, and our results in particular, may differ across different
age groups, clinical conditions, and other species. In this section I review results
from previous studies that provide insight into some of the potential differences that

may occur in these cases.

It is well documented that significant changes in brain structure occur throughout
lifespan. Research in neuroscience has begun to investigate how these changes may
affect cognitive function such that behaviors during childhood, adolescence and
elder years may deviate from what is typically encountered for an adult popula-
tion (Giedd et al., 1999; Harbaugh, Krause, and Vesterlund, 2001; Mather et al.,
2004; Galvan et al., 2006; Mata et al., 2011; Samanez-Larkin and Knutson, 2015).
Neuroimaging studies have found, for instance, that stimulus value signals in the
amygdala are down-modulated in younger adults (Mather et al., 2004), and that ven-
tral striatum response to monetary rewards dramatically decreases from adolescence
into adulthood (Galvan et al., 2006).

Choice biases and irrationalities have also been studied in different age groups. A
study of risky decision making in older adults found no evidence of systematic
age-related differences in risk taking and no differences in tendency to take risks
when choices are framed as gains versus losses, but suggested that older adults tend
to make more mistakes in choices overall, indicating cognitive limitations rather
than different risk preferences in that population (Mata et al., 2011). Harbaugh et
al. investigated the endowment effect (when the minimum compensation people are

willing to accept in return for giving up a good they already possess exceeds the
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amount that they are willing to pay to acquire the same good) in children but found
no evidence that this effect decreases with age (Harbaugh, Krause, and Vesterlund,
2001). On the other hand, Galvan et al. used fMRI to study risk-taking behavior in
adolescents and found evidence that subcortical systems become disproportionately
activated relative to top—down control systems in this population, biasing their

actions toward immediate over long-term gains (Galvan et al., 2006).

Several clinical conditions have also been found to correlate with significant differ-
ences in terms of decision making behavior when compared to neurotypical pop-
ulations. Gillan et al. found a strong association between deficits in goal-directed
control in a two-step Markov decision task and symptoms such as compulsive be-
havior and intrusive thought (Gillan et al., 2016). The researchers also found an
association between these same task deficits and self-reported conditions that are
typically characterized by a loss of control over behavior, such as eating disorders,
impulsivity, obsessive-compulsive disorder, and alcohol addiction. Relatedly, Fo-
erde et al. found that individuals with anorexia nervosa engaged the dorsal striatum,
an area typically associated with action selection and control, more than healthy
controls when making food choices, and that activity in their fronto-striatal circuits
was correlated with actual food consumption the following day (Foerde, Steinglass,
etal., 2015). Numerous other studies have related cognitive impairments and faulty
decision making behavior to conditions such as addiction (Bechara and H. Dama-
sio, 2002; Bechara, 2005; Schoenbaum, Roesch, and Stalnaker, 2006; Schoenbaum,
Roesch, and Stalnaker, 2006), depression (Murphy et al., 2001; Apkarian et al.,
2004), and anxiety (Raghunathan and Pham, 1999; Maner et al., 2007), as well
as neurological disorders such as Parkinson’s disease (Brand et al., 2004; Mimura,
Oeda, and Kawamura, 2006; Foerde and Shohamy, 2011) and obsessive-compulsive
disorder (Cavedini et al., 2002; Lawrence et al., 2006).

In previous sections I described a large body of animal research that provides insight
about the decision mechanisms that exist in the mammalian brain, particularly in pri-
mates. Support for evidence accumulation processes, for instance, was first obtained
from several cortical areas in the macaque brain (Shadlen and Newsome, 2001; Gold
and Shadlen, 2001; Ratcliff, Cherian, and Segraves, 2003; Churchland, Kiani, and
Shadlen, 2008; Kiani, Hanks, and Shadlen, 2008; Bennur and Gold, 2011; Shadlen
and Kiani, 2013), and only more recently there have been attempts to generalize
these results through behavioral and neuroimaging studies in humans (Heekeren et
al., 2004; Philiastides, Ratcliff, and Sajda, 2006; Tosoni et al., 2008; Ho, S. Brown,
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and Serences, 2009; Krajbich, C. Armel, and Rangel, 2010; Krajbich and Rangel,
2011; Krajbich, Lu, et al., 2012; O’connell, Dockree, and Kelly, 2012).

Regarding dual systems of decision making, one dichotomy that has been extensively
explored in the animal literature, and which is strongly related to the model-based
and model-free systems in human studies, is that of habitual vs. goal-directed
decision making. Evidence from several studies supports the existence of a habitual
system, which uses previous experience to generate a decision while disregarding
the current state of the animal and of its environment, and a separate goal-directed
system, which takes these states into account (Adams and Anthony Dickinson, 1981;
Anthony Dickinson and B. Balleine, 1994; A Dickinson et al., 1995; Tricomi, B. W.
Balleine, and J. P. O’Doherty, 2009; B. W. Balleine and J. P. O’doherty, 2010).
One popular technique for dissociating between these systems which has been used
with rodents is outcome devaluation (Adams and Anthony Dickinson, 1981). In
this approach, the animal is taught to press a lever in order to receive a food reward.
Once learning has been consolidated, the animal is fed to satiety and again presented
with the lever. A persistence in lever-pressing behavior means the animal is acting
out of habit, while an interruption of the behavior means the animal has taken into
account the fact that it is now satiated and therefore does not need to press the lever
for a food reward (i.e., the food reward has been devalued). In rodents, control
between the habitual and goal-directed systems appears to involve interactions in
dorsal striatum and in the cortico-basal ganglia network within which the striatum
is embedded, although details about the arbitration process still need to be worked
out (B. W. Balleine and J. P. O’doherty, 2010; Gremel and R. M. Costa, 2013).

Overall, it is clear that many differences exist in decision making behaviors depend-
ing on the population or species being studied. Despite these differences, certain
phenomena, such as choice biases and irrationalities, appear to be pervasive across
human populations, including a large array of age groups and clinical conditions.
Furthermore, some of the neural mechanisms described here, such as evidence ac-
cumulation processes and dual decision systems, have been extensively studied in
several mammalian species. The variations that do exist across populations and
species are indeed quite useful as they allow us to further explore how a variety
of structural and chemical differences present in the brain may impact the decision

making process.
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Chapter 2

THE ATTENTIONAL DRIFT-DIFFUSION MODEL OF SIMPLE
PERCEPTUAL DECISION MAKING

2.1 Introduction

Over the last two decades, neuroscientists and psychologists have devoted consid-
erable effort to understanding the neurocomputational basis of decision making.
The goal has been to understand which are the variables encoded at the time of
decision, what are the algorithms used to combine them into a decision, and how
these processes are implemented and constrained by the underlying neurobiology.
Considerable progress has been made in understanding simple perceptual decisions
(e.g., determining the net direction of motion in a field of noisy moving dots) and
simple value-based choices (e.g., choosing between two food snacks). Interestingly,
a qualitatively similar class of algorithms has been shown to provide a good descrip-
tion for the accuracy and response time patterns in both perceptual (Ratcliff and
Rouder, 1998; Gold and Shadlen, 2001; Gold and Shadlen, 2007; Smith and Rat-
cliff, 2004; Ditterich, 2006; Brunton, Botvinick, and Brody, 2013) and value-based
choices (M. M. Mormann, Malmaud, et al., 2010; Hunt et al., 2012; Philiastides and
Ratcliff, 2013; Hutcherson, Bushong, and Rangel, 2015), although many important
details remain to be worked out (Bogacz, 2007; Summerfield and Tsetsos, 2012;
Tsetsos, Gao, et al., 2012; Brunton, Botvinick, and Brody, 2013; Orquin and Loose,
2013; Shadlen and Kiani, 2013; Teodorescu and Usher, 2013). Despite important
differences among the various models that have been proposed, all of the algorithms
are built around the idea that decisions are made by accumulating noisy evidence
in favor of the different alternatives, and that choices are made when the weight of
accumulated evidence in favor of one of the options becomes sufficiently strong.
For this reason, they are often described as sequential integration models. There is
also a growing understanding of how the brain implements these processes in both
perceptual (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002; Heekeren
et al., 2004; Philiastides, Ratcliff, and Sajda, 2006; Churchland, Kiani, and Shadlen,
2008; Kiani, Hanks, and Shadlen, 2008; Tosoni et al., 2008; Ho, S. Brown, and
Serences, 2009; Bennur and Gold, 2011; O’connell, Dockree, and Kelly, 2012) and
value-based choice (Basten et al., 2010; Philiastides, Biele, and Heekeren, 2010;
Todd A Hare, Schultz, et al., 2011; Hunt et al., 2012; Polania et al., 2014; Rustichini
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and Padoa-Schioppa, 2015).

Since many decision tasks require the comparison of spatially distributed stimuli,
two important questions are whether decisions are affected by how visual attention
is deployed during the process of choice, and if so, how do sequential integrator
models need to be modified to incorporate the role of attention. For example, in
the context of perceptual choice, if a subject is shown two lines of different length
on the left and right sides of the screen and has to decide which one is longer, how
does the pattern of fixations to the two stimuli affect their decision, if at all? Or in
the context of value-based choice, if a subject is shown two food stimuli, how does

their pattern of fixations affect which of the two foods they choose to eat?

This problem has been studied in the realm of value-based choice. Krajbich et
al. (Krajbich, C. Armel, and Rangel, 2010; Krajbich, Lu, et al., 2012; Krajbich and
Rangel, 2011; Towal, M. Mormann, and Koch, 2013) found that a modification of
the popular Drift-Diffusion Model, which they call the attentional Drift-Diffusion
Model (aDDM), provides a quantitatively accurate description of the relationship
between visual attention, choices and response times in several value-based tasks.
The aDDM builds on previous work by Busemeyer and collaborators, who pro-
posed an alternative class of sequential integrator models in which attention plays
a role (Roe, Jermone R Busemeyer, and Townsend, 2001). In the aDDM, attention
influences choices by increasing the relative weight given to evidence related to the
attended stimulus. As a result, the model predicts that exogenous shifts of attention
can cause systematic choice biases, which is consistent with the results of several
studies (Shimojo et al., 2003; K. C. Armel, Beaumel, and Rangel, 2008; Todd A
Hare, Malmaud, and Rangel, 2011; Piarnamets et al., 2015; Kunar et al., 2017).

Given that a remarkably similar set of algorithms have been shown to be at work
in perceptual and value-based choice tasks in which attention plays no role, it is
natural to hypothesize that the aDDM might also provide a reasonable computational
description of the role of visual attention in simple perceptual decisions, and that
exogenous shifts in attention (i.e., unrelated to the perceptual properties of the
stimuli) might causally bias choices as predicted by the aDDM. Here we present the

results of two experiments designed to test these hypotheses.

Testing the extent to which the aDDM is able to provide a satisfactory quantitative
description of the role of visual attention in simple perceptual choices is interest-
ing for several reasons. First, previous experiments have shown that attention can

affect perceptual choices using divided attention paradigms (Wyart, Myers, and
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Summerfield, 2015), spatial pre-cuing paradigms (Posner, Snyder, and Davidson,
1980; Smith, Ratcliff, and Wolfgang, 2004; Carrasco, 2011), and serial dependence
paradigms (J. Fischer and Whitney, 2014). However, the algorithmic or computa-
tional description of this effect remains an open question (Summerfield and Egner,
2013). Second, an important open question in cognitive neuroscience is whether the
same algorithms are at work in different domains and systems whenever the problem
they are trying to solve is sufficiently similar. This view is consistent with the fact that
sequential integrator models are able to accurately describe two-alternative forced
choices in domains ranging from memory, to perception, to economic choice (Gold
and Shadlen, 2007; Ratcliff and McKoon, 2008; Starns, Ratcliff, and McKoon,
2012; Shadlen and Kiani, 2013). However, since perception and value-based choice
are made on the basis of different evidence (i.e., perceptual inputs vs. reward predic-
tions), attention might operate through very different channels in these two cases,
and thus we cannot assume ex ante that it might have a computationally similar

effect in both types of decisions.

2.2 Materials and Methods

Subjects

In Experiment 1 we tested 25 subjects (10 female, mean age 23), which included
Caltech students and staff as well as members of the surrounding community. Sub-
jects were advised to use glasses for eyesight correction as needed. Each subject
completed 1,344 decision trials, split into 4 identical experimental sessions, spread
across 4 different days. Subjects received a $15 show-up fee in each day and a $40
bonus for completing all sessions, as well as additional earnings based on perfor-
mance, as described below. In Experiment 2 we tested 20 subjects (9 female, mean
age 25). Each subject completed 336 trials in a single session, and received a $15
show-up fee, as well as additional earnings based on performance. The experiments
were approved by Caltech’s IRB and all subjects provided informed consent prior to

participation.

Experiment 1

Experiment 1 consisted of four identical sessions, collected on four separate days,
within a period of two weeks. Each experimental session was divided into 12 blocks
of 28 decision trials. At the beginning of each block, subjects were shown for 5
seconds a line depicting a target orientation chosen from the set {20°, 35°, 55°, 70°},

as shown in Figure 2.1A. This excludes vertical and horizontal orientations, which
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would have made subsequent choices too easy. Each orientation was chosen as the

target three times per session, in random order.

In each decision trial subjects were shown two oriented lines, on the left and right
sides, with an eccentricity of 16 degrees from the center of the screen (Figure 2.1B).
The relative orientation between each of the two lines and the target, denoted by
A, was chosen from the set {—15°,—10°,-5°0°,5°10° 15°} (Figure 2.1C). The
subjects’ task was to decide which of the two lines had an orientation closest to the
target. They were allowed to take as long as needed to make a choice, and indicated
their choice with a button press (“A” for left and “L” for right). Let Ajefe and Ayigne
denote the relative angular distance between the target and the left and right items,
respectively. The two choice stimuli shown in the trial were not allowed to have
the same A. Uniform sampling subject to these constraints led to 42 different trial
conditions. Each was used eight times per session, in random order. Subjects saw
a blue box around the chosen item in each trial, but they did not receive feedback

about the correctness of their decisions during the task.

Stimuli were presented on a 1,280 x 1,024 screen, placed ~ 50 cm from the subjects’
eyes. Subjects were required to keep their hands on the response buttons for the
entire task, so they could enter responses without looking at the keyboard. Subjects’
fixation patterns were recorded at 500 Hz using an EyeLink 1000 Plus desktop-
mounted eye-tracker with head support. Fixations and saccades were determined
using the eye-tracker’s accompanying software package. The eye-tracking system
was calibrated at the beginning of each session, and again whenever the eye-tracker
lost the subject’s eye (which only occurred four times during all sessions of both
experiments). Before each decision trial, subjects were required to maintain a
continuous fixation on a central cross for 500 ms before the items would appear,

which ensured that every trial began with a fixation on the same central location.

In order to familiarize subjects with the targets, they also completed a training task
at the beginning of each block (Figure 2.1D). Here, subjects were shown a single
oriented line in the center of the screen, and had to decide whether or not the line
shown had the same orientation as the target. They were allowed to take as long
as needed to make the decision, which they then indicated with a button press
(“A” for no and “L” for yes). Subjects received immediate feedback for 1 s after
every decision indicating its correctness. The training task ended after six correct

decisions in a row.

The target stimulus for each block was shown once at the beginning of the block
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(before the training trials), once immediately after the training trials, and again
after every 5 decision trials. At the end of each experiment session, we selected
25 decision trials at random, and subjects received an additional payment of $1 for

each correct response.

A B

Block target:

)z + / 7 /

—_—> } } } ' >
5 seconds Initial fixation (enforced): Free RT Selection box: ITI:
0.5 second 1 second 1 second
C Target at 35° D
+ /s
(e}
/ 3 °
Initial fixation (enforced): ~ Free RT Accuracy feedback: ITl:
0.5 second 1 second 1 second

Figure 2.1: Summary of Experiment 1. (A) In the beginning of each block of trials
anew target orientation was shown for 5 s. The target was shown again immediately
after the training trials, and again after every 5 decision trials. (B) Trial structure for
our simple perceptual decision task. In each trial subjects must choose the stimulus
(left or right) with the orientation closest to the target. (C) Diagram showing all
seven possible item orientations, in increments of 5°, given a target oriented at 35°.
(D) Trial structure for training trials.

Experiment 2

The structure of a typical trial in Experiment 2 is depicted in Figure 2.2. Experiment
2 was similar to Experiment 1, except for the following differences. First, each
subject completed a single session with 12 blocks of 28 trials each. Second, in
each trial we randomly selected one of the two items on the screen to be the
bias-target item. We used the following procedure to bias fixations toward that
item. Unbeknownst to the subjects, we required a minimum amount of cumulative
fixation time to each item: 800 ms for the bias-target item and 200 ms for the
other one. In every trial we kept track of the cumulative fixation durations to each
stimulus and, as soon as the minimum requirement for both was met, the items
disappeared and the subject was prompted to make a choice. Third, subjects were
told (without deception) that both the duration of decision trials and the item that

appeared first would be chosen at random every trial, but were not told that the
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procedure was designed to bias fixations. To minimize awareness of the nature
of the experimental manipulation, which relies on giving subjects control over the
duration of trials through their fixations, we set the maximum duration for each
evaluation period to 3 seconds. If the minimum fixation requirements for both
items were not met within that period of time, the subject was prompted to make a
decision. Trials in which the 3-second boundary was binding were removed from
additional analyses since they exhibited unusual fixation patterns (24.3% over the
entire group; across subjects, min = 6.8% and max = 55.6%). This trial exclusion
rule was chosen a priori to minimize the chance that subjects would become aware
of the experimental manipulation. Furthermore, the exclusion of these trials did not
qualitatively affect any of the reported results. Fourth, subjects were only allowed
to enter their decisions after the decision prompt appeared, and could take as much
time as needed to do so. Fifth, we refer to trials in which the bias-target item was
fixated longer (and in which the stopping condition was reached before 3 seconds)
as effective manipulation trials. Note that not all trials were effective since the
contingencies described above allow for the possibility that subjects fixate more on
the non-bias-target item. In order to increase the fraction of effective trials, which is
the manipulation of interest, the bias-target item was always displayed on the screen
first, and the other item was only added after a certain delay, which counted toward
the total fixation time for the bias-target. The duration of this lag was between 100
and 500 ms, and was calibrated separately for each subject at the beginning of the
experiment using the following staircase procedure. The lag started at a value of 300
ms, and was adjusted with a step of 30 ms. After every 3 consecutive effective trials
(i.e., trials in which the bias-target item was fixated longer) the lag was decreased
by 30 ms, and after a single ineffective trial (i.e., one where the bias-target item was
not fixated longer), the lag was increased by the same amount. A total of 48 trials
were used in the staircase procedure, and the value of the delay at the 48th trial was
then used throughout the remainder of the task (duration: mean = 450 ms, SD = 35
ms). Sixth, at the end of the experiment we randomly selected 20 decision trials, and
subjects received an additional payment of $1 for each correct response in this set.
Seventh, at the end of the task, subjects completed a questionnaire in which we asked
if they found anything strange about the timing of the items being displayed and the
decision prompt. None of the subjects reported finding a connection between their

fixations and the duration of the trials.
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Please make
+ g / J your
decision now.
Initial fixation Delay:display 0.8 s min bias-target  Free RT ITI:
(enforced): bias-targetonly 0.2 s min other 1 second
0.5 second

Figure 2.2: Summary of Experiment 2.

