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ABSTRACT 

The influence of a deformable foundation on the response of 

buildings tb earthquake motion is examined. The study is divided into 

two parts; the vibration of the base of the building on the foundation 

medium, and the response of the whole building-foundation system. 

Studied fir st are the forced horizontal, rocking and vertical har­

monic oscillations of a rigid disc bonded to an elastic half-space, which 

is considered as a mathematical model for the soil. The problem, 

formulated in terms of dual integral equations, is reduced to a system 

of Fredholm integral equations of the second kind. For the limiting. 

static case these equations yield a closed form solution in agreement 

with that obtained by others. 

Using the force-deflection relations for the base, the equations of 

motion of linear building-foundation systems are solved by both direct 

and transform methods. It is shown that, under assumptions which ap­

pear to be physically reasonable, the earthquake response of the inter­

action system reduces to the linear superposition of the responses of 

damped, linear one-degree-of-freedom oscillators subjected to modi­

fied excitations. This result is valid even for systems that do not pos­

sess classical normal modes. Explicit approximations in terms of the 

parameters of the system are obtained for the dynamic properties of 

the one-degree-of-freedom oscillator which is equivalent to a single­

story building-foundation system. For multi-story buildings it is shown 

that the effect of an elastic foundation, as measured by the change in 

the natural frequencies of the building, is negligible for modes higher 

than the first for many types of building structures. 
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INTRODUCTION 

There are two aspects of the problem of building - foundation 

interaction durfog earthquakes which are of major significance to 

earthquake engineering. First, the response to earthquake motion 

of a structure founded on a deformable soil will not be the same as 

if the structure were supported on a rigid foundation. Second, the 

ground motion recorded on the base of the structure will be different 

from that which would have been recorded had there been no building. 
I 

The practical importance of these effects depends on the properties 

of the soil-structure system. In terms of the dynamic properties 

of the system, this dynamic coupling, or interaction between a 

building and the surrounding soil,· will generally have the effect of 

( 1) reducing the fundamental frequency of the system from that 

of the structure on a rigid base, and (2) dissipating part of the vibra-

tional energy of the building by wave radiation into the foundation 

medium. There will also be energy losses due to internal friction 

of the soil. Because of these effects, the response of a structure 

on a soft foundation to a given earthquake excitation will, in general, 

be different from that of the same structure supported on a rigid 

ground. It is the influence of a flexible foundation on the response 

of structures to earthquake motion that is the general subject of 

this thesis . 

It is convenient to divide the studies of building-foundation 

interaction into two distinct parts ; the first concerned exclusively 

with the vibration of the base of the building on the foundation 
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medium, and the second dealing with the response of the entire 

system. The base of the building is idealized as a rigid circular 

plate and the soil is modeled by a homogeneous, isotropic, elastic 

half-spac:. Under these conditions, the essential features of the 

problem reduce to the forced vibrations of a massless disc bonded 

to an elastic half-space, which are studied in Chapter I. Of 

special interest is the relation between the forces applied to 

the rigid plate and the resulting displacements. 

Once the force-deflection relation for the base is determined, 

the response of a linear building foundation system to a prescribed 

earthquake excitation can be evaluated. This is the subject of 

Chapter II. Using both direct and transform methods, it is shown 

that, under assumptions which appear to be physically reasonable, 

the response of the interaction system can be expressed as a linear 

combination of the responses of one-degree-of-freedom oscillators 

subjected to modified excitations. This result is shown to be valid 

even for systems that do not possess classical normal modes. The 

advantages of this representation include the physical insight it 

gives into the dynamics of the building-foundation system and the 

ease of calculations, which are equivalent to those for simple 

structures. 

A summary of the main results obtained in this investigation 

is contained in Chapter III. 
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I. FORCED VIBRATIONS OF A RIGID DISC PERFECTLY 

BONDED TO AN ELASTIC HALF-SPACE 

A. Introduction 

The problem of forced oscillations of a rigid footing on an 

elastic half-space is a mixed boundary-value problem in which 

either the displacements, or certain displacements and tractions 

are prescribed under the footing, and the tractions are specified to 

be zero over the remainder of the surface of the elastic half-space. 

Two distinct classes of mixed boundary-value problems may be 

considered depending on the type of contact between the footing and 

the half-space. A complete mixed boundary value problem, for 

which all the components of the displacement under the footing are 

specified, occurs if the rigid footing is perfectly bonded to the free 

surface of the elastic half-space . Perfect bond, or adhesive contact, 

is defined as the type of attachment in which there is complete 

continuity between the displacements and stresses of the footing and 

the underlying half- space in the zone of contact. A relaxed mixed 

boundary-value problem results if it is assumed that at least one 

of the components of the surface traction under the footing is zero . 

To have a well-posed problem, a corresponding number of components 

of the displacement under the footing is left unconstrained . Thus, 
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for vertical and rocking oscillations the contact may be assumed 

to be frictionless whereas for horizontal vibrations the normal 

component of the surface traction under the footing is taken to be 

zero. Correspondingly, for the first two problems the horizontal 

displacements under the disc are not prescribed, while for the 

horizontal oscillations the vertical displacements under the disc 

are left unconstrained. 

Considerable attention has been given to the solution of the 

problem of forced oscillations of a rigid footing on an elastic half-

space. R . 10·12 e1ssner , u1n an , 
3 4 5 Sung , Arnold et al , Bycroft and 

Thomson and Kobori6 have approached this problem by assuming 

the dynamic stress distribution at the contact region to be either 

constant, linear, parabolic or proportional to the static stress dis-

tribution. Under these assumptions only stresses are specified 

and a mixed boundary-·value problem does not arise. The relaxed 

mixed boundary value problem has been considered by a number 

of investigators. Robertson 7 , Awojobi and Grootenhuis 8 , Lysmer 9, 

Shah 10 and Luco and Westmann 11 solved the problem of a smooth 

rigid disc undergoing vertical oscillations. Zakorko and Rostovtsev12 

considered the cases of vertical and rocking oscillations while 

Gladwell 13 , Luco and Westmann 11 and Veletsos and Wei 14 solved 

the cases of horizontal and rocking vibrations of the disc . The 
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latter problem has also been considered by Awojobi l 5. 

Karasudhi, Keer and Lee 16 have treated the vertical, rocking and 

horizontal oscillations of a smooth rigid strip footing while 

Elorduy, Szekely and Nieto;17 considered the vertical and rocking 

vibrations of a smooth, rigid rectangular footing. Torsional oscil-

lations of a rigid disc on an elastic half-space have been studied by 

Reissner and Sagoci 18 , Ufliand 19, Collins 20 , 
21 

Robertson , 

Thomas 22 and Stallybrass 23 . This may be interpreted either as a 

relaxed or a complete mixed boundary-value problem because there 

is only one non-vanishing component of stress and displacement in 

cylindrical coordinates throughout the half-space. The complete 

mixed boundary-value problem for a strip footing has been examined 

24 
by Luco , who studied the vertical, rocking and horizontal oscil-

lation of a rigid strip perfectly bonded to the free surface of an 

elastic half-space. To date, only the static solution has been 

obtained for the complete boundary value problem for a rigid disc25-2~ 

Bpth the relaxed and the complete mixed boundary-value 

problems can be formulated in terms of a system of dual integral 

equations. For circular and strip footings,a standard technique30-33 

has been used by which these equations are transformed with the 

aid of auxiliary functions into a system of Abel type integral 

equations whose solution in turn leads to a system of Fredholm 
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integral equations of the second kind in the auxiliary functions. 

Quantities of interest may be calculated directly from the auxiliary 

functions. 

In this investigation an analysis is made of the complete 

dynamic mixed boundary-value problem for a rigid disc on an elastic 

half-space. An extension of the method used in the solution of the 

relaxed problem will be employed to transform the corresponding 

system of coupled, dual integral equations into a system of Cauchy 

type singular integral equations in auxiliary functions, the solution 

of the dominant part of which results in a system of Fredholm 

integral equations of the second kind. Simplified forms of these 

equations are obtained for q'.n incompressible material and for the 

particular case of the relaxed mixed boundary-value pro bl em. The 

stresses and displacements on the surface of the half-space can be 

determined directly from the auxiliary functions. 

The static solution of the complete mixed boundary value 

problem obtained by Mossakovski25 and Ufliand26 and later by 

Keer 27 , Spence 28 and Gladwen29 includes a factor of the form 

I 

exp [ ik ln ( \~: ) J where r 
/ 

is the radius and k is a constant. 

This frequency independent factor also occurs in the solution to the 

dynamic problem. Consequently, it is possible to obtain a new system 
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of Fredholm integral equations of the second kind in terms of 

auxiliary functions, not involving singulariti"es, which can be solved 

numerically for arbitrary values of the frequency of oscillation . 

For the limiting static case the terms containing integrals disappear, 

and therefore, an explicit solution may be obtained. This solution 

is in agreement with the solutions found by Mos sakovski, Ufliand, 

Keer, Spence and Gladwell25-29 . 

B . Formulation of the Problem 

In the following analysis, a cylindrical polar coordinate 

system r' e' z will be employed! the r-e plane coincides with 

the half-space surface and t he z - axis is directed into the 

half- space. The elastic, homogeneous, isotropic half-space is 

characterized by the density p , the shear modulus µ, and Poisson's 

ratio a {or equivalently by p and the Lame' constants µ and A.). 

No body forces are pre~ent in the system. The massless rigid 

disc of radius a is placed on the plane z = 0 with its center 

coinciding with the origin of the coordinate system. The motion of 

the disc is produced by the actions of a vertical force, a horizontal 

force and a moment, all with harmonic time dependence. The 

complete system and the applied forces are shown in Fig. 1 . The 

problem is formulated within the scope of classical elastodynamics. 
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viwt 
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a a 
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Qiwt 
e 

Fig. 1. Diagram of footing and coordinate system 
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For steady-state vibrations with circular frequency w , the 

equations of motion that must be satisfied by the displacement 

vector ~ exp(iWt) = (ur, UEJ, Uz)exp(iwt) are given by35 

(A.+ 2µ)graddiv~ - µcurl curl u +,o w 2u = 0 (2. 1) 

in their cylindrical polar coordinate formulation. 

Suppose that the disc experiences vertical displacement 

D. v exp (iwt), rotation ro exp (iwt) about the axis e = rr./ 2 and 

horizontal motion D. h exp (;iwt) in the direction e = 0. ~ and 

I 

D. h are the constant amplitudes of the vertical and horizontal 

displacements of the disc, respectively, and r 0 is the amplitude 

of the angle of rocking. The displacement boundary conditions are 

then 

ur(ar 
I e, 
' 

ue (ar 
I e, 

' 
I 

uz (ar ,, e' 

where r'=r/a . 

must satisfy 

0) = D.h cos e 

0) = -6h sin 6 0 :::; r I :::; 1 

O) D.v+ar 0 r 
I 

cos e = 

The corresponding stresses a 
zz 

(2.2a) 

(2.2b) 

(2.2c) 
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I a (ar , e, zz O} eiwt = 0 (2.2d) 

a ze(ar ', a, 0) i:.ut 
0 l<r

1
<'° (2. 2e) e = 

azz(ar', a, O} 
. t 

elW = 0 (2. 2£) 

In addition, equllibrium of the massless disc requires that 

the external forces balance the forces resulting from the surface 

tractions ·acting in the zone of contact. 

Finally, since the vibrations are generated in a limited zone 

of the boundary, it is required that only outgoing waves be present 

at infinity. 

The vertical harmonic force Vexp(iwt) applied to the disc 

shown in Fig. 1 results only in vertical harmonic vibration of the 

disc, whereas the horizontal force P exp (iwt) produces a harmonic 

rocking motion of the disc in addition to the horizontal displacement, 

and conversely, the rocking moment Q exp (iwt) produces a horizontal 

oscillation of the disc in addition to the rotational vibration. For 

this reason, it is convenient to study the vertical vibration of the 

disc separately from the coupled horizontal and rocking oscillations. 

The coupled horizontal and rocking oscillations of the disc 

are considered in Section C . The boundary conditions for this problem 

are given by Eqs. (2. 2) with b,, = 0 . v The vertical vibration of the 

disc is studied in Section D and the corresponding boundary conditions 
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are obtained by setting ~h and r · 
0 

equal to zero in Eqs. (2.2). 

C. 'Forced Horizontal and Rocking Oscillations of the Disc 

1. Derivation of the System of Coupled Dual Integral Equations 

Bycroft 5 , following Sezawa 36 , has shown that the equ'ations 

of motion {2. 1) have a particular solution of the form 

( 
I a /) ,,, ( I I) (J ur ar , ", az = aur··· r , z cos u (2. 3a) 

ue (a r I> a > a Z I) = a ug:' ( r I, Z I ) S in e (2. 3b) 

( 
I I ) , ( I I) uz ar ' e' az = auz"' r ' z cos e {2.3c) 

where z I = z/ a . In this solution . 

·'·( 
/ 1

) + -·· ( ' ') 2 \'° [ k F {k ') 1 C(l,.)e-v2z 
1

] Ur''' r , Z Ufj" r , Z . = - j Q 1 , Z - .-. 
v2 

·J2 (kr')dk (2.3d) 

I 

,,, I ') ,,, I I - S'° [ I 1 - v 2 z J ur···(r ,z - ulf(r z )- 2 
0 

kF 1(k,z) + - C(k)e 
v2 

• J o(kr '} dk (2. 3e) 

(2. 3f) 

where F 1(k,z') and F 2 (k,z') are given by 

I I -v1z -v z 
F 

1 
(k, z.') = -A(k) e + v 

2 
B(k}e 2 (2.3g) 

I I 

F2(k,z'} = v
1
A{k)e-v1z -k2.B(k)e-v2z (2. 3h) 
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and 

(2.3i) 

(2. 3j) 

l 

In these equations ao = w a (p/µ)2 lS a dimensionless 

l 
frequency, and Y= [(l-2CJ)/2(1-CJ)]2 is the ratio of the equivoluminal 

(or shear} wave velocity to the dilatational wave velocity in the 

half-space material. It is required that Re v 1 , v 2 ~ 0 for the 

displacements at infinity to remain bounded. The unknown functions 

A(k), B(k) and C(k) are determined by the boundary conditions. 

The corresponding stresses CJ CJ CJ 
zr' z8' zz 

are 

CJ zr (ar 1, a' az I )eUDt = µ (J z/!: (r 1 , Z 
1

) COS (j eiWt (2. 4a) 

( , 13 , ) :iwt _, ( , ') . 9 iwt 
(J ze ar • ' az e = µ (J zt/ r ' z sin e (2.4b) 

( 
I I) iW t ''' I I i wt (Jzz ar . e, az e =µa '''(r , z) cos e e 

zz 
(2. 4c) 

in which (J ,,, 
zr'''• cr e·:: (J ,,, 

z ' zz''' are given by 
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(2.4f) 

and the functions F 3 and F 
4 

are 

(2. 4g) 

(2. 4h) 

Applying the equations for the displacements and stresses 

given above it is found that the boundary conditions (2. 2) will be 

satisfied provided that 

lim 
z ' ...... o a 

I 

(2. Sa) 

lim 
z ' ...... o 

\; [kF1 (k, z ') - 1 C(k)e -v2z '' ] J
2 

(kr ')dk = 0 
j V2 

Q::;r ~l (2.Sb) 

lim 
z ' ...... o 

lim 
z ' ...... o 

lim 
z ' .... o 

lim 
z 1-+0 

I 

s~ [kF3(k,z 1
) + C(k)e-v2 zJ J0 (kr 1)dk = O 

ro I So [kF 3(k, z ')-C(k)e -v2z J J 2 (kr ') dk = o 

(2. Sc) 

(2. Sd) 

1 <r I< 00 (2. Se} 

• (2. Sf) 
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The boundary conditions have been stated as limits so that 

certain integrals that will appear later in the analysis remain bounded. 

Equations (2. 5) may be transformed into a system of dual integral 

equations suitable for subsequent analysis by replacing the functions 

A(k), B(}<) in Eqs. (2. 4g) and (2. 4h) by the new functions D(k), E(k) 

defined by 

-(2k? - a 02) A(k) + 2v2k 2 B(k) = D(k) (2. 6a) 

-2v1 A(k) + (2k2 - a 0
2 ) B(k) = k- 1E(k) (2. bb) 

and by the introduction of the functions H 1 (k), H2 (k), H 3(k), H4 (k) 

which are defined, following Robertson 7, by 

- 1 (2. 7a) 
2 2 2 2 

(l-a)[(2k -a
0 

) - 4v
1

v
2
k] 

H2(k) = 

2 2 2 2v
1

v 2 k - (2k -a
0

)k 
- y (2 .7b) 

H3(k) 
1 (~ - 1) = r:-a vz 

(2. 7c) 

2 v 1k - ao 
H

4
(k) = - 1 

(l-a)[(2k2 -a 0
2 )2 - 4v1v2k 2 ] 

(2 . 7d) 

These functions have the property that they all tend to zero as a 0 

goes to zero. Then, inthe static case Hi(k) = 0, i = 1,2,3,4. 

After substituting,reorderingandtaking limits inside the 
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integrals, with the exception of those indicated below, Eqs. (2. 5) 

become 

f (r I) 
0 

~: [E(k) + C(k) ] J 0 (kr 
1

) dk = 0 

s~ CE{k) - C{k) ]J2 (kr')dk = 0 

s~ D{k) J 1 (kr I) dk = 0 

l<r
1

< 00 

I f::,. h \ co - kz I - 1 I 

£0{r ) = a(l-a) + y li;n
0 

Jo e k D(k)J0(kr )dk -
z _, 

-kz I -1 
e k E(k)J1 {kr')dk + 

(2. Sa) 

(2.8b) 

{2. 8c) 

{2. 8d) 

( 2. 8e) 

{2. 8£) 

(2. 8g) 

( 2. 8h) 
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f 2{r') = {l-a) { - y lim s~ e-kz' D{k)J
2
{kr')dk + 

z '--.o 

\ro - 1 ( } } jo k 1c1+H1(k)]E{k)- H2{k)D{k) - H3{k)C{k} J2{kr')dk .(2.8i} 

Equations (2. 8a-f} are a system of three coupled, dual integral 

I 

equations in the unknowns C(k), D(k) and E{k) whose solution is 

the subject of the following section. 

2. Reduction of the Three Simultaneous Pairs of Integral Equat.ions 

to a System of Fredholm Integral Equations of the Second Kind 

Dual integral equations such as those appearing in (2. 8a-f} 

have been treated extensively in the literature. Those involving 

only one pair were first discussed systematically by Titchmarsh37 

. 38 31 32 39 and also by Busbndge , Copson , Sneddon and Noble among 

others. The problem of solving a system with an arbitrary {but 

finite} number of simultaneous dual integral equations of the same 

type has been considered by Erdogan and Bahar 
40 They reduced 

the problem to the solution of an infinite set of linear algebraic 

equations. The special case of two pairs of dual integral equations 

for which the order ·of the Bessel functions between one pair and the 

other differs by two was discussed by Westmann34 . He was able to 

find a closed form solution to the problem by using a linear 

combination of the auxiliary functions introduced by Copson31 . The 
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problem of two pairs of integral equations with Hankel kernels of 

order 0 and 1 and prescribed right hand sides has been considered 

by Erdogan41 and for a special case by Spence 28 . Erdogan trans-

formed the problem in~o the solution of two simultaneous Cauchy 

type singular integral equations, the dominant part of which could 

be solved exactly. Spence reduced the problem to the solution of 

a singular Fredholm integral equation of the second kind which could 

be solved exactly by the Wiener-Hopf technique if the right hand 

sides of the dual integral equations were polynomials. Gladwell 29, 
I 

extending the work of Spence, solved a system of three dual integral 

equations, equivalent to Eqs . (2 .-8) with Hi(k) = 0, i = 1, 2 , 3, 4. 

