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ABSTRACT 

The first part of this work describes theoretical and experimental 

studies of Stark- induced three-wave mixing in gaseous NH 2D. Application 

of a de electric field to a gaseous system destroys the basic inversion 

symmetry and allows two-photon mixing processes to occur. A theoretical 

derivation of this effect under conditions of resonantly enhanced non

linearities is given for a three-level system. Calculations are presented 

for mixing of a C02 laser with 4 GHz microwaves in the molecule NH 2D. 

producing single lower sideband radiation. 

Experimental observation of resonantly enhanced, de-induced, three

wave mixing in gaseous NH2D is presented. The dependence of this effect 

on gas pressure , microwave frequency, applied de field, and microwave 

power are presented and compared with theoretical predictions. The exper

iment was done at Hughes Research Laboratories by Abrams and his coworkers . 

The second part of this work describes the propagation of electro

magnetic waves in periodic layered media. The propagation of electromag

netic radiation in periodically stratified media is considered. Media 

of finite, semi - infinite and infinite extent are treated. A diagonaliza

tion of the unit cell translation operator is used to obtain exact 

solutions for the Bloch waves, the dispersion relations, and the band 

structure of the medium. 

The theory of electromagnetic Bloch waves in periodic stratified 

media is then applied to the problems of birefringence, and group veloc

ity in these media. The relevance of periodic media to phase matching 

in nonlinear mixing experiments-and to laser action in the x-ray region 

is discussed . 

New types of guided waves such as Bragg guided waves and optical 

surface waves are theoretically predicted and experimentally observed. 
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PART I 

STARK-INDUCED NONLINEARITY IN GASEOUS NH2D 



1-l In troduction 

Chapter 1 

GENERAL INTRODUCTION 

The optical properties of an arbitrary medium are described by 

the two well-known quantities - the dielectric constant and magnetic 

permeability. They are defined by 

D = EE 
1-1 

These two constants are in general functions of the field strengths. 

This nonlinearity has been known in the radio and microwave region of 

the electromagnetic spectrum for a long time. Nonlinearity in the op

tical region has been demonstrated by harmonic generation of light. 

Franken and his associates detected ul traviolet light (A= 3471 .5 ~) 

generated by the intense flash of a ruby laser (A = 6943 ~) when this 

laser beam passed through a quartz crystal [l] . This experiment stimu~ 

lated an enormous amount of both theoretical and experimental work in 

nonlinear optical properties. Third harmonic generation in metal vapor 

has been demonstrated by Miles and Harris [2]. Fifth harmonic and 

seventh harmonic generation of laser light in isotropic media was re-

cently demonstrated by She and Reintjes [3]. Hannonic generation of 

light has been used as a source of generating short wavelength coherent 

light [4]. Generally speaking , the optical nonlinear effects are much 

smaller compared to the linear ones in most material except under reson-

ant conditions. It takes hiqh optical intensities to have detectable de

viations from linearity. Such intensities became available only with the 

advent of the laser. 
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The nonlinear susceptibilities are in general tensors of rank 3, 

4,·· · ,etc. The linear susceptibility is a tensor of rank 2. These sus

ceptibilities obey the same symmetry properties as the medium. As a 

res ult, nonlinear optical mixing phenomena such as parametric oscillation, 

frequency up-conversion and the electro-optic effect require that the 

medium lack an inversion symmet~ . Liquids and gases in virtue of their 

random orientation, may possess only a microscopic inversion symmetry and 

hence have not been deemed appropriate for nonlinear and modulation appli

cations. This symmetry, however, can be broken in principle by applying 

a de electric field to the medium so that a gas or liquid in an electric 

field may be expected to display nonlinear optical properties. 

To estimate the de field-induced optical nonlinearity in a gas we 

carry out a quantum mechanical analysis. The analyt i cal results are then 

applied to calculate the nonlinear optical constants of NH2D which is 

found to be especially suitable for this application. 

1-2 Previous Work on Optical Nonlinearties in Gases 

Ward and New demonstrated optical third hannonic generation in gases 

with a focused laser beam [5] . Young and coworkers have observed the third 

harmonic generation in phase-matched Rb vapor [6]. Generation of vacuum 

ultraviolet radiation in Cd vapor has been demonstrated by Kung and co

workers [7]. Leung, Ward and Orr have demonstrated the optical third 

harmonic generation in cesium vapor with a two -photon resonant enhance

ment [8]. These works are all third harmonic generation of light in 

gases. DC-induced second harmonic generation in gases has been demon

strated by Finn and Ward [9] . Molecular second and third order 
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polarizabilities were measured by Ward and Bigio by using second 

harmonic generation in gases [10]. Infrared up-conversion has been 

demonstrated by Bloom and coworkers with two-photon resonant pumping 

in metal vapors [ll,12]. Sorokin and coworkers [13] have demonstrated 

tunable coherent infrared generation based upon four-wave parametric 

conversion in alkali metal vapors. 

Theoretical calculation of the nonlinear susceptibility using 

successive approximations toobtain a solution in ascending powers 

of the coherent perturbation was performed by Armstrong et al [14], 

Bloembergen and Shen [15]. Similar analysis was also carried out by 

Fain and Yaschin [16] . 

1-3 Outline of Thesis Part I 

In Chapter 2 the quantum theory of the nonlinear polarizability of 

a general atomic system will be introduced and analyzed. Diagram tech

nique will be introduced and discussed. Each nonlinear polarizability 

can be expressed in terms of a sum of several diagrams. A phenomeno

logical equation of motion for the density matrix is introduced and 

analyzed . Relaxations in gases are expressed in terms of damping 

tPrms in the equation of motion. 

In Chapter 3 the nonlinear polarizability due to rotational-vibra-

tional transition in an asymmetric molecule is calculated. Some basic 

quantum mechanics of a rotating top is reviewed and discussed. Matrix 

elements for asymmetric top are calculated and selection rules are dis

cussed. 

In Chapter 4, calculations are presented for mixing of a co2 laser 
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with 4-GHz microwa ves in the molecule NH2D, producing si ngle side band · 

radiation . A general express i on for the non li near susceptibility is 

derived i n terms of pl asma dispersion f unction . Pressure dependence, 

the dispersion behavior and the saturation effect are analyzed and di s

cussed . Stark tuning and resonance enhancement are introduced and dis

cussed . 

In Chapter 5 the experimental measurements are presented and are 

compared with theory . 
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Chapter 2 

QUANTUM THEORY OF NONLINEAR POLARIZABILITY 

2-1 Introduction 

In this chapter the interaction representation of quantum mechanics 

will be employed to find the expectation value of the dipole moment 

operator of an atomic system . We express the wave function of the 

atomic system I~> as an expansion in the eigenfunctions of the unper

turbed system. The calculation is carried out down to second order in 

the perturbing potential. It is found that the nonlinear polarizabil

ity of an atomic system is the same as the scattering amplitude 

of the coherent fundamental processes. Therefore it can be easily 

represented by Feynman diagrams [l]. Since we are only interested 

in the optical region of the atomic transitions, nonrelativistic 

diagram techniques[2] will be used in this chapter. We consider the 

effect of radiation on an atomic system, especially the evolution of 

the dipole moment of an atom (or a molecule) under the radiation of 

three harmonic waves . In the optical regime the wavelength is about 

3 or 4 orders of magnitude greater than the atomic radius. Therefore 

dipole approximation will be assumed throughout this chapter. 

2-2 Quantum Theory of Nonlinear Polarizability 

We consider the problem where an atomic system is i n a certain 

dynamical state at time t
0 

and we wish to determine its state at a 

later time t. In particular we wish to determine the expectation 

value of the dipole moment operator. We suppose that the Hamiltonian H 

can be written as 



H = H + H' 
0 

8 

where H
0 

is the unperturbed Hamiltonian whose eiqenfunctions 

and eigenvalues are assumed known; H' is the 

2-1 

perturbation Hamiltonian due to the presence of the external optical 

fields. In the regime of dipole approximation. H' can be written as 
-+ -+ 

H' = - wE 2-2 

where µ is the dipole moment operator and E is the classical electric 

field produced by the optical waves. Without loss of generality we 

will assume that the electric field consists of the superposition 

of three harmonic waves. Furthermore, we will neglect the space 

dependence in the dipole approximation. Thus the electric field can 

be written 

r -c:. -
-iw.t :'\ 

e l + C•C) 2-3 

For the sake of simplicity i n the algebraic manipulation, we define 

w -i = - Wi 
-+ -+ 

* 
i 

E = E. -i 1 

Then (2-3) can be written 

-+ \ 1 -+ -iw . t 
E = ~ ~ E; e 

1 

i 

= 1 ,2 ,3 2-4 

2-5 

Where 2::: means summation over ±1, ±2 and ±3. This notation will be 

i 

used throughout this chapter. The dielectric polarizabilities of an 

atom (or molecule) are defined as 



<µ > 
a 

9 

+ (higher order terms) 2-6 

Where <µ > is the expectation value of the a-component of the dipole a 

moment operator. 2= means summation over the pair ij. a, S, y are 
( i j) 

coordinate subscripts (i.e. a= x, y, z; S = x, y, z; y = x, y, z; etc.) 

Summation over repeated Greek subscripts will be assumed throughout this 

chapter. Xas(w) is the linear polarizability tensor. X 0 (w.,w.) is aµy 1 J 

the lowest order nonlinear polarizability tensor. The expectation value 

of the dipole moment operator is a real number. Therefore, 

the following relations must hold: 

. * 
Xas (- w) = Xas (w) 2-7 

* XaSy (- w;,- wj) = XaSy (wi,wj) 2-8 

etc. 

The expectation value of the dipole moment operator can be calculated 

quantum mechanically. In order to find the expectation value <µ > we a 

need to know the wave function of this atomic system at time t. This 

can be achieved by integrating the SchrcYdinger equation which is given by 

i af j '¥> = H j '¥> 2-9 

where we used the natural unit 1i = 1. 
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The solution of (2-9) can be written 

2-10 

where U(t,t
0

) is the well-known evolution operator [3] which also 

satisfies the Schrodinger equation, i.e. 

2-11 

The use of the evolution operator in nonlinear optics has recently been 

suggested by Yariv [4]. Equation (2-11) can be written in its integral 
form 

U(t,t
0

) = -i ft H(T) U(T,t
0

)dT + I 

to 

2-12 

Using equation 2-10 and the definition of expectation value we obtain 

2-13 

2-14 

where 

lg>= l'!'(t ) 
0 

2-15 

and u+(t,t
0

) is the Hermitian conjugate of U(t,t
0

). We note that lg> 

is a normalized wave function of the atomic system at t
0

. 1'¥> is also 

a normalized wave function since U(t,t
0

) is a unitary operator. 

By using the compl eteness relation of the eigenfunctions of the 

unperturbed system 

L I l >< £1 = I 

£ 

where I is the unit operator , equation (2-14) can be written 

2-16 
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<µ
0
? = L <gJU+(t,t

0
)Jl >< lJµa]m><mJU(t,t

0
)Jg> 

l,m 
2-17 

In order to write equation (2-17) in the form of equation (2-6) we need 

to solve (2-12). This is usually done by successive approximation. In 

integrating (2-12), we take t
0 

= - 00 and assume that the electric field 

was turned on adiabatically from t = - 00 • In other words, fort< o, 

E is replaced by 

-+ 
E(t)-+ lim 2-18 

c+o+ 

This is a common procedure to get rid of the divergence at t = - 00 • 

Physically this is equivalent to neglecting the transient terms. In 

calculating the dielectric polarizabilities we are interested in the 

steady state response of the atomic system. Therefore we have to throw 

away all the transient terms which depend on t
0 

and decay to zero even

tually due to relaxation processes. This is similar to solving the 

steady state response of a damped oscillator driven by an external 

harmonic force. 

By carrying out the integration and a few steps of iteration we 

obtain, from (2-11) 

(Ek + w. + w. - E~ + 2is) (Ek + w.-E +is) , J ,(.. J m 

+ (hiqher order terms) 2-19 
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where i, m, k are indices of the eigenstates and it is assumed that s 

tends to O+. This s is usually neqlected when the optical frequencies 

are far away from the atomic transition frequencies. In cases of 

resonant scattering where the real part of the energy denominator 

is vanishingly small, this splays a very important role in averaging 

over the energy levels line shape functions. In doing that we have 

to use the following well-known relation [5]. 

lim ~ = P.v.(l) - imS(x) 
s~o+ x ls x 

2-20 

we also have to know the line shape function of each energy level in 

order to perform the integration. We now proceed to calculate the 

dielectric polarizabilities. Using equation (2-19), the expectation 

value ofµ (2-17) can be written as 
Cl 

<µ > 
Cl 

+ (higher order terms) 

e 1 + c·c· 
-iw. t } 

(- µy)ng 
Em + 2is) (Eg + w. - E + is) ,J n 

- E - is) m 

2-21 



13 

If we use the notation (2-4) and change the dummy indices i ,_ j in 

(2-21), we obtain 

<µ > 
a 

+ (higher order terms) 

(E -w.-w.-E -2iE)(E -w.-E -iE) 
g i J m g J n 

Comparing the definition of polarizability tensors (2-6) and equation 

(2-22), we obtain 

_ 1 \Dµa)gm(-µS)mn(-i\)ng (µa)gm(-µy)mn(-µS)ng 
XaSy(w; ,wj) - 2 L (E +w.+w.-E +2iE )(E +w.-E +iE) +·(E +w .+wj-E +2iE)(E +w.-E +iE) 

mn g 1 J m g J n g i m g i n 

These are the most general expressions for dielectric polarizabilities up 

to second order. Although there are infin i te numbers of terms in the 

expressions , only some dominant terms wil l be kept in most of the practical 

problems encountered. The second order polarizability tensor is the 
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lowest order nonlinear polarizability which is a tensor of rank three 

and depends upon the mixing frequencies wi and wj. 

If the optical frequencies are far away from all the relevant 

atomic transitions, all the x's become real and the medium becomes 

lossless. In this case if we consider the interaction between three 

waves at frequencies w1, w2 and w3 = w1 + w2. The corresponding non

linear polarizabilities satisfy the following permutation symmetry 

relation 

which may be easily remembered as follows: the nonlinear polarizability 

is invariant under the interchange of the tensor indices, provided the 

corresponding frequencies are also interchanged. In general there is no 

symmetric relation between complex nonlinear polarizabilities. Equation 

{2-25) can be obtained directly from (2-24) by assuming £ = 0. This 

relation can also be derived by considering the work done by the three 

waves on the medium. In a lossless medium, we should have 

The left hand side of (2-26) gives the nonlinear power loss due to 

the nonlinear polarizations. It can be easily shown that equation (2-26) 

leads directly to the symmetric relations (2-25). 

In the limit when w1+o and wj+O, equation (2-24) leads to 

XaSy(O,O) = l:: w~9 wmg ~µa)gm (µS)mn (µy)ng 

mn 

+ (µa)gm (µY)mn (µS)ng + (µB)gm (µa)mn (µy)ng~ 2-27 
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where wng = En - Eg and wmg = Em - Eg. 

We find that in the low frequency regime we have the following 

symmetry 

where (aBy) is any permutation of a,S,y. 

obtained from (2-25). 

2-3 Diagram Representation 

2-28 

Equation 2-28 can also be 

We have derived in the previous section the linear dielectric 

polarizability and the lowest order nonlinear dielectric polarizability. 

Equations (2-23) and (2-24) show that there are two general terms under 

a single summation in the polarizability tensor of rank two and there 

are six general terms under a double summation in the polarizability 

tensor of rank three. It can be proven that there are exactly n! 

general terms in the polarizability tensor of rank n. Diagram techniques 

have been introduced in particle physics to calculate the scattering 

amplitudes of any arbitrary order [6]. It is actually a systematic 

way of writing out all of the possible scattering processes and the 

scattering amplitude associated with each process. 

It is found that the nonlinear polarizability tensors have exactly 

the same property. Each term in (2-23) and (2-24) can be represented 

by a diagram with amplitude similar to that of the Feynman diagram. 

The only difference from that of the Feynman diagram is that the sign 

of E is not always the same as Eg which i s the energy of the initial 

state. This is due to the fact that compl ex conjugate evolution 
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operator appears in the expectation va1ue ofµ (see equation 2-14). 
Cl 

The rules of the diagram technique are summarized below: 

1. Positive wi means absorption of a photon. 

Negative wi means emission of a photon. 

2. Each matrix element (µa)lk is represented by a vertex 

1~-
3. Each energy denominator is represented by a solid straight 

1 i ne I between two vertices. 

4. The sign of E in the energy denominator is positive if the 

energy denominator is below the vertex µ where the resulting 
Cl 

5. 

photon is emitted (or absorbed) and is negative otherwise. 
1 n-1 

A numerical factor of 2(~) , where n is the number of 

vertices. 

Using these rules, the polarizability tensors in (2-23) and (2-24) can 

be written 

Xas ( wi ) = L ( -1 ) 
m 

w=w. 
1 

2-29 



g 

g 

w=w .+w . 
l J 

17 

g 

g 

w=w.+w. 
' l J 

+ 

w=w .+w . 
l J 

2-30 
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The six diagrams in XaSy(wi' wj) are drawn for positive wi and wj. For 

negative wi or wj, we simply replace the corresponding incoming photons 

by outgoing photons. The next higher order nonlinear polarizability 

tensor XaSyo 

By using the 

(w., w., wk) has 24 general terms under a triple summation. , J 

diagram rules, XaSyo (w1, w2, w3) can be written as 

+ (23 other terms by permutino the four vertices~ 
2-31 

2-4 Phenomenological Equation of Motion - Density Matrix Approach 

In the previous calculation we assumed that the atomic system is 

in some pure state at t = t
0

. Hence the evolution of the atomic sys

tem is completely detennined by the Schrodinger equation. In practice, 

however, the bulk nonlinear susceptibility consists of the contributions 

from a large number of molecules. Instead of knowing the complete wave 
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function of an individual molecule, we only know the equilibrium 

population distribution which is usually given by the Boltzmann dis

tribution function [7]. 

-(E -·E )/kT = - n g 
Pgg e 2-32 

In addition to this, the line shape function of each energy level 

is also not known. The finite width of the line shape is due to 

collisions, spontaneous emission, etc. [8]. 

Facing these two problems we have to use the density matrix 

approach and find a phenomenological equation of motion for the den

sity matrix. All those random perturbations such as collisions, spon~ 

taneous emissions, etc. will be lumped into a relaxation term in the 

equation of motion. Thus we have the following phenomenological equa-

tion of motion [9] . 

2-33 

Where Pmn is a matrix element of the density operator p. m, n are the 

energy level indices. pmn is the equilibrium density matrix element 

which is diagonal in the energy representation. The matrix element Pmn 

is defined as 

= \ p(s) a(s) /(s) 
L m n 2-34 

s 

where we consider a mixed state as an incoherent mixture of pure states 

l~(s)> with a statistical weight p(s). The p(s) are real and positive 
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numbers satisfying L p(s) = 1. An arbitrary pure state J11/s)> can 
s 

be described by a linear superposition of the unperturbed eigenfunctions 

J iJ/ s) > = L a~ s) ] n> 2-35 
n 

The Hamiltonian H in equation (2-33) is given by (2~1) and (2-2). The 

relaxation rater mn can be interpreted as follows : r nn is the relax

ation rate of the n-th state population and is given roughly by 

r '\., 1 + =, ___ _ 
nn t T spont inelastic 

2-36 

where tsoont is the spontaneous lifetime of then-th state and 

Tinelastic is the inelastic collision time. This is a reasonable 

approximation because we know that spontaneous decay and inelastic 

scattering will make the population tends to the equilibrium values. 

1 
r mn = 2 (r mm + r nn) + Ymn 2-37 

The decay of Pmm and Pnn will also contribute to the decay of Pmn' 

this accounts for the first term in (2-37). There are other mechanisms 

which will also make pmn decay, for example, phase-interrupintg col

lisions [10], velocity changing collisions [ll],etc., these effects are 

lumped into Ymn · We assume that Ymn = Ynm · 

In terms of the density matrix the expectation value of the dipole 

moment operator is given by 

<11 > = Tr( P 1J ) = \ P ( µ ) a a L_, mn a nm 2-38 
mn 

If Pmn can be solved from equation (2-33) , in terms of the perturbing 

optical fields , then the dielectric nonlinear polarizability can be 
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obtained from (2-6). Equation (2-33) can be solved by the method of 

successive approximations. We expand Pmn in terms of a power series 

in H' [ll]. 

(o) + (1) + (2) + (3) 
Pmn = Pmn Pmn Pmn Pmn + ••••• 2-39 

Substitute pmn from (2-39) into (2-33) and equate terms with the same 

power of H' on both sides of the equation, we obtain 

d (o) = ·[H (o)] r ( (o) - ) 2-40 
dt Pmn -l o ' P mn - mn Pmn - Pmn 

d (1) = '[H (l)] i[H' (o)] - r p(l) 2-41 
dt Pmn -l · o ' P mn - ' P mn mn mn 

d (£) - '[ (£)] '[H' (£-1)] r (.f.) 2,..42 
d t P mn - - 1 Ho ' P mn - 1 ' P mn - mn Pmn 

If we define 

2-43 

and recall 

2-44 

Then equation (2-42) can be written 

_Q_ (£) = (-iw - r )p(l) .. i[H' p(l-1)] 
dt Pmn mn mn mn ' mn 

2 ... 45 

The most general solution of equation (2-45) is 

t 

"-i I [H' 'P(.t-l)(t')]mn 
iwmn(t'-t) + r (t'-t) 

e mn dt' 2.46 

.. oo 

+ constant 
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We are now ready to perform the successive approximation. Equation 

(2-46) can be integrated to obtain p~~)(t) once the l-lth order so

lution p(.f.-l)(t) is known. After a few steps of iteration, we obtain mn 

(o) ir lk 
p - p - p 0 
£.k - -w.tk + ir lk lk - kk .tk 

(1) - ' (l) 
P lk - L 2 

-iw. t 
1 

(µ-E.) ok e 
1 -t. • (p - p ) 

; 
-w.ek + wi + ir lk kk U 

~ (pkk - Pmn) 
(-w k + w. + m J 

2-47 

2-48 

2-49 

The expectation value of the dipole moment operator can also be written 

as a similar expansion 

+ (higher order terms) 

Using (2-47) - (2-50), <µ>can be written a 

+ (higher order terms) 

2-50 

-iw. t 
(pkk-pU)EiS e 

1 

2-51 
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Comparing with (2-6), we obtain the dielectric polarizability tensors 

from (2-51) 

x f3(w .,w. ) 
Cl y 1 J 

2-52 

We note that the second term in (2-53) is obtained f rom the first term 

by i +-r j and f3 +-r y . This is due to the definition of 

x f3 (w . ,w . ) (2-6) which is defined for a pair of frequencies re9ardless 
Cl y 1 J 

of their order. 

The results obtained in (2-52) and (2-53) are exactly identical to 

those of (2-23) and (2-24) if we require Pnn = Pgg ong and rlg + r kg = r lk 

However, the results obtained from the phenomenological density matrix 

equation have some significantly different meanings. Previous results 

are obtained from the Schrodinger equation (2-9) by assuming a known 

initial wave function J¢(t
0

) > and a set of well defined energy levels . In 

order to obtain a significant result near resonance, we have to perform 

the line shape i ntegrati on over every relevant energy level. The line 

shape function of the energy levels are normally unavailable. In the 

density matrix approach, we assumed that every energy level is well 

defined and all the consequences due to the finite line shape are lumped 

into the relaxation terms. As a result, no more line shape integration 

is necessary except that of the Doppler broadening which is not included 
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in the relaxation terms. 

The result obtained in this section will be applied to the case 

of three-wave mixing in NH2D gases in the next chapter. 
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Chapter 3 

NONLINEAR POLARIZABILITY OF AN ASYMMETRIC TOP 

3-1 Introduction 

A general expression for the second order nonlinear polarizability 

tensor was derived in the previous chapter. l~e wi 11 now employ those 

results to calculate the nonlinear polarizability tensor of an Asym

metric Top. We will limit ourselves to the rotational-vibrational 

transitions only. All the other contributions will be neglected. This 

is legitimate as long as the optical waves are in resonance with 

the relevant rotational-vibrational transitions involved in the 

nonlinear mixing processes. 

We will review in the next section some of the basic quantum 

mechanics of an asymmetric top and introduce the conventional energy 

level designations for asymmetric tops. Only rotational motion will 

be considered. 

3-2 Quantum Mechanics of a Rigid Rotating Body 

A rigid body is described by the location of its center of mass 

and the orientation with respect to a coordinate system fixed in space. 

