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ABSTRACT 

A stuC.y is made of the Laplace transformation on Banach-valued 

functions of a real variable, 1T.i th particular reference to inversion 

and representation t heories . First a new type of integral for Banach-

valued functions of a real variable, the 11ImpropET Bochnertr integral 

is defined. The relations b etween the Bochner, Improp er Bochner, 

Riemann- Graves, and Riemann-Stieltj es intee;rals are studied. Next, 

inversion theorems are :;Jroved for a new 11 real 11 inversion operator 

vv-hen t he integral in the Laplace t ransformat i on is each of t he above-

mentioned t ypes. Lastly, re1)resentation of Banach-valued functions by 

Lap lace i ntegrals of functj_ons in B ( [ O, co ); ::f ) , 1 4 p ~ ro, is studied, 
p 

and theorems are prov ed giving necessary and sui'fi cient conc.i.itions . 

The t l.1eore;ns are v er;y like t l1ose p roved, for nume r ically-valued 

functions, by D. V. 7.'i dder in his b ook ''The Lap:W.ce t r ansfor m" 

( Prine et on, 1 9 L1.1 ) page 31 2. The class es H ( ol. ; x ) , 1 ~ p <:. °"' are 
p 

also stud:i.ed in this 3ection as is t h e re~)res entation of nmnerica.l ly-

valued functions by L::.:;)la ce-Stieltj es int egrals. 
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I NTRODUCTION 

The theory of the Laplace transformation on real or complex 

functions of a real variable is one which has been, for a number of 

years, of considerable interest to both pure and applied mathematicians. 

The interest of a number of these mathematicians has centered around 

inversion and representa.tion theories, the former of these theories 

being of interest from both the utilitarian and function-theoretic 

points of view, and the latter from a primarily function-theoretic 

viewpoint. Historically, the Laplace transformation arrived on the 

scene considerably before large developments in abstract spaces, and 

consequently was defined only on nUi-nerically-valued functions. However, 

the extension of the definition o.f the' transformation to the domain of 

Banach- valued functions of a real variable, that is functions on ( O,oo) 

to a Banach space, is one of the several e2..-tensions that were made, and 

it is with this extension that we shall be dealing here. In many 

respects the theory resulting from this extension is now approaching 

the degree of completeness enjoyed by the theory for nrunerically-valued 

functions. However, in the respects of j_nversion and especially 

representation· theories, the approach is not so close. In parti cular 

there are, as yet, no representation theorems for Banach-valued functions 

of what might be called the 11Widder 11 type. This terminology recpires 

some explanation. 

Let f( ?.. ) be a numerically-valued function of the real or complex 

vari2.ble 'A , and let LK,"C [f( 'A)] denote any fixed but arbitrary 

inversion op erator for the Laplace transformation. Then it has been 
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shmm for many such inversion operators that if LK.,-c 

exists, and either J°" l1K.)-C Lr( A )]I pd "C ~ M, p fixed, 

1 < p < °"' K > K. ,
0

or ess. sup \ LK)-C [t( I\. )]I 
0 o~ -i:: < °" 

~ M, K > K , 
0 

where M is independent of K , f( 'A ) is equal for 'A > 0 to the 

Lap1ace transform of a function in L (O,oo) or L (O, oo) respectively. A 
p 00 

theory of this type for a particular inversion operator is what we 

call a Tr\\fidder11 type theory. ~~ [ For examples see Widder ~ 1 2, ch. 7, 

The task of developing 11Widder 11 -f:0rpe representation theorems for 

Banach-valu ed functions is t he one we have set ourselves. 

Since a 11Viidder" type representation theory is stated in terms of 

a specific inversion operator, the opportunity was also presented both 

to enlarge the irwersion theor-y- for Banach-valued functions, and to 

study a new inversion operator for the Lap lace transformation. We have 

grasped this opportunity and have developed the theory in terms of a 

new 11 real 11 inversion operator. A real inversion operator is one that 

utilizes the values of the generating function a~ising only from real 

values of the independent variable . Several of these are knovm; for 

examples see Widder [12 , ch. 7, § 6; ch. 8 § 25 J , or Hirschman [ 7] • 

The new operator in question is denned bv the formula 

~ 
00 - 1 • 1 

2K 2 -
I L Ki:- [f( A 3 = :~ 1l cos(2 K'll 2)f( K.( 11 +1 )/T: )d ?( • 

' 
If f(?.) = r .-'A-C~(l::0 )d-C 

0 

, then under certain conditions, 

Hurribers in squa.re brackets refer to the bibliography at the end 
of t he dissertation. 



lim 
I<-+ 00 

1 K ~ [ f( 'A )] 
' 

viii 

= ~ ( -c ). 

The fact that the representation theorems will be stated relative 

to this particuJar operator is no real restriction, for the method i s 

quite general , and will work equally well with any inversion operator 

for which the theorems are true in the numerically-valued case. 

This operator was originally given by A. Erdelyi [ 3] . H01'lfever 

the resulting inversion and repres errt.ation theories were not developed 

there. These theories were developed, by the author , originally for 

the numerically-valued case and have been acc epted for publication; 

see Rooney [ 11 ] • 

There is another operator related to I , which i s given by the 

formula 

2K. J°" - K.e 
- Tt""'C' 0 

1 

sin(2 K'Y(2)f( K( Y{ + 1 )/-c ) d 'Y( 

Both I and II are special cases of a third operator 

.. 

J 
co ...., 1 

III LK -c [ f ( 'A ~ = (2-CK \I ( 2 K ))-1K '>'l /'2Jy (2K'>t2) f ( K(?t +1)/c )d1'/ , 

' 0 

which can also be found. in Prof. Erdel~ri ts paper. The inversion and 

representation theories for these last operators have also been investi-

gated, and were found to be sir.J.ilar in every respect to those for 

operator I. To avoid inessential difficulties we shal l restrict our 

attention to operator I. 

/ 

Operator I has some points of resemblance to Phragmen' s operat or 

[l 2; ch. 7, § 2] in that both are "real' i nversion operators , involve 



only the values of f( A ) for large real values of A , and involve 

only elementary functions. IIowever, Phragmen's operator is not an 

integral operator. 

?Te have, perhaps inevitably, been drawn into certain subjects 

which, wh:i.le of great interest and importance, are subsidiary to the 

main theme of this dissertation. Chief among these are certain diffi

culties concerning the relations between various integrals of Banach

valued functions. These difficulties are resolved in Chapter I, wherein 

are also the main theorems we shall need concerning these various 

integrals. 

Chapter II is devoted to invers ion theory. This theory is developed 

for several different kinds of integrals~ Chapter III is given over 

to the representation theory. This chapter may be considered to contain 

the principal results of the dissertation. 
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Chapter I 

1. Introduction. 

In this chapter we collect and elaborate certain theorems concerning 

integrals of Banach-valued functions of real variables. The main tool 

in this regard is the Bochner integral, which is an analogue for this 

type of function, of the Lebesgue integral. Its theory is developed in 

sections 2 and J. Nearly all of the material of these two sections is 

abstracted, verbatim or paraphrased, from Hille [ 6] . Consequently, 

for such theorems no proof is offered. The reader who wishes to see 

proofs of these theorems should look in Hille [6] • In other places 

where known results are used, we shall give references to these results. 

Section 4 introduces a slight generalization of the Bochner inte

gral which we call the "Improper Bochner Integral". It is the analogue 

of the improper Lebesgue integral. 

Less powerful, but nevertheless important, tools are the Riemann

Graves and Riemann-Stieltjes integrals, which correspond, in the 

numerically-valued case, to the Riemann and Riemann-Stieltjes integrals 

respectively. Their theory is outlined in sections 5 and 6. 

In section 7 we develop theorems giving sufficient conditions for 

various of these integrals to be equivalent. Finally in section 8, we 

develop a weak sequential form of the Banach-Steinhaus theorem. 

The notation to be employed in this and subsequent chapters is, 

in the main, that of Hille f 6) • That is, Banach spaces will be denoted 
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by Germ.an capital letters, and their elements by English lower case 

letters. The space of bounded linear functionals over a Banach space 

will be denoted by "starring" the symbol for that space, and its 

elements will be denoted by the 11 starred" elements of the Banach space. 

Heal or complex numbers will be denoted by Greek letters. - We shall 

denote the zero vector of a Banach space by e, and the void set of a 

collection of sets by 0. Several exceptions to this rule will be made, 

mostly in cases where long usage has prescribed symbols, which clash 

vvith the above notation, for certain quantities, e.g. LP' e, etc. One 

notable exception is that we shall often use English letters for sub

scripts. Other exceptions will be seen to occur. 

One other point is worthy of notice. Vihenever we use the word 

11 limit 11 we mean the limit in the strong sense. Other types of limits 

will be pref aced by e:xplaining words. 
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2. Functions and 11easure: Let ~ be the k- dimensional Euclidean 

space, ~ a measurable set in ~' and x( oe.. ) a function on E to 

the Banach space ~ • 

Def ini ti on 1 • 2. 1 : Let x( "'" ) and xn ( o1., ) be functions on ~ 

to ..:f • The sequence { xn ( °'- ) J converges to x( oL ) 

(i) almost uniformly if to every t > o, there is a set ~c 

with m( 6c- ) < t such that { xn( c£.. ) } converges uniformly to 

x( ol ) on 2) - L: e • 

(ii) almost everywhere if there exists a null set L C L; such 
0 

that H x( o<. ) - xn( cj._ ~( -+ 0 for ol. in 2: - Z::0 • 

Theorem 1. 2.1: The two types of convergence are related as follows: 

(i) implies (ii) , and if m(L') <. <»' (ii) implies (i). 

Definition 1.2.2: 

( i) x( oL ) is said to be finitely-valued in B if it is constant 

on each of a finite number of disjoint measurable sets B j with 

UI; . = ~ • 
j J 

(ii) x(o<..) is said to be countably valued if it assumes at most a 

countable set of values in X 

Definition 1. 2.J.: 

each on a separate measurable set ~ .• 
J 

(i) x ( ol ) is said to be weakly measurable in ::0- if x.,..(x( ex:. )J is 

measurable (Lebesgue) in L:; for every x-Jf- E. ::X-,.. • 

(ii) x ( o<.., ) is strongly measurable in B if there exists a sequence 

of countably-valued functions converging almost unif or-mly in ~ to 

x( °'- ) • 
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Theorem 1. 2. 2: 

( i) If x( oc. ) and y( ol, ) are strongly measurable in E and Y 1 

and ?f' 
2 

are constants, then er 1 x( °" ) + 0 Zf( °"' ) is strongly 

measurable. 

(ii) If ce ( ot. ) is a finite numerically-valued function which is 

measurable (Lebesgue), then <e ( o(. ) • x( (){.,, ) is strongly measurable if 

x( cX. ) has this property. 

(iii) If x( cX. ) is the limit almost everywhere of a sequence of strongly 

measurable functions, then x(<X. ) is strongly measurable. 

Definition 1. 2. 4: A function x( ot.. ) on the closed interval (J 1 , .3 2] 

to the space J: is of 

(i) bounded variation if supll .2; [ x( (3 . ) - x( o£. . )]II <. .,, for every 
i 1 1 

choice of a finite number of non-overlapping intervals ( ol., A . ) 
1 ~ J. 

in (] 1' ] 
2
] ; 

(ii) strongly bounded variation if sup 'L;\' x( oL .) - x(cx... 1 )1\ < oo 
. 1 J.-
J. 

where all possible partitions of [ J 1 , J 
2

] are allowed. The two 

suprema are known as the total and strong total variations respectively. 

