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ABSTRAC T 

PART I 

The isolated eye of Aplysia californica produces a bursting 

pattern of spontaneous compound action potentials (CAPs) when recordings 

are made from the optic nerve in darkness . The CAP frequency varies 

with a circadian rhythm. The light response, also composed of CAPs , 

may be separated into an initial phasic response and a late tonic 

response similar in form to the dark discharge . Solutions containing 

La+ H- or high Mg++ with low Ca++, which are expected to block chemical 

synapses, stop the dark discharge and tonic light response but not the 

pha sic light response . The suppression of dark discharge by high ~IG++ 
++ 

with low Ca is usually temporary, lasting about 0 . 5 to 4 hours . 

Synchrony of the CAPs is not affected by either La+-H- or high Hg++, low 

ca++. These results indicate that the dark discharge is driven through 

chemical synapses , but the light response is not . Replacement of 

chloride in the bathing medium by propionate, which uncouples electrical 

junctions in the crayfish septate axon , abolishes all CAPs for varyi ng 

periods of time, usually several hours . Propionate leaves the EB.G 

i ntact and t he optic nerve electrically excitable .. A model for i nter-

neuronal connections in the Aplysia eye is constructed from these data . 

It i s postulated that the lieht response is initiated in the photo-

rec eptors, with the receptor depolarization passing through electr ical 

synapses to higher order cells . Spikes are produced in these cells and 

pas s down their axons in the optic nerve . Spontaneous dark activity 
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also represents spiking in these higher order cells, but is initiated 

through chemical synapses by pacemaker cell(s). Synchrony of t he CAPs 

is facilitated by electrical synapses between hic;her order cells. In 

++ low Ca media, these higher order cells may becoiae hyperexcitable to 

the point of autoactivity. 
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ABSTRACT 

PART II 

The circadian rhythm of spike output of the single neuron Rl5 

in the isolated PVG of Aplysia californica can be entrained in vivo 

by lii:;ht. The timing of the rhythm depends not only on the lighting 

schedule to which the animal was exposed prior to dissection, but also 

on the time of dissection relative to that light schedule. Entrain-

ment of the rhythm by light proceeds very slowly, if at all, in Aplysia 

with their eyes removed. An indirect inhibitory neural pathway is 

shown to exist between the eyes and Rl5, but cutting nervous 

connections containing this and any other neural paths from the eyes 

to Rl5 does not prevent entrainment by light in a majority of animals. 

In vitro experiJnents show that the eyes can influence the activity of 

Rl5 even when the eyes and the PVG are not neurally connected. The 

eyes therefore must release a water soluble factor which can affect 

Rl5, either directly or through some other neurons in the PVG. If the 

eyes and PVGs from different aniJnals are incubated together for 

several days and then separated, the subsequent spiking behavior of R15 

is similar to that observed after in vivo entrainment to a light 

schedule equivalent in phase to the circadian rhythm of the eyes in 

vitro. It is a strong possibility that the factor released by the 

eyes can entrain the circadian rhythm of Rl5. 
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General Introduction to Circadian Rhythms 

Circadian rhythms are cyclically repeating biological events, 

for example locomotor activity, glandular secretions, and neuronal 

spike frequencies, which occur, in the absence of external time cues, 

with a period close to, but not exactly, 24 hours. This free running 

periodicity is, in nature, synchronized with the exact ·24 hour perioa 

of the earth's rotation through reception of environmental time cues. 

The rhythms are reset daily so as to coincide with the 24 hour day. 

The most corrunon cue used to entrain circadian rhythms is the alternation 

of night and day. An entrained rhythm usually maintains a charac

teristic phase relation to the light-dark cycle; i.e., some event of 

the rhythm, such as the onset of activity, occurs at a fixed time 

relative to dawn or dusk. 

The study of circadian rhythms in animals has progressed rapidly 

since the demonstrations by von Frisch (1950) and Kramer (1950 ) that 

bees and birds, respectively, must possess an internal clock to aid in 

navigation. Several major areas of investigation have received 

particular attention: 1) the formal properties of circadian rhytluns, 

presumably the same in most or all animals and plants; 2) the under

lying molecular mechanisms; 3) the organs containing the endogenous 

oscillators which generate rhythrnicity (especially under constant 

conditions); 4) the organs receiving envirorunental rhythmicity cues 

(usually light or temperature); and 5) the coupling between the 

receptor organs and the endogenous oscillator and this oscillator 

with other subordinate ones . 
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The study of the formal properties of rhythms has usually been 

undertaken in whole organism experiments, such as locomotor activity 

rhythms or .insect eclosion rhythms. These investigations have yielded 

information about the timing of the rhythm by external cues (e.g., 

phas e response curves; Pittendrigh , 1960, 1974); the endogenous, 

circadian nature of the rhythm in the absence of (detectable) external 

t~ne cues; the stability of the rhythm in the face of changes in certain 

external conditions (especially temperature) . Excellent general r eviews 

of these and other properties of circadian rhythms have been written 

by Pittendrigh (1960 and 1974). 

Far less is known about the molecular mechanisms underlying 

circadian rhythms. In several systems RNA and/or protein synthesis 

is implicated in the production of rhythmicity (Karakashian and 

Hastings , 1963; Strumwasser , 1965; Feldman, 1967; Cymborowski and 

Dutkowski , 1969, 1970; Rothman and Strumwasser , 1973) . However, in 

Acetabularia a rhythm of photosynthetic capacity occurs even in the 

absence of the nucleus (vanden Driessche, 1971) , although this rhythm 

apparently is normally controlled by a nuclear rhythm. 

The search for the site of the driving oscillator in multicellu

lar animals, presumably in the central nervous systera, has resulted in 

more knowledge about where such oscillators are not than where they are . 

In mammal s , recent results indicate the suprachiasmatic nucleus in the 

hypothalamus is the site of the major driving oscillator for several 

rhythms (Stephan and Zucker, 1972; Moore, 1974) . Many subordinate 

circadian rhythJnic centers are also known (Menaker, 1974). In birds, 
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a major role has been suggested for the pineal organ (Gaston and 

Menaker, 1968). Potential sites in other vertebrates have not been 

identified, for the most part. It is known that the pineal is not the 

driving site in lizards (Underwood, 1973). The data on invertebrates 

are even more scanty, despite a great many experiments, especially on 

insects. Reports have appeared claiming to demonstrate the master role 

of the subesophageal ganglion (Harker, 1956) and of the pars inter

cerebralis (Nishiitsutsuji-Uwo and Pittendrigh, 1968b) in cockroaches, 

with each report quite convincingly disposing of any role for the rest 

of the nervous system, including the part found vital in the other 

paper. (For a discussion of this controversy, see Harker, 1973.) 

Konopka (Ph.D. dissertation, California Institute of Technology, 1972), 

using mutant gynandromorph Drosophila, has apparently succeeded in 

localizing the eclosion and locomotor activity master clock(s) in the 

head of the fly. 

The receptor for photoentrainment has also been difficult to 

locate in many cases. In m.a.rrnnals alone it is clearly known that the 

"obvious" route, the eyes, mediates entrainment of rhythms to light 

cycles (Browman, 1943; Halberg, Visscher, and Bittner, 1954). Entrain

ment is not accomplished through the form - movement visual pathways to 

the visual cortex, but rather through the accessory tract and a special 

retinohypothalamic route (Stephan and Zucker, 1972; Moore, 1974). In 

birds (Menaker, 1968), lizards (Underwood, 1973), frogs (Adler, 1971), 

salamanders (Adler, 1969), and fish (Reed, 1968; Erikson, 1972), the 

lateral eyes are not required for entrainment, although large 
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differences in the form of the rhythms measured are often seen after 

blinding . However, it is not known what the receptor organ is in any 

of these anirnals. In lizards, for example, Underwood (1973) removed 

lateral eyes, pineal organ, parietal eye, and painted the head black 

without abolishing entrainment to light in most cases . 

The situation in insects has recently become fairly clear for 

those species that have been studied . As of a few years ago , the 

photoreceptor for entrainment of the locomotor rhythm in cockroaches 

was thought to be, depending upon the report read, 1) both the ocelli 

and the compound eyes (Cloudsley- Thompson, 1953) ; 2) the ocelli alone 

(Harker, 1956); or 3) the compound eyes alone (Nishiitsutsuji-Uwo and 

Pittendrigh, 1968a). Recently it has been agreed upon that the 

compound eyes are the receptor (Roberts, Skopik, and Driskill , 1971) . 

Eclosion rhythms do not use the eyes (Trmnan and Riddiford, 1970) ; 

apparently the brain is directly light sensitive at normal environ

mental levels . 

Finally , as might be expected , the nature of the coupling between 

receptor and master clock , and master with subordinate systems , remains 

quite obscure in most cases . See the introduction to Part II for a 

discussion of this point. 
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Circadian Rhythms in Aplysia 

It is widely assumed, and most data indicate> that the 

controlling circadian rhythms in animals are found in the nervous 

system. Thus the same properties of marine opisthobranchs that are 

advantageous for neurophysiological and neurochemical studies also 

make them useful subjects for investigations of circadian rhythms: 

very large, electrically excitable neuron sornas; synapses sufficiently 

close to the cell body so that large postsynaptic events can be 

recorded there; distributed nervous systems; numbers of morphologi

cally, physiologically, and biochemically identifiable cells; and 

relatively large body size. 

Aplysia californica has so far been the only opisthobranch 

extensively used in circadian rhythm studies. Four rhythms have been 

described in Aplysia. Strwnwasser (1963, 1965) discovered that the 

identifiable neuron ' Rl5 in the parietovisceral ganglion (PVG) possesses 

a circadian rhythm of spiking activity recorded in the isolated 

ganglion. Second, other, as yet unidentified, neurons in the PVG show 

circadian rhythmicity of spike activity for many days in vitro 

(Strwnwasser, 1967). Strumwasser (1967) and Kupfermann (1968) 

independently showed that the locomotor activity of the intact animal 

occurs with a circadian rhythm. Fourth, Jacklet (1969b) found that 

the frequency of compound action potentials (CAPs) recorded from the 

optic nerve of the isolated eye in constant darkness also has 

circadian rhythmicity. 

Strumwasser (1965) has shown that the circadian rhythm of Ul5 can 
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be entrained by the lighting regime to which the animal was subjected 

prior to dissection. He found that the peak activity of spiking in 

the cell, monitored continuously for 24 hours or more, usually 

occurred very near dawn (Fig. 1, from Strumwasser, 1965). Some cells 

showed more than one cycle of activity. A four hour advance in the 

lighting schedule of the animals' holding tank resulted, after a few 

days of entrairunent, in a four hour advance in the timing of the 

cell's activity. Other experiments on this neuron have shown that 

the rhythm is affected by intracellular injection of the DNA-dependent 

RNA synthesis inhibitor actinomycin D and by the application of heat 

pulses to the whole PVG (Strumwasser, 1965); that the isolated soma 

is endogenously active (Alving, 1968); and that the rhythm persists 

for at least one cycle in the absence of spiking or synaptic input 

(Strumwasser, 1973). It has been reported that the timing of the peak 

activity of the Rl5 rhythm changes with time of year (Lickey, 1969), 

and that entrainment of the rhythm by light in vivo does not require 

the presence of the eyes (Lickey, Zack, and Birrell, 1971; Lickey and 

Zack, 1973). Little is known of the properties of the unidentified 

circadian oscillators in the PVG, except that, unlike Rl5, these cells 

can maintain rhythmicity for many days in vitro. 

The locomotor activity of Aplysia also follows a circadian 

pattern. The animal, at least in the laboratory, is strongly diurnal. 

Nearly all of the locomotor activity occurs in the lighted portion of 

the light-dark cycle, and the animal is quiet, even appearing to 

"sleep" in preferred positions in the aquarium, in the dark 
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(Strumwasser, 1967, 1971). This is a true endogenous rhythm, as 

shown by its persistence under constant light (Strumwasser, 1971). 

Since the animal has a distributed CNS, the dissection of the 

rhythm and its localization in restricted parts of the nervous system 

should be possible. So far, two main manipulations have been 

performed: removal of the eyes and removal of the PVG. Aplysia 

without their PVGs (which contain the known circadian oscillator Hl5 

as well as others (Strumwasser, 1973, 1974)) show nonnal locomotor 

rhythms for months, once the trauma of the operation wears off 

(Strumwasser, Schlechte, and Bower, 1972). Thus the driving center 

for the locomotor rhythm must lie elsewhere, possibly in the circurn

esophageal ganglia. 

The situation with regard to the eyes is more complicated. 

Strumwasser, using a non-contact, optical tracking system which 

generates data which can be converted into an estimate of distance 

travelled per unit time, has found that most Aplysia, after blinding, 

are no .longer capable of entraining their locomotor rhythms to an 

external LD cycle of JOO to 500 lux (Strumwasser, 1973, 1974). The 

data are analyzed for rhythmicity with periodograms and power spectra 

(see Strumwasser, Schlechte, and Streeter, 1967, for a description of 

these methods of analysis). A few blinded animals remain entrained, 

and most blinded Aplysia will entrain under high intensities of light 

(about 1800 lux; Strurnwasser, 1973). Block and Lickey (1973), on the 

other hand, using a contact system connected to an event recorder, 

report that blind animals, although showing differences in their 



-13-

locomotor patterns, still photoentrain to low intensities (170 lux) . 

The analysis of these data is unfortunately only by visual inspection 

of the event recorder charts . Examples of the data collected by the 

two systems are shown in Figures 2 and 3. It seems likely to this 

writer that a statistical analysis of the data of Block and Lickey 

would reveal severely diminished rhythmicity in the activity of the 

blinded animals , and in some cases perhaps none at all or a free run 

(especially in the case of data such as that of Fig . Jii-B) .. Also , 

the activity averages of Strumwasser (1973 ; Fig . 2) hint at the 

possibility of continued responsiveness of blin~ed animals to the onset 

of light, without entrainment of the entire activity cycle. It is 

possible that the analysis and interpretation of the data are more 

different in the two laboratories than the data themselves . Both g:roups 

do agree, at least, that blinding has large effects on the activity of 

the animals, even though there is no apparent effect on health . 

The fourth rhythm described in Aplysia so far is that in the 

frequency of CAPs recorded from the optic nerve of the isolated eye 

in constant darkness . The eye of Aplysia is of the closeq vesicle 

type, with the retina almost completely surrounding the lens (Jacklet , 

1969a) . The output of the nerve is in the form of compound action 

potentials , there is no apparent mechanism for focusing, and the 

receptors show morphological evidence for electrical coupling 

(Alvarez and Strumwasser, in preparation) . Thus the eye is probably 

not used for form vision . This has not , however, been behaviorally 

tested. The eye responds nearly linearly to changes in light intensity 
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over about five log units (Waser, 1968; Jacklet, 1969a) in addition 

to the production of spontaneous impulses in darkness. 

Many of the properties of circadian rhythms known from other 

animals a.re also known for Aplysia eyes. For example, the eyes can 

be phase shifted by light in vivo and in vitro (Eskin, 1971). Phase 

response curves for the free running rhythm in vitro have been obtained 

for pulses of high potassium (Eskin, 1972) and light (Jacklet, 1974) . 

Phase shifts are also induced by pulses of the protein synthesis 

inhibitor purorrzy-cin (Rot~n, Ph. D. dissertation, California Institute 

of Technology, 1974) . Conflicting reports have appeared , ruling out 

(Jacklet, 1971) and confirming (Block, Hudson , and Lickey, 1974) 

extraoptic entrainment of the eye rhythm by light in vivo . 

It is not known how the circadian rhythm of the eye is produced . 

Jacklet and Geronimo (1971) hypothesized that non-photoreceptor cells 

whose axons enter the optic nerve and which produce the CAP also are 

the origin of the rhythm. These cells were thought to be ultradian 

individually, but to produce a circadian rhythm through unspecified 

"interactions . " However , the data upon which this hypothesis was based 

are not convincing and could not be reproduced (Sener, 1972; 

Strurnwasser, 1973) . 

Aplysia rhythrns thus relate to several of the topics mentioned in 

the general introduction . The formal properties of rhythms can be 

probed in the eye and locomotor rhythms, although the potential here 

is perhaps less than in some other animals, especially insects, due t o 

the difficulties involved in obtaining, maintaining , and assaying large 
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numbers of Aplysia. The basic molecular mechanisms generating rhythms 

on a cellular level can be studied in the eye and in Rl5. The sear~h 

for individual oscillators can be (and has been) narrowed to the 

single neuron level (Rl5). The eye is both a photoreceptor capable of 

entraining other rhythms, and also has one of its own, which, of course, 

it can also entrain, even in vitro. Finally, coupling between 

oscillators and between receptor and oscillator is perhaps easier to 

study in Aplysia than in most other animals. 

This dissertation consists of two parts. The first is an attempt 

to learn something about neuronal interactions within the Aplysia eye. 

Until more is known about the morphological and physiological properties 

of ·intercellular connections within the eye, it will remain a black 

box not unlike the whole animal black boxes of many other circadian 

rhythm investigations. The second part is a study of the coupling of 

the eye and Rl5 rhythms. In particular, several questions have been 

asked, and, it is hoped, at least partially answered: Do the eyes 

entrain Rl5's rhythm? What connections exist between the eyes and Rl5 

by which they might influence each other's activities? If the eyes 

entrain the Rl5 rhythm, what pathways might the entrainment take? 

Last, can an in vitro assay system for entrainment be constructed? 
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Figure 1. Upper: Spiking activity of neuron Rl5 recorded for 48 hours 

from the isolated PVG of Aplysia. The light schedule under which the 

animal was kept prior to dissection is given at the top of the graph. 

The open bar represents projected day. Note the strong activity 

peak near projected dawn, repeating on the second day. From 

Strumwasser, 1965. 

Lower: Spiking activity of Rl5 in the isolated PVG. Open bar 

represents projected night. From Lickey, 1969. 



c 
~ 
(/) 
Q) 

::.< ·a. 
.!!!. 
>. 
0 
c 
Q) 
:;;;) 
0-
Q) .... 

lJ... 

40 

30 

40 

20 

z 
::E 
...... 
UJ 

"" "' a: 
UJ 0 

20 

0 

wl 

,,f 

SAMPLE ' 19.2 MINUTES 
IMPALEMENT' 48.0 HOURS 
L/D' 9 

24 

<) L/D 12112-5 . 
07 ·00 

-17-

8 
CLOCK TIME, HOURS 

Rl5 

12·15 . 

PER 100' 26.9 HOURS 
11.2.0.3 ·c 

,16 

int 30m1n 

6 Smin 

24 

temp· 12.s-13o•c 

Ol__~o1-~~~~~--'8~~~~~~~,2,--~~~~~~,~8~~~~~~0~0~.·~··"'-'· 

Clock Time (PDTl 



-18-

Figure 2. Locomotor activity averages (left) and periodograms (right) 

from an Aplysia kept under a light-dark schedule of LD 12:12. The 

eyes were removed between the second and third frames. Note the 

strongly diurnal pattern of activity in the intact animal, with the 

periodogram showing a dominant 24 hour peak. After blinding, 

nocturnal activity becomes evident, and periodogram shows a gradual 

change from a free run (approximately a 27 hour period) to complete 

desynchronization and loss of rhythmicity . From Strumwasser, 1973· 
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Figure 3. Event recorder charts of locomotor activity of Aplysia. 

Triangles represent "pseudo" LD cycle (the bulbs used to illuminate 

the aquarium were painted black, but still turned on with the schedule 

indicated by the triangles ). Open and closed arrows represent true 

LD schedule, with lights on at the open arrow (LD 12:12, 170 lux: 0 

lux). 

Left: A· californica. Free run in pseudo LD, followed by imposition 

of true LD cycle. Animal blinded on day 23. Lower part of the chart 

is the same animal tracked with a different setup. 

Right: Symbols as on left. Three different anL'Ilals, two A. californica 

(A and B) and one A. vaccaria (C). Animals blinded on day 9 (A), day 

10 (B), and day 9 (C). From Block and Lickey, 1973· 
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SUMMARY 

(1) The isolated eye of Aplysia shows a bursting pattern of spontaneous com
pound action potentials (CAPs) in the dark. The 'light response', also composed of 
CAPs, may be separated into aphasic initial response and a tonic late response similar 
in form to the dark discharges when the illumination is of low intensity. 

(2) Blockage of chemical synapses with La3+ or hi Mg2+-lo Ca2+ stops the dark 
discharge and tonic light response but not the phasic light response. Synchrony of the 
CAPs is not affected. 

(3) Ca2+-free solutions produce continuous rapid firing of CAPs, seldom co
ordinated into bursts. 

( 4) Replacement of chloride by propionate abolishes all CAPs for several hours, 
but leaves the ERG intact and the optic nerve electrically excitable. 

(5) Low sodium levels (about 50% normal) suppress dark discharge and tonic 
light activity but allow a normal phasic light response. 

(6) It is concluded that receptors transmit light-induced excitation to a higher 
order neuron population via electrical junctions, and that synchrony of the CAPs is 
also due to electrical junctions, interconnecting the higher order population. One or 
more pacemaker cells are postulated to drive the higher order neurons by chemical 
synapses, producing the dark discharge and the low intensity tonic light response. 
The pacemaker mechanism may be sodium dependent. 

