Elucidating the role of O-GlcNAc glycosylation in neurobiology and neurodegeneration

Thesis by
Elizabeth Hwang Jensen

In Partial Fulfillment of the Requirements for
the degree of
Doctor of Philosophy
Biochemistry and Molecular Biophysics

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2017
Defended November 13, 2017
for PSSETS, HwangLink, and the Jensensations
ACKNOWLEDGEMENTS

I would first like to thank my advisor, Linda Hsieh-Wilson, for providing me with the support, freedom, and patience to pursue this project. I would also like to thank my committee, Peter Dervan, Ellen Rothenberg, and David Prober, for their wisdom, support, and advice. Furthermore, I would like to thank the collaborators who made this work possible: Igor Antoshechkin, Vijaya Kumar, Rachael Neve, Syed Ahsan, Kwan Lee, Natalie Verduzco, Shirley Pease, Mona Shahgholi, Dan Mason, Eric Peters, and Sonja Hess. In particular, I would like to especially thank Igor who has consistently been encouraging and supportive of our work.

In addition, I would like to thank the members of the Hsieh-Wilson lab that contributed to this work including Peter Clark, Jess Rexach, Andrew Wang, Matt Griffin, Yelena Koldobskaya, Yao Xiao, and Priya Choudhry. Specifically, I would like to thank Matt for being a generous statistically significant other and Greg for being a pillar of support through our last year together. Finally, I would next like to thank Yao for being a supportive friend and colleague. I would also like to thank everyone else in the Hsieh-Wilson lab; it has been a privilege and honor to work alongside these hardworking and passionate scientists.

Outside of my lab, I would like to thank my friends throughout grad school including Emzo de los Santos, Naeem Husain, Naomi Kreamer, Adam Shai, Betty Wong, Liz Wang, Gloria Sheng, Tri Vu, Joe Levine, Chandra Bhattacharya, Yaqian Liu, and Hung Lu. You all have enriched my life in more ways than I can expound, and I will forever cherish the memories we have made together. In addition, I would like to thank all the dedicated members of the GSC, Active Minds, and the ultimate groups. I would also like to thank the Caltech gym, health center staff, Adrienne, and Mariel for providing me with much-needed Chicken soup for the soul.

I would like to thank those who nurtured my scientific and personal growth before and during my time at Caltech. I would like to thank Dr. Walker for showing me through example how to be a empowering and motivating mentor. I would like to thank my extended and immediate family for their love and support. To my sisters, Sine and Tasha, thank you for being equal parts the wind behind my sails and mooring in turbulent times. I must also thank Mama Jensen who raised and taught us through her grit and gumption.

Last, but not least, I would like to thank my partner, Sandy. I have loved going through this journey with you, and I am so excited for our next great adventure and life together.
ABSTRACT

O-GlcNAc glycosylation is a dynamic, inducible post-translational modification (PTM) essential for neuronal homeostasis and found on proteins associated with neurodegenerative diseases such as α-synuclein, amyloid precursor protein, and tau. Intracellularly, O-GlcNAc modification is cycled by two enzymes in mammalian cells: O-GlcNAc transferase (OGT) appends O-GlcNAc to serine or threonine residues and O-GlcNAcase (OGA) removes O-GlcNAc. OGT modifies over 1000 different proteins, but the lack of a well-defined consensus sequence or substrate structural constraints has hampered efforts to predict sites a priori. Furthermore, the identification of O-GlcNAc modification sites has been obstructed by the difficulty of enriching and detecting O-GlcNAc using traditional biochemical methods. Here, we established and employed biological and chemical tools to illuminate the role of O-GlcNAc in neuronal function.

In Chapter 2, we sought to determine the role of O-GlcNAc in learning, memory, and neurodegeneration. Deletion of the OGT gene causes early postnatal lethality in mice, complicating efforts to study O-GlcNAc glycosylation in mature neuronal function and dysfunction. We demonstrated that the loss of OGT in the forebrain of adult mice (OGT cKO) leads to progressive neurodegeneration, including neuronal death, neuroinflammation, hyperphosphorylated tau, amyloidogenic Aβ-peptides, and memory deficits. In the hippocampus, we showed that OGT ablation lead to the upregulation of neuroinflammatory genes and the downregulation of cholesterol biosynthetic genes. Additionally, a gene network analysis (WGCNA), qPCR, and immunohistochemistry (IHC) revealed that loss of O-GlcNAc perturbed cell cycle progression in the hippocampal neurons. In the hippocampus, we identified increased neuroinflammatory gene transcription
in OGT cKO mice and both tau neurofibrillary tangle (NFT)-forming and amyloid-forming Alzheimer’s disease (AD) mouse models. However, only OGT cKO and NFT-forming mice displayed decreased synaptic gene expression, suggesting that NFT formation and OGT cKO compromise hippocampal synaptic transcription. These studies indicate that O-GlcNAcylation regulates pathways vital for the maintenance of neuronal health and suggest that dysfunctional O-GlcNAc signaling may be an important contributor to neurodegenerative diseases.

