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Abstract 

In this work, the theory of scattering with two Hilbert spaces 

is applied to a certain selfadj oint elliptic operator acting in two 

different domains in Euclidean N-space, RN • The wave operators 

a.nd scattering operator are then constructed. The selfadjoint oper-

ator is the negative Laplacian acting on functions which satisfy a 

Dirichlet boundary condition. 

The unperturbed operator, denoted by H , is defined in the Hil­
o 

where S is a uniform cylindr~cal domain 

in RN , S = G x R, G a bounded domain in RN-1 with smooth bound-

ary. For this operator, an eigenfunction expansion is derived which 

shows that H0 has only absolutely continuous spectrum, The eigen-

function expansion is used to construct the resolvent operator, the 

spectral measure, and a spectral representation for H 
0 

The perturbed operator, denoted by H , is defined in the Hil-

bert space JC= L2 (Q) , where Q is a perturbed cylindrical domain 

in RN with the property that there is a smooth diffeomorphism 

<Ii: Q # S which is the identity map outside a bounded region. The 

mapping is used to construct a unitary operator J mapping 

onto JC which has the additional property that JD(H
0

) = D(H) • 

The following theorem is proved: 

JC 
0 

Theorem: Let 
ac 

7T be the orthogonal projection onto the subspace 

of absolute continuity of H • Then the wave operators 



and 

iv 

itH -itHo 
s-lim e Je 
t-r + 00 

1 . itH0J* ~·itH ac = s .... 1lil e e 7T 

t -++ 00 

exist. map 'JC 
0 

isometrically onto 

and provide a unitary equivalence between H0 
and 

the part of H in Jf!C . Furthermore, 

0 

It is proved that the point spectrum of H is nowhere dense in 

R • A limiting absorption principle is proved for H which shows 

that H has no singular continuous spectrum. The limiting absorp-

tion principle is used to construct two sets of generalized eigenfunc-

tions for H . The wave operators W+(H, H0 ; J) are constructed in 

terms of these two sets of eigenfunctions. This construction and the 

above theorem yield the usual completeness and orthogonality results 

for the two sets of generalized e i genfunctions . It is noted that 

the construction of the resolvent operator, spectral measure, and a 

spectral representation for H0 can be repeated for the operator 

Hae and yields similar results. Finally, the channel structure of 

the problem is noted and the scattering operator 

is constructed. 
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Scattering Theory for the Laplacian in 

Perturbed Cylindrical Domains 

It is only within the past two decades that scattering theory, 

long used by physicists in problems of quantum mechanics, has been 

put on a solid mathematical foundation. Mathematically, scattering 

theory is concerned with the unitary equivalence of two selfadjoint 

Hilbert space operators. 

The following formulation of scattering, given by Kuroda in [18], 

is the single-channel one-space theory. There were earlier formula-

tions by Cook [6] an.d Jauch [11], but they did not encompass a.s wide 

a class of problems as Kuroda's. Let H and H be selfadjoint 
0 

operators on the Hilbert space JC with domains D(H
0

) and D(H) , 

respectively. Le.t and 
ac 

7f denote the orthogonal projections 

onto the subspaces of absolute continuity for H
0 

and H , respec-
-itHo -itH 

tively, and let e and e denote the strongly continuous 

unitary groups generated by H
0 

and H . Suppose the strong operator 

limits 

itH 
W = s -lim e + t -++co 

-itH
0 ac e TI

0 

exist; these operators are called the (generalized) wave operators. 

Then w 
+ 

are partial isometries with initial set 

twine H0 and H , i.e. 

itH. 
e w+ 

itH
0

. 

-· t{ e 
+ 

ac.., 
7f J( • w + inter-
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and (hence) the ranges R(VJ+) of H+ are reducing subspaces for R • 

The absolutely continuous part of H
0 

is unitarily equivalent to the 

restriction of H to either of R(W ) . 
+ 

If R(W ) = R(W ) = rra~ , 
+ -

the wave operators are said to be complete. In this case, the abso-

1utely continuous parts of H
0 

and H are unitarily equivalent. 

The scattering operator S is defined by 

where w * + is the adjoint of 

the wave operators are complete, S 

s commutes with 

is unitary on 

H
0 

, and, if 

To see how this formulation came about, consider a typical scat-

tering problem in physics. In quantum mechanics, the evolution of a 

system is determined by the Sch~odinger equation 

(0.1) 
i ~t = !-11); 

where ~; = 1/l(t) , the state vector describing the physical proper-

ties of the system at time t , is a vector in the Hilbert space Jf 

and H , the Hamiltonian describing the total energy of the system, 

is a selfadjoint operator on 'JC with domain D(H) • The solution of 

(0.1), with initial state ljJ(O) at tim·~ t - 0 , is given by 

Suppose the Hamiltonian H corresponds to a particle travelling in 

a. space in which a small obstacle is present. It seems reasonable to 
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expect that if, at large positive and negative times, the particle is 

far from the obstacle, it will behave like a free particle. Take 

H
0 

to be the Hamiltonian for a free particle. Suppose the H-system 

. . h e-itH1h(O) is 1n t e state 't' for all time t . Then, for large nega-

tive times, since the particle is almost 
-itH 

h h . e o ,i.._(O) expect t at t ere 1s a state ~ 

free, it is reasonable to 

in the H
0
-system which 

approximates the H-state in the sense that 

as 

(In the case where . the 'obstacle' is a Coulomb potential, this type 

of approximation is too much to expect. See Dollard [7].) Similarly~ 
-itH 

0 
one expects that there is a state e ¢+(0) in the H

0
-system 

which satisfies 

-itH 
II e-itHijJ(O) - e 

0
¢+(0) II+ 0 as t + 00 • 

Note that, in Kuroca's terms, ijJ(O) = W_</l_(O) = W+Q+(O) , and 

¢+(0) = S ¢_(0) . In an experiment, where information about the 

H-system is needed, the experimenter sends a beam of particles, which 

are 'free' at the beginning of the experirnent, toward the obstacle. 

He then measures the 1 free' scattered particles; that is, he knows 

~_(O) and measures ¢+(0) The experimenter, thus, is extremely 

interested in constructing the scattering operator. 

From a mathematical point of view, however, the wave operators, 

which provide the unitary equivalence of the two operators, are more 

interesting th2n the: scattering opP.rator. The cbvious question tc 
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ask now is, what conditions are sufficient to guarantee the existence 

and completeness of the wave operators W+ ? It must be noted that 

conditions guaranteeing the existence of the wave operators are much 

easier to come by than conditions guaranteeL."'1.g the completeness. A 

result obtained by Rosenblum [21] and Kato I13, 14] is that if 

H = H0 + V , where V is a trace class operator on JC , then W+ 

exist and are complete. Kuroda [17] (see c:tlso Kato [1.5], p . .525) 

proved that the trace class is practically the only class for which 

this is true. Birman and Kr.ein [4], and de Branges [5] proved that 

if Ri:; - R~ , where Ri:; = (H -· I:;) -l and 
0 -1 

Ri:; = (H
0 

- I:;) , is 

of trace class for some in the resolvent set of both H 
0 

then W+ exist and are complete. 

and H ' 

In 1966, Wilcox [28) in his investigations into the application 

of scattering theory to problems in classical physics, found that the 

one-space theory of scattering was not the correct setting. In these 

problems, the operators H 
0 

and H are defined in two different 

Hilbert spaces JC 
0 

and JC , respectively. There is, however, a 

bounded linear map J of JC
0 

onto JC which can be used to identify 

Jf with JC • Kato [16] introduced the wave operator.. 
0 

(O. 2) 
. -itR 
itH o ac = s-lim e Je ~o 

t ++ 00 

which is a two-·space opera tor. He show:ed that if W+ (R, H
0 

; J ) 

exist 1 then they intertwine H 
a and H , and 81'.8 used to 
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provide a unitary equivalence between a part of H 
0 

a11d a 

part of H .. Note that the mapping J makes the two space theory 

much more complicated than the one-space theory. If the wave oper-

ators exist, the scattering operator S can be defined by 

(0. 3) 

Even if the wave operators exist and are complete, it is not neces­

sarily true that the scattering operator is unitary on rr:cJC0 • 

In 1968, Birman [3], and Birman and Belopolskii [2], gave condi-

tions on the cperators H0 , H , and J which are sufficient to 

guarantee the existence, completeness, and other desirable properties 

of the wave operators. Their results are ·stated in the following 

theorem: 

~ 
Birman' s Theorem: Let Tr ( ·) denote tlie spectral measure for H , i.'-e. 

0 0 

H
0 

= f A. dTI (A) , 
R o 

and n(.) the spectral measure for · H . Suppose 

1) J is a bounded invertible linear mapping of JC 
0 

onto 

2) JD(H
0

) = D(H) , and for each bounded interval o C R , 

3) n(o)(HJ - JH
0

)rr
0

(o) is a trace class operator, and 

4) (J*J - I)rr
0

(o) is a compact operator. 

Then the wave operators and W (H H· J*) + 0' ' 
exist 

and are complete. The wave operators W+(H, H
0

; J) are partial 

isometries with initial set rracJ{' and final set 
0 0 

;]{ ' 
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The absolutely continuous parts of H 
0 

and H are uni.tarily equi-

valent. 

This powerful result of Birman was used by Wilcox and Schulen-

berger 122] to prove the completeness af the wave oper?-tors for the 

class of problems they were studying. In this thesis Birman 1 s 

theorem is used to prove the existence and completeness of the wave 

operators for the two operators given by the negative Laplacian with 

a Dirichlet boundary condition in a uniform cylindrical domain and 

in a perturbed cylindrical domain in N R . 

Andther approach to the problem of unitary equivalence and scat-

tering which must be mentioned is the eigenfunction CA'"Pansion method. 

In this case, the operators H0 and H are (selfadjoint extensions_. 

of) differential operators in some domain(s) in RN Ikebe [lOJ · 

used this approach in studying perturbations of the Laplacian in 

RN by a potential. Povzner [20],Shenk [23], Thoe [26], Goldstein [9], 

and many others have also used this method. 

A set of generalized eigenfunctions is constructed for 

Associated with this set of eigenfunctions is a i!!.easurable space s-2 

and a positive measure ]J on 0. , The generalized eigenfunctions 

are of the form ¢(xs 0 , where x is in the domain in in 

which H
0 

is defined, and ~ E n 

complete in JC 
0 

in the sense that if 

The set of eigenfunctions is 

f ('. 'JC , then there is a 
0 



(0.4) 

7 

f(·) = J "iCE)¢(·, ~)dµ(E) 
n 

(interpreted in a suitable sense). The eigenfunctions are 'crthogonal 1 

in JC
0 

in the sense that if _g E L
2
(n, µ) , then the function f 

given by the formula (0.4) is in 'JC , and the norm of 
0 

is equal to the nonn of f in J( 
0 

(This is not the usual Hilbert 

space concept of orthogonality.) 