INTRODUCTION 

The isolated eye of the sea hare Aplysia ca/ifornica shows a circadian rhythm of 
spontaneous impulse activity in constant darknessio. This impulse activity consists of 
compound action potentials (CAPs) in the optic nerve, representing the synchroniza-
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tion of the individual action potentials of presumably several hundred axons11 . The 
eye is active during projected day (that part of the 24 h cycle during which the animal 
was under illumination) with a peak of CAP production near projected dawn. During 
projected night CAP production decreases and the eye becomes silent for a few hours 
before activity again increases near projected dawn 10. In addition to the regular 
pattern of dark discharges, the eye also responds to illumination with a characteristic 
sequence of CAPs. Some of the properties of single cells in the eye are known from 
previous work11 , and substantial work has been done on the circadian properties of 
the eye6,10,13. 

In these experiments, an extracellular approach has been used in an attempt to 
infer the general organization of the main populations of neurons in the eye by the 
effect of various ionic treatments on the activity recorded from the optic nerve. In 
particular, the mode of synchronization of the compound action potentials and their 
initiation in light and dark were investigated with several synapse blocking agents. 

A preliminary report of some of these experiments has been presented3. 

METHODS 

Aplysia californica, obtained from Pacific Bio-Marine Supply Co., were main
tained in the laboratory in sea water tanks at a constant temperature of 14 °C with a 
lighting regime of 12 h light and 12 h dark. Animals were dissected in a controlled tem
perature room kept at 14 °C. The operation, which required about 20 min to complete, 
consisted of removing the eye and the attached optic nerve from the animal. The optic 
nerve was cut away from its connection to the cerebral ganglion. Dissections were 
performed 1-3 h after the onset of light in the sea water tanks; all recordings were 
taken during the first day after dissection in the hours when the animals would have 
been in the light, at which time the spontaneous activity of the eye is at its maximum10. 

Recording was done from the optic nerve by means of a suction electrode, 
constructed from a needle and syringe. A piece of Intramedic PE IO polyethylene 
tubing was placed over the needle tip, which contained a platinum wire protruding 
beyond the tip into the tubing. An input wire was soldered to the needle. Another 
piece of platinum wire, covered with PE tubing except at the end, served as the in
different electrode. The signal was amplified by a Tektronix 122 preamplifier, and then 
monitored on a Tektronix 564B oscilloscope and/or recorded on a Grass Model 7 
polygraph. During recording, the eye was kept in a light-tight box; illumination was 
with a 6 V microscope lamp. The bathing medium of the eye was at a constant 14 °C. 

ERGs were recorded in the same manner as the optic nerve impulses. In this 
case the suction electrode was affixed to the corneal surface of the eye. 

The bathing media were based on a modification of 'average' sea water19 . The 
standard artificial sea water (ASW) was composed of: NaCl, 470 mM; KC!, JO mM; 
CaClz, IO mM; MgClz, 53.5 mM; with IO mM Tris at pH 7.8-8 .0. Other solutions 
used were: 

High magnesium-low calcium sea water (hi Mg2+-lo Ca2+SW): NaCl, 375 
mM; KCl, IO mM; CaClz, l mM; MgC12, 125 mM; Tris, IO mM, pH 7.8-8.0. 
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Fig. 1. Characteristic CAP patterns of the isolated eye of Aplysia in ASW. In all figures, dark bar 
represents illumination of the eye. The same illumination configuration was used in all recordings. 
Record speed is represented by time calibration beneath each line; speed changes are designated by 
larger (left) vertical line on calibration marker and speed remains constant until the next marker. 
Individual eyes are given numbers at left; thus the two initial lines are recordings from the same eye. 
Amplitudes of CAPs vary from about 301iV for eye 2 to 90 ,uV for eye I (amplification factors are not 
the same from eye to eye). Half-amplitude bandpass filters are usually set at I (low) and 60 (high) 
Hz. 

Lanthanum sea water (LaCbSW): standard ASW with 100 µM-4.5 mM LaC'3 
added, pH 7.8-8.0. 

Propionate sea water (PrSW): sodium propionate, 470 mM; KCI, 10 mM ; 
CaCl2, 10 mM; MgCb, 53.5 m M; Tris, 10 mM, pH 7.8-8.0. 

Calcium-free sea water (Ca2+-free SW): NaCl, 470 mM; KCI, 10 mM; MgCl2, 
63.5 mM; Tris, 10 mM, pH 7.8-8.0. 

Low sodium sea water (lo NaSW): KC!, 10 m M; CaCb, 10 mM; MgCl2, 53.5 
mM; NaCl + Tris, 470 mM (in the per cent Na+ given), pH 7.8-8.0. 

Solutions were changed by complete removal of the initial medium by suction, 
followed by injection of new medium. The eye remains held by the suction electrode 
during this process, and retains a thin film of fluid around it. The exchange takes 
30 sec or Jess, and does not affect the output of the eye when both initial and final 
media are ASW, as judged by the patterns of impulses before and after the change (the 
eye cannot be recorded from during the exchange). Light conditions (darkness) are 
constant during the exchange. 

RESULTS 

The typical output of normal eyes (Fig. 1) is composed of spontaneous impulses 
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Fig. 3. CAP patterns in Ca2+-free SW, compared to those in ASW. Lines are consecutive recordings. 
Eye initially is in ASW. Labeled vertical arrows beneath lines represent changes to the indicated 
solution. 

in darkness, usually in bursts of 1-5 imp./burst, with a roughly constant interburst 
interval of 1-2 min. The long duration of the impulses (about 100-180 msec measured 
trough to trough of the triphasic spike at 14 °C), their variation in amplitude, and 
their disruption into numerous small units upon treatment with hypotonic sea water 
all indicate that they are compound action potentials11. Upon illumination, a rapid 
series of CAPs occurs. If the illumination is kept constant, this rapid initial firing 
(called here the 'phasic response') slows. Under low intensities of light, the impulses 
usually evolve into a bursting pattern (the 'tonic response') similar to that seen in the 
dark, but at a higher rate (line I, Fig. 1). Higher intensities often produce evenly 
spaced impulses with no discernible grouping. After cessation of illumination, the eye 
is silent for a time, after which bursts reappear. Variation in the light response from 
eye to eye is considerable, but reproducibility for a given eye at a fixed light intensity 
is good. 

Transmission at chemical synapses requires the presence of calcium in the 
bathing medium7,15 and high concentrations of magnesium inhibit transmission5, 

particularly in combination with reduced levels of calcium. 125 mM Mg2+ (about 2.5 
x normal) with Ca2+ reduced to 1 mM (about 0.1 x normal) stops CAP production 
in the dark (Fig. 2) . This effect persists overnight. With moderately high light inten-

Fig. 2. Hi Mg2+-Jo Ca2+SW. Note different light intensities in top and bottom of figure, which are 
recordings from different eyes. Hi Mg2+-Jo Ca2+sw contains 80 % of the normal sodium concentra
tion, and therefore the effect of 80 % NaSW is also shown for each eye, as well as the activity pattern 
in ASW. The sequence of solutions is ASW-+ 80% NaSW-+ hi Mg2+-lo Ca2+SW-+ 80% NaSW-+ 
ASW. 
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Fig. 4. CAP patterns in 1.1 mM LaCbSW. Eye initially is in ASW. First 4 lines are consecutive re
cqrdings; line 5 follows with a delay of approximately 1 h, line 6 follows line 5 with a delay of approx
imately 1.5 h, and the gap in line 6 represents approximately 1 h. The total time to recovery of normal 
burst ing patterns in the dark is 3.5 h in ASW. 
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Fig. 5. Effect of replacing most of the chloride in ASW by propionate. First 3 lines are consecutive 
recordings from a single eye, beginning in ASW. The last 4 lines are in pairs, the .upper line of each 
pair recording from the optic nerve, the lower line a simultaneous ERG (AC-coupled recording) from 
the corneal surface of the same eye (a different eye than in the first 3 lines of the figure). Bandpass is 
0.2-60 Hz. Lower pair of recordings is consecutive with upper pair. Eye initially in ASW. 
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Fig. 6. Spontaneous CAPs recorded from eyes in darkness after a short period (8 min, PrSW; 7 min, 
hi Mg2+-Jo Ca2+SW) in the indicated solutions. Recovery from PrSW is in ASW ; recovery from hi 
Mg2+-Jo Ca2+SW is in 80% NaSW. Graph is plotted from CAPs in left half of figure. Other experi
ments (3) give comparable results. 

sities, the light response consists of a rapid train of impulses that persists as long as the 
light is left on. At low intensities the eye in ASW produces a bursting tonic light re
sponse similar to the normal dark discharge; at these intensities, hi Mg2 L lo Ca2+sw 
blocks the tonic discharge in light. 

Ca2+-free SW (Fig. 3) does not block the tonic discharge in light or in dark; on 
the contrary, continuous firing occurs, usually without any burst patterning. The light 
response is a high frequency series of impulses. Continuous activity persists in dark
ness as long as the eye lives. Further removal of calcium, as in Ca2+-free SW with 
2 mM EDTA added, causes initially continuous CAPs, followed by a rapid decrease 
in CAP amplitude, and then silence. In this condition the optic nerve itself is electri
cally inexcitable. 

Low concentrations (about 1 mM) of lanthanum have been reported to block 
transmission rapidly in the frog neuromuscular junction8 •15 and to inhibit the inward 
calcium current in the presynaptic axon of squid giant synapse16• Prolonged treatment 
of the frog neuromuscular junction with LaCla (in the absence of calcium) causes 
irreversible loss of synaptic vesicless. In the Aplysia eye, LaCla blocks CAP output in 
the dark and tonic activity in light for at least 3 h (Fig. 4). Recovery in ASW after long 
immersions in LaClaSW is only partial or may not occur at all. 

Replacement of chloride in the bathing mediuin by propionate or acetate has 
been found by Pappas et al. 17 and Asada and Bennett2 to uncouple electrical junctions 
in crayfish septate axon. This treatment, however, does not uncouple leech giant 
neuronsls. When propionate is substituted for most of the chloride in ASW, all 
impulse activity in the optic nerve of the Aplysia eye ceases (Fig. 5), both in light and in 
darkness. However, as the lower traces of Fig. 5 show, a normal ERG still occurs in 
PrSW. In some eyes, spontaneous CAPs resume after several hours in PrSW (2 out of 
5); the light response usually returns somewhat before the spontaneous dark discharge. 
Low amplitude impulses can be seen in the last light response of Fig. 5. In general, a 
series of light responses in PrSW show initially no CAP response in the optic nerve at 
all or a very small apparent increase in the background noise level. Later responses 
show low amplitude impulses which increase until near normal CAPs are seen. The 
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optic nerve can be stimulated electrically with the eye still attached to the nerve in 
such a way that spontaneous activity from the eye can be recorded as well as the 
electrically evoked CAP. In PrSW, while the spontaneous activity of the eye and the 
light response are both absent, the optic nerve can still be stimulated to give a com
pound action potential identical to that which can be elicited in ASW. The threshold 
and amplitude of the elicited CAP are not changed by PrSW. 

In recovery from suppression of impulse production by both hi Mg2-1-- lo ca2+_ 
SW (Fig. 2) and PrSW (Fig. 5), the amplitude of the CAP grades upward in most but 
not all experiments (6 of 7, hi Mg2+_lo Ca2+SW; 8 of 10, PrSW). High speed record
ing from eyes in recovery from short periods in each of these solutions (Fig. 6) shows 
that recovery from hi Mg2+_lo Ca2+SW involves no change in duration, while 
recovery from PrSW produces CAPs of duration at first considerably greater than 
normal, and approaching the normal value with increasing time in ASW. 

During attempts to determine the levels of calcium and magnesium necessary 
to block output by the eye, experiments were run to control for the effects of the reduc
ed sodium content necessitated by the raised magnesium levels. The dark discharges 
can be halted at least temporarily by reducing the concentration of sodium below 
normal (Fig. 7). Individual eyes vary in their sensitivity to reduced sodium, but usually 
become silent in 50% NaSW; the range is about 70-20% normal sodium. The output 
of the eye in low sodium resembles that in LaClaSW or hi Mg2+_lo Ca2+SW; that is, 
the phasic light response remains after the abolition of the dark discharges and the 
tonic light response. 

DISCUSSION 

Receptor-opiic nerve relation 
Early work by Jacklet9 led him to hypothesize the structure of the eye as recep

tors synapsing on a population of secondary_neurons in which spikes are produced, and 
whose axons comprise the optic nerve. Later, he found that intracellular recordings of 
receptors showed no spiking activity, while cells which did spike in synchrony with the 
optic nerve CAPs did not show any receptor-like generator potentials when the eye 
was illuminated11• He nevertheless concluded that the simplest hypothesis was that all 
recorded activity occurs in various parts of the receptors. More recently, citing these 
intracellular recordings, Jacklet has returned to his original position that secondary 
cells are responsible for the CAP in the optic nerve13. 

None of the chemical synapse blocking solutions, hi Mg2+_lo Ca2+SW (Fig. 2), 
Ca2+-free SW (Fig. 3), or LaClaSW (Fig. 4), block the phasic light response. These 
data lend support for either continuity of receptor and optic nerve or for electrical 
junctions between receptors and higher order cells whose axons comprise the optic 
nerve. 

Fig. 7. Low sodium effect on the eye. Varying concentrations of sodium (90-50%) in the medium, 
expressed as percentage of normal (470 mM), with ASW controls between each concentration. Tris is 
the replacement for the removed sodium. 
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Bathing media with most of the chloride replaced by propionate uncouple 
electrical junctions in crayfish septate axon2·17 but not those between leech giant 
neurons1s. If PrSW uncouples electrical junctions in Aplysia eyes, then it would be 
possible that the failure of the phasic response (Fig. 5) could be due to uncoupling of 
electrical junctions between receptors and higher order cells. No impulses at all, in 
light or in dark, are seen in PrSW, at least initially. In addition, this effect occurs in 
less than a minute, much faster than in the septate axon. Thus PrSW may cause simple 
loss of excitability, resulting in impulse failure in the Aplysia eye. However, during this 
failure of spontaneous or light-induced activity, electrically stimulated CAPs in the 
optic nerve appear identical in form, amplitude and threshold to those in ASW. The 
ERG also remains (Fig. 5). 

Since neither the receptor membranes nor the electrically excitable axon mem
branes are significantly affected by PrSW, it must cause either an interruption of 
transmission between the two, or desynchronization of the CAP into units whose 
activity is too small to record. Even if eye CAPs are due to PrSW-sensitive coupling, 
the onset of light is simultaneous for all receptors, so at least one 'onset CAP' might 
be expected in PrSW which has eliminated this coupling. This does not occur. There
fore the data indicate that there are electrical junctions between receptors and higher 
order cells. 

Pacemaker-optic nerve relation 
The population of axons in the optic nerve is fairly homogeneous12, and it is 

presumed that the same axons produce the CAPs seen in light and in dark. In dim light 
the tonic light response becomes virtually identical to the dark discharge (Fig. 1, line 1 ). 
Further, both LaC13SW and hi Mg2+-lo Ca2+SW block the dark discharge and tonic 
light response (although in hi Mg2+-lo Ca2+SW the tonic light discharge inhibition 
depends on light intensity). Therefore it is likely that the same mechanism drives the 
bursts in the higher order cells in both cases. 

Both solutions with high magnesium levels5 and those with low concentrations 
of lanthanum8 block chemical synaptic transmission, apparently presynaptically, 
without blocking conduction of action potentials. This suggests that the tonic dis
charge in the Aplysia eye is mediated by chemical synapses, with a pacemaker(s) driving 
the higher order CAP-producing cells. The results with Ca2+-free SW, of course, 
conflict with this interpretation, since with this solution continuous impulses occur. 
This conflict cannot be definitively resolved without intracellular recording from both 
the pacemaker and higher order cells. It is possible that Ca2+-free SW does not remove 
all calcium from the synaptic cleft, and/or that it causes an increase in excitability, as 
in several other systemsl,4,14. 

The impulses of the eye are produced in the absence of external stimuli, so an 
endogenously active neuron(s) must initiate the CAPs. The possibility thus arises that 
the lanthanum and high magnesium solutions could be blocking the pacemaker 
mechanism. Neither lanthanum nor high magnesium with low calcium (with TTX 
added to block spikes so as to improve the visibility of the membrane oscillations) 
block the sodium-dependent pacemaker oscillations of Rl5, an endogenously active 
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cell in the abdominal ganglion of Aplysia (Strumwasser, personal communication). 
Nevertheless, a calcium pacemaker could be inhibited by lanthanum or magnesium. 

Synchronization of the CAP 
The method of synchronizing the action potentials of the numerous small axons 

into a coherent CAP could be by chemical synapses, electrical synapses, or simultane
ous input from receptors (in light) or pacemaker (dark). All of the chemical transmis
sion blocking media still enable a series of fully synchronized CAPs to be produced in 
the light; in Ca2+-free SW CAPs are also seen in the dark. Therefore it is unlikely that 
chemical synapses synchronize the CAP by interconnecting the higher order cells. 
The series of CAPs in a phasic light response, at a time of nearly constant depolariza
tion of the receptors11, argues against the need for simultaneous, temporally discrete 
inputs. 

The remaining possibility is synchronization through electrical junctions inter
connecting the higher order cells. If this is true, then the PrSW result of complete CAP 
suppression might be expected on the basis of the uncoupling of these junctions. It has 
been shown above that PrSW probably uncouples receptor-optic nerve transmission 
by uncoupling electrical junctions. In addition, PrSW blocks pacemaker oscillations 
in R1520·21, and in a few experiments run with lower levels of propionate, the circa
dian rhythm of the eye seemed to be affected. Therefore, although the results with 
PrSW are consistent with the uncoupling of the higher order cells, the same results 
could be due to blockage at the receptor and pacemaker levels. However, the decreas
ing durations and increasing amplitudes observed in the CAPs of an eye recovering 
from a short immersion in PrSW and then returned to ASW (Fig. 6) are most easily 
explained as recoupling of the higher order cells. As individual action potentials are 
brought more nearly into synchrony, the duration of the CAP would be expected to 
decrease; the amplitude should increase as individual spikes are made to superimpose 
(temporally) more exactly. 

Pacemaker 
This interpretation of coupling of higher order cells by electrical junctions also 

has bearing on the problem of the location and type of the pacemaker. The higher 
order cells are not able to produce CAPs in the dark when chemical synapse activity 
is suppressed, so it is not likely that these cells act as their own pacemakers. Since the 
receptors show no tonic activity related to the CAP activityn, they must not be the 
pacemakers either. It is most probable that a separate class of neuron(s) acts as pace
maker. 

Preliminary experiments reported here (Fig. 7) provide some evidence as to the 
nature of the pacemaker mechanism. Reduction of the sodium concentration below 
about 50 % (the range is about 20-70 %) of the normal results in cessation of dark 
discharge and tonic light activity. The phasic light response remains. Either a require
ment for sodium in the pacemaker (as in Rl5; see ref. 20) or in the production of the 
EPSP between the pacemaker and follower is indicated. An apparent circadian rhythm 
of sensitivity to sodium replacement (unpublished results) suggests the former. 
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Fig. 8. A simplified model for the eye of Aplysia, showing interrelations among the major cell types. 
Receptors ring lens, and are electrically coupled (thickened lines) to secondary neurons, whose axons 
comprise the optic nerve. Round cell in the center represents a pacemaker cell, which chemically 
synapses on the secondaries (with gap). Secondaries are electrically coupled to one another. Pace
maker may provide input to every secondary (upper) or only to some (lower), with electrotonic 
coupling providing transmission of excitation to other secondaries. Electrical coupling probably 
interconnects all secondaries; separation into groups is only for convenience of illustration. Letters 
near synapses represent types of ions which likely interrupt transmission across them. 

Model for the Aplysia eye 
The neuronal relationships in the eye, as suggested by the data, can be represent

ed by a model (Fig. 8). In the dark adapted eye, the pacemaker cell(s) excites the higher 
order neuron population through chemical synapses. Whether this excitation must be 
given directly to every neuron (upper group) or whether the electrical coupling is of 
low enough resistance that not all neurons need be innervated by the pacemaker 
(lower group) cannot be decided by the data. When the eye is illuminated, the recep
tors respond with a potential change which is transmitted to the higher order neurons 
by electrical junctions. Coordination of the individual spikes initiated by light or 
pacemaker action into the CAP occurs by means of electrical coupling between higher 
order neurons. 

The circadian rhythm of the eye is expressed in changes in frequency of spontane
ous dark discharges with time of day. These dark discharges, which occur in the 
higher order neurons, are initiated by the pacemaker cell(s). The two most probable 
mechanisms for the circadian rhythm, then, are a circadian fluctuation in the output of 
the pacemaker, or a change in the responsiveness of the higher order cell population 
to the pacemaker excitation. 

Other investigations have found centrifugal regulation of the eye by the cerebral 
ganglion6 and additional cell types in the eye that are not included in this modeJ1 1. 

