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Abstract

The field of synthetic gene circuits is concerned with engineering novel gene expression

dynamics into organisms. This field, a subset of synthetic biology, was started almost two

decades ago with the creation of two synthetic circuits: a bistable toggle switch and an

oscillator. From the very outset, modeling has played a role in the development of synthetic

circuits. However, modeling has been used to gain qualitative insight into dynamics, and

actual quantitative modeling has been lagging behind.

Parameters for quantitative models for biological systems often cannot be adequately

estimated from measured data, because far too many sets of parameters can produce

the same set of limited measured outputs. Additionally, models for synthetic gene circuits

are often not correct the first time, and iterating on cycles of modeling and parameter

estimation is difficult. Finally, there is a gap between development of modeling and system

identification tools and their application to experiments on actual synthetic gene circuits.

This thesis attempts to work towards addressing these issues with quantitative mod-

eling for synthetic gene circuits. First, we derive theoretical conditions for identifiability of

stochastic linear systems from heterogenous types of measurement data. These identifia-

bility conditions can provide insight into what type of model to use and what measurements

to collect in order to ensure that the resulting model can be identified.

Second, we develop a software package for fast and flexible modeling and parame-

ter estimation for synthetic gene circuits. The user can input models into our software

using a simple text format and perform simulations of all types at optimized speeds. By

inputting measured experimental data along with the model, the software can be used

to perform Bayesian parameter estimation in an automated manner. To bridge the gap

between computation and application, we apply this software to parameter estimation
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of DNA recombinase dynamics using real experimental data collected in an in
vitro cell

extract.

Finally, we use modeling to guide the design of an improved single gene synthetic

oscillator. While the original synthetic genetic oscillator contained three genes, we show

that a simple circuit with a single gene can produce robust and synchronized oscillations

across a population.

Our results constitute an additional step towards the incorporation of quantitative mod-

eling and parameter inference as part of the design-build-test cycle for synthetic gene

circuits.
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Chapter
1

Introduction
and
Background

The field of synthetic biology consists of engineering novel functionality into organisms

such as bacteria, yeast, plants, or mammalian cells. This novel functionality can have many

possible applications. Engineered organisms have potential applications as diagnostic

tools in medicine [52] and as micro-scale factories for chemical production [45], among

many others.

Specifically within synthetic biology, which can intersect with many other fields such

as protein design, metabolic engineering, and medicine, the field of synthetic gene circuits

is concerned with engineering novel dynamics and computation into organisms. The idea

is that these dynamics and small scale computations can be combined as a part of a

larger synthetic program that uses organisms to solve a specific problem. For example,

an engineered gut bacteria that treats diabetes may be able to produce insulin, but it

should only do so when blood sugar increases.

The two original synthetic gene circuits were an oscillator [19] and a bistable toggle

switch [23]. In the oscillator, three genes each repress the production of the next gene

in a cyclic fashion, which generates oscillations in the expression of each gene and also

a fluorescent reporter protein. In the toggle switch, two genes that each repress each

other’s production are used to create two stable steady states. When the first gene is

high, it will repress the second gene and keep the second gene low, and vice versa. Other

synthetic gene circuits include logic gates [62], state machines [36, 77], and feedback

control circuits [35].

Modeling can guide the design-build-test cycle of synthetic gene circuits. Modeling
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was used to aid in designing the original oscillator and toggle switch in order to select

genetic parts that were more likely to display the observed behaviors. Additionally, mod-

eling can sometimes predict how to improve a poorly functioning gene circuit. However,

in general, the application of models in synthetic biology has been qualitative. That is,

models are a useful tool that can be used to gain insight into the system at hand, but the

actual quantitative numbers produced by models are often not as important.

Chapter 2 of this thesis contains a review of the different types of measurements, mod-

els, and system identification techniques used in synthetic biology [37].

This thesis mainly attempts to add to the field of synthetic biology in three areas: ap-

plication, computation, and theory, specifically by considering modeling in each area.

On the theory side, parameters for biological models are often not identifiable and

measurements on biological systems can provide heterogenous types of data. In Chapter

3, we formulate and solve an identifiability problem for stochastic linear systems given

heterogenous types of data [88]. Such a result provides insight into the types of measure-

ments required to perform parameter estimation on a real gene circuit.

In Chapter 4, we cover computation for synthetic gene circuits. We develop a software

package that can read in user specified or industry standard models and simulate the

models in a wide variety of ways. The software can generate deterministic or stochastic

data and has been optimized to run fast. The speed is necessary for the software’s main

purpose, which is to perform Bayesian parameter estimation for user defined models of

gene circuits given actual measured data. In order to highlight the use of this software,

we use the software to identify dynamic parameters for DNA recombinases in an in vitro

extract [87].

Finally, in Chapter 5, we use modeling to guide the improvement of a single gene oscil-

lator. We show that by simply changing one part and tuning DNA copy numbers, we can

vastly improve the oscillatory performance of this simple gene circuit in both a determin-

istic and stochastic sense. The results suggest that even the simplest gene circuits can

produce robust dynamics if the parts are tuned appropriately.
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Chapter
2

A Review
of
Modeling
and
System
Identification
for
Synthetic
Gene
Circuits

System identification is particularly challenging for biological systems because a majority

of the processes that occur within the organism are part of the underlying host biology,

which may not be well understood and also difficult to measure. This can result in severe

limitations on creating accurate models of synthetic gene circuits that can be used for

control design or other computational explorations of circuit behavior. Considerations for

model choice and methodology for system identification are largely dependent on which

types of data can be collected.

Here, we describe the types of measurements and classes of models that are com-

monly used to quantitatively model synthetic gene circuits. We then summarize the field

of system identification for synthetic gene circuits, first by focusing on deterministic iden-

tification, and second by focusing on stochastic identification from population snapshots

and time series data respectively. Figure 2.1 serves as a pictorial comparison of deter-

ministic and stochastic identification techniques.

2.1 Measurement
Types
for
Synthetic
Gene
Circuits

There are three main types of data that can be collected on synthetic gene circuits operat-

ing in
vivo: bulk data, single cell population snapshot data, and time series single cell data.
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Figure 2.1: Bayesian system identification for deterministic and stochastic synthetic gene
circuits. (a) Deterministic data is collected on a bulk culture over time. (b) A model using
ODE’s is used to model the synthetic gene circuit dynamics in a deterministic fashion. (c)
The model fit is evaluated by matching simulated and measured trajectories. (d) Stochastic
data is collected by measuring a distribution of outputs X and Y across a population of
cells. (e) Stochastic simulations are used to compute the distribution of the output given
a stochastic model. (f) The fit of the model to the data is evaluated by comparing output
distributions across the population (g,h,i) The output of the procedure in both cases is a
posterior density function over parameters. The joint parameter density function can show
correlations between parameters, suggesting parameter degeneracy.

These measurement types and the associated output data are illustrated in Figure 2.2. Bulk

data consist of measurements of an output for a culture of cells growing in a container,

where the measured output can be thought of as the sum of the outputs for all the cells in

the culture. Population snapshot measurements consist of measuring an output for a large

number of individual cells in a population. However, the same cells cannot be followed

over time, and at the next time point, a different set of cells will be measured. Popula-

tion snapshot measurements include techniques such as flow cytometry and mRNA FISH

(fluorescence in situ hybridization). Finally, with time series measurements, a single cell’s

output can be tracked over time using techniques such as time lapse microscopy.

It is important to note that each of these measurement types provides progressively

more information than the previous type. If we ignore the time series relationships in time
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series data, then it can be considered as a set of population snapshots at different time

points. If we take the mean or sum of a population snapshot output distribution, we can

think of the resulting value as a bulk measurement.

Finally, the type of measurement collected can and should impact the choice of model

for the system being studied. As an example, if the data collected is all bulk data, then

using a stochastic model that accounts for noisy gene expression in single cells could

be unnecessarily complex, and a deterministic model based on ODE’s might be a better

choice.
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Figure 2.2: The different types of measurements for synthetic gene circuits. In bulk mea-
surements, total fluorescence and cell population (by measuring optical density) can be
measured for a culture over time using a plate reader. In flow cytometry, single cells pass
through a detector that measures fluorescence for many individual cells. In time lapse
microscopy, fluorescence output can be tracked across a growing lineage of single cells.
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2.2 Model
Classes

Synthetic gene networks are typically modeled as systems of chemical reactions occurring

inside a cell where the chemical species in the circuit, proteins and mRNA’s, are produced

and degraded with different reaction rates. The level of one species can affect the rate of

production or degradation of another species. This type of interaction is what gives rise

to circuit type behavior.

X
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0 0

A B

C D

100

30

200

60
Time (hr)

Ex
pr

es
si

on

X

Y

Figure 2.3: Modeling of a toggle switch synthetic gene circuit. (a) In a two species toggle
switch, two genes X and Y repress each other’s expression, which creates two steady
states where either X is high and Y is low or vice versa. (b,c) Deterministic ODE’s and
parameters for a toggle switch model. Ignoring mRNA, X and Y are produced at a basal
level with additional production repressed by the other gene along with first order dilu-
tion/degradation. (d) A deterministic (solid) and stochastic (dashed) simulation of the tog-
gle switch. The deterministic simulation stays at a Y high/X low steady state while the
stochastic simulation can switch due to noise.

For example, in Figure 2.3a, a simple synthetic gene circuit where two genes X and Y

repress each other’s production can give rise to a bistable toggle switch. In models of gene

circuits, it is also common to ignore mRNA production and degradation as mRNA is an

intermediary between DNA and protein that typically has fast dynamics and no function

of its own. In the model of the toggle switch in Figure 2.3b, the mRNA dynamics are

ignored, and the model simply has the two protein levels X and Y repressing each other’s

production.

The systems of chemical reactions can be modeled deterministically or stochastically.

Deterministic models consist of a set of ODE’s (see Figure 2.3b). In the stochastic case,
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each reaction is modeled as a discrete event that occurs with a certain propensity [24].

This results in a continuous time discrete state Markov chain whose probability evolution

is described by the chemical master equation [92].

Simulation trajectories of the deterministic system can be generated using a standard

ODE solver. For stochastic models, sample paths of the system can be generated using

a stochastic simulation algorithm [24]. Also, the time evolution of the full state distribution

can be approximately computed by using techniques such as moment closure [58] or finite

state projection [64]. In moment closure, a system of ODE’s approximately describes the

time evolution of the moments of the state distribution. In moment closure, the state space

is truncated, so that the time evolution of the state distribution can be approximated by

solving a high dimensional linear system of ODE’s.

These methods all describe ways to model synthetic gene circuits as chemical reac-

tions inside a single cell. However, some synthetic gene circuits operate at a multicellular

level, and thus, cell growth and death must be modeled. In a deterministic setting, cell

growth is typically modeled as logistic growth with a saturating carrying capacity that de-

pends on the type of cells and their environment. In the stochastic case, it is important to

note that when a cell divides, its contents must be partitioned between its daughter cells.

The randomness of this partitioning can introduce further noise into gene circuit dynamics.

When matching synthetic gene circuit models to experimental data, it is necessary to

choose a model appropriate for the type of data being collected. For example, if bulk

population average data is being collected, then a deterministic model might be more

appropriate than a stochastic model. It can also be necessary to iterate on the reactions

themselves to get the best fit to the data. A number of software packages exist that assist

in modeling, simulation, and parameter inference of synthetic gene circuits [1,55,87,97].

A deterministic and a stochastic simulation of the toggle switch circuit from Figure

2.3a are presented in Figure 2.3d. The deterministic simulation stays at a low X and high

Y steady state, while the stochastic simulation can randomly switch to the opposite state

due to noise.
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2.3 Identifiability
of
Synthetic
Gene
Circuit
Models

Theoretical and computational considerations of the identifiability of synthetic gene circuits

tend to focus on whether circuit parameters are identifiable for stochastic models given

single cell population snapshot data. This is because these types of data are not typically

collected in other engineering disciplines. However, even for bulk data and deterministic

models, there are specific issues with system identification for synthetic gene circuits.

As the identifiability problem is difficult to assess, theoretical results tend to focus on

linear systems where the theory is tractable. In [98], the observability problem for linear

systems in which the linear system evolves a distribution over time was considered. Within

this framework, the linear system represents the dynamics of a synthetic gene circuit, and

the distribution at each time represents the distribution of the state of the circuit across a

large population of cells. The output is then the distribution of an output for all time. The

observability problem is to reconstruct the initial distribution of the system given the out-

put distribution at every time. This distributional observability problem was shown in [98]

to be strictly harder than the standard observability problem of finding a single initial state

from a single output trajectory. Furthermore, it was proven that a sufficient condition for

reconstructing the initial state distribution is to have an output dimension of at least n−1,

where n is the state dimension. Finally, the problem of structural identifiability of linear

systems driven by white noise is considered in Chapter 3 of this thesis. In this system,

the entire steady state covariance of the system can be measured over time, but only

certain subsets of state can be measured in time series. It is assumed that even though

the system itself is stochastic, measurements are perfect and the steady covariance and

output correlations can be measured exactly. Results from [88] showed that a combina-

tion of the steady state distribution and output correlations can be sufficient to determine

the dynamics of the system exactly. This work is relevant to biological circuits because

often many species can be measured simultaneously in steady state population snapshot

measurements, but only a few species can be measured simultaneously in time series

measurements.

Computational approaches to the identifiability problem rely on a variety of simulated
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data sets for a stochastic genetic circuit in order to perform system identification. In [65],

the problem of identifying the parameters of a stochastic model of a genetic toggle switch

given bulk data on the circuit, marginal distributions of the species, or the full joint dis-

tribution of the chemical species in the system is addressed. The results show that only

having the full joint distribution is sufficient to recover the true parameters of the model

without any parameter degeneracy.

2.4 Identification
of
Deterministic
Biological
Circuits

Techniques for identification of deterministic models of biological circuits are often quite

similar to the techniques used for general identification of nonlinear systems. However,

for synthetic gene circuits, data can typically be collected only for a few outputs at limited

time resolution. Limited time resolution makes it hard to filter the time derivative of the

output, which makes it difficult to apply a lot of traditional system identification methods

that rely on the derivative of the measured output. Furthermore, most biological models

contain many species, reactions, and parameters, and because only a small number of

outputs can be measured, there are often many sets of parameters that can fit the mea-

sured data equally well. This effect is known as parameter degeneracy and can make

it difficult to resolve the best parameters for the modeled system. Many techniques for

system identification for synthetic gene circuits focus on alleviating the issue of parameter

degeneracy.

For example, the extended Kalman filter is often used for parameter estimation, where

the state is augmented with the parameters. However, [48] demonstrated that in a biologi-

cal setting, matching the noise characteristics of the filter in addition to fitting the trajectory

to measured data can help resolve parameter degeneracy. In [31,34], relaxation type pro-

cedures are used to consider parameters sets that are consistent with the measured data,

resulting in a set of regions in parameter space that fit the data within some error toler-

ance. Additionally, standard techniques based on Markov chain Monte Carlo (MCMC) can

also be used [90]. Another approach to system identification for nonlinear systems is to

build a dictionary matrix based on candidate functions and then use ℓ1 regularization to
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select only a subset of the candidate functions to model the dynamics [70]. However, this

approach requires full state measurements, which limits its applicability to synthetic gene

circuits.

2.5 Identification
for
Stochastic
Biological
Circuits
from
Popu-

lation
Snapshots

This chapter categorizes the identification methods for stochastic biological circuits from

population snapshot data into three different types: methods based on optimization and

the finite state projection, methods based on moment closure, and Bayesian methods

based on stochastic simulations of the system and MCMC.

In the optimization-based methods, the finite state projection method [64] is used to

create a large linear system whose state is approximately the distribution of the chemical

species in the system. The state distribution time trajectory can be calculated by solving

the linear system, and the likelihood function can be computed from the observed data

using a multinomial likelihood function. This method has been used to discriminate be-

tween different models of yeast osmotic stress response [68]. In [65] and [66], the same

method is applied, but instead of a multinomial likelihood, a ℓ1 norm penalty on the differ-

ence between the observed and predicted distribution is used. These types of methods

work well for systems with small state spaces because the full state distribution can be

solved. However, for systems with many species or high molecular counts, the finite state

projection yields increasingly huge linear systems which become prohibitively expensive

to repeatedly evaluate. Note that while [64–66, 68] all use the finite state projection to do

an optimization based fit of the parameters in their models, the same likelihood function

could be used in a Bayesian inference scheme as well.

Moment closure methods are one way to get around the curse of dimensionality in

modeling stochastic gene circuits. With moment closure methods, the moments of the

system can be modeled over time using a system of ODE’s and these simulated moments

can be compared with the experimentally measured moments for different parameter sets.
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These methods are known to struggle in cases where the distributions are bimodal, but

in some cases using a moment-based inference method can successfully predict an ob-

served bimodal experimental data set [96]. In other cases, moment based methods can

be used to characterize the causal relationships between different genes [51]. In [78], mo-

ment based inference in conjunction with an optimal experiment design technique based

on maximizing the expected Fisher information is used to characterize a light inducible

synthetic gene circuit. The limitation of moment closure methods is that the equations for

the N th order moments usually depend on higher order moments, and so to avoid having

an infinite dimensional system of ODE’s, the higher order moments have to be assumed

to have some known form. In some case, the higher order moments can be computed

from the lower order moments if the distribution is of a known type such as a normal or

log-normal distribution [82]. In other cases, the third order cumulants are assumed to

be zero [96]. A data-based identification procedure based on moment closure has also

been developed, in which the reaction rate parameters are identified from the mean mo-

ment equations and the covariance values are plugged in from experimentally measured

data [10]. In this way, no prior assumption on the distributions of the chemical species

are required. Finally, semidefinite programming can be used to compute upper and lower

bounds on the moments of a stochastic differential equation [47]. This approach is more

computationally expensive than simple moment closure but provides a theoretical guar-

antee that the moment of interest lies within a specific interval.