The principal axes of the rigid body will be labelled ~ns. The orien

tation of the rigid body will be defined by the three Euler angles ¢, 

e, ~with respect to the fixed coordinate system xyz [l]. The Hamil

tonian of quantum mechanical rotation of the rigid body can be written [2] 
" ,.., ') JL. J.: J'" 

H = l + _!L + _s_ 3-1 
2Ia 2Ib 2Ic 
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where Ia' Ib, Ic are the principal moments of inertia of the rigid 

body; and J~, Jn' Js are the components of the angular momentum operator 

along the ~ns axes. These angular momentum operators satisfy the com

mutation relations [2] 

The total 

It can be 

= - i'tiJ s 

angular momentum operator J2 

J2 = J 2 + J 2 + J2 
~ n c:; 

shown that J2 commutes with 

etc. 3-2 

is given by 

3-3 

H, 

2 [H , J ] = 0 3-4 

Therefore the eigenvalues of J2 are good quantum numbers. It can be 

also shown that eigenvalues of Jz are also good quantum numbers. 

In what follows we will describe two special cases . A rigid body 

with three identical moments of inertia Ia = Ib = Ic is called a sym

metrical top. In this case the Hamiltonian has the simple form 

3-6 

Therefore the rotational eigenfunctions are the generalized spherical 

harmonics [2] 

jJKM)=~~ D~K (¢, e, ~) 
\I~ 

with eigenvalues given by 

'112 
E=2fJ(J+l) 

K, M = 0 , ± 1 , • • • • ±J 3-7 

3-8 
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In equation (3-7), Kand Mare the eigenvalues of Js and Jz respectively. 

3-9 

3-10 

For a spherical top, the energy levels have degeneracy of (2J+l) 2. 

This is due to the fact that the Hamiltonian H given by (3-6) is invariant 

under any rotation in both ~ns space and xyz space. The rotational 

invariance in ~ns space contribute (2J+l) degeneracy in K. Another 

(2J+l) degeneracy in M comes from the rotational invariance in xyz space. 

A rigid body with an axis of symmetry has in general two identical 

moments of inertia. Such a body is called a symmetric top. Suppose, 

for example, Ia = Ib r Ic, then the Hamiltonian for rotational motion 

can be written 

2 J 2 
J + _s_ 

H = 2Ia 2 3-11 

The rotational eigenfunctions are still given by (3-7). The rotational 

eigenvalues, however, are given by 

11 2 -n 2 l l 2 E = - J(J+l) + - (- - --)K 3-12 
2Ia 2 IC Ia 

We notice that the degeneracy in K is partially removed. The energy 

levels still do not depend upon the sign of K. Therefore the degeneracy 

factor is 2(2J+l) if Kr 0. This double degeneracy with respect to the 

sign of K is due to the fact the Hamiltonian (3-11) is invariant under 

reflection in a plane passing through the axis of symmetry of the rigid 

body (see Table 1). If all the three moments of inertia are different, 

the rigid body is called an asymmetric top. In this case K is no longer 
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a good quantum number. Only J and Mare good quantum numbers. The 

rotational eigenfunction can be expanded in terms of a linear combi

nation of the symmetrical top wave function (3-7). The eigenstates 

are specified by giving the value of J, and the value of K_1 for the 

limiting prolate and K1, for the limiting oblate symmetric top (3]. 

To illustrate this energy level specification, we referred to Fig. 3-1 

which shows the qualtitative behavior of the asymmetric top energy 

levels. The eigenfunction is given by 

jJK KM> = 
-1 1 I 

K 
aJK jJKM> 3-13 

where aJK are the numerical coefficients which can be determined exactly 

by solving the secular equation [4]. 

Table l shows the characters of the irreducible representations 

of the symmetry group R(e, ¢), D
00
h and o2 for spherical, symmetrical 

and asymmetric top respectively. Fig. 3-2 shows the energy levels of 

spherical, symmetrical and asymmetric top; the removal of the degeneracy 

is shown as asymmetry is introduced. 
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Fig. 3-1 Qualitative behavior of the asymmetric top energy levels. 

The left end is for a problate symmetric top and the right 

end is for an oblate symmetric top. 



J=2 

J=I 

J=O 

31 

JK 
20 L: 

~.:::---- - - .......... 
' .......... IT .............. 220 A \ 2f' ......... _______ ........ 
\ , ---- --======= 
\ \ 221 81 

\ \ 
\ \ 

\ \ 
\ \ 

\ \ 

22 \ \ 
\ ----

10 L: 

\ 
\ 

\ 

\211 

::::::----- .... 
--.... 110 ....... ..... .... IT 

..... .... , 
11 ' ...... , , ___ __ 

...... 
I 11 ' ' ' ' ' 
101 

83 

82 

s, 

00 Ooo A --------------------
SPHERICAL 

TOP 
SYMMETRIC 

TOP 
NH 3 

ASYMMETRIC 
TOP 
NH2D 

Fig. 3- 2 Energy l evels of t ops with different symmetries. 
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Table 1 Character tables 

R e, E ooC ( <P 

J = 0 1 1 

J = 1 3 sin ~ <P/sin ~ <P 

J = 2 5 sin ~ <P/sin ~ <P 

J = 3 7 sin ; <P/sin i <P 

Dooh E 2C(<P) oo oh i 

r.+ 
g 1 1 1 

~ 1 1 -1 

~ 1 1 1 -1 

~ 1 1 -1 -1 

rrg 2 2 cos <P 0 2 cos <P 

nu 2 2 cos <P 0 -2 cos <P 

!:::. g 2 2 cos 2 <P 0 2 cos 2 <P 

!:::.u 2 2 cos 2 <P 0 -2 cos 2 <P 

02 E c~ en 
2 

cs 
2 

A 1 1 1 1 

Bl 1 1 -1 -1 

B2 1 -1 1 -1 

83 1 -1 -1 1 
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3-3 Matrix Elements and Selection Rules 

ln order to calculate the nonlinear polarizability tensors we need 

to know the matrix element of the dipole moment operator. The rotational 

wave functions are in general linear combinations of the generalized 

spherical harmonics (see 3-13 and 3-7). Thus we have to find out first 

the matrix elements between these generalized spherical harmonics. In 

other words, we need to calculate 
-+ -+ 

<J'K'M' I - µ•E I JKM> 3-14 

-+ 
where E is the electric field vector which is usually specified in the 

-+ 
xyz space coordinate system, and µ is the dipole moment operator which 

is usually specified in the body coordinate system sns. Let A be the 

rotation matrix which transforms sns to xyz system. Thus we have 

µx µs 

µy = A µn . 3-15 

1-lz µs 

where the rotation matrix is given by [1] 

cosl)Jcosqi - cosesin<I>sinl)J - si nl)Jcos<I> - cosesin<I>cosl)J sines in qi 

A = cosl)Jsin¢ + cosecos¢sinl)J - sinl)Jsin¢ + cosecos<I>cosl)J - sinecos<P 

sinesinl)J sinecosl)J cose 

AXs Axn Axs 

- AYs Ayn AYs 3-17 

Azs Azn Az s 

3.,.16 
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The rotation matrix (3-16) can be expressed in terms of the generalized 

spherical harmonics [2] 

11 l l l ill l l i(D11 +o1_1+o_ 11 +o_ 1_1J i[o11 +o_ 11 -o1_1-o_1_1J 

-_i r l l l l J ]_r 1 l l l A= ~o11 +o1 _ 1 -o_ 11 -o_ 1 _ 1 2Lo11 -o1_1-o_11 +o_1_1J 

:.i{o l + ool -1 J 12" 01 --1{0101 - Dol-1] 
v1Z 

l 1 l 

12
J01 o-0-1 oJ 

In terms of the rotation matrix A, the matrix element (3-14) becomes 
-+ -+ -+ -+ 

<J'K'M' I - µ•E IJKM> = - E•<J'K'M' I A !JKM> µbody 3-19 

where µbody is the dipole moment operator in the body coordinate system 
-+ 

~ns· Note that µbody is independent of the Euler angles ¢, e and ~· 

From (3-19) we f i nd that all we have to do is to calculate <J'K'M' !D~kJJKM> 
which is given by [2] 

2 
<J'K'M' jo1 jJKM> = Bn (JlM mjJ'M') (JlK kjJ'K') 3-20 mk 2J 1+1 

where (J1M mlJ'M') and (JlK kjJ'K') are Clebsch- Gordan coefficients . 

[5] (see also Table 2) and m, k = -1,0 , l. 

A typical term in a matrix element which involved in the transition 

from IJK' K' M'> to IJK K M> is of the following form 
-1 l -1 l 

where (3-13) has been used and n = x, y, z, v = ~' n, s· 
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Table 2 Clebsch - Gordan Coefficients (JlM mjJ 1 M1
) 

JlM m J'M 1 m =· l m = 0 m = - l 

J I : J + l f (J+M+l) J+M+2)11/2 
2J+l 2J+2 

t(J-M+l)(J+M+l)]l/2 
( 2J+ 1) ( J+ 1) . 

[(J-M+l (J-M+2 ]l/2 
2J+l 2J+2 

J' = J rJ+M+ l) (J-M)r2 M [(J-M+l)(J+M)]l/2 
2J (J+ 1) [J (J+l)]l/2 2J (J+l) 

J' = J - l ~J-M-1 HJ-MlJ1
12 

2J (2J+ 1) 
-l(J-M) (J+M)r2 

J (2J+l) 
[ J+M 'J+M-1 jl/2 

2J 2J+l 
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If we write Anv as 

Anv = L c~~ D~k ( <P' e' 1)J) 3-22 
mk 

then it follows from (3-20) that (3-21) can be written 

<J Kl I K I M' J P. I J K K M> = 
-1 l nv -1 l 

~ \ B·rr2 / a cmk 
L L 2J 1 + l J 1 K 1 J K nv 
KK' mk 

x 

( J l Kk I J 1 K 1 
) ( J l Mm I J 1 M 1 

) 3-23 

Because of the conservation of angular momentum (or the property of 

Clebsch .. Gordan coeffi'cient), the nonvanishing term must have 

m = M' - M 3-24· 

k = K' - K 3-25 

Using these m and k, (3-23) can be written 

<J 1 K' K'M' IA JJK KM> = am (J 1 ,J) (lM m!J 'M') _1 1 nv _1 nv 3-26 

where 

3-27 
Kk 

These results are summarized in Table 3. 
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Table 3 Matrix Elements of an Asymmetric Top 

µ~ µn µI'; 

Allowed A+-+ B1 A +-+ B2 A~ B3 space factor transitions B2 +-+ B3 Bl ~ B3 Bl +-+ 82 

Ex 
i i i x(alM ±1 I J' M±l) - Cl - Cl - Cl 

12" ~ n n n s 
- M -+ M±l 
E l l l x(JlM ±1 I JI M±l) ± n a~ ± - Cl ± - Cl y n n IZ s 

Ez M -+ M Cl~ an Cl/'; x(JlM 0 I J'M) 

where 

-412°7f2; ~ ( * ( I a~= 2J'+l 1K' aJ'K+l aJK JlKl J'K+l) 

+ .;'K-1 "JK (JlK -1 I J' K-1)} 3-28 

412"n
2 ~ ( * an= 2J'+l L aJ'K+l aJK (JlK 1 I J 1 K+l) 

K 

- .;'K-l"JK (JlK -1 I J' K-1)} 3-29 

3-30 
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The selection rules are also included in Table 2. These selection 

rules can be obtained from the character table given in Table 1. A, s1, 

B2, B3 are the only four irreducible representation of the symmetric 

group o2 of the Hamiltonian. Each energy level of an asymmetric top is 

labe l led by one of these four irreducible representations. The trans

formation properties of these four representations are also shown in 

the same tables. For example, if we consider a rotation of 180° around 

the s-axis, µs is unchanged, A and B1 are also unchanged . B2 and B3 
change sign, thus we conclude that the allowed transitions that involve 

µ~ are A~-+ B1 and B2 +-+ B3. 

3-4 Nonlinear Polarizability of an Asymmetric Top 

We have mentioned previously that the second order nonlinear 

susceptibility of a medium with inversion symmetry vanishes. There

fore there is no second order nonlinear effect in gases. In order to 

have a nonzero second order nonlinear polarizability, it is necessary 

to have a nonvanishi ng product of the three matrix element among the 

three relevant energy levels involved (see 2-50). In addition to this, 

the summation of all the contributions from the degeneracy (usually M) 

should not cancel. 

In this section we will show that the second order nonlinear 

polarizability of an asymmetric top isolated in free space with equal 

probability in any orientation vanishes. In order to have a nontrivial 

product of three matrix elements, the three energy levels involved must 

have different irreducible representations. Without loss of generality 
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we will assume that the three energy levels involved are IB1 J> , 

IB2 J+l> , !B3 J> and the molecule is in its ground state JB1 J> 

{see Fig. 3-3). 

Consider a typical component x zxy(w1, w2); from (2-53) and Table 
3 we have 

Xzxy(wl, w2) ~ 2~+lL ((J,l,M,l I J+l, M+l)(J+l, 1, M+l, -l)(J,l,M,O I J,M) 

M 

From Table 3, 

+ (J,l,M, -1 I J+l, M-l)(J+l, l, M-1, 1 I JM)(J,l,M,0 IJ,Mj 

3-31 

= _l_ \'{nJ+M+l J+M+2 ~1 1 2 r J+M+l (J+M+2 ] 112 M 
2J+l ~\..U2J+1 2J+2 J ~ 2J+2 2J+3 IJ(J+l) 

+~ J-M+ l J-M+2 Jl 12 ~ J+ 1-M J+2-M 8l 12 M :\ L 2J+1 2J+2 l 2J+2 2J+3 v'J(J+i>~ 

3-32 

The sum of the two terms inside the parenthesis in (3-32) is an odd 

function of M, so that the summation l gives 
M 

3,..33 

It can be shown similarly that all the tensor components of even order 

nonlinear polarizabilities for a molecule with random orientation vanish. 
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J 

Fig. 3-3 A three-level system . 
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Chapter 4 

APPLICATION TO NH2D MOLECULE 

We have shown that an asymmetric molecule with random orientation 

possesses no second order nonlinear polarizability . This prohibits any 

three-wave mixing in molecular (or atomic) gases . Application of de 

electric field to a gases system destroys the basic inversion and isotropy 

symmetry and allows three-wave mixing processes to occur. The general 

expression (2-50) derived in chapter 2 will now be applied to NH2D molecule . 

under the conditions of resonantly enhanced nonlinearities. Calcula-

tions are presented for mixing of a co2 laser with 4 GHz microwaves in 

the molecule NH2D, producing single lower sideband radiation . Pressure 

dependence of the nonlinear susceptibility is a·lso calculated by per

forming an integration over the Maxwellian velocity distribution. The 

dispersion behavior of the real and imaginary parts of the nonlinear 

susceptibility is also presented. Saturation effects are also considered. 

4-2 Stark-induced Nonlinearity in NH2Q. 

We consider a gaseous NH2D system in a de electric field polarized 

in z-direction . The number of NH2D molecules per unit volume is N. The 

application of a de electric field to a gaseous system introuces a pre

ferred spatial direction thus destroying the inversion and isotropy 

symmetry. The second order nonlinear polarization oscillating at the 

difference frequency w1 = w3 ~ w2 can be related to the product of the 

two electric fields by 
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4-1 

where daSy(w3, -w2) is the corresponding nonlinear susceptibility 

which is related to the molecular nonlinear polarizability by 

Because of the applied de field, the gaseous system now possesses an 

axial symmetry . The only nonvanishing second order susceptibilities 

are dzzz , dzii , dizi and diiz , where i = x or y. 

The NH2o molecule has, among others, the three levels shown in Fig. 4-1, 

which can be Stark-tuned into simultaneous resonance with the P(20) line 

of the co2 laser [l]-[4] and microwave radiation near 4 GHz as shown. 

This should lead to a strong resonant mixing of the P(20) line (of fre

quency w3/2n) and the microwave field at w2/2n = 4 GHz, giving rise to 

the difference frequency radiation at w1 = w3 - w2 when the Stark field 

is near Ede = 3570 V/cm . Levels l and 2 belong to the lowest vibra

tional state (v 2 = 0) and have molecular angular momentum quantum num

bers J = 4 and IMI = 4. The subscripts 04 and 14 correspond to the 

standard asymmetric top designation [5,6] . The symbols a (asymmetric) 

and s (symmetric) refer to the parity of the inversion-split vibrational 

wave functions. The application of an electric f i eld Ede causes an 

admixture of the wave functions l404a> and l414s> which is due to a 

nonvanishing matrix element of the molecular dipole operator connecting 

the two states . This admixture, which will soon be shown to be respon-

sible for the nonlinear mixing, disappears at zero de field. The param-

eter !l ___ ~_p_pearing in the expression for the wave functions corresponds 
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to the energy splitting E2 - E1 between the two low-lying states and 

is given by 

4-3 

while the admixture wave functions are 

where o is the zero splitting and µz is the projection of the molecular 

dipole moment operator along the direction of the de field. 

The expression for the nonlinear dipole moment of an NH2D mole

cule depends on matrix elements which can be determined from non

linear absorption data as well as from the data on Stark splitting. 

This makes possible, in principle, a precise theoretical derivation of 

the nonlinear mixing behavior of this molecule and of its parametric 

dependencies. 

Applying the general results obtained from chapter 2 to the three

level system of Fig. 4-1, and keeping only the resonant terms (i.e., 

with near vanishing denominator), leads to the following expression 

for the polarization generated at w1 = w3 - w2 by the applied fields 

at w2, w3: 

p(2) (t) = 
O', 
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where pii is the equilibrium density matrix of level i with E2 = E3 = 0. 

If the NH2D gaseous is at thermal equilibrium, we have p-11 ; p-22 and p33 ; 0. 

Therefore the main contribution to P( 2) (t) comes from the second term, 
Cl 

the one proportional to (P-11 - P-33 ). 

The energy states !404a> , l1414s> and !s05a> at zero de field 

have the irreducible representations A, B3 and B1 respectively [7]. 

According to the selection rules described in section 3-3, the dipole 

moment which involved in the transition between B3 and B1 is µn. But 

µ
11 

= 0 due to the basal symmetry of NH2D (Note: n is the principal 

axis parallel to the bond direction of the two hydrogen atom in NH2D). 

Thus we conclude that the matrix element (µa) 23 vanishes at zero de 

field. It follows from (4-6) that no frequency mixing takes place at 

zero de field. When Ede~ 0 the ground state wave function J404a> ts 

admixed into level 2 as shown in Fig. 4-1. This results in a nonvan-

ishing matrix element (µa) 32 proportional to <505a I µ~ I 404a> . 
+ A + ~ 

For E2 f I z , a= x , and E3 I I x we can show that the triple ma~ 

trix product appearing in (4-6) is given by 

4-7 

where 

4-9 



47 

The nonlinear mixing is thus absent, i.e . , P( 2) = 0, at zero field x 
(Ede= 0) and at very high fields (6 >> o) . 

From (4-1) and (4-6) and using that fact that at room temperature 

p22 ~ pll , we obtain 

where N1 is defined as the population density of level l , i.e. 

4-11 

Expression (4-10) applied to stationary molecules with energy 

levels at E1 , E2 and E3 . In a gas sample we need to account for the 

Doppler shift of the transition energies of individual molecules. 

This is done by averaging the nonlinear susceptibility d 0 over the aµy 

velocity distribution function. We will assume that the two optical 

waves are all propagating in Y-direction so that we only take they~ 

component of the molecular velocity into account. The velocity dis

tribution function is taken as a Maxwellian 

l -v2 /202 
g(v) = -- e 4-12 

ffn a 

where 

2 
a = kT/m 4-13 

We also assume that the microwave frequency w2 is tuned such that 

w = 2 
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The frequency off-set 6w is thus due to optical waves only and is 

given by 

4-14 

To perform the average, we need to replace w31 by w31 (l+z) and w32 by w32 (l+f). 

From now on w31 and w32 mean the transition frequencies for stationary 

molecules . From (4-10) and (4-12), the averaged daSy (w3, -w2) becomes 

-co 

where we assumed r 13 = r 32 = r which is approximately the sum of the 

natural and pressure broadening line width. The integral in (4-15) can 

be separated into a difference of two plasma dispersion integrals. 

co co 

4-15 

= f 
f 2 

-t2 
g(v) dv -t 

I 
c 

[te- z2 - e ] dt = 
W32 W31 12aw21 (6w+ir )/IT t - zl 
(- v-6w- ir) (- v-6w-ir) c c 

-co -co 

4-16 

where 

c 4-17 

6w + if z2 = ---- c 
/Z 0 W32 

4-18 

We will use the following definition of plasma dispersion function 

suggested by Abramovitz and Stegun [8]. 
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00 

W(z) 
l f -t2 2 = Tii _te ___ z dt = e-z erfc(-iz) 

-oo 

This definition is different from that of Fried and Conte [9] by a 

factor of liT i, i.e. 

Z(z) = liT i W(z) 4-20 

The integral in (4-16) thus can be expressed by a difference of plasma 

dispersion function with two different arguments. 

I = n c ~1 (6w +ir 
"2" CJ w2l (f-i6w) L 12" o w32 

4-21 

Since w31 ~ w32 » w21 , equation (4-21) can be approximated by the 

following expression 

r,;:; 2 A • 
I= !2!:_ ( c ) iW'(LlW + lf c) 

2 0 w31 /2" 0 w3l 
4-22 

where W' is the derivative of W with respective to its own argument. 

The averaged nonlinear susceptibility d 8 is then 
a Y 

We note that the argument of plasma dispersion function, c(6w+ir)/v'Z CJ w31 , 

is a complex number with the real part equal to the ratio of the fre-

quency off-set to the Doppler linewidth and the imaginary part equal to 

the ratio of the homogeneous (spontaneous puls pressure) linewidth to 

the Doppler linewidth. The derivative of a plasma dispersion function 



is related to itself by [10] 

W1 (z) = - 2zW(z) + ii 
l1T 
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4-24 

Thus the averaged nonlinear susceptibility d B can also be written 
Cl y 

At resonance, 6w = 0, the above expression becomes 

4-26 

where 

c r x =--- 4-27 
12 CJ w31 

We note that r and N1 are proportional to pressure if the natural line

width is negligible compared with pressure broadenin9 linewidth. 

4-3 Relation to Linear Absorption Coefficient 

Although a numerical estimate of the nonlinear mixing coefficient 

based on (4-25) is possible, a safer procedure and one that serves as a 

check on the matrix elements needed to evaluate dxxz (the largest co

eff icient in NH 2D) is to re l ate it to the linear absorption coefficient 
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for x polarized field at w3. The latter can be shown, by a deri

vation similar to that given above, to be given by 

yx(Liw) c r 

The resonant absorption coefficient is obtained from (4-28) by letting 

Liw = 0 

4.-29 

where x is given by (4-27) and yH is the absorption coefficient at 

high pressure (d' » ·aw31 ) and is given by 

4-30 

Combining (4-30) and (4-26) leads to the following expression for the 

resonant nonlinear susceptibility 

where xis given by (4-27). 

The various constants in (4-31) are evaluated as follows: The 

matrix element (µz) 12 is a function of the admixture and is obtained 

from the wavefunctions (4-4) and (4-5) as 

4-32 

4-28 
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where the sp l itting 6 = E2 - E1 is given by (4-3). We obtain the 

matrix element <ajµzjs> from comparing (4-3) to the experimental tuning 

curve of w31 vs. Ede [4]. This yields <alµzjs> = 1.14 x 10-18 esu. 

At resonance Ede= 3570 V/cm and o/6 = 0.174. The final result is 

(µz) 12 = 0.174 a<lµ!s > = 0.198 x 10-18 esu 

The saturated absorption yH is obtained from the data on Ref. [3] for 

a 50:50 ND3-NH3 mixture as 

yH = .028 cm-l 4-35 

From the same data we obtain 

f/P = 2n(20.l MHz/Torr) 4~36 

which enables us to express the dimensionless argument x of Eq. (4-31) 

as 

x = 2n(20.l) x 106c P(Torr) 

/(kT/M W31 

With these data we obtain 

4-37 
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2.31 x l0-7G(x) esu 

2 
G(x) = 2x[~1 - x ex erfc(x)] 

rn 

4~38 

4-39 

The theoretical dependence of dxxz on P (4-38) is plotted in Fig.4-2. 

The peak occurs at P = 2.0 Torr and has a value of 

A comparison of this predicted behavior with experiment is given in 

the next chapter. 

The coefftcient d estimated above refers to the generation of 

sideband radiation at w1 by mixing co2 P(20) line with a microwave 

field w2 (at 4.1 GHa). It is thus appropriate to compare it to the 

electro-optic coefficient r 14 of GaAs which can be used, alternatively, 

to generate the sideband by conventional electrooptic modulation. 

Using the correspondence [11]. 

we have 

3 
(n r)NH D 

2 
3 

(n r)GaAs 
~ 0.8 

4-41 

4-42 
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Fig. 4-2 Theoretical dependence of NH 2D nonliner coefficient on pressure 

when the applied fields are exactly resonant with the Stark-

tuned energy levels. 
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We reach the conclusion that for sideband generation, de biased NH 2D at 

P ~ 2 Torr is comparable to GaAs (which is one of the best infrared 

modulation materials). We must recognize, however, that this large 

coefficient was obtained by exploiting the resonant nature of the 

effect. Th e penalty we pay for this i s that of reduced bandwidth. 

