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ABSTF..ACT 

The problems involved in the design of' machine foundations are 

discussed, followed by a short review of' the ·literature of the subject. 

The general theory of' vibration for single and lln.lltiple degree of free­

dom systems is briefly reviewed, with special emphasis on its application 

to machine foundation design. A procedure for the analysis of' machine 

foundations is then developed on the basis of a simplified equivalent 

system. Procedures f'or determining the elastic coefficients and the 

inertia parameters of the soil are next considered. 

The purpose and extent of the experimental investigations are 

discussed, followed by a description of the instrumentation used and 

the nature and accuracy of' the data obtained. The data is then anal­

yzed and checked against the theory presented. The data required for 

the design of machine foundations is discussed, and a procedure .for 

design and analysis is recomn19nded. In conclusion recommendations for 

further study and r esearch are made. 
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INTRODUCTION 

The need for a satisfactory rational method of designing machine 

foundations has existed for a long time. Although the cost of the 

foundation usually represents only a small fraction of the total cost 

of an installation, the behavior of the foundation is a major consider-

ation in insuring satisfactory performance of the machine. All too 

often has the difficulty and importance of designing a suitable machin~ 

foundation been underestimated. 

That knowledge in this field has lagged behind other branches of 

technology is partly due to the fact that the responsibility for a 

satisfactory installation is divided between two branches of engineer-

ing. The machine designer's responsibility generally does not extend 

beyond the design of the machine; the foundation engineer must design 

a foundation for it -- a problem much more complex than the design of 

a foundation which supports only static loads. This is because addi-

tional dynamic forces are involved which alter the behavior of both 

the foundation and the soil. 

In order to arrive at a rational design procedure for machine 

foundations, the author's research was directed at an investigation 

of the behavior of foundations subject to periodic dynamic forces. 

The problem was resolved into three phases: 

1. A review of the literature of the subject. 

2. A study of the uroblem as a problem in the application of 
the theory of vibrations. 

3. An experimental investigation of foundations subject to 
periodic dynamic forces. 
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The review of the literature revealed that many of the usual 

design practices are contradictory and that much of the available data 

on foundation behavior is incomplete and vague. The experimental in­

vestigation was therefore designed to furnish the necessary information 

for checking theoretical behavior. It was established that reasonable 

predictions can be made on the basis of the theory of vibrations, pro­

vided that the effect of the elastic and inertia properties of the 

soil are incorporated. A method of computing ~he necessary coefficients 

was developed and the procedure for analyzing a foundation outlined. 

To permit mathematical treatment, several simplifying assumptions 

were made in developing the theory. Exact numerical results are there­

fore not to be expected; nevertheless, results obtained by its use are 

in good agreement with experimental observations and should be sufficient­

ly accurate for most design problems arising in practice . The theory 

also explains why many of the empirical design practices which have 

been established by experience constitute sound engineering practice 

and are desirable for dependable and economic machine foundations. 
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CHAPTER I 

REVIEW OF THE LITERATURE ON }1ACHINE FOUNDATION DESIGN 

Introduction 

The first attempts at devising design procedures were almost en-

tirely empirical. The next attempt was a rationalization of the problem 

by an ~pplication of the theory of vibrations in which the spring con-

stants required were determj_ned from static deflection. About 1933 

German engineers developed several vibration machines and used them 

to determine the dynamic soil constants. This was followed by ex:peri-

mentation in other countries, principally in Great Britain, and led to 

the theory of ground "self-frequency". The latter theory was further 

expanded into the so-called 11pressure bulb" theory. 

Empirical Design Methods 

Manufacturers of industrial machines generally furnish "certified" 

foundation drawings which merely show the location of holes for anchor 

bolts and give the overall dimensions required to accomodate the machine. 

Recommended values of minimum yardage of concrete in the foundation are 

sometimes given. The remainder of the design is left to the draftsman. 

The yardage of the foundation is generally based on the assumption that 

the foundation will rest on hard firm subsoil, and is justified on the . CD 
basis of the theory of mass damping. If P is the unbalanced inertia 

force, A is the allowable amplitude of displacement, and N is the mass 

of the foundation, then 
2 

P=Ma=M W A 

where a is the acceleration, and w is the operating frequency of the 

machine in radians per second. Solving for M, we have 
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M = -1_ 
2 

(J) A 

An arbitrary constant is sometimes introduced to allow for the apparent 

mass of the soil which moves with the foundation block. (
2

) This theor.v 

ignores the effect of damping, t he action of the soil as a spring, and 

the phase difference between the force P and the displacement A. 

Some of the rules- of thumb based on this theory which hav,e found 

favor are: 

a. Weight or foundation block should be equal to not less than ten 

times the weight of the moving parts of the machine. 

b. Weight of foundation block should be equal 1D s::>me multiple of 

the total weight of the machine.* 

c. Weight of foundation block should be equal to some constant 

times the rated horsepower output divided by the number of cylinders.** 

For the guidance of the draftsman the following rules and specifi-

cations have been laid down by various authors: 

1. The base of the machine foundation should not be higher than the 

base of adjoining foundations. 

* Cozens tabulated recommended ~tios of foundation weight to engine weight 
for several types of engines. 3) The recommended ratio for steam engines 
ranges from 4:1 to 3:1 ; for gas engines, from 3:1 for single cylinder to 
2:1 for eight cylinder; for Diesel engines, from 2.75:1 for 2 cylinder to 
1.9:1 for 8 cylinders. 

** Larkin(l) tabulated the yardage per horsepower recommended by various 
manufacturers for B5 different gas engines. The engines included were 
3 to S cylinder engines with rated output ranging from 75 to 360 HP. 
All the engines were of medium speed, ranging from 200 to 400 rpm. The 
average yardage recommended per horsepower may be expressed by the 
relation 

V = 0.06 (1 + 4/n) 
where n is the number of cylinders. 
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2. For reciprocating engines the depth of the foundation should be at 

least five times the piston stroke, with a minimum of five feet. 

3. 'The width of the base should not be less than the height; if necess-

ary, a cantilevered footing slab may be used. 

4. Cork isolation pads are recommended for high speed engines, or if noise 

abatement is required. 

5. To prevent cracking, faces of the foundation should be reinforced 

with 5/8 in. deformed bars, spaced 12 in. on center, both horizontally 

and vertically. Low shrinkage and low water-cement ratio concrete should 

be used. 

6. Whenever possible symmetr~cal arrangement should be used, and the 

center of gravity of the base contact area should coincide with the 

center of gravity of the machine or of the action line of .the resultant 

dynamic forces. 

7. Where soil conditions are unsatisfactory, piles should be used to con-

solidate the soil and to transfer the load to a stronger stratum. 

8. Conservative allowable soil bearing values should be used in deter-

mining the base contact area. 

9. Pockets or other suitable spaces may be left so that additional 

mass may be added should the natural frequency of the foundation co­

incide with the operating frequency of the machine. <4) 

10. Cantilevered projections should be eliminated wherever possiblej or 

when unavoidable, should be stiffened with brackets. C5) 

11. Where foundations project thru a floor they should be separated to 

prevent 11moment 11 continuity. (5) 

12. Preloading of the foundation iS desirable to prevent misalignment 

due to s ettlement. ( 6) 



Semi-rational Design Methods 

During the early thirties, German engineers began advocating a 

more rational analysis of machine foundations based on the theory of 

vibrations. Much work was done on the problem of isolation by Rausch, 

Von Schlippe, Steinbach, Geiger and others. Their most notable con-

tribution was the development of spring supported foundations, which 

satisfactorily solved the problem for medium to high frequency machines. 

By the use of springs the problem was made determinate, since for low 

natural frequencies of the suspended system, the dynamic forces trans-

mitted to the ground can be kept very small. 

Rausch(?) classified ~chine foundations into three groups on the 

basis of operating frequency. 

A. Low to medium frequencies 

B. Medium to high frequencies 

c. High frequencies 

0 - 500 rpm 

.300 - 1000 rpm 

Greater than 1000 rpm 

Group A consists of large reciprocating engines, compressors, blow-

ers etc. Reciprocating engines operate at frequencies from 50 to 250 rpm 

but have considerable second harmonic content, so that sizable dynamic 

forces up to 500 rpm must be withstood. Foundations of the block type 

with large soil contact surface are recommended for this group. The 

natural frequency of these foundations is generally higher than the op­

erating frequency of the.machine. An exception to this case is a found-

ation on pile~ which may have a very low frequency for the horizontal 

mode. 

The second group consists of foundations for medium size recipro-

eating engines such as diesel and gas engines, as well as blowers and 



-7-

other rotating machinery. In this group, the natural frequency of a 

:foundation which rests directly on the ground is apt to coincide with 

the operating frequency. A spring supported foundation is therefore 

recommended in order to make the natural frequency of the foundation 

block much lower than the operating frequency. This type of foundation 

is readily designed by application of ' the theory of vibration and will 

therefore not be discussed in further detail in this thesis. 

The third group consists principally of high speed internal com--

bustion engines, electric motors and steam turbines. In these in-

stallations the operating frequency of the machine is generally well 

above the natural frequency of the foundation. Massive foundations 

with small contact area are recommended and cork isolation pads may be 

used to increase the damping. These pads also tend to reduce the :;natural 

frequency of the foundation by reducing the effective spring constant. 

Framed foundations, such as are required for turbines, are treated sep-

arately. They are generally much more complex since the columns support-

ing the foundation table act as springs, thereby introducing additional 

degrees of freedom to the system. 

For cast-in-place block foundations, Rausch determines the natural 

modes of oscillation from static soil constants. Damping is neglected 

both in determining resonant frequency and amplitude of oscillation. 

Allowable values for amplitude are given. Formulae for determining 

size and type of springs required for type B foundations are given. This 

subject is also treated by De Gruben. (B) 

In general these authors ignore the mass effect of the soil which 

vibrates with the foundation. Static measurements or calculations are 

depended upon for the determination of the soil spring constants,. To 

account for the dynamic augment, soil pressures are arbitrarily increased 



-8-

by a factor of f'ive. 

Determination of Dynamic Soil Constants, 

About the time of the above development much interest was shown in 

the design and theory of vibration machines., (9) Several :machines were 

constructed and were used by the Degebo (Deutsche Gesellscha.f't fur 

Bodenmechanik) in a series of extensive tests on various types of' soil. 

The classic work in this field was that of Lorenz~ll) He proposed that 

the natural frequency of a vibrator resting on soil be expressed by the 

relation 

-fn = I f k' A 9 
21f 1/ Ws + Wv 

where fn is the frequency in cycles per second, k.1 the spring constant, 

A the surface area, g the acceleration of gravity, W
8 

the effective 

(10) 

weight of the soil moving with the vibrator, and Wv the weight of the 

vibrator. The unit spring constant k 1 is generally called the "coefficient 

of dynamic subgrade reaction". (l2) It has- been found that this coefficient 

is consistently larger than the coefficient of subgrade reaction deter­

mined from static tests. Lorenz in his analysis assumed that k 8 was con-

stant for a given soil, and hence was able to determine the apparent 

mass of' soil, Ws. He concluded that W6 is not constant, but varies with 

frequency, contact pressure and dynamic force. An independent set of 

experiments were ma.de by Barkan(l3) on cohesive soils. Barkan assumed 

that the apparent mass, W , is constant, and theref'o1~e concluded that k' 
s 

varies with intensity of contact pressures, size of contact area and with . 

the frequency of load application. Attempts have been made by other in-

vestigators to correlate these different approaches. Lorenz' equation 

is based on the tacit assumption that the weight, W
8

,, of the vibrating 

soil constitutes part of the weight of the rigid vibrator, and that the 
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seat of the forces of elastic restitution has no weight. Actually, the 

boundary of the zone which vibrates under the influence of the impulse 

is not sharply defined and depends on the physical properties of the sub-

grade. Several attempts have been made to obtain a more accurate con-

ception of the interaction which occurs between the vibrator and the soil. 

The assumption made in Reisner's analysis is that the vibrator resta on 

the horizontal surface or a semi-infinite elastic isotropic mass. 
(14) 

This problem has also been treated by Quinlan. (l5) The results of these 

analyses have not been too usef'ul when applied to cohesionless soils, 

since for these soils the modulus of elasticity varies with depth. 
. (16) . 

Tchebotarioff has proposed a method of normalizing the data on the 

basis of calcu.lating the natural frequency for unit .contact pressure, thus: 

t. =- IA x l lk'S 
n 1Wv 21r 11 l+W:lwv 

where 

p = Wv -A 
and fnr is the reduced natural frequency. On this basis he finds: that 

there appears to be some correlation of all published data to date, which 

may be expressed approximately by the relation 

tnr = 1soo44 
Ground Self-freguenciea, 

As early as 1885, it was n-oted by Rayleigh; that under :certain con-

ditions the ground appears to have a natural or 11self-frequency11 , which 

depends on the physical properties of the soil. This phenomenon was also 

studied by Lamb in 1904, and by the Degebo in 1934-36, and by Sezawa and 

Kanai in 1937. In 1946 Bergstrom and Linderholm in Sweden showed that a 
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correlation exists between the self-frequency and the bearing capacity 

of the ground, and proposed making use of this phenomenon as a· practical 

method of determining bearing values for ordinary building sites·. 

Andrews and Crockett(l7) in 1944 made a number of vibrograph studies in 

which the self-frequency was excited by dropping heavy weights on the 

ground; damping factors were determined by measuring the decay of the 

oscillations·. The frequencies obtained in this manner appear to be some-

what lower than those obtained by the Degebo with continuous excitation. 

This is shown graphically in Fig. 1.1. On the basis of these self-

frequencies and in an attempt to account for the mass of soil moving 

with the foundation, Crockett and Hammond have advanced the "pressure 

bulb11 theory. (lS) 

The Pressure Bulb Theory. 

Most investigators have realized that a portion of the soil moves 

with the foundation and effectively behaves as an additional or apparent 

ma Lorenz(ll) attempted to measure this mass but had to assume that ss. 

the dynamic subgrade reaction remained constant. In 1948, Crockett and 

~ond(l?) proposed that the pressure bulb be used as a measure of the 

apparent mass. If the soil is assumed to behave elastically, the pressure 

at any point may be determined from the Boussinesq equations. If points 

of equal pressure are then considered, they will be found to lie on a 

bulb-shaped surface. Crockett and Hammond assume that the mass of the 

soil within this envelope or bulb can be taken as the apparent mass. The 

size of the bulb, of course, depends on the pressure intensity selected. 

Presumably this value may be determined experimentally. 

Summary. 

Progress in the field of machine foundation design has been very slow. 

Only in the last two decades has a rational approach to the problem been 
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attempted. The methods of analysis advanced to da:te have either over­

simplified the problem or have been lini.ited in their application to 
. . 

special cases. · As a result , engineers still rely almost entirely on 

judgement and .experience in designing machine fotindations. 
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CHA,PTER II 

THEORY OF VIBRATION OF ONE DEGREE OF FREEDOM SYSTEMS AND ITS 

APPLICATION TO MACHINE FOUNDATION DESIGN 

Mechanical oscillation is caused by the interaction of inertia and 

restoring forces when a body is disturbed from its position of static 

equilibrium. The requirements for oscillation are the presence of a 

restoring force and the kinetic energy of' the mass. In the case of 

machine foundations, the latter is furnished by the mass of the machine 

and its foundation, plus a portion of the soil which moves with it; the 

restoring force is furnished by the elasticity of the soil. The mass 

of the system may be expressed by m = W/g and the exciting force by 

F(t). In general, restoring forces for small displacements may be 

considered linear, for if we express the restoring force as 

(2.1) 

then for sufficiently small values· of x we can write 

(2.2) 

S.ince (in the design of ma.chine foundations ) we are interested in keep­

ing the displacements very small, the above simplification is justified. 

In (2.2) k is called the spring constant. 

Unless external energy is supplied, a disturbed system will grad­

ually come to rest because of energy losses. The sources of these . 

energy losses are dissipation and damping. . In the case at hand, dissi­

pation is due to radiationof_'energy into the soil mass on which the 

foundation rests, and damping is furnished by the friction between soil 

particles. The combined effect is most conveniently expressed as a 
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• 
damping force, ~~ , where it is assumed that the damping force is 

viscous, i.e., proportional to the velocity. If the damping force does 

not follow the 'V'iscous law the problem is non-linear and serious com-

plications in the mathematical treatment of the problem ensue . It is 

therefore customary to treat the damping force on the basis of' an equi­

valent viscous damping factor, ~e. , which causes the same energy loss 

in the system. It is one of the purposes of this thesis to determine 

the seriousness of this simplification in predicting the behavior: of .: 

machine foundations. 

The Equivalent System. 

If the elastic restraints of a system are of such a nature that 

the system can only vibrate parallel to, or in a plane about, a fixed axis, 

it is said to have one degree of freedom. Otherwise, the degree of 

freedom is equal to the number of coordinates required to define the 

displacement. In the most general case, the movement of a rigid system 

such as a block foundation can be resolved into three translatory and 

three rotational components, and such a system therefore can have, at 

most, six degrees of freedom. 

Consider the simplest case, a system with one degree of freedom. 

The machine and its foundation plus the equivalent effective mass of 

the soil moving with it is considered as a mass resting on a damped spring. 

t F(t) 

w 

Figure 2.1 
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The differential equation for this system is 

rnx = - k"- ~x + F(t) . (2.3) 

Undamped Free Oscillation. 

