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ABSTRACT

This thesis focused on the characterization of coherent structures and their inter-
actions in a turbulent boundary layer using data from particle image velocimetry
(PIV) measurements performed at Caltech and from a direct numerical simulation
(DNS) of Wu et al. (2017). Connections were identified between instantaneous and
statistical descriptions of coherent velocity structures, through the analysis of repre-
sentative models for their structures derived from the resolvent analysis of McKeon
and Sharma (2010). The representative models were used in a novel conditional
averaging technique to identify the average behavior of small scales about varia-
tions in the large-scale streamwise velocity field. Based upon the results of this
analysis, a hypothesis for a scale interaction mechanism was proposed involving
three-dimensional critical layers. The modeling and analysis methods were then
applied to the aero-optic problem in which optical beams are observed to be dis-
torted after passing through variable-density turbulent flows. Measurements using
simultaneous PIV and an aero-optic sensor called a Malley probe (Malley, Sutton,
and Kincheloe, 1992) were conducted in an incompressible, mildly-heated turbulent
boundary layer with Prandtl number of 0.7. A conditional averaging analysis of the
data identified that the nonlinear interaction of two scales was most correlated to the
aero-optic distortion. The modeling of this interaction using resolvent modes led
to new insights regarding the instantaneous relationship between the velocity and
scalar fields over a range of Prandtl numbers.
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C h a p t e r 1

INTRODUCTION

Wall-bounded turbulent flow contributes to many engineering challenges, affecting
drag on transportation technologies, advancing material-degradation of surfaces
in high-temperature flows, and distorting optical beams passing through variable-
density flows. It is also one of the great unsolved problems of classical physics.
This combination of engineering importance and scientific challenge provides great
opportunity for contribution to science and the world. This thesis contributes to
four challenges in the field: connecting existing descriptions of coherent structures,
identifying interaction mechanisms between scales, understanding the relationship
between velocity and scalar fields, and isolating the turbulent dynamics responsible
for aero-optic distortion.

1.1 The ubiquity and complexity of turbulence
The environment in which most technology operates is filled with fluid, whether
that fluid is air, water, oil, or even biological fluids like blood. Many technologies
must therefore move through fluid to operate, and for many large-scale or high-
speed applications, the associated fluid flow is turbulent, behaving chaotically near
the surface of the application in question. Turbulence coats or fills many of the
technologies that define the modern age: cars, trains, ships, planes, rockets, car
engines, jet engines, steam and gas turbines, water turbines, and wind turbines.
Turbulence contributes to many critical engineering challenges including drag re-
duction for transportation technologies, material degradation in high-temperature
environments, and the mixing of pollutants in the atmospheric turbulent boundary
layer. Its prevalence and its impact on the modern world make turbulence a critical
topic of engineering research.

Turbulence has been noticed peripherally for centuries, observable in drawings of
da Vinci (sketch of turbulence in a water fall, c.1508) and Hokusai (The Great Wave
Off Kangawa c.1832), and has been studied in earnest by many brilliant scientists
and engineers for decades. The equation for incompressible fluid flow,

∂U

∂t
+ U · ∇U = −

1
ρ
∇P + ν∇2U + g, (1.1)

can be solved numerically and demonstrates turbulent behavior. U is the velocity
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vector: U = (U,V,W )T , where U is the velocity in the streamwise direction, x, V

is the velocity in the wall-normal direction, y, and W is the velocity in the spanwise
direction, z. Here t is time, ρ is density, P is pressure, ν is the kinematic viscosity,
and g is a body force, such as gravity.

And yet, even with known equations of motion and decades of study, turbulence is
still, in fundamental ways, a mystery. It eludes many of our attempts to efficiently
model it, control it, and understand it. The intersection of importance and challenge
in the turbulent problem is incredibly exciting. Turbulence offers a scientific engineer
the opportunity to affect the world by uncovering some of nature’s most fiercely-
guarded secrets.

1.2 Background on the study of wall-bounded turbulent flows
Several key findings from the literature that are relevant to this thesis are summarized.
The summary is broken into four parts, consistent with the major topics focused on
in the present work: the energetic coherent structures of wall-bounded turbulent
flows, the nonlinear interactions of velocity scales, the transport of a scalar in a
turbulent boundary layer, and the distortion of an optical beam by a variable-density
turbulent flow. Finally, a brief introduction to the resolvent framework for modeling
turbulent wall-bounded flows will be given. At the end of the chapter, some of the
specific challenges remaining in wall-bounded turbulence will be outlined, and the
contributions of this thesis to those challenges will be highlighted.

Coherent structures
One of the frameworks for understanding turbulence that has been developed in the
past sixty to seventy years is that of coherent structures. A coherent structure is
a pattern that is repeatedly observed in a turbulent flow that has some coherence
or consistency in space and time. Thinking of turbulence through the lens of
coherent structures allows for the breaking down of complicated phenomena into
the superposition and interaction of many smaller patterns that can be independently
studied.

Many different types of coherent structures have been identified over the decades.
Some coherent structures have been defined from their instantaneous appearance,
others from statistical findings. Experimental observation, computation, and con-
ceptual models have all been used to characterize coherent structures. Features
observed at a single snapshot have been observed using visualization of the trans-
port of smoke, dye, and bubbles (Kline et al., 1967; Chen and Blackwelder, 1978),
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using particle image velocimetry (PIV) (Adrian, Meinhart, and Tomkins, 2000), and
using computation including direct numerical simulation (DNS) (Wu et al., 2017).
Coherent structures have also been identified in a statistical sense using many meth-
ods, including the calculation of the energy spectrum, two-point correlations, and
conditional averaging. Specific length scales have been observed to be most ener-
getic in the streamwise energy spectrum, pointing to the common appearance of a
structure of that length scale in the flow (Kim and Adrian, 1999; Monty et al., 2009).
Two-point correlations and conditional averages have been used to find the average
length scales over which the flow field is correlated, identifying the size and shape
of structures that move cohesively (Kovasznay, Kibens, and Blackwelder, 1970;
Sillero, Jimenez, and Moser, 2014). Coherent structures have also been consistently
identified over a wide range of Reynolds numbers, defined throughout the thesis as
either Reτ ≡

uτδ
ν , where uτ is the friction velocity and δ is the 99% boundary layer

thickness, or as Reθ ≡
U∞θ
ν , where U∞ is the free-stream velocity outside of the

boundary layer and θ is the momentum thickness.

Through these methods, many ‘coherent structures’ have been identified. Some have
been identified in the instantaneous velocity field, including near-wall streaks (Kline
et al., 1967), large-scale bulges (Falco, 1977; Kovasznay, Kibens, and Blackwelder,
1970), uniform momentum zones (Meinhart and Adrian, 1995), and superstructures
or VLSMs (Kim and Adrian, 1999). Others have been seen in the instantaneous vor-
ticity field, including near-wall streamwise vortices (Blackwelder and Eckelmann,
1979), hairpin vortices (Theodorsen, 1952; Head and Bandyopadhyay, 1981), and
concentrated shear layers (Adrian, Meinhart, and Tomkins, 2000; Morrill-Winter
and Klewicki, 2013; Eisma et al., 2015). Still others are observed in the stream-
wise energy spectrum, including the near-wall streaks (NWS), large-scale motions
(LSMs), and very-large-scale motions (VLSMs) (Kim and Adrian, 1999; Monty
et al., 2009; Rosenberg et al., 2013). A brief overview will be taken of these various
structures in their instantaneous and statistical representations.

Near-wall structures

Near the wall, there is fairly good community consensus on the structures and
the cycle of their growth, breakdown, and regeneration. The primary structures
observed in the near-wall region are the near-wall streamwise streaks (Kline et al.,
1967) and streamwise rolls (Blackwelder and Eckelmann, 1979). These structures
have been instantaneously observed and found statistically in the pre-multiplied
streamwise energy spectrum as an energetic peak near the wall (Monty et al., 2009).
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The structures near the wall scale in ‘inner-units’, which are dictated by friction at
the wall (Tennekes and Lumley, 1972). All dimensions near the wall are normalized
using these inner-units, denoted using a +. The near-wall streamwise coordinate is
therefore normalized as x+ ≡ xuτ

ν , where uτ is the friction velocity and is defined
as τ1/2

w and τw is the shear stress at the wall. In wavenumber space, the near-
wall streamwise streaks have a streamwise wavelength of x+ ≈ 1000, a spanwise
wavelength of z+ ≈ 100, and a phase speed of c+ ≈ 10 (Kline et al., 1967; Robinson,
1991).

Logarithmic-layer structures

The consensus in the community is less firm in the logarithmic layer. For decades
it has been argued that structures in this region should be self-similar and ‘attached’
to the wall (Townsend, 1976; Perry and Chong, 1982). This means that the size of
the structure should scale with distance from the wall. Thus, structures at higher
heights are longer and wider.

In experiments and computations, recently there has been building evidence for
very long structures in the logarithmic region. Some of this evidence comes from
instantaneous visualizations or reconstructed visualizations built using Taylor’s hy-
pothesis, which states that structures convect much more quickly than they deform,
and that they convect with the local mean velocity. Long structures that possibly
meander in the spanwise direction have been identified at up to 20δ in length, where
δ is defined as the height where, on average, the flow is within 99% of the free-stream
value. Much of the evidence for the VLSMs and superstructures comes from the
streamwise energy spectrum of experimental flows (Kim and Adrian, 1999; Monty
et al., 2009; Rosenberg et al., 2013). Energy peaks are observed at x/δ ≈ 6 in
boundary layers and x/δ ≈ 10 − 14 in pipes and channels.

Hairpin vortices and hairpin packets have also been reported in the logarithmic
layer (Adrian, Meinhart, and Tomkins, 2000). Hairpin vortices are specific vorticity
patterns, very similar to the horseshoe vortices reported by Theodorsen (1952). They
are characterized by streamwise vorticity near the wall at the ‘legs’, transitioning to
spanwise-oriented vorticity at the ‘head’ of the hairpin, farthest from the wall.

Outer region structures

In the outer region of the flow, particle image velocimetry and flow visualization
have allowed for the study of instantaneous structures. Large-scale bulges have been
observed in the outer-region of boundary layers using smoke-visualization (Falco,
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1977; Kovasznay, Kibens, and Blackwelder, 1970). The coherence of these bulges
was measured and was found to be approximately x/δ ≈ 3 and z/δ ≈ 1 using a
two-point correlation from hot wire data. More recently, uniform momentum zones
(UMZs), regions of relatively similar streamwise velocity with coherence in the
streamwise and wall-normal directions, were identified in the outer region of the
boundary layer (Meinhart and Adrian, 1995; Adrian, Meinhart, and Tomkins, 2000).
UMZs have been found to be ubiquitous in wall-bounded turbulent flows, with an
average number across the wall-normal height of the flow ranging between three at
Reτ = 103 to five at Reτ = 104 (de Silva, Hutchins, and Marusic, 2016). Statisti-
cally, large-scale motions (LSMs), with a characteristic streamwise wavelength of
approximately 2−5δ are observed to dominate the outer region (Monty et al., 2009).

In the vorticity field, a number of features can be observed in the outer region of
the boundary layer. Thin shear layers have been associated with the backs of bulges
(Kovasznay, Kibens, and Blackwelder, 1970) and with the edges of UMZs (Adrian,
Meinhart, and Tomkins, 2000; Eisma et al., 2015; Morrill-Winter and Klewicki,
2013). In addition, hairpin, horseshoe, or cane vortices have been reported in the
outer boundary layer as well as the logarithmic layer (Theodorsen, 1952; Adrian,
Meinhart, and Tomkins, 2000; Bernard, 2013).

Scale interaction
The interaction of the previously-mentioned structures is intimately related to some
of turbulence’s greatest mysteries and challenges. A very-large-scale disturbance,
like a plane passing through quiescent flow, leads to the generation of a cascade of
disparate scales. These scales are able to interact, leading to significant challenges
in understanding and simulating the flow. Some key unresolved topics in the field
include the influence of scales on one another, the mechanisms of self-sustaining
behavior, and the selection of scales that are energetic in the flow.

The regeneration cycle of near-wall streaks and rolls has been studied extensively,
as it is accessible at fairly low Reynolds numbers and remains a consistent feature
of turbulence at high Reynolds numbers. The near-wall cycle is a good testbed
to understand nonlinear interactions, as it is self-sustaining, as has been shown
by Jimenez and Moin (1991) through the use of a minimal channel. Schoppa and
Hussain (2002) connected some of the physical mechanisms of regeneration of near-
wall streaks explored by (Kline et al., 1967; Blackwelder and Eckelmann, 1979) to
mathematical understandings of transient growth. They defined the near-wall streaks
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and mean profile as a base flow about which secondary instabilities were identified.

Additionally, significant work has been done to understand the exchange of energy
from large to small scales, a key component of scale interaction in wall-bounded
turbulent flows (Jimenez, 2012). Some previous findings regarding the general
influence of the large scales on the small scales will now be considered in further
detail.

Influence of large scales on small scales

The influence of large scales in turbulent wall-bounded flows (ul) on the small scales
(us) has been a topic of interest for several decades. Rao, Narasimha, and Narayanan
(1971) first identified that the ‘bursting’ of the near-wall flow behavior, in which
intense activity is seen near the wall, occurred on a mean time scale that scaled with
outer units, rather than inner units. This suggested that large scales from the outer
region of the flow were able to influence near-wall, smaller-scale behavior. The
phase relationship between large scales and the envelope of small scales was first
measured by Bandyopadhyay and Hussain (1984), who found that the envelope of
small-scale activity was largest at particular phases with respect to the large scale,
depending on the height in the boundary layer.

Evidence for a specific type of influence of large scales on small scales has been
found, termed ‘amplitude modulation’. Hutchins and Marusic (2007) found that the
envelope of the small-scale component of a hot wire velocity signal was modulated
by the local presence of a large-scale signal. The relationship between the large
scale and the envelope of the small scale varied as a function of the wall-normal
height with a correlation coefficient (Mathis, Hutchins, and Marusic, 2009) given
by

R =
u+l El (u+s )

RMS(u+l
2)RMS(El (u+s )2)

, (1.2)

where RMS stands for root-mean-squared and El is a filtered envelope of the small-
scale signal derived using a Hilbert transform and a spectral filter. The large and
small scales, ul and us, were defined using the same spectral filter with a cutoff
frequency of x/δ = 1. The correlation coefficient, R, was found to vary across the
boundary layer from a positive value near the wall to a negative value away from the
wall. Chung and McKeon (2010) showed this correlation coefficient was formally
related to the phase between large scales and the envelope of small scales, connecting
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the concept of amplitude modulation and phase relationships in the boundary layer,
and allowing for direct comparison to the work of Bandyopadhyay and Hussain
(1984).

The influence of large scales away from the wall on the near-wall flow was used to
formulate a model of small-scale activity near the wall based on the behavior of the
large scales in the logarithmic region. This model, termed the predictive inner-outer
model, constructs a predicted streamwise velocity signal, up, near the wall from a
measured time history of velocity taken at a single point in the logarithmic layer,
uOL. A statistical ‘universal small scale’, u∗, is identified that is modified by the large
scale signal. Both amplitude modulation and superposition effects are accounted for
in the model (Marusic, Mathis, and Hutchins, 2010; Mathis, Hutchins, andMarusic,
2011)

u+p (y+) = u∗(y+)
(
1 + βu+OL (y+O, θl )

)
+ αu+OL (yO, θl ). (1.3)

The terms α and β are identified experimentally. This model has been successfully
implemented in LES ofwall-bounded turbulent flows and has been shown to improve
the estimates of skin friction (Chung and Pullin, 2009; Inoue et al., 2012), demon-
strating the potential for including scale-interaction information in wall models for
LES.

Conditional averaging techniques have also been usefully applied to understand the
relationship between the large scales and the strength of the small scales in the
velocity field. In the presence of a large scale with velocity larger than the mean or
near-wall shear stress signal larger than the mean, the small scales were observed
to be strongest near the wall and weakest away from the wall, while the reverse
small-scale pattern was observed for large scales with velocity less than the mean
or near-wall shear stress less than the mean (Hutchins and Marusic, 2007; Chung
and McKeon, 2010; Hutchins et al., 2011). This behavior was observed for all
three components of small-scale velocity (Talluru et al., 2014). The flow field was
also conditionally averaged on the presence of spanwise-meandering large-scales,
identified using the simultaneous measurement of the wall shear stress at five points
at the wall. The same trends were visible in the small-scale intensity, with some
additional variation in the spanwise direction (Hutchins et al., 2011). The small
scales were also conditioned on gradients in the streamwise velocity field at a point
and on gradients in the shear stress at a point at the wall, leading to the observation
that small scales were strongest along regions of high shear in the streamwise
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velocity field (Chung and McKeon, 2010; Hutchins et al., 2011; Baars, Hutchins,
andMarusic, 2017). The spatial organization and amplitude modulation trends were
observed to occur across large ranges of Reynolds numbers by Baars, Hutchins, and
Marusic (2017).

This spatial correlation between large scales and the envelope of small scales has
been demonstrated to be consistent with a phase relationship between the different
scales (Jacobi and McKeon, 2011; Duvvuri and McKeon, 2015; Duvvuri and
McKeon, 2017; McKeon, 2017). The fluctuating velocity field,

u = U − Ū, (1.4)

where U is the original field and u is the fluctuation about a mean, Ū, can be de-
composed with a Fourier decomposition in the streamwise, spanwise, and temporal
variables, leading to the expression

u(x, y, z, t) =
∫ ∫ ∫ ∞

−∞

ûK (y)exp
(
i(kx x + kz z − ωt)

)
dkxdkzdω. (1.5)

ûK (y) is the wall-normal coherence for each wavenumber triplet K = (kx, kz, ω). In
this decomposition, the nonlinear term of the Navier-Stokes equations only admits
direct interaction between scales that are triadically consistent, in which two of the
wavenumbers sum to the third: K1 + K2 = K3 (McKeon and Sharma, 2010). The
experimental observations of scale interaction were shown to be consistent with
specific types of triadic interactions. These triadic interactions were experimentally
triggered andmeasured using a novel experimental set up and were shown to interact
in the predicted fashion (Duvvuri andMcKeon, 2015; Duvvuri andMcKeon, 2016).

Conceptual models of scale interaction

Conceptual models have been suggested for scale interaction for decades. Energy
cascades were among the first such models and remain a useful framework for
understanding turbulence (Jimenez, 2012). Far from the wall, one of the recent
conceptual models for scale interaction is the concept of a hairpin packet (Adrian,
Meinhart, and Tomkins, 2000). A hairpin packet is an aligned set of hairpin vortices
that sit atop a region of low-momentum fluid. The low-momentum fluid is argued
to be created or strengthened by the induced flow of the many small-scale vortices.
In this conception, small-scale vortices are able to strengthen or create larger scales.

Another type of conceptual model springs from mathematical rather than experi-
mental roots. This conceptual model revolves around a critical layer, which has its
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basis in stability theory of shear flows. A critical layer is a region of a flow where a
perturbation grows due to its phase speed matching the local base flow velocity. The
concept of critical layers has recently been extended to base flows and mean flows
that vary in both the wall-normal and spanwise directions (Hall and Sherwin, 2010;
Wang, Gibson, and Waleffe, 2007; Park and Graham, 2015). In these examples,
smaller-scale velocity features appear to be strongest along spatially-undulating lay-
ers that follow streamlines of the base or streamwise-averaged flow field. These
critical layers have been observed in exact coherent solutions of the Navier-Stokes
equations, which are hypothesized to form the backbone of the chaotic dynamics of
turbulent flows (Wang, Gibson, and Waleffe, 2007; Park and Graham, 2015).

The transport of scalars in wall-bounded turbulent flow
The mixing of a scalar by wall-bounded turbulence has implications for many
critical engineering and environmental applications. Heat transfer is increased
in the presence of turbulent flow compared to laminar flow, leading to increased
surface temperatures for technologies in the field of combustion, jet turbine blades
downstream of combustion events, and re-entry vehicles. The mixing of particulates
is of interest in environmental flows in which turbulence can transport pollutants
across continents and oceans.

Scalar mixing has been used to great effect to learn about turbulence itself. Smoke
and dye visualizations are both examples of the mixing of scalars, and have been
used to identify coherent structures for decades. Seeding the flowwith a temperature
contaminant through the mild heating of the wall over which the turbulent boundary
layer developed was used to identify sharp shear layers and bulges in the outer
boundary layer by Chen and Blackwelder (1978).

Passive scalar transport

A passive scalar is one that does not affect the velocity field through its inclusion in
the flow. Many scalars are not passive. In flow past a hot plate, for example, the air
nearest to the plate becomes warm and more buoyant. The gravity force in equation
1.1 becomes dominant, creating upward motion of warm air in ways that would not
have occurred without the inclusion of heat. However, the inclusion of heat can
be considered passive if the heating is sufficiently mild such that the gravitational
forces are negligible compared with any other force. This work will focus on one
such flow, in which mild heating is applied at the wall.
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A passive scalar obeys

∂T ′

∂t
+ U · ∇T = (RePr)−1∇2T (1.6)

with the velocity term U coming from equation 1.1. T represents the temperature,
T ′ is the fluctuating temperature, defined as T ′ = T − T̄ , and Pr = ν

α is the Prandtl
number, the ratio between the kinematic viscosity and the thermal diffusivity. The
Prandtl number varies by the type of fluid; e.g. Pr = 0.7 for air and Pr = 7 for water
at standard conditions. A Prandtl number of 1 indicates that momentum and heat
diffuse at the same rate, which also means that the scalar and velocity fields will be
most similar. Because of the passivity of the scalar, equation 1.1 affects equation
1.6, but equation 1.6 does not feed back to affect equation 1.1.

When heat is added at the wall of a turbulent boundary layer, a thermal boundary
layer develops (Antonia, Danh, and Prabhu, 1977) within which, on average, the
temperature is higher than that of the free stream. The behavior of the scalar is
generally quite similar to the behavior of the streamwise velocity field. In some
cases, useful approximations can be made for the temperature field given a velocity
field, such as the Strong Reynolds Analogy (Favre, 1964),

cp(T̄ − Tw) = Prw
q̄w
τ̄w

Ū

cpT ′ = Prw
q̄w
τ̄w

u,
(1.7)

where the subscript w indicates the wall, q is the heat transfer rate, cp is the
specific heat capacity of air, and τ is the shear stress. This relation says that the
fluctuating temperature field T ′ is proportional to the streamwise velocity field, u.
It is not believed that this holds instantaneously, but it is a useful approximation for
comparing the velocity and scalar field (Spina, Smits, and Robinson, 1994).

There are, however, interesting and important differences between the velocity field
and the passive scalar field statistically and instantaneously, even in unity Prandtl
number flows. The tails of the probability density function of the scalar field are
exponential rather than Gaussian (Warhaft, 2000), the scalar behavior is anisotropic
(Sreenivasan, 1991), and the gradients are sharper, known as the ‘unmixedness of
the scalar’ (Guezennec, Stretch, and Kim, 1990). Additionally, the instantaneous
features of the velocity and scalar fields, as well as their gradients, do not appear
equivalent in visualization and analysis of recent DNS of heated turbulent channel
flow (Antonia, Abe, and Kawamura, 2009; Abe, Antonia, and Kawamura, 2009).
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Thus, open questions remain regarding the estimation of a passive scalar field based
upon the velocity field of a flowwithout computing the answer directly from equation
1.6. Just as is true for the velocity field, efficient models are of interest in the scalar
field to be able to predict its behavior for realistic applications. Models of the scalar
field are also of scientific interest, as understanding the mixing of a passive scalar
can give insight into the dynamics and interaction of turbulent scales.

Aero-optics
One important application of the transport of scalars in awall-bounded turbulent flow
is the problem of aero-optics. When light is passed through a turbulent boundary
layer with density variation, the wavefront of the light becomes distorted due to
coupling between the index of refraction, n, and the density, ρ, in the fluid. The two
are linearly related through the Gladstone-Dale relation,

n = 1 + KGD ρ, (1.8)

where KGD is the Gladstone-Dale constant, which is a function of the fluid in ques-
tion. As the beam passes through the variations in density in the fluid, it is also
passing through variations in the index of refraction field, causing wavefront and
beam path aberrations. In aircraft laser-based communication applications, this
results in signal-dropout due to the rapid distortion of the beam in time. Under-
standing the fundamental physics behind these distortions opens the possibility of
active control that mitigates the distortion.

Due to the application of interest in the problem, most of the work in aero-optics
has been done in compressible flows, where the energy equation is coupled to the
momentum equations. In compressible flows, the scalar is generally not passive, but
comparisons can be made to the incompressible, heated case. The Strong Reynolds
Analogy is often used for this purpose (Spina, Smits, and Robinson, 1994).

Study of the distortion of an optical beam has been done in boundary layers, shear
flows, and over more complex application-specific geometries (Jumper and Fitzger-
ald, 2001; Dimotakis, Catrakis, and Fourguette, 2001; Gordeyev et al., 2014).
Several measurement techniques were developed to study this problem including
the Malley probe (Malley, Sutton, and Kincheloe, 1992) and the Shack-Hartmann
sensor (Wyckham and Smits, 2009).

The distortions of the optical beamwere observed to ‘convect’with a particular speed
in turbulent boundary layers (Gordeyev et al., 2014) by correlating the distortion
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signals at two locations, separated by a small distance in the streamwise direction.
This speed, approximately 0.82U∞ (Gordeyev et al., 2014) indicated that something
in the outer region of the boundary layer was responsible for the deflections. The
distortion was observed to have a consistent spectral content that collapsed when
normalized appropriately acrossMach numbers and Reynolds numbers (Gordeyev et
al., 2014; Smith et al., 2014), suggesting that a particular range of length scales was
consistently correlated to the distortion. These findings suggested that the aero-optic
measurement was responding to some specific turbulent behavior. Open questions
remained about what turbulent phenomena were correlated to the deflection, and
how to mitigate their effects on the signal-dropout problem.

An additional complexity of understanding the aero-optic measurement is that it is
inherently an integral measurement. The beam passes through the full turbulent
boundary layer before its distortion is measured. This would generally mean that a
number of turbulent phenomena could influence the beam before its distortion was
measured, complicating any analysis of the source of distortion. However, evidence
from turbulent shear layers suggested that a single interface in the density field could
dominate aero-optic distortion signals (Dimotakis, Catrakis, and Fourguette, 2001),
offering the possibility that the integral measurement in turbulent boundary layers
could also be correlated to a single event. This possibility warranted further study.

Modeling with the resolvent operator
Modeling was used in this thesis to aid in the understanding of coherent structures,
their interactions, and their relevance to the passive scalar field and the aero-optic
problem. The fluctuating field (equation 1.4) was decomposed in a Fourier decom-
position as shown in equation 1.5, and the resolvent analysis of the Navier-Stokes
equations was used to identify the wall-normal coherence of models for specific
scales, using the formulation of McKeon and Sharma (2010). The interaction
of these coherent structure models was also explored to capture scale interaction,
building off of the work of Sharma and McKeon (2013) and McKeon (2017).

Resolvent analyses formulate the non-dimensionalized Navier-Stokes equations as
an input-output system between an input and the velocity field with the linear
dynamics acting as a transfer function between the two. The linear transfer function
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is termed the resolvent operator

H ≡ (−iω −L)−1

=



−iω + ikxŪ + Re−1
τ ∆ DyŪ 0 ikx

0 −iω + ikxŪ + Re−1
τ ∆ 0 Dy

0 0 −iω + ikxŪ + Re−1
τ ∆ ikz

ikx Dy ikz 0



−1

,

(1.9)

where Dy is the partial derivative in the wall-normal direction and ∆ = Dyy− k2
x− k2

z

such that 

ũ

p̃


=H



f̃

0


, (1.10)

where f = −u ·∇u is the nonlinear forcing term and f̃ is the forcing for a particular
scale, defined by its streamwise, spanwise, and temporal wavenumbers. Many
velocity scales, not just ũ, contribute to f̃ . Note that the mean velocity field Ū is
needed to formulate the resolvent operator.

A singular value decomposition is performed on the resolvent operator to determine
the right (Φ) and left (Ψ) singular vectors for each wavenumber triplet (streamwise,
spanwise, and temporal). In this formulation

H (kx, kz, ω) = ΨΣΦ, (1.11)

where Σ is the matrix of singular values. The operator has been observed to be
low-rank (McKeon and Sharma, 2010), such that the first singular vector is much
more amplified by the linear dynamics at a given wavenumber triplet than the
second singular vector. The first singular vector is used as an approximation of the
wall-normal coherence for the model such that

û(y) = χψ (y), (1.12)

where χ is the weighting of the mode and ψ is the first singular vector. The scaling
with Reynolds number of the singular value and geometry of modes throughout the
boundary layer has been reported by (Moarref et al., 2013), while the scaling of
the full weighting χ is the subject of ongoing work within the research group of
Dr. Beverley McKeon. The value of χ was defined through analysis of the data in
chapters 4 and 5.
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A key finding of McKeon and Sharma (2010) was the importance of critical layers
in wall-bounded turbulent flows. The first singular vector, from here referred to as
a resolvent mode, was observed to be localized about its critical layer in the mean
flow field: the height where

c = Ū (y),

c = ω/kx .
(1.13)

The concept of critical layers in turbulence plays an important role throughout the
thesis, with particular emphasis in chapters 4 and 5.

1.3 Open questions and challenges
There are many remaining challenges in the study of turbulent wall-bounded flows.
Within engineering, there is a great need to be able to efficiently model turbulence
nearwalls. Currently, while theNavier-Stokes equations can be solved on computers,
the range of scales involved are very large in realistic applications, making the
direct computation too large to be feasible. Instead, many current efforts focus on
exactly computing the largest scales, andmodeling the smallest scales using physics-
based models. This coupling allows for the simulation of large-scale engineering
applications, which improves the design process of modern technologies. However,
currentmodels are often inaccurate, especially in non-canonical geometries. Critical
parameters at the wall, including skin friction and heat transfer, are often incorrectly
estimated (Park and Moin, 2016). There is a need for better models of turbulent
dynamics that can interface with the computation of the Navier-Stokes equations.
The work of Marusic, Mathis, and Hutchins (2010) demonstrates the utility of such
an approach, in which the small-scale velocity field is modulated by the action of
the large scales in the logarithmic layer. Further work is needed to create models
that can couple to the LES to allow the small scales to influence the large scales,
as well as to create models that are applicable in a wide variety of non-equilibrium
flow conditions.

