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ABSTRACT 

The dragmacidins are an emerging class of bis(indole) natural products isolated 

from deep-water marine organisms.  Although there has been a substantial effort to prepare 

the simple piperazine dragmacidins, little synthetic work has been done in the area of the 

pyrazinone-containing family members, dragmacidins D, E, and F.  These compounds are 

particularly interesting due to their complex structures and broad range of biological 

activity. 

A highly convergent strategy to access dragmacidin D has been developed.  In this 

approach, sequential halogen-selective Suzuki couplings were used to assemble the carbon 

scaffold of the natural product.  After executing a highly optimized sequence of final 

events, the first completed total synthesis of dragmacidin D was achieved.   

An enantiodivergent strategy for the total chemical synthesis of both (+)- and (–)-

dragmacidin F from a single enantiomer of quinic acid has been developed and successfully 

implemented. Although unique, the synthetic routes to these antipodes share a number of 

key features, including novel reductive isomerization reactions, Pd(II)-mediated oxidative 

carbocyclization reactions, halogen-selective Suzuki couplings, and high-yielding late-

stage Neber rearrangements. 

The formal total syntheses of dragmacidin B, trans-dragmacidin C, and 

dihydrohamacanthin A are described.  In addition, preliminary studies involving a novel 

approach for the preparation of dragmacidin E are reported. 
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CHAPTER ONE 

 

The Dragmacidins: A Family of Biologically Active Marine Alkaloids 

 

1.1  Introduction 

1.1.1  Bis(indole) Alkaloids 

 Over the past several decades, the search for natural products in marine and 

terrestrial environments has led to the discovery of a number of biologically active 

bis(indole) alkaloids.1  These compounds, as well as their unnatural analogs, have shown 

promise as leads for the development of novel therapeutics.  Several representative 

bis(indole) compounds are shown below in Figure 1.1.1.2   
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 Although many bis(indole) alkaloids have been found in nature, relatively few 

have been discovered in marine environments.3  Of those, the dragmacidins have received 

considerable attention from the scientific community over the past decade due to their 

broad range of biological activity and complex structures (1-7, Figure 1.1.2).4,5  Several 

closely related bis(indole) natural products have been discovered in similar environments, 

such as the topsentins (e.g., 8)4b,6 and the hamacanthins (e.g., 9).7 

 

Figure 1.1.2 

N
H

N

N
H

H
N

Br

HO

O

NHHN

NH2

N

N
H

N
H

NH

HN H
N

NH2

O

Br

HO

N
H

N

N
H

H
N

Br

O

OHO

H

H
N

HN

H2N

H
N

N
H

N
H

NH

Br

Dragmacidin C (4)

Dragmacidin D (5)

Me
N

N
H

N
H

NH

Br

Me
N

N
R

N
H

NH

Br

Dragmacidin (1)

Dragmacidin E (6) Dragmacidin F (7)

R = H: Dragmacidin A (2)

R = Me: Dragmacidin B (3)

OH

Br

Br Br Br

Hamacanthin A (9)Isobromotopsentin (8)

N

N
H

N
H

NH

Br

Br O

N
H

N
H

BrN
H

N O

HO

 

 

 

 



3 
1.1.2  The Dragmacidins 

 The dragmacidins are an emerging class of novel bis(indole) natural products 

isolated from the deep-water marine sponges Dragmacidon, Halicortex, Spongosorites, 

and Hexadella, and the tunicate Didemnum candidum.  The four dragmacidins initially 

identified (1-4) contain a piperazine linker and display modest antifungal, antiviral, and 

cytotoxic activities.4a-c  However, our interest in these natural products was piqued by the 

structurally complex pyrazinone-containing family members, dragmacidins D (5), E (6), 

and F (7).4d-g  Although the relative stereochemistry of 1-7 was known, at the onset of our 

investigations, the absolute stereochemistry of 1-7 had not been established. 

 

1.2  Biological Activity of Pyrazinone-Containing Dragmacidins 

 The following section describes the wide range of biological activity associated 

with the pyrazinone-containing dragmacidins, D (5), E (6), and F (7).  Preliminary studies 

suggest that these compounds are interesting from a biological standpoint and are 

therefore attractive targets for total synthesis.  Synthetic routes to the pyrazinone 

dragmacidins could facilitate the production of sufficient quantities of material needed 

for advanced biological studies. 

 

1.2.1 Inhibitors of Protein Phosphatases 

1.2.1.1  Activity of Dragmacidins 

 In 1998, Capon et al. reported that dragmacidins D (5) and E (6) are potent 

inhibitors of serine-threonine protein phosphatases (PP).4e  In addition, preliminary 

testing showed that dragmacidin D (5) selectively inhibited PP1 over the PP2A isozyme.   



4 
1.2.1.2  About Protein Phosphatases 

 The reversible phosphorylation of proteins containing serine, threonine, and 

tyrosine residues is widely recognized as a mechanism by which many cellular events are 

regulated (Figure 1.2.1).8  While phosphorylation is catalyzed by protein kinases, 

dephosphorylation is carried out by protein phosphatases.  To date, many phosphatase 

enzymes have been discovered; however, discerning which phosphatase is responsible for 

controlling particular cellular pathways has remained an elusive goal.  In particular, 

distinguishing the action of the PP1 and PP2A isozymes has been extremely difficult.  

Ultimately, the discovery of small molecules that display selective PP inhibition could 

help elucidate the mechanism of many physiological processes including cell division, 

gene expression, neurotransmission, and muscle contraction.8c 
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1.2.2  Inhibitors of Neural Nitric Oxide Synthase  

1.2.2.1  Activity of Dragmacidins 

 Dragmacidin D (5) has also been shown to selectively inhibit neural nitric oxide 

synthase (nNOS) in the presence of inducible nitric oxide synthase (iNOS).9  The ability 

to efficiently prepare dragmacidin D, and related derivatives thereof, could be extremely 

valuable for the discovery of novel drugs that target neurodegenerative disorders. 

 

1.2.2.2  About Nitric Oxide Synthase 

 The production of nitric oxide (NO) in the human body is known to be associated 

with the regulation of a number of physiological properties.10  NO (13) arises from the 

decomposition of L-arginine (10) by an enzyme known as nitric oxide synthase (NOS) 

(10 → 11 → 12 + 13, Scheme 1.2.1).  This enzyme occurs in three main isoforms: a) 

inducible NOS (iNOS), which generates NO during the immune response where NO acts 

as a cytotoxic molecule, b) endothelial NOS (eNOS), which produces NO for 

vasodilatation, and c) neuronal NOS (nNOS), which provides NO involved in neuronal 

physiology.  Although NO provides many beneficial functions, the overproduction of NO 

in the brain has been linked to a number of neurodegenerative disorders.  Thus, the ability 

to selectively inhibit nNOS may be useful for the treatment of related illnesses, including 

Alzheimer's, Parkinson's, and Huntington's diseases.11   
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Scheme 1.2.1 
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1.2.2.3  Aminoimidazoles as Inhibitors 

 Compounds bearing aminoimidazole functionality are an attractive class of NOS 

inhibitors since, when protonated, they resemble the guandinium system present in 

arginine (10).12  Therefore, the aminoimidazole moiety of dragmacidin D (5) could 

potentially be responsible for its reported NOS activity through competitive inhibition.  It 

is possible that the other aminoimidazole-containing dragmacidins (6 and 7) could 

display similar activity, although studies in this area have not appeared in the literature.  

 

1.2.3  Miscellaneous Biological Activity 

1.2.3.1  Cytotoxicity 

 Many bis(indole) compounds discovered in nature have shown promise as leads 

in the search for new anti-cancer medicines.  Although its mechanism of action is not 

known, dragmacidin D (5) shows cytotoxicity against several human lung tumor cell 

lines.4d  Dragmacidins E (6) and F (7), on the other hand, have not yet been evaluated for 

anti-neoplastic activity. 
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1.2.3.2  Antiviral and Anti-Inflammatory Properties 

 Dragmacidin F (7) is reported to exhibit in vitro antiviral activity against herpes 

simplex virus (HSV-I; EC50 = 95.8 mM) and human immunodeficiency virus (HIV-I; 

EC50 = 0.91 mM).4f  In addition, dragmacidins D (5) and F (7) display anti-inflammatory 

activity in resiniferatoxin-induced inflammation of the mouse ear.13,4g   

 

1.3  Biosynthesis of Dragmacidins 

1.3.1  Biosynthesis of Piperazine Dragmacidins and Dragmacidin D 

 The biosynthesis of the dragmacidins has not been studied in detail.14  However, 

in the 1960s, MacDonald and co-workers examined the origin of simple diketopiperazine 

natural products.15  It was found that disubstituted piperazine derivatives could form via 

the condensation of two amino acids, L-isoleucine and L-leucine (14 + 15 → 16, Scheme 

1.3.1).  Based on this work, one could propose that the dragmacidins arise by a related 

pathway (17a + 17b → 18 → 1-5).  However, the necessary indole-containing amino 

acids (17a and 17b) for this biosynthesis are not known to be naturally occurring. 
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 Tryptophan and tryptamine (Scheme 1.3.2), on the other hand, are both 

commonly found in nature.  In fact, 6-bromotryptamine was found in the same marine 

sponge from which dragmacidin C was isolated.4c  It seems plausible that the 

dragmacidins could be biosynthetically derived from building blocks of this type (i.e., 

19a and 19b).  Various oxidations could take place before or after the dimerization event 

occurs,16 eventually leading to formation of the piperazine dragmacidins (1-4).  These 

molecules, or a related derivative, could perhaps be biosynthetically transformed into 

dragmacidin D (5). 
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1.3.2  Biosynthesis of Dragmacidins E and F 

 Dragmacidins D, E, and F are likely biosynthetically related.4f  Of the possible 

biosynthetic scenarios, most probable is that dragmacidins E (6) and F (7) are derived by 
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cyclization of either dragmacidin D (5) or a closely related congener (Scheme 1.3.3).  For 

example, dragmacidins D and E are isomers that differ by a single C–C bond.  In nature, 

it is likely that a Friedel-Crafts cyclization between the pyrazinone and aminoimidazole 

groups of dragmacidin D occurs in order to construct the seven-membered ring of 

dragmacidin E (i.e., 5 → 6).  Dragmacidins D (5) and F (7) also differ in connectivity by 

one C–C bond; however, in this case, there is also a difference in oxidation state between 

the two natural products.  Thus, oxidative dearomatization with concomitant cyclization 

could facilitate the formation of the unique polycyclic framework present in dragmacidin 

F (i.e., 5 → 7).  Related oxidation pathways for tryptophan derivatives have been 

observed in nature.17 
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1.4  Synthetic Studies Relating to the Pyrazinone-Containing Dragmacidins 

 At the onset of our studies, there was a single report related to the synthesis of the 

pyrazinone-containing dragmacidins (5-7) by Jiang and Gu.5g  Although the authors 

claimed to have prepared the bis(indole)pyrazinone scaffold of 5 and 6, this work was 

clearly erroneous but was never retracted.18 

 

1.4.1  Jiang’s Approach to the Pyrazinone Core 

 In 2000, shortly after we began work in the area of the dragmacidin natural 

products, Jiang and co-workers reported a successful synthetic route to the 

bis(indole)pyrazinone core of dragmacidins D and E (Scheme 1.4.1).5h  Their strategy 

involved the elaboration of indole (20) to bis(indole)amide 21 via a series of functional 

group manipulations.  Then, in the final step, intramolecular condensation of amide 21 

produced pyrazinone 22a in 23% yield.  Although Jiang’s route produced the desired 

bis(indole) core (22a), it is lengthy and hampered by low yields. 

 

Scheme 1.4.1 
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1.4.2  Horne’s Approach to the Pyrazinone Core 

 In 2002, during the course of our own investigations, a convergent strategy for 

constructing pyrazinone 22a was reported by Horne (Scheme 1.4.2).5j  Upon exposure to 



11 
methanesulfonic acid at 130 °C, aminoketone 23 underwent a cyclocondensation reaction 

with ketoamide 24 to afford the desired product 22a in 30% yield.  Further work in this 

area using substituted indoles has yet to be reported. 

 

Scheme 1.4.2 
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1.4.3  Jiang’s Approach to the Aminoimidazole Segment of Dragmacidin D 

 Concurrent with our own work, in 2002 Jiang described a synthesis of the 

aminoimidazole segment of dragmacidin D.5i  The 4,7-disubstituted indole (25) was 

prepared in 7 steps from commercially available compounds via a Leimgruber-Batcho 

indole synthesis (Scheme 1.4.3).19,20  Subsequent metallation and quenching with epoxide 

26 afforded alcohol 27 in good yield.  After manipulations of the indole nitrogen 

protecting group (27 → 28), the 2° alcohol was oxidized, and the trityl group was 

removed to produce hydroxyketone 29.  Elaboration to bromide 30, followed by exposure 

to acetylguanidine for 4 days, installed the desired aminoimidazole segment (31) in 32% 

yield.  At the time of Jiang’s publication, our group had already independently prepared 

31 and determined that it was not a productive route to dragmacidin D (see Chapter 2, 

reference 33). 
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Scheme 1.4.3 
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1.4.4  Jiang’s Second Generation Approach to the Pyrazinone Core 

 Following our publication describing the first total synthesis of dragmacidin D, 

Jiang reported a similar approach to construct the core of the natural product in the form 

of a bis(indole)pyrazine (Scheme 1.4.4).5k  First, dibromopyrazine 32 was cross-coupled 

with boronic acid 33 to afford indolopyrazine 34.  After switching protecting groups on 

the indole nitrogen (34 → 35), indolopyrazine 35 was coupled with stannane 36 to 

produce a mixture of pyrazine products (37-40) in 61% combined yield.  An account 

describing the elaboration of 37-40 to the natural product (5) has yet to appear in the 

literature. 
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Scheme 1.4.4 
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1.5  Conclusion 

 The dragmacidin alkaloids are a unique class of molecules that are interesting 

from both a biological and structural standpoint.  Although there has been synthetic work 

aimed at the piperazine dragmacidins (1-4), the pyrazinone-containing dragmacidins, D 

(5), E (6), and F (7), have received little attention from the synthetic community.  

Ultimately, synthetic routes to these natural products could be extremely valuable in the 

search for new medicines.   
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CHAPTER TWO 

 

The Total Synthesis of Dragmacidin D† 

 

2.1  Background 

2.1.1  Introduction 

 In 2000, the pyrazinone-containing dragmacidins, namely, dragmacidins D, E, 

and F, were selected as formidable synthetic targets for our laboratory (Figure 2.1.1).1  

Initially, we chose to pursue the total synthesis of dragmacidin D (5),1a,b predominantly 

because it was believed to be the biosynthetic precursor to dragmacidins E (6) and F (7).1c  

In addition, 5 appeared to be the simplest of the pyrazinone-containing family members.  

Thus, we hoped to develop a strategy for the preparation of dragmacidin D (5) that would 

be amenable to the synthesis of the other complex dragmacidin natural products.2 
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† This work was performed in collaboration with Dr. Richmond Sarpong, a postdoctoral scholar in the Stoltz group. 
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 When considering the structure of dragmacidin D (5), several synthetic challenges 

become apparent.  Dragmacidin D possesses a total of seven nitrogen atoms, three of 

which are incorporated in the aminoimidazole moiety, while two are within the 

pyrazinone core.  The compound contains an unusual bis(indole) architecture featuring a 

3,4,7-trisubsituted indole and a 3,6-disubstituted indole.  Both of these indole substitution 

patterns are known to be synthetically challenging targets.3  It was predicted that 

dragmacidin D, as well as many of its synthetic precursors, would be highly polar, 

extremely reactive, and perhaps difficult to handle in a laboratory setting. 

 

2.1.2  Retrosynthetic Analysis of Dragmacidin D 

 Two retrosynthetic strategies for the synthesis of dragmacidin D are presented in 

Scheme 2.1.1.  As a critical maneuver, we chose to introduce the aminoimidazole moiety 

at a late stage in the synthesis in order to facilitate the handling of key precursors.  Thus, 

disconnection of the aminoimidazole in the natural product (5) provided ether 41.  We 

then targeted 41 through two complementary routes: i) a classical cyclocondensation 

approach4 and ii) a more modern transition metal-mediated cross-coupling approach.5  In 

approach i, the pyrazinone system would be constructed through the linkage of two 

functionalized indole units (42 + 43), while in route ii, the dragmacidin core was 

envisioned to arise by a stepwise three-component coupling sequence (44 + 45 + 46).  

Both routes relied on the same indole building blocks (48 and 49), which were readily 

available from simple aromatic starting materials 47 and 50, respectively. 
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Scheme 2.1.1 
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2.2  The Cyclocondensation Approach to Access the Bis(indole) Framework 

 Our initial efforts toward the total synthesis of dragmacidin D (5) focused on the 

cyclocondensation approach (i).  A model system for the preparation of the pyrazinone 

core (i.e., 22a) was explored.  Treatment of indole (20) with oxalyl chloride produced 51 

in high yield (Scheme 2.2.1).6  This compound was then employed as a common 

intermediate for the synthesis of the unsubstituted coupling fragments 52a and 53a. The 

synthesis of aminoamide 52a proceeded via elaboration of 51 by a sequence involving: a) 
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amidation using ammonia, b) oxime formation, and c) reduction using hydrogen, 

catalyzed by palladium on carbon.  Ketoaldehyde 53a was prepared directly by reduction 

of 51 with tributyltin hydride.7   

 

Scheme 2.2.1 
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 With the key fragments in hand, we investigated the viability of the 

cyclocondensation reaction (Scheme 2.2.2).  Upon exposure to heated aqueous potassium 

hydroxide, compounds 52a and 53a underwent smooth conversion to the desired 

pyrazinone 22a in good yield, as the only observed product of the reaction.   Under 

similar conditions, bromide 52b8 also participated in the pyrazinone-forming reaction 

(53a + 52b → 22b).  However, under our optimized conditions, as well as a variety of 

others (Bronsted acids and bases, Lewis acids), we were unable to effect 

cyclocondensative coupling with any C(4)-substituted ketoaldehyde derivative (i.e., 

53b).9 
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Scheme 2.2.2 
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2.3  The Metal-Mediated Strategy to Construct the Bis(indole) Framework 

 We turned our attention to the alternative retrosynthetic strategy, the transition 

metal-catalyzed cross-coupling route ii.  The ability to carry the 6-bromoindole moiety 

directly through the reaction sequence would be critical for the success of our plan.  The 

synthesis clearly became an issue of strategy involving not only the exact order of the 

coupling reactions, but also the specific identity of each substrate involved.  The 

appropriate selection of halides, metals, and protecting groups would be crucial.  We thus 

turned our attention toward experiments that would delineate suitable conditions for 

coupling. 
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2.3.1 The Development of Suitable Conditions for Selective Cross-Couplings 

 We initially surveyed a variety of coupling reactions involving model indoles and 

various halogenated pyrazine derivatives in order to assess the relative reactivity of such 

systems as well as the suitability of the protective groups on the indole nitrogen.  It was 

quickly established that halogenated pyrazines are highly reactive toward palladium-

mediated couplings to metalated indoles.  Furthermore, the oxidative addition of 

palladium(0) to pyrazinyl halides is more facile than to simple aromatic halides.10  For 

example, reaction of borylated indoles 54a and 55 with readily available chloropyrazine 

5611 proceeded smoothly at 80 °C under standard Suzuki conditions to afford coupled 

products 57 and 58 (Scheme 2.3.1).  Under identical conditions, simple aryl chlorides do 

not readily participate in such couplings.12  Additionally, treatment of chloroiodopyrazine 

59 with 2 equiv of indole 54a at 23 °C produced indolylpyrazine 60a exclusively, while 

raising the temperature to 80 °C resulted in the formation of the bis(indole)pyrazine 61.  

A more surprising development was observed upon treatment of pyrazine 59 with an 

excess of silylated boronic ester 55 (2.3 equiv) at 80 °C.  Under these conditions, 

exclusively monocoupled product was obtained as a mixture of silylated and desilylated 

compounds (60b and 60c).  This difference in reactivity points to a remote electronic 

effect of the indole protecting group on the activation of the intermediate 

chloroindolylpyrazine (60) toward coupling.  
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Scheme 2.3.1 
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 Having conducted these simple experiments, we began to identify appropriate 

substitution patterns for building blocks 44, 45, and 46 (Figure 2.3.1).  It was 

immediately clear that the use of Suzuki couplings would be favorable due to our success 

in the model systems.  Thus, boron substituents were employed as the metal species for 

both indole substrates (44 and 46).  In addition, the protecting groups for indoles 44 and 

46 were chosen in a manner that optimized orthogonality with respect to deprotection, 

which would facilitate control during late-stage manipulations.  In particular, the N-
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protecting groups were very carefully selected.  The SEM group13 of 62 was considered 

ideal due to its marked stability and electron-donating nature, while the Ts group of 54b 

was preferred mainly because of its success in the model system studies.  Perhaps the 

most important decision was the selection of halogens X1 and X2 of pyrazine 45.  

Although chloroiodopyrazine 59 was utilized in the model systems described above, it 

was believed that replacing the chloride with a bromide would allow for better position 

selectivity.14  Thus, bromoiodopyrazine 63 was selected as the key synthetic fragment.  

We then proceeded to develop rapid syntheses of the three essential pieces (62, 63, and 

54b). 

 

Figure 2.3.1 
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2.3.2 Synthesis of Pyrazine and Bromoindole Fragments 

 The key differentially halogenated pyrazine fragment 63 was readily prepared via 

iodide displacement of the in situ prepared diazonium salt of aminopyrazine 6415 
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(Scheme 2.3.2).16  Bromoindole boronic acid derivative 54b was synthesized from parent 

indole 4917 by protection of the indole nitrogen,18 treatment with mercuric acetate, and 

reaction of the resulting organomercurial (65) with borane•THF complex followed by 

hydrolytic work-up (82% yield, 3 steps).19 

 

Scheme 2.3.2 
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2.3.3 Synthesis of the 3,4,7-Trisubstituted Indole Fragment 

 The 3,4,7-trisubstituted indole fragment (62) was synthesized by the Bartoli 

indolization reaction (Scheme 2.3.3).20  Treatment of nitroaromatic 6621 with vinyl 

Grignard produced the highly functionalized indole 67 directly.  Although the yield of 

this reaction was variable and modest, we were able to prepare 67 on multigram scale.22 

Following protection of the indole nitrogen by a 2-(trimethylsilyl)ethoxymethyl (SEM) 

group (67 → 68),13 halogen-metal exchange and trapping with dioxaborolane reagent 69 

produced metalloindole 70.23  Suzuki coupling of 70 with the known vinyl bromide 71,24 

smoothly provided olefin 72.25  Final conversion of 72 to the coupling fragment 62 was 

accomplished using a sequence involving selective hydrogenation of the terminal olefin,26 

bromination at the C(3) position,27 and halogen-metal exchange/trapping with the 

dioxaborolane reagent (69). 28 
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Scheme 2.3.3 
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2.3.4 Construction of the Fully Substituted Bis(indole)pyrazinone Core 

 With the appropriate fragments in hand (62, 63, and 54b), the critical three-

component coupling reaction sequence was explored.  Suzuki coupling of dihalopyrazine 

63 and indole 54b proceeded selectively to afford the coupled indolylpyrazine 73 

(Scheme 2.3.4).  In the second Suzuki coupling of dibromide 73 with boronic ester 62, 

we were delighted to find that the desired bis(indole)pyrazine 74 formed in good yield 

and with complete selectivity for coupling of the pyrazinyl bromide in the presence of the 

indolyl bromide.  Precise temperature control was critical for the success of both coupling 

reactions (23 °C and 50 °C, respectively).  Importantly, the selectivity of the second 

Suzuki reaction depended not only on temperature, but also on the exact identity of each 

coupling substrate.  In fact, varying protective groups on the indole nitrogen in 54a had a 

dramatic effect on halide reactivity, as competitive coupling of the indolyl bromide 

occurred when electron-donating N-protective groups were employed. 
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2.4  End-Game Studies 

2.4.1  End-Game Strategy 1 

 Having established a viable route to the core structure of dragmacidin D (5), we 

focused our efforts on completing the natural product synthesis.  Selective cleavage of the 

silyl ether in 74,29 followed by Dess-Martin oxidation30 furnished aldehyde 75, which was 

further oxidized to its carboxylic acid derivative 76 (Scheme 2.4.1).  Conversion of 76 to 

bromoketone 77 was accomplished by an Arndt-Eistert-type homologation, followed by 

treatment with aqueous HBr.  The extreme sensitivity of the intermediate acid chloride 

was particularly troublesome and required that the diazomethane used in the reaction 

sequence be dried thoroughly over both potassium hydroxide and sodium metal 

immediately before use.31  In addition, chemical yields for this homologation varied to a 

large extent and caused substantial material throughput problems.   Nonetheless, with 

bromide 77 in hand, we explored installation of the aminoimidazole functionality.  

Reaction of bromide 77 with acetylguanidine in DMF was anticipated to produce 

aminoimidazole 79 based on model studies.32,33  However, the only product observed in 
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the reaction was acetoxyketone 78, in quantitative yield.  Although a variety of guanidine 

sources, solvents, and temperatures were explored to promote the synthesis of 

aminoimidazole 79, all of our efforts resulted in the formation of the same undesired 

product (78). 
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2.4.2  End-Game Strategy 2 

 Through our studies it was observed that nucleophilic displacement of the alkyl 

bromide in 77 was actually a facile process.  Thus, we considered an alternative end-

game strategy that would exploit this reactivity (Scheme 2.4.2).  Treatment of 77 with 
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ammonia afforded aminoketone 80 which, in turn, underwent facile condensation with 

cyanamide to produce the desired aminoimidazole product (81).34  At this point, all that 

remained in order to complete the total synthesis of dragmacidin D (5) was the removal 

of the four protective groups from 81.  Despite several months of experimentation, our 

efforts to complete the total synthesis of (5) were accompanied by decomposition of the 

aminoimidazole moiety, which was exceptionally unstable to the basic conditions needed 

to remove the protective groups that we had strategically chosen (vide supra). 
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2.4.3  End-Game Strategy 3: The Total Synthesis of Dragmacidin D 

 The possibility of installing the aminoimidazole as the last step of the total 

synthesis, after the full deprotection of a late-stage intermediate, was explored next.  In 

addition, we sought an alternative one-carbon homologation reaction in place of the 

unreliable Arndt-Eistert sequence.  After extensive experimentation, we found that 
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nitromethane addition35 to aldehyde 75 and subsequent oxidation produced 82 in high 

yield (Scheme 2.4.3).36  Deoxygenated ethanolic potassium hydroxide facilitated removal 

of the N-tosyl group,37 while lithium tetrafluoroborate followed by aqueous sodium 

hydroxide effected complete hydrolysis of the SEM group (82 → 83). Reduction of 

nitroketone 83 with stannous chloride,38 then cleavage of the benzyl and methyl ethers 

with iodotrimethylsilane, revealed fully deprotected aminoketone 84.39  Final installation 

of the aminoimidazolium unit occurred by treatment of 84 with cyanamide followed by 

trifluoroacetic acid workup to produce the natural product (5) in 86% yield.  Synthetic 

dragmacidin D (5) was spectroscopically identical to samples obtained from natural 

sources (Figure 2.4.1). 
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2.4.4  Subtleties of Late-Stage Manipulations 

 The exact order of final synthetic events presented herein was essential for the 

completion of dragmacidin D.  In particular, intermediates 82 through 84 were highly 

labile when treated under a variety of other conditions.  For example, attempts to reduce 

nitroketone 82 or to remove the SEM group prior to detosylation resulted in substantial 

nonspecific decomposition.  Likewise, efforts to deprotect 83 prior to reduction of the 

nitro group led to decomposition of the nitroketone moiety.  Finally, reversing the order 

of the final two steps (i.e., aminoimidazole formation followed by treatment with TMSI) 

afforded only a low yield of dragmacidin D (ca. 5%). 

 Also noteworthy is the brilliant fluorescent nature of most of the bis(indole) 

pyrazine/pyrazinone intermediates.  By shining longwave UV light from a benchtop UV 

lamp (λ = 365 nm), we were able to monitor and isolate extremely small amounts of 

compounds in large quantitites of solvent during necessary reversed-phase 

chromatography (i.e., ca. 1 mg/30-50 mL solvent).  Two typical examples that 

demonstrate the fluorescent behavior of these compounds are shown below (Figure 

2.4.2).40 

 

Figure 2.4.2 
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2.5  An Asymmetric Route to Dragmacidin D 

 With the racemic synthesis of dragmacidin D (5) completed, our attention turned 

to the development of an asymmetric route to the natural product.  It was envisioned that 

the stereocenter present in 5 could arise from an asymmetric hydrogenation41 of 87, a 

compound prepared readily from 68 via Fu-modified Stille coupling42 with 8543 followed 

by saponification (Scheme 2.5.1).  Dr. Richmond Sarpong investigated the ruthenium-

catalyzed asymmetric reduction of 87 by varying several reaction parameters including 

solvent, pressure, temperature, and additive effects (Table 2.5.1).  Ultimately, 

hydrogenation of 87 in the presence of chiral ruthenium complex 89 under optimized 

conditions (78 atm of hydrogen, at -10 °C in MeOH) resulted in the formation of 

enantioenriched carboxylic acid 88 in 90% ee.   
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Table 2.5.1 

MeOH

CH2Cl2

MeOH

MeOH

MeOH

MeOH

catalyst solvent temp additive time conversion ee

25 °C – 14 h 100% 83%

H2 pressure

MeOH/
CH2Cl2 (1:1)

30 atm

25 °C – 30 atm 14 h 100% 59%

25 °C – 14 h 40% 0%30 atm

25 °C Et3N (1 equiv) 14 h 100% 80%30 atm

5 °C Et3N (1 equiv) 72 h 100% 86%30 atm

5 °C
–

72 h 100% 87%30 atm

-10°C 72 h 100% 90%78 atm–
89

PPh2

PPh2

RuCl2
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 Carboxylic acid 88 could be elaborated to nitroketone 83 without substantial loss 

in enantiomeric excess (Scheme 2.5.2).  However, upon Sn(II)-promoted reduction to 

aminoketone 84, racemization occurred.  Alternative conditions to access enantiopure 84 

were explored but were also unsuccessful at promoting reduction without epimerization 

of the benzylic α-keto stereocenter. The enantiopurity of natural dragmacidin D (5) is 

also somewhat uncertain.  During the first isolation of 5, no optical rotation could be 

detected.1a  Subsequently, a very small rotation value was reported ([α]D +12° (c 0.95, 

EtOH)).1b  Nonetheless, an asymmetric total synthesis of dragmacidin D remains an 

elusive goal. 

 

Scheme 2.5.2  

OBn

N
SEM

HO2C

88

N

N

N
H

H
N

O

Br

BnO

OMe

O2N

83

SnCl2•2H2O

EtOAc
N

N

N
H

H
N

O

Br

BnO

OMe

H2N

(±)-84

Racemic

*

*

90% ee 85% ee  

 

2.6  Conclusion 

 In summary, we have completed the first total synthesis of the important 

bis(indole) alkaloid dragmacidin D (5).  The concise route that we have developed 

(longest linear sequence of 17 steps from 66) relies on a series of halogen-selective 

Suzuki couplings and a meticulous late-stage sequence to complete the natural product 

synthesis.  
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2.7  Experimental Section 

2.7.1  Materials and Methods 

 Unless stated otherwise, reactions were performed in flame-dried glassware under 

a nitrogen or argon atmosphere using dry, deoxygenated solvents.  All other 

commercially obtained reagents were used as received.  Solvents were dried by passage 

through an activated alumina column under argon.  Reaction temperatures were 

controlled by an IKAmag temperature modulator.  Thin-layer chromatography (TLC) 

was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and 

visualized using a combination of UV, anisaldehyde, ceric ammonium molybdate, and 

potassium permanganate staining.  ICN Silica gel (particle size 0.032-0.063 mm) was 

used for flash chromatography.  Disposable Sep-Pak C18 Vac Cartridges were purchased 

from Waters and used for all reversed-phase filtrations.  HPLC analysis was performed 

on a Beckman Gold system using a Rainin C18, Microsorb MV, 5µm, 300 x 4.6 mm 

reversed-phased column in 0.1% (w/v) TFA with acetonitrile/H2O as eluent and a flow 

rate of 1.0 ml/min, gradient elution of 1.25% acetonitrile/min.  Preparatory reversed-

phase HPLC was performed on a Beckman HPLC with a Waters DeltaPak 25 x 100 mm, 

100 mm C18 column equipped with a guard, 0.1% (w/v) TFA with acetonitrile/H2O as 

eluent, and gradient elution of 0.50% acetonitrile/min.  For all reversed-phase 

purifications, H2O (18MΩ) was obtained from a Millipore MiliQ water purification 

system and TFA from Halocarbon, Inc.  1H and 13C NMR spectra were recorded on either 

a Varian Mercury 300 (at 300 MHz and 75 MHz, respectively), Varian Mercury 500 (at 

500 MHz and 125 MHz, respectively), or on a Varian Mercury 600 (600 MHz for proton 

only) spectrometer and are reported relative to Me4Si (δ 0.0).  Data for 1H NMR spectra 
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are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and 

integration.  Data for 13C NMR spectra are reported in terms of chemical shift.  IR spectra 

were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in 

frequency of absorption (cm-1).  UV spectra were measured on a Hewlett-Packard Model 

8452A diode array spectrophotometer.  High resolution mass spectra were obtained from 

the UC Irvine Mass Spectral Facility.  Chiral HPLC was performed on a Chiralcel AD 

column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. 
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2.7.2  Preparative Procedures 
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 Glyoxal chloride 51.  To a solution of indole 20 (20.0 g, 171 mmol) in anhydrous 

Et2O (340 mL) at 0 °C, was added oxalyl chloride (17.3 mL, 198 mmol) dropwise over 

30 min.  The reaction mixture was stirred at 0 °C for 3 h, then allowed to warm to 23 °C 

over 1 h.  The resulting yellow crystals were collected by filtration, washed with 

anhydrous Et2O (100 mL), and dried under vacuum to yield 51 (32.52 g, 92% yield), 

which was used without further purification. 
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(80% yield)

24 90

(86% yield)

NH3

 CH2Cl2

 

 Aminoamide 52a.  Gaseous ammonia was bubbled through a suspension of 51 

(12.4 g, 59.7 mmol) in CH2Cl2 (300 mL) for 10 min.  After stirring for 30 min, the 

solvent was removed under reduced pressure.  Addition of H2O (600 mL) was followed 

by extraction of the resulting heterogeneous mixture with EtOAc (2 x 600 mL).  The 

combined organic layers were washed with brine (300 mL), dried over magnesium 

sulfate, and evaporated under reduced pressure to afford the crude amide 24 (9.0 g, 80% 

yield), which was used without further purification. 
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 To a suspension of 24 (500 mg, 5.32 mmol) in CH3OH (7.8 mL) was added 

hydroxylamine hydrochloride (2.0 g, 39.9 mmol) in H2O (3.8 mL) and sodium acetate 

(1.64 g, 39.9 mmol) in H2O (3.8 mL).  The resulting heterogeneous mixture was heated 

under reflux for 10 h and allowed to cool to 23 °C.  The solvent was removed under 

reduced pressure, and the remaining crude residue was extracted with EtOAc (3 x 20 

mL).  The combined organic layers were washed with brine (20 mL) and dried over 

sodium sulfate.  After removal of solvent under reduced pressure, the crude residue was 

purified by flash chromatography (3:1 CH2Cl2/hexanes eluent) to afford oxime 90 (454 

mg, 86% yield), which was used without further purification. 

 To a solution of 90 (4.07g, 20 mmol) in CH3OH in a stainless steel bomb was 

added 10% palladium on charcoal (450 mg).  The bomb was then purged with hydrogen 

and pressurized to 450 psi.  After stirring for 14 h at 23 °C, the palladium on carbon was 

removed via filtration, and the solvent was removed under reduced pressure.  Passage 

through a plug of celite (CH3OH eluent) afforded the desired aminoamide 52a (3.5 g, 

92% yield) as a yellow oil: Rf 0.10 (5:1 EtOAc:CH3OH); 1H NMR (300 MHz, DMSO-d6) 

δ 10.93 (s, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.43 (s, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.23 (s, 

1H), 7.07-6.93 (comp. m, 3H), 4.56 (s, 1H), 2.38 (br s, 2H); 13C NMR (75 MHz, DMSO-

d6) δ 175.9, 136.2, 125.7, 122.8, 120.9, 119.5, 118.2, 116.2, 111.3, 52.5; IR (film) 3176, 

1660, 1592 cm-1; HRMS-NH3CI (m/z): [M + H]+ calc'd for C10H12N3O, 190.0980; found, 

190.0978. 
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 Ketoaldehyde 53a.  To a suspension of 51 (22.0 g, 106 mmol) in EtOAc (106 

mL) at 0 °C, was added a solution of tributyltin hydride (28.5 mL, 106 mmol) in EtOAc 

(158 mL).  The reaction mixture was stirred at 0 °C for 30 min, warmed to 23 °C, then 

stirred for an additional 15 h.  Hexanes (150 mL) was added, and the resulting yellow 

powder was collected by filtration.  Washing with copious amounts of hexanes (1 L) and 

drying under vacuum, gave ketoaldehyde 53a (10.6 g, 58% yield):  Rf 0.76 (13:7 

CHCl3:CH3OH); 1H NMR (300 MHz, acetone-d6) δ 9.54 (s, 1H), 8.65 (s, 1H), 8.36-8.33 

(comp. m, 1H), 7.61-7.58 (comp. m, 1H), 7.33-7.29 (comp. m, 2H); 13C NMR (75 MHz, 

acetone-d6) δ 192.9, 183.2, 138.1, 125.3, 124.6, 124.1, 123.5, 123.1, 113.6, 113.3; IR 

(film) 3117, 1628, 1580, 1518, 1234 cm-1; HRMS-NH3CI (m/z): [M + H]+ calc'd for 

C10H8NO2, 174.0555; found, 174.0555. 
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(75% yield)

+
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 Pyrazinone 22a.  To H2O (17 mL) at 70 °C was added ketoaldehyde 53a (300 

mg, 1.73 mmol) and aminoamide 52a (321 mg, 1.73 mmol), followed by powdered 

potassium hydroxide (487 mg, 8.67 mmol).  After stirring at 70 °C for 5 h, the reaction 

mixture was allowed to cool to 23 °C, poured into saturated aq. ammonium chloride (75 
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mL), and extracted with EtOAc (4 x 75 mL).  The combined organic layers were dried 

briefly over sodium sulfate and concentrated under reduced pressure to afford the desired 

pyrazinone 22a (423 mg, 75% yield) as an orange/red solid: Rf 0.57 (5:1 CH2Cl2: 

CH3OH); 1H NMR (300 MHz, DMSO-d6) δ 12.23 (s, 1H), 11.75 (s, 1H), 11.52 (s, 1H), 

8.75 (s, 1H), 8.69 (d, J = 7.3 Hz, 1H), 8.11 (d, J = 2.6 Hz, 1H,), 8.40-7.82 (comp. m, 2H), 

7.51-7.45 (comp. m, 2H), 7.25-7.12 (comp. m, 4H); 13C NMR (125 MHz, DMSO-d6) δ 

155.5, 147.2, 136.8, 136.2, 130.1, 126.3, 125.9, 124.1, 122.7, 122.2, 122.0, 120.6, 120.1, 

119.7, 112.2, 111.9, 111.6, 106.8; IR (film) 3307, 1633, 1602, 1421 cm-1; HRMS-ESI 

(m/z): [M + Na]+ calc'd for C20H15N4ONa, 349.1065; found, 349.1070. 
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 Bromopyrazinone 22b.  To a solution of bromoindole 4917 (3.4 g, 17.3 mmol) in 

anhydrous Et2O (35 mL) at 0 °C was added oxalyl chloride (1.76 mL, 20.1 mmol) 

dropwise over 30 min.  The reaction mixture was stirred at 0 °C for 3 h, then allowed to 

warm to 23 °C over 1 h.  The resulting yellow crystals were collected by filtration, 

washed with anhydrous Et2O (15 mL), and dried under vacuum.  To a suspension of these 

crystals at 0 °C in CH2Cl2 (70 mL) was added MeOH (2.2 mL, 70 mmol).  The reaction 
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mixture was warmed to 23 °C, stirred for 12 h, and then filtered to collect the product.  

To this crude material in MeOH (87 mL) was added NaOAc (8.09g, 98.4 mmol) in H2O 

(19 mL), followed by NH2OH•HCl (9.84 g, 98.4 mmol) in H2O (19 mL).  The mixture 

was heated to 80 °C for 24 h then cooled to 23 °C.  After removal of solvent under 

reduced pressure, the aqueous residue was extracted with EtOAc (3 x 50 mL).  The 

combined organic layers were washed with brine (30 mL) and evaporated in vacuo.  The 

resulting material was purified by flash chromatography (2:1 EtOAc:hexanes eluent) to 

afford an off-white solid.  To this compound in MeOH (84 mL) was added 1 N HCl (84 

mL) followed by zinc dust (2.75 g, 42.1 mmol).  The reaction mixture was stirred for 10 

min and filtered (MeOH eluent).  The filtrate was evaporated under reduced pressure to 

afford an off-white solid that was triturated with CH2Cl2, diluted with 1 N NaOH (25 

mL), and extracted with CH2Cl2 (4 x 50 mL).  The combined organic layers were dried 

over MgSO4 and evaporated.  The residue was dissolved in a saturated solution of NH3 in 

MeOH (50 mL) at 23 °C and stirred for 72 h.  After removal of solvents under vacuum 

and trituration with Et2O, bromoamide 52b (600 mg, 13% yield, 5 steps) was obtained as 

an off-white solid.  This product was used immediately in the subsequent reaction.  To 

H2O (1.5 mL) at 100 °C was added ketoaldehyde 53a (26.2 mg, 0.152 mmol) and 

bromoamide 52b (40 mg, 0.152 mmol), followed by powdered potassium hydroxide (43 

mg, 0.76 mmol).  After stirring at 100 °C for 5 h, the reaction mixture was allowed to 

cool to 23 °C, poured into saturated aq. ammonium chloride (10 mL), and extracted with 

EtOAc (4 x 10 mL).  The combined organic layers were dried briefly over sodium sulfate 

and concentrated under reduced pressure to afford known pyrazinone 22b44 (39 mg, 64% 

yield) as an orange/red solid: Rf 0.52 (7:1 CH2Cl2: CH3OH).  
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64 63

HI, NaNO2

H2O, MeCN, 50 °C

(58% yield)  

Iodopyrazine 63.  To a thick-walled flask charged with 6415 (100 mg, 0.49 mmol) 

was added acetonitrile (1.0 mL), H2O (1.5 mL), and 48% aq. HI (1.3 mL).  The resulting 

solution was cooled in an ice bath, and a solution of sodium nitrite (600 mg, 8.7 mmol) in 

H2O (1.0 mL) was added in a dropwise fashion.  The reaction mixture was sealed, 

allowed to warm to 23 °C, then stirred at 50 °C for 30 h.  After cooling, the solution was 

poured into 20% aq. NaOH and extracted with Et2O (3 x 20 mL).  The combined organic 

layers were washed with saturated aq. sodium metabisulfite (20 mL) and brine (20 mL), 

dried over anhydrous sodium sulfate, then evaporated under reduced pressure.  The crude 

product was then dissolved in a CH2Cl2/hexanes mixture (1:1) and filtered over silica gel 

(1:1 CH2Cl2:hexanes eluent) to provide iodopyrazine 63 (90 mg, 58% yield) as a white 

powder: Rf 0.52 (1:1 CH2Cl2:hexanes); 1H NMR (300 MHz, CDCl3) δ 8.07 (s, 1H), 4.05 

(s, 3H); 13C NMR (75 MHz, CDCl3) δ 158.8, 139.2, 136.1, 104.4, 56.2; IR (KBr) 1357, 

1150 cm-1; HRMS-NH3CI (m/z): [M]+ calc'd for C5H4BrIN2O, 313.8552; found, 313.8553. 
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Hg(OAc)2, AcOH

H2O, HClO4

(99% yield)
91  

Organomercurial 65.  To a solution of 4917 (4.35 g, 22.2 mmol) in toluene (22 

mL) was added tetrabutylammonium hydrogensulfate (520 mg, 1.54 mmol), KOH (50% 

aq. solution, 28 mL), and a solution of p-toluenesulfonyl chloride (5.08 g, 26.6 mmol) in 

toluene (44 mL).  After stirring for 4 h, H2O (40 mL) was added and the layers separated.  