These indicate, not surprisingly, that the model presented here is oversimplified. A 
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definitive proof of the neuronal relationships hypothesized in this model must await the 
difficult task of simultaneous intracellular recordings from two higher order cells, 
from receptor and higher order cell, and from pacemaker and follower. However, 
experiments aimed at explaining the organization and circadian rhythm of the Aplysia 
eye must consider the general features of this model. 
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Further Studies of the Effects of High Magnesilllil 

with Low Calcium on the Aplysia eye 

Recently , Jack.let (1973a) has reported that high magnesium (with 

near normal calcium) decreases the amplitude of CAPs in the optic 

nerve , both light evoked and electrically stimulated . He also finds 

that with 100 mM Mg++ and 0 . 5 mM ca++ the circadian rhythm of the eye 

is still expressed . He therefore concludes that the secondary cells 

are spontaneously active, and that they produce the circadian rhythin. 

He suggests that the blockage of spontaneous but not light evoked CAPs 

which I observed with 125 mt~ Mg++ and 1 mM ca++ i s probably due to 

a depressive effect of high l'{g++ directly on spike generation, rather 

than to any synaptic effect . However , Jacklet ' s stimulat ion protocol 

only tested for effects on spike amplitude, not on excitability . 

Further, he stimulated in high Mg++ with 8 mM Ca++, and the solution on 

++ which my conclusions were based had only 1 rnM Ca , which might be 

expected to contribute to increased excitability . Jack.let also 

hypothesized that the similar effect of lanthanum on dark discharge 

is due to a non-synaptic suppression of spontaneous activity , but he 

offered no direct tests of this . 

The further studies presented here find that the inhibition of 

dark activity by high Mg++ with low Ca++ is usually temporary (two to 

three hours) . During this time , light-driven impulses are not 

suppressed; on the contrary, the impulse frequency of the light response 

is greatly enhanced . High Mg++ does not suppress spiking or spontane-

ous activity in several known pacemaker neurons in the PVG . The 
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overall effect of high Mg++ with low Ca++ is excitatory in these 

neurons. It is therefore likely that the secondary population in the 

Aplysia eye is not spontaneously active, but is driven by excitation 

through chemical synapses. High Mg++ with low Ca++ probably blocks 

transmission through these synapses located between a spontaneously 

active cell(s) and the otherwise silent secondary population . 

Methods 

Animal storage and optic nerve recordings were the sarne as has 

been previously described . Recordings from single neurons in the PVG 

were made intracellularly by conventional means , or extracellularly 

with 50 to 200 micron tip diameter fire-polished glass pipettes filled 

with artificial sea water and placed on the connective tissue sheath 

over the desired cell . Amplification for these extracellular electrodes 

was the same as for the suction electrodes used to record from the 

optic nerve. 

The solutions used were: 

Artificial sea water (ASW): NaCl , 470 mM; KCl, 10 mM; CaC12, 10 rru'1; 

MgC12, 53 .5 rru'1; with 10 mM Tris at pH 7 . 8- 8 . 0 . 

High magnesium sea water: NaCl , 375 rnM; KCl , 10 rru'1; CaCl , 10 rnM; 
2 

lVIgC12, 125 nu'1; with 10 mM Tr is at pH 7 . 8-8 . 0 . 

High magnesium, low calcium sea water: NaCl, 375 mM; KCl , 10 nu'VI; 

CaC12, O, 0 . 5, or 1 mM, as specified ; MgC12, 125 m.M; with 10 mM Tris 

at pH 7. 8-8.0. 

Lanthanum sea water (Lac13sw): ASw with 1 mM Lac1
3 

added. 

Low sodium sea water: NaCl, 375 rnM; KCl, 10 rn.M; CaC12, 10 mM; 
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MgC12, 53.5 mM; choline chloride, 95 mM; with 10 mH Tris at pH 7 .8-8 . 0 . 

Optic nerves were stimulated through a suction electrode attached 

to one end of the nerve . Another suction electrode at the other end 

recorded the evoked activity . Stimulation was by a calibrated Grass S4 

stimulator. Voltage values are accurate to about 5% · Solutions were 

changed by completely removing one solution , replacing it with the next 

solution, and then repeating the process to ensure complete exchange . 

Results 

a) Stimulation of the optic nerve 

In order to test the effect of various high Jv'.ig -H- solutions on 

optic nerve excitability, three parameters were determined for a given 

optic nerve , in ASW and in the experimental solution : maximum CAP 

amplitude which could be elicited by electrical stimulation ; minimwn 

voltage required to elicit a CAP of this amplitude ; and the threshold 

voltage. The values of these parameters should allow an estimate of 

effects on spike amplitude and excitability separately . 

The results of these experiments are shown in Table I and Figure 1 . 

In each experiment , the optic nerve was stimulated first in ASW, then 

in the experimental medium, and then again in ASW. Measurements were 

made 10 minutes after the solution exchanges , which is comparable to , 

but greater than, the time that the effects of these solutions on the 

spontaneous activity of Aplysia eyes is seen. The average ASW values 

for a given parameter before any treatment were extremely close to the 

average ASW values after the treatment . No difference exceeded 10%, 

and the average absolute value of the differences for all three 
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parameters taken over the five treatments was less than 4%. 

When 125 ml'1 Hg++ with 1 mM Ca++ (hi rvrg++--10 Ca++ of Audesirk, 

1973) is used, there is clearly little effect (about 2% at most) on 

any of the parameters measured. If the Mg++ concentration is kept at 

125 mM, and Ca++ is further reduced to 0 mM, some optic nerves show a 

slight decrease in the voltage needed to produce CAPs of all amplitudes . 

The maximum CAP amplitude is reduced by about 14% . High Mg++ with 

++ 
normal Ca (10 mM) produces reduced amplitudes (8% lower) and an 

increased threshold voltage, but the voltage required to elicit a CAP 

+ 
of maximum amplitude does not change. Reduction of Na in the same 

amount as in these high Mg++ solutions results in a similar effect on 

CAP amplitude (7% decrease). Lanthanum in 1 nu~ concentration added to 

ASW has the same effect as the high Mg++ or low Na+ solutions in 

decreasing the amplitude of the CAP. 

b) Effects on Aplysia pacemaker cells 

Intracellular recording from single neurons in the Aplysia eye is 

difficult, and penetrations usually hold only a few minutes (see 

Jacklet, 1969) . Further, suspected pacemaker cells in the eye only 

constitute a fraction of the neurons present. Therefore the effects of 

++ ++ 
the various high Mg , low Ca solutions on pacemaker activity was 

tested on known Aplysia pacemakers in the PVG. 

None of the high Mg++ solutions used above interrupts bursting in 

Rl5 for even a short time, and activity continues for many hours 

(Figure 2) . The same is true of neurons of the 12-4,6 and R3-13 

clusters. The main effect of these solutions appears to be to stabilize 
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the burst pattern , producing nearly identical interburst interval s f or 

hours at a time . ++ ++ High Mg , with any of the Ca levels used, reduces 

the burst frequency . Spike frequency increases with l ow Ca++ due to 

an increase in the burst size (Table II) . This has been observed 

previously with normal Mg++ and zero Ca++ by Carpenter and Gunn (1970) . 

The increased burst size can reach extremes of several hundred spikes 

per burst after an hour or more in high Mg++ with zero Ca++. vJith 

normal Ca++ (10 nu'11) , the burst size remains about the same as in ASW. 

Since the burst frequency declines , as in all of the high 

solutions , the overall spike frequency declines also . 

Lanthanum in 1 mM concentration has differing effects on different 

PVG neurons . Rl5 (Fig. J) usually gives progressively longer bursts , 

often becoming continuously active , and then gradually stops fi r i ng. 

The spike frequency increases during the initial exposure to La-H+ 

(an average of a 39% increase in the first half hour i n 5 cells) . 

Some other spontaneously active cells , such as those of the 12- 4 , 6 

cluster, are much less affected by La-H+, continuins to burst for hours 

after exposure (Fig . 3) . The compound EPSP on R2 evoked by stimulation 

of the right pleurovisceral connective is usually blocked within 15 to 

45 minutes . After an hour or more in 1 mM Lac13s~v , a precipitate 

appears in the chamber . 

c) Spontaneous eye activity in high Mg++, low ca++ solutions 

Three solutions were used in this series of experiments . All had 

125 111.l'Vf Mg++. The Ca++ concentrations were either 0, 0 . 5, or 1 rr.M. 

Table III shows the duration of suppression of spontaneous activity for 
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each of these solutions for several eyes . The blockage of dark activity 

by the various high Hg++, low Ca++ solutions almost invariably occurs 

as a sudden failure, not preceded by any large decrease in CAP arnplitude 

(Fig. 2 of Audesirk, 1973). During the period in which the eyes are 

silent in darkness , light can initiate impulse production at a higher 

frequency than in ASW. When CAPs return in any of these solutions, the 

amplitude is about the same as that before suppression occurred. Sorrte 

eyes do not produce spontaneous impulses again (monitored over 40 hours) 

in the 1 mM Ca-t+ medium. When activity resumes, the rate of firing is 

greatly increased over the rate prior to inunersion in the high Yf.g-t+ , 

low Ca++ solution. The spontaneous activity then proceeds in a 

circadian rhythm similar but not identical to that observed in a normal 

eye in ASW (Fig. 4 and Jacklet, 1973a) . 

\'fuen an eye is placed in 1 mM: Lac13sw, it typically gives a few 

spontaneous CAPs and then ceases firing within a minute or two . 

Illumination, however , evokes a strong phasic light response (see 

Fig. 4 in Audesirk , 1973) . None of seven eyes placed in this solution 

resumed spontaneous activity , although light responses could be elicited 

for at least several hours . 

Discussion 

In two different types of media presumed to block chemical 

synapses, the dark activity of Aplysia eyes is suppressed , while the 

phasic light response is not . In one of these, high Mg++ coupled with 

low Ca++, spontaneous CAPs usually reappear, especially with ca++ 

concentrations below 1 m..lV! . i'Jhen this occurs, the eye still shows a 
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circadian rhyth:ri , albeit somewhat different i n detail from that o.:.~ ;:i 

normal eye in AS\v. This rhythmicity was observed by Jacklet (1973a), 

who, however, failed to note the period of silence following the change 

from ASW to these solutions. With 1 mM LaCl.3S\'/, spontaneous activity 

never returns. Eyes often fail to show normal activity when returned 

to ASW after an hour or more in this solution. These inhibitions are 

probably due to one of three causes: a blockade of chemical synapses 

as postulated by Audesirk (1973); an interference with pacemaker 

activity; or an interference with spike production itself by high 11[;++ 

as proposed by Jacklet (197.3a). 

The last hypothesis seems unlikely, for the following reasons. 

First, the eyes give strong light responses in all of the solutions 

during inhibition of dark discharge (Figs. 2 and 4 in Audesirk, 19?,3). 

Second, electrical stimulation of the optic nerve does not require 

higher voltages to elicit CAPs in these solutions (Fig. 1 and Table I). 

Third, neither spontaneous nor induced spikes in identified single 

neurons in the Aplysia PVG are blocked by any of the high Hg++ 

solutions. If there is a depressive effect of high Mg*, it must be 

slight. The main depressive effect observable on the eye in these 

experiments is a decrease in the maximum CAP size, and this seems to be 

accounted for by the reduced sodium in these media. In conjunction 

++ with low Ca , the overall effect is excitatory (Tables I and II, 

Fig. 2, and the light response of Fig. 2 in Audesirk, 197.3). 

As to the second possibility, high Mg++ with normal or reduced 

Ca* levels has no suppressive effect on PVG pacemakers (Table II and 
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Fig. 2) . Therefore it is unlikely that high Mg++ with or without low 

Ca++ suppresses pacemakers in the eye . In Lac13S'd some pacemakers J 

such as R15 , eventually become silent , often after passing through a 

phase of increased and continuous spiking lasting one to three hours . 

Although this increased spiking does not occur in the eye , the 

possibility is not excluded that La+H- interferes with eye pacemakers . 

Therefore, the inhibition of dark activity, especially with high 

Hg++ with low ca*, is probably due to blocking chemical synaptic 

transmission, cutting off a spontaneously active cell(s) from its 

usually silent follower population. Unless further perturbations 

occur, the eye would be expected to remain silent indefinitely, if not 

stimulated by light . This is perhaps what occurs in 1 mM Lac1
3

sw, and 

in some high Mg++, 1 mM ca* exper iments . There is a cell type which 

has been recorded by Jacklet (197Jb) which seems to be a candidate for 

such a pacemaker , although it was not interpreted by him as such . This 

cell spikes in bursts, with each burst occurring synchronously with 

a CAP in the optic nerve . 

-!+ ++ Why does activity return in most high Mg , low Ca experiments? 

The answer cannot be given with certainty , but the return of firing 

and its high frequency may be caused by enhanced excitability in low 

ca++ media . This is known to occur in several other systems (Adrian 

and Gelfan , 1933 ; Bronk, Larrabee , Gaylor , and Brink, 1938; Kishimoto , 

1966) , and a similar effect occurs with Rl5 and other pacemakers in 

Apiysia (Fig . 2 and Table II ; Carpenter and Gunn , 1970) . Perhaps a 

normally silent population of cells becomes active in the eye when Ca++ 
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levels are low enough. No assurances exist that the initial 

suppression of dark activity is not due to some presently unknown, 

nonsynaptic effect of high Mg-++ and/or low Ca-++, from which the eye . 

gradually recovers. However, there are two indications that the return 

of dark activity is related to reduced Ca-++. First, the suppression 

of activity sometimes lasts indefinitely in 1 r~1 Ca-++, but apparently 

rtever in the 0.5 or 0 mM Ca-++ solutions. Second, the average duration 

of inhibition by the high Mg-++, low Ca-t+ media is least with 0 Ca-++ 

-++ 
and most with 1 mM Ca • 

The continuation of the eye's circadian rhythm in these solutions 

would seem to indicate that a rhythmic ability resides in the follower 

population, one of the alternatives given by Audesirk (1973) . There 

is a negative correlation between the previous activity level and the 

duration of inhibition by high Mg-t+ and low Ca-++ (Table III; for 1 mi1 

ca-t+, n = 11; Spearman rank correlation, r = -0.67, p < 0 . 025; for all 

solutions, n = 23; r = -0.55, p( 0.01). Thus a more active eye 

recovers more rapidly than a less active one. A system operating 

nearer to threshold initially, as manifested by a high activity level, 

might be expected to take less time for the excitability enhancement 

-++ 
by low Ca to cause firing in the absence of synaptic transmission . 

If this is true for variations from eye to eye, perhaps it is also true 

for the variation in activity that constitutes the circadian rhythm of 

a given eye. 

Perhaps, then, the follower population has a diurnal variation in 

threshold or membrane potential , which extracts a circadian rhythm out 
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of an arhythmic barrage of pacemaker EPSPs, or further refines a 

circadian rhythm from the pacemaker(s). This hypothesis would predict 

++ -++ that the duration of inhibition by high Mg , low Ca would be 

negatively correlated with the activity level of a given eye at 

different times of day, as it is with the activity of different eyes 

at the same time of day. In practice, this would have to be tested 

with different eyes at the various time points, and correction made 

for differing activities between eyes. 

It must be pointed out, however, that the circadian rhythm in 

++ ++ high Mg , low Ca could also arise from a response of hyperexcitable 

follower cells to the residual EPSPs from the pacemakers. There are 

differences between the circadian rhythms of low ca-++ eyes and ASW 

eyes, which indicate that the method of rhythm production in the high 

Mg-++, low Ca++ solution is not entirely normal. For instance, there 

is a rhythm of bursts per unit tbne in normal eyes that the high ~Ig-++, 

low ca++ eyes do not usually show. In fact, the eyes do not burst at 

-t+ -++ all in high Mg with 0 Ca • 

'l'he eye of Aplysia is probably quite complicated, both in cell 

types and in interactions between cells. The model presented in the 

preceding chapter appears to be supported by the data presented here, 

but no simple model is likely to account for all of the observed 

phenomena. It is hoped, however, that this model can serve as a 

starting point for further research which will make additions and 

corrections to achieve increasingly accurate pictures of the neuronal 

interactions involved in rhythm production in the Aplysia eye. 



Solution n Threshold 
Voltage 
(volts) 

ASW 8. 8 

125 mH $++, 
4 

8 . 7 
lmM Ca 

ASW 19 . 9 

125 mH I~, 
5 

19 .3 
0 mM Ca 

ASW 22.9 

125 rnM Hg++, 
4 

26 .1 
10 mM Ca+t 

ASW 24 .4 
4 

1 mJ\1 Lac13sw 25 . 0 

ASW 22 .1 
4 

80% NaSW 21.9 
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Table I 

Maximum 
Amplitude 

(/' V) 

81 

80 

216 

189 

687 

629 

593 

555 

528 

Voltage for 
Max. Amp . 

(volts) 

25 . 7 

25. 8 

58 .3 

51.0 

38 .1 

37 . 9 

38 .9 

38.2 

41.5 

41.5 

Stimulation 
Duration 

(msec . ) 

0 . 3 

O.J 

0 .15 

0 .15 

0.15 

0.1) 

0 .15 

0.15 

0 .15 

0 .15 

Each ASW measurement is the average of values before and after t he 

experimental solution, with the exception of the LaCl SW eyes , in 
3 

which the ASW value is only the average of the parameters measured 

before the change to Lac1
3

sw. 
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Table II 

125 ;r11·I 
+t-

L11g , low or norrna.l +t-Ca , on iU5 

Solution n Spikes Bursts Spikes/burst 

As;.-J 156 52 3.0 

++ 0 mM Ca 2 600 38 15 . 8 

ASH 404 33 12. 2 

ASW 302 42 7. 2 

1 rnM Ca ++ 
3 401 30 13 °4 

ASW 283 35 8.1 

ASW 380 48 7. 9 

10 mM Ca++ 4 271 33 8.2 

ASW 379 41+ 8.6 

Each number is an average of counts for one half hour: before , 

during a half hour immersion in the experimental solution , and 

immediately after . 
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Table III 

-t+ -t+ 125 mM Mg , low Ca on isolated Aplysia eye 

Ca-t+ Level 

1 niM 

0.5 mH 

O mM 

Duration of 
Inhibition (hr)a 

0.3 
0 .4 
1.1 
1.3 
1.4 
3 . 2 
3 . 4 
4.0 
4 . 5 
9. 0 
9.oc 

0 .1 
0.9 
0.9 
1.5 
3.2 
7 . 5 

0.1 
0.3 
0.5 
o.6 
0 . 8 
2.1 

CAP Number 
1200-1230 hrb 

235 
169 
200 
121 
148 
137 
102 

92 
124 
151 

91 

148 
223 
166 
190 

52 
155 

176 
167 
135 
150 
147 
162 

a) Duration of suppression of spontaneous dark activity following 

immersion in the high Mg-t+, low Ca++ solution. All changes to high 

Ivig++, low Ca-t+ occurred between 1330 and 1630 hr on the day of dis-

section . Normal eyes become silent on the day of dissection at about 

2300 hr, so the times are measured until recovery occurs or until 

2300 hr, whichever is least. 

b) Number of spontaneous impulses in darkness at a fixed time of day, 
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Table III (con't) 

before immersion in high Mg-++, low Ca-++. 

c) These two eyes never gave spontaneous dark impulses again in 

+t- +t-125 mH Mg , 1 mM Ca , although a light response was evident 40 hours 

later. 
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Figure 1 . Electrical stimulation of Aplysia optic nerve . In all 

examples , the left member of the pair is recorded in ASW, the right 

member in the experimental solution . A) ++ 125 rnM Mg , 
++ 1 rru'vl Ca 

(hi Mg++-lo Ca++ of Audesirk, 1973) . B) 125 mM Hg++, 
++ 

10 mM Ca 

C) 1 :mM Lac13sw. D) 80% NaSW (choline substitution) . Vertical 

calibration: 20 J'V for A, 200 JJ V for B, C, and D. Horizontal 

calibration: 20 msec . for all . 
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Figure 2. Spontaneous firing of Rl5 , a bursting neuron in the Aplysia 

PVG . Experimental solutions have 125 ml~ Mg+t- with the indicated ca-++ 

concentrations , in mM. All recordings in the experimental solutions 

begin 10 minutes after the change to the indicated solution, with the 

-++ 
exception of the last line in 10 rill~ Ca • This line of recording 

begins about 11 hours after the change . Vertical calibration: 50 }' V; 

horizontal calibration: 30 sec . 
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125 mM Mg ++sw on Rl5 

0 ca++ 

ASW !\ ~ H ~ ~ u u ~ UI UI l Ill ! 

