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ABSTRACT

Part I

A quasi-elastic light scattering spectrometer has been con-
structed and used to measure the binary mutual diffusion coefficient
DAB as a function of concentration in eight binary mixtures and the
thermal diffusivity x in nine pure liquids and two binary mixtures.
The resulting values are in close agreement with the available bulk
values and are accurate to within 3% for mass diffusivities and 5%
for thermal diffusivities. Because neither type of measurement is
dependent on the imposition of a macroscopic gradient, many of the
problems associated with conventional bulk measurements are eliminated.

Determinations require less than 2 hours for thermal diffus-
jvities and 30 minutes for mass diffusivities, in contrast to the more
time consuming classical approaches.

On the basis of these experimental results, light scattering
spectroscopy is established as an effective tool in the determination
of liquid mass and thermal diffusivities. The technique should have

wide industrial application.

Part II

Quasi-elastic light scattering experiments on solutions of
¢X174 RF DNA and PM2 I DNA reveal spectral contributions from transla-
tional and intramolecular motion. A tentative interpretation of the

data in terms of Rouse-Zimm theory indicates lowest order relaxation
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times qualitatively consistent with theoretical predictions. Further
experiments on linear and form II DNA should provide information about
the changes in molecular flexibility and transiational diffusivity

associated with an alteration in conformation.
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PART 1

QUASI-ELASTIC LIGHT SCATTERING FROM LIQUIDS AND LIQUID MIXTURES:
A STUDY OF MASS AND THERMAL DIFFUSIVITIES
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Chapter I

INTRODUCTION

Because both the mutual diffusion coefficient DAB and the
thermal diffusivity X appear in transport equations, a knowledge of
their values is of particular importance in many chemical engineering
applications. However, reliable values of mass and thermal diffusi-
vities are relatively scarce. The classical techniques for measuring
these properties are both laborious and susceptible to large errors.

In recent years an alternate approach has developed, optical-peating
spectroscopy.

For almost half a century it has been known that the frequency
spectra of Tight scattered from liquids by entropy and concentration
fluctuations contain transport coefficient information (Landau and
Placzek 1934). To resolve thée extremely narrow lines predicted from
the theory of the distributed spectra, the resolving power (wo/w) of
the spectrometer must approach 1014. The best conventional spectro-
scopic method, the spherical Fabry-Perot interferometer, has a limit-
ing resolution of 15108. Only with the advent of the laser as an
intense, monochromatic light source and the development of optical
homodyne and heterodyne spectroscopy has the study of the spectra from
concentration and entropy fluctuations become possible. Benedek (1969),

Cummins and Swinney (1970), and Chu (1970) have written extensive

reviews of the optical-beating techniques.
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The earliest quantitative spectral measurements were made on
fluid systems near their critical point (Alpert 1965; Ford and Benedek
1965) and on macromolecular solutions (Dubin et a].‘1967). In both
cases light is scattered very strongly by the large temperature or
concentration fluctuations. In contrast to the now extensive use of
quasi-elastic light scattering techniques to study these phenomena,
there have been pn]y a few attempts to measure transport coefficients
in systems removed from their critical point, largely because normal
mixtures and pure Tiquids may scatter more than 105 times less than
critical systems and macromolecular solutions. For example, if we
compare the relative intensity of scattering from benzene, as expressed
by the Rayleigh ratio R0 , to that from a 100 ug/cc solution of ADNA,
we notice that benzene scatters approximately 10 times less than ADNA,
and only half of that intensity is located in the central peak. The
situation is even more extreme, for the quantity of real experimental
interest is the intensity of scattering per half-width of the result-
ant distributed spectra. In this case the DNA solution scatters

approximately 106

times more per half-width than benzene. Table 1
contains further comparisons of scattering intensities. Critical
systems are even more intense scatterers than macromolecular solutions.
The efforts to study liquids and liquid mixtures removed from
their critical point by Lastovka and Benedek (1966), Aref'ev et al.
(1967), Berge et al. (1969,1970), Dubois et al. (1970), Dubois and
Berge (1971), and most recently Jamieson and Walton (1973) demonstrated

the feasibility of using light scattering techniques to determine

transport coefficients for certain systems. A compilation of all the
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mass diffusivity data available prior to or concurrent with this work
appears in Table 2. The first feature worth noting is the absence of
conventionally determined data for comparison. Only in the case of
diethyl diethylene glycol/carbon disulfide and ethyl ether/carbon
disulfide do independent data exist, and these are by NMR, which is
not a generally suitable technique for mass diffusivity measurements.
It is further evident that the systems chosen for study were selected
for their high dedree of scattering, thus facilitating signal detec-
tion. Table 2 contains values for the magnitude of refractivg index
difference between solute and solvent |n]—n2]. It will Tater be
demonstrated that this quantity corresponds directly to the intensity
of scattering; hence the predominance of carbon disulfide and nitro-
benzene in the sample systems--both have unusually large refractive
indices. Finally, at the time our studies began, there were no DAB
versus concentration data available, and only Dubois et al. (1970) had
obtained angular scattering data for binary mixtures in order to con-
firm the expected wave vector dependence.

A similar situation existed in the measurement of thermal dif-
fusivities. Table 3 contains all of the thermal diffusivity data
prior to this work. Bulk data existed for comparison to the 1light
scattering values, but avc]ear discrepancy existed between the two
determinations which could not be definitively attributed to either
type of measurement. The systems chosen for study were selected for
their intensity of scattering, as Table 4 illustrates. The values
which appear for the scattered intensity due to entropy fluctuations,

IE’ are based on a theoretical expression derived from thermodynamic
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fluctuation theory, which will be subsequently developed.

