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Abstract

In this work, the theory of scattering with two Hilbert spaces
is applied to a certain selfadjoint elliptic operator acting in two
different domains in Euclidean N-space, RN . The wave operators
and scattering operator are then constructed. The selfadjoint oper-
ator is the negative Laplacian acting on functions which satisfy a
Dirichlet boundary condition.

The unperturbed operator, denoted by Ho’ is defined in the Hil-
bert space ¥ = LZ(S) » where S is a uniform cylindrical domain
in RN s S=G X R, G a bounded domain in RN-l with smooth bound-
ary. For this operator, an eigenfunction expansioﬁ is derived which
shows that H, has only absolutely continuous spectrum, The eigen-
function éxpansion is used to construct the resolvent operator, the
spectral measure, and a spectral representation for H0 .

The perturbed operator, denoted by H , is defined\in the Hil-
bert space ¥ = Lz(Q) , where { is a perturbed cylindrical domain
in RN with the property that there is a smooth diffeomorphism
$: Q ¢ S which is the identity map outside a bounded region. The
mapping & is used to construct a unitary operator J mapping ﬂk
onto ¥ which has the additicnal property that JD(HO) = D(H) .

The following theorem is proved:

c

a . .
Theorem: Let T be the orthogonal prejection onto the subspace

of absolute continuity of H . Then the wave operators
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itH —itH0
W (H, H; J) =s-line Je
- t>+ ©
and
W_,_CH,G, H; J*) = g-lim eltHOJ*e""ltHﬂ_aC

t >+ ©
exist. The operators W+(H, Hy3 J) map ¥, disometrically onto

#32¢ = 1#%  and provide a unitary equivalence between H, and S 3

the part of H in i Furthermore,

1) * — . *
W, (H, B3 DI¥ =W ("1, 85 J) .

0° O

It is proved that the point spectrum of H is nowhere dense in
R . A limiting absorption principle is proved for H which shows
that H has no singular continuous spectrum. The limiting absorp-
tion principle is used to construct two sets of generalized eigenfunc-
tions for H . The wave operators W+(H, 8 J) are constructed in
terms of these two sets of eigenfunctions. This construction and the
above theorem yield the usual compieteness and orthogonality results
for the two sets of generalized eigenfunctions. It is noted that
the constrqction of the resolvent operator, spectral measure, and a
spectral representation for H; can be repeated for the operator

ac

H and yields similar results. Finally, the channel structure of

the problem is noted and the scattering operator

4 . Eia
S(H, Hy; J) =W (H , Hy J)OW_(H, H; J)

is constructed.
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1
Scattering Theory for the Laplacian in

Perturbed Cylindrical Domains

It is only within the past two decades that scattering theory,
long used by physicists in problems of quantum mechanics, has been
put on a solid mathematical foundation. Mathematically, scattering
theory is concerned with the unitary equivalence of two selfadjoint
Hilbert space operators.

The following formulation of scattering, given by Kuroda in [18],
is the single~channel one-space theory. There were earlier formula-
tions by Cook [6] and Jauch [11], but they did not encompass as wide
a class of problems as Kuroda's. Let H and H be selfadjoint

0
operators on the Hilbert space H with domains D(HO) and D(H) ,
P ac ac 3 .
respectively. Let ™ and T denote the orthogonal projections
onto the subspaces of absolute continuity for Ho and H , respec-
. ~itH —itH
tively, and let e and e denote the strongly continuous

unitary groups generated by H0 and H . Suppose the strong operator

limits

exist; these operators are called the (generalized) wave operators.

Then W+ are partial isometries with initial set ﬂacﬁf. W+ inter-

twine H, and H , i.e.



and (hence) the ranges R(W+) of W, are reducing subspaces for H .

The absolutely continuous part of H; dis unitarily equivalent to the
B 3 . = 72
restriction of H to either of R(W+) « If R(w+) =RW) =7 ¥,
the wave operators are said to be complete. In this case, the abso-
lutely continuous parts of H0 and H are unitarily equivalent.

The scattering operator £ 1is defined by
S = Nu_,

, and, if

where W+* is the adjoint of W+ . S commutes with H

: , ac.,
the wave operators are complete, § is unitary on m & .
To see how this formulation came about, consider a typical scat-

tering problem in physics. In quantum mechanics, the evolution of a

system is determined by the Schrodinger equation

(0.1) L oY _

......=_I
ige =,
where U = Y(t) , the state vector describing the physical proper-
ties of the system at time t , is a vector in the Hilbert space ¥ ,
and H , the Hamiltonian describing the total energy of the system,
is a selfadjoint operator on # with domain D(H) . The solution of

(0.1), with initial state ¥(0) at time t = 0 , is given by
w(e) = e T%y(o)

Suppose the Hamiltonian H corresponds to a particle travelling in

a space in which a small obstacle is present. It seems reasonable to



expect that if, at large positive and negative times, the particle is
far from the obstacle, it will behave like a free particle. Take
H, to be the Hamiltonian for a free particle. Suppose the H-system
is in the state e_itHW(O) for all time t . Then, for large nega-
tive times, since the particle is almést free, it is reasonable to
-itH
expect that there is a state e ¢_(0) in the H -system which
approximates the H-state in the sense that
|| e o) - e—ltH°¢_(o>H+ 0 as t> -,
(In the case where the 'obstacle' is a Coulomb potential, this type
of approximation is too much to expect. See Dollard [7].) Similarliy,
-itH "
one expects that there is a state e ¢+(O) in the H -system
which satisfies
|| ey (o) - e—ltH°¢+<0>il+ 0 as to>o.

Note that; in Kuroda's terms, ¥(0) = w_¢_(0) = w+¢+(0) , and
¢+(O) =S ¢_(0) . 1In an experiment, where information about the
H-system is needed, the experimenter sends a beam of particles, which
ére 'free' at the beginning of the experiment, toward the obstacle.
He then measures the 'free' scattered particles; ﬁhét'is, hé knows
¢_(0) and measures ¢+(0) . The experimenter, thus, is extremely
interested in constructing the scattering operator..

From a mathematical point of view, however, the wave operators,

which provide the unitary equivalence of the two operators, are more

interesting than the scattering operator. The chvicus guestion tc



ask now is, what conditions arve sufficient to guarantee the existence

and completenesg of the wave operators H+ ? It must be noted that

conditions guaranteeing the existence of the wave operators are much
easier to come by than conditions guaranteeing the completeness. A
result obtained by Rosenblum [21] and Kato [13, 14] is that if
H=H, +V, where V is a trace class operator on ¥ , then W,
exist and are complete. Kuroda [17] (see¢ alsc Kato [15], p. 525)
proved that the trace class is practically the only class for which
this is true. Birman and Krein [4], and de Branges [5] proved that
1f R -~K ,where R = (H~12) " and B = (E -7, is
C c C c 9

of trace class for some ¢ din the resolvent set of both HO and H

then W+' exist and are complete.
In 1966, Wilcox [28] in his investigations into the application

f scattering thecry to problems in classical physics, found that the
one-space theory of scattering was not the correct setting. In these
problems, the operators Ho and H are defined in two different
Hilbert spaces H% and ¥ , respectively. There is, however, a
bounded linear map J of ¥ onto ¥ which can be used to identify
3% with ¥ . Kato {16] introduced the wave operator.
(0.2) W, (H, Hj3 J) = s-Lin eitHJe,_ltH“vr'jc

. t >4 oo

which is a two-space operator. He showed that if W+(H, Ho; J)

exist, then they intertwine Hh and H , and are used to



provide a unitary equivalence between a part of Ho and a
part of H . Note that the mapping J makes the two space theory
much more complicated than the one—spéce theory. If the wave oper-

ators exist, the scattering operator S can be defined by
(0.3) S(H, B3 ) = W, (4, B ; O (5, B3 3) .

Even if the wave operators exist and are complete, it is not neces-
sarily true that the scattering operator is ﬁnitary on ﬁ?ﬁxo .

In 1968, Birman [3], and Birman and Belopolskii [2], gave condi-
tions on the cperators H, , H, and J which are sufficient to
guarantee the existence, completeness, and other desirable properties
of the wave operators. Their results are stated in the following
theorem:

Birman's Theorem: Let Wo(-) denote the spectral measure for Ho’ i.e.

H, = S A dﬂo(k) "
R

and m(.) the spectral measure for H . Suppose

1) J is a bounded invertible linear mapping of ﬂ; onto ¥ ,
2) JD(HO) = D(H) , and for each bounded interval S§ C R,

3) w(S)(HI - JHO)W0(6) is a trace class operator, and

4) (J*J - I)WO(G) is a compact operator.

Then the wave operators W+(H, H 3 J) and W+(H H; J%) exist

0)

and are complete. The wave operators W+(H, H 3 J) are partial

03

s . p o e e ac. s a
isometries with initial set T, Ko and final set woCK , and



W, (H, Bys DI™ =W, (1), 1 i

The absolutely continuous parts of HO and H are unitarily equi-
valent.

This powerful result of Birman was used by Wilcox and Schulen-
berger [22] to prove the completeness of the wave operators for the
class of problems they were studying. In this thesis Birman's
theorem is used to prove the existence and completeness of the wave
operators for the two opérators given by the negative Laplacian with
a Dirichlet boundary condition in a uniform cylindrical domain and
in a perturbed cylindrical domain in RN %

Another approach to the problem of unitary eqﬁivalence and scat-
tering which must be mentioned is the eigenfunction expansion method.
In this caée, the operators H; and H are (selfadjoint extensions.
of) differential operators in some domain(é) in RN . Ikebe [10]:
used this approach in studying perturbations of the Laplacian in
RN by a potential. Povzner [20], Shenk [23], Thoe [26], Goldstein [9],
and many others have also used this method.

A set of generalized eigenfuncticns is comnstructed for Ho .
Associated with this set of eigenfunctions is a measurable space Q
and a positive measure U on {2 . The generalized eigenfunctions
are of the form ¢(x, &) , Wﬁere x is in the domain in RK in
which H; is defined, and & € Q . The set of eigenfunctions is

complete in ﬂ% in the sense that if f € RO, then there is a

2 G«LZ(Q, W) such that



(0.4) -ﬂd=éé&ﬂ0,®®@)
3 X

(interpreted in a suitable sense). The eigenfunctions are 'crthogonal'
in ﬂ% in the sense that if né € LZ(Q, u) , then the function £
given by the formula (0.4) is in HE , and the norm of § in LZ(Q,U )
is equal to the norm‘of f idn %0 . {(This is pot the usual Hilbert
space concept of orthogonality.)

