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Introduetion

The theory of functions of a complex variable is distinguished
from the theory of functions of a real varisble by its simplicity - =
eimplicity which is directly tracesble to the complexity of the varisble,
Two of the remarkeble simplicities of the theory are, first, that from
the assumption that £(2) is differentisble throughout the neighborhood
of a point zw 2z, follows the existence of all higher derivatives and the
convergence of the Taylor's series for £(2) ; and secondly, that we ave
sble to classily in simple terms the possible singularities of en ane-
lytic function.

It is the purpose of this work o generalize, insofer es is
possible, the besic theorems of the classical theory, and to investigate
in what wmeasure the simplicities mentioned sbove are preserved when the
erguments and funetion velues lis in o Banach space. 0f the three prin-
eipally recognized points of view which are used in developing the theory

2

of snalytic funetions we have used mainly the one due to Cauchy, which
finde ite natursl extension in the ideas of Galeaux concerning differ-
entisls. Much of the work which we present was sketched in s memolir of
Gateaux on functionels of continuous functions.® In addition we have de-
valoped the Welerstrassian' properties of amalytic functions, using as
a Toundation the notion of polynomial as set forth by R.5. Martin, ¥
Finally, a brief seetion is devoted to a generalization of the Cauchy=
Riemenn equations., Nothing hes been done with the implicitly suggested

theory of pairs of conjugste harmonie fumections, hewever.

* R. Gebeavxz, (3) and {(4). The numbers in parenthesis refer to the biblic-
graphy at the end of this theesis.
3;=*R,S' M&fting (7) po 18‘”550



The study of differentisls leads to an importent ressuli show-
ing the relation of the Freéchet =nd Gatezux concepts of o differential,

The clessificetion of singular pointe ie o most difficult prob-
lem, We heve dselt completely with removeble singulerities, and showed %o
come extent the departures from classical theory which are caused by the
generalization here underteken. A mors dstzliled investigation should be
carried out in speclsl cases,

I freely sexpress my admirstion for the trestlse of Professeor

. Jsgoed, Lehrbueh der Funkitlonentheorie, to which I have hed constant

recourse in the writing of thie thesis. lieny ol the proofs are directly
carried over, with only the slight chenges maede necessary by the sbsiract
neture of the quantities in hand.

To Profsasor .0, dMichal I em indebtsed for encouragement and

advice 2t ell times,
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Chepter I

Vector Spacss

1, Let B be a non-empty cless of slements X,y;... 0f unspecified na-
lure; and let A denote cither the resl or corplex number system. Suppose

iven

°0

g
(i) 2 binary reletion called equality, and denoted by = , such thet

£
o

glven an ordered pair of clements x,y from B, then either x bears the re-
lation to y {(x=y) or it doss uot (x#y).

i) a Dbinsry operstion, or rule of combination, such that when x,y sre

o

{
in B there is a2 unlouel; deteruined third elenent of B, called their sum,
and denoted by x4y o

(1ii) an operastion which ordere 4o an element e from A and an element x
from T = uniguely determined clsment of B, denoted by 2.x (%he product
of x by a).

(iv) an operation which orders to esch element x of % a unigue resl
nuaber denoted by |[xf] (the norm of x).

I? then the systsm composed of B, A, and the opsrations snd re-

lation has the propertiies set forth in the postuletes below, we shall cell
T e2;n ebsirect vector space.” tccording as A ig the real or coaplex num=

ber system we shall cell T 2 rssl or e complex space.

@
1
{V)AThe reletion = is an equivalence relation in . That is, it is re-

flexive, sysmatric, and transitive.

s nostulate system ig not independent; since our main interest here
e propaerties of the vecltor space, we have postulsted these
rties in the wost convenient form for cur uss.
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X,3 %, and y, 2y, then Loy = yuty, , @ X, = @X. 4 fu4= W d.
35 Kry S YER . KP(YRZ) s (gey)ez

5% gex = x

a-(X+y)= ax s ay

(@a+8)x = ax+ by

(ab)- X a-(6.x)

i

fe

5° 17 N0 then v+ K=Y (=211 )
W+ yll < Jolf +4yd
ra-yf = fa)fxf
Tith these pustulates we can prove that N30 , and that when
2 ie divided into resilue clesscs sccording to the eculveslisnce relation =
thers ig a unique class of equal elements the properties of whose repre-
gsentative z are

2+ = X

Z = 04 (for all x)

£

‘e denote for convenlence all these representotives by 0O . The simple al-
gebraic rulee for manipulation of the slements of § follow readily, =snd
will not be dwelt on in detail here. %We remark that = does not at all
necessarily indicate logicel identity, and that, in fact, 1t usually de-
notes something other theanm identity in the cpeclfiec instancas which are
of greatest interecst.

Ye shall have to deal with spaces which satisfy a further pos-
tulates
g% 1 {Xﬁ} is an infinite sequence of sleoments of § such that®

W/l?i/%‘;p@/f/){@c Yall 5 0 , then there exists an element x in T such thet
2

0

% e write x-=y for xe-ley . It is readily proved that if we let
both x and y satisfy the conditions in 8°, then x=y , so that the limit
element is unisue to within sgual elements.,
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lin fhy=X) =0 .
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If T satisfies 6° it is said to be complete, and we ecll it a
Berech space,

Lzt us suppose thet T(R) ies a real wvector space. From it we
construct a2 complex space T(C) in the following manner. %(C) shall be the
clase of element pairs {xgy} where %,y are in B(R). We define

{X/»y/}s /Xm V@/ if and only if [, =4, , ), 5 Ve
[X/)/V//? P AN SN N AP
(arcb]-{5,)) = [ad=by, bk +ay]

NEnyll = JHay*+ vk

1t ie easily seen thet 5(0), thus defined, is 2 complex vector

spece, with 'zero! slemenl {OSO} o 3ince {x,y} = fngf #)io[ng} s
znd there iz a one to one isomorphism between the space E(R) and the sub-
clags of elements of ®(C) of the form {x,C} s Wwe may for convenlence
write, ag in the case of ordinary complex numbers,

z = {K:)Y} s X iy

Se o

Jefinition If B(R) is & resl vector space, the complex vector space de-
fined ebove will be called the couple-space ascsocisted with B(R).

It is almost at once obvious that T(7) will be complete if and
only if 2(R) is complete also, and that a varisble gque=ntity im 2(C) will
epproach a limit if end only if its real end lasginery perts v likewise,
2. The norm |xf| furnishes us with a metrie, the distence between tweo
eloments of E being defined as |jx-=yll . Y& cen then introduss the basic
coneepts of topological and metric spacss. We shall not repesat the well
onown definitione of open and closed sste, liwmit points, continuity, and

the like, but zhell confine ourselves to the adoption of = stendard term-

inology as regards point sets, especially curves and rsgions.



Jordan Ourve: A& set of points in % defined by e function of a resl

X = @t L s tsel,
where @(¢) is continucus, end such thet @(¢)= {f(f}@nlj if b=t

g

Connected Point Set: & set 3 of points of T sueh that 1f x4,%, ars any

two points in 5, there exists a Jordan curve, lying entirely in 8, with
end polnte x, and %, o

Domaln: An open, commected polnt sel in T,

Regions * domein plus szome, all, or none of its bSoundary polints.

5 s 2 °

deighborhvod of o Foint: & domain containing the point,

Sphers (open or closed): & sst of points defined by ffx=xf/l<r , or
flr=x,4/g&r 3 =%, 1is called ihe conter of the sphere, and r its radius
The set flx-x,//= r 4is called the surface of the sphere,

our purposes is thet ef

-
C
3

¢t concent of conciderable laporience

onpactness,

&

Definition: A seb 3 in 2 is sz2id to be compast if svery infinite sot in

S gives rige to at least ome linzit point {(not necessarily in 9).

The axis of reel nuabers le 2 complete resel vector space; its
agssociated couple-space ig the couplex plane. In elther of lhess zpaces
avery bounded set is compect {(ihe 2olzeno-Welerstrass properiy). We
shall need the fellowing wore specialized definitione concerning peint
sete in the plane.

-

“ormal Jordan Curve: 2 Jovrdan surve in the plene is said to bs normal if

the interval 1o € t € 1, of the paramelsr can bo brokzn up into 2

Pinite nuaber of closed subintsrvals in esch of which the curve has sn
esuation of the form

Fx) o7 K= @y

whers £ or @ denotes 2 continuous, one-valued function of ite argu-



s with continuous first
2 ¢, 2
derivatives such ihat g@?f) + y&ff) 20 | and where the two ejuations
gl = @Ue) | et = gt

RN o /
2dait Sut the one solution =17 o

D
;’:J
)
]

Surve: M point set consisting of = finite nuaber of regular ercs

joined continuously end fo end. { regular curve may cut iteslf an in-

Tinite nuasber of timee; 2 simple regulsr curve,l.c. one which does no
itsel?, is slwoys 2 normal Jordan curve * ),

uvler Region 83 A closed reglon of the plane whose boundary consists

el

cute it

=3
&

of 2 finite nusber of

EJ’!

sgular curves, elf, or =anocther
curve of the boundary, in 2%t most a Tinlts nusber of points.

Ze Tn this paragreph wse shall develop briefly some c¢f the fundamental
notions and theorems on whieh our later work rests. These theoreas are
sxtensionzs of familior resulte in the clessieal theory of
stead of nuusriecslly-valued functions of 2 aussrical veriaeble we have now
to coneider functione whoss arguaents raags over a veetor spsce T end

4 3 o Iy o -
whoss values renge over a sacond ccace B o "Me deszeribe thie situstion by

i A - s ° ey - 5 Iy
saying thet thz funetion is on 3 to T . 8y o funcilon we 2lws

mesn o
one=-valued funcilon.
Theorem 1 Let f£{x) be lefinnd and continuvie in a cloced set I of Ey
with velues in =°. Then 2{x) is bounded end unilormly continuous in

¥ L ’ F R
every compact get T oxtractaed from Ho®s

%,7. Csgeod, (
\ ot !
ww R, gatequy L
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Proof: £l =

rroof Buppose the thsorem falss. Then if G is =2 compact set contained
in ¥, =aad 1>2 is arbitrery, there is an x in G such thet [J£{x)f > i.
Yeging L7 1,257,000 sacceiﬁvely we obtain sn infini gecuence {Xﬁ} in G
for which () @ . Bubt since G is compact, =nd 1 is closed, [Xuf
@izt Nave at lesst one limit point %, in H, and we wey a2ssume thot ~ sub-
sequsnee f%@] 2 bsen chosen so that N, X Then
WAk [ € JARIl + TF ) = Fexa) ]
end ag Y =>oo  the right hand mewber ilendec to I \A@)# wheress the
left wember tends to infinity. This contrediction proves the assertionm
thet  £(x) remains bounded in G,
imilarly if ve suppose that 2(x) is not uniformly continuous
in ¢ then for some ¢ >0, any d:>@3 and come xgx’ in G, we must heve si-
multzneously the two inescualiticss
JACx) — Fraof > € fr-xf<é
~ / [ /
Jhocse d; = 7§= s and denote the corresponding x,x by X, 5 %X, . Then,

py virtue of compactness we may sssume the sequsnce {Xﬁ} £0 chogen that
¥, convorges to 2 point x, in H. Sincs
fxn = Xoff [ TSR Y BT F SE o |
we conclude that X, = X, also, and nsnes, in view of the inecuality
VFxa) = AOR)E S K= A0+ Jf k)= Foxnlll
and the continuity of £{x), that

L7
27 =5 o
This involves a contradiction,

Let  {£,(x)} be

Theorem 2

JFex

FCxI ) =0

the theors=u.

o

secuence of functions dsfined =nd con-

. . . / .
tinuoue in 2 Jomein D of B, with values in ¥ ., Let f{x) 0on1 D be a
o
function such thet 1im s Zp e f(x) the comvcrgamce)wnif@rm in ery
<> .

compset subset of D. Then £(x)

is continuous in Do



: §

Froof; Cuppose %, is = point of D at which £{x) ies discontinuous. Then

7

N

for some & >0 we cen Tind o csguence f%v} lying in = sphers {in

L
g

g

about ¥, , #ud a sequsncs of positive numbers /6M} s tending to zsro,

such that for 211

JFCk) = £l > € and Mty - Kl < Sy

he set composed of {Ah/ end Xg 1s compact, and the sequsnce ﬂfﬁ(ﬂj}
therefors convergee uniforamly in this set. That is to say, we cen dater-

wine N, independent of ¥ , =zo that

Wfa o) = Al20))f < 5 ne N | Y= 0,440

B o) = Al $ WA = ful ZdH + My (Ho) = fultd I+ Jf ) = Fl00) )
S HE A ML) - LA ny i,

and, since f£,{x) is continuous, we can choose # so large thst the right
han? wember is less then &, thus obteining a contradiction.