1 Ca++ ~ I\ I ·-I I I I\ I\ I I\ I\ I\ \ll II I 

ASW \~ IHI I I \~~~~\~\ 1\ I \~\ ~\~\ \~1\\ I \I I 1l lt\l1 ~~~Ii 

10 ca++ I I I I I I I I I I I I I I 

10 ca++ I \I '1 -I ijll I i \II \II ijll 
_J 
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Figure J . Spontaneous firing of R.15 and a member of the L2-4,6 

cluster of cells in the PVG in 1 mM LaCl SW . Rl5 recordings are 
3 

continuous in Lac1
3

sw; one minute occurs between the ASW and Lac1
3
sw 

recordings . L2-4 , 6 recording in Lac1
3
sw begins nine hours after the 

ASW recording . Rl5 calibrations : vertical, 100 _yV; horizontal, 20 

sec . 12-4 , 6 calibrations : vertical , 50 j'V; horizontal , JO sec . 
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Rl5 
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lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllilllllllllllllllllllllllllllllllllllllllllllllll\1111111111 
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_J 

L2 - 4,6 

If· I" I Ir I I I! 111 I I I II , , 
~ ~I \!\ ~ ~ ~I iI ( ~! ill II j 
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Figure 4. Spontaneous activity of Aplysia eyes in high I-Ig++, low Ga++ 

solutions . All start in ASW, and change to the indicated solution at 

the arrow. Note the suppression of activity in all of the high Mg++, 

low Ca++ solutions immediately after the arrow (zero frequencies), and 

the subsequent recovery to greater than normal activity . Some eyes in 

125 mM Mg++ with 1 mM ca++ do not recover spontaneous activity again 

(see Table III). All recordings are in constant darkness. Dark bars 

represent projected night . 
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Introduction 

a) Photoentrairunent of circadian rhythms 

The circadian rhytl:uns of most organisms are entrained by some 

aspect of their environment ; that is , some regular ly occurring feature 

of the environment is used as a timer to "set" the biological clock . 

Entraining agents can vary widely , from social stimuli (Halberg, 

Visscher, and Bittner, 1954; Gwinner , 1966 ; Poppel , 1968; Reinberg , 

1971) to the internal rhytl:uns of humans for some parasites such as 

the Microfilariae (Conroy and Mills , 1970; Pittendrigh , 1974) . The 

most common and most powerful agent , however, is light (Pittendrigh , 

1974) . In temperate and tropic regions , the difference in light 

intensity between night and day is an unmistakeable cue that occurs 

precisely on a 24 hour schedule , far more r eliably than other cues , 

such as temperature or hwnidity differences . 

Much attention has been given to the problem of the entrainment of 

circadian rhytl:uns by light . The questions asked are usually two : what 

structure receives the photic stimulation and passes it on to rhythmic 

centers in the body; and how does the transmission from receptor to 

oscillator occur . Underlying these questions is a more fundamental 

problem, for which these are the necessary preliminaries : how does a 

circadian rhytl:un become timed , i.e ., how can the clock be set? 

The preliminary questions ar e usually approached in a straight

forward way . The suspected receptor is ablated , and a manifestation of 

rhythmicity (usually locomotor activity in a light-dark cycle) is 

assayed for entrainment by light . As simple as this procedure appears , 
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the results and their interpretation are often confusing. There are 

several reasons for this confusion . First, it is not always as easy 

to blind an animal (usually the first experime ~;t ) as it may seem 

(Nishiisutsuji-Uwo and Pittendrigh, 1968a) . Second, there may Le 

additional effects of blinding. For example, in some animals blinding 

may cause scar tissue to form over the site of the eye, which may be 

less transparent for underlying nervous structures than the eye was. 

In others, a window may be opened to the brain by removal of pigmented 

tissue along with the eye. Either of these effects may be important 

if direct light sensitivity of the brain is suspected. Third, the 

assay for rhythmicity is many times done by visual examination of event 

marker recordings, and experimenters may differ in their interpretation 

of the same records. Fourth, the type of activity monitor (perches , 

running wheels, balanced cages) can affect the expression of rhythmi

city (Harker, 1973). Last, the fact that an animal without eyes still 

shows rhythmicity does not prove that the eyes are not used for 

entrainment in the intact animal, especially if the rhythm is weaker in 

the blinded ahimal . 

These difficulties notwithstanding, it has been reported that the 

eyes are not required as photoreceptors for entrainment of circadian 

rhythms (locomotor rhythms unless otherwise specified) in: sparrows 

(Menaker, 1968); salamanders (Adler, 1969); frogs (Adler, 1971); 

lizards (Underwood, 1973); chrornatophore color change in pencil fish 

(Reed, 1968); various insects, such as cockroaches (Harker, 1956) and 

Drosophila (Zimmerman and Ives, 1971); and Aplysia (locomotor rhythm: 
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Block and Lickey , 1973 ; spike rhythm in the neuron Rl5 : Lickey , Zack , 

and Birrell , 1971 , and Lickey and Zack , 1973) . The authors of many of 

these reports also find that the rhythms are weaker , or changed in 

timing or form, or have a higher threshold intensity of light required 

for entrainment . Animals which have been reported to require their 

eyes for entrainment include : rat (drinking rhythm: Browman, 1943) ; 

mice (eosinophil level in blood: Halberg , Visscher , and Bittner, 1954) ; 

fiddler crabs (chromat ophore color : Stephens , Halber g , and Stephens , 

1964) ; cockroaches (locomotor activity: Nishiitsutsuji- Uwo and Pit ten

drigh , 1968a; Roberts , 1965; Roberts, Skopik, and Driskill , 1971) ; and 

Aplysia (locomotor activity: Strumwasser, 1973 , 1974) . Note that some 

organisms appear on both lists . 

The next step, that of determining the oscillators into which the 

photic information is transmitted , is more difficult . Attempts to find 

at least some apparent sites for neuronal oscillators have met with 

best success in birds , rnarrnnals , and insects . In birds, the pineal 

organ seems to be required for free - running rhythmicity in daily loco

motor activity in constant darkness (Gaston and Menaker , 1968). In 

rodents, both the pineal (Klein, 1974; Moore , 1974) and the hypothala

mus - pituitary - adrenal cortex complex (Menaker , 1974) have been 

found to be rhythmic in content and secretion of various products and 

to receive entraimnent information from the eyes . The integrity of 

the suprachiasmatic nucleus in the hypothalamus appears to be critical 

for various rhythms in rats (Stephan and Zucker, 1972; Moore, 1974) . 

Neurosecretory cells in the brain of insects have been implicated in 
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activity and eclosion rhythms (Nishiitsutsuji-Uwo and Pittendrigh, 

1968b; Rensing, 1971; Truman, 1974) although some of this evidence has 

been disputed (Brady , 1969 ; Roberts, et al . , 1971) . 

The most interesting question , that of the mechanism of entrain

ment of the oscillators, is furthest from an answer . Only i n the 

rodents are the receptors , the site of at least some central oscilla

tors , and a complete pathway between them known with certainty (Stephan 

and Zucker, 1972; Klein , 1974; Moore , 1974) . 

b) Photoentrainment in Aplysia 

Aplysia calif or nica would appear t o be well suited for the 

investigation of some of these matters . It has a single neuron known 

to be a circadian oscillat or (Strumwasser , 1965) , easily accessible 

eyes , which also possess a circadian rhythm (Jacklet, 1969b), a strong 

locomotor rhythm (Strumwasser , 1967; Kupfermann, 1968) , and a dis

tributed central nervous system which makes discr ete lesions relatively 

simple . 

The search for the receptor involved in the photoentrainment of 

the circadian locomotor rhythm of this animal has unfortunately been 

plagued by controversy (Str umwasser , 1973 , 1974; Block and Lickey , 

1973 ; see the chapter on cir cadian r hythms in Aplysia in Part I above) . 

Only two points will be made here regar ding this contr oversy . First , 

the reports of extraoptic entrainment show that the locomotor r hythm 

is much weaker in blinded animals compared to normal ones (Block and 

Lickey , 1973 , Figs . 1 and 2) , but the emphasis has been placed on the 

ability of extraoptic receptors to entrain the rhythm. Second, 



-70-

Strumwasser's data (1973, 1974) show bursts of activity in blinded 

animals near the dark-light transition, but statistical analysis 

reveals little or no rhythmicity over the whole daily cycle . It might 

be suspected that these bursts at light onset represent much of the 

"entrainment" seen by Block and Lickey in their visual analysis of 

event recorder charts . A blinded Aplysia might still respond to a 

light onset without entraining its endogenous circadian oscillators . 

The neuron Rl5 shows a circadian rhythm of spike activity when 

recorded in the isolated PVG (Strumwasser , 1965) . The timing of the 

peak of activity is related to the timing of the lighting schedule of 

the anlinal prior to dissection . It has been reported that the eyes are 

not necessary for photoentrainment of the R15 rhythrn in vivo (Lickey , 

Zack , and Birrell, 1971; Lickey and Zack, 1973) . 

In both sets of experiments from the Lickey laboratories, Aplysia 

were left intact , blinded, or sham blinded , and placed in aquaria . The 

light schedule in the aquaria was LD 12:12 , but the tline of lights-on 

varied from tank to tank . Blinded animals were not separated from 

sighted ones . Dissection times were not reported and presumably were 

not controlled. In the latter paper (Lickey and Zack, 1973), the in

tensity of the light during entrainment was given as 170 lux. This 

series of experiments also included a group of blinded Aplysia exposed 

to an entraining LD cycle of only 20 lux. These animals were isolated 

from sighted animals , although apparently not by special design . The 

conclusions from both papers were that blinded Aplysia can still have 

their R15 rhythms entrained by light cycles , unless the light is very 
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dim (20 lu.x). Normal animals were not tested at the 20 lux intensity 

to see if their Rl5s entrained . 

There are several flaws in the designs of these blinding 

experiments. The potentially greatest one is the housing of sighted 

and blinded animals in the same aquaria. Social entrainment of blind 

mice in the presence of sighted mice has been reported (Halberg, 

Visscher, and Bittner, 1954). Social interactions can entrain rhythms 

in men kept in constant conditions (Poppel, 1968; Reinberg, 1971), and 

song can entrain bird activity rhythms (Gwinner, 1966). Sirnilar 

phenomena could also occur in Aplysia. Second, dissection tirnes were 

not controlled. Dissection time relative to light onset turns out 

to be an important parameter in the timing of the Rl5 rhythm in the 

isolated PVG (see Appendix A). Third, the phase of the entraining 

cycle was not, or at least was not reported to be, controlled or 

related pre- and postoperatively. Fourth, the dim light experiments 

tested two variables at once: isolation from sighted animals (which is 

dismissed by the authQ~§,.·as highly uiilikely to be significant) and 

intensity of light . Fifth, normal animals were run only in the 170 

lux tanks, and not at 20 lux, so it is not known whether they would 

have entrained at the lower intensity . (Aplysia eyes can respond to 

light at least as dirn as 10 lu.x; see Audesirk, 1973, Fig . 2. ) 

The reports themselves contain no numerical listing of the data 

(such as peak times) and almost no statistical analysis . Both reports 

present their data graphically (Fig . 1 , from Lickey, Zack, and Birrell, 

1971, and Lickey and Zack, 1973) , and conclude that the activity peaks 
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of Rl5s from blinded ~ia do not differ from those of sighted 

animals . Lickey , et al . (1971) base this conclusion on the occurr ence 

of most peaks during the projected night , both in blinded and in 

sighted cases . Lickey and Zack (1973) state that "peaks were most 

likely to occur shortly following the middle of the projected day or 

the middle of the projected night" f or Rl5s from both sighted and 

blinded animals . Inspect ion of the data of bot h experiments r eveals , 

first , a large spread in peak times of Rl5s , regardless of the sour ce , 

and , second , a gr eater scatter of peaks in t he eyeless cases . 

The large spread in peak times is significant in view of data to 

be presented here (Par t I I and Appendix A) . As stated, the time of 

dissection was not controlled in the Li ckey experiments , and (using 

peak times appr oximat ed f r om their gr aphs t o wi thin 0 . 5 hour s ) the 

standard deviations were very lar ge (for the data of Lickey , et al ., 

1971: normal Aplysia , s = 5. 4 hours ; blinded, s = 6 .1 hours ; for the 

data of Lickey and Zack , 1973 : normal , s = 5. 2 hours , blinded , s = 

4 . 9 hours) . These lar ge standar d deviations make most statistical 

tests of differences between blinded and sighted animals doomed to 

failure . Even the peak aver age of Rl5s from blinded Aplysia exposed 

to the 20 lux light cycles , which Lickey and Zack consider to be 

unentrained , cannot be statist ically distinguished from the controls 

used in that repor t (t = 0 . 49 ; p > 0 . 5) . The gr eater variability of 

the blinded Rl5 peaks comes closer to being , but is still not, statis

tically significant (F = 2 . 25 ; 0 .1<p < 0 . 2) . (When dissection time in 

relation to light onset is kept constant , the standard deviations in 
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peak times are half the values obtained in these reports ; see Part II 

and Appendix. A. ) 

Since, as Lickey and Zack (1973) point out, most peaks of Rl5s 

from sighted anirnals occur near but normally after noon or midnight , 

perhaps a better way of measuring time is in 12 hour blocks, relative 

to noon or midnight (hereafter called "midperiod" ) . Then , for example , 

noon = midnight = 0 hr; or two hours after noon = two hours after 

midnight = +2 hr . In this fashion , the average normal Rl5 peak time 

for both sets of the Lickey experiments taken together is +1 . 2 hr , 

s = 2. 2 hr ; for blinded animals , average peak is +o . 2 hr, s = 2 . 8 hr . 

Using this method of determining peak time , the difference in average 

peak time between the 20 lux blinded animals and the controls (Lickey 

and Zack , 1973) is almost signifi cant ( t = 2 . 0; 0 . 05 < p < 0 .1) and the 

var iability difference is highly significant (F = 5 . O; p < 0 . 005) . 

Despite the authors ' inter pretation, using midperiod times shows that 

the peaks of blinded animals exposed to 170 lux (the same as the 

controls) are significantly more variable than the control peaks 

(F = 2 . 7; p ( 0 . 05) . 

The midperiod t iming of t he Rl5 peaks of blinded animals raises an 

interesting point . If a ser ies of events are randomly distributed in 

a period of time, then the average time of an event would be expected 

to occur at the middle of the time period . Both normal and blinded 

Aplysia (both Lickey reports) had peak averages near midperiod , but the 

normal time differs from midperiod ( t = 2. 7; p < 0 . 025) , while the 

blinded time does not (t = 0 . 5; p> 0 . 5) . Another consequence of a 
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random distribution of peaks in time would be equal numbers of peaks 

before and after the rnidperiod. The normal animals showed a strongly 

skewed distribution (20 after rnidperiod, 4 before), while the blinded 

ones do not (18 after, 15 before). These distributions are signifi

cantly different (chi square = 4.0; p < 0.05). 

In summary, the data of Lickey, et al. (1971) and Lickey and 

Zack (1973) are open to conflicting interpretation. Two indications 

of entrairm1ent of blinded animals' Rl5s are the nocturnality of the 

peaks (occurrence during the projected night) and the clustering of 

the peaks near midnight. However, the blinded animals' Rl5s have 

somewhat different peak times, greater variability, and a nearly 

randomly distributed pattern of peaks relative to rnidperiod. 

\-Vhat can be concluded from this confusion of facts and interpreta

tion? It is clear that, first, the experiments should be better 

designed and controlled. Animals should be isolated from one another 

during entrainment , and dissection time should be controlled or at 

least taken into consideration. Second, nocturnality is not a 

sufficient measure of entrainment. There could be any number of 

reasons for nocturnality, not the least of them the fact that the cell 

will be deteriorating from the moment of dissection and mieht be 

expected to have a preferred peak time after dissection even if it 

had no rhythm at all. Dissections with appropriate phase relative to 

the entraining light cycle could give the appearance of rhythrnicity 

to an endogenously arhythrnic cell . Third, a free run of the blinded 

animals may occur, and if the correct phase relation holds between the 



-75-

pre- and postoperative light schedules, this free run may give the 

appearance of entrainment . Finally, a visual inspect ion of the data , 

especially in the 1971 paper, shows that the same results could be 

obtained if a fraction, say one fourth to one third, of the blinded 

animals entrained, while the rest did not . This would account for both 

the clustering of peaks near the control cluster time (the entrained 

fraction) and t he variable and nearly random distribution of the peaks 

(due to the unentrained majority) . 

To summarize photic entrainment in Aplysia, the eyes seem vital to 

the entrainment of the locomotor rhythm. Also, from the reports 

discussed above, it would appear that , contrary to the authors ' 

conclusions , the eyes are probably important for the photoentrairrraent 

of the Rl5 rhythm. Experiments were therefore designed to : 1) 

definitively determine the role of the eyes in Rl5 entraimnent in vivo ; 

2) determine what routes for the transmission of photic information 

exist between the eyes and Rl5 in vivo and in vitro ; 3) identify 

which of these routes mediates entrainment or at least rule out some 

pathways ; and 4) develop , if possible , an in vitro system for the 

entrainment of Rl5 . 
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Figure 1. Peak times of spike activity in Rl5s recorded in the 

isolated PVG. Projected light schedule represented as black (night) 

and open (day) bars. 

Upper: From Lickey, Zack, and Birrell, 1971. 

Lower: From Lickey and Zack, 1973· Actual peak times relative to 

projected night and day are given by the symbols above the diagonal 

bars. 
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Photoentrairunent of Rl5 In Vivo 

Methods 

Aplysia californica were kept in a connnunity tank in a closed 

recirculating sea water system. The temperature was maintained at 

14 ± o.5°c. The light schedule in this system was LD 12:12, with 

lights-on at 0800 hr PDT ("dawn") and lights-off at 2000 hr PDT 

("dusk"). Both control and experimental animals spent at least one 

week in these tanks before use. 

Exper:i.Jnental an:i.Jnals were taken from the cormnunity tanks, and one 

of three procedures was carried out: blinding, sham-blinding, or no 

operation. Blinding was accomplished by seizing the skin of the an:i.Jnal 

near the eye with rat-tooth forceps, lifting up slightly, and cutting 

off the eye along with a small patch of skin. The underlying muscular 

body wall was left intact. Microscopic examination of the removed 

piece and post-sacrifice autopsy were used to verify removal of the 

entire eye. The sham blinding operation consisted of removal of a 

similar sized piece of 'skin just anterior to the eye. 

After the appropriate operation, the exper:i.Jnental an:i.Jnals were 

housed in individual 57 liter aquaria, isolated from each other and 

from the rest of the sea water system. The temperature was less 

precisely controlled than in the main system. During the lighted 

portion of the light-dark cycle, the temperature in these aquaria 

rose to between 15 and 15.5°C.; the night temperature fell to 13.5 

to 14°C. The lights used were 15 watt fluorescent bulbs placed about 

15 cm above the water surface. Light intensity in these aquaria varied 
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from about 250 to 2000 lux, depending on position and orientation in 

the tank . The lighting schedule was again LD 12 :12, but six hours 

advanced relative to the main system, from which the control animals 

were taken . Lights-on occurred at 0200 hr PDT , and lights-off at 1400 

hr PDT. Experimental an~nals were sacrificed after one to two weeks in 

these aquaria . 

All final dissections, both for control animals from the main 

system (dawn= 0800 hr) and the individual experimental aquaria (dawn= 

0200 hr), were perforrned at 0900 + 0100 hr (usually within 15 minutes 

of 0900) . The PVG was isolated from the rest of the nervous system, 

and pinned out on a silastic stage in a 100 ml chamber filled with 

Millipore filtered (0 . 22 microns) sea water . The branchial , genital , 

pericardial, and siphon nerves, and the pleurovisceral connectives 

were cut one to two cm from their junction with the PVG and used to 

stretch out and hold down the PVG to the stage . The temperature in this 

chamber at the level of the ganglion was kept at 15 + 1°C with a Haake/ 

Brinkmann KT-62 cooler . The spike activity of Rl5 was recorded for the 

following 24 hours or more by conventional intracellular techniques 

using glass micropipettes filled with 0 . 6 M K2so4. 

Spikes were counted either by hand from polygraph recordings , or 

with a Sodeco counter driven by a standardized pulse triggered by the 

spikes . The spikes were counted in 10 minute bins, and these were 

averaged over JO minutes . Peak times are therefore reported to the 

nearest half hour . 

The experiments were performed June through August , 1973 . 
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Results 

Four groups of five animals each were used. One group (controls) 

was taken after at least one week in the community tank, with lights- on 

at 0800 hr PDT. The average peak time for the five Rl5s was -2300 

± 0233 hr (Table I). (The minus sign indicates a peak occurring on 

the day of dissection; plus signs are used for peaks occurring on the 

day after dissection.) Examples of the rhythms are given in Figure 1 . 

If one week on the six hour phase advanced light cycle was sufficient 

to completely entrain the Rl5 rhythm, then the average peak time for 

the experimental animals' Rl5s should be six hours earlier than the 

control average, i.e ., -1700 hr. The Rl5s of both the intact and 

sham-operated animals showed complete entrainment. The intact animal 

peak average was -1648 ± 0136 hr, and the sha..11 operated average was 

-1624 ± 0309 hr. The Rl5s of the blinded animals, on the other hand, 

had not appreciably shifted from the timing of the controls. This may 

be significant, since these animals were entrained to the control light 

schedule for at least one week prior to blinding. Examples of the 

experimental rhythms are shown in Figure 2. 

Discussion 

There are two immediate conclusions to be drawn from these data . 

The first conclusion in that Rl5s truly show activity after dissection 

that is related to the lighting schedule under which the animal was 

kept . The second is that this relation is destroyed if the animal is 

blinded prior to exposure to the new entraining light cycles. 

The .first point is readily seen by an exarnination of the Rl5 peaks 
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of the control and intact or sham operated Aplysia (Table I). The 

light schedules were six hours different in phase between control and 

experimental conditions, and the Rl5 peaks preserved this difference. 