The organic layer was washed with H2O (2 x 20 mL) and brine (20 mL), dried over 
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magnesium sulfate, and concentrated under reduced pressure to afford 6-bromo-N-

tosylindole 91 (7.6 g, 98% yield) as an off-white powder: Rf 0.25 (9:1 hexanes:EtOAc); 

1H NMR (300 MHz, CDCl3) δ 8.19 (s, 1H), 7.75 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 3.3 Hz, 

1H), 7.33 (comp. m, 2H), 7.21 (d, J = 7.7 Hz, 2H), 6.61 (d, J = 3.3 Hz, 1H), 2.32 (s, 3H); 

13C NMR (75 MHz, CDCl3) δ 145.5, 135.6, 135.1, 130.2, 129.7, 126.9, 126.8, 122.6, 

118.3, 116.7, 108.9, 21.7; IR (film) 1364, 1169 cm-1; HRMS-NH3CI (m/z): [M]+ calc'd for 

C15H12BrNO2S, 348.9772; found, 348.9773. 

 To a solution of 6-bromo-N-tosylindole 91 (7.6 g, 21.7 mmol) in acetic acid (145 

mL) was added mercuric acetate (6.92 g, 21.7 mmol).  After stirring at 23 °C for 15 min, 

perchloric acid (5 drops) was added.  The mixture was stirred for 24 h, poured into H2O 

(200 mL), then filtered.  The resulting white solid was washed with copious amounts of 

H2O and dried under vacuum for 12 h to afford organomercurial derivative 65 (13.05 g, 

99% yield) as an unstable white powder that was used immediately without further 

purification: Rf 0.57 (2:1 hexanes:EtOAc); 1H NMR (300 MHz, DMSO-d6) δ 8.02 (d, J = 

1.1 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 1H), 7.52 (s, 1H), 7.42-7.39 

(comp. m, 3H), 2.32 (s, 3H), 1.96 (s, 3H). 
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BH3•THF

then H2O
  (85% yield)

65 54b  

Boronic acid 54b.  To a solution of 65 (3.91 g, 6.4 mmol) in THF (128 mL) at 23 

°C was added borane (1 M in THF, 32 mL, 32 mmol).  The resulting solution was stirred 

for 1 h, then carefully quenched by the dropwise addition of H2O (38 mL).  After 

filtration, the organic solvent was evaporated under reduced pressure, and the residue was 
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extracted with EtOAc (2 x 60 mL).  The combined organic layers were washed with brine 

(30 mL) and concentrated under reduced pressure.  Trituration of the crude product with 

hexanes (4x) afforded boronic acid 54b (2.15 g, 85% yield) as an unstable off-white solid 

that was used immediately without further purification. 
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(33% yield)

67  

Indole 67.  To a solution of 6621 (14.0 g, 45.5 mmol) in THF (455 mL) at -40 °C 

was added vinylmagnesium bromide (1.0 M in THF, 159 mL, 159 mmol) in a dropwise 

fashion.  The reaction mixture was stirred at -40 °C for 4 h and then poured into a 

saturated aq. ammonium chloride (350 mL).  The reaction mixture was extracted with 

Et2O (2 x 200 mL), and the combined organic layers were washed with brine (200 mL), 

dried over magnesium sulfate, and evaporated under reduced pressure.  CH2Cl2 (50 mL) 

was added, and the resulting suspension was filtered over a pad of silica gel topped with 

celite.  Removal of solvent under reduced pressure afforded the crude product as a red 

oil, which was further purified by flash chromatography (8:1 hexanes:Et2O eluent) to 

yield 7-benzyloxy-4-bromoindole 67 (4.54 g, 33% yield) as a yellow oil: Rf 0.30 (4:1 

hexanes:EtOAc); 1H NMR (300 MHz, CDCl3) δ 8.46 (br s, 1H), 7.50-7.40 (comp. m, 

5H), 7.20 (d, J = 8.2 Hz, 1H), 7.16 (app.t, J = 2.7 Hz, 1H), 6.61-6.58 (comp. m, 2H), 

5.17 (s, 2H); 13C NMR (75 MHz, CDCl3) δ 145.0, 136.8, 129.7, 128.8, 128.5, 128.1, 

126.9, 124.4, 122.6, 106.1, 104.4, 103.4, 70.6; IR (film) 3426, 1228 cm-1; HRMS-NH3CI 

(m/z): [M]+ calc'd for C15H12BrNO, 301.0101; found, 301.0102. 
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Indole 68.  To a stirred suspension of NaH (60% dispersion in mineral oil, 154 

mg, 4.0 mmol) in THF (15 mL) at 0 °C was added a solution of 67 (930 mg, 3.08 mmol) 

in THF (15 ml).  The reaction mixture was allowed to warm to 23 °C and stirred for 30 

min.  The solution was cooled to 0 °C, SEMCl (600 µL, 3.4 mmol) was added, and the 

mixture was stirred at 23 °C for 6 h.  The reaction mixture was poured into saturated aq. 

ammonium chloride (20 mL) and extracted with Et2O (2 x 30 mL).  The combined 

organic layers were washed with brine (20 mL), dried over magnesium sulfate, and 

evaporated under reduced pressure.  The crude residue was purified by flash 

chromatography (14:1 hexanes:EtOAc eluent) to afford 68 (1.22 g, 92% yield) as a 

yellow oil: Rf 0.51 (4:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3) δ 7.53-7.50 (comp. 

m, 2H), 7.46-7.37 (comp. m, 3H), 7.21 (d, J = 3.3 Hz, 1H), 7.18 (d, J = 8.2 Hz, 1H), 6.63 

(d, J = 8.2 Hz, 1H), 6.59 (d, J = 3.3 Hz, 1H), 5.73 (s, 2H), 5.20 (s, 2H), 3.45 (t, J = 8.2 

Hz, 2H), 0.84 (t, J = 8.2 Hz, 2H), -0.06 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 146.3, 

136.8, 131.6, 129.8, 128.8, 128.3, 127.8, 126.2, 123.0, 106.4, 105.7, 103.6, 77.7, 70.8, 

65.5, 17.9, -1.2; IR (film) 1244, 1054 cm-1; HRMS-NH3CI (m/z): [M]+ calc'd for 

C21H26BrNO2Si, 431.0916; found, 431.0919. 
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(74% yield)  

Boronic ester 70.  To a solution of 68 (3.81 g, 8.8 mmol) in THF (147 mL) at -78 

°C was added t-BuLi (1.7 M in pentane, 11.4 mL, 19.4 mmol).  Following addition, the 

reaction mixture was stirred for 15 min at -78 °C, then borolane 69 (3.6 mL, 17.6 mmol) 

was added.  The mixture was stirred at -78 °C for 1.5 h, allowed to warm to 23 °C, then 

quenched with saturated aq. ammonium chloride (75 mL).  The layers were separated, 

and the aqueous portion was extracted with Et2O (3 x 75 mL).  The combined organic 

layers were washed with brine (100 mL), briefly dried over magnesium sulfate, and 

evaporated under reduced pressure.  The crude residue was purified by flash 

chromatography (14:1 hexanes:EtOAc eluent) to give boronic ester 70 (3.11 g, 74% 

yield) as a yellow oil: Rf 0.32 (9:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3) δ 7.67 

(d, J = 7.7 Hz, 1H), 7.59-7.56 (comp. m, 2H), 7.48-7.39 (comp. m, 3H), 7.25 (d, J = 3.3 

Hz, 1H), 7.12 (d, J = 3.3 Hz, 1H), 6.83 (d, J = 7.7 Hz, 1H), 5.81 (s, 2H), 5.28 (s, 2H), 

3.49 (t, J = 8.2 Hz, 2H), 1.44 (s, 12H), 0.87 (t, J = 8.2 Hz, 2H), -0.02 (s, 9H); 13C NMR 

(75 MHz, CDCl3) δ 149.3, 137.0, 136.5, 129.9, 129.7, 128.7, 128.1, 127.8, 125.2, 105.1, 

104.2, 83.2, 77.5, 70.3, 65.2, 25.1, 17.9, -1.3; IR (film) 1371, 1330, 1251 cm-1; HRMS-

NH3CI (m/z): [M]+ calc'd for C27H38BNO4Si, 479.2668; found, 479.2673. 
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(83% yield)
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Olefin 72.  A solution containing boronic ester 70 (3.17 g, 6.62 mmol) and 

bromide 71 (3.32 g, 13.2 mmol) in benzene (130 mL), CH3OH (30 mL), and aq. sodium 

carbonate (2 M, 11 mL) was deoxygenated by bubbling a stream of argon through the 

reaction mixture for 5 min.  Tetrakis(triphenylphosphine)palladium(0) (1.15 g, 0.99 

mmol) was then added and the flask was equipped with a reflux condenser.  The mixture 

was heated to 80 °C for 2 h and allowed to cool to 23 °C.  To the reaction vessel was 

added sodium sulfate (10 g), which was allowed to stand for 30 min.  After filtration over 

a pad of silica gel (CH2Cl2 eluent) and concentrating to dryness under reduced pressure, 

the resulting residue was purified by flash chromatography (1:1 CH2Cl2:hexanes eluent) 

to provide olefin 72 (2.87 g, 83% yield) as a yellow oil: Rf 0.53 (9:1 hexanes:EtOAc); 1H 

NMR (300 MHz, CDCl3) δ 7.55-7.53 (comp. m, 2H), 7.46-7.37 (comp. m, 3H), 7.18 (d, J 

= 3.3 Hz, 1H), 6.94 (d, J = 7.7 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 6.67 (d, J = 3.3 Hz, 

1H), 5.78 (s, 2H), 5.62 (m, 1H), 5.40 (m, 1H), 5.24 (s, 2H), 4.55 (s, 2H), 3.48 (t, J = 8.2 

Hz, 2H), 0.99 (s, 9H), 0.85 (t, J = 8.2 Hz, 2H), 0.15 (s, 6H), -0.06 (s, 9H); 13C NMR (75 

MHz, CDCl3) δ 146.9, 146.3, 137.2, 130.0, 129.3, 128.8, 128.2, 127.8, 126.3, 126.0, 

118.9, 111.9, 104.2, 103.0, 77.6, 70.6, 65.6, 65.4, 26.2, 18.7, 18.0, -1.2, -5.1; IR (film) 

1250, 1088 cm-1; HRMS-ESI (m/z): [M + H]+ calc'd for C30H46NO3Si2, 524.3016; found, 

524.3019. 
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(73% yield)

H2, Pd black

PhH

(99% yield)

t-BuLi
THF, -78 °C

TBSOTBSO

 

Boronic ester 62.  To a solution of olefin 72 (545 mg, 1.04 mmol) in benzene (12 

mL), saturated with hydrogen, was added palladium black (35 mg, 0.33 mmol).  The 

reaction vessel was purged with hydrogen and kept under a hydrogen atmosphere (1 atm) 

with vigorous stirring for 1 h.  Palladium black was removed via filtration through a pad 

of silica gel (benzene eluent) to afford the reduced silyl ether 92 (542 mg, 99% yield) as a 

yellow oil: Rf 0.53 (9:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3) δ 7.53-7.50 (comp. 

m, 2H), 7.43-7.34 (comp. m, 3H), 7.16 (d, J = 3.3 Hz, 1H), 6.86 (d, J = 7.7 Hz, 1H), 6.71 

(d, J = 7.7 Hz, 1H), 6.60 (d, J = 3.3 Hz, 1H), 5.75 (s, 2H), 5.20 (s, 2H), 3.87 (dd, J = 9.9, 

4.9 Hz, 1H), 3.62 (app.t, J = 9.3 Hz, 1H), 3.45 (t, J = 8.2 Hz, 2H), 3.30 (m, 1H), 1.40 (d, 

J = 6.6 Hz, 3H), 0.89 (s, 9H), 0.82 (t, J = 8.2 Hz, 2H), 0.00 (s, 6H), -0.09 (s, 9H); 13C 

NMR (75 MHz, CDCl3) δ 145.3, 137.3, 130.7, 129.5, 128.8, 128.7, 128.1, 127.8, 125.7, 

117.3, 104.4, 101.7, 77.6, 70.6, 69.0, 65.4, 39.1, 26.3, 18.7, 18.0, 17.5, -1.1, -4.99, -5.04; 

IR (film) 1249, 1076 cm-1; HRMS-ESI (m/z): [M + Na]+ calc'd for C30H47NO3Si2Na, 

548.2992; found, 548.2997. 

To a solution of the crude silyl ether 92 (270 mg, 0.51 mmol) in THF (5 mL) was 

added N-bromosuccinimide (92.2 mg, 0.51 mmol).  After stirring for 5 min, the reaction 

mixture was poured into a saturated aq. solution of sodium metabisulfite (3 ml), extracted 

with Et2O (3 x 2 mL), and dried by passage through a plug of silica gel (Et2O eluent).  

After concentrating to dryness under reduced pressure, the crude residue was purified by 
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flash chromatography (1:1 CH2Cl2:hexanes eluent) to furnish the 3-bromoindole 

derivative 93 (285 mg, 92% yield) as a yellow oil: Rf 0.47 (1:1 CH2Cl2:hexanes); 1H 

NMR (300 MHz, CDCl3) δ 7.57-7.54 (comp. m, 2H), 7.49-7.40 (comp. m, 3H), 7.24 (s, 

1H), 7.02 (d, J = 8.2 Hz, 1H), 6.80 (d, J = 7.7 Hz, 1H), 5.77 (d, J = 9.9 Hz, 1H), 5.73 (d, 

J = 10.4 Hz, 1H), 5.23 (s, 2H), 4.36 (m, 1H), 4.02 (dd, J = 9.6, 4.7 Hz, 1H), 3.65 (dd, J = 

9.3, 8.3 Hz, 1H), 3.50 (t, J = 8.0 Hz, 2H), 1.46 (d, J = 7.1 Hz, 3H), 0.96 (s, 9H), 0.89 (t, J 

= 8.0 Hz, 2H), 0.08 (s, 3H), 0.06 (s, 3H), 0.00 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 

145.0, 136.9, 130.1, 129.6, 128.7, 128.2, 127.8, 126.1, 125.9, 118.7, 105.2, 90.1, 77.7, 

70.7, 69.3, 65.6, 34.7, 26.2, 18.6, 18.0, -1.1, -5.0, -5.1; IR (film) 1250 cm-1; HRMS-ESI 

(m/z): [M + Na]+ calc'd for C30H46BrNO3Si2Na, 626.2097; found, 626.2079. 

 To a solution of the 3-bromoindole derivative 93 (2.5 g, 4.1 mmol) in THF (69 

mL) at -78 °C was added t-BuLi (1.7 M in pentane, 5.4 mL, 9.1 mmol).  The reaction 

mixture was stirred for 15 min at -78 °C and borolane 69 (1.69 mL, 8.3 mmol) was 

added.  The mixture was stirred at -78 °C for 1 h, quenched with saturated aq. ammonium 

chloride (20 mL), and allowed to warm to 23 °C.  The layers were separated, and the 

aqueous layer was extracted with Et2O (3 x 50 mL).  The combined organic layers were 

washed with brine (75 mL), briefly dried over magnesium sulfate, and concentrated in 

vacuo.  The crude residue was purified by flash chromatography (14:1 hexanes:EtOAc 

eluent) to afford boronic ester 62 (1.96 g, 73% yield) as an unstable colorless oil that was 

used immediately in the coupling reaction that follows: Rf 0.38 (9:1 hexanes:EtOAc); 1H 

NMR (300 MHz, C6D6) δ 7.79 (s, 1H), 7.35 (d, J = 7.7 Hz, 1H), 7.20-7.05 (comp. m, 

5H), 6.65 (d, J = 8.0 Hz, 1H), 5.50 (d, J = 10.6 Hz, 1H), 5.46 (d, J = 10.3 Hz, 1H), 4.86 

(s, 2H), 4.70 (m, 1H), 4.09 (dd, J = 9.5, 4.8 Hz, 1H), 3.91 (dd, J = 9.5, 7.3 Hz, 1H), 3.28 
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(t, J = 7.7 Hz, 2H), 1.62 (d, J = 6.6 Hz, 3H), 1.21 (s, 6H), 1.19 (s, 6H), 0.98 (s, 9H), 0.64 

(t, J = 7.7 Hz, 2H), 0.00 (s, 3H), -0.01 (s, 3H), -0.19 (s, 9H). 

 

NTs

N

N

Br

Br

OMe

7354b

Ts
N Br

(HO)2B
N

N

OMeBr

I

63

Pd(PPh3)4

MeOH, PhH

Na2CO3, H2O
23 °C, 72 h
(71% yield)  

Indolylpyrazine 73.  A solution containing iodopyrazine 63 (133 mg, 0.42 mmol) 

and boronic acid 54b (200 mg, 0.51 mmol) in benzene (10 mL), CH3OH (2 mL), and aq. 

sodium carbonate (2 M, 0.70 mL) was deoxygenated by bubbling a stream of argon 

through the reaction mixture for 5 min.  Tetrakis(triphenylphosphine)palladium(0) (73 

mg, 0.06 mmol) was then added, the flask was evacuated, and purged with N2.  The 

reaction mixture was stirred at 23 °C for 72 h and quenched by addition of sodium sulfate 

(500 mg).  Filtration over a pad of silica gel (CH2Cl2 eluent) and concentration to dryness 

under reduced pressure, followed by trituration of the remaining residue with Et2O (3x) 

and further purification by flash chromatography (CH2Cl2 eluent) afforded 

indolylpyrazine 73 (161 mg, 71% yield) as an off-white powder: Rf 0.13 (3:1 hexanes: 

CH2Cl2); 1H NMR (300 MHz, CDCl3) δ 8.52 (d, J = 8.2 Hz, 1H), 8.45 (s, 1H), 8.33 (s, 

1H), 8.18 (d, J = 2.2 Hz, 1H), 7.81 (d, J = 8.8 Hz, 2H), 7.43 (dd, J = 8.5, 2.2 Hz, 1H), 

7.27 (d, J = 8.8 Hz, 2H), 4.19 (s, 3H), 2.36 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 156.5, 

145.9, 137.6, 137.0, 135.8, 135.1, 132.7, 130.4, 129.3, 128.2, 127.6, 127.2, 125.2, 119.3, 

116.5, 116.1, 55.2, 21.8; IR (film) 1374, 1165 cm-1; HRMS-ESI (m/z): [M + H]+ calc'd for 

C20H16Br2N3O3S, 535.9279; found, 535.9272. 
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Bis(indole) 74.  In a Schlenk flask, a solution containing dibromide 73 (82 mg, 

0.15 mmol) and boronic ester 62 (129 mg, 0.20 mmol) in benzene (4 mL), CH3OH (0.80 

mL), and aq. sodium carbonate (2 M, 0.25 mL) was deoxygenated by bubbling a stream 

of argon through the reaction mixture for 5 min.  

Tetrakis(triphenylphosphine)palladium(0) (27 mg, 0.02 mmol) was then added, and the 

flask was evacuated, purged with N2, and sealed.  The reaction mixture was heated to 50 

°C for 72 h, cooled to 23 °C, then quenched by addition of sodium sulfate (300 mg).  

Following filtration through a pad of silica gel (CH2Cl2 eluent) and evaporation to dryness 

in vacuo, the remaining residue was purified by flash chromatography (2:1 

CH2Cl2:hexanes eluent) to give a crude product, which was further purified by flash 

chromatography (7:1 hexanes:EtOAc eluent) to afford bis(indole) 74 (122 mg, 82% 

yield) as a yellow oil: Rf 0.2 (9:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3) δ 8.71 (d, 

J = 8.4 Hz, 1H), 8.52 (s, 1H), 8.50 (s, 1H), 8.27 (d, J = 1.8 Hz, 1H), 7.86 (d, J = 8.4 Hz, 

2H), 7.56-7.38 (comp. m, 7H), 7.28 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.1 Hz, 1H), 6.85 (d, 

J = 8.4 Hz, 1H), 5.84 (s, 2H), 5.25 (s, 2H), 4.25 (s, 3H), 4.07 (m, 1H), 3.62 (dd, J = 9.2, 

4.4 Hz, 1H), 3.55 (t, J = 8.1, 2H), 3.35 (app.t, J = 9.2 Hz, 1H), 2.37 (s, 3H), 1.33 (d, J = 

7.0 Hz, 3H), 0.89 (t, J = 8.4 Hz, 2H), 0.69 (s, 9H), -0.04 (s, 9H), -0.16 (s, 3H), -0.28 (s, 

3H); 13C NMR (125 MHz, CDCl3) δ 156.1, 145.7, 145.6, 145.4, 137.2, 135.8, 135.6, 

135.5, 135.1, 131.3, 130.9, 130.3, 128.8, 128.7, 128.3, 127.8, 127.7, 127.3, 127.1, 127.0, 
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125.5, 119.0, 118.8, 117.3, 116.4, 115.6, 105.5, 78.0, 70.8, 69.2, 65.8, 54.2, 36.8, 25.9, 

21.8, 18.2, 18.0, 17.7, -1.2, -5.5, -5.6; IR (film) 1374, 1178, 1087 cm-1; HRMS-ESI (m/z): 

[M + H]+ calc'd for C50H62BrN4O6SSi2, 981.3112; found, 981.3097. 
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Aldehyde 75.  To a Falcon tube containing a THF (5 mL) solution of bis(indole) 

74 (70 mg, 0.07 mmol) at 0 °C was added HF•pyridine (800 µL) in a dropwise fashion.  

The reaction mixture was stirred at 0 °C for 1.5 h until the reaction was judged complete 

by TLC.  After dilution of the mixture with Et2O (10 mL), saturated aq. sodium 

bicarbonate (10 mL) was added in a dropwise manner at 0 °C.  The layers were separated, 

and the organic portion was further washed with saturated aq. sodium bicarbonate (3 x 10 

mL), dried over magnesium sulfate, and concentrated under reduced pressure.  

 The crude residue prepared above was dissolved in anhydrous CH2Cl2 (5 mL), and 

Dess-Martin periodinane (91 mg, 0.214 mmol) was introduced.  The reaction mixture 

was stirred at 23 °C for 20 min, poured into a saturated aq. solution of sodium 

bicarbonate/sodium thiosulfate (1:1, 5 mL), and extracted with CH2Cl2 (3 x 10 mL).  The 

organic layers were washed with brine (5 mL), dried over magnesium sulfate, and 

evaporated under reduced pressure to provide the crude product, which was purified by 

flash chromatography (2:1 hexanes:EtOAc) to furnish aldehyde 75 (53 mg, 86% yield) as 

a yellow oil: Rf 0.67 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3) δ 9.73 (s, 1H), 

8.69 (d, J = 8.3 Hz, 1H), 8.52 (s, 1H), 8.46 (s, 1H), 8.24 (d, J = 1.5 Hz, 1H), 7.86 (d, J = 
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8.3 Hz, 2H), 7.56-7.39 (comp. m, 7H), 7.30 (d, J = 7.8 Hz, 2H), 6.89 (d, J = 8.3 Hz, 1H), 

6.83 (d, J = 8.3 Hz, 1H), 5.85 (s, 2H), 5.27 (s, 2H), 4.76 (q, J = 6.8 Hz, 1H), 4.18 (s, 3H), 

3.55 (t, J = 8.0 Hz, 2H), 2.39 (s, 3H), 1.37 (d, J = 6.8 Hz, 3H), 0.89 (t, J = 8.0 Hz, 2H), -

0.05 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 201.9, 156.1, 146.4, 145.7, 144.8, 136.8, 

136.2, 135.8, 135.6, 135.0, 131.8, 130.4, 129.1, 128.9, 128.6, 128.5, 128.0, 127.9, 127.5, 

127.4, 127.2, 125.4, 124.3, 121.0, 119.1, 116.9, 116.5, 115.2, 105.9, 78.2, 70.9, 66.0, 

54.3, 48.5, 21.8, 18.0, 15.0, -1.2; IR (film) 1720, 1374, 1177, 1086 cm-1; HRMS-ESI 

(m/z): [M + H]+ calc'd for C44H46BrN4O6SSi, 865.2090; found, 865.2103. 
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 Acid 76.  A solution of aldehyde 75 (53 mg, 0.061 mmol) in acetone (12 mL) was 

treated with a saturated solution of NaH2PO4 that had been acidified to pH 2 with 1 N 

HCl (1.4 mL) and cooled to 0 °C.  After the addition of 2-methyl-2-butene (32.5 µL, 0.31 

mmol), a solution of NaClO2 (13.9 mg, 0.123 mmol) in H2O (1.4 mL) was added 

dropwise over 5 min.  The reaction mixture was poured into cold H2O (2 mL) and 

extracted with CH2Cl2 (2 x 5 mL).  The combined organic layers were dried over 

magnesium sulfate and evaporated to dryness.  The crude residue was passed through a 

short plug of silica gel (EtOAc eluent), and the solvent was evaporated to afford acid 76 

(49 mg, 89% yield): Rf 0.22 (2:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3) δ 8.68 (d, 

J = 8.3 Hz, 1H), 8.52 (s, 1H), 8.44 (s, 1H), 8.23 (d, J = 1.5 Hz, 1H), 7.85 (d, J = 8.3 Hz, 

2H), 7.53-7.37 (comp. m, 7H), 7.28 (d, J = 9.2 Hz, 2H), 7.08 (d, J = 8.3 Hz, 1H), 6.84 (d, 
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J = 8.3 Hz, 1H), 5.84 (d, J = 10.3 Hz, 1H), 5.78 (d, J = 10.3 Hz, 1H), 5.24 (s, 2H), 4.86 

(q, J = 6.8 Hz, 1H), 4.20 (s, 3H), 3.53 (t, J = 8.3 Hz, 2H), 2.36 (s, 3H), 1.42 (d, J = 6.8 

Hz, 3H), 0.86 (t, J = 8.3 Hz, 2H), -0.07 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 178.2, 

156.2, 146.2, 145.7, 145.0, 136.9, 136.2, 135.8, 135.7, 135.1, 131.7, 130.4, 129.1, 128.9, 

128.6, 128.5, 128.4, 127.9, 127.5, 127.3, 127.2, 126.3, 125.4, 119.8, 119.1, 116.9, 116.5, 

114.9, 105.8, 78.1, 70.9, 66.0, 54.5, 40.6, 21.8, 18.4, 18.0, -1.2; IR (film) 2948, 1703, 

1373, 1177, 1139, 1088 cm-1; HRMS-ESI (m/z): [M + Na]+ calc'd for 

C44H45BrN4O7SSiNa, 881.2040; found, 881.2009. 
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 HBr, H2O
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 (99% yield)

(COCl)2

    CH2Cl2, DMF

 

 Bromoketone 77.  To a solution of 76 (49 mg, 0.0559 mmol) in CH2Cl2 (400 mL) 

at 0 °C was added oxalyl chloride (6.3 µL, 0.0727 mmol), followed by DMF (2 drops).  

After stirring at 0 °C for 30 min, all solvents were removed in vacuo.  The crude acid 

chloride 94 was allowed to dry under vacuum for an additional 1 h and was used in the 

next step without further purification. 
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 Note: In the next step, diazomethane was dried by storing the ethereal 

diazomethane solution over potassium hydroxide pellets.  Immediately before use, the 

diazomethane was further dried over sodium metal for approximately 15 minutes. 

 

 To crude 94 in THF (400 µL) at 0 °C was added an ethereal solution of 

thoroughly dried diazomethane (1.5 mL) via a flamed glass pipette.  The reaction mixture 

was allowed to warm to 23 °C, poured into saturated aq. sodium bicarbonate (1 mL), and 

extracted with Et2O (3 x 3 mL).  The combined organic layers were dried over 

magnesium sulfate and evaporated under reduced pressure.  The crude residue was 

purified by flash chromatography (4:1 hexanes:EtOAc eluent) to give diazoketone 95 

(29.5 mg, 58% yield) as a yellow oil. 

 To 95 (19 mg, 0.021 mmol) in THF (2 mL) at 0 °C, 48% aq. HBr (3 drops) was 

added slowly down the walls of the flask.  After stirring for 5 min, the reaction mixture 

was poured into a saturated aq. solution of sodium bicarbonate and extracted with Et2O (3 

x 4 mL).  The combined organic layers were dried over magnesium sulfate and 

evaporated under reduced pressure to afford bromoketone 77 (20 mg, 99% yield) as a 

yellow oil: Rf 0.68 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3) δ 8.69 (d, J = 8.6 

Hz, 1H), 8.53 (s, 1H), 8.47 (s, 1H), 8.24 (d, J = 1.5 Hz, 1H), 7.87 (d, J = 8.2 Hz, 2H), 

7.55-7.38 (comp. m, 7H), 7.31 (d, J = 8.2 Hz, d), 6.85 (d, 2H), 5.83 (s, 2H), 5.25 (s, 2H), 

5.01 (q, J = 6.7 Hz, 1H), 4.21 (s, 3H), 3.76 (d, J = 12.8 Hz, 1H), 3.67 (d, J = 13.1 Hz, 

1H), 3.55 (t, J = 8.2 Hz, 2H), 2.39 (s, 3H), 1.48 (d, J = 6.7 Hz, 3H), 0.88 (t, J = 8.1 Hz, 

2H), -0.052 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 156.3, 146.5, 145.8, 144.8, 136.7, 

136.5, 135.8, 135.7, 135.1, 140.0, 130.4, 129.2, 128.9, 128.6, 128.5, 128.0, 127.7, 127.5, 
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127.3, 127.2, 125.5, 125.4, 120.7, 119.1, 116.8, 116.5, 114.9, 106.0, 78.2, 71.0, 66.1, 

54.3, 46.0, 34.2, 21.8, 18.0, 17.8, -1.2; IR (film) 2949, 1724, 1374, 1246, 1178, 1141, 

1088 cm-1; HRMS-ESI (m/z): [M + H]+ calc'd for C45H47Br2N4O6SSi, 957.1353; found, 

957.1376. 
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 Acetoxyketone 78.  To a solution of 77 (10 mg, 0.0104 mmol) in DMF (350 µL) 

was added acetylguanidine (32 mg, 0.316 mmol).  After stirring at 23 °C for 48 h, H2O (1 

mL) and EtOAc (1 mL) were added.  The layers were separated, and the organic layer 

was washed with H2O (3 x 500 µL) and brine (500 µL), then dried by passage through a 

plug of silica gel, and evaporated to afford acetoxyketone 78 (9.5 mg, 95% yield): Rf 0.53 

(2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3) δ 8.69 (d, J = 8.5 Hz, 1H), 8.54 (d, J 

= 0.9 Hz, 1H), 8.46 (d, J = 1.2 Hz, 1H), 8.24 (s, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.55-7.39 

(comp. m, 7H), 7.31 (d, J = 8.2 Hz, 2H), 6.86 (s, 2H), 5.83 (s, 2H), 5.25 (s, 2H), 4.83 (q, 

J = 6.7 Hz, 1H), 4.47 (s, 2H), 4.21 (s, 3H), 3.54 (t, J = 8.2 Hz, 2H), 2.39 (s, 3H), 2.01 (s, 

3H), 1.42 (d, J = 7.0 Hz, 3H), 0.88 (t, J = 8.2 Hz, 2H), -0.05 (s, 9H); 13C NMR (125 

MHz, CDCl3) δ 204.5, 170.3, 156.3, 146.4, 145.8, 144.9, 136.8, 136.5, 135.9, 135.6, 

135.1, 131.9, 130.4, 129.2, 128.9, 128.6, 128.5, 128.0, 127.6, 127.5, 127.3, 127.2, 125.7, 

125.4, 120.6, 119.1, 116.9, 116.5, 114.9, 106.0, 78.2, 71.0, 67.2, 66.1, 54.3, 45.6, 21.9, 

20.6, 18.1, 17.3, -1.2; IR (film) 2949, 1750, 1728, 1373, 1244, 1178, 1141, 1088 cm-1; 

HRMS-ESI (m/z): [M + H]+ calc'd for C47H50BrN4O8SSi, 937.2302; found, 937.2290. 
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 Aminoketone 80.  Bromoketone 77 (6 mg, 0.0062 mmol) was dissolved in a 

saturated solution of ammonia in CH3OH (1 mL).  After stirring for 6 h at 23 °C, the 

reaction mixture was filtered through a plug of silica gel (CH3OH eluent), and the solvent 

was evaporated.  The crude residue was then purified by preparative thin layer 

chromatography (7:1 CH2Cl2:CH3OH) to afford aminoketone 80 (4 mg, 72% yield): Rf 

0.67 (7:1 CH2Cl2:CH3OH); 1H NMR (300 MHz, CDCl3) δ 8.19 (d, 8.8, 1H), 8.53 (s, 1H), 

8.46 (s, 1H), 8.23 (s, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.54-7.37 (comp. m, 7H), 7.29 (d, J = 

8.4 Hz, 2H), 6.84-6.83 (comp. m, 2H), 5.82 (s, 2H), 5.24 (s, 2H), 4.71 (q, J = 6.6 Hz, 

1H), 4.19 (s, 3H), 3.54 (t, J = 8.1 Hz, 2H), 3.31 (d, J = 19.3 Hz, 1H), 3.07 (d, J = 19.1 

Hz, 1H), 2.38 (s, 3H), 1.44 (d, J = 7.0 Hz, 3H), 0.87 (t, J = 8.1 Hz, 2H), -0.06 (s, 9H). 
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 Aminoimidazole 81.  To a solution of aminoketone 80 (7 mg, 0.0078 mmol) in 

ethanol (700 µL) was added cyanamide (15 mg, 0.36 mmol).  The reaction vessel was 

sealed and heated to 70 °C for 10 h.  After cooling to 23 °C, the reaction mixture was 
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purified by reversed-phase filtration through a Sep-Pak column: first 10% acetonitrile, 

then 100% acetonitrile to collect the product.  After removal of solvent under reduced 

pressure, 81 (6 mg, 84% yield) was isolated as an orange/red oil: Rf 0.27 (7:1 

CH2Cl2:CH3OH); 1H NMR (500 MHz, CD3OD) δ 8.68 (d, J = 8.8 Hz, 1H), 8.52 (s, 1H), 

8.38 (s, 1H), 8.16 (d, J = 1.5 Hz, 1H), 7.87 (d, J = 8.1 Hz, 2H), 7.60-7.33 (comp. m, 9H), 

6.95 (d, J = 8.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.10 (s, 1H), 5.85 (s, 2H), 5.28 (s, 2H), 

5.09 (q, J = 6.8 Hz, 1H), 4.19 (s, 3H), 3.57 (t, J = 7.9 Hz, 2H), 2.37 (s, 3H), 1.41 (d, J = 

7.0 Hz, 3H), 0.82 (t, J = 7.9 Hz, 2H), -0.10 (s, 9H); HRMS-ESI (m/z): [M + H]+ calc'd for 

C46H49BrN7O5SSi, 918.2468; found, 918.2467. 
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2. Dess-Martin [O]
   (98% yield)

82  

Ketone 82.  To aldehyde 75 (20 mg, 0.023 mmol) in nitromethane (1 mL) was 

added triethylamine (75 µL, 0.54 mmol).  The reaction mixture was stirred at 23 °C for 

15 h.  The excess nitromethane was removed by evaporation under reduced pressure to 

afford the crude nitroaldol product, which was used without further purification. 

 The crude residue was dissolved in anhydrous CH2Cl2 (1.5 mL) and treated with 

Dess-Martin periodinane (15% solution in CH2Cl2, 200 µL, 0.099 mmol).  The reaction 

mixture was stirred at 23 °C for 5 min and quenched by addition of saturated aq. sodium 

bicarbonate/sodium thiosulfate (1:1, 2 mL).  The layers were separated, and the aqueous 

layer was extracted with EtOAc (8 x 1 mL).  The combined organic layers were washed 

with brine (2 mL), dried by passage through a plug of silica gel (EtOAc eluent), and 
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evaporated under reduced pressure to afford ketone 82 (21 mg, 98% yield) as a yellow 

oil: Rf 0.20 (3:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3) δ 8.62 (d, J = 8.3 Hz, 1H), 

8.44 (s, 1H), 8.39 (s, 1H), 8.18 (s, 1H), 7.80 (d, J = 8.3 Hz, 2H), 7.49-7.33 (comp. m, 

7H), 7.24 (d, J = 8.3 Hz, 2H), 6.83 (d, J = 8.3 Hz, 1H), 6.81 (d, J = 7.8 Hz, 1H), 5.77 (s, 

2H), 5.21 (s, 2H), 5.03 (d, J = 14.6 Hz, 1H), 4.98 (d, J = 14.6 Hz, 1H), 4.90 (q, J = 6.8 

Hz, 1H), 4.14 (s, 3H), 3.49 (t, J = 7.8 Hz, 2H), 2.32 (s, 3H), 1.44 (d, J = 6.8 Hz, 3H), 

0.82 (t, J = 8.0 Hz, 2H), -0.12 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 197.0, 156.3, 

146.9, 145.8, 144.3, 136.9, 136.5, 135.8, 135.6, 135.0, 132.3, 130.4, 129.3, 129.0, 128.6, 

128.5, 128.0, 127.6, 127.5, 127.4, 127.2, 125.4, 123.7, 121.0, 119.2, 116.7, 116.5, 114.6, 

106.2, 82.2, 78.3, 71.0, 66.2, 54.4, 47.6, 21.8, 18.0, 16.9, -1.2; IR (film) 1732, 1559, 

1376, 1178, 1080 cm-1. HRMS-FAB (m/z): [M + H]+ calc'd for C45H47BrN5O8SiSBr, 

926.2077; found, 926.2080. 
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Nitroketone 83.  To a suspension of ketone 82 (30 mg, 0.032 mmol) in EtOH (2 

mL, deoxygenated by sparging with argon for 2 min) was added powdered KOH (100 

mg, 1.8 mmol).  The reaction vessel was equipped with a reflux condenser and heated to 

40 °C for 2 h.  After cooling to 23 °C, the reaction mixture was quenched with saturated 

aq. ammonium chloride (2 mL) and extracted with EtOAc (8 x 1 mL).  The combined 

organic layers were washed with brine (2 mL), dried by passage through a plug of silica 
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gel (EtOAc eluent), and evaporated under reduced pressure to afford the crude 

detosylated ketone, which was used without further purification. 

 To the crude detosylated ketone prepared above in acetonitrile (3 mL, 

deoxygenated by sparging with argon for 2 min) and water (30 µL) was added lithium 

tetrafluoroborate (120 mg, 0.13 mmol).  The reaction vessel was equipped with a reflux 

condenser and heated to 70 °C for 1.5 h.  After cooling to 40 °C, sodium hydroxide (20% 

aq., 2 mL) was added.  The resulting mixture was stirred for 10 min, allowed to cool to 

23 °C, quenched with saturated aq. ammonium chloride (2 mL), and extracted with 

EtOAc (8 x 1 mL).  The combined organic layers were washed with brine (2 mL), dried 

by passage through a plug of silica gel (EtOAc eluent), and evaporated under reduced 

pressure to afford nitroketone 83 (20.5 mg, 99% yield) as a yellow oil: Rf 0.59 (1:1 

hexanes:EtOAc); 1H NMR (300 MHz, acetone-d6) δ 11.14 (br s, 1H), 10.86 (br s, 1H), 

8.82 (d, J = 8.8 Hz, 1H), 8.54 (s, 1H), 8.43 (m, 1H), 7.75-7.72 (comp. m, 2H), 7.62-7.59 

(comp. m, 2H), 7.47-7.30 (comp. m, 4H), 6.95 (d, J = 8.1 Hz, 1H), 6.85 (d, J = 8.1 Hz, 

1H), 5.41-5.22 (comp. m, 5H), 4.19 (s, 3H), 1.47 (d, J = 7.0 Hz, 3H); 13C NMR (125 

MHz, acetone-d6) δ 198.7, 156.2, 146.3, 143.6, 139.4, 138.6, 138.3, 136.1, 130.7, 129.4, 

129.4, 128.9, 128.8, 128.3, 126.9, 126.8, 125.8, 124.9, 124.2, 120.5, 116.3, 116.0, 115.3, 

112.5, 105.1, 83.4, 70.9, 54.1, 47.7, 17.3; IR (film) 3410 (br), 1728, 1697, 1557, 1450 

cm-1; HRMS-ESI (m/z): [M + H]+ calc'd for C32H27BrN5O5, 640.1196; found, 640.1180. 
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    (80% yield)

84  

Aminoketone 84.  To a solution of deprotected ketone 83 (5.5 mg, 0.0086 mmol) 

in EtOAc (600 µL, deoxygenated by bubbling with argon for 1 min), was added SnCl2•2 

H2O (30 mg, 0.13 mmol).  The reaction vessel was equipped with a reflux condenser and 

heated at 80 °C for 3 h.  After cooling to 23 °C, the solvent was removed under reduced 

pressure to leave an orange residue, which was purified by reversed-phase filtration 

through a Sep-Pak column: first 10% acetonitrile containing 0.1% (w/v) TFA to remove 

salts, then 90% acetonitrile containing 0.1% (w/v) TFA to collect the crude product.  

After removal of solvent in vacuo, the compound was filtered through silica gel (5:1 

CH2Cl2/CH3OH eluent) to provide the reduced compound, which was used without 

further purification. 

 To the crude aminoketone in acetonitrile (700 µL) at 0 °C, in a Schlenk tube, was 

added iodotrimethylsilane (150 µL, 1.05 mmol).  The reaction mixture was heated at 50 

°C for 2 h, cooled to 0 °C, then quenched with saturated aq. sodium metabisulfite.  The 

reaction mixture was purified by reversed-phase filtration through a Sep-Pak column: 

first 10% acetonitrile containing 0.1% (w/v) TFA to remove salts, then 90% acetonitrile 

containing 0.1% (w/v) TFA to collect the crude product.  After removal of solvent under 

reduced pressure, the compound was further purified by reversed-phase HPLC.  

Concentration under reduced pressure provided the fully deprotected aminoketone 84 

(3.5 mg, 80% yield) as an orange/red oil: 1H NMR (500 MHz, CD3OD) δ 8.75 (s, 1H), 

8.60 (d, J = 8.4 Hz, 1H), 7.67 (s, 1H), 7.62 (d, J = 1.7 Hz, 1H), 7.54 (s, 1H), 7.27 (dd, J 
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= 8.5, 1.8 Hz, 1H), 6.69 (d, J = 8.1 Hz, 1H), 6.63 (d, J = 7.7 Hz, 1H), 4.15 (q, J = 6.9 

Hz, 1H), 3.64 (d, J = 1.7 Hz, 2H), 1.44 (d, J = 6.8 Hz, 3H); 13C NMR (125 MHz, 

CD3OD) δ 204.4, 157.4, 151.0, 145.3, 139.1, 132.6, 131.7, 129.0, 128.3, 127.7, 126.7, 

126.1, 125.6, 124.9, 122.6, 121.0, 117.1, 115.5, 113.7, 108.5, 107.9, 46.8, 17.2; IR (film) 

3140 (br), 1671, 1200, 1140 cm-1; HRMS-ESI (m/z) calc'd for C24H21BrN5O3, 506.0828; 

found, 506.0827. 
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 Dragmacidin D (5).  To a solution of aminoketone 84 (2 mg, 0.0039 mmol) in 

ethanol (700 µL, deoxygenated by bubbling with argon for 5 min) was added cyanamide 

(15 mg, 0.36 mmol).  The reaction vessel was purged with argon, sealed, and heated to 70 

°C for 3 h.  After cooling to 23 °C, the reaction mixture was purified by reversed-phase 

filtration through a Sep-Pak column: first 10% acetonitrile containing 0.1% (w/v) TFA to 

remove salts, then 60% acetonitrile containing 0.1% (w/v) TFA to collect the product.  

After removal of solvent under reduced pressure, dragmacidin D (5, 1.8 mg, 86% yield) 

was isolated as an orange/red oil: 1H NMR (600 MHz, CD3OD) δ 8.74 (s, 1H), 8.6 (d, J = 

8.7 Hz, 1H), 7.62 (d, J = 1.8 Hz, 1H), 7.49 (s, 1H), 7.46 (s, 1H), 7.27 (dd, J = 8.2, 1.8 

Hz, 1H), 6.84 (d, J = 8.2 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 5.98 (s, 1H), 4.35 (q, J = 6.9 

Hz, 1H), 1.52 (d, J = 7.3 Hz, 3H); 13C NMR (1645 MHz, CD3OD) δ 157.1, 150.3, 148.7, 

144.8, 139.1, 134.2, 132.4, 132.2, 128.7, 127.9, 127.3, 126.7, 126.3, 125.6, 124.8, 120.2, 
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117.1, 115.4, 113.7, 110.2, 108.9, 107.3, 33.2, 20.8; IR (film) 3200 (br), 1667, 1204, 

1138 cm-1; UV λmax (EtOH) 216, 274, 389 nm.  After addition of 1 drop concentrated HCl 

to 1 mL cell: λmax (EtOH) 219, 277, 460 nm; HRMS-ESI (m/z): [M + H]+ calc'd for 

C25H21BrN7O2, 530.0940; found, 530.0943. 

