Computer Languages for

Numerical Engineering Problems

Richard Henry Bigelow

REL Project Report No. 5

Co-principal investigators:
Bozena Henisz Dostert

Frederick B. Thompson

California Institute of Technology

Pasadena, California, 911009

Computer Languages for

Numerical Engineering Problems

Richard Henry Bigelow

REL Project Report No. 5

California Institute of Technology
Pasadena, California 91109

The research reported here was
supported in part by the National Institutes
of Health, grant GM01335

COMPUTER LANGUAGES FOR

NUMERICAL ENGINEERING PROBLEMS

Thesis by

Richard Henry Bigelow

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1973

(Submitted December 7, 1972)

ACKNOWLEDGEMENTS

| wish to thank Dr. Frederick B. Thompson for his patience
and help during my graduate study.
This work was supported in part by the National Science

Foundation and the National Institutes of Health.

ABSTRACT

Recent and anticipated advances in computer hardware
capabilities have made hardware limitations insignificant for
many numerical engineering problems. The difficulties of
programming computers now constitute the greatest block to their
effective utilization by engineers and scientists. Consequently,
new languages that are specialized to numerical engineering
problems are needed.

Relmath is such a language. It is designed to solve ordinary
differential equations and to manipulate the resulting functions.
Systems of equations can be stated in a normal mathematical form
and solved by a simple statement. Printed and plotted output
can be readily obtained.

Relmath also allows the definition of procedures for solving
differential equations. Its procedural language is quite different
from general programming languages. It is restricted to a certain
class of algorithms, and the calculations that are common to all
these methods are made implicit in the language. The language
is highly supportive for procedures in this class. The user
need only state the important mathematical steps, such as the
formulas defining a Runge-Kutta scheme or the method of estimating

the error, if error control is desired.

-iv-

Some considerations for the design and implementation of
numerical engineering languages are discussed using Relmath
as an example. The decisions involved in the design of Relmath are
detailed. The behavior of a representative numerical algorithm
in a paging environment is analyzed, which shows the importance of
properly designing algorithms for such environments. Relmath's
method of compiling its procedures is discussed. The compiled
code is as fast as standard library subroutines. Finally, a plan
for further research to develop a more supportive environment

for the implementation of similar languages is outlined.

Chapter
I
[

\4
Vil

VIl

TABLE OF CONTENTS

Title
Introduction
The Relmath Language
Language Design
Numerical Methods
Paging
Compiling
Support for Language Implementation
Assessment and Recommendations

List of References

Page

63
92
95
108
115
122

127

[. INTRODUCTION

Throughout their history computers have been used to solve
numerical problems arising in science and engineering. Originally,
the restricted capabilities of computers and their expense were the
primary limitations on this usage. However, over the years, and
especially recently, computer hardware has become enormously
more powerful while the cost of achieving a given performance level
has dropped markedly. Consequently, hardware limitations are
no longer so important, and the difficulties of programming now
constitute the primary limitation on the effective use of computers.
Algorithmic languages like FORTRAN were a first step toward
easing these difficulties, but they do not go far enough. Engineers
and scientists who are not professional programmers need
languages that are still more supportive of their work and further
reduce the programming effort required to solve their problems.

This thesis is concerned with languages that meet this need.
These are high-level, application-oriented languages which are
specialized to numerical engineering problems. They allow users
to state their problems in a normal and familiar mathematical
form and have them solved easily. Hence, they significantly
reduce the programming effort needed to solve these problems.

We will show the usefulness of these languages and discuss their

design and implementation.

As a concrete and explicit example, Relmath will be presented.
This language was designed and implemented by the author. It is
primarily intended to be used to solve ordinary differential equations,
but it also has facilities for evaluating and manipulating functions
defined by other means. We will use it to illustrate the benefits
of specialized languages which enhance the users' ability to solve
their particular problems.

Based upon our experience with Relmath and other languages,
we will then examine some aspects of the design and implementation
of high-level, specialized languages and recommend some goals
for further research. This examination will be divided into five
parts, which will be covered in separate chapters. These parts are:
1. language design. It is important for a language to be natural
and highly supportive within its application area. To illustrate
how these goals can be attained, the design of Relmath is discussed
in detail, with emphasis upon the considerations that led to the
present form of the language. The special considerations involved
in designing the procedural part of Relmath, which is very natural
for writing certain classes of algorithms to solve differential
equations, are presented.

2. numerical methods. High-level languages for numerical
engineering problems solve some problems by invoking built-in
numerical algorithms. Relmath, for example, has a built-in

algorithm for solving ordinary differential equations. The numerical

considerations involved in designing these algorithms are discussed.
3. paging. Since virtual memory environments will be increasingly
used, their implications for these specialized languages must be
considered. An analysis of the paging characteristics of a
representative algorithm shows that specialized algorithms are
needed for efficient operation.

4. compiling. It is desirable to compile efficient code for computa-
tions that will be executed repeatedly. This objective imposes
certain restrictions on the language so that effective optimizing
compilers can be applied. Relmath's compiling technique is
presented.

5. support for language implementation. The earlier chapters
discuss languages that help engineers and scientists to more
effectively utilize computers by reducing the programming difficulties
they face. The implementation of such languages is another major
task that currently receives little support. This large implementation
effort now blocks the ready development of these languages. A
program is presented to develop a more supportive environment

for their implementation. This environment also makes it easier

to modify and interface these languages.

Il. THE RELMATH LANGUAGE

We will use Relmath as an example of a language for
numerical engineering problems. It is a prototype language
oriented especially toward the solution of ordinary differential
equations. It has been implemented under the REL system on an
IBM 370/155. This chapter presents the language; later chapters
will discuss certain aspects of its design.

We will first present a formal specification of Relmath's
syntax and semantics. This will be followed by some examples.
The formal presentation is not intended to be a user's manual.
Indeed, a natural language, such as Relmath, is better learned

from some examples and actual usage than from a manual.

Formal Specification of Relmath

The metalanguage used to describe Relmath's syntax is
similar to other syntax languages. Metalanguage names are in
lower case and may include the symbol _; upper case letters
and special characters denote themselves as text. The string
:: =means "is defined as. " Brackets [] enclose optional
strings. Alternatives are delimited by the underlined word or.
Alternatives are also indicated by giving more than one definition
of a metalanguage name. The name can then mean any of the
alternatives in any of its definitions. List of followed by a plural
metalanguage name denotes a list of at least one of those meta-

language entities separated by commas.

For example,

array_list : : =list of arrays
means the same as

array_Jlist : : =array or array_list, array
String of is the same as list of, but the commas are omitted.

For example,

number : : = string of digits
means the same as

number : : = digit or number digit

A letter is any of the usual alphabetic characters
A,B,C,...,Z. A digitis a numeric digit 0, 1, ...,9.

All input is on cards in columns 1 through 71. A non-blank
character in column 72 indicates that the statement is continued on
the next card in column 1. Except within character strings, a
sequence of blanks is equivalent to one blank, which acts as a
name separator.

The metalanguage name eos denotes the end of the statement.

The syntax is presented in the following order: names and
declarations, expressions, including arrays and functions,
assignment statements, differential equations and the SOLVE

statement, output statements, FOR and IF clauses, and procedures.

Names and declarations
namechar : : =letter or digit or $ or # or @or _ or ? or %
name : : = letter string of namechars
There are other restrictions on names which do not appear in this
syntax. A name cannot
1. be the same as any of the function names in Table 1.
2. be SUM, PROD, MAX, MIN, AND, ALL, OR, or
ANY.
A name must be separated from any namechar by some other type
of character, possibly one or more blanks. Violations of these
restrictions may cause ambiguities.
declaration : : = list of names : = data_type [S]
data_type : : = SCALAR or ARRAY sublist or FUNCTION
or ARRAY sublist FUNCTION
or ARRAY FUNCTION [S] sublist
or CONDITION FUNCTION
or SYSTEM or EQUATION
or INDEPENDENT VARIABLE
or PROCEDURE or DEPENDENT VARIABLE
or PRECISION
or ARRAY <*> or STEP SIZE
or STEP NUMBER or DERIVATIVE FUNCTION

The optional S after the data type has no effect.

and initializes the storage,

defined later.

Names declared with a particular data type are represented

Metalanguage name
scalar

array_name
function_name
condition_function_name

array_function_name

system_name

t

procedure_name
procedural_array
h

eps

df

by a corresponding metalanguage name, as in the following table:

Data type

SCALAR

ARRAY <sublist>

FUNCTION

CONDITION FUNCTION
ARRAY FUNCTION <sublist>,
ARRAY <sublist> FUNCTION
SYSTEM, EQUATION
INDEPENDENT VARIABLE
PROCEDURE

ARRAY <*>

STEP SIZE

PRECISION

STEP NUMBER
DERIVATIVE FUNCTION

DEPENDENT VARIABLE

A declaration defines the name, allocates storage for it,

if necessary. A scalar is initialized

and all elements of an array are initially zero.

sublist : : = <list of n_exprs>

An n_expr is a numeric expression,

which will be formally

Each expression is evaluated and rounded to an

integer. The integer must be greater than zero. Each integer is
a dimension for the array. The elements of the array are

stored contiguously. The total array size, which is the product
of the dimensions, cannot exceed 127.

Array functions also have dimensions with the same
meaning as for arrays. An array function can be thought of as
a function whose value is an array or as an array whose elements
are functions.

Functions are numeric functions. Condition functions are
functions whose values are true or false. System names refer to
systems of ordinary differential equations. The remaining data
types are associated with procedures and will be discussed later.

Names for scalars, functions, condition functions, systems,
and procedures need not be declared. A name may only have one
meaning at a time, but it may be used for different entities at
different times. Only the most recent use is valid. An assignment

statement sets the type of a name as well as its value.

Expressions
digit_string : : = string of digits
numberl : : = digit_string or digit_string.
or . digit_string or digit_string . digit_string
number : : =numberlor numberl E digit_string
or numberl E + digit_string

or numberl E - digit_string

-9-

The digit string after an E in a number is a power of ten; the
value of xEx nis x-10t n. The value of a number is always a
double precision floating number on the IBM System/370. It has
about 16 decimal digits of precision, and its magnitude can be
O or approximately 108 to 7- 1075. AIll numeric quantities in
Relmath are represented in this form.
primitive : : =number or scalar or array_element
or function_value
or generator value or |n_expr]|
or (n_expr)
or LOG BASE n_expr (n_expr)
factor : : = primitive or + factor or - factor

or primitive ** factor

term : : = factor or term * factor or term/factor
sum : : =term or sum + term or sum - term
modulus : : = sum or modulus MOD sum

n_expr : : =modulus

or IF condition THEN n_expr, [ELSE] n_expr
or modulus IF condition, [ELSE] n_expr
These rules give the syntax of a numeric expression; the
various forms of a primitive will be defined later. The semantic
transformations of these rules are the usual arithmetic operators

of FORTRAN, with some additions. Thus, +, -, *, [, and **

denote the binary operations of addition, subtraction, multiplication,

-10-

division, and exponentiation, respectively; + and - also denote
the unary operations of unary plus and negation. [x] is the
absolute value of x. LOG BASE x(y) is log y/log x. x MOD vy =

x- ly|l /] y|4 , where LzJ is the greatest integer less than or
equal to z. Hence, 0 < x MOD y < |y| for all x,y. In conditional
expressions of the forms x IF u, ELSE y or IF u THEN x, ELSE v,
if uis true x is evaluated, and y is not; otherwise y is evaluated
and x is not. Hence, y need not be meaningful when u is false.

We now define Boolean expressions.

relation_op : : = =o0r < or >o0r <= o0r >= or = or <or >
simple_relation : : = n_expr relation_op n_expr
relation : : = simple_relation

or relation relation_op n_expr
condition_primitive : : = relation or condition_function_value
or condition_generator_value
or (condition)
negation : : = condition_primitive
or NOT negation
conjuntion : : = negation

or conjunction AND negation

disjunction : : = conjunction or disjunction OR conjunction
condition : : = disjunction
These rules define conditions, or Boolean expressions. 1In a

relation of the form relation relation_op n_expr, the operator is

-11-

applied to the last number of the inner relation and the n_expr,
and the result is anded with the truth value of the inner relation.
Hence, the value of a relation is a pair, a truth value and the
value of the last n_expr in it. This interpretation means that

1 < x < 2 has its usual mathematical meaning.

The relation_ops denote the following relations:

= equal = not equal
< less than <=, > less than or equal
> greater than >=, < greater than or equal

The other rules have their usual interpretations.

Functions
The names listed in Table 2-1 are function names. The

definitions of the functions are also given.

Function name
LOG, LN, LOGI10
EXP

SORT

SIN, COS, TAN

SIND, COSD, TAND

ASIN, ACOS, ATAN

ASIND, ACOSD, ATAND
SINH, COSH, TANH
ERF, ERFC

GAMMA, LGAMMA
ABS

FLOOR

CEIL

SIGN

ROUND

TRUNC

MOD

Table 2-1.

-12-

Function definition
logex, loge x, logl0x
ex

VX

Trigonometric functions,

arguments in radians
Same, arguments in degrees

sinl X, cosli x, tani x
ATAN (x,y) =ATAN (y/x), value

in proper gquadrant
Same, values in degrees

Hyperbolic trigonometric functions

,_

x
[
1

greatest integer < x

least integer = x
1ifx>0, 0ifx=0, -1if x<0O
integer nearest x

= SIGN (x) - FLOOR (|x| + .5)

integer part of x=SIGN (x) -
FLOOR (|x])

MOD(x,y) =x MOD vy =x- |y|
FLOOR (x/ |y]|)

Built-in Relmath functions

-13-

function value : : = total_function arglist
or generator arglist

total_function : : = function_name [string of's]
or total array_function sublist

or array_function_name sublist string of's

total_array_function : : = array_function_name [string of's]
arglist : : = (list of arguments)
argument : : = n_expr or condition or array

or total_function

or total array_function

or condition_function_name

or temporary_number_function
or temporary_condition_function

generator : : = SUM or PROD or MAX or MIN

This syntax shows how functions are used. The syntax for
temporary functions depends on some forms used in defining the
syntax of a function assignment statement. That definition will
be given later, and then the notation for temporary functions will
be defined.

A ' following a function name denotes differentiation; the
order of the derivative equals the number of quote symbols. Array
functions can also be differentiated; the quotes may be either

before or after the sublist.

-14-

Numeric functions can be defined by a formula in a function
assignment statement or by a table of numeric values. Such a
table is constructed by solving a system of differential equations
for the function. Array functions can only be defined by such
tables. Functions defined by numeric tables can be differentiated
as many times as their maximum orders in the systems used
to compute their values. Those defined by formulas cannot be
differentiated.

