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ABSTRACT

The first part of this work describes theoretical and experimental
studies of Stark-induced three-wave mixing in gaseous NHZD. Application
of'a dc electric field to a gaseous system destroys the basic inversion
symmetry and allows two-photon mixing processes to occur. A theoretical
derivation of this effect under conditions of resonantly enhanced non-
Tinearities is given for a three-level system. Calculations are presented
for mixing of a CO2 laser with 4 GHz microwaves in the molecule NHZD,
producing single lower sideband radiation.

Experimental observation of resonantly enhanced, dc-induced, three-
wave mixing in gaseous NHZD is presented. The dependence of this effect
on gas pressure, microwave frequency, applied dc field, and microwave
power are presented and compared with theoretical predictions. The exper-
iment was done at Hughes Research Laboratories by Abrams and his coworkers.

The second part of this work describes the propagation of electro-
magnetic waves in periodic layered media. The propagation of electromag-
netic radiation in periodically stratified media is considered. Media
of finite, semi-infinite and infinite extent are treated. A diagonaliza-
tion of the unit cell translation operator is used to obtain exact
solutions for the Bloch waves, the dispersion relations, and the band
structure of the medium.

The theory of electromagnetic Bloch waves in periodic stratified
media is then applied to the problems of birefringence, and group veloc-
ity in these media. The relevance of periodic media to phase matching

in nonlinear mixing experiments-and to laser action in the x-ray region

is discussed.
New types of guided waves such as Bragg guided waves and optical

surface waves are theoretically predicted and experimentally observed.
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PART 1

STARK-INDUCED NONLINEARITY IN GASEOUS NH2D



Chapter 1
GENERAL INTRODUCTION

1-1 Introduction

The optical properties of an arbitrary medium are described by
the two well-known quantities - the dielectric constant and magnetic
permeability. They are defined by

U =g

B =
These two constants are in genera} functions of the field strengths.
This nonlinearity has been known in the radio and microwave region of
the electromagnetic spectrum for a long time. Nonlinearity in the op-
tical region has been demonstrated by harmonic generation of Tlight.
Franken and his associates detected ultraviolet Tight (A = 3471.5 8)
generated by the intense flash of a ruby laser (A = 6943 R) when this
laser beam passed through a quartz crystal [1]. This experiment stimu-
lated an enormous amount of both theoretical and experimental work in
nonlinear optical properties. Third harmonic generation in metal vapor

has been demonstrated by Miles and Harris [2]. Fifth harmonic and

seventh harmonic generation of laser light in isotropic media was re-
cently demonstrated by She and Reintjes [3]. Harmonic generation of
light has been used as a source of generating short wavelength coherent
light [4]. Generally speaking, the optical nonlinear effects are much
smaller compared to the linear ones in most material except under reson-
ant conditions. It takes high optical intensities to have detectable de-
viations from Tinearity. Such intensities became available only with the

advent of the Tlaser.



The nonlinear susceptibilities are in general tensors of rank 3,
4y--+,etc. The Tinear susceptibility is a tensor of rank 2. These sus-
ceptibilities obey the same symmetry properties as the medium. As a
result, nonlinear optical mixing phenomena such as parametric oscillation,
frequency up-conversion and the electro-optic effect require that the
medium lack an inversion symmetry. Liquids and gases in virtue of their
random orientation, may possess only a microscopic inversion symmetry and
hence have not been deemed appropriate for nonlinear and modulation appli-
cations. This symmetry, however, can be broken in principle by applying
a dc electric field to the medium so that a gas or Tiquid in an electric
field may be expected to display nonlinear optical properties.

To estimate the dc field-induced optical nonlinearity in a gas we
carry out a quantum mechanical analysis. The analytical results are then
applied to calculate the nonlinear optical constants of NHZD which is

found to be especially suitable for this application.

1-2 Previous Work on Optical Nonlinearties in Gases

Ward and New demonstrated optical third harmonic generation in gases
with a focused laser beam [5]. Young and coworkers have observed the third
harmonic generatijon in phase-matched Rb vapor [6]. Generation of vacuum
ultraviolet radiation in Cd vapor has been demonstrated by Kung and co-
workers [7]. Leung, Ward and Orr have demonstrated the optical third
harmonic generation in cesium vapor with a two-photon resonant enhance-
ment [8]. These works are all third harmonic generation of Tight in
gases. DC-induced second harmonic generation in gases has been demon-

strated by Finn and Ward [9]. Molecular second and third order
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polarizabilities were measured by Ward and Bigio by using second
harmonic generation in gases [10]. Infrared up-conversion has been
demonstrated by Bloom and coworkers with two-photon resonant pumping
in metal vapors [11,12]. Sorokin and coworkers [13] have demonstrated
tunable coherent infrared generation based upon four-wave parametric
conversion in alkali metal vapors.

Theoretical calculation of the nonlinear susceptibility using
successive approximations toobtain a solution in ascending powers
of the coherent perturbation was performed by Armstrong et al [14],
Bloembergen and Shen [15]. Similar analysis was also carried out by

Fain and Yaschin [16].

1-3 Outline of Thesis Part I

In Chapter 2 the quantum theory of the nonlinear polarizability of
a general atomic system will be introduced and analyzed. Diagram tech-
nique will be introduced and discussed. Each nonlinear polarizability
can be expressed in terms of a sum of several diagrams. A phenomeno-
logical equation of motion for the density matrix is introduced and
analyzed. Relaxations in gases are expressed in terms of damping
terms in the equation of motion.

In Chapter 3 the nonlinear polarizability due to rotational-vibra-
tional transition in an asymmetric molecule is calculated. Some basic
quantum mechanics of a rotating top is reviewed and discussed. Matrix
elements for asymmetric top arecalculated and selection rules are dis-
cussed.

In Chapter 4, calculations are presented for mixing of a CO2 laser



with 4-GHz microwaves in the molecule NH2D, producing single side band -
radiation. A general expression for the nonlinear susceptibility is
derived in terms of plasma dispersion function. Pressure dependence,
the dispersion behavior and the saturation effect are analyzed and dis-
cussed. Stark tuning and resonance enhancement are introduced and dis-
cussed.

In Chapter 5 the experimental measurements are presented and are

compared with theory.
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Chapter 2
QUANTUM THEORY OF NONLINEAR POLARIZABILITY

2-1 Introduction

In this chapter the interaction representation of quantum mechanics
will be employed to find the expectation value of the dipole moment
operator of an atomic system. We express the wave function of the
atomic system |¥> as an expansion in the eigenfunctions of the unper-
turbed system. The calculation is carried out down to second order in
the perturbing potential. It is found that the nonlinear polarizabil-
ity of an atomic system is the same as the scattering amplitude
of the coherent fundamental processes. Therefore it can be easily
represented by Feynman diagrams [1]. Since we are only interested
in the optical region of the atomic transitions, nonrelativistic
diagram techniques[2] will be used in this chapter. We consider the
effect of radiation on an atomic systemsespecially the evolution of
the dipole moment of an atom (or a molecule) under the radiation of
three harmonic waves. In the optical regime the wavelength is about
3 or 4 orders of magnitude greater than the atomic radius. Therefore

dipole approximation will be assumed throughout this chapter.

2-2 Quantum Theory of Nonlinear Polarizability

We consider the problem wherean atomic system is in a certain
dynamical state at time to and we wish to determine its state at a
later time t. In particular we wish to determine the expectation
value of the dipole moment operator. We suppose that the Hamiltonian H

can be written as



H = H0 + H' 9.3

where HO is the unperturbed Hamiltonian whose eigenfunctions

and eigenvalues are assumed known; H' is the

perturbation Hamiltonian due to the presence of the external optical
fields. In the regime of dipole approximation. H' can be written as

> >

H' = - u°E 2-2
> -
where u is the dipole moment operator and E is the classical electric
field produced by the optical waves. Without loss of generality we
will assume that the electric field consists of the superposition
of three harmonic waves. Furthermore, we will neglect the space

dependence in the dipole approximation. Thus the electric field can

be written
E = }: 5 Ei e + CeCe 2-3
i=1,2,3

For the sake of simplicity in the algebraic manipulation, we define

i
i
=4

. i=1,2,3 2-4

m
1l
m ¢

E = Z —2" E'i e 2-5
i :

Where ji: means summation over *1, #2 and *3. This notation will be
i
used throughout this chapter. The dielectric polarizabilities of an

atom (or molecule) are defined as



Y1 ~Twst
My T Z 7 % (04) Ejge

i
1 Mty b
¥ Z 2 Xagy (05005) EqgFy e
(i3)
+ (higher order terms) 2-6

Where <p > is the expectation value of the a-component of the dipole
moment operator. ZE: means summation over the pair ij. a, B, vy are
(i3)

coordinate subscripts (i.e. o = X, ¥, 23 B =X, ¥, Z3 Y = X, ¥, Z; etc.)
Summation over repeated Greek subscripts will be assumed throughout this
chapter. XaB(w) is the linear polarizability tensor. XuBY(wi’wi) is
the lowest order nonlinear polarizability tensor. The expectation value
of the dipole moment operator is a real number. Therefore,

the following relations must hold:

’ *
Xop (= @) = Xyg () 2-7
*
XOLB'Y (" w-is"' U-)j) - XOLBY (wi awj) 2"'8
etc.

The expectation value of the dipole moment operator can be calculated
quantum mechanically. In order to find the expectation value Q> we
need to know the wave function of this atomic system at time t. This
can be achieved by integrating the Schrodinger equation which is given by

-
T |¥>=H ¥ 2-9

where we used the natural unitf = 1.
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The solution of (2-9) can be written

l¥(t)> = U(t,to) | w(to)> 2-10

where U(t,tO) is the well-known evolution operator [3] which also

satisfies the Schrodinger equation, i.e.

. 0 _ ..
= U(t,to) = HU(t,tO) #-43

The use of the evolution operator in nonlinear optics has recently been

suggested by Yariv [4]. Equation (2-11) can be written in its integral
form

i€
U(t,to) = =1 J H(T) U(T,to)dT + 2-12

t

Using equation 2-10 and the definition of expectation value we obtain

<pa> = <W|Ualw> 2-13
+
= <g|U"(t,t,) M, u(t.t,)lg> 2-14
where
lg> = |¥(t,) 2-15

and U+(t,to) is the Hermitian conjugate of U(t,to). We note that |g>
is a normalized wave function of the atomic system at t,- |¥> is also
a normalized wave function since U(t,to) is a unitary operator.

By using the compieteness relation of the eigenfunctions of the

unperturbed system

}: |2 >< g| =1 2-16
2

where I is the unit operator, equation :(2-14) can be written
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p > = j{: <gIU+(t,tO)I£ >< 2|y, lm<m|u(t,t )| g> 2-17
&1

In order to write equation (2-17) in the form of equation (2-6) we need

to solve (2-12). This is usually done by successive approximation. In

integrating (2-12), we take to = - o and assume that the electric field
was turned on adiabatically fromt = - « . In other words, for t < o,
+

E is replaced by

- t—>
E(t)> Tim %" E(t) 2-18
e>ot
This is a common procedure to get rid of the divergence at t = - « .

Physically this is equivalent to neglecting the transient terms. In
calculating the dielectric polarizabilities we are interested in the
steady state response of the atomic system. Therefore we have to throw
away all the transient terms which depend on t0 and decay to zero even-
tually due to relaxation processes. This is similar to solving the
steady state responsetof a damped oscillator driven by an external
harmonic force.

By carrying out the integration and a few steps of iteration we

obtain, from (2-11)

iE, t (- weEs) ek
U(t,'“)gk = 3—1 ‘ ZZ (E, +”w -EE e+ ie)
-i(w.+w.)t
+ZZ (= weEy) gy (- weEs)py v
~ (E towg F wy = E’z + 213) ( + wj-Em+187
+ (higher order terms) 2-19
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where %, m, k are indices of the eigenstates and it is assumed that ¢
tends to O+. This e is usually neglected when the optical frequencies
are far away from the atomic transition frequencies. In cases of
resonant scattering where the real part of the energy denominator

is vanishingly small, this ¢ plays a very important role in averaging
over the energy levels line shape functions. In doing that we have

to use the following well-known relation [5].

L L P.V.(%) - im8(x) 2-20

we also have to know the line shape function of each energy level in
order to perform the integration. We now proceed to calculate the
dielectric polarizabilities. Using equation (2-19), the expectation

value of My (2-17) can be written as

- ~-fw.t
](u gm ”B)m Tw, “
My = * E: E: 2 E wy - Em + e EiB = = B
m

2 ZI M gm (- gl (- “Y)r)g' ,
E gt Wy - Em + 2ie) (Eg + Wy - En + fg]

E.. E e-i(wimj)t + coce
18 " Jy
Z - Ugdgm (= ¥odun (= W )pg
EET E tuy - E, -+ i€) IEg tw; - E - de)
mn
" -1 (wstws )t
N
Eis Ejy e

+ (higher order terms) 2-21
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If we use the notation (2-4) and change the dummy indices i, j in

(2-21), we obtain

< > = Z Z LlOL am uB)mg 3 (' Ug)gm (Ua)mg e-iwit
o g > Em + 1g Eg = g = Em - ie { "iB
+ :{: Z{: by gm (g )y (- UY)HQ, (-“ ) n Hedng (hg g
(E +w +w -E +21€)(E +w-E +1é7 (E w -w.~E 21E)Tff—w -E —16)

]J mn J i J m
o - -1 S b

. ( UB)gm (“q)mn ( Uy)ng . B 1(w1 wJ)t
(Eg+wj—En+1€)(Eg_wi—Em"1€) iB “jvy

+ (higher order terms) 2-22

Comparing the definition of polarizability tensors (2-6) and equation

(2-22), we obtain

}: Bl g Mg . (—UBng (i) g

E +w E +1€ Eg~w—Em—ie 2-23
E: My, gm “B)mn( u )ng ( u)qm( y)mn( ”B)ng
uBy Uy ot (ﬁr+w *u, -E +21€)(Eg+wJ -E +ie) T +w1+wj-E +2ie)(E +w1—En+ia}
. (—uY)gn(-uB)nmfuu)mg . (- “B) (-u y)nm(“a)mq .
(Eg_wi_wj_Em_21€)(Eg—wj-tn_1€) (E -0, -wJ 218)(Eg-w1~En-1€)
Ol )by \
(Eg+wj—En+ie)(Eg—wi—Em~1€ (E o ~E +1é)(E —w -E ig)

These are the most general expressions for dielectric poelarizabilities up
to second order. Although there are infinite numbers of terms in the
expressions, only some dominant terms will be kept in most of the practical

problems encountered. The second order polarizability tensor is the
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lowest order nonlinear polarizability which is a tensor of rank three
and depends upon the mixing frequencies 0 and wj.

If the optical frequencies are far away from all the relevant
atomic transitions, all the x's become real and the medium becomes
lossless. 1In this case if we consider the interaction between three
waves at frequencies Wys Wy and Wy = wy * oWy The corresponding non-
linear polarizabilities satisfy the following permutation symmetry

relation
XYO‘B (w']a wz) = XBYOL (‘-U3s "U)'l) = XO{IYB ((.03, "U)Z) 2"25

which may be easily remembered as follows: the nonlinear polarizability
is invariant under the interchange of the tensor indices, provided the
corresponding frequencies are also interchanged. In general there is no
symmetric relation between complex nonlinear polarizabilities. Equation
(2-25) can be obtained directly from (2-24) by assuming € = 0. This
relation can also be derived by considering the work done by the three

waves on the medium. In a lossless medium, we should have

The left hand side of (2-26) gives the nonlinear power loss due to
the nonlinear polarizations. It can be easily shown that equation (2-26)
leads directly to the symmetric relations (2-25).

In the 1imit when w;>0 and wj+0, equation (2-24) leads to

1
xaBY(O:O) =Z g g {(ua)gm (ug)mn (uY)ng

mn

(Ug)ng + (UB)gm (uot)mn (“y)ng} 2-27
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where “ng = En - Eg and wmg = Em - E

g
We find that in the low frequency regime we have the following

symmetry

XoBy = X(oBy) Zreh

where (oBy) is any permutation of o,B,y. Equation 2-28 can also be

obtained from (2-25).

2-3 Diagram Representation

We have derived in the previous section the linear dielectric
polarizability and the lowest order nonlinear dielectric polarizability.
Equations (2-23) and (2-24) show that there are two general terms under
a single summation in the polarizability tensor of rank two and there
are six general terms under a double summation in the polarizability
tensor of rank three. It can be proven that there are exactly n!
general terms in the polarizability tensor of rank n. Diagram techniques
have been introduced in particle physics to calculate the scattering
amplitudes of any arbitrary order [6]. It is actually a systematic
way of writing out all of the possible scattering processes and the
scattering amplitude associated with each process.

It is found that the nonlinear polarizability tensors have exéct]y
the same property. Each term in (2-23) and (2-24) can be represented
by a diagram with amplitude similar to that of the Feynman diagram.

The only difference from that of the Feynman dijagram is that the sign
of € is not always the same as Eg which is the energy of the initial

state. This is due to the fact that complex conjugate evolution
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operator appears in the expectation value of My (see equation 2-14).
The rules of the diagram technique are summarized below:
1. Positive w; means absorption of a photon.
Negative w; means emission of a photon.
2. Each matrix element (“a)zk is represented by a vertex

L
K«
&

3. Each energy denominator is represented by a solid straight
Tine I between two vertices.

4. The sign of £ in the energy denominator is positive if the
energy denominator is below the vertex My, where the resulting
photon is emitted (or absorbed) and is negative otherwise.

5. A numerical factor of 2(:%--)n—1 , where n is the number of
vertices.

Using these rules, the polarizability tensors in (2-23) and (2-24) can

be written

> 2-29
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_ 1
XonBy(wi’ wj) = (z) X
m,n
T
g Ly U).I (J.)J g
~ 110(’4 H
m m

w=wi+w.

$ 2-30
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The six diagrams in XaBy(wi’ wj) are drawn for positive w. and For

j-
negative w; or W we simply replace the corresponding incoming photons
by outgoing photons. The next higher order nonlinear polarizability
tensor XoBys (wi, Wy wk) has 24 general terms under a triple summation.

By using the diagram rules, Xagys (w], Wy 5 w3) can be written as

g w=w1+w2+w3

-]
XaBys (w15 wps wg) = Z (T){

mnl

+ (23 other terms by permuting the four verticesz}
2-31

2-4 Phenomenological Equation of Motion - Density Matrix Approach

In the previous calculation we assumed that the atomic system is
in some pure state at t = to. Hence the evolution of the atomic sys-
tem is completely determined by the Schrodinger equation. In practice,
however, the bulk nonlinear susceptibility consists of the contributions

from a Targe number of molecules. Instead of knowing the complete wave
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function of an individual molecule, we only know the equilibrium
population distribution which is usually given by the Boltzmann dis-

tribution function [7].

) —(EnwEg)/kT

B 2-32

Pnn = Pgg
In addition to this, the line shape function of each energy level

is also not known. The finite width of the line shape is due to
collisions, spontaneous emission, etc. [g8].

Facing these two problems we have to use the density matrix
approach and find a phenomenological equation of motion for the den-
sity matrix. A1l those random perturbations such as collisions, spon-
taneous emissions, etc. will be lumped into a relaxation term in the

equation of motion. Thus we have the following phenomenological equa-

tion of motion [9].

d

dt Pmn - 'i[H’p]mn " Ton (pmn - pmn) 2-33

Where Py is a matrix element of the density operator p. m, n are the
energy level indices. Bhn is the equilibrium density matrix element
which is diagonal in the energy representation. The matrix element P

is defined as

om = ). p(s) als) ar () 2-34

S

where we consider a mixed state as an incoherent mixture of pure states

|w(s)> with a statistical weight p(s). The p(s) are real and positive
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(s)

numbers satisfying E: p(s) = 1. An arbitrary pure state |¢‘>’> can
s

be described by a linear superposition of the unperturbed eigenfunctions

lp(s)s < Y als) |n> 2-35

n

The Hamiltonian H in equation (2-33) is given by (2-1) and (2-2). The

relaxation rateI' = can be interpreted as follows: Lon is the relax-

ation rate of the n-th state population and is given roughly by

roa + 4 2-36

e spont L inelastic

where to ont 1s the spontaneous lifetime of the n-th state and
Tinelastic is the inelastic collision time. This is a reasonable
approximation because we know that spontaneous decay and inelastic

scattering will make the population tends to the equilibrium values.

r =—;_—(r 4T 2-37

) +y
mn mm nn mn

The decay of P and - will also contribute to the decay of B

this accounts for the first term in (2-37). There are other mechanisms
which will also make O decay, for example, phase-interrupintg col-
lisions [10], velocity changing collisions [11],etc., these effects are
lumped into Yoy * We assume that o = T
In terms of the density matrix the expectation value of the dipole

moment operator is given by

U = Tri(p Ua)= z pmn(“oc)nm 2-38
mn

If O Can be solved from equation (2-33), in terms of the perturbing

optical fields, then the dielectric nonlinear polarizability can be



27

obtained from (2-6). Equation (2-33) can be solved by the method of

successive approximations, We expand . in terms of a power series

in H' [12].