There is also a desire in the engineering world to domore than just model turbulence:
there is an interest in modifying it. The application of closed-loop control to
turbulent boundary layers could allow for some of the damaging effects of turbulence
on the engineering variables of interest (drag, heat transfer) to be mitigated by
continuously changing the behavior of the fluid to a state with better engineering
characteristics. But to implement closed-loop control, one has to be able to do many
things that are not currently possible. One has to be able to quickly measure the flow
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field and use that measurement to estimate the state of a reasonably large area of
the fluid. Currently, most instantaneous measurements are local, while most global
measurements require post-processing time, offering complexity in state estimation
from local measurements, and in processing speed for global measurements. Then,
one has to be able to use the estimation of the current state of turbulence to quickly
predict what the turbulence is about to do, requiring efficient modeling of the flow
dynamics. One also has to know what one would prefer the turbulence to do, and
how to change its behavior towards that goal, which is an area of active research in
the community. And finally, one has to be able to actuate the turbulence in such a
way as to change its behavior. The implementation of a closed-loop control system
that reduces drag is a significant challenge that requires a community of people all
working on pieces of the puzzle.

The present approach
There are many useful and valid perspectives to take when studying a problem as
complex as turbulence. The approach taken here is experimental and data-driven,
and has a strong interest in uniting the statistical and instantaneous perspectives of
turbulence. It attempts to stay in physical space as much as possible, in order to
try to understand the physical and instantaneous structure of turbulence, including
how different scales are organized in relation to one another. This rooting in the
physical world is chosen with the belief that the spatial structure and organization
of turbulence is central to its character and its ability to self-sustain. The approach
seeks to buildmodels that instantaneously, physically resemble turbulent flowswhile
maintaining a clear connection to the energetic statistics that have been identified
as universal across many experiments. These models serve both the engineering
purpose of advancing the useful predictive abilities of reduced-order models, and
the scientific purpose of clarifying and simplifying turbulent dynamics towards a
system that can be understood.

Contributions of the thesis

Some key challenges to which this thesis contributes:

• The connection between instantaneous and statistical descriptions of turbu-
lence

• The identification of mechanisms through which scales influence one another
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• The clarification of the instantaneous relationship between velocity and scalar
fields

• The isolation of the turbulent dynamics that are correlated to aero-optic dis-
tortion

After a discussion of the experimental methods, DNS database, modeling methods,
and analysis methods used in chapter 2, the thesis focuses on the description of
coherent structures, with specific contributions to the first of the four listed challenges
in chapter 3. Representative models for a number of energetic scales in turbulence
are proposed and compared to instantaneous velocity fields through visualization
and instantaneous streamwise histogram techniques.

The thesis then uses these modeled representations of the energetic scales to probe
the second challenge, the identification of scale interaction mechanisms, in chapter
4. A novel conditional averaging technique is implemented that uses the models of
energetic scales to phase average the small-scale velocity intensity on the large scale
flow field. A localization of small-scale intensity is observed at particular isocon-
tours of the large-scale flow, leading to a hypothesis for an interaction mechanism. It
is hypothesized that the large scale superimposed with the mean velocity profile acts
as a pseudo-base flow, while the small scales act as perturbations about that base
flow, showing strongest growth and presence along isocontours of the pseudo-base
flow corresponding to the small-scale phase velocity.

Further work is done to contribute to the challenge of identifying scale interaction
mechanisms in chapter 5, where the conditional averaging technique just described
is combined with a second conditional averaging technique that allows for a phase
average on both the large and small scales. A single small scale is observed to
dominate much of the outer region of the boundary layer, appearing to sit at a
variety of heights from the wall as a function of the phase of the large scale.
This experimentally-observed phenomenon is argued to support the critical layer
hypothesis. Modeling of this phenomenon is shown to be possible with a linear
superposition of resolvent modes.

The model of scale interaction in the velocity field is extended to model the scalar
field using a passive scalar resolvent code in chapter 5. This model allows for the
comparison of the predicted instantaneous structure of the velocity and scalar fields
as a function of Prandtl number, contributing to the third challenge. Finally, the
interaction of only two scales is shown to be strongly correlated to the distortion of
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an optical beam passing through a variable-density flow field, offering an answer to
the fourth challenge in the context of incompressible flows.

In chapter 6, the work is summarized and some avenues for future work are outlined.
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C h a p t e r 2

METHODS

2.1 Experimental methods
Heated flat plate
Experiments were run in the Merrill wind tunnel at Caltech. The tunnel is an
incompressible, recirculating flow facility with a 0.6 m x 0.6 m test section. The
test section used for the experiments described in this thesis had an aluminum flat
plate along its center with rubber resistance heaters embedded inside such that the
flat plate could be heated (Rought, 2013). At the upstream edge of the flat plate, a
small wire tripped the flow into turbulence. At the downstream edge of the flat plate
a fin adjusted the flow to secure the stagnation point location at the leading edge.

The flat plate itself included heated and unheated portions, shown schematically in
figure 2.1. The unheated portions included glass and acrylic inserts through which
light could pass. These inserts were used both to allow for a high quality light sheet
for PIV, and to allow for the use of optical devices including a Malley probe and
a Shack-Hartmann sensor. In the heated portions, the heating elements extended
through the span of the flat plate and heated a total of 1.25 m in the streamwise
direction, composed of two 0.63 m sections with a 0.14 m unheated length between
them. The first heated portion of the plate started 0.3 m downstream of the boundary
layer trip and ended 0.2 m before the measurement location. In figure 2.1, the
lengths of the plates are noted in dimensional units. The dimensionless lengths
of the final heated and unheated plates, nondimensionalized by the 99% boundary
layer thickness at measurement location B, were 18δ and 10δ respectively.

Two thermocouples, embedded with the heaters in the flat plate, measured the
temperature of each heated section at its centerpoint (Rought, 2013). A thermal
camera (FLIR A325sc #48001 − 1001) was used to examine the spatial variation
of the temperature across the plate, which was found to vary by about 3◦C. The
resolution of the thermal camera was ±0.8◦C. The hottest location was found at the
center of each plate and the coolest near the edges, where conduction to the unheated
portions of the wind tunnel decreased the equilibrium temperature.

The temperature difference between the free stream and plate was held constant at
22◦C such that the flow was moderately heated. The statistics of the temperature
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(a)

(b)

Figure 2.1: Schematic from a bird’s eye view of the flat plate in the Merrill wind
tunnel (a), and image of the Merrill wind tunnel (b). Dimensional length scales are
shown for each of the segments of the flat plate in (a). Red shading indicates heated
portions of the plate. In (b), the flat plate is observed as the shiny, aluminum surface
in the center of the test section. A camera used for velocimetry is also shown. Flow
moves from left to right in both panels.

field will be described in the the subsection Relevant flow statistics.

Velocity field measurement
Particle image velocimetry (PIV) was used to acquire streamwise and wall-normal
velocity data from a turbulent boundary layer at measurement location B in figure
2.1(a). The flow was seeded with an aerosol of bis(2-ethylhexyl)sebacate (DEHS)
(0.25 µmmodal size, LaVisionAerosol Generator #1108926) andwas illuminated in
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thewall-normal, streamwise plane using a double-pulsedYLF laser with a frequency
of 1.5 kHz and a pulse separation of 35 µs. A Photron Fastcam APX-RS camera
with a 17 mm Tamron macro lens was used to record images at a resolution of
1024 × 1024 pixels. The field of view was 1.4δ × 1.7δ (50 mm × 60 mm). Davis
software from LaVision was used to process the data, using a double pass approach
with windows of first 32 and then 16 pixels with 50% overlap. The resolution per
vector was 0.013 × 0.013 outer units or 14.5 × 14.5 inner units.

The Reynolds number was found to be Reθ = 3,300 or Reτ = 910. The 99%
boundary layer thickness, δ, was found to be 35mm in the center of themeasurement,
with a change of less than 7% over 1.7δ of streamwise extent. Note that the
expression for boundary layer thickness as a function of the streamwise variable is
approximated as

δ ≈ 0.37
x∗

Re1/5
x∗
, (2.1)

where Re∗x =
U∞x∗
ν and x∗ is the distance downstream from the virtual origin,

the location where the boundary layer would have begun had it not been tripped
(Schlichting, 1979). Given the rate of growth observed, this suggests an approximate
location of the virtual origin of x∗ = 3.8 m.

The measured free stream velocity from PIV was U∞ = 12.15 m/s, which was
within 2% of that measured by a pitot probe placed upstream of the measurement
location. The friction velocity uτ was determined using the Clauser method and
was identified to be 0.47 m/s. There was a slightly favorable pressure gradient in
the tunnel due to its constant rectangular cross section in the presence of a growing
boundary layer. This pressure gradient was sufficiently small such that the flow can
still be characterized as a zero pressure gradient flow, with an acceleration parameter
of K = 6.7 × 10−7 (Rought, 2013). The acceleration parameter is defined as

K = −
ν

ρU2
∞

dP
dx

(2.2)

and has an upper threshold of 1.6x10−6 for a pressure gradient that causes deviation
from standard statistics (DeGraaff and Eaton, 2000).

Relevant flow statistics
The mean and root mean squared (RMS) velocity statistics were found from the PIV
data and compared to data from DeGraaff and Eaton (2000) at similar Reynolds
numbers. The data was found to agree well above a y+ of about 40 or equivalently
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y/δ = 0.05. Figure 2.2 shows the mean (a) and RMS (b) of the streamwise velocity
field compared to the DeGraaff and Eaton data. The discrepancy near the wall is
caused by reflections from the laser light sheet shining down onto the aluminum flat
plate from above.

(a)

(b)

Figure 2.2: Mean profile (a) and RMS (b) as a function of distance from the wall.
Blue points indicate data from PIV measurements in this study. Black and red
points indicate data from DeGraaff and Eaton (2000) at similar Reynolds numbers
for comparison. Data was seen to agree above y+ ≈ 40. Discrepancies near the wall
are due to glare from the PIV light sheet.

The mean temperature profile in the tunnel was determined through measurement
with a cold wire, collected by Rebecca Rought. The temperature was measured
both directly over a heated plate and at measurement location A of figure 2.1. The
temperature measurements were non-dimensionalized using a friction temperature
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defined as
Tτ =

qw
ρCpuτ

, (2.3)

where qw is the heat flux at the wall and Cp is the specific heat capacity of air. The
plotted temperature in figure 2.3 is non-dimensionalized as

T∗ =
Tw,h − T

Tτ
, (2.4)

where Tw,h is the temperature of the heated wall. The ambient temperature in the
room was held at approximately 21◦C, while the wall was heated to approximately
43◦C, leading to a difference in temperature of approximately 22◦C.

Figure 2.3: Mean temperature profiles as a function of distance from the wall for
a variety of Reynolds numbers and measurement locations. H indicates that the
measurement was taken directly over the heated plate, 5 cm before the end of the
first heated section, while A indicates the measurement location A in figure 2.1.
The blue starred curve indicates data from Antonia, Danh, and Prabhu (1977) for a
passively heated turbulent boundary layer. Cold wire data was collected by Rebecca
Rought. Plot adapted from Rought (2013).

The mean temperature profiles in figure 2.3 are observed to agree with that of
Antonia, Danh, and Prabhu (1977) over the heated wall. At measurement location
A, the mean temperature profile is observed to depart from the canonical thermal
boundary layer at a y+ ≈ 100, or y/δ ≈ 0.1. This internal cool layer is a result of
the heated plate ending upstream of the measurement location due to experimental
constraints. At a step change in the temperature boundary condition that decreases
the wall heat flux, a new thermal boundary layer begins to develop that is cooler than
the first (Antonia, Danh, and Prabhu, 1977). The measured height of the internal
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cool layer (the point of deviation from the fully-heated case) is deemed acceptable,
as the focus of the analysis using the scalar field is on the outer boundary layer above
y/δ ≈ 0.2.

The agreement of the velocity statistics with an unheated boundary layer (figure
2.2 and the temperature statistics with a passive thermal boundary layer (figure
2.3) demonstrates that the heating in this experiment is sufficiently small that no
dynamic effects are statistically observed. The scalar is therefore assumed to be a
passive contaminant in the flow for the remainder of the work. This also means
that the internal cool layer is not associated with any change in the velocity field.
This observation coupled with the lack of a pressure gradient allows this flow to be
considered a canonical turbulent boundary layer.

Scalar measurement overview
The scalar field was measured using aMalley probe (Malley, Sutton, and Kincheloe,
1992) at measurement location B in figure 2.1. The Malley probe consists of two 1
mm diameter laser beams aligned in the streamwise direction. In this work, a single
beam is first passed through a spatial filter before it is split into two equal beams
by a beam splitter. The beams are then passed through the flow field along the
wall-normal direction, as in figure 2.4(a). An experimental image of the two beams,
aligned in the streamwise direction, is shown in figure 2.4(b). After passing through
the flow field once, the beams hit a mirror and pass back down through the flow a
second time along the same path to increase the strength of the final signal. Finally,
each beam impinges on a position sensor that measures its centroid position. The
final angle of each beam is deduced from its centroid position, illustrated in figure
2.4(c).

The beam angle is found to be time varying when the beam is passed through a
variable-density flow, due to a relationship between index of refraction and density
(Gordeyev et al., 2014). The index of refraction is in general a function of time and
space

n(x, y, z, t) = 1 + KGD ρ(x, y, z, t), (2.5)

where KGD is theGladstone-Dale constant and ρ is the density field. In the schematic
in figure 2.4(c) a streamwise density gradient is modeled using a single interface in
the density field, illustrated using a dark red inclined line.

In this study, the Malley probe is used to study a lowMach number flow (M = 0.05)
with heat addition, such that the only source of density fluctuations comes from
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(a)

(b) (c)

Figure 2.4: Schematic of the PIV and Malley probe simultaneous measurements
in a heated, turbulent boundary layer (a), an experimental image of the two Malley
probe beams passing through the flow at measurement location B, aligned in the
streamwise direction (b), and a simplified representation of the Malley probe optical
measurement for a single beam (c). Schematics (a) and (c) are not to scale.

the heated flat plate (Gordeyev et al., 2015). The beam is deflected in both the
streamwise and spanwise directions and both final angles are measured. The work
in this thesis will focus on the streamwise angle, with the analysis of the spanwise
angle identified as a source of future work. The standard deviation of the final
streamwise angle, φ(t), was found to be 7 mrad. Thus the beam deflections are
sufficiently small that the double-pass approach used in this implementation of the
Malley probe measures the effect of the same fluid phenomena in both passes.
Positive values of φ will be used to denote downstream inclinations relative to the
vertical, while negative values of φ will denote upstream inclinations.
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Synchronization

To be able to identify the relationship between the scalar and velocity measurements,
the twomeasurements had to be properly synchronized. To do this, a signal (Record-
Post) was recorded from the PIV system using the same sampling and recording
system that the Malley probe used. The relationship of this signal to the other PIV
signals is shown in figure 2.5. RecordPost jumped from 0 to 5 volts at the beginning
of the first exposure of the first recorded image pair. The start time of the PIV data
was then taken as one exposure time after the RecordPost signal increased to 5 V,
such that the moment between the two images of the first image pair was taken as
t = 0.

Figure 2.5: Timing diagram shown for PIV system. The RecordPost signal was
outputted from the PIV system and was read by the same measurement system
recording the Malley probe deflection signal. Exposures 1a and 1b comprised the
first recorded image pair that was correlated to identify the velocity field.

Analysis of optical path length and deflection

The goal of this section is to derive the relationship between a scalar field and the
measurement of the Malley probe. The relevant optical terms will be defined and
their relationships will be clarified to arrive at the final expression for the Malley
probe angle, φ, as a function of the density field, ρ.

Optical path length

The optical path length is the geometric product of the path that the light follows
with the local index of refraction of the medium. It is defined as

S =
∫

nds, (2.6)
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where s is the path along which the beam travels. Define ζ as a parameterization
variable for the path s, such that s = s(x′(ζ ), y′(ζ ), z′(ζ )) where the primes indicate
that x′(ζ ), y′(ζ ), and z′(ζ ) are the coordinates of the beam in space, rather than the
independent spatial variables x, y, and z. Note that ds =

√
dx′2 + dy′2 + dz′2 and

ds
dζ =

√
ẋ′2 + ẏ′2 + ż′2, where ẋ′(ζ ) = dx′

dζ , ẏ
′(ζ ) = dy′

dζ , ż′(ζ ) = dz′
dζ , such that

S(ζ ) =
∫

n(x′, y′, z′)
ds
dζ

dζ

S(ζ ) =
∫

n(x′, y′, z′)
√

ẋ′2 + ẏ′2 + ż′2dζ .
(2.7)

This indefinite integral will give a value of S for all ζ . Curves of constant optical
path length in space are called wavefronts. The final value of the optical path length
along a particular path is then

S(ζ f ) − S(ζi) =
∫ ζ f

ζi

n(x′, y′, z′)
√

ẋ′2 + ẏ′2 + ż′2dζ . (2.8)

Finally, using equation 2.5 to relate index of refraction to density leads to the final
expression for the optical path length as a function of density,

S(ζ f ) − S(ζi) =
∫ ζ f

ζi

(
ρ(x′, y′, z′)KGD + 1

) √
ẋ′2 + ẏ′2 + ż′2dζ . (2.9)

Optical momentum

To identify the relationship between the beam angle and the density field, the optical
momentum vector will be used. The opticalmomentum vector is everywhere tangent
to the ray of light and has magnitude equal to the local index of refraction. It is
defined as

p = (px, py, pz)

px = n
dx′

ds

py = n
dy′

ds

pz = n
dz′

ds
.

(2.10)

Note that | |p| | = n. The gradient of the optical path length is the optical momentum,
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p = 5S. (2.11)

Levelsets of S (wavefronts) are perpendicular to levelsets of the optical momentum
(optical rays). This relationship can also be written as

S =
∫

p · ds, (2.12)

where ds = (dx′, dy′, dz′).

Finding φ along beam path

A simple relationship is sought between the measured streamwise angle in the aero-
optical distortion experiment and the index of refraction field. The relationship
between p and S will be used. First, note that

p = (n cos αx, n cos αy, n cos αz), (2.13)

where both n and α are functions of ζ and each α is defined relative to the axis it
specifies, as seen in Figure 2.6.

Figure 2.6: Schematic shows the definition of three angles that define the orientation
of the optical momentum vector.

The analysis in this thesis focuses exclusively on the streamwise deflection angle of
the Malley probe, allowing for a focus on the x-component of the p vector. Using
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the relationship between p and S, one finds

px (ζ ) = n(x′, y′, z′) cos αx (ζ ) =
∂

∂x′
S(ζ ). (2.14)

Using the expression for S in equation 2.9, this gives

px (ζ ) = n(ζ ) cos αx (ζ ) =
∂

∂x′

∫
n(x′, y′, z′)

√
ẋ′2 + ẏ′2 + ż′2dζ . (2.15)

The angle defined for the ensuing experiments is measured relative to the y-axis
rather than the x-axis, so our angle φ is defined as π

2 − αx such that

n(ζ ) sin φ(ζ ) =
∂

∂x′

∫
n(x′, y′, z′)

√
ẋ′2 + ẏ′2 + ż′2dζ . (2.16)

Pulling the derivative inside the integral and noting that ds
dζ =

√
ẋ′2 + ẏ′2 + ż′2 is not

a function of x′, one identifies that

n(ζ ) sin φ(ζ ) =
∫

∂n
∂x′

(x′, y′, z′)
√

ẋ′2 + ẏ′2 + ż′2dζ . (2.17)

Using the relationship between density and index of refraction, one finds

n(ζ ) sin φ(ζ ) = KGD

∫
∂ρ

∂x
(x′, y′, z′)

√
ẋ′2 + ẏ′2 + ż′2dζ . (2.18)

The final angle measured simply requires a change to a definite integral, where ζi

is taken as the value of ζ at the initial location of the beam, and ζ f is taken as the
value of ζ at the final location of the beam.

n(ζ f ) sin φ(ζ f ) − n(ζi) sin φ(ζi) = KGD

∫ ζ f

ζi

∂ρ

∂x
(x′, y′, z′)

√
ẋ′2 + ẏ′2 + ż′2dζ .

(2.19)
Both the density field and the path are functions of time, so this can be written as

n(ζ f , t) sin φ(ζ f , t) − n(ζi, t) sin φ(ζi, t) =

KGD

∫ ζ f

ζi

∂ρ

∂x
(x′, y′, z′, t)

√
ẋ′2 + ẏ′2 + ż′2dζ,

(2.20)

where x′, y′, z′, ẋ′, ẏ′, and ż′ are all functions of ζ and t.

Some approximations can be made to simplify this expression. First, the index of
refraction at ζi and ζ f can be taken to be the same value associated with the ambient
conditions, na, as the beam path begins and ends outside of the tunnel, where no
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substantial density variation is present. Additionally, the initial angle can be taken
to be a constant, rather than a function of time, such that φ(ζi, t) = φ(ζi). The
standard deviation of the measured angle is only 7 mrad, allowing the use of the
small angle approximation, which also identifies that ẏ′ is significantly larger than
ẋ′ or ż′ . These assumptions lead to equations 2.21 and 2.22.

na
(
φ(ζ f , t) − φ(ζi)

)
= KGD

∫ ζ f

ζi

∂ρ

∂x
(x′, y′, z′, t) ẏ′dζ (2.21)

or
φ(y f , t) − φ(yi) =

KGD

1 + KGDρa

∫ y f

yi

∂ρ

∂x
(x0, y, z0, t)dy, (2.22)

where ρa is the ambient air density and φx is the measured angle in the experiments.

2.2 Direct numerical simulation
Data was extensively analyzed from a direct numerical simulation (DNS) of a zero
pressure gradient turbulent boundary layer from Dr. Xiaohua Wu of the Royal
Military College of Canada (Wu, Moin, and Hickey, 2014; Wu et al., 2017). The
boundary layerwas simulated from its initial laminar state through a bypass transition
to a fully canonical turbulent state. The portion of the boundary layer considered in
this thesis is the region farthest downstream, where Reθ ≈ 3, 000 and Reτ ≈ 1, 000.
The friction velocity is estimated using the Clauser method and is found to be
0.0384 relative to the maximum velocity of 1 in the simulation. In the region of
interest, the spanwise extent of the simulation is approximately 2.6δ. The boundary
layer thickness varies by less than 8% over a 1.6δ streamwise extent in the region
of interest, closely matching the change in boundary layer height of the PIV data,
which was less than 7% over 1.7δ. The mean velocity profile is shown in figure 2.7.

2.3 Modeling methods
Throughout the thesis, a Reynolds-decomposition will be applied to the velocity
field, U , such that

U (x, y, z, t) = Ū (x, y) + u(x, y, z, t), (2.23)

where Ū is the temporal mean of the flow field and u represents the fluctuation
about that mean. The fluctuation can be further decomposed into a representative
scale of interest, ũ, and other fluctuations that are not coherent at that scale, u′, to
arrive at a triple-decomposition (Hussain and Reynolds, 1970; Jacobi and McKeon,
2011)

U (x, y, z, t) = Ū (x, y) + ũ(x, y, z, t) + u′(x, y, z, t). (2.24)
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Figure 2.7: Mean profile as a function of distance from the wall for the DNS data
of Wu et al. (2017).

In general, a representation of a scale of interest, ũ, can be identified from experi-
mental or computational data by filtering, conditionally averaging on a strong event,
or performing a modal analysis. In this work, the scale of interest, ũ is identified
from length and time scales that are associated with maxima in the streamwise en-
ergy spectrum. Because turbulent spectra are not sharply peaked, ũ is interpreted as
a representative model of the class of structures within the broad energetic peak in
the spectrum, with the understanding that slight variation about the representative
spatial and temporal scales would be expected in a fully-turbulent flow.

For simplicity in modeling, the mean velocity field is assumed to be constant in
the streamwise direction: Ū = Ū (y), invoking the parallel-flow assumption for
turbulent boundary layers. A Fourier transform is then applied in the streamwise,
spanwise, and temporal variables such that the model for a particular scale ũ takes
the form of a traveling wave in the fluctuating velocity field, periodic in both the
streamwise, x, and spanwise, z, directions. This choice of representation allows
for a clear connection between the model and the streamwise velocity spectrum,
as the model can be associated with a single point in streamwise and spanwise
wavenumber space. Right and left propagating waves are summed to isolate a
downstream propagating wave

ũ(x, y, z, t) = Re[û(y)(ei(kx x+kz z−ωt) + ei(kx x+(−kz )z−ωt))], (2.25)

where kx, kz, and ω are the streamwise, spanwise, and temporal wavenumbers
respectively and here Re indicates real part. The triple decomposition can therefore
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be written as

U (x, y, z, t) = Ū (x, y) + Re(û(y)(ei(kx x+kz z−ωt) + ei(kx x+(−kz )z−ωt))) + u′(x, y, z, t).
(2.26)

The streamwise wavelengths for structures of interest are identified based on ener-
getic scales in the streamwise energy spectrum, or from experimental evidence from
conditional averaging analysis. The spanwise wavelengths and the phase velocity
c = ω/kx are drawn from commonly used values in the literature or from experimen-
tal observations. These values are drawn from the literature rather from the present
data due to their common acceptance in the literature and the difficulty of deriving
them from data that is not time resolved and is restricted in its spatial extent. To
determine the model’s wall-normal coherence, û(y), the resolvent formulation for
wall-bounded turbulent flows is used for the boundary layer geometry with a parallel
flow assumption. The boundary layer resolvent code written by Dr. Ian Jacobi, Dr.
Beverley McKeon, and Dr. Scott Dawson is used throughout the thesis. For a more
complete discussion of the resolvent formulation, the reader is pointed to McKeon
and Sharma (2010), Jacobi and McKeon (2011), and Sharma and McKeon (2013).

In addition to the velocity resolvent formulation described in chapter 1, a passive
scalar resolvent code formulated and executed by Dr. Scott Dawson is used to model
the passive scalar field in a mildly-heated, turbulent boundary layer. The passive
scalar resolvent code is a modification to the existing resolvent boundary layer code.
Due to the decoupling between the passive scalar and velocity fields, the passive
scalar resolvent can be used after the identification of a velocity mode of interest, ũ.

To identify the scalar modes, a new form of the resolvent operator is constructed,
including the passive scalar equation. This new resolvent operator is here termed
HT (T for temperature, though the formulation is general for any scalar). This
resolvent operator is defined below.

HT =



−iω+ikxŪ+Re
−1∆ DyŪ 0 ikx 0

0 −iω+ikxŪ+Re
−1∆ 0 Dy 0

0 0 −iω+ikxŪ+Re
−1∆ ikz 0

ikx Dy ikz 0 0
0 DyT̄ 0 0 −iω+ikxŪ+(RePr )−1∆



−1

,

(2.27)

where T̄ is the mean temperature field and Pr is the Prandtl number.1 Here the resol-
vent operator acts on the vector [ fu, fv, fw, 0, fT ]T to give the vector [u, v,w, P′,T ′]T

and fT = −u · ∇T ′.
1The formulation of the passive scalar resolvent is credited to Dr. Scott Dawson.
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The mean velocity field Ū is needed to formulate the resolvent operator, shown in
chapter 1 and that the mean temperature field is additionally needed to formulate
the passive scalar resolvent operator. Two different mean velocity profiles are used
to identify resolvent modes in this thesis. In chapter 3 the DNS mean velocity
profile is used to formulate the resolvent operator, while in chapters 4 and 5 the
experimental mean velocity profile from PIV measurements is used. A nominally
constant temperature is used as the thermal boundary condition at the wall for both
cases. In chapter 3 near-wall structures are modeled, requiring a mean that is well-
resolved to the wall, whereas in chapters 4 and 5 only structures in the outer region of
the boundary layer are modeled. The use of the experimental mean in chapter 5 also
allows for the use of the corresponding mean temperature profile in the modeling
of the scalar field, which will be discussed shortly. The flows that produced the
two means are at similar Reynolds numbers, allowing for comparison between the
models derived from the different means.

2.4 Analysis methods
Filtering
An interest in understanding particular large and small scales motivates the use
of spatial filtering methods throughout the thesis work. Low-pass filters are used
in chapter 3 to approximate from data the weighting χ of particular scales in the
boundary layer. High-pass filters are used in chapters 4 and 5 to isolate and study
small spatial scales throughout the boundary layer.

A Gaussian filter is used for each of these applications, defined as the convolution
of the data with a Gaussian kernel. This filter is chosen for its excellent spatial
filtering characteristics and its widespread use in the computer vision community
as part of the scale-space theory, which is a framework to analyze distinct scales in
images (Lindeberg, 1994). A key feature of the Gaussian filter is that it does not add
spurious effects to the image. Filters that are sharp in the frequency domain have
oscillations when transformed into the spatial domain, which can cause the spurious
creation of halos around objects (Davies, 2004). A Gaussian filter is nonoscillatory
in both the frequency and spatial domain, and in fact has an identical form in the
spatial and spatial frequency domains (Marr and Hildreth, 1980). The Gaussian
filter is also easily implementable on multi-dimensional data, as it can be applied
exactly through sequential convolutions in each dimension (Davies, 2004). The
Gaussian kernel is defined as
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FG (x) =
1

σG
√
π
exp

(
−

(
x2

(2σG)2

))
, (2.28)

where σG is the standard deviation of the Gaussian and x is the spatial dimension
along which the data is being filtered. The filtering is then performed by convolving
the kernel with the data and normalizing by the integral of the kernel itself.

ul (x) =

∫ x∗
f

x∗i
u(x∗)exp

(
−

(
(x−x∗)2

(2σG )2

))
dx∗∫ x∗

f

x∗i
exp

(
−

(
(x−x∗)2

(2σG )2

))
dx∗

. (2.29)

The normalization by the integral of the Gaussian kernel improves the behavior
of the filter near the edges of the domain. Without the normalization, the filter
inaccurately decreases the power of the original signal near the edges. Even with
the normalization, edge effects occur near the edges of the domain; an analysis of
the impact of these edge effects on the results is a topic of on-going work. Future
work may include strategies to minimize these effects, including mirroring of the
data across boundaries.

