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ABSTRACT

The problems involved in the design of machine foundations are
discussed, followed by a short review of the literature of the subject,
The general theory of wibration for single and multiple degree of free-
dom systems is briefly reviewed, with special emphasis on its application
to machine foundation design., A procedure for the analysis of machine
foundations is then developed on the basis of a simplified equivalent
system, Procedures for determining the elastic coefficients and the
inertia parameters of the soil are next considered.

The purpose and extent of the experimental investigations are
discussed, followed by a description of the instrumentation used and
the nature and accuracy of the data obtained, The date is then anal-
yzed and checked against the theory presented, The data required for
the design of machine foundations is discussed, and a procedure for
design and analysis is recommended, In conclusion recommendations for

Turther study and research are made,
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INTRODUCTION

The need for a satisfactory rational method of designing machine
foundations has existed for a long time., Although the cost of the
foundation usually represents only a small fraction of the total cost
of an installation, the behavior of the foundation is a major consider-
ation in insuring satisfactory performance of the machine, All too
often has the difficulty and importance of designing a suitable machine
foundation been underestimated.

That knowledge in this field has lagged behind other branches of
technology is partly due to the fact that the responsibility for a
satisfactory installation is divided between two branches of engineer-
ing, The machine designer's responsibility generally does not extend
beyond the design of the machiney the foundation engineer must design
a foundation for it -~ a problem much more‘complex than the design of
a foundation which supports only static loads, This is because addi-
tional dynamic foreces are involved which alter the behavior of both
the foundation and the soil,

In order to arrive at a rational design procedure for machine
foundations, the author's research was directed at an investigation
of the behavior of foundations subject to periodic dynamic forces.

The problem was resolved into three phases:
| 1. A review of the literature of the subject.

2. A study of the nroblem as a problem in the application of
the theory of ¥ibrations.

3. An experimental investigation of foundations subject to
periodic dynamic forces.
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The review of the literature revealed that many of the usual
design practices are contradictory and that much of the available data
on foundation behavior is incomplete and vague, The experimental in-
vestigation was therefore designed to furnish the necessary information
for checking theoretical behavior, It was established that reasonable
predictions can be made on the basis of the theory of vibrations, pro-
vided that the effect of the elastic and inertia properties of the
soil are incorporated. A method of computing the necessary coefficients
was developed and the procedure for analyzing a foundation outlined,

To permit mathematical treatment, several simplifying assumptions
were made in developing the theory., Exact numerical results are there-
fore not to be expectedy nevertheless, results obtained by its use are
in good agreement with experimental observations and should be sufficient-
1y accurate for most design problems arising in practice, The theory
also explains why many of the empirical design practices which have
been established by experience constitute sound engineering practice

and are desirable for dependable and economic machine foundations,



CHAPTER I

REVIEW OF THE LITERATURE ON MACHINE FOUNDATION DESIGN

Introduction

The first attempts at devising design procedures were almost en-
tirely empirical., The next attempt was a rationalization of the problem
by ar application of the theory of vibrations in which the spring con-
stants required were determined from static deflection, About 1933
German engineers developed several vibration machines and used them
to determine the dynamie soil constants, This was followed by experi-
mentation in other countries, prineipally in Great Britain, and led to
the theory of ground "self-frequeney', The latter theory was further
expanded into the so-called "pressure bulb" theory.

Empirical Design Methods

Manufacturers of industrial machines generally furnish "ecertified"
foundation drawings which merely show the location of holes for anchor
bolts and give the overall dimensions required to accomodate the machine,
Recormended values of minimum yardage of conerete in the foundation are
sometimes given, The remainder of the design is left to the draftsman,
The yardage of the foundation is generally based on the assumption that
Ithe foundation will rest on hard firm subsoil, and is justified on the
basis of the theory of mass damping.1 If P is the unbalanced inertia
force, A is the allowable amplitude of displacement, and N is the mass
of the foundation, then

P=Ma-= Mﬁu? A
where a is the acceleration, and w is the operating frequency of the

machine in radians per second, Solving for M, we have
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M= P
2
W a
An arbitrary constant is sometimes introduced to allow for the apparent
2
mass of the soil which moves with the foundation block.( ) This theory

ignores the effect of damping, the action of the soil as a spring, énd
the phase difference between the force P and the displacement A,

Some of the rules of thumb based on this theory which have found
favor ares

a, Weight of foundation block should be equal to not less than ten
times the weight of the moving parts of the machine,

b. Weight of foundation block should be equal ® some multiple of
the total weight of the machine,*

c, Weight of foundation block should be equal to some constant
times the rated hofsepower output divided by the number of cylinders,¥#*

For the guidance of the draftsman the following rules and specifi-
cations have been laid down by various authorss

1. The base of the machine foundation should not be higher than the

base of adjoining foundations,

Cozens tabulated recommended ?agios of foundation weight to engine weight
for several types of engines,'3) The recommended ratio for stesm engines
ranges from 4:1 to 3:1 § for gas engines, from 3:1 for single cylinder to
2:1 for eight cylinder; for Diesel engines, from 2,75:1 for 2 cylinder to
1.9:1 for 8 cylinders,

Larkin(l) tabulated the yardage per horsepower recommended by various
manufacturers for 85 different gas engines, The engines included were
3 to 8 cylinder engines with rated output ranging from 75 to 360 HP,
A1l the engines were of medium speed, ranging from 200 to 400 rpm. The
average yardage recormended per horsepower may be expressed by the
relation
V=0,06 (1+4/m) Ya.>/mP
where n is the number of cylinders.
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2. For reciprocating engines*the depth of the foundation should be at
least five times the piston stroke, with a minimm of five feet,

3. The width of the base should not be less than the heights if necess-
ary, a cantilevered footing slab may be used.

L, Cork isclation pads are recommended for high speed engines, or if noise
abatement is required,

5., To prevent cracking, faces of the foundation should be reinforced

with 5/8 in. deformed bars, spaced 12 in, on center, both horizontally
and vertically, Low shrinkage and low water-cement'ratio concrete should
be used. |

6, Whenever possible symmetrical arrangement should be used, and the
center of gravity of the base contact area should coincide with the

center of gravity of the machine or of the action line of the resultant
dynamic forces,

7. Where soil conditions are unsatisfactory, piles should be used to con-
solidate the soil and to transfer the load to a stronger stratum,

8. Conservative allowable soil bearing values should be used in deter-
mining the base contact area,

9. Pockets or other suitable spaces may be left so that additional

mass may be added shouid the natural frequency of the foundation co-
incide with the operating frequency of the machine.(h)
10, Cantilevered projections should be eliminated wherever possible, or
when unavoidable, should be stiffened with brackets.(5)

11, Where foundations project thru a floor they should be separated to
prevent "moment" continuity.(S)

12, Preloading of the foundation is desirable to prevent misalignment

due to settlement.(é)



Semi-rational Design Methods
During the early thirties, German engineers began advocating a

more rational analysis of machine foundations based on the theory of
vibrations, Much work was done on the problem of isolation by Rausch,
Von Schlippe, Steinbach, Geiger and others, Their most notable con-
tribution was the development of spring supported foundations, which
satisfactorily solved the problem fbr medivm to high frequency machines,
By the use of springs the problém was made determinate, since for low
natural frequencies of the suspended system, the dynamic forces trans-
mitted to the ground can be kept very small,

Rausch(7) classified machine foundations into three groups on the

basis of operating frequency,

A, Low to medium frequencies 0 - 500 rpm
B, Medium to high frequencies 300 - 1000 rpm

C. High frequencies Greater then 1000 rpm

Group A consists of large reciprocating engines, compressors, blow-
ers ete, Reciprocating engines operate at frequencies from 50 to 250 rpm
but have considerable second harmonic content, so that sizable dynamic
forces up to 500 rpm must be withstood. Foundations of the block type
with large soil contact surface are recommended for this group. The
natﬁral frequency of these foundations is generally higher than the op-
erating frequency of themachine, An exception to this case is a found-
etion on piles which may have a very low frequency for the horizontal.
mode,

The second group consists of foundations for medium size recipro-

cating engines such as diesel and gas engines, as well as blowers and
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other rotating machinery, In this group, the natural frequency of a
foundation which rests directly on the ground is apt to coincide with
the operating frequency. A spring supported foundation is therefore
recommended in order to make the natural frequency of the foundation
block much lower than the operating frequency, This type of foundation
is readily designed by application of the theory of vibration and will
therefore not be discussed in further detail in this thesis,

The third group consists prineipally of high speed internal com-
bustion engines, electric motors and steam turbines, In these in-
stallations the operating frequency of the machine is generally well
above the natural frequency of the foundation. Massive foundations
with smell contact area are recommended and cork isolation pads may be
used to inecrease the damping, These pads also tend to reduce the:natural
frequency of the foundation by reducing the effective spring constant,
Framed foundations, such as are required for turbines, are treated sep-
arately, They are generally much more complex since the columms support-
ing the foundation table act as springs, thereby introducing additional
degrees of freedom to the system,

For cast-in-place block foundations, Rausch determines the natural
modes of oscillation from static soil constants, Damping is neglected
both in determining resonant frequency and amplitude of oscillation,
Allowable values for amplitude are given, Formulae for determining
size and type of springs required for type B foundations are given, This
subject is aiso treated by De Gruben.(g)

In general these authors ignore the mass effect of the soil which
vibrates with the foundation, Static measurements or ¢alculstions are
depended upon for the determination of the soil spring constants., To

account for the dynamic augment, soil pressures are arbitrarily increased
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by a factor of five,

Determination of Dynsmic Soil Constants,

About the time of the above development much interest was shown in
the design and theory of vibration machines.(g) Several machines were
constructed and were used by the Degebo (Deutsche Gesellschaft fur

(10)
Bodenmechanik) in a series of extensive tests on various types of soil,

(11)

The classic work in this field was that of Lorenz. He proposed thaﬁ

the natural frequency of a vibrator resting on soil be expressed by the

fo= L | KAg
n e WS'I-WV

where £ is the frequency in cycles per second, k' the spring constant,

relation

A the surface area, g the acceleration of gravity, WS the effective

weight of the soil moving with the vibrator, and Wv the weight of the
vibrator. The unit spring constant k' is generally called the "coefficient
of dynamic subgrade reaction".(lz) It has been found that this coefficient
is consistently larger than the coefficient of subgrade reaction deter—
mined from static tests, Lorenz in his analysis assumed that k' was con-
stant for a given soil, and hence was able to determine the apparent

mass of soil, Wé. He concluded that Wy is not constant, but varies with
frequency, contact pressure and dynamic force, An independent set of
experiments were made by Barkan(13) on cohesive soils, Barkan assumed
that the apparent mass, WS, is constant, and therefore concluded that k'
varies with intensity of contact pressures, size of contact area and with.
the frequency of load application, Attempts have been made by other in-
vestigators to correlate these different approaches. Lorenz' equation

is based on the tacit assumption that the weight, W, of the vibrating
soil constitutes part of the weight of the rigid vibrator, and that the
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seat of the forces of elastic restitution has no weight., Actually, the
boundary of the zone which vibrates under the influence of the impulse
is not sharply defined and depends on the physical properties of the sub-
grade, Several attempts have been made to obtain a more accurste con-
ception of the interaction which occurs between the wibrator and the soil,
The assumption made in Reisner's analysis is that the vibrator rests on
the horizontal surface of a semi-infinite elastic isotropic mass, al
This problem has also been treated by Quinlan, (15) The results of these
anslyses have not been too useful when applied to cohesionless soils,
since for these soils the modulus of elasticity varies with depth,
Tchebote.rioff(16) has proposed a methéd of normalizing the data on the

basis of caleulating the natural frequency for unit contact pressure, thus:
[ 7
Wv [ +Ws /Wv

= 'Fnr/_ﬂ;

where

= Wv
P A

and fnr is the reduced natural frequency, On this basis he finds that
there appears to be some correlation of all published data to date, which
may be expressed approximately by the relation

for = 15004

Ground Self-frequencies,

As early as 1885, it was noted by Rayleigh, that under certain con-
ditions the ground appeérs to have a natural or "self-frequency”, which
depends on the physieal properties of the soil, This phenomenon was also
studied by Laub in 1904, and by the Degebo in 1934-36, and by Sezawa and
Kanai in 1937, In 1946 Bergstrom and Linderholm in Sweden showed that a
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correlation exists between the self-frequency and the bearing capécity
of the ground, and proposed making use of this phenomenon as & practical
method of determining bearing values for ordinary building sites,
Andrews and Crockett(l7)Ain 19/4 made a number of vibrograph studies in
which the self-frequency was excited by dropping heavy weights on the
grounds damping factors were determined by measuring the decay of the
oscillations, The frequencies obtained in this manner appear to be some-
what lower than those obtained by the Degebo with continuous excitation,
This is shown graphically in Fig, 1,1. On the basis of these self-
frequencies and in an attempt to account for the mass of soil moving
with the foundation, Crockett and Hammond have advanced the "pressure
bulb" theory, (18)

The Pressure Bulb Theory,

Most investigators have realized that a portion of the soil moves

with the foundation and effectively behaves as an additional or apparent

mass, Lorenz(ll) attempted to measure this mass but had to assume that
the dynamic subgrade reaction remained constant., In 1948, Crockett and
Hammond(17) proposed thaﬁ the pressure bulb be used as a measure of the
apparent mass, If the soil is assumed to behave elastically, the pressure
at any point may be determined from tﬁe Boussinesqg equations, If points
of equal pressure are then considered, they will be found to lie on &
bulb-shaped surface., Crockett and Hommond assume that the mass of the
soil within this envelope or bulb can be taken as the gpparent mass. The
size of the bulb, of course, depends on the pressure intensity selected,
Presumably this value may be determined experimentally.,

S .

