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ABSTRACT

Optimal controller synthesis is a challenging problem to solve. However, in many
applications such as robotics, nonlinearity is unavoidable. Apart from optimality,
correctness of the system behaviors with respect to system specifications such as
stability and obstacle avoidance is vital for engineering applications. Many exist-
ing techniques consider either the optimality or the correctness of system behavior.
Rarely, a tool exists that considers both. Furthermore, most existing optimal con-
troller synthesis techniques are not scalable because they either require ad-hoc design

or they suffer from the curse of dimensionality.

This thesis aims to close these gaps by proposing optimal controller synthesis tech-
niques for two classes of nonlinear systems: linearly solvable nonlinear systems
and hybrid nonlinear systems. Linearly solvable systems have associated Hamilton-
Jacobi-Bellman (HJB) equations that can be transformed from the original nonlinear
partial differential equation (PDE) into a linear PDE through a logarithmic trans-
formation. The first part of this thesis presets two methods to synthesize optimal
controller for linearly solvable nonlinear systems. The first technique uses a hierar-
chy of sums-of-square programs to compute a sequence of suboptimal controllers
that have non-increasing suboptimality for first exit and finite horizon problems.
This technique is the first systematic approach to provide stability and suboptimal
performance guarantees for stochastic nonlinear systems in one framework. The
second technique uses the low rank tensor decomposition framework to solve the
linear HIB equation for first exit, finite horizon, and infinite horizon problems. This
technique scale linearly with dimensions, alleviating the curse of dimensionality
and enabling us to solve the linear HIB equation for a quadcopter model that is a
twelve-dimensional system on a personal laptop. A new algorithm is proposed for
a key step in the controller synthesis algorithm to solve the ill-conditioning issue
that arises in the original algorithm. A MATLAB toolbox that implements the
algorithms is developed, and the performance of these algorithms is illustrated by a

few engineering examples.

Apart from stability, in many applications, more complex specifications such as
obstacle avoidance, reachability, and surveillance are required. The second part of
the thesis describes methods to synthesize optimal controllers for hybrid nonlinear
systems with quantitative objectives (i.e., minimizing cost) and qualitative objectives

(i.e., satisfying specifications). This thesis focuses on two types of qualitative



vi

objectives, regular objectives, and w-regular objectives. Regular objectives capture
bounded time behavior such as reachability, and w-regular objectives capture long
term behavior such as surveillance. For both types of objectives, an abstraction-
refinement procedure that preserves the cost is developed. A two-player game is
solved on the product of the abstract system and the given objectives to synthesize
the suboptimal controller for the hybrid nonlinear system. By refining the abstract
system, the algorithms are guaranteed to converge to the optimal cost and return the
optimal controller if the original systems are robust with respect to the initial states
and the optimal controller inputs. The proposed technique is the first abstraction-
refinement based technique to combine both quantitative and qualitative objectives
into one framework. A Python implementation of the algorithms are developed,
and a few engineering examples are presented to illustrate the performance of these

algorithms.
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K All real continuous nondecreasing functions u : R, — R, such that
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Chapter 1

INTRODUCTION

Feedback control is a very old concept that has profound impact on the development
of today’s technology [1]. An interesting history of feedback control can be found
in [2] that traces the control of devices to the ancient past. Applications of feed-
back control ranged from traditional engineering fields like chemical processes [3],
aircrafts [4], spacecrafts [5], and robotics [6] to new areas like algorithm analysis
[7], biology [8], [9], and neuroscience [10]-[12]. Typically, the goal of a controller
is to ensure that the systems controlled is able to perform a task efficiently and
reliably. This requirement translates to requiring the controller to be both optimal
with respect to a metric and correct with respect to a given set of specifications, and

perhaps robust against random disturbances.

Optimal controller synthesis for linear systems is a well studied area with many useful
tools and techniques. An important milestones for optimal controller synthesis is the
linear quadratic regular (LQR) introduced by Kalman, who showed that the optimal
controller is a linear feedback of the state variables using the calculus of variation
[13]. Despite initial successes in the 1970’s, the LQR controller and its sister, linear
quadratic Gaussian regular (LQG), have poor robustness properties [14]. Thus,
in the 1980’s, tools and techniques for robust control emerged including optimal
H,/H, controller synthesis that uses state-space formulation and the Ricatti equation
[15], [16]. More recently, the system level synthesis framework was developed in
[17], [18] that enables distributed, localized, and scalable synthesis using convex

optimization.

Linear systems are useful for modeling systems that only operate in the linear regime
and designing optimal stabilizing controllers for these systems. But nonlinearity
is unavoidable in many engineering applications such as controlling a walking
robot [6]. Furthermore, using the full nonlinear model for controller synthesis
typically results in a more efficient controller than only using the linearized model
for controller synthesis. Thus, optimal controller synthesis for nonlinear systems
is an important area of study. Yet, despite major progresses in optimal controller
synthesis for linear systems, optimal controller synthesis for nonlinear systems does

not share the same level of generality, computability, and scalability. Due to the
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nonlinearity, many efficient techniques that are developed for linear systems are no

longer applicable for the nonlinear systems.

A fundamental concept in optimal control synthesis for nonlinear system is the
Hamilton-Jacobi-Bellman (HJB) equation, a novel view by Bellman and his col-
leagues that extends the earlier works on optimal control based on calculus of
variation. Bellman introduced the idea of dynamics programming for computing
the optimal controller [19] based on the following simple idea: if an optimal path
is found between two points, then for any other two points on the optimal path, the
original optimal path between these two points is also the optimal path between these
two points. Almost in parallel, the Pontraygin’s maximum principle [20], [21] was
developed by Pontraygin and his colleagues for solving the optimal control problem.
The maximum principle provides the necessary conditions for optimal control us-
ing the concept of a Hamiltonian. This formulation transforms the optimal control
problem into a nonlinear programming problem. However, unlike the dynamic pro-
gramming approach, nonlinear programming that solves the Pontraygin’s maximum
principle does not provide a feedback controller; instead it provides an open loop

optimal control trajectory for the system.

These two main schools of thought have major influences on the development of
nonlinear optimal control synthesis since the 1950’s. This thesis adopts Bellman’s
view of optimal control because we seek to compute optimal feedback controllers
for nonlinear systems such as robots and quadcopters. The major challenge with this
view of optimal control is the curse of dimensionality [22]. As computers become
more efficient with more memory, the curse of dimensionally is not as daunting as
before. But solving nonlinear optimal control synthesis is still a challenging task for
systems that have more than 2 or 3 dimensions. Yet many engineering systems have
more dimensions than three. For example, a simple quadcopter model has 12 state

dimensions [23], and a biped robot can easily have more than 30 state dimensions

[6].

Apart from scalability, unlike the tools for linear systems, satisfying both optimality
and correctness of system behaviour with respect to system specifications is ex-
tremely challenging for nonlinear systems. Most existing methods usually satisfy
one or the other. Rarely do we find a tool that satisfies both. Methods derived from
the HJB equations and the maximum principle typically only consider optimality
without explicitly considering correctness of system behaviors such as stability and

obstacle avoidance. On the other hand, many methods [24], [25] are available that
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satisfy system specifications without considering optimality. Techniques for ensur-
ing stability, the most common form of specifications for control, includes feedback
linearization and differential geometry based methods [24], [25]. In essence, many
of these synthesis techniques rely on finding control Lyapunov functions for the
dynamical systems of interest. As a result, the techniques are generally not scal-
able, and in many cases ad-hoc to the specific applications. More recently, the
development of convex optimization, in particular sums-of-squares programming,
helps automate the process of searching for control Lyapunov functions [26], [27].
Apart from stability, robotic systems can have many other specifications such as
surveillance, obstacle avoidance, and reachability. For these more complex specifi-
cations, the formal method emerges as the principled automatic synthesis technique
that also formally verifies the correctness of the controlled system behaviors [28]—
[31]. These formal techniques generally search for any feedback controller that is
correct with respect to the specifications. Most of synthesis techniques mentioned
in this paragraph focus on achieving correct system behaviors, but lack any form of

optimality guarantees.

This thesis aims to close some of these gaps by proposing optimal controller syn-
thesis techniques for nonlinear systems that are scalable and correct with respect
to specifications. This thesis focuses on two general classes of nonlinear systems:

linearly solvable nonlinear systems and hybrid nonlinear systems.

Part I Optimal Control Synthesis for Linearly Solvable Nonlinear Systems

As mentioned before, in nonlinear control theory, synthesizing any stabilizing con-
troller is a huge challenge on its own. However, in many practical applications,
where resources are limited, optimality is also important. Optimal controller syn-
thesis is challenging because it involves solving the Hamilton-Jacobi-Bellman (HJB)
equation that is typically a nonlinear partial differential equation. This part of the
thesis aims to solve the HJB equation for the class of nonlinear affine stochastic
systems that can be transformed into a linear PDE. This type of system is called a

linearly solvable system throughout this thesis.

Two approaches are proposed to solve the linear HIB equation: Sums-of-Squares
based technique and low rank tensor decomposition based technique, and three typi-
cal types of cost functionals are considered that give three types of control problems:
the first exit problem, finite horizon problem, and infinite horizon problem. The

first method synthesizes a suboptimal controller using SOS programming, a convex
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optimization based method, to solve the linear HIB equation. The resulting con-
troller is guaranteed to be stabilizing and the trajectory cost of the controlled system
is bounded. This method is among the first to explicitly consider both optimality
and stability for stochastic nonlinear systems. The second method synthesizes the
controller by solving the linear HIB equation using a low rank tensor decomposition
based approach. This approach scales linearly with the dimensions, avoiding the
curse of dimensionality suffered by the first method. The implementation of this

technique is available online at [32].

The first part of the thesis includes the following chapters:

Chapter 2 provides a general overview of Part I and describes the main contribu-
tions.

Chapter 3 introduces background materials necessary for understanding the rest
of the chapters in this part, including stochastic control Lyapunov function,
linear HIB equation, viscosity solutions, CANDECOMP/PARAFAC tensor,
and spectral discretization scheme.

Chapter 4 presents optimal controller synthesis technique that uses Sum-of-Squares
program. This technique is the first to combine the optimality condition with
the stability criteria in one framework using convex optimization. This tech-
nique not only synthesizes a suboptimal controller, but it provides guarantees
on trajectory cost and system stability. However, one major limitation of
this technique is the curse of dimensionality, which is addressed by the next
chapter.

Chapter 5 synthesizes controller for a high dimensional system using low rank
tensor decomposition. This technique scales linearly with dimensions and
thus avoid the curse of dimensionality. The existing Alternating Least Square
algorithm is improved with sequential computation. A MATLAB toolbox that
implements algorithms presented in this chapter is developed.

Appendix A presents implementation of algorithms described in Chapter 5 for
multiple engineering examples. The algorithm is able to solve for a quadcopter

controller that has 12 degrees of freedom on a laptop.
Part II Optimal Control Synthesis for Hybrid Systems with Qualitative and
Quantitative Objectives

Apart from qualitative criteria (i.e., optimality with respect to a cost function), in

many applications, there is also high level quantitative specifications, for instance,
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a mobile robot has to perform surveillance while avoiding obstacles. The second
part of the thesis describes methods to synthesize optimal controllers for hybrid

nonlinear systems that have both quantitative and qualitative specifications.

Two classes of quantitative objectives are considered: regular and w-regular. The
former captures bounded time behavior of the systems, including reachability, and
the latter captures long term behavior such as surveillance. The first method con-
siders systems with regular objectives. An abstraction-refinement approach that
preserves the cost is developed for synthesizing an optimal controller that is correct
with respect to the regular objectives. The second method considers systems with
w-regular objectives. A similar cost preserving abstraction-refinement approach in
conjunction with solving a two-player quantitative game (i.e., mean payoff parity
game) is used to synthesize the controller. Both methods use an iterative abstraction-
refinement approach that converges to the optimal controller if the systems are robust
with respect to the initial states and the optimal inputs. The implementation of both

techniques is available online at [33].

The second part of the thesis includes the following chapters:

Chapter 6 provides a general overview of the state-of-art of formal controller syn-
thesis, and describes the main contributions of Part II in the context of the
previous works.

Chapter 7 introduces the mathematical notations, presents the semantic model for
discrete time hybrid systems with cost (i.e., weighted transition systems), and
formalizes the optimal control problem.

Chapter 8 defines the preorder for optimal control that preserves the cost and
presents the abstraction refinement procedure for constructing finite state
systems, which simulate a given transition system, termed the abstract system.
The abstract system satisfies the condition that the cost of the optimal control
on the abstract system provides an upper bound on the cost of the optimal
control for the original system. Furthermore, each suboptimal controller
yields trajectories that have the cost upper bounded by the cost of the optimal
control on the corresponding abstract system.

Chapter 9 presents the abstraction-refinement method to synthesize control inputs
for a discrete-time hybrid system. The controlled system behavior satisfies
a finite-word linear-time temporal objective while incurring minimal cost.
An abstract finite state weighted transition system is constructed from finite

partitions of the state and input spaces by solving optimization problems.
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A sequence of suboptimal controllers is obtained by considering a sequence
of uniformly refined partitions. In fact, the costs achieved by the sequence
of suboptimal controllers converge to the optimal cost for a class of hybrid
systems that has robust optimal input trajectories. Examples illustrate the
feasibility of this approach to synthesize automatically suboptimal controllers
with improving optimal costs.

Chapter 10 presents the abstraction-refinement based framework for optimal con-
troller synthesis of discrete-time hybrid systems with respect to w-regular ob-
jectives. Similar to Chapter 9, it consists of first abstracting the discrete-time
“concrete” system into a finite weighted transition system using a finite parti-
tion of the state-space. Then, a two-player mean payoff parity game is solved
on the product of the abstract system and the Biichi automaton correspond-
ing to the w-regular objective, to obtain an optimal “abstract” controller that
satisfies the w-regular objective. The abstract controller is guaranteed to be
implementable in the concrete discrete-time system, with a sub-optimal cost.
The abstraction is refined with finer partitions to reduce the sub-optimality.
Under the assumption on the existence of certain robust controllers, the refine-
ment procedure is guaranteed to find controllers whose costs are arbitrarily
close to the optimal cost. An example is presented to illustrate the feasibility
of the approach.

