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ABSTRACT

A stucy is made of the Laplace transformation on Banach-valued
functions of a real variable, with particular reference to inversion
and representation theories, [Iirst a new type of integral for Banach-
valued functions of a real variable, the "Improper Bochner" integral

me

is defined., The relations between the Bochner, Improper Bochner,
iemann-Graves, and Riemann-Stieltjes integrals are studied. Next,
inversion theorems are proved for a new "real" inversion operator

when the integral in the Laplace transformation is each of the above-
mentioned types., Lastly, representation of Banach-valued functions by
Laplace integrals of functions in Bp([:O,m);EE ) 1 < p€ o, is studied,
and theorems are proved giving necessary and suificient conditions.

The theorems are very like those proved, for numerically-valued
functions, by D. V, Widder in his book "The Laplace Transform”
(Princeton, 1941) page 312, The classes Hp(oé s;X), 1< p < =, are

also studied in this section as is the representation of numerically-

valued functions by Laplace-3Stleltjes integrals,
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INTRODUCTION

The theory of the Laplace transformation on real or complex
functions of a real variable is one which has been, for a number of
years, of considerable interest to both pure and applied mathematicians,
The interest of a number of these mathematicians has centered around
inversion and representation theories, the former of these theories
being of interest from both the utilitarian and function-theoretic
points of view, and the latter from a primarily function-theoretic
viewpoint,  Historically, the Laplace transformation arrived on the
scene considerably before large developments in abstract spaces, and
consequently was defined only on numerical ly-valued functions., However,
the extension of the definition of the transformation to the domain of
Banach-valued functions of a real variable, that is functions on LO,w)
to a Banach space, is one of the several extensions that were made, and
it is with this extension that we shall be dealing here, In many
respects the theory resulting from this extension is now approaching
the degree of completeness enjoyed by the theory for numerically-valued
functions, However, in the respects of inversion and especially
representation- theories, the approach is not so close, In particular
there are, as yet, no representation theorems for Banach-valued functions
of what might be called the "Widder" type. <This terminology remires
some explanation,

Let £( A ) be a numerical ly-valued function of the real or complex
varisble A, and let Lyc,c L£(A )]  denote any fixed but arbitrary

inversion operator for the Laplace transformation. Then it has been
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shown for many such inversion operators that if LK,“C [f( A )]
exists, and either Jm |20 Le¢ 2 Pat £ 1, p fixed,
1< p< », K> K.O,Oor ess, sup ‘LK_’-C [f( A )]I £ M, K> LO®
0€T< o
where M is independent of M , £f(‘A ) is equal for ‘A > O to the
Laplace transform of a function in Lp(O,eo) or Lm(O,oo) respectively. A
theory of this type for a particular inversion operator is what we
call a "Widder" type theory. For examples see Widder = [’l 2, ch. 7, 8 15].
The task of developing "Widder" fype representation theorems for
Banach-valued functions is the one we have set ourselves,
Since a Wiidder" type representation theory is stated in terms of
a specific inversion operator, the opportunity was also presented both
to enlarge the imversion theory for Banach-valued functions, and to
study a new inversion operator for the Laplace transformation, e have
grasped this opportunity and have developed the theory in terms of a
new "real" inversion operator., A real inversion operator is one that
utilizes the values of the generating function arising only from real
valvues of the independent variable. woeversl of these are known; for
examples see Widder [12, ch. 7, 8 6; ch. 88 25] s or Hirschman [ 7] .

The new operator in question is defined by the formula
1

A

I Lyu,g Leca ) =

Al

R .
N “cos(2KN)E(K(NHA)/ TN .
0
-CQ (T )dTt , then under certain conditions,

>

Ir (A ) = S e
0

Numbers in square brackets refer to the bibliography at the end
of the dissertation.
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lin Le = [2(A)] = @ (T ).
K 3

o0

The fact that the representation theorems will be stated relative
to this particular operator is no real restriction, for the method is
quite general, and will work equally well with any inversion operator
for which the theorems are true in the numerically-valued case,

This operator was originally given by 4. Erdelyi [_3] . However
the resulting inversion and representation theories were not developed
there. These theories were developed, by the author, originally for
the numerically-valued case and have been accepted for publications
see Rooney [ 1 1] p

There is another operator related to I, which is given by the

formula

1

g1 jw 2
IT Ly g [s(A)] =X | smzrnOsr(g /Ty an

Both I and IT are special cases of a third operator

oo

1
TIT Ly ¢ [f( A )] =(2TK, (2K ))"’Kj nv/ZJ,, (2r2)e(K (M) /T )a7,

0

which can also be found in Prof, Erdéiyi's paper. <he inversion and
representation theories for these last operators have also been investi-
gated, and were found to be similar in every respect to those for
operator I, To avold inessential difficulties we shall restrict our
attention to operator I,

Operator I has some points of resemblance to Phragmén’s operator

BZ?; che 7, 8 é] in that both are "real' inversion operators, involve



only the values of f( 2;) for large real values of A s and involve
only elementary functions, Iowever, Phragmén's operator is not an
integral operator,

We have, perhaps inevitably, been drawn into certain subjects
which, while of great interest and importance, are subsidiary to the
main theme of this dissertation. Chief among these are certain diffi-
culties concerning the relations between various integrals of Banach-—
valued functions, These difficulties are resolved in Chapter I, wherein
are also the main theorems we shall need concerning these various
integrals,

Chapter II is devoted to inversion theory., This theory is developed
for several different kinds of integrals, Chapter III is given over

to the representation theory, This chapter may be considered to contain

the principal results of the dissertation.
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Chapter I

1. Introduction.

In this chapter we collect and elaborate certain theorems concerning
integrals of Banach-valued functions of real variables. The main tool
in this regard is the Bochner integral, which is an analogue for this
type of function, of the Lebesgue integral. Its theory is developed in
sections 2 and 3., Nearly all of the material of these two sections is
abstracted, verbatim or paraphrased, from Hille [6} o Consequently,
for such theorems no proof is offered, The reader who wishes to see
proofs of these theorems should look in Hille [6] o In other places
where known results are used, we shall give references to these results.

Section L introduces a slight generalization of the Bochner inte-
gral which we call the "Improper Bochner Integral", It is the analogue
of the improper Lebesgue integral.

Less powerful, but nevertheless important, tools are the Riemann-
Graves and Riemann-Stieltjes integrals, which correspond, in the
numerically-valued case, to the Riemann and Riemann-Stieltjes integrals
respectively, Their theory is outlined in sections 5 and 6.

In section 7 we develop theorems giving sufficient conditions for
various of these integrals to be equivalent. Finally in section 8, we
develop a weak sequential form of the Banach-Steinhaus theorem.

The notation to be employed in this and subsequent chapters is,

in the main, that of Hille [6) o That is, Banach spaces will be denoted



by German capital letters, and their elements by English lower case
letters. The space of bounded linear functionals over a Banach space
will be denoted by "starring" the symbol for that space, and its
elements will be denoted by the "starred" elements of the Banach space.
Real or complex numbers will be denoted by Greek letters. We shall
denote the zero vector of a Banach space by &, and the void set of a
collection of sets by @, Several exceptions to this rule will be made,
mostly in cases where long usage has prescribed symbols, which clash
with the above notation, for certain quantities, e.g. Lp, e, etce One
notable exception is that we shall often use English letters for sub-
seripts, Other exceptions will be seen to occur,.

One other point is worthy of notice. Whenever we use the word
limit" we mean the limit in the strong sense, Other types of limits

will be prefaced by explaining words,



2, Functions and lleasure: Let Ek be the k-dimensional Euclidean
space, >, a measurable set in E, , and %( K ) a function on = to
the Banach space X "

Definition 1,2,1¢ Let x(x ) and xn( oL ) be functions on 2

to X ., The sequence{ xn(oc. )} converges to x(oc )

(1) almost uniformly if to every &€ > 0, there is a set 2,

with m( 22, )< €  such that { x, (e )} converges uniformly to
(et ) onZ =20

(ii) almost everywhere if there exists a null set 2 oC 2 such

that || x(a ) - x (o | so0fr x inX -Z,.

Theorem 1.2,1: The two types of convergence are related as follows:

(1) implies (ii), and if m(Z; )< w, (ii) implies (i).

Definition 1.2.2:

(1) =x=(o¢ ) is said to be finitely-valued in > if it is constant

on each of a finite number of disjoint measurable sets 23‘ with

LT, =20 ,

3 J

(ii) =x(oC ) is said to be countably valued if it assumes at most a
countable set of values in x each on a separate measurable set 2= 5
Definition 1.2.3,:

(1) x(o¢ ) is said to be weakly measurable in 2, if x*{x(«< )] is )
measurable (Lebesgue) in 2, for every x* € x*,

(ii) x(o¢ ) is strongly measurable in >, if there exists a sequence

of countably-valued functions converging almost uniformly in 22 to

x(oC ).



Theorem 1,2,2:

(1) If x(o¢ ) and y(ol ) are strongly measurable in 2. and Yy
and Xz are constants, then Zf,lx(oc )+ ¥ 2y(oc ) is strongly
measurable,

(ii) If @Q(o¢ ) is a finite numerically-valued function which is
neasurable (Lebesgue), then @ (& )ex(ot ) is strongly measurable if
x( ot ) has this property.

(1ii) If x(ol ) is the limit almost everywhere of a sequence of strongly
measurable functions, then x(o¢ ) is strongly measurable.

Definition 1.2.,4: A function x(oC ) on the closed interval [31 ,3 2]
to the space I is of

(i) bounded variation if sup“Z.: [x( 8 i) - x(ocC l)]“ < « for every
choice of a finite number of nzn-overlapping intervals ( Oéi, 6 i)

in [31: 5 2] 3

(ii) strongly bounded variation if sup 2“ x( ot j_) - x(ot 5 )H < o
where all possible partitions of [ 3 19 13 2] are allowed. The two
suprema are known as the total and strong total variations respectively.
Definition 1.2.,5: A set ) of complex numbers will be called a
domain if € is an open connected set, [he closure of a domain
will be called a closed domain,

Definition 1.2,6: If \S is a complex variable, and x(§ ) is a
function on the open domain _{)  of the complex plane to & 5
then x({ ) will be called holomorphic in )  if x¥(x( § )) is

*
holomorphic in Cauchy's sense for every x* in X .