In order to understand the critical O-GlcNAc-mediated neuronal functions that underlie OGT cKO dysfunction, we next developed and utilized novel biological and chemical tools in order to identify key OGT interactors and substrates in the brain in Chapter 3. Due to the lack of a well-defined OGT substrate sequence and structural constraints, OGT is believed to obtain its substrate specificity through its interactome where specific interactors target OGT to specific substrates. In order to identify these interactors, we used CRISPR/Cas9 to generate a novel mouse with a minimally tagged OGT in order to identify the endogenous OGT brain interactome using tandem affinity purification and MS methods. The preliminary OGT brain interactome consisted of previously identified OGT interactors and substrates as well as novel interactors. The identified OGT interactors were enriched for ribosomal and cytoskeletal proteins in addition to axonal, dendritic, and neuronal cell body proteins, implicating OGT as a pivotal mediator of neuronal structure and function.

In addition to the OGT interactome, we sought to uncover OGT’s substrates or the O-GlcNAcome. We developed an improved approach to quantitatively label and enrich O-GlcNAcylated proteins for site identification. Chemoenzymatic labeling followed by Cu(I)-
catalyzed azide-alkyne cycloaddition (CuAAC) installed a new MS-compatible linker designed for facile purification and release of O-GlcNAcylated proteins for downstream MS analysis. We validated the approach by identifying several established O-GlcNAc sites on the proteins α-crystallin and OGT as well as discovering new, previously unreported sites on both proteins. Notably, these novel sites on OGT lie in key functional domains of OGT, underscoring how this site identification method can reveal important biological insights into protein activity and regulation.

Finally, in Chapters 4 and 5, we focus on the post-translational modification (PTM) code on a specific transcription factor (TF), CREB (cAMP response element binding protein). CREB regulates memory formation through its transcriptional control of neuronal metabolism, activity, differentiation, development, and survival. CREB phosphorylation at serine 133 has been previously shown to enhance CREB-mediated transcription while CREB glycosylation at serine 40 has been shown to decrease CREB-mediated transcription. However, the exact gene networks modulated by and potential interplay between CREB glycosylation and phosphorylation have not been explored. Through differential expression analysis with glycosylation-deficient (S40A) and phosphorylation-deficient (S133A) CREB mutants, we showed that CREB O-GlcNAcylation is important for neuronal activity and excitability while phosphorylation at serine 133 regulated the expression of genes involved in neuronal differentiation. Using WGCNA, we demonstrated that CREB O-GlcNAcylation at serine 40 and phosphorylation at serine 133 mediate mutually exclusive gene networks. The glycosylation-deficient mutant enhanced neuronal activity- and excitotoxicity-related gene networks while the phosphorylation-deficient mutant perturbed neuronal differentiation and amino and fatty acid metabolism-related
gene networks. Our work sheds light on the regulation of CREB through PTMs to modulate neuronal function and delineate the roles of O-GlcNAcylation and phosphorylation in modulating neuronal excitability and neuronal development and metabolism respectively. Altogether, these studies demonstrate that O-GlcNAc modification is a critical mediator of neuronal homeostasis and neurodegeneration.
PUBLISHED CONTENT AND CONTRIBUTIONS

E.H.J. participated in the execution of the experiments including the microarray, qPCR, IHC, and western blotting experiments, data analysis, and in the writing of the manuscript. The article, including figures, is reproduced in part within Chapter 2 with permission under the PNAS rights and permissions.