Other components of the nonlinear polarizability tensor 

We have mentioned that the only nonvanishing components of the 

second-order polarizability tensor in a system possessing axial symmetry 

{z-axis) are 

dzxx = dzyy 

dxzx = dyzy 

dxxz = dyyz 

In our· special case where the 1 +-+ 2 transition must be t.M = 0 which 

means if the polarization of E2 is in x or y direction, the matrix 

element vanishes . This shows dzxx = dzyy = dxzx = 0. Thus we have 

only two nonvanishing components left. Their magnitudes are related 

by the Clebsch - Gordan coefficients given in Table 3. For dxxz , 

the energy state J3> can have either !Ml = 5 or !Ml = 3 because of 

the x-polarization of the optical fields. While for dzzz , the tran

sition only involves !Ml = 4. Thus we have the followin g relation 

dxxz ~{(JlMl jJ'M+l) 2 + (JlM-l \J'M-1)
2
) 2~ 

dzzz = (JlMOIJ'M) 2 = 9 

where J' = 5 and J 4 . 
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The absorption coefficients for x-polarized light and z-polarized light 

have exactly the same relation. These results are based on the assump

tion that the system is a three-level system. 

4-4 Dispersion and Saturation 

In the previous section we derived a general expression for daBy(w3 ,-w2) 

as a function of 6w and r. Numerical calculation was carried out for 

resonance nonlinear susceptibility. A real daBy(w3 ,-w2) was obtained 

at 6w = 0. In general daSy(w3,-w2) is a complex number. The real and 

imaginary part of d B is plotted in Fig. 4.3 as a function of 6w. 
a Y 

This dispersion behavior is quite different from that of the linear 

susceptibility. This is due to the fact that an additional energy 

denominator appears in the nonlinear susceptibility. If we neglect 

the Doppler broadening and let dres be the resonant nonlinear suscep

tibility1 from (4-10) \<Je have 

-r2 
d(6w) = dres 2 

(6w+ir) 

If we rationalize the denominator of (4-43), we obtain 

d(6w) 4-44 

We find that the real part vanishes at 6w = ± r and the imaginary part 

reaches extrema at 6w = ± r/13. These are, however, no longer 

true if molecular motion cannot be neglected. In general, equation 

(4-25) should be used if the input optical wave has a finite frequency 

spectrum . The curves shown in Fig. [4 .3] are daBy(w3,-w2) given by 

(4-25). 
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In the above calculation of the nonlinear polarization at 

* w1 = w3 - w2 we only kept E36E2Y term. There are, however, other 

higher order terms which also oscillate at frequency w1 = w3 - w2. 

2 * 2 * For example, !E3 1 E38E2Y and !E21 E38E2Y are also oscillating at 

freq uency w1 = w3 -, w2. If these terms are included in the non-

1 i near polarization in (4-1) , the resulting daSy(w3,-w2) given by 

the same equation tends to decrease as !E2J2 or JE3J2 increases. 

In what follows we will include the next higher terms to study 

the saturation effect . For the sake of simplicity in algebraic 

manipulation, we define d
0 

as the unsaturated nonlinear susceptibility. 

Using the techniques described in chapter 2, we obtain 

j(µoE2)2112 
+ -----::::--

4 ( L'i w + ir )2 + i 4-45 

0 W21 
where c << r and w21 << w31 are assumed. 

If we now take molecular motion into account and integrate over 

the velocity distribution, we obtain after some mathematical manipulation 

~2 I 
a 1.( C ) • . ::-:7 + 

az 120 w31 

4-46 

where d
0

(z) is given by 

N (µ) 3(µ )31(µ )13 (. ) 2{ ~ d (z) = 1 a 2 B Y _c~ 1 + i/IT z W(z) 4-47 
0 2~ 0W31 
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and 

6w + ir z = c 4-48 
/2" 0 W31 

By using the differential equation (4-24) for W(z), (4-46) can be 

expressed in terms of W(z). However, the form given by (4-46) can 

give us some direct physical meaning. For example, it can be shown 

that (4-46) can also be written 

This form is particularly useful because it is related to the dis-

persion curves shown in Fig- 4-3. The second term is negative near 

resonance (see Fig. 4-3). Thus we find that increasing the micro-

wave power will tend to decrease the nonlinear susceptibility. This 

phenomenon is called nonlinear saturation effect. A typical dispersion 

behavior for the saturated nonlinear susceptibility is shown in Fig. 4-4, 

In conclusion of this chapter, we have shown in detail how Stark 

admixing can give rise to second order optical nonlinearities in gases. 

We have derived an expression for the coefficient describing the mix-

ing of an infrared and a microwave field in NH2D. Available absorption 

data were used to obtain a numerical estimate for the mixing and to 

describe its parametric dependence . 

Dispersion and saturation are also discussed. An experimental 

demonstration of this effect is described in chapter 5. 



d at 1.5 Torr with 
P2~0 

--- d at 1.5 Torr with 
P2 = 10 Watts 

60 

d 
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Chapter 5 

EXPERIMENTAL OBSERVATION 

5-1 Introduction 

In chapter 4 it was predicted that a resonantly enhanced non-

1 i near mixing process in the molecule NH2D could be induced by appli

cat i on of a de electric field, where co2 laser radiation and micro

wave energy at 4 GHz below the applied laser frequency. l~e report 

here the first experimental observation of such single-sideband 

optical modulation, unambiguous ly identified through the use of a 

scanning Fabry-Perot interferometer (SFP). We present measurements 

of the dependence of the parametric signal on gas pressure, micro

wave frequency, applied de field, and microwave power. The results 

are all in good agreement with theoretical predictions although 

there is some uncerta i nty in the quantitative comparisons due to 

undete rmined coupling losses in the microwave structure. Qualita

tively, the agreement is excellent . These experimental results are 

based entirely on the work of Abrams and his coworkers [l]. 

5-2 Experimental Apparatus 

The experimental apparatus fo r the observati on of the interaction 

is discussed with refe rence to Fi g. 5-1 . A frequency stabilized 

CW co2 laser beam (operating at P(20) line center) is passed through 

the microwave Stark cell containing the Stark-tunable gas. The cell 

consists of a 4-GHz ridged waveguide with an 8-mm-wide ridge width, a 

1. 2-mm gap , 20-cm length, and forms a resonant cavity (Q ~ 160). The 
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Fig. 5-1 Experimental apparatus for observation of single-sideband 

signal. The TWT amplifier supplies up to 4 W to the Stark cell. 
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ridge is insulated from the rectangular structure ' by a thin layer 

of Mylar, allowing application of a de Stark voltage and the 4-GHz 

microwave signal to the ridge. The microwaves are square-wave modu

lated at 2 kHz, amplified in a traveling-wave tube (TWT), and coupled 

into the ridged waveguide by means of a probe. 

The output of the Stark cell is passed through a scanning SFP 

and detected with a HgCdTe photodiode. The SFP performs as a nar

row-bandwidth (300 MHz) optical filter that is slowly scanned through 

its 10-GHz free spectral range (FSR). The SFP output can then either 

be displayed directly on a recorder or synchronously detected at the 

microwave modulation frequency in a lock-in amplifier. Very small 

changes in the SFP output due to the presence of the microwaves were 

detectable with the latter method. 

The NH2D was prepared by introducing equal partial pressures 
I 

of NH 3 and NH 3 in a mixing chamber. The resultant mixture containing 

37.5 percent NH 2D was metered into the cell and the pressure monitored 

with a capacitance manometer. 

5-3 Results 

Fig. 5-2 shows the SFP output before and after lock-in detec

tion with 1.1 torr of gas in the cell. The two outputs are simul

taneously displayed on a strip chart recorder as the SFP is scanned 

through one full order. The upper trace shows the direct SFP signal, 

with the familiar pattern of a single-mode laser. This is the SFP 

spectrum of 10.6-µm carrier transmitted through the cell to the 
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Fig. 5-2 Simultaneous signals observed. (a) Directly from the detector. 

(b) After phase sensitive detection as the SFP is scanned 

through one order. Note that the new feature due to the 

4-GHz microwave signal appears as a single sideband 4 GHz 

away from the carrier . 
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detector. The FSR is 10 GHz (1.5-cm plate spacing) . The lower trace 

of Fig. [2] shows the lock-in detection output with a 30-ms time con

stant. Signals occur at the positions corresponding to the peaks of 

the direct SFP output, indicating some sort of carrier modulation as 

a result of the applied microwave signal. A new peak, which is the 

parametric signal displaced 4 GHz from the carrier, appears approx

imately 40 percent of the way between the two carrier peaks. Note 

that only a single sideband occurs, for double-sideband generation 

would result in two signal peaks lying between the two carrier sig

nals. Calibration of the SFP has verified that the sideband is a 

lower one, as predicted, and corresponds to the difference frequency 

between the l 0. 6-µm carrier frequency and the microwave frequency. 

That the output is a parametric signal and not laser-induced fluor

escence from the gas is substantiated by the fact that the sideband 

is linearly polarized and no other line is observed in the SFP out

put; if the output were fluorescence, unpolarized emission at several 

wavelengths would be expected . 

The parametric signal was measured as a function of the Stark 

voltage as shown in Fig . 5-3. The SFP sawtooth drive was discon

nected and the mirror spacing was set to transmit the peak of the 

parametric sideband signal for these measurements. The maximum sig

nal occurred at a Stark voltage of 428 V with the microwave frequency 

set at 4.023 GHz. The full width at half-maximum (FWHM) of the sig

nal was 28.5 V which is equivalent to a linewidth of~ 130 MHz. The 

linewidth of the signal is greater than the NH 2D linewidth at 1 torr 



68 

_J 10 
<{ 
z 
<.9 
(/) 

u -a:: 
~ 
w 
~ 05 
<{ 
a:: 
<{ 
a_ 

w 
> -
tr 
_J 

w 0 
0::: 

390 430 470 510 550 590 630 
STARK VOLTAGE, V 

Fig. 5-3 Variation of parametric s ideband signal with Stark voltage , 

showing interacti on with jM j = 4 and jMj = 3 lines . 



69 

of 105 MHz [ l] due to some inhomogeneities in the Stark gap. A 

measured low-pressure absorption linewidth of 100 MHz FWHM compared 

to the 82-MHz actual Doppler width indicates a 0.5 percent variation 

in the Stark-gap spacing. 

The Stark voltage was increased to 600 V and the !Ml = 3 para

metric signa l was seen at~ 570 V. The ratio of the IMI = 4 signal 

ampl i tudes was 0.414. A theoretical calculation of this intensity 

ratio yields a predicted signal ratio of 0.40 . The agreement is well 

within experimental error. 

The parametric signal was measured as a function of the Stark 

cell pressure over a range of 0-8 torr as shown in Fig. 5-4 . The 

SFP was set to transmit the maximum signal and the microwave fre-

quency was fixed at 4.023 GHz. The parametric signal rose slowly 

between 0 and 0.5 torr, then rose sharply between 0.5 and l .5 torr, 

reaching a maximum at 2.4 torr. The signal slowly decreased between 

3 and 8 torr. The experimental curve and theory were compared using 

the best current NH 2D parameters with the theoretical p0ints also 

shown on Fig . 5-3 . Here the experimental 11 effective 11 Doppler 

width of 100 MHz was used to include the effects of the gap inhomo-

geneities . Again, the excellent agreement enforces the theory. 

The parametric conversion efficiency varied linearly with micro,.. 

wave power, reaching 0.2 percent at the maximum available TWT output 

of 4 W. Microwave power saturation effects are anticipated linewidth 

(µ·ERF ~ 100 MHz). This occurs at field strength of ERF ~ 4 X 104 V/m. 
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Unfortunately, unknown coupl ing losses prevent determination of the 

actual field strength . In the following paragraphs we use theory, 

including the effects of phase mismatch and linear absorption, to 

calculate the theoretical conversion efficiency . 

5-4 Comparison with Theory 

The experiment involves traveling-wave mixing between an input 

co2 laser (w3) and a microwave field at w2 (~ 4 GHz) to generate the 

difference frequency at w1 = w2 - w3. The interaction is described 

by the following coupled mode equations [3] which include the effects 

of optical losses and phase mismatch: 

where 

Ai(x) "~ w. 
l 

1-lo 
g = 

£0 

_g_ A ei.6kx 
2 1 

Ei(x) 

wl W3 dw]=w3-w2 
nl n3 xxz 

5-1 

E2 

Assuming a single input A3(o) at x = 0, the solution of (5-1) 

yields a conversion efficiency n of 
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n(x) -('1 + °3 ) 
2y x 

·[cosh (/Y x sin (e/2)) - cos (/Y x cos (e/2)] 5-2 

where 

2 r 2 2 ( '1 °3)
2J 2 y = L6k + g - 2 - 2 + [ ( '1 - °3)6kJ 

e = tan-1 ('1 - °'3) L1k 
2 2 2 

6k + g - (a,12 - °3/2) 

The phase mismatch 6k occurs because both of the infrared signals 

travel through the cell collinearly and at the same velocity, while the 

mi crowave wavefront travels in a guided mode. For the experiment per

formed at Hughes Labs , 6k is given by 

6k = 2n/ A - 2n/A g 

= 0. 08 cm- l 
5-3 

where Ag is the guide wavelength and A is the free-space wavelength. 

The maximum possible conversion efficiency occurs at a pressure 

of 2.4 torr. Assuming no microwave coupling losses , 4 W of input 
5 -1 power and Q ~ 160 leads to ERF ~ 10 V/m . At 2.4 torr, a3 = 0.02 cm 

(see [l]), a1 = 0.014 cm-l, and g = 0.0138 cm-l giving a conversion 

efficiency in 20 cm of 

n(20 cm) = 1.1 percent. 
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Due to asymmetric cavity coupling and a short 5Ag/2 cavity length, 

a large amount of the microwave energy is probably contained in higher 

order modes still present within the cavity. Assuming only 50 percent 

of the calculated microwave field in the lowest order mode is achieved, 

ERF = 5 X 104 V/m, and an efficiency of 0.27 percent i s expected in 

the 20-cm interaction length, a value close to that observed. 
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Chapter l 

GENERAL INTRODUCTION 

Periodic optical media and specifically periodic layered struc

tures play an important role in a number of applications. These include 

multilayer coatings for both high reflection and antireflection. This 

application benefitted larqely from the pioneering analysis of Abeles 

[l]. Other proposals involve the use of these structures for phase 

matching in nonlinear optical applications [2,3,4] and for obtaininq 

optical birefringence in stratified media composed of isotropic or cubic 

materials [5,6]. 

Recent developments in the crystal growing field, especially in 

molecular beam technology [7], make it possible to grow multilayer media 

with well controlled periodicities and with layer thicknesses down to 

10~. We may thus well consider the periodic optical structure as a new 

optical medium to take its place along with that of, say, homogeneous 

isotropic and anisotropic materials. Before proceeding with the many 

applications envisaged for periodic layered media we need to understand 

precisely and in detail the nature of electromagnetic wave propagation 

in these media. Although a number of special cases have been analyzed, 

a aeneral theory is not available . To illustrate this situation we may 

point out, as one example, that the present state of the theory does not 

answer questions such as that of the direction of group and enerqy velo

cities of waves in periodic media or even that of the birefringence at 

arbitrary angles of incidence . 
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This work describes a general theory of electromagnetic propaga

tion in periodic media. The theoretical approach is general, so that 

many situations considered previously will be shown to be special cases 

of our formalism. The theory has a strong formal similarity to the 

quantum theory of electrons in crystals and thus makes heavy use of the 

concepts of Bloch modes, forbidden gaps , evanescent waves, and surface 

waves . 

In addition to demonstrating the application of the theory to a 

number of familiar problems , such as reflectivity of multilayer films, 

we consider in general form a variety of some experimental situations 

which include Braqg waveguides, birefringence and group velocity at 

arbitrary directions, phase matching in nonlinear optical applications, 

multichannel waveguides and optical surface waves. We consider also the 

important problem of propagation and reflection in media with periodic 

gain and loss alternation which is relevant to X-ray laser oscillation 

in artificially layered media [8]. 

1. 2 Previous Work on Waves in Layered Media 

An enormous amount of work was done on the theory of anti-reflecting 

and high reflecting multilayer systems as well as for monochromatic 

interference filters in the first half of this century [9] . However, 

the first genera l treatment of stratified media in terms of the electro

magnetic theory of light was not available until 1950 when Abeles [10] 

introduced the matrix method to treat the propagation of light in layered 

media. Electromagnetic propagation in dielectric periodic layered media 
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was considered in detail with the direction of propagation normal to the 

layers by Levin [11]. Rytov [12] investigated the electromaonetic 

properties of a finely stratified medium. His results are general; 

val id for any layer thickness. However, Rytov only considered three 

special cases of wave propagation: propagation in a direction parallel 

to the layers for two polarizations, with either the electric or the 

magnetic vector parallel to the layers, and propagation in a direction 

perpendicular to the layers. Weinstein [13] derived general expressions 

for the transmissivity and reflectivity of multilayer coatings of any 

number of components , for light polarized in any way and incident at 

any angle. A theoretical study of the optical properties of a continu

ously varying medium was done by Jacobsson [14] usinq approximate and 

exact solutions of the wave equations. He showed that the general 

behavior of the reflection coefficient may be deduced from the reflec

tion coefficient of a single period. Jacobsson also considered hyper

boli c refractive index variation. Propagat i on characteristi cs of 

periodic arrays of dielectric slabs was also studied by Lewis and Hessel 

[15]. Dispersion curves and mode functions were used to illustrate the 

guiding properties of the structure. They explained those characteris

tics in terms of stability diagrams and equivalent network. Epstein [16] 

found that the equivalent index of a symmetrical period is a pure imagin

ary number in a stop band, while it is a real number in a pass band. 

Reflection from stratified anisotropic media was studied recently by Honig 

and den Engelsen [17] using a new method of computation which is dif

ferent from that of Teitler, Henvis and Berreman [18]. Teitler-Henvis-
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Berreman treatment involves solving Maxwell's equations simultaneously 

with a 4x4 matrix technique. 

We note that the evanescent Bloch waves have never been studied. The 

historical interest in optical properties of multilayer thin films was 

largely confined to the use of high reflectance coatings in high resolu

tion interferometry . Little attention, however, was paid to the guided 

waves in these media. During the last decade guided wave optics has 

become more and more important in the field of optical communication [19]. 

The basic circuit element in integrated optics is a thin-film waveguide 

which is essentially a layered medium. This has given an enormous stimu

lus to the study of guided waves in a general layered medium. 

1.3 Outline of Thesis 

In Chapter 2, the matrix method and translation operator are intro

duced into the electromagnetic propaqation in periodic layered media. 

Bloch waves and dispersion relation are derived by diagonalizing the unit 

cell translation operator. The concept of phase velocity and group velo

city in layered media are introduced and analyzed. Birefringence and 

double refraction are also studied. Numerical results for interesting 

special cases are presented and discussed. 

In Chapter 3, the mode theory of electromagnetic waves in layered 

media is studied. Attention is confined to guided modes in either finite 

or infinite structures. The concept of Regge poles [20] is employed to 

explain the relation between modes and the poles of reflectivity spectrum 

in s-space. Optical surface waves are introduced and analyzed. The 
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analogy between solid state physics and optics of periodic layered 

media i s emphasized and discussed . 

In Chapter 4, Bragq reflectors are introduced and analyzed. 

Numerical results for some interesting cases are presented and discussed. 

A new type of waveguide, the Bragg waveguide, is introduced and analyzed. 

Mode characteristics are derived and numerical results are given and 

discussed. The wavelength selectivity of Bragg waveguides is discussed. 

The leakage due to finite number of periods in the Bragg reflector is 

analyzed. Thickness matching is introduced in the optimum design of 

Bragg waveguides. Some other Bragg waveguide structures are also pre

sented and discussed. 

In Chapter 5, the dispersion due to periodic stratification is 

introduced. Application of this dispersion to compensate for the mate

rial dispersion in nonlinear optical mixing is introduced and analyzed. 

Normal processes and Umklapp processes [21] are explained in terms of 

phonon-phonon scattering. Distributed feedback soft X-ray lasers in 

artificially layered media are considered and analyzed. 

In Chapter 6, the propagation of electromagnetic waves in cylin

drically layered media is presented and analyzed. A concept of Bragg 

waveguiding is extended into the cylindrical regime. Bragg fiber is 

designed according to the optimization procedures. Mode character

istics and leak spectrum are presented and discussed. 

In Chapter 7, some experimental observation of Bragg waveguiding 

and surface wave propagation is described. 
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Chapter 2 

BLOCH FORMULATION OF ELECTROMAGNETIC PROPAGATION IN LAYERED MEDIA 

2. 1 Introduction 

Bloch wave function was introduced in 1928 to describe the electron 

motion in crystals [l]. A crystalline solid is characterized by its 

translational symmetry. If we ignore all the other symmetry except the 

translational symmetry, the entire symmetry classification of an elec

tron wave function in the crystal can be qiven by Bloch's theorem [2]. 

The irreducible representations can be completely labeled by specifying 

the crystal momentum K to each wave function. In one-dimensional cases 

we have 

(2. l) 

This property allows us to write the most general wave function in the 

form 

iµK ( x ) = U K ( x ) e i Kx 

where UK is a periodic function of x 

(2.2) 

(2.3) 

Electromagnetic propagation in a periodic layered medium has exactly 

the same property as el ectron motion in a one-dimensional periodic square 

well potential field [3]. Therefore, we expect that all the interesting 

properties of electrons in solids should have their counterparts in the 

optics of periodic layered media. For example , the stop bands and pass 

bands of a periodic layered medium are equivalent to the forbidden bands 
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and allowed bands of a crystalline solid respectively. Furthermore, we 

will later show that the electronic surface states of crystals also have 

their optical analog--optical surface states--in periodic layered media. 

Phase velocities, group velocities and energy velocities for optical 

Bloch waves will be carefully studied. Although the phase velocity for 

electrons in a crystal is not an important quantity in solid state 

physics, the phase velocities for optical waves are very important in 

interference and nonlinear mixing. 

In addition to the above properties, periodic layered media also 

exhibit the birefringence properties in a manner similar to a uniaxial 

c rys ta 1 [ 4] . 

2.2 The Matrix Method and the Translation Operator 

For the sake of clarity in introducin9 the basic concepts, we will 

consider first the simplest type of periodically stratified medium. The 

extension to the more general case is presented in Appendix A. The 

stratified medium treated in what follows consists of alternating layers 

of different indices of refraction. The index of refraction profile is 

given by 

n(x) = { n2 
nl 

0 < x < b 

(2.4) 
b < x < A 

with 

n(x+A) = n(x) (2.5) 

where the x-axis is normal to the interfaces and A is the period. The 

geometry of the structure is sketched in Fig. 2.1. The distribution of 

some typical field components can be written as 
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E(x,z) = E(x) eiBz (2 .6) 

The electric field distribution within each homogeneous layer can be ex

pressed as a sum of an incident plane wave and a reflected plane wave. 

The complex amplitudes of these two waves constitute the components of a 

column vector. The electric field in the a layer of the nth 

unit cell can thus be represented by a column vector 

( :~:: ) (2. 7) 

As a result, the electric field distribution in the same layer can be 

written as 

E(x,z) = 
ik x(x-nA) (N) -ik (x-nA) iBz 

{a~a.) e a. + bn'"" e a.x } e (2.8) 

with 

a. = 1 ,2 (2.9) 

The column vectors are not independent of each other. They are related 

through the continuity conditions at the interfaces. As a matter of 

fact, only one vector (or two components of two different vectors) can 

be chosen arbitrarily. In the case of TE modes {E vector in y-z plane) 

imposing continuity of E and aE/ax at the interface (see Fig. 2.2) leads 

to -ik A ik A 
a + b = e 2X c + e 2X d n-1 · n-1 n n 

(2.10) 

-ik a ik2 a 
e 2x + e x d = en n 

-ik1 a ik
1 

a 
e x + x b an e n 

(2.12) 
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(2. 13) 

The four equations in (2.10) to (2.13) can be rewritten as the following 

two matrix equations: 

\ { an-1 \ _ 1 1 

l ~ j -I '1 

1 - 1 n b ! I'. n-1 

( -ik2xa 
ik2x•) I ,. e 

e ik2x• 
' 

\ -ik a 2x e -e 

where we define 

By eliminating 

the matrix equation 

-ik2xJ\ ik2xJ\ 

fen) e e 

k2 -ik2xJ\ k2x i~XA 
\ dn x e -re (2.14) 

~ lx 

\ -ik1xa 
en e e an 

d 
) = k1 -ik1xa 

x e 

ik1.· \ I ) 
klx ik1x•) 

- r,:-e b 
n r;; 

a = a(l) 
n n 

b = b(l) 
n n 

c = a( 2) 
n n 

d = b( 2) 
n n 

I 

I A 
I 

\ c 

2x n ' 
(2.15) 

(2 ~ 16) 

(2.17) 

is obtained. The matrix elements are 
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-ik1 a k k 
A = e x [cos k2xb _ l i( 2x + l x)sin k2 xb] 2 kl; s- (2. 18) 

i k1 a k k 
B e x [ 1 . ( 2x l x) sin k2xb] = -2 1 r.-c 

l x 2x 

(2.19) 

-ik a [ l . 
k k 

c e lx (E _ lx) sin k2xb] = 2 1 klx k2:" 
(2.20) 

ik1xa k k 
D [cos k b + l i( 2x + lx) sin k2xb] = e 2x 2 ~ ~ 

(2.21) 

and according to (2.9) can be viewed as functions of s. The matrix in 

(2.17) is the unit cell translation matrix which relates the complex 

amplitudes of the incident plane wave a 1 and the reflected plane wave n-
bn- l in one layer of a unit cell to those of the equivalent layer in the 

next unit cell. Because of the fact that this matrix relates the fields 

of two equivalent layers with the same index of refraction , it is uni-

modular, i. e., 

AD - BC = 1 (2.22) 

It is important to notice tnat 
c 

en 1 
the matrix which relates (d - ) to 

n-1 
(dn) i s different from 

n 
the matrix in (2.17). These matrices, however, 

possess the same trace (see Appendix A). As will be shown later , the 

trace of the translation matrix is directly related to the band struc

ture of the stratified periodic medium. 