3. Integration,
Definition 1.3.1: A countably-valued function x(ol ) on 35 to X
is integrable (Bochner) if and only if || x(o¢ )i  is integrable

(Lebesgue)s By definition

(B)j (ot )dee = 2> x. Wl 25 T
by 3=1 d J

The series converges since

1= x, m( Z )| < > zfl n(Z,) = f Wx(oe I aec &
3+ 5= =

Consequently

“(B)j x(o)dec|| = jl\x(«, M dee o
= =
Definition 1.3.2: A function x(o¢ ) on 2o to JE is integrable
(Bochner) if and only if there exists a sequence of countably-valued

functions converging almost uniformly to x( o¢ ), and such that

1lim SE " xm(oL ) —xn(oL )“ det =0,

MmN > e

By definition

(B) L x(o¢ )dot = 1im (B) Exn(oc Yd oo o

n- o

We shall drop the "(B)" from the integral when there is no danger of
confusion,
Under the postulated conditions, the integral exists uniquely,

That is, for every sequence { xn} of countably-valued functions with



=6

the above postulated properties, lim (B) XE xn(oc Jd et exists,

n- «
and has the same value,

Theorem 1.3.1: A necessary and sufficient condition that x(o¢ ) on 2

to €  Dbe integrable (Bochner) is that x(e¢ ) be strongly measurable,

and that

5» fx(ot | d ot < o
Definition 1.3.3: A function x(e¢ ) on 2, to X belongs to

BP(Z ; X), 1¢ pg o, if x(o¢ ) is strongly measurable on =, , and

Sz fx(oe W P dwe ¢ = x(o¢ ) belongs to B (X, 2k ) if x(e¢) is

strongly measurable and is bounded except in a null set.*
Theorem 1.3.2: If J is a real or complex Banach space, then

BP(E 3 X ) is a real or complex Banach space under the norm
: 1
ol 5 ={ J, NtarlPas}® | 1202 -

sl = esse ool xte 1) -

Theorem 1.3.3: If x(o¢ ) is in B(Z ; &), then

i

]

\ 5}3}{( o Jdew < ‘YZ Nx(ee )l dee

Theorem 1.3.ht If x(o¢ ) is in B(2Z2 ;€ ) and x* is in >x* , then

x™*(x(ov )) is in L(Z ), and
x"‘(S x( ot )dot ) = j x¥(x(elL ))d ot ,
z =
Theorem 1.3.5: If x(pC ) is in B('E1; X), then for almost all 3

E,],

in

¥ Ve shall often use B( ; ) for B(Z 5% ),
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(i) limc)%r 33 “x(ob)—x(E )" det =0,
¥

and in particular

3+
(ii) z‘ILJ‘.mO%- 53 x(ow )dot =x(3 ).

Definition 1.3.l4: We shall call the set of 3 where formula (i)
of the preceding theorem holds true the Lebesgue set of x(ot ).
Theorem 1.3.6: If x(o¢) is in B(Ey; X), and if 3 is in the
Lebesgue set of x(ol ), then the Lebesgue set of x(o¢ ) is equal to
the Lebesgue set of " x(oe ) =x(3 M -

Theorem 1,3,7: If x( ot ,@ ) is a strongly measurable function of
(o8 ) =(K gy & 5 B gseees @n), then x(o¢ , ) is in
B(Em_m;I) if there is a function y(o¢ ,8 ) such that y(o¢ ,8 ) =

x(o(.,@ ) for almost all (&£ , 8 ) and Jﬁ{j E“ y(et ,@ )“doc} dP

n

exists, In this case

S x(o!-,@.)docd@ =S y(a,@)dud@:j{gy(oc,ﬁ)dd.} dg

E E E E
m-mn m-n n m
Em n

Theorem 1,3.8: If xn( o¢ ) are in B( 2 ;% ) for all n, and the sequence
converges almost uniformly to a limit function x(o¢ ), and if there

exists a mumerically-valued function @ (ot ) in L(Z ) such that

uxn(d. )" € @ (o) for all o¢ in Z; , then x( o) is in B(Z ;X ),
and

lim x (ot )Jdet = S x(oc )dot
n
n-— o 2



L. TImproper Bochner Integral:

Definition 1.4.1: Let x(o¢ ) be 1‘3 BILA ,w] ;%) for a fixed
A andall > . If 52 x( ot )dot  converges (in the

strong sense) to a limit y, as @ - =, that is to say if for any

€ > 0 there is an W O( € ) such that

w
y - x(ot )doul} < € for every W > w , then we say that
ho- § I :

)
the improper Bochner integral of x(ot ) over [ 2\ ,») exists and we
>0 W
put S x(ow )d oo =y =1lim fx(ob)dob .
A al-=> o

We shall prove two theorems concerning interchange of integrations
when one of the integrals involved is an improper integral., For this
we need the following two lemmas,

Lemma T.4.1: Let x(o¢ ) be a strongly measurable function on the
finite closed interval [ 3 ,h] to the Banach space % . Then
x(o¢ ) is the almost uniform limit of finitely-valued functions on
this interval.

Proof: By assumption there exists a sequence of countably-=valued
functions xn(oo ), (n =1,2,...) such that for every & , & ' >0
there is a s?‘o b 1§[§"h] and an integer N( & ) such that

m(2) < §2— and“xn(d.)—x(ob)"“g forn? N(E ) and
all o in [3,’)2 ] - Z,‘,'. Since xn(ao ) is countably-valued,
there exist sits zn,i such that xn(Z‘, n,i) = xn,i’En,in Zn,j =0{,
i #j, and 2, n(E,)=1-3 .

i=l
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Thus for every € > 0, M( € ,n) exists such that

S ?

Z m( =2 ) L g R

5= n,1 2“"“l
Let 2—_: Z U (U U Z )o Then
n-1 izM n,i

n(,) « o, )+ 30 (= m(zn,)<§- 21 £.-¢€.

n=l i> M
!
Further, let x (oC) =x (ot ) in [3 :71_] -3,
= g in 2= >

Then the x are finitely-=valued and on

[3 '72] -22, "xn( o ) - x( oL )“<8 s, n > N(E ), since

S x e 13,70

Lemma 1.Le.2: If

To xg(ot ) are in B(LO,=); X ) for each N> 0,

D Lim x o (e¢ ) =x(e¢ ) uniformly for o« in [ 0,wl , each
G o,

3. ‘@ (X ) in L(0,») exists such that \\x A (ot )“é—_ @ (ot ) for
all A>0Oandall &, 0% ot < o3

then

(1) x(e¢) is in B(LO,=); x),

(ii) 1im5 x 9 (o )dec =S x(o¢ )dot
Ak 3l 0

Proof:
(i) Since x( oL ) is the strong limit almost everywhere of strongly
measurable functions, x( oL ) is strongly measurable by theorem 1,2,2

(1ii), Further, since “x a (e )“.4. @ (ot ), “x(ob )“é- @ (e¢),
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and thus n x( oL )“ is in L(0,»), Thus by theorem 1.3.1, x(o )
is in B( [ 0,00)5 }. )c

(11) since lxa ()] € @(oc), and |Jx(x N € @(),

S “X;\(OL)" da = S @ (o¢ )doL , and
“o

“o

(S)O | = ON| d""éj;o @(e )dec for every w > O,

Also, since @ (ot ) is in L(Oye), for every € > 0, @ (€ )
exists such that @ (ot Yda < € for wy > w (€), and thus
w, 3

X “XA(OL)“ do(.<-§-;,andj f|xee || ax < %for
w

) 1

1

w, > W(&).

Choose an W4 > (€ ).

BY 3., ;\o( € ) exists such that for A > 7\0 and ¢ in (o, co,l'] "

sz(oc.)—x(o(. )“4 -3—-8—-;.

Thus, for ?\>”,\o ‘
‘ j XA(OL)dOL -j x(oﬁ)dot“ =

(o] o}

=]

mm—

(01 @
S (x4 (0 ) = x(or ))doe + S xq (o )dee = £ x(ob)dOO“
0 @ o
“1 - -
€ j Hox (e ) = x(ee )“ doe  + 5 [xp ()| ae +5 I} x( )} ase
0 Wy w,]

< €.
The differences between this last theorem and theorem 1.3.8 should be

noted.
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Let E ={_(o¢,6)\0eoc,sw ;Oé@é‘g }

CO’K
Theorem 1.le1: If

1, x(o(,,@)is inB(Ew’S;X)forafixed 'S and all w > O,

= o
2. S x( ot , @ Jd oc converges uniformly with respect to ﬁ §

0
(ii) \ x(ot 4 8 )d ot is inB([O,‘S];}),

[~} !S oS_ =» €0
(iii) S x(ot, )dB8 do = S x(ot, @ )dee d@ .
0

0

Proofs
(i) It is sufficient to show that for every €> 0, @ ( € ) exists

such that

o W
“S ? Syx(oc,@)d@ de]| <€ ror W,> W, >W(E ).
W

1 O

By 2., for every & > 0, QJ3( E ) exists such that

€ ).

&
nS x(oo,p)dd.“‘-g it W, > Wy > wl
@y

Let W(E )= @ —%—). Then if W,> w;>w(E ),

3(



P ) o

N R T | L IR

C‘)1 0 0 w1

s w
SOHS 2X(a¢,@)doc,u g < Sé-l’ =€ , The Inter-

change of integrations is justified by theorem 1.3.7.

(ii) By theorem 1.2.2 (iii)

>
X - x(et , p )dot is a strongly measurable function of B ,

0

<8 <% . Thus by theorem 1,3.1 it is sufficient to show that
S
0

|

g x(et , @ )do(.“ is in L(0,§ ). By lemma 1.L.1,

=»C0 :
8 x( e , 6 Jdet is the almost uniform limit of finitely-valued

0
functions, and consequently so is

=>co
Sw x( ot , @ )de< o Further, by 1. and theorem 1.3.1,

\\S“’ (o, @ )axll € L(0,Y ) for each « > 0, By 2., for
0
each W>0, @ ( & ) exists such that for («)1 > W(E&)

->00 =>c0
“S Cox(e, )doc“<5 . Since S (et 5 p )dee is the
almost uniform limit of finitely-valued functions,

-0
\\S x(et , P )do(.“ is the almost uniform limit of step functions
()
1
and, 1s thus measurable,
=>c0
Thus “ X x(et , B )do(.“ s being a bounded measurable function,
w
1
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is in L(0, § ) and thus so is “ S x(ot , @ )dob” .
0

(iii) By (i), for each &€ > 0, w ( € ) exists such that for w1>w(5)

. SS Ko, 8)af aofl = &. s
[%X)

1 0

I (7° Iy
Fe NP s pramas - [T, 606 ancl
0 0

0 0
Y (o “1 (%
<“j 5 x(ot,@)dot d @ -S j (o, 0)a6 axfl  +§
0 0 0

0
X e
=u j 5 x(e , f)d e dp” + €/2, by 1. and theorem 1.3.7.
O (73]

But by 2., for each €>0, W (& ) exists such that for a)3> (.)2( £ )

l e ,p )decl|< € .
g
Choose (o.J1 > max [CJ(E ), @ 2( £ )] . Then

’S ~>c0
P<HL£)ﬂ¢&deﬂ.€
1

3 s

< PU 7 e s el ap < £y §ee

S 2y

Letting € - 0, the conclusion is reached.
Letsz{(oL,@)‘OéObéCd;Os @‘(-oo}.

