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ABSTRACT

Optimal controller synthesis is a challenging problem to solve. However, in many
applications such as robotics, nonlinearity is unavoidable. Apart from optimality,
correctness of the system behaviors with respect to system specifications such as
stability and obstacle avoidance is vital for engineering applications. Many exist-
ing techniques consider either the optimality or the correctness of system behavior.
Rarely, a tool exists that considers both. Furthermore, most existing optimal con-
troller synthesis techniques are not scalable because they either require ad-hoc design
or they suffer from the curse of dimensionality.

This thesis aims to close these gaps by proposing optimal controller synthesis tech-
niques for two classes of nonlinear systems: linearly solvable nonlinear systems
and hybrid nonlinear systems. Linearly solvable systems have associated Hamilton-
Jacobi-Bellman (HJB) equations that can be transformed from the original nonlinear
partial differential equation (PDE) into a linear PDE through a logarithmic trans-
formation. The first part of this thesis presets two methods to synthesize optimal
controller for linearly solvable nonlinear systems. The first technique uses a hierar-
chy of sums-of-square programs to compute a sequence of suboptimal controllers
that have non-increasing suboptimality for first exit and finite horizon problems.
This technique is the first systematic approach to provide stability and suboptimal
performance guarantees for stochastic nonlinear systems in one framework. The
second technique uses the low rank tensor decomposition framework to solve the
linear HJB equation for first exit, finite horizon, and infinite horizon problems. This
technique scale linearly with dimensions, alleviating the curse of dimensionality
and enabling us to solve the linear HJB equation for a quadcopter model that is a
twelve-dimensional system on a personal laptop. A new algorithm is proposed for
a key step in the controller synthesis algorithm to solve the ill-conditioning issue
that arises in the original algorithm. A MATLAB toolbox that implements the
algorithms is developed, and the performance of these algorithms is illustrated by a
few engineering examples.

Apart from stability, in many applications, more complex specifications such as
obstacle avoidance, reachability, and surveillance are required. The second part of
the thesis describes methods to synthesize optimal controllers for hybrid nonlinear
systemswith quantitative objectives (i.e.,minimizing cost) and qualitative objectives
(i.e., satisfying specifications). This thesis focuses on two types of qualitative
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objectives, regular objectives, and ω-regular objectives. Regular objectives capture
bounded time behavior such as reachability, and ω-regular objectives capture long
term behavior such as surveillance. For both types of objectives, an abstraction-
refinement procedure that preserves the cost is developed. A two-player game is
solved on the product of the abstract system and the given objectives to synthesize
the suboptimal controller for the hybrid nonlinear system. By refining the abstract
system, the algorithms are guaranteed to converge to the optimal cost and return the
optimal controller if the original systems are robust with respect to the initial states
and the optimal controller inputs. The proposed technique is the first abstraction-
refinement based technique to combine both quantitative and qualitative objectives
into one framework. A Python implementation of the algorithms are developed,
and a few engineering examples are presented to illustrate the performance of these
algorithms.
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Sets

Z All integers.
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R All real numbers.
R+ All nonnegative real numbers.
Rn All n-dimensional real vectors.
Rn×m All n × m real matrices.

Function Classes
Given a function class F , with abuse of notation, let F (x) denotes all real functions
of x ∈ Rn and F (Ω) denotes all real functions of x ∈ Ω ⊆ Rn.

R All real polynomial functions.
Rn×m All matrices of size n × m such that Mi, j ∈ R ∀ i, j.
K All real continuous nondecreasing functions µ : R+ → R+ such that

µ(0) = 0, µ(r) > 0 if r > 0, and µ(r) ≥ µ(r′) if r > r′.
Ck All real k-differentiable functions f .
Ck,k ′ All real functions f such that f is k-differentiable with respect to

the first argument and k′-differentiable with respect to the second
argument.

Lp All real p-th integrable functions f , where
(∫
| f |pdx

) 1
p
< ∞.

SOS All real sum-of-squares polynomials f .
S All real separable functions f : Rn → R such that f (x) =

∑r
i=1 si

∏d
j=1 f i

j (x j),
where f i

j ∈ C
∞(x j) and x j is the j-th component of x.

Sn×m All matrices of size n × m such that Mi, j ∈ S ∀ i, j.
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n
i=m A sequence xm, xm+1, . . . , xn−1, xn, where n ≥ m.

{xi}i∈[n] A sequence x0, x1, . . . , xn−1, xn.

Norms
Let x ∈ Rn be a vector, M ∈ Rn×n be a matrix, f ∈ C∞(Ω) be a function on Ω, and
F be a CP tensor function.

‖x‖∞ maxk∈[n]+ |xk |.
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k∈[n] |xk |.

‖ f ‖∞ supx∈Ω | f (x)| if exists.
‖M ‖F Frobenius norm
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j=1 |Mi j |

2.
‖M ‖∞ maxi∈[n]+
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〈F, F〉.

Others
Let x ∈ Rn be a vector, M ∈ Rn×n be a matrix, f ∈ C∞(Ω) be a function on Ω, A
be a set, and F be a CP tensor function.

|A| The total number of elements in the set A.
f (·) Abbreviation of a multivariate function f (x). A function f (x) may

also be abbreviated as f if the context is clear.
Tr Matrix trace.
∇x Gradient with respect to x.
∇xx Hessian with respect to x.
∂k Partial derivative with respect to k.
1n A vector of all ones in Rn. The size n is abbreviated when the context

is clear.
In Identity matrix in Rn×n. The size n is abbreviated when the context

is clear.
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C h a p t e r 1

INTRODUCTION

Feedback control is a very old concept that has profound impact on the development
of today’s technology [1]. An interesting history of feedback control can be found
in [2] that traces the control of devices to the ancient past. Applications of feed-
back control ranged from traditional engineering fields like chemical processes [3],
aircrafts [4], spacecrafts [5], and robotics [6] to new areas like algorithm analysis
[7], biology [8], [9], and neuroscience [10]–[12]. Typically, the goal of a controller
is to ensure that the systems controlled is able to perform a task efficiently and
reliably. This requirement translates to requiring the controller to be both optimal
with respect to a metric and correct with respect to a given set of specifications, and
perhaps robust against random disturbances.

Optimal controller synthesis for linear systems is awell studied areawithmany useful
tools and techniques. An important milestones for optimal controller synthesis is the
linear quadratic regular (LQR) introduced by Kalman, who showed that the optimal
controller is a linear feedback of the state variables using the calculus of variation
[13]. Despite initial successes in the 1970’s, the LQR controller and its sister, linear
quadratic Gaussian regular (LQG), have poor robustness properties [14]. Thus,
in the 1980’s, tools and techniques for robust control emerged including optimal
H2/H∞ controller synthesis that uses state-space formulation and the Ricatti equation
[15], [16]. More recently, the system level synthesis framework was developed in
[17], [18] that enables distributed, localized, and scalable synthesis using convex
optimization.

Linear systems are useful for modeling systems that only operate in the linear regime
and designing optimal stabilizing controllers for these systems. But nonlinearity
is unavoidable in many engineering applications such as controlling a walking
robot [6]. Furthermore, using the full nonlinear model for controller synthesis
typically results in a more efficient controller than only using the linearized model
for controller synthesis. Thus, optimal controller synthesis for nonlinear systems
is an important area of study. Yet, despite major progresses in optimal controller
synthesis for linear systems, optimal controller synthesis for nonlinear systems does
not share the same level of generality, computability, and scalability. Due to the
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nonlinearity, many efficient techniques that are developed for linear systems are no
longer applicable for the nonlinear systems.

A fundamental concept in optimal control synthesis for nonlinear system is the
Hamilton-Jacobi-Bellman (HJB) equation, a novel view by Bellman and his col-
leagues that extends the earlier works on optimal control based on calculus of
variation. Bellman introduced the idea of dynamics programming for computing
the optimal controller [19] based on the following simple idea: if an optimal path
is found between two points, then for any other two points on the optimal path, the
original optimal path between these two points is also the optimal path between these
two points. Almost in parallel, the Pontraygin’s maximum principle [20], [21] was
developed by Pontraygin and his colleagues for solving the optimal control problem.
The maximum principle provides the necessary conditions for optimal control us-
ing the concept of a Hamiltonian. This formulation transforms the optimal control
problem into a nonlinear programming problem. However, unlike the dynamic pro-
gramming approach, nonlinear programming that solves the Pontraygin’s maximum
principle does not provide a feedback controller; instead it provides an open loop
optimal control trajectory for the system.

These two main schools of thought have major influences on the development of
nonlinear optimal control synthesis since the 1950’s. This thesis adopts Bellman’s
view of optimal control because we seek to compute optimal feedback controllers
for nonlinear systems such as robots and quadcopters. The major challenge with this
view of optimal control is the curse of dimensionality [22]. As computers become
more efficient with more memory, the curse of dimensionally is not as daunting as
before. But solving nonlinear optimal control synthesis is still a challenging task for
systems that have more than 2 or 3 dimensions. Yet many engineering systems have
more dimensions than three. For example, a simple quadcopter model has 12 state
dimensions [23], and a biped robot can easily have more than 30 state dimensions
[6].

Apart from scalability, unlike the tools for linear systems, satisfying both optimality
and correctness of system behaviour with respect to system specifications is ex-
tremely challenging for nonlinear systems. Most existing methods usually satisfy
one or the other. Rarely do we find a tool that satisfies both. Methods derived from
the HJB equations and the maximum principle typically only consider optimality
without explicitly considering correctness of system behaviors such as stability and
obstacle avoidance. On the other hand, many methods [24], [25] are available that
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satisfy system specifications without considering optimality. Techniques for ensur-
ing stability, the most common form of specifications for control, includes feedback
linearization and differential geometry based methods [24], [25]. In essence, many
of these synthesis techniques rely on finding control Lyapunov functions for the
dynamical systems of interest. As a result, the techniques are generally not scal-
able, and in many cases ad-hoc to the specific applications. More recently, the
development of convex optimization, in particular sums-of-squares programming,
helps automate the process of searching for control Lyapunov functions [26], [27].
Apart from stability, robotic systems can have many other specifications such as
surveillance, obstacle avoidance, and reachability. For these more complex specifi-
cations, the formal method emerges as the principled automatic synthesis technique
that also formally verifies the correctness of the controlled system behaviors [28]–
[31]. These formal techniques generally search for any feedback controller that is
correct with respect to the specifications. Most of synthesis techniques mentioned
in this paragraph focus on achieving correct system behaviors, but lack any form of
optimality guarantees.

This thesis aims to close some of these gaps by proposing optimal controller syn-
thesis techniques for nonlinear systems that are scalable and correct with respect
to specifications. This thesis focuses on two general classes of nonlinear systems:
linearly solvable nonlinear systems and hybrid nonlinear systems.

Part I Optimal Control Synthesis for Linearly Solvable Nonlinear Systems

As mentioned before, in nonlinear control theory, synthesizing any stabilizing con-
troller is a huge challenge on its own. However, in many practical applications,
where resources are limited, optimality is also important. Optimal controller syn-
thesis is challenging because it involves solving the Hamilton-Jacobi-Bellman (HJB)
equation that is typically a nonlinear partial differential equation. This part of the
thesis aims to solve the HJB equation for the class of nonlinear affine stochastic
systems that can be transformed into a linear PDE. This type of system is called a
linearly solvable system throughout this thesis.

Two approaches are proposed to solve the linear HJB equation: Sums-of-Squares
based technique and low rank tensor decomposition based technique, and three typi-
cal types of cost functionals are considered that give three types of control problems:
the first exit problem, finite horizon problem, and infinite horizon problem. The
first method synthesizes a suboptimal controller using SOS programming, a convex
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optimization based method, to solve the linear HJB equation. The resulting con-
troller is guaranteed to be stabilizing and the trajectory cost of the controlled system
is bounded. This method is among the first to explicitly consider both optimality
and stability for stochastic nonlinear systems. The second method synthesizes the
controller by solving the linear HJB equation using a low rank tensor decomposition
based approach. This approach scales linearly with the dimensions, avoiding the
curse of dimensionality suffered by the first method. The implementation of this
technique is available online at [32].

The first part of the thesis includes the following chapters:

Chapter 2 provides a general overview of Part I and describes the main contribu-
tions.

Chapter 3 introduces background materials necessary for understanding the rest
of the chapters in this part, including stochastic control Lyapunov function,
linear HJB equation, viscosity solutions, CANDECOMP/PARAFAC tensor,
and spectral discretization scheme.

Chapter 4 presents optimal controller synthesis technique that uses Sum-of-Squares
program. This technique is the first to combine the optimality condition with
the stability criteria in one framework using convex optimization. This tech-
nique not only synthesizes a suboptimal controller, but it provides guarantees
on trajectory cost and system stability. However, one major limitation of
this technique is the curse of dimensionality, which is addressed by the next
chapter.

Chapter 5 synthesizes controller for a high dimensional system using low rank
tensor decomposition. This technique scales linearly with dimensions and
thus avoid the curse of dimensionality. The existing Alternating Least Square
algorithm is improved with sequential computation. AMATLAB toolbox that
implements algorithms presented in this chapter is developed.

Appendix A presents implementation of algorithms described in Chapter 5 for
multiple engineering examples. The algorithm is able to solve for a quadcopter
controller that has 12 degrees of freedom on a laptop.

Part II Optimal Control Synthesis for Hybrid Systems with Qualitative and
Quantitative Objectives

Apart from qualitative criteria (i.e., optimality with respect to a cost function), in
many applications, there is also high level quantitative specifications, for instance,
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a mobile robot has to perform surveillance while avoiding obstacles. The second
part of the thesis describes methods to synthesize optimal controllers for hybrid
nonlinear systems that have both quantitative and qualitative specifications.

Two classes of quantitative objectives are considered: regular and ω-regular. The
former captures bounded time behavior of the systems, including reachability, and
the latter captures long term behavior such as surveillance. The first method con-
siders systems with regular objectives. An abstraction-refinement approach that
preserves the cost is developed for synthesizing an optimal controller that is correct
with respect to the regular objectives. The second method considers systems with
ω-regular objectives. A similar cost preserving abstraction-refinement approach in
conjunction with solving a two-player quantitative game (i.e., mean payoff parity
game) is used to synthesize the controller. Bothmethods use an iterative abstraction-
refinement approach that converges to the optimal controller if the systems are robust
with respect to the initial states and the optimal inputs. The implementation of both
techniques is available online at [33].

The second part of the thesis includes the following chapters:

Chapter 6 provides a general overview of the state-of-art of formal controller syn-
thesis, and describes the main contributions of Part II in the context of the
previous works.

Chapter 7 introduces the mathematical notations, presents the semantic model for
discrete time hybrid systems with cost (i.e., weighted transition systems), and
formalizes the optimal control problem.

Chapter 8 defines the preorder for optimal control that preserves the cost and
presents the abstraction refinement procedure for constructing finite state
systems, which simulate a given transition system, termed the abstract system.
The abstract system satisfies the condition that the cost of the optimal control
on the abstract system provides an upper bound on the cost of the optimal
control for the original system. Furthermore, each suboptimal controller
yields trajectories that have the cost upper bounded by the cost of the optimal
control on the corresponding abstract system.

Chapter 9 presents the abstraction-refinement method to synthesize control inputs
for a discrete-time hybrid system. The controlled system behavior satisfies
a finite-word linear-time temporal objective while incurring minimal cost.
An abstract finite state weighted transition system is constructed from finite
partitions of the state and input spaces by solving optimization problems.
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A sequence of suboptimal controllers is obtained by considering a sequence
of uniformly refined partitions. In fact, the costs achieved by the sequence
of suboptimal controllers converge to the optimal cost for a class of hybrid
systems that has robust optimal input trajectories. Examples illustrate the
feasibility of this approach to synthesize automatically suboptimal controllers
with improving optimal costs.

Chapter 10 presents the abstraction-refinement based framework for optimal con-
troller synthesis of discrete-time hybrid systems with respect to ω-regular ob-
jectives. Similar to Chapter 9, it consists of first abstracting the discrete-time
“concrete” system into a finite weighted transition system using a finite parti-
tion of the state-space. Then, a two-player mean payoff parity game is solved
on the product of the abstract system and the Büchi automaton correspond-
ing to the ω-regular objective, to obtain an optimal “abstract” controller that
satisfies the ω-regular objective. The abstract controller is guaranteed to be
implementable in the concrete discrete-time system, with a sub-optimal cost.
The abstraction is refined with finer partitions to reduce the sub-optimality.
Under the assumption on the existence of certain robust controllers, the refine-
ment procedure is guaranteed to find controllers whose costs are arbitrarily
close to the optimal cost. An example is presented to illustrate the feasibility
of the approach.

Appendices B–D contain the full proofs for results in Chapters 8–10, respectively.

Finally, this thesis ends with Chapter 11, which summarizes the contributions of
this thesis, potential future work, and other final thoughts.



Part I

Optimal Control Synthesis for
Linearly Solvable Nonlinear Systems

7
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C h a p t e r 2

INTRODUCTION TO PART I

This part of the thesis presents techniques to solve for optimal controller for a class of
stochastic nonlinear affine dynamical systems for three types of cost functionals: first
exit, finite horizon, and infinite horizon. In particular, the methods presented seek
to solve the Hamilton-Jacobi-Bellman (HJB) equations associated with the optimal
control problems. In general, the HJB equation is a nonlinear partial differential
equation (PDE), but for a class of systems, termed linearly solvable systems, the
HJB equation can be transformed into a linear PDE. The methods described in this
part of the thesis solve this linear PDE.

Two techniques are proposed: convex optimization based technique and low rank
tensoder decomposition based technique. The former provides performance guar-
antees with limited scalability, while the latter provides scalability with limited
performance guarantees. Each of these methods and its related works are discussed
in the individual chapters.

This part of the thesis includes the following chapters:

Chapter 3 introduces background materials necessary for understanding the rest
of the chapter in this part, including stochastic control Lyapunov function,
linear HJB equation, viscosity solutions, CANDECOMP/PARAFAC tensor,
and spectral discretization scheme.

Chapter 4 presents optimal controller synthesis technique that uses Sum-of-Squares
program. This technique is the first to combine the optimality condition with
the stability criteria in one framework using convex optimization. This tech-
nique not only synthesizes a suboptimal controller, but it provides guarantees
on trajectory cost and system stability. However, one major limitation of
this technique is the curse of dimensionality, which is addressed by the next
chapter.

Chapter 5 synthesizes controller for a high dimensional system using low rank
tensor decomposition. This technique scales linearly with dimensions and
thus avoid the curse of dimensionality. The existing Alternating Least Square
algorithm is improved with sequential computation. A MATLAB toolbox is
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developed.
Appendix A presents implementation of algorithms described in Chapter 5 for

multiple engineering examples. The algorithm is able to solve for a quadcopter
controller that has 12 degrees of freedom on a laptop.

Part of the contents in this part appeared in these publications [34]–[36].
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C h a p t e r 3

PRELIMINARIES

This chapter presents the notations and definitions, and describes several topics that
are useful for understanding the following chapters of this part of the thesis.

3.1 Notations and Definitions
A compact domain inRn is denoted asΩ, whereΩ ⊂ Rn, and its boundary is denoted
as ∂Ω. A domain Ω is a basic closed semialgebraic set if there exists gi(x) ∈ R(x)

for i = 1, 2, . . . ,m such that Ω = {x | gi(x) ≥ 0 ∀i = 1, 2, . . . ,m}.

A point on a trajectory, x(t) ∈ Rn, at time t is denoted x(t), while the segment of
this trajectory over the interval [t,T] is denoted by x(t : T).

Given a function p(x), p(x) is positive on domain Ω if p(x) > 0 ∀x ∈ Ω, p(x)

is nonnegative on domain Ω if p(x) ≥ 0 ∀x ∈ Ω, and p(x) is positive definite on
domain Ω, where 0 ∈ Ω, if p(0) = 0 and p(x) > 0 for all x ∈ Ω\{0}.

3.2 Stochastic Affine Nonlinear Dynamical Systems
This part of the thesis will focus on the following stochastic affine nonlinear dynam-
ical system

dx(t) = ( f (x(t)) + G(x(t))u(t)) dt + B(x(t)) dω(t), (3.1)

where x(t) ∈ Ω is the state at time t in a domain Ω ⊆ Rn, ut ∈ R
m is the control

input, and fi(x) ∈ C∞(Ω) ∀i ∈ [n]+, Gi, j(x) ∈ C∞(Ω) ∀i ∈ [n]+, j ∈ [m]+, and
Bi, j(x) ∈ C∞(Ω) ∀i ∈ [n]+, j ∈ [l]+ are smooth functions of the state variables x.
The symbol ω(t) ∈ Rl is a vector consisting of Brownian motions with covariance
Σε, i.e.,ωt has independent increments withωt−ωs ∼ N(0, Σε(t−s)), forN

(
µ, σ2) ,

a normal distribution. The constants n, m, and l are the numbers of states, controller
inputs, and noise inputs, respectively. Without loss of generality, let 0 ∈ Ω and
x = 0 be the equilibrium point, whereby f (0) = 0, G(0) = 0, and B(0) = 0.

The specific conditions on the functions f ,G, and B and the domain Ω will be
provided in following chapters, where the techniques to solve the problem are
described.

This class of dynamical systems arises in many robotic systems, including quad-
copter and other examples shown in later chapters.
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3.3 Stochastic Control Lyapunov Functions (SCLF)
The study of system stability is a central theme of control engineering. A primary
tool for such studies is Lyapunov theory, wherein an energy-like function is used
to show that some measure of distance from a stability point decays over time.
The practical machinery for construction of Lyapunov functions that certify system
stability advanced considerably with the introduction of Sums of Squares (SOS)
programming, which has allowed for Lyapunov functions to be synthesized for both
polynomial systems [37] and more general vector fields [38].

To address the more challenging problem of stabilization, rather than the analysis
of an existing closed loop system, it is possible to generalize Lyapunov functions to
incorporate control inputs. The existence of a control Lyapunov function (CLF) (see
[39]–[41]) is sufficient for the construction of a stabilizing controller. However, the
synthesis of a CLF for general systems remains an open question. Unfortunately,
the SOS-based methods cannot be naively extended to the generation of CLFs, due
to the bilinearity between the Lyapunov function and control input.

Due to the lack of a general CLF synthesis technique, an alternative is the use of
Receding Horizon Control (RHC), which allows for the incorporation of optimality
criteria. Euler-Lagrange equations are used to construct a locally optimum trajectory
[42], and stabilization is guaranteed by constraining the terminal cost in the RHC
problem to be a CLF. Suboptimal CLFs have found extensive use with applications
in legged locomotion [43] and distributed control [44]. Adding stochasticity to the
governing dynamics compounds the difficulties of constructing Lyapunov functions
[45], [46].

This section introduces the notion of stability for the stochastic affine nonlinear
dynamical systems, and the stochastic control Lyapunov function (SCLF).

3.3.1 Stability
Two forms of stability are given, following the definitions in [47, Ch. 5].

Definition 3.1. Given (3.1), the equilibrium point at x = 0 is stable in probability
for t ≥ 0 if for any s ≥ 0 and ε > 0,

lim
x→0

P
{
sup
t>s
|X x,s(t)| > ε

}
= 0,

where X x,s is the trajectory of (3.1) from x at time s.



12

Intuitively, Definition 3.1 is similar to the notion of stability for deterministic sys-
tems. The following is a stronger stability definition that is similar to the notion of
asymptotic stability for deterministic systems.

Definition 3.2. Given (3.1), the equilibrium point at x = 0 is asymptotically stable
in probability if it is stable in probability and

lim
x→0

P
{

lim
t→∞
|X x,s(t)| = 0

}
= 1,

where X x,s is the trajectory of (3.1) from x at time s.

3.3.2 Stochastic Control Lyapunov Functions
The notions of stability introduced earlier can be realized through the construction
of stochastic control Lyapunov functions (SCLFs).

Definition 3.3. A stochastic control Lyapunov function for system (3.1) is a positive
definite functionV ∈ C2,1 on a domain O = Ω × {t > 0} such that

V(0, t) = 0, V(x, t) ≥ µ(|x |) ∀ t > 0

∃ u(x, t) s.t. L(V(x, t)) ≤ 0 ∀ (x, t) ∈ O\{(0, t)},

where µ ∈ K, and

L(V) = ∂tV + ∇xV
T ( f + Gu) +

1
2

Tr((∇xxV)BΣεBT ). (3.2)

Theorem 3.1 ([47] Thm. 5.3). For system (3.1), assume that there exists a SCLF
and a control u(x, t) satisfying Definition 3.3. Then the equilibrium point x = 0 is
stable in probability, and control u(x, t) is a stabilizing controller.

To achieve the stronger condition of asymptotic stability in probability, we have the
following result.

Theorem 3.2 ([47] Thm. 5.5 and Cor. 5.1). For system (3.1), suppose that in
addition to the existence of a SCLF and a control u(x, t) satisfying Definition 3.3
that control u(x, t) is time-invariant, and

V(x, t) ≤ µ′(|x |) ∀ t > 0

L(V(x, t)) < 0 ∀ (x, t) ∈ O\{(0, t)},

where µ′ ∈ K. Then, the equilibrium point x = 0 is asymptotically stable in
probability, and control u(x, t) is an asymptotically stabilizing controller.
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3.4 Linearly Solvable Hamilton-Jacobi-Bellman (HJB) Equation
Given a stochastic dynamical system, an optimal control problem searches for a
controller that minimizes a cost functional. The study of the Hamilton-Jacobi-
Bellman (HJB) equation that governs the optimal control of a system is central to
this problem [48]. Solving the HJB equation is nontrivial because the equation
is a second order nonlinear PDE. Methods to calculate the solution to the HJB
equation via semidefinite programming have been proposed previously by Lasserre
et al. [49]. The method is quite general, applicable to any system with polynomial
nonlinearities.

Since the late 1970s, Fleming [50], Holland [51] and other researchers thereafter
[52], [53] have made connections between stochastic optimal control and reaction-
diffusion equation through a logarithmic transformation. Recently, when studying
stochastic control using the HJB equation, Kappen [54] and Todorov [55] discov-
ered that particular assumptions on the structure of a dynamical system, given the
name linearly solvable systems, allow a logarithmic transformation of the optimal
control equation to a linear partial differential equation (PDE) form. The linearity
of this class of problems has given rise to a growing body of research, with an
overview available in [56]. Kappen’s work focused on calculating solutions via path
integral techniques. Todorov began with the analysis of particular Markov decision
processes, and showed the connection between the two paradigms. This work was
built upon by Theodorou et al. [57] into the Path Integral framework in use with
Dynamic Motion Primitives. These results have been developed in many different
directions [56], [58]–[60].

The rest of this section presents the cost functionals, the associated nonlinear
Hamilton-Jacobi-Bellman (HJB) equations, and the linearly solvable HJB equa-
tions.

3.4.1 Classes of Cost Functionals
Given the dynamics (3.1), three classes of cost functions are considered: first exit,
finite horizon, and infinite horizon.

First Exit

In the first exit problem, the cost functional is

J(x, u) = Eω

[
φ(x(T)) +

∫ T

0
q(x(t)) +

1
2

u(t)T Ru(t) dt
]
, (3.3)
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where φ ∈ C∞(Ω), φ : Ω → R+ is the final state cost, q ∈ C∞(Ω), q : Ω → R+ is
a state dependent cost, and R ∈ Rm×m is a positive definite matrix. The expectation
Eω is taken over all realizations of the noise ω in (3.1). The end time T , unknown a
priori, is the time when the state reaches the boundary of Ω.

Finite Horizon

In finite horizon problem, the cost functional is

J(x, u) = Eω

[
φ(x(T),T) +

∫ T

0
q(x(t)) +

1
2

u(t)T Ru(t) dt
]
, (3.4)

where φ ∈ C∞(Ω × (0,T]), φ : Ω × (0,T] → R+ is the final state cost, T is a given
end time, and the other variables are defined similarly to (3.3).

Infinite Horizon

For infinite horizon, this work considers the average cost functional

J(x, u) = lim
T→∞

1
T
Eω

[∫ T

0
q(x(t)) +

1
2

u(t)T Ru(t) dt
]
, (3.5)

where the variables are defined similarly to (3.3). An infinite horizon cost functional
is typically used in problems of stabilization. Without lost of generality, we consider
stabilization to the origin. Thus, q(·) and φ(·) are chosen to be positive definite
functions.

3.4.2 Hamilton-Jacobi-Bellman Equation
The solution to the minimization problem given (3.1) and a cost functional is known
as the value function, V : Ω → R+, where beginning from an initial point x(t) at
time t

V (x(t)) = min
u(t:T)

J (x(t : T), u(t : T)) .

The value function is also dependent on time t for the finite horizon problem.

Based on the dynamic programming principle [61, Ch. III.7], the minimization
problem for each cost functional given the system (3.1) has an associated HJB equa-
tion whose solution forms the optimal controller that minimizes the cost functional.
The associated HJB equation for (3.3), (3.4), and (3.5) are nonlinear, second order
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partial differential equations (PDE):

First exit: 0 = NL(V) (3.6a)

Finite horizon: − ∂tV = NL(V) (3.6b)

Infinite horizon: c = NL(V), (3.6c)

where

NL(V) , q + (∇xV)T f −
1
2
(∇xV)T GR−1GT (∇xV) +

1
2

Tr
(
(∇xxV) BΣεBT

)
,

and the variable c is the optimal average cost that does not depend on the states x.
For all three problems, the optimal control effort, u∗, is given by

u∗ = −R−1GT∇xV . (3.7)

3.4.3 Linear Hamilton-Jacobi-Bellman Equation
Solving (3.6) is difficult due to its nonlinearity. But, when this equality holds

λG(xt)R−1G(xt)
T = B(xt)ΣεB(xt)

T , Σ(xt) , Σt (3.8)

for a λ > 0, the nonlinear PDE can be transformed into a linear PDE [55], [62], [63]
using this logarithmic transformation

V = −λ logΨ. (3.9)

Remark. Systems of the form dx(t) = f (x(t)) dt + G(x(t)) (u(t) dt +dω(t)) that
are common in the adaptive control literature [64] will trivially satisfy (3.8). This
constraint restricts the design of the control penalty R, such that control effort is
highly penalized in subspaces with little noise, and lightly penalized in those with
high noise. Additional discussion is given in [55, SI Sec. 2.2].

After substituting (3.8) and (3.9) into (3.6), and simplifying, the HJB equations
become

First exit: 0 = L(Ψ) (3.10a)

Finite horizon: − ∂tΨ = L(Ψ) (3.10b)

Infinite horizon: − cΨ = L(Ψ), (3.10c)

where
L(Ψ) , −

1
λ

qΨ + f T (∇xΨ) +
1
2

Tr ((∇xxΨ) Σt) .
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The function Ψ is called the desirability function [55].

The equations in (3.10) are not well-posed PDE problems without specifying the
boundary conditions [65]. The boundary conditions are defined as follows:

First exit: Ψ(x) = exp
(
−

1
λ
φ(x)

)
, for x ∈ ∂Ω (3.11a)

Finite horizon: Ψ(x, t) = exp
(
−

1
λ
φ(x, t)

)
, for (3.11b)

(x, t) ∈ ∂Ω × (0,T]

Ψ(x,T) = exp
(
−

1
λ
φ(x,T)

)
, for x ∈ Ω

Infinite horizon: Ψ(x) = 0, for x ∈ ∂Ω. (3.11c)

Henceforth, we write Ψ(·) = ψ(·) as a shorthand for the boundary conditions, and
the specific definition of ψ(·) depends on the class of cost functions, which should
be clear from the context. For infinite horizon problem, the domain is chosen to
be large enough such that V(x) is a large number at the boundary, and thus Ψ(x)
is close to zero at the boundary. The boundary conditions currently defined are
called Dirichlet boundary conditions. However, other types of boundary conditions
can also be imposed, including the periodic boundary condition for the dimension
corresponding to the angle [65].

3.5 Viscosity Solutions of Partial Differential Equations (PDE)
If the linear HJB (3.10) is not uniformly elliptic/parabolic [66], a classical solution
may not exist. The notion of viscosity solutions is developed to generalize the
classical solution. Refer to [66] for a general discussion on viscosity solutions and
[61] for a discussion on viscosity solutions related to Markov diffusion processes.

The first definition applies to elliptic PDE.

Definition 3.4 ([66] Def. 2.2). Given Ω ⊂ RN and an elliptic partial differential
equation

F(x, u,∇xu,∇xxu) = 0, (3.12)

where F : RN × R × RN × S(N) → R, S(N) is the set of real symmetric N × N

matrices, and F satisfies

F(x, r, p, X) ≤ F(x, s, p,Y ) whenever r ≤ s and Y ≤ X,

then a viscosity subsolution of (3.12) on Ω is a function u ∈ USC(Ω) such that

F(x, u, p, X) ≤ 0 ∀ x ∈ Ω, (p, X) ∈ J2,+
Ω

u(x).
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Similarly, a viscosity supersolution of (3.12) on Ω is a function u ∈ LSC(Ω) such
that

F(x, u, p, X) ≥ 0 ∀ x ∈ Ω, (p, X) ∈ J2,−
Ω

u(x).

Finally, u is a viscosity solution of (3.12) on Ω if it is both a viscosity subsolution
and a viscosity supersolution in Ω.

The notations USC(Ω) and LSC(Ω) represent the sets of upper and lower semicon-
tinuous functions on domain Ω, respectively, and J2,+

Ω
u(x) and J2,−

Ω
u(x) represents

the second order “superjets” and “subjets” of u at x, respectively. These “semi-jets”
are approximations of the derivatives when solution is not differentiable. A more
formal definition is available in [66].

The next definition applies to parabolic PDEs.

Definition 3.5 ([66] Sec. 8). Let O = (0,T) ×Ω, where Ω ⊂ RN . Given a parabolic
partial differential equation

∂tu + F(t, x, u,∇xu,∇xxu) = 0, (3.13)

where F : [0,T] × RN × R × RN × S(N) → R, S(N) is the set of real symmetric
N × N matrices, and F satisfies

F(t, x, r, p, X) ≤ F(t, x, s, p,Y )

whenever r ≤ s and Y ≤ X for each t ∈ [0,T), then a viscosity subsolution of
(3.13) on O is a function u ∈ USC(O) such that

a + F(t, x, u, p, X) ≤ 0 ∀ (t, x) ∈ O, (a, p, X) ∈ P2,+
O

u(t, x).

Similarly, a viscosity supersolution of (3.13) on O is a function u ∈ LSC(O) such
that

a + F(t, x, u, p, X) ≥ 0 ∀ (t, x) ∈ O, (a, p, X) ∈ P2,−
O

u(t, x).

Finally, u is a viscosity solution of (3.13) on O if it is both a viscosity subsolution
and a viscosity supersolution in O.

The notations P2,+
O

u(t, x) and P2,−
O

u(t, x) represents the second order “superjets” and
“subjets” of u at (t, x), respectively.
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3.6 Sums-of-Squares (SOS) Programming
Sum-of-Squares (SOS) programming is a convex optimization technique that is
widely used when the problem involves positivity of polynomials. One popular
application of the SOS programming in control is for Lyapunov stability analysis
[67]. A complete introduction to SOS programming is available in [37].

3.6.1 Brief Introduction
This section reviews the basic definition of SOS that is used throughout the thesis.

Definition 3.6. A multivariate polynomial f (x) is a SOS polynomial if there exist
polynomials f0(x), . . . , fm(x) such that

f (x) =
m∑

i=0
f 2
i (x).

The set of SOS polynomials in x is denoted as SOS(x).

Accordingly, a sufficient condition for nonnegativity of a polynomial f (x) is that
f (x) ∈ SOS(x). Membership in the setSOS(x)may be tested as a convex problem
[37].

Theorem 3.3 ([37] Thm. 3.3). The existence of a SOS decomposition of a poly-
nomial in n variables of degree 2d can be decided by solving a semidefinite pro-
gramming (SDP) feasibility problem. If the polynomial is dense (no sparsity), the

dimension of the matrix inequality in the SDP is equal to

(
n + d

d

)
×

(
n + d

d

)
.

Therefore, by restricting the set of all positive polynomials to be SOS, testing
nonnegativity of a polynomial becomes a tractable SDP. The converse question
“is a nonnegative polynomial necessarily a SOS” is unfortunately false, indicating
that this test is conservative [37]. Theorem 3.3 guarantees a tractable procedure
to determine whether a particular polynomial, possibly parameterized, is a SOS
polynomial.

Multiple polynomial constraints can be combined into an optimization formulation.
To do so, define the following polynomial sets.

Definition 3.7. The preordering of polynomials gi(x) ∈ R(x) for i = 1, 2, . . . ,m is
the set

P(g1, . . . , gm) =


∑

ν∈{0,1}m
sν(x)g1(x)ν1 · · · gm(x)νm

 sν ∈ SOS(x)
 . (3.14)
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The following proposition is trivial, but it is useful to incorporate the domain Ω in
optimization formulation.

Proposition 3.1. Given f (x) ∈ R(x) and the domain

Ω = {x | gi(x) ∈ R(x), gi(x) ≥ 0, i ∈ [m]+},

if f (x) ∈ P(g1, . . . , gm), then f (x) is nonnegative on Ω. If there exists another
polynomial f ′(x) such that f ′(x) ≥ f (x) ∀x ∈ Ω, then f ′(x) is also nonnegative on
Ω.