 

Br
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SEM
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SnBu3

OBn

N
SEM

MeO2C

    Pd2(dba)3, P(t-Bu)3

    CsF, PhH, 60 °C

68

85

86

(71% yield)

 

 Ester 86.  To 68 (50 mg, 0.116 mmol) in a flame-dried Schlenk flask was added 

tris(dibenzylideneacetone)dipalladium(0) (1.5 mg, 0.0017 mmol), stannane 85 (52 µL, 

0.15 mmol), dry cesium fluoride (46 mg, 0.302 mmol), and benzene (1.3 mL), followed 

by tri-t-butylphosphine (0.78 mg, 0.0038 mmol) under an N2 atmosphere in a dry box.  

The sealed reaction vessel was then heated at 60 °C for 14 h.  The reaction mixture was 

cooled to 23 °C and filtered through a plug of silica gel (EtOAc eluent).  After removal of 

solvent under reduced pressure, the crude product was purified by flash chromatography 

(4:1 hexanes:EtOAc) to afford 86 (42.6 mg, 71% yield) as a yellow oil: Rf 0.64 (4:1 

hexanes:EtOAc); 1H NMR (300 MHz, CDCl3) δ 7.54-7.35 (comp. m, 5H), 7.16 (d, J = 

3.3 Hz, 1H), 7.00 (d, J = 8.1 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.48 (d, J = 1.8 Hz, 1H), 

6.41 (d, J = 2.9 Hz, 1H), 5.93 (d, J = 1.8 Hz, 1H), 5.75 (s, 2H), 5.23 (s, 2H), 3.80 (s, 3H), 

3.46 (t, J = 8.1 Hz, 2H), 0.83 (t, J = 8.2 Hz, 2H), -0.08 (s, 9H); 13C NMR (75 MHz, 

CDCl3) δ 168.2, 146.9, 140.3, 137.0, 130.2, 129.6, 128.8, 128.2, 127.8, 127.3, 125.6, 

122.9, 121.3, 104.2, 102.4, 77.6, 70.6, 52.4, 18.0, -1.1; IR (film) 2951, 1724, 1502, 1290, 
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1258, 1175, 1073 cm-1; HRMS-ESI (m/z): [M + H]+ calc'd for C25H32NO4Si, 460.1920; 

found, 460.1913. 
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(97 % yield)

 

 Acid 87.  To a solution of 86 (970 mg, 1.88 mmol) in THF (10 mL) and H2O (2 

mL) was added lithium hydroxide monohydrate (394 mg, 9.40 mmol).  The resulting 

solution was heated under reflux to 80 °C for 24 h, then allowed to cool to 23 °C.  The 

reaction mixture was diluted with H2O (5 mL) and extracted with Et2O (2 x 10 mL).  The 

organic layer was discarded, and the aqueous layer was acidified to pH=2 by the 

dropwise addition of 6 N HCl at 0 °C.   After extracting the aqueous layer with CH2Cl2 (3 

x 20 mL), the combined organic layers were washed with H2O (10 mL) and brine (10 

mL), dried over magnesium sulfate, and evaporated under reduced pressure to yield 87 

(919 mg, 97% yield) as a yellow oil, which was used in the subsequent step without 

further purification. 
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 To 87 (578 mg, 1.15 mmol) in a thick-walled glass container under N2 in a dry 

box was added dichloro[(S)-(-)-2,2]-bis(diphenylphosphino)-1,1]-binaphthyl]ruthenium 
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(II) (89, 46 mg, 0.0576 mmol) and CH3OH (11.5 mL).  The reaction vessel was sealed 

under nitrogen, removed from the dry box, and placed in a stainless steel bomb, which 

was purged with argon.  After removing the seal of the reaction vessel, the bomb was 

sealed under an argon atmosphere, cooled to –10 °C over 1 h, then purged and 

pressurized with H2 to 1200 psi with vigorous stirring.  The H2 pressure was carefully 

released after 72 h of stirring, and the reaction vessel was warmed to 23 °C.  After 

filtering the reaction mixture through a plug of celite (CH3OH eluent), the solvent was 

evaporated under reduced pressure to yield 88 (550 mg, 95% yield, 90% ee*) as a yellow 

oil: Rf 0.63 (1:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3) δ 7.17 (d, J = 3.3 Hz, 1H), 

6.98 (d, J = 8.1 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.61 (d, J = 3.3 Hz, 1H), 5.76 (d, J = 

10.6 Hz, 1H), 5.72 (d, J = 10.3 Hz, 1H), 5.19 (s, 2H), 4.08 (q, J = 7.1 Hz, 1H), 3.45 (t, J 

= 8.2 Hz, 2H), 1.60 (d, J = 7.0 Hz, 3H), 0.82 (t, J = 8.2 Hz, 2H), -0.09 (s, 9H); 13C NMR 

(125 MHz, CDCl3) δ 180.6, 146.3, 137.2, 130.3, 129.4, 128.8, 128.2, 127.8, 125.9, 124.9, 

118.7, 104.6, 101.6, 77.6, 70.6, 65.5, 42.4, 18.0, 17.5, -1.2; IR (film) 2952, 1707, 1503, 

1251, 1072 cm-1; HRMS-ESI (m/z): [M + Na]+ calc'd for C24H31NO4SiNa, 448.190; found, 

448.1918. 

 

*The enantiopurity of 88 was determined by derivatization to methyl ester 97 via 

treatment with diazomethane as described below, followed by chiral HPLC analysis: 
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 Ester 96.  To a sample of 88 (2 mg, 0.004 mmol) in CH2Cl2 (1 mL) was added 

ethereal diazomethane (0.2 M, ca. 1 mL) until a bright green/yellow color persisted.  The 

solvent was removed under reduced pressure to afford ester 96 (2 mg, 99% yield) as a 

yellow oil.  Chiral HPLC was performed on a Chiralcel AD column using 2%  

i-PrOH in hexanes as eluent. 
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 The enantiopurity of 83 was determined by chiral HPLC performed on a Chiralcel 

AD column using 20% EtOH in hexanes as eluent.  The enantiopurity of 84 was 

determined by chiral HPLC performed on a Chiralcel AD column using 60% EtOH in 

hexanes as eluent. 
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APPENDIX ONE 

 

Synthetic Summary for Dragmacidin D (5) 
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Figure A1.1  The synthesis of indolylpyrazine 73. 
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Figure A1.2  The synthesis of boronic ester 62. 
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Figure A1.3  The synthesis of dragmacidin D (5).   
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APPENDIX TWO 

 

Spectra Relevant to Chapter Two: 

The Total Synthesis of Dragmacidin D 
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Figure A2.2  Infrared spectrum (thin film/NaCl) of compound 52a. 

 
Figure A2.3  13C NMR (75 MHz, DMSO-d6) of compound 52a. 
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Figure A2.5  Infrared spectrum (thin film/NaCl) of compound 53a. 

 
Figure A2.6  13C NMR (75 MHz, acetone-d6) of compound 53a. 
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Figure A2.8  Infrared spectrum (thin film/NaCl) of compound 22a. 

 
Figure A2.9  13C NMR (125 MHz, DMSO-d6) of compound 22a. 
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Figure A2.11  Infrared spectrum (KBr pellet) of compound 63. 

 
Figure A2.12  13C NMR (75 MHz, CDCl3) of compound 63. 
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Figure A2.14  Infrared spectrum (thin film/NaCl) of compound 91. 

 
Figure A2.15  13C NMR (75 MHz, CDCl3) of compound 91. 
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Figure A2.18  Infrared spectrum (thin film/NaCl) of compound 67. 

 
Figure A2.19  13C NMR (75 MHz, CDCl3) of compound 67. 
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Figure A2.21  Infrared spectrum (thin film/NaCl) of compound 68. 

 
Figure A2.22  13C NMR (75 MHz, CDCl3) of compound 68. 
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Figure A2.24  Infrared spectrum (thin film/NaCl) of compound 70. 

 
Figure A2.25  13C NMR (75 MHz, CDCl3) of compound 70. 
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Figure A2.27  Infrared spectrum (thin film/NaCl) of compound 72. 

 
Figure A2.28  13C NMR (75 MHz, CDCl3) of compound 72. 
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Figure A2.30  Infrared spectrum (thin film/NaCl) of compound 92. 

 
Figure A2.31  13C NMR (75 MHz, CDCl3) of compound 92. 
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Figure A2.33  Infrared spectrum (thin film/NaCl) of compound 93. 

 
Figure A2.34  13C NMR (75 MHz, CDCl3) of compound 93. 
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Figure A2.37  Infrared spectrum (thin film/NaCl) of compound 73. 

 
Figure A2.38  13C NMR (125 MHz, CDCl3) of compound 73. 
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Figure A2.40  Infrared spectrum (thin film/NaCl) of compound 74. 

 
Figure A2.41  13C NMR (125 MHz, CDCl3) of compound 74. 
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Figure A2.43  Infrared spectrum (thin film/NaCl) of compound 75. 

 
Figure A2.44  13C NMR (125 MHz, CDCl3) of compound 75. 
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Figure A2.46  Infrared spectrum (thin film/NaCl) of compound 76. 

 
Figure A2.47  13C NMR (125 MHz, CDCl3) of compound 76. 
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Figure A2.49  Infrared spectrum (thin film/NaCl) of compound 77. 

 
Figure A2.50  13C NMR (125 MHz, CDCl3) of compound 77. 
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Figure A2.52  Infrared spectrum (thin film/NaCl) of compound 78. 

 
Figure A2.53  13C NMR (125 MHz, CDCl3) of compound 78. 
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Figure A2.57  Infrared spectrum (thin film/NaCl) of compound 82. 

 
Figure A2.58  13C NMR (125 MHz, CDCl3) of compound 82. 
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Figure A2.60  Infrared spectrum (thin film/NaCl) of compound 83. 

 
Figure A2.61  13C NMR (125 MHz, acetone-d6) of compound 83. 
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Figure A2.63  Infrared spectrum (thin film/NaCl) of compound 84. 

 
Figure A2.64  13C NMR (125 MHz, CD3OD) of compound 84. 
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Figure A2.66  Infrared spectrum (thin film/NaCl) of dragmacidin D (5). 

 
Figure A2.67  13C NMR (125 MHz, CD3OD) of dragmacidin D (5). 
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Figure A2.69  Infrared spectrum (thin film/NaCl) of compound 86. 

 
Figure A2.70  13C NMR (75 MHz, CDCl3) of compound 86. 
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Figure A2.72  Infrared spectrum (thin film/NaCl) of compound 88. 

 
Figure A2.73  13C NMR (125 MHz, CDCl3) of compound 88. 
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CHAPTER THREE 

 

The Total Synthesis of (+)- and (–)-Dragmacidin F† 

 

3.1  Background 

3.1.1  Introduction 

 Having developed a strategy to construct the bis(indole)pyrazinone core of 

dragmacidin D (5, Chapter 2), we set out to extend the scope of our halogen-selective 

Suzuki coupling methodology to the synthesis of related natural products.  We 

hypothesized that our approach could be amenable to the preparation of the antiviral 

agent dragmacidin F,1 which is perhaps the most daunting target of the dragmacidin 

natural products (Figure 3.1.1).2 

 

Figure 3.1.1 

Dragmacidin F (7)

+

N
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HO
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HN

H2N

 

 

 The antiviral agent dragmacidin F (7) possesses a variety of structural features 

that make it an attractive target for total synthesis.  These synthetic challenges include the 

differentially substituted pyrazinone, the bridged [3.3.1] bicyclic ring system, which is 

                                                 
†  This work was performed in collaboration with Daniel D. Caspi, a graduate student in the Stoltz group.  
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fused to both the trisubstituted pyrrole and aminoimidazole heterocycles, and the 

installation and maintenance of the 6-bromoindole fragment. 

 

3.1.2  Retrosynthetic Analysis of Dragmacidin F 

 Our retrosynthetic analysis for dragmacidin F (7) is shown in Scheme 3.1.1.  On 

the basis of our experience with dragmacidin D (5), we reasoned that the aminoimidazole 

moiety would best be incorporated at a late stage in the synthesis.   The carbon skeleton 

of the natural product would then arise via a series of halogen-selective Suzuki cross-

coupling reactions (97 + 63 + 54b).  Pyrazine 63 and indolylboronic acid 54b were both 

readily accessible, while pyrroloboronic ester 97 perhaps could be derived from pyrrole-

fused bicycle 98, our key retrosynthetic intermediate.  We then targeted bicycle 98 from 

two related directions: a Pd(0)-mediated intramolecular Heck reaction3 of bromopyrrole 

99 and a Pd(II)-promoted oxidative carbocyclization4 involving des-bromopyrrole 100.  

The successful implementation of the latter method was particularly attractive since it is 

closely aligned with our interest in Pd(II)-catalyzed dehydrogenation reactions.5  Both of 

the cyclization substrates (99 and 100) could be prepared from commercially available  

(–)-quinic acid (101).6  At the time of this synthetic effort, the absolute stereochemistry of 

natural dragmacidin F (7) was not known; thus, the absolute stereochemistry of our target 

(7) was chosen arbitrarily.  

 

 

 

 



133 
Scheme 3.1.1 
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3.2  The Total Synthesis of (+)-Dragmacidin F 

3.2.1  Synthesis of Cyclization Substrates 

 Our synthesis of dragmacidin F (7) began with a known two-step protocol 

involving lactonization and silylation of (–)-quinic acid (101) to afford bicyclic lactone 

102 (Scheme 3.2.2).7  Subsequent oxidation and Wittig olefination of 102 produced exo-

methylene lactone 103 in good yield.  Initially, we envisioned the direct conversion of 

lactone 103 to unsaturated carboxylic acid 104 by executing a homogeneous Pd(0)-

catalyzed π-allyl hydride addition reaction.8  Despite considerable experimentation, 

however, exposure of lactone 103 to a variety of Pd and hydride sources under standard 

conditions8 led to the formation of complex product mixtures.  As a result, a more 
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stepwise approach was tried.  Methanolysis of lactone 103 followed by acetylation of the 

resulting 2° alcohol9 gave rise to allylic acetate 105, another potential substrate for π-allyl 

reduction chemistry.  Although 105 did react under most literature protocols, undesired 

exocyclic olefin 107 was typically the major product observed.  After substantial 

optimization, we were able to access 106 as the major product by employing 

stoichiometric Pd(P(t-Bu)3)2
10 in the presence of triethylsilane as a reductant.  Further 

refinements designed to facilitate catalysis led to a reduced Pd loading (30 mol%) when 

N-methylmorpholine-N-oxide (NMO) was used as an additive.11  Under these conditions, 

cyclohexene 106 was obtained in 89% yield as a single olefin regioisomer.  

Unfortunately, this transformation often gave inconsistent results and was particularly 

sensitive to oxygen, water, and the quality of Et3SiH.  These difficulties coupled with the 

high catalyst loading resulted in substantial material throughput problems.  We therefore 

sought yet another method to prepare cyclohexene 106 or a closely related derivative 

thereof (i.e., 104) in a more facile and preparative manner. 
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Scheme 3.2.2 

O

TBSO

O

HO

OH

102

O

TBSO

O

HO

103

1. PDC, Celite, MS4Å
    CH3CN, 45 °C

2. CH3PPh3Br, KOt-Bu 
    THF, 65 °C

(69% yield, 2 steps)O

HO

OH

OH

HO OH

(–)-Quinic Acid (101)

O

TBSO

HO OMe

OAc

O

TBSO

HO OH

O

TBSO

HO OMe

107
Undesired Product

105

1. Amberlyst H+ resin
    PhH, DMF, !

2.  TBSCl, Et3N
     DMAP, DMF

(71% yield)

1. MS4Å, MeOH

2. Ac2O, Et3N
    DMAP, CH2Cl2

(90% yield, based 
on recovered 103)

Pd(P(t-Bu)3)2
(30 mol% Pd)

NMO, Et3SiH
THF, 70 °C

(89% yield)

104

"-Allyl 
Reduction

O

TBSO

HO OMe

106

 

 

  In our revised plan, we conceived a two-step route to obtain carboxylic acid 104 

via diastereoselective reduction of olefin 103 followed by base-promoted elimination of 

the carboxylate functionality of 108 (Scheme 3.2.3).  Daniel Caspi attempted the first part 

of this sequence by exposing olefin 103 to standard catalytic hydrogenation conditions 

(Pd/C, 1 atm H2).  Surprisingly, these conditions led to the production of a compound that 

was more polar than we expected for simple olefin hydrogenation (i.e., 108).  To our 

delight, the product was identified as unsaturated carboxylic acid 104.  Under our 

optimized reaction conditions (0.5 mol% Pd/C, 1 atm H2, MeOH, 0 °C), essentially 

quantitative reductive isomerization to 104 was observed.  Although the mechanism of 
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this transformation has not been studied extensively, simple control experiments suggest 

that stepwise reduction/elimination12 or π-allyl reduction processes are not operative.13 

 

Scheme 3.2.3 
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 With facile access to cyclohexene carboxylic acid 104, preparation of the key 

cyclization precursors proceeded without difficulty.  Activation of acid 104 with CDI 

followed by the addition of HN(OMe)Me • HCl afforded Weinreb amide 109 (Scheme 

3.2.4).  The Weinreb amide functionality was then displaced with the appropriate 

lithiopyrrole14 reagent to produce Heck cyclization substrate 9915 and oxidative 

cyclization substrate 100. 

 

Scheme 3.2.4 
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3.2.2  Constructing the [3.3.1] Bicycle 

 Extensive studies were carried out in order to achieve the intramolecular Heck 

cyclization of bromopyrrole 99.  Attempts to utilize standard procedures were 

unsuccessful,3 likely due to the thermal instability of the bromopyrrole moiety.  However, 

implementation of the room-temperature conditions developed by Fu16 provided the 

desired [3.3.1] bicyclic product (98), albeit in low yield (Scheme 3.2.5).  Unfortunately, 

the formation of 98 was hampered by competitive production of [3.2.2] bicycle 110.  

Although efforts to optimize temperature, solvent, base, and concentration were not met 

with success, it was found that increased quantities of Pd improved the ratio of the 

desired [3.3.1] bicycle (98) to the undesired [3.2.2] bicycle (110).  In addition, the ratio of 

98 to 110 decreased over time,17 suggesting that the active catalytic species varied during 

the course of the reaction or that selectivity changed as the concentration of R3NH+Br– 

increased. 

 

Scheme 3.2.5 
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 Although the Heck reaction was useful for preparing reasonable quantities of 

bicycle 98, an alternative and potentially more selective route to 98 was desired.  In 

conjunction with ongoing research in our group,5 we turned to the Pd(II)-mediated C-C 

bond forming approach.  In this scenario, C(3)-unsubstituted pyrrole 100 would undergo 
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intramolecular carbocyclization to afford 98 (Scheme 3.2.6).  Initial experimentation 

revealed that pyridine and ethyl nicotinate were not effective ligands for promoting 

cyclization in the presence of Pd(OAc)2.5c,d  However, Daniel Caspi found that by using 

DMSO as a ligand18 the desired cyclization product could be obtained in modest yield.  

Subsequent optimization of solvent, temperature, and reaction time led to a set of 

improved conditions whereby the desired pyrrole-fused bicycle 98 was formed as a single 

stereo- and regioisomer in 74% yield.  Interestingly, these conditions take advantage of a 

similar solvent mixture employed in Pd cyclization methodology from our laboratory.5c,d  

This transformation (100 → 98) is particularly noteworthy since it results in 

functionalization of the electronically deactivated and sterically congested C(3) position 

of acyl pyrrole 100.19,20  Despite our best efforts, we were unable to effect catalytic 

turnover of Pd with a stoichiometric oxidant in this reaction, presumably due to extensive 

oxidative decomposition of both the starting material and the desired product.21  

Nonetheless, the Pd(II)-mediated strategy provided bicycle 98 in nearly twice the isolated 

yield as the Heck route using equivalent amounts of Pd and obviated the need for 

polybrominated pyrroles.15,22 
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Scheme 3.2.6 
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3.2.3  Assembling the Carbon Skeleton of Dragmacidin F 

 With the [3.3.1] bicyclic framework in hand (i.e., 98), we focused our attention on 

constructing the full carbon skeleton of dragmacidin F (112, Scheme 3.2.7).  The final 

stereocenter present in the natural product was installed via catalytic hydrogenation of 

olefin 108 and was followed by methylation of the 3° alcohol to produce bis(ether) 111.  

The methyl protecting group was selected initially for its robustness9 and would 

presumably allow for the exploration of late-stage chemistry in the form of a model 

system.23  Methyl ether 111 was then elaborated via regioselective bromination of the 

pyrrole and metalation to boronic ester 97.  In the critical halogen-selective Suzuki 

fragment coupling, pyrroloboronic ester 97 was reacted with dibromide 73 (prepared 

from 63 + 54b) under Pd(0) catalysis.  By analogy to our dragmacidin D studies, we were 

pleased to find that at 50 °C, the desired C-C bond forming reaction took place to afford 

the fully coupled product (112) in 77% yield.  Importantly, the indolylbromide moiety 

was maintained under these reaction conditions. 
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Scheme 3.2.7 
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3.2.4  End-Game Studies 

 With the carbon framework completed, few tasks remained in order to finish the 

total synthesis of dragmacidin F (7), namely, removal of all protecting groups and 

installation of the aminoimidazole unit.  Of particular note is the similarity of these 

synthetic challenges to those encountered in our total synthesis of dragmacidin D (5).  

Not surprisingly, we decided to utilize the methods that were already familiar to us in 

order to elaborate 112 to the desired natural product (7).  To this end, we anticipated that 

the presence of an amino group α to the ketone would allow for eventual introduction of 

the aminoimidazole moiety.  Therefore, selective deprotection of silyl ether 112, followed 

by oxidation with Dess-Martin periodinane, produced ketone 113 (Scheme 3.2.8). 
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Scheme 3.2.8 
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3.2.4.1  End-Game Strategy 1 

 Our first effort to functionalize the ketone α-position involved a nitration strategy 

to access a compound analogous to an intermediate employed in the dragmacidin D 

synthesis (Scheme 3.2.9).  Both lithium enolate 114 and TMS enol ether 115 were 

exposed to electrophilic NO2 sources.24  Unfortunately, in all of these cases, formation of 

the desired nitroketone product (116) was not observed. 
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3.2.4.2  End-Game Strategy 2  

 We then turned to an alternative strategy that would involve installation of an α-

amino substituent via nucleophilic displacement of an alkylbromide.  Therefore, ketone 

113 was treated with TMSOTf and then exposed to NBS to afford bromoketone 117 as a 
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single diastereomer (Scheme 3.2.10).25  Interestingly, when bromoketone 117 was treated 

with various nitrogenous nucleophiles, base-promoted rearrangements were observed.26  

In fact, reaction of bromide 117 with a basic fluoride anion source (TBAF in THF) gave 

[3.2.1] bicycle 118 as the major product via a Favorskii rearrangement.27  The utilization 

of amine bases also led to the formation of related Favorskii products. 
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3.2.4.3  End-Game Strategy 3: The Total Synthesis of (+)-Dragmacidin F 

 With limited options remaining, we became interested in the use of a Neber 

rearrangement in order to install the necessary α-amino substituent.28,29  In this scenario, 

an activated oxime derivative would undergo alkoxide-promoted rearrangement to 

furnish an α-aminoketone.  Thus, ketone 113 was converted to tosyloxime 119 via 

standard conditions (Scheme 3.2.11).  Gratifyingly, exposure of substrate 119 to aqueous 

KOH in ethanol led to Neber rearrangement.  After optimization, we found that simply 

exposing tosyloxime 119 to i) KOH, ii) HCl, and iii) K2CO3 produced α-aminoketone 

120 as a single regio- and stereochemical isomer in excellent yield.30,31,32  Furthermore, 
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under these reaction conditions, both the tosyl and SEM protective groups were 

quantitatively removed from their corresponding heterocycles.  To the best of our 

knowledge, this is the first example of a successful Neber rearrangement in the context of 

natural product synthesis.33 
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 A more detailed look at the possible mechanism of the Neber 

rearrangement/deprotection sequence is shown in Scheme 3.2.12.  Exposure of 

tosyloxime 119 to KOH in ethanol likely leads to the formation of detosylated azirine 

121, which is attacked by ethoxide to afford ethoxyaziridine 122.29a,34  Following acid-

mediated hydrolysis, the aminoketone moiety is installed with concomitant partial 

cleavage of the SEM protective group (122 → 123).30b,35  Finally, treatment of 

hemiaminal 123 with K2CO3 removes the remaining portion of the SEM group, thus 

giving rise to the deprotected aminoketone (120). 
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Scheme 3.2.12 
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 In order to unveil the masked pyrazinone functionality, Neber rearrangement 

product 120 was treated with TMSI at 60 °C (Scheme 3.2.13).9  Fortuitously, both the 

pyrazinone and the 3° alcohol functionalities were revealed simultaneously (120 → 124).  

In the final step of the synthesis, the penultimate aminoketone (124) was subjected to 

cyanamide and aqueous NaOH to produce enantiopure dragmacidin F (7).36  Our efficient 

and enantiospecific route allows access to 7 in 7.8% overall yield in just 21 steps from  

(–)-quinic acid (101). 

 

 



145 
Scheme 3.2.13 
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3.3  The Absolute Stereochemistry of the Pyrazinone-Containing Dragmacidins 

 Synthetic dragmacidin F (7) was spectroscopically identical (1H NMR, 13C NMR, 

IR, UV, HPLC) to a sample obtained from natural sources (Figure 3.3.1),1b with the 

exception of the sign of rotation (natural: [α]25
D –159° (c 0.4, MeOH); synthetic: [α]23

D 

+146° (c 0.45, MeOH)).  Thus, our synthesis from (–)-quinic acid (101) established, for 

the first time, the absolute configuration of natural dragmacidin F (7) to be (4’’S, 6’’S, 

6’’’S) as shown in Figure 3.3.2.37  On the basis of the hypothesis that dragmacidins D, E, 

and F are biosynthetically related, it is likely that the absolute stereochemical 

configurations of natural dragmacidins D (5) and E (6) are (6’’’S) and (5’’’R, 6’’’S), 

respectively.  Having developed a route to the unnatural antipode of dragmacidin F ((+)-

7), we set out to extend our approach to the total synthesis of (–)-7. 
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Figure 3.3.2 
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3.4  The Total Synthesis of (–)-Dragmacidin F 

3.4.1  An Enantiodivergent Strategy for the Preparation of (–)-Dragmacidin F 

 As described above, naturally occurring and readily available (–)-quinic acid 

(101)6 had served as the starting material for our synthetic approach to (+)-7.  

Unfortunately, the (+)-enantiomer of 101 is not easily accessible,38 and we were 

confronted with the possibility that our synthesis would not be amenable to the 

preparation of our new target molecule, (–)-dragmacidin F ((–)-7).  We reasoned, 

however, that it might be possible to exploit (–)-quinic acid (101) in an enantiodivergent 

manner that would allow access to both (+)- and (–)-7 (Scheme 3.4.1).39  For such an 

approach to succeed, (–)-quinic acid (101) would be elaborated via selective 

manipulation of the C(3), C(4), and C(5) hydroxyl groups to a pseudo-C2-symmetric40 

derivative (125) en route to pyrrolocyclohexene 126, the diastereomer of which (i.e., 100) 
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was employed in our synthesis of (+)-7.  Analogous to our approach to (+)-7 (i.e., 100 → 

98), we anticipated that 126 could undergo oxidative carbocyclization to afford annulated 

pyrrole 127.  Bicycle 127 would then be elaborated to (–)-dragmacidin F ((–)-7).  Of the 

key transformations outlined in Scheme 15, we were familiar with the Pd-mediated 

oxidative carbocyclizations and the late-stage manipulations of related compounds; 

however, the successful preparation of (–)-dragmacidin F ((–)-7) would rely heavily on 

the identification of a suitable quinic acid derivative (125), the facile synthesis of that 

compound, and the rapid conversion of 125 to the requisite cyclization substrate (126). 
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3.4.2  The Development and Investigation of a Reductive Isomerization Reaction 

 Fortunately, potential solutions to these problems had become apparent during our 

studies of a novel reductive isomerization reaction discovered in our synthesis of (+)-

dragmacidin F ((+)-7).  Two critical results are shown in Scheme 3.4.2.  In the first 

experiment, treatment of lactone 103 with Pd/C and H2 in methanol at 0 °C furnished 

carboxylic acid 104 in essentially quantitative yield via reductive loss of the C(5) 

carboxylate with concomitant olefin migration (i.e., net SN2’ reduction).  In the second 

experiment, a closely related derivative (105) was exposed to similar reaction 

conditions.41  Surprisingly, the reductive isomerization reaction proceeded with loss of 

the C(3) silyl ether rather than the C(5) acetate, thus producing small quantities of allylic 

acetate 128 instead of the anticipated product (106).42  The observation that (t-

Bu)Me2SiO– was preferentially ejected from compound 105 despite the clear superiority 

of AcO– as a leaving group led us to consider that the C(3) silyl ether moiety was 

positioned in an axial orientation, thereby facilitating its elimination.43  This preferred 

conformation of 105 represents a cyclohexane ring-flip with respect to lactone 103, and 

thus gives rise to the reductive isomerization product (128) possessing a Δ3,4 olefin.  

Importantly, the possibility existed that the unexpected product obtained from this 

reaction (i.e., 128) could be converted to cyclization substrate 126 (diastereomeric to 

100). 
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Scheme 3.4.2 
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 Our efforts to optimize the reductive isomerization of 105 to 128 were hampered 

by competitive hydrogenation of the olefin moiety of 105, a complication not observed in 

the high-yielding conversion of 103 to 104.  Although both processes presumably involve 

the elimination of an axially disposed leaving group,43 we reasoned that the successful 

conversion of 103 to 104 was due to the carboxylate being conformationally restricted to 

an axial orientation, while substrate 105 possessed a poorer leaving group 

((t-Bu)Me2SiO–) and was free to adopt alternate conformations (Figure 3.4.1).44  We 

hypothesized that derivatives of 105 containing an axially-locked leaving group at C(3) 
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(e.g., 129) would be more suitable substrates for the reductive isomerization reaction.  

Thus, carbonate 130 was identified as the key (–)-quinic acid derived intermediate en 

route to the desired cyclization substrate (126) and became the focus of our efforts. 
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 Our synthesis of carbonate 130 began with bicyclic lactone 103, a derivative of  

(–)-quinic acid (101) that was used in our total synthesis of (+)-7 (Scheme 3.4.3).  

Addition of 2-lithio-SEM-pyrrole14 followed by TBS protection afforded bis(silylether) 

131 in good yield.  This pseudo-C2-symmetric compound then underwent rapid 

diastereoselective mono-desilylation upon treatment with TBAF in THF to produce the 

syn 1,3-diol 132.45  Importantly, this desymmetrization proceeded with complete 

selectivity and allowed us to efficiently differentiate the C(3) and C(5) positions of the 

cyclohexyl moiety.  Diol 132 was smoothly converted to bicyclic carbonate 130 in the 

presence of CDI, effectively restricting the C(3) substituent to an axial disposition.  

Gratifyingly, exposure of carbonate 130 to our reductive isomerization conditions (2 

mol% Pd/C, H2, MeOH, 0 °C) led to the selective formation of the desired cyclization 

substrate (126) in 90% yield.46 
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Scheme 3.4.3 
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3.4.3  Constructing the [3.3.1] Bicycle en Route to (–)-Dragmacidin F 

 After assembling target substrate 126, we turned our attention to the key Pd(II)-

mediated cyclization reaction (Scheme 3.4.4).  Substrate 126 was treated with 1.2 equiv 

of Pd(OAc)2 under conditions similar to those described earlier, upon which, the desired 

pyrrole-fused bicycle (127) formed as a single regio- and stereoisomer.  Notably, bond 

formation between the pyrrole functionality and C(3) of 126 occurred even in the 

presence of the bulky C(5) silyl ether group positioned syn to the acyl pyrrole subunit.  

Following protection of the 3° alcohol, [3.3.1] bicycle 133 was obtained in 68% yield for 

the two-step process. 
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Scheme 3.4.4 
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3.4.4  End-Game Studies 

3.4.4.1  End-Game Strategy 1 

 En route to (–)-dragmacidin F, cyclization product 133 was converted to pyrazine 

134 (Scheme 3.4.5) by methods similar to those described above.30b  Despite the 

similarity of 134 to its diastereomeric counterpart employed in the synthesis of (+)-7 

(112, Scheme 3.2.8), selective desilylation of 134 to afford 135 proved to be difficult.  

We reasoned that the steric congestion of the axial TBS ether, positioned syn to the 

methyl stereocenter, was the cause of these problems.  In fact, attempted TBS cleavage of 

parent bicycle 136 was also challenging, even at elevated temperatures.47  However, in a 

critical reaction, the sterically less crowded TBS ether of olefinic substrate 133 

underwent smooth and selective cleavage upon treatment with TBAF in THF to afford 

allylic alcohol 137.  With this result in hand, we conceived of a modified route that would 

ultimately deliver (–)-7 in a more convergent manner. 
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Scheme 3.4.5 
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3.4.4.2  End-Game Strategy 2: Rh-Mediated Allylic Isomerization and the Total 

Synthesis of (–)-Dragmacidin F 

 Since allylic alcohol 137 was readily accessible, we chose to employ it as an 

intermediate in our synthesis.  Oxidation of allylic alcohol 137 followed by olefin 

reduction afforded ketone 138 in good overall yield (Scheme 3.4.6).  However, because 

alcohol 137 and ketone 138 are in the same overall oxidation state, a tandem olefin 

isomerization/tautomerization process would be more efficient.  Upon exposure of 

alcohol 137 to Brown’s cationic rhodium catalyst Rh(nbd)(dppb)BF4
48 and H2, ketone 138 

formed directly as a single diastereomer in 98% yield.  Interestingly, when diastereomer 

139 (closely related to intermediates employed in the synthesis of (+)-dragmacidin F 

((+)-7)) was subjected to the identical conditions, no reaction took place. 
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Scheme 3.4.6 
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 The discrepancy between the two outcomes can be rationalized after examining 

the mechanism of the Rh-mediated allylic isomerization reaction, which has been studied 

extensively.48b  The process begins by interaction of the cationic rhodium complex with 

an allylic hydrogen atom to form a π-allyl rhodium complex.  In the case of substrate 

137, the allylic proton necessary for isomerization is positioned on the convex face of the 

bicycle, pointed away from the heterocycle (Scheme 3.4.7).  Thus, the π-allyl rhodium 

intermediate (140) can form without difficulty.  140 then undergoes reductive elimination 

to enol 141, followed by tautomerization to ketone (+)-138.  The newly formed 

stereocenter in 138 is presumably controlled by thermodynamics, as the methyl group 

rests in an equatorial position.  Substrate 139, in contrast to 137, possesses an axially 

disposed allylic proton that is positioned syn to the bicycle.  It is likely that this proton is 

severely hindered, making approach of the large cationic rhodium complex difficult.  

Thus, isomerization of allylic alcohol 139 to ketone (–)-138 (via 142 and 143) does not 

occur. 
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Scheme 3.4.7 
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 Elaboration of ketone (+)-138 to (–)-7 proceeded with little difficulty.  

Regioselective bromination and low-temperature metalation of the pyrrole in the presence 

of two ketones gave rise to boronic ester 144 (Scheme 3.4.8).  Subsequent halogen-

selective cross-coupling of 144 with dibromide 73 afforded the desired Suzuki adduct  

(–)-113 (89% yield), the enantiomer of which had been employed in the synthesis of (+)-

dragmacidin F.  Finally, Suzuki adduct (–)-113 was converted to (–)-dragmacidin F ((–)-

7) via our previously described six-step protocol (vide supra).  Synthetic and natural (–)-

71b were spectroscopically identical (Figure 3.4.2), including the sign of optical rotation 

(natural (–)-7: [α]25
D –159° (c 0.4, MeOH); synthetic (–)-7: [α]23

D –148° (c 0.2, 

MeOH)).30b 
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Scheme 3.4.8 
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3.5  Conclusion 

 In summary, we have developed an enantiodivergent strategy to access both 

antipodes of dragmacidin F (7) from a single enantiomer of readily available (–)-quinic 

acid (101).  Our highly efficient syntheses provide (+)-7 in 7.8% overall yield and (–)-7 

in 9.3% overall yield beginning from 101.  The routes that we have developed to (+)- and 

(–)-7 are concise and feature a number of key transformations, namely: a) highly efficient 

functionalizations of (–)-101 to differentiate C(3) and C(5), b) novel reductive 

isomerization reactions, c) sterically demanding Pd(II)-mediated oxidative 

carbocyclizations, d) halogen-selective Suzuki cross-coupling reactions, and e) high-

yielding late-stage Neber rearrangements.  Advanced biological testing of both synthetic 

antipodes of dragmacidin F is currently underway. 
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3.6  Experimental Section 

3.6.1  Materials and Methods 

 Unless stated otherwise, reactions were conducted in flame-dried glassware under 

an atmosphere of nitrogen using anhydrous solvents (either freshly distilled or passed 

through activated alumina columns).  All commercially obtained reagents were used as 

received.  Reaction temperatures were controlled using an IKAmag temperature 

modulator.  Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 

F254 pre-coated plates (0.25 mm) and visualized using a combination of UV, 

anisaldehyde, ceric ammonium molybdate, and potassium permanganate staining.  ICN 

silica gel (particle size 0.032-0.063 mm) was used for flash column chromatography.  

Disposable Sep-Pak C18 Vac Cartridges were purchased from Waters and used for all 

reversed-phase filtrations.   HPLC analysis was performed on a Beckman Gold system 

using a Rainin C18, Microsorb MV, 5µm, 300 x 4.6 mm reversed-phased column in 0.1% 

(w/v) TFA with acetonitrile/H2O as eluent and a flow rate of 1.0 mL/min, gradient elution 

of 1.25% acetonitrile/min.  Preparatory reversed-phase HPLC was performed on a 

Beckman HPLC with a Waters DeltaPak 25 x 100 mm, 100 µm C18 column equipped 

with a guard, 0.1% (w/v) TFA with acetonitrile/H2O as eluent, and gradient elution of 

0.50% acetonitrile/min.  For all reversed-phase purifications, H2O (18MΩ) was obtained 

from a Millipore MiliQ water purification system and TFA from Halocarbon, Inc.  1H 

NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz), a Varian Inova 500 

(at 500 MHz), or a Varian Inova 600 (at 600 MHz) and are reported relative to Me4Si (δ 

0.0).  Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm), 

multiplicity, coupling constant (Hz), and integration.  13C NMR spectra were recorded on 
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a Varian Mercury 300 (at 75 MHz), or a Varian Inova 500 (at 125 MHz) and are reported 

relative to Me4Si (δ 0.0).  Data for 13C NMR spectra are reported in terms of chemical 

shift.  IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are 

reported in frequency of absorption (cm-1).  Optical rotations were measured with a Jasco 

P-1010 polarimeter.  High resolution mass spectra were obtained from the California 

Institute of Technology Mass Spectral Facility. 
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3.6.2  Preparative Procedures 

 

Amberlyst® 15 H+ resin

PhH, DMF, Dean-Stark, !

(99% yield)
O

HO

OH

OH

HO OH

(–)-Quinic Acid (101)

O

HO

O

HO

OH

145  

Lactone 145.  A mixture of D-(–)-quinic acid (101) (50.0 g, 260.2 mmol), 

Amberlyst® 15 ion-exchange resin (7 g, 35 mmol), benzene (500 mL), and DMF (125 

mL) was refluxed under a Dean-Stark trap for 16 h.  The reaction mixture was cooled to 

23 °C and filtered over a pad of Celite.  The filtrate was then evaporated under reduced 

pressure to afford a thick oil, which was diluted with CH2Cl2 (150 mL).  Hexanes (250 

mL) was added and the resulting mixture was allowed to sit at 23 °C for 2 h.  The product 

was collected by vacuum filtration and was further dried in vacuo to afford lactone 145 

(44.9 g, 99% yield) as a white powder.  Rf 0.40 (3:1 EtOAc:acetone); characterization 

data for this compound have been previously reported.7a 

 

O

HO

O

HO

OH

145

TBSCl

10% DMAP, Et3N, DMF
-15 °C ! -5 °C

(69% yield)
O

TBSO

O

HO

OH

102

 

TBS Lactone 102.  To a mixture of lactone 145 (90.0 g, 517 mmol), DMAP (6.31 

g, 51.7 mmol), triethylamine (90 mL, 646 mmol), and DMF (345 mL) at –15 °C was 

added TBSCl (84.9 g, 563 mmol) in 3 equal portions over 30 min.  The temperature was 

maintained between –20 °C and –15 °C during the addition.  The reaction mixture was 
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allowed to warm to –5 °C over 3 h, quenched by the addition of 5% aq. citric acid (120 

mL), and then warmed to 23 °C.  The solvent was removed in vacuo, and the crude 

product was diluted with 5% aq. citric acid (350 mL) and extracted with Et2O (1 x 500 

mL, 2 x 400 mL).  The combined organic layers were washed with H2O (2 x 400 mL) and 

brine (400 mL), dried over MgSO4, and evaporated under reduced pressure.  The product 

was triturated with hexanes (750 mL) and collected by vacuum filtration.  It was further 

dried under vacuum to afford TBS lactone 102 (102.8 g, 69% yield) as a dry white solid.  

Rf 0.48 (1:1 hexanes:EtOAc); Rf 0.28 (2:1 Et2O:hexanes); characterization data for this 

compound have been previously reported.7b 

 

O

TBSO

O

HO

OH

102

PDC

MS4Å, Celite
CH3CN, 45 °C

(91% yield)
O

TBSO

O

HO

O

146  

Keto Lactone 146.  A mixture of TBS lactone 102 (3.72 g, 12.90 mmol), 

powdered 4Å activated molecular sieves (2.79 g), Celite (2.79 g), pyridinium dichromate 

(12.13 g, 32.2 mmol), and acetonitrile (185 mL) was heated to 45 °C for 24 h.  The 

reaction was allowed to cool to 23 °C, and then was filtered over a plug of silica gel 

topped with Celite (EtOAc eluent).  The solvent was removed under reduced pressure to 

afford a brown oil, which was further purified by passage over a plug of silica gel (1:1 

hexanes:EtOAc).  Evaporating the solvent in vacuo afforded keto lactone 146 (3.35 g, 

91% yield) as a pale yellow oil. 

Alternate Procedure.  Powdered 4Å activated molecular sieves (184.6 g) were 

agitated and flame-dried under vacuum for approximately 30 min until a fine, powder-
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like consistency was obtained.  Upon cooling to 23 °C, CH2Cl2 (540 mL) was introduced, 

and the slurry was cooled to 0 °C.  Freshly prepared pyridinium dichromate49 (148.7 g, 

395.3 mmol) was added, and the resulting heterogeneous orange mixture was treated with 

TBS lactone 102 (70.04 g, 242.8 mmol) portionwise over 4 min.  After the addition was 

complete, the reaction was stirred for 5 min and then freshly distilled AcOH (49.0 mL, 

856.0 mmol) was added dropwise over a 20 min period.  The reaction temperature was 

maintained at 0 °C for 15 min after the addition was complete, and the mixture was then 

stirred at 23 °C.  After 10 h, the reaction was judged complete by 1H NMR.  The dark 

mixture was evenly divided into 3 portions, each of which was filtered over a pad of 

silica gel (10 cm diameter x 7.5 cm height, EtOAc eluent).  The filtrates were combined 

and evaporated in vacuo to afford a dark liquid, and this residue was further coevaporated 

with toluene (3 x 150 mL).  The crude product was diluted in a mixture of 

hexanes:EtOAc (10:1; 250 mL) and filtered over a pad of powdered Na2SO4 to remove 

insoluble impurities.  The filtrate was evaporated, and dried in vacuo, to afford keto 

lactone 146 (55.27 g, 80% yield) as a brown, waxy solid.  This material was used 

immediately in the next step without further purification.  Unstable to TLC conditions; 1H 

NMR (300 MHz, CDCl3): δ 4.71 (d, J = 6.6 Hz, 1H), 4.52 (dd, J = 10.3 Hz, 8.9 Hz, 1H), 

2.95 (s, 1H), 2.88-2.79 (m, 1H), 2.57-2.47 (m, 1H), 2.39 (d, J = 12.4 Hz, 1H), 2.13 (dd, J 

= 12.4 Hz, 10.5 Hz, 1H), 0.88 (s, 9H), 0.11 (s, 3H), 0.02 (s, 3H); 13C NMR (75 MHz, 

CDCl3): δ 202.6, 177.4, 79.0, 72.0, 70.6, 43.2, 42.6, 25.8 (3C), 18.5, -4.6, -5.3; IR (film): 

3444 (br), 2931, 2858, 1799, 1753, 1254, 1144, 1111 cm-1; HRMS-FAB (m/z): [M + H]+ 

calc’d for C13H23O5Si, 287.1315; found, 287.1316; [α]19
D -96.47° (c 1.0, C6H6). 
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 NOTE: Exposure of keto lactone 146 to water (e.g., aqueous workup, or 

prolonged exposure to silica gel) led to the formation of hydrate 147, as a white powder. 