Substitute B

power of H' on

(o)
dt Pmn

(1)

dt Prmn

i

d )
at Pmn

If we define

and recall

(0) , (1), p( J b B} 4 spuny 2-39

Pmn = Pmn Pmn mn mn

from (2-39) into (2-33) and equate terms with the same

both sides of the equation, we obtain

-ilH, > p(O)]mn - an(péﬁ) - B 2-40
_1[H R p(])]mn - i[Hl . (0)] mn rE]:!) 2-41
ST So 5 W LR CCalbs IR S0 B 3"
. = (B = E I/ 2-43
(£)
4
[Hy » 3 )]mn = A = R 2-44

Then equation (2-42) can be written

] £) "
dt

(-1 - an)péﬁ) - i, p(z’])]mn 2-45

The most general solution of equation (2-45) is

péﬁ)(t) 5

t
l - l -
Tw n(t t) + Pmn(t t)

e, o ey e dt

w00

+ constant

2.46
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We are now ready to perform the successive approximation. Equation
(2-46) can be integrated to obtain péf)(t) once the £-1th order so-

Tution p(£ ])(t) is known. After a few steps of iteration, we obtain

(o) T oy = =
o) = ——— =0 § 2-47
) ey s
(1 1 WwEig e _
Pek Z} @ a3 oy 7, Pk ™ Pee) i
“ueEs) ("“'Ej)mk e

%k ZZ (~u, +w_l+u)j+1'1"£k)
moij
(Ekk —5 ) (Emm - Eu) 2 49
('“’mk + w3 + 1'1"mk - (“‘*’zm o, + 0T, )

The expectation value of the dipole moment operator can also be written

as a similar expansion

> * Z @J&k oke ¥ oh) ke * pj(ak) (“u)kz}

+ (higher order terms) 2-50

Using (2-47) - (2-50), <u > can be written

(W), (-up) ~iwst
1 a’ke ‘THelak  —~ = ;
<U i Z pkk kﬁéﬂk Z (—2_)1-ka I w; ¥ ar (pkk—pfﬁ)EiB e

: 2k)
2: j{: kel us)zm(-u Dk (pkk'pmm) ) (pmm-ﬁkz?
- w1+mJ+1I‘£k ("‘”mkmj“Fnk (—mmm].ﬂrm
-1 (wstws)t
E:. E. e (g . + (higher order terms) 2-51

18 "Iy
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Comparing with (2-6), we obtain the dielectric polarizability tensors

from (2-51)

(1) g b)
- Brk ,— —
Xas(wi) - E: -0, Fw. il (pkk o Qﬂg) 2-52
I Lk 1 Rk
. (w.’w.) } Z (_]_) (U )kz(‘UB)’@m('U )mk (Ekk-— ) ) (Emm"—p—u?
aBy ‘i % g 2'\ (~w W T +1F£k) (-w mk+w 44T k) (—w£m+w +iT ),
. (]-1 )k«@(- )m("UB)mk (pkk'pmm) i (_mm‘3u> 253
(-w Wor s g +1sz) (—wmk+w1+irmk) (; +u), +‘Pz )

We note that the second term in (2-53) is obtained from the first term

by i<« jand B <>y . This is due to the definition of

Xan(“
of their order.

1.,(.oj) (2-6) which is defined for a pair of frequencies regardless
The results obtained in (2-52) and (2-53) are exactly identical to
those of (2-23) and (2-24) if we require Bhn = Bég Sng and FZg + Fkg =Tpp -
However, the results obtained from the phenomenological density matrix
equation have some significantly different meanings. Previous results
are obtained from the Schrodinger equation (2-9) by assuming a known
initial wave function ]w(to)> and a set of well defined energy levels. In
order to obtain a significant result near resonance, we have to perform
the line shape integration over every relevant energy level. The Tine
shape function of the energy levels are normally unavailable. In the
density matrix approach, we assumed that every energy level is well
defined and all the consequences due to the finite line shape are Tumped

into the relaxation terms. As a result, no more Tine shape integration

is necessary except that of the Doppler brnadening which is not included
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in the relaxation terms.
The result obtained in this section will be applied to the case

of three-wave mixing in NHZD gases in the next chapter.
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Chapter 3
NONLINEAR POLARIZABILITY OF AN ASYMMETRIC TOP

3-1 Introduction

A general expression for the second order nonlinear polarizability
tensor was derived in the previous chapter. We will now employ those
results to calculate the nonlinear polarizability tensor of an Asym-
metric Top. We will 1imit ourselves 'O the rotational-vibrational
transitions only. All the other contributions will be neglected. This
is legitimate as long as the optical waves are in resonance with
the relevant rotational-vibrational transitions involved in the
nonlinear mixing processes.

We will review in the next section some of the basic quantum
mechanics of an asymmetric top and introduce the conventional energy
level designations for asymmetric tops. Only rotational motion will

be considered.

3-2 Quantum Mechanics of a Rigid Rotating Body

A rigid body is described by the Tocation of its center of mass
and the orientation with respect to a coordinate system fixed in space.
The principal axes of the rigid body will be Tabelled &nz. The orien-
tation of the rigid body will be defined by the three Euler angles ¢,
9, V with respect to the fixed coordinate system xyz [1]. The Hamil-

tonian of quantum mechanical rotation of the rigid body can be written [2]

) n

- JI* JF
H=_§_+_ll_+_.§__ 3-]
21 21 21
a ~b “'c
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where I_, I, I_ are the principal moments of inertia of the rigid

body; and J., Jn’ J_ are the components of the angular momentum operator

3 o
along the &nz axes. These angular momentum operators satisfy the com-

mutation relations [2]
[JE, Jn] E e 1‘hJC , etc. 3-2

The total angular momentum operator J2 is given by

72 _ 52 2 2
J°o = JE + Jn + JC 3-3
It can be shown that J2 commutes with H,
[, 921 =0 3-4

Therefore the eigenvalues of J2 are good quantum numbers. It can be

also shown that eigenvalues of JZ are also good quantum numbers.
[H,d]1=0 3-5

In what follows we will describe two special cases. A rigid body

with three identical moments of inertia Ia = Ib = IC is called a sym-

metrical top. In this case the Hamiltonian has the simple form

2
3-6

l\)lC..a
—

Therefore the rotational eigenfunctions are the generalized spherical

harmonics [2]

akp=g22L 00 (0, 6, 9) K M= 0, 21, eeeed 87

8m

with eigenvalues given by

_n?

E=or

J(J+1) 3-8
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In equation (3-7), K and M are the eigenvalues of J_ and JZ respectively.

c
Mf | JKM> 3-9

J, | IKM>

1]

JEIJKM> Kfi | JKM> 3-10

For a spherical top, the energy levels have degeneracy of (2J+1)2.
This is due to the fact that the Hamiltonian H given by (3-6) is invariant
under any rotation in both &nz space and xyz space. The rotational
invariance in gnz space contribute (2J+1) degeneracy in K. Another
(20+1) degeneracy in M comes from the rotational invariance in xyz space.
A rigid body with an axis of symmetry has in general two identical
moments of inertia. Such a body is called a symmetric top. Suppose,

for example, I_ = Ib # IC, then the Hamiltonian for rotational motion

a
can be written

=7

2
2
J 4 1
H= =— + (-—-—.-
I IC

e A ) 3-11
21 " 2

I——-I'——'

a
The rotational eigenfunctions are still given by (3-7). The rotational

eigenvalues, however, are given by

2 2
i S R I
E = ZIa J(J+1) + 5 (Ic YK

3-12

We notice that the degeneracy in K is partially removed. The energy
levels still do not depend upon the sign of K. Therefore the degeneracy
factor is 2(2J+1) if K # 0. This double degeneracy with respect to the
sign of K is due to the fact the Hamiltonian (3-11)‘15 invariant under
reflection in a plane passing through the axis of symmetry of the rigid

body (see Table 1). 1If all the three moments of inertia are different,

the rigid body is called an asymmetric top. In this case K is no longer
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a good quantum number. Only J and M are good quantum numbers. The
rotational eigenfunction can be expanded in terms of a‘11near combi-
nation of the symmetrical top wave function (3-7). The eigenstates
are specified by giving the value of J, and the value of K_] for the
Timiting prolate and K], for the limiting oblate symmetric top [3].

To illustrate this energy level specification, we referred to Fig. 3-1
which shows the qualtitative behavior of the asymmetric top energy

levels. The eigenfunction is given by

19 Mo = Z age 19K 3-13
18
K

where ayg are the numerical coefficients which can be determined exactly

by solving the secular equation [4].
Table 1 shows the characters of the irreducible representations
of the symmetry group R(8, ¢), th and D2 for spherical, symmetrical
and asymmetric top respectively. Fig. 3-2 shows the energy levels of
spherical, symmetrical and asymmetric top; the removal of the degeneracy

is shown as asymmetry is introduced.
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Fig. 3-1 Qualitative behavior of the asymmetric top energy levels.

The left end is for a problate symmetric top and the right

end is for an oblate symmetric top.
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Table 1 Character tables

R(6,9) =C(2)
J=0 1
Jd =1 sin%@/sin%@
Jd =2 sin%@/sin%—@
J=3 sin & o/sin ¥ o
Do 2C(2) o, ;

5 1 1 1

% 1 -1 1

7 1 1 =7

za 1 -1 -1

Hg 2 cos & 0 2 cos @
I, 2 cos @ 0 -2 cos ¢
Ag 2 cos 2 @ 0 2 cos 20
A, 2 cos 2 0 -2 cos 2 @
=5 3 ¢ 3

A 1 1 1

By 1 -1 -1

B, -1 1 -1

B -1 -1 1
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3-3 Matrix Elements and Selection Rules

In order to calculate the nonlinear polarizability tensors we need
to know the matrix element of the dipole moment operator. The rotational
wave functions are in general linear combinations of the generalized
spherical harmonics (see 3-13 and 3-7). Thus we have to find out first
the matrix elements between these generalized spherical harmonics. In

other words, we need to calculate

> >
<J'K'M'| - ueE | JKM> 3-14
5
where E is the electric field vector which is usually specified in the

-5
Xyz space coordinate system, and u is the dipole moment operator which

is usually specified in the body coordinate system &nz. Let A be the

rotation matrix which transforms &nz to xyz system. Thus we have

Ux UE
uy = A By 3-15
UZ U(:

where the rotation matrix is given by [1]

cosycos® - cosBsindsiny - sinycosd - cosOsindcosy sinfsin®

A = { cosysin® + cosOcosdsiny - sinysind + cosBcosdcosy -~ sinbcosd
sinBsiny sinBcosy cosB
AXE AXn AXC
= 3-17
AYE AYU AYC 1
A A A

z§ Zn ZC
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The rotation matrix (3-16) can be expressed in terms of the generalized

spherical harmonics [2]
= -

Teel o1 1 1 ircl o1 1 iend ol
LDy #D #0140y 31 3LDqq#D 34-Dy_4-D 4 ] ;%£D10+Dq1o]

- 11 ] 'l 1 1 . I
A= 50Dy =D 39-Dq9] 2LDqq-Dy_-D 394D 4] ;51010‘0-103

-1rnl 1 Tral 1 1
;%[Do1 + Dgql ;%£D01 - Dg_q] Doo
- .
In terms of the rotation matrix A, the matrix element (3-14) becomes
> > > ->
<J'K'M'| = ueE |JKM> = - Ee<d'K'M'| A |JKM> ¥ ody 3-19

-

where “body is the dipole moment operator in the body coordinate system
+

Eng. Note that u is independent of the Euler angles &, 6 and v.
body

From (3-19) we find that all we have to do is to calculate <J'K'M']D%k|JKM>

which is given by [2]
SRR T ) 8'”'2 Mt Lt
<J'K'M'[D ) [IKM> = moror (JIM m[3'M') (JTK k|3'K') 3-20

where (JIM m]J'M') and (J1K k|J'K') are Clebsch- Gordan coefficients
[5] (see also Table 2) and m,k = -1,0,1.
A typical term in a matrix element which involved in the transition

from |d}, .« M'> to |J M> is of the following form
=™ Kby

QAby oo MTIA

- Z * 1 1 ]
ke k! nuld M> = iy agg <d'K'M'[A[IKM> 3-21

K 4K
"'-I 1 KK!

where (3-13) has been used and n = x, y, z, v = £, 1, C.
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Table 2 Clebsch - Gordan Coefficients (J1M m|J'M')

(JIM m|J'M"') m=-1 m=0 m=-1_

soeg e | [omen) )12 Toom) () V2 [ g (9-me2) |/
L(2J+1)(2J+2) (23+7) (3+1) | (20+7)(23+2)

3= (341 (9-m) 1'/2 ] (3-e1) (3+m) /2

Jl

| 20 (3+1)

J-M=1)(3-M) ]
20 (20+1) |

[ (3+1)]1"/2

2. T-mean]l/e
"[ J (2d+

L 2J (J+1)

[ (g4M) (9+M-1)]1/2

2 (2J+1)
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If we write Anv as

_ mk !
mk

then it follows from (3-20) that (3-21) can be written

1 mk
< 0 1M Boy Z ZZJH ikt g Cpy X
KK'  mk
(JTKk|'K') (ITMm|d'M") 3-23

Because of the conservation of angular momentum (or the property of

Clebsch - Gordan coefficient), the nonvanishing term must have
m=M -M 3-24

k =K' -K 3-25

Using these m and k, (3-23) can be written

<A o MUA 19 M=ol (34,9) (M matMt) 3-26
-1 -1

where

m ! s o t +
any (9'29) = g3y Z Cn\) agr g 20kWTK k[T Kby o

These results are summarized in Table 3.
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Table 3 Matrix Elements of an Asymmetric Top

He My My
Allowed Ao By A by A B space factor
transitions 82 > 83 B] > B3 B1 > 82
i A 1 x(JIM 21 | J' Mz1)
EX 5 ag 7 an e aC ( |
L M > Mzl ]
1 . A x(JIM £1 | 3" Mzl
Ey + - ag + - un £ /Z‘QC ( ] )
By M->M A o, o x(J1M O | a'm)
where

23 :
_ -4y27°q * 1
Op = 2T+ Z {aJ'KH agg (JTKT | 3'K+1)
K
* Vol
+ayiq age (1K -1 ] 9" K 1)}

2 *
4y = BT L {:aJ'KH g, WAET | T
K

* I
- ajig_qagg (GIK -1 ] J' K-1)

87T2 * ]
OLC=Z'J—.'°_;'-I‘Z Ay 3gK (J1KO|J"K)
K

3-28

3-29

3-30
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The selection rules are also included in Table 2. These selection
rules can be obtained from the character table given in Table 1. A, B],
BZ’ B3 are the only four irreducible representation of the symmetric
group D2 of the Hamiltonian. Each energy level of an asymmetric top is
labelled by one of these four irreducible representations. The trans-
formation properties of these four representations are also shown in
the same tables. For example, if we consider a rotation of 180° around
the g-axis, He is unchanged, A and B] are also unchanged. B2 and 83

change sign, thus we conclude that the allowed transitions that involve

e are A ++'B] and 82 +ﬁ-B3.

3-4 Nonlinear Polarizability of an Asymmetric Top

We have mentioned previously that the second order nonlinear
susceptibility of a medium with inversion symmetry vanishes. There-
fore there is no second order nonlinear effect in gases. In order to
have a nonzero second order nonlinear polarizability, it is necessary
to have a nonvanishing product of the three matrix element among the
three relevant energy levels involved (see 2-50). In addition to this,
the summation of all the contributions from the degeneracy (usually M)
should not cancel.

In this section we will show that the second order nonlinear
polarizability of an asymmetric top isolated in free space with equal
probability 1in any orientation vanishes. In order to have a nontrivial
product of three matrix elements, the three energy levels involved must

have different irreducible representations. Without Toss of generality
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9

we will assume that the three energy levels involved are |B1 J>
|B, J+1> , |B; J> and the molecule is in its ground state |By J>
{see Fig. 3-3).

Consider a typical component x zxy(w1 w2); from (2-53) and Table
3 we have

Xgseg (61, 8p) = ZgT) {(J,l,Msl | 341, M4, 1, M1, S1)(3,1,M,0 | 3,M)
M

+ (0,1,M, =1 ] 341, M=T)(3+1, 1, M=T, T | IM)(J,1,M,0 IJ,ME}

3-31
From Table 3,

{: JMe1) (J+mr2 )Y /2 J+M+1)(J+M+2) 172y

(23+7) (20+2) (23+2) (23+3) P Tean]
+[?J 1) (9-m+2) 12 [(a+1-M) (J+2 my)'/2
J+'D 23+2) (20+2)(2J+3) JITIFTT
3-32

The sum of the two terms inside the parenthesis in (3-32) is an odd

function of M, so that the summation ) gives
M

szy (w]s wz) = 0 3-33

It can be shown similarly that all the tensor components of even order

nonlinear polarizabilities for a molecule with random orientation vanish.
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Fig. 3-3 A three-level system.
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Chapter 4
APPLICATION TO NH2D MOLECULE

4-1 Introduction

We have shown that an asymmetric molecule with random orientation
possesses no second order nonlinear polarizability. This prohibits any
three-wave mixing in molecular (or atomic) gases. Application of dc
electric field to a gases system destroys the basic inversion and isotropy
symmetry and allows three-wave mixing processes to occur. The general
expression (2-50) derived in chapter 2 will now be applied to NHZD molecule
under the conditions of resonantly enhanced nonlinearities. Calcula-
tions are presented for mixing of a CO2 laser with 4 GHz microwaves 1in
the molecule NHZD, producing single lower sideband radiation. Pressure
dependence of the nonlinear susceptibility is also calculated by per-
forming an integration over the Maxwellian velocity distribution. The
dispersion behavior of the real and imaginary parts of the nonlinear

susceptibility is also presented. Saturation effects are also considered.

4-2 Stark-induced Nonlinearity in NH,D

We consider a gaseous NHZD system in a dc electric field polarized
in z-direction. The number of NH2D molecules per unit volume is N. The
application of a dc electric field to a gaseous system introuces a pre-
ferred spatial direction thus destroying the inversion and isotropy
symmetry. The second order nonlinear polarization oscillating at the
difference frequency Wy = W3 - Wy Can be related to the product of the

two electric fields by
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(2) _ * -i(w3"(402)t 4"-]

where daBy(wB’ —wz) is the corresponding nonlinear susceptibility
which is related to the molecular nonlinear polarizability by

d (w3, wz) = N y

iy (w3, —wz) 4-2

0133%

Because of the applied dc field, the gaseous system now possesses an
axial symmetry. The only nonvanishing second order susceptibilities

are dZZZ , d , d._. and diiz , where i = x or y.

zii izi

The NH2D molecule has, among others, the three levels shown in Fig. 4-1,
which can be Stark-tuned into simultaneous resonance with the P(20) line
of the 002 laser [1]-[4] and microwave radiation near 4 GHz as shown.

This should lead to a strong resonant mixing of the P(20) Tine (of fre-

quency w3/2ﬂ) and the microwave field at ué/Zﬂ = 4 GHz, aiving rise to
the difference frequency radiation at Wy = Wy - W when the Stark fie]d_
is near EdC = 3570 V/cm. Levels 1 and 2 belong to the lowest yibra-
tional state 6)2 = 0) and have molecular angular momentum quantum num-
bers J = 4 and |M| = 4. The subscripts 04 and 14 correspond to the
standard asymmetric top designation [5,6]. The symbols a (asymmetric)
and s (symmetric) refer to the parity of the inversion-split vibrational
wave functions. The application of an electric field Edc causes an
admixture of the wave functions |404a> and l4]4s> which is due to a
nonvanishing matrix element of the molecular dipole operator connecting
the two states. This admixture, which will soon be shown to be respon-
sible for the nonlinear mixing, disappears at zero dc field. The param-

eter A appearing in the expression for the wave functions corresponds
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to the energy splitting E2 - E] between the two low-lying states and

is given by

A= [al<4O4aluzl4]4s>|2(Edc)2 L 52]]/2 4-3

while the admixture wave functions are

11> = E] [VTF 87k |4gga> + /T8 L|4y,551, 4-4
|2> = —;2]— [VT - 67A|404a> - /T + 67A|4]4s >] 4-5

where § is the zero splitting and By is the projection of the mo]ecu]ar
dipole moment operator along the direction of the dc field.

The expression for the nonlinear dipole moment of an NH2D mole-
cule depends on matrix elements which can be determined from non-
linear absorption data as well as from the data on Stark splitting.
This makes possible, in principle, a precise theoretical derivation of
the nonlinear mixing behavior of this molecule and of its parametric
dependencies.

