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ABSTRACT 

In the first part of this thesis, a three-dimensional rheological 

model was constructed to represent the deformation behavior of a 

granular material. The constitutive relations for a granular material 

were subsequently derived. The rheological inodel was conceived 

from the observed behavior of granular material from laboratory 

experiments and from theoretical considerations. The constitutive 

relations were expressed in incremental forms to account for the 

stress history and loading path dependency of a granular material's 

behavior, such as non-linearity, initial or induced anisotropy, history 

and path dependency, and shear dilatance. 

The qualitative and quantitative behavior of a granular material 

such as sand under shear stress from experimental results and from 

the proposed constitutive relations was examined and compared. It 

was found that the experimental data and the proposed constitutive 

2 . 
relations were-'1n close agreement. 

Due to the number of parameters involved, and the non-

symmetrical resulting stiffness matrix in a general stress -strain for-

mulation, it is difficult to apply the proposed constitutive in a finite ele-

ment computer formulation at the present state of the art. Consequently 

the application of finite element methods to non-linear problems was 

examined in more detail as a preliminary step. The effect, or the 

results of the material properties, the finite elen1ent mesh size and the 

computational procedure was examined in detail in Part II of this thesis. 
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PART I 

CONSTITUTIVE RELATIONS FOR A GRANULAR MATERIAL 
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CHAPTER I 

INTRODUCTION AND SCOPE OF RESEARCH 

I.1 Prelude 

Until several years ago, nearly all the investigators in soil 

mechanics paid little or no attention to the general stress-strain 

behavior in real soils and devoted their studies almost exclusively 

to the peak or ultimate strengths of soils. The soils behavior was 

assumed to be linear up to the ultimate strength. As a consequence 

in classical soil mechanics, problems of stress distribution and 

deformation have generally been solved on the basis of linear 

elasticity theory [ 1] and problems associated with stability and 

limit equilibrium have been examined assuming soil to be a rigid­

plastic material [ 2] • This school of thought was advocated by 

Terzaghi [ 2] and has dominated soil engineering in practice, 

despite the known fact that soil's behavior is neither linearly elastic 

nor has a constant yield stress after the point of failure is reached. 

Soil engineers have perhaps been reluctant to employ a more realistic 

approach because of the convenience of applying simple theories and 

due to the fact that a more realistic approach to represent soil 

behavior is difficult to arrive at and leads to computational problems. 

The separation of a real soil behavior into either a linear 

deformation problem without regard to localized yielding, or into a 

failure problem in which deformations in the soil are ignored has 

caused many difficulties in the analysis, understanding and interpre­

tation of the real-life behavior of soils. A proper formulation and 
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solution of soil mechanics boundary-value problems requires an 

understanding of the stress -strain relation of the material. Realistic 

stress-strain relations for soils behavior are necessarily complex 

as a result of the physical and geometrical structure of soil. A 

complicated stress-strain relation gives rise to analytical difficulties. 

However, because of the development of digital computers, a complex, 

realistic description of stress -strain behavior may be employed 

economically in solving boundary value problems in soil mechanics. 

At present, it appears that computer capabilities have developed 

beyond the state of the art of the description of soil behavior. 

Consequently, the first part of this thesis is devoted to the 

development of a more realistic constitutive relation for a granular 

material. The effort is restricted to quasi-static behavior. 

I. 2 Definition of Terms 

Confusion often arises from the lack of generally accepted 

terminology in the fields of rheology. It is desirable to indicate a 

number of definitions that have been adopted in the present work. 

The term 11 stress 11 is defined in the usual engineering sense 

as force per unit area [ 1] • In the present study all the stresses are 

principal stresses unless otherwise mentioned, and are implied to 

be "effective 11 in soil mechanics terms. The path traced out in 

principal stress "space" during a test is called a "stress-path. 11 

The term "strain" is also defined in the usual engineering sense. 

Unless otherwise mentioned the strains in this study are principal 

strains. According to the usual sign convention in soil mechanics 
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con1pressive stresses and strains are considered to be positive. 

The material is "isotropic" if the mechanical properties of 

the material are independent of direction, and is 11 anisotropic 11 if 

mechanical properties are dependent on direction. The term 

"induced anisotropy" refers to the anisotropy due to the loading and 

straining or due to the different slip behaviors in extension and 

compression. 

A "principal stress" or "principal strain" space is a three-

dimensional domain with three mutually perpendicular axes expressed 

in terms of three principal stresses or strains. A "yield criterion" 

is a function of stress or strain level where the material exhibits 

large deformations or a relatively sudden change in the stress-strain 

curve for a small increme nt of applied stress. The yield criterion 

defines a "yield surface 11 in stress or strain space. "Strain- or work-

hardening" refers to yield survace which changes with deformation. 

A "stable" work-hardening material in the sense of Drucker [ 3] is 

defined as a work-hardening mate rial on which the application and 

removal of an external force results in (1) positive work and (2) posi-

tive or zero net work over the cycle of loading and unloading. 

I. 3 Important Aspe cts of Granular Material Behavior and the Draw­

backs of Previous Approache s 

In the abs e nce of a stress-stra in relation proper to a granular 

mate rial, it has been difficult or impossible to perform a rigorous 

analysis of many realistic field problems in soil mechanics . Various 

writers have attempted to deduce a us e ful mathema tical description 

of a _ constitutive law for the gr a.D.ular m e dia express e d in appropriate 
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form for subsequent analysis on the basis of linear elasticity [ 1] , 

or vis co-elasticity [ 4] , of perfect plasticity [ 5] , or of the elastic­

plastic theory for stable work-hardening materials [ 6, 7] • More 

recently, incremental theories of non-linear elasticity [8, 9] and 

plasticity [ 1 O] have been employed. A general review of previous 

work will be included in Chapter II. 

In some cases, the above-mentioned theories and methods 

may give satisfactory approximation to the behavior of a granular 

material in specific circumstances. However, the main drawback 

in using these theories and methods is that many important aspects 

of the deformation behaviors can not be generally accounted for. 

The important aspects, which must be included in the constitutive 

relation for granular media are: 

(a) dilatancy due to a pure shear stress increment, 

(b) work-hardening behavior, and the inelastic strains during 

shear deformation, 

(c) dependency of strain on the stress history and path, 

(d) induced anisotropy due to loading and due to the different 

deformation behaviors in extension and in compression. 

It is desirable to have a brief description of the general 

behavior of a granular material such as sand under stress to illustrate 

these important aspects. A granular material such as sand under a 

given load for a period of time before removal of the load, exhibits 

an overall (macroscopic) deformation behavior as shown in Fig. I.1 

after Scott [ 11] • When the load is statically applied at time 0, there 

is an instantaneous deformation OA. If the load is removed immedi-
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ately, the deformation becomes OE which is a permanent set. If 

the load is applied for a period of time,, the deformation increases 

along AB, which for sand will rapidly flatten out to a horizontal line 

BB 1• After the removal of the load, the deformation immediately 

reduces by an amount of BC. The deformation will be further reduced 

in time along the curve CD until a steady value is reached. This 

illustrates that the deformation behavior of a granular material is not 

elastic. 

Furthermore, the deformation behavior is also non-linear; 

this can be demonstrated by the results of tests on sand in the conven­

tional triaxial test apparatus. A typical conventional axial compress ion 

test result is shown in Fig. I. 2 to illustrate this point [ 12]. If the 

axial stress is increased, the stress-strain curve ':races along a non­

linear line OA. When the axial stress is reduced at point A, the 

unloading curve is AB, with OB representing the plastic strain. If it 

is reloaded at B the stress-strain curve follows a different curve line 

OC, thus forming a hysteresis loop. If the load is further increased 

beyond the stress level c(f A or C, the stress - strain curve becomes 

more of a continuation of OA than of BC. 

It is well -known that a granular material dilates at small 

strains {positively or negatively) under pure shear stress [ 13]. In 

addition, it has been shown by Ko and Scott [ 14] that a granular 

material, especially sand, begins to deform plastically at very small 

shear stress regardless of the magnitude of the hydrostatic compres­

sion. The yielding is then continuous until a final failure condition 

is reached. This indicates that each new stress point on a given 
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shear stress path is a point on the newly generated yield surface 

and is dragging a yield surface wi. th it. 

The last, but not the least, important aspect is anisotropic 

induced by the loading and resulting from the different deformation 

behavior in extension and in compression. Experimental data on 

Ottawa sand under axial compression and axial extension (stress 

paths are shown in Fig. IV. 2) performed by Bell [15], indicate that 

a movement of the stress point toward an axial extension stress state 

leads toward yield, whereas a movement of stress point toward the 

axial compression stress state leads toward increased "stability. " 

In other words, granular soil behaves differently in extension and in 

compression. Other experimental evidence to substantiate this 

point is the finding of different stress-strain curves in axial com­

pression and axial extension as obtained in the laboratory tests on 

Ottawa sand by Ko [16] and Masson [17]. 

A study of the literature indicated that a suitable model for 

material behavior exhibiting all the above effects had been suggested 

by Iwan [18, 19]. This model appeared to show promise as a descip­

tion of soil behavior and a detailed examination of it follows later. 

I. 4 Res_e"';rch Scope 

In the first part of this thesis, atte1npts are made to develop 

a rheological model to describe the deformation behavior of a granular 

material under various stress and strain conditions. The effort 

concentrates on the evidence observed in labo1·atory tests and theoreti­

cal considerations to obtain a rheological model exhibiting a stress­

strain relation closely sim.ilar to the experimental results. 
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From the contact stress theory [ 1], the relation between the 

tangential component of the contact force between grains and displace­

ment is inelastic, so that the stress-strain relation should depend 

upon the entire loading history. Accordingly, the correct stress­

strain relation for a granular material should be given as an incre­

mental one. The constitutive relation in this thesis will be presented 

in incremental form to take the effect of stress history and path into 

consideration. 

The feasibility of the incremental constitutive relation will 

be tested by fitting the experimental re~ults on Ottawa sand under 

various stress conditions in tests performed by Ko [ 16] and Masson 

[ 1 7] • 

Linear soil deformation problems of complicated geometry 

have been tackled by means of finite element computer programs [ 20] • 

A limited number of bilinear studies have been made in attempts to 

examine the yield and failure situation [ 21,22]. The results of these 

studies raise some questions as to the techniques used and theoretical 

interpretation. Some gene ral non-linear studies have been attempted 

[ 9, 17, 61, 62] on a piecewise linear basis with generally unsatisfactory 

results either from a rigorous point of view or from viewpoints of 

material characterization. 

The material model suggested in Part I would lead to a finite 

element formQ!.ation considerably more rigorous and also more compli­

cated than any prev iously suggested. Due to the number of parameters 

involved, the nonsymmetrical resulting stiffness matrix in a general 

formulation, and the complicated loading and unloading process, it is 
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difficult for the finite element computer program at present state 

of the art to handle the relationships proposed. So it was decided 

to examine the application of finite element methods to non-linear 

problems in more detail as a preliminary step. For practical 

reasons, the problem of the conditions of stress around the toe of 

a slope or at the tip of a crack [23, 24] in a bilinear material is 

chosen for this purp6se. The effect on the results of the material 

properties, the finite element mesh size, and the computational 

procedure is examined in detail in Part II of this thesis . 
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CHAPTER II 

SUR VEY OF PREVIOUS WORK 

II. 1 Prelude 

The deformation behavior of granular material under stress 

is highly complex and extremely difficult to obtain by testing 

methods or to represent by mathematical descriptions. The 

granular material's behavior includes nonlinearity, inelasticity, 

anisotropy, shear dilatancy, stress and strain history dependency, 

random geometric packing, and time-dependency . Although a large 

effort has been devoted to this field by many investigators in the 

past few yea:r:s, little advance has been achieved. Any explicit 

description in phenomenological or mathematical terms needs some 

degree of idealization of actual behavior and can not always be 

expected to be valid under different stress or loading conditions. 

Attempts to represent closely the behavior observed experimentally 

lead to ever increasing elaboration in detail of a mathematical or 

physical model. A useful mathematical or experimental description 

of the stress - strain relation in a material is one which can be 

employed as economically as possible in predicting the performance 

of the material under specific conditions. 

In stuc;Iying the constitutive relations for granular materials 

two types of approach are usually considered . The first studies 
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soils as a discrete system consisting of an orderly or random 

assemblage of particles. The second approach considers soils to 

behave as a continuum and various continuum mechanics models 

are employed to represent deformation behavior under specific 

circumstances. Both approaches are sometimes used together by 

some investigators in order to have a close representation of the 

stress - strain relationship. In addition, statistical mechanics is 

also employed by some investigators in conjunction with one or 

both above-mentioned approaches to account for the randomness in 

particle size and shape distribution. 

One has to keep in mind that any proposed general constitu­

tive law must be able to predict the material behavior over a wide 

range of stress and strain states. The legitimacy of a constitutive 

relation has to be confirmed by laboratory tests on soil samples 

under various stress and strain consitions. Theoretically, identical 

samples tested under identical stress or strain loadings in different 

testing apparatus must yield the same deformation-stress responses. 

However, this seldom occurs in practice due to the various limita­

tions and constraints of testing apparatus. In describing the defor­

mation behavior of a material in a laboratory test the influence of 

the constraints of the apparatus must be carefully examined and 

deducted from the observed material behavior. 

The current concepts of stress-deformation mechanism in 

granular material have been reviewed by Barden and Khayatt [25], 

Frydman [26], Scott and Ko [27], and Masson [17] . Avoiding as 
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much unnecessary overlapping with the above references as possible, 

the previous work concerning the subject of constitutive relations 

for granular material will be categorically described and discussed 

in this chapter . 

II. 2 Discrete Models for Granular Materials 

In investigating the deformation behavior of granular media 

by considering them as discrete systems, some simplification is 

always needed. The fundamental starting ground is the study of 

the particle packing phenomena. The first systematic treatment of 

ideal (regular) packings was due to Slichter [28]. He established 

various arrangements of uniform spheres and gave formulas to 

calculate their density. In studying the deformation behavior early 

attention was directed to the correlation of material density to the 

number of contacts (coordinate number) as first proposed and 

investigated by Smith, Foote and Busang [29] and by Filep [30]. 

Since then, various discrete models have been proposed. They 

usually, unless mentioned otherwise, have some common 

assumptions such as 

(a) The grains are in direct elastic contact with each other; 

(b) There are no adhesive forces between grains; the 

frictional forces between contact are mobilized by 

movements of grains only. 

Based on Hertz's theory [l], the assumption (a) results in a 

nonlinear relation between the normal components of contact force 
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and displacement. Under pure normal stress, the predicted stress-

strain relation is elastic and has a modulus of elasticity inversely 

proportional to the cubic root of normal stress. However, under 

assumption (b), the relation between the tangential components of 

contact force and displacement is not elastic and the stress -strain 

relation depends upon the entire loading history [31]. Accordingly, 

the proper constitut~ve relation for granular material must be 

expressed in incremental form. The early research in this direction 

was the study of elastic waves in granular substances [32), [33), 

[34]. These studies predicted a wave velocity proportional to the 

sixth root of an initially isotropic pres sure (hydrostatic) and the 

cubic root (rather than the usual square root) of shear stress. 

In the course 0f the development of a mathematical theory of 

small deformations in granular media of ideal pacings, the particle 
I 

contact behaviors under different loading conditions were studied 

and described in a series of papers by Mindlin [35], Lubkin [36], 

Mindlin, et al. [37], Mindlin fu.nd Deresiewicz [31], and Mindlin [38]. 

The results of their analyses had been utilized in developing incre-

mental constitutive relationships for granular media in face-centered 

cubic (hexagonal) array [39] and in simple cubic array [40] . . In 

their analyses, the total stress-strain relations for ideal packings 

had to be obtained from a complicated integration of differential 

stress- strain relations along a specific stress path. This is 

possible only for some simple loading paths such as uniaxial and 

axial compression [40], [41]. Their analyses are not immediately 

applicable to the general three-dimensional loadings in real granular 
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material due to the above-mentioned shortcomings and due to the 

fact that real material does not consist of identical grains arranged 

in l.deal pacing. 

However, the results of the analysis for ideal pacings can 

be realistically applied to the randomly packed arrays by some 

means of correlating either the density or the coordinate number of 

the ideal models to the real material. One such method is by 

representing the assembly of real material as composed of separate 

clusters of cubic array (loosest possible) and hexagonal array 

(densest) in such a proportion as to give similar characteristics 

(such as density and coordinate number) of the real assembly. This 

was first proposed by Smith, et al. [29] and was successfully 

applied to the compression of granular material under hydrostatic 

compression by Ko and Scott [ 42]. A similar approach which 

approximates the relevant variables in a volume element containing 

a big number of particles by relations among the statistical expec­

tation values from representative ensembles of 11 cells 11 each of 

which consists of only a few grains, was proposed and pursued by 

Gudehus [43]. He concluded that a realistical general three-dimen-

sional approach must start from the contact forces and the geome­

trical statistics of random arrays. The same starting point was 

employed by Horne [ 44] and Neuber [ 45]. 

In recent years, statistical approaches have been taken more 

frequently in the study of the mechanics of granular media. In a 

discrete system, the influential factors are the coordinate number, 
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the orientation of contacts, the · friction force between contacts and 

the mechanical properties of the grains. In a real material, most 

of these factors are at random due to the irregular distributions of 

size and shape of particles and geometrical structure. The study of 

ideal packing is only an idealization of nature and it is understood 

that the results of such an investigation must be extended to ran-

domly oriented assemblies of particles. Furthermore since granular 

materials are, in fact, discrete media certain size restrictions on 

the infinitesimal element for analysis purposes are necessary. The 

element size must be such as to include a large number of grains . 

It is logical to employ certain statistical descriptions of the 

behavior of microscopic medium in leading to the macroscopic 

stress- strain characteristics of granular materials. 

Aside from the approache s by Ko and Scott, and Gudehus, 

various other investigators directe d their res e arch in this direction . 

Murayama [ 46] developed a stati s tical model to explain the shearing 

behavior of sand. In his mod e l, the orientation of slipping plane s 

between contacts was assumed normally distribut e d. This eventually 

led to a conclusion that maximum shear strain increas e d propor­

tionat e ly to the ratio of octahe d r al shea:.r str e ss . to octahedraJ 

normal stress. Hess and Stoll [ 4 7] charact e rized granular 

material as a statistically homogeneous rnedium made up of cells 

which wer e r e gular arrays of p a rticles and which w e re distributed 

and oriented at random with res pect to the directions of principal 

stresses. Accounting for both the elastic d e formation of the 

particles and inelastic deformation due to int e rpa rticle sliding, 
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their model was found to predict many of the features of the 

response of real granular materials. However, its use was 

limited in practical cases because the theory includes rather cum­

bersome volume integrals which must be evaluated numerically . 

Stochastic models have also been used to study the defor­

mation behavior of granular materials. Litwiniszyn [ 48] studied 

surface subsidence due to mine operations by a 11 random walk" 

argument and later extended this to apply to general problems in 

the mechanics of granular media [49]. Marsal [50] studied tran­

sient motion in the grain- skeleton during one-dimensional compres -

sion by considering the movements of particles to be the consequence 

of erratic impulses transferred to each grain by the neighboring ones, 

coupled with constant action. Smoltczyk [51] calculated the stress 

distribution in soil media based on a model which assumed a statis­

tical normal distribution of stress in a particulate structure. 

Marsal [52) developed a more complicated model by con­

sidering granular material as a congregation of spherical grains of 

different sizes distributed according to the grain- size curve of the 

granular soil. The contact forces between grains were treated as 

a random variable and found to approach asymptotically a normal 

distribution. The number of contacts in a grain detached by a 

plane was also considered as a random variable with a constant 

probability density for each contact occurrence. Based on these 

assumptions and frictional resistance considerations, Marsal 

obtained incremental stress-strain relations. The experimental 
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result of hydrostatic compression, triaxial compression, and one-

dimensional compression tests were qualitatively confirmed from 

the incremental constitutive relations. 

The concept of an analogy between grain assemblages and 

ttmacromeritic" liquids introduced by Winterkorn [53] may also 

provide some insight into the behavior of granular materials. With 

the analogy, the law of physics with respect to liquids can be 

applied to granular systems, giving a new direction to the res ear ch. 

· This concept was utilized by Kezdi [54] to investigate shearing 

resistance and compressibility in an assemblage of rigid spheres, 

and to determine the lateral earth pressure coefficient from the 

point of view of the lateral pressure developed in an ideal packing 

of rigid spheres. 

In contrast to the above approach, an energy method, the 

so-called "stress dilatancy" theory was proposed by Rowe [55], [56]. 

He analyzed the behavior of regular packings of uniform rigid 

cohesionles s spheres under axially symmetrical stress states, and 

two-dimensional rods under plane stress state; and deduced the 

condition that the ratio of rate of energy dissipation in internal 

friction to the rate of energy supplied in the major principal 

effective stress direction was a minimum. An energy ratio 

criterion is thus established for the critical angle of sliding 

between particles following which stress would be transmitted to 

other particle contacts. The complete stress-deformation process 

was considered a continuous sliding accomplished by change in 
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geometrical structure as the internal frictional resistance decreases. 

Observing that a characteristic angle, a, of the regular packing 

arrangements was absent in his derivation of an energy ratio 

criterion, Rowe suggested that his theory was applicable to random 

arrays of particles as well as to regular arrays. This postulation 

and assumed deformation mechanisms with the absence of rolling 

effects was criticized. 

Horne [44], [57] studied Rowe 1 s theory in detail and showed 

that a closed packed assembly is likely to deform in large groups 

by a predominantly translatory rather than rotating motion. How-

ever, Horne also concluded that the packing characteristics of ran-

dom assemblies must also be considered before stress or strain-

ratios can be derived. Horne [ 44] , [ 5 7] propounded a method 

similar to Rowe 1 s approach for describing the state of anisotropy 

existing in a random assembly in terms of 11 mean projected solid 

paths" in the various coordinate directions. On the basis of these 

concepts, the rates of strain in the principal directions were 

expressed in terms of the frequency and magnitude of sliding 

between particles. The statistical characteristics of a random 

assembly of particles was thus taken into consideration for the 

deformation behavior. Horne showed his analysis gave results for 

regular arrays corresponding to those obtained by Rowe. Horne's 

analysis and experimental results on triaxial extension and com-

pression tests by other investigators (58], [59] tend to substantiate 

~ 
Rowe's theory. However, theory has not been tested for general ,.._. 

three-dimensional loadings. 
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II. 3 Continuum Mechanics Approaches 

Although the particles in granular materials such as sands 

are relatively large in comparison with the crystals of metalic 

materials, the domains of boundary value problems in granular 

material are also relatively large. Therefore, instead of a discrete 

model approach, it has been more common to regard granular 

materials as continua in studying their behaviors. The methods 

and results of continuum mechanics such as elasticity theory, 

plasticity theory are usually employed in this approach and will be 

described in the following section. 