Appendices B-D contain the full proofs for results in Chapters 8—10, respectively.

Finally, this thesis ends with Chapter 11, which summarizes the contributions of

this thesis, potential future work, and other final thoughts.



Part I

Optimal Control Synthesis for

Linearly Solvable Nonlinear Systems



Chapter 2

INTRODUCTION TO PART I

This part of the thesis presents techniques to solve for optimal controller for a class of
stochastic nonlinear affine dynamical systems for three types of cost functionals: first
exit, finite horizon, and infinite horizon. In particular, the methods presented seek
to solve the Hamilton-Jacobi-Bellman (HJB) equations associated with the optimal
control problems. In general, the HIB equation is a nonlinear partial differential
equation (PDE), but for a class of systems, termed linearly solvable systems, the
HJB equation can be transformed into a linear PDE. The methods described in this

part of the thesis solve this linear PDE.

Two techniques are proposed: convex optimization based technique and low rank
tensoder decomposition based technique. The former provides performance guar-
antees with limited scalability, while the latter provides scalability with limited
performance guarantees. Each of these methods and its related works are discussed

in the individual chapters.

This part of the thesis includes the following chapters:

Chapter 3 introduces background materials necessary for understanding the rest
of the chapter in this part, including stochastic control Lyapunov function,
linear HIB equation, viscosity solutions, CANDECOMP/PARAFAC tensor,
and spectral discretization scheme.

Chapter 4 presents optimal controller synthesis technique that uses Sum-of-Squares
program. This technique is the first to combine the optimality condition with
the stability criteria in one framework using convex optimization. This tech-
nique not only synthesizes a suboptimal controller, but it provides guarantees
on trajectory cost and system stability. However, one major limitation of
this technique is the curse of dimensionality, which is addressed by the next
chapter.

Chapter S synthesizes controller for a high dimensional system using low rank
tensor decomposition. This technique scales linearly with dimensions and
thus avoid the curse of dimensionality. The existing Alternating Least Square

algorithm is improved with sequential computation. A MATLAB toolbox is



developed.
Appendix A presents implementation of algorithms described in Chapter 5 for
multiple engineering examples. The algorithm is able to solve for a quadcopter

controller that has 12 degrees of freedom on a laptop.

Part of the contents in this part appeared in these publications [34]-[36].
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Chapter 3

PRELIMINARIES

This chapter presents the notations and definitions, and describes several topics that

are useful for understanding the following chapters of this part of the thesis.

3.1 Notations and Definitions
A compact domain in R" is denoted as €2, where 2 C R”, and its boundary is denoted

as 0Q. A domain Q is a basic closed semialgebraic set if there exists g;(x) € R(x)
fori =1,2,...,msuchthat Q = {x | gi(x) >0Vi=1,2,...,m}.

A point on a trajectory, x(¢) € R", at time 7 is denoted x(z), while the segment of

this trajectory over the interval [¢, T'] is denoted by x(t : T).

Given a function p(x), p(x) is positive on domain Q if p(x) > 0 Vx € Q, p(x)
is nonnegative on domain Q if p(x) > 0 Vx € Q, and p(x) is positive definite on
domain Q, where 0 € Q, if p(0) = 0 and p(x) > O for all x € Q\{0}.

3.2 Stochastic Affine Nonlinear Dynamical Systems
This part of the thesis will focus on the following stochastic affine nonlinear dynam-
ical system

dx(t) = (f(x(1)) + G(x(2))u(t)) dt + B(x(1)) dw(t), 3.1
where x(t) € Q is the state at time ¢ in a domain Q C R”, u, € R™ is the control
input, and fi(x) € C*(Q) Vi € [n]s, Gij(x) € C*(Q) Vi € [n]4,j € [m]4, and
B;j(x) € C¥(Q) Vi € [n]y, j € [I];+ are smooth functions of the state variables x.
The symbol w(z) € R’ is a vector consisting of Brownian motions with covariance
T, i.e., w, has independent increments with w, —w; ~ N(0, Z.(t—s)), for N' (i, o),
anormal distribution. The constants 7, m, and [ are the numbers of states, controller

inputs, and noise inputs, respectively. Without loss of generality, let 0 € Q and
x = 0 be the equilibrium point, whereby f(0) = 0, G(0) = 0, and B(0) = 0.

The specific conditions on the functions f, G, and B and the domain Q will be
provided in following chapters, where the techniques to solve the problem are
described.

This class of dynamical systems arises in many robotic systems, including quad-

copter and other examples shown in later chapters.
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3.3 Stochastic Control Lyapunov Functions (SCLF)

The study of system stability is a central theme of control engineering. A primary
tool for such studies is Lyapunov theory, wherein an energy-like function is used
to show that some measure of distance from a stability point decays over time.
The practical machinery for construction of Lyapunov functions that certify system
stability advanced considerably with the introduction of Sums of Squares (SOS)
programming, which has allowed for Lyapunov functions to be synthesized for both

polynomial systems [37] and more general vector fields [38].

To address the more challenging problem of stabilization, rather than the analysis
of an existing closed loop system, it is possible to generalize Lyapunov functions to
incorporate control inputs. The existence of a control Lyapunov function (CLF) (see
[39]-[41]) is sufficient for the construction of a stabilizing controller. However, the
synthesis of a CLF for general systems remains an open question. Unfortunately,
the SOS-based methods cannot be naively extended to the generation of CLFs, due

to the bilinearity between the Lyapunov function and control input.

Due to the lack of a general CLF synthesis technique, an alternative is the use of
Receding Horizon Control (RHC), which allows for the incorporation of optimality
criteria. Euler-Lagrange equations are used to construct a locally optimum trajectory
[42], and stabilization is guaranteed by constraining the terminal cost in the RHC
problem to be a CLF. Suboptimal CLFs have found extensive use with applications
in legged locomotion [43] and distributed control [44]. Adding stochasticity to the
governing dynamics compounds the difficulties of constructing Lyapunov functions
[45], [46].

This section introduces the notion of stability for the stochastic affine nonlinear

dynamical systems, and the stochastic control Lyapunov function (SCLF).

3.3.1 Stability
Two forms of stability are given, following the definitions in [47, Ch. 5].

Definition 3.1. Given (3.1), the equilibrium point at x = 0 is stable in probability
fort > Oif forany s > 0 and € > O,

lin%)P {sup | X5 (1) > 8} =0,

t>s

where X** is the trajectory of (3.1) from x at time s.
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Intuitively, Definition 3.1 is similar to the notion of stability for deterministic sys-
tems. The following is a stronger stability definition that is similar to the notion of

asymptotic stability for deterministic systems.

Definition 3.2. Given (3.1), the equilibrium point at x = 0 is asymptotically stable
in probability if it is stable in probability and

lim P {tlim 1X55(1)| = 0} -1,
where X** is the trajectory of (3.1) from x at time s.
3.3.2 Stochastic Control Lyapunov Functions

The notions of stability introduced earlier can be realized through the construction

of stochastic control Lyapunov functions (SCLFs).

Definition 3.3. A stochastic control Lyapunov function for system (3.1) is a positive
definite function V € C*! on a domain O = Q x {t > 0} such that
V©0,t) =0, V(x,t) > u(lx]) V>0
Ju(x,t)s.t. L(V(x,1)) <0 V(x,1) € O\{(0,1)},

where u € K, and
1
L(V) =6,V + V. VI(f + Gu) + ETr((Vxx(V)BZSBT). (3.2)

Theorem 3.1 ([47] Thm. 5.3). For system (3.1), assume that there exists a SCLF
and a control u(x, t) satisfying Definition 3.3. Then the equilibrium point x = 0 is

stable in probability, and control u(x, t) is a stabilizing controller.

To achieve the stronger condition of asymptotic stability in probability, we have the

following result.

Theorem 3.2 ([47] Thm. 5.5 and Cor. 5.1). For system (3.1), suppose that in
addition to the existence of a SCLF and a control u(x,t) satisfying Definition 3.3

that control u(x, t) is time-invariant, and

V(x,t) < (x]) Ye>0
L(V(x,1) <0 V(x,1) € O\{(0,1)},

where p' € K. Then, the equilibrium point x = 0 is asymptotically stable in

probability, and control u(x, t) is an asymptotically stabilizing controller.
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3.4 Linearly Solvable Hamilton-Jacobi-Bellman (HJB) Equation

Given a stochastic dynamical system, an optimal control problem searches for a
controller that minimizes a cost functional. The study of the Hamilton-Jacobi-
Bellman (HJB) equation that governs the optimal control of a system is central to
this problem [48]. Solving the HIB equation is nontrivial because the equation
is a second order nonlinear PDE. Methods to calculate the solution to the HIB
equation via semidefinite programming have been proposed previously by Lasserre
et al. [49]. The method is quite general, applicable to any system with polynomial

nonlinearities.

Since the late 1970s, Fleming [50], Holland [51] and other researchers thereafter
[52], [53] have made connections between stochastic optimal control and reaction-
diffusion equation through a logarithmic transformation. Recently, when studying
stochastic control using the HIB equation, Kappen [54] and Todorov [55] discov-
ered that particular assumptions on the structure of a dynamical system, given the
name linearly solvable systems, allow a logarithmic transformation of the optimal
control equation to a linear partial differential equation (PDE) form. The linearity
of this class of problems has given rise to a growing body of research, with an
overview available in [56]. Kappen’s work focused on calculating solutions via path
integral techniques. Todorov began with the analysis of particular Markov decision
processes, and showed the connection between the two paradigms. This work was
built upon by Theodorou et al. [57] into the Path Integral framework in use with
Dynamic Motion Primitives. These results have been developed in many different
directions [56], [58]-[60].

The rest of this section presents the cost functionals, the associated nonlinear
Hamilton-Jacobi-Bellman (HJB) equations, and the linearly solvable HIB equa-

tions.

3.4.1 Classes of Cost Functionals
Given the dynamics (3.1), three classes of cost functions are considered: first exit,

finite horizon, and infinite horizon.

First Exit

In the first exit problem, the cost functional is

T
J(x,u) = E, [gb(x(T)) + A q(x(1)) + %M(I)TRM(Z‘) dt|, (3.3)



14
where ¢ € C*(Q), ¢ : Q — R™ is the final state cost, g € C*(Q), g : Q — R, is

a state dependent cost, and R € R™ is a positive definite matrix. The expectation
E,, is taken over all realizations of the noise w in (3.1). The end time 7', unknown a

priori, is the time when the state reaches the boundary of Q.

Finite Horizon

In finite horizon problem, the cost functional is

T
J(x,u) = E, [gb(x(T), T)+ /0 q(x(1)) + %u(t)TRu(t) dt|, (3.4)

where ¢ € C®(Q %X (0,T]), ¢ : Qx (0,T] — R is the final state cost, T is a given

end time, and the other variables are defined similarly to (3.3).

Infinite Horizon

For infinite horizon, this work considers the average cost functional

1 T 1
J(x,u) = Jim T B, [ /0 g(x(1)) + Eu(t)TRu(t) dt|, (3.5)

where the variables are defined similarly to (3.3). An infinite horizon cost functional
is typically used in problems of stabilization. Without lost of generality, we consider
stabilization to the origin. Thus, g(-) and ¢(-) are chosen to be positive definite

functions.

3.4.2 Hamilton-Jacobi-Bellman Equation
The solution to the minimization problem given (3.1) and a cost functional is known
as the value function, V : Q — R, where beginning from an initial point x(z) at
time ¢

Vix(t) = leI}) J(x(t:T),u(t:T)).

u(t

The value function is also dependent on time ¢ for the finite horizon problem.

Based on the dynamic programming principle [61, Ch. III.7], the minimization
problem for each cost functional given the system (3.1) has an associated HJB equa-
tion whose solution forms the optimal controller that minimizes the cost functional.

The associated HIB equation for (3.3), (3.4), and (3.5) are nonlinear, second order
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partial differential equations (PDE):

First exit: 0 =%LWV) (3.6a)
Finite horizon:  — 9,V = NL(V) (3.6b)
Infinite horizon: c =NLWV), (3.6¢)

where
1 1
NLV) £ g+ (VV) f - 5 V. V) GR™'GT (V,V) + ST ((VXXV) BngT),

and the variable c is the optimal average cost that does not depend on the states x.

For all three problems, the optimal control effort, u#*, is given by

u* = -RI'GTV, V. (3.7)

3.4.3 Linear Hamilton-Jacobi-Bellman Equation

Solving (3.6) is difficult due to its nonlinearity. But, when this equality holds
AG)R™'G(x)" = B(x)Z,B(x) 2 E(x) £ %, (3.8)

for a A > 0, the nonlinear PDE can be transformed into a linear PDE [55], [62], [63]

using this logarithmic transformation
V=-AlogV. (3.9

Remark. Systems of the form dx(t) = f(x(¢)) dt + G(x(¢)) (u(t) dt +dw(t)) that
are common in the adaptive control literature [64] will trivially satisfy (3.8). This
constraint restricts the design of the control penalty R, such that control effort is
highly penalized in subspaces with little noise, and lightly penalized in those with
high noise. Additional discussion is given in [55, SI Sec. 2.2].

After substituting (3.8) and (3.9) into (3.6), and simplifying, the HIB equations

become
First exit: 0 =W (3.10a)
Finite horizon: - d,%¥ = &(¥) (3.10b)
Infinite horizon:  — c¥ = L(V¥), (3.10c)
where

U0P) £ ¥+ V) + ST (VW) 2.
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The function Y is called the desirability function [55].

The equations in (3.10) are not well-posed PDE problems without specifying the

boundary conditions [65]. The boundary conditions are defined as follows:

1
First exit:  W(x) = exp (—Zgb(x)) , for x € 0Q (3.11a)

1
Finite horizon:  W(x,t) = exp (—qu(x, t)) , for (3.11b)
(x,1) € 0Q % (0,T]
1
Y(x,T) = exp (—Tp(x, T)), forx € Q

Infinite horizon:  W(x) = 0, for x € Q. (3.11¢)

Henceforth, we write W(-) = (-) as a shorthand for the boundary conditions, and
the specific definition of y/(-) depends on the class of cost functions, which should
be clear from the context. For infinite horizon problem, the domain is chosen to
be large enough such that V(x) is a large number at the boundary, and thus W(x)
is close to zero at the boundary. The boundary conditions currently defined are
called Dirichlet boundary conditions. However, other types of boundary conditions
can also be imposed, including the periodic boundary condition for the dimension

corresponding to the angle [65].