Definition 1. 2. 5: A set _()_ of complex numbers will be called a 

domain if _()_ is an open connected set. 'l'he closure of a domain 

will be called a closed domain. 

Definition 1. 2. 6: If 'S" is a complex variable, and x ( 5 ) is a 

function on the open domain _i2_ of the complex plane to x 
then x ( -~ ) "Will be called holomorphic in _()_ if x *" ( x( ~ ) ) is 

holomorphic in Cauchy• s sense for every x *" 'Y..14- • in .x. 

, 



-5-

3. Integration. 

Definition 1. 3. 1 : A countably-valued fu..."lction x( ol ) on E to :X-

is integrable (Bochner) if and only if II x( ol )I\ is integrable 

(Lebesgue) . By definition 

( B ) s x( tX.. ) d o£. 
E 

00 

: 6 
j=1 

The series converges since 

00 00 

S. \\ x( al- ) \\ d ol • II~ x . m( E .)II~ L II x ·ll m( Ej) = J J J E j=1 j =1 

Consequently 

" ( B) J x( o£. ) d ~ l\ ~ S l\x< «- ) \\ d o£.. • 

~ ~ 

Definition 1. 3. 2: A function x( 0(.. ) on ~ to ":;t is integr able 

(Bochner) if and only if there exists a sequence of countably- valued 

functions converging almost uniformly to x( D<J ) , and such that 

By definition 

( B) 1 x( °" ) d ~ 
~ 

= lim (B) J x ( o£. )d 0(, • 

n ~oo .. En 

We shall drop the "(B)" from the integral when there is no danger of 

confusion. 

Under t he postulated conditions , the integral exists uniquely. 

That is , for every sequence { xn} of countably-valued functions wit h 
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the above postulated properties, lim 
n -i- co 

(B) \ x (oG )doc:. J~ n exists , 

and bas the same value. 

Theorem 1. J . 1: A necessary and sufficient condition that x( ol ) on 6 

to X be integrable (Bochner) is that x( °'"' ) be str ongly measurable, 

and that 

5~ Jlx< 0(, )II d 0(, < .... 

Definition 1.3. 3: A function x( <X.. ) on E to :X belongs to 

B(E ; ~) , 
p 

1 ~ p< co , if x( OG ) is strongly measurable on E , and 

)t: 11 xc "'- l\I p d oc. -<.. co. x( Ol. ) belongs to B ( E , ~ ) if x( .x. ) is 
0) 

strongly measurable and is bounded except in a null set. * 

Theor em 1. 3. 2: If ~ is a real or complex Banach space, then 

B ( ~ ; x ) is a real or complex Banach space under the norm 
p . 1 

n x( • ) II p = { s E II x( 0(.. ) ll p d 0(.} p J 1 ~ p <. .., 

U x( • )l\ = ess. sup I\ x( ct. ) I\ • 
()() I; 

Theorem 1.3. 3: If x( <X.. ) is i n B( E ; x) , then 

\\ 5 x( oe. )d°'"' ~ 
E 

Theorem 1. J . 4: If x( 0(. ) is in B( ~ ; x) and x* is in ~*" , t hen 

x""'° (x( ov ) ) is in L('E' ) , and 

x*(~ x( ot.. )dol-) = S. x*(x(o(.. ))d°" • 
~ ~ 

Theorem 1.3. 5: If x(ol.) is in B(E1; X) , then for almost all j in 

E1' 

~-
We shall often use B(Z ; x) for B1 ( ~ ; ~ ) . 
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~ j + ~ 
Jj I\ x( QC.. ) - x(3 )fl dot. = O, 

and in particular 

(ii) 1
. 1 
im -

($~ 0 ~ 
= x( j ). 

Definition 1.3.4: V~e shall call the set of 3 where fornmla (i) 

of the preceding theorem holds true the Lebesgue set of x(ol ). 

Theorem 1.3.6: If x( OC..) is in B(E1; :X), and if J is in the 

Lebesgue set of x(o(... ), then the Lebesgue set of x(oc:. ) is equal to 

the Lebesgue set of ll x( o<.. ) - x( J )fl • 
Theorem 1.3. 7: If x( o<. , ~ ) is a strongly measurable function of 

( 0(. , (3 ) = ( ~ 1 , • • • , ~ m' (3 1 , • • • , (' n) , then x( 0(. , ~ ) is in 

B(E ; x ) if there is a function y( oe.. , R ) such that y( 0(.. , ,q ) = m+n ~ I 

x( o<., ~ ) for almost all ( ol , ~ ) and J E { J EI\ y(oL ,~ ll\ d") d/3 

exists. In this case 

s x( °" , ~ ) d 0(. d ~ = ) 
E 

m+n 

= ) { ~ 
E m 

y( d- , ~ )d~ 1 
E 

n 

E 
m+n 

d 0(, • 

n m 

E E 
n m 

Theorem 1.3.8: If x ( O(; ) are in B( :E; x ) for all n, and the sequence 
n 

converges almost uniformly to a limit function x(ol ), and if there 

exists a numerically-valued function <e ( ()(., ) in L( B ) such that 

If xn ( cJ- )U ~ <e ( o1., ) for all o{, in L; , then x( oe.. ) is in B( 2i ; :l. ) , 

and 

lim J 
n~"" E 

x (o<.. )do(, = n ~ x( oc. )doc:. • 
~ 
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4. Improper Bochner Integral: 

Definition 1 • 4. 1 : Let x( oC. ) be in B( [ 'A , w] ; X ) for a fixed 

'/. and all ~ > A • If 5 w x( ot.,, ) do<.. converges (in the 
~ 

strong sense) to a limit y, as (&) -+ °"' that is to say if for any 

€> 0 there is an (,,) ( £ ) 
0 

such that 

" y -
S: x( c<. )doc,\I-" € for every W > w , then we say that 

0 

the improper Bochner integral of x(cx. ) over ['A ,"") exists and we 

S-+oo SW 
put "' x( ex. )d c:x. = y = lim x( ct... )d at.. • 

,. c.J-+ "" A 

We shall prove tvro theorems concerning interchange of integrations 

when one of the integrals involved is an improper integral. For this 

we need the folJ.owing two lemmas. 

Lemma 1.4.1: Let x(OC.) be a strongly measurable function on the 

finite closed interval [ 3 ,11] to the Banach space ~ • 'I'hen 

x( 0(..) is the almost uniform limit of finitely-valued functions on 

this interval. 

Proof: By assumption there exists a sequence of countably-valued 

functions x (ex,), (n = 1,2, ••• ) such that for every 
n 

there is a set L: 1 <;;; [3, '>?) and an integer N( t ) 
' 

E.,c'~o 

such that 

m( .E, ) < e2 and l\ xn ( ct. ) - x( o(.. ) II~ E. for n "'7' N( E, ) and 

in [3,?z] -E 1• all Since x (C(.. ) is countably-valued, 
n 

2: . such that x ( z. . ) = x . , !: . n E . = 0, n,i n n,i n,i n,i n,J there exist sets 

"" 
i f. j, and LJ m(E n,i) = '>'l - 3 • 

i=1 
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Thus for every E. 
1 

> 
I 

o, M( e , n) exists such that 
00 

i=M 
00 

Let Z:: 2 = 2::; 1 U ( U U 2:: . ) . Then 
n=1 i ~ M n , i 

oo I co t 

m(:62) ~ m(~1) + L::; ( E m(.8 n i))..:::: ~ + n2:=" 2~+1 = c • 
n=1 i~ M ' ,, 

Further, let x~ ( oC.. ) = xn ( °" ) in [ J , "l] -~ 2 

= e in E 2• 

I 
Then the x are finitely-valued and on 

n 

(J , '>l] - ~2, llx~( o£-) - x( oL )I\<. e , n > N( £ ), since 

x~ = xn on [ J , 1(] - E 2• 

Lemma 1.4. 2: If 

1 • x ').. ( oL ) are in B ( [ 0 , oo) ; ~ ) for each A > 0, 

2. lim x A. ( oL... ) = x( ()(... ) uniformly for oG in Lo, w] , each 
'),.~ 00 

W> 01 

J . · ~ ( OC) in L(O,oo) exists such that \\x ~ ( oL )\\ ~ <(! ( ol.- ) for 

all A> 0 and all o<. , 0 ~ o,(., ..:'.'.: ro; 

then 

( i) x( oC. ) is in B( [ O, co) ; :X ) J 

(ii) lim ( co x l. ( o<.. )doc. = ~ 
00 

x( ol )dol. • 
A~ooJO 0 

Proof: 

(i) Since x( o(.) is the strong limit almost everywhere of strongly 

measurable functions , x( ()(, ) is strongly measurable 'UIJ theorem 1 • 2. 2 

(iii) . Further, since \\ x 'A ( °'- )\\ ~ <e ( ol. ) , \\ x( OL.- )\\ ~ (( ( o<.. ) , 
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and t hus l\x(ol. )\\ is in L(o, ... ) . Thus by theor em 1 . 3 . 1, x(oc.) 

is in B( [ O, ro); X ). 

(ii) Since l\ x ?I ( Ol. )I\ ~ ce ( 0(. ) , and \I x( oc )l\ £: C(> (oc. ) , 

r 11 x , c o(. l 11 d o< "' S ~ <e c oL l doc , anct 
WO ~ 

r \lx(ol. )\\ 
WO 

for every c.v > o. 
0 

Also , since <e (o£...) is in 1(0, ro) , for every E. > o, W ( €.. ) 

exists such that J ce ( ol )d ol < ~ for c...> 1 > w ( E, ) , and thus 
w1 

J.., llx~(oc.)\\ d ol ..:::.. 6 and 
J® 

3 ' 
w1 w1 

W1 > w ( 6 ) . 

Choose an (.J 1 > w ( 6 ) . 

By 3., A
0
(,6 ) exists such that for 

U x ~ ( °" ) - x(o£. )\l ~ 3 7u1 • 
Thus, for A > A

0 

11 xcoc )If dac.. < 

I\ > A and Ol 
0 

~ for 
3 

11 r x ;I (o<. )doc. 
0 

-f xc "'" id ... II = 
0 

II r1 

0 

(x A ( ()(. ) - x( c<- ) )do<. + ~ ~ x )I ( o< 

-/ j"'1 "'" l( x A ( °" ) - x( ol. ) I\ do£, 

0 
< e. . 

) d«- -r x(-')dool\ 
w1 

ct ot. + J.., II xc cl, ) U d C(, 

cu1 

The differ ences between this l ast theor em and theorem 1 . 3 . 8 should be 

noted. 
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} . 

1 • x( o1., , (3 ) i s in B(E w ; .?f ) for a fixed "s 
\-+ CX> ,r 

and all lV > 01 

2. J x( oL , \3 )d <>'- converges uniformly with 

0 

respect to ~ 
' 

o~~~) , 

then 

(i) 
~-+ CX> (S" 
J J x( ot.. , ~ ) d ~ d °" exists, 

0 0 

(ii) ) ~ ~ x( o<- , ~ ) d o< is in B( lO , 'S] ;?f ), 
0 

(iii) r~ 
0 

rs x( o(. ' ti )d ~ 
0 

d °" 
l \-+ "' 

= l J · x( ol. , ~ )dcX. d ~ • 

0 0 

Proof: 

(i) It is sufficient to show that for every e > o, UJ ( £ ) exists 

such that 

for 

By 2., for every f, > o, ~ 3 ( 8 ) exists such that 

II ~ ~ x( "" , ~ )dol \\ L.. 6 if 4J 2 > UJ1> W3(6 ). 