However, because of its restriction to polynomials, Spence's method 

or the extended version derived by Gladwell cannot be used to solve 

Eqs. (2 . 8) when H.(k) f. 0. Instead, an extension of the method 
1 

used by Copson31 and Westmann34 will be employed. Assuming a 

special form of the solution in terms of auxiliary functions, the 

system of equations (2. 8) will be transformed formally into a system 

of Cauchy type singular integral equations in the auxiliary functions . 

A system of Fredholm integral equations of the second kind will then 

be obtained by solving the dominant part of thes_e equations. For the 

static problem, the resulting Fredholm equations reduce to simple 

expressions from which a complete closed form solution may be 
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obtained. 

The solution of Eqs. (2.S) is assumed to be of the form 

(2.9a) 

- /2 \1 1-
C(k) = coL'l ~ k 

3
/

2 
jo x2 J_~ (kx)dx + 

fY k 3 I 2 \1 x 3 I 2 <P ( x) J I ( kx) dx J 
'i"Jr jo 2 3 2 

(2.9b) 

3/2 ~l J.. D(k) = k x 2 cp (x) Ji (kx) dx 
0 1 2 

(2.9c) 

where <Po(x), cp
1 

(x), cp2 (x) are the unknown auxiliary functions 

and c 0 is an unknown constant. All these quantities may depend 

on Poisson's ratio and the frequency of oscillation. With this 

representation of the solution it may be shown that Eqs. (2. Sd) 

and (2. Sf) are automatically satisfied and Eq. (2. Se) will be satisfied 

if c 0 is given by 

(2 . 10) 

Substitution of (2. 9a) - (2. 9c) into Eqs. (2. Sa) - (2. Sc) leads to 

three Abel type integral equations 32 whose solutions are given by 

d Sr I xf o(x) , 
= dr , , 2 2 1 dx ; 0 ::; r s; 1 

0 (r I - X )Z 
(2. lla) 
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I 3 
f, 1 d r r x £2 (x) 

Co<P2(r)=--3-- \ 2 2idx;O 
I d I ..Jo ( I ) 2 r r r -x 

(2.llb) 

I 2 
1 d s r x f 1 (x) 

<P (r') = - - 1 dx 
1 I d I 0 ( 12 2) 2 r r r -x 

(2.llc) 

After replacing £
0
(r'), £

1
(r'), £

2
(r

1
) byEqs . (2.8g) - (2.8i), 

substituting again Eqs. (2. 9a) - (2. 9c) and reordering, Eqs. (2. l la) -

1 
(2. llc) become 

Ah- ac0 
<Po(r')= + 

a(l - O') 

2 s lim s co - kz ' 
ir Y <P 1 (x) dx , e sin (kx) cos (kr ') dk -

0 Z->0 0 

l co 

~SO cp 0 (x)dx SO H 1(k) cos (kx) cos (kr')dk + 

1 co 

~ , S <P
1 

(x)dx S . H 2 (k) sin (kx) cos (kr 
1
) dk 

0 0 
co 

2 \ -1 I - -; c 0 Jo k H 3 (k) sink cos (kr )dk -

co f2. s 1 3 I 2 \ co i 
- ,,; -:- x <P2 (x)dx j k 2 J 

312
(kx) cos (kr 

1
)dk 

l-0' J! 0 0 

rz sl 3/2 \ CO . .l_ I I -..; rt c
0 0 

x cp2 (x)dx JO k 2 H
3

(k)J
312

(kx)cos(kr )dk; O:s::r ~l 

(2 . 12a) 
1 co 1 

r'cp
2
(r')C

0
=(1-0'){j1 S cp0 (x)dx S (kr') 2 cos(kx)J

312
(kr')dk 

0 0 

- 1 co 1 

J 2 \ \ I- I + 1( --b cp 0 (x)dx jo H 1 (k)(kr ) 2 cos(kx)J 312(kr )dk 

- 1 \CO I 1 

-J~y\ cp
1
(x)dxlim j e-kz (kr') 2 sin(kx)J

312
(kr')dk 

J! j0 I 0 
z ->O 

- 1 co 1 -J ; ~ <P
1 

(x)dx S H
2

(k)(kr ') 2 sin(kx)J 
312

(kr 
1
)dk -

0 0 
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- cos~ X(/J2(x}dx s~k{xr'}!H3(k)J3/2(kx}J3/2(kr')dk} Osr':S:l 

(2. 12b} 

1. I 2 s 1 \oo -kz I .\ 
(/Jl (r I) : - l - U r 0 r + ";:( Y O <Po{x}dx li;n

0 
Joe COS(kx}sin(kr 1dk 

z _, 

2 sl 00 
- - <P (x}dx S H (k} s in{kx} s in(kr '}dk + 

:rc 0 1 0 4 

~ s~ <Po(x} dx s: H2(k} cos {kx}sin{kr I )dk; 0 s r's 1 (2. 12c} 

A more useful form of Eqs. (2.12) may be found by extending 

the functions <Po(r'}, <P 1{r'} and. <P2 (r'} into the interval [-1, O). 

Thus, by defining 

<P (r'} = <P (-r'), <P (r')=-<P {-r'}, <P
2

(r'} = -<P
2
{-r'}; -lsr'<O (2.13} 

0 0 1 1 

it may be shown that42 

c 01 co - kz I 1 (/J 1 ( X) 
j <P 1 (x} dx lim \ e s in(kx) cos {kr ')dk = i s dx 

, Jo -1 x-r z .... o 

/2 \ 1 soo -kz I ],,_ 
,,_; -;r Jo <Pl (x}dx li;r1 

0 
e (kr ') 2 s in(kx} J 

3 
I 

2 
(kr ')dk 

z -+O 

1 1 s 1 x+r 
/ 

1 s 1 = - - , log J - / J <Pl (x}dx - -
re r 0 x-r re -1 

<P 1 {x) 
I x-r 

dx 

(2. 14a} 

(2. 14b} 
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S 1 sro -kz ' ' i s 1 cp 0 ( x) 
0 

cp0(x)dx li;r1 
0 

e cos{kx) sin{kr )dk = - 2 _ 1 x-r dx. (2. 14c) 
z -+O 

When these forms are inserted into Eqs. (2. 12) and two improper 

integrals appearing in these equations are evaluated42 , they become 

<Po(r ') - ~ \ _11 <P1 (x) dx = ~-a Co 
j x-r' ; a{l-a) 

1 
Sr' <P2{x)dx -

1 
coSo K02{x,r')cp2{x)dx + CoKo(r')} (2. 15a) 

2 {[ \r 
/ 

y \1 x+r J r' cp2{r') c 0 = {l-a) jo cp0{x)dx --; Jo cp 1{x)log x-r' dx -

r1 1 
JO Kz ~ {x, r ') cp0{x)dx + S 0 K2~ {x, r ') cp 1 (x)dx + 

{2.15b) 
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cp (r ') + r \ 1 cpo(x) 
1 re J- 1 -x---r-

(2 . 15c) 

The kernels appearing in these equations are defined by 

00 

K 00 (x, r ') = ~ So L 1 (t) cos(txa
0

) cos (tr 'a
0

) dt (2.15d) 

(2 . l5e) 

( 2. 15£) 

K (r ') = ~ 
O re 

(2.15g) 

(2.15h} 

(2 . 15i} 

(2.15j) 

(2.15k) 
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in which 

I 

L (t) = - v 2t 
1 ( )[( Z 2 / I 2] 1-a 2t -1) - 4v 1v 

2
t 

-1 

- y 

1 (-t- - l)' 
l-if I V2 

The branches of 

v'2 = (t2 - l)~ 

b h R I I >Q must e c os en so that e v 1 , v 2 = 

It may be shown that the functions L.(t) have the property 
1 

L.(t) = O(t- 2 ) as t __,co , i = 1, 2, 3, 4 • 
1 

(2.151) 

(2. l 5m) 

(2.15n) 

(2. 150) 

(2.15p) 

( 2. l 5q) 

(2.15r) 

(2.15s) 
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Three of these functions also have a simple pole on the positive 

real axis since the Rayleigh function F(t) = (2t2-1}2 - 4v\ v'
2

t 2 

has a simple zero on that axis . Therefore, the integrals appearing 

in Eqs. (2. l Sd} - (2. l Sm} are all convergent, either in the regular 

sense or in the sense of a Cauchy Principal Integral. 

Equation (2. l Sb) may be simplified considerably if use is made 

of Eq. (2. l Sa). Integrating (2. l Sa} with respe~t to r / between the 

limits 0 and r / and substituting the result, together with 

Eq. (2. l?a) itself, into Eq. (2 . 15b} gives 

(2.16a} 

where 

(2.16b) 

(2.16c} 

The following Fredholm integral equation of the second kind is 

obtained by differentiating Eq. (2. l 6a} with respect to r / and 

dividing the result by r': 

(2.17a} 
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.in which 

1 2 soo · ~ sin(txa 0 ) J , 
K22 (x, r ) = "lt (txa0 ) L 3(t)li - cos(txa 0 ) sin(tr a 0 )dt (2. l 7b) 

O (txa 0 ) 

2 soo K2(r ') = 1( 
0 

L 3(t) sin(ta 0 ) sin(tr 'a0 ) dt • (2 . 17c) 

In this way the problem has been reduced to the study of the 

system of coupled integral equations (2. 15a}, (2. 15c) and (2. l 7a} 

in the unknowns <Po(r'}, <P
1
(r'} and <P2 (r'). Equation (2.17a}, 

however, can be solved independently of the remaining two equations 

as it involves only the unknown function <P2 (r'). Equations (2. 15a} 

and (2. l Sc) may then be interpreted as a system of Cauchy type 

integral equations in the two unknowns <Po(r '), cp 1 (r '), and be 

rewritten as 

<P (r ') - l'. s 1 <Pi (x) dx = !::. h -a Co 
0 1C - 1 x- r a( 1-a ) 

Co g{r) 
l-a 

1 
<P {r ') + y \ 

l 1C J- 1 

1 

- a ) 
0 :_ _J 

<Po(x) 
--1.,- dx = 
x-r 

m=O 

1 
\ K

0 
{x,r')<P (x}dx; O:s:r':s:l 

jo m m 

Q :S: r I :S: 1 

(2.18a) 

(2. 18b) 
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where 

1 1 
g(r') = ~r' c,o2 (x)dx + r'c,o2 (r') + {l-a)a0 ~O K02 (x,r')c,o2{x)dx. (2.18c) 

For the particular case of an incompressible material (a= ~ or 

equivalently y= 0), Eqs. (2.18a) and (2.18b) reduce to a system of 

Fredholm integral equations of the second kind, as the terms 

containing a Cauchy type singularity are then eliminated from the 

equations. 

Reduction to the relaxed problem 

The solution to the relaxed _mixed boundary-value problems 

corresponding to the complete mixed boundary-value problems 

which are the subject of this analysis, may be derived from Eqs. 

(2.17a), (2, 18a) and {2.18b). For horizontal vibrations of the disc 

produced under relaxed conditions, it is assumed that the normal 

traction is zero everywhere on the surface of the elastic half-space 

and that the vertical displacements under the disc are unconstrained . 

These conditions will be satisfied if Eq. (2. 18b) is disregarded 

and <Pi (r ') is set equal to zero. There results 
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Co 

1-a 

(2.19a) 

g(r ') (2. 19b) 

This is a system of two Fredholm integral equations of the second 

kind, coupled only through the term g(r '). This formulation 

permits the complete determination of cp2 (r ') and cp 0(r ') in 

terms of the unknown constant c
0

, obtained in turn from Eq. (2 •. 10). 

The integral equations {2. 19) involve only finite integrations on the 

unknown functions cp0(r '), cp2 (r '), whereas the corresponding 

equations presented by Gladwen 13 for the same problem include 

improper integrals on the unknown functions. Luco and Westmann 11 

have obtained recently a pair of equations similar to Eqs. {2.19). 

The only essential difference being that in their analysis, the two 

functions corresponding to cp
0 

and cp2 appear in both integral 

equations. 

For rocking vibrations produced under relaxed conditions, it 

is assumed that the contact is frictionless and consequently the 

horizontal displacements under the disc are unconstrained. These 

conditions will be satisfied if Eqs. {2. l 7a) and (2. l Sa) are disregarded 

and the functions cp0 and cp
2 

are set equal to zero. This gives 
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cp 1 (r ') + a:0 s~ K 1 l (x, r ') cp 1 (x)dx = (2. 20) 
1-Ci 

that is, a Fredholm integral equation of the second kind which 

permits the complete determination of cp 1(r 1
). Equation (2. 20) 

is equivalent to the corresponding equation obtained by Gladweu 13. 

Simplification of the g eneral equations 

The general cas~ has been reduced to the solution of the 

uncoupled Fredholm integral equation (2. l ?a) and to the pair of 

simultaneous Cauchy type singular equations (2 . l 8a) and (2. l 8b). 

The left hand sides of these latter two equations may be uncoupled 

by introducing the two new functions '1' 
1 

{r '), 'l' 
2 

(r ') defined by 

With this substitution, Eqs. (2. 18a) and (2. 18b) become 

1 
'l' ( r ') + (- 1 )m i r s 

m rt _ 1 
'l'm{x) I'or' m+l ( 6 h - a Co) 

I dx = - -- + (- 1) i -----
X- r 1-Ci a(l-Ci} 

2 sl . 
a

0 
\ Mms(x, r ') '1' (x}dx + (-1 )m -

1
-

~=l 0 s l-Ci 
c0 g(r'); m=l,2, O::;; r'::;; 1 

I , 

+ 

(2.22a) 

where 
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(-l)m+s+lK00(x,r')] m,s = 1,2. (2. 22b) 

Equations of this type, sometimes referred to as singular equations 

of the Carleman type, have been studied extensively4 3, 44 • 4 5. 

Treating the right hand sides of Eqs. (2. 22a) as known 

functions, each of these equations can be solved independently. 

Their solution leads to the following system of Fredholm integral 

equations~ 

Xm(r') r +l ~h J. 

'f (r')= L(-l)m i(--C
0
)-r0r'+(-l)m+l2ikr0 + 

m ( 1-a)Jl-/'2 a 

2 1 

1 ~ yZ [ ao ~= 1 ~o Nms (x, r I} 'f s (x)dx + (- 1 )m2i Co Gm (r ') l m= l, 2' 

(2.23a) 

where the functions ~ (r ') are defined by 

1 [ m. 1-r' J ~ (r ) = exp ( - 1) i k ln( 1 +r 1} ; m = 1, 2 . (2. 23b) 

Theconstant k=-1 ln( 1-'Y), thekernels Nms(x,r') andthe 
2 rc 1 +y 

functions G (r '} are given by 
m 

( ') ( ') + (-l}m+l 1. ~ Y(r') s_ll X3_m(t} ( ) Nms x, r = Mms x, r ,. _"'rn t-r Mms x, t dt; 

m,s = 1,2 (2.23c) 
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G (r') = g(r') + f-l)m+l i ~ X (r') 3-m g(t)dt, m=l,2 . (2.23d) S 
1 x (t) 

m " m -1 t-r 

It is possible to factor the functions ~{r 1) from Eqs . {2.23a) . 

Defining the functions 6 l (r) and EJ 2 (r ') by 
I 

8 (r')=1±' (r')X
3 

(r');m=l,2 
m m -m 

and making use of the integral 

S 
l Xm(t) . . , J mrtl • I /--

/ d t = ( - i ) - L x_ ( r ) - toJ 1 _ 12 ; m = i , 2 
-lt-r Y m 

equations (2. 23a) become 

(2.24) 

(2 •. 2 5) 

( ') 1 [ (- 1)m+1 ·l. (/:::,.ah ) r I ( )m +l . r -I e r = -:-:----:---;:::;;=:==:;:=- - c 0 - 0 r . + - 1 21 k 0 J 
m (1-a) J 1 -12 

1 
+-­

l-y2 

in which 

1 
T (xtr') = X (x) { ~ M (x r ') + (-1 )m+l i ! \ X (t) 

ms s ms ' re j_ 1 3-m 

[Mms{x, t) - Mms(x, r ')] } 
---------- dt ; m,s = 

t - r I 

1, 2 (2.26b) 

T (r') =Jl-12 g(r')+( - l)m+li~ \
1 x

3 
(t) [g(t~-g(r')] dt, m=l,2. 

m " j_ 1 -m - r 

(2.26c) 
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It may be shown that the integrands appearing in Eqs. (2. 26b) 

and (2. 26c) have removable singularities at t = r 1
, and therefore, 

the integrals themselves are amenable to numerical evaluation. 

Before calculating these integrals it is convenient however, to use 

contour integration to obtain alternative simpler expressions for the 

improper integrals which define the kernels Mms {x, r '). 

The system of Fredholm integral equations of the second 

kind {2. 26a) may be solved by standard numerical procedures 4 6, 47 ~ .· 

thus yielding a solution for the functions 6 1(r 1
) and 82 (r ') in 

terms of the unknown constant c 0 . The functions cp0(r ') and 

cp 1 (r ') may then be found from 

(2.27a) 

{2. 27b) 

c 0 is determined from Eqs . {2. 2 7a) and (2. 10). 

Equations (2. 27 ), {2. 26) and (2. 23b) show that the frequency 

independent functions sin i/kln l-r' J, characteristic of the static, 
COS tL ltr 1 

complete n-iixed boundary value problem occur also in the solution 

to the corresponding dynamic problem, 

Physical quantities of interest, such as stresses, impedances 

and displacements may be expressed in terms of the functions 
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<Po(r 
1
), <Pl (r 1), cp2 (r 1 ). Such expressions are given in the following 

section. 

3. Stresses under the Disc 

The stresses under the disc are obtained by taking the limit 

as z 1
-> 0 of Eqs. (2. 4d) - (2. 4£) and by substituting in the resulting 

equations the values of A(k) and B(k) given by Eqs. (2. 6), 

following which the functions E(k), C(k), D(k) are expressed in 

terms of <Po(r 1
), <P 1{r 1

), <P2 (r 1
) and c 0 from Eqs. (2.9). Thus, 

4 I d 1 s1 x[<Po(x)- Co] 
az~; (ar', 0) + az'~(ar', O} = - r -1 - 12 o re dr r r / (x2 _ r 12y~· 

dx + 

4 ' d Srl1 1('" r dr i 

<P2 (x) 
----1 dx; 
(x2-r i2)2 

o::::r'<l (2.28a) 

>!<I ::<I 4ld 
azr (ar ,0) - azB (ar '0) = rr r' dr' 

l 

s I r 

xcpo(x) 4 2 -i-
--__,.,c-=- dx - - C ( 1 - r 

/ 
) "" 

(x2-r12)! rc 0 

4 1 d 
- 1( r 1 dr I 

r 12 sl 
r I 

dx; o::::r
1
<1(2.28b) 

(x2 - r i2) 2 

Sr
l I a >:< (ar i 0) = 4 d 

zz • 1( <lr 1 
'P1 (x) dx· ---- ]_ ' {x2- r 1Z)2 

Q:::;; r I< 1 , (2.28c) 

The total horizontal force P exp(iwt) applied to the disc rn 

the direction e = 0 is given by 
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P = -S~" S~ (azr cos a - aze sine) r dr de (2. 29a) 

where and a z8 are evaluated at Z I= 0, After substitutions 

from Eqs. (2. 4a), (2. 4b), (2. 28a), (2. 28b) it is found that 

1 

P = 8µ a:2 So <Po(x) dx. 