3.5 Viscosity Solutions of Partial Differential Equations (PDE)

If the linear HJB (3.10) is not uniformly elliptic/parabolic [66], a classical solution
may not exist. The notion of viscosity solutions is developed to generalize the
classical solution. Refer to [66] for a general discussion on viscosity solutions and

[61] for a discussion on viscosity solutions related to Markov diffusion processes.

The first definition applies to elliptic PDE.

Definition 3.4 ([66] Def. 2.2). Given Q c R and an elliptic partial differential
equation
F(x,u, Vyou,Vyiu) =0, (3.12)

where F : RV xR x RY x S(N) — R, S(N) is the set of real symmetric N x N

matrices, and F satisfies
F(x,r,p,X) < F(x,s,p,Y) whenever r < sand Y < X,
then a viscosity subsolution of (3.12) on Q is a function u € USC(Q) such that

Fx,u,p,X) <0 VxeQ (pX)e Jé“Lu(x).
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Similarly, a viscosity supersolution of (3.12) on Q is a function u € LSC(Q) such
that
Fx,u,pX)>0 VxeQ ((pX)e Jé’_u(x).

Finally, u is a viscosity solution of (3.12) on Q if it is both a viscosity subsolution

and a viscosity supersolution in Q.

The notations USC(QQ) and LSC(Q) represent the sets of upper and lower semicon-
tinuous functions on domain €, respectively, and Jé*u(x) and Jé’_u(x) represents
the second order “superjets” and “subjets” of u at x, respectively. These “semi-jets”
are approximations of the derivatives when solution is not differentiable. A more

formal definition is available in [66].

The next definition applies to parabolic PDEs.

Definition 3.5 ([66] Sec. 8). Let O = (0,T) x Q, where Q c R". Given a parabolic

partial differential equation
O+ F(t, x,u, Vi, Vyyut) =0, (3.13)

where F : [0,T] x RY x R x RN x S(N) — R, S(N) is the set of real symmetric

N X N matrices, and F satisfies
F(t, x,r,p,X) < F(t,x,s,p,Y)

whenever r < s and Y < X for each ¢t € [0,T), then a viscosity subsolution of

(3.13) on O is a function u € USC(O) such that
a+Ft,x,u,p,X) <0V (t,x) € O,(a,p,X) € Pg’u(t, Xx).

Similarly, a viscosity supersolution of (3.13) on O is a function u € LSC(O) such
that
a+F(t,x,u,p,X) >0V (t,x) € O,(a,p, X) € Py ult, x).

Finally, u is a viscosity solution of (3.13) on O if it is both a viscosity subsolution

and a viscosity supersolution in O.

The notations Pé’“Lu(t, x) and P(z)’_u(t, x) represents the second order “superjets” and

“subjets” of u at (, x), respectively.
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3.6 Sums-of-Squares (SOS) Programming

Sum-of-Squares (SOS) programming is a convex optimization technique that is
widely used when the problem involves positivity of polynomials. One popular
application of the SOS programming in control is for Lyapunov stability analysis

[67]. A complete introduction to SOS programming is available in [37].

3.6.1 Brief Introduction

This section reviews the basic definition of SOS that is used throughout the thesis.

Definition 3.6. A multivariate polynomial f(x) is a SOS polynomial if there exist

polynomials fy(x), ..., fi,(x) such that
F) = f2 ).
i=0
The set of SOS polynomials in x is denoted as SOS(x).

Accordingly, a sufficient condition for nonnegativity of a polynomial f(x) is that
f(x) € SOS(x). Membership in the set SOS(x) may be tested as a convex problem
[37].

Theorem 3.3 ([37] Thm. 3.3). The existence of a SOS decomposition of a poly-
nomial in n variables of degree 2d can be decided by solving a semidefinite pro-

gramming (SDP) feasibility problem. If the polynomial is dense (no sparsity), the
dimension of the matrix inequality in the SDP is equal to " ; d X " 2 d

Therefore, by restricting the set of all positive polynomials to be SOS, testing
nonnegativity of a polynomial becomes a tractable SDP. The converse question
“is a nonnegative polynomial necessarily a SOS” is unfortunately false, indicating
that this test is conservative [37]. Theorem 3.3 guarantees a tractable procedure
to determine whether a particular polynomial, possibly parameterized, is a SOS

polynomial.

Multiple polynomial constraints can be combined into an optimization formulation.

To do so, define the following polynomial sets.
Definition 3.7. The preordering of polynomials g;(x) € R(x) fori = 1,2,...,m is

the set

P(g1,...,8m) = Z Sv(x)gl(x)yl e 'gm(x)vm sy € SOS(x) ¢ . (3.14)
ve{0,1}m
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The following proposition is trivial, but it is useful to incorporate the domain €2 in

optimization formulation.

Proposition 3.1. Given f(x) € R(x) and the domain
Q= {X | gi(-x) € R()C), gi(x) 2 O,l € [m]+}7

if f(x) € P(g1,...,8m), then f(x) is nonnegative on Q. If there exists another
polynomial f'(x) such that f'(x) > f(x) Vx € Q, then f'(x) is also nonnegative on
Q.

Proof. Because g;(x) and s;(x) are nonnegative, all functions in P(-) are nonnegative.

The second statement is trivially true given the first statement. O

Example. To illustrate an application of Proposition 3.1, consider a polynomial
f(x) defined on the domain x € [—1, 1]. The bounded domain can be equivalently
defined by polynomials with g;(x) = 1+x and g»(x) = 1—x. To certify that f(x) > 0
on the specified domain, construct a function A(x) = s1(x)(1 + x) + sp(x)(1 — x) +
53(x)(1 + x)(1 — x), where s; € SOS(x) and certify that f(x) — h(x) > 0. Notice
that A(x) € P(1 +x,1 — x), so h(x) > 0. If f(x)— h(x) = 0, then f(x) > h(x) > 0.
Proposition 3.1 is applied here. Finding the correct s;(x) is not trivial in general.
Nonetheless, as mentioned earlier, if we further impose that f(x) — h(x) € SOS(x),
then the process of checking if there exists s;(x) such that f(x) — h(x) € SOS(x)
becomes a SDP as given by Theorem 3.3.

To simplify notation in the remainder of this thesis, given a domain Q = {x | g;(x) €
R(x), gi(x) = 0,i € {1,2,...,m}}, we set the notation P(Q) = P(g1,...,8&m)-

Remark. Depending on the computational resources available, one may choose a
subset of P(Q) to reduce the size of the resulting SDP. However, the chances of
finding a certificate are reduced as a consequent. This polynomial set is often used
in the discussions of Schmiidgen’s Positivstellensatz, which states that if f(x) is
positive on a compact domain Q, then f(x) € P(Q) [37], [49].

3.6.2 Hierarchy of Sums-of-Squares (SOS) Programming
This thesis uses the SOS programming to solve for positive polynomials that mini-

mize a given cost function while satisfying some constraints. The constrained SOS
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program typically has the following form:

min c'e (3.15)
&{fi}iek

s.t. & — fi(x) € SOS(x) Vi € [k]
g =0Vjelll

where ¢, £ € R¥ is a vector, f; € R(x) are real polynomials in x, and g ; are a linear

functions of the coefficients of f;.

When the polynomial degrees for f; are fixed, this optimization problem is con-
vex and solvable using a SDP via Theorem 3.3. To systematically solve for the
polynomials, a hierarchy of SOS programs with increasing polynomial degree is

formed.

Let d be the maximum degree of f; for all i € [k], and denote (g4, { fid }ie[x)) as
a solution to (3.15) when the maximum polynomial degree is fixed at d. The
hierarchy of SOS programs with increasing polynomial degree produces a sequence

of (possibly empty) solutions (g4, { de}ie[k])del, where I C Z,.

If solutions exist for d and d’ such that d > d’, then £¢ < &9’ because the set of lower
degree polynomials is a subset of the set of higher degree polynomials. Therefore,
one could keep increasing the degree of polynomials in order to achieve tighter
solutions. The use of such hierarchies is commonplace in polynomial optimization

[37], [68]. If at certain degree, e? =0, the optimal solutions { f; };c[«] are found.

3.7 Spatial and Time Discretization
This section describes the state space and the time discretization scheme employed

in later chapters beginning with the spatial discretization.

3.7.1 Spatial Discretization
The spatial discretization can be performed in many ways. This section will de-
scribes two of those: uniform finite difference scheme and spectral discretization

scheme.

Uniform Finite Difference Discretization

Given a continuous state space, the simplest form of discretization scheme is the

uniform finite difference scheme [69], [70].
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For each dimension of the continuous space €2, a function is approximated at uniform

nodes as such, b
i — a4

N; -1
fork =0,1,...,M; — 1, where X;(k) is the k-th point in the i-th dimension of the
domain, A; is the total number of points in the i-th dimension, and a; and b; are the

X:(k) = a; + k

lower and upper bound of the domain in the i-th dimension, respectively.

As a result, a function f(x) on a domain x € Q C R”" is discretized in space to
form a n-dimensional tensor 7~ of size Ny X N> X ... X N, where 7 (ky, ..., k,) =
f(X1(ky), Xo(k3), . .., Xu(ky)). Note that the size of the tensor scales exponentially
with the number of dimensions. Thus, a naive discretization suffers from the
curse of dimensionally. However, for a separable function, the tensor is naturally
decomposable into a CP tensor as defined in Definition 3.8 avoiding the curse of
dimensionality. As the number of points per dimension increases, the approximation

becomes more accurate, but the computation cost also increases.

Given this discretization scheme, a derivative of a function can be performed nu-

merically via the finite difference differentiation matrix [71].

Spectral Discretization

Spectral discretization is typically used for its superior accuracy and convergence.
The spectral methods converges exponentially instead of algebraic convergence
rates for finite difference and finite element methods. Therefore, good accuracy can
be obtained with coarse discretization. However, the spectral method has tighter
stability restrictions, and the matrices are dense. For more details, refer to [72] and

references therein.

For each dimension of the continuous space €2, a function is approximated at the
Chebyshev-Gauss-Lobatto nodes [73] as such,

Xi(k) =

a,-+b,-+bl~—a,- oS km
2 2 N, -1
for k =0,1,...,N; — 1, where X;(k) is the k-th point on the i-th dimension of the

domain, A; is the total number of points in the i-th dimension, and a; and b; are the

lower and upper bound of the domain in the i-th dimension, respectively.

In some cases, the domain for a specific dimension is periodic, for example, when

the state represents angle. If the domain for the i-th dimension is periodic, instead of
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Chebyshev-Gauss-Lobatto nodes, the function is approximated at the Fourier nodes
[73] as such,

k
Xi(k) = a; + (b; - ai)ﬁi

fork =0,1,...,N;—1, where X;(k) is the k-th point for the i-th dimension, A; is the
total number of points in the i-th dimension, and a; and b; are the lower and upper

bound of the domain in the i-th dimension, respectively.

Similarly, a function f(x) on a domain x € Q c R” is discretized in space to

form a n-dimensional tensor 7~ of size Ny X N> X ... X N, where 7 (ky, ..., k,) =
f(X1(k1), Xo(k2), . . ., Xu(kp)).

For both the Chebyshev-Gauss-Lobatto nodes and the Fourier nodes, the associated
differentiation matrices are dense, unlike the finite difference differentiation matrix,
which is sparse. The details of the differentiation matrices including their actual

forms can be found in [73].

3.7.2 Time Discretization
Time stepping is necessary for solving the non-stationary HJB equation [74]. For-
ward and backward Euler methods are implemented in this thesis. Forward Euler
is one the simplest form of explicit methods for time integration. Given a PDE
Owu(x,t) = f(u(x, 1)), where f is a linear operator, an initial value uy(x), and bound-
ary conditions, the forward Euler method solves for the solution at the next time step
based on

ir+1 = (I + Fh)itg, (3.16)

where i1, is the discretization of u(x, 1) at time t = kh, F is the discretization of
f» I is an identity operator with the appropriate size, and 4 is the time increment.
Depending on the boundary conditions, (3.16) may have slightly different forms
[74].

On the other hand, backward Euler is an implicit method with better numerical
stability, but with higher computation cost than forward Euler and other explicit
methods. More concretely, given a PDE 0,u(x,t) = f(u(x,t)), where f is a linear
operator, an initial value ug(x), and boundary conditions, the backward Euler method

solves for the solution at the next time step based on
(I = Fh)ityyy = iy, (3.17)

where the variables are defined similar to (3.16). As before, depending on the

boundary conditions, (3.17) may have slightly different forms [74].
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Other choices of time discretization [74] such as leapfrog integration and Runge-
Kutta can also be implemented in the framework discussed in this thesis. Refer to

[74] for a more detailed discussion on spatial and time discretization.

3.8 Low Rank Tensor Decomposition

Low rank tensor decomposition is a technique to approximate a high-dimensional
tensor that may not be low rank with a low rank tensor [75]. Multiple represen-
tation of low rank tensors are developed over the past years including CANDE-
COMP/PARAFAC (CP) tensor [76], [77], Tucker tensor [78], tensor train [79], and
function train [80]. This thesis uses the CP tensor as a framework to approximate

high dimensional functions in order to avoid the curse of dimensionality.

3.8.1 CANDECOMP/PARAFAC Tensor
The CANDECOMP/PARAFAC (CP) tensor is used to represent separable functions
and operators that are discretized in space [75]-[77], [81].

The tensor product of two vectors u and v is written as u ® v = w, where w;; = u;v;.

The inner product of two vectors u and v is written as (u, v), where (u, v) = >; u;v;.

Definition 3.8. Given a separable continuous function f(x) = >};_, s; Hflzl fl.l (x;),

where x € RY, the discretized function F is a CP tensor that is defined as

F= 2»?1 éFiZ,
i=1

I=1
where Fl.l € R™ is a unit vector that represents the function fil(x) at n; discretization
points in the i-th dimension, s; is a normalizing constant, r is the separation rank,
and d is the dimension of the tensor. Each Fl.l is called a basis function in dimension

. d .
i, and each summand s/ (X);_, F/ is called a tensor term.

