
I 

ALFVl'~N WAVES IN THE INTER PLANETARY M_EDIU.M 

Thesis by 

John Winston B e lcher 

In Partial Fulfillrnent of the Requirements 

For the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1971 

( Submitted Dec c: rn bcr 14, 1970 ) 



In Memory of my Father 

JOHN COOK BELCHER 

And to my Mother 

MARGIE HARRIS BELCHER 



-iii-

ACKNOWLEDGMENTS 

I wish to thank first and foremost my thesis adviser, 

Professor Leverett Davis, Jr., for his constant and unfailing 

guidance, advice, and encouragement during the course of this 

work. 

I am deeply indebted to the Mariner V plasma experimenters, 

H. S. Bridge, A. J. Lazarus, and C. W. Snyder, for extensive use 

of their detailed plasma data. I am similarly indebted to the Mariner 

V magnetometer experimenters, P. J. Coleman, L. Davis, Jr., 

E. J. Smith, and D. E. Jones for access to and use of the magnetic 

field data. I am thankful to all of these experimenters for helpful 

and stimulating discussions. 

My graduate studies at Caltech were supported in part by the 

National Science Foundation and by the National Aeronautics and 

Space Administration (under NASA grant NGR-05-002-160). 



-iv-

ABSTRACT 

A study of the wave properties of the microscale fluctuations 

(scale lengths of. 01 a. u. and less) in the interplanetary medium is 

presented using plasma and magnetic field data from Mariner V 

(Venus 196 7). The reduction procedure for the magnetic field data 

is summarized, and descriptions are given of the MIT plasma data 

and the merged plasma/field data tapes used in the analysis. 

Observationally, it is found that large amplitude, non­

sinusoidal Alfve'n waves propagating outward from the sun with a 

broad wavelength range from 10 3 to 5 x l06k.m dominate the micro­

scale structure at least 50"'6 of the time. The waves frequently have 

an energy density comparable both to the unperturbed magnetic 

field energy density and to the thermal energy density. The pure st 

examples of the Alfve'n waves are found in high velocity solar wind 

streams and on their trailing edges. The largest cunplitude waves 

occur in the compression regions at the leading edges of high velo­

city streams where the velocity increases rapidly with time. In 

addition to being transverse to the average magnetic field direction, 

~B' the Alfve'nic fluctuations generally exhibit a 10~ partial polariza­

tion in the ~Bx~ direction, where ~ is a unit vector radially away 

from the sun. Presumably magnetoacoustic wave modes occur, but 

they have not been identified, and, if pre s 'ent, have a small average 

power of the order of 1096 or less of that in the Alfve'n mode. 

These observations are organized on the basis of a model of 

the solar wind velocity structure. Most of the Alfve'n waves in the 
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interplanetary medium seem likely to be the undamped remnants of 

waves generated at or near the sun. The high level of wave activity 

in high velocity, high temperature streams can be interpreted as 

evidence for the extensive heating of these streams by wave damping 

near the sun. The highest level of Alfve'nic wave activity in the com­

pression regions at the leading edges of high velocity streams may 

be due either to the amplification of ambient Alfve'n waves in high 

velocity streams as they are swept into the compression regions or 

to the fresh generation of waves in these regions by the stream­

stream collisions. The observed absence of the magnetoacoustic 

modes is evidence for their strong damping. The !:.BxeR anisotropy 

is viewed as due to the partial conversion of the Alfve'n waves to 

the damped magnetoacoustic modes as they are convected away from 

the sun; this process continually transfers energy from the micro­

scale field fluctuations to the thermalized solar wind plasma. 

The detailed behavior of the Alfve'~ waves and their effects 

on the dynamics of the expanding solar corona as they propagate and 

are convected out into interplanetary space is investigated in a sim­

plified one fluid polytrope model of the solar wind. It is found that 

the inclusion of energy fluxes due to Alfve'n waves at the base of the 

corona can result in significant changes in the large scale streaming 

properties of the solar wind. 
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CHAPTER I 

INTRODUCTION 

A. Large Scale Properties of the Solar Wind 

The interplanetary medium is a rarefied, essentially collision­

less plasma whose thermal and magnetic field energy densities are 

usually of the same order of magnitude. A knowledge of the wave and 

turbulence properties of this medium is essential for a reasonably 

complete understanding of the solar wind, its energy sources, and its 

interaction with cosmic rays, the planets, and the inter stellar region. 

The wave properties of such plasmas are also of general astrophysi"". 

cal interest, and spacecraft observations made in situ offer a unique 

opportunity to study these properties directly. The present work is 

primarily a phenomenological study of the small scale fluctuations 

superimposed on the supersonic streaming motion of the solar wind, 

using simultaneous plasma and magnetic field data from Mariner 5 

(Venus 1967). We first review the large scale characteristics of the 

solar wind, and consider briefly the types of waves and discontinuities 

which might be expected to produce small scale fluctuations in the in­

terplanetary plasma. The Mariner 5 experiment and the data red uc­

tion process are then described. The identification of Alfve'n waves on 

the basis of both plasma and field data is demonstrated, and the pro­

perties of these waves, in particular their patterns of occurence with 

respect to the large scale solar wind streams, are described . Defi­

ciencies in previous models of the small scale fluctuations are pointed 

out, and a qualitative model is presented for the origins and energy 
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sources of these fluctuations which explains many of their observed 

properties . Finally, we discuss a quantitative mathematical model 

for the interaction of the waves and the solar wind, and show that the 

presence of the waves can be a significant factor in the dynamics of · 

the expanding solar corona. 

The large scale properties of the solar wind are well known 

(for a comprehensive review, see Hundhausen [ 1968 ]) . The plasma 

itself is a hot, ionized gas consisting primarily of electrons, protons, 

and alpha particles (-4~ by number}; it is highly conducting and es-

sentially collisionless. The proton number density at la. u . is typi­

cally 8 particles/cm3, with an average field strength B of 8 y(l0 - 5 

1 

gauss}, giving an Alfve'n velocity (B/(4rrp)~) of around 50 km/ sec and 

a proton cyclotron frequency (eB/m ) on the order of 1 cps. The solar 
p 

wind velocity at 1 a . u . averages 400 km/ sec, with only small (,.,..596) 

deviations from purely radial flow. The magnetic field direction is on 

the average along the classic spiral field direction [Parker, 1963 J, 

with a hose angle of about 45 ° at the orbit of the earth. 

The proton thermal speed averages around 40 km/ sec. Alpha 

particles generally have the same thermal speed as the protons, and 

are thus four times hotter . Electron temperatures are much more 

difficult to measure , but they appear to be slightly higher than the pro-

ton temperatures, and show less variation. The adiabatic expansion 

and cooling of the plasma as it flows outward results in a temperature 

anisotropy aligned with the magnetic field> with the proton tempera-

ture parallel to the field direction typically a factor of 2. 0 higher 

than that perpendicular . The electron parallel temperature is on the 
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average only 1. 2 times higher than that perpendicular. The ratio of 

proton thermal energy density to magnetic field energy density is 

typically • 6 at 1 a. u. 

There are large scale fluctuations about these average values 

[Neugebauer and Snyder, 1966 J. High velocity streams (""""600 km/sec) 

with high proton thermal speeds ( ..... 80 km/ sec) and low densities 

(.-5/cm 3 ) are interspersed with low velocity streams (""300 km/ sec) 

which are colder ( ....... 30 km/sec) and more dense (""'25/cm 3 ). The us­

ual duration of one of these streams is on the order of two days and 

longer. The patterns of occurence of the smaller scale plasma waves 

are closely related to these large scale streaming patterns. The na­

ture of this relationship is discussed in subsequent chapters. 

B. MHD Fluctuations 

Irregular smaH scale fluctuations in the magnetic field and ve­

locity are usually superimposed on the large scale spiral field and 

stream structure. In order to understand the probable physical nature 

of these fluctuations, we briefly review the properties of small amp­

litude waves and abrupt discontinuities in the magnetohydrodynamic 

(MHD) a ppr oxim ation. 

1. Waves 

The theory of small amplitude waves in a collisionless plasma 

with a static magnetic field is extensive. Approaches to the problem 

include the cold plasma approximation [Stix, 1962; Montgomery and 

Tidman, 1964], the two-fluid approximatioi;- [Stringer, 1963 ], and, 

in the hydromagnetic limit (i.e., in the limit of frequencies small 
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compared to the ion cyclotron frequency and of wavelengths long corn-

pared to the gyroradius), the double adiabatic approximation [Chew, 

Goldberger, and Low, 1956]. We limit ourselves here to a brief de-

scription of the three wave modes in the classical collision dominated 

MHD plasma theory. This approach is adopted for four reasons: (1) 

plasma instabilities and the presence of the magnetic field effectively 

replace particle-particle collisions in giving the plasma the collective 

bulk properties of a fluid; {2) the experimental data to be considered 

satisfy the hydromagnetic condition as defined above; {3) the MHD ap-

proach has been used with reasonable success in the past in connec-

tion with interplanetary shocks and the earth's bow shock; (4) MHD 

wave theory is relatively simple, and seems adequate to describe the 

observed wave properties of the medium. 