The moment Q exp(,iwt) applied about the axis B = n/2 
I 

is given by 

2n a 

Q = -s
0 

~ 0 azz cos 8 r
2 

dr dS 

where a zz is evaluated at z' = 0. After substitution from 

Eqs. (2.4c) and (2 . 28c), Eq. (2.30a) leads to 

1 

Q = - 8µa 3 S 
0 

x cp 1 (x) dx • 

Equations (2. 29b) and (2. 30b) may be written as 

p 
Khh (ia0 , a) ·Khm (iaop) 

L. h 
µa2 a 

= 

Q 
Kroh (ia 0 , a) K (ia0 , a) ro µa3 mm 

where Khh' ~m' Kroh' ~m represent the dimensionless 

impedances of the problem. The two functions ~m and Kmh 

(2.29b) 

(2.30a) 

(2. 30b) 

(2 . 31) 



must be equal as can be shown by the use of reciprocity theorems 35 . 

The impedance functions appearing in Eq. (2. 31) are complex, thus 

indicating that the applied forces and the corresponding displacements 

are not in phase. 

4. Limiting Static Problem 

In the static case a 0 = 0. Under this condition, Eqs. (2. l 7a), 

{2.26a), {2.27) lead to 

cp{r')= 1 {{t:,.h [ 1-r'J 
0 {l-a),Jl-72 a - co+2kro) cos kln l+r' 

I : 1-r' l} 
+ r or sin L k ln 1 +r I J ; {2. 32a) 

{ [ 1-r' J - r
0 

r I COS k ln 
1 +r I 

(2.32b) 

<P2 ( r ') = 0 (2.32c) 

Substitutions of these expressions for the functions cp0(r '), cp
1 
(r' ), 

cp2 {r ') into Eqs . (2. 2·8) gives the stress distribution underneath the 

disc in terms of the as yet undetermined constant c 0 . Substitution 

of Eq. {2. 32a} into Eq. (2. 10) yields 
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= (~h - c + 2kr ) I 0 + r I 1 
a 0 0 c 0 s 

(2. 33a) 

where I 0 and · I 1 
c s 

. b 42 are given y 

0 s 1 [ 1- r I J I \oo 2 
IC= o~os klnl+r' dr =josech ecos(oe}de= (2.33b) 

1 ~ 1 I [ 1 - r I I I soo 2 rc"-2J l -y2 I = r sin k ln --, j dr = tanh A sech B sin (oB) = _u __ _ 
s 0 1 +r O 4 y 

in which 

1 o = Jt ln (3-4a) • 

Using the expressions for Io 
c and 

c = 0 

~h - ~1~r0 1n(3-4a) a 2rc 

l + 1 - 2a 
ln(3 - ra) 

I o 
s in Eq . (2. 33a), 

(2. 33c) 

(2. 33d) 

(2. 33e) 

With this, the horizontal force P is obtained immediately from 

Eqs . (2.29b) and (2.10) ; 

4 µa 2 
[ 

2~ h - ~ r 0 ln( 3- 4a} J 
p = ------------~ 

l + 1 - 2a 
ln(3 - 4a) 

The moment Q is obtained by replacing cp 1(r 1
), as given by 

Eq. (2 . 32b), into Eq . (2. 30b). This results m 

( 2 . 34) 



Q = _ 8 µa3 
( 1 - a ) J'l""='Y2 

r 2 L'::.h 1 1 -, 
I - ror + (_ - Co - -:;;: roln(3-4a)Is J 
L c a ,. 

(2. 35a) 

where Ic2 is given by42 

2 S
l 2 1 I - - 00 4 1 -r I / o 

Ic = r cos Lr kln -:;-;--, J dr = t S sech 8 cos(oe)d8 - - Is2 
0 1 +r 0 2 

rco J 1-/2 I'> 2 
=----(.!.-~) 

y 3 6 
(2. 35b) 

Substitution of Eqs. (2.35b), (2.33c) - (2.33e) into Eq. (2.35a) leads 

to 

4µa 3 
a=-----

1 + l-2a 

1 b,. [ [ 4+ 
1
2 (ln(3-4o))~ln(3-4a) 

- -;( ln(3-4a) . ; + re 6( l-2a) 

ln(3-4a) 

(2 .. 36) 

Equations (2. 34) and (2. 36) may be written in the form of Eq. (2. 31), 

Q 

µa3 

4 
=-----

1 + 1-20" 
ln(3-4a) 

2 
1 

- ; ln( 3-4a) 

{ [ 4 +i_ (ln(3-4a) )2]ln(3-4a) 
n2 6(1-2a) 

1 -- ln(3-4a) 
re 

+ ~ [l +!__(ln(3-4a)) 2 ]} 
3 rc2 

- -a 

r 
0 

(2.37) 

Equation (2. 37) is equivalent to the corresponding equations obtained 

by Gladwen2 9, except for a misprint in his expression for Kaim· 
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The flexibility matrix presented by Gladwell is the inversion of the 

stiffness matrix of Eq. (2. 37). 

D. Vertical Vibration of the Disc 

1. Derivation of the Integral Equations 

The vertical vibration of a disc perfectly bonded to an elastic 

half-space is an axially symmetric, mixed boundary value problem 

in elastodynamics. To formulate the problem in terms of dual 

integral equations, use will be made in this analysis of the solution 

of the equations of motion (2. 1) given by Bycroft5 • This solution, 

which is independent of the angular coordinate 8, may be expressed 

as 

u (ar', a, az') = 0 e 
co , I I 

(2. 38b) 

S 
-v1z 2 -v2 z 

uz (ar', 6,az') =a 
0

k[-v1A 1(k)e +k B 1(k)e ]Jo(kr 1)dk. 

The corresponding stresses a , a 0 , a are 
zr zo zz 

• J (kr ')dk eiwt 
1 

(2.38c) 

(2 . 39a} 



( 
I ') iwt 

O' zt3 ar ' a' az e = 0 (2. 39b) 

I 

azz(ar', B, az')eiwt = µ s;k[(2k2 - a02)A1(k)e-v1z -

(2.39c} 

This solution will satisfy the boundary conditions given by Eqs. (2. 2 ), 

with L'.:l,h·= 0, ro = 0, provided the following equations are satisfied 

lim 
z 1-+0 

lim 
z 1-+0 

I I 

(2. 40a} 

0:5:r I :5: 1 

(2.40b) 

lim r00

0

k[(2k2 -a
0

2 )A1{k)e-vlz - 2k2 v
2

B1(k}e-VzZ ]Jo{kr'}dk=0(2."40c) 
z 1-+0 j 

These equations may be cast in a form more suitable for further 

analysis by replacing the undetermined functions A 1 (k}, B 1 (k} in 

Eqs. (2.40) by the functions D 1(k), E
1

(k) defined by 

(2.4la} 

(2.4lb} 
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and by introducing the functions H 1 (k}, H2(k}, H4 (k) defined in 

Eqs. (2. 7). After substituting, reordering and taking limits inside 

the integrals, except in those indicated below, Eqs. (2. 40) become 

(2. 42a) 

(2. 42b} 

(2. 42c} 

l<r'< 00 

(2. 42d} 

where the functions h 0(r '} and h 1 (r ') are defined by 

ex> 

+So k-l [-H
4

(k}E
1
(k}+H

2
(k}D

1
(k}] J

0
(kr')dk (2. 42e) 

(2.42f) 

These are two pairs of s :iJ:n.ultaneous dual integral equations, similar 
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to those obtained for the problem of horizontal and rocking oscillations 

of the disc. 

2. Reduction of the Two Simultaneous Pairs of Inte gral Equations 

to a System of Fredholm Integral Equations of the Second Kind 

Following the approach developed in section C, the solution of 

Eqs . (2 . 42) is assumed to be of the form 

(2. 43a) 

(2. 43b) 

With this representation of the solution, Eqs. (2. 42c) and 

(2 . 42d) are satisfied identically whereas Eqs. (2 . 42a) and (2. 42b), in 

a manner similar to that followed with Eqs . (2. 8a) and (2. 8c ), 

lead to the system of Cauchy type singular integral equations 

S
l <P1(x) !:::.v sl 

cp
0
(r 1)-L --,dx=- - a

0 
[K00(x,r')cp0(x)-

rc -1 x-r a(l-a) O 

Ko 1 (x, r ')cp1(x)] dx; 0 :'>: r' :'>: 1 (2.44a) 

O:'>:r ' ::;;l . (2. 44b) 
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The kernels K00 , K
10

, K 11 and K 10 are defined by Eqs. (2. l 5d), 

(2. 15e), (2. 151) and (2. 15m), respectively. 

The problem is thus reduced to the study of the system of 

Cauchy type singular integral equations (2. 44) in the unknown functions 

cp
0
(r ') and cp

1 
(r '). For the limiting static case (a 0=0), these 

equations are identical to the corresponding equations obtained by 

27 
Keer for the same problem. Keer used the method developed 

by Green and Zerna48 and Collins 49, as applied to axially symmetric 

problems in potential theory. 

For an incompressible material (y=O), Eqs. (2. 44) reduce to 

a system of two coupled Fredholm integral equations of the second 

kind, thus permitting the complete determination of <p0(r ') and 

cp
1
(r 1

) by means of standard numerical techniques. 

Reduction to the relaxed problem 

The solution to the related relaxed mixed boundary value problem 

may be derived from Eqs. (2.44). For the relaxed problem, it is 

assumed that the tangential traction is zero everywhere on the surface 

of the elastic half-space and that the horizontal displacements under 

the disc are unconstrained. These conditions are satisfied by 

setting tpl (r 1) equal to zero and disregarding Eq. (2. 44b). This 

gives 
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cp (r ') + a 51 K
00

(x, r ')cp (x)dx = -
6
-v __ 

0 0 o 0 a(l-a) 
(2.45) 

This Fredholm integral equation of the second kind is equivalent to 

the corresponding equation obtained by Robertson 7 for the same 

problem. 

Simplification of the general equations 

By solving the dominant part of a system of Cauchy type 

singular integral equations, Eqs. (2. 44) may be transformed into 

two Fredholm integral equations of the second kind. However, 

because of the analogy between Eqs. (2.44) and (2.18), the solution 

to (2.44) may be derived from the solution of Eqs. (2.18). Thus, 

the function cp
0
(r'), cp

1
(r') may be expressed as in Eqs. (2.27): 

(2. 46a) 

(2.46b) 

where, as before 

, [ )m· (1-r')] ~(r) =exp (-1 ik ln T+r7" ; m = 1, 2 (2.46c) 

and the functions e 1 (r ') and e2{r ') satisfy a system of two 

simultaneous Fredholm integral equations of the second kind obtained 

by setting g(r ') and I' 
0 

equal to zero and by replacing 



by -/::,. /a 
v 

in Eqs. (2. 26a), that is 

e (r ') = (- 1 )m i 

m (l-cr)J1-y2 

2 . 
1 

\ \ T (x, r ') 8 (x)dx, 
~=l j 0 ms s 

m = 1, 2 

where the kernels Tms{x,r') are defined by Eqs. {2.26b). 

From Eqs. (2.46) and (2 . 47) it may be observed that the 

solution of the present problem also contains the factor 

cos 
sin 

[k 1-r' J . 
Jn--. I 

l+r 

(2.47) 

Equations (2.47) may be solved by standard numerical procedures, 

thus yielding a complete solution for the -.functions e 1 {r ') and 

e2(r ') in terms of the dimensionless amplitude 4 I a. The 
v 

functions cp0(r ') and cp 1 (r ') may then be obtained from Eqs. (2. 46 ). 

Stresses, displacements impedances and other physical quantities 

of interest can be expressed in terms of cp
0
(r 1 ) and cp

1 
(r '). Such 

expressions are given in the following section. 

3. Stresses under the Disc 

The nonvanishing stresses under the disc are obtained by taking 

the limit as z '-.O of Eqs. (2. 39 ), (2. 39c) and by replacing A 1 {k) 

and B 1 (k) in the resulting equations by the functions D 1 {k), E 1 {k) 
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defined by Eqs. (2.41). These functions are in turn expressed in 

terms of cp
0
(r'} and cp

1
(r 1

) fromEqs. (2.43). Performingthese 

operations 

I _ 2 d ('l 
a (ar ' e' 0) - - - µ, -1 \ 

zr :ir dr Jr' 

cpl (x) 
dx; 0 $; r '< 1 

(x2-r'2) 2 
(2. 48a} 

O:s:r'< 1. (2.48b} 

The total vertical force on the contact region, V exp(iwt), is 

V = - \ a ( r , 8 , O) r dr d0 ~
2rc a 

o jo zz 
(2. 49a} 

which, upon substitution of Eq. (2. 48b), becomes 

2 sl V = - 4µ a 
0 

cp 0 ( x) dx • (2. 49b) 

4. Limiting Static Problem 

For the static case (a 0 = O), Eqs. (2 . 46} and (2.47) give 

t::,.v 
1
- 1-r' J 

cp (r ') = - - cos L k ln ( 1 +r ,) ; 0 ::; r 1
::; 1 

0 a{l-a) J1-y2 
(2. 50a} 

(2. 50b} 

Substitution of these equations into Eqs. (2. 48) gives for the stresses 

under the disc 



a{l-cr)J1-y2 

d 
dr 1 

1 d -,­
r dr' 

dx; 

o::::r'<l (2 . 5la) 

x cos [k ln{~) J dx 

(x2-r'2pz 

(2.5lb) 

These equations are identical to the corresponding ones obtained 

by Spence 28 who has show,n that both stresses are singular as 

r 1
-> 1 behaving like {~~11 [k ln{ ll-+~

1

,)J} (l-r' 2 )~, respectively. 

The vertical force V is obtained by substituting Eq. (2. SOa) 

into (2. 49b) and making use of Eq. (2. 33b). 

V= 
4 ,u.6.v a 

l-2a 
ln (3-4cr) . ( 2. 52) 

This result is in agreement with the result obtained by Spence28 • 
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L(. DYNAMICS OF BUILDING-SOIL INTERACTION 

A. Introduction 

It is well known that the behavior of a structure during an 

earthquake can be affected by the properties of the ground upon which 

it is founded. Conversely, the ground motion recorded in the vicinity 

of a building can differ from that which would be recorded at the site 

in the absence of the building. This dynamic coupling, or interaction 

between a building and the surrounding soil will result, generally, in 

(1) a reduction of the fundamental frequency of the system from that" of 

the build{ng founded on a rigid base, and (2) an energy loss, or damp-

ing, due to wave radiation into the soil medium. There will also be 

energy losses due to internal friction of the soil. 

The response of a system to dynamic loading depends fundamen-

tally on the natural frequencies and the amount of damping in the sys-

tern. Therefore, the effects of dynamic coupling between a building 

and the ground will be determined by the extent to which these parame-

ters are modified when· soil-structure interaction is taken into 

consideration. 

Observations of buildings during earthquakes have shown that 

the responses are influenced by their supporting media, especially 

·when the soils are soft(5o-53, 74). For special structures, interaction 

effects can be important even for relatively hard soils since the rele-

vant parameter is not the stiffness of the soil, per se, but a dimen-

sionless ratio of the stiffness of the building to the soil stiffness. 



Thus, dynamic coupling may be appreciable for a very rigid structure, 

such as a nuclear reactor container, even when it is founded on rela-

tively firm soil. 

The influence of a flexible foundation medium upon the response 

of a building subjected .to dynamic loading has been analyzed in several 

recent studies(54- 69). The foundation medium has been represented by 

constant, discrete parameter models(5 4,57, 66 ), and by a homogeneous, 

1 h lf (56,61,64,67) s t isotropic, e astic a . ~space . ome authors, for ins ance 

Sato and Yamaguchi(5S), Thomson(57), Parmelee( 6l) and Hradilek( 67) have 

studied the steady-state response to sinusoidal excitation of single 

and multi-story structures, while others, e.g., Housner and Merritt( 54 ), 

Parmelee et al. (66 ) and Castellani( 65), have used actual earthquakes or 

earthquake-type ground accelerations to obtain the response. Linearity 

of the buildings and their foundations has been assumed in all of these 

investigations. Kobori and Minai(7o) and more recently Isenberg(7l) 

have studied the effects of interaction for elastic buildings founded· 

on elastic/perfectly-plastic soils. 

Standard numerical methods for the step-by-step solution of the 

differential equations of motion can be applied when the foundation 

medium is represented by discrete models consisting, for example, of 

simple springs and viscous dampers. This discrete representation is no 

longer valid, in general, when an elastic half-space is used as a 

mathematical model for the soil, although it has been shown by Hsieh(72 ) 

that, under certain assumptions, the elastic half-space may be re-

placed by linear springs and dashpots. These elements are frequency 
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dependent, however, and therefore can not be used for analyzing the 

transient response without resorting to operational methods. 

In one approach the transient response of interacting systems 

has been calculated using the principle of superposition. For in­

stance, Parmelee et al;(64 ) expanded the input function into a Fourier 

series and obtained the steady-state response of the system for each 

harmonic. The transient response of the system was then approximated 

(initial transients in the harmonic solutions were neglected) by a 

linear combination of these responses. 

An alternative method has also been presented by Parmelee et 

al. (66 ). Most of the dyna~ic properties of the springs and dashpots 
I 

representing the elastic half-space model of the foundation were ob-

served to remain almost constant within the frequency range of inter-

est. Thus, the authors approximated these properties with average, 

constant values and obtained a system of ordinary differential equa-

tions with constant coefficients which was then solved numerically. 

Another approach, the finite element method, has also been used 

to obtain the transient response of interacting systems(69,7l). The 

principal advantage of this approach is its ability to represent em-

bedded structures of complex geometry and non-homogeneous soils. 

Sandi(5S), Rosenberg( 60) and Castellani(65) have presented 

transform methods for analysis of the soil-structure interaction prob-

lem for linear systems. Sandi and Castellani, using Laplace trans-

forms, and Rosenberg, using the Fourier integral, obtained relations 

between the base displacements and the incident earthquake motion. 



B. Object and Scope 

The objectives 01' the present study are; (1) to develop alter­

native methods of analysis for the problem of dynamic coupling of 

linear,, building-foundation systems) and (2) to apply these methods to 

the investigation of the response of a few sample structures subjected 

to both harmonic and transient excitation. 

Both direct and transform methods will be used to show that, 

under assumptions which appear to be physically reasonable 1 the re­

sponse of the interacting system can be expressed as a linear combina­

tion of the response of simple linear oscillators subjected to modified 

excitations. This result will be shown to be valid even for systems 

that do not have classical normal modes. The major advantages of this 

representation are that it gives physical insight into the dynamics of 

the building-foundation system and makes the calculations involved 

equivalent to those for simple structures. 