Applying the general results obtained from chapter 2 to the three-
level system of Fig. 4-1, and keeping only the resonant terms (i.e.,
with near vanishing denominator), leads to the following expression

for the polarization generated at Wy = Wy - Wy by the applied fields

at wys wgt

P(z) (t) _ 1 (UQ)ZS(UoE3)3!(U-E2)]2 (022 = 911) ) (D]] = ?33)

o aZ \Togrwp - wgp¥Tgp] | Trig¥opy ¥ 5y T 7 Tgoogy ¥ 5y ]
e luguplt o e 4-6
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> -

where 5}1 is the equilibrium density matrix of level i with E, = E5 = 0.

3
If the NH,D gaseous is at thermal equilibrium, we have 5}] 2 Ppy and pgq = 0.
Therefore the main contribution to Péz) (t) comes from the second term,
the one proportional to (Ei] - 553).
The energy states [404a> 3 |]4]4s> and |505a> at zero dc field
have the irreducible representations A, B3 and B1 respectively [7].
According to the selection rules described in section 3-3, the dipole
moment which involved in the transition between By and By 1s My But
Hy = 0 due to the basal symmetry of NHZD (Note: n 1is the principal
axis parallel to the bond direction of the two hydrogen atom in NHZD).
Thus we conclude that the matrix element (“u)23 vanishes at zero dc
field. It follows from (4-6) that no frequency mixing takes place at

dc

zero dc field. When E”~ # O the ground state wave function ]404a> is

admixed into level 2 as shown in Fig. 4-1. This results in a nonvan-
ishing matrix element (“a)32 proportional to <5,:a | Mg | 4yq2> -
For Ez I 2, 0=x, and E3 | X we can show that the triple ma-
trix product appearing in (4-6) is given by
() g (i) qq (1 )75 = S5 | wp 11Ege | W | w 2 .
w2 dietle Z? I 11 de I 11 I IT1 4-7

where

up g = <Apgd |y | dygs> 4-8

FILIIL = <4gpa | oy | Bpge> 4-9
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The nonlinear mixing is thus absent, i.e., P(z) = 0, at zero field

X
(Edc = 0) and at very high fields (A >> §).

From (4-1) and (4-6) and using that fact that at room temperature
Eéz = 0yq » We obtain

_ 'N] . (]JOL)23 (UB)3] (UY)]Z
o2 L{wg-wp) = wgo#il 35 I Lwgrugy+ir

d (w33 —wz)

oBy 3]] 4-10

where N] is defined as the population density of level 1 , i.e.

Ny = N P11 4-11

Expression (4-10) applied to stationary molecules with energy
levels at Eys By and E3. In a gas sample we need to account for the
Doppler shift of the transition energies of individual molecules.
This is done by averaging the nonlinear susceptibility duBY over the
velocity distribution function. We will assume that the two optical
waves are all propagating in y-direction so that we only take the y-
component of the molecular velocity into account. The velocity dis-

tribution function is taken as a Maxwellian
2 in B
- eV /20 4-12

where

o = KT/m 4-13

We also assume that the microwave frequency wp is tuned such that
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The frequency off-set Aw is thus due to optical waves only and is

given by
Aw = U)3 = UJ3-] (V = 0) = w3 ™ w2 = U)32(y = 0) 4-]4

To perform the average, we need to replace wg; by w31(1+%) and ws, by w32(1+%).

From now on W3y and Wy, Mean the transition frequencies for stationary

molecules. From (4-10) and (4-12), the averaged daBY (w3, —wz) becomes
~ 'N-](UOL)23(UB)3](UY)]2 ( 9( ) dv
d o (wg,-0,) = 4-15
aBy 3’ 2 2ﬁ2 —w32 —w3]
( v+HAw+iT ) ( v+AwHiT)
where we assumed F]3 = F32 =T which is approximately the sum of the
natural and pressure broadening line width. The integral in (4-15) can
be separated into a difference of two plasma dispersion integrals.
2 2
-t° -t
I = k. . c [ - &5
| e A L L B
(———-v Aw—1F)( v-Aw-il') 21
4-16
where
= Aw + iT & 4-17
V2 o Way
z, = Sl c 4-18
V2 o Wao

We will use the following definition of plasma dispersion function

suggested by Abramovitz and Stegun [8].
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8

e 2%
W(z) = = dt = e erfc(-iz) 4-19

This definition is different from that of Fried and Conte [9] by a

factor of V7 i, i.e.
2(z) = /7 1 W(z) 4-20

The integral in (4-16) thus can be expressed by a difference of plasma

dispersion function with two different arguments.

I = g_ — %F—iAw) W (é@_ilg__.c) - w(é&Li;jE__c) 4-21
21 O Wy /2 o Ws

Since Wap = W3 >> Woy s equation (4-21) can be approximated by the
following expression

% ( C TW'(Aw + 9T C)

I = 2
2 Ow3-| /2‘6@3]

4-22

where W' is the derivative of W with respective to its own argument.

The averaged nonlinear susceptibility duBY is then

Ny lugagluglgy (i )y g (—C )zw(é‘&‘i_—c) 4-23

d (w,"‘w)= 5
3 2 2h2 2 T g 7o Wy

oBy

We note that the argument of plasma dispersion function, c(Aw+il')/VZ o Way s
is a complex number with the real part equal to the ratio of the fre-

qguency off-set to the Doppler Tinewidth and the imaginary part equal to

the ratio of the homogeneous (spontaneous puls pressure) Tinewidth to

the Doppler linewidth. The derivative of a plasma dispersion function
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is related to itself by [10]
2

W' (z) = - 220(z) + =i 4-24
Z
Thus the averaged nonlinear susceptibility daBY can also be written
i (o » ) N](MOL)23(]JB)3](U’Y)12 ( c )2
agy* 3* 2 2ﬁ2 0 W
i (LI o)y (I T 4-25
V2 o Wy V2 o Way

At resonance, Aw = 0, the above expression becomes

Ny (i) aa (i) 5y (m )y (< 2
o2 o g

duBY(w3’ —wz)

2
1 - /7 x e erfc(x) 4-26

where

% = ek 4-27
V2 o Way

We note that I' and N] are proportional to pressure if the natural line-

width is negligible compared with pressure broadening linewidth.

4-3 Relation to Linear Absorption Coefficient

Although a numerical estimate of the nonlinear mixing coefficient
based on (4-25) is possible, a safer procedure and one that serves as a
check on the matrix elements needed to evaluate dXXZ (the largest co-
efficient in NHZD) is to relate it to the linear absorption coefficient
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for x polarized field at Wy The Tlatter can be shown, by a deri-

vation similar to that given above, to be given by

2
4rNa | (i ) aq | € w ,
= ] X 3] 31 5 [ F }/';T- Re w(Aw + ’]1_' C) 4_28

Y Aw) =
X Ihc
‘/2-0-(1)3-] $/2_O' U)3~l

The resconant absorption coefficient is obtained from (4-28) by letting

Aw = 0

2
v, (0) = vy /7 x e erfc(x) 4-29

where x is given by (4-27) and Yy is the absorption coefficient at

high pressure (d >> 0w3]) and is given by

2
4 ) w
. | (s 31 | 31 N 4-30

¥
& Iic 1
Combining (4-30) and (4-26) leads to the following expression for the

resonant nonlinear susceptibility

2

2k erfc(x)] 4-3]

cludp (Wdog o ¢ 2
d ) = 222 . ISy [m % - 2%

where x is given by (4-27).

The various constants in (4-31) are evaluated as follows: The

matrix element (uz)-l2 is a function of the admixture and is obtained

from the wavefunctions (4-4) and (4-5) as

()15 = § <bggaly,l4yys> -
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where the splitting A = E, - E; is given by (4-3). We obtain the
matrix element <a|u2|s> from comparing (4-3) to the experimental tuning
curve of wyq vs. E, [4]. This yields <a|u,|s> = 1.14 x 10']8 esu.

31 dc z
At resonance EdC = 3570 V/cm and 8§/A = 0.174. The final result is

()7, = 0.174 a<|u|s> = 0.198 x 107'8 esu 4-33

(“x)23/(ux)]3 is obtained similarly and is given by

(HX)ZB - (A - 6)1/2
(px)]3 A+38

4-34

The saturated absorption Yy is obtained from the data on Ref. [3] for
a 50:50 ND —NH3 mixture as

3

Yy = -028 cn’! 4-35
From the same data we obtain

/P = 2m(20.1 MHz/Torr) 4-36

which enables us to express the dimensionless argument x of Eq. (4-31)

as

21(20.1) x 10%¢ P(Torr)

VKT wgy

x:

4-37

With these data we obtain
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We FWa =W
d, > % =2.31 x 1076(x) esu 4-38
1 x2
G(x) = 2x[— - x e” erfc(x)] 4-39
e

The theoretical dependence of d,__ on P (4-38) is plotted in Fig.4-2.

Xz
The peak occurs at P = 2.0 Torr and has a value of

Wy FWa=W

_ -8
i — 6.4 x 10~ esu 4-40

A comparison of this predicted behavior with experiment is given in
the next chapter.

The coefficient d estimated above refers to the generation of
sideband radiation at wy by mixing €O, P(20) line with a microwave
field Wy (at 4.1 GHa). It is thus appropriate to compare it to the
electro-optic coefficient 14 of GaAs which can be used, alternatively,
to generate the sideband by conventional electrooptic modulation.

Using the correspondence [11].

2€0 ol
r. — e - -4
JjZk €s€p jke
we have
3
(n r)NHZD
v 0.8 4-42

3
(n r)GaAs
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Fig. 4-2 Theoretical dependence of NH2D nonliner coefficient on pressure
when the applied fields are exactly resonant with the Stark-

tuned energy levels.
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We reach the conclusion that for sideband generation, dc biased NH2D at
P =2 Torr is comparable to GaAs (which is one of the best infrared
modulation materials). We must recognize, however, that this larae
coefficient was obtained by exploiting the resonant nature of the

effect. The penalty we pay for this is that of reduced bandwidth.

Other components of the nonlinear polarizability tensor
We have mentioned that the only nonvanishing components of the
second-order polarizability tensor in a system possessing axial symmetry

(z-axis) are

22

doxx = Yzyy
dyzx = dyzy
dyxz = dyyz

In our special case where the 1 <> 2 transition must be AM = 0 which
means if the polarization of E2 is in x or y direction, the matrix
element vanishes. This shows dZXX = dzyy = dXZX = 0. Thus we have
only two nonvanishing components left. Their magnitudes are related
by the Clebsch - Gordan coefficients given in Table 3. For dXXZ R
the energy state |3> can have either |M| = 5 or |M| = 3 because of

the x-polarization of the optical fields. While for dZZZ , the tran-

sition only involves |M| = 4. Thus we have the following relation

dXXZ

Lo amn? + @m-1]0'm-1)%)
4722 (31M0] 3 M)

= 25

where J' =5 and J = 4 .
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The absorption coefficients for x-polarized 1ight and z-polarized light
have exactly the same relation. These results are based on the assump-

tion that the system is a three-level system.

4-4 Dispersion and Saturation

In the previous section we derived a general expression for dusy(w3,-w2)
as a function of Aw and I'. Numerical calculation was carried out for
resonance nonlinear susceptibility. A real daBY(NB’"wZ) was obtained

at Aw = 0. In general da (w3,-w2) is a complex number. The real and

By
imaginary part of daBY is plotted in Fig. 4.3 as a function of Aw.

This dispersion behavior is quite different from that of the linear
susceptibility. This is due to the fact that an additional energy
denominator appears in the nonlinear susceptibility. If we neglect
the Doppler broadening and let dres be the resonant nonlinear suscep-

tibi]ity, from (4-10) we have

(Aw) = d 1° 4-43
d(Aw) = —— -
e (Aw+iF)2
If we rationalize the denominator of (4-43), we obtain
[r2 (A )23 + 2iAdl .2
d(Aw) = o I8, 74y 4-44
2 242 res
[(aw)™ +T°]

We find that the real part vanishes at Aw = = T' and the imaginary part
reaches extrema at Aw = =+ I'/V/3 . These are, however, no longer
true if molecular motion cannot be neglected. In general, equation
(4-25) should be used if the input optical wave has a finite frequency
spectrum. The curves shown in Fig. [4.3] are duey(m3,—w2) given by

(4-25).
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— P=0.15Torr
——= P={.5 Torr
----- - P=3.1Torr

Fig. 4-3 Dispersion behavior of dXXZ = dR + idI at different pressures.

The horizontal coordinate is proportional to Aw.



58

In the above calculation of the nonlinear polarization at
%
Wy = Wy - Wy We only kept E3BE2Y term. There are, however, other
higher order terms which also oscillate at frequency Wy = Wy = Wo.
2 * 2 * . .

For example, ]E3| EBBEZY and |E2] EBBEZY are also oscillating at
frequency Wy = Wy - Wy If these terms are included in the non-
linear polarization in (4-1) , the resulting duBy(wB"wZ) given by
the same equation tends to decrease as IEZIZ or |E3]2 increases.

In what follows we will include the next higher terms to study
the saturation effect. For the sake of simplicity in algebraic

manipulation, we define dO as the unsaturated nonlinear susceptibility.

Using the techniques described in chapter 2, we obtain

2 2
°E (peEq)
d=¢ 1+ |G 2)2;l + i | (u-Ea)y)| d 4-45

4(Aw + iT) 4T (Aw + iT)

o Y21 d
where - << T and Wy << wgy are assumed.
If we now take molecular motion into account and integrate over

the velocity distribution, we obtain after some mathematical manipulation

2 [(wEp)p|® g2 () ER 4 (2)
= ¢ ° +'| —8—— 0
NV e T 22 Vo uwg O

4-46

where do(z) is given by

(1»1) (U)3]U)]3v :
do(z) = Z;Z B (0231\ 1+ iv/m z W(z)) 4-47
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and

4 8
% = Aw T "

Ve o w3y

4-48

By using the differential equation (4-24) for W(z), (4-46) can be
expressed in terms of W(z). However, the form given by (4-46) can
give us some direct physical meaning. For example, it can be shown

that (4-46) can also be written

.!(“'E3)31|2 5

2
|(WEpdpq ™ 2 .
7T I T oAw

d=41+*"7

do(Aw, r) 4-49
5 (Aw)

This form is particularly useful because it is related to the dis-
persion curves shown in Fig. 4-3. The second term is negative near
resonance (see Fig. 4-3). Thus we find that increasing the micro-
wave power will tend to decrease the nonlinear susceptibility. This
phenomenon is called nonlinear saturation effect. A typical dispersion
behavior for the saturated nonlinear susceptibility is shown in Fig. 4-4.

In conclusion of this chapter, we have shown in detail how Stark
admixing can give rise to second order optical nonlinearities in gases.
We have derived an expression for the coefficient describing the mix-
ing of an infrared and a microwave field in NHZD. Available absorption
data were used to obtain a numerical estimate for the mixing and to
describe its parametric dependence.

Dispersion and saturation are also discussed. An experimental

demonstration of this effect is described in chapter 5.
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—— d at 1.5 Torr with
F%zfz()

——= d at 1.5 Torr with
P> =10 Watts

Fig. 4-4 d vs. x at 1.5 Torr with different microwave powers. Xx is

the real part of z.
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Chapter 5

EXPERIMENTAL OBSERVATION

5-1 Introduction

In chapter 4 it was predicted that a resonantly enhanced non-
linear mixing ﬁrocess in the molecule NHZD could be induced by appli-
cation of a dc electric field, where CO2 laser radiation and micro-
wave energy at 4 GHz below the applied laser frequency. We report
here the first experimental observation of such single-sideband
optical modulation, unambiguously identified through the use of a
scanning Fabry-Perot interferometer (SFP). We present measurements
of the dependence of the parametric signal on gas pressure, micro-
wave frequency, applied dc field, and microwave power. The results
are all in good agreement with theoretical predictions although
there is some uncertainty in the quantitative comparisons due to
undetermined coupling losses in the microwave structure. Qualita-
tively, the agreement is excellent. These experimental results are

based entirely on the work of Abrams and his coworkers [1].

5-2 Experimental Apparatus

The experimental apparatus for the observation of the interaction
is discussed with reference to Fig. 5-1. A frequency stabilized
CW C0, laser beam (operating at P(20) Tine center) is passed through
the microwave Stark cell containing the Stark-tunable gas. The cell
consists of a 4-GHz ridged waveguide with an 8-mm-wide ridge width, a

1.2-mm gap, 20-cm length, and forms a resonant cavity (Q ~ 160). The
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Fig. 5-1 Experimental apparatus for observation of sing]e—sidéband

signal. The TWT amplifier supplies up to 4 W to the Stark cell.
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ridge is insulated from the rectangular structure by a thin layer

of Mylar, allowing application of a dc Stark voltage and the 4-GHz
microwave signal to the ridge. The microwaves are square-wave modu-
lated at 2 kHz, amplified in a traveling-wave tube (TWT), and coupled
into the ridged waveguide by means of a probe.

The output of the Stark cell is passed through a scanning SFP
and detected with a HgCdTe photodiode. The SFP performs as a nar-
row-bandwidth (300 MHz) optical filter that is slowly scanned through
its 10-GHz free spectral range (FSR). The SFP output can then either
be displayed directly on a recorder or synchronously detected at the
microwave modulation frequency in a lock-in amplifier. Very small
changes in the SFP output due to the presence of the microwaves were
detectable with the latter method.

The NH2D was prepared by introducing equal partial pressures
of NH3 and NH3 in a mixing chamber. The resultant mixture containing
37.5 percent NH2D was metered into the cell and the pressure monitored

with a capacitance manometer.

5-3 Results

Fig. 5-2 shows the SFP output before and after lock-in detec-
tion with 1.1 torr of gas in the cell. The two outputs are simul-
taneously displayed on a strip chart recorder as the SFP is scanned
through one full order. The upper trace shows the direct SFP signal,
with the familiar pattern of a single-mode laser. This is the SFP

spectrum of 10.6-um carrier transmitted through the cell to the
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(b) OUTPUT

Fig. 5-2 Simultaneous signals observed. (a) Directly from the detector.
(b) After phase sensitive detection as the SFP is scanned
through one order. Note that the new feature due to the
4-GHz microwave signal appears as a single sideband 4 GHz

away from the carrier.
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detector. The FSR is 10 GHz (1.5-cm plate spacing). The lower trace
of Fig. [2] shows the lock-in detection output with a 30-ms time con-
stant. Signals occur at the positions corresponding to the peaks of
the direct SFP output, indicating some sort of carrier modulation as
a result of the applied microwave signal. A new peak, which is the
parametric signal displaced 4 GHz from the carrier, appears approx-
imately 40 percent of the way between the two carrier peaks. Note
that only a single sideband occurs, for double-sideband generation
would result in two signal peaks lying between the two carrier sig-
nals. Calibration of the SFP has verified that the sideband is a
lower one, as predicted, and corresponds to the difference frequency
between the 10.6-um carrier frequency and the microwave frequency.
That the output is a parametric signal and not laser-induced fluor-
escence from the gas is substantiated by the fact that the sideband
is linearly polarized and no other 1line is observed in the SFP out-
put; if the output were fluorescence, unpolarized emission at several
wavelengths would be expected.

The parametric signal was measured as a function of the Stark
voltage as shown in Fig. 5-3. The SFP sawtooth drive was discon-
nected and the mirror spacing was set to transmit the peak of the
parametric sideband signal for these measurements. The maximum sig-
nal occurred at a Stark voltage of 428 V with the microwave frequency
set at 4.023 GHz. The full width at half-maximum (FWHM) of the sig-
nal was 28.5 V which is equivalent to a Tinewidth of ~ 130 MHz. The

Tinewidth of the signal is greater than the NH,D Tinewidth at 1 torr
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of 105 Mz [1] due to some inhomogeneities in the Stark gap. A
measured low-pressure absorption linewidth of 100 MHz FWHM compared
to the 82-MHz actual Doppler width indicates a 0.5 percent variation
in the Stark-gap spacing.

The Stark voltage was increased to 600 V and the |M| = 3 para-
metric signal was seen at ~ 570 V. The ratio of the |M| = 4 signal
amplitudes was 0.414. A theoretical calculation of this intensity
ratio yields a predicted signal ratio of 0.40. The agreement is well
within experimental error.

The parametric signal was measured as a function of the Stark
cell pressure over a range of 0-8 torr as shown in Fig. 5-4. The
SFP was set to transmit the maximum signal and the microwave fre-
quency was fixed at 4.023 GHz. The parametric signal rose slowly
between 0 and 0.5 torr, then rose sharply between 0.5 and 1.5 torr,
reaching a maximum at 2.4 torr. The signal slowly decreased between
3 and 8 torr. The experimental curve and theory were compared using
the best current NHZD parameters with the theoretical points also
shown on Fig. 5-3. Here the experimental "effective" Doppler
width of 100 MHz was used to include the effects of the gap inhomo-
geneities. Again, the excellent agreement enforces the theory.