Two sets of generalized eigenfunctions ¢+(x, ~) are construe-

ted for H , usually by perturbing the eigenfunctions for H 
0 

existence of the wave operator is proved by showing that. the two 

The 

sets of generalized eigenfunctions are. orthogonal in Tiac;J( in the 

above sense. The completeness of the wave operators is proved by 

showing that any function 
.., c-. 

f E rr
0

· JC can be rep resented as 

(0.5) f (., 

for some - g+ E L
2 

(?i, µ) (i.e. by showing that the eigenfunctions 

· ( C) 1 . acm cp+ ·, s are comp ete in TI "'' • The wave operator is then con~ 

structed in term...s of these expansions as follows: 

,.. 
for ~ g E L

2
(n, µ) • 

This approach to the problem of scattering y:!elds mor12. informa-

tion about the operator than do the abstract theor.Les. In par--

ticular~ it is usually the case that the point spectrum of H can 
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be shown to be discrete (or even finite in some cases). Also, the 

singular continuous spectrum of H can usually show to be empty. 

Results of this sort are not derivable from the abstract theory. 

This thesis is a combination of the abstract theory of Birman 

and the eigenfunction expansions of Ikebe. It is a generalization of 

a class of problems dealt with by Goldstein [9] utilizing a very dif-

ferent approach. In §1, the nonnegative selfadjoint extension of the 

Laplacian acting on functions which satisfy a Dirichlet boundary con­

dition in a domain (open connected set) in RN, for N = 1, 2, ···, 

is defined. Some regularity results are proved for this operator . 

In addition, the function spaces used in this paper are introduced 

along with some properties of these spaces. 

In §2, the operator H
0 

is defined to be the selfadjoint exten-

sion of the Laplacian as above, in the cylindrical domain 

S = GXR in 

boundary. 

RN , where G is a bounded domain in 
· N-1 
R 

The coordinate system in RN is chosen so that 

with smooth 

is the 

longitudinal coordinate in S , i.e. x = (x
1

, ···, ~) ES~~ ER 

-
and x :: (x

1
, • • ·, z1\l-l) E G • It is noted that the operator HG , 

defined to be the selfadjoint extension cf the Laplacian as in §1, 

in the N-1 dimensional domain G C RN-l , has a complete set of 

eigenfunctions {n (x)}
00 

1 
and corresponding eigenvalues 

n n= 
{

1 2100 
K ; .1 • n n= 

Assume the eigenvalues are increasing. It is shown that the functions 

W,,. (x, f;) 
n 

-1/ 2 i~x,_T -
(2TI) e i~ (x), n - 1, 2, 

n 
, .; E R, x E S 

form a cmnp1el.:e set oJ: gcneralizeci eigenfunctions f or H
0 

• This set 
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of eigenfunctions i.s used to construct the resolvent operator 

-1 
R~ = (H 0 - s) for H0 • The resolvent, in turn is used to con-

struct the spectral measure 7T (.) 
0 

for II , which shows that H
0 

0 
has only absolutely continuous spectrum. Finally, a spectral repre-

sentation for H0 is constructed from which it follows that the 

spectral multiplicity function for H is piecewise constant and 
0 

increases by two at each of the (transverse) eigenvalues 

In §3, the operator H is defined to be the selfadjoint exten-

sion of the Laplacian as in §1 in the perturbed cylindrical domain 

N 
[;) C R , where r2 has the property that there is a smooth diff eo-

morphism <P:Q <+ "S" which is the identity map outside some bounded 

set. A unitary mapping J from 'JC
0 

= L
2 

(S) onto JC = L
2 

(Q) is 

defined by 

Jf(x) = ln<I>(x)j 112£(<I>(x)), x En, f EJC
0

, 

where I D<P(x) I is the Jacobian-determinant of <I> at x • It is 

shown that JD(H
0

) = D(H) • 

In §4, the abstract two-space theory of Birman is applied to 

this problem, yielding the existence and completer.ess of the wave 

operators (0.2) . 

In §5 and 6, the wave operators whose existence is proved in 

§4 are constructed, and the spectrum of H is investigated. In §S , 

it is shown that the point spe.ctrum of H is nowhere dense in R • 

The limiting absorption principle (proved in the appendix) is stated 

and used to prove t hat the singular continuous spectrum of H is 
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empty. Finally, two sets of generalized eigenfunctions, 

{w~(x,t:)t:=l' x En, C: ER , are constructed for H using the 

limiting absorption principle. 

In §6 the wave operators w+(H, H0 ; J) are constructed . The 

completeness and orthogonality of the two sets of generalized eigen­

functions, + {w-(x, C:)} , for H follow from the existence and com­
n 

pleteness of the wave operators. Finally, the scattering operator 

(0.2) is constructed and the multichannel aspects of the problem are 

mentioned. 
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§1 The Operator -~D(V) in a General Doma.~n V in RN 

Let V be a domain in RN for some N > 1 • In this section 

some function spaces and notations are introduced, and a precise defi-

nition is given of the selfadjoint extension of the negative Laplacian 

acting on functions defined in V which are zero on the boundary. 

Some regularity :results for the operator are proved. 

The following spaces will be used in the remainder of this paper. 

L2 (V) is the Hilbert space of square-integrable complex valued func­

tions defined in V with the L2-inner product given by 

u, v 

If u E L2 (V) , the support of u , supp u , is the complement of the 

largest open set V CV satisfying f/u(x)! 2ax = 0 . 
v 

1 loc(V) 
2 

is the space of all complex-valued functions u defined in V for 

which u E L
2

(V n M) for all bounded measurable subsets M c V • 

(Note that functions in 1 loc(V) 
2 

V • ) The seminorms 

11 u 11 L (VIB ) 
2 r 

where 

are in L
2 

.!!..£. to the boundary of 

h . h Ll")oc(V) ~ generate a topology in w ic is a Fr~chet space. ,_ 

For each integer m > 0, H (V) (Hloc (V)) is the space of all 
m m 



functions in L
2

(V) (in 

in L2(V) (in L~0c(V)) 

u EH (V) (u E Hloc(V)) 
m m 

12 

Lloc(V)) h h h d b d 
2 w ic ave istri ution erivatives 

of order less than or equal to m, i.e. 

iff u E L
2

(V) (u E L~oc(V)) and, for any 

multi-index a=(a
1

, a
2

, .•. , ~) of nonnegative integers with 
N 

., I ~ h · · 1 · (V) (i"n L1
2
°c(V)) a = ~ aJ. ~ m , t ere is a unique e ement in L2 j=l 

denoted by Dau such that 

00 

dx = (-l)lal f Dau(x) ¢(x)dx 
v 

holds for all ¢ E C
0

(V) H (V) is a Hilbert space with the m-norm 
m 

defined by 

jjujj 2 V = l: llDaulfL (V) 'u EH (V). 
m, lal<m . 2 m 

n10c(V) is a F:r~chet space in the topology generated by the semi­
m 

norms 

(Note that functions in 

' u 

Hloc(V) 
m 

E Hloc(V) 
m ' 

r > 0 • 

are in H 
m 

up to the boundary of 
co 

V • ) The space 
0 

H (V) 
m 

is the closure in them-norm of C0 (V). 

Hloc (V) is the closure in Hloc (V) of C
00

0 
(V) • Note that 

m m 

Notational note: Many Hilbert spaces, norms, and inner products 

appear in the following pages. If Jf is 2. Hilbert space, the inner 
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product and norm on 'JC wi11 of ten be denoted by ( . 
' ->JC and 

11 ~I I 'JC , respectively. The inner product and norm in H (V) 
m 

will 

be denoted by ( • , ·> V m, 
and II · II V , respectively, unless the do-

m, 

main V is obvious, in which case the subscript V will be omitted. 

The negative Laplacian, 
a2 a 

-to.= 2 - --2 - , can be 
Clxl ax2 

00 

applied pointwise to any function in C0 (V), and yields a new func-

00 

tion in C
0

(V) • It can also be applied, in a distribution theoretic 

(or weak) sense, to larger classes of functions in L2(V) and in 

L~oc(V) • 

Definition 1.1: Let u EL
2

(V) (u E L;oc(V)) • Then -6u is said 

to exist weakly and equal v E L2 (V) (v E L~oc(V)) iff 

Denote by 

u E L 2(V) 

(Lloc(V)) 
2 

f u(x) (-6¢)(x)dx = f v(x) ¢(x)dx 
v v 

loc L2(-6; V) (L 2 (-6; V)) the set of all functions 

(u E L~oc(V)) for which -6u exists weakly in 

(The operator -D. with domain L2(-6; V) is the 

00 

adjoint of the operator given by -6 with domain C
0

(V)) • When-

ever -6 is used from now on, it will denote the weak negative 

Laplacian applied to functions in L (-6· 
2 ' 

V) or Lloc(-t.· 
2 ' 

V) . 
The operator -t. with domain L (-!:::.· 

2 ' 
V) is not selfadjoint. 

However, consider the following. 

Definition 1.2: Let the operator --6(V) on the Hilbert space 
0 

be the restriction of -6 to H
1

(V) , i.e. 
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0 

1) D(-6D(V)) = 12(-6; V) n H1(V) , 

2) -1:,D(V)u = -1:,u for u E D(-1:,D(V)) • 

The following theorem was proved by Wilcox [27]. 

Theorem 1. 3: The operator -1:,D (V) is a nonnegative selfadjoint 
0 

operator on L2(V) • If u E H1 (V) , then u E D(-6D(V)) and 

-1:,D(V)u= v if and only if 

0 

V ¢ E H~ (V) 
l. 

This theorem has the obvious corollary: 

Corollary 1.4: If u E D(-1:,D(V)) , then 

II ul~,V 11 ul I i + ( -L:iD (V) u, u )L (V) 
2(V) 2 

In the remainder of this section the operator -1:,D (V) will be 

denoted simply by -6D . Some regularity results a r e proved in the 

remainder of this section under the added assumption that the boundary 

of V is smooth. Since the negative Laplacian is an elliptic opera-

tor, the following theorem applies (see Agmon, [l], p. 129). 