Finally, the third class of methods for identifying circuits from population snapshot

data are methods based on repeated stochastic simulations of the system. Some meth-

ods are based on approximate Bayesian computation [74], where the data is simulated for

many different parameter sets and parameter sets that produce results in agreement with

experimental data are kept. The INSIGHT method developed in [49] uses concentration

inequalities to bound the deviation between the experimentally observed cumulative distri-

bution function (CDF) of a certain output and the simulated CDF for a given parameter set.

This deviation decreases as the sample size increases. With this technique, the method is

able to quickly reject bad parameter sets after a very small number of simulations, vastly
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improving computation speeds.

While stochasticity is one way to explain the variation in circuit output across a popu-

lation of cells, another possible explanation is heterogeneity between cells.

While variation in circuit output between cells can be explained by modeling chemical

reactions as occurring stochastically, such variation can also be explained using deter-

ministic models in which the variation is explained by differences in model parameters

and initial conditions. Not every cell has exactly the same environment, and if different

cells have different parameters and initial conditions, then the output will follow a distribu-

tion even if the circuit dynamics within each cell are deterministic. In [32] and [30], there is

both the assumption that the circuit dynamics are deterministic, and that parameters for

the cells are sampled from an underlying distribution or that there is a discrete number of

cell types. This leads to a Bayesian inference procedure that can recover the parameters

for each cell type, or the parameter density for a heterogenous population of cells.

2.6 Identification
for
Stochastic
Circuits
from
Time
Series
Data

Identification of stochastic biological circuits from single cell time series data is typically

done using methods based on Approximate Bayesian Computation or particle filtering.

By selecting parameter sets and simulating a data set for each set of parameters, it is

possible to perform Bayesian inference using MCMC without having to explicitly compute

likelihoods [56]. This method is used in [90] to perform system identification on a simulated

data set generated by a stochastic model of a repressilator. This type of likelihood-free

method does not work well when the data is of a large dimension, and a better method is

the particle marginal Metropolis Hastings method, where a particle filter is used to approx-

imately compute the likelihood of the data given a set of parameters [26]. In [26], methods

for speeding up the inference by using diffusion approximations to the stochastic simula-

tion procedure are proposed.

Heterogeneity between cells can also be an issue for system identification. In [97], the

heterogeneity between cells is modeled by assuming each cell has extrinsic factors and

rate parameters distributed according to a gamma distribution. This choice of distribution
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allows for integrating out the extrinisic factors and parameter uncertainty while performing

Bayesian inference. This approach was termed ‘dynamic prior propagation’, and demon-

strated on experimental data obtained from an inducible synthetic circuit in yeast.
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Chapter
3

Linear
System
Identifiability
from
Distributional
and
Time
Series
Data

3.1 Introduction

In this chapter, we consider the combination of distributional and time series measure-

ments in system identification [88]. Distributional measurements consist of measuring the

distribution of an output across an ensemble of systems at one given time. Time series

measurements consist of measuring the output of one system over time and are standard

in control theory. The central idea of this chapter is that it can be advantageous for system

identifiability to combine distributional and time series measurements.

In synthetic and systems biology, we are often interested in experimentally probing the

dynamics of biomolecular circuits in single cells. Distributional measurements in biology

such as mRNA FISH (fluorescence in situ hybridization) [53, 75] and flow cytometry allow

for quantifying mRNA or protein abundance for many genes across thousands of single

cells. This results in output histograms as shown in Figure 3.1. Time series measure-

ments such as time lapse fluorescence microscopy [95] allow us to measure a single cell’s

fluorescence over time as illustrated in Figure 3.1. However, time lapse microscopy mea-

surements suffer from low output dimensionality and small sample sizes when compared

to distributional measurements.

Therefore, our central idea is that it can be advantageous to combine the dynamic

information from time series measurements with the high dimensional information from

distributional measurements when investigating system dynamics.
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Figure 3.1: Population snapshot measurements generate output histograms (left) while
time series measurements generate output trajectories (right).

It is commonly known that single cells exhibit heterogeneous behavior. [18,20]. Com-

mon biological models for stochastic single cell behavior include stochastic linear sys-

tems [71], dynamic Bayesian networks [41, 79], and stochastic chemical reaction net-

works [24]. While stochastic chemical reaction models are more physically relevant, for

theoretical tractability, we restrict our attention in this work to linear system models, which

might still accurately model equilibrium fluctuations in a stationary stochastic process [71].

Linear system identification from time series data is a very well studied problem [44].

System identification from distributional data is less common but typically arises in infer-

ence of single cell dynamics from flow cytometry measurements [49,65,96]. Distributional

measurements in the form of sample covariances have also been used in machine learning

to find sparse graphical models [4, 15]. The combination of distributional and time series

data for fully observable discrete time stochastic linear systems was considered compu-

tationally in [38]. The theory of dynamical structure functions has also been applied to

identifiability of stochastic linear systems [12] as well as identifiability when different sub-

sets of the state can be measured [94].

Importantly, Anderson [2] and Glover [25] considered system identifiability for station-

ary stochastic linear systems from output correlation measurements. In this work, we

rely heavily on Anderson’s and Glover’s results. Our contribution is a consideration of
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stochastic linear system identifiability at stationarity given a combination of output cor-

relation measurements in addition to the full steady state distribution. We term this the

sensor fusion problem, because we are fusing distributional measurements with time se-

ries measurements for identification. Like Anderson and Glover, we assume that we have

perfect measurements.

The structure of this chapter is as follows. In Section 3.2, we cover some preliminaries

on linear systems driven by noise and set up the sensor fusion problem we would like

to solve. In Section 3.3, we consider the case where we have only distributional mea-

surements available. In Section 3.4, we introduce a sufficient condition and an effective

necessary condition for system identifiability in the sensor fusion case when distributional

and time series measurements are available. In Section 3.5, we consider a detailed simple

example, a more complicated toy example with decaying oscillations, and a biologically

inspired example. We discuss future work and conclude in Section 3.6.

3.2 Problem
Setup

3.2.1 Preliminaries

In this chapter, we are concerned with linear systems driven by noise, and we assume that

the systems have reached stationarity. We use the continuous time system description

given in (3.1).

ẋ(t) = Ax(t) + Bw(t)

y(t) = C x(t)

E[w(t)w(t +τ)T ]∼ Iδ(τ),

(3.1)

where A∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are real matrices. The state x ∈ Rn corresponds

to physically relevant quantities, and w(t) is a unit white noise process in m dimensions,

where m≤ n. The number of outputs measured is p, which is smaller than n. Furthermore,

we assume that each row of C is a canonical unit vector, so that the output is a subset of

the state. We refer to A, BBT , and C as the dynamics, noise, and output matrix respectively.
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The transfer function for this linear system is given by G(s) = C(sI −A)−1B, and (A, B, C)

is a state space realization of G(s). A minimal state space realization of G(s) is one that is

both observable and controllable.

We use G∗ to denote the conjugate transpose of a complex matrix G, and we use AT

to denote the transpose of a real matrix A. We also write P ≻ 0 or P ⪰ 0 to mean that a

matrix P is positive definite or positive semidefinite respectively.

Finally, general linear systems can have a feed through term D directly from input to

output so that y(t) = C x(t) + Dw(t). In this chapter, we assume that D = 0, and we will

generally give state space realizations with only three matrices (A, B, C). However, in some

cases we will give state space realizations with four matrices. In this case, the final matrix

is the feed through matrix D.

We then make the following assumption for the remainder of the chapter.

Assumption 1. Given
the
linear
system (3.1), we
assume
that A is
Hurwitz
stable
and
that

(A, B) is
controllable.

For a review of linear control theory, see [99].

3.2.2 Distributional
Measurements
for
Linear
Systems

The following standard result, which can be found in [99], characterizes the stationary state

distribution of a linear system driven by white noise.

Proposition 1. Given
Assumption 1, the
stationary
state
distribution
of
the
linear
system

(3.1) is
a
multivariate
Gaussian
distribution
with
zero
mean
and
covariance P, where P is

positive
definite
and
is
the
unique
solution
to (3.2).

AP + PAT + BBT = 0 (3.2)

Proposition 1 allows us to assume that the distribution we observe is Gaussian. Since

the form of a Gaussian distribution is fully determined by its mean and covariance and the

mean is zero, we can get full knowledge of the steady state distribution from the covari-

ance alone. Assumption 1 means that (A, B) is controllable, which guarantees us a strictly
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positive definite covariance P. The Lyapunov equation (3.2) provides a constraint that A

and B must satisfy in order to produce a given covariance P.

3.2.3 Time
Series
Measurements
for
Linear
Systems

Time series measurements allow us to measure output trajectories. There are two main

types of time series measurements depending on whether a controllable input to the sys-

tem is available. We start with the more standard case.

3.2.3.1 Time
Series
Measurements
with
Controlled
Input

If we consider w(t) to be a controllable input in (3.1), then we can characterize the input

output transfer function G(s) of the linear system given in (3.1). The following standard re-

sult characterizes the space of state space realizations consistent with a transfer function.

Again, see [99] for more information.

Proposition 2. Given
a
transfer
function G(s) with
a
minimal
realization
given
by (A, B, C),

then (Â, B̂, Ĉ) is
also
a
minimal
realization
of G(s) if
and
only
if

Â= TAT−1 B̂ = T B Ĉ = C T−1 (3.3)

for
an
invertible
transformation T .

Proposition 2 tells us that the state space matrices can only be resolved up to a change

of coordinates. This only holds if the system is of minimal order.

3.2.3.2 Output
Correlation
Measurements

When the input is an unobservable noise as in (3.1), we can only measure the system

output, so we cannot expect to recover the input-output transfer function of the system.

However, we can observe correlations in the output, or equivalently the output spectral

density.

Given the linear system (3.1), we can measure the time correlations in the output y.

Since the process is at stationarity, this corresponds to estimating the correlation function
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R(τ) = E[y(t +τ)y(t)T ]. In the frequency domain, the spectral density is given by

Φ(s) = G(s)G∗(s),

where

G(s) = C (sI − A)−1 B

is the input-output transfer function of the system.

The problem of finding state space matrices that generate a specified spectral density

has been studied extensively by Anderson [2] and Glover [25]. We present some of their

results here.

We first define the notion of a globally minimal system as done in [2] and [25].

Definition 1. A minimal
state
space
system (A, B, C) is globally minimal with
respect
to
a

spectral
density
function Φ(s) if G(s) = C(sI −A)−1B satisfies Φ(s) = G(s)G∗(s) and A has
the

smallest
dimension
possible
for
any
solution
to Φ(s) = G(s)G∗(s).

Specifically, a minimal system can sometimes produce an output spectral density that

can be reproduced by another minimal system of lower order. In this case, the original

system is minimal but not globally minimal. This scenario occurs when the original transfer

function contains an all
pass component, which is a term like s−a
s+a that cancels out when

forming the spectral density. We make the following assumption with respect to output

correlation measurements.

Assumption 2. Given
the
linear
system (3.1), we
assume
that
we
know
the
system
order

n a
priori, that A is
Hurwitz
stable, and
that (A, B, C) is
a
globally
minimal
realization
for
the

transfer
function G(s) = C(sI − A)−1B for
any
choice
of C that
we
use.

Assumption 2 is strictly stronger than Assumption 1. Both loss of controllability and

pole zero cancellation are unlikely occurrences within the space of all linear systems, so

our hope is that these assumptions are not too restrictive. The following lemma from [2]

characterizes the set of globally minimal systems consistent with a spectral density.

Lemma 1. Given
an
output
spectral
density
of Φ(s), let Φ(s) = Z(s) + Z∗(s), where Z(s)
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is
positive
real. Then, suppose (A, G, C , J) is
a
minimal
realization
for Z(s). Consider
the

following
equation (3.4).AP + PAT PC T − G

C P − GT −J − J T

= −
B

D

hBT DT
i

(3.4)

Then
all
globally
minimal
realizations
of G(s) such
that Φ(s) = G(s)G∗(s) have
a
realization

given
by (A, B, C , D), where B and D satisfy (3.4) together
with P ≻ 0. Also, if B and D

together
with P ≻ 0 satisfy (3.4), then G(s) = C (sI − A)−1 B+D is
a
globally
minimal
solution

of G(s)G∗(s) = Φ(s).

Lemma 1 characterizes all globally minimal state space realizations consistent with

the output spectral density. In addition, the minimal dimension of the positive real transfer

function matrix Z(s) sets the globally minimal dimension for the system. The following

result from [25] describes the relationship between multiple globally minimal realizations.

Lemma 2. If (A1, B1, C1, D1) is
a
globally
minimal
realization
for Φ(s), then (A2, B2, C2, D2) is

also
a
globally
minimal
realization
if
and
only
if
there
is
an
invertible T and
symmetric Q

such
that
A1 = TA2T−1

C1 = C2T−1

QAT
1 + A1Q = −B1BT

1 + T B2BT
2 T T

QC T
1 = −B1DT

1 + T B2DT
2

D1DT
1 = D2DT

2 .

(3.5)

Lemma 2 gives us an algebraic condition that relates globally minimal system realiza-

tions to each other. It is clear by letting Q = 0 that a change of coordinates is sufficient

to satisfy the conditions of Lemma 2, meaning that the space of consistent systems is at

least as large as in the controlled input case. This makes it mathematically clear why a

controlled input is superior for identification.
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3.2.4 Sensor
Fusion
Problem

We then set up the identifiability problem when both distributional and time series mea-

surements are available. We assume we have a linear system of a known minimal order

n that may be parametrized. However, we assume no parametrization for our results. We

are interested in recovering the dynamic matrix A and the noise matrix BBT .

We know the matrix C , because we already know which system states we are measur-

ing. This corresponds to measuring a certain protein concentration in a cell or the value

of a node in a network. We also might measure multiple subsets of the state in separate

experiments using different matrices C1, C2, et cetera. We assume that all measurements

are perfect measurements with zero error and that measurements can be collected for an

infinite period of time. Therefore, for each choice of C , we assume we can exactly estimate

the associated output correlation function. We also assume that we can exactly estimate

the stationary state covariance P.

With this information, we would like to assess system identifiability both using distribu-

tional measurements alone as well as using a combination of distributional and time series

measurements.

3.3 Identifiability
Using
Covariance
Measurements
Only

In this section, we consider the set of dynamic matrices A that are consistent with a mea-

sured covariance matrix P. We assume in this section that the noise matrix BBT is known

as well. The following propositions are straightforward linear algebra results.

Proposition 3. Define
the
linear
transformation LP(A) = AP + PAT . The
transformation LP

takes n×n real
matrices
to n×n symmetric
matrices. Then, consider
the
linear
system (3.1)

with B given. Then, the
linear
system (3.1) satisfies
Assumption 1 and
has
a
steady
state

covariance
of P ≻ 0 if
and
only
if A = −1
2 BBT P−1 + N with N ∈ ker LP and A is
Hurwitz
or

equivalently (A, B) is
controllable.

Proof. Since LP is a linear transformation that takes n × n matrices to n × n symmetric

matrices, we can write down all solutions to the continuous time Lyapunov equation (3.2)
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by using the particular solution −1
2 BBT P−1 and adding a term from the kernel. However,

this does not guarantee A must be Hurwitz, so we add that condition in separately. Since

P ≻ 0, the controllability of (A, B) is also sufficient to imply that A is Hurwitz [99].

The space where A is not Hurwitz but rather marginally stable is generally a set of

measure zero within the affine subspace of Rn×n given by −1
2 BBT P−1+ker LP . Furthermore,

it is easy to see that LP is surjective onto the space of symmetric matrices and therefore,

by rank-nullity theorem, the dimension of ker LP is n(n−1)
2 .

This result is quite different in discrete time, and we briefly present it here for complete-

ness.

Proposition 4. Consider
the
discrete
time
linear
system xk+1 = Axk + Bwk, where wk is

a
unit
Normal
random
variable
of
appropriate
dimension. Also, fix B and P so
that P ≻ 0

and P ⪰ BBT ⪰ 0. Then, the
system
is
stable
with
steady
state
covariance P if
and
only

if A = (P − BBT )1/2UP−1/2, where UU T = I and A is
Schur
stable
or
equivalently (A, B) is

controllable.

Proof. The steady state covariance for discrete time systems satisfies the Lyapunov equa-

tion APAT − P + BBT = 0 [99]. In the forward direction, A must be Schur stable, and A must

satisfy the Lyapunov equation. If A satisfies APAT − P + BBT = 0, then let F = AP1/2 and

let G = (P − BBT )1/2. Then F F T = GGT and applying Lemma 3 in [76] gives that F = GU

must hold, which gives the expression for A. The matrix A must then be Schur stable by

assumption and (A, B) must be controllable since A is Schur stable and P ≻ 0 [99].

In the reverse direction, substitution reveals that A satisfies the discrete time Lyapunov

equation. If (A, B) is controllable, then the fact that P ≻ 0 implies A is Schur. Then, the fact

that A is Schur in addition to the fact that A satisfies the Lyapunov equation means that

the steady state covariance will be P.

These propositions show that neglecting strict stability of A, we can resolve the A matrix

up to an affine subspace in continuous time and and up to an orthogonal degree of freedom

in discrete time. If we can control BBT , then multiple covariance measurements for different
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values of BBT in continuous time may resolve A exactly. In discrete time, the associated

Lyapunov equation is quadratic and thus we can only ever resolve A up to a choice of sign.

As an example, consider the discrete time dynamics given by xk+1 = Axk +wk, with

A=



0 0 0 0 1/2

1/2 0 0 0 0

0 1/2 0 0 0

0 0 1/2 0 0

0 0 0 1/2 0


.