W1 

Let (.,.) ( 6 ) = lJ / ~ ) . Then if W2> w 1 >w(E.) , 
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= €. • The inter-

change of integrations is justified by theorem 1. J . 7. 

(ii) By theorem 1. 2. 2 (iii) 

, ~°' J - x ( °" , ~ )d()(.. is a strongly measurable function of ~ , 

0 

0~(3 ~'s'" • Thus by theorem 1. 3. 1 it is sufficient to show that 

~rm x( ol. ' ~ )do<..\l 
0 

is in L ( 0 , l ) . By lenuna 1 • 4. 1 , 

\~°' 
.) x( °" , ~ ) d oL. is the aJmost uniform limit of finitely- valued 

0 
functions , and consequently so is 

5w~
00 

x( ct.- , fJ )do(. • Further, by 1. and theorem 1. 3. 1, 

u~: x( °'- , (.3 )d «-\\ E, L(O, ') ) for each vJ > O. By 2., for 

each W.:>O , W ( 6 ) exists such that for 

\\ S ~°' x( ~ , (3 )dot.\\< 6 • Since 
W1 

almost uniform limit of 
w1 

finitely- valued functions , 

is the 

\\~ ~°' x( ot. , ~ )do<.\\ is the almost uniform l imit of step functions 
w1 

and, is thus measurable. 

Thus l\ J ~ x( c{, , ~ )doe.. \I 
w1 

, being a bounded measurable function, 
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is in L( 0, S ) and thus so is \\ ) ~= x( "'- , p )d °"II 
0 

• 

(iii) By (i) ' for each 8 > o, (,J ( e ) exists such that for w 1 > w Ce ) 

II r= ~~ x("" . ~ )d ~ doo II L_ ~ . Thus 

w1 O 

) ,~.., 

r = I\ J J xc (){. , (3 ) d °" d ~ f~°' ( ! 
- J J xc()(, , ~)ct~ d()(,,I\ 

0 0 0 0 

(1 f ~°' 
~ l\ J J x( o£ , ~ ) d Of.. d (0 

0 0 

+ c /2, by 1. and theorem 1.J. 7. 

But by 2., for each e>O, (J 
2
( E, ) exists such that for W J > w 

2
( € ) 

IJ ~ -+cc x( o'.- , (3 ) d °' JI < E. • 
WJ 

Letting C: -> o, the conclusion is reached. 

• Then 

+~ = c 2 • 

Let E w = l ( o£. , (3 ) \ 0 ~ °"' ~ W ; 0 ~ (3 ..c. co } • 

Theorem 1 • 4. 2: If 

1. x( ol. , ~ ) is in B(E w ; X ) all w > o, 
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2. ~->., x( cL , p )dcL converges uniformly in (3 
' 0 

for each ?'f > O, w 

3. 4! ( (l ) exists , in L(o, .. ) such that II I x( DL ' r )do<.11 "' <e( (3 ) 

all W > 0 and all (3 , O ~ {/> < "", O 

Then 

(i) J -+<»x(ot.- , (3 )dOl isinB([O,"");:X ) , 

0 

(ii) ~ .... ~., x( o<- , ~ )d oL d (,I converges, 

0 0 

(iii) J ., 1- x( Ol ' \3 ) d °" d ~ = r ., r x( Ol ' (3 ) d (3 d o<. • 
0 0 w 0 0 

Proof : Let xw ( ~ ) = ) x(o<- , (3 )do<. • Then, by 2. and 3., 

x u.> ( ~ ) satisfies all th~ hypotheses of lemma 1. ~-· 2. 

Thus lim ) "" r·~ x( OL , ~ )d oL. d ~ = lim J <lO x£J ( (3 )d(3 , and 
W -+ <» 0 0 W.+ oo 0 

J : 1:!"., x w ( ~ ) d ~ = r ~ _.., x ( "' ' (3 ) do<. d (3 exist and are 

0 0 0 
equal. But 

lim J "" J w x( oc , (3 ) d Ol. d (3 
W .+ c:o Q 0 

doC-

= r., r x ( 0(. ' p ) d ~ d 0(, 

0 0 

, the inter change of integrations 

being permitted by (1) and theorem 1.3. 7. 
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5. Riemann-Graves Integral. 

Let x( CL ) be a bounded function on the finite closed interval 

[J , 12] to the Banach space :?f • 
Subdivide [ J , '>l] into J?t.- subintervals ~ i by points 

= lo<. 3 1 < ••• < ~ n = '1l • Let d.=j .- 2 . 1' 
1 1 " 1 -

and let ol. . be an arbitrary interior point of 6.. . . We shall denote 
1 1 

the subdivision of [ J , ?z] together with the points ~ . 
1 

by TT , which we shall call a partition of [ 3 , '>'l] • Let N(Tf ) 

= max 
i n 

Let G(TI) = E x(o<.. . ) f .. 
1 1 

i=1 n 

By lim 
N(TT ~ o 

G( 1T) we mean the 

limit, i f it exists , of L x(oe.i) 8. as n ~ co in such a way that 
i=1 1. 

max 8. ~ o. 
. 1 
1 

Definition 1.5. 1: If for every sequence of partitions Yvi.th N( IT) ~ o, 

lim G(IT ) exists and equals the same vector y , t hen we say that 
N(TT~ 0 

x( Ol ) is Riemann-Graves integrable over [ 'J , '>1] , and we denote 

this comm.on limit y by 

( a{'l x( o<- ) d «. . 
~ 

We shall drop the n (R) 11 where there is no danger of confusion. 

It should be noted that the integral is defined for bounded 

functions only. 

If x( 0(., ) is Riemann- Graves integrable over [ j , '>1,] for 

every 1(_ > J , and 



lim (RJ,"J x( o<, )do<. 
"l -> 00 j 
denote this limit by 

(R) J
3

00 

x(ol. )dot, 
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exists in the strong sense, we shall 

' 
and say that x( ot..) is Hiemann-Graves integrable over the range l'i ,oo). 

Definition 1. 5. 2: We shall call 0 ( J , '>'i ) = sup (I x( °' 1 ) - x(Ol- 2) II 
x 3~.c., e(& ~ 1'\ 

the oscillation of x( ol ) on the closed interval ( j , 11] • If 0(.. 

is an interior point of [ j , 'l1] , we call 0 ( °" ) := lim 0 (o£. - f , cX- + G ) 
"(. x 6-> 0 x 

the oscillatL on of x( oG ) at the point ot. • If °"' is an end point 

of the interval we use 0 ( 0(. , °" + S ) , or 0 (oe.. - i , ot.., ) • x x 

Lemma 1.5.1: If 0 ( 0(.. ) = o, then x(cX. ) is continuous at ()('., • x 
Proof: Consider first that ol, is an interior point of the interval. 

By hypothesis, for each e > o, J' ( E, ) exists such that 

O(OC.-8 , oG +J') <:.t, • x 

so that ll x( ol1 ) - x(tX- 2) \I~ c; 

That is sup I\ x( oL 1 ) - x( o'- 2) I\ 
f:A-f ~"'· )0(.. ,,,.<><-4'd 

for>"·-&-=- oc. 1 , oc. 2 ~ OC, +d • 

Set ol. 2 = ~ , and oG 1 = ~ ; then we have l\ x(ol. ) - x( ~ )\\ 

for \ o£, - ~I< r ( t). The extension t o the case of ~ an end point 

is obvious, as is the converse of the lemma. 

Let r x be the set of discontinuities of x( oL ) in ( _j , 11_] • 

Theorem 1 • 5. 1 : If x( oL. ) is a bounded function on [ J , ?( J to 

_;f , and if m( r') = O, then xis Riemann-Graves integrable on (j' , ?/_] 

Proof: See Graves ( 5 ] • 

It should be noted that the condition m( I:) = 0 is a sufficient, 

but by no means necessary, condition that a bounded function be Riemann-

• 
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Graves integrable. There are functions which are everywhere dis

continuous and are yet Riemann-Graves integrable. For example, see 

Graves [ 5] • 
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6. Riemann- Stieltjes Integr al. 

Definition 1 • 6. 1 : Let Cf_ ( ot..., ) be a bounded numerically- valued 

function on the finite closed interval [ j , 7i_] , and let a( °" ) 
be a function on [J ,'>z] to the Banach space ~ • 

Let TI be a partition of [ J , '>?.] as in § 5. Let 
n 

H( TT ) = 2: (/J ( ol . ) [a( M • ) - a( oc, • 1 )) • Then if for every 
. 1 'C l J. l -
1= 

sequence of partitions vii.th l'J( IT)~ o, lim H( TI) exists and 
N(TT) ~ O 

equals the sa111e vector y , we say that ~ ( cL ) is Riemann-Stieltj es 

integrable over [ J , ?{_] 

this coF~mon limit y by 

with respect to a( cl. ) , and we denote 

i"l <e ( 0(. )da(oi, ) . 
3 '>] 

If J ~ (~ )da( ol- ) exists for every '1. >] 

J11 3 
lim J <£ ( ot.., )da( ex:.. ) exists (in the strong sense) , 

~~ cc 
denote this limit by r <e ( ()(, )da( "'). 

, and 

then we shall 

Theorem 1 . 6. 1 : If <£ ( ~ ) is a continuous nlimerically- valued 

function on the finite interval ( j , 'l(_] , and if a( ol ) is a function 

of bounded variation on [ J , '1] 

s'? <e ( ()(_ ) da( ol. ) exists . 
J 

Proof: See Hille [ 6 ] ; page 52. 

to the Banach space X , then 
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7. Helations Between Integrals 

(A) Bochner and Improper Bochner Integrals. 

The relation between these two types of integrals is provided by 

the following theorem. 

Theorem 1.7.1: If 

1. x( oc:, ) is in B( [ o, w] ; ~) all 

2. is in L(O,oo) , 

then 

( i ) x( ol.. ) is in B ( [ O, co) ; % ) , 

(ii) J-+<» x( ol. )d ol.. converges, 
0 ClO 

(iii) I 
0 

Proof: 

x( oL )d °" = 5...)-oo x( d.. )doc:- • 

0 

w > o, 

By theorem 1.3.1, it is sufficient to show that x( ol ) is strongl y 

measurable over [ 0 , co) • 

By 1., x( ciJ ) is strongly measurable over lo, w] for each "->>0. 

Let 1 w ( cl.. ) = 1 

=O cL > t.U 

Obviously 1 w is Lebesgue measurable for each value of w • 

Then x w ( ci. ) = 1 w ( ol )x( Q., ) is strongly measurable over [ o, lcJ] 

by theorem 1. 2. 3 (ii) ' and since x w ( °" ) = e for a(, >w ' x w ( oL- ) 

is strongly measurable over [ O,oo) . 

Obviously x( ol ) = lim x w ( o0 ) , where the limit is in the strong 
W-+ co 
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sense, and thus, by theorem 1.2.3 (iii) x(ol-) is strongly measurable 

over [O,oo). 

(ii) Since II x( Ol ) \\ is in 1(0,oo) we have 

II r2 

x( I){, )def. \\ ,f 2 II x(o< lll d" ~ 0 as 
(.,.)1 <J1 

(iii) n l ~~ x( o(, )do<- r x(o<- )do<.11 = 
0 0 

111 _.., x(~ )docll 
w 

~ 1 

(B) Bochner, Riemann-Graves, and Improper Bochner Integrals. 