Fixations

All recorded fixations were classified as either item fixations (to either the left or
right stimuli on the screen) or “blank™ fixations. Trials in which “blank™ fixations
accounted for more than 50% of the response time were discarded from further
analysis (mean percentage discarded trials across all subjects: 5.2%, min = 0.15%,
max = 25.8%). Furthermore, if a “blank™ fixation was recorded between two
fixations to the same stimulus, the observation was converted into a fixation on that
item. This is justified by the fact that this type of “blank™ fixations tend to be very
short, and are likely to be the result of blinking or eye-tracker noise (duration: mean
=41 ms, SD = 133 ms). If a “blank™ fixation was recorded between fixations on
different items, then it was grouped into that trial’s inter-fixation transition time and

used as such in the analyses below.

Group Model Fitting

We used maximum likelihood estimation (MLE) to fit the aDDM to the pooled
group data. The model has three free parameters (d, 8, and o) which we fitted
using only the odd-numbered trials, so that the even-numbered trials could be used

to test its out-of-sample predictions (see the Results section for a description of the
aDDM).

The MLE procedure was carried out in multiple steps. In step 1 we defined a coarse
grid of parameter combinations, denoted by 21, which was given by the cross product
of the sets {0.001,0.005,0.01} for d, {0.1,0.5,0.9} for €, and {0.01,0.05,0.1} for
o. Although this set only has nine points, it was selected because it spans a wide
range of potential parameter combinations. We computed the likelihood of the
choices and response times (RTs) observed in the odd-numbered trials, conditional
on the observed pattern of fixations in each trial, for each vector of parameters in

Q). This was done by simulating the aDMM using the algorithm described in detail
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in Chapter 3. All time data (including RTs, latencies, fixation durations, and inter-
fixation transition times) were binned into 10 ms steps. We then selected the vector
of parameters in ; with the highest log-likelihood as the first candidate solution,
which for our data was given by d = 0.005, 6 = 0.1 and o = 0.05. Let (dy, 61, 071)
and ML, denote, respectively, the best set of parameters and the likelihood that it
explains the data that arises from the first step.

The algorithm then proceeded inductively until a stopping criterion was reached.
Let Q, denote the search set used in step ¢, and (d;, 6;, o) and ML, denote the best
candidate solution at this step. Step ¢ + 1 then proceeded as follows. A new grid of 9
potential vector parameters, denoted by €, 1, was constructed as the cross product
of the sets {d; — ATd’, d;, d; + ATd’}, {6, - %, 0,0, + %}, and {0y — %, oy, O + %},
where Ad;, A6;, and Aoy correspond to the parameter step sizes used in ;. Note

that ;. included (d,, 6, o), as well as a finer grid around it.

The MLE step was then repeated again. The algorithm continued until the improve-
ment in the MLE of the proposed parameter solution was <1%. For our data, the
convergence process was accomplished in 7 steps, and resulted in an estimate of
d =0.0041, o = 0.063, and 6 = 0.36.

Out-of-Sample Group Simulations
In order to test the ability of the model to predict out of sample, we used the aDDM
with the best fitting parameters for the odd-numbered trials to predict data group

patterns in the even-numbered trials.

Critically, the predictions were made conditional on the relative orientation of the
stimuli, but not on the actual fixation patterns observed in the even trials. To
understand why, note that due to the randomness in the aDDM algorithm, two trials
with identical stimuli and fixations might lead to different choices and RTs. As a
result, two runs of the same trial can result in different outcomes even if they initially
exhibit identical fixations. In addition, if the aDDM is an approximately accurate
description of the underlying processes, the pattern of fixations can vary widely
over repeated decisions with an identical pair of stimuli, a fact that is observed in
the data. For these reasons, our out-of-sample predictions condition on the relative
orientation of the stimuli, including the effect that this has on the fixation process,
as described below, but not on the actual realized fixations. This allows us to test the
ability of the aDDM to account out-of-sample for key patterns in the data conditional

only on independent variables like the relative orientation of the stimuli.
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For each of the 42 trial conditions we simulated 400 trials of the model, while
sampling fixations, latencies, and inter-fixation transitions from the empirical dis-
tributions, pooling the even-numbered trials from all subjects. Initial latency (i.e.,
the delay between stimulus appearance and the first item fixation) and subsequent
inter-fixation transitions were sampled, each from its own distribution, without any
further conditioning. To maximize the extent to which the simulated fixations
matched the observed fixations, item fixations were sampled as follows. First, they
were partitioned into 3 groups, corresponding to first, second, and other middle
fixations. Additionally, item fixations were conditioned on the relative proximity
difference between the fixated and the unfixated items, rfixated — Funfixated, Since this
matched the observed fixation patterns well. Note that the pool of fixations used to
simulate the model excluded final fixations. According to the aDDM, a maximal
fixation duration is drawn at the fixation outset and runs its course unless a barrier
is cross beforehand. As a result, observed final fixations are truncated, and using
them would bias the simulations (under the maintained hypothesis that the aDDM

is correct).

Each trial was simulated by sampling latencies, fixations, and inter-fixation transi-
tions as needed to carry out the simulation to its completion. In particular, each
simulation began with a sampled latency, during which only white Gaussian noise
was added to the relative decision value. Following this, fixations alternated between
the left and right items such that, if the first fixated item was left, the second one
would be right, and so on. The first fixation was chosen to be left with probability
0.65, which equals its empirical frequency. The maximum first fixation duration

was sampled from the pool of first fixations, conditioned on rxated — Funfixated-

The simulation for a trial was terminated if the aDDM crossed a decision barrier
during the course of a fixation. After each item fixation, an inter-fixation transition
duration was sampled, and if a simulation happened to terminate on a transition, it
was discarded, since this was not commonly observed in the data (mean percentage
of trials across all subjects: 14.4%, min = 8.2%, max = 25.9%). We also simulated
the model without discarding simulations that ended on transitions, but did not find

any significant differences from the results presented here.

Model Comparison
In order to explore the role of attention in explaining the data, we carried out an
additional set of analyses designed to test the best fitting aDDM with the best fitting
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standard DDM, which equals the special case of 6§ = 1, where attention does not
matter. To do this, we first re-estimated the model in the odd-number trials under
the restriction that 6 = 1 to find the best fitting standard DDM. We then carried out

three different out-of-sample prediction exercises.

First, we predicted choices and RTs in the even trials using the best fitting DDM. This
was done by simulating the model 100,000 times for each potential combination of
Feft and ryigne, and then making predictions by sampling choices and RTs from the

resulting simulations conditional on the stimulus orientations in each trial.

Second, we predicted choices and RTs in the even trials using the best fitting aDDM,
conditional on net fixation time (i.e., total fixation time on left minus total fixation
time on right). This was also done by simulating the model 100,000 times for each
potential combination of rieft and ryigne, and then sampling choices and RTs from
the resulting simulations, but this time conditional on both the stimulus orientations

and the overall net fixation time observed in the even trial.

Third, we predicted choices and RTs in the even trials using the best fitting aDDM,
and conditional on the observed fixations. To do this, we simulated the aDDM
for each even trial assuming the same values of rier; and ryjgh, and that the fixation
process was identical to the one seen in the trial up to its RT. If the simulation did
not lead to a choice by the observed RT, additional fixations were sampled using the
fixation process described above. The outcomes of the simulation were used as the

choice and RT predicted for each even trial.

Goodness-of-Fit Measures

For binary variables, we report Efron’s pseudo R-squared as a measure of goodness-
of-fit, which corresponds to the squared correlation between the predicted values
and the actual values. For non-binary variables, we report a number of goodness-of-
fit measures, which are designed to test the similarity between the predicted and the
observed data patterns. Each pattern involves a relationship between an independent
(e.g., differences in relative proximity) and a dependent variable (e.g., RTs). Similar
to previous work (Krajbich, C. Armel, and Rangel, 2010), these measures were
computed as the p-values on the coeflicients of a weighted least squares regression,
in which the dependent variables were given by the difference between each subject’s
mean and the average value predicted by the model, and the weights were given by

the inverse of the variance.
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Data and Code

The data and code used in the analyses are available at the Rangel Neuroeconomics

Lab website (www.rnl.caltech.edu).

2.3 Results

In order to investigate the role of visual attention in perceptual decision making,
we carried out two different experiments. Experiment 1 was designed to test the
extent to which the aDDM provides a reasonable quantitative description of the rela-
tionship between visual attention (as measured by fixations), choices, and response
times (RTs) in simple perceptual decisions. Experiment 2 was designed to test a
key prediction of the aDDM, namely, that exogenous shifts in attention can bias

perceptual decisions in favor of the attended item.

The first experiment, depicted in Figure 2.1, required subjects to make simple
perceptual decisions about line orientations (see Materials and Methods for details).
At the beginning of each block of trials, subjects were shown an oriented bar
for 5 seconds, which served as the target for the entire block (Figure 2.1A). The
orientation of the target was chosen from the set {20° 35°,55°70°}. In each
decision trial subjects were shown two oriented bars, one on the left and one
on the right, and had to decide which of them had an orientation closest to the
target orientation by pressing a button (Figure 2.1B). The angular distance between
each of the lines and the target, denoted by A, was chosen randomly from the set
{—-15°-10°,-5°0°5°10° 15°} (Figure 2.1C), with the constraint that the two
stimuli could not have an equal orientation. Note that the correct response depends
only on the angular distance, which is a relative orientation measure. For example,
if Ajere = —10° and Ayigne = 15°, the correct response is left, and if the two stimuli
are equidistant to the target (e.g., if Ajerp = —10° and Ayjgne = 10°, then either choice
is considered correct. In order to motivate subjects to perform the task, a subset of
the trials was selected at random at the end of the experiment and subjects earned

$1 for each correct choice.

In order to familiarize the subjects with the stimuli, they also participated in a
training task at the beginning of each block in which they were shown one oriented
bar at a time and had to judge if it had the same orientation as the target (Figure
2.1D). Training was administered until a pre-specified performance criterion was

reached on each block. See Materials and Methods for details.
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Perceptual aDDM

The aDDM provides an algorithmic description of how information is integrated
over time in order to make a binary perceptual choice, and of the role that fixations
play in this process. As illustrated in Figure 2.3, the model assumes that choices
are made by dynamically computing a relative decision value (RDV) signal, which
at any instant provides an estimate of the relative attractiveness of the two options.
The RDV begins at zero and a choice is made the first time it crosses one of two
pre-established decision barriers: one at +1, indicating a choice for left, and one at

-1, indicating a choice for right.

A
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Left Right Left Left Right Left Right
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= c d = 0.002
_% _8 o= 0.02
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Figure 2.3: Two sample runs of the aDDM. (A) The two items have the same relative
proximity, and the left item is chosen after 1,909 ms. (B) The right item has greater
relative proximity, and is chosen after 2,444 ms.

The predictions of the model depend heavily on the dynamics of the RDV. Let RDV;
denote its value at time ¢ within the course of a single decision. At every time step
At, its change is given by uAt + &, where &, is i.i.d. zero mean white Gaussian
noise with standard deviation o, and u is the deterministic change in the RDV over
the time step, often called the slope of the process. A critical assumption of the
aDDM is that the slope of the RDV signal depends on the location of the fixations
at each time step. In particular, u = 0 until the first fixation to one of the two stimuli
occurs, as well as during non-stimuli fixations and inter-fixation transitions, while
p = d(riere — Orrigny) during fixations to the left option, and u = d(6riere — right)
during fixations to the right option. Here, d is a positive constant that controls the
speed of integration, 6 is a parameter between O and 1 that measures the size of the
attentional bias, and rief and ryigne are the relative proximities of the left and right

items shown in the trial.
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The relative proximity of an option is a measure of its attractiveness, which in this
task is given by the negative of the absolute value of A, and can only take four
values: {—15° —10° -5°0°}. For ease of interpretation, and ease of comparison
with related studies (Krajbich, C. Armel, and Rangel, 2010; Krajbich, Lu, et al.,
2012; Krajbich and Rangel, 2011), we normalized the relative proximities to the
scale {0, 1,2,3}, with 3 denoting the best possible proximity (i.e., an orientation
equal to the target), and O denoting the worst possible proximity (i.e., an angular
distance of either —15° or +15°). We chose the range to be from 0 to 3 because
there were 4 possible values for the angular distance between an item and the
target. Figure S3 illustrates the transformation from the angular distance scale to
the relative proximity scale, see Supplementary Materials from Tavares, Perona, and
Rangel, 2017.

The aDDM also makes a critical assumption about the fixation process. It allows
fixations to depend on properties of the stimuli (as described below), but it assumes
that the fixation process is otherwise independent of the state of the RDV signal.
In other words, it assumes that there is no feedback from the path of the decision
process to the propensity to fixate on stimuli. We return to this important assumption

in the Discussion section.

No other major restrictions are placed on the fixation process, except for those that
are reflected in the empirically observed properties of the fixations. First, the model
assumes that the location of the first fixation and its latency are independent of the
relative proximity of the two stimuli. To be precise, it assumes that the first fixation
is to the left item with a constant probability p, and that the latency of this first
fixation is drawn from a fixed distribution. Second, subsequent fixations alternate
between the left and right items. Third, a maximal fixation duration is drawn from
a distribution at the beginning of each fixation, and the fixations run their course
unless a choice is made by crossing a barrier before the end of the fixation. In
this case, the process terminates and the duration of the last fixation is truncated.
The distribution of maximal fixation durations is allowed to depend on the fixation
number, and on the difference in relative orientation between the fixated and the
unfixated stimuli (see Materials and Methods for details). Importantly, we only
sample from non-last fixations, i.e., fixations that were not terminated when the
subject makes a choice. Fourth, fixations are separated by inter-fixation transitions
that are drawn from another fixed distribution. As with the fixations, a maximal

inter-fixation transition duration is drawn from this distribution at the beginning of
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each transition, and runs its course unless a barrier is crossed before it terminates.

Several aspects of the model are worth highlighting. First, the model has three
free parameters: d, 6, and o (the time step used for binning the data was fixed at
10 ms). This follows from the fact that, in this class of models, multiplying the
size of the barriers, d and o by a common positive constant does not change the
predictions of the model. As a result, we can fix the size of the barriers to +1
and -1 without any loss of generality. Second, if § = 1, the model reduces to the
standard Drift-Diffusion Model (DDM) (Ratcliff, 1978; Gold and Shadlen, 2002;
Gold and Shadlen, 2007; Ratcliff, Cherian, and Segraves, 2003; Ratcliff and Smith,
2004; Smith and Ratcliff, 2004; Bogacz, 2007; Ratcliff and McKoon, 2008) and
therefore item fixations become irrelevant. Thus, the model includes as a special
case the possibility that attention plays no role in choices. Third, if 8 < 1, the
model predicts that changes in fixations can affect choices. The intuition for why
this is the case is illustrated in Figure 2.3A, which depicts a sample run in which
Neft = Iright = 2. In the absence of an attentional bias (i.e., when 6 = 1), the
mean slope of the RDV signal is zero and the choice and RT are determined solely
by the noise in the process. In contrast, when 6 = 0.5, as shown in the figure,
the mean slope of the RDV signal is positive during left fixations and negative
during right fixations (i.e., the integrator moves toward the fixated item on average).
Fourth, when 6 < 1, exogenous shifts (i.e., unrelated to the perceptual properties of
the stimuli) in fixations toward an item can bias choices toward that item, and the
magnitude of the bias increases as 6 decreases. For instance, as shown in Figure
2.3B, when riefc < riigne and @ = 0.5, the attentional bias strengthens the negative
slope toward the right item barrier during right fixations. Fifth, the assumption
that the fixation process does not depend on the state of the RDV signal implies
that one can think of the aDDM as a model of the decision process that takes as
given the empirical relationship between fixations and various non-aDDM variables
(e.g., fixation number or relative proximity), presumably because the choices and

fixations are controlled by distinct systems.

Basic Psychometrics

We began the analysis by characterizing the basic psychometrics of the task, which
resembled the patterns commonly found in previous perceptual (Ratcliff, Cherian,
and Segraves, 2003; Ratcliff, Philiastides, and Sajda, 2009; Churchland, Kiani,
and Shadlen, 2008; Deco, Rolls, and Romo, 2010; Bode et al., 2012; Bowman,
Kording, and Gottfried, 2012; Vugt et al., 2012; White, Mumford, and Poldrack,
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2012; Brunton, Botvinick, and Brody, 2013; Ossmy et al., 2013) and value-based
decision making studies (Gold and Shadlen, 2007; Krajbich, C. Armel, and Rangel,
2010; Krajbich, Lu, et al., 2012; M. M. Mormann, Malmaud, et al., 2010; Krajbich
and Rangel, 2011; Hunt et al., 2012; Tsetsos, Chater, and Usher, 2012; Philiastides
and Ratcliff, 2013). Choices were well described by a logistic function of the relative
attractiveness of the two items with a significant but negligible bias (mixed effects
logistic regression: constant = 0.08246, p = 0.0115, slope = 1.15047, p < 10716,
Figure 2.4A). The mean frequency of correct trials across subjects was 86.3% (SD
= 5.1%). Response times decreased as choice ease increased (mixed effects linear
regression: slope =-277.77 ms, p = 10711, Figure 2.4B). We measured choice ease
using the relative proximity difference between the items with the closest and farthest
orientations to the orientation of the target. The mean response time was 1,849 ms
(SD = 613 ms). Also consistent with previous studies (Krajbich, C. Armel, and
Rangel, 2010; Krajbich and Rangel, 2011), we found that the number of fixations
per trial decreased as choice ease increased (mixed effects linear regression: slope
= -0.28 fixations, p = 1072%; Figure 2.4C). The mean number of fixations was
2.83 (SD = 0.39). Together, these analyses showed that our perceptual task exhibits
psychometric properties common in 2-alternative forced choice tasks, which are

predicted by a wide class of sequential integrator models, including the aDDM.

Properties of Fixations

We recorded fixations using an eye-tracker, which allowed us to characterize their
properties during the choice process. For this purpose, we classified each item
fixation as “first,” “middle” or “last,” according to when it occurred within the trial.

“Middle” fixations are those that are neither the first nor the last ones.

We found that the probability that the first fixation is to the item with closest orien-
tation to the target was not significantly different from chance, and was independent
of the relative proximity difference between the two stimuli (mixed effects linear
regression: slope = -0.009, p = 0.095). Moreover, we found that the duration
of first fixations increased with the relative proximity of the fixated item (mixed
effects linear regression: slope = 30.55 ms, p = 107'%; Figure 2.5A), decreased
with the relative proximity of the unfixated item (mixed effects liner regression:
slope = -11.36 ms, p = 1077), and increased with the relative proximity difference
between fixated and unfixated items (mixed effects linear regression: slope = 17.67
ms, p = 107'%; Figure 2.5B). We did not find a significant correlation between first

fixation durations and choice ease (mixed effects linear regression: slope = -1.36



30

A B P=23x10%
1 3000 f !
0 _o500 &-_ °
° £ -
& ‘o 2000 —— s~
8 0.6 £ HEN
E peececccccceffeccccccanas = 1500 T~
B 04 %
< g 1000 |
0.2 ——data o [data
——fitted model 500 ~T fitted model
I~ 6=1 model =1 model
W L " " N 0 — — : ) E—
3 -2 -1 0 1 2 3 0 1 2 3
rIeft ) rright rclosest ) rfalrthest
C - "
4 . P=17x10 ]
S
7] =~
S 3! —i— - -
2 e - _ 3
= =~ -e
X
‘S 2
o
0
£ 1!
2 [ldata
- fitted model
—I- 6=1 model
0
0 1 2 3

rclosest . rfarthest

Figure 2.4: Basic psychometrics for Experiment 1. (A) Psychometric choice curve.
(B) RT curve depicting mean response times vs. trial ease, as measured by the
difference in absolute proximity between the correct and incorrect options. (C)
Mean number of fixations vs. trial ease. Subject data includes only even-numbered
trials. Fitted model is the best fitting aDDM with free 6, and § = 1 corresponds
to the DDM. Error bars show 95% confidence intervals for the data pooled across
all subjects, and across all simulated trials in the case of the data predicted by the
models. Tests are based on a paired two-sided t-test.

ms, p = 0.55; Figure 2.5C).

