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ABSTRACT

The response of simple structural systems to stationary
random excitation is considered under two criteria of failure. When
failure is specified as the crossing of a maximum tolerable threshold
by the response, the reliability of a structure is commonly measured
" by means of response spectra. These give the expected maximum
value of the response parameter for a given excitation level. The"
statistical variations in these spectra are obtained here for
viscously damped linear and elastoplastic single-degree of freedom
systems by electronic analog simulation. The results obtained are
compared with approximate statistical analyses; for example, the
threshold crossing statistics of narrow-band oscillators. It is
concluded that such methods give satisfactory, but conservative,
estimates of the mean spectral values. It is significant that all the
spectra obtained showed a very wide distribution about the mean.
This was also true of the Fourier amﬁlitude spectrum of the excita-
tion.,

For respons‘es that are so large that structures actually
collapse, the linear model was replaced by an elastoplastic system,
and the effect of gravity on the collapse time was considered.
Experimental simulation showed that the structural response in
this case is essentially that of a linear oscillator with yielding
occurring at intermittent intervals. Gravity acts to increasingly

bias this yielding in one direction, eventually causing instability
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in the system. Collapse of the system was sensitive to the
distribution of peaks in the excitation and it was found that the
wide dispersion in the collapse time can be reasonably represented
by a Gamma distribution function.

An analytic method for estimating the mean collapse time was
derived by considering the energy distribution of the excitation and
its effect on the yielding of the structure. The response process was
thus modelled by that of an equivalent linear oscillator whose base-
line is biased by the yielding in the structure. It was concluded that
this procedure gives a good estimate of the failure time for excita-
tions strong enough to cause failure in less than 20 seconds.

A two-degree of freedom elastoplastic hysteretic system
with gravity was also simulated. In a certain sense, the qualitative
behavior is similar to that of the single-degree of freedom system.
It was thus possible to estimate the failure time of the structure
from that of a single-degree of freedom system once the trans-
mission of vibration is accounted for by considering a linear two-

degree of freedom system.
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Chapter I

INTRODUCTION

The ability of structures to withstand earthquake ground
shaking is of great interest in seismic regions of the world. In
the highly seismic regions it is customary to design structures so
that they can withstand moderately strong ground shaking without
significant damage but, for economic reasons, the design is such
that in the event of very strong ground shaking the structure will
be strained beyond the yield point. This means that a collapse
process has been initiated and it is important to know how close to

collapse the structure may come.

The design of structures to resist dynamic loads is often
characterized by randomness in the rate of occurrence, magnitude
and nature of the excitation and inherent uncertainties in the
structural properties. Hence defining a criterion for the safety
level of a struvc’cu‘re becomes a complex pro’blem most often tackled
by the use of simplified models for the structures and either relevant
known excitations or tractable stochastic models for them(i_S). The
particular simplifying assumptions made will depend on what is con-
sidered a satisfactory failure criterion. Such a criterion is
ger;erally either a maximum tolerable level of response or, more
critically, the actual collapse of the structure,

The apparent statistical nature of many dynamic loads--
earthquake ground accelerations ,i wind loads, machine vibrations -

etc., the limitations in the number of available sample functions,

and, in most instances, the versatility of stochastic models, have
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led to increasing use of such models for predicting dynamic exci-
: (7-12, 14) " . ;
tations . With respect to earthquake ground accelerations

the existence of only a few sample excitations has led to the design of

general models adaptable to many given records(io’iz)

average properties of known records(9’14-17)o The properties most

or reflecting

often considered are the spectral deﬁsities , correlation times, tem-
poral modulation and response spectra of these excitations.

Since most records can be reasonably taken as having a
stationary strong motion phase flanked by build-up and die-down
phases with relatively weak motion, several investigators have
assumed that most structural démage is done during the strong
motion phase and therefore modelled the excitation by stationary

(14’36). Natural extensions of these have included

random processes
the addition of deterministic envelope functions and considerations

of the joint effects of the three phases with each represented by an
appropriate stationary random process(gniz), Throughout this

study the stationary random process model is used since one

expects that the effect of the build-up and die-down phases will be
negligible in both linear structures and those nonlinear structures
where the degree of damage or permanent set is small. Its use in
the study of the coilapse time of structures is mainly for convenience
in continuing the excitation up to the time of collapse. The effect of
this assumption has been examined among othe:;'s, by Amin, Ts'Ao

(28)

and Ang and will be noted whenever results indicate a need to

adapt it.
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The most common structural model is the linear one-degree of
freedom oscillator. This is used not only because it is relatively easy
to analyze but because it can serve as a basis for the analysis of more
complicated structures. When the failure criterion used is the cross-
ing of a tolerable level by‘ the response, the structural effect of the

(15,

excitation is typically characterized by the model's response spectra
1% , these being generally defined as the maximum response observed
when the oscillator is subjected to the given excitation. In this way
design criteria can be set up by using average response spectra to
estimate the effect of the excitation's mean intensify and the properties
of the structural model, i.e. its natural period and damping ratio.

The availability of stochastic models for the excitations has led to

(23~

several analytic and experimental determinations of these spectra
26,29,16-18)

More recently, observations of permanent set in buildings
subjected to stiong excitation, and the fact that some buildings
have survived excitations stronger than their design loads with minor
damage while low magnitude excitations have caused unexpectedly
large damage, have motivated the use of nonlinear structural models

156,50-52) , the inclusion of the effect of gravity on structures under-

going large deformations(46-48)

, and pointed out the need for studies -
of the statistical variation in response of linear and nonlinear building
models even when the mean excitation level is known. Two recent
examples of structural damage are shown in figures 1.1a,b. These

occurred at the Olive View Hospital in Los Angeles during the San

Fernando earthquake of Feb., 9, 1971. Figure 1.1la shows appreci~



(b)

Fig., 1.1 Structural Damage at
Olive View Hospital; Feb. 9, 1971



able yielding in the lower columns of the 5-story structure while the
upper columns only suffered minor cracks. The form of deforma-
tion resembles the bending of a single-story building under lateral
force. The two-story building in figure 1.1b appears to have vibrated
in a similar fashion although it resulted in complete collapse of the
lower story as its columns moved over about 5 feet.,

Whilel it has been possible to obtain appraximate analytical
solutions for the maximum response of linear systems subjected to

stationary random e:xcita.tion(29 »30)

» the analytical problem becomes
increasingly difficult with the introduction of nonlinearity in the
model’s restoring force and inclusion of the destabilizing effect of
gravity. No analytic solutions have been found in such cases.
Investigators have therefore tended to obtaiﬁ mean response spectra
and failure times by generating a few sample excitation functions.
The distribution of the response spectra of linear oscillators excited
by white noise base excitations was investigated by Brady(ig) in

an experimental test of the approximate analytical solutions of
Rosenblueth and Bustamante.

The present study examines the response of structural models
under both criteria of failure. In chapter II the electronic analog
computer is used té simulate a stationary random process designed
to have mean resi)onse spectra similar to those of some past earth-
quakes(14). With this excitation the response spectra of linear and

elastoplastic oscillations are obtained by analog simulation, the

Monte Carlo method being used to estimate their means and density
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functions. These are compared with approximate analytical esti-
mates whenever possible and the use of equivalent linear oscillators
in predicting the elastoplastic oscillator's spectral properties is
examined. Finaliy, the frequency characteristics of the excitation
are examined through its Fourier amplitude spectrum.

The last three chapters consider the collapse of nonlinear
structures with gravity. Emphasis is placed on the time to failure,
its mean value and density function. Chapter III is concerned with an
electronic analog simulation of a single-degree of freedom structural
model having an elastoplastic restoring force that is either hysteretic
or non-hysteretic and subjected to the influence of gravity. The
effect of the latter on the yielding characteristics of the model are
observed and the effect of the excitation on failure times is considered
both from the point of view of its average magnitude and the scatter
in its temporal energy distribution. The wide scatter observed in the
failure times of structures subjected to the same mean relative exci-
tation level is attributed in part to this energy distribution.

Observatiohs of the responses in chapter IIl are used in
chapter IV as a basis for developing an analytical method for esti-
mating the mean failure time of the one~degree of freedom hysteretic
system with gravit}}o The given filtered white noise process is re-
la.xéd to a shot noise pfocess whose temporal energy distribution
can be accounted for by considerations of clumping in the arrival of
the impulses. Structural response to such impulses is coﬁsidered as

a stationary random process with a biased mean level reflecting
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yielding and gravity effects. The use of the shot noise model limits
the application of the method to relatively strong excitations that
cause failure in less than about 20 seconds; though the results indi-
cate that it gives fairly reliable estimates wifhin that range.

The investigation is extended to a two-story structural model
in chapter V. Electronic analog simulation of this model showed that
basic response properties like the yielding characteristic and distri-
bution of failure times are unchanged. Therefore an attempt was
made to estimate the failure time of this model by using the response
of a linear two-degree of freedom system to account for dynamic
fioor interactions and the results of the earlier single-degree of
freedom system to ~correl::mte the expecteci failure time with the mean

stationary response.



CHAPTER II

GENERATION OF A RANDOM EXCITATION PROCESS
AND RESPONSE OF SOME STABLE OSCILLATORS

A. Analog Simulation of the Random Excitation

Studies of structural response to random excitation have
been both deterministic~-using actual accelerograms--and proba-
bilistic. Apart from the fact that it gives little or no information on
the statiétics of structural response to the complete excitation
process, the deterministic approach is limited by the number of
accelerograms available. | This limitation also affects the reliability
of any stochastic model that may be used to simulate the complete
excitation process~-assuming the recorded functions can be rea-
sonably taken to be sample functions of some stochastic process,
However, such models have the advantage that they can be formu-
lated to reflect average properties of the known accelerograms and,
in certain cases, can be adapted as more recordings are made.
Furthermore, the response of a wide class of structures to such
models can be established, in a probabilistic sense, either by direct
mathematical analysis or by an experimental procedure such as the
Monte Carlo method.

In this chapter the Monte Carlo method is used to experi-
mentally obtain the distribution of the response of linear and
elastoplastic, single degree of freedom oscillators to a stationary

process. The results obtained are compared with current analytical
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(25,29,30) where these exist. Previous work in this vein

theories
has considered the digital response of different types of non-linear

(36) (26)

oscillators to stationary and nonstationary random processes;

the distribution of analog response of linear oscillators to white

(17,18)

noise ; and the analog response of linear and elastoplastic
oscillators to different types of stationary processes(ié). While
these studies have confirmed that the excitations thus generated have
the desired response spectra, it is felt that in no case have enough
sample functions of non-white noise been used to demonstrate the
statistical distribution of the response procésses.

The particular excitation process used here was desigped
such that its expected velocity response spectrum is equal to the

(14,15)

average of those obtained for a set of past earthquakes « Lhe

velocity response spectrum is defined by

1

max [32(8) + (ogx(t) ]2

Sv(w,n) :

(2. 1)

e

mtax | w_ox(t) |

where ::<, Xy W vn are the velocity, displacement, resonant
frequency and damping factor of an oscillator respectively. The

- last approximation‘is the pseudo-velocity and serves as a good
approxifnation to the true spectrum when the response process is
truly narrow band. This requires that the duration of excitation be
much longer than the Qscillator's period and that the period be
neither so short that the x;esponse is principally a i'igid body motion

nor so long that the frequency approaches zero. These requirements
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(30)

are met by the systems examined here. Caughey and Gray have
shown that the velocity spectrum of an undamped oscillator excited .-
by white noise is related to the power spectral density of the white

noise, So(w) ,» by

<Sv(oo,0)> = 1.174\/1780(0.))5 (2.2)

where s is the duration of each excitation sample. Since the response
of an undamped oscillator to a random excitation is a narrow band pro-
cess~--under the conditions specified above-~-equation (2.2) may be
assumed to apply for a more general non-white spectral density which
is sufficiently smooth(é’ 22), Hence the excitation spectral density is
known once a suitable expression is obtained for the average undamped
velocity spectrum of known records.

Many authors have considered the simulation of random pro-
cesses having a given spectral density. The methods used include

(8-10,14,36)

application of linear filters , or a cascade of linear

o 25)

filters to white noise or shot noise processes and summation of

random functions with known density distribution(iz), Aglde from

its distinct advantages of low cost, speed and flexibility mentioned
earlier, the analog.compu.ter is particularly suitable for simulation
by linear filtering: In the first place, the use of an indefinitely long,
continuous sample function makes it unnecessary to generate random
initial conditions. Secondly, the filters may be obtained directly from

the given spectral density without obtaining the associated differential

equations. Let x(t) be the given input function with spectral density
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So(w) and let y(t) be the desired output with spectral density G(w).