When a function defined by a table is invoked in a function_-
value, it must have only one argument. This argument's value
must be within the range covered by the table. The domain value
closest to the argument is found in the table, and the corresponding
range value is returned. The same thing is done for array functions;
the value is the array associated with the nearest domain point.

The generators can have any number of arguments. They
return the sum, product, maximum, or minimum, respectively,

of the arguments.

Arrays
array : : =array_name or total_array function arglist
or array_function_name arglist string of's
array element : : = array sublist

The number of n_exprs in the sublist must equal the number

of dimensions. Each n_expr xi is evaluated and rounded to an

-15-

integer Ki. Each Ki must satisfy 1 < Ki <di where di is the

corresponding dimension. The value of this element of the array

is used.

Generator functions

generator value : : = generator FOR var=range (n_expr)

range SUCH THAT (condition)

or FIRST var

or FIRST var range ST (condition)

var : : = name
primitive : : = var
range : : =initrng TO endrng BY incrng

or initrng BY incrng TO endrng

or initrng TO endrng

or initrng, nextrng, ..., endrng
or initrng, ..., endrng

initrng : : = n_expr

incrng : : =n_expr

endrng : : = n_expr

nextrng : : = n_expr

A range defines a sequence of values. In the third form,

incrng is implicitly one, exceptin a FOR clause on SOLVE and

PLOT statements. Then incrng = (endrng-initrng)/100. The
fourth form is equivalent to the first with incrng=nextrng-initrng.

Form 5 is equivalent to form 3. Finally, the sequence is initrng,

-16-

initrng + incrng, initrng + 2 incrng, ..., initrug + n- incrng, where
n=FLOOR ((endrng-initrng)/incrng). If n<0, the range is null.

A var is just a place-holder for the current value of the
range sequence. These values do not affect the values of the
same name elsewhere. The var may be used in the n_expr
or condition as a numeric primitive, as the syntax shows.

The value of the first form of a generator_value is the
sum, product, maximum, or minimum of the values that the
n_expr takes on for the values of var in the range. The two forms
involving FIRST are equivalent. The value is the first value
of var in the range such that the condition is true. |If the condition
is not true for any value in the range, the output is K, the
maximum number representable in Relmath. K is approximately
7-1075.

If the range is null, the generator functions have the

following values:

operator value if range is null
SUM 0

PROD 1

M AX -K

MIN K

FIRST K

-17-

Condition functions and generators
condition_function_value : : = condition_function_name arglist

or condition_fn arglist

condition_fn : : = AND or ALL or OR or ANY

The condition functions are defined by function assignment
statements, which will be discussed later. The arguments of the
built-in functions AND, ALL, OR, and ANY can be any number of
conditions. The first two compute the conjunction of the arguments,
and the last two compute their disjunction.

condition_generator_value : : = FOR condition_generator

var=range (condition)

condition_generator : : = ALL or SOME or ANY

SOME and ANY are equivalent. They compute the disjunction of
the condition values obtained by stepping var through the range, and
ALL computes the conjunction. If the range is null, ALL returns

true, and SOME and ANY return false.

Assignment statements
assignment : : = scalar = n_expr

or array_name sublist = n_expr
In the second form the sublist must conform to the same

restrictions as in the case of an array_element. The n_expr is

evaluated, and its value is assigned to the scalar or array element.

-18-

Function assignment statements
function_assignment : : = function_name parmlist=n_expr
or condition_function name parmlist=condition
parmlist : : = (list of parameters)
parameter : : =number_var or array_var
or function var or array_function_var
or condition var

or condition_function_var

primitive : : =number var

array : : =array var

function_name : : = function_var
array_function_name : : = array_function_var
condition_primitive : : = condition_var
condition_function_name : : = condition function var
number var : : = name

array_var : : = name

function_var : : = name

array function_var : : =name

condition_var : : = name
condition_function_var : : = name

The names which appear in the parmlist are formal parame-
ters. They can be used as numbers, arrays, conditions, etc. as

shown in the syntax. They serve only as place-holders for the

-19-

actual arguments. Neither this statement nor the use of the function
affects any values associated with these names in any way.

This statement defines the function or condition function by
a formula. When the function is used in a function_value or
condition_function_value, the arguments are substituted for the
formal parameters. The value of the function is then obtained by
evaluating the formula. To do this, the arguments must agree
with the parameters. An n_expr can be substituted for a number var,
an array for an array_var, and a condition for a condition_var.
Total _array_functions can be substituted for array function_vars.
Total_functions and temporary_number_functions can be substituted
for function_vars, and condition_function_names and temporary_
condition_functions for condition_function_vars.

A function can be redefined, perhaps with different
parameters. It can also be changed from one defined by a table
to one defined by a formula or vice versa. Whenever the function
is invoked, its most recent definition is used.

Functions may be recursive.

Temporary function arguments
We now give the syntax for temporary functions.
temporary_number_function : : = FUNCTION parmlist: n_expr
temporary_condition_function : : =

FUNCTION parmlist : condition

-20-

This notation defines a function which is the argument of
another function. The parameters of the defined function are given
in the parmlist. The n_expr or condition is a formula that
defines a function of these parameters. For example,

FUNCTION (X, Y): X ** 2+ Y ** 2

defines a function argument f where f(x, y)=x2 + y2.

Systems and the SOLVE statement
primitive : : = total_function
equation : : = n_expr = n_expr
or equation FOR var=range
initial_condition : : = total_function = n_expr
or initial_condition FOR var = range
eql item : : = equation or [WITH] [INITIAL]

initial_condition or system_name

equation_list : : =1list of eql_items
sysasgnl : : = system_name: equation_list
eql statement : : = equation_list eos
sysasgn2 : : = BEGIN system_name eos

string of eql_statements
END system_name

system_assignment : : = sysasgnl or sysasgn?2

In an equation, the unknown functions are represented by
derivatives without argument lists. An initial condition specifies

the initial value of some function. The FOR clauses on equations

-21-

and initial conditions allow them to be iterated for various values
of some array subscript.

The first type of system assignment is used for small
systems. The system consists only of the eql items in this
statement. The second type is really a compound statement, since
it spans several input statements. The system consists of all
the eql items between the BEGIN and END. Actually, the
syntax rules are incomplete. Other types of statements beside
eql statements can appear between the BEGIN and END. Even
other system_assignments can appear. However, these statements
are not part of the system definition and could just as well appear
outside it.

System names are allowable eql_items. Hence, systems
can have subsystems, but not recursively. When the system is
used, the current definitions of its subsystems are expanded
until no subsystems remain. All the resulting equations are in
the system. So are all the initial conditions, but their order is
important. Conditions override conditions on their left or in

earlier equation_statements and also in subsystems to the left

or above.
solve_statement : : = SOLVE equation_list
FOR scalar=range [with PRECISION=n_expr]
with : : =, or WITH

or, WITH

-22-

This statement solves the differential equation system
defined by the equation list and its subsystems and saves the
values of the unknown functions and their derivatives for values
of the scalar in the range. |If no increment is specified in the
range, it is taken to be 1/100 times the end value minus the initial
value. The end value can not be less than the initial value, and
the increment must be positive. This is the only statement that
defines a function by a table.

The scalar in the FOR clause is the independent variable
of the system. It may also appear in the equations. Its value
is undefined after the SOLVE statement is executed. The dependent
variables of the system are the functions and array functions
which appear without argument lists. Any other function is an
auxiliary function which must be known. An unknown function name
is used as a numeric primitive; its dependence on the independent
variable is implicit.

Certain restrictions exist on the equations. They must
be linear in the maximal order derivatives of the unknowns; they
may be non-linear in the lower-order derivatives . The system
must be triangular in the maximum order derivatives. If an
unknown is an array function, two maximal derivatives with
different subscripts can not appear in the same equation. The

standard method for solving the system will not solve stiff systems.

-23-

The system will be solved by a built-in, fourth-order
method that combines a Runge-Kutta scheme and an Adams-
Moulton predictor-corrector method. The step size is automatically
controlled to keep the estimated local relative truncation error
below the requested precision. However, only the computed values
for the values of the independent variable specified in the range
are saved. The derivatives are saved through the maximal orders.
Only these derivative values can be requested in later statements;
higher-order derivatives cannot be used. The method will
terminate with an error message if the step size must be reduced
to less than 2-10 =1/1024 times the range increment.

The precision can be set for just one SOLVE statement by
adding the PRECISION clause to the statement. It can also be
set globally by a PRECISION statement.

precision__statement : : = PRECISION= n_expr
This statement sets the global precision, which retains this value
until another PRECISION statement is executed. The global
precision is used to control the step size for any SOLVE statement
which does not have a PRECISION clause. The default global

precision of 104 is in effect until the first PRECISION statement.

PRINT statements
plot_element : : = n_expr or array
out_element : : = plot_element or condition

out_list : : =1list of out_elements

-24-

print_statementl : : = PRINT out_list

or PRINT out_Ilist IN FORM form

print_statement : : = print_statementl [FOR ALL var]
form : : = string
string : : = charstring

or charstring IF condition, [ELSE] string

or IF condition THEN string, [ELSE] string

A charstring is any sequence of characters enclosed in
double quotes ("). A double quote within the sequence is represented
by two double quotes. A charstring is a literal value; blanks
are not deleted within it.

A string can be conditional, as shown. The value is the
first string if the condition is true; otherwise, it is the second.

A print_statement has several output forms, depending on
whether it has a form or a FOR ALL clause. When neither is
present, the out_elements' values are printed using a default
format. Numbers are printed in an exponential form if they are
very large or small. Arrays are expanded to a list of numbers;
the order is determined by varying the last subscript fastest.
Hence, a two-dimensional array is shown row-by-row. A
condition is displayed as TRUE or FALSE. Several out elements
are printed to a line until the list is exhausted.

If a form is given, it controls the format of the output

lines. AIll characters except periods (.) and underscores ()

-25-

represent text. These text fields are moved to the output line
unchanged. A sequence of underscores with an optional period
represents a fixed number. A number from the out_list placed

in this field is shown with its decimal point where the period is and
digits and a sign where the underscores are. Leading zeroes and
plus signs are not shown. If there is no period, the number is
printed as an integer. A sequence of at least six periods
represents a floating field. A number placed in such a field has
a minus sign, if it is negative, one digit, a decimal point, more
digits, and a four-character exponent Esnn, where s is a blank
or a minus sign. Numbers are always rounded at the right end.
If a field is too short, it is filled with asterisks.

A condition may be placed in a field which is just
underscores. It will print as TRUE or FALSE, or as T or F if
the field has less than five underscores, followed by blanks.

The form defines a single line. The form is processed
from left to right, with each number or condition in the out_list
going in one field. When the end of the form is reached, the line
is printed, and the form is re-used from the left.

A FOR ALL clause indicates that the var's range is the
domain of a function in the out_list. There must be at least one
function defined by a numeric table in the out_list; if there is
more than one, they must all have the same domain. This domain
is used as the range of the var. The PRINT statement is repeated

for each value in the range.

-26-

print_digits_st : : = PRINT n_expr DIGITS

This statement sets the number of digits to print when no
form is given. If no such statement has been executed, the
number is -logl0 P + Iy , where P is the current global
precision. A few more digits than the number requested may
be printed, depending on the magnitude of the printed number.

eject_st : : = EJECT

skip_st : : = SKIP [1LINE] or SKIP n_expr [LINES]

These statements control the spacing of the output. EJECT
starts the next output line at the top of the next page. A SKIP
statement skips 1 or n blank lines, where n is the value of the
n_expr truncated to an integer.

print_string_st : : = PRINT string

This statement prints the string's value without the

enclosing quotes.

PLOT statements
Plotted output is produced by these statements.
plot_statementl : : = PLOT plot list
or PLOT plot_list VS [.] n_expr
plot_statement : : = plot_statementl [FOR ALL var]

plot list : : =1list of plot elements

The expressions in the plot_list and n_expr should be

functions of a var. In the first form of a plot_statementl, the

-27-

plot elements are plotted against the var. In the second form

they are plotted against the values of the n_expr. If a plot_element
is an array, its elements are all plotted. AIll the plot_elements
are plotted to the same scale on one sheet. The plotting area is

15 inches horizontally by 10 inches vertically.

The range of the var can be explicitly shown by a FOR
clause, as in the next section. If the increment in the range is
not given, it is assumed to be .01 times the end value minus the
initial value. The range can also be implicitly derived from the
domains of the tabular functions being plotted, just as in a
PRINT statement, by a FOR ALL clause.

Initially, no labels are drawn on the axes, and default
values are used for the minimum and maximum values on each
axis. These default values will include the full data range and
be rounded to reasonable values. Labels and non-default

endpoints for the axes can be specified.

axis : : = HORIZONTAL or VERTICAL
label st : : = axis LABEL IS string
range_st : : = axis RANGE IS n_expr TO n_expr

or axis RANGE IS STANDARD

The string in a label_st will be used to label the appropriate axis.
In a range_st, the first n_expr is the minimum for the axis and

the second is the maximum. The given label or range remains

-28-

in effect for all plots until changed by another such statement.
The default range is set by the second form of a range_st, which

sets the range to STANDARD.

FOR and IF clauses

for_ok_st : : =label_st or range_st or skip_st
or eject_st or print_string_st or assignment
or precision_statement or function_assignment
or print_statement or plot_statement

for_stl: : =for_ok_st or for_stl FOR var=range
or for_stlIF condition

for_st2 : : =for_ok_st or FOR var=range for_st2
or IF condition THEN [for_st2]

[eos ELSE [for_st2]]

if_stl:: = solve statement [IF condition]

if st2

IF condition THEN [if_st2]
[eos ELSE [st2]] or solve_statement

or IF condition THEN for_st2 eos

ELSE if_st2
st2 : . = for_st2 or if st2
statementl : : = for_stl or if_stl or st2

or system_assignment or declaration
statement : : = statement 1 eos

program : : = string of statements

-29-

A FOR or IF clause can be added to any statement except
a system_assignment, a declaration, or a solve_statement, which
can only take an IF clause. The IF and FOR clauses must all
be on the right end of the statement or all on the left. An ELSE
is paired with the last THEN. An IF clause on the right makes
the statement to its left conditional; it is executed only if the
condition is true. An IF. .. THEN. .. ELSE executes the statement
after the THEN if the condition is true and the statement after
the ELSE if it is false. A FOR clause repeats the statement
to its left or right, once for each value of the var in the range.

A FOR clause is especially useful for assigning values to arrays.

Procedures

Procedures may be defined in Relmath to solve systems of
ordinary differential equations. The Relmath procedural language
is oriented toward stating procedures to do this task, and other
types of procedures cannot be written.