When looking at middle fixations, we found that their duration increased with the
relative proximity of the fixated item (mixed effects linear regression: slope = 59.9
ms, p = 10717, Figure 2.5D), decreased with the relative proximity of the unfixated
item (mixed effects linear regression: slope = -40.187 ms, p = 107), and increased
with the relative proximity difference between the fixated and the unfixated items
(mixed effects linear regression: slope =40.77 ms, p = 1072!; Figure 2.5E). Finally,
we found that middle fixation durations decreased as choices became easier (mixed

effects linear regression: slope = -24.4 ms, p = 0.00075; Figure 2.5F).
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These findings show that the observed fixations patterns are consistent with the
assumptions of the aDDM described above. Importantly, note that these analyses
did not include last fixations because their duration is endogenous in the aDDM,
even under the maintained hypothesis that fixation durations and locations are not
affected by the state of the choice process. The endogeneity of the last fixations
follows from the simple fact that they are terminated whenever the choice is made

upon crossing a barrier.
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Figure 2.5: Fixation properties. (A) First fixation duration as a function of the
relative proximity of the fixated item. (B) First fixation duration as a function of the
relative proximity difference between the fixated and the unfixated items. (C) First
fixation duration as a function of choice ease. (D) Middle fixation duration as a
function of the relative proximity of the fixated item. (E) Middle fixation duration as
a function of the relative proximity difference between the fixated and the unfixated
items. (F) Middle fixation duration as a function of choice ease. Error bars show
95% confidence intervals for the data pooled across all subjects.

Model Fitting

We divided the data into even- and odd-numbered trials, used the odd trials to fit the
free parameters of the aDDM using maximum likelihood estimation (see Materials
and Methods for details), and then tested the predictions of the model out-of-sample
using the even trials. The best fitting parameters resulting from the group-level
MLE were d = 0.0041, o = 0.063, and 6 = 0.36 (using a time step of size 10 ms).

Since 6 is much smaller than 1, this suggests a sizable attentional bias.
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We then used the best fitting parameters to simulate behavior in the even-trials, and
compared it to the actual observed data (see Materials and Methods for details). The
simulated data provided a reasonably good qualitative and quantitative match to the
observed out-of-sample behavior. The psychometric choice curve (Efron’s pseudo
R? = 0.086; Figure 2.4A) predicted that choices are a logistic function of relative
orientation differences, and that response times (goodness-of-fit: p = 0.10, Figure
2.4B) and number of fixations (goodness-of-fit: p = 0.22, Figure 2.4C) decrease

as choice ease increases.

In the Supplementary Materials (Tavares, Perona, and Rangel, 2017) we present three
additional sets of results that might be of interest to the reader. First, we provide
individual subject fits. Second, we estimate a non-linear version of the aDDM and
find that the best fitting model is approximately linear (as in the basic aDDM).
Third, we fit the aDDM separately for trials occurring immediately after target
display, where the memory of the target orientation is fresh, and trials occurring
4 trials after target display, where the memory of the target orientation might have
dissipated. The best fitting parameters in both cases are very similar, which suggests

that this was not an issue affecting performance in the task.

Model Predictions

We next tested for several basic predictions of the aDDM.

First, the model predicts that final fixations should be shorter than middle fixations.
This prediction follows from the fact that, according to the model, last fixations
are interrupted when the RDV reaches one of the barriers, cutting the last fixation
short. We found this to be the case in our data, as both second fixations as well as
other middle fixations (middle fixations excluding second fixations) are significantly
longer than last fixations (p = 107 and p = 10~1, respectively; Figure 2.6A).

Second, the model predicts that subjects should exhibit a bias toward choosing
the last fixated item, even in trials where they have fixated on both of them. This
prediction follows from the fact that when 6 < 1, the RDV moves toward the decision
barrier of the fixated item unless it is significantly less desirable than the other item.
For example, when 6 = 0.5, the RDV moves toward the left barrier when fixating
left as long as rief; > 0.5ryigh. This pattern was observed both in the data and the
simulations (Efron’s pseudo R? = 0.11; Figure 2.6B).

Third, the model predicts a very specific relationship between the duration of the last

fixation and the pattern of previous fixations. Atany point in time within the trial, we
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can compute the relative fixation time of the fixated item, given by the total fixation
time on that item thus far minus the total fixation time on the other item thus far.
The model predicts that in trials where the last fixated item is chosen, the duration of
the last fixation decreases with its relative fixation time computed at the beginning
of the last fixation. This effect is due to the nature of the RDV signal: when 6 < 1,
the longer an item is fixated in the trial, the more the signal will move toward its
barrier, so the last fixation to the other item (which will eventually be chosen) will
have to be longer so that the signal can move back toward its barrier. As shown
in Figure 2.6C, this effect was present in the data (mixed effects linear regression:

slope = -0.28, p = 107!!) and the simulations (goodness-of-fit: p = 0.48).

Choice Biases

The aDDM also predicts several choice biases when 8 < 1, which we tested next.

First, the model correctly predicts a last-fixation bias: subjects are more likely to
choose the last item fixated in the trial (Efron’s pseudo R?> = 0.11 for left last
fixated, and 0.084 for right last fixated; Figure 2.7A), due to the fact that the relative
proximity of the unfixated item is underweighted in the RDV integration process.
Note that a sizable bias effect can be seen both in our data as well as in the simulations
(for instance, when rief; — riighe = 0, the difference in the probability of choosing left
when left was last fixated vs. when right was last fixated is 0.51 for the data, and

0.26 for the simulations).

Second, the model predicts that the probability of choosing an item increases with
its overall relative fixation time. This follows from the fact that, because the RDV
moves toward the barrier of the fixated item (unless it is significantly worse than
the other one), the RDV is more likely to move in the direction of an item’s barrier
when that item is being fixated than when it is not. Consistent with this, we found
a strong association between overall relative fixation times and choices (Efron’s
pseudo R? = 0.14; Figure 2.7B). However, a concern with this test is that overall
relative fixation times and relative proximity are correlated. To correct for this,
we computed a corrected choice probability curve by subtracting from each trial’s
choice (1 for left and O for right) the average probability of choosing left for that
particular relative proximity difference. This curve provides an uncontaminated
measure of the effect of relative fixation at the time of choice, under the assumptions
of the aDDM. As shown in Figure 2.7C, the observed choice bias was sizable, and
matched well the simulated data (goodness-of-fit: p = 0.038).
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Figure 2.6: Model predictions. (A) Fixation duration by type. As predicted by the
model, last fixations are shorter than middle fixations. Note that, except for last
fixations, the match between the data and the model is a direct consequence of our
fixation sampling process. (B) Probability that the last fixation is to the chosen
item as a function of the relative proximity difference between the last fixated item
and the other item. In the absence of a bias effect, the probability at O should be
around 0.5; due to the bias, the observed probability is significantly larger than 0.5.
(C) Amount of time spent looking more at item A before the last fixation (to item
B), as a function of the duration of that last fixation. Subject data includes only
even-numbered trials. The fitted model is the best fitting aDDM with free 6, and
6 = 1 corresponds to the DDM. Error bars show 95% confidence intervals for the
data pooled across all subjects, and across all simulated trials in the case of the
models.

Finally, the model also predicts that the likelihood of choosing the first seen item
increases with the duration of the first fixation. This was observed in the data
(mixed effects linear regression: slope = 0.00075, p = 10-35; Figure 2.7D) and
in the simulations (Efron’s pseudo R? = 0.088). The effect was still present after
correcting for relative proximity differences, by subtracting from each trial’s choice

the average probability of choosing the first-seen item for that particular relative
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proximity difference (goodness-of-fit: p = 0.021; Figure 2.7E).
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Figure 2.7: Choice biases. (A) Psychometric choice curves conditioned on the
location of the last fixation. (B) Probability that the left item is chosen as a function
of the excess amount of time for which the left item was fixated during the trial.
(C) Analogous to (B), except subtracting the average probability of choosing left for
each relative proximity difference. (D) Probability that the first-seen item is chosen
as a function of the duration of that first fixation. (E) Analogous to (D), except
subtracting the average probability of choosing the first-seen item for each relative
proximity difference. Subject data includes only even-numbered trials. Fitted model
is the best fitting aDDM with free 8, and 8 = 1 corresponds to the DDM. Error bars
show 95% confidence intervals for the data pooled across all subjects, and across
all simulated trials in the case of the models. Tests are based on a paired two-sided
t-test.

Model Comparison

As discussed above, the aDDM reduces to the standard DDM, in which fixations do
not affect choices or RTs, when 6 = 1. This provides an additional way of exploring
the role of visual attention, by comparing the ability of the best fitting aDDM and
the best fitting DDM to explain the data out-of-sample.

This was done in several steps. First, we re-estimated the model in the odd-numbered
trials under the restriction that & = 1, which amounts to finding the best fitting DDM.
We found that the best fitting parameters in this case were d = 0.0024 and o= = 0.062.
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In contrast, the best fitting parameters for the aDDM were d = 0.0041, o = 0.063,
and 0 = 0.36.

Second, we used these best fitting parameters to carry out the same out-of-sample
predictions described above, but for the best fitting DDM. As shown throughout the
figures, the results show that when 6 = 1 the model cannot account for key aspects
of the data patterns and choice biases. For example, consider Figure 2.6B, which
shows that there is a sizable choice bias in favor of the last fixation. As the figure
shows, the best fitting aDDM can account for this pattern, which follows from the
overweighting of rfateq relative to rypfixated- In contrast, the best fitting standard

DDM cannot explain this pattern since attention does not matter in that model.

Third, we compared the ability of the two models to predict choices and RTs out-
of-sample, which provides a test of the value of fixation data in predicting choices
and RTs (see Materials and Methods for details). We compared the accuracy of
three types of predictions. For the standard DDM we predicted choices and RTs in
the even-numbered trials, conditional only on riefe and ryigne, since fixations do not
matter in this case. For the aDDM we carried out two different sets of predictions.
In one of them we predicted choices and RTs, conditional on rief, 7righe and on the
net fixation time on the left item (i.e., total fixation time on left minus total fixation
time on right) in each even trial. In the other, we made predictions based on rief,
Iiight> and, as much as possible, on the actual path of fixations observed on each trial.
The most accurate predictions were made by the best fitting aDDM conditional on
net fixation time (choice prediction accuracy = 72.3%, average RT absolute error
= 1.92 s). The second most accurate predictions were made by the other aDDM
exercise (choice prediction accuracy = 70.1%, average RT absolute error = 2.49 s).
The least accurate predictions were made by the best fitting DDM (choice prediction
accuracy = 68.4%, average RT absolute error = 2.69 s). To put these numbers in
perspective, note that the standard deviation of RTs is 1.87s. Together, these results
suggest that incorporating fixation information in the way specified by the aDDM

improves the out-of-sample predictions made by this class of models.

It might seem counter intuitive that predictions that condition on the observed
fixations as much as possible perform worse than those that condition only on
observed net fixation time. However, this makes sense once the randomness in the
aDDM model is taken into account. Since the model entails significant randomness,
repeated runs of the model with the same stimuli will result on different choices,

RTs, and net fixation times, even if they follow the same fixation pattern as much
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as possible. As a result, repeated runs of the exact same trials can result in net
fixations times that are significantly different from those observed in the trial that
we are trying to predict, even if the repeated runs require that fixations follow the
same process as long as possible (see Section Materials and Methods for details).
In contrast, the other set of aDDM predictions are made using runs of the aDDM
that result in nearly identical net fixation times. This leads to better predictions
because net fixation time on the two items affects the average slope of integration
in the diffusion model, and thus choices and RTs. Consistent with this, the standard
deviation in the simulated net fixation times was 276 ms in the first aDDM prediction
model, 886 ms in the second aDDM prediction model, and 2,603 ms in the DDM

prediction model.

Experiment 2: Causal Test of the Attentional Effect

So far we have found that the aDDM provides a reasonable quantitative and qualita-
tive account of the relationship between fixations, choices and RTs in our perceptual
task. Importantly, while the aDDM predicts a causal impact of attention on per-
ceptual choice, the evidence presented so far is only correlational. We addressed
this issue using an experimental paradigm that manipulates item fixation times with
the aid of an eye-tracker, and which has been previously shown to causally affect

subjects’ choices on a moral decision task (Pirnamets et al., 2015).

The task, depicted in Figure 2.2, consisted of a modification of the previously
described perceptual choice task. The key difference is that in each trial we randomly
selected one of the two items on the screen to be the bias-target for that trial, and
implemented the following procedure to bias fixation toward that item (see Materials
and Methods for details). Unbeknownst to the subjects, we defined a minimum
period of time required for them to fixate on each item before a decision could be
made: 800 ms for the bias-target and 200 ms for the non-bias-target. We then used
the eye-tracker to record the duration of each fixation and, as soon as the minimum
requirement for both items was met, the items disappeared from the screen, and the
subject was asked to make a choice. Note that this requirement does not guarantee
that the bias-target will be fixated longer, since it only establishes a minimum
amount of time for each item to be fixated, but not a maximum amount. To ensure
that subjects would not become aware of our manipulation, we set the maximum
duration for each decision trial at 3 seconds. If the minimum fixation requirements
for both items were not met within that period, the subject was prompted to make a

decision, and the trial would be discarded from all future analyses. Overall, 24.3%
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of the trials (1,633 trials) were discarded in this manner. We refer to trials in which
the manipulation was effective (i.e., in which the bias-target was fixated longer) as
effective trials. In order to increase the number of effective trials, we also attempted
to guide subjects’ first item fixations toward the bias-target (Hikosaka, Miyauchi,
and Shimojo, 1993), so that it would have a better chance of being fixated longer. In
particular, the bias-target stimulus was always displayed first, and the other stimulus
appeared on the screen after a short delay (duration: mean = 450 ms, SD = 35 ms).
Using this manipulation, 74.3% of the non-discarded trials were effective (i.e., a

total of 3780 trials were effective).

To check the success of the experimental manipulation, we compared the overall
relative fixation time advantage of the left item in all trials from Experiment 1 vs.
all effective trials in Experiment 2. As shown in Figure 2.8A, in Experiment 1
the left time advantage increased with the difference in relative proximity, while
in Experiment 2 the bias-target was fixated longer regardless of the items’ relative
proximity. In effective trials, the mean total fixation time on the bias-target was
814.2 + 85.8 ms, while for the other item it was 509.2 + 46.1 ms.

As predicted by the aDDM, we found that the probability of choosing the left item
was higher on trials where the left item was the bias-target than on those where the
right item was the bias-target (Figure 2.8B). To appreciate the magnitude of the
bias, note that when rief; — riigne = 0, the probability of choosing left increases by

14% across the two conditions (y? statistic = 16.51, p = 107).

Importantly, the bias obtained here is comparable in magnitude to what we found in
Experiment 1. In particular, the slope of the corrected choice curve in Figure 2.7C
is 0.02, which implies that a shift in relative fixation of 300 ms (which is similar in
size to the one induced by the experimental manipulation in Experiment 2) should
induce about a 6% increase in the probability of choosing the item. Figure 2.8C
shows a comparison of this effect between Experiments 1 and 2, illustrating that the
quantitative effects of the causal manipulation in Experiment 2 are consistent with
the measurements from Experiment 1, providing additional support for the validity

of the causal manipulation.

A natural concern with these results is that the observed effect might have been due,
in part, to priming: since the first fixation was manipulated to be to the bias-target
item, this could have primed the subjects to bias their choices in this direction (Meyer
and Schvaneveldt, 1971; Nedungadi, 1990). Another concern is that, by discarding

trials in which the manipulation was not effective, we are biasing the results toward
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Figure 2.8: Causal test of the attentional effect. (A) Time advantage of the left item
over the right item comparing effective trials from Experiment 2 to all trials from
Experiment 1. (B) Psychometric choice curves conditioned on the bias-target item.
Subjects choose the bias-target with higher probability. (C) Corrected probability
that the left item is chosen as a function of the excess amount of time for which the
left item was fixated during the trial, comparing all trials from Experiment 1 to all
trials from Experiment 2. Corrected probabilities are obtained by subtracting from
each trial’s choice (1 for left and O for right) the average probability of choosing left
for the relative proximity difference from that trial. Error bars and shaded error bars
show 95% confidence intervals for the data pooled across all subjects.

the hypothesis that longer fixations increase the probability of choosing the fixated
option. To address these issues, we split the trials into two sets based on whether
or not the bias-target was the longest fixated item in the trial (i.e., effective vs.
ineffective trials), regardless of which item was fixated first, and compared the size
of the bias in these two types of trials (Figure 2.9). If the observed effect were
exclusively due to priming, one would expect a similar choice bias in both groups of
trials. In contrast, the aDDM predicts a stronger choice bias in the trials in which the

bias-target was fixated longer. Consistent with this, we found that the choice-bias
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was larger in trials where the bias-target was fixated longer than in those when it was
fixated less (comparison of the individual biases in logit regressions: mean constant
difference 1.45 vs. 0.57, paired t-test t = 7.13 and p = 108 vs. t = 0.27 and
p = 0.79; when the bias-target was longest fixated, Figure 2.9A, mean total fixation
time was 814 ms for the bias-target and 509 ms for the non-bias-target, and when
the bias-target was least fixated, Figure 2.9B, mean total fixation time was 801 ms

for the bias-target and 1,132 ms for the non-bias-target).
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Figure 2.9: Experiment 2 choice curves, effective vs. ineffective trials. Experiment
2 psychometric choice curves conditioned on the bias-target item and on whether the
bias-target was the longest (A; effective trials) or least (B; ineffective trials) fixated
item in the trial (as measured by the total fixation time on each item).

2.4 Discussion

The results described above provide evidence consistent with the hypothesis that the
aDDM gives a plausible algorithmic description of the impact of attention in simple
perceptual decision making. Experiment 1 shows that the model is able to provide
a reasonably good (although not perfect) quantitative description of the relationship
between fluctuations in visual attention, choices and response times. Experiment 2
shows that the impact of attention in choice predicted by the aDDM is causal, and of

a qualitatively similar size as that predicted by the best fitting model in Experiment
1.

The imperfect match between our data and the model simulations could be due to at
least two important factors. First, the model we used to simulate the fixation process
is a simplistic approximation, which, under the assumptions of the aDDM, adds

noise to the simulations. Second, the results presented for the model simulations are
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averaged across trials, so the fact that they are not conditioned on the same fixations

present in the data also adds noise.

The version of the aDDM tested here is virtually identical to the one used in previous
value-based choice studies (Krajbich, C. Armel, and Rangel, 2010; Krajbich, Lu,
et al., 2012; Krajbich and Rangel, 2011; Towal, M. Mormann, and Koch, 2013).
The only difference is that in value-based choice the evidence that is integrated is
composed of noisy measurements of preference for the stimuli, whereas here it is
noisy perceptual signals about line orientation. This suggests that a similar simple
class of algorithms with only three free parameters is able to provide a quantitative
characterization of several complex behavioral patterns in the data, such as the
impact of relative fixation durations, or the impact of first fixations. This provides
further support for the view that the brain utilizes similar algorithms, and perhaps
similar neural architectures, for sufficiently similar classes of problems, even if they

operate in domains as different as perception and value-based choice.