These dynamics are that of a damped oscillation where the state moves from one entry

to the next in a damped fashion. Since wk has covariance I , we can compute a steady

state covariance of P = 4/3I . Applying Proposition 4 shows that then A = 1/2U , where U

is orthogonal. If we are interested in obtaining the structure of A, steady state covariance

information does not help since A can be any orthogonal matrix. Furthermore, even if we

know a priori that A might be sparse, A can still be any permutation matrix scaled by 1/2,

so it still does not help recover the structure of A.

3.4 Sensor
Fusion

As stationary distribution information alone is inadequate, we now consider the combina-

tion of distribution and time series measurements. We first give a simple sufficient condi-

tion for identifiability of the dynamic matrix from noise driven measurements. Recall that

the output matrix C allows us to measure a small number of elements of the state.

Proposition 5. Assume
the
conditions
of
Assumption 1. Given
a
collection
of
time
series

measurements
with
different C matrices
selected
as C1, C2, C3, . . ., if
each
pair
of
states
is

measured
together
at
least
once, then
the
dynamic
matrix
can
be
identified
exactly.

Proof. The proof follows from the autocovariance function. If all pairs of states are observ-

able together, we can reconstruct the system’s autocovariance function R(τ) = E[x(t +

τ)x(t)T ]. We can calculate the derivative of the autocovariance function at zero as R̄ =
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dR
dτ

��
τ=0 = AP. We also know that R(0) is the steady state covariance P. We can recover

A= R̄R(0)−1.

Proposition 5 gives us a sufficient but highly conservative condition for the use of out-

put correlation measurements to infer the system dynamics. If we have a system with

10 states and can simultaneously measure 2 outputs at a time, then we would need to

conduct
�10

2

�
or 45 experiments to guarantee that we could resolve the system exactly.

In the sequel, we develop an effective necessary condition that requires far fewer ex-

periments. To do this, first of all we extend Lemma 1 to the sensor fusion setting. We start

with the following lemma.

Lemma 3. Given
a
stable
transfer
function G(s) with
strictly
proper
realization (A, B, C), the

positive
real
transfer
function Z(s) as
defined
in
Lemma 1 must
be
strictly
proper.

Proof. From [25], we know that Z(s) is the Laplace transform of the autocovariance func-

tion R y(τ) of the output. We know that R y(0) = C PC T is finite and that R y(τ) exponentially

decays to zero since the original system is strictly proper. Therefore, the Laplace trans-

form Z(s) exists for all non-negative s. Then, by applying the initial value theorem, we know

that Z(s) goes to zero as s goes to infinity so Z(s) must be strictly proper.

We can then prove the following theorem.

Theorem 1. Assume
the
conditions
of
Assumption 2. Given
a
steady
state
covariance P

and
an
output
spectral
density
of Φ(s), let Φ(s) = Z(s) + Z∗(s), where Z(s) is
positive
real.

Then, apply
Lemma 3 and
suppose (Â, Ĝ, Ĉ) is
a
strictly
proper
minimal
realization
for Z(s).

Then
consider
the
following
equation (3.6).

AP + PAT + BBT = 0 PC T = T Ĝ

A= TÂT−1 C T = Ĉ
(3.6)

Then (A, B, C) is
a
globally
minimal
system
with
output
spectral
density Φ(s) and
steady

state
covariance P if and only if (A, B, C) satisfies (3.6) for
some
invertible T .

Proof. The proof is a straightforward extension of Lemma 1, where we can set J = D = 0.

In the reverse direction, if (3.6) holds, then the top left expression gives a covariance of P
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immediately. Then, define G = T Ĝ and note that (A, G, C) is a coordinate transformation of

(Â, Ĝ, Ĉ), so (A, G, C) is a valid realization for Z(s). The reverse direction of Lemma 1 guar-

antees the desired output spectral density. In the forward direction, by global minimality

we know that Â from our realization for Z(s) must be a coordinate transformation T away

from the true A. Then, a different realization for Z(s) with the true A is given by (A, G, C)

with G = T Ĝ and C = Ĉ T−1. The forward direction of Lemma 1 implies that PC T = T Ĝ and

AP+ PAT +BBT = 0 for some P ≻ 0. However, that last equation is the covariance equation

and so it must hold for the given covariance P.

Theorem 1 fully characterizes the space of systems consistent with a combination of a

steady state covariance and one output correlation. We consider the system identifiable if

we can resolve A and BBT uniquely from this information. We can search for a solution to

the equations in Theorem 1 by using the coordinate transformation T and the noise matrix

BBT as variables. We can extend this result to the case where we measure the steady

state covariance along with multiple different combinations of states as outputs. We first

prove the following lemma.

Lemma 4. Assume
that A ∈ Rn×n has
no
eigenvalues
with
multiplicity
greater
than
one. It

follows
for
invertible
transformations T1 and T2 that T1AT−1
1 = T2AT−1

2 if
and
only
if T1 =

T2SΛS−1, where S is
a
matrix
whose
columns
are
eigenvectors
of A, and Λ is
an
invertible

diagonal
matrix. Λ must
have
real
entries
corresponding
to
real
columns
of S and
complex

conjugate
entries
corresponding
to
complex
conjugate
columns
of S.

Proof. Multiplying the equality by the appropriate quantities, we get T−1
2 T1A = AT−1

2 T1.

This holds if and only if A and T−1
2 T1 are simultaneously diagonalizable. Since A has no

duplicate eigenvalues, the eigendirections are fixed, so we can write T1 = T2SΛS−1, where

S contains the eigenvectors of A. The matrix Λmust have nonzero real entries correspond-

ing to real columns of S and nonzero complex conjugate entries corresponding to complex

conjugate columns of S. This is because T1 and T2 must be real. In the reverse direction,

substitution shows T1AT−1
1 = T2AT−1

2 .

Lemma 4 tells us that if two similarity transformations T1 and T2 both transform a matrix
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A to the same final matrix, then given T1, we have only n degrees of freedom when choosing

T2. This is because we have one real degree of freedom for each real eigenvector and one

complex degree of freedom for each pair of complex eigenvectors. We can then formulate

an effective necessary condition.

Let Assumption 2 hold and also assume that the dynamic matrix A has no duplicate

eigenvalues. Suppose that we are given a steady state covariance P ≻ 0 and a set of

k output correlation measurements obtained with k different C matrices C1 through Ck.

Then, we would like to solve for the true A and BBT matrices of the system.

Using the observed spectral densities Φi(s) where 1 ≤ i ≤ k, we can compute each

Zi(s) and find an (Âi , Ĝi , Ĉi) that realizes each Zi(s). By Assumption 2, all the Âi matrices

will have the same dimension and be similar, so we can transform coordinates so that

Âi = Â for all i. We then know that the true A matrix is given by T1ÂT−1
1 . The other Ti

matrices must also transform Â to A and are forced by Lemma 4 to satisfy the equation

Ti = T1SΛiS
−1 for i > 1, where S contains the eigenvectors of Â. Then, we can write down

a system of equations in terms of only T1, BBT , and Λi where i > 1.

Combining this with Theorem 1, we can rewrite the equations as

T1ÂT−1
1 P + P
�
T1ÂT−1

1

�T
+ BBT = 0

PC T
1 = T1Ĝ1 C1T1 = Ĉ1

PC T
i = T1SΛiS

−1Ĝi Ci T1SΛiS
−1 = Ĉi ∀i > 1.

(3.7)

This gives us a total of n(n+1)
2 + 2kpn equations. We have n(n+1)

2 variables for BBT , n2

variables for T1, and an additional (k− 1)n variables for the Λi matrices. This gives a total

of n(n+1)
2 + n2 + (k − 1)n variables. Then, in order to have more equations than variables,

we get the following constraint on the number of measurements k.

k ≥ n− 1
2p− 1

(3.8)

This inequality (3.8) is our effective necessary condition. This is not a true neces-

sary condition because nonlinear equations in high dimensions can have unique solutions
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while having far fewer constraints than variables. For example, two hyper-spheres can

be tangent at exactly one point. Also, if BBT is not strictly positive definite, the positive

semidefiniteness of BBT may also help solve for A and BBT . However, we typically expect

to need at least as many constraints as variables to solve a system of equations.

There is no guarantee at all that the constraints generated from multiple experiments

and equations will be independent, so more experiments might be required. In the case

of ten nodes and two simultaneous outputs from before, condition (3.8) requires three

measurements.

3.5 Examples

We now consider examples of sensor fusion.

3.5.1 Two
Dimensional
System

In this section, we consider sensor fusion for a two-dimensional system. This example

leads to a negative result. We consider the system given by

A=

−1 1/2

1/2 −1


BBT =

0 0

0 1


C =
h
1 0
i

.

(3.9)

In this system, we also assume that we have prior knowledge that the noise enters the

system only from the second state.

Using the Lyapunov equation (3.2), we compute a steady state covariance

P =


1

12
1
6

1
6

7
12

 .
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The output spectral density of this system is given by Φ(s) = 4
16s4−40s2+9 .

Then, we can apply Theorem 1 to compute the set of A and BBT matrices consistent

with the given P as well as the output spectral density of the system.

Using partial fraction decomposition, we can solve for Z(s), and we find

Z(s) =
1
8

s+ 1
2

−
1
24

s+ 3
2

.

This verifies that the globally minimal system dimension is two, and we can write down

a state-space realization for Z(s) as (Â, Ĝ, Ĉ) below.

Â=

−2 −3
4

1 0

 Ĝ =

1
0

 Ĉ =
h

1
12

1
6

i

We can solve for all possible globally minimal systems consistent with this output cor-

relation using Lemma 2. Using the true system as one globally minimal system, we solve

for all other possible systems. First of all, the constraint QC T
1 = 0 implies that Q is all zeros

except in the bottom right corner. Then,

A1Q+QAT
1 + B1BT

1 =

0 q
2

q
2 1− 2q

 ,
where q is the bottom right entry of Q. Since this term must be positive semidefinite, then

q = 0 must hold, and we see that Q = 0. Thus, the equations simplify down to A1 = TA2T−1,

C1 = C2T−1, and B1BT
1 = T B2BT

2 T T . We can solve these equations assuming T is a free

two by two matrix and assuming that B2BT
2 is a symmetric matrix with all zeros and one

positive entry in the lower right hand corner.

Then, solving the equations gives us the following expressions for the set of consistent

A2 and B2BT
2 matrices for this system.
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A2 =

 c
2 − 1 d

2

− c2−1
2d − c

2 − 1



B2BT
2 =

0 0

0 1
d2


c, d ∈ R

d ̸= 0

Time series measurements along with knowledge of the noise structure do not pro-

vide much information about the structure of A in this case. Of course, the steady state

distribution is also insufficient to determine A as shown in Proposition 3.

The next step is to consider sensor fusion. In the sensor fusion case, we solve the

equations given in Theorem 1. These equations can again be solved by letting T be a free

variable. In this case, the noise matrix BBT can be found exactly. However, the A matrix

has two possible solutions. The first solution is the correct A matrix which leads to the

transfer function G(s) above. The other solution is

Awrong =

 1 −1
2

15
2 −3

 ,
which leads to a transfer function of−G(s), which of course reproduces the same spec-

tral density Φ(s) but also reproduces the same covariance at steady state. With sensor

fusion, there are exactly two consistent A matrices.

Interestingly, this result seems to hold for different output choices. For example, we

could measure the second state instead of the first state or the difference of the two states.

They all produce either the true A matrix or the incorrect Awrong. In this case, sensor fusion

cannot exactly determine A, but it does provide us with two specific possible values of A

instead of the one or two dimensional infinite space that we get from using distribution or

time series measurements alone.
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3.5.2 Cyclic
Dynamics

In this example, we investigate sensor fusion for a three node decaying oscillation system.

We try a few different cases in terms of which nodes are measured in the system. We

start with the three dimensional system given by

A=


−1 0 1/2

1/2 −1 0

0 1/2 −1


with noise entering only from the third state, so that

BBT =


0 0 0

0 0 0

0 0 1

 .
The system is shown in Figure 3.2 with the first and second nodes measured together.

Figure 3.2: A three node ”oscillating” system with one noise input and two measured
outputs.

The previous section just showed that measuring steady state covariance and a sin-

gle output correlation is not sufficient to recover system dynamics for a two dimensional

system. This limitation of single output measurements still holds for this system. We then

consider the case of measuring two outputs simultaneously. This is the situation illus-
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trated in Figure 3.2. Noise enters into state three while states one and two are measured

simultaneously.

In this case, the algebra associated with Lemma 2 leads to another messy expression

for the space of possible A matrices consistent with output correlations alone.

Incorporating the steady state information in this case again leads to two possible A

matrices while recovering BBT exactly. One of course is the correct A, while the other is

given by

A12
wrong =


3 −31

6 −1
2

1
2 −1 0

161
6 −251

6 −5

 .

If we measure the first and third states together, then we again get two possibilities for

A, where the incorrect one is given by

A13
wrong =


−1 0 1

2

−65
62 1 12

31

508
31 −63

2 −3

 .

From these results, it is clear that if we measure steady state covariance information

along with output correlations for the first and second state together as well as output

correlations for the first and third state together, we can resolve A exactly.

Interestingly, if we measure the output correlations for states two and three together,

then that alone is sufficient when combined with the steady state covariance to resolve

A exactly. That is, we can resolve A exactly without ever measuring state one in time

series. Additionally, it is clear that identifiability is a question of which nodes we measure in

addition to how many nodes we measure. This suggests a consideration of graph structure

and identifiability in the same vein as well known graph theoretic analyses of controllability

and observability [50].
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3.5.3 Example
-
RNA Elongation
and
Degradation

RNAP

RNAase

β

δ

Figure 3.3: A transcription and degradation process for mRNA

In this section, we consider the biologically inspired example of a transcription degra-

dation system at equilibrium. RNA Polymerase is an enzyme that transcribes and length-

ens the RNA molecule polymer while RNAase is an enzyme that degrades and shortens

the RNA. We illustrate this system in Figure 3.3 and model it using the dynamics in (3.10).

ẋ = b+ Ax + Bw

x , b, B ∈ Rn

A∈ Rn×n

(3.10)

Here, the elements of x correspond to varying lengths of partial RNA where x(1) is a

nascent transcript and x(n) is a fully completed transcript. The rate matrix

A=



−(δ1 + β1) δ2

β1 −(δ2 + β2)
. . .

β2
. . . δn−1

. . . −(δn−1 + βn−1) δn

βn−1 −δn


is a tridiagonal matrix where the terms represent the local rates of elongation and
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degradation. Namely, the superdiagonal terms δk represent the local rates of degrada-

tion at different points along the transcript, the subdiagonal terms βk represent the local

rates of elongation at different points along the transcript, and the diagonal terms enforce

conservation. Note that the δk’s and βk’s must be positive. As constructed, A is diagonally

dominant and thus Hurwitz.

We model the actual transcription and degradation processes as proceeding deter-

ministically with noise being introduced only by initiation events. The bias term b =h
b1 0 · · · 0
iT

with b1 > 0 gives the mean amount of transcription initiation activity.

The noise term B =
h
1 0 · · · 0
iT

is the noise in the transcription initiation process.

We assume that we can measure the steady state distribution of this system, which

we might do by looking at single cell RNA data across a population of cells. Because of

the bias term, we would not only be able to measure the covariance at steady state, but

we could also measure the mean xeq, where Axeq + b = 0 must hold at steady state.

There are a total of 2n + 1 total parameters to identify. The rate matrix A has 2n − 1

parameters, and the noise and bias term have one parameter each. Using the steady

state mean information alone gives only the equation Axeq + b = 0. This only provides n

linear equations, so we cannot solve for all 2n+ 1 parameters.

However, using the steady state distribution gives us more information. First of all, it

is clear from the structure of A and B that (A, B) will be almost certainly be controllable as

the noise can propagate to every state and therefore, the steady state covariance P will

be strictly positive definite and unique. Knowing the covariance provides us with another
n(n+1)

2 equations through the continuous time Lyapunov equation (3.2).

However, since all the equations are linear, we can only determine the parameters up

to multiplication by a positive scalar. Intuitively, this is because rescaling time does not

affect steady state measurements. Therefore, without some additional information, we still

cannot determine A exactly.
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For a specific numerical example, we set

A=


−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1

 ,

and we set b = B = [1 0 0 0]T . In this example, steady state measurements constrain

A to a one dimensional subspace of Rn×n. The set of dynamics consistent with the steady

state mean and covariance is given by kA, where k > 0. Note that k < 0 is impossible

because it would make A not Hurwitz. The set of consistent B matrices is given by kB.

Then, suppose we measure the output correlation with C = [0 0 0 1], which is the state

corresponding to fully completed RNA molecules. This results in a spectral density of

Φ(s) =
1

s8 − 19s6 + 87s4 − 70s2 + 1
.

Since we know the true A and B matrices up to a scalar factor k, the set of spectral

densities consistent with the distributional information is given by Φ
� s

k

�
. We see that k = 1

must hold, which means that sensor fusion is sufficient to resolve A, b, and B exactly for

this example.

3.6 Conclusion
and
Future
Work

In this chapter, we considered the idea of combining full state covariance information to-

gether with limited output correlations to improve identifiability of stationary linear stochas-

tic systems driven by white noise. This problem was motivated by the biological setting,

where often distributional measurements are high dimensional and time series measure-
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ments are low dimensional. We formulated conditions for identifiability using distributional

measurements alone and also for using sensor fusion.