The overall transfer functions of the filters is simply

H(s) = Yis)/X(s) (2.3)

where Y(s) and X(s) are the Laplace transforms of y(t) and x(t).

For a stable, linear filter H(s) has the general form

H(s) = ) ajs‘]/ Z bjsJ., (2.4)
j=0 j=0

If the coefficients in equation (2.4) are constant, then, since one may

assume zero initial conditions, the equation can be rewritten formally

as (37) :
n-1 . n .
H(s) = s[ z ajp‘]/Z bij] (2.5)
j=0 j=0

where &£[+] and p are the Laplace and differential operators

respectively. .On substituting (2.5) in (2.3) one finds that the inverse

n n
‘ b.ply = Za. Ix
Z JPY . JP

j:O J:O

transform is

n-1
j-nHl
-Pyzz pJ n (ajx-bjy) . (2. 6)
j=0

Since the operator p"1 represents an integrator, it is seen that
equation (2. 6) requires only a set of integrators and summers to
generate the required output. Amplitude and time scaling are con-
veniently done on the Computer diagram.

Using (2.2) it has been shown that a reasonable random pro-
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cess representing past earthquakes has the spectral density(14’15’
38,39)
G( ) —- pz . C4 +4b2C20.)2 (2 7)
T 3R T2 2.2 Z 2 2 .

(cT=w )" +4b"c"w

where bZ = 0.410; c2 = 242 and p is a scale factor. The stationary

random process (2.7) was generated on an analog computer using a
single linear filter with a white noise input. The white noise, gener-
ated by a Hewlett-Packard model 3722A Noise Generator, is Gaussian,
with zero mean, fixed r.m.s. level of 3.16 volts, fixed power output |
of 10 volts and a bandwidth from d.c. to a variable cutoff frequency.
The noise may be either truly random or any one of several repeatable
pseudo-random sample functions. Appendix I gives further details

of the noise generator; and the actual experimental setup.

It is of interest in the studies following to examine some
properties of the simulated process. To do this two of the repeatable
sample functions were digitized for processing on the digital com-
puter. Figures 2.1 and 2.2 show these sample functions, their rate
of approach to a stable standard deviation and their auto-correlation
functions. These are compared to the corresponding analytical

values given by

o(r) = S‘ G(w) cos w7 dw (2.8)
0 .
o =[6(0)]% = 2.2 - (2.9)
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where We is the cutoff frequency of the white noise input, set at
15 Hz, and its spectral density is 10/wf. For sample excitations

digitized at equal intervals, the correlation function becomes

N-k

d)(kz_\.t)z-i—z {y v ks L LT T Atz}

N i-1Y54k-1 T2V 41 T 8o 3 %554
j=2

(2.8a)

where NAt is the duration of the record and

.= (z, -z, At ,
8 (zJ ZJ-i)/

It is seen that the s;candard deviation settles down remarkably rapidly,
being within 10% of its mean value in less than 1 second.k Fﬁrther-
more, it does not fluctuate beyond this narrow range aféer that time.
The accuracy of the simulation procedure is indicated by the close-
ness of the observed mean values to the predicted value of 14,16 volts.
This error of less than 10% was verified by several spot-checks using
a random-noise voltmeter with an averaging time of 100 seconds.

The correlation functions show significant correlation over
only about a half second, though they fluctuate higher than the analyti-
cal correlation for longer times. However, such fluctuations are to
be expected in any ‘indiviaual sample functions. Quite similar cor-
relation functions have been observed for several strong earthquakes
(25,36)‘

Comparing this correlation time with the observed rate of
zero~-crossings of approximately 9 per second, one may conclude

that the process can be adequately represented by uncorrelated
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random pulses with an arrival rate equal to the rate of zero crossings.
The applicability of such a model will also depend, of course, on the
characteristics of the system being excited. As an example, Ward(ié)
has shown that while the response spectrum of an undarriped oscillator
is radically different for white noise and filtered white noise excita-
tions, those of viscously damped oscillators seem insensitive to the
difference in excitation; provided their spectral densities are nearly
equal in the neighborhood of the oscillators' resonant frequency.

It can also be concluded that relatively short samples of the
process, longer than 4 sec., say, may be adequately characterized
by the average properties of the whole process. Equation (2.2) shows
that the spectral properties of the process may be demonstrated by

its undamped velocity spectrum. This is considered in the following

section, as well as the Fourier amplitude spectrum.

B. Response of Linear and Elastoplastic Single Degree of Freedom

Systems

Investigations of structural response to random excitation have
been primarily focused on the response of single degree of freedom
systems. Apart from the relative analytical simplicity of such
models, the results obtained from them give insight into the response
of more complicated structures and may be used to compute the
response of multi-story stru.c‘n‘:uresHZ’43)° Since the object of these
studies was not the collapse of the structures, the effect of gravity

was usually neglected and emphasis was placed on the maximum

value of the response; in particular, the velocity and pseudo-velocity
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spectra defined earlier. In such a case, the equation of motion for a

viscously damped, one degree of freedom oscillator takes the form

mx + cx + kf(x,;c) = - mg(t)

where x is the displacement of the mass m relative to its base,
g(t) is the base acceleration, ¢ is the amount of viscous damping,
k the spring restoring force and f(x,x) is the general, non-linear
form of the spring force. Defining the natural frequency, Wy and

per cent of critical damping n by

w, = Vvk/m , n = c/2vkm
gives

eo °

x + anox + w(?;f(x,;c) = - g(t) . ' (2.9)

Equation (2.9) was simulated on an analog computer for both a linear
and an elastopvlastic system., The elastoplastic system has a unit yield
level and was simulated by an integrator with its output voltage
1imi‘fed. The simulation is described in the appendix. The random
acceleration input's spectral density is given by equation (2.7). The
experimental procedure used was to generate a continuous function
for' g(t) and then apply this to the analog model of the oscillator for
a fixed interval of time during which the maximum response is
measured. This pfocedure makes it unnecessary to set random
initial conditions on the linear filter used to generate g(t). The

effect of the offset voltages of the circuits used to measure the
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maximum amplitude was obtained by plotting several of the responses
of a Bfush Recorder and comparing their maximum values with the
meter values. These consistently showed a difference of between
-0.7 and -0.9 volts, hence the net offset voltage was taken as -0.8
volts. No frequency dependence was observed in the offset. This
procedure also confirmed the design criterion that the meter should
react fast enough to record sharp peaks in the response., The ex-
pected error in the meter readings of about 0.1 volts compares with
actual readings ranging from 2 volts to 11 volts. A negative damping
factor--between 0.1 and 0.15%--was found to be necessary in the
case of undamped oscillators. This error was thought insignificant

for the 2% damped oscillators.

Linear Oscillators

For a linear oscillator, equation (2.9) becomes

%+ ano;{ + wg‘x = - g(t). (2.9a)
Its power spectral.density is simply

S(w) = G(w) -

I

H_() |

2 2 2 zz§' (2.10)

G(w)/g(wi - w’)” +4n W w

The pseudo-velocity response of this oscillator was obtained
as outlined above for periods ranging from 0.3 seconds to 2.5 seconds
and for damping factors of 0.0 and 0.02. This period range covers

the observed range of periods of the fundamental modes of most
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structures. The damping factors were chosen to reflect the qualita-
tive difference, if any, in the distribution of response of undamped
and viscously damped oscillators. It was expected that the former
‘would be more sensitive to the distribution of peaks in the excitation.
Higher values of damping were not used since past studies suggest
that these will give qualitatively the same response as the 0.02 damp-
ing. Enough samples were obtained for each value of period and damp-
ing to assure that the response mean and variance had stabilized. It
is noteworthy that this required at least 300 samples in each case.
The stability of these values, and the repeatability of the whole ex-
periment was checked and confirmed by repeating the readings for
some cases. These deviated by less than 2% for the means and 5%
for the variance.

The results of these studies are presented in figures 2.3 and
2.4 and Tables 2.1 and 2.2. The points on the distribution functions
represént the midpoints of the tops of the steps of the histograms
computed at one-e‘ighth of the mean value. This assures that an
average histogram step h;s about 20 sample points. To account for
small experimental variations, a weak smoothing was performed on

the histograms. This was of the form

£.=0.5f +0.25(f.., +f, 2.11
J J a1 ( )

jut*

where fj is the value of the jth step of the histogram. The figures
also include the projected variation of maximum response with period;

plotted at varying fractions of the mean maximum response. Approxi-
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mate extensions of the plots to low periods were made on the basis of
the fact that the maximum response approaches zero as the period
approaches zero.
One may examine certain analytical solutions for comparison
with these observations. The probability that the maximum value of
some response property, r(x,;:), is R may be obtained by con-

sidering the distribution function

F_(R) =p(r =R[0=t<5s),

i.e. the probability that r does not exceed a barrier at R for the
duration of excitation, s. The solution to this problem may be ob-
tained either by solving the barrier problem for the transition proba-—l

)(30)

bility of equation (2.9a or by using approximate expressions for

either the rate of threshold crossings of the peak distribution of the

response r(25’40’41). A solution has been obtained by Rosenblueth

(29)

and Bustamante for the quantity

r2 = (mox)2 + §c2 s

It was shown that if the excitation is a white noise of intensity k, then

the distribution function for an undamped oscillator is

Y 2 02

F_(R) = 2 Z exp ] - ksh_ /R %/mei(xm) ) (2.12)
- :

where JO and J'i are Bessel functions of the first kind and the Km

are zeros of Jo"- Using (2.12), the density function and mean be-

come
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£(R) = (4ks /R>) - Z A exp §- 1<sxfn/R2§/J1(xm) (2.13)
Imn
and
(R) = 2.348+ks . (2.14)

In the study by Caughey and Gray(Bo) , it was concluded that
this solution may be applied to an input with a more general spectral
density provided it is slowly varying in the neighborhood of fhe
resonant frequency W and the duration s is much greater than

the oscillator's period. Then the intensity function becomes
k = G(wo) . {2 L5

Furthermore, the results in equations (2.12) - (2.14) will apply to
the pseudo-velocity response of the process given by equation (2.7)
whenever the assumption on long duration is satisfied; since it has
been observed thgt the maximum response of an undamped oscillator
usually occurs well after the start of the excitation. These results
are compared with the experimental results in table 2.1 and figure"
2.3. It was observed that the summation in equation (2.13) need only
be carried to a small finite number (= 20) as the convergence is
rapid whenever f(R) is significantly differéent from zero. In figure
2.3 the mean of the theoretical curve has been adjusted to that of the
experimental curve in order to facilitate comparison of the density

functions.
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TABLE 2.1

Pseudo-velocity of Undamped Linear Oscillator p = 1,26

Period <Sv> O‘Sv (R) 0'/< Sv>
6.11 197 6,716 0.322

0.6 6.97 2.24 8.36 0324
150 build 1,91 7.40 0322
1.5 5. 75 1«78 6.91 0.309
2.0 5.58 $+91 B T2 0.342
5.48 1.78 6.63 0.325

3.0 5¢52 177 6.58 0.321

It is seen that the variation with period of the mean values of
both the experimental and theoretical spectra agree very closely with
the average spectrum from which the excitation was derived(44) LG
there is a sharp rise up to about 0.5 seconds, then an almost exponen-
tial decay to a constant value after 2.0 seconds. However, the actual
magnitudes of these means differ by 10 to 20%, though the difference
is less than 1 standard deviation in all cases. A better agreement is
observed between the predicted and experimental density functions.

While it has thus been shown that the analysis by Rosenblueth

(29)

and Bustamante predicts the response of an undamped oscillator
within acceptable limits, the functional forms of the results are
fairly complicated and become even more so for the damped
oscillator. It is therefore of interest to consider simpler, approxi-

mate solutions using comparable assumptions. A general threshold -

crossing problem is considered in chapter 3 but it will suffice to
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consider the well known results for a constant barrier here.

Whenever the necessary derivative exists, it can be shown(éo’

ad) that the expected rate at which a weakly stationary process crosses

a threshold at a constant level R is

CD . ® °
v(R) =§_Oo =] py 3 (R,%) dx .

In particular, if x(t) is a stationary Gaussian process with zero

mean, the above joint density function becomes

| ; g i
8 = e {25 22
XX 2moe, 20° 207
giving
o
V(R) = '_-Ei—‘ exp (- RZ/ZO‘Z) (2.16)

where 0'2 and O’f are the displacement and velocity variances

defined by

n
£ 0
0-2 =§O S(w) dw = go .S(w) dw

w
f oo}
o‘% =§ coZS(co) dw -:-g wZS(w) dw -
0 0

(19,

If it is now assumed that the threshold crossings are independent

20) , they become a Poisson process with stationary increment v(R).