E.H.J. participated in the execution of the experiments including the peptide and protein chemoenzymatic labeling and preparation for mass spectrometry and in writing of the manuscript. The article, including figures, is reproduced in part within Chapter 6 with permission under a Creative Commons Attribution 3.0 Unported License.
TABLE OF CONTENTS

Acknowledgements .. iii
Abstract ... iv
Published Content and Contributions ... viii
Table of Contents .. ix
List of Figures and Tables .. xiv
Nomenclature .. xx

Chapter 1: The role of O-GlcNAc glycosylation in neurobiology and neurodegeneration ... 1
1.1 Introduction to glycobiology ... 2
1.2 Introduction to O-GlcNAc glycosylation ... 2
1.3 The enzymes that cycle O-GlcNAc: OGT and OGA ... 4
1.4 Methods for the OGT interactome and O-GlcNAcome and the OGT substrate specificity hypothesis .. 7
1.5 O-GlcNAc crosstalk with other post-translational modifications 13
1.6 Role of O-GlcNAc in cellular functions: development, survival, stress response, circadian rhythm, longevity, cell cycle, and protein turnover 16
1.7 Role of O-GlcNAc in metabolic function and dysfunction 26
1.8 Role of O-GlcNAc in neuronal function ... 30
1.9 Role of O-GlcNAc in neurodegenerative diseases .. 34
1.10 References .. 40

Chapter 2: Transcriptomic characterization of a forebrain-specific OGT cKO 53
2.1 Abstract .. 54
2.2 General approach to generation of a OGT cKO mouse and validation 55
2.3 Overview of the phenotypes of the OGT cKO mouse: morphological and behavioral features ... 56
2.4 Few differentially-expressed genes in OGT cKO hippocampi at 3 weeks58
2.5 Upregulation of immune response and AD-related genes in the OGT cKO mouse at 2 months ..61
2.6 Synaptic genes, OGT, and OGA are not differentially-expressed in the OGT cKO mouse hippocampus at 2 months ..67
2.7 Cholesterol and lipid biosynthesis genes are downregulated in OGT cKO hippocampi at 2 months ..68
2.8 OGT knockout is highly correlated with an immune response gene network72
2.9 OGT knockout is highly correlated with a cell cycle arrest gene network76
2.10 OGT cKO, amyloid-forming, and plaque-forming mice are highly correlated with an immune response gene network ...84
2.11 OGT cKO and plaque-forming mice but not amyloid forming mice are anti-correlated with a synaptic gene network ...91
2.12 OGT cKO mice are highly correlated with a nuclear gene network93
2.13 Discussion ...98
2.14 Methods ...103
2.14.1 Maintenance and breeding of OGT cKO mice ..103
2.14.2 Behavioral studies ...104
2.14.3 Antibodies ..104
2.14.4 Western blotting ...105
2.14.5 Immunohistochemistry ...106
2.14.6 BrdU Assay for Neurogenesis ...108
2.14.7 Aβ-Peptide ELISA ...108
2.14.8 RNA extraction, qRT-PCR, and Microarray Analysis108
2.14.9 WGCNA and Gene Ontology Analysis ...109
2.14.10 Statistical Analyses ...110
2.15 References ..110