In the analysis) the foundation medium will be modeled by a 

linear, homogeneous) isotropic) elastic half-space. It will also be 

assumed that the base of the building is a rigid circular plate resting 

on the surface of the ground. Thus) any effects resulting from more 

complex geometry or from more complex material behavior will not be 

included. 

The formulation of the problem and the solution of the corres­

ponding equations of motion are given in Section C. Section D is de­

voted to the study of the transient and hannonic response of several 

single and multi-story, idealized building-foundation systems. 
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C. Method of Analysis 

1 . Formulation of the Problem 

The idealized building-foundation system under investigation is 

shown in Fig. 2. It consists of a linear} viscously damped n- story 

structure with one degree of freedom per floor) resting on the surface 

of the half-space. For fixed-base response} the superstructure has a 

stiffness matrix K) mass matrix MJ and damping matrix C) satisfying 

the condition M-~-lc = M-1CM-~. O'Kelly(73) has shown this to be a 

necessary and sufficient condition for the superstructure to admit d,e-

composition into classical ,normal modes. The base is assumed to be a 

single rigid plate of negligible thickness and no slippage is allowed 

between the base and the soil. Formulated this wayJ the building-

foundation system has n + 2 significant degrees of freedom) namely) 

horizontal translation of each floor mass) horizontal translation of 

the .base mass; and rotation of the system in the plane of motion. 

The system, initially at rest) will be subjected to seismic 

motion represented by plane, horizontal shear waves traveling verti-

cally upward. No scattering will result as the waves are normally 

incident on the flat foundation . In addition to this type of transient 

excitation, harmonic motion also will be considered . 

The model for the building-foundation system shown in Fig . 2 

has also been used by Tajimi( 62 )J Parmelee et al. (66 ) and others. 

It is noteworthy that since the superstructure admits decompo-

sition into classical normal modes) there is a simpler mathematical 

model which is dynamically equivalent to the building foundation 
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system under study. This model, which is shown in Fig. 3, consists of 

n simple, damped oscillators attached to a base) identical to that of 

the system shown in Fig. 2. Each oscillator is described by its natu-

ral frequency w., critical damping ratio~., mass M. and height H. de-
J J J J 

fined by the corresponding modal quantities. In addition, the sum of 

the centroidal moments of inertia of the n masses is the same for both 

systems. 

Equations of motion 

Assuming small displacements) the equations of motion of the 

building~foundation model shown in Fig. 2 are 

.. t 
IM Y.. + c v + K v = 0 

n 

2= mjvjt + m
0

(v
0 

+ Vg) + P(t) = O 

j:J1 
n 

2= mjhjvjt +It~+ Q(t) = 0 . 

j=1 

(3.la) 

(3. lb) 

(3.lc) 

In these equations, v = (v.}, a column vector, v. =horizontal 
- J J 

displacement of the superstructure at the jth floor relative to the 

base mass, excluding rotations; v = free-field, surface displacement . g 

due to the incident earthquake wave and its total reflection; v = 
0 

translation of the base mass relative to the free-field motion; ~ 

rotation of the base mass; h. =height of the jth story above the base 
. J 

mass; v .t =total horizontal displacement of the jth mass with respect 
J 

t 
to a fixed vertical axis, i . e., v. = v + v + h.~ + v.; m. =mass of 

J g 0 J J J 
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the jth floor; m
0 

= base mass, It = sum of the centroidal moments of 

inertia of the m + 1 masses; and P(t) and Q(t) are the interaction 

force and moment, respectively, between the base mass and the soil. 

In this idealization of the earthquake motion, the free-field 

acceleration at the surface, v } g 
is twice the amplitude of the incoming 

wave, and the motion at depth is the sum of the incident and reflected 

waves. 

2". Relation Between the Interaction Forces 
and the Base Displacements 

Laplace transforms will be used to solve Eqs. (3.1) for the 

unknown displacements v and v. and the rotation cp. Before proceeding 
0 J 

with the solution, it is necessary to express the interaction forces 

P(t) and Q(t) in terms of the displacements v (t) and ~(t). The func-
. 0 

tions P(t) and Q(t) are related to v (t) and ~(t) through convolution 
0 

integrals due to the frequency dependence of the resistance of the 

half-space. Upon substitution into Eqs. (3.1), this leads to a system 

of linear integro-differential equations. The relation in the trans-

formed space, however, is given by an impedance matrix similar to that 

of Eq. (2.31). 

For the case of a rigid circular base, the necessary relations 

may be derived from the results obtained in Chapter I, which deals 

with the steady-state harmonic oscillations of a rigid disc perfectly 

bonded to an elastic half-space. In the present case, a solution is 

sought to the problem of transient horizontal and rocking vibrations 

of the disc. For this problem, the equations of motion that must be 

satisfied by the displacement vector u = (u ,u8,u ) are(35) - r z 
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2J2u 
('A + 2µ) grad div u - µ curl curl u = p - • 

<Jt2 
(3.2) 

The corresponding displacement boundary conditions under the base are 

u (art ) e) 0) t) = v ( t) cos e (3.3a) r 0 

0 ~ r 1 ~ l 
u8(ar 1 JeJ0Jt) = - v (t) sin e ( 3. 3b) 

0 t > 0 

u (ar 1 ,e)0Jt) ar 1 cp(t) cos e (3.3c) z 

As for the problem of harmonic oscillations of the discJ the tractions 

are specified to be zero over the remainder of the surface. In addi-

tion, it is assumed that the system is initially at re st, i.e., 

~(ar',e,z,t) = O at t = 0 • 

Taking La.place transforms of Eqs. (3.2) and (3.3) results, 

respectively, in 

('A+ 2µ) grad div u - µ curl curl v '- ps2 £ = 0 (3.4) 

and 

u (ar',e,o,s) r 
::: v ( s) cos e 

0 
(3.5a) 

ue(ar' ,e,o, s) ::: - v (s) sin e 0 ~ r' ~ l ( 3. 5b) 
0 

U:. ( ar ' , e, o, s) = ar'qi(s) cos e (3.5c) z 

in which a bar over a function denotes the La.place transform of that 

function and s is the pa rameter of the transfonn. 

Comparison of Eqs. (3.4) and (3.5) with Eqs . (2.1) and (2.2a)-

(2.2c), respectively suggests that the solution to the transient problem 

may be found directly from the solution to the harmonic problem con-



side red in Chapter I. After detailed examination of the mathematical 

analysis developed in Chapter I. section C it is possible to obtain an 

expression analogous to Eq. (2.31) relating, in transformed space, the 

interaction forces P(t) and Q(t) to the displacements v (t) and ~(t): 
0 

P"(s) 
1Sw_(so,O") l<bm(so,O") 

vdsL 
µa2 a 

= (3.6) 

Q(s) Kmh ( s0, lT) K (s ,lT) cp(s) 
µas mm. o 

In Eq. (3.6), P(s) and Q(s) are the Laplace transforms of the force 

P(t) and moment Q(t), respectively, and 11m_, Kbm_, Kmh' Kmm represent, 

as before the dimensionless impedances of the problem. The functions 

1Sw_1 l<bm' Kmh and Kmm are given by the same equations that determine 

the corresponding functions for the steady-state harmonic vibrations of 

the disc . In this case, however, the frequency parameter ia is re­
o 

placed by the complex dimensionless variable s = sa/V where V is the 
0 s s 

shear wave velocity of the foundation medium. 

3. Solution of the Equations of Motion 

Since the superstructure admits decomposition into classical 

normal modes, the transformed version of Eq . (3.la) may be solved for 

v . in terms of the interaction displacements v and cp and the free-field 
J 0 

earthquake displacement v : 
g 

+ rk cp 
X.k + w 2 J 

j 

(3 . 7a) 
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th . 
Xjk = j component of ~k = modal displacement of the 

.th i th J mass n the k mode of the superstructure, 

if it were supported on a rigid foundation 

1 ;::: {l} 

h = (h.} 
J 

th 
~ = undamped natural frequency of the k mode 

of the superstructure, given by 

2 ~T K ~ 
w = ----

k ~TM~ 

~k = critical damping ratio of the kth mode of 

the superstructure, defined by 

(3. To) 

(3.7c) 

(3°7d) 

( 3. 7e) 

Substituting Eq. (3.7a) into the transformed versions of Eqs. (3.lb) 

and (3.lc) leads to 

s2 [(.l: F.M.) + m] v + s2 (L: F.Z.) cp + P(s) 
j J J 0 0 j J J 

- (~ F.M. +mo) vg (3.8a) 
j J J 

- (L: F" .zJ) v 
j J g 
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in which w.2 +2TJ.W . S 

Fj ( s) 
J J J 

= 
s2 + 2Tj.W .S + W.2 

J J J 

(3.9a) 

(L: m. X . . ) 2 
i J.. J..J 

M. = 13 j L: m. X . . 
J i J.. J..J L: m. X .. 2 

( 3. 9b) 

i l J..J 

(L: m. X .. )(L: m.h.Xi .) 
i J.. J..J i J.. l J 

z . = /'j L: m. xi. = 
J i J.. J 

~ m. x . . 2 
J.. J.. J..J 

(3.9c) 

(L m.h. X .. )2 
i J.. J.. lJ 

I. = /'j L: m.h . xi. = 
J i J.. J.. J L: m. X .. 2 

i J.. J..J 

Summation throughout will be from 1 to n unless otherwise indicated. 

Substitution of Eq. (3.6) into Eqs. (3.8) leads to a system of 

linear algebraic equations in the unknowns v and ~ whose solution is 
0 

v = - ~ (s2 2:: 
0 b,. • k J, 

jfk 

+ s2 m (Z F.Ij) - µa2 11un(L: F.Z.) 
0 j J j J J 

(3.lOa) 

(3 . lOb) 
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in which 

and 

~= 6
4 L (Mjik - zj~)Fjk + s2 (s2

It + µa 3 Kmm)(J FjM) 
j,k 
jfk 

+ s2 (s2 m +µa K_ )(L F.I.) - 2s2 µa2 K (L F.Z.) 
0 -n.b. j J J -11.m j J J 

(3.lOc) 

(3.1oe) 

The displacements v. may then be found by substituting Eqs. 
J 

(3.10) into Eq. (3.7a): 

-v 
vJ = - ~ f I.e(s) xJ.e ; j = i,···,n (3.lla) 

in which 

I .e ( s) = - µa
2 

s
2 b ~ ( 13 .e zk - r .e ~) J\.e ( s) 

kh 

+ µa s2 ~ L ( 13 .e Ik - :>' .e zk) i\.e ( s) + (µa s2 ~ 1t . 
k 

kf,e 

+ µ2 a4 ~ Kmrn) Il£(s)l3£ + µa2 
6

2 m
0 

11oo Il£(s)7£ (3.llb) 
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n 
and ~(s) = rr 

m=i 
(s2 + 2~ w s + w 2 ) m m 1)1 

(3.llc) 

mlt Jmfk 
n 

fi.e(s)= n 
m=i 

(s2 + 2~ w s + w 2 ) 
''m m m • 

(3.lld) 

mf.e 

Equations (3.lOa), (3.lOb) and (3.lla) may be rewritten for 

simplicity: 
- .6 
•• 0 

v = v -
0 g 6 

(3.12a) 

(3.12b) 

- .6. 
V. 

J 
vg i; j = 1,2,···,n* (3.12c) 

These equations provide an explicit solution in transformed 

space to the equations of motion (3.1) in terms of the transform of the 

incident earthquake, the physical quantities defining the building and 

its foundation, and the impedance functions Kbii(s0 J~), 11im.(s0 ,~)J 
i 

K~~(s ~) and K (s ,~). 
J.W.i o mm o 

Inversion of Laplace transforms 

The unknown displacements v
0

(t)J cp(t) and vj(t) may now be 

found by inverting their corresponding Laplace transforms. Thus, 

v (t) 
0 

.6 (s) 
0 

1 v (s) 
st cp(t) g 

.6 (s) (3.13) 2:rci .6( s) 
e ds cp 

v. (t) .6.(s) 
J c J 

*The range of the variable subscripts will be given only when 
they first appear. 
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where the integrals are evaluated over C, the Bromwich contour. 

By a direct application of the convolution theorem of Laplace 

transform.ations(75), Eq. (3.l3) becomes 

v (t) t h (t-T) 
0 0 

cp( t) h (t-T) cp V (T) dT g (3.l4a) 

v. (t) h. (t-T) 
J 0 J 

in which 

1 1 L\_( s) st 
hk(t) = 2---:- e ds; k=O,cp,j 

rn. C L.( s) 
(3.14b) 

are the impulse response functions of the system. 

Contour integration is next used to solve, in closed form, the 

integrals appearing in Eq. (3.14b). For purposes of clarity, these 

integrals will be evaluated first for the case of linear impedances 

(equivalent to an idealized discrete foundation, represented by linear 

springs and dashpots). Secondly, the actual foundation of the system 

under investigation, i.e., the elastic half-space, will be considered. 

(i) .Analysis for a discrete foundation 

Hsieh(72 ) showed that the steady-state, forced harmonic motion 

of a rigid plate on the elastic half-space can be modeled using a 

simpler system. For each of the four degrees of freedom of the plate 

the elast}c medium is replaced by a simple oscillator consisting of a 

linear spring whose stiffness depends upon the frequency of oscilla-

tion, and a linear viscous dashpot which is also frequency dependent. 
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Available numerical results(5)ll)l4 ) indicate that most of the 

dynamic properties of the springs and dashpots representing the elastic 

.half-space model of the foundation remain nearly constant within the 

frequency range of interest. It is then reasonable to assume as a 

first approximation that the linear springs and viscous dampers have 

constant properties. This is the approach used by Parmelee et al. (96) 

to study, by numerical integration of the equations of motion) the 

earthquake response of selected multi-story buildings resting on an 

elastic half-space. 

With the assumption of constant properties) the functions Kbb.' 
~' Kroh and Kmm become linear in s

0 
(or s). The functions .6

0
(s)) 

.6 (s) and .6.(s) in the numerators of Eqs. (3.12) then become poly-
cp J 

nomials of degree 2n) while the function .b.(s) in the denominator gives 

a polynomial of degree 2n + 4. Hence, the only singularities of the 

integrand in Eq. (3.l4b) correspond to the n + 2 pairs of complex 

conjugate roots of the polynomial .b.(s). Each of these pairs is asso-

ciated with a resonant frequency of the system. 

With this information the integral in Eq. (3.14b) may now be 

evaluated by contour integration. This integral vanishes for t < 0 

because there are no singularities on the right hand plane and in 

addition 

'\(s) 
.6( s) = as s ~ co • ( 3.15) 

For t ~ 0 the integration is performed around the contour r shown in 

Fig. 4. By Cauchy's theorem of the residues(75): 
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1 ;' L\(s) 
2rci 6.( s) 

I'i 

st e ds • (3.16) 

The integral on the right hand side of Eq. (3.16) vanishes in view of 

Eq. (3.15). Under the assumption that 6.(s) does not have repeated 

roots (whose presence would merely modify the expressions for the resi-

dues) Eq. (3.16) gives 

n+2[L'\/st) es.et '\(s./) esA*t] hk(t) I 6.'(s > 
+ (3.17a) 

f::,,' ( s .e *) .e =J. j, 

n+2 [ ~(st) sit} 2I (3.17b) = Re e 

£=1 b.'(s.£) 

where sf, is a root of D.(s) and s.e~ is its conjugate; and A
1
(s,R,) is the 

first derivative of b.(s) with respect to s evaluated at sf,. ,6.
1

(s,R,) can 

be evaluated explicitly from the preceding analysis. 

Introducing the real constants a,R,k) b,R,k' ~£, and~£, defined by 

Eq. (3.17b) becomes 

'\:(sf,) 
2---

f::,,' ( s j,) 

(3.18a) 

(3.18b) 

(3 . 19) 

that is, an equation for the impulse response functions of the system 



in terms of elementary function s and real constants that can be evalu-

ated explicitly from Eqs. (3.18). 

(ii) Analysis for a continuous foundation 

Equation (3.19) shows that the impulse response functions of a 

building-foundation system supported on a discrete foundation are given 

by a linear combination of n + 2 pairs of terms, corresponding to the 

n + 2 pairs of complex conjugate roots of t::..(s) in Eq. (3.14b). There 

are as many pairs of roots of b.(s) as there are degrees of freedom in 

the system and associated with each pair of roots there is a resona~t 

frequency. 

When the discrete foundation is replaced by the elastic half­

space the impedance functions I<Jw_, Kbm.' Kmh and Kmm no longer have the 

precise functional form k +cs (k and care constants). On physical 

grounds, however, it is expected that the building-foundation system 

should still exhibit resonant frequencies and that the number of 

these frequencies should not be affected by the substitution of the 

half-space. 

To preserve these features of the problem, it is assumed that 

i:::.(s) will again have n + 2 pairs of non-repeated complex conjugate 

roots; one pair to be associated with each resonant frequency. It will 

also be assumed that the impedance functions ~' ~' Kmh and Kmm are 

analytic away from infinity and are such that ~(s)/6(s) in Eq. (3.14b) 

goes to zero as s approaches infinity. 

With these assumptions it may be seen that the contour integra­

tion performed in the preceding section remains valid when the discrete 
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foundation is replaced by an elastic half-space. Hence, the impulse 

response functions of the qorresponding building-foundation system are 

again given by Eq. (3.19). In this case, however, the quantities 

impedance functions in the half-space and they will be different, in 

general, from those found for the case of the discrete foundation • 

Expressions for the displacements 

Expressions for the displacements v
0
(t), cp(t) and vj(t) may be 

obtained by substituting Eq. (3.19) into Eq. (3.14a), 

v (t) 
0 

cp( t) 

v. (t) 
J 

n+2 

~k1 b.ecp (3.20) 

b tj 

An alternative form of these expressions, convenient because 

it lends itself to a simple physical interpretation, is found by inte­

grating by parts the terms in Eqs. (3.20) involving cosines: 



v (t) 
0 

cp( t) 

n+2 

- ~J. b.ecp 

b.ej 

or 

v (t) 
0 

n+2 

cp( t) = - 2= 

in which w.e and ~.e are defined by 

and 

l 

w.e = (o-.e2 + f3.e2)2 

v.e~(t) a.eo b.eo 

(3.21) 

v.e~(-r) 

".e:(-r) d-r 

v.e~(-r) 

(3.22a) 

(3.22b) 

(3.22c) 

Yncpe(t) = ancp 
,,, LI [w.e2 v-g(t) + ~.eW'/vg(t)J+ b.ecr ;;;.e /1 - ~.e2 v-g(t).(3.22d) 

v.e~(t) a.ej bj,j 
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In the above derivation use has been made of the equation 

a.Zo 
n+2 

[ a .Z<p = 0 

.Z=J. 
a.ej 

which is obtained from the requirement that the velocities v (t), 
0 

~(t) and v . (t) vanish at t = o. 
J 

Interpretation of the solution 

The expressions for the displacements v (t), cp(t) and v.(t) 
0 J 

in Eq. (3.22a) show that the transient response of the building-founda-

tion system may be obtained as a linear combination of the response of 

n + 2 simple, viscously damped, linear oscillators resting on a rigid 

ground (provided the roots pf tJ..s~) are distinct). Each oscillator, 

described by its undamped natural frequency w,e and fraction of critical 

damping ~t' experiences an acceleration at its base given by v.e~· The 

subscript k takes the values o, qi and j corresponding to the displace-

ments v (t), ~(t) and v.(t), respectively. The main advantages of this 
0 J 

representation are the physical insight it gives into the dynamics of 

the building-foundation system, and the simplicity of the computations 

which are reduced to those of a simple oscillator. 