Within procedures, names declared with the data types
INDEPENDENT VARIABLE, DEPENDENT VARIABLE,
DERIVATIVE FUNCTION, STEP SIZE, STEP NUMBER, PRECISION,
and ARRAY <*> have significance. Elsewhere, they are meaningless.
The metalanguage names for these Relmath names are t, z, df, h,
n, eps, and procedural array, respectively. These declarations

identify the significant mathematical entities in the procedure.

-30-

Procedures solve systems of the form z'=df(t, z). They
compute zn=z(tn) from previous values of z and z'. They may
adjust the step size in order to maintain control of the truncation
error. They may call other subprocedures.

z is a vector, since the procedures work on systems of
equations. When a particular system is to be solved using
a procedure, Relmath transforms the internal representation of
the system to the standard form z'=df(t, z).

primitive : : =t index or z index or z 'index
or procedural_array or h or n or eps
or df (n_expr, n_expr)
or MAX (n_expr)
proc_assignment : : = procedural_array = n_expr
or z ['] index = n_expr
or h= n_expr or scalar = n_expr
index : : =<n> or <n+digit_string>

or <n-digit_string>

These rules extend the definition of an n_expr primitive
and add a new assignment statement. An index is used to refer to
a discrete value of t or z. t<n> is tn, the current t. t<n+i> =
tn+i.=tn+i- h, t<n-i>=tn-i =tn-i- h, where i is a digit string. z
and z' followed by an index nJ_r_irefer to z and z' at t=tnzi-

Values of df, z, z', and procedural_arrays are actually

vectors whose length is that of z, i. e. the number of first-order

-31-

variables in the system being solved. When these entities

appear in an n_expr, all operations are applied to their components
in parallel. The only exceptions are applications of df, which
operate on the second argument as a vector, and the use of

MAX with one argument. MAX will then return the maximum
component of its argument. Note that df must have a number as
its first argument.

The value of h is the current step size. The step
number is n, and eps is the precision set by a PRECISION clause
or statement.

A procedural assignment sets the value of z, z', a
procedural array, a scalar, or h. In the first three cases the
n_expr may be a vector, whose components are assighed in
parallel, or a number, which is assignhed to all the components of
the left-side vector. Changing the value of h by a proc_assignment
has side effects which will be discussed later.

with_option : : = h=n_expr or n=n_expr

or fixed h [=n_expr]
or scalar = n_expr

or procedural_array = n_expr

with_clause : : = WITH list of with options

repetition_count digit_string TIMES

apply_statement : : = APPLY procedure_name

[repetition_count] [with_clause]

-32-

An apply_statement calls a subprocedure. The action of
the with_clause and the repetition_count will be explained later.
block : : = string of basic_proc_statements
do_statement : : = DO [n_expr TIMES] [UNTIL condition]
eos block END
proc_if _statement : : = IF condition THEN
[basic_proc_stl] [eos ELSE [basic_proc_stl]]
or basic_proc_st2 IF condition
basic_proc_st2 : : = proc_as signment orapply_statement
or print_statementl
basic_proc_stl : : = basic_proc_ st2
or do_statement or proc_if_statement

basic_proc_statement : : = basic proc_stl eos

These rules define the syntax for grouping procedural
statements and conditional statements. The block of a do_statement
may be executed a set number of times or until a condition is
satisfied. The proc_if_statement is the standard PL/I-type
conditional or the alternate Relmath format. An ELSE is associated
with the last IF. .. THEN.

segment : : = block or SINGLE-STEP: eos block

or MULTI-STEP: eos block
proc_definition : : = BEGIN procedure_name eos

string dees END procedure_name

statementl : : = proc_definition

-33-

A procedure definition can have three segments. The
single-step segment is headed by the line SINGLE-STEP: , and
a multi-step segment by MULTI-STEP:. There can also be an
initial segment, which has no header line. It immediately follows
the BEGIN statement. The initial segment is applied only once
at the beginning of the solution computation. The single-step
segment is applied after the initial segment and after any change
in h. When enough values of z have been computed, the system
will use the multi-step segment. If a multi-step segment is
given but no single-step, the standard single-step segment is
used; it computes zn+1, zn+2, zn+3, z'n+1, z'n+2 from zn and
z'n by a fourth-order Runge-Kutta-Gill formula. A segment
header with no following statements also invokes the corresponding
standard segment. The standard multi-step segment computes
ztk from zn, z'n, z'n-1, z'n-2, and z'n-3 by a fourth-order
Adams-Moulton predictor-corrector formula. A procedure with
no header statements is considered to have only a single-step
segment.

The initial segment is used to initialize variables and

perhaps to set the step size. The single- and multi-step segments

compute zn+1,..., zK and z'n+1,..., zn+K from zn, z'n, and
possibly some previous values of z and z'. The single-step
segment may also change zn, zn-1, ... ,2zn -¢ and z'n, z'@

., z'n-¢'. K'sK and ¢ <? are required; K or £ may be zero.

If K'<K or £'<¢, the system will compute the missing derivatives.

-34-

K, K', £, and £' need not be the same each time the segment is
executed. The system will analyze the multi-step segment to
determine the previous values of z or z' that it needs and will not
call it until these values have been computed by repeated use

of the single-step segment. The single-step segment may also
refer to previous values of z; these will be the last values
computed before applying the single-step segment.

A procedure may call another procedure by the APPLY
statement, but such calls cannot be recursive. Only a main
procedure can have segments; subprocedures can not. The
action of a subprocedure can be modified by a with_clause or
repetition_count. A with option with a scalar or procedural
array on the left sets that scalar or array just as in an assignment
before calling the procedure. |If h or nis set, the value of h or n
is changed for the subprocedure but is reset after the APPLY
statement is finished. Changing h or n changes references in the
subprocedure to z and z' so they refer to other values of z and z'.
If his changed to h-m and n to n+p, then an index n+i in the
subprocedure is effectively changed to n+p+i-m. h may only be
changed by multiplying or dividing it by a constant power of 2,
and n may be changed only by adding a constant integer to it.

A repetition count of K repeats the subprocedure K times. Each
time n is advanced by the number of z's computed the last time.

The system will assure that needed values of z' are computed.

-35-

If a with_clause is also given, it is used to initialize h and n,
and only n is changed by the repetitions.

When h is changed by a proc_assignment, the procedure
stops executing. |If this happens in a subprocedure, all higher-
level procedures also stop and control returns directly to the
system. If his increased, the values of z and z' which have
been computed are assumed to be valid and are retained.
Otherwise, these values are discarded and the single-step
segment is applied with the new h and the same values of tn, zn
as before. |If his reduced to less than h0-2-10 =h0/ 1024, where
hO is the original step size given in the SOLVE statement, the
system terminates the solution of the system and gives an error
message. Whenever h is changed, n is set to 0, so it counts from
the last change. h can only be changed by a factor which is a
power of 2. If FIXED is used in a with option that sets h,
proc_assignments that set h in the subprocedure are bypassed.

A procedure defines only part of the computations necessary
to solve a differential system. The Relmath processor transforms
the system to the form z'=df(t, z). It then repeatedly interprets
the procedure, each time calculating the next few values of z and
z' from their current and previous values. Each time it advances
by the number of values of z computed last time. It allocates
the needed storage and pushes the current and calculated values

down to the previous ones, saving only those that are needed.

-36-

During the computation h may be changed, but only those function
values when t=t0+ mhO, where mis an integer and t0O and hO are the
original t and step size given in the SOLVE statement, are saved.
A procedure is used by a USE statement,
use_statement : : = USE procedure name
[WITH FIXED STEP SIZE]
procedure_name : : = STANDARD or STANDARD
SINGLE-STEP or STANDARD MULTI-STEP
statementl : : = use statement
Any SOLVE statement after the USE statement will use this
procedure. The standard procedure and its segments are referred
to by the names shown. The optional FIXED clause causes all

proc_assignments that set h to be bypassed.

Compilation

A procedure can be compiled, which greatly reduces its
execution time.

compile_statement : : = COMPILE list of procedure names

statementl : : = compile_statement
The procedures are translated to FORTRAN code on an intermediate
data set. Standard control cards are used to call the FORTRAN
compiler and link-edit the program with the rest of Relmath.
Subsequent runs of Relmath will have the compiled form of the
procedure and will use it until the procedure is redefined. Com-

piling a procedure also compiles all of its subprocedures.

-37-

A compiled procedure acts as a new primitive of the
language. That is, all of its subprocedures and defined functions
are frozen in the code as they are at the time of compilation.
Future changes in these entities will not affect the compiled code

until the procedure is recompiled.

Miscellaneous

All data in Relmath are permanent except for the values
of procedural_arrays. They are preserved from one run to the
next.

The REL environment in which Relmath runs provides
three types of storage: a paged virtual memory, a list area, and
a section of main memory. The virtual memory is used for all
permanent data. The list area holds the sentence parses while
they are being interpreted and temporary lists. The main memory
section holds the procedural arrays and other data used by a
procedure. It is also used by the PLOT statement processor
to hold the points being plotted.

All statements, function definitions, differential equations,
and procedures are represented as list structures. These
structures are copied to the virtual memory for storage and
copied back to the list area when needed. They are interpreted
by the REL semantic driver and Relmath semantic routines.
Compiled procedures also have associated machine code which is
executed and has the same effect as interpreting the list-structure

form of the procedure.

-38-

Examples of Relmath

The first section of this chapter gave a formal specification
of Relmath. This section will present some examples of its use.

The first three examples are solutions to differential
equations. Figure 2-2 shows the Relmath solution of a chemical

reaction problem. The output is in Figure 2-3.

Fig. 2-2 -- Chemical reaction example

-39-

a|dwexa uonoeal |edlways woil indinQ

€-¢

614

-40-

panulluod

€-¢

614

-41-

This example solves the differential equations

which describe the interactions between NO, NO2, and OL (olefins)
in one model for the chemical reactions involved in the production
of smog [Sein69, 7-13; Frie69, 1176-1177]. The parameter
values were chosen by Friedlander and Seinfeld to simulate
experimental observations.

Figure 2-4 shows the solution of a system that describes
the dynamics of a gas absorber. The equations are taken from
[Lap71, 84]. This example illustrates the use of an array

function. The output is in Figure 2-5.

-42-

Fig. 2-4 -- Gas absorber example

-43-

a|dwexa Jagiosge seb woil 1ndinQO

G-¢

B4

44-

panuniuod

G-¢

"B14

-45-

The final example of this group, Figure 2-5, solves for
the orbit of a small body in the gravitational field of two much
larger bodies that are at a constant distance from each other. The
rotating coordinate system has the center of mass of the two large
bodies at the origin and the two bodies on the x axis. They are
a unit distance apart, and MU is the ratio of the mass of the
large body to that of the whole system. The problem is due to
J. M. Varah [Var71]. It has the feature that conditions are
changing very rapidly right at the start of the solution.

Figure 2-7 is the output.

Fig. 2-6 -- Orbit example

-46-

a|ldwexa 11qJ0 wol4y IndinQ

L-C

B4

-47-

panulluod

L-¢

614

-48

In these examples the differential equations were stated
directly as equations in a normal mathematical form. They are
solved by a simple, direct statement, and the output is also
obtained easily. These features are characteristic of high-level
languages for solving numerical engineering problems.

Figure 2-8 gives a few examples of the other facilities

available in Relmath, not including procedures. The output is

shown in Figure 2-9.

Fig. 2-8 -- Examples other than differential equations

-49-

Fig. 2-9 -- Output from examples of fig. 2-8

Fig.

2-9

-50-

continued

-51-

These examples show some of the Relmath notations for
sums, other repeated operators, and other operators, such as
MOD, which are commonly used in engineering mathematics.
These notations are close to those commonly used.

The remaining examples are of procedures. The first one,
in Figure 2-10, is the fourth-order Runge-Kutta-Gill procedure

[Mat70, 2].

Fig. 2-10 -- Runge-Kutta-Gill procedure

-52-

This is a simple procedure. It may be used as a main
procedure by the statement,

USE RKG

In that case, it would be repeatedly applied to generate the solution
values. The step size would be fixed, since the procedure

does not modify it.

Figure 2-11 shows the standard procedure as it would be
written in Relmath. The standard procedure is actually coded

in FORTRAN.

Fig. 2-11 -- Standard procedure

This procedure has three segments. The initial one
simply divides the step size by four. The single-step segment
first computes Zn + 2 RKG with a temporarily doubled step

size. It then uses RKG twice to compute Zn+1l again. The two

-53-
values of Z@ are compared to compute the error estimate E.
If this is too large, the procedure is repeated with the step size
halved. If not, RKG is used once more to compute Zn+3. The
multi-step segment computes Zn+l1l from Zn, Z'n, Z'n-1, and
Z'n-3 using the fourth-order Adams-Moulton predictor-corrector
formulas [Lap71, 180-181]. The relative truncation error is
estimated by comparing the predicted and corrected values, and
the step size is adjusted if necessary. Since the multi-step
segment requires three previous values of Z' and the single-step
segment computes three values of Z, the single-step segment will
be used only once before starting the multi-step segment.

Figure 2-12 shows another procedure based on the same
Runge-Kutta and predictor-corrector formulas as the standard
procedure. However, STANINT uses RKG only at the start of
the solution. Thereafter, it uses other means to compute the

previous values needed by the multi-step segment.

Fig. 2-12-- Standard procedure with interpolation

Fig.

2-12 -- continued

-54-

-55-

When the step size has been increased, the single-step
segment sets Zn-1, ZA and Zn-3 equal to the old zZn-2, Z4
and Zn-6, respectively, and similarly for Z'. When the step size
has been halved, the needed values are computed by the following

sixth-order interpolation formulas [IBM68, 338],

where h is the old step size before halving. This procedure has
been found to be faster than STAN in some cases where the step
size was changed often.

In Figure 2-13 we have a procedure based on different

formulas.

-56-

Fig. 2-13 -- Procedure with Sarafyan and Kohfield-Thompson
formulas

The single-step segment uses a self-embedding Runge-Kutta
scheme of Sarafyan [Lap71l, 72-73]. This scheme computes
Zml to fourth order in P and then to fifth order. The two values
are compared to estimate the error. |If it is below the bound,

Z@ is also computed. This method needs only 9 evaluations of

-57-

the derivative function to compute Znt, Zn+2, and their derivatives,
while the method used in STAN required 11.
The multi-step segment uses a hybrid method of Kohfield
and Thompson [Koh67]. A value of Zn+0.7 is predicted, and
P is set to its derivative. Then a predicted Q = Zn+0.5 is computed
using P. P is changed to a predicted Zn+1. Finally, a corrector
formula due to Gragg and Stetter [Gra64] is applied to obtain
Zn+1l. The corrector is fourth-order, but it is approximately
76 times as accurate as the Adams-Moulton fourth-order corrector.
This accuracy essentially compensates for the increased computation,
since it allows a step size which is about twice that useable with
the Adams-Moulton formula for the same accuracy. Kohfield
and Thompson give a family of formulas up to order 14; they
have found that their sixth-order formulas require about two-thirds
the compute time of the corresponding Adams-Moulton formulas.
These procedures are written in a simple, direct style.
The mathematical operations are directly expressed as they
would be in a text describing the methods. Hence, this is a

high-level language for writing algorithms of this kind.