In the isotropic MHD approximation there are three distinct 

wave modes -- the Alfvdn, the fast, and the slow, with frequencies 

WA, W+• and w_. respectively. If B is the static background field, k 
-o -

the propagation vector of the wave, and 9 the angle between B and k, -o ,...., 

then the d~spersion relations for these three modes are given 

[Thompson, 1962 J by 

w'A
2 = (k • B )

2 
/4'1Tp - -o 0 

( 1) 

(2) 

1 

where VA= B /(4'1Tp )a is the Alfvdn velOcity, p is the mass density, 
0 0 0 

and VS is the speed of sound. For the solar wind, VA and VS are both 



-5-

typically of the order of 50 km/ sec. The Alfve'n mode is purely trans-

verse, and is characterized by constant density and field strength and 

by velocity and magnetic ile1d perturbations 3l.. and £_, respectively, 

that are perpendicular to the plane of B and k. 
-o -

Thus band v axe - -
parallel (or anti-parallel), and are connected by 

b = ±D v 
- A-

(3) 

where 

and the sign in Equation (3) is the sign of -~ • ]2
0

• Both the fast and 

slow modes (with 9 f. 0) are associated with fluctuations in density 

and field strength; variations in field strength are in phase with those 

in density for the fast mode, and 180° out of phase for the slow mode. 

The fluctuations b and v are in the plane of k and B , with b normal to 
- - - -o -

~in this plane. The perturbation Y. is connected to£ by a linear ten-

sorial relationship~ in general is not parallel to£,. and the ratio of 

the magnitude of J2. to that of z. is 

where cp is the angle between z. and ]2
0

, and ,w± is given by (2). The 

detailed equations may be found in Coleman [ 1967]. For the singu-

lar case in which k is colinear with B , the three modes reduce to two 
- -o 

simple, orthogonal Alfvdn modes, each characterized by Equations 

(3) and (4), and a pure acoustic mode in which there is no magnetic 

perturbation. 

Equations (1) through (5) above apply to isotropic plasmas. 

For future reference, we note that for an Alfvin wave in an aniso-
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tropic plasma such as the solar wind, Equation ( 4) becomes 
1 

where 

DA = l8l A ( 4ir po) 3 

G 
4lr_( Pl\ .......,-P,__.L_) ]- -} 

®A= 1-
B 2 

0 

(6) 

(7) 

and pl!· and p .1.. are the pressures parallel and normal to ;§
0

, respec-

tively [Parker, 1957 J 

2. Discontinuities 

Discontinuities in the isotropic MHD approximation are most 

conveniently treated in a frame in which the plane of the discontinuity 

is at rest. The Rankine-Hugoniot conservation equations must hold 

aero ss the discontinuity, and solutions to these equations [Landau and 

Lipshitz, 1962] are of two types: 

(1) Non-propagating. This category includes the contact and 

the tangential discontinuities. The contact discontinuity is simply the 

boundary between two media at rest which have different densities and 

temperatures; the magnetic field and the kinetic pressure are contin-

uous across the discontinuity. The tangential discontinuity is the 

boundary between two streaming media. The velocity and magnetic 

field are tangential on both sides of the discontinuity, and can have 

any change in both magnitude and direction. The total pres sure (kin-

etic plus magnetic) is conserved across the discontinuity, and the dis-

continuity does not propagate with respect to either media. 

(2) Propagating. This category includes the fast and slow 

shocks, and the rotational discontinuity (sometimes called the Alfve'n 

shock). In the limit of small amplitudes, these discontinuities pro-
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pagate at the fast magnetoacoustic, slow magnetoacoustic, and Alfvdn 

velocities, respectively. The rotational discontinuity may be thought 

of as a sharply crested Alfvdn wave. Fast and slow shocks are rarely 

observed in the solar wind, and we will not treat them further here. 

The basic discontinuities with which we are concerned are thus the 

contact, the tangential, and the rotational. 

C. The Interpretation of Spacecraft Data 

There are well-known difficulties in the interpretation of 

spacecraft data. The plasma is convected past the spacecraft with a 

velocity (~00 km/sec) that is high compared to the characteristic 

MHD propagation speeds (,..,.50 km/ sec). Thus, all MHD disturbances 

are convected outward whatever their true direction of propagation in 

the rest frame of the plasma. Observed variations are primarily due 

to the convection past the spacecraft of spatial structures which may 

be either static and "frozen-in" or dynamic and slowly propagating. 

In the frame of the wind, the two classes of structures have substan­

tially different properties, different origins, and different physical 

natures; in the spacecraft frame, they may be quite difficult to distin­

guish on the basis of either magnetometer or plasma data alone. As 

we shall see, an identification can usually be made on the basis of a 

careful study of both magnetic field and plasma data. Throughout, we 

use the term wave in a broad sense. In many instances the terms 

Alfvdnic turbulence or rotational discontinuity might be more appro­

priate, although neither is fully descriptive of the phenomenon. In all 

cases, the term wave is used to apply to dynamic, non-shock struc-
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tures, almost always non-sinusoidal and nonperiodic, which propa-

gate in the rest frame of the solar wind. 

Unless otherwise specified, time and frequencies given here-

after refer to the spacecraft frame; these must be Doppler shifted to 

yield wavelengths and frequencies in the rest frame of the wind. For 

example, a wave structure propagating outward from the sun with 

the Alfvdn velocity VA superposed on the wind velocity VW and having 

an apparent period T in the spacecraft frame has a wavelength of 

T(VW + VA) and period of T[(vw/V A) + 1 J in the rest frame of the 

wind. The fine scale structure we are concerned with has character-

istic scales of .01 a.u. and less; this corresponds to periods in the 

spacecraft frame of one to two hours and less. 
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CHAPTER II 

DATA REDUCTION 

A. Recovery of the Basic Magnetic Field Data 

1. Master Data Library Tapes 

Mariner 5 (Venu.s 1967) was in operation from June 14, 1967, 

to November 22, 1967 . . Magnetic field measurements were made by 

a low-field, vector , helium magnetometer [Connor, 1968]. Three 

triaxial field samples were obtained every 12, 6 seconds at the high 

data rate, and every 50. 4 seconds at the low data rate. The high data 

rate period extended from the beginning of the mission until July 24, 

1967, after which time data were taken at the low rate; there are ap­

proximately 40 days of high rate data and 120 days of low rate data. 

The fir st step in the analysis of the Mariner 5 data was the 

reduction of the raw magnetometer data to a form which could be 

used conveniently. The basic source of data for the Mariner 5 experi­

ment is the Master Data Library (MDL) tapes. These tapes are pro­

vided by the Jet Propulsion Laboratory, and contain the entire tel e ­

metry stream from the spacecraft. The basic data sampling sequence 

is called a frame, and consists of a number of individual measurements 

for each experiment on board. The real time sampling length of t he 

frame is 12. 6 (50. 4) seconds at the high (low) rate, and each fram e 

has one time associated with it. Three vector reading s of the mag ­

netic field are returned per frame; they are spaced 1/7, 2/7, and 4/7 

of the frame length after· the beginning of the frame . The thr e e com­

ponents of the field are measured in an XYZ spacecraft body-fix ed 
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cartesian coordinate system. The attitude control jets in conjunction 

with sun and Canopus sensors keep the Z axis oriented along a radial 

line from the spacecraft to the sun, with the spacecraft/Canopus 

angle at -45° from the X-axis in the XY plane. 

Measurements of the field components are returned in digital 

units (DN) in the range from +511 to -511. The conversion function 

from DN to gamma is very nearly linear with approximately . 4y 

per DN. Once every 2048 frames there is a 24 frame calibration 

sequence during which known fields of approximately ±40y and ±80y 

are produced at the position of the magnetometer; this calibration in­

sures the reliability of the DN to gamma conversion. Using a for­

tran program XRPM provided by JPL, the magnetometer digital 

readings in each frame, along with the frame time and various quality 

control words were read from the eleven MDL tapes comprising the 

Mariner 5 mission and written on two intermediate tapes, called 

MARDI tapes. The MARDI tapes were then processed through various 

phases which successively: (1) converted DN measurements to gamma; 

(2) removed the calibration offsets so as to ,recover data during this 

sequence; (3) provided quality tags for each individual vector reading 

based on the number of bit errors in the telemetry stream for the 

frame and the consistency of that reading (within broad ranges) as 

compared to adjacent measurements . 