II. 3-1 Elasticity Theory 

Elasticity theory assumes that all of the deformation is 

recoverable and the material returns to its initial state upon removal 

of the loading. There is a general discrepancy in using the theory 

of elasticity in describing the deformation behavior of granular 

materials since permanent plastic deformation inevitably makes an 

appearance upon the unloading of a granular material. Therefore, 

elasticity theory can only be applied to the case of monotonically 

increasing loading, or in cases where the applied and removed load 

causes negligible plastic strains, 

The sirnplest continuum model for granular material behavior 

is linear elasticity theory. The linear theory of elasticity has been 

well developed in the last eighty years [l] and many solutions exist 
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for application to some of the practical problems such as calculation 

of stresses and settlements in a region of soil underlying an engi­

neering structure. Recently, due to the development of the finite 

element method [60] for handling complicated boundary value prob­

lems, soil engineers find elasticity theory even more convenient 

than ever and are perhaps reluctant to try other approaches in 

representing more realistic soil be ha vi or. Other drawbacks of 

linear elasticity theory are that it cannot in general represent the 

nonlinear and partially inelastic behavior of soil and in particular 

can not account for the dilatancy effect due to the application of 

shear stresses to soil. 

Attempts to represent nonlinear behavior and dilatancy due 

to shear in granular media treated as elastic material can be 

classified into two areas. The first is an empirical process of 

simulating nonlinear stress-strain relations without referring to the 

framework of continuum mechanics theory in the formulation of 

constitutive relations. Figure II. 1 shows three techniques in this 

empirical scope, which are generally employed by investigators. 

The quasi-linear technique as indicated in Fig. II. l(a) simulates 

the real homogeneous granular material (soil) in the state of stress 

or strain. This is done by expressing the tangent modulus of the 

stress-strain curve as a function of the state of stress or strain 

[61]. In the similar manner, the Pois son's ratio can also be 

expressed as a function of the stress as proposed by Girijavallabhan 

and Reese [62]. This technique has been widely used for solving 

some practical engineering problems due to its ease in adapting 
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into the well developed finite element methods and high speed digital 

computers. Evidences for this are more than abundant in engineering 

literature [e.g., 63]. Figure II. l(b) indicates the piecewise linear 

technique in wnichthe real homogeneous material (soil) behavior is 

approximated by various nonlinear representations with the solutions 

carried out by piecewise linear approximations [64]. The third 

technique is to express strains explicitly in terms of stresses or 

vice versa. As a first step in reaching a long term aim to write 

a generalized three-dimensional tensional form of the stress- strain 

relations for soils, Konder [65] suggested an empirical hyperbolic 

stress strain relation for cohesive soil in the triaxial test, of the 

following form 

E er - (3E + a er = 0 (2. 1) 

where er is the normal principal stress difference and E is axial 

strain. The two constants a and (3 are related to the initial tangent 

modulus and ultimate strength at large strain respectively. Aside 

from being without any theoretical basis, the empirical approximation 

yields good results only if the material under specific stress or 

strain condition behaves as assumed. 

The second approach follows the well-developed nonlinear 

small-strain theory in the field of solid mechanics [66], [67] by 

using a higher order of deformation law comparable to Hooke's Law. 

The nonlinear total stress-strain relation expresses stress as a 

function of the existing strains (deformation gradients) measured 
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from some reference configuration [68] . The result is independent 

of the manner the total strain is reached. Chang , et al [9] argued 

that if such a deformation law were to be applied to a strain-history 

dependent material (such as granular material) under arbitrary 

stress paths, then the laboratory test for materials should follow 

proportional loading paths. 

Two fundamental methods of formulating nonlinear elastic 

stress- strain relations are due to Green and Cauchy respectively. 

Green's method postulates the existence of a stored strairi energy 

density function W for the model continuum. The strain energy 

density function can be taken as a function of any three independent 

strain invariants. According to the conservation of energy hypothe-

sis, the constitutive relation can be expressed as 

(J •• 
lJ 

= aw 
ae .. 

lJ 
(2. 2) 

where o- . • and e .. are stress and strain tensors respectively. In 
lJ lJ 

this way, the order of nonlinearity depends on the powers of energy 

density function in terms of strain. For instance, an nth order 

stress-strain law can be obtained by expressing W as a function of 

ntl powers of strain. Furthermore, a nonlinear stress- strain law 

may also be found by carrying out an analogous sequence of opera-

tions on the complementary energy density function U, which is 

defined as 

U = o-.• e . . -W 
lJ lJ 

(2. 3) 
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Chang, et al [ 9] attempted a second-order approximation of 

granular behavior by writing W in terms of all powers of strains 

up to three, Thus stresses are expressed in terms of a second 

order strain function with five material constants to be determined 

from material tests along prescribed stress paths. Chang, et al, 

also developed an incremental stress-strain relation for the second­

order approximation in preparation for the numerical computation. 

From the experimental results of hydrostatic compression tests 

performed by Ko and Scott [14], [ 42], [69] in a three-dimensional 

triaxial test box [70], Chang, et al, obtained values of these con­

stants and the incremental stress- strain relation; the soil's res-

pons e in a triaxial shear test was simulated. It was shown that 

this nonlinear approximation represented many of the characteristics 

of granular material behavior and reasonable agreement was 

observed. The major weakness of the theory was the material 

instability innate in the second order approximation as pointed out 

by Chang, et al. 

In observing the shape of principal stress- strain curves from 

shear tests on sands, · Masson [17] concluded that these curves 

could be best approximated by odd rather than even functions and a 

power series in stress would be preferable to powers of strain for 

modeling the softening behavior of sand under shear. Therefore 

the complementary energy density in terms of three stress invariants 

with all powers of stress up to four was postulated by Masson in 

order to derive a third-order law. Strains were thus expressed as 

third-order functions of stresses with nine material constants. The 
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incremental stress- strain relation was also derived for hydrostatic 

compression (HC), triaxial compression (TC), triaxial extension 

(TE), radial shear (RS-60") and conventional triaxial compression 

(CTC) and extension (CTE) test. (The stress paths of these tests 

are shown in Figs. IV. l, IV. 2, and IV. 8). Experimental tests on 

Ottawa sand along HC, TC, TE, RS-60°, CTC and CTE stress 

paths were performed in a three-dimensional triaxial testing 

apparatus to determine the nine material constants . Mas son [17] 

found that the third-order law was capable of accounting for all 

essential aspects of the behavior of the material, especially the 

high degree of nonlinearity. Applying this third-order law to some 

boundary values problems, Masson also found a close correlation in 

comparing with the experimental results. Meissner [71] also 

derived a third-order stress- strain law with the postulation that the 

strain energy density function was a function of strain with all 

powers up to four. Stress was a cubic function of strains with 

twelve material constants. These twelve constants were exclusively 

determined from the conventional test data . The conclusions of 

Meissner were similar to Masson' s findings. 

A third order stress-strain relation was also derived by 

Chang [72] with the use of a strain energy density function approx­

imated by two functions in polynomial form in order to a void the 

possible instability in stress - strain relations due to polynomial 

approximation. In his constitutive relations, eleven material con-

stants were needed. Chang's derivation was purely based on a 

phenomenological conjecture. No experiments were given to deter-
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mine the eleven material constants or to verify its legitimacy. 

It has to be pointed out that a general third-order approx­

imation yields eleven or more material constants depending on the 

form of energy density function assumed. Some of these material 

constants can be suppressed by requiring zero stress to imply zero 

strain. It is not surprising that different numbers of material 

constants are obtained by different investigators using the same 

third-order approximation technique. 

Aside from being invalid for the unloading case, the above­

mentioned nonlinear approximations have one thing in common that 

the predicted response is symmetrical with respect to tension and 

compression. In other words, exept for change of sign the con-

ventional triaxial compression and conventional triaxial extension 

tests, or axial compression and axial extension, would yield identical 

results as predicted by these nonlinear laws. However, experiments 

on granular materials such as Ottawa sand [16], [17] have indicated 

that the deformation behavior in extension and compression of 

granular material is not identical. 

Another point of view in nonlinear approaches is Cauchy's 

method which postulates that the state of stress is a function of 

the current state of strain. This is within the scope of hyper-

elasticity theory [67], since any stress-strain relation obtained 

from Cauchy's method can also be derived from Green's method 

with a specific chosen strain energy density function. Higher order 

of nonlinear approximation may also be employed to develop a 
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stres s- strain relation for granular material if one does not mind 

the complicated formulation. 

Noticing that an incremental stress -strain relation is more 

appropriate to account for the path- dependent characteristics of 

granular material, Coon and Evans [73] used constitutive relations 

corresponding to a special case of first order theory of hypo­

elasticity [7 4] to fit the experimental data and 'to predict the 

recoverable deformation of granular materials under conventional 

triaxial loadings. The cone ept of hypoelasticity embodies a class 

of ideal materials whose constitutive relations are- governed by the 

principle 

rate of stress = £(rate of strain) (2. 12) 

This was first proposed by Truesdell [74] and later studied in 

detail by Bernstein [75]. This may become a potentially pow erful 

tool in describing the deformation behavior of granular material 

under monotonically increasing loadings since its innately incre­

mental characteristics in principle can account for the path-depen-

dent behavior of a granular material with a limited memory. How-

ever, as in the other analyses with granular models, the theory 

has not been tested for general three-dimensional loadings due to 

its complexity. 

II. 3-2 Plasticity, Yield Surface and Flow Rules 

The application of the mathematical theory of plasticity to 
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the stress-strain relaitionship was first suggested by Levy [ 76] 

ninety years ago. The first generalized incremental relationship 

between stress and strain incorporating both elastic and plastic 

components for the stress analaysis in metal was deriv,ed by Reuss 

[77] some forty years ago. Terzaghi [2] was the first one to 

apply plasticity theory to soil mechanics problems by approximating 

the behavior of soils as being rigid plastic. The typical stress-

deformation pattern for a granular material is shown in Fig. II. 2(a), 

in which the separate contributions for recoverable {elastic) defor-

mation and irrecoverable (plastic) deformation are indicated. This 

typical behavior of material is ususally simplified as shown in Fig. 

II. Z(b) for solving some boundary value problems. A material is 

called rigid-plastic if the recoverable deformations are small in 

magnitude in comparison with the overall movements consequent 

upon the attainment of limiting stress, . and hence may be neglected. 

When recoverable deformations are so large that they play an 

important part in any stress analysis performed, the material study 

involved is called elastic-plastic analysis. 

Terzaghi's rigid-plastic analysis applied to the stability 

problems deals with the conditions for the equilibrium of idealized 

soils immediately preceding by ultimate failure by plastic flow and 

gives no consideration to the corresponding state of strain. As 

pointed out by Smith and Kay [10] Terzaghi's analysis yields a 

"transition of semi-infinite masses from a state of elastic equi­

librium into a state of plastic equilibrium which can only be accom­

plished by an imaginary process of stretching and compressing the 
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soil which is without any parallel in the physical world. 11 There-

fore, Terzaghi1 s analysis of treating soils as rigid-plastic materials 

is not rigorous. 

A more rigorous plasticity approach considering both states 

of stress and strain for soil mechanics problems was initially 

developed in a series of papers by Drucker and Prager [78], Shield 

[79], Drucker [80], and Shield [81], [ 82] . In the theory of plasticity, 

the material is considered to behave elastically until a yield condition 

is reached. The yield condition usually takes the form of a convex 

surface in stress space. When the state of stress reaches a point 

on the yield surface, the material yields indefinitely. The yield 

surface in terms of state of stress is taken to be a plastic potential. 

The rate of plastic strain occurring at yield is determined by some 

flow rule associated with this plastic potential. Therefore, two 

things are important in plasticity theory: namely, yield condition 

and fl.ow rule. 

A considerable effort has been devoted to obtaining a work­

able form of yield surface for granular materials. The simple st 

analytical representations of yield surface for cohesionless soils 

(granular material) are cones or pyramids with generally hexagonal 

bas es as represented in an octahedral stress plane as shown in 

Fig. II. 3. A yield surface according to Tresca' s criterion of 

failure is represented by a regular hexagon; the field condition is 

reached when a maximum shear stress reaches a certain level [83]. 

The yield condition due to von Mises states that yield occurs when 
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the octahedral shear stress reaches a critical value as represented 

by a circle in Fig. II. 3. The oldest and the most widely used 

criterion for cohesionless soils is the Mohr-Coulomb yield condition 

which states that the soil will yield or fail when the obliquity of 

resultant stress on some plane reaches a maximum value. 

Various other pyramidal yield surfaces such as the Mohr-

Coulomb yield surface with tension cut-off (84], and Haythornthwaite's 

maximum reduced stress criterion (85], have also been suggested. 

Paul [86] has reviewed the experimental results on brittle metal, 

rocks, granular materials, and soil and developed a generalized 

pyramidal yield criterion, with a yield surface as shown in Fig. 

II. 4. Many of the yield surfaces proposed for various materials 

are only special cases of Paul's generalized pyramidal yield surface. 

The pre~ence of corners in a pyramidal yield surface is not 

a law of nature in soil's behavior and creates difficulties in analytical 

applications. A continuous closed-form yield surface is more 

desirable. The condition of isotropy requires any cross section of 

a yield surface projected on an octahedral stress plane to show 

the threefold type of symmetry as shown in Fig. II. 5. It seems 

to the author that the simplest continuous form for this cross 

section is a cylindrical function with the following relation: 

p = 1- B co s'3 8 
A (2. 4) 

where p is the distance from the hydrostatic axis to any point on 

the yield surface whose radius intersects the major principal axis 
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on a hydrostatic plane with an angle 8 as shown in Fig. II. 5. A 

and B in Eq. (2. 4) are constants to be determined later. 

Let erI, er2 , and er3 be three principal effective stresses, 

then the first effective stress invariant JI equals ' (erI+ er2+ o-3 ). 

If the hydrostatic component of stress at a point is subtracted from 

each of the principal stresses, the deviatoric stress system 

( I I I ) ' er I, er 2 , er 3 arises 

er1I = erI -

cr'z = erz-JI/3 (2. 5) 

From Eq. (2. 5), the three deviatoric stress invariants 

J 1 I• J 1
2 and J 1

3 can be obtained [27] as follows 

JI JI JI 
Ji I = (er I - 3) + (erz - 3) + (er3 - 3) = 0 

(2. 6) 

It can also be shown [27] that p and e are given by the following 

relations 
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(2. 7) 

Let a and b denote the values of p at 0 = 0° and at e = 60° 

respectively as shown in Fig. II. 4, then A and B can be obtained 

from Eq. (2. 4) and are expressed as follows 

A 
2ab = a+b 

(2. 8) 

B = 
a-b 
a+b 

From Eqs. (2. 4), (2. 7) and (2. 8), the yield surface on an octahedral 

plane can be obtained and expressed as follows 

1 1 1 1/ 3{3 1 1 J'3 
f = - (-+-)(-J1 ) z - --(---) -- -1 = 0 

-f2 a b z 2-f2 b a (-J'z) 
(2. 9) 

For a granular material, the effect of the hydrostatic effective 

pres sure (J 1) in yielding is known to be significant at usual working 

stresses, so that it can be expected that a generalized yield surface 

should be described as 

(2.10) 

Therefore, it can be expected that a and b values should be, at 
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least, functions of J 1 and material properties such as the void ratio 

of the granular material. The exact relation of a and b with J 1 

and void ratio is not known and more research is necessary towards 

this end. However, from the available experimental results by Ko 

and Scott [69], the yield surface suggested by the author seems to 

give a simple and excellent approximation as shown in Fig. II. 6 and 

Table II. 1. 

It can be seen from Eq. (2. 9) that if a= b the yield surface 

becomes a circle of von Mises type. Observing the test results on 

Brasted sand, Bishop [8 7) found that the von Mises yield criterion 

(circular yield surface) failed to predict meaningful results. Further­

more, Bishop [ 87] illustrated some portion of circular yield surface 

in principal effective stress space was in a state of negative 

effective stress. For a cohesionles s soil (sand) this is meaningless. 

Therefore, it can be expected that a circular yield surface (a= b) 

is not suitable for granular material. This implies that the 

condition of a> b has to be observed in the yield function indicated 

by Eq. (2. 9). 

For some values of a and b, some region in the cross 

section of yield surface may become concave , which is not possible 

for the class of materials known as stable work hardening materials 

classified by Drucker [ 88] . However, if we are concerned with 

fracture or with the failure of a granular material, rather than 

plastic flow, the materials may not fall into a stable work-hardening 

classification in the sense of Drucker [ 3). 
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Granular material exhibits work-hardening behavior which 

implies that the position of the yield surface changes with the 

increase of stress. Drucker, Gibson and Henkel [ 89] took the 

Mohr-Coulomb yield criterion as a limit surface and closed the 

open ends with a family of hemispheres. The hemispherical sur-

faces were assumed to be the family of yield loci and the material 

was always at yield as a stress path moved out until it finally 

reached the Mohr-Coulomb limit or failure surface. 

Roscoe and Schofield [ 90] and Roscoe, Schofield and 

Thurrairajah [ 91] proposed a yield surface for Hwet 11 clay in a 

(p,q, e) space; where p = (cr 1 + cr2 + 0"3 )/3, q = (0" 1 - cr3 ) and e is the 

void ratio. For the triaxial data an additional stress parameter 

q , which is obtained from the observed deviatoric stress q by 
w 

application of a boundary energy correction and an elastic energy 

correction is needed for a unique yield surface under drained and 

undrained (no volume change) condition. They took the critical void 

ratio as a limiting surface and closed the open ends with a family 

of bullet- shaped yield loci. Although they claimed considerable 

success for their theory in producing a stress- strain theory for 

11 wet11 clay, the application to granular material remains to be 

examined. 

A yielding model including no possibility of tension and 

transition between Mohr-Coulomb and von Mises criterion has been 

proposed [92], [93] to study wave propagation in soils and quali-

tative success has been claimed. Numerous other forms of yield 

surfaces for strain-hardening materials are also possible. Koiter 
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(94] represented the yield function (plastic potential) by a family of 

Tresea yield surfaces. Prager (95] suggested a family of von 

Mises yield surfaces. Weidler and Paslay (96] incorporated density 

effects in terms of specific volume into a family of von Mises 

conditions in strain space to derive a constitutive relation for a 

granular medium. Their analysis was compared v.--ith experimental 

results in direct shear tests with qualitative agreement. However, 

one has to point out that direct shear tests are not good for com-

parison purpose . The main drawbacks of using such tests for the 

evaluation of constitutive relations are: the nonuniform deformation 

in the samples and the uncertainty in the boundary stress condition. 

Most investigators associate the plastic strain with the plastic 

potential by a normality condition which states that the direction of 

the plastic strain rate vector is given by the normal to the yield 

' surface. In a mathematical expression, the normality condition can 

be expressed as 

• p 
E •. 

lJ 
= A. _Qf_ 

8CJ . • 
lJ 

where € ~- is 
lJ 

the plastic strain rate tensor, 

(2. 11) 

CT •• the stress tensor, 
lJ 

f the plastic potential on yield function, and A. is a proportionality 

constant which can be varied with the state of stress or strain. 

Equation (2.11) is called the 11 associated flow· rule" since it 

associates plastic strain rate with stresses by a normality condition. 

It has been pointed out that the normality of the plastic strain 
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increment vector to the yield is not a law of nature of soil's 

behavior [ 97] , [ 98] . While, for some materials, normality may 

have been observed, it is not necessarily applicable to all materials. 

Normality condition requires that the granular material must expand 

volumetrically, plastically at yield if the soil's yield surface 

depends and increases with the hydrostatic stress. From the 

experimental results on Ottawa sand, Ko and Scott [69] found that 

soils tended to expand at yield, but it was not sufficient to make 

the plastic strain increment vector normal to the failure surfaces. 

The question on the lack of normality for soils was first raised by 

de Jong [99]. For a granular material whose deformational mech-

anism is primarily associated with a frictional system, normality 

does not hold in general. 

This lack of normality for granular material has been sub­

stantially supported by experimental investigations on sands by 

Weidler [100]; Poorooshas"b; Holubec, and Sherbourne [101]; 

Barden and Khayatt [102]; and Ko and Scott [14]. However, 

because of the nature of soil behavior it is not clear how sensitive 

soil is to the nature of the tests devised to investigate normality. 

Further examination of the relevance of normality condition to 

plastic analysis of granular materials is needed. 

For granular material, it would seem that certain non­

associated flow rules may be appropriate. Weidler and Paslay [ 96] 

derived a nonassociated flow rule from energy considerations and 

later applied it to triaxial tests for verification [103] . Although 
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certain important aspects such as mode of deformation, the analyt-

ical and numerical results appear to agree with experience in soil 

testing. However, more research is needed for a workable non-

associated flow rule to yield a quantitative evidence of its useful-

ness. 

The most important features of granular materials are 

elasticity, frictional elasticity and work-hardening. It is possible 

to study the deformation behavior by rheological models. The 

elastic behavior caused by the Hertz effect can be represented by 

a nonlinear spring. The frictional behavior can be easily sym-

bolized by a slip (St. Venant) element. The simple form of the 

rheological model for granular material would be a series of 

spring- slip elements as suggested by Smoltezyk [104) and shown 

in Fig. II. 7(a). Brown [105] represented the deformation behavior 
I 

of frictional system by a model (Fig. II. 7(b)) which did not satisfy 

the criterion of a stable work-hardening material in the sense of 

Drucker. A two-dimensional model as shown in Fig. II. 7(c) was 

used by Palmer [106) . Palmer showed that the yield condition 

P= f.J.Q (Fig.II.7(c)) was not a plastic potential and the normality 

condition did not hold. In other words, the yield condition is 

homogeneous in the stress component and the direction of plastic 

deformation is also a homogeneous function of stress but does not 

obey the normality condition. 

Iwan [18) , [19] used the distributed element model of Fig. 

II. 7(d) to study the yielding behavior of continuous and composite 
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systems. Iwan' s model led to stress-strain relations which 

exhibited anisotropic strain-hardening (Bauschinger effect). The 

concept of the one-dimensional class of models was eA.'i:ended to 

three dimensions and led to a subsequent generalization of the 

customary concepts of the incremental theory of plasticity. The 

built-in distributed characteristics in Iwan' s model can be easily 

adapted with certain statistical parameters to account for the 

randomness of packing, and size and shape distribution of particles 

in a granular system. Iwan' s model of yield behavior was adapted 

by Chang [107} who derived a refined incremental plasticity stress­

strain law by a collection of generalized Mohr-Coulomb yield 

surfaces to describe the plastic behavior of soil in shear. The 

main drawback in Chang's deviation was that it would be very 

difficult if not impossible to fit it to test data. One possible 

r~medy for this drawback is to use some distributed characteristics 

in the family of yield loci. 

verify this point. 

Some more research is necessary to 

Wells and Paslay [108] used a model (Fig. II. 7 {e)) similar 

to I wan' s model (Fig. II. 7 (d)) to develop a stress- strain relation 

with the yield surfaces expressed in strain space for a specific 

type of material characterized by coplanar motion of dislocations. 

The concept of a one-dimensional model was extended to establish 

a three-dimensional family of yield functions in principal strain 

space (E 1 ,E 2 ,E3 ), whose axes, E 1 , E 2 , and E 3 are aligned with the 

principal stress o- 1- , o-2 - , and o-3 - axes. 

It is also possible to develop a more complicated model 
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which simultaneously allows for different effects to have an 

increasing similarity with the deformation behavior of real material. 

Unlike other types of models, the stress-strain relation is usually 

obtained solely from the mechanism of this type of model without 

conjunction with any other assumptions or hypotheses. One of 

these models was due to Yandell [109], [llO]. Yandell simulated 

a long section of a pavement under plane stress condition by a 

two-dimensional mechanical lattice analogy (Fig. II. 8(a)) made up by 

a family of identical mechanical models as shown in Fig. II. 8(b). 