(6)

The expected time to one crossing is then

E[T] = 1/v(R) (2.17)

3
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A straightforward scheme for obtaining bounds on R is to choose

R such that
E[T] =s<2E[T], (2.18)

i.e. the expected 'waliting times' to one and two crossings respec-

(33)

tively --equation (3.14). Substitution of equations (2.16) and (2.17)

in (2.18) leads to the bounds

Y21in[sv(0)/2] < R/ec=+21n[sv(0)] . (2.19)

The same bounds have been obtained recently by Yamada and

(25)

Takemiya from considerations of the response peaks; using the

(45)

heuristic approach of Huston and Skopinski for lightly damped

systems. Although the assumption that the threshold crossings of
a narrow band process are independent is questionable in general(zo),
the demand of equation (2.18) that there be at most two crossings in
the time interval s--s >> P--forces R to be so high that considera-
tions of envelope crossings, peak crossings and clumps in threshold
crossings should give comparable results. In particular, the approxi-
mate analysis of Yamada and Takemiya applies exactly to the case of
envelope crossings when the response process is Gaussian(zz),

Table 2.2 éhows that the bounds in equation (2.19) are. Very
cloée although both bounds are higher than the observed values. These
bounds may serve as conservative estimates of the expected mean

maximum response. The disadvantage in the approach used to derive

them is that nothing can be said about the distribution of this peak
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response since no solution exists for the probability distribution of

the time to threshold crossings.

TABLE 2.2

Pseudo-velocity of 2% Damped Oscillator, p = 9.16

Period <Sv> O‘Sv Rmin Rmax o/ Sv>
0.3 11.74 2+13 13.03 14,00 0,182
0.6 18.12 3.58 20.76 22.52 0.198
1.0 19.26 4,00 22,26 24,38 0.208

21.28 4,96 23.90 26.52 0.233
2.0 21,7 5. 32 25453 28.61° 0.244
2D 22.48 b.17 26.98 ‘ 30.53 0.274

Elastoplastic Oscillator

The investigation of the elastoplastic oscillator was made
principally to examine the feasibility of using equivalent, linear
oscillators. Karlier work on this problem has considered the

stationary response of the oscillators using the method of equivalent

lineariza.tion(35 »50-52)

(34,36)

oscillators . Here, the elastoplastic response will be com-

and equivalent, viscously damped linear

pared to the predicted response of viscously damped linear oscillators
using the results obtained earlier.

The maximum absolute displacement of the elastoplastic
oscillator was measured for 300 sample excitations lasting 30 seconds
each; and for natural periods from 0.5 to 2.5 seconds. The excitation

level was selected to give yield ratios between roughly 2 and 10.
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Table 2.3 shows the observed mean maximum absolute displacement,
the standard deviation and values for linear oscillators as given by
the lower bound in equation (3.19). The distribution of pseudo-
velocity is shown in figure 2.5 to facilitate comparison with linear

responses.

TABLE 2.3

Comparison of Displacements of Undamped Elastoplastic
Hysteretic Oscillators with Predicted Displacements

of Viscous Damped Linear Oscillators

Predicted Xrin

Period <xm> 0-xm n=0,015 n=0,02 O-x/< xm>
0.5 0.971 0,237 1,08 0.94 0.244
1,0 2.39 0.58 2.44 2.10 0.243
1.5 3,78 1,47 3.93 3.40 0.309
2.0 5.81 2,45 5.59 4.84 0.422
2.5 8,67 3,20 7.39 6.39 0.370

The significant observations from these results are: (1) the
elastoplastic oscillatofr's mean response may be adequately repre-
sented by that of a linear oscillator with about 1.5 or 2% damping;
(2) this equivalence seems to be slightly dependent on the natural
period, especially with regard to the dispersion in the response.

(34)

Hudson has aptly noted that such low damping values should be
expected for random excitations since the oscillator yields, and

energy energy is dissipated, only a small fraction of the excitation's
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duration.
One should note in applying these conclusions that the displace-
ments of both oscillators depend on their natural period and the dura-

(36)

tion of excitation. It has been shown that, for long periods and
excitations, the dependence on duration is approximately linear in both

casetse.

Fourier Amplitude Spectrum

Although pertinent information may be obtained from the un—‘
damped response spectrum, the frequency distribution's average
energy is most directly measured by its Fourier amplitude spectrum.
The square of this amplitude may be viewed. as the power spectral
density of the excita‘tion(53)o Hence extensive use has been made of
Fourier Spectra. However, since very few sample functions were
used to derive these spectra they tend to show very wide fluctua-

(18)

tions . It is of interest, therefore, to investigate the existence
of a mean spectrum, and its density function; and to compare these
with the undamped pseudo-velocity spectrum.

If each sample lasts for a finite time s, and it can be assumed

that the excitation process is ergodic, then its Fourier transform is
= iwT
Fg(w) & S g(T)e dr. (2.20)
0

The magnitude of this transform may be obtained from the response

of an undamped oscillator which, from equation (2.9a) is given by

(6,22)

the convolution integral
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~t
x(t) =5 g(7T)h(t-7) dr (2.21)
0

where h(t), the impulse response of the oscillator, is

1 iwot
h(t) = = :)—— e

(0]

t>ou

In particular, for t= s, the response becomes

; s iwo(t-'r)
x(t) = - ——g e g(7) ar

w

ovo0
=
; ot B B
e ° °F i)
» g
hence the magnitude of the response is

1 ;

e =

|x(t) | = ]Fg(wo)] t= s, (2.22)

O

Thus the free Vibration of an undamped oscillator, measured after
the cessation of excitation, gives the latter's Fourier amplitude coef-
ficient, at the oscillator's natural period.

The experimental procedure is therefore identical to that of
the undamped oscillator except for the use of a different switching
arrangement., Thié permits the analog model to oscillate freely for
at least five cycles after the excitation has been removed. The
maximum pseudo-velocity of this free oscillation is ‘measured as
usual. A block diagram of the system is given in the appendix. It

‘was found that at least 600 samples had to be used at each frequency
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to obtain a satisfactorily stable mean. Since quite low voltages were
recorded, one should recall that the measuring process is accurate
only to within 0.1 volt, though the effect of this error should be

negligible.

TABLE 2.4

Fourier Amplitude Spectrum

P (F (P) o o/ F) (S,
5. 70 2.98 0.52 9,31
5.92 3.06 0.82 10.61
1.0 5.71 2.79 0.49 9.48
5.42 2.71 . 0.50 8.76
5.36 2.82 0.53 8.50
5.26 2.61 0.50 8.35
5.05 2.66 0.53 8.40

In general, table 2.4 shows that the mean Fourier amplitude
spectrum has essentially the same shape as the undamped pseudo-
velocity spectrum, although, unlike the latter, it shows no sign of
peaking at any period. For the range of periods considereci, the

spectra are related approximately as

(S (P,0)) = 1.65 (F (P)- (2.23)

This compares with equation (2.2). However a most radical differ-
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ence is observed in their density functions--«figures 2.6 and 2. 3.
While the ratio of standard deviation to meén value of the Fourier
spectrum is only about half, it can be seen that values one standard
deviation removed from the mean have a relatively high probability
of occurrence. This explains the wide fluctuations observed in
measurements of Fourier spectra from few sample éxcitations and

makes the use of approximate relations like (2.23) appealing.

C. Summary and Conclusions

The problem of using an electronic analog computer to
generate a random process whose spectral density is known was
considered. It was shown that analog linear filters can be designed
directly from this spectral density. In lieu of necessary measuring
equipment, the properties of the process can be obtained by digitizing
a few sample functions and analyzing them on the digital computer.
This hybrid method perm'its checks on the accuracy of subsequent
analog simulations. In this way it was found that a process designed
to represent averége properties of some past earthquakes has a rate
of zero crossings of about 9 per second, a correlation time of about
a half second, and can be adequately represented by sample functions
of more than four s'econd duration. Such information determines
restrictions on the use of the process.

The structural properties of this type of exqi‘tation were next
investigated using the method of response spectra and considering
analog models fo:c" linear and elastoplastic single-degree of freedom

oscillators. It was found that at least 300 sample functions were



35

needed to establish a stable mean value for the response spectra.
The means of the linear oscillators agree in general outline with the
mean spectra from which the excitation process was derived.
Additionally, it Was possible to exhibit the probability density
functions of the spectra. The damped linear oscillator and the
elastoplastic oscillator showed fairly symmetric, near-normal
distributions while the undamped density functions were skewed to
the right. Ratios of standard deviation to mean of bétween 0.2 and
0.5 were observed.

The wide spread observed in these distributions is very sig-
nificant in evaluating the reliability of structural studies which use
only a single earthquake accelerogram or a few sample excitations.
The weight assigned the results of such deterministic studies have
to consider the number of samples and the degree of randomness in
their choice. In particular, one expects an ensemble of real earth-
guakes to give' even wider dispersions in response than those obtained
here for a well-defined process.

An attempt to compare these results with analytical solutions
showed that the solution given by Rosenblueth and Bustamante for
white noise excitations and extended by Cauéhey and Gray to more
general spectral dénsities gives a good fit to the density functions of
the undamped oscillator but a conservative estimate of their mean
values. A method of evstimating‘ the mean rﬁaximurﬁ response of
damped oscillators was derived by considering the mean rate of

threshold crossings of the response. The conditions of derivation
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imply that similar results should be obtained by using either the peak

distribution or the envelope crossing statistics of the response.
Although it supposedly gave upper and lower bounds to the maximum
response, both bounds turned out to be close but conservative esti-
mates. Advantage was taken of this analysis to consider equivalent
linear models for the elastoplastic oscillator. This confirmed earlier
observations that a very low value of equivalent viscous damping was
necessary but illuminated the highly approximate nature of such an
equivalence.

The distribution of the Fourier amplitude spectrum of the
excitation was also considered. Since this and the undamped pseudo-
velocity spectrum can be related to the excitation's spectral density
an attempt was made to find the relationship between them. An
approximate linear relationship between the mean values was found
though it must be noted that it is limited to a period range of between
0.3 and 3.0 seconds and that the density functions are radically
different. Since values of Fourier spectra usually fluctuate more,
one concludes tha’c. a better estimate for their mean value can be
found by using the pseudo-velocity spectra in situations where few
sample excitations are ayvailable.

Finally, alf.hough as many as 300 samples were used to calcu-
late the mean maximum responses, it was noted that these values can
be estimated to within 15% for aé few as 75 samples. However,
these estimates deteriorate rapidly as the number of samples is

reduced.
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CHAPTER III

FAILURE OF NON-LINEAR SINGLE DEGREE OF FREEDOM
SYSTEMS WITH GRAVITY

A. Introduction and Definition of Problem

When interest is focused on exciting forces étrong enough to
cause the collapse of structures, simple linear structural models
become inadequate. Furthermore, the instability of such structures
reflects the biasing effect of gravity forces. Therefore, the failure
of bilinear systems with gravity--both hysteretic and non-hysteretic--
is considered in this and the following chapters. The aim is to
examine the statistical distribution of the failure time of such
structures and their underlying behavior as they approach failure.

Several investigators have considered the effect of gravity on

structural response(46—48)., While it has been observed that small

increases in the yield slope result in a much stiffer structure(46) 5

the mechanism of collapse is unchanged. Consequently the present
study, being interested principally in the overturning effect of gravity,
considers bilinear systems with a flat yield level only. The single-
degree of freedom model is shown in figure 3.1a. The girder, of
mass m, and the massless columns, length £, are considered rigid.
Torsion springs‘couple the columns to the girder and the baséo These
springs have a net non-linear restoring moment of KF(¢, Ep) which

is shown in figure 3.1b for the non-hysteretic case. The viscous

damper is linearly related to the angular velocity ¢.

The model is highly simplified in order to achieve relative
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mathematical simplicity and to concentrate attention on the effect of
yielding on the structure's failure. It neglects the effect of all but
bending deformation of the columns, assumes that the structural
motion is planar and that, even with gravity, girder rotation is
negligible and girder buckling is not of immediate concern. The
motion of the model is thus completely specified by its angle of
rotation ¢. One notes that no analytic solution has been derived
for the response of even this simplified model to a stationary random
excitation. The results of analog simulation studies are presented
here and an approximate scheme for obtaining the mean failure time
of the hysteretic model is presented in the next chapter.

The equation of motion of the model may be obtained from
the Lagrangian equation

a /8Ly oL _
3%"(5'2; ~ 5% =8 (3.1)

where Q¢ is a generalized force including the non-conservative

spring, dashpot and D'Alembert forces, and L is the Lagrangian.