Sufficient conditions for a function to be integrable in both 

the Bochner and Riemann-Graves sense, and for these integrals to be 

equal, are given by the following theorem. 

Theorem 1.7.2: If x(ol) is a bounded function on the finite interval 

[J ' 'rt] to :f ' and the set r of discontinuities of x( oi, ) 

has Lebesgue measure zero, then x( o<. ) is both Bochner and Riemann

Graves integrable over [ J , ?J. J , and further, 

(B) (l x( oG )d ex.. = (R) S 11 
x( cX. )do£. • J3 j 

Proof: By theorem 1. 5. 1 , the Riemann-Graves integral of x( ot., ) exists. 

Let {TI n 1 be a sequence of partitions of ( j , '>l) with 

N( TT ) tending to zero. 
n 

associated Riemann sums. 

Let G( \f ) = L x( Ol. . ) d . be the 
n i ¥1 ¥1 

In these sums we may assume that the ~ . 
¥1 
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are chosen so that they do not fall in the set ~ • Let 

x (()I.; ) = 2:- x( O£. • ) <p . where ~ . is the characteristic 
n . ¥1 Jfl :yi 

J. 
function of the interval f:),,. . • Then if ~ is a point of [j , '>1) 

~ 

not in r ' lim II x( ~ ) - xn( ~ )II = o. For, if b,,. . be the 
n -+ co ¥1 

interval in which ~ lies, I\ x( (3 ) - xn ( ~ ) \\ = \\ x( ~ ) - x(oc.. :i,n)\\ , 

and since x( ()(, ) is continuous at oG = (3 

m.-+ co, Jl x( ~ ) - xn( ~ )\( -+ o. 

and l °'- . - ~ I -+ 0 as 
:i,n 

Then, by theorem 1 • 2. 1, lim x ( °" ) = x( tX. ) almost uniformly, so n 

that, since x ( of.- ) are finitely-valued functions, x(""' ) is strongly 
n 

measurable. But, by hypothesis, x(°" ) is bounded, so that, by theorem 

1 • 3 • 1 , x( oc ) is in B ( [ ~ , '>'}] ; :£ ) • 

We have then, 

(B) s: x( o<- )doc. =ni:m~ S xn( oL )da<. =n:.im~ ~ 
= lim G( Tf ) = (R) } '>1 x( <:J.. )doc,, ., 

n 3 n -+ co 

x(O£. ¥1) S ~ 

Corollary: If x( oc ) is a function on (j, co) to X , if x( oG ) 

is bounded on the intervals [J , '>7] for every 1'/ >] , and if the 

set f""' of discontinuities of x(ol) in ( j ,co) has Lebesgue 

measure zero, then 

(R) ~; x( cL )do<. 
r-+co 

= JJ x( el )dOL 

if either of the integrals exist. 

Proof: By the preceding theorem, 

(R) iJ'l x( oL )do<.- = (B) t'l x( "'- )do<.- , for every '1') > 3 , and 
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taking .limits on both sides we have 

if either integral exists. 

(C) Stieltjes Integral. 

The relation of the Stieltjes integral to other integrals depends 

on the fallowing lemma. 

Lermna 1. 7 .1: If a( <::L ) is a function of strongly bounded variation on 

[j , 11,] to .):'. , then the set r of discontinuities of a(('){., ) is 

at most countable. 

Proof: Let M be the strong total variation of a(°'- ) over [j , 11] 

and \n = {()(.,) 1~ o<: ~~ ; O(cx.)> ~ J • Then a 
co 

, 

r= u r , and r contains fewer than 2n elements. Thus r is 
n=1 n n 

at most countable. 

We can now prove a theorem relating Stieltjes, Riemann-Graves, and 

Bochner integrals. 

Theorem 1. 7 .3: If a( o<... ) is a function of strongly bounded variation 

on [J , '>?] to ~ , and <e ( ol- ) is a numerically-valued function 

with continuous first deri va ti ve on [ J , 17] , 

s~(o<.)da(cx.) = <e('l1)a(?j) - <e< 3 )a(~) -

then 

)1~' ( o<. )a( o<.)do< • 

The integral on the right hand side may be taken in either the Hiemann-

Graves, or Bochner sense. 

Proof: The proof is the same as that for numerically-valued functions 

once it is noted that since a(ol ) is of stronely bounded variation 

it is bounded, and by the preceding lemma its set of discontinuities has 
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measure zero, so that, by theorem 1.5.1, the integral exists in the 

Riemann-Graves sense, and by theorem 1. 7 .1, it exists in the Bochner 

sense. 

Corollary: If a(d.-) is a function on (3 ,co) to X which is of 

strongly bounded variation on [ j , ?z] for each 11 >j ' if re ( °'- ) 

is a numerically-valued function on ( J ,co) which has a continuous 

first derivative on [.j ,co) , and if lim <{'( '1 )a( '7 ) exists and 

equals y, then 

sj ~ <e ( o(. )da( a<. ) = y - <e ( j )a( j ) 

co 

- (R) SJ te' (o<. )a(o<. )do<. 

=y- <e ( 3 )a(] ) - r· ~ <e . ( o< )a( o<. )d "'- ' 
j . 

if any one of the three integrals exist. 

Proof: The proof is obvious. 
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8. Weak Convergence of Operators. 

The following theorem, which is, in a sense, a weak sequential 

analogue of the Banach-Steinhaus theorem, will be used in Chapter III 

in connection with certain representation theorems. 

Theorem 1 • 8. 1 : If { T rr J , O .c:: er '- co, is a set of linear 

transformations on a separable Banach space ~ to a reflexive 

Banach space "()'

for all <r .> o, 

, and if M independent of rr 
' 

then there exists an increasing unbounded sequence 

{ tri} , and a linear transformation T on 

\\ T II ~ M, such that 

lim y*(Tcr (x)) = y-Jt-(T(x)), 
i ~ co i 

for every x in .X and every y * in ri.r;--'lf- . 

to 'J/j with 

Proof: Let D = [ xnl be a countable set dense in ?f . Since 

'2rJ is reflexive, it has, by Gantmakher and Smulian [ 4] , a weakly 

compact unit sphere, so that there exists an increasing unbounded 

sequence f CJ i, 1} and an element y1 of 1!J such that for every 

y*" in 11j* , 
. lira y * ( T <r. ( ~ ) ) = y * ( y 1 ) • 
1 ~ co . 1 , 1 

Further, there exists an increasing unbounded sequence 

and an element y 2 in ?!J' such that for every y + in J./j* , 
. lim y * ( T CT. ( x2) ) = y * ( y 2) • 
].~co i,2 

Inductively, there exists an increasing unbounded sequence 

and an element yn of 1IJ- such that for 
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every y * in 11) * 
lim y ii' ( T ( x ) ) = y "*" (y ) • . O". n n 

1-+ "" 1,n 

Thus, using the diagonal sequence, we have, for every y -Jt- in 

lim y *" ( T O" ( x. ) ) = y* ( y . ) • 
i-+"" i,j_ J J 

y* (T rr . . (xj)) ~ ll y*ll M \\ xjl\ 
1,1 ' 

= lim 

so that, by Hille [ 6; thm. 2.12.3], Uy.\\~ M Ux.n. 
J J 

Vfe define tr i = 

on D, \\ T \ \ ~ M. 

(). . , and T(x ) = y • Obviously we have for T 
1,1 n n 

Let x be an arbitrary element of ?f- • Then there is a sequence 

{ xn ,) c; D such that. lim xn. = x. 
J J-+co J 

Further, if y n. 
J 

= T(x ) , n. 
J 

lim y exists; for, . n. 
J-"""" J 

Fur~her if ! xnR.1 ~ D is any other sequence whose limit is x, then, 

if y = T(x ) , 
Il_t. 11.f 

\\ Yn. - ;ntl\ =\I T(xn. - ~n,t )\\ ~ M 
J J 

Hx -x II n. n! 
J 

M( II x - xn. \\ + 
J 

\\x - x l\ ) -+ O as j, 1 -+ ""' so that 
nt . 

have the same limit. We define T(x) = lim y • 
• 11. 

and 
J _,,. "" J 

It is evident that T is bounded and linear on :I- , and, in fact, 
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Also vre have lim y*(T er (x)) = y "'* (T(x)) for every y*" 

11)*'. For , 
i-)o oo i 

I ylt (T er (x)) - y* (T(x))I 
i 

in 

= y * ( T <r. (x - xn _)) + (y* (T 0-. (xn.)) - y jt- ( T (xn.))) + y * (T(x-xn. ))f 
l J l J J J 

~ 21\ y•l\ Mn x- x ll + r y*(T tr (xn )) -y* (T(x ))I ...)- 0 n. . . . n. 
J i,J. J J 

as i,j ...)- °"• Thus the theorem is proved. 
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Chapter II 

1. Introduction 

In this chapter we shall consider the inversion of the Laplace 

transformation of Banach-valued functions of a real variable. In 

particular we shall consider four kinds of Laplace integrals, namely 

I f( A ) = (B) J co e-?.-c 'x (l:" )d-r:-

II 

III 

IV 

0 

f( A) =J~oo e-?.r x(-r)d-c 

r( A) = ~R) f 00 .-Ar x(-c)d-c 

f( A ) = r e~'ll-c cta(-c). 

0 

We shall consider the inversion theory with respect to a certain 

1treal11 inversion operator 
2K \co 1 1 

11-<,-c [r( /\ )] = ~ e-i: (B) J '(_- 2 
cos(2 1/. 2 )r( "' ( ryz + 1 )/c)d "Y( • 

0 
Vfo shall also use the "Improper Bochner" generalization of this 

operator, namely 
-+ 

L K )"C [re 'A J K e 2 K \-+"' - ~ ~ 
= rr-c J 11. cos(2 i/. )f(~( ?'/ + 1)/r)d?(. 

0 -+ 

Whether we use 11.-<)-C [f( A )] , or L Kft: [r( A )] does not 

depend, as one might suppose, on whether we are inverting transformation 
-+ 

I or II. Onihe contrary, the use of 11-<)"C [f( A il or LK,"C [r( A U 
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depends upon the behaviour of f( A ) in the neighbourhood of 'A = m, 

that is on the behaviour of x(r) in the neighbourhood of r = o, while 

whether x(l:') has a transformation of type I or II depends on the 

behaviour of x('C) in the neighbourhood of r = ~. 
In section 2 we prove several preliminary lenuna.s concerned lNith 

the evaluation of certain singular integrals. 

Section 3 contains the inversion theory for transformations of 

type I, and section 4 for transformations of types II and III. 

Finally, in section 5, we prove an inversion theorem for trans

formations of type IV. 
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2. Some Preliminary Lemmas: 

For the various inversion and representation theories we shall 

need the following lemmas. 