For the case of zero damping and no exciting force, equation (2.3) 

reduces to 

rni + kx=O 

It can readily be verified that a solution of equation (2.4) is 

'X = A cos Ti t · Vm 

(2.4) 

(2.5) 

where A is the amplitude of oscillation, and the period in seconds is 

given by 

~- ~ 
~- ~ 

(2.6) 

The frequency of oscillation, in cycles per second, is 

t= l= l fE = {§_ [f =fi fI 
,. z:rr "' r:n . 'l'it v w 2Tt -v fst 

(2.7) 
' 

since m = W/g and the static deflection is given by 

(2.8) 

The simplicity of these relationships is appealing and has led many 

investigators(?) into trying to determine the effective spring constant 

of a foundation by determining the static deflection of the foundation, 

either by direct measurement or by computation. The difficulty in this 

approach to the problem is that these deformations are normally very 

small and hence cannot be determined very accurately. Furthermore, 

the deformation rate is dependent on the l oad intensity since soils are 

not elastic materials. The equivalent static deformation, therefore, is 

not a constant, but is a function of the intensity of load and the rate 

or load applications 
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Damped Oscillation. 

Ir damping is considered, equation (2.3) may be rewritten as 

The general solution of equation (2.9) is of the form 

where 

· Ai ~ ~ x :::: C, e ' + C2 e i 

'}.. = - ~ ± { ~?. - 4 km 
2m 

When 

(2.9) 

(2.10) 

(2.11) 

The condition for oscillatory motion is that ~Z < 4 km. 
~2 = 4 km , the system is said to be critically damped. 

damping is therefore defined as 

Critical 

j'c. = 2~ 
For small damping, J' .( ~c. , equation (2.10) may be written 

;\'.= e -1,.,-1: ( c: sin/ ~ - (/m )2 t 
~ cf Cos ~-(fSt) 

Cl/ -- 0 For the case and ~ = 0 equation (2.13) reduces to 

(2.12) 

(2.13) 

equation (2.5) ~ Inspection of equation (2.13) reveals that damping de-

creases both the amplitude and t he frequency of the vibration. The 

period for this case is given by the relation 

(2.14) 

Damping is conveniently expressed by the ratio: 

(2.15) 



-16-

For most soil conditions 11c 11 has been found to range from 0.05 to 0.15. 

The effect of damping on the frequency of the V.ibrating system is of 

interest. Rewriting equation (2.14), we have 

= (2.16) 

Expanding by the binomial theorem, 

't' - Z'tr ( \ ? 3 ' ) L - \Ii, \ 4- i C. + S C. +. ·· (2.17) 

"' jf. (I -+ %t) , for C << I 
It is seen therefore that for c = 0.10 the error introduced in the 

computation of the resonant frequency by neglecting damping is only about 

one half of one per cent. For practically all desi.gn problems this degree 

of accuracy is more than sufficient. 

Damping, in a freely vibrating system, may be measured by the ratio 

between successive peaks. Thus, if 
_ .! t 

~I: e '2n'\ I 

and _ 1, ({.+ 'r) 
ii = e 2m 

then !· .. c e -Im\ e+lmO,-+ -rl) = elr.. t 
Xi . 

The logarithm of this ratio is generally called the logarithmic decrement ~ ; 

therefore 

~ ::. \ oo &, - 1_ T 
~ Xz - 2m 

For small damping ratios where C = i 
~(.. 

l= 

(2.18) 

l.<- I 
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and therefore, 

8 .. Z'lt ~. = z:n:c (2.19) 

Forced Oscillation. 

We will next consider the motion of a system with one degree of 

freedom under the action of a periodic external force. The equation of 

motion (2.13) can be written as 

m~ + ~,('. 4- kx == Fo sin wt (2.20) 

In machine foundations we are only interested in the steady state 

oscillation which is given by the particular solution of the above 

equation. Thus, 
Fo 

(2.2la) 

where· 

(2.2lb) 

If we define the frequency of the undamped free os·cillation of the system 

by 

radians per second 

' 
and recall that the critical damping is given by 

~c. = 2~ 
equation (2.21) may be rewritten in the form 

Fo 
k 

sin (wi-f) 

where 

(2.22) 

(2.23a) 

(2/23b) 
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The maximum amplitude, A, occurs when sin (wt - </> ) = 1 

Defining the static deflection for the exciting force F0 , 'by 

~ I - Fe. 
05t - k 

we obtain from equation (2.23 ) 

A I 
-;::-; - ./. 2 Os~ - -y( I - (~n)2 )2 + ( '2.c. ~n) 

(2 .. 25) 

This ratio is called the dynamic amplification factor. A plot of this 

factor is shown in Fig. 2.2 for several damping ratios. These curves 

may be normalized by dividing the amplitude by the amplitude for ~n = l • 

The resulting curves (Fig. 2.3) are useful in determining the damping 

factor of a system by comparing them with a normalized curve of the 

measured displacements. Inspection of equation (2.25) reveals that the 

most important factor determining the amplitude is the frequency ratio, 

W j Wn • If equation (2.25) is rewritten in the form 

A- Fo 
- k~( \-(f*n)2)7. + (2c ~n)2 

(2.26) 

it can be seen that when the frequency of the external force is in 

synchronism with t he frequency of the free undamped system, (i . e . C.U=lUn, ) 

Fo 
A= 215 ( w ) k(2~) ~ 

(2.27) 

For low frequency ratios, ( W/ u.>n c: 01 ) 

A=! Fo 
I< 

(2. 28) 

For high frequency ratios and small damping, ( Wfwn )) I > C C:::< I, ) 

(1 -( ~,J2)2 ~ ( ~n)4 ctnd C ie! 0 
hence 

A= Fo 
= 

Fo 
mw2 

(2.29) 
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It is clear therefore that for low frequency ratios the principal 

factor affecting the amplitude is the spring constant; for frequency 

ratios near unity, damping is the controlling factor; and for large 

frequency ratios, the critical factor is the mass or inertia of the 

system. These considerations, together with the power and the trans­

m.tssibility relations to be developed presently, are very useful in 

determining criteria for the design of economical machine foundations. 

It is interesting to note that these relationships are analogous 

to the familiar electric network equations; ~ being analogous to re­

sistance, ~ to capacitive reactance and wm to inductive reactance. 

This becomes quite clear if we rewrite (2.26) in the form 

Fo/w 
(2.30) 

where the denominator represents the mechanical impedance of the system 

(2.31) 

From (2.31) it is immediately evident that the impedance is dominated 

by k for low frequency ratios, by ~ for frequency ratios near unity, 

and by m for large frequency ratios. 

Forced Oscillation; Exciting Force Proportional to the Square of 

the Freguengy. 

In the des~gn of machine foundations, the periodic exciting force 

which must be considered is normally due to an unbalance, and the force 

will therefore be proportional to the square of the frequency. Thus 

F(t)= m'ew'l sin wt= F~ w2 slnwt (2.32) 

where m' is the unbalanced mass and e its eccentricity. Defining 

r = rn 'e/rn = W'e/w (2.33) 
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equation (2.25) talces the form 2 (W/w,,) 

~= ~(I - "'lwn? + (2c ~/ (2.34) 

This ratio is called the dynamic amplification ratio(4) and has been 

plotted for several damping ratios in Fig. 2.4. 

It is of interest that for large frequency ratios the right hand 

side of equation (2.34) approaches unity. We may therefore write 

w'e c W= A (2.35) 

where C approaches unity for large frequency ratios if the damping is 

small. For example, when 

W = 2 and c== 0., C=- 1.33 
Wn 

and when 

and c= 0.10, C= \.'29 

Since c can be estimated closely from the frequency response curve, 

equation (2.35) f.urnishes· a useful relation for experimentally deter­

mining the effective mass of a system(9). The effective spring factor 

can then be determined from equation (2.22). Some caution, however, 

should be exercised in applying this procedure to determining the 

apparent mass of soil moving with a foundation. There is considerable 

evidence that the apparent mass of the soil depends to a large extent 

on the amplitude and the phase relationships of the vibration and is 

therefore not constant. 

The dynamic amplification ratio (equation (2.34), Fig. 2.4) may 

be normalized in the same manner as the dynamic amplification factor. 

The normalized curves, Fig. 2.5, may be used to determine damping factors 

when the exciting force varies as the square of the frequency. 
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Inspection of Fig. 2.2 and Fig. 2.4 reveals the importance of the 

frequency ratio. Large amplitudes 9an be avoided by selecting a fre-. 

quency ratio of W/wn < 0.5 or W /wn> 1.5 • Where this is not possible 

r must 'Be kept small and j?, ma.de as large as possible. These require­

ments are also desirable from the point of view of power loss. 

Power Considerations; Equivalent Viscous Damping. 

In a system having sustained oscillations, the average power input 

must equal the average power.dissipated in damping. Since power is the 

rate of doing work, we can express the input power as 

Pt = F v = F ~ = Fo sin wt · Aw cos (wt - s') (2.36) 

where F0 is the magnitude of the exciting force, A is the amplitude of 

the oscillation as given by either equation (2.25) or (2.34), and ¢ is · 

defined by equation (2.23b). By a simple trigonometric transformation 

it can be shown that: 

sin wt cos(wt-¢>) = l(sin~ + sin('Zwt-¢)) 
2 . 

Therefore 

(2.37) 

Inspection of the above equations shows that the input power fluctuates 

around the mean level 

P: ::: FoAw sin~ 
L 01/~ '2. 

(2.38) 

at twice the input frequency. 

This average input power must be equal to the average power dissi-

pated by damping. The power dissipated is given by 

~ = Fd v"' flA2w2cos2(wf-</>) (2.39) 

The difference between (2.39) and (2.37) represents the potential 

energy stored in the spring and the kinetic energy of the mass. The 
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average value of the power dissipated is 

fl A2c_,/-p -dove. - 2 

since the average value or cos2 ( wi- ¢) 
and (2.40), we obtain 

Fo sin </J 

wA 
At resonance, sin ~ = 1 , and therefore 

Fo 
w An 

(2.40) 

is 1/2. Equating (2.38) 

(2.41) 

(2.42) 

So far i t has been assumed that the dam.ping is viscous, (i.e., the 

damping force is proportional to the velocity). In t he problem under 

consider ation, this is not entirely the case. In a machine foundation 

energy is dissipated by radiation and also by friction between t he soil 

particles . This friction or Coulomb damping is not proportional to 

the velocity. A good approximation, however, can be made by determin-

ing an equivalent viscous damping factor from energy considerations . 

This equivalent damping factor may be 

~e = 2 pd ave. 
r Az. w2 

defined from equation (2.40), thus 

(2.43) 

Determination of the Damping Factor0 

We have already di scussed how the damping factor may be determined 

from the normalized amplification curves . Another convenient method 

which can be used for small damping, i s to determine the damping ratio 

from the width of the resonance curve at a point where t he amplitude is 

equal to ....[2 Ama'i. by me~s of' the relation 

c= %~"' ft (2.44) 
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for, from equation (2.25), (and since A ma>e ~ An ) 

./i An = ./2 = l t )~ )~ 
'2 ~sf 4c -V( 1- (wlwn) + (Z c. Wfwn 

Solving for ( w/wn )'Z , we find 

(W/wn)2 = (I - Zc.C~) ± 2 c J c:.2 + I 

but, 
i 2 

2C VC 2+ 1 2c (I+ 3c2 
-t 19c\ ... ) .4w :! 

w, - w?. 
:: = 

w w2+wi I- 2c.2 2 4 
I t 

~ 2c 

For c = 0.10 the error introduced in determining damping by this method 

is about 2.5 per cent, and for c = 0.20 the error is about 10 per cent. 

For flat response curves the damping ratio may be determined from 

phase shift measurements. From equation (2. 230) it is seen that for a 

frequency ratio of unity (i.e. "'/wn= I ), the phase angle between 

the external force and the resulting displacement is exactly ninety 

degrees for all damping ratios. Therefore the natural frequency 

(i.e. the frequency of ' undamped free oscillation) is also readily de­

termined by phase shift measurements. Solving equation (2.23b) for c, 

we have 

c = 
I -. ( filn) 2 

w 
'2. W'n 

tan¢' (2.45) 

The damping ratio can be calculated from the above equation by measur-

ing </:> for some frequency ratio different from unity. The relation­

ship between ~ and {J)/ Wn is shown graphically in Fig. 2.6 for several 

damping ratios·. 

Effect of Damping on the Dissipated Powe:u. 

Next to the amplitude of oscillation, the most important criterion 

in machine foundation design is the energy dissipated. Dissipation of 

large amounts of energy not only const1_tutes a decrease in efficiency 
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(since this power must be supplied by the machine itself), but also may 

cause considerable annoyance in adjacent structures whose natural fre-

quency happens to be in synchronism with the system. The effect of 

damping on the energy dissipated is therefore important. 

From equation (2.40) we have for the average power dissipation 
p., A 2 1.1.l· 13c w 2 At c 

P.d = 2 - 2 
ov~. 

On substituting equation (2.34) for A we have 

~c. w2
r

2 
[ w]4 c 

pd<l\14·= 2 UJn (1- {~n)2)Z+ (Zc. ~n)2 (2.46) 

The power dissipated will reach a maximum when 

provided is negative. It can t herefore easily be shown that 

(2.47) 

solving for 

£, = ± C + y I+ c'Z (2.48) 

This relationship is shown graphically in Fig. 2.7. It is clear from 

this figure and from equation (2.47) that an increase in damping will 

increase the power dissipation except in a narrow zone near resonance. 

Since practically all machine foundations should ce designed so that 

the resonant frequency does not coincide with the exciting frequency or 

its harmonics, it can be seen that, as a general rule, artificial damp-

ing should be kept to a minimum, compatible with allowable displacement 

amplitudes. This is especially true of foundations for high frequency 

machines, since the power dissipated varies approximately as the square 

of the exciting frequency. 
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The power dissipated when the exciting force varies as the square 

of the frequency may be obtained by substituting equation (2. 34) in 

(2.40). 

(2.49) 

Recalling that ft = C ~c :. 2 cilkm , and that Wi = k/rn , equation 

(2.49) can be written as 

pd qve :: 
(2.50) 

where Ac;. is given by 

(2.51) 

/\., is plotted as a function of the frequency ratio for several values 

of c in Fig. 2.8. 

To show.the dependence of Pd on k, m, and ~ for various frequency 

ratios, we can rewrite (2.49) in terms of k, m, and ~ • Equation (2.49) 

becomes 

(2.52) 

From equation (2. 52) it is clear that increasing j3 will increase the 

power dissipation except when 

J3 ~ ~ - mw 
for only in that case is the denominator of (2.52) dominated by ~2 • 

This means that only in the zone near resonance can the power dissipation 

be decreased by increasing ~ , . for then ~W ~ wm. As in the case for 

displacements, the denominator is dominated by k for small frequency 

ratios and by m for large frequency ratios. For a given k/m ratio 

(i.e. a given Wn ), the power dissipation is therefore decreased by 

increasing k and m. 
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Transmissibility. 

The third factor which must be considered in the design of a machine 

foundation is the magnitude of the forces transmitted to the soil. In 

order to discuss this phase it is convenient to visualize the soil as 

consisting of two zones; (a) the zone adjacent to the foundation in 

which the w.ajor portion of the distortion of the soil takes place, and 

(b) an outer or rigid zone. In the first zone the damping is princip-

ally due to intergranular friction while in the rigid zone it is 

essentially due to radiation of the transmitted forces. Since the damp-

ing due to radiation may be quite small, it is desirable to keep the 

transmitted forces small in order to prevent disturbance of adjacent 

structures whose natural frequencies coincide with the exciting frequency. 

t 

., "" ... 
~~ .. -~ .. Wi.-IWi..~~ 11 

\ Disturbed / 
\. Zone I 

' / 
__ _.,... 

Actual System Analogous System 

Figure 2.9 

TO study this problem, we replace the actual syste:gi. with an anal-

ogous system. The force transmitted by the springs is given by 

f 0 = k" + J'" 
= kA sin (wi-¢) + ~wA cos(wt-¢) (2. 53) 

where A is defined by equation (2. 25) . 
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The amplitude of the transmitted force is therefore 

Fa = k A ~ \ + (~)2 
mq~ k 

(2.54) 

Transmissibility is defined as the ratio of the transmitted force 

divided by the exciting force, and is given by 

Fa 1f 1 + (~~)~ 
~ = y(t-(~n)i)2 + (2 ~w,)i (2.55) 

If' we define 

N = fEn 
and since Wn = ~' ~c. = 2 Yl<m ' and . c = ~c: ' equation c~2. 55) can 

be written in the following alternative forms: 

V I + (2c N)2 

(2.56) 

(2.57) 

Transmissibility as a function of the frequency ratio is plotted-for 

several damping ratios in Fig. 2.9. 

From equations (2.56) and (2.57) we can draw the following conclusions: 

1. For N < {2 the transmissioility is greater than unity. 

2. For N < 12, the transmissibility is reduced by increasing 
' and de creasing m and k. 

3. For N>-fi the transmissibility is reduced by decreasing 
~ and increasing m·,and k. 

The effect of ~ , k, and m on displacement, power dissipation and trans­

missibility are surmnarized in table 2.1. 
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From table 2.1 it can be seen that the requirements for minlmunl' . 

displacement, power dissipation and transmissibility are contradictory 

and hence a compromise must be made in an actual design. The problem 

is further complicated by the interdependence of k, m, and J' for most 

soil conditions. For machines operating at low frequencies, good soil 

conditions are required. Excessive vibration and ' settlement may be ex-

pected if this type of equipment is founded on loose or compressible 

soils. This type of soil is characterized by a low elastic modulus, 

resulting in a low effective spring constant and large damping factor. 

In many cases soil conditions can be improved by grouting, driving piles, 

or by some other method of stabilization. These methods· of stabil-

ization have also proved effective for correcting existing foundations 

which vibrated excessively. (lB,l9, 2o) 
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CHAPTER III 

MULTIPLE DEGREE OF FREEDOM SYSTEMS 

EQUATIONS OF MOTION FOR A BLOCK FOUNDATION 

The discussion in Chapter II was limited to systems having one 

degree of freedom. In practice, foundations can oscillate sinrultaneous.-

ly about a number of axes. Specifically, a block foundation (that is a 

foundation in which the machine and its foundation can be treated as a 

rigid unit) will have six degrees of freedom, namely three translations 

and three rotations. In order to examine the possible modes of oscillation 

resulting from these six degrees of freedom, it is convenient to apply 

Lagrange's method for deriving the equations of motion.(21,22) 

In the discussion of single degree of freedom systems, it was 

noted that damping causes only a small shift in the resonant frequency. 

