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ABSTRACT

‘In the first part of this thesis, a three-dimensional rheological
model was constructed to represent the deformation behavior of a
granular material, The constitutive relations for a granular material
were subsequently derived. The rheological model was conceived
from the observed behavior of granular material from laboratory
experiments and from theoretical considerations, The constitutive
relations were expressed in incremental forms to account for the
stress history and loading péth dependency of a granular material's
behévior, such as non-linearity, initial or induced anisotropy, history
and path dependency, and. shear dilatance,

The qualitative and quantitative behavior of a granular material
such as sand under shear stress from experimental results and from
the proposed constitutive relations was examined and compared, It
was found that the experimental data and the proposed constitutive
relations werein close agreement,

Due to the number of parameters Ainvolved, and the non-
symmetrical resulting stiffness matrix in a general stress-strain for-
mulation, it is difficult to apply the proposed constitutive in a finite ele-
ment computer formulation at the present state of the art. Consequently
the application of finite element methods to non-linear problems was
examined in more detail as a preliminary step. The effect, or the
results of the material properties, the finite element mesh size and the

computational procedure was examined in detail in Part II of this thesis,
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CHAPTER I

INTRODUCTION AND SCOPE OF RESEARCH

I.1 Prelude

Until several years ago, nearly all the investigators in soil
mechanics paid little or no attention to the general stress-strain
behavior in real soils and devoted their studies almost exclusively
to the peak or ultimate strengths of soils. The soils behavior was
assumed to be linear up to the ultimate strength. As a consequence
in classical soil mechanics, problems of stress distribution and
deformation have generally been solved on the basis of linear
elasticity theory [ 1] and problems associated with stability and
limit equilibrium have been examined assuming soil to be a rigid-
plastic material [ 2] . This school of thought was advocated by
Terzaghi [ 2] and has dominated soil engineering in practice,
despite the known fact that soil's behavior is neither linearly elastic
nor has a constant yield stress after the point of failure is reached.
Soil engineers have perhaps been reluctant to employ a more realistic
approach because of the convenience of applying simple theories and
due to the fact that a more realistic approach to represent soil
behavior is difficult to arrive at and leads to computational problems.

The separation of a real soil behavior into either a linear
deformation problem without regard to localized yielding, or into a
failure problem in which deformations in the soil are ignored has
caused many difficulties in the analysis, understanding and interpre-

tation of the real-life behavior of soils. A proper formulation and
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solution of soil mechanics boundary-value problems requires an
understanding of the stress-strain relation of the material. Realistic
stress-strain relations for soils behavior are necessarily complex
as a result of the physical and geometrical structure of soil. A
complicated stress-straiﬁ relation gives rise to analytical difficulties.
However, because of the development of digital computers, a complex,
realistic description of stress-strain behavior may be employed
economically in solving boundary value problems in soil mechanics,
At present, it appears that computer capabilities have developed
beyond the state of the art of the description of soil behavior,
Consequently, the first part of this thesis is devoted to the
development of a more realistic constitutive relation for a granular

material. The effort is restricted to quasi-static behavior.

I.2 Definition of Terms

Confusion often arises from the lack of generally accepted
terminology in the fields of rheology. It is desirable to indicate a
number of definitions that have been adopted in the present work.

The term "stress" is defined in the usual engineering sense
as force per unit area[1]. In the present study all the stresses are
principal stresses unless otherwise mentioned, and are implied to
be "effective” in soil mechanics terms. The path traced out in
principal stress "space" during a test is called a "stress-path."
The term "strain" is also defined in the usual engineering sense.
Unless otherwise mentioned the strains in this study are principal

strains. According to the usual sign convention in soil mechanics
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compressive stresses and strains are considered to be positive.
The material is "isotropic" if the mechanical properties of

the material are independent of direction, and is '

'anisotropic" if
mechanical properties are dependent on direction. The term
"induced anisotropy" refers to the anisotropy due to the loading and
straining or due to the different slip behaviors in extension and
compression.

'A "principal stress" or "principal strain" space is a three-
dimensional domain with three mutually perpendicular axes expressed
in terms of three principal stresses or stralns. A "yield criterion”
is a function of stress or strain level where the material exhibits
large deformations or a relatively sudden change in the stress-strain
curve for a small increment of applied stress. The yield criterion
defines a "yield surface” in stress or straln space. '"Strain- or work-
hardening” refers to yield survace which changes with deformation.

A "stable" work-hardening material in the sense of Drucker [ 3] is
defined as a work-hardening material on which the application and
removal of an external force results in (1) positive work and (2) posi-

tive or zero net work over the cycle of loading and unloading.

I.3 Important Aspects of Granular Material Behavior and the Draw-

backs of Previous Approaches

In the absence of a stresgs-strain relation proper to a granular
material, it has been difficult or impossible to perform a rigorous
analysis of many realistic field problems in soil mechanics. Various
writers have attempted to deduce a useful mathematical description

of a constitutive law for the granular media expressed in appropriate
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form for subsequent analysis on the basis of linear elasticity [ 1],
or visco-elasticity [ 4], of perfect plasticity [ 5], or of the elastic-
plastic theory for stable work-hardening materials [6,7] . More
recently, incremental theories of non-linear elasticity [8,9] and
plasticity [ 10] have been employed. A general review of previous
work will be included in Chapter II,

In some cases, the above-mentioned theories and methods
may give satisfactory approximation to the behavior of a granular
material in specific circumstances. However, the main drawback
in using these theories and methods is that many important aspects
of the deformation behaviors can not be generally accounted for.

The important aspects, which must be included in the constitutive
relation for granular media are:

(a) dilatancy due to a pure shear stress increment,

(b) work-hardening behavior, and the inelastic strains during

shear deformation,

(c) dependency of strain on the stress history and path,

(d) induced anisotropy due to loading and due to the different

deformation behaviors in extension and in compression.

It is desirable to have a brief description of the general
behavior of a granular material such as sand under stress to illustrate
these important aspects. A granular material such as sand under a
given load for a period of time before removal of the load, exhibits
an overall (macroscopic) deformation behavior as shown in Fig. I.1
after Scott [ 11] . When the load is statically applied at time O, there

is an instantaneous deformation OA, If the load is removed immedi-



-6-
ately, the deformation becomes OE which is a permanent set. If
the load is applied for a period of time, the deformation increases
along AB, which for sand will rapidly flatten out to a horizontal line
BB'. After the removal Qf the load, the deformation immediately
reduces by an amount of BC. The deformation will be further reduced
in time along the curve CD until a steady value is reached. This
illustrates that the deformation behavior of a granular material is not
elastic.v

Furthermore, the deformation behavior is also non-linear;
this can be demonstrated by the results of tests on sand in the conven-
tidnal triaxial test apparatus. A typical conventional axial compression
test result is shown in Fig. I.2 to illustrate this point [ 12]. If the
axial stress is increased, the stress-strain curve “races along a non-
linear line OA. When the axial stress is reduced at point A, the
unloading curve is AB, with OB representing the piastic strain, If it
is reloaded at B the stress-strain curve follows a different curve line
OC, thus forming a hysteresis loop. If the load is further increased
beyond the stress level of A or C, the stress-strain curve becomes
more of a continuation of OA than of BC.

It is well-known that a granular material dilates at small
strains (positively or negatively) under pure shear stress [13]. In
addition, it has been shown by Ko and Scott [ 14] that a granular
material, especially sand, begins to deform plastically at very small
shear stress regardless of the magnitude of the hydrostatic compres-
sion. The yielding is then continuous until a final failure condition

is reached. This indicates that each new stress point on a given
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shear stress path is a point on the newly generated yield surface
and is dragging a yield surface with it.

The last, but not the least, important aspect is anisotropic
indﬁced by the loading and resulting from the different deformation
behavior in extension and in compression. Experimental data on
Ottawa sand under axial compression and axial extension (stress
paths are shown in Fig. IV.2) performed by Bell [15]. indicate that
a movement of the stress point toward an axial extension stress state
leads toward yield, whereas a movement of stress point toward the
axial compression stress state leads toward increased ''stability. "
In other words, granular soil behaves differently in extension and in
compression. Other experimental evidence to substantiate this
point is the finding of different stress-strain curves in axial com-
pression and axial extension as obtained in the laboratory tests on
Ottawa sand by Ko [16] and Masson [17].

A study of the literature indicated that a suitable model for
material behavior exhibiting all the above effects had been suggested
by Iwan [18, 19]. This model appeared to show promise as a descip-
tion of soil behavior and a detailed examination of it follows later.

I.4 Research Scope

In the first part of this thesis, attempts are made to develop
a rheological model to describe the deformation behavior of a granular
material under various stress and strain conditions. The effort
concentrates on the evidence observed in laboratory tests and theoreti-
cal considerations to obtain a rheological model exhibiting a stress-

strain relation closely similar to the experimental results.
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From the contact stress theory [ 1], the relation between the
tangential component of the contact force between grains and displace-
ment is inelastic, so that the stress-strain relation should deéend
upon the entire loading history. Accordingly, the correct stress-
strain relation for a granular material should be given as an incre-
mental one. The constitutive relation in this thesis will be presented
in incremental form to take the effect of stress history and path into
consideration.

The feasibility of the incremental constitutive relation will
be tested by fitting the experimental results on Ottawa sand under
various stress conditions in tests performed by Ko [ 16] and Masson
AT «

Linear soil deformation problems of complicated geometry
have been tackled by means of finite element computer programs [ 20].
A limited number of bilinear studies have been made in attempts to
examine the yield and failure situation [ 21 ,22] . The results of these
studies raise some questions as to the techniques used and theoretical
interpretation., Some general non-linear studies have been attempted
[9,17,61,62] on a piecewise linear basis with generally unsatisfactory
results either from a rigorous point of view or from viewpoints of
material characterization.

The material model suggested in Part I would lead to a finité
element formulation considerably more rigorous and also more compli-
cated than any previously suggested. Due to the number of parameters
involved, the nonsymmetrical resulting stiffness matrix in a general

formulation, and the complicated loading and unloading process, it is
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difficult for the finite element computer program at present state
of the art to handle the relationships proposed. So it was decided
to examine the application of finite element methods to non-linear
problems in more detail as a preliminary step. For practical
reasons, the problem of the cdnditions of stress around the toe of
a slope or at the tip of a crack [23, 24] in a bilinear material is
chosen for this purpdse. The effect on the results of the material
properties, the finite element mesh size, and the computational

procedure is examined in detail in Part II of this thesis.
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CHAPTER II

SURVEY OF PREVIOUS WORK

II.1 Prelude

The deformation behavior of granular material under stress
is highly complex and extremely difficult to obtain by testing
methods or to represent by mathematical descriptions. The
granular material's behavior includes nonlinearity, inelasticity,
anisotropy, shear dilatancy, stress and strain history dependency,
random geometric packing, and time-dependency. Although a large
effort has been devoted to this field by many investigators in the
past few years, little advance has been achieved.v Any explicit
description in phenomenological or mathematical terms needs some
degree of idealization of actual behavior and can not always be
expected to be valid under different stress or loading conditions.
Attempts to represent closely the behavior observed experimentally
lead to ever increasing elaboration in detail of a mathematical or
physical model. A useful mathematical or experimental description
of the stress-strain relation in a material is one which can be
employed as economically as possible in predicting the performance

of the material under specific conditions.

In studying the constitutive relations for granular materials

two types of approach are usually considered. The first studies
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soils as a discrete system consisting of an orderly or random
assemblage of particles. The second approach considers soils to
behave as a continuum and various continuurln mechanics models
are employed to represent deformation behavior under specific
circumstances. Both approaches are sometimes used together by
some investigators in order to have a close representation of the
stress-strain relationship, In addition, statistical mechanics is
also employed by some investigators in conjunction with one or
both above-mentioned approaches to account for the randomness in

particle size and shape distribution.

One has to keep in mind that any proposed general constitu-
tive law must be able to predict the material behavior over a wide
range of stress and strain states. The legitimacy of a constitutive
relation has to be confirmed by laboratory tests on soil samples
under various stress and strain consitions., Theoretically, identical
samples tested under identical stress or strain loadings in different
testing apparatus must yield the same deformation-stress responses.
However, this seldom occurs in practice due to the various limita-
tions and constraints of testing apparatus. In describing the defor-
mation behavior of a material in a laboratory test the influence of
the constraints of the apparatus must be carefully examined and

deducted from the observed material behavior.

The current concepts of stress-deformation mechanism in
granular material have been reviewed by Barden and Khayatt[ZS] s

Frydman [26], Scott and Ko [27], and Masson [17]. Avoiding as
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much unnecessary overlapping with the above references as possible,
the previous work concerning the subject of constitutive relations
for granular material will be categorically described and discussed

in this chapter.

I1.2 Discrete Models for Granular Materials

In investigating the deformation behavior of granular media
by considering them as discrete systems, some simplification is
always mneeded. The fundamental starting ground is the study of
the particle packing phenomena. The first systematic treatment of
ideal (regular) packings was due to Slichter [28]. He established
various arrangements of uniform spheres and gave formulas to
calculate their density. In studying the deformation behavior early
attention was directed to the correlation of material density to the
number of contacts (coordinate number) as first proposed and
investigated by Smith, Foote and Busang [29] and by Filep [30].
Since then, various discrete models have been proposed. They
usually, unless mentioned otherwise, have some common

assumptions such as
(2) The grains are in direct elastic contact with each other;

(b) There are no adhesive forces between grains; the
frictional forces between contact are mobilized by

movements of grains only.

Based on Hertz's theory [1], the assumption (a) results in a

nonlinear relation between the normal components of contact force
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and displacement. Under pure normal stress, the predicted stress-
strain relation is elastic and has a modulus of elasticity inversely |
proportional to the cubic root of normal stress. However, under
assumption (b), the relation between the tangential components of
contact force and displacement is not elastic and the stress-strain
relation depends upon the entire loading history [31]. Accordingly,
the proper constitutive relation for granular material must be
expressed in incremental form. The early research in this direction
was the study of elastic waves in granular substances [32], [33],
[34]. These studies predicted a wave velocity proportional to the
sixth root of an initially isotropic pressure (hydrostatic) and the

cubic root (rather than the usual square root) of shear stress.

In the course »f the development of a mathematical theory of
small deformations in granular media of ideal pacings, the particle
contact behaviors under different loading conditions were studied
and described in a series of papers by Mindlin [35], Lubkin [36],
Mindlin, et al. [37], Mindlin é,.nd Deresiewicz [31], and Mindlin [38].
The results of their amalyses had been utilized in developing incre-
mental constitutive relationships for granular media in face-centered
cubic (hexagonal) array [39] and in simple cubic array [40]. In
their analyses, the total stress-strain relations for ideal packings
had to be obtained from a complicated integration of differential
stress-strain relations along a specific stress path. This is
possible only for some simple loading paths such as uniaxial and
axial compression [40], [41]. Their analyses are not immediately

applicable to the general three-dimensional loadings in real granular
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material due to the above-mentioned shortcomings and due to the
fact that real material does not consist of identical grains arranged‘

in ideal pacing.

However, the results of the analysis for ideal pacings can
be realistically applied to the randomly packed arrays by some
means of correlating either the density or the coordinate number of
the ideal models to the real material. Omne such method is by
representing the assembly of real material as composed of separate
clusters of cubic array (loosest possible) and hexagonal array
(densest) in such a proportion as to givé similar characteristics
(such as density and coordinate number) of the real assembly. This
was first proposed by Smith, et al. [29] and was successfully
applied to the compression of granular material under hydrostatic
compression by Ko and Scott [42]. A similar approach which
approximates the relevant variables in a volume element containing
a big number of particles by relations among the statistical expec-
tation values from representative ensembles of "cells" each of
which consists of only a few grains, was proposed and pursued by
Gudehus [43]. He concluded that a realistical general three-dimen-
sional approach must start from the contact forces and the geome-
trical statistics of random arrays. The same starting point was

employed by Horne [44] and Neuber [45].

In recent years, statistical approaches have been taken more
frequently in the study of the mechanics of granular media. In a

discrete system, the influential factors are the coordinate‘number,
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the orientation of contacts, the friction force between contacts and
the mechanical'properties of the grains. In a real material, most
of th-ese factors are at random due to the irregular distributions of
size and shape of particles and geometrical structure. The study of
ideal packing is only an idealization of nature and it is understood
that the results of such an investigation must be extended to ran-
domly oriented assemblies of particles. Furthermore since granular
materials are, in fact, discrete media certain size restrictions on
the infinitesimal element for analysis purposes are necessary. The
element size must be such as to include a large number of grains.
It is logical to employ certain statistical descriptions of the
behavior of microscopic medium in leading to thé macroscopic

stress-strain characteristics of granular materials,

Aside from the approaches by Ko and Scott, and Gudehus,
various other investigators directed their research in this direction.
Murayama [46] developed a statistical model to explain the shearing
behavior of sand. In his modél, the orientation of slipping planes
between contacts was assumed normally distributed. This eventually
led to a conclusion that maximum shear strain increased propor-
tionately to the ratio of octahedral shear stress to octahedrai
normal stress. Hess and Stoll [47] characterized granular
material as a statistically homogeneous medium made up of cells
which were regular arrays of particles and which were distributed
and oriented at random with respect to the directions of principal
stresses, Accounting for both the elastic deformation of the

particles and inelastic deformation due to interparticle sliding,
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their model was found to predict many of the features of the
response of real granular materials. However, its use was
limited in practical cases because the theory includes rather cum-

bersome volume integrals which must be evaluated numerically.