As the Gaussian filter is also a Gaussian in frequency space, it has a smooth cutoff
condition in frequency space with standard deviation given by

σG, f =
1

2πσG
, (2.30)

where the standard deviation in spatial frequency space is here in units 1/m. The
approximate cutoff frequency can be identified by the point where the filter response
is half of its maximum in the power spectrum. This frequency is given by the
expression

fc =
√

2ln(2)σG, f (2.31)

fc =

√
2ln(2)

2πσG
, (2.32)

but this is an approximate cutoff rather than a sharp cut-off. This smoothness in
the filter is distinct from the filtering practices that have previously been used to
study scale interaction in turbulence, which are often defined using spectral filters
with sharp cutoffs (Mathis, Hutchins, and Marusic, 2009; Ganapathisubramani et
al., 2012) or top-hat spatial filters with sharp spatial cutoffs (Chung and McKeon,
2010). The smooth cutoff used in this work in both the space and frequency domains
has some drawbacks, as it is less clear exactly which spatial frequencies are included
in the large scales versus the small scales. However, this drawback is considered to
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be a worthwhile trade for the optimally smooth behavior of the filter in the spatial
and frequency domains.

To identify the small scales, the remainder from subtracting the filtered data from
the original data is used,

us = u − ul . (2.33)

For multi-dimensional data, the filtering is done along all three dimensions with
the same standard deviation in each. The sensitivity of the results to the standard
deviation of the filtering method is explored in each relevant chapter.

Conditional averaging overview
Conditional averaging techniques are used in this thesis to probe two distinct relation-
ships: the relationship between large and small velocity scales, and the relationship
between the aero-optic measurement and the velocity field. For each relationship of
interest, a condition is defined on which the other relevant variables are averaged.
Table 2.1 shows the conditions used for conditional averaging in chapters 4 and 5.
Four types of conditional averaging are used. The details of each condition will be
specified throughout this section.

Name Condition 1 Condition 2 Condition 3
MP |φ| > 0.5σ
P2D γ∗ = arg max RP2D (γ̃) R∗P2D

(γ∗) > 0.4
P1D γ∗ = arg max RP1D (γ̃) R∗P1D

(γ∗) > 0.4
MP / P1D |φ| > 0.5σ, γ∗ = arg max RP1D (γ̃) R∗P1D

(γ∗) > 0.4

Table 2.1: The conditions for the conditional averaging methods used in this thesis
are specified and given short names for reference. The four types of conditions used
for averaging are the Malley probe (MP) condition, the 2D projection condition
(P2D), the 1D projection condition (P1D) and the combined Malley probe, 1D
projection condition (MP / P1D).

Conditional averaging: aero-optics and velocity field
To identify the relationship between the Malley probe measurement and the velocity
field, conditional averaging will be used. The condition is an excursion of theMalley
probe deflection angle, |φ| > 0.5σ, where here σ is the standard deviation of φ(t).
The velocity field is separately averaged for Malley probe deflections of positive and
negative sign. A flow quantity q averaged on upstream deflections is given by

< q >−MP=
1
N

∑
ti

q(x, y, ti) ∀ti s.t. φ(ti) < −0.5σ (2.34)
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while q averaged on downstream deflections is given by

< q >+MP=
1
N

∑
ti

q(x, y, ti) ∀ti s.t. φ(ti) > 0.5σ. (2.35)

A sample algorithm for calculating the conditionally-averaged velocity field for a
downstream deflection is provided in the appendix in algorithm 7.

Conditional averaging: large and small scales, condition on streamwise
fluctuating field

To study the relationship between the large and small velocity scales, a condition
is defined in the fluctuating velocity field and the filtered small-scale velocity field
is averaged. Conditional averaging has already been used to great effect to study
the interaction of scales by a number of researchers. Some of their findings are
highlighted in chapter 1.

In order to condition on the presence and location of large scale flow features, one
has to be able to identify large scales in a given instantaneous snapshot of the flow.
To accomplish this, a projection method is used here in which instantaneous velocity
data is projected onto models for the large scale of interest.

Projection method

The goal of this method is to identify the average of some flow quantity, q, given the
presence of a large-scale streamwise velocity structure. This is achieved by averaging
the flow quantity only when the projection of the instantaneous streamwise velocity
field onto a model of the structure gives a sufficiently good projection. The result
that is being sought is therefore (in general)

< q >P,t̃ (x, y, z) ≡
1
N

∑
ti

q(x, y, z, ti) ∀ti s.t.
(

u(x, y, z, ti) · ũ(x, y, z, t̃)
|u(x, y, z, ti) | |ũ(x, y, z, t̃) |

)
> Rth,

(2.36)

where the subscript P indicates that this is a projection-based conditional average, N

represents the number of temporal snapshots for which the projection is sufficiently
good, ũ is the model of the large-scale structure, t̃ is one chosen time for which the
model is evaluated, and Rth is a threshold on the value of the projection coefficient.

One could use equation 2.36 to directly compute the results shown in chapters 4 and
5. However, because of limitations in the amount of data and the field of view, a
more complex algorithm is used to arrive at the value described in equation 2.36. In
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equation 2.36, the streamwise velocity field is projected onto a model at a fixed time
t̃. We can also describe this time through a phase, defined as γ̃ = −ωt̃. Because
structures convect through the field of view and because the model chosen in this
study convects downstream without deforming, one can use more of the data by
repeating the projection procedure at multiple model phases, γ̃. By shifting the data
back in post-processing such that the phases of the models line up, one arrives at a
result that represents the projection one would attain using a single time, t̃, or phase,
γ̃, of the model, but with improved convergence behavior.

The algorithm used in this thesis also allows for the use of fields of view that are
shorter than the length scale of the model ũ. Multiple phases of the model can be
stitched together in post-processing to arrive at a final result with an effective field
of view that is larger than the original. The algorithm used in this thesis considers
phases γ̃ ∈ Γ̃ with Γ̃ = [0, 2π) for the model. An additional condition is added to
prevent particular data frames from being used for multiple phases of the data. This
condition requires that the value of R is the maximum value of R across the phases
considered. Define the maximum of R as R∗ ≡ maxt̃ R at a given data time ti. As
mentioned previously, one can carefully average over t̃ to collapse the data onto a
single figure, with phase information varying between 0 and 2π. The specifics of
this averaging are discussed later in this section and in appendix A. For conciseness,
here it will simply be written as a sum over t̃.

< q >P (x, y, z) ≡
1
ñ

∑
t̃

(
1
N

∑
ti

q(x, y, z, ti)

∀ti s.t. R(t̃) ≡
(

u(x, y, z, ti) · ũ(x, y, z, t̃)
|u(x, y, z, ti) | |ũ(x, y, z, t̃) |

)
= R∗ > Rth

)
.

(2.37)

Note that both conditions are now listed and that ñ is the number of values of t̃ for
which a nonzero number of data frames, ti, satisfied the conditions.

Depending on specifics of the implementation, which will be described below, the
class of flow features on which the data is conditioned changes slightly. The method
can either act to condition on the global behavior of a low-pass filtered velocity field,
or can condition on the location and existence of one particular length scale in the
flow. More detail regarding the procedure used to calculate the value of equation
2.37 is provided below and in appendix A.

Simple sinusoidal example – There is a natural question of whether maximizing
the projection coefficient over multiple phases effectively identifies the appropriate
phase, γ̃, or model time, t̃, that each frame of data should be associated with. To
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investigate this, consider a simple system of sinusoids on which this approach can be
demonstrated. Define a signal that will be used as the ‘data’ as a(ξ) = sin( 2π

λ ξ + γ).
The model is also defined as a sinusoid, ã(ξ, λ̃, γ̃) = sin( 2π

λ̃
ξ + γ̃). The original

signal, a is projected onto each modeled signal, with the intention of maximizing
the value of R over the considered values of γ̃. The projection coefficient is defined
as

R(λ, γ̃) =
a · ã
|a | |ã |

. (2.38)

In this case, maximizing R over γ̃ should identify a maximizing modeled phase
γ∗ that is the same or close to the original phase, γ, of the data. Figure 2.8
demonstrates that if the wavelength of the signal and the model are the same (λ = λ̃)
then depending on whether the phase of the signal is contained in the set of phases
considered by the model, γ ∈ Γ̃, the method either exactly identifies or closely
approximates the phase of the starting sinusoid, such that γ∗ = γ or γ∗ ≈ γ. This is
true even when the length of signal one has available is less than the wavelength of
the sinusoid λ (see figure 2.8). This is an important characteristic, as this method
will be used on data for which the wavelength of the large scale of interest is two to
three times that of the available data window.

Future work includes using a more complex model, such as a resolvent-based model
with added noise, to continue to test the projection method’s robustness in consis-
tently identifying the appropriate phase of the local large-scale structure.

Implementation with PIV and DNS data

Models – Two classes of model are used for the projection method: 2D models and
1D models. In the case using a 2D model (referred to as the P2D case), streamwise
velocity data in the x − y or z − y plane is projected onto a 2D model of the large
scale of interest. In this thesis, that model will be derived from a resolvent analysis
of the Navier-Stokes equations described earlier in this chapter. A 2D slice of a
resolvent mode in either the x − y or z − y plane is used as the model in this case,
such that the average is defined for 2D data as

< q >P2D (x, y) ≡
1
ñ

∑
t̃

(
1
N

∑
ti

u(x, y, ti)∀ti s.t.
(

u(x, y, ti) · ũ(x, y, t̃)
|u(x, y, ti) | |ũ(x, y, t̃) |

)
= R∗ > Rth

)
(2.39)

and in practice, a number of values of t̃ are considered by equivalently changing
the phase (γ̃ = −ωt̃) of the model. Figure 2.9 shows a schematic of the projection
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Figure 2.8: The original (blue, solid) and approximated (red, dashed) sinusoidal
signals are shown for the case of a projection lengthΛ/λ = 1 (a) andΛ/λ = 0.4 (b).
Black dashed lines show all model signals considered with phases γ̃ ∈ Γ̃ = [0, 2π)
with increments of π/4. For the original signal, γ ∈ Γ = [0, π/6] (left, right). When
γ ∈ Γ̃, the method exactly identifies the phase in both (a) and (b). When γ < Γ̃, the
projection method identifies the closest phase considered in both (a) and (b).

process for the P2D case. One frame of PIV data, illustrated using the black box of
figure 2.9(a) is projected onto a model, schematically illustrated in figure 2.9(b) at
a number of phases. For conciseness, only four phases are shown in figure 2.9, but
in general eight to sixteen phases are used. More details on the implementation of
the P2D case are given in algorithm 2 in the appendix.

When using the projection model with a 1D model, referred to as the P1D case,
streamwise velocity data is extracted along a line in the x or z dimension, depending
on the dimension of interest. Data is extracted at the critical layer of the modeled
large scale, the height where c = Ū and c is the phase speed of the model of the
large scale. In this case, the data will be projected onto a sinusoidal signal with
wavelength equal to that of the large scale of interest, such that the average is defined
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(a)

(b)

Figure 2.9: Schematic of the P2D projection method is shown. In (a), a visualization
of the fluctuating streamwise velocity field is shown for illustration. The black box
outlines the approximate size of a single PIV frame. In (b), illustrations of a model
of a large-scale structure is shown at four phases γ̃. In the P2D projection method,
the highlighted data is projected onto the model at each of the phases. The phase at
which the projection is best is taken as an estimate of the phase of the structure in
the data, γ∗.

for 2D data as

< q >P1D (x, y) =
1
ñ

∑
t̃

(
1
N

∑
ti

q(x, y, ti)∀ti s.t.
(

u(x, yc, ti) · ũ(x, yc, t̃)
|u(x, yc, ti) | |ũ(x, yc, t̃) |

)
= R∗ > Rth

)
.

(2.40)

Figure 2.10 illustrates this process for two different data lengths, meant to roughly
represent the length of data used for the PIV and DNS data respectively. Data is
extracted from one height in the boundary layer, illustrated using a narrow black box,
in one frame of PIV or DNS data. In figure 2.10 this is illustrated in the streamwise
– wall-normal plane, but can also be executed in the spanwise – wall-normal plane.
The extracted data is then projected onto a sinusoidal model at a variety of phases.
Four phases are shown in each figure for conciseness, but eight (DNS) to sixteen
(PIV) phases are used in the method. More detail on the implementation of the P1D

projection method for 2D data is given in algorithm 3 in the appendix.

Models of three distinct coherent structures are implemented: the large-scale mo-
tions (LSMs) of the outer boundary layer, the very-large-scale motions (VLSMs) of
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(a)

(b)

(c)

(d)

Figure 2.10: Schematic of the P1D projection method is shown. In (a) and (c),
visualizations of the fluctuating streamwise velocity field are shown for illustration in
the streamwise – wall-normal plane. The black box in each illustrates the extraction
of data along a line in the streamwise direction, while the colored line below indicates
the extracted data, u(x). Two different extraction lengths are shown, Λ ≈ 0.4λ̃ and
1λ̃, which approximately represent the extraction lengths used for PIV and DNS for
the LSM model. In (b,d), illustrations of the 1D model for a large-scale structure
is shown at four phases γ̃ for the two data lengths. The extracted data is projected
onto the model at each of the phases. The phase at which the projection is best is
taken as an estimate of the phase of the structure in the data, γ∗.
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the logarithmic layer, and the near-wall streaks (NWSs) of the inner region. Each
has its own streamwise and spanwise wavlength as well as its own phase velocity.
The details of these models are given in chapter 4.

Handling of 3D data – For the DNS, both x − y and z − y conditional averaging
will be performed. For the x − y plane conditional averaging, the 1D projection
method will be implemented along the x dimension of the field of view at every
spanwise point in the domain, z. Each spanwise point is conditioned and averaged
separately, as if it were an independent realization. The reverse practice is used for
the z − y planes. At every x point in the field of view, the projection method is
applied to the data along the z dimension. More detail on the implementation of
the P1D projection method for 3D data is given in algorithm 5 in the appendix. A
projection method that simultaneously accounts for streamwise and spanwise phase
is a topic of current and future work.

Projection length – The length of signal available in physical space is a function
of the data type being used: shorter windows are available in the PIV data than in
the DNS data. In addition, the relative size of signal length versus the wavelength
of interest is a function of the scale being considered. Considering both of these
effects, the projection length, Λ, is shown relative to the wavelength of the model
used in each conditional averaging case in table 2.2.

Data type Spatial plane Model Λ/λ̃

PIV x − y LSM 0.4
DNS x − y LSM 1
DNS z − y LSM 2
DNS x − y VLSM 0.7
DNS z − y VLSM 2
DNS x − y NWS 2
DNS z − y NWS 20

Table 2.2: Projection length Λ used for a variety of models used in chapters 4 and
5, normalized by the model’s streamwise wavelength, λ̃.

Having a short field of view does not prohibit the model from approximating the
local phase of the large scale, but it does lead to difficulty distinguishing between
different length scales. This can be illustrated using the sinusoidal system with a
model wavelength, λ̃, that is not equal to the signal wavelength, λ. The maximum
value of the projection coefficient, R, maximized over γ̃ for varying λ is shown in
figure 2.11.
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Figure 2.11: Maximum projection coefficient, R∗, shown for a variety of signal
wavelengths λ assuming a constant model wavelength of λ̃ = 1. The projection
length Λ/λ̃ is 0.4 (a), 1 (b), and 2 (c). The black isocontour represents the threshold
value Rth = 0.4.

Figure 2.11 demonstrates a difference in interpretation of the method for short
projection lengths than for long projection lengths. For short projection lengths,
figure 2.11(a) suggests that one of the functions of the projection method is to act
as a long-pass filter on the scales that can be used to average. By implementing a
threshold above which the signal is accepted (0.4 in this case), one cuts off averaging
on the position of any scales smaller than 0.4λ̃. As one increases the projection
lengths, the method is observed to act as a band-pass filter, preventing the averaging
on the position of scales smaller than about 0.75λ̃ and 1.5λ̃ for the largest signal
length considered in the simple sinusoid system here, 2λ̃. Thus the method offers
slightly different interpretations depending on the amount of data available to project
over.

In the implementation of this approach on real data, the wavelength of the model is
deduced from the most energetic scales in the streamwise energy spectrum of the
flow in question, which is dominated by isolated bands of energetic structures at
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different heights from the wall. This is done to maximize the similarity between
the model wavelength and the wavelength of the structure of interest on average.
Thus, in the current implementation there is an incoming assumption that there is a
specific large scale that is dominant in the region of the flow of interest.

Increasing projection lengths are helpful for distinguishing length scales, but can
be problematic in boundary layers, where relevant flow parameters including the
boundary layer thickness can vary significantly if one requires 2λ for a healthy
projection, as that can be up to 12δ depending on the structure. Other approaches
to improve the ability of the method to distinguish between large scales are being
explored, including the implementation of a Fourier transform to approximate the
locally dominant wavelength in fairly short windows of data, and the use of models
ũ that consider a range of both wavelengths and phases with the maximum of R

identified over both variables.

Effect of mismatched wavelength on identified phase – If the assumed wavelength
is incorrect, the method still identifies the best approximation of the location of the
signal, as shown in figure 2.12, where the wavelength of the signal of interest is
varied and the modeled wavelength is held fixed. The projection method is seen to
identify the closest approximation to the local position of the signal in both the 1λ
and 0.4λ signal length cases.

The method will therefore average together regions of the flow in which the fluctu-
ating amplitude of the large-scale velocity field varies smoothly with approximately
the variation specified by the model. This will be shown to lead to smooth variation
in the averaged fluctuating (< u >) and laboratory-frame (< u > +Ū) large-scale
velocity fields, allowing one to explore the behavior of other flow phenomena about
such smooth variations in the large-scale flow.

However, the ability of the model to identify the best approximation of the instan-
taneous position is not equivalent to identifying the true phase γ. Consider the
simplified sinusoidal system. The difference between the true and modeled wave-
lengths, λ and λ̃, leads to a difference between the phase that best estimates the
location of the structure, γ∗, and the original phase of the signal, γ. To illustrate
this, the modeled signal that has the phase γ is highlighted in figure 2.12(a) in green,
and is observed to be less accurate in capturing the physical location of the signal
than the model with γ∗, shown in red.

Because of this distinction between the phase that best estimates the instantaneous
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Figure 2.12: The original (blue, solid) and approximated (red, dashed) sinusoidal
signals are shown for projection lengthsΛ/λ̃ = 1 (a) and 0.4 (b). Black dashed lines
show all model signals considered over the phases γ̃ ∈ Γ̃ = [0, 2π) in increments of
π/4. The phase of the original signal, γ, is held constant at 0, but its wavelength
is varied from λ/λ̃ = 0.75 (left) to 1.25(right). The green curves in (a) show the
sinusoid ã = sin(λ̃x + γ), representing the modeled signal with the exact phase as
the original signal.

location γ∗ and the true phase of the signal γ for signals with mismatched wave-
lengths, the phases identified by the method, Γ∗ may not be uniformly distributed,
even for an incoming uniform distribution of γ ∈ Γ. This is shown in figure 2.13,
where the distribution of estimated phases PDF(Γ∗) are shown after the estimation
of a signal with a starting phase evenly distributed between 0 and 2π.

The distribution of estimated phases is essentially uniform for the case where the
wavelength of the model matches that of the signal (figure 2.13a), but in the case
where the true signal is of a shorter wavelength than the model (figure 2.13b), or
when the true signal has a longer wavelength than the model (figure 2.13c), the
distribution PDF(Γ∗) is biased. For cases where λ/λ̃ < 0.8, phases of π/2 and 3π/2
are more common, while for cases where λ/λ̃ > 1.2, phases of 0 and π are more
common.
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Figure 2.13: The probability density function of estimated phases Γ∗ is shown when
the modeled and true wavelengths of the signal are the same (a), over all cases where
λ/λ̃ = 0.1 : 0.1 : 0.8 (b), and over cases with λ/λ̃ = 1.2 : 0.1 : 2.0 (c). Each
case has a projection length of Λ = 1λ̃, though the observed behavior is observed
to persist across differing values of Λ.

This observation may provide a way to evaluate the similarity between estimated
wavelength and the modeled wavelength. If the distribution of the experimentally
identified phases is skewed towards one of the behaviors observed in figure 2.13(b,c),
this could indicate that either smaller or longer average wavelengths are present in
the data than are being modeled.

Averaging based upon the projection condition

In general, when averaging on a condition, one ends up with an averaged result
for each condition considered. For the P2D and P1D methods (see table 2.1 for
complete list of conditions), this would yield a distinct 2D averaged velocity field
for each phase γ∗ ∈ Γ∗, which in practice is equivalently γ∗ ∈ Γ̃, decreasing the
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convergence of behavior as one increases the resolution of phases considered in Γ̃.
However, because the P2D and P1D conditional averaging methods are essentially
phase averages, each averaged result should contain the same data shifted by the
phase γ∗. This allows for a more efficient averaging process, in which the data is
broken up into phase bins based upon the assumed wavelength and approximated
phase of the large scale. All of the data is then able to be averaged into a single
image, composed of panels associated with each phase bin. A schematic of this
averaging process is shown in figure 2.14. This means that the final averaged result
is predetermined to appear periodic with the assumed wavelength of the model. The
interest will not be in the periodicity of the result, but rather the variation of behavior
across the phase of the large scale.

Figure 2.14 illustrates the process through which data is extracted to phase average.
The data is broken up into phase bins: one such phase bin is shown as a black box
highlighting a particular portion of each of the models, which are shown at a variety
of starting phases γ̃. The data associated with each black box is averaged together
because they identify the same phase range of the large scale. This is done over
eight (DNS) or sixteen (PIV) phase bins. If one has a data window that is at least
1λ̃ long, data from frames associated with every phase γ∗ will contribute to every
panel in the final averaged figures. At the end of this process, one has one image
that is the same length as λ̃ that is composed of panels associated with each phase
bin, illustrated in figure 2.14(b). More detail on the implementation of this method
is provided in algorithms 4 and 6 for 2D and 3D data respectively.

Conditional averaging: scale interaction and aero-optics
It will also be of interest to study the interaction of the two relationships described
in this section: the relationship between large and small velocity scales and the
relationship between the aero-optic signal and the velocity field. By averaging
on both sets of conditions already described, one can identify how scale interaction
affects the scalar field and the aero-optic distortion. In that case, a paneled averaging
method is used to consolidate the phase information of the large scale, and the
location of the Malley probe relative to the velocity field is centered within each
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(a)

(b)

Figure 2.14: Schematic showing the averaging of phase bins after application of the
P2D or P1D projection method. In (a), each group of data, which has been grouped
by their starting phase, γ∗, is broken up into bins; one such bin is highlighted in
black in each of the four phase groups shown. The data of each bin is then averaged
together, leading to a single figure composed of panels of each bin (b).

panel. This averaging process can be generally represented as

< q >MP/P (x, y, z) ≡
1
ñ

∑
t̃

(
1
N

∑
ti

q(x, y, z, ti)

∀t s.t. |φ(ti) | > 0.5σ and
(

u(x, y, z, ti) · ũ(x, y, z, t̃)
|u(x, y, z, ti) | |ũ(x, y, z, t̃) |

)
= R∗ > Rth

)
.

(2.41)

Within this thesis, the 2D P1D method is used to evaluate this conditional average,
referred to as the MP / P1D method. The averaging conditions are listed in table 2.1.
More detail on the implementation of this method is provided in algorithm 8 in the
appendix.
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C h a p t e r 3

COHERENT STRUCTURES

While the description of coherent structures has been a focus of many for decades,
we focus here on the description and modeling of specific energetic features of the
streamwise velocity field. The scales in question are those identified as energetic in
the streamwise energy spectrum: the near-wall streaks of the inner region, the very-
large-scale motions or superstructures of the logarithmic layer, and the large-scale
motions of the outer region. While these features cover a wide range of scales, each
will be considered as a ‘large-scale structure’ in its particular region of the flow.

This work uses a model for the wall-normal coherence of each structure to connect
the spectral representation to the structural representation. A traveling wave is used
as the basis for the model, consistent with spectral representations, and is shown
to capture experimentally observable structural features both visually and in instan-
taneous streamwise velocity histograms. The model is compared to instantaneous
velocity data from PIV measurements of a turbulent boundary layer. Analytic de-
velopments are used to clarify how the model, which is derived in the fluctuating
velocity field, relative to a temporal mean, reproduces asymmetric structural fea-
tures and UMZ characteristics in the laboratory-frame velocity field, in which the
mean is included.1

3.1 Data visualization
The velocity field in the streamwise – wall-normal plane was measured in the wind
tunnel and PIV technique described in chapter 2. For visualization, the PIV data was
extended beyond the experimental field of view to allow for the study of the scales
of interest. Following the work of (Zaman and Hussain, 1981), a fixed convection
velocity was used to ‘convect’ the PIV snapshots. Zaman and Hussain (1981) noted
that, in the case of an isolated coherent structure in a turbulent flow, convecting the
full shear flow with a single convection velocity equal to the structure’s centerline
velocitymaintained the closest approximation of the later shape of the structure. The
data is not fully time-resolved, so a mixed spatial - temporal visualization technique
is used. Each frame is convectedwith a convection velocity of 0.8U∞, corresponding

1The analysis of the large scale motions described in this chapter has been published as part of
Saxton-Fox and McKeon (2017a).
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(a)

(b)

(c)

Figure 3.1: A visualization of the instantaneous streamwise velocity field is shown
from PIV data in the wall-normal – streamwise plane. Contours of the velocity
field in the laboratory frame are shown in (a) at the values U/U∞ = 0 : 0.05 : 1
with every other isocontour outlined in black for visual clarity. Two isocontours of
the laboratory-frame velocity field, U/U∞ = 0.6, 0.8 are overlaid on (b) and (c) to
illustrate the relationship between panels. Contours of the fluctuating velocity field
are shown in (b) at the values u/U∞ = −0.15 : 0.01 : 0.15 in the wall-normal –
streamwise plane. The wall-normal derivative of the laboratory-frame velocity field
is shown in (c) at values of ∂U

∂y
δ

U∞
= −4 : 0.4 : 4. Flow moves from left to right.

to the approximate speed of large scale motions in the outer boundary layer (Brown
and Thomas, 1977; Cantwell, 1981). A small window of spatial data (0.2δ) in the
center of each PIV frame is stitched together to create a large visualization. Figure
3.1 shows the extended visualization of the instantaneous streamwise velocity and its
wall-normal derivative. The features at various regions of the flow will have distinct
convection velocities, and this choice of velocity will most accurately represent the
spatial scale in the outer region of the flow. Nearer to the wall, the structure will
appear more elongated than its true size.
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3.2 Models of coherent structures
The resolvent analysis described in chapter 2 was used to generate models of three
structures: large scale motions (LSMs), very-large-scale motions (VLSMs), and
near wall streaks (NWSs). Due to the interest in structures near the wall (VLSMs
and NWSs), the mean velocity profile of the DNS data of Wu et al. (2017) was used
in the formulation of the resolvent. In section 2, the modeling framework was built
around a triple decomposition, where a single scale was of interest and the rest was
considered a fluctuation: U (x, y, z, t) = Ū (x, y) + ũ(x, y, z, t) + u′(x, y, z, t). In this
section, three distinct scales are considered. This leads to a quintuple decomposi-
tion: U (x, y, z, t) = Ū (x, y)+ ũLSM (x, y, z, t)+ ũV LSM (x, y, z, t)+ ũNW S (x, y, z, t)+
u′(x, y, z, t). As with the triple decomposition described in chapter 2, the single
scales, ũLSM, ũV LSM , and ũNW S, are taken as representative of distinct classes of
energetic structures. The use of representative models allows for a very-reduced-
order representation of realistic turbulent behaviors. In a fully-turbulent flow, slight
deviation would be expected about the modeled forms of each of the scales of
interest.

The quintuple decomposition can be expanded to account for an assumed periodicity
of the modes in the streamwise, spanwise, and temporal variables, as described in
chapter 2. For the expanded representation in equation 3.3, subscripts L, V , and N

will be used in lieu of LSM , V LSM , and NW S for the spatial wavenumbers and the
temporal frequency for conciseness.

U (x, y, z, t) = Ū (x, y)

+Re
[
ûLSM (y)

(
ei(kx,L x+kz,L z−ωLt) + ei(kx,L x−kz,L z−ωLt)

)
+ ûV LSM (y)

(
ei(kx,V x+kz,V z−ωV t) + ei(kx,V x−kz,V z+ωV t)

)
+ ûNW S (y)

(
ei(kx,N x+kz,N z−ωN t) + ei(kx,N x−kz,N z+ωN t)

) ]

+u′(x, y, z, t).

(3.1)

Re indicates real part and each û is defined from a resolvent analysis of the Navier-
Stokes equations, with

û(y) = χψ (y), (3.2)

as discussed in chapter 1.
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For convenience, we define a phase, γ ≡ −ωt, such that this decomposition can be
written as

U (x, y, z, t) = Ū (x, y)

+Re
[
ûLSM (y)

(
ei(kx,L x+kz,L z+γL ) + ei(kx,L x−kz,L z+γL )

)
+ ûV LSM (y)

(
ei(kx,V x+kz,V z+γV ) + ei(kx,V x−kz,V z+γV )

)
+ ûNW S (y)

(
ei(kx,N x+kz,N z+γN ) + ei(kx,N x−kz,N z+γN )

) ]

+u′(x, y, z, t).

