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Abstra ct 

Part 1. '.rhe exact quar.:. turn. met nods for the cal

culation of nonre a ctive sca t t ering are class ified. Tne 

classification is ba s ed on t he essent i al characteristics 

of .;:"ethoc1. s, not t heir de tailed technica l aspect s . As a 

result t h e potential eff iciency of each class of methods 

can be determined. Methods derived from differential 

formalism (time-independent and time-de1!end ent Schroe

dinger equations) and frocl integral fo~nalism (Lippmann

Schwinger equation) are reviewed. 'l1he most efficient 

class of differential hlethods are found to be time

independent perturbation propagation chann8 l methods. 

Integral and differential methods are found to be very 

si.rrrilar. There seec1s to be n o room for any furt her dra

matic improvements in exact nonreactive quantum. methods. 

Fart 2. Iil ost calcula tions of t he vibrational 

scattering of diatom-atom. collisions use the breathing 

sphere a1:;proximation ( :BSA) 01' orientation-averaging the 

intenn. ole cul ar p otential. '.11he resulting angularly sym

metric potential can n_ot cause rotational scattering . We 

deter~ine the error introduced by the BSA into observables 

of the vibrational scattering of low-energy homonuclear 

diatom-atom collisions by comparing two quantum mecha...Ylical 

calculations, one with the BS.A and the other with the full 

angularly asyrsfi etric intermole cul2r potential. For rea

sons of econo~ny t he rotational sca ttering of the second 

calcula tion is restrict ed oy t he use of special incomplete 



iv 

channel sets in tl1e expansion of the scattering wavefunction. 

Three representative collision systems are atudi-e-d: H
2
-A, 

o2-He, and I 2-He. FroL.ti our calculations we reacn two con

clusions. First, the BSA can be used to &1alyze accurately 

experimental measurements of vibrational scattering. Sec

ond, measurements most sensitive to the symmetric part of 

the intennolecular potential are, in order, elastic cross 

sections, inelastic cross sections and inelastic differen

tial cross sections. Elastic differential cross sections 

are sensitive to the potential only if the collision is 

"sticky", with scattering over a wide range of angles; 

i
2

-He is such a collision. Otherwise the potential sen-

sitivity of elastic differential cross sections is con

centrated in the experimc;ntall;y- difficult region of very 

small angle scattering. 

Part 3. The vibrational deexcitation probability, 

p
10

, is calculated quantum mechanically over a large ener

gy range for models of three collision systems: o2-o2 , 

c1
2
-c1

2
, and Br2-Br

2
• The vibrational deexcitation cross 

section, CT' 
10

, is similarly calculated :for the Cl2-c12 
model. P 

10 
ai1d er 

10 
are obtained for the Lern~ard-J ones 

intermolecular potential ai1d three other "well-less 11 pot en-
- -

tials designed to duplicate the scattering of the Lennard-

J ones potential. The results emphasize the adiabatic na

ture of potentials with wells and indicate that the acceler

ation approxiu1ation for the effect of the well is not valid. 

The curves of l\o and Cf 
10 

as a function of initial trans-
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lational energy are used to ootain exact collision numbers. 

These numbers are compared to the results of SSH theory. 

SSH theory is found to predict collision numbers with rea

sonable accuracy except at low te:nperatures. SSH theory 

is .also not suitable for analyzing experimental collisj.on 

numbers for the well depth rrntential parameter. 
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:B'orvvard 

In this forward I would like to discuss informally 

the work reported in this thesis within the context of 

larger developments in the theory of chern.ical dyna.rr.ics. 

Consider theoretical chemical dynamics divided into two 

groups. In one group I place all theories that explicitly 

involve the calculation, frorn given inter.molecu::_ar forces, 

of the motion of the chemical system during collision; in 

the second group I place all other theories. This latter 

group is by far the largest, for it contains most of the 

semiempirical and phenomenological theories often used by 

experimentalists. In contrast, the first group is a rather 

new development used mainly by molecular bE.:amists and some 

spectroscopists. ~y thesis work belongs to the first group, 

whicn I label chemical scattering t heory. By definition 

chemical scattering theory is the fundamental i.nvestigation 

of the relationship of dynamics to structure as revealed by 

intermolecuiar forces. Lany hope that the theory will even

tually be able to explain why semiempirical or phenomeno

logical theories work by revealing in detail the relation-

ship of intermolecular forces to collision observables. 

At present t.i:1e theory is a long way from significant 

acllievements. An example is the fact that the three di

mensional quantum mechanical calculation of the dynamics 

of the low-energy collision H + H2 in the gas phase is con

sidered a major development. To the .ore;anj_c and inorganic 

synthetic ci"1emist this must seem like so much malarky. 

While there is no doubt that cnemical scattering theory is 

in its infancy, like all infants it is growing fast. I 
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wcrild like to review some of the developments in this 

field since 1966 and then indica·te how my thesis work is 

involved. 

Binary col l isions involving only two partners are 

the simplest type of collision and therefore the type that 

receives the most t heoretical consideration. 3inary col

lisions may be clas s ified as elastic, nonreactive inelastic, 

reactive and dissociative. Except for the elastic class, 

each class of binary collisions contains examples whose dy

nainics are so coII1plicated that they are not susceptible to 

practical calculations now or in the forseeable future. In 

fact even the simplest examples of each of the last three 

classes of binary collisions are not susceptible to prac

tical calculation without hi_§:1ly efficient computational 

methods. The question of efficient methods is complicated 

by the presence of three mechanics in chemical scattering 

theory: clas s ical , semiclassical and quantum mechanics. Each 

mechenics has its own formalism which gives rise to a vari

ety of computational methods. Al thougll quantum mechanics 

is the only universally valid mechanics, classical and 

semiclassical mechanics are often opera t ionally and con

ceptually easier to use. Therefore the development of 

highly efficient methods mus t proceed in two stages: first, 

the most efficient methods of each me chanics must be dis

covered; second, the regions of applicability of classical 

and semiclassical methods must be detennined. When effi

cient methods are available the simplest ceses of each type 

of binary collision can be studied and ap1iro:ximations de-
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veloped t hat will allow the accurate, if not exact, cal

cula tion of t ile d,ynBlnics of more co:;nplex cases. Since 

1966 tne greatest effort has been in the first stage of 

t.ne development of me thods. In 1966 essentially exact 

quantum rne thods existed only for elastic scattering. Now 

highly efficient methods for nonreactive scattering are 

available. Although there has been little progress in the 

develo:p:nent of q_uantu..m Dethods for dissociative scattering, 

there are several quantum methods for reactive scattering 

·under intensive develo1xaent. In 1966 semi clas sica l me ch

anics as it is presently known did not exist. In the last 

two or three years its fontlalism and computat ional methods 

have been develored. In 1966 classical methods existed, 

but hc;,d never been applied on the scale required to study 

chemically int eresting s;/s tems . Now classical trajectory 

studies of si::iple collisions and of severe · models 01· com

plex col l isions are fairly rou"Line. In the future, fur

ther development of reactive and dissociative quantum 

metl1ods and the thorough comparison of the three mechanics 

should be expected. 

When a new computational method is develope d, it 

is usually appli~d to the study of some chemical system; 

little or no effort is exper::..ded in comparing the efficiency 

and accu.racy of the rueti1od to other methods. Unfortunately, 

my thesis sufiers in this regard. I exanline quantum me ch

anically the rotational-vibrational scattering of diatoms 

wi t i:;, themselves ar~d with othe r at oms. I use one of the 

most efficient quantum methods, but make no attempt to de-
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tenn.ine whether more efficient cJ.assical or semiclassical 

methods may apply. The thorough comparison of the three 

mec1ianics for ti1e calculation of rotational-vibrational 

scattering would be a t:t1esis project in itself and, by 

rights, one t.hat shoL1ld have preceded my work. But at 

the time m.y thesis vvork v~as begun, the comparison of the 

three mechanics was not envisioned. T1I y work is divided 

into three parts. In t he first part I summarize and eval

uate recent developra ents in exact nonreactive inelastic 

quantu.111 methods. I conclude that there will be no new 

conceptual deve l opments that will lead to dramatic im

provements in existing methods, because the most efficient 

methods currently avai lable ha.ve optimally reduced all the 

dimensions of t ne space over w.!1ic.h a scattering solution 

must be calculated. The results of the last two parts of 

my thesis are made economically feasible by the use of one 

of the best available methods, the Gordon propagation 

method. In the second part of the thesis I evaluate an 

often used approxlliation regarding the effects of rotations 

on vibrational scattering. Almost a l l approximate theories 

of the vibrational scattering of molecules begin with the 

assumption that the rotationally averaged vibrational scat

tering by an angular asymmetric intern1olecular potential is 

equivalent to the vibrational scattering by a rotationally 

averaged (i.e. spherically symm.etric) intermolecular poten

tial. In ot.her words, rotationally averaging the scatter

ing can be done by rotational ly averaging the forces. If 

triis assw...11ption is tru.e, til.ere is no need to consj_der ex-
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plicitly rotational mot ion and the calculation is there

fore drastically simplified. Ly evaluati cn of this asswnp

tion involves other assuinpti ons, but of a much less severe 

and more readily verifiable nature. I study only homo

nuclear diatom-atom collisions at low energy and conclude 

that the assumption introduces little error into the cal

culations. In the 12,s t part of the tuf'sis I examine the 

effect of th~ well on vibrational excitation. The modeling 

of the col~ision system is more severe than in the second 

part and, as a result, the conclusions are less qu&J.ti

tati ve. The calculation also affords ru1 opportunity to 

evalu&te SSH theory, a commonly used set of formulas for 

the evaluation of vibrati onal relaxation times. I·.:l y calcu

lations indicate that potentials with wells are more adia

batic than "well-less" IJoten.tials and that SSH theory is 

ac~urate except at low temperatures. 

l\1y work has used the most recent develop.:-:1ents in 

computational methods to study the simplest examples of 

nonreactive i ne lastic bir1ary collisions. The work has led 

to t11e verificati cn of often-used ap1)roximat ions of pre

viously unknown validity and to t.tie isolation of the ef

fects on vibrational scattering of certain features of in

tennolecular forces. 
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Part 1: The Clas s ification of Exact Quantum E ethods for 

Nonreactive Scattering 
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INTRODUCTION 
~ 

The major purpose of the study of collisions is to discover the 

relation between scattering observables and intermolecular forces . 

When this relation is known, the dynamics of chemical systems can 

be · related to the structure of the molecules and atoms. In gross 

observations at low energies and in precise observations at low and 

higher energies, the quantum nature of scattering is apparent. 

Therefore, the major purpose of collision studies is furthered by 

. the development of exact quantum methods for the calculation of 

scattering observables from intermolecular forces. The most com-

mon type of collision in low density fluids is the binary collision. 

Binary collisions can be classified as nonreactive (energy a.rid mo

mentum are changed), reactive (particles are exchanged between 

collision partners), and dissociative (one or both of the collision 

partners breaks up). Collisions in which Pauli forces are important 

must be either reactive or dissociative, because the identical par

ticles can not be claimed by either collision partner. This article 

will deal only with nonreactive collisions. 

There are many methods, presently available or readily 

developed, which can quantitatively describe the exact quantum 

mechanical scattering of nonreactive collisions. In this article we 

will identify several classes of methods on the basis of each 

method's essential characteristics. Essential characteristics 

answer such questions as: does the method involve the inversion of 

a matrix, the solution to a partial differential equation, the 
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evaluation of a transcendental function, etc. A method's essential 

characteristics can be contrasted with its technical aspects: how a 

matrix is inverted, which numerical method is used to solve the 

partial differential equation, etc. There will be no · examination of 

a method's technical aspects. Therefore, we will be able to deter

mine only the potential efficiency of each class of methods. How-

ever, it is doubtful that technical considerations would reverse our 

major conclusions. The rest of the article is divided as follows. 

Section I compares global to channel methods. Section TI contrasts 

time-independent and time-dependent channel methods based on 

Schroedinger's differential formalism. Sections III, IV, and V dis

cuss in greater detail time-independent channel methods. Section 

VI examines channel methods based on the Lippmann-Schwinger 

integral formalism. Section VII summarizes our conclusions. 

I. GLOBAL VERSUS CHANNEL METHODS 

There are two generalized coordinates that describe a non-
..::.. 

reactive collision: r 1 represents all the internal coordinates of the 
.!>.. 

collision partners and r is the translational or external coordinate 

vector between the centers of mass of the two partners. Basically, 

three different but equivalent equations of motion exactly describe 

the quantum mechanical dynamics of a nonreactive collision; the 

Lippmann-Schwinger equation and the time-independent and time

dependent Schroedinger equations. The nature of a method for cal

culating nonreactive scattering depends upon the equation from which 
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the method is derived. Briefly, each equation must be solved for 

some function which contains all the scattering information. The 
_,., _,., 

generalized space over which the function must be known is r 1, r, 

and possibly t (time). Methods which directly solve for the function 

over this space we call global methods .1 

For any collision system whose intermolecular forces are known 

well enough to make a scattering calculation possible, we know or 

can readily determine all the eigenstates for the internal motion of 

both collision partners. Through a partial wave expansion, we can 

describe translational motion in e and <{>, the angular coordinates 
-"" 

of r, in terms of the occupation of known orbital angular momen-

tum states. With this knowledge, we can describe the collision in 
...:.. ~ 

terms of two new coordinates: x which is (r 1' e, ¢) and r which is 

I 1:7'1. Combining the internal and the orbital angular momentum 

states, we can form a complete set of channels, which are the 
~ 

eigenstates for the x motion of the collision system at very large 

r. In a similar description of the collision, we parameterize the 
...:.. ...:.. 
x coordinate as x(r). At any value of r, with some effort, we can 

form a complete set of adiabatic channels, which are the eigen-
-" states for the x motion of the coliision system at r. No matter 

which approach is used, we can describe the motion of the collision 

system at any value of r in terms of the occupation of the channels 

or adiabatic channels. If the function to be determined by a global 

method is expanded in terms of channels or adiabatic channels, the 

single equation for the function is reduced to a coupled set of equa

tions in r for the channel coefficients. Methods which solve the 
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coupled set of equations we call channel methods. 2 In principle, 

channel methods are more efficient than global methods. 
_,., 

The xx 

r solution-space of global methods is reduced to the N x r solution

space of channel methods where N is the number of channels in the 

channel expansion. N is always far less than the nmnber of points 
-:lo 

needed to cover x. This advantage is not offset by the difficulty 

of forming channels or adiaba~ic channels. 3 

In contrast to global methods, channel methods for nonreactive 

collisions are not applicable, without major modifications, to any 

other type of binary collision. The efficiency of channel methods 

rests upon the fact that in nonreactive collisions the internal and 

translational angular coordinates can be treated differently from the 

separation coordinate. During a reactive collision all the coordinates 

can evolve into one another to produce a new set of internal and 

translational angular coordinates and a new separation coordinate. 
-:lo 

There is a set of channels for the original coordinates (x, r) and a 

different set of channels for the new coordinates (-:.1 , r'). Channel 

methods for reactive collisions must find ways of linking together 

expansion coefficients for the two sets of channels .4 In dissociative 

11. · d' t 1 w1'th the form (~x', r', r "). co is10ns, new coor ma es can evo ve At 

present there is no known way to formulate dissociative scattering 

in terms of channel expansions. 5 Global methods make no distinc-
~ 

tions between x and r and hence can be applied without major modi-

fications to both reactive and nonreactive collisions.6 Because the 

presence of two separation coordinates in dissociative collisions 
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introduces a continuum, not all global methods can be applied to 

dissociative scattering . 

II. TIME-INDEPENDENT AND TIME-DEPENDENT 

CHANNEL METHODS 

In this section we compare the channel methods that derive 

from the time-independent and from the time-dependent Schroedinger 

equations. Most exact channel methods in current use are based on 

the time-independent Schroedinger equation which we will examine 

first. 