The elastic elements (linear springs in Fig. II. 8(b)) exhibited one 

stiffness in loading path and a higher stiffness in unloading path. 

The stiffness coefficients of spring elements (A, S, V) were cal­

culated by frame analysis for the representation of a non-buckling 

plate of unit thickness [ 110). A possible load-deflection path 

exhibited by a unit element is shown as in Fig. II. 8(c). With this 

analogy, Yandell was able to predict the behavior of an elasto­

plastic pavement during repeated loading by traveling rollers. 
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TABLE II.1 

Comparison of Experimental Data and Predictions by Eq. (2. 9) 

(a} For void ratio e = 0. 61 

p Ko's data * a 

00 10.5 

15° 9.54 

30° 8.75 

45° 8.45 

60° 8.3 

(b} For void ratio e = 0. 52 

Ko 1s data * 
00 13.1 

15° 11. 4 

30° 10.1 

45° 9.2 

60° 9 

*Measured from Fig. II. 6, 1 cm = 1 • 

** Taken as the value of Ko' s data. 

Prediction 

10. 5 ** 
10.3 

9.35 

8.7 

8 ** .3 

Prediction 

** 13. 1 

12.3 

10.65 

9.45 

9** 
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various linear repre­
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{b) Piece-wise Linear Approximation 

Fig. II. 1. Various Empirical Techniques for the Soil Behavior 
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(b) Idealized Soil Behavior 

Fig. II. 2. Real Homogeneous Soil Behavior and Idealization 
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r 

Notes: (1) The twelve-sided polygon (shaded) represents 

a piece-wise linear failure surface on an 

octahedral plane. 

(2) Each of the twelve sides is represented by an 

equation of the form 

Fig. II. 4. Paul's Generalized Pyramidal Failu::-e Surface 
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(a) Regular shape 

(b) concave shape 

Fig. II . 5. Continuous Yield Surface in Eq. (2.9) 
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(a) Smoltezyk's Model Posil!Ye fi!et1s1/e 
Posil1i-e JI compressive 

Q 

(c) Palme r's Model 

(d) 

Hembe.' XYinilict!ly sc foo long 

(b) Brown's Model 

I wan 1 s series-parallel 
Model* 

* I wan 's parallel-series 
model shown in Fig. III. 3 

( e) Well' s and PaslaJy 's 
Model 

Fig. II. 7. Various Rheological Models 
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__ tr<1v"I tyre load 

(a) An assembly of units to simulate a long section of an elastoplastic pavement experiencing plane 
stress. 

A- horiiontal dnd vt"r1kal e'lt-rne-nts 

S- sht-ar e'lemt>nts ~ V- volumt" ~lt-rneints 

A 

A A 

Elicmcmb ~.1hibH ~ higher compli.inc~ wh~n load ing than wf"ICf'I uiloading 

(b) A unit of the lattice structure simulating the 
behavior of the soii. 

Fig. II. 8. Yandell's Model 

LOAD 

( C) Possible load-deflection 
behavior of an element or :nodel. 



-49-

CHAPTER III 

RHEOLOGICAL MODELS AND GENERAL THEORY 

III. 1 One-Dimensional Model and General Concepts 

A granular medium consists of irregularly shaped and sized 

grains packed randomly together. The number of contacts per unit 

volume depends on the porosity, the shape and size distribution of 

grains, and the state of stress. A change in the state of stress will 

cause a change in the interparticle forces between contacts which, in 

turn, causes tre grains to move or slip with respect to each other. A 

recovery of the state of stress would recover a certain portion of 

the deformation but not all of it because most of the grain slips at 

contacts can not be totally recovered. We will first consider the 

one-dimensional case. 

When a granular material is under external stresses or 

loadings, each grain is subjected to a resultant stress or force through 

the contacts with neighboring grains. The movement or deformation 

of each grain can be assumed to be a function of this resultant force. 

When this force reaches a certain level, the grain slips with respect 

to the neighboring grains. The movement or deformation of each 

grain can be assumed to be a function of this resultant force. When 

this force reaches a certain level, the grain slips with respect to the 

neighboring grain. This level of stress varies from grain to grain 

and is dependent on the contacts, the shape and grain distribution of 

the granular medium. Experimental results on Ottawa sand by Ko [ 16] 

and Masson [ 17] had clearly indicated that granular material 
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behaved differently under axial compression and axial extension 

stress conditions. Therefore, it is likely that this force level as 

such slip occurs may be different for each grain in compression and 

ext ens ion. 

As one approach to mathematical analysis, the above behavior 

of a grain may be represented by a mechanical model consisting of a 

spring and two slip elements as shown in Fig. III.1. The spring 

represents the elastic behavior before the grain slips at the contact. 

The two slip elements with stops represent the slip stress level in 

compress ion and extension respectively . . The slip elements represent 

the summation of slip behavior of all the contacts in a grain in a 

granular material. Thus the model presented here is a homogeneous 

elastically isotropic body containing a number of randomly oriented 

contacts slipping at certain critical stress. In this mechanical model 

it can be seen that when the resultant stress in this grain is less than 

* in extension or er c 
in compression, 

However if the stress level exceeds * er t 

f he grain behaves elastically. 

* in ext ens ion or er 
c 

in com-

pression, the grain slips and plastic strains thus develop. 

In the one-dimensional case, the behavior of the granular 

medium consisting of an assemblage of grains is represented by a 

mechanical model containing a large number of these spring-slip 

elements in parallel as shown in Fig . III. 2 . The properties of the 

elements are distributed in some fashion to be determined to repre-

sent the field characteristics of each individual grain of the granular 

medium. Some postulations for a~ and ~\ and the stress-strain relations 

for this one-dimensional model will be demonstrated in Section III. 1-2. 
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III.1-1 Simple Model 

Before discussing the detail of our one-dimensional model for 

granular material, it is ad vis able to examine a simpler class of 

model as shown in Fig. III. 3. The constitutive relation for this 

simpler model is not difficult to derive and will eventually lead to 

the constitutive derivation for our more complicated model with 

some modification. This model was used by Iwan [ 18, 19] to describe 

the yielding behavior of continuous and composite systems. A similar 

model was also used by Wells and Paslay [ 103] for the analysis of 

the Bauschinger effect in some engineering alloys. For illustrative 

purposes, this simple model shown in Fig. III. 3 is defined as Model A. 

The more complicated model shown in Figs. III.1 and III. 2 is classified 

as Model B in this study. As shown in Fig. III. 3, Model A has a large 

number of elements in parallel; each element consists of a spring and 

a slip element in series. The hysteresis loop of this simple model 

can be divided into three parts, namely, initial loading path, un-

loading path and reloading path as shown in Fig. III. 4. The derivation 

is after Iwan [ 18, 19]: 

(a) Initial loading path 

For a discrete model, the constitutive relation can be expressed 

as 

N er* +I ~ (3. 1) 

i=n+i 

* where o-
1 

is the limit (critical) stress for the ith element to slip, 

and E. is the Young's modulus of the spring for the ith element. 
l 
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The first part of the right-hand side of Eq. (3.1) represents those 

elements wh'ich remain elastic during the loading process, and the 

second part represents those elements which have yielded. In 

* general, cr. and E. can be regarded as distributed parameters. 
l l 

Thus Eq. (3 . 1) can be rewritten as: 

S 00 * ~· SE€ :I;: * * cr = EE¢(cr )dcr + cr ¢(cr ) dcr 
EE 0 

(3. 2) 

*· * * where ¢{:P) is the distributed function and ¢(cr ) dcr represents the 

fraction of total elements having limit stress between cr * and 

* * * CJ + dcr • Statistically speaking, ¢(cr ) represents the probability 

density function of the spring- slip element which slip at a correspond-

. * 1ng stress level O" • Equation (3. 2) can be further rearranged as 

Seo * * SEE * * * cr = EE¢(0' ) dcr - (EE- er )¢(er } der 
0 0 

(3. 3) 

(b) Unloading path 

When the mediwn is initially loaded to a state of er and € , 
u u 

the stress-strain curve for the unloading path can be expressed as: 

E€ 
+ s u . (EE-EE +er*) 

E(€ -€)/2 u 
u 

* dcr 

The first part of the right-hand side of Eq . (3. 4) represents the 

(3. 4) 

behavior of the unyielded elements, the second part represents that 

of elements which yielded upon initial loading but behave elastically 
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upon unloading, and the third part represents those elements which 

yield upon initial loading and now yield again but in an opposite sense. 

It can be proved after some mathematical manipulation that 

! co * * if ¢(cr ) dcr = 1, the loading stress -strain relationship becomes: 
0 

* (Note: this also assumes that E is independent of a • ) 

(c) Reloading path 

(3. 5) 

When a material is unloaded to a state of cr R and € R (where 

!ER! :S !Euj) and then is reloaded, the stress-strain relationship can 

be represented as 

(3. 6) 

After some manipulation, Eq. (3. 6) can be rewritten as 

(3. 7) 

In the derivation of the hysteresis loop for the simple model, 

it is assumed that the stress-strain characteristics for compressive 

and tensile loadings are the same. This may be true to a certain 

extent for some engineering materials such as steel and its alloys. 
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However, for materials such as concrete or a granular rr1edium, the 

stress-strain characteristics are different in compression and exten-

sion, the simple model thus fails to represent this behavior correctly. 

Therefore, to correct this, two slip elements are needed to represent 

the behavior of granular material under compression and extension as 

shown in Fig. III. 2. The more realistic mechanical model yields 

a much more complicated hysteresis loop as can be expected. 

However, the derivation of loading, unloading and reloading stress-

strain relations is similar to that for the simple model. 

III.1~2 One-dimensional Analysis of Model B Used in This Thesis 

The distribution functions for the critical yield stress in 

extension, * * * * crt, and compression, ere' are </>t(crt) and </>c(uc) 

respectively. These functions are not nee es sarily the same. For 

* * a granular material it is expected that </>t(crt) and </> (a ) would be . c c 

different. Here we also speculate that the following conditions should 

be observed: 

s(X) * * I <t> t cat ) dcr t I = 1 
0 

and (3. 8) 

s(X) * * 1 </>c(crc) da = 
0 

c 

Equation (III. 8) implies that a granular material would totally 

slip or yield under infinite compression or extension. Usually, when 

a granular material is subjected to compress ion then ext ens ion, a 

portion of the elements will yield in compression and some other 
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portion will yield in extension. This implies that the hysteresis loop 

would be much more complicated than the one shown in Fig. III.4. 

Generally, the stress-strain relation of our new model to represent 

the one-dimensional behavior of a granular material can be illustrated 

as in Fig. III. S(a}. The stress-strain curves shown in Fig. III. 5 are 

qualitatively drawn to demonstrate the possible loading paths for 

Model B in the one-dimensional case. They are not attempted to 

quantitatively represent any experimental data. The stress and strain 

at any point x on the stress-strain curve are denoted by a and E 
x x 

respectively. As demonstrated in Eqs. (3 .1) to (3. 7}, the rheological 

Models A and B always lead to stress-strain relation in a form which 

gives stress as a function of strain. The loading history and the slip 

behavior of elements are all expressed in terms of strain. The 

following derivations are referred to Fig. III. S(a}. 

(a) From origin to point a 

This is a compression initial loading path. The stress-strain 

relation can be expressed as: 

SEE !:C * * * a = EE - (EE-a )¢ (a ) dCT 
0 c c c 

(3. 9) 

so that at point a, the following stress-strain relation is obtained: 

Et: 

S a * * a = EE - (EE - a } <P (CT ) a a 0 a ccc 

(b) Path a - b - c (where E > 0) 

* dCJ 
c 

(3 .10)-

This is the initial compressive unloading path along which the 

strain is decreasing but still remains positive (compressive). 
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Equation (3. 5) can be used to express the stress-strain relation, i.e. 

SE(€ -E)/2 * * * * 
a = cr -E ( E - €) + a [ E ( € - €) - Zcr ] ¢ ( cr ) dcr ( 3 • 11) 

a a 0 a c cc c 

Notice that at point c, E = 0. Therefore 
c 

(] = (J c a SEEa/2 * * * * EE + {EE -2u ) ¢ (u ) du 
a 0 a c cc c 

(c) Path c - d where - Ed= Ea and E < 0 

(3. 12) 

This is a combination of an initial compressive unloading and 

an initial extensive loading paths along which the strain is negative 

(extension) and has absolute value smaller than E • a As demonstrated 

in the stress-strain derivation for Model A, the fraction of yielded 

element upon compressive straining to € = E would be 
Ee a 

J a ¢(0· *) du*. Therefore, the unyielded fraction u of the element 
0 c c 

after initial compressive loading to E = € and initial compressive 
a 

unloading to € = 0, would be 

SEE a * * 
u = 1 - ¢(cr ) dcr 

0 c c 
(3.13) 

As the strain becomes negative, some portion of u would 

yield under ext ens ion while the remaining {1 - u) would continue its 

compressive unloading process. The stress-strain relation for 

path c to d can thus be written as: 

* dcr c 

(3.14) 
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At point d, Ed= -Ea. Therefore the stress at point d can be ob­

tained from Eqs. (3.12) and (3.14) as: 

S EEa * * * + u EE - 2a ¢ (a ) da 
EE / 2 a c c c c 

a 

(d) Path d -- e __... f -- E where IE I :S E and E = E a g a 

(3. 15) 

This is a combined path of initial compressive reloading and 

initial extensive unloading along which the strain inc:r-eases and has 

an absolute value smaller than E • a 
The stress -strain relation can 

be written as: 

SEE * * * + a [ E(€-€ )+a"]¢ (a ) da 
E(€-Ed)/2 a c c c c 

(3.16) 

At point g, E = E , so the stress at point g can be obtained from g a 

Eq. (3.16) as: 

{S IEEdj * * * Joo * *} SEEa * * * a = u at ¢t (O't) dat +EE ¢t (at) <lat . + a ¢ (a ) da 
g 0 . I EEd I . 0 c c c c 

(3. 1 7) 
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Comparing Eq. (3 .1 7) with Eq. (3. 14), the following relation can be 

observed: 

{3.17a} 

In general, the hysteresis loop indicates that the stress-strain 

relation depends on the maximum strain magnitude previously 

reached and the number of loading reversals. From Eq. (3 .17a), it 

can be seen that the stress level in compression decreases by an 

jE<;dj * * * 
amount of uJ (EEa-at)cf>t(crt)dcrt after the first loading cycle. 

0 
From a compressive stress point of view, the granular material is 

softening after the initial cycle of loading. 

(e) Path g _,.. h - i - j where E. = - E = - E 
J g a 

This is a combined path of cyclic compressive unloading and 

cyclic extensive reloading. The stress-strain relation can be written 

as: 

Since E j = Ed = - Ea, we can compare Eq. (3. 8) and Eq. (3. 4) and 

conclude that 

{3. 19) 
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In other words, point j and point d coincide. 

(f) Path j - k - g 

From the condition shown in Eq. (3. 19) we conclude that the 

stress-strain relation for loading path j -+- k - g is the same as the 

loading path d--+- e-+- f - g. 

From the above derivation and conclusion, a unique hysteresis 

loop is thus established for cyclic loading. This unique hysteresis 

loop is represented by a close loop defghid as shown in Fig. III. S(a). 

III. 2 Statistical Approaches to Distribution Parameters 

The main purpose of a statistical approach is to determine the 

* * distributed characteristics for the parameters (E, CJ c and u~) 

involved in the slip-spring elements. As mentioned before, the dis-

tribution of these parameters depends on the geometrical configura-

tion, the contact force, and the physical properties of the granular 

material such as the porosity and nature of friction between contacts. 

A more general approach must start from the consideration of 

statistical geometry of packing and the statistical distribution of 

contact forces and friction characteristics under a general loading 

condition. 

* * In general, E, CJ c and <Jt can all be distributed parameters. 

However, consideration is given to the case that CJ: and a; are 

distributed while the elastic modulus E remains constant over a 

range of stress (if E is assumed to be distributed then the deriva­

:1,c * 
tion for this model would become very complicated). Let ¢ c (u c) 
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* * * * and </> t {<J t) denote the distribution functions of <Jc and C\ 

* * * * respectively. Then </>c(erc} d<Jc or </>t{ert} dert are the fractions of 

* * * the tot a. 1 slip elements having a slip stress between er and er + dCY , 
c c c 

* * * . and between C\ and ert +dert respectively. In this section, several 

types of distribution functions are considered. The feasibility of 

applying these functions to different materials are also briefly dis-

cussed. To illustrate the general situation only simple compression 

or extension loading paths are considered in this section. 

* * Of all the possible distribution functions for </> c (er c} and </> t (<J t}, 

the rectangular distribution is probably the simplest.. A rectangular 

* * distribution of </> c {er c} or </>t{ert) implies that the probability for the 

grain contacts to slip is uniform over a range of stress until a 

critical stress is reached. A critical stress is here defined as the 

minimum stress level which cause all the contacts to slip completely. 

* . * 
Similarly, a triangular distribution of </> c {er c} and <f\{ert) implies 

that the probability for grain contacts to slip increases linearly with 

the increase of stress to a certain level then decreases to zero. In 

an effort to simulate the behavior of a granular material under 

hydrostatic stress, Ko and Scott [ 42] used a triangular distribution 

of gap widths with respect to hydrostatic pressure in their model 

consisting of simple cubic arrays and face-centered cubic array. 

For ideal packings such as simple cubic and face-centered 

cubic arrays of a granular medium, rectangular or triangular function 

may be considered as acceptable for deformation behaviors due to the 

orderly formation of grain contacts. As mentioned over and over 

again, a granular medium in nature consists of irregular shaped and 
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sized grain packed randomly together. The distribution of the slip 

behavior of grain contacts can not always be expected to be as 

simple as rectangular or triangular. 

* triangular distribution of <f> (CY ) or 
c c 

However rectangular or 

* <f>t(CYt) should be able to provide 

at least qualitatively some understanding of the deformation behavior 

of real granular material. 

It should also be pointed out that certain orderness in a 

randomly packed real granular material may exist in nature for a 

. * * distributed function of </Jc(ac) and ¢t(at). Gaussian (normal) dis-

tribution is one of the simple forms of probability functions and most 

likely occur in nature. For example, the frequency distribution of 

a random noise is well known to be normally distributed. Therefore, 

* * Gaussian distribution of ¢c(CYc) and </Jt(CYt) should be considered as 

a most likely possibility. This may sound philosophical. However, 

certain physical grounds and advantages of representing slip behavior 

of granular materials by Gaussian distribution will be discussed 

later in this section. 

Some of the stress-strain relation derivations and properties 

of using rectangular, triangular and Gaussian distributions to repre­

sent cfoc(CY:) or </Jt(CY;) for Models A and B will be given as follows: 

III. 2-1 Rectangular distribution of slip behavior 

* * </> c (CY c) or <f>t(CYt) is a rectangular distribution. As shown in 

Fig. III. 6, let 

</>(CY*)= 1 
x 

if * O <a < x 

(3. 20} 

= 0 if * (J > x 
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such that 

1'">00 * * j
0 

¢(0- ) do- = 1 (3. 20a) 

where x is the critical stress level and has dimension of E. ¢{0-*> 
* * represents either ¢c{o-c) or cf\{o-t) and has a dimension of 1/E. 

The stress -strain relation can be obtained by substituting 

Eq. (3.20) into Eqs. (3.2), {3.5) and (3.7) or into Eqs. (3.10) to 

(3.18). For illustrative purposes only the stress-strain relation for 

a simple model {Model A) will be presented as follows. 

(i) Loading path {substituting Eq. (3. 20) into Eq. (3. 2)) 

o- = EE(1 - EE) 
2x 

o-=0.5x 

(ii} Unloading path {unloading at 

o-=-0.5x 

if 

if EE> x 

o- and E ) u u 

if E{E -E) > 2x 
u 

(iii) Reloading path (reloading at o-R and ER) 

[ -
E(€-ER)J 

o- = o-R + E ( E - € R) i 4x 

ry=0.5x 

(3 0 2 1) 

{3. 22) 

(3. 23) 

A dimensionless plot, in which o- is expressed in terms of x, 

is shown in Fig. III. 7. Observing the results, the following remarks 

can be made: 
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1. For all loading paths, O" is a 2nd order function of E. 

That is to say the O" - E plot is a parabolic curve. 

2. When EE = x, the resulting stress is half of the value 

obtained from a linear analysis. 

3. Due to the simplicity of this rectangular distribution, it 

is easy to express the stress-strain relation in incremental form by 

simply taking the derivative of O" with respect to E. 

III. 2-2 Triangular distribution of slip behavior 

</> c (u ;) or cf\ (u :} is a triangular distribution. As shown in 

Fig. III. 8, let 

such that 

* 4(x-u ) 
= 2 

x 

= 0 

if 

if 

* x 0:50" ::::; 2 

x * _<rr <x 2 - v -

elsewhere 

(3. 24) 

(3. 24a) 

where the definitions and dimensions of x and </> are the same as in 

previous derivations. 

The stress - strain relations for different loading paths for 

Model A can be illustrated as follows. 

(i) Loading path 

Substituting Eq. (3.24) into Eq. (3.2), the stress-strain 
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relation for loading path can be expressed as 

x 
for EE $ z 

= EE { 1- (EE)}+ _i_ (EE - O. Sx) for x
2 

$ EE $ x (3. 25) 
3x

2 
3x

2 

= O. Sx elsewhere 

(ii) Unloading path (unloading at CJ and E , E -E = 0 and IE I < E ) 
u u u u 

Substituting Eq. (3.24) into Eq. (3.5} the stress-strain relation 

for unloading path can be expressed as 

{ 
[ E(E -€}] 2 } 

CJ= a - E(E -€} 1 - u . for 0 $ E(E -€) $ x 
u u 6x2 u 

[ E(E" -€)] 2 [ E(E -€}] 3 
= CJ - 2E(E -€) + u u + x for x $ E(E -€) $ Zx 

u u x bx2 3 u 

= - 0. 5 x for E ( E - E} > 2x 
u 

(3. 26) 

(iii) Reloading path (reloading at CJ R and ER, €-ER > 0 and IE I $ Eu) 

Substituting Eq. (3. 24} into Eq. (3. 7), the stress-strain for 

reloading path can be expressed as 

= o. 5 x 

(3. 27} 
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The dimensionless plot of stress-strain curve for both loading 

and unloading is shown in Figo III. 9. From the above derivations 

and results, the following remarks can be made: 

1. For all loading paths, stress is a 3rd order function of 

straino That is to say the CY-E plot is a cubic curve 0 

2o Let x denote the critical stress level at which all the 

grain contacts slip completely. Then for any loading path the stress 

is within the range of x/2 and - x/2. 

3. Like the rectangular distribution, the triangular description 

of slip behavior yields simple forms of stress -strain relation. It 

is easy to express the stress- strain relation in incremental form by 

simply taking the derivatives of stress with respect to strain. 

III. 2-3 Further comments for both rectangular and triangular 

* distributions of <P (a ) 

From the stress -strain curves for rectangular and triangular 

distributions of cp(a *), it can be observed that the material repre-

sented by Models A and B behaves like a perfectly plastic medium as 

the strain reaches a magnitude of x/E, while the stress -strain 

relation differs a little bit from the linear case when the strain is 

small. This type of deformation behavior can be approximated by a 

perfectly elasto-plastic material. 