Theorem 3 Let £(x,y) be a function with values in a space 24 5 delined
for x in = domaein D of a space T, , and y in 2 closed set T of a space %,.
Then if x, is in D, and ¢ is 2 compact get in F, & x,y) is continuous at
X, » uniformly with respect to y in G.

Proof: Suppose the theorem false. Thehthsre will exist a nuuber £2 0

elewents f%ﬁ} in 2, end elsments {Mmf in G such that the inegualities

I5, - Yol < % I (Has S = Fio, gl > €
are volid for values of n = 1,2,,... Since ¢ L1z compact, and contained
in the closed set F, we may suppose that the points y, converge 1o a

point y, in F. Then the inejualitly
0 < €< MEKn Yol = FOYIS NFK Vo) = F UKo Yol
+ Nty ) = F000, 00

ls velid Tor n=1,2,%,.0. But by the continuity of P{x,y) the right mem-
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ber tends to zero withé%'g and we arse led to a contradiction. lence the

theorem is trus.

lw]

2 ° s o -y .” 3 ° s
sfinition: Let f(x) be = function on § to &, defined irn the neighbor-

hood of a point ¥, . IT for each y in I the difference guotient

AUt TY) = F (o)
7’

regarded as a function of the number 7 alone, approaches a limit zs 7
tends to zero, this limit, which is 2 function of y, 1s called the

Cateaux differentiesl of £(x) at x, . Ye use the notation

(57((/\(@5}/} = 4;177 75(/\/@%‘7)/2—7!/}(@) - [d fr/%%ﬂ/)
a7 7

p
T 0 =0

Ividently
Of L1 7Y5 1) = & Flarry)
Definition: The funection f{x) (defined as above) is said to have a
Fréchet differential at %, if there exists 2 function ?%”(y) with ths
following properties:
1° yV(y) ig linear - that is, defined and continucus throughout B, and
w(ax+pY) = o« Yx)+pgyw0y) .
2° given £ 2 0O +there corrcsponds a d>C such that //yW<J implies
WfCKarY) = £00) = sty)ff < ENVY
For the Freéchet differential of £(x) at %, we use the notation d7f(x@;_yj 3
%j;’ﬁ(()(@j)/,) Y,) denotes the differential, with inerement y. ,of ﬂ(’fﬂ(;%}
regarded as a funetion of x. It frequently occurs that in dealing with
hirher order diffsrentiale 2ll the increments are set ecual. Then this is
the caee we sbbreviate by writing J"f{x;y) instead of dwf(x;yQOQQQy)o

Similar conventionsof notation will be used for the Gatesux differentials,

% Of course the limit wmuct be independent of the manner in which 7 goes
10 zero; 7 is restricted to reel velues 1f T is a real spece, but may be
complex 17 the spzes ie complex,
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Theorem 4 1f £f(x), on & to B is defined in the neighborhood of %, ,
end heg 2 Frichet differential at x, , it iz continuocus 21 x, .
‘roof: Let €2 0 be given. Then when fyf is sufficiently emall, (o7 ¥)
ig de®ined, snd

NFC ot y) = £t € WF AT = ftne) ~ dttn, sy + Hdf a0l
Since df(wg3y) is linear, it ic continuous st y=0 , and vanishes there,
Hence we cem choose d ; 0 < dv % so that Iyl < d  implies //df[%;)%’f(%

and at the same time /;1/7[(}(0{}//=7([2{@} - d//ﬂﬁ;;’y}//:g ey .

Then I K+ Y) =7[(/;f,,}/< % +.§£ = £ when  Jy) < d .
Theoren = if qp(@ﬁ iz a function of a2 numerical variable, with valuegs

in %, such that @(@C} has 8 derivative at O , where X, = 40(0(@) 9

and 12 £(x) on ¥ to = admits a Fréchet differontial et x, , then (@(0))

regarded as a “unctlom of O hae o derivative at &b , and
@;!(wm)} ] = df (X5 @10%))

Proof: By hypothesis (o) is defined in a neighborhood of U= &,

and, being differentieble, is continuous at 0O . Similarly (%) is con-

tinuous st x, ; we see thal f( (gﬂ((’@!)) is defined in the neighborhood of

0= Oy . Ye nmust prove that the expression

[t 4% - FLOO) s s qa?&w)/y

4 6¢

tends to zero with A0 . Let
Lo f £ Qe an)) - £ o))
Bo @ =  PlU+a0) — @)

i

Then
M//i‘j{" dF(n; @fa@)}/i( /j%—fm dA(%; ﬂ_gg_g}/%
Jdftn; %0) - dF (s g

But . s and
Zy 4677 43‘;% = W (@(@) ’
a0  do
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Lim 12 - aftn; &F))« Lim Vo= 4f (nisupll

dol=>g 400> 0 JAef

by the property 2° of the Fréchet differentiel. The second expression on
the right of the inecuslity slso tends to zero with 40 , since the
Fréchet differential is continuous in the increment. This completes the
proof,

Theorem 6 If £{x) admits a Fréchet differentiel at x, , it admits =
Gateaux differential there, =nd the two are =zqual.

Froof: Define a functiom g(y) on E to I by the equation

dF(Ko5y) 2 FCayty) = FlHe) + gly)

Then L /e //,,__L(y)// = 0
Yo V374

Select now an srbitrary element y# O in B, and hold it fast. Since

df(x,3y) is homogeneous of the first degrse,

dfthsy) = TLEETH L g7y gy
7 7 HYY

"rom this we concluds that

Lim  TLRETY) 2L o yhrny)

7o /

If y= O the lest equation is obviously true. Hence we have proved the
theorem,
Corollary If a function f(x) admits a Fréchet differemtial at a point
this differential is unique.

If & is the spacs A of real or complex nunbers, the Cateaux and
Fréechet differentiels reduce to the usual form, namely the product of the
derivative by the inersmenit, a function obviously linear in the increment.
Definition: By a polynomial p(of) on 2 to % we mean a function dsfined by
an expreession of the form

POX) = dg + Od, + O dy + -+ &4,
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where 8y ,...5 8, &re constant elements of £, If 2,20 pla) is said to
b3 of degree n,

Definitions ! funection £{x) on & to &' is called e polynomial if
1° it ie defined and continuous for each x in %,
2° there exists sn integer n such thet for every x,y in 2 f(x+ o-y)
is a polynemiel in & of degree £ n.
The least integer n s=atisfying this condition is called the degree of £{x),
The thsory of polynomiels springing from thése two definitions
is in itself of consideresble interest and importancs.® We shall be con-
tent to note the mein results to which we ghall have to refer leter.
* homogeneous polynominl is defined as a polynomial n(x) cuch
thet hio x) = o' n(x) for ell o end x; ite degres is then precisely n.

75

Theorem 7 If h(x) is a homogensous polyunomial of degree n on I to 2

o

here existe = unigue 'wultilinear® function h'(%, ;0.05%,) of 0 veri-
=y / o o
ableg over B, to £ , with the propertiecs
[ N ° ° :
1 h“(x,QOOegxn) is linear in each argument, snd completely symmetrie
in the x's,
2° W' % .0.05%) = h(x) .

Thie function is called the polar of h(x) ; it i1s expressible in terms of

’ , o1 _ ., ¢
By e t4i) & 5 4 hlo) = - A7h k)

where

8,h(x) = hlxrax)- hix)

A¥hex) = 4,(8,40) = Glyraxtd ) ~ b lisd,H)
-~ Bl xE4 K] + hlx)

etc., the n difference being independent of x.

“ See R,8, Vartin, (7). For proofs of Theorems 7-10 see esp. pp.30-30,



I§3 12
Theerem § A polynomiel of degree n on % 4o 8 1s uniguely represent-
able as the sur of homogsneous polynomizls of degrzes n.
Theorem 9 If h(x) is = homogensous polynorial of degree n on & to %,
and if h“(x,gooogxﬁ) is its polar, then there exist numbers ', ', such

that

ol < Mae)”
VH e, 20 € M Bl e N

The least such numbers are called the moduli of h(x) and its polar, re-

spectively. Concerning these modull we know:

We Lub 1hod

=/ »
"
Theorem 10 e hn(x) is a2 homogeneous polynomial of degree n it has =

Fréchet differential dh,(x;y) = mhp;(XS,OE,xgy) » where h,'(x, ,..0,5%,)
is the polar of h,(x).

Theorem 11 Let B be an sggregate of objects such thet to each b in B
iz ordered s sequence of slewents {Xn(b)f of a2 wector space E, Let the
sequence fﬂ%(b)} converge to a limit x(b), uniformly in b. If then 1(x)
ie o linear operatiom on E to 2/9 the seausnce {Z(Xn(bdﬂf converges
uniformly te 1(x(b)).

Proof: By the uniforzity we can choose an integer N, independent of b,
such that n M implies [fX,(4) - )((b)/}’ < % s Where €20 is given

7

erbitrarily, in edvense, eand I

J1(xcs) = Z(xw))ff & M [ 56) - X)) < ¢

when n 2 N, This proves the theorem.

is the zodulus of 1{x). Then



Chepter I

Anaslytic FPunctions of a Complex Varisble

1. Our purpose in this chepter is to develop the theory of functions

of a comple

»

variable, when the function velues lie in a complete complex
vector spece, This will furnish the groundwork for = more thoroughgoing
gener=lization of the theory of =nalytic functions in the next chapter,
Wuch of the work is = direct carry-over from classicsl analysis, =2nd for
that rezson we heve omitted proofs when there seemed to be no spscial

warrznt for the rsvetition of well knowm srguments.

u

Let ©{o¢) be = function defined in = domain T of the complex
plane, with v=lues in = complex Banach spcce B. Then £(®) is scid 1o be

snzlytic in T if it has = derivuative =t ezch point of T; £(&) is said to

sa

3

Tr

e rnslytic st a point O if 1t is amalyiic in some aeighborhood of 0 .

‘F_)
For functions of sevsral complex variables the definition is
similar, Let o, ... .. 0 (&X = &%{%(bm?} be complex variebles whose real
snd fasginery parts n@qu yoeomson WM?(XH } ars coordinetes of e point in =
Zn-dimensional spece; then & funmction £{of,..., &) ) with values in T is
éaiﬂ to kb2 enelytie in a domelin of this space 1P it edmits first partial
derivatives with respect to each 0fy at each point of the domsin.
2, The line integral slong o curve in the plame of = funstion 2ot} on
the complex plene to the space E may be defined in a veriety of sssentlal-
ly souivalent ways. Me shell consider only comtimuous functions £lor), and
ehell base our definition on that of G.J. Tatszon.*

Definition of the Integral: Let 7 be o recitifiable Jordan curve in the

c*

o =plane, dePined by O = O (%) 1, S

%o~ or

5. Wateon, (12) pp.17-3C.
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Lo

let (o) be defined =0d continuous on 0, with values ir B, Let there

o
i
&)

be givzn an infinite sscuence {O(ﬂf of pointec on 2, and denvie by O(l{”’ , ogf:j
yoes

the first n of these pointe when arrenged in their proper order on O

/ ° ° o . M N 5 N
(2ccording to increesing t). Te impose the condition that 21l pointe of

<
the sequencs be distinct, and that givan d'» 0 it be possible to choose

m)
ifuplies O < Ziw_/ Z’I’ Y sd s ¥ = O,1l500.50n, Where

(1) (n &)
O(/:: O(('Z!/:V/ , 7, = Z/B ZL;Z = 7 o By the integral of f{o¢) over C

Ny sueh thet n 2 B

We mean the folloving limitsw

P
b{j[(o()do( - L %[(Qén; g%(w (n}]

7 al
In order to show that this definition ls setisfactory we shall

prove the Folloving theoreas.

Theorem 2 The integral of a continuous function f£{ot) existz,
Theorom B sorrespeonding to sn arbitrsry €> O 4there existc a2 d > O

such that when t,,..0.5%1,, 2re eny wu values of the parameter t for which

0« f,i_f;‘ Z!é <sd (r 2 0,1,000sm and tﬁw/: T}, while 7 is such
that Zz s < ZL/H/ s then
~7
///;Z(e()a(or -/ (%,-0(4/%%// <<
¢ % =a
whers o = O(Y) s P4 c ol 7%)
Theorem 7 The value of the integrel /f(a(/ da  is indseper of the

chioice of the sequence fo{ﬂf » provided that the conditlions of the lefi-
nition are fulfilled.