The objective of this study was to construct a spectrometer and
obtain data which would firmly establish quasi-elastic 1light scattering
as a reliable tool for the rapid and accurate determinatijon of mass and
thermal diffusivities. Mutual diffusion coefficients as a function of
concentration are reported for eight systems. Extensive literature
data exist for most of the mixtures studied. Thermal diffusivity
measurements for nine pure liquids and two mixtures are also reported
and compared to the values calculated from conventional measurements of
density, heat capacity, and thermal conductivity. With both types of
determinations angular studies were conducted in order to verify the
anticipated scattering angle dependence. Sample systems for this study
were chosen based on the availability of independent data and not their

intensity of scattering.
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Chapter II
THEORY

Light is scattered by optical inhomogeneities. The physical
reason for optical inhomogeneities in pure fluids is density fluctua-
tions, which concomitantly produce fluctuations in the dielectric
constant. In solutions, concentration fluctuations are an additional
cause of fluctuations in the dielectric constant. The modes of fluc-
tuation dissipation are controlled by the transport properties of the
medium and the scattered electric field mirrors the time dependence of
these thermal fluctuations. The total scattered electric field consists
of a superposition of phase changes which result from the dissipative

motion of density and concentration fluctuations.

Continuum Theory

In developing the theory for Tight scattering from liquids and
liquid mixtures we shall treat the medium as a continuum and concern
ourselves only with Rayleigh scattering. As a light beam passes through
a fluid its electric field induces an oscillating dipole moment in each
differential scattering volume. Each of these oscillating dipoles then

radiates an electric field which obeys the formula:

y 2
P 3
E. (Rst) = 3208 2 pp,t')],, d°r (1)
ST BR-p] et T E

The total scattered field observed at a field point R 1is simply the

sum (integral) of the individual Escjls’
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. 2
B) 3
E. (R,t) f Sind_ k8 pre s3] oo (2)
> y IR - rl ot g
where ¢ is the angle between P(r,t') and R

¢ 1is the velocity of light in vacuum

V dis the illuminated volume | |
R-r

t' is the retarded time, t' =t - Tn

n 1is the index of refraction.

If we assume the polarizability is a scalar (isotropic) then the dipole

moment is expressed as

1'(50-_[‘_ - wot)

P(r,t) = a(r,t) E_ e (3)

Tatl &

where Kk, is the wave vector of the incident 1ight (kO = nwo/c). With

the aid of the far field approximation (R >> r) and assuming the fre-
quency of fluctuation of o is small compared to that of the incident
light, the scattered field is expressed as

ViR ~a, ) i(k -k.)

“r
o (B0 = (-2 sinet—p—— ([ alrtie © ° & @)
v

where the scattered light wave vector ks s colinear with R and has
a magnitude nwo/c . The bracketed term is commonly referred to as the
interference integral because it describes the superposition of the
phases of the waves scattered from each point in the medium. The

polarizability is reexpressed as

a(r,t) = <o>+ Sa(r,t)



-8

where <a> 1is the average value of o and dJo represents the fluctu-
ations around the medium's average value.

The point of these manipulations is to show that of all of the
fluctuations in the medium, only that of a particular wavelength and
direction is responsible for scattering in the 55 direction. Expres-
sing the spatial Fourier components of the fluctuation in polarizabil-

ity in terms of the fluctuation in dielectric constant,

Se(r,t) ig-r
sa(r,t) = —— = “/4’?32 f se(q,t) e dq (5)
(2m)
we now have for the total scattered field
_ (Y0\2 sin ¢ (kg R - w,t) ]
Esc(Rot) = (-0) " e — 372
(2m)
i(k - ket q)er
X f se(q,t) d3q f g 2 A d3r (6)
Clearly,
i(k,- k.t a)er
f e 0 73 & = (2m)3 63(50— k.t q)
where 63 is the three-dimensional Dirac delta function. This equation

indicates that a single wave vector component of the fluctuations is
responsible for the scattering observed at the field point R ; the

interference integral is non-zero only when

g~ %= d

Defining K = k.- k, , we can say that the scattering observed at R



Q=
is entirely due to the K wave vector component of the fluctuation.
The Bragg reflection condition also obtains, i.e.,
2 . /6
K| = 2(50) sin(z) (7)

Ao

where © is the scattering angle between 50 and Es and AO is
the incident 1ight wavelength.
Our final result for the scattered field is then (Dubin 1970)

w " 1(k -B-w t)
E(Rot) = ()2 hbe 757 0 ()32 se(k,t) (8)

Thus description of the scattered field is reduced to the derivation
of an expression for fluctuations in the dielectric constant &e(K,t).
It is evident that the temporal changes of the optical inhomogeneities
produce a modulation of the scattered 1light, while the nature of the
modulation is closely connected with the physical process (i.e., mass
and/or thermal diffusion) determining the particular form of the mod-

ulation function.