Progress in the field of machine foundation design has been very slow,

Only in the last two decades has a rational approach to the problem been



~10a~"

_GROUND "SELF FREQUENCY® . . |

T S ———

. «LORENZ, 1934
- Loose ﬁll :
Dense cinder ;E'ill

Denge medimm sand

Fine with 30% medium sand
. Dense.mixed grain sand ..
Denge pea gravel

© Dmmo 1936 -
Marsh, 10 £y over sana i
. Fine gand . iy
Moist ¢ertiary elay
Molst medium sand = - - 4
. Dry.medium sand... ... -
Clayey sand over ma;rl rubble
- Gravel with stenes
. Marl ru}:ble 4 R
.!'fa:rl Lol

L OWTT U TG

T L d et
OO G WA £ 1O -

L9 AHDR:WS & GROQKEM, 191;5«&7
v Waterlﬁggea 8ilts
Iight soft clay |
Light *waterlogga& zsana
* Medium clay
Layereﬁ. pea'h ané. :sa.na

s a«;mmw

' PERMISSIBIE BIARING VALUE - Tons / Squ T4,

 Figure 1,1 |



o

attempted, The methods of énalysis advanced to date have either over-
simplified the problem or have been limited in their applicétion to.
speciai cases,  As a result, engineers still rely almast'entirely on

Judgement and’experiencé'in designing machine foundations,
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CHAPTER II
THEORY OF VIBRATION OF ONE IEGREE OF FREEDOM SYSTEMS AND ITS
APPLICATION TO MACHINE FOUNDATION DESIGN

Mechanical oscillation is caused by the interaction of inertia and
restoring forces when a body is disturbed from its position of static
equilibrium, The requirements for oscillation are the presence of a
restoring force and the kinetic energy of the mass, In the case of
machine foundations, the latter is furnished by the mass of the machine
and its foundation, plus a portion of the soil which moves with ity the
restoring force is furnished by the elasticity of the soil, The mass
of the system may be expressed byvm = W/g and the exciting force by
F(t), In general, restoring forces for small displacements may be

- considered linear, for if we express the restoring force as
2 3 '
Foo = kox + kyxPe ks x's ., (2.1)
then for sufficiently small values of x we can write

f) » k¥ | (2.2)

Since (in the desigh of machine foundations) we are interested in keep-
ing the displacements very small, the above simplification is justified,
In (2,2) k is called the spring constant,

Unless external energy is supplied, a disﬁurﬁed system will grad-
ually come to rest because of energy losses, The sources of these
energy losses are dissipation and damping., In the case at hand, dissi-
pation is due to radiationof ‘energy into the soil mass on which the
foundation rests, and damping is furnished by the friction between soil

particles, The combined effect is most conveniently expressed as a
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demping force, py_ , where it is assumed that the damping force is
viscous, i.e,, proportional to the velocity, If the damping force does
not follow the wiscous law the problem is non-linear and serious com-
plications in the mathematical treatment of the problem ensue, It is
therefore customary to treat the damping force on the basis of an equi-
valent viscous damping factor, Qe,, which causes the same energy loss
in the system, It is one of the purposes of this thesis to determine
the seriousness of this simplification in predicting the behavior of.:
machine foundations,

The Equivalent System,

If the elastic restraints of a system are of such a nature that
the system can only vibrate parallel to, or in a plane about, a fixed axis,
it is said to have one degree of freedom, Otherwise, the degree of
freedom is equal to the number of coordinates required to define the
displacement, In the most general case, the movement of a rigid system
such as a block foundation can be resolved into three translatory and
three rotational components, and such a system therefore can have, at
most, six degrees of freedom,

Gonsidef the simplest case, a system with one degree of freedom.
The machine and its foundation plus the equivalent effective mass of

the soil moving with it is considered as a mass resting on a demped spring,

t F()

Figure 2.1
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The differential equation for this system is

mX = - kx- Px + F(4) . | (2.3)

Undamped Free Oseillation.,

For the case of zero damping and no exciting force, equation (2,3)

reduces to

mx + kx=0 . (2.4)

Tt can readily be verified that a solution of equation (2.4) is
x= A cosyfEt , (2.5)
where A is the amplitude of oscillation, and the period in seconds is

given by ‘
’I’ E (31 (2.6)

- The frequency of oscillation, in cycles per second, is

-.L__L (2.7)
T 'Z‘E' ?

since m = W/g and the static deflectlon is given by

85{- = WI; . (2.8)

The simplieity of these relationships is appealing and has led many
(7)

investigators into trying to determine the effective spring constant
of a foundation by determining the static deflection of the foundation,
either by direct measurement or by computation, The difficulty in this
approach to the problem is that these deformations are normally very
small and hence cannot be determined very accurately., Furthermore,

the deformation rate is dependent on the load intensity since soils are
not elastic materials, The equivalent static deformabtion, therefore, is

not a constant, but is a function of the intensity of load and the rate

‘of load application,
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Damped Oscillation,
If demping is considered, equation (2,3) may be rewritten as

mX + Px + kx =0 (2.9)
The general solution of equation (2,9) is of the form
At t
x=C e’ + Cpe? (2.10)
where + 2
A = - ﬁ — d 33 - 4’ km
| 2m (2,11)

The condition for oscillatory motion is that fsz < 4|<m. When
3’52: 4 km , the system is said to be critically demped, Critical

damping is therefore defined as
P = 2ykm | (2.12)

For small damping, ﬁ < S5C , equation (2,10) may be written

S T
- /] .
x=e ™ (¢/sinf K - (BY24 |

2m (2.13)

4+ CJ cos -’-‘--(—’B- )z‘t
2 m \2m
’

For the case C' =0 and ﬁ= 0 equation (2,13) reduces to
equation (2.5), Inspection of equation (2.13) reveals that damping de-
creases both the amplitude and the frequency of the vibration, The

period for this case is given by the relation

2T
. (2,14)
T = / k ( B \2
_ m m
Damping is conveniently expressed by the ratio:

2

C= — (2015>
Be
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For most soil conditions "e" has been found to range from 0,05 to 0,15,
The effect of damping on the frequency of the vibrating system is of

interest, Rewriting equation (2,14), we have

Te —2% _ _ (33
2 = (2.16)
\H%. - %}_ = 1/:5: h-c?

Expanding by the binomial theorem,

T = % (\.\..‘ic} + %c“-\-...) (2.17)
m
:ZRTEU.‘.%Z) ;S for c <<

It is seen thereforg\ that for ¢ = 0,10 the error introduced in the
computation of the resonant frequency by neglecting damping is only about
one half of one per cent, For practically all design problems this degree
of accuracy is more than sufficient,

Damping, in a freely vibrating system, may be measured by the ratio

between successive peasks, Thus, if

£ 1

?(‘ = e‘ 2m
and ) B ( {l +"[')

252 = @ om

. 8+

then % - (e Eém%.)( e+2m({. )) : eg—nT

) & ~
The logarithm of this ratio is generally called the logarithmic decremer_rbg 5
therefore

5 = log & . (2.18)

3 X2~ 2m

For small demping ratios where C= _9. K|

<
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and therefore,

J= 2T gc = ’ZTfC'

Foreced Oscillation,

(2,19)

We will next consider the motion of a system with one degree of
freedom under the action of a periodic external force. The equation of

motion (2.13) can be written as
mX + X + kx = Fosinwt (2.20)

In machine foundations we are only interested in the steady state
oscillation which is given by the particular solution of the above

equation, Thus,

Fo -
% & V(k- )+ @2 0l sSin (w]l'gg) (2.21a)

where

(2.218)

@ = fan™

k- mw2
If we define the frequency of the undamped free oscillation of the system
by

W = F radians per second (2.22)
n = -r-;‘ 9
and recall that the critical damping is given by
B = 29km
equation (2.21) may be rewritten in the form
Fo
\/ 7. e sin (wt- #) (2.23a)
(&) + (2 2)
where
¢ -é =l 2¢ %n
= Tan 2
- () (2:23b)
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The meximm amplitude, A, occurs when sin (wt -¢ ) =1
Defining the static deflection for the exeiting force F,, by

/ F
Sst " 'f% (2.24)

we obtain from equation (2.23)

A i 5
S¢ (- %n)2)2+ (’&c-g-“2

This ratio is called the dynamic amplification factor, A plot of this

(2.25)

factor is shown in Fig, 2,2 for several damping ratios, These curves

may be normalized by dividing the amplitude by the amplitude for %n?- | .
The resulting eurves (Fig, 2.3) are useful in determining the damping
factor of a system by comparing them with a normalized curve of the
measured displacements, Inspection of equation (2,25) reveals that the
nost important factor determining the amplitude is the frequency ratio,

@ / wn ° If equation (2.25) is rewritten in the form

s Fo
k(- (&) + (2 8 )

it can be seen that when the frequency of the external force is in

(2.26)

synchronism with the frequency of the free undamped system, (i.e. W=Wn,)

Fo Fo

A= k(_’Z_E_)('/_E_U/l_r;) = pw (2.27)

For low frequency ratios, ( W/y = 0,)

A= Fo
K (2.28)

For high frequency ratios and small demping, ( w/wn »l, <« l:)
2)2 K 2
w ~ (& -
(["(E)-n)) '—(wn) dnd C =0

‘hence A 3 Fo L Fo
- 2 - 2
k() mw (2.29)



Figure 2.2
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It is clear therefore that for low frequency ratios the principal
faétor affecting the amplitude is the spring constanty for frequency
ratios near unity, damping is the controlling factory and for large
frequency ratios, the critical factor is the mass or inertia of the
system, These considerations, together with the power and the trans-
missibility relations to be developed presently, are very useful in
determining criteria for the design of economical machine foundations,

It is interesting to note that these relationships are analogous

to the familiar electric network equationss 13 being analogous to re-

sistance, %% to capacitive reactance and m to inductive reactance,
This becomes quite clear if we rewrite (2.26) in the form

Fo/uw
A= 2 2
K - wm +
(K ~ )+ 2
where the denominator represents the mechanical impedance of the system
=./(k - 2 z
E \/(m wm)® + P (2.31)

From (2,31) it is immediately evident that the impedance is dominated .

(2.30)

by k for low frequency ratios, by s3 for frequency ratios near unity,
and by m for large frequency ratios,

Forced Oscillationy Exciting Force Proportional to the Square of

the Fregquency.

