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Abstract

Fart 1. The exact guantum metnods for the cal-
culation or nonreactive scattering are classified. The.
classification is based on the essentizl characteristics
of inethnols, not their detailed technical aspects. As a
result the potential efficiency of each class of methods
can be determined. Metnods derived from differential
formalism (time-independent and time-dependent Schroe-
dinger equétions) and from integral formalism (Lippmann=—
‘Schwinger equation) are reviewed. The most efficient
class of differential wethods are found to be time-
independent perturvation propagetion channel methods.
Integral and differential methods are found to be very
similar, There seexs to be no room for any further dra-

matic improvements in exact nonreactive gquantum methods.

Part 2. Host calculetions of the vibrational
scattering of diatom-atom colliisions use the breathing
sphere approximation (BSA) of orientation-averaging the
interaolecular potential., The resulting angularly sym-
metric potential cannpt cause rotational scattering. We
deternine the error introduced by the BSA into observables
of the vibrational scattering of low-energy homonuclear
diatom-atomn collisions by comparing two guantum mechanical
calculations, one with the BSA and the other with the full
angularly asymmetric intermoleculer potential. For rea-
sons of econony the rotational scattering of the second

calculation is restricted oy the use of special incomplete
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channel sets in the expansion of the scattering wavefunction.
Three representative collision systems are atudied: HZ_A’
Gz-He, and Ig—He. From our calculations we reacn two con-
clusions. First, the BSA can be used to analyze accurately
experimental measurements of vibraticnal scattering. Sec-
ond, measurements most sensitive to the symmetric part of
the intermolecular potential are, in order, elastic cross
sections, inelastic cross sectimms and inelastic differen-
tial cross sections. Elastic differentiasl cross sections
‘are sensitive to the potential only if the collision is
"sticky", with scattering over a wide range of angles;
iz—-He is such a collision. Otherwise the potential sen-
sitivity of elastic differential cross sections is con-
centrated in the experimentally difficult region of very

small angle scattering.

Part 3. The vibrational deexcitation probability,
PlO’ is calculated quantum mechanically over a large ener-
gy renge for models of three collision systems: 02—02,
012-012, and BrguBrz. The vibrational deexcitation cross

section, (le’ is similarly celculated for the 012-012

model. PlO and CrlO are obtained for the Leniard-Jones
intermolecular potential and three other "well-less" poten-
tials designed to duplicate the scattering of the Lennard-
Jones potential. The results emphesize the adiabatic na-
ture of potentials with wells and indicate that the acceler-
ation approximation for the effect of the well is not valid,.

The curves of PlO and CTlO as a function of initial trans-—-



lational energy are used to obtain exact collision numbers.
These numbers are compared to the results of SSH theory.
SSH theory 1s found to predict collision numbers with rea-
sonable accuracy except at low teaperatures. 3SSH theory
is also not suitable for analyzing experimental collision

nunbers for the well depth potential parameter.
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In this forward I would like to discuss informally
the work reported in this thesis witain the context of |
larger developments in the thebry of chemical dynemics.
Consider theoretical chemical dynamics divided into two
groups. In one group I place all theories that explicitly
involve the calculation, from given intermolecuiar forces,
of the motion of the chemical system during collision; in
the second growp I place all other theories. This latter
group 1is by far the largest, for it contains most of the
semiempirical and phenomenological theories often used by
experimentalists. In contrast, the first group is a rather
new development used mainly by molecular beamists and some
spectroscopists. My thesls work belongs to the first groubp,
whicin I label chemical scattering theory. 3By definition
chemical scattering theory is the fundamental investigation
of the relationship of dynemics to structure as revealed by
intermolecuiar forces. MNany hope that the theory will even-
tually be able to explain why semiempirical or phenomeno-
logical theories work by revealing in detail the relation-
ship of intermolecular forces to collision observables.

t present tune theory is a long way from significant
achievements. An example i1s the fact that the three di-
mensional quantum mechanical calculation of the dynamics
of the low-energy collision H + H2 in the gas phase 1is con-
sidered a major development. To the .orgsnic and inorganic
synthetic cnemist this must seem like so much malarky.
Wihile there is no doubt that chemical scattering theory is

in its infancy, like all infants it is growing fast. I



weuld like to review some of the developments in this
field since 1966 and then indicate how my thesis work is
involved.

Binary collisions involving only two partners are
the simplest type of collision and therefore the type that
receives the most tneoretical consideration. Binary col-
lisions may be classified as elastic, nonreactive inelastic,
reactive and dissociative. Except for the elastic class,
each class of binary collisions contains examples whose dy-
'namics are so complicated that they are not susceptible to
practical calculations now or in the forseeable future. In
fact even the simplest examples of each of the last three
classes of binary collisions are not susceptible to prac-
tical calculation without highly efficient computational
methods. The question of efficient methods 1s complicated
by the presence of three mecheanics in chemical scattering
theory:classical, semiclassical and quantum mechanics. Each
mechenics has its own formaelism which gives rise to a vari-
ety of computational methods. Although quantum mechanics
is the only universally valid mechanics, classical and
semiclassical mechenics are often operationally and con-
ceptually easier to use. Therefore the development of
highly etficient methods must proceed in two stages: first,
thie most efficient methods of each mechanics must be dis-
covered; second, the regions of applicability of classical
and semiclassical methods must be determined. When effi-
Cient methods are available the simplest cases of each type

of binary collision can be studied and approximations de-



veloped that will allow the accurate, if not exact, cal-
culation of the dynamics of more complex cases. Since
1966 tne greatest effort has been in the first stage of
tne development of methods. In 1966 essentially exact
guantum methods existed only for elastic scattering. Now
nighly efficient methods for nonreactive scattering are
available. Although there has been little progress in the
development of quantum methods for dissociative scattering,
there are several guantum methods for reactive scattering
‘under intensive development. In 1966 semiclassical mech-
anics as it is presently known did not exist. In the last
two or three years its formalism and computational methods
have been develored. In 1966 classical methods existed,
but hed never been applied on the scale required to study
chemicglly interesting systems. Now classical trajectory
studies of siaple colliisions and of severe models of com-
plex coliisions are fairly routine. In the future, fur-
ther development of reactive and dissociative quantum
metinods and the tacrough comparison of the three mechanics
should be expected.

When a new computational method is developed, it
is usually applied to the study of some chemical system;
little or no effort is expended in comparing the efficlency
and accuracy of the metiiod to other methods. Unfortunately,
my thesis sufiers in this regard. I examine quantum mech-
anicelly the rotational-vibrational scattering of diatoms
witn themselves and with other atoms. I use one of the

most efficient guantum meihods, buiv make no attempt to de-



termine whether more efficient classical or semiclassical
methods may apply. The thoroush comparison of the three
mecnanics for tne calculetion of rotational-vibrational
scattering would be a tnesis project in itself and, by
rignts, one thnat should have preceded my work. But at
the time my thesis work was begun, the comparison of the
three mechanics was not envisioned. My work is divided
into three parts. 1In the first part I summarize and eval-
uate recent developuents in exact nonreactive inelastic
‘quantum methods. I conclude that there will be no new
conceptual developments thnat will lead to dramatic im~
provements in existing methods, because the most efficient
methods currently available have optimalily reduced all the
dimensions of tiie space over walch a scattering solution
must be calculated. The results of the last two parts of
my thesis are made economically feasible by the use of one
of the best availaole methods, the Gordon propagation
method. In the second part of the thesis I evaluate an
often used approximation regarding the effects of rotations
on vibrational scattering. Almost all approximate theories
of the vibrational scattering of molecules begin with the
assumpticn that the rotaticnally averaged vibrational scat-
tering by an angular asymmetric intermolecular potential is
egquivalent to tne vibrational scattering by a rotationally
averaged (i.e. spherically symmetric) intermolecular poten-
tial. In otuer words, rotationally averaging the scatter-
ing can be done by rotationally averaging the forces. If

tnis assumption is true, tnere is no need to consider ex-



plicitly rotational motion and the calculation is there-
fore drastically simplified. Ly evaluatiocn of this assump-
tion involves other assumptions, but of a much less severe
and more readily verifiable nature. I study only homo-
nuclear diatom-ztom collisions at low energy and conclude
that the assumption introduces little error into the cal-
culations. In the last part of the tuesis I examine the
effect of the well on vibrational excitation. The modeling
of the coliision system is more severe than in the second
‘part and, as a result, tiie conclusions are less quanti-
tative. The calculation also affords an opportunity to
evaluate S3H theory, a commonly used set of formulas for
tue evaluation of vibretionsl relexation times. 1Ily calcu-
lations indicate that potentials with wells are more adia-—
batic than "well-less" potentials and that SSH theory is
accurate except at low temperatures.

My work has used the most recent developments in
computational methods to study the simplest examples of
nonreactive inelastic binary collisions. The work has led
to the verificaticn of often-used approximations of pre-
viously unknown validity and to the isolation of the ef-
fects on vibrational scattering of certain features of in-

termolecular forces.



Part 1l: The Classification of Exact Cuantum llethods for

Nonreactive Scattering
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INTRODUCTION

The major purpose of the study of collisions is to discover the
relation between scattering observables and intermolecular forces.
When this relation is known, the dynamics of chemical systems can
be related to the structure of the molecules and atoms. In gross
observations at low energies and in precise observations at low and
higher energies, the quantum nature of scattering is apparent.
Therefore, the major purpose of collision studies is furthered by
~the development of exact quantum methods for the calculation of
scattering observables from intermolecular forces. The most com-
mon type of collision in low density fluids is the binary collision.
Binary collisions can be classified as nonreactive (energy and mo-
mentum are changed), reactive (particles are exchanged between
collision partners), and dissociative (one or both of the collision
partners breaks up). Collisions in which Pauli forces are important
must be either reactive or dissociative, because the identical par-
ticles can not be claimed by' either collision partner. This article
will deal only with nonreactive collisions.

There are many methods, presently available or readily
developed, which can quantitatively describe the exact quantum
mechanical scattering of nonreactive collisions. In this article we
will identify several classes of methods on the basis of each
method's essential characteristics. Essential characteristics
answer such questions as: does the method involve the inversion of

a matrix, the solution to a partial diiferential equation, the
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evaluation of a transcendental function, etc. A method's essential

characteristics can be contrasted with its technical aspects: how a
matrix is inverted, which numerical method is used to solve the
partial differential equation, etc. There will be no examination of
a method's technical aspects. Therefore, we will be able to deter-
mine only the potential efficiency of each class of methods. How-
ever, it is doubtful that technical considerations would reverse our
major conclusions. The rest of the article is divided as follows.
Section I compares global to channel methods. Section II contrasts
'time—independent and time-dependent channel methods based on
Schroedinger's differential formalism. Sections III, IV, and V dis-
cuss in greater detail time-independent channel methods. Section
VI examines channel methods based on the Lippmann-Schwinger

integral formalism. Section VII summarizes our conclusions.