2 . Spacecraft Field Corrections 

An extensive analysis of good quality data on the MARDI tapes 

was carried out to determine the spacec r aft magnetic field [Davis and 
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Smith, 1968]. Magnetometer readings~ are the sum of two vectors 

M= :§.+§. 

where B is the true interplanetary magnetic field (often rapidly vary­

ing) and £is the (unknown) spacecraft field (usually constant or only 

slowly_ varying). Mathematically, £is chosen so as to minimize the 

high frequency variance in IM I during selected intervals. The 

method is based on the fact that previous experiments have shown the 

fine scale fluctuations in the interplanetary field to be primarily 

changes in direction, with relatively small changes in field strength. 

An appreciable error in the spacecraft field estimate for a given com­

ponent wi 11 cause purely directional fluctuations to produce apparent 

field strength fluctuations. This fact, coupled with the above comment 

as to the nature of the variations, enables an inflight determination of 

the spacecraft field to be made. We subsequently show that this me­

thod is quite reasonable in view of the predominant physical nature of 

the fine scale field fluctuations. The spacecraft field correction used 

for Mariner 5 is on the order of 10 y in magnitude and is considered 

reliable within. 25y on each component. With the exception of five 

isolated points, the spacecraft field estimate was never changed 

more than once per day, with at most • Oby per axis shift from one 

day to the next. In most of these five exceptional cases, there was 

a significant change in the mode of operation of the spacecraft that 

could have caused the change in zero offset. Subtraction of the space­

craft field from the XYZ magnetometer measurements gives the true 

interplanetary magnetic field :J2_. 
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3. RTN Coordinates and the BAMFAT Tape 

Using trajectory and spacecraft orientation information pro­

vided by JPL, the field vectors :J2_ were rotated from the XYZ system 

to orthogonal R TN solar polar coordinates, defined as follows: the 

positive R direction is radially outward from the sun; the T direction 

is parallel to the solar equatorial plane and positive in the direction 

of planetary motion, and the N direction is northward along E X I. so 

that R TN is right•handed. The R TN field components of the vectors, 

with times and quality tags, were then written on the Basic Magnetic 

Field Analysis Tape (BAMF AT). One tape contains the entire mission, 

both high and low data rate. The basic unit is still one data frame, 

packed into five 36 bit words, with 128 frames per BAMFAT record; 

spacecraft trajectory information is written once per record. The 

BAMF AT tape contains on the order of 300, 000 good quality measure­

ments of the interplanetary magnetic field. 

B. Plasma Data and Magnetic Field Averages 

The plasma probe on board Mariner 5 was flown by the MIT 

plasma group, who have generously provided extensive and detailed 

data from their experiment. The plasma detector, a modulated grid 

Faraday cup [Lazarus, et al., 1967] points at the sun and measures 

positive ion currents in 32 energy levels covering the range from 

40 to 9400 ev, with a complete sampling cycle of about 5. 04 min at 

the high data rate and 20. 16 min at the low. This includes a direc­

tional measurement from which the three components of the wind 

velocity can be deduced based on currents to four subsections of the 



-13-

collector cup. From the energy spectrum, Bridge and Lazarus 

obtain estimates of N, the proton number density in cm - 3 , Y, the 

vector bulk velocity of the solar wind protons, in km/ sec, and VT' 
1 

the most probable proton thermal speed ( 2kT /m ) ~. in km/ sec. p p 

The plasma probe sampling sequence takes exactly 24 frames, and 

thus spans 72 vector measurements of 12· These magnetometer 

measurements are averaged, and a merged plasma-field tape written 

containing all of the above plasma parameters and averages of mag-

netic field components and magnitudes over the plasma probe sampling 

period. 

Using only good quality data from the BAMFAT tape, we also 

compute averages and variances of the field data over intervals of 

-9 -6 -3 168. 75 sec (2 day), 22. 5 min (2 day), 3 hr (2 day), and one day. 

For each interval, (B), ( ! J? I ), and the matrix 2_ defined by 

S .. = (B . B.) - (B.) (B.) 
lJ l J l J 

are calculated, where ( ) denotes averaging over the specified time 

interval. This information is stored on magnetic tape. 

C. Plots of Magnetic Field and Plasma Data 

The Mariner 5 magnetic field data described above contain 

fluctuations with characteristic times from 10 to 10 6 sec. One of 

the most important steps in the data reduction is the choice of time 

scal es for data display, since vastly different physical processes 

occur across the five orders of magnitude in time resolution. The 

magnetic field data are plotted on four time sc.ales: (1) one or 
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three hours per plot, using the basic BAMFAT data; (2) one day per 

plot, using the 168. 75 sec. averages; (3) seven days per plot, using 

the 22. 5 min. averages; ( 4) twenty- seven days per plot, using the 

three hour averages. The plasma parameters N, VT' and V are 

plotted on scales of one day per plot, seven days per plot, and twenty­

seven days per plot. Figures la through le show examples of these 

plots for each period. Note that the same data appear quite different 

on the various time scales. A wide range of time scales for data 

display is absolutely essential to the interpretation of interplanetary 

data. 
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Figure le. Seven days of magnetic field data plotted using 22.5 minute 

averages. BE and LA are magnetic field direction angles (in degrees). 
0 0 

BE is the angle out of the solar equatorial plane (-90 to 90 ) and LA 

is the field angle in this plane measured from an idealized 45° spiral 

field direction. A dark bar indicates this direction is outward along 

the 45° spiral, and the absence of a bar indicates this direction is 

inward along the spiral . BR, BT, BN are RTN solar polar field components 

and BA is the average field strength. 
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900 
SOLAR
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MARINER 5 
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0 

Figure le. One solar rotation plotted using three hour averages. B is 
the magnetic field strength, N is the proton number density, VW is the 
solar wind velocity, and V is the proton thermal speed . ~ and A are 
field direction angles . ~Tis the field angle out of the solar equato- · 
rial plane, and A is a longitudinal angle in this plane measured from the 
R axis . P is the polarit6, and indicates whether the field has a posi­
tive component along a 45 spiral angle direction (+) or not (-). a is 
the theoretical spiral field angle computed with the three hour average 
wind velocity. 
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CHAPTER III 

OBSERVATIONS 

A. Identification of the Alfve'n Wave Mode 

l. Vector Correlations 

When interplanetary magnetic field data were first obtained 

more than eight years ago, the microscale structure was found to 

be quite irregular, and it seemed plausible [Davis, 1966] that many 

of the features were propagating Alfve'n or magnetoacoustic waves. 

Coleman [ 196 7] carried out an extensive spectral and cross- spectral 

analysis of Mariner 2 (Venus, 1962) plasma and field data, and con­

cluded that Alfve'n waves propagating away from the sun in the rest 

frame of the wind might account for a substantial fraction of the 

fluctuations with periods in the spacecraft frame from 10 to 1 o4 

seconds. This statistical analysis did not give patterns of occurence 

of the waves or explicit examples of the wave forms. The only ex­

ample in which such waves were specifically identified was in a two 

hour segment of Mariner 2 data where Unti and Neugebauer [ 1968 J 

demonstrated the existence of a quasi-sinusoidal Alfve'nic waveform 

with a period in the spacecraft frame of about 30 minutes. Belcher, 

Davis, and Smith [ 1969], in a preliminary analysis of Mariner 5 

plasma and field data, identified outwardly propagating Alfve'nic wave 

trains as frequently occurring phenomena, although they are for the 

most part non-sinusoidal and aperiodic. 

Figure Za is an example of such a wavetrain, approximately 

1/4 a. u. in length. The variations in the components of the magnetic 
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field .£? and the plasma velocity Y. for a 24 hour period starting at 

0400 on day 166 are shown. For each component, the average of 

that component over the 24 hour period has been subtracted; thus, 

the plots show the fluctuations about the average ((BR) = -1. 9y, 

(BT)= l.4y, (BN) = 1.2y, (VR) = 427 km/sec; (VT) and (VN) 

have not yet been corrected for aberration due to the spacecraft 

motion). The two lower curves on the plot are proton number den-

sity N and magnetic field strength B (( B) = 5. 3y, (N) = 5. 4 cm- 3 ). 