In the design of machine foundations, the periodic exeiting force
which must be considered is normally due to an unbalance, and the force

will therefore be proportional to the square of the frequency. Thus
. , S
F({) = m'e (.o2 Sin w’c.—- Fo w? sinwt (2.32)

where m' is the unbalanced mass and e its eccentricity, Defining

r=m'e/ = W'e/W (2.33)
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equation (2.25) takes the form
(“Yw,)

A

== 2 w \2

r ’\/(l - Wien)” + (2cg)
This ratio is called the dynamic amplification ratio(é) and has been

(2.34)

plotted for several damping ratios in Fig., 2.4.
It is of interest that for large frequency ratios the right hand

side of equation (2,34) approaches unity. We may therefore write

W= W/;e C (2.35)

| where C approaches unity for large frequency ratios if the damping is

small, For example, when

W =2 and c=0, C= 133
Wwn
and when

w = 0. = {29
& =2 and c=0.0, C=|

Since ¢ can be estimated closely from the frequency response curve,
equation (2,35) furnishes a useful relation for experimentally deter-
mining the effective mass of a system(g). The effective spring factor
can then be determined from equation (2.22). Some caution, however,
should be exercised in applying this procedure to determining the
apparent mass of soil moving with a foundation., There is considerable
evidence that the apparent mass of the soil depends to a large extent
on the amplitude and the phase relationships of the vibration and is
therefore not constant,

The dynamic amplification ratio (equation (2.34), Fig. 2.4) may
be normalized in the same manner as the dynamic amplification factor.

The normalized curves, Fig. 2.5, may be used to determine damping factors

when the exeiting force varies as the square of the frequency,
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Inspection of Fig, 2.2 and Fig, 2.4 reveals the importance of the
frequency ratio, Large amplitudes can be avoided by selecting a fre-.

° w o o o 9~
quency ratio of w/wn 0.5 or /wn>l.5' . Where this is not possible
r must be kept small and SB made as large as possible, These require-
ments are also desirable from the péint of view of power loss,

Power Considerationsy Equivalent Viscous Damping,

In a system having sustained oscillations, the average power input

v’must equal the average power dissipated in damping, Since power is the
rate of doing work, we can express the input power as _

P=Fvs= F%’;‘ =F Sfﬂwa'A“’COS(w*“¢) (2.36)
where F, is the magnitude of the exciting fdrce, A is the amplitude of
the oscillation as given by either équation (2.25) or (2.34), and 525 is
defined by equation (2,23b), By a simple trigonomgtric transformation
it ecan be shown thate | |

sinwt cos(wh-8) = %(smgé + Sm(Zw’t -8))

Therefore

(2.37)

b_ BAWY [sind + sin(eut-¢)]
L 2
Inspection of the ébove equations shows that the input power fluctuates
around the mean level
= RA® gn 4 (2.38)
ave 2

at twice the input frequency.

This average input power must be equal to the average power dissi-

pated by damping, The power dissipated is given by

P=Fv= ﬁAzwacoSZwa ) (2.39)

The difference between (2.39) and (2.37) represents the potential

energy stored in the spring and the kinetic energy of the mass. The
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average value of the power dissipated is

P p A’Zw?.

dave. i I (2.40)
since the average value of cosz(w{- ¢) is 1/2, Egquating (2,38)

and (2.40), we obtain

p= Fo_sin ¢

w A (2.41)

At resonance, sin,g‘ = 1, and therefore

_ Fo . (2.42)
33 =

w An
So far it has been assumed that the damping is visecous, (i.e., the

damping force is proportional to the veloeity). In the problem under
consideration, this is not entirely the case, In a machine foundation
energy is dissipated by radiation and also by friction between the soil
particles., This friction or Coulomb damping is not proportional to

the velocity, A ééod approximation, however, can be made by determin-
ing an equivalent viscous damping factor from energy considerations,

This equivalent damping factor may be defined from equation (2.40), thus

53 - z Pd ave.
e AZ 2 ~ (2.43)

Determination of the Damping Factor,

We have already discussed how the damping factor may be determined
from the normalized amplification curves, Another c@n‘\fenien’o method
which can be used for small demping, is to determine the damping ratio
from the width of the resonance curve at a point ﬂrhere the amplitude is

equal to .\[2. Am ax. by means of the relation

Cc= Sa/ﬁc’-‘-’ 'Q—{f' , (2.44)
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for, from equation (2.25), (and since A .= A,)

VE Ag _ AR _
2 5g  He o V- @) + (2%

Solving for (w /wn)z , we f£ind

(w/wn)2= (1-2c%) £ 2cy B+l

but,
? 2 ‘/
Aw o~ Pi-W2 _ 2¢ vk =2c(1+ 3cty19¢4.)
“ w?+w? |I-2c? = 5

eo_2C

For ¢ = 0,10 the error introduced in determining damping by this method

is about 2.5 per cent, and for ¢ = 0,20 the error is about 10 per cent.
For flat response curves the damping ratio may be determined from

phase shift measurements, From equation (2,23b) it is seen that for a

frequency ratio of unity (i.e. Ceédn='l ), the phase angle between

the external force and the resulting displacement is exactly ninety

degrees for all damping ratios, Therefore the natural frequency

(i.e. the frequency of undamped free oseillation) is also readily de-

termined by phase shift measurements., Solving equation (2.23b) for c,

we have

- (8.)°
& o B dand (2.45)
2 Gon
The damping ratio can be calculated from the above equation by measur-

ing 95 for some frequency ratio different from unity., The relation-
ship between 95 and a)/ wn is shown graphically in Fig. 2,6 for several
damping ratios,

Effect of Damping on the Dissipated Power,

Next to the amplitude of oscillation, the most important criterion
in machine foundation design is the energy dissipated. Dissipation of

large amounts of energy not only constitutes a decrease in efficiency
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(since this power ﬁust be supplied by the machine itself), but also may
cause considerable annoyance in adjacent structures whose natural fre-
quency happens to be in synchronism with the system, The effect of
damping on the energy dissipated is therefore important,

From equation (2,40) we have for the average power dissipation

P = PA%wE _ B w®Alc
dave. 2 2
On substituting equation (2.34) for A we have
P Be wir? [w]4' ZC 55 (2.46)
=z —— | = 2 W .
dae.> 2 L@l (1- (B )+ (2 §)
The power dissipated will reach a maximm when
dR _o
de

2
provided d F::l is negative, It can therefore easily be shown that

for maximum power dissipation
w22
2_ (l— (mn))

(2.47)
w \2
4(mn)
solving for L%&Dn , we find
w _ + 2
W X RITS (2.48)

This relationship is shown graphically in Fig, 2,7, It is clear from
this figure and from equation (2.47) that an increase in damping will
increase the power dissipation except in a narrow zone near resonance,
Since practically all machine foundations should be designed so that
the resonant frequency does not coincide with the exeiting frequency or
its harmonics, it can be seen that, as a general rule, artificial damp=-
ing should be kept to a minimum, compatible with allowable displacement
amplitudes, This is especially true of foundations for high frequency
machines, since the power dissipated varies approximately as the square

of the exeiting frequency,
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The power dissipated when the exciting force varies as the square

of the frequency may be obtained by substituting equation (2.34) in

e pot A
e.(ove_"’ 2 (1 _(%n)z )2 + (2c %ﬂ)Z (2.49)

Recalling that ﬁ = C Pc = 9 ch<m , and that u)r’$= k/m , equation

(2.49) can be written as

Pd - Ac kwnrz (2.50)

qve
where Ac is given by

W \é

(&%) ¢
2
© (@R ¢ (2eg)

A ¢ is plotted as a function of the frequency ratio for several values

(2.51)

of ¢ in Fig, 2.8,
To show the dependence of Pd on k, my, and ﬁ for various frequency
ratios, we can rewrite (2.49) in terms of k, m, and ¥ , Equation (2.49)

becomes

1 18 4ﬁ
1T W @
Ei = 2 [ 96] (ZL:J 2 a,)m)’Z + e (2.52)

ave,

From equation (2, 52) it is elear that increasing IS will increase the
power dissipation except when

53 > t% - muw
for only in that case is the denominator of (2.52) dominated by 532 .
This means that only in the zone near resonance can the power dissipation
be decreased by inereasing ﬁ 5. for then k/wg wm. As in the case for
displacements, the denominator is dominated by k for small frequency
ratios and by m for large frequency ratios, For a given k/m ratio
(i.e. a given Wn), the power dissipation is therefore decreased by

increasing k and m,
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Transmissibility,

The third factor which must be considered in the design of a machine
foundation is the magnitude of the forces transmitted to the soil, In
order to discuss this phase it is convenient to visualize the soil as
consisting of two zonesy (a) the zone adjacent to the foundation in
which the major portion of the distortion of the soil tékes place, and
(b) an outer or rigid zone, In the first zone the damping is princip-
ally due to intergranular friction while in the rigid zone it is
essentially dvue to radiation of the transmitted forces, Since the demp-
ing due to radiation may be quite small, it is desirable to keep the
transmitted forces small in order to prevent disturbance of adjacent

structures whose natural frequencies coincide with the exciting frequency,

t o

\ ek o
\ Di;'g;z‘bed // § I:I- T é
\

~N__ 7

Actual System Analogous System

Figure 2,9

7o study this problem, we replace the actual system with an anal-

ogous system, The force transmitted by the springs is given by
Fy = kx + fx
= kA sin (wt-¢) + PwA cos (wt- ) (2.53)

where A is defined by equation (2,25).



i

The amplitude of the transmitted force is therefore

Fa . = K A (.SER“.’)Z (2.54)

Transmissibility is defined as the ratio of the transmitted forece

divided by the exciting force, and is given by
Fa VI + (Be)
Fo 'V (2 2 + RBw <
(l (wn) ) (2 .ﬂc.wn)
If we define
w
N = Wn 3
and since wn=é‘, Fc_: 2ykm , and ¢ = _j;c , equation (2,55) can

be written in the following alternative forms:

(2.55)

2
Es_ = V Judre-bis (2.56)
Fo 4(1- N2 + (2cN)?
N R
fa - B e (2.57)
Fo 2\ N2 B2 )
[~N¢)" + ——
V( ) km

Transinissibility as a function of the frequency ratio is plotted. for
several damping ratios in Fig. 2.9.
From equations (2,56) and (2.57) we can draw the following conclusionss
1. For N<VYZ the transmissibility is greater than unity,

2, For N< ’\[f the transmissibility is reduced by i‘ncreésing
P and decreasing m and k,

3. For N >'{E the transmissibility is reduced by decreasing
 and increasing miand k,

The effect of B , k, and m on displacement, power dissipation and trans-

missibility are summarized in table 2,1,
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From table 2,1 it can be seen that the requirements for minimm
displé.cement, power dissipation and transmissibility are contradictory
and hence a compromise must be made in an actual design, The problem
is further complicated by the interdependence of k, m, and 3 for most
soil conditions, TFor machines operating at low frequencies, good soil
conditions are required. Excessive vibration and settlement mey be ex-
pected if this type of equipment is founded on loose or compressible
soils, This type of soil is characterized by a low elastic modulus,
resulting in a low effective spring constant and large damping factor,
In many cases soil conditions can be improved by grouting, driving piles,
or by some other method of stabilization'. These methodg of stabil-
ization have also proved effective for correcting existing foundations

which vibrated excessively, (18,19,20)
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CHAPTER III
MULTIPLE DEGREE OF FREEDOM SYSTEMS

EQUATIONS OF MOTION FOR A BLOCK FOUNDATION

The discussion in Chapter II was limited to systems having one
degree of freedom, In practice, foundations can oscillate simultaneous-
ly about a number of axes, Specifically, a block foundation (that is a
foundation in which the machine and its foundation can be treated as a
rigid unit) will have six degrees of freedom, namely three translations
and three rotations. In order to examine the possible modes of oscillation
resulting from these six degrees of freedom, it is convenient to apply
Lagrange's method for deriving the equations of motion.(21’22)

In the discussion of single degree of freedom systems, it was
noted that damping causes only a small shift in the resonant frequency.
From figures 2,2 and 2,4 it can further be seen that small damping has
only a minor effect on the amplitude ratio for frequency ratios of less
than 0,5 and greater than 1,5, In considering problems with several
degrees of freedom it is convenient to neglect damping in determining
the natural frequencies of the principal modes. The problem is thereby
considerably simplified without much sacrifice of accuracy,

Lagrange's Eguaﬁions.