Fluctuation Theory and Total Scattered Intensity

As a preliminary step to examining the temporal evolution of
these fluctuations we shall employ elementary thermodynamic fluctua-
tion theory to calculate the total intensity scattered by spatially
independent fluctuations. The results will assist us in evaluating
the coefficients of the distributed spectra. The total scattered
|2

intensity may be expressed as I « |ESC , hence

<I> = <[8e(K,t)|%> (9)
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where < > represents either a time or ensemble average. In order to

evaluate <jde(5,t)f2> we write by definition

=iK»(r=r*) 3. .3
J f <ge(r,t) se*(r'.,t> e dr-dr'

LA

1

<|8e(K,t) > =
(10)
Assuming &e(r,t) 1is spatially invariant and a stationary random
process, Equation (10) becomes

iKer g
f <Se(r,0) 6e*(0,0)> e —  dor (11)
v

<|8e (k)] %> =

(2m)3

If we assume that (1) the fluctuations are correlated only over the
dimensions of the fluctuation volume, (2) the fluctuations are constant
within that volume, and (3) these dimensions are sufficiently small so

iKer
that e =~ 1 where the correlation is non-zero, we have

<|8e(K,t) %> = <|6¢(0,0)|%> v* (12)

v
(2r)’
These assumptions are completely valid for pure liquids and liquid mix-
tures, but for macromolecular solutions intramolecular interference
effects appear which invalidate Equation (12) and lead to the molecular
structure factor. For the cases of interest the Fourier transformed

mean square fluctuation in e reduces to the equilibrium value

<l6€|2> and

<I> = GV* <|6€|2> (13)

IOHZV Sin2¢
where G = ———— , V 1is the scattering volume, and V* 1is the
2\%R?
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volume of the fluctuation (Fabelinskii 1968).

Following the method of Leontovich (1944), variations in the
dielectric constant e of a pure liquid can be expressed in terms of
the experimentally measurable parameters,density p and temperature

T, where p and T are statistically independent variables

e = (32)7 o0 * (FP), oT - (14)

Einstein (1910) originally made the assumption that (ée/aT)p is
small, which allows e to be expressed solely in terms of density.
The density can be written as a function of the two independent thermo-

dynamic variables, pressure P and entropy S .

80(P,S) = (%%)S &P + (ggop 85 (15)

From Equations (13) and (14) we are able to write the intensity as

£ = av*(%§)$ <|8p|%> (16)

where

2 902 P\ 2 2
<Iool™ = (R <|6p|%> + (3B)7 <|as|®> (17)

The intensity is seen to be divided into two distinct components--

adiabatic pressure fluctuations

_ 1 3p)2 2
Ig = V*6(o ap ; (p aP <|sP| %> (18)

and isobaric entropy fluctuations
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~ yker. 9842 1 9py2 g
Lig = V(o 5507 (5 55)p slesI™ {19)

Employing thermodynamic identities, Equations (18) and (19) simplify
to

_ 9e,2
Ig= Gl ap)T BKT (20)

where BS is the adiabatic compressibility and

(21)

where o 1is the coefficient of volume expansion. A1l of these calcu-
lations are under the assumption that (%%)2 <(6T)2>1s close to zero.
For most systems this requirement is fulfilled. Refer to Fabelinskii
(1968) for a detailed discussion of this approximation.

A similar approach is used to calculate the intensity of scat-
tering from solutions; density, temperature, and concentration are the
statistically independent variables. If we assume that concentration

fluctuations are the dominant source of scattering then

E o (Ret) = BC(K,t) (22)
and
_ y¥n0ENL 12
L = ¥ G(gf)p ; <|8C|e> (23)

The Distributed Spectra from Macroscopic Equations

Landau and Placzek (1934) used thermodynamic fluctuation theory

in conjunction with the macroscopic equations of heat conduction and



-13-

mass diffusion to describe the time decay of fluctuations in the dielec-
tric constant and the shape of the resulting distributed spectra. They
reasoned that fluctuations in density can be expressed in terms of the
independent thermodynamic variables, pressure and entropy, that is,
adiabatic and isobaric fluctuations. Modulation of 1ight by adiabatic
fluctuations of density physically represent local compressions and
rarefactions of the fluid. Due to the elastic nature of the fluid,
these fluctuations propagate throughout the sample and can be visualized
as thermal elastic waves diffracted according to the Bragg condition.
These waves result in the Brillouin peaks, which are displaced to either
side of the Rayleigh peak. The width of the Brillouin peaks is a func-
tion of the sound absorption coefficient, which depends on heat capacity
and shear and bulk viscosities. These peaks are sufficiently displaced
that they do not interfere with observation of the Rayleigh peak, and
hence are not of further concern in this work.

Scattering from isobaric fluctuations in density is associated
with temperature or entropy fluctuations. The dissipation of these
fluctuations obeys the Fourier heat equation

98T(r,t)
ot

= xV2sT(r,t) (24)

and is controlled by the thermal diffusivity. The component responsible

for scattering is then

ST(K,t) = 6T(K,0) exp[-xK°t] (25)

Thus, fluctuations in temperature or entropy are exponentially decaying

functions localized in space. An analogous situation exists for the
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dissipation of concentration fluctuations in binary mixtures.

diffusion equation

36C(r,t) 5
5t T Dag¥ oC(r.t)

is obeyed, and its solution yields
SC(K,t) = SC(K,0) exp[-Dygk"t]

The expression for the scattered field now takes the form

—'iwot -XKZt
ESC(E,t) x e e ST(K,0)

for pure Tiquids and an analogous form with DAB replacing x

replacing T for binary mixtures.