The matrix elements (A,B,C,D) for TM waves (H-vector in yz-plane) 

are slightly different from those of the TE waves. They are given by: 
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-ik a n2 k n2 k _ lx [ k b _ l i( 2 lx + l 2x) sin k2xb] (2.23) ATM - e cos 2x 2 2 2 
nl k2x n2 k1x 

ik1 a n2 k n2 k2x 
B = e x [ 1 i( 2 lx 1 ) sin k2xb] (2.24) TM - 2 2 - 2 

nl k2x n2 klx 

-ik1 a 1 n~ klx 
2 

n1 k2x 
k2xb] (2.25) CTM = e x [2 i( 2 2 -) sin 

nl k2x n2 k.lx 

n2 k 2 
ik1 a n le 

D = e x [cos k b + l . ( ~ . lx + ~ .2x) sin k2xb] (2.26) 
TM 2x 2 

1 2 k 
nl 2x "2 klx 

As noted above, only one column vector is independent. We can choose 

it, as an example, as the column vector of the n1-layer in the zeroth 

unit cell. The remaining column vectors of the equivalent layers are 

given as 

( •n ) = ( A B )-n ( a0 ) 

bn I c 0 b j 
0 I 

(2.27) 

By using (2.22), the above equation can be simplified to 

(2.28) 

The column vector for the n?-layer can always be obtained by using equa

tion (2.15); more generally we can specify the field uniquely by speci

fying any ai and bj. 

2.3 Bloch Waves and Band Structures 

The periodically stratified medium is equivalent to a one-dimensional 

lattice which is invariant under the lattice translation. The lattice 
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translation operator T is defined by 

Tx = x + U1. (2 . 29) 

where i is an integer; it follows that 

TE(x) = E(T-1x) = E(x-iA) (2.30) 

The ABCD matrix derived in the previous section is a representation of 

the unit cell translation operator. According to the Floquet theorem, 

a wave propagating in a periodic medium is of the form [5] 

(2.31) 

where EK(x) is periodic with a period A, i.e., 

The subscri pt K indicates that the function EK(x) depends on K. The con

stant K is known as the Bloch wave number. The problem at hand is thus 

that of determining Kand EK(x). 

In terms of our column vector representation, and from (2 .8), the 

periodic condition (2.32) for the Bloch wave is simply 

i K 11./ an-1 \ 
= e : l 

. b I · n-1 , 
(2.33) 

It follows from (2.17) and (2 . 33) that the column vector of the Bloch wave 

satisfies the following eigenvalue problem: 
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(2.34) 

The phase factor exp(-iKA) is thus the eigenvalue of the translation 

matrix (A,B ,,c ,D) and is given by 

(2.35) 

The eigenvectors corresponding to the eigenvalues (2.35) are obtained 

from (2 . 34) and are 

(2.36) 

times any arbitrary constant. The Bloch waves which result from (2.36) 

can be considered as the eigenvectors of the translation matrix with 
±i Kl\ eigenvalues e given by (2.35). The two eigenvalues in (2.35) are 

the inverse of each other, since the translation matrix is unimodular. 

Equation (2.35) is the dispersion relation among w, S, and K. It can 

be written as 

(2.37) 

Regimes where jA~DI < l correspond to real K and thus to propagating 

IA+DI Bloch waves, when 2 >l, K = m; + iKi and has an imaginary part Ki 

so that the Bloch wave is evanescent. These are the so-called "forbid-

den" bands of the periodic medium. The band edges are the regimes where 
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l~I =,, 
According to (2.8) and (2.33) the final result for the Bloch wave 

in the n1-layer of the nth unit cell is 

where a
0 

and b
0 

are given by Eq. (2.36). This completes the solution 

of the Bl och waves . 

The band structure for a typical stratified periodic medium as 

obtained from (2.37) is shown in Figs . 2.3 and 3. 4 for TE and TM waves, 

respectively. It is interesting to notice that the TM 11 forbidden 11 

bands shrink to zero when S = z n2 sin e8 with e8 as the Brewster 

angle, since at this angle the incident and reflected waves are un-

couoled . The dispersion relation w vs K for the special case S = 0, 

i.e ., normal incidence, is shown in Fig. 2.5. 

2.4 Phase Velocity and Group Velocity 

We have derived some of the important characteristics of Bloch 

waves propagating in a periodic stratified medium . An exact expres-

sion for the dispersion relation among K, S, and w was derived. This 

dispersion relation can be represented by contours of constant fre-

quency in the S-K plane as in Fig. 2.6. 

It can be seen t hat these contours are more or less circular 

with only a slight ellipticity. The origin corresponds to the contour 

of zero frequency . In the long wavelength regime (A >> A), these are 

similar to the dispersion curves of electromagnetic waves in a 
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negative uniaxial crystal. The birefringence property of a periodic 

stratified medium wil l be discussed further in the next section . These 

contours become distorted and modified at shorter wavelengths and near 

t he boundaries of the Brillouin zone (Ki\= £n) where the wavelength is 

comparable with the dimension of a unit cell and the electromagnetic 

waves i nteract strongly with the periodic medium. 

The concepts of phase and group velocities in periodic layered 

media are subt l e and require careful examination. Let us start by re

viewing some of the relevant results which were derived in Section 2.2 ~ 

The electromagnetic Bloch wave is given by 

-;r( t) = -;r ( )-+iKx i$z -iwt 
t x,z, tK x e e e (2.39) 

where EK(x) is a periodic function of x with period A and is given by 

Eq. (2 . 38) . The dispersion relation between K, $and w is 

given by 

cos(KA) = 1 (A+D) 

= cosk1xa cosk2xb - 6 sink1xa sink2xb 
(2.40) 

where A and Dare given respectively by equations (2.18), (2.21), 

(2.23) and (2.26) and 

k k 
l (___?L + ~) TE waves 2 klx k2x 

6 = (2.41) 
2 2 

l (n2 klx + 
n 1 k2x 

) TM waves 2 2 2 
nl k2x n2 klx 
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(2.42) 

k = /(~ n )2 - f32 
2x c 2 

\ 

(2.43) 

It is important to notice that the Bloch wave number K given by (2.40) 

is not uniquely defi ned to the extent that any integer multiple of 2n/A 

can be added to it. The reduced Brillouin zone scheme commonly used 

in solid state phys i cs is no longer useful as far as the phase velocity 

of an electromagnetic Bloch wave is concerned. If EK(x) is expanded 

in a Fourier series 
in 2·.r x 

= l e(n) e A 
n K (2.44) 

the Bloch wave (2.39) can be written as a linear superposition of an 

infinite number of partial plane waves which are the so-called "space 

hannonics . 11 From (2.39) and (2.44) we have 

i ( K+n 2TI) x 
t(x,z,t) = ~ e~n) e A eiBZe- iwt (2.45) 

where e~n) are constant. Thus the multivalued nature of tt.e Bloch wave 

number embodies the existence of the whole set of space harmonics. 

If the periodicity is removed, i.e., n1 = n2 = n then the Bloch mode 

should become an ordinary plane wave and K should be equal to kx = z ncose. 

Equation (2.40) in this case reads 

(2.46) 

so that when n1 - n2 << n1, the principal value of K, can be chosen 

as that nearest to klx or k2x. We can insure that K satisfies the 
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above condition by choosing it in such a way that 

(2.47) 

for all n or equivalently by choosing K such that the integral 

/\ * J EK ( x) dx :: (2.48) 

0 

has a maximum value. 

Having a proper choice of the Bloch wave number K we are now 

in a position to define the phase velocity of a Bloch wave. It is 

defined as 
w 

(2.49) 

The phase velocity defined above is strictly speaking the phase 

velocity of the fundamental (n = 0) space harmonic which is a plane 

wave of the form 

~ +E >eiKx iSz -iwt t(x,z,t) = < K e e (2.50) 

In the long wavelength regime where the whole structure behaves as if it 

were homogeneous, the fundamental space harmonic is the dominant part of the 

Bloch wave and can be taken alone as a very good approximation of the whole 

wave. 

The group velocity for a Bloch wave packet is given by 

v = ( aw) ~x + (aw) ~ 
g aK B oB K z (2.51) 

In a homogeneous medium the group velocity represents the velocity of 

energy flow of a quasi-monochromatic wave and is thus parallel to the 
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Poynting vector which is a constant vector in a homogeneous lossless 

medium. The Poynting vector of a Bloch wave qiven by (2.39) is a 

periodic function of x. The group velocity (2.51) of the same wave, 

however, is a constant vector. The discrepancy is due to the fact that 

in a periodic medium the power flow is a periodic function of the space 

coordinates. We will show, however, that the averaged velocity of energy 

flow defined as A 
l 

I (Poynting vector) dx A 
~ 0 v = (2.52) e 1 A 

I 
0f 

(Energy density) dx 

is exactly equal to the group velocity as given by (2.51) (see Appendix 

B). This endows the concept of group velocity as defi ned by (2.51) with 

a rigorous meaning. It is an extremely useful concept since it now makes 

it possible to consider the propagation of confined finite aperture beams 

in a layered medium. The space averaged Poynting vector and energy den-

sity are particularly useful in the long wavelength regime where the 

medium can be considered as a quasi-homogeneous and anisotropic medium. 

2. 5 Birefringence and Double Refraction 

In this section we review the birefringence which results from the 

medium periodicity. We start by reviewing in the context of our present 

discussion the birefingent behavior of bulk anisotropic media. 

The index of refraction of light propagating in an anisotropic 

medium depends on its state of polarization. Given a direction of propa

gation in the medium, there are in general two eigenpolarizations with 
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two respective eigenphase velocities. The directi ons of eigenpolariza

tion and their corresponding indices of refraction for a plane wave of 

the following form 

i(~ ns.r-wt) 
E(r,t) =Ee c 

are given by the following well-known fonnulae [6] 

s 2 2 s 2 
X Sy + Z 

~2--- + - 2=---- 2 
n -Ex/£0 n -Ey/£0 n -Ez/£

0 

1 
=2 

n 

i = x,y ,z 

(2.53) 

(2.54) 

(2.55) 

where E E E are the principal dielectric constants ands is a unit x' y' z 

vector along the direction of polarization. 

Equation (2.54) (also known as Fresnel's equation of wave 

normals) can be solved for the eigen-indices of refraction, while 

equation (2.55) gives the directions of polarization. 

It is important to notice that equation (2. 54) is in fact the 

dispersion relation between wand k. If we define k as (w/c)ns for the 

plane wave given by (2.53), then equation (2.54) can be written as 

k 2 k 2 k 2 
x + + z = l (2.56) 2 E 2 E 2 Ez k2- ~ x k2 (Jj -1 k2- ~ 

where 2 EO -2 c2 EO c C EO 

k2 = k 2 + k 2 + k 2 (2.57) x y z 
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Equation (2.56) describes a surface of two shells in k-space known as 

the normal surface. The two shells of the normal surface have only 

four points in common. The two lines which go through the origin at 

these points are known as the optic axes. Given a direction of propa-

gation, there are in general two k values wh i ch are the intersections 

of the direction of propagation and the normal surface. These two k 

values correspond to two different phase velocities w/k of the waves 

propagating along the chosen direction . 

Equation (2 .56) can also be derived directly from the wave equa-

ti on 

a2 v x (~xE) + µs -:.-:z £ = o 
at 

Substitution for E from (2 .53) gives, if we also recall k = ~ n~· c . 

2 -k x (kxE) + w µ~ E = o 

or equivalently 

k k x y kxkz Ex 

kykx 
2 2 2 k k Ey w µi:: -k - k y x z y z 

k/x ~zky 
2 2 2 

w µi::z-kx -ky Ez 

(2.58) 

(2.59) 

= 0 

(2.60) 

In order to have a nontrivial plane wave sol ution , the determinant of 
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the matrix in {2 . 60) must vanish . This gives us equation (2.61) which 

is equivalent to the dispersion relation (2.56), if we recall that 
2 

c = lh..1£0. 

2 2 2 
kxky kxkz w µ£ -k -k x y z 

k k 2 2 2 
kykz = 0 det w µ£ -k -k y x y z x 

kzkx kzky 2 2 2 
w µ£ -k -k z x y 

(2.61) 

Of particular interest is the uniaxial crystal with a normal surface 

consisting of a sphere and an ellipsoid of revolution. If we set 

sy = s
2 

in equation (2.56), the equation breaks into two factors, giving 

k 2 k 2 + k 2 2 
~+ y_ z - w 

2 2 - -z 
no ne c 

(2.62) 

k 2 k 2 + k 2 2 _x_ + y_ z - w 
2 2 -2 

no no c (2.63) 

where 

2 
t./£0 ne = 

2 
= syh·o no (2.64) 

The section of the normal surface by the coordinate plane ky = 0 is a 

circle and an ellipse (see Fig. 2.7) . The line joining the origin and 
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the osculating points of the circle and the ellipse is the optic axis. 

-+ 
It can easily be shown that the vectors E and H always 1 i e in the 

tangent plane of the normal surface. As a result the Poynting vector 
-+ 
S defined by 

s =Ex H" 

is always parallel to the group velocity which is given by 

v
9 

= Vkw(k) 

To prove that S and vg are parallel we start from equation 

replacing a/at by -iw rewrite it as 

k(k.E) - E(l<.!) + w~ µ~E = o 

2 -
+ w µ~ E = o 

-+ 

(2.65) 

(2.66) 

(2. 67) 

(2.68) 

If we mult i ply both sides of this equation by E, we obtain, using 

E.: = € . • 
ij Jl 

20! . [l<(E·E)-·E(k.E)J+6E·[k(E·k)-E(1<·l<)+w2µ~EJ = o (2.69) 

The second term vanishes according to (2.67) and the first term can be 
-+ -+ -+ -+ -+ -+ -+ 

written as 2ok·[Ex(kxE)]. Hence, we have, using H = l/wµ kxE, 

-+ -+ -+ 
o k •· ( E x H ) = 0 (2.70) 

-+ -+ -+ 
i.e., E xH is perpendicular took which is an arbitrary infinitesimal 

vector in the tangent plane of the normal surface. The group velocity 

vg defined by (2.66) is also perpendicular to the normal surface, thus 

proving our statement. 
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Let us now consider the propagation of electromagnetic waves 

in a medium consisting of infinitely alternating layers of two differ

ent homogeneous and isotropic substances. Although each individual 

layer is isotropic, the whole structure behaves as an anisotropic medium. 

TE waves and TM waves are found to propagate with different effective 

phase velocities and the periodic medium is birefringent. This 

phenomenon is well known in an anisotropic homogeneous crystal and is 

used in the electrooptic modulation of light and in a variety of polar

izing applications. 

The electromagnetic properties of a periodic laminated structure 

have been studied by Rytov [7], who limited his treatment to cases in 

which the direction of propagation is either parallel or normal to the 

layers. In the present analysis we use the Bloch wave formalism of 

Section 2.2 to obtain the exact birefringence behavior of a periodic 

medium for waves propagating in an arbitrary direction. 

It was shown above that the only dynamical variables needed to 

describe a monochromatic plane wave propagating in a periodic stratified 

medium are w, s. and K. The generalized wave vector is defined as 

(2.71) 

The dispersion relation between wand~ is qiven by equation (2.40). 

If the period A is suffic)ently small compared with the wavelenqth 

then the whole structure behaves as if it were homogeneous and uniaxially 

anisotropic. The wave given by (2.39) thus behaves as if it were a 

plane wave of the form given by (2.50). 
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In Figure 2.6 the contours of constant w are plotted in the K-S 

plane. These are sections of the normal surfaces with the K-S plane 

for various frequencies. It is evident from i nspection that at the long 

wavelength limit (A >> /\.) the dispersion of a layered medium is qualita

tive ly simi lar to that of a negative uniaxial crystal. 

To demonstrate this analogy we take the limit of k1xa << l , 

k2xb << 1 and KA << l and expand all the transcendental functions in 

(2.40). After neglecting higher order terms we obtain 

K2 S2 w2 
2+-z-=2 TE (2.72) 

no no c 

K2 62 - w2 
2+-2--2- TM (2.73) 
no ne c 

with 
2 a 2 b 2 

no = - n +I n2 /\. l 
(2.74) 

l a . _l_ + !?_ • l 
2=- 2 /\. -2 
ne /\. nl "2 

(2.75) 

Equations (2 .66) and (2.67) represent the two shells of the normal sur

face in the K-6 plane. One surface (2.72) applies to a TE wave and is 

a sphere while the TM normal surface (2.73) is an ellipsoid of revolu-

tion. TE waves thus are formally analogous to the so-called ordinary 

waves in a uniaxial crystal, while TM waves are the extraordina~y waves. 

The normal surface becomes more complicated at higher frequencies. It 

consists of two oval surfaces osculating each other at the intersections 

with the K axis, as long as the frequency is bel ow the first forbidden 

gap. 
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For frequencies higher than the forbidden gap, the oval surfaces 

break into several sections. The break points occur at 

m = integer (2.76) 

which is the Bragg condition for the quasi-plane wave (2.50). 

DQuble Refraction at a Boundary 

Consider a plane wave incident on the surface of a semi-infinite 

periodic stratified medium. If the incident wave is a mixture of TE 

and TM waves, double refraction takes place. This can be easily seen 

from the normal surface in the B-K plane. A very important kinematic 

property of refraction at a plane interface between two dielectric media 

is the fact that B, the tangential component of the wave vectors, must 

be equal for both the incident and refracted waves. Given a S value, 

the two shells of the normal surface in general yields two K values, 

thus giving rise to two refracted waves as shown in Figure 2.8. The 

two refracted waves are in general both extraordinary waves in the sense 

that their phase velocities, i.e., effective indices, depend on s. 
However, at the long wavelength regime where A >> As TE waves be

come ordinary waves while TM waves remain extraordinary. If the wave 
+ 

vector of the incident wave is denoted by k
0

, and e is the anqle of 

incidence, the projection of the wave vector along the boundary plane 

is given by 

B = k sin e 
0 

The transverse wave vectors in the medium are determined either 

(2.77) 
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N 

Fig. 2.8 Double refraction at the boundary of a periodic stratified 

medium. 
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graphically from Figure 2.8, or analytically from the dispersion rela

tion (2.40) . The angles of refraction are given by 

= f3 
KTE 

(2.78) 

tan e f3 
TM = KTM 

(2.79) 

The angles given by (2.78) and (2.79) are the directions normal to the 

wavefronts of the refracted waves. The directions of energy flow are 

obtained by taking the normals to the normal surface. 

The effect of double refraction is very pronounced near the zone 

boundaries where the medium is very dispersive and the bandgap is dif-

ferent for TE and TM modes. At the edge of the bandgap the group vela-

city which is parallel to the normal to the curve, is along the z axis 

and has no component normal to the interfaces. This is consistent with 

the fact that at or inside the gap the reflectivity is unity so that no 

power can flow along the x direction. 



111 

References - Chapter 2 

1. F. Bloch, Z. Physik ~, 555 (1928) . 

2. See, for example, C. Kittel, Introduction to Solid State Physics, 
3rd ed. (Wiley , New York , 1967). 

3. D. Kassel , J . Opt . Soc. Am. 56, 1434 (1966). 

4. J. P. van der Ziel, M. Ilegems, and R. M. Mikulyak, Appl . Phys . 
Lett . 28, 735 (1976). 

5. See , for example , J. Mathews and R. L. Walker, Mathematical Methods 
of Phys i cs, 2nd ed. (W. A. Benjamin, New York, 1970). 

6. See , for example , M. Born and E. Wolf , Princi ples of Optics (Macmil
lan, New York, 1964). 

7. S. M. Rytov, Soviet Physics JETP _g_, 446 (1956). 



112 

Chapter 3 

OPTICAL MODES IN LAYERED MEDIA 

3.1 In.troducti on 

We have derived in Chapter 2, the ei genmodes of electromagnetic 

waves i n an infinite periodi c layered medium. Bloch waves and band 

structures are obtained by using the concept of translation operator. 

In the practical world the real structures are all finite in the number 

of periods. In order to solve the eigenmodes of finite structures, we 

have to match the boundary conditions at the surfaces of the layered 

media. Conventional methods involve matching the plane wave solutions 

at each interface. This results in solving a large number of linear 

simultaneous equations. A systematic approach is to use the matrix 

method described in Section 2.2. This new method is based on the fact 

that every interface is now replaced by a 2 x 2 matrix which is much 

easier to deal with . As a result of the successive matrix multiplica

tion, we obtain a linear relation between the fields on both sides of a 

finite l ayered medium : 

(3.1) 

The matrix contains all the information of the layered medium. Aa' Ba 

are the amplitudes of plane waves on the air side of the structure, As' 

Bs are those of the substrate side. This matrix has a modulus of 

ksx/kax and becomes unimodular when na = n
5

, where na and ns are the 
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refractive indices of the air and substrate respectively. We will as

sume ns > na throughout this thesis, unless otherwise specified. 

The reflectivity coefficient is given by 

r = (3.2) 

Given a structure, the reflectivity depends on S and w for both TE and 

TM waves: 

r = r(S,w) (3.3) 

In the next section we will show that the zeros and poles of reflectivity 

coefficient play an important role in the mode theory of layered media. 

3.2 Regge Poles and Optical Modes 

A basic problem in high energy physics is that the poles in the 

scattering amplitude, which are assumed to dominate the scene, correspond 

to exchange of particles carrying definite angular momentum [l]. In 

other words, a resonance scattering corresponds to an eigenstate of the 

composite system. It was suggested by Regge [2] in 1959 to treat the 

angular momentum as a continuous complex variable. In particle scatter-

ing, the angular momentum corresponds to the impact parameter, while in 

the optics of layered media the angle of incidence (or equivalently, S) 

is the corresponding variable. We can now extend the S variable into a 

complex variable and search for the zeros and poles of the reflection co-

efficient which correponds to the scattering amplitude. In general, the 

poles occur at complex values of S, and each of these poles corresponds 
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either to a guided mode or a continuum mode or a leaky mode. It is 

important to notice that at the poles of the reflection coefficient 

the reflectivity is infinite. In order to fulfill the finiteness of 

the electromagnetic field, the solution of the Maxwell equation con

sists of outgoing waves only. We will now discuss these poles in 

terms of two categories: 

(a) w B > - n c s (guided modes) 

In this region both ksx and kax are pure imaginary. Outgoing 

waves with imaginary propagation constant are evanescent waves. 

Therefore, the optical energy is guided by the structure and propagat

ing parallel to the layers . 

(b) B = complex (leaky modes) 

These modes are referred to as "leaky modes" [3] since they cor

respond to a flow of energy away from the layered medium. These modes 

have B' s with positive imaginary part. As a result , the wave attenu-

ates in the direction of propagation which may account for the energy 

outflow . However, the transverse k vectors ksx and kax have a negative 

imaginary part which makes the field "blow up" at infinity, hence these 

modes do not belong to the proper eigenvalue spectrum [4]. 

In addition to these poles there are solutions with standing 

waves along the x axis existing for all 0 < B < ~ n
5

• They are divided 

into two categories: 
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(a) ~n <S<wn 
c a c s (substrate modes) 

These modes have a pure imaginary kax' hence the field is evanes

cent in the air. In the substrate the field is a standing wave . The 

energy is flowing in the direction of propagation. Since the major 

part of the energy is in the substrate , these modes are called substrate 

modes. 

(b) w O<S < -n c a (air mode) 

These modes have both real k and k , hence the fields are sx ax 
standing on both sides of the structure with their energy flowing in 

the z-direction . 