Theorem 1.4.2: If

1. x(ot ,8 ) isinB(Ey ;X ) allw > 0,
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-> ¢
2 & x(ot ,0 )deC converges uniformly in 8 , 0<f=7 s

0
for each 7% = O,

3. @(@ ) exists, in L(0,») such that "J x(oc, B )doc." < @(g)
all W>0andall B ,0% B <a,
Then

(i) j x(o, @ )dot is in B(L 0,»); X ),

(i1) S S % ot , 6 Jde d @ converges,
O 00 ‘900 -> o0 oo

(iii)S X (ot , B )doc df = S S x(o¢,@ )a@ ae .
0 0 0 0

@
Proof: Let x, ( @ ) &= 5 x(oL ,@ )aoX , Then, by 2. and 3.,

xw (@ ) satisfies all th8 hypotheses of lemma 1.L.2.

o

© (4
Thus lim 5 S (ot ,f )do dp = 1lim S Xxu(@ )d@ , and
0

W o O 0 Wy o

Smlim xw(p)d_(, =Jm S—w x(o, B )dec d exist and are

W > e
0
equal, But
0 w (73} ©
lim J j x(ot , 8 )doc AP = 1lim j j x(oc,p)dp do¢
Wy o 0O 0 &> o O 0

> oo
= 3 X x(o ,f )d g dec , the interchange of integrations

0 0
being permitted by (1) and theorem 1.3.7.



5. Riemann-Graves Integral,
Let x(oL ) be a bounded function on the finite closed interval
[3,’)2] to the Banach space x .

Subdivide [-3 5 ’7'1] into .m  subintervals A\ ; by points
3553 = 3,<39< e<3,=7 . et §,=9,-3,,,
and let ol 5 be an arbitrary interior point of JAN T We shall denote
the subdivision of [ 3 ,7]  together with the points & s

vy 11 , which we shall call a partition of [3 ,’Y{] . Let n(TT)

= max § i
i n
Let G(Tr) = Z x( ot i) § s+ By lim G( TU) we mean the
1 N(TY » 0
i n
limit, if it exists, of 2 x(o(.i) Xi as n- « in such a way that
i=l

m§x Si" Co
3

Definition 1.5,1: If for every sequence of partitions with NTT ) » 0,

1lim G(TT ) exists and equals the same vector ¥y, then we say that
N(AT ) 0

x(0L) is Riemann-Graves integrable over [ 3,MN] , and we denote
this common limit y by n
(R) x( ot )dot .
We shall drop the "(R)" Wherz there is no danger of confusion.
It should be noted that the integral is defined for bounded

functions only,

If x(0C ) is Hiemann-Graves integrable over [ 3 ,'Y(] for

every N>3 , and
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ki
lim (R) x( ot )d oo exists in the strong sense, we shall

N> o
denote this limit by

(R) S; ot Jaed
and say that x( o¢ ) is Riemann-Graves integrable over the range {3 ,«).
Definition 1.5.2: We shall call Ox( 3,n) = -imfpdlt‘ x(ot,l) - x(obz)"
the oscillation of x{ ol ) on the closed interval [3,, ';l.]“ o If oC
is an interior point of [ 3, ')'l] » we call 0O_(o¢ ) Eglimo N §,0 +8)
the oscillation of x{ o¢ ) at the point o¢ , If ©o% Zs an end point
of the interval we use Ox(ol. , O + ) ); oF Ox(ob -3 ,0L).
Lemma 1.,5.,1: If Ox(ol,) = 0, then x(o¢ ) is continuous at o& .
Proof: Consider first that ol is an interior point of the interwval.
By hypothesis, for each & > 0, 3 (€ ) exists such that
Ox(oé- § ,o¢ +48 ) <& . That is swp “ x(ol.1) - x(ocz)“

A Fsat, o0, coes§

so that “ x(o£,1) -X(ocz)“<5 for ' ot =§< XLgsoLy, S oL +§ .

Set oL, = ¢, and oty =@ ; then we have “ x(et ) - x(8 )“

2
for ‘06 - @l< § (E)s The extension to the case of ©o¢ an end point
is obvious, as is the cbnverse of the lemma,

et [  De the set of discontinmuities of x( oL ) in [ 3 ,’)fﬂ &
Theorem 1.5.1: If x( oc ) is a bounded function on [ 3 s ] to
I s and if m( r‘x) = 0, then x is Riemann-Graves integrable on { 3 ,'71] .
Proof: See Graves [ 571,

It should be noted that the condition m( l_,'<) = 0 is a sufficient,

but by no means necessary, condition that a bounded function be Riemann-



.

Graves integrable., There are functions which are everywhere dis-

continuous and are yet Riemann-Graves integrable, For example, see

Graves [5] &
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6, Riemann=Stieltjes Integral.
Definition 1,6.1: Let ¢ (ol ) be a bounded numerically-valued
function on the finite closed interval [3 ,'7(] , and let a( o< )
be a function on [3 ,’Q] to the Banach space x -

Let I[ be a partition of [3,7M] as in 8 5. let

n
H(TT) =iZ:=‘:I ¢ (ot i)[a(oéi) - alo i—‘l)] o Then if for every
sequence of partitions with N(TT ) - 0, lim H(Tl) exists and
W(IT) - 0

equals the same vector y, we say that @ (oL ) is Riemann-Stieltjes

integrable over [ 3 ,’)z] with respect to a(oL ), and we denote

this common limit y by

P (ot )da(o )
(enoc oL e

3
It L@(oc )da(oL ) exists for every N >3 , and
1‘,
lim 5 @ (ot )da(oL ) exists (in the strong sense), then we shall
ol

denote this limit by

L (@( ot )dal oL e

Theorem 1.6.,1: If (€( of ) is a continuous numerically-valued
function on the finite interval [3 ,"Pd , and if a(o¢ ) is a function

of bounded variation on [3 ,'72] to the Banach space % , then
ki
5\3 @( et )da( o« ) exists,

Proof: See Hille [ 6] s page 52,
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7. Relations Between Integrals

(A) Bochner and Improper Bochner Integrals.

The relation between these two types of integrals is provided by
the following theorem,

Theorem 1.7.1: If

1. x(ov)isinB(Lo,w];2X) a1l w>o,

26 “ x( ot )" is in L(0,=),

then

(1) x( ot ) is in B(EO,&);}),

(ii) S x(oC )d ot converges,
0 o 00

(iii)f x( ot )d e =S x( ot )doe .
0 0

Proof:
(i) By theorem 1.3.1, it is sufficient to show that x(of ) is strongly
measurable over [ 0,e).

By 1., x( o ) is strongly measurable over (0,w] for each w>0,

Let 1 (o0 ) =1 0€ ot W

=0 oL >w

Obviously 1,, is Lebesgue measurable for each value of w
Then x (y (¢ ) =1 (3 (ot )x(o¢ ) is strongly measurable over Lo,w]
by theorem 1.,2,3 (ii), and since x (¢ ) =0 for o«£>wW , x4 (e )
is strongly measurable over [ O,),

Obviously x(o¢ ) = lim x ., (oL ), where the limit is in the strong
@ ~»
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sense, and thus, by theorem 1.,2,3 (iii) =x(ot ) is strongly measurable

over [O,oo).

(ii) Since " x( oL )“ is in L(0,») we have
©2 ®2
13 x( ot )dol.“éS |l %t | doe >0 as Wy, Wy
(111) |} 5 (o Ao - S oot Jare]| = HX x( o )da _j (o Yae]|
0 0 (&) @

1 1

~$00 ]
“S x(oc)dcx." +J‘ " x( & )H de = 0as Wy~ =
W (A}
o 1 1 ‘
(B) Bochner, Riemann-Graves, and Improper Bochner Integrals.

Sufficient conditions for a function to be integrable in both

the Bochner and Riemann-Graves sense, and for these integrals to be
equal, are given by the following theorem.
Theorem 1.7.2¢ If x(oC ) is a bounded function on the finite interval
[3 2Nl o X , and the set | of discontinuities of x( ot )
has Lebesgue measure zero, then x( o ) is both Bochner and Riemann-

Graves integrable over [ 3 s ’)1] s and further,

Y !
(B) Sg x( oL )d o =(R)j3 x(ot)dot

Proof: By theorem 1.5.1, the Riemann-Graves integral of x(o¢ ) exists.
Let {Wn} be a sequence of partitions of [3 ,m]  with
N(TT ) tending to zero, Let G(VV_ ) =2_ =x(oc . ) § . be the
n n " in in

i
associated Riemann sums., In these sums we may assume that the oC
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are chosen so that they do not fall in the set r—l « Let
xn(ob ) =Zi x(oe 3:51'1) ? in where 9 in is the characteristic
function of the interval A\ . , Then if @ is a point of [3 ,7M]
not in [ s 1im" x(6 ) _xn(© )" =0, for, if A j,nbe the
interval in w;i—;h ¢ |1lies, “ x(pg)- xn( 8 )“ = “x( ) - x(ocj,n}“ "
and since x(0¢ ) is contimuous at o« = @  and loaj,n- 8|~ 0 as
mooy Nx(8) -8 o

Then, by theorem 1,2.1, lim xn( o« ) =x( o ) almost uniformly, so
that, since xn( o ) are finitely-valued functions, x(oe ) is strongly
measurable, But, by hypothesis, x(oe¢ ) is bounded, so that, by theorem
Te3.1, x(e¢c ) is in B(C3,m] ;%€ ).

We have then,

‘\"
(B) 53 (et )dot = 1lim j xn(oc.)dcz. = lim 2 x(oe . ) § .

n-—> o N> o i B Ly

’7]
=un oI ) = (®) Sg x(ot )dot o

n- o

Corollary: If x(el ) is a function on (3, «) to & , if x(e )
is bounded on the intervals [3 ,')7] for every N >3 , and if the
set [ of discontinuities of x(oL ) in [ 3 ,») has Lebesgue

measure zero, then

(R) 83 x( ol )dek =Sg x( el )d o

if either of the integrals exist.