-58-

The REL System

In this section we will describe the aspects of REL which
are relevant to the design of Relmath. REL is also discussed
in [Dos71; Thomp69].

The REL system used to implement Relmath is a batch
system which runs under a standard IBM OS/360 on a 370/155.
It consists of a group of programs, including a parser, a semantic
interpreter, alist processor, and a paging controller. This
system supports the development of high-level languages.

A language implemented under REL has a dictionary
which describes its syntax. The syntax rules are written in a
special language that is processed by the REL dictionary builder

program. An example is

This rule specifies the syntax for addition. NU is the part-of-
speech name for a number. ASF is the add-subtract feature; it
must be off in the second input NU phrase and is set on in the
output NU phrase. Hence, sums are collected from left-to-right.
ADD is a semantic routine, a program written in assembler code
that performs the addition. Every rule has a semantic routine
which performs the semantic transformation indicated by the

syntax.

-50-

The parser uses the dictionary to parse the input statements.
It operates in a bottom-up manner. When the parser is done, it
outputs the parse tree of the sentence. Each node, which corres-
ponds to a phrase, contains a pointer to the semantic routine of
the rule that was used to construct that node. Thus, if the
summation rule was applied to construct an NU phrase, it will
contain a pointer to ADD and pointers to its constituents.

During the semantic phase, the REL interpreter, SEM,
is called to evaluate the sentence phrase. It recursively calls
itself to evaluate the constituents of any phrase, and then calls
the semantic routine. This program replaces the phrase’'s
pointers to itself and the constituents with the output value of the
phrase. For instance, ADD obtains the values of the constituent
phrases, adds them, and makes the sum the value of the output
phrase. The semantic routines may also produce printed or
plotted output.

A rule can also have a syntax routine. This routine is
called by the parser when the rule is applied. It can apply tests
to determine whether the rule is really valid, insert names in
the dictionary, create and bind variable phrases, and otherwise
modify the parsing graph. A condition routine creates a variable
by replacing the semantic routine pointer in the output phrase by
an identifier of the variable and marking the phrase. The parser

keeps a list in each phrase of the variables that are free in it.

-60-

A condition routine binds a variable by deleting it from the variable
list of the output phrase. It also calls an REL utility to obtain the
refresher stack, alist of the phrases where the variable appears
and those phrases that depend on these. This stack is saved
in the output phrase.

A semantic routine can be marked as a generator by
adding "(G)" after its name in the SEM: statement of a rule.
A flag is placed in the output phrase's routine pointer, and SEM
will not evaluate the phrase's constituents before calling the
routine. The routine can then modify the unevaluated constituent
phrase trees and call SEM to evaluate them.

Generators are usually used in conjunction with variables.

For instance the rule

recognizes the sum notation in Relmath. FR is a FOR range,
and the left NU must be a variable phrase. The syntax routine
FORBIND binds this variable and computes its refresher stack
in the right NU. SUM uses SEM to evaluate the FR. It then
uses the refresher stack to repeatedly set the variable phrase in
the right NU to successive values in the range and calls SEM to
evaluate the NU. The refresher stack is also used to reset the
semantic routine and constituent pointers of the phrases that

depend on the variable before each call to SEM. Other phrases

-61-

are not reset or re-evaluated. The values of the NU phrase are
added and the sum is the value of the output phrase.

In Relmath all names become variable phrases. Those
not bound by specific syntax routines are bound by a general routine
associated with the rule to recognize a sentence. This rule’'s
semantic routine is a generator that sets these variable phrases
to the values of their names and then calls SEM to evaluate the
sentence.

The REL system has three types of memory: alist area,
a paged virtual memory, and an unstructured block of main
memory. The list area is divided into three-word list elements.
Any word can be used as a list link or as data; the first byte of
the element indicates how the words are used. A macro obtains
the next element from the free list. |If the list is empty, it calls
a garbage collection routine that finds all the unused elements and
puts them on the list. The virtual memory consists of 1024-byte
pages which may be either in core or on the disk. A REL subrou-
tine will load a page given its virtual memory address and will
return its core address. When the core area allocated to pages
is filled, the page referenced the longest time ago is replaced by
the new page. Thus, the most recently referenced pages remain
in core. REL subroutines can be used to copy list structures

from the list area to pages and back.

-62-

REL is a batch program that runs in two job steps. The
first step does the syntactic processing of each input sentence. It
saves the parses on an intermediate data set. The second step
does the semantic processing. It reads the parses back into
core and calls SEM to evaluate each one. In each step the programs,
including both the REL routines and the syntax or semantic routines,
are link edited into a load module. Thus, the paging is used only

for the data, not the programs.

-63-

1. LANGUAGE DESIGN

In this chapter we will discuss the design of a language for

solving numerical engineering problems.

The User and the Application Area

It is first necessary to characterize the intended users of
the language and its application areas. In this thesis we are
generally concerned with users who are scientists and engineers
who are not highly skilled in the techniques of numerical analysis
or computer programming. Thus, they are not expected to
develop new numerical methods or to do extensive programming.
Relmath was designed for these people.

An application area must be chosen for the language. For
Relmath, ordinary differential equation initial value problems
were selected as the primary application area. These problems
are of interest to the users, and their numerical treatment is
understood. It is not easy for an unsophisticated user to solve
systems of such equations using a conventional programming
language.

This problem area has two parts. We wanted to facilitate
the statement of the equations, the initial values, and the domain
of the solution. We also wanted to facilitate the statement of
the numerical method for solving such equations. For the latter

part, we wanted to develop a higher-level language than FORTRAN

-64-

for a class of methods that included at least those of interest to
students and other unsophisticated users.

The definition, evaluation, and printing or plotting of
functions was selected as a secondary application area for Relmath.
Almost all of these capabilities were required to support the
solution of differential equations, since we wanted to be able to
define auxiliary functions and to manipulate and display the
solutions.

Other languages, of course, will have other problem
areas. One language with a broad application area is NAPSS
[Sym68; Sym69]. It includes operators to solve ordinary
differential equations, systems of linear equations, and single
nonlinear equations, as well as operators to do integration,
differentiation, and interpolation. POSE [Schl67] and AMTRAN
[Seitz68; Rein70] have operators for a variety of problems similar
to those handled by NAPSS. AMTRAN and NAPSS also include the
ability to define procedures in a language similar to that of PL/I.
Examples of languages with more restricted application areas
are SALEM [Mor68] and PDEL [Car70] for certain classes of
partial differential equations, Gear's language for ordinary
differential equations [Gear66], and the Lincoln Reckoner
[Stow66] for matrix manipulations.

The language's application area should be of interest to

the user group. The interests of this group determine the types

-65-

of numerical problems that should be supported and the level of
support that can be provided. Generally, the narrower and more
specific the users' interests, the more the language can be
tailored to their problems.

This leads to a general principle of language design.
Those computations which are common to all problems in an
application area should be made implicit in the language. The
user should not have to specify these. Indeed, the computations
which are implicit essentially define the application area of the
language, since problems that violate these implicit assumptions
can not be stated. The explicit statements that the user writes
serve to specify the problem within the class of allowable problems.
The more implicit knowledge about the application area that is
included in the language, the higher the level of support for this
application area.

Another general principle is that the language should be
natural. That is, its syntax and semantics should correspond
directly to the users' normal notation and its meaning within
the application area. For instance, differential equations should
be expressible directly as equations, not in terms of other
language constructions, and they should be solvable with a simple
statement. However, the language need not support all variations
of normal mathematical notation nor a significant portion of

normal English.

-66-

We will give examples of the application of these principles

in the design of Relmath.

Standard Problems

The standard problems of a language are those that can
be solved by built-in operators of the language. The syntax for
stating these problems should be natural.

In Relmath, initial value problems for systems of
differential equations are obviously standard. The differential
equations can be stated directly as equations in a natural syntax
and solved by a simple statement. We shall discuss the design of
these aspects of the language more thoroughly in order to show
the considerations involved.

Of course, it was necessary to have equations as a
data type. Some syntax for derivatives had to be selected. The
prime notation (X', X", etc.) was selected because it is commonly
used and simple. It was also decided that the unknown functions in
the equations should not have arguments. This is another common
usage. For instance, the equations in the ORBIT system of

Figure 2-6 were originally written as

-67-

[Var71]. This convention also allows the processor to determine
which functions are unknown from the syntax alone. NAPSS
always requires an argument after a derivative. This is more
uniform- - all functions have arguments -- but NAPSS also
requires that the unknown functions be named in its SOLVE
statement. For example,

SOLVE Y"(X)+Y'(X)+EXP(X)Y(X)=SIN(2X), FOR Y(X),

ON 0<X<2, WITH Y'(X & 0) < 1, Y(X < 0) < 0;

[Sym69] . For systems with several unknowns, naming them in
each SOLVE statement would be cumbersome.

Arrays and array functions were included because they
are a natural way to express problems with many homogenous
elements. The gas absorber system of Figure 2-4 is an example.
However, the size and usage of array functions were restricted
to avoid implementation problems, as we shall see.

The ability to store equations and initial conditions in
named systems is important. Often, the user would like to enter a
system and then solve it repeatedly while varying some parameter.
Subsystems were allowed so that hierarchical systems could be
stated. In such systems, equations and initial conditions that
belong together can be placed in a subsystem. Hence, part of
the system can be replaced without changing the rest.

Two forms of system definitions are allowed. The

BEGIN. . .END form is more general and works well for large

-68-

systems. However, it seemed cumbersome for small systems,
so the short form illustrated by

EQL: Y'=3*X, X' = -2*Y
was also included.

NAPSS allows single equations, but not initial values, to be
named. It has no subsystems.

Differential equations often utilize auxiliary functions.
Examples are the ORBIT system of Figure 2-6 and the GA system
of Figure 2-4, Consequently, function definitions were included
in Relmath. Their form is simple and matches common usage.

NAPSS provides an example of a language with several
types of standard problems. Integrals and derivatives can be
evaluated by notations such as [X * SIN(X), (X « 0 TO 1) and
f'(3.7). Several types of equations, including ordinary differential
equations, single nonlinear equations, and linear systems, can be
solved by the SOLVE statement. The processor can determine the
type of equation, but it is faster if the user specifies it. The
user can also specify other information, such as the number of
solutions wanted and the neighborhood where a solution is to be
found, which may be helpful to the processor or may be needed to
ensure that the desired solutions are obtained. AIll these problems
can be expressed in a natural syntax.

In order to solve an equation it is usually necessary to

write it in a particular form. This form isolates certain functions

-69-

and other entities that can be used by the numerical method used

to solve the equation. For instance, a differential equation must

be in the form Zz' = f(t, Z) in order to apply most numerical methods
to solve it. This form isolates the independent variable t, the
dependent variable Z and its derivative, and the derivative

function f. The numerical method is stated in terms of these
entities. The original equation, however, may have quite a
different form. Language processors with facilities to solve
equations must be able to make these transformations between

the equation and the form required by the numerical method.

In Relmath, a system of differential equations is transformed
by the computer to the form z' = f(t, Z) in order to solve it.
Several steps are involved. The individual unknown functions and
array functions must be collected. |If a function appears with a
derivative higher than first order, intermediate variables must
be introduced to make the system first order. This is a
standard reduction; if X has maximal order n, then Un replaces
X(n), UK replaces X(K-1) for K=1...,n, and the equations
U'K=UK+1 are added for K=1, ...,n-1. The functions and inter-
mediate variables are collected to form Z, the dependent
variable vector, and space for each function is allocated in Z.
Finally, we must solve the equations in order to compute the

maximal derivative of each function.

-70-

The last step is the most difficult in its full generality.
In Relmath, it was decided to restrict the system of equations
to be quasi-linear and triangular in the maximal derivatives.
This greatly simplified the program to solve for the derivatives.
The time gained was then used to develop the procedural part of
the language. Due to the prototype nature of the current Relmath
language and because the problems of solving more general
systems seemed to be better understood than those of higher-level
procedural languages, it was felt that effort should be concentrated
on the latter.

We shall present the current method and then later discuss
the problem of changing it to handle other types of systems.
During the syntax phase, names and derivatives which appear
without an argument list are parsed as numeric variables. These
are bound when the equation is recognized. When the SOLVE
statement is executed, the processor scans the lists of variables
in the equation and builds a global list of all the names that are
differentiated. These names are the unknown functions; all other
names refer to their current meanings. The storage for the
function names is initialized by setting some flag bits and saving
the domain of the function. The domain is obtained from the FOR
clause of the SOLVE statement. For each unknown function F,
the maximal order MF of any of its derivatives in the system is

found. For each F an equation is found that can be solved

-71-

for F(MF). This is done by scanning the list of equations for one
that has a unique F such that F(MF) occurs in the equation and F
does not already have an equation. This equation is associated
with F in the global function list, and the list is reordered in the
order in which equations are found for the functions. The process
is repeated until all functions and equations are accounted for.

The method is slightly different for an array function. It
is parsed as an array variable in the syntax phase. During the
process of associating functions and equations, an array function
can have more than one equation. This is necessary since
different equations may apply to different array elements. The
subscripts of the maximal derivatives are ignored; this
requires that all such derivatives in one equation have the same
subscript.

After equations are assigned to the functions, the global
function list is ordered so that no maximal order derivative
depends on a maximal derivative of a function later in the list.
From the declared sizes of the array functions, the number of
ordinary functions in the list, and the maximal derivative orders,
the total amount of storage needed for the unknown function vector
is computed. Each function is assigned a displacement in this
vector. The vector holds F(0),...,F(MF-1) for each function F.
Storage for the vector, its derivative, and that needed by the
procedure to be used is allocated in the unstructured storage area

of REL.