Chapter 3: Development of biological and chemical tools for discovery of the OGT interactome and O-GlcNAcome ...117
3.1 Abstract... 118
3.2 Overview of OGT interactome and O-GlcNAcome approach.. 119
3.3 Development of biological tools for identifications of the OGT interactome......................... 121
 3.3.1 Validation of tandem affinity purification and C-terminal tagged OGT using OGT activity assay ... 122
 3.3.2 Validation of OGT targeting sgRNA for CRISPR/Cas9... 124
 3.3.3 CRISPR/Cas9 to make novel OGT-FLAG-HA mice ... 125
 3.3.4 OGT interactome preliminary results .. 130
3.4 Development of chemoenzymatic tools for the O-GlcNAcome ... 136
 3.4.1 Overview of chemoenzymatic approach .. 136
 3.4.2 Validation of Dde cleavable linker ... 137
 3.4.3 Comparison with a photocleavable linker ... 140
 3.4.4 Validation using known O-GlcNAcylated proteins- α-crystallin and O-GlcNAc transferase ... 141
3.5 Discussion... 143
3.6 Methods .. 145
 3.6.1 Reagents and materials for OGT interactome ... 145
 3.6.2 Tandem affinity purification protocol for OGT pulldown and lentiviral production 146
 3.6.3 Mass spectrometry for OGT interactome ... 148
 3.6.4 Activity assay to check activity of OGT tags ... 149
 3.6.5 Design and screen of CRISPR/Cas9 sgRNA ... 151
 3.6.6 Generation of OGT-FLAG-HA mice using CRISPR/Cas9 and genotyping 152
 3.6.7 Reagents and materials for O-GlcNAcome .. 155
 3.6.8 O-GlcNAcylated peptide labeling .. 156
 3.6.9 LC-MS analysis of O-GlcNAc peptide labeling.. 156
 3.6.10 Chemoenzymatic labeling using Dde and photocleavable linkers .. 157
 3.6.11 Coomassie staining and western blotting .. 159
 3.6.12 Enrichment and elution of labeled proteins .. 159
 3.6.13 O-GlcNAcome sample processing for MS analysis ... 160
 3.6.14 LC separation and MS analysis ... 160
Chapter 4: The roles of O-GlcNAc and CREB in the transcription of key neuronal gene networks ... 164
 4.1 The histone and PTM codes ... 165
 4.2 The role of O-GlcNAc in the epigenetic code .. 165
 4.3 The role of O-GlcNAc in the PTM code ... 171
 4.4 CREB is a key regulator of critical gene networks in neurons ... 173
 4.5 The CREB family of transcription factors: CREB, ATF1, and CREM .. 179
 4.6 CREB coactivators: CBP/p300 and CRTCs .. 181
 4.7 The role of CREB and its coactivators in neurodegeneration .. 184
 4.8 The CREB PTM code .. 187
 4.9 How are CREB phosphorylation and glycosylation integrated in order to confer biological outcomes? .. 192
 4.10 References .. 193

Chapter 5: Global analysis of the interplay between CREB O-GlcNAc glycosylation and phosphorylation ... 203
 5.1 Abstract .. 204
 5.2 General approach and validation ... 205
 5.3 Neuronal polarization and axonogenesis genes are upregulated in the S40A CREB condition at 4 hours .. 209
 5.4 Neuronal excitability genes are upregulated in the S40A condition at 8 hours 213
 5.5 Innate immune response and phagosome genes are downregulated in the glycosylation-deficient CREB mutant at 8 hours .. 222
 5.6 Loss of CREB phosphorylation at serine 133 affects nervous system development at 8 hours ... 225
 5.7 The S40A-S133A double mutant affects nervous system development and the regulation of lipid localization .. 230
5.8 CREB glycosylation and phosphorylation regulate different gene networks with the double mutant similar to the phosphorylation-deficient mutant ... 232
5.9 CREB and its co-activators bind directly to DE gene promoters 236
5.10 Our study shows neuronal activity genes are upregulated by both VP16-CREB and S40A-CREB and minimal overlap between S133A and other studies exploring S133A-CREB gene changes .. 240
5.11 DE gene promoters are occupied by activating histone modifications 247
5.12 OGT, O-GlcNAc, and OGT-associated proteins and DNA modifications regulate the S40A/WT and S133A/WT DE genes at 8 hours .. 250
5.13 S133A and S40A-S133A is associated with neuronal differentiation and energy metabolism ... 254
5.14 S40A is associated with gene networks involved in neuronal activity and excitotoxicity ... 260
5.15 Discussion .. 268
5.16 Methods .. 272
5.16.1 Breeding and genotyping Creb1αδ mice .. 272
5.16.2 Creb1αδ E16.5 cortical dissections .. 274
5.16.3 Herpes simplex virus (HSV) transduction and immunocytochemistry (ICC) 275
5.16.4 RNA extraction, qPCR, and RNA-Seq ... 276
5.16.5 ChIP-Seq, RNA-Seq, and microarray comparative analysis 279
5.16.6 WGCNA and gene ontology analysis ... 280
5.17 References .. 281