The purpose of a one-dimensional analysis established here 

is not anattempt ito fit or predict the one-dimensional deformation 

behavior of granular material. A true one-dimensional test in 

granular material is very difficult it not impossible to perform due 
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to difficulty of controlling the stresses and strains in the other two 

dimensions at zero level. Instead, the purpose of one-dimensional 

analysis is to establish a stress-strain model whose behavior is in 

close resemblance with the deformation behavior of a granular 

material in three-dimensional cases. It is hoped that this one-

dimensional model will eventually lead to a general three-dimensional 

description of a granular material's behavior. 

A typical experimental data of Ottawa sand under axial shear 

test (the stress path is indicated in Fig. IV. 2 in the next chapter) 

performed by Ko [ 16} in a cubic triaxial testing apparatus is chosen 

for comparison purposes. Ko's Tca-1 test results (page 112 of 

Refo [ 16] ) of stress-strain in major principal direction are plotted 

in dotted lines as shown in Figs. III.10 and III.11.. To simulate this 

test data, the E and x values for both rectangular and triaxlal 

* distribution of ¢(a ) are measured from the curve of test data. E 

is measured as the initial slope of the curve of test data, and x is 

taken to be t of the value of maximum stress level of the testing 

stress-strain curve. The simulated stress- strain curves for 

* rectangular distribution and triangular distribution of ¢{0- ) in 

Model A and B are shown in solid lines in Figs. III. 10 and III.11 

respectively. 

It can be seen that the loading and unloading curves for both 

distributions are quite similar to the testing curves. The loading 

curves of both distributions all indicate a sharper change of slope in 

comparison with the experimental stress-strain curve which has a 

smoother and more subtle change of slope. The unloading stress-
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strain curves for both distriw tions are almost straight compared to 

the curved test cuves. However, the magnitude of the stress-strain 

relation for both unloading curves are very similar to that of the 

Tca-1 test .. 

In observing the overall stress-strain loading and unloading 

curves for both distributions functions and the Tca-1 test curve, it 

can be noticed that the simulation by both distributions is not at all 

a bad fit in comparison with the stress- strain curves obtained by the 

presently existing theories and methods. This manifests the potential 

of using slip-spring elements to represent the granular material's 

behavior since, as shown here, they can apparently describe the 

fundamental aspects of the stress- strain behavior of a granular 

material even wheh d. simple distribution function for slip behavior 

is used. 

III .. 2-4 Gaussian (normal) distribution of slip behavior 

As shown in Fig. III.12, let 

(3. 28} 

where 

{3. 28a) 

m is the mean of the Gaussian distribution 

I ,/., (" *) vnotice that m and s have dimension of stress and 'I' v has 

dimension of (stress) -i} such that 

{3. 28b) 
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The stress -strain relations for different leading paths for 

Model A can be illustrated as follows. 

(i) Initial loading path 

Substituting Eq. (3. 28) into Eq. (3. 2} the stress-strain relation 

for loading path can be expressed as 

t SEE * ·[ 1(o-*-m 2] * CJ" = EE - (EE-CJ" ) exp - - . ) do-
.../2rr s 0 2 s 

(3. 29) 

(ii) Unloading path (unloading at CJ" and € , and IE I < E' } 
u u u 

Similarly, the stress-strain relation for unloading path can be 

obtained by substituting Eq. (3.28) into Eq. (3.5), and expressed as 

cr = cr - E(€ - E} 
u u 

2t SE{Eu-E}/2[E(Eu-E) - *] [_!.(o-*-m)2] * 
r::- 2 cr exp 2 s do-

v t.rr s 0 

(iii) Reloading path (reloading at cr R and ER, E 
u 

Substituting Eq. (3.28) into Eq. (3.7), the stress-strain 

relation for reloading path can be obtained as 

(3. 30) 

2t SE{€-ER)/2[E(E-ER) 1~ [ 1 cr*-m 2] * 
E(E-E ) - - CJ" exp - -( ) do-

R ..fi;rs O 2 2 s 
(3. 31) 

The resulting plots of the stress-strain relation for the 

Gaussian distribution function for several values of s and m, along 

with the test results of Ko's Tca-1 test [ 16] are shown in Fig. III.13. 

Here, E is again obtained from the magnitude of initial slope of 

stress- strain curve of Tca-1 test. From these results, the follow-
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ing conclusions can be ni.ade: 

* (1) In assuming a Gaussian distribution for ¢(a ) , there are 

several parameters, namely m and s, which need to be considered. 

It is noticed that m and s values can be different in compression 

and extension. If the modulus E is assmned to be constant then its 

value may be determined from the initial slope of a stress- strain 

plot. The values of m and s can be determined from fitting the 

experimental data or may be obtained from physical considerations. 

More parameters mean more freedom to fit a set of data. However, 

they also mean that more experimental data and more complicated 

procedure are required to closely determine the necessary quantities. 

The 'advantages may be outweighed by the disadvantages. 

(2) From the loading path of the stress- strain plot for the 

Gaussian distribution function, it can be seen that a higher mean, m, 

results in a steeper slope for small strain and a flatter slope when 

strain becomes larger. The influence of the standard deviation, s, 

is in the level of stress. Higher standard deviation values result in 

a higher stress level at the same amount of strain. 

(3) The combined influence of m and s or the stress-strain 

relation enable us to obtain good fits to almost any experimental data 

available at present. 

As mentioned before, the stress-strain behavior of a granular 

material depends on a number of factors. A more general approach 

must start from the statistical geometry of the packing, the cor-

responding contact force and friction, and an incremental express ion 

for stress-strain relation. The number of contacts and grain size 
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distribution are important factors to describe the stress-strain 

behavior of a granular material. In other words, the porosity or 

void ratio of the granular material is most important in governing 

the stress-strain relation. Smith, Foote, and Busang [ 29] have 

determined the experimental and theoretical relation between porosity 

and the number of contacts per grain for randomly packed homogene­

ous spheres. Their findings are shown in Fig. III.14. It can be seen 

that there exists a Gaussian-like distribution of the number of contacts 

for a particular value of porosity. In a similar manner, it can be 

speculated that the contact force and orientation are also distributed 

in Gaussian fashion. It seems, therefore, that the assumption of a 

Gaussian distribution function of slip stress for slip-spring elements 

is a reasonable one for describing the stress-strain behavior of a 

granular material. This couples with the ability of the Gaussian 

distribution function to describe closely almost any stress-strain 

curve as mentioned above, making the slip-spring elements model 

very attractive for a granular material. Furthermore, the rectangular 

distribution and triangular distribution can be approximated by a 

Gaussian distribution with a specific choice of the value of the mean 

and standard deviation. In this thesis, the Gaussian distribution of 

the slip stress for the slip-spring elements will be developed further. 
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III. 3 Constitutive Relations for Granular Media in Two- and Three­

Dimensional Cases 

III. 3-1 Preliminary Consideration 

To represent more realistically and accurately the deforma­

tion behavior of a granular material, a one-dimens iorial model is 

insufficient because it does not lead to a general three-dimensional 

formulation. Although the slip and spring elements in a one-dimen­

sional model do represent in some degree the elastic-plastic behavior 

of a material, the one-dimensional model fails to satisfy the following 

important characteristics for the general behavior of a granular 

material : 

(a) The dilatancy due to a shear stress increment, 

(b) The work hardening behavior and inelastic strains during 

shear deformation, 

(c) The quantitative influence of loading path and history on 

the stress - strain relation. 

As can be expected the geometric structure of a granular 

material is usually very complicated due to the irregular distribution 

of different shapes and sizes of granular particles. Even for a 

uniformly packed medium, the isotropy and homogeneity can be con­

sidered only from a macroscopic point of view. Moreover anisotropy 

and non-homogeneity can often result from loading an initially iso­

tropic and homogeneous material [ 35] • From the contact stress 

theory, the relation between the tangential component of the contact 

force {between particles) and displacement is inelastic [ 31] , so 

that the stress-strain relationship should depend upon the entire 
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loading history of the medium. Accordingly, the correct stress-

strain relation should be given as an incremental one~ the purpose 

of a three-dimensional model is to represent and predict the stress-

strain response of a granular material that has been subjected to an 

arbitrary loading and unloading process. The model should not be 

too complicated to be practical in use. In the long run, it is hoped 

that the derived stress and strain relation could be applied to some 

boundary value problems in soil mechanics by finite element 

· analysis [ 60] • 

To extend the one-dimensional model to two- or three-

dimensional stress-strain formulations requires the assessment of 

the quantittative relation of stresses and strains in one direction to 

the stresses and strains in other directions . In a granular medium, 

the contacts between particles and the forces between contacts 

dominate its deformation behaviors. They also provide the links 

for the interdependence of stresses and strains in diff erent directions 

in the multi-dimensional case. For simplicity of derivation and 

analysis, only principal stresses and strains are considered. For 

illustrative purposes, we start with a two-dimensional homogeneous 

and isotropic model and gradually develop a general anisotropic 

three-dimensional model and formulation. In the two-dimensional 

case, the one-dimensional model shown in Fig. III. 2 can be used in 

each direction to represent part of the elastic strain and all of the 

plastic strain in each principal direction, : if we inter-connect these 

two one-dimensional models by stiffness springs with a modulus E . s 

as shown in Fig. III. 15. These springs provide the links between 
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stresses and strains in both directions. As mentioned in Chapter II, a 

similar two-dimensional rheological model (Fig. II. Sb) was used by 

Yandell [ 110] to simulate a long section of a pavement under plane 

stress conditions. 

At a first glance, it seems the two-dimensional model shown 

in Fig. III.15 has assumed that the interdependence of stresses and 

strains in different directions is purely elastic. However, this is not 

so, because the springs affect the stresses and strains in each 

direction which, in turn, influence the deformation behavior of the 

spring-slip elements. As mentioned before, a correct stress -strain 

relation should be given in incremental form. Due to the complexity 

of the stress-strain relation for the spring and slip elements, while 

in one direction it may follow a given loading path, the other direction 

may be subjected to another different loading path. This increases 

the need for an incremental constitutive formulation. Before beginning 

the derivation of the two-dimensional formulation, it is advisable to 

obtain the incremental form for the spring-slip elements. 

III. 3-2 Incremental forms for spring- slip elements 

The stress and strain increments are denoted by .6cr and .6E 

respectively. The loading paths will all be referred to Fig. III.16. 

Due to the length of the derivation, only the final results will be 

shown here. The following derivations are applicable to any types of 

* * * * c/>c(CJc) and c/>t(crt} distributions. ¢c(CJc) and c/>t(crt) will be abbrevi-

ated as ¢ c and ¢t respectively. 
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(a) Initial loading path 0 - a 

(b) Unloading path a - b - c (unloading at E = E ; 6E < O) a 

r.E(E - E) /2 _,~ 
6cr = E6E ( 1 - \ a ¢ dcr' ) J 0 c c 

S
E(E -E-6E)/2 '!: * 

_ a [E(E -E-6 E)- 2cr"] ¢ dcr o a c c c 

(3. 3 2) 

(3.33) 

(c) Compression unloading and extension loading path, c - d (6E < 0 

and E < 0) 

SE(E -E)/2 * 
6cr = E6 E ( 1 - a <P dcr ) 

0 c c 

SE{€ -E-6€)/2 * ,.,. 
_ a [E(E -E-6E)- 2cr ] ill dcr 

E(E -E} /z a c · c c 
a 

S 
IEE I * s IE(E+6E) I 

- u{EE <Pt dcrt + [E(Et6E) 
. 0 IEE! 

where 

S
EE .... a ..... 

u = 1 - <P dcr 
0 c c 

(d) Extension loading path d - D (jEj > E , 6E < O, E < O) a 

(3. 34) 

(3. 34a) 

(3. 35) 
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(e) Extension unloading and compression reloading path d - e -- f - g 

{ 
raE{E-Ed)/2 .. 

b.cr = Eb.E ( 1 - \ cf> dcr -r.) 
J 0 c c 

(3. 3 6) 

(£} Extension unloading path D - E -- Et {E < 0, 6E > 0, IE!> IE I} 
a 

(3. 3 7) 

(g} Extension unloading and compression reloading path E
1 

- F-+- G 

(6€ > 0' IE I> IE d I 

{ SE{E-Ed)/2 *) 
6.cr = E6 E ( 1 - <P dcr 

0 c c 

(3. 3 8) 



-76-

(h} Cyclic reloading path where g - g' (.6E > 0, .6E > E = E ) 
a g 

where 

(i) Compression loading path G .._ G' (.6E > 0, E > E } 
g 

or 

(3. 39) 

(3. 39a) 

(3. 40) 
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III. 3-3 Two-dimensional model 

For a two-dimensional model shown in Fig. III.15, the incre-

mental stress 6CY corresponding to incremental strain 6€ can be 

divided into two parts. The first part is contributed by the spring-

slip element where the stress increment is a function of both stress 

history and the strain increment as shown in the previous section. 

The second part is contributed by the stiffness springs connecting 

the two one-dimensional spring-slip elements, and is recoverable. 

The following derivations are all devoted to this second part. 

Referring to Fig. III. 15, let the principal stresses in the 1- and 2-

direction due to stiffness springs with modulus E be denoted by 
s 

(CY e) 1 and {CY e) 2 respectively, then it can be shown that the stress 

in the 1-direction due to the stiffness spring elements can be ex-

pressed as: 

After principal strain increments 6E 1 and 6€ 
2 

in the 1- and 2-

directions are applied, the following relation holds: 

(3.41) 

(3. 42} 

where (6cre)i denotes the part of the incremental stress in the 1-

direction due to the spring element and can be obtained by applying 

Taylor's expansion theorem and neglecting the higher order terms, 

i.e. , 
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Note that Eq. (3.43) is obtained by assuming the stiffness spring 

modulus, E , is constant. However, as will be seen later, the 
s 

(3.43) 

stiffness spring modulus for granular material unfortunately is not 

a constant, and is instead a function of the state stress. Equation 

(3. 43} is valid only if the strain and stress increments are small. 

Due to symmetry, the stress increment in any direction due 

to the interconnected springs can be expressed as 

l ( 1 +E. ) ( 1 +E . } ~ 
+ E 1 J .6E. 

S [ ( i +E.} 2 +( i +E.} 2] 3 / 2 J 
1 J 

(3. 44) 

where 

i,j =1,2; i::f: j 

Let (.6cr ). be the portion of stress increment due to the spring-slip 
p 1 

elements in the ith principal direction. Then {.6cr ) . can be obtained 
p 1 

from Eqs. (3.33) to (3.40}. (.6cr }. depends upon the magnitudes of 
p 1 

6€., and the loading history. Generally, (.6cr ). can be expressed as 
1 p 1 

(Lw ). = p . .6c p 1 l l 
(3. 45) 

where P: equals the right-hand sides of Eqs. (3. 33) to (3. 40) divided 
.L 
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by 6.Ei. As can be seen from Eqs. (3.33) to (3.40) and Eq. (3.45), 

p. is strongly influenced by the loading history, and can be con-
l 

sidered as an indicator of the influence of loading history to the 

stress - strain relationship. 

The total stress increments .6.ui. in the ith principal 

direction can be written as 

6.u. = (6.u ) . + (6.u )
1 l e l p (3. 46) 

This two-dimensional model can also approximately represent 

the linear elastic constitutive relation if the slip element is ignored 

or the yield stress is set to be infinite. From the elasticity theory, 

the following incremental relation is observed: 

{3. 4 7) 

where 1'., µ are Lam~' s constants in classic al elasticity theory [ 1] , 

and i , j = 1 , 2; i :f. j • 

If the slip component in the spring-slip element is absent 

(i.e., the slip mechanism is remove'1 and the spring slip element 

becomes only a spring with modulus E) or the yield stress is set so 

high that no slip occurs in the range of stress considered, then from 

Eqs. (3. 33) to (3. 40) and Eq. (3. 4.5), it can be observed that p. = E 
1 

in each of the principal directions. If the strain field is small, the 

values of (1 +E .) and (1 +E .) can be approximated to be 1. If the 
l J 

above assumptions hold, the following relation can be obtained from 

Eqs. (3.44), (3.45) and (3.46): 
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1 
!:::.a.= -- E (6c.+6c.) + E6Ei 

1 212 s 1 J 
(3. 48) 

where 

i=j; i,j=i,2 

Comparing Eqs. (3. 4 7) and (3. 48) the following relationship is reached: 

A. = 1 E --
2./2 

s 

µ. = 1._E 
2 

Let v be Poisson 1 s ratio for the material, then 

E 
s v=------

2./2 E t 2E s 

(3.49a} 

(3. 49b} 

(3. 50) 

By varying the values of E and E , the v values can be set anywhere s 

between 0 and 0. 5. The corresponding Young's modulus, 

would be: 

(
2./2 E t 3E ) 

E - E s 
y - 212 E + 2E 

s 

E, 
y 

(3. 51} 

Note that if E or E is set to be infinite then the material is incom­
s 

pressible. The above illustration demonstrates the justification of 

using this two-dimensional model to represent the general behavior of 

a class of material behaviors. For a granular material, the slip 

stress is set to be low enough to account for the plastic strain even at 

small stress. For nearly elastic material, the yield stress is set to 

be high enough so that the plastic strain can be negligible. 
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As can be seen, all the stress-strain relationships are given 

in incremental form. Notice that the two-dimensional model does 

not have any indication of whether it represents a plane strain or 

plane stress cases. However, this is not important for the time 

being because the purpose of this two-dimensional model is to 

demonstrate the relevance of using the slip-spring and spring element. 

The model serves as a guide to the formulation of a more realistic 

and acceptable three-dimensional model from which a plane stress or 

plane strain formulation can be derived. 

III. 3-4 Three-dimensional model and formulation 

Having demonstrated the use of the t\vo-dimensional model, 

the derivation of the behavior of a general three-dimensional model 

for a granular material follows naturally as the next step. The two-

dimensional model in Fig. III.15 leads to a three-dimensional model 

as shown in Fig. III.17. Again, in this three-dimensional model, the 

contribution to the stress -strain relation is divided into two parts. 

The first part is due to the slip-spring element and has been demon-

strated in section III. 3- 2. The second part is partly elastic and is 

contributed by the interconnecting spring elements. Let (CY ). 
e i 

{i = 1,2,3} denote the principal stresses due to the elastic springs 

E • It can be shown that 
s 

(CJ ) • = 2E ( 1 + c} { ~ - ~ - 7 1/ 2 
el s 1 -y2 [ {1+c} +(i+c.}~] 

l J 

(3. 52) 
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where 

i:f':j:f':k; i,j,k=1,2,3 

Then the stress increment {!:io- ). due to the stiffness springs E 
e i s 

after strain increments 6E. (i = i,2,3) can be obtained as 
l 

{3. 53) 

where 

i * j =F k; i' j , k = 1 ' 2' 3 

Notice that Eq. (3. 53} is obtained from Taylor's expansion 

theorem by neglecting the higher-order terms and by assuming that 

E is constant. In the case of a granular mate rial, E is dependent 
s s 

on the state of stress1 since the material becomes stiffer when the 

hydrostatic stress is increased or when the deviatoric stress is 

reduced [ 16] • A cohesionless granular material can not support any 

deviatoric stress in the absence of a state of hydrostatic compression. 

If E is taken to be a variable, the derivation of the proposed stress­
s 

strain relation becomes very complicated. Thus, further simplifica-

tion is needed. Since the proposed constitutive relation is expressed 

in incremental forms, it can be assumed that the E value is a 
s 

constant during each stress or strain increment if the stress or 
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strain increment is small. Unless otherwise mentioned, the E 
s 

v.alue for a particular increment will therefore be taken herein to be 

the average of the E values for the state of stress before and after 
s 

the increment in question. As will be discussed in the next chapter, 

the E value will be expressed in terms of the state of stress. 
s 

where 

Again, the tot.al stress increment can be expressed as 

.6cr
1 

= (.6cr ) . + {.6cr ) . 
e i p l 

{.6cr ) can be obtained from Eqs. (3. 33) to (3. 40). 
p 

(3. 46) 

In matrix form, the proposed constitutive relation can be 

expressed as 

{ .6cr} = A {.6E} (3. 54a) 

or 

.6cr 1 a11 a12 a23 .6E 1 

L\cr2 = a21 a22 a23 L\E 2 (3. 54b) 

.6cr3 a31 a32 a33 .6€ 3 

where 
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-84-

(.6cr }. 
p l 

p. = LS l E . 
l 

. (3. 55} 

Up to now, the constitutive relations for all models in this 

study are of the form where stress increment is expressed in terms 

of strain increment. Sometimes it is more useful and desirable to 

express strain increment in terms of stress increment. This con-

version process will involve matrix inversion and can be derived as 

follows: 

or .6E. can be expressed explicitly as: 
l 

.6E. = d 1A {(a .. a.k - a.ka. .).6cr. t (a.ka. .- akka .. ).6a. 
l et JJ K J KJ l l KJ lJ J 

+ (a .. a. . - a .. a.k).6crk} 
lJ KJ JJ l 

where 

i =f. j =f. k; i ' j ' k = 1 ' 2 ' 3 

and 

(3.56a) 

(3. 54b) 
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(3.57} 

Solving Eqs. (3. 56} and (3. 57} for the strain increments will 

require using a trial and error method since the coefficients are 

also functions of the strain increments. If the following iteration 

scheme is used the process is found to converge rapidly. 

1. If the loading or unloading or reloading steps are the s a..-rne 

as in the previous load process, the previous strain increments are 

used as the first trial values. If the loading path is different from 

that in the previous loading increment {i.e. , changing from loading 

to unloading, or from unloading to reloading, or reloading to un­

loading or loading), the fir st trial strain increments will be taken to 

be zero. 

2. Calculate the a 1/s from Eqs. (3.33) to (3.40) and 

Eq. (3. 55), and compute the strain increments according to 

Eqs. (3. 56) and (3. 57}. 

3. Use the calculated increments as the new trial values and 

repeat step 2. 

4. Repeat steps 2 and 3 until a convergent solution is 

reached. 

In most cases, the solution converges after two or three trials. 
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III. 3-5 Anisotropic model and formulation 

The deformation behavior of a granular material might some­

times exhibit certain degrees of anisotropy [ 15]. There are evidences 

that anisotropy exists even in a carefully prepared laboratory sample. 

One example is Ko's experimental results on Ottawa sand tested in 

a cubical triaxial testing apparatus [ 16] • Presumably if the sample 

was initially homogeneous and isotropic, the principal deformations 

in the three perpendicular directions should be equal under isotropic 

loading such as hydrostatic compression. However, Ko observed 

that the vertical deformation was sometirn.es greater. than the two 

horizontal deformations which were always equal or nearly equal. 

In the previous derivation, the proposed model was considered 

to represent an initially homogeneous and isotropic granular material 

containing randomly distributed grains and packings. Anisotropy 

would be induced after straining anisotropically due to loading other 

than isotropic stress path such as hydrostatic compression or exten­

sion. To account for the possible existence of initial anisotropy in a 

granular medium, certain revision of the proposed model is needed. 

Physically speaking anisotropy arises from the ~eometrical packing 

in such a way that particle formation in one direction is more 

susceptible to deformation than the other directions. 

