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ABSTRACT

The influence of a deformable foundation on the response of
buildings tb earthquake motion is examined. The study is divided into
two parts; the vibration of the base of the building on the foundation
medium, and the response of the whole building-foundation system.

Studied first are the forced horizontal, rocking and vertical har-
monic oscillations of a rigid disc bonded to an elastic half-space, which
is considered as a mathematical model for the soil. The problem,
formulated in terms of dual integral equations, is reduced to a system
of Fredholm integral equations of the second kind. For the limiting
static case these equations yield a closed form solution in agreement
with that obtained by others.

Using the force-deflection relations for the base, the equations of
motion of linear building-foundation systems are solved by both direct
and transform methods. It is shown that, under assumptions which ap-
pear to be physically reasonable, the earthquake response of the inter-
action system reduceé to the linear superposition of the responses of
damped, linear one-degree-of-freedom oscillators subjected to modi-
fied excitations. This result is valid even fo.r systems that do not pos-
sess classical normal modes. Explicit approximations in terms of the
parameters of the system are obtained for the dynamic properties of
the one-degree-of-freedom oscillator which is equivalent to a single-
story building-foundation system. For multi-story buildings it is shown
that the effect of an elastic foundation, as measured by the change in
the natural frequencies of the building, is negligible for modes higher

than the first for many types of building structures.
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INTRODUCTION

There are two aspects of the problem of building-foundation
interaction during earthquakes which are of major significance to
earthquake engineering, First, the response to earthquake motion
of a structure founded on a deformable soil will not be the same as
if the structure were supported on a rigid foundation. Second, the
ground motion recorded on the base of the structure will be different
from that which would have been recorded had there been no building.
The praétical importance of these effects depends on the properties
of the soil-structure system. In terms of the dynamic properties
of the system, this dynamic coupling, or interaction between a
building and the surrounding soil,” will generally have the effect of
(1) reducing the fundamental frequency of the system from that
of the structure on a rigid base, and (2) dissipating part of the vibra-
tional energy of the building by wave radiation into the foundation
medium. There will also be energy losses due to internal friction
of the soil. Because of these effects, the response of a structure
on a soft foundation to a given earthquake excitation will, in general,
be different from that of the same structure supported on a rigid
ground. It is the influence of a flexible foundation on the response
of structures to earthquake motion that is the general subject of
this thesis.

It is convenient to divide the studies of building-foundation
interaction into two distinct parts; the first concerned exclusively

with the vibration of the base of the building on the foundation



medium, and the second dealing with the response of the entire
system, The base of the building is idealized aé a rigid circular
plate and the soil is modeled By a homogeneous, isotropic, elastic
half-spact;. Under these conditions, the essential features of the
problem reduce to the forced vibrations of a massless disc bonded
to an elastic half-space, which are studied in Chapter I, Of
special interest is the relation between the forces applied to

the rigid plate and the resulting displacements.

Once the force-deflection relation for the base is determined,
the response of a linear building foundation system to a prescribed
earthquake excitation can be evaluated. This is the subject of
Chapter II. Using both direct and transform methods, it is shown
that, under assumptions which appear to be physically reasonable,
the response of the interaction system can be expressed as a linear
combination of the responses of one-degree-of-freedom oscillators
subjected to modified excitations, This result is shown to be valid
even for systems that do not possess classical normal modes. The
advantages of this representation include the physical insight it
gives into the dynamics of the building-foundation system and the
ease of calculations, which are equivalent to those for simple
structures. .

A summary of the main results obtained in this investigation

is contained in Chapter III,



I. FORCED VIBRATIONS OF A RIGID DISC PERFECTLY

BONDED TO AN ELASTIC HALF-SPACE

A. Introduction

The problem of forced oscillations of a rigid footing on an
elastic half-space is a mixed boundary-value problem in which
either the displacements, or certain displacements and tractions
are prescribed under the footing, and the tractions are specified to
be zero over the remainder of the surface of the elastic half-space.
Two distinct classes of mixed boundary-value problems may be
considered depending on the type‘ of contact between the footing and
the half-space. A complete mixed boundary value problem, for
which all the components of the displacement under the footing are
specified, occurs if the rigid footing is perfectly bonded to the free
surface of the elastic half-space. Perfect bond, or adhesive contact,
is defined as the type of attachment in which there is complete
continuity between the displacements and stresses of the footing and
the underlying half-space in the zone of contact. A relaxed mixed
boundary-value problem results if it is assumed that at least one
of the components of the surface traction under the footing is zero.
To have a well-posed problem, a corresponding number of components

of the displacement under the footing is left unconstrained. Thus,



for vertical and rocking oscillations the contact may be assumed
to be frictionless whereas for horizontal vibrations the normal
component of the surface traction under the footing is taken to be
zero. Correspondingly, for the first two problems the horizontal
displacements under the disc are not prescribed, while for the
horizontal oscillations the vertical displacements under the disc
are left unconstrained.

Considerable attention has been given to the solution of the
problem of forced oscillations of a rigid footing on an elastic half-
space. Reissner 1, Quinlanz, Sung3, Arnoldg’gif{ Bycrof‘c5 and
Thomson and Kobori® have approached this problem by assuming
the dynamic stress distribution at the contact region to be either
constant, linear, parabolic or proportional to the static stress dis-
tribution. Under these assumptions only stresses are specified
and a mixed boundary-value problem does not arise. The relaxed
mixed boundary value problem has been considered by a number
of investigators. Robertson7, Awojobi and Grootenhuiss, Lysmerg,

11

Shahl® and Lucoand Westmann solved the problem of a smooth

rigid disc undergoing vertical oscillations. Zakorko and Rostovtsev

considered the cases of vertical and rocking oscillations while
1

Gladwe1113, Luco and Westmann1 and Veletsos and WeiM‘ solved

the cases of horizontal and rocking vibrations of the disc. The



latter problem has also been considered by Awojobil5.

Karasudhi, Keer and Leel® have treated the vertical, rocking and
horizontal oscillations of a smooth rigid strip footing while

7 considered the vertical and rocking

Elorduy, Szekely and Nietojl
vibrations of a smooth, rigid rectangular footing. Torsional oscil-

lations of a rigid disc on an elastic half-space have been studied by

Reissner and Sagocil8, Uﬂiandlg, Collinszo, Robertson?‘l,

22 23

Thomas““ and Stallybrass This may be interpreted either as a
relaxed or a complete mixed boundary-value problem because there
is only one non-vanishing component of stress and displacement in
cylindrical coordinates throughoﬁt the half-space. The complete
mixed boundary-value problem for a strip footing has been examined
by _Luc024, who studied the vertical, rocking and horizontal oscil-
lation of a rigid strip perfectly bonded to the free surface of an
elastic half-space. To date, only the static sol'u.tion has been
obtained for the complete boundary value problem for a rigid disc22-29,

Both the relaxed and the complete mixed boundary-value
problems can be formulated in terms of a system of dual integral
equations. ZFor circular and strip footings,a standard technique3o'33
has been used by which these equations are transformed with the

aid of auxiliary functions into a system of Abel type integral

equations whose solution in turn leads to a system of Fredholm



integral equations of the second kind in the auxiliary functions.
Quantities of interest may be calculated directly from the auxiliary
functions.

In this investigation an analysis is made of the complete
dynamic mixed boundary-value problem for a rigid disc on an elastic
half-space. An extension of the method used in the solution of the
relaxed problem will be employed to transform the corresponding
system of coupled, dual integral equations into a system of Cauchy
type singular integral equations in auxiliary functions, the solution
of the dominant part of which results in a system of Fredholm
integral equations of the second kind. Simplified forms of these
equations are obtained for an incompressible material and for the
particular case of the relaxea mixed boundary-value problem. The
stresses and displacements on the surface of the half-space can be
determined directly from the auxiliary functions.

The static solution of the complete mixed boundary value
problem obtained by Mos sakovsk125 and Uﬂiand26 and later by

28

Keer27, Spence and Crladwell29 includes a factor of the form

/
£

exp Lik In( 11—+r

)] where r’ is the radius and k is a constant.
This frequency independent factor also occurs in the solution to the

dynamic problem. Consequently, it is possible to obtain a new system



of Fredholm integral equations of the second kind in terms of
auxiliary functions, not involving singularities, which can be solved
numerically for arbitrary values of the frequency of oscillation.

For the limiting static case the térms containing integrals disappear,
and therefore, an explicit solution may be obtained. This solution

is in agreement with the solutions found by Mossakovski, Ufliand,

Keer, Spence and Gladwell25-29.

B. Formulation of the Problem

In the following analysis, a cylindrical polar coordinate
system r,8, z will be employed; the r-8 plane coincides with
the half-space surface and the 2z - axis is directed into the
half-space. The elastic, homogeneous, isotropic half-space is
characterized by the density p, the shear modulus U and Poisson's
ratio O (or equivalently by P and the Lame' constants W and A).
No body forces are preisent in the system. The massless rigid
disc of radius a is 4p1aced on the plane z = 0 with its center
coinciding with the origin of the coordinate system. The motion of
the disc is produced by the actions of a vertical force, a horizontal
force and a moment, all with harmonic time dependence. The

complete system and the applied forces are shown in Fig. 1. The

problem is formulated within the scope of classical elastodynamics.



Fig. 1. Diagram of footing and coordinate system



For steady-state vibrations with circular frequency w , the.
equations of motion that must be satisfied by the displacement

vector u exp(iwt) = (ug, ug » uy)exp(iwt) are given by35

(A+ 2)grad divu - 4 curl curl u +,Ow2_1£ = 0 (2:1)

inthedr cylindrical polar coordinate formulation.

Suppose that the disc experiences vertical displacement
& exp (iwt), rotation 1_'0 exp (iwt) about the axis 0 = x/2 and
horizontal motion A4 exp (’_-iwt) in the direction 6 = 0. AV ana
Ah are the constant amplitudes of the vertical and horizontal
displacements of the disc, respectively, and TO is the amplitude

of the angle of rocking. The displacement boundary conditions are

then

Vs (ar’, 9, 0) = A1 cos @ (2.2a)
ug (ar’, 6, 0) ==y sin b 0<r'=1 (2.2b)
o, (ar’, 8, 0) = AV+aTOr'cos6 (Z2.2a)

where r’=r/a. The corresponding stresses O 0,9, ©

zr’ Z

must satisfy
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0,,ar’, 8, 0) et =0 (2.2d)
Gze(ar', 8, 0) eiwtzo l1<ri<o (2.2e)
o, (ar’, 8, 0) W' =0 (2.21)

In addition, equilibrium of the massless disc requires that
the external forces balance the forces resulting from the surface
tractions -acting in the zone of contact.
Finally, since the vibrations are generated in a limited zone
of the boundary, it is required that only outgoing waves be present
at infinity.
The vertical harmonic force Vexp (iwt) applied to the disc
shown in Fig. 1 results only in vertical harmonic vibration of the
disc, whereas the horizontal force Pexp(iwt) produces a harmonic
rocking motion of the disc in addition to the horizontal diAsplacement,
and conversely, the rocking moment Qexp(iwt) produces a horizontal
oscillation of the disc in é,ddition to the rotational vibration. For
this reason, it is convenient to study the vertical vibration of the
disc separately from the coupled horizontal and rocking oscillations.
The coupled horizontal and rocking oscillations of the disc
are considered in Section C. The boundary conditions for this problem
are given by Eqs. (2.2) with A= 0. The vertical vibration of the

disc is studied in Section D and the corresponding boundary conditions



are obtained by setting Ah and TO equal to zero in Eqs. (2.2).

C. TForced Horizontal and Rocking Oscillations of the Disc

1. Derivation of the System of Coupled Dual Integral Equations

Bycrofts, following Sezawa3®

of motion (2.1) have a particular solution of the form

u,. (ar ‘0, az’) = aur*(r', z’) cos &
ug (ar’, 9, az’) = augk (r’,z") sin 8

; ; o r 7
uz(ar , 9, az' ) = auz'r(r ,z') cos §
7 . . -
where z = z/a. In this solution.

o0} /
ap # & wito I _ 1 -VaZ
ur'p(r,z ) + ue—.~(r ,Z ). = —ZSO L[k Fl(k,zl) - {’—Z clk)e 27 ]

- J, (kr ydk
‘ 4
silont o2 w0 P ’ 1 ~Voz
u e’ z) - ugi(r'z’) = ZSO (kF(k,2") + 7Zc;(k)e ]
» Jolkr ‘) dk
A 7 4 = bt /
u¥r’,z") = ZSO F,(k, 29 J;(kr)dk

where F(k, z’) and Fs(k, z’) are given by

4 /
Fl(k’ z'}) = -Alk)e b < +VZ B(k)e vz

. 4 I
Fy(k,z’) = viA(k)e 1% - k& B(k)e™ '2%

, has shown that the equations

{2

(2.

{2 .

.3a)

. 3b)

. 3c)

«3d)

.3e)

3f)

3h)



and

- {2 2\%
VZ—(k -ao)E

1
In these equations ag=w a(p/u)? 1is a dimensionless

frequency, and ¥ = [(1-20)/2(1-0) ]% is the ratio of the equivoluminal
(or shear) wave velocity to the dilatational wave velocity in the
half-space material. It is required that Re Vi Vo = 0 for the
displacements at infinity to remain bounded. The unknown functioﬁs
A(k), B(k) and C(k) are determined by the boundary conditions.

The corresponding stresses Ozr, o

z6’ Uzz RS
O, far’; B, az')ei/’dt = po, (r’,z")cos 8 giwt (2.4a)
Gze(ar ! B, a.z')eiwt = ,'J.O‘zé'= (r’,z') sin § eiwt (2.4b)
o tar’ 8, az’)e®t = uo ¥z’ 2%) cos § ™ (2. 4c)

zZ

in which O‘ZI.*, O‘Ze*, O‘ZZ* are given by
; oo ) -vyz'
o,r’ 2") to,gr 2’y = 2 SO [kF3(k,2’) - Clk)e 2 17y(kridk (2.4d)

O r’2’) - o (r’, 2") =2 So [kF,(k,2") + Clk)e™v22 ] Jo(kr “)dk (2.4e)
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o, (v, 2’ —ZSO 4k, z’ ) Iy (kr')dk (2.4f)
aﬁd the functions F3 and F4 are

F,(k ) = -2v (AKe V12 + (212 - ay?) Blk)e™ V22’ (2.4g)
Fylk,z) =-(21{2 5 aoz) A(k)e"’l?' + ZVZB(k)e‘szl . (2.4h)

Applying the equations for the displacements and stresses
given above it is found that the boundary conditions (2.2) will be
satisfied provided that

A
lim S [kF, (k,z) + L C(k)e VZZ] T (kr)dk = -i) (2.5a)
z'-0 v Y2 g 2

o] - s

lim SO [kFl(k,z') - —l- C(k)e -1 ] J2 (kr)dk = 0 P 0<sr <1 (2.5b)
/ v

z =0 2 '

vy So F,(k z) Jy(ke)dk = 3T, ) (2. 5¢)
z'-0

{
lim So [KF3(k,2') + C(kle 2”1 Jo(kr')dk = 0 A
z-0

@ - 7
lim go [KF4(k, 2")-Clk)e '2% 1 J,(kr’) dk = 0 l<r/ceo  (2.5e)
20

im \ F,(k,z') 3 (kr')dk = 0 J
z -0

{2 . 5L}



1k

The boundary conditions have been stated as limits so that
certain integrals that will appear later in the analysis remain bounded.

Equations (2.5) may be transformed into a system of dual integral
equations suitable for subsequent analysis by replacing the functions

A(k), B(k) in Egs. (2.4g) and (2.4h) by the new functions D(k), E(k)

defined by
-(2KP - ay%) A(k) + 2v,k? B(k) = D(k) (2. 6a)
“2vq A(k) + (2K% - ap%) B(k) = kK 'E(k) (2. 6b)

and by the introduction of the functions I—Il(k), I—Iz(k), H3(k), I—I4(k)

which are defined, following Robertson 7, by

2

H. (k) 0 2t 1 (2.7a)
- " 8
1 (1-0‘)[(21{2-3.02)2 - 4v1v2k2]
2.v1v2k2 - (2KB-a,) K>
Hy(k) = == g— = ¥ (2.7b)
{(1-g)[ {2k -2 ¥ = 4v1v2k ]
Hy(k) = 1{,0 ({E; - 1) (2. T}
- ao2 Vlk
Hy(k) = W . (2.7d)

2 242 2
(1-0)[(2k%-a,")" - 4v v, k"]
These functions have the property that they all tend to zero as ap
goes to zero. Then, in the static case Hi(k) =0,1=1,2,3,4.

After substituting,reorderingandtaking limits inside the
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integrals, with the exception of those indicated below, Egs. (2.5)

become

S: k‘lE(k)JO(kr") ax = £ (x') \
Sz 5 C(k)JZ(kr')dk = fz(r’) P b it
SZ K D(k)J, (kr')dk = £ (r') )
Sz [E(K) + C(k) ] g (kr’)ak =0 |
g: tE(k) - C(k)]Jz(kr')dk= 0 P l<ri<e
SZ D(k) J, (kr’)dk = 0 |

where fo(r'), fl(r'), fz(r') are defined by

£ (r') = 25 b 1m me_kzlk—lD(k)J (kr’)dk
0 215 7 7o o 0

§° T B 00 B - B, (0 DU + (148001600} Toer )

Tor'

At -3

i © -kz' -1

+y lim go e %k E(k)J; (kr')dk +
/ 1,

z -0

g: K71 [-H,(K)D(K) + Hy(K)E(k) ] T (ke’) dk

(2.

(2.

{2

(2.

8a)

8b)

8c)

. 8d)

.8¢e)

8g)

. 8h)
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/
fz(r') = (1-0){ - v lim SB’ e'kz D(k)JZ(kr')dk +
z-0

S: it {[1+H1<k)] E(k) - Hy(k)D(k) - H3(1<)C(1<)} J, (kr’)dk},(z.si)

Equations (2.8a-f) are a system of three coupled, dual integral
equations in the unknowns C(k), D(k) and E(k) whose solution is

the subject of the following section.

1

2. Reduction of the Three Simultaneous Pairs of Integral Equations

to a System of Fredholm Integral Equations of the Second Kind

Dual integral equations such as those appearing in (2.8a-f)
have been treated extensively in the literature. Those involving
only one pair were first discussed systematically by Titchmarsh37

31

and also by Busbridge38, Copson™ ", Sneddon’

2 and Noble?’9 among
others. The problem of solving a system with an arbitrary (but
finite) number of simultaneous dual integral equations of the same
. 40

type has been considered by Erdogan and Bahar™ . They reduced
the problem to the solution of an infinite set of linear algebraic
equations. The special case of two pairs of dual integral equations
for which the order of the Bessel functions between one pair and the

34

other differs by two was discussed by Westmann He was able to

find a closed form solution to the problem by using a linear

combination of the auxiliary functions introduced by Copson31 . The
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problem of two pairs of integral equations with Hankel kernels of
order 0 and 1 and prescribed right hand sides has been considered
by Erdogan41 and for a special case by Spence28. Erdogan trans-
formed the problem into the solution of two simultaneous Cauchy
type singular integral equations, the dominant part of which could

be solved exactly. Spence reduced the problem to the solution of

a singular Fredholm integral equation of the second kind which could
be solved exactly by the Wiener-Hopf technique if the right hand
sides of the dual integral eguations were polynomials. Gladwellzg,
extending the work of Spenéé, solved a system of three dual integral
equations, equivalent to Eqs. (2.8) with H;(k) =0, i=1,2,3,4.
“However, because of its restriction to polynomials, Spence's method
or the extended version derived by Gladwell cannot be used to solve

Eqs. (2.8) when Hi(k) # 0. Instead, an extension of the method

31 34

used by Copson”* and Westmann will be employed. Assuming a
special form of the solution in terms of auxiliary functions, the
system of equations (2.8) will be transformed formally into a system
of Cauchy type singular integral equations in the auxiliary functions.
A system of Fredholm integral equations of the second kind will then
be obtained by solving the dominant part of these equations. For the

static problem, the resulting Fredholm equations reduce to simple

expressions from which a complete closed form solution may be
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obtained.

