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ABSTRACT 

Part I 

A quasi-elastic light scattering spectrometer has been con­

structed and used to measure the binary mutual diffusion coefficient 

DAB as a function of concentration in eight binary mixtures and the 

thermal diffusivity x in nine pure liquids and two binary mixtures. 

The resulting values are in close agreement with the available bulk 

values and are accurate to within 3% for mass diffusivities and 5% 

for thermal diffusivities. Because neither type of measurement is 

dependent on the imposition of a macroscopic gradient, many of the 

problems associated with conventional bulk measurements are eliminated. 

Determinations require less than 2 hours for thermal diffus­

ivities and 30 minutes for mass diffusivities, in contrast to the more 

time consuming classical approaches . 

On the basis of these experimental results, light scattering 

spectroscopy is established as an effective tool in the determination 

of liquid mass and thermal diffusivities . The technique should have 

wide industrial application . 

Part II 

Quasi-elastic light scattering experiments on solutions of 

~Xl74 RF DNA and PM2 I DNA reveal spectral contributions from transla­

tional and intramolecular motion. A tentative interpretation of the 

data in terms of Rouse-Zimm theory indicates lowest order relaxation 
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times qualitatively consistent with theoretical predictions. Further 

experiments on linear and form II DNA should provide information about 

the changes in molecular flexibility and translational diffusivity 

associated with an alteration in conformation. 
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PART I 

QUASI-ELASTIC LIGHT SCATTERING FROM LIQUIDS AND LIQUID MIXTURES: 

A STUDY OF MASS AND THERMAL DIFFUSIVITIES 
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Chapter I 

INTRODUCTION 

Because both the mutual diffusion coefficient DAB and the 

thermal diffusivity x appear in transport equations, a knowledge of 

their values is of particular importance in many chemical engineering 

applications. However, reliable values of mass and thermal diffusi­

vities are relatively scarce. The classical techniques for measuring 

these properties are both laborious and susceptible to large errors. 

In recent years an alternate approach has developed, optical-beating 

spectroscopy. 

For almost half a century it has been known that the frequency 

spectra of light scattered from liquids by entropy and concentration 
-

fluctuations contain transport coefficient information (Landau and 

Placzek 1934). To resolve the extremely narrow lines predicted from 

the theory of the distributed spectra, the resolving power (w
0
/w) of 

the spectrometer must approach 1014 . The best conventional spectra-

scopic method, the spherical Fabry-Perot interferometer, has a limit­

. 8 ing resolution of 1 .10 . Only with the advent of the laser as an 

intense, monochromatic light source and the development of optical 

homodyne and heterodyne spectroscopy has the study of the spectra from 

concentration and entropy fluctuations become possible. Benedek (1969), 

Cummins and Swinney (1970), and Chu (1970) have written extensive 

reviews of the optical-beating techniques. 
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The earliest quantitative spectral measurements were made on 

fluid systems near their critical point (Alpert 1965; Ford and Benedek 

1965) and on macromolecular solutions (Dubin et al. 1967). In both 

cases light is scattered very strongly by the large temperature or 

concentration fluctuations. In contrast to the now extensive use of 

quasi-elastic light scattering techniques to study these phenomena, 

there have been only a few attempts to measure transport coefficients 

in systems removed from their critical point, largely because normal 

mixtures and pure liquids may scatter more than 105 times less than 

critical systems and macromolecular solutions. For example, if we 

compare the relative intensity of scattering from benzene, as expressed 

by the Rayleigh ratio R
0 

, to that from a 100 µg/cc solution of \DNA, 

we notice that benzene scatters approximately 10 times less than \ONA, 

and only half of that intensity is located in the central peak. The 

situation is even more extreme,for the quantity of real experimental 

interest is the intensity of scattering per half-width of the result­

ant distributed spectra . In this case the DNA solution scatters 

approximately 106 t imes more per half-width than benzene. Table l 

contains further comparisons of scattering intensities. Critical 

systems are even more intense scatterers than macromolecular solutions . 

The efforts to study liquids and liquid mixtures removed from 

their critical point by Lastovka and Benedek (1966), Aref'ev et al. 

(1967), Berge et al. (1969,1970), Dubois et al. (1970), Dubois and 

Berge (1971), and most recently Jamieson and Walton (1973) demonstrated 

the feasibility of using light scattering techniques to determine 

transport coefficients for certain systems. A compilation of all the 
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mass diffusivity data available prior to or concurrent with this work 

appears in Table 2. The first feature worth noting is the absence of 

conventionally determined data for comparison. Only in the case of 

diethyl diethylene glycol/carbon disulfide and ethyl ether/carbon 

disulfide do independent data exist, and these are by NMR, which is 

not a generally suitable technique for mass diffusivity measurements. 

It is further evident that the systems chosen for study were selected 

for their high degree of scattering, thus facilitating signal detec­

tion. Table 2 contains values for the magnitude of refractiv~ index 

difference between solute and solvent jn1-n21. It will later be 

demonstrated that this quantity corresponds directly to the intensity 

of scattering; hence the predominance of carbon disulfide and nitro­

benzene in the sample systems--both have unusually large refractive 

indices. Finally, at the time our studies began, there were no DAB 

versus concentration data available, and only Dubois et al. (1970) had 

obtained angular scattering data for binary mixtures in order to con­

firm the expected wave vector dependence. 

A similar situation existed in the measurement of thermal dif­

fusivities. Table 3 contains all of the thermal diffusivity data 

prior to this work. Bulk data existed for comparison to the light 

scattering values, but a clear discrepancy existed between the two 

determinations which could not be definitively attributed to either 

type of measurement. The systems chosen for study were selected for 

their intensity of scattering, as Table 4 illustrates. The values 

which appear for the scattered intensity due to entropy fluctuations, 

IE, are based on a theoretical expression derived from thermodynamic 
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fl uctuat ion theory, which will be subsequently developed . 

The objective of this study was to construct a spectrometer and 

obtain data which would firmly establish quasi-elastic light scattering 

as a reliable tool for the rapid and accurate determination of mass and 

thermal diffusivities . Mutual diffusion coefficients as a function of 

concentration are reported for eight systems. Extensive literature 

data exist for most of the mixtures studied. Thermal diffusivity 

measurements for nine pure liquids and two mixtures are also reported 

and compared to the values calculated from conventional measurements of 

density, heat capacity, and thermal conductivity . With both types of 

determinations angular studies were conducted in order to verify the 

anticipated scattering angle dependence. Sample systems for this study 

were chosen based on the availability of independent data and not thei,r 

intensity of scattering. 
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Chapter II 

THEORY 

Light is scattered by optical inhomogeneities. The physical 

reason for optical inhomogeneities in pure fluids is density fluctua­

tions, which concomitantly produce fluctuations in the dielectric 

constant. In solutions, concentration fluctuations are an additional 

cause of fluctuations in the dielectric constant. The modes of flue-

tuation dissipation are controlled by the transport properties of the 

medium and the scattered electric field mirrors the time dependence of 

these thermal fluctuations. The total scattered electric field consists 

of a superposition of phase changes which result from the dissipative 

motion of density and concentration fluctuations. 

Continuum Theory 

In developing the theory for light scattering from liquids and 

liquid mixtures we shall treat the medium as a continuum and concern 

ourselves only with Rayleigh scattering. As a light beam passes through 

a fluid its electric field induces an oscillating dipole moment in each 

differential scattering volume. Each of these oscillating dipoles then 

radiates an electric field which obeys the formula: 

2 
E (Rt) sin P [L2 P(_r,t 1 )]t

1 
d3r 

scj _, = c21R- r..I at 
( 1 ) 

The total scattered field observed at a field point R is simply the 

sum (integral) of the individual Escj's. 
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= J 2 sin P [a~ P(r,t')J d3r 
v c IR - r.I at - t 

(2) 

where <P is the angle between p (r_, t I ) and R 

c is the velocity of light in vacuum 

v is the illuminated volume 

t• is the retarded time, t 1 = t -
IR - .!:.! 
(c/n) 

n is the index of refraction. 

If we assume the polarizability is a scalar (isotropic) then the dipole 

moment is expressed as 

i(k·r-wt) 
P(r_, t) = a(r_, t) fa e .:..:o - 0 (3) 

where -15.o is the wave vector of the incident light (k
0 

= nw
0
/c). With 

the aid of the far field approximation (R >> r) and assuming the fre-

quency of fluctuation of a is small compared to that of the incident 

light, the scattered field is expressed as 

i(.15-s·R-wot) J i(k -k )·r 
sin¢ e R [ a(r_,t)e -o -s - d3r] ( 4) 

v 

where the scattered light wave vector .15-s is colinear with R and has 

a magnitude nw
0
/c . The bracketed term is commonly referred to as the 

interference integral because it describes the superposition of the 

phases of the waves scattered from each point in the medium. The 

polarizability is reexpressed as 

a (r_, t) = <a> + oa (r_, t) 
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where <a> is the average value of a and oa represents the fluctu -

ations around the medium's average value. 

The point of these manipulations is to show that of all of the 

fluctuations in the medium, only that of a particular wavelength and 

direction is responsible for scattering in the ~ direction. Expres­

sing ~he spatial Fourier components of the fluctuation in polarizabil­

ity in terms of the fluctuation in dielectric constant, 

oa (.!'.'_, t) 
od_r,t) ( ) I in·r 

= = 1/ 4n oE(g_,t) e 
1 

- d3q 
4n (2n) 3/2 

(5) 

we now have for the total scattered field 

l 

( 6) 

Clearly, 

where o3 is the three-dimensional Dirac delta function. This equation 

indicates that a single wave vector component of the flu~tuations is 

responsible for the scattering observed at the field point R ; the 

interference integral is non-zero only when 

k - k = -n 
'--0 -s .::i. 

Defining K = k - k , we can say that the scattering observed at R - -s '--0 
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is entirely due to the K wave vector component of the fluctuation. 

The Bragg reflection condition also obtains, i.e., 

(2rrn) . (e) I Kl = 2 -A- sin 2 
0 

(7} 

where e is the scattering angle between ~ and .!s.s and A.
0 

is 

the incident light wavelength. 

Our final result for the scattered field is then (Dubin 1970) 

Thus description of the scattered field is reduced to the derivation 

of an expression for fluctuations in the dielectric constant oE(f,t). 

It is evident that the temporal changes of the optical inhomogeneities 

produce a modulation of the scattered light, while the nature of the 

modulation is closely connected with the physical process (i.e., mass 

and/or thermal diffusion) determining the particular form of the mod-

ulation function. 

Fluctuation Theory and Total Scattered Intensity 

As a preliminary step to examining the temporal evolution of 

these fluctuations we shall employ elementary thermodynamic fluctua-

tion theory to calculate the total intensity scattered by spatially 

independent fluctuations. The results will assist us in evaluating 

the coefficients of the distributed spectra. The total scattered 

intensity may be expressed as I cr jE
5
ci 2 , hence 

(9) 
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where < > represents either a time or ensemble average. In order to 

evaluate <)6E(f,t)(2> we write by definition 

Assuming 6E(.!:_,t) is spatially invariant and a stationary random 

process, Equation (10) becomes 

v <6E(.!:_,0) 6E*{O,O)> e -- d3r J 
i K• r 

(2n)3 V 

( 10) 

(11) 

If we assume that (1) the fluctuations are correlated only over the 

dimensions of the fluctuation volume, (2) the fluctuations are constant 

within that volume, and (3) these dimensions are sufficiently small so 
iK•r 

that e ~ l where the correlation is non-zero, we have 

( 12) 

These assumptions are completely valid for pure liquids and liquid mix-

tures, but for macromolecular solutions intramolecular interference 

effects appear which invalidate Equation (12) and lead to the molecular 

structure factor. For the cases of interest the Fourier transformed 

mean square fluctuation in E reduces to the equilibrium value 

<J6EJ 2
> and 

where G is the scattering volume, and V* 

( 13) 

is the 
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volume of the fluctuation (Fabelinskii 1968). 

Following the method of Leontovich (1944), variations in the 

dielectric constant E of a pure liquid can be expressed in terms of 

the experimentally measurable parameters, density p and temperature 

T, where p and T are statistically independent variables 

oE = (k) op + (k) oT (14) 
ap T dT p 

Einstein (1910) originally made the assumption that (aE/aT) is 
p 

small, which allows E to be expressed solely in terms of density . 

The density can be written as a function of the two independent thenno-

dynamic variables, pressure P and entropy S . 

op(P,S) = (~) oP + (~) oS aP s as P 

From Equations (13) and (14) we are able to write the intensity as 

where 

The intensity is seen to be divided into two distinct components-­

adiabatic pressure fluctuations 

and isobaric entropy fluctuations 

( 15) 

( 16) 

(17) 

( 18) 



-12-

( 19) 

Employing thermodynamic identities, Equations (18) and (19) simplify 

to 

where Ss is the adiabatic compressibility and 

= G{ ~)2 kT
2

cr
2 

1is P ap T cp P 

(20) 

(21) 

where cr is the coefficient of volume expansion. All of these calcu­

lations are under the assumption that (~~) 2 <{oT) 2>is close to zero. 
p 

For most systems this requirement is fulfilled. Refer to Fabelinskii 

(1968) for a detailed discussion of this approximation. 