Lemma 2. 2. 1 : If 

1 . x( ol.) is in B( [ o, w] ; x ) for each w > o, 

2. J 
~ CX) 

-~Ol ( e X OL )dOl converges for A = ?.. 
0

• 

0 

Then 

(i) for each t: > 0 and for all K .::> ?..
0 

'"C" 

0 

(ii) for each -C> 0 in the Lebesgue set of x(Ol- ), 

lim I ~ = x(-C). 
K~oo 

Proof: 

(i) Let K > ~~, let w2 > c.u 1, and let 

M = sup \\ \we- :;i. oOl x( Ol. )doL H . By 2., M £. 00• 

a< w< co J
0 

\\ 

~ (&)l... -K(OC. +- ::£) I \\ 
Thus, J GJ 

1 

...L -c: ()£, Ol - z:- X ( Ot'..) &. «, =-

converges, 
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+M (w' { 4_ (JZ.-K(~ + f)+/.. 0 0C-oct} d~ 
j<.J;i J.<X-

= z M ( ...Q..- K ( ~ +-~ ) + A 0 lJ I cu,- i-) 

as <J 1 , w 2 -+ oo . 

(ii) It should be noted that 

00 

..Q2.K (;-erk ~0 ...a..- Kl~+ ~) oc -4: J.~ = 
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(where ~ 2 = ~ ) 

;;:: \ By Peirce [ 8; page 63, f ornmla 495_) • 

· Let "'C be in the Lebesque set of x( oL ) , and let w > r • 

Let K > '). -c . 
0 

Then, 

\\ IK - X<r)ll 
" II ..e...2 K (;,:) ± I":- K ( ~ + ;f) ol -i X too) d.. "" - :<. t-cJI\ 

!; H ~~K (~\Y~J~ :-Kl~+-;, )cl_± ( 'Z(ol) - X(-c))<l rL \\ 
0 

.; _J!, l. ... <:-c)i f' £K( ~ i- ~) oG-~ II x (0(.) - x (-c)ll .I. 0(. 

+ II ...a.. ->K(:,Jl: r :-K \ ~ + ~ ) .,d: X(o<.) J.. o<. \l 
00 

+II x <-c>I\ _,{"'l:-i L £K(~ + ,;} (){,- i.LoL 

- J, + L. + J3. 

Let K 
0 

be a positive number, and ~ 
0 

< I'{ • Then 
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J; = I\ ;r, lrll\ ..a.'" (;\)i (_.c" l":: + ~) °'-l: <l"'-

= \\ X(r)\\ fK (;:-c)t r~_t,-Ko(.~ +~) ol-L..e..-(K-Ke)(~+ ~)cl°" 
(U 

:6 \\ -X,(i:)ll ...e, .2.K (TC~)~ .Jl- (K-Ko) ( ~ ~ ~) t~ £Ko(~+~)()(,- ~J, ~ 
00 , cw -c) w ~ >r (c(. ~) 

== \\ X,( r)\I ( .::-c) "i _q, Ko 1;" + w ....Q...-K ( -:C: + (ij - 2. )W £Ko\ "'E+;;;:. ol-i do£. 

-+ 0 as K -+ co, since !!:.. + ..:E. attains its minimlUll value of 2 at 
17 o/,; 

o(.., = -c, and UJ > 'C .. 

= 11 ~1K (;\)i r { L < £.i ":; + ~)+ "·"' .::- l) H .. "'"' ....-•. f' Xlf3l .1.1311 

,;;, ..z M ..Q. 1>< C'r\. )!: L"" l- L ( £ K ( ~ +;iyA,"' ot.- l J J."" 

::: 2 M ( :-c )± £ K ( ~ .\- ~ - 2) +-A 0 w 0)- -k 

-+ 0 as K -+ oo . 

By Widder [ 1 2,; theorem 2b , corollary 2b. 1 , page 278] J1 -+ 0 as K -+ .,, 

if r is in the Lebesgue set of ti x( Of., ) - x(t; )tl • However , by 

theorem 1. 3. 6, this is exactly the Lebesgue set of x( cL ) . Thus the 

lem_rna is proved. 
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Corollary: If e- 'A oct. x( ~ ) is in B( [ O,"°); X ) , then 
1 

K ..... " T"" e- t< ( ~ + .§.) I\/ - ~ x( ol ) (i) for each T: > 0 and all -> " .. .... - IN is 
0 ' 

in B ( ( 0 , ro); X ) , 

(ii) lim I K = x(-c) for each -c in the Lebesgue set of x( <£ ) , where 

J 
co 

- K ( ~ + L.:) e -r OI., 

1 

Q(, -
2 x( ex.. ) d ()(.; 

0 
Proof: 

(i) This follows from the fact that for K > 1. -c 
0 

e-K ( ~ +£ )£illx(ol )l\~ K e-'Aocx. ltx(oL )l\ 

• 

• 

(ii) (ii) now follows from theorem 1.7.1 and the preceding lemma. 

Lemma 2.2.2: If 

1 • x( Of... ) is in B( [ 0 , W) ; ~ ) for each W> O, 

2. 5-.-?.o1. x( o< )d oL converges for ~ = '). ' 0 

0 

then 

(i) j 
...+co 

- K (~ + :E.) e 't: QI. 

3 
Cl-- ~ x( o<... )doc.. 

0 
for en.ch -C: > 0 and all K >'/.

0
l;, 

(ii) for each "l:" > 0 in the Lebesgue set of x( ol ) , 

lim IK. =x(-c:). 
K-+ oo 

converges 

Proof: The proof is almost identical with that of the preceding 

lemma. 
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3. Inversion of Tr ansformations of Type I . 

Conditions for the inversion of f( A ) = (B) J~ e- A~ x(r)dr, 

0 
are provided by the following theor~~ and its corollary. The theorem 

-+ 

gives conditions for the inversion by L ,,. [f( A B , and the 
"'- ' "'C 

coroliary for L K , "C [f ( I\ )] • 

Theorem 2. 3 . 1: If e- '.Aot. x( o1- ) is in B( [ O,<») ; x ) for all 'A> o > O, 
-+ 

then Jor each -C > 0 and all K > or, L K , 1: [f ( ~ )] 

lim L K i; [f( ';;\ )] = x(-c ) 
~-+oo ' 

at every point , "C > 0 of the Lebesgue set of x( 'C ) . 
-+ 

Proof: Vfo shall show that LK [f( A )] 

exists , and 

00 ;t: 1 

= { rrK-ci'e2K ) e- K ( ~ + ~ ) ol- -;ix ( ol. )do<- , and the conclusion 

0 

will then follow from the corollary to lerrnna 2. 2. 1. 

Let K , r be fixed, positive, and ~ > )f • Then, 

(wher e e::: r{¥1L-if¥ ) . 
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Thus , 

- 1(1) J (2) - "' + ...., w. 
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-+ 0 as w -+ ""• 

Further, since 
- ~ rig+ liiKw 

I 
"-'"Ct' 'Vy 

[ I - e.. ] .ltrn, 1-- ..fl J e = o 
w~oo 1rr -i.~ -,P;w 

almost everywhere 

for cl, in lo, E] , we have, by theorem 1. 2.1, that the limit 

equals zero almost uniformly in ol for ot., in [ o, 6] • Also, 

since 

and 

where M is independent 
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where N is independent of cf., and cu , and this bound is an 

integrable function of ol, • Thus , by theorem 1 • 3. 8, 

= o, and the theorem is proved. 
1 

Corollary: 
'A - '15 

If e- <X.. ol '- x(ci) is in B([ O,ao); :I: ) for all 

?. > 't' > o, then 

(i) f( A ) exists for 'A. :> ¥ , 
(ij_) 1 lt<JL" [f( A )] exists for each "L > 0 and all K > ¥ "C 

(iii) for each -c > 0 in the Lebesgue set of x( ex. ) 

lim L..:>-i: [f( A )] = x(-c). 

Proof: 

K _,. ao 
- ?. 0(. 

Since e 
'I\+¥ 'A - ,. = e- ( 2 )~ e- ( 2 ) and for , 

and sufficiently large <L 
( )\ - ir) 1 

, e - 2 Ol.. £.. oL - ~ , f( I\. ) exists 

for A> o • 

Further, 

, 

exists for each -C > 0 and all K > o -C , since 
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Finally (iii) follows f ram theorems 1 • 7. 1 and 2. 3. 1 , since 

theorem 1. 7 . 1 tells us that when both L KJ -c [f( I\ )] and 
-+ 
L,, [f( A )] exist, they are equal. 

""> r 



-39-

4. Inversion of Transformations of Types II and III. 

Theorem 2.4.1: If x( Ol ) is in B( [ o, w] ; :X ) for each w > o, 

and if 

r( A ) = J-e- ~~ x("' )d"" 

0 
converges uniformly in A for A > o > 0 , then for each r: > 0 

-+ 

and all K > o r, 1 K/i:- [ f ( A TI exists, and 

-+ 

lim LK,r [ f( I\ il = x (t) 
K -+ co 

at every point -C> 0 of the Lebe~gue set of 
-+ 

Proof : We shall show that LV< -c [ f( A )] 
) 1 

x( ~ ) . 

= 
l J -+co °" '?:' - "2 ii<( ;-c? e- K ( :C + Ol ) of., x(ol )doc:., , and the conclusion will 

0 
follow from lemma 2.2.1. 

Let K. , -c be fixed, positive and K > 0-C • Choose 

J..o , o<'A < 'r</r. Since 
0 

r oo e-'Aoot. x ( Dl. )d oL converges, r··e_ '.).o"' x( OL )d ()(. is 

0 0 

bounded. 

Let M = 0:~< 00 

I\ r·•e - ). o°" x ( ol ) d o<. \\ • Then M -< oo• Consider 

0 

I - K...e.2Kr w ..!. , ...p 
w-rrr J

0 
fr2.(,0S(2.»<1t£)/(K(?(-t-J)jr)J?'( 
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Since )doc converges uniformly for A > 'lf 
' 

0 

and K /r:: > ~ , we may, by theorem 1 • 4. 1 , interchange the order of 

the integrations. Thus 

Then 

-+-oo 

Jtt.1= \I (:;.r;)±.-£~K-1._Q_-K.(~-r~{x_-:1: :z:,rO(,Jdac, - Iwll 

= J, (1) J- (4) 
w + w. 
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Now J~1 ) is the same as the /2) of theorem 2.3.1, so that for 

every t > o, /~) -+ 0 as w -+ "'• Also 

converges uniformly in w for W > O. For, for every 
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Thus we may choose E. large enough that /~) = \\ J S3) I\ ..:; ' e. 
c ' > for any ~ o, and thus lim Jw = o, and the theorem is proved. 

Theorem 2.4.2: If 

1. x( ot, ) is Riemann-Graves integrable over [ o, w] for each 

<.A.I> o, 

2. The set I of discontinuities of x( O£.. ) , 0 6 ol L.. m, has 

Lebesgue measure zero, 

3. f( A ) = (R) Jm e- ').()(. x ( oe- )do£. 

0 

converges uniformly for 

A>~ > o, then 
-+ 

1 K,t" [ f( A il exists, and for -c > 0 
-+ 

lim LK, -c [ f( /\ )] = x (t: ) almost everywhere. 
K-+ a> 

Proof: By 1., 2., and the corollary to theorem 1. 7. 2, x( al- ) is in 

B( [ o, W] ; :X ) for each W > o, and 

( R) r e - :\ "'- x ( o< ) do< = 1-+m - A°'-
e x( °" )do£.. • Consequently 

0 0 
we can make use of the previous theorem, which yields the above 

conclusions. 
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5. Inversion of Transfonnations of Type I V. 

Let f( A ) ::::: J 00 

e- AOC. da(Ol ) . Conditions for the inversion 

0 
of this type of transformation are given by the following theorem. To 

avoid complications, we restrict ourselves to the operator L KJ-c[f( A ] . 