Proof of

iz
oo

Since f£(or) is continuous on ¢, end ¢ is defined by the con-

tinuous function o{t), £or(%)) is 2 continuous, end therafors uniform-

# We are in ‘tegratinrr over © in the positive sense, i.e. in the direction
of increscing t. The parameter cen always bz chosen so =8 to nmake 2 given
directior =2lonr © positive. Clearly a reversal of the direction of inte-
gration merely cf ‘,-.aées the sign of the integral.
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(@3]

1y coatinuous,* function of t inm the intervael t,< t £ T, fecordingly,

civen &> 7 we cen chosse (,50C independent of 4 so that [# - < d

tmplies  [A(act) - L(a@))ff < £, where

/e /.ﬂ.b,;i/o«(zawz— i)/

for all sets of points 7 < 7, < --mrvn- <l =7 - (L is finite, since
C is rectifieble). Wext choose n so large thet for our eseouence {O{Wi:
() 1)
Ie} - < = ‘
< ZLM/ t, s 9, , A= 0,

Copsider novw the cuantity
Vi
() ) s
"5/7 = ;[(@/47‘/—0(@/}7/(%/_/
o

. : . )
ead let = be 2ny integer greater than n. If we designete by U = o, 4 )0&,4)“,

C/M/ . 7 s i) i}
- } . 8. N e e
O{W)ﬁ»ﬁ 7Q(}9;l¢/,’1 -[J/M/ those points {(in order) of the get %}--M..yﬁ which
. {n) i
1 b ot any wr e
lie botweon O mand O//W s we have
4
v ) @)
(0{&#& - 0(5)4/5 = U, - Q/A s

Sey ’

so that
a My
7
S = L[ [t aa)f £
A=o S =y

Also 7 /Wé

ISM = ; /i /(%-H,zﬁ @(514/74(%”///

A=za s=y

re Zollows at onee from tihe definition of 53, and tie polnte Of, .
Therafore

15, =S50l € 55 1t ) 10 - fraui]

paraxcters Z;;"? of the points 0Of, seticfy the conditions

o] 2%,
But the

D

s and

SN

At/

////7;/@/,{%)}_][(%/4)/< % . Mo

ty ) e A - Ata)
f/;i < Z,;}/j { ZL s Taence 0 < Z/;/d Z;‘ <

¥ - = - .
*oef, I, §:3 Theoren 1,
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24 2

2 W4
;ZZZ [ Gsryy™ U4/ = ; [ay' - & < ¢
=0 Sz, =0

Thus finalle A5, - S, < & when a>n. It then followe by the com-
pleteness of the space T (1, §19 postulate € ) Lhat there exists 2 unicue
1iait ¢ uf the cequence fﬁn} » This 1limit is, by definition, the integral,
T - ° y /

Creof of 3 Let £ 2 O be given, snd choose d so ther [fE-1 /<

2 v 2 43 I i A Vo e .

‘mplies /71(0((5 ) f(ﬂ(z‘//’/< 357 then choose n so thet

il o) - . , e
< - = « "o shall prove thet thie o
0 Zéﬁ_w z‘ﬂ— £ d A=0,42,..7. shall pro

satle®leg the demands of the theorem. To do this, assume nusbers Z!‘}) ..... , ng
28 epeclified, and denote by Zé,m, . Zj%},é those oong then (12 such
. . oy 1y
exigt} which satisfy the ineguelity ZL,Z $T s Z",w/ . Denote also by
) . . . - .
24@/,{ thet menber of the sel 7p,....., ZL,W/ ~hich immediataly procedes f”,;_ s

and by Z,., ,  that one “hich lnuedistely Tollows Z,

I for some v
/V/f'b ,”/g © I 20 [®)

1o nunber fp satiefies ths inecuality, deofine Z;;’f and ¢ 4 &5 regpect-

. . . oy
1vely 1he members of the set %, ;e000s% lintely preceding f,z s and

ecusl to, or lmmedisielys Zollowing o The rmazbers 7, wey nocw be
wpdtd e 72 wliare < 5 < S=0, . . _.. M and
C2Ti S,A 9 3 Zg_g}/}_ -~ 5//2 -~ f-§+,)a P 7 A 9
LR o ET - Fd LZER RPN
corrsspondingly /gs)/z = (/5,4/ . Then

i [[ ((XM/& WP/J][/ébj :Z [(%A- Q//é{m}%(ﬁo/é} 7 m’z/f @7,4}7//@,@)%
A =o =g

Fom - - "7"(0(/2[:;" %;b/z}]//ﬁ%,ﬁ}/

and

paLes

S e lft-5, < 2 [t )t faj

# i ) ] )~ ] 2 (] %/)f%(%ﬂ‘ﬂ%w/
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Lo %ﬂl 5 f’slﬁ; #‘d‘( ZL %‘UF< f()_,i J:

2t

)
?;/’l > ZLS-%/‘Q&U“)/ Z;Z -d
/ o
so thet /7, — Zlﬂm/‘{ 2d , and henee, for 7 = ~Z4’ (7;,@ + 1 /5

/

[7,-27<d, [t- 7%/ < o, This leads to the inequelity

1 () = FC09) < W)~ At ) - A

2E
34,

in virtue of the uniform continuity of f. Thus

/g (o ) fto) =5, | & 322 [t 1 4+
LA A 4///,2)/2//

by the rectifiebility of C.
Now, as in the proof of A, //,S >,\5;/<% when ¥ 27 , so

thet also ///;lzor/m S, /<% . Thus finally, by the trisngular

J[ Fs = 2 ot fir] <€

Procf of ¢ This is an cvident cousssuence ol B, for if we ure given =

sscond serusnce {O(M} satis?ving the conditions laid down in the defi-

- ) 7 (m)
nition of the integral, we wmay talk- ?ﬁ oo T as the nunmbers
9 3 Zmtr
of 3 and thus prove alt once Lhst
2@7 """ 72"%’?"/ :
Gn) o) 6n)
Lim //4}/,1 - a)Hw] = /%(of/m
WP p=0

Por deeling with inecualities we find it usseful to dsfine the

cexpression



//(@r/a’a’// = A/M Zﬁf" /%f’j" %(m/ //%(?’@//fm}/%

C A2 4 =¢

ge C az mepped, by a ilstortiom without strstiching, on ihe
rool dntervel U ¥ g £ L, where ¢ ls erc=length along O from of,, and L
iz the lengih of C, then (ﬁ{;%%ﬁx%%déy may be regerded as the integrel
in the sense already defined, of the continuous function é@Z(WXAUVAV
along this intervel, and hence we know 1t will exist, and be independent

of the particular sequencs fq;/zﬂﬁﬁh is uegsd. 3y the triangulsr ine-

auality we have

///%(a(/dﬁ// < //%(o(/da///éf ///7/(0(//4,5
c / /

o Fundementel for our theory is the extonsion of Cauchy's theorems

o

Theorem 1 19 f{or) is enelytic in = domain T vwhos: Loundary consists of

e T

able normal Jordsn curve T,

12 2{o) iz continuous

then ‘/gf(’o{/d/a( = 0

forn of ihe Lheoras, convenient for our

=
q

D._‘
w
ot
2
H
5%
O
o
2
&
.
o
=
=
I
W

Purpuses, is the folioving

°
? . d . 1, A . RS R C e sge (o sl PR o R I .}
Thecran le Let € denote tio couplcote oundory ol e reguler recion 9,
R L of Yy A 2 . S R R T = R N 4 v ) [ RNy 1 S fas}
end let Plof) be contimuouz in the closed ragion 9, ond cualytic inside 3,

Then géi%(mvﬂ%ﬁ =0 s Shs integral belng extonded over T in the

“he second theorem is = congecasnce of the flrct, Zor o ropiun

T ey bLe broken up into = flnite

. "y P o PR R S VRN R
LTS LneL Ienge L0 Wnlcd il DULsSI Aore
P

do W U i
he %tongont =t ¢ polut of © sre oriecnted liks the positive re=l

B aom  pugmees ec

S s - E a
Cad . .

Ly
JORIARS



lu Lheoroa 1. This i becsuse a simple reguler curvs is = rectifisz

5 - = . PO { e NS LA LI 3 o S I
neormel Jorden curve (¢, I, §2) nen ths integration ic carried uwubl Tor

°

shie boundsries of ths componcnt domains, those contributions which arise

Trom curves not inciud2d in thz boundery of § oceur in peirs which ecancel

Por a prool of Tasorem 1 we refer to tho monogreph by Wetzon
@ee Tpotnote in 11, @2)9 whsre 1t will be found thal the trestamsnt re-
“uirss no ecsentiel modification, even though 2(or) is not numericslly-
volued,

Cther tesic integral theorems are the following:

Theorem 2 If 2 iz 2 rectifioble Jorden curve, and g?(?) ieg a2 function

mith values in 7, defined and continuous on €, then the integrsl

Ala) = Jé( P(7) T

7o

[
mn

definees o function enslytic at every peint & not on 2. Itc darivative
7 &5
Flef) = / ,,Ml d7
C (7-e)

Froof: Let ©& be a point not on € . Then 66, moy be ilubedded in a neigh-

bornood T whose intsrior and boundery contain no point of G, If thon a,+4K

(sl

Ly

Aot dd ]~ £Flety) / A, A
s (7=c=da ) 7ot )

is a point of

and

/”(omda’/ ~(oo) @r)ds ad @(7) .
/ / (7= “// // / («;:%-M//%%f—d//

s ML jpuf

~here I iz the maxinuw velue of A&P(T%/ on Cy; L 1o the length of T,



Fasl

end @ is tho least distence from the Loundery of T Lo the curve 7. The
conclusion followe.
Theorom 3 Lot #{et) be amalytic in a reguler region %, ond conlinuous

in =nd on the boundary 7 of €. Then if o¢ is zn interior point of §,

75(0(} = e 7) d7
Z7¢ 7
(o
tho inlegretlon being in the positive sense, Further, f(or) posgessss der-

ivetives of all orders, given by

The proof of this lheorem followe well known linec, using
)ﬂV

‘nepren le, and the methods of the preceding. e oxit the doteils,

Theorem & Let <@(0$7V be 2 Tunetlon of two complex variables, with

1 @76&,7} iz defined Zor & im 2 domein T, eand 7 oun a rectilieble
Jordan curve T,
2° gwb@7) is znalytic in T for enchh 77 on T, =nd continuouz in o and
7 ‘throughout the rangs undzr conasiderstion,

2

inen the intesrel

(a]

pso

A) = C/gﬁ(o:(, 7)d7

9, 3 o 1

defines a function anelybic in T, with derivotive

x) = DA A7) T
7 / »

be an arbitrary point of T, snd & 2 circle of radius r

=
&)
ot
X
[

Froof:

PO

sbout @, as center, such thzt A and its interior lie in 7, Then for

6]
@D

/ACX/ small enough, O+ 4O lies incidz this circle, and

Q,7) = =4LT @, 7) AF &= @;}q37a4¢y

L7 X £ -0
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7 -t W(fl 7)
%{ (@s/g)/) 27 / =

Iy

K ()
‘ecordingly,
Al tde) - F(ato) / A P 5)
- gﬂlﬁ(glf)d%‘ = -, J{;:/ — 7
4o 4 o g e Sl ) (4-s5man)

But @(%47)  is continuous in t anud 7 on & and C respecitively,
thich sre closed point sets, and is therefore bounded, sey [f@2, 7)) <
on the curves in auestion. tlso /?f—a(;,/:/g s and S eg,eanlz k- lba/)

Therefore, letting L be the length of C, we have

//%(ﬂ(y‘i‘dﬁi’/ A (olo) 5,/{%(%’7/4?/ < G 1wl g

Au ALk = 1bor))

from which we easily infer the truth of the theorem.
Liouville’s theorem generalizes without difficultys
Theorem 5 17 flot) iz snelytic Tor all values of of , and if <M
/ ’
where .. ic a constant, then (o) is 2 conotant.*

L] .