By approximating the function f with a tensor function F, the number of points for
storage increases linearly with dimension d for a given r, and linearly with r for a
given d. Dimension d is usually determined by applications. As such, obtaining low
rank approximations (small r) is vital for feasible computations. Nonetheless, a rank
that is too low results in inaccurate approximations. Therefore, a balance between
feasible computations and accurate approximations is a necessary consideration

when determining suitable ranks.

A tensor operator is defined equivalently except that the Fl.l is a n by n matrix instead

of a vector.
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Definition 3.9. Given a separable linear operator A(f) = X/_; s [12, AL,
where f € R(Q) is a real function that A acts on and Q C RY, the discretized

operator A is a CP tensor that is defined as

r d
A= s(X) A,
=1 =1

where Af. € R™*" js a normalized matrix (with respect to Frobenius norm) that
represents the operator ﬂf( f) for n; discretization points in the i-th dimension, s;
is a normalizing constant, r is the separation rank, and d is the dimension of the

tensor.

We refer to the function in tensor form as tensor function, and the operator in
tensor form as tensor operator. This representation needs O(nrd) in space, and most

algebraic computations scale linearly with dimensions [81].

The tensor operator and tensor function multiplication operation is

'A IF

AF =" shsl é}A;”F,.’, (3.18)
m=1 [=1 i=1

where the computation cost is O(rarrdn®) assuming the number of points per

dimension n; = n for all i. The inner product of two tensors F and G is given by

rG rr d

(G, Fy= "> susi (RG], F)), (3.19)

m=1 [=1 i=1

where the computation cost is O(rgrrdn). Given the inner product, the norm of a
tensor function F is defined as ||F|| = +/(F, F). A more detailed descriptions are
available in [81].

For most linear algebra operations, the separation rank of the result often increases.
For example, (3.18) increases the rank from rr to rarr. Therefore, after performing
an operation, a low rank approximation of the resulting tensor is vital for feasible
computations. Next, the algorithm used to produce low rank approximation, the

ALS algorithm, is discussed.

Tensor decomposition is implemented numerically using the MATLAB Tensor Tool-
box [82], [83].
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3.8.2 Alternating Least Squares (ALS) Algorithm

This section describes the Alternating Least Squares (ALS) algorithm [81] that
solves the linear equation in which the operator and the function are in tensor form.
When the operator is an identity operator, this algorithm reduces the separation

rank.

Formally, given a tensor function G and a tensor operator A, ALS solves for F in
AF =G (3.20)

by minimizing ||AF — G|| for a fixed rank of F in which A, F’, and G are represented

in tensor decomposition form

rrd ra d r¢ d
F=2Qf 4=2Q4A. =30
=1 i=1 =1 i=1 =1 i=1

where F € R, G! € R", and Al € R">"_ Note that here we do not require F/, G/,

and All. to have unit norm.

The minimum of the residual is achieved when the gradient of the residual with
respect to F is zero, thatis Vg ||AF — G|| = 0 for the minimum F, where V denotes
the gradient with respect to all elements in Fl.l fori =1,...,dand [ = 1,...,rF.
The gradient is not linear with respect to the terms in F. Thus, the algorithm first
fixed a particular dimension k and solves for F, ,ﬁ assuming all other Fl.l are fixed for
i # k, then it cycles through all the dimensions. As a result, for each dimension &,

the following simple linear equation, called the normal equation, is solved.
MFi =N, (3.21)

where
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and M; ; and N; are given by

u-Z}kmMz<m%%ﬂ> (3.22)
ia=1ja=1 m#k
A G

Ni= > Z(A’A)TG’G | [¢AiaF, Gig).
ia=lig= m#k

The ALS algorithm can be ill-conditioned in general. Thus, the term « in the normal
equation acts as a regularizer [81]. Furthermore, references [35], [84] also proposed

techniques to prevent ill-conditioned computation.

The vanilla ALS algorithm is summarized by Algorithm 1. First, the function
RandomTensor creates a normalized random tensor of rank ry. In other words,
RandomTensor generates unit norm random vectors F Jl e RN for j € [d], and
I € [rols, then sets F = 37, ®;l:l F Jl The function ComputeResidual computes

the residual of the current solution by

_laF-al

VIIL,

If the residual is smaller than a pre-specified tolerance &y, the algorithm terminates
and return the solution F. Otherwise, the F will be updated. For each dimension
k, SolveNormal solves (3.21) for the vector ¥} and update F. It also returns /i that
indicates if (3.21) is ill-conditioned. If I is true for any k, the algorithm terminates
without finding a F' that satisfies the accuracy tolerance. Otherwise, the algorithm
continues. If the difference between the residual from the previous iteration and the
residual from the current iteration is smaller than the accuracy tolerance &, a new
rank-one random tensor function F” is created. The random tensor function F” is
pre-conditioned by iterating SolveNormal for A(F + F") = G with fixed F (i.e., by
computing SolveNormal(A, F",G — AF) for each dimension) to prevent F" from
dominating the approximate solution F. For more details on the ALS algorithm,
refer to [81]. For the rest of the thesis, an iteration of Algorithm 1 refers to one

iteration of the for-loop (line 5-7).

The special case A = I, an identity operator, is used to find low rank approximations
for both tensor functions and tensor operators. The latter can be achieved by storing
the operator matrices Af as vectors, and performing the ALS algorithm as if it was

a tensor function.
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Algorithm 1 ALS Algorithm

Input: Tensor operator A, tensor function G, accuracy tolerance &, initial rank rg
Output: Tensor function F

1: F := RandomTensor(ry)

2: res := ComputeResidual(A, F, G)

3: while res > € do

4: res’ .= res

5: fork=1,2,...,ddo

6: F, I := SolveNormal(A, F, G)
7: end for

8: res := ComputeResidual(A, F, G)
9: if [; is True for any k € [d], then
10: Terminate the algorithm and indicate that F is not solved successfully
11: else if |res — res’| < € then

12: F" := PreRandomTensor(1)
13: F:=F+F

14: end if

15: end while
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Chapter 4

OPTIMAL CONTROLLER SYNTHESIS USING
SUM-OF-SQUARES

This chapter proposes an optimal controller synthesis technique based on convex
optimization for the approximate solution to the linear HIB equation. This tech-
nique combines previously disparate fields of linearly solvable optimal control and
Lyapunov theory, and provides a systematic way to construct stabilizing controllers
with guaranteed performance. The result is a hierarchy of SOS programs that gen-
erate SCLFs for arbitrary linearly solvable systems. Such an approach has many
benefits. First and foremost, this approach generates stabilizing controllers for an
important class of nonlinear, stochastic systems even when the optimal controller is
not found. We prove that the approximate solutions generated by the SOS programs
are pointwise upper and lower bounds to the true solutions. In fact, the upper bound
solutions are SCLFs, which can be used to construct stabilizing controllers, and
they bound the performance of the system when they are used to construct subop-
timal controllers. Existing methods for the generation of SCLFs do not have such
performance guarantees. Additionally, we demonstrate that, although the technique
is based on linear solvability, it may be readily extended to more general systems,

including deterministic systems, while inheriting the same performance guarantees.

A preliminary version of this work appeared in [85] and [86], where the use of SOS
programming for solving the HIB were first considered. This paper builds on this
recent body of research, studying the stabilization and optimality properties of the
resulting solutions. These previous works focused on path planning, rather than
stabilization, and did not include the stability analysis or suboptimality guarantees
presented in this chapter. Furthermore, the analysis and results are extended to
the finite horizon problem that involves time evolving linear HIB equation. Some
content of this work appeared in [34], [36].

The rest of this chapter is organized as follows. Section 4.1 introduces the problem
formulation and assumptions. Section 4.2 introduces a relaxed formulation of the
HIJB solutions, which is efficiently computable using the SOS methodology for the
first exit problem. Section 4.3 analyzes the properties of the relaxed solutions, such

as approximation errors relative to the exact solutions. This section shows that the
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relaxed solutions are SCLFs, and that the resulting controller is stabilizing. The
upper bound solution is also shown to bound the performance when using the sub-
optimal controller. Section 4.4 presents the controller synthesis procedure for finite
horizon problem, and Section 4.5 discusses the properties of the controller that is
synthesized. Section 4.6 summarizes the extension of the method to determinis-
tic systems and Section 4.7 considers the extension to the robust optimal control
problems. Two examples are presented in Section 4.8 to illustrate the optimization
technique and its performance. Section 4.9 summarizes the findings of this work

and discusses future research directions.

4.1 Problem Formulation

This chapter considers synthesizing an optimal controller for system (3.1) with
respect to first exit cost functional and finite horizon cost functional described in
Section 3.4.1. The systems dynamics and the cost functionals are assumed to be

governed by polynomial functions.

Assumption 4.1. System (3.1) and the cost functionals are described by polynomi-

als. In other words, f, G, B, ¢, and g consist of polynomials.

Although the system dynamics are limited to polynomials, the non-polynomial
nonlinearities can be incorporated by projecting the non-polynomial functions to a
polynomial basis. As polynomials are universal approximators in £, by the Stone-
Weierstrass Theorem [87], this approximation can be made to arbitrary accuracy
if the functions are continuous and the domain is bounded. A limited basis may
introduce modeling error, but this may be dealt with via the robust optimization

techniques outlined in Section 4.7.

For stabilization to the origin, the following assumption is imposed.

Assumption 4.2. The functions g and ¢ in the cost functionals are positive definite

functions.

Lastly, the following assumption on the domain of (3.1) is necessary in moment and
SOS-based methods [37], [49].

Assumption 4.3. System (3.1) evolves on a compact domain Q C R”, and Q is a
basic closed semialgebraic set such that Q = {x | gi(x) € R(x), gi(x) > 0,i € [k]+}
for some k > 1. Then, the boundary dQ is polynomial representable: 0Q = {x |
hi(x) € R(x), TTX| hi(x) = 0} for some &’ > 1.
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The following definitions formalize several operators that are useful in the sequel,
in particular, when constructing the relevant sets for using Definition 3.7 and Propo-

sition 3.1.

Definition 4.1. Given a basic closed semialgebraic set Q = {x | gi(x) € R(x),
gi(x) > 0,i € [k]+} and a set of SOS polynomials,

S = {s,(x) | 5,(x) € SOS(x), v € {0, 1}*},
define the operator D as

DS = ) 500" g(x)™,
ve{0,1}*
where D(Q, S) € P(Q).

Definition 4.2. Given a polynomial inequality, p(x) > 0 defined on Q, the boundary
of a compact set dQ = {x | h;i(x) € R(x), Hf‘z/l hi(x) = 0} and a set of polynomials,

T = {t:(x) | ti(x) € R(x),i € [k']+},
define the operator 8 as

B(p(x), 0QT) = {p(x) - ti(x)hi(x) | i € [K']+},

where B returns a set of polynomials that is nonnegative on 0€.

For the remainder of this chapter, we assume a unique nontrivial viscosity solution
to (3.6) and (3.10) exists (see [61], Chapter V) and denote them as V* and ¥*

respectively.

4.2 Controller Synthesis for First Exit Problem
Given the problem formulation described earlier, we can obtain the linear HIB
equations (3.10), where the components in £(-) are real polynomial functions. The

definition of the function £(-) is reproduced here for convenience:
1 1
LP) £ =2 ¥+ [1(V0) + STr (Vee¥) T0).

This section proceeds with the technique to solve (3.10) using SOS programming.
SOS programming has found many uses in combinatorial optimization, control
theory, and other applications. This section now adds solving the linear HJB to this

list. This section focuses on the first exit problem.
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4.2.1 Relaxation of the First Exit HJB Equation

The equality constraints of (3.10a) and its boundary condition (3.11a) may be relaxed

as follows:

—2P)< 0 xeQ (4.1a)
Y(x) < y¥(x) x € 0Q

and

-2W¥)= 0 x€eQ (4.1b)
Y(x) > ¥(x) x € 0Q.

Such a relaxation provides a point-wise bound to the solution ¥*, and this relaxation
may be enforced via SOS programming. In particular, a solution to (4.1a), denoted
as ¥, is a lower bound on the solution W* over the entire problem domain, and a
solution to (4.1b), denoted as ¥, is an upper bound on the solution ¥* over the

entire problem domain.

Theorem 4.1. The following statements are true:

1. Given a smooth function Y| that satisfies (4.1a), then ¥, is a viscosity subso-
lution and ¥; < W* for all x € Q.

2. Given a smooth function P, that satisfies (4.1b), then Y, is a viscosity super-
solution and ¥, > V" for all x € Q.

Proof. By Definition 3.4, the solution ¥; is a viscosity subsolution, where F in
(3.12) is given by (4.1a). Note that ¥* is both a viscosity subsolution and a viscosity
supersolution, and ¥; < W¥* on the boundary 0. Thus, by the maximum principle
[66, Thm. 3.3], ¥; < ¥ for all x € Q. The proof is identical for ‘V,,. O

Because the logarithmic transform (3.9) is monotonic, one can relate these bounds
on the desirability function to bounds on the value function as follows:

Corollary 4.1. If the solution to (3.6) is V*, given solutions V, = —Alog¥; and
V; = -AlogV¥, from (4.1), then V, > V* and V; < V*.

Proof. Recall that V* = —AlogW*. By monotonicity of the logarithmic function
and Theorem 4.1, V, > V*and V; < V*. O

The solutions to (4.1) do not satisfy (3.10a) exactly, but they provide point-wise

bounds to the solution W*.
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4.2.2 SOS Program

Given that relaxation (4.1) results in a point-wise upper and lower bound to the exact
solution of (3.10a), we construct the following optimization problem that provides
a suboptimal controller with bounded residual error:

min s (4.2)
st. —2¥)<0 xeQ
0 < —-2(¥,) xeQ
Y,-¥ <e¢ x€Q
0<¥ <y <¥, xediQ
8., <0 x>0
8. >0 x'<0
¥ (0) =1,

where x' is the i-th component of x € Q. As mentioned in Section 4.2.1, the first two
constraints result from the relaxations of the HIB equation, and the fourth constraint
arises from the relaxation of the boundary conditions. The third constraint ensures
that the difference between the upper bound and lower bound solution is bounded,
and the last three constraints ensure that the solution yields a stabilizing controller, as
will be made clear in Section 4.3. Note that in the optimization problem, ¥, and ‘¥,
are polynomials, whereby the coefficients and the degree for both are optimization

variables. The term ¢ is related to the error of the approximation.