There are also solutions with pure imaginary s. These modes are 

evanescent waves in the z-direction. Since we are only interested in the 

propagating waves in the z-direction, these evanescent modes will not be 

discussed in this chapter . 

3.3 Guided Waves 

Multilayer waveguides are becoming increasingly important in inte

grated optics. The 2-channel dielectric waveguide has been studied ex

tensively in the theory of branching waveguides [5,6], which is used in 

fabricating mode selectors , switches and directional couplers in inte-

grated optics [7]. The analytic treatment for the general N-channel 

waveguide, however, suffers from the serious difficulty of solving an 

eigenvalue problem involving a 4N x4N matrix, and has relied heavily on 

numerical techniques. 

In the present analysis we employ the matrix method described in 
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Section 2.2 which i nvolves only the manipulation of 2x 2 matrices. Of 

particular interest is the Periodic Multichannel Dielectric Waveguide 

(PMDW) which consists of a stack of dielectric layers of alternating in

dices of refraction. Analytic expressions for the mode dispersion rela

tions and field di stributions can be obtained by the matrix method. 

We are looking for guided waves propagating in the positive z direc-

tion . Two important periodic multichannel waveguides will be considered 

in the following. 

(a) Syrrmetric Type 

Consider the simplest kind of symmetric PMDW with the index of 

refraction given by 

n2 mA S x S mA + b 

(m=0,1,2,., . . . ,N-l) 
n(x,z) = 

(3.4) 

otherwise 

with 
(3.5) 

The geometry of the waveguide is sketched in Figure 3.1. We will limit our 

analysis to TE waves only. It was shown in Section2.2that the trans-

lation matrix T which relates the field vector in one period to that of 

the next one is given by 

where , after defining -iklx = q, k2x = P 

A = eqa[cos pb - .!_ (.P. - .9..)s i n pb] 
2 q p 

(3.6) 

(3. 7) 



n(x,z) 
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_J 

Fig . 3.1 Section view of a typical N-channel symmetric waveguide. 
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B -q a l n .9.. e [- -2 (.t:.. + )sin pb] 
q p 

C = eqa[l. (E.. + .9..)sin pb] 
2 q p 

D = e-qa[cos pb + -
2
1 (E.. - .9..)sin pb] 

q p 

J 2 (w )2 _ . k q = B - c nl - _, 1 x 

P = j(~ n )2 - s2 = k c 2 2x 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Since we are interested in guided waves only, the fields must be evanes

cent in the n1 layer. The matrix equation (3. 1) for this case can be 

written 

(3.13) 

We set Aa = Bs = 0 in (3. 13); since only outward radiating waves can be 

present in a waveguide the mode dispersion relation is immediately ob

tained 

(3. 14) 

where we have used the Chebyshev identity (Appendix C) to obtain the 

matrix element m11 of the Nth power of a unimodular matrix. 

If the left-hand side of (3. 14) is plotted using (2.37) as a 

function of 8 for a given frequency w, the zeros are the mode propagation 

constants (S's). It can be shown mathematically that there are exactly 

N zeros in each allowed band where KA varies from mn to (m+l) and none 
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elsewhere (see Appendix C). Physically the waveguide can be considered as 

a system of N interacting slab waveguides. The N modes are simply due to 

the splitting of an N-fold degenerate band as the separations between the 

N identical slab waveguides are reduced from infinity. Each confined mode 

of the single slab waveguide thus gives rise to a band with N nondegen

erate modes. The dispersion relation (w vs S) is shown in Figs. 3.2 and 

3.3. 

(b) Asymmetric Type 

Consider a simple asymmetric N-channel waveguide with the following 

index of refraction 

na x < 0 

n(x,z) = { n2 mA ~ x < mJ\ + b (3. 15) 
(m=O, 1,2, ... ,N-l) 

nl otherwise 

A A 
The grand matrix which relates ( a) to ( 8s) in this case is easily ob-

8a s 
tained from the contin,uity condition and is given by 

( 
l {l+ g__) 
2 qa 

M = 

1(1-.9_) 
2 q ~I 

a 

l (1+ 9-) 
2 qa 

Similarly, the mode dispersion relation is given by 

q -q sin NKJ\ 
(A+ qa+q C) sin KJ\ 

a 

sin(N-l)kJ\ = 0 sinkJ\ 

(3. 16) 

(3.17) 

The eigenvalues Sare determined as in the symmetric case (3.14). The 
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above equation can be reduced to equation (3. 14) which is the mode 

condition for a symmetric N-channel waveguide by setting na = n1. 

Associated with each S of a confined mode at a given frequency, 

there is a corresponding Bloch K vector given by (2.37). Instead of 

having all eigenvalues (S's) in the allowed band, an asymmetric 

periodi c N-channel waveguide can have some eigenvalues (S's) with cor

respon di ng complex Kand thus be in the 11 forbidden 11 band. These modes 

can be traced in terms of perturbation theory to the unperturbed modes 

of the surface channels in te rms of perturbation theory. The character

istics of those modes are the localization of energy near the surface. 

Eingevalues (S's) of the confined modes as a funct i on of the separation 

between the neighboring channels are shown in Figs. 3.4 and 3. 5 for two 

typical waveguiding structures. The band edges of the infinite 

periodic medium are also shown in the same figures. For small separa

tion, all the modes have their eigenvalues in the allowed bands. There 

are exactly NS-levels in a complete band. At infinite separation the 

S-levels consist of an (N-1)-fold degenerate state and one nondegenerate 

state . The (N -1 )- fo ld degenerate state will split into a band of {N-1) 

levels when the separation is finite. Those (N-1) levels are always in 

the allowed band regardless of separation. The crossing between the 

nondegenerate state and the band edge happens at some critical separa

tion ac. The surface modes only exist when the separation is larger 

than ac . The properti es of surface mode will be discussed more 

thoroughly in the next section. 
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Fig. 3.4 
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SEPARATION a 

8 vs separation for two asymmetric multichannel 
wi th N=2 (upper diagram) and N=5 (lower diagram) 

waveguides 
3 c atw=-TI-4 a· 

The da rk zones are the allowed bands. Dashed curves are the 
band edges. The i nset shows the refracti ve index profile. 
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~n1 
~n2~~~~~~~~~-"T"~~~~~~~~---:-:,..,......,,-----~~~~~~~~, 

0.5 1.0 1.5 

SEPARATION a 

Fig. 3.5 B vs separation for two asymmetric multichannel waveguides 

with N=2 (upper diagram) and N=5 (lower diagram) at w == rri· 
The dark zones are the allowed bands. Dashed curves are the 
band edges. The inset shows the refractive index profile. 
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The transverse field distributions for a few typical periodic 

multichannel asymmetric dielectric waveguides are shown in Figs. 3.6 

and 3.7 with N = 2 and 5, respectively. Only the confined modes in the 

first allowed band whi ch corresponds to the lowest order modes of the 

uncoupled individual channel waveguide are shown. As we know, there 

are exactly N modes in each complete group. The modes will be desig

nated as TEmn and ™mn with n as the band index (n = 0,1 ,2,···) and m 

as the mode index (m = 0,1,2,···,N-l). There are exactly (m+nN) zero 

crossings in the transverse field distribution for the mnth mode with 

n zero crossings in each guiding channel and m zero crossings in the 

(N-1) separation layers. The field can have at most one zero crossing 

in each separation layer where the wave is evanescent. 

The field distribution depends strongly on the index of refrac

tion of the superstrate na when na is near n1• The variation for the 

fundamental mode is shown in Figs. 3.8 and 3.9 for N = 2 and 5, respec

tively. There is a drastic change of the field distribution for the 

surface channel when na is varied slightly from n1 i This phenomenon will 

be very useful in branching waveguide if a superstrate material with 

electrooptic effect can be found so that na can be tuned slightly around 

n1 by applying a de field 

(3. 18) 

with 

DC n (E = O) = n a l (3. 19) 

This drastic change of the field distribution due to slight variation of 

na can be used in electrooptic modulation [8]. 
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TE10 

Transverse field distribution 

Fig. 3.6 Transverse field distribution for the confined modes in the 

first band of a 2-channel waveguide. 
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Fig. 3.7 Transverse field distribution for the confined modes in the 

first band of a 5-channel waveguide. 
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n0 = 1.0 

n0 =2.89=n 1 

n0 =3.2>n 1 

Transverse field distribution 

Fig. 3.8 Transverse field distribution for the TE00 mode of a 2-channel 

waveguide at various na 1 s. 
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n0 = 2 .8 

Transverse field distribution 

Fig. 3.9 Transverse field distribution for the TE00 mode of a 5-channel 

waveguide at various na's. 
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In the above analysis we assumed that the refractive index of 

the substrate ns = n1 for simplicity of calculation. This is the rea

son why only one surface mode is found. In general, if n1 1 ns < n2, 

two surface modes will exist. This is similar to the surface states 

in a crystal where the number of surface states is equal to the number 

of surface atoms. Here the number of surface modes is equal to the 

number of surface channels. 

It has been shown in the above analysis that there are exactly 

N modes in each band. However, not all the modes need be confined . A 

confined mode must have its propagation constant S satisfy 

(3.20) 

with 

(3.21) 

(3.22) 

so that the wave is propagating in the guiding channels and evanescent 

in the substrate and cladding regions. For large enough separation be

tween channels the whole band of S-levels will fall between Smax and 

Smin so that all the N modes are confined. As the guiding channels are 

brought closer together , the S-levels "repel" each other. As a result 

some of the modes will find their S-value expelled from the confined 

region in S space. Those modes are transformed into radiation modes 

(S < S . ). The transition is shown in Figs. 3.4 and 3.5. 
mm 



131 

3.4 Electromagnetic Surface Waye 

It is the purpose of this section to investigate electromagnetic 

surface waves guided by the boundary of a semi-infinite periodic multi

layer dielectric medium. The surface wave, by definition, is a wave 

bounded by the interface between two semi-infinite systems. For example, 

the ripple phenomenon in water is a surface wave guided by the interface 

between air and water. Another interesting kind of surface wave is the 

electronic surface state which has been extensively studied in solid 

state physics. The electromagnetic surface state was considered in an 

approximate manner by Arnaud and Saleh [9]. In this paper, the band theory 

of the periodic dielectric medium is employed to study the surface wave 

with an eigenvalue in the "forbidden" band. _ ____ _ 

The existence of a surface state can be explained as follows: 

In Section 2.3 we have shown that, at a given frequency, there are re

gions of f3, for which K is complex and K = T± iKi. For an infinite 

periodic medium the exponential intensity variation cannot exist, and 

we refer to these regions as "forbidden". If the periodic medium is 

semi-infinite, the exponentially damped solution is a legitimate solu

tion near the interface and the field envelope decays as exp(-Kix) where 

x is the distance from the interface. 

The existence of surface states can also be argued using pertur

bation theory. According to perturbation theory, the periodic multi

layer dielectric medium which consists of alternating layers of dif-

ferent indices of refraction can be considered as a system of interacting 

waveguides. These waveguides are identical to each other except for the · 

one near the surface. The interaction strength between the waveguides 
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depends on the separation between the neighboring waveguides due to 

overlap of the evanescent field distributions. When the separation is 

infinite, there is no interaction and the guides can be considered as 

independent of each other. The eigenvalues (S's) thus fall into two 

groups: One is an infinitely degenerate state, the other is a nonde

generate state which corresponds to the extreme guide near the surface. 

As the waveguides are brought together, the interaction between the 

waveguides causes the eigenvalues to split. The splitting is shown in 

Figures 3.4 and 3.5. As the eigenvalues split, the allowed energy band 

for the infinite structure is fully occupied by the levels originating 

in the infinitely degenerate level. As a result, the nondegenerate 

level corresponding to the waveguide near the surface will be expelled 

out of the allowed energy band. The only place where this state can be 

accommodated is in the forbidden gap. The field distribution for this 

state is localized near the surface because of he fact that the corres

ponding eigenvalue is in the "forbidden" band, i.e., K = T + iK. 

To investigate the properties of the surface modes consider a semi

infinite periodic multilayer dielectric medium consisting of alternating 

layers of different indices of refraction. The distribution of the 

indices of refraction is 

{"a x~O 

n(x,z) = n2 ml\ .:s. x < mA + b 

nl mA + b.:s_x< (m+l)A (m=O, 1,2, · · ·) (3.23) 
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The geometry of the structure is sketched in Figure 3.10. We look for 

the possibility of waves propagatin9 in the positive z direction. Since 

the structure is semi-infinite, we are only interested in the surface 

wave as far as guiding is concerned. For the sake of definiteness we 

consider the case of TE surface modes where the electric field is polar

ized in they direction. The electric field distribution (TE) obeys the 

wave equation 

a2 2 
~ E(x) + .;- n2(x) E(x) = 0 
ax c 

(3.24) 

We take the solution in the following form: 

E(x) 
x~O (3.25) 

x~O 

where qa is given by 

(3.26) 

and a is a constant. 

In order to be a guided wave, the constant K in (3.25) must be com

plex so that the field decays as x goes to ·i nfinity. This is possible 

only when the propagating co~ditions (i.e., S) in the periodic medium 

correspond to a 11 forbidden 11 band. Another condition is that E(x) and 

its x derivative be continuous at the interface with medium 11 a11
• This 

gives us the condition for surface modes: 
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e-iKJ\ - A - B 
q = q -~----
a e-iKJ\ - A + B 

(3.27) 

The field distributions of some typical surface waves are shown 

in Figures 3. 11 and 3. 12. It is evident that the energy is more or less 

concentrated in the first few periods of the semi-infinite periodic 

medium . It can easily be shown that 

. d -2K.J\ 
---...-E.....,n"'r'e_r..,.g,y....,_i .... n_th_e-.f_i...,..r_s t~p..,.e-:-r_1 0--.....---.-.----.---.-- = ( 1 _ e 1 ) 
Energy in the whole semi-infinite periodic structure 

(3.28) 

where K. is the imaginary part of K. Generally, speaking, the fundamental 
1 

surface wave has the highest Ki and hence the highest degree of localiza-

tion. The fundamental surface wave may happen to be in the oth or the 

1st forbidden gap . It depends on the magnitude of the index of refrac-

tion na. For na less than n1 which is a case of practical interest , 

(na = index of refraction of air) the fundamental surface wave 

has a Bloch wave vector in the first forbidden gap. This is due 

to the fact that when the waveguides are separated infinitely from 

each other the singletstate has an ei genvalue 6 lower than that 

of the infinitely degenerate state. 

The field distribution in each period is similar to that of the 

dis tri but ion in the preceding period except that the amp 1 itude is reduced 
-K.A 

by a factor of (-l)m e 1 , where m is the integer corresponding to the 

mth forbidden gap. 
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We have derived the mode condition for the surface wave by match

ing the boundary condition between an evanescent wave and a decaying 

Bloch wave. This electromagnetic surface wave is almost completely 

analogous to the surface state in solid state physics. The existence of 

the surface mode in a semi-infinite structure is independent of the sep

aration between waveguides, because the allowed band is always fully 

occupied. However, in a finite system, the allowed band is not fully oc-

cupied. As a result, the surface wave appears only when the separation 

is large enough so that one of the eigenvalues falls within the 11 forbid

den 11 gap (see Figures 3.4 and 3,5). Th is state of affairs is quite dif-

ferent from that of electron ic surface states in crystals where, accord-

ing to Shockley [10], surface levels appear only when the interatomic 

distance becomes small enou9h so that the boundary curves of the allowed 

energy bands have crossed. The number of surface modes equals the number 

of modes that can be guided by the waveguide near the surface. This is 

very comprehensible in terms of perturbation theory. 

The surface mode can still be guided when n2 < n1, however, the 

local extrema occur in the regions with index n1 where the x dependence 

is sinusoidal. This is a general property of evanescent wave. The field 

distributio~ profile can bend at most once in the region where the wave 

is evanescent. The bending corresponds to a local minimum of the mag

nitude of field distribution. Because of the fact that l (a2~) 
E ax 

is always positive, for E > 0 the field distribution profile is 

concave upward, while for E < 0 the field distribution profile is con

cave downward. This makes it impossible for IE(x)I to possess a local 

maximum in the region where the wave is evanescent. 
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In the above analysis we assumed ~ n1 < 8 < ~ n2 so that the field 

is propagating (i.e., has a sinusoidal x-profile) in the higher index medium 

while being evanescent in the lower index medium. However, this condition 

is not necessary. Surface waves exist also when S<~ n1, 2. The analysis 

in this case is exactly the same as that above except that q has to be 

replaced by -ikix· The guiding, however, is not as tight as that of the 

former case, since the Bloch waves decay faster whenever there is a region 

where the wave is evanescent. 

The surface wave does not exist, however, when S > ~ n1,2 since in 
l iE this case E~ > 0 everywhere so that if the field is evanescent in the 

ax 
homogeneous medium "a", it will increase without bound in the periodic 

medium and vice versa. 

3.5 Optical Interface Modes 

It is well known in semiconductor physics that electronic inter

face states exist at the interface between two semiconductors [8]. This 

has been extensively studied in the area of solid state devices where 

the junctions are the main feature of these devices. It is not difficult 

to believe that optical interface states can also exist at the interface 

between two periodic layered media. 

In what follows, we will derive the dispersion relation for the 

interface modes. The analysis is similar to that of the surface modes 

except that the air is now replaced by another layered medium. The dis

tribution of the refractive index is given by 
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nl mA + b ~ x < (m+ 1) A 

n(x,z) = 
n2 mA~x<mA+b 

n3 - ( m+ l}A I < x < -mA' - c 

n4 -mA' - c ~ x < -mA' 

(m=0,1,2,3,···) (3.29) 

The geometry of the structure is sketched in Figure 3. 13. 

We again look for the possibility of guided propagation in the positive 

z direction. Since the structure is infinite, we are interested only 

in the interfacial waves as far as guiding is concerned. We will again 

analyze this problem for TE waves only. The analysis for TM waves is 

similar. We take the solution of the wave equation in the following form: 

x 2:. 0 

E(x) = (3.30) 

x .:S. 0 

In order to be a guided wave, the Bloch wave numbers K and K' must be 

complex so that the field decays as x goes to infinity. 
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K = mn/A + iK. 
l 

K' = m'n/A' + iK~ 
l 

(3.31) 

This is possible only when the "forbidden" bands of both layered media 

have some overlap and the propagation condition (i.e., B) has to be in 

these overlap regions. Another condition is that E(x) and its x deriva-

tive be continuous at the interface. This gives us the dispersion rela

tion: 

-iK' A I I I 

-(-i k )(e - A - B ) = 
3x e-1K A_ A' + B' 

(3.32) 

The optical energy of these interface modes is also localized near the 

interface. A special case of particular interest is when n3 = n1, 

n4 = n2, c = a, and d = b. Under these conditions (3.32) becomes 

(e-iKA - A + B)(e-iKA - A - B) = 0 (3.33) 

The modes can be divided into two categories: (a) even modes with their 

maxima right at the interface, (b) odd modes with their node at the in

terface. Typical field distributions of this structure are shown in 

Figure 3.14. In general, the solution of (3,32) or (3.33) forms a dis

crete set of spectrum (B's). It is even possible that there is no solu

tion of (3,32) for some particular cases. 

3.6 Leak Consideration for Surface Waves 

Because of the finite number of periods in the structure, the 

intensity of the substrate is not exactly zero (i.e., the surface modes 
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are leaky). This loss results in the attenuation of the surface mode 

in the direction of propagation. The following calculation is to find 

out the attenuation coefficient a for each surface mode. The time-

averaged flux of energy is given by the real part of the complex Poynting 

vector 

S = ~ Re ( E x H*) (3.34) 

To evaluate the total power flow P, we integrate the z-component of S 

over the cross sectional area A: 

P = J Sz dxdy 
A 

(3.35) 

The power loss due to flowing of energy into the substrate is given by 

Ploss = J sx dzdy 
w 

(3.36) 

where w is the wall area. The power flow along the guide can be written 

( ) -az P z = P
0 

e 

Thus the attenuation coefficien~ is given by 

l dP a = - - ( -:r::-) P az 

( 3. 37) 

(3.38) 

where -(~) can be interpreted as the power loss per unit length of the 

guide. By combining (3.35), (3.36), and (3.37) we obtain 

Sx 
a --J5,dx (3.39) 
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In calculating the attenuation coefficient a, we have to use the unper

t urbed mode solution to evaluate the denominator of (3.39). However, 

we cannot use the unperturbed Sx, because for a guided mode Sx = O. 

Nevertheless, Sx can be estimated by decomposing Sx into an outgoing 

part and an incoming part and taking the outgoing part as Sx. This 

procedure is legitimate because there is actually no incoming wave in 

a real structure. 

Using the field distribution given in the previous section, we ob-

tain 

NA 

J S2 dx = ~! { 2~a + ~ (F1a + F2b)} 
-co 

where 

Fl = l - e-2K.A (1 
-2(N+l)KiA ~ 

1 1 - e 

-2(N+l)K;A _2K.A [ 
F = _l _-_e __ ,.....,...-,- e , (1 
2 -2K.A 

l - e 1 

Sx is given by 

ck 
S = 2x l (1 
x 2W 4 

(3.40) 

(3.41) 

(3.42) 

(3.43) 
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Here we assume that the substrate has a refractive index of n2. The 

attenuation coefficient a is thus given by 

• 

(3.44) 

For large number N, 

see that a decays as 

-2{N+l)K./\. 
e 1 may be neglected in F1, F2• Thus we 

-2NK./\. 
e 1 as N increases; 

a "' e 
N-+oo 

-2NK./\. 
1 

A typical case is shown in Figure 3. 15. 

( 3.45) 
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m=4 
m=3 

m=2 

10-14r..-.------'--------'-------..__ ____ __._ ____________ __. 
0 4 8 12 

N 
16 20 24 

Fig. 3. 15 Attenuation coefficient a vs. number of periods N for the 

four surface modes supported by a periodic layered medium. 
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Chapter 4 

BRAGG WAVEGUIDES 

Optical dielectric waveguides with a slab configuration are capable 

of supporting lossless confined modes provided the index of refraction of 

the inner layer exceeds the indices of the two bounding media. This 

condition is necessary to obtain an imaginary transverse propagation con

stant which corresponds to an evanescent decay of the mode field in the 

bounding media. 

There are many practical situations where it is desirable or neces-

sary to guide power in a layer with a lower index than that in the two 

bounding media. A prime example of such a case is the waveguide laser in 

which the inner layer is air. This situation leads to lossy (leaky) 

modes whose loss constant increases as the third power of the reciprocal 

thickness of the inner layer. 

In a Bragg waveguide the conventionally used substrate is replaced 

by a periodic layered medium. The use of Bragg reflection in waveguiding 

was first suggested by Fox [1] and recently by Yeh and Yariv [2]. It is 

shown that confined guiding with arbitrarily low loss is possible even 

when the guiding layer possesses an index of refraction which is lower 

than that of the periodic layered substrate. The propagation may be con

sidered formally as that of a plane wave zigzagging inside the guiding 

(ng) layer and undergoing total internal reflection at the interface 

(x = -t) with the low index medium (na) and Bragg reflection at the 
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interface (x = 0) with the layered medium. Bragg total reflection 

happens only when the incidence angle satisfies the Bragg condition, or 

more exactly, that the propagation conditions inside the periodic 

layered medium fall within one of the optical 11 forbidden 11 gaps. 

The introduction of Bragg waveguides opens a new dimension for 

light propagation in integrated optics. It is now possible to quide a 

light wave in a low refractive index film. Before we study the mode 

properties of a Bragg waveguide, we will first show some important char-

acteristics of Bragg reflectors in the following section. 

4.2 Bragg Reflector 

Periodic perturbation in a dielectric medium has been used exten-

sively in fabricating distributed feedback lasers [3,4] (DFB) and dis

tributed Bragg reflection lasers [5] (DBR). Corrugation over the 

guiding layer is the usual way of providing periodic perturbation. The 

optical fields are determined by using the coupled-mode theory [6], 

which is a very good approximation as long as the perturbation is small. 

In the case of square well alternation, which corresponds to the layered 

medium described above, an exact solution is obtained by our matrix 

method. 

Consider a periodically stratified medium with N unit cells. The 

- geometry of the structure is sketched in Figure 4. 1. The coefficient 

of reflection is given by 

( 4.1) 
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F rorn (2.27) we have the following relation 

(4.2) 

The Nth power of an unimodular matrix can be simplified by the following 

matrix identity [7] (see Appendix D) 

/ A 
i 

\c :J = 

I 

( AUN-1 - UN-2 
I 

" \ CUN-1 
(4.3) 

where 

U _ s i n ( N+ 1) KJ\. 
N - sin KJ\ 

(4.4) 

with K given by Equation (2.37). 