Stochastic models have also been used to study the defor—
mation behavior of granular materials., Litwiniszyn [48] studied
surface subsidence due to mine operations by a "random walk"
argument and later extended this to apply to general problems in
the mechanics of granular media [49]. Marsal [50] studied tran-
sient motion in the grain-skeleton during one-dimensional compres-
sion by considering the movements of particles to be the consequence
of erratic imi)ulses transferred to each grain by the neighboring ones,
coupled with constant action. Smoltczyk [51] calculated the stress
distribution in soil media based on a model which assumed a statis-

tical normal distribution of stress in a particulate structure.

Marsal [52] developed a more complicated model by con-
sidering granular material as a congregation of spherical grains of
different sizes distributed according to the grain-size curve of the
granular soil. The contact forces between grains were treated as
a random variable and found to approach asymptotically a normal
distribution, The number of contacts in a grain detached by a
plane was also considered as a random variable with a constant
probability density for each contact occurrence. Based on these
assumptions and frictional resistance considerations, Marsal

obtained incremental stress-strain relations. The experimental
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result of hydrostatic compression, triaxial compression, and one-
dimensional compression tests were qualitatively confirmed from

the incremental constitutive relations.

The concept of an analogy between grain assemblages and
"macromeritic" liquids introduced by Winterkorn [53] may also
provide some insight into the behavior of granular materials. With
the analogy, the law of physics with respect to liquids can be
applied to granular systems, giving a new direction to the research.
This concept was utilized by Kezdi [54] to investigate shearingv
resistance and compressibility in an assemblage of rigid spheres,
and to determine the lateral earth pressure coefficient from the
point of view of the lateral pressure developed in an ideal packing

of rigid spheres,

In contrast to the above approach, an energy method, the
so-called "stress dilatancy" theory was proposed by Rowe [55], [56].
He analyzed the behavior of regular packings of uniform rigid
cohesionless spheres under axially symmetrical stress states, and
two-dimensional rods under plane stress state; and deduced the
condition that the ratio of rate of energy dissipation in intermal
friction to the rate of energy supplied in the major principal
effective stress direction was a minimum. An energy ratio
criterion is thus established for the critical angle of sliding
between particles following which stress would be transmitted to
other particle contacts. The complete stress-deformation process

was considered a continuous sliding accomplished by change in
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geometrical structure as the internal frictional resistance decreases.
Observing that a characteristic angle, «, of the regular packing
arrangements was absent in his derivation of an energy ratio
criterion, Rowe suggested that his theory was applicable to random
arrays of particles as well as to regular arrays. This postulation
and assumed deformation mechanisms with the absence of rolling

effects was criticized.

Horne [44], [57] studied Rowe's theory in detail and showed
that a closed packed assembly is likely to deform in large groups
by a predominantly translatory rather than rotating motion. How-
ever, Horne also concluded that the packing characteristics of ran-
dom assemblies must also be considered before stress or strain-
ratios can be derived. Horne [44], [57] propounded a method
similar to Rowe's approach for describing the state of anisotropy
existing in a random assembly in terms of "mean projected solid
paths" in the various coordinate directions. On the basis of these
concepts, the rates of strain in the principal directions were
expressed in terms of the frequency and magnitude of sliding
between particles, The statistical characteristics of a random
assembly of particles was thus taken into consideration for the
deformation behavior. Horne showed his analysis gave results for
regular arrays corresponding to those obtained by Rowe. Horne's
analysis and experimental results on triaxial extension and com-
pression tests by other investigators [58], [59] tend to substantiate
Rowe's theory. However, Ntheory has not been tested for general

three-dimensional loadings.
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II.3 Continuum Mechanics Approaches

Although the particles in granular materials such as sands
are relatively large in comparison with the crystals of metalic
materials, the domains of boundary value problems in granular
material are also .relatively large. Therefore, instead of a discrete
model approach, it has been more common to fegard granular
materials as continua in studying their behaviors. The methods
and results of continuum mechanics such as elasticity theory,
plasticity theory are usually employed in this approach and will be

described in the following section.

II.3-1 Elasticity Theory

Elasticity theory assumes that all of the deformation is
recoverable and the material returns to its initial state upon removal
of the loading. There is a general discrepancy in using the theory
of elastic.ity in describing the deformation behavior of granular
materials since permanent plastic deformation inevitably makes an
appearance upon the unloading of a granular material. Therefore,
elasticity theory can only be applied to the case. of monotonically
increasing loading, or in cases where the applied and removed load

causes negligible plastic strains.

The simplest continuum model for granular material behavior
is linear elasticity theory. The linear theory of elasticity has been

well developed in the last eighty years [1] and many solutions exist
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for application to some of the practical problems such as calculation

of stresses and settlements in a region of soil underlying an engi-
neering structure. Recently, due to the development of the finite
element method [60] for handling complicated boundary value prob-
lems, soil engineers find elasticity theory even more convenient
than ever and are perhaps reluctant to try other approaches in
representing more realistic soil behavior, Other drawbacks of
linear elasticity theory are that it cannot in general represent the
nonlinear and partially inelastic behavior of soil and in particular
can not account for the dilatancy effect due to the application of

shear stresses to soil.

Attempts to represent nonlinear behavior and dilatancy due
to shear in granular media treated as elastic material can be
classified into two areas. The first is an empirical process of
simulating nonlinear stress-strain relations without referring to the
framework of continuum mechanics theory in the formulation of
constitutive relations, Figure II.1 shows three techniques in this
empirical scope, which are generally employed by investigators.
The quasi-linear techrﬁque as indicated in Fig. II.1l(a) simulates
the real homogeneous granular material (soil) in the state of stress
or strain, This is done by expressing the tangent modulus of the
stress-strain curve as a function of the state of stress or strain
[61]. In the similar manner, the Poisson's ratio can also be
expressed as a function of the stress as proposed by Girijavallabhan
and Reese [62]. This technique has been widely used for solving

some practical engineering problems due to its ease in adapting
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into the well developed finite element methods and high speed digital
computers, Evidences for this are more than abundant in engineering .
literature [e.g., 63]. Figure II.1(b) indicates the piecewise linear
technique inwhichthe real homogeneous material (soil) behayior is
approximated by variou.s nonlinear representations with the solutions
carried out by piecewise linear approximations [64]. The third
technique is to express strains explicitly in terms of stresses or
vice versa, As a first step in reaching a long term aim to write
a generalized three-dimensional tensional form of the stress-strain
relations for soils, Konder [65] suggested an empirical hyperbolic
stress strain relation for cohesive soil in the triaxial test, of the

following form
€0 - Pe + oo = 0 (2.1)

where ¢ is the normal principal stress difference and € is axial
strain, The two constants o and § are related to the initial tangent
modulus and ultimate strength at large strain respectively. Aside
from being without any theoretical basis,th.e empirical approximation
yields good results only if the material under specific stress or

strain condition behaves as assumed.

The second approach follows the well-developed nonlinear
small-strain theory in the field of solid mechanics [66], [67] by
using a higher order of deformation law comparable to Hodke's Law.
The nonlinear total stress-strain relation expresses stress as a

function of the existing strains (deformation gradients) measured
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from some reference configuration [68]. The result is independent
of the manner the total strain is reached. Chang, et al [9] argued
that if such a deformation law were to be applied to a strain-history
dependent material (such as granular material) under arbitrary
stress paths, then the laboratory test for materials should follow

proportional loading paths.

Two fundamental methods of formulating nonlinear elastic
stress-strain relations are due to Green and Cauchy respectively.
Green's method postulates the existence of a stored strain energy
density function W for the model continuum. The strain energy
density function can be taken as a function of any three independent
strain invariants. According to the conservation of energy hypothe-

sis, the constitutive relation can be expressed as

(2.2)

Where crij and eij are stress and strain tensors respectively. In
this way, the order of nonlinearity depends on the powers of energy
density function in terms of strain. For instance, an nth order
stress-strain law can be obtained by expressing W as a function of
nt+l powers of strain. Furthermore, a nonlinear stress-strain law
may also be found by carrying out an analogous sequence of opera-
tions on the complementary energy density function U, which is

defined as

o—ijeij_ (2.3)
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Chang, et al [9] attempted a second-order approximation of
granular behavior by writing W in terms of all powers of strains
up to three., Thus stresses are expressed in terms of a second
order strain function with five material constants to be determined
from material tests along prescribed stress paths. Chang, et al,
also developed an incremental stress-strain relation for the second-
order approximation in preparation for the numerical computation.
From the experimental results of hydrostatic compression tests
performed by Ko and Scott [14], [42], [69] in a three-dimensional
triaxial test box [70], Chang, et al, obtained values of these comn-
stants and the incremental stress-strain relation; the soil's res-
ponse in a triaxial shear test was simulated. It was shown that
this nonlinear approximation represented many of the characteristics
of granular material behavior and reasonable agreement was
observed. The major weakness of the theory was the material
instability innate in the second order approximation as pointed out

by Chang, et al.

In observing the shape of principal stress-strain curves from
shear tests on sands, Masson [17] concluded that these curves
could be best approximated by odd rather than even functions and a
power series in stress would be preferable to powers of strain for
modeling the softening behavior of sand under shear, Therefore
the complementary energy density in terms of three stress invariants
with all powers of stress up to four was postulated by Masson in
order to derive a third-order law. Strains were thus expressed as

third-order functions of stresses with nine material constants. The
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incremental stress-strain relation was also derived for hydrostatic
compression (HC), triaxial compression (TC), triaxial extension
(TE), radial shear (RS-60°) and conventional triaxial compression
(CTC) and extension (CTE) test. (The stress paths of these tests
are shown in Figs, IV.1l, IV.2, and IV.8). Experimental tests on
Ottawa sand along HC, TC, TE, RS-60°, CTC and CTE stress
paths were performed in a three-dimensional triaxial testing
apparatus to determine the nine material constants. Masson [17]
found that the third-order law was capable of accounting for all
essential aspects of the behavior of the material, especially the
high degree of nonlinearity. Applying this third-order law to some
boundary values problems, Masson also found a close correlation in
comparing with the experimental results. Meissner [71] also
derived a third-order stress-strain law with the postulation that the
strain energy density function was a function of strain with all
powers up to four. Stress was a cubic function of strains with
twelve material constants, These twelve constants were exclusively
determined from the conventional test data. The conclusions of

Meissner were similar to Masson's findings,

A third order stress-strain relation was also derived by
Chang [72] with the use of a strain energy density function approx-
imated by two functions in polynomial form in order to avoid the
possible instability in stress-strain relations due to polynomial
approximation. In his constitutive relations, eleven material con-
stants were needed., Chang's derivation was purely based on a

phenomenological conjecture, No experiments were given to deter-
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mine the eleven material constants or to verify its legitimacy.

It has to be pointed out that a general third-order approx-
imation yields eleven or more material constants depending on the
form of energy density function assumed. Some of these material
constants can be suppressed by requiring zero stress to imply zero
strain. It is not surprising that different numbers of material
constants are obtained by different investigators using the same

third-order approximation technique,.

Aside from being invalid for the unloading case, the above-
mentioned nonlinear approximations have one thing in common that
the predicted response is symmetrical with respect to tension and
compression, In other words, exept for change of sign the con-
ventional triaxial compression and conventional triaxial extension
tests, or axial compression and axial extension, would yield identical
results as predicted by these nonlinear laws. However, experiments
on granular materials such as Ottawa sand [16], [17] have indicated
that the deformation behavior in extension and compression of

granular material is not identical.

Another point of view in nonlinear approaches is Cauchy's
method which postulates that the state of stress is a function of
the current state of strain., This is within the scope of hyper-
elasticity theory [67], since any stress-strain relation obtained
from Cauchy's method can also be derived from Green's method
with a specific chosen strain energy density function., Higher order

of nonlinear approximation may also be employed to develop a
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stress-strain relation for granular material if one does not mind

the complicated formulation,

Noticing that an incremental stress-strain relation is more
appropriate to account for the path-dependent characteristics of
granular material, Coon and Evans [73] used constitutive relations
corresponding to a special case of first order theory of hypo-
elasticity [74] to fit the experimental data and to predict the
recoverable deformation of granular materials under conventional
triaxial loadings. The concept of hypoelasticity embodies a class
of ideal materials whose constitutive relations are governed by the

principle
rate of stress = f(rate of strain) (2.12)

This was first proposed by Truesdell [74] and later studied in
detail by Bernstein [75]. This may become a potentially powerful
tool in describing the deformation behavior of granular material
under monotonically increasing loadings since its innately incre-
mental characteristics in principle can account for the path-depen-
dent behavior of a granular material with a limited memory. How-
ever, as in the other analyses with granular models, the theory
has not been tested for general three-dimensional loadings due to

its complexity.

II.3-2 DPlasticity, Yield Surface and Flow Rules

The application of the mathematical theory of plasticity to
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the stress-strain relaitionship was first suggested by Levy [76]
ninety years ago. The first generalized incremental relationéhip
between stress and strain incorporating both elastic and plastic
components for the stress analaysis in metal was derived by Reuss
[77] some forty years ago. Terzaghi [2] was the first one to
apply plasticity theory to soil mechanics problems by approximating
the behavior of soils as being rigid plastic. The typical stress-
deformation pattern for a granular material is shown in Fig. II. 2(a),
in which the separate contributions for recoverable (elastic) defor-
mation and irrecoverable (plastic) deformation are indicated. This
typical behavior of material is ususally simplified as shown in Fig.
IT. 2(b) for solving some boundary value problems. A material is
called rigid-plastic if the recoverable deformations are small in
magnitude in comparison with the overall movements consequent
upon the attainment of limiting stress, and hence may be neglected.
When recoverable deformations are so large that they play an
important pé,rt in any stress analysis performed, the material study

involved is called elastic-plastic analysis.

Terzaghi's rigid-plastic analysis applied to the stability
problems deals with the conditions for the equiJlibrium of idealized
soils immediately preceding by ultimate failure by plastic flo.w and
gives no consideration to the corresponding state of strain. As
pointed~ out by Smith and Kay [10] Terzaghi's analysis yields a
"transition of semi-infinite masses from a state of elastic equi-
librium into a state of plastic equilibrium which can only be accom-

plished by an imaginary process of stretching and compressing the
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soil which is without any parallel in the physical world.," There-
fore, Terzaghi's analysis of treating soils as rigid-plastic materials

is not rigorous,

A more rigorous plasticity approach considering both states
of stress and strain for soil mechanics problems was initially
developed in a series of papers by Drucker and Prager [78], Shield
[79], Drucker [80], and Shield [81], [82]. In the theory of plasticity,
the material is considered to behave elastically until a yield condition
is reached. The yield condition usually takes the form of a convex
surface in stress space. When the state of stress reaches a point
on the yield surface, the material yields indefinitely. The yield
surface in terms of state of stress is taken to be a plastic potential.
The rate of plastic strain occurring at yield is determined by some
flow rule associated with this plastic potential, Therefore, two
things are important in plasticity theory: namely, yield condition

and flow rule.

A considerable effort has been devoted to obtaining a work-
able form of yield surface for granular materials. The simplest
analytical representations of yield surface for cohesionless soils
(granular material) are cones or pyramids with generally hexagonal
bases as represented in an octahedral stress plane as shown in
Fig, II.3, A yield surface according to Tresca's criterion of
failure is represented by a regular hexagon; the field condition is
reached when a maximum shear stress reaches a certain level [83].

The yield condition due to von Mises states that yield occurs when
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the octahedral shear stress reaches a critical value as represented
by a circle in Fig. II.3. The oldest and the most widely used
criterion for cohesionless soils is the Mohr-Coulomb yield condition
which states that the soil will yield or fail when the obliquity of

resultant stress on some plane reaches a maximum value,

Various other pyramidal yield surfaces such as the Mohr-
Coulomb yield surface with tension cut-off [84], and Haythornthwaite's
maximum reduced stress criterion [85], have also been suggested.
Paul [86] has reviewed the experimental results on brittle metal,
rocks, granular materials, and soil and developed a generalized
pyramidal yield criterion, with a yield surface as shown in Fig.
II.4. Many of the yield surfaces proposed for various materials

are only special cases of Paul's generalized pyramidal yield surface.

The presence of corners in a pyramidal yield surface is not
a law of naturein soil's behavior and creates difficulties in analytical
applications, A continuous closed-form yield surface is more
desirable. The condition of isotropy requires any cross section of
a yield surface projected on an octahedral stress plane to show
the threefold type of symmetry as shown in Fig. II.5, It seems
to the author that the simplest continuous form for this cross

section is a cylindrical function with the following relation:

_ A
P = 1-Bcos30 - (2.4)

where p is the distance from the hydrostatic axis to any point on

the yield surface whose radius intersects the major principal axis
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on a hydrostatic plane with an angle 6 as shown in Fig. II.5. A

and B in Eq. (2.4) are constants to be determined later.