 

O

TBSO

O

HO

O

146

H2O

O

TBSO

O

HO

147

HO OH

 

Unstable to TLC conditions; mp 104-6 °C; 1H NMR (300 MHz, CD3OD): δ 4.46 (d, J = 

5.8 Hz, 1H), 3.75 (dd, J = 10.7 Hz, 7.0 Hz, 1H), 2.48-2.31 (comp. m, 2H), 2.10-2.00 (m, 

1H), 1.76 (app. t, J = 11.4 Hz, 1H), 0.93 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H); 13C NMR (75 

MHz, CD3OD): δ 179.4, 93.2, 81.8, 73.0, 72.3, 41.5, 40.9, 26.5 (3C), 19.1, -4.3, -4.7; IR 

(KBr): 3440 (br), 3374 (br), 2929, 2858, 1782, 1256, 1108, 1070 cm-1; HRMS-CI (m/z): 

[M + H]+ calc’d for C13H24O6Si, 304.1342; found, 304.1336; [α]19
D -54.29° (c 1.0, 

MeOH). 

 

O

TBSO

O

HO

O

146

CH3PPh3Br

KOt-Bu, THF

(76% yield) O

TBSO

O

HO

103  

Methylene Lactone 103.  To CH3PPh3Br (105 mg, 0.293 mmol) in THF (2.8 mL) 

at 0 °C was added potassium t-butoxide (31.3 mg, 0.279 mmol).  The mixture was 

warmed to 23 °C and stirred for an additional 10 min.  Keto lactone 146 (40 mg, 0.140 

mmol) in THF (1 mL) was added and stirring was continued at 23 °C for 15 min.  The 

reaction mixture was then refluxed for 2 h and cooled to 23 °C.  The solvent was 

removed under reduced pressure, and the residue was partitioned between Et2O (3 mL) 
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and brine (1.5 mL).  The layers were separated, and the aqueous layer was further 

extracted with Et2O (3 x 1 mL).  The combined organic layers were washed with brine 

(1.5 mL), dried by passage over a plug of silica gel (Et2O eluent, then 2:1 hexanes:EtOAc 

eluent), and evaporated under reduced pressure.  The crude product was purified by flash 

chromatography (2:1 hexanes:EtOAc) to afford methylene lactone 103 (30 mg, 76% 

yield) as a white solid. 

Alternate Procedure.  To CH3PPh3Br (82.9 g, 232.1 mmol) in THF (1.10 L) at 23 

°C was added potassium t-butoxide (23.8 g, 212.1 mmol) in one portion.  The mixture 

was stirred for 2 h, then cooled to 0 °C.  Keto lactone 146 (54.5 g, 190.3 mmol) in THF 

(240 mL) was added dropwise over a 30 min period.  The reaction was allowed to warm 

slowly to 23 °C over 9 h, then quenched by the addition of ice-cold 15% aq. NH4Cl (500 

mL).  The solvent was evaporated under reduced pressure, and the residue was 

partitioned between Et2O (500 mL) and H2O (100 mL).  The aqueous phase was extracted 

with Et2O (3 x 250 mL), and the combined organics were washed with H2O (100 mL) and 

brine (100 mL) and dried over MgSO4.  Evaporation of the solvent afforded a crude 

yellow oil, which was filtered over a plug of silica gel (4:1 pentane:Et2O → 3:2 

pentane:Et2O eluent).  After evaporating the solvent in vacuo, the residue was triturated 

with ice-cold pentane (40 mL).  The white solid was filtered and washed with ice-cold 

pentane (2 x 2 mL).  A second crop was collected from the filtrate after concentrating its 

volume to 15 mL.  Drying the collected material in vacuo afforded methylene lactone 103 

(22.1 g, 41% yield) as a white solid.  Rf 0.59 (1:1 hexanes:EtOAc); mp 87-88 °C; 1H 

NMR (300 MHz, CDCl3): δ 5.25-5.23 (m, 1H), 5.13-5.10 (m, 1H), 5.07 (d, J = 6.0 Hz, 

1H), 4.38-4.29 (m, 1H), 2.85 (s, 1H), 2.67-2.59 (m, 1H), 2.31-2.21 (m, 1H), 2.09 (d, J = 
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11.5 Hz, 1H), 1.86 (app. t, J = 11.3 Hz, 1H), 0.89 (s, 9H), 0.06 (s, 6H); 13C NMR (75 

MHz, CDCl3): δ 178.1, 144.8, 111.0, 79.4, 73.1, 67.1, 44.7, 44.7, 26.0 (3C), 18.5, -4.5, -

4.7; IR (film): 3426 (br), 2956, 2931, 2858, 1791, 1254, 1120, 1071 cm-1; HRMS-FAB 

(m/z): [M + H]+ calc’d for C14H25O4Si, 285.1522; found, 285.1519; [α]19
D -101.71° (c 1.0, 

CHCl3). 
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O

O

H

HO

105148

MS4Å

MeOH

(92% yield,
based on recovered 

starting material)

Ac2O, Et3N

DMAP, CH2Cl2

(98% yield) O

TBSO

HO OMe

OAc

O

TBSO

HO OMe

OH

 

 Methyl Ester 105.  To lactone 103 (420 mg, 1.477 mmol) and activated oven-

dried 4Å molecular sieves (100 mg) was added MeOH (15 mL).  The reaction mixture 

was stirred at 23 °C for 5.5 h, then filtered over a short plug of Celite (EtOAc eluent).  

After evaporation of the reaction mixture under reduced pressure, the residue was 

purified by flash column chromatography (2:1 hexanes:EtOAc eluent) to afford starting 

material lactone 103 (82 mg, 20% yield) and siloxy diol 148 (345 mg, 74% yield, 92% 

yield based on recovered starting material), which was used directly in the subsequent 

reaction. 

 To siloxy diol 148 (80.0 mg, 0.253 mmol) in CH2Cl2 (1.5 mL) was added Et3N 

(71 µL, 0.506 mmol), DMAP (3 mg, 0.0253 mmol), followed by Ac2O (31 µL, 0.329 

mmol).  The reaction mixture was stirred at 23 °C for 10 min, quenched with saturated 

aq. NaHCO3 (5 mL), and extracted with CH2Cl2 (3 x 15 mL).  The combined organic 

layers were filtered over a plug of silica gel (CH2Cl2 eluent, then EtOAc eluent) and 

evaporated under reduced pressure.  The crude product was purified by flash 
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chromatography (3:1 hexanes:EtOAc eluent) to afford methyl ester 105 (89.0 mg, 98% 

yield) as a colorless oil.  Rf 0.50 (1:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3): δ 

5.90-5.81 (m, 1H), 4.96 (br s, 1H), 4.94 (br s, 1H), 4.91-4.89 (m, 1H), 4.67 (app. t, J = 

3.2 Hz, 1H), 3.74 (s, 3H), 2.38 (ddd, J = 12.7, 5.2, 2.2 Hz, 1H), 2.19-2.03 (comp. m, 2H), 

2.09 (s, 3H), 1.93 (app. t, J = 12.1 Hz, 1H), 0.87 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); 13C 

NMR (75 MHz, CDCl3): δ 173.7, 169.6, 146.3, 108.5, 76.5, 75.1, 68.0, 52.9, 42.7, 41.2, 

25.8 (3C), 21.1, 18.1, -4.6, -5.2; IR (film) 3464 (br), 2954, 2932, 2858, 2888, 1739 (br), 

1369, 1233 (br), 1124, 1098, 1072, 1036 cm-1; HRMS-FAB (m/z): [M + H]+ calc’d for 

C17H31O6Si, 359.1890; found, 359.1900; [α]26
D -26.61° (c 1.0, C6H6). 

 

105

O

TBSO

HO OMe

OAc Pd(P(t-Bu)3)2
NMO, Et3SiH

THF, 70 °C

(89% yield)
O

TBSO

HO OMe

106  

Siloxycyclohexene 106.  Methyl ester 105 (94 mg, 0.262 mmol), Pd(P(t-Bu3)2) 

(40.2 mg, 0.0786 mmol), anhydrous N-methylmorpholine N-oxide (307 mg, 2.52 mmol), 

THF (5.2 mL), and freshly distilled Et3SiH (1.67 mL, 10.5 mmol) were combined under a 

glovebox atmosphere.  The reaction mixture was immediately removed from the 

glovebox and placed in a 70 °C oil bath.  After 3.5 h, the reaction mixture was cooled to 

0 °C, and the volatiles were removed under reduced pressure.  Saturated aq. NH4Cl (15 

mL) was added, and the mixture was extracted with Et2O (3 x 25 mL).  The combined 

organic layers were washed with brine (15 mL), dried over MgSO4, and evaporated under 

reduced pressure.  The crude product was purified by flash chromatography (5:1 

hexanes:EtOAc eluent) to afford siloxycyclohexene 106 (70 mg, 89% yield) as a pale 
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yellow oil. Rf 0.55 (2:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3): δ 5.49-5.42 (m, 

1H), 4.62 (s, 1H), 4.18-4.12 (m, 1H), 3.76 (s, 3H), 2.45-2.38 (comp. m, 2H), 2.16-2.10 

(comp. m, 2H), 1.79-1.74 (m, 3H), 0.88 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H); 13C NMR (75 

MHz, CDCl3): δ 175.3, 133.7, 120.9, 73.0, 68.7, 52.6, 38.4, 36.9, 25.9 (3C), 21.4, 18.0, -

4.3, -4.7; IR (film) 3478 (br), 2955, 2858, 1740, 1451, 1253, 1217, 1111, 1065, 1037 cm-

1; HRMS-FAB (m/z): [M + H]+ calc’d for C15H19O4Si, 301.1835; found, 301.1835; [α]24
D 

+77.62° (c 0.47, CHCl3). 

 

103

TBSO

O

O

H

HO

0.5 mol% Pd/C, H2

MeOH, 0 °C

(99% yield) O

TBSO

HO OH

104  

Acid 104.  A mixture of methylene lactone 103 (4.0 g, 14.1 mmol) and 10% Pd/C 

(80 mg, 0.075 mmol) in methanol (120 mL) was cooled to 0 °C.  The reaction vessel was 

evacuated and back-filled with H2 (3x). After 7 h at 0 °C, the mixture was filtered over a 

pad of Celite (MeOH eluent), and the solvent was evaporated under reduced pressure to 

afford a colorless oil.  Residual solvent was removed by holding the crude product under 

vacuum for 10 h, providing acid 104 (4.0 g, 99% yield), which was used immediately 

without further purification.  Rf 0.28 (1:1 hexanes:EtOAc;1% acetic acid); 1H NMR (300 

MHz, CDCl3): δ 5.88 (s, 1H), 5.53-5.48 (m, 1H), 4.16-4.11 (m, 1H), 2.71-2.60 (m, 1H), 

2.36-2.22 (m, 1H), 2.18 (dd, J = 14.3 Hz, 3.9 Hz, 1H), 2.08-2.01 (m, 1H), 1.79-1.76 (m, 

3H), 0.89 (s, 9H), 0.15-0.13 (comp. m, 6H); 13C NMR (75 MHz, CDCl3): δ 176.4, 133.2, 

121.1, 73.6, 68.6, 37.9, 35.9, 25.8 (3C), 21.4, 18.0, -4.5, -4.7; IR (film): 3356 (br), 2956, 
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2931, 2858, 1768 (br), 1718 (br), 1255, 1063 cm-1; HRMS-FAB (m/z): [M + H]+ calc’d 

for C14H27O4Si, 287.1679; found, 287.1675; [α]19
D +37.58° (c 1.0, C6H6). 

 

O

TBSO

HO OH

104

O

TBSO

HO N

109

Me

OMe

CDI

CH2Cl2

then, HN(OMe)Me•HCl

(93% yield)

 

Weinreb Amide 109.  To acid 104 (4.0 g, 14.1 mmol) in CH2Cl2 (70 mL) at 23 

°C was added 1,1’-carbonyldiimidazole (3.65 g, 22.5 mmol) in equal portions over 15 

min.  After the final addition, stirring was continued for 10 min, then N,O-

dimethylhydroxylamine • HCl (3.43 g, 35.16 mmol) was added in one portion.  The 

reaction was allowed to stir at 23 °C for 3 h. Et2O was added (50 mL), and the reaction 

mixture was filtered.  The filtrate was evaporated, diluted with Et2O (125 mL), washed 

with 5% aq. citric acid (2 x 50 mL) and brine (50 mL), and dried over MgSO4. The crude 

product was purified by flash chromatography (3:1 hexanes:EtOAc) to afford Weinreb 

amide 109 (4.29 g, 93% yield) as a colorless oil.  Rf 0.42 (2:1 hexanes:EtOAc); 1H NMR 

(300 MHz, CDCl3): δ 5.43 (m, 1H), 4.72 (s, 1H), 4.17-4.11 (m, 1H), 3.71 (s, 3H), 3.22 (s, 

3H), 2.59-2.24 (comp. m, 3H), 2.03 (dd, J = 14.6 Hz, 4.1 Hz, 1H), 1.75-1.71 (m, 3H), 

0.86 (s, 9H), 0.11 (s, 3H), 0.09 (s, 3H); 13C NMR (75 MHz, CDCl3, 15/16 C): δ 133.5, 

121.5, 74.3, 69.4, 61.2, 38.1, 35.9, 26.0, 25.9 (3C), 21.3, 18.1, -4.3, -4.7; IR (film): 3463 

(br), 2956, 2932, 2858, 1655, 1362, 1254 cm-1; HRMS-EI (m/z): [M + H]+ calc’d for 

C16H32NO4Si, 330.2101; found, 330.2085; [α]19
D +41.13° (c 1.0, CHCl3). 
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(79% yield, 2 steps)
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H
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SEMCl, NaH

 THF, -20 °C

 

Dibromopyrrole 151.  A solution of 4,5-dibromopyrrole carboxylic acid (149)50 

(6.05 g, 22.5 mmol) in ethanolamine (36 mL) was heated to 100 °C for 2 h, cooled to 23 

°C, and poured into a mixture of Et2O (200 mL) and 0.5 N aq. HCl (300 mL).  The layers 

were separated, and the aqueous layer was extracted with Et2O (2 x 250 mL).  The 

combined organic layers were washed with brine (200 mL), dried over MgSO4, and 

concentrated to 100 mL.  The solution was diluted with hexanes (100 mL), filtered over a 

plug of silica gel (2:1 hexanes:Et2O), and concentrated to 150 mL.  THF (100 mL) was 

added, and the solution was concentrated to 100 mL.  This solvent exchange procedure 

was repeated 2 additional times (2 x 100 mL THF) to afford 2,3-dibromopyrrole (150) as 

a solution in THF, which was used immediately in the subsequent reaction. 

 CAUTION: Concentrating the above described solutions to dryness or near-

dryness leads to rapid decomposition of 2,3-dibromopyrrole (150).22 

 

To 2,3-dibromopyrrole (150) in THF at –20 °C was added NaH (60% dispersion 

in mineral oil, 1.51 g, 37.8 mmol) in 3 equal portions over 3 min.  After 10 min at –20 

°C, SEMCl (4.8 mL, 27.1 mmol) was added dropwise over 1 min.  The reaction mixture 

was allowed to warm to –8 °C over 40 min and was then quenched with saturated aq. 

NH4Cl (30 mL).  After warming to 23 °C, the reaction mixture was diluted with Et2O (75 

mL) and H2O (20 mL), and the layers were separated.  The aqueous layer was further 

extracted with Et2O (2 x 50 mL).  The combined organic layers were washed with brine 
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(50 mL), dried over MgSO4, and evaporated under reduced pressure.  The crude product 

was purified by flash chromatography (6:1 hexanes:CH2Cl2, then 4:1 hexanes:CH2Cl2) to 

afford dibromopyrrole 151 (6.25 g, 79% yield) as a yellow oil.  Rf 0.17 (6:1 

hexanes:CH2Cl2); 1H NMR (300 MHz, CDCl3): δ 6.82 (d, J = 3.6 Hz, 1H), 6.25 (d, J = 

3.3 Hz, 1H), 5.21 (s, 2H), 3.48 (t, J = 8.1 Hz, 2H), 0.88 (t, J = 8.1 Hz, 2H), -0.03 (s, 9H); 

13C NMR (75 MHz, CDCl3): δ 123.1, 112.3, 103.7, 99.8, 77.8, 66.2, 17.9, -1.2 (3C); IR 

(film): 2953, 2896, 1514, 1470, 1279, 1250, 1109, 1084 cm-1; HRMS-EI (m/z): [M + H]+ 

calc’d for C10H17NOSiBr2, 352.9446; found, 352.9435. 
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Bromo Acyl Pyrrole 99.  To dibromopyrrole 151 (6.02 g, 17.06 mmol) in THF 

(114 mL) at –78 °C was added n-BuLi (2.5 M in hexanes, 6.7 mL, 16.8 mmol) dropwise 

over 1 min.  After 10 min at –78 °C, Weinreb amide 109 (1.58 g, 4.80 mmol) in THF (15 

mL) was added dropwise over 30 seconds.  The reaction vessel was immediately warmed 

to 0 °C, stirred for 90 min, and cooled to –78 °C.  The reaction was quenched with 

saturated aq. NH4Cl (15 mL), then warmed to 23 °C.  The volatiles were removed in 

vacuo, and the residue was partitioned between Et2O (75 mL) and H2O (30 mL).  The 

layers were separated, and the aqueous layer was further extracted with Et2O (2 x 50 mL).  

The combined organic layers were washed with brine (50 mL), dried over MgSO4, and 

evaporated under reduced pressure.  The crude product was purified by flash 

chromatography (11:9 CH2Cl2:hexanes) to afford bromo acyl pyrrole 99 (1.47 g, 56% 
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yield) as a colorless oil.  Rf 0.29 (11:9 hexanes:CH2Cl2); 1H NMR (300 MHz, CDCl3): 

δ 6.77 (d, J = 2.9 Hz, 1H), 6.20 (d, J= 2.7 Hz, 1H), 5.53-5.47 (m, 1H), 5.35 (d, J = 10.4 

Hz, 1H), 5.29 (d, J = 10.4 Hz, 1H), 4.72 (s, 1H), 4.18-4.14 (m, 1H), 3.31 (t, J = 8.2 Hz, 

2H), 2.65-2.53 (m, 1H), 2.53-2.41 (m, 1H), 2.32 (dt, J = 14.3 Hz, 1.7 Hz, 1H), 2.15 (dd, J 

= 14.2 Hz, 4 Hz, 1H), 1.79-1.76 (m, 3H), 0.87 (s, 9H), 0.81 (t, J = 8.2 Hz, 2H), 0.12 (s, 

6H), -0.06 (s, 9H); 13C NMR (75 MHz, CDCl3): δ 201.9, 133.2, 129.6, 125.0, 121.6, 

112.5, 101.8, 78.9, 78.6, 68.9, 66.2, 38.6, 37.4, 26.0 (3C), 21.5, 18.1, 17.8, -1.2 (3C), -

4.1, -4.7; IR (film): 3477 (br), 2953, 1664 (br), 1400, 1253, 1101 cm-1; HRMS-EI (m/z): 

[M + H]+ calc’d for C24H43NO4Si2Br, 544.1914; found, 544.1903; [α]19
D +1.64° (c 1.0, 

CHCl3). 

 

BrN
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N
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NBS

THF

(99% yield)

152 153  

Bromopyrrole 153.  To SEM pyrrole 15214 (1.25 g, 6.33 mmol) in THF (125 mL) 

at 23 °C was added freshly recrystallized NBS (1.127 g, 6.33 mmol) in one portion.  

After stirring for 5 min, additional NBS was added (15 mg, 0.084 mmol), and the 

reaction was immediately judged complete by TLC.  The reaction mixture was poured 

into saturated aq. NaHCO3 (100 mL) and extracted with Et2O (1 x 100 mL, 2 x 50 mL).  

The combined organic layers were washed with brine (75 mL), dried over MgSO4, and 

evaporated under reduced pressure.  The crude product was purified by passage over a 

plug of silica gel (CH2Cl2 eluent) to afford bromopyrrole 153 (1.73 g, 99% yield) as a 

pale yellow oil.  Rf 0.53 (1:1 CH2Cl2:hexanes); 1H NMR (300 MHz, CDCl3): δ 6.83 (app. 

t, J = 2.5 Hz, 1H), 6.18-6.16 (comp. m, 2H), 5.22 (s, 2H), 3.53-3.46 (m, 2H), 0.92-0.85 
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(m, 2H), -0.03 (s, 9H); 13C NMR (75 MHz, CDCl3): δ 122.9, 111.9, 110.1, 102.0, 76.7, 

66.0, 17.9, -1.2 (3C); IR (film): 2953, 2895, 1264, 1249, 1108, 1085 cm-1; HRMS-EI 

(m/z): [M + H]+ calc’d for C10H18NOSiBr, 275.0341; found, 275.0331. 
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Acyl Pyrrole 100.  To bromopyrrole 153 (1.73 g, 6.26 mmol) in THF (42 mL) at 

–78 °C was added n-BuLi (2.25 M in hexanes, 2.7 mL, 6.16 mmol) dropwise over 1 min.  

After 10 min at –78 °C, Weinreb amide 109 (655 mg, 1.99 mmol) in THF (5 mL) was 

added dropwise over 1 min.  The reaction vessel was immediately warmed to 0 °C, 

stirred for 25 min, and cooled to –78 °C.  The reaction mixture was quenched with 

saturated aq. NH4Cl (10 mL), then warmed to 23 °C.  The volatiles were removed under 

reduced pressure.  The residue was partitioned between Et2O (75 mL) and H2O (50 mL), 

and the layers were separated.  The aqueous layer was further extracted with Et2O (2 x 40 

mL).  The combined organic layers were washed with brine (50 mL), dried over MgSO4, 

and evaporated under reduced pressure.  The crude product was purified by flash 

chromatography (23:1 hexanes:EtOAc, then 15:1 hexanes:EtOAc) to afford acyl pyrrole 

100 (656 mg, 71% yield) as a colorless oil.  Rf 0.30 (9:1 hexanes:EtOAc); 1H NMR (300 

MHz, CDCl3): δ 7.66 (dd, J = 4.0 Hz, 1.7 Hz, 1H), 7.06 (dd, J = 2.5 Hz, 1.7 Hz, 1H), 6.19 

(dd, J = 4.0 Hz, 2.5 Hz, 1H), 5.71 (d, J = 10.4 Hz, 1H), 5.67 (d, J = 10.0 Hz, 1H), 5.52-

5.47 (m, 1H), 4.90 (s, 1H), 4.19 (app. t, J = 3.1 Hz, 1H), 3.51 (t, J = 8.3 Hz, 2H), 2.52-

2.46 (comp. m, 2H), 2.19-2.16 (comp. m, 2H), 1.80-1.78 (m, 3H), 0.92-0.88 (comp. m, 
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11H), 0.13 (s, 6H), -0.06 (s, 9H); 13C NMR (75 MHz, CDCl3, 22/24 C): δ 193.7, 133.5, 

129.9, 128.0, 123.8, 121.7, 109.0, 78.2, 69.4, 66.3, 38.6, 38.3, 26.0 (3C), 21.5, 18.1, -1.2 

(3C), -4.2, -4.7; IR (film): 3476, 2954, 2931, 2859, 1639, 1412, 1310, 1251, 1085 cm-1; 

HRMS-EI (m/z): [M + H]+ calc’d for C24H44NO4Si2, 466.2809; found, 466.2822; [α]19
D 

+34.25° (c 1.0, C6H6). 
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 [3.3.1] Bicycle 98.  Bromo acyl pyrrole 99 (52.0 mg, 0.0955 mmol), Pd2dba3 (21.9 

mg, 0.0239 mmol), Pd(P(t-Bu)3)2 (24.4 mg, 0.0477 mmol), THF (1.2 mL), and Cy2NMe 

(24.3 µL, 0.115 mmol) were combined under a glovebox atmosphere and stirred at 23 °C 

for 10 h.  The reaction vessel was removed from the glovebox, diluted with 3:1 

hexanes:EtOAc (2 mL), and filtered over a plug of silica gel topped with Celite (3:1 

hexanes:EtOAc eluent).  The solvent was removed under reduced pressure, and the 

residue was purified by flash chromatography (CH2Cl2, then 3:1 hexanes:EtOAc).  The 

crude product was further purified by flash chromatography (6:1 hexanes:EtOAc) to 

afford [3.3.1] bicycle 98 (16.7 mg, 38% yield) and [3.2.2] bicycle 110 (14.4 mg, 33% 

yield), both as pale yellow oils.  

 

[3.3.1] Bicycle 98: Rf 0.20 (4:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3): δ 7.07 (d, 

J = 2.7 Hz, 1H), 6.05 (d, J = 2.7 Hz, 1H), 5.71 (d, J = 9.9 Hz, 1H), 5.58 (d, J = 9.9 Hz, 

1H), 5.09-5.05 (m, 2H), 4.00 (s, 1H), 3.99-3.90 (m, 1H), 3.84 (app. t, J = 3.0 Hz, 1H), 
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3.55-3.47 (m, 2H), 2.39 (app. dt, J = 7.4 Hz, 3.8 Hz, 1H), 2.13-2.03 (comp. m, 2H), 1.73 

(app. t, J = 11.8 Hz, 1H), 0.98-0.76 (comp. m, 11H), -0.04 (s, 9H), -0.11 (s, 6H); 1H 

NMR (300 MHz, C6D6): δ 6.53 (d, J = 2.5 Hz, 1H), 5.77 (d, J = 2.8 Hz, 1H), 5.55 (d, J = 

10.2 Hz, 1H), 5.32 (app. t, J = 1.9 Hz, 1H), 5.26 (d, J = 10.2 Hz, 1H), 5.01-4.97 (m, 1H), 

4.29 (s, 1H), 4.27-4.19 (m, 1H), 3.59-3.47 (comp. m, 3H), 2.45-2.31 (comp. m, 2H), 2.16 

(dd, J = 12.1 Hz, 3.0 Hz, 1H), 2.07 (app. t, J = 11.8 Hz, 1H), 0.92-0.89 (comp. m, 11H), 

0.01 (s, 9H), -0.06 (s, 3H), -0.07 (s, 3H); 13C NMR (75 MHz, C6D6): δ 191.5, 149.4, 

141.8, 132.0, 125.5, 108.5, 107.4, 76.8, 75.8, 68.4, 66.3, 48.9, 45.5, 40.7, 26.3 (3C), 18.8, 

18.2, -0.8 (3C), -4.4, -4.7; IR (film): 3480, 2953, 2858, 1651, 1420, 1318, 1251, 1100, 

1077 cm-1; HRMS-FAB (m/z): [M]+ calc’d for C24H41NO4Si2, 463.2574; found, 463.2577; 

[α]23
D -275.07° (c 1.0, CHCl3). 

 

[3.2.2] Bicycle 110: Rf 0.42 (5:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3): δ 6.98 

(d, J = 2.7 Hz, 1H), 6.15 (d, J = 2.7 Hz, 1H), 6.02 (d, J = 9.3 Hz, 1H), 5.98 (d, J = 8.8 Hz, 

1H), 5.69 (d, J = 9.9 Hz, 1H), 5.62 (d, J = 9.9 Hz, 1H), 4.93 (s, 1H), 3.81 (d, J = 7.7 Hz, 

1H), 3.50 (t, J = 8.0 Hz, 2H), 2.36 (dd, J = 14.3 Hz, 7.7 Hz, 1H), 1.94 (dd, J = 14.3 Hz, 

1.6 Hz, 1H), 1.55 (s, 3H), 0.91-0.83 (comp. m, 11H), 0.02 (s, 3H), 0.01 (s, 3H), -0.07 (s, 

9H); 1H NMR (300 MHz, C6D6): δ 6.55 (d, J = 2.7 Hz, 1H), 6.23 (d, J = 8.8 Hz, 1H), 5.96 

(d, J = 3.3 Hz, 1H), 5.94 (d, J = 9.2 Hz, 1H), 5.59 (d, J = 10.4 Hz, 1H), 5.40 (d, J = 9.9 

Hz, 1H), 5.32 (s, 1H), 3.82-3.75 (m, 1H), 3.46 (t, J = 7.7 Hz, 2H), 2.46 (dd, J = 13.7 Hz, 

7.7 Hz, 1H), 2.25 (dd, J = 13.7 Hz, 1.6 Hz, 1H), 1.52 (s, 3H), 0.92 (s, 9H), 0.82 (t, J = 8.0 

Hz, 2H), -0.03 (s, 3H), -0.08 (s, 3H), -0.09 (s, 9H); 13C NMR (75 MHz, CDCl3): δ 188.7, 

144.1, 139.4, 134.5, 129.1, 121.8, 107.7, 78.2, 77.8, 73.3, 66.4, 45.7, 45.0, 26.0 (3C), 
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22.2, 18.2, 18.0, -1.25 (3C), -4.1, -4.6; IR (film): 3432, 2955, 2858, 1645, 1250, 1081 cm-

1; HRMS-EI (m/z): [M + H]+ calc’d for C24H42NO4Si2, 464.2652; found, 464.2665; [α]19
D 

+19.22° (c 1.0, C6H6). 
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Alternate Procedure.  To acyl pyrrole 100 (106.0 mg, 0.227 mmol) was added 

Pd(OAc)2 (51.1 mg, 0.227 mmol), DMSO (32.3 µL, 0.455 mmol), t-BuOH (18.2 mL), 

and AcOH (4.5 mL).  The mixture was heated to 60 °C for 10 h, cooled to 23 °C, and 

filtered over a plug of silica gel (3:1 hexanes:EtOAc).  The solvent was evaporated, and 

the residue was again filtered over a plug of silica gel (3:1 hexanes:EtOAc).  After 

removal of solvent in vacuo, the product was purified by flash chromatography on silica 

gel (6:1 hexanes:EtOAc) to afford [3.3.1] bicycle 98 (78.4 mg, 74% yield) as a pale 

yellow oil.  
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Reduced [3.3.1] Bicycle 154. [3.3.1] bicycle 98 (360 mg, 0.78 mmol), 10% Pd/C 

(130 mg, 0.12 mmol), and EtOAc (8 mL) were combined, and the reaction vessel was 

evacuated and back-filled with H2 (1 atm).  The reaction mixture was stirred under H2 for 

30 min, then filtered over a plug of silica gel topped with Celite (EtOAc eluent) to afford 
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reduced [3.3.1] bicycle 154 as a colorless oil (358 mg, 99% yield).  Rf 0.28 (5:1 

hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 6.55 (d, J = 2.5 Hz, 1H), 5.74 (d, J = 2.5 

Hz, 1H), 5.56 (d, J = 10.2 Hz, 1H), 5.30 (d, J = 10.2 Hz, 1H), 4.27 (s, 1H), 3.59-3.45 (m, 

2H), 3.19 (ddd, J = 12.9 Hz, 7.7 Hz, 3.3 Hz, 1H), 2.58 (dd, J = 6.5 Hz, 3.2 Hz, 1H), 2.37-

2.20 (comp. m, 2H), 2.06-1.90 (comp. m, 2H), 1.63-1.50 (m, 1H), 1.00 (d, J = 6.6 Hz, 

3H), 0.94-0.89 (comp. m, 11H), -0.02 (s, 9H), -0.06 (s, 3H), -0.09 (s, 3H); 13C NMR (75 

MHz, C6D6): δ 190.8, 140.4, 131.3, 125.2, 110.1, 76.6, 75.6, 71.8, 66.1, 46.8, 44.3, 40.0, 

37.3, 25.9 (3C), 18.1, 17.9, 16.5, -1.2 (3C), -4.0, -4.6; IR (film): 3473 (br), 2953, 2931, 

2857, 1651, 1420, 1249, 1079 cm-1; HRMS-EI (m/z): [M + H]+ calc’d for C24H44NO4Si2, 

466.2809; found, 466.2804; [α]19
D -166.30° (c 1.0, C6H6). 

 NOTE: In some instances, trace phosphine contaminants from the Heck reaction 

(i.e., 99 → 98) prevented the reduction from occurring.  Simply working up the reaction 

and re-exposing it to the identical reaction conditions (as described above) allowed the 

reduction to proceed. 
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Methyl Ether 111.  To reduced [3.3.1] bicycle 154 (358 mg, 0.77 mmol) in THF 

(7.7 mL) at 23 °C was added NaH (60% dispersion in mineral oil, 123 mg, 3.08 mmol).  

After stirring for 2 min at 23 °C, MeI was added (335 µL, 5.38 mmol).  The resulting 

mixture was stirred for 1 h, cooled to 0 °C, and quenched with saturated aq. NH4Cl (4 

mL), then warmed to 23 °C.  Et2O (10 mL) and H2O (5 mL) were added, and the layers 
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were separated.  The aqueous layer was further extracted with Et2O (2 x 15 mL). The 

combined organic layers were washed with brine (20 mL), dried over MgSO4, and 

evaporated under reduced pressure.  The crude product was purified by flash 

chromatography (4:1 hexanes:EtOAc) to afford methyl ether 111 (354 mg, 96% yield) as 

a colorless oil. Rf 0.34 (5:1 hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 6.58 (d, J = 

2.8 Hz, 1H), 5.78 (d, J = 2.5 Hz, 1H), 5.57 (d, J = 10.2 Hz, 1H), 5.54 (d, J = 10.2 Hz, 

1H), 3.65-3.50 (m, 2H), 3.37 (s, 3H), 3.22 (ddd, J = 12.9 Hz, 7.9 Hz, 3.1 Hz, 1H), 2.68 

(dd, J = 6.5 Hz, 3.2 Hz, 1H), 2.59-2.49 (comp. m, 2H), 1.86 (dd, J = 12.4 Hz, 11.3 Hz, 

1H), 1.72-1.56 (m, 2H), 1.04 (d, J = 6.9 Hz, 3H), 0.93-0.85 (comp. m, 11H), -0.02 (s, 

9H), -0.07 (s, 3H), -0.10 (s, 3H); 13C NMR (75 MHz, C6D6, 24/25 C): δ 189.4, 138.3, 

130.4, 109.7, 81.9, 76.9, 72.4, 66.2, 51.8, 45.9, 41.3, 41.2, 37.6, 26.4 (3C), 18.5, 18.3, 

17.0, -0.9 (3C), -3.6, -4.4; IR (film): 2954, 1657, 1421, 1250, 1085 cm-1; HRMS-EI (m/z): 

[M + H]+ calc’d for C25H46NO4Si2, 480.2965; found, 480.2970; [α]19
D -172.9° (c 1.0, 

C6H6). 
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Bromide 155.  To methyl ether 111 (305 mg, 0.64 mmol) in THF (6 mL) at 0 °C 

was added freshly recrystallized NBS (147 mg, 0.83 mmol).  After stirring for 10 min at 

0 °C, the reaction mixture was warmed to 23 °C, and additional NBS (30 mg, 0.17 mmol) 

was added.  After 5 min, the reaction was quenched with saturated aq. Na2S2O3, diluted 

with H2O (15 mL), and extracted with Et2O (3 x 15 mL).  The combined organic layers 
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were washed with brine (15 mL), dried over MgSO4, and evaporated under reduced 

pressure.  The crude product was purified by flash chromatography (5:1 hexanes:EtOAc) 

to afford bromide 155 (340 mg, 96% yield) as a colorless oil.  Rf 0.55 (3:1 

hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 6.57 (s, 1H), 5.46 (d, J = 10.2 Hz, 1H), 

5.34 (d, J = 10.2 Hz, 1H), 3.57-3.41 (m, 2H), 3.32-3.20 (m, 4H), 2.88 (dd, J = 6.5 Hz, 3.2 

Hz, 1H), 2.46 (ddd, J = 12.2 Hz, 5.1 Hz, 2.5 Hz, 1H), 2.28 (app. dt, J = 7.4 Hz, 4.0 Hz, 

1H), 1.78 (app. t, J = 11.8 Hz, 1H), 1.69-1.57 (m, 1H), 1.52 (dd, J = 11.8 Hz, 3.0 Hz, 

1H), 1.19 (d, J = 6.9 Hz, 3H), 0.91-0.80 (comp. m, 11H), -0.05 (s, 9H), -0.09 (s, 3H), -

0.12 (s, 3H); 13C NMR (75 MHz, C6D6): δ 189.6, 147.2, 137.2, 130.1, 98.4, 81.8, 77.0, 

72.1, 66.6, 51.8, 45.8, 42.4, 41.0, 35.9, 26.3 (3C), 18.5, 18.3, 17.8, -0.9 (3C), -3.7, -4.3; 

IR (film): 2954, 2930, 1664, 1249, 1089 cm-1; HRMS-EI (m/z): [M + H]+ - H2 calc’d for 

C25H43NO4Si2Br, 556.1914; found, 556.1928; [α]19
D -98.22° (c 1.0, C6H6). 
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Boronic Ester 97.  To bromide 155 (116 mg, 0.21 mmol) and 2-isopropoxy-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane (69) (847 µL, 4.15 mmol) in THF (10.4 mL) at -

78 °C was added nBuLi (2.3 M in hexanes, 1.35 mL, 3.11 mmol) dropwise over 2 min.  

After stirring for 15 min at -78 °C, the reaction mixture was quenched with saturated aq. 

NH4Cl, warmed to 23 °C, and diluted with H2O (10 mL).  The mixture was extracted with 

Et2O (3 x 15 mL).  The combined organic layers were washed with brine (15 mL), dried 

over MgSO4, and evaporated under reduced pressure.  The crude product was purified by 
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flash chromatography (4:1 hexanes:EtOAc with 0.5% Et3N) to afford boronic ester 97 (92 

mg, 73% yield) as a white powder, which was used immediately in the next step.  Rf 0.50 

(3:1 hexanes:EtOAc); mp 143-145 °C; 1H NMR (300 MHz, C6D6): δ 7.42 (s, 1H), 5.55 

(d, J = 10.1 Hz, 1H), 5.51 (d, J = 9.8 Hz, 1H), 3.74-3.68 (m, 1H), 3.60-3.50 (m, 2H), 

3.43-3.36 (m, 1H), 3.33 (s, 3H), 2.65-2.53 (comp. m, 2H), 1.91 (app. t, J = 11.8 Hz, 1H), 

1.89-1.80 (m, 1H), 1.68 (dd, J = 11.8 Hz, 2.8 Hz, 1H), 1.34 (d, J = 6.6 Hz, 3H), 1.15 (s, 

6H), 1.14 (s, 6H), 0.94-0.81 (comp. m, 11H), -0.04 (s, 3H), -0.05 (s, 9H), -0.07 (s, 3H); 

13C NMR (75 MHz, C6D6, 30/31 C): δ 190.1, 145.1, 139.3, 130.2, 83.5 (2C), 82.0, 77.2, 

72.6, 66.5, 51.7, 46.1, 42.0, 41.6, 36.8, 26.4 (3C), 25.4 (2C), 25.2 (2C), 18.5, 18.3, 16.9, -

0.9 (3C), -3.6, -4.3; IR (film): 2953, 2931, 2858, 1658, 1543, 1249, 1141, 1085 cm-1; 

HRMS-FAB (m/z): [M + H]+ calc’d for C31H57BNO6Si2, 606.3818; found, 606.3805; 

[α]19
D -98.84° (c 1.0, C6H6). 
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Suzuki Adduct 112.  Bromopyrazine 73 (46.5 mg, 0.087 mmol), boronic ester 97 

(35 mg, 0.058 mmol), benzene (1.15 mL), methanol (231 µL), 2 M aq. Na2CO3 (96 µL), 

and tetrakis(triphenylphosphine)palladium(0) (6.7 mg, 0.0058 mmol) were combined and 

deoxygenated by sparging with argon for 5 min.  The reaction vessel was evacuated, 

purged with N2, sealed, heated to 50 °C for 65 h, cooled to 23 °C, then quenched by the 

addition of Na2SO4 (200 mg).  Following filtration over a pad of silica gel (2:1 
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hexanes:EtOAc eluent) and evaporation to dryness under reduced pressure, the remaining 

residue was purified by flash chromatography (3:1 hexanes:EtOAc) to afford Suzuki 

adduct 112 (41.5 mg, 77% yield) as a yellow oil.  Rf 0.43 (2:1 hexanes:EtOAc); 1H NMR 

(300 MHz, CDCl3): δ 8.61 (d, J = 8.5 Hz, 1H), 8.45 (s, 1H), 8.44 (s, 1H), 8.16 (d, J = 1.5 

Hz, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.59 (s, 1H), 7.40 (dd, J = 8.5 Hz, 1.8 Hz, 1H), 7.23 (d, 

J = 7.9 Hz, 2H), 5.85 (d, J = 10.0 Hz, 1H), 5.78 (d, J = 10.0 Hz, 1H), 4.27-4.21 (m, 1H), 

4.19 (s, 3H), 3.72-3.59 (m, 2H), 3.34 (s, 3H), 3.13-3.02 (m, 1H), 2.87-2.77 (m, 1H), 2.32 

(s, 3H), 2.22-2.12 (m, 1H), 1.98-1.89 (m, 1H), 1.82-1.72 (m, 1H), 1.67 (app. t, J = 11.7 

Hz, 1H), 1.04-0.83 (m, 2H), 0.78 (s, 9H), 0.72 (d, J = 6.7 Hz, 3H), -0.02 (s, 9H), -0.09 (s, 

3H), -0.16 (s, 3H); 13C NMR (75 MHz, CDCl3, 44/45 C): δ 190.0, 156.2, 145.7, 143.6, 

136.9, 135.7, 135.5, 135.0, 132.7, 130.3 (2C), 130.2, 129.3, 128.8, 128.5, 127.3, 127.1 

(2C), 125.3, 120.5, 119.0, 116.9, 116.4, 81.3, 77.2, 71.4, 66.7, 54.3, 51.6, 44.8, 41.8, 

40.2, 34.8, 25.9 (3C), 21.8, 18.1, 16.1, -1.1 (3C), -4.0, -4.7; IR (film): 2952, 1660, 1555, 

1372, 1372, 1190, 1140, 1089 cm-1; HRMS-FAB (m/z): [M]+ calc’d for 

C45H59N4O7Si2SBr, 934.2826; found, 934.2829; [α]21
D +51.73° (c 1.0, CHCl3). 
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 Ketone 113.  Suzuki adduct 112 (113 mg, 0.121 mmol), LiBF4 (113 mg, 1.21 

mmol), acetonitrile (6 mL), and water (600 µL) were heated to 45–50 °C.  After 9 h, 

additional LiBF4 (30 mg, 0.32 mmol) was introduced, and heating was continued.  After 

6 h, additional LiBF4 (35 mg, 0.32 mmol) was introduced, and heating was continued for 

16 h.  The reaction mixture was cooled to 23 °C, quenched with 10% aq. citric acid (10 

mL), and extracted with EtOAc (3 x 20 mL).  The combined organic layers were dried 

over MgSO4 and evaporated under reduced pressure.  The crude product was purified by 

flash chromatography (3:1 EtOAc:hexanes) to yield alcohol 156 (96.9 mg, 98% yield) as 

a yellow oil, which was used in the subsequent step without further purification. Rf = 0.44 

(3:1 EtOAc:hexanes). 