Theorem 2.5.1: If 

1. a( ol ) is of str ongly bounded variation on [ o, w] for each 

W> o, and a(O) = e 

2. J"" e- 'AO(, " da( ct., ) converges for /I. >'A 
0

, and uniformly for 

0 
?..> A. 

1' 

J. <(? ( A ) exists such that (€ ( ?. 2) is in L(O,oo) , and 

Jwe- 'AO(,, da(cx...) ~ <e ( /l ), for all GJ.>O, and all A >J.
1

, 
0 

then lim 
K-+ co 

) 1:' 1 K) -c [ f( A )] d-c ::::: a( t: ) almost everywhere. 

0 

Proof: By t heorem 1 . 7 .J, corollary, and 2., 

re-'A"' rM re 'A ) ::::: da( r:i., ) = A e- Aot. a(oc. )dcx'.. • 
0 0 

Thus , L K, "C" [ f ( ). )] 

2K 
Ke 
=~ 

00 1 1 I-+"" S 'l- 2 cos(2K.1'{ 2)( K( 11+ 1 )/ c )d 'Yl e- K('l( +1 ) °"/ca (()(. )dOl. . 
0 0 
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Choose K >J... 1 r • exists and 

satisfies the hypotheses of theoreJU 1 . 4 . 2. We have then 

Thus by 2. and theorem 1. 4.1, 

[ f( A il J
-+co 

0 

almost everywhere, as K -+ "°' by lemma 2. 2. 2. 

- t( e 
3 

( ~ + .f) ex, - 2a( ol. ) doi: -+a( oG ) 
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Chapter III 

1. Introduction. 

We consider here the representation of Banach-valued functions 

f( A ) of a real or complex variable A by Laplace integrals of 

Banach- valued functions of a real variable. We shall consider 

representations in the forms 

I . J
oo 

- ?t-c 
f( A ) = (B) e x(-c )d -c 

0 ' 

II . f(A) = e_?it: da(L: ). J
oo 

0 

In the latter case however, we shall restrict ourselves to 

numerically-valued functions. The reason for this is the lack, at 

the present time, of theorems for Banach-valued functions corre-

sponding to those theorems for real functions which derive from 

1-Ielly' s selection principle. 

Our tool in this task will be the 11 real11 inversion operator 

which we used in the last chapter. 

Section 2 of this chapter contains certain prelinlinary lemmas 

which yield conditions ensuring the existence of L K r [re A )] . 
' 

In section 3 we derive the 11 Fundamental Theorem". This 

Theorem shows that under certain conditions the Laplace transform 

(i.e. the function found by an integral of type I above) of 

has f( A ) for its limit as K tends to infinity. 
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Section 4 contains the conditions that f ( 'A ) be r epresented 

as the Laplace integral of a function of BP ( [ 0 ' "°); l- ) , p fixed, 

1 <. p ~ "°• The cases 1 .:::::: p < "° and p = co are treated separately 

there, as they are of a very differ ent nature. 

Section 5 contains a r epresentation theory for the case that 

f( A ) belongs to the class H ( C>l ; :X ) , p fixed 1 ~ p ~ oo , this 
p 

class being defined there. The cases p = 1 , and 1 <. p <.. "° are 

treated separately, again because of their very different nature. 

Lastly, section 6 contains the conditions that f( 'A ) be 

represented as a Laplace- Stieltjes transform, (an i ntegr al of type 

II above) , but as mentioned before , we restrict ourselves to 

numer ically- valued functions . 
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2. Preliminary Lemmas . 

'!Ve first prove the two following lemmas which are preliniinary 

to the "Fundamental Theorem" which is proved in the next section. 

Lemma 3. 2.1: If 

1. 'A -1 <('(A) is in 1( 8 ,oo ) for all J > O, 

2. /l.f ( 3 ) = J
3

CX> 1( -1 \re ('7( )! d11 = o( 3 -m) with m > o, as 

J -+ m, and ')/J ( ] ) = 0( e 0 /3 ) with ff ~ 0 , as j -+ 0 +, 

3. m + n > o, 

then 

(i) /\ n-1 <e (A -1) is in L(O, c.J) for all (.A)::. o, 

(ii) 6J (r) =fc?(n-1 \<e('i(-1)1 d?'{ = O( -r;m+n) as -c -+ o+, 
0 

(iii) S ( c ) = O(rne~'C ) as -r: -+ m, if' either 'tJ > O or 

and n ~ o, 

= 0( 1 ) as "[, -+ m if o = 0 and n ...:::. 0, 

(iv) J 00

e- ~o(.ol n-1 re ( o1..- 1 )d oG exists for 'A> "I ' and is 

0 

0( A -m-n) as 'A -+ ""• 

Proof: 

'( = 0 

(i) ~ n-1 I r 0 c 1 -1 ) I Clearly " \ is in L( d , VJ ) for all ·· · 

w > d> 0 
~ . ~ 

Thus , ( j n- 1 I <e ( 3 -1) I d j = J 3 nd 1jJ ( J -1 ) Jc c 

= -c n '1p ( c -1 ) _ e n 1l' ( £ -1 ) _ n 1 r: 3 n-11/! ( j -1 ) d j , 
~ 
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and by 2. , the right hand side tends to a finite limit as c -+ O, 

since, by 3., m + n > o. 'I'hus 

e( z:: ) = z:; n ~ ( r; -1 ) _ n J-r j n-1 'W ( j -1 ) d j • 

(ii) e( r: ) = r; n"f' ( <:: -1) _on fJ n-1 '1fJ ( J - 1 )dj = o(l': m-m) 

0 
by the last equation and 2. 

(iii) Let either {( > o, or n ~ o. Since m + n > o, as r -+ ""J 

e( 't; ) = t: nO(e o'C ) - n rt: 3 n-1o(e ¥3 )d 3 = 0( t: ne ~-c ) . 

0 
If o = O, n 4- O, e( 'C ) is clearly bounded. 

( ) - A ol n-1 I /n ( -1 ) I ( " ) iv Clearly e oG 't: ol is in L o , w for all 

w >S > o. 

_'Aw - ~G r ) 
d oc, = e 8( <U )- e e( o 

+ 

Convergence as 8 -+ 0 follows from (ii) since m + n > O. Convergence 

as (JJ -+ oo follows from (iii) if ~ > o . Moreover, from Wi Q.der 

[I Z. , page 181 , theorem ] , the integral is 0( A -m-n) as ?. -+ oo, 

(and is O((~ - ~ )-n) as 'A -+ '( + if n ::> 0) . 

J;emma 3 . 2. 2: If f( A ) is in B(( o ,w] ;X ) for all W > 8 > o, 

and if satisfies all the requirements of ~ ( /\. ) of 

1 
lemma 3.1 . 1 vdth m > 2' 

[ f ( I\ ~) - K. e2 K. 
L K > ""C lJ TI -c; 

exists. 

then for each K. > 0 , and almost all 'C > 

J 
00 1 1 

'Y[ - 2 cos( 2 K l'1 "2)f( K. ( '>'t +1 )/ t: )d 7f.. 
0 

o, 
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In particular, L K) r [r( A 3 exists when K ' L > 0 and K /-c 

is in the Lebesgue set of f( A ) • 

Proof: It is sufficient to show that the integral r ?{ - ~ eos( 2K1/ 1) f( K ( 'f{. +1)/ <: ) d 11 
0 

converges at the 

origin and at infinity. 

If K /-c is in the Lebesgue set of f( A ) , we have 

~ 

W ( lf ) = J II f( K ( "1 +1 )/-.: ) - f( IC/ 't: )I\ d '11 = o( If ) , 

f 4 ? 1 
Thus J ?( - "2 If cos(2K '1l 'jr( K. ( 17 +1)/ -C )I\ d 'fl 

I
8 ;5 1 J & 1 

~ f'fl-2. d?/ f(~) + ?( - 2 11 f(K(7(+1)/-C) -f(K/c )l\ct-q 
c s 1 £ 3 3 

= 0(1) + J '1'1-
2

d,., ("'! ) = o(1) + J!'l'[- 2 
w ( ?/ )d'J? 

£ E 

0 -2 
= o(1) + ~L 'J'l 

2
o( "l )d 1l = 0(1) as t , S -+ O, and the integral 

converges at the origin. 

from lenm1a J. 2.1 we have 

S
f 3 

0 3 - 2 \\ f( 3 -1 ))I d 3 ~ "'• 

Here we put '.? -1 -- "' ( "l'l +1 )/..,. ct c; I v ''- ." v , an choose c.... <::: "L tc. • We then 

have1 .., 

<:)2 j 
"l: - 1 

1 

(1 + ?'i )- "2 \\ f( K('t(_+ 1 )/ "C )\\ d 11 <. ..,, 

Ke 
and the integral converges at infinity. 
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Lennna 3. 2.3: I f 

1. ~ - 1 ~ ( ?.. ) is i n 1( I , r.o ) for all 8 > o, 

2. 'Ip (3 ) = Sjm A-1 \<e( 'Al\ d:;I. = 0( j -m) wi t h m > o, as 

1 -+ oo and '¥' ( 3 ) = 0( e 
0 

/ J ) with "lf ~ 0 as J -+ 0 + , 

then, for each E > 0, 

Jj~ :x -1 e_ f;l. I'(' ('A ) I d 'A = o( 3 -n) for every n > o, as 

J -+ 00 

= 0( e ({ /~ ) , as 3 -+ 0 + • 

Proof: 

SJm ). - \ - EA lie(?. JI d ',\ L e- d Jjm :i, -1l<e( ',\ )\ tlA 

= e - c j rw ( 3 ) = 0 ( 3 - n) as J -+ 00 

= O( e 
0 / j ) as J -+ 0 + • 
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3. Fundrunental Theorem. 

The following theorem is fundamental in the representation 

theory. 

Theorem 3.3.1: If 

1. A ~1 r(A.) is in B( (J' ,co); l: ) for all 8 > o, 

2. 1¥1 ( j ) J.i ~ 1t-1 11 r < ?1 Jll d 1l = 0( 1 -m) , with m > 1 = 2 ' 

as j ~ oo, and 1J ( J ) = O( e 0 /j ) , with 0 >,. o, as 3 ~ o +, 

3. e- )-C LK,i: [f( A)} is in B([ O, co) ; ~) for S > 't 1 , and 

all K > K , 
0 

then 

lim 
K ~ co 

of the Lebesgue set of f( A ). 

= f( ~ ) at every point '.r > ({ 1 

Proof: 1 K;c [r( A)] exists by lemma 3.1.2, and has a Laplace 

transform when ~ > If 1 by 3. To prove the assertion we shall use 

theorem 1. 3. 6 and lemma 2.2. 1, corollary. 

Operating formally we have 

00 

t_.-:S--c LK,-t [ i'.OJ] d.-c = 
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oo ao 

= 1.~..£.~ttjo ..a,-~ 't" 'C- 1£l --c J
0
cos(2 K 3) f (K (f+l)/"C) Glj 

00 00 

== .2. K...e..
2

te. f C OS(,2,te3 )d.j r ....Q.-S-c -c- 1 ~ ( K ( jl.+I )/c) cl;c 
le Jo Jo 

= -C!.2"<:r }~-r:-K<r~ +<~~r·>\'d f-< 13-• > d (3 

...)' f ( .} ) as K ...)' °"• 

These formal calculations will be justified if the two inter-

changes of integrations are justified and the conditions of lenrna 

2. 1 • 1 are met. 