The coefficient of reflection is immediately obtained from (4. 1), 

(4.2), and (4.3) as 

r = N 

The reflectivity is obtained by taking the absolute square of rN 

2 lcl 2 
I rN I = _.....i..;;.."-----

l CI 2 + (s1n Kil. )2 
srn NRA 

We have in (4.6) an analytic expression of the reflectivity of a 

multilayer reflector. The term ICl 2 is directly related to the 

reflectivity of a single unit cell by 

2 Ir 12 = lei~ 
1 i7i2+l 

(4.5) 

(4.6) 

(4. 7) 
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or 

1c12 = lr1l2 2 
l - I r 1 I 

(4.8) 

The lr112 for a typical Bragg reflector is usually much less than l. As 

a result ICl 2 is roughly equal to !r11
2• The second term in the denomina

tor of (4.6) is a fast varying function of K, or alternatively, of S and 

w . Therefore it dominates the structure of the reflectivity spectrum. 

Between any two "forbidden" bands there are exactly (N-1) nodes where the 

reflectivity vanishes. The peaks of the reflectivity occur at the centers 

of the "forbidden" bands. There are exactly (N-2) side lobes which are all 

under the envelope lcl 2![ICl 2+ (sin Kl\) 2]. At the band edges Kl\ =m7r and the 

reflectivity is given by 

= ___.l.__C ..__I 2 __ 

1c1
2 

+ (~) 2 

In the "forbidden" gap Kl\ is a complex number 

Kl\ = mrr + iK./\. 
1 

The reflectivity formula of (4.6) becomes 

= _ __.__I c_._1
2 __ _ 

I
Cl 2 + sinh Kil\ 2 

(sinh NK./\.) 
1 

(4.9) 

(4.10) 

( 4. 11) 

For large N the second term in the denominator approaches zero exponentially 

-2(i~-l )K;A 
as e . It follows that the reflectivity in the forbidden gap is 

near unity for a Bragg reflector with a substantial number of periods. 
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TE and TM waves have different band structures and different re-

flectivities. For TM waves incident at the Brewster angle there is no 

reflected wave. This is due to the vanishing of the dynamical factor 

jc!2 at that angle. 

The reflectivity for some typical Bragg reflectors as a function 

of frequency and angle of incidence are shown in Figures 4.2 and 4.3 . 

4.3 Theory of Bragg Waveguides 

In what follows we will show that , in principle, lossless propa

gation is possible in a low index slab provided the bounding media with 

indices of refraction larger than that of the inner slab are periodic. 

The model analyzed below assumes stratified periodic media. The use of 

stratified media in dielectric waveguiding has been proposed by Ash [8] 

who, however, did not consider the case of confined propagation in low 

index materials. 

Referring to Figure 4. 4, we consider the case where na < ng < n1 ,n2. 

In the case of TE modes the only field components are EY, Hx, and Hz. 

Each of these components, say EY, satisfies the wave equation 

a2E a2E 2 
~ + + + 7 n

2
(x)E = O 

az ax c Y 
(4. 12) 

If we t ake EY(x,y,z)= E(x)exp(iSz) the wave equation becomes 

(4.13) 

We take a solution in the form 
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Fig . 4.2 TE waves reflectivity spectrum of a 15-period Bragg reflector 

at various angles of incidence . 
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Fig. 4.3 TM waves reflectivity spectrum of a 15-period Bragg reflector 

at various angles of incidence. 
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{i) e 
qa{x+t) 

x < -t 

E(x) = (ii) c1cos(k
9
x) + c2sin(k

9
x) < - t - x < 0 

(iii) EK(x)eiKx 0 < - x (4. 14) 

where 

k = /< w n ) 2 - 82 
g . c g (4. 15) 

The assumed solution in regions (i) and (ii) of Eq. (4.14) is 

identical to that of conventional slab dielectric waveguides [9]. The 

new feature in this case is the form of the wave EK(x) eiKx in the 

stratified periodic medium where EK(x) eiKx is given by (2.38). 

It is important to notice that the sign in front of the square 

root in (2.35) has to be the same as that of (A+D)/2. This ensures 

that the Bloch wave is evanescent in the positive x direction. 

To obtain the solution for the mode of the waveguide of Figure 

4.4, we match the fields and their x derivatives at x = 0 and x = -t. 

The result, using (2.36), (2.38), and (4.14) is the dispersion relation 

. e-ikA_ A-B 
= -lk .k lx e-1 A_ A+B (4.16) 

The left side of (4.16) contains only parameters of the guiding (ng) and 

substrate (na) layers, while the right side depends only on parameters 

of the periodic medium. For confined propagation B, qa' and k
9 

are real 

so that the left side of (4.16) is a real number. The right side is 
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real .2!!.lJ: when the propagating conditions in the periodic medium fall 

within one of the forbidden gaps, i.e., when (A~D) 2 > 1. It follows 

that confined lossless modes of the composite waveguide (Figure 4.4) 

exist. Operationally we may solve for the eigenmode by starting with 

some value of 8 < ~ ng. This (for a given w) determines kg' qa' klx' 

and k2x. If the resulting values of A and D correspond to a forbidden 

gap ((~) 2 
> 1), then the right side of (4. 16) is a (fixed) real num

ber. We then proceed to adjust the thickness of the guiding layer t 

until an equality results. A simple physical description of the mathe-

matical procedure just outlined is as follows: For confined and 

lossless mode propagation complete reflection must take place at the in

terface (see Figure 4.4) between the quiding layer and the layered medium. 

This indeed occurs only when the zi~zagging wave is incident on the 

interface under conditions corresponding to that of a forbidden gap. 

Also important is the fact that the evanescent decay is nearly com

plete in several periods so that practical structures with , say, ten 

unit cells are a good approximation to the semi-infinite layered 

medium assumed in the analysis. 

A symnetric waveguide composed of a low index slab , say air, separating 

two semi-infinite periodic media is of course also possible. Such a 

waveguide can be constructed by replacing the structure to the left of 

plane "a" (where ~; = 0) the structure to the right . The field 

distribution is then even symmetric about plane a. The result of such 

a procedure is shown in Figure 4.6. Such a structure can be used as the 

waveguide for gaseous lasers. 
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Mat /-temati ca lly, the mode conditions for the TE modes of the 

syrrmetric Bragg waveguide can easily be shown to be 

even TE modes 

(4. 17) 

odd TE modes 
where 

(4.18) 

The Bragg waveguides described above should display strong 

discrimination against higher order transverse modes, i.e., modes with a 

larger number of nodes in the central guiding region. This is due to 

the fact that the e~istence of a given mode requires, as discussed above, 

the simultaneous fulfillment of the transverse resonance condition 

within the guiding layer and the Bragg condition in the layered media. 

If the waveguide is designed so that these conditions are satisfied for 

a given transverse mode, they will not be satisfied by other transverse 

modes, except accidentally. We can show that if the waveguide is de

signed for the fundamental transverse mode (s=O) then in order that the 

sth mode exist as well, the condition 

£, = 1,2,3 (4. 19) 

need very nearly be satisfied. In equation (4. 19) it was assumed that 

(n1-n2);n 1 « 1. 
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4.4 Mode Characteristics 

The mode dispersion relations (4.16), (4.17), and (4.18) give us 

the relations between w, S, and t, with na, ng, n1, n2 , a, and b as 

parameters. In a conventional waveguide the S's for confined modes can 

vary continuously from ~ max(na,ns) to ~ ng, where ns is the refractive 

index of the substrate. In a Bragg waveguide, however, the S for con

fined modes can only vary within the optical forbidden bands, i.e., 

I A~DI > l. A typical mode dispersion with w fixed is shown in Figure 4.7. 

It is interesting to note that there are some thickness regions where no 

confined mode exists. This is due to the fact that the existence of a 

confined Bragg mode requires, as discussed above, the simultaneous ful

fillment of the transverse resonance condition (4. 16) and the Bragg 

d . t" I A+D I 1 con 1 ion 2 > • 

We will use a GaAlAs Bragg waveguide as an example throughout this 

section . The light wavelength is 1. 15 µm of the He-Ne laser. The wave

guide structure consists of a guiding layer of Al 0. 38Ga0. 62As with thick

ness t,and a periodic layered substrate consists of alternating layers of 

GaAs and Al 0. 2Ga0.8As. At this wavelength, n1 = 3.35, n2 = 3.43, 

n = 3.24, n = 1.0 [11]. g a 
The result of the calculation for TE waves is shown in Figure 4-8. 

These t vs s curves are the mode characteristics of the Bragg waveguide. 

We notice that S is no longer ranging from ~ max(na,ns) to z ng for the 

waveguide modes. Instead, 8 varies from smin to Smax where the Bloch 

wave in the substrate becomes evanescent, or equivalently, Ki > 0. Also 

shown in the same fiqure is the K. vs 8 curve. We notice that K
1
. is . 1 
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Fig. 4.7 t vs. S for a typical Bragg waveguide. 
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/3 
Fig. 4.8 t vs S for another typical Bragg waveguide. 
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maximum at the center of the forbidden gap. The magnitude of K. meas, 
ures the decaying speed of the light wave in the periodic layered sub-

strate. For S.?:. Smax or S ~ Smin' the waveguide modes are turned into 

Bloch substrate modes. 

We also notice that for the same S, the thicknesses of different 

modes are equally spaced. The thickness difference between the neigh

boring modes is exactly a half wavelength, 

(4.20) 

This property can be easily seen from the mode dispersion relations 

(4. 16), (4. 17), and (4. 18), which are invariant under the following 

transformation: 

t ~ t' (4.21) 

The Bragg waveguide mode at t = 0 is essentially an electromagnetic sur

face wave bound by the surface of the periodic layered medium, which was 

discussed in Section 3.4. 

A single mode Bragg waveguide can be constructed according to the 

mode characteristics shown in Figure 4.7 at a thickness which is a few 

times larger than the wavelength. A conventional waveguide at such a 

thickness and index discontinuities would support several transverse 

modes . 

4.5 Optimum Bragg Waveguide 

As we already know that the Bragg waveguide modes decay as e 
-K.x 

1 

into the periodic layered substrate, in order to get the best degree of 
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confinement, it is desirable to find a Bragg reflector with layer thick

nesses such that K. has its maximum possible value . In other words, 
1 

the optimum thicknesses a,b of the alternating layers are such that 

aK. aK. 
( aa 

1 
) = (at) = 0 (4.22) 

It can be shown that (4.22) is equivalent to 

klxa = k2xb = rr/2 (4.23) 

In other words, a Bragg reflector has its maximum stopping power for a 

given incidence condition when each layer is a quarter-wave plate at 

that incidence condition. At this optimum condition the decay 

factor is given 

i KA kl e = -( x) (4.24) s; 
Here we assume that ik2xi > ik1xi and µ2 = µ 1. The reflection coeffi

cient r of a semi-infinite Bragg reflector consisting of alternating 

layers of high and low refractive indices with the same optical quarter 

wave thickness is given by 

r = -1 (4.25) 

Thus we see that the field must vanish at the surface of the Bragg re

flector. The mode dispersion relation at this optimum condition is 

given by 

(4.26) 



168 

The field distribution for an optimum Bragg waveguide mode is 

shown in Figure 4.9. We note that the field has its maxima and minima 

exactly at the layer interfaces. This property can be proved rigorous

ly by using the mathematical optimization procedure which will be given 

in the latter half of this section. 

Referring to Figure 4. lOa, we consider the following problem: 

Given the material of the structure with indices of refraction 

na < ng < n1 < n2, we are to find the locations of the interfaces xn' 

n=l,2,3,···, such that the guided Bragg mode has the highest degree of 

confinement. To solve this problem we consider a general interface 

between two media. Let ~be the location of the interface and n,n' are 

the indices of refraction on the left and right side, respectively. 

Furthermore, we assume that E(x) is the electric field distribution for 

TE waves in the region x < ~ which is completely determined by the 

boundary condition at x = -oo The electric field distribution in the 

region x > ~ is given by 

E =A cos k'x + B sin k'x (4.27) 

where k' = j(~ n1
)
2 - s2 and A,B are constants. The boundary conditions 

require that the tangential components of E and H are continuous at 

x = ~. The result, using (4.27), is given by 

A cos k'~ + B sin k'~ = E(~) (4.28) 

-
11

1 dE -k'A sin k10 + k'B cos k10 
.1::- ( ) 

"' "' - µ dx ~ 
(4.29) 



x 

c 

169 

-x 
w 

x 

•r-
:::5 
0) 
Q) 

> ro 
3 
O'l 
O'l 
ro 
s... 
cc 
E 
::I 
E 

•r-
.µ 
Cl.. 
0 

c 
c::i:: 

•r-
l.J... 



170 

where µ and µ
1 are the magnetic permeabilities. Solving for A and B 

from {4.28) and (4.29), we get 

A= cos k 1 ~ E(~) (4.30) 

( 4. 31) 

We note that A and B depend on ~ The field energy on the right hand 

side of the interface is proportional to (A2+s2). In order to 9et the 

best degree of confinement, we need to find a location ~ such that 

(A2+B2) is minimized. By carrying out the algebraic manipulation we ob-

tain from (4.30) and (4.31) 

(4.32) 

where k =JC~ n) 2- s2. A similar expression for TM waves is given by 

(4.33) 

We see that the field energy is optimized whenever either the electric 

field or the magnetic field vanishes at the interface. In order to find 

whether these extrema are maxima or minima, we have to inspect the 

signs of the second order derivatives. By carrying out the differentia

tion on (4.32) and (4.33), we obtain, using the wave equation 
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(4.34) 

(4.35) 

The results (4 . 32) through (4.35) can be summarized as follows: 

TE Waves 

(a) 

(b) 

TM Waves 

(a) 

(b) 

k k' 
- < :--r µ µ 

2 2 Minimization of (A + 8 ) occurs at E(s) = 0. 

k k I 
- > -,
µ µ 

Minimization of (A2 + 82) occurs at (~;)s = 0. 

k k' 
-< -
E: E: I 

Minimization of (A2 + 82) occurs at H(s) = 0. 

k k' 
- > -::-r 
E: E: 

Minimization of (A2 + B2) occurs at (ddH) = 0. 
x s 

It can be shown that the field amplitude decreases by a factor of 
kµ I kE: I 

Krµ (or k'£ for TM waves) 
k k' - < -::-r for TM waves). This 
E: E: 

at the optimized condition for~< ~ (or µ µ 

is illustrated in Fiqure 4. 10 for TE waves. 

Thus we find that in a stack of alternating high and low refractive index 

layers the optimum layer thicknesses for best confinement are quarter-wave 

thicknesses. The field vanishes at the interfaces with low index media 
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E 

µ. 
E' 

µ.' 

E (x) E =A cos k'x + B sin k'x 

x=~ 

(a) 

(b) 

A general interface at x = S· (b) Trans it ion from 

x 

high index material to low index material. (c) Transition 

from low index material to high index material. 



173 

on its left hand side and reaches maximum at the interfaces with low 

index media on its right hand side. Each period is exactly a half-wave 

1 t Th f . l d l . t d d b f t f i Kil. • b p a e. e 1e amp 1 u e ecreases y a ac or o e given y 

k1µ2 
TE waves - k2µ1 

i Kil. e = (4.36) 

klE2 
TM waves -91 

This approach in designing a Bragg waveguide will later be extended to 

the cylindrical regime to study the Bragg fibers. 

4.6 Leak Consideration 

We now discuss the loss due to the finite number of periods in the 

periodic layered substrate. All the above derivations are based on the 

assumption that the periodic layered substrate is of infinite extent. In 

practice, it is impossible to fabricate an infinite number of periods, 

although the current molecular beam technology can fabricate as many 

layers as needed. Usually the time invested in the growth is propor

tional to the number of periods. Typical growth rate is about 1 µm/hr. 

The growth rate is so slow that the layer thickness can be precisely 

controlled [12]. 

In what follows , we will calculate the attenuation coefficient of 

the Bragg waveguide due to the resulting losses into the substrate. The 

analysis will be similar to that of the surface waves. However, we will 

limit ourselves to the interesting case of optimum Bragg waveguides. 
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We consider an optimum Bragg waveguide with N periods in the 

periodic layered substrate. The attenuation coefficient is again given 

by 

Cl = 
Sx(x=NJ\) 

NJ\ 

J s2 dx 
-oo 

(4.37) 

Without loss of generality we will consider TE wave only. Also, we 

assume all the layers are pure dielectric materials so that all the 

magnetic permeabilities are equal to µ
0

. The electric field distribu

tion can be written 

E = y 

fa (x-t) 
sin k

9
t e 

-sin kgx 

k 
- .Jl sin 

k2 

k -t cos 
2 

etc. 

x ~ -t 

-t ~ x .::. 0 

0 < x < b (4.38) 

b<x~J\ 

The thickness of the guiding layer is given by equation (4.26). Using 

(4.38) and (3.34) we obtain 

k 2 
+ F(it-) t } 

2x . 

cB 1 tan k9t 
dx = ~ {- t - -

2w 2 2kq 
-oo 

(4.39) 

where 
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-2NKii\ 
F = l - e 

-2K .J\ 
l - e 1 

By using (4.26), (4.39) can be simplified further as 

NJ\ 

I S dx = cf3 { ]_ t + -l.- + ]_ J\ ( ~ ) 2 
F} 

-co z 2w 2 2qa 2 1<2-x 

The outflowing flux Sx at x = N is given by 

ck2x 1 k 2 -2(N-l)K.i\ 
S = -·- (_g___) e 1 

x 2w 4 k2--; 

(4.40) 

(4.41) 

(4.42) 

where we have assumed that the substrate material is the same as layer 

2, so that ns = n2. Combining (4.41) and (4.42) we obtain the attenuation 

coefficient 

k k 2 
a = -¥s (it-) 

B 2x 
(4.43) k 2 

t + _l + J\(t) F 
qa 2 x 

Again, we see that the attenuation coefficient decreases exponentially 

as N becomes large. 

A typical curve for a vs N is shown in Figure 4.11. It is important 

to notice that the attenuation coefficient we have just calculated ac-

counts for the radiation loss due to finite number of periods only. In 

practice, there are losses due to surface scatterings, bulk absorptions, 

and bending losses. 
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a (cm-1) 

0.ILI ~~~~5~~~~~10'--~~~-,~5~~~---:-20 

N 
Fig. 4.11 a vs. N for a Bragg waveguide. 
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4.7 Other Bragg Waveguide Structures 

A waveguide composed of a low index slab separating two semi

infinite periodic layered media is of course also possible. The most 

general Bragg waveguide has an index profile shown in Figure 4.12. 

Themode dispersion relations for such a waveguide can be derived by the 

same method as described in Section 4.3, and is given by 

(4.44) 

or, equivalently, 

(4.45) 

where 

-iKA .k e - A - B 
- -l 1 x -i KA 

e - A+ B 
(4.46) 

. K' A I 

. e- 1 
a - A' - B' 

- -lk3 "K'A' x e-1 " - A' + B' 
(4.47) 

and A', 8 1
, K', A' are the parameters of the left side periodic layered 

medium corresponding to A, B, K, A, respectively. 

Mathematically r12 and -r34 are the logarithmic derivatives of the 

Bloch waves at x = 0 and x = -t respectively. A special case of particu

lar interest is the symmetric Bragq wavequide where n3 = n1, n4 = n2, 

c = a and ct = b. Such a structure can be used as the wavequide for qaseous 

lasers. 
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n3 n4 n3 n4 n 3 
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Fig. 4.12 Geometry of a double Bragg waveguide. 
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The mode condition for the symmetric Bragg waveguide can be ob

tained from (4.45) by setting r 34 = r 12 and is given by 

{

-k tan(1 k t) g g 
= 

k cot(t k t) g g 

even modes 
(4.48) 

odd modes 

If we let n3 = n4 = na < ng, the left side medium becomes homogeneous 

and r 34 becomes -qa according to (4.47). Thus we get the dispersion 

relations for the slab Bragg wavequide (4.16). 

In order for a double-Bragg waveguide to support a confined mode 

two Bragg conditions plus a phase resonance condition have to be satis

fied simultaneously. This is not generally possible. However, under 

appropriate conditions a double-Braqq waveguide can support confined 

modes. It is evident that confined modes exist only when there is some 

overlap between the optical forbidden bands of the two periodic layered 

media. Because of the additional Bragg condition, a double-Bragg wave

guide has the desired capability of mode discrimination. If a double-

Bragg waveguide is designed to support a given confined transverse 

mode, it will not in general be able to support other transverse modes, 

except accidentally. 

Another special case of particular interest is the double-Bragg 

wavequide structure with t = o
1 

which is exactly the interface mode 

discussed in Section 3.5. 
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Chapter 5 

OTHER TOPICS IN LAYERED MEDIA 

5. 1 Introduction 

We have derived some of the important characteristics of Bloch 

waves propagating in a periodic layered medium. The results are applied 

in this chapter to the problems of periodicity dispersion, phase 

matching in nonlinear mixing experiments and to laser action in the 

soft x-ray region. Periodicity dispersion is the dispersion intro

duced by the periodic stratification without regarding any material 

dispersion. Under appropriate conditions this dispersion can com

pensate the material dispersion. As a result, the whole layered 

medium becomes dispersionless in some region of the frequency spectrum. 

Phase matching is an important problem in nonlinear optics. In 

order to get high conversion efficiency, perfect phase matching is 

needed. However, most material exhibits some kind of dispersion. Perfect 

phase matching in gases can be achieved by adding buffer gases with dif

ferent dispersion behavior into the mixing medium. Phase matching in 

crystalline solids can be achieved by employing the birefringence prop

erty of the crystal [l]. In this chapter we will describe how to apply 

the periodicity dispersion to get perfect phase matching. 

5.2 Periodicitx Dispersion 

In this section we treat analytically and quantitatively the 

periodicity dispersion. We obtain expressions for the locations and 

sizes of the bandgaps. We will limit our derivation to the case of normal 



182 

incidence. The extension of our result to the general case will be given 

in the last part of this section. 

Instead of using n1, n2, a and b, a new set of more convenient 

parameters will be defined in the following. 

( 5. 1) 

(5.2) 

(5.3) 

In terms of these new parameters, the dispersion relation (2.37) can be 

written as 

cosKA = (6+2l) cos n !& A- (6- l )cosv !& A 
c 2 c 

By using the following identity 

cos x = l - 2 sin2 ~ 

eq. (5.4) can be written as 

(5.4) 

(5.5) 

s i n 2 KA = ( t. + 1 ) s i n 2 nw A - ( t.- l ) s i n 2 v w A ( 5 . 6 ) 
2 2 2c 2 2c 

This equation is especially useful whenv << n. In-. the event when 

v = 0 (n 1a = n2b) equation (5,6) gives us the explicit form of w 

as a function of K. 

The locations of band edges can be obtained from (5,6). If 

we set KA = mn, we obtain 
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sin
2 (~~ fl.) = 

Kl\ = 2.Q:rr 

(5. 7) 

Kfl. = ( 2 ,Q, + l) TI 

where ,Q, is an integer. If v << n which is normally true, equation 

(5 . 7) can be sol ved by the method of successive approximation . The 

results for the upper and lower band edge frequencies after one iteration 

are given by 

w % u,,Q, 

£_ { 2 ,Q,1T ± 2 . - l [ f7N" . ( \) ) ] } sin Vt:+'f sin :- in 
nfl. n . 

~ {(2Hl)TI ± 2 sin- 1 [J~~~ cos(~ (,Q,+l/2)TI] 
nfl. n 

Kfl. = 2,Q,1T (5.8) 

Kfl. = (2,Q,+l)TI 

Consider a stratified medium consisting of alternating layers of the 

same optical thickness which is the case when v = 0, all the even order 

bandgaps shrink to zero. While the odd order bandgaps have a maximum 

constant value 

6w = 4C sin-1 rb.-1 
max nfl. \ 6+ l 

and the centers of the bandgaps are all on the same straight line 

w = ~ K 
n 

(5 . 9) 

(5.10) 

The vanishing of the even order bandgaps is due to the fact that each 

layer becomes a half-wave layer at the even-order Bragg conditions so 

that reflections from two adjacent interfaces are out of phase by an 

odd multiple of n. The dispersion relation for this special case is 

shown in Fig. 5. 1. 
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w 
v=O 

,,, 
"--w=~K n 

(~I) 

0 (X) 

n 

I 
I 
I I 
I I 
I I 
I I 

----t ~6w112 
1: I I 

I I .. w 
0 (~X) 2(~;:) 3(~X) 4(~) 

Fig. 5. l Periodicity dispersion when n1a = n
2
b (or v = 0). 
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In the general case when v'fO, the degeneracy is removed and there 

is, in general, a finite bandgap at KA= 2.R.TI. The band edges of each 

forbidden gap are always on both sides of tte straight line 

w = cK/n. The bandgap sizes vary roughly periodically as a function 

of the Bragg-order for even orders and odd orders separately. This 

can be seen from either (5.8) or Figure 5.2, which is a plot of both 

sides of eq . (5.7)and gives a graphic solution of the locations of 

band edges. The bandgaps are given approximately by 

4c sin-l AA Sin(~ £TI ) KA = 2.R.TI 

nA 
l n 

t.wgap = Jfil 
(5.11) 

4c . -1 cos~_ (R.+l/2)TI] KA = (2.R.+ l )TI sin l n nA 

In the usual case of inclined incidence (8'1-0), all the above results are 

applicable provided t., n and\) are defined by 

l t2cose2 n1 cose1 + ) 
2 n1cose1 

n2cose2 
t. = 

TE waves 

(5.12) 

l t1 cos~2 n2cose1 + ) 
2 n2cose1 

n1cose2 
TM waves 

n = 
n

1
acose1 + n2bcose2 

A 
(5.13) 

J) = 
n

1
acose

1 
- n2bcose2 

A 
(5.14) 

where 

cose1 
cklx 

=-- (5.15) 
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(5.16) 

It can be seen from (5.8) that the locations of the bandgaps are shifted 

toward higher frequencies and the sizes of the bandgaps become larqer at 

inclined incidence. 