As discussed in Section 3.6, a general optimization problem involving parameterized
nonnegative polynomials is not necessarily tractable. In order to solve (4.2) using
a polynomial-time algorithm, we restrict the polynomial inequalities such that they

are SOS polynomials instead of nonnegative polynomials. We therefore apply
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Proposition 3.1 to relax optimization problem (4.2) into

%’rllyli%j e 4.3)
s.it. 2¥) - D S)) € SOS(x)
—2(P,) - D(Q, $) € SOS(x)
e— (¥, — ) — D, S$3) € SOS(x)
B(Y, 0, T)) € SOS(x)
B — ¥, 0Q,T») € SOS(x)
B(Y, — ¥, 00, T3) € SOS(x)
— 0¥ — DQN{x' >0},5) € SOS(x)
3.V — DN {-x' >0}, 55) € SOS(x)
¥(0) =1,

where S = {S;}ie[5],, Si € SOS(x) is defined as in Definition 4.1, T = {7 }icp3),»
and 7; C R[x] is defined as in Definition 4.2. With a slight abuse of notation,
B(-) € SOS(x) implies that each polynomial in B(-) is a SOS polynomial.

If the polynomial degrees are fixed, optimization problem (4.3) is convex and
solvable using a semidefinite program via Theorem 3.3. The next section will discuss
the systematic approach we used to solve the optimization problem. Henceforth,
denote the solution to (4.3) as (W, ¥, S, T, €) (i.e., the upper bound, the lower bound,
and the sets of SOS polynomial certificates (S, T') yielding approximation error &).

Remark. By Definition 3.4, the viscosity solution is a continuous function. Con-
sequently, the solution W* is a continuous function defined on a bounded domain.
Therefore, ¥, and ¥; can be made arbitrary close to ¥* by the Stone-Weierstrass
Theorem [87] in (4.2). However, this guarantee is lost when ¥, and ¥, are restricted
to be a SOS polynomials. The feasible set of the optimization problem (4.3) is
therefore not necessarily non-empty for a given polynomial degree. One would not
expect feasibility for all instances of (4.3) as this would imply there exists is a linear

stabilizing controller for any given system.

4.2.3 Controller Synthesis

Let d be the maximum degree of ¥;, ¥, and polynomials in S and 7', and denote
(‘Pff, ‘I’ld, s4, 14, 8d) as a solution to (4.3) when the maximum polynomial degree is
fixed at d. A hierarchy of SOS programs described in Section 3.6.2 is constructed

with increasing polynomial degree. The hierarchy produces a sequence of (possibly
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empty) solutions (‘P,f, ‘I’ld, S9 T4 &%) 4er, where I ¢ Z,. This sequence will be

shown in the next section to improve, under the metric of the objective in (4.3).

In other words, if solutions exist for d and d’ such that d > &', then & < &
Therefore, one could keep increasing the degree of polynomials in order to achieve
tighter bounds on W*, and invariably, V*. The use of such hierarchies has become
commonplace in polynomial optimization [37], [68]. If at certain degree, ed =0,

the solution ¥* is found.

Once a satisfactory error is achieved or computational resources run out, the lower
bound ‘I’ld can be used to compute a suboptimal controller, where d is the maximum

degree computed. Recall that u* = —R!G"V,V* and V* = —Alog¥*. The

suboptimal controller u® for a given degree d and error &¢

-R7IGTv v¢

u >’

is computed as ut =
where V¢ = —1log ‘I’ld . Even when & is larger than a desired
value, the solution ‘I‘ld still satisfies conditions in Definition 3.3 to yield a stabilizing
suboptimal controller. Next section will analyze some properties of the solutions

and the suboptimal controller.

4.3 Analysis for First Exit Problem

This section establishes several properties of the solutions to the optimization prob-
lem (4.3) that are useful for feedback control in the first exit problem. First we show
that the solutions in the SOS program hierarchy are uniformly bounded relative to
the exact solutions. We next prove that the relaxed solutions to the stochastic HIB
equation are SCLFs, and the approximated solution leads to a stabilizing controller.
Finally, we show that the costs of using the approximate solutions as controllers are

bounded above by the approximated value functions.

4.3.1 Properties of Approximated Desirability Functions
First, the approximation error of ¥; or ¥, obtained from (4.3) is computed relative

to the true desirability function ¥*.

Proposition 4.1. Given a solution (¥, ‘I’ld, S4. 14 &) to (4.3) for a given degree d,
the approximation error of the desirability function is bounded as || ¥? —¥* || < &4,

where W is either P9 or ‘Pld.

Proof. By Theorem 4.1, ‘Pld is the lower bound of W*, and ‘I’,j’ is the upper bound of
¥*. So, e? > P9 - ‘Pld > 0and 7 > ¥* > ‘I’Zd . Combining both inequalities, one



35

has W4 — ¥* < &4 and ¥* — ‘I’ld < &4, Therefore, ||P¢ — ¥*||o < ¢, where P9 is
either W¢ or ‘I’ld . O

Proposition 4.2. The hierarchy of SOS programs consisting of solutions to (4.3) with
increasing polynomial degree produces a sequence of solutions (‘I’g, ‘I’Id, 54,14, &%)
such that ¢! < &4 for all d.

Proof. Polynomials of degree d form a subset of polynomials of degree d + 1. Thus,
at a higher polynomial degree d + 1, a previous solution at a lower polynomial degree
d is still a feasible solution when the coefficients for monomials with total degree

d + 1 is set to 0. Consequently, the optimal value £?*! cannot be larger than £¢ for

all d. ]

Thus, as the polynomial degree of the optimization problem is increased, the point-
wise error € is non-increasing. Therefore, one could keep increasing the degree of
polynomials in order to achieve tighter bounds on W*, and invariably, V*. However,
¢ is only non-increasing as the polynomial degree is increased, and a convergence
of the bound ¢ to zero is not guaranteed because we restrict the approximating space
to SOS. The possible lack of convergence to zero is the trade off for an efficient

algorithm.

Although the bound on the pointwise error is non-increasing, the actual difference
between ¥ and W* may increase between iterations. Figure 4.1 illustrates an example
of this case. Although £?*! < &9, the actual error between ¥*! and P* is larger
than the actual error between ¢ and P*. The next corollary ensures that the increase

in the actual error for ¥9*! is still bounded.

Corollary 4.2. Suppose ||P? — ¥*||oo < &% and ||P*! = ¥*||o = y9*!. Then,
,.yd+1 S 8d.

\
H
q_;ld q_;ld+1 Wy q_yg lp1ii+1

Figure 4.1: An example of increased error with non-increasing bound.
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Proof. By Proposition 4.2, 64! < &7, Because y/t! < gd*!, yd+1 < g4 i

In other words, the approximation error of the desirability function for a SOS
program using d + 1 polynomial degree cannot increase such that it is larger than
&% in each step of the hierarchy of SOS programs, which is non-increasing.

4.3.2 Properties of Approximated Value Functions

Up to this point, the analysis has focused on properties of the desirability solution.
We now investigate the implications of these results upon the value function, which
is related to the desirability via the logarithmic transform (3.9). Henceforth, denote
the solution to (3.6a) as V*(x;) = min,.7| By, [J(x:)] = —1log ¥*(x;), the solution
to (4.3) for a fixed degree d as (¥, ¥, S, T, €), and the suboptimal value function
computed from the solution of (4.3) as V, = —Alog¥;. Only ¥, and V, are
considered henceforth, because ¥;, but not \¥,,, gives an approximate value function
that satisfies the properties of SCLF in Definition 3.3, a fact shown in the next

section.

Theorem 4.2. For all x € Q, V, is an upper bound of V* such that

0<V,-V*< —xllog(l —min{l,f}),
n

_IvEl
wheren = e~ 2

o)

Proof. By Corollary 4.1, V, > V* and hence, V, — V* > 0. To prove the other
inequality, by Proposition 4.1,

*

V.oV = 2oz 2L < _los X% < _t0e[1- %

*

V" [l oo

A

The last inequality holds because ¥* > e~ by definition in (3.9). Since ¥ is

the lower bound of W*, the right hand side of the first equality is always a positive
number. Therefore, V, is a point-wise upper bound of V*. O

Corollary 4.3. Let V' = —Alog V¢ and VI*' = —Alog Wi*L If e —W* < &/ and
VA =y ghen 41 < ) log (1 ~ min {1, %})

Proof. This result is given by Corollary 4.2 and Theorem 4.2. O

At this point, we have shown that the lower bound of the desirability function yields
an upper bound of the suboptimal cost. More importantly, the upper bound of the

suboptimal cost is not increasing as the degree of polynomial increases.
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4.3.3 Approximate HJB Solutions are SCLFs

This section shows that the approximate value function derived from the approxi-
mation, ¥}, is a SCLF.

Theorem 4.3. V, is a stochastic control Lyapunov function according to Definition
3.3.

Proof. The constraint ¥;(0) = 1 in (4.3) ensures that V,(0) = —Alog¥;(0) = 0.
Notice that all terms in J(x, «) from (3.3) are positive definite, resulting in V* being
a positive definite function. In addition, by Corollary 4.1, V¥ > V*. Thus, V* is also
a positive definite function. The second and third to last constraints in (4.3) ensures
that ¥; is nonincreasing away from the origin. Therefore, V,, is nondecreasing away
form the origin satisfying u(|x|) < V,(x) < ¢/(|x|) for some yu, 4’ € K.

Next, we show that there exists a u such that L(V,,) < 0. Following (3.7), let
u® = -R'G'V,V,, (4.4)

the control law corresponding to V,. Notice that from the definition of V,,, V.V, =
—5 Vit and V., V, = L},ilz(Vx‘Pl)(Vx‘I’l)T — 4Vl So, uf = G RIGTV, Y.

Then, from (3.2),
__4 Torr Aap-laT
L(V,) = (Vi¥)' (f + =GR 'G' V,Y¥))
¥, ¥,

+1T
—1r
2

1 Pl
= (V. ¥)(V,¥) - =V, . ¥
(‘Pzz( N(Vi¥)) ¥, ]

BZSB),
where 0;V, = 0 because V,, is not a function of time. Applying the assumption in
(3.8) and simplifying yields

A A A
LV,)=-——V, ) f - —(V,¥) V¥ - —Tr (V. ¥) Z).
040 = = (V) f = S (YY) = g Tr (et )
From the first constraint in (4.3),

¥~ V) - ST (V)5 <0 =
SV f < gt ST (V)R
¥ 2Y
Substituting this inequality into L(V,) and simplifying yields

A
L(V,) < —q - —=(V.¥)'Z,V, ¥, <0 (4.5)
2Y9;
because g > 0, 4 > 0 and %; is positive semidefinite by definition. Since V,, satisfies

Definition 3.3, V, is a SCLF. O
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Corollary 4.4. The suboptimal controller u®* = —R~'G'V,\V,, is stabilizing in prob-
ability within the domain Q.

Proof. This corollary is a direct consequence of the constructive proof of Theorem
4.3 and Theorem 3.1. |

Corollary 4.5. If %, is a positive definite matrix, the suboptimal controller u® =

—R'G"V,\V, is asymptotically stabilizing in probability within the domain Q.

Proof. This corollary is a direct consequence of the constructive proof of Theorem
4.3 and Theorem 3.2. In (4.5), L(V,) < 0 for x € Q\{0} if %, is positive definite.

Recall that g is positive definite in the problem formulation. m|

4.3.4 Bound on the Total Trajectory Cost
We conclude this section by showing that the expected total trajectory cost incurred
by the system while operating under the suboptimal controller of (4.4) can be

bounded as follows.

Theorem 4.4. Given the control law u® = -R"'GTV .V,

J, <V, <V* = Alog (1 —min{l, f}) (4.6)
n

where J, = B, [¢r(xr) + /()T q(x;) + %u,TRu, dt], the expected cost of the system

when using the control law, u®.

Proof. By Itd’s formula,
dVi(x;) = L(Vi)(xp)dt + Vi Vi (x:) B(xr)dwy,

where L(V) is defined in (3.2). Then,

Vi(x1) = Vi(x0,0) + /Ol L(V)(xg)ds + /Ot V. Viu(x5) B(xs)dws. 4.7)

Given that V,, is derived from polynomial function ¥}, the integrals are well defined,

and we can take the expectation of (4.7) to get

E[Vi(x)] = Vi(x0, 0) + E /0 t L<vu><xs)ds] ,
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whereby the last term of (4.7) drops out because the noise is assumed to have zero
mean. The expectations of the other terms return the same terms because they are

deterministic. From (4.5),

1
LV,) < —-qg— —(V,¥) L,V ¥
Vu) £ —¢q 2‘{,12( 1) 2V Y

1

==q -5 (V%) GR™'GT (Vi)
1

=—q- i(us)TRug’

where the first equality is given by the logarithmic transformation and the second
equality is given by the control law u® = —R~'G”V,V,. Therefore,

T
Ewt [Vu(xT)] = Vu(XO) + Ea)t [‘/0‘ L(Vu)(xs)ds]

T
< Vi(xo) — By, [/0 q(xs) + %(uf)TRufds]
= Vu(x0) = J(x0, u®) + By, [¢(x7)],

where the last equality is given by (3.3). Consequently,

Vi(x0) = J(x0, u®) 2 B, [Vi(xr) — ¢(xr)].

By definition, V,(xr) > ¢(xr) for all xy € Q. Thus, E, [V,(xr) — ¢(x7)] = 0.
Consequently, V,(xg) — J(xo,u®) > 0, and V,,(x¢) > J(xo, u?). Theorem 4.2 gives
the second inequality in the theorem. O

4.4 Controller Synthesis for Finite Horizon Problem

This section discusses the controller synthesis procedure for the finite horizon prob-
lem. The general procedure is the same as Section 4.2. Therefore, this section
will outline the prodecure and results with minimal descriptions except when the
approach is specific to the finite horizon problem. For more high level descriptions

and intuitions, refer to Section 4.2.