Two further theorsms of interest are the generalizations of the

B

theorens due to lVorera sund Welerstrags:

Theorem & Lot T b2 2 domain in which the funeciion £{&), with velues in
T, is continuous. Suppose that the integral of (o) vanishes when taken
over an arbitrery closed path zconelsting of z rectangle with sides pare-
1121 to the axes, this rectengle lyong wholly within T. Then f(of) is sme-
lytie in T,

Proofs Let (O be eny point in T, and imbed it in = smell squers, wilh

center at 0O , so thet ths cousre lies wholly in T. Lat & be zuy point

0
o, e in the scuars, and define
o
Oy ¢
i) Ft) = /f(f/df
! I
A o

*  Tor proof scee Osgood, (10} p.316,
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M

Iz §
where o is the path A3C0. Then, becesuse of the hypotheses of the theorem

Fla) = Fla) + [ Fetiar
€Dc’)
Thus

F ') - £
~LLEE 7[(@“ = T //7%4) ,!(w}#

oAl (Cpc’
/f(qr// - Featy
= e <t [l
/et~e ey

But £{&) 1s continuous; /Jé-ef ¢ [&'~arf 5 end /@) < Z/la-a].
(2 Yald
demee given & >o¢, we can choose ¢ so thet Jol-g)< ¢  implles

WFACE) = fe) ) < £ o Then
£ - L
// (0(:/(’- Aol %@(}/( -

a

Therefore ¥ (0¢) is suzlytic in the square, with the dcrivativejgso that

(o) ig clso amalytic in the square. This completes the proof,

(\D

2 seguence of functions cnalytic in =2

Theorem 7  Let {Ys(e)f ©

L]

domasin T, =nd such that ithe series

=2

A} = Ul )+ Up (H) o~ U )t
converges uniforaly in every reguler region S lying in T. Then fe¢) is
analytic in T, and 1is derivatlive may be celeculatsd by termwise differ-
ontiation of the series,

Froofs Lei 9 be an crbitrery regular region in T. Then, since the (o)
are continucus in T, we conclude, by I, §59 Theorem 2, thet Do) is con-
tinuous in Ty it is easy to prove that the series mey be integrated term

L1

o 3
by term over the boundery © of 8. Using Ceuchy s theoram,

[%Wﬂ’ = [@(@f}%@{ %,C/%WM VAR =0

Therefore, by Theorem £, P(x) ie anelytic in T,
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Let 3 be an arbitrery regular region in T, and let & be any
peint in or on the boundary of 8. A second reguler r@giQH,S’may be chosen,
containing 2 entirely in its interior, so that, as t ranges ovsr the
boundary ¢’ of §', and O over S, /#-a/ hes = positive lower bound.

Thue the series

=t

L SFlE) = ol HslE) o oL &s ()
ol ()™ 207 lhowyr | T femag

convergss uniformly in ¢ end + in their respective rangses. Integrating
over 0!, we obtain, on referring to Theorem 3%,

Ay = wta) + gyl to) b -n - -
This series, moreover, converges uniformly in 3,* so that the hypotheses
of the theorem are fulfilled for this new series, and we may repeat the
differentiation.

B

4, By a power series on A to B we mean on expression of the form
z
Qo7 X Ry + X "Ry Fe-r - A VG, -~
where ¢ is a real or complex mumber, and the coefficients a, are ele-
ments of B. "e shall deal with complex varizbles, and shall always sup-
pose that ® is complete.

b % °
Theorem 1 If for a value o¢ = of, the terme of the series are bounded:

Hoeo' a, < &

Thig statement is justifiecd as followss the elase of functions q?/%/
defined and comtinuous on C', with values in E, forms a vector space T
with norm fJ@/ = gay 4@l - By means of the integral there is de=
fined a linear @pera%1©m on B to B, We then use Theorem 11 of I, §3,
where the clase B is taken to be the set of points 5.

#% A geries gijégﬁ of elements of & is sald to converge absolutely if
S Wy f converges. When B is complete, abeolule convergence implies
ordinary convergence, and also that the series converges to the same lim-
i%, no matier how the terms are rearranged.
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then the series converges absolutely for all values of o such that for/< /af,/
Proofs Take o,Z0 » and let & be a fixed muwber for which /Jor/< /a,/,
Then

Ja"a. ) = 1)) < 6 /2"

. G(/+ 12+ )]

ig obviously convergent, so the result follows,

In the usual mennsr we find thet if the series doss not con-
verge for all or , there is a 'circle of convergence' such that inside
this eircle the sories converges absolutely, while outside it diverges.
Theorem 2 Let T be a domain which together with ite boundary lies
wholly within the elrcle of convergence of the power series. Then the
series converges uniformly in and on the boundery of T, and so definses an
analytic function within the eirele,

Proofs Lebt v be the radius of the cirecle of convergence. Then we may
cshoose v, , 0< v, < ¥ , se that the conecentric ecircle of radius r,
also containe T and its boundery. Accordingly, if ¢ 19 2 point of T,
/0(/540 s and

Jot "G, 1 < /iom//@ﬂ//
But 2 /2, A4,/ is a comvergent series of constent terms, by Theorem
1, and it ig not 4ifficult to show that the power series converges uni-
formly in and on the boundary of T. The theorsm is then a consequence of
II, §3, Theorem 7.
Theorem 3 If the power seriss vanishes 2t the points of the infinite
sequence of distinct polnts f@%} s Whare %%g@ ,s 0 , then all the
coefficients are zero,
Proofs Since the power series definmss an anelytic functiom, it ie comn-

tinuous at the origin, and hence £{0)= 0. ( (&) being the function de-
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fined by the series). We have the equations
0= &,
0 = A, + o d, +---- o=

z,0

But then
Ay # &y # K Ay #--~-

las a convergent power series which defines a function comtinuous at O
since it vanishes at ¢ = Do, gy it venishes at 0. Hemce &£, =0 ;
Similarly we prove #,= 0 , and 80 on.

The importence of power series is explained by the generali-
zetion of the classieal Cauchy- Taylor expansion theorems
Theorem 4 Let £(of) be snalytic in a domain T, and let & be any point
of T, Then we may write £{of) in a power series

n 0
F) = Aata)+ (Haty)f Coty] b -+ (m@;jf@,)il (8]~ ~-

This series converges snd represents the funetion for all values of ¢ in-
side the largest circle which can be drawngbout er, such that it contains
only poimts of T. This power series representation is unique.

Proofs We stert from the algebralec identity

Lt e, -k, (=)
T }7 [l =
A - o + -, (# =) “#=a,) A =a,) (-0

Let & be a point of T, and imbed both it and &% in a regular region 3,
with boundery O, contalned in T. If then ¢t is a point of ¢, integration

of the preceding equation leads us to the result

14
AH) = Llas) ¢ (t-a00) F Cta) +-+ -0 (@/a%ﬁ%m,%%/%

(s2=1/¢

(%("@fa " :&a
2ﬁ¢/jjéﬁﬁf=@@/%%*ﬁﬁay%

We observe in passing that the integral defines a function Pﬁ(a) anelyt=

ic within S, by II, §3, Theorem 2, If now o ies eny poinit inside the
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circle described in the theorem, we can chooss § 10 be az smeller concen—
trie cirele of radiuvs R, which yet conbaing o in its interPor. Then

= oy n _
155 awl < (om0

whers [e(4)f < W on G; but A=/a)>0 , Jot~0t/ < K, so thet
this remainder term becomes vanishingly small with inersasing n.

The uniqueness of the power series in (er—06¢,) is & consequence
of Theorem 3%,

5, The study of the behavior of enalytic functions in the neighbor-
hood of isclated singuler points, or for very largs values of the argu-
ment, prssents more difficulty. It is hers that we firsht begin to see the
specinl character of the classical fumction theory, in the classification
of eingularities, snd the charceterization of functions in terms of them.
Definition: IP fle) Lie analytic in the neighborhood of a point 0f ,
that point alone exsepted, ¢, is called an isolated singular point.

12 2( &) hes an isolated singulerity sl a point &, , and if it
is possible to meke a mnew definition of £{0r) in such a way that the
function is smalytic at 0f; , then f{&) iz sald to have o removable
singularity st .

If o, is en isolated singuler point of f&<), and if %E%@é%%myféf@@

@
the eingularity is called a pols.

Concerning removable singulerities ws havse the result of
Riemanns
Theorem 1 If o, ie an isolated singular point of flor), and 17 e}
remains finite in the neighborhood of & , then the singularity is re-
movable.

Proof: Let C be a simple, regular curve in the given neighborhood, with
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D, in its interior. Select = point of inside C, and draw a mmall circle
75 of radius v, sbout o, , excluding

o o Then by II, §3, Theorem 3,

. A CE) f(é)
’ 4 71'2///{4/ A

the sense of integration being es lndl@atedo Now J£(t)f < G within G,

V’d

end ft-o) > JX-&e)= A > O S H@n@@

/ 27/ / # / e

But the expression on the right tends 1o zere with r, while the left men-
ber of the inequelity ie independent of r; the second integrsl therefore

venishes, leaving the result

A ) /_ﬁ; e

.2’777

for every point o £ O, inside O, Bui, by 11, §5g Theoren 2, the inte-
gral on the right defines a function analytic at all points not on O, and
henee in perticuler at o = o, . It follows that lim Plor)  exists,
o= Op

and thet the singulerity ie removable.

The'point abt infinity' of the complex pleme way be introdused
in the usual way. It 1s am ideal point regerding which we meke the conven-
tionss

® The neighborhood of ths polnt &= o2 is that portion of the plane

1
lying cuteide an arbitrary clossd Jorden curve. The point is in ell these
neighborhoods,

2° 1 domain T conteins the point &= ¢ if it contains some neighbor-

hood of the point.

2° The point at infinity is the cluster point of a set if given a posi-
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tive R, no matter how large, there ere pointe of the set for which lec) > 2,
4° For the behevior of f(&) at o s o2 we agree to consult the be-
havior of f‘(j@%’) at ot =0 . Ve then define a function to be analytic at
& = oo if it is snalytic for all sufficiently large values of & , and
i @}im )  exists, whersupon we set £{eo ) equal to this Llimit.
oo

Obviously the 'extend=d’ complex plene, with this idsal eleument
edjoined, ie a closed,; compact sst,

To 41llustirate some of the eituctions which present themsslves
in connection with singular points, we give some examples., Let B be the
somplex Banach space whose elements are complex-velued functioms of a
complex variable, defined =nd continucus on the unit circle. If @(z) is

such a Tunction we define its norm %o be

1ol = max /@iz)/

Suppose that 7&"(0(/ is g numerieszlly-valued function of ¢ , amalytic ata

point O . Then the function on the ot - plane to T3

F) = o V0%

p ’ W)z
is analytie # at 0Of , with derivative Ala)= ¥ @Iz €

The singularities of fla) will be precisely the singuler points of Y (@&/.

ow ) Z[%/
W)z £ R(¥) = &
NFA@)l = may /é’ /: mel €

/Z/g/ Xﬂ%y%—'/

s,

To wsie sure of this we mﬂ!”eLJ obesrve that 61?//{0{)’2 s regarded as

2 funetion of two varliable nalytic in of for each z on the clrele;

that *the derivetive ')%(o(/z @% @)z ig continuous in z for each o ;

end finelly thet when « lc restricted to lie im 2 closed region aboub o,
m

ew@{)z is uniformly continuous in o 2ud z. Thies is sufficient to
show that (o) is differentisble smosording to the definition of II, §lo
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(%) = iuaginary part of ”V%D{)

o . . s R, - A(¥) - va . -
1P (a)# 0 we nay choose = XU =~ Z(#) , and thuc
7 7,

o1 inejuality which remeings true when Werj=0 . Trom this we see that

o= &, is a pole of fler) Lf it ia a pole of () . On the other hand

C

i% o is am eszential singulerity of (zt) » then by Weleratrass' theo-

Tam %, ’%‘(o{/ Fluctuates oud cowmes arbitrarily nser all values azo-» O,
eo that £lor) will not heve a pole at &, . 1° we then 2gres to call o
ularity which 1 neither removaeble, nor a pole, essential, we observs
1° Weierstrass' thoorem en essential gingularities is not trus in our
thecry. In perticuler the sbove function ler) feils Lo zssume values
within the unit sphere about the origin in %,

[+] - o ° e 3 ap 2 N .,
2° Fiserd'e theoram ie likewiss not trus X%

. . X Z
Finelly, by taking %‘(Q{/: o we obtain the FTunetion 7!(0;(/:; e
such that //%(os///)/ € o Thus e&f) ie emalytic for 211 finite valuse

3

of &, and has a pole et & = f0 , In clessical theory ithis would lead
us to infer thet o) ic & polynmomial. Such is not the case in our
presant theory, howaver, for the Taylor's expension of flor) is
7[(0(/5 VA & ARV S AV R
EX

Which is not 2 polynomial in & .