-72-

The unknown function vector is passed to the procedure
as the dependent variable vector Z. When Z' must be computed,
a subroutine of the SOLVE statement processor is called. This
routine copies F(1),...,F(MF-1) from Z to Z' for each function F.
It then uses the global function list and the refresher stacks of
the equations to insert the values of the functions in Z into the
phrase structure of the equations. It replaces each number
variable with a two-element structure containing a value v and
a coefficient ¢c=0. For any number phrase in the equation, its
v and c elements represent cx+v, where x is the function being
solved for in this equation. A structure with v=0 and c=1and the
address of x replaces a numeric variable for the maximal
order derivative x. The arithmetic semantic routines combine
these structures, calculating the new ¢ and v elements as if the
operation were performed on the two linear terms. For example,
the multiplication routine combines (c1,vl) and (c2,v2) to obtain
(clv2+c2v1,vliv2), it requires cl1c2=0. The routine also passes
the x address on. The semantic routine that recognizes an
equation solves for x by x =(v2-v1)/(cl c2) and puts this value at
the address of x in Z'.

For an array function, the array variable for its maximal
order derivative is replaced by a structure that has the address
of the derivative array in Z'; the other derivative variables are

replaced by structures pointing to the arrays in Z. Bits are set

-73-

in each structure to show that the arrays are in core and whether
they are for the maximal order derivative, and a pointer to the
array function's dimensions is also placed in the structures.

The semantic routine that combines an array and a subscript

list to get a number will produce structures similar to those
substituted for numeric variables. That is, the numbers for

the known derivatives will have c¢=0; those for the maximal
derivative will have c=1 v=0, and the address of x pointing to
the appropriate array element. The remaining processing is

the same as for numeric functions

By these means Relmath computes the value of the derivative
vector Z'. To solve the problem using a language which did not
directly support differential equations, such as FORTRAN, the
user would construct Z in much the same way and assign the
functions to displacements in Z. He would then explicitly solve
the equations himself and write a program that computed the
derivative vector. In this program he would refer to the functions
by their displacements rather than their names.

We mentioned that the subscripts of the maximal derivatives
of array functions are ignored during the process of assigning
equations to functions. To handle array functions with full
generality would require a program to compare subscripts to
determine when they are equal, taking into account the fact that
the subscripts may contain indices whose values are generated by

FOR clauses with different ranges. Hence, it must determine

-74-

for which values of these indices, if any, the subscripts are

equal. To do this for arbitrary expressions would require
deductive capabilities. Deductive processes are poorly understood
now, in that they require very large amounts of space and time.
Hence, it is not yet possible to effectively utilize them to solve
this problem.

The problem may be resolvable by restricting the form of
subscripts to, say, constants or | £ ¢, where | is the index of a
FOR clause and c is a constant. But even then the programming
task would be great. Again, it was decided to accept this
restriction and work instead on the procedural language.

We emphasize that the transformation of equations into
a standard form should be done implicitly, as it is in Relmath
We are discussing languages for solving numerical problems,
and the user should not have to do any explicit symbol manipulation.

The restriction on the form of the differential equations
could be removed in Relmath. The processor could be extended
to handle nonlinear and also stiff systems. However, these
extensions would have entailed a large amount of programming.

It would be necessary to recognize and process special cases,
such as linear systems or those in which the maximal derivatives
are explicitly solved for. The general case would require
symbolic differentiation programs to develop the formulas for

the Jacobians needed for nonlinear and stiff systems. These

-75-

programs could be written following the techniques used in
MATHLAB [Eng69; Eng7l] or MACSYMA [Mar71b]. These
are two good languages for explicit symbolic manipulation of
expressions. However, this would be a major extension of the
symbolic processing now done in Relmath. The problem of
recognizing the equality of array subscripts would also be more
severe than at present. It was decided to concentrate on other

parts of the language in this prototype system.

Procedural Languages

In this section we are concerned with linguistic facilities
for writing procedures. In writing a procedure, the user is
describing the method to be used to solve a problem. When
standard facilities such as those discussed in the last section
are used, he need only state the problem and ask for its
solution; the method is built-in.

Previous languages for describing numerical procedures
have been similar to FORTRAN, PL/I, and ALGOL in the
following sense. They have been designed to express any
numerical algorithm, and hence they have provided a low level
of support for a very wide class of algorithms. Furthermore,
they can manipulate scalars, arrays, and functions, but not
equations. While all numerical problems and algorithms can

be stated without explicitly using equations, doing so is less

-76-

natural than using equations. Even NAPSS, which does allow
equations for stating standard problems solved by its built-in
procedures, does not allow a user-written procedure to refer

to equations. Therefore, if a user writes a procedure for solving
differential equations, say, he can not write the equation itself

as input to the procedure. Instead, he must transform it to some
standard form and pass only the required functions and scalars

to the procedure.

One purpose of Relmath was to investigate an alternate
type of language. The Relmath procedural language was
designed to provide a high level of support for a class of algorithms
for solving differential equations. It was also designed to allow
the user-written procedures to solve equations written in the
same form as for the built-in procedure. To accomplish this,
the common parts of the algorithms in the desired class were
identified. These computations were made implicit in the
language, in accordance with the first general design principle
stated in the first section of this chapter. The language was
designed to allow the rest of the algorithms to be expressed in
a natural style. Finally, the procedures can refer to the
derivative function and dependent vector which result from the
transformation of the equations to the form 2zZ'=f(t, Z). Hence,

the algorithms are written in terms of t, f, Z, and Z', which are

-77-

commonly used to describe such algorithms, but they can still
solve equations written in a natural way.

The algorithms to be supported are those based on
Runge-Kutta, predictor-corrector, and hybrid formulas. These
include the methods commonly covered in introductory texts in
numerical analysis and in subroutine libraries such as Caltech's
MODDEQ [Mat70] and IBM's HPCG [IBM68] programs. They
are of interest to students, to users who want to compare these
methods, and to those who prefer one of these methods. For
instance, Hull and Creemer have found high-order Adams-Moulton
formulas to be desirable [Hull63]. This class of methods is too
restricted for the sophisticated user or numerical analyst, but
Relmath was not intended to be for their use.

As mentioned earlier, the Relmath procedural language
was designed as an alternative to general programming languages
Although it is limited to a certain class of methods, it is intended
to provide a high level of support for these methods by incorporating
their common parts implicitly in the language processor. It
should show the level that can be attained and that should be a
goal for future languages that have a broader scope. Examples
of the basic formulas for the Relmath methods are:

Runge-Kutta, fourth order [Lap71,49]

-78-

Predictor-corrector, Adams-Moulton fourth order [Lap71, 180-181]

Hybrid, Kohfield-Thompson fourth-order [Koh67]

T is the absolute local truncation error. denotes

primes applied to and denote similar applications of f

f(t,Z), of course, computes Z'.

-79-

Several similarities among these formulas were noted
and used in designing Relmath. First, they are written in terms
of the independent variable t, the dependent variable Z, the step
size h, and the function f that computes Z'. Second, they compute
Zn+l from Zn and possibly previous values of Z; the repetition
of the formula to generate the total solution is implied. Third,
they are written for single equations, but they are extended to
systems by applying the formulas in parallel to each component
of Z. Fifth, they use temporary variables, which become vectors
in the case of a system. Sixth, any multi-step formula must be
accompanied by some single-step formula to get started.

Other formulas exhibit features not shown in these. Sarafyan's
method uses special Runge-Kutta formulas to compute Zn+1 and
Zn+2 in one step [Lap71l, 72-73]. Some methods iterate a
corrector until convergence is achieved or for some maximum
number of times. IBM's HPCG algorithm uses a Runge-Kutta
scheme to start and then refines the values of Z1, Z2, and Z3
by interpolation formulas before applying a multi-step method
[IBM68, 337-343].

The hardest part of programming these algorithms is controlling
the step size. Practical methods do not simply repeat the formulas
with a fixed step size. They estimate the truncation error and
adjust the step size so that the error is kept below some prescribed

l[imit. Predictor-corrector and some Runge-Kutta schemes,

-80-

such as Sarafyan's, compute the truncation error estimate directly.
Most Runge-Kutta schemes, however, do not. It is necessary to
apply the scheme to compute Zn+1 and then again to get Zn+2 from
Zn+1. The scheme is applied a third time with a doubled step

size to compute Zn+2 again from Zn. The difference between

the two values of Zn+2 gives an error estimate.

When the step size is changed in a multi-step scheme, the
required previous values of Z and Z' must be made available at
the values of t implied by the new h. One way of doing this is to
start over with the Runge-Kutta scheme, just as at the beginning.
Another is to make use of the known previous values and compute
the others by interpolation. For example, suppose Zni Zn2
and Zn-3 are needed. |If his doubled and Zn-4, Zn-5, and Zn-6.
have also been saved, then the three values needed are just
Zn-2, Zn-4, and Zn-6. These become Zn-1, ZA and Z8
for the new h; h can not be doubled again for three steps. If h
is halved, then Zn-1, becomes Zn-2. The new values of Zf
and Z8 are computed by interpolation. This method requires

that h only be halved or doubled, but that is commonly done in

any case.
The step size can not be changed arbitrarily. It should not
be allowed to get too small. It also can not be increased at any

time. The SOLVE processor requires that the solution values

be obtained at intervals of the original step size, which is the

-81-

increment of the FOR range. Hence, the step size can not be
increased when that action would cause one of the required solution
values to be skipped. Again, this is easier to control if the step
size is only halved or doubled.

The language was designed with the common characteristics
and the differences of these algorithms in mind. The user can
declare names for the independent and dependent variables, the
derivative function, the step size and step number, and the
requested precision. Hence, he can write the procedure in terms
that are natural to the specification of these algorithms. Only the
step from Zn to Zn+1 or possibly further, need be specified;
the system will automatically repeat the procedure. Array
arithmetic with component-by-component operators was implemented
so that the formulas for the basic methods could be written normally.
Segments were introduced to accommodate procedures with
multi-step and single-step parts; the system analyzes the segments
to determine the values of Z and Z' that need to be saved and how
many values must be computed before the multi-step part can be
used.

The APPLY statement has two important functions. First,
it permits a hierarchical structure in a procedure. Subprocedures
can be used to isolate parts of the methods and to share them
among procedures. For instance, the basic formulas that define

a Runge-Kutta scheme can be put in a subprocedure and then used

-82-

by several other procedures. Second, it allows a subprocedure

to be called with varying conditions. The step size and step number
can be changed so that a procedure written to compute Zn+1 from

Zn can be used to compute Zdwmh or from Zn+1, for

example. This is required to estimate the error in some methods.

Other facilities were also included to compute error estimates
and change the step size. The MAX operator with one argument
can obtain the maximum error in a vector. An assignment to
the step size halts the procedure and causes it to restart with the
single-step segment. The system does all the checking needed to
insure that the solution is obtained at the required values of the
independent variable, since these checks are common to all
these algorithms. The IF. .. THEN. ..ELSE and DO. .. END
constructions permit complex decisions in the segments; these
were needed to support methods that restart by interpolation, such
as STANINT.

The UNTIL clause on a DO statement was included to permit
iteration until a convergence criterion was satisfied. The USE
and APPLY statements allow a fixed step size so that the effect
of executing a procedure without adjusting the step size for
error control can be easily studied.

The Relmath procedural language shows the level of support
that can be attained for a class of numerical methods. While

this class is limited, the language provides a goal for other

-83-

languages. We would like to develop similarly high-level languages
with broader scopes or for other types of problems, such as

partial differential equations.

Declarations and Names

As a convenience to the user, it is desirable not to require
declarations of the names. At the same time, it is necessary
to be able to determine the attributes of a name, and in some
cases declarations may be needed to do this. Thus, some balance
is needed here.

In some languages, a lack of declarations can require consi-
derably more processing time. For instance, consider the
expression "A+B". In NAPSS, A and B may each be either a
scalar or an array, real or complex, with long or short precision.
The NAPSS interpretive routine for addition must distinguish all
these cases and perform the proper operation. In general, if
a language does not have declarations and an operator can apply to
operands with many different attributes, then the exact operation
to be performed can not be determined at the time an expression
is parsed. In some cases, a global analysis of the program
can determine the attributes that the operands will have, and the
exact operation can then be determined. But in other cases this
is not possible, and the operation can be determined only by examining
the operands' attributes when the operation is executed. Usually,

it is easier to implement a language by always deferring this

-84-

determination until execution, since then a global analysis is not
needed.

In Relmath this problem arises only in differential equations,
where a number may be either a single value or a coefficient-
value pair. The arithmetic operators must determine whether
a coefficient is present and act accordingly. This single test
is easy and less complicated than the tests needed in a language
like NAPSS with a variety of types of numbers. Furthermore, the
non-procedural part of the language is used by less experienced
people and should be convenient. Not requiring declarations,
except for arrays and array functions, simplifies this part of the
language. Arrays must be declared so that their dimensions will
be known.

In the procedural part of Relmath, the names for the independent
and dependent variables, the derivative function, the step size
and step number, and the precision must be declared. This
allows the system to associate these names with the corresponding
entities. The declarations of the step size and precision are
necessary to distinguish them from ordinary scalars; the
derivative function must be distinguished from other functions.
The use of the other names might be determinable from a global
analysis of the procedure, but that did not seem worthwhile.

These six names are natural ones to declare, they would normally
be described in a textbook or in comments in a program, and they

can be used in several procedures without redeclaration.

-85-

Arrays with a dimension of "<*>" are used in procedures
as temporary vectors. These are declared so that they are
distinguishable from scalars. At some future time the language
processor might be modified so that this distinction is made by a
global analysis, but not now. Again, these names can be used
in several procedures.

We will briefly describe the method of handling undeclared
names in Relmath since similar mechanisms could be used in
other languages. The names are found in a prescan of the sentence
before parsing it. Initially, they are given all possible parts of
speech, but those not compatible with their contexts will drop
out of the parse. Semantically, all data types have a common
header. This header contains flag bits to tell what type the name
actually is. There is also a value field, whose contents depend
on the actual data type. For example, it contains the value of a

scalar or a pointer to an array.

Notation for Operators
The notation for the individual operators of the language
should be as close as possible to normal practice. This will
make the language easier to use. In designing this notation, we
must take note of some idiosyncracies in mathematical usage.
For example, in Relmath the expression "1<X<2" is true if

X is between 1and 2. In PL/I, however, the expression is always

-86-

true. PL/I was designed as a general programming language.
Its syntax for expressions gives a consistent means of
manipulating a variety of data types, but it does not give sufficient
attention to the normal meanings of its symbols. Relmath deals
with a smaller number of data types in a more natural manner.
Other examples are the vertical bar for absolute value and the MOD
operator for modulus.
The notation for the operators like SUM with a FOR clause
is not consistent. For instance, we can write
SUM FOR X=1, ...,10 (X*X)
but we also write
FOR ANY X=1...,10 (F(X)<1)
instead of ANY FOR X=1,...,10 (F(X)<1). In other words, the
SUM, ANY, FIRST, and similar operators do not all fit one form
with only the operator named changed. This was done because the
small changes in the forms made the different operators read
better.
The temporary function notation in Relmath, however, was
a compromise between several considerations. To discuss it,
we will need an example. Consider a function | defined by
I(F) = 11F FOR ALL X=0,.1,...,1(F(X)>0), ELSE 0
| expects a unary function as its argument. We can use | as in
G(T) = T*T

PRINT I(G)

-87-

but we would also like to be able to write

PRINT I(T*T)
In this case it is clear that "T*T" should be interpreted as a
function of T.