(3.3)

In this representation, setting γ to a single value is equivalent to choosing a single
value of time. Because the different structures have different temporal frequencies,
a value of t can be found that allows for three phases γLSM , γV LSM , and γNW S,
such that one can choose them independently. Because the phase γ is unchanged by
additions of 2π, the system of equations one needs to solve to find the value of t for
a given set of γ values is

−ωLSM t = γLSM + 2πnLSM

−ωV LSM t = γV LSM + 2πnV LSM

−ωNW St = γNW S + 2πnNW S .

(3.4)

The system of three equations has four unknowns: t, nLSM, nV LSM , and nNW S,
indicating that there are infinite solutions for the value of t. Adding more scales will
add another variable n such that the number of variables is always one more than
the number of equations.

It is more convenient to set the phases of each scale independently than to set a value
of t, which has to be set across all scales. The value of γ will be set to match the
instantaneous location of structures observed in real turbulent flows.

For each scale, spatial and temporal information (kx , kz, ω) were identified from
statistical findings in the literature. These scales are relatively well known in the
literature, and would be challenging to directly compute from the data used in this
study; a lack of temporal resolution in the available data would prevent a clean
calculation of the streamwise energy spectrum, for example. The value of χ,
however, is not available in the literature, and so is approximated from the present
data using filtered, instantaneous data. Other more statistical methods to identify χ
are a topic of continuous work in the McKeon group (Moarref et al., 2013; Moarref
et al., 2014; McKeon, 2017). The spatial and temporal characteristics of the scales
used are highlighted in table 3.1, written as wavelengths and wave speeds, which
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are the more common representations in the literature. These values are related to
those in equation 3.3 through k = 2π

λ and ω = ckx .

For the LSMs, the streamwisewavelengthwas determined from the band of energetic
wavelengths associated with LSMs in Monty et al. (2009), the spanwise wavelength
was determined from the coherence length of bulges observed byKovasznay, Kibens,
and Blackwelder (1970), and the convection velocity was identified from the obser-
vations of Brown and Thomas (1977) and Cantwell (1981). A data-based approach
was used to approximate χ. Using the filtering method described in chapter 2 with
a standard deviation of 0.5δ, the peak-to-peak amplitude of the large-scale filtered
streamwise velocity field in the outer region of figure 3.1 (y/δ > 0.2) was computed.
The large-scale streamwise velocity field was defined as

ul (x, y) =

∫ x∗
f

x∗j

∫ y∗
f

y∗i
u(x∗, y∗, t0)exp

(
−

(
(x−x∗)2+(y−y∗)2

(2σG )2

))
dx∗dy∗∫ x∗

f

x∗j

∫ y∗
f

y∗i
exp

(
−

(
(x−x∗)2+(y−y∗)2

(2σG )2

))
dx∗dy∗

. (3.5)

The value of χLSM was defined such that the maximum value of the model of the
streamwise velocity field, û, was half of the data’s peak-to-peak amplitude.

max(ûLSM ) =
1
2

(
max(ul (x, y)) −min(ul (x, y))

)
0 < x/δ < 4

0.2 < y/δ < 1.

(3.6)

The maximum and minimum values of ul were not exactly symmetric about zero.
The difference in their absolute values was

ε =
�����
|max(ul ) | − |min(ul ) |

|max(ul ) |

�����
= 17%. (3.7)

This difference may come from an incomplete scale separation from the filtering
process leading to a lingering superposition of multiple scales. The value of γLSM

was chosen to approximate the phase of the structure in the outer region of in figure
3.1, for convenience in comparing the model to the data.

The streamwise wavelength of the VLSMs were identified from the energetic bands
of the streamwise energy spectrum for boundary layers in Monty et al. (2009), the
spanwise coherence was identified from Hutchins et al. (2011), and the convection
velocity was identified from Del Alamo and Jimenez (2009) and Hutchins et al.
(2011). To identify χ, equation 3.5 was used to define the large-scale streamwise
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λx/δ λ z/δ c χ γ

LSM 4δ 1δ 0.8U∞ 0.12U∞ -π/2
VLSM 6δ 1δ 0.6U∞ 0.15U∞ π
NWS 1000+ 100+ 10+ 0.05U∞ 0

Table 3.1: The physical parameters used to build representative models of three
energetic large scales (large-scale motions, very-large-scale motions, and near-wall
streaks) in a turbulent boundary layer. The streamwise and spanwise wavelengths,
the phase speed, the amplitude, and the phase to set their instantaneous positions
are given for each structure.

velocity field, and the peak-to-peak value near the wall was used to define ûV LSM .

max(ûV LSM ) =
1
2

(
max(ul (x, y)) −min(ul (x, y))

)
0 < x/δ < 6

0 < y/δ < 0.2.

(3.8)

The difference in the absolute values of the minimum and maximum of ul nearer to
the wall was less symmetric than far from the wall, with an ε defined using equation
3.7, of 65%. This may indicate the superposition of multiple scales that were not
distinguished by the filter, and does indicate a difference between the model and the
data. The value of γV LSM was chosen to approximately match the location where
the near-wall structure changed sign in figure 3.1, for convenience in comparing the
model to the data.

The streamwise and spanwise wavelengths of the NWSs were identified from Kline
et al. (1967) and Robinson (1991), and the convection velocity was approximated
fromDel Alamo and Jimenez (2009) and Hutchins et al. (2011). The relevant values
for each structure are shown in table 3.1. The value of χNW S was more difficult to
estimate, as the PIV data was not able to fully resolve the near wall streaks. The
value was chosen to approximate the amount of small-scale fluctuation visible near
the wall in the under-resolved PIV data. The value of γNW S was left at 0 because
the structures could not be fully resolved by the PIV data.

The streamwise velocity field of the representative model of the LSM, VLSM, and
NWS models is shown in figures 3.2 (LSM), 3.3 and 3.4 (VLSM), and 3.5 and 3.6
(NWS). The velocity field relative to the mean (fluctuating, ũ) and including the
mean (laboratory frame, Ũ ≡ ũ + Ū) is shown for each structure. In addition, the
wall-normal derivative of the laboratory-frame streamwise velocity field is shown
for each.
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To compare the model and the data, any velocity field that includes the mean is
referred to as a laboratory-frame velocity field, while the velocity fields that do not
include the mean are referred to as fluctuating velocity fields. This is done with
acknowledgement of the distinction between the PIV data, which includes all three
scales of interest and the fluctuations that are not coherent with those scales, and the
velocity fields of the models, which only include one scale and do not include u′.

In figure 3.2, 3D representations of laboratory-frame (a) and fluctuating (b) stream-
wise isocontours of the LSM representative model are shown. In figure 3.2(a),
bulges are observed in the isocontour, lifting above the mean height of the isocon-
tour, shown in black. In figure 3.2(b), the faster and slower fluctuations are observed
to be equally strong and take the form of a traveling wave. In comparing figure
3.2(a) and figure 3.2(b), the slower fluctuations are observed to coincide with the
bulges in the laboratory frame isocontour, while the faster fluctuations are observed
to correspond to depressions in the height of the laboratory frame isocontour. In fig-
ure 3.2(c-g), a wall-normal – streamwise plane is shown for the LSM representative
model for the laboratory frame (figure 3.2c) and fluctuating (figure 3.2d) streamwise
velocity field. The same relationship between the laboratory-frame and fluctuating
velocity fields is apparent as that which was observed in the 3D results. In figure
3.2(c), the wall-normal derivative of the laboratory-frame streamwise velocity field
is shown, where strong shear layers are observable along the ‘backs’ of the bulges,
sitting along the isocontour ŨLSM = 0.8U∞. Regions of negative shear lie between
the positive shear layers, coinciding with the laboratory frame isocontour folding
under itself. The shear observed is the sum of the mean shear, ∂Ū/∂y, and the
fluctuating shear, ∂ũ/∂y.

In figure 3.3, the streamwise velocity field of the representative model for the VLSM
is shown in the streamwise – wall-normal plane. The VLSM sits nearer to the wall,
as its convection velocity is less than that of the LSM. The relationship between
the laboratory-frame (figure 3.3a) and fluctuating (figure 3.3b) velocity fields are
observed to be consistent with that seen for the LSM: slow fluctuations correspond to
an elevation in the laboratory-frame isocontour, while fast fluctuations correspond to
a downward protrusion of the isocontour. A shear layer is observed in figure 3.3(c)
along the ‘back’ of the bulge, sitting along the isocontour ŨLSM = 0.6U∞. The
mean shear nearer to the wall is stronger such that the wall-normal derivative of the
laboratory-frame velocity field of the VLSM is asymmetrically positive throughout
the field, rather than showing both positive and negative shear as was observed for
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(a) (b)

(c)

(d)

(e)

(f) (g)

Figure 3.2: The structure of the LSM representative model is shown for the
laboratory-frame streamwise velocity field Ũ and fluctuating velocity field ũ. Three-
dimensional representations of streamwise velocity isosurfaces are shown in (a)
ŨLSM/U∞ = 0.8 (yellow), ŪLSM/U∞ = 0.8 (black), and (b) ũLSM/U∞ = 0.03
(red) and −0.03 (blue). In (c), a wall-normal – streamwise slice of the laboratory-
frame velocity field is shown with the contour range ŨLSM/U∞ = 0 : 0.05 : 1
and every other isocontour outlined in black for visibility. A single isocontour of
ŨLSM/U∞ = 0.8 is overlaid on (d) and (e) to illustrate the relationship between
panels. Contours of the fluctuating velocity field are shown in (d) at the values
ũLSM/U∞ = −0.15 : 0.01 : 0.15, while the wall-normal derivative of ŨLSM is
shown in (e) at the values ∂ŨLSM

∂y
δ

U∞
= −4 : 0.4 : 4. The laboratory frame stream-

wise velocity field (same contour values as c) is shownwith the fluctuating amplitude
of the LSM representative model halved in (f) and quartered in (g). Flow moves
from left to right.
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(a)

(b)

(c)

Figure 3.3: The structure of the VLSM representative model is shown for the
laboratory frame streamwise velocity field ŨV LSM (a) and fluctuating velocity field
ũV LSM (b). The same contour levels are used in (a,b) as those in figure 3.2(c,d). In
(c), the wall-normal derivative of ŨV LSM is shown at the values ∂ŨLSM

∂y
δ

U∞
= −10 :

0.1 : 10. A single isocontour of ŨV LSM/U∞ = 0.6 is overlaid on (b) and (c) to
illustrate the relationship between panels. Flow moves from left to right.

the LSM. To see more detail, these plots are shown again with a small wall-normal
extent in figure 3.4.

In figure 3.5, the representative model for the NWSs are shown with the same field
of view shown for those of the LSMs and VLSMs, to indicate relative scale. Figure
3.6 shows more detail, showing one period of the representative model (all axes have
a linear scale). Bulges are again observed in the laboratory frame, with the same
relationship with the fluctuating field that was observed in the LSM and VLSM
models. Distinct shear layers are no longer visible, but the contours of shear are
observed to protrude above slow fluctuations and below fast fluctuations, as the
mean shear dominates the fluctuating shear near the wall.
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(a)

(b)

(c)

Figure 3.4: The structure of the VLSM representative model is shown for the
laboratory frame streamwise velocity field ŨV LSM (a) and fluctuating velocity field
ũV LSM (b) in the region 0 < y/δ < 0.3. The same contour levels are used as those
in figure 3.3. A single isocontour of ŨV LSM/U∞ = 0.6 is overlaid on (b) and (c) to
illustrate the relationship between panels. Flow moves from left to right.

3.3 Results and discussion
Connecting the streamwise energy spectrum to bulges
The streamwise velocity fields of the representative models in the wall-normal –
streamwise plane are observed to have common traits across the structures consid-
ered. Equally strong positive and negative inclined structures are observed in the
fluctuating streamwise velocity field, while bulges are observed in the laboratory-
frame velocity field. In the laboratory-frame velocity field, a positive fluctuating
structure corresponds to the absence of a visible structure (downward protrusion of
isocontours), and the streamwise length scale of the structure, which is constant in
the fluctuating field, is observed to change as a function of wall-normal height.

The values of χwere deduced froma single frame of PIV, and are therefore the largest
sources of uncertainty in the model. Figure 3.2(f,g) demonstrates the effect on the
laboratory-frame velocity field of halving and quartering the fluctuating amplitude of
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(a)

(b)

(c)

Figure 3.5: The structure of the NWS representative model is shown for the lab-
oratory frame streamwise velocity field ŨNW S and fluctuating velocity field ũNW S.
Unlike figures 3.2 and 3.3, axes are shown in inner units with a logarithmic wall-
normal scale. In (a), a wall-normal – streamwise slice of the laboratory-frame
velocity field is shown with the contour range ŨNW S/U∞ = 0 : 0.05 : 1 and
every other isocontour outlined in black for visibility. A single isocontour of
Ũ+NW S = 10, ŨNW S/U∞ = 0.4 is overlaid on (b) and (c) to illustrate the relationship
between panels. Contours of the fluctuating velocity field are shown in (b) at the
values ũNW S/U∞ = −0.05 : 0.001 : 0.05, while the wall-normal derivative of ŨNW S

is shown in (c) at the values ∂ŨNWS

∂y
δ

U∞
= −80 : 5 : 80. Flow moves from left to

right.
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(a)

(b)

(c)

Figure 3.6: The structure of the NWS representative model is shown for the labo-
ratory frame streamwise velocity field ŨNW S and fluctuating velocity field ũNW S in
a small field of view. In (a), a wall-normal – streamwise slice of the laboratory-
frame velocity field is shown with the contour range ŨNW S/U∞ = 0 : 0.05 : 1
and every other isocontour outlined in black for visibility. A single isocontour of
Ũ+NW S = 10, ŨNW S/U∞ = 0.4 is overlaid on (b) and (c) to illustrate the relationship
between panels. Contours of the fluctuating velocity field are shown in (b) at the
values ũNW S/U∞ = −0.05 : 0.001 : 0.05, while the wall-normal derivative of ŨNW S

is shown in (c) at the values ∂ŨNWS

∂y
δ

U∞
= −80 : 5 : 80. Flow moves from left to

right. Axes are shown with a linear scale.
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the LSM representative model relative to its strength in figure 3.2(d). The presence
of an asymmetric bulge shape is consistent through these large changes in fluctuating
amplitude, but changes in the apparent height, width, and inclination angle of the
laboratory-frame velocity structure are observed. The same phenomenon repeats
for the VLSM and NWS and is not repeated for conciseness.

In figure 3.7, all three structures are superimposed to show a representative complete
‘large scale’ velocity field. The superposition of the three structures is observed to
lead to a velocity field that shows reasonable agreement with the PIV visualization in
figure 3.1 (though the visualization convection velocity was chosen to best represent
the outer region, above y/δ ≈ 0.2). In particular, large bulges are observed in the
outer region of the boundary layer, while smaller bulges are observed near the wall
in figure 3.7(a). Shear is observed along the ‘backs’ of the bulges associated with
LSMs, in addition to shear layers nearer to the wall associated with the VLSMs
in figure 3.7(c). However, there are a number of differences in the appearance
of the model from the instantaneous visualization. The LSM structures appear
shorter in the model than the instantaneous structures observed in the instantaneous
visualization. The scales that are not coherent with the three modeled structures,
u′, also play a key role in the PIV data, leading to much more corrugated laboratory
frame isocontours and a dimpled appearance of the structures in the fluctuating
velocity field in the data than in the model.

The black curves in all previous figures represent the height of laboratory frame
streamwise velocity isocontours, hU (x, z, t), defined as the set of wall-normal loca-
tions where the laboratory frame streamwise velocity field is equal to some particular
value, U (x, hU, z, t) = U∗. The analytical relationship between a laboratory frame
streamwise velocity isocontour and the fluctuating velocity field can be derived to
clarify the trends observed in figures 3.1 - 3.7. Define the height of the mean stream-
wise velocity isocontour, hŪ (x), as the set of wall-normal locations where the mean
velocity field is equal to the same value, Ū (x, hŪ ) = U∗, where x-dependence of the
mean is retained for generality in the following derivation. In general, fluctuations
relative to a mean appear in laboratory-frame velocity isocontours as differences be-
tween hU and hŪ . The relationship between a fluctuating velocity field, u(x, y, z, t),
and the change in laboratory frame isocontour height, ∆hU ≡ hU − hŪ , can be de-
fined for laboratory-frame velocity fields withmonotonic variation in y (equivalently
|∂u/∂y | < ∂Ū/∂y) by expanding U in a Taylor series about the height hŪ .
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(a)

(b)

(c)

Figure 3.7: The superposition of all three representative models is shown to demon-
strate their relative spacing in the height of the boundary layer. The streamwise
velocity field is shown in the laboratory frame (Ū + ũLSM + ũV LSM + ũNW S) (a)
and in the fluctuating field (ũLSM + ũV LSM + ũNW S) (b). In (c), the wall-normal
gradient of the field in (a) is shown. The phases of the modes are chosen to roughly
correspond to those observed in the PIV visualization in figure 3.2. Contour levels
are the same as those shown for figure 3.2. In (b,c), two isocontours are shown at
values of Ũ/U∞ = 0.8 and Ũ/U∞ = 0.6.

∆hU (x, z, t) = hU (x, z, t) − hŪ (x) ≈ −
[
u/

(
∂U
∂y

)]

(x,hŪ,z,t)
. (3.9)

In a geometry where themean shear is defined as positive, equation 3.9 demonstrates
that a negative velocity fluctuation corresponds to an upward protrusion of the
laboratory frame isocontour relative to its position in the mean velocity field, while
a positive fluctuation is consistent with the downward protrusion of the isocontour.
Though the monotonic condition on U does not hold everywhere in the data or the
model, the relationship between the height of laboratory-frame velocity isocontours
and the sign of fluctuating velocity structures can still be observed. From equation
3.9, one also sees that the strength of the wall-normal derivative of the laboratory



62

frame streamwise velocity field or ‘shear’ field is inversely proportional to the
isocontour height change. This relationship coupled with the consistent spatial
relationship between the velocity and shear fields leads to gradual increases in
isocontour height with x, known as ‘ramps’, and rapid decreases in isocontour
height with x, known as ‘cliffs’, in the laboratory-frame velocity fields of the model
and the data. It also leads to larger bulges in the outer region of the flow than near
the wall.

Equation 3.9 sheds light on a fundamental equivalency between symmetry in the
fluctuating velocity field and asymmetry in the laboratory-frame velocity field that
allows the statistical and structural perspectives to be consistent and representable
by the representative models. This equivalency also clarifies the focus on low-
speed structures in the structural turbulence community. Fluctuating structures
with amplitude less than the mean correspond to visually identifiable bulges in
the isocontours of the laboratory frame streamwise velocity field. The fluctuating
structures with amplitude larger than the mean have an equally strong relationship
with the shape of the laboratory frame isocontours, but their impact (the downward
protrusion of isocontours) is less visually identifiable.

Connecting the streamwise energy spectrum to uniform momentum zones
The representative models also reproduce the UMZ behavior observed by (Meinhart
and Adrian, 1995) using the instantaneous streamwise velocity histogram technique.
In this technique, a discrete approximation of the probability density function of an
instantaneous laboratory frame streamwise velocity field is calculated, identifying
the most and least common velocity values in the instantaneous field. To calculate
the histogram, one divides the total range of observed streamwise velocity values
into a set number of equally-spaced bins. U∗b is defined as the velocity at the center
of a given bin, with the range of velocities in the bin given by

Ub =

[
U∗b −

∆U
2nb

,U∗b +
∆U
2nb

)
, (3.10)

where ∆U = max(U (x, y, t)) − min(U (x, y, t)) is the difference between the max-
imum and minimum velocity values observed in the data, and nb is the number of
velocity bins. For a given bin, the value plotted in the histogram is

mb =
nb

∆U
nb∑

b=1
mb

N
(
U (x, y) ∈ Ub

)
, x ∈ X, y ∈ Y, (3.11)
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whereN represents a count of the number of grid points at which the conditions are
satisfied. The value mb is normalized such that the integral over the final distribution
gives a value of one. A restricted spatial range, X , in the streamwise variable is used
to identify features of localized structures: if it were not restricted, the result would
be equivalent to a histogram of the mean velocity field. The range Y is generally
taken as the full height of the boundary layer.

Instantaneous streamwise velocity histograms of turbulent boundary layers have
been shown to have discrete minima and maxima, meaning that some bins have
substantially larger numbers than others. Thus, some values of velocity are more
common than others in a particular region of the flow at an instant in time. These
minima and maxima in the flow which have been correlated to the presence of
regions of almost constant velocity (uniform momentum zones) bordered by thin
regions of rapidly changing velocity (shear layers) (Adrian, Meinhart, and Tomkins,
2000; de Silva, Hutchins, and Marusic, 2016) in the velocity field.

This histogram technique was applied to the experimental data and the superposi-
tion of all three representative models over four different streamwise ranges. The
dashed lines in figures 3.1(a) and 3.7(a) demarcate the regions of data used for the
histograms, though the equivalent spatial data from the appropriate instantaneous
snapshot was used for the experimental histograms, rather than the temporally-
reconstructed representation shown in figure 3.1(a). Because instantaneous images
were used with no convection velocity assumption, the near-wall region of the PIV
data and the model could be directly compared in this section. The histograms
were calculated using a 1δ range in the streamwise direction and 50 velocity bins,
with the free stream masked following the procedure from (de Silva, Hutchins, and
Marusic, 2016). The turbulent/non-turbulent interface (TNTI) was identified using
a turbulence intensity threshold (Chauhan et al., 2014) with a value of kth = 0.5 for
the PIV data and kth = 2 for the model. These values of kth were chosen such that
the mean height of the TNTI, Z̄/δ, was 0.8 for both the PIV and LSM representative
model, matching previous studies (Chen and Blackwelder, 1978). The modeled and
experimental velocity fields were represented on identical grids for the calculation
of the histograms.

Figures 3.8 and 3.9 show the instantaneous streamwise histograms for the PIV data
(figures 3.8(a,b) and 3.9(a,b)) and for the modeled velocity field (figures 3.8(c,d) and
3.9(c,d)) for the streamwise ranges 0 < x/δ < 2 (figure 3.8) and 2 < x/δ < 4 (figure
3.9). At least two distinct maxima are present in each histogram, shown in figures
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Ũ/U∞

0

2

4

6

8

P
D
F

(c)

0.4 0.6 0.8 1
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Figure 3.8: Histograms of the laboratory frame streamwise velocity field of in-
stantaneous PIV data (a,b) and the superposition of the three representative models
(c,d). Histograms are derived from data in figures 3.1(a) and 3.7(c) in the stream-
wise ranges: (a,c) 0 < x/δ < 1, (b,d) 1 < x/δ < 2. Solid red lines indicate local
maxima in the histograms, while dashed red lines indicate local minima. The blue
curves represent an estimate of the probability density function derived from the
wall-normal derivative of the streamwise velocity field (equation 3.14).

3.8 and 3.9, indicating uniform momentum zone behavior in the laboratory-frame
streamwise velocity field of the data and the model (Adrian, Meinhart, and Tomkins,
2000).

Good agreement is seen in the location of local maxima at U/U∞ ≈ 0.7 and
U/U∞ ≈ 0.9 and the location of a local minimum at U/U∞ ≈ 0.8 in all panels
of figures 3.8 and 3.9 but figure 3.8(b,d). Less favorable agreement is seen in the
amplitude of the peaks. In figure 3.8(a,c) reasonable agreement is seen for the
amplitude of one of the peaks (U/U∞ ≈ 0.7), while poor agreement is seen for the
amplitude of the other. In figure 3.8(b,d), reduced peaks are observed in both the
PIV and model, but little quantitative agreement is seen.

In figure 3.9(a,c) and figure 3.9(b,d), the amplitudes of both peaks show some
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Figure 3.9: Histograms of the laboratory frame streamwise velocity field of in-
stantaneous PIV data (a,b) and the superposition of the three representative models
(c,d). Histograms are derived from data in figures 3.1(a) and 3.7(c) in the stream-
wise ranges: (a,c) 2 < x/δ < 3, (b,d) 3 < x/δ < 4. Solid red lines indicate local
maxima in the histograms, while dashed red lines indicate local minima. The blue
curves represent an estimate of the probability density function derived from the
wall-normal derivative of the streamwise velocity field (equation 3.14).

agreement. In addition, activity is observed at low streamwise velocity values in
both the PIVdata and themodel in figure 3.9, which is associatedwith the presence of
a VLSMwith locally low-momentum. Though additional work is needed to achieve
quantitative prediction, figures 3.8 and 3.9 demonstrate that periodic, symmetric
structures in the fluctuating velocity field can yield physically realistic uniform
momentum zone behavior in the laboratory-frame velocity field, allowing UMZs
and the spectral description of coherent structures to be compatible.

Analytical probability density function of instantaneous streamwise velocity

Previous interpretations of the instantaneous streamwise velocity histograms have
argued that maxima in the histograms indicate modal velocities of UMZs, while
minima indicate shear layers (Adrian, Meinhart, and Tomkins, 2000). A derivation
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of the exact probability density function for a streamwise velocity profile clarifies this
relationship and identifies a direct relationship between the instantaneous streamwise
velocity histogram and the shear field.

Consider a laboratory frame streamwise velocity profile at a single streamwise,
spanwise, and temporal location: U (x0, y, z0, t0) ≡ U0(y) = G(y). As a simplifica-
tion, assume G is one-to-one such that one can write down the inverse relationship
y = G−1(U0) (this is equivalent to the monotonic assumption used in the calculation
of the streamwise laboratory-frame isocontour height). Then the probability density
function for the instantaneous velocity profile, U0(y), can be analytically written as

f (U0) =
d

dU0
*
,

∫ G−1(U0)

−∞

φ(y)dy+
-
, (3.12)

where f is the probability density function of U0 and φ is the probability density
function of y. For y uniformly distributed between two points yi and y f (a uniform
grid), one can show that

f (U0) =
c

∂U
∂y

(
x0,G−1(U0), z0, t0

) , (3.13)

where c = 1
y f −yi

.

Equation 3.13 demonstrates that the probability density function of an instanta-
neous streamwise velocity profile is the inverse of the local shear with a scaling.
This matches the intuitive reasoning of (Adrian, Meinhart, and Tomkins, 2000):
maxima in a histogram correspond to low shear events, while minima correspond to
high shear events. The inverse function y = G−1(U0) builds in the idea of locality,
requiring that one consider the shear and the velocity at the same point in space.
This simplified analysis was performed at a single streamwise and spanwise loca-
tion because a larger-dimensional analysis complicates the definition of the inverse
relationship.

When G is not one-to-one, the relationship highlighted by equation 3.13 retains
predictive value. A few modifications are necessary to apply the derived equation
to turbulent data, where the magnitude of local shear can be much larger than the
mean shear: onemust constrain the relationship between the wall-normal coordinate
and the streamwise velocity value, the absolute value of shear must be considered
rather than its signed value, and, to compare to histograms reported in the literature
(Adrian, Meinhart, and Tomkins, 2000; de Silva, Hutchins, and Marusic, 2016) and
those shown in figures 3.8 and 3.9, one must approximate the probability density
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function over a two-dimensional region of the flow. As an estimate for the 2D
probability density function, one can average the probability density function of all
measured profiles across a 1δ range in x, consistent with the data range used for the
histograms in figures 3.8 and 3.9. Then,

f (U2D) ≈
1
N

N∑
i=1

c

| ∂U
∂y

(
xi, g−1(Ui), z0, t0

)
|
, (3.14)

where N is the number of streamwise locations considered,Ui is the velocity profile at
a given streamwise location xi, and y = g−1(Ui) is the modified inverse relationship.
For the present work, y = g−1(Ui) is defined as the height where the instantaneous
velocity profile is closest to the input velocity value. If there is no height where
the velocity profile is within 1% of the input velocity value, f (U2D) is set to zero.
This definition of g−1 is found to be a unique mapping in the discrete velocity fields.
The result of applying equation 3.14 to the PIV data and the superposition of the
representative models is shown in figures 3.8 and 3.9 and is seen to closely match
the directly computed histograms, suggesting that the histograms are a measure
of local shear in the flow, as intuited by (Adrian, Meinhart, and Tomkins, 2000).
The largest discrepancies between the computed histograms and the approximated
probability density function are observed at the largest values of the probability
density function, where the shear is lowest and the assumption of uniqueness of the
velocity field is least valid.

Future work includes studying the predictive abilities of the model, including in
capturing the average of three to five uniform momentum zones observed across
Reτ = 103 to 104 by (de Silva, Hutchins, and Marusic, 2016). The superposition
of more modes could also be used to allow for the representation of more complex
phenomena, such as the meandering of structures (Sharma and McKeon, 2013) and
amplitude modulation of small scales (McKeon, 2017), which could further improve
the predictive capabilities.

3.4 Conclusions
Representative models for large-scale motions, very-large-scale motions, and near-
wall streaks in wall-bounded turbulent flows were developed, with scale information
from the streamwise energy spectrum and wall-normal coherence information from
theNavier-Stokes equations. Themodelwas found to naturally capture key structural
characteristics of the laboratory-frame velocity field, including bulges in isocontours
and distinct minima and maxima in instantaneous streamwise velocity histograms,
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indicating uniform momentum zone behavior. The success of this simple model
was argued to demonstrate the equivalence of the energetic scales of the energy
spectrum and instantaneously observable characteristics of the velocity field.