The parametric conversion efficiency varied linearly with micro-
wave power, reaching 0.2 percent at the maximum available TWT output
of 4 W. Microwave power saturation effects are anticipated Tinewidth

(“'ERF ~ 100 MHz). This occurs at field strength of Epp v 4 X 104 V/m.
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Unfortunately, unknown coupling losses prevent determination of the
actual field strength. In the following paragraphs we use theory,
including the effects of phase mismatch and linear absorption, to

calculate the theoretical conversion efficiency.

5-4 Comparison with Theory

The experiment involves traveling-wave mixing between an input
Co, laser (w3) and a microwave field at w, (v 4 GHz) to generate the
difference frequency at Wy = Wy = Wg. The interaction is described
by the following coupled mode equations [3] which include the effects

of optical losses and phase mismatch:

dA .
1.9 : 4§ -1Akx
- M -ighge
5-1
dA ¢
3. % . g iakx
& =T M-ighe
where
Ny
Ai(x) = o E; (x)
g = Yo fl 3 " ot B
€o ny ng XXZ E2
Ak = k3 - (k] + k2>'

Assuming a single input A3(0) at x = 0, the solution of (5-1)

yields a conversion efficiency n of
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A, (x) 2 2 +
- 1 _ N7 %
n{x) = W —%—exp —<Tx>
«[cosh (/ x sin (8/2)) - cos (V¥ x cos (8/2)] 5-2
where
o o\
¥ =[Ak2 + gf -<-2-—-— 7—)]2 + [(o - 0(3)Ak12
9 = tan'] (u] ) GS)Ak
2

The phase mismatch Ak occurs because both of the infrared signals
travel through the cell collinearly and at the same velocity, while the

microwave wavefront travels in a guided mode. For the experiment per-

formed at Hughes Labs, Ak is given by

Ak 2ﬂ/kq - 2m/ )\

5-3

0.08 cm']

il

where Aq is the guide wavelength and )\ is the free-space wavelength.
The maximum possible conversion efficiency occurs at a pressure

of 2.4 torr. Assuming no microwave coupling losses, 4 W of input

power and Q ~ 160 leads to Ep. ~ 10° V/m. At 2.4 torr, a; = 0.02 em”]

(see [1]), a; = 0.014 cm"], and g = 0.0138 en”] giving a conversion
efficiency in 20 cm of

n(20 cm) = 1.1 percent.
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Due to asymmetric cavity coupling and a short SAg/Z cavity length,
a large amount of the microwave energy is probably contained in higher
order modes still present within the cavity. Assumingonly 50 percent
of the calculated microwave field in the Towest order mode is achieved,
ERF =5 X 104 V/m, and an efficiency of 0.27 percent is expected in

the 20-cm interaction length, a value close to that observed.
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Chapter 1
GENERAL INTRODUCTION

1.1 Introduction

Periodic optical media and specifically periodic layered struc-
tures play an important role in a number of applications. These include
multilayer coatings for both high reflection and antireflection. This
application benefitted largely from the pioneering analysis of Abeles
[1]. Other proposals involve the use of these structures for phase
matching in nonlinear optical applications [2,3,4] and for obtaining
optical birefringence in stratified media composed of isotropic or cubic
materials [5,6]. |

Recent developments in the crystal growing field, especially in
molecular beam technology [7], make it possible to grow multilayer media
with well controlled periodicities and with layer thicknesses down to
103. We may thus well consider the periodic optical structure as a new
optical medium to take its place along with that of, say, homogeneous
isotropic and anisotropic materials. Before proceeding with the many
applications envisaged for periodic layered media we need to understand
precisely and in detail the nature of electromagnetic wave propagation
in these media. Although a number of special cases have been analyzed,
a aeneral theory is not available. To illustrate this situation we may
point out, as one example, that the present state of the theory does not
answer questions such as that of the direction of group and enerqy velo-
cities of waves in periodic media or even that of the birefringence at

arbitrary angles of incidence.
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This work describes a general theory of electromagnetic propaga-
tion in periodic media. The theoretical approach is general, so that
many situations considered previously will be shown to be special cases
of our formalism. The theory has a strong formal similarity to the
quantum theory of electrons in crystals and thus makes heavy use of the
concepts of Bloch modes, forbidden gaps, evanescent waves, and surface
waves.

In addition to demonstrating the application of the theory to a
number of familiar problems, such as reflectivity of multilayer films,
we consider in general form a variety of some experimental situations
which include Braag waveguides, birefringence and group velocity at
arbitrary directions, phase matching in nonlinear optical applications,
multichannel waveguides and optical surface waves. We consider also the
important problem of propagation and reflection in media with periodic
gain and Toss alternation which is relevant to X-ray laser oscillation

in artificially layered media [8].

1.2 Previous Work on Waves in Layered Media

An enormous amount of work was done on the theory of anti-reflecting
and high reflecting multilayer systems as well as for monochromatic
interference filters in the first half of this century [9]. However,
the first general treatment of stratified media in terms of the electro-
magnetic theory of 1ight was not available until 1950 when Abelés [10]
introduced the matrix method to treat the propagation of 1light in layered

media. Electromaanetic propagation in dielectric periodic layered media
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was considered in detail with the direction of propagation normal to the
layers by Levin [11]. Rytov [12] investigated the electromagnetic
properties of a finely stratified medium. His results are general;
valid for any layer thickness. However, Rytov only considered three
special cases of wave propagation: propagation in a direction parallel
to the Tayers for two polarizations, with either the electric or the
magnetic vector parallel to the layers, and propagation in a direction
perpendicular to the layers. Weinstein [13] derived general expressions
for the transmissivity and reflectivity of multilayer coatings of any
number of components, for light polarized in any way and incident at
any angle. A theoretical study of the optical properties of a continu-
ously varying medium was done by Jacobsson [14] using approximate and
exact solutions of the wave equations. He showed that the general
behavior of the reflection coefficient may be deduced from the reflec-
tion coefficient of a single period. Jacobsson also considered hyper-
bolic refractive index variation. Propagation characteristics of
periodic arrays of dielectric slabs was also studied by Lewis and Hessel
[15]. Dispersion curves and mode functions were used to illustrate the
guiding properties of the structure. They explained those characteris-
tics in terms of stability diagrams and equivalent network. Epstein [16]
found that the equivalent index of a symmetrical period is a pure imagin-
ary number in a stop band, while it is a real number in a pass band.
Reflection from stratified anisotropic media was studied recently by Honig
and den Engelsen [17] using a new method of computation which is dif-

ferent from that of Teitler, Henvis and Berreman [18]. Teitler-Henvis-
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Berreman treatment involves solving Maxwell's equations simultaneously
with a 4x 4 matrix technique.

We note that the evanescent Bloch waves have never been studied. The
historical interest in optical properties of multilayer thin films was
largely confined to the use of high reflectance coatings in high resolu-
tion interferometry. Little attention, however, was paid to the guided
waves in these media. During the last decade guided wave optics has
become more and more important in the field of obtica] communication [19].
The basic circuit element in integrated optics is a thin-film waveguide
which is essentially a layered medium. This has given an enormous stimu-

lus to the study of guided waves in a general layered medium.

1.3 Outline of Thesis

In Chapter 2, the matrix method and translation operator are intro-
duced into the electromagnetic propagation in periodic layered media.
Bloch waves and dispersion relation are derived by diagonalizing the unit
cell translation operator. The concept of phase velocity and group velo-
city in layered media are introduced and analyzed. Birefringence and
double refraction are also studied. Numerical results for interesting
special cases are presented and discussed.

In Chapter 3, the mode theory of electromagnetic waves in layered
media is studied. Attention is confined to guided modes in either finite
or infinite structures. The concept of Regge poles [20] is employed to
explain the relation between modes and the poles of reflectivity spectrum

in B-space. Optical surface waves are introduced and analyzed. The
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analogy between solid state physics and optics of periodic layered
media is emphasized and discussed,

In Chapter 4, Bragg reflectors are introduced and analyzed.
Numerical results for some interesting cases are presented and discussed.
A new type of waveguide, the Braga waveguide, is introduced and analyzed.
Mode characteristics are derived and numerical results are given and
discussed. The wavelength selectivity of Bragg waveguides is discﬁgsed.
The leakage due to finite number of periods in the Bragg reflector is
analyzed. Thickness matching is introduced in the optimum design of
Bragg waveguides. Some other Bragg waveguide structures are also pre-
sented and discussed.

In Chapter 5, the dispersion due to periodic stratification is
introduced. Application of this dispersion to compensate for the mate-
rial dispersion in nonlinear optical mixing is introduced and analyzed.
Normal processes and Umklapp processes [21] are explained in terms of
phonon-phonon scattering. Distributed feedback soft X-ray lasers in
artificially layered media are considered and analyzed.

In Chapter 6, the propagation of electromagnetic waves in cylin-
drically layered media is presented and analyzed. A concept of Bragg
waveguiding is extended into the cylindrical regime. Bragg fibek is
designed according to the optimization procedures. Mode character-
istics and leak spectrum are presented and discussed.

In Chapter 7, some experimental observation of Bragg waveguiding

and surface wave propagation is described.
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Chapter 2
BLOCH FORMULATION OF ELECTROMAGNETIC PROPAGATION IN LAYERED MEDIA

2.1 Introduction

Bloch wave function was introduced in 1928 to describe the electron
motion in crystals [1]. A crystalline solid is characterized by its
translational symmetry. If we ignore all the other symmetry except the
translational symmetry, the entire symmetry classification of an elec-
tron wave function in the crystal can be given by Bloch's theorem [2].
The irreducible representations can be completely labeled by specifying
the crystal momentum K to each wave function. In one-dimensional cases

we have

U (x+n) = et Py (x) (2.1)

This property allows us to write the most general wave function in the

form

U)K(x) ” UK(X) e1KX (2.2)

where UK is a periodic function of x

U x+A)=UMx) (2.3)

i«
Electromagnetic propagation in a periodic layered medium has exactly

the same property as electron motion in a one-dimensional periodic square
well potential field [3]. Therefore, we expect that all the interesting
properties of electrons in solids should have their counterparts in the
optics of periodic layered media. For example, the stop bands and pass

bands of a periodic layered medium are equivalent to the forbidden bands
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and allowed bands of a crystalline solid respectively. Furthermore, we
will Tater show that the electronic surface states of crystals also have
their optical analog--optical surface states--in periodic layered media.
Phase velocities, group velocities and energy velocities for optical
Bloch waves will be carefully studied. Although the phase velocity for
electrons in a crystal is not an important quantity in solid state
physics, the phase velocities for optical waves are very important in
interference and nonlinear mixing.

In addition to the above properties, periodic layered media also

exhibit the birefringence properties in a manner similar to a uniaxial

crystal [4].

2.2 The Matrix Method and the Translation Operator

For the sake of clarity in introducing the basic concepts, we will
consider first the simplest type of periodically stratified medium. The
extension to the more general case is presented in Appendix A. The
stratified medium treated in what follows consists of alternating layers
of different indices of refraction. The index of refraction profile is
given by

n, 0<x<b
n, b <x<A
with
n(x+A) = n(x) (2.5)
where the x-axis is normal to the interfaces and A is the period. The
geometry of the structure is sketched in Fig. 2.1. The distribution of

some typical field components can be written as



o A . = AT NN =

N

A )
N\




85

E(x,z) = E(x) eiBZ (2.6)

The electric field distribution within each homogeneous layer can be ex-
pressed as a sum of an incident plane wave and a reflected plane wave.
The complex amplitudes of these two waves constitute the components of a
column vector. The electric field in the o layer of the nth
unit cell can thus be represented by a cq]umn vector

a(2)

(2.7)
)
b'(]u

As a result, the electric field distribution in the same layer can be

written as

E(X,Z) = {ar(](l) eikax(x-nA)+ b'(]a) e-'ik(lx(x_nA)} eiBZ (2.8)

with

¢Q—-n ) ¢ =1,2 (2.9)

The column vectors are not independent of eaéh other. They are related
through the continuity conditions at the interfaces. As a matter of
fact, only one vector (or two components of two different vectors) can
be chosen arbitrarily. In the case of TE modes (E vector in y-z plane)

imposing continuity of E and 9E/3x at the interface (see Fig.2.2) leads
to

-ik, A ik, A
_ 2X 2X 2.10
an_1 + bn_] = e cn + e dn ( )
-ik, A ik, A
- - & 2x 2x 2.11]
1k1x(an-1 bn-l) - 1k2x(e Ey ~ € dn) (
-ik, . a ik, a -ik,_a ik, a
2x 2x _ Ix Tx (2.12)
e <, + dn = e an, + e bn
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a ik, a
c, - © dn) = 1k1x(e 1 a, - e x bn) (2.13)

The four equations in (2.10) to (2.13) can be rewritten as the following

iwo matrix equations:

! -ikzxA ikaA
; Tk, ik k. ik, A
I / 2X 2X 2X k2x \
B N K, © k. © d (2.14)
1x 1x
-ik, a ik, a \ -ik. a ik a
/ o 2XT X " e Ix o WX \ .
n - n
-ik,_a ik,. a k -ik,.a k ik, a
& 2X 2X 1x 1x 1x 1x }
e -e d e - e b
where we define (2.15)
- (1)
2, = 3
w mbd)
bn = Pn (2.16)
- .(2)
Ch T %
o 2]
dn - bn "
By eliminating
dn
the matrix equation
/ / /
!' an_] \ l A B { an
\ | = \ & (2.17)
\bn_] i ¢c o/,

is obtained.

The matrix elements are



A = e-ik]Xa [cos k2xb - %-i(;%§-+ E%f)sin k2xb] (2.18)

B = eik]Xa [- %-1(E§5 - ;li) sin ksz] (2.19)
1x 2X

C = e-1k1xa [%— (;%i-- ;%f) sin k2xb] (2.20)

D = eik“a [cos kyb + -‘2- i(;%i-+ %’i) sin k,b] (2.21)

and according to (2.9) can be viewed as functions of B. The matrix in

(2.17) is the unit cell translation matrix which relates the complex

amplitudes of the incident plane wave a1 and the reflected plane wave

b in one layer of a unit cell to those of the equivalent layer in the

n-1
next unit cell. Because of the fact that this matrix relates the fields
of two equivalent layers with the same index of refraction, it is uni-

modular, i.e.,

AD - BC = 1 (2.22)

(o
n 1)

It is important to notice that the matrix which relates (d to

(zn) is different from the matrix in (2.17). These matricggz however,
pogsess the same trace (see Appendix A). As will be shown later, the
trace of the translation matrix is directly related to the band struc-
ture of the stratified periodic medium.

The matrix elements (A,B,C,D) for TM waves (H-vector in yz-plane)

are slightly different from those of the TE waves. They are given by:
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_ Tk N2 Ky oy ko
Ay = € [cos kyb - = i(— + — ) sin k, b] (2.23)

3 2 2
ik, a n, k ny k
- Tx 2 "1Ix 1 "2%x, _.
BTM = e [- 7-1( 5 - nzvk ) sin ksz] (2.24)
Ny Rax Mo ¥ix
2 2
-ik,_a n, k ny k
Cry = € x ] i( %»k]x - ] 2)5) sin k, b] (2.25)
11 %ox 2 K1x
Tky @ z.klx "% Kox
Doy = e X [cos ko b + —-1( ~ %) sin Ky b] (2.26)
n] kZX 2 k]

As noted above, only one column vector is independent. We can choose
it, as an example, as the column vector of the n]—1ayer in the zeroth

unit cell. The remaining column vectors of the equivalent layers are

a ) A B\
( U ) = ( ) %o \ (2.27)
b_ | cC D bls

By using (2.22), the above equation can be simplified to

D | -B1?
HEH-N
b, - A by

The column vector for the n,-layer can always be obtained by using equa-

given as

tion (2.15); more generally we can specify the field uniquely by speci-
fying any a; and bj.

2.3 Bloch Waves and Band Structures

The periodically stratified medium is equivalent to a one-dimensional

Tattice which is invariant under the lattice translation. The lattice
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translation operator T is defined by
Tx = x + 2A (2.29)

where & is an integer; it follows that

TE(x) = E(T"'x) = E(x-24) (2.30)

The ABCD matrix derived in the previous section is a representation of
the unit cell translation operator. According to the Floquet theorem,

a wave propagating in a periodic medium is of the form [5]

E(x2) = E(x) ' o2 (2.31)
where EK(x) is periodic with a period A, i.e.,
EK(x + A7) = EK(x) (2.32)

The subscript K indicates that the function EK(x) depends on K. The con-
stant K is known as the Bloch wave number. The problem at hand is thus
that of determining K and EK(x).

In terms of our column vector representation, and from (2.8), the

periodic condition (2.32) for the Bloch wave is simply

a .
J

\b {b

n n-1
It follows from (2.17) and (2.33) that the column vector of the Bloch wave

satisfies the following eigenvalue problem:



- o KA (2.34)

The phase factor exp(-iKA) is thus the eigenvalue of the translation

matrix (A,B,C,D) and is given by

~iKA _ A+D
e = o

(55992 -1 (2.35)

The eigenvectors corresponding to the eigenvalues (2.35) are obtained

from (2.34) and are

{ao B
\\.b ) ) e-iK/\_ A) (2.36)

)
times any arbitrary'constant. The Bloch waves which result from (2.36)

can be considered as the eigenvectors of the translation matrix with

eigenvalues g o Kl given by (2.35). The two eigenvalues in (2.35) are

the inverse of each other, since the translation matrix is unimodular.
Equation (2.35) is the dispersion relation among w, B, and K. It can
be written as

K(B,w) = %-cos'](ﬂ%g) (2.37)

Regimes where

'A%Q'< 1 correspond to real K and thus to propagating

Bloch waves, when E%Q >1, K = L iKi and has an imaginary part Ki

A
so that the Bloch wave is evanescent. These are the so-called "forbid-

den" bands of the periodic medium. The band edges are the regimes where
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’5%—9=1.

According to (2.8) and (2.33) the final result for the Bloch wave

in the n,-layer of the nth unit cell is

ik, (x-nhp) -ik

Ix (x=nA)  =iK(x-nA)

iKx + boe 1x ] & } ein (2.38)

x) e ™ = {[ae

where a, and bO are given by Eq. (2.36). This completes the solution
of the Bloch waves.

The band structure for a typical stratified periodic medium as
obtained from (2.37) is shown in Figs. 2.3 and 3.4 for TE and TM waves,
respectively. It is interesting to notice that the TM "forbidden"
bands shrink to zero when g = %~n2 sin 65 with bg as the Brewster
angle, since at this angle the incident and reflected waves are un-

coupled. The dispersion relation w vs K for the special case B = 0,

i.e., normal incidence, is shown in Fig. 2.5.

2,4 Phase Velocity and Group Velocity

We have derived some of the important characteristics of Bloch
waves propagating in a periodic stratified medium. An exact expres-
sion for the dispersion relation among K, B, and w was derived. This
dispersion relation can be represented by contours of constant fre-
quency in the B-K plane as in Fig. 2.6.

It can be seen that these contours are more or less circular
with only a slight ellipticity. The origin corresponds to the ccentour
of zero frequency. In the long wavelength regime () >> A), these are

similar to the dispersion curves of electromagnetic waves in a
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negative uniaxial crystal. The birefringence property of a periodic
stratified medium will be discussed further in the next section. These
contours become distorted and modified at shorter wavelengths and near
the boundaries of the Brillouin zone (KA = 1) where the wavelength is
comparable with the dimension of a unit cell and the electromagnetic
waves interact strongly with the periodic medium.

The concepts of phase and group velocities in periodic layered
media are subtle and require careful examination. Let us start by Yé-

viewing some of the relevant results which were derived inSection 2.2,

The electromagnetic Bloch wave is given by

B(x,z,t) = B (x)e e BZeTT0t (2.39)

where ﬁK(x) is a periodic function of x with period A and is given by

Eq. (2.38). The dispersion relation between K, B and w is
given by
cos(KA) = %—(A+D)
(2.40)

= cosk]xa coskZXb - A sink]xa sinkZXb

where A and D are given respectively by equations (2.18), (2.21),
(2.23) and (2.26) and

k
%’(E25-+ ~15) TE waves
1x "2 X
A = (2.4])
ok "12k2x
5 ( 5 t— ) T™ waves



98

_ 2 2
SV \/(E‘ Nt -8 (2.42)

Ky = ,/(% n2)2 _g2 (2.43)

It is important to notice that the Bloch wave number K given by (2.40)
is not uniquely defined to the extent that any integer multiple of 27/A
can be added to it. The reduced Brillouin zone scheme commonly used
in solid state physics is no longer useful as far as the phase velocity
of an electromagnetic Bloch wave is concerned. If EK(x) is expanded

in @ Fourier series
> ->
EK(X) = YX] eK e (2.44)

the Bloch wave (2.39) can be written as a linear superposition of an
infinite number of partial plane waves which are the so-called "space
harmonics.” From (2.39) and (2.44) we have

B(x.,z,t) = ] &M B R R (2.45)

n

(n)

where EK are constant. Thus the multivalued nature of the Bloch wave
number embodies the existence of the whole set of space harmonics.