Of course, the initial anisotropy can be taken into considera­

tion by changing the modulus of every stiffness spring and spring- slip 

element. However, this would make the derivation of the stress­

strain relation extremely complicated since there are too many 

moduli of stiffness spring and spring- slip elements involved in the 
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proposed model. It is more desirable to employ a simpler model 

imposing a fictitious factor of anisotropy denoted by n. 
l 

in each 

of the three principal directions to account for the necessary variation 

of stiffness in all the stiffness spring and spring-slip elements due 

to initial anisotropy. It is postulated that the stresses are computed 

from a fictitious straill with a magnitude of n.E. according to the 
1 1 

configuration of the anisotropic model shown in Fig. IIL 18. However 1 

the real quantity of strain corresponding to the ith principal direction 

. is still designated as El. It has to point out that the proposed 

anisotropic model is only a postulation for the behavior of an aniso-

tropic granular material. Its validity has to be determined by certain 

experimental results. 

As before, the stress strain relation can be derived into two 

parts. The first part is the contribution due to the stillness spring 

elements and can be derived in the same fashion as the isotropic 

model in previous sections. As before, let the stress due to the 

stiffness springs E in the ith principal direction be denoted by 
s 

(u ). , then it can be proved from the configuration of mechanical 
e l 

model shown in Fig. III .. 18 that 

n.(1 +c.) n.{1 +E.) 
(CY ) _ 1 1 + 1 l 

e i - {n~+nh1/2 {n~+nk2)1/2 
l J l 

n.(1 +c.) 
l l 

[ 2 ( + ) 2 . 2 ( , ) 2] 1 / 2 n. 1 E. Tn. 1 >E. 
l 1 J J 

n. (1 +E.) 
l 1 

i * j * k; i,j,k= 1,2,3 

(3. 58) 
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(u ). increases 
e 1 

with an amount of (.6u ) . • After some mathematical manipulation, e 1 

the following relation is obtained: 

l 
n. n. 

(.60· ),) == .6E. 1 + ~-1 ~_,...,.. 
e 1 l ( 2+ 2)1/2 ( 2-l-r1k2)1/2 n. n. ni 

1 J 

2 2 
nin . (1 +E.} 

J J 

[ 2 2 2 2 3/2 ni ( 1 +E. ) +n . ( 1 +E . ) ] 
1 J J 

2 

l n.n . (i+E.)(i+Ek) i + 1 J 1 .6 
[n~(1+E.)2+n~(i+E.)2] 3/2 Ej 

1 1 J J 

(3 0 59) 

The second part is the contribution due to the spring- slip 

elements. The stress CY and stress increments (.6u ). in the ith 
p pl 

principal direction due to thes.e elements can be easily obtained by 

substituting E". and .6c inEqs. (3.33) to (3.40) with n.Ei and 
1 1 1 

ni.6e:i respectively. 

The procedures of carrying out the stress- strain computation 

are similar to the isotropic model shown in the previous section and 

will not be elaborated on here. 



-89-
F 

t 

Fig. III. 1. Mechanical Model Representing a 
Contact Between Grains · 

E2 

* • • • • • • • • • 
at 

2 

* at 
2 

Fig. III. 2. One-dimensional Mechanical Model 
Representing the Material 
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Fig. III. 3. Simpler One- dim ens ion al Model (Model A} 
after Iwan ( 19] 
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Fig. III. 4. Stress-strain Loading Paths for Model A 
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Fig. III. 5. Stress Paths and Hysteresis Loop for 
One- dimensional Model (Model B} 
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Calculated curves 

----- Tca-1 of Ko's test [ 16] 
E = 1000 Psi 
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Distributed ¢(a*) and Comparison with 
u 1 -E
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Curve of Ko's Tca-1 Test 
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Fig. III.12. The Type of Gaussian Distribution 
Considered in This Thesis 

(j 

... .... 



40 

35 

-..... 
tlJ 

lli 
30 -

r:n 
tlJ 
(]) 

~ 
.µ 
U) 

25 

20 

15 

10 

5 

0 0.2 

Fig. III.13. 

0.4 0.6 

-97-

s: standardard deviation of (a*) 
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Fig. III. 15. Two-dimensional Mechanical Model 
Representing Granular Material 
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Fig. III.16. Stress-strain Paths for the Slip-spring 
Elements in the Proposed Model 
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/ 
/ 

Note: 1. Due to the symmetry of this model, only the elements in 
OA, OB, OF and AB, BG, GA are shown with corresponding 
parameters. 

2. Dotted lines represent the shape of 1 /8 of the model at a 
state of strain (E' 1' E 2 , E 

3
). 

Fig. III.1 7. Three-dimensional Model Representing 
Granular Material 1 s Behavior 
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Note: 1. Due to the symmetry of this model, only the elements in 
OA, OB, OF and AB, BG, GA are shown with 
corresponding parameters. 

2. Dotted lines represent the shape of 1 /8 of the model at 
a state of strain (E 1 ,E

2
,E

3
). 

Fig. III.1 8. Three-dimensional Model for Anisotropic Material 
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CHAPTER IV 

SPECIAL CASES, DETERMINATION OF MATERIAL PARAMETER, 

REPRESENTATION OF EXPERIMENTAL DATA 

IV.1 Special Cases 

The proposed model is derived in such a way that the stress-
' 

strain relation for any arbitrary stress-path can be obtained if the 

material properties are known. The material properties involved 

in the proposed constitutive relations are E , E, m , mt' s , and 
s c c 

st which, in turn, have to be determined from experimental data. 

In the following section, several special stress paths and the simula-

tion of experimental data will be presented. They are taken to serve 

the following purposes: 

(i) To provide a basis, in conjunction with the experimental 

results, for measuring the material properties involved in the pro-

posed contitutive relations for a granular material. 

(ii) To assess the suitability and accuracy of the proposed 

constitutive relations in representing the essential features of the 

behavior of the granular material. 

(iii) To predict qualitatively and quantitatively the stress-

strain relations of arbitrary stress-paths by using the material 

properties obtained from the experimental data in special cases. 

(iv) To provide some insight on the dependency of some 

material parameters involved in the prop<;>sed constitutive relations 

with the state of stress and loading history and the mechanical 

properties of the material, such as the void ratio or density of the 
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soils. 

IV .1-1 Loading paths with proportional stress increments 

These loading paths are here defined to be stress paths which 

produce a principal effective stress state (cr 
1

, cr 
2

, cr) whose three 

principal stress increments are proportional to each other, i.e. , 

.6cr1 : .6cr2 : .6cr3 = '{: o:: j3 where y, o: and j3 are constants. In 

addition, the principal axes are not permitted to rotate. It is worth 

pointing out that this type of loading path is different from the con­

ventional concept of proportional loading or straining [ 9] , whose 

three principal effective stresses or principal strains are propor­

tional to each other. In a sense, loading paths with proportional 

stress increments cover a much broader area than the proportional 

loading. Proportional loading is only one type of the loading paths 

with proportional stress increments. However, the revers al is not 

true. 

Loading paths with proportional stress increments are stress 

controlled processes. Most of the existing three-dimensional soil 

test devices are of these types. Completely strain-controlled three­

dimensional tests have been reported [ 124) • But it is believed that 

the mechanical difficulties associated with these tests have prevented 

their successful use [ 17]. Since the parameters involved in the 

proposed constitutive relations have to be determined by experimental 

testing data, the understanding of loading paths with proportional 

stress increments is important. 

The proposed constitutive relations as demonstrated in the 
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previous chapter are derived from a rheological model under strain-

control. However, through the matrix inversion, the stress-con-

trolled version can be obtained without difficulty. One of the special 

characters of a granular materiaJ, like most other materials, is its 

softness under shear stress. One disadvantage of using a stress-

controlled path is that a large strain increment is obtained under a 

small stress increment when the deformation is large. This might 

lead to some false impression about the accuracy of the proposed 

constitutive relations in simulating or predicting the experimental 

data. This point will be illustrated in detail in later· sections of this 

work. 

(i) Hydrostatic compression 

In this stress path, the three principal stresses are kept 

equal to each other and the three principal stress increments are 

the same (y =a= ~ = 1}. The stress path can be readily represented 

in principal stress spac e as shown in Fig. IV .1. The hydrostatic 

stress, denoted by cr t' is equal to 1 / f3 times the distance of the oc 

stress point along the hydrostatic axis. For an isotropic material 

under hydrostatic compression, the three principal strains, denoted 

by €, are also equal to each other. Let ~CY and ~E denote the 

principal stress and strain increments, respectively, then it can be 

seen from Eqs. (3. 44) and (3 . 46) that for the model used herein, 

~u =(.±__ E + P) ~E ./2 s 
(4. 1} 

where p = p . , i = 1, 2, 3 and p. can be obtained from Eqs. (3. 33} 
l l 
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to (3. 40) in the previous chapter. 

For a granular material, the stiffening effect in the volume 

change due to the increase of hydrostatic compression stress is well 

known [ 1,42] • Therefore the coefficient ( _±_ E + p) in the right­.[2 s 

hand side of Eq. (4.1) is evidently a function of hydrostatic stress 

and can not be regarded as constant. The purpose of this hydro-

static compression test is to find out what proportion of the volu-

metric strain is elastic and how the coefficients E and p vary 
s 

with hydrostatic stress. Since p represents the slip behavior of 

the granular material, if the strain is small, the yield portion would 

be negligible in comparisonwith the elastic strain. This leads to 

the conclusion that the stress-strain behavior of a granular material 

under hydrostatic compression is essentially elastic but nonlinear 

if the volumetric strain is small. 

(ii) Proportional stress increments with constant octahedral 

stress 

(a} Axial shear stress path 

The stress path here is either a triaxial extension (TE) or a tri-

axial compression (T.0} .. For an axial shear stress path the octahedral 

normal stress is always kept constant throughout the stress path. 

The axial shear stress path can be illustrated in the principal stress 

space as shown in Fig. IV.1 or on an octahedral stress space as 

shown in Fig. IV.2. Fo!" a triaxial compression (y = 1, a= j3 = - ~} 

or a triaxial extension (y = a= 1, j3 = -2} stress path, the loading 

starts at initially hydrostatic stress state at H (Fig. IV.1} and then 
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the stresses vary according to proportional stress increments so 

that the stress point remains on the octahedral plane through H. 

As the stress point moves along the projection of principal stress 

axis on octahedral plane and away from point H, the octahedral 

shear stress increases from zero. One purpose of performing tests 

along an axial shear stress path is to determine the shear deforrna-

tion under change of shear stress, with constant hydrostatic pressure, 

with the shear being the only influence of stress history. The other 

purpose is to determine the influence of the stress direction (corn-

pression and extension) on the shear deformation. By setting 

6a 
1 

= -y6a, 6a 2 = a6<J and 6<J 
3 

= {36u the following incremental 

stress -strain relation can be obtained from Eq. (3. 54). 

6a 
- det A 

(4. 2) 

where the coefficients a .. {i,j = 1, 2, 3) are shown in Eq. (3. 55). 
lJ 

The influence of stress history due to the constant hydrostatic 

pressure can be investigated without difficulty. If the stress history 

influence is neglected and it is assumed that the strains have little 

effect on the determination of aij, then Eq. (4. 2} becomes: 



!.. .6cr 1 
• det A 

3E 2 

T+.fi Es(P2 +p3)+p2P3 

i.e. 

E2 
s 1 

- -2 - r::E P3 
v2 s 

E2 
s 1 

- -2 - ~ E P2 
v2 s 
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E2 

2~ (3-y-a-f3}+[2.Es{-y- ~ f;)p2+/i.E3(-y- ~)P3.+vP2P3 
,6€ 1 

.6cr 
,6€2 = det A 

,6€3 

E2 
-!!..(3a-f3--y)+j2.E (a-_!_f3)p +[i.E (a- 'Y)p +ap p 
2 s 2 1 s . 2 3 1 3 

EZ 
__,;. (3f3:.. a--y) +fi, Es (f3- ~ a)p 1 +fi, Es (f3- 2>P3+f3p1 P3 

(4. 3) 

{4. 4) 

In the TC stress path, a= - 1/2 and f3 = - 1/2. If the p. 's 
l 

are assmned to have the same order of magnitude then Eq. (4. 4) 

indicates: 

(4. 5) 
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Similarly, for a TE stress path (y = 1, a = 1, j3 = ..,z) Eq. (4. 4) 

yields again: 

~E 1 - ~CY 1 

~=~=~= (4. 6) 

Equations (4. 5) and (4. 6) imply that along the axial shear 

path, proportional stress_ and strain increments are roughly 

interchangeable if there is no stress history influence. As mentioned 

before, the axial shear stress path initially starts at a hydrostatic 

compression stress CY t and a corresponding strain E t and 
oc oc 

then follows a stress path according to the specific proportional 

stress increment. If the differences between the present state and 

initial hydrostatic state of stress and strains a.re tcken to be the 

coordinates of the stress-strain curves, Eqs. (4. 5) and (4. 6) can 

be qualitatively illustrated as shown in Fig. IV. 3. Therefore, if the 

influence of stress history and stress {or strain) path is excluded or 

neglected, the stress -strain relationship should exhibit the following 

characteristics: 

(1) Loading with proportional stress increment induces pro-

portional strain increment._ The slope in the strain/strain plot starts 

at the value achieved in initial hydrostatic compression. The slope 

in the smaller stress (absolute value) direction becomes flatter than 

in the larger stress direction as indicated in Fig. IV. 3. 

(2) For an isotropic material, the CY 
1 

- E 
1 

curve in a TC 

path is identical with the CY
3 

- E
3 

curve in the TE path if they are 

plotted in the coordinate system shown in Fig. IV. 3. Similarly 
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a
3 

- €
3 

curve in the TC path is identical with the a
1 

- E
1 

curve in the 

TE path. 

However, the above characteristics are not observed in tests 

of the stress-strain behavior of a granular material. According to 

experimental test results on Ottawa sand by Ko [ 16] and Masson [ 1 7] , 

the behavior of a granular material along the axial shear stress path 

can be qualitatively illustrated in Fig. IV. 4. Due to the influence of 

hydrostatic stress history and stress path, the stress-strain be­

haviors under the TC and TE stress path have the following 

characteristics: 

(1) Along the TC stress path, the a
3 

- €
3 

curve exhibits 

higher slope when the strain ls small but it eventually indicates flatter 

slope with a sharper change of slope at some stress-strain state 

in compariron. with the proportional strain increment a 
3 

- E 
3 

curve 

{broken lines in Fig. IV. 4(a)) obtained by one and one correspondence 

fromthe a
1

-E
1 

curve. 

(2) Along the TE stress path, the CJ 
1 

- E 
1 

curve exhibits a 

smaller slope when the strain is small but eventually reaches a higher 

slope with a smoother change of slope at some stress-strain state 

in comparis0n with the proportional straining CJ! - E 1 curve {broken 

lines in Fig. IV. 4(b) ) obtained by one and one correspondence from 

the a 
3 

- E 
3 

curve • 

(3) In comparing the CJ 
1 

- € 
1 

curve along the TC stress path 

and the a
3 

- €
3 

curve along the TE stress path, the difference is 

evident; the latter curve has a higher initial slope but eventually 

reaches a lower ultimate stress level with sharper change of slope. 
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All of these indicate that the stress history, the stress-strain 

path, and the difference of slip characteristics in compress ion and 

in extension play important roles in the behavior of a granular 

material. All of the above-mentioned characteristics lead to one 

conclusion- -that the granular material behaves differently in com-

press ion and in extension. However, previous investigation and 

theory [9,17] have never taken these facts into consideration. The 

proposed rheological model offers a satisfactory description of all 

these observed behaviors. They can be interpreted as follows: 

The axial shear stress path always starts with an initial 

hydrostatic compression state with stress and strain corresponding 

to a t and € t" This means the material is initially loaded to oc oc 

a compression strain € t• If proportional stress increments are oc 

applied according to the axial shear stress path, 6a is positive 

{compression) and 6a 
3 

is negative (extension). Then the a 
1 

- E 
1 

curve continues its compressive loading process which yields a p
1 

value progressively smaller than the p
1 

value of previous stress 

increment. At the instant of applying the first stress increment, the 

a
3 

- €
3 

curve starts its compressive unloading process, the p
3 

value is equal to E as can be seen from Eqs. (3.34) and (3.45). 

As the stress increments are being continuously applied, the p
3 

value continuously decreases along a compressive unloading path but 

with a smaller rate than p
1 

in the a
1 

- Ei curve due to compressive 

loading. This is clearly indicated by Eqs. (3.33), (3.34} and (3.45) 

in the previous chapter. Therefore, at early stages o"f; loading along 

the axial shear stress path, p
3 

is larger than p 1 • The slope of a 
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stress-strain curve in this study is contributed by stiffness springs 

Es and pi (i = 1, 2, 3). The influence of Es on both u
1 

- €
1 

and 

cr
3 

- E 3 curves is approximately the same order of magnitude for 

small strain as can be seen from Eq. (3. 53). The presence of p
3 

being larger than p
1 

makes the a
3 

- E
3 

curve always exhibit a 

higher slope value than that of the er 
1 

- E 
1 

curve in the early part of 

the axial shear stress loading path. As the axial shear stress loading 

continues, E
1 

decreases. At a certain stage and beyond, E reaches 

a zero value and further becomes .negative (extension), then the u
3

- E
1 

curve undergoes the process of extension ,unloading as shown inFig. fil.16. 

Thus p
3 

decreases rapidly because the 'slip characteristics of a 

granular material is more susceptible to extension than compression. 

At a certain level of straining along an axial shear stress path, p
3 

will be less than p
1

• Thus in the later part of the axial shear stress 

path, the slope of the a 3 - € 
1 

curve is flatter than the slope of the 

(b) Radial shear stress path 

As shown in Fig. IV. 2, the radial shear stress path lies 

somewhere in between the TE and TC stress paths on an octahedral 

stress plane. The stress path extends radially from the hydrostatic 

axis 0 and makes an angle a0 with the horizontal axis. It will be 

called an RS-9° stress path following Ko 1 s definition [ 16]. The 

axial stress path is essentially a particular kind of radial shear 

stress path, thus the TE stress path can be defined as RS-30° and 

0 the TC stress path as RS-90 • The other radial shear stress paths 
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lie between the TE and TC stress paths as shown in Fig. IV . 2. 

The stress path RS-60° is particularly interesting, since cr 
2 

is kept constant in this stress path. Therefore, the RS- 60° stress 

path represents a special kind of plane stress condition. For the 

RS-60° stress path, experimental results on Ottawa sand performed 

by Ko [ 16] and Masson [ 1 7] showed that the strain in the cr 
2 

direction is small in comparison with the strains in the other two 

directions. It can therefore be speculated that the plane strain 

condition lies in the neighborhood of the RS-60° stress path although 

it is not necessarily represented by a straight line stress path. It 

can also be speculated that the stress-strain curves for a radial 

shear stress path should fall in between the stress-strain curves 

of the TE and TC stress path as shown in Fig. IV. 5. The experi-

mental results on Ottawa sand by Ko [ 16] and Mas son [ 17] (shown 

in Figs. IV. 6 and IV. 7) seem to substantiate this speculation. The 

purpose of performing tests along a radial stress path is to investi­

gate the stress-strain relations of granular materials under general 

three-dimensional stress states , and also to use the proposed cons ti-

tutive relation to the model and experimental results. 

(iii) Proportional stress increments with variable cr , 
oct 

In the previously discussed shear stress path, the octahedral 

normal stress was kept constant, and the influence of the stress 

path or the strain path was through the shear stress change. How-

ever in the conventional triaxial tests the octahedral normal stresses 

change along the stress path. Therefore the purpose:,. of performing 
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tests following conventional triaxial stress paths is to investigate 

the quantitative influence of changes in both shear and octahedral 

stresses on the stress-strain behavior of a granular material and, 

of course, to investigate the failure envelope. All the conventional 

triaxial stress paths follow the rule of loading with proportional 

stress increments with the change of octahedral stress along their 

stress paths and can be illustrated in principal stress space as 

shown in Fig. IV. 8. The conventional triaxial stress paths always 

start at an initially hydrostatic stress state, and then the stresses 

vary according to proportional stress increments. If the effect of 

stress history and stress path on the stress-strain behavior in an 

isotropic material is again neglected, the following relations are 

obtained from Eq. (4. 4): 

and 

Thus, 

{a) CTC stress path (-y = 1, a= 0, 13 = O; ticr
1 

= .6cr, 

ticr2 = ticr3 = O; .6€ 2 = tiE 3 and Pz = p 3 = pT) 

.6e2 = tic;3 
.6cr 

[- ~ (E! +fi, EspT)J = det A 

.6e1 tic; 1 
(3 +~PT) 

LS€2 = "3€3 = 
s 

(4. 7a) 

(4. 7b) 

(4. 8) 



and 

Thus, 

Thus, 
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(b) CTC-A stress path ('y = 0, a= f3 = -1; 6a
1 

= O, 6a
2 

= 

6CY3 = -6u; 6€2 = 6€3; P1 =pc, P2 = P3 = pT) 

(4. 9a) 

(4. 9b) 

(4. 10) 

(c) GTE stress path (y = 0, a= 0, f3 = -1; 6a
1 

= 6u
2 

= 0, 

6u3 = -6u; 6E 1 = 6E 2; p 1 = P 2 =pc} 

(4.11a) 

(4.11b) 

1 (4. 12) = 
3 + E 

s 

(d) CTE-A stress path (y = 1, a= 1, j3 = O; 6u
1

=6u
2

=6a, 

6cr3 =0; 6E 2 =6E3 ; p 1 =p2 =pc,p3 =pT) 

(4 . 13a) 
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(4. 13b) 

Thus 

= (4. 14) 

Let u
0 and €

0 be the initial hydrostatic stress and oct oct 

strain, the stress-strain relations in Eqs. (4. 7) to (4.14) can be 

illustrated as shown in Fig. IV. 9. It can be seen that the stress-

strain behavior is strongly dependent on the stress path even though 

the effects of stress history and strain characteristics are disre-

garded. The true stress-strain behavior of a granular material will 

be different from the one shown in Fig. IV. 9 due to the influence of 

stress history and the different slip characteristics in compression 

and extension. As demonstrated in the stress-strain relation along 

the axial shear stress path, the influence of stress history and slip 

characteristic would again be reflected in a u oct- t:
3 

{extension) 

curve having a higher initial slope but eventually reaching a lower 

stress with sharper change of slope in comparison with the stress-

strain relations shown in Fig. IV. 9. 