Let o;, 0,, and o3 be three principal effective stresses,
then the first effective stress invariant J; equals : (0,4 0,4+ 03).
If the hydrostatic component of stress at a point is subtracted from
each of the principal stresses, the deviatoric stress system

(6'y, o', o'3) arises

01+ 0+ 03
0_,1 = @y - _——_3__'—— = 0'1"J1/3
U'z = 0'2—J1/3 , (2. 5)
0-'3 = 0_3 _J1/3

From Eq. (2.5), the three deviatoric stress invariants

J';,J', and J'; can be obtained [27] as follows

Iy J J
J'y = doy- 3) 4 (o2- 3) + (03 3)=0
1 2 2 2
Iy = = g[(01°0'z)+(0'2'0'3)+(03 'O'I)J (2.6)

1
J'y = 27 (201 -0, ~03)(20;, -0 -03)(203 ~0; ~03)

It can also be shown [27] that p and 6 are given by the following

relations
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1
0 = lcos—1[3‘/§ J33/ :}
e 2
(_J'IZ) 2
Let a and b denote the values of p at 6= 0° and at 6= 60°
respectively as shown in Fig. II.4, then A and B can be obtained

from Eq.(2.4) and are expressed as follows

2ab

A = a+b
(2. 8)

_ a-b

B = a+b

From Eqgs. (2.4), (2.7) and (2.8), the yield surface on an octahedral

plane can be obtained and expressed as follows

J‘I
f~_1(_1_1(J,2)/ 33 11 3

7 2z b (T

-1=0 (2.9)

For a granular material, the effect of the hydrostatic effective
pressure (J,;) in yielding is known to be significant at usual working
stresses, so that it can be expected that a generalized yield surface
should be described as

f(Jl,J'z,J'S) =0 (2.10)

Therefore, it can be expected that a and b values should be, at
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least, functions of J; and material properties such as the void ratio
of the granular material. The exact relation of a and b with J;
and void ratio is not known and more research is necessary towards
this end. However, from the available experimental results by Ko
and Scott [69], the yield surface suggested by the author seems to
give a simple and excellent approximation as shown in Fig.IL.6 and-

Table II.1.

It can be seen from Eq. (2.9) that if a=Db the yield surface
becomes a circle of von Mises type. Observing the test results on
Brasted sand, Bishop [87] found that the von Mises yield criterion
(circular yield surface) failed to predict meaningful results. Further-
more, Bishop [87] illustrated some portion of circular yield surface
in principal effective stress space was in a state of negative
effective stress. For a cohesionless soil (sand) this is meaningless.
Therefore, it can be expected that a circular yield surface (a=b)
is not suitable for granular material. This implies that the
.condition of a> b has to be observed in the yield function indicated

by Eq. (2.9).

For some values of a and b, some region in the cross
section of yield surface may become concave, which is not possible
for the class of materials known as stable work hardening materials
classified by Drucker [88]. However, if we are concerned with
fracture or with the failure of a granular material, rather than
plastic flow, the materials may not fall into a stable work-hardening

classification in the sense of Drucker [ 3].
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Granular material exhibits work-hardening behavior which
implies that the position of the yield surface changes with the
increase of stress. Drucker, Gibson and Henkel [89] took the
Mohr-Coulomb yield criterion as a limit surface and closed the
open ends with a family of hemispheres. The hemispherical sur-
faces were assumed to be the family of yield loci and the material
was always at yield as a stress path moved out until it finally

reached the Mohr-Coulomb limit or failure surface.

Roscoe and Schofield [90] and Roscoe, Schofield and
Thurrairajah [91] proposed a yield surface for "wet" clay in a
(p,q,e) space; where p= (o;+0,+ (73)/3, q= (0,-03) and e is the
void ratio. For the triaxial data an additional stress parameter
A which is obtained from the observed deviatoric stress g by
application of a boundary energy correction and an elastic energy
correction is needed for a unique yield surface under drained and
undrained (no volume change) condition. They took the critical void
ratio as a limiting surface and closed the open ends with a family
of bullet-shaped yield loci. Although they claimed considerable
success for their theory in producing a stress-strain theory for
"wet" clay, the application to granular material remains to be

examined.

A yielding model including no possibility of tension and
transition between Mohr-Coulomb and von Mises criterion has been
proposed [92], [93] to study wave propagation in soils and quali-
tative success has been claimed. Numerous other forms of yield

surfaces for strain-hardening materials are also possible. Koiter
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[94] represented the yield function (plastic potential) by a family of

Tresea yield surfaces. Prager [95] suggested a family of von
Mises yield surfaces. Weidler and Paslay [96] incorporated density
effects in terms of specific volume into a family of von Mises
conditions in strain space to derive a constitutive relation for a
granular medium. Their analysis was compared with experimental
results in direct shear tests with qualitative agreement. HO\VeVE:I",
one has to point out that direct shear tests are not good for com-
parison purpose. The main drawbacks of using such tests for the
evaluation of constitutive relations are: the nonuniform deformation

in the samples and the uncertainty in the boundary stress condition.

Most investigators associate the plastic strain with the plastic
potential by a normality condition which states that the direction of
the plastic strain rate vector is given by the normal to the yield
sull*face. In a mathematical expression, the normality condition can

be expressed as

AR (2.11)
ij oo ..
1)
where 6% is the plastic strain rate tensor, Uij the stress tensor,

f the plastic potential on yield function, and \ is a proportionality

constant which can be varied with the state of stress or strain.

Equation (2.11) is called the "associated flow rule" since it
associates plastic strain rate with stresses by a normality condition,

It has been pointed out that the normality of the plastic strain
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increment vector to the yield is not a law of nature of soil's
behavior [97], [98]. While, for some materials, normality may
have been observed, it is not necessarily applicable to all materials,
Normality condition requires that the granular material must expand
volumetrically, plastically at yield if the soil's yield surface
depends and increases with the hydrostatic stress. From the
experimental results on Ottawa sand, Ko and Scott [69] found that
soils tended to expand at yield, but it was not sufficient to make
the plastic strain increment vector normal to the failure surfaces.
The question on the lack of normality for soils was first raised by
de Jong [99]. For a granular material whose deformational mech-
anism is primarily associated with a frictional system, normality

does not hold in general.

This lack of normality for granular material has been sub-
stantially supported by experimental investigations on sands by
Weidler [100]; Poorooshash,; Holubec, and Sherbourne [101];
Barden and Khayatt [102]; and Ko and Scott [14]. However,
because of the nature of soil behavior it is not clear how sensitive
soil is to the nature of the tests devised to investigate normality.
Further examination of the relevance of normality condition to

plastic analysis of granular materials is needed.

For granular material, it would seem that certain non-
associated flow rules may be appropriate, Weidler and Paslay [96]
derived a nonassociated flow rule from energy considerations and

later applied it to triaxial tests for verification [103]. Although
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certain important aspects such as mode of deformation, the analyt-
ical and numerical results appear to agree with experience in soil
testing. Howéver, more research is needed for a workable non-
associated flow rule to yield a‘quan’citative evidence of its useful-

ness,

The most important features of gré.nular materials are
elasticity, frictional elasticity and work-hardening. It is possible
to study the deformation behavior by rheological models. The
elastic behavior caused by the Hertz effect can be represented by
a nonlinear spring. The frictional behavior can be easily sym-
bolized by a slip (St. Venant) element. The simple form of the
rheological model for granular material would be a series of
spring-slip elements as suggested by Smoltezyk [104] and shown
in‘ Fig. II.7(a). Brown [105] represented the deformation behavior
of fr_ictional system by a model (Fig. II.7(b)) which did not satisfy
the criterion of a stable work-hardening material in the sense of
Drucker. A two-dimensional model as shown in Fig.II, 7(c) was
used by Palmer [106]. Palmer showed that the yield condition
P=pQ (Fig.lI.7(c)) Was not a plastic potential and the normality
condition did not hold. In other words, the yield condition is
homogeneous in the stress component and the direction of plastic
deformation is also a homogeneous function of stress but does not

obey the normality condition.

Iwan [18], [19] used the distributed element model of Fig.

II.7(d) to study the yielding behavior of continuous and composite



-38-

systems, Iwan's model led to stress-strain relations which
exhibited anisotropic strain-hardening (Bauschinger effect). The
concept of the one-dimensional class of models was extended to
three dimensions and led to a subsequent generalization of the
customary concepts of the incremental theory of plasticity, The
built-in distributed characteristics in Iwan's model can be easily
adapted with certain statistical parameters to account for the
randomness of packing, and size and shape distribution of particles
in a granular system. Iwan's model of yield behavior was adapted
by Chang [107] who derived a refined incremental plasticity stress-
strain law by a collection of generalized Mohr-Coulomb yield
surfaces to describe the plastic behavior of soil in shear., The
main drawback in Chang's deviation was that it would be very
difficult if not impossible to fit it to test data. One possible
rémedy for this drawback is to use some distributed characteristics
in the family of yield loci. Some more research is necessary to

verify this point.

- Wells and Paslay [108] used a model (Fig.II.7(€)) similar
to Iwan's mmodel (Fig.III.7(d)) to develop a stress-strain relation
with the yield surfaces expressed in strain space for a specific
type of material characterized by coplanar motion of dislocations.
The concept of a one-dimensional model was extended to establish
a three-dimensional family of yield functiéns in principal strain
space (€;,€,,€3), whose axes, €;,€,, and €3 are aligned with the

rincipal stress o;- o5~ and o,- axes.
1 ’ 2 H] 3

It is also possible to develop a more complicated model
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which simultaneously allows for different effects to have an
increasing similarity with the deformation behavior of real material.
Unlike other types of models, the stress-strain relation is usually
obtained sole.ly from the mechanism of this type of model without
conjunction with any other assumptions or hypotheses. One of
these models was due to Yandell [109], [110]. Yandell simulated
a long section of a pavement under plane stress condition by a
two-dimensional mechanical lattice analofy (Fig.IL.8(a)) made up by
a family of identical mechanical models as shown in Fig,II. 8(b).
The elastic elements (linear springs in Fig.II. 8(b)) exhibited one
stiffness in loading path and a higher stiffness in unloading path.
The stiffness coefficients of spring elements (A,S,V) were cal-
culated by frame analysis for the representation of a non-buckling
plate of unit thickness [ 110]. A possible load-deflection path
exhibited by a unit element is shown as in Fig.II; 8(c). With this
analogy, Yandell was able to predict the behavior of an elasto-

plastic pavement during repeated loading by traveling rollers.
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TABLE IL.1

Comparison of Experimental Data and Predictions by Eq. (2.9)

(a) For void ratio e = 0.61

*
5 P Ko's data Prediction
0° 10.5 10.57F
15° 9.54 10.3
30° 8.75 9.35
45° 8.45 8.7
60° 8.3 8.3 "
(b) For void ratio e = 0,52
P ! ¥ :
0 Ko's data Prediction
L33
g° 13.1 - 13.1
15° 11.4 12,3
30° 10.1 10.65
45° 9.2 9. 45

*Measu_red from Fig. 1.6, 1 cm = 1.

E 33
Taken as the value of Ko's data.
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o real homogeneous soil behavior
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various non-linear represen-
tation but solutions are carried
out by piece-wise linear
approximation
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strain

(b) Piece-wise Linear Approximation

Fig. II.1. Various Empirical Techniques for the Soil Behavior
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Fig. II.2. Real Homogeneous Soil Behavior and Idealization
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Notes: (1) The twelve-sided polygon (shaded) represents
a piece-wise linear failure surfacz on an

octahedral plane.

(2) Each of the twelve sides is represented by an

equation of the form

+ + =
AGi BO’2 C0‘3 1.

Fig., I1I.4. Paul's Generalized Pyramidal Failure Surface
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(a) Regular shape

(b) concave shape

Fig. II.5. Continuous Yield Surface in Eq. (2.9)
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(c) Palmer's Model
(d) Iwan's series-parallel
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"Iwan's parallel-series
model shown in Fig, III.3

(e) Well's and Paslay's
Model

Fig. II.7. Various Rheological Models
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Fig. 1I.8. Yandell's Model
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CHAPTER III

RHEOLOGICAL MODELS AND GENERAL THEORY

III.1 One-Dimensional Model and General Concepts

A granular medium consists of irregularly shaped and sized
grains packed randomly together. The number of contacts per unit
volume depends on the porosity, the shape and size distribution of
grains, and the state of stress. A change in the state of stress will
cause a change in the interparticle forces between contacts which, in
turn, causesthe grains to move or slip with respect to each other., A
recovery of the state of stress would recover a certain portion of
the deformation but not all of it because most of the grain slips at
contacts can not be totally recovered. We will first consider the
one-dimensional case.

When a granular material is under external stresses or
loadings, each grain is subjected to a resultant stress or force through
the contacts with neighboring grains. The movement or deformation
of each grain can be assumed to be a function of this resultant force.
When this force reaches a certain level, the grain slips with respect
to the neighboring grains. The movement or deformation of each
grain can be assumed to be a function of this resultant force., When
this force reaches a certain level, the grain slips with respect to the
neighboring grain. This level of stress varies from grain to grain
and is dependent on the contacts, the shape and grain distribution of
the granular medium. Experimental results on Ottawa sand by Ko [ 16]

and Masson [17] had clearly indicated that granular material
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behaved differently under axial compression and axial extension
stress conditions. Therefore, it is likely that this force level as
such slip occurs may be different for each érain in compression and
extension.

As one approach to mathematical analysis, the above behévior
of a grain may be represented by a mechanical model consisting of a
spring and two slip elements as shown in Fig. III.1. The spring
represents the elastic behavior before the grain slips at the contact.
The two slip elements with stops represent the slip stress level in
compression and extension respectively. The slip elements represent
the summation of slip behavior of all the contacts in a grain in a
granular material. Thus the model presented here is a homogeneous
elastically isotropic body containing a number of randomly oriented
contacts slipping at certain critical stress. In this mechanical model
it can be seen that when the resultant stress in this grain is less than

* %

ot in extension or GC in compression, the grain behaves elastically.

However if the stress level exceeds 0: in extension or o: in com-
pression, the grain slips and plastic strains thus develop.

In the one-dimensional case, the behavior of the granular
- medium consisting of an assemblage of grains is represented by a
mechanical model contalning a large number of these spring-slip
elements in parallel as shown in Fig. III. 2. The properties of the
elemen;cs are distributed in some fashion to be determined to repre-
sent the field characteristics of each individual grain of the granular
medium, Some postulations for O’(‘: and 0¥, and the stress-strain relations

t

for this one-dimensional model will be demonstrated in Section III, 1-2.
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IIT.1-1 Simple Model

Before discussing the detail of our one-dimensional model for
granular material, it is advisable to examine a simpler class of
model as shown in Fig. III.3. The constitutive relation for this
simpler model is not difficult to derive and will eventually lead to
the constitutive derivation for our more complicated model with
some modification. This model was used by Iwan [ 18,19] to describe
the yielding behavior of continuous and composite systems. A similar
~model was also used by Wells and Paslay [ 103] for the analysis of
the Bauschinger effect in some engineering alloys, For illustrative
purposes, this simple model shown in Fig. III.3 is defined as Model A,
The more complicated model shown in Figs. III.1 and IIL. 2 is classified
as Model B in this study. As shown in Fig. IIl.3, Model A has a large
number of elements in parallel; each element consists of a spring and
a slip element in series. The hysteresis loop of this simple model
can be divided into three parts, namely, initial loading path, un-
loading path and reloading path as shown in Fig. III.4. The derivation

is after Iwan [ 18,19]:

(2) Initial loading path
For a discrete model, the constitutive relation can be expressed

as
Ei y o
~ € *Z ~ 2 B

* L3 3
where oy is the limit (critical) stress for the ith element to slip,

and Ei is the Young's modulus of the spring for the ith element.
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The first part of the right-hand side of Eq. {3.1) represents those
elements which remain elastic during the loading process, and the
second part represents those elements which have yielded. In
general, O':: and Ei can be regarded as distributed parameters.

Thus Eq. (3.1) can be rewritten as:

oo ~ Ee %
o =§ Eed{c )do +§ o e } dg (3. 2)
Ee 0] :

where ¢(gb*) is the distributed function and qS(O'*) dc* represents the
fraction of total elements having limit stress between 0* and

G*+ dc*. Statistically speaking, ¢(G*) represents the probability
density function of the spring-slip element which slip at a correspond-

%
ing stress level o . Equation (3.2) can be further rearranged as

e o) " Ee 3
o =§ Eedlc™) do” -g e ol ) do (3.3)
0 0

(b) Unloading path
When the medium is initially loaded to a state of Gu and €u’
the stress-strain curve for the unloading path can be expressed as:

Ee
o u

* * . * *
o= Ee¢(o ) do +5 (Ee—Eeu+0 ) do
Ee, E(eu-e)/z

SwE(€u-€)/2

, ol do” (3. 4)

The first part of the right-hand side of Eq. (3.4) represents the
behavior of the unyielded elements, the second part represents that

of elements which ylelded upon initial loading but behave elastically
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upon unloading, and the third part represents those elements which
yield upon initial loading and now yield again but in an opposite sense.
It can be proved after some mathematical manipulation that
if foooé(c*) dcr* = 1, the loading stress-strain relationship becomes:
E(e -¢)/2

0 =0_-Ele -¢) +§o e [E(e,-€)-20"1¢(c") do™ (3.5)

*
(Note: this also assumes that E is independent of o .)