Two sets of generalized eigenfunctions Q+(x, £) are construc—
ted for H , usually by perturbing the eigenfunctions for HG . The
existence of the wave operator is proved by showing that the two
sets of generalized eigenfunctions are orthogonal in 721 in the

above sense. The completeness of the wave operators is proved by

showing that any function £ € n2 % can be represented as
0.5) £(-) =[-8, (8)9, (-, E)au(E)
Q s s

for some - € Lz(ﬁ, 1) (i.e. by showing that the eigenfunctions
¢+(-, £) are complete in 7°CK) . The wave operator is then con-

structed in terms of these expansions as follows:

W, L og(@C, £)dL = S g(€)9, (-, £)dE
=0 Q - |
for g € L@ 1) .
This approach to the problem of scattering wvields more informa-

tion about the operator H than do the abstract theorles. In par-

ticular, it is usually the case that the point spectrum of H can



be_shown to be discrete {or even finite in some cases). Also, the
sihgular continuous spectrum of H can usually show to be empty.
Results of this sort are not derivable from the abstract theory;

This thesis is a combination of the abstract theory of Birman
and the eigenfunction expansions of Ikebe. It is a generalization of
a class of problems dealt with by Goldstein [9] utilizing a very dif-
ferent approach. In 81, the nonnegative selfadjoint extension of the
Laplacian acting on functions which satisfy a Dirichlet boundary con-
dition in a domain (open connected set) in RN , TOoE N = 1, 2 “%*,
is defined. Some regularity results are proved for this operator.

In addition, the function spaces used in this paper are introduced
along with some properties of these spacés.

In 82, the operator H; ds defined to be the selfadjoint exten-
sion of the Laplacian as above, in the cylindrical domain
S =GxR in R , where G 1is a bounded domain in RN—l with smooth
boundary. The coordinate system in RN is chosen so that Xy is the
longitudinal coordinate in S , i.e. x = (xl, R XN) €85 = XN ER

) € G . It is noted that the operator H, ,

and x = (xl, G

> Fy-1
defined to be the selfadjoint extension cof the Laplacian as in 81,
: ; . . N-1. -

in the N-1 dimensional domain G C R , has a complete set of

: 2400
i i e corresponding eigenvalues &} .
eigenfunctions {nn(x)Jn=l and corresponding eig 1 =1

Assume the eigenvalues are increasing. It is shown that the functions
-1/2 i&x - ,
W (x, &) = (2m) /2 x‘\’nn<X>> n=1,2 ***, E€R, x €5

form a couplete set of generalized eigenfunctions for Hy . This set



of eigenfunctions is used to construct the resolvent cperator

R% = (Hy - C)—l for H, . The resolvent, in turn is used to con-
struct the spectral measure ﬂo(-) for HO , which shows that H,
has only absolutely continuous spectrum. Finally, a spectral repre-
sentation for H, is constructed from which‘it follows that the
spectral multiplicity function for HO is piecewise constant and
increases by two at each of the (transverse) eigenvalues ki "

In §3, the operator H is defined to be the selfadjoint exten-
sion of the Laplacian as in §1 in the perturbed cylindrical domain
QC RN , where {2 has the property that there is a smooth diffeo-
morphism 9:Q ¢ § which is the identity map outside some bounded
set. A unitary mapping J from H} = LZ(S) onto ¥ = LZ(Q) is

defined by

1/2

JE(x) = |pa(x)| T E(O(x)), x €Q, £ €T,

where |DO(x)| 4is the Jacobian-determinant of @ at x . It is
shown that JD(HO) = D(H) .

In 84, the abstract two-space theory of Birman is applied to
this problem, yielding the existence and completeness of the wave
operators (0.2).

In §5 and 6, the wave operators whose existence is proved in
84 are constructed, and the spectrum of H 1is investigated. In §5,
it is shown that the peint spectrum of H is nowhere dense in R .
The limiting absorption principle (proved in the appendix) is stated

and used to prove that the singular continuous spectrum of H is
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empty. Finally, two sets of generalized eigenfunctions,
{ﬁz(x,g)f;=l, x €Q, £ €ER , are constructed for H wusing the
limiting absorption principle.

In §6 the wave operators w+(H, H,; J) are constructed. The
completeness and orthogonality of—éhe two sets of generalized eigen-
functions, '{wg(x, )} , for H follow from the existence and com-—
pleteness of the wave operators. Finally, the scattering operator
(0.2) is constructed and the multichannel aspects of the problem are

mentioned.
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§1 The Operator -AD(D) in a General Domain D in RN

Let D be a domain in RN for some N > 1 . 1In this section
some function spaces and notations are introduced, and a precise defi-
nition is given of the selfadjoint extension of the negative Laplacian
acting on functions defined in 7 which are zero on the boundary.
Some regularity results for the operator are proved.

The following spaces will be used in the remainder of this paper.
LZ(D) is the Hilbert space of square-integrable complex valued func-
tions defined in D with the L,~inner product given by

= [ u(x) v(x)dx, u, v € LZ(D)

(u, v
L, 7

If u € LZ(D) » the support of u , supp u , is the complement of the
largest open set V C D satisfying f{u(x)[zdx =0. L§°°(v)
vV

is the space of all complex-valued functions u defined in D for

which u € LZ(D N M) for all bounded measurable subsets M C D .

(Note that functions in L%OC(D) are in L, up to the boundary of

D .) The seminorms

Iu l s, U'E Lloc(ﬂ), t > 0 4
Iolly, gy » v€0

where

i
generate a topology in which LOOC(D) is a Fréchet space.

loc

" (D)) 1is the space of all

For each integer m > 0, Hm(D) ¢



12

functions in LZ(D) (in L§°°(D)) which have distribution derivatives

in LZ(D) (in LéOC(D)) of order less than or equal to m, i.e.

loc
u € Hm(D) (u € Hm

(D)) iff u € Ly(D) (u € L;°°(D)) and, for any
multi-index o=(a, s o ""’aN) of nonnegative integers with
N 1" "2
la, = 3 aj < m , there is a unique element in LZ(D) (in L%OC(D))
j=1
denoted by D*u such that

ol —_—
J u(x) 8 = ¢(x) - d=z = (—l)!ml ;D Mulx) d(x)dx
D Bxll---axNN D

holds for all ¢ € dj(D) . Hm(D) is a Hilbert space with the m-norm

defined by

2
ull2 = =

(6]
loclim” ° UHZLZ(D) O

Hioc(ﬂ) is a Fréchet space in the topology generated by the semi-

Nnorms

HU”mmB s u GHiOC(D), > 0 .
2 T

(Note that functions in Hiéc(ﬁ) are in Hm up to the boundary of

D .) The space ﬁm(D) is the closure in the m-norm of Co<D)'

Hi°°(v) is the closure in HiOC(D) of C?(D) . Note that

D) = %) N {u: du €B (D) Vo € RN .

Notational note: Many Hilbert spaces, norms, and inner products

appear in the following pages. If # is a Hilbert space, the inner
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product and norm on # will often be denoted by (-, ')ﬂ, and

ll;llﬂ?’ respectively. The inner product and norm in Hm(D) will

° o) " s 1 kit i d-.
be denoted by (-, m,D and ll ‘lm,D , respectively, unless the do
main 0 is obvious, in which case the subscript 0 will be omitted.

\ 2
The negative Laplacian, -A = é_f —-2—5 -t -—% , can be
Bxl axz BxN

applied pointwise to any function in df(v), and yields a new func-
tion in df(v) . It can also be applied, in a distribution theoretic

(or weak) sense, to 1arger classes of functions in LZ(D) and in

loc

L, '(D) .

loc —Au

Definition 1.1: Let u ELZ(D) (u € L, (D)) . Then is said

to exist weakly and equal v € LZ(D) (v € L;OC(D)) iff

[ a(® (-0 (m)dx = L v ¢(x)dx Vo € C (D) .
D

&
D
Denote by Lz(—A; 1)) (Léoc(—A; 7)) the set of all functions

u € L2<D) (u € L§°°(v>) for which -Au exists weakly in LZ(U)
(L§°°(v)) . (The operator -A with domain Lz(—A; D) is the
adjoint of the operator given by -A with domain d:(@)) . When-
ever -A is used from now on, it Qill denote the weak negative
Laplacian applied to functions in Lz(—A; D) or L%OC(—A; D .

The operator -A with domain Lz(—A; D) 1is not selfadjoint.

However, consider the following.

Definition 1.2: Let the operator -A(D) on the Hilbert space

Lz(ﬂ) be the restriction of -A to %1(0) s L.g.
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1) D(-8,(0)) = L,(-45 D) N & (D)
2) —AD(D)u = -Au for u € D(—AD(D))

The following theorem was proved by Wilcox [27].

Theorem 1.3: The operator —AD(D) is a nonnegative selfadjoint
operator on L,(D) . If u €H (D) , then u € D(-A (D)) and
—AD(D)u= v if and only if

BB _

- Vo €H,
o, ox, (v, ¢ ,® 9 €8, (D)

IIMZ

']
=1 D
This theorem has the obvious corollary:

Corollary 1.4: If u € D(—AD(ﬂ)) , then

2 2 .
IIUIE,D = I]ul!LZ(D)+ (—AD(D)u, usz(ﬁ)

In the remainder of this section the éperator -AD(D) will be
denoted simply by —AD . Some regularity results are proved in the
remainder of this section under the added assumption that the boundary
of D is smooth. Since the negative Laplacian is an elliptic opera-

tor, the following theorem applies (see Agmon, [1], p. 129).

loc

Tneorem 1.5 D(—AD)C H2 (D) , and, given any r > 0, there is

a constant K , depending only on r and 7 , such that
3 < T 1 _ il_
“uH z’var_Kc'iu”Lz(D)-i_ ” ADUIILZ('D))

holds for all u € D(—AD) "
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This means that the 2-norm of any function u in D(—AD) in
a bounded subset of 0 is bounded by the graph norm of u . (The

graph norm of a function u € D(—AD) is ,lu!‘Lz(@) + !‘_ADu“LZ(D) ]

D(—AD) is a Banach space with this graph norm.) The following lemma

now applies to functions in D(—AD)

N - HéOC(D) and ¢ €C, (R , then ¢u € Hy(D)

and
(1.1) “A(du) = ¢ (-Au) + u(-Ap) - 2V$*Vu ,
where V is the (weak) gradient operatdr.