The quantities of direct interest in quasi-elastic light

The

(26)

(28)

and C

scattering are the dielectric constant (electric field) autocorrelation

function CE(T), and its Fourier transform I(K,w), which is the spec-

trum of the electric field

]

<E¥ (t) E

Ce(7) sc sc(tr)>

-ion N
e O <x*(Kt) SX(K,t+r)>

8

2 —XK2]T| -ion
<|8x(K,0)|“>e e

IS

(29a)

(29b)

(29¢)

where X is either DAB or X . It is apparent from the previous

section that <|¢ X(E,O)]2> N <l6x|2> . Finally, with the aid of

the Wiener-Khintchine theorem (see Appendix I) the spectrum is written

as



I(K,w) o= f CE(T) eiwT drt (30a)
2
X K
) T 4. S— (30b)
e TP (X K22

<I > 1is «I

. ;> for entropy (temperature) fluctuations and <I

conc”
for concentration fluctuations. As a check, the total intensity is

[ [(Kow) do = <> (31)

as previously derived.
Landau and Placzek's final results in expanded form (although
never explicitly derived) are

. 4
—iwyT - XK1

CE(T) = <Iis> e e (32a)
and
I(Kow) = <I, > 1 (32b)
— 1S T (}.)2+ (X K2)2
for pure liquids and
: 2
-iw T =Dy K| ]
- 0 AB
CE(T) Iconc> e e (33a)
and 2
I(Kw) = <I__ > L n (33b)
- conc T w2+ (D K2)2
AB
for binary mixtures, where as before
2 2
L, = 6(p 252 K0 (21)

is 9
P°T cp P
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<1 = v (28)%  <|ac|>? (23)

3
conc oC .

The Distributed Spectra from Hydrodynamic Equatijons

Kadanoff and Martin (1963), Mountain (1966), and Mountain and
Deutch (1969) have presented a more rigorous development in which the
linearized hydrodynamic equations--the continuity equation, the Navier-
Stokes equation, the diffusion equation, and the energy transport
equation--were used to determine the modes by which the system relaxes
back to equilibrium, and the amplitude of each mode. Thermodynamic
fluctuation theory was employed to evaluate the coefficients of the
spectral contributions, which are the mean square fluctuations of the
statistically independent variables. The final results derived for a
pure liquid are similar to those obtained from Landau and Placzek's
treatment; for binary mixtures, Mountain and Deutch observed a term
resulting from the dynamics, which does not appear in the thermodynamic
theory (Miller 1967). This additional term is a result of the coupling
of temperature and concentration dissipation, that is, the Dufour and
Soret effects. Under the condition X >> Dpg > which obtains for the
systems studied here, the formulae are similar to those developed from
the macroscopic transport equations and fluctuation theory, and the
experimental separation of the contributions from entropy and céncen—
tration fluctuations is possible.

For a pure fluid (Mountain 1966)

Ce(t) = <6p(K,0)8p (K,T)>

-jw_T

C-C
= <|6p(K)|%>{ 2L exp[-xKk*[<|T} e © (352)
p
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and
C-C
I(Kw) = <[6p(K)|%> (Bt (3 XK
p w™t (xK

2

) (34b)

where p = p(P,S) and the pressure fluctuation terms (the Brillouin
peaks) have been omitted.

For a binary mixture (Mountain and Deutch 1969)

Celn) = {EHZ  <|sC(K)|%> expl-Dygk?||]

P,T
-iw T
+ (2—%)2 <|sT(K) % exp[-xK?| |1} e © (35a)
and
D, ok?
912 2 gl AB
L(K.w) = (55)° <[8C(K) 7> { }
2
K
IRY: 2, (1 5} (35b)
+ (BT) <] 8T(K)|"> {ﬂ Wt (XK2)2

P,C

subject to the condition y >> DAB (pressure fluctuations have again
been suppressed). One can appreciate the approximations involved by
observing that C and T (and implicitly P) appear as statistically
independent variables in Equations (35a) and (35b), while in actuality
T, p, and C are the independent thermodynamic variables.

Equation (34a) expresses the density correlation function in
the real time domain as a decaying exponential with a decay time (the
time required for the exponential to decay to e_] of its initial value)
2)—1_

of (xK The corresponding spectrum in the frequency domain

(Equation (34b)) represents a Lorentzian with a half-width at half-
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height of XK2/2ﬂ Hz. Hence the thermal diffusion process may be
characterized by either an exponential decay time or its conjugate
half-width. Similarly, for a binary mixture with concentration fluc-
tuations as the dominant source of scattering, the concentration
correlation function (Equation (35a)) is described by the decay time
(DABKZ)_] or the corresponding half-width of Equation (35b),
DABKZ/ZW . If temperature fluctuations should dominate, the charac-

terization parameters are identical to those for a pure fluid.

The Amplitude of Scattering

The amplitude of the mass diffusivity term in Equation (35b) is
a function of the factors (6€/6C)§,T and <|6C|2> . The first term
is dependent upon the difference between mass reduced polarizabilities
of solute and solvent, as is evident from the Lorentz-Lorenz formula

for a solution (Heller 1959):

e-1_ 4mp o1 T
S TR L) ¢ -0 6] (36)
and its derivative
2 a o
dey  _ 4w (er2)” 12 3 el 1 1
(8 )P 7 3 3 B [m] m dn et+2 (pi pé)] (37)

where p' = [C/pi ¥ (]—C)/pé]_] is the density of the mixture in grams
of solution per cm3 of solution, C 1is solute concentration in grams
of solute per gram of solution, o is the molecular polarizability,
m; is ﬁhe molecular mass, and subscript 1 refers to the solute and 2

to the solvent. As is evident from Table 5, the amplitude of the con-

centration term in Equation (35) for a fixed composition is proportional
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to the difference between the refractive indices of the two compon-
ents, which is what one would intuitively expect. Experimentally one
should detect reduced scattered intensities for solutions with com-
parable solute-solvent refractive indices and a corresponding reduction
in precision of the experimental results.