Suggestively, the attentional bias we found in this study (8 = 0.36) is substantial and
of similar size to the bias found in previous value-based studies (6 = 0.3) (Krajbich,
C. Armel, and Rangel, 2010). This result leads us to speculate that attentional biases
might be sizable in any simple decision task (perceptual or value-based) in which

fixations facilitate the evidence gathering process.

An important feature of the aDDM is that it posits a causal impact of attention on
choice. In particular, it assumes that the evidence related to fixated items is weighted
more heavily during the decision process, and as a result choices can be biased toward
a stimulus by increasing its share of fixations. Furthermore, when the attentional
bias parameter is much smaller than 1, the predicted biases can be sizable. Previous
studies of value-based choice with exogenously manipulated fixations have found
causal effects in the predicted direction, but of smaller magnitude than predicted by
the model (Shimojo et al., 2003; K. C. Armel, Beaumel, and Rangel, 2008). One
potential explanation for the small effect sizes is that the experimental manipulations
had limited success in shifting attention. Experiment 2 provides evidence consistent
with this interpretation. Here we utilized a different experimental manipulation
of attention that was able to shift fixations and found a causal effect of a similar
magnitude as the one predicted by the model. In fact, our attentional manipulation
was inspired by a recent study of attention and moral decisions, which also found
sizable effects (Parnamets et al., 2015).

A critical assumption of the aDDM is that the fixation process is independent from
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the sequential integration process. More precisely, random fluctuations in the RDV
variable that guides the choices do not affect the fixation process. We emphasize
that this does not rule out the possibility that stimulus properties orthogonal to the
decision process might affect fixations. Indeed, a recent study in the domain of
value-based choice showed that the fixation process was affected by low level visual
features (Towal, M. Mormann, and Koch, 2013), and several others have provided
evidence that the value integration process is modulated by the saliency of the
stimuli (Tsetsos, Chater, and Usher, 2012; Tsetsos, Moran, et al., 2016). Instead,
the key assumption of the model is that the actual integration process does not affect
the fixation process. Thus, the aDDM can be thought of as a model of the decision
process, taking as given the exogenous and potentially stochastic fixation process. In
this study, as well as previous ones (Krajbich, C. Armel, and Rangel, 2010; Krajbich
and Rangel, 2011; Towal, M. Mormann, and Koch, 2013), this is implemented by
taking the fixation process to be the one that best describes the one observed in the
data.

We do not view our results as providing evidence for the hypothesis that the atten-
tional process is not influenced by the state of the decision process variables. In fact,
studies of value-based choice with large numbers of items have found that fixations
are shifted toward the best items several seconds into the decision process (Dawling
etal., 2011). Instead, our results suggest that these additional influences on attention
have a limited impact on the choice process, since most of the effects are already
accounted for by the simpler aDDM. However, we also conjecture that “top-down”
modulations of attention are more likely to occur in more complex decisions with
longer response times. A full characterization of how the decision process affects
attention, and how this feeds back to the choices, is a critical open question for ongo-
ing research. For example, a recent study has shown that the choice bias toward the
last fixated item shown here can arise in multiple types of integrator models, even
when attention is entirely random and independent of the choice process (Dawling
et al., 2011; Mullett and Stewart, 2016).

The aDDM provides a simple way of introducing attention in sequential integra-
tor models of choice, by adding an extra parameter to the most basic version of
the Drift-Diffusion Model. However, similar modifications could be introduced to a
number of other sequential integrator models of choice, including leaky-accumulator
models (Usher and McClelland, 2001), neural network models of the choice pro-
cess (Wong and Wang, 2006; Hunt et al., 2012), or more complex versions of the
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Drift-Diffusion Model (Churchland, Kiani, and Shadlen, 2008; Ratcliff and McK-
oon, 2008; M. M. Mormann, Koch, and Rangel, 2011; Hawkins et al., 2015), among
others. Such modifications would have qualitatively similar effects, provided that
the assumption that fixations are orthogonal to the state of the decision process is
maintained. Given the active debate in the literature about which sequential integra-
tor model provides the best description of the underlying processes, an important
direction for future research is to carry out a systematic comparison of the attentional

versions of all of these models.

The aDDM models the effects of attention at a high level of abstraction. Another
important question for future research is to characterize the neural mechanisms
behind the attentional effects captured by the model. For example, does attention
operate at the perceptual stage, prior to the integration of the information by the
decision process, or does it operate in the decision process itself? Does attention
operate through similar channels in perceptual and value-based choice, and if so,

why does it have a similar effect on choice?
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Chapter 3

A FORWARD LIKELIHOOD METHOD FOR PARAMETER
ESTIMATION IN DRIFT-DIFFUSION MODELS

3.1 Introduction

Making decisions is an essential part of our daily lives, and much effort has been
put into developing computational models that can explain the principles and al-
gorithms underlying simple decisions (Jerome R Busemeyer and Johnson, 2004;
Rangel, C. Camerer, and Montague, 2008; Glimcher and Fehr, 2013; Kahneman
and Tversky, 1979). An important class of models is that of Drift-Diffusion Mod-
els (DDMs), where the decision-maker accumulates evidence for each option over
time, until a relative decision value signal converges to one of two barriers and
a decision is made (Stone, 1960; Ratcliff, 1978; Ratcliff, Cherian, and Segraves,
2003; Ratcliff and Smith, 2004; Laming, 1979; Usher and McClelland, 2001; Smith,
1995; Smith and Ratclift, 2004; Ditterich, 2006; Bogacz, 2007; Gold and Shadlen,
2001; Gold and Shadlen, 2002). Previous work has shown that DDMs implement
an optimal decision making process that is equivalent to a sequential likelihood
ratio test (Gold and Shadlen, 2001; Gold and Shadlen, 2002; Gold and Shadlen,
2007; Bogacz, 2007; Bogacz, E. Brown, et al., 2006; Reddi and Carpenter, 2000).
Furthermore, the applicability of DDMs has been consistently verified in a variety
of contexts, including perceptual decision tasks, where choice is based on physical
properties of the options presented (Ratcliff, Cherian, and Segraves, 2003; Smith
and Ratcliff, 2004; Ratcliff and Rouder, 1998; Ditterich, 2006; Gold and Shadlen,
2001; Brunton, Botvinick, and Brody, 2013; Gold and Shadlen, 2007), as well as
value-based (economic) decisions tasks, where choice is based on an individual’s
subjective preferences (M. M. Mormann, Malmaud, et al., 2010; Tsetsos, Usher,
and McClelland, 2011; Hutcherson, Bushong, and Rangel, 2015; Philiastides and
Ratcliff, 2013; Hunt et al., 2012).

A critical step in behavioral studies of decision making is the estimation of the
model parameters that best explain the observed psychometric data. Given this,
there is considerable interest in developing fast, reliable methods that can be used to
fit the behavioral models to experimental data. When estimating the parameters of

the DDM in its simplest version, it is possible to obtain a closed-form solution for
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the likelihood of the model (Lehmann, 1983). However, the inclusion of additional
parameters, which are often needed to account for key aspects of the data, requires
likelihoods to be computed through a process of numerical approximation, which

can be slow and unreliable.

Several different methods can be used to approximate the likelihood of a DDM.
However, in general these methods require slow computations and a large amount
of experimental data in order to generate good approximations. In this chapter we
present an algorithm for fitting the DDM which aims to generate reliable parameter
estimates while requiring significantly less time and data than the more widely used

approaches.

We begin this section by providing a brief overview of the related literature. We then
provide a mathematical description of the DDM and briefly discuss the traditional

maximum likelihood approach used to fit the parameters of the model.

Review of Existing Literature

Several previous studies have addressed the comparison between different methods
for fitting DDMs. Most notably, Ratcliff and Tuerlinckx compared three different
methods for DDM parameter estimation, namely, maximum likelihood, chi-square,
and weighted least squares, and made recommendations for when to use each one
of them depending on characteristics of the data (Ratcliff and Tuerlinckx, 2002).
The maximum likelihood approach involves generating RT histograms from the data
and from model simulations, then multiplying the corresponding bins in order to
generate an approximation for the likelihood (more details about this method are
given later in this section). The chi-square fitting method also uses RT histograms,
but in this case the histograms are used to compute a chi-square statistic, which can
then be minimized by parameter adjustment. Finally, the weighted least squares
method relies on minimizing the sum of squared differences between observed and
predicted accuracies plus the sum of squared differences between observed and

predicted quantile response times.

In their study, Ratcliff and Tuerlinckx found that the maximum likelihood approach
was superior in terms of the bias and standard deviations of the estimated parameters
relative to the parameter values used to generate the data. On the other hand, they also
found that the same method was sensitive to the presence of outliers and variability
in non-decision processes, which led to poor fitting in several cases. The authors

discussed the issues that arise when contaminant response times or variability in
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non-decision processes are present in the data, and how to adapt each of the three

methods in order to deal with these issues.

Diederich and Busemeyer reviewed matrix methods that can be applied to different
sequential sampling models, including the DDM (Diederich and Jerome R Buse-
meyer, 2003). The Markov chain approximation approach they used is very similar
to the one we present in this chapter, but while they focused on a general mathemat-
ical description of the method to be used with any type of diffusion process, here
we focused on its application to the particular problem of fitting DDMs to empirical
data. Another key difference is that we also apply the algorithm to a modified ver-
sion of the model that includes an additional experimental parameter and makes use
of visual fixations. This makes for an interesting application since visual fixations

vary from trial to trial and are independent from the decision process.

Finally, Brunton et al. applied a method similar to the one we describe here to fit a
DDM to data from a decision making experiment in rats (Brunton, Botvinick, and
Brody, 2013). Their model fitting procedure was based on transition probabilities

and included neural data as well as behavioral data.

Drift-Diffusion Model

In the simplest version of the DDM, the value of the decision variable starts at
zero and evolves at a constant rate over time until it reaches one of two barriers,
+B and —B, corresponding to the two choices (or items) presented in the task (for
convenience, the notation to be used throughout the remainder of this chapter is
provided in Table 3.1). Once one of the barriers is reached, a decision is made and
the chosen option is the one that corresponds to the barrier reached by the signal.

The relative decision value (RDV) at each time step, V;, is computed as

Vi=Vio1 + 0. 3.1

The step ¢ is drawn from a normal distribution N(y, o-), whose mean yu is computed

as

p=d(ra —rs), (3.2)

where d is a parameter that controls the speed of integration of the signal, and rp

and rg are the values of options A and B, respectively. Note that we use the word
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“value” here to mean the attractiveness of an option in the context of the choice task,
which can represent either a physical attribute in the case of perceptual decisions,

or a measure of utility in the case of economic decisions.

Table 3.1: Notation for Chapter 3.

Symbol Description

O Set of model parameters.

O, Set of experimental condition parameters.

Vi Relative decision value at time .

0 Step in the relative decision value.

rA Value of item A.

rB Value of item B.

B Fixed DDM parameter; magnitude of the decision barriers.
d Free DDM parameter; controls speed of signal integration.
o Free DDM parameter; standard deviation of normal distribution.
0 Free aDDM parameter; controls attentional bias.

u Mean of normal distribution.

The model comprises two free parameters, d and o, as well as an additional pa-
rameter, B, which determines the size of the barriers and which can be set to 1 for
simplicity, as long as o is kept free. For the remainder of this chapter, we will use
as a convention the fact that the upper barrier, +1, corresponds to a decision for item

A, while the lower barrier, -1, corresponds to a decision for item B.

We can differentiate between the model’s set of parameters, ®,,, and the set of
parameters that depend on experimental conditions, ®.. The set of model param-
eters ®,, includes, in the simplest case, the free parameters d and o, which can
be fitted through a grid search maximum likelihood estimation procedure. More
sophisticated versions of the DDM can incorporate additional parameters to control
the rate at which the size of the barriers changes over time, to account for visual
and motor delays, as well as other improvements that are beyond the scope of this
chapter. The set of experimental condition parameters ®, is determined at the time
the experiment is designed. The parameters in ®, can vary from trial to trial and
include, at least, the values of the two items, rp and rg. Other examples include
the trial’s level of difficulty, the trial’s visual features (such as saliency, colors, and

brightness), the subject’s visual fixations, as well as other behavioral measurements.

During data collection, the key experimental measurements one obtains from sub-
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jects are two: a response time (the time elapsed from the beginning of the trial until
the subject reports the decision) and a choice (e.g., A vs. B) for each trial. Any
method for estimating model parameters makes use of these measurements over a

large number of trials, possibly in different experimental conditions.

Maximum Likelihood Algorithm

The widely used maximum likelihood approach for fitting the parameters of the
DDM, which we refer to here as Maximum Likelihood Algorithm (MLA), can be
described as follows. First, for each different experimental condition ¢ (i.e., for
each possible combination of values of the items A and B presented), we generate
a histogram of the response times (RTs) conditional on the final choice. We simply
count the number of data trials in each of the RT bins, separating the trials where
item A was chosen from those where item B was chosen. After this step, we have
two empirical histograms (for options A and B) for each of the K experimental
conditions, resulting in 2K empirical histograms total. Second, for each model m
and each experimental condition ¢, we generate S simulations of the DDM using
the parameter values given by m and the item values determined by c. Using these
simulations, we again generate RT histograms conditional on choice, resulting in
2K simulation histograms per model. Finally, we compute an approximation of the
likelihood of the data given the model m by first multiplying the number of data
trials in each bin of the empirical histograms by the number of simulated trials in the
equivalent bin of the simulation histograms obtained for model m, then summing
up the resulting products. This procedure is repeated for each of the N different
models (i.e., samples of the parameter set ®,,), and the final model selected is the

one that maximizes the likelihood over all trials.

From the description above, we can see that the ML A has a few inherent drawbacks.
In terms of computation time, the execution of the algorithm depends on the number
of distinct experimental conditions available in the empirical data set, K, and on the
number of simulations generated for each model m and each experimental condition
¢, S. The number of experimental conditions K can be very large depending on
the task. While there is no exact bound on how many simulations S are necessary
in order to generate a good fit, previous studies have used on the order of 1000
simulations per model and experimental condition. This leads to potentially very
large execution times, as well as some uncertainty about the quality of the fit, since
a larger number of simulations can potentially lead to better results. Nevertheless,

this approach has been successfully applied in many previous studies using DDMs
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to model experimental data (Ratcliff and Rouder, 1998; Ratcliff and Smith, 2004;
Shadlen and Newsome, 2001; Bennur and Gold, 2011; Bowman, Kording, and
Gottfried, 2012; Todd A Hare, Schultz, et al., 2011; Hawkins et al., 2015; Ho,
S. Brown, and Serences, 2009; Hutcherson, Bushong, and Rangel, 2015; Krajbich,
C. Armel, and Rangel, 2010; Krajbich and Rangel, 2011; Krajbich, Lu, et al., 2012;
M. M. Mormann, Malmaud, et al., 2010; Polania et al., 2014; Tsetsos, Chater, and
Usher, 2012; Tsetsos, Gao, et al., 2012; Tsetsos, Moran, et al., 2016; Ossmy et al.,
2013; Ditterich, Mazurek, and Shadlen, 2003).

3.2 Computing Likelihoods from a Probability Table

We now describe an alternative algorithm for estimating the parameters of DDMs,
which we refer to as Probability Table Algorithm (PTA). Importantly, the execution
time for this algorithm depends only on the number of models being tested, N, and
on the number of distinct experimental conditions available in the empirical data
set, K, as the method does not require any simulations to be produced during the
fitting process. This makes for a much more efficient likelihood computation when

compared to the traditional ML A described above.

Given a trial’s experimental condition c (i.e., the values of the two options ra and
rg) and a set of parameter values (d, &), the algorithm computes, at each time step
of the total duration of the trial, the probability of a choice being made for each
of the options A and B. In this algorithm, the RDV space is discretized into states
corresponding to small equally sized bins. Then, at each time step, the probability
that the RDV signal is in the range corresponding to each of these bins is computed,

as well as the probability that the signal has crossed each of the two decision barriers.

In the next section we will describe in more detail how to obtain the probability
table. For now, we assume that such a table can be obtained, and show how this
table can be used to compute the likelihood of a trial’s experimental data given a
model m. Algorithm 1 can be used to estimate the likelihood of a single trial from
a two-alternative forced-choice task, given a set of DDM parameters. In the DDM
likelihood computation, the model to be tested contains fixed values for parameters
d and o, the experimental condition consists of the values of the two options, and

the behavioral data consists of the subject’s response time and final choice.

The algorithm works as follows. Line 1: load trial experimental condition: value
of item A, r_A, and value of item B, r_B. Line 2: load trial data: response time, RT,

and choice (we assume 1 is used to represent item A and -1 to represent item B).
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Line 3: initialize the parameters of the model with the values to be tested: d, sigma,
and the magnitude of the signal barriers, B. Line 4: initialize the size of the step
for the RDV dimension, state_step, and the size of the step for the time dimension,
time_step, to be used in the probability table computation. Line S: the algorithm
will run for a number of time steps, num_time_steps, which is defined as the duration
of the trial, RT, divided by the size of the time step, time_step. Line 6: set the
mean of the normal distribution of transitions between RDV states, mu, according
to the model (Equation 3.2). Line 7: call the procedure defined in Algorithm
2 to obtain vectors prob_up_crossing and prob_low_crossing, which correspond
to the probabilities of the RDV signal crossing the upper and lower barriers over
time, respectively. Line 8-12: if item A was chosen (i.e., choice is equal to 1), the
likelihood returned is equal to the probability of crossing the upper barrier at the
end of the trial duration; on the other hand, if item B was chosen (choice is equal to

-1), the likelihood is equal to the probability of crossing the lower barrier.

Algorithm 1 DDM likelihood estimation for a single trial.
1: Load trial experimental condition: r_A, r_B
2: Load trial data: RT, choice
3: Initialize model parameters: d, sigma, B
4: Initialize algorithm hyper-parameters: state_step, time_step

9,1

num_time_steps = RT / time_step

6: mu=d* (r_A-r_B)

7. prob_up_crossing, prob_low_crossing = compute_probability_table(mu,
sigma, B, num_time_steps, state_step)

8: if choice == 1 then

: return prob_up_crossing[end]
10: else

11: if choice == -1 then
12: return prob_low_crossing[end]

3.3 Computing the Probability Table

We now describe the concept of the algorithm in more detail. To calculate the
likelihood for a particular experimental condition ¢, both the RDV and the time
dimensions are discretized. As illustrated in Figure 3.1, this transforms the state-
space of the model into a two-dimensional table. Columns denote time, increasing
from left to right, while rows denote the state of the RDV. At any discretized time
point, the algorithm assigns a probability mass to each RDV bin, which measures
the likelihood that the value of the RDV signal falls within that bin, at that time,
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conditional on a decision not having made yet (because a decision barrier has not
been crossed). Importantly, note that the sum of these likelihoods in a particular
column need not add to 1 if there is a positive probability that a decision can be

made before that time.
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Figure 3.1: Toy example of likelihood estimation using the Probability Table Al-
gorithm. At each time step, the probability of the RDV signal being located at
each bin inside the barriers (white cells) is computed. The shaded cells indicate the
probability of the signal crossing each of the two barriers. (A) A two-dimensional
table is used to compute probabilities for the position of the RDV signal at each time
step. Each column in the table corresponds to a time step in the trial. At time zero,
the signal is in the zero-bin with probability 1. We use ¢ instead of zero for all other
bins, to account for the small probability of a spurious key press in the experiment
(i.e., a subject might incorrectly press a key, submitting their response before a deci-
sion is actually made). (B-C) As time progresses, the probability mass of the signal
spreads throughout the RDV bins. (D) After some amount of time, the probability
of the signal crossing each of the two barriers (shaded cells) becomes larger than &.
The likelihood for a particular trial is given by the probability of crossing the barrier
corresponding to the trial’s choice at the time step corresponding to the trial’s RT.