Proof. Because gi(x) and si(x) are nonnegative, all functions in P(·) are nonnegative.
The second statement is trivially true given the first statement. �

Example. To illustrate an application of Proposition 3.1, consider a polynomial
f (x) defined on the domain x ∈ [−1, 1]. The bounded domain can be equivalently
defined by polynomials with g1(x) = 1+x and g2(x) = 1−x. To certify that f (x) ≥ 0
on the specified domain, construct a function h(x) = s1(x)(1 + x) + s2(x)(1 − x) +

s3(x)(1 + x)(1 − x), where si ∈ SOS(x) and certify that f (x) − h(x) ≥ 0. Notice
that h(x) ∈ P(1 + x, 1 − x), so h(x) ≥ 0. If f (x) − h(x) ≥ 0, then f (x) ≥ h(x) ≥ 0.
Proposition 3.1 is applied here. Finding the correct si(x) is not trivial in general.
Nonetheless, as mentioned earlier, if we further impose that f (x) − h(x) ∈ SOS(x),
then the process of checking if there exists si(x) such that f (x) − h(x) ∈ SOS(x)

becomes a SDP as given by Theorem 3.3.

To simplify notation in the remainder of this thesis, given a domainΩ = {x | gi(x) ∈

R(x), gi(x) ≥ 0, i ∈ {1, 2, . . . ,m}}, we set the notation P(Ω) = P(g1, . . . , gm).

Remark. Depending on the computational resources available, one may choose a
subset of P(Ω) to reduce the size of the resulting SDP. However, the chances of
finding a certificate are reduced as a consequent. This polynomial set is often used
in the discussions of Schmüdgen’s Positivstellensatz, which states that if f (x) is
positive on a compact domain Ω, then f (x) ∈ P(Ω) [37], [49].

3.6.2 Hierarchy of Sums-of-Squares (SOS) Programming
This thesis uses the SOS programming to solve for positive polynomials that mini-
mize a given cost function while satisfying some constraints. The constrained SOS
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program typically has the following form:

min
ε,{ fi(x)}i∈[k]

cTε (3.15)

s.t . εi − fi(x) ∈ SOS(x) ∀i ∈ [k]

g j = 0 ∀ j ∈ [l],

where c, ε ∈ Rk is a vector, fi ∈ R(x) are real polynomials in x, and g j are a linear
functions of the coefficients of fi.

When the polynomial degrees for fi are fixed, this optimization problem is con-
vex and solvable using a SDP via Theorem 3.3. To systematically solve for the
polynomials, a hierarchy of SOS programs with increasing polynomial degree is
formed.

Let d be the maximum degree of fi for all i ∈ [k], and denote (εd, { f d
i }i∈[k]) as

a solution to (3.15) when the maximum polynomial degree is fixed at d. The
hierarchy of SOS programs with increasing polynomial degree produces a sequence
of (possibly empty) solutions (εd, { f d

i }i∈[k])d∈I , where I ⊂ Z+.

If solutions exist for d and d′ such that d > d′, then εd ≤ εd ′ because the set of lower
degree polynomials is a subset of the set of higher degree polynomials. Therefore,
one could keep increasing the degree of polynomials in order to achieve tighter
solutions. The use of such hierarchies is commonplace in polynomial optimization
[37], [68]. If at certain degree, εd = 0, the optimal solutions { fi}i∈[k] are found.

3.7 Spatial and Time Discretization
This section describes the state space and the time discretization scheme employed
in later chapters beginning with the spatial discretization.

3.7.1 Spatial Discretization
The spatial discretization can be performed in many ways. This section will de-
scribes two of those: uniform finite difference scheme and spectral discretization
scheme.

Uniform Finite Difference Discretization

Given a continuous state space, the simplest form of discretization scheme is the
uniform finite difference scheme [69], [70].
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For each dimension of the continuous spaceΩ, a function is approximated at uniform
nodes as such,

Xi(k) = ai +
bi − ai

Ni − 1
k

for k = 0, 1, . . . , Mi − 1, where Xi(k) is the k-th point in the i-th dimension of the
domain, Ni is the total number of points in the i-th dimension, and ai and bi are the
lower and upper bound of the domain in the i-th dimension, respectively.

As a result, a function f (x) on a domain x ∈ Ω ⊂ Rn is discretized in space to
form a n-dimensional tensor T of size N1 × N2 × . . . × Nn, where T(k1, . . . , kn) =

f (X1(k1), X2(k2), . . . , Xn(kn)). Note that the size of the tensor scales exponentially
with the number of dimensions. Thus, a naive discretization suffers from the
curse of dimensionally. However, for a separable function, the tensor is naturally
decomposable into a CP tensor as defined in Definition 3.8 avoiding the curse of
dimensionality. As the number of points per dimension increases, the approximation
becomes more accurate, but the computation cost also increases.

Given this discretization scheme, a derivative of a function can be performed nu-
merically via the finite difference differentiation matrix [71].

Spectral Discretization

Spectral discretization is typically used for its superior accuracy and convergence.
The spectral methods converges exponentially instead of algebraic convergence
rates for finite difference and finite element methods. Therefore, good accuracy can
be obtained with coarse discretization. However, the spectral method has tighter
stability restrictions, and the matrices are dense. For more details, refer to [72] and
references therein.

For each dimension of the continuous space Ω, a function is approximated at the
Chebyshev-Gauss-Lobatto nodes [73] as such,

Xi(k) =
ai + bi

2
+

bi − ai

2
cos

(
kπ

Ni − 1

)
for k = 0, 1, . . . , Ni − 1, where Xi(k) is the k-th point on the i-th dimension of the
domain, Ni is the total number of points in the i-th dimension, and ai and bi are the
lower and upper bound of the domain in the i-th dimension, respectively.

In some cases, the domain for a specific dimension is periodic, for example, when
the state represents angle. If the domain for the i-th dimension is periodic, instead of
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Chebyshev-Gauss-Lobatto nodes, the function is approximated at the Fourier nodes
[73] as such,

Xi(k) = ai + (bi − ai)
k
Ni

for k = 0, 1, . . . , Ni −1, where Xi(k) is the k-th point for the i-th dimension, Ni is the
total number of points in the i-th dimension, and ai and bi are the lower and upper
bound of the domain in the i-th dimension, respectively.

Similarly, a function f (x) on a domain x ∈ Ω ⊂ Rn is discretized in space to
form a n-dimensional tensor T of size N1 × N2 × . . . × Nn, where T(k1, . . . , kn) =

f (X1(k1), X2(k2), . . . , Xn(kn)).

For both the Chebyshev-Gauss-Lobatto nodes and the Fourier nodes, the associated
differentiation matrices are dense, unlike the finite difference differentiation matrix,
which is sparse. The details of the differentiation matrices including their actual
forms can be found in [73].

3.7.2 Time Discretization
Time stepping is necessary for solving the non-stationary HJB equation [74]. For-
ward and backward Euler methods are implemented in this thesis. Forward Euler
is one the simplest form of explicit methods for time integration. Given a PDE
∂tu(x, t) = f (u(x, t)), where f is a linear operator, an initial value u0(x), and bound-
ary conditions, the forward Euler method solves for the solution at the next time step
based on

ūk+1 = (I + Fh)ūk, (3.16)

where ūk is the discretization of u(x, t) at time t = kh, F is the discretization of
f , I is an identity operator with the appropriate size, and h is the time increment.
Depending on the boundary conditions, (3.16) may have slightly different forms
[74].

On the other hand, backward Euler is an implicit method with better numerical
stability, but with higher computation cost than forward Euler and other explicit
methods. More concretely, given a PDE ∂tu(x, t) = f (u(x, t)), where f is a linear
operator, an initial value u0(x), and boundary conditions, the backward Eulermethod
solves for the solution at the next time step based on

(I − Fh)ūk+1 = ūk, (3.17)

where the variables are defined similar to (3.16). As before, depending on the
boundary conditions, (3.17) may have slightly different forms [74].



23

Other choices of time discretization [74] such as leapfrog integration and Runge-
Kutta can also be implemented in the framework discussed in this thesis. Refer to
[74] for a more detailed discussion on spatial and time discretization.

3.8 Low Rank Tensor Decomposition
Low rank tensor decomposition is a technique to approximate a high-dimensional
tensor that may not be low rank with a low rank tensor [75]. Multiple represen-
tation of low rank tensors are developed over the past years including CANDE-
COMP/PARAFAC (CP) tensor [76], [77], Tucker tensor [78], tensor train [79], and
function train [80]. This thesis uses the CP tensor as a framework to approximate
high dimensional functions in order to avoid the curse of dimensionality.

3.8.1 CANDECOMP/PARAFAC Tensor
The CANDECOMP/PARAFAC (CP) tensor is used to represent separable functions
and operators that are discretized in space [75]–[77], [81].

The tensor product of two vectors u and v is written as u
⊗

v , w, wherewi j = uiv j .
The inner product of two vectors u and v is written as 〈u, v〉, where 〈u, v〉 =

∑
i uivi.

Definition 3.8. Given a separable continuous function f (x) =
∑r

l=1 si
∏d

i=1 f l
i (xi),

where x ∈ Rd , the discretized function F is a CP tensor that is defined as

F =
r∑

l=1
sl

d⊗
i=1

F l
i ,

where F l
i ∈ R

ni is a unit vector that represents the function f l
i (x) at ni discretization

points in the i-th dimension, sl is a normalizing constant, r is the separation rank,
and d is the dimension of the tensor. Each F l

i is called a basis function in dimension
i, and each summand sF

l

⊗d
i=1 F l

i is called a tensor term.

By approximating the function f with a tensor function F, the number of points for
storage increases linearly with dimension d for a given r , and linearly with r for a
given d. Dimension d is usually determined by applications. As such, obtaining low
rank approximations (small r) is vital for feasible computations. Nonetheless, a rank
that is too low results in inaccurate approximations. Therefore, a balance between
feasible computations and accurate approximations is a necessary consideration
when determining suitable ranks.

A tensor operator is defined equivalently except that the F l
i is a n by n matrix instead

of a vector.
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Definition 3.9. Given a separable linear operator A( f ) =
∑r

l=1 si
∏d

i=1A
l
i ( f ),

where f ∈ R(Ω) is a real function that A acts on and Ω ⊆ Rd , the discretized
operator A is a CP tensor that is defined as

A =
r∑

l=1
sl

d⊗
i=1

Al
i,

where Al
i ∈ R

ni×ni is a normalized matrix (with respect to Frobenius norm) that
represents the operator Al

i ( f ) for ni discretization points in the i-th dimension, sl

is a normalizing constant, r is the separation rank, and d is the dimension of the
tensor.

We refer to the function in tensor form as tensor function, and the operator in
tensor form as tensor operator. This representation needs O(nrd) in space, and most
algebraic computations scale linearly with dimensions [81].

The tensor operator and tensor function multiplication operation is

AF =
rA∑

m=1

rF∑
l=1

sA
msF

l

d⊗
i=1

Am
i F l

i , (3.18)

where the computation cost is O(rArF dn2) assuming the number of points per
dimension ni = n for all i. The inner product of two tensors F and G is given by

〈G, F〉 =
rG∑

m=1

rF∑
l=1

sG
msF

l

d⊗
i=1
〈Gm

i , F
l
i 〉, (3.19)

where the computation cost is O(rGrF dn). Given the inner product, the norm of a
tensor function F is defined as ‖F‖ =

√
〈F, F〉. A more detailed descriptions are

available in [81].

For most linear algebra operations, the separation rank of the result often increases.
For example, (3.18) increases the rank from rF to rArF . Therefore, after performing
an operation, a low rank approximation of the resulting tensor is vital for feasible
computations. Next, the algorithm used to produce low rank approximation, the
ALS algorithm, is discussed.

Tensor decomposition is implemented numerically using theMATLABTensor Tool-
box [82], [83].
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3.8.2 Alternating Least Squares (ALS) Algorithm
This section describes the Alternating Least Squares (ALS) algorithm [81] that
solves the linear equation in which the operator and the function are in tensor form.
When the operator is an identity operator, this algorithm reduces the separation
rank.

Formally, given a tensor function G and a tensor operator A, ALS solves for F in

AF = G (3.20)

by minimizing ‖AF − G‖ for a fixed rank of F in whichA, F, and G are represented
in tensor decomposition form

F =
rF∑
l=1

d⊗
i=1

F l
i , A =

rA∑
l=1

d⊗
i=1

Al
i, G =

rG∑
l=1

d⊗
i=1

Gl
i,

where F l
i ∈ R

ni , Gl
i ∈ R

ni , and Al
i ∈ R

ni×ni . Note that here we do not require F l
i , Gl

i ,
and Al

i to have unit norm.

The minimum of the residual is achieved when the gradient of the residual with
respect to F is zero, that is ∇F ‖AF − G‖ = 0 for the minimum F, where ∇F denotes
the gradient with respect to all elements in F l

i for i = 1, . . . , d and l = 1, . . . , rF .
The gradient is not linear with respect to the terms in F. Thus, the algorithm first
fixed a particular dimension k and solves for F l

k assuming all other F l
i are fixed for

i , k, then it cycles through all the dimensions. As a result, for each dimension k,
the following simple linear equation, called the normal equation, is solved.

MFk = N, (3.21)

where

M =

©«
M1,1 + αI M1,2 · · · M1,rF

M2,1 M2,2 + αI · · · M2,rF
...

...
. . .

...

MrF,1 MrF,2 · · · MrF,rF + αI

ª®®®®®¬
,

Fk =

©«
F1

k

F2
k
...

FrF
k

ª®®®®®¬
, N =

©«
N1

N2
...

NrF

ª®®®®®¬
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and Mi, j and Ni are given by

Mi, j =

rA∑
iA=1

rA∑
jA=1
(A jA

k )
T AiA

k

∏
m,k

〈AiA
m F j

m, A jA
m Fi

m〉 (3.22)

Ni =

rA∑
iA=1

rG∑
iG=1
(AiA

k )
T GiG

k

∏
m,k

〈AiA
m Fi

m,G
iG
m 〉.

The ALS algorithm can be ill-conditioned in general. Thus, the term α in the normal
equation acts as a regularizer [81]. Furthermore, references [35], [84] also proposed
techniques to prevent ill-conditioned computation.

The vanilla ALS algorithm is summarized by Algorithm 1. First, the function
RandomTensor creates a normalized random tensor of rank r0. In other words,
RandomTensor generates unit norm random vectors F l

j ∈ R
Nj for j ∈ [d]+ and

l ∈ [r0]+, then sets F =
∑r0

l=1
⊗d

j=1 F l
j . The function ComputeResidual computes

the residual of the current solution by

res =
‖AF − G‖√∏d

i=1 ni

.

If the residual is smaller than a pre-specified tolerance ε0, the algorithm terminates
and return the solution F. Otherwise, the F will be updated. For each dimension
k, SolveNormal solves (3.21) for the vector Fk and update F. It also returns lk that
indicates if (3.21) is ill-conditioned. If lk is true for any k, the algorithm terminates
without finding a F that satisfies the accuracy tolerance. Otherwise, the algorithm
continues. If the difference between the residual from the previous iteration and the
residual from the current iteration is smaller than the accuracy tolerance ε, a new
rank-one random tensor function Fr is created. The random tensor function Fr is
pre-conditioned by iterating SolveNormal for A(F + Fr) = G with fixed F (i.e., by
computing SolveNormal(A, Fr,G − AF) for each dimension) to prevent Fr from
dominating the approximate solution F. For more details on the ALS algorithm,
refer to [81]. For the rest of the thesis, an iteration of Algorithm 1 refers to one
iteration of the for-loop (line 5-7).

The special caseA = I, an identity operator, is used to find low rank approximations
for both tensor functions and tensor operators. The latter can be achieved by storing
the operator matrices Al

i as vectors, and performing the ALS algorithm as if it was
a tensor function.
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Algorithm 1 ALS Algorithm
Input: Tensor operator A, tensor function G, accuracy tolerance ε, initial rank r0
Output: Tensor function F
1: F := RandomTensor(r0)
2: res := ComputeResidual(A, F,G)
3: while res > ε do
4: res′ := res
5: for k = 1, 2, . . . , d do
6: F, lk := SolveNormal(A, F,G)
7: end for
8: res := ComputeResidual(A, F,G)
9: if lk is True for any k ∈ [d]+ then
10: Terminate the algorithm and indicate that F is not solved successfully
11: else if |res − res′| < ε then
12: Fr := PreRandomTensor(1)
13: F := F + Fr

14: end if
15: end while
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C h a p t e r 4

OPTIMAL CONTROLLER SYNTHESIS USING
SUM-OF-SQUARES

This chapter proposes an optimal controller synthesis technique based on convex
optimization for the approximate solution to the linear HJB equation. This tech-
nique combines previously disparate fields of linearly solvable optimal control and
Lyapunov theory, and provides a systematic way to construct stabilizing controllers
with guaranteed performance. The result is a hierarchy of SOS programs that gen-
erate SCLFs for arbitrary linearly solvable systems. Such an approach has many
benefits. First and foremost, this approach generates stabilizing controllers for an
important class of nonlinear, stochastic systems even when the optimal controller is
not found. We prove that the approximate solutions generated by the SOS programs
are pointwise upper and lower bounds to the true solutions. In fact, the upper bound
solutions are SCLFs, which can be used to construct stabilizing controllers, and
they bound the performance of the system when they are used to construct subop-
timal controllers. Existing methods for the generation of SCLFs do not have such
performance guarantees. Additionally, we demonstrate that, although the technique
is based on linear solvability, it may be readily extended to more general systems,
including deterministic systems, while inheriting the same performance guarantees.

A preliminary version of this work appeared in [85] and [86], where the use of SOS
programming for solving the HJB were first considered. This paper builds on this
recent body of research, studying the stabilization and optimality properties of the
resulting solutions. These previous works focused on path planning, rather than
stabilization, and did not include the stability analysis or suboptimality guarantees
presented in this chapter. Furthermore, the analysis and results are extended to
the finite horizon problem that involves time evolving linear HJB equation. Some
content of this work appeared in [34], [36].

The rest of this chapter is organized as follows. Section 4.1 introduces the problem
formulation and assumptions. Section 4.2 introduces a relaxed formulation of the
HJB solutions, which is efficiently computable using the SOS methodology for the
first exit problem. Section 4.3 analyzes the properties of the relaxed solutions, such
as approximation errors relative to the exact solutions. This section shows that the



29

relaxed solutions are SCLFs, and that the resulting controller is stabilizing. The
upper bound solution is also shown to bound the performance when using the sub-
optimal controller. Section 4.4 presents the controller synthesis procedure for finite
horizon problem, and Section 4.5 discusses the properties of the controller that is
synthesized. Section 4.6 summarizes the extension of the method to determinis-
tic systems and Section 4.7 considers the extension to the robust optimal control
problems. Two examples are presented in Section 4.8 to illustrate the optimization
technique and its performance. Section 4.9 summarizes the findings of this work
and discusses future research directions.

4.1 Problem Formulation
This chapter considers synthesizing an optimal controller for system (3.1) with
respect to first exit cost functional and finite horizon cost functional described in
Section 3.4.1. The systems dynamics and the cost functionals are assumed to be
governed by polynomial functions.

Assumption 4.1. System (3.1) and the cost functionals are described by polynomi-
als. In other words, f , G, B, φ, and q consist of polynomials.

Although the system dynamics are limited to polynomials, the non-polynomial
nonlinearities can be incorporated by projecting the non-polynomial functions to a
polynomial basis. As polynomials are universal approximators in L2 by the Stone-
Weierstrass Theorem [87], this approximation can be made to arbitrary accuracy
if the functions are continuous and the domain is bounded. A limited basis may
introduce modeling error, but this may be dealt with via the robust optimization
techniques outlined in Section 4.7.

For stabilization to the origin, the following assumption is imposed.

Assumption 4.2. The functions q and φ in the cost functionals are positive definite
functions.

Lastly, the following assumption on the domain of (3.1) is necessary in moment and
SOS-based methods [37], [49].

Assumption 4.3. System (3.1) evolves on a compact domain Ω ⊂ Rn, and Ω is a
basic closed semialgebraic set such that Ω = {x | gi(x) ∈ R(x), gi(x) ≥ 0, i ∈ [k]+}
for some k ≥ 1. Then, the boundary ∂Ω is polynomial representable: ∂Ω = {x |
hi(x) ∈ R(x),

∏k ′
i=1 hi(x) = 0} for some k′ ≥ 1.
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The following definitions formalize several operators that are useful in the sequel,
in particular, when constructing the relevant sets for using Definition 3.7 and Propo-
sition 3.1.

Definition 4.1. Given a basic closed semialgebraic set Ω = {x | gi(x) ∈ R(x),

gi(x) ≥ 0, i ∈ [k]+} and a set of SOS polynomials,

S = {sν(x) | sν(x) ∈ SOS(x), ν ∈ {0, 1}k},

define the operator D as

D(Ω, S) =
∑

ν∈{0,1}k
sν(x)g1(x)ν1 · · · gk(x)νk,

where D(Ω, S) ∈ P(Ω).

Definition 4.2. Given a polynomial inequality, p(x) ≥ 0 defined onΩ, the boundary
of a compact set ∂Ω = {x | hi(x) ∈ R(x),

∏k ′
i=1 hi(x) = 0} and a set of polynomials,

T = {ti(x) | ti(x) ∈ R(x), i ∈ [k′]+},

define the operator B as

B(p(x), ∂Ω,T) = {p(x) − ti(x)hi(x) | i ∈ [k′]+},

where B returns a set of polynomials that is nonnegative on ∂Ω.

For the remainder of this chapter, we assume a unique nontrivial viscosity solution
to (3.6) and (3.10) exists (see [61], Chapter V) and denote them as V∗ and Ψ∗

respectively.

4.2 Controller Synthesis for First Exit Problem
Given the problem formulation described earlier, we can obtain the linear HJB
equations (3.10), where the components in L(·) are real polynomial functions. The
definition of the function L(·) is reproduced here for convenience:

L(Ψ) , −
1
λ

qΨ + f T (∇xΨ) +
1
2

Tr ((∇xxΨ) Σt) .

This section proceeds with the technique to solve (3.10) using SOS programming.
SOS programming has found many uses in combinatorial optimization, control
theory, and other applications. This section now adds solving the linear HJB to this
list. This section focuses on the first exit problem.
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4.2.1 Relaxation of the First Exit HJB Equation
The equality constraints of (3.10a) and its boundary condition (3.11a)may be relaxed
as follows:

−L(Ψ) ≤ 0 x ∈ Ω (4.1a)

Ψ(x) ≤ ψ(x) x ∈ ∂Ω

and

−L(Ψ) ≥ 0 x ∈ Ω (4.1b)

Ψ(x) ≥ ψ(x) x ∈ ∂Ω.

Such a relaxation provides a point-wise bound to the solutionΨ∗, and this relaxation
may be enforced via SOS programming. In particular, a solution to (4.1a), denoted
as Ψl , is a lower bound on the solution Ψ∗ over the entire problem domain, and a
solution to (4.1b), denoted as Ψu, is an upper bound on the solution Ψ∗ over the
entire problem domain.

Theorem 4.1. The following statements are true:

1. Given a smooth function Ψl that satisfies (4.1a), then Ψl is a viscosity subso-
lution and Ψl ≤ Ψ

∗ for all x ∈ Ω.
2. Given a smooth function Ψu that satisfies (4.1b), then Ψu is a viscosity super-

solution and Ψu ≥ Ψ
∗ for all x ∈ Ω.

Proof. By Definition 3.4, the solution Ψl is a viscosity subsolution, where F in
(3.12) is given by (4.1a). Note thatΨ∗ is both a viscosity subsolution and a viscosity
supersolution, and Ψl ≤ Ψ

∗ on the boundary ∂Ω. Thus, by the maximum principle
[66, Thm. 3.3], Ψl ≤ Ψ

∗ for all x ∈ Ω. The proof is identical for Ψu. �

Because the logarithmic transform (3.9) is monotonic, one can relate these bounds
on the desirability function to bounds on the value function as follows:

Corollary 4.1. If the solution to (3.6) is V∗, given solutions Vu = −λ logΨl and
Vl = −λ logΨu from (4.1), then Vu ≥ V∗ and Vl ≤ V∗.

Proof. Recall that V∗ = −λ logΨ∗. By monotonicity of the logarithmic function
and Theorem 4.1, Vu ≥ V∗ and Vl ≤ V∗. �

The solutions to (4.1) do not satisfy (3.10a) exactly, but they provide point-wise
bounds to the solution Ψ∗.
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4.2.2 SOS Program
Given that relaxation (4.1) results in a point-wise upper and lower bound to the exact
solution of (3.10a), we construct the following optimization problem that provides
a suboptimal controller with bounded residual error:

min
Ψl,Ψu

ε (4.2)

s.t. − L(Ψl) ≤ 0 x ∈ Ω

0 ≤ −L(Ψu) x ∈ Ω

Ψu − Ψl ≤ ε x ∈ Ω

0 ≤ Ψl ≤ ψ ≤ Ψu x ∈ ∂Ω

∂xiΨl ≤ 0 xi ≥ 0

∂xiΨl ≥ 0 xi ≤ 0

Ψl(0) = 1,

where xi is the i-th component of x ∈ Ω. As mentioned in Section 4.2.1, the first two
constraints result from the relaxations of the HJB equation, and the fourth constraint
arises from the relaxation of the boundary conditions. The third constraint ensures
that the difference between the upper bound and lower bound solution is bounded,
and the last three constraints ensure that the solution yields a stabilizing controller, as
will be made clear in Section 4.3. Note that in the optimization problem, Ψu and Ψl

are polynomials, whereby the coefficients and the degree for both are optimization
variables. The term ε is related to the error of the approximation.

As discussed in Section 3.6, a general optimization problem involving parameterized
nonnegative polynomials is not necessarily tractable. In order to solve (4.2) using
a polynomial-time algorithm, we restrict the polynomial inequalities such that they
are SOS polynomials instead of nonnegative polynomials. We therefore apply
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Proposition 3.1 to relax optimization problem (4.2) into

min
Ψl,Ψu,S,T

ε (4.3)

s.t. L(Ψl) − D(Ω, S1) ∈ SOS(x)

− L(Ψu) − D(Ω, S2) ∈ SOS(x)

ε − (Ψu − Ψl) − D(Ω, S3) ∈ SOS(x)

B(Ψl, ∂Ω,T1) ∈ SOS(x)

B(ψ − Ψl, ∂Ω,T2) ∈ SOS(x)

B(Ψu − ψ, ∂Ω,T3) ∈ SOS(x)

− ∂xiΨl − D(Ω ∩ {xi ≥ 0}, S4) ∈ SOS(x)

∂xiΨl − D(Ω ∩ {−xi ≥ 0}, S5) ∈ SOS(x)

Ψl(0) = 1,

where S = {Si}i∈[5]+ , Si ⊆ SOS(x) is defined as in Definition 4.1, T = {Ti}i∈[3]+ ,
and Tj ⊆ R[x] is defined as in Definition 4.2. With a slight abuse of notation,
B(·) ∈ SOS(x) implies that each polynomial in B(·) is a SOS polynomial.

If the polynomial degrees are fixed, optimization problem (4.3) is convex and
solvable using a semidefinite programvia Theorem3.3. The next sectionwill discuss
the systematic approach we used to solve the optimization problem. Henceforth,
denote the solution to (4.3) as (Ψu,Ψl, S,T, ε) (i.e., the upper bound, the lower bound,
and the sets of SOS polynomial certificates (S,T) yielding approximation error ε).

Remark. By Definition 3.4, the viscosity solution is a continuous function. Con-
sequently, the solution Ψ∗ is a continuous function defined on a bounded domain.
Therefore, Ψu and Ψl can be made arbitrary close to Ψ∗ by the Stone-Weierstrass
Theorem [87] in (4.2). However, this guarantee is lost whenΨu andΨl are restricted
to be a SOS polynomials. The feasible set of the optimization problem (4.3) is
therefore not necessarily non-empty for a given polynomial degree. One would not
expect feasibility for all instances of (4.3) as this would imply there exists is a linear
stabilizing controller for any given system.

4.2.3 Controller Synthesis
Let d be the maximum degree of Ψl , Ψu and polynomials in S and T , and denote
(Ψd

u ,Ψ
d
l , S

d,T d, εd) as a solution to (4.3) when the maximum polynomial degree is
fixed at d. A hierarchy of SOS programs described in Section 3.6.2 is constructed
with increasing polynomial degree. The hierarchy produces a sequence of (possibly
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empty) solutions (Ψd
u ,Ψ

d
l , S

d,T d, εd)d∈I , where I ⊂ Z+. This sequence will be
shown in the next section to improve, under the metric of the objective in (4.3).

In other words, if solutions exist for d and d′ such that d > d′, then εd ≤ εd ′.
Therefore, one could keep increasing the degree of polynomials in order to achieve
tighter bounds on Ψ∗, and invariably, V∗. The use of such hierarchies has become
commonplace in polynomial optimization [37], [68]. If at certain degree, εd = 0,
the solution Ψ∗ is found.

Once a satisfactory error is achieved or computational resources run out, the lower
bound Ψd

l can be used to compute a suboptimal controller, where d is the maximum
degree computed. Recall that u∗ = −R−1GT∇xV∗ and V∗ = −λ logΨ∗. The
suboptimal controller uε for a given degree d and error εd is computed as uε

d
=

−R−1GT∇xV d
u , where V d

u = −λ logΨd
l . Even when εd is larger than a desired

value, the solution Ψd
l still satisfies conditions in Definition 3.3 to yield a stabilizing

suboptimal controller. Next section will analyze some properties of the solutions
and the suboptimal controller.

4.3 Analysis for First Exit Problem
This section establishes several properties of the solutions to the optimization prob-
lem (4.3) that are useful for feedback control in the first exit problem. First we show
that the solutions in the SOS program hierarchy are uniformly bounded relative to
the exact solutions. We next prove that the relaxed solutions to the stochastic HJB
equation are SCLFs, and the approximated solution leads to a stabilizing controller.
Finally, we show that the costs of using the approximate solutions as controllers are
bounded above by the approximated value functions.

4.3.1 Properties of Approximated Desirability Functions
First, the approximation error of Ψl or Ψu obtained from (4.3) is computed relative
to the true desirability function Ψ∗.

Proposition 4.1. Given a solution (Ψd
u ,Ψ

d
l , S

d,T d, εd) to (4.3) for a given degree d,
the approximation error of the desirability function is bounded as | |Ψd−Ψ∗ | |∞ ≤ ε

d ,
where Ψd is either Ψd

u or Ψd
l .

Proof. By Theorem 4.1, Ψd
l is the lower bound of Ψ∗, and Ψd

u is the upper bound of
Ψ∗. So, εd ≥ Ψd

u − Ψ
d
l ≥ 0 and Ψd

u ≥ Ψ
∗ ≥ Ψd

l . Combining both inequalities, one
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has Ψd
u − Ψ

∗ ≤ εd and Ψ∗ − Ψd
l ≤ ε

d . Therefore, | |Ψd − Ψ∗ | |∞ ≤ ε
d , where Ψd is

either Ψd
u or Ψd

l . �

Proposition 4.2. The hierarchy of SOS programs consisting of solutions to (4.3)with
increasing polynomial degree produces a sequence of solutions (Ψd

u ,Ψ
d
l , S

d,T d, εd)

such that εd+1 ≤ εd for all d.

Proof. Polynomials of degree d form a subset of polynomials of degree d+1. Thus,
at a higher polynomial degree d+1, a previous solution at a lower polynomial degree
d is still a feasible solution when the coefficients for monomials with total degree
d + 1 is set to 0. Consequently, the optimal value εd+1 cannot be larger than εd for
all d. �

Thus, as the polynomial degree of the optimization problem is increased, the point-
wise error ε is non-increasing. Therefore, one could keep increasing the degree of
polynomials in order to achieve tighter bounds on Ψ∗, and invariably, V∗. However,
ε is only non-increasing as the polynomial degree is increased, and a convergence
of the bound ε to zero is not guaranteed because we restrict the approximating space
to SOS. The possible lack of convergence to zero is the trade off for an efficient
algorithm.

Although the bound on the pointwise error is non-increasing, the actual difference
betweenΨ andΨ∗may increase between iterations. Figure 4.1 illustrates an example
of this case. Although εd+1 ≤ εd , the actual error between Ψd+1

u and Ψ∗ is larger
than the actual error betweenΨd

u andΨ∗. The next corollary ensures that the increase
in the actual error for Ψd+1

u is still bounded.

Corollary 4.2. Suppose | |Ψd − Ψ∗ | |∞ ≤ εd and | |Ψd+1 − Ψ∗ | |∞ = γd+1. Then,
γd+1 ≤ εd .

𝜀"

𝜀"#$

Ψ&' Ψ∗Ψ&'#$ Ψ)' Ψ)'#$

Figure 4.1: An example of increased error with non-increasing bound.
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Proof. By Proposition 4.2, εd+1 ≤ εd . Because γd+1 ≤ εd+1, γd+1 ≤ εd �

In other words, the approximation error of the desirability function for a SOS
program using d + 1 polynomial degree cannot increase such that it is larger than
εd in each step of the hierarchy of SOS programs, which is non-increasing.

4.3.2 Properties of Approximated Value Functions
Up to this point, the analysis has focused on properties of the desirability solution.
We now investigate the implications of these results upon the value function, which
is related to the desirability via the logarithmic transform (3.9). Henceforth, denote
the solution to (3.6a) as V∗(xt) = minu[t:T] Eωt [J(xt)] = −λ logΨ∗(xt), the solution
to (4.3) for a fixed degree d as (Ψu,Ψl, S,T, ε), and the suboptimal value function
computed from the solution of (4.3) as Vu = −λ logΨl . Only Ψl and Vu are
considered henceforth, because Ψl , but not Ψu, gives an approximate value function
that satisfies the properties of SCLF in Definition 3.3, a fact shown in the next
section.

Theorem 4.2. For all x ∈ Ω, Vu is an upper bound of V∗ such that

0 ≤ Vu − V∗ ≤ −λ log
(
1 −min

{
1,
ε

η

})
,

where η = e−
‖V∗‖∞

λ .

Proof. By Corollary 4.1, Vu ≥ V∗ and hence, Vu − V∗ ≥ 0. To prove the other
inequality, by Proposition 4.1,

Vu − V∗ = −λ log
Ψl

Ψ∗
≤ −λ log

Ψ∗ − ε

Ψ∗
≤ −λ log

(
1 −

ε

η

)
.

The last inequality holds because Ψ∗ ≥ e−
‖V∗‖∞

λ by definition in (3.9). Since Ψl is
the lower bound of Ψ∗, the right hand side of the first equality is always a positive
number. Therefore, Vu is a point-wise upper bound of V∗. �

Corollary 4.3. Let V d
u = −λ logΨd

l and V d+1
u = −λ logΨd+1

l . If Ψd
u − Ψ

∗ ≤ εd and
V d+1

u − V∗ = γd+1, then γd+1 ≤ −λ log
(
1 −min

{
1, εdη

})
.

Proof. This result is given by Corollary 4.2 and Theorem 4.2. �

At this point, we have shown that the lower bound of the desirability function yields
an upper bound of the suboptimal cost. More importantly, the upper bound of the
suboptimal cost is not increasing as the degree of polynomial increases.
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4.3.3 Approximate HJB Solutions are SCLFs
This section shows that the approximate value function derived from the approxi-
mation, Ψl , is a SCLF.

Theorem 4.3. Vu is a stochastic control Lyapunov function according to Definition
3.3.

Proof. The constraint Ψl(0) = 1 in (4.3) ensures that Vu(0) = −λ logΨl(0) = 0.
Notice that all terms in J(x, u) from (3.3) are positive definite, resulting in V∗ being
a positive definite function. In addition, by Corollary 4.1, Vu ≥ V∗. Thus, Vu is also
a positive definite function. The second and third to last constraints in (4.3) ensures
that Ψl is nonincreasing away from the origin. Therefore, Vu is nondecreasing away
form the origin satisfying µ(|x |) ≤ Vu(x) ≤ µ′(|x |) for some µ, µ′ ∈ K.

Next, we show that there exists a u such that L(Vu) ≤ 0. Following (3.7), let

uε = −R−1GT∇xVu, (4.4)

the control law corresponding to Vu. Notice that from the definition of Vu, ∇xVu =

− λ
Ψl
∇xΨl and ∇xxVu =

λ
Ψ2
l

(∇xΨl)(∇xΨl)
T − λ

Ψl
∇xxΨl . So, uε = λ

Ψl
R−1GT∇xΨl .

Then, from (3.2),

L(Vu) = −
λ

Ψl
(∇xΨl)

T ( f +
λ

Ψl
GR−1GT∇xΨl)

+
1
2

Tr

((
λ

Ψ2
l

(∇xΨl)(∇xΨl)
T −

λ

Ψl
∇xxΨl

)
BΣεB

)
,

where ∂tVu = 0 because Vu is not a function of time. Applying the assumption in
(3.8) and simplifying yields

L(Vu) = −
λ

Ψl
(∇xΨl)

T f −
λ

2Ψ2
l

(∇xΨl)
T
Σt∇xΨl −

λ

2Ψl
Tr ((∇xxΨl) Σt) .