To complete this parsgraph we shall prove the following theorem

# ef, Osgood, (10} p.328.
#% Oggood, {10} p.T748.
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of Laurent.
Theoren 2 Let £(o¢) be snalytic in 2 ring-sheped domain T whose bound-
ary consists of concentric circles 77 and G, Then flor) Ls the sum of two
funetions

F(A) = @lx) + W(a)

whers @(«) iz snalytic inside C, and Wio) is enalytic in the extended
plene outeide /7, with the value O ateo,

{see figure). Let 8 be

denote by r, R
a regular region lying inside 7, bounded
by circles Fand 3 of redii 4-d , A-d,

espectively. Then by II, §3, Theorem 3,

when o is in 8,

(%/ _ ¢/
Ay = ;3/7*/% Py Lﬁ

both integrations being in the @omﬁercloc%vls@ gense. Dut by i1, 43,

Theorsx 2, thess integrals define functions gﬂ(@(} (@(/ s enalytie et
~11 points not on C end ﬁfasps@ﬁivalyv Now let d;% © . Thiz does not
effect the defimition of j/“(@{) at points alrsady attained, since £lor) and
ﬁ(@{) do not depend on 7 > and 77}“(@(} zjé(p;/a @(ec) o fence we can
extend ) to & function P(er) defined snd emalytic outeide /7. Simi-
larly gZ(ox} is extended to a funetion @(a) es requlred. For the analyli-

city of “4(e() at o we note that

L foss f%# =0

oA —» o0 i

end refer to the convention laid dowa sbove.

Corollary Under the hypotheses of Theorean 2 flof) may be represented
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uniguely in the form
= »
Fla) = 2 (a=et,)C, | A< la-n,f<
- do

5>

]
|
3\
™S
o

B EN
N™w
\-\
X
RS
N

where & ia a ragular closed curve in T, enclosing the point &K= &,.

Since @() is analytic when /& <o,/ <A 1t hes an expansion

plot) = iﬁ (o0 —0¢,)"C,

Jow if we set B = ;4:‘;;0 s }/‘(0{): '}ZV{W s the letter function is ana-

lytic at A=0 with the value O thers. Hence

_ = / Ve /o —=oty] > A
Y () = Z/Q;M (o

To evaluate the cvefficlents C, we integrate the series expression for
Al N .
L termmise over £ s 28 we may do, beceuse of uniform con-
(& =os) 7

s,

vergence. The rasult is lmuediate,

e

Laurent's theorew afforde us a useful method for studying the
behevior of 2 function near sn lsolated singular polut o= o, . We may

draw an erbitrerily emall circle 7 about 6, and & suitebly emell con-

centric civele 73 in the region thus formed application of Laurent's

' oo cd / Y Jot—
Fla) = L (5=0) 2y # Lot ORI

It is readily seen that 211 the b's ars zerc if and only if the singular-

—

n c¢laessical theory 2 pole is charssterized by the fact

that only a finite nusber of ths b's are different from zero. Such is not

A,

16 present theory. Tor instauce, in the exswuple considered

ER S 2o
the came in

V4
a4
shove, when L s % has e pole ot o= but its
s Whex 7&‘(;{/@ s 7!(0(/ & P X=0 ¢
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Leurent expsnsion is

; Zz
)= 1+ Sz o+ j,

Te shall say that b is a pole of ordsr w if in the Lzurentl expansion

b,= 0 vhen n > m. The expression

/ i} 4,
G ("("’@/d)

L4l

will in this cosge bs e2lled the primcipel part of the function #x) =t

the pole,

So The notion of 2 rational Tunction, as the cuotient of two poly-

2

nomiels with ebstract velues, iz denled us, sinece we have not postulated

divicion in the spsce T, Uf course = funciion such as

Pay . a'a,+a" g+ +a,
P Ao £ A

AKX/

8

where P(6¢) is an abetract polynomis=l, aond p{ee) = nuwerical polynosiszl, is
2 sort of retional funectiom. Its only singularities are poles of Tinite
order, ocecurring ot the roots of plor), and at o= @ in casa n > m. It
°tinits e representation by rationel fractioms, =28 we may prove in the
usuel way, by subtracting the principal parts of the function 21 the poles

and utilizing Liouville's theorenm.
-

The problem of determining the nature of a functlon whose onliy

eingularities in the finite part of the plane are pols

[©]
je
[y
=y
Ll;;l}o
=
Hn
@%
©
=
o
(6]
=
L)

°

is solvaed by application of Mitteg-Leffler's theorem.
Theorem 1 Let {qh} be 2 sequsnce of points in the complex plans,

such that ¢,-> o . Further lel there be given a szt of absiract poly-

nomials, with coefficiente in W

WV
~

(n) 4,
%(0{) = Q(A/M%'.-—- 74-0\{%4%% ﬂéf
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X §g Z=

)
4 2 -
\Fe aszue /ﬂ,ﬂ,ﬂ;fO unlese from = certain value of n on, Ihlet) =0
Then there exists a simgle-valued function P(or) with pole of ordsr %, =t
o o / n Py o o 5
On 2 principal part 9 (' ) there, ond otherwise anelytic in the
o —ar,

inite portion of the plane. The most gensral such funection is then of

funetion anslytic throughout the
For proof we refer to the treatmen

o
o

o~

2 sorollary we heve the following resul

g an analytic functlion which hes in the finite

o

Theorem 2 e o)

plene no other singularitiss than poles of finite order, then it has the

fora o
/
Ay = 2 gl 5 ) 7 L) # G
=y
where fz(/a’;;%’} is the principal part of the function at ihe pols O

%;(my is & sulieble ebelrsct polynomisl, and G{x) is an entire funcition.

In particular, if the number of poles is finite, then

2
7!(0’(/ = (ot / # G o)
Ll
where Pl is 2 ' retional function' of the type Ziscussed above,
Y19
Thers cen not be wmore thsn o denumer~bls nusbher of

they wmust be isoleted, clustering only (poseibly) et infinity.

s
s

cfe Osgood, (10) p.5¢5-50C.



Shapter III

‘nalytic Vunctlons in General 2Analysis

< g o bl o -
i, In this chepter we shall dezal with two compleox vector spocss T,
k By T,

g

of which ='is complete, and with funsctions on % to T, Greeck letters will
in general denote complex numbers, while lotters x,7,.0.52, With or with-
out subscripts, will Qemote quontities in T, Tuantities in 2' will enter
only as function=-velues, and will not require special designation.
Definition IPf £{x) is 2 function 4efined in o domein D of the space T,
the velues of £{x) being in B!, #(x) is 32id to be analytic in D if it is
continuous and has a Gateaux differential at eech point of D. 2 function
f{x) ie said to be aenalytic at 2 point x, 1f it is anelytic in seme
neighborhood of x, -«

The fundamental theorem, which enables us to utilize the resulis

f the preceding chapter, mey be stated as follows

Theorem 1 Let #(x) be defined and continuous in a domain D. Then a nee-
essary and sufficient condition that £{x) be anslytic in D ig thet for
emhmu>39fﬂwﬁf~“-%mm%} be an analytic functlion of o, ,.... 4,
{in the semse of chepter II) for =1l of’s and x's such that Cp Xyt = =2 Ky
Froof: The sufficiency of the condition is obvicus. It is also necessary,
for suppose thet[oyie@fs .., 4, ] i a set such that o X, »---r A7,
is in 2. Let i be an arbitrary integer, 1 < i £ n ; then q;%%,f...,%.qgiﬁz/
Ky Kbty 28 in D when Jo,-a;°/< A, v being sufficiently small.,
Then ;!Y@0%@¢L-~ ¢=@7A?7A-~---%q%/@} iz analytlie as 2 function of
of; in the circle [8; = ¥°/< £ 5 since by uypothesis the Gateaux

differential

AT NP

@Zf (4,8, 7 - (o, 4o -%%"M}z
24
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existes under such conditions. This proves the theorem,

As a conseguence of Theorem 1, and II, §59 Theoren 3 we con-
6lude that =n enalytic function has Gateaux differentials of all orders.,
Theorem 2 If f(x) is smalytic in D it has Gateaux differentisls of all
orders there. The n™# differential is a completely symmetric fwactién of
the n increments.

e have to prove that for amy n, any x in D, and eny y, se0os¥,
in B, the differential cfnf(xgy/woegyﬁ) is defined, snd is syumetrie
in the y's, Let &) 50005 &, be complex veriables, eand consider
f{z%qf,y/ 74-----%4/”)1//”/5 which is en analytie fumction of 47 sc00y Hu
when all thess variables are sufficiently small im asbsolute value. Con-
sequently the partial derivatives of all orders exist and are conitinuous
in the set ( O s000s @,) near (0500050} The order of differentistion is

then immaterial.* In particular

I 0ty = (T
7[ 277, /}/Aﬁi/ﬂ f aﬂ/n-—-~'..?a{/ (@/}:‘{@}

exists, and has the same value for all arrangements of the y's.

Two important questions present thomselves regarding the differ-
ential Jf(xgy)c Ig 1t an smelytic funcltion of %, for fixed y, and is it
linear in y ¢ The enswer to both questions is affirmative, as we shall show.

3uppose, then, that %, is a point of D, and chooses en arbitrary
v in B, helding it fast. We may choose positive numbers r,r' such that

X o 7y is in D when /Ji- Yol < 47 end J7/<A o With these restrictions

iy ) o =3 I3 e
¥ This theorem, standard in the differential calculus, remsins true when
when the function-values lie in a Banach space. The contimuity in {(a.--4%)

is a consequence of the continuity of f{x) and the theory of enalytie
functions of several ccmplex veriambles. c¢f, Osgood, (11) p.2l.
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f{x + 7y) is an analytic funmction of 7, and by II, ﬁ% Theoren 3,
@’}[(;\(j}// = £ /7!(’275/}//5/’“

C being a circle of radius r about the origin. Then

I ey - St il < < { J 7 oz =Ly, |

From this it follows thet o #(x3y) is continuous at x, , provided that
we can, for a given € >0 , choose a ¢ such that //)(")(ﬂ//<<d' implies
the inequalily

VAKX +7y) = flhtat ryy) < &
for all 7 on 0, That we can actually do thie is a direct consequence of
I, §59 Theorem 3, since C is a compset, closed set,

The foregoing work proves thet d #{x3y) is analytic in D, for
it ie continuous and has a Gateaux differential at each point of D, In
order to prove that the differential is a linear function of y, we first
prove that it is additive and homogencous of the first degree. We ghall
then prove that it is continuous at y = O,

Let x, be a point of D and let &4, ), y; be given arbitrarily.
Then let Y=oy, +A). and consider £(x,# 7y), which is an ana-
lytic function of 7 at 7= 0 . accordimgly, by II, §4, Theorem 4,

2 7Y F Ty oo o

Allr7y) = ftn) # 7 [ LL 2/ /1:____.7 W/ -
However, if we write E=7a ; § =74 , then S(X,» Ey +py,) is
an analytic fumetion of §) @ in the neighborhood of E’: g=0 o We

have then the expansion

o o o DW+M (xy 7 Ey+ Vo)
_ £7y / z 7 =y e
ARt Eyrpps) = 22 2ET p” E=p=0

M=o y=p HIH!
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But the expansion of the left member as a power series in 7 is
unigue,* and on equating cosfficients of terms of the first power in ¥

we obtaln

/’@7! (% # ry/ ﬁ/(zrg%fy/,%;}// , ﬁ/af(%;fy,ﬁ;%j/
E=yz0 7 $=y=0
This is precisely the relation
T ks ey, 28y.) = df (hos ) + 8 (4,5 1)
It remains to prove thet ¢ £(x,3y) is continuous. As in the

proof that the differentlisl is contimuvous as a function of x, cheoose r>0

such that when © is a circle of radius r about 7=o0 ,

TFlxs ) = = / S T 4y
C 7

for all sufficiently small //y// o Recalling that / {—Q =0 we write

Tf(r5y) = 2”// ALKt 7 W Fexel ;.

Let &£ > 0 bve given. Since £(x) is contimuous at x, it is possible to
choose '>0 such thet iy < % implies /}//%M’ﬁ‘ﬂ//=7£0(a//< A E
when /7/=/ . Then /d;!()(,,jy}/< £ s> and we are through.