The computation starts at time zero (first column of the table) with the entire

probability of the RDV signal placed in the zero-bin with probability 1 (Figure
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3.1A). This reflects the assumption that in the DDM the value of the RDV is zero at
the beginning of every trial. We use ¢ (a very small number) in all bins other than
the zero-bin to account for the small probability of a spurious key press early in the
trial. The columns of the table are then filled out from left to right. Let P! denote
the probability of bin i at time step ¢. For any RDV bin j between the barriers, the
likelihood of the signal being in RDV bin j at time ¢ + 1 is given by

Pl =) PixP, (3.3)
i

where Pf_’j denotes the probability of transition from i to j. This transition proba-
bility can be computed from Equations 3.1 and 3.2 as follows. The change in the
RDV in a single time step is given by N(u, 6-). The mean of the normal distribution
is fixed throughout the trial and can be computed as i = d(rs — rg). The probability
of transition P;_U can therefore be approximated as the value of the probability den-
sity function N(u, &) for 6, where ¢ is the difference in mean RDV values between

bins j and i.

At every time step, the probability of the RDV reaching each of the two barriers is
also calculated. In particular, the likelihood of the model crossing the upper barrier

at time ¢ + 1 is given by

PP = Pix P, (3.4)
i

where P;_)UP denotes the probability of going from an RDV within bin i to crossing

the upper barrier at time step ¢, and is given by the probability of a draw from

N(u, &) that exceeds 1 —i. PI°%" is defined analogously.

t+1

For every unique experimental condition ¢, the model is simulated by filling out the
table for a certain period of time, which should be at least as long as the longest trial
in the dataset with that experimental condition. The likelihood for a particular trial
is then given by Py, if the individual chose A, and by Pg‘%wn, if the individual chose
B (according to the convention for the barriers established in section 3.1), at the time
that the observed RT in the trial is reached. The process is illustrated in Fig. 3.1,
in which the barrier crossing probabilities are depicted as additional top and bottom
rows shaded in gray. Once the likelihood for all trials has been computed using

this method, the overall likelihood (or, equivalently, the negative log-likelihood) for
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each model m can be obtained, with the largest likelihood being associated with the

optimal parameter values among the models tested, for that particular set of trials.

A layout of the method to compute the probability table for the RDV signal is given
in Algorithm 2. This algorithm is implemented as a callable function which takes
as arguments the fixed model parameters, mu, sigma and B, the number of time steps
that defines the number of columns in the probability table, num_time_steps, and
the size of the RDV state bins to be used in the probability table, state_step. In order
to obtain the probability of the RDV signal being in each bin at each time step, the
function performs a convolution between the probabilities in the previous time step
and a Gaussian kernel. After filling out the whole probability table, the function
returns two vectors of length num_time_steps, which contain the probabilities of the

RDV signal crossing the upper and lower barriers over time.

The algorithm works as follows. Lines 2-3: the magnitude of the two barriers is
determined by B. Line 4: save the value provided by the caller for state_step. Line
5: save the number corresponding to half the number of state bins. Line 6: correct
the size of the state_step to make sure all bins are the same size. Line 7: the state
bins range from the negative barrier to the positive barrier, and the size of each bin
is determined by the corrected state_step; we make sure each bin is represented by
the value at the center of its range. Line 8: sample the space of all possible value
differences between RDV state bins. Line 9: save the number corresponding to half
the size of the kernel space; this value will be needed to access the correct portions
of the convolution output later. Line 10: obtain the kernel, which is a Gaussian
probability density function over the kernel sample space. Line 11: normalize the
kernel to make sure all probabilities add up to 1. Lines 12-13: create the probability
table. At time zero, the probability of the signal being in any of the state bins is
epsilon (to account for spurious key presses), except for the state bin of value zero,
which contains the signal with probability one (this is because at the beginning
of each trial the RDV is equal to zero). Lines 14-15: initialize the probabilities
of crossing each barrier throughout the trial with €. Line 16: iterate over the
duration of the trial, num_time_steps. Line 17: convolve the probabilities of the
RDV bins from the previous time step with the kernel. Line 18: the probabilities
for the state bins inside the barriers at the current time step are given by the middle
portion of the convolution output. Line 19: the probability of crossing the lower
barrier at the current time step is given by the sum of the probabilities in the lower

portion of the convolution output. Line 20: the probability of crossing the upper
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barrier at the current time step is given by the sum of the probabilities in the upper
portion of the convolution output. Line 21: Return arrays prob_up_crossing and

prob_low_crossing.

Algorithm 2 Computation of the probability table.
1: procedure COMPUTE_PROBABILITY_TABLE(mu, sigma, B, num_time_steps,
state_step)

2 up_barrier = B

3: low_barrier = -B

4: approx_state_step = state_step

5: half_num_state_bins = ceiling(B / approx_state_step)

6: state_step = B / (half_num_state_bins + 0.5)

7: state_bins = (low_barrier + state_step/2) : state_step : (up_barrier -

state_step/2)

8: kernel_samples = state_step * (low_barrier - (8 * sigma / state_step) : 1 :
up_barrier + (8 * sigma / state_step))
9: half_kernel_size = (Ilength(kernel_samples) - 1) / 2

10: kernel = normal_pdf(kernel_samples, mu, sigma)

11: kernel = kernel / sum(kernel)

12: prob_table = epsilon * ones(length(state_bins), num_time_steps)

13: prob_table[state_bins == 0, 0] = 1

14: prob_up_crossing = epsilon * ones(num_time_steps)

15: prob_low_crossing = epsilon * ones(num_time_steps)

16: for t = 1 to num_time_steps do

17: new_prob_states = convolve(prob_table[:, t-1], kernel)

18: prob_table[:,t] = new_prob_states[half_kernel_size + (1
length(state_bins))]

19: prob_low_crossing[t] = sum(new_prob_states[1 : half_kernel_size])

20: prob_up_crossing[t] = sum(new_prob_states[length(new_prob_states) -

half_kernel_size : end])

21: return prob_up_crossing, prob_low_crossing

3.4 Computational Complexity
In this section we present a brief discussion comparing the computational com-
plexity of the PTA versus the traditional MLA for computing the likelihood of the

experimental data given a particular set of DDM parameters.

In the MLA, we first need to generate the empirical RT histograms, which corre-
sponds to counting the available data trials, and is therefore O(M), where M is the

number of trials in the dataset. Generating the simulations is O(K X S x T'), where



55

K is the number of experimental conditions, S is the number of simulations to be
generated per experimental condition, and 7 is the expected number of time steps
in a trial. Since there are K X S simulated trials, generating the simulation RT
histograms is O(K x S). Finally, multiplying the bins in the empirical histograms by
the corresponding ones in the simulation histograms is O(2 X K x H), where H is
the number of bins used in creating the histograms. The computational complexity
of this method is therefore O(M + KTS + KH).

In the PTA, we need to fill out one probability table for each experimental condition,
and each table contains 7' X C cells, where T is the expected number of time steps
in a trial, and C is the number of RDV bins used in the table. Therefore, the
algorithm’s overall computational complexity is O(K X T x C), where K is the

number of experimental conditions.

The main factor that makes the PTA computationally advantageous when compared
to the MLA is that the execution time for the former depends only on the number of
experimental conditions present in the dataset (K), whereas the execution time for
the latter depends both on the number of data trials available (M), as well as on the

number of simulations generated to create the RT histograms (K X §).

3.5 Experiments

Simple DDM with 2 Free Parameters

In order to compare the two algorithms for computing DDM likelihoods, we carried
out the following experiments. In Experiment 1, using a simple DDM with 2 free
parameters (d and o), we first generated artificial data by simulating the model
with fixed parameter values, (d, o) = (0.01,0.1). We then attempted to recover
these parameters by applying the PTA and the MLA, performing a grid search over
the 2-dimensional parameter space. Each point in the grid corresponds to a set of
parameters (d, o). The heat maps in Figure 3.2 show the likelihood values computed
for different grid sizes and different dataset sizes, comparing our approach to the
traditional method. As shown in the figure, our approach can estimate the correct
model with a small number of trials, while the traditional method converges on the
wrong model when only a small dataset is available for a large grid. Additionally,
we can see that the PTA provides smoother likelihood curves over the search space,

which makes the algorithm more robust in the optimization process.
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Figure 3.2: Likelihood heat maps. Left column: Probability Table Algorithm; right column: Maximum Likelihood Algorithm. The
model used to generate the artificial data was (d, o) = (0.01,0.1), so when estimated correctly, the maximum likelihood value should be
at the center of the grid. Results are shown for three different parameter search grid sizes and for two dataset sizes.
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Next, we compared the two algorithms in terms of the error rate obtained over
several runs. We used the same artificial data obtained in Experiment 1 using fixed
parameter values, (cf, 0). Then, using each algorithm, we searched for the correct
model by running the algorithm 100 times and at each run selecting the model
in the grid with the maximum likelihood. The error rate is the fraction of runs
that produced an incorrect model as a result. We varied the number of data trials
available for estimation, as well as the size of the model search grid. For the MLA,
the number of simulations used in the algorithm was kept fixed at 10,000. The
results of this experiment are shown in Figure 3.3A. For all three grid sizes tested,

the PTA consistently required less data trials to produce similar error rates.
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Figure 3.3: Experiments comparing Probability Table and Maximum Likelihood
Algorithms. (A) Error rate vs. number of data trials used in the estimation procedure
for the DDM. (B) Execution time vs. error rate (DDM). (C) Execution time vs.
number of data trials (DDM). (D) Error rate vs. number of data trials used in
the estimation procedure for the aDDM. PTA, Probability Table Algorithm; MLA,
Maximum Likelihood Algorithm.

Finally, we compared the two algorithms in terms of their mean execution time. We
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used the same artificial data from the two previous experiments. For each algorithm
and each grid size, we obtained the error rate over 100 runs, as described above, and
measured the execution time of each run. Figure 3.3B shows the mean and standard
deviation of the wall-clock time versus the error rate for each algorithm and each
grid size. For all three grid sizes tested, the PTA consistently required less time to
produce similar error rates. We also show the increase in wall-clock time as the
number of trials used in the estimation procedure increases (Figure 3.3C). Note that
for a given amount of time the MLA could process a much larger number of data
trials than the PTA, but this did not translate into smaller error rates, as indicated in
Figures 3.3A and 3.3B.

Attentional DDM with 3 Free Parameters

The classic DDM discussed above can be fitted using a closed-form solution for the
likelihood, so an improved method for model fitting is not advantageous in practice.
However, for more sophisticated versions of the model, an approximation for the
likelihood may be necessary and can make the fitting process much faster. In order to
demonstrate the advantages of our method when additional parameters are included
in the model, we ran an experiment comparing the two methods (PTA and MLA) in
terms of error rate vs. number of trials using a variant of the DDM which contains an
additional free parameter. The attentional Drift-Diffusion Model (aDDM) (Krajbich,
C. Armel, and Rangel, 2010; Krajbich and Rangel, 2011) includes a parameter 6,
ranging between 0 and 1, which controls the attentional bias, discounting the value
of the non-fixated item at each time step. Note that the aDDM takes into account
subjects’ visual fixations during the trials, and because each trial’s set of fixations is
unique, the number of experimental conditions corresponds to the number of trials

in the dataset.

Using the same approach described above, we generated artificial data by simulating
the aDDM with fixed parameter values, (a?, o, 9), and attempted to recover them
using the two different methods. As before, each algorithm was run 100 times and
the error rate was calculated over these runs. We varied the number of data trials
and the size of the model search grid, while the number of simulations used in
the MLA was kept fixed at 10,000. The results of this experiment are shown in
Figure 3.3D. For all three grid sizes tested, our approach consistently required less
data trials to produce similar error rates. In addition, note that the discrepancy in
performance between the two methods is even more pronounced than in the case of

two-parameter model (Figure 3.3A), suggesting that the PTA becomes increasingly



59

advantageous as the complexity of the model increases.

3.6 Discussion

In this chapter we have presented the Probability Table Algorithm, which can be
used for the computation of DDM likelihoods when no closed-form solution is
available for the model being fitted. This method provides an exact measure of the
probability of the decision barrier being crossed at the end of a trial, and unlike the
state-of-the-art Maximum Likelihood Algorithm, it does not require the generation
of model simulations. We have shown through several tests that the PTA requires
less data and achieves faster execution times when compared to the MLLA, and that
it becomes increasingly advantageous as the complexity of the model being tested
increases. Furthermore, while we have focused our comparison on the MLA, since
it is the most widely used method, we predict that similar advantages would be
obtained over other simulation-based algorithms, such as chi-square and weighted
least squares, which depend on producing RT histograms in the same way as the
MLA.

One potential concern with using the PTA described here is when dealing with
models that include variables that are not directly involved in the decision process,
such as non-decision time. One solution to this problem would be to include the
non-decision variable as an extra free parameter in the model, to be fitted in the
same way as the other free parameters, as previously described. However, it may
be desirable to allow this variable to vary across trials in order to better fit the
experimental data. In this case, an alternative is to use a probability distribution,
parameterized by a small number of hyper-parameters, to describe the non-decision
variable, and to include these hyper-parameters as additional free parameters in the
fitting process. The disadvantage in this case is that the PTA will become more

computationally expensive as the number of free parameters in the model increases.

The approach we have described does not make any assumptions about the nature
of the two-alternative force-choice task used to collect the data, and can therefore
be used with a variety of experimental setups. It would also be a straightforward
modification to adapt the algorithm for more than two choices presented in the
task. Finally, while we have only provided the algorithmic implementation for a
simple two-parameter version of the DDM, the implementation of the algorithm can
be easily extended to account for additional free parameters, including collapsing

barriers, initial bias, as well parameters aiming to capture specific experimental
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conditions, such as the attentional bias in the aDDM (Krajbich, C. Armel, and
Rangel, 2010; Krajbich and Rangel, 2011; Tavares, Perona, and Rangel, 2017).
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Chapter 4

COMPETITION BETWEEN DESCRIBED AND LEARNED
VALUE SIGNALS IN ECONOMIC CHOICE

4.1 Introduction

Imagine you are at a restaurant close to your home, one you have visited many times
in the past, and you are trying to decide what to order for dinner. The menu lists
several options, some of which you have tried before, and some of which are specials
which are newly introduced to the menu every week. How do you choose between
the different options available? In order to make a choice, you will need to consider
foods that you have tried before, relying on your previous experience eating them, as
well as foods that are completely new to you, in which case you may need to predict

how much you will enjoy them based on the descriptions provided on the menu.

When making decisions based on individual preference, people may need to consider
different types of information, some of which may be available in a descriptive format
(such as the food specials from the restaurant example), and some of which may be
retrieved from memory based on a history of previous rewards (such as the familiar
foods in the restaurant menu). Moreover, some options may involve both types of
information simultaneously: in the restaurant example, this could correspond, for
instance, to a dish that is a slight, novel variation on another dish that has been tried
before. In situations such as these, the values associated with the options presented
in the two different formats, descriptive and experiential, will need to be represented
in the decision making circuitry and somehow integrated in order to generate a

single choice.

There is wide recognition that two distinct valuation systems might affect even
simple economic choices such as the one described above (Kahneman and Tversky,
1979; Barron and Erev, 2003; Hertwig, Barron, et al., 2004; Jessup, Bishara, and
Jerome R Busemeyer, 2008; Hertwig and Erev, 2009; FitzGerald et al., 2010).
While the descriptive system relies on clearly described outcomes, the experiential
system uses previous experience without relying on detailed information about the
outcomes associated with the available options. Several studies have identified
a phenomenon, referred to as the description-experience gap, according to which

subjects’ behavior is risk averse in the gain domain and risk seeking in the loss
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domain when options are presented in a descriptive format, whereas the opposite
is true when they are presented in an experience-based format (Kahneman and
Tversky, 1979; Barron and Erev, 2003; Hertwig, Barron, et al., 2004; Hertwig
and Erev, 2009). In addition, subjects tend to overweight low probability events
and underweight high probability events when those are fully described, but the
reverse occurs when subjects learn about these events from experience. Evidence
supporting this phenomenon suggests that two distinct valuation systems may be at
work when subjects assign values to the options presented in each type of decision.
However, most studies so far have focused on the differences between these systems
as they operate separately, and therefore much remains unknown about how they
interact at the time of choice, within the course of a decision, in order to consistently

generate choices in real world situations.

In this chapter we present a study of the interactions between the descriptive and
the experiential valuation systems. Our aim was to understand how these systems
interact and compete for control when both are simultaneously recruited to produce
a single choice, and to investigate how this interaction changes with contextual
variables, such as cues about the relevance of each system to the current decision.
For this purpose, we designed a task where each decision required subjects to make
use of information retrieved from memory, based on their experience in previous
trials, as well as information available only at the time of the decision. This design
allowed us to investigate how control was allocated between the two valuation
systems during the decision process. Furthermore, the inclusion of an experimental
variable that changed the relative relevance of these two types of information in each
trial allowed us to examine the influence of contextual variables on the interactions

between the two systems.

Our approach differs from most previous work in this literature in that it directly
addresses the interaction and competition between the descriptive and experiential
systems when both are relevant to the choice at hand. Moreover, our experimental
design exogenously and randomly changed the relative importance of each system
throughout trials, which is useful in understanding this interaction and which has

not been used in previous studies.

We found that a simple computational model of arbitration between the two systems
could reasonably describe subjects’ choices in our task. We tested a few variations
of this model, allowing for both linear and non-linear effects of the exogenous

relative relevance of the two systems on choice. Additionally, we modified the
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model to include an effect of either the relative strength of preference (i.e., to
what degree one option was better than the other in each valuation system), or the
uncertainty in the estimates from the experiential system. We found only a small
influence of the relative strength of preference on choice and no influence of relative
uncertainty, suggesting that the weights given to the two valuations systems during
choice computation can be mostly accounted for by a non-linear transformation of

the experimental variable that controlled relative system relevance.

4.2 Related Literature

Growing evidence from behavioral and neuroimaging studies suggests the existence
of two distinct valuation systems in the human brain which come into play dur-
ing the decision making process: a descriptive system relying on explicitly stated
variables and an experiential system that evaluates options on the basis of expe-
rience (Hertwig, Barron, et al., 2004; Jessup, Bishara, and Jerome R Busemeyer,
2008; Hertwig and Erev, 2009; FitzGerald et al., 2010; Glockner et al., 2012).
Hertwig et al. found evidence for this dichotomy in a behavioral study showing
that people tend to overweight the probability of rare events when making decisions
from description, and to underweight that same probability when deciding based
on experience (Hertwig, Barron, et al., 2004). In an fMRI study with humans,
FitzGerald et al. found differential sensitivity to learned and described values and
risk in brain regions typically associated with reward processing (FitzGerald et al.,
2010). Later, Glockner and colleagues used eye-tracking and physiological arousal
measures to study the differences between descriptive and experiential valuation
systems (Glockner et al., 2012). They found that different computational models are
better at predicting choices in the two types of decision, and that arousal and atten-
tion measurements also differ between them, providing further qualitative evidence

for a distinction between the two systems.