The solution of Eqs. (2.8) is assumed to be of the form

&

E(k) =E k3/2 gol x* (po(x)J 5 (kx)dx (2.9a)
-2
2 1 1
Clk) = COL@k3/2 SO x® 5 (ec)ax +

j—_-ikyz g(l) x3/2(p2(x)J3/Z(kx)dx] (2.9Db)

1 1
D(k) =ﬁ ]&3/Z SO xchl(x)J_%(kx)dx (2.9c¢)

where @q(x), (pl(x), (pz(x) are the unknown auxiliary functions

and CO is an unknown constant. All these quantities may depend
on Poisson's ratio and the frequency of oscillation. With this
representation of the solution it may be shown that Egs. (2.8d)

and (2.8f) are automatically satisfied and Eq. (2.8e) will be satisfied

if Cp is given by
1
c, = So 0 olx) dx (2.10)

Substitution of (2.9a) - (2.9c) into Eqs. (2.8a) - (2.8c) leads to

three Abel type integral equations32 whose solutions are given by

- Sr’ (=) . ;
(po(r) = dr' 0 m dX, 0" £1] (2.11&)
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¢ 3
\ 1 d rox fZ(X) ,
CO@Z(T) =3 g — 51 dx; 0 <r =1 (2,11b)
T dr’ Y0 (r'“-x")*%
14 £ xzfl(x) ,
901(1'/):"‘"/_/ S —TZ——Z—%dX 08l . (2.11¢)

After replacing fo(r'), fl(r'), fz(r') by Eqs. (2.8g) - (2. 8i),

substituting again Eqs. (2.9a) - (2. 9¢) and reordering, Eqgs. (2.11la) -

(2.11c) become

A-—aC
’ h
oyr= 20y Zo( o,
0 a(l - o) S

. lim %

4
2 0 50 e_kz sin (kx)cos (kr )dk-

';,? SO QDO(X)dx So Hl(k) cos (kx) cos (krjdk +

i @
%/SO ¢, (x)dx SO H, (k) sin (kx) cos (kr dk

_Z ¢ S kL8 (1) sin k cos (krjdk -
% S0 ), 3

C 1 =]
0 2 S 3/2 S 1 ’
—_— = x 0, (x)dx k*J (kx) cos (kr )dk
. T Jy 2 0 3/2
1 o
2 3/2 S 5
£ ¢, SO 1 gax | KPH, 093

3/2(kx) cos(krl)dk; 0<r’<1

(2.12a)
. 1 =R q '
r'e,(r) CO:(l—G){E SO @ (x)dx So(kr')zcos(kx)J3/2(kr jdk

rz ¢t nE :
+ J = i)(p de H cos(kx)J3/2(kr )dk

£
—yS ¢, (x)dx lim S kz (kr ') ®sin(kx)J kr )dk

372!
—’O

2 4 'jé_' : ’
'»\/ K SO ¢, (x)dx SO H, (k) (kr ) 51n(kx)J3/2(kr ydk -
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2 o ;=1 . ne
= ¢, So K Hy(k) sin(k) (ke ')® T, ), (kr ')Ak
5 B Sl x o (x)dx (T k(xr VB H (k) T, (k) T (kr')dk} 0sr’<1
0Jdo "2 So 377372 3/2
(2.12b)
o (r’)=- T 2 'yg Qna(x)dx lim Ooe-kz cos(kx)sin(kr jdk
. 1_0 . z -0
zgl d coHk in(k in(kr ‘)dk +
= O(,ol(x) XSO 4( ) sin(kx) sin(kr
C gl (x)d ooI—I (k) cos (kx)sin(kr)dk; O0s<r's 1 (2.12¢)
= x)dx s 2 .
7t 0 (Po SO 2

A more useful form of Egs. (2.12) may be found by extending
the functions (,Do(r'), (,ol(r') and P (r ) into the interval [-1,0).

Thus, by defining

@O(r’) =<PO(—r’), o (r')=-p (-r’), @z(r’) = -@2(-1"); -lsr’<0 (2.13)

1 1
it may be shown that*2
® kg’ 1 x
3 (pl(x)dx 11m 0 © sin(kx) cos(kr )dk = & S . fﬂi—,}— dx (2.14a)
-1 x-r

-0

: Kz e s :
J; So gol(X)dx hm go (kr ) sm(kx)J3/2(kr )dk

it
9 [

= Sl TS LA ¢, (x)dx - = g 1= (2.14b)
z -r’ | 1oz’
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1 py(x)

dx . (2.14c)
-1 x-r

1 ) ®  _kz’ , .
So @olx)dx lim So e cos(kx)sin(kr )dk = - 3
7
z =0

When these forms are inserted into Eqs. (2.12) and two improper

integrals appearing in these equations are evaluated42’, they become

1 (x) -aC G 1
) X S (A dx = Ah 0 _ 0 g x)dx -
ol T )-1 g’ 1a(l-0) 1-iF rl(pz'(

C 1 1

0 ’ no_ s / _ ! )
— T (pz(r ) ao{go Koo(x,r )(po(x)dx SO KOI(X’r )(pl(x)dlx +

1 7

COSO Koz(x,r-)(pz(x)dx + COKO(r')} ; 0<sr’s1 (2.15a)

!
2 r v ol N ]
r’ qoz(r') CO =(l-0) {I: SO (po(x)dx -5 gO qol(x)log XX_rr, de -
r,[ = _J_Sl o1x) 1 [C O e el
%o g Jol g ol Co Yo Bagt® T iweids -
1 o 1
SO KZO(X’ r’)(,oo(x)dx + SO KZOI (x, r/)cpl(x)dx +

COKg(r')]}; 0<sr’=<1 ' (2.15b)



22
1
7 Y (PO(X)
o)+ LN T wx s

Tol‘/

0

1o aO[gl
Sl

Kl l(X, r /)(pl(X)dX
0 KIO(X r')(po(x)dx] ; 0sris1

n - 2 a
KOO(X’r ) - 'R SO Ll(t

The kernels appearing in these equations are defined by

(2.15¢)
) cos(txao) cos(tr'ao)dt (2. 15d)
KOl(x,r’) = }2- g: Lz(t) sin(txa.o) cos(tr 'ao)dt (2.15e)
%
KOZ(X’ r =ﬁ/g x S; (~1:xao)"3 L3(t)J3/2(tan) cos(tr 'a.o)dt {2 15£)
K (rf) = = Sw (ta )-lL (t) sin({ta,) cos(tr‘a,)dt (2.15g)
0 x J0 0 3 0 0
KZOZ (x, ') = xr’ Sw aot(xr ')% L3(t)J3/2(txa0)J3/2(tr'ao)dt (2.15h)
KZ% (x,r) =/§ r’ SO (tr'a0)§Ll(t)cos(txao)J3/2(tr'ao)dt (2.151)
o] ’ 2 / 0 ! < y y ’
KZl (x, %)=, /5~ SO (tr ao)z Lz(t) 51n(txa0)J3/2(tr ao)dt (2.153)
K, (r) = @ r S:(tao)'l L3(t) sin(tag) (trag) J5 /) (trag)dt

(2.15k)



23

N2 gw : . /
K. (x,r") = 36 L4_(t) sm(txao) sin(tr "a )dt

11 0

KlO(X’ r’) =—?E SO L, (t) cos(txa ) sin(tr 'ao)dt

in which
- V‘/ t
L,(t) = Z .{2 Z -1
{(1-o) L2871} -4V'1V'2t ]
Zvllvlzt2 - (th-l)t2
Lot = Z_ 112 4ot ~
i "
Le (@)= L -1
g = (Vz' )
—V/]_t
L4(t) = "1 ]

(1-0) [ (2t% -1)% -4v' v/, t2]

The branches of

must be chosen so that Re V'l, v'2 =z 0

It may be shown that the functions Li(t) have the property

L(t)=0(t™%) as t-e, i=1,2,3,4 .

(2.

.151)

. 15m)

.15n)

.150)

.15p)

. 15q)

15r)

.15s)
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Three of these functions also have a simple pole on the positive
real axis since the Rayleigh function F(t) = (2t2- 1)2 - 4v'1v'2t2‘
has a simple zero on that axis. Therevfore, the integrals appearing
in Egs. (2.15d) - (2.15m) are all convergent, either in the regular
~sense or in the sense of a Cauchy Principal Integral.

Equation (2.15b) may be simplified considerably if use is made
of Eq. (2.15a). Integrating (2.15a) with respecAt. to r’ between the

limits 0 and r’ and substituting the result, together with

Eq. (2.15a) itself, into Eq. (2.15b) gives
r’ 1~ ’ ' i ’ ’
ZSO X (pz(x)'dx + aOSO Kyo(x,r )@Z(X)dx = -aOKz(r Y; O=r'=1 (2.16a)

where

ol

L3(t)J3/2(tan)J (tr’ao)dt (2.16b)

Kzz(x, rfy = Sooo aot(xr ) 3/2

B, (r) =,E SZ (tao)‘1L3(t) sin(tag) Iy, (tr'a )dt . (2. 16c)

The following Fredholm integral equation of the second kind is
obtained by differentiating Eq. (2.16a) with respect to r’ and

dividing the result by r’:

1
(pz(r') + aogo Kzz(x,r')(pz(x)dx = -a, Kz(r'); 0sr’=<1 (2.17a)
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Jin which

= 5 in(txao)

KZZ(X, r’) :Eﬂ So(tan)L?’(t)‘L ( - cos(txao):\sin(tr 'ao)dt (2.17b)

txao)

@

Ky(r) = = go L(t) sin(tag) sin(tr ‘ag)dt . (2.17¢)

In this way the problem has been reduced to the study of the
system of coupled integral equations (2.15a), (2.15c) and (2.17a)
in the unknowns goo(r'), (,Dl(r') and (pz(r') . Equation (2.17a),
however, can be solved independently of the remaining two equations
as it involves only the unknown function (pz(r'). Equations (2.15a)
and (2.15c) ‘'may then be interpreted as a system of Cauchy type
integral equations in the two unknowns goo(r'), <pl(r'), and be

rewritten as

1 (x) L1, -aC C
o (x-2L (7 L ax= ThTRHO0 L 20 gy
0 -1 x-r a(l-o) 1elr

1
A
! . Vi
} aoz Bo Ko (% r)e (x)dx; 0srsl (2.18a)
m=0
1 ¢ (x) T.r’ 1 il
’ Y 0 N 0 ) , .
er+ TN ——ax= - aOi’Z‘ro () il r 0, (0

0<r’'=s1 (2.18b)
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where
1 i
g(r’) = Sr' Pp(x)dx + r'(pz(r') + (1—0’)a0 gO KOZ(X, r')(,oz(x)dx . (2.18c)

For the particular case of an incompressible material (0 = % or
equivalently v = 0), Eqs. (2.18a) and (2.18b) reduce to a system of
Fredholm integral equations of the second kind, as the terms
containing a Cauchy type singularity are then eliminated from the

equations.

Reduction to the relaxed problem

The solution to the relaxed mixed boundary-value problems
corresponding to the complete mixed boundary-value problems
which are the subject of this analysis, may be derived from Eqgs.
(2. 17;), (2,18a) and (2. 18b)l. For horizont;.l vibrations of the disc
produced under relaxed conditions, it is assumed that the normal
traction is zero everywhere on the surface of the elastic half-space
and that the vertical displacements under the disc are unconstrained.
These conditions will be satisfied if Eq. (2.18b) is disregarded

and @q(r ) is set equal to zero. There results
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1
(,Dz(r') + a, So KZZ(X’ r’) (pz(x)dx = - aOKZ(r') (2.19a)
Osr’sl.
: 6p-aCp G,
@, (r’) +a S Kpp(x, 7') @ (x)dx = . g(r’) (2.19b)
0 0 ), "00 0 T -

This is a system of two Fredholm integral equations of the second
kind, coupled only through the term g(r’). This formulétion
permits the complete determination of (pz(r') and (po(r') in
terms of the unknown constant Co , obtained in turn from Eq. (2.10).
The integral equations (2.19) involve only finite integrations on the
unknown functioﬁs (,DO(r'), (pz(r'), whereas the corresponding
equations pre‘sented by Gladwelll3 for the same problem include
improper integrals on the unknown functions. Luco and Wes‘cmannll
have obtained recently a pair of equations similar to Eqs. (2.19).
The only essential difference being that in their analysis, the two
functions corresponding to ®o and @, appear in both integral
equations.

For rocking vibrations produced under relaxed conditions, it
is assumed that the contact is frictionlesé and consequently the
horizontal displacements under the disc are unconstrained. These

conditions will be satisfied if Eqs. (2.17a) and (2.18a) are disregarded

and the functions ®o and ¢, are set equal to zero. This gives
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<1 (2:20})

1
o (x) * =g So Ky, (1) @) (x)dx = -

that is, a Fredholm integral equation of the second kind which
permits the complete determination of ng(r') . Equation (2.20)

is equivalent to the corresponding equation obtained by Gladwelll3,

Simplification of the general equations

The general case has been reduced to the solution of the
uncoupled Fredholm integral equation (2.17a) and to the pair of
simultaneous Cauchy type singular equations (2.18a) and (2.18b).
The left hand sides of these. latter two equations may be uncoupled

by introducing the two new functions ‘i’l(r g ‘l’z(r } defined by
v (e) =0z + (-1 oy(r) s m=1,2. (2.21)

With this substitution, Eqs. (2.18a) and (2.18b) become

. 1 Y (x) g A, - aCy)
4 (r’)+(-1)mizg m dx = o 20 +(—1)m+1i( % o)
m I 4 X-rl l-o a(l_o-)
2 1 .
m
aOE ISO MmS(X,rI) YS(X)dX'*‘(-l) _1?1 Cog(rl); mzl’Z, OSr/sl
s=1 |
(2.22a)
where
s+1

M (%)) = 30K 06 e )+ (-1 Ky ol v )+ (-1 TR (3, 1) +
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O kel Koolx,r')]) 5 m,s = 1,2 (2.22D)

Equations of this type, sometimes referred to as singular equations
of the Carleman type, have been studied extensively43’ 44, 45.
Treating the right hand sides of Egs. (2.22a) as known
functions, each of these equations can be solved independently.

Their solution leads to the following system of Fredholm integral

equations:

X (r' A
¥ (r')‘ m 1’1’1+1. h m+1

- o [_( i CO)-I‘Or’+(-1) ZikI‘O]+

_1—:1_72‘- [ao ZZ=1 SO Npyglx 1) \fs(:")d:’i'k('l)mZi Co Gl ]; Ly
0<sr'<1 ' (2.23a)

where the functions Xrn(rl) are defined by

Xm(r)“exp[( 1™ ik In( ,)} m=1,2, (2.23Db)

The constant k = L In( }-:-Z-) , the kernels N_ _(x,r’) and the
27 1+y TS

functions Gm(r') are given by

1 t
Nms(x,r') = Mms(x,r’) + (—1)rnJrl i % }gn(r') g-l _._g_.%.,n.(__). M S(x,t)dt;

M8 = 1,2 (2.23¢)
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1 X t
G_(r') = g{r) + ey Y x (e B _E?Enl;,_l g(t)dt, m=1,2. (2.23d)

It is possible to factor the functions X _ (r Yy from Egs. (2.23a).

Defining the functions 91(_1') and ez(r’) by

8,,(r") = ¥ (r) Xy o {r)sm=1,2 (2.24)

. and making use of the integral

1 Xpplt) )
g_lt_r, dt = (-1)™ LX(r)-lez_]m—lz (2.25)

equations (2.23a) become

1 r m+1 - " m+1.,. i

6_(r) = | (-1) (— - CQ) - Thr/+(-1)™ T 2ikT

m” o192 - a 0 0.

(2.26a)
1 2 1
+ 1_72 [ao zz SO Tms(x,r')(-)s(x)dx+(-l)m2iCO Tm(r') :I;m=l,2 ;
0<sr’=<1
in which

1
T (30 = X (%) {VT77 M (x,0) + (1215 X S_l X

ms

(t)

3-m

M %, t)- ,r’
.[ ms (% 1M s (5, 7)) dt};m,s,:l,z (2.26b)

/

t-r
]_ /7
Tm(r') = =58 g(r/)+(—l)m+1 i% S_l X3_m(t) -[ﬂ%—g—(—v—)—]—dt, m=1,2,
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It may be shown that the integrands appearing in Egs. (2.26b)
and (2.26c) have removable singularities at t = r’, and therefore,
the integrals themselves are amenable to numerical evaluation.
Before calculating these integrals it is convenient however, to use
contour integration to obtain alternative simpler expressions for the
improper integrals which define the kernels My, (x, r.

The system of Fredholm integral equations of the second
kind (2.26a) may be solved by standard numerical procedures‘“” 47', ,
thus yielding a solution for the functions O(r '} and O,(r } in

terms of the unknown constant CO. The functions (po(r') and

(pl(r ‘Y may then be found from
oolr) = 2 [0 () X (") + 0,(r ) Xp(x ) ] (2.27a)
o1(r) =% [6,(r) Xy (x') +8,(r") Xp(r")] (2.27b)

Co is determined from Egs. (2.27a) and (2.10).
Equations (2.27), (2.26) and (2.23b) show that the frequency

. ' 7
sin /M 1n _____’l-r characteristic of the static
OSiL. 142 ’ ! ey

independent functions
complete mixed boundary value problem occur also in the solution
to the corresponding dynamic problem.

Physical quantities of interest, such as stresses, impedances

and displacements may be expressed in terms of the functions
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wo(r'), <P1(r'), (pz(r'). Such expressions are given in the following

section.

3 Stresses under the Disc

The stresses under the disc are obtained by taking the limit
as z-0 of Eqs. (2.4d) - (2.4f) and by substituting in the resulting
equations the values of A(k) and B(k) given by Egs. (2.6),
following which the fﬁnctions E(k), C(k), D(k) are expressed in

terms of (po(r'), @1(r’), @a(r’) and Cy from Egs. (2.9). Thus,

4 ;4 X[‘PO(X)' CO]
T

1
5 ’ s LY 1
O'Zr (ar ) 0) i Gze(ar : 0) = r dr’ }'7'2 Sr/ (XZ - r/Z% s v

4 .4 gl i)
* dr’

r’ (XZ—I‘IZ)—

E ’

%, togy-4 1 4 b xeglx) 4 12y -8
o (ar’,0) -0 F(ar’0)=2 1, &) gr, _dx - 2 C(1-r"%)

41 d 2 0L pp(x) /
s R T ; 0 .
T dr’ : Sr' ( Z_rIZ)'g 4% 0=z <1(Z.280)
1o / 4 d 1 ip (X) ?
g FX(ar’,0) == _._,g 1 dx; Osr'<l, (2.28¢c)

The total horizontal force P exp(iwt) applied to the disc in

the direction 6 =0 1is given by
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27
Ps= "So gz (0, cOS 9 - 0,4 sinf) rdrdo (2.29a)
where o, and 0‘79 are evaluated at =z’ = 0. After substitutions

from Eqs. (2.4a), (2.4b), (2.28a), (2.28b) it is found that

1
P = 8ua’ g (x)dx . | (2.29b)

Jo %o

The moment Qexp(iwt) applied about the axis 8= =/2

is given by
2Rk 5
Q-=- g S 0,, COS (—)rz dr 48 (2.30a)
0 Yo

where F er is evaluated at z’= 0. After substitution from

Egs. (2.4c) and (2.28c), Eq. (2.30a) leads to

1
Q= - 8ua’ SO x @) (x)dx . (2.30Db)

Equations (2.29b) and (2.30b) may be written as

/ — - (
A
ﬁ%ﬁ \ By 18 1 0) Ky (1209) -5-\
, 4 > = ﬁ > (2.31)
2 K_ (ia,,0) K _ (ian, 0) T
uas mh 90’ mm ‘0’ 0
\ / - . S

where Kp;» Khm’ Kmh’ Kim Trepresent the dimensionless

impedances of the problem. The two functions K, ., and Kmh
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must be equal as can be shown by the use of reciprocity theorems >,
The impedance functions appearing in Eq. (2.31) are complex, thus
indicating that the applied forces and the corresponding displacements

are not in phase.