Appendix I: Upregulated genes in OGT cKO hippocampi at 2 months of age 287
Appendix II: Downregulated genes in OGT cKO hippocampi at 2 months 305
Appendix III: List of qPCR primers ... 311
<table>
<thead>
<tr>
<th>Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1.1-</td>
<td>3</td>
</tr>
<tr>
<td>F1.2-</td>
<td>5</td>
</tr>
<tr>
<td>F1.3-</td>
<td>7</td>
</tr>
<tr>
<td>F1.4-</td>
<td>9</td>
</tr>
<tr>
<td>F1.5-</td>
<td>22</td>
</tr>
<tr>
<td>F1.6-</td>
<td>25</td>
</tr>
<tr>
<td>F1.7-</td>
<td>27</td>
</tr>
<tr>
<td>F1.8-</td>
<td>32</td>
</tr>
<tr>
<td>F1.9-</td>
<td>36</td>
</tr>
<tr>
<td>F2.1-</td>
<td>58</td>
</tr>
<tr>
<td>T2.1-</td>
<td>60</td>
</tr>
<tr>
<td>T2.2-</td>
<td>62</td>
</tr>
<tr>
<td>F2.2-</td>
<td>62</td>
</tr>
<tr>
<td>T2.3-</td>
<td>63</td>
</tr>
<tr>
<td>T2.4-</td>
<td>68</td>
</tr>
<tr>
<td>T2.5-</td>
<td>69</td>
</tr>
<tr>
<td>F2.3-</td>
<td>70</td>
</tr>
<tr>
<td>F2.4-</td>
<td>71</td>
</tr>
<tr>
<td>F2.5-</td>
<td>73</td>
</tr>
<tr>
<td>F2.6-</td>
<td>74</td>
</tr>
<tr>
<td>F2.7-</td>
<td>75</td>
</tr>
<tr>
<td>T2.6-</td>
<td>75</td>
</tr>
<tr>
<td>F2.8-</td>
<td>78</td>
</tr>
</tbody>
</table>
T2.7- DAVID GO annotation of OGT cKO/WT downregulated genes at 2 months..............78
F2.9- OGT cKO mice exhibit unchanged levels of PCNA-positive hippocampal neurons.79
F2.10- OGT cKO mice exhibit unchanged levels of BrdU-positive hippocampal neurons.80
F2.11- OGT cKO mice exhibit changes in levels of Cyclin A2-positive hippocampal neurons..81
F2.12- Cell cycle genes upregulated in OGT cKO mice at 2 months..........................82
F2.13- Cdk5 levels are depleted in OGT KO neurons in the hippocampus................84
F2.14- Comparison of the characteristics of the mice from the AD/FTDP mouse study and the OGT cKO mouse..85
F2.15- WGCNA dendrogram of hippocampal samples and traits ..86
F2.16- WGCNA trait and module correlations..88
T2.8- DAVID GO annotation of green immune response module.............................88
F2.17- Top 10 gene ontology annotations for green immune response module...........90
F2.18- Green module is enriched for immune response genes ..90
T2.9- DAVID GO annotation of red synapse-related module ..92
F2.19- Top 10 gene ontology annotations for red synapse-related module..................93
F2.20- Red module is enriched for synaptic and neuronal activity genes...................93
T2.10- DAVID GO annotation of yellow nucleus-related module...............................95
F2.21- Yellow module is enriched for nuclear genes ..98
F3.1- Overview of tissue-specific OGT interactome and O-GlcNAcome dual approach.121
F3.2- Workflow of tandem affinity purification for OGT interactome identification......122
F3.3- Validation of crosslinking conditions and doxycycline induction of OGT-FH expression..123
F3.4- FLAG-HA C-terminal and N-terminal tagging of OGT does not affect OGT activity..124
F3.5- Screening of sgRNAs for efficiency ...125
F3.6- Sequence for ssODN for homologous recombination ...126
F3.7- Sequencing validation of tag insert ..128
F3.8- PCR and gel genotyping ...128
F3.9- Sequencing validation of most likely off-target site ..129
F3.10- Western blotting verification of OGT-FLAG-HA protein expression in mice ... 1302
F3.11- Lysis condition screen for brain tissue .. 131
T3.1- Preliminary OGT interactome from OGT-FH brain .. 132
F3.12- Comparison between OGT-FH mouse brain OGT interactome and other OGT interactome experiments .. 134
F3.13- Comparison between O-GlcNAcome and the OGT brain interactome .. 135
T3.2- Top 5 GO clusters for OGT brain interactome and O-GlcNAcome common proteins ... 135
F3.14- Overview of chemicals and workflow of chemoenzymatic linker labeling ... 138
F3.15- Labeling and cleavage reactions proceed quantitatively .. 139