From figure 3.1a one obtains

L

im(t &% - mgl cos ¢

"

Q.= - KF(d,d) - cd - myl cos ¢ .

¢

Substitution in equation (3.1) givés

S(mt%}) - mgl cos ¢ = ~KF(¢,3) - cb - myL cos b (3.2)
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Define

Z .. K g C
W E -2, NEe——; z = - {3.3)
° mﬁz I 2w mfz d‘>y
o
where ¢Y is the yield level of the springs. Then
Z+ 2nw z + (w2+ )f(z :'a) -5 _sin ¢= - v cos /L (3.4)
o o I ’ quy y y *

where f(z,z.:) has a unit yield level and Wy can be recognized as
the natural frequency of small amplitudé vibrations of the system.

It is convenient to put this equation in non-dimensional form by
defining the ratio of a measure of the excitation's magnitude to a
measure of the structure's strength. Since the excitation process is
defined by its power spectral density, equation (2.7); its magnitude
is best measured by its r.m.s. value. Although direct integration
gives an r.m.s. value of 2.21 for p =1, a value of 0.697 is chosen

(14,

to facilitate comparison with currently available sample functions

46). The base acceleration is thus specified by a factor y such that

yit) = yx(t) (3. 5)

where x(t) has a spectral density given by equation (2.7) and r.m.s.
value of 0.697.

| Similarly the structure's strength is measured by the level of
acceleration torque necessary to initiate yielding in the springs.

Examination of figure 3.1 gives this as

(e T mempiE,
miu ¢y g<¥>y
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It is now possible to define a non-dimensional form of the excitation's

relative intensity as

= ° 2
6=vyg/u-= yg/ﬁwocby 5 (3.7)

Finally, one notes that failure of the model by collapse is
equivalent to the crossing of a given level by the response, z(t).
without return. When the level is sufficiently high, this problem of
an absorbing barrier may be replaced by the more tractable one of
threshold crossing for, in such a case, the instability of the response
will ensure that a negative crossing is highly improbable. As a
practical matter, only the latter criterion can be simulated readily
in an experiment; and, although the argument is heuristic, its validity
is easily tested in an experiment.

 Alternatively, one may define failure of the structure by the
behavior of the rm s. value of the response. This has the dual
advantage that it can be related to the energy of the structure and
that it is often easier to consider in analytical work. However, the
displacement is eaéier to measure in a simulation process and,
furthermore, one does not expect the different measures to give
qualitatively different results in the case of an unstable system.

The collapse level chosen is the angular displacement at which

the model collapsés statically. From figures (3.1a,b) this gives
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K/mgt

N
1

(3.8)

]

2
1 +ﬂwo/g

and is the point at which the restoring moment of the springs becomes
zero., It was assumed in deriving equation (3.8) that ¢ is small
enough enough such that sin ¢ = ¢ even up to collapse. The validity
of this and the choice of failure level has been confirmed by the
studies of Husid(46>. In summary, then, the equation of motion

becomes

. U
z + anoz +(w0 +-z-)f(z,z) -~ PG x(t) , (3.9)

Hence the motion is completely specified by the damping factor, n,

length £, period P and intensity factor 6.

B. Response of Analog Models

To desi‘gn an electronic analog model for equation (3.9) it is
necessary to scale it such that the yield and collapse levels are high
enough to minimize inherent errors in measurement and amplifier
drift while being sufficiently low to prevent saturation of any equip-

ment. This can be conveniently done by redefining =z ‘such that

2 = 64/%,  (.10)

where ¢>S is the collapse angle. The model now collapses at the
fixed voltage, &, in all cases while the yield level varies with length

and period as
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b= 60 /b, = 8/{t +e w’/g}- (3. 11)

If one now considers that the elastoplastic function generator yields

at a level e the scaled equation of motion becomes

° 2. gy b Z z
+ 2 b ) ey I
z nwuzﬂ"(wo“l‘ﬁ)ezf[ Y,b y

0Q

1 g

e e bwze
= o x(t).  (3.12)

The solutions of equation (3.12) are actually run at 0.1 real time by
a straightforward time scaling of all integrators. Since amplifier
drifts can be adjusted to less than 0.02 volts per second, and the
solution time is less than 15 seconds in all cases, the scale factor,
0, depends only on the saturation .voltage of the amplifiers. This
is just over 50 volts so & was chosen as 40 or 30 volts as convenient,
A switching and timing system made it possible to accurately detect
collapse of the model, reset and restart it and measure the time to
collapse. Details of the circuitry are given in the appendix, which
also examines the accuracy of the analog set-up with respect to the
coefficients of equétion (3.12). The values set for these are usually
within a 5% error limit.

As a test of the effect of errors in the experiment--in particu-
lar that of the elasfoplastic function generator--a comparison of the
analog response with digital computer response was made using the
two repeatable pseudo-random functions already digitized. Two sets
of the results are shown in figure 3.2. Noting that the digitizing

(18)

procedure is not error-free , the agreement between these re-

sponses was considered satisfactory.
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To limit the number of parameters, only the period and ©
were varied., Because of interest in the collapse of buildings,
representative values for the model's length and damping factor were
chosen as 10 feet and 0.02 respective1y§46’49), Similarly, because
of interest in the behavior of multi-story buildings, the period was
varied between 1.5 and 2.5 seconds; the lower limit being imposed
by the yield level of the elastoplastic function generator--6.15 volts,
the saturation limit of the integrators--50 volts, and the ratio of the
yield to collapse level--equation (3.8). Values of the parameter ©
were chosen such that the mean collapse time of most of the structures
studied was of the order of 30 seconds. Most earthquakes recorded
so far show strong motion for less than this interval.

It was observed that 300 samples were enough to obtain a
stable mean and standard deviation of the failure time; stability being
in the sense that fluctuations about the mean were less than 5% with
no appreciable‘ decrease with increasing sample size. However,

600 samples were used in order to produce smoother density functions.
A weak smoothing of these functions was performed as given in
equation (2.11), Tables 3.1 and 3.2 show the means and standard
deviations obtained while some response samples are given in

figures 3.3 and 3.%.
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TABLE 3.1

Failure Times for 1 Degree of Freedom Hysteretic System

¢ P <tf> o o‘/(tf> m v t

23.0 isD 35.43 14,30 0.40 6.14 B t7 35. 0%
23.0 2.0 39.55 16.84 0.43 5.52 D 14 41.06

230 2.5 47.47 20 57 0.43 Sy 35 0, 11 45,92

34,5 15 16.34 T+ 44 0.45 4.80 0.29 16.88
34.5 - 2.0 18.35 8. 85 0.47  4.30 0.23 12.50

3%. 5 2+5 20591 10.21 0.49 4.16 0.20 21.81

46.0 125 10.46 5. 35 0. 51 3.82 0.36 9.96
46.0 2.0 11.08 5. 91 0.53 e 5L 032 11,50
46.0 2.5 , 12.04 6.56 0.54 3,36 0.28 12.86
69.0 LeB 5.69 3,42 0.60 2o 11 0.49 e T
69.0 2.0 5.15 3. 50 U, 57 3,09 0.50 5.46

69.0 2.5 6.70 4.06 0.61 2¢ (2 0.41 By AL

<t£> = experimental mean failure time

B, regression analysis estimate
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TABLE 3.2

Failure Times for 1 Degree of Freedom Non-Hysteretic System

0 P (tg %, o/t m v t
34.5 1.5 25.39 22.07 0.87 1«52 0.05 26.19

34.5 2,0 26.37 22.70 0.86 1.35 0.05 21,88

34.5 2.5 24.77 19.20 0.78 1.66 0.07 19.03

46.0 1.5 13.72 11,83 0.86 1.34 0.10 17.93
46,0 2.0 13.28 10.65 0.80 1.56  0.12 14,98

46.0 225 13.00 10.29 0.79 1.60 0.12 13.03

69.0 1.5 7.09 7,00 0.99  1.02  0.14  10.51
69.0 2.0 6.68 5,33 0,80 1,57  0.24 8.78
69.0 2.5 7.09 5.47  0.73 1,08  0.27.  7.64

C. Observations and Conclusions

It is seen that both the hysteretic and non-hysteretic systems
show a measurable variation of collapse time with period, though for
a period difference of one second such variation is less than half the

scatter in the collapse time as measured by the standard deviation.
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Normalizing the standard deviation to a unit mean shows that its
dependence on period is, at most, slight. Such subjective inferences
can be tested by standard statistical techniques of correlation and

(55,56)

regression . A non-linear regression equation of the the form

(3.13)

was investigated using a direct method combining the Gauss-Newton
and gradient methods as described by Marquardt(56). Apart from
using the least squarés estimates of the parameters to predict mean
failure time t, (tables 3.1 and 3.2), correlation between the
parameters and their standard errors were obtained. ‘Both the values
of these parameters and their ratios to their respective standard
errors show that all parameters are significant., However, on noting
the large variance of the failure times one may conclude that the effect
of period may be neglected relative to that of the excitation strength
for the period range considered here. - It should be noted that this

does not imply a complete independence of period in the results since

the definition of 6 already reflects the model's periods.

TABLE 3.3

Regression Analysis of Hysteretic Structure

Parameter Std. Efror Parameter Correlation
a a a
1 2 5
4 4
a 0.917X 10 0.10 X 10 1.00
8 0.50 0.04 -0.26  1.00
5 -1.84 0.03 | -0.97  0.02  1.00
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TABLE 3.4

Regression Analysis of Non-Hysteretic Structure

Parameter Correlation

Parameter Std. Error 5 &
1 2 a3
3 3
a, 3.57 X 10 0.94 X 10 10
a, -0.62 0.08 -0.06 1.0
ag -1.32 0.07 -0.98 -0,11 1.0

As was the case with the linear oscillators, the significant
implication of the large variance observed is in the weight to be
assigned to deterministic studies using only a few sample excitations.
It is noteworthy that because of the skewness of the distribution small
samples will probably underestimate the mean collapse time.

Observation of several responses--as in figures 3.3 and 3.4--
shows that structural collapse is sensitive to the high peaks in the
excitation, the hysteretic system collapsing from an accumulz;tion
of permanent set due to such peaks. To pursue thisg, copsider that
the arrival of peaks above a given level is a homogeneous Poisson
process(ié) with mean arrival.rate v i.e. a threshold crossing prob-

lem where the probability of m crossings in time t is

Pt = (vt)™ exp (-vt)/m! (3.14)

where N(t) counts the random number of crossings up to time t. If

one defines Wn as the time to m crossings and FW (t), fW (t) its

| (33F o
distribution and density functions respectively, then



%—; 1 - Z (vt)ke_vt/klé
k=0

ve-vt(vt)m—i/(m-i) !

"

vmtm-ie_w/l"(m) m an integer

{3.15)

where I'(-) is the Gamma function. For any rational m and m v> 0,
equation (3.15) is the standard Gamma distribution with mean m/v and
m/vz, An attempt was made to fit this distribution to the experimental
data. -The results appear in tables 3.1 and 3.2 and as solid lines in
figures 3,5~-3,10. The Gamma distribution had been independently
observed to give the best fit to the hysteretic system's data of all the
standard two~para£neter continuous distributions.

While examination of the records confirms the expec‘tétion
that the effect of gravity is to bias the plastic drifts of the hysteretic
system, these reco.rds and the close fit of the Gamma distribution
suggest that basically such a drift is not a relatively smooth process
but occurs as jumps in the response. Furthermore, the time between
such jumps decreases progressively implying, in effect, a relative
weakening of the <-s’mructure. Therefore, estimation of the duration

of excitations strong enough to cause collapse should take account of
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both their die-down and strong-motion phases. The weight accorded
the former will depend on the latter's duration and relative magnitude.
For exarnple, a die-down phase estimated at © = 23 and lasting 5
seconds will have a significant influence on the expectation of col-
lapse if it follows a strong-motion phase of 0 = 46 that lasted 10
seconds. This points out the need for a scheme for approximating
the extent of progressive damage in the hysteretic structure.

The influence of gravity may also be viewed as causing pro-
gressive asymmetry in the force-deflection properties of the hysteretic
system by lowering the yield force in one direction while increasing it
in the other. This suggests that the above investigaﬁion of response to
a zero mean random excitation can be applied to excitations like
random wind loads which possess a non-zero mean component(i3)
and hence unsymmetric yield levels to start with. The sole difference
will be that the direction of initial yield is predetermined in the latter
Cage.

Gravity appears to affect the non-hysteretic system only by
causing instability when excessive yielding occurs. This observation
is supported by the results of the Gamma distribution fit which shows
between one and two threshold crossings to failure. The poor fit of
the density functioﬁs may be partially ascribed to the inefficiency of
the bmoment method in estimating the parameters of the distribution( )
but there is no real advantage, here, in improving the estimates.