The main difference between Section 4.2 and this section is that the controller is
not necessarily stabilizing anymore. The controller obtained will minimize the
cost functionals, but there is no guarantee on the system performance beyond the

pre-specified time horizon.
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4.4.1 Relaxation of the Finite Horizon HJB Equation
The equality constraints of (3.10b) and its boundary condition (3.11b) may be
relaxed as follows:

¥ -LY¥)< 0, (x,1) €0 (4.82)
Y(x,t) < Y(x, 1), (x,t) € 00

and

Y -L¥)=> 0, (x,1) €O (4.8b)
Y(x,t) > Y(x, 1), (x,1) € 00.

This relaxation provides a point-wise bound to the solution W*. In particular, a
solution to (4.8a), denoted as ¥, is a lower bound on the solution W* over the entire
problem domain, and a solution to (4.8b), denoted as ¥, is a upper bound on the

solution W* over the entire problem domain.

Theorem 4.5. The following statements are true:

1. Given a smooth function V| that satisfies (4.8a), then ¥, is a viscosity subso-
lution and ¥; < W for all (x,t) € O.

2. Given a smooth function P, that satisfies (4.8b), then Y, is a viscosity super-
solution and ¥, > V* for all (x,t) € O.

Proof. By Definition 3.5, the solution ¥; is a viscosity subsolution, where F in
(3.13) is given by (4.8a). The sign of 9;'¥ in (4.8a) is different from d;u in Definition
3.5. However, (3.10b) is solved backward in time given a terminal time “initial”
condition, and thus the direction of time must be reversed relative to the time of
the system’s evolution. Furthermore, note that W* is both a viscosity subsolution
and a viscosity supersolution, and ¥; < ¥* on the boundary dO. Therefore, by
the maximum principle [66, Thm. 8.2], ¥; < W* for all (x,7) € O. The proof is
identical for V,,. ad

Because the logarithmic transform (3.9) is monotonic, one can relate these bounds

on the desirability function to bounds on the value function as follows

Corollary 4.6. If the solution to (3.6b) is V*, given solutions V, = —Alog¥; and
V; = -AlogV¥, from (4.8), then V, > V* and V; < V*.
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Proof. Recall that V* = —1log'¥*. By monotonicity of the logarithmic function
and Theorem 4.5, V, > V*and V; < V*. O

The solutions to (4.8) do not satisfy (3.10b) exactly, but they provide point-wise

bounds to the solution W*.

4.4.2 SOS Program

Given that relaxation (4.8) results in a point-wise upper and lower bound to the exact
solution of (3.10b), the following optimization problem is constructed that provides

a suboptimal controller with bounded residual error:

i 4.
o, 49

sit. =0V -2W¥)<0 (xt)e0
0<-0¥,-2V¥,) (xt)eO
¥Y,-¥ <e¢ (x,1) € O
0<Y¥ <y <Y, (x,1) € 00,
where x' is the i-th component of x € Q. The first two constraints result from the
relaxations of the HJB equation, and the fourth constraint arises from the relaxation
of the boundary conditions. The third constraint ensures that the difference between
the upper bound and lower bound solution is bounded. Note that in the optimization

problem, ¥, and ¥; are polynomials whose coeflicients and degree are optimization

variables. The term ¢ is related to the error of the approximation.

To solve (4.9) using a polynomial-time algorithm, restrict the polynomial inequalities
such that they are SOS polynomials instead of nonnegative polynomials. The

optimization problem (4.9) is then relaxed into

min & (4.10)
Y. W,,.S.T

s.t. — 0¥ —L&(¥) - D(O0,S)) € SOS(x,1)
0¥ + (YY) — D(O, $1) € SOS(x,1)
e— (Y, -¥)-D(0,S3) € SOS(x,1)
B(Y,,00,Ty) € SOS(x,1)
B — ¥, 00,T,) € SOS(x,1)
B, —¥,00,T3) € SOS(x,1),
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where S = {S;}ie[3],, S € SOS(x)isdefinedasin4.1,T = {T;}ic3],,and T; € R[x]
is defined as in 4.2. With a slight abuse of notation, B(-) € SOS(x) implies that
each polynomial in B(-) is a SOS polynomial.

If the polynomial degrees are fixed, optimization problem (4.10) is convex and
solvable using a semidefinite program via Theorem 3.3. The suboptimal controller
is then synthesized by forming a hierarchy of SOS programs as described in Section
4.2. Henceforth, denote the solution to (4.10) as (W¥,, ¥;, S, T, &).

4.5 Analysis for Finite Horizon Problem

This section summarizes results for finite horizon problem that are analogous to
those in Section 4.3. We show that the solutions in the SOS program hierarchy
are uniformly bounded relative to the exact solutions, and the costs of using the
approximate solutions as controllers are bounded above by the approximated value

functions.

4.5.1 Properties of Approximated Desirability Functions

Proposition 4.3. Given a solution (‘I’,f, ‘Pld, §4. 14, 8d) to (4.10) for a given degree
d, the approximation error of the finite horizon desirability function is bounded as
[[P4 — W*||o < &9, where ¥ is either W9 or ‘I’ld.

Proof. By Theorem 4.5, ‘I’ld is the lower bound of ¥*, and ‘I’L‘f is the upper bound of
¥*. So, e? > P9 - ‘Pld > 0and 7 > P* > ‘I’ld . Combining both inequalities, one
has W9 — P* < &4 and ¥* - ‘I’ld < g4, Therefore, ||P¢ — ¥*|| < &¢, where P9 is
either W4 or ‘I’Id . O

Proposition 4.4. The hierarchy of SOS programs consisting of solutions to (4.10)
with increasing polynomial degree produces a sequence of solutions (¥2, ‘Pld, 54,14 g4y
such that ¢! < & for all d.

Proof. Polynomials of degree d form a subset of polynomials of degree d + 1. Thus,
at a higher polynomial degree d + 1, a previous solution at a lower polynomial degree
d is still a feasible solution when the coefficients for monomials with total degree
d + 1 is set to 0. Consequently, the optimal value £%*! cannot be larger than &¢ for

all d. O

Although the bound on the pointwise error is non-increasing, the actual difference
between ¥ and W* may increase between iterations.
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Corollary 4.7. Suppose || — ¥*||o < &% and ||P*! = ¥*||eo = y9*!. Then,
,yd+1 S ((,‘d_

Proof. By Proposition 4.4, 7*! < g7, Because y?*! < gd*!, yd*! < g4 i

4.5.2 Properties of Approximated Value Functions

Theorem 4.6. For all (x,t) € O, V,, is an upper bound of V* such that

0<V, -V s—/llog(l—min{l,f}) @.11)
n
vl
wheren = e~ 2

0

Proof. By Corollary 4.6, V, > V* and hence, V, — V* > 0. To prove the other

inequality, by Proposition 4.1,

%

Y, Y* - g £
V,—V*=-1log — < —-A1 < -1 1--],
Og\P* o8 ¥ og( 77)

V" |l oo

A

The last inequality holds because ¥* > e~ by definition in (3.9). Since ¥ is

the lower bound of W*, the right hand side of the first equality is always a positive
number. Therefore, V, is a point-wise upper bound of V*. O

Corollary 4.8. Let V' = —Alog V¢ and VI*! = —Alog Wi*! IfWd —W* < &/ and
VAT _ye = L ghen 4441 <~ log (1 ~ min {1, %})

Proof. This result is given by Corollary 4.7 and Theorem 4.6. O

4.5.3 Bound on the Total Trajectory Cost

Theorem 4.7. Given the control law u® = —R"'G'V,V,,

JusVusV*—Mog(1—mm{1,f}), (4.12)
n

where J, = E,, [¢7(xr) + /OT q(x;) + %u,TRu, dt], the expected cost of the system

when using the control law, u®.

Proof. By Itd’s formula,

dV,(x;) = L(V,)(x;)dt + V, V,(x)B(x;)dwy,
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where L(V) is defined in (3.2). Then,

Viu(xe) = Vu(xo,0) + /0[ L(Vi)(xs)ds + /Ot Vi Viu(xs) B(xs)dws. (4.13)

Given that V,, is derived from polynomial function ¥, the integrals are well defined,

and we can take the expectation of (4.13) to get

/t L(Vu)(xs)ds] )
0

whereby the last term of (4.13) drops out because the noise is assumed to have zero

E[V.(x)] = Vu(x0,0) + E

mean. The expectations of the other terms return the same terms because they are

deterministic.

Notice that from the definition of V,, 4;V, = —%@‘Pl, V.V, = —%VX‘PI, and
VeV = %(VX‘PZ)(VX‘I’;)T - q,ilvxx\y,. So, u® = %R—IGTVX\PZ. Thus, from (3.2),
)

A A A _
L(V,) = —@aﬁm - @(VXTI)T(f + @GR 16TV, )

1 A 1
+=Tr || =V, ¥)V,¥) - =V, ¥
> r((‘Pzz( D(V¥)) ¥, I

BZEB) .

Applying the assumption in (3.8) and simplifying yields

A A Pl A
L(V,) = ——8,¥, - —(V, )T f = —(V,¥) =V, ¥ - —Tr (V. ) %) .
(Vi) g, ‘Pz( 0 f 2\},[2( 1) VY 2%, r(( 1) Z)

From the first constraint in (4.10),
1 T 1
—0,'¥) + ~a%i - fr (V¥ - SIr (Vi ¥D)ZE) <0 =
A(alp +(V‘I’)Tf)< AT (VL))
- —q+—Tr .
¥, t 1] x X s —q 2%, xx X[) &t
Substituting this inequality into L(V,) and simplifying yields

A
L(V,) < —q = == (V¥ EV, ¥,
2¥;

1
=—q -5 (V) GRT'GT (Vo)

1
=—q-— E(ME)TRME,
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where the first equality is given by the logarithmic transformation and the second

equality is given by the control law u® = —R"!G’V,\V,. Therefore,
T
Ew, [Vu(xT’ T)] = Vu(xo, 0) + Ew, [/ L(Vu)(xs’ s)ds]
0

T
< Vi(x0,0) — By, [./0 q(xs) + %(uf)TRufds]
= Vi(xo,0) = J(x0, u°) + Eg, [¢(x7)],

where the last equality is given by (3.4). Therefore,

Vi(xo,0) = J(xo, u®) = Boy, [Vu(oer, T) — ¢(xr)].

By definition, V,,(x,T) > ¢(x)forall (x,T) € Qx{T}. Thus, E,, [V, (x7, T)—¢(xr)] >
0. Consequently, V,,(xo, 0) — J(xo, u®) > 0, and V,(x0,0) > J(xo, u®). Theorem 4.6

gives the second inequality in the theorem. m|

4.6 Extension to Deterministic Systems

This section discusses the extension of the SOS-based controller synthesis technique
to compute suboptimal controller for deterministic nonlinear systems. The approach
presented in this chapter would appear up to this point to be limited to systems that
are linearly solvable, i.e., those that satisfy condition (3.8). However, the proposed
methods may be extended to a system, which does not satisfy these conditions by
approximating the system with one that is linearly solvable. One example is to

introduce stochastic forcing into an otherwise deterministic system.

We first construct a comparison theorem between HJB solutions to systems that share
the same general dynamics, but with differing noise covariance. This comparison
allows for the approximated value function of one system to bound the value function
for another, providing pointwise bounds, and indeed SCLFs, for those that do not
satisfy (3.8).

Proposition 4.5. Suppose V¢ is the solution to the HIB equation (3.6) with noise
covariances %,, and V? is a supersolution to (3.6) with identical parameters except

the noise covariance £b, where , — £, > 0, then V? > V& forall x € Q.

Proof. From [66, Def. 2.2], V is a viscosity supersolution to the HIB equation (3.6)

with noise covariance X if it satisfies

0<—qg- W f+ %(VXV)T GR™'GT (V,V) - %Tr ((VxxV) BZBT) . (4.14)
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Since X — X, > 0 the following trace inequality holds:
Tr ((VxxV“) szBT) > Tr ((VxxV“) BZaBT) .
Therefore, we have the inequality

0

IA

—q - (vab)T f+ % (VXV”)T GR'GT (vab) - %Tr ((vxva) BE;,BT)

IA

_g- (vab)T f+ % (vab)T GR'GT (vab) - %Tr ((Vxva) BZaBT),

which implies that V? is in fact a viscosity supersolution to the system with noise
covariance X4 (i.e., V? satisfies (4.14) for £%). As V' is a supersolution to the system
with parameter ¢, then Vb >y, O

A particular class of such approximations arises from a deterministic HIB solution,
which is not linearly solvable, but is approximated by one that is linearly solvable.

Consider a deterministic system of the form

dx(t) = (f (x(2)) + G(x(1))u(?)) dt (4.15)

with cost function

d 1
J(x,u) = ¢p(x(T)) + /0 q(x(1)) + Eu(t)Ru(t) dt, (4.16)

where ¢, ¢, R, f, G, and the state and input domains are defined as in the stochastic
problem in Section 4.1. Then, the HIB equation for the first exit problem is given
by

0=qg+((V V) f- %(VXV)T GR'GT (V,V) (4.17)
and the optimal control is given by u* = ~R"!GTV, V. In general, (4.17) is not a
linear PDE.

Corollary 4.9. Let V* be the value function that solves (4.17), and V" be the upper
bound solution obtained from (4.3), where all parameters are the same as (4.17) and

%, is not zero. Then, V" is an upper bound for V* over the domain (i.e., V* < V*).

Proof. A simple application of Proposition 4.5, where X, takes the form of a zero

matrix, gives V* < V%, m|
Interestingly, using the solution from (4.3) and the transformation V,, = —Alog ‘¥,
the suboptimal controller u® = —R™!G’V,V, is a stabilizing controller for the

deterministic system (4.15) if a simple condition is satisfied. This fact is shown

using the Lyapunov theorem for deterministic systems introduced next [41].
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Definition 4.3. Given the system (4.15) and cost function (4.16), a control Lyapunov
function (CLF) is a proper positive definite function V € C' on a compact domain
Q U {0} such that

V©0) =0, V(x)> u(|x]) VxeQ\{0} (4.18)
Fu(x) s.t. (VyWV)(f+Gu) <0 VxeQ\{0},

where y € K.