(c) Reloading path
When a material is unloaded to a state of °R and €R (where

]ERI = IGuf) and then is reloaded, the stress-strain relationship can

be represented as

E(e-€)/2 ) E(e -e_.)/2 ) .
G :S‘ R G*¢(G*) 4™ +S‘ u °R { (Ee-EeR-o*w(o*) 0o
0 E(e—eR)/Z
Ee " fo'e} :
+§ & (Ec-Ee +G*) do +§ Eeq’a(a*) d(;’< {3.6)
E(e_-€5,)/2 . B Ee
u R u

After some manipulation, Eq. (3.6) can be rewritten as

00 % SvE(e—ER)/Z

o=o0p +30 E(e—eR)qb(a*) do - [E(e—eR)—Zc*] d)(cr*) "

(3.7)

In the derivation of the hysteresis loop for the simple model,
it is assumed that the stress-strain characteristics for compressive
and tensile loadings are the same. This may be true to a certain

extent for some engineering materials such as steel and its alloys.
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However, for materials such as concrete or a granular medium, the
stress-sfrain characteristics are different in compression and exten-
sion, the simple model thus fails to represent this behavior correctly.
Therefore, to correct this, two slip elements are needed to represent
the behavior of granular material under compression and extension as
shown in Fig. IIl. 2. The more realistic mechanical model yields

a much more complicated hysteresis loop as can be expected.
However, the derivation of loading, unloading and reloading stress-

strain relations is similar to that for the simple model.

III.1-2 One-dimensional Analysis of Model B Used in This Thesis

The distribution functions for the critical yield stress in
. * . * * *
extension, Oy and compression, 0., are ¢t(0t) and qSC(GC)
respectively. These functions are not necessarily the same. For
% %
a granular material it is expected that qSt(Gt) and ¢C(GC) would be
different. Here we also speculate that the following conditions should

be observed:

» 00 !
(Pl as?| = 1
0
and | (3.8)

= * *
IR ESEE

Equation (IIIL. 8) implies that a granular material would totally
slip or yield under infinite compression or extension. Usually, when
a granular material is subjected to compression then extension, a

portion of the elements will yield in compression and some other
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portion will yield in extension. This implies that the hysteresis loop
would be much more complicated than the one shown in Fig. III.4.
Generally, the stress-strain relation of our new model to represent
the one-dimensional behavior of a granular material can be illustrated
as in Fig. III.5(a). The stress-strain curves shown in Fig. III.5 are
qualitatively drawn to demonstrate the possible loading paths for
Model B in the one-dimensional case. They are not attempted to
quantitatively represent any experimental data. The stress and strain
at any point x on the stress-strain curve are denoted by o and €.
respectively. As demonstrated in Eqs. (3.1) to (3.7), the rheological
Models A and B always lead to stress-strain relation in a form which
gives stress as a function of strain. The loading history and the slip
behavior of elements are all expressed in terms of strain. The

following derivations are referred to Fig. III.5(a).

(2) From origin to point a
This is a compression initial loading path. The stress-strain

rélation can be expressed as:

o,

Ee ko k% %
o= Ee - S‘O (Ee-oc)éc(cc) do (3.9)

so that at point a, the following stress-strain relation is obtained:
Ee

a * * .k
o, = Eea - S‘O (Eea- cc)ch(cc) do (3.10)

(b) Path a — b+ c (where € = 0)
This is the initial compressive unloading path along which the

strain is decreasing but still remains positive {compressive).



-56-

Equation (3.5) can be used to express the stress-strain relation, i.e.

E(ea'-e)/z

o =0, -E(c -¢) +§O [E(e,-)-20,1¢ (c7) doy  (3.11)

Notice that at point c, €, = 0. Therefore

Ee_ /2

% %, ¥ *
=g - + & "

g, =, Eea go (Eea ch) ¢C(GC) dcc {(3.12)

(c) Path ¢ —~ d where -€47 €, and E<O0

This is a combination of an initial compressive unloading and
an initial extensive loading paths along which the strain is negative
(extension) and has absolute value smaller than € - As demonstrated
in the stress-strain derivation for Model A, the fraction of yielded
el%ment upon compressive straining to € = N would be
f an’)(o:) daj, Therefore, the unyielded fraction u of the element

after initial compressive loading to € = €, and initial compressive

unloading to € = 0, would be
Ee
_ a % *
u=1 - go ¢(O‘C) dcC (3.13)

As the strain becomes negative, some portion of u would
yield under extension while the remaining (1 - u) would continue its
compressive unloading process. The stress-strain relation for

path ¢ to d can thus be written as:

] Ee £ 3 E(E '6)/2
o= u{Be +§O (12el-o16, (0}) aor} - 50 * ol (on) do
Eea * % *
-5 [E(e, -€)-0_Jé(o ) do_ (3.14)

E(Ga-e)/Z
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At point d, €q = ~E Therefore the stress at point d can be ob-

tained from Eqs. (3.12) and (3.14) as:

Ee_/2 - | Ee .|
cd:oc+E€d(1—§O ¥4 o) dac)+u§0 . (|E€d|-o:)¢tdof

Fe
+u5 8. EEa—ZO'* qsc(o*)do* (3.15)
Ee_ /2 & Fete Ta

(d) Path d —~e—~f—¢ where |€|=¢_ and € =¢
a g a
This is a combined path of initial compressive reloading and
initial extensive unloading along which the strain increases and has

an absolute value smaller than an The stress-strain relation can

be written as:

E(€-—ed)/2 & % % d % g
o= {So otgbt(ct) do, +-S‘E(€—€d)/z[E(€—ed)-at‘] d’_t dé,

iEe

* X
+Ee¢ ¢, (0,) do, ¢
SIEGdl t¥t t.}

[E(e-€)-0,]¢,(0,) do,

. SE(G_ed)/Z % " " gE(ea—ed)/Z

"+
cccbc(cc) dcc

0 E(e-€4)/2
Ee & " *
+ & [E(e-€ )0 1¢ (o)) d 3.16
S‘E(G_ed)/z € €a_ GC c Gc Gc ( )

At point g, € = €, s SO the stress at point g can be obtained from

qu (3o 16) as:

]Eedl * " | o o Ee_ -
cgz u{‘g'o o, qSt (O't_) do, -i-EeaSIlEE qut (o) doy } +~§o a‘gcc,f)c(o“:) dcr:
d

(3.17)
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Comparing Eq. (3.17) with Eq. (3.14), the following relation can be
observed:

|Ee
d % * *
Og =0, = SO (Eéa“’t-_)ﬁf’t("t) doy (3.17a)

In general, the hysteresis loop indicates that the stress-strain
relation depends on the maximum strain magnitude previously
reached and the number of loading reversals. From Eq. (3.17a), it

can be seen that the stress level in compression decreases by an

| |Eeyl
amount of uf

0

From a compressive stress point of view, the granular material is

* Xk ¥
(Eea—ct)qf)t(crt)dot after the first loading cycle.

softening after the initial cycle of loading.

e) Path g—~h—i—j where €.,=-€_ =-¢€
(e) g j : g "
This is a combined path of cyclic compressive unloading and

cyclic extensive reloading. The stress-strain relation can be written

as:

E(e_-€)/2 , ; E(c_-€.)/2 - -
o= u{g & cm¢ (0*) dc* +§ a d {E(€—€a)—0;]¢t,(crtp) dcr*

0 t't t t E(Ea—€)/2 t
Ee [0s)
« * ok *
+S d [ Ele-£ )+0>r]<i>, (0.) do, *+ EeSl ¢ (o.) do }
Ele ,-€.) d Tttt t [E€]tt t
d “a d
E(e_-€)/2 E
a * 0k %k € :
-S o ¢ do S 2 [ E(e_-€)-0]d(c7) ac* (3.18)
0 ¢ JE(c_-€)/2 a cre e c
a
Since €, = g = - €, We can compare Eq. (3. 8) and Eq. (3. 4) and
conclude that
o-j = 0y4 {3.19)
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In other words, point j and point d coincide.

(f) Path j—k—g

From the condition shown in Eq. (3.19) we conclude that the
stress~-strain relation for loading path j— k — g is the same as the
loading path d > e —+ f — g,

From the above derivation and conclusion, a unique hysteresis
loop is thus established for cyclic loading. This unique hysteresis

loop is represented by a close loop defghid as shown in Fig. IIL. 5(a).

IIT. 2 Statistical Approaches to Distribution Parameters

The main purpose of a statistical approach is to determine the

%k

distributed characteristics for the parameters (E, 0: and cr':c)
involved in the slip-spring elements. As mentioned before, the dis-
tribution of these paramefers depends on the geometrical configura-
tion, the contact force, and the physical properties of the granular
material such as the porosity and nature of friction between contacts.
A more general approach must start from the consideration of
statistical geometry of packing and the statistical distribution of
contact forces and friction characteristics under a general loading
condition.

In general, E, 0* and O'* can all be distributed parameters.

(1 t

However, consideration is given to the case that G: and O'*

re
ta

distributed while the elastic modulus E remains constant over a
range of stress (if E is assumed to be distributed then the deriva-

k. %k
tion for this model would become very complicated). ILet ¢CF(GC)
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*x, % . . . . * *
and ¢t (O‘t) denote the distribution functions of o and o,
. * % * %
respectively. Then qSC(oC) dcrc or qSt(Gt) dcrt are the fractions of
. . . % * %
the total slip elements having a slip stress between o, and o, +dcc,

% * *
and between o, and o -i-dct respectively. In this section, several

t t
types of distribution functions are considered. The feasibility of
applying these functions todifferent materials are also briefly dis-
cussed. To illustrate the general situation only simple compression
or extension loading paths are considered in this section.

Of all the possible distribution functions for qbc(cr:) and ¢t(<5:),
the rectangular distribution is probably the simplest. A rectangular
distribution of d)c(cr:) or (JSt(G::) implies that the probability for the
grain contacts to slip is uniform over a range of stress until a
critical stress is reached. A critical stress is here defined as the
minimum stress level which cause all the contacts to slip completely.
Similarly, a triangular distribution of (]SC(G:) and (ﬁt(G:) implies
that the probability for grain contacts to slip increases linearly with
the increase of stress to a certain level then decreases to zero. In
an effort to simulate the behavior of a granular material under
hydrostatic stress, Ko and Scott [ 42] used a triangular distribution
of gap widths with respect to hydrostatic pressure in their model
consisting of simple cubic arrays and face-centered cubic array.

For ideal packings such as simple cubic and face-centered
cubic arrays of a granular medium, rectangular or triangular function
may be considered as acceptable for deformation behaviors due to the
orderly formation of grain contacts. As mentioned over and over

again, a granular medium in nature consists of irregular shaped and
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sized grain packed randomly together. The distribution of the slip
behavior of grain contacts can not always be expected to be as
simple as rectangular or triangular. However rectangular or
triangular distribution of d)c((f:) or ét(o:) should be able to provide
at least qualitatively some understanding of the deformation behavior
of real granular material.

It should also be pointed out that certain orderness in a
randomly packed real granular material may exist in nature for a
distributed function of qbc(o;k) and th(O':), Gaussian (normal) dis-
tribution is one of the simple forms of probability functions and most
likely occur in nature. For example, the frequency distribution of
a random noise is well known to be normally distributed. Therefore,
Gaussian distribution of (ﬁc(c;k) and d)t(c,;k) should be considered as
a most likely possibility. This may sound philosophical. However,
certain physical grounds and advantages of representing slip behavior
of granular materials by Gaussian distribution will be discussed
‘la.ter in this section.

Some of the stress-strain relation derivations and properties
of using rectangﬁlar, triangular and Gaussian distributions to repre-

.

* ¥ g
sent qSC(UC) or qﬁt(ct) for Models A and B will be given as follows:

III. 2-1 Rectangular distribution of slip behavior
* b3
d)c(crc) or qSt(Gt) is a rectangular distribution. As shown in

Fig. IIL. 6, let

$(c™)

I
A R
-
)
IA
Q
A
W

(3. 20)
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such that

M CO
j ¢(0*) do™ =1 (3.20a)
0

where x is the critical stress level and has dimension of E. qS(c*)

represents either d)C(G:) or d)t(of) and has a dimension of 1/E.
The stress-strain relation can be obtained by substituting

Eq. (3.20) into Eqgs. (3.2), (3.5) and (3.7) or into Eqgs. (3,i0) to

(3.18). For illustrative purposes only the stress-strain relation for

a simple model (Model A) will be presented as follows.

(i) Loading path (substituting Eq. (3.20) into Eq. (3.2))

o EE <<
O‘—EE(i——Z}—{) if Fe=x
(3.21)
oc=0.5x% if Ee > x
(ii) Unloading path (unloading at o, and eu)
E(eu-e)
- _ - " ; < ) =
=0, E(€u €) [1 — ] if 0= E(eu €) = 2x
(3.22)
og=-0,5x% if E(eu—e) > 2x
(iii) Reloading path (reloading at on and GR)
E(€'€R)
- - - : < - =<
o =o0p + E(e GR) [1 . ] if 0 =< E(e ER) 2x
(3.23)
oc=0,5x if E(e-eR)2 2x

A dimensionless plot, in which o is expressed in terms of x,
is shown in Fig. III.7. Observing the results, the following remarks

can be made:



wem
1. For all loading paths, o is a 2nd order function of €.
That is to say the ¢ - € plot is a parabolic curve,
2. When Ee¢ = x, the resulting stress is half of the value
obtained from a linear analysis.
3. Due to the simplicity of this rectangular distribution, it
is easy to express the stress-strain relation in incremental form by

simply taking the derivative of o with respect to €.

IIT. 2-2 Triangular distribution of slip behavior

* *
d)c(cc) or th(Gt) is a triangular distribution. As shown in

Fig. III.8, let

Glety = 22, i e = E
A 2
X
4(x-0") *
” X’ZG if .’Ziso = x (3.24)
BE
=0 elsewhere
such that
x * %
¢loc )do =1 (3.243a)
OA

where the definitions and dimensions of x and ¢ are the same as in

previous derivations.

The stress-strain relations for different loading paths for

Model A can be illustrated as follows.

(i) Loading path

Substituting Eq. (3.24) into Eq. (3.2), the stress-strain
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relation for loading path can be expressed as

2

2
G=E€{i—@f—)-} for Ees%
3x

:Ee{i- (—I-Q—-G)}Jrf—z-(Ee -0.5x) for = Ee=x (3.25)
X

3x2 3

I

0.5x elsewhere

(ii) Unloading path (unloading at o, and E0 B €™ 0 and l€! < Eu)
Substituting Eq. (3.24) into Eq. (3.5) the stress-strain relation
for unloading path can be expressed as
2
[E(€u~€)] }

6x2

[E(e -€)] & [ E(e -€)] .

- - o = -
&~ 2E(€u €)+ = 6X2‘ + 3 for x E(eu €) < 2x

c=0_- E(e —e){i- for 0 = E(e -€)==x
u u u

I

= «0,5x for E(eu-€) = 2x

(3.26)

(iii) Reloading path (reloading at o and €p, r >0 and le] = Eu)

Substituting Eq. (3.24) into Eq. (3.7), the stress-strain for

€-€
reloading path can be expressed as

[E(e-e)]°
TR } for 0= E(e-€p) S x

o=op + E(e—eR) {1 -

6x2
[E(e-€p)] 2 [E(e—sR)]3 «
=0p + 2E(€-€R) - = + : > - =
xX
for x = E(e—eR) = 2x
= 0.5 % for E(G—ER) = 2x

(3.27)
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The dimensionless plot of stress-strain curve for both loading
and unloading is shown in Fig. III.9. From the above derivations
and results, the following remarks can be made:

1. For all loading paths, stress is a 3rd order function of
strain. That is to say the o-€ plot is a cubic curve.

2. let x denote the critical stress level at which all the
grain contacts slip completely. Then for any loading path the stress
is within the range of x/2 and -x/2.

3. Like the rectangular distribution, the triangular description
of slip behavior yields simple forms of stress-strain relation. It
is easy to express the stress-strain relation in incremental form by

simply taking the derivatives of stress with respect to strain.

III. Z2-3 Further comments for both rectangular and triangular

distributions of gb(cr*)

From the stress-strain curves for rectangular and triangular
distributions of (i)(cr*), it can be observed that the material repre-
sented by Models A and B behaves like a perfectly plastic medium as
the strain reaches a magnitude of x/E, while the stress-strain
relation differs a little bit from the linear case when the strain is
small, This type of deformation behavior can be approximated by a
perfectly elasto-plastic material.