Future work includes developing a practical identifiability algorithm for sensor fusion

that is robust to noise. This algorithm will complement the theoretical identifiability anal-

ysis developed in this chapter. We then hope to demonstrate both sets of techniques

on data generated from either a simulated or experimental stochastic biological circuit to

demonstrate the utility of the methods.
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Chapter
4

Quantitative
Modeling
of
Integrase
Dynamics
Using
a
Novel
Python
Toolbox
for
Parameter
Inference

4.1 Introduction

Quantitative approaches to both synthetic and systems biology rely on modeling and sim-

ulation of biological circuits. Biological circuits are systems where different components,

typically genes, can interact with each other via different types of molecular interactions

including transcriptional activation and repression and sequestration. These interactions

are typically modeled as a system of chemical reactions where each reaction has a certain

reaction rate. The rate can be modeled using mass action kinetics [13], but many reac-

tions in biological circuits have sigmoidal saturating reaction rates. These reactions are

typically modeled using Hill functions [13] .

Given the reaction model for a biological circuit, there are many different ways to sim-

ulate the model. First of all, regardless of simulation framework, it is necessary to specify

the values of the parameters in the model along with the initial levels of the model species.

By treating the reaction rates as deterministic bulk rates and using ordinary differential

equations (ODE’s), one might perform a deterministic simulation of the system.
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On the other hand, it also common to treat the reaction rates as propensities for dis-

crete reactions to fire and to model the system as a set of stochastic chemical reac-

tions [24]. Biological circuits can often be noisy [18, 20] especially at low molecular copy

numbers, and a stochastic model is often necessary to capture the noise characteristics

of a circuit.

Some other common features in biological circuit models are delay and cell growth and

division. Processes like protein production are not instantaneous, and there is often a sig-

nificant delay between when transcription of a gene is initiated and when a mature protein

is produced. This type of delay can lead to nontrivial behavior such as oscillations [85], and

thus it is often important to incorporate delay into the modeling framework. Additionally,

delays can be both fixed and distributed in their duration. While adding a fixed delay to a

biological circuit might destabilize the circuit and create oscillatory behavior, distributing

that delay across multiple durations might maintain circuit stability [27].

Cell growth and division are also critical aspects of biological circuits that operate in

single cells. Typically, a dilution term in the model accounts for cell growth. However, in

stochastic models, modeling the continuous dilution process with a stochastic and dis-

crete degradation reaction might not be accurate. Another source of noise is the partition-

ing of molecules between daughter cells at cell division [40]. In fact, it can be difficult to

distinguish between noise in gene expression and noise from molecular partitioning [40].

Therefore, modeling cell growth as well as division and partitioning is important for inves-

tigating noise in gene expression across a lineage of cells.

In order to validate these types of models of biological circuits against actual data, it

is often helpful to have a large amount of experimental data measured for the circuit. For

deterministic models, it is often helpful to have data collected at many different operating

conditions, while for stochastic models, it is also helpful to have large sample sizes. The

increasing use of technologies for lab automation as well as high throughput measure-
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ment techniques involving liquid handling [63] and flow cytometry [79,96] makes this data

collection more easy to do.

Using experimental data, one can fit parameters for models of biological circuits and

tune the models to better match qualitative trends in the data. In this workflow, it is often

necessary to add or remove reactions from the model or to perform a different type of sim-

ulation. For example, one might decide that a circuit behaves too noisily for deterministic

simulations and want to switch to a stochastic simulation framework. If delays are playing

a significant role in the dynamics, one might want to incorporate previously unmodelled

delays into the model.

The most attractive methods for performing parameter inference on these models are

those that use Bayesian inference [26,46], because these methods provide a full posterior

distribution over the parameter space. This gives insight into the accuracy and identi-

fiability of the model. Also, such an approach allows for an easy comparison between

different model classes using the model evidence. The drawback of these approaches is

that their implementation is computationally expensive and is based on repeated forward

simulations of the model within the framework of Markov chain Monte Carlo (MCMC) [26].

Therefore, it is important to have the underlying simulations running as fast as possible in

order to speed up computation time.

This chapter presents bioscrape (Bio-circuit Stochastic Single-cell Reaction Analysis

and Parameter Estimation), which is a Python package for fast and flexible modeling and

simulation of biological circuits. The bioscrape package uses Cython [5], an extension

for Python that compiles code using a C compiler to vastly increase speed. This helps

assuage the computational time issues that arise in parameter estimation. Additionally,

bioscrape provides a flexible text-based framework for specifying models of biological

circuits, as well as a set of simulators that can perform deterministic and stochastic sim-

ulations as well as incorporate delay and cell growth and division. If a researcher needs



42

to change a circuit model, he or she can simply edit a few lines in a text file to make the

change. If a researcher needs to simulate a circuit differently, he or she can simply select

a different simulator to use.

Some popular software packages that do somewhat similar tasks to the bioscrape

package are MATLAB’s SimBiology toolbox [1] and Stochpy [55]. However, the bioscrape

package runs simulations faster than either and also supports simulations of whole cell

lineages as well as more general reaction rates.

The following sections contain an overview of the model specification language as well

as some examples of simulations performed using the package. Additionally, Section 4.6

contains a demonstration of bioscrape to perform parameter estimation for integrase DNA

recombination dynamics based on experimental data. More detailed documentation and

the code for the examples as well the package itself are available online.1

4.2 A flexible
modeling
language
for
biological
circuits

The first piece of the software package is a flexible text-based modeling framework. The

framework uses XML to specify the reactions that make up the interactions of a model.

Once the XML file for a model is loaded into the software package, it can then be simulated

using whatever method is desired.

Another common XML based specification language for biological models is the Sys-

tems Biology Markup Language (SBML) [39]. The SBML language is very general and can

describe a wide variety of biological systems, but it is also complex. Therefore, the bio-

scrape package instead uses a very simple modeling language that only specifies model

reactions.

The XML language consists of a simple specification of reactions along with propen-
1The bioscrape package is available at https://github.com/ananswam/bioscrape.

https://github.com/ananswam/bioscrape_distr
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sities and delays.

Code Block 4.1: Simple examples of XML reactions
<reac t ion t e x t =”−−” a f t e r =”−−mRNA”>

<propens i ty type=” massaction ” k=” beta ” species=” ” />

<delay type=” f i x e d ” delay=” tx_de lay ” />

< / reac t i on>

<reac t ion t e x t =”mRNA−−” a f t e r =”−−”>

<propens i ty type=” massaction ” k=” delta_m ” species=”mRNA” />

<delay type=”none” />

< / reac t ion>

Code block 4.1 contains an example specifying two reactions. The first reaction is

a transcription reaction with delay. The reaction XML tag contains a text field and an

after field, where the text field contains the part of the reaction that happens initially and

the after field contains the part of the reaction that occurs after a delay. The products

and reactants are separated from each other by the -- characters, and multiple products

and reactants can be included by separating them with plus signs.

The first reaction above is a delayed transcription reaction, as the only thing that hap-

pens in this reaction is that mRNA appears after a delay. The second reaction is a degra-

dation reaction without delay as the only thing that happens is that mRNA disappears.

The propensity field specifies the reaction rate. In this case, both reactions have

mass action propensities. For mass action propensities, the rate parameter is given by the

attribute k and the species attribute specifies the species involved. In this case, mRNA is

produced with a constitutive propensity of beta, so there are no species involved, and the

rate is specified to be the parameter beta. For the second reaction, the degradation rate

of mRNA is given by delta_m× mRNA. If more than a single species is involved in a mass

action reaction rate, the species can separated by * signs.
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Finally, a delay must also be specified for each reaction. If there is no delay, the delay

type can be set to none as in the second reaction. However, if there is a delay, the type of

delay must be specified along with any associated parameters. The transcription reaction

above has a fixed delay, and thus a parameter is required to specify the duration of the

fixed delay. If the delay is distributed with a gamma distribution, then the shape and scale

of the distribution must be specified.

Code Block 4.2 shows the initialization process for parameter values and initial species

levels. Both the initial conditions and the parameter values can be modified from a Python

script after the model has been loaded as well, so it is not necessary to edit the XML file

and load the model every time a parameter or initial condition is changed.

Code Block 4.2: Initialization of parameters and species
<parameter name=” beta ” va lue=” 2.0 ” />

<parameter name=” delta_m ” value=” 0.2 ” />

<parameter name=” k _ t l ” va lue=” 5.0 ” />

<parameter name=” del ta_p ” value=” 0.05 ” />

<parameter name=” tx_de lay ” va lue=”10” />

<parameter name=” t l _ k ” va lue=”2” />

<parameter name=” t l _ t h e t a ” va lue=”5” />

<species name=”mRNA” value=”0” />

<species name=” p ro te in ” va lue=”0” />

The reactions in Code block 4.1 and the parameters and initial species values in Code

block 4.2 are both part of an XML file describing a simple model of gene expression with

delayed transcription and translation and the usual linear degradation of mRNA and pro-

tein. This model will be simulated in many different ways in the next section, and the full

model can be found in Appendix A.1.
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4.3 Flexible
Simulation
of
Biological
Circuits

This section demonstrates the different types of simulations that can be performed with

the bioscrape package using the model of delayed gene expression from Appendix A.1 as

an example.

The package is capable of performing stochastic simulations with and without delay

and with and without cell growth and division. However, deterministic simulations only

work without delays or cell division.

As a first pass, the simple gene expression model can be simulated both deterministi-

cally and stochastically ignoring delays and cell division. Importantly, switching between

a deterministic and stochastic simulation only requires a single line to be modified in the

code. The simulation output is the mRNA and protein trajectories over time.
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Figure 4.1: Deterministic and stochastic simulations of simple gene expression without
delay.

Figure 4.1 shows the simulated deterministic and stochastic trajectories. As expected,

the deterministic simulation smoothly goes to a steady state of 10 mRNA molecules and

1000 proteins, while the stochastic simulation bounces around the deterministic value.

Because the mRNA production and degradation events in this model represent a standard

birth death process, it can be analytically determined that the steady state distribution of
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mRNA should be a Poisson distribution with parameter λ= 10, and that the autocorrelation

time for the mRNA trajectory should be exp(0.2t). Both of these analytical solutions can

be compared to the empirical probability distribution and autocorrelation for mRNA. These

can be computed using a longer simulation of 50,000 simulation minutes. The results are

presented in Figure 4.2.
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Figure 4.2: Empirical steady state mRNA distribution and autocorrelation times match
analytical results.

The next step is to incorporate the delays specified in the model. The transcriptional

delay in the model is a fixed delay of 10 minutes, while the translational delay is gamma

distributed with a mean of 10 minutes. Again, switching from a simulation without delay

to one that incorporates delay only requires changing a few lines of code. Only a single

line of code is required to change the simulator, but as the initial conditions for a delayed

simulation include a history of queued reactions, this initial condition must be constructed

as well. The results from a delayed simulation of the model are presented in Figure 4.3.

As expected, the mRNA turns on at 10 minutes, and the protein turns on at around 20

minutes. Because the delay is distributed, the protein actually starts increasing slightly
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before 20 minutes have elapsed.
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Figure 4.3: Delayed simulation shows an abrupt delay in mRNA production and a smooth
delay in protein production.

Cell growth and division can also be incorporated into the simulation. The dynamics of

cell growth and division are not specified in the model XML file, so they must be specified

in the Python simulation script. The model must specify the rate of cell growth as well

as the time and volume at which the cell divides. The model of cell growth and division

used in the package consists of deterministic exponential growth and cell division upon

reaching a certain volume threshold. A noise parameter allows for incorporating some

stochasticity into the dynamics. The daughter cells in this model are also exactly half the

size of the mother cell.

The method for partitioning molecules between daughter cells must also be specified

in the simulation Python script. Currently, the model for molecular partitioning is one in

which the molecules are partitioned binomially between the two daughter cells in a manner

that is consistent with the daughter cell volumes. For example, if one daughter cell is twice

as big as the other, then it receives about two thirds of the molecules.

The reaction rates in the model also become volume dependent when performing a

volume-based simulation. For example, a unimolecular reaction does not depend on vol-

ume, but a bimolecular mass action reaction rate will scale as Volume−1 because the odds
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of two molecules finding each other decrease as the volume increases. Similarly, in Hill

function rates, the transcription factor in the Hill function is replaced by its concentra-

tion when doing volume based simulations, since the concentration sets the equilibrium

binding of the transcription factor to the DNA. These changes happen automatically when

switching to a volume based simulation.

The output of a lineage simulation is a set of cell traces, where each trace contains a

cell’s volume and species trajectories over a single cell cycle. Each cell trace also may

or may not have a parent cell trace as well as daughter cell traces. This data structure is

similar to the one used in the Schnitzcells microscopy image analysis software [95].

A simulation of the simple gene expression model ignoring delays is provided in Figure

4.4 for a lineage of cells with a division time of 33 minutes. In this figure, the plotted

quantity is protein concentration, which is molecules of protein per cell divided by the

current cell volume. Here, the cell volume ranges between 1.0 and 2.0, and the volume

unit can be thought of as a characteristic E.
coli cell volume. A common assumption in E.

coli models is that 1 molecule per cell corresponds to a concentration of 1 nM, and so 1

molecule per characteristic cell volume here is assumed to be 1 nM.

The initial single cell trajectory branches into more and more trajectories as the cell

divides. At cell division, the concentration of protein in each daughter cell can change

discontinuously. This occurs because of the noise in molecular partitioning. Because the

proteins are high copy number, this noise is fairly small in this example.

The most comprehensive type of simulation, which can be performed using this model,

is one that incorporates both cell lineages and delays. The simple gene expression model

with delays can be simulated using the same model of cell growth and division (33 minute

division time) as the one used to produce Figure 4.4. In this case, the transcription and

translation delay are set to 16.5 minutes each, for a total delay in protein production of

one 33 minute cell cycle. The results are shown in Figure 4.5.
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Figure 4.4: Simulation with cell growth and partitioning shows variation in gene expression
across a lineage of cells.

While the results from Figure 4.5 look qualitatively similar to the results in Figure 4.4, it

is important to note that the final level of steady state protein expression in the simulation

with delay is only about 300 proteins versus the 600 protein steady state in the simulation

without delay. The reason for this is that because of the delay, the amount of protein that

is being produced at a given time is proportional to the number of cells that existed 33

minutes ago. Because the delay is one cell cycle, the amount of protein production is

effectively half of what it would be without delay. This is consistent with the steady state

protein expression with delay being about half as much as without delay.

This result provides insight for selection of fluorescent proteins for use in exponentially

growing colonies of cells. It might be better to use fast maturing fluorescent proteins

that are dimmer on average compared to bright fluorescent proteins that mature slowly,

because the signal loss due to the long delay might outweigh the additional brightness per
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Figure 4.5: Simulation with cell growth and partitioning in addition to delay shows reduced
steady state gene expression across a lineage of cells.

molecule. For example, a fluorescent protein that takes an extra cell cycle time to mature

must be twice as bright in order to generate the same fluorescent signal at steady state.

4.4 Fast
Simulation
of
Biological
Circuits

In addition to the framework for flexible modeling and simulation of biological circuits de-

scribed in the previous sections, the third critical aspect of a software package for quan-

titative analysis of biological circuits is speed. This package is written using Cython [5],

a language extension for Python that creates compiled Python libraries. Some alternative

methods for doing stochastic simulation are to use the SimBiology toolbox in MATLAB [1],

write code in C from scratch, or to use a pure Python library such as StochPy [55]. In this
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section, the simulation speed of the bioscrape package is benchmarked against these

other three common simulation options.

The benchmark test used for comparing the speed of these different simulators is to

simulate the simple gene expression model from Appendix A.1. As MATLAB SimBiol-

ogy does not support delayed reactions, the system was simulated ignoring delays for

100,000 minutes starting from an initial condition of zero. Additionally, both SimBiology

and StochPy output each step of the stochastic simulation as opposed to outputting the

system state at specific times. For the simulation conditions in this system, the number of

steps taken in 100,000 minutes is always around ten million steps. Therefore, to make the

comparison fair, the simulation in the bioscrape package is done with ten million desired

time points in order to keep the output size the same in all cases. Finally, the C code is

a pure C implementation of the simulation using the same fixed interval algorithm as the

bioscrape Python package, so the C implementation is also run with ten million desired

time points.

Table 4.1: A speed comparison between bioscrape and other common simulation plat-
forms.

Software Benchmark time
(s) Speed-up
SimBiology 5.8 8.3x

StochPy 190 270x
C 0.38 0.54x

bioscrape 0.70 -

The simulation times are available in Table 4.1. The table shows that the bioscrape

package outperforms SimBiology by almost one order of magnitude, but it outperforms

the pure Python StochPy package by a factor of 270. The C simulation is used to get an

idea of the maximum speed possible. The bioscrape package is about twice as slow as

custom pure C code. This is due to a choice to preserve code readability over absolutely

maximizing speed.
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4.5 Simulating
Plasmid
Replication
and
Gene
Expression
in
a

Cell
Lineage

As a more complex demonstration of the capabilities of the bioscrape package, it can be

used to model plasmid based transcription with cell growth and division. The plasmids

in the model replicate and control their own copy number. Additionally, each plasmid

constitutively expresses mRNA. This simulation can be used to get an idea of the variability

involved in plasmid based transcription. In order to perform such a simulation, a simplified

model for plasmid replication and copy number control is developed.

4.5.1 A Reduced
Order
Model
for
Plasmid
Replication
in
Single
Cells

The ColE1 plasmid regulates its own copy number by constitutively transcribing an RNA

that inhibits the RNA primer for DNA replication from initiating a replication event [8]. Mak-

ing a four simplifying assumptions enables the derivation of a simplified model of plas-

mid copy number regulation. First, it is assumed that the inhibitory RNA directly binds

to the plasmid origin to inhibit replication. Second, it is assumed that that the replication

rate is proportional to number of free plasmids, which do not have inhibitory RNA bound.

Third, it assumed that the inhibitory RNA transcription and degradation dynamics are much

faster than the plasmid replication dynamics. Fourth, the inhibitory RNA is assumed to be

strongly transcribed and linearly degraded, so that the steady state level of inhibitory RNA

is much greater than the number of plasmids. The third and fourth assumptions enable

the inhibitory RNA to be considered as being at a quasi-steady state level.