A similar approach is used to calculate the intensity of scat-

tering from solutions; density, temperature, and concentration are the 

statistically independent variables. If we assume that concentration 

fluctuations are the dominant source of scattering then 

E {R,t) « oC{K,t) 
SC - -

(22) 

and 

(23) 

The Distributed Spectra from Macroscopic Equations 

Landau and Placzek (1934) used thermodynamic fluctuation theory 

in conjunction with the macroscopic equations of heat conduction and 
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mass diffusion to describe the time decay of fluctuations in the dielec­

tric constant and the shape of the resulting distributed spectra. They 

reasoned that fluctuations in density can be expressed in terms of the 

independent thermodynamic variables, pressure and entropy, that is, 

adiabatic and isobaric fluctuations. Modulation of light by adiabatic 

fluctuations of density physically represent local compressions and 

rarefactions of the fluid. Due to the elastic nature of the fluid, 

these fluctuations propagate throughout the sample and can be visualized 

as thermal elastic waves diffracted according to the Bragg condition. 

These waves result in the Brillouin peaks, which are displaced to either 

side of the Rayleigh peak. The width of the Brillouin peaks is a func-

tion of the sound absorption coefficient, which depends on heat capacity 

and shear and bulk viscosities. These peaks are sufficiently displaced 

that they do not interfere with observation of the Rayleigh peak, and 

hence are not of further concern in this work. 

Scattering from isobaric fluctuations in density is associated 

with temperature or entropy fluctuations . The dissipation of these 

fluctuations obeys the Fourier heat equation 

aoT(.!::_,t) 2 --a-t-=xvoT(r.,t) (24) 

and is controlled by the thermal diffusivity. The component responsible 

for scattering is then 

oT(f, t) = oT(f,O) exp[-xK2tJ (25) 

Thus, fluctuations in temperature or entropy are exponentially decaying 

functions localized in space. An analogous situation exists for the 
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dissipation of concentration fluctuations in binary mixtures. The 

diffusion equation 

CloC(r_,t) 
Cl t 

is obeyed, and its solution yields 

The expression for the scattered field now takes the fonn 

-iw t -xK2
t 

0 
o:: e e oT(.!$_,0) 

(26) 

(27) 

(28) 

for pure liquids and an analogous form with DAB replacing x and C 

replacing T for binary mixtures. 

The quantities of direct interest in quasi-elastic light 

scattering are the dielectric constant (electric field) autocorrelation 

function CE(T), and its Fourier transform I(.!$_,w), which is the spec­

trum of the electric field 

= <E* (t) E (t+T)> 
SC SC 

(29a) 

-iw T 

o:: e 0 <ax*(.!$_,t) oX(.!$_,t+T)> (29b) 

- xK2 I T I -i w T 

o:: <lox(.!$_,O) i2>e e 0 (29c) 

where X is either DAB or X • It is apparent from the previous 

section that <jo X(f,O)j 2> ~ <ioxj 2> Finally, with the aid of 

the Wiener-Khintchine theorem (see Appendix I) the spectrum is written 

as 
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00 

(30a) 

-oo 

X K
2 

= <I > l 2 2 2 x nw+(XK) 
(30b) 

<I > is <I . > 
x 1 s 

for entropy (temperature) fluctuations and <I > cone 
for concentration fluctuations. As a check, the total intensity is 

00 

f I (f ,w) dw = <Ix > ( 31 ) 

-oo 

as previously derived. 

Landau and Placzek's final results in expanded form (although 

never explicitly derived) are 

-iw T xK
21TI 

CE( T) = <I. > e o e 
lS 

and 

= XK2 
I (f,w) <I. > l 

1S 'lT w2+ (X K2 )2 

for pure liquids and 
-iw T 

CE(T) = <I > e o 
cone 

and 

I (f,w) = <I > l 
cone TI w2+ 

for binary mixtures, where as before 

2 2 
<I. > = G(p k)2 kT 0 

1S dp T Cp p 

e 
-DABK2h l 

DABK 
2 

(D K2 )2 
AB 

(32a) 

(32b) 

(33a) 

(33b) 

{21 ) 
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<I >::: v*G(E£)2 </6Cl>2 
cone ac T p, 

(23) 

The Distributed Spectra from Hydrodynamic Equations 

Kadanoff and Martin (1963), Mountain (1966), and Mountain and 

Deutch (1969) have presented a more rigorous development in which the 

linearized hydrodynamic equations--the continuity equation, the Navier­

Stokes equation, the diffusion equation, and the energy transport 

equation--were used to determine the modes by which the system relaxes 

back to equilibrium, and the amplitude of each mode. Thermodynamic 

fluctuation theory was employed to evaluate the coefficients of the 

spectral contributions, which are the mean square fluctuations of the 

statistically independent variables. The final results derived for a 

pure liquid are similar to those obtained from Landau and Placzek's 

treatment; for binary mixtures, Mountain and Deutch observed a term 

resulting from the dynamics, which does not appear in the thermodynamic 

theory (Miller 1967). This additional term is a result of the coupling 

of temperature and concentration dissipation, that is, the Dufour and 

Soret effects. Under the condition X >> DAB , which obtains for the 

systems studied here, the formulae are similar to those developed from 

the macroscopic transport equations and fluctuation theory, and the 

experimental separation of the contributions from entropy and concen-

tration fluctuations is possible. 

For a pure fluid (Mountain 1966) 

CE(L)::: <op(f,O)op (f,T)> 
C - C -iw T 

cr <lop(~)l 2>{ P v exp[-xK21TIJ} e 0 (34a) 
cP 
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and 

(34b) 

where p = p(P,S) and the pressure fluctuation terms (the Brillouin 

peaks) have been omitted . 

For a binary mixture (Mountain and Deutch 1969) 

and 

(35b) 

subject to the condition x >> DAB (pressure fluctuations have again 

been suppressed). One can appreciate the approximations involved by 

observing that C and T (and implicitly P) appear as statistically 

independent variables in Equations (35a) and (35b), while in actuality 

T, p, and C are the independent thermodynamic variables. 

Equation (34a) expresses the density correlation function in 

the real time domain . as a decaying exponential with a decay time (the 

time required for the exponential to decay to e-l of its initial value) 

of (xK2)-1. The corresponding spectrum in the frequency domain 

(Equation (34b)) represents a Lorentzian with a half-width at half-
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height of xK2/2n Hz. Hence the thermal diffusion process may be 

characterized by either an exponential decay time or its conjugate 

half-width. Similarly, for a binary mixture with concentration flue-

tuations as the dominant source of scattering, the concentration 

correlation function (Equation (35a)) is described by the decay time 

(DA8K2)-l or the corresponding half-width of Equation (35b), 

oA8K2/2n . If temperature fluctuations should dominate, the charac­

terization parameters are identical to those for a pure fluid. 

The Amplitude of Scattering 

The amplitude of the mass diffusivity term in Equation (35b) is 
2 2 a function of the factors (oE/oC)P,T and <JoCJ > • The first term 

is dependent upon the difference between mass reduced polarizabilities 

of solute and solvent, as is evident from the Lorentz-Lorenz formula 

for a solution (Heller 1959): 

(36) 

and its derivative 

( )2 ex ex 
(~) _ 4TIE+2 p'(-1 _ __l__l_E-1 (i.-l.)J (37) 

ciC P,T - ~ 3 m1 m2 4n E+2 pl p2 

where p' = [C/pl + (l-C)/p2J-l is the density of the mixture in grams 

of solution per cm3 of solution, c is solute concentration in grams 

of solute per gram of solution, ex. 
l 

is the molecular polarizability, 

m. is the molecular mass, and subscript l refers to the solute and 2 
1 

to the solvent. As is evident from Table 5, the amplitude of the con-

centration term in Equation (35) for a fixed composition is proportional 
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to the difference between the refractive indices of the two compon­

ents, which is what one would intuitively expect. Experimentally one 

should detect reduced scattered intensities for solutions with com-

parable solute-solvent refractive indices and a corresponding reduction 

in precision of the experimental results. 

The mean square concentration fluctuation can be expressed by 

(Zimm 1945) 

2 kT 
< I og I > ;; ---:2--

( li) 
2 ag P,T 

(38) 

where F is the Gibbs free energy of the fluid, g is the solute con­

centration in g/cm3 of solution, and k is Boltzmann 1 s constant . 

With a change of variable, Equation (38) reduces to 

(39) 

Expressing the .differential of F as 

( 40) 

with n~ defined as the mole fraction of 
1 

i , we are able to rewrite 

Equation (40) in the form 

dF = µdC ( 41 ) 

where µ is a chemical potential of solution. 
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Finally, the mean square fluctuation in concentration may be written 

as 

kT 
( 42) 

(aµ/aC)P,T is a complicated function of activities and molecular 

weights, but qualitatively, as solute and solvent approach equal concen-

trations, the term should increase in magnitude. Conversely, as the 

solution becomes more dilute in either component, the intensity of 

scattering should decrease and the precision of the associated data 

become poorer. Dubois and Berge (1971) have studied the functional 

dependence of the chemical potential derivative in detail. 

Definitions of Mutual Diffusion Coefficients 

Some confusion has arisen as to the exact nature of the binary 

diffusion coefficient DAB' The diffusivity described in this work is 

derived directly from Fick 1 s law 

(43) 

J 1 represents the mass flux of solute. The theoretical foundation for 

this phenomenological equation is provided by irreversible thermodynamics; 

it can be shown that (De Groot 1959) 

( 44) 

where L11 is a phenomenological coefficient. It follows that 

DAB= [L11 ;p(l-C)](aµ 1/aC)T,P . Some authors use (aµ 1/an1)T,P vn1 

instead of the mass concentration gradient and define the associated 
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coefficient D~B by using p'DRB for the coefficient -0f the molar 

gradient, i . e . , 

, _ ,
0
n D 

-p DAB VC - -p AB vnl (45) 

Consequently, 

( 46) 
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Chapte r III 

APPARATUS AND EXPERIMENTAL METHODS 

A schematic diagram of the light scattering spectrometer used in 

this study is given in Figure 1. Details of its construction and opera­

tion appear in Appendix II. The system was also designed to perform 

total intensity measurements using dual photon-counting (see Appendix 

I II). 

The laser, detection optics, and sample were mounted on a 

Newport Research Corp. vibration isolation table to prevent extraneous 

vibrations from contributing to the time dependence of the scattered 

light. Isolation was in both the horizontal and vertical directions. 

Using geophones, we determined the table's resonant frequency to be 

<3 Hz. All optical devices were positioned rigidly on the stainless 

steel surface. 

The incident light of approximately one watt was the 4880~ line 

of a Coherent Radiation 52A argon ion laser. Two pinholes with an 

angular acceptance of 0.2° defined the scattering volume, and the scat­

tering angle was determined by triangulation to better than 0.06°. The 

sample volume was contained in a 10-cm path length cylindrical cell with 

optical quality flat windows. Stray light from imperfections and dust 

on the windows acted as a local oscillator source for the heterodyne 

spectroscopy. The detector, an EMI 9634QR phototube, carried the fluc­

tuating photocurrent to a Saicor 43A correlator. The autocorrelation 

function was collected until the significant part of the function began 

to fill the memory--10 min to 2 hrs were required, depending upon the 

siynal to noise ratio of the photocurrent. The 400-point autocorrelation 
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function (containing 13 bits plus sign) was then transferred in digital 

fonn from the correlator to paper tape for subsequent computer analy­

sis. Typical correlograms appear in Figure 2. 

Sample chemicals of reagent grade were used without further 

purification . The binary mixtures were prepared volumetrically with an 

estimated accuracy of 0. 5% . All samples were multiply filtered through 

a fine fritted glass filter to remove dust. A Bausch and Lomb refrac~ 

tometer was used to measure refractive indices ; values were corrected 
0 

to A = 4880A. The samples were maintained at room temperature, which 

did not drift more than 1°C during the course of an experiment. Be­

cause DAB and x exhibit a weak temperature dependence (typically 

less than 0.5%/°C), we estimate the maximum error due to temperature 

control to be less than 1% . 

Current correlation techniques were employed because of the 

speed and efficiency of data acquisition; the rate of data collection 

by correlating is faster than that of data collection with a spectrum 

analyzer by a factor which is of the order of the number of bandwidths 

swept . Spectrum analyzers scan in frequency (with the except i on of 

real time analyzers), measuring only one bandwidth at a time, whereas 

a correlator (in principle) analyzes all of the signal all of the time . 

The correlator is also able to perform signal averaging on the 

correlati on function, thus improvi ng the statistical accuracy of the 

data. 