F3.16- Labeled peptide is stable to wash conditions .. 140
F3.17- Dde linker 2 outperforms photocleavable linker .. 141
T3.3- O-GlcNAc sites identified on alpha-crystallin and OGT .. 142
F3.18- Plasmid map for pCAG-EGxxFP for sgRNA screening ... 152
F4.1- The histone and epigenetic codes are heavily regulated by OGT .. 164
F4.2- Structure of CREB ... 170
F4.3- Overview of the stimuli that activate CREB and gene networks regulated by CREB activity ... 175
F4.4- Fine tuning CREB activity is critical for neuronal growth and survival ... 186
F4.5- Overview of CREB phosphorylation and O-GlcNAc glycosylation sites ... 191
F5.1- Overview of CREB mutants ... 206
F5.2- Schematic of experimental overview ... 207
F5.3- HSV transduces neurons rapidly ... 208
F5.4- Relative CREB expression (qPCR) ... 209
T5.1- S40A/WT differentially-expressed genes at 4 hours ... 210
F5.5- Differentially-expressed genes in S40A/WT CREB at 4 hours .. 211
F5.6- S40A-CREB produces enhanced neurite outgrowth ... 212
T5.2- DAVID GO annotation of S40A/WT upregulated genes at 8 hours .. 214
T5.3- List of upregulated S40A/WT genes at 8 hours ... 214
F5.7- Expression levels of upregulated genes in S40A/WT CREB involved in calcium and cAMP signaling pathways at 8 hours ... 219
F5.8- Expression levels for neuronal activity upregulated genes in S40A/WT CREB at 8 hours .. 220
F5.9- Cytoscape gene ontology annotations for the S40A/WT upregulated genes at 8 hours .. 221
T5.4 DAVID functional annotation of S40A/WT CREB downregulated genes 223
F5.10- Downregulated genes in S40A/WT CREB are involved in innate immune response and phagosome at 8 hours ... 224
F5.11- Cytoscape gene ontology annotations for the downregulated genes in the S40A/WT comparison at 8 hours .. 224
F5.12- Differentially-expressed genes in S133A/WT CREB at 8 hours are involved in neuronal differentiation and development ... 226
T5.5- PANTHER gene ontology classifications for S133A/WT upregulated genes 226
T5.6- List of differentially-expressed S133A/WT genes at 8 hours 228
T5.7- PANTHER gene ontology classifications for S133A/WT downregulated genes.... 228
F5.13- Cytoscape gene ontology annotations for the differentially-expressed genes in the S133A/WT comparison at 8 hours .. 229
T5.8- List of differentially-expressed S40A-S133A/WT genes at 8 hours 230
F5.14- Differentially-expressed genes in S40A-S133A/WT at 8 hours are enriched for nervous system development and lipid localization genes ... 232
F5.15- Differentially-expressed genes from the pairwise comparisons between different HSV treatment conditions ... 233
F5.16- Venn diagrams showing pairwise CREB mutant comparisons at 8 hours 233
F5.17- Venn diagrams showing overlap DE genes between various CREB mutants at 8 hours .. 236
T5.9- Full and half CRE sites on DE genes at 8 hours ... 238
F5.18- Barplot of Half CRE sites on DE genes at 8 hours .. 238
T5.10- CREB-regulated DE genes at 8 hours ... 238
F5.19- Overlap between CREB ChIP-Seq studies .. 239
T5.11- Differentially-expressed genes in the Benito study and our study 246
T5.12- Histone code for DE gene promoters at 8 hours .. 248
F5.20- Histone modifications associated with promoters of S40A/WT, S133A/WT, and
S40A-S133A/WT DE genes .. 250
T5.13- OGT-related protein bound to DE gene promoters at 8 hours 251
F5.21- OGT-related proteins and modifications associated with the S40A/WT, S133A/WT,
and S40A-S133A/WT DE genes .. 253
F5.22- WGCNA overview ... 255
F5.23- Gene ontology annotations for the S133A and S40A-S133A associated NPC
proliferation- and metabolism-related module .. 256
F5.24- A differentiation- and metabolism-related cyan module is anti-correlated with GFP,
S133A and S40A-S133A, and not correlated with WT and S40A 257
F5.25- The cyan module is enriched for NPC proliferation- and metabolism-related genes