The observed failure times lead one to conclude that the choice

of yielding model is important only for low intensity, long duration
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excitations. Observation of several responses--as in figure
3.3--leads to the conclusion that, between the jumps in response,
the motion of the structure is essentially a narrow band response.
Finally, as a numerical example, consider that a building is
designed to yield under a lateral force F =mX 0.15 g. If it is sub-
jected to an earthquake whose strong motion phase is 15 seconds long
and has an rms level of about 4 ft/secz-—corresponding to a peak
acceleration of 0.5 g, say--then the relative excitation intensity is

4,00

0= 6T597%0.135

= 50, (3.16)

Hence using equation (3.13) and table 3.3 one estimates the mean
failure time to be 9.5 seconds. However, it is well to note that there
is a very wide dispersion of the failure time such that the probability
that it will fail in 5 seconds is 17%, in 10 seconds 60% and in 15
seconds 87%. 'Thus, one sees that working backwards to estimate the
ground motion on the basis of having seen a building collapse is very

unreliable.
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CHAPTER IV

ANALYTICAL MODELS FOR THE EXCITATION
AND MEAN RESPONSE PROCESSES

A. Introduction

In this chapter an analysis of the single story
elastoplastic hysteretic structure with gravity is developed by modelling
the excitation and response processes separately. The models are
based on two of the conclusions of the last chapter that a) the response
process is essentially the narrow band response associated with a
lightly damped linear structure; but with a bias of the mean level
reflecting elastoplastic yielding and the center repulsion of gravity;
b) the probability density function of the failure time is strongly
influenced by the scatter in the peak.distribution of the excitation.

The fi;st observation leads one to examine a response model

of form

1) = x(t) + £(2) | (4.1)
where

x(t) = stationary narrow band response of a linear oscillator

a deterministic bias function

£(t)

The second observation merely states that the inception of
instability is strongly influenced by the local character of the excita-
tion. Hence an approximate model for the excitation may appropriately

be taken to be a filtered sequence of independent and independently
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arriving random impulses (i.e. filtered shot noise(S)). For a narrow
band process the intensity function of the shot noise may be related
to the spectral density of the given excitation at the structure's
resonant frequency. Further, by noting that the rate of zero cross-
ings of the excitation is much higher than that associated with any of
the structures considered, the model is relaxed to a sequence of shot
noise impulses.,

This model has the desired effect of distributing the excita-
tion's average energy randomly in time whil»; local energy considera-
tions may be obtained by considering the clumping in the arrival of
these impulses. The effects of such clumps of impulses are used to
approximate the mean behavior of the bias function £(t). Statistics
of the collapse time of the structure are then obtained by defining
collapse as the first crossing of a given barrier by y(t). The

(41)

method used is a slight extension of that by Middleton and

Lin(s).

B. Shot Noise Model for Excitation

As defined earlier, the excitation, g(t) is a stationary

Gaussian random process with zero mean and power spectral density
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2
Glo) = £= (1 + ab%® /P - WP /cP)? + apPu? /c? (2.7)

where c‘Z = 242; bz
(5)

I

0.410. Its rate of zero crossings is thus

given by

I

o © o °
o =2 go gPcl0-8) dg

1
—-0-0 0‘
o

g 8

W 1/2
{ f waG(w) dw
== Ow = 8,9044 (4.2)
fo < G(w) dw

where PGé(g,é) is the joint density function of the excitation and its
first derivative, and We is their band limit. Since the integrands have
no singularities, the integrals were evaluated numerically by Simpson's
rule. (Note that, as defined, Vo is infinite for an infinite pass-band
process.) By comparison, the rate of zero crossings of the response
of the structures considered may be approximated closely by the

narrow band response of lightly damped oscillators to random exci-

tation(5 s22)
ey 1/2
{ w IHT(iw)I dw o
v == e (4. 3)
s w W o °
E fow P siZ
Sy 1Hp )| de

where

|H o) | = G)/ {(w? - w9)? +4n®wle®) (4. 4)
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03w = damping factor and natural period of oscillator

T,y = std. deviations of oscillator’s displacement and velocitys

For a wide pass band little error is involved in extending the upper
limits of integration to infinity in equation (4.3) and evaluating the
integral either by contour integration or from tables(27), For

n=0.02and 1.5 second one obtains
vs = La337s (4. 5)

Thus, comparing with (4.2) we see that a model of the excita-
tion by a sequence of shot noise impulses having a mean arrival rate
v, and zero mean will be reasonable provided the excitation is
strong enough that impulse clumps of size four or lesé cause appre-
ciable permanent set. Such a process may be written as

N(t)
S(t) = Z Yké(t - tk) (4. 6)

k=1

where

N{(t) = number of impulses in (0,t)

p4 identically distributed, independent random

variables

5(t - tk) = unit impulse at random time ‘ck s
The counting process N(t) is a Poisson process with a stationary

arrival rate Ve The mean and covariance functions of (4.6) become
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m(t) =0
Kss(ti ,tz) = IéS(t1 - tz) (4.7)
=v E[Y?]s(t, - t,)
o} 1 2
where 1 is the constant intensity function related to the power
spectral density by
¢ (w)=1/m. (4. 8)

SS

Invoking the narrow-bandedness of the response, one may make the

approximation

¢, (@) = Glo) | (4.9)

SS

where W is the natural frequency of the structure under small
amplitude displacements and it is assumed that G(w) is slowly vary-
ing around w From (4.7) through (4.9) one obtains

2
]

Bl Y] = wG(wo)/Vo " (4.10)

(21,57) as the consecutive

We now define a clump of impulses
arrival of similarly oriented impulses; an n-clump being a train of
n such impulses. If p is the probability that an impulse is positive
(p = 0.5) then the following relations hold for the variables as
detinadt® 1)

2

prob. an impulse begins an n-clump = B, B p {1 - p)

expected number of positive n-clumps per unit tune (4.11)

_ _ n, 2
—Cn-vop (1t -p)~.
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From any given moment, the probability that an n-clump starts after

the rnth impulse is
m-1
|

p(n,m) = l (1-p -p (1-p

m-1
P

where the independent arrival of the impulses has been invoked. The

expected number of impulses before an n-clump is then

Zmp(nm ) =25 > 1-p) (4.12)

=1/pn for 0<p_ <1.

The expected time to an n-clump is seen to be

_ _ -1
T © Nn/vo - (Vopn)

= 1/(3n . {4.13)
It should be noted that since the process (4.4) is stationary, the mean
properties defined in equations (4.11) through (4. 13) hold for any
period of observation. This is important when consi'dering the re-
sponse of a yielding structure to the impulses.

One caﬁ now consider the effect of an n-clump on the model of

an elastoplastic, hysteretic structure with gravity given in equation

(4.1). The linear oscillator's amplitude may be represented by

x(t) = A(t) sin mot (4. 14)
(40)

where A(t) is a 'slowly varying' amplitude assumed constant dur-
ing any given cycle of oscillation. Kach acceleration impulse imparted
by the excitation, Yk’ at time t, » causes an instantaneous velocity change
Vi whose effect depends on the position of the oscillator x(tk) and its

current mean level X, = f(tk)., The problem is then to find the average

residual displacement due to a clump of impulses and thereby
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obtain a scheme for evaluating the bias function.
If there is a net displacement of Ax at any position x(t)
such that yielding occurs and if A(t)< Xy then conservation of

energy gives

1

—-Z-m(;: d:n;)z- s

&

2 2

mx

o] =~

* mglybx =K x+Ax) - K(x$+x ) (4.15)

where %, is the yield level of the spring, and =V is the average
velocity change per impulse. Vv is related to the .intensity function

of the excitation through
5% = B[ 4. (4.16)

The positive gravity effect applies if the impulses are 'positive'
i.e. in the direction of X and the negative sign applies otherwise.
Equation (4.15) is now averaged over a whole cycle, noting that

each position is equally probable as the start of the clump.

2m/w /2w
W oy s mw o .
= =mn v'E mgllix(x +x)p d§ + 2nxv d§
2w 2 o 4

0 , 'rr/Zooo

ma_ §3W/2w0 ., Kwo ZTT/COO( L s
- ' 2nxv d§ = § x (xtAx)- =(x +x )} dg
4 TT/ZU:’O 21 0 i v 2 g

where £ is measured from the start of the cycle., Kvaluation gives

-2 ”
1 .2 — 2 A
Ax = { (%) +x§+7A + 4Awonv/ﬁ ¥ Tr}/{xy 5 gxo/ﬂ.w/‘} (4.17)

where
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wZ = K/rnﬂ2 = wi +tg/l.

The minus sign applies to 'positive' clumps. In the spirit of the
approximation in equation (4.1 4), the mean amplitude A is evalu-
ated from the envelope response of x(t)(zz)o For a Gaussian exci~

tation this procedure gives

2
A = E[A(t)] =§:O 9—2- exp 3— aZ_/ZO‘Zf da
- |

= oyw/2 | (4.18)

where o is the standard deviation defined in equation (4.4) i.e.

2 _(f AR (e CN2 .
- =S‘ |Ho (i) |7 dw 5 |Hop (i) |© de . (4.19)
0 0
At high levels of excitation, the stationary response x(t) in-
volves yielding of the structure. A similar analysis to the one above
may be made, ‘however, by using the concept of an equivalent linear
system with viscous damping(34), Equivalence in this case is taken
to mean that the two systems have the same mean maximum ampli-
tude in stationary response to the excitation. Such an equivalence was
investigated and reported earlier. It showed that the increase in
viscous damping for the equivalent linear system was about 0.02,
Using this equivalent linear system, the mean response ampli-

tude of x(t) will be given by equation (4.18). Its mean rate of energy

dissipation becomes

dE _
s 4ny(A " xy)/P ;
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From its definition, an n-clump corresponds to a local n-fold
increase in mean rate of energy input; hence conservation of energy
gives the following expression for the permanent set due to an n-

clump:

AP.E.=Ax(ny-mg xo)——- -I%~n°4Kx(A—x)/P
4n2x {
P R Y R TS DU—— (4.17a)
AP ¥ 220N
T2
¥ fta

On the average, therefore, some residual displacement is in-
curred whenever a clump of size n occurs such that Ax is greater
than Xy° It is important to note that the averaging done above is
particularly sensitive to the requirement imposed earlier that the
size of clumps be smaller than the ratio of zero crossings of the
excitation and response processes. One sees then that the whole
development applies only for relatively strong excitations.

Turning now to the excitation, one redistributes the arrival
of impulse clumps so that a given size, say a positive n~-clump,
arrives evenly in time at rate L One is thus assured that the
average rate of impulses is maintained while being able to consider
the effect of each ciump size sequentially. A problem becomes
appérent here if the effect of the simultaneous arrival of one positive
and one negative n-clump is considered. The result is a parfial
erasure of the influence of the excitation's intensity leaving gravity
as the principal cause of displacement. The following schedule will

therefore be observed:
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Axn(xo) i Ax:;(xo) - Ax;l(xo +'AXZ(XO)) (4. 20)

where the various quantities are residual displacements at the indi-
cated mean levels. This fictitious ordering is necessary only to get
the yielding started. For appreciable mean displacements one expects
Ax;1 to be less than X when the minimum clump size to cause posi-
tive yielding is chosen. What is being said, in effect, is that yielding
is initiated by a large clump in a given direction.

Finally, the bias function is the summation of the permanent

set accruing from the impulse clumps. It is thus of the form .
£(t) = Z dy 8(t -t ) (4.21)
k
where a clump occurs at time tk’ causing a residual displacement of

dk as. evaluated from equation (4,20).

C. TFirst Excursion Failure of a Biased Linear Oscillator.

By relaxing the failure criterion for equation (4.1) to that of a
first excursion failure it is possible to obtain the distribution of its

time to failure, T. The analysis follows the standard one used for

lightly damped B nedlatars W F 1% 22)

(19)

. In particular, one re-
tains Coleman's suggestion that failures'arrive independently at
a rate A(t) equal to the expected rate at which the system will cross
the assumed failure level; if the structure is considered capable of

immediate recovery from such a failure. Here, however, \(t) is

no longer a constant in time so that the counting process for the
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number of failures is a non-homogeneous Poisson process.
Consider the non-stationary, random process

y(t) = x(t) + E(t) (4.22)

where x(t) is a continuously valued, stationary random process as in
equation (4.1) and £(t) is any bounded, deterministic function that

is monotonically non-decreasing and has a finite number of disconti-

nuities., If N'(U,ti,tz) is the number of times y(t) crosses a
threshold at = U in the interval (t1 ,tz) then(4o)
t+
2 ., :
N'(U,t, ,t,) =§ ly(t) | 8(y - U) dt
+
b
t+
2
ES N(U,t) dt .
‘t+
1

N(U,t) can be identified as the rate of threshold crossings per unit

time. Its expectation is thus

o ° ° °
-0

Using equation (4.22) and the fact that &(t) is a deterministic

function gives

Pyely vit) = Pygly - €8,y - E(2) -

Hence
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~ QO N . .
E[ N(U,t)] =§ |5 +£|P o (U-£,%) ak - (4.23)
-0

We now use the fact that x(t) is a stationary Gaussian process with

zero mean to obtain

P, o (U-£.%,0) = A1) exp (- °/b%)

where

b’ =207 c? = 20%.
(0 0] . .
~ E[N(U,t)] = A(t)g |5+ & exp (-%%/b%) ax (4.24)
-00 .