Dissections, however, were performed at the same absolute time of day. 

Control animals, therefore, were dissected about one hour after their 

dawn, and the experimentals about seven hours after their dawn. The 

average peaks occurred about 14 hours after dissection for the controls, 

but only 8 hours after dissection for the experimentals. This shows 

that the timing of the Rl5 rhythm is related to the lighting schedule 

to which the animal was exposed, and not to the time of dissection. 

(Dissection time does, however, play a major part in the timing of Rl5 

peaks at other times of day; see Appendix A.) 

Blind animals do not appear to be able to photoentrain their Rl5 

rhythms. The average peak activity of the Rl5s of blinded Aplysia is 

significantly different from that of both the intact (difference ~ 

0506 hr; t = 4.8; p < 0.01) and the sham operated phase shifted animals 

(difference= 0530 hr; t = J.4; p < 0.01). The average spike frequencies 

for all of the phase shifted animals are very similar (normal animals, 

19.2 spikes/minute; sham operated, 22.9; blinded, 20 . 0), and somewhat 

less than the average frequency of the controls taken from the main 

community tank (average, 28.0 spikes/minute). The difference between 

the isolated animal spike frequency and the community animal frequency 

is not statistically significant (t ~ 1.45; p> 0.2). 

Interestingly, the timing of the Rl5 peaks of the blinded animals 

was not very different from the controls, although the peaks of the 
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)linded animals are shifted in the sa11e direction as the light cycle 

)hase shift. There are two implications of this. First, either the 

)linded animals' Rl5s free run very near to 24 hours, or the rhythm can 

)ick up non-photic cues that enable the cell to maintain about a 24 

1our period without altering phase, or another receptor system can 

receive the photic information and transmit it to Rl5· If this last 

alternative is the case, then the phase induced in the Rl5 by this 

photic information is different f~om that induced by the eyes, and the 

similarity of the tinling of the Rl5 peaks of the blinded animals and 

unshifted controls is merely due to coincidence. The first two 

alternatives would suegest that if animals are blinded and then 

returned to the same lighting schedule, they mieht appear to entrain 

their Rl5 rhythms. The second implication of the timing of the blinded 

animals' Hl5 peaks is that blind Aplysia may in fact by able to entrain 

their Rl5 rhythms to the same phase as in intact animals. This is 

suggested by the fact that the timing is shifted in the correct 

(advanced) direction, although not by very much. If such entrainment 

can occur, these data indicate that it must be much slower than photo

entrainment mediated by the eyes. 

A major difference in protocol between the experiments reported 

here and those of Lickey, et al. (1971) and Lickey and Zack (1973) is 

that my animals were isolated during entrainment and the Lickey animals 

were not. This suggests that social stimuli from normal animals may be 

able to entrain the Rl5 rhythms of blinded Aplysia. Social stimuli can 

entrain rhythms in some other animals and in man (see introduction to 



-89-

Part II). Perhaps the locomotor rhythrns of the normal Aplysia in the 

Lickey experiments, causing the blinded animals to be bumped into and 

crawled upon with a circadian rhythm, can entrain the Rl5s of the 

blinded animals. Another possibility is pheromone or metabolite 

release by the normal animals. In addition, as has been shown in the 

introduction, there are major differences in distribution and varia

bility of peak timing between their control and blinded animals of 

which they apparently were not aware. 

The reanalysis of the data of Lickey, et al. (1971) and Lickey 

and Zack (1973), and the data presented here both indicate that the 

eyes are important in the photoentrainment of the circadian rhythm 

of Rl5 in vivo. 
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Table I 

Rl5: Isolated PVG 

Control 
b 

Normal Blind Sham 
Shiftc Shift c Shiftc 

-t0030 -1530 - 2030 -1430 
+o230 -1800 -2130 ..;.1530 

Time of Peaka .,..2230 -1530 -2400 -1800 
(PDT) -2130 -1600 -2000 -2100 

- 2000 -1900 -2330 -1300 

Mean + S.D . -2300 . -1648 -2154 -1624 
±0233 ±0136 ±0147 ±0309 

Predicted Peakd -1700 -1700 -1700 

a) Positive times are those peaks which occurred on the day after 

dissection; negative times are those peaks which occurred on the 

day of dissection . 

b) Control light schedule: LD 12:12; lights-on at 0800 hr ; off at 

2000 hr (PDT) . 

c) Shifted light schedule : LD 12:12; lights-on at 0200 hr ; off at 

1400 hr (PDT) . 

d) Predicted peak time based on a six hour advance over the contr ol 

peak average . 
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Figure 1. Spike activities of Rl5s recorded in the isolated PVG. 

PVGs are taken from intact Aplysia kept under the indicated LD 

schedule for at least one WE<ek in corrununity tanks. Dark bars in this 

and the following spike activity graphs represent projected night. 



60 

40 

20 

z -
~ 0 
~ 
w 
~ 
- 60 
Q_ 
(/) 

40 

0 

-92-

Rl5: ISOLATED PVG 

60 

40 

06 1373 0 -
60 

40 

06 11 73 
0 -

061573 -

0704 73 -



-93-

Figure 2. Spike activities of Rl5s in isolated PVGs taken from intact 

(top), sharn blinded (center), and blinded (bottom) Aplysia . Bars 

represent two lighting regimes : upper bar on each graph denotes 

projected night of the postoperative schedule; lower bar denotes 

projected night of the preoperative schedule. Animals were kept under 

the postoperative LD cycle for at least one week prior to the final 

dissection. 
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Pathway for Photoentrainment of Rl5 In Vivo 

The nervous system of Aplysia is a distributed one. Figure 1 

shows the arraneement of the ganglia of the central nervous system of 

the animal. The eyes send their optic nerves into the cerebral 

ganglion, one of the circumesophageal ring. The PVG, which contains 

Rl5, has nervous connections to the circumesophageal ganglia only 

through the pleurovisceral connectives. Thus severing those connectives 

should interrupt any neural paths that may exist between the eyes and 

Rl5. Accordingly, experiments were designed to test whether such 

neural connections are necessary for the photoentrainment of Rl5, or 

whether a hormonal route between the eyes and Rl5 might be sufficient . 

Methods 

The experimental protocol was essentially identical with the 

previous study. New control animals were taken from the corrununity 

· tanks to correct for possible seasonal effects on the time of peak 

activity of the Rl5 rhythm (Lickey, 1969). 

Experimental animals were removed from the corrununity tank, an 

operation was perforrned to cut the pleurovisceral connectives, and 

then the animals were placed in individual aquaria as before. The 

lighting schedule in these aquaria was again six hours advanced 

relative to the main sea water system. 

In the initial operations, mortality was high, apparently due to 

loss of blood and ,infection. In later operations, using the protocol 

described below, blood loss was kept to a minimum by using small 
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incisions, and infection was controlled with antibiotics. The final 

method of operating, which resulted in only one fatality in the eight 

operations in which it was used, was as follows. 

An Aplysia was prepared for the operation by setting it on a cork 

board, foot down, and allowing it to relax. Then a sterilized 

dissecting needle was put through the tail of the animal into the 

board. Hooks were placed through the anterior parts of the parapodia 

and pulled to the side to keep the dissection area open. The animal, 

apparently reacting to the needle through its tail, invariably 

stretched out full length, even during the operation, precluding any 

need for pinning the head. 

A small incision was made between the anterior attachment points 

of the parapodia, just to the left of the midline. The PVG and 

pleurovisceral connectives usually were readily visible. If not, they 

were easily located by gentle probing with a blunt instrument, care 

.being taken not to cut the delicate wall of the digestive tract. The 

connectives were then cut, and the incision sutured closed with three 

or four stitches of surgical thread. The animal was injected with 

approximately 20,000 units each of penicillin and streptomycin 

(Microbiological Associates) in 10 ml of filtered sea water. Properly 

done, the operation could be performed by one person in 5 to 10 minutes, 

and the animal lost little blood. 

The operated animals were kept on the phase advanced light 

schedule for one to two weeks. At the final dissection (always 

performed, as before, at 0900 ± 0100 hr PDT), the PVG was removed and 
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the successful cutting of the connectives confirmed. The PVG was then 

transferred to a 10 ml chamber filled with Millipore filtered (0 . 22 

microns) sea water, kept at 15 ± 1°C. 

The spike activity of Rl5 was recorded extracellularly for both 

controls and experimentals in these experiments. A 50 to 150 micron 

tip diameter fire polished glass pipette, filled with sea water, was 

placed on the connective tissue capsule of the PVG over the Rl5 soma. 

Amplification of the spikes was by Textroni.x 122 preamplifiers, and 

the resulting signals were recorded on a Grass Model 7 polygraph . 

Spikes usually ranged from 30 j1 V to 100 yV in amplitude. Activity 

was counted by hand from the polygraph record or with a Sodeco counter . 

These experiments were run January through April, 1974 · 

· Results 

· The five control Rl5s again showed peak activity in the first 

half .of the projected dark , and the average peak time was close to that 

obtained the previous August (- 2342 ± 0255 hr) . As previously, a 

complete phase shift would result in a peak six hours earlier than the 

control average , or -1742 hr. (Perhaps a slightly later average might 

be expected, since one out of the five control Rl5s had a much earlier 

peak time than the other four (Table I) ; the peak average for these 

four was +0100 ± 0024 hr . ) 

The Rl5s of the operated animals (8) fell into three groups 

(Table I, Figure 2). The majority of the rhythms (5) showed clear 

evidence of entrainment to the postoperative light cycle . Their 

average peak time was -1748 ± 0234 hr , very close to the predicted time 
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of about -1800 hr . One of these five had a very early peak , as had 

happened with the controls . 

The Rl5s of two of the operated animals did not seem to have 

moved the phase of their rhythms from the old preoperative setting. 

The remaining Rl5 peaked in the projected morninG , unlike any of the 

other control or experimental Rl5s . This peak occurred approximately 

14 hours later than the average time of the entrained class . It has 

been previously found that some Rl5s can show a peak about 180° out of 

phase relative to the usual peak (see Fig . 1 in Lickey, 1969) . These , 

however , are rare, and this Rl5 must remain unclassified . 

As with the blinding study, the aquarium isolated animals H.15s 

(operated) showed a lower average spike frequency (11 . 5 spikes/minute) 

than the corrnnunity tank controls (17 . 6), but again the difference was 

not statistically significant . 

Discussion 

In five out of eight Aplysia with both pleurovisceral connectives 

cut in vivo , the circadian rhythm of Rl5 could still be entrained by 

light . Previously it has been shown that , under identical entrainment 

conditions , the eyes are required for entrainment to occur . Since the 

pleurovisceral connectives are the only neural path between the circum

esophageal ganglia and the PVG, it appears that neuronal connections 

between the eyes and Rl5 are not necessary for the entrairunent of the 

cell . A hormonal mechanism must be sufficient . 

It should not be concluded too quickly from these experiments that 

neural inputs to Rl5 have no role in entrainment, or no effect on the 
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Rl5 rhythm. In the first place, the Rl5s of two (or three) of the 

eight animals with both connectives cut did not entrain to the new 

light cycle. While one of these animals had been poorly sutured and 

had lost most of its blood by the day of final dissection, the other 

appeared to be in perfect health. In addition, a neural route does 

exist for information, especially about dawn and dusk, ·to pass from the 

eyes to Rl5 (see the following chapter) . This route and/or others as 

yet undiscovered may also be able to entrain the rhythm of R15. 

It must also be pointed out that this experirnent says little 

about the details of the pathway involved in the entrainment by light . 

While the eyes may release a hormone which directly affects Rl5 , it is 

also possible that neurons in the circumesophageal ring receive the 

eye information neurally, and that they in turn release the entraining 

hormone. These experiments also cannot rule out that entrainment of 

Rl5 might come via other cells in the PVG, and that the hormonal link 

. is between the eyes and/or circumesophageal ganglia and these neurons . 



Time of Peaka 
(PDT) 

Mean + S.D. 

Predicted Peakd 

Control 

-t-0130 
+o100 
-1830 
-t-0100 
-t-0030 

-2342 
±<J255 
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Table I 

-1700 
-1830 
-2100 
-1400 
-1830 

-1748 
±<J234 

-1742 

Operated0 

- 240QC 
+oOJO 

+osoo 

a) Times and light schedules as given in Table I of the previous 
chapter. 

b) Operated Aplysia had both pleurovisceral connectives cut on the 
day that they were placed in the phase shifted light cycle . 

c) This animal had been sutured poorly, and had lost most of its 
blood by the day of sacrifice. 

d) Predicted peak based on a six hour advance over the control peak 
average. 
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Figure 1 . Diagrammatic representation of the central nervous system 

of Aplysia californica . Anterior is to t he top of the page . 
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Figure 2. Spike activities of Rl5s in isolated PVGs from (top) 

control and (bottom) operated (both pleurovisceral connectives cut 

in vivo) Aplysia. Dark bars represent projected night. In the lower 

half of the figure, the lower bar represents the preoperative projected 

night, and the upper bar the postoperative projected niGht. Two 

examples of operated animals' rhythms are shown. On the l eft th e 11.15 

showed peak activity at a time appropriate to the postoperative li0ht 

schedule. On the right the Rl5 activity was broadly distributed and 

peaked at a time characteristic of the preoperative schedule . 



-105-

Rl5: ISOLATED PVG 

60 60 

40 40 

20 20 

z -
~ 

' 0 0 
(/) 
w 
::::s:::: 

a... 
(/) 6 60 

4 40 

2 20 

0 0 



-106-

References 

Lickey, M.E. 1969. Seasonal modulation and non-24 hour entrairunent 

of a circadian rhythm in a single neuron. J. Comp. Physiol. 

Psychol. 68: 9-17. 



-107-

Neural Interactions between the Eyes and Rl5 

The eyes are required for the entrairunent of Rl5 by light. It 

appears that a hormonal method of entrairunent is sufficient, as shown 

by the entrairunent of a majority of Rl5s in animals with both pleuro

visceral connectives cut. However, neural entrainment may also be 

possible. The sufficiency of this latter method of entrainment would 

be much more difficult to demonstrate in vivo because of the problems 

involved in trying to hwnorally isolate the PVG from the rest of the 

central nervous system. In addition, the actual spiking rate of the 

cell in vivo could ~asily be determined more by the synaptic stimulation 

.impinging upon the cell than by endogenous factors. 

Therefore neural pathways from the eyes to Hl5 may be important 

both in entrainment in intact Aplysia and in the instantaneous spiking 

rate of the neuron. Three types of experiments were designed to 

investigate neural influences of the eyes on Rl5: 1) long term 

recordings were made from the eyes and Rl5 in intact isolated central 

nervous system preparations; 2) electrical stimulation of optic nerves, 

light stimulation of the eyes, and spontaneous discharge of the eyes in 

intact central nervous systems were monitored for effects on H.15; and 

3) electrical stimulation of the inputs from the eyes to Rl5 discovered 

in (1) and (2) was performed to try to entrain Rl5 in vitro. 

Methods 

a) Long term recording from intact isolated central nervous systems 

The major ganglia, with the eyes attached, were dissected from 
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Aplysia . The preparation consisted of the buccal , cerebral , pedal, 

pleural, and parietovisceral ganglia together with the eyes . All 

nerves interconnecting the ganglia were left i ntact, as were the optic 

nerves joining the eyes to the cerebral ganglion . The central nervous 

system was mounted on a silastic stage in a 100 ml chamber, care being 

taken that none of the interganglionic connectives were damaged . The 

chamber was filled with Hillipore filtered (0 . 22 microns) sea water 

to which the following had been added : 2 gm/liter glucose; 3 rnM CaC12 

(to bring the ca++ concentration in sea water (as listed in Prosser 

and Brown, p . 60) up to the approxlinate level in Aplysia blood (13 .3 

mM; Prosser and Brown, p . 60)) ; and 150 units each per ml penicillin and 

streptomycin (Microbiological Associates) . The temperature was 

controlled at 15 ± 1°c . 

Intracellular recordings were made from Rl5 by conventional means , 

and the resulting signals recorded on a Grass Model 7 polygraph , both 

DC and high gain AC , and monitored on a Textronix 5103 oscilloscope . 

Spike frequencies were counted by hand or with a Sodeco counter . 

Extracellular recordings were often made from one optic nerve via 

suction electrode en passant on the nerve . The signals from the optic 

nerve were amplified by Textronix 122 preamplifiers and recorded on the 

polygraph and oscilloscope . The entire preparation was kept in dark

ness by enclosure in a black box except for the times neces sary to 

re- impale Rl5 if the electrode slipped out of the cell . Recordings 

were usually made for two to four days continuously following 

dissection . 
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b) Correlation of eye and Rl5 activities 

In addition to observation of simultaneous activities of the eyes 

and Rl5 in the long term in vitro experiments described above, two 

other protocols were used . Both additional experiments also utilized 

intact isolated central nervous system preparations. 

In one series of experiments, the optic nerve and/or other nerves 

of the cerebral ganglion were stimulated electrically with a Grass 

Model S4 stimulator . In some of these experiments, one or both eyes 

were first cut off their optic nerves, and the nerve stimulated via 

suction electrode on the stump . In other trials, the nerve was 

stimulated by en passant suction electrode with the eye left attached. 

The effect of illwnination of the eyes was also tested . A fiber 

optic light guide was used to deliver low intensity illumination to one 

eye; otherwise the preparation was kept in darkness . The effectiveness 

of the restriction of the light to the eye in question was tested by 

examination of the impulse pattern of the other eye, and by cutting off 

the eye and illmninating the resulting optic nerve stump . In general, 

both optic nerves were recorded en passant by suction electrode, and 

the activity of Rl5 was recorded intracellularly. 

c) Neural entrainment in vitro 

Isolated PVGs were maintained in 10 ml organ culture chambers for 

up to 13 days, at 15 ± 1°C . Two hundred fifty ml of organ culture 

medium (modified from Strumwasser and Bahr, 1966) consisted of: 

5 ml Eagle's minirnu.~ essential amino acids (50x) 
2 . 5 ml non-essential amino acids (lOOx) 
2.5 ml vitamins (lOOx) 
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0.5 ml glutamine 
150 units each per ml penicillin and streptomycin 

(all of the above supplied by Microbiological Associates) 
2.5 gm glucose 
50 ml Aplysia blood 
1 mM Tris, pH 7.8 
brought up to 250 ml with sea water, pH adjusted to 7.6 to 
7.8 at 15oc., and filtered (0.22 microns Millipore) in a 
sterile flask. 

The right pleurovisceral connective was drawn through a tunnel 

containing two platinum cuff electrodes, for stimulation by Grass 

Model S4 stimulator. The rest of the PVG was pinned to a silastic 

platform in the chamber. The chamber was covered with a thin 

plexiglas plate to prevent evaporation. The plate had a small hole 

drilled through it for the recording electrode. Spiking activity of 

Rl5 was recorded extracellularly as described previously. 

Results 

a) Long term activity of the eyes and Rl5 of Aplysia recorded in vitro 

from the isolated intact central nervous system 

Intracellular recordings of spikes and synaptic potentials from 

Hl5 in the intact isolated CNS were made for two to four days. The 

preparations were maintained in darkness, in order that the endogenous 

circadian rhythm of compound action potentials from the ~es could be 

expressed. In many experiments, recordings were also made from the 

optic nerve of one of the eyes. The expectation was that the 

rhythmicity of the eyes, which persists for many days in vitro 

(Jacklet, 1969; Eskin, 1971), might serve to enhance or maintain 

rhythmicity in Rl5. 

Three synaptic events can usually be seen in Rl5 in an intact CNS 
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preparation. One is a small EPSP from 110 (another identifiable 

neuron in the PVG; Kandel, et al ., 1967). The second is a slow, 

long-lasting IPSP, presurned to be from interneuron II, an unidentified 

neuron or group of neurons, also in the PVG (Frazier, et al., 196?). 

Both of these events are also seen in Rl5 in an isolated PVG 

preparation. The third event, and the most obvious one, is a large 

(up to 25-30 mV) EPSP which is not seen in isolated PVG recordings. 

This EPSP arises from an unidentified neuron in the right pleural 

ganglion, and the axon of this cell enters the PVG through the right 

pleurovisceral connective (Strurnwasser, personal comrnunication). In 

the terminology of Parnas, Armstrong, and Strumwasser (1974), this 

EPSP will be referred to as input I. 

Figure 1 shows a graph of spiking activity of Rl5 in an intact 

CNS experiment run for over three days . Several features should be 

noted. First, both morning and evening peaks appear; this is 

especially prominent on the first and second days . This is usually not 

the case in recordirigs from Rl5 in isolated PVGs (see the chapter on 

photoentraimnent of Rl5 in vivo, Fig. l; also Strurnwasser, 1965). 

Second, the peaks appear to be double, and to become more distinctly 

so as the run progresses. Again, this is not usually the case in 

isolated PVG recordings. 

On this run the microelectrode remained in Rl5 for the entire 

three days . In most experiments, the electrode had to be positioned 

back into the cell several times during the run (see, for example, 

the gaps in Fig. 2). Further, most Rl5s do not show as clean a rhythm 
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as this one does. However, rhythms are observable for two or more 

days in about half of the experiments. There are usually peaks near 

projected dawn and in the first half of the projected night, although 

oc~asionally one will be missing or minor peaks will be added (Fig. 2) .' 