In several mathematical notations expressions are interpreted
as functions by taking one or more of their variables as parameters
of the function. In some cases, the parameter variables are
identified in the notation; in others, they are identified by a
convention on the use of names. For example, in " [at2dt,” the
"dt" indicates that "at2" is a function of t, not a. It has the same
use in " ." In writing integral transforms, there
is often a convention that some letter, such as s, is the parameter
variable in the expression to which the transform is applied.

In Relmath the parameter variables are always shown explicitly.
In the example above, we would write

PRINT I(FUNCTION (T): T*T)
In this case, the phrase "FUNCTION(T): " seems unnecessary,
but that is only because T is the only name in the argument expres-
sion. If other names were present, we would either have to
designate T as the parameter name or have some convention as
to which names could be parameters.

The method of allowing the user to establish a convention was

rejected because it would be cumbersome if temporary functions

-88-

were nested, or if a name might sometimes be a parameter
variable and sometimes not. In some cases, the user might not
have a clear convention to follow. The present notation is
unambiguous, although a bit lengthy. It is also practically identical
to that used in the lambda calculus and semantically the same as
the "dt" notation in integrals and derivatives.

In ALGOL 60 another method was used, the "call by

name" [Naur63, 12]. There we could define | by

This may be called by I(sin(x), x). The argument x replaces t,
and sin(x) replaces f. Hence, the for clause causes the value
of f to change as t is stepped. This hidden dependence of one
parameter on another is not desirable in a language for relatively
unsophisticated users, although it is a powerful device for the

sophisticated programmer.

Input and Output Formats
Relmath receives its input as a linear character string.
This in itself imposes some modifications of normal mathematical
notation, which is two-dimensional. Thus, exponents and subscripts
must be written as part of the line with special operators to

distinguish them.

-89-

Some work has been done by others to accept hand-drawn
two-dimensional input [Bern69; Black 69; Mar71la; Will72].
However, this work has concentrated on the problems of recognizing
the input and providing similar, two-dimensional output. These
languages do not have powerful statements to solve standard
problems. It would be desirable to combine this type of input
with a more powerful language. |If suitable hardware were available,
we would attempt this with Relmath.

In designing the output statements for Relmath, we wanted
simple statements that people who were not experienced
programmers would find easy to use. Thus, we provided an
unformatted print statement and a restricted type of formatted
statement. The format specification is by means of a picture
of the output line rather than a series of format items describing
each field. This type of specification is more restrictive than
FORTRAN'S, but also easier. It is based on that used in JOSS
[Bry67].

The plot statements are also simple. Plots can be obtained
with no specifications from the user, or simple statements can
be used to specify the titles and ranges of the axes. The amount
of control given to the user is much less than that available in
a normal FORTRAN plotting package. However, we wanted a
simple system with sufficient control for most users rather than
a complicated system that would force the user to make many

choices.

-90-

Generally, for numerical engineering languages of the type
we are considering it is better to have simple output statements
with a minimum of choices. These are sufficient for most
purposes, and they keep the user from making elaborate output

formats.

Remaining Problems

Based on our experience with Relmath, we can identify
four remaining problem areas for languages for differential
equations. Indeed, these comments apply to languages for other
types of numerical engineering languages as well, although
there may be some additional problems in some specific fields.
The problem areas are:
1. The integration of two-dimensional, hand-drawn input with
powerful languages for solving standard problems.
2. Greater use of implicit symbolic manipulation to derive
expressions that are needed in numerical problems, as in the
computation of a Jacobian to solve nonlinear systems or stiff
differential equations.
3. The difficulties of processing array subscripts in a system of
equations.
4. The development of procedural languages that are high-level,
as Relmath is, but with a broader scope or for a different type

of problem.

-91-

Another type of change for Relmath would be to extend it to
solve other kinds of standard problems, such as linear systems
or nonlinear equations. Linguistically, this would not present
great problems since a common mathematical notation can be
used. Semantically, it may be necessary to modify the basic
representation of arrays and tabular functions. Some such
modifications are discussed in the chapter on paging. However,
only the routines that deal with these basic representations need
be changed; the rest of the Relmath programs would still work.
These extensions could be made, but they are not necessary.

The language is useful as it now is.

-92-

IV. NUMERICAL METHODS

In this chapter we will discuss very briefly some considerations
involved in selecting numerical methods to solve the standard
problems supported by a numerical engineering language. Most
of these points have been discussed further by Rice [Rice68],
and this chapter is largely based on his statements.

It is of primary importance that the methods be reliable. Of
course, they should be properly implemented, without programming
errors. But they should also be capable of solving the problem,
even in numerically complicated cases. In many cases this
requires augmenting classical methods of numerical analysis with
logic to handle the complications. For example, several numerical
techniques exist to converge to a root of a nonlinear equation
given an initial guess. However, a reliable program to solve a
nonlinear equation should also have methods of finding good initial
guesses, detecting discontinuities and asymptotes, handling
multiple roots, and other numerical difficulties. These problems
are compounded when a system of nonlinear equations is to be
solved.

Numerical methods should also be efficient. To some extent,
this conflicts with the criterion of reliability. A reliable and
broadly applicable program may have to test for many special

cases. These tests could be eliminated if the program were

-93-

restricted to simpler problems, and hence it would be faster.
However, for numerically unsophisticated users reliability is a
more important goal. Such users may not realize that a problem
presents special difficulties, or they may not know how to overcome
them.

It would be desirable for the program to be able to quickly
recognize simple cases so that simple and fast methods can be
applied to them. However, this is not always easy. For instance,
a function may appear to be smooth at a large and small step size,
but not at an intermediate one. For differential equations, the
program should distinguish stiff systems from others. To help
the program the user should be able to give options specifying the
type of equations involved, the range in which roots should be
found, the number of solutions wanted, and other information
which would be helpful to the program. However, this information
should not be required.

A third consideration is the difficulty of implementing a
method. When special cases exist, they can frequently be refined
almost indefinitely. Some refinements will yield useful special
cases, but at some point the additional effort required to implement
further special cases will not be sufficiently rewarding. Other
cases may simply be too difficult to process at all without greatly
enlarging the scope of the system. Relmath should process

stiff equations, but the effort required to do so did not seem

-94-

justified in a prototype system. Still, for non-stiff systems the
standard procedure of Relmath is superior to the MODDEQ
subroutine on Caltech’'s FORTRAN library [Mat70] and the HPCG
subroutine in IBM's Scientific Subroutine Package [IBM 68, 337-343],
both also restricted to non-stiff systems. MODDEQ does not
control the truncation error while using a Runge-Kutta scheme to
start the computation, and so it does not solve systems such as
the ORBIT example of Figure 2-6 which require a small step

size at the start. HPCG contains a programming error,

and it does not return the solution values at the proper values

of the independent variable. Its numerical method is also
inferior, since it did not solve the ORBIT problem as accurately
as Relmath did.

New numerical methods are needed in some fields which
are poorly understood now. Partial differential equations are
especially difficult to treat with any great generality. Even in
better-known fields, we need methods that can decide which
traditional numerical technique is best for a particular problem.
This requires blending numerical analysis with a limited form of

artificial intelligence.

-95-

V. PAGING

Many computer systems today use paging. Some, like REL,
have software paging. Others utilize machines that have hardware
virtual memory. In either case the paged data are referenced with
virtual memory addresses. Some mechanism must recognize
whether a virtual address is in core, load its page if not, and
translate the address to a real address. In a software system
this is done by calling some subroutine. In a hardware system,
the entire program and data are in virtual memory. The hardware
translates every address to a real address and invokes a
subroutine in the operating system if the page must be loaded.

A hardware system has the advantage that the translation
from a virtual to a real address is fast when the page is in core.

In a software system this translation is done by a subroutine,

which takes considerably more time. Consequently, this translation
should not be done more than necessary. A program must also
keep track of both real and virtual addresses and their corres-
pondence. These considerations complicate programs using
software paging. Finally, in some cases it is desirable to have
contiguous virtual pages addressable as a contiguous area in

core. This is easy in a hardware system, but in a software

system it is difficult since other pages may have to be moved.

-96-

Hardware systems can run any program without need of
modification, whereas programs for a software paging system must
be especially written for it. In some ways this is an advantage,
but it does not mean that any program should be run on a hardware
paging system without modification. We will see that programs
written without regard to the paging environment can be very
inefficient. Since hardware systems impose paging on all programs
the language designer should write his programs to take account
of the paging.

These considerations will become increasingly important as
more machines with virtual memory hardware are installed. Such
machines are especially good for interactive time-shared systems.
Numerical engineering languages are best when implemented in an
interactive environment, and so attention to the paging properties
of the language processor's routines is important and will become

more so.

The use of paging in Relmath

Relmath uses REL's virtual memory to store all its permanent
data. Scalars are stored simply as numbers. Procedures and
functions defined by formulas are stored by copying their list
structure representations to pages using a REL utility. When

needed, they are copied back to the list area by another utility.

-97-

An array is stored on a page. The elements are ordered
by varying the last subscript most rapidly, so the rows of a matrix
are contiguous. The array's dimensions are stored on the
same page, if possible, or on another. Restricting an array to a
single page avoids the problems of storing larger arrays, which
will be discussed later. This restriction is not too serious in
a prototype intended mainly for use with differential equations.
However, it should be removed in an operational system, especially
if array operators are added.

Functions defined by a table and array functions are similarly
structured. Both have a header followed by the values in the range
of the function. For an array function, these values are arrays;
each array must be on a single page. The header includes the
initial value of the domain variable, its increment, and the
number of the final value, counting from zero. It also gives the
order of the highest derivative defined in the table. For each
value of the domain variable, the derivatives are stored contiguously
from order zero to the highest. The pages on which the values
are stored need not be contiguous in the virtual memory. Each
page is linked to the previous and next ones. The header points
to the last page and also to the last page referenced. These
pointers include the domain value and derivative order of the
first value on the pages. Consequently, a search for a particular
function value can proceed forward or backward from the beginning

or end of the page list or from the last page referenced.

-98-

Tabular functions can only be defined now by solving a
differential system. The temporary data needed by the solve pro-
cedure are stored in the unstructured portion of REL'S memory,
which is not paged. The function values are copied to their pages
as they are computed. Hence, the pages are accessed sequentially.
When a function is printed or plotted, its values are usually
accessed sequentially also.

Two changes could be made in this scheme. One would be
to allocate the pages for a function contiguously. Then the exact
virtual address of any function value could be computed from the
header information. No page links or pointers would be needed,
and any function value could be found in two page accesses. This
method could be implemented, but it would require a manager of
the unused pages, essentially a storage allocator for the virtual
memory.

Another change would be to group all the functions in a
differential system into a family. When a system is solved,
the values of all functions in the family would be stored together
for each domain value. The function header would point to the
family where the function is currently defined and give its offset
in the family. This modification may be better while the system
was being solved. Let F be the number of functions in the system,
and assume they all have the same maximal order and storage

size for each value. Then they each take N pages with n domain

-99-

values per page, a total of M=nN domain values. If F pages will
fit in core at once, there is no problem. However, if this is not
true, then one page from each function must be loaded from the
disk for each domain value. This is because the function values
are moved to the functions in the same order each time, and the
later functions will displace the earlier ones. Since each page

is written to the disk before being replaced, 2FnN disk operations
are required. The new scheme requires only about 2FN operations,
since each page will be needed only once. (The 2 is needed since
the page will be read in for initialization and later written back.)
Since n is now about 60 for a function with one derivative, this

is quite a difference.

Unfortunately, this modification is worse than the current
method when a function is printed or plotted. The current method
requires N page loads to display one function, while the modified
method would require FN. However, if several functions, say s,
in one family are displayed in one statement, the modified method
would still need only FN page loads. The current method will
need sN, and would need snN if s> K, where K is the number of
pages that can be in core at once. For the batch system, K
could be quite large, say about 100. Hence, this modification
would not be desirable. For most systems there would be no

improvement while solving the system and a degradation while

- 100-

displaying a function. But if K were smaller, say about 20, the
new method would be better in many cases.

The storage representation for functions could be extended to
allow functions whose domains were not evenly spaced. A flag
in the header would designate such a function, and the domain value
would be stored with each functicn value. A search would be
needed to find a function value. This change would only require
changing the subroutines that set and retrieve function values. Of

course, some means of defining such functions would have to

be added to the language.

Need to control paging

The REL system has a large unstructured area that is used
for temporary storage by procedures. It also has a list area.
Neither of these is paged, A software paging system can be set
up by its implementer so that not all of memory is paged, and
frequently used data and list structures can be kept in unpaged
memory. A hardware system pages everything. Unless some
means is provided to lock pages in core, the number of page faults
could be very high, particularly while processing list structures.

This raises an important point. In any paging environment,
the programmer should design his algorithms to take account of
the paging. The system should allow his programs to find out the
number of pages available and to control which page is replaced

when that is necessary to load another page. Unfortunately,

-101-

manufacturers of hardware paging machines frequently ignore
these needs. They claim that programs can be run without special
algorithms, and their operating systems often do not provide the
information and control needed to optimally control the paging.
These claims are true, but programs may be very inefficient
without special algorithms.

These considerations are well illustrated in the processing
of matrices. McKellar and Coffman [McKel69] have analyzed
conventional algorithms for multiplying and inverting matrices
and also algorithms written for a paging environment. They
have determined the number of page faults for different algorithms,
that is, the number of times that a page that is not in core is
referenced. Each page fault requires a disk read to load the
page and possibly a write to move a replaced page to the disk.
Since disk operations are several thousand times longer than core
access times, alarge number of page faults can greatly increase
the elapsed time of a program. It also increases the load on the
disk. Both factors cause greater interference with other programs
in a multiprogramming system.

To examine this effect, we consider one of McKellar and
Coffman's algorithms for matrix multiplication. It stores successive
rows on a page, with each on just one page. This row storage

scheme requires P = |—n/|- p/n- 1 pages, where the matrix is

-102-

n x n and each page contains p numbers. (L xJ is the greatest
integer < x; X7 is the smallest integer =2 x) Let m=Lp/nd,
the number of rows per page. Then the algorithm to form

C=AB is

In this algorithm one page of C is loaded and zeroed,
and the corresponding page of A is loaded. The pages of B
are loaded. Each is processed with the page of A to form the
matrix product in the page of C. When this is done for all pages
of B, the next pages of A and C are loaded, and the process
repeated.