Tneorem 1.5: and, given any r > 0 , there is 

a constant K , depending only on r and V , such that 

holds for all u E D( -~D) . 
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This means that the 2-norm of any function u in D(-L1D) in 

a bounded subset of V is bounded by the graph norm of u • (The 

graph norm of a function u E D(-6D) is II ull 1 (V) + ll-L1null L (V) 
2 2 

D(-6D) is a Banach space with this graph norm.) The following lemma 

now applies to functions in D(-6D) • 

Lemma 1.6: If u E Hloc (V) 
2 

co N 
and ¢ E C 

0 
(R ) , then <j>u E H

2 
(V) , 

and 

(1.1) -6(cjlu) = ¢(-6u) + u(-6¢) - 2V¢·Vu , 

where V is the (weak) gradient operator. 

Proof: This is a simple case of Leibnitz rule (for a proof, see 

Agmon [1], p. 9). 

Theorem 1.7: The set of functions in D(-6D) with bounded 

support is dense, in the graph norm, in D(-L1D) . 

Proof: Let Let satisfy 0 2_ ~ 2_ 1 , 

and ljJ(x) = 1 if Let 1jJ (x) = ljJ(x/n) 
n 

for n= 1, 2, ···, 

N 
x ER • Then ~nu EH1 (V) n H

2
(D)c D(-~D) for all n , and (1.1) 

implies 

Hence, 
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< f 2 - V-B lu(x)j dx-+ 0 as n-+ 00 

n 

and 

00 N I I Since 1jJ E C
0 

(R ) , there is an M > 0 such that 6ijJ
0 

(x) < M 

and IViJJn(x)I .::_ M for all 

VijJ (x) = 0 if !xi < n • 
n 

N x E R • Also, ~ijJ (x) = 0 and 
n 

Thus, llu(-~ijJn)ljL (V).::.Ml!u!IL (V-B) 

and 

that 

II Vi)Jn·Vull L2(V) .'.':.Mil ull 1,V-Bn • 

ll-6nu + ~D(ijJnu) II L2(V) -+ 0 as 

2 2 n 
0 

Since u E H
1

(V) , it follows 

n-+oo. Thus, 1jJ u con­
n 

verges to u in the graph norm. O 

The above theorem implies that the set of functions in D(-~D) 

with bounded support is a core for -~D , i.e. -~D restricted to 

such functions is a closable operator in L
2

(V) whose closure is 

-~ 
D 

Finally, a local inequality is proved. 

Theorem 1.8: If r > 0 and £ > 0 , then there is a constant M, 

U EH12oc(V)rm1loc(V'1, depending only on r, £, and V , such that if 

then 
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oo N . 
Proof: Choose ¢ E C

0 
(R ) . such that ¢(x) = 1 if I xi ~ r , 

a. 
and ¢ (x} = 0 if [ x I > r + E/ 2 • Then, since ¢u ei2CV)nH1 (V) c 

D(~} , theorem 1.5 implies that 

(1.3) II ¢ull 2 vnB 2- KCll ¢ull L (V)+ II -L\(¢u) II L (V)) 
' r 2 2 

for some constant K , depending on r and V • Since ¢(x) = 1 

if [xi < r , it follows that 

( 1. 4) 11 ¢u II 2 V n B = II u II 2 V n B • 
' r ' r 

It follows from lemma 1.6 that -~D(¢u) = -6(¢u) is given by (1.1). 
oo N 

Since ¢ E C
0
(R) , there is a constant K1, depending only on ¢ , 

such that 

and 

(LG) II -6n(¢u) II L (V) = II -6n(¢u) II L (V llB ) 
2 2 r+E/2 

__-::_ Klll -~ull L (V llB ) + Klll ull L (B ) + Klll ull 1 DnB ' 
2 r+E/2 2 r+E/2 ' r+E/2 

Eidus [8] has shown that for such functions u, there is a.constant 

K
2 

, depending only on r, E, and V , such that 

(1.7) llui[l VllB 2K2(ljuli1 (DllB ) + 11-Aui!L (VllB » · 
' r+E/2 2 r+s 2 rte: 

Combining (1.4), (1.5), (1.6)~ and (1.7) in (1.3) yields (1.2) . 
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The Operator H 0 

Let S = G x R be the cylindrical domain in RN defined in 

the introduction. The unperturbed operator H
0 

is defined to be 

-LlD(S) ; it is a selfadjoint operator in the Hilbert space JC
0 

= L
2
(s). 

The operator H
0 

is investigated in this section. 

Notational note: From now on, if V is any domain in RN and 

r > 0 , 

V r = {;x~ E V: I~ I < r} 

It follows from the theory of elliptic operators in bounded do-

mains that the selfadjoint operator HG , defined to be -6D(G) in 

the N-1 dimensional domain G , has a complete set of orthonormal 

eigenfunctions in L2(G) • Denote the eigenvalues of HG , ordered 

increasingly, by {k2} , and the corresponding eigenfunctions by 
.. n 

{n (x)} • Note that for each n , 
n 

(2 .1) 

(that they are in H2(G) follows from theorem 1.5), and 

(2. 2) 

The elliptic theory also implies that the are smooth functions. 

(2. 3) 

Definition 2.1: For n = 1, 2, let 

W
0 

(X, i;) 
n 

(2 ) -1/2 ii;~J (") i: E 
= TI e n x , s - R, x E S <l 

n 
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These are generalized eigenfunctions for H0 • 

Theorem 2.2: For each n , the mappings 

(2.4) s+w~(-, s), ~ER 

and 

(2.5) ~ + ~s w~ ( ·, 0 , s E R 

. t• . f R i·nto H1
2
°c(S) n °Hlloc(S) are con inuous mappings o _ Furthermore, 

(2. 6) -6w
0 (x, l;) = (s2 + k

2
)w

0 (x, ~) ., s E R, x E S • n n n 

Proof: It follows from (2.1) and (2.3) that 

w:(·, s) E H~oc(S) n ui0 c(S) for every s ER. It is easy to veri­

fy, using (2.2) and (2.3), that (2.6) is satisfied. 

Let r > 0 , and s , v E R . Then 

1 r isxN iv~ 2 = (2TI) - f le -e I d~ + 0 as s + v . 
--r 

Al'so, 

II -6w~(·, t;) + 6w~(·, v)ll LZ(Sr) = 

? ? isx.r 2 2 ivx... ~ l (s- + k-)e N-(v + k )e Nl~dx.. + O as 
n n N 

I t follows from the above and from theore.m 1.8 tha t the mapping (2.li) 
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is continuous from R into H;oc(S) n liioc(S) · 
dW

0 
(X, S) 

~-~-.;~~- = i~w~(x, .;) , an argument similar to the above Since 

proves that the mapping (2.5) is continuous from R into 

H~oc(S) n ~~oc(S) . D 

Definition 2.3: The Hilbert space e is· defined by 

00 e= 2:: f:fn' where e = L
2

(R) for n 1, 2, 
n=l n 

and 

{f } Vn 2 00 2 
f = Ee~ f E L

2
(R) and 11 f II e = 2:: I ~n 11 L (R) n n n=l 2 

e is the direct sum of a countable number of copies of 

< 00 . 

L
2

(R) • The following theorem proves that the generalized eigenfunc-

tionS W
0 

(X, S) 
n . 

are complete and orthogonal in H
0 

• 

Theorem 2.4: The operator T
0 

from 'JC
0 

to e , defined by 

(2. 7) = ~lim U 
r + 00 S 

r 

f(x)wn(x, .;)dx},.; ER, f EJC
0

, 

where e--lim denotes the limit in the norm in e , is unitary. The 

adjoint operator T* 0 
from 

(2.8) T*h(x) 
0 

M 
JC

0 
- lim 2:: 

M + 00 n=l 
K + oo 

is given by 

K 
f h (l;)J (x, s)ds , x E s, 
-K n n 

h = {h } E e , 
n 

where JC
0 

- lim denotes the limit in the norm in Jf
0 

• 
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Proof: Let f E JC
0 

• Then for a.e. ~ E R , the function 

f (x, ~) = f (x) is in L2 (G) , and, for each n , 

I! f(x)T\i(x)dxj
2 

::._ f jf(x, ~)j 2dx. It follows that 
G G 

~ f(x, ~)nn(x) dx E L2(R) for each n • Denote by F the operation 

of Fourier transforms on L2 (R) , i.e. 

· M I -i~~ 
Fu(~) = L (R) - lim f (2TI)-l 2e u(x)dx~ ~ ER, u E L2(R) . 

2 M ~ oo -M 

Then F ~ f(x, ~)nn(x)dx E L2 (R) for each n , and, using the com-

pleteness of the eigenfunctions n (x) 
n 

and the unitarity 

of F , 

~ llFJ f(x, ~)n0 (x)dxll~2 (R) n=l G 
~ II f £ (x, ~)n0 (x) dxl I ~ (R) 
~1 G 2 

Thus, the mapping 

(2. 9) 

00 

= L: f 
n=l R 

00 --- 2 
= f L: jff(x, ~)n0(x)dxl d~ R n=l G 

f ~ {F f f (x, ~)n.n (x) ax} 
G 

is an isometric mapping of JC
0 

into ,. 
c, • But the map (2.9) and 

the map (2 . 7) are the same, Thus, 

e . 

T 
0 

is an isometry of JC 
0 

into 
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Let h E e. have only a finite number of nonzero components, and 

00 

suppose those nonzero components are i.n C
0

(R) (such functions h are 

dense in e. ). Denote by Q, for the present, the operator defined 

by the right side of (2.8). Then 

Qh(x) 

00 

= L: 
n=l 

00 

00 

= L: f h (~)w0 (x, ~) d~ 
n=l R n n 

i~ 
(2TI)-l/ 2 f e ~h (~)d~ n (x) 

R n n 

= L: F*h (x.Jn CX), x E s , 
n=l n N n 

where F)~ is the inverse Fourier transform on L
2 

(R) • Using the 

orthogonality of the nn's in L
2

(G) (note that the sum is finite), 

11 Qhj Ii = f I Qh(x) I 2<lx = f f I ~ (F*h ) (x.Jn (X) 12 dx dx._1 
0 S R G n=l n N n ~ 

00 * 2 
= L: II f , hnll L (R) = 

n=l 2 

00 2 
E 11 h n 11 L ( R) = 11 h 11 e · 

n=l 2 

Thus, Q is an isometry on ~ e. into JC
0 

Finally, it is easy to 

verify for the class of h E e above, that T
0
Qh = h • Since this 

class of functions is dense in e , T
0
Q = I • Thus, T

0 
and Q 

* -1 are unitary and Q = T0 = T
0

. • 0 

From now on, 

Note that 

,. 
(2.10) f (tJ = 

n 

T f will be denoted by 
. 0 

,. 
{f ([,;)} 

n 
when f 6 1C

0 
• 
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The following theorem gives a representation for H
0 

in e . 