A key observation towards connecting the statistical and instantaneous descriptions
was reconciling characteristics of the fluctuating and laboratory frame streamwise
velocity fields in which they were respectively described. Visualizations of the
representative models highlighted a nontrivial relationship between instantaneous
fluctuating and laboratory-frame velocity fields: symmetry in high- and low- mo-
mentum structures and constant streamwise length scales were observed in the
fluctuating field while asymmetry between high- and low-momentum structures and
varying streamwise length scales were observed in the laboratory frame field. These
observations were explained through the development of an analytic expression for
the shape of a laboratory frame streamwise velocity isocontour given a fluctuating
velocity field. Connecting the statistical description to UMZ behavior required the
use of the instantaneous streamwise velocity histogram technique, which has been
used to identify UMZ behavior in previous work (Adrian, Meinhart, and Tomkins,
2000; de Silva, Hutchins, and Marusic, 2016). This technique was analyzed by
considering the probability density function of a streamwise velocity profile and
was shown to be a direct measure of the local shear field.

The success of the representative models supports the use of a traveling wave to
understand and model turbulent structures (Sharma and McKeon, 2013). Travel-
ing wave models can act as a bridge between statistics and instantaneous fields:
their periodicity allows for a direct connection to spectral descriptions of turbulent
statistics, while their wall-normal coherence allows for a direct connection to the
instantaneous flow features. Future work will look towards more quantitative pre-
diction, including capturing trends in the number of UMZs with Reynolds number,
as well as capturing nonlinear multi-scale interactions, such as hairpin packets.
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C h a p t e r 4

STRUCTURE INTERACTION

4.1 Introduction
Akey trait of turbulence is the interaction and energy exchange between scales. Here,
the modeling insights gained from chapter 3 regarding particular structures are used
to examine scale interactions. Interactions are investigated between the large-scale
structures described in chapter 3 and ‘small scales’, defined using a filtering process
described in chapter 2. The interactions are studied using a conditional averaging
technique that investigates the spatial relationship of the large and small scales. The
details of the technique can be found in chapter 2. Velocity data from the PIV
measurements undertaken at Caltech and from the DNS database of (Wu et al.,
2017) are used. Details on both sets of measurements can be found in chapter 2.1

4.2 Visualization of instantaneous scale interaction
The turbulent boundary layer DNS data described in chapter 2 was analyzed to
identify the instantaneous spatial organization of large and small scales. Isosurfaces
of the unfiltered, fluctuating streamwise velocity field, u, from a single snapshot
of DNS of Wu et al. (2017) are shown in figure 4.1. A single isosurface of the
laboratory-frame streamwise velocity field U is shown in white. This isocontour
corresponds to an estimated instantaneous convection velocity of the local large-
scale flow, identified through a correlation between temporal snapshots of the large-
scale velocity field. This value was found to be 0.85U∞. This value differs by 6%
from the estimated average convection velocity of the LSMs, 0.8U∞, taken from
Brown and Thomas (1977) and Cantwell (1981) and used through much of the
thesis.

The instantaneous relationship between scales is masked in figure 4.1 by the com-
plexity of the full streamwise velocity; however, a clear spatial organization can be
seen after application of the filtering process. To define large and small scales, the
Gaussian filter described in chapter 2 was used with a standard deviation of 0.5δ

1The visualization results in this chapter were published as part of Rosenberg et al. (2016).
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Figure 4.1: Visualization of the streamwise velocity field of DNS of a turbulent
boundary layer. Red and blue isosurfaces represent the fluctuating velocity field u at
±0.04U∞. The white isosurface represents a single value of the streamwise velocity
field, U , at 0.85U∞.

along all three spatial dimensions, such that

ul (x, y, z, t0) =

∫ x∗
f

x∗j

∫ y∗
f

y∗i

∫ z∗
f

z∗j
u(x∗, y∗, z∗, t0)exp

(
−

(
(x−x∗)2+(y−y∗)2+(z−z∗)2

(2σG )2

))
dx∗dy∗dz∗∫ x∗

f

x∗j

∫ y∗
f

y∗i

∫ z∗
f

z∗j
exp

(
−

(
(x−x∗)2+(y−y∗)2+(z−z∗)2

(2σG )2

))
dx∗dy∗dz∗

(4.1)
is the fluctuating large scale streamwise velocity field with t0 defined as the frame
of interest. The laboratory-frame large-scale streamwise velocity field is defined as

Ul (x, y, z, t0) = ul (x, y, z, t0) + Ū (x, y) (4.2)

and
us (x, y, z, t0) = u(x, y, z, t0) − ul (x, y, z, t0) (4.3)

is the small-scale streamwise velocity field. The equivalent procedure is used to
define vl , wl , vs, and ws, the large and small scales in the wall-normal and spanwise
velocity fields.

The value σG = 0.5δ was used for all results in the chapter unless otherwise
specified. This filter size was chosen due to observations that it distinguished large
and small scales accurately in the conditional averaging results of the PIV data.
The sensitivity and manner of determination of scale separation are discussed in
this chapter in the subsection titled Sensitivity to parameters. Using the expression
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for the cutoff frequency given in chapter 2, one can define the approximate cutoff
wavelength of the filter as λG/δ = 2.7. This approximate cutoff wavelength is
slightly larger than the wavelength cutoff used for the spectral filter of Mathis,
Hutchins, and Marusic (2009), λx/δ = 1, and within the range of filter sizes
considered by Ganapathisubramani et al. (2012). The exact value of the cutoff
wavelength used for the spectral filter was found to have little effect on the results
of Ganapathisubramani et al. (2012).

Figure 4.2 shows the filtered streamwise velocity field at the same instant as the field
shown in figure 4.1. The large-scale fluctuating streamwise velocity field is shown
in the background plane in red and blue contours. A clear correlation between
the large-scale streamwise fluctuation, ul , and the black and white isosurfaces of
the small-scale fluctuations, us, can be observed. Depending on the sign of the
local large-scale velocity structure, the small scales at this particular isocontour are
observable far from the wall (negative large scale) or only close to the wall (positive
large scale). The location of strong small-scale activity is also closely correlated
with the isosurface of the instantaneous velocity, Ul = 0.85U∞. The wall-normal
location of this isosurface is also dictated by ul , via the preceding equation.

Figure 4.2: Visualization of the filtered streamwise velocity field of a turbulent
boundary layer DNS (Wu et al., 2017) between the spanwise locations z/δ = 0.3 −
0.8. Red and blue contours represent the large-scale fluctuation, ul , defined using
the filter described in chapter 2. The white and black isosurfaces represent the small-
scale fluctuation, us, at ±0.06U∞. The green isosurface represents an isosurface of
the large-scale laboratory-frame streamwise velocity field (Ul) at 0.85U∞, which is
the approximated convection velocity of the large scale in this snapshot.

The instantaneous behavior of the large and small fluctuating velocity scales shown
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in figure 4.2 is compatible with observations of amplitude modulation and phase
organization of large and small scales in wall-bounded turbulent flows described
in chapter 1 (Hutchins and Marusic, 2007; Mathis, Hutchins, and Marusic, 2009;
Jacobi and McKeon, 2013). However, the correlation that is visually identifiable in
figure 4.2 between a particular isocontour of the laboratory-frame, large-scale flow
and the strength of the small scales had not previously been identified. To probe
the importance of this relationship, a more quantitative, statistical assessment was
needed.

4.3 Conditional averaging: the spatial organization of large and small scales
To quantify the spatial relationship that was instantaneously observed in figure 4.2
and probe the importance of the isocontour of the large-scale flow, the P1D and P2D

conditional averaging techniques described in chapter 2 were implemented.

The organization of small scales about LSMs
Conditional averaging of PIV data

First, the behavior of the small scales about a large-scale motion in PIV data was
considered. As discussed in chapter 2, a model of the large-scale motion was
required to perform the conditional averaging technique. Two different models were
considered when analyzing the PIV results: the first was the representative model of
a large-scale motion identified and analyzed in chapter 3, considered in a streamwise
– wall-normal plane to match the PIV data (2D model); the second was the same
model only sampled along its critical layer height, leading to a sinusoidal amplitude
variation of streamwise velocity as a function of the streamwise variable (1Dmodel).

As discussed in chapter 3, the approximate size and speed of a large-scale motion
is given by λx = 4δ, λz = 1δ, and c = 0.8U∞. For the 2D results, these parameters
were used to identify a resolvent response mode, which was used as the estimated
shape of the large-scale motion. The number of 2D planes of data used in each
conditional averaging figure (total over the panels) are shown in table 4.1, along
with the percentage of the total 2D planes of data considered. For the PIV data, this
is equivalent to the number of temporal snapshots used for each total figure.

The P2D conditional averaging method was used to identify the averaged streamwise
velocity field and the averaged small-scale streamwise and wall-normal intensity
fields given the presence of a large-scale motion. Using the algorithm described
in chapter 2 and written in full in Appendix A, one arrives at the results shown in
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figure 4.3. Figure 4.3(a) represents the quantity

< u >P2D,LSM (x, y) =
1
ñ

∑
t̃

(
1
N

∑
ti

u(x, y, ti)

∀ti s.t.
(

u(x, y, ti) · ũLSM (x, y, t̃)
|u(x, y, ti) | |ũLSM (x, y, t̃) |

)
= R∗ > Rth

)
,

(4.4)

the conditionally-averaged, fluctuating streamwise velocity field of the PIV data.
The subscript i indicates that the projection is carried out separately for each frame
of data. As discussed in chapter 2, the projection coefficient must be the maximum
over the considered phases at a given time ti, R∗, and must be larger than a given
threshold, Rth. ñ represents the number of phases considered.

For the small-scale streamwise intensity, the result shown in figure 4.3(b) represents

< u2
s >P2D,LSM (x, y) =

1
ñ

∑
t̃

(
1
N

∑
ti

u2
s (x, y, ti)

∀ti s.t.
(

u(x, y, ti) · ũLSM (x, y, t̃)
|u(x, y, ti) | |ũLSM (x, y, t̃) |

)
= R∗ > Rth

)
,

(4.5)

and for the small-scale wall-normal intensity, figure 4.3(c) represents

< v2
s >P2D,LSM (x, y) =

1
ñ

∑
t̃

(
1
N

∑
ti

v2
s (x, y, ti)

∀ti s.t.
(

u(x, y, ti) · ũLSM (x, y, t̃)
|u(x, y, ti) | |ũLSM (x, y, t̃) |

)
= R∗ > Rth

)
.

(4.6)

Large and small scales are defined using the filtering process described in equations
4.1 through 4.3. Note that only the averaged quantity, rather than the condition,
changes across the variables. The results in figure 4.3 appear paneled because of
the phase averaging process described in chapter 2 and in Appendix A. The phase
averaging process allows for an efficient use of the data to maximize the convergence
of the result.

The number of temporal snapshots used for the P2D conditional average of figure 4.3
is shown in table 4.1, while the number associated with each estimated large-scale
phase γ∗ is shown in table 4.2. The PIV results are exclusively temporally averaged
as only one spatial plane of data is available. Table 4.1 also shows the statistics
for the results of the application of the P1D conditional averaging method on both
PIV and DNS data. The DNS data is both temporally and spatially averaged in the
manner described in chapter 2.
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(a)

(b)

(c)

Figure 4.3: Conditional averaging results using the P2D method with an LSMmodel
in the x − y plane for LSMs in PIV. Large (a) and small (b,c) scales are shown for
the streamwise (a,b) and wall-normal (c) velocity fields. The black line in all panels
indicates < u >P2D,LSM +Ū = 0.8U∞, the assumed convection velocity of the LSMs.
The streamwise small scales are observed to follow this line, while the wall-normal
small scales are observed to be bounded by this line.

N time avg N time, space avg % time avg % time, space avg
LSM, PIV, P2D 5120 n/a 100 n/a
LSM, PIV, P1D 5100 n/a 100 n/a
LSM, DNS, x − y 30 8,163 100 54
LSM, DNS, z − y 30 30,000 100 100
VLSM, DNS, x − y 20 5,529 100 92
VLSM, DNS, z − y 30 30,000 100 100
NWS, DNS, x − y 28 1,233 93 16
NWS, DNS, z − y 30 30,000 100 100

Table 4.1: Table of total number of 2D planes used for conditional averaging.



75

1 2 3 4 5 6 7 8
N frames 404 638 946 548 413 655 988 528
% frames 8 12 18 11 8 13 19 10

Table 4.2: The number of frames associated with each estimated phase γ∗ for
the P2D conditional averaging method applied to PIV data with an LSM model,
associated with figure 4.3. The numeric label corresponds to the index of γ∗ ∈ Γ∗,
with Γ∗ = [0, 2π) in intervals of π/4.

The conditionally averaged fluctuating streamwise velocity field < u >P2D,LSM is
shown in (a). Inclined, alternating large-scale features are observed in the stream-
wise velocity field, reflecting the input LSM model. The are observed to have a
larger wall-normal extent than the resolvent model of figure 3.2 in chapter 3. In
(b,c), the conditionally averaged small-scale intensity is shown for the streamwise
< u2

s >P2D,LSM and wall-normal < v2
s >P2D,LSM velocity fields respectively. The

small scales are defined using a Gaussian filter, as described in chapter 2. The
black line represents an isocontour of the superposition of the conditionally aver-
aged streamwise velocity field and the mean (< u >P2D,LSM + Ū = 0.8U∞). The
small-scale streamwise intensity is seen to be strongly affected by the behavior of
the large-scale velocity field. In the presence of the large-scale positive fluctuating
structure, the small scales are strong and localized near the wall, while in the pres-
ence of the large-scale negative fluctuating structure, the small scales are lifted away
from the wall. The streamwise small-scale intensity is seen to be localized along
the highlighted isocontour of the large-scale field. The wall-normal small-scale
intensity appears to be bounded by the isocontour, rather than localized about it.

The use of a 1D model of an LSM for the projection method yields similar results.
For the 1D model, the conditionally-averaged streamwise velocity field is shown in
figure 4.4(a), representing

< u >P1D,LSM (x, y) =
1
ñ

∑
t̃

(
1
N

∑
ti

u(x, y, ti)

∀ti s.t.
(

u(x, yc, ti) · ũLSM (x, yc, t̃)
|u(x, yc, ti) | |ũLSM (x, yc, t̃) |

)
= R∗ > Rth

)
,

(4.7)

where yc is the critical layer height of the model; the height at which the mean
velocity is equal to the assumed phase speed. The P1D conditionally-averaged
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small-scale streamwise intensity is shown in figure 4.4(b), representing

< u2
s >P1D,LSM (x, y) =

1
ñ

∑
t̃

(
1
N

∑
ti

u2
s (x, y, ti)

∀ti s.t.
(

u(x, yc, ti) · ũLSM (x, yc, t̃)
|u(x, yc, ti) | |ũLSM (x, yc, t̃) |

)
= R∗ > Rth

)
.

(4.8)

The P1D conditionally-averaged small-scale wall-normal intensity is shown in figure
4.4(c), representing

< v2
s >P1D,LSM (x, y) =

1
ñ

∑
t̃

(
1
N

∑
ti

v2
s (x, y, ti)

∀ti s.t.
(

u(x, yc, ti) · ũLSM (x, yc, t̃)
|u(x, yc, ti) | |ũLSM (x, yc, t̃) |

)
= R∗ > Rth

)
.

(4.9)

The black line indicating a single isocontour of the laboratory-frame velocity field
< u >P1D,LSM + Ū = 0.8U∞ appears slightly more regular and periodic in its shape,
as compared to the inclined contour of figure 4.3. The streamwise small-scales
are again seen to be strongest along the isocontour of the large scale, stronger near
the wall in the presence of a large-scale positive streamwise velocity structure, and
strongest away from the wall in the presence of a large-scale negative fluctuating
streamwise velocity structure. The wall-normal small scales are again observed to
be essentially bounded from above by the large-scale streamwise isocontour.

The proximity of the LSM feature to the edge of the boundary layer begs the question
of whether the small scale organization observed in figures 4.3 and 4.4 is associated
with the edge of the boundary layer, rather than representing a behavior within the
boundary layer itself. To address this question, the turbulent/non-turbulent interface
(TNTI) detection scheme of (Chauhan et al., 2014) is used, in the same manner
discussed in chapter 3, to identify the edge of the boundary layer. An intermittency
variable, I, was defined with the same definition used by Chauhan et al. (2014), such
that its value was zero within the boundary layer and one outside of it, with a sharp
interface indicating the instantaneous height of the TNTI for each frame of PIV.

I (x, y, t) =



0 k (x, y, t) > kth

1 k (x, y, t) < kth

(4.10)

with kth = 0.5 and k defined as

k (x, y, t) =
100
9U2
∞

1∑
m,n=−1

[(U (x + m, y + n, t) −U∞)2 + V (x + m, y + n, t)2], (4.11)
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(a)

(b)

(c)

Figure 4.4: Conditional averaging results in the x − y plane using the P1D method
with an LSM model in PIV using the 1D projection method. Large (a) and small
(b,c) scales are shown for the streamwise (a,b) and wall-normal (c) velocity fields.
The black line in all panels indicates < u >P1D,LSM + Ū = 0.8U∞, the assumed
convection velocity of the LSMs. The streamwise small scales are observed to
follow this line, while the wall-normal small scales are observed to be bounded by
this line.

again following Chauhan et al. (2014). The identification of kth is described in
chapter 3 in the discussion of the definition of the instantaneous streamwise velocity
histogram.

The intermittency variable I was then averaged with the same P1D conditional
averaging scheme used on the small scales in figures 4.3 and 4.4 to determine its
average height relative to the height of small-scale localization. Figure 4.5 shows
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Figure 4.5: The conditionally averaged TNTI is visualized relative to the height
of small-scale activity of figure 4.4. The thresholding method of Chauhan et al.
(2014) was used to define a variable I, defined to be 0 within the boundary layer,
where the instantaneous turbulence intensity is above a given threshold kth, and
1 outside of the boundary layer where the instantaneous turbulence intensity falls
below the threshold. The P1D conditional averaging technique was used to average
the instantaneous fields I (x, y, t).

the result of this averaging process, which represents

< I >P1D,LSM (x, y) =
1
ñ

∑
t̃

(
1
N

∑
ti

I (x, y, ti)

∀ti s.t.
(

u(x, yc, ti) · ũLSM (x, yc, t̃)
|u(x, yc, ti) | |ũLSM (x, yc, t̃) |

)
= R∗ > Rth

)
.

(4.12)

The interface height in figure 4.5 is observed to vary as a function of the phase of the
large scale of figure 4.4(a). The average TNTI height is observed to be lower in the
presence of a high-speed large-scale structure and higher in the presence of a low-
speed large-scale structure. This correlation suggests that the large scale observed
in figure 4.4(a) may drive the instantaneous TNTI height. However, the average
height of the interface is observed to be substantially above that of the isocontour
< u >P1D,LSM + Ū = 0.8U∞, where small scales are observed to be localized in
figures 4.3 and 4.4. This suggests that, while the large scales of figure 4.4(a) are
correlated to the TNTI, the small scales of figure 4.4(b,c) are not a reflection of
the TNTI itself. The total number of snapshots for the P1D conditional average of
figure 4.4 is shown in table 4.1, while the number associated with each estimated
large-scale phase γ∗ is shown in table 4.3.

Due to the similarity in the qualitative nature of the results between the 2D and 1D
projections and the relative ease and efficiency of the 1D projection approach, only
the 1D projection approach will be used for the remainder of the chapter and the
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N frames 547 476 317 227 188 193 223 353 535 540 352 211 189 178 237 334
% frames 11 9 6 4 4 4 4 7 10 11 7 4 4 3 5 7

Table 4.3: The number of frames associated with each estimated phase γ∗ for
the P1D conditional averaging method applied to PIV data with an LSM model,
associated with figure 4.4. The numeric label corresponds to the index of γ∗ ∈ Γ∗,
with Γ∗ = [0, 2π) in intervals of π/8.

dimension of the projection method will no longer be specified in the conditional
averaging notation.

Conditional averaging of DNS data

The DNS allows for more comprehensive study of the flow field closer to the wall
(allowing the study of VLSMs and the near wall streaks (NWSs)) as well as allowing
for the study of the behavior in the spanwise direction and velocity field. It also
allows for a larger field of view, increasing the length over which the projection
occurs and improving the accuracy of the method. However, as noted in table 4.1,
a limited number of temporal snapshots are used for processing the DNS data: on
the order of 50, rather than 5000 for PIV. To manage this limited temporal data,
the data is temporally and spatially averaged. Each spanwise point is treated as if
it were an independent realization for the streamwise – wall-normal projection and
average, while every streamwise point is treated as an independent realization for
the spanwise – wall-normal projection and average. This leads to large numbers
of planes available for averaging; however, these planes are not independent. For
the LSMs and VLSMs, averaging is done over approximately 2 wavelengths of
the structure in each direction, while for the NWSs, averaging is done over 2
(streamwise-average) or 10 (spanwise-average) wavelengths.

The assumed parameters of the LSMs were λx/δ = 4, λz/δ = 1.3, and c/U∞ = 0.8.
The streamwise and temporal characteristics are the same as those described in
chapter 3, while the spanwise wavenumber is modified slightly to be an integer of
the spanwise extent of the simulation. The 1D projection method applied to the DNS
data with an LSM model is used to conditionally average the streamwise velocity
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field in both the x − y (figure 4.6a) and z − y (figure 4.6b) planes, representing
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and
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Here again, the subscript i denotes that the projection takes place at one value of
that variable, yc indicates the height where the phase speed of the model matches
the mean velocity profile, and ñ represents the total number of phases for both the
temporal variable, t̃ and the spanwise variable, z̃. The averaged small-scale intensity
was computed for the streamwise field in both the x − y and z − y planes (figure
4.6c,d), representing
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(4.16)

For both wall-normal and spanwise small-scale intensity fields, only the x− y planes
are shown here, with the z − y planes left as future work. Figures 4.6(e) and (f)
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represent
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and
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respectively. The black curve in all panels represents the isocontour < u >P,LSM

+Ū = 0.8U∞.

As with the PIV data, alternating signed, large-scale streamwise velocity features
are observed in the DNS data in the conditionally averaged fluctuating streamwise
velocity field (figure 4.6a). The structures appear shorter in the streamwise – wall-
normal plane than those observed in the PIV results. The streamwise features
appear tall and slightly asymmetric in the spanwise – wall-normal plane (figure
4.6b). The discrepancies between the streamwise – wall-normal and the spanwise
– wall-normal structure (figure 4.6a,b) may reflect an artifact of phase binning, or
with the restricted simulation domain (approximately 2δ) in the spanwise direction,
and are a topic of on-going work. In (figure 4.6c,d), the small-scale streamwise
velocity intensity is seen to be strong and concentrated near the wall in the presence
of a large-scale positive velocity structure, and lifted away from the wall in the
presence of a large-scale negative velocity structure. The intensity is observed to
be less concentrated at the highlighted isocontour than what was seen in the PIV
results. The wall-normal small-scale intensity (figure 4.6e) appears to be bounded
from above by the highlighted large-scale isocontour, showing good agreement with
the PIV results of figure 4.4(c). The spanwise small-scale velocity field is observed
to be most concentrated near the wall, where it is strongest in the presence of a
large-scale positive structure and weakest in the presence of a large-scale negative
structure. Far from the wall, some evidence of height variation is also observed,
in which the small-scale spanwise intensity appears to roughly follow the behavior
of the isocontour < u >P,LSM +Ū = 0.8U∞. The total number of 2D planes used
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(a) (b)

(c) (d)

(e)

(f)

Figure 4.6: Conditional averaging results for LSMs in DNS. Large (a,b) and small
(c,d) scales are shown for the streamwise velocity field in the streamwise – wall-
normal (a,c) and spanwise – wall-normal (b,d) planes. The small scales of the
wall-normal velocity field (e) and those of the spanwise velocity field (f) are shown
in the streamwise – wall-normal plane. The black line in all panels indicates
< u >P,LSM +Ū = 0.8U∞, the assumed convection velocity of the LSMs.

for averaging for figure 4.6 is shown in table 4.1, while the number of 2D planes
associated with each estimated phase γ∗ is shown in table 4.4.
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1 2 3 4 5 6 7 8
N x − y planes 1180 1119 772 953 1271 891 976 1001
N z − y planes 4659 2384 1948 4142 4558 4607 3880 3882
% x − y planes 8 7 5 6 8 6 7 7
% z − y planes 15 8 6 14 15 15 13 13

Table 4.4: The number of frames associated with each estimated phase γ∗ for
the P1D conditional averaging method applied to DNS data with an LSM model,
associated with figure 4.6. The numeric label corresponds to the index of γ∗ ∈ Γ∗,
with Γ∗ = [0, 2π) in intervals of π/4.

The organization of small scales about VLSMs
The relationship between a VLSM and the surrounding near-wall small scales was
examined using the same projection, conditional averaging technique with a 1D
VLSM model. The DNS data was exclusively used to study the behavior, due to
its improved resolution near the wall. The assumed parameters of the VLSMs were
λx/δ = 6, λz/δ = 1.3, and c/U∞ = 0.6. As with the LSMs, the streamwise and
temporal characteristics were the same as those described in chapter 3, while the
spanwise wavenumber was modified slightly to be an integer of the spanwise extent
of the simulation.

Figures 4.7 and 4.8 show the results of this analysis with linear and logarithmic
wall-normal scales respectively. Each figure shows the streamwise velocity field
(figures 4.7a,b and 4.8a,b), representing
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and
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(4.20)

They also show the small-scale streamwise intensity fields in the streamwise – wall-
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normal and spanwise – wall-normal planes (figures 4.7c,d and 4.8c,d), representing
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ñ

∑
t̃

∑
x̃

(
1
N

∑
ti

∑
x j

u2
s (x j, y, z, ti)

∀x j, ti s.t.
(

u(x j, yc, z, ti) · ũV LSM ( x̃, yc, z, t̃)
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and the small-scale wall-normal (figures 4.7e and 4.8e) and spanwise (figures 4.7f
and 4.8f) intensity fields in the streamwise – wall-normal plane, representing
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ñ

∑
t̃

∑
z̃

(
1
N

∑
ti

∑
z j

v2
s (x, y, z j, ti)

∀z j, ti s.t.
(

u(x, yc, z j, ti) · ũV LSM (x, yc, z̃, t̃)
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and
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respectively. The black curve in all panels represents the isocontour < u >P,V LSM

+Ū = 0.6U∞.

In figure 4.7, long inclined structures can be observed in the averaged fluctuating
velocity field (figure 4.7a). The spanwise – wall-normal plane again shows slightly
taller features (figure 4.7b), the analysis of which is a topic of on-going work. The
streamwise and spanwise small scales are observed to be highly localized near the
wall, while the wall-normal small-scale velocity field shows activity farther from
the wall. Away from the wall, the streamwise small-scale intensity (c,d) is observed
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(e)

(f)

Figure 4.7: Conditional averaging results for VLSMs in DNS with a linear wall-
normal scale. Large (a,b) and small (c-f) scales are shown for the streamwise
velocity field (a-d), wall-normal velocity field (e), and spanwise velocity field (f)
in the streamwise – wall-normal (a,c,e,f) and spanwise – wall-normal (b,d) planes.
The black line in all panels indicates < u >P,V LSM +Ū = 0.6U∞, the assumed
convection velocity of the VLSMs.

to show some similar trends to those of figures 4.4 and 4.6: the outer edge of
the visible small-scale intensity bends nearer the wall for the positive large-scale
structure, and farther from the wall for the negative large-scale structure. Near the
wall, the spanwise small-scale intensity (figure 4.7f) is also observed to be stronger
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at higher heights from the wall in the presence of a negative large-scale structure.

(a) (b)

(c) (d)

(e)

(f)

Figure 4.8: Conditional averaging results for VLSMs in DNS. Large (a,b) and
small (c-f) scales are shown for the streamwise (a-d), wall-normal (e), and spanwise
velocity fields (f) in the streamwise – wall-normal (a,c,e,f) and spanwise – wall-
normal (b,d) planes. The black line in all panels indicates < u >P,V LSM +Ū =
0.8U∞, the assumed convection velocity of the VLSMs.

In figure 4.8, significantly more detail is available. The streamwise, wall-normal,
and spanwise small-scale structures all show fairly different behaviors. The stream-
wise small-scale intensity is observed to be highly localized at one height from
the wall, corresponding to the near-wall cycle. The intensity of the small scales is
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observed to be highly dependent on the local sign of the large scale, consistent with
previous findings (Hutchins and Marusic, 2007), in both the streamwise and span-
wise directions (figure 4.8c,d). The wall-normal small-scale intensity is observed
to be concentrated farther from the wall with its height fairly consistent across the
large-scale phase. The amplitude of the intensity of the wall-normal small scales is
observed to be strongest in the presence of a local negative large scale, consistent
with its localization away from the wall (figure 4.8e). The spanwise small scales are
observed to be quite localized along the highlighted isocontour, showing a spatial
variation with the phase of the large scale (figure 4.8f) that is reminiscent of the
behavior of the streamwise small scales about the LSM (figure 4.4b). The number
of 2D planes used for averaging is shown in table 4.1 and the number of 2D planes
associated with each estimated phase γ∗ for the conditional averaging method with
the VLSM model is shown in table 4.5.

1 2 3 4 5 6 7 8
N x − y planes 748 556 587 854 764 557 642 821
N z − y planes 4879 2559 2127 2925 4503 3744 4173 5090
% x − y planes 12 9 10 14 13 9 11 14
% z − y planes 16 9 7 10 15 12 14 17

Table 4.5: The number of frames associatedwith each estimated phase γ∗ for the P1D
conditional averaging method applied to DNS data with a VLSMmodel, associated
with figures 4.7 and 4.8. The numeric label corresponds to the index of γ∗ ∈ Γ∗,
with Γ∗ = [0, 2π) in intervals of π/4.

The organization of small scales about NWSs
Using the DNS data and a 1D projection, the interaction of the near-wall streaks
with the very small scales was studied. The assumed parameters of the near wall
streaks were λ+x = 1000, λ+z = 126, and c+ = 10. Again, the streamwise and
temporal characteristics are the same as those described in chapter 3, while the
spanwise wavenumber is modified slightly to be an integer of the spanwise extent
of the simulation.