5.3 Generalized Phase Matching of Nonlinear Processes 

Phase-matched enhancement of nonlinear mixing processes in a 

periodic stratified medium was proposed by Ashkin and Yariv [2], 

Bloembergen and Sievers [3], and recently by Tang and Bey [4]. Experi

mental evidence for this effect has been demonstrated recently by van 

der Ziel et al and Ilegems [5]. 

In the following we present a general theory of phase matching in 

a periodic stratified medium. In our approach we employ the Bloch elec

tromagnetic wave functions and their space harmonics. 

Let us consider three interaction electromagnetic waves in a 

periodic stratified medium. The electric fields are given by their 

Bloch expressions 

+(w,Q,) +K,Q, iK,Q,x i8,Q,z -iw,Q,t 
E (x,z,t) = E (x) e e e ,Q, = 1,2,3 (5.17) 

with 
(5. 18) 

They-dependence is again suppressed for the sake of simplicity in illus

tration. Let the two media comprising the layered structure possess 

nonlinear optical properties which cause the two waves at w1 and w2 
to generate a polarization P(w3) at w3 with a complex amplitude 

(w3) (w1) (~) 
P; (x,z) = dijkEj (x,z)Ek (x,z) (5.19) 
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The nonlinear coupling coefficient d. 'k' reflecting the symmetry of the 
lJ 

medium, is a period1c function of x 

w1+w2+w3 , w1+w2+w3 (5.20) 
d; j k ( x+ A) = di j k ( x ) 

(wl) (w2) 
The power flowing into wave at frequency w3 from E and E is 

+(w ) • +(w ) 
given by E 3 fr P 3 which is Pi"'Oportional to 

=ff 
K K K ifK +K -K )x i(S +s -8 )z 

d .. k(x)E.l(x)E.2(x)(Ek3(x))*e, 1 2 3 e 1 2 3 dxdz 
lJ , J 

(5.21) 

where the superscript of dijk(x) is dropped and the integration is over 

the interaction region. Each of the periodic functions in the integrand 

may be expanded in .a Fourier series 
. 2n 

m im Ax 

Thus 

d .. k(x) = l D .. ke 
1 J m lJ 

K in 2TI x 
Ei l(x) = l Aine A 

n 

K • n 2'1T 
l.x. -x 

EJ. 2(x) = l B. e A 
x. J 

ip 2n x 
= l cPe A 

p k 

<K3jd!K1K2> = (2n) 2 l D~.kA.nB~(ckP)*o[K1 +K2-K3+(m+n+R.-p)£.A1L] m,n,i,p lJ l J 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

We see that the nonlinear mixing is allowed only when the following 

two conditions are satisfied. 
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(5.27) 

s = m+n+i-p (5.28). 

By analogy with the corresponding phonon-phonon collisions in solid 

state physics, one may classify the allowed nonlinear processes into 

the two categories described in the next section. 

5.4 Normal Processes and Umklapp Processes 

(A) Normal Nonlinear Processes (s= 0) 

Normal nonlinear processes in a homogeneous medium require either 

no dispersion or anomalous dispersion. The dispersion in a periodic 

stratified medium can be separated into two factors which are, the 

natural dispersion of the material itself and the additional dispersion 

due to artificially periodic stratification. The latter was discussed 

and analyzed in Section 5.1. 

A typical periodicity dispersion is shown in Figure 5.3. An 

analytic study of the periodicity dispersion was given in Section 5.1. 

It can be seen from Figure 5.4, in which the periodicity dispersion is 

superposed on top of the natural dispersion, that the natural disper-

sion, due say, to some absorption resonance at w
0

, is modified by the 

periodicity dispersion. As a result, phase matching can be achieved 

in a spectral region where it would be impossible if the medium were 

homogeneous. This can be explained as follows: In order to achieve 

phase matching in a piece-wise homogeneous medium, the dispersion func

tion n(w) in the relevant spectral region cannot increase monotonically. 
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The monotony of the dispersion is removed when the periodic stratifica

tion is introduced, since, as shown in Figure 5.4, the change in index 

due to periodicity changes sign near a Bragg resonance frequency. It 

is therefore possible to select the parameters of the periodic struc

ture so that phase matching is achieved in a given triplet of waves. 

It is interesting to get an expression for the maximum change 

in the effecti\e index of the refraction which is achievable by 

periodicity dispersion. To be specific we derive an expression for 

the maximum index deviation 6n112 as defined in Fi~ure 5.1. 

For simplicity let us consider the case of normal incidence 

(S=O). The effective index of refraction is obtained from (2.49) 

and the relation vp = c/neff 

n ( ) = cK(w) 
eff w w 

(5.29) 

-
Fiir from Bragg resonances the effective index is equal to n where 

_ n1a + n2b (5.30) 
n =--A--

The maximum ,deviation of neff from n occurs at the band edges. The 

band edge frequencies can be approximated according to the second of 

(G.8) by 

6 ~ l , ~ {1~1/2)rr << l 
n 

The maximum index deviation 6n 112 is thus 

_ cK(w
1

) _ 

6nl/2 = "eff(w!) - n = wt n 

(5.31) 

(5.32) 

(5.33) 
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At the (odd} band edges (wu'~R.} we have 

K(wR.)1\ = {2R.+ l)rr (5.34) 

so that 
c~2R.+l }rr -

b.nl/2 = - n 
wR.1\ 

(5.35) 

Substituting (5.31) for w1 in the last expression and using. the fact 

that 6-1 << 1 leads to 

(5.36) 

From (5.31) we find that the width of the gap is 

( 5. 37) 

If the amount of natural dispersion that needs to be overcome in 

a given process is less than 6n112 given by (5.36), the normal nonlinear 

processes can achieve perfect phase matching hy introducing the periodic 

stratification. 

Phase matching can also be achieved hy utilizing the birefringence 

property of the periodic medium. The difference in the refractive in-

dices of the ordinary waves anrl extraordinary waves is given by 

4ab n~ 
n = - (t-.2-1) 
e A2 no+ne 

(5.38) 

However, this quantity is much smaller compared with L\n 112 (5.36) for 

.6.-1 « 1. 
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(B) Umklnpp rlonlinear Processes (s t 0) 

l\n llmklapp nonlinear process can be thought of as the generation 

of a \rJave at the mixed frequency (such as w3 = w1-tw 2) with, simultane

ously, a Bragg reflection. The additional momentum in this process is 

obviously provided by the periodic stratified medium (or , in other words, 

transferred to the periodic stratified medium). Umklapp phase-matched 

nonlinear processes can take place in any dispersive medium under ap

propriate conditions. For example, the phase mismatch due to the normal 

dispersion of the material can always be compensated by the crystal 

momentum, i.e . , choosing the period so that (5.28) is satisfied for 

some combination of m, n, £, p. The missing wave momentum is thus pro-

vided by the periodicity of the integrand in (5.21). It can come from 

either the Fourier component of the nonlinear coefficient, i.e., m r 0, 

or the space harmonics of the Bloch waves, or both. The Umklapp non

linear process is thus a way to achieve phase matching when the period

icity dispersion (5.36) is not big enough to compensate the material 

dispersion. 

Traditionally this process can be thought of an interaction he

tween the space harmonics of the £3loch \\laves (5 . 22- 5.25), since the 

rate of power transfer will involve, according to (5.26), the amplitudes 

of the space harmonics. 

5.5 DFB Soft X-Ray Lasers in Periodic Stratified r1edia 

In this section we consider the possibility of using a layered 

structure as a medium for x-ray laser. The huge pump intensities which 
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will be required to overcome the ordinary photoelectric losses in the 

x-ray region \'Ii 11 1 imi t the pumped region to very sma 11 vo 1 umes. Under 

these conditions the use of an external resonator structure seems highly 

unlikely . One proposal advanced earlier [6] was to use the periodicity 

of natural crystal to provide oscillation feedback by Bragg reflection. 

In what follows we consider the possibility of obtaining Bragg x-ray 

laser action in art i ficial layered media. In such media we have the 

freedom of tailoring the period exactly so tha t the Bragg condition is 

satisfied at the oscillation wavelength. In addition no crystals exist 

in which the unit cell dimensions are comparable to oscillation wave-
0 

lengths of, say , lOOA. 

we will thus consider a layered medium in which one of the layers 

provides gain at some frequency w. Since the presence of gain or loss 

can be rep resented by the use of complex indices of refraction we 

need to extend the analysis of part I to the case of media with complex 

indi ces . The coefficient of reflect i vi ty of the N layered structure 

is given as in (33) of part I by 

CUN-1 
(5.3q) 

while the transmission iS 

t . = 1 
I~ AUN-1 - UN-2 

(5 .40) 

The complex indices of refraction are taken as 

(5.41) 

(5 .42) 
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The imaginary part of a refractive index is directly related to the bulk 

loss constant (or gain) by the following relation. 

(5.43) 

Consider next a periodic stratified medium with alternating gain and 

loss layers (a1 > 0, a2 < 0). 

Such a structure could result if we were to fabricate, as an 

example, an artificial layered medium composed alternately of two 

media-- l and 2 and then pump it by an incoherent x-ray beam or an 

intense laser source . Since the layers are different the effect of 

the pump can be to produce an inversion in layer 2, say, at some 

characteristic x-ray frequency. We thus have a situation where x-ray 

radiation of the characteristic frequency is amplified in layer 2 

but is absorbed by the photoelectric effect in layer 1. We will 

show next that if the unit cell (i . e. the alternation period) 

length A is chosen near the Bragg value iA
9
/2 then oscillation may 

result. The determination of the threshold pumping requires an 

exact formulation of the electromagnetic problem. This becomes 

possible with the aid of the Bloch formalism developed in Chapter 2. 

We choose n1 and n2 as well as a.1 as parameters, take the layer 

thicknesses a = b = A/2 and investigate the reflectivity rN of a 10 period 

slab (N = 10) as a function of wA/c and a2. The contour plot of !rNI in 

the a
2

-(u plane are shown in Figure 5.5. /\ series of points where 

lrNI = l'-, are found in the lower half plane (a2 < 0). The coordinates 

of these poles correspond to the threshold qains and the oscillation 

frequencies of the laser. The number of poles is exactly N, which is 
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the number of periods. The pole trajectory in the a2-w plane indicates 

that the pole nearest the bandgap has the lowest threshold gain. The 

threshold gain a2t is approximately equal to loss a1 for modes whose 

frequency is far away from the handqap. Hm'iever, it is much less than 

the loss when the oscillation is near the bandgap. In our example 

!a2tl ~ a1/3. This theoretical result can be explained as follows: The 

power dissipation per unit area is proportional to 

J = f a(x) E
2(x) dx (5.44) 

where 

Layer l 
a(x) = (5.45) 

Layer 2 

If the lasing mode intensity distribution can have its maxima in the 

gain layers and minima in the loss layers, power generation (J<O) 

is possible even when the integrated loss is positive, or in other 

words when 

J a(x) dx > 0 (5.46) 

In the conventional Fabry-Perot laser where a(x) = constant, power 

generation requires a net positive gain (negative less) 

al < 0 (5.47) 

That means the laser medium of the conventional laser has to be pumped 

until the gain conquers the loss. However, in a periodic multilayer 

laser the gain constant of the gain layer does not have to be larger 
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than the loss constant of the loss layer assuming the same layer thick

ness. This is similar to the "Borrmann effect" of an x-ray propaoating 

in a crystal [7]. This finding is of large significance to x-ray lasers, 

since it should make possible significant reductions in the threshold 

pumping requirements. 

The field distribution near oscillation of a typical multilayer 

x-ray laser is shown in Figure 5.6. Notice that the local maxima of the 

field amplitude are all located in the gain layers. The parameters cor

respond to the low threshold pole of Figure 5.5. 
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Chapter 6 

WAVES IN CYLINDRICALLY LAYERED MEDIA 

6.1 Introduction 

Propagation of electromagnetic waves in cylindrically symmetric 

dielectric waveguides has become increasingly important in fiber optics 

communi cation. The guiding principle is similar to that of the planar 

slab wavegu i de. A dielectric fiber is capable of supporting confined modes 

provided the refractive index of the guiding region (core) is greater 

than that of the surroundings (cladding). This ensures the evanescent 

decay of optical waves as r goes to infinity. Instead of dealing with 

sine and cosine functions, we have to deal with Bessel functions of both 

kinds in the cylindrical regimes. A great deal of work has been done on 

optical propagation in conventional fibers [1,2,3] . 

In this chapter we will show that, in principle, confined modes 

exist in a fiber with a low index core, provided the core is surrounded 

by a suitably designed alternating cladding of high and low refractive 

i ndices (see Fig. 6.1). A fiber with this kind of cl adding is called a 

Bragg fiber and is similar to the situation with the Bragg planar wave

guide, where the light is guided by a low index slab. To treat this 

problem properly we introduce an optimization procedure similar to the 

one discussed in Section 4.5. Instead of solving the confined modes of 

a given fiber structure, we search for the fiber structure such that the 

modes have some desired properties. The guiding of electromagnetic waves 

in a fiber with a low in dex core, especially the hollow waveguide, is not 
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only important in optical communication, but also very useful in the 

guiding of high power infrared lasers [4]. Another novel application 

is the guiding of UV or soft x-ray in a hollow Bragg cylindrical wave

guide where almost any material is too lossy in that frequency regime. 

Another important application in fiber optics communication is the de

sign of a single mode fiber. We have shown that a single mode Bragg 

waveguide can be designed with a guiding layer thickness much larger 

than a wavelength. 

A similar conclusion is derived for cylindrical Bragg waveguides. 

A single mode fiber is capable of transmitting a light pulse without 

broadening , due to modal dispersion [5]. Pulse broadening is a serious 

problem in digital fiber optics communication. It tends to reduce the 

pulse repetition rate. 

6.2 Matrix Method in Concentric Stratified Fiber 

In this section we will introduce a matrix method to compute the 

mode characteristics as well as the power flux of radially stratified 

fibers. The basic idea is to replace the boundary conditions by a matrix 

equation. Thus, each cladding interface is represented by a matrix. The 

introduction of this 4x4 matrix greatly simplifies the analysis. 

We consider a fiber with the index profile given by 

n ( r) = r < r < r +l 
\) - \) 

\) = 1,2,3,·•·, 00 

(6.1) 

In particular, we will consider a fiber with a low index core and al-

ternati ng low and high index cladding . The geometry of this structure 
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is sketched in Figure 6.1. The index profile is then given by 

ng 0 .:::. r < r1 

n2 r1 .s_ r < r2 

nl r2 .s_ r < r3 

n ( r) = n2 r3 ::_ r < r4 (6 .2) 

nl r4 ::_r< r5 

etc. etc. 

We take the z-axis as the direction of propagati on, so that every field 

component has the form 

'' '( e t) = ''• (r,e ) ei(Sz-wt) 't' r, ,z, 't' (6.3) 

where l/J can be E
2

, Er, Ee, H
2

, Hr, He. w i s the angular frequency and 

S is the propagation constant. 

From waveguide theory we know that the transverse field components 

can be expressed in terms of E
2 

and Hz [6]: 

E = iS [a + ~ a J 
r 2 S2) ar Ez S rae Hz 

(w JJE: -

(6.4) 

Ee = iS [ a ~ a J 
2 S2 ) rae Ez - S ar Hz 

(w JJE: -

(6.5) 

H = iS [~r Hz 
WE: d J 

r 2 ' S2) - s rae Ez 
(w JJE: -

(6. 6) 

H = iS a + ~_LE J [rae Hz e 2 S2) s ar z (w JJE: -

(6. 7) 
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E
2
(r,e) and H

2
(r,e) satisfy the wave equation 

(6.8) 

where v~ = v2 - a2;az2 is the transverse Laplacian operator. The gen

era l solutions can be written 

E
2 

=[(AJ£(kr) + BYi(kr)] cos(ie +¢) (6.9) 

(6.10) 

where A, B, C, D, ¢, and ij; are constants, £ is an integer, and 

(6.11) 

We now consider the boundary conditions at a genera l cladding interface 

at r = p. The so lu tion of the wave equation is taken as 

and 

where 

H = z { 

[c1J£(k1r) + o1v£(k1r)J cos(ie+ip1) 

[C2J£(k2r) + o2v£(k2r)] cos(ie+ip2) 

r < P 

(6.12) 

r > P 

r < P 

(6.13) 

r > P 

The boundary conditions at r = p are: E
2

, H
2

, Ee and He continuous at 
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the interface. Thus a 4x4 matrix M can be found which relates A1 ,B1,c1,o
1 

to A2,B2,c2,o2, i.e., 

(6. 15) 

Derivation of M 

In terms of fields (6. 12) and (6. 13) the continuity of E
2 

gives 

(6 . 16) 

This equation has to be satisfied for all e which implies 

(6 . 17) 

and similarly from the continuity of H
2 

(6.18) 

Thus , continuity of E
2 

and H
2 

qives 

(6. 19) 

(6.20) 

In terms of the fields (6. 12), (6. 13), and (6.5), the continuity of E8 
gives 
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= ~2 [-: {A2Ji(k2p) + B2Yi(k2p)} sin(ie+ ¢) 
2 

(6.21) 

where the primed quantities are the derivatives with respect to their 

own argument. Again, this equation has to be satisfied for all e . From 

(6.19) and (6.20) we have 

provided k1 I k2. Thus we conclude from (6.21)-(6.23) that 

sin(ie +¢ ) = : cos(ie + ~) 

or equivalently, 

Continuity of H
8 

and eq. (6.7) gives 

) {~51, [c1Ji(k1p) +D1Yi(k1p)] sin(ie + ~) 
1 

(6.22) 

(6.23) 

(6.24) 

(6.25) 
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= ~ C~ [C2J£(k2p) + D2Y£(k2p)] sin(£e + 1/J) 
k2 

From (6.24) or (6.25) we can classify the waves into two categories: 

I E = (AJ£(kr) + BY£(kr)) cos £e z 
(6.27) 

H = (CJ£ ( kr) + DY£(kr)) sin £e z 

E = (AJ £ (kr) + BY£(kr)) sin £e z II 

(6.28) 
H = z (CJ£(kr) + DY£ ( k r)) cos £e 

The boundary conditions for these two categories are summarized below: 

I 

0 + 0 ( 1 + 2) (6.29) 

(6.30) 

0 + 0 + ( 6. 31) 

(6.32) 

where (1 +2) means the same functional form with subscript 1 replaced by 

2, and vice versa. 

II - Similar equations for the second category, except that£ is re-

placed by -£. 
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Equations (6.29)-(6 . 32) can be written as a matrix equation 

M(l ,p) = M(2,p) (6.33) 

with 

J,Q,(kip) Yi(kip) 0 0 

WE. WE . 
9, 9, w. JQ_(kip) si.- y '.e_( kip) y J,Q,(kip) - 2- Y,Q,(kip) 

1 1 k.p k.p 
M(i ,p) = 1 1 

0 0 J,Q,(kip) Yi(kip) 

9, 9, 
W]J . W]J. 

-2- J,Q,(kip) :z-Yi(kip) sr2- JQ_(kip) Bk~ YQ_(kip) 
k.p kip 1 1 
l 

i = 1 t2 (6.34) 

We notice that when i = 0, the matrix is reducible. In other words, we 

can have pure TE or pure TM waves when i = 0. 

The matrix i n eq . (6 . 15) can be written, using (6.33) , as 

M = M- 1(2,p) M(l,p) (6.35) 

If we define x = kl p, y = k2 p and write M as 

mll ml2 ml 3 ml41 
m21 m22 m23 m24 

M=¥ m31 m32 m33 m34 J 
m41 m42 m43 m44 

(6.36) 
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Using (6.34) and carrying out the matrix multiplication, the 

matrix elements mij in (6.36) are obtained as 

k £ 

m11 = J,Q,(x) Y£CY) - k~£~ J£(x) Y,Q,(y) 

k £ 

m12 = Y,Q,(x) Y£(Y) - k~£~ Y£(x) Y,Q,(y) 

m = g_ (l - l) J
0
(x) Y

0
(y) 

1 3 W£2 y X x, :iv 

m = g_ (l - l) Y0 (x) Y0 (y) 
14 W£2 Y X :iv :iv 

k2£1 
m21 = kl£2 J~(x) J,Q,(y) - J,Q,(x) J~(y) 

k2 £1 
m22 = k,S2Y~(x) J,Q,(y) - Y,Q,(x) J~(y) 

m23 = ~!2 (}- ~) J,Q,(x) J,Q,(y) 

m24 = ~!2 (~ - ~) Y ,Q,(x) J,Q,(y) 

m31 = §L_ (l - l) J (x) y (y) wµ
2 

y x ,Q, ,Q, 

m = ~ (l - l) y (x) y (y) 
32 wµ 2 y x ,Q, ,Q, 

k µ 

m33 = J,Q,(x) Y£(Y) - k~µ~ J9_(x) Y,Q,(y) 

k µ 
m34 = Y,Q,(x) Y~(y) - k~µ~ Y~(x) Y,Q,(y) 

m41 = g_ (-!- - l) J (x) Jn (y) wµ 2 x y ,Q, :iv 
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m42 = ~ (l - l) y (x) J (y) wµ 2 x y £ i 

k2µ1 
m43 = klµ2 JQ_(x) Ji(y) - Ji(x) J£_(y) 

k2µ1 
m44 = klµ2 Y£_(x) Ji(y) - Y,Q,(x) J_Q,(.y) ( 6 . 37) 

Agai n we f i nd that the transfer matrix M is block diagonalized when £ = O. 

In th i s case the matrix equation (6. 15) can be written as two separate 

equations 

( :: ) = ~E ( :: ) 

( :: ) = ~M ( :~ ) 

(6.38) 

(6.39) 

The matri x method described above can be employed to obtain the mode dis-

persion relations for any conventional fibers . We wil l , however , use 

this technique to desiqn a Bragg fiber in the next section . 

6. 3 Bragg Fibers 

Recently, Braqg waveguiding in planar geometry has been successfully 

demonstrated in a GaAs-AlGaAs multilayer stack (grown by molecular beam 

epitaxy) [7]. The experimental results are consistent with theoretical 

calculations. Th i s type of guidinq is now extended to the cylindrical 

regime where we intend to guide the light in a fiber wi th a low index 

core. An optimization procedure similar to that of Section 4.5 will be 

introduced to design an optimum Bragg fibe r . Wi thout loss of generality 
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we will consider TE modes (£ = 0 and E = 0) only. The only nonvanishz 
ing components of the field for TE waves are 

Hz = (CJO(kr) + DYO(kr)) e i ( Sz-wt) (6.40) 

Ee = ~ d 
Hz (6.41) - 2 cir k 

H - i f3 d 
Hz ( 6. 42) r - k2 ar 

where C,D are real constants. C and Dare rea l because the field is nor

malized such that H = ei(Sz-wt) at r = 0. The radial component of the z 
Poynting vector is given by 

S = l Re[E H*] r 2 e z 

= 0 for all r 

This imp l i es 

outflowin9 flux = inflowina flux 

It can be shown that 

outflowing f l ux = inflowing flux cr [c2+o2J wµ 
k2 

Optimization of Outflowi ng Flux. 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

Referring to Figure 6.2, we consider the fields on both sides of 

a general cladding i nterface. The z-component of magnetic field is 

taken as 

r < P 

( 6. 47) 

r > P 
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Hz ( r) Hz = C J0 ( k 2 r) + DY o ( k 2 r) 

Fig. 6. 2 A general claddinq interface at r = p 
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where Hz(r) satisfies the wave equation 

(6 . 48) 

and is determined by the boundary condition at r = 0. In terms of 

fields (6.40 ) , (6.41), (6.42) and (6.47), the continui ty of E and H e z 
gives 

(6.49) 

where primed quantities are the derivatives with respect to their own 

argument. For the sake of simplicity in algebraic manipulation, we 

will drop the functional arguments and the z subscript. Thus we have 

CJ + DY = H 
0 0 

(6.51) 

cJ• + ov• 
k2µ1 w = (µ:c) 

0 0 2 1 
(6.52) 

Solving for C and D from (6 .51) and (6.52) we obtain 

1Tk p k µ 
C = ~2 (HY 1 

-
2 l Y H1

) 
2 0 K,ii2 0 

(6.53) 

(6.54) 

where we have used the Wronskian of Bessel functions 

J (x) v•(x) - J 1 (x) v (x) = L 
0 0 0 0 TIX 

(6.55) 



216 

The magn itude of C and D depends on p. The purpose of optimization 

procedure is to find a p such that 

(6.56) 

By carrying out the partial differentiation with respect to p, we obtain 

x (J J' + Y Y') 
0 0 0 0 

A similar expression can be obtained for TM waves by replacing H by E 

and µi by si' i=l,2. 