In the case of heterodyne spectroscopy, the photocurrent auto-

correlation function is an exact replica of the electric field auto­

correlation function (see Appendix I), hence 
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(47) 

and the decay time of the current exponential contains the coefficient 

of interest. The points of the correlation function were fit to a 

single exponential with a baseline using the Marquardt nonlinear least 

squares algorithm. The reciprocal decay time for a pure liquid 

-1 2 
T = xK (48) 

and the value of K2 determine x Values of T were collected 

over a range of scattering angles. For the binary mixtures two ex-

ponentials are observed. Because the magnitude of concentration 

fluctuations in binary mixtures is generally greater than the magnitude 

from temperature fluctuations, and because the decay time for thermal 

diffusivity is smaller than from mass diffusivity by approximately two 

orders of magnitude, the effect of thermal diffusion can be compressed 

into the initial part (approximately ten points) of the correlation 

function; these poj nts are neglected in the fit to determine the mass 

diffusivity reciprocal decay time 

(49) 

T values for DAB were collected as a function of concentration for 

a single scattering angle. with the exception of one concentration of 

carbon disulfide/acetone and two of methanol/benzene, which were 

studied as a function of angle to verify the expected K2 dependence 

(Figures 9 and 10). 
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To measure thermal diffusivities for binary mixtures, one must 

in general perform a two exponential fit to the data. Under the special 

circumstances of similar refractive indices for solute and solvent, 

density fluctuations become the predominant source of scattering and the 

data may be analyzed solely in terms of thermal diffusion. One of the 

binary systems studied, toluene-benzene, satisfies the criterion of 

matched refractive indices and hence has been analyzed in terms of Equa­

tions (34a) and (48). The other binary system, toluene-bromobenzene, has 

been analyzed for both types of fluctuations by appropriately varying 

the sample time increment so as to emphasize either mass or thermal dif­

fusion. 

The components of the spectrometer primarily responsible for 

our ability to measure accurately mass and thermal diffusivities for 

weakly scattering systems are: (1) the argon-ion laser, which produces 

an extremely intense beam at a low wavelength (see Appendix III); (2) a 

photomultiplier with both high gain and quantum efficiency (the latter 

is possible due to the low wavelength); (3) a correlator, which enhances 

the S/N ratio and stores the data in digital form; (4) careful vibration 

isolation and elimination of low frequency noise (see Appendix II); and 

(5) careful alignment of the system (Appendix II). 
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Chapter IV 

RESULTS AND DISCUSSION 

The following data were taken in collaboration with Erdogan 

Gulari (Gulari et al. 1973, and thesis). In Figures 3 to 8, mutual 

diffusion coefficients from this study are plotted as a function of 

concentration with comparative literature data. Thennal diffusivity 

results are compared in Table 6 with the literature bulk values . Error 

bars in Figures 3 to 14 are based on two standard deviations of the 

single exponential fit plus an estimate of possible systematic errors. 

Errors appearing in Table 6 result from two standard deviations of the 

data to a best straight line plus possible systematic errors. Mass 

diffusivity values range in accuracy from 12% for dilute mixtures to 

better than 1% for more equal mass concentration solutions, thus con­

firming the theoretical prediction of Equation (42). Referring to 

Figures 3 to 8 and Table 5 (a tabulation of refractive index differ­

ences and (as/aC)P,T values for mixtures used in this study), we are 

able to observe the correlation between experimental uncertainty, re­

fractive index differences, and the magnitude of (as/aC)P,T' which con­

finns the conclusion drawn from Equation (37). Comparing the entries of 

Tables 2 and 5 reveals that virtually all of the systems previously 

studi ed relied on a much greater level of scattering for their deter-

mi nations. 

The accuracy of x values in a11 cases is better than 10% and 

is typica1ly 5%. Figures 9 to 14 exhibit values of the inverse decay 

time of the Rayleigh line as a function of the square of the scattering 

wave vector for light scattered from concentration fluctuations (Figures 
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9 and 10) and entropy fluctuations (Figures 11 to 14) . Each datum 

represents a single correlation function. Half-widths are related to 

the exponential decay time T by 

)-1 
f = (2TIT (50) 

where r represents the conjugate Lorentzian half-width of the spec­

trum [Equations (34b) and (35b)], thus the vertical axis represents 

both the inverse decay time of the exponential correlation function and 

the half-width of the corresponding Lorentzian. 

As seen from these plots, the linear dependence predicted from 

theory by Equations (48) and (49) is accurately obeyed. Least squares 

fitting with statistical weighting has been used to determine the best 

straight lines. 

Figures 3 through 8 show that our mutual diffusion coefficients 

are in excellent agreement with the bulk values reported in the litera­

ture. Three other light scattering measurements of mass diffusivities 

are available for comparison--all are from the system carbon disulfide-
-5 2 acetone. Berge et al. (1970) reported DAB= 2. 32 x 10 cm/sat room 

temperature for a 10% by volume acetone mixture obtained at a single 

scattering angle of 1.05°. Aref'ev et al. (1967) reported DAB= 

0.30 ±._ 0.04 x l0-5cm2/s for a 10% by weight acetone mixture at room 

temperature. Their data were obtained at 90° using Fabry-Perot inter­

ferometry. Jamieson and Walton (1973) obtained a value of 

DAB= 0.92 x l0-5cm/s, taken at 10°34' for a 10% by volume mixture. In 

comparison, our values are 2.42 ±._ 0.04 x l0-5 at 20.0°c for a 10% by 

volume mixture and 2.23 ±. 0.06 x 10-5 at l8.5°c for a 10% by weight 
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acetone in carbon disulfide solution . 

Jamieson and Walton argued that Aref 1 ev did not employ signal 

averaging techniques, thereby introducing an inherent inaccuracy in his 

result . They attribute the disagreement between their value and Serge ' s 

to "the errors attendant in measuring spectra at scattering angles 

below 5° 11
• The theoretical basis for these errors has been discussed 

by Schaefer and Berne (1972), Edwards et al. (1971) and Yeh (1969). A 

finite scattering volume or , equivalently, an uncertainty in scattering 

vector caused by the focusing and collecting optics are responsible for 

the spectral distortion . Based on Yeh 1 s work, Jamieson and Walton 

argued that at the scattering angle of l.05° used by Berge the effect 

of a finite collection aperture would produce a significantly broadened 

spectrum, and consequently a large estimate for the diffusion coeffi­

cient. Czworniak and Jones {1974) have recently demonstrated that 

finite-aperture broadening has an insignificant effect on the Rayleigh 

spectrum, which contradi cts Jamieson and Walton's conclusions. While 

the finite collection aperture effects cannot explain the discrepancy 

between measurements, the effect of a focused beam in the sample could 

in principle be responsible for the differences . 

Our data conclusively indicate that aperture or finite sample 

volume effects cannot explain the discrepancies between our values and 

Jamieson and Walton's . All of our measurements were performed with an 

unfocused beam , which eliminates the only other conjecture related to 

errors associated with small angle scattering . To further document the 

validity of our results, angular data have been taken for the carbon 

disulfide/acetone mixture . Figure 9 clearly indicates the anticipated 
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wave vector dependence; linearity would not have been observed had 

aperture effects been present. None of the other investigators con­

ducted any angular studies to verify the predicted K2 dependence . 

The agreement between our values of thermal diffusivity and 

the values calculated from bulk measurements of A, p, and Cp data 

is satisfactory as is evident from Table 6. Included in Table 6 are 

the only other light scattering determinations of thermal diffusivity . 

Our value of 1.10 ±. 0.02 x l0-3cm2/s for pure carbon disulfide is the 

same as Berge's value of 1 .1 x l0-3cm2/s (Berge et al. 1970). Berge 

and Dubois (1969) in the first experimental work on benzene reported 

x = 0. 655 ±. 0.070 x l0-3cm2/s. These authors subsequently improved 

their techniques and found x = 0.87 ±. 0.1 x 103cm2/s (unpublished 

work) . Values obtained at higher angles by Fabry-Perot interferometry 

are X = 1.03 ±. 0.05 x l0- 3cm2/s (Oliver and Pike 1970), 0.90 ±. 0.02 

cm2/s (Searby 1971), and 0.94 ± 0.05 x l0-3cm2/s (Beysens 1973). These 

are to be compared to our experimental value of X = 0. 956 ±. 0.040 
2 I -3 2 cm /s and the bulk value of X = 0.963 x 10 cm /s. Other Fabry-Perot 

values available are 0.84 ±. 0.05 x l0- 3cm2/s for carbon tetrachloride 

and 0. 98 ±. 0.05 x l0-3cm2/s for toluene (Oliver and Pike 1970) . 

Lastovka and Benedek (1966) reported X = 0.879 ±. 0.025 x l0-3cm2/s 

for toluene, which agrees with our value of 0.849 ±. 0.038 x l0- 3cm2/s. 

Classical Thermal Conductivity Measurements 

It should be noted that where possible the quoted literature 

values for thermal diffusivity are taken from Touloukian, Volumes 3 

and 6. These volumes contain a comprehensive study of all the available 

data on liquid thermal conductivity and heat capacity for selected 



-30-

substances; the recommended reference values cited for each liquid have 

been used in Table l. The variation in experimentally determined thennal 

conductivities is of interest. 

Figures 15, 16, and 17 are thermal conductivity departure plots 

taken from Touloukian (1970). All points are plotted relative to the 

author's recommended values based on an evaluation of the data. .Each 

point corresponds to a different experimental work. Notice that results 

for the same system commonly vary by over 25%, thus reflecting the 

difficulties associated with the conventional thennal conductivity 

measurements. The most significant problems are conduction corrections, 

convection currents, and radiation between the surfaces enclosing the 

liquid. In contrast, quasi-elastic light scattering does not require 

the imposition of macroscopic temperature gradients; thus convection is 

not a serious source of error. Spectrometers can easily be constructed 

which do not suffer from the problems of radiation and conduction asso­

ciated with classical methods. 

Classical Mass Diffusivity Measurements 

The limitations inherent to classical diffusion measurements are 

not so serious, although large discrepancies exist between values ob­

tained by different investigators on the same system. Johnson and Babb 

(1956) discuss the different conventional techniques for determining 

mass diffusivities as well as their limitations and the consistency of 

data taken by several investigators. The most important limitation of 

these techniques is the requirement of a macroscopic concentration 

gradient. As a result, one generally obtains an integral diffusion co­

efficient rather than the more meaningful differential coefficient. One 
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of the more popula r methods, the diaphragm cell technique, requires 

calibration and is subject to bulk flows (Board and Spalding 1966); 

both can contribute to errors in the measurements of DAB . Quasi ­

elastic light scattering needs no macroscopic concentration gradi ents 

and is not subject to calibration errors or bulk flow . Scattering 

arises from microscopic fl uctuations in concentration, hence the mea -

sured diffusion coefficient is of a differential form . Some techniques, 

such as the diaphragm cell, may require days of operation for a single 

point, while light scattering determinations take less than an hour . 

The most precise conventional techn iques employ interferometric 

methods (Dunlop et al . 1972) fo r continuously analyzing the changes of 

concentration with distance and time in a cell. Analysis of the data 

requires involved mathematical analysis . These measurements are 

limited in the same way as light scatteri ng--they require a difference 

in refractive index between sample and solvent . This is the most 

serious limitation of the light scattering technique . Determinations 

of DAB improve in accuracy and precision with (1) increasing refrac­

tive index differences between the binary components as is evident from 

the (aE/aC)P,T factor of Equation {37) and Table 5; and (2) the ap­

proach to equal concentrations, which is expressed in the <loCi>2 

factor of the same equation . 

Conclusions and Recommendations 

A sensitive quasi-elastic light scattering spectrometer has 

been constructed and used to collect diffusivity data for a wide class 

of pure liquids and binary mixtures. Independent bulk data confirm 
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the accuracy of the technique . The light scattering approach has 

several advantages over conventional techniques for detennining mass 

and thennal diffusivities. It is not dependent on the imposition of 

a macroscopic gradient, a problem which seriously complicates bulk 

measurements. Using light scattering, diffusivity detenninations take 

from 15 minutes to 2 hours; this is in contrast to conventional methods 

which may take weeks. 

The approach we have developed should have important industrial 

applications. Transport properties have always been of importance in 

the design of chemical processing facilities. Now that pilot plant 

operations are being bypassed in favor of the computer design of full 

scale plants, precise and accurate values of mass and thennal diffus·i-

vities are at even more of a premium. Another possible industrial 

application is the continuous monitoring and control of processes in 

chemical plants. 

Now that it has been demonstrated that diffusivities can be 

measured under standard conditions, the work could be extended to cover 

elevated temperatures and pressures. Neither condition would present 

serious design problems. Light scattering studies in our laboratory 

have already been conducted at several hundred pounds pressure and 

temperaturesapproaching 80°C . 
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PART II 

OBSERVATION OF TRANSLATIONAL AND INTRAMOLECULAR DIFFUSION OF 

CIRCULAR DUPLEX DNA BY QUASI - ELASTIC LIGHT SCATTERING 
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Chapter V 

INTRODUCTION 

As demonstrated in Part I of this thesis, light scattering 

spectroscopy is a valuable tool for the study of liquid mass and ther­

mal diffusivities. However, the domain of the technique is not confined 

to just liquids and liquid mixtures, but is becoming increasingly useful 

in the study of macromolecular Brownian motion. Under appropriate con­

ditions the light scattered from long-chain molecules will be modulated 

by the dynamics of the molecule. Since the pioneering theoretical 

paper by Pecora (1964), numerous studies have been conducted using light 

scattering to study macromolecular translational Brownian motion 

(Cummins et al. 1964; Dubin et al. 1967; Foard et al. 1970). 

The rotational motion of macromolecules has also been studied 

using quasi-elastic scattering, beginning with the theoretical work of 

Pecora (1964, l968a, l968b) and followed by the experimental determina­

tion of the rotational diffusion constant e for TMV by Cummins et al . 

(1969), Wada et al. (1969), and Fujime (l970a). The expressions devel­

oped are valid only for rigid, rod-like molecules . 