 To alcohol 156 (96 mg, 0.117 mmol) in CH2Cl2 (2.0 mL) at 23 °C was added 

Dess-Martin Periodinane (74.3 mg, 0.175 mmol).  The mixture was stirred for 3 min, 

quenched with a solution of saturated aq. NaHCO3 and saturated aq. Na2S2O3 (1:1, 5 mL), 

stirred for 5 min, and extracted with EtOAc (3 x 15 mL).  The combined organic layers 

were washed with brine (15 mL), dried over MgSO4, and evaporated under reduced 

pressure.  The crude product was purified by flash chromatography (1:1 hexanes:EtOAc) 

to yield ketone 113 (86 mg, 90% yield) as a yellow foam.  Rf = 0.48 (1:1 
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hexanes:EtOAc); 1H NMR (300 MHz, CDCl3): δ 8.61 (d, J = 8.5 Hz, 1H), 8.45 (s, 1H), 

8.42 (s, 1H), 8.18 (d, J = 1.7 Hz, 1H), 7.81 (d, J = 8.5 Hz, 2H), 7.56 (s, 1H), 7.42 (dd, J = 

8.7 Hz, 1.8 Hz, 1H), 7.25 (d, J = 7.7 Hz, 2H), 5.77 (d, J = 10.5 Hz, 1H), 5.72 (d, J = 10.2 

Hz, 1H), 4.62-4.56 (m, 1H), 4.20 (s, 3H), 3.57 (app. dt, J = 8.2 Hz, 1.8 Hz, 2H), 3.43 (s, 

3H), 3.14-3.06 (m, 1H), 2.91-2.81 (m, 1H), 2.74 (s, 2H), 2.40 (dd, J = 12.5 Hz, 2.9 Hz, 

1H), 2.34 (s, 3H), 0.96-0.88 (m, 2H), 0.78 (d, J = 6.6 Hz, 3H), -0.02 (s, 9H); 13C NMR 

(75 MHz, CDCl3, 37/39 C): δ 207.2, 188.0, 156.1, 145.7, 143.2, 136.3, 135.7, 134.9, 

132.6, 130.7, 130.3 (2C), 128.8, 128.4, 127.3, 127.1 (2C), 125.4, 120.5, 119.0, 116.8, 

116.3, 82.4, 77.1, 66.9, 54.3, 52.2, 52.0, 49.2, 40.2, 35.2, 21.8, 18.1, 12.2, -1.2 (3C); IR 

(film): 2950, 1716, 1664, 1557, 1373, 1190, 1178, 1090 cm-1; HRMS-FAB (m/z): [M]+ 

calc’d for C39H43N4O7SiSBr, 818.1805; found, 818.1836; [α]21
D +71.61° (c 1.0, CHCl3). 

 

117

N

N

N
SEM

Ts
N

Br

O

OMeMeO

H

O

Br

113

N

N

N
SEM

Ts
N

Br

O

OMeMeO

H

O

115

N

N

N
SEM

Ts
N

Br

O

OMeMeO

H

TMSO
TMSOTf

Et3N

CH2Cl2, 0 °C

NBS

THF

(97% yield,
2 steps)  

α-Bromoketone 117.  To ketone 113 (5.0 mg, 0.0061 mmol) and triethylamine 

(160 µL, 1.15 mmol) in CH2Cl2 (1 mL) at 0 °C was added TMSOTf (70 µL, 0.350 mmol) 

dropwise over 1 min.  The reaction mixture was stirred for 30 min, quenched with 

saturated aq. NaHCO3 (2 mL), and extracted with EtOAc (5 x 1 mL).  The combined 

organic layers were washed with brine (1.5 mL) and dried over Na2SO4.  Evaporation of 
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the solvent under reduced pressure afforded silyl enol ether 115 as an unstable yellow oil 

that was used immediately in the subsequent reaction. 

To crude silyl enol ether product 115 in THF (1.5 mL) at 23 °C was added freshly 

recrystallized NBS (14 mg, 0.0786 mmol).  The reaction mixture was stirred for 1 min, 

quenched with saturated aq. NaHCO3 (2 mL), and extracted with EtOAc (5 x 1 mL).  The 

combined organic layers were washed with brine (1.5 mL), dried by passage over a plug 

of silica gel (EtOAc eluent), and evaporated under reduced pressure to afford the crude 

product.  Purification by preparative thin layer chromatography (1:1 hexanes:EtOAc 

eluent) afforded α-bromoketone 117 (5.3 mg, 97% yield, 2 steps) as a colorless oil.  Rf 

0.68 (1:1 hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 9.01 (d, J = 8.5 Hz, 1H), 8.87 

(s, 1H), 8.69 (s, 1H), 8.15 (s, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.5 Hz, 1H), 7.10 

(s, 1H), 6.40 (d, J = 8.0 Hz, 2H), 5.45 (d, J = 10.2 Hz, 1H), 5.36 (d, J = 10.2 Hz, 1H), 

4.75 (s, 1H), 4.14-4.06 (m, 1H), 3.68 (s, 3H), 3.60-3.46 (comp. m, 3H), 3.44 (s, 3H), 

2.64-2.55 (m, 1H), 2.52-2.43 (m, 1H), 1.58 (s, 3H), 0.89 (t, J = 8.0 Hz, 2H), 0.78 (d, J = 

6.6 Hz, 3H), -0.03 (s, 9H); 13C NMR (125 MHz, C6D6, 38/39 C): δ 202.4, 185.4, 156.6, 

145.5, 143.2, 136.9, 136.7, 136.6, 135.8, 133.2, 131.8, 130.5 (2C), 129.8, 129.4, 128.0, 

127.3 (2C), 126.5, 121.0, 120.0, 117.7, 117.3, 82.9, 77.3, 67.0, 58.4, 54.1, 53.0, 43.4, 

36.7, 35.0, 21.3, 18.4, 12.4, -1.0 (3C); IR (film): 2950, 1719, 1662, 1557, 1374, 1190, 

1178, 1141, 1089; HRMS-FAB (m/z): [M + H]+ calc’d for C39H43Br2N4O7SSi, 899.0968; 

found, 899.0952; [α]27
D +10.23° (c 0.66, C6H6). 
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The relative stereochemistry of α-bromoketone 117 was determined by NOE 

experiments.  Medium strength NOE interactions were observed as indicated below.51 
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Favorskii product 118.  To α-bromoketone 117 (3.0 mg, 0.0033 mmol) in THF 

(1.0 mL) at 23 °C was added TBAF (1.0 M in THF, 20 µL, 0.020 mmol).  The reaction 

mixture was stirred for 15 min, quenched with 10% (w/v) aq. citric acid (1 mL), diluted 

with brine (500 µL), and extracted with EtOAc (5 x 1 mL).  The combined organic layers 

were dried by passage over a plug of silica gel (EtOAc eluent, then 5:1 CH2Cl2:MeOH 

eluent) and evaporated under reduced pressure to afford the crude product.  Purification 

by preparative thin layer chromatography (5:1 CH2Cl2:MeOH eluent) afforded Favorskii 

product 118 (1.5 mg, 66% yield) as a yellow oil.  Rf 0.53 (5:1 CH2Cl2:MeOH); 1H NMR 

(600 MHz, CD3OD): δ 8.61 (d, J = 9.2 Hz, 1H), 8.59 (s, 1H), 8.21 (s, 1H), 7.97 (s, 1H), 

7.60 (s, 1H), 7.25 (d, J = 8.2 Hz, 1H), 5.81 (d, J = 10.1 Hz, 1H), 5.76 (d, J = 10.1 Hz, 

1H), 4.96 (app. d, J = 3.7 Hz, 1H), 4.24 (s, 3H), 3.65 (m, 2H), 3.42 (s, 3H), 2.98 (d, J = 



187 
14.7 Hz, 1H), 2.38 (d, J = 11.0 Hz, 1H), 2.30 (dd, J = 11.0, 4.6 Hz, 1H), 1.63 (d, J = 14.7 

Hz, 1H), 1.07 (s, 3H), 0.94-0.88 (m, 2H), -0.02 (s, 9H); 13C NMR (125 MHz, CD3OD): 

δ 193.1, 170.2, 157.1, 142.4, 142.3, 139.5, 139.1, 133.1, 131.5, 130.6, 128.4, 126.9, 

125.5, 124.4, 121.9, 116.8, 115.3, 112.8, 91.3, 77.8, 67.2, 55.1, 54.1, 46.2, 45.6, 44.7, 

30.9, 25.0, 18.8, -1.1 (3C); IR (film): 3288 (br), 2927, 2855, 1711, 1659, 1553, 1535, 

1449, 1409, 1367, 1250, 1198, 1093; HRMS-FAB (m/z): [M + H]+ calc’d for 

C32H38BrN4O6Si, 683.1724; found, 683.1721; [α]23
D -26.34° (c 0.2, CH3OH).  

The relative stereochemistry of Favorskii product 118 was determined by NOE 

experiments.  Medium strength NOE interactions were observed as indicated below.51 
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Tosyl Oxime 119.  To ketone 113 (50.0 mg, 0.061 mmol), NH2OH•HCl (85 mg, 

1.22 mmol), and NaOAc•3H2O (125 mg, 0.915 mmol) was added methanol (2.5 mL), 
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followed by H2O (350 µL), then additional methanol (5 mL).  The homogeneous solution 

was stirred at 23 °C for 8 h, and the solvent was removed under reduced pressure.  H2O 

(15 mL) was added, and the resulting mixture was extracted with EtOAc (3 x 15 mL).  

The combined organic layers were washed with brine (15 mL), dried over MgSO4, and 

evaporated under reduced pressure.  The crude product was further purified by filtration 

over a plug of silica gel (EtOAc eluent) to yield oxime 157 (50.1 mg, 98% yield) as a 

yellow foam, which was used without purification in the subsequent reaction.  Rf = 0.46 

(1:1 hexanes:EtOAc). 

 To a solution of oxime 157 (20.0 mg, 0.0240 mmol), TsCl (14.0 mg, 0.0734 

mmol), and Bu4NBr (1.0 mg, 0.0031 mmol) in toluene (2.0 mL) at 0 °C was added 50% 

aq. KOH (310 µL).  The reaction mixture was stirred at 0 °C for 2 h, quenched with ice-

cold H2O (1.5 mL) and extracted with ice-cold EtOAc (5 x 1 mL).  The combined organic 

layers were washed with brine (1 mL), dried by passage over a plug of silica gel (EtOAc 

eluent), and evaporated under reduced pressure.  The crude product was purified by flash 

chromatography (1:1 hexanes:EtOAc) to yield tosyl oxime 119 (23.3 mg, 98% yield) as a 

yellow foam.  Rf = 0.48 (1:1 hexanes:EtOAc); 1H NMR (300 MHz, CDCl3): δ 8.63 (d, J = 

8.5 Hz, 1H), 8.46 (s, 1H), 8.41 (s, 1H), 8.19 (d, J = 1.4 Hz, 1H), 7.81 (d, J = 8.3 Hz, 2H), 

7.65 (d, J = 8.0 Hz, 2H), 7.51 (s, 1H), 7.44 (dd, J = 8.7 Hz, 1.5 Hz, 1H), 7.28-7.19 (comp. 

m, 4H), 5.87 (d, J = 10.2 Hz, 1H), 5.42 (d, J = 10.2 Hz, 1H), 4.45-4.43 (m, 1H), 4.20 (s, 

3H), 3.67-3.53 (comp. m, 3H), 3.38 (s, 3H), 2.98-2.89 (m, 1H), 2.87-2.77 (m, 1H), 2.42 

(s, 3H), 2.35 (s, 3H), 2.12 (d, J = 14.0 Hz, 2H), 1.05-0.85 (m, 2H), 0.78 (d, J = 6.6 Hz, 

3H), -0.02 (s, 9H); 13C NMR (75 MHz, CDCl3): δ 187.2, 165.8, 156.3, 145.8, 144.8, 

143.5, 135.8, 135.7, 135.3, 135.0, 132.9, 132.6, 130.4 (2C), 129.9, 129.4 (2C), 129.1 
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(2C), 128.9, 128.4, 128.0, 127.5, 127.2 (2C), 125.3, 120.3, 119.2, 116.8, 116.5, 80.8, 

77.4, 67.2, 54.4, 52.2, 42.5, 40.3, 36.5, 36.2, 21.9, 21.9, 18.1, 13.7, -1.1 (3C); IR (film): 

2946, 1665, 1555, 1373, 1191, 1178, 1140 cm-1; HRMS-FAB (m/z): [M]+ calc’d for 

C46H50N5O9SiS2Br, 987.2002; found, 987.2038; [α]20
D +139.01° (c 1.0, CHCl3). 
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Aminoketone 120.  To a stirred solution of tosyl oxime 119 (23.3 mg, 0.0236 

mmol) in EtOH (3.5 mL) at 0 °C was added 50% aq. KOH (450 µL) dropwise over 1 

min.  The reaction mixture was stirred at 0 °C for 3 h, then 6 N aq. HCl (5 mL) was 

added.  The reaction mixture was heated to 60 °C for 10 h, cooled to 23 °C, and purified 

by reversed-phase filtration through a Sep-Pak column: loaded with water containing 

0.1% (w/v) TFA, washed with 15% acetonitrile:water containing 0.1% (w/v) TFA to 

remove salts, then 70% acetonitrile:water containing 0.1% (w/v) TFA to collect the crude 

product.  The solvents were removed under reduced pressure to afford hemiaminal 123, 

which was used immediately in the subsequent reaction.  Although hemiaminal 123 is 

typically used in crude form, it has been observed by 1H NMR.  1H NMR (600 MHz, 

CD3OD): δ 8.61 (d, J = 8.2 Hz, 1H), 8.52 (s, 1H), 8.24 (s, 1H), 7.94 (s, 1H), 7.60 (s, 1H), 

7.25 (d, J = 9.2 Hz, 1H), 5.72 (d, J = 10.1 Hz, 1H), 5.65 (d, J = 10.1 Hz, 1H), 4.85-4.82 
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(m, 1H), 4.49 (s, 1H), 4.21 (s, 3H), 3.47 (s, 3H), 3.36-3.30 (m, 1H), 3.26 (dd, J = 12.8, 

2.7 Hz, 1H), 2.61 (dd, J = 12.8, 2.7 Hz, 1H), 0.85 (d, J = 7.3 Hz, 3H). 

 Hemiaminal 123 and K2CO3 (60 mg, 0.434 mmol) in THF (2 mL) at 23 °C was 

added H2O (200 µL).  The reaction mixture was stirred for 10 min, then purified by 

reversed-phase filtration through a Sep-Pak column: loaded with water containing 0.1% 

(w/v) TFA, washed with 10% acetonitrile:water containing 0.1% (w/v) TFA to remove 

salts, then 70% acetonitrile:water containing 0.1% (w/v) TFA to collect the crude 

product.  After removal of solvents under reduced pressure, the crude material was 

further purified by reversed-phased HPLC.  Concentration under reduced pressure 

provided aminoketone 120 (15.0 mg, 96% yield) as an orange/red oil.  1H NMR (300 

MHz, CD3OD): δ 8.60 (d, J = 8.5 Hz, 1H), 8.53 (s, 1H), 8.23 (s, 1H), 7.81 (s, 1H), 7.61 

(d, J = 1.4 Hz, 1H), 7.25 (dd, J = 8.7 Hz, 1.8 Hz, 1H), 4.82-4.78 (m, 1H), 4.46 (s, 1H), 

4.21 (s, 3H), 3.47 (s, 3H), 3.41-3.30 (m, 1H), 3.26 (dd, J = 12.9 Hz, 3.9 Hz, 1H), 2.61 

(dd, J = 12.9 Hz, 3.0 Hz, 1H), 0.88 (d, J = 6.6 Hz, 3H); 13C NMR (75 MHz, CD3OD, 

25/26 C): δ 203.5, 183.3, 156.8, 142.4, 139.9, 139.1, 136.3, 133.4, 130.7, 129.9, 129.6, 

126.9, 125.5, 124.5, 123.1, 116.9, 115.4, 112.6, 84.3, 66.0, 54.5, 52.9, 40.4, 36.6, 12.2; 

IR (film): 3156 (br), 2935, 1674, 1531, 1447, 1409, 1203, 1135 cm-1; HRMS-FAB (m/z): 

[M + H]+ calc’d for C26H25N5O4Br, 550.1090; found, 550.1071; [α]20
D +99.19° (c 0.87, 

MeOH). 
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 The relative stereochemistry of deprotected aminoketone 120 was determined by 

NOE experiments.  Medium strength NOE interactions were observed as indicated 

below.51  Analogous NOE interactions were observed for hemiaminal 123 and 

deprotected aminoketone 124. 
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Deprotected Aminoketone 124.  To a stirred solution of aminoketone 120 (7.5 

mg, 0.0113 mmol) in MeCN (1 mL) at 0 °C was added TMSI (500 µL, 3.51 mmol) 

dropwise over 30 sec.  The reaction mixture was heated to 60 °C for 48 h, cooled to 0 °C, 

then transferred dropwise into a chilled solution (0 °C) of saturated aqueous sodium 

metabisulfite (5 mL).  The mixture was diluted with 6 N HCl (15 mL), stirred at 0 °C for 

20 min, then purified by reversed-phase filtration through a Sep-Pak column: loaded with 

water containing 0.1% (w/v) TFA, washed with 1 N HCl, 10% acetonitrile:water 

containing 0.1% (w/v) TFA to remove salts, then 60% acetonitrile:water containing 0.1% 

(w/v) TFA to collect the crude product.  After removal of solvents under reduced 
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pressure, the crude material was further purified by reversed-phase HPLC.   

Concentration under reduced pressure provided deprotected aminoketone 124 (6.8 mg, 

95% yield) as an orange/red oil.  1H NMR (300 MHz, CD3OD): δ 8.69 (s, 1H), 8.59 (d, J 

= 8.5 Hz, 1H), 7.69 (s, 1H), 7.61 (d, J = 1.7 Hz, 1H), 7.57 (s, 1H), 7.27 (dd, J = 8.5 Hz, 

1.7 Hz, 1H), 4.40 (s, 1H), 4.06-3.98 (m, 1H), 3.31-3.21 (m, 1H), 2.87 (dd, J = 13.2 Hz, 

3.3 Hz, 1H), 2.79 (dd, J = 13.1 Hz, 2.9 Hz, 1H), 0.85 (d, J = 6.6 Hz, 3H); 13C NMR (75 

MHz, CD3OD, 23/24 C): δ 203.4, 186.0, 157.4, 139.1, 136.3, 132.5, 132.4, 130.2, 130.1, 

128.2, 126.7, 126.7, 125.6, 124.9, 117.1, 115.4, 113.6, 79.3, 67.1, 49.6, 45.5, 36.7, 12.3; 

IR (film): 3164 (br), 2927, 1674, 1451, 1207, 1143 cm-1; HRMS-FAB (m/z): [M + H]+ 

calc’d for C24H21N5O4Br, 522.0777; found, 522.0783; [α]22
D +86.88° (c 0.33, MeOH). 
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(+)–Dragmacidin F (7).  To deprotected aminoketone 124 (3.6 mg, 0.0056 

mmol) and cyanamide (120 mg, 2.86 mmol) in H2O (2 mL, degassed by sparging with 

argon) at 23 °C was added 10% aq. NaOH (80 µL).  The reaction mixture was heated to 

60 °C for 2 h, cooled to 23 °C, then purified by reversed-phase filtration through a Sep-

Pak column: loaded with water containing 0.1% (w/v) TFA, washed with 10% 

acetonitrile:water containing 0.1% (w/v) TFA to remove salts, then 60% 

acetonitrile:water containing 0.1% (w/v) TFA to collect the crude product.  After removal 

of solvents under reduced pressure, the product was further purified by reversed-phase 

HPLC.  Concentration under reduced pressure afforded (+)–dragmacidin F (7, 3.2 mg, 
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86% yield) as an orange/red oil.  1H NMR (600 MHz, CD3OD): δ 8.69 (s, 1H), 8.59 (d, J 

= 8.7 Hz, 1H), 7.68 (s, 1H), 7.60 (s, 1H), 7.47 (s, 1H), 7.26 (d, J = 8.7 Hz, 1H), 4.12 (br s, 

1H), 3.40-3.34 (m, 1H), 2.73 (dd, J = 12.0 Hz, 2.9 Hz, 1H), 2.45 (d, J = 11.6 Hz, 1H), 

0.92 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CD3OD, 22/25 C): δ 188.5, 157.5, 149.6, 

139.1, 132.6, 132.4, 128.5, 128.4, 126.7, 126.2, 125.6, 124.9, 124.8, 123.3, 117.1, 115.4, 

113.7, 72.8, 45.3, 36.9, 33.3, 15.9; IR (film): 3175 (br), 2925, 1679, 1637, 1205, 1141 

cm-1; UV (MeOH) λmax 283, 389 nm; HRMS-FAB (m/z): [M + H]+ calc’d for 

C25H21N7O3Br, 546.0889; found, 546.0883; [α]23
D +146.21° (c 0.45, MeOH). 
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 Acetoxycyclohexene 128.  A mixture of methyl ester 105 (50.0 mg, 0.140 mmol) 

and 10% Pd/C (1.5 mg, 0.0014 mmol) in MeOH (1.3 mL) was stirred under an H2 

atmosphere at 23 °C.  After 35 min, the reaction mixture was filtered over a Celite plug 

(MeOH eluent), and the solvent was evaporated in vacuo.  1H NMR integration showed 

that acetoxycyclohexene 128 was formed in approximately 10% yield. 

Alternate Procedure.  A mixture of methyl ester 105 (21.4 mg, 0.06 mmol) and 

10% Pd/C (0.3 mg, 0.0003 mmol) in MeOH (1.5 mL) was cooled to 0 °C.  The reaction 

vessel was then evacuated and back-filled with H2 (4x).  After 1 h, the reaction mixture 

was filtered over a Celite plug (MeOH eluent), and the solvent was evaporated in vacuo.  

1H NMR integration showed that acetoxycyclohexene 128 was formed in approximately 

3% yield. 
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The stable chair conformer of methyl ester 105 was determined using 

homodecoupling NMR experiments.  The coupling constant between Ha and Hb was 

measured as Jab = 10.7 Hz.  
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An analytical sample of 105 was prepared via an alternate route as follows: 
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Acetoxycarbonate 158.  To a solution of methyl ester 105 (44.8 mg, 0.12 mmol) 

in THF (2 mL) was added TBAF (1.0 M in THF, 140 µL, 0.14 mmol).  After 3 min of 

stirring, the reaction was quenched by the addition of saturated aq. NH4Cl (2 mL).  

EtOAc (4 mL) was added, and the phases were partitioned.  The aqueous phase was 

further extracted with EtOAc (2 x 2 mL).  The combined organic layers were 

successively washed with H2O (1 mL) and brine (1 mL), and dried over MgSO4.  The 

solvent was evaporated in vacuo, and the residue was dissolved in toluene (4 mL). 1,1’-

carbonyldiimidazole (82.1 mg, 0.51 mmol) was added, and the mixture was heated at 

reflux for 2 h.  After cooling to 23 °C, the crude reaction mixture was directly purified by 

flash column chromatography (3:2 hexanes:EtOAc eluent) to afford pure 
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acetoxycarbonate 158 (16.9 mg, 45% yield, 2 steps).  Rf 0.15 (1:1 hexanes:EtOAc); 1H 

NMR (300 MHz, CDCl3): δ 5.70-5.62 (m, 1H), 5.25 (app. d, J = 2.5 Hz, 1H), 5.19 (app. 

d, J = 2.5 Hz, 1H), 5.16 (dd, J = 4.1, 1.9 Hz, 1H), 3.81 (s, 3H), 2.84 (ddd, J = 13.4, 6.4, 

2.7 Hz, 1H), 2.55-2.48 (m, 1H), 2.32-2.26 (m, 1H), 2.12 (s, 3H), 1.96 (dd, J = 13.3, 11.1 

Hz, 1H); 13C NMR (75 MHz, CDCl3): δ 169.3, 168.3, 146.6, 140.2, 113.7, 81.6, 79.5, 

66.4, 53.7, 39.3, 32.7, 20.9; IR (film) 1763 (br), 1230, 1180, 1120 cm-1; HRMS-FAB 

(m/z): [M + H]+ calc’d for C12H15O7, 271.0818; found, 271.0810; [α]25
D -154.53° (c 1.0, 

C6H6). 

Acetoxycyclohexene 128.  A mixture of acetoxycarbonate 158 (18.5 mg, 0.07 

mmol) and 10% Pd/C (1.4 mg, 0.001 mmol) in MeOH (1.3 mL) was cooled to 0 °C.  The 

reaction vessel was then evacuated and back-filled with H2 (3x).  After 1 hr at 0 °C, the 

reaction mixture was filtered over a Celite plug (MeOH eluent), and the solvent was 

evaporated in vacuo.  The residue was purified by flash chromatography (1:1 

EtOAc:hexanes eluent) to afford acetoxycyclohexene 128 (12.6 mg, 81% yield) as a 

colorless oil.  Rf 0.46 (2:1 EtOAc:hexanes); 1H NMR (300 MHz, CDCl3): δ 5.57-5.48 

(comp. m, 2H), 3.77 (s, 3H), 3.06 (br s, 1H), 2.69-2.58 (m, 1H), 2.29-2.20 (m, 1H), 2.16-

1.91 (comp. m, 2H), 2.05 (s, 3H), 1.69-1.66 (m, 3H);13C NMR (75 MHz, CDCl3): 

δ 176.1, 170.9, 132.7, 122.0, 73.8, 70.7, 53.2, 37.1, 35.3, 21.3, 19.2; IR (film) 3477 (br), 

2953, 1736, 1239 cm-1; HRMS-FAB (m/z): [M + H]+ calc’d for C11H17O5, 229.1076; 

found 229.1066; [α]25
D -3.31° (c 0.6, CHCl3). 
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(86% yield)
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Anti-diol 159.  To 2-bromo SEM pyrrole (153, 4.66 g, 16.87 mmol) in THF (112 

mL) at –78 °C was added n-BuLi (2.5 M in hexanes, 6.04 mL, 15.09 mmol) dropwise 

over 1 min.  After 7 min at –78 °C, lactone 103 (1.26 g, 4.44 mmol) in THF (10 mL) was 

added dropwise over 1 min.  The reaction vessel was immediately warmed to –42 °C, 

stirred for 30 min, and cooled to –78 °C.  The reaction mixture was quenched with 

saturated aq. NH4Cl (50 mL), then warmed to 23 °C.  The volatiles were removed under 

reduced pressure.  The residue was partitioned between Et2O (125 mL) and H2O (100 

mL), and the layers were separated.  The aqueous layer was further extracted with Et2O 

(2 x 125 mL).  The combined organic layers were washed with brine (75 mL), dried over 

MgSO4, and evaporated under reduced pressure.  The crude product was purified by flash 

chromatography (4:1 hexanes:EtOAc eluent) to afford anti-diol 159 (1.84 g, 86% yield) 

as a pale yellow foam.  Rf 0.48 (2:1 hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 8.11 

(dd, J = 4.1, 1.7 Hz, 1H), 6.78 (app. t, J = 2.1 Hz, 1H), 6.15 (dd, J = 4.0, 2.6 Hz, 1H), 

5.71 (d, J = 9.9 Hz, 1H), 5.58 (d, J = 10.2 Hz, 1H), 5.26 (s, 1H), 5.17 (app. t, J = 1.8 Hz, 

1H), 4.92-4.82 (m, 1H), 4.76-4.73 (m, 1H), 4.45 (app. t, J = 3.0 Hz, 1H), 3.47 (t, J = 7.7 

Hz, 2H), 2.66 (ddd, J = 12.4, 5.2, 2.5 Hz, 1H), 2.39 (dd, J = 14.4, 2.9 Hz, 1H), 2.20 (app. 

dt, J = 8.7, 4.8 Hz, 1H), 1.92 (app. t, J = 12.0 Hz, 1H), 0.88-0.80 (comp. m, 12H), -0.04 

(s, 3H), -0.06 (s, 3H), -0.06 (s, 9H); 13C NMR (75 MHz, C6D6): δ 192.8, 151.6, 130.5, 

128.6, 124.8, 109.3, 108.3, 83.0, 78.5, 76.7, 66.4, 66.2, 48.5, 42.1, 26.1 (3C), 18.4, 18.4, -

0.9 (3C), -4.4, -5.1; IR (film): 3456 (br), 2953, 1637, 1406, 1250, 1091 cm-1; HRMS-FAB 
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(m/z): [M + H]+ calc’d for C24H44NO5Si2, 482.2758; found, 482.2751; [α]28

D -21.18° (c 

1.0, C6H6). 
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Bis(silylether) 131.  To a solution of anti-diol 159 (253.1 mg, 0.53 mmol), 

imidazole (147.1 mg, 2.16 mmol), and DMAP (23.5 mg, 0.19 mmol) in DMF (5.0 mL), 

was added TBSCl (152.5 mg, 1.01 mmol).  The solution was warmed to 50 °C for 70 

min, cooled to 0 °C, then quenched by the addition of 10% (w/v) aq. citric acid (10 mL). 

Et2O (40 mL) was added, and the layers were partitioned.  The aqueous phase was further 

extracted with Et2O (2 x 30 mL).  The combined organic extracts were washed with brine 

(15 mL), dried over MgSO4, and evaporated under reduced pressure.  The crude product 

was purified by flash chromatography (9:1 hexanes:EtOAc eluent) to provide 

bis(silylether) 131 (296.0 mg, 95% yield) as a colorless oil that solidified under reduced 

pressure.  Rf 0.61 (4:1 hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 8.17 (dd, J = 4.0, 

1.8 Hz, 1H), 6.76 (dd, J = 2.5, 1.7 Hz, 1H), 6.14 (dd, J = 4.0, 2.6 Hz, 1H), 5.68 (d, J = 9.9 

Hz, 1H), 5.62 (d, J = 10.2 Hz, 1H), 5.37 (s, 1H), 5.32 (app. t, J = 2.1 Hz, 1H), 5.22-5.14 

(m, 1H), 4.77 (app. t, J = 1.9 Hz, 1H), 4.50 (app. t, J = 3.0 Hz, 1H), 3.47 (t, J = 7.8 Hz, 

2H), 2.82 (ddd, J = 12.7, 5.1, 2.6 Hz, 1H), 2.45 (dd, J = 14.6, 2.8 Hz, 1H), 2.27-2.18 

(comp. m, 2H), 0.99 (s, 9H), 0.88 (s, 9H), 0.82 (t, J = 7.8 Hz, 2H), 0.17 (s, 3H), 0.14 (s, 

3H), 0.00 (s, 3H), -0.04 (s, 3H), -0.07 (s, 9H); 13C NMR (75 MHz, C6D6, 29/30 C): δ 

192.6, 151.6, 130.4, 124.5, 109.3, 108.6, 83.2, 78.5, 76.8, 67.4, 66.3, 49.3, 42.1, 26.4 
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(3C), 26.1 (3C), 18.9, 18.4, 18.3, -0.9 (3C), -4.3, -4.4, -4.5, -5.1; IR (film): 3464 (br), 

1953, 2929, 1640, 1405, 1309, 1251, 1094 cm-1; HRMS-FAB (m/z): [M + H]+ calc’d for 

C30H58NO5Si3, 596.3623; found, 596.3594; [α]27
D -7.16° (c 1.0, C6H6). 

The stable chair conformer of bis(silylether) 131 was determined using a 

combination of NOESY-1D, gCOSY, and homodecoupling NMR experiments.  Medium 

strength NOE interactions were observed as indicated below.51  The coupling constant 

between Ha and Hb was measured as Jab = 11.0 Hz. 
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Syn-diol 132.  To bis(silylether) 131 (113.9 mg, 0.19 mmol) in THF (10.0 mL) 

was added TBAF (1.0 M in THF, 195 µL, 0.20 mmol) in a dropwise fashion over 1 min.  

The reaction mixture was stirred for 2 min, quenched with saturated aq. NH4Cl (15 mL), 

then poured into EtOAc (40 mL).  The layers were partitioned, and the aqueous layer was 

further extracted with EtOAc (2 x 40 mL).  The combined organic extracts were 

successively washed with H2O (15 mL) and brine (15 mL), dried over MgSO4, and 
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evaporated under reduced pressure.  The residue was purified by flash chromatography 

(7:1 hexanes:EtOAc eluent) to furnish syn diol 132 (87.5 mg, 95% yield) as a pale yellow 

oil.  Rf 0.29 (4:1 hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 7.09 (dd, J = 4.1, 1.4 Hz, 

1H), 6.63 (dd, J = 2.3, 1.5 Hz, 1H), 5.89 (dd, J = 4.1, 2.5 Hz, 1H), 5.51-5.39 (comp. m, 

4H), 5.27-5.19 (m, 1H), 5.01 (app. t, J = 2.1 Hz, 1H), 4.52-4.46 (m, 1H), 3.86 (d, J = 8.0 

Hz, 1H), 3.37 (t, J = 7.7 Hz, 2H), 2.45-2.23 (comp. m, 3H), 2.04 (app. dt, J = 8.4, 4.9 Hz, 

1H), 0.99 (s, 9H), 0.79 (t, J = 7.8 Hz, 2H), 0.14 (s, 3H), 0.11 (s, 3H), -0.09 (s, 9H); 13C 

NMR (75 MHz, C6D6): δ 191.6, 152.9, 131.4, 126.4, 124.0, 109.8, 108.5, 81.2, 78.8, 74.7, 

67.4, 66.6, 49.0, 43.3, 26.4 (3C), 18.9, 18.3, -1.0 (3C), -4.5, -4.5; IR (film): 3363 (br), 

2954, 1631, 1410, 1314, 1250, 1101 (br) cm-1; HRMS-FAB (m/z): [M + H]+ calc’d for 

C24H44NO5Si2, 482.2758; found, 482.2780; [α]27
D -27.06° (c 1.0, C6H6). 
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Carbonate 130.  To syn diol 132 (68.2 mg, 0.14 mmol) and 1,1’-

carbonyldiimidazole (37.0 mg, 0.23 mmol) in THF (2.6 mL) was added NaH (60% 

dispersion in mineral oil, 21.9 mg, 0.55 mmol) in one portion.  The reaction was stirred 

for 20 min at 23 °C, then quenched by addition of saturated aq. NH4Cl (20 mL).  The 

reaction mixture was poured into EtOAc (30 mL), the layers were partitioned, and the 

aqueous layer was further extracted with EtOAc (2 x 30 mL).  The combined organic 

extracts were successively washed with H2O (10 mL) and brine (10 mL), dried over 

MgSO4, and evaporated under reduced pressure.  Purification of the residue by flash 
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chromatography (6:1 hexanes:EtOAc eluent) afforded carbonate 130 (65.8 mg, 92% 

yield) as a colorless oil.  Rf 0.29 (4:1 hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 7.91 

(dd, J = 4.1, 1.7 Hz, 1H), 6.68 (dd, J = 2.8, 1.7 Hz, 1H), 6.02 (dd, J = 4.3, 2.6 Hz, 1H), 

5.51 (d, J = 9.9 Hz, 1H), 5.43 (d, J = 9.9 Hz, 1H), 5.24 (app. t, J = 1.9 Hz, 1H), 4.84-4.75 

(m, 1H), 4.69 (app. t, J = 1.8 Hz, 1H), 4.46 (dd, J = 3.9, 1.9 Hz, 1H), 3.39 (t, J = 7.7 Hz, 

2H), 2.78 (ddd, J = 13.5, 6.1, 2.5 Hz, 1H), 2.12-1.98 (comp. m, 2H), 1.92-1.85 (m, 1H), 

0.86 (s, 9H), 0.81 (t, J = 7.8 Hz, 2H), -0.07--0.08 (comp. m, 12H), -0.10 (s, 3H); 13C 

NMR (75 MHz, C6D6): δ 185.9, 147.2, 146.4, 132.1, 126.7, 125.0, 112.2, 110.3, 87.9, 

80.3, 78.8, 66.8, 66.5, 46.1, 33.7, 26.2 (3C), 18.6, 18.3, -1.0 (3C), -4.7, -5.0; IR (film): 

2954, 1764, 1641, 1413, 1354, 1251, 1173, 1089 cm-1; HRMS-FAB (m/z): [M + H]+ 

calc’d for C25H42NO6Si2, 508.2551; found, 508.2560; [α]27
D -54.78° (c 1.0, C6H6). 
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Pyrrolocyclohexene 126.  A mixture of carbonate 130 (40.0 mg, 0.08 mmol) and 

10% Pd/C (1.7 mg, 0.002 mmol) in MeOH (1.0 mL) was cooled to 0 °C.  The reaction 

vessel was then evacuated and back-filled with H2 (3x).  After 1.75 hr at 0 °C, the 

reaction mixture was filtered over a Celite plug (MeOH eluent), and the solvent was 

evaporated in vacuo.  The residue was purified by flash chromatography (9:1 

hexanes:EtOAc eluent) to afford pyrrolocyclohexene 126 (33.1 mg, 90% yield) as a 

colorless oil.  Rf 0.53 (4:1 hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 6.94 (dd, J = 

4.1, 1.4 Hz, 1H), 6.64 (dd, J = 2.6, 1.5 Hz, 1H), 5.89 (dd, J = 4.0, 2.6 Hz, 1H), 5.54 (d, J 
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= 10.2 Hz, 1H), 5.45 (d, J = 10.2 Hz, 1H), 5.39-5.33 (m, 1H), 4.87-4.78 (m, 1H), 4.78 (s, 

1H), 3.40 (t, J = 7.8 Hz, 2H), 2.97-2.85 (m, 1H), 2.48 (dd, J = 12.5, 9.8 Hz, 1H), 2.34-

2.26 (m, 1H), 2.21-2.08 (m, 1H), 1.95-1.90 (m, 3H), 0.96 (s, 9H), 0.81 (t, J = 7.8 Hz, 

2H), 0.06 (s, 3H), 0.03 (s, 3H), -0.08 (s, 9H); 13C NMR (75 MHz, C6D6): δ 193.8, 138.5, 

131.0, 126.4, 123.1, 120.1, 109.7, 78.8, 78.2, 69.6, 66.5, 44.7, 38.9, 26.4 (3C), 20.6, 18.6, 

18.3, -1.0 (3C), -3.8, -4.5; IR (film): 3431 (br), 2954, 1634, 1414, 1250, 1089 (br) cm-1; 

HRMS-FAB (m/z): [M + H]+ calc’d for C24H44NO4Si2, 466.2809; found, 466.2804; [α]28
D 

+26.19° (c 1.0, C6H6). 
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[3.3.1] Bicycle 127.  To pyrrolocyclohexene 126 (40.0 mg, 0.0859 mmol) was 

added Pd(OAc)2 (23.0 mg, 0.103 mmol), DMSO (14.6 µL, 0.206 mmol), t-BuOH (6.9 

mL), and AcOH (1.7 mL).  The mixture was heated to 60 °C for 8 h, cooled to 23 °C, and 

filtered over a plug of silica gel (2:1 hexanes:EtOAc eluent).  The solvent was 

evaporated, and the product was purified by flash chromatography on silica gel (8:1 

hexanes:EtOAc eluent) to afford [3.3.1] bicycle 127 contaminated with a trace amount of 

pyrrolocyclohexene 126.  Although this material was carried on to the subsequent step 

without further purification, an analytical sample of 127 was obtained by flash 

chromatography on silica gel (12:1 hexanes:EtOAc eluent) as a colorless oil.  Rf 0.64 (3:1 

hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 6.64 (d, J = 2.5 Hz, 1H), 6.25 (d, J = 10.2 

Hz, 1H), 5.84 (d, J = 2.8 Hz, 1H), 5.07 (d, J = 9.9 Hz, 1H), 4.79 (br s, 1H), 4.66 (br s, 
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1H), 4.24-4.19 (m, 1H), 4.19 (s, 1H), 3.68-3.51 (m, 2H), 3.43-3.38 (m, 1H), 2.61 (app. dt, 

J = 7.3, 3.9 Hz, 1H), 2.21-2.10 (m, 2H), 2.06-1.98 (m, 1H), 0.99-0.77 (m, 2H), 0.72 (s, 

9H), -0.04 (s, 9H), -0.11 (s, 3H), -0.24 (s, 3H); 13C NMR (75 MHz, C6D6): δ 192.0, 148.6, 

142.7, 130.5, 126.3, 113.2, 108.3, 77.0, 73.4, 73.0, 66.6, 48.5, 45.5, 40.2, 26.1 (3C), 18.4, 

18.3, -1.0 (3C), -4.4, -5.1; IR (film): 3468 (br), 2951, 1648, 1422, 1250, 1094, 1062 cm-1; 

HRMS-FAB (m/z): [M + H]+ calc’d for C24H42NO4Si2, 464.2652; found, 464.2661; [α]27
D 

+319.22° (c 1.0, C6H6). 

Methyl Ether 133.  The crude mixture of 126 and 127 obtained from the previous 

step was dissolved in THF (1.5 mL) at 23 °C, and NaH (60% dispersion in mineral oil, 17 

mg, 0.429 mmol) was added.  After stirring for 1 min at 23 °C, MeI was added (53 µL, 

0.859 mmol).  The resulting mixture was stirred for 1.5 h, quenched with saturated aq. 

NH4Cl (1.5 mL), and extracted with Et2O (4 x 1 mL).  The combined organic layers were 

washed with brine (1 mL), dried by passage over a plug of silica gel (EtOAc eluent), and 

evaporated under reduced pressure.  The crude product was purified by flash 

chromatography (10:1 hexanes:EtOAc eluent) to afford methyl ether 133 (28.2 mg, 68% 

yield, 2 steps) as a colorless oil.  Rf 0.43 (5:1 hexanes:EtOAc); 1H NMR (300 MHz, 

C6D6): δ 6.62 (d, J = 2.6 Hz, 1H), 6.43 (d, J = 10.3 Hz, 1H), 5.86 (d, J = 2.6 Hz, 1H), 

5.06 (d, J = 10.0 Hz, 1H), 4.84 (d, J = 1.5 Hz, 1H), 4.69 (d, J = 1.5 Hz, 1H), 4.29-4.22 

(m, 1H), 3.42-3.52 (m, 2H), 3.45 (app. t, J = 2.8 Hz, 1H), 3.39 (s, 3H), 2.79 (app. dt, J = 

7.4, 3.8 Hz, 1H), 2.49 (app. dt, J = 8.1, 4.4 Hz, 1H), 1.96 (dd, J = 13.8, 4.7 Hz, 1H), 1.70 

(dd, J = 11.7, 3.2 Hz, 1H), 0.96-0.82 (m, 2H), 0.73 (s, 9H), -0.06 (s, 9H), -0.11 (s, 3H), -

0.23 (s, 3H); 13C NMR (75 MHz, C6D6): δ 189.2, 149.2, 140.9, 129.6, 128.9, 112.9, 

107.6, 79.0, 77.3, 72.7, 66.6, 51.5, 46.3, 41.7, 39.9, 26.1 (3C), 18.4, 18.4, -1.0 (3C), -4.4, 
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-5.1; IR (film): 2951, 1661, 1426, 1250, 1113, 1066; HRMS-FAB (m/z): [M + H]+ calc’d 

for C25H44NO4Si2, 478.2809; found, 478.2815; [α]27
D +312.37° (c 1.0, C6H6). 
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Reduced Bicycle 136.  Methyl ether 133 (23 mg, 0.0479 mmol), 10% Pd/C (15 

mg, 0.014 mmol), and EtOAc (2.5 mL) were combined, and the reaction vessel was 

evacuated and back-filled with H2 (1 atm).  The reaction mixture was stirred under H2 for 

5 min, then filtered over a plug of silica gel topped with Celite (EtOAc eluent) to afford 

reduced bicycle 136 as a colorless oil (23 mg, 99% yield).  Rf 0.28 (5:1 hexanes:EtOAc); 

1H NMR (300 MHz, C6D6): 6.64 (d, J = 2.5 Hz, 1H), 6.52 (d, J = 10.2 Hz, 1H) 5.83 (d, J 

= 2.5 Hz, 1H), 5.05 (d, J = 10.2 Hz, 1H), 3.71-3.51 (comp. m, 3H), 3.42 (s, 3H), 2.78 

(app. dt, J = 7.4, 3.9 Hz, 1H), 2.60 (app. q, J = 3.1 Hz, 1H), 2.40 (app. dt, J = 8.1, 4.6 Hz, 

1H), 1.81 (dd, J = 13.8, 4.4 Hz, 1H), 1.58 (dd, J = 11.4, 2.9 Hz, 1H), 1.42-1.53 (m, 1H), 

0.99-0.81 (m, 2H), 0.87 (d, J = 7.2 Hz, 3H), 0.72 (s, 9H), -0.06 (s, 9H), -0.10 (s, 3H), -

0.21 (s, 3H); 13C NMR (75 MHz, C6D6, 24/25 C): δ 189.3, 140.3, 129.1, 109.2, 79.2, 77.2, 

71.5, 66.5, 51.2, 45.4, 41.9, 38.3, 36.8, 26.1 (3C), 18.4, 18.4, 17.1, -1.0 (3C), -4.4, -5.0; 

IR (film): 2952, 1660, 1497, 1425, 1251, 1118, 1100, 1042 cm-1; HRMS-FAB (m/z): [M 

+ H]+ calc’d for C25H46NO4Si2, 480.2965; found, 480.2955; [α]25
D +220.84° (c 1.0, C6H6). 
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Pyrazine 134.  To silyl ether 136 (10.0 mg, 0.0208 mmol) in THF (2 mL) at 0 °C 

was added freshly recrystallized NBS (4.8 mg, 0.0271 mmol) in THF (200 µL).  After 10 

min at 0 °C, the reaction mixture was warmed to 23 °C, stirred for 40 min, then cooled to 

0 °C.  The reaction was quenched with saturated aq. Na2S2O3 (1.5 mL), diluted with H2O 

(1 mL), and extracted with EtOAc (5 x 1 mL).  The combined organic layers were 

washed with brine (1 mL), dried by passage over a plug of silica gel (EtOAc eluent), and 

evaporated under reduced pressure to afford the crude product.  Further purification by 

preparative thin layer chromatography (4:1 hexanes:EtOAc eluent) afforded bromide 160 

(8.5 mg, 73% yield) as a colorless oil. Rf 0.4 (5:1 hexanes:EtOAc). 