From the first constraint in (4.3),
1
λ

qΨl − f T (∇xΨl) −
1
2

Tr ((∇xxΨl) Σt) ≤ 0 =⇒

−
λ

Ψl
(∇xΨl)

T f ≤ −q +
λ

2Ψl
Tr ((∇xxΨl) Σt) .

Substituting this inequality into L(Vu) and simplifying yields

L(Vu) ≤ −q −
λ

2Ψ2
l

(∇xΨl)
T
Σt∇xΨl ≤ 0 (4.5)

because q ≥ 0, λ > 0 and Σt is positive semidefinite by definition. Since Vu satisfies
Definition 3.3, Vu is a SCLF. �
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Corollary 4.4. The suboptimal controller uε = −R−1GT∇xVu is stabilizing in prob-
ability within the domain Ω.

Proof. This corollary is a direct consequence of the constructive proof of Theorem
4.3 and Theorem 3.1. �

Corollary 4.5. If Σt is a positive definite matrix, the suboptimal controller uε =

−R−1GT∇xVu is asymptotically stabilizing in probability within the domain Ω.

Proof. This corollary is a direct consequence of the constructive proof of Theorem
4.3 and Theorem 3.2. In (4.5), L(Vu) < 0 for x ∈ Ω\{0} if Σt is positive definite.
Recall that q is positive definite in the problem formulation. �

4.3.4 Bound on the Total Trajectory Cost
We conclude this section by showing that the expected total trajectory cost incurred
by the system while operating under the suboptimal controller of (4.4) can be
bounded as follows.

Theorem 4.4. Given the control law uε = −R−1GT∇xVu,

Ju ≤ Vu ≤ V∗ − λ log
(
1 −min

{
1,
ε

η

})
, (4.6)

where Ju = Eωt [φT (xT ) +
∫ T

0 q(xt) +
1
2uT

t Rut dt], the expected cost of the system
when using the control law, uε.

Proof. By Itô’s formula,

dVu(xt) = L(Vu)(xt)dt + ∇xVu(xt)B(xt)dωt,

where L(V) is defined in (3.2). Then,

Vu(xt) = Vu(x0, 0) +
∫ t

0
L(Vu)(xs)ds +

∫ t

0
∇xVu(xs)B(xs)dωs . (4.7)

Given that Vu is derived from polynomial function Ψl , the integrals are well defined,
and we can take the expectation of (4.7) to get

E[Vu(xt)] = Vu(x0, 0) + E
[∫ t

0
L(Vu)(xs)ds

]
,
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whereby the last term of (4.7) drops out because the noise is assumed to have zero
mean. The expectations of the other terms return the same terms because they are
deterministic. From (4.5),

L(Vu) ≤ −q −
λ

2Ψ2
l

(∇xΨl)
T
Σt∇xΨl

= −q −
1
2
(∇xVu)

T GR−1GT (∇xVu)

= −q −
1
2
(uε)T Ruε,

where the first equality is given by the logarithmic transformation and the second
equality is given by the control law uε = −R−1GT∇xVu. Therefore,

Eωt [Vu(xT )] = Vu(x0) + Eωt

[∫ T

0
L(Vu)(xs)ds

]
≤ Vu(x0) − Eωt

[∫ T

0
q(xs) +

1
2
(uεs )

T Ruεs ds
]

= Vu(x0) − J(x0, uε) + Eωt [φ(xT )],

where the last equality is given by (3.3). Consequently,

Vu(x0) − J(x0, uε) ≥ Eωt [Vu(xT ) − φ(xT )].

By definition, Vu(xT ) ≥ φ(xT ) for all xT ∈ ∂Ω. Thus, Eωt [Vu(xT ) − φ(xT )] ≥ 0.
Consequently, Vu(x0) − J(x0, uε) ≥ 0, and Vu(x0) ≥ J(x0, uε). Theorem 4.2 gives
the second inequality in the theorem. �

4.4 Controller Synthesis for Finite Horizon Problem
This section discusses the controller synthesis procedure for the finite horizon prob-
lem. The general procedure is the same as Section 4.2. Therefore, this section
will outline the prodecure and results with minimal descriptions except when the
approach is specific to the finite horizon problem. For more high level descriptions
and intuitions, refer to Section 4.2.

The main difference between Section 4.2 and this section is that the controller is
not necessarily stabilizing anymore. The controller obtained will minimize the
cost functionals, but there is no guarantee on the system performance beyond the
pre-specified time horizon.



40

4.4.1 Relaxation of the Finite Horizon HJB Equation
The equality constraints of (3.10b) and its boundary condition (3.11b) may be
relaxed as follows:

−∂tΨ − L(Ψ) ≤ 0, (x, t) ∈ O (4.8a)

Ψ(x, t) ≤ ψ(x, t), (x, t) ∈ ∂O

and

−∂tΨ − L(Ψ) ≥ 0, (x, t) ∈ O (4.8b)

Ψ(x, t) ≥ ψ(x, t), (x, t) ∈ ∂O.

This relaxation provides a point-wise bound to the solution Ψ∗. In particular, a
solution to (4.8a), denoted as Ψl , is a lower bound on the solution Ψ∗ over the entire
problem domain, and a solution to (4.8b), denoted as Ψu, is a upper bound on the
solution Ψ∗ over the entire problem domain.

Theorem 4.5. The following statements are true:

1. Given a smooth function Ψl that satisfies (4.8a), then Ψl is a viscosity subso-
lution and Ψl ≤ Ψ

∗ for all (x, t) ∈ O.
2. Given a smooth function Ψu that satisfies (4.8b), then Ψu is a viscosity super-

solution and Ψu ≥ Ψ
∗ for all (x, t) ∈ O.

Proof. By Definition 3.5, the solution Ψl is a viscosity subsolution, where F in
(3.13) is given by (4.8a). The sign of ∂tΨ in (4.8a) is different from ∂tu in Definition
3.5. However, (3.10b) is solved backward in time given a terminal time “initial”
condition, and thus the direction of time must be reversed relative to the time of
the system’s evolution. Furthermore, note that Ψ∗ is both a viscosity subsolution
and a viscosity supersolution, and Ψl ≤ Ψ∗ on the boundary ∂O. Therefore, by
the maximum principle [66, Thm. 8.2], Ψl ≤ Ψ

∗ for all (x, t) ∈ O. The proof is
identical for Ψu. �

Because the logarithmic transform (3.9) is monotonic, one can relate these bounds
on the desirability function to bounds on the value function as follows

Corollary 4.6. If the solution to (3.6b) is V∗, given solutions Vu = −λ logΨl and
Vl = −λ logΨu from (4.8), then Vu ≥ V∗ and Vl ≤ V∗.
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Proof. Recall that V∗ = −λ logΨ∗. By monotonicity of the logarithmic function
and Theorem 4.5, Vu ≥ V∗ and Vl ≤ V∗. �

The solutions to (4.8) do not satisfy (3.10b) exactly, but they provide point-wise
bounds to the solution Ψ∗.

4.4.2 SOS Program
Given that relaxation (4.8) results in a point-wise upper and lower bound to the exact
solution of (3.10b), the following optimization problem is constructed that provides
a suboptimal controller with bounded residual error:

min
Ψl,Ψu

ε (4.9)

s.t. − ∂tΨl − L(Ψl) ≤ 0 (x, t) ∈ O

0 ≤ −∂tΨu − L(Ψu) (x, t) ∈ O

Ψu − Ψl ≤ ε (x, t) ∈ O

0 ≤ Ψl ≤ ψ ≤ Ψu (x, t) ∈ ∂O,

where xi is the i-th component of x ∈ Ω. The first two constraints result from the
relaxations of the HJB equation, and the fourth constraint arises from the relaxation
of the boundary conditions. The third constraint ensures that the difference between
the upper bound and lower bound solution is bounded. Note that in the optimization
problem, Ψu and Ψl are polynomials whose coefficients and degree are optimization
variables. The term ε is related to the error of the approximation.

To solve (4.9) using a polynomial-time algorithm, restrict the polynomial inequalities
such that they are SOS polynomials instead of nonnegative polynomials. The
optimization problem (4.9) is then relaxed into

min
Ψl,Ψu,S,T

ε (4.10)

s.t. − ∂tΨl − L(Ψl) − D(O, S1) ∈ SOS(x, t)

∂tΨl + L(Ψl) − D(O, S2) ∈ SOS(x, t)

ε − (Ψu − Ψl) − D(O, S3) ∈ SOS(x, t)

B(Ψl, ∂O,T1) ∈ SOS(x, t)

B(ψ − Ψl, ∂O,T2) ∈ SOS(x, t)

B(Ψu − ψ, ∂O,T3) ∈ SOS(x, t),
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where S = {Si}i∈[3]+ , Si ⊆ SOS(x) is defined as in 4.1,T = {Ti}i∈[3]+ , andTj ⊆ R[x]

is defined as in 4.2. With a slight abuse of notation, B(·) ∈ SOS(x) implies that
each polynomial in B(·) is a SOS polynomial.

If the polynomial degrees are fixed, optimization problem (4.10) is convex and
solvable using a semidefinite program via Theorem 3.3. The suboptimal controller
is then synthesized by forming a hierarchy of SOS programs as described in Section
4.2. Henceforth, denote the solution to (4.10) as (Ψu,Ψl, S,T, ε).

4.5 Analysis for Finite Horizon Problem
This section summarizes results for finite horizon problem that are analogous to
those in Section 4.3. We show that the solutions in the SOS program hierarchy
are uniformly bounded relative to the exact solutions, and the costs of using the
approximate solutions as controllers are bounded above by the approximated value
functions.

4.5.1 Properties of Approximated Desirability Functions

Proposition 4.3. Given a solution (Ψd
u ,Ψ

d
l , S

d,T d, εd) to (4.10) for a given degree
d, the approximation error of the finite horizon desirability function is bounded as
| |Ψd − Ψ∗ | |∞ ≤ ε

d , where Ψd is either Ψd
u or Ψd

l .

Proof. By Theorem 4.5, Ψd
l is the lower bound of Ψ∗, and Ψd

u is the upper bound of
Ψ∗. So, εd ≥ Ψd

u − Ψ
d
l ≥ 0 and Ψd

u ≥ Ψ
∗ ≥ Ψd

l . Combining both inequalities, one
has Ψd

u − Ψ
∗ ≤ εd and Ψ∗ − Ψd

l ≤ ε
d . Therefore, | |Ψd − Ψ∗ | |∞ ≤ ε

d , where Ψd is
either Ψd

u or Ψd
l . �

Proposition 4.4. The hierarchy of SOS programs consisting of solutions to (4.10)
with increasing polynomial degree produces a sequence of solutions (Ψd

u ,Ψ
d
l , S

d,T d, εd)

such that εd+1 ≤ εd for all d.

Proof. Polynomials of degree d form a subset of polynomials of degree d+1. Thus,
at a higher polynomial degree d+1, a previous solution at a lower polynomial degree
d is still a feasible solution when the coefficients for monomials with total degree
d + 1 is set to 0. Consequently, the optimal value εd+1 cannot be larger than εd for
all d. �

Although the bound on the pointwise error is non-increasing, the actual difference
between Ψ and Ψ∗ may increase between iterations.
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Corollary 4.7. Suppose | |Ψd − Ψ∗ | |∞ ≤ εd and | |Ψd+1 − Ψ∗ | |∞ = γd+1. Then,
γd+1 ≤ εd .

Proof. By Proposition 4.4, εd+1 ≤ εd . Because γd+1 ≤ εd+1, γd+1 ≤ εd �

4.5.2 Properties of Approximated Value Functions

Theorem 4.6. For all (x, t) ∈ O, Vu is an upper bound of V∗ such that

0 ≤ Vu − V∗ ≤ −λ log
(
1 −min

{
1,
ε

η

})
(4.11)

where η = e−
‖V∗‖∞

λ .

Proof. By Corollary 4.6, Vu ≥ V∗ and hence, Vu − V∗ ≥ 0. To prove the other
inequality, by Proposition 4.1,

Vu − V∗ = −λ log
Ψl

Ψ∗
≤ −λ log

Ψ∗ − ε

Ψ∗
≤ −λ log

(
1 −

ε

η

)
,

The last inequality holds because Ψ∗ ≥ e−
‖V∗‖∞

λ by definition in (3.9). Since Ψl is
the lower bound of Ψ∗, the right hand side of the first equality is always a positive
number. Therefore, Vu is a point-wise upper bound of V∗. �

Corollary 4.8. Let V d
u = −λ logΨd

l and V d+1
u = −λ logΨd+1

l . If Ψd
u − Ψ

∗ ≤ εd and
V d+1

u − V∗ = γd+1, then γd+1 ≤ −λ log
(
1 −min

{
1, εdη

})
.

Proof. This result is given by Corollary 4.7 and Theorem 4.6. �

4.5.3 Bound on the Total Trajectory Cost

Theorem 4.7. Given the control law uε = −R−1GT∇xVu,

Ju ≤ Vu ≤ V∗ − λ log
(
1 −min

{
1,
ε

η

})
, (4.12)

where Ju = Eωt [φT (xT ) +
∫ T

0 q(xt) +
1
2uT

t Rut dt], the expected cost of the system
when using the control law, uε.

Proof. By Itô’s formula,

dVu(xt) = L(Vu)(xt)dt + ∇xVu(xt)B(xt)dωt,
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where L(V) is defined in (3.2). Then,

Vu(xt) = Vu(x0, 0) +
∫ t

0
L(Vu)(xs)ds +

∫ t

0
∇xVu(xs)B(xs)dωs . (4.13)

Given that Vu is derived from polynomial function Ψl , the integrals are well defined,
and we can take the expectation of (4.13) to get

E[Vu(xt)] = Vu(x0, 0) + E
[∫ t

0
L(Vu)(xs)ds

]
,

whereby the last term of (4.13) drops out because the noise is assumed to have zero
mean. The expectations of the other terms return the same terms because they are
deterministic.

Notice that from the definition of Vu, ∂tVu = −
λ
Ψl
∂tΨl , ∇xVu = −

λ
Ψl
∇xΨl , and

∇xxVu =
λ
Ψ2
l

(∇xΨl)(∇xΨl)
T − λ

Ψl
∇xxΨl . So, uε = λ

Ψl
R−1GT∇xΨl . Thus, from (3.2),

L(Vu) = −
λ

Ψl
∂tΨl −

λ

Ψl
(∇xΨl)

T ( f +
λ

Ψl
GR−1GT∇xΨl)

+
1
2

Tr

((
λ

Ψ2
l

(∇xΨl)(∇xΨl)
T −

λ

Ψl
∇xxΨl

)
BΣεB

)
.

Applying the assumption in (3.8) and simplifying yields

L(Vu) = −
λ

Ψl
∂tΨl −

λ

Ψl
(∇xΨl)

T f −
λ

2Ψ2
l

(∇xΨl)
T
Σt∇xΨl −

λ

2Ψl
Tr ((∇xxΨl) Σt) .

From the first constraint in (4.10),

−∂tΨl +
1
λ

qΨl − f T (∇xΨl) −
1
2

Tr ((∇xxΨl) Σt) ≤ 0 =⇒

−
λ

Ψl

(
∂tΨl + (∇xΨl)

T f
)
≤ −q +

λ

2Ψl
Tr ((∇xxΨl) Σt) .

Substituting this inequality into L(Vu) and simplifying yields

L(Vu) ≤ −q −
λ

2Ψ2
l

(∇xΨl)
T
Σt∇xΨl

= −q −
1
2
(∇xVu)

T GR−1GT (∇xVu)

= −q −
1
2
(uε)T Ruε,
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where the first equality is given by the logarithmic transformation and the second
equality is given by the control law uε = −R−1GT∇xVu. Therefore,

Eωt [Vu(xT,T)] = Vu(x0, 0) + Eωt

[∫ T

0
L(Vu)(xs, s)ds

]
≤ Vu(x0, 0) − Eωt

[∫ T

0
q(xs) +

1
2
(uεs )

T Ruεs ds
]

= Vu(x0, 0) − J(x0, uε) + Eωt [φ(xT )],

where the last equality is given by (3.4). Therefore,

Vu(x0, 0) − J(x0, uε) ≥ Eωt [Vu(xT,T) − φ(xT )].

Bydefinition,Vu(x,T) ≥ φ(x) for all (x,T) ∈ Ω×{T}. Thus,Eωt [Vu(xT,T)−φ(xT )] ≥

0. Consequently, Vu(x0, 0) − J(x0, uε) ≥ 0, and Vu(x0, 0) ≥ J(x0, uε). Theorem 4.6
gives the second inequality in the theorem. �

4.6 Extension to Deterministic Systems
This section discusses the extension of the SOS-based controller synthesis technique
to compute suboptimal controller for deterministic nonlinear systems. The approach
presented in this chapter would appear up to this point to be limited to systems that
are linearly solvable, i.e., those that satisfy condition (3.8). However, the proposed
methods may be extended to a system, which does not satisfy these conditions by
approximating the system with one that is linearly solvable. One example is to
introduce stochastic forcing into an otherwise deterministic system.

Wefirst construct a comparison theorembetweenHJB solutions to systems that share
the same general dynamics, but with differing noise covariance. This comparison
allows for the approximated value function of one system to bound the value function
for another, providing pointwise bounds, and indeed SCLFs, for those that do not
satisfy (3.8).

Proposition 4.5. Suppose Va∗ is the solution to the HJB equation (3.6) with noise
covariances Σa, and V b is a supersolution to (3.6) with identical parameters except
the noise covariance Σb, where Σb − Σa � 0, then V b ≥ Va∗ for all x ∈ Ω.

Proof. From [66, Def. 2.2], V is a viscosity supersolution to the HJB equation (3.6)
with noise covariance Σ if it satisfies

0 ≤ −q − (∇xV)T f +
1
2
(∇xV)T GR−1GT (∇xV) −

1
2

Tr
(
(∇xxV) BΣBT

)
. (4.14)
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Since Σb − Σa � 0 the following trace inequality holds:

Tr
(
(∇xxVa) BΣbBT

)
≥ Tr

(
(∇xxVa) BΣaBT

)
.

Therefore, we have the inequality

0 ≤ −q −
(
∇xV b

)T
f +

1
2

(
∇xV b

)T
GR−1GT

(
∇xV b

)
−

1
2

Tr
((
∇xxV b

)
BΣbBT

)
≤ −q −

(
∇xV b

)T
f +

1
2

(
∇xV b

)T
GR−1GT

(
∇xV b

)
−

1
2

Tr
((
∇xxV b

)
BΣaBT

)
,

which implies that V b is in fact a viscosity supersolution to the system with noise
covariance Σa (i.e.,V b satisfies (4.14) for Σa). AsV b is a supersolution to the system
with parameter Σa, then V b ≥ Va∗ . �

A particular class of such approximations arises from a deterministic HJB solution,
which is not linearly solvable, but is approximated by one that is linearly solvable.
Consider a deterministic system of the form

dx(t) = ( f (x(t)) + G(x(t))u(t)) dt (4.15)

with cost function

J(x, u) = φ(x(T)) +
∫ T

0
q(x(t)) +

1
2

u(t)Ru(t) dt, (4.16)

where φ, q, R, f ,G, and the state and input domains are defined as in the stochastic
problem in Section 4.1. Then, the HJB equation for the first exit problem is given
by

0 = q + (∇xV)T f −
1
2
(∇xV)T GR−1GT (∇xV) (4.17)

and the optimal control is given by u∗ = −R−1GT∇xV . In general, (4.17) is not a
linear PDE.

Corollary 4.9. Let V∗ be the value function that solves (4.17), and Vu be the upper
bound solution obtained from (4.3), where all parameters are the same as (4.17) and
Σt is not zero. Then, Vu is an upper bound for V∗ over the domain (i.e., V∗ ≤ Vu).

Proof. A simple application of Proposition 4.5, where Σa takes the form of a zero
matrix, gives V∗ ≤ Vu. �

Interestingly, using the solution from (4.3) and the transformation Vu = −λ logΨl ,
the suboptimal controller uε = −R−1GT∇xVu is a stabilizing controller for the
deterministic system (4.15) if a simple condition is satisfied. This fact is shown
using the Lyapunov theorem for deterministic systems introduced next [41].
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Definition 4.3. Given the system (4.15) and cost function (4.16), a control Lyapunov
function (CLF) is a proper positive definite functionV ∈ C1 on a compact domain
Ω ∪ {0} such that

V(0) = 0, V(x) ≥ µ(|x |) ∀ x ∈ Ω\{0} (4.18)

∃ u(x) s.t. (∇xV)
T ( f + Gu) ≤ 0 ∀ x ∈ Ω\{0},

where µ ∈ K.

Theorem4.8 ([41] Thm. 2.5). Given a system (4.15) and cost function (4.16), if there
exists a CLFV and a control u(x) satisfyingDefinition 4.3, then the controlled system
is stable, and u is a stabilizing controller. Furthermore, if (∇xV)T ( f +Gu) < 0 for all
x ∈ Ω\{0}, the controlled system is asymptotically stable, and u is an asymptotically
stabilizing controller.

Verifying that the controller uε = −R−1GT∇xVu is in fact stabilizing and that Vu is a
CLF may be seen as follows.

Corollary 4.10. Given the controller uε = −R−1GT∇xVu, if

Tr ((∇xxVu) Σt) ≥ 0 ∀ x ∈ Ω\{0},

then uε is a stabilizing controller for (4.15). If

Tr ((∇xxVu) Σt) > 0 ∀ x ∈ Ω\{0},

then uε is an asymptotically stabilizing controller for (4.15).

Proof. Recall that from the proof of Theorem 4.3, all conditions in Definition 4.3
are satisfied by Vu except (4.18). To show that Vu satisfies (4.18), rearrange (3.6) to
yield the following:

(∇xVu)
T ( f + Guε) = (∇xVu)

T f − (∇xVu)
T GR−1GT (∇xVu)

≤ −q −
1
2
(∇xVu)

T GR−1GT (∇xVu) −
1
2

Tr ((∇xxVu) Σt) ,

where Σt = BΣεBT . Recall that q and R are positive definite. If Tr ((∇xxVu) Σt) ≥ 0
for all x ∈ Ω\{0}, then (∇xVu)

T ( f + Guε) ≤ 0 implying that Vu is a CLF and uε is
a stabilizing controller by Theorem 4.8. Furthermore, if Tr ((∇xxVu) Σt) > 0 for all
x ∈ Ω\{0}, uε is an asymptotically stabilizing controller. �
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In the deterministic case, Σt is free variable that can be chosen to be small according
to the equality (3.8). Therefore, (3.8) is no longer a constraint or an assumption, but
it serves as a design principle for obtaining a CLF for system (4.15). Furthermore,
given a Σt , the trace condition in Corollary 4.10 is easily enforced in (4.3) by adding
one extra constraint in the optimization problem. Thus, the optimization problem
(4.3) can also produce a CLF for the corresponding deterministic system, with
analytical results from the Section 4.3, including a priori trajectory suboptimality
bounds (Theorem 4.4), inherited as well.

4.7 Robust Nonlinear Optimal Controller Synthesis
Apart from approximating deterministic systems, the proposed technique may be
extended to incorporate uncertainty in the problem data. Assume there exists
unknown coefficients a ∈ H in f (x),G(x), B(x), where H ⊂ Rk , H = {a |

gi(a) ≥ 0, gi(a) ∈ R(x), i ∈ [r]+} is a basic closed semialgebraic set describing
the uncertainty set of a. The problem data is then defined by the expressions
f (x, a),G(x, a), B(x, a) for x ∈ Ω, and a ∈ H . In this case, the uncertain parameters
may be considered as additional domain variables, defined over their own compact
space.

Uncertainty of this form may be incorporated naturally into the optimization prob-
lem (4.3). Define the monomial set X = {aαxβ}α∈[ra]+,β∈[rx]+ . The optimization
variables corresponding to the polynomials in S and T in (4.3) are then constructed
out of X as

p(x, a) =
ra∑
α=1

rx∑
β=1

cα,βaαxβ.

Note that Ψu and Ψl are not themselves functions of a because they are upper and
lower bounds for solutions of all possible a. The uncertainty setH is incorporated
by defining a compact domainM = Ω × H that takes the product of the original
problem domain and the uncertainty set. The resulting optimization problem is



49

therefore

min
Ψl,Ψu,S,T

ε (4.19)

s.t. −
1
λ

qΨl + L(Ψl, a) − D(M, S1) ∈ SOS(x, a)

1
λ

qΨu − L(Ψu, a) − D(M, S2) ∈ SOS(x, a)

ε − (Ψu − Ψl) − D(M, S3) ∈ SOS(x, a)

B(Ψl − D(H, S4), ∂Ω,T1) ∈ SOS(x, a)

B(ψ − Ψl − D(H, S5), ∂Ω,T2) ∈ SOS(x, a)

B(Ψu − ψ − D(H, S6), ∂Ω,T3) ∈ SOS(x, a)

− ∂xiΨl − D(Ω ∩ {xi ≥ 0}, S7) ∈ SOS(x, a)

∂xiΨl − D(Ω ∩ {−xi ≥ 0}, S8) ∈ SOS(x, a)

Ψl(0) − 1 − D(H, S9) ∈ SOS[a]

− Ψl(0) + 1 − D(H, S10) ∈ SOS[a],

where S = {Si}i∈[10]+ , and T = {Ti}i∈[3]+ . The operator L now depends on the
variable a. The resulting solutions to the optimizations (4.19), and the upper bound
suboptimal value functionsVu = −λ logΨl , are found for all a ∈ H , with the control
law uε = −R−1GT∇xVu now stabilizing for the entirety of the uncertainty set H .
Similar techniques have been studied previously for Lyapunov analysis, e.g., [88,
Ch. 4.3.3].

4.8 Numerical Examples
This section studies the computational characteristics of this method using two
examples: a scalar system and a two-dimensional system. In the following problems,
the optimization parser YALMIP [89] was used in conjunction with the semidefinite
optimization package MOSEK [90]. In both examples, the continuous system
is integrated numerically using Euler integration with step size of 0.005s during
simulations.

4.8.1 Scalar Unstable System
Consider the following scalar unstable nonlinear system

dx =
(
x3 + 5x2 + x + u

)
dt + dω (4.20)

on the domain x ∈ Ω = {x | −1 ≤ x ≤ 1}. The noise model considered is Gaussian
white noise with zero mean and variance Σε = 1. The goal is to stabilize the system
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at the origin. The first exit cost functional is used to implement this. We choose
the boundary at two ends of the domain to be Ψ(−1) = 20e−10 and Ψ(1) = 20e−10,
which is equivalent to setting a high cost V at the boundary. At the origin, the
boundary is set as Ψ(0) = 1. We set q = x2, and R = 1 in the cost functional. In
the one dimensional case, the origin, which is a boundary, divides the domain into
two partitions, x ≤ 0 and x ≥ 0. Because of the natural division of the domain, the
solutions for both domains can be represented by smooth polynomial respectively,
and solved independently. The simulation is terminated when the trajectories enter
the interval [−0.005, 0.005] centered on the origin.

The desirability functions that result from solving (4.3) for varying polynomial
degrees are shown in Figure 4.2. The true solution is computed by solving the HJB
directly in Mathematica [91]. The sharp corner at the origin is expected because the
HJB PDE solution is not necessarily smooth at the boundary, and in this instance
the origin is a zero-cost boundary.

The approximation error ε for both partitions is shown in Figure 4.3a for increasing
polynomial degree. As seen in the plots, the approximation improves as the poly-
nomial degree increases. Polynomial degrees below 14 are not feasible, and thus
this data is absent in the plots. The suboptimal solution converges faster for x > 0
than for x < 0 when the degree of polynomial increases because the true solution
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Figure 4.2: The desirability function of system (4.20) for varying polynomial degree.
The true solution is the black curve.
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Figure 4.3: Computational results of system (4.20). (a) Convergence of the objective
function of (4.3) as the degree of polynomial increases. The approximation error
for x ≤ 0 is denoted as εl and the approximation error for x ≥ 0 is denoted as εr .
(b) Sample trajectories using controller computed from optimization problem (4.3)
with different polynomial degrees starting from six randomly chosen initial points.
(c) The comparison between Ju and Vu for different polynomial degrees, whereby
Ju is the expected cost and Vu is the value function computed from optimization
problem (4.3). The initial condition is fixed at x0 = −0.5.

for x > 0 has a simple quadratic-like shape that can be easily represented as a low
degree SOS function.

Figure 4.3b shows sample trajectories using the controller computed from optimiza-
tion problem (4.3) for different polynomial degrees. The controllers are stabilizing
for six randomly chosen initial points when the system is perturbed by random sam-
ples of Gaussian white noise with Σε = 1. Unsurprisingly, the suboptimal solutions
with low pointwise error result in the system converging towards the origin faster.

To compare between the cost function Ju and the approximated value function
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Vu, a Monte Carlo experiment is illustrated in Figure 4.3c. For each polynomial
degree that is feasible, the controller obtained from Ψl in optimization problem
(4.3) is implemented in 30 simulations of the system subject to random samples of
Gaussian white noise with Σε = 1. The initial condition is fixed at x0 = −0.5. In
the figure, Vu ≥ Ju as expected, and the difference between the two decreases with
increasing d.

4.8.2 Two Dimensional System
Consider a nonlinear 2-dimensional example with the following dynamics:[

dx

dy

]
=

(
2

[
x5 − x3 − x + xy4

y5 − y3 − y + yx4

]
+

[
x u1

y u2

])
dt +

[
x dω1

y dω2

]
. (4.21)

The goal is to reach the origin at the boundary of the domain Ω = {(x, y) | −1 ≤
x ≤ 1,−1 ≤ y ≤ 1}. This goal is implemented via a first exit cost functional.
The control penalty is R = I2×2, and state cost is q(x) = x2 + y2. The boundary
conditions for the sides at x = 1, x = −1, y = 1, and y = −1 are set to φ(x, y) = 5,
while at the origin, the boundary has cost φ(0, 0) = 0. The noise model considered
is Gaussian white noise with zero mean and an identity covariance matrix.

The approximated desirability functions and their corresponding value functions
are shown in Figure 4.4, with half of the domain x ∈ [0, 1] shown in order to
view the gaps between the upper and lower bound solutions. Figure 4.5a shows the
convergence of the objective function of optimization problem (4.3) as the degree of
polynomial increases. There is no data below degree of 10 because the optimization
problem is not feasible in these cases. As shown in Figure 4.5b, sample trajectories
starting from six different initial points shows that the controllers computed from
Ψl for various degrees arrive at the origin. The trajectory is considered to reach the
origin if it is within an Euclidean distance of 0.01 from the origin.

Similar to the scalar example, a Monte Carlo experiment is performed to compare
between Ju and Vu. For each polynomial degree that yields a feasible solution,
the controller obtained from Ψl in optimization problem (4.3) is implemented in
30 simulations of the system subject to random samples of Gaussian white noise
with Σε = I2×2. The initial condition is fixed at x0 = (0.7, 0.7). Figure 4.5c shows
the comparison between Ju and Vu for different polynomial degrees, whereby Ju is
the expected cost and Vu is the value function computed from Ψl in optimization
problem (4.3). As expected, Vu ≥ Ju.
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Figure 4.4: Approximated desirability functions and value functions for (4.21) when
polynomial degrees are 10 and 20. In (a) and (b), the blue sheets are the upper bound
solutionsΨu and the red sheets are the lower bound solutionsΨl . The corresponding
value functions are shown in (c) and (d), respectively.
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Figure 4.5: Computational results of system (4.21). (a) Convergence of the variables
in the objective function of (4.3). (b) Sample trajectories using controller from
optimization problem (4.3) with different polynomial degrees starting from six
randomly chosen initial points. (c) The comparison between Ju, the expected
cost, and Vu the value function for different polynomial degrees from optimization
problem (4.3). The initial condition is fixed at x0 = (0.7, 0.7).

4.8.3 Using DSOS and SDSOS
Recently, new numerical approaches [92], [93] – diagonally dominant SOS (DSOS)
and scaled diagonally dominant SOS (SDSOS) – have been developed to improve
the computation burden of SOS programing. These approaches reformulate the
SDP used to solve a SOS program into a linear program and a second order cone
program, respectively. As a result, the computations are more efficient. However,
the accuracy of the solution may decrease, and thus typically, a higher degree of
polynomial is necessary for achieving a similar level of accuracy.

This section discusses some preliminary results of using DSOS and SDSOS to solve



55

for the linear HJB equation for the two examples. For the scalar unstable system,
the DSOS program is unable to find a feasible solution for polynomial degree up
to 118, the maximum degree that is tested. For SDSOS programing, the smallest
degree at which the solution exists is 74 with an approximation error ε of 0.846. The
computation time is approximately 1.5 seconds, comparable with the computation
time of the SOS program (approximately 1.1 seconds) on the same computer. The
polynomial degree of the SOS program is 14 and the approximation error is 0.718
when the program first becomes feasible.

For the two dimensional example, DSOS is unable to find a feasible solution for
degree up to 30. The computation time is 49 minutes when the polynomial degree
is 30. Using SDSOS, a feasible solution is found when polynomial degree is 18
with an approximation error ε = 0.516 and computation time of 26 seconds. In
constrast, the SOS program found a feasible solution with polynomial degree of 10
with an approximation error ε = 0.394 and computation time of 9 seconds. Based
on these initial findings, the potential benefit of using DSOS and SDSOS to solve
the linear HJB equation may be limited.

4.9 Summary
This chapter has proposed a new method to approximate the solution to a class of
optimal control problems for stochastic nonlinear systems via SOS programming.
Analytical results provide guarantees on the suboptimality of the trajectories that
result when using the approximate solutions for controller design. Consequently,
one can synthesize a suboptimal stabilizing controller for a large class of stochastic
nonlinear dynamical systems.

The development of this work has been limited to nonlinear systems governed by
polynomial functions. A number of avenues exist for incorporating non-polynomial
nonlinearities apart from projecting the non-polynomial functions to a polynomial
basis. First, it is possible to use a non-polynomial basis of approximating functions
in conjunction with SOS programming. The only limitation to this approach is
that the basis of such a set must be closed under addition, multiplication, and
differentiation. An example is to consider signomials as the basis functions for
approximation. Signomials are exponentials composed with linear functionals.
Recent work by Chandrasekaran et al. [94] shows that one could solve a sequence
of convex programs to achieve increasingly better approximations. Alternatively, it
is possible to transform non-polynomial nonlinearities to polynomial nonlinearities
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with additional equality constraints, with an increase in the requisite number of
optimization variables [38].

As is commonly seen when using SOS programming, the numerics of the SDP may
be cumbersome in practice. There are a number of avenues for future work aimed
at improving the practical performance. First, the monomials of the polynomial
approximation can be chosen strategically in order to decrease computation time
while achieving high accuracy. A promising future direction is the synthesis of
the work presented here with that of [95], wherein the curse of dimensionality
is avoided via the strategic choice of basis functions. To improve the numerical
conditioning of these optimization techniques, a domain partitioning technique is
studied in [86], wherein the alternating direction method of multipliers is used to
enable both parallelization and a solution representation that varies in resolution over
the domain. In addition, there exists a growing body of literature towards increasing
the numeric stability and scalability of SOS techniques [92], [93], [96]–[98].

The next chapter will introduce a low rank tensor-based approach that avoids the
curse of dimensionality, but at the expense of analytical guarantees presented in this
chapter.
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C h a p t e r 5

HIGH DIMENSIONAL OPTIMAL CONTROLLER SYNTHESIS
USING LOW-RANK TENSOR DECOMPOSITION

This chapter presents a numerical technique to efficiently solve the Hamilton-Jacobi-
Bellman (HJB) equation for a class of stochastic affine nonlinear dynamical systems
in high dimensions. The HJB solution provides a globally optimal controller to
the associated dynamical system [48]. The linear form of the linear HJB equation
enables the use of off-the-shelf numerical PDE solvers to compute a solution of
the linear HJB equation. However, the curse of dimensionality quickly causes the
problem to become intractable for systems with modest dimensions [22] because the
number of degrees of freedom required to solve the optimal control problem grows
exponentially with dimension. Yet robots or other engineering systems commonly
have at least six degrees of freedom.

The curse of dimensionality, commonly found in robotic systems, prevents one from
solving theHJB equation naively. In this chapter, the curse is avoided by representing
the linear HJB equation efficiently using low rank tensor decomposition (see review
in Section 3.8). Then, an alternating least squares (ALS) based technique finds an
approximate solution to the linear HJB equation. This work is an extension of [95],
where the idea of using ALS and tensor decomposition to solve the HJB equation
was first considered for the first exit problem.

Previous research has considered multiple approaches to alleviate this curse of
dimensionality. These techniques include using sparse grid [99], Taylor polyno-
mial approximation [100], max-plus method [101], and model reduction [102]. In
contrast to the previous work, this paper focuses on using a low rank tensor decom-
position technique to represent and solve the linear HJB equation. The complexity
of this approach grows linearly with the number of dimensions [81]. Others [103]
have considered using a tensor decomposition based technique. However, this tech-
nique solves for an optimal controller by using value iteration, instead of the HJB
equation. Machine learning techniques [104] and optimizations based on Lax and
Hopf formulas [105] are also used to solve high dimensional HJB equations, but
they currently only apply to parabolic PDEs.