The purpose of a one-dimensional analysis established here
is not anattempt to fit or predict the one-dimensional deformation
behavior of granular material. A true one-dimensional test in

granular material is very difficult it not impossible to perform due
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to difficulty of controlling the stresses and strains in the other two
dimensions at zero level. Instead, the purpose of one-dimensional
analysis is to establish a stress-strain model whose behavior is in
close resemblance with the deformation behavior of a granular
material in three-dimensional cases. It is hoped that this one-
dimensional model will eventually lead to a general three-dimensional
description of a granular material's behavior.

A typical experimental data of Ottawa sand under axial shear
test (the stress path is indicated in Fig. IV.2 in the next chapter)
performed by Ko [ 16] in a cubic triaxial testing apparatus is chosen
for comparison purposes. Ko's Tca-1 test results (page 112 of
Ref, [ 16] ) of stress-strain in major principal direction are plotted
in dotted lines as shown in Figs. III.10 and III.11. To simulate this
test data, the E and x wvalues for Both rectangular and triaxial
distribution of qb(a*) are measured from the curve of test data. E
is measured as the initial slope of the curve of test data, and x is
taken to be % of the value of maximum stress level of the testing
stress-strain curve. The simulated stress-strain curves for
rectangular distribution and triangular distribution of qb(o*) in
Model A and B are shown in solid lines in Figs. III.10 and IIT.11
respectively. |

It can be seen that the loading and unloading curves for both
distributions are quite similar to the testing curves. The loading
curves of both distributions all indicate a sharper change of slope in
comparisonwith the experimental stress-strain curve which has a

smoother and more subtle change of slope. The unloading stress-
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strain curves for both distribitions are almost straight compared to
the curved test cuves. However, the magnitude of the stress-strain
relation for both unloading curves are very similar to that of the
Tca-1 test.

In observing the overall stress-strain loading and unloading
curves for both distributions functions and the Tca-1 test curve, it
can be noticed that the simulation by both distributions is not at all
a bad fit in comparisonwith the stress-strain curves obtained by the
presently existing theories and methods. This manifests the potential
of using slip-spring elements to represent the granular material's
behavior since, as shown here, they can apparently describe the
fundamental aspects of the stress-strain behavior of a granular
material even when a simple distribution function for slip behavior

is used.

\ III. 2-4 Gaussian (normal) distribution of slip behavior

As shown in Fig. ITI.12, let

| ,
i PO exp[-iz_(g—g—”i] (3. 28)

\/.ers
0 * 2 _
t = 1/%1 -S\ % exp[_}z_(g..s‘_r?_) ]ds*% v‘(3,28a)
-0 w

s is the standard, slip-stress deviation and

where

m is the mean of the Gaussian distribution
{notice that m and s have dimension of stress and ¢(oc ) has

dimension of (stress)—i) such that

rO L
) $lo)do =1 (3.28b)
0
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The stress-strain relations for different leading paths for

Model A can be illustrated as follows.

(i) Initial loading path
Substituting Eq. (3.28) into Eq. (3.2) the stress-strain relation

for loading path can be expressed as

*
o

2
—m) ] do (3.29)

Ee 3
o= FEe - _.L § (Ee—oﬁ) exp '[- —12- =

JZTr s Y0
(ii) Unloading path (unloading at o, and €,» and le] < su)
Similarly, the stress-strain relation for unloading path can be

obtained by substituting Eq. (3.28) into Eq. (3.5), and expressed as

o= a,- E(eu— €) = S‘E(Eu-s)/z[f_(fﬂ:i)_._cy*]exp[%(c*_m)z] o™

\/_Z-wsO - s

(3.30)

(iii) Reloading path (reloading at o, and €Re le| = €,

R
Substituting Eq. (3.28) into Eq. (3.7), the stress-strain

relation for reloading path can be obtained as

; E(e- 2_E(e-€.) *
o= Blemeg) - e (TR e [yt

«/—Z—T_rsO

{3.31)

The resulting plots of the stress-strain relation for the
Gaussian distribution function for several values of s and m, along
with the test results of Ko's Tca-1 test[16] are shown in Fig. IIL.13,
Here, E is again obtained from the magnitude of initial slope of

stress-strain curve of Tca-1 test, From these results, the follow-
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ing conclusions can be made:

(1) In assuming a Gaussian distribution for qS(c*), there are
several parameters, namely m and s, which need to be considered.
It is noticed that m and s values can be different in compression
and extension. If the modulus E is assumed to be constant then its
value may be determined from the initial siope of a stress-strain
plot. The values of m and s can be determined from fitting the
experimental data or may be obtained from physical considerations.
More parameters mean more freedom to fit a set of data. However,
they also mean that more experimental data and more complicated
procedure are required to closely determine the necessary quantities.
The advantages may be outweighed by the disadvantages.

(2) From the loading path of the stress-strain plot for the
Gaussian distribution function, it can be seen that a higher mean, m,
results in a steeper slope for small strain and a ﬂafter slope when
strain becomes larger. The influence of the standard deviation, s,
is in the level of stress. Higher standard deviation values result in
a higher stress level at the same amount of strain.

(3) The combined influence of m and s or the stress-strain
relation enable us to obtain good fits to almost any experimental data
available at present.

As mentioned before, the stress-strain behavior of a granular
material depends on a number of factors. A more general approach
must start from the statistical geometry of the packing, the cor-
responding contact force and friction, and an incremental expression

for stress-strain relation. The number of contacts and grain size
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distribution are important factors to describe the stress-strain
behavior of a granular material. In other words, the porosity or
void ratio of the granular material is most important in governing
the stress-strain relation. Smith, Foote, and Busang [ 29] have
determined the experimental and theoretical relation between porosity
and the number of contacts per grain for randomly packed homogene-
ous spheres. Their findings are shown in Fig. III.14., It can be seen
that there exists a Gaussian-like distribution of the number of contacts
for a particular value of porosity. In a similar manner, it can be
speculated that the contact force and orientation are also distributed
in Gaussian fashion. It seems, therefore, that the assumption of a
Gaussian distribution function of slip stress for slip-spring elements
is a reasonable one for describing the stress-strain behavior of a
granular material., This couples with the ability of the Gaussian
distribution function to describe closely almost any stress-strain
curve as mentioned above, making the slip-spring elements model
very attractive for a granular material. Furthermore, the rectangular
distribution and triangular distribution can be approximated by a
Gaussian distribution with a specific choice of the value of the mean
and standard deviation. In this thesis, the Gaussian distribution of

the slip stress for the slip-spring elements will be developed further.
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I1I.3 Constitutive Relations for Granular Media in Two- and Three-

Dimensional Cases

III.3-1 Preliminary Consideration

To represent more realistically and accurately the deforma-
tion behavior of a granular material, a one-dimensional model is
insufficient because it does not lead to a general three-dimensional
formulation. Although the slip and spring elements in a one-dimen-
sional model do represent in some degree the elastic-plastic behavior
of a material, the one-dimensional model fails to satisfy the following
important characteristics for the general behavior of a granular
material:

(2) The dilatancy due to a shear stress increment,

(b) The work hardenipg behavior and inelastic strains during

shear deformation,

(c) The quantitative influence of loading path and history on

the stress-strain relation.

As can be expected the geometric structure of a granular
material is usually very complicated due to the irregular distribution
of different shapes and sizes of granular particles. Even for a
uniformly packed medium, the isotropy and homogeneity can be con-
sidered only from a macroscopic point of view. Moreover anisotropy
and non-homogeneity can often result from loading an initially iso-
tropic and homogeneous material[ 35] . From the contact stress
theory, the relation between the tangential component of the contact
force (between particles) and displacement is inelastic [31], so

that the stress-strain relationship should depend upon the entire
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loading history of the medium. Accordingly, the correct stress-
strain relation should be given as an incremental one{ the purpose
of a three-dimensional model is to represent and predict the stress-
strain response of a granular material that has been subjected to an
arbitrary loading and unloading process. The model should not be
too complicated to be practical in use. In the long run, itis hoped
that the derived stress and strain relation could be applied to some
boundary value problems in soil mechanics by finite element
analysis [60].

To extend the one-dimensional model to two- or three-
dimensional stress-strain formulations requires the assessment of
the quantittative relation of stresses and strains in one direction to
the stresses and strains in other directions. In a granular medium,
the contacts between particles and the forces between contacts
dominate its deformation behaviors. They also provide the links
for the interdependence of stresses and strains in different directions
in the multi-dimensional case. For simplicity of derivation and
analysis, only principal stresses and strains are considered. For
illustrative purposes, we start with a two-dimensional homogeneous
and isotropic model and gradually develop a general anisotropic
three-dimensional model and formulation. In the two-dimensional
case, the one-dimensional model shown in Fig, IIl.2 can be used in
each direction to represent part of the elastic strain and all of the
plastic strain in each principal direction, = if we inter-connect these
two one-dimensionzal models by stiffness springs with a modulus Es

as shown in Fig. III.15. These springs provide the links between
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stresses and strains in both directions. As mentioned in Chapter II, a
similar two-dimensional rheological model (Fig. II.8b) was used by
Yandell [ 110] to simulate a long section of a pavement under plane
stress conditions.

At a first glance, it seems the two-dimensional model shown
in Fig. III.15 has assumed that the interdependence of stresses and
strains in different directions is purely elastic. However, this is not
so, because the springs affect the stresses and strains in each
direction which, in turn, influence the deformation behavior of the
spring-slip elements. As mentioned before, a correct stress-strain
relation should be given in incremental form. Due to the complexity
of the stress-strain relation for the spring and slip elements, while
in one direction it may follow a given loading path, the other direction
may be subjected to another different loading path. This increases
the need for an incremental constitutive formulation. Before beginning
the derivation of the two-dimensional formulation, it is advisable to

obtain the incremental form for the spring-slip elements.

II1.3-2 Incremental forms for spring-slip elements
The stress and strain increments are denoted by Ao and A€
respectively. The loading paths will all be referred to Fig. IIL.16.
Due to the length of the derivation, only the final results will be
shown here., The following derivations are applicable to any types of
qSC(cr:) and qSt(Gzﬁ) distributions. (ﬁc(cr:) and d)t(cr:c) will be abbrevi-

ated as c{)c and qSt respectively.
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(2) Initial loading path 0 — a

Ee E(etA¢) .
Ao = Eae (1 - o b do’ ) - gES - [E(etbe-ol)lp_dor  (3.32)

(b) Unloading path a — b — ¢ (unloading at € = €3 Ae < 0)

nE(ea—e)/Z

Ao = EAe (1—50 d)C dcﬁcﬂ)
Ele_-e-Ae)/2 X
_S\ a ,[E(ea—e—Ae)—ZG:]éc dG: (3.33)

0

(c) Compression unloading and extension loading path, c¢—>d (Ae <0

and € < 0)
E(e_-€)/2 .
Ao = EAe (1S = o)
0
Ef{e -e-A€)/2 s
_S. a™¢ / [E(e —G—Ae)—Zo*]qS do
E(Ea_€)/2 a C C C
[Eel o rlEetae)] . s
- u{EeS‘O ¢t dot +SiE€l [E(e+A€) —O’t] ojt dct}
(3.34)
where
Ee %
us=1 -S a¢c dog (3.34a)

(d) Extension loading path d =D (|e| > €, Ae<0, €<0)

Ao = u{EAE (1- S‘O!Eel 9, doy ) - glf:

e+Ae)|

l

[[E(e+ae)] -Gf] q')j doj}

(3.35)
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(e) Extension unloading and compression reloading path d e —~f— g

(Ae>0, |e]< I€a“

rE(e-€.)/2 .
Ao = {EAe(i ; T o)
0
E(etAe-€.)/2
—S' . [E(6+A€—€d)-20 ¢ do }
E(e—ed)/z
E(e-€,)/2
- u{EAe§ d qSt do
0

E(€+Ae-€d)/2 y %
+ § 4 [E(€+A€-€d)—2c7:] 9, do:} (3.36)
E(e—Gd)/Z ,

(f) Extension unloading path D+ E — E; (<0, Ae >0, le iZ |€a‘)

Ao =u{EA €

~E(e-¢n)/2 &
(1 _‘So ° % dct)

SE(E+A€-€

D %, *
[ E(etre-€_)-20.1¢, do (3.37)
E(s—eD)/Z D t- 't t}

(g) Extension unloading and compression reloading path E1 % T Ly

(e >0, IGIE ,edl

Ag = {EA€ (1 -

S'E(€+A€~ed)/2

®y %

E(e-ed)/Z [E(€+A€—€d)—2crc}oc do-c}
E(e-€.)/2 ;

_u{EAe 50 o ¢, do

E(etAe-€.)/2
S ctac-cp)/ [E(eme-eD)-szJ o, dcr::} (3.38)

E(e-eD)/z
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(h) Cyclic reloading path where g — g' (Ae> 0, Ae > €, = €g)

Ee o rE(ethe) 2
EAe(i —S qS dor{) ‘) [E(€+Ae)—cc]qbc dcr:} (3.39)
where
“lE€ ‘ '3
v=1 - ‘SO & d)t dO’: (3.39a)

(i) Compression loading path G —~ G' (Ae> 0, € > Eg)

E(e-€.)/2 9
Ag = u{EAe(i “55 p!/ é. do.

0 t t
E(etAe-€.)/2
_S H [E(6+Aee )Zo]¢ dc}
E(e—eD)/Z
Fe . E(etA¢€) e
- V{S‘ d)c dcr: +SE€ [E(€+A€)—0C] qSC dc;k} (3.40)

Ee
a

or

E E(e Ac)
Ac EAet g eq,') do ) § e S [E(et+Are)~ ]qS dG }

E(e-€.)/2
D *
-u{EAe S\O qbt dOt

SE(6+A€-€D)/2

[E(etAc-ep)-20, ]¢ B }(3,40a)
E(e-eD)/2
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III. 3-3 Two-dimensional model

For a two-dimensional model shown in Fig. III.15, the incre-
mental stress Ao corresponding to incremental strain Ae can be
divided into two parts. The first part is contributed by the spring-
slip element where the stress increment is a function of both stress
history and the strain increment as shown in the previous section.
The second part is contributed by the stiffness springs connecting
the two one-dimensional spring-slip elements, and is recoverable.
The following derivations are all devoted to this second part.
Referring to Fig. III. 15, let the principal stresses in the 1- and 2-
direction due to stiffness springs with modulus Es be denoted by
(Ge)1 and (Ge)2 respectively, then it can be shown that the stress
in the 1-direction due to the stiffness spring elements can be ex-

pressed as:

(1+e,) (1)) %

=E s 3.41
@) 33 V2 [(1+ei)2+(1+€2)2]1f2 ( )

After principal strain increments AE_1 and Ae‘z in the 1- and 2-

directions are applied, the following relation holds:

(1+e, +Ae,) (1+€1+A€1)
(o), +(Ac ), = E 3 — - (3.42)

where (Ace)1 denotes the part of the incremental stress in the 1-
direction due to the spring element and can be obtained by applying
Taylor's expansion theorem and neglecting the higher order terms,

iue. ?
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_ (1+€1)2

1
(Ag ), = E § -— %Ae
L Twlb [(1+€1)2+(1+€2)2]3/2 :

(1+e )(i+e,)

+E % y gée (3.43)
L +€1)2+(i+€2)213’2 2

Note that Eq. (3.43) is obtained by assuming the stiffness spring
modulus, Es, is constant. However, as will be seen later, the
stiffness spring modulus for granular material unfortunately is not
a constant, and is instead a function of the state stress. Equation
(3.43) is valid only if the strain and stress increments are small.
Due to symmetry, thé stress increment in any direction due

to the interconnected springs can be expressed as

. (1+€i)2 g
A =R 4= - Ae,
(Boe); = \/E [(1 +€i)2+(1+€j)2] e i

(1+e)(1 +€j)

+ K Ae, (3.44)
S;[(1+ei)2+(1+€j)2] 3/22 ‘i

where

i,j=1,2; 1i#]j

Let (Aop)i be the portion of stress increment due to the spring-slip
elements in the ith principal direction. Then (Acp)i can be obtained
from Egs. (3.33) to (3.40). (A.Gp)i depends upon the magnitudes of

Aei, and the loading history. Generally, (Acp)i can be expressed as

= o4
(Aop)i p,A¢€; (3.45)

where p, equals the right-hand sides of Egs. (3.33) to (3.40) divided



-79-

by Aeio As can be seen from Eqgs. (3.33) to (3.40) and Eq. (3.45),
Py is strongly influenced by the loading history, and can be con-
sidered as an indicator of the influence of loading history to the
stress-strain relationship.

The total stress increments .Acri. in the ith principal

direction can be written as
Aci = (Age)i i (Aop)i (3.46)

This two-dimensional model can also approximately represent
the linear elastic constitutive relation if the slip element is ignored
or the yield stress is set to be infinite. From the elasticity theory,

the following incremental relation is observed:

(3.47)

i

e, = MAEi + Aej) % ZpLAei

where \, p are Lamé's constants in classical elasticity theory [1] ,
and i,j=1,2; i+ j.