- ~-£ .
=-a) Gord) exp (- ¥27)
-0

+ Agz (k + &) exp (- %x2/b%) dx .

Let w= - x in the first integral and w = % in the second, then

© s 2 52 . 3 . B
T G O o PR
-
= 2 2 . ok 2 5
= 2A§° g /b‘-dw +2A§S Rl /b e
£ 0
2 2 ° o
= Abze-é 5" AbEyfw ext (/) , (4. 25)

. b.d 2
where the error function is defined by erf (x) = (Z/J;)g e % du.
0

One notes that though equation (4.25), as derived, is not defined at
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the discontinuities in §(t), the requirements of finiteness on £ per-
mit the evaluation of (4.24) at all other points. In particular, if £
is a staircase function as in equation (4.21) then equation (4.25) be-

comes simply

E[ N(U,t)] = A(t)b% (4. 26)

except at the discontinuities. If the mth stair is defined as the inter-

)th

val (t ) i.e. the time between the (m-1 and the mth jump,

m-i’tm

then one has

m-1
E(t) = Z dk = constant taog SE<t (4.27)
k=1

and, by equation (4.26), the mean rate of threshold crossings is a
constant. Hence it, too, is a staircase function with discontinuities
at tk.
A. Ya Khinchin(BZ) has studied sequences of chance events
with discontinuous arrival rates similar to equation (4.27). He
showed that if the occurrence of such events are independent and if

the probability of occurrence of n events at any given moment in t

is Poisson distributed i.e. has the form
exp (-a/i)oz?/nl

then the probability that n events occur in the interval (‘t:1 ,tZ) must
necessarily be of the form

t

At) dt)n exp' {- § 2.)\.(t) dt}/ni (4. 29)
g 21

"atz

'pn(ﬁi’tZ) - < St



74
where MA(t) is the non-stationary arrival rate of the process. \(t)
need not be continuous but must be non-decreas ing.
Obviously the failure process being considered, with a rate of

arrival given by
Me) = E[ N(U,t)] (4.30)
satisfies these requirements. Hence

p_(t;,t,) ={E[ N'(t, ,t)]} ™ exp § -E[ N'(t,,t,)} /1,

One may thus evaluate the probability of no failure in the time interval

(ti,tz) as
t+ )
2
Po(ti ?tz) = exp ;“g )\.(t) dtg =
+ .
2!
th . . <
Ozr, over the m stair, i.e. for t =t<t
m-1 m

m
Y= = P = =
Pt st ) =P (m) em% gt AMT) d'rg 1. {(4.34]
m-1
Note that po(m) is a constant since, for t ¢ (tm—i ,tm), ity 2 }\.m =

constant. The probability of having no failure up to time t becomes

T t
Z m t
exp%-— g )\de-§ )\rﬂd'r
] L -1 t
m m ,

i

]

> (0,¢t -s
p,(0,1) t <tst ., r=0

m=1

T :
[ H Apo(m)] exp% - xrﬂ(t - tr)g A (4. 32)

where, for brevity, one defines
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r
ﬂ po(m)Ei for it % T .

=

The probability of at least one failure in (0,t) is
FT(t) 2 1 = pO(O,t) . | (4.33)

Equation (4.33) may be taken as the distribution function of the time
to failure T provided

lim [1 - pO(O,t)] =1
t—oo

since we already know from equaticn (4.32) that it is non-decreasing.
The additional condition will be satisfied for the present case if one
limits the bias function £(t) to be no bigger than the threshold cross-

incgr Tenrel 1€

|£(t) | = U. (4.34)
The total number of discontinuities in £(t), S, may be obtained from

[£(t)| = U for t=tg. (4.35)

If Y is the rate of zero crossings of x(t), and ¥a 'is bounded, then

lor large t
S

H po(m)i‘ exp § - Vs(t v tS)é

m=1

PO(O’t) =[
= exp%— vs(t-—ts)%

lim po(O,t) = il exp ; - vs(t - tS)é =0 . (4. 36)
t—~oo v t—o
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Thus (4.33) is indeed a distribution function for the failure time and the

probability density function and mean of T become

d
H'E'PO(O :t)

e
-
35
I

1l
>
Le|
+
—
)
(o]
—~
(@]
bl

<
tr<t....tr+1 (4.37)

0
o b of
_S‘o A +1t|: Hgipo(m)} exp { - )‘.rﬂ(j:-tr)} dt
i . s-1
" Z St \ t[rg_i po(m)] exp {- )\S(t—ts_i)} dt
s=1 "s-1 -
+ S‘too VSt[rE_-ipO(m):‘ exp {- vs(t-ts)} dt
S
1. €4
..‘_S’ s-1
E[T] = Z[ | po(m)} {(t RE V2RI WO 1/"3}
=1 HAE=E
’ S
t(tg t1/v) Il p (m) (4.38)
m=i '
S Sl__[i . ﬁ
_ 1 _ kR
= ;::1 o {1 po(s)} m=ipo(m) + o mzipo(m). (4.39)

The result for an unbiased oscillator may be recovered from equation
(4.39) as the case where there is only one jump and it occurs at infinity.

Then



BIT] = 5= {t - (0} + 5= p (1)
S

(4. 40)

since

p (1) =eXp{-—§:o N d'r} =0,

An approximate expression for the expected failure time can be
obtained from eqqation (4.38). One notes that the probability of failure
at low bias levels is negligibly small while the time between jumps
becomes very small at high bias levels. Consequently the integra-

tions over these steps have negligible contribution to the failure time,

which may now be written as

e v (t-t.)
('OOV A
stm=1"*o0

11

B[ 7] = |
t

S

S

(tg + 1/Vs_) rHzipo(m)

ll

tS+ i/vs . (4.39a)

Each term of equation (4.39) is the expected time to failure at
the given threshold level given that there is at least one failure at

that level and no failure up to the beginning of the level,
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D. Comparison with Experimental Results

The procedure for estimating the expected failure time of the
one-degree of freedom system may be briefly summarized. Initially
one determines the stationary response of the equivalent linear oscil-
lator to the input excitation from equation (4.3). The times of

occurrence, and magnitudes, d,, of jumps in the response

k

are next determined sequentially using equation (4.13),(4.17a,b) and

tk,

(4.20). These account for the effect of gravity and the yielding pro-

perties of the model. One now has the threshold level for each
m-1

t_) as (U -kZi d),

collapse level, and thus can calculate the expected rate of threshold

interval (t where U 1is the specified

m-1’
crossings for the interval, )\m, from equation (4.26). The proba-
bility of no collapse during each interval is then given by po(m)
and computed from equation (4.31). Finally, these values are all
used in equation (4.39) to compute the expected failure time.

The above scheme was programmed for digital computer
evaluation, the contour integratvions of equation (4.3) being calculated

(27)

directly from standard tables The equivalent linear system

used had an increase in viscous damping of 0,02 and,. from equation

(2.9), is of form

2
wo o 2 ewo
z t2nw z twaz=- (4.41)
: o o g

where n = 0.04. Equation (4.38) was actually used in the calcula-
tions since it permits the most direct approximation for those regions

where Km — 0 and po(m) — 1. It was found that the approximate
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TABLE 4.1

Comparison of Calculated and Experimental
Mean Collapse Time of a Single-Degree of Freedom
Elastoplastic System with Gravity

0 P Equation (4.39) _(tf> tc
n=0,03 n=0.04
23.0 1.5 = . 35.43 35.54
23.0 2.0 . o 39.55 41,06
23.0 2.5 - - a7.47 45,92
34.5 1.5 9.73 15,42 16.34 16.88
34.5 2.0 15.37 29.74 18.35 19.50
34.5 2.5 22.81 - _ 20.91 21.81
46.0 1.5 7.93 7.93 10.46 9.96
46.0 2.0 | 8.18 9.98 11,08 11.50
46,0 2.5 8.43 13.82 12,04 12.86
69.0 | 1.5 4,34 5.42 5,69 4,73
69.0 2.0 4.59 6.39 6.15 5.46
69.0 2.5 5.74 6.64 6.70 6.11

(tf> - experimental mean

g - regression analysis estimate
c
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expression (4.39a) overestimated the failure times slightly. Table
4.1 shows the calculated failure times for damping ratios of 0.04 and
0.03, comparing them with the experimental mean failure times

(tf> and values estimated from a regression analysis of the experi-
mental data tc._ The calculated values did not converge for these
cases where no values are indicated.

The failure of the above scheme for low excitation levels is
expected from the stated limitations of the derivation. However, it
gives a very good estimate of failure time at the higher excitation
levels. The dependence of these estimates on the equivalent viscous
damping of the linear system point out a need for more extensive in-
vestigation of the equivalent systems. In particular, one néeds to
know .the dependence of the equivalent system on the duration and
magnitude of the excitation. From the results here and in Chapter II
one may tentatively conclude that an equivalent viscous damping of
0.02 is appropriate when the duration of excitation is between 5 and

20 seconds.‘
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CHAPTER V

COLLAPSE OF TWO-DEGREE OF FREEDOM
HYSTERETIC SYSTEMS WITH GRAVITY

A. Derivation of the Equations of Motion

A diagram of the model for the two-degree of freedom system
is shown in Figure 5.1. The assumptions of rigid columns and
horizontal translations of the girders are rﬁaintained from the single-
degree of freedom model; as are the assumptions that spring and
dashpot forces couple the columns to the floors in resistance to
bending deformation. These assumptions emphasize only the effect
of bending deformation in yielding, but even so the model does
approximate the yielding behavior of real structures as, for example,
in the permanent set observed at the Olive View Hospital in Los
Angeles after the San Fernando Valley earthquake of February 9, 1971.
A photograph of this hospital is shown in the introduction.

The Lagrangian equation--equation 3. 1--\‘avi11 be used to
derive the equations of motion. ¢1 and cbz are the generalized
coordinates and the generalized forces Q include the same non-
conservative forces as before. Thus if _‘;1 and —e’z represent the

unit velocity vectors of my and m, then

{ s L= 2
L =gm,lll ¢ et 4 e, || - mygll cos o +L,c0s &)
v+—1—m || £ q’> HZ-—m L, cos ¢ (5. 1)
70 LS %y 18171 1 .

where H?H is the geometric length of T. Expanding equation (5.1)
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Fig. 5.1 Two-degree of Freedom Structure
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gives
L= % ngﬁ f¢f wk gd’i LSt 22§>1;I>2cos (‘4’2"‘1’1)% * % miﬂflpf
- migiicoé c,bi-ng(ﬂicos ¢1+4‘32c03 ¢2) (5.2)
Q = ’K1F1(¢1'a’1) - °1&’1 - <m1+mz)"f.'qicos 21 | (5.3)
Q, = -K2F2(¢2,&>2) - CZ:bZ - mzl,}fzzcos ¢, (5. 4)

where Kij(d:j,zbj) P cj are the effective spring and dashpot forces

at the jlCh floor and the ground acceleration is y(t)o Upon substitu-
tion of equations (3.2)-{3.4) in the Lagrangian equations one obtains

the following equations of motion

d

2 2° ° ;
E{§miﬂi¢i+m2zi¢i + mzﬂ 1ﬂ2c[>2cos (¢2-¢1)§ - migﬂism ¢1

- mz.ﬂ 112¢1¢Zsin(¢2-¢1) - ngﬂlsin ¢ = Q1
L 4m 02 +mot £, cos (6,-6 )} +m L L,8 bysin(é,-6,)
ar 1™ 2% 21291 2% 251729192 2" %1
- m,gl,sin ¢, = QZ
hence
m, %%, +m.g%h, +tmog 4.0 + £ si
141 %y 219y tmylly6,cos(d,-4,) - (m tm,)gl, sin ¢,

°D °D e o .
+H1(¢1’¢2’¢1¢2) =Q1 ) 13.58.)