Given P copies of plasmid, the third and fourth assumptions above mean allow for

the steady state level of inhibitory RNA R to be approximated by kP, where k is a large

proportionality constant.

Then, assuming fast binding and unbinding of the RNA to and from the plasmid with
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some dissociation constant Kd , the following equations describing dissociation and mass

conservation must hold:

Kd =
[Pf ][R]

[PR]
,

[P] = [Pf ] + [PR].

(4.1)

Here, [P] denotes the concentration of P, so [P] = P
V , where V is the cell volume. The

variable Pf denotes the number of free plasmids, while PR is the number of plasmid-RNA

complexes, which have to add up to the total number of plasmids. Solving these two

equations yields the following expression for [Pf ]:

�
Pf

�
=

[P]
Kd + [R]

. (4.2)

Here, since k ≫ 1, [R] will be mostly unaffected by its binding to the plasmid, so

substituting the steady state expression of R gives the following expression for [Pf ]:

�
Pf

�
=

[P]
Kd + k[P]

. (4.3)

The initiation rate of plasmid replication is assumed to be proportional to the amount

of free plasmids Pf , so multiplying both sides by the volume and re-arranging variables

gives

Pf =
1

Kd

1+ [P]� Kd
k

� P. (4.4)

Since the propensity of plasmid replication is assumed to be proportional to the number

of free plasmids Pf , the variables can be re-arranged to write down the following expres-

sion for the replication propensity, where the parameters have been combined into two

parameters, β and K:
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Figure 4.6: Plasmid-based transcription with partitioning. Each plasmid (blue) constitu-
tively transcribes RNA molecules (green). Both plasmids and RNA’s are partitioned be-
tween daughter cells during cell division.

Replication Propensity= β

1+ [P]K

P. (4.5)

A deterministic analysis of this plasmid replication rate can be performed. To do this

analysis, assume that the cell volume is growing at a standard exponential rate with

V̇ = αV. (4.6)

Then, the dynamics of [P] can be computed:

d[P]
d t

=
d
d t

�
P
V

�
=

V Ṗ − PV̇
V 2

=
1

V 2

�
PV

β

1+ [P]K

−αPV

�
=

P
V

�
β

1+ [P]K

−α
�

.

(4.7)

Setting the derivative equal to zero and solving gives the steady state value for the

plasmid concentration,

[P]eq = K
�
β

α
− 1
�

. (4.8)

If volume is measured in units of cellular volume, then the average plasmid concentra-
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tion can be thought as the steady state plasmid copy number. Note that β > α is required

in order to have a non-negative steady state plasmid concentration. This is because the

maximum rate of plasmid production must at least be able to keep up with the cell growth

rate in order for the plasmid to be maintained.

4.5.2 Simulating
Plasmid
Replication
and
Gene
Expression
in
Single
Cells

Using the model of plasmid replication derived in the previous section, a model of plasmid

replication combined with transcription can be used to compute the variability in mRNA

levels between cells in a lineage simulation. In the model, there is one plasmid species,

which replicates itself and also constitutively transcribes a mRNA. It is possible to look

at the plasmid copy number and mRNA levels in a cell lineage over time as well as the

plasmid copy number distribution across a population of cells at the end of the simulation.

The full model used for producing the simulation is available in Appendix A.2. However, the

model is tuned to produce a mean plasmid concentration of 10 nM, and the cell division

time is the same 33 minutes as in the previous section.

The simulation is performed for 500 minutes and the plasmid distribution is empirically

calculated using a final population size of 2048 cells. The run time for this simulation

to compute a total of 4095 cell traces is less than two seconds on a standard desktop

computer without using parallel processing.

As shown in Figure 4.7, the copy number at the end of the simulation has a wide

distribution with a mean of about 15 copies per cell. This is expected because the mean

concentration should be about 10 nM for the plasmid and the mean cell volume will be

around 1.5 volume units. There is a slight peak in the distribution at a copy number of

zero. This is because if a cell loses all its plasmids, it will continue dividing but its future

descendants will never be able to recover the plasmid.

The distribution of plasmid and mRNA concentrations can also be plotted. In this case,



56

0 50 100 150
Time (min)

0

50

100

150

200

Co
nc

en
tra

tio
n 

(n
m

)

RNA Concentration per Cell

0 50 100 150
Time (min)

0

50

100

150

200

250

300

M
ol

ec
ule

s

RNA Molecules per Cell

0 50 100 150
Time (min)

5

10

15

20

25

30

M
ol

ec
ule

s

Plasmids per Cell

0 10 20 30
Plasmid Copy Number

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Em
pi

ric
al 

De
ns

ity

Copy Number Distribution

Figure 4.7: A simulation of plasmid replication and transcription over a cell lineage. The
first three plots show trajectories of RNA and plasmid counts and concentrations over
time. The last plot shows the distribution of plasmid copy number over 2048 cells at the
end of the simulation.

the copy number is divided by the cell volume at the end of the simulation before plotting.

The expected plasmid concentration is 10 nM and the expected mRNA concentration is
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93.45 nM. The results can be seen in Figure 4.8.
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Figure 4.8: Distributions of plasmid and mRNA concentration across a cell lineage. The
plasmid concentration is distributed around a mean of 10 nM. mRNA concentration is dis-
tributed around a mean of approximately 90 nM. The blue line shows the mRNA expression
distribution if the plasmid concentration was exactly its mean value of 10 nM at all times.

The right panel of Figure 4.8 also shows a control where the plasmid concentration is

assumed to be exactly controlled within the cell with no variability. In this case, the noise

in mRNA expression is much smaller than in the case where the mRNA is expressed from

the plasmid. The coefficient of variation in the plasmid based expression case is 0.55,

while the coefficient of variation in the case with controlled copy number is 0.10. The XML

code for the model where the plasmid copy number is exactly controlled is available in

Appendix A.3.

4.6 Parameter
Inference
for
Integrase
Dynamics

In the previous sections, we demonstrated the capabilities of the bioscrape package for

performing fast, flexible, and efficient simulations of biological circuits. In this section,

we use the package’s parameter inference capabilities to do parameter inference for a
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model of integrase dynamics based on in
vitro experimental data. We first start by giving

background on integrase systems and in
vitro prototyping of biological circuits. We then

describe the experimental procedure and the experimental data collected. Finally, we

introduce the model and perform parameter inference on the model for both simulated

data as well as the actual experimental data.

4.6.1 Background
and
Experimental
Design
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Figure 4.9: Testing serine integrase recombination dynamics using TX-TL. (A) The TX-TL
system allows for prototyping synthetic circuits in
vitro by adding DNA to cell extract and
buffer. (B) Four serine integrases recombine attB and attP DNA sites to form attL and
attR sites while reversing the DNA segment between the sites. (C) A constitutive integrase
expression plasmid expresses integrase fused to cyan fluorescent protein (CFP), which
flips a promoter on a a reporter plasmid and leads to yellow fluorescent protein (YFP)
expression.

Both serine integrase systems and in
vitro prototyping using cell free extracts are com-

mon tools in synthetic biology. Serine integrases are proteins that can recognize and

recombine two specific target DNA sequences [29, 83]. Depending on the original direc-

tionality of the target sites, the recombination causes the segment of DNA between the

target sites to either be excised or reversed. Figure 4.9B depicts the process by which
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four serine integrases bind to attB and attP DNA recognition sites and recombine them into

attL and attR sites. In synthetic biology, this functionality has been leveraged to build syn-

thetic gene circuits for state machines [77], temporal event detection [36], and rewritable

memory [7]. However, existing applications of integrases rely on their digital behavior over

long time scales, and not much is known about the dynamics of their action upon DNA.

One way to assay the dynamics of integrase DNA recombination is to test an inte-

grase system using TX-TL, an E.
coli cell extract in
vitro system for testing and protoyping

synthetic gene circuits [80]. Plasmid or linear DNA encoding the genes in a synthetic cir-

cuit can be added to a TX-TL master mix to prototype genetic circuits outside the cell as

depicted in Figure 4.9A. In this case, we can create a simple synthetic circuit involving

constitutive integrase production and reporter expression following DNA recombination

to assay DNA recombination as a function of integrase levels. The circuit consists of two

plasmids as shown in Figure 4.9C. On the first plasmid, the integrase plasmid, we consti-

tutively express Bxb1, a commonly used serine integrase, as a part of a fusion protein in

which Bxb1 is fused to CFP (cyan fluorescent protein). This allows us to use CFP fluores-

cence to measure the amount of Bxb1 present in the TX-TL reaction. The second plasmid

is a reporter plasmid in which a promoter initially pointing away from a yellow fluorescent

protein (YFP) gene can be reversed by integrase DNA recombination to point towards the

YFP gene, which leads to production of YFP. Therefore, YFP expression can be used to

infer when DNA recombination has occurred.

4.6.2 Experimental
Results

Using automated acoustic liquid handling, we varied the level of integrase plasmid and

reporter plasmid between 0 and 1 nM across 100 different TX-TL reactions. Each reaction

contained integrase and reporter plasmid both independently at one of five concentra-

tions of 0 nM, 0.25 nM, 0.50 nM, 0.75 nM, or 1 nM. Therefore, there were 25 possible
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combinations of concentrations of the two plasmids. Four replicates were done for each

combination of concentrations, yielding a total of 100 TX-TL reactions. The reactions were

incubated at 37 degrees Celsius, and CFP and YFP fluorescence were collected every 5

minutes for each reaction using a plate reader. Using a previously performed calibration of

fluorescence to concentration, we were able to convert the fluorescence measurements

for CFP and YFP to actual concentrations in nM for each fluorescent protein. Notably,

the CFP concentration allowed us to measure the concentration of Bxb1 integrase in the

reaction.

In Figure 4.10A, the full experimental data is presented. The dots represent actual

data points, and the solid lines represent the median of 4 replicates. In Figure 4.10B,

the median expressions are plotted in columns corresponding to fixed levels of reporter

plasmid. As expected, the first row shows that integrase expression increases as integrase

plasmid is increased. It is also clear from the second row of Figure 4.10B that reporter

expression generally begins sooner and ends at a higher level when there is more integrase

expression.

4.6.3 Model
of
Integrase
Recombination

In order to estimate parameters for the integrase data presented in the previous section,

we needed a model of integrase recombination of DNA. As a first cut, we created a simple

model of integrase dynamics consisting of three reactions: integrase production, DNA

recombination, and reporter production. As TX-TL is a bulk environment, we chose to use

a deterministic model for our system, which we easily set up using the bioscrape package.

In Table 4.2, we describe the species in the model. These species are then used in the

following set of ODE’s that describe the integrase recombination dynamics in the model:
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Figure 4.10: Experimental results for integrase testing. (A) Both integrase plasmid and
reporter plasmid were varied from 0 to 1 nM and fluorescence data was collected for 4
hours. The dots are actual data points and the solid lines are the median of 4 replicates.
(B) The median fluorescence trajectories plotted for fixed amounts of reporter plasmid.
The reporter turns on sooner when more integrase is expressed.
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Table 4.2: Species and parameters in the simple model of integrase recombination.

Variable Species
I Integrase-CFP (nM)
A Activated reporter plasmid (nM)
R Unactivated reporter plasmid (nM)
Y YFP fluorescent reporter (nM)
Ipl Integrase plasmid (nM)
Parameter Description
kI Rate of integrase production (nM integrase

per minute per nM integrase plasmid)
f Maximum rate of integrase flipping of DNA

(nM activated plasmid per nM reporter
plasmid per minute)

K f Hill threshold for integrase activation (nM
integrase)

n Hill coefficient
kY Rate of reporter production (nM reporter

per minute per nM activated plasmid)
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İ = kI Ipl

Ȧ= f R

�
I

K f

�n
1+
�

I
K f

�n
Ṙ= −Ȧ

Ẏ = kY A.

(4.9)

Equation 4.9 contains the ODE’s for the simple model. Integrase is produced at a

constitutive rate, where Ipl is the concentration of integrase plasmid and varies across ex-

periments. The conversion of reporter plasmid to activated reporter plasmid is governed

by a Hill function that allows us to model the cooperativity and activation threshold for

the integrases in a simple way. We also assume that the DNA recombination reaction

is first order in reporter plasmid. Finally, we assume that reporter is produced at a rate

proportional to the amount of activated reporter plasmid. While varying the integrase plas-

mid changes the value of Ipl in the model, varying the reporter plasmid changes the initial

condition for R.

Using representative values for the model, we created a simulated version of Figure

4.10B using the model. The plot is given in Figure 4.11, and there are some qualitative

differences between integrase expression in the simulations and in the experimental data.

Namely, while in the model the expression of integrase increases linearly with a slope

proportional to the amount of integrase plasmid, in the experimental data, integrase ex-

pression only increases after a delay and then levels off after about two hours. This be-

havior is common in cell free extracts due to depletion of resources, and this effect should

be included in a future more detailed model of the system. The full XML model for inte-

grase dynamics and the numerical parameter values used in simulations are included in

Appendix A.4.
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Figure 4.11: Simulations of integrase and reporter expression using the model qualitatively
match experimental data (Figure 4.10B).

4.6.4 Parameter
Inference
for
Integrase
Dynamics

Using the model given in Equation 4.9, we attempted to perform parameter inference using

bioscrape to fit the model parameters to both the simulated data from Figure 4.11 as well

as the experimental median data from Figure 4.10B. Fitting the model to simulated data

was a computational test of the identifiability of the model from the collected data. If a

simulated version of the data were uninformative about parameter values in the models,

then the real data would not be informative about the parameters either.

In bioscrape, parameter inference is performed in a Bayesian setting. In the Bayesian

setting, prior beliefs or knowledge about the parameter is updated using the observed data

to produce a posterior probability distribution over the parameter values. The Bayesian



65

posterior distribution provides more information than other parameter inference techniques

that produce a single estimate of the parameter values. For example, the shape of the pos-

terior distribution can show how identifiable each parameter is, and whether parameter

values are correlated with each other.

In the Bayesian setting, the prior knowledge about the parameter vector θ is encapsu-

lated into a prior probability distribution p(θ ). If nothing is known about the parameters, it

is common for the prior distribution to be a uniform distribution over a large interval of pa-

rameter values, which is the type of prior distribution used here. Additionally, a likelihood

function p(y|θ ) gives the probability of observing the data y given a set of parameters

θ . In this case, the forward model is an ODE model with Gaussian measurement noise,

so the log of the likelihood function is proportional to the squared error between the data

and model simulation. The goal of Bayesian inference is to find the posterior distribution

p(θ |y), which gives the updated probability of each parameter set θ given that y was ob-

served. However, Bayes’ rule connects the posterior distribution to the prior distribution

and likelihood function as follows:

p(θ |y) = p(y|θ )p(θ )
p(y)

.

In this equation, p(y), the probability of observing the data y, is a constant that is often

difficult to compute, and so a more useful way to write the above equation is the following:

p(θ |y)∝ p(y |θ )p(θ ).

That is, the posterior distribution is proportional to a product of the prior distribution

and likelihood function. While the posterior probability is hard to compute directly for a

given θ , the prior probability and likelihood are straightforward to calculate for a given θ .

This means that we can compute a quantity that is proportional to the posterior probability
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of a parameter set θ .

This fact can be used in conjunction with Markov chain Monte Carlo techniques to

computationally produce samples from the posterior distribution p(θ |y). Once a satisfac-

tory number of samples are drawn from the posterior, one can then compute statistics on

the posterior distribution samples such as calculating the parameters’ means and corre-

lations.

The parameter inference code in bioscrape allows a user to enter a set of experiments

into a likelihood function as well as specify a prior distribution on parameters. This infor-

mation is then passed to an off the shelf ensemble Markov chain Monte Carlo package

that generally works well on parameter inference problems [22,28].

Figure 4.12 contains the posterior distributions for the parameters obtained after per-

forming parameter estimation. From Figure 4.12A, it is clear that for simulated data, the

true parameters are clearly identifiable from the simulated data. This suggests that the

collected data should be informative about the parameter values.

Figure 4.12B contains the posterior parameter estimates from parameter estimation on

the experimental data. In this case, most of the parameter distributions are again strongly

peaked, except for the integrase throughput rate f . However, it is notable that the distri-

bution for f is negligible for f < 1 and essentially uniform for f > 1. This suggests that the

integrase throughput is much faster than gene expression. Because we are dependent on

gene expression of the fluorescent reporter to infer when DNA recombination occurs, this

posterior distribution suggests that we cannot exactly identify how fast the DNA recom-

bination is, because the DNA recombination occurs much faster than the following gene

expression.

The other parameters we are interested in are the Hill coefficient and activation thresh-

old for integrase activity. These estimates are given in Table 4.3 along with their confidence

intervals based on the posterior distributions. We found that Hill activation threshold was



67

−3 0 3

De
ns

ity

−3 0 3 0 1 −3 0 3 −3 0 3

−3 0 3

log f

De
ns

ity

A

B

−3 0 3

log Kflip

0 1

log n

−3 0 3

log kI

−3 0 3

log kY

Figure 4.12: Posterior parameter estimates from MCMC. (A) Parameter distributions (blue)
for the simulated data are strongly peaked around the true parameter values (green). (B)
Parameter distributions for the experimental data from Figure 4.10B.

on the order of tens of nanomolar, which would correspond to an in
vivo concentration of

a few dozen molecules per cell. We found a Hill coefficient of 5.4, which was surprising,

because four integrases combine to recombine DNA, so we expected the Hill coefficient

to be no more than 4.

We also investigated the correlations between different parameters in the posterior.

Because kI and kY were tightly identified, we did not consider correlations involving those

two parameters. Notably, we found positive correlations between log f and log K f l ip and

log f and log n respectively of 0.29 and 0.47. The correlation between log n and log K f l ip
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Table 4.3: Estimates for integrase Hill coefficient and activation threshold.