4. Limiting Static Problem

In the static case ag = 0. Under this condition, Egs. (2.17a),

i

(2.26a), (2.27) lead to

oylr’) = . {(%ﬁ - Co +2kT) cos[kln __Jr__’,]
(1-0)V1=-92 =
+ Tor’ sm[_kln—l—;—ﬂ} 0sr'sl (2.32a)
o (r) = (1-0)'«}W { -Tyr' cos[kln 11‘+rr', ]
+(A—al}-Co+2kT0)51n[kln}1:_F%I/]} ;0sr'<1 (2.32b)
(pz(r') =0 0<r’s<1l. {2.32¢}

Substitutions of these expressions for the functions (Po(r'), (pl(r'),
<p2(r') into Eqs. (2.28) gives the stress distribution underneath the
disc in terms of the as yet undetermined constant Co- Substitution

of Eq. (2.32a) into Eq. (2.10) yields
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: i An - o 1
. -ya — - + .
(1-0)V/1-72 C/ (22 - Cy+2kT) 12 + T 1, (2.33a)
where ICO and ‘Isl are given by42
1 s o
o _ W l-r % 2 . _ Ty 1-72
IC = SO ciosl_k In T4 ]dr = SO sech™ § cos(%9) dp = oy (2.33b)

! leg’ ® "
I 1 = SO r, Sin[k 1n /]drl :S tanhQSeChzesin(66) - ﬁ62/1__7

1+r 0 4y
(2.33c)
in which
5 = _11? In (3-40) . (2.33d)
Using the expressions for I° and Iso in Eq. {2.33a),
A
h -l 1ryin(3-40)
G B il (2.33e)
= o ‘ .33e
14+ =<9

In(3-r0)

With this, the horizontal force P is obtained immediately from

Eqs. (2.29b) and (2.10);

ZA- i
spa® [ ZB- 1 1) 1n(3-40) |

P (2.34)

1 - 20

.
In(3-40)

The moment Q is obtained by replacing (pl(r') , as given by

Eq. (2.32Db), into Eq. (2.30b). This results in
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= 8,(1.8,3 [___T 2 4 Ah_c_l - 1] 2.35
T L ole (T 0 - = Toln(3 4a)ISJ (2.35a)

where Ic2 is given by42

@

1 8 5
2 _ 2 fr I-r" 7 r_ 1 4 o) 2
= k1l dr’ =5 . ' -
L SO r COSL n T | r 5 SO sech 9 cos(d6)dg - %
w172 | P
*"""'"‘"_y (-3--—-) . (2.351)

Substitution of Egs. (2.35b), (2.33c) - (2.33e) into Eq. (2.35a) leads

to
 apad | 1 5 [4+i_2 (1n(3-40) )| In(3- 40)
Q= 14 1-20 =5 ald-aod 2 [ 6(1-20)
In(3-40)
2 1 2 .
g [H%— (1;1(3-40)) ]]To . (2.36)

Equations (2.34) and (2.36) may be written in the form of Eq. (2.31),

i E 2 -1 a4 (D)
Ha e
I SN q et 1n(3-40)
S 4 1-20 {[“E (In(3-40) 1= 555
In(3-40) }
Q -1 in(3-4 21+l _(1n(3-40))2 r
k“aE‘ | N n(3-40) +3[ T[z(n( ) ]_J 5)
(2.37)

Equation (2.37) is equivalent to the corresponding equations obtained

by Gladwellzg, except for a misprint in his expression for K. .-
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The flexibility matrix presented by Gladwell is the inversion of the

stiffness matrix of Eq. (2.37).

D. Vertical Vibration of the Disc

1. Derivation of the Integral Equations

The vertical vibration of a disc perfectly bonded to an elastic
half-space is an axially symmetric, mixed boundary value problem
in elastodynamics. To formulate the problem in terms of dual
integral equations, use will be made in this analysis of the solution
of the equations of motion (2.1) given by Bycroft‘S. This solution,
which is independent of the angular coordinate §, may be expressed
as

’ no_ = 2 iz’ "VZZ, ’
u (ar’, §, az )=a Ok [—Al(k)e 1% +v, Bj(k)e 13 (kr )k (2.38a)
g, (ar’, 9, az’) =0 (2.38b)

[eo} P ¢ 4
' -V1Z -VoZ
u_(ar’, 6, ag’) = agok[—lel(k)e 7 41%B (ke 2 10p(ke)dk .
(2.38c)

i g g
The corresponding stresses zr’ Cpg Opp 2TC

(Ke 17 -(2kP-a,2)B (ke 2]

0

{oo]
’ noiwt- 2
O‘Zr(ar ,0,az’)e M SO k [Zlel

"J(kr \dk elwt (2.39a)
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NI az’)el®t = o (2.39b)
7
s @ -
Gzz(ar', g, az’)el"‘)t = p.g k[(ZkZ-aOZ)Al(k)e e .
0
-voz'’ Lot
21% v,By(Ke & 1J(ke')dke®" . (2.39¢)

This solution will satisfy the boundary conditions given by Egs. (2.2),

with A.h": 0, I'. = 0, provided the following equations are satisfied

0

o -viz’ -vyz' A
lim k[-v;A (ke 1 + xF By(kle 2 1J(kr’)dk = —— (2.40a)
z'»0 Y0 a

0sr’<1
o 4 " 7

lim S‘” K2 [-Aj(kle I +v,Bj(kle 2% 17 (kr')dk = 0 (2. 40D)
z'-»0 Y0

/ 7/
(o) - -V
lim (“k[(2k%-ap2)Aq(k)e 17 - 2KPv,Bi(kle 2" 1J,(kr’)dk=0)(2.40c)
z'-0 J0O
l<r'<o

2

/ F
© -V 17 Vo Z
lim kZEZVIAl(k)e ¥ ek 27 17,(kr")dk=0 (2. 404d) .

—aOZ)Bl(k)e
z'-0 Y0

These equations may be cast in a form more suitable for further
analysis by replacing the undetermined functions A,(k), Bl(k) in

- Egs. (2.40) by the functions Dl(k), E . (k) defined by

1
2v A (k) - (2kZ-a?) By(k) = k"¢ D (k) (2.41a)

(2k%-24%) Aq(Kk) - 2K®v, B (k) = K 'E (k) (2.41b)
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and by introducing the functions Hj(k), H,(k), Hy(k) defined in
Egs. (2.7). After substituting, reordering and taking limits inside

the integrals, except in those indicated below, Eqgs. (2.40) become

S: kLB (k) Jy(kr ) dk = hy(r ) (2.42a)
0sr'<1

SZ k1 Dy (k) Ty (kr ) dk = hy(r’) (2.42b) |

go E;(k) Jolkr ) dk = 0 - (2.42c)
lgr'cw

So Di(k)J;(kr‘)dk = 0 - (2. 42d)

where the functions ho(r') and hl(r') are defined by

Vi G o -kZI -1 ?
ho(r’) = - al(l‘lf_c) +y 1;?0 o e k™" Dy(k) Jg(kr ‘)dk
+ So gL [-H4(k)El(k)+H2(k)Dl(k)] J otk "Ydk (2.42¢€)

hl(r') =y li}'no S: e'kzlk'lEl(k)Jl(krl)dk + SZk_l [-Hl(k)Dl(k) +
Hy(k) Eq (k)] Jo(kr )dk . (2.421)

These are two pairs of simultaneous dual integral equations, similar
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to those obtained for the problem of horizontal and rocking oscillations

of the disc.

2. Reduction of the Two Simultaneous Pairs of Integral Equations

to a System of Fredholm Integral Equations of the Second Kind

Following the approach developed in section C, the solution of

Eqgs. (2.42) is assumed to be of the form

1 1

E(k) = @sz So x® @ () J_3 (kx)dx (2.43a)
L 2

Dy (k) = % k3/2 SO x® @q(x) J_%(kx)dx . (2.43Db)

With this representation of the solution, Egs. (2.42c) and
(2.42d) are satisfied identically whereas Eqs. (2.42a) and (2.42Db), in
a manner similar to that followed with Eqs. (2.8a) and (2.8c),

lead to the system of Cauchy ty'pe singular integral equations

1 <P1(X) _ Ly L ’
oolr’) - X S-l Tz 9T T A1) T 2o So [Kgox ) @g(x) -

Kop (x,r)o(x)Jdx; 0=<r's<1l (2.44a)

@O(X)

’
=T

/ Y ! _ 1 ’ ’ .
(pl(r ) o S-l dx = -a, SO [K“(x,r )(pl(x) - KIO(X’r )(po(x)]dx,

Osr’s1, : (2.44b)
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‘ The kernels KOO’ Klo, Kll and Kio .are defined by Eqgs. (2.15d),
(2.15e), (2.151) and (2.15m), respectively.

The problem is thus reduced to the study of the system of
Cauchy type singular integral equations (2.44) in the unknown functions
<p0(r') and (pl(r'). For the limiting static case (ao=0), these
equations are identical to the corresponding equations obtained by
Keer27 for the same problem. Keer used the method developed

48 and Collins49, as applied to axially symmetric

by Green and Zerna
_problems in potential theory.

For an incompressible material (y=0), Eqs. (2.44) reduce to
a system of two coupled Fredholm integral equations of the second
kind, thus permitting the complete determination of (po(r') and

(,Dl(r') by means of standard numerical techniques.

Reduction to the relaxed problem

The solution to the related relaxed mixed boundary value problem
may be derived from Eqs. (2.44). For the relaxed problem, it is
assumed that the tangential traction is zero everywhere on the surface
of the elastic half-space and that the horizontal displacements under
the disc are unconstrained. These conditions are satisfied by
setting tpl(r') equal to zero and disregarding Eq. (2.44b). This

gives
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A

’ i ’ il NP .
@ () +a SO K ol ¥ )0 (x)ax = e | (2.45)

This Fredholm integral equation of the second kind is equivalent to
the corresponding equation obtained by Robertson7 for the same

problem.

Simplification of the general equations

By solving the dominant part of a system of Cauchy type
singular integral equations, Eqs. (2.44) may be t?ansformed into
two Fredholm integral equations of the second kind. However,
because of the analogy between Eqs. (2.44) and (2.18), the solution
to (2.44) may be derived from the solution of Eqs. (2.18). Thus,

the function QDO(r') ; (Pl(r') may be expressed as in Eqs. (2.27):
Polr’) = % L- él(r’) Xpr’) +o5(x) Xp(r") ] (2.46a)
o(r) =36 (x) X (x) +0,(r") Xp(x )] (2.46b)

where, as before
Xm(r')=exp[(—1)mikln(%—-}_-§-:-)]; m=1,2 (2.46c)

and the functions 67 (r‘) and 6p{r’) satisfy a system of two
simultaneous Fredholm integral equations of the second kind obtained

by setting g(r’) and 1"0 equal to zero and by replacing
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Ah/a— CO by —Av/a in Egs. (2.26a), thatis
‘ (—l)m ol Ay g z 1 |
Gm(r ) = + z S Tms(x, r’) Gs(x)dx,
(1-g)fl-ye & 1-y% §=190

m=1,2; 0<r’s<1 (2.47)

/ .
where the kernels T_ (x,r") are defined by Egs. (2.26b).

From Eqgs. (2.46) and (2.47) it may be observed that the

solution of the present problem also contains the factor

/

]

T
€08 [ in—
sin 1+r

Equations (2.47) may be solved by standard numerical procedures,
thus yielding a complete solution for the functions el(r') and
62(1") in terms of the dimensionless amplitude Av/a. The
f@ctions (,Oo(r/) and  @(r )} may then be obtained from Eqs. (2.46).
Stresses, displacements impedances and other physical quantities
of interest can be expressed in terms of (,oo(r') and <pl(r'). Such

expressions are given in the following section.

B Stresses under the Disc

The nonvanishing stresses under the disc are obtained by taking
the limit as z~0 of Eqs. (2.39), (2.39c) and by replacing Aq(k)

and Bl(k) in the resulting equations by the functions Dl(k)’ El(k)
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defined by Egs. (2.41). These functions are in turn expressed in

terms of (po(r') and <p1(r') from Eqs. (2.43). Performing these

' operations
el X
o (ar’, 6, 0) = - _Z‘_,u d ,‘3 __(Pi(_.)._rdx; O0sr’<1 (2.48a)
zr s dr’ J47 (XZ_rIZ)"

%

I x@y(x)
Jarha0=-2,u L ad?g 0 dx; Osr’<l. (2.48b)

The total vertical force on the contact region, V exp(iwt), is
2% . a
T = So SO o, (r,8,0) r dr dg (2.49a)
which, upon substitution of Eq. (2.48b), becomes
[
— 2
= -4ua So Oylx) dx . (2.49b)

4. Limiting Static Problem

For the static case (ao = 0), Egs. (2.46) and (2.47) give‘

(r’) = w: cos [kIn (3 s 050/ (2.50a)

<P0 ) a(l-G)ﬁij cos | n (77 ], r . 50a
Ay N l-r'

@, (r') = - sinf_kln(—ﬁ——,)']; Ty (2. 50b)

A a(l-g)J1-y2 r

Substitution of these equations into Eqs. (2.48) gives for the stresses

under the disc



ks

a4 el sin[kln(-%—;-_—)}é)]
a(l-g)/1-y2 dr’ Jr’ (xz—r'z)?jé"

0<sr’<1 (2.51a)

dx 3

1-
o, (ar’, §,0)=2 __Pov o gl xcos Ll )
A H] H "ﬁ P 7 ~ ’
a(l-o) JT-yz © dr’ I’ T2l g
0<sr’'s<1, (2.51b)

These equations are identical to the corresponding ones obtained

by Spencez‘8 who has shown that both stresses are singular as

. / i
r> 1 behaving like {g%}% [k In( 11'_:;‘,)]} (l—r'z) % , respectively.

The vertical force V is obtained by substituting Eq. (2.50a)
into (2.49b) and making use of Eq. (2.33Db).

4ub_ a
V=Y 1n(3-40) . (2.52)
1-20

This result is in agreement with the result obtained by Spencezs.
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II. DYNAMICS OF BUILDING-SOIL INTERACTION

A. Introduction

It is well known that the behavior of a structure during an
earthquake can be affected by the properties of the ground upon which
it is founded. Conversely, the ground motion recorded in the vicinity
of a building can differ from that which would be recorded at the site
in the absence of the building. This dynamic coupling, or interaction
between a building and the surrounding soil will result, generally, in
(1) a reduction of the fundamental frequency of the system from that of
the building founded on a rigid base, and (2) an energy loss, or damp-
ing, due to wave radiation into the soil medium. There will also be
energy losses due to internal friction of the soil.

The response of a system to dynamic loading depends fundamen-—
tally on the natural frequencies and the amount of damping in the sys-
tem. Therefdre, the effects of dynamic coupling between a building
and the ground will be determined by the extent to which these parame-
ters are modified when- soil-structure interaction is taken into
consideration.

Observations of bulldings during earthquakes have shown that
the responses are influenced by their supporting media, especially

(50-53,T4)

‘when the soils are soft For specilal structures, interaction
effects can be important even for relatively hard soils since the rele-
vant parameter i1s not the stiffness of the soil, per se, but a dimen-

slonless ratio of the stiffness of the building to the soil stiffness.
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Thus, dynamic coupling may be appreciable for a very rigid structure,
such as a nuclear reactor container, even when it is founded on rela-
tively firm soil.

The influence of a flexible foundation medium upon the response
of a building subjected to dynamic loading has been analyzed in several
(54-69)

The foundation medium has been represented by

constant, discrete parameter models(5u’57’66)

(56,61,6k4,67)

recent studies
, and by a homogeneous,

isotropic, elastic half-space Some authors, for instance

(58) (57>, Parmelee(6l) and Hradilek(67) have

Sato and Yamaguchi , Thomson

studied the steady-state response to sinusoldal excitation of single

(5k)

and multi-story structures, while others, e.g., Housner and Merritt ’
Parmelee gz'gi.(66) and Castellani<65), have used actual earthquakes or
earthquake-type ground accelerations to obtain the response. Linearity
of the buildings and their foundations has been assumed in all of these
investigations. Kobori and Minai(7o) and more recently Isenberg<7l)
have studied the effects of interaction for elastic buildings founded
on elastic/perfectly—plastic soils.

Standard numerical methods for the step-by-step solution of the
differential equations of motion can be applied when the foundation
medium is represented by discrete models consisting, for example, of
simple springs and viscous dampers. This discrete representation is no
longer ;alid, in general, when an elastic half-space is used as a
mathematical model for the soil, although it has been shown by Hsieh(72)

that, under certain assumptions, the elastic half-space may be re-

placed by linear springs and dashpots. These elements are frequency
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dependent, however, and therefore can not be used for analyzing the
transient response without resorting to operational methods.

In one approach the transient response of interacting systems
has been calculated using the principle of superposition. For in-

(6%)

stance, Parmelee et al. expanded the input function into a Fourier
series and obtained the steady-state response of the system for each
harmonic. The transient response of the system was then approximated
(initial transients in the harmonic solutions were neglected) by a
linear combination of these responses.

An alternative method has also been presented by Parmelee et
§l°(66). Most of the dyna@ic properties of the springs and dashpots
representing the elastic half-space model of the foundation were ob-
served to remain almost constant'within the frequency range of inter-
“est. Thus, the authors approximated these properties with average,
constant values and obtained a system of ordinary differential equa-
tions with constant coefficients which was then solved numerically.

Another approach, the finite element method, has also been used
to obtain the transient response of interacting systems(69’7l). The
principal advantage of this approach is its ability to represent em-
bedded structures of complex geometry and non-homogeneous soils.

Sandi(58>, Rosenberg(6o) and Castellani(65) have presented
transform methods for analysis of the soil-structure interaction prob-
lem for linear systems. Sandi and Castellani, using lLaplace trans-

forms, and Rosenberg, using the Fourier integral, obtained relations

between the base displacements and the incident earthquake motion.
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B. Object and Scope

The objectives ot the present study are: (1) to develop alter-
native methods of anelysis for the problem of dynamic coupling of
linear, building-foundation systems, and (2) to apply these methods to
the investigation of the response of a few semple structures subjected
to both harmonic and trensient excitation.

Both direct and transform methods will be used to show that,
under assumptions which appear to be physically reasonable, the re-
sponse of the interacting system can be expressed as a linear combina-
tion of the response of simple linear oscillators subjected to modified
excitations. This result will be shown to be valid even for systems
that do not have classical normal modes. The maJjor advantages of this
representation are that it gives’physical insight into the dynamics of
the building-foundation system and makes the calculations involved
equivalent to those for simple structures.

In the analysis, the foundation medium will be modeled by a
linear, homogeneous, isotropic, elastic half-space. It will also be
assumed that the base of the building is a rigid circular plate resting
on the surface of the ground. Thus, any effects resulting from more
complex‘geometry or frem more complex material behavior will not be
included.