For the first interchange of integrations it is sufficient to 

show that 
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But by 2. and lemma 3. 2. 2, if K'S > '6 , the inner integral is 

0 ( 1 -2m) ~ d 1 T b h 1 9 h . 1-.:J as v ~ °" , an m > 2 • ' hus y t eorem • 3. t e im,er-

change is justified. 

For the second interchange it is sufficient to show that 

J 
CX) 3 (°" 2 1 

e-tc'5~@ - 2\\f(@ - 1
)\\ d ~ J e- ol \cos(2(K/'S~ )20G)l 

0 0 

d ol <.. co . 

But this is true since the inner integral is less than ~ ,ff( , and 

since J 
00

e- K. )" ~ (.3 - ~ \\ f( f3. -1 ) \\ d ~ converges by 1., 2., 

0 

and lemma 3. 2. 1 (iv) . 
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l_f• Representation Theorems for L K > 1:' [r( A )] in B ( [ 0, °') ; X ) . p 

In this section we find conditions that a function f ( A ) on 

[Ol ,co) to a Banach space X be represented as the Laplace 

integral of a function in BP([ o , ..,);~ ), where 1 L. p ~ °'• 

In order to obtain such conditions for these general classes of 

functions, we find it necessary, in the cases 1 ..:::::: p <. "" ' to postulate 

some sort of compactness condition on B ( [ O,co ); J: ) . We have chosen 
p 

the weakest condition at present lmown, namely weak compactness of 

the unit sphere in BP( [ o,..,);~ ). By Bochner and Taylor [ 1] , 
and Pettis [ 9] a necessary and sufficient condition for this 

compactness is that X be reflexive, and this is the manner in 

which we have set the condition. It is well lmown that B1 ([ O,oo);X') 

has never a weakly compact unit sphere. Thus, to obtain a represen-

tation theorem for B1 it would be necessary to postulate some con

vergence condition on L K, "'C [f( A )] , and we would obtain a theorem 

ver'J like that of Widder [ 12; page 318 J . We have not chosen to do 

this, since the results are quite obvious . 

The first theorem of this section gives sufficient, and in the 

cases p > 2 . necessary, conditions that f( A ) be represented as a 

Laplace integral of a function in B ([ O,ro); 1: ), 1 ~ p' °'• The 
p 

fact that these conditions are not necessary for p ~ 2 is a consequence 

of the fact that, as the follo-v·Jin g example shows, f( -A ) may be the 

Laplace transform of a function in B ([ O,co); X ), p .6. 2, and yet 
p 
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1 K> -c [f( A )] may not exist. For example, l et x ( ol ) = 
( r(;))-1 oL -

213e- <X- • l'hen 

f( 'A ) = I ~ .-;\CG x( ()(, )d °" = ( 'A + 1 )- 1/3 , 

0 

But LK>r [f(A )] does not exist since 

J ro - 1 1 
2K -

; :: } 7l 2 
c OS ( 2 K ?(_ 2) f ( K ( 'Yl + 1 ) I c ) l d ?'{ 

0 

2KJ 00 

.'.!_ _.'.!_ _ .'.!_, 
= ~~ !cos(2Kl(

2)1(_ 2(~(?'(+1)+1) 3 d'f/. =w. 

0 

I n order to cope with this phenomenon, we resort to what is 

essentially Cauchy 1 s method of sumJnation. This yields, in t heorem 

3. 4. 2, necessary and sufficient conditions that f( ~ ) be r epresented 

as t he Laplace integral of a function in BP ( [ 0 , co); J. ) , 1 L p ..::.. co. 

The case of B ( [ O, ro);"°J:.) is treated in the final theoren of 
(lO 

this section. It will be noted that the methods used are very 

different from those of the t wo previous theorems. 

Theorem 3. 4.1: If :f i s a reflexive Banach space, t hen the f ollow

ing conditions are sufficient for f( ~ ) to be equal a lmost everywhere 

for 

1. 

2. 

3. 

A > 0 to the Laplace integral of a function in B ( [ O, oo) ; '= ), l'l'L- 00
• 

p 

'A -1f ( '-) is in B( [ ~ ,oo); X) for all 8 > O, 

Jco 1l-1 Hf( 1l )\\ d rrt 
J 

= 0( 3 -m) with m > ~' as 3 -+ oo 

= O(e ~/j) with o> O, as J -+ O+, 

M , p fixed, 1 L p L... "°' K > ~ • p 0 



-56-

Conditions 1. and 3. are necessary for every p, 1 < p < co, and 2. 

is necessary if p > 2. 

Proof: 

Necessity: Suppose f( A ) = J~ e- kt: x( t: )d 1: a.e • , and x( t:: ) 

0 
is in BP( [ O,oo ) ; '".f. ). Then using Holders inequality we have, almost 

everywhere 

x' II :fDJll L ~-r:-H 11.:1 t:lll d.1:,,; X' {L:-y,.A "J.-c}t u; lt( t:Jll 'h1 \; 
I =Al\_,_\-

~ 
so that 1. is necessary. 

r 00 

Thus J 
J 

A-1 l\f(A )\Id?.~ A J 
00 1 

;\ - (1 + -) d.:l 
'.3 q 

so that 2. is necessary if ~ > ~ , i.e. is if p > 2. 

From theorem 2.3 . 1, we have 

= B .;;\. 

1 Joo 1 
LK.>T ff(?.)] = (rr~ )2 e2K e-IC(~ +£,) ol-2 x (oL )do<:- ' 

so that, 0 

1 
q 

' 
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()() 

Thus , t II LK,"t[ iC?.lJll pd.-c 

()() Cl) 

~ ( ~ )-i __Q,l, l(. )0 cl{: I, _Q- K ( ~ + ~ ) ( -c ex.)-± \\ x. (.oc.)U" <i.ol 

= fu X(Ol.)11 p d._ct, 

Hence ti 1 K> . [f ( A )] ll ~ \\x( •) \l , so that 3. is necessary. p p 

Sufficiency: From 1., 2., 3., and theorem 3.3.1, we have for almost 

all ) > o, 

f() ) = r .- ~-.: L 11:,-c [r( 1 )) d "C • 
K..+ex> 0 

lirn 

By Bochner and Taylor [ 1], and Pettis[~] , if X i s a 

reflexive Banach space, BP( [ o,CX>); X) is a reflexive space for 

1 < p < °"' and by Gantrnakher and Smulian [ 4] , a reflexive Banach 

space has a weakly compact unit sphere. Thus BP( [ O,co ); X) has a 

weakly compact unit sphere, so that there exists an element x(•) of 

BP( [ O,co); X) and an increasing unbounded sequence {Ki} such 

that for ever-J functional y*" on B ([O,co) ; X) , (i.e. for every 
p 

y* in B*" ([ O,co); X )) , lim y*(L K ,. (f( 'i\ )] ) = y*(x(•)). 
p i-+ex> i * 

Let x *" be an arbitrary element of ~ • .i.'hen if g( • ) is an 

element of B ( [ 0, oo ) ; l:- ) , 
00 p 

x ~( J e-!ol g(ol )d Ol.) = 
0 
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defines an element Yr of BP ( l O,oo); I: ) for each j > o. For, 

y *"is obviously linear, and using Holder's inequality we have 
1 

\yf( g(• ))\ =\ ~ro e-)o(. x*(g(o<..))dot\ ~ ( r' e-q~o1. dol)q{fnx*(g(oc)11p1 i 
0 0 0 

~ - 1-1 II x "II { r II g( ol )Ii p do<} i = II x*I\ II g(.) II p' so that y" 

(q))q 0 (q1)<i 

is bounded for each l > O. 

Y .*' 
Thus we have, for each x * in .r. and for almost all j > o, 

x*(f() )) = x*~lim J® e-~c 1
1
<. -c fr( A j] d-.:: ) 

00 
l~oo O i' 

= lim l e-)~ x*(LK [f( ~ D )d"t; 
i~oo O i' T 

=. lim y;* (1 K. • ~( A ~ ) = Yf (x( •) ) 
l~oo J i ' 

= f" e - 'p: x * ( x( c: ) ) d 'C = x ~ ( 
0 

and thus, for almost all ) > o, 

r('\' )= r.- ~-cx(t:)dt: . 
0 

To obtai.. n necessary and sui'ficient conditions we define 

1 ~ )C ~ ( A ~ = L K, -c: [e- £A f ( ll ) J • 
The following t.heorem yields the mentioned conditions. 
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Theorem J.4. 2: If ~ is a reflexive Banach space, then t he follow-

ing conditions are necessary and sufficient for f( A ) to be equal 

almost everywhere for '). > O to the Laplace integral of a function 

in BP( [ O,co) ; :! ). 

1. A -1f ( ~ ) is in B([J ,co) ; l ), t.f >o,, 

2. = 0( .3 -m) vvi th m > 0, as ] ~ co Jj00 

A -l l\r( /I. lll d A 

= O(et /j ) with o> o, as ~ ~ O+, 

ll 1 ~ l ., [ f ( A ) J I\ p L Mp' wher e MP is independent of K J. 

and E , p fixed, 1 <- p...:: oo, K > K
0

• 

Proof: 

Necessity: 1. was proved necessary in the previous theorem as was 2. 

The proof of the necessity of 3. is almost exactly the srune as in the 

previous theorem. 

Sufficiency: By 1., 2., 3., lemraa 3.2.3, and theorem 3.3.1, 

e - € l f ( S ) = lim 
K~ co 

r e- r-c L :.,_ > r [r( A )} d c • 
0 

As in the previous theorem, BP( [ O,co ) ; :X ) has a weakly compact 

unit sphere, so that for each t > o, there exists an element 

x t:. ( • ) of BP( [ O,co ) ; X ) and an increasing unbounded sequence {€.Kd 
such that for every y * in B * ( [ O,co); X) 

p 

lim y*(Le: • [f( A ~)=y~(xE ( • )) . 
. cK ., 
1.~co "'1. 

Further, since 
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y*(LEeKi' ~ [f( 'A)] ) ~ \ly*\\ ·\\ L~Ki'. [re A )]llP~\\y'*H MP' 
we have ll x ~ ( • )\\f ~ Mp• 

• ~* * Let x be an arbitrary element of ;x , and define Y! 

B~( [ O,oo); X ) as in the previous theorem. Then for each £ > p 

and almost all ~ > 0 

x* (e-n :rO )) = x*" (lim r~e- lt: L\ If(;\. )] di:: ) 
i-+ oo JO E i'"'C' 

= lim JCX>e- r-c x*(LE K ~[f( I\ )] )d 'C 
i-+ CX> 0 c i' 

= J~e- ~ 10 x"(xi;(-C ))d "C = x*( J~ e-3" x E ( -c )dr ). 

0 0 

in E ., 
l. 

S 
oo - E· "t" 

e ' x e .< -c )d "'C 
0 l. 