To bromide 160 (12.7 mg, 0.0227 mmol) and 2-isopropoxy-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (69, 190 µL, 0.932 mmol) in THF (2.3 mL) at -78 °C was added n-

BuLi (2.5 M in hexanes, 273 µL, 0.682 mmol) dropwise over 1 min.  After stirring for 10 

min at -78 °C, the reaction mixture was quenched with saturated aq. NH4Cl (1.5 mL), 

warmed to 23 °C, diluted with H2O (1 mL), and extracted with EtOAc (5 x 1 mL).  The 

combined organic layers were washed with brine (1 mL), dried by passage over a plug of 
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silica gel (EtOAc eluent), and evaporated under reduced pressure to afford the crude 

product.  Further purification by preparative thin layer chromatography (4:1 

hexanes:EtOAc eluent) afforded boronic ester 161 (10.1 mg, 73% yield) as a colorless 

oil. Rf 0.38 (5:1 hexanes:EtOAc). 

A vial charged with bromopyrazine 73 (12.4 mg, 0.0231 mmol), boronic ester 161 

(10.0 mg, 0.0165 mmol), and tetrakis(triphenylphosphine)palladium(0) (2.9 mg, 0.00248 

mmol) was evacuated and purged with N2.  Deoxygenated benzene (330 µL), 

deoxygenated methanol (65 µL), and deoxygenated 2 M aq. Na2CO3 (28 µL) were then 

added.  The reaction vessel was sealed, heated to 50 °C for 82 h, cooled to 23 °C, then 

quenched by the addition of Na2SO4 (100 mg).  Following filtration over a pad of silica 

gel (1:1 hexanes:EtOAc eluent) and evaporation to dryness under reduced pressure, the 

residue was purified by preparative thin layer chromatography (2:1 hexanes:EtOAc 

eluent) to afford pyrazine 134 (4.4 mg, 28% yield) as a yellow foam.  Rf 0.44 (2:1 

hexanes:EtOAc); 1H NMR (500 MHz, C6D6): δ 9.02 (d, J = 8.8 Hz, 1H), 8.85 (s, 1H), 

8.69 (d, J = 2.0 Hz, 1H), 8.35 (s, 1H), 7.71-7.68 (m, 2H), 7.48 (dd, J = 8.8 Hz, 2.0 Hz, 

1H), 7.26 (s, 1H), 6.57 (d, J = 10.3 Hz, 1H), 6.40 (d, J = 8.3 Hz, 2H), 5.16 (d, J = 10.3 

Hz, 1H), 3.92 (d, J = 3.4 Hz, 1H), 3.74 (s, 3H), 3.73-3.58 (comp. m, 3H), 3.45 (s, 3H), 

2.91 (app. dt, J = 7.3, 3.6 Hz, 1H), 2.44 (app. t, J = 7.1 Hz, 1H), 1.86 (dd, J = 13.9, 4.2 

Hz, 1H), 1.74 (dd, J = 11.7, 2.9 Hz, 1H), 1.64-1.55 (comp. m, 4H), 1.02-0.86 (m, 2H), 

0.75 (s, 9H), 0.68 (d, J = 6.8 Hz, 3H), -0.05 (s, 9H), -0.09 (s, 3H), -0.23 (s, 3H); 13C NMR 

(125 MHz, C6D6): δ 190.4, 156.7, 145.4, 145.0, 138.6, 136.7, 135.9, 135.8, 133.4, 131.0, 

130.4 (2C), 129.5, 129.5, 129.1, 127.9, 127.4 (2C), 126.7, 120.8, 119.8, 118.0, 117.2, 

79.0, 77.8, 72.1, 67.1, 53.9, 51.4, 45.4, 41.7, 39.8, 34.6, 26.2 (3C), 21.3, 18.6, 18.5, 17.3, 
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-1.0 (3C), -4.4, -5.0; IR (film): 2951, 1661, 1556, 1376, 1250, 1178, 1141, 1090, 1011 

cm-1; HRMS-FAB (m/z): [M]+ calc’d for C45H59BrN4O7SSi2, 934.2826; found, 934.2872; 

[α]20
D -91.02° (c 0.57, C6H6). 
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Ketone 138.  To methyl ether 133 (120 mg, 0.25 mmol) in THF (12.5 mL) was 

added TBAF (1.0 M in THF, 750 µL, 0.75 mmol).  The reaction mixture was stirred for 4 

h, quenched with saturated aq. NH4Cl (10 mL), diluted with H2O (5 mL), and extracted 

with EtOAc (3 x 25 mL).  The combined organic extracts were washed with brine (15 

mL), dried over MgSO4, and evaporated under reduced pressure.  The residue was 

purified by flash chromatography (1:1 hexanes:EtOAc eluent) to furnish allylic alcohol 

137 (86 mg, 95% yield) as a pale yellow oil.  Rf 0.12 (2:1 hexanes:EtOAc); 1H NMR (300 

MHz, C6D6): δ 6.60 (d, J = 2.8 Hz, 1H), 5.81 (d, J = 2.8 Hz, 1H), 5.64 (d, J = 10.2 Hz, 

1H), 5.58 (d, J = 10.2 Hz, 1H), 4.80 (d, J = 1.7 Hz, 1H), 4.64 (d, J = 1.7 Hz, 1H), 4.15-

4.09 (m, 1H), 3.68-3.59 (m, 2H), 3.42 (t, J = 3.2 Hz, 1H), 3.36 (s, 3H), 2.72 (app. dt, J = 

7.4, 3.9 Hz, 1H), 2.58 (app. dt, J = 8.1, 4.9 Hz, 1H), 1.89 (dd, J = 14.2, 5.1 Hz, 1H), 1.65 

(dd, J = 11.6, 3.0 Hz, 1H), 0.97-0.88 (m, 2H), 0.59 (d, J = 3.9 Hz, 1H), -0.03 (s, 9H); 13C 

NMR (75 MHz, C6D6, 18/19 C): δ 189.4, 149.4, 140.6, 130.4, 113.8, 107.4, 78.9, 76.7, 

72.0, 66.2, 51.6, 44.3, 41.1, 39.5, 18.4, -0.9 (3C); IR (film): 3460 (br), 2951, 1659, 1424, 
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1248, 1111, 1023 cm-1; HRMS-FAB (m/z): [M + H]+ calc’d for C19H30NO4Si, 364.1944; 

found, 364.1942; [α]24
D +330.71° (c 1.0, C6H6). 

Allylic alcohol 137 (44.0 mg, 0.121 mmol) and freshly prepared 

Rh(nbd)(dppb)BF4 (8.6 mg, 0.0121 mmol)48 were combined under a glovebox 

atmosphere.  The reaction vessel was carefully sealed and removed from the glovebox. 

CH2Cl2 (12.0 mL) was added, and a balloon of H2 (1 atm) was applied without purging.  

After 3 h of stirring, the reaction mixture was filtered over a plug of silica gel (CH2Cl2, 

then 2:1 hexanes:EtOAc eluent) to afford ketone 138 (43.0 mg, 98% yield) as a colorless 

oil.  

Alternate Procedure.  To allylic alcohol 137 (10.6 mg, 0.029 mmol) in CH2Cl2 

(1.5 mL) at 23 °C was added Dess-Martin periodinane (50.0 mg, 0.118 mmol).  The 

mixture was stirred for 10 min, quenched with a solution of saturated aq. NaHCO3 and 

saturated aq. Na2S2O3 (1:1, 2 mL), stirred for 10 min, and extracted with EtOAc (4 x 1 

mL).  The combined organic layers were washed with brine (1 mL), dried by passage 

over a plug of silica gel (EtOAc eluent), and evaporated under reduced pressure to afford 

the crude oxidized product, which was used in the subsequent reaction.  Rf 0.31 (2:1, 

hexanes:EtOAc). 

A flask containing the crude oxidized product and 10% Pd/C (10 mg, 0.0094 

mmol) in EtOH (2.0 mL) at 23 °C was evacuated and back-filled with H2 (3x).  After 20 

min, the reaction mixture was filtered over a Celite plug (EtOAc eluent), and the solvent 

was evaporated in vacuo.  The residue was dissolved in EtOAc (2 mL), and then filtered 

over a short plug of silica gel (EtOAc eluent).  After evaporation of solvent under 

reduced pressure, the crude material was further purified by preparative thin layer 
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chromatography (2:1 hexanes:EtOAc) to afford ketone 138 (9.9 mg, 93% yield, 2 steps) 

as a colorless oil.  Rf 0.30 (2:1 hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 6.53 (d, J 

= 2.5 Hz, 1H), 5.66 (d, J = 2.5 Hz, 1H), 5.50 (d, J = 10.5 Hz, 1H), 5.36 (d, J = 10.2 Hz, 

1H), 3.57-3.38 (m, 2H), 3.34 (s, 3H), 2.98 (dd, J = 14.3, 2.5 Hz, 1H), 2.70-2.64 (m, 1H), 

2.57-2.47 (m, 1H), 2.43 (d, J = 14.3 Hz, 1H), 2.11-1.99 (m, 1H), 1.69 (dd, J = 12.2, 2.6 

Hz, 1H), 0.95 (d, J = 6.6 Hz, 3H), 0.84 (t, J = 8.0 Hz, 2H), -0.03 (s, 9H); 13C NMR (125 

MHz, C6D6): δ 205.7, 187.9, 137.5, 131.1, 126.6, 109.7, 82.9, 76.8, 66.4, 52.7, 52.3, 48.1, 

41.0, 37.7, 18.3, 13.0, -1.0 (3C); IR (film): 2952, 2931, 1716, 1660, 1421, 1123, 1097, 

1076 cm-1; HRMS-FAB (m/z): [M + H]+ - H2 calc’d for C19H28NO4Si, 362.1788; found, 

362.1778; [α]27
D +163.23° (c 1.0, C6H6). 
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Allylic Alcohol 139.  To [3.3.1] bicycle 98 (45 mg, 0.097 mmol) in THF (3 mL) 

at 23 °C was added NaH (60% dispersion in mineral oil, 40 mg, 1.0 mmol).  After stirring 

for 2 min at 23 °C, MeI was added (335 µL, 1.6 mmol).  The resulting mixture was 

stirred for 1 h, and then quenched with saturated aq. NH4Cl (3 mL). EtOAc (3 mL) and 

H2O (3 mL) were added, and the layers were separated.  The aqueous layer was further 

extracted with EtOAc (3 x 4 mL).  The combined organic layers were washed with brine 

(4 mL), dried by passage over a plug of SiO2 (EtOAc eluent), and evaporated under 

reduced pressure.  The crude product was purified by flash chromatography (7:1 
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hexanes:EtOAc) to afford methyl ether 162 (40 mg, 86% yield) as a colorless oil.  Rf 0.38 

(5:1 hexanes:EtOAc). 

 To methyl ether 162 (19 mg, 0.0396 mmol) in THF (1.5 mL) was added TBAF 

(1.0 M in THF, 75 µL, 0.075 mmol).  The reaction mixture was stirred for 45 min, 

quenched with saturated aq. NH4Cl (1 mL), diluted with H2O (1 mL), and extracted with 

EtOAc (5 x 1 mL).  The combined organic extracts were washed with brine (1 mL), dried 

by passage over a plug of SiO2 (EtOAc eluent), and evaporated under reduced pressure.  

The residue was purified by flash chromatography (1:1 hexanes:EtOAc eluent) to furnish 

allylic alcohol 139 (12.4 mg, 86% yield) as a pale yellow oil.  Rf 0.16 (2:1 

hexanes:EtOAc); 1H NMR (300 MHz, C6D6): δ 6.57 (d, J = 2.4 Hz, 1H), 5.82 (d, J = 2.4 

Hz, 1H), 5.58 (d, J = 10.1 Hz, 1H), 5.49 (d, J = 10.1 Hz, 1H), 5.23-5.18 (m, 1H), 5.00-

4.95 (m, 1H), 4.03-3.90 (m, 1H), 3.60-3.51 (comp. m, 3H), 3.32 (s, 3H), 2.61-2.50 

(comp. m, 2H), 1.73-1.61 (comp. m, 2H), 1.15 (br s, 1H), 0.87 (t, J = 8.0 Hz, 2H), -0.07 

(s, 9H); 13C NMR (75 MHz, C6D6, 18/19 C): δ 189.2, 150.1, 139.9, 131.0, 107.9, 106.6, 

81.4, 77.0, 67.0, 66.5, 52.0, 46.3, 41.7, 40.9, 18.3, -1.0 (3C); IR (film): 3452 (br), 2951, 

1653, 1420, 1250, 1125, 1076 cm-1; HRMS-EI (m/z): [M]+ calc’d for C19H29NO4Si, 

363.1866; found, 363.1857; [α]23
D -410.29° (c 1.0, C6H6). 
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Boronic Ester 144.  A flask wrapped in aluminum foil at 23 °C was charged with 

ketone 138 (25 mg, 0.0689 mmol), THF (5 mL), and freshly recrystallized NBS (37.5 

mg, 0.211 mmol).  The reaction vessel was placed in a 40 °C oil bath, stirred for 15 min, 

then cooled to 0 °C.  The reaction was quenched with saturated aq. Na2S2O3 (10 mL), 

diluted with H2O (5 mL), and extracted with Et2O (3 x 20 mL).  The combined organic 

layers were washed with brine (15 mL), dried over MgSO4, and evaporated under 

reduced pressure to afford the crude product.  Further purification by flash column 

chromatography (3:1 hexanes:EtOAc eluent) afforded bromide 163 (29.9 mg, 98% yield) 

as a colorless oil. Rf 0.45 (2:1 hexanes:EtOAc). 

To bromide 163 (27 mg, 0.061 mmol) and 2-isopropoxy-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (69, 510 µL, 2.5 mmol) in THF (7 mL) at -78 °C was added n-BuLi 

(2.5 M in hexanes, 730 µL, 0.183 mmol) dropwise over 3 min.  After stirring for an 

additional 10 min at -78 °C, the reaction mixture was quenched with saturated aq. NH4Cl 

(7 mL), warmed to 23 °C, diluted with H2O (10 mL), and extracted with EtOAc (3 x 20 

mL).  The combined organic layers were washed with brine (15 mL), dried over MgSO4 

and evaporated under reduced pressure to afford the crude product.  Further purification 

by flash column chromatography (3:1 hexanes:EtOAc eluent) afforded boronic ester 144 

(22 mg, 74% yield) as a colorless oil.  Rf 0.42 (2:1 hexanes:EtOAc); 1H NMR (300 MHz, 

C6D6): δ 7.37 (s, 1H), 5.46 (d, J = 10.2 Hz, 1H), 5.33 (d, J = 10.2 Hz, 1H), 3.77-3.72 (m, 
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1H), 3.49-3.38 (m, 2H), 3.31 (s, 3H), 3.03 (dd, J = 14.0, 2.8 Hz, 1H), 2.61-2.53 (m, 1H), 

2.47 (d, J = 13.8 Hz, 1H), 2.36-2.25 (m, 1H), 1.78 (dd, J = 12.4, 3.0 Hz, 1H), 1.24 (d, J = 

6.6 Hz, 3H), 1.12 (s, 12H), 0.84-0.77 (m, 2H), -0.05 (s, 9H); 13C NMR (125 MHz, C6D6, 

23/25 C): δ 206.4, 188.3, 144.6, 140.0, 83.6 (2C), 83.1, 77.1, 66.5, 52.9, 52.3, 49.0, 41.4, 

37.1, 25.3 (2C), 25.2 (2C), 18.3, 13.0, -0.9 (3C); IR (film) 2977, 2951, 1718, 1664, 1543, 

1399, 1322, 1263, 1145, 1092, 1074; HRMS-FAB (m/z): [M + H]+ calc’d for 

C25H41NO6SiB, 490.2796; found, 490.2800; [α]29
D +50.77° (c 0.4, C6H6). 
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Pyrazine (–)-113.  A vial charged with bromopyrazine 73 (29.6 mg, 0.055 

mmol), boronic ester 144 (18 mg, 0.0368 mmol), and 

tetrakis(triphenylphosphine)palladium(0) (6.4 mg, 0.0055 mmol) was evacuated and 

purged with N2.  Deoxygenated benzene (735 µL), deoxygenated methanol (150 µL), and 

deoxygenated 2 M aq. Na2CO3 (61 µL) were then added.  The reaction vessel was sealed, 

heated to 50 °C for 72 h, cooled to 23 °C, then quenched by the addition of Na2SO4 (200 

mg).  Following filtration over a pad of silica gel (3:1 EtOAc:hexanes eluent) and 

evaporation to dryness under reduced pressure, the residue was purified by flash column 

chromatography (2:1 → 1:1 hexanes:EtOAc eluent) to afford pyrazine (–)-113 (26.8 mg, 

89% yield) as a yellow foam.  Rf, 1H NMR, 13C NMR, HRMS, and IR characterization 

data for (+)-113 are reported earlier in this section.  [α]27
D -72.92° (c 1.0, CHCl3). 
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(–)-Dragmacidin F (7).  Pyrazine (–)-113 was converted to (–)-dragmacidin F (7) 

by methods described earlier in this section.  1H NMR, 13C NMR, HRMS, and IR 

characterization data for (+)-7 are also reported above.  [α]29
D –148.33° (c 0.20, MeOH).  

For comparison, natural (–)-dragmacidin F (7): [α]25
D –159° (c 0.40, MeOH).1b 
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APPENDIX THREE 

 

Synthetic Summary for (+)- and (–)-Dragmacidin F (7) 
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Figure A3.1  The synthesis of boronic ester 97. 
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Figure A3.2  The synthesis of (+)-dragmacidin F (7).   
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Figure A3.3  The synthesis of (–)-dragmacidin F (7).   
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APPENDIX FOUR 

 

Spectra Relevant to Chapter Three: 

The Total Synthesis of (+)- and (–)-Dragmacidin F 
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Figure A4.2  Infrared spectrum (thin film/NaCl) of compound 146. 

 
Figure A4.3  13C NMR (75 MHz, CDCl3) of compound 146. 



230 

 Fi
gu

re
 A

4.
4 

 1 H
 N

M
R 

(3
00

 M
H

z, 
CD

3O
D

) o
f c

om
po

un
d 

14
7.

 

 
 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

O

T
B
S
O

O

H
O

1
4
7

H
O

O
H



231 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A4.5  Infrared spectrum (thin film/NaCl) of compound 147. 

 
Figure A4.6  13C NMR (75 MHz, CD3OD) of compound 147. 
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Figure A4.8  Infrared spectrum (thin film/NaCl) of compound 103. 

 
Figure A4.9  13C NMR (75 MHz, CDCl3) of compound 103. 
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Figure A4.11  Infrared spectrum (thin film/NaCl) of compound 105. 

 
Figure A4.12  13C NMR (75 MHz, CDCl3) of compound 105. 
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Figure A4.14  Infrared spectrum (thin film/NaCl) of compound 106. 

 
Figure A4.15  13C NMR (75 MHz, CDCl3) of compound 106. 



238 

 Fi
gu

re
 A

4.
16

  1 H
 N

M
R 

(3
00

 M
H

z, 
CD

Cl
3) 

of
 co

m
po

un
d 

10
4.

 

  
 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

O

T
B
S
O

H
O

O
H

1
0
4



239 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure A4.17  Infrared spectrum (thin film/NaCl) of compound 104. 

 
Figure A4.18  13C NMR (75 MHz, CDCl3) of compound 104. 
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Figure A4.20  Infrared spectrum (thin film/NaCl) of compound 109. 

 
Figure A4.21  13C NMR (75 MHz, CDCl3) of compound 109. 
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Figure A4.23  Infrared spectrum (thin film/NaCl) of compound 151. 

 
Figure A4.24  13C NMR (75 MHz, CDCl3) of compound 151. 
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Figure A4.26  Infrared spectrum (thin film/NaCl) of compound 99. 

 
Figure A4.27  13C NMR (75 MHz, CDCl3) of compound 99. 
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Figure A4.29  Infrared spectrum (thin film/NaCl) of compound 153. 

 
Figure A4.30  13C NMR (75 MHz, CDCl3) of compound 153. 
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Figure A4.32  Infrared spectrum (thin film/NaCl) of compound 100. 

 
Figure A4.33  13C NMR (75 MHz, CDCl3) of compound 100. 
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Figure A4.36  Infrared spectrum (thin film/NaCl) of compound 98. 

 
Figure A4.37  13C NMR (75 MHz, C6D6) of compound 98. 
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Figure A4.40  Infrared spectrum (thin film/NaCl) of compound 110. 

 
Figure A4.41  13C NMR (75 MHz, CDCl3) of compound 110. 
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Figure A4.43  Infrared spectrum (thin film/NaCl) of compound 154. 

 
Figure A4.44  13C NMR (75 MHz, C6D6) of compound 154. 
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Figure A4.46  Infrared spectrum (thin film/NaCl) of compound 111. 

 
Figure A4.47  13C NMR (75 MHz, C6D6) of compound 111. 
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Figure A4.49  Infrared spectrum (thin film/NaCl) of compound 155. 

 
Figure A4.50  13C NMR (75 MHz, C6D6) of compound 155. 
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Figure A4.52  Infrared spectrum (thin film/NaCl) of compound 97. 

 
Figure A4.53  13C NMR (75 MHz, C6D6) of compound 97. 
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Figure A4.55  Infrared spectrum (thin film/NaCl) of compound 112. 

 
Figure A4.56  13C NMR (75 MHz, CDCl3) of compound 112. 
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Figure A4.58  Infrared spectrum (thin film/NaCl) of compound 113. 

 
Figure A4.59  13C NMR (75 MHz, CDCl3) of compound 113. 
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Figure A4.61  Infrared spectrum (thin film/NaCl) of compound 117. 

 
Figure A4.62  13C NMR (125 MHz, C6D6) of compound 117. 
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Figure A4.64  Infrared spectrum (thin film/NaCl) of compound 118. 

 
Figure A4.65  13C NMR (125 MHz, CD3OD) of compound 118. 



272 

 Fi
gu

re
 A

4.
66

  1 H
 N

M
R 

(3
00

 M
H

z, 
CD

Cl
3) 

of
 co

m
po

un
d 

11
9.

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

1
1
9

NN

N S
E
M

T
s
N

B
r

O

O
M
e

M
e
O

H

T
s
O
N



273 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

Figure A4.67  Infrared spectrum (thin film/NaCl) of compound 119. 

 
Figure A4.68  13C NMR (75 MHz, CDCl3) of compound 119. 
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Figure A4.71  Infrared spectrum (thin film/NaCl) of compound 120. 

 
Figure A4.72  13C NMR (75 MHz, CD3OD) of compound 120. 
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Figure A4.74  Infrared spectrum (thin film/NaCl) of compound 124. 

 
Figure A4.75  13C NMR (75 MHz, CD3OD) of compound 124. 
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Figure A4.77  Infrared spectrum (thin film/NaCl) of  (+)-dragmacidin F (7). 

 
Figure A4.78  13C NMR (125 MHz, CD3OD) of (+)-dragmacidin F (7). 
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Figure A4.80  Infrared spectrum (thin film/NaCl) of compound 128. 

 
Figure A4.81  13C NMR (75 MHz, CDCl3) of compound 128. 



283 

 
Fi

gu
re

 A
4.

82
  1 H

 N
M

R 
(3

00
 M

H
z, 

C 6
D

6) 
of

 c
om

po
un

d 
15

9.
 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

1
5
9

O

O
H

O
H

N S
E
M

T
B
S
O



284 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure A4.83  Infrared spectrum (thin film/NaCl) of compound 159. 

 
Figure A4.84  13C NMR (75 MHz, C6D6) of compound 159. 
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Figure A4.86  Infrared spectrum (thin film/NaCl) of compound 131. 

 
Figure A4.87  13C NMR (75 MHz, C6D6) of compound 131. 
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Figure A4.89  Infrared spectrum (thin film/NaCl) of compound 132. 

 
Figure A4.90  13C NMR (75 MHz, C6D6) of compound 132. 
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Figure A4.92  Infrared spectrum (thin film/NaCl) of compound 130. 

 
Figure A4.93  13C NMR (75 MHz, C6D6) of compound 130. 
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Figure A4.95  Infrared spectrum (thin film/NaCl) of compound 126. 

 
Figure A4.96  13C NMR (75 MHz, C6D6) of compound 126. 
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Figure A4.98  Infrared spectrum (thin film/NaCl) of compound 127. 

 
Figure A4.99  13C NMR (75 MHz, C6D6) of compound 127. 
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Figure A4.101  Infrared spectrum (thin film/NaCl) of compound 133. 

 
Figure A4.102  13C NMR (75 MHz, C6D6) of compound 133. 
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Figure A4.104  Infrared spectrum (thin film/NaCl) of compound 136. 

 
Figure A4.105  13C NMR (75 MHz, C6D6) of compound 136. 
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Figure A4.107  Infrared spectrum (thin film/NaCl) of compound 134. 

 
Figure A4.108  13C NMR (125 MHz, C6D6) of compound 134. 
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Figure A4.110  Infrared spectrum (thin film/NaCl) of compound 137. 

 
Figure A4.111  13C NMR (75 MHz, C6D6) of compound 137. 
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Figure A4.113  Infrared spectrum (thin film/NaCl) of compound 138. 

 
Figure A4.114  13C NMR (125 MHz, C6D6) of compound 138. 
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Figure A4.116  Infrared spectrum (thin film/NaCl) of compound 139. 

 
Figure A4.117  13C NMR (75 MHz, C6D6) of compound 139. 
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Figure A4.119  Infrared spectrum (thin film/NaCl) of compound 144. 

 
Figure A4.120  13C NMR (125 MHz, C6D6) of compound 144. 
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APPENDIX FIVE 

 

The Formal Total Synthesis of Dragmacidin B, trans-Dragmacidin C,  

and cis- and trans-Dihydrohamacanthin A 

 

A5.1  Introduction 

 Having established that halogen-selective Suzuki couplings are a powerful 

method for constructing the carbon skeleton of the pyrazinone containing dragmacidins, 

we hypothesized that a similar strategy could be used to access the piperazine 

dragmacidins and related bis(indole) alkaloids.  This appendix section describes the 

implementation of this approach to achieve the formal total synthesis of dragmacidin B 

(3),1 trans-dragmacidin C (4),2 and cis- and trans-dihydrohamacanthin A (164b)3 (Figure 

A5.1.1).4 

 

Figure A5.1.1 
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A5.2  The Formal Total Synthesis of Dragmacidin B and trans-Dragmacidin C 

 A retrosynthetic strategy for the preparation of dragmacidin B (3) and trans-

dragmacidin C (4) is shown below in Scheme A5.2.1.  Based on conditions reported by 

Horne, each of the bis(indole) alkaloids can be accessed from unsaturated derivative 165 

in a single step.5  Pyrazine 165, in turn, would be obtained from two halogen-selective 

Suzuki cross-coupling reactions of boronic acid 166 with a dihalogenated pyrazine (167).  

We anticipated that the boronic acid fragment employed in our synthesis of dragmacidin 

D (i.e., 54b) could be utilized as a surrogate for 166 in order to achieve our current goals.  

However, the success of our plan would depend highly on the choice of halogens for 

pyrazine 167. 

 

Scheme A5.2.1 
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 In order to probe the limits of our halogen-selective Suzuki cross-coupling 

methodology, we chose to use known dibromide 1686 as the critical pyrazine fragment 

(Scheme A5.2.2).  In a one-pot, 4-step transformation, an excess of 6-bromoindolyl- 

boronic acid (54b) was exposed to dibromopyrazine 168 under our standard cross-

coupling conditions.  Following quenching with KOH/ethanol, the deprotected pyrazine 

product (165) was obtained in 54% yield.  Notably, although four bromides were 

introduced in the reaction mixture, only the two pyrazinyl bromides were reactive in the 

presence of Pd(0) at 50 °C.  This rapid synthesis of bis(indole)pyrazine 165 constitutes a 

formal total synthesis of both dragmacidin B (3) and trans-dragmacidin C (4).5,7,8 

 

Scheme A5.2.2 
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A5.3  The Formal Total Synthesis of cis- and trans-Dihydrohamacanthin A  

  These halogen-selective Suzuki couplings also have great potential for 

assembling a related family of natural products, the dihydrohamacanthins (164 and 169, 

Scheme A5.3.1).  In this scenario, the desired alkaloids (164 and 169) would be obtained 

from their pyrazinone counterparts (22 and 170), using the method established by Horne.9  

Intermediates 22 and 170, in turn, would arise via cross-coupling chemistry using indole 

fragments 171 and 172, as well as pyrazine fragments 173 and 174, in a manner similar to 

that described above.  Halogen-selective cross-couplings will be crucial to prepare all of 

the halogenation patterns present in this series of natural products (164a-d, 169a-d). 
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 To demonstrate the feasibility of this approach, we prepared one of the 

dihydrohamacanthin natural products (164b, Scheme A5.3.2).  In the first Suzuki 

coupling, dihalopyrazine 63 and bromoindole 54b were treated with Pd(0) at 23 °C to 

afford coupled indolylpyrazine 73, as described in Chapter 2, Section 2.3.4.  Dibromide 

73, in turn, was subjected to boronic ester 175 in the presence of Pd(0) at 50 °C to 

produce bis(indole)pyrazine 176 in 53% yield.   In both cases, complete halogen-

selectivity was observed.  Subsequent removal of all protecting groups furnished 

pyrazinone 22b, which has previously been converted to the natural product (164b) in a 

single step.9,10,11 
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A5.4  Conclusion 

 In summary, we have completed the formal total synthesis of dragmacidin B (3) 

and trans-dragmacidin C (4).  Our route features a one-pot, 4-step halogen-selective 

cross-coupling/deprotection sequence to construct the bis(indole) scaffold of our targets.  

In addition, we have applied this methodology to the formal synthesis of a 

dihydrohamacanthin natural product (164b).  
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A5.5  Experimental Section  

A5.5.1  Materials and Methods 

 Unless stated otherwise, reactions were conducted in flame-dried glassware under 

an atmosphere of nitrogen using anhydrous solvents (either freshly distilled or passed 

through activated alumina columns).  All commercially obtained reagents were used as 

received.  Reaction temperatures were controlled using an IKAmag temperature 

modulator.  Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 

F254 pre-coated plates (0.25 mm) and visualized using a combination of UV, 

anisaldehyde, and potassium permanganate staining.  ICN silica gel (particle size 0.032-

0.063 mm) was used for flash column chromatography.  

 

A5.5.2  Preparative Procedures 
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 Bis(indole)pyrazine 165.  A vial charged with dibromopyrazine 1686 (15.1 mg, 

0.0635 mmol), boronic acid 54b (75 mg, 0.190 mmol), and 

tetrakis(triphenylphosphine)palladium(0) (11 mg, 0.0095 mmol) was evacuated and 

purged with N2.  Deoxygenated benzene (1.2 mL), deoxygenated methanol (250 µL), and 

deoxygenated 2 M aq. Na2CO3 (105 µL) were added.  The reaction mixture was sparged 

with argon for 3 min.  The vial was then sealed, heated to 50 °C for 84 h, and cooled to 

23 °C. EtOH (7 mL) and KOH (500 mg) were added.   The reaction mixture was heated 
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to 50 °C for 20 h, cooled to 23 °C, then quenched by pouring into 10% (w/v) aq. citric 

acid (20 mL).  EtOAc (30 mL) was added, and the layers were partitioned.  The aqueous 

phase was further extracted with EtOAc (2 x 30 mL).  The combined organic layers were 

washed with brine (15 mL), dried over MgSO4, and evaporated under reduced pressure.  

The crude product was purified by flash chromatography (10:1 CH2Cl2:MeOH eluent), 

then further purified by preparative thin layer chromatography (2:1 EtOAc:hexanes 

eluent) to afford known bis(indole) 1655 (16 mg, 54% yield) as a yellow powder. 
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 Pyrazinone 22b.  A reaction tube charged with indolylpyrazine 7312 (125 mg, 

0.335 mmol), boronic ester 175 (90 mg, 0.168 mmol), and 

tetrakis(triphenylphosphine)palladium(0) (35 mg, 0.030 mmol) was evacuated and 

purged with N2.  Deoxygenated benzene (3.5 mL), deoxygenated methanol (690 µL), and 

deoxygenated 2 M aq. Na2CO3 (180 µL) were then added.  The reaction mixture was 

sparged with argon for 2 min.  The tube was then sealed, heated to 50 °C for 48 h, cooled 

to 23 °C, and quenched by the addition of Na2SO4 (200 mg).  The reaction mixture was 

filtered over a plug of SiO2 (CH2Cl2 eluent), and the solvent was evaporated under 
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reduced pressure.  The crude product was purified by flash chromatography (2:1 

CH2Cl2:hexanes eluent) to afford bis(indole) 176 (62 mg, 53% yield), which was used 

immediately in the subsequent reaction.   

 Bis(indole) 176 (30 mg, 0.043 mmol) was dissolved in 1.0 M TBAF in THF (1 

mL, 1 mmol) and heated to 65 °C for 16 h.  After cooling to 23 °C, the solvent was 

removed under reduced pressure, and CH2Cl2 (5 mL) was added.  The organic layer was 

washed with H2O (2 x 1 mL) and brine (1 mL), concentrated to dryness, then purified by 

flash chromatography (CH2Cl2 eluent) to give bis-N-deprotected intermediate 177 (16 

mg, 89% yield).  A mixture of crude 177 (1.5 mg, 0.0034 mmol), LiI (100 mg, 0.75 

mmol), and collidine (1 mL) was heated to 130 °C for 4 days.  After cooling to 23 °C, the 

reaction mixture was diluted with EtOAc (5 mL), washed with H2O (3 x 5 mL) and brine 

(2 mL), then dried by passage over a plug of SiO2 (EtOAc eluent).  The solvent was 

removed under reduced pressure to afford known pyrazone 22b9 (1.0 mg, 69% yield). 
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APPENDIX SIX 

 

A Strategy for the Preparation of Dragmacidin E 

 

A6.1  Background 

A6.1.1  Introduction 

 To date, dragmacidin E (6) is the only member of the dragmacidin family that has 

not been synthesized (Figure A6.1.1).  In 2000, when the Stoltz laboratory began, we 

developed a strategy to prepare this complex alkaloid.  This appendix section describes 

our novel approach to the total synthesis of dragmacidin E and highlights our preliminary 

results involving the synthesis of model systems.1 

 

Figure A6.1.1 
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A6.1.2  Retrosynthetic Analysis of Dragmacidin E 

 Our retrosynthetic strategy for the preparation of dragmacidin E (6) is shown 

below in Scheme A6.1.1.  We envisioned that the guanidinium unit could be installed at a 

late-stage in the synthesis, and the pyrazinone moiety could be masked as a pyrazine.  

Thus, the natural product (6) was disconnected to bis(indole)pyrazine 178.  The seven-
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membered ring of dragmacidin E could then be installed from cyanotriazine 180 via a 

hetero-aryl Diels-Alder/Retro Diels-Alder sequence with concomitant loss of N2 (180 → 

179 → 178).2,3  Aromatic triazine 180 would be obtained from a non-aromatic triazinone 

(181), which in turn could be prepared via a cyclocondensation reaction of amidrazone 

182 and ketoester 183.  Although indole-ketoesters are well known in the literature, 

indole-amidrazones are not.  Therefore, our initial goal was to develop a simple synthesis 

of indole-amidrazones and then utilize those amidrazones to access 

bis(indole)triazinones. 
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A6.2  Model Systems: The Facile Synthesis of Bis(indole)-1,2,4-Triazinones 

  
The preparation of unsubstituted indole-amidrazones turned out to be relatively 

straightforward (Scheme A6.2.1).  Beginning from commercially available indole (20), 

we were able to access cyanoindole 184 in three steps using a known protocol.4  Then, 

simply treating 184 with sodium hydrazide in refluxing THF afforded the desired 

amidrazone (185) in good yield.5  

 

Scheme A6.2.1 
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In the cyclocondensation reaction, exposure of amidrazone 185 to ketoester 1866 

in the presence of MgSO4 in methanol,5 followed by reflux in DMF, afforded the desired 

p-triazinone product (187) in 68% yield (Scheme A6.2.2).  m-Triazinone 188 was also 

formed, although in low yield.  After separation by silica gel chromatography, the C-C 

connectivity of each of the triazinone products (187 and 188) was determined by single 

crystal X-ray diffraction studies.7a,b 
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Scheme A6.2.2 

 

 

We also prepared the corresponding 1-methylated cyclization starting materials, 

methylamidrazone 189 and methylketoester 1908 (Scheme A6.2.3). When these 

compounds were reacted under similar conditions to those described above, triazinone 

formation proceeded readily.  However, the product distribution favored m-

methyltriazinone 192 over p-methyltriazinone 191.  This reversal in selectivity is 

presumably due to the electron donating effect of the N-Me group on the ketone 

functionality of 190, thereby altering its reactivity.  
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Scheme A6.2.3 
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Structural assignments for N-methyl derivatives 191 and 192 were made by 

correlating 1H NMR and TLC data with data for the corresponding N-H compounds (187 

and 188, respectively).  In addition, methyltriazinone 191 was treated with allyl bromide 

under phase transfer conditions to afford allyl derivative 193 (Scheme A6.2.4).  X-ray 

diffraction analysis of a single crystal revealed the C-C connectivity of allyl species 193 

and confirmed that triazinone 191 was para-substituted.7c  

 

Scheme A6.2.4 
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While the cyclocondensation strategy described above was effective for the 

preparation of para-substituted bis(indole)triazinones 187 and 191, initial attempts to 

aromatize those compounds to their triazine counterparts (194 and 195) were met with 

limited success (Scheme A6.2.5).9  Although further work in this area has not been 

carried out, an alternative strategy to directly access bis(indole)triazines, rather than 

triazinones, would be attractive in order to access substrates suitable for the critical Diels-

Alder/Retro Diels-Alder sequence en route to dragmacidin E (6). 
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A6.3  An Alternative Strategy to Access Bis(indole)triazines 

Based on our work related to the other dragmacidins (see Chapters 2 and 3), an 

alternative cross-coupling approach to access aromatic bis(indole)triazines (180) can also 

be envisioned (Scheme A6.3.1).  In this scenario, 180 would be obtained by the 

sequential cross-coupling reactions of metalated indoles (171 and 172) and a 

dihalogenated triazine (196).  Notably, it may be possible to utilize the same indole 

fragments (62 and 54b) that were employed in the total synthesis of dragmacidin D.  The 

appropriate halogenated triazine (196) would likely be discovered after some 

experimentation; however, known dichloride 19710 could serve as a starting point for 
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optimization.  This promising cross-coupling strategy to access dragmacidin E (6) has not 

yet been explored. 