The Alfve'nic identification is based primarily on the fact that the 

vector relation between£ and y_ given by Equation (3) C!2. = ±DA .:y:_) 

is satisfied. This period is one of the better examples of the waves 

and illustrates their most characteristic features -- close correla-

tion between J?. and y_, variations in.£ comparable to the field strength, 

and relatively little variation in field strength or density, as is ex-

I pected for the transverse Alfven mode. The fluctuations in Figure 

2a must be predominantly Alfve'nic, since if there were a substantial 

admixture of the fast or slow magnetoacoustic modes, there would 

be variations in field strength correlated with variations in the den-

sity as well as with other quantities. In this case, the average mag-

netic field is inward along the spiral and the correlation between£ 

and y_ is positive; when the magnetic field is outward, the correlation 

in periods of good waves is negative. This indicates outward pro-

pagation (see Equation (3)). 

The scale ratio used for plotting the magnetic field and velo­

-1 city variations in Figure 2a corresponds to a value of DA in 
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-1; Equation (3) of 6. 4 km sec gamma. This was determined by 

the condition that when this ratio is used for a fixed area plot of 

vR versus bR for all the data, the sum of the squares of the per­

pendicular distances from the points to a line of unit slope is mini ­

mized . (Mathematically this gives DA -l = avR/ 0bR, the ratio of the 

standard deviations.) The average values of N and Na (the alpha 

-3 particle number density) during this period are 5. 4 cm and 

- 3 . 6 . D -1 O. 4 cm , respectively; Equation ( ) with ®A= 1 gives A = 8.2 

-1/ km sec gamma. We feel that the discrepancy between this pre-

dieted value and the observed value of 6. 4 is significant and probably 

is due to the anisotropy in the pressure. This requires that 
1 

The average during this period of (ZkTP/mJ~, 

the most probable proton velocity, was observed to be 4 7 km/ sec, 

which corresponds to 4irp /B 
2 

= O. 5, where p is the mean proton 
p 0 p 

pressure. With reasonable values of the electron and alpha pressures 

and of the pressure anisotropy [ Hundhausen et al., 1967], the 

required value of @A seems entirely reasonable. On other occasions 

when 13 = 8irp /B 
2 

is smaller, values of @A closer to unity would be 
p 0 

expected. 

2. Waves Versus Discontinuities 

Figure 2 b is an exanded plot of three particular ten minute 

periods indicated on Figure Za, where the crosses are the basic 

magnetometer data (one reading in approximately four seconds) and 

the lines are the plasma data (one per 5. 04 min), scaled in the same 

ratio as in Figure Za. On this time scale, the waves may be either 
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gradual (Zb, ii) or discontinuous (Zb, i; Zb, iii); with abrupt changes 

within 4 seconds. As discussed below, we feel that all three examples 

are Alfve'nic, with continuous magnetic field lines, but with a discon­

tinuity in direction in cases (Zb, i) and (Zb, iii). Such abrupt changes 

occur at a rate of about one per hour, and are enmeshed in more 

gradual changes. 

The visual appearance of the field fluctuations is qualitatively 

different on the time scales of Figures Za and Zb. With the scale 

used in Figure Zb, the most prominent structures are the abrupt 

changes which tend to be preceded and followed by field values that 

appear nearly constant. For example, the structure in Figure (Zb, i) 

is more striking than that in (Zb, ii) even though both have about the 

same total change over the ten minute period, and both appear very 

similar in Figure Za. On the time scale of Figure Za, the genuine 

high frequency abrupt changes do not stand out because they are in­

distinguishable from large smooth changes when the data are aver­

aged over 5. 04 minute intervals, and because the field no longer 

appears to remain steady before and after the jumps. Because the 

abrupt changes are the most visually striking features when field data 

are plotted at a high time resolution, even though they are relatively 

infrequent and not necessarily intrinsically different from the smooth­

er variations, numerous studies have been made of their structure 

and frequency of occurrence [Siscoe et al., 1968, Burlaga, 1968, 

1969]. These authors have tentatively concluded that most of the dis­

continuities in the solar wind are tangential (non-propagating). In 
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fact, it has been suggested [Ness, 1969] that the fluctuations in Fig-

ure Za are not dynamic structures propagating in the rest frame 

of the solar wind, but rather are an ensemble of spatially convected 

non-propagating MHD discontinuities in equilibrium. Since this point 

is of major importance in the interpretation of interplanetary magne-

tic field fluctuations, we discuss it in some detail. 

Consider the two non-propagating discontinuities in the iso-

tropic MHD approximation, the contact and the tangential, as dis-

cussed in I B above. The magnetic field is continuous aero ss the 

contact surface, which is of no interest to us, but both plasma and 

field parameters can change across the tangential discontinuity. Let 

n and t be subscripts denoting components normal and tangential, 

respectively, to the discontinuity surface and let [A] denote the 

change in A across the surface. A tangential discontinuity is char-

acterized by Bn = 0, Vn = 0, arbitrary and unrelated [Y.t] and [J?t], 

and any change in pressure and field strength subject to the condition 

[p + B 2 /8ir] = O. By constructing a series of special tangential dis-

continuities, all having continuous density and field strength, with 

the plane of the discontinuity so chosen that B = 0 on both sides, and 
n 

with [J?t J and[Yt J related by Equation (3) {where the sign is consis­

tent from discontinuity to discontinuity and changes with the polarity), 

we can in fact make a structure such as in Figure Za which is static. 

None of these special conditions are required, but they are allowed 

by the tangential discontinuity equations. However, it is not clear 

what physical mechanism would cause such a configuration in the first 
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place, and while it is possible to explain any one discontinuity in this 

way, it is·hard to fit together a large number unless their shear 

planes are all parallel. 
I On the other hand, the Alfven wave hypothe-

sis accounts for all of the observed properties in a straightforward 

manner. When sufficiently sharp-crested, an Alfve'n wave can be 

termed a rotational discontinuity. Such a discontinuity has continuous 

density and field strength, Bn is non-zero and continuous, and [ f2.t J 

and [Y.tJ are related by Equation (3). The only special conditions 

needed to produce a data sequence as in Figure 2a is that all the 

I Alfven waves propagate outward. 

The fluctuations in Figure 2a are thus viewed as purely 

Alfve'nic, with occasional sharply crested Alfve'n waves enmeshed 

in more gradual variations. This interpretation is in sharp contrast 

to the non-propagating, filamentary model of the microscale structure 

consisting of equilibrium regions of differing properties separated by 

tangential discontinuities and convected outward from the sun by the 

solar wind. Periods s.uch as in Figure 2a are usually found in high 

velocity streams and on their trailing edges; they can last as long as 

three days ( ....... 7 a. u. of gas), and almost every discontinuity in that 

time appears to be a sharply crested Alfve'n wave. We do not mean 

to imply that all discontinuities in the solar wind are Alfve'nic, as 

this is obviously not the case, but it appears that a high percentage 

of them are, particular1y in certain regions (as discussed below). 

Similarly, we feel that the filamentary or discontinuous model of the 

microscale structure is valid in many circumstances, but that it 
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must be applied with care. Even a tentative identification of struc­

tures as dynamic or static must include a careful study of both mag­

netic field and plasma data. 

3. Frequency of Occurrence and Direction of Propagation 

It should be emphasized that the presence of the waves is 

very common, and tends to dominate the microstructur e of the inter­

planetary medium. There are a total of about 25 days (a day being 

24 consecutive hours} from the 160 day mission during which the 

Alfve'n waves are as 11 pure 11 as those in Figure 2a; such periods tend 

to occur in high velocity streams and on their trailing edges where 

typically the density is low and the temperature high. Other examples 

of the waves, in the presence of large scale velocity gradients, 

static structures, shocks, polarity reversals, etc., are less clean, 

but they are still recognizably present. The identification of the 

waves during such periods is based on a visual inspection of plots 

of simultaneous plasma and field data at high time resolution. Alfven 

waves are adjudged to be pre sent if there is substantial high frequency 

fluctuation in the magnetic field, a good high frequency correlation 

between BR and VR (low frequency correlations are influenced by 

slow linear trendsL and relatively little high frequenty fluctuation 

in density and field strength. In the following, we will state whether 

Alfve'n waves are present or not on the basis of such comparisons of 

plasma and field data, although such data will not always be repro­

duced. 