The mean square concentration fluctuation can be expressed by

(Zimm 1945)

<|sg| % ?-——gKI——— (38)

(-5
og  P,T
where F 1is the Gibbs free energy of the fluid, g is the solute con-

centration in g/cm3 of solution, and k 1is Boltzmann's constant.

With a change of variable, Equation (38) reduces to

<|ac)>® = KL (39)
(=

5c2 p,T

Expressing the.differential of F as

P gk
> M dn2 (40)

with n? defined as the mole fraction of i , we are able to rewrite

Equation (40) in the form

dF = udC (41)

where 1y = p(u]M1 - uZMél) is a chemical potential of solution.
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Finally, the mean square fluctuation in concentration may be written
as

T T (42)

o)1,
(ap/SC)P,T is a complicated function of activities and molecular
weights, but qualitatively, as solute and solvent approach equal concen-
trations, the term should increase in magnitude. Conversely, as the
solution becomes more dilute in either component, the intensity of
scattering should decrease and the precision of the associated data
become poorer. Dubois and Berge (1971) have studied the functional

dependence of the chemical potential derivative in detail.

Definitions of Mutual Diffusion Coefficients

Some confusion has arisen as to the exact nature of the binary
diffusion coefficient DAB' The diffusivity described in this work is

derived directly from Fick's Taw
J] = p'Dpp vC (43)

J] represents the mass flux of solute. The theoretical foundation for
this phenomenological equation is provided by irreversible thermodynamics;

it can be shown that (De Groot 1959)

9 = -L”(l-c)‘] (3m/3C)7 p VC (44)

where Ln is a phenomenological coefficient. It follows that
Dpg = [L]]/p(1-C):|(au]/8C)T,P . Some authors use (au]/an])T,P vn,

instead of the mass concentration gradient and define the associated
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coefficient DRB by using p'DRB for the coefficient of the molar

gradient, i.e.,
1 _ 1N
Consequently,

Dy = Dpg(C/my + (1-C)/m,) mym, (46)

n N
and DAB = DAB only when m=m, .



-22-
Chapter III
APPARATUS AND EXPERIMENTAL METHODS

A schematic diagram of the Tight scattering spectrometer used in
this study is given in Figure 1. Details of its construction and opera-
tion appear in Appendix II. The system was also designed to perform
total intensity measurements using dual photon-counting (see Appendix
111}

The Taser, detection optics, and sample were mounted on a
Newport Research Corp. vibration isolation table to prevent extraneous
vibrations from contributing to the time dependence of the scattered
Tight. Isolation was in both the horizontal and vertical directions.
Using geophones, we determined the table's resonant frequency to be

<3 Hz. A1l optical devices were positioned rigidly on the stainless
steel surface.

The incident light of approximately one watt was fhe 48803 line
of a Coherent Radiation 52A argon ion laser. Two pinholes with an
angular acceptance of 0.2° defined the scattering volume, and the scat-
tering angle was determined by triangulation to better than 0.06°. The
sample volume was contained in a 10-cm path length cylindrical cell with
optical quality flat windows, Stray light from imperfections and dust
on the windows acted as a local oscillator source for the heterodyne
spectroscopy. The detector, an EMI 9634QR phototube, carried the fluc-
tuating photocurrent to a Saicor 43A correlator. The autocorrelation
function was collected until the significant part of the function began
to fill the memory--10 min to 2 hrs were required, depending upon the

signal to noise ratio of the photocurrent. The 400-point autocorrelation
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function (containing 13 bits plus sign) was then transferred in digital
form from the correlator to paper tape for subsequent computer analy-
sis. Typical correlograms appear in Figure 2.

Sample chemicals of reagent grade were used without further
purification. The binary mixtures were prepared volumetrically with an
estimated accuracy of 0.5%. A1l samples were multiply filtered through
a fine fritted glass filter to remove dust. A Bausch and Lomb refrac-
tometer was used to measure refractive indices; values were corrected
to A= 48803. The samples were maintained at room temperature, which
did not drift more than 19C during the course of an experiment. Be-
cause DAB and x exhibit a weak temperature dependence (typically
less than O.5%/°C), we estimate the maximum error due to temperature
control to be less than 1%.

Current correlation techniques were employed because of the
speed and efficiency of data acquisition; the rate of data collection
by correlating is faster than that of data collection with a spectrum
analyzer by a factor which is of the order of the number of bandwidths
swept. Spectrum analyzers scan in frequency (with the exception of
real time analyzers), measuring only one bandwidth at a time, whereas
a correlator (in principle) analyzes all of the signal all of the time.
The correlator is also able to perform signal averaging on the
correlation function, thus improving the statistical accuracy of the
data.

In the case of heterodyne spectroscopy, the photocurrent auto-
correlation function is an exact replica of the electric field auto-

correlation function (see Appendix I), hence
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C; () = <i(t) i(ttr)> = Cp(1) (47)

and the decay time of the current exponential contains the coefficient
of interest. The points of the correlation function were fit to a
single exponential with a baseline using the Marquardt nonlinear least

squares algorithm. The reciprocal decay time for a pure liquid

=1

T = XK2

(48)

and the value of K2

determine x . Values of T were collected
over a range of scattering angles. For the binary mixtures two ex-
ponentials are observed. Because the magnitude of concentration
fluctuations in binary mixtures is generally greater than the magnitude
from temperature fluctuations, and because the decay time for thermal
diffusivity is smaller than from mass diffusivity by approximately two
orders of magnitude, the effect of thermal diffusion can be compressed
into the initial part (approximately ten points) of the correlation

function; these points are neglected in the fit to determine the mass

diffusivity reciprocal decay time

IR (49)