(iv) The stress paths for all the above-mentioned loading 

with proportional stress increments can be summarized in Table IV.1. 
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TABLE IV.1 

Stress path '{ Q:' 1-1 6a 67 
oct oct 

HC 1 1 1 1 0 

TC 1 -1/2 -1/2 0 1/3../z 

TE 1/2 1/2 -1 0 1/3/2 

RS-60° 1 0 -1 0 ./2;./3 
CTG 1 0 0 1/3 fi,/3 
CTG-A 0 -1 -1 -2/3 fi.13 
GTE 0 0 -1 -1/3 Fz/3 
GTE-A 1 1 0 2/3 /i./3 

IV. 1- 2 Plane strain-stress path 

In soil mechanics problems, the plane strain case is most 

frequently encountered. In order to apply the constitutive relations 

developed here to boundary value problems in soil mechanics, a 

general two-dimensional constitutive relation formulation in terms 

of a , a , 'T , E , E and '( is needed and will be treated in 
x y xy x y xy 

detail in the next chapter. Here only some general aspects of the 

plane strain case in terms of principal stresses and strains will be 

discussed. By setting the intermediate principal strain and strain 

increment equal to zero, the constitutive relation in Eq. (3. 54) 

becomes 

(4. 1 Sa) 

and 

(4. 1 Sb) 
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where the a .. 1 s can be obtained from Eq. (3. 55) with Ez = 0. If lJ 
the influence of stress history and the slip characteristics are again 

disregarded, Eq. (4.15) can be approximately rewritten as follows: 

and 

) (./2 Es +pj )6E1 + 1 E s6E3 l 
(If Esti€1 + (/2 Es +p1 )tiE3 ~ 

(4. 16a) 

If the octahedral normal stress is kept constant in the plane 

strain-stress path, the right-hand side of Eq. (4.16b) is equal to 

zero. Therefore, tiE
3 

is approximately equal to -ti€
1

, which in 

turn implies tier 
3 

is approximately equal to -tier 
1 

(RS- 60° stress 

path). In other words, the plane strain stress path approximately 

coincides with the plane stress case on the same octahedral stress 

plane if the effect of stress history and slip-strain characteristics 

is neglected. However, in the real behavior of granular material, 

the latter effects must be recognized so that in reality the plane 

strain stress path will lie in the neighborhood of the plane stress 

case (RS-60°) but will be represented by a curved line rather than 

a straight line. 
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IV. 2 Theoretical and Experimental Consideration of Parameters 

Involved in the Proposed Constitutive Relations 

IV. 2-1 Relation of E to a t s oc 

In the proposed model the stiffening spring with modulus E 
s 

represents the elastic strain and volume changes of granular material 

under stress. The stiffening effect due to the increase of octahedral 

normal stress means that E increases with a t" Some investiga-s oc 

tors [ 16, 42] have tried to predict the compressibility of granular 

material by using Hertz 1 s contact theory applied to spherical grains. 

Thus, the volumetric strain E t is expressed as a two-thirds oc 

power function of a t" In other words, the slope of a t - € t oc oc oc 

would be a one-third power function of a t if Hertz 1 s theory is oc 

applied. However, experimental results obtained by Ko and Scott 

on Ottawa sand indicate that in a granular material such as sand, 

this relationship does not hold. The sand soil becomes stiffer more 

rapidly than predicted by Hertz's theory. Ko [ 16] and Masson_ [ 17] 

have performed hydrostatic compression tests on medium-dense 

Ottawa sand using two different but similar versions of cubit triaxial 

testing apparatus. Their results are shown in Figs. IV.10 and IV .11. 

As derived in Eq. (4.1), the proposed stress-strain relation 

for hydrostatic compression would be approximated as: 

~a = {_!_E + p)6Eoct oct j2 s 
(4. 1 a) 

4 
Therefore, the terms - E + p represent the slope of the fi s 

stress-strain curve under hydrostatic compression and can be deter-
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mined from the experimental data. The term p denotes, as before, 

the stiffness portion due to the slip- spring elements with modulus E. 

The slip-spring elements represent the slip characteristics between 

contacts of a granular medium with a certain geometric packing. 

Therefore, p is presumably a function of the number of contacts and 

thus of the void ratio of a granular material. 

Under hydrostatic compressure in the normal pressure range 

(say, 0 - 100 psi) the deformation is small in compari:son with the 

deformation due to shear. This point is clearly indicated from Ko 

[ 16] and Masson 1s [ 17] experimental results on Ottawa sand shown 

in Figs. IV. 6, IV. 7, IV. 10 and IV. 11. If the slip is ass urned to be 

negligible during the· .hydrostatic compression test then the p value 

is approximately equal to the modulus E. If it is further assumed 

that the void ratio or geometric packing change due to the hydrostatic 

pressure in the normal pressure range is insignifican~ then E can 

be regarded as constant throughout the hydro static compression test. 

In the case of a granular material, it can not support any 

deviatoric stress in the absence of a state of hydrostatic compression. 

Therefore, the slope of CJ t - E t curve at zero octahedral normal oc oc 

stress should be totally due to the modulus E of the slip-spring 

element since E at CJ t = 0 is equal to zero. From Eq. (4.1) s oc 
4 

the slope of the curve is equal to r::: E + p. The value can be 
""2 s 

separated by subtracting the p value from the slope of CJ t - E t oc oc 

curve. p can be assumed to be equal to E for all of the hydrostatic 

curves since: 
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(a} if E t is small, only a negligible fraction of slip-spring oc 

elements has yielded and therefore p is approximately equal to E, 

(b) if E t is large, the difference between p and E 
QC 

would be negligible in comparison with the high value of _i_ E as 
-{i s 

O" oct becomes large. 

The statement in the above paragraph may seem to be a pre-

sumptuous postulation. Further explanation is needed if the proposed 

model is to represent the deformation behavior of a granular material; 

. it must have the property of being unable to support any shear stress 

in the absence of hydrostatic compression {Le. CJ' t = 0). The only oc 

possibility for the proposed model to do so is by setting E = 0 at s 

O" = O. In the absence of the stiffness springs E (E = O) at 
oct s s 

O" oct = 0, the proposed model consists of only three mutually-

perpendicular slip-spring elements hinged together at the centroid 

{point 0 in Fig. III.17), and can not support any shear stress. since 

the presence of any small amount of shear would make the proposed 

model undergo continuous shear deformation and finally collapse. 

However, the slip mechanism is due to the contacts between grains 

and the slip mechanism should still exist in the three mutually-

perpendicular principal direction even though O" t and E are 
oc s 

both zero. 

The hydrostatic compression tests on medium dense sand by 

Ko [ 16] and Masson [ 17] have already been shown in Figs. IV.10 

and IV .11. To investigate the variation of E vs. CJ' t, the slopes s oc 

of the a t- E t curves of their hydrostatic compression results 
oc oc 

must be calculated with respect to different levels of CJ' t stress. oc 
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In Ko 1 s hydrostatic compression test [ 16] , an arbitrary datum 

pressure was chosen at 4 psi, because at smaller pressures an 

uncertainty exists as to the sample 1 s boundary condition in a soil 

test box. Therefore, Ko' s testing results under hydrostatic corn-

press ion have to be extrapolated to zero state of stress and strain. 

The corrected a t- E t curve is denoted by dotted lines as shown oc oc 

in Fig • IV. 0 • The E values at various a t stress levels for 
s oc 

both Ko's and Mas son's test results on Ottawa sand are tabulated in 

Tables IV. 2 and IV. 3 

TABLE IV. 2 

E and E values from HC-test on medium dense 
s 

Ottawa sand by Ko[16j 

a € ±_E +p Estimated ±_ E 
oct oct .Jz s Ii. s 

(psi) (o/o) (psi) (psi) 

0 0 8000 (= E) 0 

5 0.023 24250 16250 

10 0.06 26670 18670 

15 0.07 32000 24000 

20 0.09 36370 28370 

30 0.113 42100 36100 

40 0.131 53300 45300 

50 0.152 66670 58670 
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TABLE IV.3 

E and E values from HG-test on medium dense s 
Ottawa sand (e = 0. 524) by Masson [ 17] 

E 
oct 

{%) 

0 

0.041 

0.062 

0.08 

0.095 

0 .. 122 

0.146 

~E +p 
./2 s 

(psi) 

7500 

20000 

24240 

28570 

33400 

33400 

48500 

Estimated ~ E fi s 

{psi) 

0 

12500 

17140 

21070 

25900 

25900 

41000 

If the estimated ~E . values are plotted against a 
-V 2 s oct 

as shown in Fig. IV. 12, it is found that E increases with a t • 
S QC 

Both experimental data by Ko and Masson indicate that there 

exists a bilinear relation between E and a t as illustrated in s oc 

Fig. IV. 12. For a oct larger than 5 psi, the Es can be taken as a 

linear function of a rather than the one-third power function of 
oct 

a t obtained from Hertz 1 s theory. oc 

IV. 2- 2 E vs. octahedral shear stress (r t) 
s oc 

When a granular material is subjected to a pure shear stress 

increment, there is usually observed a partially inelastic behavior 

with failure occurring when the shear stress reaches a certain level. 

From Eq. (3. 46), it seems that the elastic stress component due to 

the stiffness spHng elements with modulus E always exists in the 
s 
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loading or unloading process. As indicated by Eqs. (3 o 33) to (3. 40) 

and Eq. (3 36) in the previous chapter, when the strain level is large, 

the portion of stress increments due to slip-spring elements in the 

proposed model would be very small since most of the slip-spring 

elements have already yielded at large strain level. If E is 
s 

assumed to be independent of octahedral shear stress then no failure 

, will occur at large strain since the material behavior becomes pre-

dominantly elastic if the strain becomes large. This is a contradiction 

to the observed experimental data such as the test results of Ottawa 

sand under axial shear stress loading obtained by Ko [ 16] and Masson 

[ 1 7] (Figs. IV. 6 and IV .. 7). Therefore, if the proposed three-

dimensional model really represents the correct behavior of a granu-

lar material, it is inevitable that E be dependent on the octahedral 
s 

shear stress. It can be postulated that the E value decreases 
s 

with the increase of octahedral shear stress. 

Some substantial complications in the formulation of stress-

strain relations also develop thereby. However, this complication 

can be avoided by treating the E as a piecewise linear constant s 

during each stress or strai::i increment. Since the constitutive 

relation is derived in incremental form, the error due to this linear 

approximation of E will be negligible if the stress or strain inc re­
s 

ment is kept at a small value. 

An analytical expression of E in terms of octahedral shear 
s 

stress may be proven to be difficult if not impossible. However, 

one might find the numerical relation between E a.'tld octahedral s 

shear stress by simulating the axial shear stress path experimental 
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data and from some theoretical consideration of the deformation 

behavior of contacts between grains in a granular behavior. 

Thurston and Deresiewicz [ 41 j analyzed a face-centered cubic 

array of uniform spheres (the densest regular packing) and found the 

following relations for two spheres in contact. 

where 

or 

where 

(a) Loading curve 

2/3 
0 = 3 ( 2- v) f N [ 1 _ ( 1 _ :£__ >] 

8µa f N 

o = relative tangential displacement of distinct points 

f = coefficient of friction 

T = tangential force 

N ~ normal force 

a -- ·[ e(1-
8
vµ)RN] 

1 
/

3 
by Hertz 1 s theory 

R = radius of spheres 

µ = shear modulus of grain 

v = Pois son's ratio of grain 

3{2-v)f1 / 3 

w = 4[ 3 R ( 1 - v) µ 2] l / 3 

Suppose N is constant then 

1/3/ dT = (£N)1/3(1 - ~) ~ w 
do i. N 3 

(4. 1 7) 

(4.1 7a) 

(4 .. 18) 

(4. 19) 
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{b) Unloading curve and reloading curve 

A relation similar to Eq. (4. 19) exists for both the unloading 

and t;he reloading case. 

Equation (4.19) indicates that the slope of the T- 5 curve is 

a one-third ~ower function of shear force for two spheres in contact 

in the one-dimensional case. If an analogy can be postulated be-

tween Eq. (4.19}andthe proposed three-dim~nsional model, it would 

seem that E decreases with a one-third power function of the 
s 

difference between one and the ratio of T t. to (J t" However, oc oc 

the macroscopic behavior 6f randomly packed granular material as 

a whole under shear stress may not be represented by a simple 

relation derived from two spheres at contact. The true r.elation 

between E and (J t can only be determined from an examination . s oc 

of experimental data. 

As indicated in section IV. 2-1, E is a linear function of 
s 

CJ rather than the one-third power function of (J t obtained from 
oct . oc 

Hertz's theory. If this analogy can be applied to the relation between 

E and shear str'ess, it would be expected that E decreases with 
s s 

certain power function~ of the difference between one and the ratio 

of T t to1 CJ t" As will be shown in the next section, if E is 
oc oc s 

taken as a square functio1n of the difference between ohe and T oct/CJ oct, 

the Tca-2 stress-strain curve of Ko 1s experimental results on 

Ottawa sand (Fig. IV. 6 and Ref. [16]) can be closely simulated 

(Fig. IV. 1 7). However, if the same relation is used to predict 

Ko' s TE-1 test curve, the correlation between this proposed model 

and experimental data is not very good (Fig. IV. 18). 
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Although the expression of E as a certain power function of s 

[ 1 - (T t/a t)] does not predict closely the experimental data of oc oc 

Ottawa sand under TE tests, nevertheless, some qualitative agree-

ment between the shape of the stress-strain curves calculated by 

the proposed constitutive relation and that of the experimental 

results is apparently reached. In order to reach a better agreement . 

between the proposed model and the deformation behavior of a 

granular material under various loading conditions, more effort in 

searching for a relationship between E and T t is needed. 
s oc 

In establishing a workable relation between E and T t' 
s oc 

another factor must be taken into consideration. That is the fact 

that the E value can not be less than zero. For if E < 0, it would 
s s 

be possible to have a positive strain in the direction perpendicular 

to the direction along which a positive strain exists with a correspond-

ing compressive stress, which is impossible for an isotropic material. 

If E is expressed as a power function of [ 1 - (T t/cr t)] along 
s oc oc 

certain stress paths where T t/a t may have a value larger than oc oc 

one (such as the CTC stress path in Table IV.1), then E may be­
s 

come negative. 

As indicated before, E has to decrease with the increase of 
s 

T and E increases with the increase of a t according to the 
oct' s oc 

theoretical considerations and experimental results. The simplest 

relation to meet the above requirement and the condition of E > 0 s 

is to express E as a certain power function of the ratio of cr t 
s oc 

to the sum of a t and T t' i.e., oc oc 
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( 

(J ) n E o: oct 
S (J + T 

oct oct 
(4. 20) 

where n = constant. 

Let {E ) denote the E value corresponding to T = 0. 
s T=O s oct 

Then Eq. (4. 20) can be rewritten as 

E 
s oct 

( 

(J )n 
(4. 21) 

The proposed model involves the stiffness spring modulus E 
s 

and the slip- spring elements whose contribution to the stress- strain 

curve is indicated by the value p.. The slope of the stress-strain 
l 

curve must be the reflection of the influences of E and p . on the 
s 1 

stress-strain behavior. If the influences of E and p . on the stress-
s l 

strain curve are further assumed to be the same order of magnitude 

0 
along a shear stress path {TC.' TE or RS-9 ) , then the slope of a 

stress-strain curve will serve as an indication of how the E value s 

varies with T t • oc 

Let Se and {Se)T=O denote the slope of an experimental 

stress-strain curve at T t* 0 and T t = 0 respectively. Then the oc oc 

ratio of S to (S ) 
0 

can be plotted with the stress level for 
e e T= 

comparison purposes. For illustrative purposes, this plot will be 

called the "stiffness ratio curve" hereafter. The right-hand side of 

Eq. (4 . 21) for various n values can also be plotted with the stress 

level along the same stress path as the experimental data. Compare 

these plots and the plot from the stiffness ratio curve, and the n 
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value for a specific material can be estimated. For example, the 

stiffness ratio curves of the a 
1 

- E 
1 

curve in the TC a- 2 test and the 

a3 - E3 curve in the TEa-2 test of Ko's experimental data on medium 

dense Ottawa sand are plotted in Figs. IV. 13 and IV. 14. A value of 

n = 5 is estimated when these stiffness ratio curves are compared 

with the plots of the right-hand side of Eq. (4. 21) vs. stress level 

for various n values as shown in Figs. IV.13 and IV.14. 

A word of caution is warranted. Due to the influence of 

the testing apparatus, the same material tested under the same stress 

conditions may yield different results from different apparatus. 

Since the relation of E and 'T' t is experimentally obtained, n s oc 

values may be different for the same material tested in different 

apparatus. 

IV. 3 Representation of Experimental Data on Ottawa Sand 

There are six material parameters, namely E , E, m , 
s c 

s c, mt, st to be determined. Ideally, it would be most desirable 

if they can be determined by six independent experimental data. 

Due to the complexity of the proposed constitutive relations and 

the complex stress-strain behavior of a granular material, it is 

impractical to set up tests along six independent stress paths. 

Although Es and E can be estimated and the relation between Es 

and octahedral and octahedral shear stresses can-be-coricluded from 

hydrostatic compression tests and axial shear tests as shown in the 

previous section, there are still four other statistical parameters to 

be determined. In this thesis, the four statistical parameters are 
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determined by fitting the TC-stress path experimental data. Usually, 

there are several different combinations of these four parameters to 

describe the TC-stress path stress-strain behavior equally well. 

However, there is one combination of these which can best represent 

the stress-strain relation observed along the TE stress path. This 

combination is selected to represent the soil behavior. At first 

glance, it would seem that this procedure is highly arbitrary and 

tedious to followo However, there are certain properties of the 

four statistical parameters that can be very helpful in determining 

the right combination. These properties can be observed from the 

properties of the Gaussian type distribution function and from the 

experimental data to be simulated. These properties are: 

(1) Due to the difference in slip characteristics in compression 

and in extension the values of m and s are always larger c c 

than the respective values of mt and st in extension. This 

means that the granular material is more susceptable to 

strain in extension as indicated by the observed experimental 

results [ 15, 16, 17] • 

(2) The values of me and mt determine the slope of the axial 

shear stress path at small strain. Higher me and mt values 

result in a steeper slope at small strain because of the higher 

mean level of slip stress for the material as indicated by the 

Gaussian distribution function or by Eqs. (3.33) to (3.40). 

(3) The values of s c and st dictate the smoothness of slope 

changes in a stress-strain curve. A sharper change of slope 

at some strain level is the indication of a smaller s c or st 
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value. This is due to the properties of a Gaussian type 

distribution function. A small standard deviation means the 

slip stress distribution is more concentrated around the mean 

stress level. In other words, its1 distribution is closer to 

a triangular distribution. As the value of s increases, 
c 

the slip stress distribution is further spreading more evenly 

out toward a rectangular distribution function. 

A Fortran IV computer program is set up to calculate the 

stress and strain under arbitrary stress conditions of the proposed 

constitutive relation. A computer plot subroutine is also set up to 

present the computed results. Figs. IV .• 15 and IV .16 show some 

examples illustrating the above discussion. 

As mentioned in the previous section, if the relation between 

E and the octahedral shear stress is taken to be 
s 

{4. 22) 

then it is found by the trial method that n = 2 would closely simulate 

the results of the TCa- 2 test data by Ko on medium dense sand 

(Fig. IV. 6 and Ref. [ 18]) as shown in Fig. IV.1 7. However, as 

shown in Fig. IV. 18, if the same parameters are used to simulate 

Ko' s TEa-2 test data on Ottawa sand with similar void ratios, it is 

found that the simulation is not as desirable as was hoped. Equation 

(4. 22) is subsequently discarded. 

Equation (4. 21) mentioned in the previous section is used for 

the relation between E and T t in simulating the experimental 
s oc 
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data on medium dense sand obtained by Ko [16] and Masson [17] 

{Figs. IV. 6 and IV. 7). All the stress increments used in computing 

the stress-strain relation are taken exactly according to the stressing 

process in the specific experimental data to be simulated. 
, 

For Ko' s data as shown in Fig. IV. 6, all the axial shear 

stress and radial shear stress are approximated at the san1.e magni-

tude of void ratio and all have been subjected to 20 psi of hydro-

static compression pressure. The corresponding strain is E t= 0. 009 
oc 

as shown in Fig. IV.10. The E and E values are obtained from s 

Table IV. 2, Fig. IV.12 and Eq. (4. 21}. The involved parameters 

found to be able to closely simulate Ko' s TCa- 2 tests are indicated 

in Fig. IV. 19. It can be seen from Fig. IV. 19 that the simulation 

is excellent considering the compexity and the uncertainty of a 

granular material 1s behavior. 

The same parameters are used to predict the experimental 

' 0 0 0 stress-strain curve of Kos TEa-2, RS-45 , RS-60 -1 and RS-75 -1 

tests shown in Fig. IV. 6. Figures IV. 20 to IV. 23 are the results 

predicted by the proposed constitutive relation. Again all the pre­

dictions except the RS- 7 5° -1 test are extremely close to the experi­

mental data. The failure of predicting the RS-75° -1 test is probably 

due to the irregularity in the -test results. As can be seen from 

Figs. IV. 5 and IV. 6, the qualitative description of the proposed 

constitutive relation agrees with the experimental stress-strain 

behavior along shear stress paths except in the stress path of RS-75°. 

If the prediction by the proposed constitutive law can predict most of 

the experimental data closely 1 there is no reason for an experimental 
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stress-strain data point along a particular shear stress path to be 

an exception. 

The same procedures are also used to i;iirnulate Mas son's 

test data shown in Figs. IV. 7, IV. 11 and Table IV. 3. Again, a 

close simulation is indicated as shown in Figs. IV. 24 to IV. 27. 

IV. 4 . Remark 

From the simulation and prediction results of the test data 

on Ottawa sand by Ko [16] and Masson [17] shown in Figs.IV. 19 to 

IV. 26 it can be seen that the experimental results and the proposed 

constitutive relations ar·e in close agreement. It can be concluded 

that the proposed constitutive relations are much more realistic 

than any other theories and models at the present state of the art 

in describing the deformation behavior of a granular material. 

The ultimC!-te purpose of having a realistic constitutive 

relation is to be able to apply it to solve some field problems in 

soil mechanics. The field problems in soil mechanics usually 

have complicated geometries in the boundaries. Th~ usual way of 

dealing with this type of problem is the use of finite element 

analysis taking the corresponding constitutive relations into con­

sideration. As will be shown in the next chapter , the most 

general forms of the constitutive relations derived from this model 

in general three-dimensional stress-strain formulation have a non­

symmetrical stiffness matrix once the shear stresses and strains 

are present . This couples with the complexity of the proposed 

constitutive relations, and the loading and unloading process is 
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beyond the capability in the present state of the art in finite 

element computer formulations. In recent years, the finite element 

analysis has been vastly employed and the solution technique has 

been vastly improved. This is no reason to believe that a work-

able scheme to solve a problem with non-symmetrical stiffness 

matrix is unreachable in the near future. More effort is needed 

in this direction in order to apply the proposed constitutive relations 

for a granular material to some boundary value problems in soil 

mechanics. 
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. ~ 
Triaxial compression -o--f.." 

\,\.(., 

~~o 
Y."1 

~>r..,'0-

(TE, Triaxial extension) 

Fig. IV .1. Hydrostatic Compression and Axial Shear 
Stress Paths in Principal Stress Space 

RS 75° 

RS 60° 

RS 45° 

Fig. IV. 2. Axial and Radial Shear Stress Paths 
on an Octahedral Plane 
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CHAPTER V 

SUMMARY AND CONCLUSIONS OF PART I 

AND RECOMMENDATIONS FOR FUTURE WORK 

V.1 Summary and Conclusion 

In the first part of this thesis, attempts have been made to 

develop a rheological model to describe the deformation behavior of 

a granular material under various stress and strain conditions. An 

acceptable rheological model must be q.ble to yield a constitutive 

law which can include many important aspects of a granular 

material's behavior observed in nature or in laboratory tests. The 

im~rtant aspects of granular materials behaviors are stated in 

Chapter I. 