To obtain a rough statistical measure of the prevalence of the 
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waves, we have examined the distribution of p, the correlation 

coefficient between BR and V R computed over six hour intervals 

throughout the entire mission. Six hour intervals dominated by 

outwardly propagating Alfve'n waves will have high values of Ip I. and 

p will have the same sign as -P, where P is the polarity of the aver­

age field direction (+l for(_!?) outward along the spiral and -1 for 

(_!?) inward along the spiral). For the 416 six-hour intervals in the 

flight with more than 66 percent data return, 33 percent of the 

intervals had J p J :::-: • 8 and 55 percent had Ip I :::-: . 6. The sign of p 

correlates extremely well with the polarity of the field. Table 1 

lists the percentage of the six-hour intervals with j p j in the indicated 

ranges for which pP is negative. Those six-hour intervals (112 out 

of 416) for which (~) was not within 45 ° of a 45° spiral angle are 

not included because of their poorly defined polarity. All but three 

of the remaining six-hour intervals with !Pl :::-:.8 have pP <O, indicat­

ing outwardly propagating waves. Inspection of the three six-hour 

intervals which are exceptions reveals that the high correlation and 

positive pP are not caused by inwardly propagating waves, but by 

slow linear trends during quiet times; such trends can cause a spur­

iously high value of l pl even when there are no wave-like or higher 

frequency fluctuations present. Thus, Alfve'n waves in periods of 

high I p I are essentially always outwardly propagating. 

Periods for which I p I is not as high ( l pl <. 8) have pP < 0 

a large percentage of the time (see Table 1), but not as consistently 

as do periods of higher correlation. The smaller values of J p J could 

be caused by the presence of static structures, shocks, slow linear 
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TABLE l 

Range of l pl No. and percent Percent intervals 
intervals in this with pP<O 

range 

. o/. 2 44 ( 14) 66 

• 2/. 4 41 ( 14) 68 

• 4/. 6 47 (15) 83 

. 6/. 8 76 (25) 83 

• 8/1. 0 96 (32) 97 

• 0/1. 0 304 (100) 83 
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trends, etc .• which can mask the effect of the correlation due to the 

waves. The intervals with pP > 0 could be due to linear trends that 

cause a high value of J p J even when no waves are present. They 

could also be due to the presence of inwardly propagating Alfve'n 

waves. Suppose that we are studying microscale fluctuations which 

are exclusively due to an outwardly propagating Alfve'n wave of 

amplitude A+ and an inwardly propagating Alfve'n wave of amplitude 

A_, with no cross correlation between the two waveforms; then it 

is easily shown that pP = (A_ 
2 

- A+ 
2

)/(A _ 
2 

+ A+ 
2

). For A_ 
2 

/A+ 
2 = 

I 21 2 21 2 
l. 9, pP = -. 8, for A_ A+ = 1/3, pP = -. 5, and for A_ A+ = l, 
pP = 0 . Thus, the presence of inwardly propagating Alfve'n waves 

can significantly reduce I p j during periods of purely Alfve'nic 

fluctuations , and it is possible that six-hour intervals for which 

Ip j ~. 8 have inwardly propagating Alfve"nic components, perhaps 

even with A_ 
2 

/A+ 
2 > l in many of the cases with pP > 0. The impor­

tant point is that although inwardly propagating Alfv~n waves may at 

times occur, they evidently never occur in an extremely pure form, 

since J p J ~ • 8 implies pP < O. Even though there may be periods in 

which there are both inward and outward Alfve'n waves, there are no 

periods with exclusively inward propagation, whereas periods with 

exclusively outward propagation evidently occur on the order of 

30 percent of the time. 

It is clear from Table 1 that Alfve'n waves propagating out-

ward have a strong influence on the sign of p, even down to l p j = • 4. 

This close correspondence between the sign of p and the polarity, 
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together with the high percentage of times with l p j ~ • 6, strongly 

indicates that outwardly propagating Alfve'n waves dominate the 

microscale structure about 50 percent of the time. Coleman [1967] 

found precisely the same type of correlation shown in Table 1 in 

a study of cross spectra between plasma and magnetic field data from 

Mariner II {Venus 1962), and also noted that this type of correspond-

ence between p and P would be expected for outwardly propagating 

Alfve'n waves. The waves were thus also present in appreciable 

quantities in the interplanetary medium in 1962. 

B. Patterns of Occurrence of the Waves 

1. Solar Wind Stream Structure 

I As noted above, Alfven waves in the interplanetary medium 

have characteristic patterns of association with the large scale 

velocity structure of the solar wind. The macroscale properties of 

this stream structure were first discovered in the Mariner II data 

[Neugebauer and Snyder, 1966; Snyder et al., 1963], and subsequent 

probes have confirmed these initial results [Wilcox and Ness, 1965]. 

Although the high velocity streams observed by Mariner V are not 

as long lived as those found previously, the streaming patterns in 

the Mariner V data are very similar to those observed by earlier 

spacecraft, and exhibit the basic characteristics of fast and slow 
•. 

streams and their interactions. Figure 3 is a plot of three hour 

averages of various quantities over a 35 day period of the flight; 

V is the wind velocity, B is the magnetic field, N is the proton 
w 

number density, and VT is the most probable proton thermal 
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1 

velocity (2kT /m )~ . High velocity regions in the solar wind tend 
p p 

to be hotter and less dense and low velocity regions colder and 

more dense. The level of high frequency magnetic field activity 

also tends to be higher in high velocity streams, although this 

effect is not as pronounced as the correlation between velocity and 

temperature. Magnetic field strengths tend to be the same in both 

high and low velocity regions, except for the high field regions found 

at the leading edges of fast streams where the velocity increases 

rapidly with time. In these regions, high velocity streams are 

overtaking and colliding with low velocity ones, causing local com-

pres sion and consequent high magnetic fields and densities; there 

are usually enhanced temperatures and very high levels of magnetic 

field activity in these colliding stream regions [Davis et al., 1966; 

Davis, 1966]. The best examples (as in Figure 2a)of the purely 

Alfve'nic, outwardly propagating magnetic field fluctuations are found 

in high velocity streams and on their trailing edges (where the velo-

city decreases slowly with time}. Regions with waves of this nature 

are indicated by the light bars in Figure 3. Alfve'n waves found in 

low velocity streams are also outwardly propagating, but tend to be 

of lower amplitude than those in the fast streams, and tend to be 

less pure in the sense that they are more strongly intermixed with 

structures of definitely non-Alfve'nic character (such as tangential 

discontinuities} . The largest amplitude Alfve'nic fluctuations are 

found in the colliding stream regions. However, waves in these 

regions may have significant amounts of inwardly propagating or 
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non-Alfve'nic components. Regions with very large amplitude waves 

are indicated by the heavy bars in Figure 3. 

Figure 4 is a detailed specific example of large scale stream­

ing properties using 40. 3 minute averages plotted over a seven day 

period from day 189 to 195. crs is the square root of the 40. 3 minute 

average of the total variance in the magnetic field components, in 

gamma, where the variances are computed over the plasma probe 

sampling period of 5. 04 minutes, and the total variance is the sum 

of the variances on the individual ax.es. Gaps in the curves occur 

during periods when data were not taken. The region of rapid velo­

city increase at the leading edge of the high velocity stream extends 

from appro.x.imate 1 y the beginning to the end of day 192. It is pre­

ceded by relatively high densities, and is accoµipanied by enhanced 

temperatures and magnetic field fluctuations. The proton tern perature 

and the standard deviations in field components are low in the low 

velocity stream, are at a maximum in the region of rapid velocity 

increase, and decrease with velocity on the trailing edge of the stream. 

The proton number density falls to very low values inside the high 

velocity stream proper {on day 193, for example) as compared to 

values in the low velocity stream {day i89). The density increase 

from day 189 to the end of day 190 is probably not associated with the 

compression or pileup of ambient slow gas ahead of the high velocity 

stream, since it is not accompanied by a field strength increase. The 

density increase is more likely a reflection of the observed fact that 

lower velocity streams have higher densities (note that the velocity 

is decreasing during this period). The density increase at the end 
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of day 191 is accompanied by high field strengths, and thus is pro-

bably associated with compression of the slow gas ahead of the fast 

stream. The relatively higher field strengths and densities in the 

latter half of day 192 (as compared with day 193) are similarly the 

probable result of the deceleration and compression of the fast gas 

as it runs into the more dense slow gas. (Day 192, hours 15 to 18, 

has an average density and field strength of 2 . 6 cm - 3 and 12. 9 

-3 gamma, respectively, as opposed to average values of 1. 3 cm 

and 5.9 gamma on day 193, hours 0 to 3; although the field strength 

decrease in Figure 4 in the latter part of day 192 appears much 

larger than the density decrease, the relative change in the two 

quantities is the same.) In a later section we discuss further the 

dynamics of colliding stream structures. 

Consider now the microscale fluctuations during this period . 