The formulation of the problem and the solution of the corres—
ponding equations of motion are given in Section C. Section D is de-
voted to the study of the transient and harmonic response of several

single and multi-story, ldealized building-foundation systems.
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C. Method of Analysis

1l. Formulation of the Problem

The i1dealized building-foundation system under investigation is
shown in Fig. 2. It consists of a linear, viscously damped n-story
structure with one degfee of freedom per floor, resting on the surface
of the half-space. Fof fixed-base response, the superstructure has a
stiffness matrix K, mass matrix M,land'damping matrix C, satisfying
the condition M KM ¢ = M oM K. o'Kelly(73) has shown this to be a
necessary and sufficient condition for the superstructure to admit de-
composition into classical normal modes. The base is assumed to be a
single rigid plate of negligible thickness and no slippage i1s allowed
between the base and the soil. Formulated this way, the building-
foundation system has n + 2 significant degrees of freedom, namely,
horizontal translation of each floor mass, horizontal translation of
- the base mass, and rotation of the system in the plane of motion.

The system, initially at rest, will be subJjected to seismic
motion represented by planez horizontal shear waves traveling verti-
cally upward. No scattering will result as the waves are normally
incident on the flat foundation. In addition to this type of transient
excitation, harmonic motion also will be considered.

The model for the building~foundation system shown in Fig. 2

(62) (66)

has also been used by Tajimi , Parmelee et al. and others.
It is noteworthy that since the superstructure admits decompo-
sition into classical normal modes, there is a simpler mathematical

model which is dynamically equivalent to the building foundation
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system under study. This model, which is shown in Fig. 3, consists of
n simple, damped oscillators attached to a base, identical to that of
the system shown in Fig. 2. Each oscillator is described by its natu;
ral frequency wj, critical damping ratio nj, mass Mj and height HJ de-
fined by the corresponding modal quantities. In addition, the sum of
the centroidal moments of inertia of the n masses is the same for both

systems.

Equations of motion

Assuming small displacements, the equations of motion of the

building-foundation model shown in Fig. 2 are

-t

MY +Cv¥+Kv=0 (3.1a)
a ,

v T s @
}: m "+ mb(vb -+ vg) +P(t) =0 (3.1b)
Jefa
= %
Z mth.VJ + I+ Q(t) =0 . (3.1c)
J=1

in these equations, v = {Vj}’ a column vector, vJ = horizontal
displacement of the superstructure at the jth floor relative to the
base mass, excluding rotations; vg = free-field, surface displacement
due to the incident earthquake wave and its total reflection; Vo =
translation of the base mass relative to the free-field motion; ¢ =
rotation of the base mass; hj = height of the jPR story above the base
mass; vjt = total horizontal displacement of the jth mass with respect

to a fixed vertical axis, il.e., V.JG =v +v +h,@+v,; m, = mass of
J g o J J J
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the jth floor; m = base mass, It = sum of the centroidal moments of
inertia of the m + 1 masses; and P(t) and Q(t) are the interaction
force and moment, respectively, between the base ﬁass and the soil.

In this idealization of the earthquake motion, the free-field
acceleration at the surface, Vg, is twice the amplitude of the incoming
wave, and the motion at depth is the sum of the incident and reflected
waves.

2. Relation Between the Interaction Forces
and the Base Displacements

: Lapiace transforms will be used to solve Egs. (3.1) for the
unknown displacements VO and Vj and the rotation @¢. Before proceeding
with the solution, 1t is necessary to express the interaction forces
P(t) and Q(t) in terms of the displacements vo(t) and ¢(t). The func-
tions P(t) and Q(t) are related to vo(t) and ¢(t) through convolution
integrals due to the frequency dependence of the resistance of the .
half-space. Upon substitution into Egs. (5.1), this leads to a system
of linear integro-differential equations. The relation in the trans-
formed space, however, is given by an impedance matrix similar to that
of Eq. (2.31).

For the case of a rigid circular base, the necessary relations
may be derived from the results obtained in Chapter I, which deals
with the steady-state harmonic oscillations of a rigid disc perfectly
bonded to an elastic half-space. In the present case, a solution is
sought to the problem of transient horizontal and rocking vibrations
of the disc. For this problem, the equations of motion that must be

(35)

satisfied by the displacement vector u = (ur,ue,uz) are
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2y

(N +2u) grad div u - p curl curl u = p 5—;-- (3.2)
t

The corresponding displacement boundary conditions under the base are

ur(ar‘,G,o,t) = Vb(t) cos 6 (3.3a)
0O=s2'"=<gl
ue(ar',e,O,t) = - v (t) sin 6 (3.3b)
© t> 0
uz(ar',Q,O,t) = ar'p(t) cos @ . (3.3c)

‘As for the problem of harmonic oscillations of the disc, the tractions
are specified to be zero over the remalnder of the surface. In addi-
tion, it is assumed that the system is initially at rest, i.e.,

uler®,8,2,5) = O att =0.

Taking Laplace transforms of Egs. (3.2) and (3.3) results,

respectively, in

(N +2u) grad dilv U -~ u curl curl ¥ - ps®u = O (3.4)
and

ﬁ?(ar',e,o,s) = VB(S) cos 6 (3.5a)

Ug(ar',0,0,s8) = - Vé(s) sin 6 O<r' <l (%.5b)

ﬁi(ar‘,e,o,s) = ar'@(s) cos 6 (%3.5¢)

in which a bar over a function denotes the Laplace transform of that
function and s is the parameter of the transform.

Comparison of Egs. (3.4) end (3.5) with Egs. (2.1) and (2.2a)-
(2.2c), respectively suggests that the solution to the transient problem

may be found directly from the solution to the harmonic problem con-—
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sidered in Chapter I. After detailed examination of the mathematical
analysis developed in Chapter I. section C it ié possible to obtain an
expression analogous to Eq. (2.31) relating, in transformed space, the
interaction forces P(t) and Q(t) to the displacements vo(t) and o(t):

o ) - - - 1
fiil _ Khh(so’o) Khm(so’c) Xgiﬁl

\ = < > (5.6)

ijiil | I o LB B LSMENTY ?(s)

- L J °

In Eq. (3.6), P(s) and Q(s) are the Laplace transforms of the force
P(t) and moment Q(t), respectively, and K., K, K, K  represent,
as before the dimensionless impedances of the problem. The functions
Khh’ Kﬁm’ Kﬁh and Kmm are given by the same equations that determine
the corresponding functions for the steady-state harmonic vibrations of
the disc. In this case, however, the frequency parameter iao is re-
placed by the complex dimensionless variable So = sa/VS where Vs‘is the

shear wave velocity of the foundation medium.

3. Solution of the Equations of Motion

Since the superstructure admits decomposition into classical
normal modes, the transformed version of Eq. (3.la) may be solved for
Vj in terms of theinteraction displacements s and ¢ and the free-field

earthquake displacement Vg:

s |

(3.72)

= v+ ) +
E: Sk Vg v 7k¢
2

k=1 s
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where
th : ’
XJk = component of Zk = modal displacement of the
.th th
ol mass in the k ~ mode of the superstructure,

if it were supported on a rigid foundation

T
M1
ﬁk=%——:;;= (1} (3.70)
5 ML
X Mh
Y = M 3 h = {hj} (3.7c)

W = undamped natural frequency of the kth mode

of the superstructure, given by

X, KX

"3 Tug, (3.74)

My = critical damping ratio of the kth mode of

the superstructure, defined by

T
&, C&

T (3.7)
L MX

Ay, =

Substituting Eq. (5.7&) into the transformed versions of Egs. (B.lb)

and (3.1c) leads to

2 = = . B T o+ P = _ B .
s [()3: FJMJJ +m ] 7 +s (32 FiZy) @ + P(s) = (3; FMy +m) v (3.8a)
2(v 7 B 2 = — B _ = o )
s (g: szj) v+ s [(J; FJ.IJ) + 1,19 +a(s) = (33 szj) ¥ (3.80)
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in which 2
w,= + 2njw.s
ﬁj(S) = (3.9a)
s® + 2qu.s & W =
Zm, X,. &
- (1 1J) ( b)
M. = B. n, X,, = —————o " .
J BJi e Em % .5 i
i 1 14
(>i: m, Xij)(§1 mihiXij) ( )
Z,=7.xunxnm, X .= 3.9c
d o Tdi 14 Sm X, .2
i 1 1J
(Zm.,h, X .)?
s P IS 1 )
I.=% Zab X .= . (3.94)
J i i1t g oy o2

i 171
Summation throughout will be from 1 to n unless otherwise indicated.

Substitution of Eq. (3.6) into Egs. (3.8) leads to a system of

linear algebraic equations in the unknowns V; and 5 whose solution is

7
= _ _ 8Bl .2 _ 4 2 3 A
V=~ F [s Jgk (MjIk ZJZk)ij + (s I, + pa Kmm)(Jé; FJMJ)
J#k
2n (2 F,.1,) - ua® L F.7, .10
+ s m.o(.j FJ j) .pa Khm(J 3 J) (3 ‘a)
n
2 3 2 2
+m (s I, +ua®K )'éll (s + 2n, W s + W )J
_ 5 ,
29 = nP.2.) - pef F M.
® X { Ha Kbh(j 325) = pa Khm[(’jFJMJ)
+m ﬁ (2 +2nw s + w 2)] (3.10b)
D gy Tk T Yk :
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in which
A _ 2
FJ(S> = (wJ.2 + 2'q w,8) kHl (s® + Enk ws +ow ) (3.10c)
k#J
A n .
ij(s) = (wjz + Enj sz)(wkg + 2nkwks) zgl (s + 2n,w,s + wﬂz)
b#3,8#k (3.104)
and
_ o4 -
A= s jzk ML - L% )F Loy ™ B F o)
J
Ik
2 2% o P A
+ s (szmo + pa Khh)(s: FJ.IJ.) - 262 ja Khm(:jil szj)
-+kE£.(s + 2n W s * wke)[s4mb1t + pad sam.o K.
+ ua? s Khh L, + a‘*(Kth + 230 . (%.10e)

The displacements Vﬁ may then be found by substituting Egs
(3.10) into Eq. {3.7a):

| Ty = = - ,(s) X 54 =1,0m (3.11a)
in which
(el == F Ry § oBe ~ 7)o
k4
+uasl<hh§ ( 7,%) B (s) + (a &® K Ty
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n
and ﬁkﬁ(s) = (mkz + 2n, wks) mg; (s® + 2 w s + gmz) (3.11c)
m%ﬂ,m%k
n
Isz(s):x.ngl (s + 2n w s + me) . (3.114)
m%ﬂ

Equations (3.10a), (3.10b) and (3.1la) may be rewritten for

simplicity:
= A
B = V’g = (%.12a)
;%
¢ =¥, A (5+120)
- &
T, =V, 233 = 1,2, 0% (3.12¢)

These equations provide an explicit solution in transformed
space to the equations of motion (3,1) in terms of the transform of the
incident éarthquake,-the physical quantities defining the building and
ts foundation, and the impedance functions Khh(so,c), Khm(so,c),

/
Kﬁh(sog) and Kmm(so,o)°

) Inversion of Laplace transforms

The unknown displacements vo(t), ¢o(t) and vj(t) may now be

found by inverting their corresponding Laplace transforms. Thus,

v (t) _ A (s)

0 Vg(s) " :
o{t) { = 55 S 2,(s) ) e as (3.13)
v,(t) A a,(s)

*The range of the varilable subscripts will be given only when
they first appear.
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where the integrals are evaluated over C, the Bromwich contour.
By a direct application of the convolution theorem of Laplace

transformations(75), Eq. (3.13) becomes

v_(t) ¢ (n(t-7)
o(t) ) = hé(t~7) Vé(T) ar (3.1ka)
v,(t) / hj(t-Tj
in which
n, () = eii./f Lo % as; x=0,0, ] (3.14p)
o Als) |

are the impulse response functions of the system.

Contour integration is nekt used to solve, in closed form, the
integrals appearing in Eq; (j.lhb).. For purposes of clarity, these
integrals will be evaluated first for the case of linear impedances
(equivalent to an idealized discrete foundation, represented by linear
springs and dashpots).v Secondly, the actual foundation of the system

under investigation, i.e., the elastic half-space, will be considered.

(1) Analysis for a discrete foundation

Hsieh(72) showed that the steady-state, forced harmonic motion
of a rigid plate on the elastic half-space can be modeled using a
simpler system. ZFor each of the four degrees of freedom of the plate
the elastic medium is replaced by a simple osclllator consisting of a
linear spring whose stiffness depends upon the frequency of oscilla-

tion, and a linear viscous dashpot which 1s also frequency dependent.
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(5,11,14)

Available numerical results indicate that most of the
dynamic properties of the springs and dashpots representing the elastic
half-space model of the foundation remain nearly constant within the
frequency range of interest. It 1s then reasonable to assume as a
first approximation that the linear springs and viscous dampers have
constant properties. This 1ls the approach used by Parmelee _e_:j;_ g_J;.(66)
to study, by numerical integration of the equations of motion, the
earthquake response of selected multi-story buildings resting on an
elastic half-space.

With the assumption of constant properties, the functions Kﬁh’
K o K, end K become linear in s (or s). The functions Ab(s),
Ab(s) and Aﬁ(s) in the numerators of Egs. (3.12) then become poly-
nomials of degree 2n, while the function.lis) in the denominator gives
a8 polyncmial of deg;ee 2n + k., Hence, the only singularities of the
integrand in Eq. (B.lhb) correspond to the n + 2 pairs of complex
conjugate roots of the polynomial A(s). Each of these pairs is asso~-
ciated with a resonant frequency of the system.

With this information the integral in Eq. (3.lhb) may now be
evaluated by contour integration. This integral vanishes for t < O

because there are no singularities on the right hand plane and in

addition

= 0(s*) as s~w. (5.15)

For t 2 O the integration is performed around the contour I' shown in

Fig. 4. By Cauchy's theorem of the residues(75):
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r s
L J/ Ak( z e 5% gs . (3.16)

2xi As)
Ty

hk(t) = X Residues -

The integral on the right hand side of Eq. (3.16) vanishes in view of
Eq. (3.15). Under the assumption that A(s) does not have repeated
roots (whose presence would merely modify the expressions for the resi-

dues) Eq. (3.16) gives

n-t2 g & * "
n (6) = Z M EF 5 f‘-k-(—ﬂ} o (3.17a)
L|asy A'(s,%)
n+2 s
-2 ) |z Alf( ) et (3.170)
4=1 A (S,g)

where s, is a root of A(s) and Sﬁ* is its conjugate; and A;(sz) is the

first derivative of A(s) with respect to s evaluated at B,e A;(sz) can

be evaluated explicitly from the preceding analysis.

Introduc1ng the real constants aﬂk, bﬂk’ 02 and 63 defined by
. A(s,) (3.188)
8. +ib , = 2 ——w—= . 3.1Ca
4k 2k A’(S )
y/
~0, +1iB, = 5, (3.18b)
Eq. (3.17b) becomes
n+2
—th . ) ( "
hk(t) = Z e (aj&k cos Bt - bzk sin Bt 3.19)
A=1

that 1s, an equation for the impulse response functions of the system
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in terms of elementary functions and real constants that can be evalu-

ated explicitly from Egs. (3.18).

(ii) Analysis for a continuous foundation

Equation (3.19) shows that the impulse response functions of a
building-foundation system supported on a discrete foundation are given
by a linear combination of n + 2 palrs of terms, corresponding to the
n + 2 pairs of complex conjugate roots of A(s) in Eq. (3.14b). There
are as many palrs of roots of A(s) as there are'aegrees of freedom in
the system and assoclated with each pair of roots there is a resonant
frequency.

When the discrete foundation is replaced by the elastic half-
space the impedance functions Kﬁh’ Khm? Kﬁh and Kmm no longer have the
precise functional form k + cs (k and ¢ are constants). On physical
grounds, however, it is expected that the building-foundation system
should still exhibit fesonant frequenéies and that the number of
these frequencies should not be affected by the substitution of the
half-space.

To preserve these features of the problem, it is assumed that
A(s) will again have n +_2 pairs of non-repeated complex conjugate
roots; one pair to be assoclated with each resonant frequency. It will
also be assumed that the impedance functions Khh’ Khm’ Kmh and Kﬁm are
analytic away from infinity and are such that Ak(s)/é(s) in Eq. (3.1k4b)
goes to zero as s approaches infinity.

With these assumptions it may be seen that the contour integra-

tion performed in the preceding section remains valid when the discrete
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foundatlon is replaced by an elastic half-space. Hence, the impulse
response functions of the corresponding building-foundation system are
again given by Eq. (5.19). In this case, however, the quantities
1 o
810 Dyyr Tps Byy 5,5 %S(sﬂ) and A (sﬂ) must be obtained by using the
'impedance functions in the half-space and they will be different, in

general, from those found for the case of the discrete foundation .

Expressions for the displacements

Expressions for the displacements vo(t), Q(t) and vj(t) may be
obtained by substituting Eq. (3.19) into Eq. (3.1ka),
vo(t) - 2, .
~0g(T—T .
o(t) ¢ = Z a e A cos B,(t-1) ¥ (7) dv
4Q 4 g
Z=l fo)
vj(t) az'j
5 bﬂo
n+2
-0 g(t=7)
~ . 3 T -
Z b,@cp / e sin ﬁz(t T) vg('r) ar . (3.20)
= O
sz

An altermative form of these expressions, convenient because
it lends itself to a simple physical interpretation, is found by inte-

grating by parts the terms in Eqgs. (3.20) involving cosines:
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vo(t) aﬂo i
ntz o 24p 2 o) _ '
o(t) )= - 8, feno-‘“t“'r)sinﬁg(t—'r)[ 'Zs L4 (7) + B& iz ('r)]d'r
. ?(Jo 4 g y 8
vj(t) aZJ
bl&o £
nt2 g e
) byl | % sin B, (t-7) ¥ (7) ar (3.21)
= o}
sz
or
vo(t) . Vzi(f)
n+2 t oL ()
1 ~NgWg\ =T ~ =3 . €
o(t) =-§: ——-——————~J/.e sin w /i -2 (t-1) (¥, (1) a7
_ ~ [ _ =2 4 4 yA0}
=1 wpy/ L Ny Y .
v, (%) 7,5(0)
(3.22a)
in which C& and ﬁz are defined by
1
w, = (crzz + %2) (3.22p)
1
e 2 2
'Qz - 0:@/(0:@ + B,Z ) (5.220)
and
w €
Tyolt) %40 20
o € -
v, (t)}=(a ~ o, ~ o~ b ~ R
ch( ) 29 [wfvg(t) + nzwzvg(t)]+ 29 [0, V1 - nf vg(t).(5.22d)
w €
sz(t) aﬂj sz
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In the above derivation use has been made of the equation

aﬂo
n+2
2: By ) = 0 (3.23)
b=1 » ‘
azJ

which is obbained from the requirement that the velocities ﬁo(t),

o(t) and ﬁj(t) vanish at t = O.

Interpretation of the solution

The expressions for the displacements vo(t), ¢(t) and vj(t)
in Eq. (3%.22a) show that the transient response of the building-founda-
tion system may be obtailned as a linear combination of the response of
n + 2 simple, viscously damped, linear oscillators resting on a rigid
ground (provided the roots éf A(sz) are distinct). Each oscillator,
described by its undamped natural frequency ®» and fraction of critical

4

damping ﬁz, experiences an acceleration at its base given by Vzi.

The
‘subscript k tekes the values 0, ¢ and J corresponding to the displace-
ments Vb(t)’ @(t) and Vj(t)’ respectively. The main advantages of this
representation are the physical insight it gives into the dynamics of
the building-foundation system, and the simplicity of the computations
which are reduced to those of a simple oscillator.