Figure 4.9 shows the results of the conditional averaging technique. The averaged
streamwise velocity field is shown in the x − y and z − y planes in figures 4.9(a,b),



88

representing
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The small-scale streamwise intensity fields in the streamwise – wall-normal and
spanwise – wall-normal planes are shown in figures 4.9(c,d), representing
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and the small-scale wall-normal (figure 4.9e) and spanwise (figure 4.9f) intensity
fields are shown in the streamwise – wall-normal plane, representing
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u(x, yc, z j, ti) · ũNW S (x, yc, z̃, t̃)
|u(x, yc, z j, ti) | |ũNW S (x, yc, z̃, t̃) |
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and
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respectively. The black curve in all panels represents the isocontour < u >P,NW S

+Ū = 10uτ.

Correlation is observed between the near-wall streaks and the small-scale streamwise
and spanwise intensities in figure 4.9. Inclined structures are observed in the
conditionally averaged streamwise velocity field in the x − y plane (figure 4.9a).
Streamwise small scales are observed to be highly localized around the isocontour
< u >P,NW S +Ū = 0.4U∞ in both the streamwise – wall-normal and the spanwise
– wall-normal planes (figure 4.9b,c). The streamwise small scales are observed to
show the same spatial variation with the large-scale phase that was observed in the
LSM results (figure 4.4b). The wall-normal small scales (figure 4.9e) appear to
be strongest at higher heights and do not appear correlated to the near-wall streak
behavior. The spanwise small scales (figure 4.9f) are observed to sit at higher heights
than the isocontour < u >P,NW S +Ū = 0.4U∞, but do appear to be correlated to
the streak behavior, showing a spatial variation across the large-scale phase. The
number of 2D planes associated with each estimated phase γ∗ for the conditional
averaging technique with the NWS model is shown in table 4.6.

1 2 3 4 5 6 7 8
N x − y planes 137 164 115 174 165 136 167 175
N z − y planes 4683 3538 3510 3401 3758 3439 3525 4146
% x − y planes 2 2 1 2 2 2 2 2
% z − y planes 16 12 12 11 13 11 12 14

Table 4.6: The number of frames associated with each estimated phase γ∗ for
the P1D conditional averaging method applied to DNS data with a NWS model,
associated with figure 4.9. The numeric label corresponds to the index of γ∗ ∈ Γ∗,
with Γ∗ = [0, 2π) in intervals of π/4.

4.4 Sensitivity to parameters
There are many parameters that are built into the shown analytical technique. Here,
the effects of the filter size and the large-scale convection velocity will be explored;
further parameter studies are intended as future work.
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Figure 4.9: Conditional averaging results for near wall streaks in DNS. Large
(a,b) and small (c,d,e,f) scales are shown for the streamwise velocity field in the
streamwise – wall-normal plane (a,c,e,f) and the spanwise – wall-normal plane (b,d)
for the streamwise velocity field (a-d), the wall-normal velocity field (e), and the
spanwise velocity field (f). The black line in all panels indicates < u >P,NW S
+Ū = 0.4U∞, the assumed convection velocity of the near wall streaks (equivalently
c+ = 10).

Filter width
One important aspect of this analysis is the definition of the small scales using a
particular filter. The sensitivity of the LSM results to the width of the Gaussian filter
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for the PIV results are shown in figure 4.10. These results use the 1D projection
method, and the LSM, P1D equations for PIV data (equations 4.7 - 4.9) hold here,
with a modified definition of us and vs. The equations for filtering (equations 4.1
- 4.3) hold with a new definition of σG. The filter width is halved to 0.25δ (figure
4.10b,c), doubled to 1δ (figure 4.10d,e), and quadrupled to 2δ (figure 4.10f,g). As
the filter does not affect the conditionally averaged streamwise velocity field, it is only
shown once (figure 4.10a) for reference regarding its phase. The streamwise (figure
4.10b,d,f) and wall-normal (figure 4.10c,e,g) small-scale intensities are shown for
the respective filter sizes.

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.10: The conditionally averaged streamwise (a,b,d,f) andwall-normal (c,e,g)
velocity fields are shown in the streamwise – wall-normal plane from the LSM 1D
projection method applied to the PIV data. The small scales are defined using a
standard deviation of 0.25δ (a,b), 1δ (c,d), and 2δ (e,f) for the Gaussian filter.

The size of the filter is observed to have a strong relationship with the magnitude of
the intensity of the small scales, but does not substantially alter the overall behavior,
particularly in the 0.25δ case (figure 4.10b,c). In the larger filter cases (figure
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4.10d-g), the signature of the large scale shows some imprint on the streamwise
small-scale intensity, observable as a larger magnitude in the region associated with
the peaks of the large scale (x/δ ≈ 0, x/δ ≈ 2) than in the region between them
(x/δ ≈ 1). This behavior is not observed in the case with a filter width of 0.5δ
(figure 4.4), indicating a clean separation of scales. This type of contamination of
the large scale in the small scale signal is not observed in the DNS data, though a
systematic parameter study on the effect of filter size is identified as a necessary
topic for future work.

Critical layer height of large scale
Another parameter that is built into the conditional averaging method is the assumed
convection velocity of each large scale. The sensitivity to this parameter for the LSM
results are explored here using the PIV data. With all other parameters held fixed,
the critical layer of the large scale was considered with c = 0.7U∞ and c = 0.9U∞.
In this case, the results represent
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where the subscript LSM∗ represents that a modified LSM model is used with a
changed phase speed. Here y∗c represents the modified critical layer height corre-
sponding to the height at which the mean velocity field is equal to the modified
phase speed. The small-scale intensity is represented as

< u2
s >P,LSM∗ (x, y) =

1
ñ

∑
t̃

(
1
N

∑
ti

u2
s (x, y, ti)

∀ti s.t.
(

u(x, y∗c, ti) · ũLSM∗ (x, y∗c, t̃)
|u(x, y∗c, ti) | |ũLSM∗ (x, y∗c, t̃) |

)
= R∗ > Rth

) (4.32)

and

< v2
s >P,LSM∗ (x, y) =

1
ñ

∑
t̃

(
1
N

∑
ti

v2
s (x, y, ti)

∀ti s.t.
(

u(x, y∗c, ti) · ũLSM∗ (x, y∗c, t̃)
|u(x, y∗c, ti) | |ũLSM∗ (x, y∗c, t̃) |

)
= R∗ > Rth

)
.

(4.33)
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In figure 4.11, the streamwise velocity field (figure 4.11a,d), streamwise small-scale
intensity (figure 4.11b,e) and wall-normal small-scale intensity (figure 4.11c,f) are
shown for a 0.7U∞ phase velocity (figure 4.11a-c) and a 0.9U∞ phase velocity (figure
4.11d-f). In each panel the isocontour corresponding to < u >P,LSM∗ +Ū = c of the
large scale is shown as a solid black curve, while the isocontour corresponding to
< u >P,LSM∗ +Ū = 0.8U∞ is shown in a black dashed line.

(a)

(b) (c)

(d)

(e) (f)

Figure 4.11: 1D projection and conditional average of PIV data with an assumed
large-scale convection velocity of 0.7U∞ (a-c) and 0.9U∞ (d-f) . Streamwise (a,c,e,g)
and wall-normal velocity fields (b,d,f,h) are shown for the full velocity field (a,b,e,f)
and the small-scale intensity (c,d,g,h). The isocontour< u >P,LSM∗ +Ū = c is shown
in a solid black line in each panel, while the isocontour < u >P,LSM∗ +Ū = 0.8U∞
is shown as a dotted black line.

With the change of assumed phase velocity, the observed large scale structure is
observed to shift in figure 4.11(a) and figure 4.11(d) towards and away from the wall
respectively. The small scales show interesting behavior for both the 0.7U∞ and
0.9U∞ cases. In the 0.7U∞ case, the small-scale streamwise intensity figure 4.11(b)
shows an increased signature close to the wall. In the outer region of the boundary
layer, a localization of streamwise small scales is still observable at the isocontour
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< u >P,LSM∗ +Ū = 0.8U∞ (dashed line). No localization of small scales is observed
at the isocontour < u >P,LSM∗ +Ū = 0.7U∞. In the 0.9U∞ case, the small scale
signature is significantly weaker than what was observed in figure 4.4, but is still
observed to be somewhat localized near the isocontour < u >P,LSM∗ +Ū = 0.8U∞.
The wall-normal small-scale intensity is observed to be roughly bounded by the
isocontour < u >P,LSM∗ +Ū = 0.8U∞ for both cases figure 4.11(c,f). The number
of frames associated with each estimated phase γ∗ is shown in table 4.7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N frames 0.7U∞ 670 489 318 199 160 177 230 315 493 497 315 201 172 195 262 404
N frames 0.9U∞ 585 473 329 215 188 199 272 369 421 466 319 226 198 210 250 373
% frames 0.7U∞ 13 10 6 4 3 3 4 6 10 10 6 4 3 4 5 8
% frames 0.9U∞ 11 9 6 4 4 4 5 7 8 9 6 4 4 4 5 7

Table 4.7: The number of frames associated with each estimated phase γ∗ for the
P1D conditional averaging method applied to PIV data with an LSM model with
phase speeds of 0.7U∞ and 0.9U∞, associated with figure 4.11. The numeric label
corresponds to the index of γ∗ ∈ Γ∗, with Γ∗ = [0, 2π) in intervals of π/8.

4.5 Discussion and conclusions
Summary of the observed behavior

By leveraging the modeling of chapter 3 for a novel conditional averaging technique,
a consistent pattern of spatial organization is observed between the large and small
scales in both PIV andDNS data across many scales in the boundary layer. The exact
nature of this organization varies across the structures considered, but many of the
spatial trends are observed to agree with conditional averaging results of previous
researchers (Hutchins et al., 2011; Chung and McKeon, 2010; Talluru et al., 2014;
Baars, Hutchins, and Marusic, 2017), and with the conceptual drawings of Hutchins
and Marusic (2007), Marusic, Mathis, and Hutchins (2010), and Baars, Hutchins,
andMarusic (2017). The localization of the small scales about particular isocontours
of the large-scale flow is thought to be a novel contribution to the community. As
the data was presented organized by the large-scale flow field, here the full findings
for each averaged field, u, u2

s , v2
s , and w2

s , are summarized.

The streamwise velocity field is observed to consistently show evidence of inclined
structures, even in the P1D cases, in which the wall-normal coherence of the velocity
field is not specified. This is consistent with many previous findings in the literature
regarding the average shape of the large-scale fluctuating streamwise velocity field.
The features are observed to be fairly tall: the large-scale motions, for example,
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show coherence from very near the wall to approximately y = 0.7δ. This average
height could reflect the physical height of the structures, but could also indicate that
structures that sit at multiple heights are averaged together in this process. Any
large-scale structure with sufficient strength at the height where the projection is
evaluated, yc, can be included in the result, even if its centerline height is above or
below yc. Thus, a larger average height of the structure may be derived from this
method than would be observed instantaneously.

The streamwise small scales are observed to be highly localized along a particular
isocontour of the large-scale streamwise velocity field when conditionally averaged
on both the presence of LSMs and of NWSs (figures 4.4 and 4.9). In each case,
the isocontour where small scales were localized corresponded to the convection
velocity of the large scale: c/U∞ = 0.8 and c+ = 10. The phenomenon is observed in
both the streamwise and spanwise directions. It should be noted that this localization
was less apparent in the streamwise small scales of the LSM in the DNS results than
in the PIV results. This is hypothesized to be a result of a lack of convergence of
the DNS results due to a lack of independent realizations used for averaging; further
study of this discrepancy is planned as future work.

The streamwise small scales do not show the same localization behavior about the
isocontour corresponding to the phase speed of the VLSMs (figure 4.8). Instead, the
small scales are observed to be strongest at height at c+ = 10, where the near-wall
cycle sits, but are observed to be modulated in amplitude depending on the presence
of the VLSM. This phenomenon is observed in both the streamwise – wall-normal
and spanwise – wall-normal planes and is consistent with many previous findings
described in chapter 1, which identified amplitude modulation and consistent phase
relationships between the VLSMs and the near wall cycle (Mathis, Hutchins, and
Marusic, 2009; Jacobi and McKeon, 2011; Talluru et al., 2014; Baars, Hutchins,
and Marusic, 2017)

The spatial organization of the wall-normal small scales appears to be most strongly
correlated to the LSMs (figures 4.3, 4.4, and 4.6). In the outer region of the
boundary layer, the wall-normal small scales appear to be bounded by the isocontour
corresponding to the phase speed of the LSMs. The VLSMs show some amplitude
modulation trends with the wall-normal small scales, but no height variation is
observable. No correlation is identified between the wall-normal small scales and
the NWSs.

The spatial organization of the spanwise velocity small scales is correlated to the
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phase of both the VLSMs and NWSs. A spatial localization along the isocontour
corresponding to the phase speed of the VLSMs is observed for the spanwise small-
scale velocity features (figure 4.8), in a manner reminiscent of the findings for the
streamwise small scales in the LSM and NWS cases. The small-scale spanwise
intensity also shows spatial variation with the NWSs, but is localized at a higher
height than the NWS phase velocity (figure 4.9). The LSMs show some evidence of
amplitude modulation effects on the spanwise small scales near the wall, and some
mild spatial variation is observed in the outer region of the boundary layer (figure
4.6).

There is evidence that the height at which the small-scale intensity is observed
to be strongest is not an artifact of the assumed convection velocity of the large
scale that is built into the condition. This is perhaps most clear for the scales near
the wall. The streamwise small scales are consistently localized at the isocontour
< u >P +Ū = 0.4U∞ in both the VLSM and NWS results, while the spanwise
small scales are consistently localized at the isocontour < u >P +Ū = 0.6U∞.
However, this consistency of small-scale intensity height is also observable in the
outer boundary layer in figure 4.11. If the large scale is assumed to have a phase
speed of 0.7U∞ or 0.9U∞, the streamwise small scales still show some localization
at a height of 0.8U∞ and no clear localization at 0.7U∞ or 0.9U∞.

Hypotheses on the mechanisms underlying the results

The mechanisms for the large-scale – small-scale relationships observed in this
chapter are, to the author’s knowledge, not yet known. A hypothesis for at least one
relevant mechanism is that of a critical layer. The concept of a critical layer comes
from stability theory, in which one has a formal base flow that is a solution to the
Navier-Stokes equations. The critical layer of the mean velocity profile also plays an
important role in the modeled representations of the large scales shown in chapter 3
(McKeon and Sharma, 2010). Here, it is possible that the superposition of the mean
and a large-scale structure may act as a pseudo-base flow, such that ‘perturbations’
or, in the case of fully developed turbulence, persistent small scales are strongest
along isocontours where their phase speed is equal to the pseudo-base flow. Thus, if
the pseudo-base flow is a function of space and time, then the height at which small
scales are strongest will also be a function of space and time. 3D critical layers have
previously been considered in wall-bounded turbulent flows in the context of self-
sustaining mechanisms in the near wall cycle (Schoppa and Hussain, 2002), and in
self-sustaining, exact solutions to the Navier-Stokes equations (Wang, Gibson, and
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Waleffe, 2007; Hall and Sherwin, 2010; Park and Graham, 2015). The 3D critical
layers considered in previous works have included spanwise variations in the base
and pseudo-base flows, leading to spanwise-varying critical layers. They have not
included streamwise or temporal variations in the base or pseudo-base flows, which
are observed to be relevant in the results shown in this chapter. The physical and
mathematical implications of a streamwise-varying and temporally-varying critical
layer in the context of turbulent flows are, to the authors knowledge, not yet fully
understood, offering an opportunity for future work.

A key component of the critical layer hypothesis is that the phase speed of the
small scales, cs, defines the height relative to the pseudo-base flow at which they are
strongest. The heights of strong small-scale intensity are observed in figure 4.11 to be
robust to changing the assumed phase speed of the large scales, which is compatible
with the critical layer hypothesis. It also suggests that there may be dominant small
scales in the boundary layer that have preferential phase speeds. In the streamwise
velocity field, those small scales appear to preferentially sit at the height where
< u >P +Ū = 0.8U∞ = 22uτ and < u >P +Ū = 0.4U∞ = 10uτ, but in the spanwise
velocity field they appear fairly localized at < u >P +Ū = 0.6U∞ = 17uτ. These
findings call for more study to better understand the existence and phase speed of
dominant small scales in wall-bounded turbulent flows.

Number of frames used for conditional averaging

The number of frames used for conditional averaging was observed to vary substan-
tially depending on the projection length used. This is most notable in the NWS
results, where the projection length for the streamwise – wall-normal results was
20δ. For these results, the percentage of results used was less than 2%, rather than
approximately 100% that passed the threshold for many of the other scales. The
types of results observed appear to be quite robust across these drastic ranges of
included frames, but these findings certainly suggest the need for further study to
understand the sensitivity to projection length.

In addition, for the P1D conditional averaging results for both the PIV and the DNS
data, the number of instances of each estimated large scale phase, γ∗ is found to be
larger for values near 0 and π than for those near π/2 and 3π/2. This aligns with
the phase distribution observed in chapter 2 for cases where larger wavelengths are
being considered than the model assumes. The distribution is observed to be least
uniform for PIV cases and for the z − y plane and VLSM DNS cases, suggesting
that these results in particular could be improved through better estimation of the
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signal wavelength. This pattern is not observed for the P2D. The analysis of this
distinction in distribution given a 2D rather than 1D model is a topic of future work.

Averaging on a class of structure

As discussed in chapter 2, the projection method can act as a low-pass filter or
band-pass filter, meaning that in general it conditions on the presence of a range of
similarly-positioned large-scale structures rather than on a single scale. While this
complicates the interpretation of the results, it is consistent with the original intent
behind the models used for the projection. The models presented in chapter 3 were
intended to be representative of a class of structures, defined as a set of structures
with similar streamwise and spanwise wavelengths and wall-normal coherences.
That the method uses these models not as an exact constraint, but as a central target
about which some scatter is acceptable is therefore compatible with the original
intention behind the models’ construction.

Topics requiring future work

The observed small-scale behavior is rich and shows significant opportunity for
further study. The distinct behavior of the u2

s , v2
s , and w2

s small scales can be
tied into previous observations of both the velocity and vorticity fields in turbulent
boundary layers: a strong u2

s , w2
s signature near the wall may be connected to the

break-down of streaks observed by previous researchers (Kline et al., 1967), while
the strong u2

s , v2
s signature in the outer region of the boundary layer may connect to

observations of hairpin vortices (Theodorsen, 1952; Adrian,Meinhart, andTomkins,
2000).

The sensitivity of these results to the parameters used to acquire them is a topic
that requires further study. Some key parameters that require further study are the
projection length, model parameters (λ̃ and c), the filter width, and the filter type.
Studies of the effects of these parameters are part of ongoing work. Additionally,
the results shown here were for 2D planes of data in which the phase of only one
of the two wall-parallel spatial variables was considered. Averaging on both the
streamwise and spanwise phases could aid in the interpretation of the results and
could lead to a useful three-dimensional view of the small scale intensity in physical
space.

Finally, the average difference between the streamwise velocity field, u, and the
model, ũ, could provide insight into the accuracy of the model in representing the
large-scale flow field and the strength of the projection condition. As an example,
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this residual would be calculated for the P2D case with an LSM model as

< ur >P2D,LSM (x, y) =
1
ñ

∑
t̃

(
1
N

∑
ti

(
u(x, y, ti) − ũLSM (x, y, t̃)

)
∀ti s.t.

(
u(x, y, ti) · ũLSM (x, y, t̃)
|u(x, y, ti) | |ũLSM (x, y, t̃) |

)
= R∗ > Rth

) (4.34)

The calculation of the residual from the projection is topic of current and on-going
work.
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C h a p t e r 5

PASSIVE SCALAR TRANSPORT

5.1 The aero-optic problem
One application in which turbulent structures and their interactions have detrimen-
tal effects is the field of aero-optics. When an optical beam passes through a
variable-density turbulent boundary layer, the beam may become distorted and ‘jit-
ter’, meaning that the beam path itself becomes a function of time. The final focus
of this thesis was to probe whether velocity structures and their interactions were
correlated to this deflection, and if so, to use that correlation to illuminate basic
physics regarding the relationship between coherent structures and the transport of
scalars in turbulent boundary layers. In particular, it was of interest to evaluate
whether the energetic structures modeled in chapter 3 and the interaction of those
structures with the small scales in the manner identified in chapter 4 were relevant
to the deflection of the optical beam.1

While the aero-optic problem is generally studied in compressible turbulent bound-
ary layers, the problem explored in this thesis focuses on an incompressible, heated
turbulent boundary layer. The lower flow speeds of this set up allow for higher-
resolution PIV studies of the turbulent velocity field. Details of the set up are given
in chapter 2. While the physics of incompressible, heated flows and compressible
flows have important distinctions, the deflection of an optical beam is observed to
share similar characteristics in the two flows. In particular, a normalized spectrum
of the root mean squared (RMS) of the deflection angle of the Malley probe was
calculated in the incompressible, heated case and a number of compressible cases.
The normalized spectrum was defined as

φ̂norm(Stδ) =
φ̂( f )

ρa
ρSL

δ∗

U∞

(
M2 + D1

∆T
T∞
,
) (5.1)

where ρSL is the density of air at sea level and standard conditions, δ∗ is the
displacement thickness, M is the Mach number of the flow ∆T is the difference in

1The deflection angle spectrum results were published as part of Smith et al. (2014), some
instantaneous visualizations related to this work were published as part of Gordeyev et al. (2015),
the results of the MP conditional averaging technique were published as part of Saxton-Fox et al.
(2015), and the results of the MP / P1D conditional averaging technique, as well as the models of the
velocity field, were published as part of Saxton-Fox and McKeon (2017b).
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temperature between the plate and the free stream, T∞ is the temperature in the free
stream, and St is the Strouhal number, defined here as Stδ =

f δ
U∞

(Cress, 2010). Hat
symbols indicate thatWelch’s power spectral density estimate has been applied. The
value of D1 is experimentally identified such that the peak amplitude of the spectrum
is a constant value across experiments and was observed by Cress (2010) to be a
function of the Mach number. Figure 5.1 shows the deflection angle spectra for a
wide range of Reynolds and Mach numbers, normalized by the peak value identified
at a Strouhal number near 0.8. The Mach numbers range from 0.03 in the present
set up, to 0.41 at the highest noted Reynolds number. The blue curve in figure 5.1
corresponds to the present data, while the other curves come from work done by in
the group of a collaborator, Professor Stanislav Gordeyev at the University of Notre
Dame.

Figure 5.1: Spectra of the Malley probe signal over a large range in Reynolds and
Mach numbers. The Mach number varies between 0.03 and 0.41 across the cases
shown. The collapse of the spectra highlights the relevance of the incompressible,
heated experiments to the compressible deflection behavior. Present data shown in
blue, while other data comes from the University of Notre Dame.

The spectra are observed to collapse well outside of the highest frequencies, which
show some drop off at lower Reynolds numbers. This suggests a consistency in
the dominant scales that affect the Malley probe deflection. The first evidence
that particular turbulent structures affect the Malley probe came from a deflection
convection velocity (Malley, Sutton, and Kincheloe, 1992). The Malley probe
consists of two beams aligned in the streamwise direction, allowing a convection
velocity to be identified as the deflections occur in each beam in sequence. This
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convection velocity was identified as 0.83U∞ in this flow (consistent within 5%
across a wide range of Reynolds numbers identified by other researchers (Gordeyev
et al., 2014)), placing the critical flow events in the outer region of the flow. Thus,
the outer region behavior will be of focus in this chapter, making the LSM model
of chapter 3 and the P11D conditional averaging with an LSM model of chapter
4 particularly relevant. Because only the LSM model will be considered in this
chapter, the specification of the model will be dropped and the method will be
referred to simply as the P1D conditional average.

As highlighted in chapter 2, the deflection of the Malley probe beam can be seen
as an integral measurement of the streamwise gradient of density. This effort aims
to first identify the velocity features that are directly correlated to deflections in
the Malley probe beam, and then use those flow features to approximate the local
density field. Towards this end, conditional averages will be used both to relate the
Malley probe signal to the velocity field, but also to determine the effect of the scale
interaction behavior observed in chapter 4 on the Malley probe signal. Modeling
will then be used to represent both the velocity and scalar fields. The LSM model
of chapter 4 will be relevant, and new small-scale models will be proposed based
upon experimental data.

5.2 Correlation between velocity field and aero-optic distortion
Conditional averaging velocity field on scalar signal
As described in chapter 2, a heated turbulent boundary layer was studied with
sufficiently mild heating that the temperature could be considered a passive scalar.
The Prandtl number of the flow was 0.7, which suggested that the behavior of the
streamwise velocity field and scalar field would be fairly similar. The Malley probe
sensor outputted an integral measure of the streamwise density gradients in the flow,
as derived in chapter 2

φ(t) ≈
KGD

1 + KGDna

∫ y f

yi

∂ρ

∂x
(x0, y, z0, t)dy. (5.2)

The velocity field was conditionally averaged on φ < −0.5σ (figure 5.2a,b) and
φ > 0.5σ (figure 5.2c,d) where σ is the standard deviation of φ(t) (9.5 µrad). The
streamwise velocity field was averaged on these two conditions such that

< u >−MP=
1
N

∑
ti

u(x, y, ti) ∀ti s.t. φ(ti) < −0.5σ (5.3)
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and
< u >+MP=

1
N

∑
ti

u(x, y, ti) ∀ti s.t. φ(ti) > 0.5σ. (5.4)

The same procedure was used on the wall-normal velocity field such that

< v >−MP=
1
N

∑
ti

v(x, y, ti) ∀ti s.t. φ(ti) < −0.5σ (5.5)

and
< v >+MP=

1
N

∑
ti

v(x, y, ti) ∀ti s.t. φ(ti) > 0.5σ (5.6)

where N is the number of frames that satisfied the condition and the superscripts −
and + indicate upstream and downstream deflections respectively. These conditions
isolated velocity structures that appeared simultaneously with moderately-large up-
stream (figure 5.3a,b) and downstream (figure 5.3c,d) deflections of the Malley
probe beam path. This is equivalent to moderately-large negative (figure 5.3a,b)
and positive (figure 5.3c,d) streamwise density gradients, integrated along the beam
path. The Malley probe passes through the flow at x/δ = 0.

Gradients are observed in the velocity fields seen in figure 5.2 at the point where
the Malley probe passes through the flow. For upstream deflections of the Malley
probe, which are associated with negative streamwise density gradients, a negative
streamwise gradient is observed in the streamwise velocity field in figure 5.2(a),
while a positive streamwise gradient is observed in the wall-normal velocity field
in figure 5.2(b). For downstream deflections, associated with positive streamwise
density gradients, a positive streamwise gradient of the streamwise velocity field
is observed in figure 5.2(c) and a negative streamwise gradient of the wall-normal
velocity field is observed in figure 5.2(d). These findings suggest that, on average,
∂ρ/∂x ∼ ∂u/∂x and ∂ρ/∂x ∼ −∂v/∂x. Note that the shape of the gradients
observed in the averaged velocity fields in figure 5.2 would not be expected to be
observed instantaneously. The vertically aligned streamwise gradients reflect the
integral nature of the Malley probe measurement: gradient events anywhere along
the beam path can lead to a beam deflection and are therefore averaged together.

The averaged velocity fields in figure 5.2 show some suggestion that multiple struc-
tures may be relevant to the Malley probe deflection. Near x/δ = 0, localization is
observed in the wall-normal fields, but some coherence extends outside of the field
of view for both the streamwise and wall-normal fields. It is therefore of interest to
consider filtering the result into large and small scales.
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(a) (b)

(c) (d)

Figure 5.2: Conditional averages of (a,c) the streamwise velocity fluctuations < u >
/U∞ and (b,d) the wall-normal velocity fluctuations < v > /U∞ given φ < −0.5σ
(a,b) and φ > 0.5σ, respectively corresponding to a moderately-large negative and
positive streamwise gradient of density along the line x = 0. Distinct scales are
observed of a large-scale nature in the streamwise velocity field and a small-scale
nature in the wall-normal velocity field.

A high-pass Butterworth filter was implemented on theMalley probe temporal signal
with a cutoff frequency of 300 Hz, or equivalently an approximate cutoff streamwise
wavelength of λx = 1, chosen to match previous work by Mathis, Hutchins, and
Marusic (2009), who used a spectral filter with a cutoff wavelength of 1δ to separate
large and small scales. Future work includes testing the sensitivity of the results
to the specific cut-off frequency chosen, and testing other filter types, including the
Gaussian filter used throughout the rest of the thesis. The high-pass filtered Malley
probe signal was defined as φs (t) and the new conditional averages were defined as

< u >−MPs
=

1
N

∑
ti

u(x, y, ti) ∀ti s.t. φs (ti) < −0.5σ(φs) (5.7)
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and
< u >+MPs

=
1
N

∑
ti

u(x, y, ti) ∀ti s.t. φs (ti) > 0.5σ(φs) (5.8)

for the streamwise velocity field and

< v >−MPs
=

1
N

∑
ti

v(x, y, ti) ∀ti s.t. φs (ti) < −0.5σ(φs) (5.9)

and
< v >+MPs

=
1
N

∑
ti

v(x, y, ti) ∀ti s.t. φs (ti) > 0.5σ(φs) (5.10)

for the wall-normal velocity field. In figure 5.3, the conditionally-averaged, filtered
results are shown for upstream deflections of the Malley probe (figures 5.3a,b) and
downstream deflections of the Malley probe (figures 5.3c,d) for both the streamwise
velocity field (figure 5.3a,c) and the wall-normal velocity field (figure 5.3b,c).