Collectively, these results suggest that decisions based on described information
and those based on previous experience exhibit different behavioral patterns and
may stem from distinct neural systems. But this hypothesis leads to an important
open question related to arbitration: when multiple valuation or decision systems
are in operation, how is control allocated to each of them? Do they compete or
cooperate? Several studies have attempted to understand this arbitration process
(Doya et al., 2002; N. D. Daw, Niv, and Dayan, 2005; N. D. Daw, Gershman, et al.,
2011; Beierholm et al., 2011; Wunderlich, Dayan, and Raymond J Dolan, 2012; Lee,
Shimojo, and J. P. O’Doherty, 2014; Economides et al., 2015; Kool, F. A. Cushman,
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and Gershman, 2016; Kool, Gershman, and F. A. Cushman, 2017; Miller, Botvinick,
and Brody, 2017; Russek et al., 2017). Notably, Daw et al. proposed a Bayesian
principle of arbitration between model-based and model-free decision systems based
on uncertainty, relying on the trade-off between the flexibility of the first system and
the computational simplicity of the second (N. D. Daw, Niv, and Dayan, 2005).
Wunderlich et al. identified two distinct areas of human striatum relating to forward
planning and to values learned during extensive training, as well as functional
coupling between these areas and a region in ventromedial prefrontal cortex that
suggests a mechanism of value comparison (Wunderlich, Dayan, and Raymond J
Dolan, 2012). More recently, Lee and colleagues found neuroimaging evidence for
an arbitration mechanism in the human brain that allocates control over behavior to
model-based and model-free systems as a function of their reliability (Lee, Shimojo,
and J. P. O’Doherty, 2014), while Kool et al. studied the same arbitration process
under a cost-benefit framework, suggesting that humans perform on-line cost-benefit
analysis of effort and reliability in order to switch between systems (Kool, Gershman,
and F. A. Cushman, 2017).

Our study differs from the ones listed above in several ways. First, while FitzGer-
ald et al. looked for potential differential representations of the two classes of
values (FitzGerald et al., 2010), here we investigated the competition between the
valuation systems identified in this literature. We focused on understanding how the
two systems interact and compete for control when both are relevant to the same
decision, which could not be addressed through the task design used by FitzGerald
et al. Furthermore, we carried out a qualitative comparison of broad classes of mod-
els that might drive the competition between the two valuation systems, which has
not been addressed in previous studies. Finally, our task design included a built-in
experimental variation of the relative importance of the two systems that allowed us

to further investigate the nature of the arbitration mechanism.

4.3 Materials and Methods

Subjects

In this experiment we tested 27 healthy subjects (15 female, mean age 20), all
of whom were Caltech students. Subjects reported no history of psychiatric or
neurological disorders, and no current use of any psychoactive medications. Of
the initial set of 27 subjects, 25 were able to complete the experiment (2 subjects

could not be scanned due to discomfort and/or claustrophobia in the scanner). Each
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of the 25 remaining subjects completed 300 trials, split into 5 consecutive fMRI
sessions. Subjects received a $30 show-up fee, as well as additional earnings based
on performance, as described below. The experiment was approved by Caltech’s

IRB and all subjects provided informed consent prior to participation.

Task

The structure of a typical trial is depicted in Figure 4.1. Each trial began with a
central fixation, for which the duration is a random inter-trial interval (ITI) between
4 and 7 seconds plus a variable amount as described below. In each trial, the subject
had to choose between two pairs, one on the left and one on the right side of the
screen. Each pair contained a fractal (at the top) and a lottery (at the bottom).
The two fractals shown to the subject were randomly sampled from a set of 25,
and remained the same in every trial throughout the experiment. Each fractal was
associated with a probability of a fixed payout of $1: practal teft and Peractal right- These
probabilities were not shown on the screen. They drifted slowly and independently
throughout the experiment between 0.25 and 0.75, according to a Gaussian random
walk with o = 0.025 (subject were only told that the probabilities drifted slowly and
independently, but were given no information about the bounds or the drift rate).
Figure 4.2 shows the evolution of fractal reward probabilities for a sample sequence
of trials. The initial value of each probability was uniformly sampled between 0.25
and 0.75. The change in each probability was then sampled at every trial, and when
the value of a probability went beyond one of the two thresholds, it bounced back

into the allowed interval by moving the same amount in the opposite direction.

\ 4

Jittered ITI: 2 seconds Free RT 3 seconds
4-7 seconds (max 4 seconds)

Figure 4.1: Task structure.
The lottery on the left changed from trial to trial and was represented by a prob-

ability piottery lefi. Shown as a pie chart, and a magnitude Vioyerylefc. The pair
(plottery left vlottery left) was taken from the set {(1, $050), (025, $2), (02, $250),



66

Lo Fractal reward probabilities

—— Left fractal

0.91 Right fractal

0.8 1
0.7 1

0.6 1

0.5 L W ),W

_ | 4
0.4 .
s NV Mi )

0.2

Probability of reward

0.1+

0.0 T T T T .
0 50 100 150 200 250
Trial

Figure 4.2: Example of fractal reward probabilities. The probabilities of receiving
a reward associated with the fractals drifted slowly and independently over time
between 0.25 and 0.75, according to a Gaussian random walk with o = 0.025.

(0.1, $5), (1, $0.10), (0.1, $1), (0.05, $2), (0.01, $10), (1, $0.30), (0.3, $1), (0.15,
$2), (0.1, $3), (1, $0.70), (0.7, $1), (0.35, $2), (0.1, $7), (1, $0.90), (0.9, $1), (0.45,
$2), (0.1, $9)}. Each of these 20 pairs occurred 3 times in each 60-trial session, in
randomized order. The lottery on the right was the reference lottery and remained
the same in every trial: a 50% probability of winning $1; this was represented by

the symbol "REF" on the bottom right corner of the screen in every trial.

Before each choice, the subject saw the probabilities associated with a fractal draw
or a lottery draw, which were displayed for 2 seconds. The number at the bottom,
which we call 7, corresponded to the probability that the reward for the trial would
be drawn from the lotteries, while the number at the top, 1 — &, corresponded to the
probability that the reward would be drawn from the fractals. The value of 7 in each
trial was taken from the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}; each
value below 0.3 or above 0.7 occurred 5 times within a 60-trial session, whereas all

other values occurred 6 times each within the session.

The subject had a maximum of 4 seconds to respond in each trial. The subject
reported their choice using their right hand, by pressing the "2" key for left and the
"3" key for right. If the subject did not make a choice within that time, they saw the
message "No response recorded!", and the experiment continued to the next trial.

In trials where no response was recorded, no reward was added to the final payout.
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In trials where the subject took less than 4 seconds to respond, the remaining time
was added to the following ITI.

After the subject had made a choice, the computer drew the lottery associated with
the option chosen: for instance, if the subject chose left, a reward would be drawn
from the left lottery with probability &, and from the left fractal with probability
(1 — 7). The subject saw a red box around the selected option (fractal or lottery)
as well as the resulting reward drawn for that trial in the center of the screen in red
(reward screen was shown for 3 seconds). In addition, the subject saw the reward
drawn from each fractal in that trial overlaid on top of the fractals. However, only the
amount shown in red in the center of the screen actually counted as the reward for
that trial. At the end of the experiment, 175 trials were randomly selected, and the
subject received the amount corresponding to the sum of rewards on those selected
trials. This amount was then adjusted so that the minimum amount the subject could
receive after completing the experiment was $80, and the maximum amount was
$120.

Behavioral Models

We tested several different computational models with our behavioral data. In all
models, we used 7 to describe the probability of a lottery draw in each trial, which
was displayed to the subject on the screen. In each trial, the subject had to choose

between a left and a right option. The value of each option was computed as:

Vi = w(m)VP + (1 = w(m))VE, i € {left, right}, 4.1)

where ViD corresponds to the described value of the lottery, ViE corresponds to the
experienced value of the fractal, and w(r) € [0, 1] is the relative weight given to the

described value.
We modeled choices as a logistic function of the value difference between the two

options:

1
1+ e_ﬁ(vlefl_vright) ’

P(choice = left) = 4.2)

where g is the inverse temperature, a free parameter of the model which was fitted

per subject.
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The described value of a lottery at trial + was given by its expected value, which can

be computed as:

D
Vit = EVi,t = Pilottery i,r X Vlottery it 4.3)

]

Since the subjects could not observe the probabilities of reward for the fractals
directly, we used a Q-learning model to estimate the experienced value associated

with each fractal at each trial #:

VE = 0. (4.4)

The Q-learning update was calculated at each trial as:

Qir = Qi1+ a(Riy—1 — Qis-1), 4.5)

where « is the subject’s learning rate and R;; is the reward sampled from fractal i on
trial ¢, which was observed by the subject for both fractals in every trial. Also note

that the Q values for both fractals were set to zero at the beginning of the experiment.

In the linear model, we set the relative weight given to the lottery as w(x) = n,
such that this model contained only two free parameters: the learning rate @ and the

inverse temperature (.

In the non-linear model we used a two-parameter weighting function for w, which

was given by:

on?

ox7 + (1 —n) (40)

w(m) =
where ¢ and y are two additional free parameters fitted per subject, leading to four

free parameters total.

Finally, we also tested a nested model in which we used the absolute difference
between the left and right lottery expected values as a measure of relative strength
of preference in the descriptive system, and the absolute difference between the left
and right fractal Q values as a measure of relative strength of preference in the
experiential system. Using these two metrics, we computed a weight adjustment
variable B which varied per trial, defined as:
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_ |EVleft - EVright|K
|EViett — EViight|< + |Qtete — Oright|<”

where « is an additional free parameter which controls the shape of the curve B as

4.7)

a function of the absolute lottery expected value difference. Using B, we computed

the relative weight given to the descriptive system, u, as:

u=puw+(l-pu)B, (4.8)

where p is an additional free parameter controlling the relative contributions of the
weight w and of the weight adjustment variable B to the weight u. The nested model
contained a total of six free parameters: the learning rate «, the inverse temperature

B, the weighting function parameters y and ¢, plus « and pu.

Bayesian Update Learning Model
A Bayesian update model was used to estimate, in each trial, a posterior distribution

over all possible values of pgaciar i for the left and right fractals.

In this model we assumed that the subject knew the boundaries and drift rate of
the fractal reward probabilities (even though subjects were not told the specifics of
how these probabilities drifted, only that they drifted slowly and independently over
time). Under this assumption, the subject began the experiment with a flat prior
P;‘;O(pfractal ;) over the interval [0.25, 0.75] for each of the two fractals.

After observing the fractal rewards in each trial, the posteriors (for the values within

the interval [0.25,0.75]) were updated according to the rule:

Pt(Ri |pfractal i)P;n(pfractal i)
_/Pt(Rilﬁfractali)Ptin(ﬁfractali)dﬁfractali

where P;(R;|pfractar i) is the likelihood of observing reward R; at trial ¢, which is

onm(pfractali) = , (49)

equal to Pfractal; When R; = 1, and to 1 — pgractal; When R; = 0; and P,i“(pfractal ;) is
the prior at trial .

In addition, the prior was updated in each trial according to:

Ptin(Pfractal i) = P;)Ut(Pfractal i) + N(07 g = 0-025)’ (4.10)

to account for the drift in the fractal reward probabilities. A diagram of this model

is shown in Figure 4.3.
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Figure 4.3: Diagram of the Bayesian update model for the fractal probabilities.
P (Practar i) is the posterior distribution at time # for the probability associated with
fractal i, where i is either left or right. Plin(pfractal ;) is the prior distribution at time ¢
for that same probability.

fMRI Data Acquisition

Functional imaging data was acquired from all subjects while they participated in the
task. Functional imaging was performed on a 3T Siemens (Erlangen) Trio scanner
located at the Caltech Brain Imaging Center (Pasadena) with a 32-channel radio
frequency coil for all the MR scanning sessions. Each subject was scanned in 5

consecutive sessions, and 882 volumes were obtained for each session.

4.4 Results

We used the binary choice task described above to investigate the interactions
between the descriptive and the experiential valuation systems. Our analysis, which
we describe in more detail in the subsections below, was structured as follows.
First, we estimated various computational models of the choices from each subject
through a maximum likelihood estimation approach. Then, we performed several
tests to quantify the influence of each valuation system on the subjects’ behavior, and

the interactions between the two systems under different experimental conditions.

The current section is structured as follows. We begin by validating the efficacy our
experimental paradigm. We checked if subjects’ performance indicated that they
understood the task, whether they were able to reasonably estimate the expected
values of the lotteries and the probabilities associated with the fractals, and whether
they correctly adjusted their choices in the special trial conditions where only one
system was relevant (i.e., where m# = 0 or 1). We then carried several additional

analyses, to test: 1. if the probability of a lottery draw, n, influenced choices, and
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whether this influence was linear; 2. whether the weight given to each system was
dependent on their individual relative strength of preference; 3. whether the relative
influence of the two systems was affected by changes in the relative uncertainty of
the experience values; and 4. whether the relative influence of the two systems was
affected by the presence of conflict. More details about each of these analyses are

provided below.

Basic Paradigm Validation

An important feature of our experimental paradigm was the probability  of a lottery
draw, which randomly changed from trial to trial. On trials where 7 was equal to
one, subjects should only have taken into consideration the difference between the
values assigned to the two lotteries; conversely, when 7 was equal to zero, they
should only have considered the values assigned to the fractals. In order to validate
the ability of our task to study descriptive versus experiential valuation, we first
looked at the psychometrics of trials where 7 = 1 or 0. This allowed us to verify
that subjects understood the logic of the experiment and that they managed to learn

a reasonable estimate for the values assigned to the fractals.

We defined the value assigned to each lottery, left or right, at trial ¢ (described
value, VI? ) as the expected value of the lottery, i.e., its probability multiplied by its

magnitude:

V,,? =EV, = Plottery it X Vlottery ite 4.11)

We use Vl.D and EV; exchangeably throughout the chapter to signify the described
value of lottery i, i.e., its expected value. Moreover, the value assigned to each
fractal, left or right, at trial # (experienced value, Vl’f ) was given by the Q value of
that fractal at that trial:

VE = 0. (4.12)

The Q values were obtained from a myopic Q-learning model fitted per subject, in

which the values were updated as follows:

Qir = Qi1+ a(Riy—1 — Qiy-1), (4.13)
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where « is the learning rate, R; ;1 is the reward drawn from fractal i at trial # — 1, and
the Q values for both fractals are equal to zero at the beginning of the experiment.
Figure 4.4 shows a histogram of the individual learning rates, which were fitted
separately for each subject through maximum likelihood. In the remainder of this
chapter, we sometimes omit the trial indicator ¢ to simplify the notation. More
details about the computation of the described and experienced values, the Q-
learning model, and the model fitting procedure are given in the Materials and

Methods section.

3.0
25
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6
a

Figure 4.4: Histogram of the learning rate « used in the Q-learning model, fitted
per subject.
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Looking at subjects’ choices, we found that they consistently used the lottery ex-
pected value difference, EViefe — EViign, and not the fractal Q value difference,
Oleft — Oright, in trials where m = 1, and the opposite was true when 7 = 0. This
is shown in the psychometric choice curves in Figure 4.5, and in the estimated
regression coefficients for a mixed effects model using both value differences, as
shown in Table 4.1.

Table 4.1 describes the results of a mixed effects logistic regression on trials with 7
equal to either 1 or 0, where the dependent variable was the probability of choosing
left, and the independent variables were the lottery expected value difference, the

fractal Q value difference, the lottery expected value difference modulated by an
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Figure 4.5: Psychometric choice curves as a function of the lottery expected value
difference (A and C) and the fractal Q value difference (B and D). The top row
shows only trials where 7 = 0 (A and B), whereas the bottom row shows only trials
where 7 = 1 (C and D). Data was aggregated from all subjects. Error bars show
95% confidence intervals for the data pooled across all subjects.

indicator function for 7 = 1, and the fractal Q value difference modulated by an
indicator function for 7 = 0. The regression allowed for random effects in these
variables. We can see from the table that the lottery value difference has a significant
effect on choice when 7 = 1 (p < 107'%) but not when 7 = 0, and that the fractal
value difference has a significant effect when 7 = 0 (p = 1.017"%) but not when
nm = 1. We found no significant difference between the influence of the lottery value
difference in m = 1 trial choices and the influence of the fractal value difference in

n = 0 trial choices (paired t-test, p = 0.25).

We carried out an analogous analysis for trial response times (RTs). We found
that the absolute lottery expected value difference, |EViete — E Viigne|, significantly
affected RTs in trials where 7 = 1 (p = 3.93 X 10~1) but not in trials where 7 = 0,
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Table 4.1: Choice logit mixed effects model: trials where 7 = 1 vs. trials where
7=0.

Regressor Estimate Std. Error 1z value p-value
Intercept -0.006159 0.191351 -0.032  0.9743
n = 1 indicator -0.373910 0.204786  -1.826  0.0679

n = 1l indicator X(EVy — EVg) 7.022994  0.592529 11.853 < 2e-16
n = 1 indicator X(Qr — ORr) 0.021057  0.552671 0.038  0.9696
n = 0O indicator X(EV, — EVg) 0.428643  0.371517 1.154  0.2486
n = 0 indicator X(Qr — Or) 7.616962  0.949029 8.026 1.0le-15

whereas the absolute fractal Q value difference, |Qiefe — Orign|» significantly affected
RTs in trials where 7 = 0 (p = 1.19 x 107'2) but not in trials where 7 = 1. This is
illustrated in the plots in Figure 4.6, and in the regression coeflicients for a mixed
effects model using both absolute value differences, as shown in Table 4.2. The
mixed effects model used for the RTs was similar to the choice logit mixed effects
model described above, except that here we used the RT as the dependent variable,

and took the absolute value of the differences in values for both lotteries and fractals.

Table 4.2: RT mixed effects model: trials where m = 1 vs. trials where 7 = 0.

Regressor Estimate Std. Error t value
Intercept 1.09955  0.07233 15.201
= 1 indicator 0.19478  0.07032 2.770

=l indicator X|EV, — EVg| -0.40933 0.14183 -2.886
= 1 indicator X|Q1 — Og| -0.05352  0.14869 -0.360
nm = 0 indicator X|EV;, — EVg| 0.11285  0.14630 0.771

n = 0 indicator X|Q; — QR -0.82095  0.17008 -4.827

It is interesting to note that, in Table 4.2, the negative coefficient for the absolute
fractal value difference in 7 = 0 trials is twice as large as the negative coeflicient
for the absolute lottery value difference in 7 = 1 trials (-0.82 vs. -0.41). We
hypothesize this is due to the different ways in which these two types of values
are computed. Since the individual fractal values were retrieved from memory and
required no explicit computation, the preference for one fractal over the other could
be decided during the probability screen, before the subject even saw the choice

options. This means that, when 7 = 0, the subject could make a choice between
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Figure 4.6: Response times as a function of the absolute lottery expected value
difference (A and C) and the absolute fractal Q value difference (B and D). The top
row shows only trials where 7 = 0 (A and B), whereas the bottom row shows only
trials where 7 = 1 (C and D). Data was aggregated from all subjects. Error bars
show 95% confidence intervals for the data pooled across all subjects.

left and right before they saw the choice screen, since the lotteries presented were
irrelevant, leading to faster RTs. On the other hand, the lottery expected values
always had to be computed explicitly once the choice screen appeared, and because

in m = 1 trials they were especially relevant, RTs in those trials tended to be longer.

Taken collectively, these results show that subjects were able to ignore the valuation
signals that were irrelevant to each trial, indicating that they understood the task,
succeeded in computing the expected values of the lotteries, and estimated the values

associated with the fractals in a manner consistent with the Q-learning model.