The major contributions of this chapter are the improvement of the ALS algorithm
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from the original work [95] and the development of the SeALS tool in MAT-
LAB [32]. A straightforward implementation of the ALS algorithm results in
ill-conditioned matrices that prevent approximation to a high order of accuracy. The
ill-conditioning issue is resolved by computing the solution sequentially and intro-
ducing boundary condition rescaling. Both of these additions reduce the condition
number of matrices in the ALS-based algorithm. A new MATLAB tool, Sequential
Alternating Least Squares (SeALS) that implements the new method is developed.
SeALS can solve high dimensional linear HJB equations more accurately with
shorter computation time.

In addition to the improvements of the ALS algorithm, this chapter also extends
the use of low rank tensor decomposition technique to problems with other cost
functionals, namely finite horizon and infinite horizon cost functionals described
in Section 3.4. A time stepping algorithm and inverse power method are brought
together with low rank tensor decomposition framework in order to solve the finite
horizon and infinite horizon problems respectively.

SeALS is used to compute optimal controllers for multiple simulated examples,
including balancing an inverted pendulum, landing a Vertical Takeoff and Landing
(VTOL) aircraft, and stabilizing a quadcopter. The ability to compute the solution of
12-dimensional linear HJB equation of a quadcopter on a personal laptop suggests
that SeALS has a great potential for use in robotics applications. Some contents of
this work appeared in [35].

The rest of this chapter is organized as follows. Section 5.1 formulates the problem
and discusses the underlying assumptions. Section 5.2 presents the method to
convert the linear HJB equation into a CP tensor representation. Sections 5.3–5.5
discuss the controller synthesis procedure for first exit, finite horizon, and infinite
horizon problems respectively. Section 5.6 discusses limitations of the original ALS
algorithm, describes the improvements using sequential computation and boundary
condition rescaling, and presents a summary of the improved SeALS algorithm.
The implementation of the algorithms may be found in [32]. Conclusions and
recommendation for future work are given in Section 5.8. The implementation of
the algorithms described in previous sections for different examples are deferred to
Appendix A for ease of reading. The examples include a vertical takeoff and landing
(VTOL) aircraft and a quadcopter.
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5.1 Problem Formulation
This chapter proposes a numerical technique to synthesize an optimal controller for
system (3.1) in high dimensions (i.e., n is large) with respect to cost functionals
described in Section 3.4.1.

The systems dynamics and the cost functionals are assumed to be governed by
separable functions. A function f (x) is separable if it can be represented as f (x) =∑r

l=1 si
∏d

i=1 f l
i (xi).

Assumption 5.1. System (3.1) and the cost functionals (i.e., f , G, B, φ, and q) are
described by separable functions.

In numerical implementation, Ω is always defined as a compact bounded domain
that is a subset of Rn. As a result, if a function in the problem formulation is not
separable, it can be approximated as a separable function, for example, the Fourier
series or a polynomial that can be made arbitrarily accurate by the Stone-Weierstrass
Theorem [87].

More precisely, this chapter focuses on using low rank tensor decomposition to
numerically solve the associated linear HJB equations (3.10) with respect to the
three cost functionals.

Remark. In this chapter, we will let integer d denote the dimension of the state
vector sin (3.1) to be consistent with the code implementation in [32]. The symbol
ni represents the number of points for the i-th dimension instead.

5.2 Low Rank Tensor Representation
This section shows how the linear HJB equation (3.10) can be numerically solved
using low rank tensor decomposition. Depending on the cost functionals, the
specific implementation might differ. However, the conversion from the linear HJB
equation (3.10) into CP tensor representation is the same across all cost functionals.
Later sections present the techniques specific to each cost functional and provide
the complete algorithms. This section focuses on converting (3.10) into CP tensor
representation beginning with state space discretization described next.

5.2.1 State Space Discretization
Given the domain Ω ∈ Rd , discretize the domain Ω by ni grid points in the i-th
dimension, and represent the discretized domain using a multi-dimensional tensor
T ∈ Rn1×n2×...×nd . Each point (m1,m2, . . . ,md) in T corresponds to a grid point in
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the discretized domain, denoted by (X1(m1), X2(m2), . . . , Xd(md)). For example, Ω
with d = 2 is an ordinary rectangle, whereby T is a n1 × n2 matrix. Depending
on the choice of discretization as described in Section 3.7, the specific location of
Xi(mi) may differ. Let Grid(Ω) represents the discretization of Ω.

5.2.2 Operator-Tensor Conversion
Given the discretized domain, to represent the operator L by a tensor operator L,
first approximate each functions within the matrix-valued function q, f , B, and Σε
in L with CP tensor functions as described in (3.8). These functions form matrices
that are composed of corresponding tensor functions, denoted matrix-valued tensor
functions.

Next, convert the matrix-valued tensor functions of q, f , B and Σε into tensor opera-
tors. For each tensor function in a given matrix-valued tensor function, diagonalize
the basis functions according to

rF∑
l=1

d⊗
i=1

F l
i →

rF∑
l=1

d⊗
i=1

diag(F l
i ), (5.1)

where diag(F) is a diagonal matrix with vector F as the diagonal. The matrix-
valued tensor functions in this new form are called matrix-valued tensor operators.
Let qop, fop, Bop, and Σε,op denote the matrix-valued tensor operators of q, f , B,
and Σε respectively.

Now, approximate the gradient ∇x and the Hessian ∇xx in L by matrix-valued tensor
operatorsD1 andD2, respectively. The tensor decomposition of the partial derivative
in k-th dimension is given by

∇k = I1 ⊗ . . . Ik−1 ⊗ D ⊗ Ik+1 ⊗ · · · ⊗ Id, (5.2)

where D is a difference matrix and I j is the identity matrix for all j ∈ [d]+. The
matrix-valued tensor operator D1 of the gradient ∇x is formed with entries ∇k ,
while the matrix-valued tensor operatorD2 of the hessian ∇xx is formed with entries
∇k, j = ∇k · ∇ j .

Lastly, multiply and add all matrix-valued tensor operators to form the tensor oper-
ator L

L(·) = −
1
λ

qop(·) + f T
opD1(·) +

1
2

Tr(D2(·)BopΣε,opBT
op).
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As a result, the linear HJB equation (3.10) takes one of the following forms:

First exit: 0 = LF (5.3a)

Finite horizon: − F+ = LF (5.3b)

Infinite horizon: − cF= LF, (5.3c)

where F is a tensor function that corresponds to the desirability function Ψ, L is a
tensor operator that corresponds to L, and F+ represents the discrete time stepping.
Typically, F+ = (F(i+1)−F(i))/h, where i is the time iteration and h is the time step,
but the F at the right hand side of the equation can be F(i + 1), F(i), or other more
sophisticated forms depending on the time integration scheme being employed. For
example, F(i + 1) is used for the backward Euler scheme. The boundary conditions
are discretized accordingly as well, and the details will be discussed in the individual
sections for each cost functional. Henceforth, let

L =

rL∑
l=1

d⊗
i=1

Ll
i .

Furthermore, let ComputeTensorOperator be the function that converts a given
linear HJB operator L and discretization Grid(Ω) into a tensor operator L.

Given the tensor operator L, the rest of this chapter discusses how to solve the three
classes of linear HJB equation (3.10) using the CP tensor representation. Before
moving on to the approach for first exit problem, we briefly describe how to compute
the controller given F, the solution of (3.10). Recall that the optimal controller is
given by u = −R−1GT∇xV = λR−1GT ∇xΨ

Ψ
. The tensor F is the discretization of Ψ,

and ∇xΨ can be computed by numerically differentiating F. Thus, u for a given x

can be computed with the given formula. If x is not a value on theGrid(Ω), the value
of Ψ and ∇xΨ are interpolated using the neighboring points. The implementations
of the controllers on a few engineering examples are presented in Appendix A. Next,
the details on how to solve the three classes of linear HJB equation (3.10) using the
CP tensor representation are discussed.

5.3 Controller Synthesis for First Exit Problem
This section presents the approach to solve the linear HJB equation (3.10a) for the
first exit problem. The linearHJB equation (3.10a) is first discretized and represented
using CP tensor as described in Section 5.2. Then, the boundary conditions ψ are
incorporated into the CP tensor formulation (5.3a).
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To solve (5.3a) with the associated boundary conditions (3.11a), we will first form
a linear tensor equation AF = G whereby A and G will incorporate both L and
the boundary conditions (3.11a), and F is the tensor function in (5.3a) representing
the desirability function Ψ. Then, this linear tensor equation is solved using the
ALS algorithm (Algorithm 1). Once an approximated desirability function, F, is
obtained, the controller is computed from F according to u = −R−1GT∇xV , where
V = −λ log F. Algorithm 2 summarizes the approach. Each step is described in
more detail below.

First, the tensor function G is constructed from the boundary condition ψ by
ComputeG in Algorithm 2 analogously to the construction of the tensor opera-
tor L for L in ComputeTensorOperator. For Dirichlet boundary conditions, the
elements in G that correspond to the boundary points x ∈ ∂Ω is set to e−

φ(x)
λ . The

rest of the elements of the tensor function G in the interior x ∈ Ω are set to zero.

To illustrate the construction, consider the case where the boundary ofΩ is set to be
a constant a. For each dimension k, create a tensor function

Qk = I′1 ⊗ · · · ⊗ I′k−1 ⊗ C ⊗ Ik+1 ⊗ · · · ⊗ Id, (5.4)

where I′j ∈ R
nj , I′j =

(
0 1 · · · 1 0

)T
for j ∈ [k − 1]+, C ∈ Rnk , C =(

a 0 · · · 0 a
)T
, and I j = 1

T
nj

is a vector of all ones for j = k + 1, . . . , d.
Repeat the process for k ∈ [d]+. Then, G =

∑d
k=1 Qk .

A similar approach can be applied to more complicated Dirichlet boundary values
and Neumann boundary conditions. For a periodic boundary condition at the k-th
dimension, Qk is set to be a zero tensor function.

Then, operatorA is constructed fromL and the boundary conditionsψ. We first illus-
trate the procedure forDirichlet boundary conditions. Recall thatL =

∑rL
l=1

⊗d
i=1 Ll

i .

Algorithm 2 First Exit Problem
Input: Linear operator L, boundary conditions ψ, domain Ω, accuracy tolerance ε,

and initial rank r0.
Output: Tensor function F.
1: L := ComputeTensorOperator(L,Grid(Ω))
2: G := ComputeG(ψ,Grid(Ω))
3: A := ComputeA(L, ψ,Grid(Ω))
4: A := CompressTensor(A)
5: F := ALS(A,G, ε, r0)
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Let Ā =
∑rA

l=1
⊗d

i=1 Al
i , where rA = rL, and Al

i = Ll
i for all l ∈ [rL]+ and i ∈ [d]+.

Given a Dirichlet boundary condition in the k-th dimension, replace the first and
last row in the matrices {Al

k}l∈[rA]+ by zeros. The operator now acts as zero on the
boundary in the k-th dimension. Then, create a new tensor operator

Pk = I′1 ⊗ · · · ⊗ I′k−1 ⊗ C ⊗ Ik+1 ⊗ · · · ⊗ Id, (5.5)

where I′j ∈ R
nj×nj is the identity matrix but the first and last rows are all zeros for

j ∈ [k − 1]+, C is a zero matrix except for two ones in the first and last diagonal
elements, and I j ∈ R

nj×nj is the identity matrix for j = k + 1, . . . , d. The operator
Pk acts as an identity on the boundary in the k-th dimension. Repeat this process
for k ∈ [d]+. Let A = Ā +

∑d
k=1 Pk . Then, the new operator A sets the boundary

values of F given a G in AF = G.

So far, only Dirichlet boundary conditions has been considered. A slight modi-
fication in the current procedure also enables Neumann boundary conditions and
periodic boundary conditions to be included. For Neumann conditions at the k-th
dimension, the first and last row of C in Pk are given by the first and last row
of the difference matrix, respectively, calculating the directional derivative at the
boundary. If using the finite difference discretization scheme, for periodic boundary
condition at the k-th dimension, the first row of {Al

k}l∈[rA]+ is replaced by zeros. The
zero matrix C has 1 and -1 as first and last element in the first row. Under spectral
differentiation, the terms {Al

k}l∈[rA]+ are not modified, and the Pk is a zero tensor
for periodic boundary condition at the k-th dimension.

The operator A often has a high separation rank, and therefore CompressTensor
compresses A to a low rank approximation using Algorithm 1 and the identity
operator as discussed in Section 3.8.

Lastly, givenA andG, ALS solves for F inAF = G using Algorithm 1. The obtained
solution F is the approximate solution to the linear HJB equation (3.10a) given as a
tensor function (5.3a), as in Definition 3.8. Once F is computed, the control input is
given by u = −R−1GT∇xV , where ∇xV = −λ∇xF

F . Recall that ∇xF can be computed
by multiplying (5.2) with F for each dimension. Therefore, given a state x ∈ Ω, we
can recover the value of ∇xF at x and compute u = −R−1GT∇xV by simple linear
algebra operations as described in Section 3.8.

Figure 5.1 shows an implementation of the controller produced by Algorithm 2 on a
quadcopter example. The goal of the quadcopter is to reach px = 1. The algorithm
for this example uses an improved ALS algorithm, SeALS, that is described later
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in Section 5.6. For more detailed descriptions of this example (Example A.5) and
other examples of first exit problem, refer to Appendix A.
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Figure 5.1: A simulation of a quadcopter controlled using the controller produced by
Algorithm 2 and SeALS (Algorithm 7). The quadcopter reaches px = 1 as desired.

5.4 Controller Synthesis for Finite Horizon Problem
This section discusses the technique to solve the finite horizon problem using (3.10b)
with boundary condition (3.11b) in the CP tensor framework. The linear HJB
equation (3.10b) is first discretized and represented using a CP tensor as described
in Section 5.2. Then, backward Euler is implemented together with the ALS
algorithm (Algorithm 1). This section begins with an overview of the finite horizon
algorithm ( Algorithms 3 and 4), and follows with descriptions of each step in the
algorithm. Many functions in Algorithms 3 and 4 are the same as Algorithm 2,
and thus refer to Section 5.3 for details of these functions. Only functions that are
specific to Algorithm Algorithms 3 and 4 are explained in this section.

In general, Algorithms 3 and 4 compute the sequence {Fi}
T/h
i=1 that forms the solutions

to (3.10b) given the linear operator L, the set of boundary conditions ψ, the time
increment h, the end timeT , accuracy tolerance ε, and initial rank r0. The algorithm
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first forms the tensor L and initial condition F0 from the given discretization. Then,
depending on if it’s a forward Euler iteration or a backward Euler iteration, it formsB
the tensor form of the (I+Fh) term in (3.16) or (I−Fh) term in (3.17). The function
ComputeA incorporates the boundary conditions into B to form the final operator
A for the backward Euler iterations. At each step of the iterations, Fi = AF′i−1
is computed for forward Euler, and ALS algorithm is used to solve the equation
AFi = F′i−1 for backward Euler.

The algorithm step is described with more details next. The function ComputeInit
computes the tensor function F0 that represents the final time condition in the
boundary conditions (3.11b) by Definition 3.8 using discretization Grid(Ω). The
function ComputeTensorOperator is discussed in detail in Section 5.3. After L is
obtained, for forward Euler, the algorithm create the tensor form of the (I + Fh)

term in (3.16) by assigning B = I+Lh, where h is the time increment, I ,
⊗d

i=1 I is
the identity tensor operator, and I ∈ Rni×ni is the identity matrix. The sign in front
ofA should be negative based on (3.10b), but it is positive because (3.10b) is solved
backward in time. Similarly, for backward Euler, the tensor form of the (I − Fh)

term in (3.17) is created.

Next, ComputeA (described in Section 5.3) incorporates the boundary condition into
B and forms the final tensor operator A that is used for the time stepping iteration.
The algorithm performs the time stepping iterations based on forward or backward
Euler integration beginning with the initial value F0.

For each iteration, the function UpdateBoundary forms a new tensor function F′i−1
that replaces the value at the boundary of Fi−1 with the boundary value of Fi given
by the Dirichlet boundary condition. More precisely, let Fi−1 =

∑r
l=1

⊗d
j=1 f l

j .

Algorithm 3 Finite Horizon Problem - Forward Euler
Input: Linear operator L, boundary conditions ψ, domain Ω, end time T , and time

increment h.
Output: Tensor functions, Fi for i = 1, 2, . . . ,T/h.
1: F0 := ComputeInit(ψ,Grid(Ω))
2: L := ComputeTensorOperator(L,Grid(Ω))
3: B =: I + Lh
4: A := ComputeA(B, ψ,Grid(Ω))
5: for i = 1, 2, . . . ,T/h do
6: F′i−1 := UpdateBoundary(Fi−1, ψ)
7: Fi := AF′i−1
8: end for
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Algorithm 4 Finite Horizon Problem - Backward Euler
Input: Linear operator L, boundary conditions ψ, domain Ω, accuracy tolerance ε,

end time T , time increment h, and initial rank r0.
Output: Tensor functions, Fi for i = 1, 2, . . . ,T/h.
1: F0 := ComputeInit(ψ,Grid(Ω))
2: L := ComputeTensorOperator(L,Grid(Ω))
3: B =: I − Lh
4: A := ComputeA(B, ψ,Grid(Ω))
5: for i = 1, 2, . . . ,T/h do
6: F′i−1 := UpdateBoundary(Fi−1, ψ)
7: Fi := ALS(A, F′i−1, ε, r0)
8: end for

Let F̄i−1 be the same as Fi−1. Given a Dirichlet boundary condition at the k-th
dimension, the first and last elements of { f l

k }
r
l=1 in F̄i−1 are replaced with zeros.

Then, create a new tensor function

Qk = I′1 ⊗ · · · ⊗ I′k−1 ⊗ C ⊗ Ik+1 . . . Id,

where I′j ∈ R
nj , I′j =

(
0 1 . . . 1 0

)T
for j = 1, . . . , k − 1, C ∈ Rnk , C =(

ak 0 . . . 0 bk

)T
, ak and bk are the boundary values of Fi in the k-th dimension,

I j ∈ R
nj , and I j =

(
1 1 . . . 1 1

)T
is a vector of all ones for j = k + 1, . . . , d.

Repeat the process for k = 1, . . . , d. Then, set F′i−1 = F̄i−1 +
∑d

k=1 Qk , where F′i−1 is
the same as Fi−1, but the boundary values of F′i−1 are now the boundary values of
Fi.

At this point, we have shown how to incorporate the Dirichlet boundary condition.
For other types of boundary conditions including Neumman boundary condition
and periodic boundary condition, the same algorithm applies, but the specific im-
plementations of ComputeA and UpdateBoundary will be different as previously
discussed in Section 5.3. Similarly, treatments of the boundary conditions for
spectral differentiation scheme and the finite difference scheme may differ as well.

Lastly, once F′i−1 is obtained, the forward Euler algorithm computes Fi = AF′i−1. On
the other hand, the backward Euler algorithm solves for Fi in AFi = F′i−1 using ALS.
This process is repeated until the iteration arrives at the final time T .

Performance of Algorithms 3 and 4 can be improved with simple modifications
such as applying Algorithm 1 or other rank reduction algorithm [106] for tensors
after Step 1 and Step 5 to reduce the rank of B and Fi respectively (i.e., implement
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CompressTensor). This modification will make sure the rank of the tensors do not
grow too quickly after each operation, and thus reduce computation time.

Apart from computation time, another improvement that is implemented is rescaling.
As i increases (i.e., as time decreases from end time T), the cost-to-go tends to
increase. This increase results in small magnitude of the desirability function,
which then loses its precision due to numerical truncation near zero. To preserve
the accuracy, the function Fi is rescaled at every iteration as shown inAlgorithm 5 for
the forward Euler case. The backward Euler case would have a similar construction
except that line 8 would be F′i := ALS(A, F′i−1, ε, r0) instead.

More precisely, for each iteration i (line 6-11 in Algorithm 5), the algorithm keeps
track of two variables Fs

i , the shape function, and si, the scaling constant, where
Fi = siFs

i . The iteration begins with s0 = 1 and Fs
0 = F0. Then, instead of solving

for Fi using Fi−1, it uses Fs
i−1. The scaling constant is chosen to be the value of F′i at

the origin because for most control problems, the origin is the point with the lowest
cost (i.e., largest desirability function value). Other options for scaling constant
include the maximum of F′i or the norm of F′i . At the end of the algorithm, we
obtain the shape functions Fs

i for i = 1, 2, . . . ,T/h that can be used to compute the
controller. Note that the controller is given by u = λR−1GT ∇xΨ

Ψ
. As a result, the

scaling constants are not necessary for the computation of the controller.

As with any finite horizon problem, the choice of the initial condition (i.e., the
desirability function at the end timeT or the terminal cost function φ) will determine

Algorithm 5 Finite Horizon Problem - Scaling
Input: Linear operator L, boundary conditions ψ, domain Ω, end time T , and time

increment h.
Output: Shape functions Fs

i , and scaling constants si for i = 1, 2, . . . ,T/h.
1: Fs

0 := ComputeInit(ψ,Grid(Ω))
2: s0 := 1
3: L := ComputeTensorOperator(L,Grid(Ω))
4: B =: I + Lh
5: A := ComputeA(B, ψ,Grid(Ω))
6: for i = 1, 2, . . . ,T/h do
7: F′i−1 := UpdateBoundary(Fs

i−1, ψ)
8: F′i := AF′i−1
9: si := si−1F′i (0)
10: Fs

i := F′i /si
11: end for
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if the controlled system is stable. Methods to choose these functions are not the
main focus of this thesis. Refer to Jadbabaie’s PhD thesis [107] for a more detailed
discussions.

Figure 5.2 shows an implementation of the controller produced by Algorithm 4
with scaling on a simple pendulum stabilization example. The goal is to stabilize
the pendulum upright, where the tilt angle x1 = 0 is zero. For more detailed
descriptions of this example (Example A.2) and comparison of Algorithms 3 and 4
for finite horizon problem, refer to Appendix A.

Figure 5.2: State, input, and cost trajectories for 10 random trials of a simple
pendulum stabilization using the controller from Algorithm 4 with scaling. All
states and inputs converge to the origin by T = 5 seconds.

5.5 Controller Synthesis for Infinite Horizon Problem
The infinite horizon problem (3.10c) is an eigenvalue problem, where c is the
smallest eigenvalue and Ψ is the corresponding eigenfunction. As a result, (5.3c)
is an eigenvalue problem in tensor form, where F is the eigentensor for eigenvalue
c. A well known iterative technique that computes the smallest eigenvalue and the
associated eigenvector of a matrix is the inverse power iteration [108]. The infinite
horizon problem (3.10c) is solved using a similar iterative algorithm summarized in
Algorithm 6. This algorithm is equivalent to the inverse power iteration for a matrix
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Algorithm 6 Infinite Horizon Problem
Input: Linear operator L, boundary conditions ψ, domainΩ, initial tensor function

guess F0, accuracy tolerance ε, and initial rank r0.
Output: Eigentensor F′, eigenvalue c′

1: L := ComputeTensorOperator(L,Grid(Ω))
2: A := ComputeA(L, ψ,Grid(Ω))
3: F := 0, F′ := F0, c := 1, c′ := 0
4: while |c − c′| > ε do
5: c := c′, F := F′

6: F′ := ALS(−A, F, ε)
7: c′ := 1/‖F′‖
8: F′ := c′F′

9: end while

when the system is one dimensional.

The first two steps ofAlgorithm6 also appear inAlgorithms 2–4. Algorithm6 begins
to differs starting from line 3, where it computes an eigenvalue and eigenfunction
pair for the tensor operator using inverse power iteration. At each iteration, F′ is
computed by solving −AF′ = F using Algorithm 1. Then, F′ is normalized and the
process repeats. When the changes in F′ is small, the iteration terminates. The last
F′ is an eigenfunction, and the last c′ is the eigenvalue of the tensor operator −A.
The choice of initial tensor function F0 guess determines the convergence rate.

Figure 5.3 shows an implementation of the controller produced by Algorithm 6 on
a VTOL aircraft example. The goal of the VTOL is to stabilize at the origin. For
more detailed descriptions of this example (Example A.4) and other examples of
infinite horizon problem, refer to Appendix A.

5.6 Issues of ALS and Sequential Alternating Least Squares (SeALS)
The success of ALS algorithm (Algorithm 1) in computing a solution is essential for
synthesizing a controller as seen in Algorithms 2–4 and 6. However, in many cases,
Algorithm 1 may fail due to bad numerical conditioning. This section begins with
describing an example that is used to illustrate the main points of this section. Then,
the issue of Algorithm 1 is introduced followed by descriptions of the techniques to
mitigate the issue. Lastly, a new algorithm (Algorithm 7) is introduced in which the
techniques to alleviate ill conditioning of Algorithm 1 are included.
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Figure 5.3: State trajectories for 10 random trials of a VTOL aircraft using the
controller from Algorithm 6. All states stabilize to zero.

5.6.1 An Illustrative Example
We first consider a two-dimensional polynomial system with the first exit cost
functionals (3.3), whereby the solution can be computed for comparison as shown
in Section 4.8.

Example 5.1 (Two Dimensional Polynomial System). The dynamics of this system
is given by

dx1 = (2(x5
1 − x3

1 − x1 + x1x4
2) + x1u1) dt + dω1

dx2 = (2(x5
2 − x3

2 − x2 + x2x4
1) + x2u2) dt + dω2

on the domainΩ = {(x1, x2)| −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}. The noise is set to Σε = I.
The cost functions are set to q(x) = x2

1 + x2
2 and R = 2I, to represent that the goal

is to reach the origin. The boundary conditions at x1 = ±1 and x2 = ±1 are set to
φ(x1, x2) = 5, and the boundary condition at the origin is set to φ(0, 0) = 0. We use
uniform finite difference scheme for discretization with a sixth order of accuracy for
the derivatives.

A MacBook Pro with 2.5 GHz i5 processor and 4 GB ram-memory is used to
perform the computation in MATLAB.
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5.6.2 Ill-Conditioning of ALS
When solving for the solution of (5.3a), the associated matrix M in (3.21) often
becomes ill-conditioned. In other words, κ the condition number ofM exceeds 1013,
where κ = σmax

σmin
, and σmax and σmin are the maximal and minimal singular value of

M respectively. A poorly conditioned linear equation will result in an inaccurate
estimation of the solution, independent of the algorithm used to find the solution.
Therefore, the accuracy of the solution F in (3.21) will be limited by the condition
number of the matrixM [109]. This effect may prevent ALS from iterating further
to produce a lower residual, resulting in a less accurate solution.

We identify two sources that causeM to be ill-conditioned, the operator A and the
solution F. According to (3.22), Mi, j is a function of both A and F. The majority
of the matrices in A originate from discretizing the differential operators in L using
finite differencing, which tend to have coefficients with large magnitude. Particu-
larly, elements in A that are near the boundary ∂Ω tend to have large values because
of finite differencing on the edges. However, other parts of A that corresponds to
the boundary condition tends to be small because they consists of identity operators.
As a result, the matrix M that contains the tensor terms of A usually has a high
condition number.

Furthermore, the magnitude difference among the tensor terms of the most currently
computed solution F generally increases as its rank increases. New tensor terms
that are added by the algorithm are generally smaller than previous tensor terms
in F because the new terms are added to account for the residual of the previous
tensor terms. A regularizer added to the cost function, as described in Section 3.8.2,
prevents ill-conditioning of the solution F. However, if the regularizer α is too
large, the resulting solution F gives a large residual. Recall that the residual of the
current solution is given by

‖AF − G‖√∏d
i=1 ni

.

Therefore, limited by a moderate α to prevent a large residual, different terms
Mi, j in M that contain different tensor terms of F often have large magnitude
differences, causingM to be ill-conditioned. Figure 5.4 illustrates an example of
an ill-conditioned matrixM for Example 5.1 that shows the effects from bothA and
F.
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Figure 5.4: An example of an ill-conditioned matrixM in (3.21) for Example 5.1.
The axes x1 and x2 denote the indices of the matrixM, and the vertical axis is the
value of M. The peaks originate from the operator A and the solution F. The
condition number of this matrix is 1.02 × 1013.

5.6.3 Improvements on ALS
To mitigate the ill-conditioning issue in Algorithm 1, we introduce two new im-
provements.

Sequential Computation of Solution

The linearity of (3.20) can be used to reduce the magnitude differences among the
elements ofM in (3.22) originating from the current solution F. The key idea is to
subtract dominant tensor terms of F in equation (3.20) wheneverM becomes ill-
conditioned, and keep iterating with the remaining smaller terms. Large magnitude
differences in F are therefore avoided, allowing the algorithm to realize a lower
residual.

More precisely, note that

G = AF = A
rF∑
l=1

F l =

rF∑
l=1
AF l ⇐⇒ G −

p−1∑
l=1
AF l =

rF∑
l=p

AF l = A

rF∑
l=p

F l,

where F l represents the l-th tensor term in the tensor function F. Let Fp =
∑rF

l=p F l
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and Gp = G −
∑p−1

l=1 AF l . Then, the previous equation becomes

AFp = Gp,

which is a linear equation of the form (3.20) that Algorithm 1 can solve. Intuitively,
this technique removes the dominant terms in F from the equation allowing the
algorithm to compute other smaller terms in F, avoiding ill-conditioning of M.
Thus, if the current computed solution F̂ causesM to be ill-conditioned, we record
the F̂ as Fj , reset the G to G − AF̂, and restart the algorithm using the new G. As
a result, we obtain a sequence of solutions Fj in which the sum of the sequence
returns the full approximate solution F.

Figure 5.5 shows the performance of the ALS with sequential solutions for Example
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Figure 5.5: Computational results of using Algorithm 1 on Example 5.1 with and
without sequential solutions. Each dimension has ni = 101 discretization points.
The first row shows that the residual ‖AF−G‖√∏d

i=1 ni
. decreases in each iteration, and the

second row plots the error between the computed solution and the true solution. A
red star indicates when a new tensor term is added. The solution F is reset at a
green square. The modified ALS achieves a more accurate solution. The original
ALS quits whenM is ill-conditioned. The algorithm with sequential solutions is
terminated when the residual stops improving.
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5.1. The modified ALS realizes a lower residual ‖AF−G‖√∏d
i=1 ni

, achieving a more accurate

solution. The original ALS quits when M is ill-conditioned. The residual of
the ALS with sequential computation stagnates when the computation reaches the
MATLABprecision. At every reset of F,G is reset by subtracting F̂ from the current
G. Each subtraction reduces the magnitude of G, and eventually, the magnitude of
G becomes so small that the magnitude difference between A and G is on the order
of 1013, approximately the MATLAB precision. In this case, the algorithm can no
longer compute a high accuracy solution.

Boundary Condition Rescaling

In addition to the sequence of subtractions, the linearity of (3.20) allows for rescaling
of elements inM to decrease its condition number. Rescaling reduces themagnitude
differences resulting from the operator A at the start of Algorithm 1 (before line
1). Specifically, the elements in Al

i that correspond to the boundary conditions
are rescaled so that the overall condition number ofM is decreased. The specific
rescaling constants can be any constants that effectively decrease the condition
number ofM. For example, the rescaling constant in dimension i can be computed
from the weighted summation of the matrices {Al

i }
rA
l=1

si =

∑rA
l=1 Al

i

Al
i

∑rA
l=1

Al
i


to rescale boundary conditions in dimension i to approximately the same magnitude
as the elements not corresponding to the boundary conditions. Note that G is
rescaled to ensure that (3.20) still holds. Different elements in Al

i can have different
rescaling constants.

More precisely, to scale the Dirichlet boundary conditions of ∂Ω in the k-th dimen-
sion, the first and last diagonal elements of the matrix C in (5.5) are scaled with
sk . Then, the first and last elements of C in (5.4) are scaled with sk in the k-th
dimension to ensure that the scaled terms A and G still satisfy the equationAF = G.
For Neumann and periodic boundary conditions, the rescaling method essentially
follows the same idea.

The performance of this boundary rescaling technique is demonstratedwith Example
5.1 and the result is shown in Figure 5.6. By rescaling the boundary conditions, the
modified ALS algorithm can solve to a lower residual ‖AF−G‖√∏d

i=1 ni
, achieving a more
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accurate solution (see second row of Figure 5.6) beforeM becomes ill-conditioned.
Both runs quit onceM becomes ill-conditioned.

Furthermore, Figure 5.7 shows that sequential computation combinedwith boundary
condition rescaling produces a more accurate solution and decreases computation
time dramatically from about 77 minutes (580 iterations) to about 7 minutes (190
iterations) before the residuals stabilized. The residuals for both cases stabilize
once the computations reach MATLAB precision. The separation rank of the
computed solutions are 17 and 126 for algorithmwith andwithout operator rescaling
respectively. Note the residual is lower for the algorithmwithout boundary condition
rescaling (see first row of Figure 5.7), but the solution is more accurate for the
algorithm with boundary condition scaling (see second row of Figure 5.7). This
observation is not unexpected because the residual is calculated after the boundary
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Figure 5.6: Computational results of using Algorithm 1 on Example 5.1 with and
without boundary condition rescaling. Each dimension has ni = 101 discretization
points. The first row shows that the residual ‖AF−G‖√∏d

i=1 ni
decreases in each iteration,

and the second row plots the mean squared error between the computed solution
and the true solution in each iteration. A red star indicates when a new tensor term
is added. Boundary condition rescaling yields a lower residual beforeM becomes
ill-conditioned, and thus achieves a more accurate solution. Both runs quit onceM
becomes ill-conditioned.
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conditions are rescaled. Thus, when comparing the two, one should consider that
the residuals are not exactly equivalent.
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Figure 5.7: Computational results of implementing sequential computation on Ex-
ample 5.1 with and without boundary condition rescaling. We chose ni = 151
discretization points for each dimension to distinguish the two cases better. The first
row shows how the residual ‖AF−G‖√∏d

i=1 ni
decreases with each iteration, and the second

row shows the mean squared error between the computed solution and the true
solution with each iteration.

5.6.4 Sequential Alternating Least Squares (SeALS)
Combining the sequential solution and boundary condition rescaling, we arrive at
the SeALS algorithm (Algorithm 7), which can compute more accurate solutions
for the linear HJB equation in a shorter amount of time.

Given a tensor operator A and a tensor function G computed by ComputeA and
ComputeG in Algorithm 2, SeALS implements the original ALS algorithmwith two
additional steps. First, before solving (3.21), elements in A and G that correspond
to the boundary conditions are rescaled by RescaleTensors as described in previous
section. Second, whenM is ill-conditioned, the current F is recorded as Fj . Then
G is reset to G −AF, and F is reset to a preconditioned random rank 1 tensor term.
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In the end, the algorithm returns F, which is the sum of all previously recorded Fj .

This SeALS algorithm is implemented in MATLAB [32]. A more detailed descrip-
tion and other additional features of SeALS are available in the tool’s user’s guide
[110].

The first column of Figure 5.8 shows the solution obtained by Algorithm 2 and
SeALS for Example 5.1. The error from the true solution is on the similar order of
magnitude, 10−3, as the uncertainty of the true solution. The solution is therefore
considered accurate. The computation was performed with ni = 151 discretization
points in each dimension. A uniform finite difference scheme with sixth order ac-
curacy derivatives is used for discretization. The residual tolerance for compressing
the operator was set to 10−6 decreasing the rank from 73 to 6. The algorithm is
terminated when the residual stagnates. The first five basis functions {F l

i }
5
l=1 in

each dimension are shown on the second column of Figure 5.8. The functions are
smooth with peaks at the origin due to the zero-cost. Residual convergence and

Algorithm 7 Sequential ALS (SeALS) Algorithm
Input: Tensor operatorA, tensor functionG, accuracy tolerance ε, scaling constants

a, initial rank r0
Output: Tensor function F
1: F := RandomTensor(r0)
2: A,G := RescaleTensors(A,G, a)
3: res := ComputeResidual(A, F,G)
4: j := 1
5: while res > ε do
6: res′ := res
7: for k = 1, 2, . . . , d do
8: F, lk := SolveNormal(A, F,G)
9: end for
10: res := ComputeResidual(A, F,G)
11: if lk is True for any k ∈ [d]+ then
12: Fj := F and j := j + 1
13: G := G − AF
14: F := RandomTensor(1)
15: else if |res − res′| < ε then
16: Fr := PreRandomTensor(1)
17: F := F + Fr

18: end if
19: end while
20: F :=

∑
j Fj
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the normalization constants sF
l is shown in Figure 5.9. The residual stabilizes in

the end when the computation reaches the MATLAB precision. The algorithm is
thus terminated. The rank of the solution before the stagnant residual is around 10,
and the total iteration time is 72 seconds. Figure 5.10 shows ten simulations of the
system controlled using the controller produced from Algorithm 2 and SeALS. All
trajectories reach the origin as expected.

Figure 5.8: Computed solution (left) and the basis functions in each dimension
(right) for Example 5.1. The uncertainty of the true solution is of magnitude 10−3,
the same magnitude as the error. The obtained solution is therefore considered
accurate.
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Figure 5.9: Residual ‖AF−G‖√∏d
i=1 ni

(left) and the normalization constants sF
l (right) for

Example 5.1. The algorithm is terminated when the residual stagnates.

Figure 5.10: Ten simulations of Example 5.1 controlled using the controller pro-
duced by Algorithm 2 and SeALS (Algorithm 7) and their corresponding control
signals. All trajectories reach the origin as expected.