Their general level is indicated by the values of cr
5 

in Figure 4; 

their character is indicated by comparisons of v and b similar to - -
Figure 2a. These are shown for the most interesting part of the 

interval in Figure 5, in which lower frequency variations have been 

eliminated from all but the lower curve by subtracting from each 

point a smoothed low frequency mean obtained by averaging over two 

hours about the point. The upper curves are thus high frequency 

variations about running two hour means . We emphasize that the 

vector velocity data given here are preliminary, and we pre sent 

them only to demonstrate qualitative behavior . The variations in 
1 

velocity have been multiplied by (4'1T'(N) m ) ~ (See Equation (4)). 
. p 
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where (N) is the smoothed proton number density for each point, 

in order to normalize them to the magnetic field variations. B is 

the magnitude of the average magnetic field before low frequency 

averages are subtracted. Days 189 through 191 are very quiet mag­

netically, with little wave-like fluctuations at high frequencies; how­

ever, after the beginning of day 192 there is a high level of wave 

activity that is seen in Figure 5 to become obviously Alfve'nic with 

good correlations on all three axes after hour 15. The correlation 

between 12. and y_ is particularly impressive in view of the fact that 

the plasma data are probably highly alai sed (changes in the 

plasma properties during the measurement of the energy s pe ctr um) 

as there is a large amount of variation in the magnetic field with 

periods of less than five minutes, the plasma sampling period. For 

comparison Figure 6 is C:- point plot of 168. 75 sec. averages of the 

·magnetic field during days 192 and 193, showing more clearly the 

large amount of scatter in the field readings. The magnetic field 

variations in the compression region (before hour 21 in Figure 6) 

cannot be purely Alfve'nic, since there are comparatively large 

fluctuations in B at higher frequencies. Even so, the power in the 

field magnitude at higher frequencies is small compared to the power 

in the field components, and the Alfve'n mode is obviously still 

the dominant one. The polarity during this period is negative, and 

thus the very large amplitude higher frequency fluctuations (periods 

less than 2 hours) in the interaction region after hour 15 of day 192 

are predominantly propagating outward. Before hour 15, in the mo st 

active part of the compression region, the correlations are clearly 
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not as good; this could be cause d either by highly aliased plasma 

data, or by inwardly propagating Alfve'nic or magnetoacoustic wave 

modes. On days 193 and 194, the amplitude of the field fluctuations 

has decreased (this period is in the high velocity stream proper), and 

the correlation between b and v is extremely good {as in Figure 2a). - -
The strength of the magnetic field fluctuations increases on all three 

axes as we move from the high velocity stream proper into the 

compression region at its leading edge; note, however, that the 

normal component of the field has more power than the radial or the 

tangential in the compression region itself (see Figure 6). This be-

havior appears to be a general property of field fluctuations in col-

liding stream regions. 

Other examples of stream structure in the solar wind have 

characteristics similar to the above. Figure 7 is a plot of days 233 

through 239 in the same format as Figure 4, except that now cr
5 

is the square root of the average total variance of the field components 

over 20. 16 minute intervals (the plasma sampling period at the low 

data rate used here). In this example, the leading edge of the high 

velocity stream beginning on day 236 is preceded by dense low 

velocity gas and the trailing edge of another high velocity stream. 

Again we point out that the density increase across days 234 and 235 

is almost certainly not associated with the pile-up of low velocity 

gas ahead of the high velocity stream, but instead is simply a reflec-

tion of the fact that lower velocities are associated with higher den-

sities in the solar wind. This association is presumably because of 

conditions in the corona and the radial distribution of the energy 
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supply of the solar wind. The increase in density and field strength 

from the beginning to the middle of day 236 is probably the result 

of a dynamic compression of slow stream gas ahead of the fast 

stream, and the increase in field strength and density in going from 

day 237 to the last half of day 236 is probably due to the deceleration 

and compression of the fast gas as it runs into the slower, more 

dense gas ahead. Days 233 . and 237 through 239 contain excellent 

examples of the pure outwardly propagating Alfve'n wave mode. 

Days 234, 235, and the first half of 236 contain Alfve'n waves, but 

they are intermixed with more slowly varying structures which are 

associated with changes in density and field strength, and which may 

be static (note the large changes in field strength and density on these 

two and a half days in Figure 7 as compared to the four days men­

tioned above). The last half of day 236 (the compressed fast gas) 

contains very large amplitude fluctuations which are primarily 

Alfve'nic . Figure 8 is a high time resolution plot of the field varia­

tions in this period, showing in detail the enhanced field fluctuations 

in the cam pression region. The normal component of the magnetic 

field has more power than the other components in the latter half of 

day 236. 

Figure 9 is a third example of large scale stream structure 

although in this case the situation ahead of the fast stream is some­

what chaotic. Day 285 after hour 6, and day 286 through the middle 

of day 28 7 contain good examples of purely Alfve'nic, outwardly 

propagating waves. Days 282 through 284 contain outwardly propa­

gating Alfve'n waves of smaller amplitude, but these are strongly 
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intermixed with large scale changes in field strength a nd d ensity 

which may be tangential discontinuities or weak shocks . Figure 10 

shows the change in the microscale fluctuations in the high velocity 

stream proper as they are swept into the compression region at 

the leading edge of the stream . Running backward in spacecraft 

time at hour 4 of day 285, one goes from unmodified high velocity 

gas to more disturbed gas that has already entered the compression 

region. The amplitude of the fluctuations increases, and again the 

normal component of the field variations is stronger. Figure 11 is 

another example of large scale stream structure, and Figure 12 

illustrates the character of the microscale magnetic field fluctua­

tions in three distinct regions: the low velocity stream proper (day 

227). the compressed leading edge of the high velocity stream (day 

228), and the high velocity stream proper (day 231). Day 227 has 

some high frequency Alfve'nic activity intermixed with large scale 

static structures, day 228 has very large amplitude waves which 

are predominantly Alfve'nic (and which have more power in the nor­

mal direction), and day 231 has good examples of outwardly propa­

gating Alfve'n waves. Figure 13 is a plot similar to Figure 5, and 

demonstrates that the fluctuations on days 231 and 232 are extremely 

pure, outwardly propagating Alfve'n waves . The average correlation 

between BR and VR for the four six-hour periods of day 228 was . 5 

(as opposed to an average of • 88 for day 231), and the high frequency 

variance in the field strength is relati vely high (as compared with 

day 231}, so that the waves on day 228 in the compression region 
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cannot be said to be purely Alfve"nic or outwardly propagating, 

although they appear to be predominantly so. 

2. Correlations between Three Hour Averages of Plasma 

and Field Data 

The character of these general patterns in the stream struc-

ture of the solar wind can be seen in correlation coefficients computed 

between various three hour average parameters over a solar rotation. 

Correlation coefficients, means, and standard deviations have been 

calculated for each of the six rotations 1832 through 1837, and Table 

2 gives the average of these quantities over the six rotations, weight-

ed according to the number of available three hour data in a rotation. 

The number of available three hour data averages per solar rotation 

varied from 95 (IB35} to 195 (1834), with an average of 160 per rota-

tion. Vw• N, VT, and Bare as defined above, and f3p is the ratio 

of a proton thermal energy density to magnetic field energy density 

(4'!TmpNV T 
2 
/B

2
) computed using the three hour averages of N, VT' 

and B; Ip j is the absolute value of the correlation coefficient p be­

tween BR and VR computed over three hour intervals. a
51 

and a
52 

are the square roots of the three hour average of the 168. 75 sec 

and 22. 5 minute total variances in field components, respectively; 

a53 is the square root of the three hour total variance in components. 

Thus cr51 is representative of the amount of power in the very high 

frequency magnetic field fluctuations during each three hour interval; 

a
52 

and cr
53 

are representative of the power at lower frequencies. 

From Table 2 we see that Vw is well correlated both with 
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TABLE 2 

Weighted averages of correlation coefficients computed over 

the six solar rotations of the Mariner V flight. AVE and STD are 

weighted averages of the average and standard deviation of the var-

ious parameters over a solar rotation. 