Most molecules of biological interest have some degree of 

flexibility in solution and are not rod-like. The dynamics of large, 

flexible molecules i n solution is a classical problem in polymer 

physics . Since the initial efforts of Rouse (1953) and Zimm (1956) , 

theoreticians have been attempting to quantitatively describe the motion 

of large, flexible chains. Expressions for the distributed spectra of 

flexible-coil macromolecules have been derived using the Rouse-Zimm 

bead and spring model (Pecora 1965; 1968). Harris and Hearst (1966), 



-35-

Sa i to et al . (1967), Saito and Ito (1968), Fujime (1970b), and Fujime 

and Maruyama (1973) have written expressions for the spectra based on 

the Kratky-Porod worm-like coil theory for semi-flexible molecules. 

Recently the worm- like coil model has received serious criticism (Soda 

1973). The experimental implications of the models' inconsistencies 

and ambiguities are at present uncertain. 

The experimental work in the area of flexible macromolecules is 

limited. Fujime (l970b) has reported measurement of the lowest order 

internal mode of bending motion of a semi - flexible polymer F-actin. 

Fujime and Ishiwata (1971) have studied the dynamic interaction of F­

actin with other muscle proteins, heavy meromyosin, and tropomyosin. 

Further work by Ishiwata and Fujime (1972) has indicated the effect of 

calcium ions on the flexibility of thin filaments of muscle . Fujime 

et al . (1972) have also studied the flexural rigidity of bacterial 

flagella . These studies rely on an interpretation of the data which 

does not appear to be totally consistent with the theoretical fonnula­

ti~n by Fujime (1970b) . The authors mention other ambiguities related 

to concentration effects and polydispersity. 

Schmidt (1973) has reported observation of the internal motion 

of NI-DNA in solution; again the same ambiguities are unresolved. 

Furthermore, the data analysis is based on a misinterpretat i on of other 

investigators' remarks (Dubin et al. 1967). Schmidt's four data points 

are fitted to a model with five independent parameters, a model which 

lacks any foundation in the formalism for the spectral distribution of 

light scattered from flexible chains. 
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Reed and Frederick (1971) have studied the spectral distribution 

of light scattered from solutions of polystyrenes in cyclohexane . For 

high molecular weight samples (4,500,000) they reported a departure from 

a single Lorentzian fit, which they attributed to intramolecular 

Brownian motion. In more recent work, Huang and Frederick (1974) have 

determined the translational diffusion coefficient D and the longest 

internal relaxation time Tl for a polystyrene of molecular weight 

27.3 x 106 in cyclohexane and 2-butanone. The values of Tl obtained 

are consistent with values calculated from Rouse-Zimm theory. 

The purpose of this study was to conduct preliminary investiga­

tions on the flexibility and conformational states of two samples of 

circular duplex DNA, PM2 I and a mixture of ¢Xl74 RF I and II . Form I 

of these DNA's appears in nature as a covalently closed superhelical 

structure . It is possible to unwind the supercoil using a variety of 

techniques (Bauer and Vinograd 1971) to product a relaxed circular 

molecule (form II). It is proposed that by comparing the spectra of 

light scattered from relaxed and supercoiled molecules we may infer 

conformational changes through changes in the diffusion coefficient, 

and on a more careful examination of the spectra extract information 

on the changes in flexibility between forms I and II. Studies on linear 

forms of ¢Xl74 RF and PM2 should reveal even more dramatic changes in 

flexibility. 

These systems were selected for study because ¢Xl74 RF and PM2 

DNA exist in a variety of conformations, are well characterized and 

monodisperse, have a size suitable for flexibility studies using light 

scattering, and are molecules of biological importance. With regard to 
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the last point, relatively little is understood of how DNA may coil in 

more highly organized structures, such as a phage head. Gray and Hearst 

(1968) have attempted a study of the bending energetics using sedimenta­

tion data. It is hoped that information on the flexibility of ¢X and 

PM2 molecules from light scattering may eventually elucidate some of 

the energetics involved in the packaging process. 
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Chapter VI 

THEORY 

Pecora (1964) has shown that the field autocorrelation function 

for isotropic systems may be written 

( 51 ) 

where a(~,T) is the spatial Fourier component of the local fluid 

polarizability a(r,t). In the first part of this thesis we chose to ex-

pand a for liquids in terms of hydrodynamic parameters. Here we shall 

treat dilute macromolecular solutions and assume that the solvent scat-

tering is negligible. By dividing the molecule into n segments , each 

with polarizability ai , Equation (51) becomes 

2 
CE(T) a: a2 .l. <exp{iK·[!:_;(t) - !:_j(O)]}> 

n 1 ,J 

The location of segment i on the molecule may be written 

r.=R+b. 
-1 - - 1 

(52) 

where R is a vector to the molecular center of mass and Q.; is a 

vector describing the segmental position relative to the center of mass. 

Then, 

n 
x < 1z .I. exp{i~·[bi (t) - bj (O)]}> 

n 1 ,J 
(53) 



-39-

It has been assumed that center of mass motion is independent of inter­

nal motion . Internal motion will not affect the spectrum if the 

molecules are small, i.e., 

K·(b.(t) - b.(O)) « 1 
- -1 -J (54) 

in which case 

(55) 

and the spectrum is determined solely by translational motion of the 

center of mass. In effect, the light wave sees the time dependence of 

polarizability changes; for translational diffusion the polarizability 

moves with the molecule. If the polymer i s a rigid, uniform sphere, 

the light is unable to observe any internal motion (in this case rota­

tional diffusion) because there is no change in the molecular polariza-

bility distribution of the segments on rotation. 

The center of mass mo ti on for polymers can be described by the 

diffusion equation 

aP(r_,t) 
at (56) 

where P(r_,t) is the conditional probability of finding a molecule at 

position r at time t if it is at the origin at time zero, and D 

is the translational diffusion coefficient. The conditional probabil­

ity can be used to evaluate the ensemble average of Equation (55) with 

the result (Cummins et al. 1969) 

2 
o: exp[-DK -r] (57} 
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The decay time is 

(58) 

a result which we previously found for binary mixtures by using the 

fluctuation approach . 

When the molecules are large (or K is large), condition (54) 

does not hold and we should expect to see intramolecular motion . The 

solution to this problem requires a detailed knowledge of polymer chain 

hydrodynamics . 

Flexible Polymer Theory Applied to Light Scattering 

The basic problem confronting us in finding an expression for 

the spectral distribution of light scattered from flexible macromole-

cules is the evaluation of the expression 

11 

.I. <exp{i~· Li::.i(t) - E..j(O)]}> (59) 
1 ,J 

To evaluate this term we need the probability ~(!:o•!:.l ,·· · •In) of 

finding each segment i with coordinates between r. 
-1 

and r.+ dr. 
-1 -1 

at 

time t , as well as a description of r;(t) . Either Rouse-Zimm 

theory or the worm-like coil formalism provide the needed information . 

The two treatments reduce to the same expressions (Fujime 1973) when 

yl » l , where y- l is the statistical segment length and L · is the 

contour length of the molecule. This condition applies for the DNA of 

this study, hence, we shall confine our discussion to Rouse-Zimm theory 

because of its conceptual simplicity. 
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The basic model consists of a series of beads interconnected by 

ideal springs. Each segment of the molecule is represented by a 

Gaussian random coil, and the beads are located at the junctions of 

these segments. The beads act as centers of hydrodynamic resistance, 

each with frictional constant p . For such a model Zimm (1956) has 

derived an equation of motion using normal-mode coordinates. The equa-

tion expresses the influence of the Hookean restoring forces, hydro­

dynamic forces, and the forces of Brownian motion. Zimm (1956) has 

solved for the eigenvalues of the problem with the result 

(60) 

and normal-mode relaxation times of 

= ---'----=-Tk 2 6\ kT y 
(61) 

Substituting the infinite dilution value of the diffusion coefficient 

D
0 

for kT/pn gives 

(62) 

For a linear Gaussian coil the mean square radius of gyration is 

(63) 

hence 

(64) 

We should also note that 



where 

1 2 n(-) = 
y 
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is the mean square end-to-end distance. 

(65) 

Under the absence of any externally applied forces the equation 

of motion is formally equivalent to a system of coupled harmonic oscil­

lators. The solution in terms of ~(-!-0•!:.l ,··· .r.,,) was first derived by 

Wang and Uhlenbeck (1945). 

Pecora has used ~ and the normal coordinate expressions for 

!:_i to evaluate the expression 
n 

< ,l . exp { i .!~: [!:_ i ( t) - !:. j ( 0 ) ] } > 
l ,J 

The final expression for CE(T) is of the form {Fujime 1973) 

for yl >> l, where higher order relaxation times have been neglected. 

The scattering form factors have been numerically evaluated and are 

plotted versus the scattering parameter x in Figure 

18 (Fujime 1973). It is evident that as we move to higher angles, 

higher order intramolecular terms begin to contribute significantly to 

the spectral distribution. For molecules that have a large <£
2> , e 

higher order terms will contribute even at low scattering angles. 
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Chapter VII 

EXPERIMENTAL 

Dow polystyrene latex spheres (run number LS-1044-E) were diluted 

to 0.01 mg/cc in a 0.01% SOS aqueous solution. Before use, the sphere 

solution was subjected to sonication to remove aggregates. 

¢Xl74 RF DNA 

The ¢Xl74 RF DNA was the gift of J. Lee Compton; it was isolated 

and purified according to the procedure of Johnson and Sinsheimer (1974). 

Characterization by banding in an EB CsCl gradient indicated that over 

93% of the original preparation consisted of RFI. We are unable to 

make any definitive statements about the exact composition of our 

sample because no analyses were performed. It is probably safe to 

assume that all of the DNA was circular; EB CsCl bandings on irradiated 

aliquots of the original preparation (diluted to 10 µg/cc) indicated no 

visible nicking. 

The light scattering experiments were performed using 120 µg/cc 

of ¢Xl74 RF in 0.05 M tris, 0.02 M EDTA at a pH of 7.5. 

PM2 I DNA 

The PM2 I DNA was the gift of Robert Watson. The PM2 bacterio­

phage was grown, harvested, and isolated by the method of Espejo and 

Canelo (1968). Final purification was according to the procedure of 

Revet et al. (1971) using CsCl-PI buoyant banding as described by Hudson 
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et al . (1969). A concentration of 75 µg/cc in O.OlM tris, 0.002 M EDTA, 

0.5M NaCl, pH 7.4, was used for this study. The initial preparation and 

the irradiated sample (after completion of the experiment) were simul­

taneously examined by band sedimentation velocity to determine the extent 

of nicking . The velocity patterns appeared virtually identical, indicat­

ing ~3% nicked rings both before and after irradiation. 

Apparatus and Procedure 

The spectrometer was as described in Part I of this thesis. A 

Cl05 Brice Phoenix cell with flat entrance and exit windows contained 

the sample. A teflon plug placed in the bottom of the cell reduced the 

required sample volume to 7 ml. The incident laser beam was focused in 

the center of the cell using a 10 cm focal length lens . 

Data acquisit i on for both experiments was identical to that of 

Part I and required less than 3 hours for completion. All correlation 

functions were of the homodyne type. 
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Chapter VIII 

RESULTS AND DISCUSSION 

Polystyrene Latex Spheres Experiment 

As a control experiment data were taken on the Dow polystyrene 

latex spheres. These spheres were chosen for study because the sample 

time increments used completely encompassed the 6T needed to examine 

the DNA spectra. In Figure 19 each datum represents a single autocor­

relation function collected using the sample time increment represented 

by the corresponding symbol. The correlation functions of Figure 19 

were fitted to the fonn 

Ci(T) = A(l) + A(2) exp[-A(3)T] {67) 

where A(3) is defined as T-l, the inverse exponential decay time. 

(We have used T to denote both elapsed time T and the exponential 

decay constant T The desired usage should be obvious.) The narrow 

spread in decay times when 6T varied by a factor of 10 indicates that 

the parent function is close to a true exponential. Typical fits are 

shown in Figures 21-23; the quality of the fits is in all cases precise 

(1 standard deviation) to better than 1% . The source of the small 

systematic differences in (2nT)-l observed as a function of 6T in 

Figure 19 is not known at present . Because the spheres are intense 

scatterers, the S/N ratio is good and all of the correlation functions 

collected had baselines close to 0. Figure 20 consists of the same 

data fitted to a single exponential with a zero baseline. The system­

atic deviations of Figure 19 disappear when this is done. For low 

level signals the data must be fitted with a baseline because the S/N 
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ratio is not sufficient to mask low frequency noise which is correlated 

and appears as a baseline offset. 

From theory we expect the sphere data to exhibit an inverse 

decay time for the correlation function of 2DK2. A plot of T-l versus 

K2 should produce a straight line with a slope proportional to the dif­

fusion coefficient D . A fit to the data of Figure 19 yields a value 

for D of 0.359 x l0- 7cm2/sec. Assuming the diffusion coefficient for 

the spheres can be represented by the Stokes-Einstein relation 

D = kT/s (68) 

where s = 6nnr , the average radius of the spheres can be calculated. 