T values for DAB were collected as ‘a function of concentration for
a single scattering angle, with the exception of one concentration of
carbon disulfide/acetone and twa of methanol/benzene, which were

studied as a function of angle to verify the expected K2 dependence

(Figures 9 and 10).
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To measure thermal diffusivities for binary mixtures, one must
in general perform a two exponential fit to the data. Under the special
circumstances of similar refractive indices for solute and solvent,
density fluctuations become the predominant source of scattering and the
data may be analyzed solely in terms of thermal diffusion. One of the
binary systems studied, toluene-benzene, satisfies the criterion of
matched refractive indices and hence has been analyzed in terms of Equa-
tions (34a) and (48). The other binary system, toluene-bromobenzene, has
been analyzed for both types of fluctuations by appropriately varying
the sample time increment so as to emphasize either mass or thermal dif-
fusion.
The components of the spectrometer primarily responsible for
our ability to measure accurately mass and thermal diffusivities for
weakly scattering systems are: (1) the argon-ion laser, which produces
an extremely intense beam at a Tow wavelength (see Appendix III); (2) a
photomultiplier with both high gain and quantum efficiency (the latter
is possible due to the low wavelength); (3) a correlator, which enhances
the S/N ratio and stores the data in digital form; (4) careful vibration
isolation and elimination of Tow frequency noise (see Appendix II); and

(5) careful alignment of the system (Appendix II).
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Chapter IV
RESULTS AND DISCUSSION

The following data were taken in collaboration with Erdogan
Gulari (Gulari et al. 1973, and thesis). In Figures 3 to 8, mutual
diffusion coefficients from this study are plotted as a function of
concentration with comparative literature data. Thermal diffusivity
results are compared in Table 6 with the literature bulk values. Error
bars in Figures 3 to 14 are based on two standard deviations of the
single exponential fit plus an estimate of possible systematic errors.
Errors appearing in Table 6 result from two standard deviations of the
data to a best straight line plus possible systematic errors. Mass
diffusivity values range in accuracy from 12% for dilute mixtures to
better than 1% for more equal mass concentration solutions, thus con-
firming the theoretical prediction of Equation (42). Referring to
Figures 3 to 8 and Table 5 (a tabulation of refractive index differ-
ences and (aa/E)C)P,T values for mixtures used in this study), we are
able to observe the correlation between experimental uncertainty, re-
fractive index differences, and the magnitude of (ae/aC)P’T, which con-
firms the conclusion drawn from Equation (37). Comparing the entries of
Tables 2 and 5 reveals that virtually all of the systems previously
studied relied on a much greater level of scattering for their deter-
minations.

The accuracy of x values in all cases is better than 10% and
is typically 5%. Figures 9 to 14 exhibit values of the inverse decay
time of the Rayleigh line as a function of the square of the scattering

wave vector for light scattered from concentration fluctuations (Figures
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9 and 10) and entropy fluctuations (Figures 11 to 14). Each datum
represents a single correlation function. Half-widths are related to

the exponential decay time Tt by

r = (ZWT)—] (50)

where T represents the conjugate Lorentzian half-width of the spec-
trum [Equations (34b) and (35b)], thus the vertical axis represents
both the inverse decay time of the exponential correlation function and
the half-width of the corresponding Lorentzian.

As seen from these plots, the linear dependence predicted from
theory by Equations (48) and (49) is accurately obeyed. Least squares
fitting with statistical weighting has been used to determine the best
straight Tines.

Figures 3 through 8 show that our mutual diffusion coefficients
are in excellent agreement with the bulk values reported in the litera-
ture. Three other light scattering meaéurements of mass diffusivities
are available for comparison--all are from the system carbon disulfide-
acetone. Berge et al. (1970) reported DAB =2.32 x ]O_Scmz/s at room
temperature for a 10% by volume acetone mixture obtained at a single
scattering angle of 1.05°. Aref'ev et al. (1967) reported DAB =
0.30 + 0.04 x 10-5cm2/s for a 10% by weight acetone mixture at room
temperature. Their data were obtained at 90° using Fabry-Perot inter-
ferometry. Jamieson and Walton (1973) obtained a value of
Dyp = 0-92 x 10'5cm/s, taken at 10°34' for a 10% by volume mixture. In

5

comparison, our values are 2.42 + 0.04 x 107 at 20.0°C for a 10% by

volume mixture and 2.23 + 0.06 x 1072 at 18.5°C for a 10% by weight
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acetone in carbon disulfide solution.

Jamieson and Walton argued that Aref'ev did not employ signal
averaging techniques, thereby introducing an inherent inaccuracy in his
result. They attribute the disagreement between their value and Berge's
to "the errors attendant in measuring spectra at scattering angles
below 5°". The theoretical basis for these errors has been discussed
by Schaefer and Berne (1972), Edwards et al. (1971) and Yeh (1969). A
finite scattering volume or, equivalently, an uncertainty in scattering
vector caused by the focusing and collecting optics are responsible for
the spectral distortion. Based on Yeh's work, Jamieson and Walton
argued that at the scattering angle of 1.05° used by Berge the effect
of a finite collection aperture would produce a significantly broadened
spectrum, and consequently a large estimate for the diffusion coeffi-
cient. Czworniak and Jones (1974) have recently demonstrated that
finite-aperture broadening has an insignificant effect on the Rayleigh
spectrum, which contradicts Jamieson and Walton's conclusions. While
the finite collection aperture effects cannot explain the discrepancy
between measurements, the effect of a focused beam in the sample could
in principle be responsible for the differences.