Proof: By the preceding theorem,

M N
(R) 3‘3 x( o )dor = (B) L x(e )dee , for every M>3 , and
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taking limits on both sides we have
—>0

(R) S‘g x(otL)d = gé x(ot )d ot if either integral exists.
(C) Stieltjes Integral.

The relation of the Stieltjes integral to other integrals depends
on the following lemma.
Lemna 1,7,17: If a(ot ) is a function of strongly bounded variation on
L3,ml +to X , then the set { ' of discontinuities of a(e ) is
at most countable,
Proof: Let M be the strong total variation of a(oc ) over [3 ,7m]

and Pnz{oa‘§éocsn ;Oa(oc)> E} e Then

n
P = ;1 " - and [ " contains fewer than 27 2elemen’os. Thus [ is
at mos:;l—countable.
We can now prove a theorem relating Stieltjes, Riemann-Graves, and
Bochner integrals,
Theorem 1.7.3: If a(oL ) is a function of strongly bounded variation

on [3 ,nl to X% , and @ (ot ) is a numerically-valued function

with continuous first derivative on [ 3 ,77] , then

4!
ngoc)da(oe) = @(™)a(n) - @(3)a(3 ) - Sjce'(oqa(oc)m ,

The integral on the right hand side may be taken in either the Hiemann-
Graves, or Bochner sense.

Proof: The proof is the same as that for numerically-valued functions
once it is noted that since a(o¢ ) is of strongly bounded variation

it is bounded, and by the preceding lemma its set of discontinuities has
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measure zero, so that, by theorem 1,5.1, the integral exists in the
Riemann-Graves sense, and by theorem 1.7.1, it exists in the Bochner
sense,

Corollary: If a(oC ) is a function on (3,») to x which is of
strongly bounded variation on [3 ,')1] for each >3 , if @ (o)
is a numerically-valued function on [ 3 ,») which has a contimuous
first derivative on [ 3 ,»), and if lim (™7 )a( % ) exists and

T
equals y, then

L @ (et)da(ot) =y = @(3)a(3 ) - (R) 53 @' (ot Jaloe )doc

=y - @(3 )a(3 )-L @' (o da(oc )doe

if any one of the three integrals exist.

Proof: The proof is obvious,.
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8. Weak Convergence of Operators,

The following theorem, which is, in a sense, a weak sequential
analogue of the Banach-Steinhaus theorem, will be used in Chapter IIT
in connection with certain representation theorems,

Theorem 1.,8,1: If {T,} s 0 € V< =, is a set of linear
transformations on a separable Banach space BE to a reflexive
Banach space 79 , and if n To—" < M independent of o

for all 0 > 0, then there exist.s an increasing unbounded sequence
{ 6 i} s and a linear transformation T on X to ')9 with
Wrll ¢ 1w, such that

lim y""(TV.'(X)) = y*(T(x)}),

i o L

for every x in I every y¥  in /29* "

Proof: Let D = { Xn] be a countable set dense in I o« Since
/29 is reflexive, it has, by Gantmakher and Smlian [ h] s a weakly
compact unit sphere, so that there exists an increasing unbounded

sequence { 2 5 1} and an element ¥ of /29 such that for every
3

v in 7?* D

lin 3% (T & 1(x1)) =y *(y;).

i o 1,
Further, there exists an increasing unbounded sequence [ 6 i 2} < {0' i 1}
3 b
and an element Yo in 2?« such that for every y* in /29* 3
o % o *.
Lm y ¥ (Tg (%)) =7% (v,).

i - ® 1,2
Inductively, there exists an increasing unbounded sequence

z { }
{o’i,n} = a‘i,n-’l and an element T of /)9— such that for
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*
every y ¥ in 79

lim y¥(T o (xn)) =y*’(yn).

i o i,n
Thus, using the diagonal sequence, we have, for every y ®  in
*
’29 y
lin y* (Ty (x)) =y%(7,).
i o i,i 9 J
Further, y¥*(y.) =1lim y*(T4 (x)) = || y*) u || =\
i i e g8 @ J

so that, by Hille | 6; thm. 2.12.3} , | AER S EN P

s Aefivs D’i = (), ., and T(xn) = Yo Obviously we have for T

1,1
onD, \T|\ € m

Let x be an arbitrary element of x o ZThen there is a sequence

< . . - 3 . =
{xn} S D such that lim x =x, Further, ify = T(Xn;)’
3 =+ & g J J
1lim Tes existss for,
Je+» ]

“ynj - ynkn = “ T(Xnu = Xnk> u £ M “ an - Xnk“ ..) 0 as j, k- .

J
Further if {;Cn} € D is any other sequence whose limit is x, then,
- £

ify = T(xnz ),

L o -—
| T, = ng =1 s, - %y, M o« u | - o,

M( “_}: - an“ +  x - anu )>0as j, £ - «, so that ynj
and ¥y have the same limit. We define T(x) = lim Ve

2 g=»e 7]
It is evident that T is bounded and linear on ¥ , and, in fact,

Nrfl <
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Also we have lim y*(TO» (%)) =3y%* (T(x)) for every y* in

¥ i e . 1
qg 5 For,

|7 % (7 ) - 3% (@)
L

=] %y - )+ ¥ (x, ) - yF(Tx )+ *(T(x )
i | R S J ~ J
aly*l w Nx-x |l + 1 57%@ s (o)) =-y* (T )| -0
J 1. J - J
as i,j-» «, Thus the theorem is proved,

IN
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Chapter 1T

1. Introduction

In this chapter we shall consider the inversion of the Laplace
transformation of Banach-valued functions of a real variable, In
particular we shall consider four kinds of Laplace integrals, namely

T (M) =(B) j % bl
0

IT f£(A) =j e'h x(t)d<

0 o
(R) j e—mt x(c)dT

o 0
S e-at da(t).

0

We shall consider the inversion theory with respect to a certain

l

ITT £(A)

w f(A)

]

'reall’ inversion operator
1 1

2K ® -
L, < [£(A )] e Ke_c (B)j Yl z cos(?2 ﬁg)f( K (g +1)/t)am ,
0

T

We shall also use the "Improper Bochner" generalization of this

operator, namely ~>0 1 1
5 [s(A) = ! 2 2 ek 1
B o fF(A)] = =2 M " cos(2M NE(K( 7 + )/z)d7 .
-
Whether we use LK)‘C [f( A )] > or Lyr [e(A )] does not
depend, as one might suppose, on whether we are inverting transformation

-
I or II, Onthe contrary, the use of LK,'C [f( A )] or LK,t [f( A )]
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depends upon the behaviour of f( A ) in the neighbourhood of A = w,
that is on the behaviour of x(T) in the neighbourhood of T = 0, while
whether x(T) has a transformation of type I or II depends on the
behaviour of x(T) in the neighbourhood of T = «,

In section 2 we prove several preliminary lemmas concerned with
the evaluation of certain singular integrals.

Section 3 contains the inversion theory for transformations of
type I, and section L for transformations of types II and III,

Finally, in section 5, we prove an inversion theorem for trans-—

formations of type IV,
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2, Some Preliminary Lemmas:

For the various inversion and representation theories we shall
need the following lemmas.
Lemma 2,2,1¢ If

1o =x(oL) is in B( [O,GJ] ; X ) for each W > 0,

- @
-Act
2, ‘S e x(ot )doc converges for A = A e
0
Then
(i) for eachT > 0 and for all K > ﬁo'c
~>0
2K, 1 o S K(E4TY o]
Ik =e (-ﬁ-%-)? e T &/ ol Zx(oe )de converges,
0
(ii) for each T> 0 in the Lebesgue set of x(oL ),
K —>c0
Proof:
(1) Let K >AT, let @, > wq, and let
© A
- ol
M = sup H X e e x( o )do(.” e By 2., ML oo,
04 W< e
0
Wy

Thus, “ Sw,“’“~K(% r E)o(,"%-”x,(ol.) o{oz,“ =
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Wry T W2
“ JL-K( T &)+ w. woF S o2 8 2(8) d.p

Vs

W T
B v 20 wl_,ij
o

Sw‘ d ( wl e T)peAon _1 r _ e
- w.{"‘ X 3 o(""'} o\ ’x,(@)oLpd.u“

doc
w <
éM(\R—K(?"‘F E):)-“lowzw;-;—_ +'JL‘K(%+ —3—.)-{-30(‘_)'“’_{)

- &

W,
| (L e )l [ one aep aplan

(@2, T l W, T
< M (\,Q K(t+wz)+>\°w w:‘:’_ 4_&;‘“(1:“'«)‘)*"'\00' w‘“":)

+MSQ {%& (&—K(%+§)+koid-g}d&
= Z.M (\Q“K(%+%)+a°w' w‘—"z:')

== 0

as U/I, w2—>00.

(ii) It should be noted that

0o
!
L oL
Pl Y So o-wl=+ ot do =
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0o 2
22 st | o ) o (ore g% = 1% )

= | By Peirce [8; page 63, formula h9§] .
Let T be in the Lebesque set of x( oL ), and let W >z ,
Let K > )\Ot.

Then,

> 00
& I‘L'?'K(j—)% j L—K(%+o% " Hlee) o x(r)“
=H (P ! O;K(%‘*orf o~ T (%) - X(t))d.ob“

©
j _QJ"K(%"g)oc"i“ 2() - 2ol o
) > 00

sl IO L e E) L 2 dwl)

(s72]
+ o, T
Fllaol @<()f | o @ErE) gy

= J + L +J

Let K be a positive number, and KO <K , Then
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L ®© (4T |
\]’ = “%(t)“ (“:_C zgw&—K "—E-i-a.‘) o T dot
r_“x(t)“ lzm(%) S Ko (E+E) o (K- ~Kk ) (E+ )y o
@

< syt —wera(Z 0BT o@rE) s

|| 2| < (ﬁ)‘.ﬁ o ot"Zd o
0o

= ||z (T_\&)-‘z K(E+E) ~r (E+ —E,——z)gwfwo(%n% et da

X o . " -
- 0 as K - «, since = + i%- abttains its minimum value of 2 at

o(.:-_-'C’ and W>7T
; <> 0O
““ (WCEJ o (Er r)or‘ x(m)im“

et ], [ (e @) [ onenpl

T W Ad_, £
Jves
éOZMquK (EK%)‘;‘ ¥ _%_(&-K(d‘ +_.]t-')o -;}Aw

> 0as K = o,
By Widder [12; theorem 2b, corollary 2b.1, page 278] gy~ 0 as K 5o
if T is in the Lebesgue set of || x(ot ) - x(‘c)“ . However, by
theorem 1.3.6, this is exactly the Lebesgue set of x(oL ). Thus the

lemma is proved,
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-,Aod-

Corollary: If e x(oe ) is in B([ 0,«); X ), then

—K(%

¢ 1
(1) for each T>0 and all K > AT, o o) o0 T % x(ar ) 1s
in B( [O,m);%),

(i1) lim I, = x(tr) for each T in the Lebesgue set of x(ot ), where
K-> oo

1 ® 1
5 “K( %, -3
I, =% (XK)? j s E+E) 2 x(ot Ydot .