Theorem 4.8 ([41] Thm. 2.5). Given a system (4.15) and cost function (4.16), if there
exists a CLF'V and a control u(x) satisfying Definition 4.3, then the controlled system
is stable, and u is a stabilizing controller. Furthermore, if (V. V)T (f+Gu) < 0 for all
x € Q\{0}, the controlled system is asymptotically stable, and u is an asymptotically

stabilizing controller.

Verifying that the controller u® = —R~'GTV,V,, is in fact stabilizing and that V, is a

CLF may be seen as follows.

Corollary 4.10. Given the controller u®* = —R™'G'V,V,, if
Tr (VixV) Z) =20 Vx e Q\{0},
then u® is a stabilizing controller for (4.15). If
Tr (VixV) Z) >0 VxeQ\{0},

then u® is an asymptotically stabilizing controller for (4.15).

Proof. Recall that from the proof of Theorem 4.3, all conditions in Definition 4.3
are satisfied by V, except (4.18). To show that V,, satisfies (4.18), rearrange (3.6) to
yield the following:

(Vo V) (f + Gu®) = (ViV)' f = (Vi V) GRTIGT (V. V)

1 1
< =q = 5(VV) GRT'GH (V) = STr (VacVa) Z0),

where X, = BX,.B”. Recall that ¢ and R are positive definite. If Tr (V. V,) Z;) > 0
for all x € Q\{0}, then (V.V,)'(f + Gu?®) < 0 implying that V* is a CLF and u? is
a stabilizing controller by Theorem 4.8. Furthermore, if Tr (V,,V,) %) > 0 for all

x € Q\{0}, u® is an asymptotically stabilizing controller. O
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In the deterministic case, X; is free variable that can be chosen to be small according
to the equality (3.8). Therefore, (3.8) is no longer a constraint or an assumption, but
it serves as a design principle for obtaining a CLF for system (4.15). Furthermore,
given a X, the trace condition in Corollary 4.10 is easily enforced in (4.3) by adding
one extra constraint in the optimization problem. Thus, the optimization problem
(4.3) can also produce a CLF for the corresponding deterministic system, with
analytical results from the Section 4.3, including a priori trajectory suboptimality

bounds (Theorem 4.4), inherited as well.

4.7 Robust Nonlinear Optimal Controller Synthesis

Apart from approximating deterministic systems, the proposed technique may be
extended to incorporate uncertainty in the problem data. Assume there exists
unknown coefficients a € H in f(x), G(x), B(x), where H c R¥, H = {a |
gi(a) = 0,gi(a) € R(x),i € [r]+} is a basic closed semialgebraic set describing
the uncertainty set of a. The problem data is then defined by the expressions
f(x,a),G(x,a), B(x,a) for x € Q, and a € H. In this case, the uncertain parameters
may be considered as additional domain variables, defined over their own compact

space.

Uncertainty of this form may be incorporated naturally into the optimization prob-
lem (4.3). Define the monomial set X = {a%x” }Ya€[rals,Belrd.- The optimization
variables corresponding to the polynomials in S and 7" in (4.3) are then constructed

out of X as

Fa  TIx

p(x,a) = Z Z cwﬂa"xﬁ.

a=1p=1
Note that ¥, and ¥; are not themselves functions of a because they are upper and
lower bounds for solutions of all possible a. The uncertainty set H is incorporated
by defining a compact domain M = Q x H that takes the product of the original

problem domain and the uncertainty set. The resulting optimization problem is



49

therefore

min £ 4.19)
Y98, T

1
s.t. - Zq‘l’l + L(¥Y,a) - DM, S1) € SOS(x, a)

¥~ L(¥,,a)~ DM, $) € SOS(x,a)

e— (P, —¥)—DM,S3) € SOS(x,a)
B, — D(H, S4),0Q,T)) € SOS(x, a)

B =¥ — D(H, Ss),00,T) € SOS(x, a)
B, — ¥ — D(H, Se), 90, T3) € SOS(x, a)
~- 0.V - DQN{x' >0}, 57) € SOS(x,a)
0¥ — D(Q N {—x' > 0}, S3) € SOS(x, a)
Y(0) - 1 — D(H, S9) € SOS|a]

- 0)+ 1 -D(H, S1p) € SOS]al,

where S = {S;}ic[i0),, and T = {T;}ic[3),- The operator £ now depends on the

variable a. The resulting solutions to the optimizations (4.19), and the upper bound
suboptimal value functions V,, = —1log ¥}, are found for all a € H, with the control
law u® = —R"'G"V,V, now stabilizing for the entirety of the uncertainty set .
Similar techniques have been studied previously for Lyapunov analysis, e.g., [88,

Ch. 4.3.3].

4.8 Numerical Examples

This section studies the computational characteristics of this method using two
examples: a scalar system and a two-dimensional system. In the following problems,
the optimization parser YALMIP [89] was used in conjunction with the semidefinite
optimization package MOSEK [90]. In both examples, the continuous system
is integrated numerically using Euler integration with step size of 0.005s during

simulations.

4.8.1 Scalar Unstable System
Consider the following scalar unstable nonlinear system

dx = (x3 +5x7 + x + u) dt + dw (4.20)

on the domain x € Q = {x | —=1 < x < 1}. The noise model considered is Gaussian

white noise with zero mean and variance £, = 1. The goal is to stabilize the system
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at the origin. The first exit cost functional is used to implement this. We choose
the boundary at two ends of the domain to be W(—1) = 20¢~'% and ¥(1) = 20e71°,
which is equivalent to setting a high cost V at the boundary. At the origin, the
boundary is set as ¥(0) = 1. We set ¢ = x%, and R = 1 in the cost functional. In
the one dimensional case, the origin, which is a boundary, divides the domain into
two partitions, x < 0 and x > 0. Because of the natural division of the domain, the
solutions for both domains can be represented by smooth polynomial respectively,
and solved independently. The simulation is terminated when the trajectories enter
the interval [-0.005, 0.005] centered on the origin.

The desirability functions that result from solving (4.3) for varying polynomial
degrees are shown in Figure 4.2. The true solution is computed by solving the HIB
directly in Mathematica [91]. The sharp corner at the origin is expected because the
HIJB PDE solution is not necessarily smooth at the boundary, and in this instance

the origin is a zero-cost boundary.

The approximation error & for both partitions is shown in Figure 4.3a for increasing
polynomial degree. As seen in the plots, the approximation improves as the poly-
nomial degree increases. Polynomial degrees below 14 are not feasible, and thus
this data is absent in the plots. The suboptimal solution converges faster for x > 0

than for x < 0 when the degree of polynomial increases because the true solution

[=——True solution|
0.9+ 1 35
0.8+
0.7f 1308
0.6f S
a
= 0.5+ S
— 25 £
0.4/ g
o
0.3} &
20
0.2
0.1
15
O 1 1 1 .
-1 -0.5 0 0.5 1
X

Figure 4.2: The desirability function of system (4.20) for varying polynomial degree.
The true solution is the black curve.
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Figure 4.3: Computational results of system (4.20). (a) Convergence of the objective
function of (4.3) as the degree of polynomial increases. The approximation error
for x < 0 is denoted as &; and the approximation error for x > 0 is denoted as &,.
(b) Sample trajectories using controller computed from optimization problem (4.3)
with different polynomial degrees starting from six randomly chosen initial points.
(c) The comparison between J, and V,, for different polynomial degrees, whereby
Jy, is the expected cost and V, is the value function computed from optimization
problem (4.3). The initial condition is fixed at xo = —0.5.

for x > 0 has a simple quadratic-like shape that can be easily represented as a low
degree SOS function.

Figure 4.3b shows sample trajectories using the controller computed from optimiza-
tion problem (4.3) for different polynomial degrees. The controllers are stabilizing
for six randomly chosen initial points when the system is perturbed by random sam-
ples of Gaussian white noise with £, = 1. Unsurprisingly, the suboptimal solutions

with low pointwise error result in the system converging towards the origin faster.

To compare between the cost function J, and the approximated value function
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V., a Monte Carlo experiment is illustrated in Figure 4.3c. For each polynomial
degree that is feasible, the controller obtained from W; in optimization problem
(4.3) is implemented in 30 simulations of the system subject to random samples of
Gaussian white noise with £, = 1. The initial condition is fixed at x; = —0.5. In
the figure, V* > J* as expected, and the difference between the two decreases with

increasing d.

4.8.2 Two Dimensional System

Consider a nonlinear 2-dimensional example with the following dynamics:

x5—x3—x+xy4 X Uj
=(2] 5 A | dt +
Yoy -ytyx yu

The goal is to reach the origin at the boundary of the domain Q = {(x,y) | -1 <

dx
dy

d
raw 4.21)

y dw,

x < 1,-1 <y < 1}. This goal is implemented via a first exit cost functional.
The control penalty is R = Iy, and state cost is g(x) = x> + y2. The boundary
conditions for the sidesat x = 1,x = -1,y = 1, and y = —1 are set to ¢(x,y) = 5,
while at the origin, the boundary has cost ¢(0,0) = 0. The noise model considered

is Gaussian white noise with zero mean and an identity covariance matrix.

The approximated desirability functions and their corresponding value functions
are shown in Figure 4.4, with half of the domain x € [0, 1] shown in order to
view the gaps between the upper and lower bound solutions. Figure 4.5a shows the
convergence of the objective function of optimization problem (4.3) as the degree of
polynomial increases. There is no data below degree of 10 because the optimization
problem is not feasible in these cases. As shown in Figure 4.5b, sample trajectories
starting from six different initial points shows that the controllers computed from
¥, for various degrees arrive at the origin. The trajectory is considered to reach the

origin if it is within an Euclidean distance of 0.01 from the origin.

Similar to the scalar example, a Monte Carlo experiment is performed to compare
between J, and V. For each polynomial degree that yields a feasible solution,
the controller obtained from ¥; in optimization problem (4.3) is implemented in
30 simulations of the system subject to random samples of Gaussian white noise
with X, = I »». The initial condition is fixed at xo = (0.7,0.7). Figure 4.5¢ shows
the comparison between J,, and V,, for different polynomial degrees, whereby J,, is
the expected cost and V,, is the value function computed from ¥; in optimization
problem (4.3). As expected, V* > J“.
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(a) ¥, Degree = 10 (b) ¥, Degree = 20

(c) V, Degree = 10 (d) V, Degree = 20

Figure 4.4: Approximated desirability functions and value functions for (4.21) when
polynomial degrees are 10 and 20. In (a) and (b), the blue sheets are the upper bound
solutions ¥,, and the red sheets are the lower bound solutions ¥;. The corresponding
value functions are shown in (c) and (d), respectively.
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Figure 4.5: Computational results of system (4.21). (a) Convergence of the variables
in the objective function of (4.3). (b) Sample trajectories using controller from
optimization problem (4.3) with different polynomial degrees starting from six
randomly chosen initial points. (c) The comparison between J,, the expected
cost, and V,, the value function for different polynomial degrees from optimization
problem (4.3). The initial condition is fixed at xo = (0.7,0.7).

4.8.3 Using DSOS and SDSOS

Recently, new numerical approaches [92], [93] — diagonally dominant SOS (DSOS)
and scaled diagonally dominant SOS (SDSOS) — have been developed to improve
the computation burden of SOS programing. These approaches reformulate the
SDP used to solve a SOS program into a linear program and a second order cone
program, respectively. As a result, the computations are more efficient. However,
the accuracy of the solution may decrease, and thus typically, a higher degree of

polynomial is necessary for achieving a similar level of accuracy.

This section discusses some preliminary results of using DSOS and SDSOS to solve
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for the linear HJB equation for the two examples. For the scalar unstable system,
the DSOS program is unable to find a feasible solution for polynomial degree up
to 118, the maximum degree that is tested. For SDSOS programing, the smallest
degree at which the solution exists is 74 with an approximation error € of 0.846. The
computation time is approximately 1.5 seconds, comparable with the computation
time of the SOS program (approximately 1.1 seconds) on the same computer. The
polynomial degree of the SOS program is 14 and the approximation error is 0.718

when the program first becomes feasible.

For the two dimensional example, DSOS is unable to find a feasible solution for
degree up to 30. The computation time is 49 minutes when the polynomial degree
is 30. Using SDSOS, a feasible solution is found when polynomial degree is 18
with an approximation error € = 0.516 and computation time of 26 seconds. In
constrast, the SOS program found a feasible solution with polynomial degree of 10
with an approximation error £ = 0.394 and computation time of 9 seconds. Based
on these initial findings, the potential benefit of using DSOS and SDSOS to solve
the linear HIB equation may be limited.

4.9 Summary

This chapter has proposed a new method to approximate the solution to a class of
optimal control problems for stochastic nonlinear systems via SOS programming.
Analytical results provide guarantees on the suboptimality of the trajectories that
result when using the approximate solutions for controller design. Consequently,
one can synthesize a suboptimal stabilizing controller for a large class of stochastic

nonlinear dynamical systems.

The development of this work has been limited to nonlinear systems governed by
polynomial functions. A number of avenues exist for incorporating non-polynomial
nonlinearities apart from projecting the non-polynomial functions to a polynomial
basis. First, it is possible to use a non-polynomial basis of approximating functions
in conjunction with SOS programming. The only limitation to this approach is
that the basis of such a set must be closed under addition, multiplication, and
differentiation. An example is to consider signomials as the basis functions for
approximation. Signomials are exponentials composed with linear functionals.
Recent work by Chandrasekaran er al. [94] shows that one could solve a sequence
of convex programs to achieve increasingly better approximations. Alternatively, it

is possible to transform non-polynomial nonlinearities to polynomial nonlinearities



56

with additional equality constraints, with an increase in the requisite number of

optimization variables [38].

As is commonly seen when using SOS programming, the numerics of the SDP may
be cumbersome in practice. There are a number of avenues for future work aimed
at improving the practical performance. First, the monomials of the polynomial
approximation can be chosen strategically in order to decrease computation time
while achieving high accuracy. A promising future direction is the synthesis of
the work presented here with that of [95], wherein the curse of dimensionality
is avoided via the strategic choice of basis functions. To improve the numerical
conditioning of these optimization techniques, a domain partitioning technique is
studied in [86], wherein the alternating direction method of multipliers is used to
enable both parallelization and a solution representation that varies in resolution over
the domain. In addition, there exists a growing body of literature towards increasing
the numeric stability and scalability of SOS techniques [92], [93], [96]-[98].