If the periodicity is removed, i.e., ny =n, =n then the Bloch mode
should become an ordinary plane wave and K should be equal to kX = % ncoso.

Equation (2.40) in this case reads

coska = cos[kx(a+b)] = cosk A (2.46)

so that when Ny = Ny << nq, the principal value of K, can be chosen

as that nearest to k]x or k2x‘ We can insure that K satisfies the
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above condition by choosing it in such a way that
> =(n
lgéo)I = 'eé )I (2.47)

for all n or equivalently by choosing K such that the integral
A

J E(x)dx = 2, (2.48)

1
A K

)
has a maximum value.
Having a proper choice of the Bloch wave number K we are now

in a position to define the phase velocity of a Bloch wave. It is

defined as

1 e —— (2.49)

The phase velocity defined above is strictly speaking the phase
velocity of the fundamental (n = 0) space harmonic which is a plane

wave of the form

E(x,z,t) = <E >’ X o170t (2.50)

In the long wavelength regime where the whole structure behaves as if it
were homogeneous, the fundamental space harmonic is the dominant part of the

Bloch wave and can be taken alone as a very good approximation of the whole

wave.

The group velocity for a Bloch wave packet is given by

vg - (5K) By * (EE) 4, | (2.51)

In a homogeneous medium the group velocity represents the velocity of

energy flow of a quasi-monochromatic wave and is thus parallel to the
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Poynting vector which is a constant vector in a homogeneous lossless
rmedium. The Poynting vector of a Bloch wave aiven by (2.39) is a
periodic function of x. The group velocity (2.51) of the same wave,
however, is a constant vector. The discrepancy is due to the fact that
in a periodic medium the power flow is a periodic function of the space
coordinates. We will show, however, that the averaged velocity of energy
flow defined as

%— (Poynting vector) dx

g (2.52)

% (Enerqy density) dx

v
Q
—_—— o=

is exactly equal to the group velocity as given by (2.51) (see Appendix
B). This endows the concept of group velocity as defined by (2.51) with
a rigorous meaning. It is an extremely useful concept since it now makes
it possible to consider the propagation of confined finite aperture beams
in a layered medium. The space averaged Poynting vector and energy den-
sity are particularly useful in the long wavelength regime where the

medium can be considered as a quasi-homogeneous and anisotropic medium.

2.5 Birefringence and Double Refraction

In this section we review the birefringence which results from the
medium periodicity. We start by reviewing in the context of our present
discussion the birefingent behavior of bulk anisotropic media.

The index of refraction of light propagating in an anisotropic
medium depends on its state of polarization. Given a direction of propa-

gation in the medium, there are in general two eigenpolarizations with
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two respective eigenphase velocities. The directions of eigenpolariza-

tion and their corresponding indices of refraction for a plane wave of

the following form

i(%—ng.?—wt)

E(r,t) = Fe (2.53)

are given by the following well-known formulae [6]

sx2 gyz 522 1
n2—e le ' nz-e /e ' n2-e /e ) ;7_ kB
x' o y' To z' "o
ns. (3-F)
By = et i= X,z (2.55)
n "E.i/f:o

where Ex2Ey o€, are the principal dielectric constants and 3 is a unit
vector along the direction of polarization.

Equation (2.54) (also known as Fresnel's equation of wave
normals) can be solved for the eigen-indices of refraction, while
equation (2.55) gives the directions of polarization.

It is important to notice that equation (2.54) is in fact the

dispersion relation between w and kK. If we define K as (w/c)n? for the

plane wave given by (2.53), then equation (2.54) can be written as

2 2 2
K k k
Zx % 5 b * 5 r4 = ] (2.56)
2w fx 2w %y 2w %z
where k™~ 2 e k™~ A k™~ 7 €
C 0 C (0] (o 0
K=k %4 242 (2.57)
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Equation (2.56) describes a surface of two shells in K-space known as
the normal surface. The two shells of the normal surface have only
four points in common. The two Tines which go through the origin at
these points are known as the optic axes. Given a direction of propa-
gation, there are in general two k values which are the intersections
of the direction of propagation and the normal surface. These two k
values correspond to two different phase velocities w/k of the waves
propagating along the chosen direction.

Equation (2.56) can also be derived directly from the wave equa-

tion
-3 > = 32
V x (VxE) + ue ——z-ﬁ =0 (2.58)
ot
Substitution for E from (2.53) gives, if we also recall k = %-nZ:

Ex BB)+f eE=0 (2.59)

or equivalently

2 2, 2 k_k k_k E
W uex—ky -kZ X'y X'z X
2 2 . 2 N
kykx W uey-kx —kZ kykz Ey 0
- Z 2 e B
kzkx hzky W pez-kx -ky Ez

(2.60)

In order to have a nontrivial plane wave solution, the determinant of
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the matrix in (2.60) must vanish. This gives us equation (2.61) which

is equivalent to the dispersion relation (2.56), if we recall that
2

c = 1/u€0.
2. i 24 2 e X
W ne, ky kz kxky Koy
2 2. 2 =0
det kykx W uey-kz -kx kykz
2 . 2
kka kzk_y wzuez—kx —ky

(2.61)

Of particular interest is the uniaxial crystal with a normal surface
consisting of a sphere and an ellipsoid of revolution. If we set

Ey =g, in equation (2.56), the equation breaks into two factors, giving

([ k k ©+ k 2
Lo L L -8 (2.62)
) Ny Ng c
2 2 2
ke Ky RS2
|2 2 ;? (2.63)
N 0
where
2 _
Ng = EX/EO
2 _
Ny = ey/eo (2.64)

The section of the normal surface by the coordinate plane ky =0 is a

circle and an ellipse (see Fig. 2.7). The line joining the origin and
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the osculating points of the circle and the ellipse is the optic axis.

> ->
It can easily be shown that the vectors E and H always 1ie in the

tangent plane of the normal surface. As a result the Poynting vector

E defined by

S=ExH (2.65)
js always parallel to the group velocity which is given by
v = k 2.66
Ve VEw(k) ( )
To prove that S and 39 are parallel we start from equation
replacing 3/9t by -iw rewrite it as
KE) - ERE) + of 1of = O (2.67)
P Bi =0 (2.68)

-
1f we multiply both sides of this equation by E, we obtain, using
&3 T 41

26k [R(E-E)-E(R.B) J#E- [R(E-B)-E(R-K)+uBpeE] = 0 (2.69)

The second term vanishes according to (2.67) and the first term can be

T T S - > >
written as 28k-[Ex (kxE)]. Hence, we have, using H = 1/wp kxE ,

>

sk-(ExH) = 0 (2.70)

my

> > >
i.e., ExH is perpendicular to 8k which is an arbitrary infinitesimal
vector in the tangent plane of the normal surface. The group velocity
'Vg defined by (2.66) is also perpendicular to the normal surface, thus

proving our statement.
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Let us now consider the propagation of electromagnetic waves
in a medium consisting of infinitely alternating Tayers of two differ-
ent homogeneous and isotropic substances. Although each individual
layer is isotropic, the whole structure behaves as an anisotropic medium.
TE waves and TM waves are found to propagate with different effective
phase velocities and the periodic medium is birefringent. This
phenomenon is well known in an anisotropic homogeneous crystal and is
used in the electrooptic modulation of light and in a variety of polar-
izing applications.

The electromagnetic properties of a periodic laminated structure
have been studied by Rytov [7], who Timited his treatment to cases in
which the direction of propagation is either parallel or normal to the
layers. In the present analysis we use the Bloch wave formalism of
Section 2.2 to obtain the exact birefringence behavior of a periodic
medium for waves propagating in an arbitrary direction.

It was shown above that the only dynamical variables needed to
describe a monochromatic plane wave propagating in a periodic stratified
medium are w, B8, and K. The generalized wave vector is defined as

K =ak+apg (2.71)
The dispersion relation between w and K is aiven by equation (2.40).
If the period A is sufficiently small compared with the wavelength
then the whole structure behaves as if it were homogeneous and uniaxially
anisotropic. The wave given by (2.39) thus behaves as if it were a

plane wave of the form given by (2.50).
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In Figure 2.6 the contours of constant w are plotted in the K-B
plane. These are sections of the normal surfaces with the K-8 plane
for various frequencies. It is evident from inspection that at the long
wavelength 1imit (A >> A) the dispersion of a layered medium is qualita-

tively similar to that of a negative uniaxial crystal.

To demonstrate this analogy we take the Timit of k., a << 1,

1x
ksz << T and KA << 1 and expand all the transcendental functions in

(2.40). After neglecting higher order terms we obtain

g2 B

e TE (2.72)
n n C

0 0

2 2 2

K - B = ™ (2.73)
n n

with  ° ¢ |

nZ=2n? b0 (2.74)
1 _a. 1 b._1 (2.75)
2K Tz%'n 2 :
ne n] n2

Equations (2.66) and (2.67) represent the two shells of the normal sur-
face in the K-8 plane. One surface (2.72) applies to a TE wave and is
a sphere while the TM normal surface (2.73) is an ellipsoid of revolu-
tion. TE waves thus are formally analogous to the so-called ordinary
waves in a uniaxial crystal, while TM waves are the extraordinary waves.
The normal surface becomes more complicated at higher frequencies. It
consists of two oval surfaces osculating each other at the intersections

with the K axis,as long as the frequency is below the first forbidden

y
gap.
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For frequencies higher than the forbidden gap, the oval surfaces

break into several sections. The break points occur at

K=m %- " m = integer (2.76)

which is the Bragg condition for the quasi-plane wave (2.50).

Double Refraction at a Boundary

Consider a plane wave incident on the surface of a semi-infinite

periodic stratified medium. If the incident wave is a mixture of TE
and TM waves, double refraction takes place. This can be easily seen
from the normal surface in the g-K plane. A very important kinematic
property of refraction at a plane interface between two dielectric media
is the fact that B, the tangential component of the wave vectors, must
be equal for both the incident and refracted waves. Given a 8 value,
the two shells of the normal surface in general yields two K values,
thus giving rise to two refracted waves as shown in Figure 2.8. The
two refracted waves are in general both extraordinary waves in the sense
that their phase velocities, i.e., effective indices, depend on B.

However, at the long wavelength regime where X >> A, TE waves be-
come ordinary waves while TM waves remain extraordinary. If the wave
vector of the incident wave is denoted by Ko’ and 6 is the angle of
incidence, the projection of the wave vector along the boundary plane

is given by

>
[

k0 sin © (2.77)

The transverse wave vectors in the medium are determined either
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Fig. 2.8 Double refraction at the boundary of a periodic stratified

medium.
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graphically from Figure 2.8, or analytically from the dispersion rela-

tion (2.40). The angles of refraction are given by

8
tan 6 = e (2.78)
TE R
tan Ory = —K-B-- (2.79)
™

The angles given by (2.78) and (2.79) are the directions normal to the
wavefronts of the refracted waves. The directions of energy flow are
obtained by taking the normals to the normal surface.

The effect of double refraction is very pronounced near the zone
boundaries where the medium is very dispersive and the bandgap is dif-
ferent for TE and TM modes. At the edge of the bandgap the group velo-
city which is parallel to the normal to the curve, is along the z axis
and has no component normal to the interfaces. This is consistent with
the fact that at or inside the gap the reflectivity is unity so that no

power can flow along the x direction.
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Chapter 3
OPTICAL MODES IN LAYERED MEDIA

3.1 Introduction

We have derived in Chapter 2, the eigenmodes of electromagnetic
waves in an infinite periodic layered medium. Bloch waves and band
structures are obtained by using the concept of translation operator.
In the practical world the real structures are all finite in the number
of periods. In order to solve the eigenmodes of finite structures, we
have to match the boundary conditions at the surfaces of the layered
media. Conventional methods involve matching the plane wave solutions
at each interface. This results in solving a large number of linear
simultaneous equations. A systematic approach is to use the matrix
method described in Section 2.2. This new method is based on the fact
that every interface is now replaced by a 2 x2 matrix which is much
easier to deal with. As a result of the successive matrix multiplica-
tion, we obtain a Tinear relation between the fields on both sides of a

finite layered medium:

= (3.1)

The matrix contains all the information of the layered medium. Aa’ Ba
are the amplitudes of plane waves on the air side of the structure, As’
BS are those of the substrate side. This matrix has a modulus of

: = are the
ksx/kax and becomes unimodulayr when Ny = Ngs where n, and ng
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refractive indices of the air and substrate respectively. We will as-
sume n. > n_ throughout this thesis, unless otherwise specified.
The reflectivity coefficient is given by

B m
a 21
= | % SR 13 3.2
] <Aa) B.=0 ("‘n) 2

Given a structure, the reflectivity depends on 8 and w for both TE and
T™ waves:

ro= r(B,uw | (3.3)

In the next section we will show that the zeros and poles of reflectivity

coefficient play an important role in the mode theory of layered media.

3.2 Regge Poles and Optical Modes

A basic problem in high energy physics is that the poles in the
scattering amplitude, which are assumed to dominate the scene, correspond
to exchange of particles carrying definite angular momentum [1]. In
other words, a resonance scattering corresponds to an eigenstate of the
composite system. It was suggested by Regge [2] in 1959 to treat the
angular momentum as a continuous complex variable. In particle scatter-
ing, the angular momentum corresponds to the impact parameter, while in
the optics of layered media the angle of incidence (or equivalently, B)
is the corresponding variable. We can now extend the B variable into a
complex variable and search for the zeros and poles of the reflection co-
efficient which correponds to the scattering amplitude. In general, the

poles occur at complex values of B, and each of these poles corresponds
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either to a guided mode or a continuum mode or a leaky mode. It is
important to notice that at the poles of the reflection coefficient
the reflectivity is infinite. In order to fulfill the finiteness of
the electromagnetic field, the solution of the Maxwell equation con-
sists of outgoing waves only. We will now discuss these poles in
terms of two categories:

(a) B> %-ns (guided modes)

In this region both ksx and kaX are pure imaginary. Outgoing
waves with imaginary propagation constant are evanescent waves.
Therefore, the optical energy is guided by the structure and propagat-

ing parallel to the layers.
(b) B8 = complex (leaky modes)

These modes are referred to as "leaky modes" [3] since they cor-
respond to a flow of energy away from the layered medium. These modes
have B's with positive imaginary part. As a result, the wave attenu-
ates in the direction of propagation which may account for the enerqgy
outflow. However, the transverse k vectors kSx and kax have a negative
imaginary part which makes the field "blow up" at infinity, hence these

modes do not belong to the proper eigenvalue spectrum [4].

In addition to these poles there are solutions with standing

waves along the x axis existing for all 0 < B < %-n They are divided

s

into two categories:
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(a) %'na <p = %-ns (substrate modes)

These modes have a pure imaginary kax’ hence the field is evanes-
cent in the air. In the substrate the field is a standing wave. The
energy is flowing in the direction of propagation. Since the major
part of the energy is in the substrate, these modes are called substrate

modes.

w .
(b) 0<B< = (air mode)

These modes have both real kSX and kax’ hence the fields are
standing on both sides of the structure with their energy flowing in

the z-direction.

There are also solutions with pure imaginary B. These modes are
evanescent waves in the z-direction. Since we are only interested in the
propagating waves in the z-direction, these evanescent modes will not be

discussed in this chapter.

3.3 Guided Waves

Multilayer waveguides are becoming increasingly important in inte-
grated optics. The 2-channel dielectric waveguide has been studied ex-
tensively in the theory of branching waveguides [5,6], which is used in
fabricating mode selectors, switches and directional couplers in inte-
grated optics [7]. The analytic treatment for the general N-channel
waveguide, however, suffers from the serious difficulty of solving an
eigenvalue problem involving a 4N x 4N matrix, and has relied heavily on
numerical techniques.

In the present analysis we employ the matrix method described in
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‘ Section 2.2 which involves only the manipulation of 2x 2 matrices. Of
particular interest is the Periodic Multichannel Dielectric Waveguide
(PMDW) which consists of a stack of dielectric layers of alternating in-
dices of refraction. Analytic expressions for the mode dispersion rela-

tions and field distributions can be obtained by the matrix method.

We are looking for guided waves propagating in the positive z direc-

tion. Two important periodic multichannel waveguides will be considered

in the following.

(a) Symmetric Type

Consider the simplest kind of symmetric PMDW with the index of

refraction given by

n, mA - X = mA + b
(m=0,7,2,55e38=1)
nlx.a) = (3.4)
N otherwise
with ‘
ny <n, (3.5)

The geometry of the waveguide is sketched in Figure 3.1. We will limit our
analysis to TE waves only. It was shown in SectionZ.2 that the trans-
Jation matrix T which relates the field vector in one period to that of

the next one is given by

T = (3.6)

where = after defining —1'k]x = q, k2x =p

A = e cos pb - %—(%-- %Jsin pb] (3.7)



//%///é

/////////
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B = ™[~ ;— (% + %)sin pb] (3.8)
] -
C = eqa[7 (%—+ %)s1n pb] (3.9)
- a0 LR | Qg
D =e "[cos pb + 3 (q p)swn pb] (3.10)
with
R R O 5 TH
p=[En)? - g% =Ky, (3.12)

Since we are interested in gquided waves only, the fields must be evanes-
cent in the n, layer. The matrix equation (3.1) for this case can be

written
71 e . (3.13)
We set Aa = BS = 0 in (3.13); since only outward radiating waves can be

present in a waveguide the mode dispersion relation is immediately ob-

tained

a(in NKA) ,s1n(N-1)KA)

sin KA 7~ Vsin KA 2 (3.14)

where we have used the Chebyshev identity (Appendix C) to obtain the
matrix element M of the Nth power of a unimodular matrix.

If the left-hand side of (3.14) is plotted using (2.37) as a
function of B for a given frequency w, the zeros are the mode propagation
constants (B's). It can be shown mathematically that there are exactly

N zeros in each allowed band where KA varies from mm to (m+1) and none
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elsewhere (see Appendix C). Physically the waveguide can be considered as
a system of N interacting slab waveguides. The N modes are simply due to
the splitting of an N-fold degenerate band as the separations between the
N identical slab waveguides are reduced from infinity. Each confined mode
of the single slab waveguide thus gives rise to a band with N nondegen-

erate modes. The dispersion relation (w vs B) is shown in Figs. 3.2 and

3.3.

(b) Asymmetric Type

Consider a simple asymmetric N-channel waveguide with the following

index of refraction

n x <0
n(x,z) = n, mL S x <mA+ b (3.18)
(m=0, 1,2,...,N-1)
n otherwise
, A, A
The grand matrix which relates (B ) to (B ) in this case is easily ob-
a s

tained from the continuity condition and is given by

1 q 1 q_ : N
5 LI 2 5 (1- A B
7 (gD 7! qa) |
M= (3.16)
1. 1 1+ 8 C D
AU AU W
Similarly, the mode dispersion relation is given by
979 | sin NKA_ _ sin(N-1)kA _
(A + q,%q O snrn - sinkh - 0 (3.17)

The eigenvalues B are determined as in the symmetric case (3.14). The
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above equation can be reduced to equation (3.14) which is the mode
condition for a symmetric N-channel waveguide by setting n, = ny.

Associated with each B of a confined mode at a given frequency,
there is a corresponding Bloch K vector given by (2.37). Instead of
having all eigenvalues (B's) in the allowed band, an asymmetric
periodic N-channel waveguide can have some eigenvalues (B's) with cor-
responding complex K and thus be in the "forbidden" band. These modes
can be traced in terms of perturbation theory to the unperturbed modes
of the surface channels in terms of perturbation theory. The character-
istics of those modes are the localization of eneray near the surface.
Eingevalues (B's) of the confined modes as a function of the separation
between the neighboring channels are shown in Figs. 3.4 and 3.5 for two
typical waveguiding structures. The band edges of the infinite
periodic medium are also shown in the same figures. For small separa-
tion, all the modes have their eigenvalues in the allowed bands. There
are exactly N B-Tevels in a complete band. At infinite separation the
g-levels consist of an (N-1)-fold degenerate state and one nondegenerate
state. The (N-1)-fold degenerate state will split into a band of (N-1)

levels when the separation is finite. Those (N-1) levels are always in

the allowed band regardless of separation. The crossing between the

nondegenerate state and the band edge happens at some critical separa-

tion a.- The surface modes only exist when the separation is larger
than a.. The properties of surface mode will be discussed more

thoroughly in the next section.
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3

SEPARATION a

Fig. 3.4 B vs separation for two asymmetric multichannel] waveguides
with N=2 (upper diagram) and N=5 (lower diagram) at w==%—n gu
The dark zones are the allowed bands. Dashed curves are the

band edges. The inset shows the refractive index profile.
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SEPARATION a
Fig. 3.5 B vs separation for two asymmetric multichannel wavegquides
with N=2 (upper diagram) and N=5 (lower diagram) at w==w§.
The dark zones are the allowed bands. Dashed curves are the

band edges. The inset shows the refractive index profile.
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The transverse field distributions for a few typical periodic
multichannel asymmetric dielectric waveguides are shown in Figs. 3.6
and 3.7 with N = 2 and 5, respectively. Only the confined modes in the
first allowed band which corresponds to the lowest order modes of the
uncoupled individual channel waveguide are shown. As we know, there
are exactly N modes in each complete group. The modes will be desig-
nated as TEmn and Tan with n as the band index (n = 0,1,2,-++) and m
as the mode index (m = 0,1,2,---,N-1). There are exactly (mnN) zero
crossings in the transverse field distribution for the mnth mode with
n zero crossings in each guiding channel and m zero crossings in the
(N-1) separation layers. The field can have at most one zero crossing
in each separation layer where the wave is evanescent.