Proof: This is a simple case of Leibnitz rule (for a proof, see

Agmon [1], p. 9).

" Theorem 1.7: The set of functions in D(wAD) with bounded

support is dense, in the graph norm, in D(—AD)

Proof: Let u € D(—AD) . Let ¢ € C? (RN) satisfy 0 <¢ <1,
and Y(x) =1 if lx] <1 . Let wn(x) = Y(x/n) for mn=1, 2, *--,

€% . Then Yu €H (D) N H(D)c D(-4) for all n, and (L.1)

implies
A0 0) =Y (HApu) + ul-by ) - ZVWnVu .
Hence,
u - wnulli = J; |1 - Wp(x)]zlu(x)lzdx = é 11 - pex/ny | %] uo | 2ax
2 ;
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s

f'D—B |u(x)lzdx +0 as n>®
n

and
1-tgu + 85001l gy < 1= = 9dgully )
+ llu(‘Awn)l|L2(p) * 2|[V¢n'VUI|L2(D) )

Since ¥ € C,(R") , there is an M > 0 such that l8y_Go| <

and Ian(x)l <M for all x € RN . Also, Awn(x) = 0 and
v%&>=0;flﬂ<n. mw,!thgH%prHﬂuﬂm%)
and ||v¢n=Vu|]L2(D) < M| uf| 1,08 * Since uw € H (D) , it follows
that "—ADu + AD(wnu)H L, >0 as n=+«. Thus, § u con-

verges to u in the graph norm. [

The above theorem implies that the set of functions in D(—AD)
with bounded support is a core for —AD > 1.e. -AD restricted to
such functions is a closable operator in LZ(D) whose closure is
—AD .

Finally, a local inequality is proved.

Theorem 1.8: If ¥ >0 and € > 0 , then there is a constant M,
loc °loc
depending only on r, €, and D , such that if u €H, (D)nﬂl s

then

(1.2) || 2,DfWBr‘i M(IIUIILz(p;w3r+€) P Il"Aulle(ﬂfWBr+€)) "
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Proof: Choose ¢ € d?(RN) ~such that o(x) =1 if lx] £ ¥
and ¢(x) =0 if ]3] > r + €/2 . Then, since ¢u GHZCD)dil(D) c

D(rAD) , theorem 1.5 implies that

(1.3) 1 ¢ull ) pap_ < K] ¢ull L?(b)+ el Lz(p))
5 T 2

for some constant K , depending on v and D . Since ¢(x) =1

if [x| < r, it follows that

(1-4) Hq)UHZDnB = HUHZ pPNB  °
] r > r

It follows from lemma 1.6 that -AD(¢u) = =A(pu) is given by (1.1).

Since ¢ € d?(RN) , there is a constant K,, depending only on ¢ ,

l’
such that

(1.5) || ¢ul] Lz(p)= || dul] L, (D nBr+e/2)—<- Klll ull L,(DN3B

r+€/2) 2
and
(1.6) || -5 (4u) || = || -, (¢w) ||
D L,(0) D L,(0NB_, )
< K, || -Aul] + K. || ul] + K. || ul]
-1 LyOMByep) 1 T LpBrgyp) 1 LBy

Eidus [8] has shown that for such functions u , there is a.constant

K2 s depending only on r, €, and D , such that

1.7 ||+l 1,DNB, ), ot I<2(H ul| L,(DNB_, ) + || -Au] L, (D nBr&Q) .

Combining (1.4), (1.5), (1.6), and (1.7) in (1.3) yields (1.2) .
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§2 The Operator K,

Let S =G X R be the cylindrical domain in RN defined in
the introducticn. The unperturbed operator H) is defined to be
—AD(S) ; it is a selfadjoint operator in the Hilbert space 3% = LZ(S)'
The operator H, is investigated in this section.

‘o 4 ; _ N
Notational note: From now on, if 0 is any domain in R and

r>0,
0, = {x¢ Dlle < zr} .

It follows from the theory of elliptic operators in bounded do-
mains that the selfadjoint operator HG , defined to be «AD(G) in
the N-1 dimensional domain G , has a complete set of orthonormal

eigenfunctions in L2(G) . Denote the eigenvalues of H_, , ordered

G

increasingly, by {kﬁ} , and the corresponding eigenfunctions by

{nn(i)} . Note that for each n ,
(2.1) n, € D(-A,(6)) = 1, (6) N H,(G)
(that they are in HZ(G) follows from theorem 1.5), and
(2.2) “A (@) () = k20 (0, x €¢
D n nn
The elliptic theory also implies that the n, are smooth functions.

Definition 2.1: For n =1, 2, «++, let

~1/2 5%y
e

(2.3) W;(X’ £ = (2m nn(i), £ E€R, x €5
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These are generalized eigenfunctions for H, .

Theorem 2.2: For each n , the mapbings

(2.4) . EeWC.D,EER
and
(2.5) §>3p W.( D), E€R
loc °loc

are tontinuous mappings of R into Hz (s) n Hl (S) . Furthermore,
o 2 2, o
(2.6) -0 (x, B) = (€% + KDW (%, E), E€R, x €5 .

Proof: It follows from (2.1) and (2.3) that

) loc °loc
. E € n
Wn( s ) 2 (S) H]

fy, using (2.2) and (2.3), that (2.6) is satisfied.

(S) for every & € R . It is easy to veri-

Let r>0,and &€, v € R . Then

2 1k dwxg
| —e

In. (3 | %ax
LZ(Sr) n

1% (58 = w.(, 0] - (2m ™

T iéx iy
cm e N N2
r

de >0 as &> v ,

Also,

_AWP(°: g) + A“P('s V) =
ll n n lILz(Sr)

r ifx., iVX.. n
en Y | E?+ kﬁ)e N2 4 ki)e : XNl‘de

' ¢

>0 as &>y

It follows from the above and from theorem 1.8 that the mapping (2.4)
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71O loc

is continuous from R dinto H, “(s) N il (s)
8 2 1
Wn(xs £) o
Since ——iﬁr————-= iwah(x, £) , an argument similar to the above

proves that the mapping (2.5) is continuous from R into

loc °loc
N
Hy () H, "7 (8) O

Definition 2.3: The Hilbert space & is defined by

&= i Eh, where Sh = Lz(R) for n=1, 2, ¢+,
and

f={f}€eesf €L,(R) Vo and £l e = nilllfn”Lz(R) ik

€ is the direct sum of a countable number of copies of
LZ(R ) . The following theorem proves that the generalized eigenfunc-

tions w;(x, &) are complete and orthogonal in Hy .

Theorem 2.4: The operator T from ﬁ% to € , defined by

0

(2.7 T,£(E) = &-1lim {S f(x)wn(x, E)dx}, £ €R, f € ﬂb 5
r > §
r

where &-lim denotes the limit in the norm in & , is unitary. The

adjoint operator T%¥ from & onto #, 1is given by

M K
(2.8) Th(x) =¥ - lim I [ h (E)w (x, E)dE , x € S,
M+ n=l -k % =

K+
h=1{nl} €e,
n

where ﬂb — 1lim denotes the limit in the norm in KO
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Proof: Let f €% . Then for a.e. X € R , the function
£(z, xN) = f(x) is in L2(G) , and, for each n ,

|/ f(X)nT(X)dil2 < I |£(x, xN)IZdE?: . It follows that

G ' G '

I E(x, XN)n (x) dx € LZ(R) for each n . Denote by F the operation
c n

of Fourier transforms on L2<R) s 1o,

M _ ~if3
Fu(g) = L_(R) - lim [ (2m) 1/2e N u(x)dx, & €R, u €L,(R) .
4 M > ® -M

Then F J f(%, xN)nn(i)di € L2(R) for each n , and, using the com-
G

pleteness of the eigenfunctions nn(i) in LZ(G) and the unitarity

of ¥ ,
n=1 G n 2 n=1 G n 2
= 3 1| r5G, xn x| %

co

=/ I |SEGE x)n (®ax|%a
R n=l G W N
= 1 I|£G, x| Pdxax = £ |£G0]%ax = [ £]| 2
R G S 0

Thus, the mapping

(2.9) £ {F [ £, xN)n.n(§)d§}
&

is an isometric mapping of ﬂ; into € . But the map (2.9) and
the map (2.7) are the same. Thus, T0 is an isometry of ﬂ% into

e .
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Let h € € have only a finite number of nonzero components, and
[e=]
suppose those nonzero components are in CD(R) (such functions h are
dense in € ), Denote by Q , for the present, the operator defined

by the right side of (2.8). Then

) = I b (O (x, E)dE
n=l R L 2
. 1
= T (2m) 1/2 J e xNhn(E)dE n_ (%)
R n

n=1

= % F#*h (xN)nn(Q), x €S,
n=1 i

where F%* is the inverse Fourier transform on LZ(R) . Using the

orthogonality of the n's in LZ(G) (note that the sum is finite),

2 2 © NPT
I!thiﬂj f 'Qh(X)l dx = é lnil(F“hn)(xN)nn(x)l dx de

]

TP 0% = T 0 [P (x0)]%d
% ped n N ¥y ol n N ¥y

z |70 |2

n=1

L@ = L 18 HL @ = I1llg

Thus, Q 1is an isometry om \6 into ¥, . Finally, it is easy to

verify for the class of h € € above, that T Qh = h . Since this
class of functions is dense in €& , ToQ =1 . Thus, T, and Q
% -1

are unitary and Q = Ty =T " . O

From now on, Tof will be denoted by {fn(E)} when f G'Hb .

Note that

{(2.10) fn(g) = f(x)ﬂn(x)dx = F (nn, £(* XN)>L2(G)’f € H, .

r
G



The following theorem gives a representation for Ho in €.
Theorem 2.5: If u € D(Ho) , then
THu={(+ 8 (O}, £ €R
00 n’ n b 3
and

. . © : ;.
(2.11) TD@E) ={h=1h}l €& I (& +EDn (B2 <=1,
n n n
n=1 R
Proof: Denote by V the mapping in & whose domain D(V) is

given by the right side of (2.11) and which is defined by
: 2 2
Vh(g) = {(E + kn)hn(g)}s ECR, h € D(¥) .