   

Scheme A6.3.1 
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A6.4  Conclusion 

In summary, we have developed a facile method for the synthesis of 

bis(indole)triazinones involving a cyclocondensation reaction between amidrazone and 

ketoester functionalities.  Although we have only prepared simple model systems thus 

far, more highly functionalized bis(indole)triazinones could potentially be used as 

intermediates en route to the total synthesis of dragmacidin E (6).  Additionally, in future 

efforts, it may be possible to access substituted bis(indole)triazines via halogen-selective 

cross-coupling reactions.  
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A6.5  Experimental Section  

A6.5.1  Materials and Methods 

 Unless stated otherwise, reactions were conducted in flame-dried glassware under 

an atmosphere of nitrogen using anhydrous solvents (either freshly distilled or passed 

through activated alumina columns).  All commercially obtained reagents were used as 

received.  Reaction temperatures were controlled using an IKAmag temperature 

modulator.  Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 

F254 pre-coated plates (0.25 mm) and visualized using a combination of UV, 

anisaldehyde, and potassium permanganate staining.  ICN silica gel (particle size 0.032-

0.063 mm) was used for flash column chromatography.  1H NMR spectra were recorded 

on a Varian Mercury 300 (at 300 MHz) or a Varian Inova 500 (at 500 MHz) and are 

reported relative to Me4Si (δ 0.0).  Data for 1H NMR spectra are reported as follows: 

chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration.  13C NMR 

spectra were recorded on a Varian Mercury 300 (at 75 MHz) or a Varian Inova 500 (at 

125 MHz) and are reported relative to Me4Si (δ 0.0).  Data for 13C NMR spectra are 

reported in terms of chemical shift.  IR spectra were recorded on a Perkin Elmer Paragon 

1000 spectrometer and are reported in frequency of absorption (cm-1).  High resolution 

mass spectra were obtained from the California Institute of Technology Mass Spectral 

Facility.  X-ray crystallographic structures were obtained by Mr. Larry M. Henling and 

Dr. Mike W. Day at the California Institute of Technology Beckman Institute X-Ray 

Crystallography Laboratory. 
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A6.5.2  Preparative Procedures 
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  Amidrazone 185.  To a suspension of NaH (60% dispersion in mineral oil, 167 

mg, 4.16 mmol) in Et2O (3.5 mL) at 0 °C was added anhydrous hydrazine (131 µL, 4.15 

mmol).  After stirring for 1 h, a solution of cyanoindole 1844 (200 mg, 1.39 mmol) in 

THF (7 mL) was added dropwise over 10 min.  The reaction mixture was heated to 60 °C 

for 6 h, cooled to 23 °C, quenched by the addition of H2O (5 mL), and extracted with 

EtOAc (3 x 20 mL).  The combined organic extracts were washed with brine (15 mL), 

dried over MgSO4, and evaporated under reduced pressure.  The residue was triturated 

with Et2O (2 mL) and dried under vacuum to afford amidrazone 185 (213 mg, 87% 

yield), which was used immediately in the subsequent reaction.  1H NMR (300 MHz, 

DMSO-d6): δ 11.10 (br s, 1H), 8.15 (d, J = 7.7 Hz, 1H), 7.69 (s, 1H), 7.33 (d, J = 8.1 Hz, 

1H), 7.10-7.03 (m, 1H), 7.01-6.93 (m, 1H), 5.48 (br s, 2H), 4.83 (br s, 2H).  13C NMR (75 

MHz, DMSO-d6): δ 145.3, 136.3, 124.8, 123.6, 122.2, 121.2, 119.0, 111.3, 111.1. 
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Triazinones 187 and 188.  To crude amidrazone 185 (100 mg, 0.568 mmol) and 

MgSO4 (171 mg, 1.42 mmol) in MeOH (2 mL) at 23 °C was added a solution of ester 

1866 (105 mg, 0.516 mmol) in MeOH (5 mL).  The reaction mixture was heated to 40 °C 

for 24 h, then cooled to 23 °C.  After removal of solvent under vacuum, DMF (5 mL) was 

added.  The resulting suspension was refluxed for 24 h, then cooled to 23 °C.  The 

solvent was removed under vacuum, and the crude product was purified by flash column 

chromatography (1:1 hexanes:EtOAc eluent) to afford p-triazinone 187 (115 mg, 68% 

yield) and m-triazinone 188 (30 mg, 18% yield) as yellow solids.  For 187, suitable 

crystals for X-ray diffraction were grown by the slow diffusion of hexanes into a 

saturated solution of 187 in 1:1 DMF:MeOH.  For 188, single crystals suitable for X-ray 

diffraction were obtained by the slow diffusion of hexanes into a saturated solution of 

188 in MeOH.  p-Triazinone 187: Rf 0.28 (4:1 EtOAc:hexanes); mp >250 °C dec; 1H 

NMR (500 MHz, DMSO-d6): δ 13.66 (br s, 1H), 12.03 (s, 1H), 11.67 (s, 1H), 8.83 (s, 

1H), 8.52 (d, J = 7.6 Hz, 1H), 8.50-8.45 (m, 1H), 8.44 (d, J = 2.5 Hz, 1H), 7.55-7.51 

(comp. m, 2H), 7.28-7.17 (comp. m, 4H); 13C NMR (125 MHz, DMSO-d6, 16/19 C): δ 

136.7, 136.3, 131.6, 129.0, 125.3, 125.2, 122.7, 122.3, 122.1, 121.9, 121.1, 120.5, 112.2, 

112.0, 108.1, 106.2.  CCDC deposition number 259291; IR (film) 3350, 1520, 1421, 
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1187 cm-1; HRMS-FAB (m/z): [M+H]+ calc’d for C19H14N5O, 328.1198; found, 328.1185.  

m-Triazinone 188: Rf 0.61 (4:1 EtOAc:hexanes); mp >250 °C dec; 1H NMR (300 MHz, 

DMSO-d6): δ 13.12 (s, 1H), 12.13 (s, 1H), 11.54 (s, 1H), 9.12 (d, J = 2.9 Hz, 1H), 8.77 

(d, J = 7.3 Hz, 1H), 8.26 (d, J = 7.7 Hz, 1H), 8.14 (d, J = 2.6 Hz, 1H), 7.60-7.47 (comp. 

m, 2H), 7.39-7.26 (comp. m, 2H), 7.25-7.12 (comp. m, 2H).  CCDC deposition number 

161494. 
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 Methylamidrazone 189.  Methylamidrazone 189 was prepared in a manner 

analogous to the preparation of 185.  To a suspension of NaH (60% dispersion in mineral 

oil, 779 mg, 19.48 mmol) in Et2O (16.2 mL) at 0 °C was added anhydrous hydrazine (611 

µL, 19.48 mmol).  After stirring for 1 h, a solution of N-methyl-3-cyanoindole11 (198, 

910 mg, 6.49 mmol) in THF (32.5 mL) was added dropwise over 10 min.  The reaction 

mixture was heated to 60 °C for 6 h, cooled to 23 °C, quenched by the addition of H2O 

(17 mL), and extracted with EtOAc (4 x 25 mL).  The combined organic extracts were 

washed with brine (2 x 25 mL), dried over MgSO4, and evaporated under reduced 

pressure to afford crude amidrazone 189 (880 mg, 79% yield), which was used 

immediately in the subsequent reaction without further purification.  1H NMR (300 MHz, 

DMSO-d6): δ 8.16 (d, J = 8.0 Hz, 1H), 7.65 (s, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.18-7.11 

(m, 1H), 7.07-6.99 (m, 1H), 5.43 (br s, 2H), 4.81 (br s, 2H), 3.76 (s, 3H). 
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Bis(methyl)triazinones 191 and 192.  To crude amidrazone 189 (65 mg, 0.378 

mmol) and MgSO4 (159 mg, 1.32 mmol) in MeOH (2 mL) at 23 °C was added a solution 

of ester 1908 (75 mg, 0.343 mmol) in MeOH (3.4 mL).  The reaction mixture was stirred 

at 23 °C for 24 h.  After removal of solvent under vacuum, DMF (5 mL) was added.  The 

resulting suspension was refluxed for 24 h, then cooled to 23 °C.  The solvent was 

removed under vacuum, and the crude product was purified by flash chromatography (1:1 

hexanes:EtOAc eluent) to afford p-bis(methyl)triazinone 191 (20 mg, 16% yield) as a 

yellow solid and impure m-bis(methyl)triazinone 192.  The crude m-triazinone was 

repurified by flash chromatography (1:1 hexanes:EtOAc eluent) to afford pure 192 (86 

mg, 71% yield) as a yellow solid.  p-Bis(methyl)triazinone 191: Rf 0.10 (1:1 

hexanes:EtOAc); mp >250 °C dec; 1H NMR (500 MHz, DMSO-d6): δ 13.60 (br s, 1H), 

8.79 (s, 1H), 8.57-8.49 (comp. m, 2H), 8.34 (s, 1H), 7.60-7.52 (comp. m, 2H), 7.33-7.20 

(comp. m, 4H), 3.91 (s, 3H), 3.90 (s, 3H); 13C NMR (75 MHz, DMSO-d6, 19/21 C): δ 

153.9, 137.2, 136.8, 135.1, 132.5, 125.9, 125.7, 122.6, 122.4, 122.2, 122.1, 121.1, 120.6, 

110.5, 110.1, 107.6, 106.3, 33.3, 32.9; IR (film) 3600, 1567, 1539, 1370 cm-1; HRMS-

FAB (m/z): [M + H]+ calc’d for C21H18N5O, 356.1511; found, 356.1520.  m-

Bis(methyl)triazinone 192: Rf 0.43 (1:1 hexanes:EtOAc); mp >250 °C dec; 1H NMR (300 
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MHz, DMSO-d6): δ 13.15 (br s, 1H), 9.14 (s, 1H), 8.83 (d, J = 7.3 Hz, 1H), 8.28 (d, J = 

7.8 Hz, 1H), 8.14 (s, 1H), 7.62 (d, J = 7.0 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.47-7.32 

(comp. m, 2H), 7.31-7.16 (comp. m, 2H), 3.96 (comp. m, 6H); 13C NMR (75 MHz, 

DMSO-d6, 20/21 C): δ 157.7, 153.2, 148.0, 140.0, 137.6, 137.2, 131.4, 126.3, 124.9, 

123.2, 122.4, 122.1, 121.6, 120.3, 111.2, 110.7, 110.3, 109.2, 33.3, 32.9; IR (film) 3600, 

1646, 1465, 1373 cm-1; HRMS-FAB (m/z): [M + H]+ calc’d for C21H18N5O, 356.1511; 

found, 356.1521.   

 

N
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N
Me

NMe
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N
N

N

N
Me

NMe

OKOH, TBAB
THF, H2O

(61% yield)

Br

193  

Allyl triazinone 193.  To p-triazinone 191 (25 mg, 0.070 mmol) in THF at 23 °C, 

was added allyl bromide (6.7 µL, 0.078 mmol), H2O (150 µL), powdered KOH (20 mg, 

0.35 mmol), and tetrabutylammonium bromide (0.2 mg, 0.0007 mmol) in H2O (10 µL).  

The resulting solution was stirred for 24 h, diluted with H2O (5 mL), and extracted with 

EtOAc (3 x 15 mL).  The combined organic layers were washed with brine (10 mL), 

dried over MgSO4, and evaporated under reduced pressure to afford allyl triazinone 193 

(17 mg, 61% yield).  Single crystals suitable for X-ray diffraction were obtained by the 

slow diffusion of hexanes into a saturated solution of 193 in acetone.  1H NMR (300 

MHz, DMSO-d6): δ 8.85 (s, 1H), 8.42 (d, J = 7.7 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 8.02 

(s, 1H), 7.62-7.51 (comp. m, 2H), 7.37-7.18 (comp. m, 4H), 6.30-6.15 (m, 1H), 5.40-5.28 

(comp. m, 2H), 5.07 (d, J = 5.1 Hz, 2H), 3.92 (s, 3H), 3.91 (s, 3H).  13C NMR (125 MHz, 

DMSO-d6): δ 160.3, 154.4, 145.6, 136.9, 136.6, 136.0, 133.3, 133.2, 126.4, 125.8, 122.6, 
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122.5, 122.4, 121.2, 121.1, 121.0, 118.3, 110.6, 110.3, 106.4, 105.8, 58.3, 33.1, 33.0.  

CCDC deposition number 259195. 
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A6.6  X-Ray Crystallography Reports 

A6.6.1  X-Ray Crystallographic Report for p-Triazinone 187 
 
 

 
 
 
Crystal data and structure refinement for 187 (CCDC 259291). 
Empirical formula  C19H13N5O • 2(C3H7NO) 

Formula weight  473.54 

Crystallization Solvent  DMF/methanol/hexanes 

Crystal Habit  Fragment 

Crystal size 0.26 x 0.24 x 0.23 mm3 

Crystal color  Colorless  
 
 
Data Collection  
Type of diffractometer  Bruker SMART 1000 

Wavelength  0.71073 Å MoKα  

Data Collection Temperature  100(2) K 

θ range for 11276 reflections used 
in lattice determination  2.77 to 28.01° 
Unit cell dimensions a = 7.7516(6) Å α= 115.3400(10)° 
 b = 12.8092(11) Å β= 90.9730(10)° 
 c = 13.5909(11) Å γ  = 106.3430(10)° 
Volume 1155.56(16) Å3 

Z 2 

Crystal system  Triclinic 

Space group  P1 

Density (calculated) 1.361 Mg/m3 
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F(000) 500 

Data collection program Bruker SMART v5.630 

θ range for data collection 1.68 to 28.01° 

Completeness to θ = 28.01° 93.8 %  

Index ranges -10 ≤ h ≤ 10, -16 ≤ k ≤ 16, -17 ≤ l ≤ 17 

Data collection scan type  ω scans at 7 φ settings 

Data reduction program  Bruker SAINT v6.45A 

Reflections collected 23339 
Independent reflections 10181 [Rint= 0.0447] 

Absorption coefficient 0.093 mm-1 

Absorption correction None 

Max. and min. transmission 0.9789 and 0.9761 
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Structure solution program               Bruker XS v6.12 

Primary solution method  Direct methods 

Secondary solution method  Difference Fourier map 

Hydrogen placement  Difference Fourier map 

Structure refinement program  Bruker XL v6.12 

Refinement method Full matrix least-squares on F2 

Data / restraints / parameters 10181 / 3 / 847 

Treatment of hydrogen atoms  Unrestrained 

Goodness-of-fit on F2 1.286 

Final R indices [I>2σ(I),  8409 reflections] R1 = 0.0403, wR2 = 0.0678 

R indices (all data) R1 = 0.0509, wR2 = 0.0699 

Type of weighting scheme used Sigma 

Weighting scheme used w=1/σ2(Fo2) 

Max shift/error  0.006 

Average shift/error  0.001 

Absolute structure parameter 1.2(7) 

Largest diff. peak and hole 0.283 and -0.236 e.Å-3 

  

 Special Refinement Details  
Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of fit (S) are 

based on F2, conventional R-factors (R) are based on F, with F set to zero for negative F2. The threshold 
expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of 
reflections for refinement.  R-factors based on F2 are statistically about twice as large as those based on F, 
and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix.  The cell esds are taken into account individually in the estimation of esds in distances, 
angles and torsion angles; correlations between esds in cell parameters are only used when they are defined 
by crystal symmetry.  An approximate (isotropic) treatment of cell esds is used for estimating esds 
involving l.s. planes. 
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Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 
103) for 187 (CCDC 259291).  U(eq) is defined as the trace of the orthogonalized Uij 
tensor.  
________________________________________________________________________________  
 x y z Ueq 
________________________________________________________________________________   
O(1A) 3192(2) -1559(1) 2826(1) 24(1) 
N(1A) 6162(3) -358(2) 3238(2) 19(1) 
N(2A) 6945(3) 1045(2) 2523(2) 20(1) 
N(3A) 5230(3) 781(2) 2043(2) 20(1) 
N(4A) -879(3) -1308(2) 1026(2) 18(1) 
N(5A) 12261(3) 1932(2) 4134(2) 19(1) 
C(1A) 4396(3) -704(2) 2747(2) 19(1) 
C(2A) 7389(3) 508(2) 3105(2) 15(1) 
C(3A) 3952(3) -75(2) 2149(2) 16(1) 
C(4A) 2116(3) -374(2) 1633(2) 15(1) 
C(5A) 1508(3) 155(2) 994(2) 15(1) 
C(6A) 2333(4) 1051(2) 674(2) 19(1) 
C(7A) 1302(4) 1265(2) -20(2) 22(1) 
C(8A) -547(4) 601(2) -399(2) 24(1) 
C(9A) -1405(4) -265(2) -81(2) 21(1) 
C(10A) -371(3) -474(2) 621(2) 17(1) 
C(11A) 593(3) -1247(2) 1630(2) 17(1) 
C(12A) 9284(3) 889(2) 3592(2) 18(1) 
C(13A) 10029(3) 414(2) 4228(2) 16(1) 
C(14A) 9341(4) -515(2) 4549(2) 19(1) 
C(15A) 10492(4) -662(2) 5222(2) 24(1) 
C(16A) 12323(4) 58(2) 5580(2) 23(1) 
C(17A) 13055(3) 933(2) 5233(2) 20(1) 
C(18A) 11882(3) 1099(2) 4563(2) 17(1) 
C(19A) 10709(3) 1797(2) 3556(2) 18(1) 
 
O(1B) -1098(2) 2912(1) 2152(1) 25(1) 
N(1B) 1047(3) 4719(2) 3310(2) 16(1) 
N(2B) 1604(3) 6308(2) 2815(2) 19(1) 
N(3B) 386(3) 5665(2) 1871(2) 20(1) 
N(4B) -3939(3) 2243(2) -750(2) 18(1) 
N(5B) 5380(3) 8298(2) 5778(2) 19(1) 
C(1B) -217(3) 4002(2) 2370(2) 18(1) 
C(2B) 1921(3) 5845(2) 3507(2) 15(1) 
C(3B) -528(3) 4517(2) 1627(2) 16(1) 
C(4B) -1796(3) 3816(2) 624(2) 15(1) 
C(5B) -2163(3) 4183(2) -215(2) 14(1) 
C(6B) -1504(3) 5244(2) -341(2) 19(1) 
C(7B) -2213(4) 5250(2) -1283(2) 23(1) 
C(8B) -3533(4) 4241(2) -2096(2) 25(1) 
C(9B) -4208(3) 3178(2) -1997(2) 21(1) 
C(10B) -3498(3) 3167(2) -1050(2) 18(1) 
C(11B) -2924(3) 2622(2) 240(2) 18(1) 
C(12B) 3246(3) 6649(2) 4502(2) 17(1) 
C(13B) 3677(3) 6366(2) 5376(2) 16(1) 
C(14B) 3097(3) 5356(2) 5597(2) 18(1) 
C(15B) 3867(4) 5445(2) 6562(2) 25(1) 
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C(16B) 5211(3) 6513(2) 7325(2) 21(1) 
C(17B) 5794(3) 7497(2) 7123(2) 20(1) 
C(18B) 5018(3) 7424(2) 6161(2) 16(1) 
C(19B) 4315(3) 7825(2) 4797(2) 19(1) 
 
O(1C) 5353(2) 7351(2) 472(2) 28(1) 
N(1C) 4737(3) 5870(2) 1035(2) 20(1) 
C(1C) 3747(4) 4604(2) 782(2) 24(1) 
C(2C) 6150(4) 6563(2) 1997(2) 23(1) 
C(3C) 4485(4) 6340(3) 367(2) 26(1) 
 
O(1D) 6049(2) 3243(2) 4744(2) 29(1) 
N(1D) 6737(3) 4699(2) 4134(2) 20(1) 
C(1D) 7751(4) 5933(3) 4366(2) 24(1) 
C(2D) 5339(4) 3990(3) 3159(2) 23(1) 
C(3D) 6972(4) 4242(2) 4828(2) 24(1) 
 
O(1E) 3755(2) 9886(2) 8020(2) 28(1) 
C(1E) 2070(5) 7586(3) 8921(3) 29(1) 
N(1E) 2176(3) 8266(2) 8272(2) 22(1) 
C(2E) 769(4) 7800(3) 7344(3) 34(1) 
C(3E) 3529(4) 9279(2) 8531(2) 22(1) 
 
O(1F) 7626(2) 625(2) 7005(2) 30(1) 
N(1F) 9359(3) 2310(2) 6890(2) 21(1) 
C(1F) 9603(5) 3073(3) 6341(3) 31(1) 
C(2F) 10667(4) 2687(3) 7848(3) 37(1) 
C(3F) 7955(4) 1300(2) 6558(2) 23(1) 
________________________________________________________________________________ 
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Bond lengths [Å] and angles [°] for 187 (CCDC 259291). 
_______________________________________________________________________________
O(1A)-C(1A)  1.268(3) 
N(1A)-C(2A)  1.323(3) 
N(1A)-C(1A)  1.375(3) 
N(2A)-C(2A)  1.345(3) 
N(2A)-N(3A)  1.355(3) 
N(2A)-H(2A)  1.13(2) 
N(3A)-C(3A)  1.316(3) 
N(4A)-C(11A)  1.358(3) 
N(4A)-C(10A)  1.369(3) 
N(4A)-H(4A)  0.78(2) 
N(5A)-C(19A)  1.352(3) 
N(5A)-C(18A)  1.388(3) 
N(5A)-H(5A)  1.05(2) 
C(1A)-C(3A)  1.462(3) 
C(2A)-C(12A)  1.456(3) 
C(3A)-C(4A)  1.446(3) 
C(4A)-C(11A)  1.377(3) 
C(4A)-C(5A)  1.452(3) 
C(5A)-C(6A)  1.392(3) 
C(5A)-C(10A)  1.412(3) 
C(6A)-C(7A)  1.387(4) 
C(6A)-H(6A)  0.99(2) 
C(7A)-C(8A)  1.399(4) 
C(7A)-H(7A)  1.12(2) 
C(8A)-C(9A)  1.366(3) 
C(8A)-H(8A)  0.87(2) 
C(9A)-C(10A)  1.391(3) 
C(9A)-H(9A)  0.92(2) 
C(11A)-H(11A)  0.89(2) 
C(12A)-C(19A)  1.380(3) 
C(12A)-C(13A)  1.442(3) 
C(13A)-C(18A)  1.402(3) 
C(13A)-C(14A)  1.410(3) 
C(14A)-C(15A)  1.371(4) 
C(14A)-H(14A)  0.95(2) 
C(15A)-C(16A)  1.399(4) 
C(15A)-H(15A)  0.919(19) 
C(16A)-C(17A)  1.380(3) 
C(16A)-H(16A)  1.02(2) 
C(17A)-C(18A)  1.395(3) 
C(17A)-H(17A)  1.04(2) 
C(19A)-H(19A)  1.05(2) 
O(1B)-C(1B)  1.267(3) 
N(1B)-C(2B)  1.313(3) 
N(1B)-C(1B)  1.372(3) 
N(2B)-N(3B)  1.354(3) 
N(2B)-C(2B)  1.360(3) 
N(2B)-H(2B)  1.18(2) 
N(3B)-C(3B)  1.327(3) 
N(4B)-C(11B)  1.362(3) 
N(4B)-C(10B)  1.369(3) 

N(4B)-H(4B)  0.94(3) 
N(5B)-C(19B)  1.348(3) 
N(5B)-C(18B)  1.388(3) 
N(5B)-H(5B)  0.97(2) 
C(1B)-C(3B)  1.471(3) 
C(2B)-C(12B)  1.453(3) 
C(3B)-C(4B)  1.428(3) 
C(4B)-C(11B)  1.386(3) 
C(4B)-C(5B)  1.459(3) 
C(5B)-C(6B)  1.396(3) 
C(5B)-C(10B)  1.411(3) 
C(6B)-C(7B)  1.388(3) 
C(6B)-H(6B)  0.97(2) 
C(7B)-C(8B)  1.390(4) 
C(7B)-H(7B)  1.03(3) 
C(8B)-C(9B)  1.379(3) 
C(8B)-H(8B)  0.94(2) 
C(9B)-C(10B)  1.398(3) 
C(9B)-H(9B)  0.98(2) 
C(11B)-H(11B)  0.949(15) 
C(12B)-C(19B)  1.372(3) 
C(12B)-C(13B)  1.442(3) 
C(13B)-C(14B)  1.406(3) 
C(13B)-C(18B)  1.409(3) 
C(14B)-C(15B)  1.377(4) 
C(14B)-H(14B)  0.97(2) 
C(15B)-C(16B)  1.406(4) 
C(15B)-H(15B)  0.97(2) 
C(16B)-C(17B)  1.359(3) 
C(16B)-H(16B)  1.00(2) 
C(17B)-C(18B)  1.385(3) 
C(17B)-H(17B)  0.92(3) 
C(19B)-H(19B)  1.11(3) 
O(1C)-C(3C)  1.224(3) 
N(1C)-C(3C)  1.323(3) 
N(1C)-C(2C)  1.452(3) 
N(1C)-C(1C)  1.467(3) 
C(1C)-H(1C1)  1.01(3) 
C(1C)-H(1C2)  0.95(2) 
C(1C)-H(1C3)  1.03(2) 
C(2C)-H(2C1)  0.96(3) 
C(2C)-H(2C2)  1.00(2) 
C(2C)-H(2C3)  0.99(2) 
C(3C)-H(3C)  1.12(3) 
O(1D)-C(3D)  1.233(3) 
N(1D)-C(3D)  1.340(3) 
N(1D)-C(1D)  1.443(3) 
N(1D)-C(2D)  1.457(3) 
C(1D)-H(1D1)  1.01(2) 
C(1D)-H(1D2)  0.93(3) 
C(1D)-H(1D3)  1.04(3) 
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C(2D)-H(2D1)  0.95(3) 
C(2D)-H(2D2)  1.05(3) 
C(2D)-H(2D3)  1.03(3) 
C(3D)-H(3D)  1.01(2) 
O(1E)-C(3E)  1.227(3) 
C(1E)-N(1E)  1.471(3) 
C(1E)-H(1E1)  0.96(3) 
C(1E)-H(1E2)  1.03(2) 
C(1E)-H(1E3)  1.04(2) 
N(1E)-C(3E)  1.319(3) 
N(1E)-C(2E)  1.442(4) 
C(2E)-H(2E1)  1.08(3) 
C(2E)-H(2E2)  1.07(3) 
C(2E)-H(2E3)  1.03(2) 
C(3E)-H(3E)  1.00(2) 
O(1F)-C(3F)  1.230(3) 
N(1F)-C(3F)  1.324(3) 
N(1F)-C(1F)  1.439(3) 
N(1F)-C(2F)  1.449(4) 
C(1F)-H(1F1)  0.99(3) 
C(1F)-H(1F2)  0.96(3) 
C(1F)-H(1F3)  1.00(3) 
C(2F)-H(2F1)  0.92(3) 
C(2F)-H(2F2)  0.91(2) 
C(2F)-H(2F3)  0.97(2) 
C(3F)-H(3F)  1.034(19) 
 
C(2A)-N(1A)-C(1A) 117.42(19) 
C(2A)-N(2A)-N(3A) 124.1(2) 
C(2A)-N(2A)-H(2A) 123.9(12) 
N(3A)-N(2A)-H(2A) 112.0(12) 
C(3A)-N(3A)-N(2A) 116.6(2) 
C(11A)-N(4A)-C(10A) 109.6(2) 
C(11A)-N(4A)-H(4A) 123.5(19) 
C(10A)-N(4A)-H(4A) 126.5(19) 
C(19A)-N(5A)-C(18A) 108.7(2) 
C(19A)-N(5A)-H(5A) 131.4(14) 
C(18A)-N(5A)-H(5A) 119.9(14) 
O(1A)-C(1A)-N(1A) 119.3(2) 
O(1A)-C(1A)-C(3A) 121.6(2) 
N(1A)-C(1A)-C(3A) 119.1(2) 
N(1A)-C(2A)-N(2A) 122.0(2) 
N(1A)-C(2A)-C(12A) 119.4(2) 
N(2A)-C(2A)-C(12A) 118.5(2) 
N(3A)-C(3A)-C(4A) 117.2(2) 
N(3A)-C(3A)-C(1A) 120.8(2) 
C(4A)-C(3A)-C(1A) 122.0(2) 
C(11A)-C(4A)-C(3A) 126.5(2) 
C(11A)-C(4A)-C(5A) 106.0(2) 
C(3A)-C(4A)-C(5A) 127.4(2) 
C(6A)-C(5A)-C(10A) 118.1(2) 
C(6A)-C(5A)-C(4A) 135.5(2) 
C(10A)-C(5A)-C(4A) 106.27(19) 
C(7A)-C(6A)-C(5A) 119.2(2) 

C(7A)-C(6A)-H(6A) 120.1(13) 
C(5A)-C(6A)-H(6A) 120.7(13) 
C(6A)-C(7A)-C(8A) 121.2(2) 
C(6A)-C(7A)-H(7A) 121.7(12) 
C(8A)-C(7A)-H(7A) 117.1(12) 
C(9A)-C(8A)-C(7A) 121.0(2) 
C(9A)-C(8A)-H(8A) 121.1(14) 
C(7A)-C(8A)-H(8A) 117.8(14) 
C(8A)-C(9A)-C(10A) 117.7(2) 
C(8A)-C(9A)-H(9A) 123.2(12) 
C(10A)-C(9A)-H(9A) 119.1(12) 
N(4A)-C(10A)-C(9A) 129.2(2) 
N(4A)-C(10A)-C(5A) 108.0(2) 
C(9A)-C(10A)-C(5A) 122.7(2) 
N(4A)-C(11A)-C(4A) 110.1(2) 
N(4A)-C(11A)-H(11A) 122.8(13) 
C(4A)-C(11A)-H(11A) 126.9(13) 
C(19A)-C(12A)-C(13A) 106.6(2) 
C(19A)-C(12A)-C(2A) 126.5(2) 
C(13A)-C(12A)-C(2A) 126.8(2) 
C(18A)-C(13A)-C(14A) 118.3(2) 
C(18A)-C(13A)-C(12A) 106.14(19) 
C(14A)-C(13A)-C(12A) 135.6(2) 
C(15A)-C(14A)-C(13A) 118.4(2) 
C(15A)-C(14A)-H(14A) 124.9(14) 
C(13A)-C(14A)-H(14A) 116.3(14) 
C(14A)-C(15A)-C(16A) 122.5(2) 
C(14A)-C(15A)-H(15A) 115.8(13) 
C(16A)-C(15A)-H(15A) 121.6(13) 
C(17A)-C(16A)-C(15A) 120.3(2) 
C(17A)-C(16A)-H(16A) 117.6(12) 
C(15A)-C(16A)-H(16A) 122.1(12) 
C(16A)-C(17A)-C(18A) 117.4(2) 
C(16A)-C(17A)-H(17A) 125.1(13) 
C(18A)-C(17A)-H(17A) 117.2(14) 
N(5A)-C(18A)-C(17A) 128.7(2) 
N(5A)-C(18A)-C(13A) 108.3(2) 
C(17A)-C(18A)-C(13A) 123.0(2) 
N(5A)-C(19A)-C(12A) 110.2(2) 
N(5A)-C(19A)-H(19A) 121.5(13) 
C(12A)-C(19A)-H(19A) 128.2(13) 
C(2B)-N(1B)-C(1B) 117.96(18) 
N(3B)-N(2B)-C(2B) 123.8(2) 
N(3B)-N(2B)-H(2B) 111.8(10) 
C(2B)-N(2B)-H(2B) 124.4(10) 
C(3B)-N(3B)-N(2B) 116.68(19) 
C(11B)-N(4B)-C(10B) 109.2(2) 
C(11B)-N(4B)-H(4B) 125.0(15) 
C(10B)-N(4B)-H(4B) 124.3(15) 
C(19B)-N(5B)-C(18B) 108.5(2) 
C(19B)-N(5B)-H(5B) 127.4(14) 
C(18B)-N(5B)-H(5B) 124.1(14) 
O(1B)-C(1B)-N(1B) 120.0(2) 
O(1B)-C(1B)-C(3B) 120.9(2) 
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N(1B)-C(1B)-C(3B) 119.10(19) 
N(1B)-C(2B)-N(2B) 122.1(2) 
N(1B)-C(2B)-C(12B) 120.1(2) 
N(2B)-C(2B)-C(12B) 117.7(2) 
N(3B)-C(3B)-C(4B) 117.5(2) 
N(3B)-C(3B)-C(1B) 120.4(2) 
C(4B)-C(3B)-C(1B) 122.1(2) 
C(11B)-C(4B)-C(3B) 126.6(2) 
C(11B)-C(4B)-C(5B) 105.5(2) 
C(3B)-C(4B)-C(5B) 127.9(2) 
C(6B)-C(5B)-C(10B) 118.8(2) 
C(6B)-C(5B)-C(4B) 134.9(2) 
C(10B)-C(5B)-C(4B) 106.3(2) 
C(7B)-C(6B)-C(5B) 118.1(2) 
C(7B)-C(6B)-H(6B) 122.7(13) 
C(5B)-C(6B)-H(6B) 119.2(13) 
C(6B)-C(7B)-C(8B) 122.3(2) 
C(6B)-C(7B)-H(7B) 117.8(15) 
C(8B)-C(7B)-H(7B) 119.9(15) 
C(9B)-C(8B)-C(7B) 121.0(2) 
C(9B)-C(8B)-H(8B) 120.4(13) 
C(7B)-C(8B)-H(8B) 118.5(13) 
C(8B)-C(9B)-C(10B) 117.0(2) 
C(8B)-C(9B)-H(9B) 125.5(13) 
C(10B)-C(9B)-H(9B) 117.4(13) 
N(4B)-C(10B)-C(9B) 128.6(2) 
N(4B)-C(10B)-C(5B) 108.5(2) 
C(9B)-C(10B)-C(5B) 122.8(2) 
N(4B)-C(11B)-C(4B) 110.5(2) 
N(4B)-C(11B)-H(11B) 122.1(10) 
C(4B)-C(11B)-H(11B) 127.4(10) 
C(19B)-C(12B)-C(13B) 106.9(2) 
C(19B)-C(12B)-C(2B) 126.8(2) 
C(13B)-C(12B)-C(2B) 126.4(2) 
C(14B)-C(13B)-C(18B) 118.0(2) 
C(14B)-C(13B)-C(12B) 136.2(2) 
C(18B)-C(13B)-C(12B) 105.7(2) 
C(15B)-C(14B)-C(13B) 118.6(2) 
C(15B)-C(14B)-H(14B) 118.6(13) 
C(13B)-C(14B)-H(14B) 122.7(13) 
C(14B)-C(15B)-C(16B) 121.8(2) 
C(14B)-C(15B)-H(15B) 117.8(13) 
C(16B)-C(15B)-H(15B) 120.3(12) 
C(17B)-C(16B)-C(15B) 120.4(2) 
C(17B)-C(16B)-H(16B) 117.9(12) 
C(15B)-C(16B)-H(16B) 121.5(12) 
C(16B)-C(17B)-C(18B) 118.4(2) 
C(16B)-C(17B)-H(17B) 125.0(15) 
C(18B)-C(17B)-H(17B) 116.5(15) 
C(17B)-C(18B)-N(5B) 129.0(2) 
C(17B)-C(18B)-C(13B) 122.7(2) 
N(5B)-C(18B)-C(13B) 108.3(2) 
N(5B)-C(19B)-C(12B) 110.6(2) 
N(5B)-C(19B)-H(19B) 123.7(15) 

C(12B)-C(19B)-H(19B) 125.5(15) 
C(3C)-N(1C)-C(2C) 120.5(2) 
C(3C)-N(1C)-C(1C) 122.0(2) 
C(2C)-N(1C)-C(1C) 117.2(2) 
N(1C)-C(1C)-H(1C1) 105.6(14) 
N(1C)-C(1C)-H(1C2) 106.9(14) 
H(1C1)-C(1C)-H(1C2) 120(2) 
N(1C)-C(1C)-H(1C3) 111.8(12) 
H(1C1)-C(1C)-H(1C3) 102.1(19) 
H(1C2)-C(1C)-H(1C3) 110.1(18) 
N(1C)-C(2C)-H(2C1) 113.8(17) 
N(1C)-C(2C)-H(2C2) 112.0(13) 
H(2C1)-C(2C)-H(2C2) 103(2) 
N(1C)-C(2C)-H(2C3) 108.3(13) 
H(2C1)-C(2C)-H(2C3) 118(2) 
H(2C2)-C(2C)-H(2C3) 100.3(18) 
O(1C)-C(3C)-N(1C) 126.0(3) 
O(1C)-C(3C)-H(3C) 124.0(13) 
N(1C)-C(3C)-H(3C) 109.5(13) 
C(3D)-N(1D)-C(1D) 121.5(2) 
C(3D)-N(1D)-C(2D) 120.5(2) 
C(1D)-N(1D)-C(2D) 117.8(2) 
N(1D)-C(1D)-H(1D1) 112.4(12) 
N(1D)-C(1D)-H(1D2) 113.0(19) 
H(1D1)-C(1D)-H(1D2) 113(2) 
N(1D)-C(1D)-H(1D3) 115.0(16) 
H(1D1)-C(1D)-H(1D3) 102(2) 
H(1D2)-C(1D)-H(1D3) 101(2) 
N(1D)-C(2D)-H(2D1) 110.4(16) 
N(1D)-C(2D)-H(2D2) 104.6(15) 
H(2D1)-C(2D)-H(2D2) 125(2) 
N(1D)-C(2D)-H(2D3) 110.6(14) 
H(2D1)-C(2D)-H(2D3) 97.8(19) 
H(2D2)-C(2D)-H(2D3) 108(2) 
O(1D)-C(3D)-N(1D) 125.5(3) 
O(1D)-C(3D)-H(3D) 121.1(11) 
N(1D)-C(3D)-H(3D) 113.3(11) 
N(1E)-C(1E)-H(1E1) 109.9(14) 
N(1E)-C(1E)-H(1E2) 109.0(11) 
H(1E1)-C(1E)-H(1E2) 109.7(18) 
N(1E)-C(1E)-H(1E3) 107.0(12) 
H(1E1)-C(1E)-H(1E3) 109.0(19) 
H(1E2)-C(1E)-H(1E3) 112.2(17) 
C(3E)-N(1E)-C(2E) 120.6(2) 
C(3E)-N(1E)-C(1E) 120.8(2) 
C(2E)-N(1E)-C(1E) 118.6(2) 
N(1E)-C(2E)-H(2E1) 107.6(13) 
N(1E)-C(2E)-H(2E2) 111.8(18) 
H(2E1)-C(2E)-H(2E2) 128(2) 
N(1E)-C(2E)-H(2E3) 107.9(13) 
H(2E1)-C(2E)-H(2E3) 107.4(18) 
H(2E2)-C(2E)-H(2E3) 91(2) 
O(1E)-C(3E)-N(1E) 125.3(3) 
O(1E)-C(3E)-H(3E) 118.7(13) 
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N(1E)-C(3E)-H(3E) 115.9(13) 
C(3F)-N(1F)-C(1F) 121.7(2) 
C(3F)-N(1F)-C(2F) 119.8(2) 
C(1F)-N(1F)-C(2F) 118.5(2) 
N(1F)-C(1F)-H(1F1) 111.1(15) 
N(1F)-C(1F)-H(1F2) 106.9(16) 
H(1F1)-C(1F)-H(1F2) 98(2) 
N(1F)-C(1F)-H(1F3) 109.4(16) 
H(1F1)-C(1F)-H(1F3) 116(2) 
H(1F2)-C(1F)-H(1F3) 114(2) 
N(1F)-C(2F)-H(2F1) 116.7(17) 
N(1F)-C(2F)-H(2F2) 106.1(14) 
H(2F1)-C(2F)-H(2F2) 126(2) 
N(1F)-C(2F)-H(2F3) 108.5(13) 
H(2F1)-C(2F)-H(2F3) 104(2) 
H(2F2)-C(2F)-H(2F3) 91.6(19) 
O(1F)-C(3F)-N(1F) 125.4(3) 
O(1F)-C(3F)-H(3F) 122.7(11) 
N(1F)-C(3F)-H(3F) 111.7(10)
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Anisotropic displacement parameters (Å2x 104 ) for 187 (CCDC 259291).  The 
anisotropic displacement factor exponent takes the form: -2π 2 [ h2 a*2U 11  + ... + 2 h 
k a* b* U12 ]. 
______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  
O(1A) 227(8)  207(8) 297(8)  156(7) 9(6)  23(7) 
N(1A) 150(10)  200(10) 197(10)  88(9) 2(8)  44(8) 
N(2A) 143(10)  209(10) 230(11)  88(9) 19(8)  41(8) 
N(3A) 179(11)  206(11) 180(11)  63(9) -10(9)  76(9) 
N(4A) 130(11)  193(11) 204(12)  92(10) 6(9)  13(9) 
N(5A) 181(11)  191(11) 195(11)  91(9) 17(9)  33(9) 
C(1A) 180(13)  226(13) 141(12)  49(10) 26(10)  70(11) 
C(2A) 206(13)  123(11) 139(12)  51(10) 17(10)  91(10) 
C(3A) 181(12)  166(12) 114(12)  47(10) 29(10)  46(10) 
C(4A) 185(13)  153(12) 140(12)  76(10) 25(10)  87(10) 
C(5A) 147(13)  162(12) 131(13)  48(11) 39(10)  72(10) 
C(6A) 185(13)  177(12) 196(13)  79(11) 19(10)  70(10) 
C(7A) 286(13)  187(12) 213(13)  97(11) 39(11)  83(11) 
C(8A) 279(15)  281(14) 203(14)  115(12) 18(12)  167(12) 
C(9A) 148(12)  265(14) 170(13)  61(11) -27(10)  84(11) 
C(10A) 191(14)  158(13) 152(13)  59(11) 48(11)  72(11) 
C(11A) 188(13)  166(12) 172(13)  95(11) 11(10)  40(10) 
C(12A) 189(13)  151(12) 146(13)  38(11) 12(10)  39(10) 
C(13A) 194(14)  144(12) 132(13)  38(11) 20(11)  65(10) 
C(14A) 222(14)  190(13) 171(13)  79(11) 51(11)  78(11) 
C(15A) 379(16)  226(13) 201(13)  136(12) 79(12)  151(12) 
C(16A) 305(15)  267(14) 145(13)  61(12) -11(11)  176(12) 
C(17A) 171(13)  225(13) 178(13)  48(11) 20(11)  81(11) 
C(18A) 185(14)  189(13) 127(13)  43(11) 24(11)  94(11) 
C(19A) 201(13)  191(13) 152(13)  69(11) 6(10)  73(10) 
 
O(1B) 281(9)  189(9) 267(8)  130(7) -10(6)  15(7) 
N(1B) 147(10)  199(10) 155(11)  85(9) 32(8)  59(8) 
N(2B) 162(10)  188(10) 167(11)  45(9) -2(8)  20(8) 
N(3B) 153(11)  256(11) 169(11)  93(10) -1(9)  55(9) 
N(4B) 149(10)  174(11) 179(10)  57(9) -14(8)  23(9) 
N(5B) 226(11)  130(10) 213(11)  82(9) 31(9)  39(9) 
C(1B) 133(12)  234(13) 177(13)  80(11) 33(10)  83(10) 
C(2B) 135(12)  195(12) 131(12)  75(10) 37(9)  68(10) 
C(3B) 146(12)  174(12) 200(13)  100(10) 62(10)  85(10) 
C(4B) 154(13)  171(12) 164(13)  98(11) 53(10)  61(10) 
C(5B) 138(13)  179(13) 124(13)  63(11) 10(10)  68(10) 
C(6B) 155(13)  195(13) 210(14)  91(12) 24(11)  42(11) 
C(7B) 228(14)  261(14) 260(14)  154(12) 69(11)  86(11) 
C(8B) 266(14)  340(15) 217(14)  167(12) 45(12)  151(12) 
C(9B) 186(13)  253(14) 162(13)  53(12) -5(11)  87(11) 
C(10B) 176(13)  194(13) 214(14)  103(12) 77(11)  97(11) 
C(11B) 193(13)  148(12) 195(13)  84(11) 26(10)  60(10) 
C(12B) 144(13)  207(13) 192(13)  100(11) 40(11)  82(11) 
C(13B) 143(13)  177(13) 184(14)  82(12) 68(11)  75(11) 
C(14B) 162(13)  180(13) 235(14)  108(12) 28(11)  68(11) 
C(15B) 258(15)  306(15) 315(16)  232(13) 85(12)  146(12) 
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C(16B) 214(13)  296(13) 145(13)  113(11) 28(10)  115(11) 
C(17B) 177(13)  231(14) 161(13)  54(11) 24(11)  95(11) 
C(18B) 152(13)  188(13) 150(13)  62(11) 62(10)  71(11) 
C(19B) 157(12)  242(13) 205(13)  134(11) 48(10)  73(10) 
 
O(1C) 190(10)  320(11) 365(12)  236(10) -8(8)  12(8) 
N(1C) 197(12)  220(11) 224(12)  132(10) 40(10)  70(9) 
C(1C) 240(15)  188(14) 250(16)  91(13) 44(13)  33(12) 
C(2C) 197(15)  208(15) 242(16)  79(13) 14(13)  63(12) 
C(3C) 206(15)  294(15) 264(16)  126(14) -2(12)  56(12) 
 
O(1D) 245(10)  290(10) 333(11)  186(9) -9(8)  25(8) 
N(1D) 175(12)  208(11) 173(12)  62(10) -1(9)  33(9) 
C(1D) 228(16)  254(15) 281(16)  139(14) 71(13)  91(13) 
C(2D) 233(15)  259(15) 210(15)  109(13) 11(12)  84(13) 
C(3D) 147(14)  286(15) 271(16)  140(14) 16(12)  14(12) 
 
O(1E) 300(11)  244(10) 257(10)  102(9) 74(8)  46(8) 
C(1E) 381(18)  276(15) 279(16)  139(14) 113(15)  157(13) 
N(1E) 185(12)  216(12) 205(12)  76(10) 23(10)  37(10) 
C(2E) 260(17)  356(18) 298(18)  91(16) -42(14)  28(14) 
C(3E) 194(14)  212(14) 225(14)  64(12) 62(11)  77(11) 
 
O(1F) 325(11)  220(10) 277(10)  92(9) 84(8)  24(8) 
N(1F) 200(12)  172(11) 206(12)  58(10) 31(10)  21(9) 
C(1F) 346(18)  230(15) 336(18)  121(14) 130(15)  85(13) 
C(2F) 231(17)  386(19) 276(18)  23(15) 8(14)  2(14) 
C(3F) 226(14)  237(14) 194(14)  42(12) 51(12)  101(12) 
______________________________________________________________________________ 
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Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 10 3) for 
187 (CCDC 259291). 
________________________________________________________________________________  
 x  y  z  Uiso 
________________________________________________________________________________  
H(2A) 7960(30) 1770(20) 2381(19) 20(6) 
H(4A) -1870(30) -1700(20) 990(20) 29(8) 
H(5A) 13580(30) 2540(20) 4300(20) 35(7) 
H(6A) 3630(30) 1540(20) 951(18) 26(7) 
H(7A) 1900(30) 1990(20) -280(20) 40(8) 
H(8A) -1140(30) 766(19) -836(17) 16(6) 
H(9A) -2640(30) -686(17) -282(16) 9(5) 
H(11A) 520(30) -1685(18) 1995(16) 7(5) 
H(14A) 8070(30) -930(20) 4350(20) 28(7) 
H(15A) 9970(30) -1226(19) 5467(17) 11(6) 
H(16A) 13160(30) -29(19) 6107(18) 27(6) 
H(17A) 14380(30) 1530(20) 5480(20) 40(8) 
H(19A) 10670(30) 2380(20) 3200(19) 31(7) 
 
H(2B) 2370(30) 7308(18) 2954(16) 3(5) 
H(4B) -4620(30) 1430(20) -1230(20) 36(8) 
H(5B) 6280(30) 9100(20) 6168(19) 30(7) 
H(6B) -600(30) 5950(20) 240(18) 21(6) 
H(7B) -1760(40) 6050(20) -1360(20) 49(8) 
H(8B) -4010(30) 4313(19) -2697(18) 23(6) 
H(9B) -5080(30) 2410(20) -2557(19) 23(6) 
H(11B) -3050(20) 2115(14) 596(13) -11(4) 
H(14B) 2160(30) 4610(20) 5112(19) 18(6) 
H(15B) 3430(30) 4747(19) 6714(17) 11(6) 
H(16B) 5680(30) 6603(18) 8059(17) 19(6) 
H(17B) 6720(30) 8200(20) 7560(20) 30(7) 
H(19B) 4400(40) 8310(30) 4270(20) 71(10) 
 
H(1C1) 2920(40) 4260(20) 60(20) 41(8) 
H(1C2) 3250(30) 4620(20) 1421(19) 12(6) 
H(1C3) 4590(30) 4070(19) 582(17) 12(6) 
H(2C1) 7190(40) 6290(20) 1920(20) 44(9) 
H(2C2) 5720(30) 6484(19) 2659(19) 18(6) 
H(2C3) 6350(30) 7440(20) 2241(18) 16(6) 
H(3C) 3480(40) 5630(20) -380(20) 44(8) 
 
H(1D1) 8810(30) 6310(20) 4984(19) 21(7) 
H(1D2) 7010(40) 6420(30) 4470(30) 61(10) 
H(1D3) 8390(40) 6030(20) 3730(20) 40(8) 
H(2D1) 4910(40) 3160(20) 3020(20) 40(8) 
H(2D2) 5850(40) 4290(20) 2580(20) 46(8) 
H(2D3) 4150(40) 4180(20) 3330(20) 25(7) 
H(3D) 8070(30) 4769(18) 5416(16) 3(5) 
 