5.7 Comparison with SOS-based Approach
This section briefly compares the SOS based technique introduced in Chapter 4 with
the low rank tensor decomposition based technique introduced in this chapter using
Example 5.1. This example is chosen because it is a two dimensional example that
the SOS based approach can also solve for the approximate solution as shown in
Section 4.8.



80

Figure 5.11 shows that the controllers resulting from both techniques stabilize the
system with noise in Example 5.1 for ten randomly chosen initial states. Figure 5.12
shows the corresponding control inputs. The degree of polynomial is 24 for the
SOS based approach, and the noise is the same for both controllers. Note the
differences between the two approaches for the control input trajectories. As a
result of these differences, the cost for using the controller computed from the
SOS based method is lower than the cost of using the controller computed from
the tensor based method. Figure 5.13 shows the cost comparison using the two
approaches for the ten simulations. The point on the top right corner correspond
to the initial state at (0.95, 0.35), which is close to the boundary of computation for
both approaches. For the tensor based approach, the cost becomes higher because
the solution becomes highly oscillatory near the boundary due to numerical artifact
of imposing boundary conditions. For the SOS based approach, the solution is a
smooth polynomial function throughout the entire domain.

However, the computation time for the SOS based controller is approximately 43
minutes for polynomial optimization with 24 degrees that results in an accuracy, ε,
of 0.0025. If the entire hierarchy of SOS programs is considered, the computation
takes approximately 1.5 hours. In contrast, the tensor based approach takes only
72 seconds to achieve a residual of 0.0013. Nonetheless, the SOS based approach
provide strong performance and stability guarantees that the tensor based approach
does not have.

Figure 5.11: The state trajectories of ten simulations of Example 5.1 using the
controllers computed from SOS programs (right) in Chapter 4 and tensor based
Algorithm 2 with SeALS (Algorithm 7) (left). The noise is the same for both
controllers. All trajectories reach the origin as expected.
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Figure 5.12: The control input trajectories of ten simulations of Example 5.1 using
the controllers computed from SOS programs (right) in Chapter 4 and tensor based
Algorithm 2 with SeALS (Algorithm 7) (left). The noise is the same for both
controllers.

Figure 5.13: The cost comparison of simulations of Example 5.1 using the con-
trollers computed from SOS programs in Chapter 4 and tensor based Algorithm 2
with SeALS (Algorithm 7). Each point is one simulation with the same noise for
both controllers.

5.8 Summary
This chapter presents a method to solve the high dimensional linear HJB equation
for three classes of cost functionals and a large class of stochastic affine nonlinear
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dynamical systems. This work significantly improves upon [95], where the con-
cept of tensor decomposition and ALS are considered for solving the linear HJB
equation for the first exit problem. The original framework’s ill-conditioning issue
is mitigated through sequential computation of solutions and boundary condition
rescaling. Consequently, the new algorithm that incorporates both methods achieves
significantly lower error compared to the original implementation, resulting in more
accurate solutions and better controllers. Furthermore, this technique is extended
into finite horizon and infinite horizon problems by combining time stepping and
inverse power iteration with the ALS algorithm. A MATLAB tool that implements
the algorithms discussed in this chapter is developed [32]. A few engineering exam-
ples, including stabilizing a quadcopter, are presented in Appendix A to illustrate
the performance of the low rank tensor decomposition based method. The ability
to compute the solution to the linear HJB equation for a quadcopter with twelve
dimensions using a personal laptop and produce a controller that achieves the ob-
jective is a strong indicator of this technique’s great potential for implementation in
other robotics and engineering systems.

Future work includes optimizing the MATLAB tool for speed, and incorporating
other numerical techniques that improve the algorithm’s stability, including adding
artificial diffusion [111]. Different kinds of differentiation schemes such as upwind
finite difference scheme [112] and adaptive grid [99] could be incorporated for a
more stable and accurate calculation. Including other forms of tensor representation
as alternatives in the MATLAB tool such as tensor train [79] and function train [80]
could be considered as well. Apart from ALS, many algorithms [113] based on
low rank tensor decomposition could potentially solve the HJB equation, and thus
a future direction is to explore these other techniques with respect to solving the
linear HJB equation.

One main limitation of this technique is numerical phenomena associated with
the desirability function. The desirability function is given by the exponential of
the negative of the value function. Therefore, the desirability function could easily
become a very small number for a modest value of the corresponding value function.
As a result, the controller that is proportional to the inverse of the desirability function
is extremely sensitive to any small inaccuracy in the derivatives of the desirability
function. This numerical limitation could potentially be alleviated by intelligently
scaling the desirability function (e.g., scaling in Algorithm 5) or by working directly
with the value function instead of the desirability function. The latter requires
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solving the nonlinear HJB equation, and one future extension of this work is to
expand the use of low rank tensor decomposition to the nonlinear PDE setting.

Apart fromnumerical and algorithmic improvement, a future direction of thiswork is
deriving analytical properties of the controller given by the method proposed in this
chapter, and providing performance guarantees on the controller. This extension
may necessitate tensor based algorithms that have useful convergence properties
and error bounds. In particular, in order to obtain the trajectory cost bound, the
approximate value function has to be a pointwise upper bound of the true value
function. This requirement necessitates tensor based algorithms that can enforce
inequality constraints – a challenging yet interesting research direction.

Alternatively, this tool can be used as a method to provide approximate basis func-
tions for the sums of squares (SOS) based technique described in Chapter 4 to solve
for the optimal controller in high dimensions. The number of monomials in the
SOS technique grows exponentially with dimension. However, the SOS technique
provides a performance guarantees that the tensor based technique does not provide.
To benefit from both, the tensor based technique can provide the SOS technique with
a smaller set of monomials, and the SOS technique can compute for a suboptimal
controller with performance guarantees.

Apart from solving the HJB equation, this tool may be adapted to solve general
linear PDEs in high dimensions. In particular, the Fokker-Planck equation [114]
used for uncertainty propagation and state estimation of a high dimensional system
is a naturally linear PDE that could benefit from the technique presented in this
chapter. Other researchers have investigated this idea with successes in engineering
applications such as orbital mechanics [115]–[118], and the SeALS algorithm could
potentially improve the performance of these computations.

In addition to solving linear PDE and the HJB equation, the low rank tensor decom-
position framework could potentially be applied to other types of Hamilton-Jacobi
equations including the Hamilton-Jacobi-Isaacs equation [119] or more generally,
other dynamic programming problems, such as reinforcement learning. Essentially,
the low rank tensor decomposition based framework is an efficient representation
for large scale objects, for example, a high dimensional complex function. There-
fore, it can have a significant impact in alleviating the curse of dimensionally that
is ubiquitous in many fields of study by providing efficient representations and
computations.
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A p p e n d i x A

IMPLEMENTATION OF CHAPTER 5’S ALGORITHMS

This appendix presents examples of the applications ofAlgorithms 2–4 and 6 to solve
first exit, finite horizon, and infinite horizon problems respectively using examples
including those from [95] such as Vertical Takeoff and Landing (VTOL) aircraft
and quadcopter. This appendix begins with the descriptions of the dynamics for
each example. The specific cost functional and its associated linear HJB equation
and boundary conditions are described in the individual sections later. Following
the dynamics descriptions are three sections that discuss the implementation of
Algorithms 2–4 and 6, respectively, using the examples.

Remark. The computation time given does not indicate the best possible compu-
tation time of this technique, because the computer and the implementation are not
fully optimized for speed.

A.1 Example List
This section summarizes the example dynamical systems that are used for the rest
of this section.

Example A.1 (Linear System). The dynamics of a four dimensional linear system
is given by

dx = (Ax + Bu) dt + Bdω

A =

©«
0.1609 −0.9014 0.0971 −0.2241
−0.6151 0.3481 1.3786 2.7022
−0.2390 0.9480 −0.9167 0.5202
0.6150 −1.7299 −1.0357 −0.4597

ª®®®®®¬
B =

©«
1 0 0
0 1 0
0 0 1
0 0 0

ª®®®®®¬
,

where x ∈ R4 represents the states, and u ∈ R3 represents tha control inputs. The A

matrix has eigenvalues 0.4084 ± 2.0834i, −0.0997, and −1.5845. Thus, the system
is unstable without a controller.

Example A.2 (Simple Pendulum). The dynamics of a simple pendulum is given by

dx1 = (x2 + 0.01u) dt + dω

dx2 = (sin(x1) + u) dt + dω,
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where x1 is the angle of the pendulum, x2 is the angular velocity.

Example A.3 (Inverted Pendulum on a Moving Cart). The dynamics of an inverted
pendulum on a moving cart adapted from [120] is given by

dx1 = x2 dt + dω

dx2 =

g
l sin(x1) −

1
2mr x2

2 sin(2x1) −
mr

ml cos(x1)u
4
3 − mr cos2(x1)

dt + dω,

where x1 is the angle from upright position of the pendulum, x2 is the angular
velocity, g = 9.8m/s2 is gravitational acceleration, and l = 0.5m is the length of the
pendulum. The system has mass ratio mr =

m
m+M , where m = 2kg is the pendulum

mass and M = 8kg is the cart mass.

Example A.4 (Vertical Takeoff and Landing (VTOL) Aircraft). The dynamics of
a VTOL aircraft (from [121]) in the translation plane (px, py) with tilt angle θ are
given by

dpx = vx dt

dvx = − sin θ (u1 dt + dω1) + ε cos θ (u2 dt + dω2)

dpy = vy dt

dvy = (−g + cos θ)(u1 dt + dω1) + ε sin θ (u2 dt + dω2)

dθ = vθ dt

dvθ = u2 dt + dω2,

where vx , vy, and vθ are translational and angular velocities, g is the gravitational
constant, ε = 0.01, u1 is the main thrust, and u2 is the angular moment. The ground
is at y = 0. Let x =

(
px vx py vy θ vθ

)
.

ExampleA.5 (Quadcopter). The quadcopter (from [23])moves in three-dimensional
space (px, py, pz) with orientation given by the yaw angle ψ, pitch angle θ and roll
angle φ. The control inputs u =

(
µ τψ τθ τφ

)T
are the main thrust µ, the yawing

moment τψ , the pitching moment τθ and the rolling moment τψ . The dynamics are
given by (3.1) in which

f =
(
vx vy vz vψ vθ vφ 0 0 −g 0 0 0

)T

B =

©«

06×1 06×3

sin φ sinψ + cos φ cosψ sin θ
cos φ sin θ sinψ − cosψ sin θ 03×3

cos θ cos φ
03×1 I3×3

ª®®®®®®®®¬
,
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where x =
(
px py pz ψ θ φ vx vy vz vψ vθ vφ

)T
, 0m×n represents a m

by n zero matrix, Im×n represents a m by n identity matrix, and g is the gravitational
constant.

A.2 First Exit Problem
Algorithm 2 and SeALS (Algorithm 7) are demonstrated using three examples
from [95]. Note that simulations are performed with the indicated noise, whereas
simulations in [95] were noiseless. A MacBook Pro with 2.5 GHz i5 processor
and 4 GB RAM is used in the inverted pendulum and quadcopter examples, and a
quadcore computer with 3.0 Ghz i7 processor and 64 GB RAM is used in the VTOL
aircraft example. The regularizer α is set to 10−12 for all numerical examples.

A.2.1 Inverted Pendulum on a Moving Cart
Consider Example A.3. The goal is to keep the pendulum upright. Let the goal
region be Λ = {(x1, x2) ∈ R

2 | |x1 | ≤ 0.18, |x2 | ≤ 0.3}. Then, the domain is
chosen to be Ω = {(x1, x2) ∈ R

2 | |x1 | ≤ π, |x2 | ≤ 11}\Λ because the problem is
formulated as a first exit problem. The cost functions are set to q = 0.1x2

1 + 0.05x2
2

and R = 0.02 so that the system will exit the domain near the origin. For the exterior
boundary of Ω, the state x1 has a periodic boundary condition, and φ(x1,±11) = 10
for x2. The states at the interior boundary of Ω is set to zero. The noise is set at
Σε = 10I.
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Figure A.2: Residual ‖AF−G‖√∏d
i=1 ni

(left) and the normalization constants sF
l (right) for

Example A.3. The algorithm quits when it exceeds the prescribedmaximum number
of iterations 2000.
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Figure A.3: A simulation of Example A.3 using the controller computed from
the solution of Algorithm 2 and SeALS (Algorithm 7). Left plot shows the state
trajectory in space, and right plots shows the state and control trajectories in time.
The red box is the goal region. The angle x1 is periodic.

A uniform finite difference scheme with sixth order accuracy derivatives is used for
discretization. For each dimension, there are ni = 201 discretization points. The
operator was compressed from rank 29 to 11 for a relative residual 10−7. Maximum
rank of the solution was set to 20 for speed. Upon reaching the maximum rank, the
algorithm records the current solution and restarts with a new rank one tensor (see
Algorithm 7 line 12-14). Once the computation completes, the final solution is the
sum of all recorded solutions. The final solution and the first five basis functions
{F l

i }
5
l=1 in each dimension are shown in Figure A.1.
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Residual ‖AF−G‖√∏d
i=1 ni

and normalization constants sF
l are shown in Figure A.2. The

algorithm quits with a separation rank of 230 when it exceeds a prescribed 2000
iterations, with a total run time of 37 hours, achieving a lower residual compared to
[95]. Shorter runs can be achieved by optimizing the SeALS tool for speed or by
quitting earlier when the basis weights are small enough for the specific application.
A simulation is shown in Figure A.3 in which the pendulum reaches the goal region
as desired when using a controller computed by SeALS.

A.2.2 Vertical Takeoff and Landing (VTOL) Aircraft
Next, consider Example A.4, which has six state dimensions. The domain Ω is
defined by px ∈ [−4, 4], py ∈ [0, 2], vx ∈ [−8, 8], vy ∈ [−1, 1], vθ ∈ [−5, 5], and a
periodic θ ∈ [−π, π]. The cost functions are q(x) = 1 and R = 2I.

The goal is to land the aircraft at y = 0, and the aircraft should reach py = 0 with
moderate velocities vx , vy and vθ and deviations in px and θ. Therefore, boundary
conditions Ψ|∂Ω = 0 are imposed for all non-periodic states except py = 0. At the
i-th dimension, let Si be the map from a state in the domain at the i-th dimension to
a normalized state in the range of -1 and 1 such that the position order of the state

Dimension = 1 Dimension = 2 Dimension = 3

Dimension = 4 Dimension = 5 Dimension = 6

Figure A.4: The first ten basis functions in each dimension for Example A.4.
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in the domain is preserved. More precisely, given xi, the state at the i-th dimension,

Si(xi) = −1 + 2
xi − xmin

i

xmax
i − xmin

i

, where xmin
i and xmax

i are the boundary values of the i-th dimension. Then, at
py = 0, Ψ|py=0(x) =

∏d
i=1(1 − Si(xi)

2). The noise is set at Σε = 3I.

A uniform finite difference scheme with second order accuracy derivatives is used
for discretization. For each dimension, there are ni = 100 discretization points. The
operator was compressed from rank 50 to 13 for a relative error 10−5. The algorithm
took 30 hours, and the separation rank is 134. Figure A.4 presents the first ten basis
functions {F l

i }
10
l=1 in each dimension. Figure A.5 shows residual of the SeALS tool

and the normalization constants sF
l of the basis functions. Figure A.6 shows a sim-

ulation of the VTOL aircraft using controller computed from the solution produced
by Algorithm 2 and SeALS (Algorithm 7). The controller successfully lands the
aircraft (py = 0) with moderate speed and horizontal deviations, comparable to [95]
despite the noise.
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Figure A.6: A simulation of Example A.4 using the controller computed from the
solution produced by Algorithm 2 and SeALS (Algorithm 7). The controller suc-
cessfully lands the aircraft (py = 0) with moderate speed and horizontal deviations
despite the presence of noise.

A.2.3 Quadcopter
Lastly, consider Example A.5 that has 12 state dimensions. The domain Ω is
given by px, py, pz ∈ [−1, 1], periodic ψ, θ, φ ∈ [−π, π], vx, vy, vz ∈ [−8, 8] and
vψ, vθ, vφ ∈ [−10π, 10π]. The cost functions are q = 2 and R = 2I. The goal is to
reach px = 1, and thus impose boundary conditions Ψ|∂Ω = 0 except px = 1, where
we set Ψ|px=1(x) =

∏d
i=1(1 − Si(xi)

2). The noise is set at Σε = 100I.

A uniform finite difference scheme with second order accuracy derivatives is used
for discretization. For each dimension, there are ni = 100 discretization points.
The operator was compressed from rank 270 to 25 with a relative error 10−5. The
algorithm took 62 hours, and the separation rank is 52. Figure A.7 shows a sample
simulation of the quadcopter controlled using the solution produced by Algorithm 2
and SeALS (Algorithm 7). The trajectory reaches px = 1 as desired, comparable to
[95] despite the noise. The corresponding control signals are shown in Figure A.8.
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Figure A.7: A simulation of Example A.5 controlled using the controller produced
by Algorithm 2 and SeALS (Algorithm 7). The quadcopter reaches px = 1 as
desired. This figure is the same as Figure 5.1.
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A.3 Finite Horizon Problem
Algorithms 3 and 4 with the scaling modification are demonstrated using Exam-
ple A.2. Henceforth, when Algorithms 3 and 4 are mentioned, they refer to the
algorithms with the scaling modification. A MacBook Pro with 2.9 GHz i5 dual-
core processor and 16 GB RAM is used for all computations. The regularizer α
is set to 10−12. The goal is to move the unstable system to the origin within the
given time T = 5s. The time integration is implemented with step size of 0.001
seconds. The domain is chosen to be Ω = {(x1, x2) ∈ R

2 | |x1 | ≤ π, |x2 | ≤ 5}. The
cost functions are set to q = 0.1x2

1 + 0.05x2
2 and R = 0.02. At the boundary of

Ω, the state x1 has a periodic boundary condition, and Ψ(x, t) is set to zero when
x2 = ±5. The noise is set at Σε = I. At T = 5 seconds, final time condition is
V(x,T) = 0.06xTx or equivalently, Ψ(x,T) = e−3xT x . A spectral difference scheme
is used for discretization. The domain is discretized into a 101 by 103 grid.

First, consider the results of using Algorithm 3. The operator A was compressed
from rank 8 to 4 for a relative residual 10−6. The total run time is 13 minutes.
Figures A.11–A.13 shows the basis functions and the desirability function at three
different times, namely t = 0, 2.5, and 5 seconds. Figures A.10–A.13 show that the
desirability function becomes smaller at earlier time because the cost to go (i.e., the
value function) is large when the remaining time from the end time T = 5 seconds
is large. Figure A.9 gives a summary of the separation rank during each iteration of
Algorithm 3. The separation rank grows as the computation progresses backward
in time.

Simulation results are shown in Figure A.14 in which the systemmoves to the origin
as desired when using a controller computed by Algorithm 3. Figure A.14 shows 10
simulations of the system with initial states randomly chosen and the corresponding
input trajectories and the cost trajectories. The average finite horizon cost over the
10 simulations is 0.0271.
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Figure A.9: Seperation rank of the desirability function for Example A.2 computed
from Algorithms 3 and 4. The separation rank grows as the computation progresses
backward in time for the forward algorithm (i.e.,Algorithm 3), but not the backward
algorithm (i.e., Algorithm 4).

Figure A.10: Scaling constants of the desirability function for Example A.2 com-
puted from Algorithms 3 and 4. The scaling constants decreases as expected when
the computation progresses backward in time.
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Figure A.11: Basis functions and desirability function of Example A.2 computed
from Algorithm 3 at time t = 0 seconds.

Figure A.12: Basis functions and desirability function of Example A.2 computed
from Algorithm 3 at time t = 2.5 seconds.
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Figure A.13: Basis functions and desirability function of Example A.2 for Algo-
rithms 3 and 4 at the final time t = 5 seconds.

Figure A.14: State, input, and cost trajectories for 10 random trials of Example A.2
using the controller from Algorithm 3. All states and inputs converge to the origin
by T = 5 seconds.
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The backward algorithm, Algorithm 4, shows a similar performance. The operator
was compressed from rank 11 to 5 for a relative residual 10−6. The total run time is
64 minutes, a longer time than that of the forward algorithm as it involves solving a
tensor least square problem at every time step instead of tensor multiplications. The
backward algorithm has the same final time condition (Figure A.13) as the forward
algorithm. Figures A.15 and A.16 shows the basis functions and the desirability
function at the other two different times, namely t = 2.5, and 5 seconds. Unlike the
solution of the forward algorithm in Figures A.11 and A.12, the shape of the basis
functions and the seperation rank do not change.

Simulation results using a controller computed by Algorithm 4 are shown in Fig-
ure A.17 in which the system moves to the origin as desired. As before, Figure A.17
shows 10 simulations of the system with initial states randomly chosen and the cor-
responding input trajectories and the cost trajectories. Although the basis functions
for solutions from Algorithms 3 and 4 are not the same at all time, the simulation
results in Figures A.14 and A.17 are identical. The average finite horizon cost over
the 10 simulations is 0.0271.

Figure A.15: Basis functions and desirability function of Example A.2 computed
from Algorithm 4 at time t = 0 seconds.
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Figure A.16: Basis functions and desirability function of Example A.2 computed
from Algorithm 4 at time t = 2.5 seconds.

Figure A.17: State, input, and cost trajectories of 10 random trials for Example A.2
using the controller from Algorithm 4. All states and inputs converge to the origin
at T = 5 seconds.



98

A.4 Infinite Horizon Problem
Algorithm 6 is demonstrated using three different examples. A MacBook Pro with
2.9 GHz i5 dual-core processor and 16 GB RAM is used for all computations.
The regularizer α is set to 10−12 for all numerical examples. The simulations
are implemented using Euler integration with 0.0005s time step. For all examples,
Algorithm 6 is initialized with the value function of the linearization of the nonlinear
systems. The value function of a linear system can be computed by solving the
associated algebraic Ricatti equation, explained further in the next section. Given a
value function, the corresponding desirability function is not necessarily a separable
function. Thus, it is approximated with a low rank tensor using the ALS algorithm.

A.4.1 Linear Stochastic Optimal Control (LSOC)
First, we provide a brief overview of linear stochastic optimal control that is used to
compare with the performance of the controller given by Algorithm 6.

Consider the following linear stochastic dynamical system,

dx = (Ax + Bu) dt + Bdω, (A.1)

where x ∈ Rd represents the states, and u ∈ Rp represents tha control inputs. Given
the infinite horizon cost (3.5), where q(x) = xTQx, the optimal cost of (A.1) is
Tr(ΣεBPssBT). The value of Pss is obtained by solving the following algebraic
Ricatti equation

ATPss + Pss A −
1
2

PssBR−1BTPss +Q = 0.

Note that the associated value function is V(x) = xTPss x. The optimal controller is
thus u(x) = −2R−1BTPss x. For a more thorough treatment of the optimal control of
linear systems, refer to [122].

A.4.2 Linear System
Example A.1 is used to compare the technique proposed in this thesis with the
LSOC. The goal is to stabilize the unstable linear system at the origin. The domain
is chosen to be Ω = {x ∈ R4 | ∀ i,−5 ≤ xi ≤ 5}. The cost functions are set to
q = xTx and R = I. At the boundary of Ω, Ψ(x) is set to zero. The noise is set at
Σε = I. Spectral difference scheme is used for discretization. For each dimension
i, there are ni = 51 + 2(i − 1) discretization points. The operator was compressed
from rank 47 to 23 for a relative residual 10−5.
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The algorithm terminates with a separation rank of 9 when the difference in eigen-
values is smaller than 10−7. The total number of iterations is 14, and the total run
time is approximately 5 hours. Shorter runs can be achieved by optimizing the
algorithm for speed or by quitting earlier when the accuracy is good enough for the
specific application. The convergence of the eigenvalue c′ in Algorithm 6 is given
in Figure A.18. The eigenvalue converges to 2.4772, which is close to the correct
solution 2.4779. Simulation results are shown in Figure A.19 in which the system
is stabilized as desired when using the controller computed by Algorithm 6. Fig-
ure A.19a shows 10 simulations of the system with initial states randomly chosen.
Figure A.19b shows the corresponding input trajectories and the cost trajectories.
The average infinite horizon cost over the 10 simulations is 0.1381.

Figure A.20 shows the simulation results when using the controller given by LSOC.
The same noise values and initial conditions as in Figure A.19 are used. The average
infinite horizon cost over the 10 simulations is 0.1733. The average difference
between the cost is 0.0351. By comparing Figures A.19 and A.20, Algorithm 6
returns a controller that has relatively similar performance to the LSOC technique.
In fact, the controller of Algorithm 6 for this specific example seems to give better
transient cost than the controller of LSOC.

Figure A.18: Convergence of eigenvalue of Example A.1 when implementing Al-
gorithm 6.
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(a) State trajectories

(b) Input and cost trajectories

Figure A.19: State, input, and cost trajectories for 10 random trials of Example A.1
using the controller from Algorithm 6. All states and inputs stabilize to zero.
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(a) State trajectories

(b) Input and cost trajectories

Figure A.20: State, input, and cost trajectories for 10 random trials of Example A.1
using the controller from LSOC. All states and inputs stabilize to zero.
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A.4.3 Simple Pendulum
Consider a simple nonlinear system in Example A.2. Similar as before, the goal
is to stabilize the unstable system at the origin. The domain is chosen to be Ω =
{(x1, x2) ∈ R

2 | |x1 | ≤ π, |x2 | ≤ 5}. The cost functions are set to q = 0.1x2
1 +0.05x2

2
and R = 0.02. At the boundary ofΩ, the state x1 has a periodic boundary condition,
and Ψ(x) is set to zero when x2 = ±5. The noise is set at Σε = I. A spectral
difference scheme is used for discretization. The domain is discretized into 101 by
103 grid. The operator was compressed from rank 8 to 4 for a relative residual 10−6.

The algorithm terminates with a separation rank of 12 when the difference in
eigenvalues is smaller than 10−7. The total number of iterations is 5, and the total
run time is 37 seconds. The convergence of the eigenvalue is given in Figure A.21.
The eigenvalue converges to 0.0366. Simulation results are shown in Figure A.22
in which the system is stabilized as desired when using a controller computed by
Algorithm 6. Figure A.22a shows 10 simulations of the system with initial states
randomly chosen and the corresponding input trajectories and the cost trajectories.
Figure A.22b shows the same simulations but with a magnified view. The average
infinite horizon cost over the 10 simulations is 0.0028.

Figure A.23 shows the simulation results when using the controller given by the
LSOC of the linearized systems. Note that the controller is computed from the
linearized system, but it is implemented on the nonlinear system. The same noise
values and initial conditions as in Figure A.22 are used. The average infinite horizon
cost over the 10 simulations is 0.0033. Again, by comparing Figures A.22 and A.23,
Algorithm 6 returns a controller that has a relatively similar, but slightly better,
performance to the LSOC technique.
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(a) Full view

(b) Magnified view

Figure A.22: State, input, and cost trajectories for 10 random trials of Example A.2
using the controller from Algorithm 6. All states and inputs stabilize to zero.
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(a) Full view

(b) Magnified view

Figure A.23: State, input, and cost trajectories for 10 random trials of Example A.2
using the controller from LSOC. All states and inputs stabilize to zero.
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A.4.4 VTOL
Lastly, consider Example A.4, which is a six dimensional nonlinear system. The
domain Ω is defined by px ∈ [−5, 5], py ∈ [−5, 5], vx ∈ [−5, 5], vy ∈ [−5, 5],
vθ ∈ [−5, 5], and a periodic θ ∈ [−π, π]. The cost functions are q(x) = xTx and
R = I. The goal is again to stabilize the system at the origin. Boundary conditions
Ψ(x)|x∈∂Ω = 0 is imposed for all non-periodic states. The noise is set at Σε = I.
Spectral difference scheme is used for discretization. The domain is discretized into
a 101× 103× 105× 107× 107× 101 grid. The operator was compressed from rank
48 to 20 for a relative residual 10−6.

The algorithm terminates with a separation rank of 15 when the difference in
eigenvalues is smaller than 10−8. The total number of iterations is 283, and the total
run time is 11 hours. The convergence of the eigenvalue is given in Figure A.24.
The eigenvalue converges to 4.2586. As seen in Figure A.24, the algorithm could be
terminated earlier than 283 iterationswhen both the error ‖F − F′‖ and the difference
in eigenvalue are small enough for a given application. Simulation results are shown
in Figure A.25 in which the system is stabilized as desired when using a controller
computed by Algorithm 6. Figure A.25a shows 10 simulations of the system with
initial states randomly chosen, and Figure A.25b shows the corresponding input
trajectories. The average infinite horizon cost over the 10 simulations is 0.0386.

(a) Eigenvalue (b) Error

Figure A.24: Convergence of eigenvalue and error ‖F − F′‖ of Example A.4 when
implementing Algorithm 6.



107

(a) State trajectories

(b) Input trajectories

Figure A.25: State, input, and cost trajectories for 10 random trials of Example A.4
using the controller from Algorithm 6. All states and inputs stabilize to zero. (a) is
the same as Figure 5.3.
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C h a p t e r 6

INTRODUCTION TO PART II

The previous part of this thesis solves optimal control problems without any strict
system behavior specifications. However, in many applications there exist require-
ments, such as a mobile robot’s need to avoid certain regions at all times and visit
other regions in a particular sequence. These requirements are incorporated into the
controller synthesis procedure using formal methods.

Formal synthesis is a paradigm for designing controllers automatically, which
are correct-by-construction, and thus reduces the verification overhead. In this
paradigm, a mathematical model of a system to be controlled and formal specifi-
cations of properties that are expected of the controlled system are given as inputs
to compute a controller that ensures the controlled system satisfies the properties.
For example, given a model for the behavior of a robot, synthesize a plan that
reaches a given part of the workspace while avoiding certain obstacles. The high
level specifications, for instance, could also capture mission level objectives such as
surveillance that require autonomous systems to operate over an unbounded amount
of time. Such specifications are captured in logics such as Linear Temporal Logic
(LTL) or using automata such as Büchi automata [30], [31], [123]–[125].

Since the work of [126] on automated synthesis began, multiple directions have been
pursued, including synthesizing finite state systems with respect to temporal logic
objectives [127], [128], and controlling discrete event systems [129]. Early works
in hybrid control systems focused on identifying subclasses of systems for which
controller synthesis is decidable including timed automata [130], rectangular hybrid
automata [131], and o-minimal automata [132], [133]. However, these classes of
systems have limited continuous and discrete dynamics, and the synthesis problem
becomes undecidable for a relatively simple class of hybrid systems [134].

For systems with complex dynamics, [135] introduced an abstraction based con-
troller synthesis. Abstraction based formal controller synthesis consists of the
following steps:

1. Afinite state abstraction of the system is constructed that “under-approximates”
the control actions and “over-approximates” the environment actions;
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2. An abstract controller for the abstract system is constructed using results from
automata and game theory;

3. A concrete controller for the original system is extracted from the abstract
controller, and is then implemented in the given system.

This method has been successfully applied in controller synthesis of switched sys-
tems [31], [125], and robotic path planning [136], [137].

Formal synthesis techniques that automatically generate controllers from high level
specifications have gained momentum in the recent past [30], [123], [124], [138].
While algorithmic results based on automata and game theory exist for controller
synthesis of finite state systems [123], abstraction basedmethods have gained promi-
nence in the case of dynamical systems with a potentially infinite state space [28],
[30], [139]–[141].

Often, in addition to designing a correct controller that satisfies qualitative objectives
such as avoiding obstacles, an application may require an optimality condition. For
instance, a robot should reach a desired state with minimum battery drain while
avoiding all obstacles. This thesis investigates an abstraction-refinement approach
to synthesize an optimal controller with regular properties that allow for bounded
time specifications such as reaching a target region or traversing a sequence of
regions, and ω-regular properties that allow for long term specifications such as
performing surveillance using minimum fuel in the long run.

This part of the thesis starts by defining pre-orders on systems, which respect
optimality and existence of controllers. That is, if a system H2 is higher up in
the ordering than a system H1, then the existence of controller for H2 with respect
to a qualitative property implies the existence of the same for H1, and the cost of
the optimal controller for H1 is at most that of H2. In this thesis, H2 is a finite
state weighted transition system on which the optimal controller synthesis problem
is solved with respect to given objectives. For regular objectives, a finite length
two-player game on a finite graph is solved. For ω-regular objectives, a two-player
quantitative game, namely, mean payoff parity game is solved. Here, mean payoff
refers to the “average” cost, and parity games encode the Büchi condition. For both,
convergence to a controller with costs arbitrarily close to the optimal cost is achieved
through iterative refinement, when certain kinds of robust controllers exist.

More precisely, first, an “abstraction” — a simplified finite state system — is
constructed from partitions of the state and input spaces, and the edges of the system
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are annotated with weights, which over-approximate the costs in the original system.
Then, a two-player game on the finite state system is solved to obtain a controller
for the abstraction, and subsequently, a controller for the original dynamical system.
This approach iteratively consider finer partitions of the state and input spaces,
corresponding to grids of size C/2i for some constant C and i = 0, 1, 2, . . .. For
discrete-time hybrid systems, if the dynamics and the cost function are Lipschitz
continuous and the optimal control for the original system satisfies certain kinds
of robustness property, the cost of the sequence of controllers constructed by the
synthesis procedure converges to the optimal cost.

6.1 Related Work and Contributions
The main contribution of this thesis is the optimality guarantee on the controllers
synthesized— an important missing piece inmost previous works that study optimal
controller synthesis using formal approaches [28], [29]. A hierarchical optimal
controller synthesis problem was studied [28], yet, no formal guarantees on the
optimal cost are provided. Similarly, [29] considered optimal control synthesis by
combining linear temporal logic, potential functions, and model predictive control
without formal guarantees on the optimal cost. On the other hand, the sequence
of controllers constructed by the approach presented in this thesis converges to the
optimal cost for discrete time hybrid systems. Furthermore, for each suboptimal
controller, the resulting trajectories have cost no greater than the optimal cost of the
corresponding abstract system. Thus, when computational resources is limited, the
best suboptimal controller found is guaranteed to generate trajectories with known
bounded costs.

In addition, the bounded length regular objective is more general than classical finite
horizon optimal control problems [142], [143] because the time horizon is not fixed
a priori. One of the approaches described in this thesis focuses on finite horizon
optimal control problems, but the input sequence length is not a priori fixed because
the regular property consists of finite traces, whereby the length is variable.

Apart from that, the method presented allows for a larger class of cost functions
in comparison to previous works [123], [139], [140], [144], [145]. These works
[139], [140] used abstraction-based methods to find an optimal time controller that
gives the shortest path, which satisfies certain reachability conditions. Similarly,
[144] considers a more general problem, but the cost is restricted to only include
state cost without allowing for transition cost. In contrast, the method in this thesis
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encodes transition cost in the abstraction scheme, thus allowing for picking a path
that is “shortest” with respect to a more general class of optimality conditions.
In term of ω-regular objectives, [123], [145] solve for optimal control under LTL
specifications. However, [123] minimizes a specific cost function — the maximum
time between satisfying instances of the optimizing proposition, and [145] considers
the weighted average cost. A larger class of cost functions is considered in [146], but
it restricts the specifications to a fragment of LTL specifications for computational
efficiency. The method proposed by this thesis allows for a larger class of cost
functions in comparison to previous works, and it does not place any restriction on
the possible specifications.

Another approach that is relevant to this thesis is to solve the optimal control
problem by abstracting the dynamical systems such that the value function of the
abstracted system is an upper bound to the value function associatedwith the original
optimal control problem [141], [147]. This technique allows for uncertainties in the
systems. However, it only applies to systems with bounded time behaviors. On the
other hand, [148] studies infinite behaviors, mainly the “reach and stay while avoid”
specifications, with average costs. Instead, the framework presented in this thesis
allows for both regular and ω-regular objectives.

Furthermore, the mixed-integer linear program based techniques in References
[124], [149] synthesize optimal controllers for a large class of systems and cost
functions with LTL specifications. However, unlike the approach presented, which
returns a feedback controller, these techniques return an open loop controller that
requires another layer of feedback controller to handle disturbances.

Lastly, while formal controller synthesis with respect to qualitative objectives over
infinite horizon such as those expressed in LTL or quantitative objectives such as
mean payoff have independently received attention in the context of dynamical sys-
tems, a framework that considers both aspects has received relatively less attention.
This thesis combines ideas from abstraction based controller synthesis for dynamical
systems and finite quantitative games [150], [151] to obtain an abstraction refine-
ment scheme for optimal controller synthesis ofω-regular objectives. The technique
in this thesis is complimentary to [150]–[152] that study finite quantitative games.
The approach proposed constructs a two-player weighted graph from the abstraction
of a given dynamical system and formulates a two-player mean payoff parity game
based on ω-regular properties. The algorithms from [150], [151] solve the mean
payoff parity game, and return the optimal strategy that are projected back to the
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original dynamical system using the approach in this thesis. A mean payoff parity
game may not return a finite strategy in general [151]. However, a finite memory
strategy is achievable for an ε-optimal cost through solving an energy parity game
[150]. Therefore, this thesis brings together techniques in finite quantitative games
and abstraction based controller synthesis.