Role of Exogenous Changes on the Relative Relevance of the Two Systems
Next, we investigated how choices and RTs were affected by the relative relevance

of the descriptive and the experiential valuation systems, which we were able to
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exogenously manipulate by randomly changing the probability 7 at every trial. We
developed a computational model to describe how choices were affected by &, and
fitted this model to our data to check whether the relative relevance of the two
systems was reflected in the weights given to them in the model. Additionally, we
examined whether this effect was linear or non-linear, and checked for the presence

of biases in favor of one system over the other.

We defined the non-linear choice model as follows. The value of each option, left

or right, was given by:

Vi = w(m)VP + (1 - w(m)VE, i e {left right}, (4.14)

where Vl.D corresponds to the described value of the lottery, VIE corresponds to the
experienced value of the fractal, and w(xr) € [0, 1] is the relative weight given to the

described value, which is a function of .

We modeled choices as a logistic function of the value difference between the two

options:

1

P(ChOlCe = left) = 1+ e—,B(Weft—Vright),

(4.15)

where S is the inverse temperature, a free parameter of the model which was fitted

per subject.

Finally, we used a two-parameter weighting function to obtain the relative weight w

given to the lottery, which was given by:

, (4.16)

where v and ¢ are two additional free parameters fitted per subject, leading to
four free parameters total (@, B, ¥ and 6). The y parameter primarily controls
the curvature of the weighting function, while ¢ primarily controls its elevation.
Examples of curves obtained for different values of y and 6 and shown in Figure
4.7.

Several aspects of the two-parameter weighting function are worth highlighting.
First, note that when both y and ¢ are equal to 1, we obtain w(rr) = &, and this model

reduces to a linear model, i.e., the relative weight given to the descriptive system
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is a linear function of the probability 7. Second, the use of this weighting function
provides us with a natural notion of bias: for instance, when 7 = 0.5, no bias means
w = 0.5, a bias towards the lotteries means w > 0.5, and a bias towards the fractals
means w < 0.5. Finally, note that when ¢ > 1 the weight is biased towards the

lotteries, whereas when 0 < 1 it is biased towards the fractals.

0.0 0.2 0.4 0.6 0.8 1.0
n

Figure 4.7: Different curves of the two-parameter weighting function. Curves were
obtained with varying values of y and ¢, which were taken from the set {0.1, 0.3,
0.6, 1,3,5,7,9}. Curves are displayed in four groups according to whether or not
v is less than 1, and to whether or not ¢ is less than 1.

An interesting aspect of the choice model used here is the fact that it describes the
choice prediction of a Drift-Diffusion Model (DDM), where choices are made based
on the sequential integration between a left value and a right value. These values
can be obtained through our model by computing a weighted sum of the lottery
expected value and the fractal Q value corresponding to the same side, using w as

the weight.

We fitted the above model for all subjects individually, through a maximum like-
lihood estimation procedure. For each subject, we performed a grid search over
the four-parameter space, and chose the combination of parameters that yielded the
largest likelihood value. The results of this fitting procedure are shown in Figure
4.8. Summary statistics are provided in Table 4.3.
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Figure 4.8: Histograms for the non-linear model parameters, fitted per subject. (A)
a. (B)B. (C)y. (D)o.

Table 4.3: Non-linear model fitting summary statistics.

Parameter Mean SD

a 0.13  0.12
B 779 2.88
y 242 3.87
5 357 525

Using the values fitted for parameters y and 6, we obtained the weighting curve for

each subject, as shown in Figure 4.9.

We used the results from model fitting to exclude any subjects whose learning rate
a was equal to zero, indicating that they were not able to reasonably learn the
probabilities associated with the fractals and therefore effectively perform the task.
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Figure 4.9: Curves obtained for the two-parameter weighting function for each
subject. Curves are grouped into 4 groups according to whether or not vy is less than
1, and to whether or not ¢ is less than 1.

Using this criterion, we excluded one subject from all further analyses.

We also fitted the same computational model under linear constraints, i.e., setting
v =1and 6 = 1. Table 4.4 shows a comparison between the linear and non-linear
models using two evaluation metrics: negative log-likelihood (NLL) and Bayesian
information criterion (BIC). Note that smaller numbers for these metrics correspond
to better fittings. The table shows that, using the NLL as the evaluation metric, the
non-linear model generates a better fit for all subjects; using the BIC, the non-linear
model generates a better fit for 6 out of the 24 subjects, which is likely due to the
fact that the BIC also takes into account the number of free parameters in the model

(which is four in the non-linear model and only two in the linear model).

As an additional comparison between the non-linear and the linear models, we
simulated each of them using the trial conditions from the experiment and the best
fitting parameters obtained for each subject, then compared the choices generated by
each model with the subjects’ actual choices. This process was repeated 100 times.
The non-linear model was able to correctly predict, on average, 67% of choices
(mean = 0.67, SD = 0.0041), while the linear model correctly predicted 65% of
them (mean = 0.65, SD = 0.005), and this difference was statistically significant
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Table 4.4: Comparison between linear and non-linear model fittings.

Subject NLL non-linear NLL linear BIC non-linear BIC linear

1 156.42 164.59 335.65 340.58
2 171.64 177.69 366.07 366.77
3 127.58 130.86 277.97 273.13
4 154.63 156.34 332.07 324.08
5 144.38 145.19 311.57 301.78
6 119.13 128.63 261.08 268.66
7 165.6 167.11 353.89 345.57
8 121.67 125.15 266.16 261.7

10 155.14 159.82 333.06 331.03
11 144.95 147.94 312.63 307.25
12 143.77 146.45 310.35 304.31
13 137.61 151.74 298.02 314.88
14 189.69 190.25 402.14 391.88
15 146.82 148.07 316.46 307.55
16 169.53 174.44 361.88 360.28
17 163.58 168.55 349.97 348.5

18 117.06 118.77 256.87 24891
19 168.92 170.94 360.65 353.29
20 122.9 125.96 268.62 263.34
22 136.74 143.92 296.26 299.24
23 175.56 177.37 373.87 366.12
24 169.69 171.27 362.18 353.94
25 136.27 137.13 295.3 285.64
27 124.38 142.8 271.57 297.0

Mean: 148.49 152.96 319.76 317.31
SD: 20.05 19.03 40.08 38.07

(two-sample t-test, r = 18.92, p < 10716),

We found a moderately significant difference between the o parameter fitted in the
non-linear and the linear models (mean @ = 0.13 vs. 0.09; paired t-test, p = 0.01),
and no significant difference for the S parameter (mean 8 = 7.79 vs. 8.08; paired
t-test, p = 0.47). Importantly, we found that the 6 parameter fitted in the non-linear
model was significantly greater than 1 (r = 2.35, p = 0.01), indicating an overall
tendency to overweight the lottery expected values (red curves in Figure 4.7 and
Figure 4.9).
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We now present an analysis of the psychometrics of the task using the fitted weights
w. As discussed above, the values of the left and right options can be computed as
the weighted sum of the lottery expected values and the fractal Q values. The group-
level choices and RTs are plotted as a function of the difference between the resulting
left and right values in Figure 4.10. These results validate our model by showing
that subjects’ behavior in the task was compatible with the values generated by the
model. Note that, although we show RTs in this analysis, we performed the model

fitting using only choice data, and RTs were not included in the fitting procedure.
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Figure 4.10: Basic psychometrics. (A) Choice curve as a function of value differ-
ence. (B) Response time as a function of value difference. Data was aggregated
from all subjects. Shaded error bars show 95% confidence intervals for the data
pooled across all subjects.

We also looked at the influence of w on choices. Figure 4.11 shows the choice
curves as a function of lottery expected value difference, with curves grouped by
the relative weight of the descriptive system, w, and as a function of fractal Q value
difference, with curves grouped by the relative weight of the experiential system,
1 — w. Figure 4.12 shows the coeflicients obtained from two mixed effects models,
one for choices and one for RTs, which grouped trials based on the value of w (the
same grouping used in Figure 4.11). The choice mixed effects model was a logistic
regression where the dependent variable was choice, and the independent variables
were the lottery expected value difference and the fractal Q value difference. The
RT mixed effects model was equivalent, but we used the absolute value of the
differences for both lotteries and fractals. We can see from these results that
subjects’ choices and RTs were modulated by the model’s weight w. Additionally,

when 0.4 < w < 0.6, both the lotteries and the fractals had a similar impact on
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choices and RTs, as evidenced by the similar coefficients for that trial group in both

mixed effects models.
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Figure 4.11: Choice curves grouped by weights. (A) Choice curves as a function of
lottery expected value difference, grouped by w. (B) Choice curves as a function of
fractal Q value difference, grouped by 1 —w. Data was aggregated from all subjects.
Error bars show 95% confidence intervals for the data pooled across all subjects.
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Figure 4.12: Coeflicients of the mixed effects models, with trials grouped by w. (A)
Coeflicients for choice logit mixed effects model. (B) Coefficients for RT mixed

effects model.

The results discussed so far indicate that our computational model provides a reason-

able account of subjects’ psychometrics in this task. We found that both descriptive

and experiential values were taken into account by subjects, and that the relative
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influence of each type of value was modulated by a weight w which is a non-linear

function of the probability 7 and which is different for each subject.

Role of Changes in the Relative Strength of Preferences in the Two Systems

In the previous subsection we looked into the influence of an exogenous experimental
variable, , on the relative importance given by subjects to the two decision systems,
descriptive and experiential. We now investigate whether the relative strength of
preference within each system also affects subjects’ behavior. In our paradigm, it
makes sense to take this measure into account, since the difference in values between
lotteries or fractals may also impact the relative relevance of the two value systems.
For instance, if the difference between the lottery expected values in a particular
trial is zero, then an optimal decision maker would only consider the fractal value

difference when making a choice for that trial.

We modified the non-linear model described above such that it contains a measure
of bias relevant to our task that can flexibly affect choices, while allowing for the
possibility of no existing bias by including the simpler model as a special case. It
is important to note, however, that the nature of this test is qualitative, in that it can
indicate whether or not the relative strength of preference in each system has an

impact on choices, but cannot quantitatively describe this influence.

We used the absolute difference between the left and right lottery expected values
as a measure of relative strength of preference in the descriptive system, and the
absolute difference between the left and right fractal Q values as a measure of
relative strength of preference in the experiential system. Using these two metrics,
we computed a weight adjustment variable B which varied per trial, and which we
defined as:

_ |EVieft - EVright|K
|EVleft - EVright|K + |Qleft - Qrighth’

(4.17)

where « is an additional free parameter which controls the shape of the curve B
as a function of the absolute lottery expected value difference. Figure 4.13 shows
examples of curves obtained for B as a function of the absolute lottery expected
value difference, for different values of x and different values of the absolute fractal
Q value difference. When « = 0, we get B = 0.5, indicating no bias towards either
system. On the other hand, when k goes to infinity, we obtain a winner-takes-all

setting, in which there is a full bias towards the system with the largest relative
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strength of preference (i.e., B = 1 when |EVies — EViight|l > |Qleft — Oright|, and
B =0 when |Evleft - EVrightl < |Qleft - Qright')-

1.0
0.9
0.8 —— k=0.0,|Q.—Qg|=0.2
0.7 k=0.5,|Q, — Qr| = 0.0
k=0.5,|Q.— Qg =0.2
0.6 k=0.5,]Q.— Qr| =0.5
k=3.0,|Q, - Qgr|=0.2
@ 0.5 k=3.0,|0, - Qgr|=0.5
04 —— k=6.0,|Q.—Qgr|=0.2
—— Kk=6.0,|Q, - Qgr|=0.5
0.3 —— k=12.0,|Q.—Qg|=0.2
0.2 —— k=12.0,|Q, - Qg|=0.5
0.1
0.0

0.0 0.2 0.4 0.6 0.8 1.0
|EV, — EVg|

Figure 4.13: Examples of the weight adjustment curve B. Curves were obtained as
a function of the absolute lottery expected value difference, for different values of «
and different values of the absolute fractal Q value difference.

Using B, we computed the relative weight given to the descriptive system, u, as:

u=puw+(l-pu)B (4.18)

where u is an additional free parameter which controls the relative contributions of
the weight w and of the weight adjustment variable B to the weight u. We called
this modified version of the non-linear model the nested model, which contained
a total of six free parameters: the learning rate «, the inverse temperature 3, the
weighting function parameters y and 0, plus « and u. Note that when y = 1 this
model reduces to the non-linear model described above, and when u = 0 the weights
are driven solely by the relative strength of preference. Since the two models are
nested, they provide a natural qualitative way of testing the relative contribution of
these two mechanisms to the integration and competition between the descriptive

and experiential valuation systems.
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We fitted the nested model for all subjects individually, through a maximum like-
lihood estimation procedure. For each subject, we performed a grid search over
the six-parameter space, and chose the combination of parameters that yielded the
largest likelihood value. The results of this fitting procedure are shown in Figure

4.14. Summary statistics are provided in Table 4.5.
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Figure 4.14: Histograms for the nested model parameters, fitted per subject. (A) a.
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Table 4.6 shows a comparison between the nested and the non-linear models using
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Table 4.5: Nested model fitting summary statistics.

Parameter Mean SD

@ 0.1  0.08
B 6.09  0.63
y 731 09
5 17.34 0.9
K 076 0.6
L 069 0.16

two evaluation metrics: negative log-likelihood (NLL) and Bayesian information
criterion (BIC), where smaller numbers indicate better fittings. The table shows
that, using the NLL as the evaluation metric, the non-linear model generates a better
fit for all but one subject and, using the BIC, the same model generates a better fit

for all subjects.

As an additional comparison between the non-linear and nested models, we simu-
lated each of them using the trial conditions from the experiment and the best fitting
parameters obtained for each subject, then compared the choices generated by each
model with the subjects’ actual choices. This process was repeated 100 times. The
non-linear model was able to correctly predict, on average, 67% of choices (mean =
0.67, SD = 0.0041), while the nested model correctly predicted 64% of them (mean
= 0.64, SD = 0.0046), and this difference was statistically significant (two-sample
t-test, r = 29.89, p < 10716),

We found no significant difference between the « parameter fitted in the nested and
the non-linear models (mean @ = 0.1 vs. 0.13; paired t-test, p = 0.08), a moderately
significant difference for the  parameter (mean S = 6.09 vs. 7.79; paired t-test,
p = 0.01), and significant differences for the y (mean y = 7.31 vs. 2.42; paired
t-test, p < 1071%) and ¢ (mean 6 = 17.34 vs. 3.57; paired t-test, p < 10719)
parameters. Importantly, we found that the mean u parameter fitted in the nested
model was significantly less than 1 (r = =9.295, p < 10_16), indicating an influence

of the weight adjustment variable on subjects’ choices.

Our qualitative results for the nested model fitting revealed that the strength of
relative preference within the descriptive and experiential systems exerts a significant
but relatively small influence on the relative weight that subjects assign to each

system. Instead, subjects appear to heavily rely on the exogenous variable 7 to
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Table 4.6: Comparison between non-linear and nested model fittings.

Subject NLL nested NLL non-linear BIC nested BIC non-linear

1 156.15 156.42 346.52 335.65
2 178.7 171.64 391.57 366.07
3 137.72 127.58 309.66 277.97
4 156.76 154.63 347.74 332.07
5 145.95 144.38 326.1 311.57
6 130.22 119.13 294.67 261.08
7 175.56 165.6 385.13 353.89
8 125.29 121.67 284.81 266.16
10 158.14 155.14 350.47 333.06
11 146.41 144.95 326.92 312.63
12 147.31 143.77 328.84 310.35
13 147.75 137.61 329.7 298.02
14 198.96 189.69 432.05 402.14
15 151.52 146.82 337.26 316.46
16 171.19 169.53 376.61 361.88
17 166.96 163.58 368.14 349.97
18 130.2 117.06 294.53 256.87
19 173.83 168.92 381.88 360.65
20 130.67 122.9 295.56 268.62
22 139.37 136.74 31291 296.26
23 183.88 175.56 401.89 373.87
24 171.12 169.69 376.44 362.18
25 145.27 136.27 324.68 295.3

27 139.9 124.38 314.0 271.57
Mean: 154.53 148.49 343.25 319.76
SD: 18.96 20.05 37.9 40.08

compute these weights.

Role of Changes in the Relative Uncertainty of the Two Systems

Previous literature has found considerable evidence for competition between distinct
decision and learning systems in decision making tasks with humans. Several
modeling studies have explored competitive architectures, in which arbitration is
performed based on some metric that gives preferential control to one of the two

systems, such as relative uncertainty or accuracy. One example of this kind of
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architecture is that of uncertainty-based arbitration, in which the controller chooses
the system with more accurate value estimates (Lee, Shimojo, and J. P. O’Doherty,
2014). A related architecture implements cost-benefit arbitration, i.e., the controller
chooses the system more likely to optimize reward relative to cognitive effort (Kool,
F. A. Cushman, and Gershman, 2016; Kool, Gershman, and F. A. Cushman, 2017).
Here, we investigate the possibility of uncertainty-based competition between the
descriptive and experiential systems in our study, using the variance from a Bayesian

update model for the fractal probabilities as the relevant uncertainty measure.

We first applied a Bayesian update model to the probabilities of reward associated
with each fractal. This model was implemented as an agent with full knowledge of
the characteristics of the Gaussian random walk that we used to compute the fractal
probabilities. We then used the sum of the standard deviations of the posterior
distributions obtained for the left and right fractal probabilities as our trial-by-trial
ex post uncertainty measure. Note that only the fractal probabilities could be used
as a source of uncertainty in our paradigm, since there was no putative trial-by-trial

variation stemming from the descriptive system.

The Bayesian update model was implemented as follows. We began by assuming
full knowledge of the drift rate and of the upper and lower bounds applied to the
fractal probability signals. The model contains no free parameters. At each trial, we
generated a posterior distribution over all possible values for each of the two fractal
probabilities. More details about the posterior computation are provided in the
Materials and Methods section. Figure 4.15 shows the mean and 95% confidence
interval for the Bayesian estimates obtained for 3 different subjects throughout the
experiment, as well the true values of the fractal probabilities and the Q values
obtained from the Q-learning model. The figure shows that the Bayesian update
model correctly tracks the fractal probabilities throughout the trials. In addition,
note that the learning rate @, which was fitted per subject, strongly dictates how
well subjects were able to estimate the values of the fractals: when « is very small,
as shown for subject 17, the Q values provide a poor estimate for the probabilities;
medium values of @, as with subject 22, lead to good estimates; and high values of

a, as with subject 27, lead to high volatility in the Q values.

To validate the uncertainty measure we defined, we looked at the histogram of
this metric across all trials from all subjects, and at the correlation between the
difference between the mean of the Bayesian posteriors and the difference between

the Q values, again for all trials from all subjects. Both results are shown in Figure
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4.16. We found that there was a large spread of the uncertainty measure across
trials and subjects (mean range across subjects =0.17, SD range = 0.014, max range
= 0.21, min range = 0.14), and that the estimated Q values were highly correlated
with the mean estimates from the Bayesian update model. These results indicated
that we could use the standard deviations from the Bayesian estimates as a proxy
measure for uncertainty in the experiential system, in which subjects’ valuations

were represented through Q values.

In order to compare the extent to which the Q-learning model vs. the Bayesian
estimates explained choices, we computed a logistic mixed effects regression applied
to all trials where m = 0. We used the probability of choosing left as the dependent
variable, and the difference between fractal Q values and the difference between
Bayesian posterior means as the independent variables. The resulting coeflicients
for this model are shown in Table 4.7. We can see from the table that the Q
value difference absorbs most of the variance in choices and is highly significant,
whereas the coefficient obtained for the difference between Bayesian estimates is
not significant.

Table 4.7: Choice logit mixed effects model: trials where m = 0.