These spiking peaks invariably coincide with very high frequencies of 

input I in Rl5 (see Fig. 5). 

Figure 2 also demonstrates one of the striking features of the 

intact CNS preparations. When the eye activity is recorded as well as 

the Rl5 spiking, it becomes apparent that strong peaks in Rl5 spiking 

(and often even minor ones) coincide with troughs in eye CAP frequency . 

The dotted lines in Fig. 2 illustrate a few such cases. 

In a few (4) experiments, intact CNS preparations were run without 

the eyes. None of the Rl5 recordings showed any circadian rhythmicity 

in these experiments (Fig. '3). Usually the spike frequency cycled 

with a variable four to eight hour period. However, several of the 

intact CNS preparations with eyes also failed to show Rl5 rhythmicity , 

although none had the short period characteristic of the eyeless 

preparations. It cannot be completely ruled out that some rhythmic 

Rl5s would have been observed in a sufficiently large number of 

experiments with eyeless preparations. 

b) Correlation of optic nerve and Rl5 activity 

The activity of an isolated eye does not, in general, show 

irregularities (see Jacklet, 1969, and the second half of Part I, 

Fig. 4) . The isolated eye rhythm is a smooth curve, monotonically 

increasing from about three or four hours before projected dawn until 
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projected dawn , then flattening off for a few hours , and finally 

monotonically decreasing until impulses cease near projected dusk . 

However , Eskin (1971) found that irregularities in the eye rhythm did 

occur if the eyes were left attached to the cerebral ganglion . He 

found that small single unit activity from the cerebral ganglion 

directed centrifugally to the eye occurred in these preparations . In 

general, when the eye was more active (spontaneously or due to lieht 

stimulation) , these efferent units were relatively silent . When the 

efferents (which he called centrifugal fibers) were very active , the 

eye was less so . If the efferents were silenced temporarily by cooling 

the ganglion but not the eye, the pattern of eye CAPs became 

essentially identical to that of an isolated eye (see Figs. 4a and 4b , 

from Eskin , 1971) . 

It was strongly suspected, then, that the troughs in eye activity 

in the intact CNS preparation coinciding with peaks in R.15 activity 

would be related to the frequency changes in efferent activity out to 

the eye . This indeed proved to be the case. Figure 5 shows both optic 

nerve and Rl5 recordings during spontaneous periods of low optic nerve 

efferent activity (top) and high efferent activity (bottom), both in 

darkness. Clearly, high frequencies of efferent spiking in the optic 

nerve coincide with high frequencies of input I EPSPs and spikes in 

Rl5 , and low numbers of CAPs from the eye . When the efferent activity 

is less, eye CAPs are more frequent and Rl5 EPSPs and spikes are fewer . 

Of course, it cannot be determined from these exper,irnents whether 

input I .cell firing causes increased centrifugal activity, or vice 
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versa, or whether a third neuron influences both of these. However, 

electrical stimulation of the optic nerve (Fig. 6) elicits input I 

in Rl5. Since spontaneous CAPs do not do so (see Fig. 5), it would 

appear that the effective stirnulation is of axons of the efferent 

neurons . The input I cell, then, receives inputs, perhaps through 

interneurons, from some or all of the centrifugal cells . 

Eskin (1971) found that illumination of the eyes inhibits the 

activity of the centrifugal cells, in general (see Fig . 4b). To test 

whether the eyes inhibit the particular set of centrifugal cells which 

project to the input I cell, the eyes were illwninated in the intact 

CNS preparation . A fiber optic light guide was placed so that it would 

illuminate, as far as possible, only one eye. Activity in both optic 

nerves and in Rl5 was recorded simultaneously . Except for the periods 

of light guide illwnination, the preparation was kept in darkness. It 

had already been found, in a similar experiment with only the eyes and 

cerebral ganglion, that illumination of one eye would inhibit most 

efferent cerebral ganglion activity in both optic nerves (Eskin, 1971, 

and Eskin and Audesirk, unpublished results) . Removal of the 

illuminated eye would abolish the inhibition by light , ruling out any 

direct effect of the light on the cerebral ganglion cells themselves 

(which are light sensitive, but less so than the eyes) . 

When only one eye of an intact CNS preparation is illuminated , 

efferent cerebral ganglion activity is inhibited (Fi8 • 7) . Sirnul

taneously, there is a decrease in the frequency of input I EPSPs on 

Rl5. When the light is turned off, the eye CAPs are temporarily 
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s uppressed (thi s also happens in isolated eyes; see Fi~. l in Audesir k, 

1973) . At the same time, somewhat increased activity of the opt i c 

nerve efferents also occurs, and a higher frequency of' EPSPs and 

spikes in Rl5 . If the illuminated eye is removed, and the light guide 

left to illuminate the optic nerve stump, there is no effect on 

efferent cerebral ganglion activity or on the frequency of input I in 

Rl5 . 

It must be pointed out that the eyes and cerebral ganglion units 

are not the only influences on input I frequency in Rl5 . On the 

contrary , spontaneous efferent activity in some other cerebral ganglion 

nerves also influences the frequency of firing of the input I cell 

(Fig . 8). In addition, electrical stimulation of many cerebral 

ganglion or pedal ganglion nerves result in EPSPs in Rl5 (Fig . 9) . 

It is not known whether the effective stimulation is of efferent or 

afferent fibers or both . 

c) Attempts to entrain Rl5 in vitro by stirnulation of input I 

Since the eyes are needed for the photoentrairunent of Rl5, and 

since the large EPSP of input I is the final element of at least one 

pathway by which the eyes can influence Rl5, an attempt was made to 

entrain the rhythm of Rl5 in vitro by stirnulation of input I . These 

experiments were carried out with David Armstrong . 

Isolated PVGs wer e maintained in organ culture for several days . 

The right pleurovisceral connective, which contains the axon of the 

input I cell , was placed through a tunnel containing stimulation 

electrodes . It had been previously shown by Parnas, Armstrong , and 
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Strillilwasser (1974) that the axon of the input I cell invariably has 

the lowest stirnulation threshold of any unit in the connective that 

produces a visible postsynaptic event in Rl5. 

Several different stimulation protocols were attempted, but all 

were basically as follows. The Rl5 was allowed to fire spontaneously 

for one t.o several days . Then input I was evoked at frequencies of one 

to four per second, continuously or interrnittently for one or two 

hours. Stimulation was performed for one to three successive days at 

the same time of day. The relatively long-lasting enhancement of the 

Rl5 spike frequency after stimulation previously described by Parnas, 

et al. (1974) was observed (Fig. 10). However, in no case was a 

spontaneously occurring peak produced in Rl5 on the day following 

stimulation which could be considered to be a circadian aftereffect of 

stimulation. 

Discussion 

The spike frequency of Rl5 can be observed to show circadian 

rhyt1nnicity both in isolated PVG and intact CNS with eyes preparations . 

In the latter case , a large EPSP (input I) occurs spontaneously in Rl5 , 

and the frequencies of spikes and EPSPs closely parallel each other 

(Fig . 5) . In order for the spike frequency to have circadian rhythrni

city in the intact CNS case, it would appear to be necessary for there 

to be a circadain rhythm in the frequency of spikes in the input I 

neuron . This neuron has never been identified, and little is known of 

its properties. It is located in the right pleural ganglion . If the 

other ganglia are systematically cut off, leaving only the PVG and 
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the right pleural ganglion connected to each other, and input I is 

monitored in Rl5, the frequency of EPSPs falls from several per 

second to near zero (Audesirk , unpublished observations) . This seems 

to indicate that the activity of this cell is predominantly determined 

by inputs it receives from other neurons. 

One group of neurons which influences the activity of the input I 

neuron (perhaps through interneurons) is now known. These are cells , 

probably located in the cerebral ganglion, which send axons out the 

optic nerve to the eye and which Eskin (1971) called centrifugal cells 

(Figs. 4 and 5) . These cells, or at least some of them, are excitatory 

to the input I cell . In turn , they receive predominantly inhibitory 

input from the eyes. These cells are particularly well suited for the 

transmission of lights-on and lights-off information to Rl5 . They are 

inhibited by illumination of the eyes (Fig. 7) and at higher threshold 

by direct illumination (Eskin , 1971) . Of course, in vivo these cells 

are covered by the darkly pigmented epithelium of the animal , and 

receive far less light than do the eyes . Lights-off to the eyes 

produces a rebound of firing in these cells . It is not known if these 

neurons receive information through any other sensory modalities, but 

electrical stimulation of several of the other nerves enter ing the 

cerebral ganglion suppresses firing of the centrifugal cells (Eskin , 

1971) . 

In the isolated CNS preparations without eyes (Fig . 3) , the spike 

frequency of Rl5 did not occur in any recognizable circadian rhythm. 

Although this is only negative evidence, it does suggest that the eyes 
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are important in maintaining or enforcing rhythmicity in the input I 

cell. The information at hand indicates that the eyes do so through 

the cerebral ganglion centrifugal neurons. If this is so, then the 

centrifugal fibers might also be expected to show some circadian 

rhythmicity. It is not easy to recognize any rhythm in the overall 

efferent activity in the optic nerve, arid single units have not been 

distinguished and followed throughout an entire day. It must be 

remembered that the indirect data at hand do not reveal the number of 

centrifugal units that project to the input I cell; it may be only one. 

This would make it very difficult to rule out a circadian input from 

such a cell to the input I neuron. 

Although the eyes are needed for the photoentrairunent of Rl5 in 

vivo, the integrity of neural connections from the eyes to the PVG is 

not. Further, at tempts to entrain the circadian rhythm of 1U5 in 

vitro by stimulation of the input I axon failed (Fig. 10). However, 

neither of these experirnents proves that the input I path has nothing 

to do with entrainment of Rl5 in the intact animal. The neural route 

ma! not be necessary, but it, like the hum.oral route, may be 

sufficient. The failure of the !r!, ~ entrainment experiments 

appears to argue against this, but it is impossible to be sure that a 

different protocol would not have succeeded. 

The activity of Rl5 in YiY2_ is determined by the interaction of 

many factors. The list of known inputs to Rl5 activity is fairly 

long: endogenous rhythm; EPSP and IPSPs through the right pleuro

visceral connective (inputs I, II, and III of Parnas, Armstrong, and 
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Strumwasser, 1974); IPSP from interneuron II (Frazier, et al . , 1967), 

probably identical with input III of Parnas, et al . (1974) ; EPSP from 

110 (Kandel, et al ., 1967) ; osphradiwn (Stinnakre and Tauc, 1969) . 

In vivo , then , the instantaneous spike frequency of the cell may depend 

considerably on non- endogenous factors . Even if the circadian rhythrn 

of Rl5 cannot be entrained by the eye-input I neural route , the daily 

functioning of the cell may nevertheless be strongly influenced by this 

input channel . 
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Figure 1. Long term recording from Rl5 in an intact CNS preparation 

with the eyes, kept in constant darkness. 

Upper: Spike activity of Rl5. Note peaks occurring in early projected 

night and near projected dawn, free running with a period less than 

24 hours. Dark bars represent projected night. 

Lower: Periodogram of the above data. Note strong peaks at 11 and 

22 hours. Black dot represents trial period of 24 hours and relative 

sigma of 0.5. 
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Figure 2. Long term recording from Rl5 and eyes in an intact CNS 

preparation with the eyes attached, in darkness. Animals from which 

the nervous systems were taken were kept in LD 12:12 (left) and LD 16 :8 

(right) for at least one week prior to dissection. Gaps represent 

periods during which the rnicroelectrode had slipped out of the cell. 

The dotted lines connect some cases of peaks in Rl5 spiking 

coinciding with relative troughs in eye activity . 

Left: Rl5 has multiple peaks per day, one near projected dawn and one 

in the early projected night, as in Fig. 1 , but also peaks in the 

middle of the day and night. 

Right: Rl5 has two major peaks per day, as in Fig . 1 . Note that the 

eye activity is extended to cover the longer projected day period . 
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Figure J . Long term recording from Rl5 in an intact CNS preparation 

without the eyes , in darkness . Conventions are the same as in Fig. 1 . 

Note the lack of circadian rhythmicity and the appearance of four to 

eight hour periodicities . 
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Figure 4a . Upper : Recordings from right and left optic nerves of eyes 

attached to the cerebral ganglion . The CAPs (afferent from the eye to 

the ganglion) are the large impulses; the small impulses are single 

unit spikes from the efferent cerebral ganglion centrifugal fibers . 

The efferent activity is generally correlated in the two nerves , but 

apparently not one- to- one . 

Lower : Recor ding from the optic nerve of an eye at tached to the 

cerebral ganglion . At the arrow in line A, the cerebral ganglion is 

cooled but the eye is not . Centrifugal activity drops out and the eye 

CAPs become regular , as in an isolated eye . At the arrow in line B, 

the cerebral ganglion is rewarmed . 
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Figure 4b . Upper : A and B: Recordings f r om the optic nerves of one 

preparation, with the eyes attached to the cerebral ganglion . One 

eye (A) is illuminated by fiber optic light guide for the period 

between the arrows . Note suppression of cerebral ganelion efferent 

activity in both nerves . C and D: Continuous recordings from one 

optic nerve . Between the arrows the other optic nerve is electrically 

stimulated at 0 . 5/sec. Again the efferent activity is suppressed . 

Lower : Each pair of lines is a concurrent recording from both optic 

nerves attached to the cerebral ganglion . Other cerebral ganglion 

nerves are stimulated between the arrows . Nerves stimulated are : 

A) right rhinophore ; B) left rhinophore ; C) left rhinophore with the 

nerve crushed between the stimulation electrode and the cerebral 

ganglion ; D) right tentacle nerve . 

Figures 4a and 4b from Eskin, 1971 . 
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Figure 5. Simultaneous recordings frorn Rl5 and an optic nerve of an 

intact CNS preparation with the eyes , in darkness . The top line is 

a high gain AC recording and the second line a DC recording from Rl5 · 

The third line is from the optic nerve . The EPSP visible in the Rl5 

recording is input I . In the top half of the figure , the efferent 

activity in the optic nerve (small impulses) is low; input I EPSPs 

in Rl5 nwnber approximately 520 , and spikes in Rl5 are 295 . The lower 

half shows a period of high efferent activity in the optic nerve ; there 

are about 910 EPSPs in Rl5 , and 422 spikes . The nmnbers of eye CAPs 

in the t wo cases are 24 and 12 , respectively. 
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Figure 6. Stimulation of the left optic nerve at the arrows while 

recording from Rl5 . The top line is DC , the lower line AC , intra

cellular recording from Rl5 . 
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Figure 7. Simultaneous recordings from Rl5 and the right optic nerve 

in an intact CNS preparation with eyes . The CNS is kept in darkness 

except for periods of illumination of the right eye with very dim light 

via a fiber optic light guide , represented by the dark bars . The top 

two lines in each half of the figure are intracellular recordings from 

Rl5 ; the third line is from the optic nerve . 

Upper Half Lower Half 

Light Status EPSPs Spikes EPSPs Splices 

Off before 256 55 183 49 
On 168 17 144 28 
Off after 234 59 205 80 

Vertical calibration: Rl5 DC : 100 mV; Rl5 AC : 50 mV; eye : 50 ~v . 

Horizontal calibration: 30 sec . 
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Figure 8. Simultaneous recordings of spontaneous activity of Rl5 

(top two traces of each half of figure) and the right tentacle nerve 

(bottom trace in each half) in an intact CNS preparation . Note the 

abrupt cessation of input I EPSPs in Rl5 during high frequency bursts 

of activity in the tentacle nerve . Vertical calibration: Rl5 DC : 

100 mV; Rl5 AC: 25 mV; tentacle nerve 25 ,11V• Horizontal calibration: 

JO sec . 
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Figure 9. Stimulation of cerebral ganglion nerves (at arrows) of an 

intact CNS preparation while recording from Rl5 . A) Right tentacle 

nerve . B) Left tentacle nerve. C) Right rhinophore nerve. 

Vertical calibration: Rl5 DC : 25 mV ; Rl5 AC: 5 mV. Horizontal 

calibration: 10 sec. 
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Figure 10 . Long term recording of Rl5 spiking activity in the isolated 

PVG. Input I EPSP was evoked in Rl5 by stimulation of the right 

pleurovisceral connective at l/sec . during the gaps marked with arrows . 

Dark bars represent projected night . 
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Hwnoral Effects of the Eyes on Rl5 In Vitro 

It has been shown above that the circadian rhythm of Rl5 can be 

entrained in vivo even when the neural paths between the eyes and PVG 

have been severed . Therefore a humeral method of entrainment must be 

sufficient . The data do not define the stage at which the hurnoral 

intervention occurs. However, the eyes contain cells that have 

inclusions morphologically similar to neurosecretory granules (Jacklet , 

1968). It is thus a reasonable assumption that the eyes release a 

humeral factor into the blood of the animal. This released substance 

may be able to entr ain t he circadian rhythm of Rl5 . To test this 

hypothesis, isolated eyes and PVGs,_ from the same or different 

animals , were incubated together . If the eye is neurosecretory, and 

if Rl5 can be entrained by the product r eleased by the eye , then it 

might be possible to observe an in vitro effect of the presence of the 

eyes on the activity of Rl5 even though the two are not neurally 

connected . 

Methods 

Long term recordings from the separated PVGs and eyes were done 

as described previously for PVGs in the nerve stimulation entrainment 

attempts (see the Methods of the last chapter) . The spike activity of 

Rl5 was monitored extracellularly, and the CAPs in the optic nerve of 

one of the eyes were recorded via suction electrode . The preparations 

were kept in darkness except when repositioning of the Rl5 electrode 

was necessary . The eyes were approximately one to two cm from the PVG 
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in the incubation chamber, which had 6 ml of organ culture medium in 

it. 

In one group of experiments , the eyes and PVG were removed from 

the same anirnal. These animals were ta.ken from the cormnunity sea 

water tanks, and were dissected, as before , at 0900 ± 0100 hr , that 

is, one hour after lights-on. In a second group of experiments , 

eyes and PVGs were taken from different animals . In these experiments , 

the eye donors were entrained to a lighting schedule which was six 

hours advanced relative to the schedule of entrainment of the PVG 

donors . Dissections were performed on hour after lights-on for the 

PVG donors . In some of these experirnents, eyes from two or more 

animals were used simultaneously . 

A last group of experirnents utilized the same protocol as the 

second group , with a few changes . First , after two days of incubation 

of the eyes and PVG together in vitro (the eyes, but not always the 

Rl5s , of these preparations were recorded for these two days), the eyes 

were removed and the PVG left in culture for one additional day . In 

some otherwise similar experiments , the PVG was removed to a new 

container of filtered sea water and recorded there for the extra day • 

. Second , the timing of the eye and PVG donor anirr~ls ' light schedules 

was varied . Third , dissections were made more random throughout the 

day. In these runs , the activity of the Rl5s was recorded for the 

24 hours after eye removal , to see if the presence of the eyes in vitro 

could be shown to have any persistent effect on the neuron . 
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Results 

a) Eyes and PVG from the same donor animal 

When the isolated eyes and PVG from the same an~r~l were incubated 

together, the first day Rl5 peak occurred very near projected dusk 

(Table I , Fig. 1). Except for the presence of the eyes in the medium, 

the protocol of these experiments was identical to that used to record 

the rhythm of Rl5 in isolated PVGs . Such recordings, at the same time 

of year (January to April , 1974) , r evealed Rl5 peak times considerably 

later when the eyes were not present (Table I) . The average phase 

advance of the Rl5s with eyes was 0342 hr (Student's t test, t = 3 . 0 ; 

p < 0. 025) . When the eyes were kept in the medium with the PVG , the 

first day Rl5 peak was usually very sharp (Fig . 1), and in one instance 

a strong dusk peak even occurred on the third day in vitro . 

This was the first experiment indicating that a factor was 

released spontaneously by the eyes , and that it affected the activity 

of Rl5 . This eye factor appeared to i nduce a peak in Rl5 activity 

which was different in t iming than the peak that the Rl5 would have 

produced if the eyes were not pr esent . The exact timing of this peak 

could be a result of the interaction of the free running rhythm of Rl5 

and the timing and amount of r elease of t he humoral factor by the eyes . 

However , the simpl est int er pret ati on on which to base further 

experiments was that the peak was timed by the eye factor alone . 

b) Eyes and PVG from different donor animals 

If this hypothesis were true , a consequence would be that if eyes 
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and PVGs entrained to different light schedules were incubated 

together, the Rl5 peak should occur at a time determined by the eye, 

not the PVG~ schedule . To test this, eyes and PVGs were taken from 

different animals, entrained to light schedules differing in phase 

by six hours (eye donor schedule advanced) . The expected relationship 

between the eyes and Rl5, based on the previous experiments, would 

yield Rl5 peaks near the end of the eye activity cycle , regardless 

of where this is placed with respect to the Rl5 donor entrainment 

schedule . 

Many , but not all , experimental runs agree quite well with this 

predicted outcome (Figs . 2 and 3) . In the best cases, the second and 

third days of the exper~nent show strong Rl5 peaks near the end of the 

eye activity cycle . The spread of timing and amplitudes of these Rl5 

peaks, not unexpectedly, is greater than in the case of eyes and PVG 

from the same animal . 