• 

of 

o, 
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Let L = U 2:. . Then 'L: has measure zero. 
. 1 
1 

* Let x * be an arbitrary element of X , and define y S of 

B*([ O,oo); ?f) as previously. Then for every 
p 

- £. ') 
x * (f() ) ) = lim x* ( e 1 f( S 

i -+ co 

not in L 

=.lim J00

e-fc x*(x t .<r ))d>= =.lim y! (x E .<·)) 
l-+0:> O co 1 l-+oo 1 

= y *' ( x( • ) ) = x "' ( J e - l "C x( L ) d t:: ) , so that for almost all 

0 s > o, 
= J 

00 

e - r t:: x( "C ) d "C • f( ~ ) 

0 

The follo-vdng theorem deals with B ( [ O,co); X ). 
CV 

Theorem J.4.J: If J:_: is a unif orm.ly convex Banach space, then 

the following conditions are necessary and sufficient that f( A ) be 

equal almost everywhere for A > 0 to a Laplace integral of a 

function in B ([ O,m); X ). 
co 

1. 'A-1 f( A ) is in B( [ 8 ,co); l: ) for all 0 > O, 

2. Jjoo r 1 \\ f ( '1 lll d 11 = O( § -m) with m > ;, as 3 -+ ,,._, 

= O(e "( /J ) with O > o, as ,j -+ O+, 

3. M, K>K. co 0 

Proof: 

Necessity: Jcv - -;\ '{;" 
Suppose f( 'A ) = e x( -C )d "'C" , where x( r ) is 

0 in B ([ O,cv); :f ). 
00 

' 
) 
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JCX> -'r"C 
• e d "l: 6 'A-2 \\ x( • ) \I , so that 1. is necessary. Further, 

CX> 

0 
then 

53

00 

A -1 ll f C A ) \\ d A ~ .3 -1 \\ x( • ) \l
00

, so that 2. is necessary. 

Finally, from theorem 2.3.1, we have 

1 5CX> 1 
LK,~ [f( A )] = (-K-)'2 e 2 K e- K (~+£\ii_- 2x(ol )doc. 

\,.. lT-C 0 ' 
so that 

Sufficiency: By 1., 2., J., and theorem 3.3.1, we have, for almost 

all ) > o, 

) = lim r .-~1: LK,T (!c Al] dt:" • 
K 4- (IC 0 

re r 

By Pettis [ 10], a uniformly convex Banach space is reflexive, 

so that X is reflexive. 

Let <e be in L1 (0,w). Define 

1' K ( <e ) = J 00 

'l' ( -c ) L K, -c [ f CA l] d " • 

0 
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Then, II T K ( ~ ) II .; r I <e ( -c ) I II L k 'T [r<A J1 II d" 

0 

<; II L K '. [r< A l] II m r I~ ( -c ) I dL ,;, Mm II re (.) II, 
0 

Thus { T lo() is a set of linear transformations on a separable 

space, L1 ( 0 ,eo ) , to a reflexive Banach space X , and 11 T K: \l ~ M • 
00 

Thus, by theorem 1.8.1, there is an increasing unbounded sequence { Kd , 
and a linear transformation T on ~ to X , such that for everi.; 

* functional x * in ~ , and every ~ in ~, 

lim x *" ( T K ( ~ ) ) = x * (T ( 'f ) ) . 
i-+ eo i 

But by Dunford [2] , every bounded linear transformation on 

L 1 (O,eo) to a uniformly convex Banach space X is of the form 

T(<(l ) = Jm <e( r )x( r )d-c , where x(-C) is in Bm( [O,m); l: ), 

0 
Thus x( -C ) in B ( [ O,eo); X ) exists so that T( <(J ) has the above form, 

00 

-Y*° 
and then we must have , for every x *" in J:. , 

lim x * ( J ro <e ( -C ) L t< > -c ~ ( A ~ d -c = lim x * ( T ( <e ) ) 
i-!)- co 0 i, i-+ eo Ki 

=x *" (T( (€ )) =x*( J00 

~( L )x(-C )d-C ) . 

0 

'" - )-c 't' Let "\:. ( "C ) = e , J > O. Then, for aJmost all ~ ':::> o, 
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x*(f( 'S' )) =x*(.lim J<X> e-r-c LK.,-C lfc A)] dt" ) 
J. .-)- 00 0 J. 

=limx*(f~e-)"T: LK.,-C[f(A)] d"t:) 
i-+co 0 J. . 

= lim x* (T \ e-3"-c )) = x* (T(e- t-c )) 
. K. 
1-+co J. 

= x * ( f"' e- 'f z:- x( "C )d "C ) , 

0 

so that for almost all ) > o, 

f( )" ) = x( 'L )d -C- • 
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Representation Theorems for f( A ) in H ( oL ; x) . 
p 

The class H ( Ol ; X ) is defined as follows. 
p 

Definition J.5.1: f( A ) will be said to belong to the class 

H ( Dl ; X ) , p fixed, 1 ~ p ..:.. oo, if 
p 

(i) f( .A ) is a fure ti on on the complex numbers to the Banach 

space X ~c '\ 
which is holomorphic" for Re A > oG • 

(ii) sup J J ro 
p>iX. \ 

1 

11 f c f + i ?'/ )ll p ct 111 P = l\ f H p 

-co 

(iii) lim f( f + i '1( ) = f( cX.. + i '1. ) exists for almost all 
E' ~ o(, 

values of /f(_ , and f(oL + i1() is in Bp(( _,,,oo); -:J: ). 

For a discussion of the dependence of (iii) on (i) and (ii) see 

Hille [ 6]. 
'rhe following two theorems give the conditions under which a 

function in H ( OL ; J::: ) can be represented as a Laplace integral. 
p 

Theorem 3. 5.1: If f( ~ ) is in H1 ( OL ; "X) where of.. > o, then 

lim 1 K.. C [f ( ~ ~ . exists and equals 

I(.~ oo ' J~+ ).oo 
g( r ) = - 1

- e-cfA' f(f- )df- , and 
2K i . 

ti. - ).oo 

f('A) = f ~ .-·h: g( -.:: )d T. • 

0 

Proof: By Hille [ 6] , page 213, theorem 1 O.h.1, we have for 

Re A>~ 

~(-

See defi ni ti on 1 • 2. 5. 
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1 J(X) f(c1.. +i'>l) d?1 dr- =--=- -, . 
2 I\. /I -( rx.. + i 11 ) 

f( 'A ) 1 

-co 

j 
00 

1 1 2 K. 
Thus L K -c (f C A ~ = : e J - "2 cos( 2 K ) 2 )f( K-( J + 1 )/-c )d) 

' Db ""C" 0 
:l. I( ..Q. :!. K.. J ._/) = n;-z, oeos( .. u<j) -r(K.(f1·+1)/c )J3 

The interchange of' integrations is valid for K. > r o<.. by Theorem 

1.J. 6 since 

Obvi ous ly, for each -C and ?'} , 
'C • 1 

lim e 2 K. . e - 2 K ( 1 - K:( ~ + 1 '>1 ) )2 • ( 1 - :!:: ( Cl 
IC. 

1 
"'1'1))_2_ 't.(°"- +i'VJ ) + i - 1 - e • 

Further, for each "C this limit exists uniformly in ?( for 

- oo < "">'] 4- '""• For , a lengthy, but straightforward, calculation 
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shows that the maximum value of 

1 
\ e2 K(1 -(1 - ~( ol + i 1() )2) . 

1 

(1 t: ( . ??)) - 2 C:(aG + i'Y'l )\ 
- j:( oc, + i -, - e 

occurs at 1( = o. 
ol "'(; 

Thus since lim e 2K (1- (1 - ~)~) • (1 
I{.-:,. 00 

e , for each t > o, K ( E- ) exists such that f or K >K"(t' ) 
0 

2Tl€ Now choose )( > K ( ) • Then 

Then for K > K ( c ) , 
0 

0 llf ll 1 

B LK>--C [~(A}] - 2'n: r:.:(cx+i.'1) ~(Ol.~17)d~IJ 
QO -.c 

= (\2.'rr J ( ...Q.:z...c C, _ <' - ~ < o<. +- L 'Yl >) ~)- ~ (()(. +- \. '1(>f ± -:..t. -c (111..+<.'>z)) tcO(.t-t.T)) J.11 \\ 
-00 

~ 1-rrJ t..e.·u<:.{l-{I- ~(0£.+'-"l>J~l,-~ <oc+.:~>r~ -._Q.-c<ot.+'-'l'J>\n ~lo£+~~1ll il.'Y} 
-~ ~ 

00 

~ .i" 1..2. 2.c (I- (1- ¥>'i) (I - ": r ~ -_£,'""I S_ 1' f.coo +i. 'l'J) II d. 'YJ 

I ~ Tf€: I ~ ll · < .1:n: · II ':f-\1, · I "\- 1 = C., 

Thus lim 
I(_,,. co ~

«+ ioo 

= -1- e-Cf-
2ll i . 

ol. - loo 

f(,... )dr-- = g( /A- ) . 
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Hence vve have 

= <:tc1). 
The interchange of integrations is valid for Re ') > oG since r II • "C <"' + i Tl ) r<.,.. + i '1 lll d "l =e"'" r llr(<>'+i"l)\\ d'Y(. 

-oo 

To deal with the cases p > 1, we must take cognizance of the 

fact that 

1 

2Tli J 
ct,+ ico 

~ - ioo 

e~<- f(f- )d}A-

may not exist. p t "f 1 1 1 
DU ' l p + P' = ' and ~p 1 7 1, /\-f" f(A) L 

is in H1 ( cX.. ; .:f ) so that we may apply the previous theorem to it, 

with the following result. s. 

Theorem J . 4.2: If 

1 • r( A. ) is in H ( ~ ; ":£ ) p :;r 1, cl > o, 
p 

2. 
1 1 

= 1, -+-
p P' 

3. @ P' > 1 ' r.-'). i: then f( '). ) = 'A <5 g (3 ( -c: )d c where 

0 
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g ~("C) =lim LK -c 
K.-+ co ' 

Proof: ~-(> f( A) is in H
1

( ol; X ), for by applying Holder's 

inequality we have 

r II (ol +irl.) - ~ f( ol + i 71 )I\ ct "l~{r 11 r(oL + i "llll Pct~ ~. 
-co -ex;, 

{f" d ?'(} 
1 

lol +i 'Y{\ - ~P 
I P' <._ 

co. 

-co 

Thus applying the previous theorem, we have 

and f ( -:X ) = 

lim 1 K -C [~- (3 f ( A ~ = - 1 -. I «. + ioo e -c />- /'-- p f (/" ) d /'" ; g fl (-.: ) , 
Krl co ' 2TI l J . f co d., - lco 

A~J e-~-c: g \Oc~ )d~. 
0 
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6. A Special Hepresentation Theorem for a Class of Numerically-

valued Functions. 

The fo l lowing theorem gives sufficient conditions for a numerically-

valued function to be represented as a Laplace-Stieltjes integral . 

Theorem 3. 6. 2: If f( 'A ) is a numerically-valued function which satis-

fies conditions 1. and 2. of theorem 3.3.1, and 

3. r1 L K, -c [re 'A ij Id to ,,; M, 

0 

then there e..'::ists an ol. ( "'C ) , of bolm.ded variation in [ o, cu) all 

W > O, such that 

( I\ ) f (X) - ?."t: ( \ f "' = J e d oG -C: 1 , almost everywhere. 

0 

Proof: By ~'~idder [ 1 2] , page 31, theorem 16.4, there exists an 

increasing and unbounded sequence of numbers l Ki) , and a function 

CX- ( L: ) , of bounded variation in [ 0, w] all UJ > o, such that 

1 . J C0 - 'J""C im e 
i-+oo O 

L K., --C [f(A)] d -C: 
l 

= 

But because of 1., 2., and J., f( ~ ) satisfies all the postulates of 

theorem 3.3.1, so that for aLuost all 

=f( ') ). Thus we have 

d cX.. ( c ) almost everywhere. 
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