The result described above is valid even for building-founda-

tion systems that do not have classical normal modes as no assumption 

about the existence of such modes was made in the derivation of Eq. 

(3.22a). 



An alternative form of the solution 

.An alternative form, of the solution of the equations of motion 

(3.1) may be obtained from Eq. (3.13) by selecting the imaginary axis 

as the Bromwich contour. ~"his is possible because the building- founda-

tion system under investigation is stable 1 and therefore) any singulari-

ties occurring in the transformed space must be either to the left of 

the imaginary axis, or if on that axis, they can be at most simple 

poles. Thus, after introducing the variable transformation s = iw, 

Eq. (3.13) becomes 

v (t) 
0 

6. (iw) 
0 

1 v (iw) 
iwt cp( t) = g 

6. (iw) e dw (3.24) 2Jr ~(iw) cp 

v .(t) 
J --0'.) 6.. ( iw) 

J 

The integral operator appearing in Eq. (3.24) represents a 

Fourier integral that may be evaluated by the Fast Fourier Transform 

(FFT) teqhnique. The formulation in Eq. (3.24) coupled with the FFT 

should prove to be very useful because of the high computational ef­

ficiency of the FFT algorithm. (76 ) 

Equation (3.24) could have been obtained directly by applying 

the Fourier operator to the equations of motion (3.1) and using the 

inverse Fourier theorem. This, together with the FFT was used re­

cently by Liu and Fagel{B3) to obtain the response of a single-story 

building-foundation SY.stem. 

It should be noted that in using Eq. (3.24) only values of the 
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impedance functions Kbii) Kbm' Kroh and Kmm corresponding to the real 

frequency a are required. 
0 

Steady-state response 

Although the methods developed above apply to the transient 

response of building-foundation systems, expressions for the steady-

state response may be obtained readily . If the free-field surface mo-

tion v (t) equals v exp(iwt), where v is the amplitude of the motion 
g g . g 

and w the frequency of oscillation, then the corresponding displace-

v (t) 
0 

cp( t) 

v. (t) 
J 

= 

v 
0 

cp e iwt 
(3.25) 

v. 
J 

where the complex quantities Vo) ~· and vj are given by Eqs. (3.12), 

with the provision that s be replaced by iw and v by - if v • 
g g 

Random resnonse 

The preceding analyses have implicitly assumed that the free-

field earthquake acceleration v is a deterministic function of time. 
g 

However, since the problem is linear, a complete analysis of the re-

sponse of the building-foundation system to a random free-field accele-

ration may be obtained from Eqs . (3.14a), (3.22a) or (3.25). For in-

stance, Eq. (3 . 14a) may be used to 

so are v (t), cp(t) and v.(t)(7S). 
0 J 

show that if v (t) is Gaussian) then g . 

The corresponding mean and covari ance 
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functions, which completely specify a Gaussian response process, may 

also be obtained from Eq. (3.14a). Thus, for example 

t 

E[v (t)] =j E[v (-r)] h (t - -r) d-r 
0 g 0 

0 

(3.26a) 

and 

give, respectively, the mean and the covariance function of the rel~­

tive bas~ displacement v
0
(t) in terms of the corresponding properties 

of the free-field acceleration v (t). Similar expressions can be ob-
g 

tained for the displacements ~(t) and v.(t). 
J 

4. An Application of Foss 1 s Method to Systems 
with Discrete Foundations 

The foregoing sections of this chapter have been devoted to 

the solution of the equations of motion of a building supported on an 

elastic half-space. Equations (3.1) were solved by the Laplace opera-

tional method as it was found that the relation between the interaction 

forces and the displacements could be most conveniently expressed ]_n 

the transformed space (see Eq. (3.6)). When the soil is represented 

by linear, discrete elements, Eqs. (3.l) reduce to a system of second 

order ordinary differential equations with constant coefficients which 

may be solved by se~eral methods. The Laplace operational approach 

used earlier provides but one example. Another method for the solution 

of these equations will next be considered. This method also gives the 
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response of a building supported on a discrete foundation as a linear 

combination of the responses of simple oscillators resting on a rigid 

ground . 

Equations of motion 

The equations of motion of buildings resting upon foundations 

which can be represen.ted by lumped parameter, time-invariant, linear 

models may be written as 

M X + C X + K X = - f v (t) o- o- o- - g 

where M , C and K are N X N (N = n + 2) symmetric matrices with K 
0 0 0 0 

non-singular, ~ is the displacement vector; f is a known vector, and 

v (t) is the free-field earthquake acceleration. 
g 

The classical normal mode method of analysis cannot be used to 

solve Eq. (3.27) as the system does not, 

modes in N-space. Foss(77) however, has 

in general, possess normal 

shown that systems which can-

not be uncoupled in N-space may still be solvable by modal methods on 

transforming them to 2N-space . To include systems which cannot be 

solved by modal techniques in either N or 2N-space, 0 1 Kelly(73) de-

veloped a general theory of vibration for lumped parameter, time-

invariant, damped linear systems. Although this method is always 

applicable, it is more convenient to use Foss's formulation in 2N-

space when possible . 

Equation (3.27) will be solved by the modal method proposed by 

Foss, as the corresponding building-foundation systems generally satis-

fy the condition necessary for its applicability. 
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Method of solution 

Equation (5.27) may be combined with the identity equation 

MX-MX=O o- o- (5.28) 

to obtain a system of first order differential equations in 2N unknowns: 

in which 

RZ + SZ = - F v (t) 
- g 

s ~ r-:0 :J 
z ~ : I 

(3.29a) 

Equation (5.29a) may be uncoupled and solved by superposition 

provided the eigenvalues of s-1 R are distinct. Proceeding on this as-

sumption, the matrix 

a 2N X 2N 
matrix (3°30) 

may be diagonalized by a similarity transfonnation ~, the columns of 

which are the eigenvectors of R and S. From the fact that R and S are 

symmetric, 

~T R ~ · = 
,..., 
R, a diagonal 2N X 2N matrix (5.31a) 

~T S 41 = s, a diagonal 2N X 2N matrix (5.31b) 



Equations (3.31) are the orthogonality conditions in 2N-space and may 
' ' 

be expanded in terms of N-space quantities. From the fonn of Eqs. 

(3.29) it is easy to see that the ith column, !i' of ~ may be parti-

tioned 

(3.32) 

~i is an N X 1 column vector and ai is an eigenvalue of U. 

Equations (3.29) may be uncoupled by making use of the ortho-

gonality conditions (3-31). After solving each uncoupled equation, the 

following solution was obtained by Foss(77) for a system which is 

initially at rest 

x 
z = (3.33) 

x 

In this equation, Gk is an element of the 2N X 1 column vector G = 

~T~ and ~ is the kth diagonal element of the matrix R. 

A more convenient form of the solut.ion may be obtained by 

noting that the eigenvalues ak occur in complex conjugate pairs as do 

the corresponding eigenvectors. Thus, the equation for the displace-

ments . ~in Eq. (3.33) becomes 

x 
k=J. 
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Proceeding as in Section 3, it is easy to show that Eq. (3.34) 

may be written in the form 

,..,, 
where the constants ek and 1k' and the equivalent input acceleration 

•• e ( ) vector ~ t are defined by 

(3.35b) 

- Re °k 
(3.35c) 

and 

(3.35d) 

These are formulas that can be evaluated explicitly after finding the 

eigenvalues and eigenvectors of the matrix U. 

The result obtained above for a lumped parameter, time-invariant 

damped linear system may be stated as follows. The response of the 

system may be obtained as a linear combination of the responses of N 

simple oscillators subjected to modified excitations, provided the 

eigenvalues of the matrix U are distinct. This result is valid even 

for systems that do not have classical normal modes. 



For the particular case of a building supported on a discrete 

foundation Eq.· (3. 35) may be shown to be equivalent to the correspond­

ing equations obtained by the Laplace operational method (Eqs. (3 .22)). 

The essential difference between the two formulations lies in the meth-

od of determining the natural frequencies) critical damping ratios and 

base accelerations of the equivalent linear oscillators. Given a 

choice, it is more convenient to use Eqs. (3.35) for numerical calcula-

tions since, in general, it is easier to solve an eigenvalue problem 

than to obtain the roots of the corresponding frequency equation. It 

will be recalled) however) that Eqs. (3.35) can only be used for dis-

crete foundations. Eqs. (3.22) and (3.24), on the other hand, are ap~ 

licable for buildings supported on either a discrete foundation or on 

the elastic half-space. 

5. A Note on the Assumption of Classical 
Normal Modes of the Superstructure 

In the description of the system shown in Fig. 2) the damping 

matrix C was specified such that the superstructure would admit de-

composition into classical normal modes. This restriction was imposed 

so that Eq. (3.la) could be uncoupled and solved explicitly for the 

displacements vj in terms ~f the free-field acceleration vg and the 
I 

unknown accelerations v and ~. The transformed expression for the 
0 

displacements v. was then substituted into the transformed equations 
J 

corresponding to Eqs. (3.lb) and (3.lc). This gave a system of two 

algebraic equations in the unknown functions v and ~ which were then 
0 

solved explicitly. It may now be seen that essentially the same method 
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can be used to analyze building-foundation systems having arbitrary 

damping matrices C. It is sufficient to use Foss's formulation to 

uncouple Eq. (3.la). Explicit solutions for the displacements v. can 
J 

then be found in terms of i/ , V and q5. 
g 0 

D. Applications 

1. Introduction 

The steady-state harmonic and earthquake response of several 

idealized single and multi-story building-foundation systems will be 

obtained herein by the methods developed in the foregoing sections. 

This will help to illustrate the use of such methods and to determine 

the conditions under which the interaction effects become important. 

In addition, explicit formulas will be presented that permit treating 

the problem of the earthquake response of a single-story building rest-

ing on an elastic foundation as one of a single mass system on a rigid 

soil. 

2. Dynamic Soil Coefficients 

In order to apply the methods developed in Section c, it is 

first necessary to evaluate the impedance functions K}m' 11un' Kmh and 

K . As may be observed from Eq. (3.6), these functions relate the mm 

stress res~ltants of the contact area to the displacements experienced 

by a rigid disc undergoing oscillations on the surface of a semi-infinite 

elastic medium. The functions 11lh and Kmm have been evaluated numeri-

(5 11 14) cally ' ' for the case of steady-state harmonic oscillations of a 

rigid disc with relaxed boundary conditions, for va~ues of the frequency 



parameter a
0 

up to 10. The function Kbm vanishes identically for this 

case as there is no coupling between the interaction forces produced 

by the rocking and the horizontal translational motions. The corres- . 

ponding dynamic values of l<hh' Kb.m' Kmh and Kmm for the perfectly 

bonded disc are not available. On the other hand, dynamic values for 

the infinite rigid strip have been obtained by Luco( 24 ), who showed 

that the difference between the welded and the frictionless case is 

significant only for large values of the frequency parameter a and 
. 0 

small values of Poisson 1 s ratio~. 

It will be assumed in this study that the qualitative result 

obtained for the infinite strip also holds for the disc, and therefore, 

that the dynamic force-displacement relations for the frictionless 

disc can be used as a~proximations for the corresponding complete mixed 

boundary value problem. This assumption may be partially verified by 

comparing the natural frequencies of single-story building-foundation 

systems corresponding to the two types of bond assumed between the base 

of the building and the underlying half-space. 

The single-story building-foundation system used for this calcu-

lation is shown in Fig. 5. It consists of a linear, viscously damped 

single-story structure with one degree of freedom, resting on the sur-

face of the half-space. For fixed base response, the structure has a 
l 

stiffness ki, mass mi, natural frequency wi = (k1 /mi)2 and damping 

coefficient ci· The building has a height hi aboye the base mass. 

For the purposes of the present analysis it is convenient to 

consider only undamped building-foundation systems with massless bases. 
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With these restrictions the corresponding frequency equation can then 

be solved in closed form: 

,.., 2 
~ = ~~~~-=-~~~~~~~~~~~~~~~~~~~-=--

. WJ.2 1 - 1Sun2 ·+ ki [ _l_ + 2 Kbrn ( hi)+ _l_ ( hi) 2 l 
1bb. Kmm µa 1bb. 1bb. Kmm a Kmm a 

(3.36) 

For the numerical evaluation of Eq. (3.36), the force-displacement re-

lations ISui' 11un' Kmh and Kmm will be approximated by the corresponding 

static values. Thus, for a perfectly bonded disc these functions are 

given by Eq. (2.36) whereas for a frictionless disc, 1bb. = 8/(2-r:;'), 

K = K = 0 and K = 8/3(1-u)(l3). -nm mh mm 

Equation (3.36) has been calculated for values of the stiffness 

ratio, ki/µa , between 0.01 and 2, of the slenderness ratio, hi/a, 

between 0.5 arid 4 and of Poisson's ratio, u, between 0 and 0.5, for 

both a bonded and a frictionless base. The difference in the values of 

the corresponding natural frequencies is in no case greater than 5%· 

For instance, for a system defined by k1 / µa = 0 . 5, hi/ a = 2 and u = 0, 

the frequency ratio w1/w1 is equal to 0.725 if the base is perfectly 

bonded to the soil and 0.730 for a frictionless base . In general, the 

discrepancy is greatest for u = O, whereas no difference occurs for an 

incompressible material (~ = !). 

Interpretation of the dynamic force-displacement relations 

Returning to the dynamic problem, Bycroft(5) and Gladwell(l3) 

have shown that for steady-state oscillations of the disc, 

the functions Khh and Kmm can be expressed formally as 
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(3.37a) 

K (ia ) = k (a ) + ia c (a ) 
nun o mm o o mm o (3·37b) 

in which the :functions ~' cbh' krnm and crnm are real. These functions 

can be given a simple physical interpretation. That is, it may be 

shown(72) that~ and krnm are related to the stiffnesses of frequency 

dependent linear springs whereas cbh and cmm are associated with viscous 

dampers which are also frequency dependent. As an illustration, the. 

exact relationship is given here for one of these pairs. 

After setting 1Sun equal to zero, Eq. (3.37a) and the first of 

Eqs. (2.31) lead to 

(3.38a) 

where P1 (t) = P exp(iwt) and v
0
(t) = ~h exp(iwt). 

Equation (3.38a) shows explicitly that the force Pi(t) depends 

linearly on the displacement v (t) and the velocity v (t). This is 
0 0 

equivalent to having a system consisting of a linear spring and a vis-

cous damper whose properties are frequency dependent. The corresponding 

stiffness k and the damping coefficient c are 

(3.38b) 

ILA
2 

c = i::::::::_ c (a ) v bh 0 • 
(3.38c) 

s 
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Impedance functions for transient vibrations 

In studying the earthquake response of building-foundation sys-

temsJ it is necessary to evaluate the functions ~ and K 
mm in terms of 

the parameter s J a complex number) rather than a • No such numerical 
0 0 

solutions have been found to date. It is possible however) to obtain 

K_ (s) and K (s) by analytic continuation from the known solutions 
-l1h o mm o 

for K _ (ia ) and K (ia ). 
-l1h o mm o 

To explain the concept of analytic continuation) let D1 and D2 

be two domains which have in common a set of points forming a domain DJ 

and let f 1 (s ) be an analytic function defined in D1 . If there exists 
0 

a function f2(s
0

) anal;)_'tic in D2 which is equal to fi(s
0
)at each point 

of D, then f 2 (s ) is unique. f 2 (s ) is called the analytic continua-
o 0 

tion of f 1 (s) into the domain D2 (75). 
0 

Gladwell(l3) has shown that the functions K _ (ia ) and K (ia ) 
-l1h o mm o 

can be expanded formally in terms of power series. Assuming that these 

series are convergent, their sums will be analytic functions at every 

point interior to their co~responding circles of convergence) R1 and 
I 

Since the function 11ih(s
0

) defined by 

l)m(so) =11ih(iao)lia =s 
0 0 

(3.39a) 

coincides with the function 11ih(ia
0

) on that part of the imaginary 

axis which is within its circle of convergence, it then follows that 

11ih ( s
0

) is the analytic continuation of 11ih (ia
0

) into the region in-

terior to Ri. Thus, provided s is interior to R1 J it is possible to 
0 

find Klw.(s
0

) by merely replacing ia
0 

by s
0 

in the corresponding 



expression for l)m(ia
0
). Similarly} K (s ) may be found from . mm o 

K (s) = K (ia )l . 
.mm o mm o . la =S 

0 0 

(3.39b) 

Alternative expressions for K . (s ) and K (s ) may be obtained 
bh o mm o 

by combining Eqs. (3.37) and (3 .39) 

K11h(so) = 11ih(ao) 1. + s cbh (ao) I· 0 la =S la =S 
0 0 0 0 

(3.40a) 

i 

K ( s ) = k (a ) j + s cmm(ao)I· • mm o mm o . 0 la =S la =S 
0 0 0 0 

(3.40b) 

Approximate formulas for Kbii and Kmm 

Equations (3.22) and (3.18) show that the functions K_rui(s
0

) and 

K (s ) have to be evaluated only at discrete values of s J correspond-mm o o 

ing to the various resonant frequencies of the building-foundation sys-

tern. Equations (3.22) and (3.18) also show that the imaginary part} 

a
0

, of s
0 

is related to the resonant frequencies of the system, whereas 

the real part, -~ , of s is a measure of the amount of damping associ-o 0 

ated with a given resonant frequency. Considering that: (a) ~ is in 
0 

general small compared to a
0

J (b) a
0 

is for most practical applications 

less than about 2 and (c) the functions ~' ~h~ kmm and cmm involve 

only even powers of s J it is reasonable to use an approximate fbrm of 
0 

Eqs. (3.40) for the functions l)m(s
0

) and Kmm(s
0

) which neglects the 

higher order terms in ~oJ namely 
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(3.4la) 

K (s ) = k (a ) + s c (a ) • 
mmo mmo ommo (3.4lb) 

These equations have the advantage of giving a representation for the 

functions K}m(s
0

) 

~(ao), chh(ao)' 

and K (s ) which involve only the real functions 
mm o 

k (a ) and c (a ) arising in the problem of steady-
mm o mm o 

state harmonic oscillations of a rigid disc on the elastic half-space. 

Numerical values for these functions will be adapted from the numerical 

results obtained by Luco and Westmann(ll). 

3. Dynamic Response of Single-Story 
Building-Foundation Systems 

The dynamic response of the idealized single-story building-

foundation system shown in Fig. 5· will be studied here. Dimensionless 

expressions for the transfonned displacements v , ~ and v1 can be ob­
o 

tained from Eqs. (3.lOL (3.11) and (3.41). After setting n = l and 

Kb.rn = o, these equations lead to 

v 
0 
-= 
v 

g 

s 2 
0 

.c.d 

~hi 

v 
g 

s 2 
0 - - --

.c.d 

(3.42a) 

(3.42b) 



in which 

s 2 
0 

s 2 b1(1 + 2T)i so)/~ 1 
(1 + 

0 , BJ. 0h ~ 

k (a ,er) mm o 

c (a ,er) = s (a ,er) k (a ,er) • mmo mo mmo 

(3.42c) 

""] 
(3. 42d) 

The constants crh and crm are the static values of the stiffness 

coefficients 11ih and kmm' respectively, .whereas the functions ~h and 

~ measure the deviation of k. and k from their static values. m -11h mm 

Thus, for a
0 

= o, ~h and ~m are equal to unity. sh and sm are re­

lated to the amount of energy lost by radiation into the elastic half-
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space due to horizontal translation and rotation of the base, respec-

tively. These parameters, however, do not represent ratios of critical 

damping. 