Theorem 2.5: If u E D(H
0

) , then 

and 

(2 .11) = {h = {h } E ~: 
n 

Proof: Denote by V the mapping in t whose domain D(V) is 

given by the right side of (2.11) and which is defined by 

Vh(s) = {(s
2 + k

2
)h (s)}, s ER, h E D(V) • 

n n . 

Then V is the direct sum of a countable number of selfadjoint aper-

ators (multiplication of h (s) E e = L
2

(R) 
n n 

by and there-

fore is selfadjoint on D(V). Thus, T~ V T
0 

is a selfadjoint operator 

on JC • 
0 

Let f E D(H
0

) have bounded support. Then, for sufficiently 

large r , supp f C S 
1 

• 
r- satisfy ¢(x) = 1 if 

<J>(·)w:( · , ~) E D(H 0 ) , and H 0 ¢(·)w~(·, S) = -6¢(·)w~(-, s) is 

given by a formula similar to (1.1). Hence, in (2. 7), 

= U H0 f(x) w
0 

(x, t,;) dx} ·-
S n 

r 

{< f, H
0
tji(-)w:(-, s) )JC} 

0 
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= { f f (x) -!::.w
0 

(x, s) ds} n 
Sr 

Thus, T0_f E D(V) and Since such 

functions form a core for H0 (theorem 1.7), and since H0 and 

T*VT 
0 0 agree on this set of functions, it follows that 

selfadjoint extension of H0 • But R
0 

is selfadjoint, so 

* H
0 

= T
0

VT
0

, and T
0
H

0 
= VT

0 
0 

If f E JC0 , then theorem 2.4 implies that 

M K ,.. 
(2.12) f(x) = JC0 - lim 

M -+ co 

K -+ co 

E f ! f (0 w
0 

(x, t;)ds, 
n=l -K n n 

x E s . 

This notation will be shortened to 

co ... 
( 2 .13) f (x) = E J : f (s) w

0 
(x, s)ds, 

' n n 
n=l R 

x E s, f E 'JC 
0 

where this is understood to imply the limits as in (2.12). By 

theorem 2.5, if f E D(H 0 ) , then 

co 

E f x Es • 
n=l R 

Theorem 2.5 has the following corollary: 

is a 

Corollary 2.6: If f E D(H 0 ) , then the representation (2.14) 

for f is also valid in H~oc(S) , i.e. 

f(x) 
M K 

= Hloc(~) - lim E f 
2 ·-
M ->- 00 , K + 00 n=l -K 

.. 0 

f (s)w (x ~)ds, 
n n ' 

x E s . 
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Proof: If f E D(H0 ), then f has the representation (2.13) 

and H0 f has the representation (2.14) in JC
0 

• Using theorems 1.4, 

2.4, and 2.5, given any r > 0 , there is a constant K such that 

M T M T .. 
II f - I: f f (~)w0 (·, ~)d~ll 2 S < K(ll f - I: ff (S)w

0 
(·, ~)d~ll JC 

n=l -T n n ' r - n=l -T n n o 

(2.15) 

Since both terms on the right of (2.15) go to zero as M and T 

go to 00 , the corollary is proved. 
0 

With the above representation of H; in e ? the resolvent 

0 -1 
R = (H - s) can be easily constructed. s 0 

operator 

Theorem 2.7: Let p(H
0

) denote the resolvent set of H
0 

and s E p(H
0

) , Then if u E JC 
0 ' 

u (~) 
R0 u = T*{ n } 
s 0 ~2 + k2 - s 

n 

Proof: Let v = R~ u E D(H
0

) • Then and 

T 0(H 0 - s)V = T 0u. Using theorem 2.5,it ·follows that for each n, 

u (~) a.e. ~ ER , 
n 

or 

v (~) = 
n 

u (~) 
n 

a. e. ~ E R • 
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But 

The following theorem of Stone ([25], p. 183) is used to con-

struct the spectral measure 7T
0

( . ) for H
0 

from the resolvent of 

H 
0 

Stone's Theorem: Let H be a selfadjoint operator on a Hilbert 

space JC, and let TI( · ) denote its spectral measure. If f, g E JC 

and - 00 < a < b < 00 , then 

1/2 < g, [TI(b) + TI(b-) ]f >JC - 1/2 < g, [TI(a) + TI(a-) ]f >JC 

b 
= lim 2

1
. f ( g,[R,+. - RA . ]f)JC dA, 

a -+ o+ Tii a I\ icr -1cr 

where RA+icr = (H - A+ icr)-l 

Theorem 2. 8: If f E JC0 , and - 00 < a < b < co , then 

(2.16) 

1/2 (f,{TIO(b) + 'ITO(b-) - 'ITO(a) - 'ITO(a-)}f>Jc 
0 

then 

Proof: 

00 

= l: 
n=l 

Theorem 2.7 implies that if f E JC 
0 

and ~ E p(H ) , 
0 

A "? 
00 1£ (~)1-

( f , R0 f ) ( T f T R
0 f ) l: f n 

2 
d t" • r JC

0 
= 0 ' 0 r e = 2 S 

~ ~ n=l R ~ + k - s 
n 

If A E R and a > 0 , then 



27 

00 2i0 A 2 = r J if (s) I d~ • 
n=l R (s2 + k2 - A) 2 + a2 n 

n 

By Stone's theorem, the left side · of (2.16) equals 

1 b 00 rJ A 2 
lim - r r r If <sYI as dA 
a +o+ ·7f a n=l R (~ 2 + k~ - A) 2 + 0

2 n · 

where x[a,b](·) denotes the characteristic function of the interval 

[a,b] • 
0 

Corollary 2. 9: If f, g E JC
0 

and - oo < a < b < oo , then 

(2 .17) 

1/2 (g,{7T 0 (b) + TI
0
(b-) - TI

0
(a) - TI 0 (a-)}f>Jc 

0 

00 -... --- "'' 
= ~ / 

2 2 
: g Cs) ,f <s>ds, 

n=l a<~ +k <b n n 
- n-

Proof: The result (2.16) extends to - 00< a < b < 00 by 

taking limits on both sides as a + - 00 and b + 00 • The corollary 

follows by polarization. D 



28 

Corollary 2.10: !) If f E JC 
. 0 

and A E R , then 

00 A 

(2 .18) 2: 2 f 2 : £ (s) W
0 

(x, s) ds, 
n=l s +k <I- n n 

n 

x Es 

2) TI
0

(A) is absolutely continuous 

Proof: Letting a ? b in (2.17) proves that TI
0

(b) = TI
0

(b-) , 

i.e. TI 0 (1-) is continuous. Letting a+ - 00 in (2.17) and setting 

b = A yields 

= 

2 2 ,.. 
It follows that TOTIO(A)f(s) = {X(-oo,t.)(s + k-).f <s)} , and 

n n 
00 

,.. 0 . 
,. 

TI 0 (1-)f(x) = 2: f (n
0

(1-)f) (s)w (x, s)ds = :E ,/ 
2 

,_f (s)w0 
(x, s) ds. 

n=l R n n n=l s'"+k <I- n n 
n 

This is (2.18). It follows from this representation that TI 0 (1-) is 

absolutely continuous. D 

Note that the sum on the right sides of (2.16) and (2.18) are 

finite, and the integrations are over bounded subsets of R • 

With the spectral measure for H0 constructed, it is now possi-

ble to construct a snectral representation·for H . Since this will • 0 

not be used in the remainder of the paper, it wj.11 only be sketched 

here. 

For each n - 1, 2, define the mapping U of e -· L
2 

(R) 
n n 
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Then U is unitary and U (~ 2 + k2)h (~) = A. U h (A) Let 
n n n n n n 

00 

U = ~ @ Un be the direct sum of 
n=] 

map of e onto the direct sum 

for H
0 

• The spectral multiplicity function m
0

(A.) is piecewise 

constant; it has the value 0 for A < k2 , and the value 2n for 1 

k2 < ' k2 
I\ < . 1 n - n+ for n = 1, 2, 
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§3 The Operator H 

Let n be the perturbed cylindrical domain defined in the intro-

duction. The perturbed operator H is defined to be -~D(n); it is 

a selfadjoint operator on the Hilbert space JC= L
2

(n) • Then for the 
00 

(C ) diffeomorphism \l?: n # S there is an h > O such that 

x En, l~I > h q \l?(x) = x • 

In this section, the mapping ¢ is used _ to construct a unitary map 

J of Jf
0 

onto JC • Some further properties of J are also noted. 

Definition 3 .1: If f E Lloc(S) , define 
2 

Jf(x) = jD¢(x)j 112 f(\l?(x)), x En, 

where jD¢(x)j is the Jacobian-determinant of ¢ at x. 

Note that if 

of n ' then 

f E Lloc(S) 
2 . 

and if n' c n is a measurable subset 

(3.1) f 1Jf(x)!
2
dx f i£(¢(x))l

2 
ln\l?(x)jdx = f jf(x)l

2
dx 

n' n' \l?(n ') 

Lenuna 3.2: The mapping J: f + Jf is a continuous linear map-

ping of onto and 
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Proof: Equation (3.1) shows that J is a continuous rr~pping of 

L~0c(S) into L~oc(n) • Similarly, the mapping (3.2) is a contin­

into L~oc(S) • Since . f Lloc(") uous mapping o 
2 

~G 

(3.3) D¢(¢-
1

(x))· D¢-
1

(x) = I(the N x N identity matrix), x-,E S i 

and 

D¢-l(¢(x)) • D¢(x) = I , x E Q , 

it follows that J and the mapping (3.2) are inverse to each other. 

Thus, J maps Lloc(S) 
2 

onto Lloc(Q) , and (3;2) is its inverse. 
2 0 

Corollary 3.3: The restriction of J to JC
0 

is a unitary map 

of JC onto JC with inverse map given by (3.2). 
0 

Proof: From (3.1), it follows (by setting Q' = 

is an isometry of JCO into JC • Similarly, J 
-1 

is 

Q) 

an 

JC into JCO . Finally J-lJ = I on JCO and JJ-1 = I 

00 oo· 
Lemma 3. 3: (a) J: C

0
(S) # c (r.l) 

0 

(b) J: H (S) # H (Q) is continuous for m= 1, 2 . m m 

(c) J: Hloc(S) # Hloc(Q) is 
m m 

continuous f pr m = 1, 2 . 
0 0 

(d) J: Hl (S) # Hl (Q) . 
00 

that J 

isometry of 

on 'JC • 0 

Proof: Since ¢ is c , it follows that 
00 co 

J: C
0

(S) + C
0

(Q) 

4.)-l is also J: H (S) + H (Q) , and 
m m 

co 
C , so it follows that the ranges of the mappings above are those 

indicated. Since Jf(x) == f(x) if xN I > h , the continuity 
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properties in (b) and (c) need only be proved for functions with 

bounded support. Hence, (b) ~ (c) • 

Let f E H
1

(s) • Then for i = 1, 2, ••• , N, 

D. Jf (x) = D.(ID¢(x)~ 1/ 2£(¢(x))) 
l. l. 

= (D.jD¢(x)l 112) f(¢(x)) + ID¢(x)j 112 D.(f(¢(x))) 
l. l. 