Control Rl5s in isolated PVGs tend to show peaks (on the first 

day after dissection) around four hours after projected dusk (Table 1) . 

Since the eyes were entrained to a six hour advanced light schedule , 

the end of the eye activity cycle (usually near projected dusk) should 

be about six hours earlier than projected dusk of the Rl5 schedule . 

This is , then , about ten hour s earlier than the predicted Rl5 isolated 

PVG peaks . The actual Rl5 peaks (Figs . 2 and 3) observed during the 

latter half of the eye cycle are more than ten hours earlier than 

would be predicted under the assumption of a free run of Rl5's own 

rhythm with the same period as the eye . Further, the oscillator of 
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Rl5 is so heavily damped that the cell is seldom observed to have a 

properly timed peak for more than one or occasionally two days in 

vitro. The presence of a sizeable Rl5 peak on the second or third 

day in vitro is somewhat unusual for an isolated PVG recording . The 

presence and prominence of the Rl5 peaks appear to be related to the 

level of activity of the eyes . 

The eye factor may influence the ongoing Rl5 spike rate while 

present and yet have no role in the entrainment of the Rl5 rhythm. 

However , a substance active in entraimnent might be expected to show 

an aftereffect following removal. Therefore , in a series of otherwise 

similar experirnents , the eyes were removed after two days in vitro , 

and the Rl5 recording maintained for another day. In most of these 

experiments, eyes 1Vere used from more than one animal . 

These last experiments could be considered to have the form of 

a mimic 11dissection. 11 In standard isolated PVG recordi ngs from Rl5 , 

the animal is sacrificed, the PVG r emoved, and the spiking activity 

of Rl5 recorded for the next 24 hours or more. An eye hormone 

entrainment hypothesis would consider the rnain features of that 

dissection to be removal of the Rl5 from the influence of the eye 

factor, followed by recording for the next day . This is exactly what 

was done in the in vitro humoral entraimnent attempts . Therefore, if 

the eye factor in vitro perfectly entrained Rl5 , the neuron would be 

expected to show a peak tirne which is the same as that of an Rl5 

freshly taken from an animal whose entraining light schedule was tinted 

the same as the rhythm of the eyes in vitro . 
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It has been found that the timing of the peak of Rl5 activity 

in an isolated PVG freshly dissected from an Aplysia depends both on 

the previous lighting schedule under which the animal was kept and on 

the time of dissection relative to that lightine schedule (see 

Appendix A for a full discussion of this point) . The timing of the 

Rl5 spiking peak can then be expressed in terms of the time of day of 

dissection (Figs. 1 and 4 of Appendix. A) . Figures 4 and 5 show two 

runs in which the eyes were removed on the fourth day of the 

experiment . As a further test, a few experiments were run in which 

the PVG was removed to a separate chamber filled wit h filtered sea 

water for the recording on the extra day . Figure 6 shows the extra 

day of recording in two such experiments , with freshly dissected Rl5 

runs for comparison . The peak time - dissection time graphs of 

Appendix A are reproduced in Figur es 7 and 8 with the times of Rl5 

peaks after eye removal in these and other experiments added . The 

absolute number of hours between eye removal in vitro and the Rl5 

peaks , and the circadian times of the eye activity cycles at which eye 

removal occurred are given in Table II . Although both the circadian 

time of eye removal and the length of tirne until Rl5 peak activity 

varied substantially , the time relationship between these t wo factors 

is very similar to that obtained in the fresh dissection control 

experiments . The Rl5 peaks in the in vitro entrainment experiments , 

however , are often not as prominent as the peaks in the fresh 

dissection experiments (see Fig . 5) . 
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Discussion 

Aplysia eyes have been suspected for some time to be neuro

-secretory. Cells in the eye contain inclusions which have been 

considered to be neurosecretory granules on morphologic grounds 

(Jacklet, 1968). Little work has been done, however, to investigate 

this possibility further. Arch and Eskin (1971) have done the only 

experiments which support a secretory role for the eye. They found 

that they could induce the release of tritiurn in a TCA-precipitable 

form by high potassium treatment of an eye previously labelled with 

tritiated leucine. This work is currently being extended (Stuart and 

Audesirk, experirnents in progress) . 

The results of the present experirnents provide the first evidence 

of a spontaneously released substance from Aplysia eyes, and also give 

evidence of possible functions for that substance . First, the ongoing 

rate of spiking in Rl5 is changed when eyes are present in the same 

medium as the PVG. The peaks of spike frequency are shifted , in the 

presence of the eyes, to times other than those at which they would 

have occurred in the absence of the eyes . Since the eyes were not 

neurally connected to the PVG in these experiments , they must release 

a substance capable of influencing the activity of at least one neuron 

in the PVG. This neuron may be Rl5, or it may be another cell(s) in 

the PVG which then affects Rl5 . 

The net effect of the eye factor on the ongoing spike rate of H.15 

appears to be inhibitory . Aqueous extracts of homogenized Aplysia eyes 

exert a suppressive effect on the spike rate of Rl5 (Audesirk, 
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unpublished results) . The peaks of Rl5 spiking near the end of the 

eye activity cycle may represent unusually long lasting rebounds from 

inhibition . 

In addition to its effect on the instantaneous spike rate of Rl5, 

the eye factor also appears to play a role in the entrainment of the 

circadian rhythm of the neuron . The timing of the peak spiking 

frequency of Rl5 after removal of the eyes in vitro appears to be 

predictable in terms of the previous rhythmic output of the eyes and 

the time of eye removal (Figs . 7 and 8, and Table II) . The predicted 

interval between eye removal and Rl5 peak is correlated with the actual 

interval (Pearson product rnoment , r = 0 . 7.3 ; p<0 . 025) . Further , the 

average absolute value of the differences between the peaks predicted 

and those actually obtained in the in vitro exper iments , 2 . 5 hours , is 

only slightly greater than the average absolute value of the 

differences of the fresh dissection data used to gener ate the 

prediction, 1.9 hours . 

Before concluding too strongly that the timing of the Rl5 peak is 

only detennined by the timing of the release of the eye factor, however , 

other methods of predicting the peak time must be examined as well . 

Other factors which might be able to produce the appearance of 

entrainment include the free running rhythm of Rl5 , uninfluenced by 

the eyes , and the amount of eye factor release . 

The peaks could be timed by the free running rhythm originally 

entrained in vivo by the light-dark cycle . If we assume that the Rl5 

free running rhythm has the srune period as that of the eyes in the 
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same medium, then the expected and observed peak times are those given 

in Table III . (Using other periods for the Rl5 rhythm, such as 24 to 

27 hours, results in similar or larger differences between the expected 

and observed peaks, ranging from 5.1 to 7 . 0 hours.) The magnitudes of 

the differences between the predicted and observed peak tbnes under 

the free running Rl5 rhythm hypothesis (average, 5.1 hr) are much 

greater than the differences under the eye factor entrainment 

hypothesis (average, 2.5 hr; paired t test, t = 2.J; p<0.025). 

The amount of eye factor released could also affect Rl5 peak 

t:ir:les. It was hypothesized above that the factor was inhibitory. If 

so, then the interval between eye removal and Rl5 peak activity might 

be related to the amount of eye hormone released before the eyes were 

taken out of the chamber. Since the amount of hormone cannot be 

directly assayed at the present tbne, indirect methods must be used 

to approximate the amounts released in the various experbnents (Table 

IV). Both the number of eyes in the incubation medium with the PVG 

(correction made for incubation volume; see Table IV) and the product 

of the number of eyes and the peak activity of the recorded eye on the 

last day in vitro before eye removal are positively correlated with 

the interval between removal and Rl5 peak (Pearson product moment; 

for number of eyes, r = 0.63; p ~ 0.05; for product, r = 0.45; 

0.05 < p < 0.1). Entrainment by pulses of light in many organisms 

results in greater shifts in the phase of the rhythm for long li6ht 

pulses than for short ones; see Fig. 14 in Pittendrigh (1960). A 

greater amount of eye hormone might be expected to act sbnilarly to 
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long light pulses . 

In conclusion, then, it appears that the Aplysia eye releases a 

substance which can affect the ongoing and longer term activity of 

Rl5. In vitro experiments are capable of essentially duplicating the 

peak time - dissection time relation which holds with in vivo ---
entrained Rl5s . This eye factor is a strong candidate for the agent 

mediating the photoentrairunent of Rl5 in vivo . 



Time of Peak 

Mean + S. D. 
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Table I 

Control 

+0130 
+o100 · 
-1830 
+o100 
+oo30 

-2342 
±()255 

Eyes + PVG 

-2030 
-2000 
- 1830 
- 2100 

-2000 
±()105 



T
ab

le
 I

I 

R
em

ov
e 

E
ye

sa
 

P
re

d
ic

te
d

 P
ea

kb
 

c 
P

re
d

ic
t 

-
A

ct
u

al
 

(h
r)

 
D

at
e 

A
ct

u
al

 P
ea

k 

5
/2

0
 

CT
 0

00
0 

CT
 1

24
8 

CT
 0

73
0 

5
.3

 
5

/2
4

 
CT

 1
80

0 
CT

 0
24

8 
CT

 
01

00
 

1
.8

 
6

/1
8

 
CT

 
22

30
 

C
T

09
06

 
CT

 
09

00
 

0
.1

 
7

/1
4

 
CT

 
01

00
 

CT
 1

52
1 

CT
 1

83
0 

-3
.1

 
7

/2
2

 
CT

 
03

00
 

CT
 1

50
6 

CT
 

16
00

 
-0

.9
 

8/
1~
 

CT
 

00
30

d 
CT

 1
40

6 
CT

 
09

30
 

4
.6

 
8

/1
 

CT
 0

83
0d

 
CT

 1
63

6 
CT

 
15

30
 

1
.1

 
8

/1
8

i 
CT

 
08

30
 

CT
 1

63
6 

CT
 1

20
0 

4
.6

 
9

/0
3

2
 

CT
 

OO
OO

d 
CT

 1
24

8 
CT

 1
00

0 
2

.8
 

9
/0

3
 

CT
 

23
30

d 
CT

 1
13

6 
CT

 
10

30
 

1
.1

 

a)
 

T
he

 
ti

m
e 

o
f 

ey
e 

re
m

ov
al

 i
s
 d

et
er

m
in

ed
 b

y 
th

e
 f

o
ll

o
w

in
g

 p
ro

ce
d

u
re

. 
F

ir
st

, 
th

e 
m

id
p

o
in

t 
o

f 
th

e
 
si

le
n

t 
p

er
io

d
 o

f 
th

e 
ey

e 
be

tw
ee

n 
th

e
 

se
co

nd
 a

nd
 t

h
ir

d
 d

ay
s 

in
 v

it
ro

 i
s
 a

ss
ig

n
ed

 t
h

e 
v

al
u

e 
o

f 
CT

 1
80

0 
(m

id
d

le
 o

f 
th

e
 c

ir
ca

d
ia

n
 n

ig
h

t)
. 

T
he

n 
th

e
 f

re
e
 

ru
n

n
in

g
 p

er
io

d
 o

f 
th

e
 

ey
e 

is
 c

a
lc

u
la

te
d

 a
s 

th
e 

nu
m

be
r 

o
f 

h
o

u
rs

 b
et

w
ee

n 
th

e 
m

id
p

o
in

t 
o

f 
th

e 
si

le
n

t 
p

er
io

d
 

be
tw

ee
n 

da
ys

 
tw

o 
an

d 
th

re
e
 a

nd
 b

et
w

ee
n 

da
ys

 o
ne

 a
nd

 t
w

o
. 

T
he

n 
th

e
 c

ir
ca

d
ia

n
 t

im
e 

o
f 

ey
e 

re
m

ov
al

 
is

 f
ou

nd
 b

y:
 

CT
ER

 =
 (

H
r 

a
ft

e
r 

CT
 1

80
0)

 
-

6 
-

(F
re

e 
ru

n
n

in
g

 p
er

io
d

 -
2

4
).

 

b)
 

P
re

d
ic

te
d

 R
l5

 p
ea

k 
ti

m
e 

is
 d

et
er

m
in

ed
 b

y 
li

n
e
a
r 

in
te

rp
o

la
ti

o
n

 b
et

w
ee

n 
th

e 
av

er
ag

es
 o

f 
th

e 
R

l5
 t

ir
n

es
 o

f 
re

co
rd

in
g

s 
fr

om
 i

so
la

te
d

 P
V

G
 

co
n

tr
o

ls
 o

f 
A

pp
en

di
x 

A
. 

c)
 

A
ct

u
al

 R
l5

 
pe

ak
 t

im
es

 a
re

 f
ou

nd
 

by
 

ad
d

in
g

 t
h

e 
nu

m
be

r 
o

f 
h

o
u

rs
 

be
tw

ee
n 

ey
e 

re
m

ov
al

 a
nd

 R
l5

 
pe

ak
 t

o
 t

h
e 

ci
rc

ad
ia

n
 t

im
e 

o
f 

ey
e 

re
m

ov
al

. 

d)
 

In
 t

h
es

e 
ex

p
er

im
en

ts
, 

th
e
 P

VG
 

wa
s 

re
m

ov
ed

 t
o

 a
 

se
p

ar
at

e 
ch

am
b

er
 o

f 
fi

lt
e
re

d
 

se
a 

w
at

er
 

fo
r 

th
e
 e

x
tr

a
 d

ay
 o

f 
re

co
rd

in
g

. 
In

 a
ll

 o
th

e
rs

, 
th

e 
ey

es
 w

er
e 

re
ra

ov
ed

 a
nd

 t
h

e 
Rl

5
 

a
c
ti

v
it

y
 o

n 
th

e
 e

x
tr

a
 d

ay
 

re
co

rd
ed

 i
n

 t
h

e
 

sa
m

e 
ch

am
be

r 
an

d 
m

ed
iu

m
 i

n
 w

hi
ch

 t
h

e 
jo

in
t 

in
cu

b
at

io
n

 w
as

 p
er

fo
rm

ed
. 

~
 

\T
l 

\T
l I 



T
ab

le
 I

II
 

D
at

e 
D

is
se

ct
io

n
 

FR
,e

ye
 

(h
r)

 
P

re
d

ic
te

d
 

A
ct

u
al

 
P

re
d

ic
t 

-
A
c
tu

a
l 

(h
r)

 
T

im
e 

P
ea

k a
 

P
ea

k 

5
/2

0
 

CT
 0

10
0 

24
 

CT
 1

52
4 

CT
 1

33
0 

1
.9

 
5

/2
4

 
CT

 0
10

0 
27

 
CT

 0
02

4 
CT

 1
00

0 
-9

.6
 

6
/1

8
 

CT
 0

10
0 

23
.5

 
CT

 1
35

4 
CT

 1
43

0 
-0

.6
 

7
/1

4
 

CT
 

01
00

 
24

 
CT

 1
52

4 
CT

 
00

30
 

-9
.1

 
7

/2
2

 
CT

 0
10

0 
25

 
CT

 1
82

4 
CT

 0
10

0 
-6

.6
 

8/
13

1 
CT

 1
10

0 
26

 
CT

 0
11

2 
CT

 
09

30
 

. -
8

.3
 

8
/1

8
2

 
CT

 0
20

0 
26

.5
 

CT
 

21
12

 
CT

 0
33

0 
-6

.3
 

8
/1

8
1

 
CT

 
08

00
 

26
 

CT
 

20
54

 
CT

 
02

00
 

-5
.1

 
9/

03
2 

CT
 1

20
0 

26
.5

 
CT

 0
15

4 
CT

 
23

30
 

2
.4

 
9

/0
3

 
CT

 1
20

0 
26

.5
 

CT
 0

15
4 

CT
 

00
30

 
1

.4
 

I I-
' 

V
1

 

a)
 

P
re

d
ic

te
d

 R
l5

 
pe

ak
 d

et
er

m
in

ed
 b

y 
li

n
e
a
r 

in
te

rp
o

la
ti

o
n

 b
et

w
ee

n 
th

e 
av

er
ag

es
 o

f 
R

l5
 

°' I 
pe

ak
 t

im
es

 f
ro

m
 
is

o
la

te
d

 P
VG

 
co

n
tr

o
ls

 o
f 

A
pp

en
di

x 
A

, 
co

rr
ec

te
d

 f
o

r 
th

e 
p

er
io

d
 o

f 
th

e
 f

re
e 

ru
n

n
in

g 
rh

yt
hm

, 
w

hi
ch

 i
s
 a

ss
um

ed
 t

o
 b

e 
th

e 
sa

m
e 

as
 t

h
a
t 

o
f 

th
e 

ey
e 

re
co

rd
ed

 
in

 t
h

e
 s

am
e 

ch
am

be
r.

 



-157-

Table IV 

Date Number of Peak CAP Product b Intervalc 
Eyes Frequencya 

5/20 4 150 600 7.5 
5/24 4 48 192 7 . 0 
6/18 4 112 448 10.5 
7/14 8 141 1128 17 °5 
7/22 6 64 384 13 . 0 
8/13 4d 20 160 9. 0 
8/181 2d 20 80 7 .0 
8/18i 4 56 224 3.5 
9/032 2d 102 408 10. 0 
9/03 2d 126 504 11.0 

a) Peak CAP frequency of the recorded eye on the day before eye 
removal . 

b) Product = Peak CAP frequency x Number of eyes (corrected for volume) 

c) Interval = Number of hours between eye removal and Rl5 peak 

d) Volume one half of other experiments (3 ml) 
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Figure 1. Recordings from one eye (of t wo) and Rl 5 in the neurally 

isolated PVG from the same animal, incubated together in the same 

chamber in darkness. Note the strong Rl5 activity peaks near the end 

of the eye cycle on days one and three . In this and subsequent 

figures, the dark bars represent projected night . 
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Figure 2 . Recordings from one eye (of two) and Rl5 in the isolated 

PVG of different animals , incubated together in darkness . The LD 

schedule of entrainment of the eye donor animal was six hours 

advanced relative to the PVG donor schedule . 
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Figure J. Recordings from one eye (of two) and Rl5 in the isolated 

PVG of different animals , incubated together in darkness . The LD 

schedule of entrainment of the eye donor animal was six hours 

advanced relative to the PVG donor schedule . 
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Figure 4. Recordings from one eye (of four) and Rl5 in the isolated 

PVG from different animals , incubated together in darkness . At the 

end of the eye graph, the eyes were removed and the Rl5 activity 

recorded for another day . Rl5 peak activity after eye removal 

occurred at 7 . 5 hours after eye removal . 
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Figure 5. Recordings from one eye (of four) and Rl5 in the isolated 

PVG f r om different animals , incubated together in darkness . At the 

end of the eye graph, the eyes were removed and the Rl5 activity 

recorded for another day . Rl5 peak activity after eye removal 

occurred at 10 . 5 hours after eye removal . 
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Figure 6. Recordings from Rl5s in isolated PVGs . 

Top: Rl5s from PVGs removed from three days of incubation with eyes 

in vitro . Left: PVG removed at CT 0000 of eye free running rhythm 

Right : PVG removed at CT 0830 of eye rhythrn (8/18/741 ). 

Bottom: Rl5s of PVGs freshly dissected at tirnes closely equivalent to 

PVG removal times above. Left: Dissection at CT 0100 . Right: 

Dissection at CT 0700 . 

The spikine activity graphs are aligned vertically to facilitate 

comparison between Rl5 activities in the PVG removal and fresh 

dissection cases . Note that the PVG removal peaks are earlier than 

the corresponding fresh dissection peaks, as is the general case (see 

Table II) . 

OC = ore;an culture PVG removed from incubation with eyes 

FC = freshly dissected PVG 
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Figure ?. Reproduction of Fig. 1 of Appendix A, showing time of peak 

activity of Rl5 in the isolated PVG as a function of time of 

dissection (triangles). The squares represent peak timing of Rl5s 

after eye removal from in vitro incubations of eyes and PVGs 

together. Eye removal is taken as the "dissection time" and is 

assigned as equivalent to a point in the LD cycle of the graph based 

on the previous day's eye activity cycle. The midpoint of the silent 

period of the eye cycle is taken as the middle of the free running 

subjective night, and thus is set equal to CT 1800, six hours before 

dawn. Since the Rl5 rhythm is being tested for entrainment by the 

eyes, the period of the entraining cycle is taken as the free running 

period of the eyes. Therefore an eye removal occurring 24 hours after 

the midpoint of the silent period of an eye running at a 27 hour 

period, for example, would not be assigned the time of CT 1800 but 

rather CT 1500. See Table II for the times and formula for computing 

the time of eye removal. 
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Figure 8. Reproduction of Fig. 4 of Appendix A with the in vitro 

entrainment points added, as in Fig. 7. 
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General Discussion 

In several organisms, there have been indications of a hormonal 

link between suspected master circadian oscillators and subordinate 

systems. In sparrows, for example, severing the pineal stalk, which 

contains the only known neural output path from the pineal, the pre

sumed master oscillator in birds, does not change the circadian 

locomotor rhythm (Menaker, 1974). The eclosion of adults in a 

population of Pernyi moths occurs with a circadian rhythm, which is 

abolished by removal of the brain. The rhythm is re-established by 

implantation of brains in the abdomens of the pupae (Truman, 1972, 

1974). Both of these experiments suggest hormonal control of the 

systems actually causing the observed circadian behaviors. The location 

of the master and subordinate systems is not known on the cellular 

level in either of these organisms. 