VW N VT B f3p l PI crSl crs2 0"53 

VW l. 00 - • 51 .66 • 16 -. 10 . 07 • 44 .37 • 23 

N -. 51 1. 00 -.36 • 08 • 31 -. 14 -.02 • 10 • 24 

VT • 66 -.36 1. 00 • 22 • 18 . 03 • 55 • 48 • 32 

B • 16 • 08 • 22 1. 00 -.52 -.06 • 52 .55 • 56 

f3p -. 10 • 31 • 18 -.52 l:OO -. 10 -. 12 -. 10 - • 11 

l PI • 07 -. 14 • 03 -.06 -. 10 1. 00 • 09 • 06 • 06 

crs 1 • 44 -.02 .55 • 52 -. 12 • 09 1. 0 • 93 • 76 

crs2 •· 3 7 • 10 • 48 .55 - • 10 • 06 • 93 1. 0 .87 

CT53 • 23 .24 • 32 .56 -. 11 • 06 . 76 .87 1. 0 

AVE 410. 8.5 42.8 8.5 .60 • 63 l. 46 2.68 4.23 

STD 75. 5. 4 14.8 3.0 • 51 • 27 .65 1. 25 2.09 
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VT and with cr51 . These high correlations occur because high velo­

city streams are generally hotter, with more power in high frequency 

field fluctuations . The good anti-correlation between V W and N 

reflects the gene r ally lower densities of highe r v e l ocity r e gi on s. 

The high correlation between VT and cr51 occurs both because each 

is higher in high velocity streams and because local 11hot" spots in 

temperature are usually associated with stream- stream collision 

regions, which contain very large amounts of high frequency mag­

netic field fluctuation. B correlates well with cr51 because B is 

generally high during the stream-stream collisions, where cr
51 

is 

high. Note that even though B and cr51 corr elate well, and V W and 

cr51 also correlate well, Band Vw are poorly correlated; this comes 

about because both cr51 and B are enhanced in the colliding stream 

regions (where V W is low and increasing}, whereas B falls off and 

cr51 stays at relatively high values during the high velocity stream 

itself. 

The standard deviations in field components characteristic of 

lower frequency variations (cr52 and cr53 } ar~ not as well correlated 

with VT and Vw as is cr51 . We ascribe this to the fact that cr
52 

and 

cr53 are more strongly influenced by the presence of long term trends 

and large scale, non-wavelike structures (such as polarity reversals, 

compression regions, tangential discontinuities, etc . ) . The parameter 

cr
51 

is comparatively free of such low frequency effects, and we feel 

that it is the best index to the relative strength of the dynamic , wave­

like fluctuations in the magnetic field . 
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There is a good anti-correlation of f3p with B, but poor cor­

relations with N and VT' even though these latter quantities are also 

used in its computation; this indicates that the magnetic field strength 

is the dominant factor producing variation in f3 • f3 correlates very 
p p 

poorly with V W and crSl. High velocity streams, even though they 

are hotter , are not necessarily high f3 regions, because in general 
p 

the density is lower. Also, the interaction regions between high and 

low velocity streams ( where crS 
1 

is highest) are not necessarily high f3p 

regions, even though these r egions are loc~l "hot" spots, because 

usually the magnetic field strength is also very high. In general, f3 p 

is a very poor index for the strength of the high frequency magnetic 

field fluctuations, and thus we conclude that these fluctuations are 

not governed by the local balance between proton thermal energy 

density and magnetic field energy density (in contrast to the conclu-

sions of Burlaga, Ogilvie and Fairfield, 1969). Rather the strength 

of the microscale fluctuations is predominantly governed by the non-

local (i.e., macroscale) properties of the solar wind, such as stream 

structure and generation or amplification of waves in colliding stream 

regions ~ and the best index to the strength of these fluctuations is the 

proton temperature VT . 

Table 2 shows that Ip I. which is an indication of the presence 

of the waves, correlates very poorly with all other quantities; this 

fact was the basis for the statement in Belcher, Davis, and Smith 

[ 1969] that the Alfve'n waves have " · • • no discernible pattern of 

association with large scale structures such as high v elocity streams 

II . . . . As far as the presence of the waves is concerned, this state-
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ment is strictly true; examples of the Alfve'n waves can be found 

under almost any macroscale condition. However, although j p j is 

an index to the presence of the waves, it gives no indication as to 

their amplitudes, and this is the property of the waves which corre­

lates with the macroscale velocity structure. 

In summary, we find that Alfve'n waves in the solar wind are 

quite common, and may occur under mo st conditions. The purest 

examples of the outwardly propagating Alfve'nic fluctuations ar e found 

in high velocity streams and on their trailing edges. Outwardly pro­

pagating Alfve'n waves are also found in low velocity regions, but they 

tend to be of smaller amplitude and less pure in the sense that they 

are more strongly intermixed with structures which are not wavelike 

and possibly static. The largest amplitude Alfve'n waves in the solar 

wind are found in the compression regions at the leading edges of high 

velocity streams; these regions may have inwardly propagating or 

non-Alfve'nic wave modes. This characterization of Alfve'n wave 

properties as related to stream structure is a generalized description 

only and notable exceptions exist. The macroscale properties of 

stream structure can be quite different from the examples we have 

given (i.e., shocks, etc.), and very large amplitude Alfve'n waves 

can be found away from colliding stream regions (and even in low 

velocity streams, for example) . However, the pattern described 

above occurs· repeatedly throughout the five months of data from 

Mariner V, and appears to be a basic property of stream structure 

in the interplanetary medium. 
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C. Stat:i stical Properties of the Microscale Fluctuations 

1. Wave Spectra and Energy Densities 

The frequency range over which the waves extend is extremely 

broad. Figure 14 is a plot of the cross spectrum between BR and VR 

for a two day period of good waves, computed with 30 degrees of 

freedom and giving estimates for coherency and phase at frequencies 

from 1/(4. 2 hours) up to the Nyquist frequency of 1/(10. 08 minutes). 

High coherencies and o0 phase are indicative of the presence of the 

waves; they extend from a low frequency cutoff of about 1/(2 hours) 

up to the highest frequency measurable by the plasma probe, 1/(10. 08 

minutes) . Cross-spectra of other segments of the data when waves 

are present show the same qualitative behavior. Taking into account 

the convective motion of the wind, these frequencies correspond to 

waves in the rest frame of the wind with periods from roughly 80 

minutes (or less) to 16 hours, and wavelengths from .25x106 km 

6 (or less) to 5 x 16 km. 

It is likely that velocity fluctuations are well correlated with 

the magnetic field fluctuations at much higher frequencies than we 

can experimentally measure (1/(10 . 08 min.)). The velocity can easily 

follow the abrupt transitions shown in Figure Zb, and the properties of 

the magnetic field fluctuations above frequencies of 1/(10 min.) are 

similar to those below 1/(10 min.) (as discussed in the next section) . 

Hence the higher frequency fluctuations in periods of good Alfv~n 

waves are probably also Alfve'nic. Since there is some variation at 

even the highest measurable frequency (see Figure 2b). we would 
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I argue that the Alfven wave nurn ber spectrum typically extends 

from 10 3 km to 5 x 106 km. 

Preliminary power spectra and cross spectra of the interplane-

tary magnetic field in the frequency range from 1/(107. 5 min.) to 

1/(25. 2 sec.) have been calculated over mo st of the hig h data rate 

part of the mission, using the fast Fourier transform [Hinich and 

Clay. 1968]. Each spectrum is computed with 32 degrees of free­

dom, using 4096 averages, each 12. 6 seconds in length ( ....... 14. 3 hours 

of data); the resulting power spectral estimates are displayed on 

log-log plots, thus giviµg straight lines when the frequency depen-

- a. dence is f • The power levels obtained agree with those of earlier 

studies [Siscoe, et al, 1968; Coleman, 1966], except for those of 

Sari and Ness [1969] , whose estimates during days of comparable 

magnetic field activity are in error by a factor of 10 to 100. In the 

range from approximately 1/(10 min.) to 1/(25 . 2 sec.), the spectra 

quite generally exhibit values of a. close to 1. 6 or 1. 7; in the range 

from 1/(107. 5 min.) to 1/(10 min. ). there is a much broader spread 

in values of a, from as low as 1. 5 to as high as 2 . 2. There is some 

indication that high values of a. (a.:::.. 2.) in this frequency range are 

associated with cold plasma regions, where there is little high fre -

quency field fluctuation, and that low values of a. (a.""' 1. 5) are as so-

ciated with hot plasma regions, where there is a high level of high 

frequency field fluctuation (Table 2) . A detailed study of least 

squares fits of a. as a function of various plasma parameters is being 

made to test such possible correlations. 
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Slopes of spectra during periods of very good waves (high 

correlation, little variance in field strength and density) tend to 

cluster about 1. 7, but can be as high as 2. in the low frequency 

-Z range mentioned above. It should be noted that an f spectral de-

pendence is completely consistent with the observed properties of 

the waves; such a spectrum can result both from a succession of 

discontinuities [Siscoe, et al, 1968 J or from irregular waveforms 

having no discontinuities. As we have seen, the waves can appear 

either as very irregular with gradual changes or as discontinuous, 

both on the time scale of Figure2aand at the highest time resolution 

(Figure2band Figure 16). In contrast to Sari and Ness [1969], we 

strongly support the conclusions of Coleman: [ 196 7] that the observed 

fluctuations of the interplanetary magnetic magnetic field as measured 

by power spectra and especially as correlated with plasma measure-

ments, indicates the existence of waves in the interplanetary medium. 