H(1E1) 3120(30) 7960(20) 9480(20) 26(7) 
H(1E2) 2010(30) 6708(18) 8405(16) 10(5) 
H(1E3) 920(30) 7620(20) 9295(19) 22(6) 
H(2E1) 1120(30) 8390(20) 6950(20) 52(8) 
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H(2E2) -540(50) 7400(30) 7500(30) 82(11) 
H(2E3) 800(30) 6960(20) 6790(20) 45(7) 
H(3E) 4450(30) 9540(20) 9178(19) 22(6) 
 
H(1F1) 10710(40) 3080(20) 5990(20) 38(8) 
H(1F2) 10010(40) 3900(30) 6900(20) 54(9) 
H(1F3) 8450(40) 2850(20) 5850(20) 46(9) 
H(2F1) 10320(40) 3040(20) 8530(20) 58(8) 
H(2F2) 11780(30) 2930(20) 7668(18) 19(6) 
H(2F3) 10880(30) 1970(20) 7832(18) 34(7) 
H(3F) 7190(30) 1099(17) 5830(16) 1(5) 
________________________________________________________________________________  
 
 
 
 
 
Hydrogen bonds for 187 (CCDC 259291)  [Å and °]. 
____________________________________________________________________________  
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
____________________________________________________________________________  
N(2A)-H(2A)...O(1B)#1 1.13(2) 1.60(2) 2.700(2) 164(2) 
N(4A)-H(4A)...O(1C)#2 0.78(2) 2.08(3) 2.836(3) 162(3) 
N(5A)-H(5A)...O(1D)#1 1.05(2) 1.83(2) 2.842(3) 161(2) 
N(2B)-H(2B)...O(1A)#3 1.18(2) 1.498(19) 2.656(2) 165.6(17) 
N(4B)-H(4B)...O(1E)#4 0.94(3) 1.83(3) 2.765(3) 169(2) 
N(5B)-H(5B)...O(1F)#3 0.97(2) 1.76(2) 2.725(3) 171(2) 
____________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
#1 x+1,y,z     
#2 x-1,y-1,z     
#3 x,y+1,z     
#4 x-1,y-1,z-1       



348 
A6.6.2  X-Ray Crystallographic Report for m-Triazinone 188 
 

 

 
 

 
Crystal data and structure refinement for 188 (CCDC 161494). 
Empirical formula  C20 H17 N5 O2 

Formula weight  359.39 

Crystallization Solvent  Methanol 

Crystal Habit  needle 

Crystal size 0.33 x 0.14 x 0.09 mm3 

Crystal color  yellow  

 

 

Data Collection  
Preliminary Photos                                                     none 

Type of diffractometer  CCD 

Wavelength  0.71073 Å MoKα  

Data Collection Temperature  98(2) K 

θ range for 7767 reflections used 
in lattice determination  2.20 to 27.35° 

Unit cell dimensions a = 4.6579(4) Å α= 90° 
 b = 18.5134(15) Å β= 90° 
 c = 19.5156(16) Å γ  = 90° 

Volume 1682.9(2) Å3 

Z 4 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Density (calculated) 1.418 Mg/m3 

F(000) 752 
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Data collection program Bruker SMART 

θ range for data collection  2.09 to 28.53° 

Completeness to θ = 28.53° 95.9 %  

Index ranges -6<=h<=6, -24<=k<=24, -25<=l<=25 

Data collection scan type  phi and omega scans 

Data reduction program  Bruker SAINT 6.2 

Reflections collected 20360 
Independent reflections 4014  (Rint= 0.0620) 

Absorption coefficient 0.096 mm-1 

Absorption correction None 

Structure solution program  SHELXS-97 (Sheldrick, 1990) 

Primary solution method  direct 

Secondary solution method  difmap 

Hydrogen placement  geom 

Structure refinement program  SHELXL-97 (Sheldrick, 1997) 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4014 / 0 / 312 

Treatment of hydrogen atoms  refall 

Goodness-of-fit on F2 0.903 

Final R indices [I>2σ(I),  3238 reflections] R1 = 0.0367, wR2 = 0.0833 

R indices (all data) R1 = 0.0502, wR2 = 0.0890 

Type of weighting scheme used calc 

Weighting scheme used calc w=1/[^2^(Fo^2^)+(0.0569P)^2^+0.0000P] where 

P=(Fo^2^+2Fc^2^)/3 

Max shift/error  0.010 

Average shift/error  0.001 

Absolute structure parameter 0.2(12) 

Largest diff. peak and hole 0.200 and -0.175 e.Å-3 
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Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 
103) for 188 (CCDC 161494).  U(eq) is defined as the trace of the orthogonalized Uij 
tensor.  
________________________________________________________________________________  
 x y z Ueq 
________________________________________________________________________________   
O(1) 8039(3) 8255(1) 10244(1) 29(1) 
C(1) 6801(3) 8516(1) 9727(1) 24(1) 
C(2) 3843(3) 9014(1) 8628(1) 22(1) 
C(3) 7333(3) 9241(1) 9441(1) 22(1) 
C(4) 9428(3) 9713(1) 9754(1) 22(1) 
C(5) 11233(4) 9558(1) 10295(1) 27(1) 
C(6) 12174(4) 10705(1) 10005(1) 29(1) 
C(7) 13284(4) 11402(1) 9982(1) 36(1) 
C(8) 12196(4) 11856(1) 9489(1) 40(1) 
C(9) 10072(4) 11624(1) 9032(1) 39(1) 
C(10) 8977(4) 10932(1) 9058(1) 32(1) 
C(11) 10029(3) 10457(1) 9559(1) 25(1) 
C(12) 2242(3) 9293(1) 8049(1) 24(1) 
C(13) 2428(4) 9992(1) 7815(1) 29(1) 
C(14) -771(4) 9450(1) 7138(1) 29(1) 
C(15) -2803(4) 9291(1) 6634(1) 34(1) 
C(16) -3858(4) 8598(1) 6607(1) 38(1) 
C(17) -2948(4) 8074(1) 7078(1) 37(1) 
C(18) -961(4) 8231(1) 7582(1) 30(1) 
C(19) 177(3) 8932(1) 7619(1) 25(1) 
N(1) 4781(3) 8142(1) 9396(1) 26(1) 
N(2) 3216(3) 8360(1) 8843(1) 25(1) 
N(3) 5856(3) 9465(1) 8911(1) 22(1) 
N(4) 12866(3) 10143(1) 10444(1) 31(1) 
N(5) 634(3) 10087(1) 7271(1) 32(1) 
C(20) 8632(6) 8407(1) 11949(1) 48(1) 
O(2) 6379(4) 8685(1) 11542(1) 54(1) 
________________________________________________________________________________ 
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Selected bond lengths [Å] and angles [°] for 188 (CCDC 161494). 
_____________________________________________________  
O(1)-C(1) 1.259(2) 
C(1)-N(1) 1.335(2) 
C(1)-C(3) 1.474(2) 
C(2)-N(2) 1.313(2) 
C(2)-N(3) 1.373(2) 
C(2)-C(12) 1.450(2) 
C(3)-N(3) 1.309(2) 
C(3)-C(4) 1.445(2) 
C(4)-C(5) 1.379(2) 
C(4)-C(11) 1.457(2) 
C(5)-N(4) 1.355(2) 
C(6)-N(4) 1.385(2) 
C(6)-C(7) 1.390(2) 
C(6)-C(11) 1.403(2) 
C(7)-C(8) 1.376(3) 
C(8)-C(9) 1.399(3) 
C(9)-C(10) 1.379(2) 
C(10)-C(11) 1.404(2) 
C(12)-C(13) 1.374(2) 
C(12)-C(19) 1.441(2) 
C(13)-N(5) 1.362(2) 
C(14)-N(5) 1.373(2) 
C(14)-C(15) 1.396(2) 
C(14)-C(19) 1.412(2) 
C(15)-C(16) 1.374(3) 
C(16)-C(17) 1.402(3) 
C(17)-C(18) 1.382(2) 
C(18)-C(19) 1.403(2) 
N(1)-N(2) 1.364(2) 
C(20)-O(2) 1.413(3) 
 
O(1)-C(1)-N(1) 120.81(14) 
O(1)-C(1)-C(3) 125.10(14) 
N(1)-C(1)-C(3) 114.08(13) 
N(2)-C(2)-N(3) 125.72(13) 
N(2)-C(2)-C(12) 117.63(14) 
N(3)-C(2)-C(12) 116.64(13) 

N(3)-C(3)-C(4) 119.81(13) 
N(3)-C(3)-C(1) 119.89(14) 
C(4)-C(3)-C(1) 120.29(13) 
C(5)-C(4)-C(3) 127.56(14) 
C(5)-C(4)-C(11) 106.19(14) 
C(3)-C(4)-C(11) 126.25(14) 
N(4)-C(5)-C(4) 109.93(14) 
N(4)-C(6)-C(7) 129.08(17) 
N(4)-C(6)-C(11) 107.66(14) 
C(7)-C(6)-C(11) 123.26(16) 
C(8)-C(7)-C(6) 116.94(18) 
C(7)-C(8)-C(9) 121.24(17) 
C(10)-C(9)-C(8) 121.55(18) 
C(9)-C(10)-C(11) 118.56(17) 
C(6)-C(11)-C(10) 118.44(15) 
C(6)-C(11)-C(4) 106.52(14) 
C(10)-C(11)-C(4) 135.04(16) 
C(13)-C(12)-C(19) 106.59(14) 
C(13)-C(12)-C(2) 124.22(15) 
C(19)-C(12)-C(2) 129.18(13) 
N(5)-C(13)-C(12) 109.97(15) 
N(5)-C(14)-C(15) 129.58(16) 
N(5)-C(14)-C(19) 107.96(14) 
C(15)-C(14)-C(19) 122.46(16) 
C(16)-C(15)-C(14) 117.76(16) 
C(15)-C(16)-C(17) 120.89(17) 
C(18)-C(17)-C(16) 121.47(17) 
C(17)-C(18)-C(19) 119.00(16) 
C(18)-C(19)-C(14) 118.41(15) 
C(18)-C(19)-C(12) 135.30(15) 
C(14)-C(19)-C(12) 106.29(14) 
C(1)-N(1)-N(2) 127.30(13) 
C(2)-N(2)-N(1) 114.03(13) 
C(3)-N(3)-C(2) 118.98(12) 
C(5)-N(4)-C(6) 109.69(15) 
C(13)-N(5)-C(14) 109.19(14)

 
____________________________________________________ 
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Bond lengths [Å] and angles [°] for 188 (CCDC 161494). 
_____________________________________________________  
O(1)-C(1)  1.259(2) 
C(1)-N(1)  1.335(2) 
C(1)-C(3)  1.474(2) 
C(2)-N(2)  1.313(2) 
C(2)-N(3)  1.373(2) 
C(2)-C(12)  1.450(2) 
C(3)-N(3)  1.309(2) 
C(3)-C(4)  1.445(2) 
C(4)-C(5)  1.379(2) 
C(4)-C(11)  1.457(2) 
C(5)-N(4)  1.355(2) 
C(5)-H(5)  0.99(2) 
C(6)-N(4)  1.385(2) 
C(6)-C(7)  1.390(2) 
C(6)-C(11)  1.403(2) 
C(7)-C(8)  1.376(3) 
C(7)-H(7)  0.96(2) 
C(8)-C(9)  1.399(3) 
C(8)-H(8)  0.96(2) 
C(9)-C(10)  1.379(2) 
C(9)-H(9)  0.98(2) 
C(10)-C(11)  1.404(2) 
C(10)-H(10)  0.99(2) 
C(12)-C(13)  1.374(2) 
C(12)-C(19)  1.441(2) 
C(13)-N(5)  1.362(2) 
C(13)-H(13)  1.03(2) 
C(14)-N(5)  1.373(2) 
C(14)-C(15)  1.396(2) 
C(14)-C(19)  1.412(2) 
C(15)-C(16)  1.374(3) 
C(15)-H(15)  1.02(2) 
C(16)-C(17)  1.402(3) 
C(16)-H(16)  0.98(2) 
C(17)-C(18)  1.382(2) 
C(17)-H(17)  1.00(2) 
C(18)-C(19)  1.403(2) 
C(18)-H(18)  1.00(2) 
N(1)-N(2)  1.364(2) 
N(1)-H(1N)  0.93(2) 
N(4)-H(4N)  0.87(2) 
N(5)-H(5N)  0.90(2) 
C(20)-O(2)  1.413(3) 
C(20)-H(20A)  0.93(3) 
C(20)-H(20B)  1.02(2) 
C(20)-H(20C)  1.01(2) 
O(2)-H(2O)  0.83(2) 
 
O(1)-C(1)-N(1) 120.81(14) 
O(1)-C(1)-C(3) 125.10(14) 
N(1)-C(1)-C(3) 114.08(13) 

N(2)-C(2)-N(3) 125.72(13) 
N(2)-C(2)-C(12) 117.63(14) 
N(3)-C(2)-C(12) 116.64(13) 
N(3)-C(3)-C(4) 119.81(13) 
N(3)-C(3)-C(1) 119.89(14) 
C(4)-C(3)-C(1) 120.29(13) 
C(5)-C(4)-C(3) 127.56(14) 
C(5)-C(4)-C(11) 106.19(14) 
C(3)-C(4)-C(11) 126.25(14) 
N(4)-C(5)-C(4) 109.93(14) 
N(4)-C(5)-H(5) 120.6(10) 
C(4)-C(5)-H(5) 129.5(10) 
N(4)-C(6)-C(7) 129.08(17) 
N(4)-C(6)-C(11) 107.66(14) 
C(7)-C(6)-C(11) 123.26(16) 
C(8)-C(7)-C(6) 116.94(18) 
C(8)-C(7)-H(7) 122.3(11) 
C(6)-C(7)-H(7) 120.7(11) 
C(7)-C(8)-C(9) 121.24(17) 
C(7)-C(8)-H(8) 119.5(10) 
C(9)-C(8)-H(8) 119.2(10) 
C(10)-C(9)-C(8) 121.55(18) 
C(10)-C(9)-H(9) 118.4(13) 
C(8)-C(9)-H(9) 120.1(12) 
C(9)-C(10)-C(11) 118.56(17) 
C(9)-C(10)-H(10) 122.7(10) 
C(11)-C(10)-H(10) 118.7(10) 
C(6)-C(11)-C(10) 118.44(15) 
C(6)-C(11)-C(4) 106.52(14) 
C(10)-C(11)-C(4) 135.04(16) 
C(13)-C(12)-C(19) 106.59(14) 
C(13)-C(12)-C(2) 124.22(15) 
C(19)-C(12)-C(2) 129.18(13) 
N(5)-C(13)-C(12) 109.97(15) 
N(5)-C(13)-H(13) 120.9(9) 
C(12)-C(13)-H(13) 129.0(9) 
N(5)-C(14)-C(15) 129.58(16) 
N(5)-C(14)-C(19) 107.96(14) 
C(15)-C(14)-C(19) 122.46(16) 
C(16)-C(15)-C(14) 117.76(16) 
C(16)-C(15)-H(15) 122.6(11) 
C(14)-C(15)-H(15) 119.5(11) 
C(15)-C(16)-C(17) 120.89(17) 
C(15)-C(16)-H(16) 119.1(11) 
C(17)-C(16)-H(16) 119.8(11) 
C(18)-C(17)-C(16) 121.47(17) 
C(18)-C(17)-H(17) 118.8(10) 
C(16)-C(17)-H(17) 119.7(10) 
C(17)-C(18)-C(19) 119.00(16) 
C(17)-C(18)-H(18) 121.2(11) 
C(19)-C(18)-H(18) 119.8(11) 
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C(18)-C(19)-C(14) 118.41(15) 
C(18)-C(19)-C(12) 135.30(15) 
C(14)-C(19)-C(12) 106.29(14) 
C(1)-N(1)-N(2) 127.30(13) 
C(1)-N(1)-H(1N) 119.5(11) 
N(2)-N(1)-H(1N) 113.2(11) 
C(2)-N(2)-N(1) 114.03(13) 
C(3)-N(3)-C(2) 118.98(12) 
C(5)-N(4)-C(6) 109.69(15) 
C(5)-N(4)-H(4N) 124.2(14) 
C(6)-N(4)-H(4N) 125.9(14) 
C(13)-N(5)-C(14) 109.19(14) 
C(13)-N(5)-H(5N) 130.4(13) 
C(14)-N(5)-H(5N) 120.2(13) 
O(2)-C(20)-H(20A) 108.3(17) 
O(2)-C(20)-H(20B) 105.9(15) 
H(20A)-C(20)-H(20B) 108(2) 
O(2)-C(20)-H(20C) 106.6(15) 
H(20A)-C(20)-H(20C) 118(2) 
H(20B)-C(20)-H(20C) 109.4(18) 
C(20)-O(2)-H(2O) 103.1(17) 
___________________________________
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Anisotropic displacement parameters (Å2x 104 ) for 188 (CCDC 161494).  The 
anisotropic displacement factor exponent takes the form: -2π 2 [ h2 a*2U 11  + ... + 2 h 
k a* b* U12 ]. 
______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  
O(1) 380(7)  228(5) 264(6)  30(4) -52(5)  27(5) 
C(1) 272(9)  216(7) 226(8)  -6(6) 17(7)  32(6) 
C(2) 225(8)  225(7) 215(7)  -11(6) 42(6)  26(6) 
C(3) 212(8)  212(7) 224(7)  -14(6) 41(6)  27(6) 
C(4) 215(8)  216(7) 243(7)  -22(6) 33(6)  27(6) 
C(5) 247(8)  306(8) 248(8)  -7(6) 9(7)  12(7) 
C(6) 258(8)  306(8) 295(8)  -57(6) 54(7)  -11(7) 
C(7) 284(10)  343(9) 442(11)  -110(8) 65(8)  -83(8) 
C(8) 381(10)  264(8) 557(12)  -69(8) 142(10)  -76(8) 
C(9) 369(10)  274(8) 517(11)  48(8) 86(9)  8(8) 
C(10) 293(9)  267(8) 386(10)  16(7) 16(8)  4(7) 
C(11) 220(8)  232(7) 303(8)  -41(6) 55(7)  -1(6) 
C(12) 215(8)  263(7) 229(7)  -2(6) 37(6)  20(6) 
C(13) 303(9)  295(8) 270(8)  31(6) 16(7)  20(7) 
C(14) 237(8)  377(9) 240(8)  15(7) 39(7)  40(7) 
C(15) 246(9)  528(11) 248(8)  50(8) 9(7)  70(8) 
C(16) 264(9)  598(12) 272(9)  -40(8) -20(8)  -9(9) 
C(17) 326(10)  451(10) 323(9)  -74(8) 15(8)  -50(9) 
C(18) 292(9)  359(9) 262(8)  -19(7) 13(7)  14(7) 
C(19) 200(8)  317(8) 223(8)  -5(6) 39(6)  34(6) 
N(1) 322(8)  195(6) 255(6)  31(5) -8(6)  -17(6) 
N(2) 283(7)  242(6) 227(6)  15(5) -17(6)  -12(5) 
N(3) 221(7)  220(6) 224(6)  3(5) 23(5)  3(5) 
N(4) 269(8)  368(8) 287(8)  -40(6) -14(7)  -30(6) 
N(5) 332(8)  337(7) 304(8)  97(6) -21(6)  45(7) 
C(20) 556(15)  440(11) 453(13)  -64(9) -39(11)  -35(11) 
O(2) 617(10)  608(9) 394(8)  -159(7) 12(8)  230(8) 
______________________________________________________________________________ 
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Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 10 3) for 
188 (CCDC 161494). 
________________________________________________________________________________  
 x  y  z  Uiso 
________________________________________________________________________________  
  
H(5) 11440(40) 9105(9) 10561(8) 27(4) 
H(7) 14790(50) 11546(10) 10287(9) 44(5) 
H(8) 12950(40) 12339(9) 9447(8) 29(4) 
H(9) 9280(50) 11960(11) 8692(10) 47(5) 
H(10) 7450(40) 10762(9) 8746(8) 27(4) 
H(13) 3570(40) 10417(9) 8014(8) 27(4) 
H(15) -3520(50) 9692(10) 6319(10) 45(6) 
H(16) -5350(40) 8481(10) 6275(9) 41(5) 
H(17) -3780(40) 7577(9) 7059(9) 33(5) 
H(18) -340(40) 7859(9) 7920(9) 32(5) 
H(1N) 4290(40) 7686(10) 9549(8) 37(5) 
H(4N) 14060(50) 10166(11) 10788(11) 52(6) 
H(5N) 190(40) 10487(11) 7035(10) 48(6) 
H(2O) 6840(50) 8561(12) 11147(13) 59(7) 
H(20A) 10300(70) 8664(14) 11848(13) 83(9) 
H(20B) 8070(60) 8513(13) 12446(12) 77(8) 
H(20C) 8660(60) 7868(14) 11873(11) 72(7) 
 
 
 
 
Hydrogen bonds for 188 (CCDC 161494)  [Å and °]. 
____________________________________________________________________________  
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
____________________________________________________________________________  
 N(1)-H(1N)...O(1)#1 0.93(2) 1.88(2) 2.800(2) 173(2) 
 N(5)-H(5N)...O(2)#2 0.90(2) 1.95(2) 2.842(2) 171(2) 
 O(2)-H(2O)...O(1) 0.83(2) 1.93(3) 2.765(2) 178(2) 
____________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
#1 x-1/2,-y+3/2,-z+2    #2 -x+1/2,-y+2,z-1/2       
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A6.6.3  X-Ray Crystallographic Report for Allyl Triazinone 193 
 
 

 
 
 
Crystal data and structure refinement for 193 (CCDC 259195). 
Empirical formula  C24H21N5O 

Formula weight  395.46 

Crystallization Solvent  hexanes/acetone 

Crystal Habit  Fragment 

Crystal size 0.21 x 0.11 x 0.11 mm3 

Crystal color  Colorless 
 
 
Data Collection  
Type of diffractometer  Bruker SMART 1000 

Wavelength  0.71073 Å MoKα  

Data Collection Temperature  100(2) K 

θ range for 6305 reflections used 
in lattice determination  2.49 to 27.62° 
Unit cell dimensions a = 7.8852(8) Å 
 b = 15.3322(15) Å 
 c = 16.3273(16) Å 
Volume 1973.9(3) Å3 

Z 4 

Crystal system  Orthorhombic 

Space group  P212121 

Density (calculated) 1.331 Mg/m3 

F(000) 832 

Data collection program Bruker SMART v5.630 
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θ range for data collection 1.82 to 28.45° 

Completeness to θ = 28.45° 96.5 %  

Index ranges -10 ≤ h ≤ 10, -20 ≤ k ≤ 20, -21 ≤ l ≤ 20 

Data collection scan type  ω scans at 6 φ settings 

Data reduction program  Bruker SAINT v6.45A 

Reflections collected 34532 
Independent reflections 4712 [Rint= 0.0963] 

Absorption coefficient 0.085 mm-1 

Absorption correction None 

Max. and min. transmission 0.9907 and 0.9824 
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Structure solution program                          Bruker XS v6.12 

Primary solution method  Direct methods 

Secondary solution method  Difference Fourier map 

Hydrogen placement  Difference Fourier map 

Structure refinement program  Bruker XL v6.12 

Refinement method Full matrix least-squares on F2 

Data / restraints / parameters 4712 / 0 / 355 

Treatment of hydrogen atoms  Unrestrained 

Goodness-of-fit on F2 1.148 

Final R indices [I>2σ(I),  3244 reflections] R1 = 0.0458, wR2 = 0.0560 

R indices (all data) R1 = 0.0824, wR2 = 0.0596 

Type of weighting scheme used Sigma 

Weighting scheme used w=1/σ2(Fo2) 

Max shift/error  0.000 

Average shift/error  0.000 

Absolute structure parameter 2.8(14) 

Largest diff. peak and hole 0.205 and -0.214 e.Å-3 

 
Special Refinement Details 

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of fit (S) are 
based on F2, conventional R-factors (R) are based on F, with F set to zero for negative F2. The threshold 
expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of 
reflections for refinement.  R-factors based on F2 are statistically about twice as large as those based on F, 
and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix.  The cell esds are taken into account individually in the estimation of esds in distances, 
angles and torsion angles; correlations between esds in cell parameters are only used when they are defined 
by crystal symmetry.  An approximate (isotropic) treatment of cell esds is used for estimating esds 
involving l.s. planes. 
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Atomic coordinates ( x 104) and equivalent  isotropic displacement parameters (Å2x 
103) for 193 (CCDC 259195).  U(eq) is defined as the trace of the orthogonalized Uij 
tensor.  
________________________________________________________________________________  
 x y z Ueq 
________________________________________________________________________________   
O(1) 13620(2) 2937(1) 622(1) 25(1) 
N(1) 11116(2) 2895(1) 1314(1) 18(1) 
N(2) 8961(2) 3837(1) 887(1) 18(1) 
N(3) 9849(2) 4135(1) 230(1) 19(1) 
N(4) 14226(2) 4330(1) -1578(1) 19(1) 
N(5) 6282(2) 2110(1) 2574(1) 19(1) 
C(1) 12133(2) 3195(1) 694(1) 19(1) 
C(2) 9552(2) 3205(1) 1384(1) 18(1) 
C(3) 11387(2) 3830(1) 125(1) 18(1) 
C(4) 7273(3) 4278(1) 968(1) 24(1) 
C(5) 7379(3) 5204(1) 713(1) 25(1) 
C(6) 6285(3) 5576(2) 212(1) 29(1) 
C(7) 12267(2) 4154(1) -586(1) 17(1) 
C(8) 11604(2) 4759(1) -1185(1) 16(1) 
C(9) 10106(2) 5242(1) -1268(1) 20(1) 
C(10) 9911(3) 5772(1) -1941(1) 21(1) 
C(11) 11157(3) 5827(1) -2547(1) 22(1) 
C(12) 12653(3) 5360(1) -2486(1) 20(1) 
C(13) 12856(2) 4843(1) -1796(1) 18(1) 
C(14) 13867(3) 3927(1) -855(1) 19(1) 
C(15) 15833(3) 4284(2) -2010(2) 26(1) 
C(16) 8455(2) 2829(1) 2012(1) 16(1) 
C(17) 8953(2) 2551(1) 2817(1) 17(1) 
C(18) 10411(3) 2659(1) 3302(1) 20(1) 
C(19) 10421(3) 2307(1) 4078(1) 23(1) 
C(20) 9031(3) 1841(1) 4384(1) 27(1) 
C(21) 7576(3) 1739(1) 3929(1) 24(1) 
C(22) 7563(2) 2107(1) 3147(1) 19(1) 
C(23) 6824(2) 2544(1) 1896(1) 18(1) 
C(24) 4612(3) 1715(2) 2666(2) 27(1) 
________________________________________________________________________________ 
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Bond lengths [Å] and angles [°] for 193 (CCDC 259195). 
_______________________________________________________________________________
O(1)-C(1)  1.243(2) 
N(1)-C(2)  1.327(2) 
N(1)-C(1)  1.371(2) 
N(2)-C(2)  1.346(2) 
N(2)-N(3)  1.361(2) 
N(2)-C(4)  1.499(2) 
N(3)-C(3)  1.310(2) 
N(4)-C(14)  1.363(2) 
N(4)-C(13)  1.382(2) 
N(4)-C(15)  1.452(2) 
N(5)-C(23)  1.361(2) 
N(5)-C(22)  1.378(2) 
N(5)-C(24)  1.457(3) 
C(1)-C(3)  1.468(2) 
C(2)-C(16)  1.460(2) 
C(3)-C(7)  1.441(2) 
C(4)-C(5)  1.482(3) 
C(4)-H(4A)  1.062(19) 
C(4)-H(4B)  1.040(19) 
C(5)-C(6)  1.319(3) 
C(5)-H(5)  1.035(19) 
C(6)-H(6A)  1.03(2) 
C(6)-H(6B)  1.04(2) 
C(7)-C(14)  1.380(3) 
C(7)-C(8)  1.445(3) 
C(8)-C(9)  1.401(3) 
C(8)-C(13)  1.409(2) 
C(9)-C(10)  1.376(3) 
C(9)-H(9)  0.971(18) 
C(10)-C(11)  1.397(3) 
C(10)-H(10)  0.950(17) 
C(11)-C(12)  1.383(3) 
C(11)-H(11)  0.938(17) 
C(12)-C(13)  1.388(3) 
C(12)-H(12)  1.031(19) 
C(14)-H(14)  1.02(2) 
C(15)-H(15A)  1.00(2) 
C(15)-H(15B)  0.977(19) 
C(15)-H(15C)  1.01(2) 
C(16)-C(23)  1.372(2) 
C(16)-C(17)  1.437(2) 
C(17)-C(22)  1.399(2) 
C(17)-C(18)  1.406(2) 
C(18)-C(19)  1.378(3) 
C(18)-H(18)  0.979(17) 
C(19)-C(20)  1.400(3) 
C(19)-H(19)  0.994(16) 
C(20)-C(21)  1.377(3) 
C(20)-H(20)  0.900(19) 
C(21)-C(22)  1.394(3) 
C(21)-H(21)  1.016(19) 

C(23)-H(23)  0.996(15) 
C(24)-H(24A)  1.01(2) 
C(24)-H(24B)  1.05(2) 
C(24)-H(24C)  0.942(18) 
 
C(2)-N(1)-C(1) 119.13(16) 
C(2)-N(2)-N(3) 122.61(15) 
C(2)-N(2)-C(4) 125.35(16) 
N(3)-N(2)-C(4) 112.03(15) 
C(3)-N(3)-N(2) 117.33(16) 
C(14)-N(4)-C(13) 108.53(16) 
C(14)-N(4)-C(15) 125.45(18) 
C(13)-N(4)-C(15) 125.84(17) 
C(23)-N(5)-C(22) 108.93(16) 
C(23)-N(5)-C(24) 124.85(18) 
C(22)-N(5)-C(24) 126.23(18) 
O(1)-C(1)-N(1) 120.98(18) 
O(1)-C(1)-C(3) 121.94(19) 
N(1)-C(1)-C(3) 117.08(16) 
N(1)-C(2)-N(2) 121.85(17) 
N(1)-C(2)-C(16) 117.98(17) 
N(2)-C(2)-C(16) 120.16(17) 
N(3)-C(3)-C(7) 115.31(17) 
N(3)-C(3)-C(1) 121.65(18) 
C(7)-C(3)-C(1) 123.03(17) 
C(5)-C(4)-N(2) 110.94(17) 
C(5)-C(4)-H(4A) 112.2(10) 
N(2)-C(4)-H(4A) 111.4(10) 
C(5)-C(4)-H(4B) 110.6(10) 
N(2)-C(4)-H(4B) 103.3(10) 
H(4A)-C(4)-H(4B) 108.0(14) 
C(6)-C(5)-C(4) 123.5(2) 
C(6)-C(5)-H(5) 118.7(12) 
C(4)-C(5)-H(5) 117.5(12) 
C(5)-C(6)-H(6A) 123.8(11) 
C(5)-C(6)-H(6B) 124.7(12) 
H(6A)-C(6)-H(6B) 111.3(16) 
C(14)-C(7)-C(8) 106.12(17) 
C(14)-C(7)-C(3) 127.52(18) 
C(8)-C(7)-C(3) 126.30(17) 
C(9)-C(8)-C(13) 118.32(19) 
C(9)-C(8)-C(7) 135.20(18) 
C(13)-C(8)-C(7) 106.48(16) 
C(10)-C(9)-C(8) 118.94(19) 
C(10)-C(9)-H(9) 120.8(12) 
C(8)-C(9)-H(9) 120.3(12) 
C(9)-C(10)-C(11) 121.5(2) 
C(9)-C(10)-H(10) 117.5(10) 
C(11)-C(10)-H(10) 120.9(10) 
C(12)-C(11)-C(10) 121.1(2) 
C(12)-C(11)-H(11) 120.9(12) 
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C(10)-C(11)-H(11) 117.8(12) 
C(11)-C(12)-C(13) 116.94(19) 
C(11)-C(12)-H(12) 123.7(11) 
C(13)-C(12)-H(12) 119.4(11) 
N(4)-C(13)-C(12) 128.58(18) 
N(4)-C(13)-C(8) 108.33(17) 
C(12)-C(13)-C(8) 123.09(18) 
N(4)-C(14)-C(7) 110.52(18) 
N(4)-C(14)-H(14) 122.0(11) 
C(7)-C(14)-H(14) 127.4(11) 
N(4)-C(15)-H(15A) 107.6(12) 
N(4)-C(15)-H(15B) 109.0(11) 
H(15A)-C(15)-H(15B) 110.0(16) 
N(4)-C(15)-H(15C) 111.5(12) 
H(15A)-C(15)-H(15C) 112.1(17) 
H(15B)-C(15)-H(15C) 106.6(16) 
C(23)-C(16)-C(17) 106.75(18) 
C(23)-C(16)-C(2) 125.73(18) 
C(17)-C(16)-C(2) 126.73(17) 
C(22)-C(17)-C(18) 118.71(17) 
C(22)-C(17)-C(16) 106.48(17) 
C(18)-C(17)-C(16) 134.76(19) 
C(19)-C(18)-C(17) 118.5(2) 
C(19)-C(18)-H(18) 120.9(10) 
C(17)-C(18)-H(18) 120.6(10) 
C(18)-C(19)-C(20) 121.6(2) 
C(18)-C(19)-H(19) 118.5(10) 
C(20)-C(19)-H(19) 119.8(10) 
C(21)-C(20)-C(19) 121.2(2) 
C(21)-C(20)-H(20) 116.5(13) 
C(19)-C(20)-H(20) 122.1(13) 
C(20)-C(21)-C(22) 117.0(2) 
C(20)-C(21)-H(21) 122.4(11) 
C(22)-C(21)-H(21) 120.6(11) 
N(5)-C(22)-C(21) 128.93(19) 
N(5)-C(22)-C(17) 108.09(16) 
C(21)-C(22)-C(17) 122.98(19) 
N(5)-C(23)-C(16) 109.74(18) 
N(5)-C(23)-H(23) 119.2(9) 
C(16)-C(23)-H(23) 130.8(9) 
N(5)-C(24)-H(24A) 106.0(12) 
N(5)-C(24)-H(24B) 110.4(11) 
H(24A)-C(24)-H(24B) 110.2(15) 
N(5)-C(24)-H(24C) 110.4(11) 
H(24A)-C(24)-H(24C) 112.0(16) 
H(24B)-C(24)-H(24C) 107.9(16)
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Anisotropic displacement parameters  (Å2x 104 ) for 193 (CCDC 259195).  The 
anisotropic displacement factor exponent takes the form: -2π 2 [ h2 a*2U 11  + ... + 2 h 
k a* b* U12 ]. 
______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  
O(1) 166(8)  326(9) 248(8)  46(7) 23(7)  52(7) 
N(1) 176(9)  198(10) 171(9)  14(8) -9(8)  -10(8) 
N(2) 150(9)  195(10) 200(9)  21(8) 33(8)  42(8) 
N(3) 189(10)  232(10) 159(9)  10(8) 14(8)  13(8) 
N(4) 142(9)  229(10) 210(10)  9(8) 47(8)  3(8) 
N(5) 130(9)  209(10) 224(10)  30(8) 11(8)  -19(8) 
C(1) 192(12)  199(12) 173(11)  -26(10) -36(10)  -10(10) 
C(2) 186(12)  167(12) 177(12)  -16(9) -37(9)  -5(9) 
C(3) 181(11)  179(11) 164(11)  -33(9) -13(9)  -16(10) 
C(4) 209(13)  258(13) 257(13)  9(11) 25(11)  43(11) 
C(5) 243(13)  262(13) 235(12)  -25(11) 65(11)  35(11) 
C(6) 275(14)  265(14) 315(13)  -17(12) -21(12)  41(12) 
C(7) 171(11)  147(11) 182(11)  -4(9) -19(9)  9(9) 
C(8) 152(11)  171(11) 164(11)  -9(9) -1(9)  -35(9) 
C(9) 176(12)  224(12) 190(12)  -4(10) 23(10)  5(10) 
C(10) 164(12)  225(12) 243(12)  30(10) 1(10)  15(10) 
C(11) 249(12)  206(12) 217(12)  62(11) -19(11)  -17(11) 
C(12) 204(12)  209(12) 197(12)  12(10) 35(11)  -41(10) 
C(13) 180(11)  163(11) 191(11)  -9(10) 22(10)  -15(9) 
C(14) 190(12)  193(12) 190(12)  -10(10) -18(10)  -11(10) 
C(15) 192(13)  296(15) 285(14)  29(12) 72(11)  5(12) 
C(16) 165(11)  151(11) 173(11)  -1(9) -12(9)  14(9) 
C(17) 163(11)  165(11) 180(11)  1(9) 9(9)  28(9) 
C(18) 178(12)  183(12) 235(12)  17(10) 18(10)  28(10) 
C(19) 176(12)  288(13) 238(12)  3(10) -67(10)  36(10) 
C(20) 303(14)  328(14) 174(12)  67(11) 34(12)  68(11) 
C(21) 238(13)  240(13) 239(13)  38(10) 42(11)  38(11) 
C(22) 173(11)  196(11) 201(11)  4(10) 21(10)  47(10) 
C(23) 216(12)  187(12) 146(11)  -14(10) -6(10)  70(10) 
C(24) 178(13)  255(15) 388(16)  44(13) 11(12)  -43(11) 
______________________________________________________________________________ 
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Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 10 3) for 
193 (CCDC 259195). 
________________________________________________________________________________  
 x  y  z  Uiso 
________________________________________________________________________________  
H(4A) 6310(20) 3933(12) 647(11) 35(6) 
H(4B) 7010(20) 4231(12) 1591(12) 32(6) 
H(5) 8290(20) 5589(13) 994(12) 49(7) 
H(6A) 5310(20) 5246(13) -77(12) 42(7) 
H(6B) 6340(30) 6223(14) 20(12) 49(7) 
H(9) 9210(20) 5190(12) -862(11) 32(6) 
H(10) 8910(20) 6114(11) -1973(9) 12(5) 
H(11) 10980(20) 6218(12) -2980(10) 20(5) 
H(12) 13600(20) 5380(13) -2920(12) 41(6) 
H(14) 14700(20) 3500(12) -585(11) 39(6) 
H(15A) 16560(30) 3843(14) -1721(12) 49(7) 
H(15B) 16380(20) 4857(13) -1993(11) 28(6) 
H(15C) 15670(30) 4135(14) -2610(13) 44(7) 
H(18) 11410(20) 2962(11) 3085(10) 16(5) 
H(19) 11480(20) 2351(11) 4409(10) 23(5) 
H(20) 9000(20) 1636(12) 4900(12) 32(7) 
H(21) 6550(20) 1414(12) 4144(12) 31(6) 
H(23) 6075(19) 2570(11) 1404(10) 12(5) 
H(24A) 3910(30) 1938(13) 2193(12) 49(7) 
H(24B) 4060(30) 1902(13) 3224(13) 49(7) 
H(24C) 4700(20) 1102(12) 2664(10) 19(6) 
________________________________________________________________________________  
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APPENDIX SEVEN 

 

Notebook Cross-Reference 

 

 The following notebook cross-reference has been included to facilitate access to 

the original spectroscopic data obtained for the compounds presented in this thesis.  For 

each compound, both hardcopy and electronic characterization folders have been created 

that contain copies of the original 1H NMR, 13C NMR, and IR spectra.  All notebooks and 

spectral data are stored in the Stoltz archives.

 

Table A7.1  Compounds Appearing in Chapter 2:  

The Total Synthesis of Dragmacidin D 

Compound 1H NMR 13C NMR IR 

52 NKGIV-73 NKGIV-73 NKGIV-73 
53 NKGIV-45 NKGIV-45 NKGIV-45 
22 NKGXI-73 NKGXI-73 NKGXIII-109 
63 RSVI-205 RSVI-205 RSVI-205 
91 NKGV-247 NKGV-247 NKGV-247 
65 RSVI-279   
67 NKGVII-85 NKGVII-85 NKGVII-85 
68 NKGVII-49 NKGVII-49 NKGVII-49 
70 NKGVII-53 NKGVII-53 NKGVII-53 
72 NKGVII-191 NKGVII-191 NKGVII-191 
92 NKGVII-211 NKGVII-211 NKGVII-211 
93 NKGVII-213 NKGVII-213 NKGVII-213 
62 NKGVII-243   
73 NKGVII-193 NKGVII-193 NKGVII-193 
74 NKGVII-217 NKGVII-217 NKGVII-217 
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Compound 1H NMR 13C NMR IR 

75 RSVII-161 RSVII-161 RSVII-161 
76 RSVII-201 RSVII-201 RSVII-201 
77 RSVII-246 RSVII-246 RSVII-246 
78 NKGVII-275 NKGVII-275 NKGVII-275 
80 NKGVIII-241   
81 NKGVIII-273   
82 NKGX-243 NKGX-243 NKGX-243 
83 NKGX-259 NKGX-259 NKGX-259 
84 NKGX-241 NKGX-241 NKGX-241 
5 NKGXXIII-221 NKGXI-37B NKGX-253 
86 RSX-107 RSX-107 RSX-157 
88 RSX-167 RSX-167 RSX-167 

 

 

Table A7.2  Compounds Appearing in Chapter 3:  

The Total Synthesis of (+)- and (–)-Dragmacidin F 

Compound 1H NMR 13C NMR IR 

146 DDCIV-223 DDCIII-107 DDCIV-223 
147 NKGXVI-105 NKGXVI-105 NKGXVI-105 
103 DDCIII-121 DDCIII-121 DDCIII-121 
105 DDCVIII-65 DDCVIII-65 DDCVIII-65 
106 NKGXXIII-75 NKGXIX-133 NKGXXIII-75 
104 NKGXIX-237 NKGXIX-131 NKGXIX-131 
109 NKGXV-123 NKGXIX-103 NKGXIX-103 
151 DDCIV-221 DDCIV-221 DDCIV-221 
99 NKGXIX-107 NKGXIX-107 NKGXIX-107 
153 DDCIV-217 DDCIV-217 DDCIV-217 
100 DDCIV-61 DDCIV-61 NKGXVIII-63 

98 NKGXIV-301P3 
&  NKGXXI-101 NKGXXI-101 NKGXIX-112 
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Compound 1H NMR 13C NMR IR 

110 NKGXVI-295P1 NKGXVI-295P1 NKGXVI-295P1 
154 NKGXIX-118 NKGXIX-118 NKGXIX-118 
111 NKGXIX-119 NKGXIX-119 NKGXIX-119 
155 NKGXIX-121 NKGXIX-121 NKGXIX-121 
97 NKGXIX-123 NKGXIX-123 NKGXIX-123 
112 NKGXIX-135 NKGXIX-135 NKGXIX-135 
113 NKGXIX-143 NKGXIX-143 NKGXIX-143 
117 NKGXXII-289 NKGXXII-289 NKGXXII-289 
118 NKGXVIII-139 NKGXXIII-43 NKGXXIII-43 
119 NKGXIX-139 NKGXIX-139 NKGXIX-139 
123 NKGXIX-37   
120 NKGXIX-151 NKGXIX-151 NKGXIX-151 
124 NKGXIX-163 NKGXIX-163 NKGXIX-155 

(+)-7 NKGXIX-227B NKGXIX-227 NKGXIX-227 
128 DDCVIII-143 DDCVIII-143 DDCVIII-143 
159 NKGXXII-53 NKGXXII-53 NKGXXII-53 
131 DDCVII-201 DDCVII-195 DDCVII-195 
132 DDCVII-207 DDCVII-227 DDCVII-207 
130 DDCVII-217 DDCVII-213 DDCVII-213 
126 DDCVIII-99 NKGXXII-81 NKGXXII-81 
127 NKGXXII-116 NKGXXII-116 NKGXXII-116 
133 NKGXXII-131 NKGXXII-131 NKGXXII-131 
136 NKGXXIII-53 NKGXXIII-53 NKGXXIII-53 
134 NKGXXIII-157 NKGXXIII-157 NKGXXIII-157 
137 NKGXXIII-57 NKGXXIII-57 NKGXXIII-57 
138 NKGXXIII-35 NKGXXII-209 NKGXXII-209 
139 NKGXXIII-91 NKGXXIII-91 NKGXXIII-91 
144 NKGXXII-213 NKGXXII-213 NKGXXII-213 
(–)-7 NKGXXIII-179   
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