The functions ~h' ~ , sh and s are shown in Fig. 6 for three 
µi m 
i 

values of Poisson's ratio a;s functions of the parameter a, for values 
0 

of a from 0 to 2. 
0 

Although this range of a is sufficient for most 
0 

practical applications, these functions can be calculated for values 

of a up to 10 from the results presented by Luco and Westmann(ll). 
0 

The dimensionless parameters a1 , a1 , ~1 , b1 , bh and bm appear-

ing in Eqs. (3.42) are defined by 

WJ.a 
(3.44a) a1 = v s 

O:i = 
hi 
a (3.44b) 

CJ. 
(3.44c) ~1 2m1 W1 

bi ~ (3.44d) 
pa3 

bh 
mo 

(3.44e) = 
pa3 

and 

b = 
It 

(3.44f) -- . 
m pa5 

Equations (3.42) show that the dynamic behavior of the build-

ing-foundation system under study is governed by a set of seven dimen-

sionless variables, i.e., the response quantities v /v , (j)h1 /v and 
0 g g 
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Fig. 6. Dynamic soil coefficients 
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vi/v ) as functions of s ) are defined completely by the parameters 
g ' 0 

a1 , a1 , ~1 , b1 , bh, bm and ~. 

Relations between the mass ratios and the frequencies 
of rigid motion of the base mass 

A simple relation can be found between the mass ratios bh and 

bm and the dimensionless frequencies ah and am' defined respectively by 

U\i a 
~ = v s 

w a m a = m v s 

in which 

w 2 
µa ~h 

h mo 
µa3 ~ 

w2 m -
It m 

that is, ~ is the n~tural frequency of horizontal oscillations of the 

base mass under the assumption that Kiih = ~h and wm is the natural 

frequency of rotational vibration of a rigid disc of radius a and 

centroidal moment of inertia It if it is assumed that Kmm = ~ . 
m 

The required relations are obtained by combining Eqs. (3.44e), 

(3.44f) and (3.45), 

~2 
~h 

= 
bh 

~ 

a 2 m - . 
m b m 

These equations show that the frequencies ~ 

the stiffness of the foundation. 

(3.46a) 

(3.46b) 

and a are independent of 
m 



Equations (3.46a) and (3.46b) give approximate formulas for 

the loci of the resonant frequencies corresponding to the problems of 

horizontal oscillations and rocking, respectively, of a rigid circular 

footing on an elastic half-space. 

Total horizontal displacement of the base mass 

Equations (3.42) give expressions for the Laplace transforms of 

the functions v , ~ and vi, which represent respectively, the horizon­o 

tal translation of the base mass relative to the free-field motion, the 

rotation of the base mass, and the relative displacement of the top 

mass relative to the base mass, excluding rotation. It is also useful 

to have an explicit representation for the total horizontal displace-

ment of the base mass y , 
0 

y = v + v 
0 0 g 

which upon transformation arid substitution of Eq. (3.42a) yields 

Systems subjected to base constraints 

Equations (3.42) and (3.47b) have been derived for the build-

ing-foundation system shown in Fig. 5. As shown in the figure, the 

base mass will both rotate and move horizontally with respect to the 
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free-field displacement. Physical constraints, however, may be im-

posed on the base mass which prevent one of these motions, for example, 

a system founded on piles might not allow rocking of the base. The 

dynamic behavior of the resulting system can still be described by 

Eqs. (3.42) and (3.47b); it is only necessary to set l/~ and s equal m m 

to zero on these equations if the base is not allowed to rotate. Simi-

larly, terms in Eqs. (3.42) and (3.47b) containing l/~h or sh must be 

eliminated if the base can not move horizontally with respect to the 

free-field displacement. 

Steady-state response 

The response of the single-story interaction system shown in 

Fig. 5 to the free-field harmonic motion 

v (t) :::: v 
g g 

iwt 
e (3.48a) 

will be studied in this section. v is the amplitude of the motion and 
g 

w is the frequency 'of oscillation. 

The correspon~ing displacements v (t), y (t), cp(t) and vi(t) 
0 0 

are 

v (t) v 
0 0 

y (t) yo iwt 0 
(3.48b) cp( t) 

:::: e cp 

vi(t) VJ. 

where the complex quantities v , y / ~' v1 are given by Eqs. (3.42) 
0 0 

and (3.47b) in which s is replaced by ia (a = wa/V ). 
0 0 0 s 
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(i) Systems with negligible base masses 

Numerical evaluatiop of the steady-state response of the inter-

action system will be obtained first for the limiting case in which bh 

and b vanish. This corresponds to having a system with a negligible 
ill 

base mass and with a negligible centroidal moment of inertia of the 

top mass . Systems with bh1 bm different from zero will be examined 

subsequently . 

The critical dam.ping ratio ~1 of the structure will be taken to 

be zero for all numerical calculations. In this manner, all the energy 

dissipated by the system will be due to wave radiation into the elastic 

half-space. Also, calculations will be presented only for one value of 

Poisson 1 s ratio (~ = 1/4) since similar results are expected for other 

values. 

Having fixed the values of bh' bm' ~1 and ~, the frequency re­

sponse of the system will depend solely on the parameters a1 , a1 and 

b1 , defined by Eqs. (3.44). Of these, only a1 is a function of the 

soil stif1'ness . In fact, the rigidity of the soil, as measured by its 

shear wave velocity, V 1 only enters the problem in conjunction with 
s 

w1 . Tb.ereforeJ the dynamic coupling between a building of this type 

and the surrounding ground will depend on the relative stiffness be-

tween the superstructure and its foundation, and not on the rigidity 

of the soil per se. 

Numerical results 

Calculations have been carried out for several combinations of 

the para.meters a1 , a1 and b1 to assess their influence on the frequency 
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response of the system. The values of the parameters used in the cal-

culations are: (1) a1 = 0.4, 0.5, 0.7, 0.9; (2) a 1 = l.O, 1.5} 2.0; 

and (3) b1 = o.5J l.OJ 1.5. These values of a1} a1 and b1 are in-

tended to approximate those of real structures. For instance} a1 = 

0.7 might correspond to a concrete nuclear reactor containment vessel 

of radius a = 60 ft and natural frequency f1 = 4 cps founded on a soil 

whose shear wave velocity} V , is equal to 2150 ft/sec. 
s 

The frequency response of the building-foundation systems 

characterized by a1 = 1.5, b1 = 1 and a 1 = 0.4, 0.5, 0.7, 0.9 is de-

picted in Fig. 7. Shown in the figure are three sets of curves, each 

illustrating the variation of a specific translational magnification 

factor} Jy
0

j/vg, jcph1 j/vg or jv1 j/vg} obtained from Eqs. (3.42) and 

(3.47b) as a funct~ori of the exciting frequency ratio w/w1 . The 

symbol jy j refers to the amplitude of the total horizontal displace­o 

ment of the base, whereas jcph1 j and Jv1 j denote respectively the ampli-

tude of the horizontal translation produced by rocking and the flexural 

displacement qf the top mass. 

Whereas a single-story undamped system founde d on a rigid base 

(a1 = o) exhibits an infinite relative story displacement at w/w1 = 1, 

Fig . 7(a) shows that for non-zero values of a 1 , Jv1 J/vg reaches a 

·finite maximum at a value of w/wi = w1/w1 which decreases monotonically 

from unity for increasing values of ai. The reduction in the peak 

values of the response indicates the presence of damping in the system, 

which is due to wave radiation into the half-space. This damping, or 

energy loss becomes larger for increasing values of a 1 and is sens itive 
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to small variations of this parameter. 

The response curves for the horizontal translation of the top 

mass as produced by rocking are plotted in Fig . 7(b). Contrary to the ex-

pectation that the peak values of lcph1 l/~ would increase monotonically 

with a1 , Fig. 7(b) shows that the largest values of jqm1 j/vg occur when 

a 1 is small and decrease as a1 increases. For the limiting rigid foun-

dation (ai = o), the amplification factor JqmiJ/vg vanishes identically 

except at w/wi where it has an infinite singularity. The ratio [~h1 j/ 

Jv1J, however, does go to zero. 

The response curves for the amplification factor of the hori-

zontal translation of the base are shown in Fig. 7(c). These curves 

are to be compared with the line jy
0

j/vg = 1 (except at w/w1 where 

there is an infinite singularity) corresponding to a building founded 

on a rigid soil. The crinkle exhibited by the response curves near 

the resonant frequency w1 can be explained by rewriting Eq. (3.47b) in 

the form 

in which b.e is defined by/ 
! 

For the pur:Pose of this discussion, it is assumed that the 

amount of damping in the system is small enough so that its effect on 
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the value of the resonant frequency can be neglected. Under this 

assumption, and recalling that bh = bm = O, Eqs. (3.42d) and (3.49b) 

give 

t:,. (~) = 1 -
d WJ. 

(3.50a) 

(3.50b) 

After substituting Eqs. (3.50) into (3.49) it becomes apparent 

that the response curve for jy
0

j/vg for the undamped system will ex­

hibit both an infinite peak and a minimum value (zero), the maximum 

* (WJ.~) occurring at a frequency W1 given by L::,,.d -- = 0 and the minimum at 
WJ. 

wi** 
a frequency w1** defined by t:,. (--) = 0. w1* is the natural fre­

e WJ. 

quency of the .undamped system whereas w1 ** is the natural frequency of 

a system like the one above, except that the base mass can only rotate. 

Based on this analysis of the undamped system, it is reasonable 

to expect that the peak in the response curve for jy j/v will be at­o g 

tained near the resonant frequency w1 of the original system whereas 

the minimum value of Jy j/v will occur near the resonant frequency 
0 g 

that the system would have if its base were allowed to rotate, but 

were restricted to have the same displacement in the horizontal direc-

tion as the free-field surface. 

As Fig. 7(c) indicates, the minimum value of jy
0

j/vg will gen~ 

erally be different from zero because of the presence of damping in 

the system. Tb.ere is, however, one particular case for which this 



minimum does assume a zero value. Namely} Eq. (3.4Tb) shows that if 

the system is not allowed to rotate, then IY j/v vanishes at a point 
0 g 

corresponding to a frequency of excitation w = wi, that is, the single-

story building-foundation system shown in Fig. 5 exhibits characteris-

tics of a vibration absorber provided the system is prevented from 

rocking. Tb.is property remains valid when the mass ratios bh and bm 

are not equal to zero as only the condition ~ 1 = 0 need be maintained. 

Approximate formulas for the resonant frequency 
and peak values of the response 

The numerical calculations so far presented indicate that 

single-story systems founded on elastic soils have resonant frequencies 

~1 smaller than the corresponding frequencies w1 of the buildings on 

rigid foundations. To determine .w1 it is necessary to obtain the 

frequency response of the interaction system defined by the parameters 

a 1 , bi and a1 • Hence, a number of these responses must be obtained in 

order to study the effect of the individual parameters a1 , b1 and a1 

on the resonant frequency w1 . It is therefore of considerable prac-

tical interest that wi can be approximated by the natural frequency w1* 

of the corresponding undamped system, as a closed form solution in 

Figure 7(a) shows that the peak values of the amplification 

factor jv1 j/vg are greater than about 10 for all the cases considered 

in the figure. Interpreting Fig. 7(a) as the response of a single 

mass system on a rigid foundation, these values of the amplification 

factor would correspond to critical damping ratios of about 5% or less. 
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This small amount of damping allows for the approximation w1 = wi* An 

explicit solution is obtained for w1 by recalling that w1* is defined 

w * 
by Ad(-1:_) = O, where Ad(~) is given by Eq. (3.50a). Thus, 

WJ. WJ. 

(3.51a) 

Successive approximations are required to obtain w1/w1 from 

this equation as the functions ~h and ~m have to be evaluated at a
0 

ai (a1 = a1w1/w1). 

Equation (3.5la) shows that the resonant frequency ratio 

w1/w1 is smaller than unity and is essentially a monotonically decreas­

ing function of the two parameter s a1
2 bi and a1

2 • 

With the resonant frequency ratio established, approximate 

expressions for the peak values of the amplication factors jv1 j/vgJ 

jcph1 l/vg and jv
0

1/vg can be obtained by evaluating Eqs. (3.42) at s
0 

. 

ia1 • Retaining only first-order terms in ri1 , ~hand ~m' one gets 

1 

[ l + a1
2 

bi k\ + ~:1:Jr 
Jvil 

max-= 

3 ( 'h + 'mai ) vg 
2111 + ai bi ~h (J'h ~m O"m 

( 3 .51b) 

j Ciihi j al. 2 bi a2 lvi I l. 
max = max --=---v ~m O"m vg g 

(3.5lc) 



Jv l 
0 max--=--= 

vg 

a 2 b 
J. J. 

f3h crh 
(3.5ld) 

Equation (3.5lb) shows explicitly that the maximum relative 

story displacement is finite even when there is no damping in the 

superstructure. In fact, when ~J. is equal to zero, the peak value of 

lvi l/vg is inversely proportional to a 3 
J. bJ. for small values of a1 

whereas it approaches zero as l/a1
2 b1 / 2 as ai becomes large. Equation 

(3.5lb) shows in addition that when ~J. does not vanish, the peak value 

of the relative story displacement may be smaller or larger than the 

corresponding value for the system on a rigid soil (1/2~1 to first 

order in ~1 ), depending on the parameters a1 , b1 and a1
2 • 

That the amplification ratios l~h1 j/vg and Iv J/v vanish for 
0 g 

rigid soils can be observed from Eqs. (3.5lc) and (3.5ld), respectively. 

An unexpected result, however, is obtained when ~J. vanishes, for then 

the peak values of j~h1 j/vg and jv j/v become inversely proportional 
0 g 

to a1 for small values of a1 . 

Verification of the approximate formulas 

A few numerical calculations have been performed in order to 

study the approximate formulas (3.5l) as well as the influence of the 

individual parameters a1 , b1 and a1 on the response of the single-story 

interaction system under investigation (Figure 5). The peak values of 

the amplification factors lv1 l/vg, l~h1 j/v and Iv j/v and the corres-
g 0 g 

ponding resonant frequencies have been evaluated using both Eqs. (3.42) 

and (3.51) and are presented in Table l for several values of a1 , bi 

and o:1 • 
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TABIE 1 

Resonant Frequencies and Amplification Factors 
of Single-Story Interaction System 

(bh = bm = ~i = O, ~ = 1/4) 

wi/wi lvil/v g jcphi I /v g Iv l/v 
0 g 

Exact Approx. Exact Approx. Exact Approx. Exact Approx. 
(2) ( 3) (4) (5) (6) (7) (8) (9) 

.937 .936 111.7 107.0 11.75 11.26 3.84 3.77 

.906 .905 56.24 53.08 9. 40 8.87 2.99 2.93 

.835 .832 20.25 18.64 6.83 6.29 2.08 2.03 

.761 • 755 9.70 8.79 5.54 5.02 1.62 1.59 

';ii/wi ]vil/vg l<Phi l/vg lv
0 

l/vg 

Exact Approx. Exact Approx. Exact Approx. Exact Approx. 
(2) ( 3) (4) (5) (6) (7) (8) (9) 

.949 .949 105.9 99.25 8.83 8.33 2.79 2. 75 

.906 .905 56.24 53 .08 9.40 8.87 2.99 2.93 

.868 .866 39.64 37,59 9.90 9.38 3.19 3.11 

wi/wi lvil/vg iqID.il/vg lv0 l/vg 

Exact Approx . Exact Approx. Exact ·Approx. Exact Approx. 
(2) ( 3) (4) (5) (6) ( 7) (8) (9) 

.943 .941 60 .35 56.41 4.50 4.21 3.20 3.12 

.906 .905 56.24 53.08 9.40 8.87 2.99 2.93 

.861 .860 52.40 50 .17 15.49 14.83 2.80 2.77 
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Estimates for the resonant frequency calculated from Eq. (3.5la) 

fall within one percent of the exact values computed from Eqs. (3.42), 

whereas an error of ten percent or smaller is obtained for the peak 

values of the response. This difference, although small and satisfac­

tory for practical applications, is to be expected as the peak values 

are more sensitive than the resonant frequency to the damping coeffi­

cients ~1, sh and sm whose second powers have been neglected in the 

derivation of Eqs. (3.51). These equations have the advantage of pro­

viding relatively simple expressions that show explicitly the effect of 

the individual parameters a1 , b1 , a1 and ~ 1 on the maximum values of 

the response quantities of interest and the corresponding resonant 

frequencies. 

The following trends are -worthy of note in Table 1. 

1. The resonant frequency ratio w1/w1 is smaller than unity 

and decreases for increasing values ·of the parameters 

a1 , b 1 and aJ.. 

2. The peak values of the flexural amplification factor 

lvij/v·g become increasingly small for growing values of 

ai and bi but are most sensitive to variations in a1 • 

No strong dependence of lv1 j/vg on cti is observed. 

3. The maximum value of j~h1 !/vg is approximately propor­

tional to a1
2 , decreases for increasing values of a 1 

and is almost insensitive to the mass ratio bi• 

4. Whereas the peak value of the base amplification factor 

jv
0

j/vg does not show a strong dependence on b1 and a1 , 
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it is quite sensitive to variations in a1 , becoming smaller 

as a1 increases. 

The trends described above can be observed directly from Eqs. · 

(3-51). These equations also show that the ratio of the maximum dis-

placement of the top mass caused by rocking to the corresponding flex-

ural displacement is approximately proportional to a1
2b1a1

2 , and simi-

larly, that the maximum value of jv
0
j/jv1 j is almost a linear function 

of the parameter a 1
2 b1 • 

Limiting rigid structure 

The frequency ratio w1/w1 goes to zero as the frequency parame-

ter ai approaches infinity. The resulting rigid structure, however, 

is stilJ;. capable of undergoing rigid body oscillations on the surface 

of the elastic half-space; the amplitude of these oscillations being a 

f'unction of' the f'requency of excitation. The peak values of the ampli-
1 

tudes j~hil/vg and jv
0

j/vg and the corresponding resonant frequency, 

a1 , can be obtained as the limits of Eqs. (3.51) as a1 tends to 

inf'inity, 

(3.52a) 

max --- : (3-52b) 



Iv l 
0 

max--=-= 
Vg 
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Clearly, lv
1

j/vg vanishes identically for this case. 

(ii) Influence of the base mass on the 
response of the system 

(3.52c) 

It is the purpose of the following analysis to show that the 

peak values of the response of the single-story interaction system de-

picted in Fig. 5 vary slowly with respect to the parameters bh and ~m· 

This in turn implies that the results obtained in the previous section 

for systems with negligible base masses and negligible centroidal moment 

of inertia of the top mass, give satisfactory approximations for sys-

terns for which bh and bm depart appreciably from zero. 