The value determined in this manner is 

r = 595~ 

An accuracy of 5% is estimated based on the value of the slope of a 

line drawn through the (2nT)-l values which best represent the entire 

correlation functions. Our value is to be compared to Dow's quoted 

value of 545 ±14g, measured by electron microscopy. Considerable evi­

dence has accumulated which indicates that values obtained from elec-

tron microscopy are consistently low (Kratohvil and Smart 1965; 

Phillips et al. 1970). In a thorough particle size determination using 

total intensity light scattering from single latex particles, Phillips 

et al. (1970) measured the sphere size as 600 ±50~, which is in agree-

ment with our experimental results. 



-47-

pX174 RF and PM2 I Experiments 

The experimental results for the solutions of ¢Xl74 RF and PM2 I 

DNA appear in Figures 24 and 25, respectively. Again each datum repre­

sents the decay time determined from a fit to a single correlation func­

tion . The correlation functions are fitted to a single exponential 

with a variable baseline. The reproducibility of the data is better 

than that shown in the figures . Figures 26-28 display typical autocor­

relation functions collected for PM2 I DNA . The reproducibility of the 

correlation functions is thought to be ~1%; the variation of results in 

Figures 24 and 25 is a reflection of the uncertainty in the fit (a 

standard error of ~2%)--the parent function is presumably a sum of 

exponentials while the fitting function is a single exponential . 

The data for both DNA solutions have been analyzed in terms of 

the prior theoretical discussion . The in i tial assumption, to be revised 
I 

later, is that only the translational component and the lowest order 

intramolecular term contribute significantly to the scattering. Then 

the field correlation function is expressed as 

{ 
2 2 + P20 (x) exp -[DK + Tl]T} (69) 

and the current autocorrelation function becomes 

2 2 Ci(T) ~ P
00

(x) exp {-(2DK )T} 

+ 2P (x) P20 (x) exp{ -[2DK2+ ~]T} 
00 Tl 

+ P~0 (x) exp {-[2DK2
+ ~ ]T} (70) 
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We further assume that 2P00P20 >> P~0 so that the last term of Equa ­

tion (70) may be ignored. The effect of such an 'assumption will be 

discussed later . The current correlation function final ly simplifies 

to 

(71) 

Translational diffusion 

The value for the diffusion coeffic i ent D is estimated from the 

analysis of low angle data using the following reasoning . In the low 

angular region the dominant contribution to the scattering is from 

center of mass translation . Figure 18 illustrates the prediction for 

the translational scattering amplitude from Rouse-Zimm theory . 

With Equation (71) in mind, it wil l be useful to adopt the nota-

ti on 

and 

where the r ' s a~e components of the relaxation times. The ratio 

(72) 

can be evaluated for the two solutions with the result (for 30°) 

r/ro = 5.5 ( cjJX RF) 
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(PM2) 

<i2>e the mean square end-to-end distance, is estimated using a sta-
o 

tistical segment length of 1200A (Schmid et al. 1971) and contour 

lengths of l .78 x l0-4cm for ¢X and 3.06 x l0-4cm for PM 2 (Espejo 

and Sinsheimer 1969). 

Considerable ambiguity exists in the estimation of rT/r0 because 

the expression for Tl [Equation (62)] is derived for infinite dilution. 

It is unknown whether Rouse-Zimm theory holds for finite concentration 

and Tl has the same concentration dependence as D . For the moment 

it is sufficient to say that 

for low angles. Ci(T) may now be expressed as 

(73) 

where For the case of low scat-

tering angles the prediction is then a rapidly decaying exponential 

(the intramolecular component) of low ampl itude with a characteristic 

time of 

(74) 

superimposed on an exponential (the pure translational component) with 

a much longer relaxation time of 
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(75) 

The fractional intensity of the latter term is large compared to the 

internal term. It follows that for long sample time increments the 

intramolecular contribution is compressed into the initial part of the 

curve and the contribution to the correlation function is primarily 

from the pure translational term. 

The inverse decay time (2nT)-l of the correlation function 

provides an estimate of D . The slope of a line drawn through the 

(2nT)-l 's for low angle correlation functions should be equal to D/n. 

This procedure has been followed with the results 

(¢X RF) 

-8 2 D = 0.7 x 10 cm /sec (PM2 I) 

These compare to infinite dilution values based on sedimentation data 

(Espejo et al. 1969) of 

I Do = 2.32 x 10-8 

PM2 
II Do = 1.87 x 10-8 

I Do = 3.29 x 10-8 
¢X RF 

II Do = 2.54 x 10-8 

Considerable uncertainty exists in our experimental values because 

even at low angles (30-40°) and long 6T the values of x (Figure 18) 

for these UNA molecules are sufficiently large and Tint is sufficiently 

short that intramolecular contributions cannot be totally neglected; 
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Tables 7 and 8 contain scattering parameter values for the range of 

K2. Such an effect would falsely increase the measured value of D 

A second possibility exists--partial heterodyning due to stray or 

reflected light would reduce (2nT)-l and therefore decrease the ob-

served D Either of these possibilities could seriously affect the 

result because of the sensitivity of D to small variations in 

(2nT)-l at low angles. The possibility of scattering at even lower 

angles using heterodyning would eliminate these problems . The diffi­

culty is that at (2nT) -l values of several Hz, low frequency noise may 

seriously distort the data. 

Intramolecular diffusion 

Having established the form of the correlation function as 

it is worthwhile to examine its behavior at higher angles. Reevaluat­

ing rT;r0 for 120°, 

(¢X RF) 

(PM2) 

The values of rT/r0 are probably too small because <22>e for form 

I is reduced by approximately 15-20% from form II (Jolly and Campbell 

l972a; 1972b). These molecules should also be treated as non-free-

draining, which further reduces Tl and increases rT;r0 
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At these concentration levels the occupation density for PM2 

is 0.17 and for ¢X it is 0.22. For comparable levels of high molec­

ular weight polystyrenes in solution, Huang and Frederick (1974) 

observed no systematic variation in Tl with concentration. If Tl 

does not change, then 

r /r = 
T D (76) 

If we tentatively assume that Tl is less sensitive to concentration 

than D , then in view of Equation (76) and the preceding arguments it 

is reasonable to say that 

As we move to lower angles this will most certainly be true . As for the 

low angle case, the decay of the intramolecular term is faster than the 

translational motion term, but in this instance we wish to study the 

Tint component in order to determine Tl . Fortunately, at high scat­

tering angles the intramolecular amplitude P20 (x) contributes sig­

nificantly to the total intensity (see Figure 18). We can envision 

the intramolecular term of reasonable amplitude decaying on top of a 

more slowly dying exponential resulting solely from mass diffusion . 

Tl may be estimated for such a case by using the short sample time 

increments , which have the effect of emphasizing the Tint term . 

Two complementary methods have been employed to analyze the 

data. Both are based on the notion that at high angles and short 6T, 

Ci(T) can be approximated with a single exponential 
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(77) 

where -1 2 
Tint = 2DK + 2/Tl Using the experimentally determined values 

for D in the expression for Tint' a fit to the data yields values 

The Tl values obtained at different scattering angles are 

not expected to remain constant because the slope of the baseline from 

translational diffusion will become flatter as K + 0 . The sloping 

baseline has the effect of reducing Tint and consequently 

Tl(measured) < Tl(actual) 

at a given value of K. As K = 0 is approached Tl(measured) 

approaches Tl(actual); thus, we are able to place a lower limit on 

Tl by calculating Tl as a function of decreasing K2 The 

limitation of this approach for determining Tl is the reduction in 

amplitude of the internal term at low angles, which has the effect of 

producing falsely high values for Tl Tables 9 and 10 contain 

determined Tl's as a function of e . As the theory predicts, 

Tl(measured) increases monotonically with decreasing scattering angle. 

The lower values of e chosen to estimate Tl have been somewhat 

arbitrarily chosen based on the predicted contribution to the correla­

tion function from Figure 18. 

by extrapolating the high 
-1 

Because Tl(measured) > 

An upper limit may be placed on Tl 

angle, short ~T data through the axis. 

-1 
Tl(actual) and Tl(measured)+ Tl(actual) as K + 0 , the line of (2nT)-l 

versus K2 should yield a K = 0 intercept with Tl(intercept) > 
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T l (actual)" With this procedure the following values were obtained: 

(¢X RF using 6T of 5 µs) 

(PM2 I using 6T of 5 and 10 µs) 

These are to be compared to the Rouse-Zimm theoretical values [Equation 

(64)] of 

Tl ~ 2.6 msec {¢X RF) 

Tl ~ 4.4 msec (PM2) 

based on the experimentally determined values of D . If infinite 

dilution values are used the T1
1 s are reduced by the ratio 0

0
/D. 

The supercoiling and non-free-draining contributions further reduce 

We have proceeded under the assumption that Ci(T) contains 

only two terms. But at high angles Ci(T) has higher order intra­

molecular contributions containing decay times of (2DK2+ 4/T1)-l, 

{2DK2+ 6/T
1
)-l, etc. These terms all have the effect of increasing the 

observed inverse exponential decay time, or analogously decreasing the 

measured intramolecular relaxation time. The en~anced T-l values 

further contribute to the departure of the K = 0 extrapolation from 

the correct values. The sloping baseline effect and the higher or 

intramolecular terms thus combine to produce an intercept value for 

Tl which is greater than the actual value (assuming the model to be 

correct). We see that the real Tl should be in between the high 
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angle fitted value and the intercept value. 

Considering the large uncertainty in the T1
1 s determined by 

these upper and lower bound procedures, the most we can conclude is 

that the experimental values appear to be qualitatively correct . A 

more thorough analysis must be performed in order to reach a firm con­

clusion . 

Suggestions for Further Analysis 

An alternate and more rigorous data analysis method exists which 

relies on graphical inspection of the data. We have seen that the cor­

relation function has a quasi-exponential form. Plots on a semi­

logarithmic scale of Ci(T) versus elapsed time T give straight lines 

at low scattering angles provided the 6T are sufficiently long. The 

single time constant estimated from the slope gives directly a value 

for D For large angles, however, one should expect several decay 

times, of which two may be readily studied. If long 6T are used the 

asymptotic slope of the semilogarithmic data yields the translational 

constant ; the amplitude of this longer time constant term is given by 

the intercept of the asymptote extrapolated back to T = 0 A second 

time constant is found by determining the initial slope of the data for 

short 6T . If the data are of a quasi-exponential form then 

(78) 

where -<f> is the initial slope. The theory predicts 
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(79) 

then 

. ~80) 

Thus, the initial slope is 

-<I'> (81) 

and the semi-logarithmic plot yields a value for <f> . The two time 

constants thus separated can be plotted against K2 . The value of 

such a plot is that (l) the anticipated linear behavior for (2nT)-l 

versus K2 for the low angle and high angle long ~T data can be 

checked, and (2) theoretical values for <f> can be generated and 

compared to the experimental <f> . The extension to higher order in­

ternal tenns is straightforward . A complimentary check is available 

by plotting the theoretical fractional amplitudes versus the experi­

mental values determined by extrapolation. 

This approach should allow a more precise analysis of the data 

and could prove to be a convenient means for checking new molecular 

theories for the dynamics of polymer chains . 
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Conclusions and Recommendations 

Translational and internal diffusion have been observed for 

¢Xl 74 RF and PM2 I DNA using light scattering spectroscopy. A tenta­

tive interpretation of the data in terms of Rouse-Zimm theory yields 

internal relaxation times in qualitative agreement with theoretical 

predictions. Statements of quantitative agreement are probably un­

justified until a more detailed analysis of the data has been performed 

and further information on concentration effects is obtained. 

Experiments on systems related to those of this study should 

provide interesting information on changes in flexibility and tertiary 

structure of DNA. For example, PM2 II should exhibit internal relaxa­

tion times different from those of PM2 I, and linear PM2 should have a 

lowest order mode of relaxation four times that of circular PM2 

(Bloomfield and Zimm 1966). Tl happens to be the hydrodynamic quan­

tity most sensitive to a loss of circularity. Comparative studies are 

valuable because they do not rely heavily on the quantitative validity 

of Rouse-Zimm theory for the extraction of useful information. A 

similar study could be performed on a family of ¢Xl74 DNA : ¢X single­

stranded linear, double-stranded linear, RF I, and RF II. 

Using relaxed circular forms of ¢X and PM2 and the single­

stranded linear form of ¢X DNA, it should be possible to compare 

experimental results to data generated from polymer dynamics theory 

using an approach similar to that previously discussed. This could 

prove to be a useful method for examining the validity of theories of 

macromolecular motion. 
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APPENDICES 
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Appendix I 

Signal Processing 

Coherence Theory 

Now that the theory for the spectral distribution has been 

developed we need a method for information collection and translation. 

Random signal theory provides the theoretical framework for signal 

processing techniques. Cummins and Swinney (1970) discuss the ap­

plication of these techniques to light-scattering in detail. 

According to the Wiener-Khintchine theorem, the power spectrum 

Pi(w) of the photocurrent (from a photomultiplier) and the current 

correlation function Ci(T) are Fourier transform pairs 

00 

Pi(w) = ~ J eiwT Ci(T) dT (I. l) 

-00 

where 
T 

i(t+T)> = lim h- { i(t+T) i(t) dt 
T + oo f ( 1.2) 

and i(t) is the photoelectric current. In addition, Mandel (1963) 

has shown that 

i(t) = ew(l)(t) =ea E*(t) E(t) =ea I(t) (I. 3) 

where a is the quantum efficiency and w(l)(t) is the probability 

per unit time of photoelectron emission from a photocathode illumin­

ated by the scattered field. The joint probability that one photo­

electron will be emitted at time t (per unit time) and another at 
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time t+T (per unit time) is 

( I.4} 

Also, for stationary fields, 

<i(t}> = e<W(l)(t)> = ecr<I> (I. 5) 

( I.6) 

where 

On substitution of (I.3) into (I.2} 

(I. 7} 

* and Ci(T) = Ci(-T). 