The gradients that were observed under the full Malley probe average in figure 5.2
remain clear in the wall-normal field with the high-pass filteredMalley probe (figure
5.3b,d), but disappear in the streamwise field (figure 5.3a,c). This suggests that small
scales are associated with this gradient in the wall-normal field, while perhaps larger
scales are associated with the gradient observed in the streamwise velocity field in
figure 5.2(a,c). In figure 5.3(a), the streamwise velocity field is observed to be
dominated by a tall region of low-momentum fluid. In figure 5.3(c), there is some
evidence of alternating positive and negative inclined features in the streamwise
velocity field, with a shear layer occurring at roughly x/δ = 0 and y/δ = 0.3. In
the wall-normal velocity field, a structure with a distinct streamwise length scale is
observed to be correlated to both negative (figure 5.3b) and positive (figure 5.3d)
streamwise density gradients. Fourier transforms along a streamwise cut of both
figure 5.3(b) and figure 5.3(d) identify a dominant streamwise wavelength of 0.36δ.
The height of the structure is observed to span the full boundary layer thickness.
The phase of this scale is distinct in figure 5.3(b) and figure 5.3(d), such that positive
streamwise gradients in the wall-normal velocity field are associated with negative
streamwise gradients in the density field, and vice versa. While the features in figure
5.3(d) are slightly weaker in amplitude than those in figure 5.3(b), they are observed
to be equally coherent, a distinction from the streamwise velocity field.

Conditional averaging velocity field on both scale interaction and scalar signal
The presence of multiple velocity scales in the conditionally averaged flow fields
in figure 5.3 suggested that the scale interaction phenomenon described in chapter



106

(a) (b)

(c) (d)

Figure 5.3: Conditional averages of (a,c) the streamwise velocity fluctuations <
u >MPs /U∞ and (b,d) the wall-normal velocity fluctuations < v >MPs /U∞ given
φs < −0.5σ (a,b) and φs > 0.5σ, respectively corresponding to a moderately-large
negative and positive streamwise gradient of density along the line x = 0. Distinct
scales are observed of a large-scale nature in the streamwise velocity field and a
small-scale nature in the wall-normal velocity field.

4 could be relevant to this problem. To explore this connection, the MP / P1D

conditional averaging technique described in chapter 2 was used, simultaneously
conditioning on both the Malley probe deflection and the projection of the data onto
a 1D model of an LSM. The results for an upstream deflection are given by

< u >−MP,P (x, y) =
1
ñ

∑
t̃

(
1
N

∑
ti

u(x, y, ti)

∀ti s.t. φs (ti) < −0.5σ and
(

u(x, yc, ti) · ũ(x, yc, t̃)
|u(x, yc, ti) | |ũ(x, yc, t̃) |

)
= R∗ > Rth

)
(5.11)
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and

< v >−MP,P (x, y) =
1
ñ

∑
t̃

(
1
N

∑
ti

v(x, y, ti)

∀ti s.t. φs (ti) < −0.5σ and
(

u(x, yc, ti) · ũ(x, yc, t̃)
|u(x, yc, ti) | |ũ(x, yc, t̃) |

)
= R∗ > Rth

)
(5.12)

for the streamwise and wall-normal velocity fields respectively. The velocity fields
were additionally filtered using the spatial Gaussian filter described in chapters 2
and 4. These small-scale velocity fields were averaged as

< us >
−
MP,P (x, y) =

1
ñ

∑
t̃

(
1
N

∑
ti

us (x, y, ti)

∀ti s.t. φs (ti) < −0.5σ and
(

u(x, yc, ti) · ũ(x, yc, t̃)
|u(x, yc, ti) | |ũ(x, yc, t̃) |

)
= R∗ > Rth

)
,

(5.13)

and

< vs >
−
MP,P (x, y) =

1
ñ

∑
t̃

(
1
N

∑
ti

vs (x, y, ti)

∀ti s.t. φs (ti) < −0.5σ and
(

u(x, yc, ti) · ũ(x, yc, t̃)
|u(x, yc, ti) | |ũ(x, yc, t̃) |

)
= R∗ > Rth

)
.

(5.14)

Note that, unlike in chapter 4, the small-scale fields are not squared before averaging.
The equations for a downstream deflection are not shown here, but differ from
equations 5.11 to 5.14 simply by the condition φs (ti) > 0.5σ.

Figures 5.4 and 5.5 show a compilation of eight conditionally averaged fields using
the MP / P1D conditional averaging technique with a negative and positive Malley
probe deflection angle respectively. The black line in all frames represents an
isocontour of the conditionally averaged streamwise velocity field in the laboratory
frame < u >MP/P1D +Ū = 0.8U∞, where Ū is the mean streamwise velocity field.
The dashed lines in figures 5.4(c,d) and 5.5(c,d) show the location of the Malley
probe relative to the velocity field for each panel.

Figures 5.4 and 5.5 show evidence that the scales observed in figure 5.3 interact.
The P1D projection method returns the large-scale streamwise and wall-normal
scales, paneled by phase, in figures 5.4(a,b) and 5.5(a,b). In figures 5.4(c,d) and
5.5(c,d), the small-scale streamwise and wall-normal velocity fields are shown.
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(a)

(b)

(c)

(d)

Figure 5.4: Conditional averages of (a) the streamwise velocity field < u >MP/P1D

/U∞, (b) the wall-normal velocity field < v >MP/P1D /U∞, (c) the small-scale
streamwise velocity field < us >MP/P1D /U∞ and (d) the small scale wall-normal
velocity field < vs >MP/P1D /U∞ given two conditions. The first condition is
φs < −0.5σ at the x locations highlighted with dashed black lines. The second is
the P1D condition described in chapter 2 and 4 for an LSMmodel. The projection and
conditional averaging are done over eight phases of the model and the eight panels
are shown stitched together. The black line in all panels represents < u >MP/P1D
+Ū = 0.8U∞.

The small scale observed in figure 5.3(b,d) is still observed in figures 5.4(d) and
5.5(d), but rather than being extended through the height of the boundary layer, it
is observed to be more compact in the wall-normal direction. Additionally, it is
observed to sit at a different height from the wall depending on the phase of the
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(a)

(b)

(c)

(d)

Figure 5.5: Conditional averages of (a) the streamwise velocity field < u >MP/P1D

/U∞, (b) the wall-normal velocity field < v >MP/P1D /U∞, (c) the small-scale
streamwise velocity field < us >MP/P1D /U∞ and (d) the small scale wall-normal
velocity field < vs >MP/P1D /U∞ given two conditions. The first condition is
φs > 0.5σ at the x locations highlighted with dashed black lines. The second is the
P1D condition described in chapter 2 and 4 for an LSM model. The projection and
conditional averaging are done over eight phases of the model and the eight panels
are shown stitched together. The black line in all panels represents < u >MP/P1D

+Ū = 0.8U∞.

large scale velocity field (figures 5.4a and 5.5a). It appears to approximately follow
the isocontour < u >MP/P1D +Ū = 0.8U∞, supporting the critical layer hypothesis
outlined in chapter 4. The only significant difference between figures 5.4 and 5.5
is in the small-scale wall-normal velocity fields (figures 5.4d and 5.5d), where
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the orientation of the small-scale wall-normal structure reverses surrounding the
Malley probe location. The streamwise gradient of the wall-normal velocity field is
observed to be positive at the Malley probe location for figure 5.4(d) and negative
at the Malley probe location for figure 5.5(d). This is shown more clearly in figure
5.6, where the conditional average of the streamwise gradient of the wall-normal
velocity field is shown for each sense of φ.

(a)

(b)

Figure 5.6: The conditional average of the streamwise derivative of the wall-normal
velocity field for φs < −0.5σ (a) and φs > 0.5σ (b).

Table 5.1 lists the number of PIV frames that went into making figures 5.4 and 5.5,
as well as the percentage of total frames that this represents. Approximately 30%
of frames were identified as meeting the conditions. Table 5.2 provides the number
of frames associated with each estimated phase γ∗ for figures 5.4 and 5.5.

φs < −0.5σ φs > 0.5σ
N frames 1420 1637
% frames 28 32

Table 5.1: Number and percentage of frames used for the MP / P1D conditionally-
averaged results of figures 5.4 and 5.5.

The variable height of the small scales places them coincident with strong shear
layers in the streamwise velocity field (see figure 3.1 in chapter 3). The localization
of the small-scale coherence in v on the strong shear layer suggests that it may
be the interaction between a gradient in u and a gradient in v that is ultimately
most correlated to strong gradients in the density field. The overlap of the u and
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1 2 3 4 5 6 7 8
N frames φs < −0.5σ: 271 188 119 120 282 208 104 128
N frames φs > 0.5σ: 315 220 123 172 303 218 119 166
% frames φs < −0.5σ 5 4 2 2 6 4 2 2
% frames φs < −0.5σ 5 4 2 2 6 4 2 2

Table 5.2: The number of frames associated with each estimated phase γ∗ for the
MP / P1D conditional-averaging method applied to PIV data with an LSM model,
associated with figures 5.4 and 5.5. The numeric label corresponds to the index of
γ∗, with γ∗ = [0, 2π) in increments of π/4.

v gradients also strengthens the hypothesis that a single strong gradient event is
dominating the Malley probe signal, allowing the integral measurement to behave
similarly to a point measurement.

Asmentioned above, the small-scalewall-normal velocity structures in figures 5.4(d)
and 5.5(d) are significantly more compact in the wall-normal direction than those
in figure 5.3(b,d). The large wall-normal extent of the structure observed in figure
5.3(b,d) is hypothesized to be the result of averaging the compact structures observed
in figures 5.4(d) and 5.5(d) at many heights in the boundary layer, effectively
smearing the small scale in y such that it appears much taller in average than it
would instantaneously. This process is schematically shown in figure 5.7.

Figure 5.7: A schematic of the smearing of several compact small scale velocity
structures into one tall averaged structure when the phase of the large scale is not
accounted for. The red line represents the Malley probe, the black line shows the
wall, the blue curve represents the edge of the boundary layer, and the red and blue
ovals represent high-speed and low-speed wall-normal velocity structures. Each
pair of structures is assumed to occur at a different instant, and their superposition
here is associated with a smearing on average.
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5.3 Modeling using resolvent analysis
Modeling individual velocity scales
Resolvent analysis was used to model the wall-normal coherence of the two velocity
features in figure 5.3(a,b,d). The feature in the streamwise velocity field (figure 5.3a)
was estimated as having a wavelength of 4δ based upon the structure observed in
figure 5.3(a), characteristics of bulges from Kovasznay, Kibens, and Blackwelder,
1970, and statistical features of large scale motions described by Monty et al., 2009.
The structure is assumed to be the same LSM described in chapters 3 and 4. The
scale observed in the wall-normal velocity field of figure 5.3(b,d) was estimated as
having a streamwise wavelength of 0.36δ (from the Fourier transform performed on
figure 5.3b,d). Its spanwise wavelength was estimated to be equal to its streamwise
wavelength, based upon some preliminary results using a 2D optical sensor called
a Shack Hartmann sensor.2 A convection velocity of the small scale was selected
to be 0.8U∞ for consistency with the results shown in chapter 4, where isocontours
of 0.8U∞ were observed to align with strong small-scale activity. However, as
the convection velocity measured by the Malley probe was 0.83U∞, fine-tuning
of the assumed convection velocity may be considered in future work to improve
the estimation. The amplitude of the large scale mode, χLSM was here set such
that the amplitude of the large-scale streamwise velocity field matched that of the
conditionally averaged result of figure 5.4(a). The choice of the amplitude of the
small scale, χs, will be explained in the following subsection.

Figure 5.8 shows a streamwise – wall-normal cut of the model for the LSM (figure
5.8a,b) and the small scale (figure 5.8c,d) in the streamwise velocity field (figure
5.8a,c), and in the wall-normal velocity field (figure 5.8b,d). The models of both
scales are more compact in the wall-normal direction than the Malley probe condi-
tionally averaged result of figure 5.3, but they appear reasonably similar in the size
of their wall-normal coherence to the results of conditionally averaging on both the
LSM projection and on the Malley probe deflection, in figures 5.4 and 5.5.

Modeling the interaction of the identified scales
The scale interaction shown in figures 5.4 and 5.5 was modeled using multiple resol-
vent modes and phase information derived from amplitude modulation observations
discussed at a high level in chapter 1 (Mathis, Hutchins, and Marusic, 2009; Jacobi

2This measurement and analysis was done at Caltech in the Merrill wind tunnel in collaboration
with Stanislav Gordeyev and Nicholas DeLuca at the University of Notre Dame. The results
mentioned were identified within private communication between the collaborators.
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(a)

(b)

(c)

(d)

Figure 5.8: Models of the LSM (a,b) and small-scale (c,d) fluctuating velocity
structures observed in figure 5.3, shown in the wall-normal – streamwise plane.
Streamwise (a,c) and wall-normal (b) velocity fields are shown. Resolvent analysis
is used to identify the wall-normal coherence of the models. The black line in (a)
indicates ũLSM +Ū = 0.8U∞ where ũLSM is the fluctuating streamwise velocity field
of the large scale resolvent mode.

and McKeon, 2013). A total of seven resolvent modes were used, with three values
of kx and kz. The modes consisted of three ‘triads’, sets of modes in which two of
the wavenumbers sum to the third. Triads allow for direct comparison to amplitude
modulation statistics, as discussed by Duvvuri and McKeon (2015). All three triads
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consist of the same large scale, called mode 1, with an additional two small-scale
modes, called modes 2 and 3. The wavenumbers, phase velocities, temporal fre-
quencies, and phases of the modes are shown in table 5.3. The modes are listed in
terms of the wavenumbers rather than wavelengths to better see their triadic rela-
tionship, but that mode 2 at a wavespeed of 0.8U∞ corresponds to the small-scale
model shown in 5.8(c). The phase, γ, is here not defined as γ = −ωt but is instead
considered separately from the temporal term, in order to match temporally-constant
phase relationships observed in the literature.

Mode kxδ kzδ c/U∞ ωδ/U∞ γ

1 π/2 2π 0.800 32.5 π

0.780 352.0
2 5.56π 5.56π 0.800 360.9 0

0.820 370.0
0.778 319.4 π

3 5.06π 3.56π 0.800 328.5 3π/2
0.822 337.5 2π

Table 5.3: Set of wavenumbers for three triads of resolvent modes used to model
the scale interaction observed in figures 5.4 and 5.5. Modes 2 and 3 each have
three different wavenumbers considered, allowing them to be observable at different
heights from the wall.

All three triads have modes with the same spatial wavenumbers. The distinction
between the three triads comes from the temporal frequencies, ω, of modes 2 and 3,
and in the phases of mode 3. The phase speed, c, of mode 2 was set to range from
0.78U∞ to 0.82U∞ in increments of 0.02U∞. This set the temporal frequencies of
mode 2 through the relation ω = ckx . The temporal frequencies of mode 3 were
set such that ω3 = ω2 − ω1. The phase of mode 1 was set to π and the phase of
mode 2 was set to 0 for all convection velocities. The phase of mode 3 was set to
vary such that the sum of phases 2 and 3 was in phase with mode 1 at their slowest
convection velocity and out of phase with mode 2 at their fastest convection velocity.
The amplitude of each small-scale mode was set to be equal, and the sum of the
small scales was set such that the amplitude of the summed small-scale wall-normal
velocity field matched the amplitude of the small-scale wall-normal velocity field
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of figure 5.4(d). The sum of the streamwise modeled small scales is given by

Σũs =

3∑
i=1

(
Re[û2,i (y)(ei(kx,2 x+kz,2z−ω2,it+γ2) + ei(kx,2 x−kz,2z−ω2,it+γ2)]

)
+

3∑
i=1

(
Re[û3,i (y)(ei(kx,3 x+kz,3z−ω3,it+γ3,i ) + ei(kx,3 x−kz,3z−ω3,it+γ3,i )]

)
.

(5.15)

For the wall-normal small scales, the sum is given by

Σṽs =

3∑
i=1

(
Re[v̂2,i (y)(ei(kx,2 x+kz,2z−ω2,it+γ2) + ei(kx,2 x−kz,2z−ω2,it+γ2)]

)
+

3∑
i=1

(
Re[v̂3,i (y)(ei(kx,3 x+kz,3z−ω3,it+γ3,i ) + ei(kx,3 x−kz,3z−ω3,it+γ3,i )]

)
.

(5.16)

Figure 5.9 shows the streamwise fluctuating velocity field for mode 1, which is
equivalent to the LSM model described in chapter 3. Figure 5.9(b,c) shows the
streamwise (Σũs) and wall-normal (Σṽs) velocity fields that are the result of the
superposition of the six small scale modes. The wall-normal small scales in (c) are
observed to appear to have a variation in their height as a function of the large-scale
phase, as is observed in figures 5.4 and 5.5. The envelope of the structures seen in
figure 5.9(b,c) will stay coherent in time because, though the individual small scale
modes have differing phase speeds, the sum of mode 2 and mode 3 has the same
phase speed as mode 1.

In figure 5.10, the large and small scales are summed to examine the full flow field in
the streamwise (figure 5.10a,b) and wall-normal (figure 5.10c) velocity fields. The
sum of the fluctuating streamwise velocity modes is defined as

ũ =Re
[
û1(y)(ei(kx,1 x+kz,1z−ω1t+γ1) + ei(kx,1 x−kz,1z−ω1t+γ1)

]

+

3∑
i=1

(
Re

[
û2,i (y)(ei(kx,2 x+kz,2z−ω2,it+γ2) + ei(kx,2 x−kz,2z−ω2,it+γ2)

] )
+

3∑
i=1

(
Re

[
û3,i (y)(ei(kx,3 x+kz,3z−ω3,it+γ3,i ) + ei(kx,3 x−kz,3z−ω3,it+γ3,i )

] ) (5.17)
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(a)

(b)

(c)

Figure 5.9: The interaction of the large and small scale velocity structures, shown
in figures 5.4 and 5.5, is modeled using seven resolvent modes. The model of
the large scale streamwise velocity mode is shown in (a) for reference, while (b,c)
represent the streamwise and wall-normal fluctuating velocity fields, obtained from
the superposition of six small scale resolvent modes with phases set from amplitude
modulation statistics. Reasonable agreement is seen with figures 5.4 and 5.5.

while the streamwise sum including the mean is defined as

Ũ =Ū (y) + Re
[
û1(y)(ei(kx,1 x+kz,1z−ω1t+γ1) + ei(kx,1 x−kz,1z−ω1t+γ1)

]

+

3∑
i=1

(
Re

[
û2,i (y)(ei(kx,2 x+kz,2z−ω2,it+γ2) + ei(kx,2 x−kz,2z−ω2,it+γ2)

] )
+

3∑
i=1

(
Re

[
û3,i (y)(ei(kx,3 x+kz,3z−ω3,it+γ3,i ) + ei(kx,3 x−kz,3z−ω3,it+γ3,i )

] )
.

(5.18)



117

For the wall-normal velocity field, the full sum is given by

ṽ =Re
[
v̂1(y)(ei(kx,1 x+kz,1z−ω1t+γ1) + ei(kx,1 x−kz,1z−ω1t+γ1)

]

+

3∑
i=1

(
Re

[
v̂2,i (y)(ei(kx,2 x+kz,2z−ω2,it+γ2) + ei(kx,2 x−kz,2z−ω2,it+γ2)

] )
+

3∑
i=1

(
Re

[
v̂3,i (y)(ei(kx,3 x+kz,3z−ω3,it+γ3,i ) + ei(kx,3 x−kz,3z−ω3,it+γ3,i )

] )
.

(5.19)

The large-scale streamwise feature is still observable in (figure 5.10a,b) (compared
to figure 3.2 in chapter 3, for example), but the edges of the large scale feature are
observed to be corrugated. More corrugation is observed in figure 5.10(a) in the
region of positive fluctuating shear (x/δ ≈ 2 − 4) than in the region of negative
fluctuating shear (x/δ ≈ 0 − 2). This occurs due to the phase relationship between
the large and small scales that was derived from amplitude modulation statistics.
The observation of strong small scales at shear layers in themodel is compatible with
observations ofBaars, Hutchins, andMarusic (2017) in fully-turbulent, experimental
flows. The large-scale wall-normal velocity feature is also observable, but the small
scales are observed to be easily distinguishable through the large scale mode.

Modeling the scalar field
To obtain an approximation of the scalar field corresponding to the deflection of the
Malley probe, a passive scalar resolvent model was utilized. As discussed in chapter
2, the Navier-Stokes and passive scalar equations were reformulated in a resolvent
framework, allowing for scalar modes to be computed alongside velocity modes.
The Prandtl number was set at 0.7 and the boundary conditions of the scalar were
set to correspond to the largest value of heating at the wall, with a decaying mean
temperature profile as one reached the free stream.

The mean temperature field used for formulating the scalar resolvent is given in
chapter 2. In the present work, the fully heated profile of Antonia, Danh, and Prabhu
(1977) was used, as it was at the appropriate Reynolds number and represented a
canonical passive scalar transport flow, leading to a generalizable result. However,
future work will consider the experimental mean at the measurement location, which
includes the cool internal layer. The two profiles match in the region of the flow
considered, suggesting that the final result should be similar, but the influence of
a change in the mean on the final scalar modes warrants further study. The mean
profile came from a flow with a Prandtl number of 0.7.
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(a)

(b)

(c)

Figure 5.10: The sum of the large and small scale velocity fields of figure 5.9 is
shown for the streamwise velocity field (a,b) and the wall-normal velocity field (c).
The mean velocity field is included in (b).

The set of modes and phases used for figures 5.9 and 5.10 were used to identify the
corresponding scalar field, given by

T̃ ′ =Re
[
T̂1(y)(ei(kx,1 x+kz,1z−ω1t+γ1) + ei(kx,1 x−kz,1z−ω1t+γ1)

]

+

3∑
i=1

(
Re

[
T̂2,i (y)(ei(kx,2 x+kz,2z−ω2,it+γ2) + ei(kx,2 x−kz,2z−ω2,it+γ2)

] )
+

3∑
i=1

(
Re

[
T̂3,i (y)(ei(kx,3 x+kz,3z−ω3,it+γ3,i ) + ei(kx,3 x−kz,3z−ω3,it+γ3,i )

] )
,

(5.20)

shown in figure 5.11(c). The sumof the fluctuatingmodel with themean temperature
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profile gives

T̃ =T̄ (y) + Re
[
T̂1(y)(ei(kx,1 x+kz,1z−ω1t+γ1) + ei(kx,1 x−kz,1z−ω1t+γ1)

]

+

3∑
i=1

(
Re

[
T̂2,i (y)(ei(kx,2 x+kz,2z−ω2,it+γ2) + ei(kx,2 x−kz,2z−ω2,it+γ2)

] )
+

3∑
i=1

(
Re

[
T̂3,i (y)(ei(kx,3 x+kz,3z−ω3,it+γ3,i ) + ei(kx,3 x−kz,3z−ω3,it+γ3,i )

] )
,

(5.21)

shown in figure 5.11(b). The same ratio of weights is used for the scalar field as was
used for the streamwise velocity field. Due to the sum of the large and small scales,
the scalar field is observed to be corrugated. The scalar gradient, shown in figure
5.11(c) is therefore wavy, leading to streamwise density gradients that can deflect
the Malley probe.

A similarity is observed between the streamwise velocity field and the scalar field.
Because of the opposite boundary conditions on U and T (slowest and warmest
near the wall, fastest and coldest away from the wall), the streamwise velocity and
temperature fluctuating modes in figure 5.9 and 5.11 have opposite phase. When
summed with the mean profiles of U and T , coincident bulges of low momentum
and high temperature are observed. These bulges correspond to both uniform
momentum and temperature zones with gradients of both velocity and temperature
along their backs. This is compatible with the ramp-cliff observations made using
cold wires by Chen and Blackwelder (1978). Understanding the similarity between
the streamwise velocity field and the scalar field within the context of the resolvent
operator and the resolvent forcing is a topic of future work.

Simulating Malley probe measurement from model
Using this model of the scalar field, the effect of a Malley probe was simulated using
equation 5.2, derived in chapter 2. The fluctuating and averaged density fields were
approximated from the modeled temperature field using the ideal gas law.

ρ =
P

RT

(ρ + ρ′) =
(P + P′)

R(T + T ′)

ρ =
P

RT

(5.22)
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(a)

(b)

(c)

Figure 5.11: A model composed of scalar resolvent modes shows the temperature
field in the x − y plane (a,b) and the streamwise derivative of the temperature field
in the x − y pane (c). This temperature field is associated with the velocity field
seen in figure 5.10. The fluctuating temperature field is shown in (a), while the sum
of the fluctuating temperature field and the mean temperature field is shown in (b).

ρ′ = ρ − ρ =
P′T − PT ′

R(T
2
+ TT ′)

(5.23)

Experimentally, it was observed that Malley probe deflection did not occur without
the addition of heating, suggesting that P′ is small. For the duration of the work, it
will be assumed that P′T << PT ′, but it is recommended as part of future work to
include this term in the model using the resolvent pressure model formulated by Dr.
Mitul Luhar to evaluate its importance (Luhar, Sharma, and McKeon, 2014).
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Pr σ (µrad) skewness
Data 0.7 9.5 -0.22
Model 0.7 0.25 -0.35
Model 1 0.26 -0.34
Model 7 0.3 -0.3

Table 5.4: Comparison of themeasured andmodeledMalley probe statistics, includ-
ing standard deviation and skewness. Three values of Prandtl number are considered
in the model: Pr = 0.7, 1, and 7.

ρ′ = −
PT ′

R(T
2
+ TT ′)

. (5.24)

As the temperature field used in the ideal gas law is in Kelvin, the magnitude of T is
always much larger than the magnitude of fluctuations about that mean temperature.
Therefore, the equation is simplified even further to

ρ′ = −
PT ′

RT
2 . (5.25)

At each streamwise and spanwise location in the model, a wall-normal integral was
performed on the streamwise gradient of the density field. Appropriately normalized
with KGD and the ambient air density, this recreated a modeled form of the Malley
probe signal, which will be termed φ̃.

φ̃(x, z) =
KGD

1 + KGD ρa

∫
∂ ρ̃

∂x
(x, y, z)dy (5.26)

The standard deviation and skewness of this modeled Malley probe signal is com-
pared to the statistics of the original signal in table 5.4. The standard deviation of
the modeled signal is observed to be significantly smaller than that of the measured
signal. This likely reflects a natural difference in complexity between the seven-
mode model and the fully turbulent field. The skewness of the model is observed
to be of the appropriate sign, but is observed to be larger in magnitude than the
measured skewness.

By averaging the velocity and scalar fields in a wall-normal – streamwise plane
about φ̃, one can model the original conditional averaging results of figure 5.3. This
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represents

< q̃ >−MP (x, y) =
1
N

∑
xi

∑
z j

q̃(xi−∆x : xi+∆x, y, z j ) ∀xi, z j s.t. φ̃(xi, z j ) < −0.5σ

(5.27)
and

< q̃ >+MP (x, y) =
1
N

∑
xi

∑
z j

q̃(xi−∆x : xi+∆x, y, z j ) ∀xi, z j s.t. φ̃(xi, z j ) > 0.5σ

(5.28)
where q̃ is a modeled flow quantity, including the modeled fluctuating streamwise
velocity field, the modeled wall-normal velocity field, the modeled density field,
and the modeled streamwise density gradient. Here ∆x is chosen to be 0.5δ to
approximately match the PIV results.

Figures 5.12 and 5.13 show the conditionally averaged streamwise (figures 5.12a
and 5.13a) and wall-normal (figures 5.12b and 5.13b) velocity fields of the model, as
well as the density field (figures 5.12c and 5.13c) and the streamwise gradient of the
density field (figures 5.12d and 5.13d). Figure 5.12 models the effect of a negative
(upstream) Malley probe deflection angle, φ̃ < −0.5σ(φ̃), while figure 5.13 models
the effect of a positive (downstream) Malley probe deflection angle, φ̃ > 0.5σ(φ̃).
Note that σ(φ̃) is the standard deviation of the modeled Malley probe signal.

The appropriate sense of the gradient is observed for the streamwise andwall-normal
velocity fields in figures 5.12(a,b) and 5.13(a,b) relative to the density gradient. It
is seen that ∂u/∂x ∼ ∂ρ/∂x and −∂v/∂x ∼ ∂ρ/∂x, as was observed in the original
averages in figure 5.2. In the wall-normal velocity field, the wall-normal coherence
of the averaged model in figures 5.12(b) and 5.13(b) is taller than that of the original
resolvent mode shown in figure 5.8(d). The increased height in the averaged model
reflects the smearing effect shown in the schematic in figure 5.7. However, a number
of qualitative differences exist between the model and the averages of the data. The
streamwise velocity field is observed to have a defined wall-normal coherence in
the modeled fields (figures 5.12a, 5.13a), which was not observed in the original
averages (figures 5.2a,c and 5.3a,c). Additionally, the wall-normal coherence of
the wall-normal velocity structures in figures 5.12(b) and 5.13(b) is observed to be
shorter than that observed in figure 5.2 or 5.3, indicating that the smearing covers
a smaller portion of the boundary layer than what is observed in the fully turbulent
field.
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(a) (b)

(c) (d)

Figure 5.12: Averaging the models shown in figure 5.9 on a condition of a large
negative wall-normal integral of the streamwise density gradient (φ̃ < −0.5σ(φ̃))
leads to the following fields for the fluctuating streamwise (a) and wall-normal
(b) velocity fields, the fluctuating density field (c), and the streamwise gradient of
fluctuating density field (d).

5.4 Effect of Prandtl number
To examine the effect of the Prandtl number, a model of the scalar field was con-
structed with Prandtl numbers of 1 and 7, indicating full similarity of momentum
and thermal diffusivity, and the Prandtl number of water respectively. These models
used the same mean temperature profile used previously, which came from a flow
with a Prandtl number of 0.7. The change in Prandtl number was implemented
exclusively in the resolvent operator for the scalar fluctuations. Implementing the
analysis with a mean temperature profile with the accurate Prandtl number is a
topic of future work. Figure 5.14 shows the temperature field in the streamwise –
wall-normal plane for both simulated Prandtl numbers.
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(a) (b)

(c) (d)

Figure 5.13: Averaging the models shown in figure 5.9 on a condition of a large
positive wall-normal integral of the streamwise density gradient (φ̃ < −0.5σ(φ̃)
leads to the following fields for the fluctuating streamwise (a) and wall-normal
(b) velocity fields, the fluctuating density field (c), and the streamwise gradient of
fluctuating density field (d).