The generality of the approach proposed enables control engineers to synthesize
controllers with more flexible structure and cost considerations. The method in-
troduced in this thesis applies to the general class of discrete-time hybrid systems.
However, due to its generality, the computation burden could be high because the op-
timizations that compute the weights depend on the cost function and the dynamics.
A prototype tool OptCAR that implements the abstraction refinement algorithm is
developed for synthesizing a (finite) sequence of controllers for discrete-time linear
hybrid systems.

6.2 Outline
This part of the thesis includes the following chapters:

Chapter 7 introduces the mathematical notations, presents the semantic model for
discrete time hybrid systems with cost (i.e., weighted transition systems), and
formalizes the optimal control problem.

Chapter 8 defines the preorder for optimal control that preserves the cost and
presents the abstraction refinement procedure for constructing finite state
systems, which simulate a given transition system, termed the abstract system.
The abstract system satisfies the condition that the cost of the optimal control
on the abstract system provides an upper bound on the cost of the optimal
control for the original system. Furthermore, each suboptimal controller
yields trajectories that have the cost upper bounded by the cost of the optimal
control on the corresponding abstract system.

Chapter 9 presents the abstraction-refinement method to synthesize control inputs
for a discrete-time hybrid system. The controlled system behavior satisfies
a finite-word linear-time temporal objective while incurring minimal cost.
An abstract finite state weighted transition system is constructed from finite
partitions of the state and input spaces by solving optimization problems.
A sequence of suboptimal controllers is obtained by considering a sequence
of uniformly refined partitions. In fact, the costs achieved by the sequence
of suboptimal controllers converge to the optimal cost for a class of hybrid
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systems that has robust optimal input trajectory. Examples illustrate the
feasibility of this approach to synthesize automatically suboptimal controllers
with improving optimal costs.

Chapter 10 presents the abstraction-refinement based framework for optimal con-
troller synthesis of discrete-time hybrid systems with respect to ω-regular ob-
jectives. Similar to Chapter 9, it consists of first abstracting the discrete-time
“concrete” system into a finite weighted transition system using a finite parti-
tion of the state-space. Then, a two-player mean payoff parity game is solved
on the product of the abstract system and the Büchi automaton correspond-
ing to the ω-regular objective, to obtain an optimal “abstract” controller that
satisfies the ω-regular objective. The abstract controller is guaranteed to be
implementable in the concrete discrete-time system, with a sub-optimal cost.
The abstraction is refined with finer partitions to reduce the sub-optimality.
Under the assumption on the existence of certain robust controllers, the refine-
ment procedure is guaranteed to find controllers whose costs are arbitrarily
close to the optimal cost. An example is presented to illustrate the feasibility
of the approach.

Appendices B–D contain the full proofs for results in Chapters 8–10, respectively.

Part of the contents in this part appeared in publication [153]. However, the conver-
gence results are generalized to discrete time hybrid nonlinear systems instead of
just piecewise linear systems.
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C h a p t e r 7

WEIGHTED TRANSITION SYSTEMS

This chapter describes the semantic model for discrete time hybrid systems with
cost (i.e., weighted transition systems), and formalizes the optimal control problem.
We begin with defining useful mathematical notations that are used throughout this
part of the thesis.

7.1 Notations and Definitions
An ε-ball around a point x is denoted as Bε(x) = {y ∈ Rn | ‖y − x‖∞ ≤ ε}. Let
S ⊆ Rk be a k-dimensional subset. The function Grid splits S into rectangular sets
with ε width. That is, Grid(S, ε) ={

S′
∃d1, . . . , dk ∈ Z, S′ = S

⋂ k∏
i=1
(diε, (di + 1)ε)

}
.

Given a function, f : A → B, for any A ⊆ A, f (A) = { f (a)|a ∈ A}. The domain
of a function f is denoted as dom( f ). Given an equivalence relation R ⊆ A × A

and an element a ∈ A, [a]R = {b | (a, b) ∈ R} denotes the equivalence class of R

containing a.

7.2 Weighted Transition Systems
This section defines the weighted transition systems and related concepts.

Definition 7.1. A weighted transition system is defined as T = (S,Sinit,U,P,∆,

L,W), where

• S is a set of states;
• Sinit ⊆ S is a set of initial states;
• U is a set of control inputs;
• P is a set of propositions;
• ∆ ⊆ S ×U × S is a transition relation;
• L : S → P is a state labeling function, and
• W : S ×U × S → R+ is the transition cost function.

An equivalent notation for the set of propositions is to define P′ as the set of
propositions and let the labeling function map from states to the power set of P′.
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Here, P is related toP′, wherebyP = 2P ′. Henceforth, a weighted transition system
is referred as a transition system. For any s ∈ S, define the set Enabled(s) = {u ∈
U | ∃s′ ∈ S s.t. (s, u, s′) ∈ ∆} to represent all inputs for which there is a transition
from the state s. A transition system is complete if for all s ∈ S, Enabled(s) = U.
A transition system is finite if S andU are finite. A finite state automaton (denoted
(T , P f )) is a finite transition system T along with a proposition P f ∈ P, which
represents the final states. For the rest of the section, fix the transition system
T = (S,Sinit,U,P,∆,L,W).

Definition 7.2. A transition systemT is a complete transition system if for all s ∈ S,
U = Enabled(s).

7.3 Paths and Traces
A path of the transition system T is a finite or infinite sequence of states and inputs,
ζ = s0u0s1u1s2 . . ., where s0 ∈ S

init, si ∈ S, ui ∈ U, and (si, ui, si+1) ∈ ∆. The
set of all paths of T is denoted Paths(T ), and the set of all finite paths of T that
ends at a state (i.e., the last item in a path is a state instead of an input) is denoted
Paths f (T ). Given a finite path ζ = s0u0s1u1s2 . . . uk−1sk of T , the length of ζ is
k + 1.

A trace of a transition system is the sequence of state labels of a path. The trace of
ζ , denoted Tr(ζ), is the sequence L(s0)L(s1) . . ..

7.4 Properties
A property Π over a set of propositions P is a set of finite or infinite sequences
π = p0p1 . . ., where each pi ∈ P. A property describes the desired behaviors of
the system. For algorithmic purposes, we need to restrict ourselves to properties
that can be specified using some finite data structure. Two classes of properties are
considered in this thesis: regular properties and ω-regular properties.

7.4.1 Regular Properties
Regular property describes finite behaviors of systems. A property is regular if it
consists of the traces of a finite state automaton (T , P f ), that is, it is the set of all
traces of paths of T , which start in an initial state and end in a state labelled by
P f . Thus, a regular property is a set of only finite sequences. This thesis considers
regular property that is specified by a finite state automaton (T , P f ). Figure 7.1
shows an illustration. The properties expressed by popular logics such as finite
words linear-time temporal logic (LTL) [154] are regular, but their translation into
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P1 PfP2

(a) Automaton representing a regular property Π of a finite behavior.

P2

Pf

P1

(b) Example paths given by a winning strategy σ
with respect to Π.

Figure 7.1: An example of a regular property and corresponding paths given by a
winning strategy. This property is more general than a typical finite horizon control
problem because the length of the sequence/path is not set a priori.

the finite transition system representation can lead to an exponential blow up in the
number of states with respect to the size of the formula [155].

Remark. Regular specifications already capture properties that are more general
than finite horizon control, since a regular property can characterize behaviors
involving unbounded length. For instance, consider reaching a target region without
a priori bound on the number of steps required to reach the region.

7.4.2 ω-regular Properties
ω-regular properties are an expressive class of properties involving infinite behav-
iors, which can be represented by Büchi automata.

Definition 7.3. A Büchi automaton is defined as B = (Q,Qinit,P, E, F ), where

• Q is a finite set of states;
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• Qinit ⊆ Q is a set of initial states;
• P is a finite set of propositions;
• E ⊆ Q × P × Q is a transition relation, and
• F ⊆ Q is a set of accepting states.

A sequence π over Π is accepted by the Büchi automaton if there is a “path” in
the automaton whose labels correspond to π and the path visits some state from F
infinitely often. A run of a Büchi automaton B over a sequence π = p0p1 . . . is a
sequence r = q0q1 . . . such that q0 ∈ Q

init and (qi, pi, qi+1) ∈ E for all i. Given a
sequence of states r = q0q1 . . ., Inf(r) denotes the states that occur infinitely often
in r , that is, Inf(r) = {q | ∀i, ∃ j > i, q j = q}, A sequence π is accepted by B if there
exists a run r over π such that Inf(r) ∩ F , ∅. The language of a Büchi automaton
B, denoted L(B), is the set of all sequences π that are accepted by it. A property Π
is ω-regular if it is the language of some Büchi automaton B, that is, Π = L(B).

Figure 7.2a shows a navigation scenario, where we need to perform surveillance of

B

A

X

Ω

(a)

q1 q3q2A B

B,	Ω

A,	Ω

A,	B,	Ω

q4

A,	B,	X,	Ω

X

X
X

(b)

Figure 7.2: The system is required to visit regions A and B infinitely often and avoid
region X. This property is ω-regular and it is represented as a Büchi automaton in
(b). The accepting state is q3, and the initial states are q1, q2, and q3.
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the regions A and B (visit them infinitely often), while avoiding the region X . Let
Ω represent the rest of the region (shown in white). Figure 7.2b shows a Büchi
automaton corresponding to the surveillance objective. Each region is captured
using a proposition. We start in state q1, q2, or q3; we move to state q4 if we
encounter X , and never return to {q1, q2, q3}. We move from q1 to q2 through the
edge A and from q2 to q3 through the edge B. So, every time we visit q3, we have
paid at least one visit to both A and B. From state q3 we return to q1 to again visit
each of A and B.

7.5 Strategies
A strategy specifies the control inputs to a transition system at different time points.
More specifically, a partial strategy σ for the transition system T is a partial
function σ : Paths f (T ) → U such that for a finite path ζ ∈ Paths f (T ) and
ζ = s0u0s1 . . . ui−1si,σ(ζ) ∈ Enabled(si). Afinite or infinite path ζ = s0u0s1u1s2 . . .

is said to conform to a partial strategy σ, if for all i, σ(s0u0 . . . si) = ui. A strategy
σ is a partial strategy for which σ(ζ) is defined for all finite paths ζ that conform
with σ.

Let Pathsσ(T , s0) denote the set of all infinite paths that conform to σ and start at
state s0. Let Str(T ) denote the set of all strategies for T .

Definition 7.4. A strategy σ for the transition system T iswinning for a state s0 ∈ S

with respect to aω-regular propertyΠ over the propositionsP, ifTr(Pathsσ(T , s0)) ⊆

Π.

Definition 7.4 is defined for strategy that allows for infinite paths. When the property
is regular, only strategies that have no infinite paths conforming to it are of interest.
Let Str f (T ) denote the set of all strategies, which have no infinite paths conforming
to them. Note that the lengths of the paths which conform to a strategy in Str f (T )

could still be variable.

A finite path ζ = s0u0 . . . sk maximally conforms to a strategy σ ∈ Str f (T ), if ζ
conforms toσ and there is no extension, ζ ′ = s0u0 . . . skuk sk+1 of ζ , which conforms
to σ. Let Pathsm

σ(T , s0) denotes the maximally conforming finite paths of T with
respect to σ starting at a state s0.

To synthesize a strategy forT from a state s0 ∈ S
init such that all maximal executions

conforming to it reach a state in a set S f ⊆ S, label the states in S f with a unique
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proposition. Then, let the property Π be the set of all traces corresponding to paths,
which start in Sinit and end in S f , and do not visit S f in the middle.

Therefore, for a regular property, a slightly different form of winning is considered.

Definition 7.5. A strategy σ for the transition system T iswinning for a state s0 ∈ S

with respect to a regular property Π over the propositions P, if σ ∈ Str f (T ) and
Tr(Pathsm

σ(T , s0)) ⊆ Π.

7.5.1 Cost of strategies
Two type of costs are considered for finite and infinite paths respectively.

The cost of a finite path is the sum of the weights on the individual edges. Given a
finite path ζ = s0u0s1 . . . sk , define

W(ζ) =

k−1∑
j=0
W(s j, u j, s j+1).

Consequently, the following proposition holds.

Proposition 7.1. Given ζ = s0u0s1 . . . sk and ζ ′ = s′0u′0 s′1 . . . s
′
k , ifW(s j, u j, s j+1) ≤

W(s′j, u
′
j, s
′
j+1) for all j, thenW(ζ) ≤ W(ζ ′).

For infinite paths, we consider mean payoff costs as a generalization of average costs.
Given an infinite path ζ = s0u0s1 . . . of the transition system T , define

W(ζ) = lim
N→∞

1
N

N−1∑
j=0
W(s j, u j, s j+1).

Similarly, the following proposition holds.

Proposition 7.2. Given ζ = s0u0s1 . . . and ζ ′ = s′0u′0 s′1 . . ., ifW(s j, u j, s j+1) ≤

W(s′j, u
′
j, s
′
j+1) for all j, thenW(ζ) ≤ W(ζ ′).

This monotonicity property seems trivial, but plays an important role in the subse-
quent analysis. In fact, results in this thesis carry over for several other cost functions
for paths such as average cost, maximum cost, or discounted sum. The analysis only
relies on the fact that the cost of a path is monotonic with respect to the cost on the
transitions. As such, for simplicity, we fix one of the definitions.
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For a regular property, the cost of a strategy σ of the transition system T with
respect to an initial state s0 is defined as

W(T , σ, s0) = sup{W(ζ) | ζ ∈ Pathsm
σ(T , s0)}.

Note that only the maximally conforming paths are considered. Accordingly, given
a regular property Π over P, the optimal cost of winning T from an initial state s0

with respect to a property Π is defined as

W(T , s0,Π) = inf{W(T , σ, s0) | σ ∈ Str f (T ), Tr(Pathsm
σ(T , s0)) ⊆ Π}.

Similarly, for a ω-regular property, the cost of a strategy σ of the transition system
T with respect to an initial state s0 is defined as

W(T , σ, s0) = sup{W(ζ) | ζ ∈ Pathsσ(T , s0)}.

Thus, given a ω-regular property Π over P, the optimal cost of winning T from an
initial state s0 with respect to a property Π is defined as

W(T , s0,Π) = inf{W(T , σ, s0) | σ ∈ Str(T ), Tr(Pathsσ(T , s0)) ⊆ Π}.

For both cases, the cost is taken to be infinity if the minimization is over an empty
set. Denote an optimal strategy that achieves the optimal cost as σ(T , s0,Π). Note
that the optimal strategy may not be unique. Furthermore, the optimal strategy does
not exist if a given property is not satisfiable by the system.

7.6 Optimal Control Problem
Given the transition system T , an initial state s0, and a property Π, the optimal
control problem is to compute an optimal winning strategy from s0 with respect to
Π, if it exists, and the optimal cost of winning.
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C h a p t e r 8

ABSTRACTION AND REFINEMENT

This chapter defines the preorder for optimal control that preserves the cost and
presents the abstraction refinement procedure for constructing finite state systems,
which simulate a given transition system.

8.1 Preorders for Optimal Control
In this section, a preorder on the class of transition systems is defined such that it
preserves the optimal cost of winning. In other words, the optimal cost of winning in
a system higher up in the ordering is an upper bound on the optimal cost of winning
in a system below it. For this, the definition of alternating simulations [156] is
extended to include costs.

Definition 8.1. Given two transition systems Ti = (Si,S
init
i , Ui,P,∆i,Li,Wi), for

i = 1, 2, a simulation from T1 to T2 is a pair of relations (α, β), where α ⊆ S1 × S2

and β ⊆ S1 ×U1 × S2 ×U2, such that:

1. ∀ (s1, s2) ∈ α, L1(s1) = L2(s2).
2. ∀ s1 ∈ S

init
1 , ∃ s2 ∈ S

init
2 such that (s1, s2) ∈ α;

3. ∀ (s1, s2) ∈ α and u2 ∈ Enabled(s2), ∃ u1 ∈ Enabled(s1) such that:

a) (s1, u1, s2, u2) ∈ β

b) ∀ (s1, u1, s′1) ∈ ∆1, ∃ (s2, u2, s′2) ∈ ∆2 such that (s′1, s
′
2) ∈ α andW1(s1, u1,

s′1) ≤ W2(s2, u2, s′2).

Let T1 �(α,β) T2 denote that (α, β) is a simulation from T1 to T2. If there exists some
(α, β) such that T1 �(α,β) T2, then T2 simulates T1, and it is denoted as T1 � T2.

Theorem 8.1. � is a preorder on the class of transition systems over a set of
propositions P.

The next result shows that � is an ordering on the transition systems, which “pre-
serves” optimal control with respect to a regular property.

Theorem 8.2. Given two transition systems Ti = (Si,S
init
i , Ui,P,∆i,Li,Wi) for

i = 1, 2, let Π be a regular property over a set of propositions P, T1 �(α,β) T2
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and (s0, s′0) ∈ α for s0 ∈ S
init
1 and s′0 ∈ S

init
2 . If there exists a winning strategy

σ2 for T2 from s′0 with respect to Π, then there exists a winning strategy σ1 for
T1 from s0 with respect to Π such thatW1(T1, σ1, s0) ≤ W2(T2, σ2, s′0). Therefore,
W1(T1, s0,Π) ≤ W2(T2, s′0,Π).

Similarly, � is also an ordering on the transition systems, which “preserves” optimal
control with respect to an ω-regular property.

Theorem 8.3. Given two transition systems Ti = (Si,S
init
i , Ui,P,∆i,Li,Wi) for

i = 1, 2, let Π be an ω-regular property over a set of propositions P, T1 �(α,β) T2
and (s0, s′0) ∈ α for s0 ∈ S

init
1 and s′0 ∈ S

init
2 . If there exists a winning strategy

σ2 for T2 from s′0 with respect to Π, then there exists a winning strategy σ1 for
T1 from s0 with respect to Π such thatW1(T1, σ1, s0) ≤ W2(T2, σ2, s′0). Therefore,
W1(T1, s0,Π) ≤ W2(T2, s′0,Π).

Theorems 8.2 and 8.3 allows for the construction of a strategy for the simulated
system (i.e., T1) given a strategy for the simulation (i.e., T2). This theorem is
therefore important for the algorithms presented in later chapters. The abstraction
refinement procedure for constructing finite state systems, which simulate a given
transition system is presented next.

8.2 Abstraction
During an abstraction, the state and input spaces are divided into finite number of
parts, and they are used as symbolic states and inputs, respectively, in the abstract
transition system. Henceforth, fix a transition system T = (S,Sinit,U,P,∆,L,W).

An abstraction function constructs an abstract transition system Abs(T ,≡S,≡U)

given the transition system T , and two equivalence relations ≡S and ≡U on the
state-space S and the input-spaceU, respectively. To ensure a well defined abstract
transition system, ≡S on S needs to respect both the set of labels L and the set of
initial statesSinit. In other words, the labels are the same for all equivalent states, and
the initial states in the setSinit are not equivalent to any states outside of the setSinit.
More formally, an equivalence relation ≡S on S respects L, if for all (s1, s2) ∈ ≡S,
L(s1) = L(s2). Furthermore, an equivalence relation ≡S on S respects Sinit, if for
all (s1, s2) ∈ ≡S, where s1 ∈ S

init, we also have s2 ∈ S
init.

Definition 8.2. Let ≡S ⊆ S × S and ≡U ⊆ U ×U be two equivalence relations of
finite index such that ≡S respects the labeling function L and the initial states Sinit.
Abs(T ,≡S,≡U) = (S

′,Sinit′,U′,P,∆′,L′,W′), where
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• S′ = {[s]≡S | s ∈ S} is the equivalence classes of ≡S.
• Sinit′ = {[s]≡S | s ∈ S

init} ⊆ S′ .
• U′ = {[u]≡U | u ∈ U} is the equivalence classes of ≡U .
• ∆′ = {(S1,U, S2) | ∃s ∈ S1, s′ ∈ S2, u ∈ U, s.t . (s, u, s′) ∈ ∆}.
• For S ∈ S′, L′(S) = L(s) for any s ∈ S.
• For (S1,U, S2) ∈ ∆

′,W′(S1,U, S2) = sup{W(s1, u, s2) | s1 ∈ S1, s2 ∈ S2, u ∈

U, (s1, u, s2) ∈ ∆}.

Call T the concrete system and Abs(T ,≡S,≡U) the abstract system. The next
proposition states that the abstract system simulates the concrete system.

Proposition 8.1. If T is a complete transition system, T � Abs(T ,≡S,≡U).

8.3 Refinement
A sequence of abstract systems, which are closer to the original system than their
predecessors in the sequence can be constructed by choosing finer equivalence
relations on the state and input spaces.

Definition 8.3. Let T1 and T3 be transition systems such that T1 � T3. A transition
system T2 is said to be a refinement of T3 with respect to T1, if T1 � T2 � T3.

The next proposition states that the finer equivalence relations on the state and input
spaces will refine the abstract system.

Proposition 8.2. Let ≡S,≡
′
S ⊆ S×S and ≡U,≡

′
U ⊆ U×U be equivalence relations

of finite index such that≡′S ⊆ ≡S and≡′U ⊆ ≡U . Then, Abs(T ,≡′S,≡
′
U) is a refinement

of Abs(T ,≡S,≡U) with respect to T .

Given the abstraction refinement procedure, a dynamical system can be abstracted
into a finite state transition systemwith a finer and finer grid until an optimal strategy
for the finite state transition system can be computed. Once an optimal strategy is
obtained, the optimal controller for the dynamical system can be extracted from
the optimal strategy by Theorems 8.2 and 8.3. The next chapter discusses optimal
controller synthesis techniques for regular objectives in more detail.
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C h a p t e r 9

OPTIMAL CONTROLLER SYNTHESIS FOR REGULAR
OBJECTIVES

This chapter considers the optimal controller synthesis procedure for discrete time
hybrid systems with regular objectives. Given a hybrid system described as a state
transition system, an initial state, and a regular property, the optimal control problem
is to compute an optimal winning strategy from the initial state with respect to the
regular property, if it exists, and the optimal cost of winning. The optimal winning
strategy is the optimal controller that can be applied on a system to ensure that the
system’s specifications are achieved with minimum cost.

This chapter begins with an overview of the overall abstraction refinement technique
for synthesizing optimal controllers, and the main components of the framework.
Then, the application of the technique on a hybrid system is presented with an
analysis of the algorithm’s convergence to the optimal cost. Lastly, two example
systems are used to illustrate the implementation of the technique.

9.1 Controller Synthesis for Regular Objectives
In this section, given a weighted transition system T , an initial state s0, and a
regular property Π, we seek to synthesize an optimal controller σ for T . The
first subsection discusses the overall abstraction refinement procedure and the main
components of the framework. This framework is summarized in Algorithm 8. The
next subsection discusses the main subroutine of Algorithm 1, namely, the optimal
strategy synthesis procedure given a finite state transition system, an initial state,
and a regular property.

9.1.1 Abstraction-Refinement Procedure (OptCAR)
For the rest of the section, fix the transition system T = (S,Sinit,U,P,∆,L,W),
where T is an infinite state system. Note that since T is input deterministic,
σ(T , s0,Π) will correspond to a unique path starting from s0. In general, solving
for an optimal strategy is difficult because T is a infinite state system; therefore,
we focus on synthesizing suboptimal strategies using Algorithm 8. As an overview,
Algorithm 8 first partitions the state space into grids of a particular size, and
constructs an abstract system T̂ using ConsAbs for the system T . Then, it computes
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Algorithm 8 OptCAR (Abstraction Refinement Procedure)
Input: System T , regular property Π as a finite state automaton, initial state s0,
and rational number ε0 > 0, and maximum iterations im
Set ε := ε0, i := 0
while i < im do
T̂ , x̂0 := ConsAbs(T , s0, ε)
J, σ̂ := SolveFiniteGame(T̂ , x̂0,Π)
σ := ExtractController(σ̂, T̂ ,T)
Output σ and Jε
ε := ε

2
i := i + 1

end while

the optimal cost J and strategy of the abstract system through a two-player game
SolveFiniteGame. A suboptimal strategy for T can then be extracted from the
strategy of the abstract system T̂ with the cost upper bounded by J using the
procedure ExtractController. If the upper bound J is not zero, refine the state space
partitions using smaller grids, and repeat the whole process to reduce the cost J.
As a result, this algorithm outputs a sequence of suboptimal strategies, whose costs
converge to that of the optimal cost.

More precisely, in each iteration, Algorithm 8 performs the following sequence
of steps. First, it constructs a finite state abstraction T̂ of T using the function
ConsAbs(T , ε). The function ConsAbs(T , ε) outputs Abs(T ,≡ε

S
,≡εU), where ≡

ε
S

and ≡εU are equivalence relations whose equivalences classes are the elements of
Grid(S, ε) and Grid(U, ε), respectively. Define the initial abstract state as ŝ0 :=
[s0]≡ε

S
. This step solves |S|2 |U| optimizations, where |S| is the number of states

in T̂ and |U| is the number of control inputs in T̂ . These optimizations can be
computed in parallel. Next, SolveFiniteGame(T̂ , x̂0,Π) computes the optimal cost
of winning J =W(T̂ , x̂0,Π)with respect toΠ in the finite state transition system T̂
and the corresponding strategy σ̂ = σ(T̂ , x̂0,Π) for T̂ through a two-player game,
discussed more in the next section (see Algorithm 9).

Finally,ExtractController(σ̂, T̂ ,D)outputs a suboptimal strategy/controllerσwhose
cost is bounded by the optimal cost J for the abstract system. The existence of σ
given σ̂ is guaranteed by Theorem 8.2. Essentially, σ provides the sequence of
inputs u for the system as required by the regular property Π. To illustrate the
relationship between σ and σ̂, let u0, u1, . . . , ut−1 be the inputs, which have been
computed, and let s0, s1, . . . , st be the sequence of state generated by the inputs. The
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t-th control input ut is obtained by finding the minimum cost transition (st, ut, st+1),
where ut ∈ U and st+1 ∈ S. The setU is defined asU = σ̂([s0]≡ε

S
[u0]≡εU . . . [st]≡ε

S
),

and S′ is the union of all S′′ such that ([st]≡ε
S
,U,S′′) is a transition of T̂ . The

inputs ut can be computed by solving a linear program when the cost function and
the transitions are linear and the equivalence classes are polyhedral sets.

This algorithm outputs a sequence of suboptimal strategies, whose costs are non-
increasing over the iterations. In the beginning of the procedure, when the parti-
tioning is coarse, a winning strategy σ̂ might not exist even if the underlying system
T has an optimal solution. However, if one continues to refine the grid, a winning
strategy will exist if T has an optimal solution. In fact, a more refined partitioning
will return a controller with trajectory cost that is no worse than the trajectory cost
resulting from the controller corresponding to the winning strategy for the current
partitioning. Thus, the algorithm can be terminated at a specific iteration based on
the application and the computational resources. Furthermore, for a special class of
systems that has a robust optimal path, we show that the suboptimal cost converges
to the optimal cost as iteration index i goes to infinity. See Section 9.2.3 for details.

Algorithm 8 can be instantiated to any class of hybrid systems. However, the
computational complexity of the optimization problems that will need to be solved
in the construction of the abstract system and the extraction of awinning strategywill
depend on the class of dynamics and the type of the cost function. For a piecewise
linear system with linear cost function, the maximization during the abstraction
procedure is a linear program, because the partitions of ≡S and ≡U are polyhedral
sets (grid elements). If computation resources are limited, the best suboptimal
controller found with respect to the cost upper bound J is guaranteed to generate a
trajectory that satisfies the properties Π and has cost no greater than J.

9.1.2 Synthesizing Optimal Strategy
This section presents a value iteration scheme for computing the optimal cost and
optimal strategy for a finite transition system T with respect to a regular property
Π performed by the subroutine SolveFiniteGame in Algorithm 8. We will call a
strategy that has a linear structure a layered strategy. In other words, there are no
paths in the abstract system of length greater than the number of states in the system
that conform with the strategy. This section presents the algorithm for computing
an optimal strategy for a finite state transition system that is layered. The algorithm
is given in Algorithm 9, which is a modified Bellman-Ford algorithm [157].
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Algorithm 9 SolveFiniteGame (Two-Player Games)
Input: Finite state transition system TS, regular property Π specified as (TP, P f )

T , S f := ReduceReach(TS,TP, P f )

Set for every s ∈ S − S f , C(s) := 0 if s ∈ S f and∞ otherwise
for i = 1, . . . , |S| do

for s ∈ S do

Ci(s) := min
u∈U

max
(s,u,s′)∈∆

(W(s, u, s′) + Ci−1(s′))

σi(s) := arg min
u∈U

max
(s,u,s′)∈∆

(W(s, u, s′) + Ci−1(s′))

end for
end for
if C|S |(s0) < ∞ then

Output the strategy σ |S | and the cost C |S |(s0)
end if

The functionReduceReach reduces the problemof computing the layered strategy for
a regular propertyΠ to that of reachability. It consists of taking a product of the input
transition system TS and the transition system TP of the property. More formally,
given the input transition system TS and the transition system TP of the property, the
product transition system returned by ReduceReach is defined as follows.

Definition 9.1. Let TS = (SS,S
init
S ,US,P,∆S,LS,WS) be a state transition system,

and TP = (SP,S
init
P ,UP,P,∆P, LP,WP) be the automation that represents the reg-

ular property. Then, the product transition system is T = (S,Sinit,U,P,∆,L,W),
where

• S = {(s1, s2) ∈ SS × SP | LS(s1) = LP(s2)} ∪ {sd}, where sd is a dead state;
• Sinit = Sinit

S × S
init
P ;

• U = US;
• P is the same for both TS and TP. The final states of TP is denoted by a
proposition P f ∈ P;

• ∆ = ∆1∪∆2, where∆1 = {((s1, s2), u, (s′1, s
′
2)) ∈ S×U×(S\{sd}) | (s1, u, s′1) ∈

∆S, (s2, a, s′2) ∈ ∆P for some a} and ∆2 = {((s1, s2), u, sd) ∈ S × U × {sd}}

such that there exists (s1, u, s′1) ∈ ∆S for some s′1 and there does not exist a

and s′2 such that (s2, a, s′2) ∈ ∆P and LS(s′1) = LP(s′2);
• L(s) = LS(s) for s ∈ SS;
• W((s1, s2), u, (s′1, s

′
2)) =WS(s1, u, s2).
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Furthermore, the set of final states S f of T with respect with reachability is solved
as S f = {(s1, s2) ∈ (S\{sd}) × (S\{sd}) | LP(s2) = P f }.

The algorithm initially assigns a cost of 0 to the states in S f and ∞ otherwise. The
cost Ci in the i-iteration captures the optimal cost of reaching S f by a strategy in
which all paths that conform to it have length at most i, andσi stores a corresponding
strategy. Therefore, C|S| provides a layered strategy if C|S|(s0) < ∞. The algorithm
can be improved, wherein it terminates earlier than completing the |S| iterations, if
the costs C do not change between iterations. In the worst case, this algorithm runs
in O(|∆| |S|) time, where |∆| is the number of transitions in T and |S| is the number
of states in T .

Next, we will describes how to implement Algorithms 8 and 9 to synthesize an
optimal controller for a class of hybrid systems, and show that Algorithm 8 will
converge to the optimal cost with refinement.

9.2 Controller Synthesis for Hybrid Systems
This section considers an optimal control problem for discrete-time hybrid systems.
The abstraction refinement approach is applied to construct a series of controllers
with improving suboptimal costs that converge to the optimal cost under the existence
of a robust optimal control.

9.2.1 Problem Formulation
A discrete-time hybrid system is a tuple (X,Xinit,U,P, { fi, Pi)}i∈[m], Ld,J), where
the state-space X ⊆ Rn and the input-spaceU ⊆ Rp are compact sets, Xinit ⊆ X is
the set of initial states, P is a finite set of propositions, fi is a Lipschitz continuous
function of x ∈ X and u ∈ U, and Pi is a polyhedral set, such that {Pi}i∈[m] is a
polyhedral partition ofX,Ld : [m] → P is a labeling function andJ : X×U → R+
is a Lipschitz continuous cost function. Note that fi can be the same for different i.
We associate a unique label to each regionPi. We could have assigned different labels
to different regions in some polyhedral partition of Pi; we do not lose expressiveness
here, since the latter can be transformed to the former problem by considering a
finer partition whose regions are the regions partitioning each Pi according to the
label.

Given an initial state x0 ∈ X
init and a sequence of control inputs u = {ut}t∈[k], where

ut ∈ U, φ(x0, u) = {xt}t∈[k+1] is the sequence of states visited under the control u,
where xt+1 = ft(xt, ut), and ft = fi if xt ∈ Pi. The cost of the sequence φ(x0, u),
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J(φ(x0, u)), is given by
∑

t∈[k] J(xt+1, ut). We define the partition sequence of
{xt}t∈[k+1], denoted PS({xt}t∈[k+1]), to be the sequence of partitions visited by the
states, namely, Pi1, . . . , Pik+1 such that xt ∈ Pit for all t ∈ [k + 1].

Problem 9.1 (Optimal control problem). Given an n-dimensional discrete-time
hybrid system D = (X,Xinit,U,P, {( fi, Pi)}i∈[m],Ld,J), a state x∗0 ∈ X

init and
a regular property Π over P, find a sequence of control inputs u∗ for which
Ld(φ(x∗0, u

∗)) ∈ Π and J(φ(x∗0, u
∗)) is minimized.

Remark. Although the regular propertyΠ is specified over finite sequences, it could
potentially contain finite sequences of unbounded lengths (i.e., no fixed upper bound
on the sequence length). Therefore, the Problem 9.1 is not the same as a classical
finite horizon problem, because the optimal control sequence length is not fixed a
priori.

9.2.2 Equivalent Optimal Strategy Problem
A discrete-time hybrid system D = (X,Xinit,U, P, {( fi, Pi)}i∈[m], Ld, J) can be
represented as a weighted transition system, TD = (X,Xinit,U,P,∆,L,W), where
∆ = {(x, u, x′) ∈ X×U×X | x′ = f (x, u), where f = fi for x ∈ Pi}, L(x) = Ld(i),
where x ∈ Pi, andW(x, u, x′) = J(x′, u). Consequently, Problem 9.1 is equivalent
to the following problem:

Problem 9.2 (Optimal strategy problem).
Given aweighted transition systemTD = (X,Xinit,U,P,∆,L,W), a state x∗0 ∈ X

init

and a regular property Π over P, find an optimal winning strategy σ(TD, x∗0,Π) for
which the optimal cost of winning TD with respect to Π,W(TD, x∗0,Π), is achieved.

9.2.3 Analysis of Algorithm 8 for Problem 9.2
This section analyzes the output of Algorithm 8, and shows that the suboptimal cost
converges to the optimal cost if a robust optimal strategy exists. Note that even
without the existence of a robust optimal strategy, we can still guarantee that the
costs due to refinement are non-increasing.

Definition 9.2. Given the system defined in Problem 9.1, let u be the input se-
quence that results in a trajectory φ(x0, u) = {xt}t∈[k+1] for an initial state x0, where
PS(φ(x0, u)) = {Pit }t∈[k+1]. This input sequence u is said to be robust with respect
to the initial state x0 if there exists constants εt > 0 such that Bεt (xt) ⊆ Pit for all
t ∈ [k + 1].
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This definition of robustness is different from the typical robust control’s definition.
In robust control, the robustness is defined with respect to system uncertainties or
external disturbances. Here, the system is deterministic. Instead, this definition
concerns with an input sequence that will result in a state trajectory, which does not
land on the boundary of polyhedral partitions of the state space X. In other words,
the state label will not change if a state is slightly perturbed.

Let us denote the elements in the iteration of Algorithm 8 corresponding to a
particular ε as T̂ε for T̂ , x̂ε0 for x̂0, Jε for J, σ̂ε for σ̂, and σε for σD .

Henceforth, letu∗ = {u∗t }t∈[k] be a robust optimal control input sequencewith respect
to the initial state x∗0 and ζ∗ = φ(x∗0, u

∗) = {x∗t }t∈[k+1] be the corresponding optimal
trajectory for Problem 9.1. The proof also requires a special kind of strategy that
ensures that there is a unique path conforming to this strategy, by choosing inputs
that result in exactly one successor state (see Figure 9.1).

Definition 9.3. A chain strategy for a transition system T and an initial state s0 is
a strategy σ ∈ Str f (T ) such that there is one path in Pathsm

σ(T , s0).

Next, we present the main theorem of this chapter.

Theorem 9.1. If there exists a optimal control u∗ that is robust with respect to the
initial state x0 for Problem 9.1, the sequence of sub-optimal costs {Jε0/2i }i∈Z+ output
by Algorithm 8 converges to the optimal cost Jopt = W(TD, x0,Π). Furthermore,
for each sub-optimal cost Jε0/2i , there exists a suboptimal winning strategy σε0/2i

with cost no larger than Jε0/2i .

Goal

Start

x′1

x′0

x′3

x∗0 x∗1 x∗2

Figure 9.1: An illustration of chain strategy and refinement. The domain is separated
into two areas (gray and white), where two different dynamics apply. The red dots
are the optimal path.
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Proof. A sketch of the proof is provided. The full proof is provided in Appendix C.