In more complicated systems, the problem of how to determine the
differential equations for the system must first be solved, Starting
from Newton's law we haves

F=mpr (3.1)
Converting into energy terms, we find
E.df= mfdFf= mi-dcdt= _ci(m.ﬂdt
et dt'e (3.2)
dw=dT
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where W is work and T is energy. The advantage of relationship (3.2)

is that it involves scalar quantities (i,e. velocities) instead of the
vector quantities of (3.1)., In order to rewrite (3.2) in a form leading
to the differential equation, a system of generalized coordinates is de-
fined, In general, for any system there exists a set of generalized
coordinates g, doy G3ssses Such that the coordinates are independent
and correspond to the number of degrees of freedom. Let us assume that
the system coﬁsists of "n" mags points and that the configuration of
these points is given by "r" independent parameters. Let us further
assume that the Cartesian coordinates of the n mass points can be ex-

pressed in terms of the r coordinates by equations of the form

Xi = Xi(qlg qz, q3, EEEE) qr) l
Yi = yi(ql, q2, qg,crcao qr)
Zi = Zi(ql, q2, qg,cvoo. qr)

where i =1, 2, 3, seey N,
Since the coordinates qy, do 43y sees Gy are independent, the increment

of work resulting from a smell variation of gy is

dw = g—g“dq: deqK | (3.3)

where QK = %\A/ is called the generalized force,

The generalized forgé has the dimensions of a forece or a moment, and the
dimension may be determined by the rule that Qk-qk has the dimension of
work. The kinetic energy may be expressed in Cartesian coordinates by

the relations

2 2 .2
T=-{- ma( i+y1+21) ' (3.4)



since

Yi = P.Bi C.{,K
0q«
Z; - %K 9,
R ARCIANCEN
=T(‘hsé{.‘) (3.5)

and

?
T is a homogeneous quadratic function of the Q8§ 3 therefore
g 3

aT dg AT
(cﬁk) 5 & 4. 5(&)
and
arg = 2T
A
Therefore,
o[ § 4+ -4 a4
T
= a%‘h +2dT- d’{ng{(gzﬂ
Transposing,

de[g{ 5flk aclK] dqn = dW- decl
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When the system is conservative,

fols 1%
where Uis the potential energy, Equation (3,6) can then be written in

the forms

(3.7)

d_ (3—. )‘- ____a(gc‘:) -0

Equations (3.6) and (3.7) ere called Lagrange's equations,

Small Oscillations of‘a Conservative System about an Equilibrium Point,

The coordinates may be selected in such a way that in the equili-
brium position gy = g5 = d3 = eee = qp = 0, and the level of the potent-
ial energy is zero. Expanding the potential energy in the neighborhood

of the equilibrium position by means of a Taylor series, we have

U=[ ] k- ]‘la*”'*'[aqzh*“‘

(3.8)
+ e 00
aq aqz]ﬁ Clz aq ac{_} CL Cta .
+ higher order terms ‘
Since the expansion is about the equlllbrlum position (U = 0)
U
- g -0, (3.92)

3q,

and

aqz ' (3.9b)
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If the motion of the systemis restricted to small oscillations, all
terms of order higher then the second may be neglected., Equation (3.8)

can then be written in the forms

““Zz[a?;%q] Clij
=EZ¢ JZ kij qi q;

where the kss's are called the elastic coefficients, and are equal to

kij [ ?; 3‘1,] (3.11)

For stable systems'the potential energy, U, has a minimum value at the

(3.10)

equilibrium position, Hence for qj = Ay = Qg = eeo = dp = O, U=0,
and is also a minimumg it follows that U must be positive everywhere
else, U is therfcre a positive definite quadratic funetion,

The kinetic energy may be expressed in a similar manner, Tb trans-

form equation (3.4) into general coordinates, we recall that

x1 = f1(ag, 92, 935 «e05 )

[t}

Ed fz(qu 4o, qg, XXX qr) (3-12)

Zi = fB(ql’ q29 qB’ 9"? qr)

where qqp, Qs 93y oo 9, 8TE independent coordinates, and that therefore

34'. + 4 10
oq, 1 @ﬁﬁ Z

(3.13)
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Substituting in equation (3.4) we obtain

T= ,Z { af. (_'é._g)'lc'f,, it (32')(é_‘)ciq+.

(bfz s 2 afz)q ~ “.,.2(89) brz ‘H" }

The coeffieients of 4 ete. are called the inertia para-
i q’. ’% " qlqz ? . : B

(3.14)

meters and may be denotéd by ms;. Expanding in a Taylor series about

the equilibrium point,
I TP S B

A1l terms except (m ) contribute third or higher order terms to the
kinetic energy T, and therefore may be neglected for small oééillations.

The expression for kinetic energy therefore reduces to
' Z Z e 0 (
= = ° 1 ; 3016)
T 2 (mq)o ‘{ﬂj ;
: i 3

Since the kinetic energy can not be negative by definition, T is a
positive definite form of the velocities, T does not depend on the

coordinates, therefore

aT _o
aq;

and Lagrange's equation reduces to the-simple form
d(gl» + 9 _o | (3.17)
9i aqi
If these equations are written explicitly for r=3, the following

equations are obtained upoﬁ'subsfitution of equations (3.10) and (3.16) .

in equation (3,17):
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myqdy + Myods + myqd3 = - (kyqay + kyadn + ky3a3)
Moqdy + Mool + Mysds = = (kpjay + kpoap + k23q3)

Moy + Myplly + Mysly = = (kgyag + k5o, + kyga,)

The terms kyy = kgq,y kpg = kg, and k31 = k13 are called static coupling
terms, whereas the terms mjp = myi, Myg = Mgy and Moy =Vm32 are called
the dynamic coupling terms. The systems in which we are interested,i
narﬁely block foundations, contain omly static coupling téfms.

Finally, if the system is subjected to an external forecing function,

F; sin( wt + )& ), the relationship becomess
d(AaTY) + 2U = F sin(wt+¥) (3.18)
34 dq; |
dt\ oq; q: 4
Since in our application there is no dynamic coupling, the kinetic
energy is given by:
«r
! 2‘ o @
= = m
T-— 2 i lqi 3

and when expanded, equation (3,18) assumes the form

m;q.+ ki tkiag,thiaqt ot kieq = R sin(wt+f)  (3.29)

For a single degree of freedom system, equation (3.19) reduces to the

familiar ‘equa’c.ion
mq + kq = Fsin(wt+y) | (3.20)

For a single degree of freedom system the frequency of free oseillation
may be found by assuming g = A sin w{ | to be a solution, and substitut-
ing in the reduced equation

mq + kcl =0
Then

~wm+k=0
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from which the frequency of free oscillation is determined to be
: 2 _
Wn = ,k/m
The same procedure may be extended to a multiple degreé of freedom

system, Assuming the solutions to be of the form

9; = A; sin ( wtey) | R ¢ &
we obtain |
n
-miutAi + Zl kij Aj=0 e
j.‘:

For a rational solution, the determinant of the coefficients of Aj; mst

vanish, therefore

. !(kll‘ mm)z) ki k‘3 . kin
kZl (kzz-mzuil) _ kz; Ve e
ka kg (kyrmd) - =0 (.23)

knl ~ Kn2 (knn" mn“'})

The determinant (3,23) may be solved for the n roots of . The most

general solution, therefore, is
" :
(ry . : A
qi = 2 Al stn‘(wr'f +}/r) (3.24)
=l

(r)

where A is the coefficient corresponding to the frequency for the

i th coordinate,

Orthogonality Relations.
If the result of (3.24) is substituted back into equation (3,22)

then for the r th mode



5=

n

r) AL
Mol AL = ;‘ kij Aj e

and similarly for the s th mode
(S) . (s)
m; wg A zkij A; (3.26)
] ;
(r)

13
Multiplying (3.25) by Ai( 8) and (3.26) by A, and summing over i we

obtain: . B I
ry (s
§mod A= ) ) ki A A
i=1 =l j=|
n (M (M v (r) z ) (r)
miw:Ai A =z kij A; A Z kjiAi Ay
i=l i=l j'-" J-l b
But, kjij k,}l’ hence
(r) (s)
A A =0

Since (Or and &)5 are different roots, ( OJr' ws ) #0, and
n

) m A Aj %-0 (3.27)

i=l
This relationship is called the orthogonality condition,

Forced Oscillation Amplitudes,

Equation (3.24) gives the relative amplitude for the various modes,
but the absolute amplitude is unknowm because the coefficients Ai(r)
are unknown, To determine the amplitude of oscillation, it is again
a@nvenient'to recall the procedure followed for single degree of freedom
systems, If we substitute
q = A sin(wt +¥)
in equation (3.20), we obtain

~Aw'm + kq =F
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Solving for A
’ F P

(k- mw?) L= (Woon)?

fi

and hence

- .___fZE;____ \ i)
4= oy (et

We again recall that the above expression is valid only for the case of
zero damping, Even for appreciable values of damping, however, the
expression for A is reasonably accurate for frequency ratios less than
0.5 or greater than 1,5,

Accordingly, for multiple degree of freedom systems we try the

substitution
) .
4, =2 el sin(wts 1) (.20
r

The orthogcnallty condition (3,27) then becomes,

) )
z mcc\"¢(r ¢s O

Then, since cr ¥ 0

(ry ()
i il ¢i ¢ =0 (3.29)
1=l '
Substituting the assumed solution (3,28) in equation (3.19) we have
(r)
-m; ch‘¢¢ + k&lzcr¢l + kaZC"% Tuvn = Fl (3.30)
f= =l

(r) (ﬂ
but since A3/ in (3. 25) is replaced‘hy Ce .

kquf¢“‘}' ktzzct‘ +on = Zkljz Cr¢j(ﬂ
t

r=(

»
» :

o
Kij(Cdj reudy s )
n )
Crp ki] ¢j(r - (3.31)
= 2 (M
CrJTWiCﬂH-Sii

-
—3

SR Ms5S M

r=1
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Substituting the result (3.31) in equation (3.30), we have

n
(r 2 .
Ecrmggﬁ (wi—w)= Fi (3.32)
If we now write ,
n
Fis) fem; g (3.33)
=i
then i (‘ n
f 2 .2 r)
z Crmi 9141 (wr—w } = Z ﬁ-miCﬁ;(
=| =1
and hence

cr(wi-wt) =%

Solving for c.,

f

Cr= we2- w? (3.34)

The desired solubion is therefore

9" Z (wrj__—r-w—z) ¢i(r)3‘."(°"**¢) (3.35)
: sl

The problem of determining the oseillation amplitudes is solved provided

we can determine the coefficients f,, from the given forces Fq, Foy Fg oo

Fn. From equatiﬁn (3.33) we have

Z‘cmsfés(r)"‘cmld’(’) f, '¢' oot Bymy™

) (n (" (@) (r) (n) ((r)
qusj(r wems § -pm_\tfb "'+“',"m.i¢i 9*(.ir

Summing over j we have, owing to te orthogonality condition (3.29),

L (r) % (r)'Z
B0 i
j

i

Then
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And hence

-
(r)
Y FidiC
1=l (3.36)
¥r T2 (r)12
) mi[7]
J=!
It follows, then, that

. f F: ¢J(f') ¢§r)
Ch: z IEl . Sm(w{-.;.’}é) (3.37)
n " 2
o Zm,[gs,“] (w2~ w?)
J=

Equations of Motion for a Block Foundation.

Let us consider a block foundation resting directly on the soil,

\_/q 9.