Then V dis the direct sum of a countable number of selfadjoint oper-
ators (multiplication of hn(E) €E o = LZ(R) by EZ + ki) and there-
fore is selfadjoint on D(V). Thus, T? VT, is a selfadjoint operator
on ﬂ% i

Let £ € D(Ho) have bounded support. Then, for sufficiently

large r , supp £ C Sr . Let ¢ € d?(RN) satisfy ¢(x) = 1 if

-1
x € Sr . Then, sinée ﬁ;(', £) € H%oc(s) N %iOC(S) "
¢(-)w:1(', £) € D(H,) , and H0¢(°)w;(', g) = —Ad>(')w;(', g) is

given by a formula similar to (1.1). Hence, in (2.7),

THEE) = U HE V0 Dax = 1@V G D

S
r ¥

= {<H0f: (b(')W;(': E) )}Co} = {< £, Hod)(.)W;(', E) >:}C0}
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= {J £(x) -0 (x, £)dE} = [+ kn).En(é;)} €e.

r
Thus, T,f € D(V) and T HE = Y.L , 67 B AE = T?VTof . Since such
functions form a core for H, (theorem 1.7}, and since H, and
T?VT0 agree on this set of functions, it follows that T?VT0 is a
selfadjoint extension of H; . But H0 is selfadjoint, so

H0=T’D‘vro,and TH =VI. . 0O

If f € ¥, , then theorem 2.4 implies that

M K .

(2.12) f(x) =¥, - lim I [ £ (8) w (x, £)dE, =x €8S .
M~>o® n=1 -K &
K> o

This notation will be shortened to

(2.13) £ = I S £ v (x D, x €S, fEX
. n=1l Rp

where this is understood to imply the limits as in (2.12). By

theorem 2.5, if £ € D(H,) , then

o 2 2.2 o
(2.14) Hof(x) = nil é (£~ + kn)fn(g) wn(x, g)de, €8 .

Theorem 2.5 has the following corollary:

Corollary 2.6: If f € D(H,) , then the representation (2.14)

for f dis also valid in Hloc(S)

loc HE .
f(x) = HZ (¢8) ~1iim ¥ [ .£ (g)w (%, £)dE, x €85,
M+, K+® pn=1 -K '
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Proof: If £ € D(HO), then £ has the representation (2.13)
and H,f has the representation (2.14) in ﬁ% . Using theorems 1.4,
2.4, and 2.5, given any r > 0 , there is a comstant K such tﬁat
M T . MOT, )
|| £ -3 PRGNS g)az| 2,5 = k(|| £ -z {Tfn@)wn(" e)dz]| %,

(2.15)

M T 9 2 -

FHEE - T 5+ IDE O ¢, D],
n=1 -T G

Since both terms on the right of (2.15) go to zero as M and T

go to <« , the corollary is proved. .

With the above representation of H& in € , the resolvent

operator R% = (H ~ c)-l can be easily constructed.

Theorem 2.7: Let p(HO) denote the resolvent set of H0

Then if u € ﬂk ,and 7 € p(Ho) s

. * 4 (€) .
R = B =g s |
¢ ’ £2+k§—c

Proof: Let v = Kz u € D(HO) ~ Then (Hy - g)v=u, and

TO(H0 - Qv = T,u . Using theorem 2.5, it follows that for each n ,

E+E -5 () =8 () ae EER,

or
) & (0
Vn(5> = 35— a.e. £ €ER .
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Gl _ _ * = Rra
But R€ u=vs=Ty T,V To{vn(i)} -

The following theorem of Stone ([25], p. 183) is used to con-
struct the spectral measure ﬂo(') for H, from the resolvent of

H .
0

Stone's Theorem: Let H be a selfadjoint operator on a Hilbert

space ﬂ', and let m(-) denote its spectral measure. If £, g € ¥

and =-®< g < b <® , then

1/2 (g, [m(b) + ﬂ(b—)]f%w - 1/2(g,[m(a) + ﬂ(a-)]fﬁm

b

1 i .
=ln i B Ry Buogelfly

_ —  ondf
where inig = (H - X+ i0)
Theorem 2.8: If f € ¥, , and -®< a <b <, then

1/2 (f,{ﬂo(b) + 0, (=) ~ msla) ~ Tro(a—)}f>3(,
(2.16) ’

= 3 || %E .
"L acg?ulep

Proof: Theorem 2.7 implies that if £ € %O and [ € p(Ho) 5

then
2

. . o |£,(8)
(£, £k =(Tf, T,K £ ) —E g

= b
&
Ko c n=l R & + kn - C

If A €ER and o> 0 , then
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- = 2i0 a 2
1€y, = 2 /f =5 |£ (8| 748 .

(£,[R 5 5
0 plRETHE -7+

Aio

" Brio

By Stone's theorem, the left side of (2.16) equals

lim l? T s 2 |£ &)]%aE ax
orot TanlR 2+ K - 02+ o? O |
- lim I S | (E)Iz{—l-? g dA}dE
o0+ n=l R ©° T 5 [E° 4 krzl = ) %02
= ~ 12 2 2
= n-z-—:l é l£ (8] Xpa,p)E T kDA

o0} & 2
= 2 [ £ LB} dE 4
n=1 a<£2+k2<b } B I

<< o

where X[a b](-) denotes the characteristic function of the interval
bl

[a,b] . [

Corollary 2.9: If f, g € Wo and -®< a<b < », then

1/2 (g, {m (b) + w,€h=) ~ m,(a) - ﬂo(a—)}f>JC
0

oo B

g 2 (E) £ (D)aE ,
n=1 q552+k§§b n n

(2.17)

where 'ﬂ'o(°°) = TTO(°°*") =1 and 'n'o(_oo) = -n-o(_oo_) =0 .

Proof: The result (2.16) extends to —- ®< a <b <® by
taking limits on both sides as a *> -« and b > ® , The corollary

follows by polarizatioen. 0
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Corcllary 2.10: 1) If £ € ﬂ% and A € R, then

(2.18) 7w (M f(x) = ; f 2£ (&) w (x, £)d€, x €S .
0 X n=1 £2+k§<}\ n n . ;

2) m,(A) is absolutely continuous

Proof: Letting a 7 b in (2.17) proves that ﬂo(b) = Wc(b—) 5
i.e. wy(A) 1is continuous. Letting a > -« in (2.17) and setting

b= A yields

<o

(g, T.(VEY, = I .f. & (B)E (E)dE
Ry e gala T n

(o0}
= 7
n=1

FE® X G+ KDE (048 = (Tyg, TyM(VE), -
R 3

It follows that T m (A)£(E) = {X(_m’k)(a2 + kf.f).gn(i)} , and

To(MVEE = I f (1 (VE) (B (x, E)dE = 1 - £ (&) (x, E)dE.
’ n=1 R ° = o n=1 €2+k§<K & -

This is (2.18). It follows from this representation that WO(A) is

absolutely continuous. O

Note that the sum on the right sides of (2.16) and (2.18) are
finite, and the integrations are over bounded subsets of R .

With the spectral measure for H, constructed, it is now possi-
ble to construct a spectral répresentation'for H0 « Since this will
not be used in the remainder of the paper, it will only be sketched
here.

For each n =1, 2, *°*, define the mapping U_1 of 85 = LZ(R)
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: 2 2
onto the direct sum Lz((kn, w))G)Lz((kn, ©)) by

= -l 2 "l ll' R
U b () =270 - k) 5 6 5 3 A > n .

: ; 2 2 _
Then ooUn is unitary and Un(E + kh)hn(i) = A Un hn(K) . Let
U= 1% @)Un be the direct sum of the Un's . Then U 4is a unitary
n=1 -
map of &€ onto the direct sum I L ((kz, @) @ L ((kz, ®)) , and
n=1€) 2" n 2 n

UL H,2 (W) = A U,I.£ (A\) . Thus, Ur, is a spectral representation
for H . The spectral multiplicity function mo(A) is piecewise

constant; it has the value 0 for A < ki , and the value 2n for

2 2
kn <A< kh+l for n=1, 2,
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§3 The Operator H

Let Q be the perturbed cylindrical domain defined in the intro-
duction. The perturbed operator H is defined to be —AD(Q); it is

a selfadjoint operator on the Hilbert space ¥ = LZ(Q) . Then for the

(o2} -— —
(C) diffeomorphism @: Q © S there is an h > C such that

X E'ﬁ; IxNI >h=dx) =x .

In this section, the mapping & is used to construct a unitary map

J of J% onto ¥ . Some further properties c¢f J are also noted.

Definition 3.1: If £ € L§°°(s) . sl

I = Do) |2 £em)), x€Q,

where _|D®(x)| is the Jacobian-determinant of & at x .

Note that if f € Léoc(s) and if Q' CQ 1is a measurable subset

of © , then

(3.1) [ IJf{x)}zdx = [ if(@(x))|2 |Do(x)|dx = J If(x)lzdx
Q' Qr YO

Lemma 3.2: The mapping J: f > Jf is a continuous linear map-

ing of L%OC(S) onto L;oc(ﬂ) and

loc

Tl = e Y2 e @), x €5, g 1@
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Proof: Equation (3.1) shows that J is a continuous mapping of

loc J 1
L2 (S) dinto L2

uous mapping of Léoc(ﬂ) into L%oc(S) . Since

OC(Q) . Similarly, the mapping (3.2) is a contin-

{(3.3) D@(Q-l(x))' D®_l(x) = I(the N X N identity matrix), x-.€ S y
and
-1
DO T(d(x)) - DO(x) =1 , % EN 5

it follows that J and the mapping (3.2) are inverse to each other.

Thué, J maps L;oc(s) onto L%oc(Q) , and (3.2) is its inverse.

Corollary 3.3: The restriction of J to 35 is a unitary map

of ﬂb onto # with inverse map given by (3.2).

Proof: From (3.1), it follows (by setting Q' = Q) that J

is an isometry of ¥ into H . Similarly, J_l is an isometry of

X into ¥, . Tinally J °J =1 on ¥, and JI T =1 on ¥. .

Lema 3.3: (a) J: C (S) ® C (@) .
(b) J: Hm(S) - Hm(Q) is continuous for m =1, 2 .
: Hiqc(S) “ Hiéc(ﬂ) is continuous for m=1, 2 .