All information on the nonreactive scattering of two partners 

colliding with a total system energy of E is contained in the wave

function '1', a solution of the time-independent Schroedinger equation 

(JC - E ]'1' = 0 (1) 

where JC 

.!!.. 

where JC(r 1) is the Hamiltonian for the internal motion of both part-
2 

ners, V (;,-;-
1

) is the intermolecular potential, and \7 -;- has the form 

'I:; 2 
u v2~ 
2m r 

ti
2 

1 a £2 

= - 2m r 2 (r
2 a r ) + 2mr2 

(2) 

..... 2 
where L is the squared angular momentum operator and m is the 

reduced mass. If the initial internal states of both partners are 

characterized by ~ /t1), the i th eigenfunction of JC(t1), then the two 

boundary conditions for '1F i are 



'1f. 
1 

12 

'11. 0 > 0 
i r- (3) 

(4) 

where kj is the wavenumber for the translational motion of the two 

collision partners in the j th state, fij (n) an unknown function of the 

solid angle n, and z is r cos (). The first boundary condition pre

vents the inner penetration of particles. The second boundary con

dition describes a system operating under steady state conditions. 

The Hamiltonian for motion in the coordinates ~(r) is 

"'2 L ...::.._,,. ~ 

JC~(r) = 2mr2 + V(r' r i) + JC(r 1). (5) 

The eigenfunctions of this Hamiltonian are the adiabatic channels. 

At large r, the intermolecular potential is zero. Therefore, the 

Hamiltonian whose eigenfunctions are channels is: 

"'2 L _,,. 
:re~ = + :JC(r 1). 

x 2mr2 
(6) 

There are an infinite number of channels or adiabatic channels. 

However, the intermolecular potential couples the channels, in the 
·----- -- - - -··-· · --- .. ----· ---- - -- -- -----· - · ---·----~--- -- ------ - - ·-- -- - --------··· - ·----

proper representation, 7 into finite member sets; members of 

different sets are left uncoupled. Each set is an expansion set for 

a partial wavefunction. Each partial wavefunction is a solution to 

Schroedinger's equation and obeys the first boundary condition on '1ri 

and that part of the second boundary condition on 'l'i which involves 
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the channels of its expansion set. '11. is the sum of all the partial 
1 

wavefunctions. Let a particular partial wavefunction be expanded 
1~~ ...::.. 

as r X <Pi where the row vector x is the channel expansion set and 

the column vector cpi is the set of channel coefficients. Substitu

tion in Eq. (1) followed by multiplication by each x. and integration 
1 

..,:,. 

over x gives 

02 
[ + U(r) - K.

2 ]~ = 0 - arz "" "" 'f'1 

02 
where ar2 

"""" 

az 
= ar2 I and ~ = 

Here I is the identity matrix, K is the wavenumber for the total 

energy, and the (i, j) element of U is 

(7) 

u.. = ~ < x. ~( ) x.) (8) IJ u ~ I x r J 

...::.. 
where the brackets denote integration over x. One boundary condi-

~ 

tion on ¢i is 

~ 

cf?, 0 > 0. 
1 r-

(9) 

The other boundary condition follows from the asymptotic form of 

the partial wavefunction. 
_...\. 

¢i cannot be determined directly, because 

its second boundary condition specifies a form and not a value. 

Instead, Eq. (7) must be solved for all the independent solutions that 
~ 

obey the one value boundary condition on <Pi. We call these solu-

tions primitive. If N is the number of channels in the expansion, 
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there are N independent primitive solutions. Let 1J_ be the N x N 

matrix whose columns are these N solutions. Then any method 

which derives from the time-independent Schroedinger equation and 

involves an expansion in channels solves the equation: 

a2 
[ - a r2 + !l(r) - ~2 ]1!_ = 0 (10) 

where iii ....... 0 :;:... r-oo :....-

. and where the second boundary condition on 1J_ is arbitrary, provided 

it yields a linearly independent 1!_. If the partial wavefunction is 
~ 

expanded in the set of adiabatic channels x (r), then the same 

analysis as above produces a different equation 8 for 1!_: 

32 a [ - - - 2 A-ar2 r.. ar 

where A .. 
1) 

B + ;llf _[(r) - ~2 ]1J_ = 0 (11) 

~ 

E (r) is the diagonal matrix of the eigenvalues of x (r). An expan-.,....,,,.,_ 

sion in adiabatic channels is preferable to an expansion in channels 
~ 

only when x (r) and E (r) are readily available, such as from the .,....,,,.,_ 

calculation of the potential curves of atoms and molecules in various 

electronic states. Although Eqs . (10) and (11) appear to be quite 

different, everything we will discuss about the solution of Eq. (10) 
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can be applied with minor alteration to the solution of Eq. (11). 

For this reason we will no longer discuss the adiabatic channel 

expansions that result in Eq. (11). 

9 When the time-dependent Schroedinger equation is used, the 

wavefunction, '1t /~, 't, t), for the system before collision at t = 0 

is a wavepacket: 

(12) 

· The wavenumber distribution, G(k), is dependent on the experimen

tal conditions which the calculation simulates. The time-dependent 

method cannot determine the scattering of the collision system at 

a precise total system energy of E because the initial wavepacket 

contains contributions from the spread of relative translational 

energies allowed by G(k). The calculated scattering is specific 

to the experimental conditions that determine G(k). The time-
~ ~ 

dependent Schroedinger equation governs how '1t i (r 1, r, t) evolves 
~ ~ 

in time from '1t i (r 1' r, 0). Its formal solution is: 

where e -i(t;li)JC is the time evolution operator. For a short 

increment in time, the time evolution operator can be approxi

mated9 by 

e -i(At/ti)JC ~ (1 + (iAt/2n)JCr
1 (1 - (iAt/2n)JC]. (14) 
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This produces the equation: 

Naturally, this same equation can be used to relate '1'i(t1' t, 2At) to 
~ ...!>. 

'1ti(r1' r, At). In this way 'lFi can be propagated over all space to a 

post-collision time when it can be analyzed for the scattering infor

mation it contains. As before in time-independent formalism, we 

can decompose w. into partial wavefunctions each of which can be 
l . 

expanded in a different set of channels. However, now the channel 
~ 

coefficients will be functions of r and t. The equation for </\ (r, t) 

analogous to Eq. (10) in the time-independent formalism is: 

[ 02 U( ) - iAtn I ]~.(r At) - or2 + r.. r 4ii1 r.. 'l-'1 ' 
~ 

= [- -:i

02
2 + U(r) + ~ I ]cp.(r, O) ur r.. <±m ,...._ l 

(16) 
~ 

...!>. 

Since <f>i(r, 0) can be determined from the wavepacket, the right 

hand side of this equation is a known function of r. All channel 

methods that derive from the time-dependent Schroedinger equation 

solve this set of equations. The advantage of this formalism is 

that <Pi can be directly calculated without the calculation of primi

tive solutions. The disadvantages are lliat complex arithmetic 

must be used (time-independent channel methods can avoid this) 

and that Eq. (16) must be solved at each time increment. If Nt 

is the number of time increments that must be calculated, it is 

generally true that Nt » N. It is faster to solve Eq. (10) once 
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for N primitive solutions than to solve Eq. (16) Nt times for one 

solution. Therefore, time-dependent channel methods are not as 

efficient as time-independent channel methods. 

III. PROPAGATION AND MATRIX METHODS 

In the solution of Eq. (10) for 'I}!_ we are free to choose one 

linearly independent boundary condition we want 'I}!_ to obey. There 

are two types of boundary conditions we can select which give rise 

. to two types of channel methods. We can specify the value of the 

derivative of 'I}!_ at the same point at which the nonarbitrary boun

dary condition specifies the value of ljJ: 
...... 

a 
ar ~ r-0 > A (17) 

where ~ is a linearly independent constant matrix. Since 'I}!_ obeys 

a second-order differential equation, the value and slope of '1!_ at 

one point are all that a variety of numerical techniques require to 

propagate 'I}!_ step-by-step through r space. Methods based on the 

initial specification of the value and slope of 'I}!_ at one point we call 

propagation methods.10 In another approach we can specify the 

value of 'I}!_ or its derivative at some other point besides r - 0. 

The only reasonable choice is to specify 'I}!_ at r, some value of 

r in the asymptotic region: 

'I}!_(~ = ~ (18) 

where B is a linearly independent constant matrix. There are a 
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variety of techniques whereby P._(r) may _be related to P._(r') and 

P._(r ") where r' < r < r II. Since 1:.. at r - 0 and r = r is known, 

lJ!.. on a grid of points between 0 and r can be simultaneously deter

mined by the inversion of a large matrix which expresses the 

rel_ationships between the values of '1!_ on different points of the grid. 

We call such methods matrix methods.12 Any other choice for a 

boundary condition besides Eqs. (17) and (18) will require a hybrid 

matrix propagation method with no gain in efficiency. 

In the classically forbidden region, P._ and the intermolecular 

potential are changing very rapidly. Any instabilities in the 

numerical techniques of a method are most likely to become 

severe in this region. From this point of view it is important to 

discuss the meaning of a boundary condition at r - 0. In practice, 

it is found13 that whatever boundary conditions apply at r - 0 can 

also be made to apply at r 0 , that value of r where the inter

molecular potential is ten or fifteen times the total energy of the 

system. In fact in the region around r 0 the primitive solutions 

calculated with the boundary conditions applied at r 0 will differ by 

many orders of magnitude from the primitive solutions calculated 

with the boundary conditions applied exactly at r = 0. However, in 

the region about r 0 both solutions are very small. For r » r 0 

where both solutions are significant in size, their agreement is 

essentially perfect. This indicates that large relative errors in 

the calculation of P._ can be tolerated as long as P._ is very small 

in the classically forbidden region. Consequently choosing a 

starting point smaller than r 0 does not improve the accuracy of 
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'l!._ but does improve the odds that numerical instability will destroy 

the solution. 

We would like to evaluate the relative efficiency of matrix and 

propagation methods. Before we can do that we must discuss the 

difficulties introduced by closed channels (Section IV) and pertur

bation methods, the most efficient of matrix and propagation 

methods (Section V). 

IV. CLOSED CHANNELS 

Because many collision systems execute highly excited tran

sient modes of internal motion during the time of closest approach 

of the collision partners, many channel expansions must include 

closed (energetically inaccessible) channels. Let N and N0 be the 

total number of channels and the number of open channels respec

tively. Let 12 be the N x N matrix whose L th column, for L = 1, 

... , N, is the set of channel coefficients for the wavefunction whose 

initial channel is the L th one. ¢i in Eq. (7) is the ith column of 

12· There are N0 open columns of 12 whose N - N0 closed ele

ments go to zero as r becomes large. This is true because 

closed channels describe only transient excited internal motion 

that cannot persist after the collision is over, that is, when r 

is large. In fact, the more highly excited the motion described by 

the closed channel, the more rapidly its channel coefficient will go 

to zero as a function of r. In general, all closed channel coeffi

cients assume their asymptotic form at values of r smaller than 
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those at which open channel coefficients assume their final form. 

There are N - N0 closed columns of 512 whose diagonal elements 

blow up as r grows large because of the negative translational 

energy associated with an initial closed channel. These columns 

of 5E are completely unphysical. Because P._ and 512 are both a 

complete set of independent solutions to the same equations there 

exists a matrix C with a well defined inverse such that: 

(19) 

(20) 

Since the form of 92 is specified in the asymptotic region of large 
-1 r, once 11. is known in the asymptotic region, q and hence 92 can 

be readily determined. 

With matrix methods, each column in 11. is calculated separately. 

With the proper selection of ~' the first N0 columns can be open 

and independent. These N0 columns span the space of open solu

tions. Therefore, any open solution of 92 can be expressed as a 
-1 

linear combination of just these N0 columns; q would not couple 

any other columns of P._ into the first N0 columns in the construc

tion of any open column of 92. While the other (N - N0 ) columns 

of P._ could be generated, it would be pointless because these 

columns only give us information about the unphysical closed 

columns of 92_. The selection of B which necessitaties the calcula

tion of only N0 columns of 11. is straightforward. Each column in 

~ is used in calculating the corresponding column in 11..· If the 



21 

closed elements of the first N0 columns of B are zero but the 

columns are linearly independent, then the first N0 columns of P._ 

will have closed elements that are zero in the asymptotic region, 

i.e., the first N0 columns of ?}_ will be open. 

It is often assumed that propagation methods must propagate 

the full N x N Y!_ matrix into the asymptotic region. If this were 

true, then propagation methods would not handle closed channels 

as efficiently as matrix methods. However, the assumption is not 

true. To show this we must discuss the stabilization of ?}_ and its 

implications. 

If 4_ is linearly independent, 1}_ at the start of its propagation 

will also be linearly independent. However, due to the unbounded 

growth of the closed columns of 92, at large enough r the closed 

columns of 92 will completely dominate 92 g_. This means that 

during propagation each of ?}_1s columns become, to all significant 

figures retained, the linear combination of only the closed columns 

of 51:.· In other words, when closed channels are present, ?}_ has an 

innate tendency to linear dependence. Any procedure which sup

presses this tendency we will call stabilization. Although there are 

several stabilization procedures, their derivations are similar to 

the following simplified set of arguments. When ?}_ has propagated 

to a large enough value of r to show signs of Hnear dependence, 

we wish to find a matrix '!:. which back multiplies 11!_ so that zj_ !_ 

has a much reduced tendency to linear dependence. Then the pro

pagation is continued with 1J:.. T: The proper .I must remove most 

of the contribution of the L th closed column of 92 from all but the 
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L th column of 1J!. I. If the closed elements of 92 assumed their 

asymptotic form for all values of r, then all of the contribution 
th of the L closed column of 92 would be removed from all but the 

L th column of 1J!. T. if 

for L ~ K {21) 

= 1 for L = K 

for all K and for all L > N0 • This condition is sufficient to 

define T. Since 921s closed elements do not assume their asymp

totic form for all values of r, T defined by Eq. (21) will leave in 
-"'" 

each column of 1J!. T. residual contributions from the closed 

columns of 512. At some larger value of r, linear dependence will 

again appear in 1J!. T. and the process must be repeated. However, 

each succeeding transformation leaves less and less residual con-

tributions from the closed columns of 92. In this way a linearly 

independent '1!_, can be propagated into the asymptotic region. 

Stabilization has two important implications. First, each 

succeeding transformation makes the first N0 columns of 1J!. look 

like just a linear combination of the open columns of 92 and makes 

any other column of '1!_, look like the corresponding column in 92. 

Consequently, in the asymptotic region, to a high degree of 

accuracy only the first N0 columns of 1J!. are needed to determine 

any open column of 92 by Eq. (20). The only reason for calculating 

the N0 + 1 to N columns of '1!_, is to permit stabilization; these 

columns are required in the determination of each T . The second 
-"'" 

implication of stabilization is as follows. Since each transformation 
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of '1!_ increases the similarity of its closed rows to those of 51!, at 

large enough values of r, the nondiagonai elements of each closed 

row of '1!_ can be set to its asymptotic form of zero with no 

appreciable effect on the other elements. In general, this will 

occur at values of r before the asymptotic region. If a value of 
th r has been reached where the L closed row of '1!_ can be set to 

zero except for 1/JLL' then there is no longer any reason to cal

culate the L th column of '1!_ for it is no longer needed to determine 

any subsequent ! matrix. In fact, the Lth row and column of '1!_ 

can be dropped for the rest of the propagation. In practice the 

value of r where the L th row and column can be dropped can be 

determined from tests like the ratio of I UN L 1/JLN I to 
0 0 

I (UN N - E)l/JN N I· If this ratio is small, the Lth closed element 
ooth oo 

in the N0 column has little effect on the open elements of the 

column. Assuming all open columns are basically alike in this 

regard, when the ratio is small enough, the Lth row and column 

can be discarded. 