In computing the mass ratios bh and bm' it should be noted that 

whereas the base of a real building is partially embedded into the 

groundJ the idealized model used in this investigation is resting on 

the surface . Hence, only the buoyant mass of the embedded portion of 

the base should be included in bh and bro. 

The change in the resonant frequencies of a building-foundation 

system for increasing values of bh and bm provides an estimate of the · 

effect of these parameters on the dynamic coupling between the building 

and its foundation. In general, the system shown in Fig. 5 will exhibit 

three distinct resonant frequencies corresponding to the three degrees 

of freedom of the system. Only one resonant frequency, i . e., w1 , is 

observed, however, when the parameters bh and bm vanish; the other two 
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being located at infinity. It is of interest to investigate to what 

extent w1 is modified and how the additional frequencies are brought in 

from infinity as bh and bm become greater than zero. 

Effect of bh and bm on the resonant 

frequencies of the system 

The resonant frequencies of the system under study correspond 

approximately to the values of w/wi which minimize the function I.ti.di' 

where .6.d is defined by Eq. (3.42d) and s
0 

= ia1 w/w1 • Approximate 

values for the resonant frequencies can be obtained from the equation 

.6. = 0 
d (3.53) 

if it is assumed, as before, that the coefficients of damping ~ 1,~h and 

~m may be neglected without affecting significantly the values of these 

fre quenc ie s. 

An explicit formula for the modified frequency w1 may be de­

rived from Eq. (3.53) by retaining only first-order terms in bh and bm' 

l 
~ = ~~~~~~~~~~~~~--, 
W1 

(3.54) 

Equation (3.54) shows that the fundamental resonant frequency 

of the system decreases as bh and bm assume non-zero values. In fact, 
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the equation shows that this reduction may be small even for relatively 

large values of bh and b . For instance) corresponding to ai = 0.5, m 

bi = 1.5, 0:1 = 1.5 and (j = 0.25, the frequency ratio w1/w1 is equal to 

0.866 for vanishing values of bh and b whereas an additional reduction 
m 

of only about 2.5% is obtained when bh = 3 and bm = 4. 

The behavior of the remaining resonant frequencies of the sys-

tern corresponding to non-vanishing values of bh and bm can be studied 

most conveniently by considering bh and bm separately. Suppose, for 

instance that bh vanishes but bm does not. Then, neglecting ~1 , ~h and 

~' Eqs. (3.53) and (3.42d) lead to the frequency equation 

(-) = 0 w 2] 
W1 

(3.55) 

whose solution gives approximate values for the resonant frequencies of 

the interaction system under examination. Two resonant frequencies can 

in general be determined from Eq. (3.55), the third one being at infin-

ity. 

Rather than solving Eq. (3.55) for w/w1 in terms of b , which 
m . 

would involve finding the solution of a cubic equation, it is found 

more suitable to invert the problem by solving Eq. (3.55) for b in 
m 

terms of the resonant frequency ratio w/wi. This gives 
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A schematic representation of Eq. (3.56) is given in Fig. 8, 

with b and w/w1 plotted along the horizontal and vertical axes, re­
m 

spectively. As shown in the figure, Eq. (3.56) defines two distinct 

branches, each corresponding to one resonant frequency . The lower 

branch, representing the fundamental resonant frequency of the system, 

starts at a value (w1 ) 0 /w1 given by Eq. (3.5la) and decreases asymp-

totically to zero for increasing values of b • The upper branch, which 
m 

corresponds to the second resonant frequency, w2 , starts at infinity and 

becomes asymptotic to the horizontal line 

as b gets large. 
m 

(3.57) 

The asymptotic behavior of bm for large values of w2/w1, or 

equivalently, the asymptotic behavior of w2/w1 for small values of b ' 
m 

can be found from Eq. (3-56.), 

1 + 

2 b 2 
ai i ai 

13m crm 
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Fig. 8. Resonant frequencies of single-story building-foundation system 
(schematic diagram) ' 
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Equations (3.58) and (3.46b) show that a2 may be interpreted as 

the dimensionless resonant frequency of a rigid disc undergoing rocking 

oscillations on an elastic half-space, provided the dimensionless cen-

troidal moment of inertia of the disc is defined by 

a J. 2 b J. CXJ. 2 -J. 

I er 
t ill 

(3.59) b = 1 + m pa5 a'J.
2 

b'J. 
1 + 

crh 

The functions 13h and 13 have been set equal to unity in Eq. (3-59). m . 

Verification of approximate formulas 

As a partial check upon the results of this section the reso-

nant frequencies of a typical set of single-story interaction systems, 

defined by a1 = 0.5, b1 = l, cx1 = 2 and bh = 0 have been calculated 

from Eqs. (3.54), (3.56) and (3.58) for several values of the parameter 
I 

b and compared with the corresponding exact values obtained from Eq. 
m 

(3.42c). The results, which are presented in Fig . 9, show a very close 

agreement between the values of ~1 obtained from the exact and the ap-

proximate formulas. Slightly less accurate values are obtained for ~· 

From the agreement between the exact and the approximate results it is 

concluded that Eqs. (3.54), (3.56) and (3.58) give a satisfactory de-

scription of the behavior of the resonant frequencies ~1 and (;'k as 

functions of the parameter b • The degree of accuracy of these equa­
m 

tions depends on the particular values of the parameters ai, bi and cx1 • 
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Figo 9. Resonant frequencies of single-story building-foundation system 
(~1 = 0.5, b 1 = 1, a1 = 2, ~ = 1/4, ~1 = bh = o) 
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Behavior of resonant frequencies 
as functions of bh and bm 

To study the behavior of the three resonant frequencies of the 

system shown in Fig. 5 for non-vanishing values of the parameters bh 

and b , it is found convenient to write the frequency equation (3.53) . 
m 

in a form similar to that of Eq. (3.56): 

where ~dis defined by Eq. (3.42d) with 111 :::: Sh :::: Sm :::: 

ia1 w/wi. 

0 and s 
0 

(3.60) 

:::: 

The meaning of Eq. (3'.60) can be explained most conveniently by 

referring to its schematical representation depicted in Fig. 10. As 

i 
shown in the figure, Eq. (3i.60) describes the behavior of the three 

resonant frequencies of the system with respect to bh for a fixed 

value of b • In fact, Fig. 10 shows that all the resonant frequencies 
m 

decrease monotonically for increasing values of bh' each becoming asymp­

totic to a horizontal line. The initial values and the corresponding 

asymptotic values of wi, W2 and W3 can be found from Eq. (3.60). The 

two finite initial values of w/wi are the roots of the frequency equa-

tion 

( 3.6la) 

whereas the non-vanishing asymptotic values of w correspond to the roots 

of 
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Fig. 10. Resonant frequencies of single-story building-foundation system 
(schematic diagram) 
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(3.6lb) 

Since Eqs. (3.6la) and (3.55) are identical it is verified that 

the roots of Eq. (3.6la) correspond to the resonant frequencies of a 

single-story interaction system for which bh vanishes. The roots of 

Eq. (3.6lb) are the resonant frequencies of a system like the one 

above, except that the base mass can only rotate. 

It can be shown that Eq. (3 . 60) remains valid for multi-story 

building-foundation systems provided Ad is interpreted as the frequency 

equation of the corresponding system. Tb.is result can be used to show 

that all the resonant frequencies of a multi-story building-foundation 

system decrease for increasing values of bm and bh. 

Frequency response 

In addition to modifying the resonant frequencies of a single-

story interaction ·system, the parameter bm (and bh) will also affect 

the peak values of the amplification factors of the response. Tb.is is 

illustrated in Fig. 11, which gives the frequency response of the build-

ing foundation system defined by ai = 0.5, bi = 1, CXi = 2 and bh = 0 

for several values of b • Plotted in the figure are the amplification m 

factors Jy J/V, j~hi]/v and lv1 j/vg, obtained from Eqs. (3.42) in 
0 g g 

terms of the frequency ratio w/wi. 

Two distinct resonant frequencies of the response can be recog-

nized in Fig. 11 for each non-zero value of b . For the values of b m m 

considered in the figure, however, the peak values of the response cor-

responding to the second resonant frequencies are small, compared to 
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those obtained for the fundamental mode of vibration, thus indicating 

that a larger amount of effective damping is associated with the second 

mode of vibration than with the first. It may be noted also that 

values of b up to about 3 do not affect significantly the maximum 
m 

values of the amplification factors corresponding to the fundamental 

resonant frequency. 

The foregoing observations suggest that, depending on the 

values of a 1 , bi and a1 , the response of a building-foundation system 

having values of bh and bm which depart appreciably from zero, may hot 

be significantly different from the response of the system with van~ · 

ishing values of bh and bm. 

Earthquake response 

This section is devoted to studying the response of an idealized 

single-story building-foundation system to the free-field earthquake 

motion v (t). The system, shown in Fig. 5, is tak.en to be initially at 
g 

rest. 

The equations for the Laplace transforms of the response quan-

tities of interest, given by Eqs. (3.42), can be expressed for simplic-

ity as 

v b,. 
0 0 

yo v b,. 

= ~ y (3.62) 
Cj)hi b,.d b,. 

cp 
VJ. b,. J. 

The corresponding displacements are obtained by inverting 
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Eq. (3.62). After making use of the convolution theorem of Laplace 

transformations, Eq. (3.62) gives 

v (t) 
0 

h (t--r) 
0 

y (t) h (t-1.") 
0 y v ( -r) d-r (3.63a) 

hicp( t) 
;:: 

h (t--r) 
cp 

g 

vi( t) vi(t-1.") 
0 

in which the impulse response functions hk(t) are defined by 

st e ds 

where C is the Bromwich contour. 

Contour integration can be used to solve, in closed form, the 

integrals appearing in Eq. (3.63b) for given values of the parameters 

a 1 , bi, a1 , TjJ., bh, bm and ~. The resulting equations can in turn be 

substituted back into Eq. (3.63a) to obtain expressions for the dis-

placements v
0

, y
0

, cphi and v1 , similar to those given by Eqs. (3.22). 

It is not generally practicable to obtain explicit formulas 

for the impulse response functions hk(t) in terms of the system parame­

ters themselves, because of the difficulty in finding explicit solu-

tions for the zeros of the function L::.d. It is, however, of consider­

able practical interest that approximate, closed form solutions can be 

found for the zeros of L::.d when bh and bm vanish. This permits obtain­

ing explicit formulas for the response quantities in terms of the 

parameters ai, b1 , a1 , Tji and ~. Furthermore, as was shown in the 



115 

preceding section, the results obtained for vanishing values of bh and 

bm can be used· to estimate the response of systems for which bh and bm 

are non-zero. The range of values of bh and bm for which this approxi­

mation holds depends fundamentally on the values of the pa~ameters ai, 

Approximate solution 

It seems reasonable to assume that only one of the pairs of 

complex conjugate roots of the equation 

(3.64) 

need be taken into consideration when bh and bm are small, i.e., the 

system has only one significant natural frequency. The other two pairs 

are associated with high frequencies and large amounts of damping, and 

therefore do not affect materially the response of the system. 

Approximate Values for the significant roots (s ) of Eq. 
0 1,2 

(3.64) can be obtained by retaining only first-order terms in n1 , Sh 

and sm• For the case when bh and bm vanish, one gets 

= 

~+ 

The functions 13h, 13m, sh and Sm in Eq. (3.65) are to be evaluated at a 

frequency a = Im(s ) • Thus, several iterations may be necessary to 
0 0 1,2 

evaluate (s ) • 
0 1 2 , 
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Ai'ter determining the roots (s ) , the impulse response func­
o i,2 

tions ~(t) defined by Eq. (3.63b) can then be obtained using contour 

integration and the residue theorem. Substituting the resulting equa-

tions into Eq. (3.63a) leads to 

v (t) 
0 

hJ. cp( t) 

v
1
(t) 

(3.66a) 

The equivalent undamped natural frequency wJ. and equivalent critica+ _ 
,.., 

damping ratio: Tli are given by 

(3.66b) 

111 = (3.66c) 

d "e e•e .. e . an v
0 

, vcp i v1 are defined by 

v e(t) 
0 

v e(t) = cp 

v
1
e(t) 
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An approximate form of Eq. (3.66d) can be obtained by neglect-

ing the damping coefficients ~1 , Sh and Sm· With this, Eq. (3.66a) 

becomes 

v (t) 
0 

a1
2 b1 1 l3b_ Oh 

~:i:J] 
2 2 

w1 [1 + a 2 bi ( t3h 1 

a 1 b1 a:1 
+ l3m CTm J. crh 

1 

t 

J _:; w ( t--r) 
e ·11 J. 

0 

Interpretation of the solution 

The individual equations in Eq. (3.67) are almost identical to 

those obtained for the response of linear oscillators on rigid founda-

tions. Thus, to a first-order approximation in ~1 the following result 

is established by Eq. (3.67): the earthquake response of the single-

story building-foundation system shown in Fig. 5 is equivalent to the 

response of a one degree-of-freedom damped oscillator resting upon a 

rigid ground. This equivalent oscillatorJ defined by its undamped 

natural frequency w
1 

(3.66b) and critical damping ratio ~1 (3.66c), is 

subjected to the equivalent acceleration 

(3.68) 

The deformation of the equivalent oscillator is identical to the rela-

tive story displacement v1 of the original system. Also, the displace-
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2 

v (t) 
aJ. bJ. 

vi(t) = 
13h crh 0 

2 0: 2 

hl.cp(t) 
a1 b1 J. 

v1 (t) • ::: 

f3m crm 

The practical implication of the foregoing is that the earth-

quake response spectrum of a single-story building-foundation system 

may be obtained from the standard spectra available for fixed-base, one 

degree-of-freedom oscillators. It is only necessary to evaluate the 

natural frequency wJ. and critical damping ratio ~1 of the equivalent 

oscillator from Eqs. (3.66b) and (3.66c), respectively, and to multiply 

the free-field earthquake accele~ation vg(t) by (wi/w1 ) 2 to obtain the 

equivalent input acceleration vge(t). 

From Eqs. (3.66b) and (3 . 68) it is seen that the effective 

natural frequency of the single-story building-foundation system, as 

well as the amplitude of the equivalent input acceleration, always de-

crease as a result of the dynamic coupling between the building and the 

soil. In contrast, it is expected that the effective damping in the 

system will, in general, be increased by soil-structure interaction . 

Equation (3 . 66c) shows, however, that the opposite effect also is pos­

sible. Whether ~J. is less than or greater than ~J. is determined by 

the values of the system parameters a1 , b1 , o:1 , er and ~i· 

It is worth noting that there is an exact correspondence to 

first order in ~1 between the equivalent linear oscillator described 

above and the approximate results obtained before for the steady-state 



ll9 

harmonic response of the original single-story building-foundation 

system (Eqs. (3.51)). 

Response of the equivalent oscillator 
to white noise excitation 

The earthquake response of a single-story building is modif'ied 

by the dynamic coupling between the building and its foundation . 

Whether there will be an increase or decrease of the response will de-

pend upon the values of ~1 and ~i and upon the detailed time history of 

the particular earthquake under consideration. 

It is of interest to obtain an estimate of the effect of soil-

structure interaction on the earthquake response of buildings without 

referring to a particular earthquake . This can be accomplished most 

simply by considering idealized earthquakes represented by a white 

noise excitation. In this case, the weakly-stationary mean-square re-

spouse of the one-degree-of-freedom oscillator representing the single­

story building-foundation system, is(7S) 

,...., 

E[v/(t)] :rr St 
(3.70a) = 2 ,.., ..., 3 

TJi wl. 

....., 
excitatio'n. where sf is the constant spectral density of the equivalent 

The relation between sf and sf, the constant spectral density of the 

free-field :surface excitation, is obtained from Eq. ( 3. 68), 

s 0 

f 
(3 . 70b) 

To examine the effect of the flexibility of the foundation on 
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the earthquake response of the system it is convenient to define 

R - . 
{ E [ v J. 

2 
( t)] }flexible foundation 

{ E [ v / ( t)]} rigid foundation 
(3.71a) 

The ratio R can be evaluated explicitly by using Eqs. (3.66b), (3.66c) 

and (3. 70), 

R = ( 3. 7lb) 

This equation gives an approximate formula in terms of the system 

parameters a1 , b1 , a1 , ~1, and ~ that permits analyzing the effect of 

a deformable soil on the earthquake response of the single-story build-

ing-foundation system. From Eq. (5.71a) it is seen that a reduction 

in the response of the system compared to that of the building on a 

rigid soil is indicated if R < 1. Conversely, an increase in the re-

sponse will be obtained if R > 1. Without knowledge of the para.meters 

of a particular system, the value of R cannot be established. 

4. Earthquake Response of Two-Story 
Building-Foundation Systems 

The earthquake response of the idealized two-story building-

foundation system shown in Fig. 12 will be studied in tbis section to 

illustrate the use of the methods of analysis developed in section C 

for the case of multi-story buildings. The values of the parameters 
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used for the model have been selected to represent, approximately, a 

concrete nuclear power plant(68 ). Figure 12 also shows the mode shapes 

of the two-story building if it were supported on a rigid foundation. 

The response of the idealized system will be obtained from Eqs. 

(3.22) as a linear combination of the individual response of four simple 

linear oscillators resting on a rigid ground. To study the influence 

of the flexibility of the soil on the response of the system, several 

values of shear wave velocity of the foundation medium, V , will be 
s 

considered. 

Presentation and discussion of results 

The natural frequencies w£ and critical damping ratios ~£ of 

the four equivalent oscillators defined by Eq. (3.22a) have been ob-

tained from Eqs. (3.lOe), (3.22b) and (3.22c) for several values of the 

shear wave velocity of the elastic medium. The results of the calcula-

tions, presented in Table 2, show that whereas the fundamental frequency 

of the system, ~1 , is reduced considerably as the soil becomes soft, 

w2 remains almost constant for all values of Vs. The frequencies w
3 

and w4, which arise with the introduction of rocking and relative later-

al motion of the base, decrease monotonically from infinity for decreas­

ing values Of ·Vs. For softer soils, w3 becomes less than W2 · Table 2 

also shows that the amount of damping associated with the frequencies 

w1 and w2 is negligible for hard soils but increases as the soil gets 

softer; ~1 increasing monotonically to about 4 percent and ~2 reaching 

a maximum value of about one percent corresponding to V = 1500 ft/sec . s 

For this value of V , ~1 is equal to 2.6 percent. In contrast with 
s 



123 

TABLE 2 

Resonant Frequencies and Critical Damping Ratios of Two-Story System 

"' (rad/sec) "' ( °/o) v w,e Tl,e s 
{ft/sec) 

1 2 3 4 1 2 3 4 

(1) t (2) ( 3) (4) (5) (6) (7) (8) (9) 

800 8.87 54.84 23.86 87.73 4.26 .88 58.69 16.14 

1000 l0.76 54.85 29.85 89.25 3.77 .99 58.70 19.86 

1200 12.47 54.86 35.86 90.79 3.27 1.05 58.74 23.55 

1500 14.70 54.86 44.93 93.66 2.57 1.06 58.86 27.61 

2000 17.54 54.82 60.14 101.6 1.65 .90 59.27 31.53 

2700 20.12 54.86 81.29 117.3 .87 .53 59.93 34.47 

3500 21.83 54.97 105.2 138.4 .44 .27 60.43 36.03 

5000 23.39 55.12 149.8 182.8 .16 .09 60.92 37.22 

8000 24.43 55.22 238.8 279.5 .04 .02 61.25 37.24 

10000 24.68 55.25 298.2 345.4 .02 .01 61.33 37.37 

15000 24.94 55.28 446.7 512.0 .006 .003 61.41 37.53 

co 25 .15 55.30 C(), 00 0 0 - -



~1 and ~2 , the critical damping ratios ~3 and ~4 are large even for hard 

soils. 