First, let Mx > εx > 0 and Mu > εu > 0. Let x0 ∈ Bεx (x
∗
0), ut ∈ Bεu (u

∗
t ) ∀t ∈ [k],

where u = {ut}t∈[k] and ζ = φ(x0, u) = {xt}t∈[k+1]. Then, for any trajectory whose
initial state and inputs have a bounded deviation from that of the optimal trajectory,
the error between any of those trajectories is bounded due to continuity of the
system. As a result, the suboptimal cost is bounded and decreases to zero if εx and
εu decrease to zero because the cost function in Problem 9.2 is also continuous.

Next, given a specific cost sub-optimality, a chain strategy that satisfies a certain
cost error bound exists. More specifically, a neighborhood N x

t is constructed around
each x∗t and Nu

t around u∗t such that all the transitions from N x
t on Nu

t will end in
N x

t+1. This construction exists by the robustness of the optimal control as defined in
Definition 9.2 and the fact that the system is continuous. Under this construction,
all executions from N x

0 will land in N x
t after t steps. This chain of neighborhoods

gives a chain strategy. See Figure 9.1 for an illustration of the chain strategy. To
ensure that the cost of the strategy is within δ > 0 of the optimal cost, choose the
N x

t and Nu
t to be contained in some Mx > εx > 0 and Mu > εu > 0 balls. These

two observations ensure that |W(ζ) −W(ζ∗)| ≤ δ for any path ζ starting in an εx

ball around x∗0.

In addition, choose the N x
j and Nu

j in such a way that they correspond to an element
of an ε0/2i grid for some i (not necessarily the same i for all neighborhoods).
Define ≡X and ≡U such that the N x

j and Nu
j are all equivalence classes of X andU,

respectively. Note that we need to ensure that for any i, j, N x
j is the same as N x

i or
the two are disjoint, and, a similar condition for Nu

j holds. This condition can be
easily ensured during the construction by picking small enough εx and εu.

Now, assume that every N x
t corresponds to an element of Grid(X, ε0/2it ) for some

it , and similarly, Nu
t corresponds to an element of Grid(U, ε0/2 jt ) for some jt . Let i

be the maximum of the its and jts. Note thatGrid(X, ε0/2i) refines N x
t and similarly,

Grid(U, ε0/2i) refines Nu
t . In Figure 9.1, the squares around x∗t with bold borders

are N x
t , and the dashed squares, which are contained in them correspond to the

refined partition. One can define a strategy σε (not necessarily a chain anymore)
for T̂ε, which correspond to following the neighborhoods N x

t . Thus, all the paths in
T̂ε which conform to σε will be contained in the neighborhoods N x

t . Therefore, the
cost of σε is bounded by that of σ, which is at most δ away from the optimal cost,
and the optimal cost of T̂ε is at most δ away from that of TD .
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Observe that Jε0/2i ≤ Jε0/2j for all i > j. Furthermore, for any δ > 0, there exists
ε = ε0/2i, such that |W(T̂ε, x̂ε0,Π) −W(TD, x∗0,Π)| ≤ δ. Note Jε =W(T̂ε, x̂ε0,Π)

and Jopt = W(TD, x∗0,Π) is the optimal cost. As such, |Jε − Jopt | ≤ δ, and Jε0/2i

converges to Jopt as i goes to infinity. Lastly, for each sub-optimal cost Jε0/2i , there
exists a suboptimal winning strategy σε0/2i with cost no larger than Jε0/2i . �

At this point, we have shown that the strategy given by OptCAR incurs a suboptimal
cost that converges to the optimal cost of D. The strategies used in the proof of
Theorem 9.1 have the property that the length of the maximal paths, which conform
to the strategy are finite and have a bound (in fact, they are all of the same length).
Furthermore, the trace of all the paths is the same. However, during implementation,
Algorithm 8 may return a sequence of suboptimal strategies σε0/2i that results in
paths with different lengths because there could be paths with different lengths that
have the same cost upper bound. Nonetheless, the cost of each path results from
σε0/2i is bounded by the cost Jε0/2i .

In addition, the strategy that is considered in the proof of Theorem 9.1 gives a
sequence of inputs which satisfy the propertyΠ from any point in an open neighbor-
hood around the given initial state x∗0. Furthermore, there is an open neighborhood
around each of the control inputs such that the resulting paths satisfy Π. Thus,
Algorithm 8 in fact returns a controller that is robust against input uncertainties
under the assumption that the original system has such an optimal control.

9.3 Implementation
Algorithm 8 and 9 are implemented in the tool OptCAR in Python 2.7. A Python
package, NetworkX, is used to represent the graph structures that arise in solving
Algorithm 9, and the Parma Polyhedra Library [158] is used to represent the poly-
hedral sets that arise in the state space gridding and to solve the linear program
problem that arises in the weight computation. OptCAR is tested on a linear dynam-
ical system and a piecewise linear system on a MacBook Pro 8.2, 4 core Intel Core
i7 processor with speed 2200 Hz, and 8GB RAM.
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P1 PfP2

Figure 9.2: Automaton that represents the propositions of the two examples, where
P1 is the pink region, P2 is the white region, and P f is the light blue region.

9.3.1 Linear Dynamical System
The following linear dynamical system example is obtained from [159]:

xt+1 = Axt + But (9.1)

A =

[
0.68 −0.14
0.14 0.68

]
B =

[
0

0.1

]
,

where xt = (x1
t , x2

t ) ∈ [−1, 1]2, and ut ∈ [−1, 1].

The cost function is J(φ(x0, u)) =
∑

t∈[k] ‖ut ‖
2
2. This cost is approximated as∑

t∈[k] ‖ut ‖1 during implementation of OptCAR. The goal is to drive the system
from an initial point x0 = (0.9, 0.9) to a final zone defined by a box at the origin,
P f = {x | ‖x‖∞ ≤

1
5 }. The propositions of this example are represented in Figure

9.2. The algorithm is implemented on two uniform grids on the states: sizes 20×20
and 40 × 40. The input, u, is partitioned into 5 uniform intervals.

Strategies obtained from OptCAR are compared with the strategy given by linear
quadratic regulator (LQR) in Table 9.1. For a linear system, LQR is always a superior
technique in comparison to OptCAR because the computation is significantly more
efficient. The goal of this example is to illustrate that in an example with known
optimal controller, the strategies given by OptCAR approximates the optimal control
of LQR very closely, and it improves with refinement. Figure 9.3 shows the state
trajectory for the three cases.

Table 9.1: Performance of OptCAR and LQR for System (9.1). 1

Grid 20 × 20 40 × 40 LQR
Computation time (seconds) 355.82 5212.91 0.04
Optimal cost 0.5 0 0
Optimal step 6 6 6
Final point (-0.0468,0.1499) (-0.0468,0.1999) (-0.0468,0.1999)
1 20 × 20 and 40 × 40 are optimal controller synthesis using OptCAR for two different uniform
grids. Computation time is the time a method takes to compute the optimal strategy. Optimal
step is the total number of steps that the optimal path takes to reach the goal region. The final
point is where the optimal path ends in the goal region.
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Figure 9.3: Simulated result of OptCAR and LQR for System (9.1).

9.3.2 Two-tank System
A two-tank system from [160] is used as an example of a piecewise linear system
(Figure 9.4). The water can flow in between the two tanks through a pipe that
connects them. The pipe is located at level 0.2. Tank 1 (left) has an inflow of water
that is managed by a controller, and tank 2 (right) has an outflow of water that is
fixed. The goal of the controller is to fill up tank 2 to level 0.4 from an initially low
water level 0.1 using as small amount of water as possible from the source above
tank 1. The goal will be made precise after the system is described formally next.

Figure 9.4: A schematic of a two-tank system.
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(c) Non-uniform 23 × 17
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(d) Non-uniform 38 × 25

Figure 9.5: Partitions for the two-tank system. The goal region does not need to be
partitioned because the transitions within the goal region are irrelevant.

The two-tank system has a linearized dynamics given by

xt+1 = Axt + But (9.2)

A =

{
A1 x ∈ [0, 0.2]2

A2 otherwise
B =

[
342.6753

0

]
,

where

A1 =

[
1 0
0 0.9635

]
A2 =

[
0.8281 0.1719
0.1719 0.7196

]
,

xt = (x1
t , x2

t ) ∈ [0, 0.7]2, and ut ∈ [0, 0.0005]. The water level in tank 1 at time t

is x1
t , and the water level in tank 2 at time t is x2

t . The cost function is chosen to
be J(φ(x0, u)) =

∑
t∈[k] ‖ut ‖1 to represent minimal water inflow, and the goal is to

drive the system from partition, [0, 0.7] × [0, 0.1], to partition [0, 0.7] × [0.4, 0.7].
The propositions of this example are represented in Figure 9.2.

The algorithm is implemented on two uniform grids on the states — a 28 × 17
(coarse) grid and a 56 × 33 (refined) grid, and two non-uniform grids — a 23 × 17
(coarse) grid and a 32×25 (refined) grid. Figure 9.5 illustrates the grids. The input,
u, is partitioned into 10 uniform intervals. The goal region is represented as one
partition for all cases. This choice of goal representation speeds up computation
time, and does not change the results in Section 9.2.3. Once a path arrives at the goal
region, the path ends. Thus, the goal region does not need to be partitioned because
the transitions within the goal region are irrelevant. In addition, the partitions’ sizes
for a non-uniform grid do not necessary have to be the same. Partitions whereby
the transitions are more likely to be far can be larger because the states most likely
will not end up at the neighboring partitions if the partitions are small. Another
example of non-uniform grids with the same principle would be to have finer grids
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Figure 9.6: State trajectory and control input generated by the controller from
OptCAR for System (9.2).

near the goal and coarser grids away from the goal. Such modification is feasible
if the control engineer has prior information about the system from his/her past
experiences. These modifications reduce computation time, and also allow for finer
grids at regions that matter to achieve a better result.

Strategies obtained from OptCAR are compared in Table 9.2. Figure 9.6 shows the
state trajectory and control input for the four cases, all start from (0.001, 0.001). This
example shows that choosing a suitable partition can reduce the computation time
dramatically while still achieving comparable performance to the performance of a
naive uniform grid. Therefore, future extension of this technique includes designing
an intelligent scheme to partition the domain such that computation time is reduced.
Lastly, about 60%−70% of the computation time is used to construct the abstraction
(i.e., ConsAbs step in Algorithm 8) in which the computations can be parallelized

Table 9.2: Performance of OptCAR using Different Grids for System (9.2). 2

Grid 28 × 17 56 × 33 23 × 17 38 × 25
Computation time (seconds) 1234.53 22119.36 1057.43 4309.04
Optimal cost 0.00340 0.00320 0.00335 0.00320
Optimal step 12 12 12 13
Final point (0.642,0.402) (0.573,0.401) (0.625,0.405) (0.552,0.412)
2 The first two columns are results for uniform grids. The last two columns are results for non-uniform
grids. The grids are shown in Figure 9.5. Computation time is the time OptCAR takes to compute
the optimal strategy. Optimal step is the total number of steps that the optimal path takes to reach
the goal region. The final point is where the optimal path ends in the goal region.
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easily to decrease computation time.

9.4 Summary
This chapter considered the problem of synthesizing optimal control strategies for
discrete-time hybrid system with respect to regular properties. An abstraction-
refinement approach is presented for constructing arbitrarily precise approximations
of the optimal cost and the corresponding strategies. This approach computes a
sequence of suboptimal controller that converges to the optimal controller with
refinement. The resulting suboptimal controller generates trajectories that incur
cost no greater than the optimal cost of the corresponding abstract system. The
abstraction based approach can be applied to the general class of hybrid systems;
however, the challenge is in computing edges and weights, especially, for non-linear
dynamics and in continuous time.

Future work will include extending the technique to more complex dynamics and
continuous-time hybrid systems. To reduce computation time, a more intelligent
gridding scheme in the refinement or the abstraction step will be developed, for
example, [161], [162]. Lastly, the neighborhoods of states and inputs in the abstract
system naturally model measurement errors and input uncertainties of the concrete
system. Thus, a potential future application of this technique is in synthesizing
robust optimal control for a hybrid system.

The next chapter extends the cost preserving abstraction technique from regular
properties to ω-regular properties.
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C h a p t e r 10

OPTIMAL CONTROLLER SYNTHESIS FOR ω-REGULAR
OBJECTIVES

This chapter considers the optimal controller synthesis procedure for discrete time
hybrid systems with ω-regular objectives. Given a hybrid system described as a
state transition system, an initial state, and a ω-regular property, the optimal control
problem is to compute an optimal winning strategy from the initial state with respect
to the ω-regular property, if it exists, and the optimal cost of winning. The optimal
winning strategy is the optimal controller that can be applied to a system to ensure
that the system’s specifications are achieved with minimum cost.

Similar to Chapter 9, this chapter begins with an overview of the overall abstraction
refinement technique for synthesizing optimal controllers, but focuses only on the
specific components of the framework that are different from the previous chapter.
Then, the application of the technique on a hybrid system is presented with an
analysis of the algorithm’s convergence to the optimal cost. Lastly, an example
mobile robot system is used to illustrate the implementation of the technique.

10.1 Controller Synthesis for ω-regular Objectives
In this section, given a weighted transition system T , an initial state s0, and an
ω-regular propertyΠ, we seek to synthesize an optimal controller σ for T . The first
part of this section discusses the overall abstraction refinement procedure and the

Algorithm 10 OptCAR (Abstraction Refinement Procedure)
Input: System T , property Π as a finite state automaton, initial state s0, rational
number ε0 > 0, maximum iterations im, and optimality gap ε
Set ε := ε0, i := 0
while i < im do
T̂ , x̂0 := ConsAbs(T , s0, ε)
Jε, σ̂ := SolveTwoPlayerGame(T̂ , x̂0,Π, ε)
σ := ExtractController(σ̂, T̂ ,T)
Output σ and Jε
ε := ε

2
i := i + 1

end while
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main components of the framework. This framework summarized inAlgorithm 10 is
similar to Algorithm 8 in Chapter 9. The next part discusses one of the components
of Algorithm 10 that is specific to ω-regular objectives, namely, optimal strategy
synthesis procedure given a finite state transition system, an initial state, and an
ω-regular property Π.

10.1.1 Abstraction-Refinement Procedure
Algorithm 10 presents the abstraction-refinement procedure that is similar to Algo-
rithm 8 in Chapter 9. It first partitions the state and input spaces of the given system
T into grids with particular cell sizes, ε , and constructs an abstract system T̂ using
ConsAbs. Then, it computes the optimal cost, J, and a strategy for the abstract
system by solving a two-player game using SolveTwoPlayerGame. A suboptimal
strategy for T is extracted from the strategy of the abstract system T̂ with the cost
upper bounded by J using the procedure ExtractController. To reduce J, refine the
state space partitions using smaller grid sizes, ε/2, and repeat the whole process.
The details of each of the functions can be found in Chapter 9. Here, instead of
solving a two-player game over finite sequences on a finite graph, Algorithm 10
solves a two-player game over infinite sequences on a finite graph because the ω-
regular objectives consist of infinite traces. This step is explained in detail in the
next subsection.

This algorithm outputs a sequence of suboptimal strategies, whose costs are non-
increasing over the iterations. Note that the optimal cost for T might not be
achievable due to the optimality gap ε. As such, the algorithm is chosen to terminate
after a fixed number of iterations. However, for a special class of systems that has a
“lasso-type” robust optimal path (see Definition 10.2 and Figure 10.1), we show that
the suboptimal cost converges to the optimal cost as i goes to infinity. See Section
10.2.3 for more details.

A winning strategy σ̂ might not exist when the partitioning is coarse, even if the
underlying system T has an optimal solution. However, once a winning strategy
is found for a particular partitioning, a controller that has bounded trajectory cost
is obtained. Furthermore, a more refined partitioning will return a controller with
trajectory cost that is no worse than the trajectory cost resulting from the controller
corresponding to the winning strategy for the current partitioning. Thus, the al-
gorithm can be terminated at a specific iteration based on the application and the
computational resources.
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Algorithm 11 SolveTwoPlayerGame (Two-Player Games)
Input: Finite state transition system T , property Π specified as B, initial state s0,

and optimality gap ε.
AT ,B := ProductSystem(T ,B)
C, σA := MeanPayoffParityGame(AT ,B, ε)
σ := ExtractStrategy(σA)
if C(s0) < ∞ then

Output the strategy σ and the cost C(s0)
end if

10.1.2 Synthesizing Optimal Strategy
Here, we explain the procedure to compute the optimal cost and optimal strategy for
a finite transition system T with respect to a ω-regular property Π performed by the
subroutine SolveTwoPlayerGame in Algorithm 10 that is different from Chapter 9.
Algorithm 11 reduces the problem of optimal strategy synthesis for general ω-
regular objectives to that of a specific ω-regular objective, which is an instance of
a mean payoff parity games. Essentially, it constructs a weighted product transition
system from the weighted transition system T and a Büchi automaton that encodes
theω-regular propertyΠ. This product system has an associatedω-regular property
Πp that is the independent of T and Π. Solving for the optimal winning strategy
of the product system with respect to Πp is an instance of solving a mean payoff
parity game [151]. Once the optimal cost and winning strategy σA of the product
system are computed, the winning strategy for T is extracted from σA by projecting
σA onto T . Finally, Algorithm 11 returns both the optimal cost and the winning
strategy for T .

More precisely, the function ProductSystem forms a weighted product transition
system that is a product of aweighted transition systemT and theBüchi automatonB
representing the property Π. From here onwards, fix T = (S,Sinit,U,P,∆,L,W)

as the weighted transition system andB = (Q,Qinit,P, E, F ) as the Büchi automaton
representing the property Π, where Π = L(B).

Definition 10.1. A weighted product transition system of T and B is defined as
AT ,B = (QA,Q

init
A
,UA,PA,∆A, LA,WA), where

• QA = {(s, q) ∈ S ×Q};
• Qinit

A
= {(s, q) ∈ Sinit × Qinit};

• UA = U × E;
• PA = {0, 1};
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• ∆A = {((s, q), (u, e), (s′, q′)) ∈ QA ×UA × QA | (s, u, s′) ∈ ∆, e = (q, p, q′) ∈

E,L(s) = p};
• LA : QA → {0, 1}, where LA(s, q) = 0 if q ∈ F and LA(s, q) = 1 if
otherwise, and

• WA : QA×UA×QA → R+ such thatWA((s, q), (u, e), (s′, q′)) =W(s, u, s′).

FixAT ,B = (QA,Qinit
A
,UA,PA,∆A,LA,WA). We consider the followingwinning

objectiveΠp forAT ,B: Πp consists of all sequences over {0, 1} that contain infinitely
many 0s. Note that this objective is the same for any T and B, and its simple form
enables the problem to be posed as a mean payoff parity game.

Before moving on to the mean payoff parity game, we will discuss the relationship
between the winning strategy σA of the product system AT ,B and the winning
strategy σ of the corresponding transition system T . To do so, we need to define the
projection of a strategy. Let ζA = (s0, q0)(u0, e0)(s1, q1)(u1, e1)(s2, q2) . . . be a path
conforming to σA from initial state (s0, q0) and let ζ i

A
= (s0, q0)(u0, e0) . . . (si, qi) be

a prefix of ζA up to index i. Furthermore, let ProjT (ζA) be the projection of a path
ζA in AT ,B onto T , where ProjT (ζA) = s0u0s1u1 . . . and ProjT (ζ i

A
) = s0u0 . . . si.

Then, the projection of a strategy σA ofAT ,B onto T is defined as σ = Projσ
T
(σA),

whereby if σA(ζ i
A
) = (ui, ei), then σ(ProjT (ζ i

A
)) = ui for all i ≥ 0. This projection

forms a “one-to-one” cost preserving correspondence between σA and σ.

Theorem 10.1. A winning strategy σA of AT ,B with respect to Πp from the state
(s0, q0) exists if and only if a winning strategy σ for T with respect to L(B)
from s0 exists. Furthermore, σ = Projσ

T
(σA) is a winning strategy for T , and

W(AT ,B, σA, (s0, q0)) =W(T , σ, s0).

The proof is available in Appendix D.1. Theorem 10.1 implies that if a winning
strategy forT exists, there will be a winning strategyσA forAT ,B that the algorithm
can search for. Furthermore, given σA , we can construct a winning strategy σ for
T by projection, and the cost of σ is the same as the cost of σA . Therefore,
ExtractStrategy in Algorithm 11 extracts a winning strategy for T from σA by
projecting σA onto T . Note that ExtractStrategy is different from ExtractController
in Algorithm 10 because ExtractController extracts a suboptimal controller for the
concrete system T from the optimal strategy of the abstract system T̂ .

Now, we return to the mean payoff parity game. A mean payoff parity game is a
two-player game on a finite graph, whereby the strategy for player 1 is winning if
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min(Inf(Tr(ζ))) is even for all paths ζ that conform to the strategy, and optimal if
the cost of the strategy is minimized [151]. Solving for an optimal winning strategy
for AT ,B with respect to Πp is an instance of a mean payoff parity game. Thus,
given AT ,B and Πp, MeanPayoffParityGame solves a mean payoff parity game to
obtain the winning strategy σT that is ε-optimal, and the optimal value C for each
states. If a state s is not winning, C(s) = ∞. The strategy is ε-optimal because a
mean payoff parity game may not have a finite memory optimal strategy in general
[151]. However, a finite memory strategy is achievable for an ε-optimal cost through
solving an energy parity game [150]. The example that follows uses the algorithm
in [150] to solve for an ε-optimal strategy. Due to this optimality gap, we do not
expect to obtain the optimal control for the concrete system in general. Instead, this
technique returns a suboptimal controller that has a finite memory. Nonetheless, if
the optimal controller has finite memory, the optimality gap is zero.

10.1.3 Complexity of Algorithm 10 and 11
The computation cost for Algorithm 10 is mostly due toConsAbs. This step involves
|S|2 |U| parallelizable optimizations, where |S| is the number of state in T̂ , and |U|
is the number of inputs in T̂ . All optimizations are linear programs if the system is
linear, and the state and input partitions are represented by polyhedra.

In Algorithm 11, ProductSystem runs inO(|S||Q||∆| |E |) time, where |S| and |∆| are
the number of states and transitions inT , and |Q| and |E | are the number of states and
transitions inB. Themean payoff parity games solves inO(|∆A | |QA |Wm

A
(|QA |+1))

time [150], where |QA | and |∆A | are the number of states and transitions inA, and
Wm
A
is the maximum value of the costW over all transitions.

10.2 Controller Synthesis for Hybrid Systems
The abstraction-refinement approach is implemented for discrete-time piecewise
linear systems, and the algorithm converges to the optimal controller if the optimal
controller is robust and the optimal path is a “lasso”. We first formally define the
optimal control problem for this class of system with ω-regular objectives.

10.2.1 Problem Formulation
A discrete-time piecewise linear system is a tuple (X,Xinit,U,P, {( fi, Pi)}i∈[m],

Ld,J), where the state-space X ⊆ Rn and the input-space U ⊆ Rp are compact
sets, Xinit ⊆ X is the set of initial states, P is a finite set of propositions, fi is a
Lipschitz continuous function of x ∈ X and u ∈ U, and Pi is a polyhedral set, such
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that {Pi}i∈m is a polyhedral partition of X, Ld : [m] → P is a labeling function,
and J : X × U → R+ is a Lipschitz continuous cost function. Note that Ai and
Bi do not have to be different for different i. Given an initial state x0 ∈ X

init and
a sequence of control inputs u = u0u1 . . ., where ut ∈ U, φ(x0, u) = x0x1 . . . is
the sequence of states visited under the control u, where xt+1 = ft(xt, ut). The cost
of the sequence φ(x0, u), J(φ(x0, u)), is given by limk→∞

1
k
∑

t∈[k−1] J(xt+1, ut).
Define the partition sequence of z = x0x1 . . ., denoted PS(z), to be the sequence of
partitions visited by the states P1P2 . . . such that xt ∈ Pt for all t.

Problem 10.1 (Optimal control problem). Given an n-dimensional discrete-time
piecewise linear system D = (X,Xinit,U,P, {( fi, Pi)}i∈[m],Ld,J), a state x∗0 ∈

Xinit, and a ω-regular property Π over P, find a sequence of control inputs u∗ for
which Ld(φ(x∗0, u

∗)) ∈ Π and J(φ(x∗0, u
∗)) is minimized.

10.2.2 Equivalent Optimal Strategy Problem
A discrete-time piecewise linear system D = (X,Xinit,U, P, {( fi, Pi)}i∈[m], Ld, J)

can be represented as a weighted transition system, TD = (X,Xinit,U,P,∆,L,W),
where ∆ = {(x, u, x′) ∈ X ×U × X | x′ = fi(x, u), L(x) = Ld(i), where x ∈ Pi, and
W(x, u, x′) = J(x′, u). Consequently, Problem 10.1 is equivalent to the following
problem:

Problem 10.2 (Optimal strategy problem). Given a weighted transition system
TD = (X,X

init,U,P,∆, L,W), a state x∗0 ∈ X
init, and a ω-regular property Π

over P, find an optimal winning strategy σ(TD, x∗0,Π) for which the optimal cost of
winning TD with respect to Π,W(TD, x∗0,Π), is achieved.

Solving Problem 10.2 in general is difficult because TD is a infinite state system;
nonetheless, we can synthesize suboptimal strategies using the approach described
in Section 10.1 with formal guarantee on cost sub-optimality. Furthermore, we show
that if the transition system TD has a robust optimal control and the optimal path is
a lasso, the suboptimal cost converges to the optimal cost.

10.2.3 Analysis of Algorithm 10 for Problem 10.2
This section analyzes the output of Algorithm 10 for Problem 10.2 for a special
class of systems that has a robust optimal control and a lasso optimal path (see
Figure 10.1). The suboptimal cost converges to the optimal cost for this system.
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Figure 10.1: A lasso path in which the chain part is in blue, and the loop part is in
black.

Definition 10.2. A path is a lasso if the path has the form sp(sl)
ω, where for some

constants k > 0 and m > 0, sp = s0u0s1u1 . . . sk−1uk−1 (referred to as the chain),
and sl = skuk . . . sk+m−1uk+m−1 (referred to as the loop).

Definition 10.3. Let u be the input sequence that results in a lasso trajectory
φ(x0, u) = xp(xl)

ω for an initial state x0, where xp = {xi}i∈[k−1], xl = {x j+k} j∈[m−1],
and PS(φ(x0, u)) = {Pit }t∈N. This input sequence u is said to be robust with respect
to the initial state x0 if

1. there exists εt > 0 such that Bεt (xt) ⊆ Pit for all t ∈ N;
2. there exist bounds Mx > 0 and Mu > 0, and constant L < 1 such that for all
{x′i }i∈[m] and {u

′
i}i∈[m−1], with (x′i, u

′
i, x′i+1) ∈ ∆ for all i ∈ [m−1], x′0 ∈ BMx (xk)

and u′i ∈ BMu (uk+i) for all i ∈ [m − 1], we have
x′m − xk


∞
≤ L

x′0 − xk

∞
.

Robustness ensures that the sequence of labels of the optimal lasso do not change
when the initial state is perturbed slightly, and the perturbed trajectory does not
diverge every time it makes a loop. Instead, it becomes strictly closer to the optimal
lasso. Note that the second property can be achieved trivially if the system is stable.

Henceforth, let u∗ = u∗p(u
∗
l )
ω be a robust optimal control input sequence with

respect to x∗0, where u∗p = {u
∗
i }i∈[k−1] and u∗l = {u

∗
j+k} j∈[m−1]. In addition, let

φ(x∗0, u
∗) = x∗p(x

∗
l )
ω be the corresponding optimal trajectory for Problem 10.1,

where x∗p = {x
∗
i }i∈[k−1] and x∗l = {x

∗
j+k} j∈[m−1]. Lastly, let ζ∗ = s∗p(s

∗
l )
ω be the

corresponding optimal state and input sequence, where s∗p = {x
∗
i u∗i }i∈[k−1] and

s∗l = {x
∗
j+ku∗j+k} j∈[m−1]. The proof requires a special kind of strategy, which has a

unique path conforming to it by choosing inputs that result in exactly one successor
state.
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Definition 10.4. A chain lasso strategy for a transition system T and an initial
state s0 is a strategy σ ∈ Str(T ) such that there is one path in Pathsm

σ(T , s0) and the
path is a lasso.

Next, we will show that the strategy given by Algorithm 10 produces a suboptimal
cost that converges to the optimal cost ofD. Denote the elements in the iteration of
Algorithm 10 corresponding to a particular ε as T̂ε for T̂ , x̂ε0 for x̂0, Jε for J, σ̂ε for
σ̂ and σε for σD .

Theorem 10.2. If there exists a robust optimal control u∗ with respect to x∗0 for
Problem 10.1 and the optimal path is a lasso, the sequence of sub-optimal costs
{Jε0/2i }i∈N+ output by Algorithm 10 converges to the optimal cost Jopt = W(TD,

x0,Π). Furthermore, for each sub-optimal cost Jε0/2i , there exists a suboptimal
winning strategy σε0/2i with cost no larger than Jε0/2i .

Proof. A sketch of the proof is provided. The full proof is available in Appendix
D.2. First, note that given Definition 10.3, if the initial states and the inputs are
slightly perturbed from the optimal inputs, the perturbed trajectory has error that is
bounded relative to the optimal trajectory. In addition, given the cost function in
Problem 10.2, the cost of this suboptimal trajectory is bounded due to continuity of
the state transitions. Because the error and the cost are bounded, we can construct
an abstraction to give a chain lasso winning strategy σ for a given concrete system
TD such that the cost of σ is bounded by any given cost sub-optimality δ > 0 with
respect to the optimal cost.

k

k+m

k+m-1
k+m-2

k+2,	k+3,	...,	k+m-3
k+1

Figure 10.2: Construction of neighborhoods for the loop in the optimal path.
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To obtain this chain lasso strategy, we will construct a sequence of disjoint neighbor-
hoods {N x

t }t∈[k+m−1] and {Nu
t }t∈[k+m−1] around the optimal states and inputs such

that every transition from N x
t on Nu

t will end in N x
t+1, and each neighborhood is an

element or a collection of elements in ε0/2i grid for i ∈ N. The grid size can be
different for different neighborhoods, and the neighborhoods is disjoint by picking
a small enough ε0. The same approach as Theorem 9.1 constructs the chain of the
chain lasso strategy in a backward induction from the beginning of the loop. The
loop of the chain lasso strategy is constructed backward inductively as illustrated
by Figure 10.2. The white square is N x

k . The white circles are neighborhoods that
are reachable from N x

k on Nu
t ⊆ BMu (u

∗
t ) for t ≥ k. At k + m, define a blue circle

such that it is contained within the white square and the white circle is contained
within the blue circle. Then, define the red circle at k + m − 1 such that all states
within the red circle will reach a state within the subsequent blue circle on Nu

k+m−1.
Now, construct the collection of squares in k + m − 1 to form N x

k+m−1, whereby the
squares are elements in ε0/2i grid for i ∈ N. This sequence of construction can be
performed backward from k+m to k+1, and it ensures that every transition from N x

t

on Nu
t will end in N x

t+1. Furthermore, |W(ζ) −W(ζ∗)| ≤ δ for any path ζ starting
in an εx ball around x∗0. Thus, we have a chain lasso strategy σ with bounded cost.

Next, refine σ to construct a uniform grid by choosing the size of the uniform grid
ε to be the smallest grid of all neighborhoods Nu

t and N x
t . Then, define a strategy

σε (not necessarily a chain lasso anymore) for T̂ε, which follows the neighborhoods
N x

t . All paths in T̂ε conforming to σε are contained in the neighborhoods N x
t . Thus,

the cost of σε is bounded by that of σ, and consequently, the optimal cost of T̂ε is at
most δ larger than that of TD .

Lastly, because the optimal path is a lasso, the optimal strategy has a finite memory,
and thus the optimality gap ε is zero. As a result, Jε = W(T̂ε, x̂ε0,Π), Jopt =

W(TD, x∗0,Π) is the optimal cost, and |Jε − Jopt | ≤ δ for a given δ > 0. In fact, for
each Jε, there exists a suboptimal winning strategy σε with cost no larger than Jε. In
addition, Jε0/2i converges to Jopt as i →∞ because Jε0/2i ≤ Jε0/2j for all i > j. �

The trace of all the paths given by the strategies in the proof of Theorem 10.2 is the
same. During implementation, Algorithm 10 may return a sequence of suboptimal
strategies σε0/2i that results in paths with different lengths for the chain part and/or
the loop part. Nonetheless, the cost of each path results from σε0/2i is bounded by
the cost Jε0/2i .
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10.3 Implementation
Consider a surveillance example that is represented in Figure 7.2a. A surveillance
robot is required to visit region A and B repeatedly while avoiding obstacle X. In
addition, the robot has to move using a minimal amount of energy. Mathematically,
the robot dynamics can be represented with the following linear dynamical system:

xt+1 = xt + ut

yt+1 = yt + vt,

where [xt, yt] ∈ [−4, 4]2, and controls [ut, vt] ∈ [−2, 2]2. The cost function is
J(φ(x0, u)) = limk→∞ 1/k

∑
t∈[k−1] ‖ut ‖1. The goal is to drive the robot from an

initial point x0 = (−2.5,−2.5) to region A = {(x, y) | −4 ≤ x ≤ −3, 3 ≤ y ≤ 4} and
B = {(x, y) | 3 ≤ x ≤ 4,−4 ≤ y ≤ −3}. The robot is required to visit region A and
B infinitely often, and always avoid region X = {(x, y) | −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.
The property of this example is represented in Figure 7.2a (not to scale) and as a
Büchi automaton in Figure 7.2b. The algorithm is implemented on a 8 × 8 uniform
grid on the states. The input, u, is partitioned into 4 × 4 uniform intervals.

Algorithm 10 and 11 are implemented in Python 2.7. A Python package, NetworkX,
is used to represent the graph structures that arise in solving Algorithm 11, and the
Parma Polyhedra Library [158] is used to represent the polyhedral sets that arise
in the gridding and to solve the linear program problem that arises in the weight
computation. The algorithms are implemented on a MacBook Pro with 2.9GHz
Intel Core i5 processor, and 16GB RAM.

Figure 10.3 shows the state trajectory of the robot under the strategy given by
Algorithm 10 and 11. The strategy is able to direct the system to move from the
initial position at (−2.5,−2.5) to region A and then region B. The cost at the end of
time N = 31 is 1.33. Since the strategy forms a cycle, the cost when N → ∞ will
not be larger than 1.33, which is lower than the cost of the strategy at 1.5 given by
the algorithms.

10.4 Summary
This chapter presents a technique to synthesize optimal controllers for discrete-
time hybrid systems with ω-regular objectives based on an abstraction-refinement
procedure, extending the results in Chapter 9. This method provides a guarantee on
the upper bound of the trajectory cost when implementing the suboptimal controller.
Furthermore, for systems with a robust optimal controller and a lasso optimal path,
the abstraction-refinement procedure converges to the optimal solution.
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Figure 10.3: Simulated results on the linear dynamical system. The blue box
indicates the starting position. The arrows represent the control input directions,
and the round markers indicates the position from time 0 to time 31 (blue to red).

Future works include extending the results to more complex systems such as
continuous-time systems, and implementing the technique on more sophisticated
examples. To reduce computation time, a more intelligent gridding scheme in the
refinement or abstraction step [161], [162] will be developed.
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A p p e n d i x B

PROOFS FOR CHAPTER 8

B.1 Proof of Theorem 8.1
Define (α, β) to be identity relations on the state and input spaces, then T �(α,β) T ,
and hence � is reflexive. To show that � is transitive, suppose T1 �(α1,β1) T2 and
T2 �(α2,β2) T3. Define α such that (s1, s3) ∈ α if (s1, s2) ∈ α1 and (s2, s3) ∈ α2

for some s2, and define β such that (s1, u1, s3, u3) ∈ β if (s1, u1, s2, u2) ∈ β1 and
(s2, u2, s3, u3) ∈ β2 for some (s2, u2). Then, T1 �(α,β) T3.

B.2 Proof of Theorem 8.2
Let σ2 be a strategy for T2 and s′0. In addition, define a partial mapping G :
Paths f (T1) → Paths f (T2) such that the domain of G is the set of all paths from s0

that conform to σ1, and for any path ζ1 in the domain of G, L1(ζ1) = L2(G(ζ1)),
andW1(ζ1) ≤ W2(G(ζ1)). This construction ensures that if σ2 is winning from s′0
with respect to Π, then so is σ1 from s0 andW1(T1, σ1, s0) ≤ W2(T2, σ2, s′0). We
also ensure that if G(ζ1) = ζ2, then (sk, s′k) ∈ α, where sk and s′k are the end states
of ζ1 and ζ2, respectively. Further, for any ζ1 in the domain of G, ζ1 is a maximal
path conforming to σ1 if and only if ζ2 is a maximal path conforming to σ2.