Equation (6.57) is an exact general expression. If the fiber 

materials are pure dielectric, (6.57) can be simplified by using µ2= µ1, 

') 

k'-
- _£) H' {k H(J 12+Y 12 ) - k H' (J J' + Y Y' )} 

k2 1 0 0 2 0 0 0 0 
1 

A further simplificat ion can be made if we notice that 

J
0

(x) J~(x) + Y
0

(x) Y~(x) 

J 12 (x) + Y' 2(x) 
0 0 

rv o(l) 
x » 1 x 

(6.58) 

(6.59) 

In practical application x = k2p is a large number (i.e., k2p >> 1) even 

in t he first cladding interface. Therefore, the last term in (6.58) can 
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be neglected. Thus we obtain 

2 2 
k 1 [J~ (k2p) + Y~ (k 2 p)]Hz(k 1 p)H~(k 1 p) 

(6.60) 

Equation (6.60) looks similar to (4.32) which is the corresponding equa

tion for planar geometry. The same arguments show that minimization of 

outflowing flux occurs at Ee= H~ = 0 if k2 > k1, and E 1 =Hz= O if k2 < k1. In 

a transition through the interface the field amplitude decreases by a fac-

tor of (k1;k2) if k2 > k1 and Ee= 0. The field amplitude, however, 

does not increase for k2 < k1 provi-ded the interface is located at the 

local maximum of Ee, i.e., Ee= o. Thus by employing alternatinq clad-

dings with different refractive indices, the field amplitude will 

decrease by a factor of (k1;k2) per pair of cladding, provided the in

terfaces are located according to the minimization procedure. As a 

result the field amplitude decreases exponentially as r increases. 

Theoretically, a confined mode is obtained if the alternating cladding 

is infinite. However, it is important to notice that the field decay 

is nearly complete in several pairs of claddings so that practical 

structures with, say, ten pairs of claddings, are a good approximation 

to the infinite alternating claddings. 

The field distribution for a typical Bragg fiber mode is shown in 

Figure 6.3. We notice that each pair of claddings is exactly half-wave 

thickness. The half-wave thickness means that the cylindrical optical 

wave (Bessel functions) experiences a phase chanqe of n in that thickness. 
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.. r 

Fig. 6.3 Field distribution and guided flux of a typical Bragg fiber . 
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Because of the fact that the zeros of Bessel function are not 

equally spaced, the cladding thicknesses are not exactly i dentical . 

However, they tend to become identical as r becomes large. This is 

due to the asymptotic form of the Besse l functionswhich approach sine 

and cos i ne functions. The index profile shown i n Fi gure 6. 3 looks al

most pe ri odic in the cladding region. 

The leakage due to finite number of claddings will be discussed 

in the next section . 

6.4 Mode Characteri st i cs and Leak Consideration 

A Bragg fiber is usually desiqned to minimize the leakage for some 

particular mode. Again , we have the problem of leakage due to finite 

number of claddi ngs. As a result, some hiqher order undesired modes may 

be supported by the same Bragg fiber with larger attenuation coeffici-

ents. However, it can be shown numerically that these undesired modes 

are very lossy. Therefore, Bragg fiber can be employed as a mode filter 

to select some particular mode from an ensemble of modes. 

To study the mode characteristics and leakage problem, we start from 

a Bragg fiber structure optimized for some particular ray angle e (or 

equ i valently B = z n cos e). Then we study the amp l itude reduction fac

tor for any other ray angle e. The amplitude reduction factor is defined 

as 

(6.61) 

This quantity is proportional to the ratio of power flow in the last clad-

ding region to the power flow in the co re . Gi ven a Braqg fiber structure , 
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n is a function of ray angle e and number of pairs of claddings , 

(6.62) 

Figure 6.4 shows the curves of n vs e for various M's. The structure is 

optimized for the fundamental mode. 

virtual modes [8] of the structure . 

has the best degree of confinement. 

The minima i n the curves are the 

We can see that the fundamental mode 

All the higher order modes are less 

confined and hence more lossy. This is the basic property of a mode fil

ter. 
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Chapter 7 

EXPERIMENTAL OBSERVAT ION 

We have predicted that Bragg reflection can be used in a new type 

of dielectric wavegu i de in which the conventi onally used substrate is 

replaced by a periodic l ayered medium. We used a Bloch wave formulation 

of propagation in periodic layered media to obtain t he dispersion rela

t i on of a Bragg waveguide [l ,2] and showed that, unlike ordinary dielec

tric waveguides, con fined propagat i on with arbitrarily low loss is 

possible even when the guiding layer possesses an index of refraction 

which is lower than that of the periodic layers. 

The Bloch formulation of wave propaqation in peri odic l ayered media 

is also app lied to the special case of optica l s urface waves. These 

waves, confined to the interface between a periodic layered medium and 

a homogeneous medium, are formally analogous to electronic surface states 

in crysta l s. Single mode surface wave propagation alonq the surface of 

a GaAs-AlGaAs multilayer stack (grown by molecular beam epitaxy) has been 

observed experimentally. 

7.2 Experi mental Apparatus 

The experimental apparatus for observation of Bragg waveguiding and 

opt ical su rfa ce waves i s discussed with re fe rence to Figure 7. 1. A cw 

He-Ne laser beam i s focused onto the cleaned edge of the sample . The 

output is magnified by the second object ive and is scanned over a narrow 

slit and PbS photodetector combination [ 3, 4]. The vibrating mirror is 
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driven by an audio oscillator at 28 Hz. The detector response is dis

played on the screen of an oscilloscope. 

7.3 Brag_q Waveguiding Experiment 

The waveguide structure (see Figure 7.2) consists of a guiding 

layer oft= 1.37 µm thick Al 0. 38Ga0. 62As and 8 pairs of alternating 

layers of a=0 . 26 µm thick GaAs and b = 0.26 µm thick Al 0. 2Ga0.8As on 

a GaAs substrate. The layer thicknesses were chosen so that only one 

mode can exist at the excitation wavelength of 1. 15 µm and so that the 

propagation conditions correspond to the center of the first optical 

forbidden gap . The waveguide was grown by c~nventional molecular beam 

epitaxy (MBE) techn iques on a GaAs substrate [5]. Layers were grown at 

a substrate temperature of 580-600°C at a rate of l µm/hr. Ion beam 

etching was employed subsequent to the growth in order to obtain differ

ent thicknesses of the guiding layer. 

The resulting intensity distribution for a Bragg waveguide 2 mm 

long is shown in Figure 7.3 . The osci llatory behavior in the layered 

medium, which has a period of ~o.52 µm, could not be resolved with the 

optics of our imaging system. Despite the resolution limit, we have 

demonstrated guiding in the Bragg waveguide and the experimental results 

are consistent with the calculated values. 

Because the Bragg reflector has a finite number of periods, the 

reflection coefficient at the interface between the guiding channel and 

the Bragg reflector is somewhat less than unity (i .e., the waveguide is 

slightly 11 leaky 11
). The calculated attenuation coefficient of the Bragg 

waveguide due to the resulting losses into the substrate , but neglecting 
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Fig. 7.2 A scanning electron micrograph of a cleaved section of a 

Bragg waveguide composed of alternating layers of GaAs and 

Al o. 20Gao. aoAs. , 
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the loss due to the bulk absorption [6] , is a= 14.97 cm-1 and 0.355 cm- 1 

for 8 and 16 periods , respectively. The attenuation coefficient de

creases rapidly as the number of periods in the Bragg reflector in

creases. 

The demonstration of Bragg waveguiding described above suggests 

a number of possibilities: The need to satisfy simultaneously the 

transverse resonance condition [7] in the guiding layer (i.e ., a trans

verse round trip phase delay equal to an integer times 2 ) and the 

Bragg condition in the periodic medium makes it possible to design 

Bragg waveguides with transverse dimensions large compared with wave

length which can support only one transverse mode. Conventional dielec

tric waveguides with similar dimensions and index discontinuities would 

support several transverse modes . 

Symmetric Bragg wa veguides (i . e., guides with periodic layers on 

both sides) could be used for guiding in the medium to long x-ray 

region of the spectrum. Such guidinq should possess high wavelength 

selectivity. The novel Bragg waveguide discussed in this section is 

a selective transmission waveguide (band-pass filter) while a conven

tional periodic grating [8] is a selective reflector; these two differ

ent optical functions are therefore complementary to each other. 

7.4 Optical Surface Wave Experim~~t 

The Kronig-Penney [9] model was introduced in 1931 to demonstrate 

the band structure of electronic states in crystals. Tamm [10] con

sidered a semi-infinite Kronig-Penney potential and showed that, under 

certain condit ions, surface states appear. The existence of surface 



229 

states in a general one-dimensional periodic potential terminated at 

its potential maximum by a step was also examined by Shockley [11] . He 

showed that, under appropriate conditions, surface states appeared when 

the surface 11 perturbati on" was sufficiently sma 11 . 

The ex istence of electromagnetic surface waves was suqgested by 

Kasse l [12] and later considered in an approximate manner by Arnaud and 

Saleh [13]. Recently, the band theory of periodic media [14] was used 

in an exact analysis of the opt ical surface waves. 

According to the Bloch formulation [14] of electromagnetic wave 

propagation in a layered medium, the electric field has the form of 

(7. 1) 

where the coordinate axis is oriented such that the wave i s prop

agating in x-z plane and x-axis is normal to the layer interfaces. 

lK(x) is a periodic function of x with a period equal to that of the 

medium. 

At a given frequency, there are regions of B for which K is 

complex 

K = m(n/A) ± iK; 

where m is a non-negative integer. 

(7.2) 

In an infinite periodic medium, solutions with exponential 

intensity variation, as in eq. (7. 1) cannot exist, and we refer to 

these regions as "forbidden." If the periodic medium is semi-infinite, 
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the exponentially damped solution is a legitimate solution near the sur

face. The el ectric f ield amplitude is described by a decaying exponential 

in the homogeneous me di um and by a standin9 wave with an exponentially 

decaying envelope exp(-Kix) in the layered medium. A detailed theory 

of surface waves in layered media can be found in Chapter 3. 

The periodic laye red structure in which we observed the surface 

wave consists of 12 pairs of alternating layers of 0.5 µm thick GaAs 

and 0.5 µm thick Al 0. 2Ga0. 8As on a GaAs substrate. Under these condi

tions and at the excitation wavelength of 1 .15 µm, our theoretical cal

culation predicts that exactly four surface modes can be supported by 

the structure. The transverse intensity distribution for the fundamen

tal mode is shown in Figure 7.4. The computerl Bloch wave numbers of these 

four modes are given in Table I. 

The periodic layered structure was grown by conventional molecular 
, 

beam epitaxy (MBE) techniques [5] on a GaAs substrate. Layers were grown 

at a substrate temperature of 600° at a rate of about 1 µm/hr. A phase 

contrast photograph of the structure's cross section is shown in Fig . , 7.5. 

Our experimental set-up for measuring the mode intensity profiles 

has a resolution limit of'V0.5µm,consequently 1 in order to resolve the 

field distribution of the surface waves we need to choose a sample with 

a period A at least l µm. For samples with large period A, the number 

of surface modes increases linearly as a function of A. This introduces 

the difficulty of resolving admixtures of surface modes. As a compromise 

we chose a sample with a period A of 1 µm. This structure still supports 

four surface modes (see Table I). Fortunately, these higher order sur-

face modes are extremely lossy in a sample with a finite number of periods. 
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Even if we assume that the modes are excited equally, the lossy modes 

will decay to relative insignificance provided the sample is long enough . 

We chose a sample 15 mm long, and indeed observed the fundamental mode 

(m = 1) only. 

The intensity distribution of the surface waves was obtained by 

fo cus i ng the output of a l.15 µm He-Ne laser on the cleaved edge of the 

sample and by scanning the magnified (xlOO) image of the output edge(B, 9) 

past a narrow slit (~ 50 µm} and detector combination. The resulting in

tensity distribution is shown in Figure 7.6. This measured distribution is 

in excellent agreement with the theoretical prediction, Figure 7.4. if we 

convolve the latter with an instrumental window function ~o.5 µm wide. 

The result of this convolution is shown in Figure 7.4. 

Because the number of periods in the structure is finite, the in

tensity at the substrate is not ex~ctly zero (i . e. , the surface modes are 

Rleaky"). The calculated attenuation coefficient of each surface mode due 

to the resulting losses into the substrate, but neglecting the loss due to 

bulk absorption and surface scatteri ng, is given in Table r. The attenua

tion coefficient decreases exponentially as the number of periods 

increases. A rough exper imental determination of the mode loss based on 

comparing the outputs of a number of samples with varying lengths under 

similar input conditions yielded a< :o-2cm-l for the fundamental mode. 

The higher order modes are too lossy to be seen even in a sample 1 mm 

long. It is possible that continuum modes may be excite.d at the input sur

face~ However, these continuum modes are all leaky. For a sample 15 11m1 

long, the intensities of these modes are extremely small at the output 

surface. Interference fringes due to surface reflections can hardly be 
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seen in a sample 10 mm or longer. They are usua l ly seen in a sample 5 mm 
. 

or less whenever the sample is moved transversely across the focused 

laser beam. 

In conclusion: the optical surface waves in a GaAs-Al 0•2sa0.8As 

periodic layered medium have been observed. The experimental results 

are cons i stent with the theoretical calculations. This observation also 

demonstrates the optical analog of electronic surface states in crystals. 
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Appendix A 

DERIVATION OF A GENERAL TRANSLATION MATRIX 

Translation matrices of a qeneral periodic layered medium with 

the index of refraction given by 

n1 x
0 

< X < x1 

n2 x1 < x < x2 
n(x) = 

(A. 1) 

n(x + 1\) = n(x) /\. = (A.2) 

There are M layers in each period. The thickness of the mth layer is 

given by 

t = x - x m m m-1 (A.3) 

The electric field distribution in the mth layer of the nth unit cell 

is given by 

(m) ik (x-n/\.) (m) -ik x(x-n/\.) 
E(x) = a e mx + b e m n n (A.4) 

The translation matrix that relates the mth layers of two neighboring 

unit cells is designated as T(m) 

(A.5) 

T(m) is derived by employing the continuity conditions. 



where 

Note that 

and 

c 
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-ik t 
+c)e axa 

a 

\ (1 - c .) 
Cl 

-ik t 
e ax a 

k ax 
k(a-l)x 

n
2k a (a- l)x 
2 -

n(a-1) kax 

IT C = 1 
a=l a 

M 
l 

a.=1 
t = A a 

( l - c ) 
Cl 

(1 + c ) 
Cl 

TE waves 

TM waves 

ik t ) e ax a 

i k t 
e ax a (A.6) 

(A. 7) 

(A.8) 

(A.9) 

The translation operator T(m) is formed by a product of M matrices. A 

cyclic permutation of the order of multiplication yields T(m+l). The 

translation operators for different m values are different but have the 

same eigenvalues. 

If ll t constant. t hen 

.. . 
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kax µa-1 
k(a-l)xµa 

TE waves 

c = 2 
a na k(a-l)xµa-1 TM waves 

2 
'- na-1 kax µa 

(A.10) 
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Appendix B 

ENERGY VELOCITY AND GROUP VELOCITY OF ELECTROMAGNETIC BLOCH 
WAVES IN PERIODIC MEDIA 

The equal i ty of group velocity and energy velocity in periodic 

layered media was examined recently [l]. We will now show that this 

eq uality is true in an arbitrary periodic medium provided the medium 

is lossless . The electromagnetic susceptibility tensors, reflecting 

the translational symmetry of the medium , are periodic functions of x , 

s .. (x) = s .. (x+a) 
lJ lJ 

(B. 1) 

µ .. (x) = µ .. (x+ a) (s.2) 
1 J 1 J 

where a is an arbitrary lattice vector. The propagation of the electro-

magnetic waves is described by Maxwell 1 s equations 

:+. -+ 
Vx H = -iws • E (B. 3) 

-+ -+ 
v x E = i W]J • H (B.4) 

where we assume the e-iwt time dependence . 

According to the translation symmetry of the medium (and/or Floquet 

theorem), the waves assume the following form : 

-+ -+ 
i K· x e 

-+ -+ 
i K· x e 

where EK(x) and HK(x) are periodic, 

(B.5) 

(B.6) 
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= (B.7) 

(B. 8) 

-+ -+ 
The subscript K indicates that the functions EK and HK depend on K 

which is known as the Bloch wave vector. A dispersion relation exists 

between K and w 
-+ 

w = w( K) (B.9) 

The t ime averaged flux of energy in an electromagnetic field is given 

by 

-+ l -+-+ 
S = "2 Re[Ex H*] (B.10) 

The time averaged electromagnetic energy density is given by 

1-+ -+-+ -+ 
U = 4 [E • s • E* + H • µ • H*] (B.11) 

The electromagnetic susceptibility tensors are assumed to be real . In 

the case of a propagating Bloch wave in a periodic structure, S and U 

are both periodic functions' of space. It is desirable to define the 

energy velocity as 

~ f s d3x -+ 
-+ <S> 
Ve = - <Li> (B. 12) 

~ f u d
3x 

where the integration is over a unit cell and Vis the volume of the 

cell. By substituting (B . 5) and (B . 6) into (B.10) and (B. 11), we get 

from (B. 12) 

(B. 13) 
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where the brackets<> denote unit cell average. 
-+ 

The group velocity V is defined as g 

Vg = V w = (a~) (B.14) 
K aK 

which is a vector perpendicular to the normal surface. If we substi

tute the Bloch waves (B.5) and (B .6) into Maxwell's equatior6(B.3) and 

(B.4), we obtain 

(B.15) 

(B.16) 

-+ -+ 

To prove that Ve and V are equal, we start from (B.15) and (B. 16). Supg 
-+ -+ -+ 

pose now that K is chanqed by an infinitesimal amount oK. If ow, oEK, 
-+ -+ -+ 

and oHK are the corresponding changes in w, EK, and HK' respectively, 

we have 

-+ -+ -+ -+ -+ -+ -+ 
Vx oHK + io KxHK + iKx oHK = -iE • EKow - iwE • oEK (B.17) 

(B.18) 

-+* -+ We now consider HK· (B.18) +EK· (B.17)*. Using the identity 

-+ -+ -+ -+ -+ -+ 
A ·( BxC) = B· (CxA) 

we get 
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+* + + +* 
+ i ow[H • µ • H + E • s • E ] K K K K (B.19) 

The electromagnetic susceptibility tensors µ and s are assumed to be sym

metric so that 

+* + 
H • µ • oH K K (B.20) 

etc. ( B. 21 ) 

+ 
If we multiply both sides of (B.3) by oE~ and both sides of the complex 

+ 
conjugate equation (B.4)* by oHK, we qet 

(B.22) 

(B.23) 

Using (B.20), (B.21) and (B.22), (B.23), equation (B.19) can be written 

(B.24) 



245 

The r i ght hand side of (B.24) is a pure imaginary number; we take the 

imaginary part of (B.24) by considering (B.24)-(B.24)* 

(B.25) 

The last t~-10 terms on the left hand side of equation (B.25) cancel each 

other. 

Using 

'\/• (AxB) = B x(VxA) - A· ('i/xB) (B.26) 

equation (B.25) can be written 

(B. 27) 

~ ~ 

where F is a periodic function of x and is qiven by 

(B .28) 

If we perform an integration over a unit cell on (B.27), we get 
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We notice that the first term in equation (B . 29) is i dentically zero 
-+ 

because of the periodic nature of F , 

<V • F> = . f 
unit ce 11 

-+ 3-+ 
V • F d x = 0 (B.30) 

Thus we have, from (B. 13) 

( B. 31 ) 

From the definition of the group velocity we also have 

-+ -+ -+ 
ow = ( V Kw) • o K = V g • o K (R.32) 

-+ 
Since oK is an arbitrary vector, we conclude that 

(B . 33) 

Reference 

1. P. Yeh , A. Yariv and C. S. Hong, J. Opt. Soc . Am. 67, 423 (1977) . 
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APPEND! X C 

Zeros of Mode Dispersion Relation 

To prove that equation (3 .1 4) have N zeros in each allowed band 

where KA varies from mn to (m+l)n, we need to show that the left hand 

side of the same equation changes sign N times in each allowed hand. 

We define 

F(KA) =A sinNKA _ sin(N-l)KA (C.l) 
s rn KA sin KA 

Where A can also be considered as a function of KA. Let's now examine 

the sign of F at KA = rm/N, where n = 0, 1 , 2, • • • ·fL From (C. l) we 

obtain 

N[A(O) - 1 J + l n = 0 

F(n~) = ( - 1 ) n n = 1,2,···N-l (C.2) 

(-l)N-l N[A(n) + 1 ]-1 n = N 

In order to show that F changes sign N times we need to show that 

N [A ( 0) - l ]+ 1 > 0 (C.3) 

and 

NlA(n) + l]-1 < 0 (C.4) 

for all N. 

Si nee N is arbitrary, we need to show that 

A(O) > l (C.5) 

and 

A(n) < -1 (C.6) 
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From (2 .37), (3 . 9) and (3.10), we obtain 

A+2D = cosh qa cos pb - ](£ - .9.) s inh qa sin pb = 1 at KA= O (C..7) 
t'. q p 

A2-D = s inh qa cos pb - l(-2- - .9.) cosh qa s in pb (C.8) 2 q p 

Using C.7, (~ - *) can be eliminated from C 8. Thus we have, after a 

few mathematical steps 

A-D cosh ga - cos Qb at KA = 0 (C .9) -2- = sinh qa 

The right hand side of C.9 is always positive. Comb i ning (C .7) with 

( C .9) , we obtain 

A(O) > 1 (C.10) 

(C.6) can be proven in a similar way. Thus we have proven that F 

changes sign N times i n t he regi on where KA varies from 0 to n. Since 

equation (3 .14) i s invariant under KA+ KA+ n, our statement i s proven. 
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Appendix D 

Derivation of Chebyshev Identity 

The Nth power of a unimodular matrix can be simplified as shown in 

the following equation 

where 

with 

Proof : 

B)N {AUN-1 -UN-2 
= I 

D · \ CUN- l 

= s i n ( N+ 1) KA 
UN sin KA 

-1 A+D KA = cos (y) 

( D. 1 ) 

(D.2) 

(D. 3) I 

Let V± be the normalized eigenvectors of the ABCD-matrix with eigen
±i Ki\ values e respectively. 

(D.4) 

It is evident that the two eigenvalues are inverse of each other because of 

the fact that the matrix in A.2-4 is unimodular. They are given by 

with the corresponding eigenvectors given by 

(D.6) 
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where 

B 
(D .7) 

The Chebyshev identity (D.l) can be derived by employing the following 

matrix equation 

/ AB '\ N (.A B
0

)N 
{M I J M-

1 
} = M M-1 

\ C D C 
{D.8) 

th which says that the N power of a transformed matrix is equal to the 

transform of the Nth power of the original matrix. If a matr.ix M can be 

found such that 

(A B\ -1 (e iKJ\ 
M\ JM = 

C D 0 

then the Nth power of the ABCD-matrix is immediately given by 

( 

e

0

iNKJ\ 
= M-1 

(D .9) 

(0. 10) 

The matrix M which transforms the ABCD-matrix into a diagonal matrix can 

be constructed from the eigenvectors (D.6) of the ABCD-matrix. M and 

its inverse M-l are given by 

M-1 = 
(Ci.+ 

:~) \ 8+ /a+8- - Ci. 8 - + 

(D.11) 

M 
l c~ -:J = 

/a+8- - a _8+ 
(D.12) 



251 

The two columns in (D.11)) are simply the eigenvectors of the ABCD-

matrix. It can be easily seen by simple matrix multiplication that 

(D.9) is true as -1 long as M and M are given by (D. 12) and (D.11) 

respectively. The Chebyshev identity (D.l) follows directly from 

(D. 10) by carrying out the matrix multiplication. 

B\ 
I 
i 
I 

DI 

N 

:;: 

I 

I a+ 
1 I 

' a+S- - a_S+ 
\ S+ 
'· 

A sin NKA - sin(N-l)KJ\ 
sin KA 

C sin NKJ\ 
sin KA 

0 ') / s 
e-iNKA (_

6
-

. \ + 

B sin NKA ) 
sin KA 

D sin NKA - sin(N- l )KA 
sin KA . 

The last step is left to the reader. 

(D.13) 