From figures 2.2 and 2.4 it can further be seen that small damping has 

only a minor effect on the amplitude ratio for frequency ratios of less 

than o. 5 and greater t han 1. 5. In considering problems with several 

degrees of freedom it is convenient to neglect damping in determining 

the natural frequencies of the principal modes. 'The problem is thereby 

considerably simplified without much sacrifice of accuracy. 

Lagrange's Equations. 

In more complicated systems, the problem of how to determine the 

differential equations for the system must first be solved. Starting 

from Newton's law we have: - .. 
F =mr (3.1) 

Converting into energy terms, we find 

F. dr = m r·df =- m ~ ·dr dt = d (!!1 r}1t at dt 2 
dW= dT (3.2) 
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where W is work and T is energy. The advantage of relationship (3.2) 

is that it involves scalar quantities (i.e. velocities) instead of the 

vector quantities of (3.1). In order to rewrite (3.2) in a form leading 

to the differential equation, a system of generalized coordinates is de-

fined. In general, for any system there exists a set of generalized 

coordinates q1, q2, q3, ••• , such that the coordinates are independent 

and correspond to the number of degrees of freedom. Let us assume that 

the. system consists of "n" mass points and that the configuration of 

these points is given .by 11r 11 independent parameters. Let us further 

assume that the Cartesian coordinates of the n mass points can be ex-

pressed in t er ms of the r coordinates by equations of the form 

Xi= Xi(qlt q2, q3t••••• qr) 

Yi= yi(ql, q2, q3' ••.••• qr) 

zi = .zi(ql, q2, q3,.. ~ •• qr) 

where i = 1, 2, 3~ •·•.' n. 

Since the coordinates q1, q2, q3, ••• , qr are independent, the increment 

of .,work resulting from a small variation of qir is 

aw d dW = aqK d<:\k:: Qk 9.K (3.3) 

where QK = dW is called the generalized force. 
0qK 

The generalized force has the dimensions of a force or a moment, and the 

dimension may be determined by the rule that ~·qk has the dimension of 

work. · The kinetic energy may be expressed in Cartesian coordinates by 

the relation: 

(3.4) 
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::>1nce 

and 

I 

T is a homogeneous quadratic function of the ~ S ; therefore 

and . 

Therefore, 

Transposing, 

~a =- '2.T 
0. ~k 
~IC 

(3.5) 
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therefore, 

(3.6) 

When the system is conservative, 

Q - _ dU 
t<. - -Oq.t<. 

where Uis the potential energy. Equation (3.6) can then be written in 

the form: 

(3. 7) 

Equations (3.6) and (3.7) are called :f.,agrange's equation&. 

Small Oscillations of a Conservative System about an EguilibriUm. Point. 

The coordinates may be selected in such a way that in the equili-

brium position ql = q2 = q3 = ••• = qn = o, and the level of the potent­

ial energy is zero. Expanding the potential energy in the neighborhood 

of the equilibrium position by means of a Taylor series, we have 

(3.8) 

Since the expansion is about the equilibrium position (U = 0) 
_ dU _ _ 

- - Q, - 0, 
aq, 

(3.9a) 

and 

(3.9b) 
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I£ the motion of thesy-Sterois restricted to small oscillations, all 

terms of order higher than the second may 'De neglected. Equation (3.8) 

can then be written in the form: 

u = ~ L r [ a~~ ~'l· L q, ~j 
L J ' ~ (3.10) 

= ~ l ~ k ij 'l i q l 
l J 

where the kij's are called the elastic coefficients, and are equal to 

[ a
2 u ] k .. - (3.11) 

Lj - dO. oa. 
h -~J 0 

For stable systems ' .the potential energy, U, has a minimum value at the 

equilibrium position. Hence for q1 = q2 = q
3 

= .•• = qr= o, tr= o, 

and is also a min:i.mum; it follows that U.:must be positive everywhere 

else . U is therfore a positive definite quadrat ic fllllction. 

The kinetic energy may be expressed in a similar manner. To trans-

form equation (3.4) into general coordinates, we recall that 

Xi= f1(ql, q2, q3, ... ' qr) 

Yi= f 2(q1, q2, q3, . '.' qr) (3.12) 

zi = f 3(ql' q2' q3' ... ' qr) 

where q1, q2, q3, ••• qr are independent coordinates, and that therefore 

r af1 · [ ·- aqii~ i=t 
(3 .. 13) 

r 

~ 't· ~ l a~~ 4 i=l 

. 
1.. = 
" 

r ot3 · r = ~~ 9.t t,,:( 
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Substituting in equation (3.4) we obtain 

T= ! \ nf {Cof,)iq2 + (- ~. )ia'l + ... + 2 (££)(oh )a~+ ... 
2 L l . aq, , oq

2 
~i oq, aq

2 
h 2 

.. 4-( ~2 )? a2 + ( q£i )2~ 2 + • • ,+ 2 (ttiZ)( afz) 4 ~+···1 (3sl4) 
· o·q, ~, aq2 :z dq. a~ 2 • 2 

, ' .i • 2 ' • • , . 
The coefficients of 0 ~ Q , 'J. O , etc. are called the inertia para-

h ~1. I ~'Z · . 
meters and may be de.noted by mij. Expanding in a Taylor series about 

the equilibrium. point, 

mij= [(m;j)o +(omij) a i- (~jr 'l + ... ] oq. o h aq. z o 2 . 
(3.15) 

All terms except (mij)o contribute third or higher order terms to the 

kinetic energy T, and therefore ~.ay be neglected for small oscillations. 

The expression for kinetic energy therefore reduces to 

T= { l l (tnij)o 4i~j (3.16) 

L J 
Since the kinetic energy can not be negative by definition, T is a 

positive definite form of the velocities. T does not depend. on the 

coordinates, therefore 

QI= 0 
oqi 

and Lagrange's equation reduces to the simple form 

d ( oT) + au _ o 
at ~i . Jli1 -

(3.17) 

If these equations a.re written explicit·ly for r=3, the following 

equations are obtained upon substitution of equations (3.10) and (3~16) ' 

in equation (3.17):· 
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m11q1 + m12q2 + m13q3 = - (k11q1 + k12q2 + k13q3) 

m21q1 + m22q2 + m23&3 = - (k21qI + k22q2 + k23q3) 

m3lql + ~2q2 + ~3q.3 = - (k31q1 + k.32q2 + k3.3q.3) 

The terms k12 = k21, ·k23 = k32, and k31 = k13 are called static coupling 

terms, whereas the terms m12 = m21, Dii.3 = ~l" and lll:23 = m32 are called· 

the dynamic coupling terms. The systems in which we are interested, 

namely block foundations, contain only static coupling terms. 

Finally, if the· system is subjected to an external forcing function, 

Fi sin( Wt-+ iJ ) , the relationship becomes: 

~ = Fi sin(w* + f) oq; .. 
(.3.18) 

Since in our application there is no dynamic coupling, the kinetic 

energy is given by: 
I \r • . 'l 

T: "i Lt ml'\1) 

and when expanded, equation (3.18) assumes the form 

For a single degree of freedom system, equation (3.19) reduces to the 

familiar equation 

m~ + kq = f sin( w~+~) (.3.20) 

For a single degree of freedom system the frequency of free oscillation 

may be found by assuming q = A sin w1 to be a solution, and substitut-

ing in the reduced equation 

Then 
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from which the frequency of free oscillation is determined to be 

l.O~ :: k/rn 

The same procedure may be extended to a multiple degree of freedom 

system. Assuming the solutions to be of the form 

we obtain 
n 

- mi al' Ai + 2 k ii Aj = O 
j=I 

(.3.21) 

(.3.,22) 

For a rational solution, the determinant of the coefficients of Aij mus·t 

vanish, therefore 

ki1 (kii-mtJ) ki~ · · · ••• 

k,, k$-z ( k~~-m3uf) · .. = 0 (.3.23) 

I ' ' 

The determinant (3.23) may be solveCI. for the n roots of w . The most 

general solution, therefore, is 

n (rl . ~I ) qi= I At sin(wrt+rr (3.24) 

r~t 

where Ai(r) is the coefficient corresponding to the frequency for the 

i th coordinate. 

Orthogonality Relations. 

If the result of (3.24) is suostituted back into equation (3.22) 

then for the r th mode 
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(3.25) 

and similarly for the s th mode 
2 {S) e- k A (Sl 

· mi w5 Ai · = L . ij j (3.26) 
. J~ . 

Multiplying (3.25) by Ai(s) and (3.26) by Ai(r) and sunnning over i we 

obtain: 

But, 

Since 

n '2 (r) (s) n n (r) (s) 

L l kij Aj Ai 
i=l j:I 

L mi,Wr Ai. A-., = 
i.:\ 

t\ n 
n 'l. {S) (r) ln Ln (sl (r) \ \ .. A~) (r) 
\mi w A,· A =- kii AJ· Ai = L L kJl i AJ · L s l J • -I ·-1 . · I . I J- l-1~1 l::. J= 

kij = k.i, hence 
J "' (r) (s) 

(w~-wi) L m(Ai A, = 0 
i=l 

UJr and UJ s are different roots, 
'l 2 

( Wr - W s ) !: o, and 

n (r) (s) l m1 Ai Aj = 0 
i=l 

This relationship is called the orthogonality condition. 

Forced Oscillation Amplitudes. 

(3.27) 

Equation (3.24) gives the relative amplitude for the various modes, 

but the absolute amplitude is unknown because the coefficients Ai(r) 

are unknown. To determine the amplitude of oscillation, it is again 

convenient to recall the procedure followed for single degree of freedom 

systems. If we substj_tute 

~ = A sin( w~ + ¥) 
in equation (3 ~ 20), we obtain 

-A w'm .f. kq. =- f 
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Solving f or A, 
:::. 

and hence 

We again recall that the above expression is valid only for the case of 

zero damping. Even for appreciable values of damping, however, the 

expression for A is reasonably accurate for frequency ratios less than 

0.5 or greater than 1.5. 

Accordingly, for multiple degree of freedom systems we try the 

substitution 

~· = r Cr ~r) sin( wt+~) 
' r 

The orthogonality condition (3.27) then becomes, 
t\ 

[ m; Cr ~tl Crc/>~
1

= 0 
i.=1 

Then, since Cr I 0 

~ m: r/..L.(r\ ¢'l.s) == 0 l ' 't' (3.29) 
\•\ 

Substituting the assumed solution (3.28) in equation (3.19) we have 
n 

" (r) n (r\ \ (r) 
-mi{l.)12 cr¢i ~ kuzcr¢'1 + k12l cr¢2 + ... =Ft (3.30) 

r=t r-1 rsl 

(r) ,1..Cr) 
but since Ai in (3.25) is replaced by Cr 't'l , 

" (r\ t (rl ~n r" ,1.(r) 
kiil Cr~ + ki2l Crtf'l. + ... = kij c,.Y"j 

r:f r:t •I r=• 
[
" ··/, (1) J..._(2) 

= klJ\Ci~j +C-z.'t'j .+ ,,,) 
J::I ( } 
n " r = L Crl kij¢j · (3.31) 

r:I j=I ( ) 
n z r : l crm\ Wr <Pi 

r=\ 
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Substituting the result (3 .31) in equation (3 .30) , we have 
n l Cr mi ~(\w~ - o/") = Fi 
\:\ 

If we now write 
n 

Ft= l tr m1 ¢i(r) 
r=t 

t hen 

~ J. {r) i 2 ~ 
L Cr mi 'Pi (Wr -W ) = L 
r=1 r=1 

and hence 

Cr (w~ - CJ})= ~r 

Solving 'for er, 

Cr= Wr'Z- wi 

The desired solution is therefore 

(3 .32) 

(3 . 33) 

(3 .34) 

(3 ~ 35) 

The pr oblem of determining the oscillation amplitudes is solved provided 

we can determine the coeff icients fr from the -given forces F1, F2, F3 ••• 

F • Fr om equation (3 .33) we have 
n n 

\ r A: (r) f\ (1) . f\ (2l " . A. .(n) 
Fj = L Trmjrj = t, mj~j + t'Z tnjr/>j + ... + tn mJ't'J 

r=\ 

(r) fl (J\ (r} f' ,L (Z\A.(r\ 9 ,.L(n},1.(r) 
FJ 4>j = T1 ml ~j cP j + ttml 'f'j 't'j + · .. + +,, mj'fi 'fj 

Then 

Smmning over j we have , owing to ihe orthogonality condition ( 3. 29) , 

t F· .1.(r) - ~ I' • A.<r>?. 
L J 'fJ - l tr mJ 'fj ·'" 
j=l j~t 
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n 2 mj [ ¢/r)Ji 
j::I 

It fol lows , then, that 
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Equations of Motion for a Block Foundation. 

(.3 .36) 

S(n(wt+'}6) (3 .. 37) 

Let us consider a block foundation resting directly on the soil., 

j) ··- % 
I q.6 q, 

lql 
'Y 

z 

Figure 3.1 
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Let the qi's represent the displacements or rotations as shown in 

Fig. 3.1. The center of coordinates, i.e. the equilibrium point, is the 

center of the combined mass of the foundation block, the machine and the 

apparent mass of soil moving with it. 

If the block is depressed a unit distance into the soil, the soil 

will exert a force on the block which we may define by kz• This force 

is called the vertical spring constant of the soil. Similarly, for unit 

displacements in the x and y directions, the spring constants:; are kx 

and ky' and for rotations about the x, y, and z axes thru the centroid 

of the contact surface, the spring constants are ~z' Jscz and kxy 

respectively. 

The inertia para.meters are: 

m1 = m3 = m5 = m + m' 

m2 = 1y + I' y (3 • .38) 
m = I + I' 
4 x x 

m6 = Iz + I' 
z 

where m is the mass of the block and machine, m3 the apparent mass of 

the soil, I is the mass moment of inertia of the block and machine, and 

I' the mass moment of inertia of the soil moving with the block. The 

subscripts ref er to the axes about which the moments of inertia are de-

termined. 

Since for this case there is no dynamic coupling, the kinetic 

energy of the system is given by: 
G 

T=~I:mtq~ (3.39) 

l:\ 
The potential energy may be computed from the spring factors, thus 
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U= ~ [k,:.(q
1
+c9.'Z)2+ k~(q~-cq.4)2 + kz'l.is 

.j. k"-z 'l.: + k\jZ ci.: + kx~ 9.~ J 
The elastic coefficients may be determined from equation (3.11) 

Therefore, 

k11 :: kit 

k'Z:4 = c-zk;t + ktz. 

k33 = k!j 

k44 = cik~ + ky-z 

kss = kz 

(3.40) 

(3.11) 

(3.41) 

Assume that the foundation is under the action of a periodic ex­

ternal force, F sin( lOtt~ ). This force can be resolved into six 

components corresponding to 1he coordinates q1, q2, ~ .•.• , q6• 

Therefore 

6 

Fsin(wf+Pl =.[Fi sin(wt+')ll) 
i:I (3.42) 

Substituting the results of (3.39), (3.40), and (3.42) in equation 

(3.18) the equations of motion for the system are obtained. 
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= R sin (wt+p) 

mi q2 +- c k-x ( q.
1 
+ C q.

2
) + kxz 'l.i = r=2 sin(wt.J)'/) 

m~~~ + k~(~3 -C'}.4) = F3 sin (wt+)&) 

m4 q4 
- ck~(q.3-cq 4)+ kyz q

4 
= F4 sin(wl+~} (3.43) 

ms qi+ kz4.s = F5 si!'l{wl+p) 

mG~0 + kx~ qG = Fco sin{wl+p) 

Using the elastic coefficients defined by (3.41), equations (3.43) 

can be rewritten in the following form: 

m, q, + k11 q, +kn~'Z. =Fi sin(wt+'}b} 

rni ~i -r k ~a q, + kii q.
2 

= Ft sin( w~+ :.t) 

m3 9
3 

+ k33 q3 
+ k~4 q4 

: F3 s1.n (wt +:i) 

m4~4 + k43 q~+ k44~4 : F4 sin(wt-t)b) 

= F~ sin( wt+ Jt) 

=- FG sin ( w~ -t :,t) 

(3.44) 

From equation (3.43) and (3.44) it is clear that there are coupled 

oscillations consisting of horizontal translation and rotation in the 

xz and yz planes. 

Recalling (3.23) it is seen that the natural frequencies of the 

system must satisfy the determinant 
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k . 'l. 
11 .. m.w k,2. 0 0 0 0 

kz1 
'?. 

ku-m2w 0 0 0 0 

0 0 k33- m?Jwz \<34 D 0 

0 0 k44-m4Wi. 0 
=0 

k4s 0 

0 0 0 0 kss-mswi 0 

0 0 0 0 0 z 
k:GO-m6w 

Solving for W we have, 

m, m2 w4- ( kiim. + k" mi)w2
-1- ku ku - k1i k zr = o 

Similarly, 

i kss 
W5 = ms 

Wt _ ko' 
' - m'9 

i 'Z 
~ _ 2ku kit + kii + 4 kn.ki1 
m~ m, mi mi m, mi 

2 

(~ - ~ )
2 + 4 k~4 k43 

m3 m4 m~ m4 
'l 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

The relative amplitudes of the coupled modes are found by substituting 

back into the reduced equations corresponding to (3.44). Thus, with 

°ri = Cr q,fr) sin Cwrfr)b) 
we have 
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from which 

(3.49) 

Similarly, 

z 
¢~i) = W2 m, - k 11 cP,(2) 

k12 

(3. 50) 

A.. (3) _ w~ m3 - k33 ,,L(3) 

"f 4 - k~ "P3 (3.51) 

,/... (4) _ W4"h'l~ - k ~3 -1(4) 
'f-'4 - k~ ~3 (3. 52) 

From equation (3 .36) it can be seen that the coefficients rr are given 

by 

(3. 53) 

(3. 54) 

Fa q;;3
' + f4 ¢j3

) 

~" rn3[¢;3i]i+ tn4[~4t3l)t (3.55) 

f 
A. (4) r J (4) 

r 0 "fJ3 + r4 ~4 
i4.::. r ..J(4\]2 r~ (4>]2 

m3 L'+'3 + rn4 LY-14 
(3.56) 

.fs a 

Fs 
m cptS) 

6 5 
(3 .. 57) 

tc = 
F~ 

m~f~~) 
(3 . 58) 



(3. 59) 

Application of the above results to a numerical problem will be 

shown in Chapter VI. 