If the slip component in the spring-slip element is absent
(i.e., the slip mechanism is removed and the spring slip element
becomes only a spring with modulus E) or the yield stress is set so
high that no slip occurs in the range of stress considered, then from
Fqgs. (3.33) to (3.40) and Eq.(3.45), it can be observed that p; = E
in each of the principal directions. If the strain field is small, the
values of (1+€i) and (1+€j) can be approxirﬁated to be 1. 1If the
above assumptions hold, the following relation can be obtained from

Eqgs. (3.44), (3.45) and (3.46):
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_ 1
Acri Y P ES(A€i+A€j) + EAei (3.48)

22
where

=3 1,)=1,2

Comparing Eqgs. (3.47) and (3.48) the following relationship is reached:

>
)
=

(3.49a)

22 ©

i
p=3iE (3.49Db)
let v be Poisson's ratio for the material, then
E
s
V= (3. 50)
2/2 E + 2B

By varying the values of E and ES, the v wvalues can be set anywhere
between 0 and 0.5, The corresponding Young's modulus, Ey’

would be:

(3.51)

2ﬁE+3ES>

E :E(
b 2/2 E + 2E_

Note that if ES or E is set to be inﬁinite then the material is incom-
pressible. The above illustration demonstrates the justification of
using this two-dimensional model to represent the general behavior of
a class of material behaviors. For a granular material, the slip
stress is set to be low enough to account for the plastic strain even at
small stress. For nearly elastic material, the yield stress is set to

be high enough so that the plastic strain can be negligible.
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As can be seen, all the stress-strain relationships are given
in incremental form. Notice that the two-dimensional model does
not have any indication of whether it represents a plane strain or
plane stress cases. However, this is not important for the time
being because the purpose of this two-dimensional model is to
demonstrate the relevance of using the slip-spring and spring element.
The model serves as a guide to the formulation of a more realistic
and acceptable three-dimensional model from which a plane stress or

plane strain formulation can be derived.

II1.3-4 Three-dimensional model and formulation

Having demonstrated the use of the two-dimensional model,
the derivation of the behavior of a general three-dimensional model
for a granular material follows naturally as the next step. The two-
dimensional model in Fig. III.15 leads to a three-dimensional model
as shown in Fig, III.17. Again, in this three-dimensional model, the
contribution to the stress-strain relation is divided into two parts.
The first part is due to the slip-spring element and has been demon-
strated in section III.3-2. The second part is partly elastic and is
contributed by the interconnecting spring elements. Let (cre)i
(i=1,2,3) denote the principal stresses due to the elastic springs

Es' It can be shown that

2 i
Vz o LtrepPHirey®1

i
[ (1 +e;)2+(i +e

(o), = ZES(1+€i){

(3. 52)

k)Z] 1/2}
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where

i#j+k; i,j,k=1,2,3

Then the stress increment (Aoe)i due to the stiffness springs ES

after strain increments Aei (i=1,2,3) can be obtained as

i § 5 (1+ej)2 (1-l-€k)‘2
o = 2E Ae,{— - -
i+e )1+
+2E Ae.§ Fepl el %
s )

[ 1+€i)2+(1+€j)2] B g

(1+e.)(1+e, )
- ; g (3. 53)

+ 2E _Ae §
SR (e (1) 2 ¥

where

i#j#k; 1i,j,k=1,2,3

Notice that Eq. (3.53) is obtained from Taylor's expansion
theorem by neglecting the higher-order terms and by assuming that
Es is constant. In the case of a granular material, Es is dependent
on the state of stress;, since the material becomes stiffer when the
hydrostatic stress is increased or when the deviatoric stress is
reduced [ 16] . A cohesionless granular material can not support any
deviatoric stress in the absence of a state of hydrostatic compression.
If ES is taken to be a variable, the derivation of the proposed stress-
strain relation becomes very complicated. Thus, further simplifica-
tion is needed. Since the proposed constitutive relation is expressed

in incremental forms, it can be assumed that the ES value is a

constant during each stress or strain increment if the stress or
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strain increment is small. Unless otherwise mentioned, the Es
value for a particular increment will therefore be taken herein to be
the average of the ES values for the state of stress before and after
the increment in question. As will be discussed in the next chapter,
the ES value will be expressed in terms of the state of stress.

Again, the total stress increment can be expressed as
Aci = (AO‘e)i i (Acrp)i (3. 46)

where (Acp) can be obtained from Eqgs. (3.33) to (3.40).
In matrix form, the proposed constitutive relation can be

expressed as

{AG} =.A{Ae} (3. 54a)

or
Aoy agy 2y, a3} \ 2¢
AO‘Z = {3y Ay, a,, AEZ (3.54b)
Acy azy 23, az3 || Ag;
where
2 2
, (14¢,) (1+e)

=2KE {—r0H- - - - +p
s s§ﬁ [+ e 21+ ) 13/2 [ltve ) Ptline,) /2

(1+ei)(1+€2)

21

a;, = a — 2E33

[(1+€1)2+(1+€2)Z]3/2 %

(1+€1)(1+€3)

a13 = a31 = ZEsg[

) 7 3/2%
(1+e,) H1+e,)”]
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(1+€1)2 (1+€3)2

2
= 2R e - v o &
“22 S%ﬁ [(1+€1)2+(1+€2)2]3/2 [(1+€2)2+(1+€3)Z]3/2§ P2

(1+€2)(1+€3)

= = 2E
Bgg = Hy4x 53 [(1+€2)z+(1+€3)2] 3/2

) (1+<—:1)Z (1-I~€2)2

2
= 2E {— - +

o
|

and
(Ao ). :
p, = —tt (3.55)
i Zei *
Up to now, the constitutive relations for all models in this

study are of the form where stress increment is expressed in terms
of strain increment. Sometimes it is more useful and desirable to
express strain increment in terms of stress increment. This con-
version process will involve matrix inversion and can be derived as

follows:

{A€} = A—i{A€} (3.56a)

or Aei can be expressed explicitly as:

= i e + = A
A€i“m{(ajjakk gty T g lee Sy plao

+ (aijakj - ajjaik)Agk} (3.54b)

where

i#£j+k i,j,k=1,2,3

and
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det A =a jayja33tayia 585, a3,a 52,5 a5,a,,a,,

- 85843834 - a333y,25 (3.57)

Solving Eqs. (3.56) and (3.57) for the strain increments will
require using a trial and error method since the coefficients are
also functions of the strain increments. If the following iteration
scheme is used the process is found to converge rapidly.

1. If the loading or unloading or reloading steps are the same
as in the previous load process, the previous strain increments are
used as the first trial values. If the loading path is different from
that in the previous loading increment (i.e., changing from loading
to unloading, or from unloading to reloading, or reloading to un-
loading or loading), the first trial strain increments will be taken to
be zero.

2. Calculate the aij's from Eqgs. (3.33) to (3.40) and
Eq. (3.55), and compute the strain increments according to
Eqgs. (3.56) and (3.57).

3. Use the calculated increments as the new trial values and
repeat step 2.

4, Repeat steps 2 and 3 until a convergent solution is

reached.

In most cases, the solution converges after two or three trials.
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III. 3-5 Anisotropic model and formulation

The deformation behavior of a granular material might some-
times exhibit certain degrees of anisotropy [15]. There are evidences
that anisotropy exists even ina carefully prepared laboratory sample.
One example is Ko's experimental results on Ottawa sand tested in
a cubical triaxial testing apparatus [ 16] . Presumably if the sample
was initially homogeneous and isotropic, the principal deformations
in the three perpendicular directions should be equal under isotropic
loading such as hydrostatic compression. However, Ko observed
that the vertical deformation was sometimes greater.than the two
horizontal deformations which were always equal or nearly equal.

In the previous derivation, the proposed model was considered
to represent an initially homogeneous and isotropic granular material
contalning randomly distributed grains and packings. Anisotropy
would be induced after straining anisotropically due to loading other
than isotropic stress path such as hydrostatic compression or exten-
sion. To account for the possible existence of initial anisotropy in a
granular medium, certain revision of the proposed model is needed.
Physically speaking anisotropy arises from the geometrical packing
in such a way that particle formation in one direction is more
susceptible to deformation than the other directions.

Of course, the initial anisotropy can be taken into considera-
tion by changing the modulus of every stiffness spring and spring-slip
element. However, this would make the derivation of the stress-
strain relation extremely complicated since there are too many

moduli of stiffness spring and spring-slip elements involved in the
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proposed model. It is more desirable to employ a simpler model
imposing a fictitious factor of anisotropy denoted by n, in each
of the three principal directions to account for the necessary variation
of stiffness in all the stiffness spring and spring-slip elements due
to initial anisotropy. It is postulated that the stresses are computed
from a fictitious strain with a magnitude of n.€, according to the
configuration of the anisotropic model shown in Fig, ITI.18. However,
the real quantity of strain corresponding to the ith principal direction

.is still designated as € It has to point out that the proposed

i
anisotropic model is only a postulation for the behavior of an aniso-
tropic granular material., Its validity has to be determined by certain
experimental results.

As before, the stress strain relation can be derived into two
parts. The first part is the contribution due to the stiffness spring
elements and can be derived in the same fashion as the isotropic
model in previous sections. As before, let the stress due to the
stiffness springs Es in the ith principal direction be denoted by

(cre)i, then it can be proved from the configuration of mechanical

model shown in Fig. IIl. {8 that

n,(1+e,) n,(1+e,) n;(1+€.)
Wty B 21 .211/2+ ~ 211/2‘ AR lz 172
Hmpm) T () [0 (1+e)"+ni (1 +¢)]
ni(1+€i)
_ . (3« 58)
[nf(i +€i)2+n12((1 +€k),2] T

i#j# k; i,j,k=1,2,3
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After a strain increment of (Aéi,AGZ,A€3), <Ge)i increases
with an amount of (Ace)i, After some mathematical manipulation,

the following relation is obtained:

n, n, ninjz(i +Ej)2
(Ao ).) = A€, + -
ei 1) 2 272" [ 2. 21772 z Z. 2 2372
(ni +nj) (ni'i‘-n.l) [ni (1+€i) -i~nj (1+€j) ]
2 2
nink(1+€k)

[niz(l +ei)2+n1i(1+ek)2] 3/2

7]
k
[niz(i+ei)2+nj2(1 +€j)2] 3/2

n,n2(1+e,)(1+e
I N Aec.
j

{4 59

+% ninlzc'(i-l-ei)(i-kek)
[

A€
n12(1+€i)2+njz(1+€j)2]3/2 % k

The second part is the contribution due to the spring-slip
elements. The stress Gp and stress increments (/Acrp)i in the ith
principal direction due to these elements can be easily obtained by
substituting €, and Aei in Eqs. (3.33) to (3.40) with n €, and
niAei respectively.

The procedures of carrying out the stress-strain computation

are similar to the isotropic model shown in the previous section and

will not be elaborated on here.



-89-

&+ %

o

.
O-}(—q

Mechanical Model Representing a
Contact Between Grains

Fig. III.1,

¢ N

7400 NN A N RN S 2 e
One-dimensional Mechanical Model

Fig. 1II. 2.
Representing the Material



-0 =

F =z oA

i i = |
.A1 AZ Ai AN
E E E, E

1 e o ! e o N

* * * %
oy o, Gi O'N

ANSANNRRNNYNN

STEETTTETT T E R RETHETTER R TN NN

Fig. ITI.3. Simpler One- dimensional Model (Model A)

after Twan [ 19]
o
i =
u_-
o, -————==
| 0 — u— a: loading
' u — R: unloading
| R — u: reloading
{
|
0 2/ € o
I u
O o= 4

Fig. III. 4.

Stress-strain Loading

Paths for Model A



!

(a) Stress-strain curve for
various stress parts

g
f
e
€

yon
=

Do Q
o

Y

h
(b) Hysteresis loop

Fig. III.5. Stress Paths and Hysteresis Loop for
One- dimensional Model (Model B)



.

1
B *
& [0}

*

Fig. III. 6. Rectangular Distribution of o

linear o-€ curve A-Z,.;,

Dimensionless stress o/x

e o oon v cry Gy — . S T e a0 TP G Gmm e oy ame e e o S o CEwe S - st o s

o,

Strain (times E/x)

0 0.2 0.4 0.6 0.8 1.0
Fig. III.7. Dimensionless Stress-strain %:elation for
Rectangularly Distributed ¢(o )



_93_
(o)

| 2
| e .
— 0

| x/2 x/2 —
%
" Fig, III.8. Triangular Distribution of o
~
-+ 1,00
1]
w
o
~
iy
n
6]
mn
~40.89
d
5
g €~ linear o-€ curve
ki
40.6°
0.4
40,2
0 0.2 0.4 0.6 0.8 1.0

Strain (times E /x)

Fig. III. 7. Dimensionless Stress-strain >‘f{ela.tion for
Triangularly Distributed ¢(o )



38

30

Stress (Psi)

25 ~

20

15

i gy

G4

Calculated curves

—=———=—=— Tca-1 of Ko's test [ 16]
E =1000 Psi
L linear curve
x = 27 Psi
////’
o '
>
~
/
&
Ve
//
F
/
/
i/
] 1 i 1 i
0.2 0.4 0.6 0.8 1.0 1.2 id 1.6

Fig. III.10.

Strain (%)

Stress-strain Curves for Rectangularly
Distributed qf)(O'*) and Comparison with

0'1-61 Curve of Ko's Tca-1 Test



-95-

Calculated curves
Tca-1 of Ko's test [ 16]

S
35 o E = 1000 Psi
linear curve
30 4 = S
n
By
s3]
0
o
25 4 H
1)
//
/
~
~
20 =
15 =
10
£ -
=1 1 T T T %
0 0.2 0.4 0.6 0.8 1.0
" Strain (%)

Stress-strain Curves for Triangularly
Distributed ¢(c ) and Comparison with
Curve of Ko's Tca-1 Test

Fig. III.11.

0'1-61



-96-

$(c")

0 m e
*® 2
* t 1i/0 -m *
¢(o ) = \/E_ exp [--2—( = ) ] for o 20
w s '
%
¢{c ) =0 for o*<0

= 1/;1 _5—000 ﬁ_i = 25 [_%(G*;m>2] dg*g

m = mean of Gaussian distribution

s = standard deviation of Gaussian distribution

Fig, III.12. The Type of Gaussian Distribution
Considered in This Thesis

¥*



40

35

30

25

20

15

10

Fig. III.13.

Stress (Psi)

-97-

s: standardard deviation of (0*)

m: mean of d)(o"*)

10000 Psi
10 Psi

Calculated Curve {}i

Tca-1 of Ko's test [ 16]

linear curve
L

| I i | | A ] i
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Strain (%)
Stress-strain Curves for Gaussian-distributed

¢(oc ) and Comparison with o,-€¢ Curves of
Ko's Tca-1 Test



-98-

[62 ] Buesng pu® 9300 ‘Yjjwis I9jye
soxoydg snosusFowol jo SUupNOBg B U] $310BIUO0D JO JequunN jo Aouenboag

(A Ty oF 6 8 & m
i L 1 ! |

*$7°II1 *81d
|

$30B3U0D JO ISqUUNN

d
6G€°0 = U
- T — —
llllllll e ~
- N ~ _
7/
vl d T -7
/4 zero="u <
7/
/
d
9Z%°0 = u
d
0= u
d

A31sox0g = u

s
p—
- \\\

0T -

o
N
|

(%) &ousnboaxg eous1IND2Q
-
|

o
<
l




Fig. IIL.15.

Two-dimensional Mechanical Model
Representing Granular Material
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Note: 1. Due to the symmetry of this model, only the elements in
OA, OB, OF and AB, BG, GA are shown with corresponding
parameters.

2. Dotted lines represent the shape of 1/8 of the model at a

state of strain (61 ,62,63).,

Fig, III.17. Three-dimensional Model Representing
Granular Material's Behavior '



I
|C'

%1
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corresponding parameters,

2. Dotted lines represent the shape of 1/8 of the model at
a state of strain (61 ,62,63).

Fig. 111.18. Three-dimensional Model for Anisotropic Material
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CHAPTER IV

SPECIAL CASES, DETERMINATION OF MATERIAL PARAMETER,
REPRESENTATION OF EXPERIMENTAIL DATA

IV.1 Special Cases

The proposed model is derived in such a way that the stress-
strain relation for any arbitrary stress-path can be obtained if the
material properties are known. The material properties involved

in the proposed constitutive relations are Es’ E, m_, M., S_, and

t

s, which, in turn, have to be determined from experimental data.

In the following section, several special stress paths and the simula-
tion of experimental data will be presented. Théy are taken to serve
the following purposes:

(i) To provide a basis, in conjunction with the experimental
results, for measuring the material properties involved in the pro-
posed contitutive relations for a granular material.

(ii) To assess the suitability and accuracy of the proposed
constitutive relations in representing the essential features of the
behavior of the granular material.

(iii) To predict qualitatively and quantitatively the stress-
strain relations of arbitrary stress-paths by using the material
propérties obtained from the experimental data in special cases.