(d) J3 Hl(S) © Hl(Q)

(e¢) J

<o

Proof: Since @ is C , it follows that . J: C,(S) > C,(@) ,

. loc loc -1
. . 3 : . +
J: Hm(S) > Hm(Q, , and J: Hm (8} -~ Hm () . But o is also
oo
C s S0 it follows that the ranges of the mappings above are those

indicated. Since Jf(x) = f(x) if | Xo | >h , the continuity
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properties in (b) and (c) need only be proved for functions with

bounded support. Hence, (b) = (c) .

Let f € Hl(S) . Then for i=1, 2, -+-, N,

D, 3£ () = D, (|De(x) 1126 a(x)))

- (Dilm(x)ll/?‘) £(0(x)) + Do) |2 D, (£(2(x)))
_ Sy 1172 ¥ 3t (e(x)
=(0, [p2(x) | D £(2(x)) + kil oy Do (¥), x€Q .

Thus there are constants K, K., K

1 2 such that

Ipaell < el x 1 |12 al),
k=1

G el + % 3 N5

=
n b1 =

<5 lll]

Hence, [IJflll’Q < KZIIfIll,S .

A similar, but more involved computation, shows that there is a con-

stant K3 such that

lagll , g <%, £l , g -

Note that (d) follows from (a) and (b). .

Lemma 3.4: If f € Lloc(S), g € LlOC(Q) , and ' CQ is a

bounded measurable subset of @ , theun
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Jg(x JE) dx = [ (0 le)(x) £(x)dx
Q" 5(Q")

Proof: Using the definitions of J and J—l , and {3.3),
= 1/2
J glx) JE(x)dx =/ g(x) £(8(x)) |Do(x)|™ “ax
Q Q! |
= §i§l———I7§ £(0(x)) |Do(x)| dx

Q' |Dd(x)|

20 ()
2"y |peel(x))|

172 f(x)dx

1/2

= 7 oot |Y? g7 ) £w)dx

")

= 7 @ fax .
")

The final theorem of this section is important in applying

Birman's theorem.
Theorem 3.5: JD(HO) = D(H) .

Proof: Let u € D(HO) , and let ¢ € d:(RN) satisfy ¢(x) = 1
if x €Q and Ile <h+ 1 . Then it follows from the results of
§1 that ¢u € D(HO) , and hence (1 - ¢)u € D(Ho) . Since (1 - ¢)u

is' supported outside of S, , it follows that J(1 - ¢)u = (1 - ¢)u

h
outside of Qh , and J(1 - ¢)u = 0 dnside Qh . Then, since H
and H, agree on functions supported outside Qh , it follows that
J(1 - $)u € D(H)

It follows from 81 that ¢u € HZ(S) N %l(s) . By lemma 3.3,

Jou € H () N Hl(Q) C p(H) « Thus, Ju= J(1I -9)u+ Jpu € D(H)
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Hence, JD(HO) C D(H)
The same argument can be made to show that J—lD(H) c D(HD) .

Thus, JD(HO) =DH) . O
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§4 The Existence and Completeness of the Wave Operators

The main result of this section is the following theorem.

Theorem 4.1: The wave operators W;(H, Fos J) and
W;(H H; J*) exist. W+(H, Hi; J) are isometries of ¥ onto

0’
TaCH and provide a unitary equivalence between H, and the absolute-

ly continuous part of H . Moreover,

W, (8, B3 DI* =w @, 5 IJ) .
g 3>

To prove this theorem, all that is needed is to verify condi-
tions 1-4 of Birman's theorem (see the introduction). Since J is
unitary, conditions 1 and 4 are satisfied. Theorem 3.5 shows
that condition 2 is satisfied. Only condition 3 remains to be veri-
fied: 1In - fact, a stronger result will be proved, namely that

(BT - JHO) WO(S) is trace class for any bounded interval
§ € R . In order to prove this, the following version of a theorem
of Stinespring [24] is used.

Stinespring's theorem: Let | be a regular measure on R of the

form du(g) = p(§)dt , where p is a bounded measurable function
with compact support. Let ¥ be a Hilbert space, and let M(§) be
a continuous function from R dinto # . Let T be the transforma-

tion from LZ(R) into ¥ given by

(4.1) Tf = [ £(E)ME)AU(E), £ € inR) .
R
e aggg) is a confinuous function from R dinto ¥ then T is

trace class.
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Proof of theorem 4.1l: Let § C R be a bounded interval, and

let £ €, . Then corollary 2.10 implies that
[}

(4.2) T (E) = I

JOf(E) W(x, E)dE, x €S,
n=1 6n n n ' '

where

Gn =‘{€'€ R: 52 + ki €68} for n=1, 2, °°-

Since ¢ is bounded, the sum on the right of (4.2) is finite, and the
integrations are over bounded sets. Since Wo(é)f € D(Ho) , it
follows that Jﬂo(é)f €D(H) . Let ¢ € dt(ﬂ) . Then using the uni-
tarity of J on ﬂh and lemma 3.4,

R ! g
(9, IT ()EY, = (I%, wo(cS)f);lCO = (39, ﬂ0(6)£>}Co

=FETH G| T L £ ©) W (x, B)aE Jax

S n=1 §
n
= I LE@ ) 06 0 Dax e
n=1 § S
= I LE® |0 e Danfar

A

= 13D [75 FERGEACH E)dg—fdx .
Q n=1 § 4 |

n
é £.(8) 3w (-, £)dE), .

Since dj(Q) is dense in LZ(Q) , it follows that
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3T ()EG) = El [ @ D, x €.
n

Hence,

JH T (8)£(x) = nil é-gn(i) &2+ kﬁ)JW;(x, £)dE, x €9 .
o |

Then, since w7 (+,€) € H,°() N HI°°(2) C L °°(-A;0) , definition

1.1 yields,

(§, BIT ()£, = CHO, Im (§)E Y,

- @@ | T LE (B 3 (x, DEE Jax
Q n=1 5n _

oo}
= I

;£ (e:)[ { TS 3. (=, E)dz lE
n=1 Gn n Q & |

- I EE[ T ) e D] e
=16

1

- 13@ | I 1RO 6 Dar]ax
9] =1 Sn

Thus,

BT (8)£(x) = I

[ £ (B)(-A3) (x,E)4E, x €9
n=1 Gn h

Combining these results,

(4.3)  (HI-TH )T (6)E(x) = 3

- VI xy ESEE
- 1 n n
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8

it
™

» 2 2 a - 2 2 :
I L @A - E - kgnl (x BIEET + I, x €4

For n=1, 2, ..., define

4.8) M (x, B) = (b -E - KN (x, B), x €0, EER.

Consider the mapping from & into ¥ given by

(&4.5) (17 - JHO)’ITO((S)T’:h(X) =

2 2 .
nil éhn(E)Mn(.x’ E)XS(E + kn)dcz, .x\e Q, hee&.

If it can be shown that this mapping is trace class, then, since To
is unitary, it will follow that the mapping (4.3) is trace class.
Note that there are only a finite number of terms on the right
side of (4.5). In order to prove that the mapping (4.5) is trace
class, it is sufficient to prove that the mapping from & dinto ¥

given by

2, .2
(4.6) h~+ {{ h (E) M_(x, E)Xg(E° + k))dE, x €Q, h €&,

is trace class for any n .

The mapping (4.6) is of the form (4.1), where

p(E) = Xg(E2 + kD), amd M(E) =M (-, ©), for £ €R

To apply Stinespring's theorem, it must be shown that Mn(°, €) and

oM
552'(‘,€) are continuous functions from R into ¥ .
' w (-, &)
By theorem 2.2, the mappings & = w;(-, £) and £ > u—E§€_~__

loc ° loc

are continuous from R into H2 (s) n Hl (8) . It felliows from
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ow (+, &)
lemma 3.3 that the mappings §& = JW;<” £) and £~ J gg ’ s

continuous from R into HJZ'OC(Q) N oﬁioc(ﬂ) + Hence from

the definition (4.4) of Mn(X, €) the mapping g = Mn(.’ €) is
;ontinuous from R into L%oc(ﬂ). Since Jw;(x, g) = w;(x, g£) if
!xNI >h, it follows that M (x, &) = 0 if lle > h » so that
Mn(-, £) € LZ(Q) = ¥ and Mn(', £) 1is a continuous function from

R into ¥ .

It follows also from (4.4) that

oM (x,8) I (x,8))
n ', = o > L - - 2 - 2 n
¢ 2 o W (x5 D)
= -2& an(x, E) + (A - E7 - kn)J e x €Q
3w’ (x, £) ow’ (x, £)
(here the fact that s~ 1<I>N(x)an(x, g) = J_—_§_§;_ is
BMH(X: E)
used) . Consequently the mapping £ > T is a continuous
i : OMp{x, &
mapping of R into L;OC(Q) . Again, since ——g—g" =0 if
o (-, ©)
IXN|>h,T~—- is a continuous function from R into ¥ . Thus,

Stinespring's theorem applies, and the mapping (4.6) is trace class.

This completes the proof. 0
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§5 The Spectral Properties of H

In this section the spectrum of H is examined. It is shown that
the eigenvalues of H have finite multiplicty, and the point spec-
trum of H is nowhere dense in R . 'A limiting absorption principle
is stated for H (it is proved in the appendix), It is used to show
that H has no singular continuous spectrum and to construct two

sets of generalized eigenfunctions for. H .

(<]
Let K = H;OC(Q) n Hioc(ﬂ), and equip K with the topology of
Héoc(ﬂ) . Then K is a Fréchet space consisting of functions which

are 'locally' in D(H) , i.e. u € K ® ¢u € D(H) for every

€@ .

Definition 5.1: If u € K, then for n = 1, 2, *++, define
u.i{ Y = J u(x)n (x)dx +x_>h.
n N c n > T ¥y

Theorem 5.2: If u € K, then

™~ 8

(5.1) u{x) = I%(XN)nn(%), x €0, +x > h

n=1

in K .

Proof: Let Q' = {x € Q: a < Xy < b} for some h<a<b. Let
e L
b € CIRY) satisfy ¢(x) =0 if x €9, ¢(x) =1 if x €Q' .