Variable Median 16th
to
84th
percentile
interval
Hill coefficient n 5.4 (4.4,5.8)
Activation threshold K f (nM) 45 (22,91)

was insignificant (0.02). The positive correlations with f are unsurprising, because if n or

K f l ip increases, it increases the effective delay time before integrase recombination can

occur, which means that the recombination throughput f must be faster as well in order

to generate the same dynamics of reporter expression.

In addition the simple Hill function based model of integrase recombination investi-

gated here, we also considered a more mechanistically motivated model of recombination

in which integrase molecules dimerize and bind to attB and attP DNA recognition sites in

a reversible manner. Only plasmids with both the attB and attP site bound by integrase

dimers are then able to undergo recombination. This model produces an effective delay

in recombination by explicitly modeling the multiple binding steps required for integrase

functionality. However, a parameter inference approach using this model showed that the

model was not identifiable. The results are presented in Appendix B. The model XML is

presented in Appendix A.5.

4.7 Discussion

The advent of increased computational resources and high throughput data collection for

biological circuits has made quantitative modeling and parameter estimation for biological

circuits more feasible. Since the most attractive parameter estimation techniques rely on

Bayesian inference and Markov chain Monte Carlo (MCMC), it is important to have a sim-

ulator that can perform fast forward simulations of the model. Additionally, this simulator

must be able to produce the same types of data that are observed in standard biological
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assays such as flow cytometry or fluorescence microscopy. Also, as models often need

to be tweaked to fit the data, it should be easy to change the model or the way the model

is simulated (e.g. switching from a deterministic to a stochastic simulation).

The bioscrape package addresses all of these issues. The flexible XML based language

for model specification allows a user to easily make modifications to a biological circuit

model by simply spending a minute editing a text file. The flexible Python based library for

performing simulations allows for easily swapping between deterministic and stochastic

simulations as well as consideration of other common effects in biological circuits such as

cell growth and division and delays. Finally, because this package is written in Cython, its

speed is comparable to the speed obtained using C code.

Performing simulations that incorporate effects like cell growth and division and delay

can provide insight into the behavior of biological circuits. For example, in this chapter, it

is demonstrated that in an exponentially dividing colony of cells, delays in gene expres-

sion can lead to a lower steady state protein level. This has implications for selection of

fluorescent proteins for use in exponentially growing colonies. This chapter also demon-

strates how transcribing a gene off a plasmid with copy number fluctuations will lead to

more noise in expression than if the copy number of the plasmid were controlled exactly.

However, the ultimate aim of this package is to provide tools for doing parameter esti-

mation for synthetic and systems biology. Here, we demonstrated the use of the bioscrape

package to perform parameter estimation for both simulated and experimental data for in-

tegrase recombination dynamics in the TX-TL cell free in
vitro system. As a result of this

demonstration, we were able to estimate parameters for both the activation threshold and

cooperativity of integrases that may be relevant for synthetic circuit design.

The fast simulators presented here will be the computational workhorse for more com-

plex MCMC schemes for performing parameter inference for stochastic models of syn-

thetic gene circuits. A future update to this report and the code will include inference
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methods and an experimental demonstration for a stochastic model.
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Chapter
5

A Single
Copy
of
a
Single
Gene
is
Sufficient
for
Rapid
and
Regular
Oscillations

5.1 Introduction

Synthetic gene circuits do not come close to exhibiting the same robustness to noise as

natural gene networks in cells. While cells can perform tasks like partitioning their genome

between daughters perfectly across a wide range of conditions and across a population,

the designed functions of synthetic gene circuits are often fragile to the effects of noise in

gene expression.

In fact, most circuits are designed with deterministic considerations in mind such as

oscillators [19], toggle switches [23] and logic gates [3]. However, single cells behave

stochastically [20]. Stochastic fluctuations can decrease the performance of oscillators

by destroying synchronization between cells in a population. Stochastic fluctuations can

also spontaneously reverse the state of a genetic toggle, thereby decreasing the toggle’s

usefulness as a memory device. Designing circuits with stochastic performance in mind

can allow for mitigating the effects of noise in gene expression. For example, in the case

of oscillators, two oscillator designs might produce the same mean period and amplitude,
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but one design might be much less noisy than the other.

Oscillators in general have a rich history of application to synthetic biology questions.

The first synthetic circuit engineering dynamics in cells was an oscillator [19], and oscilla-

tors have also been used as examples to demonstrate other ideas such as tunability [85],

in vitro prototyping [69], temperature compensation [42], mitigation of loading effects [61],

and effects of the intrinsic and extrinsic components of gene expression noise [93].

Specifically, both [69] and [73] took the original genetic oscillator design, the repres-

silator, reported in [19], and produced new improved versions that displayed increased

robustness to noise. [73] leveraged tools from stochastic systems theory to infer that re-

moving extrinsic effects such as active degradation of proteins and varying plasmid copy

numbers would lead to a more robust oscillator. On the other hand, [69] used in vitro

prototyping and control theory [33] to build a five gene version of the repressilator that

also showed more robust and synchronized oscillations across a population. However,

while stochastic performance was improved, in both cases the period was significantly

lengthened as well.

Another significant genetic oscillator in synthetic biology is the activator-repressor os-

cillator originally published in [85], which uses two genes to generate oscillations that can

be tuned by inducers. In [85], a single gene oscillator consisting of just a repressor with

self negative feedback is also reported, and it is shown that the single gene oscillator’s

performance is significantly worse than that of the two gene oscillator, suggesting that the

two genes are required for robustness. Furthermore, in [89], the period of an single gene

delayed negative feedback oscillator is tuned by varying the length of the gene’s intron. A

longer intron creates a larger delay and thus a larger oscillatory period.

Here, we revisit and improve the single gene oscillator reported originally in [85]. Using

a simple model similar to the one reported in [57], we predict that using a better repressor

will not only improve the quality of oscillations but also change the period and amplitude.
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However, the model also predicts that the original period of oscillations can be restored by

changing the relative copy numbers of the genes in the circuit. This provides a roadmap

to improving oscillations. First, we substitute an improved repressor; then we tune gene

copy numbers to set the desired period.

5.2 Results

5.2.1 An
Overview
of
the
Single
Gene
Oscillator

The single gene oscillator, first reported in [85] and then modeled in [57], consists of two

plasmids. The first plasmid contains a single repressor gene that represses its own pro-

duction. A reporter gene that can be repressed by the same repressor is added into the

cell on a separate plasmid. In the original single gene oscillator, the repressor used was

lacI. Figure 5.1 shows the single gene oscillator with the repressor treRL [81] in place of

lacI. Because there is some delay in production of treRL, both treRL and sfYFP (super-

folder yellow fluorescent protein) [9] reporter can accumulate in the cell prior to repression

occurring. This creates a burst of production of both the repressor and reporter genes.

The endogenous protease ClpX then degrades both the reporter and repressor genes until

the repressor level becomes low enough to begin another burst of expression. Because

the repressor gene in the oscillator is actively degraded, it is possible to have periods

of oscillations that are faster than the cell cycle time. However, active degradation has

been shown to increase noise in oscillation period [73]. Furthermore, the repressor plas-

mid contains a p15a origin plasmid, known to have a much lower copy number than the

ColE1 plasmid that contains the reporter gene [43]. Figure 5.1B shows a representative set

of time lapse fluorescence microscopy images acquired for a micro-colony of oscillating

cells, with the time between each frame being three minutes.
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treRL
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Figure 5.1: Delay in the production of a self repressing transcription factor can generate
oscillations. (A) In a two plasmid system, the delay from treRL repressor transcription
initiation to functional repression of its own promoter allows the treRL repressor and sfYFP
reporter to build up. Active degradation of both repressor and reporter by ClpXP and
cellular dilution reduces treRL and sfYFP levels until treRL production can fire again. (B)
Fluorescence time lapse microscopy of sfYFP expression in a microcolony of cells. The
frames, acquired every 3 minutes, show oscillatory fluorescence.

5.2.2 Modeling
Guides
the
Design
of
an
Improved
Oscillator

In order to guide the design of an improved single gene oscillator, we created a simple

model consisting of only production and degradation of reporter and repressor proteins

along with cellular dilution. However, the model contains a delay between initiation of

protein production and the final protein being completed. This model is similar to the

model presented in [57] with the key difference being that we explicitly account for reporter

production and degradation. This is because loading effects from the reporter gene on

can change the period and amplitude of oscillations [14]. While loading effects typically

negatively impact gene circuit performance, here we can leverage reporter loading to tune

the period of oscillations.

The model assumes that the repressor in the oscillator exhibits zero leak and that the
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Figure 5.2: A simple model demonstrates that both decreasing Hill threshold and increas-
ing cooperativity can improve oscillations. (A) Decreasing the Hill threshold reduces the
trough and also makes the period and amplitude smaller. Decreased repressor expression
recovers the original period and amplitude. (b) Increasing cooperativity reduces the trough
and increases period and amplitude. Increased repressor expression recovers the original
period and amplitude.

repressor behaves cooperatively with a Hill coefficient of n = 2. Additionally, the model

assumes that reporter expression is much stronger than repressor expression, which is

consistent with the copy numbers of the reporter and repressor plasmids as well as the

ribosome binding sites used for the two genes.

Previous work in modeling of synthetic oscillators has shown that improving the coop-

erativity (Hill coefficient) or the binding strength (Hill threshold) of a repressor can improve

oscillations [19, 33, 57, 73]. Intuitively, this occurs because both increased cooperativity

and decreased threshold enhance the difference between the on and off states of the

oscillation cycle. The cell is either expressing the repressor gene highly or not at all.
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A common characteristic in non-robust oscillations is a high trough, or a peak-to-

trough ratio that is close to unity. A low peak-to-trough ratio suggests that reporter gene

expression is not fully switching off in the off state and suggests that the system might be

close to the bifurcation point at which oscillations cease to exist. High troughs have been

observed both in the original synthetic oscillator [19] as well in the lacI single gene oscilla-

tor (Figure 5.3A). In both of these oscillators, many cells in the population stop oscillating

or never oscillate for long periods of time.

We believed that the key to improving the single gene oscillator was to lower the trough

in the oscillations. The model of the oscillator predicts that both increasing cooperativity of

the repressor or reducing the threshold for repression can reduce the trough in oscillations.

However, these changes also affect the oscillation period.

In the regime of the model, where the repression threshold is strong and reporter ex-

pression dominates repressor expression, decreasing the repressor threshold reduces the

trough of oscillations but also decreases period and amplitude. In order to recover the

original period and amplitude, the repression must be weakened, and so tuning down the

effective copy number of the repressor can recover the original longer period (Figure 5.2A).

However, in this case, although the trough initially decreases due to the decrease in re-

pression threshold, the trough increases again as repressor copy number is lowered. The

hope is that this increase is not large enough to cancel out the initial decrease in trough.

On the other hand, increasing cooperativity of the repressor decreases the trough and

at the same time increases the period and amplitude of oscillations. In order to restore

the original period and amplitude, the repressor gene’s copy number must be increased

(Figure 5.2B), which decreases the trough even further. Thus, a repressor with increased

cooperativity would be desirable over one with simply a lower repression threshold for

improving oscillations.
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5.2.3 Replacing
lacI with
treRL Improves
Robustness
of
Oscillations

In order to fairly investigate the effect of changing repressor on the dynamics of the oscil-

lator, it was important to keep the rest of the circuit constant. Fortunately, [60] developed

a library of chimeric repressors that repress the lac promoter but are sensitive to differ-

ent inducers. These chimeric repressors have been used in synthetic circuits, including

in transcriptional AND gates [81]. In order to change only the repressor and keep the rest

of the circuit constant, we could just replace lacI with a chimeric repressor that can still

repress the same lac promoter. The results of [81] suggested that treRL, a chimeric re-

pressor responsive to trehalose, might have a lower repression threshold than lacI. Thus,

we decided to replace lacI with treRL in the circuit.

At this point, it is important to note that although the coding sequence for lacI was

simply replaced with the coding sequence for treRL, translation and protein production is

often sequence dependent even when using the same ribosome binding site [67]. How-

ever, because treRL is a chimeric repressor, the first 134 base pairs of the treRL coding

sequence are identical to those of lacI, which means that any changes in translational

efficiency should be minimal.

We also switched the reporter of the original lacI oscillator to a fast folding fluorescent

reporter sfYFP (superfolder yellow fluorescent protein), which has been recently reported

in [9]. Finally, we changed the lac promoter to the PlacO promoter used in [81]. The lac

promoter and reporter gene remained constant across all experiments.

By replacing the lacI gene with treRL, we produced two oscillators, lacI p15a, and tr-

eRL p15a, where the repressor gene is on a plasmid with a p15a origin of replication. We

performed fluorescence microscopy and image segmentation and tracking to character-

ize the temporal dynamics of fluorescence expression for both oscillators. The resulting

trajectories were analyzed to find peaks and calculate distributions of periods and ampli-
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Figure 5.3: A treRL oscillator on p15a displays faster, more robust oscillations than lacI on
p15a. (A) Example trajectories of both oscillators show that treRL trajectories are consis-
tently oscillatory while lacI trajectories sometimes do not oscillate. treRL oscillations have
a shorter period (B), lower trough (C), and lower peak (D) than lacI.

tudes.

We found that treRL oscillations occurred more consistently across a cell lineage. Fig-

ure 5.3A contains example fluorescence trajectories of single cell lineages for both the

treRL p15a and lacI p15a oscillators. While some of the lacI trajectories do not oscillate

and sit at a nonzero steady state, the treRL oscillations exhibit a much lower trough (Figure

5.3D) and all trajectories exhibit oscillations. In fact, many of the treRL p15a trajectories

have an undetectable level of fluorescence over cellular autofluorescence in the trough.

Additionally, the period and amplitude for treRL p15a oscillations are much smaller



79

than those for lacI p15a, with mean of 14.9 minutes for treRL p15a oscillations and 28.9

minutes for lacI oscillations. We believe that the treRL p15a oscillator, which is among the

fastest synthetic oscillators, is notably robust given its speed.

Based on the modeling, this is consistent with treRL having the same cooperativity and

a lower repression threshold than lacI. In accordance with the simple model, we predicted

that reducing the copy number of the treRL gene would lengthen the period.

5.2.4 Reducing
treRL Copy
Number
Slows
Oscillations

In order to reduce the copy number of the treRL repressor, we replaced the p15a origin on

the repressor plasmid with the lower copy psc101 origin, which is thought to have about

half as many copies as p15a [43]. In doing so, we constructed two new oscillator vari-

ants, lacI psc101 and treRL psc101: lower copy versions of the original p15a oscillators.

Furthermore, in order to reduce the copy number of the treRL gene even further, we in-

tegrated treRL into the genome using a common library for chromosomal integration [84].

We created genomic variants of the treRL oscillator with one or four copies integrated into

the genome in the Phi186 integration site. These strains with genomically integrated tr-

eRL were then transformed with just the reporter plasmid to generate two further oscillator

variants: treRL 4x and treRL 1x.

These variants were analyzed using microscopy and the results are summarized in Fig-

ure 5.4. Example trajectories of treRL psc101, treRL 4x, and treRL 1x oscillations show

that all four variants generate robust oscillations across a lineage of cells. Furthermore, as

the copy number decreases, the oscillations take a more asymmetric shape of an imme-

diate burst followed by a long decay, which is consistent with the degrade and fire model

proposed in [57]. The comparison between the lacI p15a and treRL p15a oscillators was

consistent with a model of treRL having a lower Hill threshold that lacI. In this case, we

expect to increasing period, increasing amplitude, and increasing trough with decreasing
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of oscillations. (A) Example trajectories for treRL copy number variants show more robust
oscillations at the lower copy numbers. (B) Periods for both treRL and lacI oscillators
decrease with copy number. The trough and amplitude increase (C,D) as copy number
decreases.

copy number, and that is exactly what is shown in Figure 5.4B-D. Additionally, in order to

verify that the effects of copy number are not unique to treRL, we compare the lacI p15a
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and lacI psc101 oscillators and verify that the period, amplitude, and trough appear to

increase for lacI as well.

5.2.5 Reducing
Reporter
Copy
Number
Speeds
Up
Oscillations

In addition to reducing treRL gene copy number, reducing the reporter copy number can

also be shown by the model to reduce oscillation period (see Materials and Methods). In

this case, the trough and amplitude should both get lower as well, because less reporter is

being produced at all times. We tested this idea by constructing another oscillator variant,

consisting of a single copy of treRL integrated in the genome like the treRL 1x variant,

but we switched origin on the reporter plasmid from a ColE1 origin to a lower copy p15a

origin. We call this oscillator the p15a reporter variant.

As expected, the reduction in reporter copy number generated a lower period, am-

plitude, and trough (Figure 5.5). We note that when inspected by eye, the p15a reporter

oscillator generated the most consistent oscillations across the population, a fact that we

will revisit computationally in Figure 5.7.

5.2.6 Simple
Statistical
Analysis
Shows
Oscillations
Are
Independent
Period

to
Period

In order to better understand the noise in the oscillator dynamics, we then analyzed the re-

lationships between successive periods and amplitudes across all trajectories. If intrinsic

contributions to noise such as noisy gene expression of the repressor and reporter genes

were the main driver of variation in period and amplitude, we would expect each succes-

sive period to be independent of the previous period and thus uncorrelated. If extrinsic

factors such as number of polymerases, ribosomes, or proteases in the cell were a limit-

ing factor, we would expect successive periods to be correlated, because cells with a set
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(C) of oscillations.

of extrinsic factors favorable for generating long periods would be likely to generate long

periods in the next cycle as well. The only case where the significance of extrinsic factors

would not lead to correlated periods is if the extrinsic factors change on a similar time

scale to the oscillation period, and so each successive period operates in an effectively

independent set of extrinsic conditions.