The result described above is valid even for building-founda-—
tion systems that do not have classical normal modes as no assumption

about the existence of such modes was made in the derivation of Eq.

(3.22a).
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An alternative form of‘the solution
An alternative form of the solution of the equations of motion
(3.1) may be obtained from Eq. (3.13) by selecting the imaginary axis
as the Bromwich contour. This is possible because the buillding-founda=
'tion system under investigation is stable, and therefore, any singulari-
ties occurring in thé transformed space must be elther to the left of
the imaginary axis, or if on that axis, they can be at most simple

poles. Thus, after introducing the variable transformation s = iw,

Eq. (3.15) becomes

vo(t) OO_ Ao(iw)
¥ (iw) i
o(t) ) = §lj—t 7&%(?@7 A(P(iw) eIVt gy (3.24)
vj(t) - Aj(iw) :

The integral operator appearing in Eq. (3.24) represents a
Fourier integral that may be evaluated by the Fast Fourier Transform
(FFT) technique. The formulation in Eq. (3.24) coupled with the FFT
should prove to be very useful because of the high computational ef-
ficiency of the FFT algorithm.(76)

Equation (3.24) could have been obtained directly by applying
the Fourier operator to the equations of motion (3.1) and using the
inverse Fourier theorem. This, together with the FFT was used re—

8
(83) to obtain the response of a single-story

cently by Liu and Fagel
bullding-foundation system.

It should be noted that in using Eq. (3.24) only values of the
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impedance functions Khh’ Khm’ Kmh and Kmm corresponding to the real

frequency &, are required.

Steady-state response

Although the methods developed above apply to the transient
response of building-foundation systems, expressions for the steady-
state response may be obtained readily. If the free-field surface mo-
tion vg(t) equals Vé exp(iwt), where Vé is the amplitude of the motion
and w the frequency of oscillation, then the corresponding displace-

ments Vb(t), ¢(t) and vj(t) are

v (%) Vé
o(t) ) = (g ) F (3.25)
vj(t) Vﬁ

where the complex quantities ¥, ¢ and V} are given by Egs. (3.12),

with the provision that s be replaced by iw and Vg by - o® Vé.

Random response

The preceding analyses have implicitly assumed that the free-
field earthquake acceleration Vg is a deterministic function of time.
However, since the problem is linear, a complete analysis of the re;
sponse of the building-foundation system to a random free-field accele-
ration may be obtained from Egs. (3.1ka), (3.22a) or (3.25). For in-
stance, Eq. (B.lha) may be used toushow that if Vg(t) is Gaussian, then

50 are vo(t), ¢(t) and vj(t)(78); The corresponding mean and covariance
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functions, which completely specify a Gaussian response process, may

also be obtained from Eq. (3.14a). Thus, for example

t
By (4)] =/ B(# ()] n (& - ©) & (3.26a)
[®]
and.
tl tg
K vl tst2) = / f nvg\»,g('rl,u) h (61 - 1) b (t2 - 72) ar; drz
o (o]

(%.26b)

give, respéctively, the mean and the covariance function of the rela-
tive base displacement vo(t) in terms of the corresponding properties
of the free-field acceleration Vg(t). Similar expressions can be ob-
tained for the displacements ¢(t) and vj(t).

4., An Application of Foss's Method to Systems
with Discrete Foundations

The foregoing sections of this chapter have been devoted to
the solution of the equations of motlon of a building supported on an
elastic half-space. Equations (3.1) were solved by the Laplace opera-
tional method as it was found that the relation between the interaction
forces and the displacements could be most conveniently expressed in
the transformed space (see Eq. (3.6)). When the soil is represented
by linear, discrete elements, Egs. (5.1) reduce to a system of second
order ordinary differential equations with constant coefficients which
may be solved by several methods. The Laplace operational approach
used earlier provides but one example. Another method for the solution

of these equations will next be considered. This method also gives the
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response of a building supported on a discrete foundation as a linear
combination of the responses of simple oscillators resting on a rigid

ground.

Equations of motion

The equations of motion of bulldings resting upon foundations
which can be represented by lumped parameter, time-invariant, linear

models may be written as

MX+CcX+KX=-f Vg(t) (3.27)

where Mb’ CO and KO are N X N (N = n + 2) symmetric matrices with Kb
non-singular, X is the displacement vector; f is a known vector, and
?g(t) is the free-field earthquake acceleration.

The classical normal mode‘methdd of analysis cannot be used to
solve Eq. (3.27) as the system does not, in general, possess normal

(77)

modes in N-space. Foss however, has shown that systems which can-
not be uncoupled in N-space may still be solvable by modal methods on
- transforming them to 2N-space. To include systems which cannot be
solved by modal techniques in either N or 2N-space, O'Kelly(75) de—
veloped a general theory of vibration for lumped parameter, time-
invariant, damped linear systems. Although this method 1s always
applicable, 1t 1s more convenient to use Foss's formulation in 2N-
space when possible.

Equation (3.27) will be solved by the modal method proposed by

Foss, as the corresponding building-foundation systems generally satis-

fy the condltlon necessary for its applicability.
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Method of solution

Equation (3.27) may be combined with the identity equation
MX-MX=0 ({5.28)

to obtain a system of first order differential equations in 2N unknowns:

RZ + 8% = ~ E ¥ (t) (3.29a)
in which
0 M -M_ 0
e] [e]
R = } B = (3.29p)
M C 0 X
[e] (0] o
0 X

1=
i
I+
(I
1
[<

Equation (5.29a) may be uncoupled and solved by superposition
provided the elgenvalues of SR are distinct. Proceeding on this as-—

sumption, the matrix

0 1L
i & 2N X 2N
U & =gk = o > matrix (3.30)
-C M -C K
oo o)

may be diagonalized by a similarity transformation ®, the columns of
which are the eigenvectors of R and S. From the fact that R and S are

symmetric,

o R ® = R, a diagonal 2N X 2N matrix (3.31a)

®" S® = S, a diagonal 2N X 2N matrix (3.31b)
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Equations (3.31) are the orthogonalitj conditions in 2N-space and may
be expanded in terms of N-space quantities. From the form of Egs.

(3.29) it is easy to see that the ith column, @

1 of ® may be parti-

tioned

(3.32)

o, is an N X 1 column vector and ai 1s an eigenvalue of U.

Equations (3.29) may be uncoupled by making use of the ortho-
gonality conditions (5.31). After solving each uncoupled equation, the
followlng sclution was obtained by Foss(77) for a system which is

initially at rest

X oN /o F . % By |
—Z_, = = -—-Z :’E" / eak(t ) Vg(T) dt ® (5'35)
X k=1 Rkk o] 9k

In this equation, Gk 1s an element of the 2N X 1 column vector G =
@Tg and %‘kk 1s the kM diagonal element of the matrix R.
A more convenient form of the solution may be obtained by

noting that the eigenvalues ¢

koccur In complex conjugate pairs as do

the corresponding elgenvectors. Thus, the equation for the dilsplace-

ments X in Eq. (3.33) becomes

oN G % .
X = -2 Z Re :—k— Q. / e%‘(t ) Vg('r) ar } . (3.34)
k=21 Rkk o '
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Proceeding as in Section 3, it is easy to show that Eq. (3.54)

‘may be written in the form

N
k_:l 'é‘kyl"'?\‘k

[

where the constants Gk and kk, and the equivalent input acceleratilon

vector ﬁ%e(t) are defined by

& AL (6-1) .
[ e Mo sin[ek Y1 - )\ka (t-1)1%°(7)ar (3.358)

[\

8, = [(mm & )® + (Re )] (3.250)

i

- — Re
A = = (3.35¢)

[(In &) + (Re )2

and

v 8(t) = [8.°2 + (t) + X0.% (£)] R 2—G£
ER =% Vg NET o flmes %
+ 8 V1-22 'x}g(t) mi-=g) . (3.354)

These are formulas that can be evaluated explicitly after finding the
elgenvalues and eigenvectors of the matrix U.

The result obtained above for a lumped parameter, time-invariant
damped linear system may be stated as follows. The response of the
system may be obtained as a linear combination of the responses of N
simple oscillators subjected to modified excitations, provided the
elgenvalues of the matrix U are distinct. This result is valid even

for systems that do not have classical normal modes.
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For the particular case of a bullding supported on a discrete
foundation Eq..(5.55) may be shown to be equivalent to the correspond-
ing equations obtained by the Laplace operational method (Eqs. (3.22)).
The essential difference between the two formulations lies in the meth-
od of determining the natural frequencies, critical damping ratios and
base accelerations of the equivalent linear coscillators. Given a
choice, it is more convenient to use Egs. (5.55) for numerical calcula-
tions since, in general, it is easier to solve an eigenvalue problem
than to obtain the roots of the corresponding frequency equation. It
will be recalled, however, that Egs. (5.35) can only be used for dis-
crete foundations. Egs. (3.22) and (3.24), on the other hand, are ap-
licable for buildings supported on either a discrete foundation or on
the elastic half-space.

5. A Note on the Assumption of Classical
Normal Modes of the Superstructure

In the description of the system shown in Fig. 2, the damping
matrix C was specified such that the superstructure would admit de-
composition into classical nqrmal modes. This restriction was imposed
so that Eq. (3.la) could be uncoupled and solved explicitly for the
displacements v(j in terms of the free-field acceleration %g and the
unknown accelerations VO aﬁd'ﬁ. The transformed expression for the
displacements v'j was then substituted into the transformed equations
. corresponding to Egs. (B.lb) and (3.1c). This gave a system of two
algebraic equations in the unknown functions Vb and @ which were then

solved explicitly. It may now be seen that essentially the same method
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can be used to analyze bullding-foundation systems having arbitrary
damping matrices C. It 1s sufficient to use Foss's formulation to
uncouple Eqg. (5.1&).. Explicit solutions for the displacements vj can

then be found in terms of Vé, ¥ and @

D. Applications

1. Introduction

The steady-state harmonic and earthquake response of several
idealized single and multi-story building-foundation systems will be
obtained herein by the methods developed in the foregoing sections.
This will help to illustrate the use of such methods and to determine
the conditions under which the interaction effects become important.

In addition, explicit fofmulas will be presented that permit treating
the problem of the earthquake response of a single-story building resﬁ—
ing on an elastic foundatioﬁ as one of a single mass system on a rigild

soil.

2. Dynamic Soil Coefficients

In order to apply the methods developed in Section C, it is
first ne;essary to evaluate the impedance functions Khh’ Khm’ Kmh and
Kﬁm' As may be observed from Eq. (3.6), these functions relate the
stress resultants of the contact area to the displacements experienced
by a rigid disc undergoing oscillations on the surface of a semi-infinite
elastic medium. The functions Khh and Kmm have been evaluated numeri-

(5,11,1k)

cally for the case of steady-state harmonic oscillations of a

rigid disc with relaxed boundary conditions, for values of the frequency
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parameter ao up to 10. The function Khm vanlshes identically for this
case as there is no coupling between the interaction forces produced
by the rocking and the horizontal translational motions. The corres-—.
ponding dynamic values of Khh’ Khm’ Kﬁh and Kmm for the perfectly
bonded disc are not available. On the other hand, dynamic values for
the infinite rigid strip have been obtained by Luco(zu), who showed
that the difference between the welded and the frictionless case is
significant only for large values of the frequency parameter ao and
small values of Poisson's ratio o.

It will be assumed in this study that the qualitative result
obtained for the infinite strip also holds for the disc, and therefore,
that the dynamic force-displacement relations for the frictionless
disc can be used as approximations for the corresponding complete mixed
boundary value problem. This assumption may be partially verified by
comparing the natural frequencies of single~story building-foundation
systems corresponding to the two types of bond assumed between the base
of the building and the underlying half-space.

The single-story building-foundation system used for this calcu-
lation is shown in Fig. 5. It consists of a linear, viscously damped
single~story structure with one degree of freedom, resting on the sur-
face of the half-space. For fixed base response, the structure has a
stiffness k;, mass m;, natural frequency wy = (kl/ml)% and demping
coefficient c;. The building has a height h; above the base mass.

For the purposes of the present analysis it 1s convenient to

consider only undamped building-foundation systems with massless bases.
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With these restrictions the corresponding frequency equation can then

be solved in closed form:

Lo S

512 Khh

K
mm
w® Kﬁm? kl[ 1 Khm (hl

K K e B B

L L
K
mm

a

R

For the numerical evaluation of Eq. (3.36), the force-displacement re-
lations Khh’ Khm’ Kﬁh and Kﬁm will be approximated by the corresponding
static values. Thus, for a perfectly bonded disc these functions are
given by Eq. (2.56) whereas for a frictionless disc, Kﬁh = 8/(2—0),
K=Ky =0endK = 8/5(1-a)<15).

Equation (5.56).has been calculated for values of the stiffness
ratio, kl/ua , between 0.0l and 2, of the slenderness ratio, hi/a,
between 0.5 and L4 and of Poisson's ratio, o, between O and 0.5, for
both a bonded and a frictionless base. The difference in the values of
the corresponding natural.frequencies is 1n no case greater than 5%.
For instance, for a system defined by ki /pa= 0.5, hi/a = 2 and ¢ = o,
the frequency ratio Bl/wl is equal to 0.725 if the base is perfectly
bonded to the soil and 0.730 for a frictionless base. In general, the

discrepancy is greatest for ¢ = O, whereas no difference occurs for an

incompressible material (o = 3).

Interpretation of the dynamic force-displacement relations

Returning to the dynamic problem, Bycroft(S) and Gladwell(lB)'
have shown that for steady-state oscillations of the disc,

the functions K

hh and Kmm can be expressed formally as
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Kplia ) =k, (a) +1a ¢ (a) (3.372)
Kno(la) =%k (a)+ia c (a) (3.37b)
in which the functions khh’ Cn? kmm and ¢ 8re real. These functions

can be given a simple physical interpretation. That is, it may be
shown(72) that khh and kmm are related to the stiffnesses of frequency
dependent linear springs whereas Sn and = . are' .associated with viscous
dampers which are also frequency dependent. As an illustration, the.
exact relationship is given here for one of these pairs.

After setting K equal to zero, Eq. (3.37a) and the first of

Egs. (2.31) lead to
Pa(t) = pe ky(a) vo(6) + B (a) ¥ (t)  (5.38a)

where P1(t) = P exp(iwt) and vo(t) = A, exp(iwt).

Equation (5.58a) shows explicitly that the force Pl(t) depends
linearly on the displacement vo(t) and the velocity x'ro(t). This is-
equivalent to having a system conslsting of a linear spring and a vis-
cous damper whose properties are frequency dependent. The corresponding

stiffness k and the damping coefficient c are

k=pa k (a) (3.38b)
o2
¢ = B2 chh(ao) " (3.38¢)

v
5
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Impedance functions for transient vibrations

In studying the earthquake response of building-foundation sys-
tems, it 1is necessary to evaluate the functions Khh and Kmm in terms of
the parameter So’ a complex number, rather than 8 No such numerical
solutions have been found to date. It is possible however, to obtain
Khh(so) and Kmm(so) by enalytic continuation from the known solutions
for Khh(iao) and Kmm(iao).

To explain the concept of analytic continuation, let D and Do
be two domains which have in common a set of points forming a domain D,
and let fl(so) be an analytic function defined in Dy. If there exists
a function fg(so) analytic in Do which is equal to fl(so)at each point
of D, then fg(SO) is unique. fg(SO) is called the analytic continua-
tion of £3(s ) into the domain po{T5)

Gladwell(lB) has shown that the functions Khh(ia ) and K_ (ia )

o mm'~ o
can be expanded formally in terms of power seriesf Assuming that these
series are convergent, their sums will be analytic functions at every
point interior to their corresponding circles of convergence, Ry and
32(75)° Simes he Pogskion Khh(so) defined by

Kn(s,) =K, (ia )i (3.39)
ia =8,
colncides with the fﬁnction Khh(iao) on that part of the imaginary
axis which 1s within its circle of convergence, it then follows that
Khh(so) is the analytic continuation of Khh(iao) into the region in-
terior to Ry. Thus, provided S5 is interior to Ry, it is possible to

find Kﬁh(so) by merely replacing ia by s_ in the corresponding
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expression for Khh(iao). Similarly, Kmm(so) may be found from

(s ) =K (ia )

X
.mm’ O mm*" 0o

) (3.39b)

ia =s
o "o
Alternative expressions for Khh(so) and Kﬁm(so) may be obtained
by combining Egs. (3.37) and (3.39)

Khh(so) = khh(ao)l. i + 5 chh(ao) o (%.40a)
K_(s) = kmm(ao)]‘ +s ¢ (a)| ~ (3.hob)
lao= SO lao=So

Approximate formulas for Khh and Kmm

Equations (3.22) and (3.18) show that the functions Kﬁh(so> and
Kmm(so) have to be evaluated only at discrete values of 557 correspond~
ing to the various resonant frequencies of the building-foundation sys-—
tem. Equations (3.22) and (3.18) also show that the imaginary part,
8ys of 55 is related to the resonant frequencies of the system, whereas
the real part; _06’ of 55 1s a measure of the amount of damping associ-
ated with a given resonant frequency. Considering that: (a) o, is in
general small compared to a,s (b) 8, is for most practical applications
less than about 2 and (c) the functions khh’ chh)lkmm and Com involve
only even powers of 8, it is reasonable to use an approximate form of
Egs. (3.40) for the functions Khh(so) and Kmm(so) which neglects the

higher order terms in 0y namely
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Khh(so) = khh(ao) + 8 chh<ao) (3.41a)
Kmm(so) = kmm(ao) + So cmm(ao) . (B.Hlb)

These equations have the advantage of giving a representation for the
functions Khh(so) and Kmm(so) which involve only the real functions
khh(ao), chh(ao), kmm(ao) and cmm(ao) arising in the problem of steady-
state harmonic oscillations of a rigid disc on the elastic half-space.
Numerical values for these functions will be adapted from the numerical

(11)

results obtalned by Luco and Westmann "

5. Dynamic Response of Single-Story
Building-Foundation Systems

The dynamic response of the idealized single-story building-
foundation system shown in Fig. 5 will be studied here. Dimensionless
expressions for the transformed displacements Vg, @ and Vi can be ob-
tained from Egs. (5.'10), (3.11) and (3.41). After setting n = 1 and

K] = 0, these equations lead to

56 so2 Soz B oy e 1 By D
el e st (T B g ey H ) o
— 1 -
v s by & h'h  a1™B oy
b. b 062 s 2 s
1"n 71 o) 0
+ (l + Enl ...__) (3.1-’-28.)
Py P % % ' .-
Phy Sog S5, PL %=
s = s (1 + 5, gh)(l + 2y EI) 5o (3.42p)



in which

2 so>' 1. / Soz bm
Ad.:so bl(l+2nlé‘£6ho_hl+smc_m+sogm

2 v 2
al . So bh
+5Ul+5 +sO§h
m m h Crh

5 502 ' so4 bh bm 502 b
+<l+2nla"‘;+ B

+ Gh (1 + 5, Qm)

a2/lPn Pn % % By %y
502 bm
+$;(l+so gh) + 1+ s (C + gh) +502 % gm] )

(%3.42d)

The functions Bh, Bm, Uh’ Oﬁ, gh and gm are defined by
Bp i) = 2%: Bylaga0) = &, By (e ,u) S
c})h(aojq) = f;h(ao;@) khh(ao’a) (5'431))
kmm(aoﬂ) = ?ﬁi—_ﬂgm(aoﬂ) = Gmﬁm(ao;a) (3.L43c)
c (a,,0) =¢ (a,0) k (a,0) . (3.434)

The constants Gh and cm are the static values of the stiffness

coefficients khh and kmm’ respectively, whereas the functions Bh and
B measure the deviation of khh and k from thelr static values.
m m

Thus, for a, = 0, ﬁh and Bm are equal to unity. and gm are re-

‘n
lated to the amount of energy lost by radiation into the elastic half-
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space due to horizontal translation and rotation of the base, respec-
tively. These parameters, however, do not represent ratios of critical
damping.