.. 259
T5.14- Cyan module hub gene connectivity ... 259
.. 261
F5.27- Synaptic activity-related module is correlated with S40A and anti-correlated with all
other conditions .. 261
F5.28- The tan module is enriched for synaptic activity-related genes 263
T5.15- Tan module hub gene connectivity ... 263
F5.29- Gene ontology annotations for the neuronal activity- and excitotoxicity-related
module correlated with S40A ... 265
F5.30- Green yellow module is positively correlated with S40A and anti-correlated with all
other conditions .. 266
F5.31- The green yellow module is enriched for neuronal activity and excitotoxicity genes .
.. 267
T5.16- Green yellow module hub gene connectivity ... 267
F5.32- Breeding scheme for Creb1δ homozygous knockout mice 273
T5.17- Summary of TopHat alignments to mm10 genome using Galaxy 278
Appendix I- Upregulated genes in OGT cKO hippocampi at 2 months of age............. 287
Appendix II- Downregulated genes in OGT cKO hippocampi at 2 months............... 305
Appendix III- qPCR Primers.. 311
NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A or Ala</td>
<td>alanine or adenosine</td>
</tr>
<tr>
<td>a.a.</td>
<td>amino acids</td>
</tr>
<tr>
<td>ACN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>ALS</td>
<td>amyotrophic lateral sclerosis (a.k.a. Lou-Gehrig’s disease or motor neuron disease)</td>
</tr>
<tr>
<td>AMPA</td>
<td>anti-mycotic, anti-microbial</td>
</tr>
<tr>
<td>B</td>
<td>biotin/biotinylated</td>
</tr>
<tr>
<td>BCA</td>
<td>bicinechonic acid</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>BEMAD</td>
<td>β-elimination Michael addition</td>
</tr>
<tr>
<td>BG</td>
<td>E11.5 basal ganglia</td>
</tr>
<tr>
<td>BM</td>
<td>bone marrow</td>
</tr>
<tr>
<td>Bp</td>
<td>base pair(s)</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>C or Cys</td>
<td>cysteine or cytosine</td>
</tr>
<tr>
<td>CBP</td>
<td>CREB-binding protein</td>
</tr>
<tr>
<td>CID</td>
<td>collision-induced dissociation</td>
</tr>
<tr>
<td>CNs</td>
<td>cortical neurons (either E15.5 or E16.5)</td>
</tr>
<tr>
<td>Cre</td>
<td>Cre recombinase</td>
</tr>
<tr>
<td>CRE</td>
<td>consensus sequence for CREB binding (Full site: TGACGTCA, Half site: TGAC/GTCA)</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element binding protein</td>
</tr>
<tr>
<td>CRISPR</td>
<td>clustered regularly interspaced short palindromic repeats</td>
</tr>
<tr>
<td>CuAAC</td>
<td>copper-catalyzed azide-alkyne cycloaddition</td>
</tr>
<tr>
<td>Cu(I)</td>
<td>copper (I), Cu⁺</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>copper sulfate</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’-6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>Dde</td>
<td>1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl</td>
</tr>
<tr>
<td>Ddv/ivDde</td>
<td>1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)isovaleryl</td>
</tr>
<tr>
<td>DE</td>
<td>differentially expressed</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle medium</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dsDNA</td>
<td>double stranded DNA</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol-bis(β-aminoethyl ether)tetraacetic acid</td>
</tr>
<tr>
<td>E#</td>
<td>embryonic day #</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>EOGT</td>
<td>EGF domain-specific O-linked N-acetylglucosamine transferase (extracellular)</td>
</tr>
<tr>
<td>ESC(s)</td>
<td>embryonic stem cell(s)</td>
</tr>
<tr>
<td>ETD</td>
<td>electron transfer dissociation</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>FDR</td>
<td>false discovery rate</td>
</tr>
<tr>
<td>FLAG</td>
<td>protein tag with the sequence DYKDDDDK</td>
</tr>
<tr>
<td>FTD(P)</td>
<td>frontotemporal dementia (with Parkinsonism)</td>
</tr>
<tr>
<td>G or Gly</td>
<td>glycine or guanosine</td>