Thus there are constants K; K1, K2 such that 

Hence, II Jfjl 1,Q 2. K211fll1,s • 

A similar, but more involved computation, shows that there is a con-

stant K
3 

such that 

II Jfll 2 ,n ..'S. K3 II fll 2, s · 

Note that (d) follows from (a) and (b). 
0 

Lemma 3.4: If f E L~oc(S), g E L10c(Q) , and Q' C Q is a 
" 2 

bounded measurable subset of Q , then 
I 
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f g(x) Jf (x) dx = f -1 
(J g) (x) f (x) dx 

Q'. ¢(Q') 

Proof: Using the definitions of J 
-1 and J , and (3.3), 

f g(x) Jf(x)dx = f . g(x) f(¢(x)) ID¢(x)j 112dx 
n' n' 

= f g(x) ~ f(¢(x)) ID¢(x)I dx 
Q' jD<P(x)j.L/ 2 

-i 
= f _g_(¢ (x)) f(x)dx 

¢(Q') jD¢(¢-l(x))jl/2 

= f (J-
1g)(x) f(x)dx 

¢(Q') 0 

The final theorem of this section is important in applying 

Birman's theorem. 

Theorem 3.5: JD(H ) = D(H) • 
0 

Proof: Let satisfy ¢(x) = 1 

if x E Q and I ~I .::_ h + 1 • Then it follows from the results of 

§1 that ¢u E D(H
0

) , and hence (1 - cj:>)u E D(H
0

) • Since (1 - ¢)u 

is· supported outside of Sh , it follows that J(l - cp)u = (1 - ¢)u 

outside of nh , and J(l - ¢)u = 0 inside Qh • Then, since H 

and H0 agree on functions supported outside r'b , it follows that 

J(l - cp)u E D(li) • 
0 

It follows from §1 that ¢u E H2(s) n H
1

(s) • By lemma 3.3, 
0 

J<jlu E H
2 

(rt) n Hl (rt) C D(H) Thus, Ju = J(l -¢)u + Jcpu E D(H) 



Hence, JD(H ) C D(H) • 
0 
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-1 
The same argument can be made to show that J D(H) C D(H 0) • 

Thus, JD(H 0 ) = D(H) • O 
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§4 The Existence and Completeness of the Wave Operators 

The main result of th.is section is the following theorem. 

Theorem 4~1: The wave operators W+(H, H
0
: ; J) and 

W + (H
0

, H; J*) exist. W + (H, Ho.; J) are isometries of JC0 onto 

rracx and provide a unitary equivalence between H
0 

and the absolute-

ly continuous part of H • Moreover, 

To prove this theorem, all that is needed is to verify condi-

tions 1-4 of Birman's theorem (see the introduction). Since J is 

unitary, conditions 1 and 4 are satisfied. Theorem 3.5 shows 

that condition 2 is satisfied. Only condition 3 remains to be veri-

fied, In fact, a stron$er result will be proved, namely that 

(HJ - JH ) TI (o) is trace class for any bounded inter.val 
0 0 

o C R • In order to prove this, the following version of a theorem 

of Stinespring [2Lf] is used. 

Stinespring's theorem: Let µ be a regular measure on R of the 

form dµ(~) = p(~)d~ , where p is a bounded measurable function 

with compact support. Let JC be a Hilbert space, and let ,M(~) be 

a continuous function from R into JC • Let T be the transforma-

tion from L
2

(R) into JC given by 

(4 .1) 

If 

Tf = f £(0M(~)dµ(~), £ _ E L2 ~R) • 
R 

is a continuous function from R into JC then T is 

tr~ce class. 
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Proof of theorem 4.1: Let 6 C R be a bounded interval, and 

let f E JC0 • Then corollary 2.10 implies that 

(4.2) 

where 

00 

= L: f 
n=l o 

n 

.. 
f (s) w

0 ex, s> ds, 
n n 

x E s , 

~ = {s E R: s2 + k2 E o} for n = 1, 2, n n 

Since o is bounded, the sum on the right of (4.2) is finite, and the 

integrations are over bounded sets. Since n
0
(o)f E D(H

0
) , it 

follows that Jn (o)f E D(H) Let 
0 

00 

¢ E C
0 

(Q) • Then using the uni-

tarity of J on JC
0 and lemma 3.4, 

<¢, JTIO(o)f)J( = <J*¢, TIO(o)f)J( 
0 

-1 
= ( J ¢, TI 

0 
( 0) f )JC 

= ~ f f (s) Ir (J-
1¢) (x) w~ (x, Odx]ds 

n=l 6 n Ls 
n 

= E f f ( s) L~ f cji.(x) Jw
0 

(x, s) dxj-.ds_ 
n=l o n ~ n 

n 

= f ¢(x) [ ~ _! f (s)Jw
0 

(x, s)dsldx 
n n=l 0 n n ~ 

n 

00 

= ( ¢' n~l ~ f n (s) Jw~ (.' s) ds )JC • 

n 

00 

Since C0 (~) is dense in L2Cm , it follows that 

0 
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00 ,. 

= L: f f (i;)Jw
0 

(x, Odi;, 
n=l o n n 

x En • 

n 

Hence, 

r. J f (i;) (i; 2 + k
2

)Jw0 (x, i;)di;, x En • 
n=l o n n n 

n 

Then, since Jw~ ( • , i;) E H~oc (n) n liioc (st) C L~oc ( -/::,.; 0.) , definition 

1.1 yields, 

= f (Hep) (x) [ ~ J f n (i;) Jw
0 

(x, i;) di;Jdx 
n n=l 0 n 

n 

= ~ f jn (i;)[ J H¢(x) Jw
0 

(x, i;) dx]ds 
n=l 0 n n 

n 

= ~ J ·f (i;)[f ¢(x) (-/:J.Jw
0
)(x, i;)dx] di; 

n=l o n Q n 
n 

= J ¢(x) [ ~ f f (i;) (-6Jw
0

) (x, i;)di;J dx • 
n n=l 0 n n . n 

Th:us, 

co 
" = L: J cf (0(-/:J.Jw

0 )(x,i;)di;, 
n=l o n n 

x E Q 

n 

Combining these results, 

(4 . 3) 
00 

(HJ-JH
0
)ri

0
(6)£(x) = r. f 2 2 

n==l i; +~EcS 

,. 2 2 
f (i;)(-6-i; - k )Jvf (x, i;)di; 

n n n 
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= 
00 

.. 2 2 Q 2 2 
E ff (s)[(-l - s - k )Jw (x, s)]X0(s + kn)d~, 

n=l R n n n 
x E Q 

For n = 1, 2, •.• , define 

(4.4) M (x, s) = (-l - s2 
- k

2
) Jw0 (x, s), x E Q, s E R • 

n n n 

Consider the mapping from & into 'JC given by 

(4.5) (HJ - JH )~o(o)T*h(x) 
0 0 

00 

E f h (s)M (x, s)X~ (s2 + kn2) ds, 
n=l R n n u 

x E Q, . h E & • . ..... 

If it can be shown that this mapping is trace class, then, since T 
0 

is unitary, it will follow that the mapping (4.3) is trace class. 

Note that there are only a finite number of terms on the right 

side of (4.5) . In order to prove that the mapping (4.5) is trace 

class, it is sufficient to prove that the mapping from & into JC 

given by 

(4. 6) 

is trace class for any n • 

The mapping (4 .• 6) is of the form (4 .1), where 

P(s) and M(s) = M (. 
n ' s)' for s ER 

To apply Stinespring's theorem, it must be shown that M (·, 0 and 
n 

aM 
n 
~ (· ,~) are continuous functions from R into JC 

By theorem 2. 2' the mappings s -+ w
0 

(. ' s) 
n 

are continuous from R into H~oc(S) n H~oc(S) 

and 

It follows from 
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lemma 3. 3 that the mappings s + Jw~ ( ·, O ,_ and 

Contl.·nuous fro R i"nto H1
2
°c(0) (' °FI

1
10c(n) , m uG I •G 

the definition (4.4) of M (x, s) . n 
the mapping 

awo (.' s) 
t' + J n s --;;-;as=---

Hence from 

continuous from R into L~oc(Q). Since JW
0 

(X, S) = W
0 

(X, S) 
n n 

are 

if 

l~I > h ' it follows that Mn(x, s) = 0 if l~I > h > so that 

Mn ( ·, s) E L
2 

(Q) = JC and Mn ( ·, s) is a continubus function from 

R into Jf • 

It follows also from (4.4) that 

aM (x, 0 2 2 aJ~-7~ (x, s)) 
nas . , = -2sJw~(x, s) + (-t:. -s - kn) as 

aw0 (x, s) 
= -2s Jw~ (x, s) + (-!;,. - s

2 
- k~) J -~-s--, ' x E Q 

(here the fact that 
aJw0 

(x, s) aw
0 

(x, 0 
__ n_,a,....,.s-- = i<I\/x)Jw~ (x, s) = J n as is 

au (x, s) 
used). Consequently the mapping 

n s + as is a continuous 

mapping of R 
C3M ( • 

- loc 
into L2 (Q) • 

s) 

aMn(x, s) 
Again, since ~--- = 0 if 

is 

n ' 
l~l>h, as is a continuous function from R into Jf • Thus, 

Stinespring's theorem applies, and the mapping (4.6) is trace class. 

This completes the proof. 0 
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§5 The Spectral Properties of H 

In this section the spectrum of H is examined. It is shown that 

the eigenvalues of H have finite multiplicty, and the point spec-

trum of H is nowhere dense in R A limiting absorption principle 

is stated for H (it is proved in the appendix). It is used to show 

that H has no singular continuous spectrum and to construct two 

sets of generalized eigenfunctions for- H . 