Then ¢u € D(H) and J*bu = ¢u outside Sh . It follows from cor-



41

ollary 2.6 and (2.10) that

u(x) = 9(Rux) = W) = I 1 (Tu) (B (x, E)AE
n=1 R
© - - : «© + -
g (7*u) G, xIn_Fdyln (%) = RARMG NG

in HZ(Q') .
If Q' = {x €Q: -b < Xy < -a} for some h < a<b, a similar

argument shows that
u(x) = nil un(XN)nn(X)

. ]
in HZ(Q )
Since, in both cases, a and b are arbitrary, the theorem is
proved. 0
The above theorem says that functions in K can be expanded,

in the uniform part of  , in terms of the transverse eigenfunctions

nn(i)

Lemma 5.3: If u €3 is an eigenfunction for H with the
. <
corresponding eigenvalue A , then there are constants CE for

n=1, 2, ***, such that

[0}
+ ~
u(x) = Z GH g = nn(x), x € Q. i?N >h
n=1
kZ>\
n

in K .
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Proof: Since u is an eigenfunction for H ,

Since u € D(H) , it follows from theorems 1.5 that u € K . Thus,

u has an expansion (5.1) in K . The functions d%(xN) satisfy

2 +
d u—(x_) —
nsz _ 3 U<X) n_(0) dx
de G aXN
N-1 52 N 32 g e
< 2 )@ - 7 - T 28 ey @
G i= 1 BxJ G j=1 Bx.

- ( oF u(x)))n G dx - Au_(xN) - f[(H = Mu) In (X)dx
c Jl BX

S +-
= é u(x) HGnn(X) dx = A uE(xN)

2 +
(= Ne(xy)

- é u(x)kr?; T dE - A u;ll-:_(xN)

for + Xy >h .
Thus, there are constants G" and D— such that

R R L\

u—(xN) = C— e +

5 T+

e

+ +
i K z i a > + : s = 7
Since u € ¥, UH(LN) must die out as X T Ee Thus, D; 0 for

+ A 2
all n and CE =0 if kn -A<0. 0

Theorem 5.4: If the bounded interval [a,b] C [ki, k2 for

n+1)

S 2 e
some n , or if [a,b] C (-, ki) , then there are at most a finite
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number of eigenvalues for H in [a,b], and each eigenvalue in [a,b]

has finite multiplicity.

Proof: Since H is nonnegative, assume b > 0 . Let S[a b]
9
denote the closed span cf the set {f€H:Hf =Af for some A E[a,b]} 5

and let S denote the unit ball in 8 The theorem is

[2,b] [a,b] °
proved by proving that S[a,b] is precompact and hence, S[a,b] is
finite dimensional.

Let '{un} be a sequence in S[a,b] . Then, by corollary 1.4,
2 2 2
||un||l,9 = ]lunllﬂ,+ (Hun, un) < (l + b)I!un”JC-i 1+b.

By Rellich's compactness theorem, for each m = 1, 2, *++, there is

m < m . oy
a subsequence {un} of 1un} such that {un} is Cauchy in L2(9h+m)
' Choose the sequences '{u:} such that {uﬁ+l} c {u:} for
m=1, 2, **+ . Let {un } be the diagonal sequence, u o= u% for

j : 3
j=1, 2, -« . The sequence {ug} is Cauchy in any bounded portion

of Q .
Let n = min'{VQi - b:kﬁ >b,n=1, *++}>0. Let t>0.

Then, using (5.2), if u € S[a,bj s
2“"‘")
% o =2 Vi -2 x|
2 a + 2 -2 n 1N
(5.3) llulle(Q"Qh+t) = I (% + e >h+£ e d| =g|

k2>)\
n

9 e—z%ﬁg—k(h+t)

{oo] +2 -
= % (Jc|°+|c|D e
=1 B " 2/k=-\
kﬁ>x =
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> —2V£ At ~2 I‘).-A H

3 +,2 -2, &
= £ e ° (!C|+ICI>“""—‘—‘Q~1
n=1 . & 2vk -\
k2>A ;
n
e -2 kﬁ—l h
% e z g 2 =~2'e - ~ " _=2n 2
n=1 ([Cnl + Icnl Ty & IIUIILZ(Q_Qh)
kZ>\ n
n
RS (MR
Thus, functions in S[a,b] die out exponentially as Xy = o B g

-2n
Let € > 0 . Choose m, so that e By & €/3 . Choose M

0
such that n, kK > M imply that
m

m
u® -’ < €/3 .
n - Yk Lz(Qh+m0)

Then if k, j > M,
He -u < |lu-u || +|u_ || Flu |
me oy X e B T R T L Y e L2(9“9h+m0)

i€/3+8/3+€/3=€°

Hence, the sequence {u_} is.Cauchy in ¥ so that S is
i, [a,b]

J
precompactf 0

Theorem 5.4 says the point spectrum of H 1is nowhere dense in
g 2 :
R . The transverse eigenvalues kn may be accumulation points (from

the left only) of the point spectrum.

o

Definition 5.5: Let A= {X € R: A #k forany n and A is

e

. i + o+
not an eigenvalue for H} , - = {g € c: tIm £ >0 , =0~V A,
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Theorem 5.6 (limiting Absorption Principle): Let ¥ > h . The

mapping

(5.4) (¢, u) »~ Rcu

is a continuous mapping from d? % Lz(Qr) into K possessing a unique
continuous extension to At X Lz(Qr) (into K) .

This theorem is proved in the appendix. It is used in the fol-
lowing theorem to rule out singular continuous spectrum for H .
Eidus [8] proved that the mapping (5.4) is continuous in ¢ € Gi for
fixed £ € Lé(Qr) and has a unique continuous extension to Ki.

Theorem 5.7. H has no singular continuous spectrum.

Proof: Let #°  denote the subspace of continuity of H , i.e.
f € X if and only if £ € { and the function (f, "(A)f) , defined
for A€ R, is continuous. Then #*C E'ﬂp , and H has no singular
continuous spectrum iff HE = ﬂac’ (see Kato [15] p. 516). The theor-
em is proved by shbwing that #° c 3¢ .

Let [a,b] € A be a bounded interval, let f € Cj(ﬂ) , and let
r > 0 satisfy supp £ E-Qr . Then, using Stone's theorem, the con-

tinuity of m(*) on A, and theorem 5.6,

b
. I T P _
(£, m([a,b])EY, = lim £ (£, By . f - R . £hd)

£ Py A
1 B
= lim — S {f, , £ -R, ., £) .y dA
o oo 2T N TMio TA-io Lz(szr)-
; b
= { =
ant L5 Parso® T Beao® L )
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where R

Kiiof are the limits in K Of'_RAiicf as 0 > 0+ . The

left and right side of the above equation extend uniquely to the ring
of all Borel subsets of [a,b], i.e. if M C [a,b] is a Borel set

then,

1

o J(f, R

CE2 TODE Y = g ¥ Riof ™ Ba-sof 5 -

If MCR is a Borel set of Lebesgue measure zero, then

(m([a,b]) £, W(M)ﬂ([a,b])f%n =(f, mM N [a,b])f)> =0 . Thus,
m([a,b])f € #3¢ . " since Cj(Q) is dense in # and agc is a closed
subspace of ¥ , it follows that 7([a,b])f € 33 for every f € ¥ .

Let f € #°. Then for any bounded -interval (a,b) C R,

m([a, b])f = 7((a,b))f = 1im 7([atS, b-6])f . If (a,b) €A is a

§ >0
bounded interval, then 7((a,b))f = m([a,b])f = 1lim w([at+§, b-6])f€ﬂac.
: §>0

From theorem 5.4 it is seen that there exist a countable number of
disjoint intervals 6n whose interiors lie in A such that
[¢s]

R= U 6n . Since the measure Tm(*)f is additive, £ = T(R)Ef
n=1

[os) foe] :
=f( VS )f= I ﬂ(ﬁn)f € H?C, since ﬂ(ﬁn)f € 3% for each n .
n=1 n=1

Thus, 3" E.Hac s and H has no singular continuous spectrum.

In the remainder of this section, two sets of generalized eigen-
functions for H are constructed. Recall from 84 that the mapping
g > Mh(-, £) , where Mh(" £) is given by (4.4), is continuous from
R into ¥ , and Mﬁ(‘, E) is supported in Qh for every £ € R,
This mapping, thus, can be considered as a continuous mapping of R

into Lz(ﬂh)
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Definition 5.8: For n =1, 2, °**, define

(5.5 V(.5 D=-RM(-, E), E€ER, LEC-R,

Theorem 5.9: The limits

(5.6) Vi(e, B, A) = K-1im V (*, &, A\Fio)
n O'">O+ n

exist in K for every & € R and A € A . Furthermore,
(5.7) (A=) Ve, B, A) = U (-, E)
. n b 3 = n ’
for all & € R . The mapping
(5-8) . (gy >\a O) g2 Vn('3 Es: A:iO')

with boundary values VE(-, £, A) , is continuous from R X A X [0,

into K .

Proof: Theorem 5.6 implies the existence of the limit (5.6)
and the continuity of the mapping (5.8). It follows from (5.5)

that
(H - M)V (", & Mio) = =i (, E) F 20V (-, &, M+io)

in # . Taking limits of both sides in L;oc(ﬂ) as 00+ yields

(8.5 - o

Definition 5.10: For n =1, 2, *°°°, define

+ o 5 + 2 2
W;;(X’ g) = an(xp g) + VE(X’ £s & =+ k-n), X€Q , and

FERD E° kﬁ el .

)
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Note that w%(x, £) 1is defined only for a.e. & € R .

Lemma 5.11: For n =1, 2, *°°-, WE{" E),E€E K -for a.e.