2.. =2 . 02 ° 2 ° ° _
m,dy byt myl L, cos (¢,-¢y)-m, gl sin g, +Ho (6,45, ¢ ¢5) = Q,

(5. 5b)
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where H, and H, include terms nonlinear in ¢1,¢»2. It is now

z
assumed that, in the stable range, both 4)1 and ¢2 are small so

that nonlinear terms are negligible~-including those in the trigono-
metric functions. By analogy with the small amplitude oscillations

of the one-degree of freedom system, one may define the uncoupled

natural frequencies and damping factors as
= K./m.ﬁ%-g/ﬂ. ; n.Ec./Zw.m.ﬁ.z J=1,2 (5. 6)
J J5J) J O ™ .

Now consider only the cases where 21 = 22 and define the mass and

stiffness ratios by

BEmz/mi ; aEKZ/Ki . (5.7)
Then
(14808, + B8, + 20,0, - (1B F o + (W FIF (0,0
= -(14B) y /4 (5. 8a)
G+, 20,m, b, B b, (W2t EIF,(6,,0)) = - Y /L (5. 8b)

These basic equations of motion may be put in a form more suitable
for analog programming by rearranging them and defining new

variables
.= 60./9 . = 1,2 5.9
ZJ J/ sj J ( )

such that both floors collapse at & when the original angle of collapse

of the jth floor is q)sj' It seems reasonable to assume that the
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criterion of static collapse used for the single-degree of freedom system

applies here also, i.e. the ratio of collapse angle to angle of yield is

2
. =1 +Lw 5.10
bg 5/ Py i%5/8 (5.10)
.th .
so that the j floor yields at
2
= 6g/(g + Iooj)
and, for these scaled variables,
b, /b, =a/p.
Finally, if the excitation's intensity is measured relative to the

lower floor, the equations of motion become

' ° _ ° _ g g _6.- . g 1 1 .
z,+ 2w n,z, - 200,n,2, (1+ﬁ)1-z1 tagz, t- Tfi('ﬁ';zi’ Fi-zi)

1
e e
. 0
-a%fz(-ggzz, B%zz) = £(15+ 2) x(t) (5.11a)

%, - 20m, 05 +2(B)e,n,z + E(14p) Ea - (146)E g,

§ .g.B : Be &
" T'afi(qzrqzi “‘“‘”*‘“fz(*rz —_,_'Zz)“o

(5.11Db)

where ey and e, are the yield levels of the elastoplastic function

generators fi’ fz.
Aside from the assumptions given in the definition of the con-
ceptual model, it was further assumed in deriving equations (3.11)

that both floors are the same height, and that, as in the single degree
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of freedom system, the magnitude of the angular deformation is small
even up to the unstable value and the collapse level is determined by
static collapse. The model is then completely specified by the
parameters (ni,nZ,P1 ,0,B,2/B). The ratio /B relates the square

of the natural frequencies when gravity is neglected.

B. Analog Simulation of the Two-Degree of Freedom System

The choice of parameters for the two-degree of freedom system
is more critical than that for the single-degree of freedom system not
only in maintaining a tractable number of variables but also in assur-
ing a meaningful, systematic analysis of the results. The selection
was based partly on the known response of linear two—degree‘of

freedom systems to white noise base excitation(zz’?’i)

, but primarily
on the desire to exhibit the effect of the added story on the failure
time of the structures. These known results confirm the expectation
that the resporise of lightly damped systems is qualitatively the same
for damping factors less than 0.05 and show that the critical region
in the values of th‘e mean square responSe‘s is the neighborhood of
a/@ = 1. One expects, therefoxje, that a transition from the failure
of one story to that of the other will occur in this region. Conse-
quently, a constanf damping factor of 0.02 was chosen and «/B was
varied between 0.4 and 4.00; corresponding to a frequency ratio
range between 0.6 and 2.0, |

In order to reflect a wide range of structural problems,

mass ratios between 0.01 and 1.0 were investigated. Included in,

this range is the collapse of an equipment mounted on a simple
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structure and that of a roofed two-story structure.

The choice of excitation strength was constrained by the fact
that structures failing in less than four seconds may not reflect the
average propertiés of the excitation and by the desire to limit
failure times to about 30 seconds. These constraints were discussed
earlier. Preliminary testing indicated that a value of 0 = 23.0 was
appropriate.

Failure times were obtained for the period P1 = 2,0 seconds
in the main investigation since the results of the single-degree of
freedom system indicate that only slight variations of mean failure
time with period should be expected. However , this assumption
was independently tested for P = 0.50 and the critical region
@/ = 0.85 where there was equal likelihood of either story collapsing.
This region corresponds to the maximum interaction between the
stories and therefore should give the maximum deviation, if any,
from the earlier results.

The actual simulation of equations (3.11) on the analog com-
puter was a direct extens‘ion of that for the single-degree of freedom
system. However much greater care had to be taken in balancing
the amplifiers to reduce drift, and in any amplitude scaling employed.
Furthermore, the wide variation in the values of the coefficients
necessitated a judicious use of summing amplifiers. In the end the
drift in all amplifiers was reduced to the same level as in the single~-
degree of freedom system.

Table 5.1 shows the mean failure times obtained using 300

samples for each point in the range of mass and frequency ratios
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TABLE 5,1

Failure time for two-degree of freedom systems

8=123.0 , P, =2.0
NGB 0. 01 0. 50 0.75 1,00
a/p
0. 40 3.93 3.81 4,03 3,99
0. 50 3,87 4,81 5.13 6. 64
0. 60 - 7.15 8. 76 9.50
0.75 5,56 11,30 13.76 9.32
0. 85 - 16.79 12,04 9.00
1.00 7. 66 18.97 12.47 9.39
1.25 9. 45 - - -
£.50 14,55 16,26  10.86 9.56
2.00 37.38 15.93 £1.30 8.14
3.00 30.63 16.15 11,34 8,32
4,00 -- 15,22 11.22 8.04
- 40, 21 16,28 10.84 7.32

considered. These same values are plotted in figure 5.2 while the
distributions of failure t‘ime are shown in figures 5.3 - 5.5 for a
few of the points. These latter figures are obtained in the same way
as those for the one story structure; i.e. the points represent mid-
points of steps in the weakly smoothed histograms-of failure times
while the continuous curves are Gamma distributions fitted to these

points. The values of the ratios of standard deviation to mean are not
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given since these varied as in the case of the one-story structure, i.e.
between 0.4 and 0.6. However, the degree of dispersion in the data
is illustrated by including the quartiles of the density functions.

The variations of failure time with period and level of excita-
tion at f = 0.05 and @/B = 0.85 is shown in table 5.2. To aid in com-
paring these with earlier results, a regression analysis of the form
in equation (3.13) was performed on the data. Its predictions are
included in table 5.2 while table 5.3 gives the parameters obtained,
their standard errors and their correlation coefficients.

Finally, one expects that at high values of @/B the relative
displacements of the masses will be negligible resulting, effectively,
in a one-degree of freedom system. This system's natural fre-
quency and relative excitation level may be. calculated directly from

the definitions in equations (3.3) and (3.7). Thus

b = (i + B/t +) - B (5.12)
0_ = 8wl fwl . C(5.13)

These effective values and estimates of the collapse times of the
system using the results of the regression analysis in table 3.3 are
shown in table 5.4.. The estimated collapse times are also included
in table 5.1 as asymptotic values of the collapse times of the two-
degree of freedom system. The estimates assume that the effect of
the change in damping may be neglected relative to the uncertainty

in the estimated wvalues.
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TABLE 5.2

B=0.5 3 a/f =0,85

o, G/(tﬁ
6.82 0.434
8.31 0,511

10. 69 0. 573

3.78 0,455
4,21 0.492

4,95 0.554

2,32 0.450
3,12 0.546

3. 10 0.524

1. 0.505
1.72 0.527

2 i, U582

G 9%
o

3.65

3.92

34 15

2. 96

15.12
16,57

1719

8. 29

92.01

*9.76
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TABLE 5.3

Correlation and regression analysis of failure time

Para- Std. Parameter correlation
meters error a1 az a3
a 1.38 X 10° 1.47 % 10° 1.00
a, 0.32 0.04 -0.28 1.0
az -1.48 0.03 -0.96 0.005 1.0
TABLE 5.4

Estimated failure time of two-degree of freedom structure
for a stiff upper story

@=23, , P,=2.00

1

B ' 0, P, t,
0.01 23.31 2,01 40.21
0.50 41,22 2.68 16.28
0.75 53.29 3.04 10.84

1.00 68.27 840 732
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C. Observations and Conclusions

It was observed that the failure pattern of the two-degree of
freedom structure was quite similar to that of the single-degree of
freedom structure for the range of mass and frequency ratios
examined. In particular, tables 5.2 and 5.3 indicate that the
relative independence of failure time on the structure's period is
maintained. An earlier comment that this reflects the dependence
of © on periodis borne out in table 5.4 where it is seen that ©
increases by almost a factor of 3 for a 72% increase in period;
causing a reduction in failure time of over a factor of 5.

A similarity was also observed in the way permanent set
tends to occur in jumps and in the observation that, between such
jumps, the motion of the structure is essentially a narrow band
response. This suggests that an approximate analysis of the failure
of the_ sctructure can be made as in chapter IV if a scheme
is found for es.timating its rate of energy absorption during yielding.

Furthermore, it was observed in the study of the single-
degree of freedom structure that the primary properties affecting
collapse time are the magnitude and nature of the excitation and the
mechanism for energy dissipation. With respect to the failure of
either floor of the ;structure, the last two properties are essentially
unchanged while the effective excitation level at each floor may be
estimated from the rms level of‘its stationary response; thus account-
ing for the dynamic interaction of the floors. One is thus led to con-

sider estimating the failure time of the two-degree of freedom system
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from such stationary responses and the failure times of single-

degree of freedom systems.

The linearized equations of motion are obtained from equations

(3.8a,b) as

(14B)6, +p3'<f>2 t 20,0, & +wf¢1 =

i

1
s

+
<)
<
=

oo

oo ° 2 _
¢y t o, T 2wyn, ¢, t b,

1

1
<
B

These reduce to the more standard form

% . 2 2, e
¢, *2wn ¢y - 2Pwyn 0, Twidy - Buwyd, = - ¥/

oo

where one now defines

2 . 2 2. 2
w =KJ/mJ and «/B = (ooz/(.oi) =1 (I

§, + (148)20,n, 6, - 200, b, +(148)0ld,- w2o, = 0

(5. 14a)

(5. 14b)

(5.15a)

(5.15Db)

(5.16)

Crandall and Mark(zz) have obtained closed form solutions for the

rms values of ¢»1 ‘and d)z under white noise excitation by direct

considerations of the transfer functions. Since we assume low

damping, their results may be used here by appropriate choice of

the white spectral density. One thus obtains
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2
Do
___3_1___ = 2n1p2[52+f>(1+@)2p2] + 2n,ud[ 1~ (148)%u2] 2+ (148) 2u 2t
wwiG(wi)
+8n, nop (148)%] 1+(1 +8)u7] +8 2 (148) [ 1 48 +n,/n,) %]
2 (517a)
Doy 1
———e = 2, {P * =) + 28, wl (148)% + B/u?]
Trle(c.oZ)
+8n1n2§ 1p(1+ﬁ+ X ) +n [1+fs+(ni/n2)2]§ (5.17b)
where

D = 4ujp {Buln ptn,) +n [ 1-(1 B)7] 2

+4n npllag + (148)n2) +nyn, (1 + (14BR5)]].

To calculate the failure time one notes that equations (5.12),
(5.13) and the regression equation (3.13) already give estimates of the
failure time when the excitation leavel © is known and W is large
i.e.. = 2. Failure times at other frequency ratios are similarly
obtained by; scaling © such that

.

e*:E-J—oe j=1,2 (5.18)
(o0

where " is the rms level of the lower floor at large u. The
collapse time of the structure then corresponds to the lower of these
for the two floors. Estimates Qf such collapse times are compared
with the experimental values in figure 5.6 while, for clarification,
the rms values of the stationary responses are plotted in figure ‘5. s

These have been put in a nondimensional form by dividing them by
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(22)

rms displacement of a single degree of freedom structure given by

2

g = wG(wZ)/ZnZwZ . (5.19)

S

From the point of view of structural design, the results in
both figures 5.2 and 5. 6 show the existence of most favorable com-
binations of mass and frequency ratios that give maximum collapse
times. It is noteworthy that the conclusion one draws from figure
5.7 that such combinations correspond to those regions where the
floors are equally likely to collapse was observed experimentally.
However the large difference between the experimental and esti-
mated failure time for P =0.01 and a/B = 1 is difficult to explain.
A tentative explanation comes from the observation that the stationary
response is not déveloped appreciably for short failure times and
therefore is a relatively inaccurate estimate of the effective excita-
tion level.