To develop a rheological model for granular media, con­

sideration must also be given to the geometry of grain packing and 

the mechanical behavior of contacts between grains. Since granular 

material in nature is packed randomly together by irregularly sized 

and shaped particles, these properties must be de scribed statisti-

cally. Certain phys~cal aspects such as number of contacts and 

their orientations, and deformation behaviors upon loading must be 

considered as random variables. A rheological model for granular 

mate rials must have certain distributed characteristics which can 

statistically describe these random variables. 
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Previous work on constitutive relation for a granular 

material is reviewed in Chapter II. Some comments and suggestions 

are also given in the hope that future investigators can take them 

into consideration to arrive at more realistic constitutive relations 

which can more closely describe the deformation behavior of a 

granular material and can be practically applied to solve some 

boundary value problems in soil mechanics. 

Rheological models consisting of spring and slip elements 

are often used to simulate some of the important features of 

granular material behavior, such as non-linearity in stress-strain 

behavior, slip of contacts between grains due to shear. Most 

rheological models [18], [19] are used in the hope that they will 

eventually lead to a general three dimensional formulation. Other 

types of rheological models such as the one shown in Fig. II. 8 

[99), [100] are used to obtain the stress-strain relation solely 

from the mechanism exhibited by the model without consideration of 

of any other assumptions or hypothesis. The rheological model 

developed in this thesis is of this type. 

In the course of developing a rheological model to represent 

the deformation behavior for a granular material, consideration is 

first given to the contact behavior. A rheological model consisting 

of slip and a spring elements in series suggested by Iwan (19] is 

used to represent the grain contact behavior. A one dimensional 

model is constructed by a group of these slip- spring elements in 

parallel (Fig. Ill. 3) and is employed to represent the granular 
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material's behavior. The critical (slip) stress level at which the 

element slips can be considered as a distributed function on 

account of the irregularity in size and shape of grains and the 

randomness of the packing of the material. 

The purpose of a one- dimensional model is to demonstrate 

that its stress-strain relation bears some resemblance to the 

deformation behavior of a granular material. A simple rectangu-

larly or trangularly distributed function is assumed for the critical 

stress level and produced a good resemblance to the experimental 

data obtained by Ko [16] on Ottawa sand under the axial stress 

condition (Figs. III. 3 .10 and 3. 11). This manifests the potential of 

using slip- spring elements to represent the granular material's 

behavior since they can apparently describe some fundamental 

aspects of the stress- strain behavior of a granular material even 

when a simple slip stress distribution function is used. However, 

throughout this thesis, a Gaussian type of distribution function is 

employed due to its similarity to the distribution of coordinate 

number (number of contact) in a granular material (Fig. III.14) and 

due to the fact that it can closely describe almost any stress-strain 

curve by simply varying its mean and standard deviation. Further­

more, depending on the magnitude of its standard deviation, the 

Gaussian distribution can approximately represent either the 

triangular or rectangular distributions. 

In observing tl~e experimental results on Ottawa sand by Bell 

[15], Ko (16], Ko and Scott [14], and Masson (17], it seems that a granular 
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material exhibits different characteristics in compression and 

extension. If a rheological model is to closely describe the 

behavior of a granular material, the slip- spring elements must 

consist of two slip elements and a spring element in series as 

shown in Fig. III. I, and the one-dimensional model is therefore 

constructed as shown in Fig.III.2. From this one-dimensional 

model, a unique hysteresis loop is found and shown in Fig. III. Sb. 

To extend the one-dimensional model to multi-dimensional 

stress-strain formulations requires the assessment of the quanti­

tative relation of stress and strain in one-dimension to the stresses 

and strains in other directions. A two-dimensional model is con-

structed by placing slip- spring elements along two perpendicular 

directions and interconnecting them with stiffness spring elements 

as shown in Fig. III. 15. It is demonstrated that the simplest case 

of this model can approximately simulate the classical two-dimen..:. 

sional linearly elastic material by discarding the slip elements. 

The stress or strain increments in this model can be divided into 

two parts. The first part is the contribution due to stiffness 

spring elements and the second part is the contribution due to the 

slip- spring elements. The constitutive relations are expressed in 

incremental forms to account for stress or strain history and path 

dependency. 

A three-dimensional model shown in Fig. III.17 is subsequently 

constructed in a similar manner . The constitutive relation obtained 

by the three-dimensional expresses the stress increments in terms 
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of strain and strain increments. This is equivalent to a strain-

controlled stress path. Most of the three-dimensional soil test 

devices now in use, are of the stress-controlled type [16], [17]. 

Although , completely strain-controlled test devices have been 

reported [123 J , [124] , it is believed that the mechanical problems 

associated with these devices have prevented their successful use. 

In order to simulate and predict laboratory test data, it would be 

advisable to express the strain increments in terms of stress 

increments in the constitutive relations. This is achieved by 

matrix inversion as shown in Eq. (3. 54) to (3. 56). All the sub-

sequent laboratory test data simulation and prediction by this three­

dimensional model are obtained in this fashion. 

The consituti ve law derived from the proposed model is 

derived in such a way that the stress-strain relation for any 

arbitrary stress-path can be obtained if the material properties are 

shown. The material properties involved in the proposed constitu­

tive relations are the moduli of the stiffness springs and the spring 

in the slip- spring elements, and the slip stress distribution param­

eters me , mt , sc and st which, in turn, have to be determined 

from experimental data. Before the determination of these param­

eters, the qualitative description of the stress - strain relations 

under different stress-paths by the proposed model is represented 

and compared with the stress-strain curves observed in the experi­

mental data on Ottawa sand by Ko [16] and Masson [17). 

The most frequently used stress-paths in a stress-controlled 
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test are loading paths with proportional stress increments, in 

which the three principal stress increments are proportionate to 

each other (.6.o- 1 : .6.o-2 : .6.o-3 = 'Y: a : f3) as shown in Table III. 2. 

These stress paths include bydrostatic compression, axial shear, 

radial shear and conventional triaxial test stress-paths as shown 

in Figs. IV. l, IV. 2 and IV. 7. The hydrostatic compression stress-

path is used to determine the relation between the modulus of 

stiffness spring, E , and the octahedral normal stress, o- t• 
s oc 

For an isotropic material, it is concluded a loading path 

with proportional stress increments would approximately imply 

proportional strain increments if the stress- strain relation is 

independent of the loading history and if the slip behavior is the 

same for both compression and extension. This point has been 

illustrated in Eqs . (4. 3) to (414) . However, this is not observed 

in the experimental data on Ottawa sand shown in Figs. IV. 6, IV. 7, 

IV.10 and IV.11. If the effect of the loading history and the 

difference of slip behavior in compression and in extension are 

considered, the proposed constitutive relations can qualitatively 

describe the deformation behavior observed in laboratory tests on 

Ottawa sand by Ko and Masson . 

There are several parameters involved in the proposed 

model. They have to be determined by experimental data. The 

modulus E for the slip-spring elements is assumed to be constant 

for a specific packing of material and can be obtained from the 

hydrostatic compression test data . The modulus E is found to be 
s 
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a function of a- t and T t• oc oc E increases with the increase of a- t' s oc 

and decreases with the increase of T t• 
oc From Ko and Masson' s 

hydrostatic compression test on medium dense Ottawa sand (Figs. 

IV .10 and IV. 11) it is found that E increases linearly with the 
s 

increase of a- t {for a- t > 5 psi as shown in Fig. IV.12) instead of oc oc 

the 1/3 power function of a- t as predicted by Hertz' theory [1], (16). oc 

From the slip behavior of contacts between grains, it is 

found the relation between E and T t can be expressed in Eq. 
s oc 

(4. 22). However, it is found unsuitable for simulating and pre-

dieting the experimental results on Ottawa sand as shown in Figs. 

IV.17 and IV.18. It is further found that Eq. (4. 22) would lead to 

negative E value for certain stress paths, which contradicts 
s 

granular materials behavior. It is thus concluded that Eq. (4. 22) 

does not represent the true relation between E and T t• 
s oc 

From the theoretical consideration and evidences observed 

from the axial shear stress test, it is found that Eq.(4.21) can 

best describe the · relation between E and T t• The order of 
s oc 

power, n, in the right hand side of Eq. ( 4. 21) has to be deter­

/ 
mined from experimental data. Different materials have different 

n values. 

The distributed parameters, me , mt , sc , st have certain 

specific meanings ·and influence on the stress-strain curves due to 

the properties of Gaussian distribution function used. The influence 

of me , s c , and st on the shape of stress - strain curve is illus-

trated in Figs.IV. IS and IV.16. Generally these distributed 
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parameters can be determined from simulation of test data along 

an axial shear stress path. 

Figs. IV.19 to IV. 26 illustrate the simulations and prediction 

results of Ko [16] and Masson1 s [17] test data on Ottawa sand by 

the proposed constitutive relations. It can be concluded that the 

proposed constitutive relations are much more realistic than any 

other theories and models at the present state of the art in des-

cribing the deformation behavior of a granular material. They are 

warranted for further application to the boundary layer problems in 

soil mechanics. However, the constitutive relations derived from 

the proposed model in general three-dimensional stress- strain 

formulation have a non- symmetrical stiffness matrix as will be 

shown in the next section. The present state of the art in finite 

element computer formulation cannot solve this. More effect 

toward a workable solving technique in finite element computer 

formulation is urged. 

V. 2 Recommendations for Future Work 

1. More experimental data for granular media of various densities 

similar to Ko [ 16] and Mas son's [ 1 7] tests in a triaxial cube box 

are needed. The purpose of this is to correlate the involved 

parameters E E m m S and St With the mechanical 
' ' ' t' s c c 

properties such as the void ratio or density of the material. 

Furthermore, experimental data along an arbi.t rary stress -path 

areneeded so that the eligibility of applying the proposed constitu-

tive relations to general three-dimensional stress or strain 
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conditions can be further certified. 

2. The proposed constitutive relations are generally applicable to 

the type of materials which exhibit plastic strains comparable 

with the elastic strains under loading. This type of materials 

includes concretes, polycrystalline materials (such as steel 

or nickel- base alloy) and structural materials of continuous and 

composite systems as mentioned in Ref. [ 19]. 

3. The proposed model can be further modified to include the viscous 

or viscoelastic deformation behavior of a material by adding 

creep or damping elements to the proposed model. Further work 

is necessary for this purpose. 

4. All the derivations of proposed constitutive relations in part I of 

of this thesis involve only the stresses and strains in principal 

directions. For the purpose of applying the proposed constitutive 

relations to some boundary value problem.s in soil mechanics, a 

general stress -strail formulation is needed. This can be achieved 

by applying normal and shear stresses and strains to the model. 

Due to the complexity involved in deriving a general three­

dimensional constitutive rela tion, only the generalized formUlation 

for plane strain case will be considered here. 

A plane strain model is shown in Fig. V .1 {the elements in 

and connected with the z-direction where strains= 0 are not shown). 

The symbols for stresses and strains, and the following derivations 

are all referred to Fig. V .1, unless mentioned otherwise. 
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Again, as before, the stress and strain increments can be 

separated into two parts. The first part is due to the stiffness 

springs E and is denoted by { ) • The second part is due to 
s e 

the slip- spring elements and is denoted by { ) • Thus, 
p 

.6a = .6(a ) + .6{a ) = .6{a ) + p .6€ 
x x xp xe x x 

.6a = .6 (a ) + .6 {a } = .6 {a ) + p .6€ 
y ye yp ye y y 

.6T = .6{7 ) + .6{T } = .6(7 ) t '/ p .6€ 
xy xye xyp xye xy x x 

.67 = .6{T ) + .6{T } = .6 (T } t '/ . p .6€ 
yx yx e yx p yx e yx y y 

{5. 1) 

where p and p can be obtained by substituting € and € 
x y x y 

respectively into € 1 s in Eqs. (3 . 3 3} to (3. 40} depending on the 

loading paths • 

.6( ) terms can be obtained as follows: 
e 

.6(cr ) _ E 4 _ (v-x} _ (v+x) _ 2 l 2 2 J 
x e - s [.rz A B (i+u2)3/2 

+ [(u-y)(v-x} + (u+y)(v+x) J .6E 

/ 
· · A B y 

+ [- (u-y~v-x) + (u+y)(v+x}J .6 
B yxy 

2 (v+x) 2 
J .6yyx l + [ <v;x) -

B 
(5. 2) 
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6{cr ) = E l [ (u-y)(v-x) t (u+y)(v+x) A e 
ye x . A B w,x 

+ [- (u-y}~-x) + (u+y~(v+x) J l 
6yyx \ (5. 3) 

6(7 ) = E l [- (v-x}(u-y) + (v+x~(u+y) J 
xy e s A 6€ -x 

+ [<u~1r2 - <u;;;}z] 6€Y 

+ [ ±_ - 2 - (u-y}2 - (u+y)2] .6 
fi ~1+u2 A B yxy 

+ [ (u-y)iv-x) + (u +yk(v+x) J l 
6yyx\ (5. 4} 

6(T ) = E l [(v-x}2 - (v+x)2 J 6 
yx e s A A Ex 

+ [- (u-y}{v-x} t (u+y)(v+x) 16 € 
A B J y 

+ [ {u-y}(v-x} t (u +y)(v+x} J 6 A B Yxy 

+[±- - 2 - (v-x}2 - (v+x}2] 6v l 
fi, [1+;Z A B •yx\ 

(5. 5} 

where 



u::: 1 + € 
x 

v::: 1 + € 
y 

x = y t(1 + € ) 
x x 

y = y (1 +€ ) 
yx y 
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A= [ (u-y)2 + (v-x)2] 1/2 

B = [ (u+y)2 + (v+x)2] 1/2 

From Eqs. (5.1) to (5. 5) the increments of stresses and 

strains can be expressed as 

6CJ 6€ 
x x 

6CJ 6€ 
y 

= A y 

6T 6yxy xy 

6T 6yyx yx 

with the condition 6T = 6T • 
xy yx 

(5. 6) 

(5. 7) 

As can be seen from Eqs. (5. 1) to (5. 5), the stiffness matrix 

A is non- symmetrical. This non- symmetrical stiffness matrix 
J._ 

coupl~j with the complexity of the proposed constitutive relations, 

and the loading and unloading process is beyond the capability in 

the present stage of the art in finite element computer formulation 

[ 60]. More research is needed toward a wo ,rkable computer scheme 

for solving a problem with non-symmetrical stiffness matrix. 



- 172-

(J 
· x 

Note: 1. Elements along and connected with the third 
direction are not shown. 

2. 7" = 7" • v =F '1 xy yx 1 xy 'yx 

Fig. V. 1. Three-dimensional Model for General 
Stress- strain Formulation 
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PART II 

THE DISTRIBUTION OF STRESSES AND DEVELOPMENT 

OF FAILURE AT THE TOE OF A SLOPE AND AROUND 

THE TIP OF A CRACK 
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CHAPTER VI 

PROBLEMS TREATED AND BILINEAR FINITE ELEMENT ANALYSIS 

VI. l Introduction; problems treated. 

Due to the complexity of material properties and boundary 

conditions, many problems in the soil mechanics and geophysical 

sciences are difficult to idealise and thus cannot be solved analyt­

ically. However, the widely applied finite element analysis [60] 

provides engineers and geophysicists with a simple and effective 

means to tackle some problems which they would otherwise be 

unable to solve satisfactorily. One of these problems is the deter-

mination of the stress and deformation distribution in and ultimately 

the stability of a slope or an embankment. With the assumption of 

isotropic rigid-plastic material and ignoring the strain-deformation 

field totally, a number of classical methods of slope stability 

analysis can be found in the engineering literature [11] , [111]. In 

dealing with the failure problems of a slope or embankment, most 

of these classical methods have been widely used and proved to be 

quite satisfactory in many cases in engineering practice. However, 

analyses by these methods do not represent the behavior of a slope 

except at failure. 

Acceptable factors of safety in a well-designed slope or 

embankment are low enough that the soil is not everywhere in even 
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an approximately linearly elastic state. The states of stress and 

displacement and the extent of regions of yield even in a stable 

slope may be important to the performance of a slope and location 

of adjacent structures . The classical linear elasticity theory can 

provide the stress and displacement results only for some uncom­

plicated wedges with relatively simple boundary and loading condi­

tions [ll2], [ll3]. If a linear elastic analysis, whether it be per­

formed analytically or by the finite element method, is applied to 

the problem of a finite slope, high stresses in some regions and 

tensile stresses in others will be found. It can be expected that 

failure will develop from these regions. 

Local yielding causes some degree of relaxation in the state 

of stress and deformation in the entire slope region. Stress-

strain redistribution and the development of failure around a slope 

have been studied by various investigators [21], [22] with the 

application of a bilinear finite element method. The finite element 

grid around the toe has not generally been taken small enough to 

clearly indicate the stress concentration there. In addition, the 

boundaries to the region are seldom placed far enough away from 

the toe to prevent their interference with the problem area. Con­

sequently, the previous investigations indicated that failure some­

times develops in some area other than the toe of the slope [ 22] . 

In fracture theory [24] the stress-strain field in the vicinity 

of a crack is of vital interest. The stress concentration and 

development of failure around the toe of the slope should be con-

sidered to be a similar problem. It is instructive, therefore, to . 
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study the crack problem first before examining the behavior of a 

slope or embankment. In the past numerous investigators have 

applied the linear theory of elasticity to the crack problem with 

the assumption that the strains are infinitesimal and that the 

boundary condition of the crack surface is undisturbed and pre-

described [23]. From the use of the linear theory of elasticity, 

the stress concentration at the tip of a crack has been evaluated. 
, 

This theory has been applied to the analysis of crack development 

in brittle materials. However, in dealing with fracture in ductile 

materials, plastic flow (or strain) occurs in this region, to relieve 

the high stress developed. It has been argued that the occurrence 

of plastic strain will not result in a significant difference from 

linear results used in the calculation of relevant quantities [114] 

such a£ stored elastic energy. However, the question of the 

influence of plastic strains on the stress field near a crack is still 

being pursued. No results in the field of fracture mechanics suit-

able for immediate application to the slope stability problem have 

been found in their investigation. In order to consider the crack 

problem, therefore, linear and bilinear finite element methods were 

applied in this study for the following purposes: 

1. To assess the finite element method in this analysis by 

comparing the resulting stress field with the analytical solution 

from the linear theory. 

2. To establish the quantitative influence of plastic strain 

on the stress field near the tip as in the vicinity of the crack. 

3. To investigate the influence of the crack surface's shape 
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on the stress field. 

The linear and bilinear finite element computer program 

used in this study is adapted and revised from Wilson's original 

program [20] for two-dimensional plane strain analysis. Computer 

plotting subroutines were also set up to plot displacements, stress 

fields, and the contours of stresses to aid in the interpretation of 

the results. All the displacement and stress field plots are capable 

of indicating both direction and magnitude. 

Three types of problems will be investigated in the Part II 

of this thesis. The first problem is devoted to the crack problem 

as mentioned above. The second problem deals with the study of 

the stress and displacement distributions in slopes or embankments. 

The last one concerns the development of failure in and the stability 

of a slope. 

VI. 2 Bilinear Finite Element Analysis. 

VI. 2.1 Functional Consideration. 

The principles of linear finite element methods are well 

known and can be found in many engineering references [ll5]. 

Bilinear and non-linear variations of the basic method have been 

described [115]. In the present application a bilinear representation 

as shown in Fig. IV. l, is used because of the lack of knowledge of 

a workable constitutive relation for real soils. Note that the bi­

linear relation is valid as an approximation to the material 
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properties only if a monotonic increase in stresses or in certain 

stress invariants in the simulated problem occurs. Usually, the 

bilinear stress- strain relationship is expressed in terms of stress 

and strain invariants as shown in Fig. 1, where 

(} = 
and ( 6. 1) 

If Von Mises' yield criterion is used, the bilinear stress-

strain relation can be expressed in equivalent linear form as 

(} 

G. = Gn + -3.. (1-n) 
1 

€. 
1 

(6. 2) 

where G is the shear modulus, G. is the shear modulus corres-
1 

ponding to E. , n the elasticity ratio, and <J is the stress as 
1 y 

shown in Fig. 1. In the above, € 1 , o- 1 etc., stand for the principal 

strain and stress components. The usual failure criterion for soil 

is, of course, that of Moh'°-Coulomb, with the yield stress depending 

on the hydrostatic stress through the parameter of friction angle. 

The latter criterion is more difficult to implement in finite element 

analysis, and the Von Mises criterion was used in the present 

preliminary investigation. For monotonic loading paths, the 

criteria can be made essentially identical when the friction angle 

is taken to be zero. A generalized Von Mises criteria for Mohr-

Coulomb type material for plane strain condition has been established 
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[ll6] * to include both friction angle cp and cohesion c into considera-

tion. The yield stress can be expressed as 

(J = 
y 

3c + (o- 1 + o-2 + o-3 )tancp 

..J 3 + 4 tan2 cp 
( 6. 3) 

From Eq. (6. 3), it can be seen higher deviatoric yield stress is 

required for higher cohesion and friction angle values for the 

development of failure. 

Usually a bilinear finite element analysis is solved by one 

of the following methods, namely, direct-iterative method, 

incremental stress or strain method [116] or by incremental 

plasticity theory [ll 7] . The direct iterative method is illustrated 

in Fig. VI. 2. The process of calculation can be described as 

follows: 

1. A linear analysis is performed to determine the stresses 

and strains based on initial G and v values. 

2. The computed stresses and strains are used to deter-

mine a new G and v for each element by means of Fig. VI. 2(a) or 

Fig. VI. 2(b). 

3. The new E and v are then used to carry out another 

linearly elastic analysis. 

4. Repeat step 2 and step 3. 

~:'Normality condition is involved in deriving this relation. Volume 
change is small if <P is small. 
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The number of trials depends on the value of n, the iterative 

method used and the type of problem considered. The iterative 

scheme has been found empirically to be convergent for most cases. 

If n is small, the method in Fig. VI. 2(b) would converge faster. If 

n is large, the method in Fig. VI. 2(a) would be more suitable. 

However, it is to be noticed that any process will be considered as 

legitimate providing the stress state in each element at the final 

solution lies on the given bilinear stress - strain function. Thus at 

any intermediate stage during the iterative process, either of the 

techniques in Figs. VI. 2(a) or VI. 2(b), or the combination of these 

two can be used depending on the problem considered. 

VI. 2. 2 Preliminary Example 

Since this study concerns the stress concentration and the 

development of failure around the toe of a slope and in the vicinity 

of a crack, it is preferable to start with a preliminary problem to 

demonstrate the level of stress concentration which does occur and 

that the bilinear finite element approach gives a convergent solution. 

The problem configuration and prescribed boundary conditions as 

shown in Fig. VI. 3 are taken for this purpose. The element size 

is made smaller in the vicinity of the toe in order to show 

adequately the degree of stress concentration. In a mathematical 

analysis the toe is a singular point. This problem can be con-

sidered to be similar to the region around the toe of an excavated 

90° slope with the exception that, in this case, the boundary and 

loading conditions are restricted as shown in Fig. VI. 3. The 
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constraint due to the boundary conditions considered tend to lessen 

the degree of stress concentration at this singular point. 