This algorithm requires N3 =P(P+2) page faults if K, the
number of available page frames, is 3. This assumes that the
page replacement algorithm is optimal; in particular, when a
new page of B is loaded, it should replace the previous page
of B.

When K>3, the algorithm can be improved. Let
K=2I+1<P +2. Then the improved algorithm would partition A

and C into blocks of | pages each. A block of A and of C is loaded,

-103 -

and then each page of B is sequentially processed with the A
block to generate the C block. This modification requires
NK=P P /lq +2P page faults if each page of B replaces the
previous page of B and not one of A or C.
A conventional algorithm would multiply a row of A by
a column of B for each element of C. Hence, if K=3, every page
of B is loaded for each element of C. Thus, there are Q3=(n2+2)P
page faults. If 3<K<P+2, we can lock K-3 pages of B in core.
This gives QK=n2(P-K+3)+K-3+2P faults. If K=P+2, then all
pages of B can be locked, and QP+2=3P, the minimum possible.
The improvement from using the modified algorithm can be
guite spectacular. |If K=3, n=64, and p=1024, then P=4 and
Q3=16,392, whereas N3=24! Since 12 faults are required just
to reference each page of each matrix once, this shows that careful
attention to the paging environment can result in great economies.
Any paging scheme must have a method of replacing some
page with a needed one when no more empty page slots are
available in core. McKellar and Coffman assumed that this
page replacement algorithm is optimal. It should replace each
page of B with the next one. When the algorithm is not optimal,
the number of page faults is increased.
For example, a common replacement algorithm, called

a LRU ("least recently used") algorithm, retains the K-1 pages

-104 -

that have been most recently used and replaces the oldest page.
Let K=21+1. Denote the pages of A by Al,...,AP, and similarly
for B and C. After the first | pages of A and C have been
processed with B1, the list of pages ordered from oldest to most
recently usedis A1, C1, A2, C2, ..., Al-1, CI-1, Al,B1, CI.
The process then attempts to repeat with B2 replacing B1 But
the LRU algorithm will replace C1 by B2 instead. (We assume
that A[i, k] is referenced first in forming A[i,k] B[k ,j].)
Clwill then be reloaded, replacing A2. The program will
continue, replacing each A and C page just before it is needed
until Al replaces B1. CI will not be reloaded. Hence,

2(I-1)(P- 1)+21+P page faults occur for each block of A and C
pages, compared with 21+P faults when each Bi replaces Bl

The total number of faults is LK=NK+2(P-1)(P- P /l7)=N3
+(P-2)(P- rP/l4) Hence, LK > NK if P>1and I>1. Furthermore,
LK>N3 if P>2 and I>1, and LK increases as K (and hence 1)
increases.

This example shows that if the page replacement algorithm
is not optimal, an attempt to improve the multiplication algorithm
by better utilizing the available page slots may actually increase
the number of faults. Consequently, the program should be
able to control the replacement of pages. However, if such
control is not available, the programmer can change the algorithm.

If the same method is used with K=21+2, instead of K=21+1,

-105-

then the extra page slot will receive B2 when it is first loaded.
The A and C pages will not be replaced. B3 will replace B1, B4
will replace B2, and so on. Hence, the number of page faults
will equal NK-1. However, an optimal algorithm could use

the extra slot by locking B1in core. This reduces the number
of page faults by P /Iq -1.

G. Ingargiola has pointed out that even with an LRU scheme
the programmer can assure that the page replacement is optimal.
He can do this by referencing each page that he wants to keep
in core just before referencing some element on a new page.
These extra references to the pages in core are simple, just
reading and storing back a number, and they order the pages
so that page that should be replaced will be the oldest. The LRU
scheme will then replace it. For example, in the multiplication
algorithm the program should reference elements on A1, Cl1, A2,
C2,...,Al, and CI just before referencing B2. B2 will then replace
B1, as it should. Similar action is taken before each reference to
a new page of B.

By this method the program can be modified to effectively
give it control of the paging even though the system does not
explicitly do so. The method relies on the programmer's exact
knowledge of the system's page replacement algorithm.

We have assumed that the program can determine K. |If

not, then it must assume K=3, which may result in a larger

-106-

number of faults than is necessary. The determination of K
must be accurate; we have just seen that, in a LRU scheme, if
a program assumes K=2I +2 when actually K=21+1, then the
number of faults is considerably increased. Hence, it is not
sufficient to have high priority slots whose pages will probably
be in core but may be replaced.

We have seen that the number of page faults generated by
a program can be much higher than necessary if the program is
not written with regard to the paging environment. Hence, the
language implementer should write his standard algorithms with
attention to the paging. The system should give him the capability
to control the paging, and he should exercise this capability.
But even if the system does not do this, the implementer can
still make significant improvements by taking account of the
characteristics of the system's paging method, although the
number of faults may be higher than is strictly necessary.

We emphasize that this discussion applies to the language
implementer. The engineer or scientist who uses the language
should not be able to control the paging directly. Relmath,
for instance, does not allow the user to directly refer to pages
as entities at all. Languages with procedural languages more
like FORTRAN would allow the user to access array elements.
He may then want to write his procedures so as to take account

of the page boundaries but he should not be able to control the

-107-

paging. This is to protect the system and the user himself, who
is not expected to be a skilled systems programmer, from errors
and deadlocks. In general, we would not expect the user to even
consider the page boundaries in writing procedures, even though

this will cause inefficiencies.

-108-

VI. COMPILING

Any language processor does two things with an input
sentence: it parses the sentence and executes it. The parse
extracts all the information conveyed by the syntax alone. It
tells what semantic transformations are to be applied and how
their inputs and outputs are connected. During the execution
phase, these transformations must be carried out.

One method of doing this is to code the parse into some
structure which is then interpreted. For example, in REL the
parse tree itself is interpreted. In other systems, a linear
string is produced from the parse and is then interpreted.

In any case, the coded structure must tell what transformations
are to be done and what their inputs are. For each transformation
there is a interpreter routine that performs it. This routine

must handle all the operand types that all allowed by the syntax for
this transformation.

Another method is to compile machine code and then execute
it. Generally, this code will be executed faster than the
corresponding interpretive code, but it also will take longer to
produce the compiled code from the parse. However, the actual
times depend strongly on the complexity of the compiler and the
characteristics of the language.

As an example, consider a language consisting only of

arithmetic expressions and statements that assign values to

-109-

scalars. All numbers are of one type, say single-precision
floating point. It is easy to compile code for this language.

The temporary storage for the parts of an expression could

be put in a stack whose current top is addressed by a register.
All operands and results are in the stack. The machine code for
any transformation is then a fixed bit string. This code could
be produced about as quickly as the code for a post-fix Polish
interpreter. However, the machine code would execute only
slightly faster than the interpreter, and it would take considerably
more space. |If the code string were being stored for execution
later, it would take much longer to move the compiled string
than an interpretive string.

A more sophisticated compiler could produce better code
which would be significantly faster and shorter. Temporary
results could be kept in registers when possible and moved to
fixed storage locations when not. Operations could be re-ordered
or changed to produce equivalent but faster code. On a global
basis, common subexpressions could be recognized and computed
only once. |If the language were augmented to include loops,
registers could be assigned to the most frequently used variables
and results, and constant expressions could be moved out of
loops. |If arrays were included, subscript calculations could be

optimized in loops. Of course, these optimizations are done in

-110-

some commercial compilers for general programming languages,
such as IBM's FORTRAN IV H-level compiler [IBM70],

Two types of optimization are done. First, unnecessary
calculations may be eliminated, as when constant expressions
are moved out of loops. Second, the mechanics of passing control
to the transformations and passing intermediate results along
are optimized. The simple transformations, such as addition, are
not called but are built into the code. The results are passed in
registers or fixed storage locations. In the case of array
subscripts within loops, the entire process of calculating the
subscript and then the element's address may be collapsed into
a single instruction to bump a pointer to the element.

A complex optimizing compiler can produce a program
that will take much less time to execute than a program produced
by a simple compiler. The program will also be shorter.
However, the complex compiler will take longer to produce its
program than the simple compiler would. Hence, full optimization
should be confined to calculations that will be done many times.
For example, a Relmath procedure will be executed ten to a
hundred times or more while solving a system of differential
equations, and each time each assignment statement is executed
once for each component in the dependent vector. Consequently,

full optimization is justified for these procedures.

-111-

The amount of optimization that can be obtained with a
given level of analysis depends on the language. In NAPSS,
variable names can be scalars or arrays, real or complex, and
of long or short precision. Names with any combination of
attributes can be combined by the arithmetic operators.
Consequently, the parse of an arithmetic expression cannot
determine the attributes of the names from the syntax alone.
Declarations could resolve the attributes, but declarations
are not required. Hence, the semantic transformations for these
operators must determine the attributes of their operands
dynamically. Since these transformations are complex, a simple
compiler would generate calls to fixed subroutines.

For the language considered earlier with one data type, the
code could be improved by local optimization. However, for
NAPSS very little improvement can result from such local
analysis since most of the execution time will still be spent
in the subroutines. A global flow analysis is needed to determine,
as much as possible, the data attributes that a name will have at
each point in a procedure. This information can then be used
to eliminate the subroutine calls when the operands are simple,
such as two real numbers.

Thus, for alanguage with complex semantic transformations,
local optimization is not very effective. Global analysis may be
very effective and may permit more local optimizing to be done,

but it is also more expensive in the compile stage.

-112-

Compilation, particularly if sophisticated optimization is
used, can greatly improve the speed of a calculation. However,
sophisticated compilers are very difficult to produce. This
production expense prohibits their development for many special
languages.

In Relmath we can avoid this development expense. Since
the procedures use only one type of number and arrays are
declared, it is not necessary to do any global analysis to determine
the attributes of the names. We can translate the statements of
the Relmath procedure to FORTRAN and then have this FORTRAN
program compiled. Normal FORTRAN arithmetic operators
can be used, so the compiler can optimize the calculations. In
this way we can obtain the advantages of a sophisticated compiler
without incurring a great development cost.

Briefly, the semantic routines in Relmath include code
generators as well as the interpretive routines. During compilation,
the code generators are executed instead of the interpretive
routines. Each routine returns the name of the FORTRAN
variable that holds its value as its output. Hence, another routine
can generate code that uses the output of this routine. This
method works well and produces code that executes as fast as
a hand-coded FORTRAN program. The following table shows

the times in seconds to solve the three examples given in Chapter 2

-113-

using the hand-coded standard program and the compiled version of

the STAN procedure.

Table 6-1-- Comparison of hand-coded and compiled
procedures

Standard STAN
CR (Chemical Reaction) 1.4 1.3
GA (Gas Absorber) 10.6 10.8
ORBIT 21.0 21.2

The compiled procedures can also be run in a normal
FORTRAN environment. Comparisons on the same differential
systems between STAN and subroutines in the Caltech library
and in IBM's Scientific Subroutine Package show that STAN runs as
fast as the others on the CR and GA systems. The library
routines were not able to solve the ORBIT system.

We have seen that compilation is desirable for calculations
that will be done repeatedly, and that more optimization should
be done for calculations that will be performed very frequently.

We have also seen that languages with complex semantic transfor-
mations gain little from compiling these transformations unless
a global analysis is done. However, optimizers that do such global
analysis are expensive to write. Relmath solves these problems
by having only simple transformations to be compiled and by using

the FORTRAN optimizing compiler to do the actual compiling to

-114-

machine code. The Relmath language allows this translation to
FORTRAN to be done without extensive analysis of the procedures,
and hence it permits us to use a sophisticated optimizing compiler
that has already been developed.

This example shows the value of designing the language to
make effective compiling easier. But we also need to develop
better compiling techniques so that global analysis and optimization

will be easier to do.

-115-

VIil. SUPPORT FOR LANGUAGE IMPLEMENTATION

Relmath successfully meets the goals of a numerical
engineering language within its application area. It is a natural
and high-level language for stating ordinary differential equations
to be solved and also for stating certain algorithms to compute the
solutions. It is effective in reducing the effort needed to solve
such equations and thereby helps remove a major block to the
greater utilization of computers by scientists and engineers.

However, a great amount of effort was needed to achieve this
result. Other numerical engineering languages have also required
considerable effort to implement. Reviewing this experience with
Relmath has led to the recommendation of a program to develop a
more supportive environment for implementing such languages.
This environment would significantly reduce the effort and expense
of producing these languages. It includes a broad procedural
language which can be specialized and extended to specific
classes of algorithms. This chapter presents this program.

One of the goals of Thompson and his colleagues in producing
REL has been to provide support for a wide class of applications
languages, including some that are not numerical as well as some
that are. The facilities of REL - a parser, a paging system, a list
manager, and an interpreter - can be adapted to a specific language
by putting in the proper syntax and semantic routines. These

facilities help in the development of languages.

-116-

However, there is one major difficulty in using REL currently.
The semantic routines must be written in the assembler language,
since no current higher-level programming language provides
appropriate interfaces to REL's subroutines and data structures.
FORTRAN programs can be used to do purely numerical calcula-
tions, but these are a small part of a language. Most of Relmath's
code does symbolic manipulations and processing of data structures
that are not efficiently represented in FORTRAN.

Peter Szolovits is currently designing and implementing
a language writer's language for REL. This language will be used
to write other REL languages. It allows the implementer to write
the syntax of his language. He can also write the code for the
semantic routines in a programming language roughly similar
to PL/I. However, this language includes data types such as list

elements and pages that are peculiar to REL. It also generates

code with REL's calling conventions. Thus, it has implicit
knowledge of the REL environment and specifically supports

writing REL languages.

REL currently is available to only a few people. We need
a system that is generally available with the same function as REL -
to provide support to implementers of applications languages.
This system would include a programming language that specifically
supports writing the application language routines to run in the

system.

-117-

Using this system, we can then implement a basic numerical
language. This language will not support any specific applications
or have any operators to solve standard problems. It will allow
writing subroutines in a procedural language similar to FORTRAN
or PL/I. It will have the usual data types, such as scalars, functions,
and arrays, and also array functions. Tabular functions will be
manipulable as functions rather than as arrays, and it will be
possible to set a function's value at a point. Iteration is a common
technigue that needs more support than that provided by a DO
statement; for instance, there should be a notation for the
previous and next values of a variable.