With propagation methods, the full N x N '1!_ matrix begins the 

propagation. However, the stabilizing transformations allow the 

dimensions of '1!_ to be reduced to N0 x N0 during the course of the 

propagation. In matrix methods, only N0 columns are calculated 

but all N elements in each column are retained for the entire cal-

culation. Both methods handle closed channels with about the 

same efficiency. 
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V. PERTURBATION METHODS 

fu the more straightforward matrix and propagation methods, 

the primitive solutions are calculated on a grid of points covering 

r space. The grid must be fine enough to permit the accurate 

determination of each oscillation that any element in the primitive 

solution may undergo. As a rule of thumb, a grid size should be 

about a tenth of a wavelength of the most rapidly oscillating 

channel coefficient. However, there is a more sophisticated 
14 . approach, first fully developed by Gordon, which calculates the 

primitive solutions by a perturbation scheme based upon an approxi

mation to the intermolecular potential. These perturbation 

methods, both matrix and propagation, accurately determine the 

primitive solutions over intervals much larger than one tenth of 

a wavelength. For this reason, thei::e methods are the most 

efficient methods that derive from the time-independent Schroedinger 

equation. In this section we develop the basic theory aJ1d several 

. 14 15 special features of perturbation propagat10n methods; ' 

reference will be made to matrix propagation methods 16 at the 

end. 

The first step in a perturbation method is to approximate the 

potential matrix U(r). Suppose we expand the partial wavefunction ...... 

in the set of adiabatic channels, represented by the row vector 
~ 

x , that are eigenfunctions of JC..:>.( ) [see Eq. (5) ]. Let the 
re x re 

potential matrix in this basis be U(r , r) where the r emphasizes 
"' c c 

that the adiabatic channels are defh1ed at r = r c. From the 
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definition of U(r) [Eq. (8) ], U(r , re) is diagonal. We can expand -" -" c 

(22) 

where y'(rc, re), y"(rc, re), etc., are, in general, not diagonal. 

Over an interval centered about r , this expansion of U(r , r) c -" c 

would converge with only a few terms. We could segment all r 

. space into intervals over which the potential matrix, in the basis 

of adiabatic channels for the interval midpoint, would have its 

Taylor series expansion about the interval midpoint converge with 

only a few terms. To use this interval by interval approximation 

of the potential matrix, we have to be able to change the basis in 

which P._ is expressed. For the nth interval, let P..n and r n be the 

primitive solutions and the interval midpoint respectively. It is 

easy to show that if Tn is the unitary matrix defined by 

(23) 

then at the boundary between the nth and (n + l)th interval 

-1 
1b l = T 1T '" . An.+ -"n+ .,.,.nA.n (24) 

This relation allows us to change the basis of P._ from interval to 

interval and thus use the expansion of U(r) particular to each .,.,. 

interval. 
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The second step in a perturbation propagation method is to 

devise an efficient way to propagate across an interval. We now 

drop the index n for the nth interval. We would like to expand Y!_ 

in a perturbation expansion: 

1!_= 1!.0 +f+t+ ... (25) 

where 

a2 
[ - - + U (r r) - K2 ]1tP = O Br 2 ,,..._O C' ,,..._ A. • (26) 

,,..._,,..._ 

For the perturbation expansion to be useful, Y!_° must be readily 

determined. Practically, this demands that U0 (r , r) be diagonal. ,,..._ c 

U0 (r , r) can be any number of terms in the Taylor series expan-,,..._ c 

sion of the diagonal of y(r c' r) about r c. We propagate !P._ in the 

Xr basis over this interval because 1!_0 will be a good zeroth 
c 

order estimate of Y!_ since there are several choices of y 0 (re, r) 

that approximate U(r , r) well over the interval. 1h
0 has the form ,,..._ c A. 

where a and b are constant matrices and A and B are diagonal ,,..._ 

matrices whose i th diagonal elements, Ai and Bi, are the two 

independent solutions to: 

Substituting the expansion for 11_ in the equation for !P._ [Eq. (10)] 

and utilizing the definition of 11_0, we get the equation for Y!_i for 

(27) 

(28) 
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i > 0: 

If rs is the smaller interval boundary, the solution to 'i!..i is: 

(30) 

where 

W = B' (r)A(r) - B(r)A' (r). 
......... ,,..... -'"' .,....._ ..,...... 

W, the wronskian matrix, is a constant matrix as are ai and bi. ,,..... 

The 11
'" denotes the derivative with respect to the distance 

coordinate. If a and b are chosen so that ,..... 

(31) 

then ai and bi are zero for all values of i. Under these condi

tions, it is easy to show that the first nonzero derivative of '1!..i 

evaluated at rs is the (i + l)th derivative. This means that with 

propagation in r each higher order in the expansion of </; changes 

more and more slowly from its value at rs· This also means 

that the perturbation expansion can be made to converge to any 

order by choosing a small enough interval. This of course is 
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related to the fact that the Taylor series expansion of U(r , r) .,.... c 

converges to any order for a small enough interval about r c. 

The third and last step in a perturbation propagation method is 

to devise a procedure for determining the length of the interval. 

It is usually impractical to calculate any higher order than f. 
Therefore, the interval must be short enough so that f is small 

relative to 11_
0

, making y/ negligibly small. Because of the matrix 

nature of f and 11_
0

, their relative comparison deserves some 

attention. What is important is that the largest element in each 

column of f be small relative to the length of the corresponding 

column in 11_0 • In that way, the dominant scattering processes, 

which give rise to the largest channel coefficients, will be most 

accurately calculated; the lesser processes will be not so 

accurately calculated. Sine·~ experimental measurements also have 

this error pattern, there is no need to do the comparison any 

other way. Because 11_° and l oscillate in the classically allowed 

region of r space, their relative comparison will also oscillate 

for reasons that do not reflect the convergence of the perturbation 

expansion. To remedy this difficulty, we proceed as follows. Over 

an interval in the classically allowed region, z/!~j goes roughly as 

sin kir, where ki is the average local wavenumber over the inter

val for the i th channel. z/!~j' goes as ki cos ki r. Because I sin 

kir I + I cos kir I is an approximately constant function, I 1!_
0 I + 

1!2 11_
0

' I is approximately constant over the interval if !2 is a 

diagonal t . h .th a· al 1 t . ~k -i F th ma nx w ose 1 1agon e emen 1s . . or e same 
1 

interval, I 1!_1 I + I :Q f' I grows with propagation across the interval 
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and the comparison of lfl + 11?.f'I to ltl + l:Q.t0 '1 is non

oscillatory. Then in the classically allowed region, for zl to be 

negligibly small, p, the ratio of the largest element in I t 1 I + 

I :Q, if' I to the length of the corresponding column in I 1J!.° I + I !2 t0
' I, 

must be small at the end of the interval. In the interest of con

tinuity we can apply this test, with D suitably modified, to the 
' ~ 

classically forbidden region and the classical turning point regions 

of r space. We want to know how p goes with interval length h. 

We can determine how fast If I + I :J?. t 1
' I grows with interval 

· length h by looking at the leading term in the Taylor series ex-
1 

pans ion of t (rs + h) about rs: 

Recalling the Taylor series expansion of Y._(r c' r) about r c [Eq. 

(22)] and that U0 (r , r) is diagonal, irrespective of the choice of ' ~ c 

(33) 

where od means only the off diagonal elements of U'(r ,r ). Hence 
~ c c 

for any perturbation method, the lead term in the expansion of 
1 

1/J (r + h) about r goes as the cube of the interval length. If we 
A. s s 
ignore the change in I t 0 I + I :J?.1£0

' I with h and presume that the 

lead term in the expansion of I 1/;\r 
8 

+ h) I + 11?. 1/; 1 ~ (r 8 + h) I about 
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rs dominates, then we can say p is proportional to h3
• If n and 

n + 1 label adjacent intervals, if o is a given fraction for the 

maximum size of p, and if the proportionality constant between 

p and h
3 

is about the same for adjacent intervals, then 

(34) 

Using this formula and an estimate for the first interval length, 

each successive interval can be estimated from the preceding one. 

In the classically forbidden region, the interval predicting 

procedure can be modified. The length of the i th column in I 1/J I + 
"" ID 31!.' I grows exponentially in the classically forbidden region but 

reaches an approximate final value by the i th classical turning 

point. In section III we pointed out that when the channel coeffi

cients are very small in the classically forbidden region, large 

errors in their determination have negligible effect on the value of 

the coefficients in the classically allowed region. In practice, if 

the length of the ith column of 1.!i:I + In .!i:' I is approximately 1 by 

the i th classic al turning point, then in the region before that point 

only the absolute, not relative, size of the elements in the i th 

column of l;ti 1 I + ID 1j/' I need be considered in determining p. 

The result is smaller p's and larger h's, all ~onsonant with the 

fact that larger relative errors in the wavefunction are tolerable 

when the wavefunction is small in the classically forbidden region. 

To choose the initial conditions such that the ith column of I~ I + 

ID 1/J' I will be approximately 1 by the i th classical turning point, 
"" 
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we do the following. ~ is very crudely approximated by 1J!..
0 + g/ over 

the one large interval from the origin of the calculation to the 

first classical turning point. At the origin, 

A a + B b .,..... .,..... (35) 

In this classically forbidden region either 1_ or ~ is exponentially 

increasing with increasing r. Assume A is increasing. Then B is .,..... 

exponentially increasing with decreasing r and therefore b must be ....-. 

zero or else <£. will not go to zero at the origin. We are allowed 

· to choose any value of ~as long as Y:_
0

, and therefore Y:_, is 

linearly independent. The simplest choice for a is 

a = a I (36) ,,.... 

where a is just a constant. The constant is so adjusted that at the 

first classical turning point, the length of the first column of 

!~£.° + <£.
1 ! + 11.2 (<£_

01 
+ ~p_1 1 )j is 1; to a much poorer approximation, 

this value of a will also make the length of the ith column of 

I "'},_0 + f I + 11.2 (~01 + ~11 ) I about 1 at the i th classical turning 

point. Because the interval size is so large p for this propagation 

will always be much larger than 6. However, p can be used to 

estimate how long the first interval should be for an accurate 

propagation of p_. This provides the estimate of the first interval 

size which we need before we can use the interval prediction for-

mula Eq. (34). 

There are three important implications of the perturbation 

propagation method outlined here. First, the intermolecular 
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potential and its derivatives have to be known only at the midpoint 

of each interval. For nonperturbation methods the potential has to 

be known at many more points. That means that relative to other 

methods the execution time of perturbation methods is not so 

potential-dependent and calculations with complicated potentials are 

correspondingly more practical. Second, most of the time taken 

up by perturbation methods is both in the determination of y0 (r c' r) 

and "Q(r c' r) - y0 (r c' r) and in the transformation of I}!_ from one 

adiabatic basis set to another. All this work is independent of 

K2 • Therefore, if the scattering over an energy spectrum is to be 

performed, information from the calculation at one energy can be 

stored and then reused to drastically reduce the calculation time 

for other energies .17 Third, perturbation matrix methods are not 

as efficient as similar propagation methods because the length of 

the interval cannot vary according to the dynamics of the collision. 

fu matrix methods the channel coefficients at any one point cannot 

be known until the channel coefficients at all points are known. 

Hence, information about the channel coefficients, or the dynamics 

of the collision, cannot be used to determine interval lengths. 

Time-independent perturbation methods, whether matrix or 

propagation, are the most efficient methods that derive from a 

differential formalism. While other methods must calculate 1}!_ on a 

fine grid of points over r space, perturbation methods need calcu

late only p_° and 1£1 at the end of a comparatively small number of 

intervals. Perturbation methods shrink the r dimension of solution 

space in somewhat the same way that the channel expansion shrinks 
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...!>. 

the x dimension of solution space. In addition, in their computa-

tional procedures these methods make more apparent the informa

tion we hope to obtain from the calculation, i.e., the relation of 

dynamics (channel coefficients) to structure (intermolecular 

potentials). 

VI. INTEGRAL CHANNEL METHODS 

It is well known that the Lipmann-Schwinger equation is an 

integral equation . When the wavefunction is expanded in channels, 

coupled integral equations result. Although there are standard 

techniques for solving such equations, there have been very few 

scattering calculations 18 employing integral channel methods and 

no calculations for nonreactive scattering. There are many dif

ferent versions of the Lipmann-Schwinger equation. We will pick 

a particularly simple version and follow the development of Sams 

d K 
. 19 

an ouri. 

The Lipman-Schwinger equation for '\ll i the wavefunction for 

the collision of two partners in initial internal states indexed by i 

with total system energy E, is 

...!>. ..... 

where V is the intermolecular potential V(r, r 1) and G is the 

Green's function operator 

)
-1 

G = (E - H0 + iE 

(37) 

(38) 
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where H0 is the Hamiltonian with V set to zero. In an operational 

sense, there are many different Green's functions that are defined 

by Eq. (38). Each Green's function gives rise to a wavefunction 

which obeys a different asymptotic boundary condition. By G we 

mean the Green's function that obeys Eq. (38) and gives rise to a 

wi which obeys the boundary conditions Eq. (3) and (4). 

the solution of 

,T,in • 
~- 18 

1 

· obeying the same boundary conditions. Since there is no inter

molecular potential in H0 , all the fij 's in Eq. (4) are zero and the 

asymptotic boundary condition reduces to 

> (~) ikiz -r--oo- ~i r i e . (40) 

wi can be expanded in the same partial wavefunctions of differential 

formalism. These partial wavefunctions obey the same boundary 

conditions but now satisfy Eq. (37). If we expand one partial 
1 -"" 7: wavefunction as - x ·<fl· and follow the same steps r I 

deriving the differential equation for "¢i [Eq. (7) ], 
th _,,,, 

the n element of ¢i: 

<Pm (r' )ctX' ctr' ]ctX 

as we did in 

we get for <Pni' 

(41) 
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where oni is 1 when n = i but is 0 otherwise. <Pin is the only 

nonzero channel coefficient in the . channel expansion if V is 

exactly zero; in general <Pin is closely related to a spherical 

~ I_;:,.' I Bessel function. G(x, r x , r ) has the form 

(..:.. I~' I) G x, r x , r 
{ 

out( ) in 
_ "'\' (=--. (.::,,.') ¢ j r q'> j (r) 
- LI X . XJX . x . ) ) . t 

J ¢~n(r)¢?u (r) 
J J 

r > r' 

r < r' 

(42) 

<f>~n is ¢~n for i = j. Although ¢ 0

3
. ut satisfies the same equation 

J l 
in as <f>j , its asymptotic boundary condition is appropriate for a 

channel containing only scattered amplitude; in general <f> jut is 

closely related to a spherical Hankel function. Substituting Eq. 

(42) into Eq. (41) and taking advantage of the orthonormality of 
..::. x, we obtain 

<Pni (r) = o .<f>~n(r) + </>~ut(r) ~ Jr <f> in( ')V (r')¢ . (r')dr' 
Ill l m 0 

n r nm m1 

+ ¢:i11(r) ~ 
m 

J"° <f> out( ')V (r')¢ . (r')dr' n r nm m1 
r 

= o . <f> ~n(r) + </>~ut(r) .0 Jr ¢ in(r')V (r')¢ . (r')dr' 
Ill l m 0 n nm m1 

- </>in(r) ~ 
n m 

Jr ¢ 0 u\r')V (r')¢ .(r')dr' 
0 n nm m1 

+ </>~n(r) "E J00 
¢in(r')V (r')¢ i(r')dr' 

m 0 n nm m 

where V nm(r') -· 
f ..::., ..::., I C::..' ..::., Xn(x )V(x ,r )xm x )dx . 

(43) 
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For the matrix 512 whose ith column is ¢i' this equation straight

forwardly becomes 

- 5kin ~r 5k ou\r' Yy(r' )~r' )dr' 

(44) 

where 5kin and 5f:out are diagonal matrices whose ith diagonal 

1 t A-.in d A-.out t· 1 S d K ·19 · t e emen s are 'f'i an 'f'i respec ive y. ams an ouri p01n 

out that this equation can be considered an inhomogeneous integral 

equation with the last term being the inhomogeneity. To obtain 5k 

we should seek a homogeneous solution 51:0 and a particular solution 
l 

51? : 

(45) 

where 51: 0 solves the homogeneous equation: . 

(46) 

Substituting this equation into the equation for 5k gives the equation 

for 5121: 



37 

51? 1 = 51? out ~r 9?in(r' )y(r' )9?i(r' )dr' 

_ 9?in ~r 92 out(r' )y(r' )~o (r' )dr' 

This equation is solved by 

where 

or 

51?1 = 51?0 9. 

9. = ~oo 5J?ou\r)y_(r) [920 (r) + 921(r) ]dr 

9. = [!_- foo9?out(r)y(r)~o(r)drr1 
0 

X ~oo 92 out(r)y_(r)920 (r)dr. 