The photocurrent i(t) actually consists of a series of in­

finitely narrow discrete pulses. Therefore Ci(t) has contributions 

from pulses caused by distinct electrons and those caused by the same 

electron, i.e., if the electrons at t and t+T are distinct, 

while if we observe the same electron at t and t+T , 
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This term gives rise to the shot noise in the photocurrent. As a 

result 

Ci(T) = e2a <I> o(T) + e2a2 <I>2 g( 2)(T) 

= e <i> o(T) + <i>2 g( 2)(T) 

(I.8) 

This expression relates the photocurrent correlation function to the 

second-order field correlation function. We consider below three dif-

ferent detection schemes which utilize this result. 

Optical Beating 

Homodyne (self-beating) spectroscopy operates on the principle 

that as the intensity of the optical field at the detector fluctuates 

in time, so will the photocurrent since the photoelectric emission rate 

is proportional to the optical intensity. Thus by measuring the spec­

trum of the fluctuations we can determine the spectrum of the scat-

tered field. 

Homodyning transfers the spectral information to much lower 

frequencies where conventional electrical filters can handle the spec­

trum. Since the output current of the phototube is proportional to 

the square of the incident electric field, the photocurrent contains 

beat notes between each of the spectral components of scattered light. 

For laser scattering by a dilute solution of scatterers, the 

optical field is a narrow band Gaussian random field with the autocor-

relation function 
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(I. 9) 

For such a fie 1 d Mande 1 ( 1965) has shown that 

(I.10) 

Using this relation simplifies Ci(T) : 

(I.11) 

From Equation (I. l) it follows that 

00 

(I.12) 
-oo 

Using the convolution theorem 

(I.13) 

where FT[f(t)] = F(w), we arrive at the expression 

2 00 

P . ( w) = < i > J I ( B) I ( w-B) dB 
1 21T (I.14) 

-00 

Equation (I.14) relates the power spectrum of the photomultiplier tube 

current to the convolution of the power spectrum of the electric field 

with itself, from which the notion of self-beating naturally arises. 

For diffusion the correlation function g(l)(T) has the form 

( l) -iw T -XITI 
g (T) = e · 0 e (I.15) 

hence 
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(I.16) 

and 
00 

Pi(w) =~TI J eiwT {e <i> o(T) + <i>2 + <i>2 e-2XITI} dT 
-oo 

1 < 1· > + . 2 s: ( ) + . 2 ( 2 XI n) = 2TI e <1> u w <1> 2 2 w + (2X) 
(I.17) 

The photocurrent spectrum contains three terms; the shot noise, 

the d.c. component, and a Lorentzian, in that order. The third term 

is the actual light-beating spectrum with a half-width twice the op­

tical width, and centered at w = 0 . Thus an optical signal originally 
. 15 

in the 10 Hz range is now in the low-frequency range due to self-

beating. 

The limitation of this technique is that the field be Gaussian. 

If not, there is no simple relationship between I(w} and Pi(w) . 

An alternate detection method is heterodyne spectroscopy. The 

detector is illuminated simultaneously by the scattered field and a 

coherent local oscillator signal (usually the incident laser beam). In 

analyzing heterodyning we find that the light beating spectrum depends 

on g(l) rather than g( 2), and is therefore independent of the field 

statistics. In this case the power spectrum is an exact replica of the 

optical spectrum centered at !w
0
-wl0 1 • If the local oscillator is 

the laser, the spectrum is centered around w = 0 . 
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Correlating 

Signal correlation determines the photocurrent autocorrelation 

function directly. The quantities of interest are then extracted from 

C;(T), e.g., for a Gaussian field 

Assuming we are detecting a mass diffusion process 

( ) -iw T - DA8K
2

iTI 
g 1 (T) = e o e 

and 

The shot noise and d.c. components are easily subtracted off, leaving 

(I.18) 

from which DAB is readily obtained. For heterodyning,the current 

autocorrelation function is 

(I.19) 
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Appendix II 

Details of the Spectrometer 

Numerous precautions were taken to ensure proper performance of 

the spectrometer . The most important were optical alignment and the 

elimination of low frequency noise . 

Axis of Rotation and Optical Alignment 

The optical rail is attached to the turntable of a granite 

microscope base. Because the floor and table are ~either flat nor level, 

the rail when rotated from o0 to 130° did not move in a horizontal 

plane perpendicular to the direction of polarization of the incident 

beam. In order to achieve the desired rotation plane the stops on the 

three air-pistons supporting the table were adjusted so that when the 

table was lowered onto its supports the rotating base projected a ver­

tical axis of rotation. The di rection of the axis was ascertained by 

inspecting the bubble level mounted on the rail as it was rotated over 

its full angular range. The stops were repeatedly adjusted until the 

rail could be rotated without moving the bubble by more than one divi -

sion, which corresponds to motion out of the horizontal plane of less 

0 than 0.01 . 

A dial gauge was next mounted to the foot of the rail. With 

the table lowered, the elevation of the rail was calibrated by recording 

the dial gauge reading as a function of angle . This procedure allowed 

the rail to be rotated in the desired plane when the table was under 

air-suspension. 
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To be sure that the optical system viewed the correct il­

luminated volume, a careful alignment scheme was devised. The 

procedure follows: 

l. The table is lowered onto its mounts. 

2. The rail is rotated to approximately 90° and the cathetometer is 

positioned so that it is roughly in line with the rail. 

3. The cathetometer is leveled. 

4. The rail is leveled using the adjustable rail support to properly 

position the bubble. 

5. A pinhole assembly is placed in the approximate center of rotation 

and the cathetometer viewer is used to sight the pinhole. 

6. The pinhole is moved to the near end of the rail and the rail is 

rotated until the pinhole is centered on the cross-hairs of the 

cathetometer telescope. 

7. Steps 5 and 6 are repeated until the rail is aligned parallel to 

the viewer. 

8. A plumb line is positioned at the center of the pinhole and the tele­

scope is lowered to the rail. If the plumb line is not centered 

on the rail the pinhole is moved and the step repeated. The rail 

should now be in a line extending parallel to the telescope, the 

center of the rail, and the center of rotation. 

9. The two separate pinhole assemblies are placed at des ignated posi ­

tions on the rail, one close to the center of rotation and the 

other at the end of the rail. The plumb line is centered on the 

pinhole at the end of the rail; this pinhole is then removed and 

the position of the other pinhole is centered. 
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10. Both pinholes are sighted through by adjusting the focus of the 
I 

telescope. A white illuminated card is held behind the pinholes. 

11. Both pinhole assemblies are removed. A taut, vertical wire, 

positioned at the center of the sample platform, is sighted. If 

the wire is not centered the base must be translated. If the wire 

is to the left of the cross-hairs as viewed through the telescope, 

the wheel located at the front of the optical rotary base is moved 

to a lower setting. 

12. If the wire is not centered, a pinhole is positioned near the cen­

ter of rotation and the telescope is used to focus on its center. 

The second pinhole is added at the end of the rail and the rail is 

rotated until the pinhole is centered . The procedure is repeated 

until the telescope and pinholes are aligned . 

13. The wire is again sighted. Its position is adjusted if necessary 

and 12 is repeated. 

14. The rail is rotated to approximately o0 actual (in line with the 

laser beam) and the cathetometer is moved so as to be approxi­

mately aligned with the rail. 

15 . The pinholes are again aligned to the telescope, the pinhole as­

semolies are removed and the wire is sighted. If it is not on 

the cross-hairs, the other translational adjustment is turned 

until the wire is centered . 

16. The rail is returned to its original position and 5- 7 are repeated 

keeping the pinholes in the same position. Steps 11-15 are then 

executed. 

17. Without moving the pinholes, the position of the laser beam is 
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adjusted so as to pass through both pinholes. Possible adjust­

ments include the beam director horizontal, vertical, and angular 

(side to side) adjustments, and the angle of the rail. Once com­

pleted, the turntable dial reading becomes o0
. This procedure 

guarantees a scattering volume located at the center of the cell 

and the center of rotation, and an optical alignment completely 

independent of the rail. We have discovered that optical rails 

are not sufficiently straight in either direction; our alignment 

scheme eliminates this problem. 

Low Frequency Noise 

Vibration isolation 

As mentioned previously, the optical system is mounted on a 

Newport Research Corp. vibration-isolated optical table. The isolation 

is achieved through air-pistons and damping chambers operating in both 

the horizontal and vertical directions. Low frequency seismometers 

placed on the table and floor were used to check the degree of isola­

tion. In the horizontal direction frequencies above 5 Hz were not trans­

mitted. In the vertical direction only frequencies below 3 Hz could be 

detected. 

Elimination of ground loops 

Ground loops can pose a serious problem in the detection of the 

scattered spectrum unless elaborate precautions are taken. Figure II-1 

details the grounding scheme we implemented. 

System perfonnance 

With the entire spectrometer operating under typical experimen­

tal conditions (Fluke 4158 high voltage power supply, Hewlett-Packard 

3590A wave analyzer, 3594A sweeping local oscillator, EMI 9634QR 
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photomu l tip lier, and the Ar laser) the noise level as measured on the 

wave analyzer rms me t er on its most sensitive scale was less than 

0.5 µV. When the co rrelator replaced the wave analyzer, the develop­

ing correlation function contained a smal l 120 Hz sine wave due to 

the laser . The correlation function did not exhibit any periodic com­

ponents when an He-Ne laser was substituted for the Ar l aser . 
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Appendix III 

The Measurement of Total Intensity 

The light scattering spectrometer was constructed so that it 

was suitable for total intensity measurements. The two features which 

make this apparatus far more sensitive than conventional photometers 

are the use of a laser light source and dual photon counting. 

Advantages of a Laser Light Source 

Table III.l describes the advantages of an argon-ion laser over 

conventional light sources and the He-Ne laser. The collimation of the 

laser light permits a directional intensity far greater than from a 

mercury lamp. For a photomultiplier to detect sufficient light inten­

sity from a mercury lamp, the optical system must contain wide slits or 

apertures with a large angular acceptance. The degree of angular ac­

ceptance determines the lower scattering angle limit. But to perform 

angular studies on macromolecules, low angle studies are necessary, thus 

mercury light sources place severe limitations on the size of the mole­

cule that can be studied. 

Comparing the He-Ne and argon-ion lasers, we notice that the 

Ar laser has far greater power, and the intensity of scattering for a 

given incident intensity is almost three times that of the He-Ne laser 

because of the A- 4 wavelength dependence. In addition, photomultipliers 

have greater quantum efficiency in the blue region and a slightly 

higher gain. These factors make the Ar laser the overwhelming choice 

for total intensity measurements. 
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Signal Detection Techniques 

The basic problem in the detection of the total intensity of 

scattered light is the measurement of the signal in the presence of 

noise. Before describing photon counting, a brief explanation of 

alternate approaches is given. 

DC detection and lock-in amplification 

In a de system the signal-to-noise (S/N) improvement of experi­

mental signals is limited by low frequency noise . Simple low-pass 

filtering is not effective on drift or 1/f noise. Improvement can be 

achieved by modulating that portion of the total experimental signal 

which contains the desired information. Thus any de signals, offsets, 

or drifts introduced following the modulation stage are not passed by 

the ac amplifier. If one now uses asynchronous demodulation (wide-band 

ac amplification followed by full-wave rectification and low-pass 

filtering} an offset and variations in the offset are introduced in the 

signal. 

In contrast, lock-in amplification takes the same ac signal 

after amplification (the modulation frequency is selected for a mini­

mum of l/f noise) and synchronously demodulates the signal by cross­

correlating the amplifier output signal with a reference waveform of 

the same frequency. The result is that only the desired signal is 

full-wave rectified. Random noise and extraneous signals which are 

not phase-synchronized with the reference waveform will not produce 

any de offset, but only ac noise which can be eliminated with low­

pass filtering. The effective ac bandwidth is equal to the bandwidth 

of the low-pass filter. 
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The lock-in approach, while superior to de detection, has some 

fundamental limitations. In a signal-limited experiment where counting 

statistics are important, synchronous detection eliminates half of the 

signal through modulation. In the case of light scattering the chopping 

of the incident beam reduces the intensity by two. 

The other limitations are related to the spectral distribution 

of the noise and its origin . The lock-in system is no better than de 

measurements for the elimination of wide-band noise . In both cases the 

low-pass filter bandwidth determines the level of noise reduction. If 

l/f noise is important, the effectiveness of the system depends on 

whether the noise is additive or multiplicative. Additive noise adds 

to the de level but does not change the ac signal amplitude. These 

types of noise are not a problem with lock-in systems. Multiplicative 

noise multiplies the modulated signal, producing a variation in signal 

amplitude. Typical examples of multiplicative noise are gain-variation 

noise in the lock-in system and changes in the high voltage power supply 

of a photomultiplier . Lock-in amplifiers, like de systems, cannot deal 

with noises of this type. 