The field distribution depends strongly on the index of refrac-
tion of the superstrate ng when n, is near ny- The variation for the
fundamental mode is shown in Figs. 3.8 and 3.9 for N = 2 and 5, respec-
tively. There is a drastic change of the field distribution for the
surface channel when ny is varied slightly from Ny This phenomenon will
be very useful in branching waveguide if a superstrate material with
electrooptic effect can be found so that n, can be tuned slightly around

ny by applying a dc field

) DC
n na(E

. 0) + o£™C (3.18)

with

D
n,(E ¢ - 0) ny (3.19)

This drastic change of the field distribution due to slight variation of

n, can be used in electrooptic modulation [8].
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Fig. 3.6 Transverse field distribution for the confined modes in the

first band of a 2-channel waveguide.
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Fig. 3.7 Transverse field distribution for the confined modes in the

first band of a 5-channel waveguide.
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Fig. 3.8 Transverse field distribution for the TE00 mode of a 2-channel

waveguide at various na's.
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Fig. 3.9 Transverse field distribution for the TE00 mode of a 5-channel

waveguide at various na's.
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In the above analysis we assumed that the refractive index of
the substrate ng =n for simplicity of calculation. This is the rea-
son why only one surface mode is found. In general, if ny # ng < Ny,
two surface modes will exist. This is similar to the surface states
in a crystal where the number of surface states is equal to the number
of surface atoms. Here the number of surface modes is equal to the
number of surface channels.

It has been shown in the above analysis that there are exactly
N modes in each band. However, not all the modes need be confined. A

confined mode must have its propagation constant B satisfy

Bm1'n “E % Bmax (3.20)
with
.~ W
Brax = ¢ M2 (3.21)
= (] W
Brin = Max(z n, =) (3.22)

so that the wave is propagating in the guiding channels and evanescent
in the substrate and cladding regions. For large enough separation be-
tween channels the whole band of B-levels will fall between 8 ., and
Bmin SO that all the N modes are confined. As the guiding channels are
brought closer together, the B-levels "repel" each other. As a result
some of the modes will find their B-value expelled from the confined

region in B space. Those modes are transformed into radiation modes

(B < Bmin)‘ The transition is shown in Figs. 3.4 and 3.5.



131

3.4 Electromagnetic Surface Wave

It is the purpose of this section to investigate electromagnetic
surface waves guided by the boundary of a semi-infinite periodic multi-
layer dielectric medium. The surface wave, by definition, is a wave
bounded by the interface between two semi-infinite systems. For example,
the ripple phenomenon in water is a surface wave guided by the interface
between air and water. Another interesting kind of surface wave is the
electronic surface state which has been extensively studied in solid
state physics. The electromagnetic surface state was considered in an
approximate manner by Arnaud and Saleh [9]. In this paper, the band theory
of the periodic dielectric medium is employed to study the surface wave

with an eigenvalue in the "forbidden" band.

The existence of a surface state can be explained as follows:

In Section 2.3 we have shown that, at a given frequency, there are re-
gions of B, for which K is complex and K = %g-t 1Ki. For an infinite
periodic medium the exponential intensity variation cannot exist, and
we refer to these regions as "forbidden". If the periodic medium is
semi-infinite, the exponentially damped solution is a legitimate solu-
tion near the interface and the field envelope decays as exp(-Kix) where
x is the distance from the interface.

The existence of surface states can also be argued using pertur-
bation theory. According to perturbation theory, the periodic multi-
layer dielectric medium which consists of alternating layers of dif-
ferent indices of refraction can be considered as a system of interacting
wavequides. These waveguides are identical to each other except for the

one near the surface. The interaction strength between the waveguides
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depends on the separation between the neighboring waveguides due to
overlap of the evanescent field distributions. When the separation is
infinite, there is no interaction and the guides can be considered as
independent of each other. The eigenvalues (B8's) thus fall into two
groups: One is an infinitely degenerate state, the other is a nonde-
generate state which corresponds to the extreme guide near the surface.
As the waveguides are brought together, the interaction between the
waveguides causes the eigenvalues to split. The splitting is shown in
Figures 3.4 and 3.5. As the eigenvalues split, the allowed energy band
for the infinite structure is fully occupied by the levels originating
in the infinitely degenerate level. As a result, the nondegenerate
level corresponding to the waveguide near the surface will be expelled
out of the allowed energy band. The only place where this state can be
accommodated is in the forbidden gap. The field distribution for this
state is localized near the surface because of he fact that the corres-

ponding eigenvalue is in the "forbidden" band, i.e., K = qg + iK.

To investigate the properties of the surface modes consider a semi-
infinite periodic multilayer dielectric medium consisting of alternating
layers of different indices of refraction. The distribution of the

indices of refraction is
n x<0
n{x,z) = n, mh<x<m\+b
ny mh+b<x< (m1)A (m=0,1,2,¢-) (3.23)
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The geometry of the structure is sketched in Figure 3.10. We look for
the possibi]fty of waves propagating in the positive z direction. Since
the structure is semi-infinite, we are only interested in the surface
wave as far as guiding is concerned. For the sake of definiteness we
consider the case of TE surface modes where the electric field is polar-
ized in the y direction. The electric field distribution (TE) obeys the
wave equation

2 ' i

2 E(x) + S nf(x) E(x) = 0 (3.24)
oX c

We take the solution in the following form:

- Ta
ae x<0
E(x) = <( ' (3.25)
{\ EK(x)eﬂ(x x>0
where q, is given by
q, = J8° - (&n)" (3.26)

and o is a constant.

In order to be a guided wave, the constant K in (3.25) must be com¥
plex so that the field decays as x goes to infinity. This is possible
only when the propagatfng conditions (i.e., B) in the periodic medium
correspond to a "forbidden" band. Another condition is that E(x) and
its x derivative be continuous at the interface with medium "a".  This

gives us the condition for surface modes:



134

£
<

ied medium.

iodic strati

inite peri

f

i-in

Fig. 3.10 A sem



135

-iKA

e -A-8B

q, = q =3 (3.27)
a 8 KA A+ B s

The field distributions of some typical surface waves are shown
in Figures 3.11 and 3.12. It is evident that the energy is more or less
concentrated in the first few periods of the semi-infinite periodic

medium. It can easily be shown that

Energy in the first period - I= e'ZKiA)

Energy in the whole semi-infinite periodic structure

(3.28)
where K_i is the imaginary part of K. Generally, speaking, the fundamental
surface wave has the highest Ki and hence the highest degree of localiza-
tion. The fundamental surface wave may happen to be in the 0th or the
15t forbidden gap. It depends on the magnitude of the index of refrac-

tion . For n, less than " which is a case of practical interest,

(na = index of refraction of air) the fundamental surface wave

has a Bloch wave vector in the first forbidden gap. This is due
to the fact that when the waveguides are separated infinite)y from
each other the singletstate has an eigenvalue B lower than that

of the infinitely degenerate state.

The field distribution in each period is similar to that of the

distribution in the preceding period except that the amplitude is reduced

-K:A
by a factor of (-1)™ e i , where m 1is the integer corresponding to the

mth forbidden gap.
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We have derived the mode condition for the surface wave by match-
ing the boundary condition between an evanescent wave and a decaying
Bloch wave. This electromagnetic surface wave is almost completely
analogous to the surface state in solid state physics. The existence of
the surface mode in a semi-infinite structure is independent of the sep-
aration between waveguides, because the allowed band is always fully
occupied. However, in a finite system, the allowed band is not fully oc-
cupied. As a result, the surface wave appears only when the separation
is large enough so that one of the eigenvalues falls within the "forbid-
den" gap (see Figures 3.4 and 3.5). This state of affairs is quite dif-
ferent from that of electronic surface states in crystals where, accord-
ing to Shockley [10], surface levels appear only when the interatomic
distance becomes small enouah so that the boundary curves of the allowed
energy bands have crossed. The number of surface modes equals the number
of modes that can be guided by the waveguide near the surface. This is
very comprehensible in terms of perturbation theory.

The surface mode can still be guided when n,<ny, however, the
local extrema occur in the regions with index n where the x dependence
is sinusoidal. This is a general property of evanescent wave. The field
distribution profile can bend at most once in the region where the wave

is evanescent. The bending corresponds to a local minimum of the mag-
%
axz

is always positive, for E > 0 the field distribution profile is

1
nitude of field distribution. Because of the fact that E'(

concave upward, while for E < 0 the field distribution profile is con-
cave downward. This makes it impossible for |E(x)| to possess a local

maximum in the region where the wave is evanescent.
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In the above analysis we assumed %-n] < B < %’"2 so that the field
is propagating (i.e., has a sinusoidal x-profile) in the higher index medium
while being evanescent in the lower index medium. However, this condition
is not necessary. Surface waves exist also when B'<%-n]’2. The analysis
in this case is exactly the same as that above except that g has to be
replaced by -ik]x. The guiding, however, is not as tight as that of the
former case, since the Bloch waves decay faster whenever there is a region
where the wave is evanescent.

The surface wave does not exist, however, when B8 > E-n] 2 since in
9

2 Cc
this case %—9—%-> 0 everywhere so that if the field is evanescent in the
X

homogeneous medium "a", it will increase without bound in the periodic

medium and vice versa.

3.5 Optical Interface Modes

It is well known in semiconductor physics that electronic inter-
face states exist at the interface between two semiconductors [8]. This
has been extensively studied in the area of solid state devices where
the junctions are the main feature of these devices. It is not difficult
to believe that optical interface states can also exist at the interface
between two periodic layered media.

In what follows, we will derive the dispersion relation for the
interface modes. The analysis is similar to that of the surface modes
except that the air is now replaced by another layered medium. The dis-

tribution of the refractive index is given by
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ny mA+ b <x< (m1)A
N, mA < x <mA+ b
ng -(m1)A" < x < -mA' - C

-m\' - ¢ < x < -m\'!

(M=0,1,2,3,-++) (3.29)

The geometry of the structure is sketched in Figure 3.13.

We again look for the possibility of guided propagation in the positive
z direction. Since the structure is infinite, we are interested only
in the interfacial waves as far as guiding is concerned. We will again
analyze this problem for TE waves only. The analysis for TM waves is

similar. We take the solution of the wave equation in the following form:

EK(x) g 1KX x>0
E(x) = (3.30)

EKI(X) e--iK A X < 0

In order to be a guided wave, the Bloch wave numbers K and K' must be

complex so that the field decays as x goes to infinity.
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K= mm/A + 1Ki
(3.31)
K' = m'm/A' + K,
This is possible only when the "forbidden" bands of both layered media
have some overlap and the propagation condition (i.e., B) has to be in
these overlap regions. Another condition is that E(x) and its x deriva-
tive be continuous at the interface. This gives us the dispersion rela-
tion:
-iK'A"

e - A' -B'
3x)(e—iK'A' )

-iKA
)& A= By (3.32)

-(-ik .
e M a4 B

= (-ik
- A' + B i

The optical energy of these interface modes is also localized near the
interface. A special case of particular interest is when ng = Ny,

ng =Ny, ¢ =a, and d = b. Under these conditions (3.32) becomes

(e”TKb _a gy KA L a o) = 0 (3.33)

The modes can be divided into two categories: (a) even modes with their
maxima right at the interface, (b) odd modes with their node at the in-
terface. Typical field distributions of this structure are shown in

Figure 3.14. In general, the solution of (3.32) or (3.33) forms a dis-
crete set of spectrum (B's). It is even possible that there is no solu-

tion of (3.32) for some particular cases.

3.6 Leak Consideration for Surface Waves

Because of the finite number of periods in the structure, the

intensity of the substrate is not exactly zero (i.e., the surface modes
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are leaky). This loss results in the attenuation of the surface mode
in the direction of propagation. The following calculation is to find
out the attenuation coefficient o for each surface mode. The time-
averaged flux of energy is given by the real part of the complex Poynting

vector

S = 5 Re(E x H¥) (3.34)

Noj—

To evaluate the total power flow P, we integrate the z-component of S

over the cross sectional area A:

p = J s, dxdy (3.35)
A

The power loss due to flowing of energy into the substrate is given by

P.loss = j SX dzdy (3.36)
W

where w is the wall area. The power flow along the guide can be written

P(z) = P_ e % (3.37)

Thus the attenuation coefficient is given by

a=-p (%l;_) (3.38)

where -(%%6 can be interpreted as the power loss per unit length of the

guide. By combining (3.35), (3.36), and (3.37) we obtain

o= (3.39)
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In calculating the attenuation coefficient o, we have to use the unper-
turbed mode solution to evaluate the denominator of (3.39). However,
we cannot use the unperturbed Sx, because for a guided mode SX = 0,

Nevertheless, S_ can be estimated by decomposing Sy into an outgoing

%
part and an incoming part and taking the outgoing part as Sx' This
procedure is legitimate because there is actually no incoming wave in
a real structure.

Using the field distribution given in the previous section, we ob-

tain
NA
_ CB 1 1
J s, &= 8 b+ 3 (Fa + B} (3.40)
where
- e‘Z(N”)K A q§ sin kob cla2
¥y = =) (14 =) + —p= cos kyb(1 - —)
i k 2 k
1 -8 2 2
g s1n2k2b (3,413
EE& IE25 '
1 - e-2(N+1)K1A -2K1A qg sin k]xa qi
Fp = KT © B . ] # g k1xa(]'ET)
T=a ! 1x A Tx
q sinzklxa
s B 'T"r] (3.42)
1x 1x
SX is given by
cky, 1 q°, -2
Se= g (1+g)e e
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Here we assume that the substrate has a refractive index of n,. The

attenuation coefficient o is thus given by

2

k q -2NK, A
- _2X a 1 1 -1 i
o= g5 1+ 2 {gg-*z (Fa+ Fpb)} e
2X o
—2(N+1)K1A
For large number N, e may be neglected in F,, F,.
-2NK, A
see that o decays as e T as N increases:
-2NK1A
o voe '
N-)-oo

A typical case is shown in Figure 3.15.

(3.44)

Thus we

(3.45)
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Chapter 4
BRAGG WAVEGUIDES

4,1 Introduction

Optical dielectric waveguides with a slab configuration are capable
of supporting lossless confined modes provided the index of refraction of
the inner layer exceeds the indices of the two bounding media. This
condition is necessary to obtain an imaginary transverse propagation con-
stant which corresponds to an evanescent decay of the mode field in the
bounding media.

There are many practical situations where it is desirable or neces-
sary to guide power in a layer with a lower index than that in the two
bounding media. A prime example of such a case is the waveguide laser in
which the inner layer is air. This situation leads to lossy (leaky)
modes whose loss constant increases as the third power of the reciprocal
thickness of the inner layer.

In a Bragg wavequide the conventionally used substrate is replaced
by a periodic layered medium. The use of Bragg reflection in wavequiding
was first suggested by Fox [1] and recently by Yeh and Yariv [2]. It is
shown that confined guiding with arbitrarily low loss is possible even
when the guiding layer possesses an index of refraction which is lower
than that of the periodic layered substrate. The propagation may be con-
sidered formally as that of a plane wave zigzagging inside the guiding
(n_ ) layer and undergoing total internal reflection at the interface

g
(x = -t) with the low index medium (na) and Bragg reflection at the
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interface (x = 0) with the layered medium. Bragg total reflection
happens only when the incidence angle satisfies the Bragg condition, or
more exactly, that the propagation conditions inside the periodic
layered medium fall within one of the optical "forbidden" gaps.

The introduction of Bragg waveguides opens a new dimension for
light propagation in integrated optics. It is now possible to quide a
light wave in a low refractive index film. Before we study the mode
properties of a Bragg waveguide, we will first show some important char-

acteristics of Bragg reflectors in the following section.

4.2 Bragg Reflector

Periodic perturbation in a dielectric medium has been used exten-
sively in fabricating distributed feedback lasers [3,4] (DFB) and dis-
tributed Bragg reflection lasers [5] (DBR). Corrugation over the
guiding layer is the usual way of providing periodic perturbation. The
optical fields are determined by using the coupled-mode theory [6],
which is a very good approximation as long as the perturbation is small.
In the case of square well alternation, which corresponds to the layered
medium described above, an exact solution is obtained by our matrix
method.

Consider a periodically stratified medium with N unit cells. The
geometry of the structure is sketched in Figure 4.1. The coefficient

of reflection is given by

= (2) (4.1)
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From (2.27) we have the following relation

i \ /I N
{3 ) _ A B > <iaN )
\bo/ +C D by (4.2)

The Nth power of an unimodular matrix can be simplified by the following

matrix identity [7] (see Appendix D)

: N /I
[ABY (A - Uy, By \
\ C D \ } )
vy g1 = Uyz /
where
U, = Sin(N+1)Ka (4.4)
sin KA )

with K given by Equation (2.37).

The coefficient of reflection is immediately obtained from (4.1),
(4.2), and (4.3) as

Wy,

"™ T AU

T o
N-17"N-2 S

The reflectivity is obtained by taking the absolute square of N

. ef? (4.6)
c]? + (2%%“§%192

2
|‘"N|

We have in (4.6) an analytic expression of the reflectivity of a
multilayer reflector. The term [C[2 is directly related to the

reflectivity of a single unit cell by

2
lr]IZ . .lﬁqr._, (4.7)
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or

2
2 vyl
|c]

R e 1 (4.8)
1 - Ir1|

The lr.ll2 for a typical Bragg reflector is usually much less than 1. As
a result ICI2 is roughly equal to !r1|2. The second term in the denomina-
tor of (4.6)is a fast varying function of K, or alternatively, of B and

w . Therefore it dominates the structure of the reflectivity spectrum.
Between any two "forbidden" bands there are exactly (N-1) nodes where the
reflectivity vanishes. The peaks of the reflectivity occur at the centers
of the “"forbidden" bands. There are exactly (N-2) side Tobes which are all

under the envelope |C|2/[|C|2+ (sin KA)ZJ. At the band edges KA =mm and the

reflectivity is given by

ryl? = —1& (4.9)
B} 2 . 1B
|C|™ + (N)
In the "forbidden" gap KA is a complex number
KA = mm + TK.A (4.10)
The reflectivity formula of (4.6) becomes
2
e |2 = ] (4.11)
N sinh K:A 2
¢ + ()
sin I\

i

For large N the second term in the denominator approaches zero exponentially

-2(N-1)K; A o _ . .
as e T, It follows that the reflectivity in the forbidden gap is

near unity for a Bragg reflector with a substantial number of periods.
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TE and TM waves have different band structures and different re-
flectivities. For TM waves incident at the Brewster angle there is no
reflected wave. This is due to the vanishing of the dynamical factor
]Clz at that angle.

The reflectivity for some typical Bragg reflectors as a function

of frequency and angle of incidence are shown in Figures 4.2 and 4.3.

4.3 Theory of Bragg Wavegquides

In what follows we will show that, in principle, lossless propa-
gation is possible in a Tow index slab provided the bounding media with
indices of refraction larger than that of the inner slab are periodic.
The model analyzed below assumes stratified periodic media. The use of
stratified media in dielectric waveguiding has been proposéd by Ash [8]
who, however, did not consider the case of confined propagation in low
index materials.