£ €ER , and

(-b - &2 - 1DwE(-, £) =0 ae. EER.

n

Proof: This follows from theorem 5.9 and the definition (4.4)
of Mn('a g . O

. + .
These two sets of functions {WE(X, E)F im

loc 2 loc
H 5 N
2 ( Hl

next section, after the wave operators have been constructed, the

() are generalized eigenfunctions for H . In the

completeness and orthogonality of these two sets of eigenfunctions in

13¢ = 1% are proved.
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§6 Construction of the Wave Operators and Scattering Operator

In this section the wave operators W+ = W+(H, H s J) , whose
existence and completeness were proved in 84, are constructed in
terms of the two sets of generalized'eigenfunctions {WE(X, £} .
The representation of the wave operators implies the completeness
and orthogonality of these two sets of eigenfunctions. Finally the

multichannel character of the problem is mentioned, and the scatter-

ing operator S(H, H,, J) , denoted by S , is constructed.
Lemma 6.1: Let f € H% satisfy

£(x) =/ £ (8) v (x, E)dE, x €58

S n n

for some bounded interval 8§ € R and some n . Then

£ = S £ (E) wi(x, §)dE, x €0

Proof: The proof will be given for W+ . The proof for W_

itH._ -itHg

is the same. Let W(t) = e Je for t € R . Then

[oe]
'W; = g-1im W(t) . Let g € CO(Q) . Then, using the Abelian limit,

>
® gt

(6.1) (g,W+f >J'C= lim (g, w(t)f)gc= limo J e " (g, W(t)f)ﬂdt "

o o0+ 0

| ’ 4 w(e)e
Since  f € D(Ho) , and J: D(H;) + D(H) , it follows that dt

d . .

exists and dt W(eE eltH(HJ - JHO)e—ltHOf . Integrating by parts

in (6.1) yields
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oo}

1tH \ —itH
(6.2) (g,W, £) -<g,W(O)f> + lim i fe (g,e1 (HJ - JH Ye ~*Mog) dt
+ ¥ ik 0 ﬂﬂ

It follows from theorems 2.4 and 2.5 that

. _rpelied
gy = 1 £ (®) T EIE ¢ (, Byag, x €0,
3

Using this and the representation (4.3),

. - i e 2
@ - e e = £ £ @ TTETRE y () gyar

Since the mapping & - Mh(-, £) is continuous from R into ¥ ,

it follows that

(6.3) eitH(HJ—JHO)e_itHOf(x) I £ n(E)e -1(& +kn)t 1tHM (x, E)dE .
§
Using (6.3) in (6.2), and definitions 5.8 and 5.10,
B —i(Ez+ 2)t itH o .
(g,W f) (g,Jf) Flim 1fe fg(x).ffn(g)e iy e IM_n(x,i)dgdx dt
a0+ °

_ -i(& +kn -io)t .,
(g,Jf )7 +(1;3+1;5f (E)ég(x) [fe tHMn(x, £)dtldx dE

= (g, JE %, + 1im 1 Jf (£) [ () i R M (x,E)dx dE
o Bt 50 Q £2+k2~m n

= (g,Jf GC-P lim IF &) fg(x) V (x, E,, +k —10)dx ta
o0+ & T Q

= —— _+ e
= (g,Jf )JC+ -gfn(g) ég(x) Yngxag)dx dg

—_— 4
(g, JEX + ég(zﬂ éfn(E)Vn(x,E)dE dx

It

ey éEp(£>[Jw;<x,a> + V! (x,8) 148 ax
gz - i i
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@~ + . .
= LE O (DAY,

s 5
-i(§ +kn—10)t eltHMn(.,'g)dt = 4R 5 3 M (-,£)

Here the fact that [ e
0 g +kn-io

is used (see [19], p. 247). Since d:CQ) is dense in ¥ , the

lemma is proved. 0

Theorem 6.2: Let f € Hh . Then

(6.4) WE() = °§l £ @) v, BaE, x€ 9
= n=1l R

in ¥ .

Proof: Let & C R be an interval. Then it follows from

Corollary 2.10 and lemma 6.1 that

[ee] & +
(6.5) W+7T0(6)f(><) = n'il ; f2 fn(E) WH(X’ £)dg .
& £ +kn€5

Since W _ is an isometry and since || m(8)f - f]!x-+ 0 as the

interval § increases to R , (6.4) follows from (6.5) by letting

§ increase to R . O

Corollary 6.3: The two sets of generalized eigenfunctions

'{wz(x, £)} are complete and orthogonal in ¥C .

Proof: Let u € e, Then, since W; is complete, there is

¥ 1. o~ \] . £ ~ I 2 =
an ﬁt € , Such that Ei?_ u Since ft 4 30, it has the ex

pansion
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£ i_(X) bt

G g

ERANCRACILL LR

Then, from theorem 6.2,
. O
ux) = W () = I (ED(E) Wik, B)AE, x €Q .
oo e n=l -
c ' ; +
Thus, any function in #2¢  can be expanded in terms of WH(X, g) .
This means the two sets of generalized eigenfunctions are complete
in ¥3° .
Let h ='{hn} €&, Then T?h € a% has the expansion (2.8).
By theorem 6.2,

(6.6) WG = T [ (E)v(x, £)dE, x €Q

is in ¥ ., Thus, given any h &€ € , the expansion on the right of

(6.6) yields a function in 3®¢ . This means the two sets of gener-

alized eigenfunctions are orthogonal. 0
It follows from the above theorems that if f € ¥°C , then

f(x) = °z° f(wj_f>;(5)v}§(x, E)dE, x €Q .
n=1 R —

The lemma below indicates that (Wif);(i), denoted from now on

b ) T .
by ff;(g), is given by the expected inversion formula.

Lemma 6.4: Let £ € 3¢ . Then

Ly = F £l wite, Dife s.e. [ € R
n Q n

Proof: Since W: ic defined on all of ¥ , and since
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W , =1 on ﬁb , theorem 2.4 implies that

8

*
W f(x) =
T n=1

o

MUSMOLACHL L

holds for every £ € ¥ . Thus, the statement of this lemma is equi-

valent to

WE) () = £ £ ve(x, E)dx a.e. £ €R

for all £ € ¥ .
Let f € d?(ﬂ) . Let h =’{hn} € € such that all but one com-

ponent of h are zero, and for that component, hm € Cf(R) . Then

<wiT“gh, £ =gf2 If{hm(g) (x, &)d§ f(x)dx

H

s+

B0 /1w we(x, £)dx &

= % % - * = = % -
= (Toh, Htféwo {(h, Towif)a £ hm(E) (Qtf)m(g)dg

Since this holds for all h_ € c°;(R) , it follows that (W_tf)l';(i) =

é f(%) Wﬁ(x, £)dx a.e. £ €ER . 0

. s 5 5 . c
Since two eigenfunction expansions exist for each £ € 3 , the
theorems in §2 can be repeated now for functions in 5, Thus, the
: s ac .
resolvent of H in & is given by
+

Rux) = I 5 %Cx, £)dg, x €Q
= n=1 R § +kh—§

for u €¥%C,  €p@H) . If X €R, then
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T0E@ = I B ok pa, x €0

n=1 52+k2<A
T

for any £ €33 . The spectral multiplicity function mac(k) for

' 2
is piecewise constant, has the value 0 for A < kI and the

1
value 2n for kﬁ <A< k§+l . (This is already known from §4).

Hac

Now that the wave operators have been constructed, consider the

scattering operator S defined by (0.3).
Lemms 6.5: Let f € #; satisfy

£() = éagn;£> W G, E)AE, x €8

for some n . Then

aN

[/ £,(0) W (v, 0)dolv, (v, E)dy wy(x, E)dE

(6.7) Sf(x) = {s
2 R

L

"

J
1R
x €8 .

Proof: It follows from theorem 6.2 that

[

(6.8) W_E(x) =/ £ (0w _(x, 0)do, x €Q,
. R
and
(6.9) W EG = I S (I_DUE) wilx, DIE, x €5,
k=1 R

Lemma 6.2 and (6.8) imply

N+ +, .
(6.10) W_£), (&) = gfz W_H ) w (y, &) dy .
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e - +, .
=é’ [£'~fn(0)wn(y, 0)dolw, (v, €)dy .

Substituting (6.10) into (6.9) yields (6.7). 0o

Let ™ < (£ € : £G0) = S £ (D (x, E)E, x €5} and
i = UE a8, 86 = ]
ﬂin) = {f €%: £f(x)-= f:ft(E)wi(x, EYdE, x €Q} for n=1, 2, «--
: . R n n

It follows from theorems 2.3 and 2.4 that iﬁgn) is a reducing sub-

space for H . Theorem 6.2 implies that W+ﬂﬁn) = ﬂin) . Since W,

is an intertwining operator for H, and H , it follows that ﬂin)

are reducing subspaces for H .

ﬂfn) 5 then, for large negative

Theorem 6.2 implies that if £ €
time, e—itHf behaves like e—itH°Wff ,'where Wff € mf?) . How-
ever, for large positive times, e—itHf behaves like e-itHOSWff 5
and SWff has components in each of the subspaces ﬂfm), m = 1,2,'-?.
Thus, a function in ¥ which is in the 'channel' associated with the
reducing subspace _ﬁﬁn) at large negative times is scattered at
large positive times into all the channels asscciated with the sub-
spaces ﬂﬁm), m=1, 2, *** . Using lemma 6.5, a channel scattering
operator Snm can be defined which maps functions in the n-th
channel ﬂﬁn) in ﬂ% into the coﬁponent of the scattered functions

in the mth channel Hﬁm)

Corollary 6.4: If f € Ko , then

Spf G0 = £ 1 £ (0 (y, 0)dol(y, By}’ Gx, E)AE

x €0 .
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This problem, then, can be thought of as a multichannel scatter-
ing problem. Associated with the operator H0 are a set of chan-
nels, or reducing subspaces, an) , which are complete in the sense

. (n) , ac,

that the direct sum of the ﬁ% 's is ¥ =m H , and are ortho-
~gonal. Two sets of channels are associated with the operator H .
One set '{an): n=1, 2, "°°} corresponds tc the channels in ﬂ%

at large negative times, and the other set '{ﬂin): n=1, 2, ***}
corresponds to the channels "in ﬂh at large positive times. The
scattering problem is as follows: suppose at large negative time the
(n)

H-system is in the channel , which corresponds to the channel

ﬂﬁn) in the H -system. What will be the components of the state

vector of the system at large positive times in the channel aim) 2
The multichannel theory of scattering has not been developed

mathematically as completely as has the single-channel theory. For

a more detailed formulation of a multichannel scattering theory, see

Jauch [12].
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Appendix: Proof of the Limiting Abosrption Principle

In this section, the limiting absorption principle (theorem 5.6)

is proved. Refer to §5 for the definitions of K and ﬁ%(-)

Lemma A.l Let u € K satisfy

~Au(x) = zu(x), x €Q - QC

for some [ € C+ UR ( €C UR) and some c¢ > h . Then there are

constants Cﬁ- and ﬁ% for n=1, 2, *°* , such that

A2 ||
+ VR I%y
C-e

n

e - | x|

+
+D;1.e ’iXN>Cs

]

+
(A.1) UE(XN)
where Revﬁi—g >0 and Ingi—C <0 (Ikaﬁ—C >0) .