The case of a foundation partially embedded in the soil may be 

treated in a similar manner. This case will be somewhat more comp­

licated due to the introduction of additional static coupling terms. 
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CHAPTER IV 

EQUIVALENT SOIL SPRING CONSTANTS 

The methods developed in Chapter III for determining the modes 

and amplitudes of oscillation of a block foundation depend on the 

availability of suitable dynamic spring constants. It is the purpose 

of this chapter to develop relationships which may be used to cal­

culate these ·constants·. Unfortunately, from a mathematical stand­

point, soil is not a homogeneous, isotropic, elastic material, and 

hence does not lend itself to rigorous mathematical treatment. Some 

simplifying assumptions are therefore made which, although they in­

troduce some error into the final results, permit an approximate 

evaluation of the required soil constants under many different bound­

ary conditions. 

The bearing capacity of soils is determined by its shear strength. 

The shear strength is given by Coulomb's law which states that 

S=C+Ntanp (4.1) 

where S is the w.aximum shearing resistance, C is the cohesion, N is 

the normal load and p is the angle of internal friction. For cohe­

sionless soils such as sands, C is relatively small and may be neg­

lected. Since the normal load is proportional to the dept~, the shear­

ing strength also tends to be proportional to the depth. For very 

cohesive soils, such as clays, p tends to be very small and the shear-

ing strength is essentially constant. Since the effective soil 

modulus is approximately proportional to the shearing strength, the 

following assumptions are made in determ:ining the effective spring 

constants:: 



-56-

a. For cohesionless soils the modulus of elasticity is· propor­

tional to the effective depth. 

b. For cohesive soils the modulus of elasticity is constant. 

For intermediate soils the spring constants may be estimated by inter­

polation on the basis of Coulomb's law. 

A further simplification is made in determining the stress dis­

tribution due to the dynamic load. In a homogeneous, isotropic, elastic 

material, the stress· distribution may l1e determined by the well known 

Boussinesq equations. These equations are based on an assumed pressure 

distribution on the soil surface; they are also approximate since the 

exact pressure distribution is not known. In the following develop­

ment of expressions for the effective spring factors, it is assumed 

that only a truncated cone or pyramid of soil directly under the 

foundation is effective in distributing the load, and that the stress 

distribution over any horizontal section is uniform. 

The spring factor may be defined as the force exerted on the 

system when it is displaced a unit distance from the equilibrium. position, 

or the moment, when rotated thru a unit angle. The dimensions of the 

spring factor are such that the product of the spring factor and the 

displacement has the dimension of work. Since a foundation in general 

has six degrees of freedom, there are six spring factors to be deter­

mined for each surface in contact with the soil. 

Spring Factors for Horizontal Contact Surface - Cohesionless Soils. 

Vertical Displacement (~) 

Consider an elemental cube of dimensions dz subjected to a ver­

tical load dP which causes a distortion d S • 
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dP 

dz t 
dP 

Figure 4.1 

The elastic modulus is defined as 

E = dP/(d2)2 - dP 
dS/dz - dSdz 

dz 

(4.2) 

Consider next a rectangular area, of length a and width b, loaded with 

a uniform load, q. 

z 
a + o(-z 

Effective Zone 

Figure 4.2 
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Let the effective zone be determined by the surface area ab and the 

planes sloping at an angle tan-1 d./2. Since the load acts as an equi-

valent surcharge, the effective soil modulus for any depth is given 

by the re la ti on: 

E(z.)= ~(h+r) (4.3) 

whe.re ~ is the rate at which the modulus increases with depth, and 

h is the equivalent surcharge which is given by 

(4.4) 

where p is.' :tfue unit weight of the soil. The total pressure on any 

horizontal section is then 

(a+ o<:z.) (b+ocz) E dz: dJ 
dz.'Z 

= (a+ otz )( b+ocz) (h+z) ~dJ 
dz 

The total surface deformation is then given by 

Oz = t l°"-( a_+_o1.._:z.-)(-~-~o(-'Z-)(-h-+z-) 
Defining, 

r = a/b, a ) b 

and 
s = d.. h/b 

equation (4.6) can be rewritten in the form 

(4.5) 

(4.6) 

(4.7) 
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By definition the spring factor kxy is given by the relation z 

kxv = ~ 
z $1 <4.9) 

therefore 

where 

\ loo dz 
i,l(Y = (r+z)( l+'Z)(s+z) 

'Z 0 

Equation (4.11) nm.st be evaluated for the following five cases: 

r I s I 1; r = 1, s I l; r I 1, s = l; r = s· I l; r = s = 1 

(4.10) 

(4.11) 

The evaluation of the integral (4.ll) is given in Appendix A and the 

following results are obtained. 

r-s 
vXY:. 
0z \oq s _ \o~ r ' r=/= s + I 

~-\ r-1 

r,XY _ 5-\ 
z - I- loqs , r=I, s~ I 

~- \ 

~XY_ r-1 
z - I- lo9r , s=I, n;' I 

r-1 

~XY_ S(S-1) 

-z - s\oqs _ 
S-1 

)!XY = 2 
z (4.12) 
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Value~ of )[:x. as a function of s are plotted. in Fig. 4.3 for 

several ratios of r. 

It is also of some interest to consider the case of a long narrow 

foundation for which equation (4.5) becomes: 

. (b+~:z.)(h-rz) d<' 
P= q b'\. = a f.> dz . o (4.13) 

The surface deformation for this case is then given by: 

P loo dz 
6 = j3rbt 

0 
(I +z)( s+z) (4.J4) 

XY 
For this case the value of 01 is· 

CD 

I I l dz o;v = r 
0 

(1 +z)( S+Z) 
(4.15) 

The evaluation of this integral is also given in Appendix A, and the 

following results are obtained: 

o:y.y = 
z 

Y.Y 
2S'z = 

r 
~ 
S-l 

r 

' 

, S= I 
(4.16) 

The plot of lf;fr as r tends to infinity, is also shown in Fig~ 4.3. 

In some applications circular footings are used. For this case 

equation (~ .• 5) takes the form 

P= '11" d = 1!' (d+oe:z.)2(h+z) ~ds 
4 9. 4 dz J" 

(4.17) 

where d is the diameter of the foundation. It is readily seen that 

this equation reduces to the same form as (4.8) for the case r = 1, 

· except for the constant 'TC/ 4 . For this case, therefore 

kxY - ~ ~d2 Ozxr 
7. - 4 J"' (4.18) 
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where 'lfiy has the same values as obtained from (4.12) for the case 

r = 1 . 

Horizontal Displacement (kiY, ~) 

Consider an elemental cube of dimensions dz subjected to a 

shearing force dF causi ng a distortion d '"I: 

Here 

dz I 
I 
I 

dz 
Figure 4.4 

q = dF /(dz) 2 
= 

dt/dz 
dF 

dzd't' 

• 

(4.19) 

where G is the shearing modulus and may be determined from the well 

ln1own relation: <23) 

E 
G = 2.(1+ µ.> 

For sand, Poisson's ratio J..J.. ma.y be taken as 0. 35. (l5) 

If G(z) is then defined as 

it is evident that J>' is given by 

I fe 
fo = 2 ( I -+ _µ..) 

(4.21) 

(4. 22) 
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The spring factor may therefore be calculated from the relation 

(4.23) 

where (J:Y is equal to the '?f iy of the previous section. 

Rotation about x-axis (l~) 

The case under consideration is that of rotation about a horizon-

tal centroidal axis parallel to the long dimension a. (Cf. Fig. 4.2) 

It is assumed that horizontal planes are not distorted but remain 

plane after rotation. 

The moment on any horizontal section is given by 

l 
b+Cl(.'Z. 

Mx= 
2 

132 de[~(h+z)dz]dy(a+Cl(Z) 
b-«Z (dz)2 

2 

_ ~ (h+z)(d+o(Z) 
dz. de Jb~:· ~ 2 

de 
2. 

3 
= ~ (h+z)(a+o(z)(b..,o(z) de 

\'2 dz 

The rotation of the contact surface is then 

l'Z Mx lco dz 
~ 

0 

(a+~z)(h+z)( b+Cl) 3 

(4.24.) 

(4.25) 

Recalling that r = a/b and s = o<.h/b, equation (4.25) may be written 

in the form 

9:x. = l·oo cl-z 

tr+z)( s+z)( 1+ z) ~ (4.26) 
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By definition, the spring factor is 

(4 .. 27) 

therefore, 

(4.28) 

vXY 
where Oyz is defined by the relation 

l 100 d ~ = 12 ! 
~XY ( r+'Z)(S+Z)(1+z)3 

YZ 0 

(4.29) 

This integral is evaluated in Appendix B. The following expressions 
· · yXY 

may be used for calculating the value of oyz : 

'/.Y I [ (r-s)CS-IHr-l) J 
~ = - (r ... () (S·t) ( I I . I ) ' Yz 12 loos - -- {09r -t (r-S) - - - - -ls-1)2 J cr-t)i 2 r-L s-t 

yXY I [ 
o)'Z = 1'2 l - S ~l 

vXY - J_[ 
0)7; - l'Z. l - ril 

(S-l)a 

+ (s-nz _ 
3 

(r-n~ 
+ (r-ni -

3 

'6,XY = _!_ , r = S :: l 
YZ 3 

logs] ' 
S-l 

r= 1, s:/:l 

lo9r] 
r-1 ' 

(4 .. 30) 
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Values of ~')i'/j as a function of s are plotted in Fig. 4.5 for various 
YZ/r . . 

ratios of r. 

The case for a long narrow strip is also of interest. Equation 

(4.24) reduces to 

d j3 ( h+ 2)(b +oez)3 de 
I '2. dz. (4 • .31) 

and equatfon (4.26) reduces to 

l
oo 

1'2. Mx dz 
91C = r ~ b4 

0 
(s+Z)(l+Z)3 

(4 • .32) 

This integral is also evaluated i n Appendix B. The spring factor for 

this case is again determined by equation (4.28), where {(~; is 

given by 

'f.Y I [ r(s-1)2 ] 
(f Yz = l2 log s _ 3 -s ' 

_ S-l 2 

~~v r - ' 
YZ = 4 

s::. ! 

~'/.Y f for this case is plotted in Fig. 4.5. vz/r 

(4 • .33) 
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The spring factor for a circular plate is readily calculated9 

d 
I 

-Ti 

Figure 4.6 

a= d+'-"'Z 
'Z. 

Referring to Fig. 4.6 it is seen that the moment is 

J
+a z .f dz - x2 

M = xi de j3Ch+z)dz (di:)2 d-x 
-d 

= J! ~ (h+z) de a4 
4 dz: 

But, a = .d + <:f...Z 
2 

So 

M = ~ ~ da(h+z)(d+ oez)4. 
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Now if we define 

then 

1
00 

64M . dz 
9 = 1( ~ d4 o (S+z)( \+ ol7.) 4 

Recalling equations (4.25) and (4.29) it is readily seen that 

yXY 
where Oyz. is defined by equation (4.30) for the case r = 1. 

Rotation about y-axis (k~) 

For this case the moment equation is 

d:x ( b+t\:Z:) 
(dz)2 

3 = l._ (h+z)(b+~:z.)(a+o<z) de 
1'2. dz 

With r = a/b, and s = olh/b, the equation for 0 becomes 

1'2. My 1(1) dz 
By= b4 

0 
(S+Z)( l+Z)( l+Z)~ 

For this case the spring factor is therefore calculated from 

XY 
where ~ X?. is defined by the relation 

I 100 

dz f)CY : \'2 (S+Z){l+Z) (r+z)3 
xi. 

(4 .. 35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 
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Integral (4.39) is evaluated in Appendix B. The following relations 
XY 

may be used to calculate lr"z 

[ 
{r-n

3 J 
O.xr =- 1 ~ lnar ( I f'-1 (r-i>2

) 
xz " ..!::.2.:... - - + - + --r - l r 2.r2 3r2 

"{'1;'/ f 
UX'Z. = 3 ' r = 5 ::. f 

In Fig. 4.5 '(::~r for several values of r is plotted. 

Rotation about z-axis (1~) 

Recalling equati on (4.21) for the shearing modulus, the moment 

on any horizontal section can be shmm to be: 

M = ~'( h+z) [ "1 "~<(( b+oez l x2 de d~ 
z dz 

o +z 1 b~%+ct.z)~zcledy] 
= i2 J''~;z) de[(b+a:z)(d-td::Z)~(a+a'.z)(b+ctz)3 J 

(4.~.l) 
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Equation (4e41) may be written 

I II 

Mz = Mi: + M-z. 
where 3 

, 1 , (h+z) ( b+c(z)( a+Q(:z) d 
M, = f2 ~ di 9 

and 3 
11 1 (.).' (h+z)(d+((z)(b+o<-z)de 

Mz = TZ J-' dz 

(4.42) 

The spring factor is given by: 

k xv = . Mz =- M~ + M; 
XY 9z ez ez (4.43) 

k~~ = ~'b4 ( o+ o'') = ~'b4 ~~ (4.44) 

where 

IQ) d 
t' "' 1'2 o (Stz)CJ+~)(r+z)s (4.45) 

and 

(4.46) 

It is readily verified that integral (4.45) is identical to (.Li .• 39), 

and integral (4.1~6) to (4.29). It follows therefore, that 

XY I II XY XY Dxy = O' + 7f = Oxz. + o yz (4.47) 

where oxx[ is given by equations (4.40) and o;{ by equations (4.30). 

XY/r Y' XY/ The ratios Ox2 r and orz.1 r are plotted for several values of r in 

Fig. 4. 5. 
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Spring Factors for Horizontal Contact Surface - Cohesive Soils. 

Vertical Displacement (~) 

The derivation of the spring factors for cohesive soils is similar 

to the derivation for cohesionless soils, except that the modulus is 

assumed to be constant instead of increasing with depth. Equation (4.5) 

is replaced by 

E-Ca+c('Z)(b+c<:z) do 
dz 

The total surf ace deformation is then 

p loo dz 
8 = E o Ca+ ca: le b+o1.2J 

p [cxi dz 
= oCEb 

0 
(i-+Z)(l+"Z) 

(4.48) 

(4~49) 

where r is again defined as a/b. Recalling equation (4.9), the spring 

factor is given by 

""XY where uz is defined by the relation 

I 100 

dz 
lf.XY = (r+Z)(l+Z) 

2 0 

(4. 50) 

(4.51) 

The evaluation of (4.51) is similar to the evaluation of the integral 

(4.15) which is given in Appendix A. Therefore 

O.xy = r-r , r~I 
' lo9r 

XY · Oz = I 
(4.52) 

' r= I 
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Horizontal Displacement (kxy 0Y) 
x ' y 

As in the case for cohesionless soil, the only change is the 

substitution of G for E, where G is defined by equation (4.20). Data 

for Poisson's ratio for cohesive soils is not available; for saturated 

cohesive soils, µ. = 0.50 would be a reasonable assumption. The 

spring factor is calculated from: 

(4.53) 

h 'Y"XY • • b t . (I 52) w ere o 'Z is given y equa ion ~· . • 

Rotation about x-axis (~) 

The moment on any horizontal section is 

3 = E ca+olz)(b+o<.z) de 
l 'Z. dz (4. 54) 

The rotation of the contact surface is therefore 

12 Mx_(
03 

dz 
E ]

0 
(a+ otz)( b+ciz)3 

- 12 Mx lco dz 
- c.(Eb3 

0 
(r+Z)(l+Z)3 

(4.55) 

The spring factor is 

k><Y::: M~ : olE 63 o;{ 
Y7. e?C (4.56) 



"r?C':f 
where o':fz 
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is defined by the integral 

..L = l'2 dz l
~ 

o~i 
0 

(r+z)( ltZ)~ 
(4. 57) 

This integral is of the same form as the integral in equation (4e32) 

which is evaluated in Appendix B. o,!zl.J may be calculated from the 

equations 

[ 
'l ] 1 (r-n 

= 12 logr _ 3-r ' 
r-\ z 

0.~Y I 
yz = 4 (4. 58) 

Rotation about y-axis (~) 

For this case, the moment on any horizontal section is 

3 
_ _[ Cb+o<.i.)(d+o(z) de 

My - 12 d7. 
(4. 59) 

and the rotation of the contact surface is 

e _ r2 My dz l
c:c 

~ - oCEb3 
0 

(1+z)(r+z)3 
(4.60) 

The spring factor is 

(4.61) 

v >CY where Dxz is defined by the integral 

(4.62) 
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This integral is evaluated in Appendix C and yields the following 
1.Y 

expressions for Ox2 : 

XY \ [ (r-\)'a J 
Dxi =I'[ lo9r _ 3r-l • 

r- t 2 r1 

=-' , r:l 
4 

Rotation about z-axis Os~P 

For this.case the moment on any horizontal plane is given by: 

where 

a+ otz b+oez r 'Z 'Z 2 2 d dy dx 
Mz "' G. dz J ,..a-ct:-z -b-d:z(x +':J ) e (dz)2 

2. 2 a+e<z b+ d.:z 
2 ' '2. 