</tr>
<tr>
<td>Gal</td>
<td>galactose</td>
</tr>
<tr>
<td>GalN</td>
<td>galactosamine</td>
</tr>
<tr>
<td>GalNAc</td>
<td>N-acetylgalactosamine</td>
</tr>
<tr>
<td>GalNAz</td>
<td>N-azidoacetylgalactose</td>
</tr>
<tr>
<td>(Y289L) GalT</td>
<td>(Y289L) β-1,4-galactosyltransferase</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomic DNA</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GlcNAc</td>
<td>N-acetylgalactosamine</td>
</tr>
<tr>
<td>GlcNAz</td>
<td>N-azidoacetylgalactosamine</td>
</tr>
<tr>
<td>HA</td>
<td>hemagglutinin tag (YPYDVPDYA)</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank’s buffered saline solution</td>
</tr>
<tr>
<td>HCD</td>
<td>higher-energy collisional dissociation</td>
</tr>
<tr>
<td>HD</td>
<td>Huntington’s disease</td>
</tr>
<tr>
<td>HDR</td>
<td>homology-directed repair/recombination</td>
</tr>
<tr>
<td>HEK293</td>
<td>human embryonic kidney cells</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HSV</td>
<td>replication-deficient herpes simplex virus</td>
</tr>
<tr>
<td>ICC</td>
<td>immunocytocchemistry</td>
</tr>
<tr>
<td>IF</td>
<td>immunofluorescence</td>
</tr>
<tr>
<td>IHC</td>
<td>immunohistochemistry</td>
</tr>
<tr>
<td>Ile (or I)</td>
<td>isoleucine</td>
</tr>
<tr>
<td>IRDye800</td>
<td>infrared dye 800</td>
</tr>
<tr>
<td>Leu (or L)</td>
<td>leucine</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin domain G</td>
</tr>
<tr>
<td>IgM</td>
<td>immunoglobulin domain M</td>
</tr>
<tr>
<td>©KO</td>
<td>(conditional) knockout</td>
</tr>
<tr>
<td>IncRNA</td>
<td>long-noncoding ribonucleic acid</td>
</tr>
<tr>
<td>LTM</td>
<td>long term memory</td>
</tr>
<tr>
<td>LTQ</td>
<td>linear trap quadrupole</td>
</tr>
<tr>
<td>LSM</td>
<td>laser scanning microscope</td>
</tr>
<tr>
<td>LV</td>
<td>lentivirus</td>
</tr>
<tr>
<td>LWAC</td>
<td>lectin weak affinity chromatography</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MEF(s)</td>
<td>mouse embryonic fibroblast(s)</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
</tbody>
</table>
Met (or M) methionine
MS mass spectrometry
NaAsc sodium ascorbate
NFTs neurofibrillary tangles
NHEJ non-homologous end joining
NMR nuclear magnetic resonance
NPCs neural progenitor cells
nt nucleotide
O-GlcNAc O-linked N-acetylglucosamine
OGA O-GlcNAcase
(s)OGT (short isoform of) O-GlcNAc transferase
PAM protospacer motif
PARP1 poly-ADP ribose polymerase 1
PBS(T) phosphate buffered saline (Tween 20)
PC photocleavable
PC12 pheochromocytoma 12 (cell line)
PCR polymerase chain reaction
PD Parkinson’s disease
polyethylene glycol
PEG phenylalanine
Phe (or F) phenylalanine
PI3K phosphatidylinositol 3-kinase
P/S penicillin/streptomycin
PSP progressive supranuclear palsy
PTM post-translational modification
PUGNAc O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate
qRT-PCR (qPCR) quantitative reverse transcription-polymerase chain reaction
RapiGest sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propanesulfonate
ribonucleic acid
mRNA messenger ribonucleic acid
rRNA ribosomal ribonucleic acid
RNAi RNA interference
RT room temperature
siRNA short interfering RNA
SCX strong cation exchange
SDS sodium dodecyl sulfate
SDS-PAGE sodium dodecyl sulfate protein acrylamide gel electrophoresis
S.E.M standard error of the mean
Ser (or S) serine
ssODN single-stranded oligonucleotide
STM short term memory
TAE Tris buffered saline (pH 8.3)
TBS(T) Tris buffered saline (Tween 20)
TFA trifluoroacetic acid
THPTA: tris(3-hydroxypropyltriazolylmethyl)amine
Thr (or T): threonine
TNFα: tumor necrosis factor alpha
Trp (or W): tryptophan
Tyr (or Y): tyrosine
UDP: uridine diphosphate
(3’ or 5’)UTR: (3’ or 5’) untranslated region of RNA
UV: ultraviolet
(s)WGA: (succinylated) wheat germ agglutinin
Wnt: wingless-type MMTV integration site family member