Proof: It follows as in the proof of lemma 5.3 that GE(XN)

satisfy

2 +
5 () = (k- Du(x)), *x.>c .

= 5
Thus, there are constants G; and ﬁ% such that (A.l) holds. 0

Lemma A.2 Let f € # be supported in Qr for some r > h .

+
Then, if ¢ € p(H) , there are constants GH for n=1, 2, *** ,

sC
such that

A e_1 0 C IXN'

+ .
(A.2) (Rcf)H{XN) = Ln,C = i;N B
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where ReVﬁi—g >0 .

Proof: Note that R f € D(H) C K , so that (RCf)E{xN) is

z
defined. Tt followe from lemma A.1 that (Rcf)i-(xN) has the form

(A.1) for iscN >r . Since R_f € ¥, it follows that (Rcf)-:i(xN)

a4
must die out as xN+;i-_°° . Thus,D;-};-=0 for all n . L

Definition A.3: The function u € K satisfies the incoming

+
(outgoing)radiation condition in  iff there are constants CH

for n=1, 2, - , an r>h and a A € R such that

AT I

e 5 i?ﬁ >

where Revgz—k >0 and Ikai—X <0 '(Im i—k > 0) «

n

B+

+
(A.3) “E(XN) = C

O

(The terms 'incoming' and ‘outgoing' are arbitrary in this prob-
lem. They have no corresponding physical interpretation.)
y " + /ﬁf_”
Note that in lemma A.2, if 7 € C , then Im kn—C <0, and

if ¢ € C , then Im/ﬁnz—c ¥ 0,
Lemma A.4: If u € K satisfies
(A.L) ~Au = Au in Q

for some A € A, and if wu also satisfies the incoming (outgoing)

radiation condition in © , then u =0 .

Proof: The theorem is proved by showing that the assumptions on

u imply that u€d. Since X € A, and u satisfies Hu = du , u
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must be zero. Assume u satisfies the incoming radiation condition
(the proof for the outgoing radiation conditiomn is the same) . Then,
for some r > h, u satisfies (A.3), where ) is given by (A.4).
Since ujG K, it follows that u has an eipansion (5.2) with

+ - !
UE(XN) given by (A.3). Then

(A.5) 5;;' =¥ Z G— V IXNln (X} €0, + X > T

Since u satisfies (A.4),

(A.6) 0= [ (ux)u(x) - u(x)lu(x))dx
Qr+l
= [ (~Au(x))u(x) - u(x) (-Au(x))}dx
Qr+l
= J 2 G-———:H' EE;On dx
o, =1 3 %y
+1 o
= f'{. %ESE—Etll'_(x 1)+ u(x, r+l) —= Bu(x rLl)} dx
e *N
- f {_ au(i,—r-—l) E(;(, -—r—l) + u(i, —r—l) _a-ﬁ(;is"r_l)}d;{

G Oxy oxy
where nj is the j—th component of the normal to aQr+l . Substi-

tuting (5.2) and (A.5) in (A.6) yields

77
0 B — ~2Revk -A(r+l)
0= I (lc:[2 + ]cnlz)(/ki— - /klz‘-k)e 3

n=1

(o]
=2 3 (P D Al
n=1 -
k2<)
n
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since /ﬁi—l ; V{i—lﬁ when A j_ki, and ‘Vki—l = ~Yk“~\A when

2 { ' {
kn < A . Since ﬁfA =i Im i—k and Im i—l <0 for all n

=2

+ - 2
such that kﬁ < A, it follows that C, = Cn =0 if kh < A . Thus,

ALy

u(x) = ;

o
B+

.nn(i), x € ,tx >r.

n=1
kZ>)
n

But then wu(x) dies out exponentially as X + + o ,  Hence,

u € LZ(Q) =¥ . .

It is interesting to note that lemma A.4 plays an essential role
in the proof of the limiting absorption principle. This is another
of the many instances where uniqueness of a limit implies existence of

the limit.

"Lemma A.5: Let [a,b] C A be a bounded interval, g, >0, and

r>h ., Then, for each r' > 0 , there is a constant Mr' such that
<M
st 2,0, < Merl 21150
for all A € [a,b] , 0 <0 < &y » and f € ' with support in

Proof: It is clearly sufficient to comsider only r' > r and
f €9 with Ilfllﬂ?= 1 . Suppose the lemma is false. Then there
are sequences '{Xn} in [a,b], {on} in (0, GO) » and '{fn} in ¥

with [|fn|] = 1 , such that, denoting An +io by T

IIRC fn"Z,Qr, >mn .

n
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Assume that Cn converges (this may be done by taking a subsequence).

" ; f o =3
Since R, 1is analytic in C , ¢, must converge to some A € [a,b]

c

Note that theorem 1.8 implies that there is a. constant K such that

&, £ || Sk R £ || » + ||-a R, £ }

g n'l2,0r Co ™ Ly @iy S b L@y g)
R £ || +K|lf [l for all-n .
Ca Loy y) Ly®pryy)

Let
u = 1 R f, and F = N S— £
no TR £, 0, ¢ m |y, £ ]| "
n r n Cn n Z’Qr'

Then llunIIZ,Qr, =1 and Ianllﬂ.+ 0 as h=»>« . It follows
by Rellich's compactness theorem that there is a subsequence (again

denoted by '{un}) which is Cauchy in L, (Q s where r < h' <1r',

h')

From lemma A.Z,

o Vﬁ "C
u(x) = 2 ét IXN[
n m, L

m=1 n

(;§>: XEQ:iXN>r,

where Reri»C >0 and Im¢k2 n-i 0 . Using a calculation similar

to (5.3), it is seen that

(A.7) Ilu II _ f_llu II y for t > 0.
n Lz(Qh,+t Qr+t). n Lz(Qh, Qr,) .

Since ‘{un} converges in LZ(Q , it follows from (A.7) that ‘{un}

h')
converges in LZ(QC) for all ¢ > h . Since —Auf1 = cnun + Fn .

follows that {—Aun} is also Cauchy in LZCQP) for all ¢ > h .
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Thus, from theorem 1.8, it follows that '{un} is Cauchy in H;OC(Q) 3

hence, u > u €K as n~+® ., Since -Au =z u +F , and
n » n nn n

lanIij* 0 as n =, it follows that -Au = Au . Lemma A.l

implies that (ﬁ)%gﬁﬁ) has the form (A.1). Since u -+ u in

loc . + o+, . loc
HZ Q) , it follows that (uh);#XN) > (U)E(XN) in L (R) . Thus,

p A2l

=0 Vm and (ﬁ)§(£N) =C-e for x> r where

BT

ReVﬁi—X‘z 0 and Im n—l < 0 . This means that u satisfies the
incoming radiation condition , and -Au = Au in § . By lemma A.4,

u=0. But uw >u in H%OC(Q) and | =1 for all n .

| “n“ 2,0,

This is an obvious contradiction. 0

Lemma A.6: Let [a,b] €A be a bounded interval, ¢, > 0 , and

r >h . Then the mapping

(X5 G5 £) = RA+icf

is a uniformly continuous mapping from [a,b] X (0, 0,) X unit ball

in Lz(Qr) into K .

Proof: Suppose the lemma is false. Then for some r' > r and
some € > 0 , there exist sequences V{Kn} and {vn} in [a,b],
{on} and {Tn} in (0, 00) , and {fn} and {gn} in the unit ball

of LZ(Qr) such that

(4.8)  [n ~v | < 1/n, !cn —-rn! < 1/n, and an_—gnH <1/n ,

Lz(Qr)

- >
(A.9) 1 R}\n-%-ignfn RUn':‘iTngn” 2580 = o
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Assume that the sequences '{kﬁ},'{vn},'{an} , and {Tn} converge
(this may be done by taking subsequences). Denote An + iOn by

Ly Vgt ity by W . It follows from (A.8) that A = Ay VA,
Oﬁ + o and T,*0 as n + o . where X € [a,b], o E [O,GD} . As
in lemma A.5, the analyticity of RC in C+ implies that o =0 .

Thus, T, A and B> A as n o,

By lemma A.5, there is an M such that

<M and l

M

lI®, £ || R g |l <
Z;n a LZ(Qr'+l) Hy B LZ(Qr'+l)'—

for n=1, 2, **+ . As in the proof of lemma'A.S, it can be shown
that there are subsequences, denoted again by '{Cn},'{un}, {fn} s

and '{gn}, such that {R fn} and '{Rungn} are Cauchy in L,(Q) ,

C
n &
£f = - i .
and Ri;n RN and RC g, > v, in K , where uy and vy satis
fy the incoming radiation condition. Since -AR_f =g R_f + f
Cnn negom n

— = + 1
and ARungn anungn g, > it follows that

-A(R_ f - R g)=CR'f -uR g +f -g .
Cn n un n n Cn n n un n n n

Since Ilfn - gnlle(Qr) < 1/n , it follows that —A(uk -v)) =
A(uk - VX) . Thus, u, - vy € K satisfies the incoming radiation con-
dition and —A(uk - VX) = K(uk - VA) . By lemma A.4, Uy vy = 0,

or uy =v, . Thus, R fn *'uk and Rp g, Uy in K . But this

n n

4

contradicts (A.9). .

Lemma A.5 and A.6 can also be proved for 0 > o0 > -0, with the

outgoing radiation condition replacing the incoming radiation condi-
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tion.

Completion of proof of theorem 5.6; Lemma A.6 implies that the

mapping (5.4) is continuous from C+ X LZ(QI) into K , and is uni-
formly continuous on {A + i0: a <X <B, 0< 0 <o} X unit ball of
Lz(ﬂr) , where [a,b] € A and o, >0 . Since K is complete
(Frechet), it follows that this mapping can be extended continuously
to {A+i0: a<Xi<b, 020 <0} X unit ball in L,(Q2y) into K,
for [a,b] € A and Go >0 . From the proofs of lemma A.5 and A.6,
the boundary values of this mapping satisfy the incoming radiation
condition and hence, by lemma A.4, are unique.

A similar argument proves that the'mapping (5.5) on C X Lz(Qr)

can be extended to A X Lz(Qr) .
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