1. GLOBAL VERSUS CHANNEL METHODS

There are two generalized coordinates that describe a non-
reactive collision: ?1 represents all the internal coordinates of the
collision partners and T is the translational or external coordinate
vector between the centers of mass of the two partners. Basically,
three different but equivalent equations of motion exactly describe
the quantum mechanical dynamics of a nonreactive collision; the
Lippmann-Schwinger equation and the time-independent and time-
dependent Schroedinger equations. The nature of a method for cal-

culating nonreactive scattering depends upon the equation from which
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the method is derived. Briefly, each equation must be solved for

some function which contains all the scattering information. The
generalized space over which the function must be known is 'Fl,?,
and possibly t (time). Methods which directly solve for the function
over this space we call global mei:hods.1

For any collision system whose intermolecular forces are known
well enough to make a scattering calculation possible, we know or
can readily determine all the eigenstates for the internal motion of
both collision partners. Through a partial wave expansion, we can
“describe translational motion in 6 and ¢, the angular coordinates
of ?, in terms of the occupation of known orbital angular momen-
tum states. With this knowledge, we can describe the collision in
terms of two new coordinates: X which is (?1, 6, ¢) and r which is
l?l Combining the internal and the orbital angular momentum
states, we can form a complete set of channels, which are the
eigenstates for the X motion of the collision system at very large
r. In a similar description of the collision, we parameterize the
X coordinate as §(r). At any value of r, with some effort, we can

form a complete set of adiabatic channels, which are the eigen-

states for the X motion of the collision system at r. No matter

which approach is used, we can describe the motion of the collision
system at any value of r in terms of the occupation of the channels
or adiabatic channels. If the function to be determined by a global
method is expanded in terms of channels or adiabatic channels, the
single equation for the function is reduced to a coupled set of equa-

tions in r for the channel coefficients. Methods which solve the
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coupled set of equations we call channel methods.2 In principle,
channel methods are more efficient than global methods. The X X
r solution-space of global methods is reduced to the N X r solution-
space of channel methods where N is the number of channels in the
channel expansion. N is always far less than the number of points
needed to cover Xx. This advantage is not offset by the difficulty
of forming channels or adiabaﬁc channels.3
In contrast to global methods, channel methods for nonreactive
collisions are not applicable, without major modifications, to any
-other type of binary collision. The efficiency of channel methods
rests upon the fact that in nonreactive collisions the internal and
translational angular coordinates can be treated differently from the
separation coordinate. During a reactive collision all the coordinates
can evolve into one another to produce a new set of internal and
translational angular coordinates and a new separation coordinate.
There is a set of channels for the original coordinates (2 r) and a
different set of channels for the new coordinates (z'?',r’). Channel
methods for reactive collisions must find ways of linking together
expansion coefficients for the two sets of channels.4 In dissociative
collisions, new coordinates can evolve with the form &, r’,r"). At
present there is no known way to formulate dissociative scattering
in terms of channel expansions.5 Global methods make no distinc-
tions between X and r and hence can be applied without major modi-

fications to both reactive and nonreactive collisions.6 Because the

presence of two separation coordinates in dissociative collisions
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introduces a continuum, not all global methods can be applied to

dissociative scattering.

CHANNEL METHODS

In this section we compare the channel methods that derive
from the time-independent and from the time-dependent Schroedinger
equations. Most exact channel methods in current use are based on
the time-independent Schroedinger equation which we will examine
first.

All information on the nonreactive scattering of two partners
colliding with a total system energy of E is contained in the wave-

function ¥, a solution of the time-independent Schroedinger equation

[3¢ - EJ¥ = 0 (1)
w2 _» B K A
where 3¢ = - om vy + V(r,r) + X))

where 36(?1) is the Hamiltonian for the internal motion of both part-

ners, V(?,-l?l) is the intermolecular potential, and Vzi} has the form

i’ 2. R 1 ,,0 9
_ﬂvr_-ZmF( aI‘)+2mr2 ()

where 1" is the squared angular moinentum operator and m is the
reduced mass. If the initial internal states of both partners are
characterized by gi(?l), the ith eigenfunction of GC(?I), then the two

boundary conditions for \Ifi are
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¥ o> 0 (3)
3y, ik;z ~ Y
¥ <> EEMTT 4 ]Zfij(n>ej<rl) 'l (4)

where k]. is the wavenumber for the translational motion of the two

collision partners in the jth

state, fij(Q) an unknown function of the
solid angle €, and z is r cos 6. The first boundary condition pre-
vents the inner penetraﬁon of particles. The second boundary con-
dition describes a system operating under steady state conditions.

The Hamiltonian for motion in the coordinates x(r) is

22

L

36;(1‘) = m oy V(?, ?1) i SC(-I?I). (5)

The eigenfunctions of this Hamiltonian are the adiabatic channels.
At large r, the intermolecular potential is zero. Therefore, the

Hamiltonian whose eigenfunctions are channels is:

i >
sy = go— + KT (6)

There are an infinite number of channels or adiabatic channels.
However, the intermolecular potential couples the channels, in the
proper representation,7 into finite member sets; members of

different sets are left uncoupled. Each set is an expansion set for

a partial wavefunction. Each partial wavefunction is a solution to

Schroedinger's equation and obeys the first boundary condition on ¥;

and that part of the second boundary condition on \Ifi which involves



13
the channels of its expansion set. ‘Ifi is the sum of all the partial
wavefunctions. Let a particular partial wavefunction be expanded
as %_)Z&j where the row vector i\ is the channel expansion set and
the column vector $i is the set of channel coefficients. Substitu-
tiqn in Eq. (1) followed by multiplication by each Xi and integration

A 3
over x gives

az
[=wem + W) - L{z]_: =0 (7)
92 9?
Wherea—ﬁ = a—ﬁaand K2 = I{z}\.

P

Here I is the identity matrix, k is the wavenumber for the total
energy, and the (i, j) element of U is

Uij = %"‘HZI <Xi ZC}?(I.) X]> (8)

where the brackets denote integration over X. One boundary condi-

tion on E: is
el

The other boundary condition follows from the asymptotic form of
the partial wavefunction. _¢—: cannot be determined directly, because
its second boundary condition specifies a form and not a value.
Instead, Eq. (7) must be solved for all the independent solutions that
obey the one value boundary condition on ?1 We call these solu-

tions primitive. If N is the number of channels in the expansion,
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there are N independent primitive solutions. Let ¢ be the N X N
matrix whose columns are these N solutions. Then any method
which derives from the time-independent Schroedinger equation and

involves an expansion in channels solves the equation:

2

-—a%g + Ulr) - k2l = 0 (10)
where z)l)\ e 0

~and where the second boundary condition on Y is arbitrary, provided
it yields a linearly independent . If the partial wavefunction is
expanded in the set of adiabatic channels ")Z(r), then the same

analysis as above produces a different equation8 for ¥:

9° 0 2 -
[-Q—E‘Zé?\—/{—gﬁ-?—é\(r)—!{\z]ﬁ—o (11)

0
where Aij = <Xi(r) T Xj(r)>

32
Bij (Xi(r) 3r2 XJ(r)>

i(r) is the diagonal matrix of the eigenvalues of i(r). An expan-
sion in adiabatic channels is preferable to an expansion in channels
only when ')Z(r) and /§\(r) are readily available, such as from the
calculation of the potential curves of atoms and molecules in various
electronic states. Although Eqs. (10) and (11) appear to be quite

different, everything we will discuss about the solution of Eq. (10)
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can be applied with minor alteration to the solution of Eq. (11).
For this reason we will no longer discuss the adiabatic channel
expansions that result in Eq. (11).
When the time-dependent Schroedinger equation is usecl,9 the
wavefunction, \Ifi(?l,'ﬁt), for the system before collision at t = 0

is a wavepacket:

¥, 7,0 = @) f: Gk)e * 2. (12)

"The wavenumber distribution, G(k), is dependent on the experimen-
tal conditions which the calculation simulates. The time-dependent
method cannot determine the scattering of the collision system at

a precise total system energy of E because the initial wavepacket
contains contributions from the spread of relative translational
energies allowed by G(k). The calculated scattering is specific

to the experimental conditions that determine G(k). The time-
dependent Schroedinger equation governs how \Ifi(?l, T,t) evolves

in time from \Ifi(?l,?, 0). Its formal solution is:
vF, 50 - 1%y @7 o) (13)

-i(t/B)5e

where e is the time evolution operator. For a short

increment in time, the time evolution operator can be approxi-

mated® by

e HAYEC 11, (at/ompe]™ (1 - (iat/2m)c] . (14)
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This produces the equation:
[1 + i(At/zﬁ):}c]foi(?l, r,At) = [1 - i(at/2R)C]¥(T, T, 0). (15)

Naturally, this same equation can be used to relate \.Ifi(?l, i}, 2At) to
\Ifi(fl,i?, At). In this way \Ifi can be propagated over all space to a
post-collision time when it can be analyzed for the scattering infor-
mation it contains. As before in time-independent formalism, we
can decompose \Ifi into partial wavefunctions each of which can be
expanded in a different set of channels. However, now the channel
“coefficients will be functions of r and t. The equation for ?qb_i\(r, t)

analogous to Eq. (10) in the time-independent formalism is:

2

-2 + v - Y1580, a0

NN

b2y g + A ) (16)
Since 31(1', 0) can be determined from the wavepacket, the right
hand side of this equation is a known function of r. All channel
methods that derive from the time-dependent Schroedinger equation
solve this set of equations. The advantage of this formalism is
that ¢i can be directly calculated without the calculation of primi-
tive solutions. The disadvantages are that complex arithmetic
must be used (time-independent channel methods can avoid this)
and that Eq. (16) must be solved at each time increment. If N;
is the number of time increments that must be calculated, it is

generally true that N, > N. It is faster to solve Eq. (10) once
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for N primitive solutions than to solve Eq. (16) N; times for one
solution. Therefore, time-dependent channel methods are not as

efficient as time-independent channel methods.

II. PROPAGATION AND MATRIX METHODS

In the solution of Eq. (10) for Y we are free to choose one
linearly independent boundary condition we want y to obey. There
are two typeé of boundary conditions we can select which give rise
~to two types of channel methods. We can specify the value of the
derivative of i at the same point at which the nonarbitrary boun-

dary condition specifies the value of ¥:

o~

581; Y 5> A (17)

where é is a linearly independent constant matrix. Since y obeys
a second-order differential equation, the value and slope of ¥ at
one point are all that a variety of numerical techniques require to
propagate ¥ step-by-step through r space. Methods based on the
initial specification of the value and slope of § at one point we call
propagation methods.10 In another approach we can specify the
value of § or its derivative at some other point besides r - 0.

The only reasonable choice is to specify y at r, some value of

r in the asymptotic region:

y@@) = B (18)

where B is a linearly independent constant matrix. There are a
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variety of techniques whereby ¥(r) may be related to z}/i(r') and
Y(r”) where r’ <r <r”. Since y at r — 0 and r = T is known,
Y oil a grid of points bétween 0 and r can be simultaneously deter-
mined by the inversion of a large matrix which expresses the
relationships between the values of § on different points of the grid.
We call such methods matrix methods.12 Any other choice for a
boundary condition besides Eqs. (17) and (18) will require a hybrid
matrix propagation method with no gain in efficiency.

In the classically forbidden region, ¥ and the intermolecular
'potential are changing very rapidly. Any instabilities in the
numerical techniques of a method are most likely to become
severe in this region. From this point of view it is important to
discuss the meaning of a boundary condition at r - 0. In practice,

it is found1 3

that whatever boundary conditions apply at r - 0 can
also be made to apply at r,, that value of r where the inter-
molecular potential is ten or fifteen times the total energy of the
system. In fact in the region around r, the primitive solutions
calculated with the boundary conditions applied at r, will differ by
many orders of magnitude from the primitive solutions calculated
with the boundary conditions applied exactly at r = 0. However, in
the region about r, both solutions are very small. For r > r,
where both solutions are significant in size, their agreement is
essentially perfect. This indicates that large relative errors in
the calculation of § can be tolerated as long as y is very smalil

in the classically forbidden region. Consequently choosing a

starting point smaller than r, does not improve the accuracy of
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Y but does improve the odds that numerical instability will destroy
the solution.

We would like to evaluate the relative efficiency of matrix and
propagation methods. Before we can do that we must discuss the
difficulties introduced by closed channels (Section IV) and pertur-
bafion methods, the most efficient of matrix and propagation

methods (Section V).