The participation factors atk and btk appearing in Eqs. (3.22) 

have been computed from Eq. (3.18a) and are given in Table 3 for several 

values of V • The corresponding values for a rigid soil are also in­
s 

eluded in the table. The coefficients a£k serve to measure the extent 

to which a system fails to be classical, as these coefficients vanish 

identicall.y for systems with classical normal modes. 

With wt' ~t' a£k and btk established, the earthquake response 

of the two-story building-foundation system may then be obtained by 

means of standard numerical techniques for evaluating the response of 

single-degree-of-freedom linear oscillators subject to base motion. 

Suppose, for instance, that the system is subjected to the free-

field acceleration v (t) depicted in Fig. 13a, which represents the 
g 

corrected version of the N33E component of the earthquake motion (first 

event) recorded at the SCE Power Plant, San Onofre, California on April 

8, 1968(79). In this example the shear wave velocity of the soil is 

taken to be equal to 1500 ft/sec, but for purposes of comparison, the 

response of the building also will be obtained for a rigid soil. 

The velocity trace v (t) of the input motion and the equivalent 
g 

input acceleration V1~(t) calculated from Eq. (3.22d) for the flexible 

soil are shown in Figs. 13b and 13c, respectively. It may be seen that 

the accelerations v1~(t) and 

eating that the contribution 

Vg(t) are nearly proportional, thus indi- . 

of v (t) to v1~(t) is small and therefore, 
g 

could be neglected for a first approximation. The remaining equivalent 
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TABLE 3 

Participation Factors b£k' a£k for Two-Story System 

v 

Iii 
b£k (sec) a£k (sec) 

s 
(ft/ sec) 0(10-1

) cp(l0-4
) 1(10-1 ) 2(10-1 ) 0(10-1

) cp(l0-4
) 1(10-l.) 2(10-1

) 

(1) (3) (4) (5) (6) (7) (8) (9) (10) 

l .0773 4.922 .1474 .2277 .0326 .0962 -.0050 -.0083 

2 .0068 .0248 .0073 -.0149 .0178 .0448 .0066 -.0275 
1000 

3 .3924 -2.409 -.0316 -.0479 -.0277 .0343 -.0297 .0066 

4 .0036 .0984 -.0175 -.0202 -.0101 -.2790 .0421 .0549 

l .0619 3.916 .1707 .2641 .0256 .0836 -.0047 -.0079 

2 .0149 .0350 .0104 -.0219 .0243 .0482 .0085 -.0329 
1200 

3 .3205 -1.946 -.0391 -.0510 -.0255 -.0554 -.0346 .0096 

4 .0063 .1390 -.0240 -.0285 -.0144 -.3078 .0455 .0603 

1 .0464 2.894 .2005 .3111 .0186 .0665 -.0039 -.0066 

2 .0311 .0481 .0164 -.0341 .0270 .0432 .0108 -.0373 
1500 

3 .2408 -1.474 -.0514 -.0505 -.0206 .0867 -.0393 .0114 

4 .0121 .2065 -.0343 - .0420 -.0247 -.3424 .0496 .0666 

l .0307 1.875 .2371 .3698 .0116 .0423 -.0021 -.0039 

2 .0497 .0509 .0268 -.0527 .0090 .0218 .0107 -.0328 
2000 

3 .1542 -.974 -.0687 -.0477 .0016 .1250 -.0373 .0032 

4 .0173 .2536 -.0399 -.0505 -.0418 -.3604 .0512 .0693 

l .0063 .352 .3012 .4764 .0015 .0022 .0003 .0003 

2 .0066 .Oll9 .0367 -.0534 -.0107 .0007 .0010 -.0027 
5000 

3 .0620 -.133 -.0673 -.0602 .0474 .0530 -.0090 - .0075 

4 -.0040 .0683 -.0092 -.0125 - .0576 -.1230 .0164 .0225 

l 0 0 .3152 .5013 0 0 0 0 

2 0 0 .0375 -.0472 0 0 0 0 
co 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 
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( a ) 

( b ) 

( c ) 
2 3 4 5 6 7 8 

TIME (sec.) 

Fig. 13. Earthquake excitation for two-story 
building-foundation system 

9 



accelerations can also be obtained from Eq. (3.22d). The accelerations 

v£~(t), however, need not be evaluated explicitly as it is more advan­

tageous to calculate first the response of the equivalent simple oscil-

lators to the input motions vg(t) and wivg(t) and then combine the in­

dividual responses linearly to obtain the response quantities v (t), 
0 

Figure 14 gives the time history for the displacements vi, v
2

, 

hi~ and v0 • To study the effect of the terms associated with the fre­

quencies w3 and w4 on the response of the system, two families of curves 

have been included in Fig. 14, one obtained by omitting the terms on .. the 

right hand side of Eq. (3.22a) which contain the frequencies W3 and w4, 
and the other which includes all four terms. As the figure shows, this 

effect is only significant for the horizontal displacement of the base. 

Figure 14 also shows that: (1) the building vibrates primarily with a 

frequency wl, the fundamental resonant frequency of the building-founda­

tion system, and (2) the displacement of the first story due to rocking 

is about twice as large as the corresponding flexural displacement. 

On comparing the relative displacements vi(t) and v2 (t) of the 

building on a flexible foundation with the corresponding displacements 

obtained for a rigid soil (Fig. 15), it may be seen that the deformable 

foundation has the main effect of reducing both the dominant frequency 

of vibration and the maximum amplitude of the flexural displacements. 

Also it is obvious that the displacements v0 (t) and hi~(t) depart ap-

preciably from zero for the flexible foundation, but they vanish iden-

tically for a rigid soil. 
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Fig. 15. Earthquake re sponse of two- story 
building on rigid ground 

8 9 



Approximate formulas for first modal response 

A comparison of Figs. 14 and 15, together with the approximate 

formulas (3.67) and (3.68) for the transient response of a single-story 

building-foundation system suggests that the mere knowledge of the 

fundamental resonant frequency wl. and the critical damping ratio ~l. of 

a building-foundation system may be of considerable use in estimating 

the effect of a flexible foundation on the earthquake response of the 

fundamental mode of the building. Approximate values for w
1 

and ~1 may 

be obtained from Eqs. (3.66b) and (3.66c) prbvided the parameters b1 

and Cl:J. appearing in these equations are defined by 

bi 
MJ. 

= 
pa3 

(3. 72a) 

Hi 
ai = a 

. (3. 72b) 

where M1 , the first modal mass, is given by Eq. (3.9b) and H
1 

is speci-

fied by 

= (3.72c) 

in which z1 is given by Eq. (3.9c). The frequency parameter a1 is de-

fined as in Eq. (3.44a). 
,..., ,..., 

The frequency w1 and damping ratio ~J. are given in Table 4 as 

discrete functions of the shear wave velocity of the foundation medium. 

Shown in the table are the exact values of w1 and ~1 reproduced from 

Table 2 and the corresponding approximate values calculated from Eqs. 

(3.66b) and (3.66c). A remarkable agreement is obtained between the 
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TABLE 4 

Fundamental Resonant Frequency and Critical Damping Ratio 
of Two-Story System 

,..., 
(rad/ s.ec ) ~1 (%) v W1 s 

(ft/sec) Exact Approximate Exact Approximate 
(·1) (2) (3) (4) (5) 

800 8.87 9.16 4.26 4.47 

1000 10. 76 11.07 3.77 3.50 

1200 12.47 12. 77 3.27 3.33 

1500 14.70 14.97 2.57 2.57 

2000 17.54 17.74 1.65 1.61 

2700 20.12 20.23 .87 .84 

3500 21.83 21.89 .44 .43 

5000 23.39 23.41 .16 .16 

8000 24.43 24.43 .04 .04 

10000 24.68 24.68 .02 .02 

15000 24.94 24.94 .006 .006 



132 

,..., 
exact and the approximate values of wi and ~i for the sample structure 

· considered herein. Satisfactory results also would be expected for 

other systems. 

5. Natural Frequencies of Multi-Story 
Building-Foundation Systems 

In this section the effect of foundation compliance on the 

resonant frequencies of multi-story buildings is investigated. The 

resonant frequencies of an idealized ten-story undamped building resting 

upon an elastic half-space are calculated first and more general sys-

terns are examined subsequently. 

The natural frequencies and mode shapes .of the ten-story build­

ing are taken as equal to the values calculated by Housner and Brady(Bo) 

for case 10 c, a. two-bay steel frame attached to a rigid foundation, 

with infinitely rigid floor girders, a story height of 12 ft, a bay 

width of 20 ft 7 tributary floor area of 40 ft by 40 ft, and a lumped 

weight per floor of 1607 000 lb. The fundamental mode of the building is 

illustrated in Fig. 16. 

Because the analytical methods presented in Section C were de-

veloped for circular bases, it is assumed that the ten-story building 

has a circular massless base with the same area as that of the actual 

building. The centroidal moments of inertia of the floors are neglected 

compared to those about the base of the building. Because of this as-

sumption, together with that of a massless base, the building-founda-

tion system has only ten significant resonant frequencies. 

The foundation medium is taken to have a unit weight of 120 lb/ 
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Fig. 16. Fundamental mode of ten-story building 



ft 3 and a Poisson's ratio of 0.25 . Several values of the shear wave 

velocity are considered in the numerical calculations, ranging from 

300 ft/sec to the limiting rigid condition. 

With the building and its foundation specified completely, the 

resonan~ frequencies and critical damping ratios of the interaction 

system can be obtained from the frequency equation 

A = 0 

where A is defined in Eq. (3.lOe). 

Presentation and discussion of results 

(3.73) 

The resonant frequencies of the system have been calculated. 

from Eq. (3.73) for two different types of base motion: (1) rocking and 

horizontal translation, and (2) rocking only. The corresponding funda­

mental frequencies are presented in Table 5 for several values of the 

shear wave velocity of the elastic foundation. Also shown in Table 5 

are approximate values of the fundamental frequency of the system cal­

culated from Eq. (3.66b). To use this equation for multi-story build­

ings the parameters a 1 J b1 1and a1 have been defined by Eqs. (3.44a), 

(3.72a) and (3.72b), respectively. Excellent agreement is obtained be­

tween the exact and the approximate values of the fundamental resonant 

frequency of the ten-story building-foundation system. 

A comparison of columns (2) and (3) of Table 5 shows that for 

soft soil an appreciable reduction in the fundamental frequency of the 

system takes place when rocking of the base is permitted. However, the 

additional change resulting from the horizontal translation of the base 
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TABLE 5 

Fundamental Resonant Frequency (cps ) of Ten-Story Building 
on the Elastic Half-Space 

v Rocking and Rocking Rocking and 
s Hor. Transl. only Hor. Transl. 

(ft/sec) (Exact) (Exact) (Approximate) 
( 1) (2) (3) (4) 

a) ,754 .754 . 754 

5000 .753 . 753 . 753 

2000 . 750 .750 .750 

1500 .747 .747 .747 

1000 • 738 .739 .738 

700 . 722 .724 .723 

500 .695 .698 .696 

400 .667 .671 .668 

300 .615 .620 .618 



is small compared to the initial reduction. This behavior may be ex-

plained by referring to Eq. (3.66b). Used as an approximation for the 

fundamental frequency of multi-story building-foundation systems, Eq. 

(3.66b) shows that ~1/w1depends fundamentally upon the compliance factor 

a1
2 b1 , Poisson's ratio ~, and the square of the slenderness ratio Hi/a. 

It may be seen, however, that Hi/a appears only in the term which rep-

resents rocking of the system. This implies that the effect of the 

horizontal translation of the base on the fundamental frequency will be 

significant only for.systems for which (Hi/a)2 is small. Thus, for 

sufficiently tall buildings this effect could be neglected, compare~· / 

to that of rocking. 

Table 5 shows that the fundamental resonant frequency of the 

ten-story building can be reduced. significantly as the soil becomes 

soft. This trend, however, was not observed for the higher modes of 

the building. The second and higher resonant frequencies calculated 

from Eq. (3.73) for all values of the shear wave velocity of the soil, 

did not differ by more than one percent from the corresponding fre-

quencies of the building on a rigid foundation. It will be recalled 

that the second resonant frequency of the two-story building studied in 

the preceding section (Table 2) also remained essentially unchanged, 

independently of the stiffness of the soil. Thus, it becomes of inter-

est to determine whether more general systems show the same type of 

behavior. 

Vibration tests have shown that many tall buildings have funda­

mental modes resembling straight lines(Bl) • . It thus seems reasonable 
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to use classical linear models whose fundamental mode shapes are given 

by straight lines in studying the dynamic coupling between tall build-

ings and their foundations. Only the rocking of the base will be con-

sidered since it has already been shown that the effect of the horizon-

tal translation of the base on the fundamental frequency of the system 

is negligible for sufficiently tall buildings. Under these conditions 

it can be shown that the contributions of the second and higher modes 

to the overturning moment at the base of the building vanish identi­

cally( S2) • Because only the fundamental mode has a non-vanishing base 

moment, and therefore a tendency to rotate, it is concluded that th~ 

second an4 higher natural frequencies will remain unchanged regardless 

of the stiffness of the soil. That the rotation of the base does not 

occur in the higher modes was previously found by Tajimi( 62 ) from the 

corresponding frequency equation. 

As noted above, the second and higher natural frequencies of a 

building whose fundamental mode is given by a straight line are not in-

fluenced by the properties of the ground upon which it is founded, pro-

vided its base is only ~llowed to rotate. It seems reasonable to expect 

that the higher natural frequencies should remain nearly constant even 

when the first mode of the building is not given by a straight line and 

both rocking and horizontal displacement of the base are allowed to take 

place. This is in accordance with the corresponding result obtained for 

the shear beams and bending beams often used to model tall buildings. 

It is well known that the effect of the type of constraint at the sup-

ports of single-spanned beams becomes less important for the higher modes 



of vibration, e.g., whereas the ratio of the fundamental frequency of a 

free-free bending beam to that of a cantilever beam is equal to 6.35, 

the corresponding ratio reduces to 1 .50 for the fifth mode of vibration . 

From the above discussion it is concluded that the effect of an 

elastic foundation, as measured by the change in the natural frequencies 

of a building as the underlying soil becomes softer, is negligible for 

modes higher than the first for many types of building structures. It 

is observed that only the fundamental frequency of a building decreases 

significantly as the soil becomes softer and that, except for short 

buildings, the reduction in the fundamental frequency is primarily due 

to rocking and to a lesser extent to the horizontal translation of the 

base of the structure . 

Evaluation of the properties of a 
discrete foundation 

It will be recalled that the elastic half-space which is used to 

represent the soil is sometimes approximated by a simpler discrete foun-

dation consisting of linear constant springs and viscous dampers. The 

preceding paragraph suggests that the constant properties of these ele-

ments should be evaluated at ao = wia/vs, where wi is the fundamental 

frequency of the interaction system. The earthquake response of the 

simplified system could then be obtained by using Foss's formulation, 

as described in Section c, or by other methods for solving systems of 

ordinary differential equations with constant coeffic i ents . 
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III. SUMMARY AND CONCLUSIONS 

The thesis investigation on the dynamics of soil-structure 

interaction was divided into two parts for convenience of analysis and 

presentation. In Chapter I, the forced horizontal, rocking and vertical 

harmonic oscillations of a frigid disc perfectly bonded to an elastic 

half-space were studied. The problem was fonnulated in tenns of a sys-

tem of dual integral equations which was transfonned, with the aid of 

auxiliary functions, into a system of Cauchy type singular integral 

equations; the solution of the dominant part of which led to a system of 

Fredholm integral equations of the second kind in the auxiliary func-

tions. Simplified fonns of these equations were obtained for an incom-

pressible material and for the relaxed mixed boundary-value problems 

corresponding to the complete mixed boundary-value problems examined. 

The stresses under the area of contact and the corresponding resultant 

forces were detennined directly from the auxiliary functions. For the 

limiting static, complete mixed boundary-value problems, the Fredholm 

integral equations of the second kind reduced to .simple expressions, 

thus yielding a solution in closed fonn which is in agreement with that 

obtained by other investigators. It was found, in addition, that the 

cos [ 1 - r 1 J factor of ~he fonn sin k ln 1 + r 1 which occurs in the static problem 

also enters into the solution of the corresponding dynamic problem. 

The effect of a deformable foundation on the response of a 

building to earthquake excitation was studied in Chapter II. The base 

of the building was idealized as a rigid circular plate attached to the 

surface of the ground, and the soil was modeled by a homogeneous, iso-
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tropic, elastic half-space. Using the force-deflection relations for 

the base derived in Chapter I, the equations of motion of an n-story 

building-foundation system were solved by both direct and transform 

methods. It was shown that, under certain reasonable assumptions based 

on physical grounds, the earthquake response of the building-foundation 

system can be obtained as a linear combination of the responses to modi­

fied excitations of n + 2 one-degree-of-freedom, viscously damped, lin­

ear oscillators resting on a rigid ground. The undamped natural fre­

quencies and fractions of critical damping of the equivalent rigid based 

oscillators are determined from the roots of the frequency equation of 

the building-foU.Udation system. The modified excitations for the in­

dividual oscillators are obtained by linear superposition of the accel­

eration and the velocity traces of. the original earthquake excitation. 

This result was shown to be valid even for systems that do not possess 

classical normal modes. Th~ main advantages of this representation are 

the physical insight it gives into the dynamics of the building-founda­

tion system and the simplicity of the calculations, which are reduced 

to those of a simple oscillator. 

For the special case of a single-story building on a flexible 

foundation, approximate explicit formulas were obtained for the effec­

tive natural frequency, wi, critical damping ratio, ~i' and the ampli­

tude of the modified excitation in terms of the dimensionless parameters 

which govern the behavior of the system. It was found that whereas the 

effective natural frequency of the single-story building, as well as the 

amplitude of the equivalent input acceleration, always decrease as a 
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result of the dynamic coupling between the building and the soil, the 

effective damping in the system can be increased or decreased by soil­

structure interaction, depending on the parameters of the system. 

Whether the earthquake response of the building on a deformable soil 

~ill increase or decrease with respect to that of the same building sup­

ported on a rigid ground will depend upon the values of wi and ~1' and 

upon the detailed time history of the earthquake under consideration. 

For multi-story buildings it was shown that the effect of an 

elastic foundation, as measured by the change in the natural frequencies 

of the building, is negligible for modes higher than the first for many 

types of building structures. It was noted that only the fundamental 

frequency of a building decreases significantly as the soil becomes 

softer and that, except for short -buildings, the reduction in the funda­

mental frequency is primarily due to rocking and to a lesser extent to 

the horizontal translation of the base of the structure. 

To confirm the applicability of the results obtained in this 

study, it is recommended as the next step to test the analytical solu­

tions against the measured response of actual buildings to strong 

earthquakes and the forces of dynamic tests. 
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