Proof':
(1) This follows from the fact that for WK >on1:
SRR R M PN e PR
(ii) (ii) now follows from theorem 1.7.1 and the preceding lemma.

i

-4

Lemma 2.2.2:

1 x(o¢ ) is in B(L 0, w]}; X ) for each wW> 0,

~>0
2 ‘Jn e—’)‘“ x(ot )d ot converges for A = A
0
then g —>c0 . 3
o ouE -
(1) I = got (ﬁy—%)ﬁ g ¥ F +&) o 2 x(oL )d o converges

0
for each T> 0 and all WK >A.T,

(ii) for each T >0 in the Lebesgue set of x( oL ),

Mim T, =x{z)
K-> @

Proof: The proof is almost identical with that of the preceding

lemma,



3. Inversion of Transformations of Type I. -
-A
Conditions for the inversion of f( A ) = (B j e T x(z)deg,

0
are provided by the following theorem and its corollary. The theorem

[£(A ) , and the

gives conditions for the inversion by L @, 5
3

corollary for L - [f( A .

s A
Theorem 2.,3.1: If e OLX(OL) is in B([O,o:);I ) for all A>¥ > 0,

then for each T> 0 and all K>¥T, L _C[_f( A )]  exists, and
3

lim L [f( A )]

K—>co

at every point, T > 0 of the Lebesgue set of x(Tr),
Proof: We shall show that L [f ( A )]
i) ” % T =
K - = gk
(-“_l(-i:-)"e2 S T rE) o ?x(oc )Jdot , and the conclusion

0
will then follow from the corollary to lemma 2,2,1,

Let K ,TDbe fixed, positive, and == > ¥ . Then,

Iw = ’;[:Qtlw So'n“% cos(lK‘rﬁ)*(K(’qH)/’c)cl’Y(

2

b

= K KS ’n”icos(mmz )an K("?*"""tzm)éu

Eil

Ko o :
j < K“’tx(oc)doaj o2 ©3 *“KSJS
@

e m Ll v g
b oL LT 2
= (T—l'f-i.)z &mgo e Z) - l%(ac)cloz.{,{',fj 2 ¢ de}
-t ¥
I~
(where ©= q/:jé:_&-;t_ L//;f_{ ).
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Thus,

J—uﬁ“ (T{_t);_lzwxo&—w(?*'g‘)o[i X () dor "I«)“

o —i JEF + i
\('I't' )l 2K )oL'i'“ ol," -1 ‘Q’_ele 1o

S Z (oL) ‘! SL@: - d l
2(‘%)%QN{SO+L }fw(%*&?c‘sz(oa){\\‘-_\_j N e

e § AR a.vcu.!
U) J- (2) ‘r

Now if 0(.}€>O,
-LJT‘_‘E-{— KoL

L 1

a] j_(r IKQL(U

:.f"”%;%“jw + ro }é‘glée‘

- (KT ol KW KT L vt w
. T TAT W e jRne

=Y eEw
_ ~KT o _L\{X
= g ol 2

= 0o
— 9
+_S «[—25 H& Je\
_‘ya(“_'c_i_g—c_!_w = ®’EKW .

[ e L
G RS =

_sz’°§ e‘ da

T/l
Kol oL~

ecfe‘

{E R
- - w -2
sou“’“oc%{&% S 2 d<e““§ e 2 39}
<
(53
—_Kka - —
£20 T L'\ e+ "T/““—%X“KWL **de
V?—'
oo
_ W - KT/E - 6%
< g BT v 24 e"ij L
Erw
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Thus 0 < J(f)s
(2}

o %e )JTICL; EKL 2 |zl d

~EKW KT
£

o] 1

ERw L

(o T e\ ke +2 L 61&@
<

<+ 0 as W - o,

Further, since
~iF . Lt

Lern [l-‘"'" 2 %Y 9)= 0 almost everywhere

W AT ""fg‘ — [Exw
[
for ol in o, E] , we have, by theorem 1,2,1, that the limit

equals zero almost uniformly in ot for o in [ Oy 2 Also,

since

_‘lg LKW
t.“.+_c_

_6* KT _aKu
£ do=p% © {—-sm(szﬁ) gz_f_* cos (2rAa) [eLrw
. A KW _C.
“EC{ —JTE‘ :{—t 4 oW
T
~ L 4 D
o G
-4 -e* _,
2 ede and

2 —1.,.’513._ oW
oL <

— 5T KW
) & "'iE s d“C

- 6% )
2 e*‘de‘él*’lg, ol T
— e -

where M is independent

of oL and W , so that
%, T 2
__Q:_K(—C*- * )oc"‘i“x(oc)“tl—‘{';_‘,& < c\e\éN 2 Y],

(v . farw
& T
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where N is independent of ot and @ , and this bound is an
integrable function of o , Thus, by theorem 1.3.8,

lim J (w2 ) = 0, and the theorem is proved.

W-> co 1
-Aee T T .
Corollary: If e ot x(et ) is in B([ O,=); X ) for all

A>¥ > 0, then
(i) £(A ) exists for A>¥
(ii) LK)T: [:E( A )] exists for each T> 0 and all Kk > ¥T
(iii) for each T > 0 in the Lebesgue set of x( & )

Im Lge LECA M =xlc)
K => o
A+Y A=V
- - - (T
Proof: Since e * =e ( 2 Yo e ( )

T P
and sufficiently large o« , e (Fo=)%e ™7 JP(A) exists

for A>Y¥

Further,

2]
oo

\ 3
by s / -3 1
7”??—_5’—%; j\o& o “o % gz,(oz.)docj\oi, 3 cos(a.(wt/a)ij)dg

00 00
aK
= Ko -rol/T ~ .
T < Sox X(o(.)(i_o(,S 2 Kn“/tqflz cos(znna)d’n
o

L -]

=TT Kofnﬁiﬁos(ZKni)dWX 2D LT g oyd o

= LK)C[_‘#(A)] exists for each T> 0 and all K> ¥T , since
(-]

\ L &'SZOS(A(Kc/x)ég)d_g < %ﬁ
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Finally (iii) follows from theorems 1.7.1 and 2.3,7, since
theorem 1.7.71 tells us that when both Ly ¢ LA )] and

-
Lie Ceca )] exist, they are equal,
B



L, Inversion of Transformations of Types II and III,

Theorem 2.4.7: If x(0¢ ) is in B([ 0, w]l; X ) for each w > 0,

and if
->®
fF(A) = I Pt x( o )de
0
converges uniformly in A for A> ¥ > 0, then for each T> 0

-

and all K>Y¥T, LK _C[f( A ) exists, and

lim LKT[f(’/\ ] = x(T)

K-> o

at every point T> 0 of the Iebesgue set of x(o¢ ).

Proof: We shall show that LK 7T [f( A )] oz
>0
4 + & ) - .
) x /oL x(oL )Jdot , and the conclusion will

Tollow from lemma 2.2.7,

Let K ,Tbe fixed, positive and K >¥T ., Choose

A

b/<9\0 < W/r, Since

O,
5 w
5 e-f)‘ o® x( o¢ )d ot converges, S e g x( ot )d ot is
0 0
bounded, ®
Let M = sup “j e';\ooc x( o )d ot “ o Then M < w, Consider
0L W< o

w
L,= LL So ’)Z'il 605(2K7%)7E(K(7g+/)/r)a/7

T

24

w
= Fe 172 2eas(zayt )J?(/_a"“"?*’)"‘/z Z()dat
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~3c0

s - Aoc .
Since e x{( o )de converges uniformly for A>Y 5

0
and K/T >¥ , we may, by theorem 1.4.1, interchange the order of

the integrations. Thus

> 0o w
(oc)doc ,_/‘:4?04/
Nz

- 00
2K
.—;% \/;% ”< /Z;K,[oc)afoc e Sl ot +chj;£5 (whars J,_2=

7)
e L, e
”(7:7:)2 e K(c )“fz(x)clw/ﬁ//,_ﬁj,,zf ‘96‘4.

Then

2K
e -
I - o /T

e W“Icos(.z;cvg%)doz

JaJ"“ TC"G)Z- 20 —iC(OC-.,«-T -»lz(oc)dac~1w“

< (K)o mii"'c(% t)‘”llyz»coc)l\{/ f —Bu Ao

-t K'C DtKUJ

+" xc)z 24 J‘—-K(t +&) _EZ(M){/"—[ —%w} “
£

atkw

_ J_(’)+J (1>
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Now J( ) is the same as the J(;l,) of theorem 2.3.1, so that for

(1)

every € > 0, J\w' ' »>0as W -» o, Also

ot.h:w
—(3) K _ ol >
J = Tc‘ : zvcj‘ K( +°“} - 7{.(04.) I——J 2% o) da
K't
o< 7 'z:
converges uniformly in ® for w > 0, For, for every

w>w>6

1 — L EF +, [Xrw

"I ~w(E+r ) ""‘—Z(N«){l %g_l ) N £—919J¢m\i

JBT — e
o T
—ifEF voo 5Ty
rolll g gt
e+ 5w wT
W %]
! - Ko/t

:"“‘9-(1%1‘)2 ) o lfm)dmj. @ Ceos(znd o

N[ eEL

)’l‘

. am} 2 de]doc"

= -2(7"1.: “ "(t—ao)w‘(f - QCOS(z;ue)d(g)f *Zia)de
" _ = >
+Lf : “°’°‘E%~ML.J Fosanprde +
l w
00
fo—g?z@zcos(zxq)ddj .e”a°f5x(p)d.pd.oc“
T i mwl
“ "l" —("E(‘ ‘“?c)wz_ 2
<tz )" M2 2 e

@) o0

(K-2A)w J-@. . T
+4(7;-z: /‘7 J_ [( )| & @d‘e*a"' (edq.%_jo(.oo

“ﬂn—z)lM{ (-“%)wj "%-@;t /L{ -(5-3, )“j ~%e ZL}]cLoc]

2 _(¥r_ )
=¢éf”§i‘)z/\7“e' (z zo)wf @'Z_' (P"—"O as&),land wz_),w.