Because many collision systems execute highly excited tran-
sient modes of internal motion during the time of closest approach
of the collision partners, many channel expansions must include
closed (energetically inaccessible) channels. Let N and N, be the
total number of channels and the number of open channels respec-

tively. Let ¢ be the N X N matrix whose Lth

column, for L = 1,
.., N, is the set of channel coefficients for the wavefunction whose
initial channel is the Lth one. ?\pi in Eq. (7) is the jth column of
¢. There are N; open columns of ¢ whose N - N, closed ele-
ments go to zero as r becomes large. This is true because
closed channels describe only transient excited internal motion

that cannot persist after the collision is over, that is, when r

is large. In fact, the more highly excited the motion described by
the closed channel, the more rapidly its channel coefficient will go

to zero as a function of r. In general, all closed channel coeffi-

cients assume their asymptotic form at values of r smaller than



20

those at which open channel coefficients assume their final form.
There are N - N; closed columns of ¢ whose diagonal elements
blow up as r grows large because of the negative translational
energy associated with an initial closed channel. These columns
of ¢ are completely unphysical. Because Y and ¢ are both a
‘cofnplete set of independent solutions to the same equations there
exists a matrix C with a well defined inverse such that:

)= 9C (19

=3¢

T (20)

Q

Since the form of ¢ is specified in the asymptotic region of large
r, once ¥ is known in the asymptotic region, 9-1 and hence ¢ can
be readily determined.

With matrix methods, each column in Y is calculated separately.
With the proper selection of B, the first N, columns can be open
and independent. These N, columns span the space of open solu-
tions. Therefore, any open solution of ¢ can be expressed as a
linear combination of just these N, columns; 9-1 would not couple
any other columns of ¢ into the first N, columns in the construc-
tion of any open column of ¢. While the other (N - N;) columns
of ¥ could be generated, it would be pointless because these
columns only give us information about the unphysical closed
columns of ¢. The selection of B which necessitaties the calcula-
tion of only N, columns of ¥ is straightforward. Each column in

B is used in calculating the corresponding column in . If the
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closed elements of the first N, columns of B are zero but the
columns are linearly independent, then the first N, columns of §
will have closed elements that are zero in the asymptotic region,
i.e., the first N, columns of ¢ will be open.

| It is often assumed that propagation methods must propagate
the full N X N § matrix into the asymptotic region. If this were
true, then propagation methods would not handle closed channels
as efficiently as matrix methods. However, the assumption is not
true. To show this we must discuss the stabilization of ¥ and its
“implications.

If A is linearly independent, § at the start of its propagation
will also be linearly independent. However, due to the unbounded
growth of the closed columns of ¢, at large enough r the closed
columns of ¢ will completely dominate ¢ C. This means that
during propagation each of ¥'s columns become, to all significant
figures retained, the linear combination of only the closed columns
of ¢. In other words, when closed channels are present, § has an
innate tendency to linear dependence. Any procedure which sup-
presses this tendency we will call stabilization. Although there are
several stabilization procedures, their derivations are similar to
the following simplified set of arguments. When ¢ has propagated
to a large enough value of r to show signs of linear dependence,
we wish to find a matrix T which back multiplies § so that § T
has a much reduced tendency to linear dependence. Then the pro-
pagation is continued with § T. The proper T must remove most

th

of the contribution of the L~ closed column of o from all but the
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th

L~ column of SQI If the clesed elements of 93 assumed their

asymptotic form for all values of r, then all of the contribution

of the Lth

th

closed column of o would be removed from all but the

L column of )zb\’;‘\ if

(yi T\)LK 0 for L # K (21)

1 for L = K

It

for all K and for all L. > N,. This condition is sufficient to
define T. Since ¢'s closed elements do not assume their asymp-
totic form for all values of r, T defined by Eq. (21) will leave in
each column of % T residual contributions from the closed
columns of ¢. At some larger value of r, linear dependence will
again appear in § T and the process must be repeated. However,
each succeeding transformation leaves less and less residual con-
tributions from the closed columns of ¢. In this way a linearly
independent ¥ can be propagated into the asymptotic region.
Stabilization has two important implications. First, each
succeeding transformation makes the first N, columns of ¥ look
like just a linear combination of the open columns of ¢ and makes
any other column of § look like the corresponding column in ¢.
Consequently, in the asymptotic region, to a high degree of
accuracy only the first N; columns of § are needed to determine
any open column of ¢ by Eq. (20). The only reason for calculating
the N, + 1 to N columns of Y is to permit stabilization; these
columns are required in the determination of each T. The second

implication of stabilization is as follows. Since each transfcrmation
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of ¥ increases the similarity of its closed rows to those of ¢, at
large enough values of r, the nondiagonal elements of each closed
row of y can be set to its asymptotic form of zero with no
appreciable effect on the other elements. In general, this will

occur at values of r before the asymptotic region. If a value of

r has been reached where the Lth closed row of Q can be set to

zero except for Z‘DLL’ then there is no longer any reason to cal-

th

culate the L™ column of Y for it is no longer needed to determine

th

any subsequent T matrix. In fact, the L™ row and column of

can be dropped for the rest of the propagation. In practice the

th

value of r where the L™ row and column can be dropped can be

determined from tests like the ratio of ]UNOL szNol to
- i i0 i th
[(UNONO E)Z’DNONO |. If this ratio is small, the L' closed element

th

in the Ny, column has little effect on the open elements of the

column. Assuming all open columns are basically alike in this

th row and column

regard, when the ratio is small enough, the L
can be discarded.

With propagation methods, the full N X N § matrix begins the
propagation. However, the stabilizing transformations allow the
dimensions of ¥ to be reduced to N, X N, during the course of the
propagation. In matrix methods, only N, columns are calculated
but all N elements in each column are retained for the entire cal-

culation. Both methods handle closed channels with about the

same efficiency.
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In the more straightforward matrix and propagation methods,
the primitive solutions are calculated on a grid of points covering
r space. The grid must be fine enough to permit the accurate
determination of each oscillation that any element in the primitive
solution may undergo. As a rule of thumb, a grid size should be
about a tenth of a wavelength of the most rapidly oscillating
channel coefficient. However, there is a more sophisticated
. approach, first fully developed by Gordon, 14 which calculates the
primitive solutions by a perturbation scheme based upon an approxi-
mation to the intermolecular potential. These perturbation
methods, both matrix and propagation, accurately determine the
primitive solutions over intervals much larger than one tenth of
a wavelength. For this reason, these methods are the most
efficient methods that derive from the time-independent Schroedinger

equation. In this section we develop the basic theory and several
14, 15

reference will be made to matrix propagation methods16 at the

special features of perturbation propagation methods;

end.

The first step in a perturbation method is to approximate the
potential matrix g(r). Suppose we expand the partial wavefunction
in the set of adiabatic channels, represented by the row vector
N
ch,
potential matrix in this basis be Q(rc, r) where the r, emphasizes

that are eigenfunctions of Z(i;(r ) [see Eq. (5)]. Let the
c

that the adiabatic channels are defined at r = r.- From the
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definition of U(r) [Eq. (8)], g(rc, rc) is diagonal. We can expand

g(rc, r) about Fi

= ?
Ulre,r) = Ulry,r,) + (-1 )U (r,,1,)

+ 3(r - rc)zg”(rc, rc) E cna (22)

where U’ (r,r.), U'(r,,r,), etc., are, in general, not diagonal.
Over an interval centered about r,, this expansion of g(rc,r)
would converge with only a few terms. We could segment all r
~space into intervals over which the potential matrix, in the basis
of adiabatic channels for the interval midpoint, would have its
Taylor series expansion about the interval midpoint converge with
only a few terms. To use this interval by interval approximation
of the potential matrix, we have to be able to change the basis in
which ¥ is expressed. For the nth interval, let Jdin and r, be the
primitive solutions and the interval midpoint respectively. It is

easy to show that if Tn is the unitary matrix defined by

=i
T U )T = Yy, ) (23)
then at the boundary between the nth and (n + l)th interval
-1
Jw\n+1 = r£n+1r£n30\n' (24)

This relation allows us to change the basis of ¥ from interval to
interval and thus use the expansion of g(r) particular to each

interval.
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The second step in a perturbation propagation method is to
devise an efficient way to propagate across an interval. We now
drop the index n for the nth interval. We would like to expand ¥

in a perturbation expansion:

Po= PP Y+ (25)
where

2
["%:2' + go(rc)r) - !_{2]1})\0 = (26)

A

 For the perturbation expansion to be useful, SQO must be readily
determined. Practically, this demands that U, (rc, r) be diagonal.
U (rc, r) can be any number of terms in the Taylor series expan-
sion of the diagonal of [l(rc, r) about r,. We propagate ¢ in the
irc basis over this interval because )zp\° will be a good zeroth
order estimate of ¥ since there are several choices of U, (rc, r)

that approximate U(r » r) well over the interval. )zli° has the form
) = Aa + Bb (27

where a and b are constant matrices and A and B are diagonal
matrices whose ith diagonal elements, Ai and Bi’ are the two

independent solutions to:

2’ A4
[" 'a—fg + UO ii(rc, r) = Kz] { B. = 0. (28)
1

Substituting the expansion for ¥ in the equation for ¥ [Eq. (10)]

and utilizing the definition of 5/)\", we get the equation for 411 for
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i>0:
82 i i-1
[-3m + UWler) - ey + [Urer) - Yleg, m) ™ = 0. (29)

If ry is the smaller interval boundary, the solution to Qi is:

g = W [T FAEBE) + BAE) [Yrgr) - Ylrer Y )ar
S

+ é?} + Qbi (30)

e

where
W = B (r)A(r) - B(r)a’(r).

W, the wronskian matrix, is a constant matrix as are ?:i and Qi.
The "'" denotes the derivative with respect to the distance

coordinate. If a and 9 are chosen so that
Pr,) = P°(r,) and P’ (r) = 3°'(r,) (31)
s S S S

‘then g\i and Qi are zero for all values of i. Under these condi-
tions, it is easy to show that the first nonzero derivative of yii
evaluated at rg is the (i + 1)th derivative. This means that with
propagation in r each higher order in the expansion of ¥ changes
more and more slowly from its value at ry. This also means
that the perturbation expansion can be made to converge to any

order by choosing a small enough interval. This of course is
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related to the fact that the Taylor series expansion of g(rc,r)
converges to any order for a small enough interval about r e

The third and last step in a perturbation propagation method is
to devise a procedure for determining the length of the interval.
It is wsually impractical to calculate any higher order than )zb\l.
Therefore, the interval must be short enough so that lei1 is small
relative to )zQ°, making ggz negligibly small. Because of the matrix
nature of g/\l and }df’, their relative comparison deserves some
attention. What is important is that the largest element in each
‘column of QI be small relative to the length of the corresponding
column in ¥°. In that way, the dominant scattering processes,
which give rise to the largest channel coefficients, will be most
accurately calculated; the lesser processes will be not so
accurately calculated. Siné‘é experimental measurements also have
this error pattern, there is no need to do the comparison any
other way. Because glio and f oscillate in the classically allowed
region of r space, their relative comparison will also oscillate
for reasons that do not reflect the convergence of the perturbation
expansion. To remedy this difficulty, we proceed as follows. Over
an interval in the classically allowed region, qb‘i)j goes roughly as
sin ﬁir, where l?i is the average local wavenumber over the inter-

th

0 > i
channel. ;" goes as k; cos Eir. Because |sin

val for the i 3
ﬁir| + |cos l?ir| is an approximately constant function, [)zli°| +

|£) )zli°'| is approximately constant over the interval if D is a
diagonal matrix whose ith diagonal element is 1—21'1. For the same

interval, |Q1 | + IQ gp\” [ grows with propagation across the interval
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and the éompariscn of ‘Sbf! + 19\9\1’] to lq)\°| + |Q Ego'| is non-
oscillatory. Then in the classically allowed region, for yz‘z to be
negligibly small, p, the ratio of the largest element in 'ij| +
IQ Ql' ‘ to the length of the corresponding column in ‘lzgoi + lIQ g/io' ',
must be small at the end of the interval. In the interest of con-
tinﬁity we can apply this test, with D suitably modified, to the
classically forbidden region and the classical turning point regions
of r space. We want to know how p goes with interval length h.
We can determine how fast | f | + lQ 5[{1' | grows with interval
‘length h by looking at the leading term in the Taylor series ex-

pansion of )zlil(rs +h) about r
)zb\l(rs +h) = Ql(rs) S hz/)l’(rs) 3 %hzzl)l”(rs) F aws
= 0+ h 0+ zh*[Ulr,, ry) - Yylr,, r )y + - (32)

Recalling the Taylor series expansion of g(rc, r) about T [Eq.
(22)] and that U, (r ,r) is diagonal, irrespective of the choice of

U, (r r), the lowest power of h in U(r ¥ ) U, (r I 8 ) is

Ur,rdyg + (33)

m]::*

where od means only the off diagonal elements of g’(rc,rc). Hence
for any perturbation method, the lead term in the expansion of
3b\1(rS +h) about r g goes as the cube of the interval length. If we
ignore the change in Iﬂol + |D g’ | with h and presume that the

lead term in the expansion of Iz,bl(rs +h)| + |DyY (&, + h)| about
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P dominates, then we can say p is proportional to h®. If n and
n + 1 label adjacent intervals, if & is a given fraction for} the
maximum size of p, and if the proportionality constant between
p and h’ is about the same for adjacent intervals, then

- (%) . (34)

hn+1 Py

Using this formula and an estimate for the first interval length,
each successive interval can be estimated from the preceding one.