When we investigated the relationship between successive periods and the relation-

ship between an amplitude and its immediately preceding period, we found no meaningful

correlations (Figure 5.6B,C). However, when we investigated the relationship between an

amplitude and the immediately following period, we found that a higher peak tended to

correlate to a longer period (Figure 5.6A). This is consistent with the degrade and fire

model [57], in which the period is mostly determined by the amount of time required to en-

zymatically degrade a burst of repressor expression. The results in Figure 5.6 are shown

for only the treRL 4x oscillator, but the results hold across all the oscillator variants. Fi-
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nally, the degrade and fire model also predicts that the period should be a minimum of

twice the delay time in protein production with an additional factor that depends on ampli-

tude. Figure 5.6D shows that the relationship between mean period and mean amplitude
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across variants is very strong, and by doing a linear fit, we can predict a minimum period

of 12.5 minutes, suggesting that the delay time is on the order of 6.25 minutes. This value

is consistent with previous work [85,93].

5.2.7 treRL Oscillators
Display
Improved
Synchronization
Across
Time
and

Cell
Division

Finally, we sought to investigate whether our treRL oscillator variants displayed more syn-

chronization across the population and over time than the origin lacI p15a oscillator. In

order to ensure that the results were not simply an artifact of the analysis method, we

measured synchronization in three different ways.

The first way is to measure the average difference in phase between daughter cells as

a function of time since cell division across the population. We calculated the oscillation

phase for each cell in the population, and for each cell division event, we kept track of

the difference in phase between the two daughter cells at each successive time point until

one of the daughter cells divided. We then computed a population average of the phase

difference between daughter cells. While sister cells are initially perfectly in phase right

after division, they may eventually fall out of phase with each other. Figure 5.7A shows the

average phase decoherence in phase between daughter cells over time, with the treRL

variants all performing similarly to each other and better than the lacI p15a variant.

The second way to measure synchronization is to compute the coefficient of variation

of the period distribution. This value expressed as a percentage is termed the phase drift,

and a phase drift of 14% was reported for the improved repressilator in [73]. Here, we

calculate bootstrapped distributions of coefficient of variation of the period distributions

for each of our best treRL oscillator variants compared to lacI p15a. We find that the treRL

variants have much lower coefficients of variation, and notably the treRL psc101 oscillator

has a phase drift of just 19% despite having a period of 16.7 minutes, which is 25 times
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faster than the oscillator reported in [73] (Figure 5.7B).

Finally, a third way to investigate synchronization is to compute the autocorrelation

function over trajectories. In fact, while the previous two methods rely on calling peaks

in trajectories, a procedure which can be inherently biased, calculating a sample autocor-

relation is simply an arithmetic function of the data. However, in order to minimize the

overwhelming influence of the earlier cells on a population autocorrelation, we de-weight

contributions from earlier cells so that all cells’ trajectories are evenly weighted in the com-

putation. This led to much more reproducible autocorrelation functions between replicates

(see Materials and Methods). Again, the autocorrelation functions demonstrate that the

treRL oscillators are more synchronized than lacI, with each treRL variant displaying the

characteristic sequence of decreasing peaks corresponding to a de-cohering oscillatory

process (Figure 5.7C).

5.3 Discussion

To summarize, in this chapter we have improved on a previously reported single gene

delay oscillator and created a set of new single gene delay oscillators that exhibit similar

or faster periods, lower troughs, and stay more synchronized over time and across cell

division. To improve the performance of the oscillator, we simply changed one part, the

repressor protein, and then tuned DNA copy numbers to adjust the period and amplitude

as desired.

We note that the synchronization properties of the treRL p15a oscillator are not as

good as its lower copy number variants. There are at least two potential reasons why this

could be the case. While the deterministic analysis suggests that turning up the gain with

stronger repressor expression should only improve oscillations, a higher copy repressor

also reduces the period and amplitude. At some point, the reduction in amplitude will
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lead to low copy number stochastic effects that destroy the robustness of oscillations.

Another possible explanation is the control of the gene copy number. While the genome

is partitioned exactly at cell division, plasmids are known to have variation in their copy

number both between cells and over time [72]. However, previous research has shown that

the plasmids with a psc101 origin regulate their partitioning at cell division and maintain a

more controlled copy number across a population [59]. Our results, which show that the

phase drift is lower for oscillator variants that have treRL on the genome or on psc101, are

consistent with an explanation of the noise in repressor copy number being responsible

for the additional phase drift observed in the p15a oscillator.

Furthermore, we note that the phase drift for the treRL psc101, treRL 4x, treRL 1x,

and p15a reporter oscillators is approximately same at 20%. We speculate whether this

could be a fundamental limit on phase drift in the system, in which the inherent noise in

ClpXP degradation prevents further improvement. Our best oscillator variant, the p15a

reporter oscillator, has an autocorrelation of 0.4 at one period. This oscillator produces

robust and synchronized oscillations with a single copy of the treRL gene, showing that

even the simplest circuits can perform well if the parts are tuned optimally.

5.4 Materials
and
Methods

5.4.1 Modeling

The model for the oscillator is a simple ordinary differential equation model that incor-

porates delays in protein production by creating a series of intermediate states between

initiation of protein production and the creation of final protein output.

The equations for the model are
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Parameter Value Description
α 300 per minute max production rate
P 12 repressor DNA copy number
M 60 reporter DNA copy number
K 0.03 (treRL) or 0.5 (lacI) molecules repression threshold
γ

log(2)
33 per minute dilution rate

β 90 molecules per min max degradation rate
R0 100 proteins degradation saturation constant
τx 5 minutes delay time for repressor production
τy 5 minutes delay time for reporter production
n 2 Hill coefficient

Table 5.1: Parameters for the ODE model describing the single gene oscillator.

d x
d t
=

αP

1+
�

x(t−τx )
K

�n − γx − β x
R0 + x + y

(5.1)

d y
d t
=

αM

1+
�

x(t−τx )
K

�n − γy − β y
R0 + x + y

, (5.2)

where x is the level of repressor and y is the level of reporter, with the parameter values

given in Table 5.1.

In order to enforce the specified delay in production, we created a cascade of dummy

states in-between the production initiation of treRL and lacI and the final arrival of a func-

tional protein. The rate of passage through these rates and the number of states was tuned

to approximate the desired delay. In the limit of an infinite number of intermediate states,

this procedure approximates an exact fixed delay. We added states until it appeared that

the dynamics no longer changed with additional intermediate states.

In the model, the repressor copy number, Hill threshold, and cooperativity can be

tuned. The original curve in Figure 5.2A corresponds to the parameters in Table 5.1A for
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Figure 5.8: Reducing reporter copy number reduces the period and amplitude of oscilla-
tions.

lacI. Reducing the Hill threshold to the threshold for treRL generated the reduced thresh-

old curve, and then further changing the repressor copy number from 12 to 1.7 produced

the curve for reduced threshold and repressor.

In Figure 5.2B, the original curve again corresponds to the default parameters for lacI.

Increasing the cooperativity to n = 2.3 generates the curve for higher cooperativity, and

further increasing the repressor copy number to 48 creates the curve for higher coopera-

tivity and repressor.

The reporter copy number can be tuned using the model as well. Using a repressor

copy number of 1.7 and the Hill threshold for treRL, reducing the copy number of the

reporter from 60 to 30 generates oscillations with a lower period and amplitude, as shown

in Figure 5.8.

5.4.2 Plasmids
and
Strains

All experiments in this study were performed using the bacterial strain JS006, which was

also used for the original single gene oscillator [85].

The reporter plasmid in the system contains a PlacO promoter [11,81] driving expres-
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sion of sfYFP [9] with the strong ribosome binding site BCD2 [67]. The sfYFP reporter is

tagged with the native ssrA degradation tag (AANDENYALAA) for degradation by ClpXP.

The reporter plasmid has a ColE1 origin and a Carb resistance gene. The reporter plasmid

in all the variants is identical, except for the p15a reporter oscillator, which switches out

the ColE1 origin for a p15a origin, as the name suggests.

The repressor plasmid in the system also contains a PlacO promoter driving treRL [81]

or lacI expression using the Bujard RBS reported originally in [54]. The repressor plasmid

contains a Kan resistance gene and a p15a origin in the p15a variants, and a psc101

origin in the psc101 variants. All the oscillator variants in this study have double antibiotic

resistance to Kan and Carb.

In order to construct genome integrated treRL genes, we PCR’ed the treRL gene from

the p15a plasmid and used golden gate assembly [21] to insert the treRL into the Phi186

site with Kan resistance in the genome using the method described in [84]. The result-

ing integrations were sequence verified from PCR products that were produced the P4

genome primer reported in [84] and a corresponding primer on the treRL gene.

In order to build the treRL 4x oscillator, a cassette plasmid containing one copy of the

treRL gene was built and sequence verified. Using a standard starring assembly method

in which BamHI and BglII sites can annihilate each other, we produced a cassette with two

copies of the treRL gene. A second cycle yielded a cassette with 4 copies of the treRL

gene, which was then inserted into the genome using the same method [84] and same site

used for the single copy variant. Because sequencing of repetitive DNA is challenging, we

were careful to sequence the treRL cassette gene, and then we performed all subsequent

cloning steps using only digestion and ligation, which removes the possibility of mutations

being introduced via PCR.

The strains with 1 and 4 copies of genome integrated treRL were transformed with the

ColE1 reporter plasmid to create the treRL 1x and treRL 4x oscillators respectively.
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Additionally, isothermal assembly using unique nucleotide sequences [91] was per-

formed to swap out the ColE1 origin on the reporter plasmid for a p15a origin, the same

p15a origin as the original repressor plasmid. This p15a origin reporter was transformed

into the strain with a single copy of treRL integrated in the genome to create the p15a

reporter oscillator variant.

5.4.3 Data
Acquisition

In order to collect data, strains were streaked out onto a plate. Colonies were picked and

grown overnight at 37 degrees Celsius in 5 mL cultures in M9CA media (Teknova M8010),

which contains 1.0% glucose and casamino acids in addition to M9 salts. This media

proved superior to LB because of its lower background in fluorescence imaging and its

more repeatable results. Strains in the morning were diluted by a factor of 1000 to 5000

fold into fresh 5mL M9CA media cultures and outgrowth was performed for 4-7 hours

until the cells reached an OD600 of at least 0.1 and no more than 0.4. Both the overnight

culture and outgrowth step were performed in M9CA media with Carb and Kan antibiotics

added. While Carb was used at its usual level of 100 μg/mL, Kan was used at half its usual

concentration. We used 25 μg/mL of Kan, because we noticed that the variants with only

a single copy of the Kan resistance gene integrated into the genome grew much slower at

the normal kanamycin concentration than the oscillator variants with the resistance gene

on a plasmid.

After outgrowth, the cells were diluted to an OD600 of 0.01 and seeded onto agarose

pads containing M9CA media with only Carb and no inducers. No kanamycin was used

in the pads in order to better equalize cell growth rate from experiment to experiment. We

used the protocols for creating agarose pads, seeding culture onto pads, and setting up

movies on pads described in [95]. We let our agarose pads dry at room temperature after

seeding cultures, and then placed the pads onto 40 mm No. 1.5 Willco dishes (GWSt-5040)
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for microscopy. The microscope objective and sample were automatically temperature

controlled to 37 degrees using a heater, and so we had to wait 15-20 minutes after placing

the sample on the microscope for the temperature to reach and stabilize at 37 degrees.

To perform automated fluorescence time lapse microscopy, we used an Olympus IX-

81 microscope with a ZDC autofocus and motorized stage that allowed reliable image

acquisition at multiple positions over time. Notably, we used a Hamamatsu ORCA-Flash

4.0LT camera and Lumencor SOLA SE Light Engine. The light settings for fluorescence

acquisition were 25% intensity for 400 ms of exposure, and one frame was collected every

3 minutes. All details of the microscopy were identical across day to day replicates and

oscillator variants as well as control experiments.

To automate the collection of images, we used Micro-Manager software [17].

5.4.4 Image
Segmentation
and
Tracking

In order to perform segmentation and tracking, we binned our 2048 x 2048 TIFF images

to 1024 x 1024. We then fed them into the Super Segger software package [86], which

automatically performed segmentation and tracking and background calculation for the

cells over time. We inspected the resulting segmentation and tracking using Super Seg-

ger’s own tool, and we found that the tracking in all cases was essentially perfect in every

movie up to 2.5 hours. After 2.5 hours, some movies exhibited cells growing on top of

each other, which compromised tracking quality, so we used 2.5 hours of segmented

data (51 frames) in our data analysis. To correct for background, we used Super Segger’s

built-in background calculation. This removed the background due to the agarose pad

and noise in the camera itself. However, cellular autofluorescence is another source of

background. To correct for this background, we segmented and tracked a movie of just

JS006 cells growing on an M9CA agarose pad with no antibiotics. The background ad-

justed median fluorescence of the autofluorescent cells, which we found to be 18.02 units,
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was subtracted from the median fluorescence observed in the oscillator variants.

To compute fluorescence trajectories for the oscillator variants, we took the median

expression in the cell at each time and subtracted the 18.02 units for autofluorescence.

In the treRL oscillators, the off state was so strong that sometimes the correction for aut-

ofluorescence would result in a negative fluorescence value. These negative values were

increased to zero if encountered, so all fluorescence values in the fully background cor-

rected trajectories are non-negative.

These background corrected fluorescence intensities were then compiled into a Lin-

eage data structure compatible with our lab’s software for parameter inference and simu-

lation of biological models [87]. This data structure keeps track of each cell’s time points,

median fluorescence intensities, volumes, and parents and daughter cells.

5.4.5 Oscillation
Analysis

We wrote our own Python library for analysis of oscillations across lineages.

5.4.5.1 Estimating
Periods, Amplitudes, and
Phase

In order to estimate periods and amplitudes for oscillations, we first identified peaks in

trajectories using a method that finds peaks and troughs in the data set that must be sep-

arated by some minimum user-specified threshold [6]. In order not to bias the peak-finding

algorithm towards performing differently on oscillator variants with higher or lower peaks,

we instead took a logarithm of the fluorescence intensities, and we used the threshold

parameter to enforce that any identified peak must be at least 1.5 times the expression

of its adjacent troughs. The cutoff of 1.5 was identified using manual inspection of peaks

overlaid onto trajectories.

A raw fluorescence cutoff of 25 was applied to all peaks, so identified peaks with a
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expression of 25 units or less were removed from the calculation. This removed spurious

peaks at the low end of expression, an effect only seen in the treRL p15a oscillator.

The inter-peak distances were used to compute periods in multiples of three minutes,

and the amplitudes of the peaks were saved as the amplitudes of oscillations. Additionally,

the minimum value between two peaks was saved as the trough in the oscillation. Note

that because of the branching structure of the lineage, a peak can be associated with up

to three periods. A peak and the prior peak in the same trajectory can define one period,

while in the future a peak may correspond to two separate peaks in two daughter cells.

In order to compute phase, we unfolded all the trajectories in the lineage to a single

vector of time points for the entire movie, fluorescence values along the time points, and

the ID of each cell in the trajectory. Thus each successive cell that appears in the trajectory

must be a daughter of the previous cell. Once this was complete, we identified peaks for

each trajectory and calculated phase for the trajectory as starting at 0 at the first peak,

and increasing by 2π at each successive peak with linear interpolation. The phase before

the first peak and after the last peak was left undefined (as NaN). Once the phase for

each trajectory was computed, we calculated the phase for each cell by averaging over

trajectories. That is, if a cell appeared in multiple trajectories, the phase of the cell would

be the average of its phase in those trajectories. If undefined values were present in this

scenario, they were excluded from the averaging operation.

This analysis pipeline generates the figures in the text that plot the distributions of

periods, amplitudes, troughs, and phase difference between daughter cells.

5.4.5.2 Calculating
the
Sample
Autocorrelation

We wanted to create a method for measuring synchronization that would function inde-

pendently of biases in calling peaks. Thus, we computed a sample autocorrelation for

each oscillator variant. The sample autocorrelation is a standard quantity that is used to
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understand temporal relationships in a signal. However, the interesting case here is that

the signal in this setting is a branching signal. This creates a unique problem in which it is

not clear how to calculate the sample autocorrelation. For example, it is not clear whether

all instances of a given time lag should be pooled across the population, which allows

for an estimation of a single correlation, or if trajectories should be unfolded, autocorrela-

tions should be computed for each trajectory, and then the autocorrelations averaged to

generate an autocorrelation function.

We found empirically that the second approach (unfolding trajectories and averaging

computed autocorrelations) produced much more repeatable autocorrelations from run to

run.

The second problem in the autocorrelation is that the starting few cells in the population

have an outsized impact on the autocorrelation, because they appear in exponentially

more trajectories than future cells. Thus, the measurements at a few time points in the

initial cell can affect the entire sample autocorrelation across the lineage and create run

to run variability. In order to reduce this variability and put all cells on an even footing, we

used a weighting scheme when computing the autocorrelation.

To do this, we first noticed that if the experiment were to run for N generations, the

mother cell would appear in 2N trajectories, while final cells would appear in only one

trajectory. Therefore, for each trajectory we weighted the sample means of the covariance

and variance by powers of two corresponding to the generation of each cell. For example,

pairs of time points involving the mother cell were weighted with a weight of 1, while pairs

of time points in which the earlier cell was in the third generation would be weighted with

a weight of 4. In this way, the final cells all contribute to their trajectory’s autocorrelation

exponentially more than the initial cells, but the initial cells contribute to exponentially more

trajectories. This balances out the overemphasis on the initial cell’s expression and leads

to much cleaner and more reproducible autocorrelations. This method for calculating the



96

sample autocorrelation is similar to the method used in [16]. However, the method used

in [16] produces different results based on the ordering of trajectories, whereas the method

described here does not depend on any trajectory ordering and always produces the same

result.