Therefore the final solution to 92 is 

(49) 

The coupled integral equation for 92 ° can be solved noniteratively 

because the determination of ¢ 0 at r depends only on the knowledge 

of ¢ 0 over r' < r. 

The formalism developed in this section exactly parallels the 

differential formalism developed in the previou'3 sections. To get 

any column of 92, N primitive independent solutions 12_0 must be 

obtained. There are two general schemes applicable to solving 

the coupled integral equations for 5J?
0

• The integral can be re-
19 placed by a quadrature form and 92° can then be propagated from 

its initial zero value at r - 0. 12_
0 can be expanded in a set of 
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basis functions 18 resulting in a large matrix equation for the 

coefficients. These two types of methods are analogous to the 

propagation and matrix methods of differential formalism. Although 

we will not carry out the necessary analysis to confirm this sus

picion, we expect that the effects of closed channels and the im

plementation of perturbation schemes are very much the same in 

integral matrix and propagation methods as they are in differential 

matrix and propagation methods. This implies that the relative 

efficiency between integral methods and analogous differential 

methods are determined mainly by the technical aspects of each 

method. 

VII. SUMMARY 
~ 

Exact quantum methods for the calculation of the scattering· 

of nonreactive collisions can be classified as follows. There are 

global methods and channel methods, the latter being more 

efficient. Channel methods can be derived from differential or 

integral formalism. Consider differential channel methods first. 

They can be divided into time-dependent and time-independent 

methods, the latter being more efficient. The time-independent 

methods can be further divided into matrix and propagation methods . 

Both divisions handle the difficulties caused by closed channels in 

equally efficient, but considerably different, ways. However, 

propagation methods can take full advantage of perturbation solution 

techniques while matrix methods cannot. Channel methods based on 
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integral formalism can be divided into matrix and propagation 

methods whose efficiency is essentially the same as analogous 

differential methods. In global methods the solution space can be 
--!>. 

thought of as x x r . In the most efficient methods, perturbation 

propagation channel methods, the solution space can be thought of 

as N x N. t where N is the number of channels and N. t is the 
ill ID 

~ 

number of intervals. Both the x and r dimensions of solution 

space have been reduced by expanding the motion in known or 

readily calculated basis functions. Since both dimensions of solu

tion space have been reduced, it is doubtful that any more 

dramatic improvements in exact nonreactive quantum methods are 

possible. Of course improvements in the technical aspects of a 

method, not discussed in this article, can still result in important 

progress. 
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I'art 2: Quantum 1'.~ echanical Calculations of Rotational

Vibrational Scat tering in Homonuclear Diatom

Atom Colli s ions 
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I. INTRODUCTION 

The study of intermolecular forces is a major motivation 

for many experiments in nonreactive, vibrationally inelastic diatom

atom collisions .1 In these collisions, the most detailed observation 
af 1m1 . . f possible has the form 0-11 - . This designates an observation o 
ax.1m1 

the scattering from initial diatomic state I af1m 1 ) to final state 

la.t1m 1 ). Here and elsewhere a and f 1 are the diatom's vibra

tional and rotational quantum numbers and m 1 is the diatom's 

angular momentum projection quantum number along the initial 

direction of the atom. A bar over a quantum number shows that 

it indexes the precollision system. In most experiments the diatom 

is not prepared in a specific rotational state and is randomly 

oriented. Also, the diatom's rotational state and orientation after 

scattering is not resolved. In such experiments, the only observa-
a 

tion possible has the form 0- , designating an observation of the a 
scattering from one diatom vibrational state to another. 

An intermolecular potential (IP) can be quantitatively deter

mined only when experimental measurements can be reproduced by 

a calculation with an assumed IP. Therefore, one needs to cal

culate at least o~ . o~ can not be directly calculated, because it 

obeys the relation 

o~ a 
(1) 

where Pa-(f1) is the experimentally controlled probability that the 
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diatom with quantum number a will also have quantum number F1 • 

a . 
0-11 , which can be calculated, is an observation of the scattering 

ax.I 

of a randomly oriented diatom in the vibrational rotational state of 

a and £1 into all states with quantmn number a. Ideally, the calcula

tion should be quantum mechanical and the assumed IP should be 

angularly asymmetric so as to cause both rotational and vibrational 

scattering. However all 

mechanical calculations 2 
exact, and most approximate, quantum 

a 
of OaI use an angularly symmetric IP. 

1 

Such an approximate IP treats the diatom as a breathing sphere 

and hence there can be no rotational scattering. There are two 

reasons for the breathing sphere approximation (BSA). First, 

o':.." is mainly a measure of vibrational scattering and so should 
ax.1 

be sensitive primarily to the symmetric part of the real IP. 

Second, the wavefunction for a symmetric IP has only enough detail 
a 

to determine 0
0111 

; but the wavefunction for a realistic IP should 

. determine all o~~ml from which or:_ fl can be obtained: 
ax.1m1 ax..1 

(2) 

Since each vibrational quantum number indexes tens to hundreds 

of diatomic states, such information is basically too difficult and 

expensive to obtain. The approximate quantum mechanical calcula

tions not using the BSA have used instead dynamical approximations 

that are hard to evaluate. This can be said of most semiclassical 
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and classical calculations2 not using the BSA. However, a two-
. 3 

dimensional classical calculation by Benson and Berend indicates 

that the BSA is accurate for the calculation of vibrational relaxa-

tion times of 0 2 -A, while a three dimensional classical calculation 

by Razner 4 implies that the BSA is inaccurate for the calculation 

of energy transfer in very energetic Br2 -A collisions. 

We have been able to determine the degree of error in a 

BSA calculation of O~ n for the simplest class of collisions exhi
ax.1 

biting vibrational inelasticity--the collision of an atom with a homo

nuclear diatom at energies low enough to involve only two vibra

tional states. This is done by comparing two quantum mechanical 

calculations, one using the BSA and the other an angularly asym

metric IP with restricted rotational scattering. In the next section, 

we define our coordinate system, units, and the three representa

tive homonuclear diatom-atom collision systems studied: H2 -A, 

0 2 -He, and I2 -He. In the third section, we derive the theory for 

model restricted rotational scattering by a realistic IP. In the 

fourth section, we discuss the numerical and analytical methods 

used to solve Schroedinger's equation for the collision system 

wavefunction. In the fifth section, we study in detail the BSA 

induced inaccuracies in the partial, and partial differential, cross -

sections of H2 -A. In the sixth section, we study the BSA induced 

inaccuracies in the partial cross sections of 0 2 -He and I2 -He. We 

then summarize our results. 
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II. SYSTEM DESCRIPTIONS 
""'-~~ 

Figure 1 shows our coordinate system. Vector r 1 (r11 e1, 

¢ 1 ) is the distance of one end of the diatom from its center of 

mass and vector r2 (r2, e2, ¢2) is the distance of the colliding atom 

from the diatom's center of mass. y is the angle between these 

two vectors, while the z axis, from which 01 and e2 are measured, 

points in the initial direction of the atom. 

We represent the diatom as a rigidly rotating harmonic 

oscillator, an approximation which is valid at our low collision 

energies. For an IP, we choose 

where 

(3) 

w4ere P2(cos y) is the second Legendre polynomial. Both V0 and 

V2 are of a Lennard-Jones type with V2 modified by a short and 

long range P2 (cos y) asymmetry defined by aSR and aLR. Real 
5 IP's are known to have a long range attractive and a short range 

repulsive part, with each part having its own angular asymmetry; 

our parametrized IP contains these features. 
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The Hamiltonian JC for the collision of A striking B2 is 6 

mA 
M = mA + 2mB 

Here mA and mB are the masses of A and B. The units of energy 

and length are tiw and one-half the classical ground state vibrational ampli-
... 2 

tude, respectively. L1 is the rotational angular momentum operator, 

B0 the rotational constant, and y is the diatom's bond displacement 

from equilibriwn. To specify JC for a collision system we need 

M, B0 , a, E, aSR' and a LR. 

We considered three systems: H2 -A, 0 2 -He, and I2 -He. 

The parameters for these three system's are listed in Table I. 

The IP for H2 -A is approximately correct while that for 0 2 -He is 

only qualitatively correct. The IP for 12 -He is just a guess, since 

it .is based on results or estimates for a variety of systems. How

ever, for most homonuclear diatom-atom systems realistic values 

for the six Hamiltonian parameters fall within the range of the 

values chosen for our three systems. For reasons of economy, 

each system is studied at one total energy E and one initial rota

tional state indexed by I 1 . However, each system has different 

values for these two parameters. E and f 1 are listed in Table I 

along with T, the temperature equivalent, assuming a Boltzmann 
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distribution, of the relative translational energy of the atom when 

the total energy is E and the diatom is initially in the .e. 1 rotational 

state of the first excited vibrational state. Shock tube experiments 

on H2 -A 7 and 0 2 -He8 have been conducted at these temperatures. 

The value of I 1 for H2 -A and 0 2 -He is not unreasonable for these 

experiments. At least one experiment on I:z-He 9 has preselected 

the diatom in our initial rotational state. 
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III. THEORY 

a 
To determine 0--n for any a we need to know the wave

ax.1 

function 1/1 E _ for all m 1 and the relevant range of E, where 
<?i1m1 

----> 

(5) 

where k and k are the initial and final wavenumbers of the relative 

motion, f~~1m 1 (E, 0 2 ) is the amplitude at total energy E for 
a.Q 1m 1 

la£1m 1 ) to be excited to I a£1m 1 ) while scattering the atom into 
a . 

solid angle s-2 2 specified by 82 and ¢ 2 • 0-n can be determmed 
ax.1 

from all these amplitudes. The usual first step in obtaining 

t{l-11- (we will suppress the index E) is its expansion10 in a set 
ax.1m1 

of functions complete in r 1, 81, ¢ 1, e2, and ¢ 2 space. The spheri-

cal harmonics are complete in 82 and ¢ 2 space. Furthermore each 

spherical harmonic describes an orbital angular momentum state of 

the atom. In the total angular momentum representation the product 

of the diatomic states, complete in r 1, e 1~ and ¢ 1 space, and the 

spherical harmonics is the most convenient set of functions to 
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expand ~nm . We call a member of that set a channel designated 
ax.1 l 

by J lcd.1.Q. 2 ) where .Q. 2 is the orbital quantum number which couples 

with .Q. 1 to form J, the total angular momentum quantum number. 

Jn general, a channel's z component of J should be specified, but 

atom-diatom scattering is independent of this momentum. A chan

nel is open if its diatomic state factor has an energy less than E; 

otherwise it is closed. 

The boundary condition on t/la.Q. m is: 
l l 

i1 +£2 
I) 

J= 1r1 -£2 I 

e -i (kr 2 - f 21T /2) 
{---

..fk r2 

e i(kr2 -£ 2T./2) 

..Jk. r2 

J ) 
of what we call a solution vector, Saf.. £ , 

l 2 

directly expressed [see Eqs. (7) and (10) ]. 

(6) 

J a.U..1.Q.2 
S-- n is an element 

af..1x.2 

a 
in which 0--n can be 

ax.1 

Let us call the solu-

tion to the Schroedinger equation which obeys the boundary condition 

enclosed in brackets above a partial wavefunction (pwfn) designated 

t/laF1 t/laF1 
:f

2
J · £

2
J is the wavefunction for that part of the collision sys-

tem initially described by unit amplitude in J laf1£. 2 ) with unit 
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J ai 1i 2 • 

incoming current in the r 2 direction. The square of S-- - 1s the 
af.1i2 

probability that the collision will scatter J !a.e. 1r2 ) into 

JI a.t 1f. 2 ) • To obtain 1/,/i.l< we expand it in channels and generate 
f.2J 

a coupled set of differential equations in r 2 for the channel coef-

ficients. The channel coefficients at large r 2 contain the pwfn's 

solution vector. Describing the collision in terms of the scattering 

of each initial channel into other channels is more convenient than 

describing it in terms of the scattering of the initial diatomic state 

into other states and of the atom into different directions. 
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B. The Influence of the IP 

a 
The expense and difficulty of determining 0--n lie almost 

O!X.1 

entirely in solving the coupled set of differential equations for the 

channel coefficients of each pwfn. The calculation time for each 

set is roughly proportional to the number of channel coefficients 

cubed. The importance of the IP is that a pwfn's channel set is 

effectively complete if it includes only those channels which the IP 

significantly couples to the initial channel in some region of r 2 • 

The form of the IP limits a pwfn's channel set in two ways. First, 

all meaningful IP's must conserve total angular momentum as well 

as reflect the symmetry of a homonuclear diatom. Therefore, 

1/1 ~f1 will need only those channels with total angular momentum 
i2J 

J and rotational and orbital angular momenta of the same parity 

(even or odd) as I 1 and f 2 • Second, if an IP is angularly symme

tric, 1/J ~1 will need only those channels with rotational and orbital 
f2J 

angular momenta f 1 and £2 • Beyond these two general statements, 

a pwfn's channel set depends on the strength, not the form, of the IP. 

The differences between a BSA and an exact determination of 
a 

0-- stem from the differences between the scattering of each a£ 1 

initial channel by an angularly symmetric or asymmetric IP. In 

Figs. 2 and 3 we schematically illustrate the scattering of one 

initial channel by both IP's. In each figure, a channel is repre

sented by a square whose position specifies the channel's vibra

tional, rotational, and orbital quantum numbers. Only channels 

strongly coupled to the initial channel are shown; these channels 
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must have the same J and the same parity in .Q. 1 and .Q. 2 as the 

initial channel. Arrows of a thickness proportional to the excitation 

probability connect final and initial channels. For clarity, pure 

elastic scattering is not shown in either figure and some arrows 

are left out of Fig. 3. Vibrationally elastic scattering takes place 

within the initial channel's plane of channels while all other scat

tering is vibrationally inelastic. Only two channels are coupled in 

Fig. 2 by the symmetric IP while 50 channels are coupled in Fig. 

3 by the asymmetric IP. The ratio of BSA to exact calculation 

time for the pwfn is therefore 23 /503 or about 1/16, 000. We refer 

to the scattering between channels alike in .Q. 1 and .Q. 2 as vertical and 

all other channel scattering as lateral. The symmetric IP causes 

only vertical scattering, while the asymmetric IP causes both ver

tical and lateral scattering. The vibrational scattering produced by 

an elastic or inelastic lateral process is different in at least three 

ways from that produced by the analogous vertical process. First, 

the two processes differ in the vibrational coupling between initial 

and final chailllels. Second, the energy of rotational and orbital 

motion during the collision is different; this affects the amount of 

energy directly available to force vibrational scattering. Third, 

because the final channels of the two processes differ in .Q. 1 and .Q. 2 , 

they describe an atom-diatom system separating at different speeds 

in different directions. The greater the change in .Q. 1 and .Q. 2 from 

rl and f2, the more a lateral process will differ from the analogous 

vertical one. 
a 

A pwfn 's contribution to 0-r. involves a sum over 
CY.X.1 
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all the vibrationally elastic or inelastic scattering of its initial 

channel. If, in the exact calculation, the difference between each 

elastic or inelastic lateral process and the analogous vertical 

process does not sum to zero for enough initial channels, then the 
a 

BSA determination of 0-n will be in error. 
O!X.1 
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Suppose we obtain 1/J-71 - for an asymmetric IP by ex
ax.1m 1 

panding each pwfn V1 ~f1 in a channel set composed only of channels 
f 2J 

with £2 equal to f 2 • This very incomplete channel set does not 

permit 1/1 ~..e. 1 to obey its boundary condition unless we assume 
x.2J 

J a£ 1Q2 S-- - equals zero if f 2 is not equal to f 2 • The channel scattering 
a.9-1!2 

for the same initial channel of Figs. 2 and 3 is represented in 

Fig. 4. This calculation takes only 125 times longer than a BSA 

calculation versus the factor of 16000 we previously estimated for 

the exact calculation. However, each lateral scattering process in 

Fig. 4 is probably more intense than the same process calculated 

with a complete channel set (Fig. 3) because the initial channel's 

amplitude is being forced into fewer final channels. This feature 

implies that differences between lateral and vertical scattering will 

be larger in the approximate than in the exact calculation. The 

implication is that the difference between the approximate and the 
a 

BSA determined 0-71 will tend to be larger than the difference 
ax.1 

between the exact and the BSA determined Oa 71 • Let us define a 
ax.I 

model calculation of O~n as one in which each pwfn is expanded in 
. ax.I 

a channel set made incomplete by the same artificial set of restric-

tions. The degree of error in a BSA Oa 71 can be semiquantitatively 
ax.I 

defined by its comparison to oa n from feasible calculations for 
ax.I 

models whose restrictions emphasize lateral processes with large 

changes in £I or £2 • 
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We have studied four different models. We will now define 

each model's set of restrictions and, as an example, apply these 

to the pwfn ljl~,'~. 