= t ~~ 4[x;y·~~3L 
= ~ ~~ { (b+d;z)(d+ ~ .. d + (d+c(-z)(b+c:<""z:)'} 

(4.64) 

I II 
M't = Mz +M'Z 

M ' - ~ (b+c<:z)(a+«z)3 de 
'Z - '" di 

M u _ g_ (a+o(:z)(b+o(z)3de 
! - 11 d-z: 

(4.65) 
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Therefore; 

Mz I 
M~ k"y M, - - =- + XY e, 01 ez 

- r1.. G b 3 ( 0 I+ 0 ,, ) -
(4.66) 

where 

[ I \'Z. dz (4.67) - -I - (1+2) (r+z)3 a 
and 00 . 

- 1'21 dz - -
0 

(r+z)( I +z)3 o" (4.68) 

Equation (4.67) is seen to be identical to equation (4.62) and equation 
~'y'J.Y (4.68) is identical to equation (4.57). Therefore a:oiz , and may be 

· . ytl y'l.Y 
evaluated from equation (4.63); o = uyz , and is given by equation (4.58). 

1>/r for cohesive soil is plotted iri Fig. 4.7. 

Spring Factors for Vertical Contact Surface - Cohesionless Soils. 

Horizontal Displacement Normal to Contact Surface (~Z) 

The case of a contact surf ace parallel to the xz plane will be 

considered. ·T'ne equations for a contact surface parallel toihe yz 

plane are similar except that y replaces x and b replaces a wherever 

they appear in the equations. 

Consider the lateral pressure on a foundation block. Let the 



-76-

EQ.UIVALENT SPRING CONSTANTS 

HORIZONTAL COllTACT SURFACE - COHESIVE SOIL 
a 10 

3 

Figure 4. 7 
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depth of embedment be Dr and the length of the contact surface be a. 

The soil modulus is given by 

(4.69) 

where z is measured from the surface of the soil. 

t'Y 
\ Q+-c(y I 

\ I i 
\ I 

__ _j I I % 

I t p':! 
,-- .. 

I 

Figure 4.S 

Recalling equation (4.2), 

dP= E dz. dS: ~z dz d8 
the normal pressure on any section of the effective zone parallel to 

the contact surf ace is 
'l D+oCy 

Py= a + °'Y [ tz ~ d 6 z d-z. 
dy . 

0 

= ~ a4-0.4 do f (2 D++ oey )21 
dy l 8 

= 1. (a+ <;{y )('2D.c + a.y)do 
8 d~ (4.70) 
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Defining 

t= (4.71) 

we obtain for the displacement of the contact surface 

Note that a uniform horizontal displacement is assumed. The resultant 

pressure, Py' will therefore act at a distance, Df/3, from the base 

of the foundation, since E is a linear function of z. The spring factor 

is given by 

k
xz Pu ~ 2 Y' xz 
y =- ~ = d.... >""a oy 

where Oyxz is defined by 

I - sioo dy . 
'lt' X"I - 'l. 
u~ o (l+y)(!+y) 

(4. 74) 

This integral is of similar form to the integral evaluated in Appendix A. 
"'lt' >CZ 

(Cf. equation (A.7) ). uy is therefore equal to 

xz 1 [ lC-t-l) ] 0
':1 == 8 -l lo9~ - ' ' 

t- \ 
' 

' t=' (4.75) 

)CZ. 

A plot of 0 y is shown in Fig. 4. 9. 
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Lateral Displacement (~Z , ~Z) 

The only change in determining t he spring factor for this case 

is that G is substituted for E. The spring factor is therefore 

XZ I XI. 

k:z: kz == rt. f.> a 2 0 y 

where ~1 
is 

and 

fo' = 2( I+ ,U..) 

y- X! • • by t . (4 75) " L:i is given equa ions • • 

Rotation about x-axis (~~) 

The moment on any verti cal section of the effective zone is: 

fi 
G4 

2 Df + c!tj 
'2. . 

z" de ( J3 z dz) 

(a+<{~) ( '2. D~ + oCc~n 4 de 
dy 

The rotation of the contact surf ace is 

hence the spring factor is 

(4.76) 

(4.22) 

(4.77) 

(4.78) 

(4.79) 
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where "t;: is determined from the relation _,_ l~ dy 
o~ = 64 • ( i +l:JHt+y )4 

Referring to (B.19) and (B.20) of Appendix E it is readily seen that: 

= _\ ' 
I~ 

See Fig. ·4. 9 for a plot of 

Rotation about z-axis (~) 

a+oe.y 
'2 

(!-1)3 . 

• 

'2 M-z.:-dy 
)'.:i de dx 

0 

_ .Bde ( a+<{y)3 C20~ +oCy)
2 

- 9G dy 

The rotation of the contact plane is 

- 9~ M.zlc&J dy 
c(~ a4 

0 
( 1+y)3 ( t+y) 2 

(4.81) 

(4.82) . 

(4.83) 



The spring factor is 

xz where o>Cy is defined by 

- = 96 y I loo cf 
cr:V o (1 +y)3 (t+ y)2 

This integral is evaluated in Appendix B. (Cf. (B.10), (B.7) ). 

Therefore 

[ 

(!-1)"! J 
3 \oq t - { l + ?. - a- f) 1 

i: - \ t 'l ·1 

Ox~ : _l 9 -l: ~ \ 
24 

>CI 
0. Yis plotted in Fig. 4. 9. 
~ ' 

Rotation about y-axis <ic:.) 

(4.84) 

(4.85) 

(4.86) 

Recalling that G = ~'~ dz·, the moment on a section of the effective 

zone parallel to the contact plane is 

a+ O(.lJ '2. D£ + oe ~ 

M~ = g_J 
2 1 cxi!zi) de fo'z d7. d:I'. dy ' 

0 0 

_ fo' de [(a+~y}\io5 +«y)2+ ta+«y)(2Dl"'cxy)~ 
- d 9~ J y - (4.87) 



-83-

Equation (4.B7) .may also be written 
. I II 

MIJ =My+ My 
where 

, ~'de (a+o<y)3(2Dt-+t(y}2 

My = 96 d~ 

~ ~e (a+<iy)( '2 Dt +~ tJ) 4 

64 d~ 

(4.88) 

II 

My -

The spring factor is 

(4.89) 

Therefore 

)C'Z. ~I 4 ( "'Y' I ..,r II) - o( fo' 4 V'"xz k = o(_ a a + (} - a ax ·z 
)C'Z. (4.90) 

I II 

where T and r are defined by the equations 

(4.91) 

and 

(4.92) 

Equations (4.91) and (4.92) are identical to equations (4.85) and (4.80) 
I ltZ 

respectively. Therefore o= Oxy ' and may be calculated from equation 
11 JCZ · 

(4.86); O = Oyz , and may be calculated from equation (4.81). 
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Spring Factors for Vertical Contact Surface - Cohesive Soils. 

Displacement Normal to Contact Surface - (~Z) 

For this case the soil moduJ.us i~ _assumed constant; hence 

The spring factor is 

kX'?. -- Pu J E .,,\)(% 
--iL = (,\. a u ':! 

Y slj 
where 

~JC';f 
oy is defined by 

l = z dy l
a> 

~:z (l+y)(f~':f) 

Referring t .o (A.11), it may be sho'!-m that 

r,xz - J_ r. -f:- I J f t f l 
~ - 2 L 1091 J 

~xz - .l ' t = I 
o~ - '2. 

'r X'Z. o y is plotted in Fig. Li .• 10. 

Lateral Displacement (Jciz, ~) 

(4.93) 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

The only change for this case is that G replaces· E in equation 
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(4. 95), thus 

(4.9S) 

Rotation about x-axis (~~) 

The moment .for any vertical section of the effective zone parallel 

to the contact surface is 

2.D++~Y 
'2 

i. 2 de E dz 

0 

(4.99). 

The rotation of the contaQt surface is therefore 

24Mx dy . Jco 
0x = a'. E a 3 o (I + y )( t-+ ':I) 3 

(4.100) 

The spring factor is 

(4.101) 

(4 .. 102) 
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Now (4.102) is of identical form to (4.62): therefore 

I 
(t-1)2 

- -24 logt _ (~t-n 
Ct-l) zri 

- l - s ' t=l 

XI. 
'l'°yi is: plotted in Fig. 4.10. 

Rotation about z-axis (~) 

The moment is 

'2 M=­
'I dy 

0 

, t+ I · 

(i D-1' + <£y) Ca+ o<.y )3 E de 
- 24 dlj 

and the surface rotation is 

a = 24 M-z 
z o(. E a3 

dy 
(t+y)(l +y)~ 

The spring factor is 

(4.103) 

(4.104) 

(4.105) 

(4.106) 
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where Ox~z is defined by 

ao 

_!.)CZ :: 2.41 dy 
(f>(~ 0 {t+l:\)(\-ty)3 

(4.107) 

Equation (4.107) is of identical form to equation (4.57); it follows· 

that (t-1) 2 

0."z = J.. 
XY 24 

, logt (3-t) 
(1 - l) 2. 

xz I 
~.xy = 8 ' -f: ~I 

(4.108) 
'Y"X'Z. 
uXY is plotted in Fig. 4.10. 

Rotation about y-axis (~) 

The twisting moment on any vertical section of the effective 

zone parallel to the contact plane is 

= ~4 ~~ [ (o+oty)3 ('2D~+.cy)+(a+~y)C'lD" +a:y)
3
] 

(4.109) 

M t II 

M~ = y+My 
where 

My = ~ [ (a+~y)3 ('2. D~ + a..y )J de 
'24 dy (4.llO) 



and 

II 

M1;1 = 

The spring constant therefore is 

I 

=~ ey 
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+ 
My'' 
By 

= o( Ga~ (r '+ o '') = o( Q a 3 ~~z 

(4ell0a) 

(4.111) 

f ;:? II J<Z 
It may be shown that o = Oxy , and 7J' = Oyz , and therefore can be 

calculated from equations (4.108) and (4.103) respectively. 

General Remarks on the Use of Equivalent Spring Factors. 

In the above development it has been assumed that negative soil 

stresses with respect to the normal st ress state can occur. Cohesionless 

soils cannot take tensile stress$ The results are therefore not valid 

if these negative stresses exceed the initial dead load compressive 

stresses in the soil. For this case the k values are not const ant but 

will decrease with increased displacement amplitudes and the resulting 

oscillat ion will be non-linear$ This phenomenon is especially likely 

to occur in foundations subject to horizontal dynamic forces. Figure 

4.11 shows the cracks which developed in the soil adjacent to a test 

block when large periodic horizontal forces were applied3 Under normal 

operating conditions, however~ onl y Sll1All displacements can be tolerated 

and therefore k may be assumed constants 



- 90-

Figure 4 .11 
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I£ the soil is subject to shrinkage, shrinkage cracks can be ex­

pected to develop. The effective depth of the surcharge is reduced with 

a corresponding change in the k values. The behavior of foundations 

on this type of soil can be expected to vary with seasonal fluctuations 

of soil moisture. 

The values of ~ , d... , }J- , G, and E must be obtained experiment­

ally, preferably by the use of dynamic tests·. It must be remembered 

that the spring factors.· calculated by the expressions developed in this 

chapter are based on an approximate theory and therefore extr~me 

accuracy cannot be expected in predicting the behavior of a foundation 

under all conditions. The principal problem in analyzing a foundation 

is the determination of the critical frequencies. In general one 

attempts to design a foundation in such a manner that the frequency 

components of the exciting forces do not coincide with the critical 

frequencies of the foundation. In many design problems an approximate 

determination of the critical frequencies is sufficient~ 

By considering parallel or series combinations of equivalent 

springs, this theory ca.n be used to calculate effective spring factors 

for odd shaped foundations or for those which rest on non-uniform 

soils. In this respect the theory is quite flexible in its application 

to problems encountered in practice. 
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CHAPTER V 

APPARENT MASS 

In order to use the results or Chapters II and III, a knowledge 

of the equivalent spring factors is not sufficient; it is also necess• 

ary to estimate the effect of the mass of the body of soil which parti­

cipates in the vibrat~ons of the system. Recalling equation (2.7) 

it can be seen that in the equivalent system, m consists of the mass of 

the machine and the foundation block, plus some unknown mass represent-

ing the effect of the soile The foundation-soil system may be consider-

ed analogous to a foundation of mass m oscillating on damped springs 

of mass ms• However, for purposes of analysis it is convenient to 

replace these springs by weightless springs and an apparent mass, mw, 

which is added t o the mass of the foundation. We may then rewrite the 

frequency equation as 

I r=r=_ 
f = ""' V' m +m' 

A method of determining the apparent mass experimentally will be 

discussed in Chapter VII ~ 

Horizontal Contact Surface = Cohesionless Soil. 

Apparent Mass 

(5.1) 

An estimate of the apparent mass m' can be made under certain 

conditions, by equating the kinetic energy of the apparent mass to the 

kinetic energy of the soil in the effective zone as defined in the 

previous chapter. Therefore: 
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•'Z I '2.<"? 
T'= m'6z = rn CA.) Oz = 

'l z 1
(1) 2 

J_ .Pw2 ACz) [sczu dz 
z 9 

0 

Solving for m 1 we have: 

m' = f Atz) [ 8cz)] dz 1
00 '2 

9 £i 
(5.2) 

where A(z) is the area of the effective zone at depth z and is given by 

A tz) = (a+o<.2)( b +o{z) (5.3) 

and S (z) is the displacement of a section of the zone at depth z. 

Recalling equation (4. 5) and solving for £ (Z) we have: 

1
00 

Pi dz 
.5(2) = J3 z ( a+ot:z)(b+oCz)(h+'Z) (5.4) 

Again defining r = a/b, s = cl h/o and with x = cl z/b, we obtain on 

substitution of equations (5.3) and (5.4) in equation (5.2) 

(5.5) 

The general solution of ·equation (5.5) has not been obtained, but the 

special case, r = s = 1, is readily solved. For this case equation (5.5) 
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reduces to 

(5.6) 

' r= S= I 

(5.7) 

Approximate solutions of equation (5.5) may be obtained for finite 

values of r and s by n~rical or graphical integration to a finite 

limit. It is convenient to select a limit, z, as some multiple of <i/b, 

the magnitude of the limit depending on the rate of convergence. 

For the case of an infinitely long strip the infinite integral for 

the apparent mass per unit length does not converge on a finite value. 

For this case the expression for the apparent mass per unit length is: 

m'= f 
9 

00 

[ 1ltJ d J'Z 1 lb+c(z} z (b+o1.z)~h+z) d1. 

[ 10? dz ]" 
0 

lb+t<.1)(h+z) 

[(1+x) [ ['(t+x~+xS dx 

r 100 

dx ] 'Z. 
L 0 (t+x)(s+~) 

For the special case, s = 1, equation (5.8) reduces to 

(5.8) 
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f b" dx l
eo 

m' = '3 rJ.... o (l+x) 

. " ~ ~\q ( l+i)] X•OO 

X=O 
(5.9) 

Apparent Mass Moment of Inertia 

The apparent mass moment of inertia may be estimated in a similar 

manner. For this case the kinetic energy is given by 

1'= I'a'I. = I'wiG~:. l f w2 l "'ltz.) (el'z)f dz 
2 z 2 2.9 0 

Solving for I' we have 

IC-z) [ 9Cz)] dz 1
00 2 

e; 
(5.10) 

where I(z) is the moment of inertia of a horizontal section of the 

effective zone at depth z and is given by 

or 

(Qt o(.Z) ( b -f-o(Z) 3 

lx(Z) = 12 

I':i tz) = (a+o('Z )3 ( b+c,( z) 
I '2. 

and 9 (z) is the rotation of a section of the effective zone at 

depth z. Recalling equations (4.24) and (4.37), we have 

(5.11) 
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lCIJ dz 
( d+o<.1.)( h+z) (bi-OC.'Z.)3 

! 

_ 12 My d-z 1
~ 

eycz. )- ~ z (b+ottl(h+7.)(a+~7.13 
( 5.12) 

Recalling that r = a/b, and s = rJ. h/b, and with x = ti.. z/b, we obtain on 

substitution of (5ell) and (5.12) .in equation (5el0) . 

I 6 ~; + X)( J+d [ i~r+'t )(~:)(I +Xl3r c:fx. I' ~t> ....;;Jo;......_~-------
x= l2~cl r l<» dx 12 

L 0 lr-1-x)(s+x)(1+xJ3J 

L
or> [ r 00 dx J 2 

(1+X)(r+i? Ji (r+x)3(s+x){1+x) dx 
I f bS t 

1~ = 12<3~ r r"° d:t. 12 

l Jo (r+x)3(S-t-X)(l+X)j 

(5.13) 

Equations (5 .13) and (5.14) can again be readily solved for the special 

case, r = s = 1: for

1 

whic~:;•l°" dx 

I,,. ::. ly = 1'2 q c{ 0 (I+~) 4 

I f b5 

:.~ gc( r= S = I 
(5. 15) 
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For other values of r and s, equations (5.13) and (5$14) may again be 

solved by numerical integration to a finite limit9 It should be noted 

that convergence is much more rapid for this case. 

Horizontal Contact Surface- Cohesive Soil 

Apparent Mass 

Since, for cohesive soils, the modulus of elasticity of the soil 

has been assumed constant, the velocity of propagation of stress is 

constant and does not increase with depth as in cohesionless soils. 