(iv) To provide some insight on the dependency of some
material parameters involved in the proposed constitutive relations
with the state of stress and loading history and the mechanical

properties of the material, such as the void ratio or density of the
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soils,

IV.1-1 Loading paths with proportional stress increments

These loading paths are here defined to be stress paths which
produce a principal effective stress state (01, Oy 03) w hose three
principal stress increments are proportional to each other, i.e.,
Aci - AGZ:A03 =y:a:p where vy, a and B are constants. In
addition, the principal axes are not permitted to rotate. It is worth
pointing out that this type of loading path is different from the con-
ventional concept of proportional loading or straining [ 9] , whose
three principal effective stresses or principal strains are propor-
tional to each other. In a sense, loading paths with proportional
stress increments cover a much broader area than the proportional
loading. Proportional loading is only one type of the loading paths
with proportional stress increments., However, the reversal is not
true.

Loading paths with préportional stress increments are stress
controlled processes. Most of the existing threev—dimensional soil
test devices are of these types. Completely strain-controlled three-
dimensional tests have been reported [ 124] . But it is believed that
the mechanical difficulties associated with these tests have prevented
their successful use [17]. Since the parameters involved in the
proposed constitutive relations have to be determined by experimental
testing data, the understanding of loading paths with proportional
stress increments is important.

The proposed constitutive relations as demonstrated in the
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previous chapter are derived from a rheological model under strain-
control. However, through the matrix inversion, the stress-con-
trolled version can be obtained without difficulty, One of the special
characters of a granular material like most other materials, is its
softness under shear stress. One disadvantage of using a stress-
controlled path is that a.large strain increment is obtained under a
small stress increment when the deformation is large. This might
lead to some false impression about the accuracy of the proposed
constitutive relations in simulating or predicting the experimental
data. This point will be illustrated in detail in later sections of this

work.

(i) Hydrostatic compression

In this stress path, the three principal stresses are kept
equal to each other and the three principal stress increments are
the same (y = @ = Bp=1). The stress path can be r‘eadily represented
in principal stress space as shown in Fig. IV.1. The hydrostatic
stress, denoted by o_ . 1s eqﬁal to 1/43 times the distance of the
stress point along the hydrostatic axis. For an isotropic material
under hydrostatic compression, the three principal strains, denoted
by €, are also equal to each other. Let Ac and A€ denote the
principal stress and strain increments, respectively, then it can be

seen from Eqs. (3.44) and (3.46) that for the model used herein,
4
Ac =(——-E +p)A€ (4.1)
2 s

where p =p,, i=1, 2,3 and p; can be obtained from Egs. (3.33)
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to (3.40) in the previous chapter.

For a granular material, the stiffening effect in the volume
change due to the increase of hydrostatic compression stress is well
known [ 1,42] . Therefore the coefficient (-‘—7—_ E_+ p) in the right-
hand side of Eq. (4.1) is evidently a functiin of hydrostatic stress
and can not be regarded as constant. The purpose of this hydro-
static compression test is to find out what proportion of the volu-
metric strain is elastic and how the coefficients Es and p vary
with hydrostatic stress. Since p represents the slip behavior of
the granular material, if the strain is small, the yield portion would
be negligible in comparisonwith the elastic strain, This leads to
the conclusion that the stress-strain behavior of a granular material

under hydrostatic compression is essentially elastic but nonlinear

if the volumetric strain is small,

(ii) Proportional stress increments with constant octahedral

stress
(a) Axial shear stress path
The stress path here is either a triaxial extension (TE) or atri-

axial compression {TC).For an axial shear stress path the octahedral
normal stress is always kept constant throughout the stress path.
The axial shear stress path can be illustrated in the principal stress
space as shown in Fig. IV.1 or on an octahedral stress space as
shown in Fig. IV.2. For a triaxial compression(y=1, a=8= - -é—)
or a triaxial extension (y=a=1, p=-2) stress path, the loading

starts at initially hydrostatic stress state at H (Fig. IV.1) and then
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the stresses vary according to proportional stress increments so
that the stress point remains on the octahedral plane through H.

As the stress point moves along the projection of principal stress
axis on octahedral plane and away from point H, the octahedral
shear stress increases from zero. One purpose of performing tests
along an axial shear stress path is to determine the shear deforma-
tion under change of shear stress, with constant hydrostatic pressure,
with the shear being the only influence of stress history. The other
purpose is to determine the influence of the stress direction (com-
pression and extension) on the shear deformation. By setting

A01 = yAo, Acrz = aAo and Ac3 = BAo the following incremental

stress-strain relation can be obtained from Eq. (3.54).

Ay 8228337%23%32  #13%327233%12 212%237%22%13) \ ¥
AEy ZHE%GI 2312237233%21  2112337%13%31 221%137311%23)\ ¢
iy 2217337222731 2317127311732 311%227%12%21) ( P

(4.2)

where the coefficients aij (i,j=1, 2, 3) are shown in Eq. (3.55).
The influence of stress history due to the constant hydrostatic

pressure can be investigated without difficulty. If the stress history

influence is neglected and it is assumed that the strains have little

effect on the determination of aij’ then Eq. (4. 2) becomes:
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A€
1 Ao
Ae = 1
2( ~ det A
Ae3
2 2 2 1
3Es \/“ Es i Es i
W2E (p,tp)tp,py -5 - = Ep =gl P
2 P2 P3/7P,P3 Z 2 3 7z s 2
X ...].’E.;_._i...E 3E§+ﬁE { )+ Ez 1 E
' Z 2 sP3 2 s\P3 7Py )PP, ‘T’Tg sP1
B i . 3E5+¢5E< )
z " P2 Z 5 sP1 3 s\P1 1P, +P1P2J
Y
X {a (4. 3)
B
i.e.
ol ’ : \
s i - o
== (3v—a—6)+w/5Es(v——zﬁ)pzh/zb_%(v-7)p3_+vp2p3
\4€ 4 B
_ Ao 'S | Y
Afz = et A '“2'-(30"5'Y)+\/€Es(a“§ﬁ)P1+‘[ZEs(a‘*Z)P3+°‘P1P3>
%3 Ei - i
{7 B2 2B (B- 5 alp +VZ E (8- 5)p P,y )

(4.4)

In the TC stress path, a=- 1/2 and B=- 1/2, If the pi's
are assumed to have the same order of magnitude then Eq. (4.4)

indicates:

A'Ei Ao
= = = = -2 (4;‘ 5)
3

A€, ©

w
o)
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Similarly, for a TE stress path (y=1, a=1, B=-2) Eq. (4.4)

yields again:

A€ Ac
oy Lo 2 (4.6)
X, BT &5, "2 .

Equations (4.5) and (4. 6) imply that along the axial shear
path, proportional stréss and strain increments are roughly
interchangeable if there is no stress history influence. As mentioned
before, the axial shear stress path initially starts at a hydrostatic

compression stress oy and a corresponding strain <, and

ct ct

then follows a stress path according to the specific proportional
stress increment, If the differences between the present state and
initial hydrostatic state of stress and strains are tzken to be the
coordinates of the stress-strain curves, Egs. (4‘. 5) and (4.6) can

be qualitatively illustrated as shown in Fig. IV.3. Therefore, if the
influence of stress history and stress (or strain) path is excluded or
neglected, the stress-strain relationship should exhibit the following
characteristics:

(1) Loading with proportional stress increment induces pro-
portional strain increment. The slope in the strain/strain plot starts
at the value achieved in initial hydrostatic compression. The slope
in the smaller stress (absolute value) direction becomes flatter than
in the larger stress direction as indicated in Fig. IV.3.

(2) For an isotropic material, the o, - € curve i, & e
path is identical with the o

- €, curve in the TE path if they are

3 TH
plotted in the coordinate system shown in Fig. IV.3. Similarly
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g, -€, curve in the TC path is identical with the ¢, - €, curve in the

3 73 i

TE path,

1

However, the above characteristics are not observed in tests
of the stress-strain behavior of a granular material. According to
experimental test results on Ottawa sand by Ko [16] and Masson [ 17] -
the behavior of a granular material along the axial shear stress path
can be qualitatively illustrated in Fig. IV.4, Due to the influence of
hydrostatic stress history and stress path, the stress-strain be-
haviors under the TC and TE stress path have the following
characteristics:

(1) Along the TC stress path, the 03 - €3 curve exhibits
higher slope when the strain is small but it eventually indicates flatter
slope with a sharper change of slope at some stress-strain state
in.comparison,withthe proportional strain increment Oy - €3 curve
(broken lines in Fig. IV.4(a)) obtained by one and one correspondence
from the o, - €, curve.

- €, curve exhibits a

i 1

smaller slope when the strain is small but eventually reaches a higher

{2) Along the TE stress path, the o

slope with a smoother change of slope at some stress-strain state
in comparison with the proportional straining o, - €4 curve (broken
lines in Fig. IV.4(b) ) obtained by one and one correspondence from

the 0'3-63 curve.

(3) In cofnparing the o, -€, curve along the TC stress path

1

and the 0, - €, curve along the TE stress path, the difference is

3 73
evident; the latter curve has a higher initial slope but eventually

reaches a lower ultimate stress level with sharper change of slope.
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All of these indicate that the stress history, the stress-strain
path, and the difference of slip characteristics in compression and
in extension play important roles in the behavior of a granular
material. All of the above-mentioned characteristics lead to one
conclusion--that the granular material behaves differently in com-
pression and in extension. However, previous investigation and
theory [ 9,17] have never taken these facts into consideration. The
proposed rheological model offers a satisfactory description of all
these observed behaviors. They can be interpreted as follows:

The axial shear stress path always starts with an initial
hydrostatic compression state with stress and strain corresponding

to © and €
o

—_— This means the material is initially loaded to

ct’

a compression strain €, If proportional stress increments are

ct®

applied according to the axial shear stress path, Ao is positive

(compression) and A03 is negative (extension). Then the oy -€4

curve continues its compressive loading process which yields a Py
value progressively smaller than the Py value of previous stress
increment, At the instant of applying the first stress increment, the
03- €5
value is equal to E as can be seen from Egs. (3.34) and (3.45).

curve starts its compressive unloading process, the P3

As the stress increments are being continuously applied, the Py
value continuously decreases along a compressive unloading path but
with a smaller rate than Py in the o, - € curve due to compressive
loading. This is clearly indicated by Eqs. (3.33), (3.34) and (3.45)
in the previous .chapter. Therefore, at early stages of loading along

the axial shear stress path, P3 is larger than Py- The slope of a
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stress-strain curve in this study is contributed by stiffness springs

1—61 and

04 - €3 curves is approximately the same order of magnitude for

Es and Py (i=1, 2, 3). The influence of Es on both o

small strain as can be seen from Eq. (3.53). The presence of P3

being larger than Py makes the ¢ curve always exhibit a

R

higher slope value than that of the o, - €, curve in the early part of

1 1
the axial shear stress loading path. As the axial shear stress loading
continues, 61 decreases. At a certain stage and beyond, € reaches

‘a zero value and further becomes negative (extension), then the o3- €y
curve undergoes the process of extension unloading as shown inFig. II1.16.
Thus P3 decreases rapidly because the slip characteristics of a

granular material is more susceptible to extension than compression.

At a certain level of straining along an axial shear stress path, Py
will be less than Py- Thus in the later part of the axial shear stress

curve is flatter than the slope of the

path, the slope of the o, -¢

3 71

"E cur e.
0'1 1 urv

(b) Radial shear stress path

As shown in Fig. IV,2, the radial shear stress path lies
somewhere in between the TE and TC stress paths on an octahedral
stress plane, The stress path extends radially from the hydrostatic
axis O and makes an angle 0° with the horizontal axis. It will be
called an RS-0° stress path following Ko's definition [16]. The
axial stress path is essentially a particular kind of radial shear
stress path, thus the TE stress path can be defined as RS-30° and

the TC stress path as RS-90°. The other radial shear stress paths
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lie between the TE and TC stress paths as shown in Fig. IV.2.

The stress path RS-60° is particularly interesting, since o,
is kept constant in this stress path. Therefore, the RS- 60° stress
path represents a special kind of plane stress condition. For the
RS-60° stress path, experimental results on Ottawa sand performed
by Ko [ 16] and Masson [17] showed that the strain in the o,
direction Is small in comparison with the strains in the other two
directions. It can therefore be speculated that the plane strain
condition lies in the neighborhood of the RS-60° stress path although
it is not necessarily represented by a straight line stress path. It
can also be speculated that the stress-strain curves for a radial
shear stress path should fall in between the stress-strain curves
of the TE and TC stress path as shown in Fig. IV.5. The experi-
mental results on Ottawa sand by Ko [ 16] and Masson [ 17] (shown
in Figs. IV. 6 and IV.7) seem to substantiate this speculation. The
purpose of performing tests along a radial stress path is to investi-
gate the stress-strain relations of granular materials under general

three-dimensional stress states and also to use the proposed consti-

tutive relation to the model and experimental results.

(iii) Proportional stress increments with variable o_ .
In the previously discussed shear stress path, the octahedral

normal stress was kept constant, and the influence of the stress

path or the strain path was through the shear stress change. How-

ever in the conventional triaxial tests the octahedral normal stresses

change along the stress path. Therefore the purpose.. of performing
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tests following conventional triaxial stress paths is to investigate
the quantitative influence of changes in both shear and octahedral
stresses on the stress-strain behavior of a granular material and,
of course, to investigate the failure envelope. All the conventional
triaxial stress paths follow the rule of loading with proportional
stress increments with the change of octahedral stress along their
stress paths and can be illustrated in principal stress space as
shown in Fig. IV.8. The conventional triaxial stress paths always
start at an initially hydrostatic stress state, and then the stresses
vary according to proportional stress increments. If the effect of
stress history and stress path on the stress-strain behavior in an
isotropic material is again neglected, the following relations are

obtained from Eq. (4.4):

i

(a) CTC stress path (y=1, a=0, B =0; Ao, = Ao,

i
A€3 and p2 = p3 = PT)

AGZ = AG3 = 03 Aez

ey =2 [ WEm o o+ 2T .
and
be, = ey = oy [ @2+ B o] (8.7
Thus,
2_% = 2% :(3 +J_;I) (4. 8)




-115-

(b) CTC-A stresspath(y=0, a=8=-1; Aci =0, Ao, =

Aoy = ~A0; A€, = A€ Py =P s P, =P3 = Pg)

_ Ao 2
A =Ferx o tV2E.Rq i)
and
_ Ao «/— '
Ay MRy = detA[(E +2 E P! (“ T)] (4.9b)
Thus,
Ag Ae
Z—e_i = Aei - : P (4.10)
2 3 1+\[2 o]
2 E
(c) CTE stress path(y=0, a=0, B=-1; Aci = AO‘Z = 0,
Ao3 = -Aoc; Aei = Ae; Py =P, = pc)
1
Ae, = Ac, detA [ (B “ 42 B P )] (4.11a)
Ae, = [ (& +J—E )(3+‘/—_p (4.11b)
€3 qera | 7! P - =) .
Thus,
Aei Aei
(4.12)
Aez A€3 \/—P
3+ T—

S
(d) CTE- A stress path ('\/21, =1, 5:0; Ao‘ion'Z:AQ',

Aoy = 0; Ae,=Acs; py =P, =P s Py = P)

Ae, = Ac, detA f(E +2E p ) (1 +42 f_)] (4.132)
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_ Ao [ 2. /5 ] :
A€3 = det A —(ES +4/2 ESPC) (4. 13b)
Thus
Sl | 2%, (1+_._.VZ __pT) (4.14)
Ae Ae 2 E °
3 3 s
Let o° and €° , be the initial hydrostatic stress and
oct oct

strain, the stress-strain relations in Eqs. (4.7) to (4.14) can be
illustrated as shown in Fig. IV.9. It can be seen that the stress-
strain behavior is strongly dependent on the stress path even though
the effects of stress hisctory and strain characteristics are disre-
garded. The true stress-strain behavior of a granular material will
be different from the one shown in Fig. IV.9 due to the influence of
stress history and the different slip characteristics in compression
and extension. As demonstrated in the stress-strain relation along
the axial shear stress path, the influence of stress history and slip

characteristic would again be reflected in a Ooct™ €3 {extension)

ct
curve having a higher initial slope but eventually reaching a lower
stress with sharper change of slope in comparison with the stress-

strain relations shown in Fig. IV.9.