Each model restricts a pwfn's channel set, one plane at a 

time (see Figs. 2, 3, and 4), starting from the initial channel or 

the channel in the plane vertically connected to the initial channel. 

We will look at just one channel plane for 1J.t ~ '= , where we will 
' 

presume that all channels with £1 equal to 1 to 13 are needed for 

completeness. The plane is shown in Figs. 5A and 5B. The four 

sets of restrictions are: 

Model 1: Include those channels whose £ 2 equals f 2 • These 

channels are marked by lines slanted to the right 

in Fig. 5A. 

Model 2: Consider all the channels with the same value for 

£ 1 to be in a row. Starting from the initial chan

nel, advance from row to row, choosing the one 

channel in each row which, first, is one of the 

nearest neighbors to the included channel of the 

previous row and, second, has a value of .e. 2 

nearest without exceeding the row's average value 

of £2 • These channels are marked by lines slanted 

to the left in Fig. 5A. 

Model 3: As in Model 1 with 11£. 1 equals f 1 " replacing "! 2 

equals .e. 2
11 and the results shown in Fig. 5B. 

Model 4: As in Model 2 with the roles of 2.. 1 and i.. 2 inter

changed and the results shown in Fig. 5B. 
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Models 1 and 2 emphasize scattering in Q1, while models 3 and 4 

emphasize scattering in £ 2 • As ill model 2's description, let us 

divide each plane of channels into rows indexed by £ 1 • In a com -

plete channel set calculation, the initial channel may scatter into 

final channels similar to itself; then the most probable final chan

nel in each row is indexed by £ 2 equal to £2 • Under ibis assump

tion, model 1 's channel set is an average of the complete channel 

set over £2 • Another assumption is that the quantum numbers of 

the initial channel would be "forgotten" during a scattering process 

in which changes in the quantum numbers are large. Then each 

row's most probable final channel depends on the size of £1-I1 • 

The final channel's £2 goes from I 2, when £1 -f1 is small, to the 

row's average when .Q.. 1-I1 is large. Under this assumption, model 

2's channel set is an average of the complete channel set over £2 • 

Models 3 and 4 are similarly motivated. 

For a realistic IP, the complete channel set of i{I af1 is 
f2J 

usually considered to be at least all the open channels indexed by 

J and by £ 1 and £. 2 whose parities are those of I 1 and I 2 • Should 

any of our models be applied to the ihousands of open channels in 

the I2 -He system, hundreds of channels would still be left in the 

incomplete channel sets. However, only channels that the IP 

couples significantly to a pwfn's initial channel are required in a 

complete set and this number is always much less than all the 

open channels. These significant channels can be determined from 

exploratory calculations and experimental results. For each 
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collision system, we will define the channel sets to which the 

models are applied. 
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IV. METHODS 
~~ 

We used two methods to solve the coupled set of equations 

for the channel coefficients and solution vector of each pwfn. The 

first method is the propagation method of Gordon11 with one major 

modification. This modification is the complete elimination of 

closed channel coefficients from the calculation at intermediate 

values of r 2 as the channel coefficients propagate from r 2 = 0 to 

the asymptotic region. This modification is a direct outgrowth of 

what Gordon refers to as stabilization and is a general feature of 

all propagation methods. This modification tends to make the com

putation time proportional to the cube of the number of open chan

nels rather than the number of open and closed channels. See Part I, 

Section IV for details. Using the propagation method, we obtained 

approximately three place accuracy in any probability (squared 

amplitude of a solution vector element) greater than 10-
6

• We 

tested the accuracy of our solution vectors in two ways. First, a 

vector's probabilities should sum to 1; our sum values were always 

1 'to four decimal places. Second, if P mn is the probability that 

the initial channel m will scatter into final channel n, then 
p - p . 
mp nm should be zero by time reversal. Our values were 

mn 

always less than 0. 05 and usually less than 0. 01 for all P mn > 

10-6. In model calculations on the 12 -He system, this accuracy 

could not be obtained when closed channels were included in a 

model channel set with twenty or more open channels. For unknown 
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reasons the stabilization procedure described by Gordon failed to 

prevent the closed channel coeffidents from exponentially blowing 

up as they propagate. We did not pursue this difficulty because of 

expense and because, as we will later prove, BSA induced errors 
a 

in 0-- for the I2 -He system can be determined by model and BSA a£ 1 

calculations that exclude closed channels. 

The second method is analytic and approximate but valid 

when T2 is very large. In such cases, the initial channel's 

scattering is essentially elastic. The scattering is that of 

potential scattering where the potential is the initial channel's 

expectation value of the IP. The unknown is the phase shift which 

is one half the phase of the only non-zero element in the solution 

vector. The channel expectation value of our IP is a Lennard

Jones potential. For Lennard-Jones potential scattering when £2 

is large, a valid analytic formula exists. 12 Solution vectors cal

culated by this analytic method pass smoothly, as a function of T2, 

into those calculated by the propagation method. 
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For this system, we calculate both the partial cross sections 

a~ 3 , a1
1 

3 , a0

1 

3, and a1° 3 using all four models and the BSA, and the 
' ' ' ' 

partial differential cross sections da0° 3 (82 ), da1
1 

3(82), da
0
1 

3(82 ), and 
' ' ' 

da1° 3 (82 ) using models 1 and 3 and the BSA. To review our notation, 
' a a 

a al
1 

and da(i_e.
1 
(82 ) are the cross section and differential cross section 

respectively for the scattering of a randomly oriented diatom in the 

vibrational rotational state of a and Q1 into all states with quantum 

0 3 1 3 -number a. We solve for pwfns 'l/J_!_ and 1/.12 for all J and for .e. 2 
t2J i2J 

ranging from 9 to 199. The propagation method was used for f 2 be-

tween 0 and 80 and the analytic method for T 2 between 81 and 199. The 

models restrict the complete channel sets of 'lfl0 '
3 and l/12 3 

• The range 
t2J f..2J 

of values that the a, f.. 1, and J.. 2 indices of a channel can assume speci-

fies a pwfn's complete channel set. This range may vary with all four 

indices of the pwfn, but we let it vary only with £2 • In Table II, 

the range of a and t 1 as a function of I 2 are listed for the H2 -A 

system. For f 2 > 80 the channel scattering is essentially elastic 

and the pwfn's complete channel set is just its initial channel. For 

each pwfn, t 2 ranges over all values allowed by the pwfn's value of 

J. Not all open channels are included, but we estimate that use of 

this channel set would incorrectly determine only vibrationally 

elastic and inelastic lateral processes of probabilities less than 

10-4 and 10-7 respectively. 
a 

0-n would probably not be altered by 
ax..1 

an exact calculation with a pwfn channel sets larger than those of 

Table II. 
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The full expression13 for the partial cross section a a -ir is 
a x.1 

f"2+f"1 
L) 

J= lr2 -r1 I 
(2J+l) L) 

i..1 

(7) 

where ~ is the wavelength for the initial translational motion 

divided by 27T. The sum over 11 includes all values with the same 

parity as that of f 1; o~ is 1 when i equals j and zero otherwise. 
1 

For each model calculation, the solution vector elements indexing 

final channels left out of the channel set equal zero in the expres

sion. For a BSA calculation, all vector elements not of the form 
J a I l.e.2 
S-tr {J can be set to zero. Furthermore a BSA solution vector is 
a~1~2 --

J ai..1i2 r r. Q' 
independent of J. Let us represent S af

1
i..

2 
by 1 28 a for the BSA 

calculation. Since 

1 
i..2 +f1 

L) (2J + 1) = (2.Q.2 + 1), (8) 

J= l£2-i..1I 

a 
the expression for a--ir can be simplified for the BSA calculation: 

O'.X.1 

(9) 



6 L~ 

The partial cross sections for models 1 and 3 are in Table III. 

Table III also shows the results of five BSA calculations indexed from 

zero to four. Each one uses different values for a and E in its IP. Only 

BSAO uses the values of a and E used by models 1 and 3. Table III lists 

a and E for each calculation. We want to use Table III to estimate the 

error due to the BSA in the partial cross sections of the H2 -A system. 

From the five BSA calculations, we can give those errors in terms of 

the errors in the values of a and E determined by the BSA calculations 

that reproduce the cross sections of both models. If there were no 

errors, BSAO would reproduce the results of each model. From the 

results of Table III, models 1 and 3 estimate that BSA induced errors 

for the H2 -A system are less than 1 % in a and 10% in E for elastic cross 

sections and less than 1 or 2% in a for inelastic cross sections. Also, 

the BSA results show that inelastic cross sections are extremely insen-

sitive to the value of €. 

Partial differential cross sections can also be determined from 

these seven calculations. The full expression
13 

for da :r
1
(e2) is 

27T r1 l..1 
a 1 ~ 1T E L) I) da af

1 
(82) = ~ 27T (211 + 1) m1 = -f1 f 1 m1 = -.P..1 

. 00 
1 

r2 +.P..1 J 

IE (2F2 + lf2 i r2 E 2) x 
f2= 0 J= lr2-.P..1l 

M= -J 

J +!1 
E 

.P..2= IJ-.P..11 

J a.e.112 I . 12 
- S,.,11r: ](f~1m2m1 £.2.P..1JM)Y.P.. m (e2,<P2) d<f>2 

..... x.1 2 2 2 
(10) 
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where (ijkl I ijmn) is a Clebsch-Gordan coefficient and Y Q m (82, ¢ 2 ) 
2 2 

is a spherical harmonic. 

averaged over ¢2 space. 

a 
a-11 

ax.1 

Notice our partial cross section is 
a a 

cr-- and dcr-- (e ) are related by 
a.Q.1 a.Q1 

2 

(11) 

a 
The properties of Clebsch-Gordan coefficients allow da-71 to be 

ax.1 

simplified for a BSA calculation: 

(12) 

In Figs. 6, 7, 8, and 9, we plot dcri, 3(82 ), da1
1

3(82), da; 3(82 ), and 
' ' 

da~ 3 (82 ) respectively for model 1, model 
' 

3, and BSAO. In Figs. 

10 and 11, we plot da1
1 

3 (82 ) and da0
1 

3 (B2 ) respectively for BSAl, 
-- - ' ' 

BSA2, 

BSA3, and BSA4. In each figure, unless 62 is very small, 
a 

da- /1 (82 ) is plotted over those values of 82 for which the cross 
ax.1 

section is large. At very small angles, differential cross sections 

cannot be measured because of experimental difficulties. Figs. 6 

through 11 show two features. First, models 1 and 3 estimate the 

BSA induced errors for the H2 -A system to be about 1 or 2% in a 

for the inelastic partial differential cross sections. Second, the 

inelastic partial differential cross sections are not sensitive to E 

and the elastic partial differential cross sections are not sensitive 

to either E or a. All the potential sensitivity in elastic differential 

cross sections is concentrated in the experimentally inaccessible 
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region of very small angles. We confirm this in Table IV, where 

the values of ctag, 3(82 ) for 82 equal to 0° through 4 ° are listed for 

all five BSA calculations. The difference in potential sensitivity of 

elastic cross sections and elastic differential cross sections are 

due to experimental limitations. However, the lack of sensitivity 

to E-like parameters in inelastic cross sections and inelastic 

differential cross sections are due to the nature of the collision 

system. 
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Because models 2 and 4 allow more lateral scattering than 

models 1 and 3, the former are less likely to underestimate 

errors due to the BSA. They are also much more expensive to 

use. To circumvent this difficulty, we have devised a way of 

interpolating, with respect to f 2, the solution vectors of either a 

model or a BSA calculation. The interpolated vectors are good 

only for the construction of approximate partial cross sections. 

However the difference between an approximate cross section of a 

model and that of a BSA calculation is almost exactly the same as 

the difference between analogous uninterpolated cross sections. 

Therefore, the interpolation scheme can be used without destroying 

the ability of model calculations to determine BSA induced errors 

in partial cross sections. 

The comparison of Eqs. (7) and (9) shows that both the full 
a -and BSA expression for a- n depends on a sum over £2 • Each 
ax.1 

term in the I 2 swn of the BSA expression can be constructed from 
f I. the solution vector 1 2Sa. The amplitude squared and the phase 

of each element in this solution vector is a relatively smooth 

function of I 2 • Each term in the f 2 sum of the full expression can 

be constructed from solution vectors JS,,,:r f. for all J. The ampli-
..... l 2 

tude squared and phase of each element in these vectors is not a 

smooth function of £2 • Let us rearrange the full expression for 

a . t a-71 mo 
ax.1 
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(13) 

We call V:f11; S- and L£ 1:f2S- vertical and lateral pseudo vectors a. a. 
respectively. To form a term in a a. 71 for any a we need to know 

a.x.1 

the amplitude squared of each element of both pseudo vectors as 

well as the phase of the elastic element of the vertical pseudo 

vector ; these quantities are defined in order as 

1 L) (2J+l) 
(2f2+1)(2fl + 1) J 

2) L) 
f 1 f..2 

(£ i,£2)=t=(f1,I2) 

(16) 

where .Q.cp~ is the phase of vector element .Q.S~. These quantities are 

all relatively smooth functions of :f2 • To compare BSA and model 

determined cross sections, we can calculate BSA solution vectors 

and model pseudo vectors for the same grid of r2 values, then 

interpolate with respect to £2 the remaining vectors and pseudo 

vectors to form the cross sections. If the grid of f 2 values is 
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fine enough to produce approximately correct cross sections, then 