Young {1969) and Robben (1971) have demonstrated that photo­

multipliers show no increase in the noise power spectrum at low 

frequencies, thus phase-sensitive detection in the case of light scat­

tering is useful only for eliminating de offset resulting from addi t ive 

noise. 

Photon counting 

Photon counting has advantages over both de detection and 

phase-sensitive amplification. Gain drift, which has an important 
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effect on the accuracy of the previous techniques, is eliminated with 

photon counting conducted under proper conditions. Foard et al. (1969) 

and Jones et al. (1971) specify the requisites of proper counting 

operation. Specifically, the gain of the photomultiplier must be high 

enough to allow virtually every photoelectron pulse to be counted; that 

is, the pulse height distribution must be sufficiently narrow that a 

minor variation in gain does not alter the count rate. A closely re­

lated advantage accrues from the decrease of dark current and leakage 

current through pulse he i ght discrimination . Provided the signal pulse 

height distribution amplitude is greater than that of the dark current, 

discrimination with a baseline threshold setting will effectively reduce 

the dark count contribution. 

Other advantages include the ,detection of low light levels with 

good S/N ratios, the direct processing of inherently digital data, the 

elimination of statistical variations resulting from reading error and 

not from the noise in the signal, and improved precision. 

Instrumentation 

Mechanical and optical systems 

The photometer construction i s basically the same as that pre­

viously described . An additional dove-ta i l rail, aperture system, and 

photomultiplier are positioned at'.::'. 100° and held stationary by two 

large magnets mounted over the rail base and attached to the magnetic 

table surface . The aperture systems cons i st of two sets of modified 

milling attachments which can be translated in three mutually orthogonal 

directions. These two aperture systems define the solid angles and the 

irradiated volumes seen by the detectors . The angular divergence for 
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both systems is chosen to be identical while the illuminated volumes 

are in general different because system 1 is on a rotating rail while 

system 2 is fixed in position as a reference unit. Aperture system l 

is aligned with the cathetometer as outlined in Appendix II. Aperture 

system 2 is aligned by sighting the center of the focused light beam 

in the sample volume and positioning the rail and apertures such that 

one can also sight through the center of the pinholes. The cathetom­

eter is then left in position as a reference check. 

Photon counting system 

The advantages of single photon detection over de and synchron­

ous detection were discussed in a previous section . Here we discuss the 

advantage of this particular photon counting system over others pre­

viously constructed. The dual system as designed by Wims and Myers 

(1972) contains a reference channel for normalizing the data to the 

incident intensity, which may vary as a function of time. Part of the 

incident beam is split off and directed to the reference photomultiplier . 

This arrangement eliminates incident intensity variation as a source of 

error, thus giving it an advantage over a single detection system, but 

it does not correct for changes in the position of the scattering 

volume . 

Our system was designed with the reference detector viewing the 

sample volume . Variations in the height of the sample volume as 

viewed through the aperture systems are then compensated for by normal­

izing the data to the reference level. This approach proved to be 

essential for accurate total intensity measurements because the posi­

tion of the laser beam drifted with time. 
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Our Coherent Radiation 52A argon-ion laser contains a feedback 

light~stabilization unit which varies the current on the plasma tube 

in order to compensate for drifts in intensity. We began to question 

its effectiveness of operation when the intensity as monitored 

directly with the photomultiplier and/or a Schottky barrier photodiode 

recorded drifts of several percent on a strip chart recorder sensitive 

to 0.1%. The manufacturer's specifications were noise< 0.2%, and 

long term amplitude stability, better than 0.1% rms. A microammeter 

was installed directly behind the light control diode detector mounted 

on the head of the laser. We then proceeded to vary the plasma current 

by detuning the laser. Monitoring the head detector while simultane­

ously recording the light level from the photomultiplier or other 

diode (both positioned ~ 6 feet from the first diode) indicated that 

the intensity as seen by the light stabilization detector was constant 

while the intensity drifted considerably for the other two detectors. 

As further evidence for the motion of the beam, a double concave lens 

was inserted in the beam and the position of the beam was visually 

observed as the current was slowly varied by detuning. As expected, 

the beam moved up with detuning in one direction and down with detuning 

in the other direction . To compensate for these variations in beam 

position we had to resort to the dual counting system with both detec­

tors viewing the sample volume. On general principles this approach 

is preferred; the more advanced the stage in an experiment at which 

one can monitor a reference signal, the greater the likelihood of ac­

curate measurements. The laboratory temperature is now controlled to 

o.2°c, so that current variations resulting from temperature drift are 
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not as serious a problem. 

A block diagram of our system is shown in Figure III.l. The 

photomultiplier and counting equipment meet the requirements that have 

been outlined by Foord et al. (1969). The EMI9789B photomultiplier 

has a fast rise time and generates a narrow pulse output. The output 

pulse height distribution is Poisson with a definite peak corresponding 

to single photoelectron emission from the cathode surface (see Figures 

III.2 and III.3). The quantum efficiency (C.B. index of~ 9.0) and 

gain (~ 3.7 x 107) are high and the dark count is low (< 0. l nA). 

The sockets and housings used were produced by Products for 

Research and specifically designed for photon counting applications. 

Both housings (PR2200-RF) contained interchangeable potted dynode 

assemblies, mu metal shielding, and RF shielding. The output pulses 

were fed into the charge sensitive Canberra 805 preamplifier. The 

model 805 contains a white emitter follower which enables it to drive 

long lengths of RG 62/U cable which are terminated into 93 ohms. The 

output tail pulse (rise time < 50 nanoseconds) was fed into a Canberra 

6018 amplifier which forms near-Gaussian pulse shapes. The 6018 is 

capable of handling over 50 KHz without appreciable gain change. The 

puls~from the amplifier were then fed to the Canberra model 6031 

analyzer which generates logic pulse outputs of 0.4 microseconds wide 

and rise and fall times less than 25 nanoseconds. The analyzer has 

both lower and upper level discrimination with a minimum baseline 

threshold of 25 mv. The logic pulses then entered the Canberra 6324 

dual counter/timer which has a 20 MHz counting rate and a range of 

l x 106. Output of the analyzer can also be fed to the Canberra 6080 
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analog ratemeter and the 6033 E sweep, which is able to perform auto­

matic pulse height scans (for a single channel) with a preselected 

window width. The number of counts in both channels next entered the 

data control and output system which consists of the Canberra 6712 

multi-axis programmer, 6832 teletype transmitter, 6834 teletype re­

ceiver, and the teletype. As an option, the data may be recorded on 

magnetic tape . 

Photon counting system performance 

With the system intact but the high voltage off on both tubes, 

neither channel recorded any counts, which indicated a noise free 

system. The tubes were operated in a voltage range such that pulse 

height distributions similar to Figures III . 2 and III.3 were obtained . 

Dark current levels were negligible compared to the light count rates 

measured . A plot of the count rate as a function of tube voltage with 

fixed input light levels, amplifier gains, and baseline thresholds is 

shown in Figure III .4. In the plateau region almost every photoelec­

tron pulse i s being counted . In this region the count rate for a fixed 

light flux tends to become insensitive to tube gain and high voltage 

levels. 

Figures II I .5-13 attest to the success of the dual counting 

system . Figures II I. 5,8 , and 11 show raw count rates for three dif­

ferent samples . In the case of the white light source and fl ~orecein 

the count rate was i ntentionally modulated . Figures III.6,9, and 12 

exhibit the normalized count rates arrived at by calculating a mean 

ratio based on the ratio for each pair of points. Figures III.7, 10 

and 13 display the percent departure of the analytical channel count 



-78-

rate from the reference channel count rate. Error bars are based on 

one sigma assuming random counting statistics. In all three cases the 

deviations can be attributed solely to statistics. 
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Table l 

R
0 

Values for Pure Liquids, Liquid Mixtures, and 
Macromolecular Solutions 

· System 

Carbon disulfide 

Toluene 

Benzene 

Carbon tetrachloride 

Acetone 

Methanol 

Acetone (10% mole)/ 
Carbon Disulfide 

ADNA@ 18 . lµg/cm3 

Calf Thymus DN~ 
@ 63µg/cm 

T7 DNA @ 19.5µg /cm3 

* 

.!3.c,X l06cm- 1 (A=4358~) 

151-240 (Fabelinskii 1968) 

32.2-60 (ibid) 

28-55.l (ibid) 

12.5-15.40 (ibid) 

14.80 (ibid) 

11.4 (ibid) 

400 (Berge et al. 1970) 

220 (Dawson and Harpst 1971) 

788 (Krasna et al. 1970) 

320 (ibid) 

R /X* 
0 . -3 

sec-cm 

o. 180 

0.053 

0.042 

0.019 

0.017 

0.010 

0.360 

3.6 x 104 

9.4 x 104 

5.5 x 104 

X denotes either x or DAB; values of R
0

/X are approximate. 



Table 2 

Mass Diffusivity Measurements for Liquid Mixtures 

System 

carbon disulfide/acetone 
( 10% VO 1) 

n-propanol/bromoform lM 
2M 

3M 

4M 

benzene/acetone {10% wt) 

benzene/chloroform (10% wt) 

carbon disulfide/acetone {8% wt) 

diethyl diethylene glycol/ 
carbon disulfide 
(single concentration study} 

acetone (10% vol)/carbon disulfide 
(single concentration; single angle) 

ln1-ri2I o 
-· .. , K' 25 c 5 2 

A
0

=5461 DAB x 10 , cm /s 

0.2727 

0.2141 

0. 1439 

0.0574 

0.2727 

0. 2727 

0. 30 (Are'fev et al. 1967) 

0.70 ±. 0.09 (ibid) 
0. 94 ±. 0. 08 
1.098+ 0.120 

1. l 0 ±. 0. 125 

Values not available (Dubois and Berge 
1971) 

Values not available (ibid) 

Values not available (ibid) 

1. 85 2:_ 0.15 (Dubois et al. 1970) 

1.55 ±. 0.4 (by NMR) (Deville & Landesman 
in private communication to 
Dubois) 

2.32 (Berge et al. 1970) 

I 
00 
'.J 
I 



n-propanol/carbon disulfide (seven 
concentrations at single angle) 

n-propanol/nitrobenzene 
(six concentrations at single 
angle) 

acetone (10% vol)/carbon disulfide 
(single angle) 

n-hexane/carbon disulfide 
(dilute solution; single concen­
tration) 

n-hexane/nitrobenzene (dilute solution; 
single concentration) 

Me OH 
EtOH 

n-PrOH 
n-BuOH 

t-BuOH / 
1-Pentanol ! 
1-0ctanol ) 

in carbon di­
sulfide and 
nitrobenzene 

{all single concentration meas­
urements) 

Table 2 (continued) 

0.2461 

0. 1719 

0. 2727 

0. 2571 

o. 1829 

carbon nitro-
disulfide benzene 

0.304 0.2282 
0.2686 0.1954 
0. 2461 0. 1719 
0.2320 0. 1578 
0.2441 0. 1699 

- -
0.2008 0.2266 

(Jamieson & Walton 1973) 

(ibid) 

0. 92 (ibid) 

(ibid) 

(ibid) 

(ibid) 

I 
co co 
I 



Table 3 

Previous Liquid Thermal Diffusivity Measurements by Quasi-Elastic Light Scattering 

System IE/IE (benzene) 

toluene 0.923 

benzene 1.00 

carbon disulfide 1.32 

acetone (10% vol)/ ~l.32 
carbon disulfide 

X x 103cm2/s T°C 

o. 879 ± o. 025 20°c 
(Lastovka and Benedek 
1966) 

0.655 ± 0.070 
(Berge and Dubois 
1969) 

room 
temperature 

1.1 (Berge et al room 
1970) temperature 

1.2 (ibid) 

Bulk value x 103cm2/s 
20°c 

0.922 (Touloukian, 
vols. 3&6, 1970) 

0.963 (ibid) 

1.29 (Bridgman 1923; 
Shaw 1969) 

I 
co 
l.O 
I 



Table 4 

Intensity of Scattering from Entropy Fluctuationst 

-7 dn/dT x 105 
cpxlO 

p n erg/deg deg-l IE IE/IE(Benz) 

Water 0.997 1.3397 4. 18 -11 2.47 x 10-12 .00082 

Me OH 0.791 l .338 2.56 -40.5 6.87 x io- 11 .228 

EtOH 0.789 1.369 2.39 -41 7.92 x 10-11 .263 

Benzene 0.879 1.5220 1. 70 -64 3.01 x 10-10 1.00 I 

cs2 1.262 1.67377 1.0 -81. 5 3.97 x 10-10 1. 32 
l.O 
0 
I 

Toluene 0.865 1. 5130 1.68 -61 2. 78 x 10-10 .923 

Acetone 0.791 1. 3677 2.21 -50 1.27 x io-10 .422 

Chloroform 1.489 1.4582 0.966 -61 2.61 x 10-10 .867 

CC1 4 1.595 1. 4720 0.841 -56 2.40 x 10-10 .797 

tValues taken from Fabelinskii, 1968 

20°c; >.. = 4358~ ; (3s)2 2 IE = oT kT / pep 

= 4n2 ( ~~ ) 2 kT
2
/ pcp 
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Table 5 

. aE . 
Cac)P,T and Refract1Ve Index Differences for Binary Mixtures 

System 

carbon disulfide/ 
acetone 

methanol/benzene 

acetone/benzene 

ethanol/benzene 

n-hexane/benzene 

nitromethane/benzene 

methanol/butanol 

toluene/bromobenzene 

toluene/benzene 

Source for n and p 

ln1- n21 
25°C, >.0=5461~ 

0.2727 

0. 1736 

0. 1439 

0.1408 

0 .1283 

0.1202 

0.0704 

0.0636 

0.0040 

Huglin 1972. 