The functions Bh’ Bm, gh and gm are shown in Fig. 6 for three
values of Poisson's ratio és‘functions of the parameter & for values
of &y from O to 2. Although this range of ao is sufficient for most
practical applications, these functions can be calculated for values

of 8y up to 10 from the results presented by Luco and Westmann(ll).

The dimensionless parameters ajy, Oy, ni, bi, by and by appear-

ing in Eqs. (3.42) are defined by

a3 = _\T— (5.m+a)
S
oy = 22 (3.4kb)
e
i = m (3.khe)
by = — (3.4ka)
pas
Mo
bh = —p-;é- (5.)4-)4-6)
and
I
- 5,
B, = - (3. 44r)

Equations (3.42) show that the dynamic behavior of the build-
ing-foundation system under study is governed by a set of seven dimen-

sionless variables, i.e., the response quantities Vé/Vé, ¢h1/7é and
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Fig. 6.

Qo

Dynamic soil coefficients
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Vl/Vé, as functions of s, are defined completely by the parameters

a1y %1, M1, b1y, by, bp and o.

Relations between the mass ratios and the frequencies
of rigid motion of the base mass

A simple relation can be found between the mass ratios bh and
: ;

bm and the dimensionless frequencies a, and a defined respectively by

h

& = (3.452)
S
(A)m a
& = (3.450)
. S
in which
e o
Ty =T (3.45¢)
pas o
w2 e (3.454)
%

that is, w is the natural frequency of horizontal oscillations of the

base mass under the assumption that Khh = Oh and wm is the natural

frequency of rotatiocnal vibration of a rigid disc of radius a and
centroidal moment of inertia It if 1t is assumed that Kﬁm =
The required relations are obtained by combining Egs. (3.4ke),

(3.4h4f) and (3.45),

‘h

02 =0 (3.16a)
h
)]

am2 = EE ‘ (3.L460b)
m

These equatioﬁs show that the frequencies & and a are independent of

the stiffness of the foundation.
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Equations (3.46a) and (3.46b) give approximate formulas for
the loci of the resonant frequencies correspondihg to the problems of
horizontal oscillations and rocking, respectively, of a rigid circular

footing on an elastic half-space.

Total horizontal displacement of the base mass

Equations (3.42) give expressions for the Laplace transforms of
the functions vy @ and vy, which represent respectively, the horizon-
tal translation of the base mass relative to the free-field motion, the
rotation of the base mass, and the relative displacement of the top
mass relative to the base mass, excluding rotation. It is also useful
to have an expliclt representation for the total horizontal displace-

ment of the base mass yo,

Vo o=V, F Ve (3.47a)

which upon transformation and substitution of Eq. (3.42a) ylelds

— 2 2

o 1+ 8 Ch 5\ 56 b1 Oy

- = |\ttt g e

Vé d 81 m m

s g = 502 b
+ + s . ;
(1 2ny ol § s o Fm (3.470)
ay m m

Systems subjected to base constraints

Equations (3.42) and (3.47b) have been derived for the build-
ing-foundation system shown in Fig. 5. As shown in the figure, the

base mass will both rotate and move horizontally with respect to the
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free-field displacement. Physlcal constraints, however, may be im-
posed on the base mass which prevent one of these motions, for.example,
a system founded on piles might not allow rocking of the base. The
dynasmlc behavior of the resulting system can still be described by

Egs. (3.42) and (3.47b); it is only necessary to set l/Bm and ¢ equal
to zero on these equations if the base is not allowed to rotate. Simi-
larly, terms in Egs. (3.42) and (3.47b) containing l/ﬁh or ¢ must be
eliminated if the base can not move horizontally with respect to the

free-field displacement.

Steady-state response

The response of the single~story interaction system shown in

Fig. 5 to the free-field harmonic motion
vg(t) = Vé g (3.48a)

will be studied in this section. Vé is the amplitude of the motion and
w 1s the frequency of oscillation.
The corresponding displacements vo(t), yb(t), o(t) and vi(t)

are

v (%) v

yb(t) §g iwt

o(t) = % e (3.48b)
vi(t) Ty

where the complex quantities ’\70, '}'f'o s @, Vi are given by Egs. (3.42)

and (3.470) in which s, 1s replaced by ia (ao = wa/Vs).
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(1) Systems with negligible base masses

Numerical evaluation of the steady-state response of the inter-
action system will be obtained first for the limiting case in which bh
and bm vanish. This corresponds to having a system with a negligible
‘base mass and with a negligible centroidal moment of inertia of the
top mass. Systems with bh, bm different from zero will be examined
subsequently.

The critical damping ratio ny of the structure will be taken to
be zero for all numerical calculations. In this manner, all the energy
dissipated by the system will be due to wave radlation into the elastic
half-space. Also, calculations will be presented only for one value of
Poisson's ratio (o = 1/4) since similar results are expected for other
values.

Having fixed the values of b bm’ ni end o, the frequency re-

h)
sponse of the system will depend solely on the parameters aj, &y and
by, defined by Eqgs. (3.44). Of these, only ay is a function of the
soll stififness. In fact, the rigidity of the soll, as measured by its
shear wave velocity, VS, only enters the problem in conjunction with
wy. Therefore, the dynamic coupling between a bullding of this type
and the surrounding ground will depend on the relative stiffness be-

tween the superstructure and its foundation, and not on the rigidity

of the soll per se.

Numerical results

Calculations have been carried out for several combinations of

the parameters aj;, ®; and b; to assess theilr influence on the frequency
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response of the system. The values of the parameters used in the cal-
culations are: (1) ai = 0.4, 0.5, 0.7, 0.9; (2) oy = 1.0, 1.5, 2.0;
and (3) by = 0.5, 1.0, 1.5. These values of aj, Oy and by are in-
tended to approximate those of real structures. For instance, aj =
0.7 might correspond to a concrete nuclear reactor containment vessel
of radius a = 60 Tt and natural frequency fi = 4 cps founded on a soil
whose shear wave veloclty, VS, is equal to 2150 ft/sec.

The frequency response of the building-foundation systems
characterized by ¢y = 1.5, by = 1 and a; = 0.4, 0.5, 0.7, 0.9 is de-
picted in Fig. 7. ©Shown in the figure are three sets of curves, each
11lustrating the variation of a specific translational magnification
factor, ]i;l/?é, lﬁhll/Vé or [Vﬁl/ﬁg, obtained from Egs. (3.42) and
(3.47b) as a function of the exciting frequency ratio w/wl. The
symbol Iyo] refers to the amplitude of the total horizontal displace-
ment of the base, whereas l$hll and ]?il denote respectively the ampli-
tude of the horizontal translation produced by rocking and the flexural
displacement of the top mass.

Whereas a single-story undamped system founded on a rigid base
(ay = 0) exhibits an infinite relative story displacement at w/wy = 1,
Fig. 7(a) shows that for non-zero values of aj, ]Vi[/?é reaches a
finlte maximum at a value of w/wl = Sl/wl which decreases monoténically
from unity for increasing values of aj. The reduction in the peak
values of the response indicates the presence of damping in the system,
which 1s due to wave radiation into the half-space. This damping, or

energy loss becomes larger for increasing values of a; and is sensitive
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to emall variations of this parameter.

The response curves for the horizontal translation of the top
mass as produced by rocking are plotted in Fig. 7(b). Contrary to the ex-
pectation that the peak values of lﬁhl{/%;would increase monotonically
with aj, Fig. T(b) shows that the largest values of l@hl]/Vé occur when
a3y 1s small and decrease as ajy increases. For the limiting rigid foun-
dation (a3 = 0), the amplification factor lﬁhll/ﬁg vanishes identically
except at w/wl where it has an infinite singularity. The ratio lahll/
[Vi], however, does go to zero.

The response curves for the amplification factor of the hori-
zontal translation of the base are shown in Fig. T(c). These curves
are to be compared with the line J?B]/Vg = 1 (except at w/wl where
there is an Infinite singularity) corresponding to a bullding founded
on a rigid soil. The crinkle exhibited by the response curves near

the resonant frequency wi can be explained by rewriting Eq. (3.47b) in

the form
w
7 () NGy
ol L (14 il ey ) — (3.498)
g ta(r)

in which A 1is defined by

Be () = [Ad e . (3.k9m)

>]
Pt d1/p =t =0

For the purpose of this discussion, it is assumed that the

amount of damping in the system is small enough so that its effect on
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the value of the resonant frequency can be neglected. Under this

assumption, and recalling that b =D = 0, Egs. (3.42d) and (3.49b)

i

give
2
A (_(.t)__) = - (i E 1+ 312 bl = + al (5.50&)
d Wi w3 Bh O'h 51'0. O'm |
2 2
w W2 8.1 blal
Ae (E) = 1 = ((:)—J,-) [l + W] E (5.50b)

After substituting Egs. (3.50) into (3.49) it becomes apparent
that the response curve for bel/vg for the updamped system will ex-
hibit both an infinite peak and a minimum value (zero), the maximum
occurring at a frequency wl* given by Aﬂi(%ﬁi) = 0 and the minimum at

* is the natural fre-

a frequency wi*¥ defined by A C%%:—) = 0. w
quency of the undamped system whereas wl** is the natural frequency of
a system like the one above, except that the base mass can only rotate.
Based on this analysis of the undamped system, it is reasonable
to expect that the peak in the response curve for I?b]/ﬁé will be at—
tained near the resonant frequency ai of the original system whereas
the minimum value of ]ib[/ﬁé will occur near the resonant frequency
that the system would have if its base were allowed to rotate, but
were restricted to have the same displacement in the horizontal direc-
tion as the free-field surface.
As Fig. T7(ec) indicates, the minimum value of ]ib]/ﬁé will gen-

erally be different from zero because of the presence of damping in

the system. There is, however, one particular case for which this
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minimum does assume a zero value. Namely, Eq. (3.H7b) shows that if
the system is not allowed to rotate, then [?bl/vg vanishes at a point
corresponding to a frequency of excitation w = w,, that is, the single-
story building-foundation system shown in Fig. 5 exhibits characteris-
tics of a vibration absorber provided the system is prevented from

rocking. Thils property remains valid when the mass ratios b, and bm

h

are not equal to zero as only the condition ni = O need be maintained.

Approximate formulas for the resonant frequency
and peak values of the response

The numerical calculations so far presented indicate that
single~story systems founded on elastic soils have resonant frequencies
51 smaller than the corresponding fregquencies wy of the buildings on
rigid foundations. To determine 51 it is necessary to obtain the
frequency response of the interaction system defined by the parameters
a1, by and Oj. Hence, a number of these responses must be obtained in
order to study the effect of the individual parameters ajy, by and Of
on the resonant frequency al. It is therefore Qf'considerable prac-
tical interest that Sl can be approximated by the natural frequency wy*
of the corresponding undamped system, as a closed form solution in
terms of a1, by and O is available for wi¥.

Figure T(a) shows that the peak values of the amplification
factor IVi]/Vg are greater than about 10 for all the cases considered
in the figure. Interpreting Fig. 7(a) as the response of a single
mass system on a rigid foundation, these values of the amplification

factor would correspond to critical damping ratios of about 5% or less,
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This small amount of damping allows for the approximation Gl = wl*. An
explicit solution is obtained for Wy by recalling that wy;* is defined

*
w
by Ad(_l ) = 0, where Ad (-@—) is given by Eq. (3.50a). Thus,
Wi wy

Wiy 3.

w1 a 2 L
1 % 2
[l + alz b1 (B e + B o >}
h h m m

Successive approximations are required to obtain Gl/wl from

‘ (3.51a)

this equation as the functions Bh and Bm have to be evaluated at a, =

~

ay (81 = &1'51/0)1)-

Equation (3.5la) shows that the resonant frequency ratio
Ul/wl is smaller than unity.and is essentially a monotonically decreas-—
ing function of the two parameters a;® by and alz.

With the resonant frequency ratio established, approximate
expressions for the peak values of the amplication factors [Vi]/?é,
J@hll/Vé and ]V&[/Vé can be obtained by evaluating Eqs. (3.42) at s, =

igl. Retaining only first-order terms in n,, {, and {,, one gets

&
Q.2 2
1 1,
1+ 8% b1< ¥ )]
[71] [ Pp %  Pu %
mex ——— = T Taz (3.51p)
g 21]1—2-8.131)1( ml>

+
Bh Gh ﬁm Gm

Jﬁhll a,? by alg |71 |
max —— = - max ——
Vg Pn %n Vg

(3.51c)



max max = (3.514)

Equation (B.S;b) shows explicitly that the maximum relative
story displacement is finite even when there is no damping in the
superstructure. In fact, when ni1 is equal to zero, the peak value of
lVil/Vg is inversely proportional to als bl for small values of ay
whereas it approaches zero as l/al2 bl/g as aj becomes large. Equation
(E.Blb) shows in addition that when n1 does not vanish, the peak value
of the relative story displacement may be smaller or larger than the
corresponding value for the system on a rigid soil (l/2ql'to first
order in nl), depending on the parameters ajz, by and 012.

That the amplification ratios lﬁhll/Vg and ]Vgl/?é vanish for
rigid soils can be observed from Egs. (5.516) and (5.51&), respectively.
An unexpected result, however, is obtained when 7, vanishes, for then
the peak values of lahll/vg and ]Vé]/?é become inversely proportional

to ay for small values of sy -

Verification of the approximate formulas

few numerical calculations have been performed in order to
study the approximate formulas (3.51) as well as the influence of the
individual parameters &, by and &) on the response of the single-story
interaction system under investigation (Figure 5). The peak values of
the amplification factors lVil/Vé, l@hl[/vg and lVel/Vé and the corres-
ponding resonant frequencies have been evaluated using both Egs. (3.42)
and (3.51) and are presented in Table 1 for several values of ayy, b1

and O!l.
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TABLE 1

Resonant Frequencies and Amplification Factors

of Single=Story Interaction System

(bh =b =7, =0, 0= 1/4)

o Wy /wy lvll/vé I@hll/vé lV&]/Vé
Exact Approx. Exact Approx. Exact Approx. Exact Approx.
(1) (2) (3) (&) (5) (6) (7) (8) (9)
o .937 .9%6 111.7 107.0 11.75 11.26 3,84 3.77
.5 .906 .905 56.24 5%.08 9.40 8.87 2.99 2.93
o .835 .832 20.25 18.64 6.83 6.29 2.08 2.03
.9 . T61 . 755 9.70 8.79 5.54 5.02 1.62 1.59
(a) by = 1.0, 0 = 1.5
by BZL/‘*’.‘L l‘_f-ll/vg lahll/vg Ivol/vg
Exact Approx. Exact Approx. Exact Approx. Exact Approx.
(1) (2) (3) (k) (5) (6) (7) (8) (9)
o5 .Gh9 .9ko 105.9 99.25 8.83 8.3% 2.79 2.75
1.0 .906 .905 56.24 53,08 9.40 8.87 2.99 2.93
1.5 .868 .866 39.64 237.59 9.90 9.38 3.19 3,11
(b) ap = 0.5, 0y = 1.5
o aJ./("’.'l. Ivll/vg Ia)hll/vg Ivol/vg
Exact  Approx. Exact Approx. Exact - Approx. Exact Approx.
(v | (2 (3) (k) (5) (6) (7) (8) (9)
1.0 .943 .91 60.35 56.41 4,50 k.21 3.20 3,12
1.5 .906 .905 56.24 53.08 9.40 8.87 2,99 2.93
2.0 .861 .860 52.40 50.17 | 15.k49 1L.83 2.80 2«77
(¢) &y = 0.5, by = 1.0
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Estimates for the resonant frequency calculated from Eq. (3.5la)
fall within one percent of the exact values computed from Egs. (5.&2),
whereas an error of ten percent or smaller is obtained for the peak
values of the response. Thils difference, although small and satisfac-
tory for practical applications, 1s to be expected as the peak values
are more sensitive than the resonant frequency to the damping coeffi-
clents 74, gh and gm whose second powers have been neglected in the
derivation of Egs. (3.51). These equations have the advantage of pro-
vidingvrelatively simple expressions that show explicitly the effect of
the individual parameters &a,, b,, O, and 7, on the maximum values of
the response quantities of interest and the corresponding resonant
frequencies.
The following trends are worthy of note in Table 1.
1. The resonant frequency ratio Ei/wl is smaller than unity
and decreases for increasing values -of the parameters
as, by and Q.
2. The peak values of the flexural amplification factor
[Vll/?é become increasingly small for growing values of
a1 and by but are most sensitive to variations in aj .
No strong dependence of [Vil/?é on O, 1s observed.
3. The maximum value of lﬁhl[/vg is approximately propor-
tional to Oﬁa, decreases for increasing values of aj
and is almost insensitive to the mass ratio b,.
4, Whereas the peak value of the base amplification factor

l?g[/?g does not show a strong dependence on b, and O,
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it is quite sensitive to variations in a;, becoming smaller

as a, lncreases.

The trends described above can be observed directly from Egs.-
(5.51). These equations also show that the ratio of the maximum dis-
placement of the top mass caused by rocking to the corresponding flex-
ural displacement is approximstely proportional to alzblaﬁz, and simi-
larly, that the maximum value of [VA]/[V&] is almost a linear function

of the parameter algbl.

'Limiting rigid structure

The frequency ratio ﬁl/wl goes to zero as the frequency parame-
ter ajy approaches infinity. The resulting rigid structure, however,
is still capable of undergoing rigid body oscillations on the surface
of the elastic half-space; the amplitude of these oscillations being a
function gf the frequency of excitation. The peak values of_the ampli-
tudes ]$h1[/7é and ]VB}/VE and the corresponding resonant frequency,

a,, can be obtained as the limits of Egs. (3.51) as a; tends to

infinity,
a,? = ( - oz ) (3.52a)
b +
* gh O—h 6m Uh
J¢h1] Oiz !
max ——— = (3.52p)
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®2

|¥
max —— = -~ . (3.52¢)

Vg & gm oﬁz
B o +
h 'h ﬁh Oh B «

m m

Clearly, lVl]/Vé vanishes identically for this case.

(11) Influence of the base mass on the
response of the system

It 1s the purpose of the following analysis to show that the
peak values of the response of the single—~story interaction system de-

picted in Fig. 5 vary slowly with respect to the parameters b, and bm'

h

This in turn implies that the results obtained in the previous section
for systems with negligible base masses and negligible centroidal moment
of inertia of the top mass, give satisfactory approximations for sys-—

tems for which bh and bm depart appreciably from zero.

In computing the mass ratios b, and bm’ it should be noted that

h
whereas the base of a real building is partially embedded into the

ground, the idealized model used in this investigation is resting on
the surface. Hence, only the buoyant mass of the embedded portion of

the base should be included in bh and bm.

The change in the resonant frequencies of a building-foundation

system for increasing values of b, and bm provides an estimate of the

h
effect of these parameters on the dynamic coupling between the bullding

and its foundation. In general, the system shown in Fig. 5 will exhibit
three distinct resonant frequenciles corresponding to the three degrees

of freedom of the system. Only one resonant frequency, il.e., w., is

1

observed, however, when the parameters bh and bm vanlsh; the other two



being located at infinity.

10%

It is of interest to investigate to what

extent ®; is modified and how the additional frequencies are brought in

from infinity as bh

and bm become greater than zero.