In the classically forbidden region, the interval predicting

th

procedure can be modified. The length of the i™" column in izp] -

ID 5?'] grows exponentially in the classically forbidden region but

th classical turning

reaches an approximate final value by the i
point. In section IIT we pointed out that when the channel coeffi-
cients are very small in the classically forbidden region, large
errors in their determination have negligible effect on the value of
the coefficients in the classically allowed region. In practice, if
the length of the i column of || + |[D Y | is approximately 1 by
th

the i classical turning point, then in the region before that point

only thé absolute, not relative, size of the elements in the ith
column of [¢'| + |D ¥'' | need be considered in determining p.
The result is smaller p's and larger h's, all ~onsonant with the
fact that larger relative errors in the wavefunction are tolerable
when the wavefunction is small in the classically forbidden region.

th

To choose the initial conditions such that the i~ column of w +

[D }E'l will be approximately 1 by the ith classical turning point,
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we do the following. ¢ is very crudely approximated by z/;i°+ y{l over
the one large interval from the origin of the calculation to the

first classical turning point. At the origin,
v~ ¢ = Aa + Bb (35)

In this classically forbidden region either A or B is exponentially

increasing with increasing r. Assume A is increasing. Then B is
exponentially increasing with decreasing r and therefore b must be
zero or else ¥ will not go to zero at the origin. We are allowed
‘to choose any value of a as long as lef, and therefore 7, is

linearly independent. The simplest choice for a is

where a is just a constant. The constant is so adjusted that at the
first classical turning point, the length of the first column of
|9° + ‘,llll + |D (" + 9')]| is 1; to a much poorer approximation,

th

this value of a will also make the length of the i™" column of

[#° + 9" + [D @ +9")| about 1 at the i classical turning
point. Because the interval size is so large p for this propagation
will always be much larger than 6. However, p can be used to
estimate how long the first interval should be for an accurate
propagation of . This provides the estimate of the first interval
size which we need before we can use the interval prediction for-
mula Eq. (34).

There are three important implications of the perturbation

propagation method outlined here. First, the intermolecular
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potential and its derivatives have to be known only at the midpoint
of each interval. For nonperturbation methods the potential has to
be known at many more points. That means that relative to other
methods the execution time of perturbation methods is not so
potential-dependent and calculations with complicated potentials are
correspondingly more practical. Second, most of the time taken
up by perturbation methods is both in the determination of go(rc, r)
and g(rc, r) - go(rc,r) and in the transformation of § from one
adiabatic basis set to another. All this work is independent of
- k2. Therefore, if the scattering over an energy spectrum is to be
performed, information from the calculation at one energy can be
stored and then reused to drastically reduce the calculation time
for other energies.17 Third, perturbation matrix methods are not
as efficient as similar propagation methods because the length of
the interval cannot vary according to the dynamics of the collision.
In matrix methods the channel coefficients at any one point cannot
be known until the channel coefficients at all points are known.
Hence, information about the channel coefficients, or the dynamics
of the collision, cannot be used to determine interval lengths.

Time-independent perturbation methods, whether matrix or
propagation, are the most efficient methods that derive from a
differential formalism. While other methods must calculate  on a
fine grid of points over r space, perturbation methods need calcu-
late only Qo and 30\1 at the end of a comparatively small number of
intervals. Perturbation methods shrink the r dimension of solution

space in somewhat the same way that the channel expansion shrinks
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the X dimension of solution space. In addition, in their computa-
tional procedures these methods make more apparent the informa-
tion we hope to obtain from the calculation, i.e., the relation of
dynamics (channel coefficients) to structure (intermolecular

potentials).

VL, INTEGRAL CHANNEL METHODS

It is well known that the Lipmann-Schwinger equation is an
_integral equation. When the wavefunction is expanded in channels,
coupled integral equations result. Although there are standard
techniques for solving such equations, there have been very few
scattering calculation318 employing integral channel methods and
no calculations for nonreactive scattering. There are many dif-
ferent versions of the Lipmann-Schwinger equation. We will pick
a particularly simple version and follow the development of Sams
and Kouri.19
The Lipman-Schwinger equation for \If.l the wavefunction for

the collision of two partners in initial internal states indexed by i

with total system energy E, is

v, = ¢l

i ; *+ GVYy (37)

where V is the intermolecular potential V(?, ?1) and G is the

Green's function operator

G=(E - H, +ie)” (38)
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where H0 is the Hamiltonian with V set to zero. In an operational
sense, there are many different Green's functions that are defined
by Eq. (38). Each Green's function gives rise to a wavefunction
which obeys a different asymptotic boundary condition. By G we
mean the Green's function that obeys Eq. (38) and gives rise to a

in

\Ifi which obeys the boundary conditions Eq. (3) and (4). ¥

is

the solution of
H, - B} = 0 (39)

- obeying the same boundary conditions. Since there is no inter-
molecular potential in H,, all the fij’s in Eq. (4) are zero and the
asymptotic boundary condition reduces to

in = ik
U > g (r))e i, (40)

\I'i can be expanded in the same partial wavefunctions of differential
formalism. These partial wavefunctions obey the same boundary
conditions but now satisfy Eq. (37). If we expand one partial
wavefunction as % i?ﬁl and follow the same steps as we did in

deriving the differential equation for ?$1[Eq. (7)], we get for ¢
th

ni’

the n™ element of ?;)i:

]

i = 00 + [x,BCVE 1) L X @)y 0)E
m

opi91 + [ Xp@ LS [GE r[F, 0 WE) 2 3, &)

¢ (£ )ax" dr’ Jdx (41)
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where 6 ; is 1 when n = i but is 0 otherwise. gbin is the only
nonzero channel coefficient in the channel expansion if V is
exactly zero; in general qsin is closely related to a spherical

Bessel function. G(2r|§',r') has the form

out in ’
GG, ¢ |7, ') - ij(ng(}-{») ¢; (r)<¢> (r) «r>r -
J

( )¢0ut( ) r < rl

¢)}n is ¢;n for i = j. Although ¢§)ut satisfies the same equation
as ¢§n’ its asymptotic boundary condition is appropriate for a

channel containing only scattered amplitude; in general q)?m is

closely related to a spherical Hankel function. Substituting Eq.
(42) into Eq. (41) and taking advantage of the orthonormality of

i\, we obtain

;) = 5 ,01r) + ¢°“t<r>2 S o0V, ()¢, )ar’
+ 9 @) T [ gV ()0 )
= 0i010) + 9p W) 2 [T 9 "IV (1))’
o) ?ri S o IV () g (" e
o @) T [ G W () (e ar” (43)

o D\ (N (N
where Vo) = [x &EWE )X, &)dx
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th

For the matrix ¢ whose i column is ﬁi’ this equation straight-

forwardly becomes
92 _ Qin 4 i’Out j;)r Qin(r')Y(r')Q(r')dr'
- Qin j;r Qout(r')Y\(I‘I)gé(r')dr'

- an foofout(r/)y(r/ )gg(r')dr' (44)

0

where an and g\)out are diagonal matrices whose ith

f

-

diagonal
elements are ¢}n and ¢§)u respectively. Sams and Kouri19 point
out that this equation can be considered an inhomogeneous integral
equation with the last term being the inhomogeneity. To obtain ¢

we should seek a homogeneous solution g3° and a particular solution
1

¢
g & g & g =
where 930 solves the homogeneous equation:
90 ” géln . gzout fI‘ ggin(r')Y(r')gg"(r')dr'
_ g\)ln j(‘)r ggout(r')y\(r')géo(r')dr'. (46)

Substituting this equation into the equation for ¢ gives the equation

for o) 1



k{4
ot = i}Out j(‘)r Qill(r')z(r')j'él(r'

an f géout )Y:(I', )Qo (rl )dr'

% anf Qout )_Y(r')[9°(r’) 4 ggl(r')]dr'. (47)

This equation is solved by

9t = ¢°C
where f°° Out(r)Y(r)[Q° (r) + Ql(r) Jdr
or - L7 "t Y )g" ar ]

x [7¢°" V) (ar.

Therefore the final solution to g\b is

9= ¢+ ¢°C. (49)

The coupled integral equation for Qo can be solved noniteratively
because the determination of ¢° at r depends only on the knowledge
of ¢° over r’ < r.

The formalism developed in this section exactly parallels the
differential formalism developed in the previous sections. To get
any column of ¢, N primitive independent solutions gg" must be
obtained. There are two general schemes applicable to solving
the coupled integral equations for ggo. The integral can be re-

19

placed by a quadrature form™° and g\>° can then be propagated from

its initial zero value at r - 0. g§° can be expanded in a set of
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basis function518 resulting in a large matrix equation for the
coefficients. These two types of methods are analogous to the
propagation and matrix methods of differential formalism. Although
we will not carry out the necessary analysis to confirm this sus-
picion, we expect that the eifects of closed channels and the im-
plementation of perturbation schemes are very much the same in
integral matrix and propagation methods as they are in differential
matrix and propagation methods. This implies that the relative
efficiency between integral methods and analogous differential
methods are determined mainly by the technical aspects of each

method.

VIL_ SUMMARY

Exact quantum methods for the calculation of the scattering
of nonreactive collisions can be classified as follows. There are
global methods and channel methods, the latter being more
efficient. Channel methods can be derived from differential or
in‘tggral formalism. Consider differential channel methods first.
They can be divided into time-dependent and time-independent
methods, the latter being more efficient. The time-independent
methods can be further divided into matrix and propagation methods.
Both divisions handle the difficulties caused by closed channels in
equally efficient, but considerably different, ways. However,
propagation methods can take full advantage of perturbation solution

techniques while matrix methods cannot. Channel methods based on
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integral formalism can be divided into matrix and propagation
methods whose efficiency is essentially the same as analogous
differential methods. In global methods the solution space can be
thought of as X X r . In the most efficient methods, perturbation
propagation channel methods, the solution space can be thought of
as N X Nint where N is the number of channels and Nint is the
number of intervals. Both the X and r dimensions of solution
space have been reduced by expanding the motion in known or
readily calculated basis functions. Since both dimensions of solu-
tion space have been reduced, it is doubtful that any more
dramatic improvements in exact nonreactive quantum methods are
possible. Of course improvements in the technical aspects of a
method, not discussed in this article, can still result in important

progress.
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Part 2: Quantum Mecnanical Calculations of Rotational-
Vibrational Scattering in Homonuclear Diatom-

Atom Collisions
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I. INTRODUCTION

The study of intermolecular forces is a major motivation
for many experiments in nonreactive, vibrationally inelastic diatom-

~ atom collisions.1 In these collisions, the most detailed observation

) alm,
possible has the form Oallm ‘

1
the scattering from initial diatomic state |@Z,m,) to final state

This designates an observation of

|a!21m1). Here and elsewhere o and £, are the diatom's vibra-
tional and rotational quantum numbers and m, is the diatom's
angular momentum projection quantum number along the initial
direction of the atom. A bar over a quantum number shows that

it indexes the precollision system. In most experiments the diatom
is not prepared in a specific rotational state and is randomly
oriented. Also, the diatom's rotational state and orientation after
scattering is not resolved. In such experiments, the only observa-
tion possible has the form Og, designating an observation of the
scattering from one diatom vibrational state to another.