Ths most important difference from current languages is that
equations will be directly representable and will be rewritable in
some standard forms, just as Relmath rewrites differential
equations in the form z'=f(t, z). A numerical algorithm for solving
equations generally assumes that they have been stated in some
form so that the significant entities are isolated. The algorithm is
stated in terms of these significant scalars, functions, or whatever.
A procedure to implement this algorithm should be able to have
the input equations rewritten in this standard form.

Some parts of the rewriting operator in Relmath are needed in
other types of problems. For instance, systems of equations often
have many names for the unknowns; these must be collected into

a single unknown vector to fit the form of numerical algorithms.

-118-

It is often necessary to have the equations in a form like z'=f(t , 2)

which is solved for some variable, or in a form like

where the coefficients of certain

variables are isolated. These rearrangements are common to
many problems. Others are more specialized. In a differential
equation, higher-order derivatives are replaced by new variables
to reduce the equation to a first-order system. This operation

is particular to rewriting differential equations.

Thus, we expect the primitive rewriting operator to have
several parts in its implementation. It will be able to collect
several names into a vector when processing a system, to rearrange
equations in order to match certain forms, and to establish a
correspondence between certain names in the forms and expressions
in the equations. It may also be able to perform complex calcula-
tions itself, such as solving a nonlinear system to match a linear
form, but such calculations must be controllable. Finally, it will
be able to do some specialized transformations for particular
types of equations, such as reducing differential equations to first
order.

The operator will be invoked in a procedure by some syntax
such as "REWRITE EQ IN FORM Z' = F(T, Z)." Additional clauses
could control optional transformations that are not always applied.

If the operator could not fit the equations to the form, this

-119-

procedure would not be used to solve the equations and another
would be tried. Hence, the type of the equations could be used
to select an appropriate procedure.

Another important feature of the base language is that it will
be extensible. This will permit the construction of good syntax to
call the standard numerical procedures and of higher-level
procedural languages for various classes of algorithms. We want
the power to define a language similar to the Relmath procedural
language by this means, although it is not necessary to duplicate
Relmath. The translation to the base language would be done
by the extension mechanisms and definitions, whereas Relmath
has a fixed program to translate its procedures to FORTRAN.

We do not expect the engineer or scientist who would use such
a system to make great use of the extension capabilities. These
capabilities permit the language to be changed. The user does not
have the training or interest to make extensive changes in his
language. He is concerned with solving particular problems, not
with the construction of linguistic tools. The language implementer,
however, is concerned with the language and has the skill to change
it to fit the users' requirements. We therefore expect that the
extension capabilities will be used primarily by implementers to

construct higher-level languages.

-120-

Basing these languages on a single language has some other
advantages. A single compiler for the base language can support
the others as well, and so some effort to develop a good compiler
with considerable optimization is justified. The different application
languages can interface much more readily than if each one were
developed independently, since they will have common data
structures for scalars, arrays, functions, and the other entities
supported by the base language. Independent languages, on the
other hand, are likely to have data structures that are not compatible.

The support given by the basic numerical language and the
underlying system and its language development language will also
simplify modification of the application languages. Many modifica-
tions could be made by the extension facility alone. Others might
require adding new routines to the base language. For example,
one such modification would be to include chemical compounds and
equations in a language like Relmath. Then chemical equations
could be converted to differential equations in some cases. We
expect such modifications to be made to produce specialized
languages for particular users.

In this chapter we have presented an outline of a language
development effort that would support specialized applications
languages for numerical engineering, Two parts of this effort

are the least understood and require further research. One is

-121-

the operator to rewrite equations. This should be as broad as
possible to accommodate many types of equations and standard
forms, and it will be difficult to achieve this breadth. The second

is the extension capability. This must also be broad, and it must

be possible to compile the resulting programs.

-122-

VIIl. ASSESSMENT AND RECOMMENDATIONS

With our experience with Relmath and other languages, we can
now assess the status of specialized languages for numerical
engineering problems relative to the topics discussed in this thesis
and present recommendations for their further development.
Basically, these languages already greatly enhance their users'’
ability to solve some standard problems, such as ordinary differen-
tial equations. These are some needed improvements, which
will be presented soon, but the examples of Relmath and other
languages show their usefulness. However, new concepts are
required to increase the support given to the implementation of
these languages and to increase their capabilities to express
procedures naturally.

We will discuss this assessment further, beginning with
the areas which do not require extensive new concepts for language
design or implementation. In terms of the topics presented
earlier, these areas are language design as it relates to standard
problems, numerical methods, and paging.

Language features to facilitate solving standard problems
for which well-known and effective numerical techniques exist
are well-developed. Relmath permits ordinary differential
equations to be stated in a natural style using normal mathematical

notation and to be solved by simple and direct statements. It shows

-123-

that languages designed in accordance with the general principles
given in chapter 3 - that computations common to all problems
should be made implicit in the language and that the syntax and
semantics should be natural - do enhance the users' problem
solving capabilities. Other languages are applicable in a similar
way to other problem classes.

There are still some linguistic improvements that could be
made. These include the processing of hand-drawn two-dimensional
input and greater implicit symbolic manipulation when it is needed
to derive expressions required by better numerical techniques.
These problems are treated by isolated programs now, but these
programs have not been integrated with languages for solving
numerical problems. A general analysis of subscript expressions
in systems of equations requires deductive techniques, which are
not currently economical. Acceptance of reasonable limits on
these subscripts, improvements in pattern recognition and symbolic
manipulation programs, and their integration with powerful
languages will yield more useful, though restricted, numerical
engineering languages. Removal of all restrictions will await
great improvements in pattern recognition and deduction algorithms.

To implement a language that provides a built-in procedure
for solving a class of standard problems, we obviously need a
numerical method that reliably solves problems in this class.

Such methods exist for some problem classes, such as ordinary

-124-

differential equations and linear systems, but for other classes
new and more reliable methods are needed. These methods may
require combining several more restricted techniques with
appropriate logic for deciding which would be best to use in
particular circumstances.

Our analysis of paging shows that languages run in a paging
environment should be properly implemented so that page faults
are minimized. Relmath was written with careful consideration to
this goal. If the operating system makes relevant parameters of
the environment, such as the number of available page frames and
the page replacement algorithm, accessible to the language
processor, then the paging can be optimized in critical sections
of the computations. Even in systems which do not allow access
to these parameters, the implementer can still use what information
he has about the paging to avoid disastrous operational behavior.
This action requires some attention to the detailed characteristics
of the computations, but no new concepts are needed.

We now turn to those areas where new concepts are needed:
support for language implementation and procedures. We have
seen that specialized numerical engineering languages greatly
reduce the programming effort needed to solve problems and thereby
increase the ability of engineers and scientists to utilize computers
effectively. However, little has been done to lessen the programming

effort needed to implement these languages. The expense of this

-125-

effort has blocked their further development. We need an
environment that is widely available to support such implementation
efforts. Relmath was written within the REL system, which was
designed for this purpose. However, more easily used systems that
give more support to numerical languages are needed.

With respect to procedures, Relmath has a procedural
language that is very supportive of a restricted class of algorithms.
Procedures written in this language can be compiled by a highly
effective optimizing compiler. The central problem is to extend
these benefits to other types of algorithms.

In the last chapter we presented an approach to both of these
problems. A system similar to REL but with a higher-level
language for writing routines is to be developed. Then a basic
numerical language will be implemented. It will be extensible
and will have a primitive operator to rewrite equations into
standard forms. The language implementer will use these
capabilities to construct more specialized languages for various
types of problems and various users. These languages will include
highly supportive procedural sublanguages, like Relmath's, but
for other classes of algorithms. A single optimizing compiler
could compile procedures written in these languages effectively,
since they will all be extensions of the same basic numerical
language. This common base will also facilitate interfacing the

more specialized languages.

-126-

This approach will be difficult, since the equation rewriting
operator, the extensibility, and the compiler require new computer
science concepts. However, the success of this plan would provide
a base for the relatively easy development of languages specialized
to numerical engineering problems. The availability of more
languages of this type will further increase the numerical problem

solving capabilities of scientists and engineers.

[Bern69]

[Black69]

[Bry67]

[Car70]

[Dos71]

[Eng69]

[Eng71]

[Frie69]

[Gear66]

-127-

LIST OF REFERENCES

BERNSTEIN, M. Il. and WILLIAMS, T.G. A two-
dimensional programming system. Information
Processing 68: Proc. of IFIP Congress 1968,
Morrell, A. J. H. (Ed.), vol. 1, North-Holland,
Amsterdam, 1969, pp. 586-592.

BLACKWELL, F. W. and ANDERSON, R. H. An
on-line symbolic mathematics system using hand-
printed two-dimensional notation. Proc. 24th
ACM Natl. Conf., ACM, New York, 1969,

pp. 551-557.

BRYAN, G. E. and SMITH, J. W. JOSS language
RM-5377-PR, Rand Corp., Santa Monica, Calif.
1967.

CARDENAS, A. F. and KARPLUS, W.J. PDEL-a
language for partial differential equations.
Comm. ACM 13, 3(Mar. 1970), 184-191.

DOSTERT, B. H. REL - an information system
for a dynamic environment. REL report no. 3,
California Institute of Technology, Pasadena,
Calif., 1971.

ENGELMAN, C. MATHLAB 68. Information
Processing 68: Proc. of IFIP Congress 1968,
Morrell, A. J. H. (Ed.), vol. 1, North-Holland,
Amsterdam, 1969, pp. 462-467.

The legacy of MATHLAB 68. Proc.
Second Symp. on Symbolic and Algebraic
Manipulation, Petrick, S. R. (Ed.), ACM,
New York, 1971, pp. 29-41.

FRIEDLANDER, S. K. and SEINFELD, J.H. A
dynamic model of photochemical smog.
Environmental Science and Technology 3,

11 (Nov. 1969), 1175-1181.

GEAR, C. W. Numerical solution of ordinary
differential equations at a remote terminal. Proc.
21st ACM Natl. Conf., Thompson, Washington,

D. C., 1960, pp. 43-49.

-128-

[Gra64] GRAGG, W.B. and STETTER, H.J. Generalized
multistep predictor-corrector methods. J. ACM
11, 2(April 1964), 188-2009.

[Hull63] HULL, T.E. and CREEMER, A. L. Efficiency
of predictor-corrector procedures. J. ACM 10,
(1963), 291-301.

[IBM68] INTERNATIONAL BUSINESS MACHINES CORP.
System/360 scientific subroutine package
(360A-CM-03X) version Ill: programmer's
manual. 4th ed. H20-0205-3, 1968.

[IBM70] . IBM System/360 operating system:
FORTRAN IV (G and H) programmer's guide.
3rd ed. GC28-6817-2, 1970.

[Koh67] KOHFIELD, J.J. and THOMPSON, G. T.
Multistep methods with modified predictors and
correctors. J. ACM 14, 1(Jan. 1967), 155-166.

[Lap7l] LAPIDUS, L. and SEINFELD, J.H. Numerical
Solution of Ordinary Differential Equations.
Academic Press, New York, 1971.

[Mar71a] MARTIN, W.A. Computer input/output of math-
ematical expressions. Proc. Second Symp. on
Symbolic and Algebraic Manipulation, Petrick,
S.R. (Ed.), ACM, New York, 1971, pp. 78-89.

[Mar71b] and FATEMAN, R.J. The MACSYMA
system. Proc. Second Symp. on Symbolic and
Algebraic Manipulation, Petrick, S. R. (Ed.),
ACM, New York, 1971, pp. 59-75.

[Mat70] MATSUMOTO, K. MODDEQ/Differential
equation solver - 360. C1069-314-360, California
Institute of Technology Computing Center,
Pasadena, Calif., 1970.

[Mor68] MORRIS, S. M. and SCHIESSER, W. E. SALEM -
a programming system for the simulation of
systems described by partial differential
equations. Proc. AFIPS 1968 Fall Joint Computer
Conf., Vol. 33, Part I, Thompson, Washington,
D. C., 1968, pp. 353-357.

[Naur63]

[Rein70]

[Rice68]

[Schl67]

[Sein69]

[Seitz68]

[Stow66]

[Sym68]

-129-

NAUR, P. et al. Revised report on the algorithmic
language ALGOL 60. Comm. ACM 6, 1(Jan. 1963),
1-17.

REINFELDS, J.,, ESKELSON, N., KOPETZ, H.,
and KRATKY, G. AMTRAN - an interactive
computing system. Proc. AFIPS 1970 Spring
Joint Computer Conf., Vol. 35, AFIPS Press,
Montvale, New Jersey, 1970, pp. 537-541.

RICE, J. R. On the construction of polyalgorithms
for automatic numerical analysis. In Interactive
Systems for Experimental Applied Mathematics,
Klerer, M. and Reinfelds, J. (Eds.), Academic
Press, New York, 1968, pp. 301-313.

SCHLESINGER, S. and SASHKIN, L. POSE - a
language for posing problems to the computer.
Comm. ACM 10, 5(May 1967), 279-285.

SEINFELD, J. H. Mathematical models of air
guality control regions. Paper presented at the
Symp. on the Development of Air Quality
Standards, Santa Barbara, Calif., Oct. 23-24,
1969.

SEITZ, R. N.,, WOOD, L. H., and ELY, C.A.
AMTRAN: Automatic mathematical translation.

In Interactive Systems for Experimental Applied
Mathematics, Klerer, M. and Reinfelds, J. (Eds.),
Academic Press, New York, 1968, pp. 44-66.

STOWE, A. N., WIESEN, R.A., YNTEMNA, D. B,
and FORGIE, J. W. The Lincoln Reckoner: An
operation-oriented, on-line facility with distributed
control. Proc. AFIPS 1966 Fall Joint Computer
Conf., Vol. 29, Spartan Books, Washington, D.C.,
1966, pp. 433-444.

SYMES, L. R. and ROMAN, R. V. Structure of a
language for a numerical analysis problem solving
system. In Interactive Systems for Experimental
Applied Mathematics, Klerer, M. and Reinfelds, J.
(Eds.), Academic Press, New York, 1968,

pp. 67-78.

[Sym69]

[Thomp69]

[Var71]

[Will72]

-130-

and . Syntactic and semantic
description of the numerical analysis programming
language (NAPSS). CSD TR Il (Revised),
Purdue U., Dept. of Computer Science, 1969.

THOMPSON, F.B., LOCKEMAN, P.C., DOSTERT,
B. H.,, and DEVERILL, R. S. REL: a rapidly
extensible language system. Proc. 24th ACM Natl.
Conf., ACM, New York, 1969, pp. 399-417.

VARAH, J. M. Problem set no. 2, AMal05bhb,
California Institute of Technology, Pasadena,
Calif., May 19, 1971.

WILLIAMS, T.G. An on-line two-dimensional
computation system. SP-3640, System Develop-
ment Corp., Santa Monica, Calif., 1972.