the differences between these BSA and model cross sections will 

be nearly exact. Since it is trivial to generate solution vectors or 

pseudo vectors by the analytical method, the interpolation need only 

be carried out in the region of f.. 2 where the propagation method 

applies. Because any phase is undetermined within an integral 

multiple of 2n, the interpolation of the elastic phases of the solution 

or pseudo vectors is not straightforward; this minor complication 

is fully discussed in the Appendix. 
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and the BSA 
~~~~~~~~~~~ 

For the H2-A system, we use our interpolation scheme to 

determine the partial cross sections for models 2 and 4 and to 

redetermine the cross sections for models 1 and 3 and the five 

BSA calculations. For 1 2 equals 0 to 80, we solve for the solu

tion and pseudo vectors for every tenth value of r2, starting from 

0, and interpolate the remaining vectors. The results are in 

Table V. The comparison of Table V to Table III confirms our 

assertion that the interpolation scheme can produce partial cross 

sections whose absolute values are approximate, but whose relative 

values are exact. The results of Table V show that the BSA in-

duced errors in partial cross sections are the same for all four 

models. 

All our calculations on the H2 -A system support two con-

clusions: 

(1) The BSA can be used to determine accurately the sym-

metric part of the IP from measurements sensitive to 

potential parameters . 

(2) The inelastic partial cross sections are insensitive to 

E-like parameters while the entire potential sensitivity 

of the elastic partial differential cross sections is con 

centrated in the very small angle region. 
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The construction of vr1r2S- and Lf1I2s_ 
a a 

J requires S-- 7i 
a£.1x.2 

for all J. If .Q. 2 ~ i 1, the number of values for J is (2.Q.1 + 1). For 

H2-A, (2£.1 + 1) is only 7; but for 0 2-He and 12-He, it is 27 and 65, 

respectively. For model calculations on the 0 2-He and 12 -He sys

tems, the number of solution vectors which must be calculated for 

each pair of pseudo vectors is so large that the determination of 

partial cross sections by the interpolation of pseudo vectors is 

impractical. To overcome this difficulty, we again turn to inter

polation. From one solution vector, three quantities are used in 

the construction of the parts of the two pseudo vectors that are 

used in the expression for the partial cross section. From Eqs. 

and (16), the three I J a£.1.P..2 I 2 
quantities are: sa.Q.lf. for all a, 

--- 2 

(14), (15), 

.Q.1 f2 
I 
J

8
_at_1i_21 2 

for all a, and 
al.1i2 

J af.1£.2 cp-- - These quantities 
a.£.1£.2 

(t 1, i2)=F(.Q.1, f 2) 

are not smooth functions of J but are relatively smooth functions of 

J (af1f 2 j P2(cos y) I af1Q2) designating the expectation value of 

P 2 (cos y) with respect to the initial channel JI aI1.e. 2 ). This expec

tation value contains the entire J dependence of the initial chan

nel's expectation value of our asymmetric IP [see Eq. (3) ]. Let 

us index a model calculation by nJ when each calculated pair of 

pseudo vectors was constructed from n solution vectors from the 
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propagation method and the remaining solution vectors from inter

polation of the above three quantities with respect to 

J ( af1f2 Ip 2( cos y) I a:f1f2) . These calculated pairs of pseudo vectors 

are used to interpolate other pseudo vectors, with respect to :r2, 

to form partial cross sections. For a fixed interpolation of pseudo 

vectors with respect to i 2, the interpolation of solution vectors with 

respect to J (QQ:1f 2 I P2(cos y) I a:f1f 2) is accurate for that value n 

such that there is a negligible difference in partial cross sections 

between the nJ and the (n - l)J model calculation . Let us call ALL--J 

a model calculation where all solution vectors used in the construe -

tion of pseudo vectors were calculated; the model calculations for 

the H2 -A system were ALL- J calculations. In Table VI we com

pare the partial cross sections for the H2 -A system determined by 

2J, 3J, and ALL-J calculations of models 2 and 4. Any of the 

three calculations for both models would have estimated the same 

degree of BSA induced error in partial cross sections. This indi

cates that our interpolation scheme drastically reduces the number 

of solution vectors that must be calculated for each pair of pseudo 

vectors. 
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B. 

For this system, we calculate a0° 13 , a1
1 

13 , 

' ' 

0 
and 0'1 13 

' 
for only model 2 and the BSA. We solve for pwfns tf;.!!.? 13 and 

£2J 
. 1/1~~ for T2 ranging from 0 to 130. The propagation method is 

used for r2 = o, 9, 18, 27, 36, 48, 60, 70, and 80; interpolation 

with respect to T2 supplies the missing pseudo vectors for I 2 = 0 

to 80. The analytic method is used for £2 = 81 to 130. The com

plete channel sets of tf;~ 13 and tf;.!J 13 are defined in Table VII where, 
t2J i2J 

as a function of £2, the ranges of a and f 1 are listed. A channel 

set's range of .f. 2 has all values allowed by the value of J of the 

set's pwfn. Not all open channels are included in each pwfn's 

channel set, but we estimate that a calculation with this set would 

incorrectly determine only vibrationally elastic and inelastic lateral 

processes of probabilities less than 10-4 and 10-7 respectively. 

Table VIII lists the partial cross sections for a 2J and a 

3J model 2 calculation and for five BSA calculations. Each BSA 

calculation uses different values for a and E, which are also listed 

in Table VIII. From the results of Table VIII, the 2J and 3J cal

cuiations of model 2 are nearly the same and indicate that BSA 

induced errors for the 0 2 -He system are less than 1 % in a and 

about 5% in E for elastic cross sections and about 1% in a for in

elastic cross sections. The BSA calculations also show that inelas·-

tic cross sections are very insensitive to the value of E. Because 

all four models estimate the same BSA induced errors in the H2 -A 

system, we doubt that other model calculations on 0 2 -He would 
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radically alter our conclusions. If we assume that the BSA is as 

good for differential cross sections as for cross sections, then we 

can use the BSA to investigate the potential sensitivity of differen

tial cross sections. The five BSA calculations were redone with 

each solution vector explicitly calculated. In Figs. 12 and 13 we 

plot da1
1 

13(82 ) and da0

1 

13(82 ) respectively for the five redone BSA 
' ' 

calculations. The two figures show that, for 0 2 -He as for H2 -A, 

the potential sensitivity of the elastic differential cross sections 

is concentrated in the very small angle region, while the inelastic 

differential cross sections have the same potmtial sensitivity as 

inelastic cross sections. 
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C. Results 

F th. al ul 0 1 1 0 or is system, we c c ate a0 34 , a1 34 , a
0 34 , and a1 34 

' ' ' ' 
for only model 2 and the BSA. Vie solve for pwfns l/J-t~ and 

2 

l/l.!:J 34 for f 2 ranging from 0 to 100. The propagation method is 
.f 2J 

used for every eighth value of f.. 2 from 0 to 64; interpolation with 

respect to r2 supplies the missing pseudo vectors for r2 = 0 to 64. 

The analytic method is used for .f 2 = 65 to 100. The complete 

channel sets of l/J o, 13 and 1/J~ 13 are defined in Table IX where, as 
.f 2J f2J 

a function of f 2, the ranges of a and .f 1 are listed. A channel 

set's range of .f 2 has all values allowed by the value of J of the 

set's pwfn. Due to the technical difficulties discussed in Section 

IV, the channel sets defined by Table IX have no closed channels. 

We will discuss the effect of their absence on partial cross sec

tions. We estimate that the absence of some open channels from 

the channel sets of Table IX will affect only vibrationally elastic 

and inelastic lateral processes of probabilities less than 10-
4 

and 

10
-5 

respectively. 

Table X lists the partial cross sections for a 2J and a 3J 

model 2 calculation and for five BSA calculations for five different 

values of a and E. From the results of Table X, the 2J and 3J 

calculations of model 2 are nearly the same and indicate that BSA 

induced errors for the I2 -He system are less than 1 % in a and 5% 

in E for the elastic cross sections and less than 5% in E for the 

inelastic cross sections. The BSA calculations also show that 

inelastic cross sections are insensitive to the value of a. To 
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determine the effect on partial cross sections of the absence of 

closed channels from all channel sets, we redid the five BSA cal

culations including two closed channels in each pwfn's channel set. 

The resulting partial cross sections are listed in Table XI. The 

elastic cross sections are unchanged; the inelastic cross sections 

are all changed by the same small amount, leaving their relative 

values unchanged. We believe model cross sections will undergo 

the same alternations if closed channels are used in the calculation. 

By assuming the BSA is equally good for cross sections and dif

ferential cross sections, we redid once again the five BSA calcula

tions to investigate the potential sensitivity of differential cross 

sections. In this new set of calculations, closed channels were 

used and each solution vector was explicitly calculated. In Fig. 14 

we plot da1
1 

34 (82 ) for three BSA calculations and in Fig. 15 we plot 
' 

da0
1 

34 (82) for all five BSA calculations. The two figures show that 
' 

the elastic and inelastic differential cross sections of 12 -He have 

size and structure over a far wider range of angles than the dif

ferential cross sections of H2 -A and 0 2 -He. The large values of a 

and E make the collision of He with 12 much "stickier" than the 

collision of A with H2 or of He with 0 2 • Large angle scattering is 

significant with the consequence that both the inelastic and elastic 

differential cross sections of 12 -He show the same potential sensi

tivity as the corresponding cross sections. 
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VII. CONCLUSIONS 

Two conclusions about low energy vibrational scattering in 

homonuclear diatom-atom collisions can be drawn from our results 

for the H2 -A, 0 2 -He, and 12 -He systems. First, the breathing 

sphere approximation can be used to analyze accurately experimental 

measurements for the potential parameters to which the measure

ments are sensitive. Second, the measurements most sensitive to 

potential parameters are, first, elastic cross sections, and, 

second, inelastic cross sections and inelastic differential cross 

sections. Elastic differential cross sections are as sensitive as 

elastic cross sections if the intermolecular potential is soft and 

the collision is "sticky" with large angle scattering (like 12 -He) . 

. Otherwise the entire potential sensitivity of elastic differential 

cross sections will be concentrated in the experimentally difficult 

region of very small angle scattering. 

The approach used in this work can be applied to the study 

of the orientation effect of strong dipole forces present in most 

heteronuclear diatom-atom vibrational scattering. The intermolec

ular potential used in a breathing-sphere-approximation calculation 

cannot align. the atom and diatom during collision, whereas the 

intermolecular potential used in a model calculation can. A signif

icant difference between BSA and model observables would indicate 

the aligning power of dipole forces significantly affects vibrational 

scattering. 
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APPENDIX 
~ 

The elastic phases of solution or pseudo vectors are unde

termined within an integral multiple of 217. The propagation method 

internally adds or subtracts 217 units to its phases to bring them 

within ±rr. Fig. 16 is the plot of the phase, as both a smooth 

function of 1"2 and as produced by the propagation method. Because 

the phase as a smooth function of I 2 passes outside the range of 

±71', the phases produced by the propagation method are not suitable 

for interpolation with respect to I 2 • For BSA calculations this 

difficulty can be avoided by using the JWKB method to determine 

the elastic phase of each solution vector under the gross approxi

mation that the initial channel experiences only potential scattering. 

The JWKB phases are smooth functions of I 2 • We use these phases 

to determine the number of 217 units the exact elastic phase of the 

propagation method must be displaced, by demanding the displaced 

phase be as close as possible to the JWKB phase. The displaced 

elastic phases are smooth functions of £2 and are suitable for 

interpolation. For the pseudo elastic phases of a model calcula

tion, we use the same displacements determined for the BSA cal

culation whose IP is the symmetric part of the model's IP. In all 

cases where this procedure was used, the difference between an 

exact undisplaced and a JWKB phase was, within 1 or 2%, an 

exact multiple of 217. 
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TABLE I. System parameters in reduced units. 

Parameter H2 -A 0 2 -He 12 -He 

M 0.952 0.111 0.0155 

Bo 0.0138a 0.000918a 0.000228a 

(J 48.14b 115.5c 128.3d 

€ 0.01158b 0.01593C 0.4073d 

asR 0.25e 0.45f 0.55g 

a LR 0.128h o.229h o.1oi 

E 2.140 2.195 2.464 

r1 3 13 34 

T(°K) 2000° 800° 85° 

aG. Herzberg, Spectra of Diatomic Molecules (D. Van Norstrand 

Company, Inc., Princeton, 1950), 2nd ed. 

bR. Helbing, W. Gaide, and H. Pauly, Z. Physik 208, 215 
~ 

(1968). 

cDerived from the combining laws and the He-He parameters 

of J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 

Theory of Gases and Liquids (John Wiley and Sons, Inc., New York, 

1964), 2nd corrected printing, pp. 168, 1110; and the 0 2-02 para

meters of C. J. G. Raw and C. P. Ellis, J. Chem. Phys. 28, 1198 .,..,,.,.... 

(1958). 

dJ. I. Steinfeld and W. Klemperer, J. Chem. Phys. 48, 3475 
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TABLE I. Continued. 

are for the B 3nou+ electronic state of 12 • 

eFrom the H2 -He potential surface calculated by M. D. Gordon 

and D. Secrest, J. Chem. Phys. 52, 120 (1970). ,,.....,.... 

fEstimated from the 0 2-02 atom centered Lennard Jones poten

tial of J. R. Sweet and W. A. Steele, J. Chem. Phys. 47, 3029 
.rv". 

(1967). 

gEstimated from the Br2 -A atom centered Lennard Jones poten

tial of R. Razner, J. Chem. Phys. 51, 5602 (1969). 
rv-... 

hnerived from the polarization experiments of N. J. Bridge 

and A. D. Buckingham, Proc. Roy. Soc. (London) A295, 334 (1966). 
~ 

iFr'om the value for Br2 -Li7 measured by R. K. B. Helbing and 

E. W. Rothe, J. Chem. Phys. 48, 3945 (1968) . 
.rv". 



TABLE II. Range of f. 1 as a fw1ction of a and r 2 for the complete 

channel sets of H2 -A. 

0-40 

41-80 

0 

1, 3, 5 

1, 3, 5 

1 2 

1, 3, 5 1, 3, 5 

1, 3, 5 



TABLE III. 
o2 

Partial cross sections in A for H2 -A. 

0 1 1 0 Type (]' E O'o, 3 0'1 3 O'o 3 0'1 3 

' ' ' 

Model 1 48.14 0.01158 51. 94 65.29 0.000706 0.00225 

Model 3 48.14 0.01158 51.94 65.05 0.000725 0.00226 

BSAO 48.14 0.01158 51. 97 64.94 0.000687 0.00214 

BSAl 47.66 0.01158 50.77 63.33 0.000752 0.00234 

BSA2 48.62 0.01158 53.18 66.57 0.000628 0.00195 

BSA3 48.14 0.01043 50.48 61. 24 0.000699 0.00218 

BSA4 48.14 0.01273 53.53 68.82 0.000680 0.00211 



TABLE N. dai 3(82) in A2 for very small angles for H2 -A. 
' 

Type 

BSAO 

BSAl 

BSA2 

BSA3 

BSA4 

18420. 

17510. 

19370. 

16430. 

20600. 

10 

7479. 

7248. 

7711. 

7177. 

7801. 

20 

1639. 

1635. 

1637. 

1604. 

1675. 

30 

2.26 

1. 09 

5.39 

1. 04 

4.87 

40 

262. 

253. 

270. 

254. 

271. 



TABLE V. 

Type 

Model 1 

Model 2 

Model 3 

Model 4 

BSAO 

BSAl 

BSA2 

BSA3 

BSA4 

86 

. 02 
Partial cross sections m A for H2 -A. Cross sections 

constructed by interpolation . 

(j E 

48.14 0.01158 

48.14 0.01158 

48.14 0.01158 

48.14 0.01158 

48.14 0.01158 

47.66 0. 01158 

48.62 0.01158 

48.14 0.01043 

48.14 0.01273 

52 . 63 

52.66 

52.64 

52.65 

52.65 

51.83 

. 53. 61 

51. 43 

54.02 

1 
(jl 3 

' 

61.45 

61.03 

61. 25 

61.14 

61. 29 

59.37 

63.28 

57.98 

64.44 

0.000737 0.00235 

0.000822 0.00237 

0.000727 0.00249 

0.000699 0.00252 

0.000712 0.00222 

0.000785 0.00244 

0.000649 0.00202 

0.000732 0.00228 

0.000708 0.00220 
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TABLE VI. 
o2 

Partial cross sections in A for H 2 -A from the 2J, 3J, 

Type 

Model 2 

Model 2 

Model 2 

Model 4 

Model 4 

Model 4 

and ALL-J calculations of models 2 and 4. Cross 

sections constructed by interpolation. 

(2J) 52.56 

(3J) 52.65 

(ALL-J) 52.66 

(2J) 52.65 

(3J) 52.65 

(ALL-J) 52.65 

61. 05 

61. 03 

61. 03 

61.16 

61.14 

61.14 

1 
O'o 3 

' 

0.000884 

0.000869 

0.000822 

0.000707 

0.000695 

0.000699 

0.00242 

0.00240 

0.00237 

0. 00256 

0.00261 

0.00252 
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TABLE VII. Range of ~ 1 as a function of ct and 12 for the complete 

channel sets of 0 2 -He. 

0 - 36 

37 - 80 

0 

5, 7, ... ' 21 

5,7, ... ,21 

1 2 

5, 7' ... ' 21 7,9, ... ,19 

5,7, ... ,21 