Our data conclusively indicate that aperture or finite sample
volume effects cannot explain the discrepancies between our values and
Jamieson and Walton's. A1l of our measurements were performed with an
unfocused beam, which eliminates the only other conjecture related to
errors associated with small angle scattering. To further document the
validity of our results, angular data have been taken for the carbon

disulfide/acetone mixture. Figure 9 clearly indicates the anticipated
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wave vector dependence; linearity would not have been observed had
aperture effects been present. None of the other investigators con-
ducted any angular studies to verify the predicted K2 dependence.
The agreement between our values of thermal diffusivity and
the values calculated from bulk measurements of X, p, and Cp data
is satisfactory as is evident from Table 6. Included in Table 6 are
the only other light scattering determinations of thermal diffusivity.

-3

Our value of 1.10 + 0.02 x 10 cm2/s for pure carbon disulfide is the

same as Berge's value of 1.1 x ]O—3cm2/s (Berge et al. 1970). Berge
and Dubois (1969) in the first experimental work on benzene reported
¥ = 0,855 & 04070 » 10'3cm2/s. These authors subsequently improved
their techniques and found X = 0.87 + 0.1 x 103cm2/s (unpublished

work). Values obtained at higher angles by Fabry-Perot interferometry

=3

are X =1.03+0.05x 10 cmz/s (Oliver and Pike 1970), 0.90 + 0.02

cmz/s (Searby 1971), and 0.94 + 0.05 x 10—3cm2/s (Beysens 1973). These
are to be compared to our experimental value of X = 0.956 + 0.040

cm2/s and the bulk value of X = 0.963 x 10'3cm2/s. Other Fabry-Perot

~3

values available are 0.84 + 0.05 x 10 sz/s for carbon tetrachloride

and 0.98 + 0.05 x 10—3cm2/s for toluene (Oliver and Pike 1970).
-3

Lastovka and Benedek (1966) reported X = 0.879 + 0.025 x 10™3cm?/s

for toluene, which agrees with our value of 0.849 + 0.038 x 10_3cm2/s.

Classical Thermal Conductivity Measurements

It should be noted that where possible the quoted literature
values for thermal diffusivity are taken from Touloukian, Volumes 3
and 6. These volumes contain a comprehensive study of all the available

data on Tliquid thermal conductivity and heat capacity for selected
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substances; the recommended reference values cited for each 1iquid have
been used in Table 1. The variation in experimentally determined thermal
conductivities is of interest.

Figures 15, 16, and 17 are thermal conductivity departure plots
taken from Touloukian (1970). A1l points are plotted relative to the
author's recommended values based on an evaluation of the data. Each
point corresponds to a different experimental work. Notice that results
for the same system commonly vary by over 25%, thus reflecting the
difficulties associated with the conventional thermal conductivity
measurements. The most significant problems are conduction corrections,
convection currents, and radiation between the surfaces enclosing the
liquid. In contrast, quasi-elastic light scattering does not require
the imposition of macroscopic temperature gradients; thus convection is
not a serious source of error. Spectrometers can easily be constructed
which do not suffer from the problems of radiation and conduction asso-

ciated with classical methods.

Classical Mass Diffusivity Measurements

The limitations inherent to classical diffusion measurements are
not so serious, although large discrepancies exist between values ob-
tained by different investigators on the same system. Johnson and Babb
(1956) discuss the different conventional techniques for determining
mass diffusivities as well as their limitations and the consistency of
data taken by several investigators. The most important limitation of
these techniques is the requirement of a macroscopic concentration
gradient. As a result, one generally obtains an integral diffusion co-

efficient rather than the more meaningful differential coefficient. One
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of the more popular methods, the diaphragm cell technique, requires
calibration and is subject to bulk flows (Board and Spalding 1966);
both can contribute to errors in the measurements of DAB . Quasi-
elastic Tight scattering needs no macroscopic concentration gradients
and is not subject to calibration errors or bulk flow. Scattering
arises from microscopic fluctuations in concentration, hence the mea-
sured diffusion coefficient is of a differential form. Some techniques,
such as the diaphragm cell, may require days of operation for a single
point, while Tight scattering determinations take less than an hour.
The most precise conventional techniques employ interferometric

methods (Dunlop et al. 1972) for continuously analyzing the changes of
concentration with distance and time in a cell. Analysis of the data
requires involved mathematical analysis. These measurements are
lTimited in the same way as light scattering--they require a difference
in refractive index between sample and solvent. This is the most
serious limitation of the light scattering technique. Determinations
of DAB jmprove in accuracy and precision with (1) increasing refrac-
tive index differences between the binary components as is evident from

the (de/3C) factor of Equation (37) and Table 5; and (2) the ap-

P.T
proach to equal concentrations, which is expressed in the <|60I>2

factor of the same equation.

Conclusions and Recommendations

A sensitive quasi-elastic light scattering spectrometer has
been constructed and used to collect diffusivity data for a wide class

of pure liquids and binary mixtures. Independent bulk data confirm
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the accuracy of the technique. The Tight scattering approach has
several advantages over conventional techniques for determining mass
and thermal diffusivities. It is not dependent on the imposition of
a macroscopic gradient, a problem which seriously complicates bulk
measurements. Using light scattering, diffusivity determinations take
from 15 minutes to 2 hours; this is in contrast to conventional methods
which may take weeks.

The approach we have developed should have important industrial
applications. Transport properties have always been of importance in
the design of chemical processing facilities. Now that pilot plant
operations are being bypassed in favor of the computer design of full
scale plants, precise and accurate values of mass and thermal diffusi-
vities are at even more of a premium. Another possible industrial
application is the continuous monitoring and control of processes in
chemical plants.