Let K = H~oc(r;i) n lii0 c(Q), and equip K with the topology of 

H~oc(Q) • Then K is a Frechet space consisting of functions which 

are 'locally' in D(H) , i.e. u E K ~ ¢u E D(H) for every 

oo N 
¢ E C

0 
(R ) • 

Definition 5.1: If u EK, then for n = 1, 2, ···, define 

f u(x)n (x)dx, 
G n 

Theorem 5.2: If u EK , then 

(5.1) u(x) = 

in K • 

Proof: Let Q' 

¢ E C
00 

(RN) 
0 

satisfy 

Then ¢u E D(H) and 

co 

J:: u±cx.J n (x) , 
n N n n=l 

= {x _(Q: a < ~ < b} 

¢(x) = 0 if x E Qh' 

J*<jiu = ¢u outside 

for some h < a < b . Let 

¢(x) = 1 if ~ E Q' . 
sh . It follows from car-
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ollary 2.6 and (2.10) that 

00 

u(x) = ¢(x)u(x) = (J*¢u)(x) = E f (J* ¢u) ,. (F;)w0 (x, F;) dF; 
·,·n n 

= 

n=l R 

'00 

E [! (J*¢u)(y, ~)nn(y)dy]nn(x) = 
n=l G 

in H
2

(n ') • 

If Q' = {x En: -b < ~ < -a} for some h < a < b, a similar 

argument shows that 

u(x) = 

Since, in both cases, a and b are arbitrary, the theorem is 

proved. 
0 

The above theorem says that functions in K can be expanded, 

in the uniform part of n ' in terms of the transverse eigenfunctions 

n (x) • 
n 

Lemma 5.3: If u E JC is an eigenfunction for H with the 

corresponding eigenvalue A. , then there are constants c±- for 
n 

n = 1, 2, such that 

u(x) 
00 

= E 
n=l 

y{2 •• 
+ - n - A lx..I -

C . N ( ) 
n e nn x ' x E Q, ±~ > h 

k2>A. 
n 

in K • 
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Proof: Since u is an eigenfunction for H , 

Hu = -~u = Au • 

Since u E D(H) , it follows from theorems 1.5 that u EK • Thus, 

u has an expansion (5.1) in K • The functions ~(~) satisfy 

2 
= f 3 u(x) n (x)dx 

G 3 2 n 
~ 

2 N-1 
= f (- E 

G j=l 

a2u(x) 
2 

3x. 

N 
- A.u(x))n (x)dx - f <~ L 

n 
3 u(x) 

2 
3x. 

- A.u(x))n (x)dx 
n 

= f 
G 

J 
G j=l 

N-1 2 
<- E l..E<x)))n (x)dx -

2 n · 
j=l 3x. · 

J 

2 ----,..,.- - + = f u(x)k n (x)dx - A. u-n(x..) 
G n n .N 

for + ~ > h • 

J 

Thus, there are constants 
+ + 

C- and D-'- such that 
n n 

. -l2:1x..I ~Ix..! 
= c± e n .N + n±- e n .N _ 

Since u E JC, u±(x,1 ) 

n L'I 

+ all n and C- = 0 
n 

n n 

must die out as 

2 
if k - A. < O 

n D 

Thus, n±- = 0 for 
n 

Theorem 5.4: If the bounded interval fa,b] C [k!, k~+l) for 

- l bl c ( k12) , h f . . some n , or i! a, _ - 00 , _ , tnen t ere are at most a inite 
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number of eigenvalues for H in [a,b], and each eigenvalue in [a,b] 

has finite multiplicity. 

Proof: Since H is nonnegative, assume b > 0 Let ,g [a,b] 

denote the closed span cf the set {fEJC:Hf =Af for some A. E[a,b]} , 

and let S[a,b] denote the unit ball in 2[a,b] • The theorem is 

proved by proving that 

finite dimensional . 

s [a , b] is precompact and hence, $ 
[a,b] is 

Let · {un} be a sequence in S[a,b] • Then, by corollary 1.4, 

By Rellich's compactness theorem, for each m = 1, 2, ···, there is 

a subsequence 

Choose the sequences 

m = 1, 2, Let 

j = 1, 2, The 

of Q . 

Let n = min 

{um} (n ) such that n is Cauchy in L2 •Gh+m . 

{um} such 
n 

{u } be 
n. 

J 
sequence 

that 

the 

{u~} 
J 

{um+1} C {um} for 
n n 

diagonal sequence, u = uj for 
n. j 

J 
is Cauchy in any bounded portion 

I 2 
b:k > b, n = 1, · ··} > 0. 

n 
Let t > 0 • 

Then, using (5.2), if u E s[a,b] , 

<5·. 3) 11 ull i (Q-n ) = 
2 h+t 

00 

-2~(h+t) e . 

2/k
2-A.

1 

n 



-2nt < e 

= 

Thus, functions 

Let e: > 0 

in s [a,b] 
die 

. Choose mo 
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-2nt 
< e • 

out exponentially as XN + + co . 
so that -2nm e o < E:/3 . Choose 

such that n, k>M imply that 

Then if k, j > M , 

Hence, the sequence 

precompact. 0 

{u } 
n. 

J 

is . Cauchy in JC so that s [a,b] 

M 

is 

Theorem 5.4 says the point spectrum of H is nowhere dense in 

R . The transverse eigenvalues 
2 \ 

k may be accumulation points (from n . 

the left only) of the point spectrum. 

Definition 5.5: Let A = {A ER: A # k
2 

for any n and A is 
n 

not an eigenvalue for H} , c± = {t;; E C: ±Im l; > O} , A+ = C+ U A. 
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Theorem 5.6 (limiting Absorpti.on Principle): Let r > h. The 

mapping 

(5.4) 

is a continuous mapping from + C- >< L (S"2 ) 
~ 2 r 

into K possessing a unique 

continuous extension to A+ x t
2

(Qr) (into K) • 

This theorem is proved in the appendix. It is used in the fol-

lowing theorem to rule out singular continuous spectrum for H • 

+ Eidus [8] proved that the mapping (5.4) fa continuous in l; E C- for 

fixed f E L2(S6r) and has a unique continuous extension to P/. 

Theorem 5.7. H has no singular continuous spectrum. 

Proof: Let 'Jf' denote the subspace of continuity of H , i.e. 

f E Jee if and only if f E JC and the function ( f, 7i (A) f > , defined 

for A E R , is continuous. Then ~c ~ Jf , and H has no singular 

continuous spectrum iff 'Jf' = JtlC, (see Kato [15] p. 516). The theor­

em is proved by showing that 'Jf' C 'JFc • 

Let [a,b] C A be a bounded interval, let 
00 

f E C (S6) , and let 
0 

r > 0 satisfy supp f c n . 
- r Then, using Stone's theorem, the con-

tinuity of rr(·) on A , and theorem 5.6, 

b 
(f, rr([a,b))f>"U'= lim 2

1 . f \£, R,+· f - R,. fLtlA 
t1l 

0 
+ o+ 1Ti. a /1. 10 11.-10 JC 

= 
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where RA+iOf are the limits in K of RA+iaf as a + O+ • The 

left and right side of the above equation extend uniquely to the ring 

of all Borel subsets of fa,b], i.e. if MC [a,b] is a Borel set 

then, 

If M C R is a Borel set of Lebesgue measure zero, then 

< TI([a,b])f, 1T(M)1T([a,b])f >Jc=< f, TI(M n [a,b])f > = 0 • Thus, 

rr([a,b])f E ~c • · Since 
~,ac 

is dense in JC and ~ is a closed 

subspace of JC , it follows that rr([a,b])f E JtlC for every f E JC • 

Let f E Jf. Then for any bounded interval (a,b) CR, 

rr([a, b])f rr((a,b))f = lim rr([a+o, b-o])f 
o +O 

bounded interval, then rr((a,b))f = rr([a,b])f 

If (a,b) C A is a 

lim 1T ( [ a+o, b-O]) fEJflC. 
o +O 

From theorem 5.4 it is seen that there exist a countable number of 

disjoint intervals 
00 

o whose interiors lie in A such that 
n 

R = U 0 Since the measure rr(-)f is additive, f = rr(R)f 
n=l n 
00 00 

=rr( u o )f I TI(o )f E JilC, sin~e TI(o )f E JtlC for each 
n=l n n=l n n 

Thus, Jf C Ji:8-c , and H has no singular continuous spectrum. 

n • 

0 

In the remainder of this section, two sets of generalized eigen-

functions for H are constructed. Recall from §4 that the mapping 

~ + M (.' ~) 
n 

where M (-, 0 is given by (4.4), is continuous from 
n 

R into JC, and M (·, ~) . n is supported in nh for every ~ER. 

This mapping, thus, can ,be considered as a continuous mapping of R 
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(5. 6) 
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Definition 5.8: For n = 1, 2, define 

Theorem 5.9: The limits 

+ V-(·, s, :\) = 
n 

K-lim V (·, s, :\+io) 
o+o+ n 

exist in K for every s E R and A E A . Furthermore, 

(5. 7) (-fl-:\) V~( ·, s, :\) = -M ( ·, s) 
n 

for all s E R . The mapping 

(5. 8) (s, :\, 0) + v (·, s, :\+io) 
n 

with boundary values + V-(· s, A) , is continuous from R x Ax [0, 00 ) n , 

into K • 

Proof: Theorem 5.6 implies the existence of the limit (5.6) 

and the continuity of the mapping (5.8). It follows from (5.5) 

that 

(H - :\)V (•, s, :\+io) = -M (·, s) + iaV (·, s, :\+io) 
n n n 

in 'JC Taking limits of both sides in L loc(D) 
2 

as 

(5.5) • D 

Definition 5.10: For n = 1, 2, define 

+ Jw°' (x, s) + s, s2 + k2) w-(x, s) = + V-(x, x En 
n n n n ' 

~ ER 3 ,..2 + k2 
i;, n EA . 

a +o+ yields 

' and 



Note that + w-(x, ~) 
n 
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is defined only for a . e . ~ E R • 

Lemma 5.11: For n = 1, 2, · ·· ~(·, ~) ~ EK -for a.e. 

~ E R , and 

Proof: T"his follows from theorem 5.9 and the definition (4.4) 

These two sets of functions + {w-(x, ~)} 
n 

in 

Hloc("U'\ n oHloc("U"I l ' d . f . f H I h 
2 Q'' 

1 
Q'' are genera ize eigen unctions or • n t e 

next section, after the wave operators have been constructed, the 

completeness and orthogonality of these two sets of eigenfunctions in 

~,ac ac 
~ = TI JC are proved . 
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§6 Construction of the Wave Operators and Scattering Operator 

In this section the wave operators W+ = W+(H, H0 ; J) , whose 

existence and completeness were proved in §4, are constructed in 

terms of the two sets of generalized eigenfunctions {w±.(x, ~)} • 
n 

The representation of the wave operators implies the completeness 

and orthogonality of these two sets of eigenfunctions. Finally the 

multichannel character of the problem is mentioned, and the scatter-

ing operator S(H, H0 , J) , denoted by S , is constructed. 