Effect of bh and bm on the resonant

frequencies of the system

The resonant frequencies of the system under study correspond

approximately to the values of w/wl which minimize the function llkdl,

where A, is defined by Eq. (3.42d4) and 5,

ialw/wl.

Approximate

values for the resonant frequencies can be obtained from the equation

(3.53)

if 1t is assumed, as before, that the coefficlents of damping n,,{; and

§nm may be neglected without affecting significantly the values of these

frequencies.

An explicit formula for the modified frequency ml may be de-

rived from Eq. (5.55) by retaining only first-order terms in bh and bm,

\
2
bm a,

)

2 2
g
BIl’l m

>.

b
al4 bl al +

5 2 o 2

'J L h h
e J g {1 - X,
S 2

" 1 % \T? [ 1

1+ af by + 1+ al‘gbl
[ <5h Gh ﬁm %n)] ﬁhc

(3.54)

Equation (3.54) shows that the fundamental resonant frequency

of the system decreases as b

h

and bm assume non-zero values.

In fact,
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the equation shows that this reduction may be small even for relatively

“large values of bh

by = 1.5, Qg = 1.5 and @ = 0.25, the frequency ratio 51/w1 is equal to

and bm. For instance, corresponding to aj = 0.5,

0.866 for vanishing values of b, and bm whereas an additional reduction

h

of only about 2.5% is obtained when b, = 3 and b = I,

h

The behavior of the remaining resonant frequencies of the sys-
tem corresponding to non-vanishing values of bh and bm can be studied

most conveniently by considering b, and bm separately. Suppose, for

h
instance that bh vanishes but bm does not. Then, neglecting My s Qh and

¢,» Eas. (3.53) and (3.42d) lead to the frequency equation

2 & a2
Cep (W)t |2 Tmowye) L
8y bl(ml) [l = (w ) ] + -

; 8" %
fi-er] -2 @] (5.55)
: m m
whose solution glves approximate values for the resonant frequencies of
the interaction system under examination. Two resonant frequencies can
in general be determined from Eq. (5.55), the third one being at infin-
ity.

Rather than solving Eq. (3.55) for w/wy in terms of b, which
would involve finding the solution of a cublc equation, it is found
more suitable to invert the problem by solving Eq. (3.55) for b in

terms of the resonant frequency ratio m/wl. This gives



o (2 1 oy ®
1-(=) |1+8a%0 +
B o w1 [ % Bh Gh 5m oﬁ
m m

= ' L] v 6
m ~ 2 [ 2 By~ By (3.56)
2 2() T ol B
Wy Wy Bh crh

A schematic representation of Eq. (3.56) is given in Fig. 8,
with bm and S/wl plotted along the horizontal and vertical axes, re-
spectively. As shown in the figure, Eq. (5.56) defines two distinct
branches, each corresponding to one resonant frequency. The lower
branch, representing the fundamental resonant frequency of the system,
starts at a value (Gl)o/wl given by Eq. (3.5la) and decreases asymp-
totically to zero for increasing values of bmf The upper branch, which
corresponds to the second resonant frequency, 52, starts at infinity and

becomes asymptotic to the horizontal line

= L
w o
e [ E bl] (3.57)
I
P, 9 .

as bm gets large.
The asymptotic behavior of bm for large values of aé/wl, or
equivalently, the asymptotic behavior of ag/wl for small values of bm,

can be found from Eq. (3.56),

B « B o
'522 w bt 1 F o4 - (3.58)
b a2 b
m 1 R
1+
Py %
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eler

Fig. 8. Resonant frequencies of single-story building~foundation system
(schematic diagram) *
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Equations (3.58) and (3.46b) show that 8> may be interpreted as
the dimensionless resonant frequency of a rigid disc undergoing rocking
oscillations on an elastic half-space, provided the dimensionless cen-

troidal moment of inertia of the disc is defined by

842 Dalh® Y~
It Qm
It vt B (3.59)
W g5 85> B
l+__:1'_._...l.
%

The functions Bh and Bm have been set equal to unity in Eqg. (5.59).

Verification of approximate formulas

As a partial check upon the results of this section the reso-
nant frequencies of a typical set of single-story interaction systems,
deflned by aj = 0.5, by = 1, Oy =A2 and bh = 0 have been calculated
from Egs. (3.54), (3.56) an# (3.58) for several values of the parameter

bm and compared with the corresponding exact values obtained from Eq.
(5.42c). The results, which are presented in Fig. 9, show a very close
agreement between the values of 61 obtained from the exact and the ap-
proximate formulas. Slightly less accurate values are obtained for 52.
From the agreement between the exact and the approximate results.it is
concluded that Egs. (3.54), (3.56) and (3.58) give a satisfactory de-
scription of the behavior of the resonant frequencies Gl and C& as

functions of the parameter bmf The degree of accuracy of these equa-

tions depends on the particular values of the parameters aj, by and Oj.
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Fig. 9. Resonant frequencies of single~story building~foundation system
(ag = 0.5, b, =1, @ =2, 0 =1/k q, = by =0)
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Behavior of resonant frequencies
as functions of bh and bm

To study the behavior of the three resonant frequencies of the
system shown in Fig. 5 for non-vanishing values of the parameters bh
and b , it is found convenient to write the frequency equation (3.53).

in a form similar to that of Eq. (3.56):

[A,]
B o &by, =0
b = b h (3.60)
28y [y, 0,1/p =0
a1 (wl) &b, =0,1/B, =

where A, is defined by Eq. (3.42d) with My = tn = &p = O and s, =
lag S/wl.

The meaning of Eq. (3.60) can be explained most conveniently by
referring to its schematical representation depicted in Fig. 10. As
shown in the figure, Eq. (ﬁﬁéO) describes the behavior of the three
resonant frequencles of the system with respect to bh for a fixed
value of bm. In fact, Fig. 10 shows that all the resonant frequencies
‘decrease monotonically for increasing values of bh, each becoming asymp-
totic to a horizontai line. The initial values and the corresponding
asymptotic values of Wy, we and Wg can be found from Eq. (3.60). The

two finite initial values of 5/w1 are the roots of the frequency equa-—

tion

[ag ].bh=0 (3.61a)

whereas the non-vanishing asymptotic values of w correspond to the roots

of
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W/w,
(6’},")o (j=2,3) are roots of Eq. (361 b)
(w j)o (j=1,2) are roots of Eq. (361 a)
(ZD;)o/w,
(@y)e/ w, e

((T);)o / w,

(5, Jo /w,

Fig. 10. Resonant frequencies of single-story building-foundation system
(schematic diagram)
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[A

ol bh=o’l/5h=° =0, (3.61Db)

Since Eqs. (3.61a) and (3.55) are identical it is verified that
the roots of Eq. (5.61&) correspond to the resonant frequencies of a
single—~story interaction system for which bh vanishes. The roots of
Eq. (5.6lb) are the resonant frequencies of a system like the one
above, except that the base mass can only rotate.

It can be shown that Eqg. (3.60) remains valid for multi-story
building-foundation systems providedAAd_ 1s interpreted as the frequency
equation of the corresponding system. This result can be used to show
that all the resonant frequencies of a multi-story building-foundation

system decrease for increasing values of bm and b

-

h

Frequency response

In addition to modifying the resonant frequencies of a single-
story Interaction system, the parameter bm (and bh) will also affect
the peak values of the amplification factors of the response. This is
illustrated in Fig. 11, which gives the frequency response of the build~
ing foundation system defined by a; = 0.5, by = 1, Q1 = 2 and bh = 0
for several values of bm. Plotted in the figure are the amplification
factors lﬁbl/Vé, l@hl]/Vé and ]Vi[/?g, obtained from Egs. (3.42) in
terms of the frequency ratio w/wl.

Two distinct resonant frequenciles of the response can be recog-
nized in Fig. 11 for each non-zero value of bm. For the values of bm

consldered in the figure, however, the peak values of the response cor-

responding to the second resonant frequencies are small, compared to
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(c) HORIZONTAL DISPLACEMENT OF BASE MASS.

Fig. 11, Frequency response of single-story building-foundation system
(8, = 0.5, by =1, & =2, 0=1/4 by =ny = 0)



113

those obtained for the fundamental mode of vibration, thus indicating
that a larger amount of effective damping is assoclated with the second
mode of vibration than with the first. It may be noted also that
values of bm up to about 3 do not affect significantly the maximum
values of the amplification factors corresponding to the fundamental
resonant frequency.

The foregoing observations suggest that, depending on the
velues of aj, by and @3, the response of a building-foundation system
having values of bh and bm‘which depart appreciably from zero, may not
be significantly different from the response of the system with van-

ishing values of b, and b .
h m

Earthquake responée

This section is devoted to studying the response of an idealized
single-story building-foundation system to the free-field earthquake
motion Vé(t). The system,shown in Fig. 5, is taken to be initially at
rest.

The equations for the Laplace transforms of the response quan-

tlties of interest, given by Egs. (3.42), can be expressed for simplic-

ity as
v A
o] _ o
yo v Ay
= £ .62)
oh 2. Ya (3
il IR
Vl Al °

The corresponding displacements are obtained by inverting
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Eq. (5.62).' After making use of the convolutlon theorem of ILaplace

transformations, Eq. (3.62) gives

Vo(t) ho(t_T)

v, (%) n (t-7) |

hap(t) = h::rp(t_T) Vg('r) ar (3.63a)
vi(t) ’ v (t—7)

in which the impulse response functions hk(t) are defined by

1 Aigs) s
hk(t) = Bt l; Aﬁ(é) e E ds ; k=0,y,p,1 (3.63b)

where C i1s the Bromwich contour.

Contour integration can be used to solve, in closed form, the
integrals appearing in Eq. (5.63b) for given values of the parameters
a1y b1y, @iy M1y, bpsy by and o. The resultiﬁg equations can in turn be
substituted back into Eq. (3.63a) to obtain expressions for the dis-
placements be Vor ¢h, and v,, similar to those given by Egs. (5.22).

It is not generally practicable to obtaln explicit formulas
for the lmpulse response functions hk(t) in terms of the system parame-
ters themselves, because of the difficulty in finding explicit solu-
tions for the zeros of the function A\i' It is, however, of consider-
able practical interest that approximate, closed form solutions can be

found for the zeros of Aﬂi when b, and bm vanish. Thils permits obtain-

h
ing explicit formulas for the response quantities in terms of the

parameters ay, by, Oi, ni and 0. Furthermore, as was shown in the
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preceding section, the results obtained for vanishing values of bh and
bm can be used to estimate the response of systems for which bh and bm
are non-zero. The range of values of bh and bm for which this approxi-
mation holds depends fundamentally on the values of the parameters aj,

bl and Gfl .

Approximate solution

It seems reasonable to assume that only one of the pairs of

complex conjugate roots of the equation
Ag =0 (3.6k4)

need be taken into consideration when bh and bm are small, i.e., the
system has only one significant natural frequency. The other two pailrs
are associated with high frequencies and large amounts of damping, and
therefore do not affect materially the response of the system.
Approximate valliles for the significant roots (50)1’2 of Eq.

(3.64) can be obtained by retaining only first-order terms in n,,

and {,. For the case when bh and b vanish, one gets

al4b 4 Ch gmalz
a1ima + 5

+
Phon  Bmoy 8,
s_) = - + 1 -
03,2 o 2 — o2 >
l+a2bl(l +-oi—> l+a.2b<l + l)
1 i 1 ML
th ﬁmom P hgh Bmom

(3.65)

The functions Bh, Bm, gh and §m in Eq. (3.65) are to be evaluated at a
frequency a_ = Tm( So)i ,+ Thus, several iterations may be necessary to

J

evaluate ( so) .

1’2
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After determining the roots (so) s the impulse response func-
1,2

J

tions hk(t) defined by Eq. (3.63b) can then be obtained using contour

integration and the residue theorem.

tions into Eq. (3.63a) leads to

v (%) LIS ¥ % (x)
1 -0, (t=T) ,  ~ .
hl¢(t) = N o2 e 1 l( )51n w, (t-7) @e(T> ate.
~ l e €
v (t) Wy l+a12b1 + vy ()
* [ % Paw))
(3.66a)
The equivalent undamped natural frequency 5; and equivalent critical
damping ratio;?fl are given by
—_ Hly,
Wy = P (3.66p)
[l + a2 by L, %
: 1 S
ﬁh Gh 5m Gm
3 2
N a;” by < Ly €, %
M1 2 a.
nl = 3 (5'660)
1 %= \TF
1+a.20p +
1 M
A 5h oh Qm %n)]
w € o€ ,
and v_7, v(P s Vy are defined by
2 2 2
b 8. b o a,“b. A
T (%) ¥ (t)-w,v,(t) <2n +y ——— — (1 + )g a,
o} Bh o |8 L8 1 Bmoﬁ Bmgm h
2 2 3 2
a.“b,x o] a.“b
i E b M e ~ 11 17
s (t)5= ———————-[v (t)-w. v (t) <2n +¢ —————..<1_+ )C " )]
1 175h mey
ﬁ ) < By T g g B, 9 B, 9
o € o ~ 2 1 1 . m L h
7. (t) ¥ (t)+w, (%) [anal bl< + >+ a, % < +
L+ $ L5 B Bnch 5mcﬁ : * Bm “n Bhoh J

Substituting the resulting equa-

(3.664)
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An approximate form of Eq. (3.66d) can be obtained by neglect-

ing the damping coefficlents n,, {y and {,. With this, Eg. (3.66a)

becomes
2
v (4) ;% b,
-( ) 1 . Bn on
h;o(% = - 2 2
N[l+ 2b< N +a12>} &y” Py %
w a
1 %L YL
vy (%) : Bh % Bm % Pm O
1
t

s (6-7) @y (t-7) Fy(r) ar . (3.67)

Interpretation of the solution

The individual equations in Eq. (5.67) are almost identical to
those obtained for the response of linear oscillators on rigid founda-
tions. Thus, to a first-order approximation in 7, the following result
is established by Eq. (5.67): the earthquake response of the single-
story building-foundation system shown in Fig. 5 is equivalent to the_
respoanse of a one degree-of-freedom damped oscillator resting upon a
rigid ground. This equivalent oscillator, defined by its undamped
natural frequency 51 (%.66b) and sritienl damping ratio ﬁl (3.66c), is
subjected to the equivalent acceleration

7.5(6) (5—) 7 (6) (5.69)

Wy

The deformation of the equivalent oscillator is identical to the rela-

tive story displacement vy of the original system. Also, the displace-



118

ments vo(t) and h,9(t) are

a.2 b
S 69a)
v (t) S vy (%) (3.69
a.2 p. o.2
hyo(t) = —— v, (t) - (3.69b)
6II]. m

The practical implication of the foregoing is that the earth-
quake response spectrum of a single-story building-foundation system
may be obtained from the standard spectra avgilable for fixed-base, one
degree-of-freedom oscillators. It is only necessary to evaluate the
natural frequency gl and critical damping ratio Hl of the equivalenﬁ
oscillator frbm.Eqs. (3.66b) and (3.66c), respectively, and to multiply
the free-field earthquake acceleration Vg(t) by (@;/w,)® to obtain the
equivalent input acceleration Vée(t).

From Egs. (3.66b) and (3.68) it is seen that the effective
natural frequenc& of the single;story building-foundation system, as
well as the amplitude of the equivalent input acceleration, always de-
crease as a result of the dynamic coupling between the building and the
soil. In contrast, it is expected that the effective damping in the
system will, in general, be increased by soil-structure interaction.
Equation (3.66c) shows, however, that the opposite effect also is pos-
sible. Whether Hl is less than or greater than Ny 1is determined by
the values of the system parameters ay, b,, &, o and 7.

It 1s worth noting that there is an exact correspondence to
first order in ﬁ; between the equivalent linear oscillator described

above and the approximate results obtained before for the steady-state
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harmonic response of the original single-story building-foundation

system (Egs. (3.51)).

Response of the equivalent oscillator
to white noise excitation

The earthquake response of a single-story building is modified
by the dynamic coupling between the building and its foundation.
Whether there will be an increase or decrease of the response will de-—.
pend upon the values of 51 and ﬁi and upon the detailed time history of
the particular earthquake under consideration.

It is of interest to obtain an estimate of the effect of soil-
structure interaction on the earthquake response of buildings without
referring to a particular earthquake. This can be accomplished mosf
simply by considering ildealized earthquakes represented by a white
noise excltation. In this case, the weakly-stationary mean-square re-

sponse of the one-degree-of-freedom oscillator representing the single-

story building-foundatilon system, 15(78)
8
Elvi®(8)] = & ——3 (3.70a)
i Wy

where §£ is the constant spectral density of the equivalent excitation.
The relation between Eé and Sf, the constant spectral density of the

free-field surface excitation, is obtained from Eq. (5.68),
~ 2
- @5,
5. = (—) B, (3.70b)

Wy,

To examline the effect of the flexibility of the foundation on
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the earthquske response of the system it 1ls convenient to define

{E[Vlz(t)]}flexible foundation
o . (3.712)
{E[vla(t)]}

rigid foundation

The ratio R can be evaluated explicitiy by using Egs. (3.66b), (3.66c)

and (3.70),

2

1 o ®
2y l.+a2bl< % ):]
J.[ * Bh Gh 15m %y

gh cm al2
3
211:l.+a:L bl<ﬁh 0_h+ B 0_m>
m

. (3.71b)

This equation gives an approximate formula in terms of the system
parameters ay, by, Qi, 7y, and o that permits analyzing the effect of
a deformable soil on the earthquake response of the single-story build-
ing-foundation system. From Eq. (5.71&) it is seen that a reduction
in the response of the system compared to.that of the building on a
rigid soil 1s indicated if R < 1. Conversely, an increase in the re-
sponse will be obtained if R > 1. Without knowledge of the parsmeters
of a particular system, the value of R cannot-be established.

4, ERarthquake Response of Two-Story
Building-Foundation Systems

The earthquake response of the idealized two-story building-
foundation system shown 1n Fig. 12 will be studied in this section to
illustrate the use of the methods of analysis developed in sectilon C

-for the case of multi-story buildings. The values of the parameters
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Fig. 12. Idealized model of two-story building~foundation system
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used for the model have been selected to represent, approximately, a

(68)

concrete nuclear power plant . Figure 12 also shows the mode shapes

of the two-story building if it were supported on a rigid foﬁndation.
The response of the idealized system will be obtained from Egs.

(5.22) as a linear combination of the individual response of four simple

linear oscillators resting on a rigid ground. To study the influence

of the fiexibility of the soil on the response of the system, several

values of shear wave velocity of the foundation medium, VS, will be

considered.

Presentation and discussion of results

The natural frequencies E& and critical damping ratios ?& of
the four equivalent oscillators defined by Eq. (3.22a) have been ob-
tained from Eqgs. (3.lOe), (5.22b) and (5.220) for several values of the
shear wave velocity of the elastic medium. The results of the calcula-
tions, presented in Table 2, show that whereas the fundamental frequency
of the system, 51, ié reduced considerably as the soll becomes soft,

aé remains almost constant for all values of VS. The frequencies 53
and 54, which arise with the introduction of rocking and relative later—
al motion of the base, decrease monotonically from infinity for decreas-
ing values of-VS° For softer soils, ;8 becomes less than 32. Table 2
also shows that the amount of damping associated with the frequencies

51 and Qg is negligible for hard soils but increases as the soil gets
softer; ﬁi increasing monotonically to about 4 percent and ﬁé reaching

a maximum value of about one percent corresponding to VS = 1500 ft/sec.