We now have the theorem, summnarizing the results so far ob-
tained, end adding the new assertion that the n# differentisl is a con-

timious function of its n + 1 arguments:

Theorem 3 If #(x%) ie enalytic in D, then for each n the differential

* The exteasion of the main results of II to funetions of several com-
plexyariables presents no difficulties. In particular the Cauchy integral
formula and the Cauchy-Taylor expansion theorem follow readily. The necessary
definitions and theorems concerning multiple power series will be found

in Osgood, (11), p.29=30. No essential modification is reguired.
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gﬂf(X;ylgooogyﬁ) is en emalytic fumction of x in D, when y,;...,y, are
fixed., It is contimuous in the set (X;¥, s000,¥,) at every point where it
is defined., Therefore it is, for each %, a symmetric multilinear funciion
Of ¥, 50005¥,3 in particular, dw%(x;y 9000sY ) is a continuous function
of x and y, homogeneous of degree n iu y.
Proof: Sinece Jﬂf(xgy,soaogyﬂ> is linear in each Vio and continuocus in x,
it follows by a theorem of Kerner * that it is contimuous in the set (x,
y790009yh>0 A direct proof could be given, using a representetion by
Cauchy's integral formula for functions of several variables, in a manner
similar to that of our proef that @ff(xgy) is continuous in x for fixed y.
The other essertions of the theorem ars evident in view of what has al-
ready been proved.
2, If £f{x) ie enalytic st a point %, the radius of analyticity of £(%)
at x = x, is dafined to be the largest positive number o such that f(x)
is emelytic in the region defined by /Ju- Xojf<p -
Theorem 1 If f(x) is anelytic at x, , with radius of emalyticity 2
there, then f{x) nay be expanded in the form

A= fln) + OF N5 K1) - o & F i)

This series converges and defines the function for every x such that fr-nj<p.
Proof: Let such an x be chosen, and then pick a numnber £ >0 so thatl

//)(”Xo//s/d, < O o e may then choose r so that /< A < % . The
funetion Y7 ) = H{x,+7 ) ¥y = x - %, is analytic inside a circle
C of redius r with center at 7=¢ , snd continuous insidse and on‘the

cirecle, Therafors, by II, §49 Theorem &4,
%{/} = W‘(a}%%;’g)%z;%?p/% ......
> A ) = Flho) # d'%/}z'a;y/%}%, JL/(,{{Q/}/)# ~~~~~

M. Kerner, {5) p.l%9 aend (6) p.B548,
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as was Lo be proved,
We shall now study the nature of the convergence of this series
gomevhat more intensively.
Theorem 2 The series in Theorem 1 converges wiformly to £{x) in every
cowpact set G extracted from the closed sphere fx-%,/ < 60 , whers 8,
o< ©®< 7 5 is erbitrary. Worsover, the serics
VALV R IS RY TN L7l (A AY T )
converges unifornly in G.
Froof: Tithout loss of generality we may assume that x,= 0. Then let &
0< @ « £ , be chosen arbitrarily, snd held fast. Choosing r, /<A < 75/59
We heve
v 0’1;;/(0,!)6’/ = -—_—3;/.7{{.":@/ A7
’ 2 a e
where 0 is 2 girele of redius r sbout F=¢0 , and lzjﬁg@p? . Let G be
a compact sebt of points such thet ﬂ%/56¢7§ then 4%Y7ij'is bounded for
X 3n G and & on €. To prove this it suffices to show thal the set of such
points 7% is compact (cf. I, §?9 Theorem 1). Suppose, then, thab f?ﬂ%j
is en infinite eggregate, with x in G, end 7 on C. The points 7 have at
least one limit point 77 on ¢, end we may select o sequence [7% / converging
to 7. The corresponding sequence [, f, lying in G, conteins a sub-
sequence converging to e point =', and 4%4/5677 o Thig set, end the
corresponding set of 7’s yield = sequence, which for simplicity we may
designate by {7,4,} , comverging te 7'’ . We have then A&#(??b&¢<‘ﬁ7ﬂ
and go /7
V4 I Hl0s0) < o
when % is in G, Sinece r > 1 the member on the right is the general term

of a convergent series of comstents. This proves the theorem.
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S0 far we have not geined any informaetion sbout the moduli of
the homogeneous polynomisls 5Wf(x 3¥) o Our first purpose inm getiing am
appralsal of these modull is to prove the important result that the
Gateaux differentials with which we have been dealing are in fact Fréchet
differentiale. We have to prove thel property 2° of the definition in I,
§5 i fulfilled,

Let f{x) be anelytic at %, , with radius of amalyticity o0 thers.
For definiteness choose a muber 0 < 0, < 0  such that /Jr—-4x,/ < g0,
implies

JA ) = £ X)) < S

Then let us agree thet for an arbitrary y.# O we shall choose r =o that

/7//}///:/0/ o Then
ﬁ . = [/3/07; /a//
J///(D?}// J/// /£

7-577“/

where € is o cirele of radius r with center at 7=¢ . Bul, y being
fixed, /%fﬁm,%fjmh/ is 2 continuous function of 7 on 0, and so hae
en atteined maximum thers:

dFchrt vl < H(y4)
This gives

& , ¢y 4)

[/Uf j[(/fmj’/j// g ?7;-—/%%‘

Low VAC Kt TV S MER)) + HFCHat Ty — Lol

g0 that by the definition of M(y,r),

0< Nye) < fFrood + %@g/%%wry/v/%//
Irca)) ++ = &

where ¢ is a constant. Thus we have
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N4 asy)) < 7’; gyt

/

this inequality gives an upper bound for the modulus of dﬂf{xo;y). Now

when l}%ﬂf/z the series
(f/_)i//z+ (ﬁ/_}.’// -
/A V2

. / V78 ﬂ
eonverges “o the limit 374 = Henee, By Theorem 2
/'— 7 /0/ !
/

Ivy e
////X‘”L}/) f(X’J Cf][//‘/a)y/// /... _L/ O
end from this inequality it is easy Yo prove that cfﬁ(xo,y) is the Fréchet

differential abt x,.
Theorem 3 If £{x) is snalytic at a point x, it admits Fréchet differe
entiels of all orders in the neighborhood of the point.

It should be noted that thies theorem depends on the fact that
both B and B' are complex vector spaces, B' being completse, so as to ine
gure the exlstence of the integral of a continuous function.

3 Corresponding to II; §5, Theorem 7 wo have the following generali-
zation of Welerstrass' theorems
Theorem 1 Let [&2(&%} be a sed of functions, each smelybic in -
domain D, snd let the series

W) +* UL (X)) # -~ — -
converge wniformly in every compact set extrected from an erbitrary closed
sphere lying in D. Then the series converges and defines a fumetion £(x)
snalytic in D. The differentials of £(x) are obiained by temwwiss differ-
entiation of this seriss.
Proof: The series obviously converges and defines s function £{x) in D,
which is conmbinuous there, by I, §5, Theoren 2. We have to show that £(x)

has o differentiel at each point x, of D. Let y be an arbitrary fixed
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point of B, and coneider the series
7{(/1;/07"7}//; Uy Xyt TY)+ U Ko TY)# -~ -

here /7/< /4 insurse that =, + ¢y le in D, Then the terme &, (L# 7y)

are snalytiec funetions of 7 when /7/< 4 , and thersfors by 11, 03,
¥
Theoren 7, N x,# 7y) is also, 1¥ we can prove that the series converges

<

le. Let 8 bz such a set.

Ha

(9

uniformly in every closed subsetb of the above =i

g obviopuse

&
e

Then the set of values assumed by X,+ 7y 28 7 rangse over

1y sompost, =nd lies in = clossd sphere in D. The function £(x,+ 7y) is

therefore analytic at 7= 0  that is, df{x,; existe. The leglitimac;
5 \fte

of repsatad termwise 1ifferentistion follows by spplication of II, §39

The theorem just provad is of lmportance in daveloping the prop-
ortics of analytie funstions from the Welerstrassien polnt of view. For
this we shell define power series, utilizing the conssplt of polynomial

A
set forth in I, §3.
3y 2 power series is msant a forusl expraossion

Qold) # Ap(X) + - = - = # L (¥) + -~
Tuere hﬂ(x) ie a homogensous polyncmial of degres n on B to E', By the
radiuz 0 of such a series we mean the lergest positive nuxber such that
the zeries coﬂvmréya uniforuly ln svery compaect sel extrosted froom the
ephiere  fXJ< 4L where O <d< L. The sphare //X//{/ﬁ is then e2iled the
sphere of convergence of the power series, and we say thet the powsr seriec
converges regularly in this sphere.”
Theoram 2 U powar series defines an enslytie function within its

sphers of convergenssa.

o

Se@s howevar, the rsamark=s in §7 ori the ghepe of the reglon of convar-
gence of @ power cerles,

=



)

1II §3 h

i

Thie theorenm is 2 direcl conssguence of the one before, for a
Lomogsneous polynomial li,(x) is enelytic for all walues of x, with the
- 3 s e < / “ "
Trgchet differential dé%(%; /23”7/W7£5w-vﬁ}y} . (Bes I, @53 Theoran 10)
L

“heoraw 3 If = power series vanlisnes for all values of ites ergument in

en arbitrarily smell neighborheood of x = @, then its individual terms

<

enish identically.
Proof: Juppose that

AolX) + Ay (X 7 == =0
when Jif<f , and let x, be eay point, other than »=0, ic B. Then JAL[J<4
it A/ < L. . For sueh values of A,

Z24
Z

holkls) # A4} + A4, () -~ = 0
Therefore, by 1L, §49 Theoren %, the coefficients of this power ssries in
A wust be gero. Since X, Was arbitrary this completes the proof,
Theorem 4 The power gerizs expansion of en enslytie funetion is unigues
Proofs Let f{x) be an -nalytic function defined by the power series

A = HolX) + hy () # -~ -

for JX/<p . Then also, by theorems 1 and 2 of 111, §29

'

h

Ak

cand this 1s o power seriss with radiucs at

Alo)+ GLlo;) + £ T Floj0)+-—-
d

cest as great as g . Bubtract-

w

ing, we have by Theorem 3,
- L b .
hn(x) = 555 0 H0;%)
for 2ll values of ¥,
Concerning the behavior of a power series on Lte sphere of con-

vergence w2 have the follovwing sxtsnslon of the theoram of Abel:

v

# £
Theorem 5 Let £(x) be the function dcfined the powsr seriss 2. 4, (&)
-hsoren o -

inside its spherz of convergence, and let the series converze for ths

velue % = x, on the sphere [/=p . Then



a7

Lim AlAd) = 2— 4,(%,)
A4 o

when the complex nusber A approsches unity slong = peth included beiween
tro chords of the unit circle which pass through d= /.

Lo
Froof: It suffices %o prove that the series 2 ﬁ@MA‘(o) converges uni-

o
foraly in A on any peth of the specified kind terminabing ot A=/ . 7To
gheow thie zonsider the partial rameinders
15/7,/& . ’é]ki(’{o/"" ""“/'é’p//ﬁ’) e

3y hypothesis ws cen, if & > @ is given, choose n, so that //ﬁn’/b /<&

™ ©”
f _po =205

5 heldng = S N htxo) = il 287 25 Jedls -

Pﬂ,ﬂﬁ/
A=np

ck

When n, <

= (ARAVYS e NS, AS

3 ;007

go that, if n > n,,

//f Af(#%o//g év///{pfijq%// Ao 74/47”‘“;/’/&7% /f;/hy

S Efn-ar[ 1l i) s 1)

N Z( //;4,/,4-//
/=737

sines /A/</ . Thic inmecuslity Ls enough to establish the unifora con-

in A , if the path is such thet /=47 is bounded os J=-/ o
7737

I2 me wieh to lmpose the condition //-40/ < A (/- /,}// s

<
&)
=
02
)
=
(¢}
L.
=

vhere * ig en arbitrary coustant, » > 1, we find that it will be catisfied

o 9 e

by restricting A tu lie inside thet portion of the unit circle bounded by

the curve

i

4= 24 [LA%20 (A-7=ne’?)

in the coaplex planz. Zy chovsin A sufficisntly large we cen bring the

J

/
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to include any path of the kind requirsd by

Pron §?9 Theorexn 2, and §§3 Theoren & we see thalt 2 power serie:

convarges absolutely inslde its sphere of convergence. This enables us 4o
draw the Polloving conclusion:
Theorem £ I£ the radius of convergence o the power seriecs 4§T14@00
is 0 , then /
. 4 L
Lim //ﬁﬁ(;()// 2 m when  JH)FE O
7>
Troof: let &= ox g0 thnt = . Then the series
g@ //)(// 9 (=] e {f/ p L 14
&
S M (AENf = 2 1114, 8))
o
coaverges vhon [fi/< 4 5 so that
o -skM /
L 447 //é;,[gj// '} -
B> ,
Therefora -z 0
. 7 2
v amamevs 7 Wxy
o7 =P oo
4, The extension of Licuville's theorem ls easily eccomplished.
Theoren 1 1f £(x) is analytic st all points of B, and if /J8(x)/ 1is

bounded in B, then £{x) ie = counstont.