Lennna 6.1: Let 

f(x) 

f E 'JC 
0 

satisfy 

,. 0 

= f f (~) w (x, ~)d~, 
0 n n 

x Es 

for some bounded interval o C R and some n • Then 

A + 
= f f (~) w-(x, ~)d~, 

0 n n 
x E Q 

Proof: The proof will be given for W+ • The proof for W 

is the same. Let W(t) = eitHJe-itHo for t ER . Then 

00 

·w+ = s-lim W(t) 
t-?OO 

Let g E C
0

(Q) • Then, using the Abelian limit, 

00 

-at 
(6.1) ( g,W+f )JC= lim < g, W(t)f )'JC= lim a f e < g, W(t)f >;;ft • 

~ a+o+ o 

Since f E D(H
0

) , and 
d 

· and dt W(t)f = exists 

in (6.1) yields 

Jw(t)f 
J: D(H 0 ) -r D(H) , it follows that dt 

Integrating by parts 
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00 

(6.2) ( g,W+f >u=< g~W(O)f )JC+ lim i {e-crt( g,eitH(HJ - JHO)e-itHOf >Jtit 
a-+CH-

It follows from theorems 2.4 and 2.5 that 

e-itHnf(x) = f _f (~) 
o n 

x En • 

Using this and the representation (4.3), 

. H "" e-i(~ 2+~)t (HJ - JH
0
)e-it f(x) = f f (~) M (x, ~)d~ . - o n n 

Since the tr.apping ~-+M(·,0 
n 

is continuous from R into JC , 

it follows that 

(6.3) 

Using (6.3) in (6.2), and definitions 5.8 and 5.10, 

... 
= (g,Jf)JC+ lim i ff(~)! g(x) i R 

2 2 
M (x,Odx d~ 

d+O+ o n Q ~ +k -icr n 
n 

... -- 2 ? 
= ( g,Jf >JC+ lim fF (~) fg(x) V (x,~,s +k''--ia)dx d~ 

cr-+o+ cS n n n n 

= ( g,Jf )JC+ !_f (0 fg(x) V+(x,~)dx d~ 
0 n n .n 

-- " + 
=<g, Jf)JC+fg(x) ff (~)V (x,Od~ dx 

Q 0 n n 
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,.. + . 
= < g, ff <Ow <· ,oa.; >"If' 

0 n n <fl. 

Here the fact that 
oo • (t"2+. 2 . ) . H 
f e-i s . l<u-icr t eit M (·,Odt = 
o · n iR 2 2 M (·,.;) 

i; +k -ia n 

is used (see [19], p. 247). 

lemma is proved. 
0 

00 

Since C (n) 
0 

Theorem 6.2: Let f E JC
0 

• Then 

00 

n 

is dense in JC , the 

(6.4) 
,. + 

L: f ~ f (,;) w-(x, i;)a.;, 
n=l R n n 

x E Q 

in JC • 

Proof: Let cS C R be an interval. Then it follows from 

Corollary 2.10 and lemma 6.1 that 

(6.5) 
CX) 

L: 
n=l 

+ w-(x, .;)at; • 
n 

Since W+ is an isometry and since II rr(cS)f - fll JC+ 0 as the 

interval cS increases to R , (6.4) follows from (6.5) by letting 

cS increase to R • D 

Corollary 6.3: The two sets of generalized eigenfunctions 

{w±.(x, .;)} are complete and orthogonal in J~c • 
n 

Proof: Let u E ~c . Then, since W+ is complete, there is 

an f E JC + (j 

pans ion 

such that w f = u • ++ Since f ( Jf , it has the ex­+ 0 
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00 

f+(x) = l: f (f+)n"'(~) w
0 

(x, S)d~, x E S • 
n=l R - n 

Then, from theorem 6.2, 

xEst. 

Thus, any function in J<.8-C 
. + 

can be expanded in terms of w-(x, ~) • 
n 

This means the two sets of generalized eigenfunctions are complete 

in Jt!C • 

Let Then T*h E JC 
0 0 has the expansion (2.8). 

By theorem 6.2, 

(6. 6) 
00 

l: !Rh (~)w±.(x, ~)d~, 
n=l n n 

x E r.l 

is in :ffC . Thus, given any h E e , the expansion on the right of 

(6.6) yields a function in Jf-C . This means the two sets of gener-

alized eigenfunctions are orthogonal. D 

It follows from the above theorems that if f E J<.8-C , th~n 

f (x) x E r.l • 

The lemma below indicates that (W:f)~(~), denoted from now on 

by : £;-(~), is given by the expected inversion formula. 

L 6 4 Let .L~ E Jf-C . emma • : Then 

Proof: 

~(~) = 
n 

Since w* 
+ 

+ f f(x) w-(x, Odx a.e. ~ E R 
n n 

is defined on all of and since 
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W+*W+ = I on JC
0 

, theorem 2.4 implies that 

00 

= l: f (W* ) "(i;)w
0 

(x !;) di;, + · n n ' n=l R 
x E s , 

holds for every f E 'JC • Thus, the statement of this lemma is equi-

valent to 

+ = f f(x) w-(x, i;)dx 
Q n 

a.e. I; ER 

for all f E 'JC • 

Let f E C
00 (Q) . Let h = {h } Ee such that all but one com-
o n 

ponent of h are zero, and for that component, hm E ~(R) • Then 

+ <w+T~h, f);;c= f f h (!;) w-(x, !;)di; f(x)dx 
Q R m m 

+ = f h (!;) f f(x) w-(x, i;)dx di; 
R m Q m 

Since this holds for all h E C00 (R) , it follows that (W*f)"(i;) 
m o + n 

+ f f(x) w-(x, i;)dx a.e. I; E R . 0 Q m 

Since two eigenfunction expansions exist for each f E J<.8-C , the 

theorems in §2 can be repeated now for functions in J.fc. Thus, the 

JfC resolvent of H i.n 

00 

is given by 

~(!;) + 
f 2-2- w-(x, 
R I; +k -r; n 

n 

for u E J~c, r; E p (H) • If A E R , then 

!;) di;' xEQ 
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rr(A)f(x) 
co 

= E 1 f±c~,) w± x, s) d~, 
n=l 2 2 n n s +k <.A 

n 

x En 

. ~,.ac 

for any f E ~· . The spectral multiplicity function m (A) for ac 

Hae is piecewise constant, has the value 0 for A < k2 and the ' 1 

value 2n for k~ .::_A< k!+l . (This is already known from §4). 

Now that the wave operators ha.ve been constructed, consider the 

scattering operator S defined by (0.3). 

Lemma 6.5: Let f E JC0 satisfy 

... 
f(x) = f '- f (s) w

0 
(x, O<ls, x Es 

R n- n 

for some n . Then 

co 

(6.7) Sf(x) = l: f U [JR fn(o) w:(y, o)do]w:(y, s)dy w~(x, O<ls 
k=l R D 

x E s . 

Proof: It follows from theorem 6.2 that 

... 
(6.8) W_f(x) = f f (o)w-(x, o)do, x ED , 

R n n 

and 

co /""..,. 

( 6. 9) w;w_f(x) = L f (W_f)~(s) w~(x, s)ds, x ES . 
kr=l R 

Lemma 6.2 and (6.8) imply 

(6.10) + f (W f) (y) wk(y, s) dy . 
n -
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.. + 
= f [f•.f (cr)w-(y, cr)do]wk(y, ~)dy • 

r~ R n n 

Substituting (6.10) into (6.9). yields (6.7). D 

JC(n) 
.. 

Let = {f E JC : f(x) = J fn (~)wn (x, ~) ds, 
. 0 0 

;JC(n) = {f E JC: 
- .. + + R 

Od~, x En} f(x) -= J · f-(Ow-(x, for + R n n 

x E S} and 

n = 1, 2, ... 

It follows from theorems 2.3 and 2.4 that JC(n) is a reducing sub­
o 

space for Theorem 6.2 implies that W+JC~n) = JC~n) • Since 

is an intertwining operator for and H , it follows that 

are reducing subspaces for H . 

. 

Theorem 6.2 implies that if f E JC~n) , then, for large negative 

time, -itH e f behaves like e-itHow*f , where w*f E JC(n) . How-
- 0 

. -itH 
ever, for large positive times, e f behaves like e-itHosw~f , 

and SW*f has components in each of the subspaces JC(m) m = 1 2 ··· 
0 ' , ' • 

Thus, a function in JC which is in the 'channel' associated with the 

reducing subspace -JC~n) at large negative times is scattered at 

large positive times into all the channels associated with the sub-

(m) 
spaces JC0 , m = 1, 2 ••• 

' . Usirig lemma 6.5, a channel scattering 

operator 

channel 

s 
nm 

JC(n) 
0 

can be defined which maps functions in the n-th 

in JC into the component of the scattered functions 
0 

in the m-th channel 

Corollary 6. 4: If f E JC0 , then 

S f(x) 
n11i 

,. - + = JU [! £ (o)w (y, o)dcr]w (y, O<ly}w
0 

(x, s)d~ 
RQRn n m m 

x En . 
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This problem, then, can be thought of as a multichannel scatter-

ing problem·. Associated with the operator H 
0 

are a set of chan-

nels, or reducing subspaces, JC(n) 
0 

that the direct sum of the JC(n)rs 
0 

, which are complete in the sense 

is 
ac JC

0 
= TI 

0 
JC , and are ortho-

gonal. Two sets of channels are associated with the operator H • 

One set {H(n): n = 1, 2, ···} corresponds to the channels in Jf
0 

at large negative times, and the other set · {JC~n): n = 1, 2, ·· · } 

corresponds to the channels in JC
0 

at large positive times. The 

scattering problem is as follows: suppose at large negative time the 

H-system is in the channel which corresponds to the channel 

"lr(n) 
~0 in the H

0
-system. What will be the components of the state 

vector of the system at large positive times in the channel JC(m) ? 
+ 

The multichannel theory of scattering has not been developed 

mathematically as completely as has the single-channel theory. For 

a more detailed formulation of a multichannel scattering theory, see 

Jauch [12]. 
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Appendix: Proof of the Limiting Abosrption Principle 

In this section, the limiting absorption principle (theorem 5.6) 

is proved. Refer to §5 for the definitions of 

Lemma A.l Let u E K satisfy 

-b.u(x) = l:;u(x), xEr&-r& 
c 

K and + tr-(.) 
n 

for some 1:; E C+ U R (1:; E C- U R) and some c > h • Then there are 

constants c±. and rt for n = 1, 2, ... such that n n 

(A.l) + 
u;<~) 