]

93

LS g

Z SN R o

C \/ q:_:, \_/ 4
ISSITUSUES q2 \W mmwwmmgmw
¢QS +QS
Z

Figure 3.1
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Let the qi's represent the displacements or rotations as shown in

Fig. 3.1, The center of coordinates, i.e, the equilibrium point, is the
center of the combined mass of the foundation block,-the machine and the
apparent mass of soil moving with it,

If the block is depressed a unit distance into the soil, the soil
will exert a forece on the block which we may define by k,. This force
is called the vertical spring constant of the soil, Similarly, for unit
displacements in the x and y directions, the spring constants: are kx
and ky, and for rotations about the x, y, and z axes thru the centroid
of the contact surface, the spring constants are kyZ’ ky,, and kxy
respectively,

The inertia parameters are:

— - = ]
ml-mB-m5-m+m

n, = + I

2 Y (3.38)
~ 1

mlP = IX + Ix
— ]

m6 = IZ + Iz

where m is the mass of the block and machine, m' the apparent mass of
the soil, I is the mass moment of inertia of the block and machine, and
I' the mass moment of inertia of the soil moving with the block, The
subscripts refer to the axes about which the moments of inertia are de-
termined,

Since for this case there is no dynamic coupling, the kinetic

energy of the systenm is given by:

G
l « 2

T=3 | miq; - (3.39)
it

The potential energy may be computed from the spring factors, thus
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U= -,‘Z[k;(cl|+cch)2+ k,j(qa—cqm)z + kz‘fs

+ k,‘zci + ki q; + oy qi] (3.40)
The elastic coeffiéients may be determined from equation (3,11)
?

kij = [5%‘%;“]0 (3.11)
Therefore,

ky = kx kip = Cka = ke

Koo = Chy + kaz

ks = ky kag= ~cky= ka3

ks Czkg & feipo (3.41)

kss= kz

keé= kgz

Assume that the foundation is under the action of a periodic ex-

ternal force, F sin( w‘h-')[' ). This force can be resolved into six

components corresponding to the coordinates A7 9o csoy e

Therefore

6
Fsin(wt+p) = Z Fi sin(w’c+)5)
1=

(3.42)

Substituting the results of (3.39), (3.40), and (3.42) in equation

(3.18) the equations of motion for the system are obtained,
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m, g, + kx(q +¢q,) = F, sin (wt+¥)
moq, +chu(q +€q Vtkezq, =F, sin(wtsy)
Mj &is " ky(%-cq)

My q,~ ckylgycqthyq,
msq.+ kzqg = Fs sin(wt+Y)

F3 sin (w{ + )5)

F4 Sin (w{ﬂé) (3.43)

i

(Y] k - .
.. Meq , + Kxyq Fs sin (@h]@
Using the elastic coefficients defined by (3.41), equations (3.43)

can be rewritten in the following forms
m‘&‘l.‘* K g, +k’2q2 = F sin(wt+¥)
Mg, + kz“l.‘*k'&qz = F, sin(wt+¥)
m3é'13+ ks3 g, + k34q4
maq, + KeaG,t kyyq = Fi sin (wt+ ¥)
Ms c':is+ kssqs Fy sin(wt+¥)

Meq, *+ Kee g, Ry sin (wt+¥)

F3 Sl‘n (U.){' +7Z) (3.44)

From equation (3.43) and (3.44) it is clear that there are coupled
oscillations consisting of horizontal translation and rotation in the
-xz and yz planes,

Recalling (3.23) it is seen that the natural frequencies of the

system must satisfy the determinant



ku-m®  k, 0 0 0 0
kai kzz— mzu} (@] 0 0 0
0 0 ky-my® ks 0 0
| _0
g 0 kes  kgg-mgt O 0
0 0 o 0 kes-msw? O
0 o o 0 0 k%~m6wz
Solving for W we have,
m,m, w- (kozm, + knm)w?+ kykze -k kzi = 0
2 2
Ko kn 4 ki _ 2kyke 4 ko P 4 kinka
wi= Mo M T{m omm, - mi - m,m,
2
2
2 f_x3+k_n3 (M__k_tz\) 4_‘4[‘12\(2!
w\,'z.= m, M m m m, M, (3.45)
2
Similarly,
,  Fa Kay (B} _ M)ZJ, 4 ksq ka3 -
2
-
Wg = "mg (3.47)
2 _ kes
We = “me - (3.48)

The relative amplitudes of the coupled modes are found by substituting
back into the reduced equations corresponding to (3.44). Thus, with
0
q.l-: Cr ¢1 sSin (LU,.**’%)
we have

)
_m‘zml ¢ ﬁb.m + ki g, ?S:m'* kiz S q‘f =0



'frcm which

- (3.49)
¢ Kiz '
Similarly,
¢<ﬂ= wffm,— kit qS,m (3.50)
* 7T ke
ey 3
(3 _ Wsms - K33 ¢§) (3.51)
4 kag
20 _ )
(4) _ Wama ka3 ¢§4 (3.52)
¢ k34

From equation (3,36) it can be seen that the coefficients f,. are given

.

‘F" i (ln 2 (72 (3.53)
\ mt[¢l ] +m2[¢2]
1= i+ By (3.54)
e m[BO+ me[¢ T '
[= s+ Fu8f) (3.55)
> BT AT
)
{ = fy 3(4)+ Fo 2 (44 : (3.56)
4 m3{¢§43]2+ m4l.¢4( )]
Fs
e T (3@57)
fs m5¢§5‘ ,
Fe
- —— (3.58)
&’ T mMe$e
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&

| ' ‘Fz
(wZ-w?) g+ (W w‘)qs(z} in(wt +p)

1"

(cu.2 w’)

(3.59)

£ s
|
[<mw o

® fy ?5(4) sin(wt+¥)

(w3-w2 ¢ 7 lwp-onts

@?fiwz—)- 4 sin(etr¥)

fe 39 in(wt
B Y sin(wt+Y)
96 (wE-w?) "e
Application of the above results to a numerical problem will be
shown in Chapter VI,
The case of a foundation partiall‘y embedded in the soil mﬁy be
treated in a similar manner. This case will be somewhat more comp-

licated due to the introduction of additional static coupling terms.
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CHAPTER IV
EQUIVALENT SOIL SPRING CONSTANTS

The methods developed in Chapter III for determining the modes
and amplitudes of oscillation of a block foundation depend on the
availability of suitable dynamic spring constants, It is the purpose
of this chapter to develop relationships which may be used to cal-
culate these -constants., Unfortunately, from a mathematical stand-
point, soil is not a homogeneous, isotropic, elastic material, and
hence does not lend itself to.rigorous mathematical treatment, Some
simplifying assumptions are therefore made which, although they in-
troduce some error into the final results, permit an approximste
evaluation of the required soil constants under many different bound-
ary conditions,

The bearing capacity of soils is defermined by its shear strength.

The shear strength is given by Coulomb's law which states that
S=0C+Ntan g (4.1)

where S is the moximum shearing resistance, C is the cohesion, N is

the normal load and ¢ is the angle of internal friction, For cohe-
sionless soils such as sands, C is relatively small and may be neg-
lected, Since the normal load is proportional to the depth, the shear-
ing strength also tends to be proportional to the depth, For very
cohesive soils, such as clays, ¢ tends to be very small and the shear-
ing strength is essentially constant. Sinee the effective soil
modulus is approximately proportional to the shearing strength, the
following assumptions are made in detérmjning the effective spring

constantse
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a, For cohesionless soils the modulus of elasticity is propor-
tional to the effective depth,

b. For cohesive soils the modulus of elastieity is constant,

For intermediate soils the spring constants may be estimated by inter-
polation on the basis of Coulomb's law,

A further simplification is made in determining the stress dis-
tribution due to the dynamic load, In a homogeneous, isotropic, elastic
material, the stress distribution may be determined by the well known
Boussinesq equations., These equations are based on an assumed pressure
distribution on the soil surfacey they are also approximate since the
exact pressure distribution is not known, In the following develop-
ment of expressions for the effective spring factors, it is assumed
that only a2 truncated cone or pyramid of soil directly under the
foundation is effective in distributing the load, and that the stress
distribution over any horizontal section is uniform,

The spring factor may be defined as the force exerted on the
system when it is displaced a unit distance from the equilibrium position,
or the moment, when rotated thru a unit angle, The dimensions of the
spring factor are such that the product of the spring factor and the
displacement has the dimension of work, Since a foundation in general
has six degrees of freedom, there are six spring factors to be deter-

mined for each surface in contact with the soil,

Spring Factors for Horizontal Contact Surface - Cohesionless Soils.,

Vertical Displacement (kgy)

Consider an elemental cube of dimensions dz subjected to a ver-

tical load dP which causes a distortion d 5'.
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7
| /
ds —————— i 7/ # dz
dz
dz
hie
Figure 4,1

The elastic modulus is defined as

_ P dp -
dS/dz dddz ’

Consider next a rectangular area, of length a and width b, loaded with

a uniform load, q.

/ Effective Zone \¢ dz

Figure 4.2
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Let the effective zone be determined by the surface area ab and the
planes sloping at an angle taanC(/Z. Since the load acte as an equi-
valent surcharge, the effective soil modulus for any depth is given

by the relations

Ez)= P(h+Z) (4.3)

where 13 is the rate at which the modulus increases with depth, and

h is the equivalent surcharge which is given by

h= 9 E (4ds)

-

P

where 5) is the unit weight of the soil, The total pressure on any

horizontal section is then

R - (d+ &) (b+az) E dredd
dz?

_ (a+«z)(b+az)(h+z) ads

dz )
(45)

The total surface deformation is then given by
: 0o
5. . PR dz
17 R | (araa)(b+uz)(hiz) (4.6)
<

Defining,

r=2a/b, adb
and

S = dh/b (4.7)

equation (4.6) can be rewritten in the form



00
R dz
dq = Akt J, (r+2)(1+Z2)(S+2) (4.8)
By definition the spring factor kﬁy is given by the relation
XY B
ky = (449)
Z
therefore
XY . 25 XY
where
* dz
(4.11)

{
SRy =
e |

(r+2)(1+2)(s+2)

Equation. (4,11) must be evaluated for the following five cases:

r{sdlyr=1,8f1l3yrfl,s=13r=8flyr=8s=1

The evaluation of the integral (4.11) is given in Appendix A and the

following results are obtained,

x"y- Fr-<
z - logs _ legr
| r=1
xxY= S'l
Z | - [ﬁs ?
G-
ny-" r-1
Z | - logr °
ol
va_ s¢s-D
v S‘Oqs_ l 9
-1
szy= 2 9

rése+l
r=1, s#l

s=|, r¢l

f‘:S‘Ié‘

ra S = \
’ (4.12)
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Values: of ‘X:;% as a function of s are plotted in Fig, 4.3 for

several ratios of r,

It is also of some interest to consider the case of a long narrow

foundation for which equation (4.5) becomess

p. qbc‘-- ap (b+&‘jz(h+z) ds

(4.13)
The surface deformation for this case is then given by:s
0o
g P dz
- Rrb® (1+Z)(5+2) (4.14)
()
XY
For this case the value of X& is
o
gl dz (4.15)
¥, r| (1+Z)(s+Z)

0

The evaluation of this integral is also given in Appendix A, and the

following results are obtained:

r
XY
= S|
L logS ’ 7
sS-1
XY

(4.16)

X
The plot of X%j4. as r tends to infinity, is also shown in Fig, 4.3.
In some applications cirecular footings are used,

For this case
equation (4,5) takes the form

.
P= %dq = ".g (d+dzgz(h+2) pdé (4.17)

where d is the diameter of the foundation,

It is readily seen that
this equation reduces to the same form as (4.8) for the case r = 1,

“except for the constant /4

k:y'—' % ﬁda szy

. For this case, therefore

(4,18)
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where X;ol has the same values as obtained from (4.12) for the case
r= 1,

Horizontal Displacement (KXY, k;y)

Consider an elemental cube of dimensions dz subjected to a
shearing force dF causing a distortion dT .
~71
“ 11
i T
dz|/ / :

/ — ' dF
dz dz
Figure 4.4

Here

dl/dz dzdt
where G is the shearing modulus and may be determined from the well

known relation:(zg)

- —E
G\ = 2(‘_._“) (4-.20)

For sand, Poisson's ratio (L may be taken as 0.35.(15)