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TABLE VIII. 
c2 

Partial cross sections in A for 0 2 -He. Cross sec-

tions constructed by interpolation. 

Type (J € 

Model 2 (2J) 115.5 0.01593 52.87 61.45 0.00326 0.00927 

Model 2 (3J) 115.5 0.01593 52.85 61.47 0.00320 0.00920 

BSAO 115.5 0.01593 52.75 60.98 0.00339 0.00980 

BS Al 114.3 0.01593 52.53 60.77 0.00363 0.01050 

BSA2 116.7 0.01593 53.26 61.60 0.00316 0.00915 

BSA3 115.5 0.01433 51.66 58.39 0.00338 0.00978 

BSA4 115.5 0.01753 54. 02 63.99 0.00340 0.00984 
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TABLE IX. Range of i.. 1 as a function of a and "f2 for the complete 

channel sets of I2 -He. 

0 1 

0 - 16 22, 24, ... '46 22, 24, ... '46 

17 - 24 24, 26, ... '46 26, 28, ... '44 

25 - 32 26, 28, ... , 42 26, 28, ... '42 

33 - 64 26, 28, ... ' 38 26, 28, ... ' 38 
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TABLE X. Partial cross sections in A2 for 12 -He. Cross sections 

constructed by interpolation. No closed channels used 

in calculations. 

Type (J 

Model 2 (2J) 128.3 0.4073 

Model 2 (3J) 128.3 0. 4073 

BSAO 128.3 0. 4073 

BSAl 125.7 0.4073 

BSA2 130.9 0.4073 

BSA3 128.3 0. 3870 

BSA4 128.3 0.4275 

0 ao 34 

' 

424.4 

424.0 

424.1 

412.8 

430.3 

428.8 

418.3 

440.2 

440.7 

431. 2 

385.7 

480.7 

416.4 

457.4 

1. 058 2.627 

1.054 2.618 

1. 063 2.598 

1. 058 2.587 

1.065 2.603 

1.001 2.446 

1.126 2.752 



TABLE XI. 

Type 

BSAO 

BS Al 

BSA2 

BSA3 

BSA4 
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• o2 
Partial cross sections m A for 12 -He. Cross sections 

constructed by interpolation. Closed channels used in 

calculations. 

424.0 

412.8 

430.3 

428.8 

418.0 

431.1 

385. 0 

480. 3 

410.9 

457.7 

1.091 

1. 087 

1.091 

1. 026 

1.156 

2.666 

2.658 

2.667 

2.509 

2.825 



Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5A. 

Fig. 5B. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Fig. 10. 
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FIG URE CAPTIONS 

Coordinates for the collision of atom A with diatom B2 • 

Channel scattering with an angularly symmetric IP. 

Channel scattering with an angularly asymmetric IP. 

Channel scattering with an asymmetric IP and an in

complete channel set. 

Model 1 ( 111) and model 2 ( \ \ \) applied to a plane of 

channels in the set for 1/15°'; . 
' 

Model 3 ( 11 I) and model 4 ( \ \ \ ) applied to a plane of 

channels in the set for 't/J~' 5
9

• 

da~ 3(82) for H2 -A. Each curve is generated from a 
' 

. calculated value at every degree. 

1 
da1 3(82) for H2 -A. Each curve is generated from a 

' 
calculated value at every degree. 

da
0

1 
3 (82 ) for H2 -A. Each curve is generated from a 

' 
calculated value at every other degree. 

da1° 3 (82) for H2 -A . Each curve is generated from a 
' 

calculated value at every other degree. 

1 
da1 3(82) for H2 -A . Each curve is generated from a 

' 
calculated value at every degree. 



Fig. 11. 

Fig. 12. 

Fig. 13. 

Fig. 14. 

Fig. 15 . 

Fig. 16. 
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calculated value at every other degree. 

da1
1

13(02) for 0 2 -He. Each curve is generated from a 
' 

calculated value at every degree. 

da0
1 

13(82 ) for 0 2 -He. Each curve is generated from a 
' 

calculated value at every other degree. 

da: 34(82 ) for 12 -He. Each curve is generated from a 
' 

calculated value at every degree . 

l 
da0 34(82 ) for 12 -He. Each curve is generated from a 

' 
calculated value at every other degree . 

Elastic phase as a function of Q2 • Phase generated by 

propagation method (D.); phase as a smooth function 

. (0). 
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Fig . 2 
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Part 3: The Effect of the Potential Well on Vibrational 

Scattering ru1d the Validity of SSH Theory 
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INTRODUCTION 
-~ 

Most collisions between neutral atoms and molecules are 

governed by attractive forces at large separations and repulsive forces 

at short separations. Hence the potential for the collision has an 

attractive well. For vibrational inelastic collisions of molecules with 

themselves or with atoms, the potential well is often assumed1anly to 

increase the relative translational energy of the collision by an amount 

equal to the well depth. This acceleration approximation is basic to 

SSH theory, 1 which is widely used in analyzing the results of vibra

tional relaxation experiments. There have been several studies1' 2 of 

the accuracy of the acceleration approximation and of SSH theory, but 

they have employed approximate methods to obtain the necessary prob

abilities and crossections. In this article we have analyzed through 

exact quantum mechanical calculations the effects of the Lennard-Jones 

well on models of three different inelastic vibrational collision systems: 

0 2-02 , C~-C~, and Br2-Br2 • We have also evaluated the accuracy 

of SSH theory both in predicting and analyzing experiments on these 

systems. Wilson3 has used exact quantu..111 mechanical calculations to 

study the effects of the well on vibrational excitation. However, the 

collision systems he studied are quite unlike ours. Also, he did not 

evaluate the accuracy of SSH theory for his collision systems. This 

article is divided as follows. In section I, we discuss our choice of 

collision systems and the method of modeling the collisions and in 

section II, we describe the methods used to carry out the calculations. 

In section III, we examine the probability of deexcitation, by head-on 
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collision, from the first excited to the ground vibrational state, P 10, 

as a function of initial translational energy, E. Calculations are done 

on all three systems for a Lennard-Jones intermolecular potential 

and for two other 11well-less11 potentials suggested by SSH theory. For 

the C~-C~ system, we examine the crossection for deexcitation, a10 , 

as a function of E for the same three potentials. In section IV we 

examine for all three systems P10 as a function of E for the Lennard

Jones potential and for a modified "well-less11 Lennard-Jones potential. 

This comparison best isolates the effects of the well. In section V, we 

examine the accuracy of SSH theory for our three collision systems by 

comparing its predictions to those derived from the calculations in 

section III. Section IV summarizes our results. 
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I. SYSTEM MODELING 

The three collision systems 0 2-02 , C~-C~, and Br2-Br2 

have increasing well depths in units of tiw, the vibrational gap of the 

diatom. Taken as a set, the three well depths cover the range of depths 

usually found in diatom-diatom or diatom-atom collisions. Collision 

systems with hard interactions, such as H2-H2 , are not well repre

sented by our set of systems. However, systems with hard interactions 

usually have small well depths, due to the tight binding of electrons 

about their molecular centers and their resulting low polarizability. 

We exclude hard collision systems from our study under the assumption 

that their well effects would be small. Wilson3 studied hard collision 

systems with large well depths. His study differs somewhat from ours 

and would not accurately model most collisions of simple molecules. 

For the three systems of interest we wish to calculate the 

rotationally averaged crossection for deexcitation from the first excited 

to the ground vibrational state, cr10 , as a function of E. The angular 

asymmetry of the actual intermolecular potential produces rotational as 

well as vibrational scattering. To obtain a10 , we must sum over the 

properly weighted crossecti.ons for each vibrational-rotational transition 

consistent with a 1-0 vibrational deexcitation. The spherically sym

metric part of the intermolecular potential can produce only vibrational 

scattering. This potential is the result of rotationally averaging the 

full potential. It is frequently assumed that the vibrational cross

sections obtained directly from the rotationally averaged potential 

accurately approximate the rotationally averaged vibrational-rotational 
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crossections obtained from the full potential. This has been shown 4 

to be true for low energy homonuclear diatom-atom collisions. We 

assume this is true here and use only spherically symmetric potentials. 

To further simplify our calculations, we will freeze one diatom's vibra

tional motion and approximate the other by a harmonic oscillator. The 

loss of half of the vibrational degrees of freedom and all of the anhar

monicity of the actual collision system make our model quantitatively 

inaccurate. However, calculations5 on the H2-H2 collision system 

indicate that these last two approximations create no qualitative dis-

crepancies for head-on collisions, where such discrepancies are most 

likely to occur. Also, most of our results will be based on the relative 

comparison of P 10 or a10 for different but related intermolecular poten

tials, so some of the quantitative inaccuracies must cancel out. 

Finally, since SSH theory is based on the same modeling described 

here, our calculations can then be used to test the accuracy of the 

theory. 

Figure 1 shows our coordinate system. The initial direction of 

the frozen diatom, particle A, is the z axis. The ball and spring pic

hire for diatom B-B actually represents the breathing sphere respon

sible for our spherically symmetric intermolecular potential. r 1 is 

the distance of one atom in B-B from the molecular center of mass 

(or the distance between the surface of the breathing sphere and its 

center). B and r 2 describe the position of particle A relative to the 

center of mass of B-B. Since the potential is spherically symmetric, 

there is no out-of-pla..ne scattering and consequently no need for an 

azimuthal angle to describe the position of A. Since A is a frozen 
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B-B, its mass, mA, is twice mB, the mass of B. In reduced units6, 

the hamiltonian JC for the _j.h partial wave is 

mA 
where M = =. 5 

mA + 2mB 

The units of energy and length are li w and one-half the classical ground 

state vibrational amplitude. The diatom 1 s displacement from equili

brium is y, while V(r2 -r1) is the intermolecular potential. We select 

the Lennard-Jones intermolecular potential for V(r2 -r 1): 

(2) 

This potential is qualitatively correct, is most frequently used by 

experimentalists, and is the potential assumed by SSH theory. In Table 

I we list E, a, and the reduced units of energy and length for our sys

tems. The values are those of Herzfeld et al. 1 These parameters 

are typical of nonhydrogenic collision systems. 

The potential well should influence head-on collisions more , 

strongly than glancing ones. Consequently, the effect of the well should 

be more pronounced in P10 than in a10 • For this reason and for reasons 

of economy, we calculated P10 as a function of E for all three systems, 

while calculating a10 as a function of E for only the C~-C~ system. 

The range of E for all calculations was from 0 to 12 reduced units 

(E will always be given in reduced units). 
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II. CALCULATIONAL METHODS 

We use the propagation method of Gordon 7 to solve for Is, the S ,_ 

matrix for the £th partial wave. P10 and o-10 are related to 1s, by ,..... 

Pio = I 
0

S10 1
2 

(3) 

a10 = ;2 ~ (2£ + 1) I .e.s10 1
2 

(4) 

where the wavenumber K is v' 2ME. For our purposes, only the £.S10 ele

ment in £.§.has to be accurate. In order to obtain an accurate 1s10 for our 

systems, considerably fewer than the total number of open channels need 

be included in the channel expansion at higher energies. This is due to 

the fact that at higher energies the excited motion described by the higher 

open channels is not actually executed by the system during deexcitation 

from the first excited to the ground state. In Table II, we compare the 

total number of open channels for all three collision systems to the num

ber of channels which must be retained in the expansion to obtain I £S10 1
2 

accurate to 3 or 4 digits in the third place. Since the calculation time in-

creases as the cube of the number of channels in the expansion, a significant 

savings can be achieved by using less than the number of open channels at 

higher energies. It is generally true that calculations requiring only a part 

of the S matrix need use only a channel set restricted about the scattering pro

cesses of interest and that such a channel set will often be smaller than 

the total number of open channels. 

For the Cl2--C~ system, a10 must be calculated. At higher 

energies, a10 may require I fl 810 1
2 

for £ ranging from 0 to over 500. 

However, since I fs10 j
2 is a smooth function off, it can be readily 

interpolated. At each energy we calculate I .Q-s10 1
2 for 4 to 8 values 
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of £. spanning the range of £.over which I ..e.s10 1
2 is important. We 

concentrate the calculated values of I ..e.s10 Fin regions where I £.810 1
2 

is changing rapidly with £.. These calculated elements are used to 

obtain the other values by interpolation. We actually interpolated 

· log10 lfs10 )
2 since this is a smoother function of £. than I f.s10 12 • The 

error in a10 due to interpolation with this coarse grid of calculated 

points is less than 5% except in the very low energy region, where the 

error could be as much as 10%. Using an IBM 370/155 computer and 

the procedures described in this section, we can calculate, for the 

Clz-Clz system, a10 from E :::: 0 to E = 12 in roughly 10 minutes for 

one set of potential parameters. With procedures described elsewhere, 4 

elastic crossections and elastic and inelastic differential crossections 

as a function of E can also be obtained with a negligible increase in 

computer time. Approximate theories such as SSH theory are very 

useful, but they are no longer the only practical way to analyze or 

predict experimental results. 
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III. LENNARD-JONES AND SSH INTERMOLECULAR POTENTIALS 

All results obtained with the Lennard-Jones intermolecular 

potential are indicated by LJ. Fig. 2 shows logio (P fo'J) as 

a function of E for all three systems. The three P i~J curves are feature

. less and very similar to each other. In general, P fc;1" is an oscillatory 

function of E. For our systems, the oscillations set in at E > 12. 

For hydrogenic collisions, 3, 5 oscillations are evident by E :::::: 4. 

If the well serves only to accelerate the colliding species to 

an additional translational energy equal to its depth E, LJ should be 

replaceable by a potential whose value at large separations is -E. Such 

a potential boosts the incoming energy by E. The short range part of 

the potential should duplicate as much as possible the repulsive wall of 

LJ. The replacement potential suggested by SSH theory has the form 

(5) 

Here H and a are functions of E, allowing a fit to Ll most appropriate 

for each value of E. There are two methods, A and B, for determining 

H and a; we designate the two intermolecular potentials EXP A and EXPB 

and so label any results obtained with them. 

. EXP A LJ EXPB/ In Figs. 3 and 4, we plot log10 (Pio /Pio ) and logi0 (~0 
P1~J) respectively (for all three systems). At energies less tha.ri or 

comparable to E, P 1~XPA differs from Pi~J by as much as an order of 

magnitude. At high energies P1~XPA is in close agreement with P1~. 
However, at these high energies the well has little influence on the 

colliding particles, because they are moving too fast to notice the well. 
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Consequently, the possibility of the well being represented by a 

potential whose asymptotic value is -E cannot be determined accurately 

at high energies. The good agreement of ~XPA and P1~J in this region 

indicates only that the repulsive walls of the two potentials match closely. 

· Similarly, the substantial disagreement of Pi~XPB with P1~J even at 

high energies implies that EXPB fails to duplicate the repulsive wall 

of LJ for our systems. For this reason, no further calculations were 

done with EXPB. 

In Fig. 5 we plot log10 (a1~J) as a function of E for the C~-C~ 

system; a1~ is in A2
• Over this energy range, a1~ is very similar to 

~ but roughly ab~ut an order of magnitude larger. In Fig. 6 we plot 

EXPA LJ -BXPA LJ log10 (a10 I a10 ) for the C~-C~ system and replot log10 (Yi~ / P10 ) 

as a function of E. As expected, over the entire energy range 

a1~XPA and a1~J are in better agreement than ~XPA and pfo'J, 

because the well influences head-on collisions more strongly than 

glancing ones. Note that for E greater than 2 or 3, the crossection 

for either LJ or EXP A is overestimated only by a factor of 3 or 4 by the 

relatively crude approximation: 

2 
aio = 1Tr c Pio (6) 

where r c is the classical turning point. The physical interpretation of 

this approximation is that the hard sphere crossection, rrr c
2

, is the cross 

section for all scattering processes while P10 is the probability that a 

scattering process leads to deexcitation. 