Stated mathematically, suppose that all trajectories contain equally spaced time points

at even intervals. Then suppose there are N time points, with yi representing the mean cor-

rected fluorescence at each point. That is, we assume that the mean of the fluorescence

along the trajectories has been removed. Then, assume that di represents the number of

cell divisions that have occurred since the beginning of the trajectory. The sample auto-

correlation c(τ) for a time lag of τ time intervals is given as follows.

c(τ) =

N−τ∑
i=1

2di yi yi+τ

N−τN−τ∑
i=1

2di

N∑
i=1

2di y2
i

N
N∑

i=1
2di

(5.3)
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Chapter
6

Conclusion
and
Future
Directions

While modeling of synthetic gene circuits has not yet found widespread application, it is

our hope that the field is moving towards a future in which quantitative characterization

and parametrization play a role in the design and implementation of synthetic gene circuits.

The results from this thesis constitute a step towards that goal.

In Chapter 3 of this thesis, we developed conditions for identifiability of linear systems

using a combination of time series and distributional measurements. Time series mea-

surements for synthetic gene circuits are often limited to a small number of outputs, while

distributional measurements can measure a larger number of outputs across a population

of cells. For the theoretically tractable example of linear systems, we investigated whether

the combination of dynamic information from time series measurements and the high-

dimensional information from distributional measurements could improve system iden-

tifiability. We showed this to be the case both with theoretical results as well as with

computational examples.

However, there are some remaining theoretical questions in this area. First of all, we

developed necessary and sufficient conditions on the number of time series output mea-

surements required to uniquely identify linear system dynamics. However, there was a

large gap between the necessary condition and sufficient condition in terms of the num-
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ber of measurements required, and a more careful analysis may yield tighter conditions

with a smaller gap. Secondly, all of our analysis assumed that the system dynamics could

be observed with perfect measurements for an infinite amount of time, so that the system

covariance and output correlation functions could be observed exactly. Furthermore, we

also only proved results for linear systems driven by white noise. A more detailed analysis

accounting for finite sample sizes, measurement noise, and nonlinearity in the dynamics

would yield results more directly applicable to actual modeling of synthetic gene circuits.

However, these questions are significantly more difficult to tackle theoretically, and so we

believe using computational methods to assess identifiability as in Chapter 4 is a more

practical approach.

In Chapter 4, we described bioscrape, an open-source Python package that we have

developed for fast and flexible simulation and parameter estimation for models of synthetic

gene circuits. We showed that bioscrape can can simulate gene circuit dynamics deter-

ministically or stochastically, and that bioscrape can simulate dynamics at the bulk, single

cell, or cell lineage level. We then used bioscrape to perform parameter estimation for two

different models of integrase recombination using experimental data collected in an E.
coli

cell extract. Because of bioscrape’s flexible modeling framework, performing parameter

estimation for two models of integrase recombination was as simple as describing each

model using a human-readable XML modeling language, and then changing a few lines of

parameter estimation code to switch models. We assessed identifiability for each model

using simulated data sets, and we then ran the same code using the real data to perform

parameter estimation. We found that a simple Hill function model was more identifiable

and generated tighter posterior distributions than a more complicated full mechanistic

model of integrase recombination.

Future work on bioscrape includes expanding the parameter estimation code to differ-

ent types of data sets, such as cell lineage data collected from time-lapse fluorescence mi-
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croscopy, or population distributions collected from flow cytometry. Ideally, a researcher

should be able to input any type of data into bioscrape, specify a model and prior param-

eter distributions, and receive posterior parameter estimates. Another remaining task is to

test and document the software more thoroughly. The end goal is to create a user-friendly

piece of software that can handle heterogeneous data types and makes modeling simple,

so that more researchers consider doing quantitative modeling of their data.

Lastly, on the scientific side, because bioscrape can simulate cell lineages, it also lends

itself to computational analysis of phenomena that occur at the population level. For ex-

ample, bioscrape could be used to investigate the phase decoherence observed in the

single gene oscillator from Chapter 5. By simulating a model of a single gene oscillator at

the cell lineage level, we could identify how different parameters affect phase deocoher-

ence in a population of cells.

Finally, in Chapter 5, we described the model-guided design and construction of an

improved set of single gene oscillators that demonstrate more regular and synchronized

oscillations across a population of cells than a previously described single gene oscilla-

tor [85]. The results are a demonstration of model-guided design; predictable tuning of

certain parts of the circuit improved oscillation quality and allowed for tuning of period

and amplitude. The best oscillator variants we constructed also showed a phase drift of

19%, comparable to the most synchronized oscillator reported [73], showing that a single

copy of a single gene is enough to generate regular oscillations.

Because the period of these oscillations is fast, and because the design is simple and

requires only one gene, the natural next step would be to attempt to construct two orthog-

onal single gene oscillators in the same cell using two orthogonal repressors. A putative

system of two fast and orthogonal oscillators in the same cell would enable more com-

plex temporal regulation of cellular function. For example, some downstream functionality

could activate when one oscillator pulses, but other downstream functionality could re-
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quire both oscillators to pulse simultaneously, which is a rarer occurrence. In this way, the

relative scheduling of different cellular processes could be tuned.

In order for synthetic biology to truly become an engineering discipline, it must be pos-

sible for design and modeling of synthetic gene circuits to reliably predict experimental

observations. Such progress requires tighter integration between application, computa-

tion, and theory, so that theory and computation are developed with applications in mind,

and applications can test out and refine theoretical and computational techniques. Here,

we developed theoretical identifiability conditions (Chapter 3) that ideally will help circuit

designers decide which outputs to measure for their synthetic gene circuit. We also de-

veloped software (Chapter 4) that we hope will make modeling and parameter estimation

more accessible for synthetic gene circuits. Finally, we demonstrated that model-guided

design can improve and tune a single gene oscillator in a predictable way (Chapter 5). As

computation, theory, and application become more tightly connected, it is our hope that

synthetic gene circuit design will progress towards a future in which a single iteration of

the design-build-test cycle will yield a properly functioning gene circuit.
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Appendix
A

XML Models
for
Simulations

This section contains the XML models used for simulation and parameter inference in

Chapter 4.

A.1 Full
XML Model
for
Simple
Gene
Expression

<model>

< reac t ion t e x t =”−−” a f t e r =”−−mRNA”>

<propens i ty type=” massaction ” k=” beta ” species=” ” />

<delay type=” f i x e d ” delay=” tx_de lay ” />

< / reac t i on>

<reac t ion t e x t =”mRNA−−” a f t e r =”−−”>

<propens i ty type=” massaction ” k=” delta_m ” species=”mRNA” />

<delay type=”none” />

< / reac t ion>

<reac t ion t e x t =”−−” a f t e r =”−−pro te in ”>

<propens i ty type=” massaction ” k=” k _ t l ” species=”mRNA” />

<delay type=”gamma” k=” t l _ k ” the ta=” t l _ t h e t a ” />
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</ reac t ion>

<reac t ion t e x t =” prote in−−”>

<propens i ty type=” massaction ” k=” de l ta_p ” species=” p ro te in ” />

<delay type=”none” />

< / reac t ion>

<parameter name=” beta ” va lue=” 2.0 ” />

<parameter name=” delta_m ” value=” 0.2 ” />

<parameter name=” k _ t l ” va lue=” 5.0 ” />

<parameter name=” del ta_p ” value=” 0.05 ” />

<parameter name=” tx_de lay ” va lue=”10” />

<parameter name=” t l _ k ” va lue=”2” />

<parameter name=” t l _ t h e t a ” va lue=”5” />

<species name=”mRNA” value=”0” />

<species name=” p ro te in ” va lue=”0” />

< / model>

A.2 Full
XML Model
for
Plasmid
Replication
and
Transcription

<model>

< reac t ion t e x t =”−−plasmid ” a f t e r =”−−”>

<propens i ty type=” p r o p o r t i o n a l h i l l n e g a t i v e ” k=” beta_plasmid ” n=”n”

K=” K_plasmid ” s1=” plasmid ” d=” plasmid ” />

<delay type=”none” />

< / reac t ion>
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<reac t ion t e x t =”−−mRNA” a f t e r =”−−”>

<propens i ty type=” massaction ” k=”k” species=” plasmid ” />

<delay type=”none” />

< / reac t ion>

<reac t ion t e x t =”mRNA−−” a f t e r =”−−”>

<propens i ty type=” massaction ” k=” de l t a ” species=”mRNA” />

<delay type=”none” />

< / reac t ion>

<parameter name=” beta_plasmid ” va lue=” 0.04200892003 ” />

<parameter name=”n” va lue=” 1.0 ” />

<parameter name=” K_plasmid ” va lue=”10” />

<parameter name=”k” va lue=” 3.0 ” />

<parameter name=” de l t a ” va lue=” 0.3 ” />

<species name=”mRNA” value=”0” />

<species name=” plasmid ” va lue=”12” />

< / model>

A.3 Full
XML Model
 for
Transcription
with
Exactly
Controlled

Copy
Number

<model>

< reac t ion t e x t =”−−mRNA” a f t e r =”−−”>

<propens i ty type=” massaction ” k=”k” species=” ” />
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<delay type=”none” />

< / reac t ion>

<reac t ion t e x t =”mRNA−−” a f t e r =”−−”>

<propens i ty type=” massaction ” k=” de l t a ” species=”mRNA” />

<delay type=”none” />

< / reac t ion>

<parameter name=”k” va lue=” 30.0 ” />

<parameter name=” de l t a ” va lue=” 0.3 ” />

<species name=”mRNA” value=”0” />

< / model>

A.4 XML Model
for
Hill
Function-Based
Integrase
Dynamics

<model>

< reac t ion t e x t =”−− I ” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” un imolecu lar ” k=” k_ I ” s1=” I _ p l ” />

< / reac t i on>

<reac t ion t e x t =”R−−A” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” p r o p o r t i o n a l h i l l p o s i t i v e ” k=” f ” K=” K_f ” n=”n” s1=” I ” d=”R” />

< / reac t ion>

<reac t ion t e x t =”−−Y” a f t e r =”−−”>

<delay type=”none” />



105

<propens i ty type=” un imolecu lar ” k=”k_Y” s1=”A” />

< / reac t ion>

<species name=”A” value=”0” />

<species name=”R” value=”0” />

<species name=” I _ p l ” va lue=”0” />

<species name=” I ” va lue=”0” />

<species name=”Y” value=”0” />

<parameter name=” f ” va lue=” 0.1 ” />

<parameter name=” K_f ” va lue=”200” />

<parameter name=”n” va lue=” 1.5 ” />

<parameter name=” k_ I ” va lue=” 0.83 ” />

<parameter name=”k_Y” value=” 0.357 ” />

< / model>

A.5 XML Model
for
Full
Mechanistic
Integrase
Dynamics

<model>

< reac t ion t e x t =”−− I f ” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_ I ” species=” I _ p l ” />

< / reac t i on>

<reac t ion t e x t =” I f + I f −−D” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_bind ” species=” I * I ” />

< / reac t i on>
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<reac t ion t e x t =”D−− I f + I f ” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_rdim ” species=”D” />

< / reac t ion>

<reac t ion t e x t =”Re+D−−Rb” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_bind ” species=”Re*D” />

< / reac t ion>

<reac t ion t e x t =”Re+D−−Rp” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_bind ” species=”Re*D” />

< / reac t ion>

<reac t ion t e x t =”Rb+D−−Rf ” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_bind ” species=”Rb*D” />

< / reac t ion>

<reac t ion t e x t =”Rp+D−−Rf ” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_bind ” species=”Rp*D” />

< / reac t ion>

<reac t ion t e x t =”Rb−−Re+D” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_rdna ” species=”Rb” />

< / reac t ion>

<reac t ion t e x t =”Rp−−Re+D” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_rdna ” species=”Rp” />

< / reac t ion>
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<reac t ion t e x t =” Rf−−Rb+D” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_rdna ” species=” Rf ” />

< / reac t i on>

<reac t ion t e x t =” Rf−−Rp+D” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_rdna ” species=” Rf ” />

< / reac t i on>

<reac t ion t e x t =”Ae+D−−Ab” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_bind ” species=”Ae*D” />

< / reac t ion>

<reac t ion t e x t =”Ae+D−−Ap” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_bind ” species=”Ae*D” />

< / reac t ion>

<reac t ion t e x t =”Ab+D−−Af ” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_bind ” species=”Ab*D” />

< / reac t ion>

<reac t ion t e x t =”Ap+D−−Af ” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_bind ” species=”Ap*D” />

< / reac t ion>

<reac t ion t e x t =”Ab−−Ae+D” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_rdna ” species=”Ab” />

< / reac t ion>
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<reac t ion t e x t =”Ap−−Ae+D” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_rdna ” species=”Ap” />

< / reac t ion>

<reac t ion t e x t =” Af−−Ab+D” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_rdna ” species=” Af ” />

< / reac t i on>

<reac t ion t e x t =” Af−−Ap+D” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=” k_rdna ” species=” Af ” />

< / reac t i on>

<reac t ion t e x t =” Rf−−Af ” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=”vmax” species=” Rf ” />

< / reac t i on>

<reac t ion t e x t =”−−Y” a f t e r =”−−”>

<delay type=”none” />

<propens i ty type=” massaction ” k=”k_Y” species=”A” />

< / reac t ion>

< r u l e type=” a d d i t i v e ” frequency=” repeated ” equat ion=”A=Ae+Ab+Ap+Af ” />

< r u l e type=” a d d i t i v e ” frequency=” repeated ” equat ion=”R=Re+Rb+Rp+Rf ” />

< r u l e type=” a d d i t i v e ” frequency=” repeated ” equat ion=” I = I f +D+D” />

<species name=” I _ p l ” va lue=”1” />

<species name=”Y” value=”0” />

<species name=” I ” va lue=”0” />

<species name=” I f ” va lue=”0” />
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<species name=”D” value=”0” />

<species name=”Re” va lue=”1” />

<species name=”Rb” value=”0” />

<species name=”Rp” value=”0” />

<species name=” Rf ” va lue=”0” />

<species name=”R” value=”0” />

<species name=”Ae” va lue=”0” />

<species name=”Ab” value=”0” />

<species name=”Ap” value=”0” />

<species name=” Af ” va lue=”0” />

<species name=”A” value=”0” />

<parameter name=” k_ I ” va lue=” 0.83 ” />

<parameter name=”k_Y” value=” 0.357 ” />

<parameter name=” k_bind ” value=”1” />

<parameter name=” k_rdim ” value=”30” />

<parameter name=” k_rdna ” value=”30” />

<parameter name=”vmax” va lue=” 0.01 ” />

< / model>
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Appendix
B

A Mechanistic
Model
of
Integrase
Recombination
is
Not
Identifiable

We used the integrase model in Appendix A.5 as a more mechanistically grounded model

of integrase recombination dynamics. In this model, integrase molecules are produced at a

rate kI that is proportional to the amount of integrase plasmid Ipl . The integrase molecules

can dimerize and undimerize with rates kbind and krdim respectively. The dimers can bind

and unbind to attP and attB sites with rates kbind and krdna respectively. Note that the

forward rates for binding are the same for both dimerization and binding to DNA. This

forward rate is set to unity and only the reverse rate is identified. This is a way to improve

identifiability of the model, because typically the identification of binding and unbinding

rates is challenging. In this model, only reporter plasmids with dimers bound to both the

attB and attP sites can recombine (with rate vmax ) into activated reporter plasmids. The

output Y (YFP) is produced at a rate kY and is proportional to the total concentration of

activated reporter plasmids in the system. In this model, integrase molecules can still

bind to the activated reporter plasmids; however, no further recombination occurs once a

plasmid has become active. The full details of the model, including explicit reactions and

parameter values, are contained in Appendix A.5.

First, we simulated the model using a hand-tuned set of parameters and found that
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the full mechanistic model could produce qualitatively similar results to the simpler Hill

function model, as shown in Figure B.1. That is, increasing integrase plasmid concen-

tration increased integrase expression and reduced delay in reporter activation. On the

other hand, increasing reporter plasmid did not affect integrase expression but increased

reporter expression.
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Figure B.1: Simulations of integrase (A) and reporter (B) expression using a full mechanistic
model. Increasing integrase plasmid increases integrase (CFP) expression and decreases
delay in reporter (YFP) activation. Increasing reporter plasmid does not affect integrase
expression and increases reporter expression.

Then, using the same approach as with the simpler Hill function recombination model,

we first assessed identifiability computationally by checking if an inference procedure

could successfully recover the true model parameters from simulated data. We fixed the

dimerization rate of integrases and the binding rate of integrase dimers to DNA both to

unity, and we only identified the dissociation rates. In total, we attempted to identify the
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integrase throughput vmax, the dimer unbinding rate krdim, the DNA unbinding rate krdna,

the integrase production rate kI , and the reporter production rate kY .
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Figure B.2: Markov chain Monte Carlo shows that the full mechanistic model is only par-
tially identifiable. (A) Computational identifiability analysis using simulated data shows that
the posterior distributions (blue) only match the true parameters (green) for three of five
parameters. (B) Parameter inference on the real data shows non-identifiability of three of
five parameters.

As expected, and as seen in Figure B.2A, the unbinding parameters were much more

difficult to identify than the recombination rate and production rates. In fact, while vmax,

kI , and kY were identified exactly, the unbinding parameters krdim and krdna were only

narrowed down to three orders of magnitude (between 1 and 1000). There was a moderate

negative correlation of −.50 between krdim and krdna. This is unsurprising because as

the the integrase dimerizes more weakly, the dimers must bind more strongly to DNA to

maintain the same rate of recombination.

Furthermore, when inference was performed on the real data (Figure B.2B), only the

production rates kI and kY had a tight posterior distribution. Thus, we believe that the
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simple Hill function model is preferable to the full mechanistic model for modeling integrase

dynamics.
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