If G(z) is then defined as

q(z) = jal( lq +Z) (4.21)

it is evident that jB'is given by

! 13 ‘
B=20+ ) (4422)
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The spring factor may therefore be calculated from the relation
xy Xy 1,2 XY
K =ky = B b°Y (4+23)

where 2%?7 is equal to the X}fy of the previous section,

Rotation about x-axis (k§§)

The case under consideration is that of fotation about a horizon-
tal centroidal axis parallel to the long dimension a, (Cf, Fig. 4.2)
It is assumed thet horizontal planes are not distorted but remain
plane after rotation,

The moment on any horizontal section is given by

btz
2
My = Y de[ B(h+z) dz] dy (a+«z)
-b-az @il)z
=
b4g£2
L p(h-r-z)(c:ld-»-o(Z) do ytde
“ -b-Xz
2
_B (\"\+Z)(C1+o(‘z)(b+dz)3
"0 y de
z (4e2h)
The rotation of the contact surface is then
2Mx [ dz
— (4.25)

By = B (A+&z)(h+2(b+ ) 3
0

Recalling that r = a/b and s = o(h/b, equation (4.25) may be written

in the form -
|2.P1x CrZ
BB | (r+2)(s+D(1+2)3 (4.26)

Ox =



6l

definition, the spring factor is
9 D

K%Y = —gﬂf | (27)
therefore,

xy 4\ xy

kgz = ﬁb Xyz i (&-28>

Xy
where ¥yz; is defined by the relation

dz
(r+2Z)(s+z)(1+7)3

(4e29)

This integral is evaluated in Appendix B, The following expressions

. » xy
mey be used for calculating the value of XYZ

Xxy (r=5)(5-1)(r-1)
~_ | _ Ls-n T 1 _\| s
(8-1? g (r-1)2 logr +(r- s)(?. -1 s-t)
r#¥s#l
v l ] (s“"‘)a 7
5= 7| |- 8= (s-1*_ logs | r=1, s#l
” ‘2_1 2 * 3 s-1 |
| i (f‘-l)a ]
K;‘:z/='l'5 |- =L+ (r-n? _ logr | r#l, s=1
" 2 3 r-1
XY 1. (r-1)°
5v: =Tl 3logr _ (1 ., _ iy | ¢ T=S#!
S [ 72 )
xy _ 1 P e |
Xyz 3 (4.30)
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Values of X;;4ias a function of s are plotted in Fig. 4.5 for various

ratios of r,

The case for a long narrow strip is also of interest, Equation

(4.24) reduces to

M = df (hez)(bs+uz)? 46

* 1 dz (4.31)
and equation (4.26) reduces to
0
6. = 12 My dz
X7 rpbt A (s+2)(1+2)3 (4.32)

This integral is also evaluated in Appendix B, The spring factor for
this case is again determined by equation (&,28), where 2(;; is

given by

| 2
vz 12| logs 3-s| * S
51 2
r =1 .
5 o il el (4.33)

K;:A. for this case is plotted in Fig, 4.5.
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So

-

The spring factor for a circular plate is readily calculated

e
T

| B

Pigure 4.6

Referring to Fig, 4.6 it is seen that the moment is

+d
2 ydz-x?
M = f‘d x*de P(h+z)dz ) dx

h+z) fx(q Xtk dx
dz -




Now if we define

= «Lh
S o(‘ /d
then
_ 64M
e"«gﬁd“

v dz
: (s+2)(1+o2) 4

Recalling equations (4.25) and (4.29) it is readily seen that

g = ke =%pb Yy,

~ xy
where vz

Rotation sbout y-axis (k53)

For this case the moment egquation is

q+«

My

is defined by equation (4.30) for the case r = 1.

=a~C

_B (hez)(b+raz)(a+oz)’

12

With r = a/b, and s = oLh/'b, the equation for @ becomes

2

0. = 12 My
Y b4

For this case the spring factor is therefore calculated from

dz

[ o]
dz
f (s+z)(1+42)( r+2)3
0

4 XY
k;l-zl = .ﬁb sz

where X;‘; is defined by the relation

{
oy = 12
X2

l

©0

dz
(s+Z)(1+1)(r+2)3

sz de@([«-z) dz d?‘(b‘l'dZ)

(dz)?

de

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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Integral (4.39) is eveluated in Appendix B, The following relations

b 4
may be used to calculate sz

o ] (C-8)(S-1(r-1)
x:zzﬁ (-E-'ls-s?_log%+(“:_——:l)—s§[ogr+ é;(%""?:l?“"r_l'r) ,
o i (_s—r)i r#s#l
8 = m _(l- 52-! . (53-1))_ l;q-'s K r=1, s#l
w L (-’
Te =iz :—r?.—‘loqr —(l—% + %)} » r#l, =l
; (~n° |
T | Toar (1 "”"’2)} » M= SEl
L -1\ o2 312
'6::/?-% EL (4..40)

X
In Fig. 4.5 X;(ZY r for several values of r is plotted.

Rotation sbout z-axis (k;}gfy)

Recalling equation (4.21) for the shearing modulus, the moment

on any horizontal section can be showm to bes

d+oz

MZ= W(\"H-Z) 'Zj’_z—tb"“’(z) x?2 dedi
0

dz
btaz
+2 f ¢ (a+oz) y*de dy

\ md@[(b@(ma (a+dz)(b+o(z)3:I
2 dz
(4.41)
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Equation (4.41) may be written

Mz = Mz +M;
where b )( )3
o1~ (haD) (braz)(a+az
Mz = )—'2. .‘3 dz do }
G 3 (4o42)
- noo| 53/ (h+z)(d+ocz)(b+o('z)de
Mz =13 dz
J
The spring factor is given by'
x Mz _ Mz
v =B = Br T 'é‘i‘ | (4.43)
w= P b‘(’(B’+ ¥") = pbAug (o)
where
| ® dz
3 = B ez (4e45)
o
and
| 0 % dZ
=) s (4.46)

It is readily verified that integral (4.45) is identical to (4.39),

and integral (4.46) to (4.29). It follows therefore, that

Xy y w_ XY Xy
B;Y = ‘b” + ‘bq = sz 4 F)’Z (404’7)
where ’U'XXZY is given by equations (4,40) and 'b";zy by equations (4.30),
. Xy Xy, i
The ratios sz r and Fyz/r‘ are plotted for several values of r in

Blpg. 4.5,
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Spring Factors for Horizontal Contact Surface - Cohesive Soils,

Vertical Displacement (kgy)

The derivation of the spring factors for edhesive soils is similar
to the derivation for cohesionless soils, except that the modulus is
assumed to be constant instead of increasing with depth, Equation (4.5)

is replaced by

P-bq = E( a+d¢z{)z(b+0a) ds i

The total surface deformation is then

®  dz
P
b E | (a+oz)(b+oz)
0

0o
= dz
S«Eb | (+Z)(1+2) (4.49)
(o

where r is again defined as a/b. Recalling equation (4.9), the spring

factor is given by

Xy
k’:’ = BELb Y, . (4.50)
Xy . . .
where 3} is defined by the relation

l ® dz
P = | (r+2)(1+2) (4.51)
2 0 :

The evaluation of (4.51) is similar to the evaluation of the integral

(4.15) whieh is given in Appendix A, Therefore
X -
y T Sl S Y

Z logr

,K%XY = l 9 r=1

(452)
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Horizontal Displacement (k;y, k??)

As in the case for cohesionless soil, the only change is the

substitution of G for E, where G is defined by equation (4.20), Data

for Poisson's ratio for cohesive soils is not availabley for saturated

cohesive soils, AL = 0,50 would be a reasonable assumption,

spring factor is calculated froms
XY _ (XY Xy
Xy . " :
where an is given by equation (4.52).

Rotation about x=-axis (k;Z)

The moment on any horizontal section is

b+oz
2 a+z)
MX.= E szedz —Cigi(-d-—z)—.z—
-b-«z
5 " b+xZ
2
_ E(ct;:z) de %
-b-o2Z
2

- B ca+om(b+oc2)3 de
(2 dz

The rotation of the contact surface is therefore

* d
2 My Z
E \ (@+ &z)(b+a(z)3

oo dZ

12 M
= oceb%l (r+z)(1+2)3

The spring factor is

k= B2 BB Yy

E?xf‘

(4.53)

(4.54)

(4.55)

(4.56)
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X
where ‘ngz" is defined by the integral
o0

(4+57)
Tis . (r+2)(1+2)3

This integral is of the same form as the integral in equation (4.32)

which is evaluated in Appendix B. 3';;;"‘ may be caleulated from the

equations
- l (F-nz '
¥z =77 |logr _ 3-r| ° r¢
r-1 2
4 l
XB; wep ¢ T (4.58)

Rotation about y-axis (1@)

For this case, the moment on any horizontal seetion is

3
M. = E (b+d2)(d+dz)” 4, 4.55)
y- 12 dz
and the rotation of the contact surface is
@®

~ «(EB? , (1+2)(r+z)?

The spring factor is

k) = %BJ - <Eb’ ¥ (4.61)

X
where ’b’,'ay is defined by the integral

| ®  dz
¢ . (r+2 (1+2)

(4.62)
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This integral is evaluated in Appendix C and yields the following

. Xy
expressions for sz:

?
| (r-1)
’E'xxz)’:.’—z- [loqr _ 3'-_[ 9 r*\

-1 2rt

__l_ N r=l
4 (4.63)

Rotation about g-axis (kg;)

For this case the moment on any horizontal plane is given by:

g+zo(z b+az
7]
My = Gdz (x+y) o d?ddz;(ﬁ
~a-dz J-b-dz
¢ a+&Z = b+ &z
do =t
X -LILR }
0
E % %9_ {(bmz)(d-* o(z)3+ (d+olz)( b+o(z)3}

(4.64)

M-Zz le +M‘£

where

/ )3
M, = % (b+o(zc)jia+o(z de

(@+o2) (bt oz)?
M, = ﬁ& o de

(4,65)
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Therefore,
RX\/ - Mz - Mz’ + M;
XY ez @z Oz
= &G [+ 1)
(4.66)
where )
00
| dz
= e rezp .
o
and - :
" dz
Tl x (r+2)(1+2)3 (4.68)

Equation (4.67) is seen to be identical to equation (4.62) and equation

’
(4.68) is identical to equation (4.57). Therefore Y= b;;y , and may be
evaluated from equation (4.63)3 YL X;y , and is given by equation (4.58).

¥/r for cohesive soil is plotted in Fig, 4.7.

Spring Factors for Vertical Contact Surface - Cohesionless Soils,

Horizontal Displacement Normal to Contact Surface (l%z)

The case of a contact surface parallel to the xz plane will be
considered, The equations for a contact surface parallel tothe yz
plane are similar except that y replaces x and b replaces a wherever
they appear in the equations,

Consider the lateral pressure on a foundation block, Let the
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INT SPRING CONSTANTS

EQUIV.
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depth of embedment be Do and the length of the contact surface be a,

The soil modulus is given by

E=82 (4.69)
where z is measured from the surface of the soil,
Y
\ a+dy /

S 7
\ /

Recalling equation (4.2),
dP=Edzd8= Rzdz dé
the normal pressure on any section of the effective zone parallel to

the contact surface is

2D+dy
P.-.C‘““J/ T
y B
dy .

a+dy s | (2Dp+dy)?
p et d{ d }

B (a+ oy )(2Dp +ay)ys
8 dy (4.70)

]
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Defining

t - —zaD—‘- (4.71)

we obtain for the displacement of the contact surface

@
8 R dy
= —Y
&'j dﬁaz s (“9)({‘”’3)2 (4.72)

Note that a uniform horizontal displacement is assumed, The resultant
pressure, Py, will therefore act at a distance, Df/B, from the base
of the foundation, since E is a linear function of z, The spring factor

is given by

Xz P XZ
ky = 'g‘lij = A P a? ¥y (4.73)
where X,dxz is defined by
| 4
Xz = 8 4
T, (g hay)?