Referring to Figure 4.4, we consider the case where fy < ng«<n],n2.
In the case of TE modes the only field components are E_, Hx’ and Hz'

Y
Each of these components, say Ey, satisfies the wave equation

2. 2

9 E o E 2

: + ——zx—- + 2 nz(x)E =0 (4.12)
9z 9X ;2' y

If we take Ey(x,y,z)= E(x)exp(iBz) the wave equation becomes

52E(x)

E 2, 2
— (;Z n2(x)-g2)E(x) =0 (4.13)

We take a solution in the form
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Fig. 4.2 TE waves reflectivity spectrum of a 15-period Bragg reflector

at various angles of incidence.
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Fig. 4.3 TM waves reflectivity spectrum of a 15-period Bragg reflector

at various angles of incidence.
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( q. (x+t)
(i) e? X < -t

E(x) = g (i) c]cos(kgx) + czsin(kgx) «-t=x =0

L(i11)  E (x)e™™ = (4.14)

q, = \/62-(% na)2 kg = \ﬁ% ng)z_ g° (4.15)

The assumed solution in regions (i) and (ii) of Eq. (4.14) is

where

identical to that of conventional slab dielectric waveguides [9]. The

new feature in this case is the form of the wave EK(x) e1Kx in the

stratified periodic medium where EK(x) eiKX is given by (2.38).

It is important to notice that the sign in front of the square
root in (2.35) has to be the same as that of (A+D)/2. This ensures
that the Bloch wave is evanescent in the positive x direction.

To obtain the solution for the mode of the wavequide of Figure
0 and x = -t.

]

4,4, we match the fields and their x derivatives at X

The result, using (2.36), (2.38), and (4.14) is the dispersion relation

k t-k sink t -ikA
. (qac?s gt-kgsink | = il B tibl. (4.16)
g qas1nkgt+kgcoskgt Tx e-ka_ A+B .

The left side of (4.16) contains only parameters of the guiding (ng) and
substrate (na) layers, while the right side depends only on parameters
of the periodic medium. For confined propagation B, g and kg are real

so that the left side of (4.16) is a real number. The right side is
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real only when the propagating conditions in the periodic medium fall

within one of the forbidden gaps, i.e., when (5%2)2 > 1. It follows

that confined lossless modes of the composite waveguide (Figure 4.4)

exist. Operationally we may solve for the eigenmode by starting with
some value of B8 < %—ng. This (for a given w) determines kg, qs Kqys
and k2x' If the resulting values of A and D correspond to a forbidden
gap ((A%p;)2 > 1), then the right side of (4.16) is a (fixed) real num-
ber. We then proceed to adjust the thickness of the guiding Tayer t
until an equality results. A simple physical description of the mathe-
matical procedure just outlined is as follows: For confined and
lossless mode propagation complete reflection must take place at the in-
terface (see Figure 4.4) between the quiding layer and the layered medium.
This indeed occurs only when the ziazagging wave is incident on the
interface under conditions corresponding to that of a forbidden gap.

Also important is the fact that the evanescent decay is nearly com-

plete in several periods so that practical structures with, say, ten

unit cells are a good approximation to the semi-infinite layered
medium assumed in the analysis.
A symmetric waveguide composed of a low index slab, say air, separating

two semi-infinite periodic media is of course also possible. Such a

waveguide can be constructed by replacing the structure to the left of
plane "a" (where g§-= 0) the structure to the right. The field
distribution is then even symmetric about plane a. The result of such
a procedure is shown in Figure 4.6. Such a structure can be used as the

waveguide for gaseous lasers.
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Matiiematically, the mode conditions for the TE modes of the

symmetric Bragg waveguide can easily be shown to be

N (e'iKA-A-B -k tan(k t/2) even TE modes
- =)
1x e~ 1KA_pip ) (4.17)

kacot(ka t/2) odd TE modes

vhere _
= flw 2
ky =g ny) -8 (4.18)

The Bragg waveguides described above should display strong
discrimination against higher order transverse modes, i.e., modes with a
larger number of nodes in the central guiding region. This is due to
the fact that the existence of a given mode requires, as discussed above,
the simultaneous fulfillment of the transverse resonance condition
within the guiding layer and the Bragg condition in the layered media.

If the wavequide is designed so that these conditions are satisfied for
a given transverse mode, they will not be satisfied by other transverse
modes, except accidentally. We can show that if the waveguide is de-

signed for the fundamental transverse mode (s=0) then in order that the

sth mode exist as well, the condition

2
f?.= %. , 2=1,2,3 " (4.19)

need very nearly be satisfied. In equation (4.19) it was assumed that

(n]—nz)/n] << 1,
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4.4 Mode Characteristics

The mode dispersion relations (4.16), (4.17), and (4.18) give us
the relations between w, B, and t, with oo ng, Nys Nos @, and b as
parameters. In a conventional waveguide the B's for confined modes can
vary continuously from %—max(na,ns) to %-ng, where n, is the refractive
index of the substrate. In a Bragg waveguide, however, the B for con-
fined modes can only vary within the optical forbidden bands, i.e.,
[A§E1> 1. A typical mode dispersion with w fixed is shown in ngure s
It is interesting to note that there are some thickness regions where no
confined mode exists. This is due to the fact that the existence of a
confined Bragg mode requires, as discussed above, the simultaneous ful-
fillment of the transverse resonance condition (4.16) and the Bragg
condition IA%QJ > 1.

We will use a GaAlAs Bragg waveguide as an example throughout this
section. The light wavelength is 1.15 um of the He-Ne laser. The wave-
guide structure consists of a guiding layer of A10_38Ga0.62As with thick-
ness t,and a periodic layered substrate consists of alternating layers of
Ga

GaAs and Al As. At this wavelength, ngy = 3.35, n, = 3.43,

D.27°0.8
ng = 3.24, fl = 1.0 [11].

The result of the calculation for TE waves is shown in Figure 4-8.
These t vs B curves are the mode characteristics of the Bragg waveguide.

We notice that 8 is no longer ranging from %-max(na,n ) to %-ng for the

S

waveguide modes. Instead, B varies from Bpin tO Pinass where the Bloch

wave in the substrate becomes evanescent, or equivalently, Ki > 0. Also

shown in the same fiqure is the Ki vs B curve. We notice that Ki is
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B

Fig. 4.7 t vs. g for a typical Bragg waveguide.
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B

Fig. 4.8 t vs 8 for another typical Bragg waveguide.
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maximum at the center of the forbidden gap. The magnitude of Ki meas-
ures the decaying speed of the 1ight wave in the periodic layered sub-

strate. For B 2By T B AR the waveguide modes are turned into

min?
Bloch substrate modes.

We also notice that for the same B, the thicknesses of different
modes are equally spaced. The thickness difference between the neigh-

boring modes is exactly a half wavelength,

Ak = L{EM (4.20)
g

This property can be easily seen from the mode dispersion relations
(4.16), (4.17), and (4.18), which are invariant under the following

transformation:

t > t''=t+ (%EQ (4.21)

-9

N} —

The Bragg waveguide mode at t = 0 is essentially an electromagnetic sur-
face wave bound by the surface of the periodic layered medium, which was
discussed in Section 3.4.

A single mode Bragg wavequide can be constructed according to the
mode characteristics shown in Figure 4.7 at a thickness which is a few
times larger than the wavelength. A conventional waveguide at such a
thickness and index discontinuities would support several transverse
modes.

4.5 Optimum Bragg Waveguide

=K. x
As we already know that the Bragg waveguide modes decay as e ]

into the periodic layered substrate, in order to get the best degree of
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confinement, it is desirable to find a Bragg reflector with layer thick-
nesses such that Ki has its maximum possible value. In other words,

the optimum thicknesses a,b of the alternating layers are such that

3K, 3K,
(7) = (5p) = 0 (4.22)

It can be shown that (4.22) is equivalent to

sz = 7/2 (4.23)

In other words, a Bragg reflector has its maximum stopping power for a
given incidence condition when each layer is a quarter-wave plate at
that incidence condition. At this optimum condition the decay
factor is given

k

1x
(4.24)
E;x_)

e1KA= _(
Here we assume that |k2xl > |k1xl and u, = ;. The reflection coeffi-
cient r of a semi-infinite Bragg reflector consisting of alternating
layers of high and low refractive indices with the same optical quarter

wave thickness is given by

r o= = (4.25)

Thus we see that the field must vanish at the surface of the Bragg re-
flector. The mode dispersion relation at this optimum condition is
given by
= -k t k. t 4.26
Ay g ot Kg (4.26)
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The field distribution for an optimum Bragg waveguide mode is
shown in Figure 4.9. We note that the field has its maxima and minima
exactly at the layer interfaces. This property can be proved rigorous-
ly by using the mathematical optimization procedure which will be given
in the latter half of this section.

Referring to Fiqure 4.10a, we consider the following problem:
Given the material of the structure with indices of refraction
n, < ng <Ny <n,, we are to find the locations of the interfaces X
n=1,2,3,.--, such that the guided Bragg mode has the highest degree of
confinement. To solve this problem we consider a general interface
between two media. Let & be the location of the interface and n,n' are
the indices of refraction on the left and right side, respectively.
Furthermore, we assume that E(x) is the electric field distribution for
TE waves in the region x < £ which is completely determined by the

boundary condition at x = -», The electric field distribution in the

region x > £ is given by

E=Acos k'x + B sin k'x (4.27)

where k' =\/(-‘§vn')2 - Ez' and A,B are constants. The boundary conditions

require that the tangential components of E and H are continuous at

X = £&. The result, using (4.27), is given by
A cos k' + B sin k't = E(&) (4.28)

k'A sin k'€ + k'B cos k'g = B (4E (4.29)

" HYQE
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where u and u' are the magnetic permeabilities. Solving for A and B

from {4.28) and (4.29), we get

sin k'g (dE

A= cos k'g E(g) - 2 SINRE (GF) (4.30)
B = sin k' E(e) + BSOS (&), (4.31)

We note that A and B depend on £ . The field energy on the right hand
side of the interface is proportional to (A2+82). In order to cet the
best degree of confinement, we need to find a location & such that

(A 2+B ) is minimized. By carrying out the algebraic manipulation we ob-

tain from (4.30) and (4.31)

S (W2+B%) g = 511 - (E%1 E()(E), (4.32)

where k =V/(%~n)2- 82. A similar expression for TM waves is given by

2. 5l 1 ke'y2 dH
SEAB )y = 511 - ()T HEN (), (4.33)

We see that the field energy is optimized whenever either the electric
field or the magnetic field vanishes at the interface. In order to find
whether these extrema are maxima or minima, we have to inspect the

signs of the second order derivatives. By carrying out the differentia-

tion on (4.32) and (4.33), we obtain, using the wave equation
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2
gi’z'“‘z"Bz)TE = 301 - EAEDZ - KFE () (4.34)
———Z-(A 8%y = 501 - (D 2IEHE - B (o)) (4.35)

The results (4.32) through (4.35) can be summarized as follows:

TE Waves
k k'
(a) " < irr
Minimization of (A2 + BZ) occurs at E(g) = 0.
k _ k'
b L3
(b) " s ET
o ; 2 2 dE
Minimization of (A~ + B“) occurs at (dy)g 0.
™ Waves
k k'
() geer
Minimization of (A2 + 82) occurs at H(g) = 0.
k _ k'
(b)  Z>&r
Minimization of (A% + BZ) occurs at (%2) = 0.
2
It can be shown that the field amplitude decreases by a factor of
E¥ﬁ' (or "TE' for T waves) at the optimized condition for §-< %T (or
§-< ET-for T™ waves). This is illustrated in Figure 4.10 for TE waves.

Thus we find that in a stack of alternating high and low refractive index
layers the optimum Tayer thicknesses for best confinement are quarter-wave

thicknesses. The field vanishes at the interfaces with low index media
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E=E(x) E=Acos k'x + B sin k'x

>
1
7y

R

Fig. 4.10 (a) A general interface at x = g. (b) Transition from

high index material to low index material. (c) Transition

from Tow index material to high index material.
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on its left hand side and reaches maximum at the interfaces with low
index media on its right hand side. Each period is exactly a half-wave

plate. The field amplitude decreases by a factor of eiKA given by

o
kqu
- El~g TE waves
. 2H1
iKA
e = ﬁ (4.36)
kygg
- EEE;- ™ waves
L

This approach in designing a Bragg waveguide will later be extended to

the cylindrical regime to study the Bragg fibers.

4.6 Leak Consideration

We now discuss the loss due to the finite number of periods in the
periodic layered substrate. All the above derivations are based on the
assumption that the periodic layered substrate is of infinite extent. In
practice, it is impossible to fabricate an infinite number of periods,
although the current molecular beam technology can fabricate as many
layers as needed. Usually the time invested in the growth is propor-
tional to the number of periods. Typical growth rate is about 1‘um/hr.
The growth rate is so slow that the layer thickness can be precisely
controlled [12].

In what follows, we will calculate the attenuation coefficient of
the Bragg waveguide due to the resulting losses into the substrate. The
analysis will be similar to that of the surface waves. However, we will

limit ourselves to the interesting case of optimum Bragg waveguides.
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We consider an optimum Bragg waveguide with N periods in the

periodic layered substrate. The attenuation coefficient is again given

by
Sx(x=NA)
A (4.37)
, J SZ dx

Without loss of generality we will consider TE wave only. Also, we
assume all the layers are pure dielectric materials so that all the
magnetic permeabilities are equal to Hye The electric field distribu-

tion can be written

~

fa(x-t)
sin k t e X < -t
9
-sin k - 0
sin kgx txxx
i
Ey = < " sin k, X 0<x=<b (4.38)
Eﬂ (x-b)
- cos k. (x-b b <x <A
o 1x
(E‘-’»)(k‘) (x- 1)
sin k,(x- A A<x<A+b
Ky FE 2

etc.

The thickness of the guiding layer is given by equation (4.26). Using
(4.38) and (3.34) we obtain

~ tan k_t k o
_ CB (1 A
| s,=2 e —% i 2 (4.39)



-ZNKiA
1 -¢e
F = ""”igﬁcpf— (4.40)
1 -e

k
1 1, ] 2
fszd“'zq%{?“"“*'z‘f‘(ﬁ*) FI S

S, = g (B e i (4.42)

where we have assumed that the substrate material is the same as layer

2, so that ng = ny. Combining (4.41) and (4.42) we obtain the attenuation

coefficient
=2(N-1)K,A
k k 2 i
. & Zg (3-) e v (4.43)
: 2x 1 2
t + — + /\.("Zg) F
a 2 X

Again, we see that the attenuation coefficient decreases exponentially
as N becomes large.

A typical curve for a vs N is shown in Figure 4.11. It is important
to notice that the attenuation coefficient we have just calculated ac-
counts for the radiation loss due to finite number of periods only. In
practice, there are losses due to surface scatterings, bulk absorptions,

and bending losses.
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a vs. N for a Bragg waveguide.
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4,7 Other Bragg Wavequide Structures

A waveguide composed of a low index slab separating two semi-
infinite periodic Tayered media is of course also possible. The most
general Bragg waveguide has an index profile shown in Figure 4.12,
Themode dispersion relations for such a wavequide can be derived by the

same method as described in Section 4.3, and is given by

—F34 cos kqt - kq sin kqt

k|- - =T (4.44)
a T34 sSin kqt + kq cos kgt 12
or, equivalently,
Kk [Tyt Fos)
tan kq = 412 32 (4.45)
| T12F3g = kg
where
-iKA
I -A-B
Pew 8 Al S (4.46)
-iK'A" ' i
; - A' - B
r = -ik £ ST AT (4'47)
34 3X e‘]K A . A| i B|

and A', B', K', A' are the parameters of the left side periodic layered
medium corresponding to A, B, K, A, respectively.

Mathematically P and ~T'3, are the logarithmic derivatives of the
Bloch waves at x = 0 and x = -t respectively. A special case of particu-
lar interest is the symmetric Bragg waveauide where Ny = Nys Ny = Ny,
¢ =aandd=>b. Such a structure can be used as the wavequide for gaseous

lasers.
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e
| L [ > x
-t-A -t O A
n4 n3 n4 n3 n4 ﬂg n2n|n2n|n2n|n2n|n2nln2n|

Fig. 4.12 Geometry of a double Bragg waveguide.
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The mode condition for the symmetric Bragg waveguide can be ob-

tained from (4.45) by setting T34 = T2 and is given by

1
—kg tan(i-kgt) even modes

1’12 = : (4.48)

kg cot(ﬁ-kgt) odd modes
If we let ng=n, =n, < ng, the left side medium becomes homogeneous
and P34 becomes -Gy according to (4.47). Thus we get the dispersion
relations for the slab Bragg wavequide (4.16).

In order for a double-Bragg waveguide to support a confined mode
two Bragg conditions plus a phase resonance condition have to be satis-
fied simultaneously. This is not generally possible. However, under
appropriate conditions a double-Bragg waveguide can support confined
modes. It is evident that confined modes exist only when there is some
overlap between the optical forbidden bands of the two periodic Tayered
media. Because of the additional Bragg condition, a double-Bragg wave-
guide has the desired capability of mode discrimination. If a double-
Bragg waveguide is designed to support a given confined transverse
mode, it will not in general be able to support other transverse modes,
except accidentally.

Another special case of particular interest is the double-Bragg
waveauide structure with t‘= 0, which is exactly the interface mode

discussed in Section 3.5.
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Chapter 5
OTHER TOPICS IN LAYERED MEDIA

5.1 Introduction

We have derived some of the important characteristics of Bloch
waves propagating in a periodic layered medium. The results are applied
in this chapter to the problems of periodicity dispersion, phase
matching in nonlinear mixing experiments and to laser action in the
soft x-ray regfon. Periodicity dispersion is the dispersion intro-
duced by the periodic stratification without regarding any material
dispersion. Under appropriate conditions this dispersion can com-
pensate the material dispersion. As a result, the whole Tayered
medium becomes dispersionless in some region of the frequency spectrum.

Phase matching is an important problem in nonlinear optics. In
order to get high conversion efficiency, perfect phase matching is
needed. However, most material exhibits some kind of dispersion. Perfect
phase matching in gases can be achieved by adding buffer gases with dif-
ferent dispersion behavior into the mixing medium. Phase matching in
crystalline solids can be achieved by employing the birefringence prop-
erty of the crystal [1]. In this chapter we will describe how to apply

the periodicity dispersion to get perfect phase matching.

5.2 Periodicity Dispersion

In this section we treat analytically and quantitatively the
periodicity dispersion. We obtain expressions for the locations and

sizes of the bandgaps. We will T1imit our derivation to the case of normal
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incidence. The extension of our result to the general case will be given
in the last part of this section.

Instead of using Nys Ny, @ and b, a new set of more convenient

parameters will be defined in the following.

W

A=t (241 {6.1]
2 n n2
n.a + n,b

% = _l__7r_jl_ (5.2)
n,a - n,b

g J._____A 2 (5.3)

In terms of these new parameters, the dispersion relation (2.37) can be
written as

coskKp = (A%lo cos n %-A— (A%l)cosv %-A (5.4)

By using the following identity

cos x =1 -2 sin2 %- (5.5)

eq. (5.4) can be written as

2 KA (A+1)5 2 nw A - (_A__]_ 2V

sin 7 sin (5.6)

2c 4
This equation is especially useful when,, << n. In.the event when
v =20 (n]a = n2b) equation (5.6) gives us the explicit form of w
as a function of K.

The locations of band edges can be obtained from (5.6). If

we set KA = mm, we obtain
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( )s1n ( A) KA = 24m
5= A) =4 (5.7)
( )cos 2 A) KA = (22+1)7

wirere & is an integer. If v << n which is normally true, equation
(5.7) can be solved by the method of successive approximation. The
results for the upper and lower band edge frequencies after one iteration

are given by

£ foar + 2 sin” /A sin(2 2m)]) ki = 20m  (5.8)

nA

=

U,Q,

(22+1)m

L {(22+1)m £ 2 sin”

=l cos(V (8+1/2)w KA
nA A+ n :

Consider a stratified medium consisting of alternating layers of the
same'optical thickness which is the case when v = 0, all the even order
bandgaps shrink to zero. While the odd order bandgaps have a maximum

constant value
=.4;C_'-]..A_.-l 59
B - sin \/A+1 (5.9)
and the centers of the bandgaps are all on the same straight line

wE 2K (5.10)

=1

The vanishing of the even order bandgaps is due to the fact that each
layer becomes a half-wave layer at the even-order Bragg conditions so
that reflections from two adjacent interfaces are out of phase by an

odd multiple of m, The dispersion relation for this special case is

shown in Fig. 5.1.
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Fig. 5.1 Periodici i
. icity dis i =
y persion when nja = n2b {or v = 0).
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In the general case when v#0, the degeneracy is removed and there
is, in general, a finite bandgap at KA = 2¢n. The band edges of each
forbidden gap are always on both sides of tle straight line
w = cK/n. The bandgap sizes vary roughly periodically as a function
of the Bragg-order for even orders and odd orders separately. This
can be seen from either (5.8) or Figure 5.2, which is a plot of both

sides of eq. (5.7)and gives a graphic solution of the locations of

band edges. The bandgaps are given approximately by

-
%E- sin” ! %i%— sinC% L ) KA = 22m
ni
Ao = < (5. 11)
e 4 in7? Al cosE (2+1/2)7] Ka = (20+1)m |
= X3 -
nA n
\

In the usual case of inclined incidence (B#0), all the above results are

applicable provided A, n and v are defined by

1 (?@ESEEQ_ Elfgigl TE waves
2 n,cos8, n,cosé,
& = (5.12)
n,cos9 n,coso
1 12 2 ] TM waves
2 nzcose] n]cose2
acosby + n,bcoso
- ny 1A 2 2 (5.13)
n,acos6, - n,bcosd
= 11\ 2 "2 (5.14)
where ;
C b,
cosgy = 1x (5.15)



-sazLs deb pue sabpo pueq Buipulj 0 poyIsU srydeay z2°G 614

) @ (32)2

186

QAL
T _ ﬁmv
315 Sl U VO A A O A o LT |+V
D
V
A A AT
= qifl. T B T S R 4~ _M__uV__Vl10o|

o k

(M)}



187

’Ck2x
N, w

Ccos 62 = (5.16)

It can be seen from (5.8) that the locations of the bandgaps are shifted
toward higher frequencies and the sizes of the bandgaps become larger at

inclined incidence.