“l2-

Thus we may choose & large enough that J((E) = “ J(w3)" < E,'
for any €& "> 0, and thus lim Jw = 0, and the theorem is proved.
Theorem 2,4.2: If o
1.  x( o ) is Riemann-Craves integrable over L 0, ] for each

w> 0,
2. The set [~ of discontinuities of x(e ), 0 & £ «, has

Lebesgue measure zero,

!
3. f£(A) =(R) X e x(ot )doe converges uniformly for
0

A>¥ >0, then
-
LK,r[f( A )  exists, and for T> O
-3

lim Ly o L f(A )] = x(r) almost everywhere.

K-> ©

Proof: By 1., 2., and the corollary to theorem 1.7.2, x( oL ) is in
B(Lo, wl; X ) for each wW>0, and

~>00
A - Ao
(R) g & x(oz )dat = j e x(o¢ )doe o Consequently

0 0
we can make use of the previous theorem, which yields the above

conclusions.
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5. Inversion of Transformations of Type IV.

%
Let £(A) = j\ e da(ot ), Conditions for the inversion

0
of this type of transformation are given by the following theorem., To

avoid complications, we restrict ourselves to the operator L w,-c[f(?‘ 3.
Theorem 2,5.71¢ If
T a(o ) is of strongly bounded variation on L O,w] for each

w>Q, and a(0) =8

o -%m .

2 e da( ot ) converges for A >'>\O, and uniformly for
2 0

> 7\1’

( A) exists such that @ (A 2) is in L(0,»), and

Y
Jw—lm

e da(et ) < @ (A), for all @W>0, and all 7\>7\1,

3e

0
T
then lim S Ly,< @ )] dt = a(t) almost everywhere.
K-> oo

0
Proof: By theorem 1.7.3, corollary, and 2.,

ao =00
fF(A) = Se—()‘o" dal ) = Xg e—lm alee )dee o

0 0

Thus, L, ¢ L£(2)]

® 1 9 ~¥e0
2K = b
T 3; N 2 cos(2kn “)(w( M+ 1)/t)d'f(j o B AL o o,

b 0
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Choose K >’)\1'C o Then by 2, and 3., Lm).,_.[f(')« )] exists and

satisfies the hypotheses of theorem 1.l.,2, We have then

—>= 00 [\
L [¥A)]- ;,‘:ff kA et | < U i (g k1) cos a7t ) d 7
) 0o

3 a2
= 2K=g ~wet /T, L -3, &
TTh R Ao 2 (F L )eos(a(£9)%5) 45

)
3 24 oL LT
T T 32 il +zxa¢~o<*)&£°(’

= 2"("}/ L (T E) t-2Ha e dac |

Thus by 2, and theorem 1.k.1,

1 500

T
j;L!c.t [f(l ﬂ dz =62K(1§Uf—)2 e B a(ee )dasa(os )

0

almost everywhere, as K - «, by lemma 2,2,2
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Chapter IIT

1o Introduction.

We consider here the representation of Banach-valued functions
£( A ) of a real or complex variable A by Laplace integrals of
Banach-valued functions of a real variable, fle shall consider

representations in the forms

1. f£(A)

(B)J e )T ,
0

II. £(A )

i

J o AE aa(T ).
0

In the latter case however, we shall restrict ourselves to
numerically-valued functions., The reason for this is the lack, at
the present time, of theorems for Banach-~valued functions corre-
sponding to those theorems for real functions which derive from
Helly's selection principle,

Our tool in this task will be the "real inversion operator
which we used in the last chapter,

Section 2 of this chapter contains certain preliminary lemmas
which yield conditions ensuring the existence of LV(,IT £f(;k i} x
In section 3 we derive the "Fundamental Theorem". This
Theorem shows that under certain conditions the Laplace transform

(i.e. the function found by an integral of type I above) of

LK T [f( A )] has f( A ) for its limit as K tends to infinity.
3
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Section lj conbains the conditions that £(A ) be represented
as the Laplace integral of a function of Bp([_o,m);EE ), p fixed,
1< p< o, The cases 1< p < o and p = » are treated separately
there, as they are of a very different nature,

Section 5 contains a representation theory for the case that
£('A ) belongs to the class Hp(oc s X ), pfixed 1€ p< «, this
class being defined there. The cases p =1, and 1< p < « are
treated separately, again because of their very different nature.

Lastly, section 6 contains the conditions that £( A ) be
represented as a Laplace-Stieltjes transform, (an integral of type
IT above), but as mentioned before, we restrict ourselves to

numerically-valued functions.



2, Preliminary Lemmas.

We first prove the two following lemmas which are preliminary
to the "Fundamental Theorem" which is proved in the next section.
Lemma 3.2,1: If

Ts ’/\-1(6(7\):15 inL(S,aa) for all & = 0,

2 4;”<§)=J3 7{‘1 \@ (77 )] an =0 3™ withm > 0, as
3 >w,and P (3)=00 /3 Ywith ¥> 0,85 3 -0+
3, m+n > 0,

then

(1) A™lg (A ‘1) is in L(0, & ) for all @> 0,
¢

T
(i1) @ (T ) =§ 7zn’1\(q('}z"1)| ax =0 ™) as T - 04,
0
(1i1) @ (T ) :o(z*nebh‘: ) as T - w, if either ¥ > Oor ¥ =0

and n = 0,
=0(1) as T »oif ¥ =0and n< O,
Y -
(iv) J e o(,n1@(o(,1)d.06 exists for A > Y , and is

0
oA ™™ as A 5> o,

Proofs
(1)  Clearly 3”‘11((7(3‘4)! isin L(§ ,w ) for all
w>§c>o,

T
Thus, Ljn'1|<g(§"1)|d§ = Lind?ﬂ(j )
4
=T Y (T ‘%-enwz-:“")-njé 3™y (3 Nag ,
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and by 2,, the right hand side tends to a finite limit as € - 0,

since, by 3., m +n > 0, Thus

T
e(t):tnjﬂ(l';')—n j3n_17//(§_1)d3 .
0
(11) oz ) =TPY (T ) - 53“‘1’4’/(34 = o(T ™)

0
by the last equation and 2,

(iii) Let either ¥ > O, orn> 0., Sincem +1n> 0, as T - =,

=
8(T )= T )on j gulore¥d Yag =o(e™e¥ )
0
If ¥ =0, n < 0, 8(T ) is clearly bounded.,
- A s -
(iv) Clearly e A oLn1|@(oL 1)' is in L(§ ,@) for all
w>§ > o,

«
j&' e_;\ n_J!'@( )'do(._e’/\w e(a))-e-as 8( 8§ )

+ ’/\je'““ 8(oL )d o
)

Convergence as § - 0 follows from (ii) since m +n > 0., Convergence
as @ - = follows from (Ii1) if A>T , Moreover, from Widder
[/2 , page 181, theoren ﬂ, the integral is (A ™) as A o o,
(and is O((A = ¥ )™ as A » ¥+ ifn > 0).

Lemma 3.2,2: If f( A ) is in B(CL § ,w] ;I ) for all W >§ > 0,
and if " (A )” satisfies all the requirements of @ (A ) of

lemma 3.,1.1 withm > 22-, then for each K > ? and almost all T > O,

w‘c [f(?\:] KGEKX ')2 2cos(2ﬁn?)f(m(n+1)/c)doz

exists,




=9

In particular, L. - [£(A )] exists when K , T > 0 and K /T
2
is in the Lebesgue set of (A ),

Proofs Tt is sufficient to show that the integral
- 5 ? ’
’fz cos(2KM <) £f( K (7 + Y/ T) d N  converges at the
0
origin and at infinity,

If W /T is in the Lebesgue set of £{ A ), we have

b
W(¥)= jllf(wm Mty -s(w/THll an =o(F ).

I ¢ 1
Thussi ’171 2|} costam m (e (N /T M any
5[”? d f<--> % J M 2" f(k(n+#)/T) -1/ Hlang

€

& _1 |
2 2
o(1) + Ln dw<n>=o<1>+j§’*? w (%)ax
=
o(1) +32-SE')2 ol ) = o(1) as € , § - 0, and the integral

converges at the origin,

From lemma 3.2.1 we have

-2
Soé “Necg " Ma3<

Here we put 3 < = X (m+)/T , and choose €< T/w , Ve then
have

()

o —

1
A+ 2l leceeny/ el a < .,

T -1

KE
and theKintegral converges at infinity.
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Lemna 3.2.3: If
1, AN @(A)isin (4, =) for all &> o0,

2. YWY (3 ) = J 3-1‘Q(?)\d;\ =0(3 7)) withm > 0, as
Fowand W (3 )=0 ™ )uitn ¥> 08s 3 -0+,

then, for each & > 0,

‘L )\"1 e-EA ‘@(ﬂ )\d7\=o(3 Y for every n > 0, as

3
=O(ed’/g )y, a8 3 > 0+,
Proof:
L ’/\'1e'E;\\Q(7l)ld’A e““f3 S AN} a2

3 gy =0l ™as J »w
= 0(e ¥/3 )as § > 0+,



e

3. Fundamental Theorem.

The following theorem is fundamental in the representation
theory,
Theorem 3.3.1: If

1 7\-1f(9\)isinB([J,m);X:)forall §> o,

2.Y (3 ) = Sg 7 Ne(rOl am =o( 3™, withn > 3,

a5 3 >wy and P (3 )=0(e ¥ ), with ¥> 0,25 3 >0+
3. 3T LK,‘c[f(”\ )] is in B([ 0,0); ¥ ) for §> X’l’ and
all K> K,

then

Klim 5; e"':‘“C Li,< [f(ﬂ )] dTt =f(% ) at every point § > X1
> @

of the Lebesgue set of £( A ).