The results of a linear analysis by finite element method of 

this problem in terms of resulting principal stress es, displacements 

and major principal stress contours, in the shaded portion of Fig. 

VI. 3, are plotted in Figs. VI. 4, VI. 5 and VI. 6 respectively. The 

stress concentration around the corner is evident. A bilinear 

relation as shown in Fig. VI. 7 (a) with the iterative scheme of Fig. 

VI. 2(a) was also used to solve this problem; the resulting major 

principal stresses in the corner elements are plotted in Figs. VI. 7(b) 

and VI. 7 (c). It can be concluded that the number of approximations 

required to give an adequate representation depends on the yield 

stress er , the elastic ratio n and the characteristics of the problem 
y 

consider ed. For this specific type of problem, the errors are 

small after three approximations for n = 0.5 and after four approxi-

mations for n = 0. 2. Generally, the number of approximations 

required increases with the decrease of elastic ratio n, i.e., as 

the material model approaches the ideal elastic-plastic condition 

more closely. 
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STRAIN INVARIANT E ~ 

F i g • VI .1 . B i 1 i n e a r S t r e s s --S t r a i n R e 1 a t i o n 

E' 
( a ) 

! CD ------@~ 
-:r-:- / 

... .....- . ./ /"" ® , 
t! 2 / 

/ / 
/ / 

/ / 

/ / 
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( b) 

F i g . VI. 2 I t e r a t i v e S c h e m e 



No. of Nodal points= 190 
No. of Elements == 162 

E = 2 x 106 psf 

ZI = 0.3 

OA:: AB:: DE =OE = 90 ft 

BC= 180 ft 

Boundary conditions 

{a) Along AB and CO: Zero horizontal 
displacement 

(b) Along BC and OE: Zero vertical 
displacement 

(c) Along OA and EO: 100 psf 
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Fi g • VI. 3 F i n i t e E I e m e n t C o n fi g u r a t i o n 

Used in Preliminary Example. 
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Fig. VI.4 Major Principal Stress Contour 

in the Shaded Portion of Fig. 3. 
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E' o' 

---~ Tension 
----<- Compression 

K ~ 

400 psf 

t I 

8' C' 

Fig . VI. 5 Pr inc i pa 1 St r es s es (Magnitude 

and Direction) Plot in the 

Shaded Portion of Fig. 3. 
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CHAPTER VII 

RESULTS AND CONCLUSIONS OF THE PROBLEMS TREATED 

BY BILINEAR FINITE ELEMENT ANALYSIS 

VII. l. Stress Distribution Around Two-Dimensional Cracks. 

VII. l. 1 Linear Analysis and Results of Griffith Cracks. 

In fracture theory, the cone entration of stress and develop­

ment of failure near the tip of a crack is of importance. In the 

past, only cracks with simple shapes have been solved analytically 

by the line"ar theory of elasticity [24]. For cracks with more 

complicated shapes and boundary conditions, conventional linear 

elasticity theory fails to provide solutions. Here the finite element 

method can be usefully employed. For this type of problem it is 

necessary that the elements near the corner of a crack be very 

small in comparison with the size of the crack. Previous investi­

gators [ 22] have usually neglected this point. The size of the 

elements they have employed near the tip of a crack or toe of a 

slope has been too large to indicrate the stress concentration 

correctly. Together with the boundary conditions in some investi­

gations, this has caused failure to develop in regions other than 

the toe of the slope or the corner of a crack [ 22]. Before setting 

up the finite element grid for the crack problem, it is advisable 

to investigate the nature of the stress distribution in the vicinity of · 
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a crack. It is also preferable to start with a simple crack problem 

whose solution has been obtained analytically. The simplest case to 

start with is a two-dimensional Griffith crack [24], [ll3]. A 

Griffith crack of length 2L is shown in Fig. VII. l(a). 
c 

lf the crack is subjected to uniform internal pres sure P 0 , 

the maximum shearing stress at point P(r, 9), has been found to be 

[ 24], {113] 

2 3/ 
L /2 

T = Po r sine ( __ c_) 
max L r 1 r 2 c 

(7. 1) 

in polar coordinates as shown in Fig. VII. l(a). From Eq. (7 .1) it 

can be seen that the maximum shear stress is roughly inversely 

proportional to the square of the radial distance from the tip of 

the crack. Therefore, the size of the finite elements near the tip 

of the crack should be selected to reflect this and were arranged 

similar to the configuration in Fig. VI. 3. It is logical to arrange 

these elements in such a fashion that the distance between the 

center of gravity of each element and the tip of the crack increases 

proportionally with the square of the order of sequence. 

The solution of problems by finite element analysis requires 

a large digital computer. The number of elements is usually 

limited by economic reason and limitations in computer storage. In 

other words, the total number of elements has to be small enough 

to be economic and within the computational capacity, and yet large 

enough to provide good solution. Although tedious to set up, a 

graded network of elements best meets this requirement in the 
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present problem. 

The next step is to establish the influence of the size of the 

grid on the accuracy of the solution, to determine the optimal grid 

size for obtaining solutions with reasonable accuracy. Due to its 

simplicity, the maximum shear stress obtained from the analytical 

solution and expressed in Eq. (7 .1) was used for comparison purposes 

in this study. A convenient way of visualizing its distribution in 

the vicinity of a crack and hence of comparing the analytical and 

computed maximum shear stress es consists of plotting the 

T(x, y) = aP0 where a is a parameter. Since they appear as fringes 

in photoelastic analyses, these curves are called 11 isochromatics. 11 

By letting a = T(x, y)/P0 and changing to Cartesian coordinates, 

Eq. (7 .1) can be rewritten 

Cl:' = 

J_ 
L c 

(7. 2) 

(Note that in Sneddon' s paper (1946) and book (1969), the expressions 

for a are not all correct). From Eq. (7. 2) the isochromatic lines 

in the vicinity of a Griffith crack can be plotted. Due to the 

symmetry of the problem, only the lines in a quarter of the whole 

region are shown in Fig. VII. 2. From this figure it can be seen 

that all isochromatic lines pass through the very tip of the crack. 

This means, of course, that the maximum shear stress is infinite 

at the tip. Different sizes of finite element grids were set up and 

solved by linearly elastic analysis. Figs. VII. 3, VII. 4 and VIl. 5 
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show the results. In these figures, (a) shows the finite element 

configuration, (b) shows the corresponding isochromatic lines in 

the vicinity of the crack, and (c) shows the comparison between 

the results of theoretical and finite element solutions along a radius 

sequence from the crack tip. 

VII. 1. 2 Conclusions of Linear Analysis on Griffith Cracks. 

From the above results, the following conclusions can be 

made: 

1. For a finite element analysis, the computed stresses 

everywhere are finite. However, as shown in series (c) of Figs. 

VII. 3, VII. 4, and VII. 5 the general trend of stress concentration at 

the tip of the crack is strongly indicated. 

2. In comparing the isochromatic lines from theoretical 

and finite element solutions, it is seen that the average deviation 

in maximum shear stress for a grid size 8L by 8L is about 
c c 

0. 05P0 ; the results may therefore be taken to be 5% in error. 

For practical engineering purposes, this would be acceptable. If 

higher accuracy is desired, it would probably require a grid size 

of 20L by 20L to reach an accuracy of 1%. 
c c 

If this conclusion is 

extended to the problem of stress and deformation distribution in a 

semi-infinite slope, it would seem that the boundary should be 

established fairly far away. A distance at least of 4 or 5 times 

the height of the slope would be required to reach a meaningful 

representation of a semi-infinite medium. 
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3. The smaller the overall size of the grid the less 

accurate is the solution. Moreover, a lower degree of stress 

concentration is indicated around the tip of the crack for the 

smaller grid because of the influence of the boundary constraint. 

4. Because of the stress concentration at the tips of the 

crack, plastic flow occurs in this region even for small pressures 

P 0 • If the failure criterion is taken to be that of Tresca (maxi­

mum shear stress), the linearly elastic isochromatic contour can 

serve as a rough indication of the size of the failure zone. At 

first glance it would seem that if the yield stress ·is high or if P 0 

is small, the region of plastic strain would be small and would not 

appreciably affect the distribution of the stress es in regions far 

away from the tip of the crack. However, due to the tension 

developed near the crack, the crack extends in practice and the 

above observation may not necessarily be true. 

discussed further in the study that follows. 

This point will be 

VII. 1. 3 Bilinear Analysis, Results and Conclusions of 

Griffith Cracks. 

The next step is the investigation of the effect of plastic 

strain on the redistribution of stress in the vicinity of a crack. If 

the bilinear finite element scheme and the Von Mises yield criterion 

as shown in Eq. (6. 2) are applied to the crack problem, the extent 

of yielding can be found. The size of the yield zone and the stress 

redistribution in the unyielded area depend on the load, the yield 

stress value and the characteristics of the bilinear stress - strain 
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relation. From the bilinear finite element solution it is obvious 

that the stress in the yielded zone is reduced while the stress in 

the unyielded zone increases in comparison with the solution from 

the linear scheme. Fig. VII. 6 shows the yield zone with elastic 

ratio n= 0. 5 and yield stress = 2. OP0 • It can be seen from this 

figure that even though the yield zone is small, a large part of 

unyielded region has increased 5% or more in major principal 

stress (as indicated by the shaded area in Fig. VII. 6). A more 

significant change can be observed if either the elastic ratio n or 

the yield stress is reduced. 

It may be noted at this stage that a sizeable zone of tensile 

stress has developed as shown in Fig. VII. 7. For soils, tensile 

cracks will open in these zones but this aspect of material 

behavior is neglected in this study. If this local failure in the 

tensile zone is considered, the degree of stress redistribution will 

be even more severe. 

VII. l. 4 Analysis and Results of Cracks with Various 

Opening Angles. 

The last step in investigating a crack problem is to study 

the stress distribution around a crack with a shape other than that 

of a Griffith crack. Various shapes of cracks have been investigated 

as an extension of Griffith crack theory [119], [120], [121] . For a 

Griffith crack, the tips can be idealized as the intersection point of 

two almost parallel straight lines. If the tip angle opens up slightly, 

the degree of stress concentration will be less than that of a 
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Griffith crack. However, the quantitative analytical relationship is 

still to be established. In this study, the effect of different crack 

angles is investigated by the finite element method. The actual 

problem of interest would be an infinite crack with different angles 

of opening as shown in Fig. VII. 8(a). Due to computational limita­

tions, it was not feasible to tackle this problem. Since the stress 

concentration and stress distribution in the vicinity of a crack tip 

are the main interest in this study, a crack problem as shown in 

Fig. VII. 8(b) was instead solved by the finite element method. The 

stress concentration in the lower corner (L in Fig. VII. 8(b)) does 

not materially contribute to the stress concentration in the immedi­

ate vicinity of the crack tip (Tin Fig.VII.8(b)). Thus, the problem 

shown in Fig. VII. 8(a) can be related to the results of the problem 

of Fig. VII. 8(b). This assumption is probably adequate if the finite 

element grid in the lower corner is not chosen to be too fine. The 

finite element grid for a crack with 30° opening angles is cons­

tructed by cutting a 15 ° triangular wedge section from the grid 

shown in Fig. VII. 5(a), and is illustrated in Fig. VII. 8(a). (Only a 

quarter of the region is employed due to symmetry). The grids 

for other crack opening angles can be constructed in similar 

fashion. The results for various crack openings are represented 

by a plot of isochromatic lines to indicate the stress level and 

concentration in the vicinity of the crack tips, and are shown in 

Figs. VII. 9, VII. 10 and VII. 11. 

VII. l. 5 Conclusion on the Results of Stress Distribution of 

Crack with Various Opening Angles. 
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VII. 2 Distrj,bution of Stresses in Slopes and Embankments. 

The state of initial stress in a natural slope or in the 

earth's surface prior to construction of an embankment is an 

important factor in the deformation and stability of a slope. 

This has been taken into account, to a limited extent, in a 

previous study [22). For an earth structure under gravity, only a 

few idealized configurations may be analyzed exactly [112]; for 

practical cases, some approximate techniques must be employed 

[122), [123]. It is not difficult to apply the linear finite element 

analysis to calculate the states of stress and deformation for this 

type of problem, but interpretation of the results requires some 

care. To examine the effect of the stresses at the toe of the slope 

on the stability of the slope for this study, a simple finite slope 

with a finite element grid as shown in Fig. Vii.13(a), was estab-

lished for linear finite element analysis. Fig. VII.13(b) shows the 

resulting plot for isochromatic lines under gravity loading. From 

the results, it is evident that there exists a stress concentration 

around the toe of the slope. It can also be noticed that the region 

near the bottom boundary is in a state of relatively high stress. If 

a failure is to develop, it would be initiated in the region of stress 

concentration and high stress near the bottom boundary. It is the 

subject of the following study. 

VII. 3 Development of Failure and Stability Analysis. 

VII. 3.1 Prelude 
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It is well known that the final state of stress in an artificial 

slope or embankment depends upon the manner in '\Vhich the final 

configuration is reached [21], [22]. To analyze the state of stress 

in an artificially-c nstructed slope or embankment, the incremental 

loading (built-up) or unloading (cut-down) cases must be simulated. 

This point has long been recognized by various investigators [21], 

[ 22]. By the employment of the finite element method, the cases 

of built-up slopes can be easily simulated. For the cases of cut-

down slopes, it has been shown that if the material is homogeneous 

and linearly elastic, the removal to the final stage may be made in 

one step and it is unnecessary to simulate the excavation procedure 

[122] . However, due to the concentration of stress at the toe of 

every excavation stage, linear elasticity can no longer be expected 

to apply. In each excavation stage, a toe region progresses down-

ward through the material which in the region adjacent to the toe 

goes through successive stages of stressing, relaxation, and relief 

of stress. A correct analysis requires the use of an incremental 

constitutive relation such as the one derived in Part I, which des­

cribes completely the stress- strain relationship for the loading, 

unloading and reloading process. This point is totally neglected by 

most investigators. 

The bilinear scheme used in this study is valid only if a 

monotonic increase of the state of stress exists. Therefore, it 

cannot be used to simulate the cut-down process to study the 

development of failure around an excavated slope. However, the 

stability of a slope can still be studied qualitatively by considering 
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the slope as a whole without simulating the cut-down or build-up 

process. Instead of varying the height of a slope, the gravitational 

force (unit weight, y) can be gradually increased to study the 

development of failure by bilinear finite element analysis. 

VII. 3. 2 Analysis, Results and Conclusions 

(a) Homogeneous slopes and embankment. 

For slope stability analysis, a dimensionless stability factor 

(Sf)' which is defined as the ratio of the product of unit weight y 

and the slope height H to the cohesion c of the material, is usually 

used as a comparison parameter. By gradually varying the unit 

weight y and fixing all other related parameters, the failure zone 

for various Sf values can be investigated. In this study, the specific 

slope with finite element configuration as shown in Fig. VII.13(a) 

was investigated by bilinear analysis. Ideally, Poisson1 s ratio 

should be taken to be 0. 5. However, the finite element formulation 

used in this study cannot be used for the v = 0. 5 case. Instead, the 

v value was taken as close to O. 5 as possible without generating 

unreliable results. Some results showing the yield zone for dif­

ferent Sf values applied to the configuration of Fig. Vll.13(a) are 

shown in Figs. VII.14 and VII.15 for <P= 0 and 10° respectively. 

From these results, the following remarks can be made: 

1. When Sf is small, the yield zone is first developed as 

expected, at the toe of the slope due to the stress concentration 

there. As Sf is gradually increased the toe yield zone spreads. 
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From these results, the following comments can be made . 

1. In the isochromatic plots, it seems that the stress 

concentration at the tip of the crack is of the same order of mag-

nitude for different openings. If, again, a Tresca failure crite rion 

is used, the yield zones for different openings would also be about 

the same size. Therefore, if a bilinear representation is employed, 

the nature of the redistribution of the maximum shear stress would 

be quite similar for different crack openings. However, if the 

major principal stress for each corner element around the tip of 

the crack is plotted for different openings, as shown in Fig. VII.12, 

it can be seen that the Griffith crack has a much more severe 

stress concentration. A crack with a larger opening angle has less 

stress concentration than a crack with a smaller opening angle. If 

a von Mises-Mohr-Coulomb yield criterion, as in Eq. (6. 3) is con­

sidered, then a crack with a smaller opening angle would have a 

larger yield zone. Therefore, it can be speculated that a fracture, 

beginning as a Griffith crack, will gradually be changed into a 

wider opening at the tip to plastic strain and the degree of stress 

concentration will become less. 

2. As shown in Figs. VII. 9, VII.10, and VII. ll, the stress 

concentration for the upper corners with different openings is 

clearly determined. However, around the lower corners, the iso­

chromatic lines show a much smaller degree of stress concentration. 

This occurs because the grid used in the latter region was not fine 

enough to represent the stress concentration adequately. 
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With a further increase in Sf a portion near the bottom boundary 

yields due to the high principal stress difference induced there by 

gravitational loading. This depends on the value of Poisson's ratio 

chosen in the problem, as demonstrated below. 

2. If a conventional slope stability analysis is applied to a 

90° slope as in this case, the critical Sf values are 3. 85 and 4. 6 

[ ll] for <P values of 0 ° and 10 ° respectively. However, a sub-

stantial region of the slope is seen to be yielding for Sf values well 

below the critical Sf values by this analysis for both <P angle values. 

3. The above remarks can be explained as follows. The 

stress level in the soil increases with depth under gravitational 

loading. In elastic theory, the vertical stress in an isotropic and 

homogeneous semi-infinite medium under its own weight has the 

value of -yz where z is the depth from ground surface. For a 

plane strain case, the principal stress in the other two directions 

are 

(7. 3) 

According to Drucker and Prager [l16] , the Von Mis es -Coulomb 

criterion states that a material yields when the following condition 

is reached: 

Yz 
Jz = 

{ 9+ 12 tan2 <j:> 

3c (7. 4) 
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where 

(7. 5) 

From Eqs. (7. 3), (7. 4) and (7. 5), the yield criterion can be restated 

as: 

3 
= 

(l+v )tancp 
1-v 

(7. 6) 

In other words, yield will occur if the major principal stress 

reaches the value obtained from Eq. (7. 6). It has to be noticed 

that the denominator in the right-hand side of Eq. (7. 6) should be 

positive in order to have a yield mechanism. If the demonimator 

is negative or zero then yield will never occur. From Eq.(7.6), 

it can be seen that yield will not occur in an incompressible semi-

infinite medium (v = 0. 5) bounded by a horizontal surface. For a 

slope on a semi-infinite space, the stress level in the region 

sufficiently far away from the slope is similar to the above sit-

uation. The <J 1 stress in this region would be equal to yz where z 

is the vertical distance from the crest of the slope. Setting y 1 = yz 

into Eq. (7. 6), the region beneath the critical depth level z where 
c 

-yz /c is equal to the right-hand side of Eq. (7. 6), would presumably 
c 

yield. However, due to the influence of the slope and the boundary 

conditions imposed on the finite element grid, the -yz / c values 
c 

might not be the same as the values calculated from Eq. (7. 6) as 

shown in Figs. VII.14 and VII.15. The redistribution of stress in 
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the yield region causes a large portion of the slope to yield at 

lower sf value than expected. If the lower boundary in the finite 

element configuration shown in Fig. VII.13(a) is set further from the 

ground surface, it can be expected that a larger portion of this 

configuration would yield at an even lower Sf value. 

In dealing with the failure problem, the conventional slope 

stability methods have proved satisfactory in practice. Yet it is 

found that a lower Sf value would probably be reached at failure of 

the slope for small ¢ angles by the bilinear finite element analysis . 

The conventional analysis, which assumes a soil whose strength 

does not vary with depth, thus probably gives satisfactory results 

in a real field situation because the cohesion for normally con­

solidated and over-consolidated clay soils increases with the 

increase of depth beneath the ground surface. 

In other words, it appears from this analysis that the con­

ventional failure calculation overestimates (is uncons ervati ve) the 

height of slope which will fail for a soil which truly exhibits a 

constant strength/ depth profile. However, soils increase in strength 

with depth and the increase is sufficient to support the greater 

slope height predicted by the theory. 

(b) Non-homogeneous slope and embankments 

In the above analysis, it can be seen that the yield region has 

not yet reached the crest of the slope. Although a large portion of the 

slope has yielded, no toe failure mechanism is obtained . A toe failure 
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mechanism for a slope must have a yield zone extended from the toe 

of a slope to the crest. If the soil is assumed homogeneous, the 

above analysis showed that the redistribution of stresses in the yield 

region near the botto1n boundary causes a large portion of the slope 

-to yield before a toe failure mechanism is reached. 

In order to reach a toe failure mechanism, this influence due 

to the redistribution of stress near the bottom boundary must be 

eliminated. One way of achieving this is to increase the strength 

with the increase of depth beneath the ground surf ace. In the follow­

ing study, the finite element configuration shown in Fig. VII.13(a) 

is also used but the yield stress is assumed to increase linearly 

with depth from the ground level OA to the bottom boundary BC 

{Fig. VII.13(a)). 

Fig. VII.16 shows the results for the case in which the yield 

stress increases linearly by a factor of six from the level OA to 

the bottom boundary BC. It can be seen that toe failure mechanism 

is reached at the value -yH/C = 5. 5 for ef> = 0°. This -yH/C value 

is considerably higher than the Sf value (3. 85) obtaine d from the 

conventional stability analysis. 

From the above results, it can be noticed that bilinear finite 

element analysis creates a rathe:r confusing picture in dealing with 

the problems of slope stability. A bilinear generalization of soil 

behavior is far from being desirable. The application of a mo re 

rigorous constitutive relation such as the one proposed in Part I is 

strongly recommended. 



y 

Normol pressure on crocl: surface = P0 

I 
I 
I 

-203-

I (bl 

I 
I 
I 

____ Tc -:r ___ lo Tc 

~\8:;--,------l>- x 

'·~ 
p 

y 

Fi g • VII. 1 G r i ff i t h c r a c k 



0 

0.
2 

0.
4 

0.
6 

0.
8 1.
0 

_J
_ 

Le
 

1.
2-

I I 

1.
4 

1.
6 

1.
8 

2.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0 

----
--

1.
2 / 

.L
 

Le
 1.

4 

I 

1.
6 

F
i 
~ 

. V
II

. 
2

.T
 h

 e
 

Is
 o

 c
h

 r
 o

m
 a

t 
i 

c 
L

in
e
 s

 
in

 
th

 e
 

V
ic

in
it

y
 

o
f 

a 
G

r
if

f
it

h
 

C
r
a
c
k

 
b

y
 

C
la

e
s
ic

a
l 

T
h

e
o

r
y

 
o

f 
E

la
s
ti

c
it

y
. 

1.
8 

2.
0 

2
.2

 
2

.4
 

I 
I N
 

0 .+:
-

I 
I 



-205-

(a) Finite Element Configuration 

A B 

E = 2XI06 psf 
v = 0.3 
I 2 Crack length = OTc = 90 ft 

0 Tc C = 180 ft 
AB=l80ft 
OA .= BC= 160 ft 

No. of Nodal points = 151 

No. of Elements = 126 

Boundary conditions 

{a) Along OA, BC: No horizon!ol 
displacement 

( b) Along AB, C Tc: No vertical 
displacement 

{c) On OTc: Nominal pressure P0 
= 100 psf 
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