Regressor Estimate Std. Error z value p-value
Intercept -0.0009044 0.1854154 -0.005 0.996
Or — Or 6.5582566  1.0949574 5990  2.1e-09

Bayesian estimate diff. 1.2407964  1.2383145 1.002  0.316

Finally, to carry out the main test of interest, we computed a mixed effects logistic
regression of choice applied to all trials, using the uncertainty measure to modulate
value differences. In this model the dependent variable was the probability of
choosing left, and the independent variables were the weighted lottery expected value
difference, the weighted fractal Q value difference, the weighted lottery expected
value difference multiplied by the uncertainty measure, and the weighted fractal Q
value difference multiplied by the uncertainty measure. The values of the uncertainty
measure were scaled between 0 and 1 to facilitate model convergence. The resulting
coeflicients for this model are shown in Table 4.8. We found no effect of modulation
of the uncertainty measure on the lottery expected value difference (p = 1) or on the
fractal Q value difference (p = 0.32). To further confirm this result, we ran a similar

analysis but separated the regressors into two mixed effects models. In the first
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model we used only the weighted lottery expected value difference and the weighted
lottery expected value difference multiplied by uncertainty as regressors; in the
second model, we used the weighted fractal Q value difference and the weighted
fractal Q value difference multiplied by uncertainty. In both models, we again found
no effect of the uncertainty measure on choice (p = 0.37 for the lottery expected
value difference modulated by uncertainty, and p = 0.39 for the fractal Q value

difference modulated by uncertainty).

Table 4.8: Choice logit mixed effects model with Bayesian uncertainty.

Regressor Estimate Std. Error z value p-value
Intercept 2.344 3.278 0.715  0.47465
w|EVy — EVR| 9.050 1.367 6.621  3.56e-11
w|Qr — ORl 9.370 3.104 3.018  0.00254
uncertainty Xxw|EVy — EVg| -2.470 1.625 -1.520 0.12856
uncertainty Xw|Qy — Ogl| -2.001 5.571 -0.359  0.71953

It is important to note that the metric we used as the uncertainty is an indirect
measure, as it was computed from the posteriors generated by an ideal Bayesian
learner and therefore does not necessarily correspond to the uncertainty experienced
by subjects during the task. Motivated by the reliability measure used by Lee and
colleagues (Lee, Shimojo, and J. P. O’Doherty, 2014), we performed an additional
test using an alternative measure of uncertainty which is more directly related to
the Q-learning model, and which we defined as the sum of the absolute prediction
errors for the left and right fractals. We then ran a similar mixed effects model to
the one described above, but replacing the previous uncertainty measure with the
alternative one based on prediction errors. The resulting coefficients for this model
are shown in Table 4.9. As can be seen in the table, we again found no modulation

effect of uncertainty on subjects’ choices.

Our results from this subsection indicate that the Bayesian uncertainty measure,
defined as the sum of the standard deviations from the posterior distributions for left
and right fractal probabilities, exerted no influence on the relative weight given to the
descriptive and the experiential decision systems. We similarly found no influence

of an uncertainty measure based on the prediction errors from the Q-learning model.
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Table 4.9: Choice logit mixed effects model with uncertainty based on prediction
errors.

Regressor Estimate Std. Error z value p-value
Intercept 0.01309  0.10385 0.126  0.900
w|EVy — EVg| 6.76754  0.83850 8.071  6.97e-16
w|Qr — ORgl| 6.68773  1.50362 4448  8.68e-006

uncertainty Xw|EV, — EVg| 0.26221  0.75247 0.348 0.727
uncertainty Xw|Qy — Ogl| 1.69346  1.56166 1.084  0.278

Role of Conflict Between the Two Systems

The value integration models we used to study subjects’ behavior in our task suggest
that the presence of conflict between the descriptive and the experiential systems
should be irrelevant to the computation of choices. Here we define conflict as the
condition in which one valuation system recommends one choice, while the other
recommends a different choice. In our paradigm, this corresponds to trials where
(EVieft — EViight) X (Qlefc — Qright) < 0. To investigate whether this conflict indeed
had no impact on choices in our data, we performed a comparison between conflict

and no-conflict trials.

First, we computed a logistic choice mixed effects model using conflict and no-
conflict indicator variables to modulate the total value difference between the left
and right options. The coefficients for this model are shown in Table 4.10. We found
a significant difference between the coefficients obtained for conflict and no-conflict

trials (p = 1.18 x 107>), indicating an impact of conflict on choice.

Table 4.10: Choice logit mixed effects model with conflict/no-conflict indicators.

Regressor Estimate Std. Error zvalue p-value
Intercept -0.03015 0.12393 -0.243  0.808
conflict 0.09732  0.08784 1.108  0.268

conflict x(V;, — Vg) 6.33325  0.52512 12.061 <2e-16
no-conflict x(V;, — Vi) 7.97761  0.62846 12.694 <2e-16

We then computed an equivalent mixed effects model for RT, but using the absolute
value of the total value difference between left and right. The coefficients for

this model are shown in Table 4.11. Here again we found a significant difference
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between the coeflicients obtained for conflict and no-conflict trials (p = 1.18 X 1079),

indicating an impact of conflict on RTs.

Table 4.11: RT mixed effects model with conflict/no-conflict indicators.

Regressor Estimate Std. Error t value
Intercept 1.41448  0.06062 23.332
conflict -0.04961 0.02517 -1.971
conflict x|V — Vg| -0.33477  0.09648 -3.470

no-conflict x|V, — V| -0.68870 0.05769 -11.938

Figure 4.17 shows the choice and RT curves, as a function of the left and right
integrated value difference, separating conflict from no-conflict trials. Qualitatively,
these curves show a small difference in both choices and RTs between these two

types of trials.

Overall, our analysis of the conflict between the descriptive and experiential valua-
tion systems indicated an influence of conflict on choices. Nevertheless, our simple
computational model of choice based on a non-linear transformation of the variable
7 was able to explain much of the variance present in the choice data without taking
conflict explicitly into account. Future work should further investigate how conflict

impacts choices by explicitly incorporating conflict into the choice models.

4.5 Discussion

In this chapter we discussed the results from an experiment testing the interactions
between a descriptive and an experiential valuation systems. Our task design re-
quired subjects to take into account both types of values simultaneously in order to
make a choice, and included a variable 7 that provided an exogenous manipulation
of the relative relevance of the two valuation systems. The psychometric evidence
from this experiment suggested a very simple model of arbitration between systems:
choices were made based on a total weighted value signal with a relative system
weight which was responsive to the exogenous variable 7 and which we found to
be non-linear in most subjects. Additionally, we found only a small influence of the
relative strength of preference (i.e., to what extent one option was better than the
other) and no influence of the relative uncertainty on the weight of the two systems,
and obtained evidence for a small difference in the interaction between systems on

conflict vs. no-conflict trials.
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While our analysis focused on choices, it would be a straightforward extension
to model RTs in conjunction with choices by applying a Drift-Diffusion Model
to our behavioral data. It would be particularly interesting to investigate the role
of attention in this task by using an attentional Drift-Diffusion Model taking into
account subjects’ visual fixations, as we described in Chapter 2 of this dissertation.
One potential mechanism through which visual attention affected subjects’ behavior
in our task is that attention fluctuated in a way consistent with the weight curves,
and differently in each subject. Therefore, one direction for future work is to test
this hypothesis through a behavioral experiment including eye-tracking, where one
could check if the individual biases toward the descriptive or the experiential system

correlate with the fixation time given to the corresponding options.

In our tests of the effect of the relative strength of preference in the two valuation
systems, as measured by the absolute difference between lottery expected values
and fractal Q values, we found evidence for only a small impact on choices. This is
interesting because this type of modulation is predicted by models in which the two
valuation systems compete for control based on the relative strength of their signals,
which is akin to confidence or strength of preference. Instead, the results presented
here are consistent with a simpler value integration of a total value signal which is

then used to carry out choices.

We also investigated the impact of uncertainty within the valuation systems by using
the standard deviation of the Bayesian posteriors for the fractal probabilities as a
measure of uncertainty in the experiential system, and found no effect on choice. The
lack of an effect observed here may have been due to having an incorrect measure
of the uncertainty driving the competition, since the metric was computed from
the posteriors generated by an ideal Bayesian learner, which does not necessarily
correspond to the uncertainty experienced by subjects during the task. However,
using the prediction errors from the Q-learning model as a measure of uncertainty
similarly did not reveal any effects. A more comprehensive comparison is needed

to better understand this interaction.

When looking at conflict between the two valuation systems (i.e., trials where the
two systems disagreed on what was the best option), we found a small influence of
conflict on subjects’ choices. However, we did not attempt to model this interaction
explicitly. Future work should further investigate how conflict affects choices and

response times.

Aninteresting effect present in our data is that the negative coeflicient for the absolute
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fractal value difference in & = O trials was twice as large as the negative coefficient
for the absolute lottery value difference in 7 = 1 trials. We hypothesize this is
due to the different ways in which these two types of values were computed. Since
the individual fractal values were retrieved from memory and required no explicit
computation, the preference for one fractal over the other could be decided during
the probability screen, before the subject even saw the choice options. This means
that, when 7 = 0, the subject could make a choice between left and right before they
saw the choice screen, since the lotteries presented were irrelevant, leading to faster
RTs. On the other hand, the lottery expected values always had to be computed
explicitly once the choice screen appeared, and because in # = 1 trials they were

especially relevant, RTs in those trials tended to be longer.

Two additional features of our experimental paradigm are worth noting. First, both
rewards drawn from the fractals were shown in every trial. Therefore, in trials where
the actual reward received was one drawn from a fractal, the reward in the opposite
(non-chosen) side was counter-factual, i.e., it was not actually experienced by the
subject. In trials where the reward was drawn from a lottery, both rewards shown
for the fractals were counter-factual. In future work, it may be important to model
the learning rates related to these rewards more carefully, for instance, by using
distinct learning rates based on whether the reward was received or not, as well as
based on whether the reward was drawn from the side selected by the subject or not.
Second, it may be useful to understand potential interactions between model-free
and model-based learning within the experiential system as applied to our task:
model-free learning may occur when a reward is received and used to update Q
value estimates, whereas model-based learning may occur when a reward is not
received, but merely observed and used to update a model of the reward structures
in the task. These additional investigations may reveal interesting differences in the
learning process across subjects, and may further elucidate the interactions between

the two valuation systems.

Finally, while this chapter focused on the analysis of behavioral data, we also col-
lected neuroimaging data from all participants. In future work, we will analyze the
fMRI data by testing predictions based on the behavioral modeling results presented
here. In particular, it will be important to check whether the descriptive and experi-
ential systems have corresponding distinct value representations in the brain. Such
a result would either replicate the findings by FitzGerald et al. (FitzGerald et al.,
2010), or potentially lead to different regions of activation than those obtained by the
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authors. Based on previous findings (Bechara, H. Damasio, et al., 1999; N. D. Daw,
J. P. O’doherty, et al., 2006; Gliascher, Hampton, and J. P. O’doherty, 2008; Todd A
Hare, C. F. Camerer, and Rangel, 2009; Chib et al., 2009; McNamee, Rangel, and
J. P. O’doherty, 2013), we also expect to see a combined value signal, incorporating
the values from both systems, in ventromedial prefrontal cortex. A related inter-
esting direction is to look for an activation correlated with the weight w from our
non-linear model, above and beyond the value of 7, which is the linear setting, and

of a simple step function, which corresponds to a winner-takes-all setting.
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Figure 4.15: Bayesian update model estimates. The mean and 95% confidence
interval for the Bayesian posteriors (in red) are shown for 3 different subjects. Also
displayed are the true values of the fractal probabilities (in blue) and the Q values
obtained from the Q-learning model (in green). (A) Example trial sequence with
low learning rate, @ = 0.02. (B) Example trial sequence with medium learning rate,
a = 0.07. (C) Example trial sequence with high learning rate, @ = 0.24.
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Figure 4.16: Validation of the Bayesian measure of uncertainty. (A) Histogram of the
uncertainty measure, which corresponds to the sum of standard deviations from the
posterior distributions obtained for left and right fractal probabilities, across all trials
from all subjects. (B) Histogram of the Pearson correlation coefficients between the
difference between the mean of the Bayesian posteriors and the difference between

the Q values, for all trials from all subjects.
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Figure 4.17: Basic psychometrics, conflict vs. no-conflict trials. (A) Choice curve
as a function of total value difference, with trials grouped by whether or not there
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difference, with trials grouped by whether or not there was conflict between the
two systems. Data was aggregated from all subjects. Shaded error bars show 95%
confidence intervals for the data pooled across all subjects.
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Chapter 5

DISCUSSION

5.1 Summary of Results

In this dissertation I have summarized the results of three projects that approach the
subject of human decision making from a behavioral, cognitive and computational
neuroscience perspective. These projects contribute to the study of the neurocompu-
tational basis of decision making by proposing models that make precise predictions
about simple decisions in various types of settings, then testing these predictions in

the behavioral data acquired from human subjects.

One such model which has been extensively used in the computational and cognitive
neuroscience literature is the Drift-Diffusion Model (DDM). The DDM is a type of
sequential integrator model in which evidence for the available options accumulates
over time until it reaches a threshold, leading to a decision being made. In Chap-
ter 2, I discussed the application of a variation of the DDM, called the attentional
DDM (aDDM), in which visual fixations bias choices towards the fixated item, to
a perceptual decision making experiment with human subjects. Our results from
this experiment showed that the aDDM can make reasonably accurate qualitative
and quantitative predictions for choice and response time data from a perceptual
decision task. Importantly, the aDDM was able to explain choice biases observed
in our data that could not be accounted for by the version of the model without an
attentional component. Moreover, our causal manipulation showed that artificially
increasing fixation time on one of the options effectively increases the probability of
choosing that option, which is in line with the model predictions. These results ex-
tend those obtained by Krajbich and colleagues in the context of economic decision
making (Krajbich, C. Armel, and Rangel, 2010; Krajbich and Rangel, 2011; Kra-
jbich, Lu, et al., 2012), providing some generalization of the ability of the aDDM to
account for behavioral data stemming from different choice domains and to explain

the role of attention in the decision process.

Chapter 3 also dealt with the DDM: we compared two different methods which can
be used to fit this type of model to experimental data. The first method, called the
Maximum Likelihood Algorithm (MLA), has been widely used in the literature, and

involves generating simulations of the model to be compared against the data, thus
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providing an approximation of the model likelihood. The second, which we call
the Probability Table Algorithm (PTA), requires Markov-chain type computations
over the duration of each trial, leading to a precise likelihood value without the
need for model simulations. We performed several experiments to test the ability
of the two algorithms to obtain good likelihood estimates for artificial datasets, and
compared them in terms of error rates, number of data trials used in the fitting
procedure and total execution time. We found that using the PTA offered several
advantages over the MLA, including faster computation times and a smaller number
of data trials required in order to produce similar error rates. These advantages were
especially pronounced when the number of free parameters in the model grew larger

and across-trial variability, in the form of visual fixations, were present in the data.

In Chapter 4, I described an experiment aimed at addressing an important open
question in decision neuroscience: when multiple sources of information, possibly
acquired through different processes, must be integrated to generate a single decision,
how does the brain modulate and combine their contributions in order to produce
a single choice? Using a paradigm which required subjects to simultaneously
consider values acquired through previous experience (experiential) as well as values
calculated using information fully described at the time of choice (descriptive), we
investigated the interactions between the mechanisms that compute descriptive and
experiential values. We compared different behavioral models that combined the
two types of values, and showed that a non-linear weighting model of the exogenous
relevance of each system can successfully make predictions about subjects’ choice
behavior, as well as capture different levels of biases across subjects towards one
system or another. We found an effect of the conflict between the two systems on
choice, a small influence of the relative strength of preference within each system,

and no effect of a measure of the uncertainty in the experiential system.

5.2 Future Directions

Collectively, the results presented in this dissertation expose a number of open
questions in computational neuroscience and point to several directions for future
research. Regarding the use of sequential integrator models in human decision
making, for instance, further tests of the validity of the model are necessary. Our task
focused on simple perceptual choices between two items, but many modifications
could be tested to further validate our results. One potential direction would be
to use the aDDM to model the effect of attention on other types of choices, such

as tasks involving inter-temporal or moral decisions, or to use a larger number of
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options in each trial. More generally, it is important to obtain further evidence,
particularly from neural data, that this kind of accumulator model provides a good
characterization of the underlying neural computations that take place in the brain
during the course of a decision. One way to do this would be to test the aDDM with
single-unit recordings data from a perceptual task, such as the random dot motion

task, in non-human primates.

Our eye-tracking study used the aDDM to investigate the role of overt attention
in perceptual decision making, as measured by visual fixations. An interesting
modification of this experiment would be to use covert attention (for instance, by
asking subjects to maintain a central fixation while attending to the choice options
peripherally), which would give us an opportunity to check if foveation is a necessary
condition for the attentional bias to take place, further elucidating the attentional
process. Another useful modification would be to use a larger number of items
to choose from in each trial. This would likely lead to very different patterns of
fixations, and it would be interesting to investigate how these patterns may affect
choices, and whether the aDDM could be adapted to account for these different

fixation dynamics.

While our study focused on the impact of visual fixations on perceptual decisions,
we did not address the opposite direction of this interaction, i.e., the way in which the
decision process may guide a subject’s fixations. The impact of the decision variable
on attention and and on the fixation patterns that emerge is an essential open question
in the study of decisions involving visual fixations. Understanding this interaction
may lead to models that can predict fixation patterns and even potentially generate

artificial sequences of fixations mimicking that of human subjects.

Our conclusion from Chapter 2 that the same computational model that explains the
role of attention in economic choice can also be used to model perceptual choices
leads to the question of how much overlap there is between the mechanisms involved
in economic and perceptual decisions, and whether attention has a similar role in
these two types of decision. Defining the precise neural implementations of these
processes and establishing how much of the neural circuitry is shared between them

through the use of neural data are very important topics for future study.

Another key open question in computational neuroscience is that of allocation of
control between decision systems. A large body of research has provided evidence
for multiple learning and decision mechanisms in the human brain. In Chapter 4 we

investigated the interaction between descriptive and experiential valuation systems.
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Our behavioral results require further validation from the associated neuroimaging
data, such as evidence supporting the existence of the non-linear weighting of the
two types of values, and evidence for individual tendencies to overweight one system
over the other. Moreover, the collected fMRI data will be useful in further defining
a more precise role for conflict, uncertainty and relative strength of preference on

the arbitration between the experiential and descriptive valuation systems.

It would be interesting to test the DDM on the data from our descriptive-experiential
paradigm, and to evaluate whether this model can be used to make predictions
about response times as well as choices in our task. This would provide further
validation of the non-linear weighting valuation model we described. Additionally,
applying the same paradigm in an eye-tracking experiment and using an aDDM to
incorporate fixations into the model would allow us to test the impact of attention
on the arbitration between valuation systems. From the results presented in this
dissertation, we hypothesize that a correlation may exist between stronger overt
attention in the form of fixations towards one system and a larger choice bias for that
same system, which would also be reflected in the parameters of an aDDM fitted to
the data.

The study of dual systems of valuation and decision making has been a popular
topic in recent decision making literature, with researchers defining dichotomies
such as model-based versus model-free, and goal-directed versus habitual decision
systems. Further investigation, particularly through causal experiments, is required
to pin down the exact nature of the different decision mechanisms, how they interact
and what kind of factors may impact them. Advances in the study of these questions
have the potential to affect our current understanding and treatment strategies of
several clinical conditions related to poor judgment and faulty decision making,

such as addiction, eating disorders, and obsessive-compulsive disorder.
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