Proof: L w,T [f( A )] exists by lemma 3.71.2, and has a Laplace
transform when 3 > 1 by 3. To prove the assertion we shall use
theorem 1,3.6 and lemma 2,2,7, corollary,

Operating formally we have

So\f}t L.K).C [:F(,/\)]Cl.t =



-5

0o (s o)

()

?LKL_Q'K%"A. ] cos(and) Fe(FHIYTIAZ

i
D
=
o

n 0

oo
zm ,ZVCS‘ —3"(; - 2
2277) cos(2K3)d3) @7 T F(x (3 )/T)de

I

ob
K..Z

Zt - Socosu w343 joinm(g +r'd)—'“¥(€3") 4@

)
b

00

o0
= zmﬁ"‘So%—K‘Sﬂ@—c :H@")ckgj &““Séglcos(mé)dg

o

EX A e

= %—f—e‘ LJE K“’@-% 4’-(@")& @LJ: “Zos(z(w/m)%u)iot

&

zbc(%)%_j UQ—K(E@ +(‘55)"')6—g fg"d 8

(v}
—af(X)as K - w,

These formal calculations will be justified if the two inter-
changes of integrations are justified and the conditions of lemma
2.1.1 are met,

For the first interchange of integrations it is sufficient to

show that

[~

@ - 2
S ‘Cos(2K3 )l djj e-K‘S@(g +1)@-1 “f(p—}l)”dpé o,
0 0
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But by 2., and lemma 3.2,2, if WY > ¥ , the inner integral is

o3 —2m) as 3 - o, andm > jé- . Thus by theorem 1.3.9 the inter-

change is justified.

For the second interchange it is sufficient to show that
1

j e "2z "1>\\d(38 & Noos(2n /5 p V7| a et <
0 0

But this is true since the inner integral is less than 12- AT s and

® |
since S Sl ke @ 2\ z(p -1)“ ae converges by T., 2.,
0

and lemma 3.2,1(iv).



lie Representation Theorems for Ly, [f( A )] in Bp( Co,=); ).

In this section we find conditions that a function £( A ) on
[oc s») to a Banach space % be represented as the Laplace
integral of a function in Bp([ O,oo);} ), where 1 € p £ o,

In order to obtain such conditions for these general classes of
functions, we find it necessary, in the cases 1< p < », to postulate
some sort of compactness condition on Bp([ 0,0) 3 X ). We have chosen
the weakest condition at present known, namely weak compactness of
the unit sphere in Bp( [ Oy)3 X )e By Bochner and Taylor [ ’l],
and Pettis [ 9] a necessary and sufficient condition for this
compactness is that x be reflexive, and this is the manner in
which we have set the condition, It is well known that B, (L 0,)3 %)
has never a weakly compact unit sphere. Thus, to obtain a represen—
tation theorem for B’I it would be necessary to postulate some con-
vergence condition on LK.,'C [f (A )] , and we would obtain a theorem
very like that of Widder [ 125 page 318 ] o We have not chosen to do
this, since the results are quite obvious,

The first theorem of this section gives sufficient, and in the
cases p > 2. necessary, conditions that £( ﬁ ) be represented as a
Laplace integral of a function in Bp([ O,m);% ), 1< p< «», The
fact that these conditions are not necessary for p <« 2 is a consequence
of the fact that, as the following example shows, £( A ) may be the

Laplace transform of a function in Bp([ O,=); ), p £ 2, and yet



BB

LK,'C Ef( A )] may not exist. For example, let x(o ) =
(PG w3 L e

f(?\)::J\ e-a%x(ot)doc =(7l +1)’1/3.

0]
But LK,'C [f( A )] does not exist since
-1 1
2K = =
R jl’rg 2e0s(26M D2( K (M +1)/T )| a7

1 1

2K -
= = J\ ‘coQ(ZKYl )7’( (-%"-(7{+1) +1) 3' d’? = oo

In order to cope with this phenomenon, we resort to what is
essentially Cauchy's method of summation, This yields, in theorenm
3.4.2, necessary and sufficient conditions that f( 2 ) ve represented
as the Laplace integral of a function in Bp( L O,eo);1 )y 1€ p= «,
The case of Bw( L o,m);} ) is treated in the final theorem of
this section., It will be noted that the methods used are very
different from those of the two previous theorems,
Theorem 3.L4.1: If % is a reflexive Banach space, then the follow-
ing conditions are sufficient for £( A ) to be equal almost everywhere
for A > 0 to the Laplace integral of a function in Bp( Co,=); * S

1s 1-1f(ﬁ)is inB([s w)*% for all § > Qy

j /'(-1 Ween W ayy =03 - )mthm>-§,a03 e

= 0(e /3 ) with §> 0, as 3 - O+,

3. HLK’ LecA )]“ < ¥, pfixed, 1<p < w K> W,



Conditions 1, and 3, are necessary for every p, 1 < p < «, and 2,
is necessary if p~> 2,
Proof:

Necessity: Suppose f( A ) = j e-A—C (€ )AT a.e ., and (T )

0
is in Bp([ 0,0)3 X ). Then using Holders inequality we have, almost

everywhere . ‘ 5
XN < 'A"'J Rl P PR & {S -$7T }{j[\x(c)l!dt}r’

_—
=A% so that 1. is necessary,

P

a5 % 1
1 1
Thus L A7 g2l aa = L A-(1+3) 42 =324 q.,

—

so that 2, is necessary if q > 5, l.e, isif p > 2,

From theorem 2.3.1, we have

P 1
)J =(-T-;’—%~)2 82K§ mNEHD ?x(o(. Yaoe
0

K,r
so that,

L L¥QI < (& )ier J &+ 2 (| ziwll da

«ii
~
éﬁv
g__’_,
° 8
|
=
dlR
.‘-
Rief
v
N(..
4
&
&
4“\3
~~
diR
+
RN
5
N
:‘Dl
o
R
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jw p
Thus, J, ” LK)_CE 12(’*)]” 4.7

( )l‘v&deCjof’dt =) (co) % lxellfde

A
A=

_L 0
= (K)o Jnfx,(oon‘”m Jz:"(“ )cm) T4

(-]
- So 2ol * de

Hence " L y,e [f(',\ )JH 5 £ “x(')up, so that 3, is necessary,
Sufficiency: From 1., 2., 3., and theorem 3.3.1, we have for almost

all ' § > 0,

£(¥ )= lim S ¥ 1 Le(a )] aT

=

By Bochner and Taylor [1] , and Pettis[?] ,if £ isa
reflexive Banach space, Bp([ O,w); X ) is a reflexive space for
1< p < =, and by Gantmakher and Smulian [4] , a reflexive Banach
space has a weakly compact unit sphere, T[hus Bp( L 0,); *) has a
weakly compact unit sphere, so that there exists an element x(°) of
Bp([ 0,»)3 %) and an increasing unbounded sequence {Ki} such
that for every functional y* on B (EO w); X), (i.e. for every
y* in BX ([ 0,%); %)), Lim y*(LK e [2(R 0 ) =%

is o

Let x* be an arbitrary element of ; then if g(°) is an

element of Bp( [0,=); %),

0

] T e rae) = ) I k(e e =7 ¥ (e(+))
0 0



defines an element y?’ of Bp (Lo,»); % ) for each y> 0. For,

¥ * is obviously linear, and using Holder's inequality W$ have
o0 (-] — o0 1
o q ol p
FEJCEION =\§O &I x ¥ (g(a))axl < ( XO I aw) Uouxﬂg(ocnnp}, ?
(o] /I
< --1—-—1 “x*"{ 2o ) pdot} P2 l‘.?.‘ﬂ% Wa(e) “p, so that y ¥
(a3 )ﬁ 0 R )a

is bounded for each | > 0.

>
Thus we have, for each x% in } and for almost all § > O,

0o

x*(£(Y )) ==*(lin J e"‘S’-CL"C .cEf'(’/\ )‘J gt )
i’

i- o

o0 o
= lim j e-}t X*(LK 'L'E(ﬁ )J )dT
i o 5 37
=1n 3L, 8] ) =gF )
i o 1
- J e x¥(x(T ))at =x¥( j e'KCX(t T ),
0 0

and thus, for almost all ¥ > O,

£0(y ) = X ST x( ez,
0

To obtaln necessary and sufficient conditions we define

B =1 [FF 2a ],

The following theorem yilelds the mentioned conditions,



Theorem 3.L4.2: If X  is a reflexive Banach space, then the follow-
ing conditions are necessary and sufficient for £ A ) to be equal
almost everywhere for A > 0 to the Laplace integral of a function
in B ([ 0,e)3 % ).

e AJf(?\)iS in B([4 ,=); % ), d>0,

2 L A= “i‘(?\ MaAd =0(3™) withn>0, as 3 » =
=0(e¥/3 ywith ¥>0, as 3 » O+,

3. n Lf() i [f( A )] H p £ Mp’ where Mp is independent of K

and € , p fixed, 1 < p< w, K>Ko,

Proofs

Necessity: 1. was proved necessary in the previous theorem as was 2.

The proof of the necessity of 3. is almost exactly the same as in the

previous theoren.

Sufficiency: By 1., 2., 3., lemma 3.2,3, and theorem 3.3.7,

&Y £(x ) = 1n S Pl Lic,c [£(A )] ac .

K-> o 0
As in the previous theorenm, Bp([O,eo); * ) has a weakly compact
unit sphere, so that for each &€ > 0, there exists an element
Xe (¢) of Bp( [O,w);} ) and an increasing unbounded sequence {a‘(é}

such that for every y * in B;([O,eo); *)

Linm y* (L6, L[ 2(A P=y*(xe ().
ey

i e &L

Further, since
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RN ) I P I RSO Leca I =Ns*tt g,
we have " xe (* )“ I‘ap.
Let x* De an arbitrary element of I* , and define y; of

> 2
Bp([ 040)3 %) as in the previous theorem., Then for each € = O,

and almost all ¥ > O

x*(em“EK (Y ) =x*(1lim S =% g K -c[(ﬂ )] dT

i o

: B -3T €
= lim _S e x* (LEK i,.c[f( .\ )] )dT

i o 0
= un yXhe A = e ()

oo

= §e-§‘cx*(x8(t))dt =X*(S e_S'C xe (T )dT ).
0 0

Thus for almost all § > O,

e"e\S ]y ) = S e—rt g (T AT .
0
Now since “xe (')n = Mp for all € > 0, and since
B ([ 0 oo) } ) has a weakly compact unit sphere, there exists an element

x(*) of B ([O @)} X ) and a sequence {6 } with 1lim E = 0, such
i w

that for every y °* in Bp (C O,w)3} )
Lm y*(x g (¢)) = 5™ (x(+)).
1> o i
For each i there is a set 2 5 < (0,»), whose measure is

zero, such that for ‘; in 2 59

e ai‘Sf(‘S ) £ j‘we-&‘txe_(‘c)d'c‘ .
A i



s

Let 2, =\UJ Zi‘ Then 2> has measure zero,
3,

¥*
Let x * be an arbitrary element of x , and define y%" of

>
Bp([ O,w);% ) as previously. Then for every § not in 2. s

-£. ®
x*(f({ )) = lim x* (e 4 £y ) = 1im x*( j <=,"3t>cE (e )
i—>°° i->oo O i

= lim J 3T % (x g (Tlas =1lin y& (x, ()
i 5

i">m O 1> o

=y%* (x(s)) = x*( J g I E x(T )dT ), so that for almost all

0
5> 0,

£8(% ) = S &IT x(T )aT .
0
The following theorem deals with Bm( Lo,=); k).