The next chapter will introduce a low rank tensor-based approach that avoids the
curse of dimensionality, but at the expense of analytical guarantees presented in this

chapter.
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Chapter 5

HIGH DIMENSIONAL OPTIMAL CONTROLLER SYNTHESIS
USING LOW-RANK TENSOR DECOMPOSITION

This chapter presents a numerical technique to efficiently solve the Hamilton-Jacobi-
Bellman (HJB) equation for a class of stochastic affine nonlinear dynamical systems
in high dimensions. The HJB solution provides a globally optimal controller to
the associated dynamical system [48]. The linear form of the linear HIB equation
enables the use of off-the-shelf numerical PDE solvers to compute a solution of
the linear HIB equation. However, the curse of dimensionality quickly causes the
problem to become intractable for systems with modest dimensions [22] because the
number of degrees of freedom required to solve the optimal control problem grows
exponentially with dimension. Yet robots or other engineering systems commonly

have at least six degrees of freedom.

The curse of dimensionality, commonly found in robotic systems, prevents one from
solving the HIB equation naively. In this chapter, the curse is avoided by representing
the linear HJB equation efficiently using low rank tensor decomposition (see review
in Section 3.8). Then, an alternating least squares (ALS) based technique finds an
approximate solution to the linear HJB equation. This work is an extension of [95],
where the idea of using ALS and tensor decomposition to solve the HIB equation

was first considered for the first exit problem.

Previous research has considered multiple approaches to alleviate this curse of
dimensionality. These techniques include using sparse grid [99], Taylor polyno-
mial approximation [100], max-plus method [101], and model reduction [102]. In
contrast to the previous work, this paper focuses on using a low rank tensor decom-
position technique to represent and solve the linear HIB equation. The complexity
of this approach grows linearly with the number of dimensions [81]. Others [103]
have considered using a tensor decomposition based technique. However, this tech-
nique solves for an optimal controller by using value iteration, instead of the HIB
equation. Machine learning techniques [104] and optimizations based on Lax and
Hopf formulas [105] are also used to solve high dimensional HIB equations, but

they currently only apply to parabolic PDEs.

The major contributions of this chapter are the improvement of the ALS algorithm
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from the original work [95] and the development of the SeALS tool in MAT-
LAB [32]. A straightforward implementation of the ALS algorithm results in
ill-conditioned matrices that prevent approximation to a high order of accuracy. The
ill-conditioning issue is resolved by computing the solution sequentially and intro-
ducing boundary condition rescaling. Both of these additions reduce the condition
number of matrices in the ALS-based algorithm. A new MATLAB tool, Sequential
Alternating Least Squares (SeALS) that implements the new method is developed.
SeALS can solve high dimensional linear HIB equations more accurately with

shorter computation time.

In addition to the improvements of the ALS algorithm, this chapter also extends
the use of low rank tensor decomposition technique to problems with other cost
functionals, namely finite horizon and infinite horizon cost functionals described
in Section 3.4. A time stepping algorithm and inverse power method are brought
together with low rank tensor decomposition framework in order to solve the finite

horizon and infinite horizon problems respectively.

SeALS is used to compute optimal controllers for multiple simulated examples,
including balancing an inverted pendulum, landing a Vertical Takeoff and Landing
(VTOL) aircraft, and stabilizing a quadcopter. The ability to compute the solution of
12-dimensional linear HIB equation of a quadcopter on a personal laptop suggests
that SeALS has a great potential for use in robotics applications. Some contents of
this work appeared in [35].

The rest of this chapter is organized as follows. Section 5.1 formulates the problem
and discusses the underlying assumptions. Section 5.2 presents the method to
convert the linear HIB equation into a CP tensor representation. Sections 5.3-5.5
discuss the controller synthesis procedure for first exit, finite horizon, and infinite
horizon problems respectively. Section 5.6 discusses limitations of the original ALS
algorithm, describes the improvements using sequential computation and boundary
condition rescaling, and presents a summary of the improved SeALS algorithm.
The implementation of the algorithms may be found in [32]. Conclusions and
recommendation for future work are given in Section 5.8. The implementation of
the algorithms described in previous sections for different examples are deferred to
Appendix A for ease of reading. The examples include a vertical takeoff and landing

(VTOL) aircraft and a quadcopter.
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5.1 Problem Formulation

This chapter proposes a numerical technique to synthesize an optimal controller for
system (3.1) in high dimensions (i.e., n is large) with respect to cost functionals
described in Section 3.4.1.

The systems dynamics and the cost functionals are assumed to be governed by

separable functions. A function f(x) is separable if it can be represented as f(x) =

ooy si T 1)

Assumption 5.1. System (3.1) and the cost functionals (i.e., f, G, B, ¢, and g) are

described by separable functions.

In numerical implementation, € is always defined as a compact bounded domain
that is a subset of R”. As a result, if a function in the problem formulation is not
separable, it can be approximated as a separable function, for example, the Fourier
series or a polynomial that can be made arbitrarily accurate by the Stone-Weierstrass
Theorem [87].

More precisely, this chapter focuses on using low rank tensor decomposition to
numerically solve the associated linear HIB equations (3.10) with respect to the

three cost functionals.

Remark. In this chapter, we will let integer d denote the dimension of the state
vector sin (3.1) to be consistent with the code implementation in [32]. The symbol

n; represents the number of points for the i-th dimension instead.

5.2 Low Rank Tensor Representation

This section shows how the linear HIB equation (3.10) can be numerically solved
using low rank tensor decomposition. Depending on the cost functionals, the
specific implementation might differ. However, the conversion from the linear HIB
equation (3.10) into CP tensor representation is the same across all cost functionals.
Later sections present the techniques specific to each cost functional and provide
the complete algorithms. This section focuses on converting (3.10) into CP tensor

representation beginning with state space discretization described next.

5.2.1 State Space Discretization
Given the domain Q € R?, discretize the domain Q by n; grid points in the i-th
dimension, and represent the discretized domain using a multi-dimensional tensor

T e RM*mx-Xnd - Each point (my, my, ...,my) in T corresponds to a grid point in
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the discretized domain, denoted by (X;(m;), Xo(my), . . ., X4(my)). For example, Q
with d = 2 is an ordinary rectangle, whereby T is a n; X ny matrix. Depending
on the choice of discretization as described in Section 3.7, the specific location of
X;(m;) may differ. Let Grid(Q2) represents the discretization of Q.

5.2.2 Operator-Tensor Conversion

Given the discretized domain, to represent the operator £ by a tensor operator L,
first approximate each functions within the matrix-valued function ¢, f, B, and X,
in € with CP tensor functions as described in (3.8). These functions form matrices
that are composed of corresponding tensor functions, denoted matrix-valued tensor

functions.

Next, convert the matrix-valued tensor functions of ¢, f, B and X, into tensor opera-
tors. For each tensor function in a given matrix-valued tensor function, diagonalize

the basis functions according to

rr d

>RF - ZF: é diag(F)), (5.1)
=1 i=1

=1 i=1

where diag(F) is a diagonal matrix with vector F as the diagonal. The matrix-
valued tensor functions in this new form are called matrix-valued tensor operators.
Let qop, fops Bop, and X, denote the matrix-valued tensor operators of g, f, B,

and X, respectively.

Now, approximate the gradient V, and the Hessian V, in £ by matrix-valued tensor
operators D1 and D, respectively. The tensor decomposition of the partial derivative

in k-th dimension is given by
Vi=h®.. L119DQ141 Q- ® 1, (5.2)

where D is a difference matrix and /; is the identity matrix for all j € [d],. The
matrix-valued tensor operator D of the gradient V, is formed with entries Vy,
while the matrix-valued tensor operator D, of the hessian V, is formed with entries
Vij=Vi-Vj.

Lastly, multiply and add all matrix-valued tensor operators to form the tensor oper-
ator L

1 1
L() = _EQOP(') + fOTI;Dl(') + ETF(DZ(')BO[JZS,OPB(];]?)'
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As aresult, the linear HIB equation (3.10) takes one of the following forms:

First exit: 0 =LF (5.3a)
Finite horizon: - F, =LF (5.3b)
Infinite horizon: —cF=1LF, (5.3¢)

where F is a tensor function that corresponds to the desirability function ¥, L is a
tensor operator that corresponds to £, and F represents the discrete time stepping.
Typically, F, = (F(i+1)—F(i))/h, where i is the time iteration and /4 is the time step,
but the F at the right hand side of the equation can be F (i + 1), F(i), or other more
sophisticated forms depending on the time integration scheme being employed. For
example, F(i + 1) is used for the backward Euler scheme. The boundary conditions
are discretized accordingly as well, and the details will be discussed in the individual
sections for each cost functional. Henceforth, let

=1 i=

d
l
L
1

Furthermore, let ComputeTensorOperator be the function that converts a given

linear HIB operator £ and discretization Grid(€2) into a tensor operator L.

Given the tensor operator L, the rest of this chapter discusses how to solve the three
classes of linear HIB equation (3.10) using the CP tensor representation. Before
moving on to the approach for first exit problem, we briefly describe how to compute
the controller given F, the solution of (3.10). Recall that the optimal controller is
givenby u = —R™'GTV,V = AR"'GT ¥ The tensor F is the discretization of ¥,
and V,¥ can be computed by numerically differentiating F'. Thus, u for a given x
can be computed with the given formula. If x is not a value on the Grid(Q), the value
of ¥ and V, ¥ are interpolated using the neighboring points. The implementations
of the controllers on a few engineering examples are presented in Appendix A. Next,
the details on how to solve the three classes of linear HIB equation (3.10) using the

CP tensor representation are discussed.

5.3 Controller Synthesis for First Exit Problem

This section presents the approach to solve the linear HIB equation (3.10a) for the
firstexit problem. The linear HIB equation (3.10a) is first discretized and represented
using CP tensor as described in Section 5.2. Then, the boundary conditions i are

incorporated into the CP tensor formulation (5.3a).
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To solve (5.3a) with the associated boundary conditions (3.11a), we will first form
a linear tensor equation AF = G whereby A and G will incorporate both L and
the boundary conditions (3.11a), and F is the tensor function in (5.3a) representing
the desirability function Y. Then, this linear tensor equation is solved using the
ALS algorithm (Algorithm 1). Once an approximated desirability function, F, is
obtained, the controller is computed from F according to u = —R~!GTV,V, where
V = —Alog F. Algorithm 2 summarizes the approach. Each step is described in

more detail below.

First, the tensor function G is constructed from the boundary condition ¢ by
ComputeG in Algorithm 2 analogously to the construction of the tensor opera-
tor L for £ in ComputeTensorOperator. For Dirichlet boundary conditions, the
elements in G that correspond to the boundary points x € 9Q is set to e_@. The

rest of the elements of the tensor function G in the interior x € Q are set to zero.

To illustrate the construction, consider the case where the boundary of Q is set to be

a constant a. For each dimension k, create a tensor function

Qr=11®---®,_ | ®8CL;1® -0y, (5.4)
T
where IJ’. e RY, IJ’. = (0 I -1 0) for j € [k - 1], C € R"™*, C =
T
(a 0O --- 0 a),and I = IL,Ej is a vector of all ones for j = k+1,...,d.

Repeat the process for k € [d].. Then, G = Zzzl Ok.

A similar approach can be applied to more complicated Dirichlet boundary values
and Neumann boundary conditions. For a periodic boundary condition at the k-th

dimension, Qy is set to be a zero tensor function.

Then, operator A is constructed from L and the boundary conditions yy. We first illus-
trate the procedure for Dirichlet boundary conditions. Recall thatLL = Zgl ®ld: | Ll.l .

Algorithm 2 First Exit Problem

Input: Linear operator £, boundary conditions ¢, domain €, accuracy tolerance &,
and initial rank rg.

Output: Tensor function F.

L := ComputeTensorOperator(L, Grid(QQ))

G := ComputeG(yr, Grid(QQ))

A := ComputeA(L, ¥, Grid(QQ))

A := CompressTensor(A)

F = ALS(A, G, &, 1)

AN e
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Let A = 372 ®id:1 Al where ry = r., and A = L! forall € [rn.]; and i € [d],.

Given a Dirichlet boundary condition in the k-th dimension, replace the first and

last row in the matrices {AﬁC }ie[ral, bY zeros. The operator now acts as zero on the

ral+

boundary in the k-th dimension. Then, create a new tensor operator
Pr=I1®---®, | ®CQ®L;1® -®Iy, (5.5)

where / ]’ e R is the identity matrix but the first and last rows are all zeros for
Jj € [k — 1]4, C is a zero matrix except for two ones in the first and last diagonal
elements, and I; € R"Y X" is the identity matrix for j = k + 1,...,d. The operator
Py acts as an identity on the boundary in the k-th dimension. Repeat this process
for k € [d],. Let A = A + Z‘klzl Py. Then, the new operator A sets the boundary
values of F givena G in AF = G.

So far, only Dirichlet boundary conditions has been considered. A slight modi-
fication in the current procedure also enables Neumann boundary conditions and
periodic boundary conditions to be included. For Neumann conditions at the k-th
dimension, the first and last row of C in Py are given by the first and last row
of the difference matrix, respectively, calculating the directional derivative at the
boundary. If using the finite difference discretization scheme, for periodic boundary
condition at the k-th dimension, the first row of {Af{ }ie[ral, is Teplaced by zeros. The
zero matrix C has 1 and -1 as first and last element in the first row. Under spectral
differentiation, the terms {Ai{}le[r 4], are not modified, and the Py is a zero tensor

for periodic boundary condition at the k-th dimension.

The operator A often has a high separation rank, and therefore CompressTensor
compresses A to a low rank approximation using Algorithm 1 and the identity

operator as discussed in Section 3.8.

Lastly, given A and G, ALS solves for F in AF = G using Algorithm 1. The obtained
solution F is the approximate solution to the linear HIB equation (3.10a) given as 