For let %, and x, be an arbitrary p:

-
[ L

ir of points in I, and
consider the function of the complex varisble o , fw,+afx - x,J1).
Ty 11, §§9 Theoren 5 this functicn is & constant, and so has ths saume
value at &= O zs at o = 1. Thus f{x,) = A x,).

The folloving thsorem regarding a function defined by msans of
integrals is of considerable importence.
Theorem 2 Let 7 be a rectifiable Jordan gurvs in the complex plans,
Tet w{7) be & funetion continuous on 7, with values in B. Let #{x) be ana-

~ -

lytic in = dorain D of ®,lenocte by § the sel of pointe x in B such that

x # y(7) is in D for all 7 on C. Then the integral
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(X&) = / AOx+ Z(W/d’/*
4

defines e Tunction enalytic in G for sach « not on 0, and analytic as g
Tunetion of o at all points not on G, for each x in G. It is conbtinuous

in x and o¢ together iu these ranges, smd

VL . [ At g,
D i (7‘—0(/7'

J/‘—'(Ija;z/ - /‘ cf/m’f—y/rj,'z/d?
C 7TT—

Proofs We are assuming that ¢ is non-empty. The eesertions regarding F(x,u)
as a funetion of (X alone are consegquences of 1I, §3, Theorem 2, since
Hx + (7)) is conmtinuous on O,

The set G is open; for suppose it contains = point x, . Then
%o 7~ y{7) lies in D for all ~+ on C. Bince D is cpem, with sach 7 thers
is sssociated a largest positive * d;. guch that without excepbion
WX =K, - 4T < I ( 7 fized) implies that x is in D. Let us suppose
for a meoment that the numbers d:/_ have a positive lower bound d as 7
ranges over C..
If then #X—=Xof< ¢ = lies in G, for when # is on C

DK+ 47]=Xo = 47/ = JX~Lof) <

s0 that x + y{(7) 1s elwaye in D. e have wyel to demonstrate the existence
of (. Suppose that 1.u.b. [d‘,; ]= 0. Then thers exisbs a sequence [7,/
ca G such thatb %70 s and we may suppose that 7, —> 77 on G. Then
H%) = 377, How d,,#0 , and we may choose n, so that for all larger

values of n, t//.y[f;,/ - y('/"'/)//( é J,;-/ and Gg-” < é; (fr, .

There is the exzceptional possibllity that d‘, = s i.e.D is identi-
cal with B, This causes no ¥rouble, however.
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Then
- - v )
WA= Ko = YTI) S JX~= Ko~ Y(T) I + % Ipe
end to inmsurs that % lis in D it cuffices merely to reguire thet
AX =Ko = YT} < 1/50’}/ . Since Og; < Y 0‘}/ this contradicts the
definition of d;-ﬂ o 2nd hence proves that the numbers d:; heve =z positive
lower bound.

e next prove that P{x,%) iz continuous iu the two varishles,

Lot %, ke in G, and o, 2 point not on C. Ye have

NFCxa) = Flids) ] = //“’{‘/ /%“%Z—E;"'?/ - %Lf_{;i_{_’g?/}m/

o]

< / 7o/ ) F L)) = FCt el 3 fot~ay ) ot o) .
77
; /T ) T= 2,/

vow flx 2 (7)) is continuous in x at x, , uniforaly in 7 for =ll 7 ou

s PR -
2 <

s = - - af / N e A .
s this followe by I, §;9 agorex Zo 'loo, Du, # vi7)) iz bownded on G

o

Since o), is not on C, thsre oxlsts en 1 > C such thel /7-a,/ 2 i
E e I R 95 (-!-_Z tha & a / ~t
and 12 we requirse  Jo -~ &/ 5 s then /57— /> < £ . Let & >0

be given, sind chooss dv<é- J zo thet 18 JX— Ko N< & , thne inequality

7/ = 0 7 gZL
NACHpCr) = Fehotycn)) [ < ey

holds for 2ll 7 on ¢, where L 1s ths length of 0, and //;5{,&’0% }/{W}/</V

o 7. With this we have

Eexe) - FOx, o g@_;f;-!___ LK =y ) ST =
JE s v ale 7~

if /o« -a/ is less then the saaller of ithe numbers d

It remaine to prove that T x,0¢) admits e differentisl =t each
point %, of G whan & is not on G, Let z bz sny point of T, Then

Llgs + Az + Y7
7 - o

1
3

[oX¢

is sm snalytic function of A ia o certein neighborhood of A=06 ,



IIiI §¢b¢- Lg
each 7 on O, and it is continuocus in A,’/‘ together. Therefors, by II, §§,

Theorem &4 the function

Flxot Az, &) = ////o+/(z74y/7)/ o

. 7 - &

is emnelybic at A=0 and its derivative may be obbtained by differentiatior

[oF (Kerdz, &) ] | g

under the integral sign. fince d Plx,,x3z) =
24 =0

completes the proof.

Theorem 3 Let £(x7) be defined for all values of x in a domain D of
. &

the space B, and 7 on a rectifiable Jordan curve in the complex plane.

Let it be analytic in D for each 7 on C; and continuous in both vari-

oblee together. Then the integral
Fx] = Z/(zjw a7

defines a function analytic in D, with the differentisl
IF(tsy) = [ LK, 75 y) A7

The only peint ot which we need comment on the proof of this
theorem is that concerning the combinuity of F(x). This follows as soon
as we have observed that f(x,7) ie coubtinuous im x, uniformly in 7 on
the curve ¢, because of I, §§, Theorem 3., The theorem then is a direet
consequence of 1I, §3, Theorem 4.

Theoren 2 finds an applicaetion in the following generalization
of Riemamn's ‘thecrem in II ( §5, Theorem 1). |
Theorem & If £(x) is enalytic 0< #X-Xof/< A, and bounded in this
range, then }i‘iﬂ/\/o (%) exists, = 4, sud if we define f(x,) = A the
funetion is then analytic at x, also.

Proof: For couvenienes denote by D the domain 0< IX-K W/ < 4 .

Choose o Tixed element y from B, such that //y//:: / s end conslder the
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funcbion YP(7) = /(/{f- ’/“y/n » Where % is & fixed element of D for
which O < X~ A /< -—Zl— 4 . Y(7) iz smalytic Tor all values of 77
such that x + 7y is in D, that le, for 0< /7/ < /X~ // and
IX=Xof) < 17/ < 4 = IX-Hof . On the civele I~ t,/=/7/ YLD can
have at mogt one singulsrity, whieh mey occur when x + 7y = %, . Under
‘the hypotheses of the theorsem %(77 is bounded in the neighborhood of
sueh a point, and so, by II, §5, Theoren 1, approachss a limit. Hence,

allowing for a possilile completion of the definition of Y7/ on the

eirele /7/= JX- X/,
%{0/_—_7[/,(,/ = //qu’f;‘

(o 7

where U is a cirele sbout 7 =¢g of radius -—éé « This represeptation is

valid o< /X- 4 ) < £ 4 . But the integral

2
[ 27/_./; / -———-——--7 7

“defines a function analytic without exception in the region @ ¢ 7/}1’*%?/4 —éﬁ
as we see by reference to Theorem 2. Thus £f{x) = F(x) vhen x £ x, , end
the theorem folldws al once.
5. Isolated singular points of a fumction f{x) ere defined precisely
a5 in the case of a function of o complex variasble (esee II, §5) Likewigse
we define removable singularities end poles as before, and agrse to eall
all other singulerities essenbtial. Ve have already proved the fundementel
theorem regarding removasble singularities (III, §4, Theoremk). Next we
prove a theoren enslogous to thet of Laurent.
Theorem 1 Let £(x) be anelytic in the domain D: 0 € v < /x/ < R.
Then £(x) may be expanded in the form |

Ay = g: b &< )< R

where
—t k) -

%”(X/ = 2/._/7- / 757—:”—-*/(/7‘ /7-—0,.7_‘41‘2/---.

G being = ¢ircle of radius & A </g < L about the origin in the
274 vxy
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cuaplex plane. The series convergss uniforuly in eovery compsct set ex-
tracted from a closed subset of M,

- . . . s s %
Froof: Tor a fixed x in D, £l X) is analytic in o when - o/ < A
xy 44
Yenee b 11, §59 Theorem 2,
£ ]
Ax) = 2 W byi)
- <
“here p,(x) is given as sbove. Since the reglon of convergonce includes

the point & = 1, we obtain the desired
wa ghbgarve thelt when losed subset of
nuabers 23 such that

Jers /Q; faﬂd pl SUCa T //A// M
2lements x of this set. Then if x is in

il * Ay
ntegrnl

raprog

1Pl

= n 4
2
whare ), and ', arc upper bounds
and @, respectively, as x raages ovar

M p"

converges, the proof ic accoaplished,

It is e2sily seen that the ©
r < gxf< R, sal thet

P (X J)

when o x and % both zatis®y this inem
It is 1o b2 sxpested that the
analytic functions of an abstraet varia
functions of several complex verlsbles,
igolated, while essential singularities

V5iQs

7+ /%% 42:

b

expanslon. To complete the proof
T nes bteen chosen, there exist

£

< <
Ay

coupact cet we obtal

=)
(=S

ae

ti

cumpact
/%

unchions p@(x

2

) are snelytic when

o b, k)

T84,
BLLTY o

wost lmportant singulerities of

ble will not be isolated. For

for inctonce, poles are never

In general the




einmuiarities of zuch 2 function ere not isolsted, and their classifi-
gstion is o complicated problam. Ve shall occovdingly 1iwvlt our Jiscussion
to a fev gansral consziderations snd ths sxhibition of sxomples.

Then the spacce E' is merely ths space of complex mubers, so
that the values of f{x) are numsricsl, we call #{x) a funetionsl., By III,
§19 Theorem 1 end the cleceicel tneory of functions we sonclude the
fellowing:
Theorem 2 1P (%) ie an snelytlc functional in 2 domain D, and does
o $ Ty A le 47 . 4 2 - - S um TY o A
not vanleh there, then glx) = is enslytic in D, an

dgixy) =
For functionazls we hiave

ed essantlel cinguleritilc
Theorom 3 If 22 is on snelyti
sligulerity ot 2= %6, 1t comoo or
SVOPY i 02 that polnt.
Froofs Let * be an arbitrery compl

czen, Thien
/ /
/ / €
=
k)= A4
end co the snelytic funciionzl f
et ¥ = %, {ses II1, §4

= U, lim f{x)s e , whcrecs
X-2Xa
thicee oventuslitiee contradict ths
Pllumlneting srsupres of
whicly Loy woy llrcpley ere caclily

I

< PR S G4 o L - L PO S
the theorsn ol Walerestirass pertaiuning
), 5 4 2 . y wd 4" oy 2 4 3 s S =
¢ funetionsl il 2n Llsolatod sssenticl
Litrorily nesr orv preacsigned valusz L
CLLYIPrLly near cny preacslgned valusa i
- ey v e, o a . ‘ -
loey nusbor, Then, whon £ =nd n are
AN ey o d A P Y
o, whavre avisto o point xw osueh thet
boud R o oy P
X0/< ir o I"OY gupplce thic ware 20 the

Ras Y8 .
vhon 0 < /X Ko 7 < 4
. /
wi = wust Love e removable
/ /(fll’/ = A4
o [ Y - .
9 LHLOTZL i, e Lot Ll SANR) = 2. 1T
X X
e p1 oy - P YA L ) . s o T
iz u;f Uy, Lim ) euxiste, znd beotlh
X=2Xe
hypothacas of the theorcm.
functionals znd tho clnguls
conctrueted by taklag for T the spnes
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§

0f conplex-valued continuous functions x({t; 4cfined O < L =1, with the

nora fxf = wex [x(L)/ .
o<t </

If g(x) is 2 funstionzl snalytic in e domsin D of T, with values

3

filling out =2 reglon 5 of the complex plope, and L7 P} ls an ordinery

functlion which iz omelytie in 3, then (x) = 7 [(x)/ ie 2n anslytic

/uﬁcﬁona/
Aof w in D. If () has en isolatsd singulerity -t o= &% , ond G iz the

sot of elements for which g{») = a, , ©

’

o

points of #(x). Por example, consider T [0(1,] s Thers

1729

3}
é\
N
S
&
NN

/5[9()(/] = T= gex
’
sucl that /}((zé)df =/ , Thesa

hy
i3

Les o pole for all points x(%) o

pointe cizarly form 2 elozcd, non-isolstad point szt. imilerly the “unc—

hes an zssential zingulsrity st sa2ch polmt of the sbove set,
It is inteoresting to note that the sbove functional g{x) is a

ot

nomogensous polynomial of degree ong, wilcsh deocs wob hzve 2 gols 'st L=

)

inity'; that is, //b(‘f)//ﬁppzowu‘s ao definite liwil o2z Y f-»@ . In
8

fact, thern existe o sequemce  %(%) such that Jk, /@ end glx,)= O

It is therefore lmpossibls %o chiaracterize polynoulinlc ze onbtive Tunchtlons

Flz) = Lx ) + Az, )
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vhore £ ¥sy) Alrsy, are funstlons of two varlsbles over E(R), with
voluzs in T'(R).