Theorem 3.L.3: If % is a uniformly convex Banach space, then
the following conditions are necessary and sufficient that f£( A ) be
equal almost everywhere for A> 0toa Laplace integral of a
function in B ([ 0,#); E 5

I 9\—1f(7\ ) is in B([ 8 ,=);X ) for a11 4 > o,

2, S; 7t We( |l am

]

O(§-m)withm>12-, as 3 > =

I

Y
0(e /g)with §> 0, as 3 - O+
300 Mo aOIl e on, Kok
Proof's -
- -AT
Necessity: Suppose f( A ) = e x(T )AT , where x(T ) is

in Bm([ o,«:);% e “*hen
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Aecaoll 2! L ANl aT e AT ik -

3T =

g j &IF gz 4 A2 N x(e) || , so that 1. is necessary. Further,
O (o]

then

53 A ec A aA < 3-1 “x(.) “w, so that 2, is necessary.

Finally, from theorem 2,3.1, we have

—

o 1
e D] = o | o < B B e
so that
1 ® e T =
b, <[fAI) € (7% 2K X T ErD o 2 lxoe )l an
1 1

? 2
<|l=) |, ) 5® jo o KO+ ast =|{x()|} _ .

s ||L - Ceea ]l < =l -
Sufficiency: By 1., 2., 3., and theorem 3.3.1, we have, for almost
all Y > 0,
£f(} ) =1lim S &It 1 [£C A )] dT
K, T *
K-> o
0

By Pettis [ 10] s a uniformly convex Banach space is reflexive,

so that JE  is reflexive.

Let @  Dbe in I,(0,=). Define

TK(‘e)=S Q (T )Ly, [£(2 )] ac .
0
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ten, [fr, (@)l < r leTHl-lle o« LIl ax

0
N PSS EC TR N J lece)lac < u lleel,
0
Thus {TK} is a set of linear transformations on a separable
space, L1(O,m), to a reflexive Banach space % , and || TK“ & M o

Thus, by theorem 1.8,1, there is an increasing unbounded sequence {Ki} 3
and a linear transformation T on L,, to % , such that for every
*
functional x ¥ in F , and every @ in 1y,
Limx* (T, (@) =x™ (T(¢ ).
i i
But by Dunford [2] , every bounded linear transformation on

Ly (0y@) to a uniformly convex Banach space % is of the form
T(@ ) = j @(T )x(T )aT , where x(T ) is in Bw([O,oo);% 3s
0
Thus x( T ) in Bw(fo,w);% ) exists so that T( ¢ ) has the above form,

and then we must have, for every x in X #

n %) eCen Ki,t[%(l ] aT = limx*(r k,(€)

i e i w
=x* (@) =x* [ @(ris(TrT )
0

-

Let @ (T )=ce , 37 0., Then, for almost all y > 0
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*(£(¥ ) = x*( Ln j 3T LKi’—C [f(A )] ac )

1> o

:limx*(j‘oe-rt LK.TE(”I)] at )
l)

i oo
= lim x*(T (3T )y = x*(7(e” T )
i o - i
= x¥( S e-rt x(T)at ),
0
so that for almost all § > 0,

(Y )= j eIT x(T)T
o s
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5. Representation Theorems for f( A ) in Hp( oL 3 E),
The class Hp(oc 3 £ ) is defined as follows,
Definition 3,5.1¢ f(A ) will be said to belong to the class
H (o ;3 X), p fized, 1€ p < w, if
(1) f(A ) is a furction on the complex numbers to the Banach

space .%: which is holomorphic* for Re A > o "

o 1
(11) SEB{J Ncp +1m )def(} Pelell, < -

(1ii) lim 2( P + i’lz ) = £l + i9] ) exists for almost all
P>
values of 4%/ , and f(ot +197) is in Bp((—m,w); x ).

For a discussion of the dependence of (iii) on (i) and (ii) see
Hille [6].

The following two theorems give the conditions under which a
function in Hp( oL 3 X ) can be represented as a Laplace integral.
Theorem 3.5.1: If £(A ) is in Hy (e X ) where oL > 0, then
lim L [f (A )] exists and equals

K,C :
bt Lo
g( T ) = 1 j e—clu' f(,l )df»\- s and

ol = ie

R O
f(’)\)—“-j‘ e g(zldz ,
0
Proof: By Hille [6] , page 213, theorem 10,L.1, we have for

Re A > ¢

See definition 1.2.5,
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)
S~

>0

ot + i ©
(A = § ( a :LJ o +3%m) 4, |
2T 5 ) i - - 21N A ~(oe+1in) %

1

K = 1
¥ cos(2KCY D)E(K(y +1)/T)dy
0

Thus LK - [f( )]

v
= %c—é— jocos(.ucg) f(bc(gzw)/t)o?é

e T Llarin) d

T e j cos(2x3)d.3 L, K (341)— (x+i7)

oo oo
2C cosCaudDdF___
= _L <
= J:j["“’ "7)4”7[0 3’*+(/—-?’€(o<+cn))

a

The interchange of integrations is valid for KK >7Te by Theorem

1.3.6 since

{~o) oD
cosCaki) .

J “*C"‘“”’))l\"“ﬂi 3 +(- T (i) d3

< | it an | e < e 14

rof =

» 1
2YC . B -
Thus Lr(,t [f(') )] =§_‘?J e—-ZK.U -'t»i(oc+ in)) (1 --:‘—é(oL+i'r1)) 3

flat + 1 g )d 7 .
Cbviously, for each T and 7)

ol —

1
2K 2K (1 - Z( e +17))3, o Weatin)

(- (x +am)

lim e
(> o

Further, for each T this limit exists uniformly in 77  for

- o <Y £ », For, a lengthy, but straightforward, calculation
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shows that the maximum value of

1 1
lez K(T =(1 = &(e¢+19))72), ( "2 o Tlee +1m)

1 --;f-: (e + 11))

2 (1-(1 = 589) L (4 _ xay”

rof —

oceurs at 7Z = 0, Thus since lim e
K—> ©0
dt, for each € > 0, K (€ ) exists such that for K >Ke(E )

)L,uc(l-(l—r"")’/(,__f)-z,__vq_“"‘l < E. Then for "C>K(5 )s

_’Qo..»c(l—-((— Tl +i rr)))‘?)

-1 ~
(1= & (e +im) = — gt (= ¥im)

g

L
< | g2 i=0 %)%

(1— T&)” -,a““cl <&

Now choose K > K ( i

° iz,
‘\l—vcr[:ﬁ()\)]“z"ﬁl t(“*"n):\q(ochn)d'r("

e

)o Then

“zrrj( we(i= O Flerlm)E) o 2 (i) F =) Herim |l

| (=0-F (e+imn%) - L :
é__J L@z.m e loe+im ('“f—c("‘*“?” ¥ __Qr(ou— 'n)\" £(¢+g»an ‘1"1

©0
éﬁtllzm((—(l*%ﬁ)(l_%)—%——L'C“‘\J e vim)l dm

o+ Ll

m . 1

Thus 1im L, [f(?\ )] = E et fp Jdpw =gl )o
K> o ) 2T 1 s B
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Hence we have

o0 00 oL+l
-AT | -
XoJL %('z:)d."c =J._TELX JL“'AtoL-cX :.j ”"\'e‘()uu)dxrb

(o]
o0 ol

| C ]
o i_TCSOJ?——%tOL‘CS Jz:n:(oc+~m'z) :r'(.ebi—c’)’()d.??
Ve — o

=.i|?r 3 e KW)&"?LJ&— (A-(x+iM))T

d.t
= oa ol¥i o0

©° _flerm) \ j T
=£"|_t&_obu—(‘w+t—n) K 27T - ')_f‘:u d‘)““

= $(9).

The interchange of integrations is valid for Re > since

j | Tt 10 s sm)l| ang =e°“"j oo+ amll amp

=00 =0

To deal with the cases p > 1, we must take cognizance of the

fact that

oL+ ie
: j eM™ E(p )dp

2TC 1 .
ol = oo

may not exist. But, if % - %,
is in H,i( ot 3 X ) so that we may apply the previous theorem to it,

=1, and @p' > 1, A= 2 ) <

with the following results.
Theorem 3.l.2: If

1, f(')\)isian(o(,;}f)p>1, =< > 0,

1 1
2e 54‘:5‘ —‘21,
3. @ p'>1, )
then f(A )= 7)\° e-qt ge (T )Ad<T where
@
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oL 4+ 1o
g@(‘c) =lim L, ¢ [2"%() )] — 1jc j e " X Pr(adaa .
> o 2 2 i

ol = im
Proof: ?‘—P f(A) is in H1(oé s X ), for by applying Holder's
inequality we have

X | (o +1m)™® (e +5m)| dn<{f

=00

co 1
W 2o + 1N\ Pd'ft} 2

=00

o 1
{[ | van]= €2 an) B <

=D

Thus applying the previous theorem, we have

o + jeo

. -8 1 KU =0

lim L A f(A)] = £ dp = T),

and £(A ) = )GS e—xc g@(‘C YdaT ,
' 0
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6. A Special Representation Theorem for a Class of Numerically-
valued Functions,

The following theorem gives sufficient conditions for a numerically-
valued function to be represented as a Laplace-5Stieltjes integral,
Theorem 3,6,2: If £f(A ) is a numerically-valued function which satis-
fies conditions 1., and 2, of theorem 3.3.1, and

y =
e X \LK,.C [f(')\ )]\dt € N, K>K_,0< T < o

0
then there exists an & (T ), of bounded variation in [_O, Ld] all

W > 0, such that
® =BT )
F(A) = e d ( T ), almost everywhere,

0
Proof: By i‘:’idder[’l 2] , page 31, theorem 16.L, there exists an

increasing and unbounded sequence of numbers {Ki} , and a function
® (T ), of bounded variation in [0,w] all &> o0, such that
lim e_rt 1 [f(’)‘ )] dTt = e_}t dee (T).

’ K., T

i-s e i

C 0
But because of 1., 2., and 3., f(A ) satisfies all the postulates of
theorem 3.3.1, so that for almost all
o ° —K‘C :) o m

lim j\ e L < [f( A) dT  =£(% ). Thus we have
1= 0 L

cc

. o
f(S } = g e s doel (T ) almost everywhere,
0
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