The temperature field for the unity Prandtl number case (figure 5.14(a,b)) is observed
to be quite similar to that of the Prandtl number of 0.7. With the larger Prandtl
number, however, significant changes are observed in the structure of the temperature
field both in the fluctuating field (figure 5.14c) and when summed with the mean
temperature field (figure 5.14d). The fluctuating structures are observed to be
thinner, leading to smaller observable features in the field with the mean.

The simulated Malley probe analysis was run on the modeled fields with the new
modified Prandtl numbers. Figures 5.15 and 5.16 show the modeled conditionally
averaged velocity and scalar fields for a Prandtl number of 1 for the negative and
positive φ̃ conditions respectively, while figures 5.17 and 5.18 show the same infor-
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(a)

(b)

(c)

(d)

Figure 5.14: A model composed of scalar resolvent modes assuming a Prandtl
number of 1 (a,b) and 7 (c,d). The temperature field is shown in the streamwise –
wall-normal plane. This temperature field is associated with the velocity field seen
in figure 5.10. The fluctuating temperature field is shown in (a,c), while the sum of
the fluctuating temperature field and the mean temperature field is shown in (b,d).

mation for the Prandtl number of 7. As with the results of the Prantdl number of 0.7,
the fluctuating streamwise and wall-normal velocity fields, the fluctuating density
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field, and the streamwise gradient of the density field are shown in each figure.

(a) (b)

(c) (d)

Figure 5.15: The velocity and scalar models with a Prandtl number of 1 are condi-
tionally averaged on a modeledMalley probe signal, φ̃ < −0.5σ(φ̃). The fluctuating
streamwise and wall-normal velocity fields (a,b), the fluctuating density field (c),
and the streamwise gradient of the density field (d) are shown in the streamwise –
wall-normal plane.

The modeled conditionally averaged results with an increase of Prandtl number
show some changes in behavior for all fields considered. For upstream angles,
φ̃ < −0.5σ(φ̃), both larger Prandtl number cases show increased observability
of the large-scale wall-normal scale (figures 5.15b and 5.17b). For downstream
angles, both larger Prandtl number cases show decreased large-scale coherence
in the streamwise velocity field (figures 5.16a and 5.18a). For the unity Prandtl
number case, the density field and streamwise density gradient remain fairly similar
to those of the 0.7 Prandtl number case for both upstream and downstream angles
(figures 5.15c,d and 5.16c,d). However, the results with a Prandtl number of 7
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(a) (b)

(c) (d)

Figure 5.16: The velocity and scalar models with a Prandtl number of 1 are condi-
tionally averaged on a modeled Malley probe signal, φ̃ > 0.5σ(φ̃). The fluctuating
streamwise and wall-normal velocity fields (a,b), the fluctuating density field (c),
and the streamwise gradient of the density field (d) are shown in the streamwise –
wall-normal plane.

show significant differences in the density fields. For the upstream angle, φ̃ <

−0.5σ(φ̃), the density field shows thinner structures with more defined spatial
variation (figure 5.17c), and the streamwise gradient of the density field shows
highly striated behavior: the contribution of each small-scale mode is observable at
an independent height, rather than overlapping as was observed for the other cases
(figure 5.17d). For the downstream angle, shown in figure 5.18, the density field
also much appears less coherent (figure 5.18c), and striation is observable in both
the density field and in the streamwise gradient of the density field (figure 5.18d).
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(a) (b)

(c) (d)

Figure 5.17: The velocity and scalar models with a Prandtl number of 7 are condi-
tionally averaged on a modeledMalley probe signal, φ̃ < −0.5σ(φ̃). The fluctuating
streamwise and wall-normal velocity fields (a,b), the fluctuating density field (c),
and the streamwise gradient of the density field (d) are shown in the streamwise –
wall-normal plane.

5.5 Discussion and conclusions
Insights obtained from conditional averaging
The conditional averaging results highlighted a correlation between streamwise
gradients in the density field, and streamwise gradients in the streamwise and wall-
normal velocity fields (figure 5.2). The sense of these correlations was consistently
∂u/∂x ∼ ∂ρ/∂x and ∂v/∂x ∼ −∂ρ/∂x for both upstream and downstream Malley
probe deflections. When a high-pass filter was applied to the Malley probe, the
correlation between ∂v/∂x and ∂ρ/∂x remained clear, but the correlation with
∂u/∂x was no longer observable (figure 5.3). This was taken as an indication that
large scales may be associated with the gradient in the streamwise velocity field,



129

(a) (b)

(c) (d)

Figure 5.18: The velocity and scalar models with a Prandtl number of 7 are condi-
tionally averaged on a modeled Malley probe signal, φ̃ > 0.5σ(φ̃). The fluctuating
streamwise and wall-normal velocity fields (a,b), the fluctuating density field (c),
and the streamwise gradient of the density field (d) are shown in the streamwise –
wall-normal plane.

while small scales were primarily responsible for the gradient in the wall-normal
velocity field. A small-scale wall-normal feature with a streamwise wavelength of
approximately λx/δ = 0.36 was identified to be correlated to the deflection of the
Malley probe signal.

Figure 5.3 shows evidence that the Malley probe can phase average the small-
scale wall-normal structure, such that it only averages when the gradient of the
wall-normal velocity field is of a specified sign. By averaging on the sign of the
streamwise density gradient, the previously-mentioned correlations allow for an
average on the streamwise gradients in the wall-normal velocity field as well. These
gradients appear to be dominated by small scale features. This small wall-normal



130

velocity feature may correspond to the hairpin heads observed by other researchers,
as the superposition of an alternating small-scale v with a shear layer would lead to
the appearance of a vortex head with the appropriate sense of rotation (Theodorsen,
1952; Adrian, Meinhart, and Tomkins, 2000). Investigating the strength of this
wall-normal small scale as a function of Reynolds number is suggested as a topic for
future work, as the existence of coherent hairpin vortices at high Reynolds number is
a topic of continued debate. Additionally, continued investigation of the sensitivity
of the small-scale wavelength to the filtering process is a topic of ongoing work.

Finally, figures 5.4 and 5.5 suggest that this small-scale is not periodic at a constant
height, but rather along a corrugated isocontour of the large scale flow. This
suggests that standard hot wire techniques or wall-parallel Fourier transforms would
not necessarily identify this scale as dominant: the sum of multiple wavelengths
would be required to create a periodic structure that intermittently was observed at
a single height. A wall-normal integral measurement like the Malley probe is able
to observe this scale at any height, allowing for its identification and isolation.

Figures 5.4 and 5.5 also support the critical layer hypothesis discussed in chapter 4.
In the critical layer hypothesis, a small scale would be expected to sit at a variable
height depending on the local velocity of the large-scale flow. Figures 5.4 and 5.5
provide evidence that a single scalemay indeed follow this expected behavior. While
further work is needed to conclusively determine the validity of the hypothesis, the
available data thus far is promising.

Looking back to chapter 4, the localization of small-scale intensity about particular
isocontours of the large-scale flow could be due to a single small-scale, sitting at
many heights from the wall, or could indicate the presence of many different small
scales that each sit at a fixed height. The results of this chapter suggest the possibility
that the first of those options hold in the outer region of the boundary layer. Whether
this same behavior holds in other regions of the flow or at other Reynolds numbers
is a topic of future work.

Along these same lines, there is a natural question of why the structures of the
outer boundary layer dominate the Malley probe signal so significantly, such that
the convection velocity of the Malley probe distortions is 0.83U∞. Without an
understanding of the nature of the small scales nearer to the wall, and their specific
interaction with the VLSMs and NWSs, the answer to this question remains out of
reach.
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Insights obtained from modeling
By modeling the velocity and scalar fields using a resolvent analysis (McKeon and
Sharma, 2010), insight was made into the instantaneous structure of the density
field during a Malley probe deflection. In particular, it was observed for upstream
deflections that the negative density gradient was associated with a corrugated
interface between large-scale high and low density regions (figure 5.12c). These
large-scale density regions were associated with similar large-scale fluctuations in
the streamwise velocity field, and the corrugated interface in the density field was
mirrored as a corrugated shear layer in the streamwise velocity field (figure 5.12a).
The similarity in these interfaces broke down at higher Prandtl numbers, but the
general trend of a corrugated large-scale interface remained. Small-scale wall-
normal velocity features were found to be exactly out of phase with the corrugations
in the interface in the density and streamwise velocity fields, leading to a clear
relationship: ∂v/∂x ∼ −∂u/∂x ∼ −∂ρ/∂x, which agreed with the findings of the
original averages 5.2.

For downstream deflections, the average behavior was observed to be qualitatively
different from that associatedwith upstream deflections. Large scales were no longer
observable in the streamwise velocity field or the density field (figure 5.13a,c).
Instead, the small scale features were significantly clearer. Because the large scales
are very strong in both the streamwise velocity field and the density field (figures 5.8,
5.11), this indicates that the two senses of large scale are equally likely, allowing them
to cancel. Again, the small-scale wall-normal velocity feature is out of phase with
the small-scale streamwise velocity feature, such that −∂v/∂x ∼ ∂u/∂x ∼ ∂ρ/∂x.

The correlation between ∂v/∂x and −∂ρ/∂x was observed through all Prandtl
numbers considered, supporting the observation of the conditional averaging results
at the Prandtl number of 0.7 and suggesting that the phase-averaging ability of the
Malley probe on the wall-normal velocity field may hold in other flows, including
in water channels, increasing the range of applications of the Malley probe as a
turbulent sensor.

Some discrepancies were observed between the modeled conditional averages and
the true conditional averages. The streamwise velocity fields appearedmore coherent
andmore compact in the wall-normal direction in the model (figures 5.12, 5.13) than
what was observed in the data (figures 5.2, 5.3). In addition, the wall-normal extent
of the wall-normal structure was much shorter in the model (figures 5.12b, 5.13b)
than in the data (figures 5.2b,d, 5.3b,d). These two observations taken together
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suggest a possible hypothesis: that, on top of the small scale appearing at different
heights, the large scale too is able to sit at different heights from the wall. If the entire
pattern shown in the interaction of the triads of resolvent modes in figure 5.9 were
able to sit at a variety of heights from the wall, the smearing behavior schematically
shown in figure 5.7 would do two things. First, it would smear the wall-normal
structure such that it appeared to have a larger wall-normal extent. Second, the
smearing of the streamwise field would lead to less coherence, as the inclination of
the shear layer would be smeared out, leading to the observation of a vertical shear,
as was observed in figure 5.2. Further work is needed to explore this hypothesis.

The standard deviation of the model was observed to be over an order of magnitude
smaller than that of the data, but the skewness was found to be of the correct
sign and of an appropriate order of magnitude. More work is needed to test the
sensitivity of the statistics of the modeled Malley probe to the amplitude of the
resolvent modes. In addition, more insight can be derived from the modeled fields
regarding the dynamics of the scalar field at different Prandtl numbers. Finally, only
the streamwise and wall-normal structures have been modeled here, as they can be
compared to the structures observed in the PIV data. Future work will include an
investigation into the behavior of the modeled spanwise velocity field, which will
allow for connections to the findings in figures 4.6(f) of chapter 4.
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C h a p t e r 6

CONCLUSIONS AND FUTURE WORK

Coherent structures of turbulent boundary layers and the interaction between them
have been studied for decades (Theodorsen, 1952; Kline et al., 1967) as have the re-
lationships between the velocity and scalar fields (Antonia, Danh, and Prabhu, 1977;
Chen and Blackwelder, 1978), and yet many challenges remain. The challenges of
particular interest in this thesis are:

• connecting existing descriptions of coherent structures,

• identifying mechanisms through which large scales interact with small scales,

• understanding the instantaneous relationship between the velocity and scalar
fields,

• isolating the turbulent features correlated to aero-optic distortions.

This thesis contributes to these challenges through the analysis of a combination of
experimental data, computational data, and reduced-order models.

Chapter 3 contributed to the first challenge by demonstrating connections between
statistical and instantaneous descriptions of energetic streamwise velocity scales. A
non-trivial relationship was observed between the structure and size of features in
the laboratory-frame and fluctuating velocity fields, which are the common repre-
sentations used by the researchers studying instantaneous and statistical phenomena
respectively. Representative models of three energetic scales (the large-scale mo-
tions of the outer boundary layer, the very-large-scale motions of the logarithmic
layer, and the near-wall streaks of the inner region) were used along with instanta-
neous visualizations of PIV data to highlight that periodic structures, consistent with
statistically energetic wavelengths, could represent instantaneous complex behavior.
The superposition of the three models was compared to instantaneous PIV data
through the use of an instantaneous streamwise velocity histogram, a technique that
is often used to study uniform momentum zone (UMZ) behavior in turbulent flows
(Adrian, Meinhart, and Tomkins, 2000; de Silva, Hutchins, and Marusic, 2016).
Qualitative trends were found to agree between the data and the model, suggesting
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that very reduced-order, periodic models could represent instantaneous UMZ behav-
ior. Finally, in chapter 3, the instantaneous streamwise velocity histogram technique
was demonstrated to be a measure of the local shear in the flow through an analyt-
ical derivation of the probability density function of an instantaneous streamwise
velocity profile.

Chapter 4 contributed to the second challenge, identifying mechanisms through
which large scales interact with small scales, by applying a novel conditional av-
eraging technique that leveraged the representative models identified in chapter 3.
A projection of the data onto a model of the scale of interest was used as a con-
ditioning criterion. This condition led to a final conditional average with smooth
variation in the large-scale flow field, leading to smooth undulations in the large-
scale laboratory-frame streamwise velocity isocontours through the relationship to
the fluctuating field identified in chapter 3. The small-scale velocity intensity was
averaged about the large scale using a phase averaging method. From this condi-
tional averaging method, it was observed that the small-scale intensity was often
localized near a single isocontour of the large-scale flow. While the trends of the
small-scale behavior were consistent with many previous findings (Hutchins and
Marusic, 2007; Mathis, Hutchins, and Marusic, 2009; Chung and McKeon, 2010;
Ganapathisubramani et al., 2012; Talluru et al., 2014; Baars, Hutchins, and Maru-
sic, 2017), the observation of the relation to one large-scale isocontour was new,
and was likely made possible by the smooth spatial averaging condition applied to
the large-scale flow. This observation suggested a hypothesis for the mechanism
of interaction between the large and small scales: a critical layer. The hypothesis
states that the small scales in turbulence act similarly to perturbations in a base
flow with shear, showing the most growth or prominence along the isocontour of
the base flow corresponding to their phase speed. This hypothesis could explain
the spatial variation of the small scales with the phase of the large-scale structure,
and may allow for connections to critical layer behavior observed in exact coherent
solutions to the Navier-Stokes equations (Wang, Gibson, and Waleffe, 2007; Hall
and Sherwin, 2010; Park and Graham, 2015).

Chapter 5 also offered a contribution to the second challenge (identifying interaction
mechanisms). The Malley probe conditional average was able to phase average the
small-scale structures in the outer boundary layer, due to a correlation between
streamwise gradients of the wall-normal velocity field and streamwise gradients
of the density field. The phase averaged small scales were observed to have a
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wavelength of 0.36δ throughout the outer region of the boundary layer. When the
P1D conditional averaging technique of chapter 4 was combined with the Malley
probe average, the small scale was observed to sit at a variety of heights depending
on the phase of the large scale. This suggested that there may be a dominant small
scale in the outer boundary layer at this Reynolds number, and that the small scale’s
height may vary, following the critical layer of the large-scale pseudo-base flow.

Chapter 5 focused largely on the third and fourth challenges, identifying relation-
ships between the velocity and scalar fields, and isolating the turbulent dynamics
correlated to Malley probe deflection. The relationship between the instantaneous
velocity and scalar fields was studied through the MP conditional averaging tech-
nique and by modeling the velocity and scalar fields using a resolvent analysis, the
scalar component of whichwas developed byDr. Scott Dawson. Thismodel allowed
for a synthetic Malley probe signal to be generated, and offered the opportunity to
study the effect of Prandtl number on the results. TheMP / P1 conditional averaging
technique was used to identify a nonlinear interaction between two structures in
the outer boundary layer that was highly correlated to the distortion of the Malley
probe, offering an answer to the fifth challenge in heated, incompressible flows, with
extensions possible in compressible flows and in a three-dimensional viewpoint.

Future work and high-level perspectives
There is significant room for work to advance the findings in this thesis. The
findings shown for the structure interaction analysis were confined to 2D slices,
even when using DNS in which 3D data is available. The generation of a fully 3D
conditionally-averaged small-scale intensity result would aid in the understanding
of the distribution of the small-scale intensity in physical space. A mathematical
representation of the critical layer concept, in which the superposition of the mean
velocity field and a large scale that is a function of all spatial variables and time
is represented as a pseudo-base flow would be useful and could illuminate the
mechanisms behind the observed relationships between large and small scales.
Additionally, there are interesting questions of how the small scales influence the
large scale, and whether their spatial distribution affects that influence.

While a wide range of challenges were considered, the culmination of the thesis
points cohesively towards a particular viewpoint and approach towards turbulence.
Very few scales are considered in this thesis: three representative large scales that
span the height of the boundary layer, and a single small scale in the outer boundary
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layer. While this by no means indicates that these are the only relevant scales of
turbulence, it is quite purposeful in its reduction of complexity. The small scales of
the outer boundary layer are a prime example of the possibility of simplicity in what
appears complex: a single small scale was observed to be dominant throughout
the outer region of the boundary layer if one accounted for its ability to exhibit
height variation. Without accounting for height variation, a much larger number of
Fourier modes would be required to describe its behavior at any one height. Perhaps,
by increasing the complexity of motion that scales are allowed, one can decrease
the number of scales one has to consider. This perspective is both born from
and influences this research, and calls for reduced dynamical systems of equations
that describe the motion of these structures relative to one another. Such a model
could offer a very-low-order approach to the full complexity of turbulence, and
offer insights into some of the most fundamental of its mysteries: the importance of
particular structures, their interaction mechanisms, and their ability to self-sustain.
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A p p e n d i x A

ALGORITHMS FOR FIGURE OUTPUTS

Here algorithms are included for the creation of the figures shown in this thesis.
Algorithms are included for the histograms of chapter 3 (algorithm 1), the projection
conditional averaging results of chapter 4 (algorithms 2 to 6), and the Malley probe
conditional averaging results and combined Malley probe, projection conditional
averaging results of chapter 5 (algorithms 7 and 8). Discussion of the methods
behind many of these algorithms can be found in chapter 2.

Algorithm 1: Instantaneous streamwise velocity histogram calculation
Input : Laboratory-frame streamwise velocity field, U (x, y, t)

Time of interest, t0

Streamwise range, X

Number of velocity bins, nb

Output : Instantaneous streamwise velocity histogram, mb(U∗b )

1 Define velocity range: ∆U = max(U (x, y, t)) −min(U (x, y, t))

2 Define velocity values at center points of equally-sized velocity bins:
U∗b = min(U (x, y, t)) + ∆U

2nb
: ∆U

(nb ) : max(U (x, y, t)) − ∆U
2nb

3 Extract data for histogram: Uh = U (X, y, t0)

4 for i = 1, nb do

5 Define velocity bin Ub(i) =
[
U∗b (i) − ∆U

2nb
,U∗b (i) + ∆U

2nb

)
6 Count number of grid points for which the velocity value is within the bin:

mb(i) = N
(
Uh(X, y) ∈ Ub(i)

)
7 end

8 Normalize mb: mb =
nb

∆U
nb∑
i=1

mb

mb

9 The histogram of U (X, y, t0) plots mb against U∗b .
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Algorithm 2: Projection component of P2D conditional averaging method for 2D
data
Input : Fluctuating streamwise velocity field, u(x, y, t)

Mean streamwise velocity profile, Ū (y)
Model streamwise wavenumber, kx
Model spanwise wavenumber, kz
Model temporal frequency, ω
Number of phases, nγ

Output :Maximum value of the projection at each time R∗(t)
Phase that maximizes the projection at each time, γ∗(t)

1 Define phases considered Γ = 0 : 2π
nγ

: 2π − 2π
nγ

2 Define model (here will demonstrate using resolvent analysis model):
3 Assume periodicity in streamwise, spanwise, and temporal variables to define a

traveling wave model: ũ(x, y, z, t) = Re[û(y)(ei(kx x+kz z−ωt) + ei(kx x−kz z−ωt))]
4 Use the resolvent analysis of McKeon and Sharma (2010) to identify û (details

omitted, requires Ū (y))
5 Take slice of model at z location at which the maximum amplitude occurs:

ũ(x, y, t) = Re[û(y)(ei(kx x+kz z0−ωt) + ei(kx x−kz z0−ωt))]
6 Define γ̃ = −ωt
7 Perform projection:
8 for ti ← t0 : t f do
9 for γ̃ ← Γ do
10 Project flow quantity at time ti onto model:

R(γ̃) =
(
u(x, y, ti) · ũ(x, y, γ̃))/(|u(x, y, ti) | |ũ(x, y, γ̃) |)

)
11 end
12 Define outputs: R∗(ti) = maxγ̃R
13 γ∗(ti) = argmaxγ̃R
14 end

Algorithms 2 to 6 can bemademore efficient by only considering half of the possible
values of Γ, and using a negative projection coefficient to identify phases larger than
or equal to π. This more-efficient method is implemented for the results shown in
this thesis, but is not included in the algorithm here for clarity and simplicity, as it
is not needed to arrive at the final result. Note that x∗ of algorithms 4 and 6 is not
the same size as x, and has a maximum value of λx .

The outputs of either algorithm 2 or 3 can be used as an input to conditionally
average a quantity of interest, q, using algorithm 4.
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Algorithm 3: Projection component of P1D conditional averaging method for 2D
data
Input : Fluctuating streamwise velocity field u(x, y, t)

Mean streamwise velocity profile Ū (y)
Model wavelength λ̃x
Model wavespeed c̃
Number of phases nγ

Output :Maximum value of the projection at each time R∗(t)
Phase that maximizes the projection at each time, γ∗(t)

1 Define phases considered Γ = 0 : 2π
nγ

: 2π − 2π
nγ

2 Perform projection:
3 for ti ← t0 : t f do
4 for γ̃ ← Γ do
5 Define a model ũ = sin( 2π

λ̃x
x + γ̃)

6 Define critical layer height yc such that Ū (yc) = c̃
7 Project flow quantity at time ti and height yc onto model:

R(γ̃) =
(
u(x, yc, ti) · ũLSM (x)

)
/
(
|u(x, yc, ti) | |ũLSM (x) |

)
8 end
9 Define outputs: R∗(ti) = maxγ̃R
10 γ∗(ti) = argmaxγ̃R
11 end

For the 3D projection and averaging, shown in algorithms 5 and 6, only the x − y

plane algorithms are shown here, but trivial changes can be made (averaging on x

rather than z) to output the z − y plane results.

Similarly, while only downstream deflections are shown for the Malley probe con-
ditional averaging algorithms (algorithms 7 and 8), upstream deflections can be
computed by changing the condition for the ‘if’ statement on line 4 of algorithm 7
to φ(ti) < −0.5σ.
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Algorithm 4: Averaging on P condition for 2D data
Input : Flow quantity, q(x, y, t)

Maximum value of projection for each frame, R∗(t)
Phase that maximizes projection for each plane, γ∗(t)

Output : < q >P1D (x, y)
1 Initialize qΣ,1 = 0, qΣ,2 = 0, count1 = 0, count2 = 0
2 Define phases considered Γ = 0 : 2π

nγ
: 2π − 2π

nγ
3 Sum q based upon values acquired from projection:
4 for γ̃ ← Γ do
5 for ti ← t0 : t f do
6 if γ∗(ti) = γ̃ then
7 if R∗(ti) > Rth then
8 qΣ,1(x, y, γ̃) = qΣ,1(x, y, γ̃) + q(x, y, ti)
9 count1(γ̃) = count1(γ̃) + 1
10 end
11 end
12 end
13 end
14 Combine spatial components with same phase information in qΣ,1:
15 for j = 1 : nγ do
16 for i = 1 : nγ do
17 X = Γ(i)λx/nγ : Γ(i + 1)λx/nγ
18 X∗ = 0 : λx/nγ
19 if min(X ) > min(x) & max(x) < max(x) then
20 qΣ,2(X∗, y, Γ( j)) = qΣ,1(X, y, Γ( j))

count2(Γ( j)) = count2(Γ( j)) + count(Γ( j))
21 end
22 end
23 Average each phase:
24 qavg (X∗, y, Γ( j)) = qΣ,2(X∗, y, Γ( j))/count2(Γ( j))
25 end
26 Define output by concatenating qavg:
27 < q >P1D (x∗, y) = [qavg (X∗, y, Γ(1)), ..., qavg (X∗, y, Γ(nγ))]
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Algorithm 5: Projection component of P1D conditional averaging method for 3D
data
Input : Fluctuating streamwise velocity field u(x, y, z, t)

Model wavelength λ̃x
Model wavespeed c̃
Number of phases nγ

Output :Maximum value of the projection at each time R∗(t)
Phase that maximizes the projection at each time, γ∗(t)

1 Define phases considered Γ = 0 : 2π
nγ

: 2π − 2π
nγ

2 Perform projection:
3 for ti ← t0 : t f do
4 for z j ← z0 : z f do
5 for γ̃ ← Γ do
6 Define a model ũ = sin( 2π

λ̃x
x + γ̃)

7 Define critical layer height yc such that Ū (yc) == c̃
8 Project flow quantity at time ti and height yc onto model:

R(γ̃) =
(
u(x, yc, z j, ti) · ũ(x, γ̃)

)
/
(
|u(x, yc, z j, ti) | |ũ(x, γ̃) |

)
9 end
10 Define outputs: R∗(z j, ti) = maxγ̃R
11 γ∗(z j, ti) = argmaxγ̃R
12 end
13 end
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Algorithm 6: Averaging on P condition for 3D data
Input : Flow quantity, q(x, y, z, t)

Maximum value of projection for each frame, R∗(z, t)
Phase that maximizes projection for each plane, γ∗(z, t)

Output : < q >P1D (x, y)
1 Initialize qΣ,1 = 0, qΣ,2 = 0, count1 = 0, count2 = 0
2 Define phases considered Γ = 0 : 2π

nγ
: 2π − 2π

nγ
3 Sum q based upon values acquired from projection:
4 for γ̃ ← Γ do
5 for ti ← t0 : t f do
6 for z j ← z0 : z f do
7 if γ∗(z j, ti) = γ̃ then
8 if R∗(z j, ti) > Rth then
9 qΣ,1(x, y, γ̃) = qΣ,1(x, y, γ̃) + q(x, y, z j, ti)
10 count1(γ̃) = count1(γ̃) + 1
11 end
12 end
13 end
14 end
15 end
16 Combine spatial components with same phase information in qΣ,1:
17 for j = 1 : nγ do
18 for i = 1 : nγ do
19 X = λxΓ(i)/nγ : λxΓ(i + 1)/nγ
20 X∗ = 0 : λx/nγ
21 if min(X ) > min(x)&max(X ) < max(x) then
22 qΣ,2(X∗, y, Γ( j)) = qΣ,1(X, y, Γ( j))

count2(Γ( j)) = count2(Γ( j)) + count(Γ( j))
23 end
24 end
25 Average each phase:
26 qavg (X∗, y, Γ( j)) = qΣ,2(X∗, y, Γ( j))/count2(Γ( j))
27 end
28 Define output by concatenating qavg:
29 < q >P1D (x∗, y) = [qavg (X∗, y, Γ(1)), ..., qavg (X∗, y, Γ(nγ))]
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Algorithm 7: Conditionally averaging on downstream Malley probe deflection
Input : Fluctuating streamwise velocity field, u(x, y, t)

Fluctuating wall-normal velocity field, v(x, y, t)
Streamwise Malley probe deflection angle, φ(t)

Output : < u >MP (x, y), < v >MP (x, y)
1 Calculate standard deviation of φ(t): σ
2 Initialize uΣ = 0, vΣ = 0, count = 0
3 for ti ← t0 to t f do
4 if φ(ti) > 0.5σ then
5 uΣ (x, y) = uΣ (x, y) + u(x, y, ti)
6 vΣ (x, y) = vΣ (x, y) + v(x, y, ti)
7 count = count+1
8 end
9 end
10 Define outputs: < u >MP (x, y) = uΣ (x, y)/count,

< v >MP (x, y) = vΣ (x, y)/count
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Algorithm 8: Conditionally averaging on MP/P1D condition for 2D data
Input : Flow quantity, q(x, y, t)

Maximum value of projection for each frame, R∗(t)
Phase that maximizes projection for each plane, γ∗(t)
Malley probe signal φ(t)
Location of Malley probe in PIV frame, xMP

Output : < q >MP/P1D (x, y)
1 Initialize qΣ,1 = 0, count = 0
2 Define phases considered Γ = 0 : 2π

nγ
: 2π − 2π

nγ
3 Sum q based upon values acquired from projection:
4 for γ̃ ← Γ do
5 for ti ← t0 : t f do
6 if φ(ti) > 0.25σ(φ) then
7 if γ∗(ti) = γ̃ then
8 if R∗(ti) > Rth then
9 qΣ,1(x, y, γ̃) = qΣ,1(x, y, γ̃) + q(x, y, ti)
10 count(γ̃) = count(γ̃) + 1
11 end
12 end
13 end
14 end
15 Crop data about Malley probe location:
16 X = xMP − λx/(2nγ) : xMP + λx/(2nγ)
17 Average each phase:
18 qavg (X, y, γ̃) = qΣ,1(X, y, γ̃)/count(γ̃)
19 end
20 Define output by concatenating qavg:
21 < q >MP/P1D (x∗, y) = [qavg (X, y, 0), ..., qavg (X, y, 2π − 2π

nγ
)]
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