Consequently, wave propagation theory rather than static displacements 

* must be used for the calculation of apparent mass. For, if the procedure 

of the previous section is applied to the case of cohesive soils, it is 

found that the resulting infinite integral does not converge on a finite 

value. Recalling equation (4.48) we have 

~ (7.) = ~E: 1 oo __ d_-z __ 
'" (a+otz.)(b+OC.7.) 

which on substitution in equation (5.2) results in 

For the case r = 1, equation (5.16) reduces to 

m'= p b3 ·1~dx: 
g c{ 0 

(5.16) 

* Solutions based on this )theo:rY have been obtained for a few special 
cases by E. Reissner ~14 and by P~ Quinlan (15) ~ 
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hence 

f ~ 1"° rn ' = rJ... x. ' r= t 
9 0 (5.18) 

Very little data is available for cohesive soils; there is, however, 

some indication that the apparent mass may be very- large. (l?) 

~Jass Moment of Inertia. 

Referring to equations (4. 54) and (4.59), it may be verified t hat 

for cohesive soils 

12 M dz l
CD 

Bx. < z) = E " z la +o<.z.) (b t o<.2)3 

and 

and 

I p bs 
Iy=­

l'2qcJ-. 

i
CX> . 

ti My di 
E i (a+C(:z)~ (b+ctz) 

For the case r = 1, equations (5.20} and (5.21) reduce to 

(5 .19) 

(5.21) 
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I'_ I r _ .P b5 dx 1
()0 

>'- y- \'Zgo( o (l+X)2 

= , r= I 

(5 . 22) 

Vertical Contact Surface - Cohesionless Soil 

Apparent Mass 

When the foundation is partially or entirely embedded in the soil~ 

the apparent mass and the mass moment of inertia~ increased due to the 

motion of the soil adjacent to the foundation. Consider first the 

apparent mass due to a vertical contact surface in the xz-plane , of 

height Dr and width a . The expression for apparent mass for this case is 

. f l(zrt. +o:yica+o..y) [ti1~>r d~ 
m = za r (.'u}z 

J L OJ (5.2.3) 

Referring to equation (4.70) we have for S (y) 

Defining t = 2Dr/a, and with x = c:i. y/a, we have on substitution of (5 .. 24) 

in (5.23) 

1
00 m dx ~ 

(t+x )(1+x1[ (l+Xl(f+d] dx 
' .P a3 .-........-----=------

m = z d., r 100 dx: J " 9. L . (1+~)lt+")2 
(5.25) 
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For the special case t = 1, equation (5.25) reduces to 

t=I 

(5.26) 

Moment of Inertia. 

For a vertical contact surface, equation (5.13) takes the form 

1
~ 2 

I' ,. f_ 
0 

1 ty) [ S(y)} dy 
9 9'2. 

where I(y) is given by 

or 

I7. (y) = (a+a.y)"~ (ZO~+o(.y) 
24 

Referring to equation (4,82) and (4e 77) we have for e ' 

and 

(5.27) 

(5.28) 

(5.29) . 
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Recalling that t = 2Dr/a, and with x =~y/a, we obtain on substitution 

of (5.28) and (5.29) in equation (5327) 

r(7+x.)( \+~)3 [f ~+l')~~+l' )l rdx 
' ? as Jo' x, 

l-z = Z4g°' u~lti<)f:tt+i<l2 r 
(5.30) 

and 

1 co r [ OI) .c::b: ] 'Z 
o s (t+x)3( I +x) L (I+~ )(~+x)4 dx 

I J Q 0 X 

I - l laa d ]i )( - '24 get x. 
o (l+X) lt+)(.)4 

(5.31) 

For the special case t = 1 

, , ~ as 100 

d lz = Ix = ( X. 4 
24g ct 

0 
It~) 

.Pas 
::.--

72.got 
(5.32) 

Vertical Contact Surface - Cohesive Soil 

Apparent Mass~ 

Referring to equation (4.93) we have for S (z) 

'Z. - '2 Py 1 oo __ d_,._~ ---
$ ( ) - E z (a+ oC Y) ( i D~ + <i y ) (5 .. 33) 

Substituting into equation (5e23) and recalling that t = 2JJr/a and 

x = d.. y/a, we obtain 
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(5 .. 34) 

As in the case of cohesive soil and a horizontal contact surface, the 

infinite integral does not converge, for with t = 1, we have 

m' = .Pa dx = a x ; [<X> .P 3 ]°' 
'Zg G\. 0 2.'3oL 0 

(5s35) 

Moment of Inertia. 

For cohesive soil~ we have from equations (4.104) and (4$99) 

and (5.36) 

On substitution in equation (5~27) we obtain 
00 lco dx 12 

[ (i+x.)3(-l+x) [ x. (1+x:hl+x:l dx 

[LOil dx ]2 
0 (l+x)j (f+x.) 

(5.37) 

and 

L
oo [loo dx. 1a 

o s (l+J')({ .. x.)
3 (l+x)(i+x)~ d){ 

1' = ;-a o i 

~ 24q~ [1 00 dx ] t 
o lr+x)(-!+~) 3 . 
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For t = ], (5 .. 37) and (5.38) reduce to 

, , ~a dx s 100 

Lz = 1" = 24 g °" o (l + t) 2 

I~= I I - .P q5 l 

~ - 24 'a°' (5 .. 39) 

General Remarks on the Use or Apparent Mass and ?A'..ass Moment of Inertia 
Values·. 

The res-trictions imposed by soil · and l oad" .conditions :which appl y · 

to the determination of the spring :factors , also apply to the apparent 

mass terms. ' Indeed, from the derivation it is clear that the spring 

factor and the apparent mass of a foundation are intimately connecteds 

It must be kept in mind that the theory only approximates· the actual 

stress conditions in the soil and that significant errors may be intro... 

duced in calculating the apparent mass terms e Moreover , the accuracy 

of the calculation depends on the rate of convergence of the infinite 

integral. It has been pointed out that for cohesive soils wi.th constant 

modulus or elasticity, the velocity of propagation of stress is constant. 

For this case, the infinite integrals obtained by the use of static 

displacements do not converge, and wave propagation theory must be 

used in the calculations . Unfortunately, very little data is available 

for cohesive soils at the present time and it is impossible to check 

the accuracy or the theory for this case. 

Soils whose modulus is constant with depth are seldom encountered 

in nature. Even in normally loaded clays , there is some increase of 

modulus with depth due to the consolidation of the lower layers by the 
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weight of the overburden. For these cases the expressions for co­

hesionles s soil may be used by assuming an imaginary value or h, such 

that the soil modulus is given· by the equation 

E=~(h+z) (5.40) 

The integrals which arise in determining the apparent mass terms 

are .much more difficult to evaluate than the ones for the equivalent 

spring factors~ For those case~where convergence is sufficiently 

rapid, numerical or graphical integration to a finite limit may be used. 

An example of this procedure will be given in Chapter VII. Speci&l 

problems arising from non-uniform soil conditions or odd foundation 

shapes can also be treated by this method. 
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CHAPTER VI 

EXPERIMENTAL INVESTIGATION 

Purpose and Scope. 

The purpose of this investigation was to determine the effect 

of several parameters on the behavior of a foundation under the action 

of a periodic external force. The parameters investigated were: 

1. Size and shape of contact area. 

2. Relative magnitude of the external force. 

3. Direction of the force. 

L~. Weight of the foundation. 

5. Depth of embedment in the ground. 

Since variation of the above parameters resulted in a large number of 

tests, it was decided to investigate the foundation behavior for only 

one type of soil, namely a clean, well-graded sand. The reason for this 

choice is that this type of soil has proven to be most susceptible to 

vibration problems in actual installations. The behavior of the foun-

dation was determined by measuring amplitudes of vertical and horizon-

tal oscillation, and by measuring the dynamic soil reaction on the base 

of the foundation. 

From these measurements the following information ;was obtained. 

1. Critical frequency of the excited modes of oscillation. 

2. Amplitude of oscillation as a function of the frequency 
ratio. 

3. Estimate of the dynamic soil constants. 

a. Effective spring factor 

b. Equivalent damping factor 

c. Apparent mass of the soil 
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4. Dynamic soil pressure. 

a. Pressure distribution and magnitude 

b. Relationship between pressure and displacement amp­
litudes. 

5. A measure of the non-linearity of the system. 

The data .obtained was used to test the accuracy of the theoretical 

development. 

Description of the Test Site. 

The test site consisted of a pit ten feet square by six feet deep 

and filled with washed concrete sand. This pit had previously been 

used for an experimental investigation of soil compaction and the soil 
(15) 

character.istics were therefore known. A large steel tripod and a 

two ton hoist were used to handle the heavy vibrator unit and to lift 

the foundation block. 

Test Block. 

The concrete foundation block was cast in five increments, so that 

tests could be made after the addition of each increment. The basic 

size was 18 inches square by 24 inches high. This block was then in-

creased in size by the addition of 6 inch sections cast on each side. 

The casting sequence is shown in Fig. 6.1. The foundation was rein­

forced with 1/2 inch diameter steel pipe. Couplings were used to ex-

tend the pipe when additional sections were cast on. Extensible forms 

were constructed, so that only one set of forms was required for all 

pours. (Fig. 6.2). To insure that the block would act as a unit, shear 

keys were provided, and tie rods were inserted thru the pipe and bolted 

to tie plates.· A base plate for the oscillator was fastened to the foun­

dation by means of two 3/4 inch anchor bolts. A thin layer of grout 
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Pour IV - Forms in Place 

Figure 6.2 
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was placed under this plate to insure uniform pressure distribution. 

Eight pressure cells were installed in the base of the block in the 

locations indicated in Fig. 6.1. The cells were installed in such a 

:manner that they could readily be removed at the end of the test. The 

electrical lead-in wires to the cells were brought in through the top 

of the block by means of pipe conduit. 

Oscillator. 

A Lazan oscillator (model LA -1), manufactured by the Baldwin 

Locomotive Works, was used to produce the per:i,.odic force. This 

oscillator weighed approxiir.ately 61 lbs. and its overall dimensions were 

12.5 x 11.25 x 6.5 inches. The periodic force generated was the re­

sultant of centrifugal forces produced by brass or lead eccentric weights 

fastened to two parallel counter-rotating shafts. The oscillator was 

so designed that the unbalanced forces added in one direction and 

mutually cancelled in all other directions. The magnitude of the per­

iodic force could be adjusted while the oscillator was running or at 

rest, by means of an external force control knob, which controlled the 

relative position of the eccentrics on the two parallel shafts. The 

relative position of the eccentrics was indicated on a counter located 

adjacent to the control knob. The dynamic force generated was deter­

mined from a force rating chart. (Fig. 6.3) The maximum allowable force 

was ± 1600 pounds. This output uould be obtained at 1800 rpm with the 

brass eccentrics, and at 1300 rpm with the lead eccentrics. The 

maximum allowable frequency was 3450 rpm for the brass eccentrics, and 

1700 rpm for the lead eccentrics. The oscillator was mounted on the 

base plate of the foundation, by me~s of a heavy steel cage. Pro­

vision was made on the top plate of the cage for securing additional 

static load weights. 
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The oscillator was driven by a one horsepower direct current 

motor thru a six foot flexible shaft. Frequencies from 170 to 3450 rpm 

could be obtained by means of a thyratron speed control unit. This unit 

was regulated by the feedback from a small D.C. generator connected 

directly to one of the oscillator shafts. The output from this gene­

rator was also used as a tachometer to measure the oscillator frequency. 

To produce a horizoD:_tal dynamic force, the oscillator was mounted 

on its side, and the mounting eag& was adapted by means of longer oolts 

and special base clamping plates. The mounting position of the 

oscillator for vertical and horizontal force is shown in Figs. 6.4 and 

6.5 respectively. 

Vibration Pickup. 

The displacements were measured by means of two velocity pickups. 

(Consolidated Engineering Corp. Type 4 - 102 A) The output from these 

pickups was read on a vibration meter. (Consolidated Engineering Corp. 

Type l -llOB) This meter contained an integrating circuit so that 

peak to peal{ displacements could be read directly. The two pickups 

were mounted on an angle bracket attached to the center of the top 

plate of the oscillator cage as shown in Figs. 6.4 and 6.5. 

Pressure Cells. 

In order to determine the.dynamic· pressure distribution on the base 

of the foundation, eight pressure cells were constructed and installed. 

A section of one of these cells is shown ·in Fig. 6.6. The principle of 

operation of these cells is as follows: · changes in pressure are trans­

mitted from the pressure plate to the case thru two concentric shells, 

arranged in such a manner tpat when one shell is in compression, the 

other shell is in tension. The active elements in the eel 1 are four 
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Oscillator Mounted for Vertical Force 

Figure 6.4 

Oscillator Mounted for Horizontal Force 

Figure 6.5 
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type C-5, bonded wire SR - 4 strain gages, two mounted on each shell. 
. -

The gages are mounted on diametrically opposite sides of the shells so 

as to cancel out the effect of bending strains due to non-uniform load 

distribution on the pressure plate. The gages are ~lectrically connec-

ted in a balanced bridge circuit, and the leads from the gages are 

brought out thru a watertight fitting in the top of the case. Provision 

is made to adjust the pos'ition of the pressure plate flush with the 

bottom mounting flange of the case. The cell is installed inside a thin 

protective metal liner, and is anchored to the foundation by four 

anchor bolts. The cell may be removed after the four socket head screws 

in the case flange are unscrewed. Details of the cell are shown in 

Figs. 6.7 and 6.8. The cells were calibrated for static loads by apply-

ing measured loads to the pressure plate by means of a platform scale 

and a loading yoke. Corresponding strains were measured by measuring 

the unbalance produced in the strain gage bridge circuit with a Brown 

Instrument Co.millivoltmeter. This calibration was then correlated 

to the unbalance obtained by shunting one leg of the bridge with a 

fixed resistor. 

The static load calibration was found to be essentially the same 

for all cells, and it was therefore possible to use a single calibration 

constant. A typical static pressure calibration curve is shown in Fig. 

6.9. 

The periodic dynamic pressure change was measured by means of a 

Brush Development Co. type BL - 905 Amplifier and a BL - 202 Direct 

Inking Oscillograph. Pressures were calibrated by using the signal 

produced by unbalancing the strain gage bridge with the fixed resistor 

which had been correlated with the static pressure calibration. A 
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"· 

Pressure Cell 

Figure 6.7 

·-· 

' ' ' ' 
---------~--

Pressure Cell Assembly 
and Installation Accessories 

Figure 6.8 
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telegraph key was used as a "chopper" to produce the intermittent signal 

needed. The amplitude of the pen record produced ' in this manner therefore . 

corres.ponded to a known pressure increment. Dynamic pressures could then 

be measured and calculated by direct proportion, provided the gain of 

the a.mplifie~ was left unchanged. 

In order to be able to select the signal from any one of the eight 

pressure cells, a switching unit was designed and ,constructed. · Provision 

was made to permit the output from the pressure cells to be switched to 

either the Brown Millivoltmeter, for static pressure measurement, or to 

the Brush for dynamic measurement. A D.C •. voltmeter was incorporated 

to check the voltage applied to the bridge circuit. Power for the bridge 

circuit was supplied by'a 6 volt battery for static measurements and by 

an externally connected 22 volt battery for dynamic pressure measure­

ments. Balancing potentiometers were provided to zero-set the output 

from each cell on the Brown Millivoltmeter. The calibration resistor 

was also installed in this unit, and provision made to permit its use as 

a shunt across any one of the four legs of the bridge. The arrangement 

of this equipment is shown in Fig. 6.10. The recording equipment was 

mounted on a spring supported table in order to isolate it from the 

vibrations transmitted thru the ground. (Figs. 6.4, 6.5) 

Test Procedure. 

Displacement and pressure measurements were made for each test 

block size and for both vertical and horizontal external force. The 

effect of embedment was studied by building up the surcharge in three 

eight inch lifts. The effect of additional static load was studied only 

for vertical force on the 18 inch square block. The additional load was 

obtained by attaching steel plates to the top of the oscillator cage. For 

these tests the velocity pickups were mounted on the side of the cage. 

Since non-linear effects- tended to become more pronounced 
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PRES SURE RECORDING EQUIPMENT 
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with increased dynamic force and amplitude, all test runs were made 

with constant force settings. This required adjustment of the control 

knob .for each frequency at which pressure and displacement readings 

were made; all readings were made after stable conditions were obtained. 

Test Data. 

The displacements measured with the vertical and horizontal pickups 

were plotted and .are shoim in .Appendix D. Pressure data was obtained 

by measuring peak to peak amplitude~ on the oscillograph record. 

Pressures were then calculated in the following manner. 

From the static calibration tests, it was determined that the 

effect of the shunt ·resistor was equivalent . to 4.85 psi pressure. 

The dynamic pressure change is t herefore 

~p = 700 tc. pst 
where A is the peak to peak amplitude of the pressure signal, and Ac 

is the peak to peak amplitude of the calibration signal. The dynamic 

pressure amplitude is therefore 

pd = 350 ~c. pst 
Pressure data obtained in this manner was also plotted and is shown 

in .Appendix D • 

.Accuracy of Test Results. 

The frequency response of the pickup is flat + 5% from 8 to 700 

cycles, for double amplitudes up to 0.250 in. (E4) In the significant 

range, 15 - 30 cps, the sensitivity is about 96% of the nominal sen­

sitivity. The sensitivity decreases somewhat with amplitude (down 

approximately 5% at 0.4 in. double amplitude), and increases approx­

imately 1% for an increase in temperature of 10° F. The vibration meter 

is essentially a vacuum tube voltmeter with a + 2% flat response range 

of 5 to 5000 cps. <25) When properly calibrated, the system can be 
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expected to measure displacements with an error not exceeding ± 8%. Due 

to the variation of soil properties with moisture and temperature con­

ditions which could not be controlled, it was felt that the accuracy 

obtained was sufficient for all practical purposes. 