0.571 

0. 364 

0.294 

0.292 

0.271 

0.243 

o. 154 

0. 143 

0.026 

. 3 
A is defined as ~ 2 , which is nearly constant. 

1T (E+2) 



Table 6 

Thermal Diffusivities of Pure Liquids and Binary Mixtures 

x x 103(cm2/s) 

System This study 
(pure liquids) 

Acetone 0.881 ± 0.033 

Benzene 0.956 ± 0.040 

Bromobenzene 0.518 ± 0.025 

Carbon disulfide 1.10 ± 0.04 

Carbon tetrachloride 0.719 ± 0.016 

EthanoJt 0.839 ± 0.046 
N-hexane 0.740 ± 0.033 
MethanoJt 1.16 ± 0.10 
Toluene 0.849 ± 0.039 

( binary mixtures) 
Toluene-bromobenzene 

12.5% toluene 0.649 ± 0.025 
62.5% 0.688 ± 0.039 

Toluene-benzene 
30.0% toluene 0.869 ± 0.040 
50.0% 0.815 ± 0.035 
70.0% 0.772 ± 0.030 
90.0% 0.847 ± 0.035 

! Single data were collected for methanol and ethanol. 
0 Room temperature. 

T, •c Bulk value, 2o·c 

( 18.2) 0.934 (Touloukian, vols. 
3& 6) 

( 19.5) 0.963 (ibid.) 

(20.0) 0.749 (Riedel, 1951; 
Shaw, 1969) 

( 19.3) 1.29 (Bridgman, 1923; 
Shaw, 1969) 

( 20.0) 0.771 ( Touloukian, vols. 
3& 6) 

(19.8) 0.889 (ibid. ) 
(20.0) 0.837 (ibid. ) 
( 18.2) 1.035 (ibid.) 
( 19.0) 0.922 (ibid.) 

(19.9) 
( 19.9) 

( 20.0) 
(20.0) 
(20.0) 
(20.0) 

Other light scattering 
determinations, 

20°C unless otherwise specified 

0.655 ± 0.070° (Berge and 
Dubois, 1969) 

0.87 ± 0.1 (Berge, 
unpublished) 

1.03 ± 0.05 (Oliver and Pike, 
1970) 

0.90 ± 0.02 (Searby, 1971) 
0.94 ± 0.05 ( Beysens, 1973) 

1.1 ° (Berge et al., 1970) 

0.84 ± 0.05 (Oliver and 
Pike, 1970) 

0.879 ± 0.025 ( Lastovka and 
Benedek, 1966) 

0.98 ± 0.05 (Oliver and 
Pike, 1970) 

I 
l..O 
N 
I 
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Tab le 7 

Values for the Scattering Parameter IX for Circular ~Xl74 RF DNA 

2 

4 

6 

8 

9 

Values for the Scattering 

K2 x 1010 (cm-2) 

2 

4 

6 

8 

9 

x 

3. 57 

7. 14 

l 0 . 71 

14 .28 

16. l 0 

Table 8 

Parameter 

x 

6 . 10 

12 . 20 

18 . 30 

24 .40 

27 .45 

Ix for Circular PM2 

/x 

1.89 

2. 67 

3. 27 

3.78 

4. 01 

DNA 

Ix 

2. 47 

3.49 

4.28 

4.94 

5.24 
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Table 9 

Lower Bound Values on Tl for ~Xl74 RF DNA 

e Lh ( µs) Teff (msec) T1(msec) 

120 5 0.308 0. 76 

110 5 0.344 0.85 

100 5 0.385 0.95 

90 5 0.454 1.12 

80 5 0.508 1. 23 

70 5 0.605 1.45 

Table 10 

Lower Bound Values on Tl for PM2 I DNA 

e Lh{µs) Teff(msec) T1(msec) 

120 2 0.189 0.43 

110 2 0.214 0.49 

100 2 0.243 0.55 

90 2 0.290 0.66 

80 2 0.354 0.81 

70 5 0.661 1.62 

60 10 0.940 2.34 



Table III.l 

Comparison of Light Sources .and Photomultipliers 
Used in Light Scattering 

Mercury Lamp He- Ne Laser 

A (~) 4358 5461 6328 

Power output (w) 500 0.005 

Directional intensity (w-sr-1) l l 2 x 104 

Wavelength dependence of 

scatter I 4~80 1 4 l. 571 0.639 0.353 

Quantum efficiency of optimum 23 14 8 
photocathode (%) EMI9635B EMI9558B EMI9658R 

( K-Cs) S-20 extended 
S-20 

Typical gain of PMT 6. 7x 106 l.3xl07 6. 7x106 

Typical dark current (nA) 7.5 20 20 

Available power in 800 w 50 mw commercial products 

Argon-Ion Laser 

4880 

. l.O 

4 x 106 

l .000 
I 

\.0 
<..n 

17 I 

EMI9634QR 
11 super 11 S-ll 

5.5xl07 

75 

5w 
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Fig. 3. Mutual diffusion data for the nitromethane-benzene system; 
A this work, T = 20.0± .2°c; 0 Miller and Carman (1959), 

T = 20.0°c. 
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Fig. 4. Mutual diffusion data for bhe acetone-benzene system; 
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Fig. 5. Mutual diffusion data for ~he n-hexane-benzene system; 
6. this work, T := 19. 9 ± • 2 C; 0 Lemon de ( 1938), T = 5oc. 



-103-

4.000 ~-------,.---------,------,----.,.------, 

METHANOL-BENZENE 

0 

3.000 

- 2.000 
U') 

0 

x 
m 
o~ 

1.000 

0 0 

o.o L_ __ ___JL..,__ __ __J ___ --1 ___ ___.__o_o __ __.1.000 
0.0 0.200 0.400 0.600 0.8 

MOLE FRACTION METHANOL 

Fig. 6. Mutual diffusion data for the methanol-benzene system; 
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Fig. 7. Mutual diffusion data for the ethanol-benzene system; 
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t-, 10% ( vo 1.) methanol ; ! 30% ( vo 1.) methano 1. 
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Fig. 11. Inverse decay time vs. K2 for pure carbon disulfide. 
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Fig. 111.1. Block diagram of the photon counting and data col­
lection systems 
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Fig. III .2. A pulse height distribution for the EMI 9789B photo­
multiplier tube in system 1, obtained using the E sweep 
with a window width of 0.04 volts and a power supply 
voltage of 1350. 
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Fig. III . 3. A pulse height distribution for the EMI 97898 photo­
multiplier tube in system 2, obtained using the E-sweep 
with a window width of 0.04 volts and a power supply 
voltage of 1250 . 
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A PROPOSAL TO STUDY 

THE A DNA CYCLIZATION REACTION 

BY CLASSICAL LIGHT SCATTERING 
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The two cohesive ends of the linear A DNA molecule are known 

to be short segments of probably less than ten nucleotides, and are 

capable of joining intramolecularly to form closed circular monomers. 

The cyclization of these molecules has been carefully studied by Wang 

and Davidson (1966a; 1966b). The purpose of this proposition is to 

show that the cyclization ~quilibrium and kinetics may be readily 

studied with a laser light source and conventional light scattering 

theory and techniques. 

According to the theory for scattering from polymer molecules 

with dimensions comparable to the wavelength of radiation, 

( 1) 

where a
0 

is the polarizability of a monomer unit, rj is the loca­

tion of the jth segment, a represents the number of statistical 

segments in the molecule, and s , the Bragg wave vector, is equal to 

4n/A sin(e/2). P(e), the ratio of scattered intensity with interfer-

ence to scattered intensity without interference is then 

P(e) = ~ l l cos(s•r.k) 
a j=l k=l J 

(2) 

where rjk = rj - rk is the vector leading from the jth to kth scatter­

ing point. Equation (2) represents the value of P(e) for a rigid 

scattering particle fixed in space, but we are interested in a value of 

P(e) averaged over all possible orientations and configurations of the 

molecule. Defining t)J as the angle between s and rjk' the average 

over all orientations of cos s•rjk becomes 
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"lj!=7T 

f . cos(srjkcos "l)J)sin "l)Jd"l)J 
= "l)!=o · 

"lj!=1f 

J sin "ljJ dijJ 
"l)!=O 

sin(sr.k) 
J (3) 

and substitution in Equation (2) leads to the value of P(e) based on 

random orientation of the scattering particle , 

1 sin sr.k 
P(e) = - l l J 

a2 j = 1 k = 1 s r j k 

This relation was first derived by Debye for X-ray scattering. 

In the process of obtaining a P(e) averaged over all con­

figurations of the molecule, the theory of linear polymer statistics 

is employed . In particular , we initially treat the linear A DNA mole-

cules as flexible , random Gaussian coils; the distribution function for 

end-to-end distances is given by (Jacobson and Stockmayer 1950) 

W(h)dh 
3 312 2 2 

~ {27T(£b)} {exp(-3h /2£b)} 4Tih dh (4) 

1 is the contour length, b represents the random coil segment. length, 

and h is the end-to-end distance. Observe that £b equals the mean 

square end-to-end distance <h2
> • Again from polymer statistics 

(Tanford 1961) we know that 
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(5) 

where R6 is the radius of gyration, hence 

R~ = ~b/6 

for the linear A DNA. 

Zimm and Stockmayer (1949) have shown that the distribution 

function for dimensions of a circular molecule is also expressed as a 

Gaussian, but the mean square end-to-end distance of the circular mole-

cule is reduced by 2 from that of a linear molecule of the length. 

Thus, for the circular A DNA 

R~ = ~b/12 

The differing radii of gyration for the two molecules account for the 

difference in their respective scattering envelopes. 

With a knowledge of the segment distribution function we are 

able to perform the averaging over all possible configurations of the 

molecule. The result, originally derived by Debye, is 

P(e) = (2/u2) (e-u + u - 1) (6) 

where 

Using Equation (6) it is possible to compare P(e)'s for the circular 

and linear molecules. The results of this comparison appear as Figure 

1. Values for the two radii of gyration are based on a contour length 

of 13.2µ (MacHattie and Thomas 1964) and a statistical segment length 
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of 717~ (Hearst and Stockmayer 1962). 

The preceding treatment is oversimplified; we have assumed that 

\DNA can be adequately represented as a Gaussian random coil. For 

the more realistic model of a wormlike coil with excluded volume, 

Sharp and Bloomfield (1968) have described the light scattering form 

factors. The qualitative features of the linear and circular form 

factors do not change dramatically. 

Dawson and Harpst (1971) have reported light scattering measure-

ments on \ DNA. While a number of their conclusions based on low angle 

extrapolations are questionable (Schmid et al. 1971), they have been 

able to confirm our expectation of a significant difference between 

the linear and circular DNA form factors. In the calculations that 

follow we shall assume that the P(e)'s are experimental values as they 

are presumably the most accurate. 

Experimentally, we observe I(e), the time averaged intensity 

at scattering angle e For the cyclization reaction, I(e) may be 

expressed as 

I(e) = K'{PL(e) (L) + Pc(e) (C)} ( 7) 

K 1 is a proporti ona 1 i ty constant; (L) and ( C) are the concentra­

tions of linear and circular DNA molecules, respectively. The 

cyclization process 

L(linear monomer) C(circular monomer) 
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can be described by a single equilibrium constant 

K = (C)/(L) 

Thus scattering at two angles provides enough information to estimate 

the equilibrium constant of the reaction. Alternatively, all linear 

or circular DNA could be used initially, eliminating the requirement 

of a second scattering angle. 

The rate constants for the linear relaxation of the system to 

equilibrium can be studied by following the decay of scattered inten­

sity as a function of time. The cyclization reaction is characterized 

by the relaxation time TR , where 

The time rate of change in intensity is 

d
dtI = K, { P ( 8) d ( L) + P ( 8) ~} 

L dt C dt 

= K' d(L) {P (e) - p (e)} 
dt L C 

(8) 

Defining a configurational factor Z as 

z = PL(e) - Pc(e) 

and integrating Equation (8), we arrive at the expression 

-t/t 
I - Io = K'Z x {e R - 1} t Lo 

(9) 
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where xl 
0 

is the initial extent of reaction, (L)
0 

- (L)
00 

(a similar 

relation holds for circular DNA). Determination of TR (and there-

fore kf and kb) from the data obtained by continuously monitoring 

intensity as a function of time follows directly from Equation (9) . 

The principal advantages of this approach to the study of DNA 

ring closure are the ease of data acquisition and the accuracy of the 

method . The entire experiment can be performed~ without removing the 

sample from the light scattering apparatus; previous techniques re­

quired a sedimentation analysis for each data point . The extreme in­

tensity of the laser light provides the sensitivity required--small 

relative changes in intensity are easily detected. 

In summary, conventional light scattering techniques in conjunc­

tion with a laser light source offer an alternate approach to the study 

of \DNA cyclization . Classical scattering theory, polymer statistics, 

and relaxation kinetics provide the foundation for the technique . 
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