An intermolecular potential (IP) can be quantitatively deter-
mined only when experimental measurements can be reproduced by
a calculation with an assumed IP. Therefore, one needs to cal-
culate at least Op . Op can not be directly calculated, because it
obeys the relation

a o
0% - IZ) P3 (@) Og7, (1)

a
1

where Pa(?fl) is the experimentally controlled probability that the



45

diatom with quantum number @ will also have quantum number Z,.
O;fl’ which can be calculated, is an observation of the scattering
of a randomly oriented diatom in the vibrational rotational state of
a and Z, into all states with quantum number @. Ideally, the calcula-

" tion should be quantum mechanical and the assumed IP should be
a.ﬁgularly asymmetric so as to cause both rotationéi and vibrational
scattering. However all exact, and most approximate, quantum
mechanical calculations2 of ngﬂ_l use an angularly symmetric IP.
Such an approximate IP treats the diatom as a breathing sphere
and hence there can be no rotational scattering. There are two
reasons for the breathing sphere approximation (BSA). First,

ngl is mainly a measure of vibrational scattering and so should
be sensitive primarily to the symmetric part of the real IP.
Second, the wavefunction for a symmetric IP has only enough detail

o
to determine OUI ; but the wavefunction for a realistic IP should
1

‘determine all Og’%i?.ln.i from which O;ZI can be obtained:
I, £,
o <
Oy = —— L_ X o™ (2)

Since each vibrational quantum number indexes tens to hundreds

of diatomic states, such information is basically too difficult and
expensive to obtain. The approximate quantum mechanical calcula-
tions not using the BSA have used instead dynamical approximations

that are hard to evaluate. This can be said of most semiclassical
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and classical calculations2 not using the BSA. However, a two-
dimensional classical calculation by Benson and Berend3 indicates
that the BSA is accurate for the calculation of vibrational relaxa-
tion times of O,-A, while a three dimensional classical calculation
by Razner4 implies that the BSA is inaccurate for the calculation
of energy transfer in very energetic Br,-A collisions.

We have been able to determine the degree of error in a

BSA calculation of ng for the simplest class of collisions exhi-
1

biting vibrational inelasticity--the collision of an atom with a homo-
nuclear diatom at energies low enough to involve only two vibra-
tional states. This is done by comparing two quantum mechanical
calculations, one using the BSA and the other an angularly asym-
metric IP with restricted rotational scattering. In the next section,
we define our coordinate system, units, and the three representa-
tive homonuclear diatom-atom collision systems studied: H,-A,
O,-He, and I,-He. In the third section, we derive the theory for
model restricted rotational scattering by a realistic IP. In the
fourth section, we discuss the numerical and analytical methods
used to solve Schroedinger's equation for the collision system
wavefunction. In the fifth section, we study in detail the BSA
induced inaccuracies in the partial, and partial differential, cross-
sections of H,-A. In the sixth section, we study the BSA induced
inaccuracies in the partial cross sections of O,-He and I,-He. We

then summarize our results.
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Figure 1 shows our coordinate system. Vector ?1 (£, By
¢,) is the distance of one end of the diatom from its center of
- mass and vector T, (ry 6, ¢,) is the distance of the colliding atom
from the diatom's center of mass. vy is the angle between these
two vectors, while the z axis, from which 6,and 8, are measured,
points in the initial direction of the atom.

We represent the diatom as a rigidly rotating harmonic
oscillator, an approximation which is valid at our low collision

energies. For an IP, we choose
V(rly 1"2,')/) = Vo (rv rz) + Vz(rl: rz)Pz(COS 7) (3)

where

Volrut) = 4 [(25) - (535 ]

o 12 o 6
Vz(rl, r,) = 4€ [( T, - T, ) Adgp ~ (1‘.2—‘?; ) aLR]

where P,(cos y) is the second Legendre polynomial. Both V, and
V, are of a Lennard-Jones type with V, modified by a short and
long range P,(cos y) asymmetry defined by agp and a;p. Real
IP's are known5 to have a long range attractive and a short range
repulsive part, with each part having its own angular asymmetry,

our parametrized IP contains these features.
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The Hamiltonian 3C for the collision of A striking B, is6

2

1 0 2 -
€ = 'TM_V: + {—%SF > y“[ & Bole} + V(rl)rZJy) 4)
~ where
m
M=
m, + 2mp

Here m and mp are the masses of A and B. The units of energy
and length are hw and one-half the classical ground state vibrational ampli-
tude, respectively. if is the rotational angular momentum operator,
B, the rotational constant, and y is the diatom's bond displacement
from equilibrium. To specify € for a collision system we need
M, B;, 0, € ARy and a LR

We considered three systems: H,-A, O,-He, and I,-He.
The parameters for these three systems are listed in Table I.
The IP for H,-A is approximately correct while that for O,-He is
only qualitatively correct. The IP for I,-He is just a guess, since
it .is based on results or estimates for a variety of systems. How-
ever, for most homonuclear diatom-atom systems realistic values
for the six Hamiltonian parameters fall within the range of the
values chosen for our three systems. For reasons of economy,
éach system is studied at one total energy E and one initial rota-
tional state indexed by £,. However, each system has different

values for these two parameters. E and {, are listed in Table I

along with T, the temperature equivalent, assuming a Boltzmann



49

distribution, of the relative translational energy of the atom when
the total energy is E and the diatom is initially in the £, rotational
state of the first excited vibrational state. Shock tube experiments
on HZ-A7 and OZ—H(—:\8 have been conducted at these temperatures.
The value of £, for H,-A and O,-He is not unreasonable for these

9

experiments. At least one experiment on L-He" has preselected

the diatom in our initial rotational state.
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III. THEORY
2 O,

To determine Og-f for any @ we need to know the wave-
1

function wgf*m‘ for all m; and the relevant range of E, where
) Bt

E
Xsrm, = ™Warm, and (5)

‘I/al‘ = T lazl.r?l—l> elkz

1 1 r2—>00

L bt (g g e

af,m,)
alm, efm, ‘ o

ikr,
r,
where k and k are the initial and final wavenumbers of the relative

motion, f‘fﬂ_lfl_l (E, Q,) is the amplitude at total energy E for
af,m,

|@f,m,) to be excited to |@f,m,) while scattering the atom into

solid angle 2, specified by 6, and ¢, . ng— can be determined
1

from all these amplitudes. The usual first step in obtaining

10 in a set

1,1/—1——— (we will suppress the index E) is its expansion
QxX,m,;

of functions complete in r;, 6,, ¢,, 6,, and ¢, space. The spheri-
cal harmonics are complete in 6, and ¢, space. Furthermore each
spherical harmonic describes an orbital angular momentum state of
the atom. In the total angular momentum representation the product

of the diatomic states, complete in r,, 6,, and ¢, space, and the

spherical harmonics is the most convenient set of functions to
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expand w&Elfn—l. We call a member of that set a channel designated
by J|a£1£2) where £, is the orbital quantum number which couples
with £; to form J, the total angular momentum quantum number.

In general, a channel's z component of J should be specified, but

~ atom-diatom scattering is independent of this momentum. A chan-
nel is open if its diatomic state factor has an energy less than E;

otherwise it is closed.

The boundary condition on W&IE is:
1 1
I1+—z =T
al.m
P > 2 Z chm x
afl.m T, = © - -
111y 2 T,=0 J'—'l-ﬂl' 2‘ £,J
-i(kr, - L7 /2) _
e |arnL,)
\/‘f{: Iy
i(kr, -2,7/2)
. 5 JS%%I% e 2 T2 J|a£1£2>} (6)
all, 12 vk T,
ey g el L
where each Cf‘filml is a known constantmand J &E—lp_—z is an element
1+2

J
2 J ; -
of what we call a solution vector, “S—7+ 7+, in which O-4 can be

directly expressed [see Egs. (7) and (10)]. Let us call the solu-
tion to the Schroedinger equation which obeys the boundary condition
enclosed in brackets above a partial wavefunction (pwin) designated
4/&2'1 w&?&]

I, "I, is the wavefunction for that part of the collision sys-

tem initially described by unit amplitude in 9 |aZ,Z,) with unit
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" . . . : Jgall,
incoming current in the r, direction. The square of Sg7 g, is the
12
probability that the collision will scatter 7 |af,L,) into
al,

£,J
a coupled set of differential equations in r, for the channel coef-

J‘aﬂlﬂz). To obtain ¥—"!, we expand it in channels and generate
ficients. The channel coefficients at large r, contain the pwin's

solution vector. Describing the collision in terms of the scattering
of each initial channel into other channels is more convenient than
describing it in terms of the scattering of the initial diatomic state

into other states and of the atom into diffei“ent directions.
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B. The Influence of the IP

The expense and difficulty of determining Og_fl lie almost
entirely in solving the coupled set of differential equations for the
- channel coefficients of each pwin. The calculation time for each
set is roughly proportional toc the number of channel coefficients
cubed. The importance of the IP is that a pwfn's channel set is
effectively complete if it includes only those channels which the IP
significantly couples to the initial channel in some region of r,.
The form of the IP limits a pwin's channel set in two ways. First,
all meaningful IP's must conserve total angular momentum as well
as reflect the symmetry of a homonuclear diatom. Therefore,
:JEII will need only those channels with total angular momentum
J and rotational and orbital angular momenta of the same parity
(even or odd) as £, and Z,. Second, if an IP is angularly symme-

ol

tric, z/zzz j will need only those channels with rotational and orbital
angular momenta £, and £,. Beyond these two general statements,

a pwin's channel set depends on the strength, not the form, of the IP.
j The differences between a BSA and an exact determination of
gm stem from the differences between the scattering of each
initial channel by an angularly symmetric or asymmetric IP. In
Figs. 2 and 3 we schematically illustrate the scattering of one
initial channel by both IP's. In each figure, a channel is repre-
sented by a square whose position specifies the channel's vibra-
tional, rotational, and orbital quantum numbers. Only channels

strongly coupled to the initial channel are shown; these channels
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must have the same J and the same parity in £, and £, as the
initial channel. Arrows of a thickness proportional to the excitation
probability connect final and initial channels. For clarity, pure
elastic scattering is not shown in either figure and some arrows

- are left out of Fig. 3. Vibrationally elastic scattering takes place
within the initial channel's plane of channels while all other scat-
tering is vibrationally inelastic. Only two channels are coupled in
Fig. 2 by the symmetric IP while 50 channels are coupled in Fig.
3 by the asymmetric IP. The ratio of BSA to exact calculation
time for the pwin is therefore 2°/50° or about 1/16, 000. We refer
to the scattering between channels alike in £, and £, as vertical and
all other channel scattering as lateral. The symmetric IP causes
only vertical scattering, while the asymmetric IP causes both ver-
tical and lateral scattering. The vibrational scattering produced by
an elastic or inelastic lateral process is different in at least three
ways from that produced by the analogous vertical process. First,
the two processes differ in the vibrational coupling between initial
and final channels. Second, the energy of rotational and orbital
motion during the collision is different; this affects the amount of
energy directly available to force vibrational scattering. Third,
because the final channels of the two processes differ in £, and £,,
they describe an atom-diatom system separating at different speeds
in different directions. The greater the change in £, and £, from
I, and Z,, the more a lateral process will differ from the analogous

o
vertical one. A pwin's contribution to O&f involves a sum over
1
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all the vibrationally elastic or inelastic scattering of its initial
channel. If, in the exact calculation, the difference between each
elastic or inelastic lateral process and the analogous vertical
process does not sum to zero for enough initial channels, then the

a
BSA determination of O&I will be in error.
1
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C. Model Rotational Scatterin

Suppose we obtain EU&‘[ for an asymmetric IP by ex-

_ Jm,

panding each pwin z,bg}[l in a channel set composed only of channels
2

with £, equal to Z,. This very incomplete channel set does not

permit w%gl to obey its boundary condition unless we assume

J.all, : . .
S(_sz equals zero if £, is not equal to {,. The channel scattering
1*2

for the same initial channel of Figs. 2 and 3 is represented in

Fig. 4. This calculation takes only 125 times longer than a BSA
calculation versus the factor of 16000 we previously estimated for
the exact calculation. However, each lateral scattering process in
Fig. 4 is probably more intense than the same process calculated
with a complete channel set (Fig. 3) because the initial channel's
amplitude is being forced into fewer final channels. This feature
implies that differences between lateral and vertical scattering will
be larger in the approximate than in the exact calculation. The
implication is that the difference between the approximate and the
BSA determined ng-l will tend to be larger than the difference
between the exact and the BSA determined ngl' Let us define a
model calculation of ngl as one in which each pwin is expanded in
a channel set made incomplete by the same artificial set of restric-
tions. The degree of error in a BSA Ogﬁ—l can be semiquantitatively
defined by its comparison to ngl from feasible calculations for

models whose restrictions emphasize lateral processes with large

changes in £, or £,.
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We have studied four different models. We will now define
each model's set of restrictions and, as an example, apply these
to the pwin ¥2;9.