(4.74)

This integral is of similar form to the integral evaluated in Appendix A,

XZ
(Cf, equation (A.7) ), Xg is therefore equal to

Xz l 1(1-D

W‘:‘ = é {‘O {_ 2l ’ {%t
t-1
x| 1
Uy =z ° ; (4.75)

X
Aplot of Ty is showm in Fig, 4.9,
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Lateral Displacement (kiiZ " k§2)

The only change in determining the spring factor for this case

is that G is substituted for E, The spring factor is therefore

/ XL
K= ks = LB at Ty (4.76)
where P’ is
: B
B = BT C (he22)

and Blsz is given by equations (4.75).

Rotation sbout x-axis (k;fg)
The moment on any vertical section of the effective zone is:

2Dp +dy
2

M, = a+dy 22 do (B zdz)
dy

o

B (a+dy)(2Dp +ay) * o

-
= e———

64 dy
: (4.77)
The rotation of the contact surface is
0
9 - 64 MX dq 4 r
¥ 4 (1+Y) (2 +y) sl
oLpat | (+Y)e+y
hence the spring factor is
e My £ wal
k== A Ba® ¥y (4.79)

yz  Ox
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where ?%:: is determined from the relation

L_ e T dy
¥oe (t+y) (+y)? (4.80)
0

Referring to (B,19) and (B.20) of Anpendlx B it is readily seen thats

(t-n3
- [ L0 - I)Z} 5 Tl
t '1{2 343

L
16

’ -

(4.81)
XZ
See Fig. 4.9 for a plot of ¥y,
Rotation about z-axis (k;;)
D -l—e(.
M.l_-——] deedx/ pzdz
_ Bde (a+ay) (2D, +dy)?
96 dy (4.82)
The rotation of the contact plane is
8, = 96 Mz Mz q
[ (q+ocg)3(2 Dp+aty))?

_ 96 M,
«pat _(1+4)3 (£4y)?

(4.83)
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The spring factor is

Xz
Ko = %% = LB atty (4.84)
where T:; is defined by
oo
l;z = 96 d
Txy o (1+Y)3 (1+y)? (4.85)

This integral is evaluated in Appendix B, (Cf. (B.10), (B,7) ).

Therefore

. | (t-1?

By = 5% 3\09{_{l+ (-1 » 141
-1 : 2

Ty=bs el

24
(4.86)

n. e ]
3;’,13 plotted in Fig. 4.9,

Rotation about y-axis (kf2)
!
Recalling that G = 53 z dz, the moment on a section of the effective

zone parallel to the contact plane is

a+zotg ‘ZDQ;OCQ
My = 39] (x*+2?) dé ﬁ’z dz dx
0 0

_ Pdo| (a+ay)ad+ay) s (a+ay)2 Dpray)?
- dq A 96

(4.87)
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Equation (4.87) may also be written
; . 7 7
M y= Ml.j + Mld
where '

; 8'de (a+xyP(2 Dy +oty)?

My = 56 dy
| s (4.88)
» _ Bde (a+dy)(2De+ay)
My =~¢gz dy
The spring factor is
kxz 2 MH = M‘ﬁ’ A5 Mq”
xz Oy 6y oy (4.89)
Therefore
2 _ o Pat (¥ ") = K platyy,
kXZ d Isa ( ¥ ) dﬁ Xz (4.90)
vhere ¥ and Y are defined by the equations
o
l .o j =
‘ 3 1 2
¢ o 1+Y ) (4.91)
and -
dy
I 3
Fu 64£ (1+Y)(t+y)4 (4.92)

Equations (4.91) and (4.92) are identical to equations (4.85) and (4.80)

I X2
respectively., Therefore 1= b‘xy s and may be caleulated from equation

it A XZ
(4.86)3 Tl--‘fyz , and may be calculated from equation (4.81),
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Spring Factors for Vertical Contact Surface - Cohesive Soils.

Digplacement Normal to Contact Surface - (IQ;Z)

For this case the soil modulus is assumed constanty hence

_ (a+ay)(2Dp+ O(Q) Y
P = S e B
Recalling that t = 2 Dy/a,
(0]
_ 2R dy

J «Eaq (1 yE+y)

The spring factor is

X2 P z
kg = -—H- =&EGF;

3y
vhere 3‘; ! is defined by
o
L dy

[ 5 (3y)(E+y)

Referring to (4,11), it may Be shown that
) s
By =2 [ 109*}

xz.‘-g =‘-l
Ty=g * 1

n

'b"é"‘ is plotted in Fig, 4.10,

Lateral Displacement (X2, kgz)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

The only change for this case is that G replaces E in equation
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(4.95), thus

XZ

X2 XZ
ky = k, = L Ga ¥y

Rotation about x-axis (k?g)

(4.98)

The moment for any vertical section of the effective zone parallel

to the contact surface is

2D+ dy
a+ oy 5
M, = a 22 de Edz

_ (a+dy)(2D; +ety)?

ST Ed6

The rotation 6f the contact surface is therefore

2amy [ dy
Ox= (Ea3 | (1+g)(’c+g)3
The spring factor is
k’;z-ﬁ —g—”f—= «Ea WJ:
where ’5‘;; is defined by
® d
%::5*: ok o (|+g)(3+533

(4699).

(4.100)

(4,101)

(4.102)
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Now (4.102) is of identical form to (4.62): therefore

o | (t-n? |
Oy = 24| logt _ (3t-0 | ° t41 (4.103)
Gf") 212
= 9 {::(

1
8

XL
]rgl is plotted in Fig, 4.10,

Rotation about z-axis (ki;)

The moment is

a+o<y
_ 2
M,= 2 xtdo LPEXEY E gy
z ch
0
. 3
) (’2D1¢+o(g)(a+o(g)_ E do
24 dy
(4,104)
and the surface rotation is

5. - 24M: dy
I JAEQB o (t+y)(t+y)3 a0

The spring factor is

X1 XZ
ky y = oE a® Wy (4.106)
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where 3;;2 is defined By
oo
!
" 24f dy ; (4.107)
\
xy ! T+ +y)
Equation (4.107) is of identical form to equation (4.57)3 it follows
that ( $- ng '
‘b‘x’;z - é“4 logt @3- | t#
@G- 2
yx’;z_ - —é R t=1
(4.108)
W;tz is plotted in Fig, 4.10.

Rotation about y-axis (ki)

The twisting moment on any vertical section of the effective

zone parallel to the contact plane is

d+0(q 2Dp+dy +o(

] .[ (x +22) de G dz dx

_Gde [(m o) (2 Dp + oLy) +(a+aly ) (2D; +ou5)]

T 24 dy
‘ ) (4.109)
= M\j + My
where
My = = [(amq)s(wﬁotq)] b
dg (4.110)
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and

y 3
My = & [(mocq)(ZDHoéq) } de

24 dy
(41102)
The spring constant therefore is
I “AQ J!ﬁﬁf hdil”
S| = -+ —
e Oy Oy Oy
=G (¥ ¥ = Gad ¥
(4.111)

. "o XZ
It may be shown that ¥=¥yy , avd ¥'=Yyz , and therefore can be

calculated from equations (4.108) and (4.103) respectively.

General Remarks on the Use of Eguivalent Spring Factors.

In the above development it has been assumed that negative soil
stresses with respect to the normal stress state can oceur, OCohesionless
soils cannot take temsile stress. The results are therefore not valid
if these negative stresses exceed the initial dead load compressive
stresses in the soil, TFor this case the k values are not constant but
will decrease with increased dispiacement amplitudes and the resulting
oscillation will be non-linear, This phenomenon is especially likely
to occur in foundations subject to horizontal dynamie forces., Figure
4,11 shows the cracks which developed in the soil adjacent tc a test
block when large periodic horigontal forees were appii@d@ Under normal
operating conditions, however, only small displacements can be tolerated

and therefore k may be assumed constant,
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Figure 4,11
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If the soil is subject to shrinkage, shrinkage cracks can be ex-
pected to develop, The effective depth of the surcharge is reduced with
a corresponding change in the k values, The behavior of foundations
on this type of soil can be expected to vary with seasonal fluctuations
of soil moisture,

The values of @ , o , Mo G, and E must be obtained experiment-
ally, preferably by the use of dynamic tests, It must be remembered
that the spring factors calculated by the expressions déveloped in this
chapter are based on an approximate theory and therefore extreme
accuracy cannot be expected in predicting the behavior of a foundation
under all conditions, The principal problem in analyzing a foundation
is the determination of the ecritical frequencies, In general one
attempts to design a foundation in such a manmner that the frequency
components of the exciting forces do not coincide with the critical
frequencies of the foundation, In many design problems an approximate
determination of the critical frequencies is sufficient.

By considering parallel or series combinétions of equivalent
springs, this theory can be used to calculate effective spring factors
for odd shaped foundations or for those which rest on non-uniform
soils, In this respect the theory is quite flexible in its application

to problems encountered in practice,
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CHAPTER V
APPARENT MASS

In order to use the results of Chapters II and III, a knowledge
of the equivalent spring factors is not sufficienty it is also necess-
ary to estimate the effect of the mass of the body of soil which parti-

cipates in the vibrations of the system. Recalling equation (2.7)

it can be seen that in the equivalent system, m consists of the mass of
the machine and the foundation block, plus some unknown mass represente
ing the effect of the soil. The foundation-soil system may be consider-
ed analogous to a foundation of mass m oscillating on damped springs

of mass m,, However, for purposes of analysis it is convenient to
replace these springs by weightless springs and an apparent mass, m',

which is added t o the mass of the foundation. We may then rewfite the

frequency equation as

I ’ k
{:2—1{' m+ml

A method of determining the apparent mass experimentally will be

(5.1)

discussed in Chapter VII,

Horizontal Contact Surface - Cohesionlesg Soil,

Apparent Mass

An estimate of the apparent mass m' can be made under certain
econditions, by equating the kinetic energy of the apparent mass to the
kinetic energy of the soil in the effective zone as defined in the

previous chapter, Therefore:
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Puwt | A@[8(2] “d2

= mw 1w
2 2 T g J
Solving for m' we have:
w 2
m’'= _Ef A@) [5(2)] dz (5.2)
9 Jo 81

where A(z) is the area of the effective zone at depth z and is given by

Az) = (a+a2)(b+«2) (5.3)

and & (z) is the displacement of a section of the zone at depth z,

Recalling equation (4.5) and solving for §(z) we heve:

R ® dz
&(z) = p | (aradllbro(h+2) (5.4)
Z

Again defining r = a/b, s = o{h/b and with x = o{z/b, we obtain on

substitution of equations (5.3) and (5.4) in equation (5.2)

o 2

® dx
‘[ (r+x)(1+x) [ fx o) (|+x)(s+x)] dx

|G
o (Len) (1 4%)(54¥)

w0 -0
& low

(5.5)

The general solution of equation (5.5) has not been obtained, but the

special case, r = s = 1, is readily solved, For this case equation (5.5)
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reduces to
(5.6)

(5.7
Approximate solutions of equation (5.5) may be obtained for finite
values of r and s by nuﬁerical or graphical integration to a finite
limit, It is convenient to select a limit, z, as some multiple of of/b,
the magnitude of the limit depending on the rate of convergence.
For the case of an infinitely long sﬁrip the infinite integral for
the apparent mass per unit length does not converge on a finite value,

For this case the expression for the apparent mass per unit length iss

. Lﬁb*dz)[/z:b+dgz(h+z)]2dz

-é- , [ Lm(bwt’gthn)r

i_b_ f“HC [/ (H-X)(s+x)]
g«
.[(Hx (s+x}

For the special case, s = 1, equation (5.8) reduces to

m's=

(5.8)



b log (1+%)

X=0
(5.9)

Apparent Mass Moment of Inertia

The apparent mass moment of inertia may be estimsted in a similar

manner, For this case the kinetic energy is given by

SR - (-
~§9 2 35 fIcz) md

Solving for I' we have

f In |6 (Z)
- é 2%

where I(z) is the moment of inertia of a horizontal section of the

(5,10)

effective zone at depth z and is given by

(a+ouz)(b+oz)?
L@ = 12

or (5,11)

I%(z) = (a+oz)3(b+d2)
1Z

and éa(z) is the rotation of a section of the effective zone at

depth z., Recalling equations (4.24) and (4.37), we have
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v [ dz
6,)= " R (d+oa)(h+z)(b+a(z)3

x (5.12)
12My dz

By(z 7)= =5 B (b+o<1)(h+z)(a+oa)3

Recalling that r = a/b, and s = o{ h/b, and with x = o{ z/b, we obtain on

substitution of (5,11) and (5.12) in equation (5.10) .