Next, define σ1 and G by induction on the length of words in their domain. Set
G(s0) = s′0. Suppose σ1 for paths of length k − 1 and G for paths of length k,
are defined such that the invariant holds. Let ζ1 = s0u0s1 . . . sk conform to σ1.
Then, G(ζ1) is defined. Let G(ζ1) = s′0u′0s′1 . . . s

′
k and (sk, s′k) ∈ α. If G(ζ1) is a

maximal path conforming to σ2, then σ1(ζ1) is not defined (i.e., ζ1 is not in the
domain of σ1). Otherwise σ2(G(ζ1)) = u′k . Then, from the second condition of
simulation, there exists uk such that (sk, uk, s′k, u

′
k) ∈ β. Choose σ1(ζ1) = uk . For

any ζ2 = s0u0s1 . . . sk+1, define G(ζ2) = s′0u′0s′1 . . . s
′
s+1 such that (sk+1, s′k+1) ∈ α

and W1(sk, uk, sk+1) ≤ W2(s′k, u
′
k, s
′
k+1). It can be verified that the construction

satisfies the inductive invariant.

B.3 Proof of Theorem 8.3
Let σ2 be a strategy for T2 and s′0. In addition, define a partial mapping G :
Paths f (T1) → Paths f (T2) such that the domain of G is the set of all paths from s0

that conform to σ1, and for any path ζ1 in the domain of G, L1(ζ1) = L2(G(ζ1)),
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andW1(ζ1) ≤ W2(G(ζ1)). This construction ensures that if σ2 is winning from s′0
with respect to Π, then so is σ1 from s0 andW1(T1, σ1, s0) ≤ W2(T2, σ2, s′0). We
also ensure that if G(ζ1) = ζ2, then (sk, s′k) ∈ α, where sk and s′k are the states of ζ1

and ζ2, respectively.

Next, define σ1 and G by induction. Set G(s0) = s′0. Suppose σ1 for paths
of length k − 1 and G for paths of length k, are defined such that the invariant
holds. Let ζ1 = s0u0s1 . . . sk conform to σ1. Then, G(ζ1) is defined. Let G(ζ1) =

s′0u′0s′1 . . . s
′
k and (sk, s′k) ∈ α. Then, σ2(G(ζ1)) = u′k . From the second condition of

simulation, there exists uk such that (sk, uk, s′k, u
′
k) ∈ β. Choose σ1(ζ1) = uk . For

any ζ2 = s0u0s1 . . . sk+1, define G(ζ2) = s′0u′0s′1 . . . s
′
s+1 such that (sk+1, s′k+1) ∈ α

andW1(sk, uk, sk+1) ≤ W2(s′k, u
′
k, s
′
k+1). This construction satisfies the inductive

invariant.

B.4 Proof of Proposition 8.1
Consider Abs(T ,≡S,≡U) = (S

′,Sinit′,U′,P,∆′,L′,W′) as in Definition 8.2. De-
fine (s, [s]≡S ) ∈ α for s ∈ S, and (s, u, [s]≡S, [u]≡U ) ∈ β for s ∈ S and u ∈ U.

The first property in Definition 8.1 is satisfied by construction because for all S ∈ S′,
L′(S) = L(s) for any s ∈ S. The second property also holds by construction of
Sinit′ where ∀s ∈ Sinit, there exists a [s]≡S ∈ Sinit′ such that (s, [s]≡S ) ∈ α.

To verify the third property, consider any (s1, S1) ∈ α and U ∈ Enabled(S1). Be-
causeU ∈ U′, there exists a u ∈ U, where [u]≡U = U. Given that Enabled(s1) = U

for a complete transition system, u ∈ Enabled(s1). By definition of β, (s1, u, S1,U) ∈

β. Furthermore, by construction, for (s1, u, s2) ∈ ∆, there exists S2 ∈ S
′ such

that (s2, S2) ∈ ≡S, and (S1,U, S2) ∈ ∆
′ if (s1, u, s2) ∈ ∆. Thus, there exists a

(S1,U, S2) ∈ ∆
′, where (s2, S2) ∈ α. Lastly,W′(S1,U, S2) ≥ W(s1, u, s2) because

W′ is the maximum over all s1 ∈ S1, u ∈ U, s2 ∈ S2 ofW(s1, u, s2).

B.5 Proof of Proposition 8.2
First, T � Abs(T ,≡′S,≡

′
U) follows from Proposition 8.1. Define α = {([s]≡S ′,

[s]≡S ) | s ∈ S} and β = {([s]≡S ′, [u]≡′U, [s]≡S, [u]≡U ) | s ∈ S and u ∈ U}. Then,
properties in Definition 8.1 are satisfied for Abs(T , ≡′S, ≡

′
U) �(α,β) Abs(T , ≡S,≡U),

and thus T � Abs(T , ≡′S, ≡
′
U) � Abs(T , ≡S,≡U).
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A p p e n d i x C

PROOFS FOR CHAPTER 9

C.1 Proof of Theorem 9.1
For this section, we assume the system is given as in Problem 9.1 in all lemmas.

To prove Theorem 9.1, first, we show that for any trajectory whose initial state and
inputs have a bounded deviation from that of the optimal trajectory, the trajectory
itself will have a bounded deviation from the optimal trajectory.

Lemma C.1. There exist bounds Mx > 0 and Mu > 0 and constants c1, c2 ≥ 0
that depend on PS(φ(x∗0, u

∗)), such that for all εx ∈ [0, Mx] and εu ∈ [0, Mu],
if x0 ∈ Bεx (x

∗
0) and ut ∈ Bεu (u

∗
t ) ∀t ∈ [k], where k < ∞, u = {ut}t∈[k] and

φ(x0, u) = {xt}t∈[k+1], then for all t ∈ [k],xt+1 − x∗t+1

∞
≤ c1(t)εx + c2(t)εu,

PS(φ(x0, u)) = PS(φ(x∗0, u
∗)).

Proof. First, we claim thatxt+1 − x∗t+1

∞
≤

(
t∏

i=0
Ci

)
εx +

(
t∑

k=0

t∏
i=k

Ci

)
εu.

The claim is proved by induction over t. Let x̄t = [xt, ut] ∈ R
n+p. Note that because

ft is Lipschitz continuous for all t, for each ft and i, there exists a constant Ct > 0
such that | ft(xi, ui) − ft(x∗i , u

∗
i )| ≤ Ct

x̄i − x̄∗i

∞
. Consider the base case of the

induction when t = 0x1 − x∗1

∞
=

 f0(x0, u0) − f0(x∗0, u
∗
0)

∞

≤ C0
x̄0 − x̄∗0


∞

≤ C0(
x0 − x∗0


∞
+

u0 − u∗0

∞
)

= C0(εx + εu).

where the last equality is given by the problem statement. The base case satisfies
the claim.
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Now, assume that the claim is true up for all t ≤ τ. Then, considerxτ+1 − x∗τ+1

∞
=

 fτ(xτ, uτ) − fτ(x∗τ, u
∗
τ)

∞

≤ Cτ

x̄τ − x̄∗τ

∞

≤ Cτ(
xτ − x∗τ


∞
+

uτ − u∗τ

∞
)

≤ Cτ

(
τ−1∏
i=0

Ci

)
εx + Cτ

(
τ−1∑
k=0

τ−1∏
i=k

Ci

)
εu + Cτεu

=

(
τ∏

i=0
Ci

)
εx +

(
τ−1∑
k=0

τ∏
i=k

Ci

)
εu + Cτεu

=

(
τ∏

i=0
Ci

)
εx +

(
τ∑

k=0

τ∏
i=k

Ci

)
εu.

The result satisfies the claim. Thus, the claim is true by induction. Thus, c1(t) =∏t
i=0 Ci and c2(t) =

∑t
k=0

∏t
i=k Ci.

Now, note that u∗ is robust with respect to the polyhedral partitioning of X. Thus,
for all t ∈ [k], there exists a constant εt > 0 such that Bεt (xt) ⊆ Pit . Set Mx and Mu

such that
(Mx, Mu) = min

t∈[k]
max{(εx, εu) | c1(t)εx + c2(t)εu ≤ εt}.

Then, PS(φ(x0, u)) = PS(φ(x∗0, u
∗)). �

This lemma implies that the error from the optimal state at any time is bounded
linearly by the error from the initial state and the error of control inputs from the
optimal ones. As εx and εu decrease to zero, the state error decreases to zero.
Although the constants c1 and c2 depend on t, t would not make the constants
unbounded because t is finite. Next, we show that the suboptimal cost of this
trajectory is bounded.

Lemma C.2. Given the cost function in Problem 9.2, there exist bounds Mx > 0
and Mu > 0 and constants c3, c4 ≥ 0 that depend on PS(φ(x∗0, u

∗)) such that for all
εx ∈ [0, Mx] and εu ∈ [0, Mu], if x0 ∈ Bεx (x

∗
0) and ut ∈ Bεu (u

∗
t ) ∀t ∈ [k], where

k < ∞, u = {ut}t∈[k] and ζ = φ(x0, u), then

|W(ζ) −W(ζ∗)| ≤ c3εx + c4εu,

PS(φ(x0, u)) = PS(φ(x∗0, u
∗)).
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Proof. First, compute

|W(ζ) −W(ζ∗)| =

����� k∑
t=0
J(xt+1, ut) − J(x∗t+1, u

∗
t )

�����
≤

k∑
t=0
|J(xt+1, ut) − J(x∗t+1, u

∗
t )|.

Since J(x, u) is a Lipschitz continuous function, there exists a constant Ct > 0 such
that

|J(xt+1, ut) − J(x∗t+1, u
∗
t )| ≤ Ct

x̄t − x̄∗t

∞
.

Therefore,

|W(ζ) −W(ζ∗)| ≤

k∑
t=0

C
x̄t − x̄∗t


∞
,

where C = maxt∈[k]Ct and x̄t = [xt+1, ut] ∈ R
n+p is a joined vector of x and u. By

Lemma C.1,

|W(ζ) −W(ζ∗)| ≤

k∑
t=0

C max{c1(t + 1)εx + c2(t + 1)εu, εu}

≤ max{c′3εx + c′4εu, kCεu},

where c′3 = maxt∈[k] kCc1(t + 1), and c′4 = maxt∈[k] kCc2(t + 1). Then,

|W(ζ) −W(ζ∗)| ≤ c3εx + c4εu

c3 =

{
c′3, c′3εx + c′4εu ≥ kCεu

0, c′3εx + c′4εu < kCεu

c4 =

{
c′4, c′3εx + c′4εu ≥ kCεu

kC, c′3εx + c′4εu < kCεu.

The constants Mx and Mu are set to be the same as the ones in Lemma C.1. Then,
PS(φ(x0, u)) = PS(φ(x∗0, u

∗)). �

This lemma states that given a continuous cost function, there will be a small
neighborhood of the optimal trajectory in which the trajectories will go through the
same partition sequence and difference in the cost is bounded and decreases to zero
if εx and εu decrease to zero.

At this point, we have shown that the suboptimal cost is bounded by terms that
depends on the input error and initial state error. Next, we show that given a specific
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cost sub-optimality, there exists a strategy that satisfies this cost error. In other
words, we can construct an abstraction to give a chain strategy that satisfies a certain
cost error bound.

Lemma C.3. Given any δ > 0, there exists a chain winning strategy σ for some
T̂ = Abs(TD,≡X, ≡U) such that

|W(T̂ , σ, x̂0) −W(TD, x∗0,Π)| ≤ δ,

where x̂0 = [x∗0]≡X .

Proof. The broad idea will be to identify neighborhoods N x
t around x∗t and Nu

t

around u∗t such that N x
t is contained in the region of the partition containing x∗t

and all transitions from N x
t on Nu

t lead to N x
t+1. Further, we will ensure that the

maximum cost of any transition from N x
t to N x

t+1 using an input from Nu
t is bounded.

Then, by choosing N x
t and Nu

t to be regions of ≡X and ≡Y , we obtain a chain strategy
in T̂ = |(| TD,≡X, ≡U), where the only region of T̂ reachable from the abstract state
N x

t on input Nu
t is N x

t+1. Refer to Figure 9.1 for an illustration of the chain strategy.

Let PS({x∗t }t) = {Pit }t . We construct the sequence inductively, starting from
t = k + 1 and moving backwards. Let N x

k+1 be a grid cell of size ε0/2i that
contains an open ball around x∗t+1, which is contained in Pit . We can find such
N x

k+1 because of the robustness of the optimal control as defined in Definition 9.2.
Assume we have computed N x

t+1, N
u
t+1, . . . N x

k+1. We show how to compute N x
t and

Nu
t . Let N x

t+1 = Bε′t+1
(x∗t+1). Because the dynamic fit is Lipschitz continuous,

we have
x∗t+1 − xt+1

 ≤ C1
x∗t − xt

 + C2
u∗t − ut

. Set Nu
t ⊆ Bεu (x

∗
t ), where

εu ∈ [0, Mu]. Choose N x
t ⊆ Bε′t (x

∗
t ) such that ε′t ∈ [0, Mx], C1ε

′
t + C2εu ≤ ε

′
t+1 and

Bε′t (x
∗
t ) ⊆ Pit . Then, every trajectory from N x

t on Nu
t will end in N x

t+1 and the labels
for each states within N x

t is the same. By induction, under this construction, all
executions from N x

0 will be in N x
t after t steps. This chain of neighborhoods gives

us a chain strategy.

Further, by Lemma C.2, we can choose εx and εu such that c3εx + c4εu ≤ δ for some
constants c3 and c4 in order to ensure that the cost of the strategy is within δ of the
optimal cost. Thus, |W(ζ)−W(ζ∗)| ≤ δ for any path ζ starting in an εx ball around
x∗0. In addition, choose the N x

j and Nu
j such that they correspond to an element of

an ε0/2i grid for some i (not necessarily the same i for all neighborhoods). Finally,
define ≡X and ≡U such that the N x

j and Nu
j are all equivalence classes of X andU,

respectively. Note that we need to ensure that for any i, j, N x
j is the same as N x

i or
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the two are disjoint, and a similar condition for Nu
j holds. This condition can be

easily ensured during the construction by picking small enough εx and εu. �

Lemma C.3 guarantees a chain strategy. However, the partitions corresponding to
the neighborhoods of N x and Nu may not correspond to an uniform grid for any ε.
Enumeration in Algorithm 8 only contains uniform grids with grid size ε0/2i. Thus,
the next lemma constructs a uniform grid by refining the chain strategy obtained
from Lemma C.3.

Lemma C.4. For a given δ > 0, there exists a constant ε = ε0/2i > 0, such that
|W(T̂ε, x̂ε0,Π) −W(TD, x∗0,Π)| ≤ δ. Furthermore, there exists a winning strategy
σε with cost no larger thanW(T̂ε, x̂ε0,Π).

Proof. From the proof of Lemma C.3, we obtain a sequence of neighborhoods N x
t

and Nu
t , which correspond to a chain strategy, say σ starting from N x

0 . Further,
as observed in the proof, we can assume that every N x

t corresponds to an element
of Grid(X, ε0/2it ) for some it , and similarly, Nu

t corresponds to an element of
Grid(U, ε0/2 jt ) for some jt . Let i be the maximum of the its and jts. Note that
Grid(X, ε0/2i) refines N x

t and similarly, Grid(U, ε0/2i) refines Nu
t . In Figure 9.1,

the squares around x∗t with bold borders are N x
t , and the dashed squares, which are

contained in them correspond to the refined partition. One can define a strategy
σε (not necessarily a chain anymore) for T̂ε, which correspond to following the
neighborhoods N x

t . Thus, all the paths in T̂ε, which conform to σε will be contained
in the neighborhoods N x

t . Therefore, the cost of σε is bounded by that of σ, which
is at most δ away from the optimal cost, and the optimal cost of T̂ε is at most δ away
from that of TD . �

Proof of Theorem 9.1. First, observe that Jε0/2i ≤ Jε0/2j for all i > j. Further,
from Lemma C.4, for any δ > 0, there exists ε = ε0/2i, such that |W(T̂ε, x̂ε0,Π) −

W(TD, x∗0,Π)| ≤ δ. Note Jε =W(T̂ε, x̂ε0,Π) and Jopt =W(TD, x∗0,Π) is the optimal
cost. Thus, |Jε − Jopt | ≤ δ. Therefore, Jε0/2i converges to Jopt as i goes to infinity. In
addition, fromLemmaC.4, for each sub-optimal cost Jε0/2i , there exists a suboptimal
winning strategy σε0/2i with cost no larger than Jε0/2i .
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A p p e n d i x D

PROOFS FOR CHAPTER 10

D.1 Proof of Theorem 10.1
This section proves Theorem 10.1. First, we show that the projection of the winning
strategy σA of the product system AT ,B onto T is a winning strategy for T .

LemmaD.1. Let σA be a winning strategy ofAT ,B for the state (s0, q0)with respect
to ΠT ,B . Then, σ = Projσ

T
(σA) is a winning strategy of T for the state s0 with

respect to L(B).

Proof. By definition of Projσ
T
(σA), for any ζ ∈ Pathsσ(T , s0), there exists a ζA

such that ζ = ProjT (ζA) and ζA ∈ PathsσA (AT ,B, (s0, q0)). Let ζ ∈ Pathsσ(T , s0),
and consider the ζA that satisfies ζ = ProjT (ζA). Build r = q0q1 . . . from ζA . By
definition of AT ,B , (qi,L(si), qi+1) ∈ E and Tr(ζ) = L(s0)L(s1) . . .. Thus, r is a
run of B over the sequence Tr(ζ). Because σA is winning, Inf(Tr(ζA)) ∩ {0} , ∅,
and there are infinitely many (si, qi) in ζA such that qi ∈ F. Consequently, there are
infinitely many qi in r such that qi ∈ F, and Inf(r) ∩ F , ∅. Thus, Tr(ζ) ∈ L(B),
and σ is a winning strategy for T with respect to B. �

Proof of Theorem 10.1. First, Lemma D.1 implies that if a winning strategy of
AT ,B with respect to ΠT ,B exists, a winning strategy for T with respect to L(B)
exists.

To prove the converse, we first construct a strategy σA for AT ,B . Let σ be the
winning strategy for T with respect to B. Consider any path ζ ∈ Pathsσ(T , s0)

and let ζ = s0u0s1u1 . . .. Because σ is winning, there exists a run r = q0q1 . . .

of B over Tr(ζ) such that (qi,L(si), qi+1) ∈ E and Inf(Tr(r)) ∩ F , ∅. Construct
a path ζA in AT ,B from r and ζ such that ζA = (s0, q0)(u0, e0)(s1, q1) . . ., where
ei = (qi,L(si), qi+1). Let ζ i

A
= (s0, q0)(u0, e0) . . . (si, qi) be a prefix of ζA , and

ζ i = s0u0 . . . siui be a prefix of ζ . Set σA(ζ i
A
) = (σ(ζ i), ei).

Next, we show that σA is winning. For any ζA ∈ PathsσA (AT ,B, (s0, q0)), there
exists a ζ such that ζ = ProjT (ζA) and ζ ∈ Pathsσ(T , s0) by the construction of σA .
Therefore, Inf(Tr(r)) ∩ F , ∅, where r = q0q1 . . ., and there exists some q ∈ F such
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that (s, q), where s ∈ S occurs infinitely often in ζA . So, Inf(Tr(ζA)) ∩ {0} , ∅, and
thus σA is a winning strategy of AT ,B .

Lastly, we show that the cost is preserved between σA and σ that isW(AT ,B, σA,
(s0, q0)) =W(T , σ, s0), whereσ = Projσ

T
(σA). For all ζA ∈ PathsσA (AT ,B, (s0, q0)),

there exists a ζ such that ζ = ProjT (ζA) and ζ ∈ Pathsσ(T , s0). Note that the transi-
tion cost is preserved such that WA((si, qi), (ui, ei), (si+1, qi+1)) = W(si, ui, si+1).
Thus, WA(ζA) = W(ζ), and W(AT ,B, σA, (s0, q0)) ≤ W(T , σ, s0). Simi-
larly, for any ζ ∈ Pathsσ(T , s0), there exists a ζA such that ζ = ProjT (ζA) and
ζ ∈ PathsσA (AT ,B, (s0, q0)). Thus,W(AT ,B, σA, (s0, q0)) ≥ W(T , σ, s0). As a
result,W(AT ,B, σA, (s0, q0)) =W(T , σ, s0).

D.2 Proof of Theorem 10.2
This section proves Theorem 10.2. For this section, we assume the system is given
as in Problem 10.1 in all lemmas. First, we show that when initial state and inputs
have a bounded deviation from that of the optimal trajectory, the trajectory will have
a bounded deviation from the optimal trajectory.

Lemma D.2. There exist bounds Mx > 0 and Mu > 0 and constants c1, c2 ≥ 0
that depend on PS(φ(x∗0, u

∗)), such that for all εx ∈ [0, Mx] and εu ∈ [0, Mu], if
x0 ∈ Bεx (x

∗
0) and ut ∈ Bεu (u

∗
t ) ∀t ∈ N, where u = {ut}t∈N and φ(x0, u) = {xt}t∈N,

then for all t ∈ N, xt+1 − x∗t+1

∞
≤ c1εx + c2εu,

PS(φ(x0, u)) = PS(φ(x∗0, u
∗)).

Proof. For x∗px∗k (i.e., t ∈ [k]), the lemma is true by Lemma C.1 because it is a
finite length trajectory. Let c′1, c′2, M′x and M′u be the associated bounds for x∗px∗k .
When t = k + m, by robustness property, there exists a constant L < 1, and bounds
M′′x ≤ c′1εx + c′2εu, and M′′u > 0 such that

xk+m − x∗k

∞
≤ L

xk − x∗k

∞
. Let

Rk = {x | x ∈ BM ′′x (x
∗
k)}, and Rk+ j+1 = {x | x = fk+ j(x′, u), x′ ∈ Rk+ j, u ∈

BM ′′u (u
∗
k+ j), x ∈ Pik+j+1} for all j ∈ N, where Pi is the label for the state x∗i . The

neighborhoods {Rk+ j+1} j∈N are compact because the transitions are continuous.
Furthermore, by robustness property, Rk+m ⊂ Rk . Thus, for j ∈ [m − 1] and i ∈ N,
Rj+im+k ⊂ Rj+k . As a result, x j+im+k is an element in Rk+ j for all j ∈ [m − 1] and
i ∈ N. Let dt = max{

x − x∗t

∞
| x ∈ Rt} be the maximum distance between a

state in the neighborhood Rt and the optimal state x∗t for all t ≥ k. This maximum
is well defined for all t ≥ k because x∗t ∈ Rt . Now, let d̄ be the maximum
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among all dk+ j for j ∈ [m − 1]. Then,
xt − x∗t

 ≤ d̄ for all t ≥ k. Finally, set
Mx = min{M′x, M′′x }, Mu = min{M′u, M′′u }, and c1 and c2 such that c1εx + c2εu ≥

max{d̄, c′1εx + c′2εu}. Note that by construction, the sequence {Rk+ j+1} j∈N gives us
PS(φ(x0, u)) = PS(φ(x∗0, u

∗)). �

Lemma D.2 ensures that the error from the optimal state at any time is bounded
linearly by the error from the initial state and the largest error of control inputs
from the optimal ones. The state error decreases to zero when εx and εu decrease
to zero. The constants c1 and c2, which depend on t would not be unbounded by
the robustness property. The main consequence of a bounded deviation is that the
suboptimal cost of this trajectory is also bounded, showed next.

Lemma D.3. Given the cost function in Problem 10.2, there exist bounds Mx > 0
and Mu > 0, and constants c3, c4 ≥ 0 such that for all εx ∈ [0, Mx] and εu ∈ [0, Mu],
if x0 ∈ Bεx (x

∗
0) and ut ∈ Bεu (u

∗
t ) ∀t ∈ N,

|W(ζ) −W(ζ∗)| ≤ c3εx + c4εu,

PS(φ(x0, u)) = PS(φ(x∗0, u
∗)),

where φ(x0, u) = {xt}t∈N, and ζ = {xtut}t∈N.

Proof. First, compute

|W(ζ) −W(ζ∗)|

=

����� lim
k→∞

1
k

k−1∑
t=0
J(xt+1, ut) − lim

k→∞

1
k

k−1∑
t=0
J(x∗t+1, u

∗
t )

�����
=

����� lim
k→∞

1
k

k−1∑
t=0
J(xt+1, ut) − J(x∗t+1, u

∗
t )

�����
≤ lim

k→∞

1
k

k−1∑
t=0

��J(xt+1, ut) − J(x∗t+1, u
∗
t )
�� .

The second equality holds because J(xt+1, ut)/k forms a convergent series for a
lasso path. Since J(x, u) is a Lipschitz continuous function, there exists a constant
Ct > 0 such that

|J(xt+1, ut) − J(x∗t+1, u
∗
t )| ≤ Ct

x̄t − x̄∗t

∞
.

Therefore,

|W(ζ) −W(ζ∗)| ≤ lim
k→∞

1
k

k−1∑
t=0

C
x̄t − x̄∗t


∞
,
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where C = supt∈N+ Ct and x̄t = [xt+1, ut] ∈ R
n+p is a joined vector of x and u. Given

that the optimal input is robust,

|W(ζ) −W(ζ∗)| ≤ lim
k→∞

1
k

k−1∑
t=0

C max{c1εx + c2εu, εu}

= C max{c1εx + c2εu, εu}.

Then,

|W(ζ) −W(ζ∗)| ≤ c3εx + c4εu

c3 =

{
c1C, c1εx + c2εu ≥ εu

0, c1εx + c2εu < εu

c4 =

{
c2C, c1εx + c2εu ≥ εu

C, c1εx + c2εu < εu.

The constants Mx and Mu are set to be the same as the ones in Lemma D.2. Then,
PS(φ(x0, u)) = PS(φ(x∗0, u

∗)). �

Lemma D.3 implies that there exists a small neighborhood of the optimal trajectory
in which the trajectories will go through the same partition sequence and difference
in the cost is bounded and decreases to zero if εx and εu decrease to zero. Given
a specific cost sub-optimality, we will now show that there exists a strategy that
satisfies this cost error. In other words, we can construct an abstraction to give a
chain lasso strategy that satisfies a certain cost error bound.

Lemma D.4. Given any δ > 0, there exists a chain lasso winning strategy σ for
some T̂ = Abs(TD,≡X, ≡U) such that

|W(T̂ , σ, x̂0) −W(TD, x∗0,Π)| ≤ δ,

where x̂0 = [x∗0]≡X .

Proof. The proof constructs the chain part of the chain lasso strategy followed by
the loop part. For each part, we find neighborhoods N x

t around x∗t and Nu
t around u∗t

such that N x
t is contained in the region of the partition containing x∗t , all transitions

from N x
t and Nu

t lead to N x
t+1. We also bound the maximum cost of any transition

from N x
t to N x

t+1 using an input from Nu
t . Lastly, we obtain a chain lasso strategy in

T̂ = Abs(TD,≡X, ≡U) by choosing N x
t and Nu

t to be regions of ≡X and ≡Y .
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More precisely, let PS(φ(x∗0, u
∗)) = {Pit }t∈N. By robustness of the optimal control

(Definition 10.3), we first choose N x
k to be a grid cell of size ε0/2 j ≤ Mx for j ∈ N

that contains an open ball around x∗k , which is contained in Pik . Next, construct the
chain part of the chain lasso strategy inductively, starting from t = k and moving
backwards similar to Lemma C.3. Under this construction, all executions from N x

0
will be in N x

t after t steps. For all t ∈ [k − 1], choose the N x
t and Nu

t such that they
correspond to an element of a ε0/2 j grid for j ∈ N.

Now, construct the loop part of the chain lasso strategy inductively. Let Rx
k = N x

k

(white square), and for t = k+1, . . . , k+m, let Rx
t be the region where all transitions

from Rx
t−1 on Ru

t−1 ⊆ BMu (u
∗
t−1) end in (white circles in Figure 10.2). Define the ε

expansion of a set A as Eε(A) = A ∪ {y | minx∈A ‖y − x‖∞ ≤ ε}. The induction
begins from t = k + m and moves backwards until t = k + 1. At t = k + m, εk+m

is chosen such that Ek+m = Eεk+m(R
x
k+m) and Ek+m ⊂ Rx

k . The latter is possible
because of the second robustness property in Definition 10.3 for the optimal path.
Assume that E j = Eεj (R

x
j ) (blue circles in Figure 10.2) for j = t + 1, . . . , k + m,

and Fj = Eε′j (R
x
j ) (red circles in Figure 10.2) for j = t + 1, . . . , k + m − 1 are

computed. Construct Et and Ft by choosing ε′t such that all trajectories from Ft

on Nu
t ⊆ Ru

t will end in Et+1, and εt to be smaller than ε′t . This construction is
possible because of the continuity of the transition ∆. At t = k, let Nu

k ⊆ Ru
k . For

all t = k, . . . , k + m − 1, Nu
t is chosen to correspond to an element of a ε0/2 j grid

for j ∈ N. Given {Ek+ j+1} j∈[m−2] and {Fk+ j+1} j∈[m−2], construct {N x
k+ j+1} j∈[m−2],

whereby each N x
k+ j+1 is a set of elements of a ε0/2i grid for i ∈ N such that Et ∈ N x

t

and N x
t ∈ Ft (group of squares in Figure 10.2). Note that i may be different for

different j. Then, every transition from N x
t on Nu

t will end in N x
t+1. Thus, the chain

of neighborhoods {N x
j } j∈[k+m−1] and {Nu

j } j∈[k+m−1] gives us a chain lasso strategy.

Further, by Lemma D.3, we can choose εx and εu such that c3εx + c4εu ≤ δ for
some constants c3 and c4 in order to ensure that the cost of the strategy is within δ
of the optimal cost. Thus, |W(ζ) −W(ζ∗)| ≤ δ for any path ζ starting in an εx ball
around x∗0.

Finally, define ≡X and ≡U such that the N x
j and Nu

j are all equivalence classes of X
andU, respectively. Note that we need to ensure that for any i, j ∈ [k + m − 1], N x

j

is the same as N x
i or the two are disjoint. Similar conditions hold for Nu

i . These
conditions can be easily ensured during the construction by picking small enough
ε0/2 j for j ∈ N. �
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Algorithm 10 contains only uniform grids with grid size ε0/2i. But, the partitions
corresponding to the neighborhoods of N x and Nu given by Lemma D.4 may not
correspond to an uniform grid. Thus, we next construct a uniform grid by refining
the chain lasso strategy obtained from Lemma D.4.

Lemma D.5. For a given δ > 0, there exists an ε = ε0/2i > 0, such that |W(T̂ε, x̂ε0,

Π) −W(TD, x∗0,Π)| ≤ δ, where xε0 = [x
∗
0]≡εX . Furthermore, there exists a winning

strategy σε with cost no larger thanW(T̂ε, x̂ε0,Π).

Proof. From the proof of Lemma D.4, we obtain a sequence of neighborhoods
N x

t and Nu
t , which corresponds to a chain lasso strategy, say σ starting from N x

0 .
Furthermore, every N x

t corresponds to an element of Grid(X, ε0/2it ) or a collection
of elements of Grid(X, ε0/2it ) for some it . Similarly, every Nu

t corresponds to an
element of Grid(U, ε0/2 jt ) for some jt . Let i be the maximum of the its and jts.
Then, Grid(X, ε0/2i) refines N x

t , and Grid(U, ε0/2i) refines Nu
t . Define a strategy

σε (not necessarily a chain lasso anymore) for T̂ε, which corresponds to following
the neighborhoods N x

t . All the paths in T̂ε conforming to σε are contained in the
neighborhoods N x

t . As a result, the cost of σε is bounded by that of σ, which is at
most δ larger than the optimal cost. Therefore, the optimal cost of T̂ε is at most δ
larger than that of TD . �

Proof of Theorem 10.2. Note that Jε0/2i ≤ Jε0/2j for all i > j, and for any δ > 0,
there exists ε = ε0/2i, such that |W(T̂ε, x̂ε0,Π)−W(TD, x∗0,Π)| ≤ δ by Lemma D.5.
Because the optimal path is a lasso, the optimal strategy has a finitememory, and thus
the optimality gap ε is zero. As a result, Jε =W(T̂ε, x̂ε0,Π) and Jopt =W(TD, x∗0,Π)

is the optimal cost. Thus, |Jε− Jopt | ≤ δ. Therefore, Jε0/2i converges to Jopt as i goes
to infinity. Furthermore, for each sub-optimal cost Jε0/2i , there exists a suboptimal
winning strategy σε0/2i with cost of winning Jε0/2i by Lemma D.5.
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C h a p t e r 11

CONCLUSION

Optimal controller synthesis for nonlinear systems is a challenging problem. Due
to the nonlinearity, many efficient techniques that are developed for linear systems
are no longer applicable for the nonlinear counterparts. As a result, most techniques
for nonlinear systems are extremely ad-hoc to specific systems and rarely scalable
to real world engineering systems such as robots. This thesis aims to push the
boundary further by developing optimal controller synthesis techniques that are
more scalable and guarantee correctness of the specifications. This thesis focuses
on two general classes of nonlinear systems: linearly solvable nonlinear systems and
hybrid nonlinear systems.

Part I Optimal Control Synthesis for Linearly Solvable Nonlinear Systems

The first part of this thesis discusses the techniques for linearly solvable systems.
Suboptimal controller is synthesized using SOS programming with performance
guarantees for first exit and finite horizon problems. This technique is the first to
combine the optimality condition given by the HJB equation with stability condition
given by the Lyapunov analysis. However, this method suffers from the curse of
dimensionality. Thus, this thesis proposes a low rank tensor decomposition based
technique that scales linearly with dimensions to synthesize controllers for first
exit, finite horizon and infinite horizon problems. The existing ALS algorithm is
improved to avoid ill-conditioning issues, and A MATLAB tool that implements
the algorithms is developed [32]. The ability to compute the solution to the linear
HJB equation for a quadcopter with twelve dimensions using a personal laptop
and produce a controller that achieves the objective is a strong indicator of this
technique’s great potential for implementation in other robotics and engineering
systems.

Apart from the potential improvements and future works discussed in the individual
chapters, the techniques presented in this thesis are general and applicable for solving
any linear PDE, including the Fokker-Planck equation [114] used for uncertainty
propagation and state estimation. In fact, any equation that is naturally a linear PDE,
including those found in fluid mechanics, quantum mechanics, and solid mechanics
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could benefit from the technique presented in this thesis.

Furthermore, the techniques presented so far are restricted to linearly solvable
systems that have linear HJB equation. One major improvement for this line of
research is to consider the nonlinear HJB equation directly. Solving the nonlinear
HJB equation directly is an attractive approach for multiple reasons: the desirability
function can have really poor numerics despite that the value function has a relatively
“nice” shape and magnitude, and the classes of systems and cost functions that can
benefit from this approach become larger. To solve the nonlinear HJB equation, a
creative combination of numerical techniques in nonlinear PDE with the low rank
tensor representations or the SOS programs is necessary.

Part II Optimal Control Synthesis for Hybrid Systems with Qualitative and
Quantitative Objectives

Apart from optimality, in many applications, correctness of the system behavior is
also necessary. In other words, qualitative specifications such as obstacle avoid-
ance and surveillance are essential in addition to quantitative specifications such as
minimizing energy used. The second part of this thesis focuses on synthesizing op-
timal controller for hybrid nonlinear systems with regular andω−regular objectives,
where regular objectives describe finite time behavior, and ω−regular objectives
describe long term behavior. An abstraction-refinement based approach that pre-
serves the cost is developed for computing the optimal controller. The algorithms
converge to the optimal cost if the systems are robust with respect to the initial states
and the optimal inputs. The resulting controller is guaranteed to be correct and the
system performance is guaranteed to satisfy a given cost bound. A Python tool that
implements the algorithms is developed [33].

This technique consider a specific type of hybrid system, where the states and control
inputs are continuous variables. But, the fundamental structure that allows for the
construction of cost preserving abstraction is that the system can be represented
as a weighted transition system. Thus, this technique can potentially be applied
in more general setting, where some of the states and control inputs are discrete
variables. Furthermore, the cost preserving abstraction may be combined with
other abstraction approaches that preserve other system properties, for example
stability [163], in order to encode optimality in the framework.

Another potential future direction of this work is extending the technique to robust
optimal control synthesis for nondeterministic hybrid systems. The neighborhoods
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of states and inputs in the abstract system naturally model measurement errors and
input uncertainties of the concrete system. Therefore, this technique may apply for
synthesizing robust optimal control for a stochastic hybrid system.

Another interesting future extension of this technique is to consider continuous time
systems. Currently, a continuous time system can be discretized in time and the
approach described in this thesis will apply. However, a more careful examination of
the theoretical results is necessary as the time discretization introduces another layer
of abstraction. An interesting approach is to develop the cost preserving abstraction-
refinement procedure for the continuous time system directly without discretizing
the system a priori.

In addition, the methods presented in this thesis rely on space discretization that
scales exponentially with dimension. This curse of dimensionality prevents the
application of these algorithms to large scale systems. In order to alleviate this curse,
a more intelligent gridding scheme in the refinement step could be developed, for
example, counter-example guided refinement [161]. Alternatively, a more efficient
abstraction procedure could be developed, for example, optimizing the grid size
to minimize the number of transitions in the abstraction subject to the appropriate
dynamic constraints [162]. Alternatively, a distributed scheme could be developed
such that the computation can be performed in a more efficient manner such as
parallelization.

Lastly, more generally, the approaches in Part I could potentially be combined with
the abstraction based approach introduced in Part II for studying the properties of the
new alternating simulation relation defined in Chapter 8. Lyapunov-type approaches
have been used in the past to construct and analyze approximate bisimulations that
reduces complexity of safety verification for both deterministic and nondeterministic
hybrid systems [164], [165].
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