Each model restricts a pwin's channel set, one plane at a
time (see Figs. 2, 3, and 4), starting from the initial channel or
the channel in the plane vertically connected to the initial channel.
We will look at just one channel plane for gbg,’g , Where we will
presume that all channels with £, equal to 1 to 13 are needed for
completeness. The plane is shown in Figs. 5A and 5B. The four
sets of restrictions are:

Model 1: Include those channels whose £, equals £,. These
channels are marked by lines slanted to the right
in Fig. 5A.

Model 2: Consider all the channels with the same value for
£, to be in a row. Starting from the initial chan-
nel, advance from row to row, choosing the one
channel in each row which, first, is one of the
nearest neighbors to the included channel of the
previous row and, second, has a value of £,
nearest without exceeding the row's average value
of £,. These channels are marked by lines slanted
to the left in Fig. 5A.

Model 3: As in Model 1 with "¢, equals £," replacing "{,
equals £," and the results shown in Fig. 5B.

Model 4: As in Model 2 with the roles of £, and £, inter-

changed and the results shown in Fig. 5B.
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Models 1 and 2 emphasize scattering in £,, while models 3 and 4
emphasize scattering in £,. As in model 2's description, let us
divide each plane of channels into rows indexed by {,. In a com-
plete channel set calculation, the initial channel may scatter into
final channels similar to itself; then the most probable final chan-
nel in each row is indexed by £, equal to £,. Under this assump-
tion, model 1's channel set is an average of the complete channel
set over £,. Another assumption is that the quantum numbers of
the initial channel would be '"forgotten' during a scattering process
in which changes in the quantum numbers are large. Then each
row's most probable final channel depends on the size of £,-£,.
The final channel's £, goes from £,, when £,-f, is small, to the
row's average when £,-f, is large. Under this assumption, model
2's channel set is an average of the complete channel set over £,.
Models 3 and 4 are similarly motivated.

al,

For a realistic IP, the complete channel set of ¢ is

usually considered to be at least all the open channels indzexed by
J and by £, and {, whose parities are those of £, and {,. Should
any of our models be applied to the thousands of open channels in
the I,-He system, hundreds of channels would still be left in the
incomplete channel sets. However, only channels that the IP
couples significantly to a pwin's initial channel are required in a
complete set and this number is always much less than all the

open channels. These significant channels can be determined from

exploratory calculations and experimental results. For each
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collision system, we will define the channel sets to which the

models are applied.
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IV. METHODS

N

We used two methods to solve the coupled set of equations
for the channel coefficients and solution vector of each pwfn. The

el with one major

- first method is the propagation method of Gordon
modification. This modification is the complete elimination of
closed channel coefficients from the calculation at intermediate
values of r, as the channel coefficients propagate from r, = 0 to

the asymptotic region. This modification is a direct outgrowth of
what Gordon refers to as stabilization and is aAgeneral feature of
all propagation methods. This modification tends to make the com-
putation time proportional to the cube of the number of open chan-
nels rather than the number of open and closed channels. See Part]I,
Section IV for details. Using the propagation method, we obtained
approximately three place accuracy in any probability (squared
amplitude of a solution vector element) greater than 10™°. We
tested the accuracy of our solution vectors in two ways. First, a
vector's probabilities should sum to 1; our sum values were always
1 to four decimal places. Second, if P is the probability that

the initial channel m will scatter into final channel n, then

P _-P

n .
_ﬂp_ﬂl should be zero by time reversal. Our values were
mn

always less than 0.05 and usually less than 0.01 for all Bown *
107°. In model calculations on the I,-He system, this accuracy
could not be obtained when closed channels were included in a

model channel set with twenty or more open channels. For unknown
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reasons the stabilization procedure described by Gordon failed to
prevent the closed channel coefficients from exponentially blowing
up as they propagate. We did not pursue this difficulty because of
expense and because, as we will later prove, BSA induced errors
in Og]fl for the I,-He system can be determined by model and BSA
calculations that exclude closed channels.

The second method is analytic and approximate but valid
when £, is very large. In such cases, the initial channel's
scattering is essentially elastic. The scattering is that of
potential scattering where the potential is the initial channel's
expectation value of the IP. The unknown is the phase shift which
is one half the phase of the only non-zero element in the solution
vector. The channel expectation value of our IP is a Lennard-
Jones potential. For Lennard-Jones potential scattering when {,
is large, a valid analytic formula exists. ke Solution vectors cal-
culated by this analytic method pass smoothly, as a function of £,

into those calculated by the propagation method.
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For this system, we calculate both the partial cross sections
Ooss Ui gs orol’ » and 0y ; using all four models and the BSA, and the
 partial differential cross sections doy 5(6,), do, 4(6,), do, 5(6,), and
dop 5(6,) using models 1 and 3 and the BSA. To review our notation,
ogzl and dcgzl(ez) are the cross section and differential cross section
respectively for the scattering of a randomly oriented diatom in the
vibrational rotational state of @ and £, into all states with quantum
number a. We solve for pwins z,b%sz and 11/%; for all J and for I,
ranging from 9 to 199. The propagation method was used for £, be-
tween 0 and 80 and the analytic method for [, between 81 and 199. The

models restrict the complete channel sets of 1,0%23J and :,l/.l_’3 The range

of values that the @, £,, and £, indices of a chanilel can ﬁ;iume speci-
fies a pwin's complete channel set. This range may vary with all four
indices of the pwin, but we let it vary only with £,. In Table II,
the range of @ and £; as a function of £, are listed for the H,-A
system. For £, > 80 the channel scattering is essentially elastic
and the pwin's complete channel set is just its initial channel. For
each pwin, £, ranges over all values allowed by the pwin's value of
J. Not all of)en channels are included, but we estimate that use of
this channel set would incorrectly determine only vibrationally
elastic and inelastic lateral processes of probabilities less than
10™* and 10™" respectively. ngl would probably not be altered by
an exact calculation with a pwin channel sets larger than those of

Table II.
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A Model 1, Model 3, and the BSA

a
The full expression13 for the partial cross section 5T is

. 1 ) I2+Il
OST. = X S 27 2 (2T +1) 2
1 (2,@1 4 1) E2=O J= IIZ"I1‘ ll
J+L,
ald, Jq al.l,
2 irL - Sgrrl (7)
2,=|3-4,]

where x is the wavelength for the initial translational motion
divided by 27. The sum over £, includes all values with the same
parity as that of {,; 62 is 1 when i equals j and zero otherwise.
For each model calculation, the solution vector elements indexing
final channels left out of the channel set equal zero in the expres-
sion. For a BSA calculation, all vector elements not of the form

ol !Z
JS &ff can be set to zero. Furthermore a BSA solution vector is

al L
independent of J. Let us represent S-—ff by IIZS_ for the BSA
1

calculation. Since

; ,+1,
N 27 27 +1) = (2L, + 1), (8)
(ZEI + 1) J= l:'z-z"p-.ll

the expression for O'gl— can be simplified for the BSA calculation:
1

g _ o
cr‘-’fEl N DY (2g2+1)|<*3a - Izzsﬂ . (9)
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The partial cross sections for models 1 and 3 are in Table III.
Table IIT also shows the results of five BSA calculations indexed from
zero to four. FEach one uses different values for ¢ and € in its IP. Only
BSAOQ uses the values of o and € used by models 1 and 3. Table III lists
~ o0 and € for each calculation. We want to use Table III to estimate the
error due to the BSA in the partial cross sections of the H,-A system.
From the five BSA calculations, we can give those errors in terms of
the errors in the values of o and € determined by the BSA calculations
that reproduce the cross sections of both models. If there were no
errors, BSAO would reproduce the results of each model. From the
results of Table III, models 1 and 3 estimate that BSA induced errors
for the H,-A system are less than 1% in o and 10% in € for elastic cross
sections and less than 1 or 2% in ¢ for inelastic cross sections. Also,
the BSA results show that inelastic cross sections are extremely insen-
sitive to the value of €.

Partial differential cross sections can also be determined from

. 13 a ;
these seven calculations. The full expression™ ~ for da&zl(ez) is

- 1 2m 2 T 1 Z) E
do—+(6,) = == YO
C!l-l 2 o j; (2[1 + 1) I_ﬁ—l:-p-—l «Ql mlz-—ﬁ]_
- L,+1, J
i .7,
| 2, (2T, +1)% i*2 7 2 "
T,-0 3= |53 M
J+L, L
. o al l,
2 2 i 'Qz(z'zﬂl()mlll_zfl JM)[(SC_H:Q_lIz

Ly= |J—’Qll m, ==L,

al.f 2
- Jsaﬂz’i 12,4 ;m,m, | 2,0, IM) Yﬂzmz(ez,cpz)l dg, (10)
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where (ijkl |ijmn) is a Clebsch-Gordan coefficient and Y) (6, d5)
2%%22
is a spherical harmonic. Notice our partial cross section is

a a
averaged over ¢, space. OaL, and dGEII(QZ) are related by

a T . .
O'a'l-l = 27 f daaz‘l(ez) sin 92d92 F (11)

0

The properties of Clebsch-Gordan coefficients allow dagl— to be
1
simplified for a BSA calculation:

0
o _ o a 2
dogr,m 3D+ Doy - filag 2 1p7 (cos 09" (12)

1

i

a

In Figs. 6, 7, 8, and 9, we plot doy 4(6,), do, 4(6,), d0'01’3(92), and
d01°,3(92) respectively for model 1, model 3, and BSAO. In Figs.
10 and 11, we plot dof’s(ez) and dGOI,S(éz) respectively for BSA1, BSAZ2,
ESA?;, and BSA4. In‘each figure, unless 6, is very small, |
dog-ﬂ—l(ez) is plotted over those values of 6, for which the cross
section is large. At very small angles, differential cross sections
cannot be measured because of experimental difficulties. Figs. 6
through 11 show two features. First, models 1 and 3 estimate the
BSA induced errors for the H,-A system to be about 1 or 2% in ¢
for the inelastic partial differential cross sections. Second, the
inelastic partial differential cross sections are not sensitive to €
and the elastic partial differential cross sections are not sensitive

to either € or o. All the potential sensitivity in elastic differential

cross sections is concentrated in the experimentally inaccessible
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region of very small angles. We confirm this in Table IV, where
the values of dog ,(6,) for 6, equal to 0° through 4° are listed for
all five BSA calculations. The difference in potential sensitivity of
elastic cross sections and elastic differential cross sections are
due to experimental limitations. However, the lack of sensitivity
to e-like parameters in inelastic cross sections and inelastic
differential cross sections are due to the nature of the collision

system.
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B. Interpolation for Partial Cross Sections

Because models 2 and 4 allow more lateral scattering than
models 1 and 3, the former are less likely to underestimate
~errors due to the BSA. They are also much more expensive to
use. To circumvent this difficulty, we have devised a way of
interpolating, with respect to {,, the solution vectors of either a
model or a BSA calculation. The interpolated vectors are good
only for the construction of approximate partial cross sections.
However the difference between an approximate cross section of a
model and that of a BSA calculation is almost exactly the same as
the difference between analogous uninterpolated cross sections.
Therefore, the interpolation scheme can be used without destroying
the ability of model calculations to determine BSA induced errors
in partial cross sections.