Nevertheless one can still conclude that the linearized
structure's response magnitude can be used to predict the failure
of the real structure. In particular, advantage has been taken of
such correspondence to calculate the most favorable combinations
of B and /P and their associated failure times for the two-
degree of freedom system. These are shown in figure 5.8 and can

be seen to predict the failure times within acceptable limits.
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APPENDIX A

ANALOG SIMULATION PROCEDURE AND RELATED EQUIPMENT

Al. Random Noise Generator

All the systems examined in this study had resonant fre-
quencies lower than 4 Hz. Consequently, the excitation was simu-
lated by filtering a white noise process generated by a low-
frequency random noise generator--Hewlett Packard model 3722A--
with a bandwidth from d.c. to a variable nominal cutoff frequency,
fe’ specified by the half-power point. A cutoff frequency of 15 Hz
was chosen. The spectral density is reasonably flat up to fe’ being
specified within # 0.2 dB at 0.5 fe; while low-pass digital filtering
assures a sharp cutoff, > 25 dB at 2 fe. The noise output can be
selected as a Gaussian white noise with a stable zero mean and
fixed power at 10 volts. Hence the power spectral density and

nominal bandwidth, fe’ are related by

10 (volts)z'

S(U.)) == ’:E—;———I_I—Z—— - (A. 1)

This property is very convenient in electronic analog experiments
since time scaling of the input excitation may be readily achieved

by appropriate scaling of the bandwidth e.g. if computer time is

_ 1.
T = at, one needs only select fe('T) = -a-;e(t).

In addition to the purely random noise, the generator can

also give periodic, 'pseudo-random' patterns having the same
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spectral properties as the true random noise but generated in a pre-
determined and repeatable sequence of given length N. A sync
pulse and gate output (12.5 - 0 volts) are available relative to the
beginning of the pattern selected. These pseudo-random functions
were used periodically to test the repeatability of the analog set-up
and, as in chapter 3, to compare results of the analog simulation
with numerical evaluation on the digital computer. Digital records
were obtained by plotting the excitations on a brush recorder and

digitizing these on a Data Reducer System--Benson-Lehner 099D.

A2, Electronic Analog Simulation

The basic element used in the analog simulation was the
K5-U Universal Linear Operator--Philbrick Researches, Boston.
This combines a summing and an operational amplifier to simulate

an input-output relation of form
&
e =e +10™L Z:‘:a.e. (A.2)
o c 3]
j=1

where the linear operator L may be selected as either an inte-
grator or a summer. The voltages ej y J=0,¢..,4 have a nominal
range of £ 50 volts, m can be set to 0,1,2 or 3 and the coefficients

a -,a, can be adjusted in steps of 0.01 volts within the limits

g~
+ 11.10 volts. The index voltage e, can be adjusted in steps of
0.1 volts within = 50 volts. Input and output overioads are indi-

cated by standard bulbs. The amplifier incorporates precision
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resistors and capacitors so that the error in selected coefficients
is specified less than 1.5% while the drift in the output voltage can
be adjusted to about 2 mv per second when m = 0., The drift rate
increases significantly with higher m. However, it can generally
be made negligible when a set of amplifiers is used in a closed loop
arrangement.

Run and reset relays for the .amplif_iers can be operated either
‘individually at each amplifier or collectively, and simultaneously,
from a Relay Control Component. In addition, the latter can be set
manually or controlled externally by application of reset (20 - 25 v) -
and run (< 3v) voltages. This permits synchronous, automatic
control of all amplifiers and related equipment.

The linear operations in equation (A.2) may be readily modi-
fied, if necessary, since the summing point of each operationa.l
amplifier is available externally. Thus, as detailed below, the
amplifier may be used as a versatile elastoplastic function generator,

A recurrent requirement in this study is the simulation of the

second order differential equation
% + Az + Bz + CF(az,bz) = Dg(t) . (A.3)

The analog setup i;s shown in figure A.1. Note that it is often neces-
sary to work with scaled values of the variables in order to keep the
coefficients within the allowed range and not saturate any amplifier.
In this respect, one observgs that theoretically there will always

be peaks above the saturation level in the Gaussian random excitation.
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Crandall and Mark(zz) have shown that clipping of such peaks has
negligible effect on the rms value of the output if the input is scaled
such that the expected rms of the output is less than three-tenths
of the saturation voltage. 'In this case the limit is thus abéut 15 volts.
The accuracy of the coefficient settings was verified by simu-
lating the free vibrations of a linear one-degree of freedom system
with known initial displacement. Measurement of the times for 15
cycles of oscillation showed negligible difference between expected
and observed periods of vibration over the range 0.3 to 3.0 seconds.
A negligible difference was also found on caiculating the damping
factor for 2% damping by comparing peaks in the oscillation. How-
ever, a negative damping factor of between 0.1 and 0.15% was ob-
served for the nominally undamped oscillator. It was concluded that
the coefficient settings may be taken as satisfactorily accurate for
damped systems but that the more sensitive undamped systems have
to be individually adjusted by including appropriate positive damping.
Finally, the computer can be run at a scaled time 7 = at by
simply multiplying the input to all integrators by a factor 1/a. While
this can be conve.niently done in decades by adjusting m it is worth-
while to note that the drift rate has to be rechecked whenever m is

varied.

A3. Subsidiary Switching Equipment

As noted above, the operational amplifiers, and hence the
whole analog model, can be simultaneously switched by application of

external voltages to the Relay Control Component. Hence such switch-
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ing may be done by either a continuous square wave generator or a
flip-flop circuit since the current requirements are low. The former
was used when repeated computer runs of fixed duration were desired
as in the simulation of the stable oscillators examined in chapter II.
The latter was used primarily to achieve alternate switching of the
analog computer by several components. Its circuity--figure A,2b--
is a slight modification of the standard design of saturated flip-
ﬂops(58). Transistor 2N1304 were used to give positive output
voltages (+23 v,*2.5 v) and capacitor coupling permitted the use of
up to 3 inputs. These inputs were further isolated from the flip-
flop, where possible, by an emitter follower stage. The flip-flop
changes state an application of a positive voltage step or impulse
greater than 3 volts.

Elastoplastic System with Gravity

In the study of the unstable yielding systems, it was necessary
to measure the time interval between the start of the computer run and
the collapse of the structure; defined as when the displacement reaches
a given voltage. This voltage was sensed by the Schmitt trigger
circuit shown in figure A.2a with an isolating emitter follower. A box
diagram of the switching and timing arrangement is shown in figure
A.3a. When the résponse reaches the collépse voltage, the trigger
pul.ses the flip-flop causing the latter to change state and turn off the
analog model. The second output of the flip-flop initiates a delayed
step voltage from a square-wave generator. This then completes the
cycle by reversing the state of the flip-flop and thus tux;ning on the

analog model. The collapse time was measured by a time interval
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counter--Hewlett Packard 5245M and 5262A--and recorded directly
on a digital printer--Hewlett Packard model 562a. The speed of the
printer limited the delay time to at least 0.2 second which is very
much longer than the reset time of the operational amplifiers.

Note that switching times of the equipment were not a source
of concern since they were of the order of microseconds while com-
puter times were of the order of seconds.

The simulation of the two-degree of freedom yielding system
was a direct extension of the single-degree of freedom system,
except that now two displacements are sensed from the analog model.
Hence an extra Schmitt trigger was used to make a third input to the

flip-flop.

Stable Oscillators' Response Spectra

In addition to the analog model, figure A.1, the only other
equipment for measuring the maximum pseudo-velocity of stable
oscillators were a square wave generator to switch the computer,
and a peak amplitude meter. The main components of the latter are
shown in figure A.4a,b. These consist of an absolute value generator
and a maximum émplitude meter. The operation of the absolute value
generator follows directly from the properties of summing operational
amplifiers. Basically, the maximum amplitude meter uses the diode
to charge the capacitor to the maximum value of the Vinput.. To mini-
mize leakage the diode has a very high backward'impedance (> 10 m)
and the capacitor's voltage is measured via a high input impedance

(> 10" n) voltage follower arrangement using a field effect operational
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amplifier (Philbrick/Nexus model 100901). Thus the capacitor's
charge can be held within less than 1% for over 15 seconds.

The relay normally makes contact with the diode and discharges
the capacitor on being energized. Since the output was measured by a
digital voltmeter (Hewlett-Packard model 405CR) requiring at least
0.2 second to make a reading, the discharge of the capacitor was
delayed relative to the end of the excitation by using a square wave
generator triggered externally by the Relay Control Component. This
generated a single, delayed square pulse which activated the relay.
The voltmeter reading was also initiated by the Relay Control Com-
ponent on turning off the analog model. Its reading was recorded
directly on a digital printer (Hewlett-Packard model 561B). Hence
repetitive readings of the maximum absolute value of any analog out-
put can be made.

While tests showed that the 1.mifd capacitor was sufficiently
large for the peak amplitude meter to record the sharpest peaks in
the input functions used, the forward voltage drops of the diodes led
to an offset betweén the actual and recorded maximum amplitudes.
Hence the whole meter system was calibrated experimentally by
plotting several input functions and comparing their peaks with the
recorded values. ’i‘he offset voltage varied between -0.7 and -0.9
volts independent of the oscillator's natural period (range 0.3 to
3 seconds.

Fourier Amplitude Spectrum

The sole difference between the experimental set-up for

measuring the Fourier amplitude spectrum and that for pseudo-
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velocity spectra is in the switching arrangements. The arrangement
for the former is shown in the box diagram of figure A.3b. The
excitation is available to the analog model during alternate intervals

of length, say T1 , determined by the square wave generator. The
analog model is on at all times except for a short interval, T2< 0.3 'I'1 ’

beginning after a delay T, > 5P from the end of excitation; where P

3

is the period of the oscillator. Thus the analog model--zero initial

conditions--is excited for an interval T after which it vibrates

1 ?
freely for an interval T3. The free vibration's amplitude is measured
by the peak amplitude meter whose recording is initiated by the com-

puter turning off.

A4, Elastoplastic Function Generator

A basic way of simulating an elastoplastic function of x, say,
is by switching off the integration of x whenever x is greater than
its yield level, x . While complex switching circuits can be built to

assure sharp cutoffs(33)

, the direct method using Zener breakdown
current-voltage characteristics (figures A,Sa,b,é) was found satis-
factory in this study. The advantages of this method are that it uses
only one operational amplifier and, if that is taken as one of the K5-U
units, permits accurate, dial selection of the coefficients of the
gerierator, The disadvantages are that the yield voltage is not easily
varied and that, as shown in figure A.5c, its current-voltage character-
istics has a rounded knee and a small, non-zero yield slope.

The effect of the imperfect operation of the double Zener diode

may be evaluated. Let its impedance be Z4 and given by
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Sey ]F(x,x)/RCfEXY
(A.4)
(€>>1 ]F(x,x)/RC,<xY

where €Y is assumed very small and € large. Then, during yield-

ing, the effective feedback impedance is

€ Z
_ &
Zost = ©FL
yoc (A.5)
=e  for € <<Z =1/juC.
¥ 2] e
Hence, assuming that €y is capacitive (= CE << 1), the outpuf
voltage is
. B . s
Cout Xy £ RC_ ** 2 R)
€
Similarly, the effective feedback before yielding occurs is
€L
Z e
eff € +Zc
=7z for ESH T . (&,
. C C .

In general, the requirement in equation (A.7) was met by most diodes
since their leakage current was negligible up to the knee in the
characteristic (< 0.1 pa). Equations (A.5) and (A.6) require that R
be large and C small and, more directly, that the diode's yield
impedance be as small as possible. The error in the yield voltage is
proportional to the input current. In this respect, one notes that R

is generally of the order of megohms in standard amplifier design,
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in order to minimize the input current.

Extensive testing showed that commercial Zener diodes had
a more rounded knee and larger yield slope than did the transistor
arrangement in figure A.3b for a proper choice of transistors. Pairs
of 2N5130 transistors with similar base-emitter reverse bias charac-
teristics were carefully selected and tested in a summing circuit with a
ramp voltage input. It was found that a typical yield voltage va;‘ied from
6.13 to 6.21 volts as the input rose to 50 volts. In such an instance the
effective yield level was chosen as 6.15 volts; corresponding to a mean
input voltage of 25 volts. Only transistors with the same input to yield
voltage characteristics were paired to form the double Zener diode.
It was concluded that errors from both the rounded knee and yield
slope of the transistors should be less than 1% of the nominal yield

voltage.