Let us nov suppose thet T'{R}) is coumplate, snd that 2 z) is de-
finsd in 2 doamzin 2 of %(0). Then ws can discuszs Lhe awelyticity of £(z)
in terme of the propsriice of the functionc £, end £, . The fundamental
proposition, & gencralizalion of the claselcsl theorzm perteining to the
CTauchy-Riemann ecuationz, is as followss
Theorsn 1 In ordor that £{z) be snalytie in D il is nscessery and suf-
ficisnt that the funciions £, {%,y) 5 To{%,y) be continuous and 2dmit
combtinuous firzt partial Gebtoousx differentiacls at 211 points of D, and
that the ecuations

G Alr,ys &) = Oy fulxy ;6]
7
dyfn,ys &) = ~d, £ (4y; &)
be satisficd in D for an arbitrery & ia B(R).

Proofs If #(z) is snalytis in 2 it is continuous thore, and the differ-
entisl d?(z;82) is lincer in dz, aud continuoue in the psir 2z, dz. But
0f(z;4z) = [/ 7[[2*”42/ £z

F>0
Hence in perticulsr, taking A/V%-fod s 7= s Where U ig resal,

O;/(Z,:ﬁzj

/,M[%/(Mfﬂ YA 00 #

£ K 2AR, Y )~4 00 y)

z

This 1imit will sxist, howsvor, only if thz separate poris hove limits,
Jncrefore

0A(z;8k) =

8luliarly we obteln

Az 4X)

Gfy x5 a8) + (G Aaln, yad)

Gy Al ysak) =Lk Vi
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Sincs the left momber of these ecustions iz coatinuous, we see thet the

4
O\
Lt

=

ES

] 2 o o
cour terms on the right must be continucus in (%,v;4%) when x <+ iy is

il‘s

D and 4x iz arbitrary in Z(R). On equating corrseponding parts we ob-=

tain scuations (1). The continuity of f/ ond 0, is 2 consecusnce of the

continuity of £(z

°

2

To prove thz sufficlioncy of the coniitions supposs thaiggzzgﬁx%lkﬂ/

is an arbitrery clement of %(2), and consider the expracsion

A(zrrdz)~fezy A rsay-tay, yLayrsay) = £ 5))
7 S+ £

L Aol XESAL LAY, y+ LA SaY) Lol y)
S+ T

whoere z i o D and 7= g+ 1-b s 2 zufficicnily swall complex nunber.
siext, conszider the function
E (St 0,0) = f(X+SAN =Fay, y+udl +04y)
£ Zour rezl veriasblos, with values in ©'(R). This function is continuous
and adwite continuous first partial derivatives nmear (0,0,0,0). It ie

then not difficult Lo shov that it admits a tolal differentizl+ at (QgOgogO)ﬂ

e de
ths general case 1s proved in e slbuller memner. Yriting

e T = FC00) = 5 fe00) L A (40) = E sty
/{;M/ < JAcs, ) —/(f/ﬂ/'z;g(s,a/// . Wts,0) - ftop)-Sfece,0) )

r T NAls0) = Falo0)f
AT W74
¢
< //,;/ /jé (5,4) - (5,00} f . W ts0)~f02)~ S0l Jt6,0)- Aol
Is] + 77 s/

§ Ealaly

and from this the result follows without 4ifficulty =8 & resultl of the
unifore conbinuity of %f(sgt)o
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[
@]
(8]

that is

E(s, 2, a4, )= Flo,0,00) = SZ. (0,000) + ¢ £ (00,0,0) + % £(2,0,0,0)
* v lo,0,0,0) # 5(5,?,%7/‘/’
whare /7 //5(5/24/% ﬁ’)// = 0

012G 0] spp -ty

Therefore, when expressed in terms of Gatsaux differentials, we have
H(tSsdp-Tay, y+laprsay)- 5y = S gy k)~ 2d, 405y,4y)

b LG h a0 Gyray
* & (5, Z/;ZL»&)

here is a similar relstion involving the function. £,(x,y) and an infini-

3

—

tesimal W(&:ZLIZZS) o Ou making uee of the eguations (1) we find that

7!(2%74’:)'/[(2/ - (%’dx%(%yjéy/cd;%{%yjd///
H’/ G ALy ay+ 4k /W/M//Z] &;ﬁ
Y/
s JE N IEN I

s and /7/ > E (/5/%/54//, From

thic we conclude that

//}W /;L 7&’//7/ =

70 /7/

ani hencs that £z} has the 2iffserentizl
Gf(z;42) = Gf%/zf,ymwaq;%zm;ij/
+ Ty s yiay) Gyt oy a0}

Zince £, and f, are conbinuous, so is £z}, and #{z) is analytic. This
proves the thsorsam.

The kmown properties of Jf{z; 4z), az the 4differentisl of an
enelytic funciion, ensble us to drow conclusions about the properties of

and thelr differontials., The various Geteaux

the functions f’/ s T, 5 7
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ii

.

° 13 o 3 -~ 2o e
differentiols are in fact partiel Frechst differentielss thelr linearity

ic evident. e cam, in fect, prove thet £,{x,y) end £,{(%,y) adumit total
Trdehet differentials., That is, we regard ithe slement psir (%,5) as =
single element in a comzposite space such that

(XIDYI> + (Xzﬂyz\) = (X/* Loy, + Ve )

a:(%,57,) = (a-x,,8-y,)

//(X,é)ff,>// =[x,/ +# 1y d
If we write

Gy &, 9)= QA E) + BGhsrip)
with a similar expression in f£,(x,y), then
Iftz;az) = dheny;éy)+ LOhalny i Ey)
mhere 472 = &£+ £# . Trom this, end the fact that J4z/ < J5/+ V14
it is easgy to prove thet dof/(xgyg g;‘@) ig in fact the Lotal Tréchet
differential of £,(x,y).
Theorem 2 12 f£,(x,y) and £,(x,y) are two functions on I(R) to T'(R),
where 2'(R) is complete, and
fz) = f/(,xsy} # 1 f?_(XQY>
is analytic in a domsin D of the couple-space Z(2), then £, and £, ad-
mit total FTréchet diffeventials in D, and these differentials, for fixed
velues of the increments, are such that
Ihlnyi& )+ 0 lhyi €,y)

is anelytic im D, The partial Freechet differentisls of £, and £, , of
21l orders, exist and are continuous in D. They heve certain symmetry prop-

erties, such as

Gid(ny 6,4) = O tftnys ,6)
Gutr s &) = Iy folnyin, §)

The proof requirss no elzboration.
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I In this concluding peregraph we shall turn our attention to the
relation of the foregoing work to that of other writers on the same sub-
jset. The wmemoirs of Gatsaux, already mentioned, desl with special cases,
and our work may be regarded as the logicsl abstresction and completion of
these memoirs.,

Professor Norbert Wiener® pointed out the validity of Cauchy's
integral theorem for abstractly-valued functions of a complex variable,
end so opened the way for the systematlec developments which we have glven
in II,

The work of the Italisn mathematician, Lulgl Fantappié’$* on
'analytic Punctionals® is not directly connected with our general theory.
Fantappid considers operations F [f(z)] such that to each function £(z),
analybic in the sense of Welerstrase (i.e. a complete monogenic funciion)
there corresponds a certain complex number. Such 2 functional operation
is s2id %o be snalytic if when £z, o) depends analytically upon & in a
certain domain, F [f(zgﬁx)] ig an ordinary anslytic fumection of © . The
difficulty which prevents such functionals from being included in our
theory lies in the fact that the class (A) of complete monogenic functions
ie not a vector space. Various %topological auestions connected with this
class have been investigated by Minettl =%, and it appears that certain
of Fanieppiéﬂg enalytic funetionals sre not continuous sccording to the
topology suggested in his work.

7,

In spite of these matters the underlyling notion of Fantoppile's

definition mey ssrve as =2 definition of analyticity equivalent to +the

* ¥, Wiener, (14) p.139.
I L. Fan‘t’appie’g ( 1) and (2) °
sl e g, N:ine‘t‘”@is (9) P 118 ffo
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one which we have used. Let us phrase it as follows:
Definition A functionf(x) on ¥ to ' is seid to be anelytic in a do-
main D if

1° it is centinuous in D

2° whenever @ (&) is an emalytic function on C to B, and T is a domain
of the plane such that ¢ (6() is enalytlc in T, and @ (&) lies in U when o
is in T, then £ @(x)) is anelytic in T.

This ig clearly sufficient to insure the existence of the

Gateaux differential. Condition 2° is also necesesery, for 3f f{x) ie ana-
lytic, it admits a Fréchet differential in D, Therefors, by I, §53 Theoren

5, (o)) edmits a derivative

aé%%@/ = JF(pro); Ptecs)

whenever @ (&) 1is in Do

¢ definition of analyticity very siniler to thet which is ex-
pressed in our theorems on power series wag used by R.S, Martin in his
thesis, and subsequently by Professor A.D. Michal and others.* iccording
to Martin a function on § to E' is enalytic at a point x, if it admits an

expension in a ssries of homogensous polynomials:

24

Ay = 2 b =4,

A =0

If mh, is the modulus of h,(x), and the series
&
&7
2 by A
7]
is convergent when /4/</0 9 /0 is celled the radius of analytiecity of the

function at the point x = x, . When the space E' is complete this implies

% R,8, Wartin, (7) p. 58. 2.0, lichal and A.H., Clifford, (3). A.D.
Kichal and R.S. Wertin, (82). The last two papers deal with various appli-
cetione of the theory to problems in general analysis.
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thet the series defining £(x) is uniformly convergent when 4&¥=k@/Q§¢9A79
0 < &< 1.1t would therefore seem thet this radius L is emaller than
the radius of snslyticity as we have defined it in IIIL, ‘§29 for a closed
sphere is not in generel compast, and wiform convergence in a compact
set is all that is supposed in our work,

However, o function enelytiec imn Vartin's sense is emalytic in
the sense of this peper, and converssely; the only quesiion is that of the
radius of enelyticity, for in the preeof of III, §29 Theorem 2 we saw Lhat
the series of modull

o
2 mh, A"
g
hed a positive radius of convergeuee. ? cleser inspection reveals the
likslihood that this radius is lese them the radius of analytiecity of
A x) at %, - Let L be this latter redlus. Then, letiing -z, = A %

vwhere JE/=/ , we knmow thet the series

g‘f 13/ )4 (&)

converges when /J/<f/@ , end is a continuous function of & . New

Jow. =
/2;;6,,/42(§3Q/ w4,

and hence, if it should happen that a ssegquence {§¢/Z exists such that

i D, EL)) = mto

for all sufficiently lerge valuss of n, we could assert that the series

co
#

2 /1/ 7?7/%@

o
converges when /A/<0 . It is not at all obvious that such a segquence
will exist,

It should be remerked that the notion of radius of amalyticity

ie not as importent in the general theory as it is in the classieal case.

This is becsuse the region of couvergence of a power serisce ls not uneces-
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sarily spherical, or cireular, as is the case with numericel power series,

For instence, in ths example of III, §5g the functional
! = A g + LF0)F
= .
/= f[/// /4 f
’
where (%) = /x(‘"@) dt  , has wit radius of snmalyticity at x = 0.

G
Yot the power series defining the function converges and defines an ana-

lytie function when /g X)/< 1. The open region defined by this ine-
quality ineludes far more than the sphers jJx/ < 1l; indeed one may con-
struet elements of arbitrarily lerge norm lylng in the region defined by

Jelx) /< 1.
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