The comparison of Eqs. (7) and (9) shows that both the full
and BSA expression for ng-l depends on a sum over £,. Each

term in the {, sum of the BSA expression can be constructed from

LI?S& The amplitude squared and the phase

the solution vector

of each element in this solution vector is a relatively smooth

function of £,. Each term in the I, sum of the full expression can
SN

be constructed from solution vectors JS&IQ— for all J. The ampli-

1723
tude squared and phase of each element in these vectors is not a
smooth function of Z,. Let us rearrange the full expression for

oa into
—+ in
al,
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= s o _ VI, 2 | LLTG®
O-—l—l = ¥ IZ_:,O (22, + 1){'6_07 - 1 zs_&l + I 1 zsa| } (13)

—— e —

We call VLE Sa and L:Q"lLSa vertical and lateral pseudo vectors

- respectively. To form a term in Ggfl for any & we need to know
the amplitude squared of each element of both pseudo vectors as
well as the phase of the elastic element of the vertical pseudo

vector ; these quantities are defined in order as

_ . 1 Joal 1,12
VLT, 02 = 27 (27 + 1)[¥g % ets (14)
"85l T e aneren =5t
[t P b Ty B B |Jsg%1§—2i2 (15)
(2L, +1)(2L,+1) J g, £, iy
(£,£,)#(T, 1)
4 _— —
J,afl J all
~ @L + D)EL, + 1) ? 23 + D[S 557 eos “og7r
V'Qllqugz arccos [ ] (16)

VL, %2
[Phitasg

ﬂSnm. These quantities are

where £¢nm is fhe phase 6f vector element
all relatively smooth functions of £,. To compare BSA and model
determined cross sections, we can calculate BSA solution vectors
and model pseudo vectors for the same grid of {, values, then
interpolate with respect to £, the remaining vectors and pseudo

vectors to form the cross sections. If the grid of £, values is
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fine enough to produce approximately correct cross sections, then
the differences between these BSA and model cross sections will

be nearly exact. Since it is trivial to generate solution vectors or
pseudo vectors by the analytical method, the interpolation need only
be carried out in the region of {, where the propagation method
applies. Because any phase is undetermined within an integral
multiple of 27, the interpolation of the elastic phases of the solution
or pseudo vectors is not straightforward; this minor complication

is fully discussed in the Appendix.
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o200l 5 MIBIED G S Ve TP

For the H,-A system, we use our interpolation scheme to
determine the partial cross sections for models 2 and 4 and to
' redetermine the cross sections for models 1 and 3 and the five
BSA calculations. For f, equals 0 to 80, we solve for the solu-
tion and pseudo vectors for every tenth value of £, starting from
0, and interpolate the remaining vectors. The results are in
Table V. The comparison of Table V to Table III confirms our
assertion that the interpolation scheme can produce partial cross
sections whose absolute values are approximate, but whose relative
values are éxact. The results of Table V show that the BSA in-
duced errors in partial cross sections are the same for all four
models.

All our calculations on the H,-A system support two con-

clusions:

(1) The BSA can be used to determine accurately the sym-
metric part of the IP from measurements sensitive to
potential parameters.

(2) The inelastic partial cross sections are insensitive to
e-ilike parameters while the entire potential sensitivity
of the elastic partial differential cross sections is con-

centrated in the very small angle region.
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A. Interpolation for Pseudo Vectors

Vl‘llﬂzsa and szzs_ requires < SI.L
1*-2

The construction of

for all J. If {, = €,, the number of values for J is (2€, + 1). For
H,-A, (2Z, +1) is only 7; but for O,-He and I,-He, it is 27 and 65,
respectively. For model calculations on the O,-He and I,-He sys-
tems, the number of solution vectors which must be calculated for
each pair of pseudo vectors is so large that the determination of
partial cross sections by the interpolation of pseudo vectors is
impractical. To overcome this difficulty, we again turn to inter-
polation. From one solution vector, three quantities are used in
the construction of the parts of the two pseudo vectors that are

used in the expression for the partial cross section. From Egs.

(14), (15), and (16), the three quantities are:

J.al. L, _Il-[Z
;/:) 22 | —1—1— | for all a,and gbaﬂ 7z,
1 2

(« 1, L), 'Qz)

are not smooth functions of J but are relatively smooth functions of

s-—-I | for all «,

These quantities

J(EIIT.ZIPZ(COS v)|@L,L,) designating the expectation value of
P,(cos y) with respect to the initial channel J{am‘z ). This expec—
tation value contains the entire J dependence of the initial chan-
nel's expectation value of our asymmetric IP [see Eq. (3)]. Let
us index a model calculation by nJ when each calculated pair of

pseudo vectors was constructed from n solution vectors from the



propagation method and the remaining solution vectors from inter-
polation of the above three quantities with respect to

J(&IJZ;[PZ(COS y)‘&fll'z). These calculated pairs of pseudo vectors
are used to interpolate other pseudo vectors, with respect to T,

- to form partial cross sections. For a fixed interpolation of pseudo
vectors with respect to £,, the interpolation of solution vectors with
respect to J(Eillglfg(cos y)‘&l}lg) is accurate for that value n
such that there is a negligible difference in partial cross sections
between the nJ and the (n - 1)J model calculation. Let us call ALL-J
a model calculation where all solution vectors used in the construc-
tion of pseudo vectors were calculated; the model calculations for
the H,~-A system were ALL-J calculations. In Table VI we com-
pare the partial cross sections for the H,-A system determined by
2J, 3J, and ALL-J calculations of models 2 and 4. Any of the
three calculations for both models would have estimated the same
degree of BSA induced error in partial cross sections. This indi-
cates that our interpolation scheme drastically reduces the number
of solution vectors that must be calculated for each pair of pseudo

vectors.
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B. Results for the O,~-He System

. 0 1 1 Y
For this system, we calculate Oo,135 U113 Op,135 and 0y, 13

0,13
7,3
for £, ranging from 0 to 130. The propagation method is

for only model 2 and the BSA. We solve for pwins and

1,13
Vi
used for £, = 0, 9, 18, 27, 36, 48, 60, 70, and 80; interpolation

with respect to £, supplies the missing pseudo vectors for T, = 0
to 80. The analytic method is used for £, = 81 to 130. The com-
plete channel sets of 1,01‘3;33 and z[/jll_;? are defined in Table VII where,
as a function of Z, the ranges of @ and £, are listed. A channel
set's range of £, has all values allowed by the value of J of the
set's pwin. Not all open channels are included in each pwin's
channel set, but we estimate that a calculation with this set would
incorrectly determine only vibrationally elastic and inelastic lateral
processes of probabilities less than 107* and 107" respectively.
Table VIII lists the partial cross sections for a 2J and a
3J model 2 calculation and for five BSA calculations. Each BSA
calculation uses different values for ¢ and €, which are also listed
in Table VIII. From the results of Table VIII, the 2J and 3J cal-
culations of model 2 are nearly the same and indicate that BSA
induced errors for the O,-He system are less than 1% in o and
about 5% in € for elastic cross sections and about 1% in ¢ for in-
elastic cross sections. The BSA calculations also show that inelas-
tic cross sections are very insensitive to the value of €. Because

all four models estimate the same BSA induced errors in the H,-A

system, we doubt that other model calculations on O,-He would
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radically alter our conclusions. If we assume that the BSA is as
good for differential cross sections as for cross sections, then we
can use the BSA to investigate the potential sensitivity of differen-
tial cross sections. The five BSA calculations were redone with
each solution vector explicitly calculated. In Figs. 12 and 13 we
plot doll, 13(6,) and dcol, 13(8,) respectively for the five redone BSA
calculations. The two figures show that, for O,~He as for H,-A,
the potential sensitivity of the elastic differential cross sections
is concentrated in the very small angle region, while the inelastic
differential cross sections have the same potential sensitivity as

inelastic cross sections.
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1 1 0
1,300 % 345 and 0, g4

For this system, we calculate 000’34, o
for only model 2 and the BSA. We solve for pwins "DIO;? and
; zpzl.;% for £, ranging from 0 to 100. The propagation method is
used for every eighth value of £, from O to 64; interpolation with
respect to £, supplies the missing pseudo vectors for I, = 0 to 64.
The analytic method is used for , = 65 to 100. The complete
channel sets of 1;/%’:; and :,bzl_:; are defined in Table IX where, as
a function of £, the ranges of @ and {, are listed. A channel
set's range of £, has all values allowed by the value of J of the
set's pwin. Due to the technical difficulties discussed in Section
IV, the channel sets defined by Table IX have no closed channels.
We will discuss the effect of their absence on partial cross sec-
tions. We estimate that the absence of some open channels from
the channel sets of Table IX will affect only vibrationally elastic
and inelastic lateral processes of probabilities less than 107" and
10~ respectively.

Table X lists the partial cross sections for a 2J and a 3J
model 2 calculation and for five BSA calculations for five different
values of 0 and €. From the results of Table X, the 2J and 3J
calculations of model 2 are nearly the same and indicate that BSA
induced errors for the I,-He system are less than 1% in ¢ and 5%
in € for the elastic cross sections and less than 5% in € for the

inelastic cross sections. The BSA calculations also show that

inelastic cross sections are insensitive to the value of 0. To
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determine the effect on partial cross sections of the absence of
closed channels from all channel sets, we redid the five BSA cal-
culations including two closed channels in each pwfn's channel set.
The resulting partial cross sections are listed in Table XI. The

" elastic cross sections are unchanged; the inelastic- cross sections
are all changed by the same small amount, leaving their relative
values unchanged. We believe model cross sections will undergo
the same alternations if closed channels are used in the calculation.
By assuming the BSA is equally good for cross sections and dif-
ferential cross sections, we redid once again the five BSA calcula-
tions to investigate the potential sensitivity of differential cross
sections. In this new set of calculations, closed channels were
used and each solution vector was explicitly calculated. In Fig. 14
we plot d.011,34(92) for three BSA calculations and in Fig. 15 we plot
dcol, (8,) for all five BSA calculations. The two figures show that
the elastic and inelastic differential cross sections of I,-He have
size and structure over a far wider range of angles than the dif-
ferential cross sections of H,-A and O,-He. The large values of ¢
and € make the collision of He with I, much "stickier" than the
collision of A with H, or of He with O,. Large angle scattering is
significant with the consequence that both the inelastic and elastic
differential cross sections of I,-He show the same potential sensi-

tivity as the corresponding cross sections.
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VI. CONCLUSIONS

Two conclusions about low energy vibrational scattering in
homonuclear diatom-atom collisions can be drawn from our resulis
for the H,-A, O,-He, and I,-He systems. First, the breathing
sphere approximation can be used to anétlyze accurately experimental
measurements for the potential parameters to which the measure-
'ments are sensitive. Second, the measurements most sensitive to
potential parameters are, first, elastic cross sections, and,
second, inelastic cross sections and inelastic differential cross
sections. Elastic differential cross sections are as sensitive as
elastic cross sections if the intermolecular potential is soft and
the collision is "sticky' with large angle scattering (like I,-He).
~Otherwise the entire potential sensitivity of elastic differential
cross sections will be concentrated in the experimentally difficult
region of very small angle scattering.