The degree of accuracy of the pressure readings is somewhat harder 

to determine and varies widely with the magnitude of the pressure. The 

Brush amplj_fier and oscillograph has been designed to give an essentially 

flat response up to 120 cps. With maximum gain the sensitivity of the 

system was about 1200 psf per inch deflection. AssU:ming that the amp­

litude can be measured to the nearest 0.01 inch, errors of ± 12 psf may 

be expected. For small pressure readings the error is somewhat larger, 

due to pen drag on the paper. For large pressures, the wave form tended 

to be distorted. This was partly due to t he fact that under these con­

ditions the static pressure was exceeded. It is estimated that the 

pressure readings are accurate up to 15% or± 15 psf, whichever is 

greater. 

A further difficult y encountered in obtaining consistent pressure 

readings was the development of "hard spots". This problem was 

especially serious when rocking modes were excited. Under these con­

ditions, the sand tended to pack more along the edges and the corners 

of the foundation block, resulting in larger pressure readings than 

were obtained under normal conditions. 
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CHAPTER VII 

EVALUATION AND INTERPRETATION OF TEST DATA 

Experimental Determination of Damping Ratio, Spring Factor and Apparent 
Mass. · 

Damping ratios, spring factors and apparent mass may be determined 

by the methods outlined in Chapter II. Since the soil is assumed to be 

linearly elastic, the base pressures must be proportional to the dis-

placements. That this is indeed the case may be seen by comparing the 

amplitude and pressure response curves in Appendix D. Minor variations 

in the shape of corresponding response cilrves may be explained by the 

fact that the rocking modes are accentu.ated in the pressure measurements 

(due to the position of pressure cells). It follows, therefore, that 

either the pressure or the amplitude response curves may be used for 

calculating the dynamic soil constants. Because of the experimental 

difficulties encountered in making accurate pressure measurements, the 

amplitude response curves were selected. For the calculation of spring 

constants and apparent mass, the data used was further restricted to 

those tests in which only the vertical mode was excited. 

Damping ratios were determined by plotting normalized vertical dis­

placement curves for a viscously damped system (Fig. 2.3). A plot of 

normalized data curves superimposed on the theoretical curves is shown 

in Figs. (7.1), (7.2) and (7.3). It may be noted that the equivalent 

damping varies somewhat with amplitude. Since much of the damping is 

due to intergranular friction it is to be expected that the equivalent 

viscous damping factor is less for large amplitudes than for small 

amplitudes of oscillation. It was noted that the spring factor also 

tends to decrease with amplitude and with frequency of oscillation. 
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This phenomenon causes a tilting to the left of the response curve which 

is characteristic of a system with a soft spring. <27) The e~fective 
equivalent viscous damping therefore varied somewhat with the magnitude 

of the exciting force as is shown by the shaded areas in the figures. 

The mean value is shown by the dashed lines; the damping ratios indicated 

were estimated on the basis of these curves. The effective equivalent 

viscous damping ratio was found to range from 0.08 to 0.15 for the ver-

tical mode, and from 0.06 to 0.10 for the coupled horizontal displace-

ment and rotation mode. 

It was noted in Chapter II that for small frequency ratios the 

displacement amplitude is dominated by the spring factor and for large 

fTequency ratios, by the mass of the oscillating system. Using the 

dynamic amplification factors plotted in Fig. 2.2, it was possible to 
I 

estimate the "static deflection11 , Sst , of the exciting force both for 

frequency ratios smaller than and greater than unity. The .spring factors 
I 

were then calculated from the 65~ values for the small frequency ratios 

by the relation 

Fo -
S~t k= 

and the total effective mass of the system from the 

the large frequency ratios by the relation 

Fo 
rn =-

(7.1) 

b s! values for 

(7.2) 

where LUn , the frequency of the undamped free system was estimated from 
of 

the frequency at which the amplitude was a maxinrum and from the damping 

factor. The values of k, m, and c obtained for the cases investigated 

are summarized in table (7.1). 
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Base :tvr..ass of Dynamic Damping Spring Total Apparent 
Size foundation Force Ratio Factor Mass Mass 

m Fo c k m + mt m' 

lb. sec2 lb. kips lb. sec2 lb. sec2 --
rt. ft. ft. ft. 

18 x 18 32 100 .12 3640 66 34 
200 .12 2880 :· 77 45 
300 .11 2490 80 48 

Average .12 2880 74 ·42 

18 x 30 36 200 .08 3400 124 88 
300 .08 2720 120 84 
400 .095 2920 109 73 
500 .12 2830 111 75 

Average .095 2960 116 80 

30 x 30 59 300 .09 3460 158 99 
400 .09 3600 169 110 
500 .11 3440 175 116 
600 .12 3660 152 93 

Average .105 3540 164 105 

30 x 42 81 200 .09 4860 177 96 
300 .095 4200 175 94 
400 .ll 4000 176 95 
500 .10 3640 178 97 

Average .10 4180 176 95 

42 x 42 112 3:00 .11 5080 225 113 
400 .ll 5030 232 120 
500 .10 4700 230 118 
600 .105. 4780 239 127 

Average .11 4900 232 120 

Table 7.la 

Zero Surcharge 
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Base Mass or Dynamic Damping Spring Total Apparent 
Size Foundation Force Ratio Factor Mass Mass 

m Fo c k m+ m' m' 

l~sec2 lb. kips lb., sec2 lb .. sec2 

ft ft ft rt 

18xlS 27 200 .3400 66 .39 
400 2800 60 33 

Average 3100 63 .36 

18x .30 36 300 3120 93 57 
400 2620 103 67 
500 2690 109 73 

Average 2810 102 66 

30x :30 59 400 4100 129 70 
500 3860 147 88 
600 4340 . 156 97 
700 4030 165 106 

Average 4.080 JJ~9 90 
-

30x 1+2 81 300 6600 179 98 
400 6480 187 106 
500 5880 185 104 
600 6090 202 121 

Average 6260 188 107 

42x42 112 400 . ll 8160 270 159 
500 .125 7920 269 157 
600 .105 6910 266 154 
700 . 095 7200 264 152 

Average .11 7550 267 155 

Table 7. lb 
8 in. St.trcharge 
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Check of Theoretical Spring Constants. 

The experimental spring constants tabulated in table (7.la) and (7,lb) 

were used to check the accuracy of the theoretical development in Chapter 

IV. Solving equation (4.10) for ~ , 

k)(y 
/).- 2 

J"'- ·. b2 0 /Y (7.3) 

For a given soil, ft (the rate of increase of the modulus with depth) is 

constant, therefore the value of ~ computed by equation (7.3) for the 

various foundation sizes should be constant. The computations for the 

case of zero surcharge are shown in table (7.2). Values of· ~XY were z 
obtained from Fig. (4.3) with o( equal to unity and f' equal to 110 lbs. 

per cu. ft. The maximum deviation of the value of J' from the average 

value ( ~ = 273,000 lbs. per cu. ft.) was 13 per cent. An improved fit 

could have been obtained by increasing the value of o(, ; it should be 

noted, however, that the scat ter of the experimental data is of the 

same order of magnitude as the change in the computed value of ~ • It 

should also be noted from tables (7.la) and (7.lb) that the spring 

factors tend to decrease with increased dynamic force. For design pur-

poses the value of f.> should be estimated for the :maximum permissible 

· displacement amplitude. 

It was noted in the tests that there was a marked decrease in 

oscillation amplitude for even a small surcharge. This result is due 

to the fact that for ·zero surcharge the sand tended to ooze away from 

the edges, thereby decreasing the effective spring factor. The com­

puted values of J?> £or the case of 8. inch su.rcharge are tabulated in 

table (7.4). The effect of the surcharge is computed by assuming 

Poisson's ratio for sand to be 0.35 and using Fig. 4.9. These com­

putations are shown in table ·(7.3). 
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Base r h s O."v Dzxy rlybi k j3 
Size 7/r w olh 

ft
2 kips kips 

ab~ b ft rt3 

18xl8 1.00 l,.11:. 2.76 4.15 4.15 9.35 2880 308 

18x30 1.67 2.79 1.86 2.65 4.41 9.93 2960 298 

30x 30 1.00 2.76 1.10 2.12 2.12 13.25 3540 267 

30x42 1.4.0 2.70 1.08 1.90 2.66 16.62 4180 251 

42x42 1.00 2.68 .t76 1.67 1.67 20.Li-5 4900 240 

Table 7.2 

a t (f)(l o.xz 2 J3' 
2Dr/a 

':i ~a j3 

18 .89 .21 .175 

30 .53 .11 .254-

1~2 .38 .07 . 326 

Table 7.3 

Base ?f:Yb'.2 .. Side k/ k ~ Size Correction 1' 
ft2 ft2 ft2 ki-os kips 

ft rt3 

18x 18 8.21 .70 8.91 3100 346 

18x 30 9.93 .86 10.79 2810 260 

30x 30 13.25 1.02 JJ,.27 4080 286 

30x42 16.62 1.16 17.78 6260 350 

l,2x L!.2 20.45 1.30 21.75 7550 34.6 

Table 7.4 
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The average value of ~ in table (7.4) is 318,000 lbs. per cu. ft., 

which ·is a twenty per cent increase over the average value for the tests 

with zero stlrcharge. As a further check the spring factors for full em-

bedment have been computed and compared with the experimental values. 

The average value of l' deternd:ned in table (7 .4) was used to calculate 

the spring constants. Results of these computations are shown in tables 

(7.5) and (7.6). It should be noted that the predicted values are in 

excellent agreement with the values determined experimentally. 

Apparent Mass. 

The apparent mass was calculated for the 42 x 42 inch base by 

num.erical integration. For this calculation the density was assum.ed to 

be 110 lbs. per cu. ft. ands was taken to be 0.75. For this case 

r = 1 and equation (5.5) reduces to 

m'= 

where 

9 
q 

(7.4) 

(7. 5) 

The numerical integr~tion is shown in Appendix E. The calculated value 

of m' is therefore 

3 
m'= 110 (3.S) (0.835) 

32.'2. I 

::. l'22 lb secfr 
tt. 

The average of the experimental values is shown in table (7.la) and is 

120 lb. sec2/ft. 
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a t ~X'Z 0. X? 1 .if y Ya fo 
2Dr/a 

18 2.66 .98 .83 

30 1.60 ./.i.7 1.09 

42 1.14 .30 1.36 

Table 7.5 

Base aiYb2. Side k/~ Computed Experimental 
Size Correction k k 

ft2 ft2 ft2 kips kips 
ft ft 

18·x,18 9.35 3.32 12.67 4030 -

18x 30 9.93 3.84 13.77 4J80 5200 

30x 30 13.25 4.37 17.62 5600 5550 

30x 42 16.62 4.90 21.52 6850 6900 

4.2x 42 20.li..5 5.Li4 25.89 8240 864.0 

Table 7.6 
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Apparent ¥ass Moment of Inertia. 

The apparent mass moment of inertia 111as calculated for the 42 x 42 

inch base. Since for this case r = 1, equation (5.14) reduces to 

(7.6) 

where 

(7.7) 

The numerical integration of equation (7.7) is shown in Appendix F. 

The mass moment of inertia is therefore 

I I= (I I 0) ( 3 .5) s ( 0 I 30) 
(1'2)(32.'2) 

= 44. 9 lb. ft sec~ 

Coupled Modes. 

As a final check on the theory, the frequencies of the equivalent 

undamped system were computed for the case of the 42 x 42 inch base with 

zero surcharge. Using the value for apparent mass det.ermined above, the 

total effective mass of the foundation and soil is 

m + m' = 112 + 122 = 234 lb. sec2/rt. 

The center of mass of the system is 

( 112) ( I ) 4 o f'J c = 234 = 0 . 0 t'. 
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The mass moment of inertia of the foundation about the y-axis in the 

contact plane is 

i;" ~b;d [ f + di1 = ~ l ~i + di1 
: t ~i L ii:s ..- 41 
= 2G3.6 lb. +t. sec~ 

The mass moment of inertia about the center of mass is therefore 

Iy + ly' = I~"+I'-(m+rn')c12 

= 2<03.6 + 44.9 - '234(0.48)2 

= 255 lb. ft. sec.
2 

Referring to equation (3.38), the inertia parameters are 

m, = m3 =ms : '234 lb.sec~/#. 

255 \b. sec?./~ 

For r = 1 ands= 0.75 we have (from Fig. (4.3) ) 

Cfz. =· \.G7 

and from Fig. (4.5) 

ryz. ; 'f.xz = o. 265 
Using the average value of .?-> obtained from the experiments with zero 

surcharge, we h_ave from table (7 .2) 

jJ = 273 kips/ .if 3 . 

and with }J.. = 0.35 

.?' = 2g~S) = IOI kips/w 
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The spring factors are 

k'Z. = j3 b2 o1 ~ Z 73 (3.5)2 (I. 0 7) = 5, 590 kips/~f. 

kx = kv = ~' b2 o'Z. = I ot (3.sfz ( t.~1) = '?. ,070 'rtips/.N. 

kxz =. kyz = j?> b4 oxz. = 273 (3.S)4(0.'2G5) = to, gso kip t't. 

Referring to equation (3.11) we have 

k\l=kx 

k\'L= k21 = ckx = (048)(2070) 
2 ' 

kii= cikx+ kic-z = (0.48) (2070)+ IO, &50 

kss = kz. 

Substituting in equation (3.45) 

Therefore 

and 

= Z.6,675 t. { 3~4; G00,000 

= 8,~gs; 44,965 

c.u, = 91.S rad/sec. 

= 9\.5 §.Q = 875 rpm 
ZiC 

w2 = '2.l'2. ra.d·/sec.. 

: 2.1'2 ~ = 2020 rpm 

= 2,070 kips/rt. 
= 994 kips 

: \l,:, 2:7 kip~f. 

-. 5, 590 kips/~l 

Since the base is square, the frequencies for the coupled modes in the 

yz-plane are identical to the above values. The observed frequencies 

for maximum amplitude for this case ranged from 810 rpm for a 150 pound 

·dynamic force to 940 rpm for a 50 pound horizontal dynamic force. (Appendix 

D.). The higher mode was not excited in this case . 
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The frequency of the vertical mode of the equivalent free undamped 

system may be computed from equation (J.47) 

Therefore 

W2 _ kss 
s- -ms 

w ·= _/s,s9o,ooo = 154.5 rad· ~ec. 
5 -v· 234 1 ~ 

60 . 
= 154.5 'Z1t =- \47_5 rpm 

. The observed frequencies for ·maximum vertical displacement amplitude 

ranged from 1390 rpm for 600 pound"IBrtical dynamic force to 1420 rpm 

for a JOO pound dynam..ic force. (Appendix D.) 

Equations of Motion for the Coupled Mode. 

Referring to equation (3.49) we have 

..,( (1) = ( 8.385)(234) - 2070 ~(I) 
r2 994 I 

= - 0.109 ~,,,, 

Similarly, upon substituting in equation (3.50), we obtain 

~ (i) _ (44.965)(234)- 2070 q,c?.) 
't'?. - 994 \ 

,.,{ {'Z) 
= 8.50 ii 

The horizontal dynamic force F was applied about 6.5 inches above the 

top of the foundation; therefore 

F1 = F 

F2 = 2.05 F 

FJ = F4 = F5 = F6 = 0 

Substituting in equation (3.53) we have 
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f + ('Z.OS)(-0,109) ...!:__ 
f I = Z34 +255 (- 0.109)2 ¢,lll 

and in equation (3.54) 

\ + (Z.05) (8.5) 

234 + 255 (8.5) 2 

F = 0.003,28 ¢,Cl> 

Finally, upon substituting in equations· (.3. 59) we obtain for the 

of motion 

[ ?i.'28 o.988 
] 

F 
sin(wt-r~) ci.= + 

Wi2- wz. wi- w' rooo 
I 

and 

[ -0.33G e.4 

J 
F . 

5in (wtt yi) q - + w' -wz i- w~-w2 1000 
2 

equations 

The dimension of q1 is in feet and of q2 in radians when F is in pounds 

and (A) is in radians per second. It must be remembered that damping 

has been neglected in the above equations and therefore they cannot be 

used to calculate the displacement amplitudes near the resonant frequencies. 

Pressure Distribution. 

The pressure cell readings were somewhat more erratic than the dis-

placement readings. This was partly due to the development of "hard 

spotsn in the sand as the sand was consolidated by the vibration of the 

foundation. It was diff icult to obtain consistent pressure recordings. 

The pressure response curves (Appendix D) are very sinlilar to the ones 
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obtained for displacement. The pressure distribution was found to be 

affedted by the frequency; pressures near the edges of the foundation 

increase with increase in frequency. Contours of equal dynamic pressure 

are sh~wn in Fig. (7.4) for the 30 x 42 inch base and for the 42 x 42 

inch base. .. These contours were obtained by averaging the pressure 

readings for several dynamic loads. It should be noted that the maximum 

dynamic pressure may be several times the magnitude of the average pres­

sure. Account of this fact should be taken when selecting safe bearing 

values. 

Conclusions. 

Dynamic soil constants can best be determined from displacement 

measurements. Care should be ta..~en that only a single mode is excited 

and that the test base or plate is in contact with the soil during the 

complete cycle of oscillation. 

Correlation between the computed and experimental values for the 

equivalent spring factor was very good. (Cf. tables (7 .2), (7 .L~) and 

(7.6) ) The theoretical value for apparent mass was calculated only for 

one case; for this case the correlation with the measured value was 

excellent. The predicted critical frequencies for the rocking modes 

based on computed spring factors and apparent mass and mass moment of 

inertia values were also in good agreement with observed frequencies. 

It may be concluded therefore that the behavior . of · machine foundations 

on cohesionless soils may be accurately predict ed by the theory presented. 
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CHAPTER VIII 

DESIGN PROCEDURES 

RECOMMENDATIONS FOR FURTHER STUDY AND RESEARCH 

Design Data Required. 