+ C- e -~=z '~' + + D- e 
}{!-c:' '~' 

+~ > c ' 

where 

= 

Re~> 0 n -

n n 

and Im~ < 0 (rmA2-c:; 
1 

> O) • n ~ - n -

Proof: It follows as in the proof of lemma 5.3 that 

satisfy 

d 2 
~ 

T4us, there are constants 

= (k2 - c:;)u±(x..), 
Il n N 

J_ 

c~ and 
n 

J}t. such that (A.l) holds. 
n 0 

Lemma A. 2 Let f E JC be supported in Q for some r > h • 
r 

":'hen, if 

such that 

(A. 2) 

1:; E p(H) , there are constants 

-l~-c: l~I 

+ e­
n, 1:; 

for n =. 1, 2, 

= c±. e 
n,1:; ' +~ > r ' 

... 



where Re~ > 0 • 
n 
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+ Proof: Note that Rz;;f E D(H) C K , so that (Rz;;f) n(~) is 

· + 
defined. It follows from lemma A.l that (Rz;;f)n(~) has the form 

(A.l) for +~ > r • Since 

must die out as ~ ~ + 00 

follows that Rz;;f E JC, it 

· + 
Thus, n-.:... = 0 

n 
for all n • D 

Definition A.3: The function u EK satisfies the incoming 

(outgoing)radiation condition in 0 iff there are constants 

for n = 1, 2, ··· , an r > h and a .A ER such that 

(A. 3) + + -A~->..· l~I 
~(~) = C- e ' +~ > r ' n 

where Re~ > 0 and ImA2-.A
1 

< 0 (Im~ > 0) D n n n -

(The terms 'incoming' and 1 outgoing' are arbitrary in this prob-

lem. They have no corresponding physical interpretation.) 

Note that in lemma A.2, if z;; E C+ , then 

if z;; E C-, then Im~>O. 
n 

Lemma A.4: If u E K satisfies 

(A. 4) -/J.u = .Au in 0 

rmvk.2-z;; < 0 , and 
n 

for some .A E A , and if u also satisfies the incoming (outgoing) 

radiation condition in Q , then u = 0 • 

Proof: The theorem is proved by showing that the assumptions on 

u imply that uEJf. Since .A EA, and u satisfies Hu= .Au, u 
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must be zero. Assume u satisfies the incoming radiation condition 

(the proof for the outgoing radiation condition is the same). Then, 

for some r > h, u satisfies (A.3), where . A is given by (A.4). 

Since u EK , it follows that u has an ffi<.~ansion (5.2) with 

+ 
~~) given by (A.3). Then 

oo !"?' -~I x..I 
(A. 5) ~u (x) 

~ 
= + L c+ lk2-A e n N n (x), 

n=l n n n 
x En, + ~ > r . 

Since u satisfies (A.4), 

(A. 6) 0 = f (Au(x) u(x) - u(x) Au(x)) dx 
Qr+l . 

= f (~~u(x))u(x) - u(x)(-~u(x))}dx 

Qr+l 

= 
N 8u - au 

f L (-- u+ u-)n.dx 
"''"' . l ax. ax. J 
0~"r+l J= J J 

= f {- au(x,r+l) u(x,r+l)+ u(x, r+l) au(x,_r+l)} dx 
G a~ a~ 

! . { au(x,-r-1) -c- 1) 
- G - a~ u x, -r- + u(x, -r-1) 3u(x,-r-l)}dx 

a~ 

where nj is the j-th component of the normal to anr+l . Subs ti-

tuting (5.2) and (A.5) in (A.6) yields 

00 + 2 2 ~ ~ -2Reh
2
:1(r+l) 

o = t <le I + le-I )(~--A - k -A)e µ 
n n n n n=l 
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since i 2-1. 
1

= A?-1.' when >. < k2 
' 

and - ~=-~when 
n n - n 

k2 < >. . Since ~=iim~ n n ··' n 

such that k
2 

< >. , it follows thqt 
n 

and 

n n 

Im~ < 0 for all 
n 

c+ = c = o 
n n 

co 

u(x) = Z:: 
-~Ix.I + n N (-) E c- e . n :x ' :x n n ' +~-! > r • 

n=l 
k2>/. 

n 

But then u(x) dies out exponentially as :l)r + + 00 • Hence, 

n 

Thus, 

It is interesting to note that lemma A.4 plays an essential role 

in the proof of the limiting absorption principle. This is another 

of the many instances where uniqueness of a limit implies existence of 

the limit. 

· Lemma A.5: Let [a,b] C A be a bounded interval, a
0 

> 0 , and 

r > h • Then, for each r' > 0 , there is a constant M, 
r 

such that 

for all >. E [a,b] , 0 < a < a , and 
0 

f E 'JC with support in n 
r 

Proof: It is clearly sufficient to consider only r' > r and 

f E 'JC with 11£11x= 1. Suppose the lemma is false. Then there 

are sequences {A } in [a, b], {a } in (0, a ) , and {f } in 'JC 
n n 0 n 

with II fn II = 1 , such that, denoting A + ia by z;:n ' n n 

> n • 
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Assume that z;; converges (this may be done by taking a subsequence). 
n 

is analytic in must converge to some . A E fa,b] • 

Note that theorem 1.8 implies that there is a.constant K such that 

.5_ (1 + !z;; I) Kil Rr f 111 1 (" ) +Kii f II 1 (" ) .for all;-::-- n. 
n ~n n 2 •Gr'+! n 2 Hr'+! 

Let 

f 
n 

Then 11 u II 2 Q = 1 and 11 F n 11 JC -r 0 as h -r 00 
• It follows 

n ' r' 
by Rellich's compactness theorem that there is a subsequence (again 

denoted by · {un}) which is Cauchy in L2 (nh,) , where r < h' < r' • 

From lemma A.2, 

u (x) = 
n 

00 

L: c+ 
m, z;; 

n 

where 

m=l 

ReA2
-z;; 

1 

> 0 
m n and 

to (5.3), it is seen that 

(A. 7) 

Since {u } 
n 

converges in 

converges in 1 2 (QC) for 

-~l~I 
e m n n (x), 

m x E Q, ± ~ > r , 

;-;r---1 
Imlk--t; < 0 . 

m n - Using a calculation similar 

< 11 u n 11 1 (Q -Q ) ' 
2 h I r 1 

for t > 0 • 

12 (Qh I) ' it follows from (A.7) that { \! } 
n 

all c > h Since ~u = s u + F it 
n n n n 

follows that { -/'J.U } is also Cauchy in 1 2 (QC) for all c > h • 
n 
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Thus, from theorem 1.8, it follows that {u } 
n 

is Cauchy in 

hence, u + u E K as n + 00 • Since -flu = ~ u + F , and 
n n n n n 

11 Fnll x + 0 as n + 00 , it follows that -flu= A.u • Lemma A.l 
+ -

implies that (u)~~) has the form (A.l). Since 

1 + + 
H2 oc(Q) , it follows that (un)~~) + (u)m (~) in 

u + u 
n 

L~oc(R) 

in 

+ - + - ~ -A2 -1..'1 ~I 
~ = 0 Vm and (u)m(XN) = Cm e n for +~ > r where 

Thus, 

Refi > 0 and Im~ < 0 . This means that u satisfies the 
n n -

incoming radiation condition , and -flu = Au in s& By leilllila A.4, 

u = 0 . But u + u 
n 

in 

This is an obvious contradiction. 

and for all n • 

D 

Lemma A.6: Let [a,b] C A be a bounded interval, cr 0 > 0 , and 

r > h • Then the mapping 

is a uniformly continuous mapping from [a,b] x (0, a 0 ) x unit ball 

into K • 

Proof: Suppose the lemma is false. Then for some r' > r and 

some e: > 0 ' there exist sequences {A. } and { \) } in [a, b], n n 

fo } and {T } in (0, cr o) , and {f } and { } in the unit ball n n n gn 

of L2(Qr) such that 

(A. 8) IA. -\)I< l/n, 10 -T. I< 1/n, 
n n n n 

(A. 9) 
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Assume that the sequences {~ }, {v }, · {a } , and {T } 
n n n n converge 

(this may b~ done by taking subsequences). Denote A + :i.cr by 
n n 

z;,v +iT 
n n n 

by µ . 
n 

It follows from (A.8) that A + A, 
n 

v +A 
n 

a + cr and T +a as n + 00 , where A E fa~b], cr E !O,cr
0

] • As n n 

in lennna A. 5, the analyticity of Rl; in c+ implies that cr = 0 . 
Thus, .,.. +A. andµ -+A. as n -r oo 

"'n . n 

By lemma A.5, there is an M such that 

11 R g II L en ) 2. M 
µn n 2 Hr'+l 

for n = 1, 2, As in the proof of lemma A.5, it can be shown 

that there are subsequences, denoted again by { z; }, {µn}' {f } ' 
n n 

and {g }, such that {Rz; fn} and {~ gn} are Cauchy in L2 (str) n n n ' 

and R f -+ u z; n A and R g + z; n VA in K , where UA and VA satis-
n n 

fy the incoming radiation condition. Since = l; Rr f + f n..,, n n 
n 

and -6R g = µ R g + g , it follows that µ n n µ n n n n 

R g ) = 
µn n 

l; R . f - µ R g + f - g • 
n sn n n µn n n n 

Since II fn - gnll L
2

(S1r) < l/n , 

A.(uA - vA) • Thus, uA - vA EK 

or uA = vA • Thus, Rz; fn + uA 
n 

contradicts (A.9). 
0 

it follows that -6(u - v,) = A. /\ 

satisfies the incoming radiation con-

and R g + u 
µ n A 

n 
in K • But this 

Lennna A.5 and A.6 can also be proved for 0 > a > -cr
0 

with the 

outgoing radiation condition :replacing the incoming radiation condi-



64 

tion. 

Completion of proof of theorem 5.6; Lemma A.6 implies that the 

mapping (5.4) is continuous from c+ x L
2

(nr) into K and is uni-

formly continuous on · 0. + icr: a < A < b, O < a < a 
0
J x unit ball of 

and a > O • 
0 

Since K is complete 

(Frechet), it follows that this mapping can be extended continuously 

to · {>.. + icr: a < A < b, 0 .:::_a.:::_ cr
0

} x unit ball in L2(nr) into K 

for [a,b] C A and a > O • 
0 

From the proofs of lenuna A.5 and A.6, 

the boundary values of this mapping satisfy the incoming radiation 

condition and hence, by lennna A.4, are unique. 

A similar argument proves that the mapping (5.5) ori C x L2(Qr) 

can be extended to A- x L2(nr) • 
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