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IV. THE "LENNARD-JONES CUTOFF" POTENTIAL 

Since EXP A approximates both the repulsive wall and the well 

of LJ, the low energy disagreement of ifoXP A with P}: may be due to 

both the limitations of fitting an exponentially repulsive potential to an 

inverse powers potential and ~he failure of representing the well entirely 

as an acceleration effect. The potential that is exactly LJ at small inter-

molecular separations and -E at large separations would, in comparison 

with LJ, isolate the effects of only the well. Such a potential we call 

the Lennard-Jones cutoff potential (LJC), whose form is: 

V(r2 - r1) = l4E ((r ~ r )12 - (r ~ r )6) r2 - r1 < 2l/6a 
2 l 2 l 

1/6 ~E r 2 - r 1 > 2 a 

(7) 

1/6 · . LJC 
where the minimum of LJ occurs at 2 a. In Fig. 7, we plot log 10 (P10 ) 

as a function of E for all three systems. The curves in Fig. 7 are quite 

unlike analogous curves for LJ, EXP A and EXPB in that at low energies, 

P1~JC has structure for all three systems. Such structure could in 

general, come from two sources: the effects of several non-initial 

open or nearly open channels competing for the initial channel's ampli

tude or the interference effects of the wavefunction scattering off of 

several different parts of the potential. The first source may be con

sidered responsible for subexcitation resonances and for the strong 

oscillations of all probability curves at high enough energy. The second 

source usually accounts for structure in only elastic scattering observ

ables. However, TvVilson3' 8 has done vibrational scattering calculations 
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with several potentials which have produced excitation probabilities with 

structure similar to ours over energy regions in which competitive 

effects seem unlikely. When we restrict the channel expansion of the 

wavefunction to only two channels at all energies and recalculate the 

. curves shown in Fig. 7, the structure at low energies is modified, but 

in no way removed. This seems to indicate that competitive effects are 

not as important as interference effects from several different regions 

of LJC. This is surprising because the potential with the most apparent 

structure is Ll, yet it has no structure in its probability curves. An 

explanation for the structure in P11;1C could be as follows. For all 

potentials, the region about the classical turning point is important in 

determining the scattering. For a monotonic repulsive potential, the 

tail of the potential would not usually be important in the scattering. We 

would suspect this to be true for EXPA. Suppose that for LJC the tail 

can effectively scatter. At low energies, tail scattering would dominate, 

while at high energies classical turning point scattering would dominate. 

In the intermediate region there would be interference. In LJ, the 

effects of the tail of LJC are washed out by the climb out of the well 

the. scattering wavefunction must undergo. The well makes LJ a long 

range, more adiabatic potential and allows the system to get used to and 

to get over the effects of the tail in WC. To test this explanation, we 

can add on to LJC an exponential potential tail at r 2 - r 1 = r 0 where 

a< r 0 < 2116a. The value and slope of the exponential potential can 

be made to match LJC at r 0 • If the exponential tail is ineffective at 

scattering and if the explanation of the structure of pfo'JC is correct, 

the probabilities of this composite potential, P1~, should be dominated 
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by classical turning point scattering and show no structure . For the 

0 2 -02 and C~-C~ systems, we set r 0 equal to a; for the Br2-Br2 

system, we set r 0 equal to the position where LJC has a value - E/2. In 

Fig. 8 we plot log10 (P1~) as a function of low energies for all three 

. systems. Since there is no structure in P1~, our explanation seems to 

be reasonable . In Fig. 9, we plot for all three systems log10 (P1~JC / 
P1~J) as a function of E. The curves are dominated by the structure in 

P1~JC. However, outside this region of structure, the results in Fig. 9 

indicate that increasing E by the well depth overestimates the effect of 

the well. This conclusion and our explanation for the structure in 

pfo'JC emphasize that potentials with wells have a longer range and 

therefore are more adiabatic than "well-less" potentials and any structure 

in the probabilities for 11well-less" potentials is washed out. 
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V. COMPARISONS WITH SSH THEORY 
..,....~ 

SSH theory provides analytical expressions to determine the 

collision number Z10 , the average number of collisions a molecule 

undergoes before relaxing from the first excited to the ground state. 

If T10 is the relaxation time and Tc is the time between collisions, then 

(8) 

If the system's relaxation is dominated by relaxation from the first to 

the ground state, then 

(9) 

where k10 is the rate constant. If kc is the total rate at which scattering 

events take place per target molecule, then 

(10) 

For a one-dimensional system in translational equilibrium, k10 has the 

following form 

k10 = fo 00
p 10 (E)ftr.E dn(E) dE 

where dn(E) ~ p(z:T ) ! e -E/kT V2;11 E- ~ 
(11) 

Here p is the number of particles per unit length and dn(E) is the Maxwell 

distribution of particles per unit length between energies E and E + dE. 

For a one dimensional system, the probability that every encounter 

produces some scattering is 1, for the encounters are all head-on. 
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Therefore, 

kc = Jo 00 rr;;. dn(E) dE 

=P (-Jih-)~ ~ 
(12) 

then the collision number for a one dimensional system is 

The superscript 1 on 1Z10 indicates a one-dimensional system. For a 

three-dimensional system in translational equilibrium, k 10 has the form 

k10 = fo 00 
a10 (E) f ~ E dn(E) dE 

E 

( 1 3/2 .! -KT where dn(E) = p21T --) E 2 e dE 
7TkT 

(14) 

Here p is the number of particles per unit volume and dn(E) is the 

Maxwell distribution of particles per unit volume between energies E 

and E + dE. To determine kc we need an expression for the total cros

section. Herzfeld et al. 1 implicitly write kc as 

k0 = Jo 00 
(total crossection) / ~ E dn(E) dE 

~ ac Jo 00 j it E dn(E) dE 

= ac p -U- (2~T )3/2 (kT)2 

(15) 

Here ac is an effective crossection which is temperature-dependent. 

Since we will look at only ratios of collision numbers, the exact value 



127 

of ac is unimportant. The collision number for a three-dimensional 

system is 

(16) 

. SSH theory provides approximate formulas for the bracketed terms in 

the Eqs. (13) and (16) for iZio and Zia. From the calculations presented 

in section III, we can calculate these terms exactly. We first consider 

the one-dimensional model of our three collision systems and then the 

three-dimensional model of the Cl.z-Clz system. 
i The SSH formula for Zia is based on the following three approxi-

mations used in evaluating: 

1 roo -E/kT KT Jo Pio (E) e dE. (17) 

First, LJ can be replaced by either EXPA or EXPB. We will discuss 

only the SSH formulas using EXPA. From the discussion of section III, 

we would expect and our calculations show that the SSH formulas using 

EXPB are not as accurate as those using EXP A. Second, P10 can be 
9 DW replaced by the Jackson-Mott formula for Pio the distorted wave 

probability for a head-on collision governed by an exponentially repulsive 

potential. Third, the integral of Pio over the Maxwell distribution can be 

evaluated by a modified method of steepest descent. Let us designate 
1 A -- - - - - ·-
Zi0 as the SSH collision numbers for the EXP A fit to LJ. If the 

second and third approximations are exact, iz! should be identical 
i EXPA . 

to Z10 • In Fig. 10 we plot for all three systems the 

(i A/i EXPA) logia Zio Z10 as a function of reduced temperature kT/liw. 

One unit in reduced temperature is 2230°K for 0 2-02 , 810°K 
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for Cl.z-Cl 2 , and 470°K for Br2-Br2 • In Fig. 10, 1Z;;/ 1Z 1~XPA varies 

rapidly at low temperatures for two systems and at higher temperatures 

tends to a constant considerably less than 1 for all three systems. The 

second and third approximations are in error. Examining the third 

. approximation first, we find that the evaluation of the jntegral in expres

sion (17) is obtained by expanding the integrand a.bout its maximum value. 

In that expansion, the dependence of a on E is ignored; a is one of the 

potential parameters in EXPA [see Eq. (5) ]. Although a is a weak 

function of E, the Jackson-Mott formula for P[;W is a very strong 

function of a, especially at low energies. In the SSH formula aM is 

used where aM is the value of a at the energy, EM, for which the inte

grand has a maximum. Let us use in the expansion of the integrand 

To first order in aM, we get the modified collision number 
1 Z~A: 

1 + 2€ {3 
izMA = (l _ .!f3v ) e 2kT vM lzA 

10 3 M lo 

(18) 

(19) 

fJ can be determined from aM and the formula relating 01to E and a for each 

. (1 MA;1 EXP A) value of E. In Fig. 11 we plot for all three systems log10 Z10 , Z10 

as a function of kT/nw. 1Z~A/ 1z~XPA does not vary rapidly with 

reduced temperature. The second approximation can also be improved 

because the Jackson-Mott formula for Pi~V./ is not as accurate as the 
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the exact formula for P~W evaluated by Mies. lO Secrest11 has shown 

that P1~W is quite close to ~XPA for several systems. Let 1ZPoWMA 

designate the SSH collision number with both the second and third approxi

mations improved upon. In Fig. 12 we plot for all three systems log10 

(
1zDWMA;1zEXPA) as a function of kT/nw The ratio 1Z D\VMA;1zEXPA 

10 10 - • 1.0 10 

is approximately 1 over the whole temperature range. Therefore, the 

second and third approximations suitably modified introduce little error 

into one-dimensional collision numbers. The effect of the first 

approximation is shown in Fig. 13 where log10 ( 1z~XPA/1Z~) for all 

three systems is plotted as a function of kT/nw. The low energy dis

agreement of P1~XPA with P1~ discussed in section III appears as a low 

temperature disagreement of 1Z~XPA with 1 Z~J. Figs. 10, 11, 12, and 

13 show that, for a 1-dimensional model of our three collision systems, 

a modified form of SSH theory correctly predicts collision numbers 

except at temperatures low enough to make the effects of the well 

important. 

The SSH formula for Z10 is based on an approximate evaluation 

of: 

uf.nz fo 00 a
10 

(E) Ee-E/kT dE .(20) 

This requires a fourth approximation not used in evaluating 1Z10 , i.e. 

[ 1 r 00 - E/kT ] 2 [ 1 r 00 ( ) - E/kT ] ( ) lKTJ Jo 0-10 (E) E e dE = 1TrM . KT Jo p 10 E e dE 21 

where rM is the classical turning point for EM, the value of E at which 

the integrand on the right hand side reaches a maximum. The integral 
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on the right hand side is expression (17) used -in 1Z10 • In Fig. 14, we 

plot for the CL2 -Clz system both log10 (zPoWMA;z 1~XPA) and log10 

(1z~WMA;1z~XPA) as a function of kT/tfu. If the fourth approximation 

is exact, the two curves should be identical. They are different with 

. the greatest disagreement at low temperatures. In Fig. 15 we plot for 

EXP A/ LJ 1 EXP A/1 LJ the Clz-Clz system log10 (Z 10 Z10 ) and log10 ( Z10 Z10 ) as a 

function of kT/n w. Because the well affects crossections less than 

probabilities, the first curve departs from zero less than the second. 

In Fig. 16 we plot for the Cl.z--Clz system log10 (z?oWMA /Z~J) and 

log10 (
1z~WMA;1z~J) as a function of kT/nw. The two curves are very 

similar, with the greatest departure from zero occurring at low 

temperatures. For the three-dimensional model, Figs. 14 and 15 indicate 

that the disagreement of zPoWMA with Z ~ at low temperatures 

is due equally to the inability of SSH theory to correctly include the 

effects of the well and to accurately infer crossections from probabilities. 

i DWMA . . i LJ We have already shown that Z10 disagrees with Z10 at low 

temperatures due mainly to the effects of the well. If the results 

shown in Fig. 16 are typical for many collision systems, then our 

conclusions about the accuracy of 1zPoWMA for the 0 2-02 and the 

Br2 -Br2 systems could equally well apply to zPoWMA for these two 

systems. To the degree that the modeling described in section II is 

correct, we can conclude from these calculations that SSH theory 

accurately predicts collision numbers from known potential parameters 

except at low temperatures, where the theory incorrectly estimates well 

effects and crossections. 
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SSH theory can also be used to analyze experimental collision 

numbers for unknown potential parameters. If we consider 1Zfo'J to 

be the experimental result, then we can adjust the potential param-
. i DWMA i LJ eters m the SSH theory so that Z10 becomes equal to Z10 • 

The resulting potential parameters can then be compared to the a and 

€which actually produced 
1Z 1~J. Let us call a A the potential param

eter in conjunction with E that makes 
1
ZPoWMA equal to 1Z~J. Let 

us call EA the potential parameter in conjunction with a that makes 
i DWMA i LJ . Z10 equal to Z10 • In Figure 17, we plot (a Af a) x 100 and 

(EA/ E) x 100 as a function of kT/nw for all three systems. Over this 

temperature range, a A is within 10% to 15% of a. However, EA is 

never more than 70% of E, even when Eis very large. For the 0 2-02 

system, no EA can be found which in conjunction with a will make 
1Z~WMA equal to 1Z~J. This is so because SSH theory does not pro

perly estimate well effects. Even though SSH theory is more accurate 

at high temperatures, it is not because it more accurately predicts 

well effects, but because well effects are less important at high 

temperatures. There is no temperature range over which SSH theory 

will accurately predict the depth of the potential well for our three 

systems. 
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VI. CONCLUSION 
~~ 

Three conclusions can be drawn from this work. First, cal

culations of quantum mechanical crossections for vibrational scattering 

off of spherically symmetric potentials are currently practical. Efficient 

computational methods, suitably restrictive channel sets, and interpola

tion procedures help make the calculations feasible. Second, the 

comparison of probabilities and crossections between the Lennard-Jones 

potential and several "well-less" potentials emphasizes the adiabatic 

long-range nature of potentials with wells. The presence of the well 

washes out structure in the probabilities as a function of energy and 

produces probabilities and crossections less than that estimated by the 

acceleration approximation. Third, SSH theory reasonably accurately 

predicts collision numbers except at low temperatures where it 

incorrectly estimates well effects and crossections. SSH theory can 

not be used to accurately determine the depth of the well. 
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1 
Table I. System Parameters 

Parameter 02-02 Cl2 ~ci:a 

E . 0508 .441 

(J 131. 7 141. 7 

unit of energy: Il(JJ (°K) 2230 810 

unit of length: ~JQw (A 0 ) .02606 .02909 
e 

Br --Br 2 2 

1.106 

168.1 

470 

. 02538 

1 K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion 

of Ultrasonic Waves (Academic Press, New York, 1959), p. 321. 
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Table II. The number of channels in the expansion set as a function of 

the number of open channels. 

Open Channels 02-02 Clz-Clz Br2-Br2 

2 3 3 5 

3 4 4 5 

4 4 4 5 

5 4 4 5 

7 5 5 6 

9 5 6 6 

12 6 6 7 

14 8 7 7 



Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Fig. 10. 

Fig. 11. 

Fig. 12. 

Fig. 13. 
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FIGURE CAPTIONS 

Coordinate System. 

LJ Log10 (Pio ) vs. E for 0 2-02, C~-C~, and Br2-Br2 • 

Logio (P1~XPA;pfc;'J) vs. E for 0 2-02, C~-Cl2 , and Br2-Br2 • 

EXPB LJ Log10 (P10 /Pio ) vs. E for 0 2-02, C~-C~, and Br2-Br2 • 

( LJ) LJ . . 0 2 Logi0 a10 vs. E for Cl2-C~. aio is m A . 

EXP A/ LJ EXP A LJ LoglO (aio alO ) and logio (Pio /Pio ) vs. E for c~-c~. 

LJC Log10 (Pio ) vs. E for 0 2-02, C~-C~, and Br2-Br2 • 

c Log10 (P10 ) vs. E for 0 2 -02, C~-C~, and Br2-Br2 • 

LJC/PLJ Logi0 (P10 10 ) vs. E for 0 2-02, C~-·C~, and Br2-Br2 • 

(1 A/1 EXP A) /'!:::" LoglO Z10 Z10 vs. kT uW for 02-02, c~-c~, and 

Br2-Br2 • 

(l MA;1 EXP A) I Log10 Z10 Z10 vs. kT nwfor 0 2-02 , Cl2-C~, and 

Br2-Br2 • 

(1 DWMA;1 EXPA) Ii:::" Log10 Z10 Z10 vs. kT aw for 0 2-02 , C~-C~, 

and Br2 -Br2 • 

l EXPA;l LJ I Log10 ( Z10 Z 10 ) vs. kT nwfor 0 2-02, C~-Cl2 , and 

Br2-Br2 • 

14 ( DWMA/ EXP A) d (1Z DWMA;1z EXP A) vs Fig. . Logio Z io Z 10 an log10 io io . 

kT/liw for C~-C~. 

EXPA/ LJ (1..,.EXPA/1 LJ) /t:;-Fig. 15. Logi0 (Z 10 Z10 ) and log10 ZJ 10 Z10 vs. kT uwfor 

c~-c~. 

( DWMA/ LJ (1 DWMA;1z LJ) / Fig. 16. Log10 Z10 Z10 ) and logi0 Z10 10 vs. kT nw 
for C~-CI:a. 
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Fig. 17. 100 x a p/ a vs. kT/tiw for 0 2-02 , Clz-Clz, and Br2 -Br2 ; 

100 x EA/ E vs. kT/nwforClz-Clz and Br2-Br2 • 
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