For this value of Vs’ ﬁl is equal to 2.6 percent. In contrast with
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TABIE 2

Resonant Frequencies and Critical Damping Ratios of Two-Story System

v C& (rad/sec) m, (%)

(ft/sej% 1 2 3 4 1 2 3 4
(1) o] (2) (3) (k) (5) 6) | (0 | (8) (9)
800 8,87 | 54.84 | 23.86 | 87.73 | L4.26 .88 | 58.69 | 16.14
1000 | 10.76 | 54.85 | 29.85 | 89.25 | 3.77 | .99 | 58.70 | 19.86
1200 | 12.47 | 54.86 | 35.86 | 90.79 | %.27 | 1.05 | 58.74 | 23.55 -
1500 | 14.70 | 54.86 | 44,93 | 93.66 | 2.57 | 1.06 | 58.86 | 27.61
2000 | 17.54 | 54.82 | 60.1k |101.6 1.65 .90 | 59.27 | 31.53%
2700 | 20,12 | 54.86 | 81.29 |117.3 .87 .53 | 59,93 | 34 47
3500 | 21.83 | 54.97 [105.2 |138.k4 VA .27 | 60.43 | 26.03
5000 |23.39 | 55.12 |149.8 |[182.8 .16 | .09 | 60.92 | 37.22
8000 |2k4.k3 | 55,22 |238.8 [279.5 .OL .02 | 61.25 | 37.24

10000 | 24.68 | 55.25 |298.2 |345.L4 .02 01 | 61.33 | 37.37

15000 | 24.9% | 55.28 |4h6.7 |512.0 .006 | .003| 61.41 | 37.53
o 25.15 | 55.30 0, © 0 0 — —_—
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ﬁl and ﬁé, the critical damping ratios ﬁs and H4 are large even for hard
solls.

The participation factors 8 and bﬂk appearing in Egs. (5.22)
have been computed from Eq. (%.18a) and are given in Table 3 for several
values of Vs' The corresponding values for a rigid soil are also in-
cluded 1n the table. The coefficients 8,y Serve to measure the extent
to which a system fails to be classical, as these coeffilclents vanish
identically for systems with classical normal modes.

With a&, ﬁz, & and bﬂk established, the earthquake response
of the two-story building-foundation system may then be obtained by
means of standard numerical techniques for evaluating the response of
single—degree-of—freédom linear oscillators subject to base motion.

Suppose, for instance, that the system is subjected to the free-
field acceleration Vg(t) depicted in Fig. ;Ba, which represents the
corrected version of the N33E component of the earthquake motion (first
event) recorded at the SCE Power Plant, San Onofre, California on April
8, 1968(79>. In this example the shear wave velocity of the soil is
taken to be equal to 1500 ft/sec, but for purposes of comparison, the
response of the buillding aléo will be obtained for a rigid soil.

The velocity trace Vg(t) of the input motion and the equivalent
input acceleration Vli(t) calculated from Eq. (3.22d) for the flexible
soll are shown in Figs. 13b and l3c, respectively. It may be seen that
the accelerations Vli(t) and Vé(t) are nearly proportional, thus indi-

cating that the contribution of ﬁg(t) to Vli(t) is small and therefore,

could be neglected for a first approximation. The remaining equivalent
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TABLIE 3
Participation Factors bzk’ 8,y for Two-Story System
¥, L™ (sec) 8y (sec)
(g/sec)| * A | o(107%) | o(107) | 1(207) | 2(207%) | 0(207%) | o(207%) | 1(107*) [ 2(207%)
(1) (2) (3) (%) (5) (6) (7) (8) (9) (10)
1 0773 L, 922 L1b7h 2277 .0%26 .0962 -.0050 -.,008%
2 .0068 L0248 | ,0073 | -.01k9 .0178 .okL8 L0066 | -.0275
100 3 2392k | —2.k09 | -.0316 | -.0k79 | -.0277 L0343 | -.0297 0066
L .0036 .0984 | -.0175 | -.0202 | -.0101 | -.2790 .ok21 0549
1 .0619 3.916 .1707 2641 .0256 .0836 | -.00k7 | -.0079
2 L0149 .0350 | ,010k | -.0219 .0243 .0L82 .0085 | -.0329
1200 3 23205 | -1.946 | -.0391 | -.0510 | -.0255 | -.0554 | -.03L6 .0096
4 L0063 L1390 | -.0240 -.0285 ~.01kk -.3078 L0455 .0603
| .0k6h 2.89k .2005 % uliia? .0186 L0665 | -.0039 | -.0066
2 0311 .0k81 | L0164 | -,0341 .0270 LOh32 .0108 | -.0373
e 3 .2408 -1l.474 -.0514 -.0505 -.0206 .0867 -.0393% .011k
in .0121 2065 | -.0343 -.0Lk20 -.02hk7 -.342h .0k96 0666
a4 .0307 1.875 2371 .3698 .0116 .0k23 | -.0021 | -.0039
2 .0k97 .0509 | .0268 | -.0527 .0090 .0218 .0107 | -.0328
2000
3 L1542 -.97h -.0687 —-.0k77 .0016 .1250 -.0373 .0032
L L0173 .2536 | -.0399 -.0505 -.0418 -. 3604 .0512 .0693%
1 .0063 .352 .3012 76k .0015 .0022 .0003 .0003
2 0066 .0119 .0367 | -.0534 | -.0107 .0007 L0010 | -.0027
0% 3 0620 -.133 | ~.0673 | -.0602 LobTh .0530 | -.0090 | -.0075
L -.0040 L0683 | -.0092 -.0125 ~.0576 -.1230 L0164 .0225
1 0 o .3152 5013 0 o o 0
2 0 o] .0375 -.0k72 0 0 0 0
® o 0 0 o o 0 0 0
k4 0 0 e 0 0 0 0 0
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accelerations can also be obtained from Eq. (3.22d). The accelerations

Ve
Lk

tageous to calculate first the response of the equivalent simple oscil-

(t), however, need not be evaluated explicitly as i1t is more advan-

lators to the input motilons Vg(t) and Glﬁg(t) and then combine the in-
dividual responses linearly to obtain the response gquantities vo(t),
o(t), vy(t) and v,(t), as prescribed by Egs. (3.22).

Figure 14 gilves the time history for the displacements Vis Vg

h,@ and vy. To study the effect of the terms assoclated with the fre-

~

quencies W, and. 34 on the response of the system, two families of curves
have been inclﬁded in Fig. 14, one obtained by omitting the terms on” the
right hand side of Eq. (3.22&) which contain the frequencies 53 and 54,
and the other which includes all four terms. As the figure shows, this
effect is only significant for the horizontal displacement of the base.
Figure 14 also shows that: (l) the bulilding vibrates primarily with s
frequency Sl, the fundamental resonant frequency of the building:founda—
tion system, and (2) the displacement of the first story due to rocking
is about twice as large as the corresponding flexural displacement.

On comparing the relative displacements vl(t) and vg(t) of the
building on a flexible foundatlon with the corresponding displacements
obtained for a rigid soil (Fig. 15), it may be seen that the deformable
foundation has‘the main effect of reducing both the dominant frequency
of vibration and the maximum amplitude of the flexural displacements.
Also it is obvious that the displacements vo(t) and h;@(t) depart ap-
preciably from zero for the flexible foundation, but they vanish lden-

tically for a rigid soil.
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Approximate formulas for first modal response

A comparison of Figs. 14 and 15, together with the approximate
formulas (3.67) and (3.68) for the transient response of a single-story
building-foundation system suggests that the mere knowledge of the
fundamental resonant frequency Sl and the critical damping ratio Hl of
a building-foundation system may be of considerable use in estimating
the effect of a flexible foundation on the earthquake reéponse of the

~

fundamental mode of the building. Approximate values for Wy and ﬁ; may

be obtained from Egs. (3.66b) and (3.66c) provided the parameters by

and 05 appearing in these equations are defined by

b, = —= (3.722)
3
pa
Hl

Gy = Y (3072b)

where M,, the first modal mass, is given by Eq. (3‘9b) and Hl is egpeci-
fied by
Zy
B, = — (3.72¢)

My

in which Zl is given by Eq. (5.90)- The frequency parameter a, 1s de-
fined as in Eq. (3.4k4a).

The frequency 81 and damping ratio ﬁl are gilven in Table 4 as
discrete functions of the shear wave velocity of the foundation medium.
Shown in the table are the exact values of 81 and ﬁl reproduced from
Table 2 and the corresponding approximate values calculated from Egs.

(3.66b) and (3.66c). A remarksble agreement is obtained between the
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TABIE L4

Fundamental Resonant Frequency and Critical Damping Ratio
of Two-Story System

v 3y (rad/sec) T (%)
(ft/sec) | Exact | Approximate | Exact | Approximate
(1) (2) (3) (%) (5)
800 88T 9.16 4,26 b 47
1000 10.76 11.07 3.77 3.50
1200 12747 12: 7T 3.27 %35
1500 1L, 70 97 ] 2.57 2.57
2000 17.54 17.7h 1.65 1.61
2700 20.12 20.23 BT 8L
3500 21.83 21.89 R A3
5000 23.39 23,41 .16 .16
8000 2k 43 2h. 43 0L Ok
10000 2k .68 2L .68 .02 L2
15000 2k .9k | 2L.ok .006 .006
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exact and the approximate values of 51 and ﬁ; for the sample structure
‘considered herein. Satisfactory results also would be expected for
other systems.

5. Natural Frequencies of Multi-Story
Building-Foundation Systems

In this section the effect of foundation compliance on the
resonant frequencles of multi-story bulildings is investigated. The
resonant frequencies of an idealized ten-story undamped building resting
upon an elastic half-space are calculated first and more general sys—
tems are examined subsequently.

The natural frequencies and mode shapes of the ten-story build-
ing are taken as equal to the values calculated by Housner and Brady(8o)
for case 10 ¢, a two-bay steel frame attached to a rigid foundation,
with infinitely rigld floor girders, a story height of 12 ft, a bay
width of 20 ft, tributary floor area of Lo £t by LO ft, and a lumped
weight per floor of 160,000 1b. The fundamental mode of the bullding is
illustrated in Fig. 16. |

Because the'analytical methods presented in Section C were de-
veloped for circular bases, it i1s assumed that the ten;story building
has a circular massless base with the same area as that of the actual
building. The centroidal moments of inertia of the floors are neglected
compared to those about the base of the building. Because of this as-—
sumption, together with that of a massless base, the building-founda-
tion system has only ten significant resonant frequenciles.

The foundation medium is teken to have a unit weight of 120 1b/
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£t2 and a Poisson's ratio of 0.25. Several values of the shear wave
velocity are considered in the numerical calculations, ranging from
300 ft/sec to the limiting rigid condition.

With the building and its foundation specified completely, the
resonant frequencies and critical damping ratios of the interaction

system can be obtalned from the frequency equation

A= 0 (3.73)

vhere A is defined in Eq. (3.10e).

Presentation and discussion of results

The resonant frequencies of the system have been calculated
from Eq. (3.73) for two different types of base motion: (1) rocking and
horizontal translation, and (2) rocking only. The corresponding funda-
mental frequencies are presented in Table 5 for several values of the
shear wave velocity of the elastic foundation. Also shown in Table 5
are approximate values of the fundamental frequenéy of the system cal~
culated from Eq. (5.66b). !To use this equation for multi-story build-
ings the parsmeters a,, bl:and @, have been defined by Eqs. (3.kka),
(3.72a) and (3.72b), respectively. Excellent agreement is obtained be-
tween the exact and the approximate values of the fundamental resonant
frequency of the ten-story building-foundation system.

A comparison of columns (2) and (%) of Table 5 shows that for
soft soil an appreciable reduction in the fundamental frequency of the
system takes place when rocking of the base is permitted. However, the

additional change resulting from the horizontal translation of the base
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TABLE 5

Fundamental Resonant Frequency (cps) of Ten-Story Building
on the Elastic Half-Space

" Rocking and Rocking Rocking and
(%) Zec) HOlEéxZii])QSl' (Eicr;lcsjs) &‘;&iﬁﬁi’)
(1) (2) (3) b
© L5k -5k 75k
5000 <153 $153 -153
2000 . 750 .750 .750
1500 LThT _ R < THT
1000 .738 .T39 .738
700 .Te2 .24 L1253
500 .695 .698 .696
400 667 671 .668
300 s 615 .620 .618
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is small compared to the initial reduction. This behavior may be ex-—
plained by referring to Eq. (3.66b). Used as an approximstion for the
fundamental frequency of multi-story building—foundation systems, Eq.
(3.66b) shows that Bl/wldepends fundamentally upon the compliaﬁce factor
algbl, Poisson's ratio o, ahd the square of the slenderness ratio Hl/a.
It may be seen, however, that Hl/a appears only in the term which rep-
resents rocking of the system. This Implies that the effect of the
‘horizontal translation of the base on the fundamental frequency will be
significant only for systems for which (H,/a)® is small. Thus, for
sufficiently tall buildings this effect could be neglected, compared:-
to that of rocking.

Table 5 shows that the fundamental resonant frequency of the
ten-story building can be reduced. significantly as the soil becomes
soft. This trend, however, was not observed for the higher modes of
the building. The second and higher resonant frequencies calculated
from Eq. (5.75) for all values of the shear wave velocity of the soil,
did not differ by more than one percent from the corresponding fre-
quencies of the building on a rigid foundation. vit will be recalled
that the second resonant frequency of the two-story building studied in
the preceding section (Table 2) also remained esseﬁtially unchanged,
independently of the stiffness of the soil. Thus, it becomes of inter-
est to determine whether more general systems show the same type of
behavior.

Vibration tests have shown that many tall buildings have funda-

(81)

mental modes resembling straight lines . It thus seems reasonable
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to use classical linear models whose fundamental mode shapes are gilven
by straight lines in studying the dynamic coupling between tall build-
ings and their foundations. Only the rocking of the base will be con-
sidered since it has already been shown that the effect of the horizon-
tal translation of the base on the fundamental frequency of the system
is negligible for sufficiently tall buildings. Under these conditions
it can be shown that the contributions of the second and higher modes
to the overturning moment at the base of the bullding vanish identi-

cally(82)'

Because only the fundamental mode has a non-vanishing base
moment, and therefore a tendency to rotate, it 1s concluded that the
second and higher natural frequencles will remain unchanged regardless
of the stiffness of the soil. That the rotation of the base does not

(62) from the

occur in the higher modes was previously found by TaJjimi
corresponding frequency equation.

As noted above, the second and higher natural frequencies of a
building whose fundamental mode is given by a straight line are not in-
fluenced by the properties of the ground upon which it is founded, pro-
vided its base is only allowed to rotate. It seems reasonable to expect
that the higher natural frequencies should remain nearly constant even
when the first mode of the building is not given by a straight line and
both rocking and horizontél displacement of the base are allowed to take
place. This is in accordance with the corresponding result obtained fér
the shear beams and bending beams often used to model tall buildings.

It 1s well known that the effect of the type of constraint at the sup-

ports of single-spanned beams becomes less important for the higher modes
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of vibration, e.g., whereas the ratio of the fundamental frequency of a
free-free bending beam to that of a cantilever beam is equal to 6.35,
the corresponding ratio reduces to 1.50 for the fifth mode of vibration.'

From the above discussion it is concluded that the effect of an
elastic foundation, as measured by the change in the natural frequencies
of a building as the underlying soll becomes softer, is negligible for
modes higher than the first for many types of building structures. It
is observed that only the fundamental frequency of a building decreases
significantly as the soil becomes softer and that, except for short
buildings, the reduction in the fundamental frequency is primsrily duze
to - rocking and to a lesser extent to the horizontal translation of the
base of the structure.

Evaluation of the properties of a
discrete foundation

It will be recalled that the elastic half-space which is used to
represent the soil is sometimes approximated by a simpler discrete foun-
dation consisting of linear constant springs and viscous dampers. The
preceding paragraph suggests that the constant properties of thesé ele~
ments should be evaluated at ay = Ela/vs, where 51 1s the fundamental
frequency of the interaction system. The earthquake response of the
simplified system couldfthen be obtained by using Foss's formulation,

as described in Section C, or by other methods for solving systems of

ordinary differential equations with constant coefficients.
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i SUMMARY AND CONCLUSIONS

The thesis investigation on the dynamics of soil-structure
interaction was divided into two parts for convenience of analysis and
presentation. In Chapter I, the forced horizontal, rocking and vertical
harmonic oscillations of a mnigild disc perfectly bonded to an elastic
half-space were studied. The problem was formulated in terms of a sys-
. tem of dual integral equations which was transformed, with the aid of
auxiliary functions, into a system of Cauchy type singular integral
equations; the solutidn of the dominant part of which led to a system of
Fredholm integral equations of the second kind in the auxiliary func-
tions. Simplified forms of these equations were obtained for an incom-
pressible material and for the relaxed mixed boundary-value problems
corresponding to the complete mixed boundary-value problems examined.
The stresses under the area of contact and the corresponding resultant
forces were determined directly from the auxiliary functions. For the
limiting static, complete mixed boundary-value problems, the Fredholm
integral equations of the second kind reduced to simple expressions,
thus yilelding a solution in closed form which is in agreement with that
obtained by other investigators. It was found, in addition, that the
cos 1 - pt
ain ETT:TFT] WhiCh occurs in the static problem

also enters into the solution of the corresponding dynamic problem.

factor of the form [k 1n
The effect of a deformable foundatilon on the response of a
building to earthquake excitation was studied in Chapter II. The base
of the bullding was 1dealized as a rigid cilrcular plate attached to the

surface of the ground, and the soil was modeled by a homogeneous, iso-
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tropic, elastic half-space. Using the force-deflection relations for
the base derived in Chapter I, the equations of motion of an n-story
building-foundation system were solved by both direct and transform
methods. It was shown that, under certain reasonable assumptions based
on physical grounds, the earthquake response of the building-foundation
system can be obtained as a linear combination of the responses té modi-
fied excitations of n + 2 one-degree-of-freedom, viscously damped, lin-
ear oscillators resting on a rigld ground. The undamped natural fre-
guencies and fractions of critical damping of the equivalent rigid based
oscillators are determiﬁed from the roots of the frequency equation of
the bullding-foundation system. The modified excitations for the in-
dividual oscillators are obtained by linear superposition of the accel-
eration and the velocity traces of the original earthquake excitation.
This result was shown to be valid even for systems that do not possess
classical normal modes. The maln advantages of this representation are
the physical insight it gives into the dynamics of the bullding-founda-
tion system and the simplicity of the calculations, which are reduced

to those of a simple oscillator.

For the speciél case of a single-story bullding on a flexdible
foundation, approximate expliclt formulas were obtalned for the effec—
tive natural frequency, 81’ critical damping ratio, ﬁl, and the ampli-

. tude of the modified excitation in terms of the dimensionless parameters
which govern the behavior of the system. It was found that whereas the
effective natural frequency of the single-~story building, as well as the

amplitude of the equivalent input acceleration, always decrease as a
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result of the dynamic coupling between the building and the soil, the
effective damping in the system can be increased or decreased by soil-
structure interaction, depending on the parameters of the system.
Whether the earthquaké response of the building on a deformable soil
will increase or decrease with respect to that of the same bullding sup-
ported on a rigid ground will depend upon the values of Bl and ﬁi, and
upon the detailed time history of the earthquake under consideration{

For multi-story buildings it was shown that the effect of an
elastic foundation; as measured by the change in the natural frequencies
of the building, 1s negligible for modes higher than the first for many
types of buillding structures. It was noted that only the fundamental
frequency of a building decreases significantly as the soil becomes
softer and that, except for short-bulldings, the reduction in the funda-
mental frequency is.primarily due to rocking and to a lesser extenf to
the horizontal translation of the base of the structure.

To confirm the applicability of the results obtained in this
study, it is recommended as the next step to test the analytical solu-
tions against the measured response of actual buildings to strong |

earthquakes and the forces of dynamlc tests.
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