Before proceeding with a machine foundation design the following 

data must be obtained: 

1. Type of machine and magnitude, direction and frequency of the 

dynamic forces to be resisted. This information should generally be 

furnished by the :manufacturer. Where this information is not furnished, 

a conservative estimate must be made on the basis of the type and the 

design features of the machine. In some cases it may be possible to 

measure the unbalanced forces by strain gage techniques, or by the use 

of dynamic load measuring devices. 

2. For major installations a soils investigation should be made. 

Type and characteristics of the soil should be determined and where 

possible dynamic field tests should be made. Depth of the stratum 

should be investigated and test holes made to a depth not less than three 

times the maximum overall dimension of the foundation, or, in the case 

of long narrow foundations, to a depth at least five times the width 

of the base. From tbese ·tests and from undisturbed samples removed 

from the test holes, the following design data should be obtained: 

a. The dynamic modulus of the soil. 

b. The effective damping factor. 

c. The maximum permissible design load. 
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Preliminary Design. 

Owing to the complexity of the problem, and since in most instances 

certain functional and space requirements will have to be satisfied, the 

trial design method is recommended. In general the critical mode of 

oscillation will be determined by the type of machine and the proposed 

method of installation. The frequency ratio can then be estimated from 

a knowledge of soil conditions. The next problem is to determine the 

maximum allowable amplitude of oscillation. Very little data is avail-

· able on this factor. The allowable amplitude depends on 

1. The type of machine and its operating frequency; 

2. The location of the installation and the type of activity 
carried on in its environment; 

3. The type of soil on which the machine is founded. 

The first item is of importance since some machines may be damaged by 

excessive vibration. Generally smaller amplitudes are permissible for 

the higher frequency machines. Amplitudes may have to be restricted 

in some installations to prevent damage to adjacent structures or annoy-

ance to workers in the vicinity. In some cases noise and vibration iso-

lation may have to be provided. The type of soil is an important factor 

since the da.mping factor for some soils, notably waterlogged soils, m.ay 

be very sw.all and hence disturbances may be transmitted for long dis-

tances. 

Rausch(?) recommends that the maximum amplitude of oscillation 

should not exceed 

A= 9.54/f in. 

where f is in revolutions per minute, for frequencies less than 1800 rpm, or 

A= 17,600/f2 in., 

for frequencies greater than lBOO rpm. Studies of the physiological 
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effect of vibrations have been made by the automotive industry. The 

results, however, are not applicable to foundation problems, since the 

annoyance level in moving vehicles is generally much higher than can be 

tolerated in a building or factory. <22) A study by the Liberty ~ro:tual 

Life Insurance Co • . of Boston shows that amplitudes in excess of 

A = 0.36/f in. 

are easily noticeable to persons, and amplitudes in excess of 

A ~ 30/ fl. .3 in. 

are troublesome.(28) It was further shown that the amplitude level 

causing structvxal damage is mu.ch higher than the annoyance level. 

From the allowable amplitude, and the amplitude ratio (Figs. 2 • .3, 2.5) 

the "static" deflection, b~i , can be determined. The minimum values 

·of the spring factor k and the total mass (m + m1 ) can then be cal-

culated from the equations 

and 

F 
k = p 

St 

m+m' = 
F 

where Wn is t he estimated resonant frequency in radians per second. 

The base size is then determined by trial and error using the graphs 

in Chapter IV, and the weight of the foundation is calculated by es-

timating the apparent IP.ass and subtracting from the total mass required. 

The preliminary design can then be completed to satisfy functional and 

space requirements. The above procedure may be summarized by the follow-

ing steps: 

1. Determine the probable critical mode. 

2. Estimate the frequency ratio and determine the amplitude ratio. 

3. Determine the allowable amplitude. 
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4. Calculate k and (m + m') 

5. Determine the overall foundation dimensions using the graphs 
in Chapter IV. 

6. Complete the preliminary design to satisfy other requirements. 

Design Analysis. 

After the preliminary design is completed it should be carefully 

analyzed. The following procedure is recommended. 

1. Determine the spring factors. (Graphs, Chapter IV) 

2. Calculate the inertia terms using the procedures outlined 
ifr ·Chapter V. 

3. Calculate the modes of oscillation using the equations de­
veloped in Chapter III. 

4. Calculate the maximum amplitude of oscillation. 

5. Check the maximum amplitude with permissible limits.* 

6. Determine the transmissibility ratio (Fig. 2.9) and check 
whether the ~.axilnum soil pressure developed is within design 
limits. 

7. For frequency ratios greater than 0.7 check whether power 
dissipation is excessive. 

8. Check special features, functional requirements and structural 
requirements a 

9. In cases where the operating frequency or a critical har­
monic falls close to one . of the resonant frequencies of the 
foundation, provision should be made for remedial measures 
should they be required. Remedial measures are of three 
main types: 

a. Dynamic balancing devices - suitable only for constant 
speed machines. 

b. Provision for addition of mass. 

c. Stiffening or strv.ctural modification. 

* Revise the design if necessary and repeat steps 1-5. 
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Recommendations for Further Sturly and Research. 

Reliable information on the behavio-r · of. machine foundations on 

cohesive soil is not available. An extension to other tY'l'.'es of soil of 

the experiments performed on sand would furnish the data required to 

check the theory developed. An analysis should be made of both satis­

factory and 1lllsatisfactory existing installations in order to determine 

reliable criteria for maximum amplitudes. This information should even­

tually be presented in code form for the guidance of the foundation de­

signer. 

Refinement of the theory presented may be possible and desirable. 

More data is required for determining the maximum soil pressures developed. 

The effect of special foundation shapes and partial contact should be in­

vestigated; also the use of cast-in-place piers tied to mat foundations. 

Much work yet remains to be done, both in theoretical development 

and experimental verification. Nevertheless, it is the author's .belief 

that by the ~se of the theory and procedures developed in this thesis 

the design and analysis of machine foundations may be put on a rational 

basis. 
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APPENDIX A 

1. Evaluation of the integral 

~ "1"' ( r+z) (~:z)(1 + z l (A.1) 

a . For rlsll. Separating into partial fractions 
ao . 

1 =1·r , .__sg_ +· ., ~ + l dz J 
0 0 

(S-r}(1-r> (r+z) (r-s)(1-s) (s+-z) · (r-1)(5-1) (l+Z) 

- \ [ sloa r-+Z + \oo S+Z + r \oa l+Z ]
00 

- (r-s)(s-1Hr-1) . · J 1 +z · "J r+z :> S+z 
0 

= (r-s1cs~llcr-11 ~r- •l \09 s - (s-1) loq r J 
_ l [ logs _ 109 r] 
- (r-s) (s-1) (r- I) 

The ref ore 
(r- s) 

r: to9 s - 109 r 
(s-1) ( r .. l) 

(A.2) 

b. For r = 1, s I 1. (A.l) reduces to 

1 100 di. o = 
0 

(s+z)(1+z)'Z {A,.3) 

Separating into partial fractions 

1 Jm[ l dz -I dz 1 dz J 
a= 

0 
(s-1)2 (s+z) + (s-1)2 (1tz) + (s-n (t-t-z)2 

co 
= _J_ [ I (s+z) (s-n J 

( S -1) 2 o9 ( I + Z) - (l + Z) 
0 

= 
1 

2 [ (s -1) - lo~ s] 
(S-1) 

Thus 

cs-o 
o= 

l - (09 5 
(s-1) 

· (A.4) 
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c. For S= 1, rl 1. (A,.l) reduces to 

I -la> d-z 
°i - O (r+L)(l+Z)2 

which is if the same form as (A.3). Consequently 

o= 
(r-1) 

I_ 1091 
r-\ 

d. For r= s/ 1, (A., l) reduces to 

I loo dz 
O' = 

0 
(s+z)2 (t+z) 

Separating into partial fractions 

Hence 

I -100

[ r d-z 1 dz 1 dz J 
'O -

0 
(S-02 (t+zl - (t-s)2 (s+z) + (l-s) (s+-z.)2 

_ I l+z ( s-0 
[ ]

a> 

- (s-t)2 log s+z + (fl+Z) 
0 

- 1 [ Ions - (s-i)J - (s-1)1 J s 

s( s-1) 
o = slogs _ 1 

S-1 

e . For r= s= 1, (A.l) reduces to 

Therefore 

I 100 

dz 
~= o (1+z)3 

r I I J co 
= L-2 (1+z)2 

0 

- I - -2 

(A~5) 

(A.6) 

(A.7) 

(A.8) 

(A.10) 
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2. Evaluation of the integral 

I 1c:o dz 
l .= 

0 
(S+'Z)(l+-Z) 

a. For sf. 1. Separating into partial fractions 

I loo[ \ dz I d"I ] 
l' =- (s~ l) (1+z) - (S-1) (s+:t) 

0 CJ) 

__!__ [t t+-z J - _!__ logs 
= (s-l) og S-t-"Z 

0 
- (S-1) 

Therefore 

a= s-l 
. lo9s 

be For s= 1. (A.11) reduces to 

-= 'Z - ' -
I 1 oo d. [ ] a:> 

l o ( I+ Z) 2 - - ·I+ -z o -

hence 

o=I 

(A.ll) 

(A.14) 
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APPENDIX B 

l. Evaluation of the integral 

. _!_ = 121«> dz 
0 

0 
(r+z)(s+z)(l-z)3 (B.l) 

a. For r/ s / 1. Separating into partial fractions 

I _ izf "'[ I d2 I dz 
~ -

0 
(s-r)(1-r)3 (r-rz) + (r-s)(t-s)3 (s+z) 

+( I + I + I ) dz 
(r-1)(s-1}~ (r-1)2(s-d . (r-1)3(s-r> (1+z) 

( 
- I - I ) dz r dz J 

+ (r-1)(s-l)i + (r-1) 2(s-1) (1+z)2 + (r-ncs-1) (1+z)3J 

= [cr-s1c~~1fcs-113 { (s3- ~ s i+a s) 109 ~: ~ 
- (r3 

-3r2 + 3r) log~:~ + log ~:i } 
12 . Joo · fcr+s-2) (r-1)(s-n1 

+ (r-l)i(s-r)i l (I +z) - 2 (I +z)2 o 

= 1'2. [ (r-1) lo s - (s-1) Joa r 
. (r-s){s-1Hr-1) ('5-ni 9 (r-l)i :i 

+ (r-s){ i- (r~ll -(;·1l1] 

Therefore 

~ (r-s)CS-l)(r-1) 
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b. For r= 1, sf l, the integral reduces to 

1 100 

di r = \'2. 
0 

(S+1.)(1+z)4 

Separating into partial fractions 
(J) 

(B.3) 

!: l21[ \. ~ + 
'r 

0 
(s-1)4 (s+z) 

-r dz + I dz 
(s-1)4 ( r+z > (s-1)3 (r+z) z 

-1 dz r dz ] -+ -- + - ~"---
(s-1 )Z {1+z)! (s-r) (1+z)4 

Therefore 

_ 12 [l s+z (s-1) (s-1)2 (s-1)
3 Jm 

- (s-1)4 °9 1-t--z - Ct+"Z.> + z(r+zF - 3(1+z>3 

2 0 
= f'Z. . f _ logs + ( t- (S-1) + (s-1) ] 

(s-1)3 l S-l 'l 3 

l(s-n3 

'' logs . 
(s-1) 

c. s = 1, rl 1. For this case the integral reduces to 

(B.4) 

I - 1'210:> dz 
7J' - o (r+z)(l+z)4 (B.5) 

This integral is similar to (B.3), hence 

o= 
l (r-1)3 
12 

de r= sf 1. (B.l) reduces to 

- - \'2 
1 l(XJ dz 
~-

0 
(r+z)i(t+z')B 

!09 r 
(r-1) 

Separating into partial fractions 

.!. = l'Z.lf -3 __91_ + -I di -+ _L ~ 
r L (r-1)4 (r+2) (r-1)3 (r+z)1 (r-1)4 (l+Z) 

0 
-2 dz + I dz J 

+ (r-t)~ (1+z)2 (r-02 (l+z)3 

(B.6) 

(B" 7) 



hence 

_ t'l [ 3 log r _ { l + '2 _ (r-n 1 J 
- (r-1)3 (r-1) r z J 

l (r-nl 
1'2. 

a=~~~~~~~-

~ logr _ { -r' + i _ (r~n } 
( r-1) " 

e. r= s= 1. The integral reduces to the form 

the ref ore 

I 1~ d 
11. o ( l+~)S l= 

:-~ 

I 0 ::. 3 

I r (1 +z.)4 0 

2. Evaluation of the integral 

:. 

I - \'Z. dz · 1
00 

l - r o (S+Z)(!+-z)3 

3 

a. sl 1. Separating into partial fractions 

(B.8) 

(B.9) 

(B.10) 

(B.11) 

00 

I 1'2 j[ -1 di. I ih_ + _2_ dz 
~: r 

0 
(s-1)3 (S+Z) + (S-1)~ (I+!) (5-1)2 (l+z)'Z 

+-'- dz J 
(~ .. I) (l+'Z)3 
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\ l'l [ -
1 

' S-1-z I S-1 Joo l-= r(s-1)2 (s-1) oq \+z 4- l+z - 2(1+z) 2 
0 

The ref ore 

b. s= 1. The integral reduces to 

I \'2100 dz 
~= r 0 (\+z)4 

= _ J1 I }O) - 4 
3r (l-z)3 

0 
r 

hence 

3. Evaluation of the integral 

Q) 

l= 121 dz o 
0 

(s+z) (I -rz )( r+z) 3 

a. For r/ s / l . Separating into partial fractions 

+ + --+ --{ 
I I 1 dz I dz ] 

(r- s)(r.1) 2 (r-5)z(r.I) (r+z)2 (r-SJ(r-1) (r+z)3 

(B.12) 

(B.13) 

(B.14) 

(B.15) 
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, [ 12 { l/ SH+('5 z l)l 5+Z i =- . ts-1)(1-s), (r-n3 -r o9 wz r ... 3r+ og r+7. 

+ (~r2s - 3 rsi + 53) 109 . r+z 1 
1+7. 

. ClO 

_ 12 {(r-s)+(r-n +- Cr-sHr-1) }] 
(r-s)2 (r-l)i (r+'Z.) zcr+z)i 0 

= l'l [ (r-1) Io s + (r-S} lo r 
(r-s)(s-l)(r-1) (r-s)1 9 r (r-nz 9 

+ S-1 {.!. + _I_ + I 1] r t tr-s) (r-1) 

{r-s)(s-l)(r-1) 
I 'Z. r= ----------------

rcr-1) Ion i + (r-s) logr + t:.!. {.!. + _!.__ + ~ 1) 
[(r-S)i '"J r (r-1)2 r 'l. (r-S) (f-1) J 

(B.16) 
b. r= 1, s / l. Integral (B.15) reduces to 

l = IZ d-z. 1
00 

'r 
0 

(s+Z)(l+Z)4 

which is identical to (B.3). The value is therefore given by (B.4) 

c. s = 1, r/ 1. Integral (B.15) reduces to 

(B.17) 

Separating into partial fractions 
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l = i f _J_ \ogr .t { \ +1 + <r-n11 
~ lr-n~ llr-1) r zr2 l (B.18) 

d. r= sf l. Integral (B.15) reduces to 

100 dz. -
~ = l'I. 

0 
(l+i)(rn)4 

(B.19) 

Separating into partial fractiqns 

CD 

l ::. \1. r f. I dt + _:!__ di + -1 d7. 
er Jo l(r-1)4 {\+7.) (r-l)4 (r+!) (r-l)a (r+1)2 

-I d-z. -' d1 1 
+ (r-1)1 (r+L.)a -4- cr-n (r+"Z.)4 

J

oo 
l'l -I [ r+-i: I tr-1) (f-t)'Z 

"' (r-1) 3 L (r-1) oq I FZ. + { ( r+< l + 'l.(r+2l1 + 3( r+z)3 } a 

= .J1.. [ ~ - { l t cr-1) + cr-1)21] (B.20) 
(f-\)3 (.r-1) r Zr2 3r3 ) 

e. r= s = 1. The integral reduces to (B. 9), therefore 
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APPENDIX C 

Evaluation of the integral 

Hence 

l = \'2 dz l
co 

o (l+2)(r+r)~ 

a. For r./ 1. Separating into partial fractions 

l _ if [t.D_I_ ~ _:i_ dL: __:!__ ~ 
a - 1 

0 
(r-1)3 (1tz)· + (r-1 )3 (r+z) + (r-n2 (r+2)2 

-1 d-z ] 
+ (r.I) (r+"Z.)3 

\'Z. r+'Z I (1-1) 1 1
~ 

"" lr- ll1 -\oq in + (r-1) { lr+zl + 2(r+z)2 f 
0 

_ l'2. [ ~ { I 1f:!l }] 
- (r-l)? (r-1) - r + 'lr2 

JQq[_ {1 + 
(r-1) r 

b. For r= 1. (C.l) reduces to 

l - l'Z.lcn dz r -
0 

(1+z)4 

r -4 00 

= L (1-111 J. "" 4 

(i-1) } 
2r2 

The ref ore 

o: I 
4 

(C.1) 

(C.2) 

(C.3) 

(C.4) 
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APPENDIX D 

E..'{})erimental Data 

Displacement and Pressure Response Curves 
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Bibliography On Vachinery Foundations; 

Design, Construction, Vibration Elimination • . 

Compiled by the 
Engineering Societies Library 

29 West Thirty-Ninth Street 
New York 18, N.Y. 

ESL Bibliography No. 5 

11This ari..notated bibliography of 120 selected references 

1950 

from 1924 t9 1949 covers theory, design an~ construction of 
machinery .foundations, with special emphasis on vibration 
problems as related to foundations of hammers, turbines, oil 
engines, electrical machinery, steam engines, compressors, 
machine tools, pumps, presses, etc. Some of the references 
deal with foundations for heavy machinery on unstable soils.n 

Only those items which were found pertinent and are referred to in 

the text of the thesis were included in the references listed above. 