. ® 00 dx 2
S _/;(Hx)(lﬂ)s ( l ("+¥)(S+X)((+x)3l n

xz"'az

(5,13)

2
« X
J; (rex) (54X I+X)3l

@ o dx 2
f (“"‘)(’"*")3 - (r+x)3(s+x)(x+x)] dx

" foga [ f 1) 3(s+x)(l+l)}2

(5.14)

Equations (5.,13) and (5,14) can again be readily solved for the special

case, r = 8 = 1, for which case
o0
9b5f dx
W1y e 12 Jo (1+)*4

1 £b’
% qo

(5,15)
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For other values of r and s, equations (5.13) and (5,14) may again be

solved by numerical integration to a finite limit, It should be noted

that convergence is much more rapid for this case,

Horizontal Contact Surface- Cohesive Soil

Apparent Mass

Since, for cohesive soils, the modulus of elasticity of the soil
has been assumed constant, the velocity of propagation of stress is
constant and does not increase with depth as in cohesionless soils,
Consequently, wave propagation theory rather than static displacements
must be used for the calculation of apparent mass.% For, if the procedure
of the previous section is applied to the case of cohesive soils, it is
found that the resulting infinite integral does not converge on a finite
value., BRecalling equation (4.48) we have

60

dz
. (@+az)(b+a(2)

5(z\=€-

which on substitution in equation (5.2) results in

» ® & T
Pbg /; [r+x)(1+x)[ l (r20)( 1+x3} dx

m'= "7 ® 2
g [ dx ]
» (L) (1) (5,16}
For the case r = 1, equation (5,16) reduces to
3 - oo
. 2B f de
g & Jo | (5.17)

* Solutions based on this theory have been obtained for a few special
cases by E, Reissner (14) and by P, Quinlan (15).
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hence

) (5.18)

Very little data is available for cohesive soilsy there is, however,

some indication that the apparent mass may be very 1arge.(17)

Mass Moment of Imertia,

Referring to equations (4.54) and (4.59), it may be verified that
for cohesive soils

12 M, dz -
E (a+a&z)(b+ «z)

8, (2) =

and , (5.19)

o

12 Mg | dz
E (a+otz)3(b+oLz)

6 {x] = ===

Substituting in equation (5,10) we have

I P LS fr-rx)mx) [fm]zd

5 (rex) ( |+)L)3 | (5.20)

@ dx ¢
.[ (r+x) U*"’[ x (r+x? am] &

‘j = 60 . dx 2
gL el
\’Zq [ o (re1)? (12) ]

(5.21)
For the casse r = 1, equations (5.20) and (5.21) reduce to



(5.22)

Vertical Contact Surface ~ Cohesionless Soil

Apparent Mass
When the foundation is partially or entirely embedded in the soil,

the apparent mass and the mass moment of inertis are increased due to the
motion of the soll adjacent to the foundation, Consider first the
apparent mass due to a vertical contact surface in the xz-plane, of

héight D, and width a. The expression for apparent mass for this case is

f(ZDﬁo(g)(amq) [S(q)] dg
‘Zq [&312 (5.23)

£

m'=

Referring to equation (4.70) we have for 8 (y)

o

3@ B8Ry j (c+ay)(2Dp+ otg)zdg
By | (5.24)
Defining t = 2Dp/a, and with x = o{y/a, we have on substitution of (5,24)

"in (5,23) .

o dx
f(++x (H'X) (HX)(‘LO-XYZ] d

K il+x$(i+x)2] 2

(5.25)
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For the special case t = 1, equation (5.25) reduces to

. 2 [ &
m= qu[ (1427

= Laa L} ‘k=l
29

(5.26)

Moment of Inertia,

For a vertical contact surface, equation (5.13) takes the form

p _/:ol W) [G(g)]qu

= 2 (5.27)
9 6%
where l(y) is given by
_ (a+dY)?® (2Dp + oY)
e
I,y 74
or , (5.28)
_ (a+oy) (2Dg + dy)?
I« (q) = 2%
Referring to equation (4,82) and (4.77) we have for @ ,
96 My dy
6, (y)= A (Q+oU»j )3 (2Dg+ oY)
and (5.29)

O, (y)= f (a+oLLj)('ZD;+ou5)4
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Reecalling that © = ZDf/a, and With:x:oﬁ%ﬂa, we obtain on substitution
of (5,28) and (5.29) in equation (5,27)

o ®  dx 2
p . _/c: (Jt*'x)(‘*")a { [ (\+x.33(’c+x)2} cx
a

/ _ = It 7
L 24qd ( l (l+x)3+(’c+x)2]

(5.30)

p oS [(f+x)3(l+X) L[ U+x)({+x\4] dx

Ix - [~ -] d 2
24 qadl X
3 [ b (l+x)L’:+x)4] ad

Por the special case t = 1

(5.32)

Vertical Contact Surface - Cohesive Soil

Apparent Mass,
Referring to equation (4.93) we have for & (z)

_ 2k [m dy
S(’Z) = = . (Q+°(H)(2D£+dl5) (5.33)

Substituting into equation (5.23) and recalling that t = 2Dp/a and

x = y/a, we obtain
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, Pad -[ (hx)(141) ‘.f L|+x)(++x)
qu &f
| (l+x)(++x)

(5.34)

bs in the case of cohesive soil and a horizontal contact surface, the

infinite integral does not converge, for with t = 1, we have

foa) fe ]
. Pad _ Pad }
=_290L i dx 2qa o (5.35)

Moment of Inertia,
For cohesive soil, we have from equations (4,104) and (4.99)

24 M, dy
O, )= =% y (2Dg +dy)(a+ay)’
and (5.36)
0]
24 dy 5
&) up (at oy N ZDp+aly)
Y
o — equation (5,27) we obtain
I' Pa f(l+x)3({+x f(|+x)3({+x)}
v qu [ ] (5.37)
- o 0+x)3é++x)
@ ® dy 42
3 ... s AP
[t [ o
* 24qd [ © dx }z
o ()(H+x)*] (5.38)
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For t = I, (5,37) and (5.38) reduce to

I, - L = 24gotf (t+x\2

.1 0o, H-
24 got  (5.39)

General Remarks on the Use of Apparent Mass and Masgs Mbment of Inertia

Values,

The restrictions imposed by soil and load conditions which apply '
to the determination of the spring factors, also apply to the apparent
mass terms, Indeed, from the derivation it is clear that the spring
factor and the aﬁparent magss of a foundation are intimately connected,
It must be kept in mind that the theory only approximates the actual
stress conditions in the soil and that significant errors may be intro-
duced in calculating the apparent mass terms., Moreover, the accuracy
of the calculation depends on the rate of convergence of the infinite
integral, It has been pointed out that for cohesive soils with constant
modulus of elasticity, the velocity of propagation of stress is constant,
For this case, the infinite integrals obtained by the use of statiec
displacements do not converge, and wave.propagation theory must be
used in the calculations, Unfortunately, very little data is available
for cohesive soils at the present time and it is impossible to check
the accuracy of the theory for this cage,

Soils whose modulus is constant with depth are seldom encountered
in nature, Even in normally loaded clays, there is some increase of

modulus with depth due to the consolidation of the lower layers by the
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weight of the overburden, For these cases the expressions for co-
hesionless soil may be used by assuming an imaginary value of h, such

that the soil modulus is given~by the equation
'E=j3(h+z)

The integrals which arise in determining the apparent mass terms

(5.40)

are much more difficult to evaluate than the ones for the equivalent
spring factors, For those cases where convergence is sufficiently
rapid, numerical or graphical integration to a finite 1limit may be used,
An example of this procedure will be given in Chapter VII, Speeial
problems arising from non-uniform soll conditions or odd foundation

shapes can also be treated by this method,
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CHAPTER VI

EXPERIMENTAL INVESTIGATION

Purpose and Scope.

The purpose of this investigation was to determine the effect
of several parameters on the behavior of a foundation under the action
of a periodie external force., The paraméters investigated weres
1, Size and shape of contact area,
2. Relative magnitude of the external force,
3, Direction of the forece,
Lo Weight of the foundation,
5 Depth of embedment in the ground,
Since variation of the above parameters resulted in a large number of
tests, it was decided to investigate the foundation behavior for only
one type of soil, namely a clean, well-graded sand, The reason for this
chdice is that this type of soil has proven to be most susceptible to
vibration problems in actual installations, The behavior of the foun-
dation was determined by measuring amplitudes of vertical and horizon-
tal oscillation, and by measuring the dynamic soil reaction on the base
of the foundation,
From these measurements the following information,waé obtained,
1, Critical freéuency of the excited modes of oscillation,

2, Amplitude of oscillation as a function of the frequency
ratio,

3. Estimate of the dynamic soil constants.
a, Effective spring factor
b, Equivalént damping factor

¢. Apparent mass of the soil
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4o Dynamic soil pressure,
a, Pressure distribution and magnitude

b. Relationship between pressure and displacement amp-
litudes,

5. A measure of the non-linearity of the system,
The data obtained was used to test the accuracy of the theoretical

development,

Description of the Test Site,

The test site consisted of a pit ten feet square by six feet deep
and filled with washed concrete sand, This pit had previously been
used for an experimental investigation of soil compaction and the soil
characteristics were therefore known.(lﬁ) A large steel tripod and a
two ton hoist were used to handle the heavy vibrator unit and to 1ift
the foundation block,

Test Block,

The concrete foundation block was cast in five increments, so that
tests could be made after the addition of each increment, The basie
size was 18 inches squere by 24 inches high, This block was then in-
creased in size by the addition of 6 inch sections cast on each side,
The casting sequence is shown in Fig, 6.1, The foundation was rein-
forced with 1/2 inch diameter steel pipe, Couplings were used to ex-
tend the pipe when additional sections were cast on, Extensible forms
were constructed, so that only one set of forms was required for all
pours, (Fig, 6.2). To insuve that the block would act as a unit, shear
keys were provided, and tie rods were inserted thru the pipe and bolted
to tie plates.,’ A base plate for the oscillator was fastened to the foun-

dation by means of two 3/L inch anchor bolts, A thin layer of grout
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was placed under this plate to insure uniform pressure distribution,
Eight pressure cells were installed in the base of the block in the
locations indicated in Fig, 6.1, The cells were installed in such a
manner that they could readily be removed at the end of the test. The
electrical lead-in wires to the cells were brought in through the top
of the block by means of pipe conduit.

Oseillator,

A Tlagzan oscillator (model LA -1), manufactured by the Baldwin
Locomotive Works, was used to produce the periodic force, This
oscillator weighed approximately 61 1bs, and its overall dimensions were
12.5 x 11,25 x 6,5 inches, The periodic force generated was the re-
sultant of centrifugal forces producéd by brass or lead eccenbtric weights
fagtened to two parallel counter-rotatiﬁg shafts, The oscillator was
so designed that the unbalanced‘forces added in one direction and
mitually cancelled in all other directions, The magnitude of the per—'
iodic force could be adjusted while the oscillator was running or at
rest, by means of an external force éontrol knob, which controlled the
relative position of the ececentrics on the two parallel shafts, The
relative position of the eccentrics was indicated on a counter located
adjacent to the control knob, The dynamic foree generated was deter-
mined from a force rating chart, (Fig. 6.3) The maximum allowable force
was + 1600 pounds, This oubput could be obtained at 1800 rpm with the
brass eccentrics, and at 1300 rpm with the lead eccentrics. The
maximum allowable frequency was 3450 rpm for the brass eccentrics, and
1700 rpm for the lead eccentries, The oscillator was mounted on the
base plate of ﬁhe foundation, by means of a heavy steel cage. [Pro-
vision was made on the top plate of the cage for securing additional

static load weights,
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The oscillator was driven by a one horsepower direct current
motor thru a six fooﬁ flexible shaft, Frequencies from 170 to 3450 rpm
could be obtained <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>