5.3 Generalized Phase Matching of Nonlinear Processes

Phase-matched enhancement of nonlinear mixing processes in a
periodic stratified medium was proposed by Ashkin and Yariv [2],
Bloembergen and Sievers [3], and recently by Tang and Bey [4]. Experi-
mental evidence for this effect has been demonstrated recently by van
der Ziel et al and Ilegems [5].

In the following we present a general theory of phase matching in
a periodic stratified medium. In our approach we employ the Bloch elec-
tromagnetic wave functions and their space harmonics.

Let us consider three interaction electromagnetic waves in a
periodic stratified medium. The electric fields are given by their
Bloch expressions
£ e =B e e F T 123 (5.1)

with

(A)3 - w'] G 2 wz (5.]8)

The y-dependence is again suppressed for the sake of simplicity in illus-
tration. Let the two media comprising the layered structure possess
nonlinear optical properties which cause the two waves at 0y and w,

to generate a polarization P(w3) at ws with a complex amplitude

(15) () (u)

P. ijkEj (x,z)Ek (x,z) (5.19)

; {x,2) = d
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The nonlinear coupling coefficient dijk’ reflecting the symmetry of the

medium, is a periodic function of x

Wy W, W WqFw,w (5.20)
1 23 R e R
(w]) (wz) .
The power flowing into wave at frequency wg from E and E is

Hlug) 5 (o)

given by E 5T which is proportional to

K K K i(K +K,-K )X 1(81+62'B3)Z
<Kyld|K K> =” 4 0E; T REZESe 12 e dxdz

(5.21)

where the superscript of dijk(x) is dropped and the integration is over

the interaction region. Each of the periodic functions in the integrand

may be expanded in .a Fourier series

. 2T
e e ME X § 98

dise{x) = I Dyge (5.22)

K1 " in %E-x (5.23)
E, (x) = % Ai e .

.2

K 1L —Xx
E.%(x) = TB, e ™ (5.24)

J ¢ J

. 27

K p = %
E 3(X) - Z Cpe A (5.25)

k b k

Thus

m a gt

_ 2

p g _n) 2T
(ck )*6[K1+K2 K3+(m+n+2 p)A

x §(B1%By-B5) (5.26)

We see that the nonlinear mixing is allowed only when the following

two conditions are satisfied.
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2
3= K+ K +s 7?- S = mtn+L-p (5.28)

~
I

By analogy with the corresponding phonon-phonon collisions in solid
state physics, one may classify the allowed nonlinear processes into

the two categories described in the next section.

5.4 Normal Processes and Umklapp Processes

(A) Normal Nonlinear Processes (s=0)

Normal nonlinear processes in a homogeneous medium require either
no dispersion or anomalous dispersion. The dispersion in a periodic
stratified medium can be separated into two factors which are, the
natural dispersion of the material itself and the additional dispersion
due to artificially periodic stratification. The latter was discussed
and analyzed in Section 5.1.

A typical periodicity dispersion is shown in Figure 5.3. An
analytic study of the periodicity dispersion was given in Section 5.1.
It can be seen from Figure 5.4, in which the periodicity dispersion is
superposed on top of the natural dispersion, that the natural disper-
sion, due say, to some absorption resonance at Wy is modified by the
periodicity dispersion. As a result, phase matching can be achieved
in a spectral region where it would be impossible if the medium were
homogeneous. This can be explained as follows: In order to achieve
phase matching in a piece-wise homogeneous medium, the dispersion func-

tion n(w) in the relevant spectral region cannot increase monotonically.
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The monotony of the dispersion is removed when the periodic stratifica-
tion is introduced, since, as shown in Figure 5.4, the change in index
due to periodicity changes sign near a Bragg resonance frequency. It
is therefore possible to select the parameters of the periodic struc-

ture so that phase matching is achieved in a given triplet of waves.

It is interesting to get an expression for the maximum change
in the effectiwe index of the refraction which is achievable by
periodicity dispersion. To be specific we derive an expression for
the maximum index deviation An]/z as defined in Fiqure 5.1.

For simplicity let us consider the case of normal incidence
(B=0). The effective index of refraction is obtained from (2.49)

and the relation vp = c/neff

cK(w) (5.29)

neff(w) - )

Far from Bragg resonances the effective index is equal to n where

T i (5.30)
nE—/—r
The maximum .deviation of Noff from n occurs at the band edges. The
band edge frequencies can be approximated according to the second of

(5.8) by

e

A=

“u,g” é; L(2047)7 £ 2 (57 ] {5.31)
A1, L (ar1/2)m << (5.32)

S

The maximum index deviation An]/2 is thus

cK(wg)

An]/2 = neff(mz) = = == n (5.33)

L
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At the (odd) band edges (wb,wz) we have

K(w,)A = (22+1)m (5.34)
so that

ANy = Eé%%illﬂ- n (5.35)

Substituting (5.31) for Wy in the Tast expression and using the fact

that A-1 << 1 Teads to

... 2n L=
Ay = )T A (5.36)

From (5.31) we find that the width of the gap 1is

=1 ~ 2 [B-T
Aw]/z = '? (wu—wz) s X (5.37)

nA

If the amount of natural dispersion that needs to be overcome in
a given process is less than An]/z given by (5.36), the normal nonlinear
processes can achieve perfect phase matching by introducing the periodic
stratification.

Phase matching can also be achieved hy utilizing the birefringence
property of the periodic medium. The difference in the refractive in-

dices of the ordinary waves and extraordinary waves is given by

2
n -n_=-——% (A°-1) (5.38)
0 e A2 no+ne

However, this quantity is much smaller compared with /_\n]/2 (5.36) for

A-1 << 1,



194

(B) Umklapp Monlinear Processes (s # 0)

An Umklapp nonlinear process can be thought of as the generation
of a wave at the mixed frequency (such as Wy = w]«nz) with, simultane-
ously, a Bragg reflection. The additional momentum in this process is
obviously provided by the periodic stratified medium (or, in other words,
transferred to the periodic stratified medium). Umklapp phase-matched
nonlinear processes can take place in any dispersive medium under ap-
propriate conditions. For example, the phase mismatch due to the ncrmal
dispersion of the material can always be compensated by the crystal
momentum, i.e., choosing the period so that (5.28) is satisfied for
some combination of my, n, £, p. The missing wave momentum is thus pro-
vided by the periodicity of the integrand in (5.21). It can come from
either the Fourier component of the nonlinear coefficient, i.e., m # 0,
or the space harmonics of the Bloch waves, or bhoth. The Umklapp non-
Tinear process is thus a way to achieve phase matching when the period-
icity dispersion (5.36) is not big enouch to compensate the material
dispersion.

Traditionally this process can be thought of an interaction be-
tween the space harmonics of the Bloch waves (5.22- 5.25), since the
rate of power transfer will involve, according to (5.26), the amplitudes

of the space harmonics.

5.5 DFB Soft X-Ray Lasers in Periodic Stratified Media

In this section we consider the possibility of using a layered

structure as a medium for x-ray laser. The huge pump intensities which
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will be required to overcome the ordinary photoelectric Tosses in the
x-ray region will 1imit the pumped region to very small volumes. Under
these conditions the use of an external resonator structure seems highly

unlikely. One proposal advanced earlier [6] was to use the periodicity

of natural crystal to provide oscillation feedback by Bragg reflection.
In what follows we consider the possibility of obtaining Bragg x-ray
laser action in artificial layered media. In such media we have the
freedom of tailoring the period exactly so that the Bragg condition is
satisfied at the oscillation wavelength. In addition no crystals exist
in which the unit cell dimensions are comparable to oscillation wave-
lengths of, say, 1003.

We will thus consider a layered medium in which one of the Tayers
provides gain at some frequency w. Since the presence of gain or loss
can be represented by the use of complex indices of refraction we
need to extend the analysis of part I to the case of media with complex
indices. The coefficient of reflectivity of the N layered structure

is given as in (33) of part I by
Cu

ﬁ'& (5.39)

r‘ =
N " AU e

N-1

while the transmission iS

=0 (5.4n)

The complex indices of refraction are taken as

i (5.41)
Nyt oKy

=
oad
1]

n, + ik, (5.42)
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The imaginary part of a refractive index is directly related to the bulk

loss constant (or gain) by the following relation.

(5.43)

ole

1,2 = 2% 2
Consider next a periodic stratified medium with alternating gain and
loss layers (a] >0, 0y < 0).

Such a structure could result if we were to fabricate, as an

example, an artificial layered medium composed alternately of two
media-~ 1 and 2 and then pump it by an incoherent x-ray beam or an
intense laser source. Since the layers are different the effect of
the pump can be to produce an inversion in layer 2, say, at some
characteristic x-ray frequency. We thus have a situation where x-ray
radiation of the characteristic frequency is amplified in layer 2
but is absorbed by the photoelectric effect in layer 1. We will
show next that if the unit cell (i.e. the alternation period)

length A is chosen near the Bragg value ng/z then oscillation may
result., The determination of the threshold pumping requires an
exact formulation of the electromagnetic problem. This becomes
possible with the aid of the Bloch formalism developed in Chapter 2.

We choose n, and n, as well as o4 as parameters, take the layer
thicknesses a = b = A/2 and investigate the reflectivity ry of a 10 period
slab (N = 10) as a function of wh/c and o,. The contour plot of [ry| in
the o™ plane are shown in Figure 5.5. A series of points where
\er = « are found in the Tower half plane (oc2 < 0). The coordinates
of these poles correspond to the threshold gains and the oscillation

frequencies of the laser. The number of poles is exactly N, which is
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the number of periods. The pole trajectory in the Q=W plane indicates
that the pole nearest the bandgap has the lowest threshold gain. The
threshold gain ot is approximately equal to loss oy for modes whose
frequency is far away from the bandaap. However, it is much less than
the loss when the oscillation is near the bandgap. In our example
laZtI = a]/3. This theoretical result can be explained as follows: The

power dissipation per unit area is proportional to

3 = fa(x) E2(x) dx (5.44)
where
ay > 0 Layer 1
a(x) = (5.45)
ay < 0 Layer 2

If the lasing mode intensity distribution can have its maxima in the
gain layers and minima in the loss layers, power generation (J<0)
is possible even when the integrated loss is positive, or in other

words when

f a(x)dx> 0 (5.46)

. In the conventional Fabry-Perot laser where o(x) = constant, power

generation requires a net positive gain (negative less)
ak < 0 (5.47)

That means the laser medium of the conventional laser has to be pumped
until the gain conquers the loss. However, in a periodic multilayer

laser the gain constant of the gain layer does not have to be larger
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than the loss constant of the loss layer assuming the same layer thick-
ness. This is similar to the "Borrmann effect" of an x-ray propaaating
in a crystal [7]. This finding is of large significance to x-ray lasers,
since it should make possible significant reductions in the threshold
pumping requirements.

The field distribution near oscillation of a typical multilayer
x-ray laser is shown in Figure 5.6. Notice that the Tocal maxima of the
field amplitude are all Tocated in the gain layers. The parameters cor-

respond to the low threshold pole of Figure 5.5.
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Chapter 6
WAVES IN CYLINDRICALLY LAYERED MEDIA

6.1 Introduction

Propagation of electromagnetic waves in cylindrically symmetric
dielectric waveguides has become increasingly important in fiber optics
communication. The guiding principle is similar to that of the planar
slab waveguide. A dielectric fiber is capable of supporting confined modes
provided the refractive index of the guiding region (core) is greater
than that of the surroundings (cladding). This ensures the evanescent
decay of optical waves as r goes to infinity. Instead of dealing with
sine and cosine functions, we have to deal with Bessel functions of both
kinds in the cylindrical regimes. A great deal of work has been done on
optical propagation in conventional fibers [1,2,3] .

In this chapter we will show that, in principle, confined modes
exist in a fiber with a lTow index core, provided the core is surrounded
by a suitably designed alternating cladding of high and low refractive
indices (see Fig. 6.1). A fiber with this kind of cladding is called a
Bragg fiber and is similar to the situation with the Bragg planar wave-
guide, where the 1light is guided by a Tow index slab. To treat this
problem properly we introduce an optimization procedure similar to the
one discussed in Section 4.5. Instead of solving the confined modes of
a given fiber structure, we search for the fiber structure such that the
modes have some desired properties. The guiding of electromagnetic waves

in a fiber with a low index core, especially the hollow waveguide, is not
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only important in optical communication, but also very useful in the
guiding of high power infrared lasers [4]. Another novel application
is the guiding of UV or soft x-ray in a hollow Bragg cylindrical wave-
guide where almost any material is too lossy in that frequency regime.
Another important application in fiber optics communication is the de-
sign of a single mode fiber. We have shown that a single mode Bragg
waveguide can be designed with a guiding layer thickness much larger
than a wavelength.

A similar conclusion is derived for cylindrical Bragg waveguides.
A single mode fiber is capable of transmitting a light pulse without
broadening, due to modal dispersion [5]. Pulse broadening is a serious
problem in digital fiber optics communication. It tends to reduce the

pulse repetition rate.

6.2 Matrix Method in Concentric Stratified Fiber

In this séction we will introduce a matrix method to compute the
mode characteristics as well as the power flux of radially stratified
fibers. The basic idea is to replace the boundary conditions by a matrix
equation. Thus, each cladding interface is represented by a matrix. The
introduction of this 4x4 matrix greatly simplifies the analysis.

We consider a fiber with the index profile given by

(6.1)

In particular, we will consider a fiber with a Tow index core and al-

ternating lTow and high index cladding. The geometry of this structure
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is sketched in Figure 6.1. The index profile is then given by

 Ng O<r<r
N, rpSr<r,
Ny rpo 2 r <y
n(r) = 4 Ny rg<r <oy, (6.2)
Ny Pg P <1
. e%c. etc.

We take the z-axis as the direction of propagation, so that every field

component has the form
¥(r,8,z,t) = P(r,0) ei(BZ'wt) (6.3)

where { can be Ez’ Er’ Ee, H Hr’ He. w is the angular frequency and

B is the propagation constant.

Z!

From waveguide theory we know that the transverse field components

can be expressed in terms of EZ and Hz [6]:

Er=m—i—@:—?)— [rE, + % h,] (6.4)
Eg = (MZULB_ B2) [rge E, - %5'5% Hz] (6.5)
H,. = m (3, - &2 EZ]] (6.6)
He B (NZUZB_ B2) [rge Hz * %;’%?'Ez] (6.7)
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Ez(r,e) and Hz(r,e) satisfy the wave equation

Ez
2 2 2
(Vi + (wpe - 87)) M, =0
2 _ 2 2 i 2 a ’
where Ve =V -3 /3z~ is the transverse Laplacian operator.

eral solutions can be written

E, =[(AJ,(kr) + BY,(kr)] cos(28 +¢)

H, =L(CJ,(kr) + DY, (kr)] cos(26 +y)

where A, B, C, D, ¢, and ¥ are constants, £ is an integer, and

k =\/w2ue - 82

(6.8)

The gen-

(6.9)

(6.10)

(6.11)

We now consider the boundary conditions at a general cladding interface

at r = p. The solution of the wave equation is taken as

[A]Jl(k1r) + B]Yg(k]r)] cos(Qe-+¢1) r <

E =
z
[AZJK(kzr) + BzYz(kzr)] cos(ze4-¢2) r >
and
[Cldz(k]r) + D]Yz(k]r)] cos(ze-rw]) r <
HZ =
[CZJQ(er) + DZYQ(er)] cos(£6-+w2) r >
where
_ w2 i -
ks '\/(EQ e;l; - B i=1,2
The boundary conditions at r = p are: EZ, Hz’

(6.12)

(6.13)

(6.14)

Ee and He continuous at
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the interface. Thus a 4x4 matrix M can be found which relates A],B1,C],D]
C,,D

to AZ’BZ’ 23055 i.e.,

Ay A
B B
2 1
= M (6.15)
; ¢,
0, D,

Derivation of M

In terms of fields (6.12) and (6.13) the continuity of E, gives

[A ( ]Q) s B]Yz(k]p)] COS('Q'G e d)])

= [AZJQ(kZD) + BZYQ(kZp)] cos(26 + ¢2) (6.16)
This equation has to be satisfied for all 6 which implies

0 = & (6.17)

Thus, continuity of EZ and HZ gives

A]Jg(k]p) + B Yg(k1p) = AZJQ(kZQ) + B Y (k ) (6.19)

C]Jz(k]p) + D]Yz(k]p) = CZJQ(kZD) + DZYQ(kZD) (6.20)

In terms of the fields (6.12), (6.13), and (6.5), the continuity of Eq

gives
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1 -2 ;
~;E—[73-{A]Jz(k1p)-+B]Y£(k]p)} sin(26 +¢)
i

Wl

. "El ky {6195 (kq0) + DY} (kyp)} cos(28+ )]

i

-3(-2« [22 (A0, (kyp) +B,Y, (kop)} sin(20+¢)
2 -

- T k2 {CZJ;Z,(kzp)+ Dzv;zl(kzp)} COS(Q@"'I{))]

(6.21)

where the primed quantities are the derivatives with respect to their

own argument. Again, this equation has to be satisfied for all 6 .

(6.19) and (6.20) we have

K1 2

1

provided k] - k2. Thus we conclude from (6.21)-(6.23) that

sin(26 +¢ ) = + cos(26 + ¥)

or equivalently,

m

¢ = vty
Continuity of H, and eq. (6.7) gives

E%‘{é&‘[C1J£(k]p)4-D]Y2(k1p)] sin(20 + ¥)
1

(A)E]

+ = kq A9 (ko) +B,Y (ksp) ] cos(26 + ¢)}

8

L (A, (k) + BY, (o)} 7 ‘,1’2 {Axd, (kyp) + B,Y, (k,0)}

= 103 (kpp) + D1¥; (ko)) 7 %‘g{cz‘];l(kzp)

From

(6.22)

(6.23)

(6.24)

(6.25)
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. ig‘{:%'[CZJz(kZD)*-DZYz(kzp)] sin(26 + ¥)
2
(.082
t = kZEAZJ;Z,(kZQ) + BZY;L(kZp)] cos(26 + ¢)}  (6.26)

From (6.24) or (6.25) we can classify the waves into two categories:

I EZ = (AJQ(kr) + BYz(kr)) cos 26
. (6.27)

HZ = (CJl(kr) + DYQ(kr)) sin 26

II £ = (AJQ(kr) + BYR(kr)) sin 28
(6.28)

H, = (CJQ(kr) + DYz(kr)) cos 26

The boundary conditions for these two categories are summarized below:
1

A]JQ(k1p) + B]Yl(k]p) + 0 + 0
w€1AJ-(k )+‘_*‘le¥.(,< } o+ o B3 Tt} & e B, ()
B0 ™Ml T e R SR T e g Myl iR
1 1 k-lp k]p

(1>2) (6.30)

i

0 + 0 + C1d, (kyp) + D,Y, (ko) = (1+2) (6.31)

A (keo) + o BY (Kio) + ool 3t (kip) + ol Dyi(kop) = (1-2)  (6.32)
E‘gml" ;2‘;111" E{Elxlpmmﬁ :

where (1~+2) means the same functional form with subscript 1 replaced by

2, and vice versa.

II - Similar equations for the second category, except that % is re-

placed by -2.
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Equations (6.29)-(6.32) can be written as a matrix equation

Ay A
By B,
M(1,0) c, = M(2,0) | (6.33)
2
Dy D,
with
J, (ksp) Y, (kip) 0 0
ey ey 9 9
b - b Ul ke L
M(i,0) = ! !
0 0 J,L(kio) Yz(kip)
% s s
12"‘J£(k10) E?"'Yﬁ(kip) EE;'JZ(kip) EF;'YQ(k1p)
| Ko P )
i=1,2 (6.34)

We notice that when ¢ = 0