Now that it has been demonstrated that diffusivities can be
measured under standard conditions, the work could be extended to cover
elevated temperatures and pressures. Neither condition would present
serious design problems. Light scattering studies in our laboratory
have already been conducted at several hundred pounds pressure and

temperatures approaching 80°c.
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PART II

OBSERVATION OF TRANSLATIONAL AND INTRAMOLECULAR DIFFUSION OF
CIRCULAR DUPLEX DNA BY QUASI-ELASTIC LIGHT SCATTERING
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Chapter V
INTRODUCTION

As demonstrated in Part I of this thesis, light scattering
spectroscopy is a valuable tool for the study of liquid mass and ther-
mal diffusivities. However, the domain of the technique is not confined
to just liquids and liquid mixtures, but is becoming increasingly useful
in the study of macromolecular Brownian motion. Under appropriate con-
ditions the light scattered from long-chain molecules will be modulated
by the dynamics of the molecule. Since the pioneering theoretical
paper by Pecora (1964), numerous studies have been conducted using light
scattering to study macromolecular translational Brownian motion
(Cummins et al. 1964; Dubin et al. 1967; Foord et al. 1970).

The rotational motion of macromolecules has also been studied
using quasi-elastic scattering, beginning with the theoretical work of
Pecora (1964, 1968a, 1968b) and followed by the experimental determina-
tion of the rotational diffusion constant © for TMV by Cummins et al.
(1969), Wada et al. (1969), and Fujime (1970a). The expressions devel-
oped are valid only for rigid, rod-like molecules.

Most molecules of biological interest have some degree of
flexibility in solution and are not rod-like. The dynamics of large,
flexible molecules in solution is a classical problem in polymer
physics. Since the initial efforts of Rouse (1953) and Zimm (1956),
theoreticians have been attempting to quantitatively describe the motion
of large, flexible chains. Expressions for the distributed spectra of
flexible-coil macromolecules have been derived using the Rouse-Zimm

bead and spring model (Pecora 1965; 1968). Harris and Hearst (1966),
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Saito et al. (1967), Saito and Ito (1968), Fujime (1970b), and Fujime
and Maruyama (1973) have written expressions for the spectra based on
the Kratky-Porod worm-1ike coil theory for semi-flexible molecules.
Recently the worm-like coil model has received serious criticism (Soda
1973). The experimental implications of the models' inconsistencies
and ambiguities are at present uncertain.

The experimental work in the area of flexible macromolecules is
limited. Fujime (1970b) has reported measurement of the lowest order
internal mode of bending motion of a semi-flexible polymer F-actin.
Fujime and Ishiwata (1971) have studied the dynamic interaction of F-
actin with other muscle proteins, heavy meromyosin, and tropomyosin.
Further work by Ishiwata and Fujime (1972) has indicated the effect of
calcium ions on the flexibility of thin filaments of muscle. Fujime
et al. (1972) have also studied the flexural rigidity of bacterial
flagella. These studies rely on an interpretation of the data which
does not appear to be totally consistent with the theoretical formula-
tion by Fujime (1970b). The authors mention other ambiguities related
to concentration effects and polydispersity.

Schmidt (1973) has reported observation of the internal motion
of NI-DNA in solution; again the same ambiguities are unresolved.
Furthermore, the data ana}ysis is based on a misinterpretation of other
investigators' remarks (Dubin et al. 1967). Schmidt's four data points
are fitted to a model with five independent parameters, a model which
lacks any foundation in the formalism for the spectral distribution of

light scattered from flexible chains.
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Reed and Frederick (1971) have studied the spectral distribution
of Tight scattered from solutions of polystyrenes in cyclohexane. For
high molecular weight samples (4,500,000) they reported a departure from
a single Lorentzian fit, which they attributed to intramolecular
Brownian motion. In more recent work, Huang and Frederick (1974) have
determined the translational diffusion coefficient D and the longest
internal relaxation time T for a polystyrene of molecular weight
27.3 x ]06 in cyclohexane and 2-butanone. The values of T obtained
are consistent with values calculated from Rouse-Zimm theory.

The purpose of this study was to conduct preliminary investiga-
tions on the flexibility and conformational states of two samples of
circular duplex DNA, PM2 I and a mixture of ¢X174 RF I and II. Form I
of these DNA's appears in nature as a covalently closed superhelical
structure. It is possible to unwind the supercoil using a variety of
techniques (Bauer and Vinograd 1971) to product a relaxed circular
molecule (form II). It is proposed that by comparing the spectra of
light scattered from relaxed and supercoiled molecules we may infer
conformational changes through changes in the diffusion coefficient,
and on a more careful examination of the spectra extract information
on the changes in flexibility between forms I and II. Studies on linear
forms of ¢X174 RF and PM2 should reveal even more dramatic changes in
flexibility.

These systems weré selected for study because ¢X174 RF and PM2
DNA exist in a variety of conformations, are well characterized and
monodisperse, have a size suitable for flexibility studies using light

scattering, and are molecules of biological importance. With regard to
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the last point, relatively little is understood of how DNA may coil in
more highly organized structures, such as a phage head. Gray and Hearst
(1968) have attempted a study of the bending energetics using sedimenta-
tion data. It is hoped that information on the flexibility of ¢X and
PMZ2 molecules from light scattering may eventually elucidate some of

the energetics involved in the packaging process.
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Chapter VI
THEORY

Scattering Theory
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