(iv) The stress paths for all the above-mentioned loading

with proportional stress increments can be summarized in Table IV. 1.,
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TABLE IV. 1

Stress path N, o B Aaoct AToct
HC 1 1 1 1 0
i 1 ~1 /2 142 0 1/372
TE 1/2 1/2 el 0 1/32
RS- 60° 1 0 -1 0 V23
CTC 1 0 0 1/3 J2/3
CTC-A 0 -4 ] -2/3 J2/3
CTE 0 0 -1 13 V2/3
CTE-A 1 1 0 2/3 J2/3

IV.1-2 Plane strain-stress path
In soil mechanics problems, the plane strain case is most
frequently encountered. In order to apply the constitutive relations
developed here to boundary value problems in soil mechanics, a
general two-dimensional constitutive relation formulation in terms

6f O ;@ ., T € 5 E and vy is needed and will be treated in
x' 'y % xy

Xy ¥
detail in the next chapter. Here only some general aspects of the
plane strain case in terms of principal stresses and strains will be

discussed. By setting the intermediate principal strain and strain

increment equal to zero, the constitutive relation in Eq. (3.54)

Ao a a Ae
[ 1] = [ i 13] [ 1] (4.15a)
Aoy 231 g3 Aeq

+ a, Ae (4.15b)

becomes

and

AO'2= a,,Ae
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2

the influence of stress history and the slip characteristics are again

where the aij's can be obtained from Eq. (3.55) with €. = 0. If

disregarded, Eq. (4.15) can be approximately rewritten as follows:

Jz
Ao, Wz E_+p,)de, +I2E Ac,
= J— (4.16a)
2
Ao, L E_Ac, +(J£ES +p,)de,

and

Ao, + Ao, +Ac, = (zJEES +p, )A€, +(2/2E_+p,)Ac, (4.16D)

If the octahedral normal stress is kept constant in the plane
strain-stress path, the right-hand side of Eq. (4.16Db) is equal to
zero. TLherefore, A€3 is approximately equal to —Aei , which in

turn implies Ao, is approximately equal to —Aoi (RS-60° stress

3
path). In other words, the plane strain stress path approximately
coincides with the plane stress case on the same octahedral stress
plane if the effect of stress history and slip-strain characteristics
is neglected. However, in the real behavior of granular material,
the latter effects must be recognized so that in reality the plane
strain stress path will lie in the neighborhood of the plane stress

case (RS-60°) but will be represented by a curved line rather than

a straight line.
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IV.2 Theoretical and Experimental Consideration of Parameters

Involved in the Proposed Constitutive Relations

IV.2-1 Relationof E to o
s oct

In the proposed model the stiffening spring with modulus ES
represents the elastic strain and volume changes of granular material
under stress. The stiffening effect due to the increase of octahedral

normal stress means that Es increases with o Some investiga-

ct*
tors [ 16,42] have tried to predict the compressibility of granular

material by using Hertz's contact theory applied to spherical grains.

Thus, the volumetric strain €, is expressed as a two-thirds

ct

power function of o, In other words, the slope of © - €

ct’ oct oct

would be a one-third power function of o, if Hertz's theory is

ct
applied. However, experimental results obtained by Ko and Scott

on Ottawa sand indicate that in a granular material such as sand,
this relationship does not hold. The sand soil becomes stiffer more
rapidly than predicted by Hertz's theory. Ko [16] and Masson [17]
have performed hydrostatic compression tests on medium-dense
Ottawa sand using two different but similar versions of cubit triaxial
testing apparatus. Their results are shown in Figs. IV.10 and IV.11,

As derived in Eq. (4.1), the proposed stress-strain relation

for hydrostatic compression would be approximated as:
Ac = (iE +p)Ae (4.1a)
oct ﬁ s oct

Therefore, the terms 2 ES +p represent the slope of the
2
stress-strain curve under hydrostatic compression and can be deter-
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mined from the experimental data. The term p denotes, as before,
the stiffness portion due to the slip-spring elements with modulus E.
The slip-spring elements represent the slip characteristics between
contacts of a granular medium with a certain geometric packing.
Therefore, p is presumably a function of the number of contacts and
thus of the void ratio of a granular material.,

Under hydrostatic compressure in the normal pressure range
(say, 0 - 100 psi) the deformation is small in comparison with the
deformation due to shear. This point is clearly indicated from Ko
[16] and Masson's [ 17] experimental results on Ottawa sand shown
in Figs. IV.6, IV.7, IV.10 and IV.11. If the slip is assumed to be
negligible during the hydrostatic compression test then the p wvalue
is approximately equal to the modulus E. If it is further assumed
that the void ratio or geometric packing change due to the hydrostatic
pressure in the normal pressure range is insignificant then E can
be regarded as constant throughout the hydrostatic compression test.

In the case of a granular material, it can not support any
deviatoric stress in the absence of a state of hydrostatic compression.
Therefore, the slope of Ouct ~ €oct CUTVE at zero octahedral normal
stress should be totally due to the modulus E of the slip-spring
element since ES at o = 0 is equal to zero. From Eq. (4.1)

oct

the slope of the curve is equal to bl Es + p. The value can be .
2

separated by subtracting the p wvalue from the slope of B s = B oo

curve., p can be assumed to be equal to E for all of the hydrostatic

curves since:
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(a) if €, is small, only a negligible fraction of slip-spring

ct

elements has yielded and therefore p is approximately equal to E,

(b) if B e is large, the difference between p and E

would be negligible in comparison with the high value of .} ES as
2
(o) becomes large.

oct
The statement in the above paragraph may seem to be a pre-
sumptuous postulation. Further explanation is needed if the proposed
model is to represent the deformation behavior of a granular material;
it must have the property of being unable to support any shear stress
in the absence of hydrostatic compression (i.e. ot = 0). The only
possibility for the proposed model to do so is by setting ES =0 at

(o)

0. In the absence of the stiffness springs E_ (E_ = 0) at
oct s s

Oct = 0, the proposed model consists of only three mutually-
perpendicular slip-spring elements hinged together at the centroid
(point 0 in Fig. III.17), and can not support any shear stress, since
the presence of any small amount of shear would make the proposed
model undergo continuous shear deformation and finally collapse.
However, the slip mechanism is due to the contacts between grains
and the slip mechanism should still exist in the three mutually-

perpendicular principal direction even though ¢ and ES are

oct

both zero.

The hydrostatic compression tests on medium dense sand by
Ko [ 16] and Masson [17] have already been shown in Figs. IV.10
and IV.11. To investigate the variation of ES VS, Goct’ the slopes
ofthe o - € curves of their hydrostatic compression results

oct oct

must be calculated with respect to different levels of Oct stress.
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In Ko's hydrostatic compression test [ 16], an arbitrary datum
pressure was chosen at 4 psi, because at smaller pressures an
uncertainty exists as to the sample's boundary condition in a soil
test box. Therefore, Ko's testing results under hydrostatic com-
pression have to be extrapolated to zero state of stress and strain,
The corrected Ouct™ € curve is denoted by dotted lines as shown

ct “oct

in Fig. IV. 0. The Es values at various G ok stress levels for
both Ko's and Masson's test results on Ottawa sand are tabulated in

Tables IV.2 and IV.3

TABLE IV.2

ES and E values from HC-test on medium dense

Ottawa sand by Ko[16 |

O ot € ct %ES +p Estimated % ES
(psi) (%) (psi) (psi)
0 0 8000 (= E) 0
5 0.023 24250 16250
10 0.06 26670 18670
i5 0,07 32000 24000
20 0.09 36370 28370
30 0.113 42100 36100
40 0.131 53300 45300

50 0.152 66670 58670
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TABLE IV.3

Es and E values from HC-test on medium dense
Ottawa sand (e = 0.524) by Masson [17]

4 4

GOCt eOCt ﬁ ES & P Estimated ﬁ ES
(psi) (%) (psi) (psi)

0 0 7500 0

5 0.041 20000 12500

10 0.062 24240 17140

15 0.08 28570 21070

20 0.095 33400 25900

30 0.122 33400 25900

40 0.146 48500 41000

If the estimated iEs vvalues are plotted against o,

V2

as shown in Fig. IV.12, it is found that ES increases with o

ct

ct’

Both experimental data by Ko and Masson indicate: that there

exists a bilinear relation between Es and Goct as illustrated in

Fig. IV.12, For o, larger than 5 psi, the ES can be taken as a

ct

linear function of o, rather than the one-third power function of

, ct

O .4 Obtained from Hertz's theory.

IV.2-2 ES vs. octahedral shear stress (Toct)

When a granular material is subjected to a pure shear stress
increment, there is usually observed a partially inelastic behavior
with failure occurring when the shear stress reaches a certain level,

From Eq. (3.45), it seems that the elastic stress component due to

the stiffness spfing elements with modulus ES always exists in the
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loading or unloading process. As indicated by Egs. (3.33) to (3.40)
and Eq. (3.46) in the previous chapter, when the strain level is large,
the portion of stress increments due to slip-spring elements in the
proposed model would be very small since most of the slip-spring
elements have already yielded at large strain level, If Es is
assumed to be independent of octahedral shear stress then no failure
,will occur at large strain since the material behavior becomes pre-
dominantly elastic if the straln becomes large. This is a contradiction
to the observed experimental data such as the test results of Ottawa
sand under axial shear stress loading obtained by Ko [ 16] and Masson
[17] (Figs. IV.6 and IV.7). Therefore, if the proposed three-
dimensional model really represents the correct behavior of a granu-
lar material, it is inevitable that ES be dependent on the octahedral
shear stress. It can be postulated that the Es value decreases

with the increase of octahedral shear stress.

Some substantial complications in the formulation of stress-
strain relations also develop thereby. However, this complication
can be avoided by treating the Es as a piecewise linear constant
during each stress or strain increment. Since the constitutive
relation is derived in inlcremental form, the error due to this linear
approximation of Es will be negligible if the stress or strain incre-
ment is kept at a small value.

An analytical expression of ES in terms of octahedral shear
stress may be proven to be difficult if not impossible. However,
one might find the numerical relation between Es and octahedral

shear stress by simulating the axial shear stress path experimental



-125-
data and from some theoretical consideration of the deformation
behavior of contacts between grains in a granular behavior.
Thurston and Deresiewicz [41] analyzed a face-centered cubic
array of uniform spheres (the densest regular packing) and found the

following relations for two spheres in contact.

(a) Loading curve

2/3
_3(2-v)IN [ T ]
6'———8?:3—__ 1-(1 fN) (4.17)
where
6 = relative tangential displacement of distinct points
f = coefficient of friction
T = tangential force
N = normal force
1/3
a = [9—(1—:{;—3@] / by Hertz's theory
R = radius of spheres
g = shear modulus of grain
v = Poisson's ratio of grain
or
2/3
NS PR Rt (4.17a)
where
1/3
- 32 / . (4.18)
a[3R(1-v)p?] /3

Suppose N 1is constant then

1/3 ]
dT 1/3,, T 2
T - ) /3 - o) /-3—4.0 (4.19)
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(b) Unloading curve and reloading curve

A relation similar to Eq. (4.19) exists for both the ﬁnloading
and the reloading case.

Equation (4.19) indicates that the slope of the T-§ curve is
a one-third power function of shear force for two spheres in contact
in the one-diménsional case. If an analogy can be postulated be-
tween Eq. (4.19)andthe proposed three-dimensional model, it would
seem that Es decreaseé with a one-third power function of the

difference between one and the ratio of ’To - to o

. However
ct oct ?

the macroscopic behavior 6f randomly packed granular material as
a whole under shear stress may not be represented by a simple
relation derived from two spheres at contact. The true relation

between ES and o can only be determined from an examination

ct
of experimental data.
As indicated in section IV.2-1, E_ isa T ——
- rather than the one-third power function of B ot obtained from
Hertz's theory. If this analogy can be applied to the relation between
ES and shear str‘ess, it would be expected that Es decreases with
certain power functions of the difference between one and the ratio
of 70ct to. Ot As will be shown in ;che next section, if Es is

taken as a square function of the difference between one and Toct/ooct'
the Tca-2 stress-strain curve of Ko's experimental results on

Ottawa sand (Fig. IV.6 and Ref. [16]) can be closely simulated

(Fig. IV.17). However, if the .same relation is used to predict

Ko's TE-1 test curve, the correlation between this proposed model

and experimental déta is not very good (Fig. IV.18).
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Although the expression of ES as a certain power function of
/o

Ottawa sand under TE tests, nevertheless, some qualitative agree-

[ - (7 )] does not predict closely the experimental data of

oct’/ "oct

ment between the shape of the stress-strain curves calculated by

the proposed constitutive relation and that of the experimental
results is apparently reached. In order to reach a better agreement
between the proposed model and the deformation behavior of a
granular material under various loading conditions, more effort in
searching for a relationship between Es and T is needed.

oct

In establishing a workable relation between ES and Toct’
another factor must be taken into consideration. That is the fact

that the ES value can not be less than zero. For if ES <0, it would
be possible to have a positive strain in the direction perpendicular

to the direction along which a positive strain exists with a correspond-
ing compressive stress, which is impossible for an isotropic material.

/o

may have a value larger than

If E_ is expressed as a power function of [1 - (T )] along

oct’ oct

certain stress paths where Toct/coct

one (such as the CTC stress path in Table IV.1), then Es may be-
come negative.
As indicated before, Es has to decrease with the increase of

Toct? and Es increases with the increase of o, according to the

ct

theoretical considerations and experimental results. The simplest
relation to meet the above requirement and the condition of Es >0

is to express Es as a certain power function of the ratio of O oct

to the sum of o and T i.e.,

oct oct’
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Goct n
Eg (a‘——?r;—“ > (4. 20)
oct oct

where n = constant.

Let (Es)'r_:o denote the Es value corresponding to P i 0.

Then Eq. (4.20) can be rewritten as

Es ( croct =
= (4. 21)
(Es)7=0 0oc:i: ¥ Toct )

The proposed model involves the stiffness spring modulus Es
and the slip-spring elements whose contribution to the stress-strain
curve is indicated by the value P;- The slope of the stress-strain
curve must be the reflection of the influences of Es and p; on the
stress-strain behavior. If the influences of ES and p; on the stress-
strain curve are further assumed to be the same order of magnitude
along a shear stress path (TC, TE or RS—QO), then the slope of a
stress-strain curve will serve as an indication of how the Es value
varies with Toct®

Let S, and (Se) denote the slope of an experimental

T7=0

stress-strain curve at L 0 and T oaet = 0 respectively. Then the

ct
ratio of Se to (Se)q_z0 can be plotted with the stress level for‘
comparison purposes. For illustrative purposes, this plot will be
called the "stiffness ratio curve” hereafter. The right-hand side of
Eq. (4.21) for various n values can also be plotted with the stress

level along the same stress path as the experimental data. Compare

these plots and the plot from the stiffness ratio curve, and the n
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value for a specific material can be estimated. For example, the
stiffness ratio curves of the o, - € curve in the TCa-2 test and the
o3 - 63 curve in the TEa-2 test of Ko's experimental data on medium
dense Ottawa sand are plotted in Figs. IV.13 and IV.14. A value of
n =15 is estimated when these stiffness ratio curves are compared
with the plots of the right-hand side of Eq. (4.21) vs. stress level
for various n values as shown in Figs., IV.13 and IV.14.

A word of caution is warranted. Due to the influence of
the testing apparatus, the same material tested under the same stress
conditions may yield different results from different apparatus.

Since the relation of Es and T is experimentally obtained, n

ct
values may be different for the same material tested in different

apparatus.

IV.3 Representation of Experimental Data on Ottawa Sand
There are six material parameters, namely ES, K, m_,
£ Sy to be determined. Ideally, it would be most desirable

if they can be determined by six independent expei-imental data.

Sc, m

Due to the complexity of the proposed constitutive relations and

the complex stress-strain behavior of a granular material, it is
impractical to set up tests along six independent stress paths.
Although Es and E can be estimated and the relation between Eg
and octahedral and octahedral shear stresses can beconcluded from
hydrostatic compression tests and axial shear tests as shown in the
previous section, there are still four other statistical parameters to

be determined. In this thesis, the four statistical parameters are
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determined by fitting the TC-stress path experimental data. Usually,
there are several different combinations of these four parameters to
describe the TC-stress path stress-strain behavior equally well.
However, there is one combination of these which can best represent
the stress-strain relation observed along the TE stress path. This
combination is selected to represent the soil behavior. At first
glance, it would seem that this procedure is highly arbitrary and
tedious to follow. However, there are certain properties of the

four statistical parameters that can be very helpful in determining
the right combination. These properties can be observed from the
properties of the Gaussian type distribution function and from the
experimental data to be simulated. These properties are:

(1) Due to the difference in slip characteristics in compression
and in extension the values of m and s, are always larger
than the respective values of m, and S¢ in extension. This
means that the granular material is more susceptable to
strain in extension as indicated by the observed experimental
results [ 15, 16, 17].

(2) The values of m and m, determine the slope of the axial
shear stress path at small strain, Higher m and m, values
result in a steeper slope at small strain because of the higher
mean level of slip stress for the material as indicated by the
Gaussian distribution function or by Eqgs. (3.33) to (3.40).

(3) The values of s, and Sy dictate the smoothness of slope

changes in a stress-strain curve. A sharper change of slope

at some strain level is the indication of a smaller s, Or s,
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value. This is due to the properties of a Gaussian type

distribution function. A small standard deviation means the

slip stress distribution is more concentrated around the mean
stress level. In other words, its. distribution is closer to

a triangular distribution. As the value of S, increases,

the slip stress distribution is further spreading more evenly

out toward a rectangular distribution function.

A Fortran IV computer program is set up to calculate the
stress and strain under arbitrary stress conditions of the proposed
constitutive relation. A computer plot subroutine is also set up to
present the computed results. Figs. IV.15 and IV.16 show some
examples illustrating the above discussion.

As mentioned in the previous section, if the relation between

Es and the octahedral shear stress is taken to be

Es Toct n |
(E,) o=<1~° ) (4. 22)

s'T= oct
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