This dissertation has provided evidence of both hormonal and 

neuronal links between a master and a subordinate circadian oscillator 

in Apl.ysia: the eyes and Rl5, respectively. The diagram of Figure 1 

presents the main data in pictorial form. 

Although not much is known about the details of the wiring diagram 

or rhythm production in the eyes, information of a general nature about 

various properties of the eyes has been presented here, in Part I . It 

is not known what, if any, relation the neurosecretory cells in the eye 

bear to the cell types deduced from the experiments of Part I. It 

would be of particular interest to know if the higher order cells which 

produce the CAP in the optic nerve are identical with, or include, the 
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neurosecretory cells . 

There are two methods of information transfer from the eyes to 

Rl5 that are now known . The first is neuronal , via the centrifugal 

cells of the cerebral ganglion . These eventually connect with the 

cell which produces the large EPSP of input I in Rl5 . It is not known 

what role this input plays in the normal funct ioning of Rl5 in vivo , 

but , as pointed out previously , this pathway should be strongly 

influenced by large changes in light intensity , as at dawn or dusk . 

The other connection to Rl5 is via a neurosecretory product released by 

the eyes . This neurohormone appears to be able to entrain the 

circadian rhythm of Rl5 . Entrainment may occur either by the hormone 

acting directly on Rl5 , or indirectly via actions on other cells in the 

PVG. Data have not yet been obtained to allow a distinction between 

these two possibilities . 

The eye is a difficult, but not impossible , preparation for 

intracellular work . Rl5 is not only easy to record from with intra

cellular electrodes for long periods of time, but is also large enough 

for biochemical work to be done on the individual neuron (lrJilson , 1971) . 

Thus the unique possibility now presents itself to study entrainment of 

and hormonal action on the single neuron . Questions open to investi

~ation include : the nature and manner of release of the neurohormone ; 

the cell on which the hormone acts (R15 and/or other neurons) ; the 

cellular site of action (e . g., membrane or nucleus) ; the neuronal 

proper ties altered by the hormone . The answers to these questions may 

yield valuable insights into the generation and entrainment of metazoan 
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rhythms in general at the cellular level . 
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Figure 1. Diagram of interneuronal connections within the eye and 

between the eye and Rl5 . In the eye, light (arrows) excites the 

photoreceptors, which cormnunicate with higher order cells via electrical 

synapses (straight line synapse). Spikes are produced in these higher 

order cells and travel down their axons in the optic nerve to the 

cerebral ganglion . In darkness, spikes are initiated in these neurons 

via EPSPs from pacemaker cell(s) (open triangle: excitatory chemical 

synapse) . The higher order cells may be somewhat autoactive, at least 

to the extent of responding differently to the pacemaker excitation at 

different times of day. 

There are cells in the cerebral ganglion which receive inhibitory 

input from the eyes (closed triangle: inhibitory chemical synapse) and 

which in turn inhibit output from the eyes. This inhibition of 

spontaneous eye activity would seem to be most efficient if done at 

the pacemaker level, but may be done at the follower level (dotted 

lines : uncertain or alternate connections). Some of these cerebral 

ganglion cells also send excitation, perhaps through interneurons, to 

a cell in the right pleural ganglion. This cell in turn makes an 

excitatory synaptic connection onto Rl5 (input I). 

Some cells in the eye release a neurohormone which can influence 

the activity and circadian rhytrun of Rl5. The cells in the eye re

leasing the hormone are not known, but are possibly a subset of the 

follower cells . The hormone may act directly on Rl5, or it may act on 

other neurons in the PVG which act on Rl5 . The net effect of the 

hormone is probably inhibitory, but this is not certain. It is 
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possible that the ongoing effect and the entrainment effect are due to 

different hormones or to different modes or sites of action of the 

same hormone. 
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Appendix A 

The Timing of the Circadian Rhythm of Rl5 

Previous reports concerning the circadian rhythm of Rl5 have 

contained a curious inconsistency. The timing of the rhythm has been 

different in nearly every paper describing the phenomenon. The rhythm 

is measured by the time at which the maximum spiking activity of the 

cell occurs, which has been reported to be predictable from know

ledge of the light-dark schedule under which the an.unal was kept prior 

to dissection. The original report (Strumwasser, 1965) described the 

neuron's spiking activity as usually peaking very near projected dawn. 

Most of these experiments were performed in the spring of the year. 

Some cells were later folUld to peak at projected dusk (Strumwasser, 

196?). Lickey (1969) reported that the neuron's peak activity could 

occur at dawn or dusk, but also near midday or midnight, depending on 

the season of the year at which the experiment was performed. Dawn/ 

dusk peaks occurred during the winter and spring, and midday/midnight 

peaks occurred during the sununer and fall. There was no obvious 

preference for dawn as opposed to dusk (six to five) but there were 

more midday peaks (eight) than midnight peaks (four). 

Later experiments by Lickey (Lickey, Zack, and Birrell, 1971; 

Lickey and Zack, 1973), perform~d during the midday/midnight season, 

found, as expected, very few dawn/dusk peaks. However, unlike the 

1969 data, most of these peaks now fell near midni~ht, with only a few 

at midday. Even more strangely, whereas the 1969 data show eight peaks 
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before rnidperiod (midday or midnight), three after, and one exactly 

at midnight, the 1971 data have nine peaks after midperiod and two 

before (all of these peaks were within three hours o.f rnidperiod; 

otherwise they would be closer to, and considered as, endperiod peaks 

in this analysis) and the 1973 data show seven or eight after and only 

one before. These distributions of 1969 on the one hand and 1971 and 

1973 on the other are, of course, considerably different (Fisher's 

exact probability, p < 0.01 for before vs. after rnidperiod; p < 0.05 

for midday vs. midnight). 

The net outcome of these experiments, if all are taken at face value, 

is that Rl5 is a cell that peaks at dawn or dusk, or midday or 

midnight, depending on the season of the year. Sometimes both peaks 

of a pair may be present in the same run (see Lickey, 1969, Fig. 1). 

In addition, depending on the year (?), most rnidperiod peaks occur 

after or before the midperiod, and at midday or rnidnight. The 

conclusions which could be drawn from this welter of data are varied, 

and none very satisfactory. For example, if peaks occur both at dawn 

or dusk, or midday 2£. midnight, or both members of a pair can be 

present, then perhaps the rhythm is not circadian but hernicircadian. 

Again, perhaps there is a rhythm related to the light-dark entrainment 

schedule of the animal, but the exact relation depends also on more 

subtle factors differing from laboratory to laboratory. Or perhaps 

there is no rhythm at all, but each investigator has introduced his 

own individual, unnoticed artifacts which gave the appearance of 

rhythmicity. 



-184-

The real reason for this variation in peak timing, however, may 

lie in uncontrolled variables not taken into account by the 

investigators. One such variable, which goes virtually unmentioned 

in all of these reports, is the time of dissection relative to the 

light-dark schedule. Experiments which control for the effects of 

dissection time, reported below, have led to a surprising result: 

the phase of the Rl5 spiking rhythm is set by dissection. Moreover, 

the kinetics of the response of the rhythm to dissection time are 

strikingly similar to the kinetics of phase shifting of the circadian 

rhythms of virtually all organisms by light pulses. 

Methods 

The dissection and recording techniques were as previously 

described for normal animals (Part II). The Ap&ysia were entrained 

either in the community tanks or in individual aquaria for at least 

one week prior to dissection. Points from dissection times of CT 0100 

and CT 0700 were derived from the control and sham blinded animals 

of Part II. Except for those of the blinding experiments, all 

recordings were extracellular. Recordings were done at various times 

of the year, from June 1973 to August 1974 (see Table I). 

-)<-CT = circadian time. Dawn == CT 0000, dusk = CT 1200 for an LD 12 :12 
light cycle, regardless of the position of these events in relation 
to the solar day. 
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Results 

Dissection times and dates, and subsequent Rl5 spiking peaks, 

are given in Table I. These peaks were used to generate graphs of 

peak time vs. dissection time (Fig. 1), and interval between dissection 

and peak vs. dissection time (Fig. 2). For comparison purposes, · 

graphs similar to the plot of Fig. 1, for steady state phase shifts 

produced by short light pulses applied to free running animals of 

various species, are shown in Fig. 3 (from Pittendrigh, 1965). 

Several features of the Rl5 peak times and graphs should be 

noted. First, although CT 0100 dissections were performed during 

the surnrner of 1973 and the winter/spring of 1974, no seasonal change 

in the timing of the peaks was observed (summer average, CT 1500 ± 
0233 hr; winter average, CT 1542 ± 0255 hr). This is contrary to 

the findings of Lickey (1969) that summer animals yield rnidperiod 

peaks (middle of the projected night or day; i.e ., near CT 1800 or 

CT 0600) while winter ones yield endperiod peaks (near CT 0000 or 

CT 1200) . 

Second, the tirne of peak spiking activity is strongly dependent 

upon dissection time, with, in my experiments at least, all peaks 

occurring 4 to 18 hours after dissection. With this large number of 

experiments, the omission of any peaks in 10 hours of the day strictly 

by chance is vanishingly small (p ~ io-14) . 

Third, the timing of the peaks is nevertheless predictable on the 

basis of the predissection light schedule , when dissection time is 

also taken into account. This is most easily seen with dissections 
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performed at CT 0100 and CT 0700. In these two cases, the average 

Rl5 peak times were CT 1521 and CT 1436, respectively . The peaks 

averaged 15 . 35 hours after CT 0100 dissections , but only 7. 6 hours 

after CT 0700 dissections . The peak times based on the predissection 

light schedule were nearly the same (difference = 0 . 75 hours ; t = 0 . 7; 

p > 0 . 4), but the intervals between dissection and peak were widely 

different (difference= 7 . 75 hours ; t = 6 . 9; p« 0 . 001) . However, 

at a different time of dissection , CT 1900, for example , both the 

time of Rl5 peak and the interval between dissection and peak are 

significantly different from those of CT 0100 dissections (time of 

peak : difference = 10 . 25 hours ; t = 8.0; p « 0 . 001; interval : 

differ ence = 5. 25 hours ; t = 4 . 1 ; p < 0. 001 ) • Thus the peak spiking 

tirne can be adequately predicted only by taking both dissection time 

and lighting schedule into account . 

It should be pointed out here that , since more than half of the 

data was taken using extracellular recording , artifacts due to 

irnpalement damage cannot explain the results obtained. Nor is the 

trend of later peak tirnes following later dissections (after CT 1000; 

see Fig . 4) merely a trivial consequence of peaks occurring a constant 

time after dissection . The slope of the regression fit to the points 

between dissections at CT 1300 and CT 2200 is not one ; rather, it is 

about 1 .4 . There is , then, a greater delay in peak time than there is 

in dissection time in this region of the graph . The slopes at other 

parts of the graph , of course , are generally much less than one , due 

to the flat region generated by dissections at CT 0100 to CT 0700 . 
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Discussion 

a) Interpretation of past data 

Since the past reports make little mention of the time of 

dissection , it is .impossible to tell with certainty whether some 

or most of the Rl5 rhythms reported would agree with the dissection 

time - peak time curve shown in Figs . 1 and 4. However, the graphs 

of spiking activity included in some of the previous paper s do show 

the entraining LD schedule and the time of impalement of R15 with the 

intracellular microelectrode . If we assume that the experiments were 

performed without interruption, then the impalement of the cell 

should have followed dissection rather quickly . Granted this 

assumption, we can then examine some of the past experiments in the 

light of the present data . 

Strum:wasser (1965) shows activity graphs of three R15s from 

anirnals previously exposed to 9, 3 , and 2 days of entrainment , 

respectively (see Fig . 1 of the introduction to circadian rhythms in 

Aplysia in Part I of this dissertation f or one of these graphs) . In 

all of these experiments , impalement occurred between about CT 1330 

and CT 1700, that is , 1 . 5 to 5 hours after dusk. Allowing one to 

two hours between dissection and impalement , the dissections would 

have taken place CT 1200 to CT 1600 . Fig. 1 or 4 would predict Rl5 

peaks at about CT 1800 to CT 0200 . The actual peaks in these graphs 

(Strumwasser , 1965) occurred approxirnately at CT 0130 , CT 2330 , and 

CT 0000 . These are entirely in the last half of , but within the range 

of , the prediction. 
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Turning to Lickey (1969), we again find three Rl5 activity graphs 

for LD 12:12 entrained Aplysia (one of these graphs is also 

reproduced in Fig . 1 of the introduction to circadian rhythms in 

Aplysia) . Impalements ranged from CT 1300 to CT 1700, implying 

dissections from about CT 1100 to CT 1600. Figure 1 predictions would 

call for peaks between about CT 1700 and CT 0200. Actual peaks were 

CT 0300 , CT 2200, and CT 0500 . These peaks are slightly later than 

the prediction . 0 Strumwasser ran his experiments at about 11 . 5 C., 

0 0 and Lickey at 12 to 13 C. , as compared to the 15 C. for the experi-

ments of Fig . 1 . A slightly longer period of the rhythm at the colder 

temperatures could easily account for the later peaks. 

It was mentioned that no seasonal effect on the timing of the 

peak of Rl5 activity was observed in the present experiments, at least 

with CT 0100 dissections. In fact, the difference in peak times 

(42 minute average) was in the opposite direction to that found by 

Lickey (1969) . In all of the Lickey experiments , several differently 

phased LD 12:12 cycles were used, so that animals taken for different 

experimental runs were exposed to different times of light onset 

relative to the solar day . It is possible that both the seasonal 

effect and the variation in peak timing seen in those experiments were 

due to an interaction of the timing of the lighting schedules and the 

experimenters ' own work schedules . 

It i s of i nter est t o note that the three published spiking records 

of Hl 5s taken from Aplysia kept in constant light prior to dissection 

do not fit into the dissection time - peak time curve . The peaks 
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occurred about 21 hours (Lickey, 1969) and no more than two to three 

hours (Strumwasser, 1965, Figs. 5 and 6) after dissection, with the 

latter two having the appearance of the dissection having occurred 

during an ongoing peak which continued after impalement. No peaks 

in the present experiments (Fig. 2) occurred either this long after 

or this soon after dissection. This indicates that the dissection 

time - peak time relation depends on the presence of the LD cycle, 

and that it is not the dissection per se, but the tline of dissection 

within the LD cycle, that produces the relation. 

b) Relation between peak time and dissection time 

The circadian rhythms of almost every organism free running in 

constant darkness can be phase shifted by a short (minutes to a few 

hours) pulse of light. The amount and direction of the phase shift 

is dependent upon the phase of the free running rhythm at which the 

light pulse is applied. The resulting curve of phase shift vs . 

phase pulsed invariably assumes roughly the same shape for all 

organisms . Only small changes in phase result from light pulses 

applied during subjective day . The largest changes are seen for pulses 

given during the subjective night , with delays (activity peak or onset 

occurs later) induced early in the subjective night, and advances 

induced late in the subjective night . A changeover from delays to 

advances occurs somewhere near the middle of the subjective night 

(Fig . J) . For a complete discussion of phase response curves, see 

the reviews by Pittendrigh (1965, 1974). 

A comparison of the graphs of Figs. 1 and 3 shows that the timing 
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of the rhythrn of Rl5 can be interpreted in an exactly analogous way . 

The time of dissection acts as a resetting event for the rhythm of 

the cell . If the dissections occur quring the day, little change in 

the timing of the subsequent activity peaks results from a change in 

the time of dissection (CT 0100 to CT 0700) . However, dissections 

late in the day and into the night result in peaks which are later 

(delayed) than those following day dissections . For dissections 

shortly after the middle of the night and continuing to dawn , the 

peaks are earlier than those of day dissected Rl5s . In Fig . 1 , Rl5 

activity peaks are grouped in 12 hour blocks before and after 

pr ojected dawn . In a heavily damped oscill ator such as Rl5 (at least 

in vitro) , properly timed peaks seldom occur after more than one day ----
in vitro , and, if present , are of very low amplitude by the second day . 

This makes it essentially impossible to distinguish between delays 

ear l y in the night and advances later in the night on the one hand , 

and continued delays throughout the night until the rhythm catches up 

with the day dissection peak time on the "next 11 day. Fig . 4 more 

clearly illustrates this point . 

Nevertheless , the resemblance of the Rl5 dissection time - peak 

time curve to the phase response curves of other rhythms is striking , 

and requires some attempt at explanation . It has previously been 

shown that the rhythm of Rl5 is entrained by light-dark cycles via the 

eyes , and that the eyes release a substance which affects the activity 

of the neuron . Several other inputs to the cell exist as well , which 

have not as yet been related to its rhythmicity. If the rhythm of the 
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cell is entrained by the eye factor, then the phase of the Rl5 rhythrn 

would depend on the time and perhaps amount of factor release. In this 

interpretation, at any given dissection time, the phase at which the 

Rl5 rhythm will be found will be determined by the point which has 

been reached in the eye release cycle and in the reaction of the 

neuron to the factor. Other inputs may play a role in phase setting 

in the intact animal, but the phase response curve can be essentially 

duplicated in vitro with only the eyes and PVG present. Therefore 

it would appear that the interaction of substances released by the 

eye, the endogenous rhythm, and inputs to Rl5 from within the PVG are 

sufficient for phase setting. 

There are several practical consequences of this dissection time -

peak time relation . Any attempt to test the effects of various 

experimental manipulations, such as blinding, on the entrainment of 

the Rl5 rhythm also tests for the effects of dissection time. The 

experiments on the photoentrainment of the Rl5 rhythm in vivo 

reported in this dissertation were fortuitously performed in the flat 

region of the curve. At any other time, in the absence of detailed 

knowledge of the curve, constant solar dissection time superimposed 

upon varying phase of light schedule would have rendered the results 

uninterpretable. Uncontrolled dissection time would, of course, lead 

to a wide scatter of peaks. 

Isolating the factors occurring during a dissection which reset 

the phase of Rl5 would appear to be almost a hopeless task. If the 

eye factor can indeed entrain and phase shift the Rl5 rhythm, and if 
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it can be isolated and purified, however, many in vitro experiments 

would become possible which might be able to clarify this rnatter. 

For example , the range of possiblities can be narrowed if it can be 

determined whether the hormone acts directly on Hl5, that is, can both 

the short term and phase setting effects of the factor be exerted in 

a medium which synaptically isolates Rl5? If this is true, then a 

detailed analysis of the events behind the phase response curve 

presented here can be undertaken . If successful, this analysis may 

al so give insights into the mechanisms underlying the phase response 

curves of other circadian rhythms . 
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Table I 

Date Dissection Time Peak Time 

06/11/73 0100 -1630 
06/13/73 " -1830 
06/15/73 II -1430 
06/26/73 II -1330 
07/04/73 " -1200 
01/17/74 " -1700 
01/29/74 II -1730 
02/11/74 " -1030 
02/14/74 " -1700 
02/16/74 " -1630 

06/24/73 0700 -1330 
06/28/73 II -1600 
06/30/73 II -1330 
07/15/73 " -1400 
07/17/73 " -1700 
07/29/73 II -1230 
08/02/73 II -1330 
08/07/73 " -1600 
08/08/73 II -1900 
08/09/73 II -1100 

07/19/74 1000 -1700 
07/20/74 II -1630 
08/13/74 II -2200 

07/12/74 1300 -2200 
07/13/74 II -1830 
07/15/74 II -2130 

07/25/74 1600 -2200 
08/17/74 II +0300 
08/18/74 II -2000 

06/01/74 1900 +0600 
06/02/74 II +0500 
06/19/74 II +0430 
06/20/74 II +0300 
06/21/74 II +0700 

07/17/74 2200 +1100 
07/23/74 It +o700 
08/15/74 II +o530 
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Figure 1 . Peak spiking activity of Rl5 in the isolated PVG as a 

function of the time of dissection within the light-dark cycle. The 

dark bars represent the dark portion of the LD cycle (projected dark 

for the peak time axis) . Multiple triangles indicate several Rl5s 

peaking at the same time . Note that the early day dissection points 

are repeated to emphasize the near zero slope during this time . 
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Figure 2. Interval between dissection and time of peak spiking 

activity of Rl5 in the isolated PVG as a function of the titne of 

dissection. Conventions as in Fig. 1. 
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Figure 3. Phase response curves for circadian rhythms of several 

organisms . The animals are kept in constant conditions and in 

darkness ~ and short (minutes to a few hours) pulses of light are 

presented at different times in the free running activity cycle . 

Direction and magnitude of the resulting steady state phase shift is 

a function of the phase pulsed . From Pittendrigh, 1965; compiled by 

him from data from the authors shown on the graphs. 
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Figure 4. Peak spiking activity of Rl5 in the isolated PVG as a 

function of the time of dissection . Instead of restricting the 

ordinate to one 24 hour cycle starting at dawn, the ordinate has been 

extended to show the "constant delay" interpretation which is an 

alternative to the "delay and advance" curve of Fig. 1. Again, note 

that the early day dissection points are repeated . 
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