The approach used in this work can be applied to the study
of the orientation effect of strong dipole forces present in most
heteronuclear diatom-atom vibrational scattering. The intermolec-
ular potential used in a breathing-sphere-approximation calculation
cannot align. the atom and diatom during collision, whereas the
intermolecular potential used in a model calculation can. A signif-
icant difference between BSA and model observables would indicate
the aligning power of dipole forces significantly affects vibrational

scattering.
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APPENDIX

The elastic phases of solution or pseudo vectors are unde-
termined within an integral multiple of 27. The propagation method
internally adds or subtracts 27 units to ifs phases to bring them
within +r. Fig. 16 is the plot of the phase, as both a smooth
function of f, and as produced by the propagation method. Because
the phase as a smooth function of {, passes outside the range of
+7, the phases produced by the propagation method are not suitable
for interpolation with respect to £,. For BSA calculations this
difficulty can be avoided by using the JWKB method to determine
the elastic phase of each solution vector under the gross approxi-
mation that the initial channel experiences only potential scattering.
The JWKB phases are smooth functions of £,. We use these phases
to determine the number of 27 units the exact elastic phase of the
propagation method must be displaced, by demanding the displaced
phase be as close as possible to the JWKB phase. The displaced
elastic phases are smooth functions of £, and are suitable for
interpolation. For the pseudo elastic phases of a model calcula-
tion, we use the same displacements determined for the BSA cal-
culation whose IP is the symmetric part of the model's IP. In all
cases where this procedure was used, the difference between an
exact undisplaced and a JWKB phase was, within 1 or 2%, an

exact multiple of 27.
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TABLE 1. System parameters in reduced units.

Parameter H,-A O,-He I,-He
M 0.952 0.111 0. 0155
B, 0.01382 0. 0009182 0. 0002282
o 48.14° 115, 5¢ 128. 3%
€ 0.01158° 0. 01593¢ 0.40734
asg 0.25° 0. 45 0.558
arp 0.128" 0. 229" 0. 10*
E 2.140 2.195 2.464
7, 3 13 | 34

T(°K) 2000° 800° 85°

G Herzberg, Spectra of Diatomic Molecules (D. Van Norstrand

Company, Inc., Princeton, 1950), 2nd ed.

PR. Helbing, W. Gaide, and H. Pauly, Z. Physik 208, 215
(1968).

CDerived from the combining laws and the He-He parameters
of J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley and Sons, Inc., New York,

1964), 2nd corrected printing, pp. 168, 1110; and the O,-O, para-
meters of C. J. G. Raw and C. P. Ellis, J. Chem. Phys. 28, 1198
(1958).

d3. 1. Steinfeld and W. Klemperer, J. Chem. Phys. 48, 3475
(1965); J. I. Steinfeld, J. Phys. Chem. 64, 14 (1968); parameters
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TABLE 1. Continued.

are for the B 3Hou+ electronic state of I,.

®From the H,-He potential surface calculated by M. D. Gordon
and D. Secrest, J. Chem. Phys. 52, 120 (1970).

fEstimated from the 0,-0, atom centered Lennard Jones poten-
tial of J. R. Sweet and W. A. Steele, J. Chem. Phys. 47, 3029
(1967).

SEstimated from the Br,-A atom centered Lennard Jones poten-
tial of R. Razner, J. Chem. Phys. 51, 5602 (1969).

hperived from the polarization experiments of N. J. Bridge
and A. D. Buckingham, Proc. Roy. Soc. (London) A295, 334 (1966).

Iprom the value for Br,-Li’ measured by R. K. B. Helbing and
E. W. Rothe, J. Chem. Phys. 48, 3945 (1968). |
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TABLE II. Range of £, as a function of ¢ and ¥, for the complete

channel sets of H,-A.

0 —40 1,3,5 1,3,5 1,3,5

41 — 80 1,3,5 1,3,5
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TABLE II. Partial cross sections in A for H,-A.

Type o € s orlts 001, s orf: .
Model 1 48.14 0.01158 51.94 65.29  0.000706 0.00225
Model 3 48.14  0.01158 51.94 65.05 0.000725 0.00226
BSAO 48.14  0.01158 51.97 64.94 0.000687 0.00214
BSAl 47.66  0.01158 50.77 63.33 0.000752 0.00234
BSA2 48.62  0.01158 53.18 66.57 0.000628 0.00195
BSA3 48.14 0.01043 50.48 61.24 0.000699 0.00218
BSA4 48.14  0.01273 53.53 68.82 0.000680 0.00211




TABLE IV. do?

0,3
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(8,) in A’ for very small angles for H,-A.

Type 0° 1° 2° 3° 4°

BSAO 18420. T479. 1639, 2.26 262.
BSAl 17510. 7248. 1635. 1.09 253.
BSA2 19370. 7711, 1637. 5.39 270.
BSA3 16430. 7177, 1604, 1.04 254,
BSA4 20600. 7801. 1675, 4,87 271,
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TABLE V. Partial cross sections in & for H,-A. Cross sections

constructed by interpolation.

Type o € 0:’ s 011, . 0‘01, . O‘f, 5
Model 1 48.14  0.01158 52.63 61.45 0.000737 0.00235
Model 2 48.14 0.01158 52.66 61.03 0.000822 0.00237
Model 3 48.14 0.01158 52.64 61.25 0.000727 0.00249
Model 4 48.14  0.01158 52.65 61.14 0.000699 0.00252
BSAO 48.14  0.01158 52.65 61.29 0.000712 0.00222
BSAl 47.66  0.01158 51.83 59.37 0.000785 0.00244
BSA2 48.62 0.01158 53.61 63.28 0.000649 0.00202
BSA3 48.14  0.01043 51.43 57.98 0.000732 0.00228
BSA4 48.14  0.01273 54.02 64.44 0.000708 0.00220
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TABLE VI. Partial cross sections in A for H,-A from the 2J, 3J,
and ALL-J calculations of models 2 and 4. Cross

sections constructed by interpolation.

Type Ops o5 Oy, 5 Op g
Model 2 (2J3) 52.56 61. 05 0.000884 0. 00242
Model 2 (3J) 52.65 61.03 0. 000869 0. 00240
.Model 2 (ALL-J) 52.66 61. 03 0. 000822 0. 00237
Model 4 (2J) 52.65 61.16 0. 000707 0. 00256
Model 4 (3J) 52. 65 61.14 0. 000695 0. 00261
Model 4 (ALL-J) 52.65 61. 14 0. 000699 0. 00252
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TABLE VII. Range of {, as a function of ¢ and I, for the complete

channel sets of O,-He.

(84
0 1 2
L,
0 - 36 5,7, ...,21 5,7, ...,21 7,9,...,19
37 - 80 5,7, ...,21 5,7, ...,21
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TABLE VIII. Partial cross sections in A for O,-He. Cross sec-

tions constructed by interpolation.

Type o € A Oy 15 crol, i 0p 13
Model 2 (23) 115.5 0.01593 52.87 61.45 0.00326 0.00927
Model 2 (3J) 115.5 0.01593 52.85 61.47 0.00320 0.00920
4BSA0 115.5 0.01593 52,75 60.98 0.00339 0.00980
BSAl 114.3 0.01593 52.53 60.77 0.00363 0.01050
BSA2 116.7 0.01593 53.26 61.60 0.00316 0.00915
BSA3 115.5 0.01433 51.66 58.39 0.00338 0.00978
BSA4 115.5 0.01753 54.02 63.99 0.00340 0.00984
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TABLE IX. Range of £, as a function of @ and Z, for the complete

channel sets of I,~He.

(04
0 1
Z,
0 - 16 22,24, ..., 46 22,24, ...,46
17 - 24 24,26, ..., 46 26,28, ...,44
25 - 32 26, 28, ...,42 26,28, ...,42
33 - 64 26,28, ...,38 26, 28, ..., 38
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TABLE X. Partial cross sections in &” for I,-He. Cross sections
constructed by interpolation. No closed channels used

in calculations.

0
Type d e Fo, 34 01,34 0o, 34 01,3

. 627

Model 2 (2J) 128.3 0.4073  424.4 440.2 1.058 2

Model 2 (3J) 128.3 0.4073 424.0 440.7 1.054 2.618
'BSAO 128.3 0.4073 424.1 431.2 1.063 2.598
BSAl 125.7 0.4073  412.8 385.7 1.058  2.587
BSA2 130.9 0.4073  430.3 480.7 1.065 2.603
BSA3 128.3 0.3870 428.8 416.4 1.001 2,446
BSA4 128.3 0.4275  418.3 457.4 1.126 2.752
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TABLE XI. Partial cross sections in A" for I,-He. Cross sections

constructed by interpolation. Closed channels used in

calculations.
1
Type 0(234 01,34 %I, 34 010,34
BSAO 424.0 431.1 1.091 2.666
_BSAl 412.8 385.0 1.087 2.658
BSA2 430.3 480. 3 1.091 2.667
BSA3 428.8 410.9 1.026 2.509

BSA4 418.0 45'7. 17 1.156 2.825
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FIGURE CAPTIONS
Coordinates for the collision of atom A with diatom B,.
Channel scattering with an angularly symmetric IP.
Channel scattering with an angularly asymmetric IP.

Channel scattering with an asymmetric IP and an in-

complete channel set.

Model 1 (///) and model 2 (\\\) applied to a plane of

channels in the set for y;”; .

Model 3 (///) and model 4 (\\\) applied to a plane of

channels in the set for zpf?,’sg.

dof, 5(0,) for H,-A. Each curve is generated from a

calculated value at every degree.

d011,3(92) for H,-A. Each curve is generated from a

calculated value at every degree.

dcrol,3(92) for H,-A. Each curve is generated from a

calculated value at every other degree.

do?4(6,) for H,-A. Each curve is generated from a
3

calculated value at every other degree.

dO'l1 4(6,) for H,-A. Fach curve is generated from a
J

calculated value at every degree.



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

11.

12.

13.

14.

15.

16.
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dcrol’3(92) for H,~A. Each curve is generated from a

calculated value at every other degree.

dcll, 15(8,) for O,-He. Each curve is generated from a

calculated value at every degree.

daol,ls(ez) for O,-He. Each curve is generated from a

calculated value at every other degree.

do; ,,(6,) for I,-He. Each curve is generated from a
b

calculated value at every degree.

doo1 24(0,) for I,-He. Each curve is generated from a
J

calculated value at every other degree.

Elastic phase as a function of £,. Phase generated by

propagation method (A); phase as a smooth function

(O).
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Fig. 4
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Part 3: The Effect of the Potential Well on Vibrational

Scattering and the Validity of SSH Theory



112
_INTRODUCTION _

Most collisions between neutral atoms and molecules are
governed by attractive forces at large separations and repulsive forces
at short separations. Hence the potential for the collision has an
attractive well. For vibrational inelastic collisions of molecules with
themselves or with atoms, the potential well is often assumed]r)nly to
increase the relative translational energy of the collision by an amount
equal to the well depth. This acceleration approximation is basic to
~ SSH theory, 1 which is widely used in analyzing the results of vibra-

tional relaxation experiments. There have been several studiesl’ 2

of
the accuracy of the acceleration approximation and of SSH theory, but
they have employed approximate methods to obtain the necessary prob-
abilities and crossections. In this article we have analyzed through
exact quantum mechanical calculations the effects of the Lennard-Jones
well on models of three different inelastic vibrational collision systems:
0,—0,, CL,~—Cl,, and Br,—Br,. We have also evaluated the accuracy
of SSH theory both in predicting and analyzing experiments on these
systems. Wilson3 has used exact quantum mechanical calculations to
study the effects of the well on vibrational excitation. However, the
collision systems he studied are quite unlike ours. Also, he did not
evaluate the accuracy of SSH theory for his collision systems. T