When the waves are prominent, the energy densities as so-

ciated with them are comparable to magnetic field and kinetic energy 

densities [Coleman, 1967, 1968]. For various three hour intervals 

which a r e dominated by wave activity we take the total wave energy 

densi ty WE to be half magnetic and half kinetic energy of plasma 

motion, and to be equal to oB 2 
/4;r, where oB2 

is the total variance 

in field components over the three hour period. We compare this 

quantity to B 2 /8;r and NkT in Table 3. The three r ·egions designated 
p 

as periods of extreme field activity are all located at the leading 

edges of high velocity streams ; those designated as moderate to 
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TABLE 3 

Period 8TrWE/B
2 

WE/NkTP Field Activity 

167 12/15 . 53 • 95 moderate 

192 15/18 . 42 .88 extreme 

195 12/15 • 05 . 13 quiet 

228 12/15 0 64 2.67 extreme 

231 12/15 1. 27 1. 45 moderate 

236 15/18 . 42 1. 28 extreme 
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quiet occur in the main bodies of streams or on their trailing edges . 

In all except the quiet period, WE is comparable to field or thermal 

energy densities . 

2 . Microscale Anistropies 

In the previous section dealing with the wave spectra, we 

made no reference to or use of the vector nature of the mag netic 

field fluctuations . Power levels and slopes were estimated on the 

basis of spectra computed for each of the three R TN carte sian a x es, 

treating variations in each direction as independent variables and 

neglecting their vector properties . We now consider directions of 

maximum and minimum power in a preferred coordinate system, 

using a method employed by Sonnerup and Cahill [1967] and by Siscoe 

et al. [ 1968 J which allows one to deduce power levels along any given 

direction. We first discuss the general properties of the microscale 

variations in the magnetic field, and then examine in detail specific 

periods of dynamical interest. 

The variance tensor .[is defined by S .. = (B. B.) - (B.)(B.), 
lJ l J l J 

where i, j refer to the R TN components of the magnetic field _!?, and 

( ) denotes averaging over a specified time interval. The tensor 

components in any other system are given by the usual tensor trans ­

formation for rotation of axes. The trace of.[ is O'S 
2 

as defined 

above; it is invariant to rotation of axes and is the sum of the eigen-

values of the matrix. If ( ~) is the average field, 

0112 = ;::: (B.) s .. (B.)/ I (B) 12 

a 
.l 

.. l lJ J -
2 2 2 = as - all 

then 
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are the variances in the field parallel and perpendicular, respec-

tively, to the average field direction. Hence they measure, res-

pectively, the fluctuations that primarily change the field strength 

and those that primarily change the fi e ld direction. 

The matrix.§. can be diagonalized, yielding the eigenvalues 

P 1 ~P2 ~P3 , and the corresponding eigenvectors ~l > ~ 2 , and ~ 3 • 

The eigenvectors form the principle axes of the "variance" ellipsoid; 

.e,
1 

is the direction of maximum variation and .§.3 is the direction of 

minimum variation. The relative magnitudes of the eigenvalues pro-

vide information about the anisotropy that is independent of coordinate 

system used. For example, if Pl' P 2 , and P
3 

are of approximately 

equal magnitudes, the fluctuations are approximately isotropic in 

three dimensions. and the directions of the eigenvectors have little 

significance. If P 1 and P 2 are of comparable magnitude and much 

larger than P
3

, the fluctuations are isotropic in the plane whose nor­

mal is .§.
3

• If P 
1 

is much larger than P
2 

or P 
3

, the fluctuations are 

primarily in the direction ~. In the Mariner V data, we character­

istically see large fluctuations in field components with little change 

in field strength. For variations of this nature, we should expect 

.e,1 and .§.2 to be perpendicular to (~» and .e,3 to be parallel to (]). 

In order to study the general nature of the field variations 

using this formalism, we have calculated variance matrices 

and the .. cor responding eigenvalues anc eigenvectors from the basic 

magnetometer data for the entire Mariner V mission. Three different 

averaging times have been used in computing the .§.matrices - -

-9 . ( -6 ) ( -3 ) 168 . 75 sec. (2 day)> 22. 5 min. 2 day > and 3 hours 2 day . 
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Each period is longer than the preceding by a factor of eighL The 

properties of the 168. 75 second variance matrices are characteristic 

of very high frequency fluctuations, whereas the 3 hour variance 

matrices provide information about much lower frequency variations. 

Of course, we include the effects of the higher frequency fluctuations 

in the calculation of 3 hour variances, but since the spectrum of the 

magnetic fluctuations obeys a power law, we expect the lower fre-

quencies to dominate in any given period. · For each of these intervals 

we have also calculated B, the average magnitude of the field, and 

P 
4

, the variance in the field strength. Table 4 then gives averages 

over the entire mission of various quantities based on these interval 

averages. No attempt has been made to separate dynamic from 

static (purely convected) structures -- all data have been included. 

The low average values of P 2/P
1 

and P 3/P2 imply that in general 

the eigenvectors !2_
1

, ~2 and §..3 are well defined directions, and thus 

a study of their directional distributions is meaningful and of some 

interest. 

The R TN system is a poor one in which to study the eigen-

vectors, since (B ) is obviously a preferred direction (values of -
P 

4
/P

1 
are very small). Since the flow direction of the solar wind 

also has physical significance and is approximately along~, we re­

solve the eigenvectors from each interval in a field-velocity coor-

dinate system shown in Figure 15 and defined as follows: Z is the 

direction of ~B' the unit vector parallel to (£) for that interval, X 

is the direction of ~BX£R' and Y is in the direction ~zX£x· Thus, 
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Ax N ~ Vj }l 

T 

R r?""""'"" ___________ ........,...._ __ .._,.~~ 

Figure 15. The field-velocity coordin~te system . Z is along the average 
field direction, and Xis along ~Bx~R· The X-axis thus always lies in 
the TN plane. 
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fluctuations along X are perpendicular both to the average field for 

that interval and the radial direction. Note that the field-velocity 

coordinate system changes from interval to interval, since the 

direction ( ~) changes. For long averaging times, ( B) tends to be 

along the spiral field direction and in the solar equatorial plane, 

and hence X tends to be along the N direction. For shorter averag­

ing times, however, (B) frequently has a significant component out 

of the equatorial plane, and X no longer bears as close a relationship 

to the N direction. The ultimate justification for the use of these co­

ordinate axes is that eigenvector distribution are symmetric in this 

system. 

Table 5 gives the directional distribution in the field-velocity 

system of the eigenvectors associated with the 168. 75 sec. variance 

matrices; distributions for the 22. 5 min and 3 hour matrices are 

given in Tables 6 and 7. Directions are specified by the usual spheri­

cal polar coordinates 8 and cp, where 8 is the polar angle from the Z 

axis and cp is an azimuthal angle measured from the X-axis. The 

range of 8 is divided into equal increments of cos8 to correct for 

solid angle effects. Thus the various bins in the distribution 

tables represent equal solid angles on the unit sphere, and a 

spatially isotropic distribution of vectors would have equal percen-

t ages in each bin. The full distribution in all eight octants of the 

unit sphere is not given for the following reasons: 1) the eigenvectors 

are arbitrary to a factor of ±1, so that we may give all vectors a posi­

tive components along Z; 2) examination of the distributions thus 

obtained reveals that they are symmetric both about the XZ plane and 

the YZ plane. Thus by reflection in these two planes we obtain a 



-68-

TABLE 5 

Eigenvector Distributions 168. 75 sec. intervals 

.e.1: Direction of Maximum Variation 

Cf) 

0/18 18/36 36/54 54/72 72/90 0/90 

0/41 . 7 • 7 • 7 • 6 . 6 3. 3 

41/60 1. 1 1. 0 .8 0 7 . 7 4 . 3 

e 60/76 3. 3 3. 1 2.8 2 0 1 1. 7 13. 0 

76/90 21. 7 19.6 16. 5 12.2 9. 3 79.3 

0 to 90 26.8 24.4 20 . 8 15.6 12.3 

s:J: 
--.:. Direction of Intermediate Variation 

Cf) 

0/18 18/36 36/54 54/72 72/90 0/90 

0/41 2 . 4 2.6 2.8 3. 1 3.3 14.2 

41/60 1.6 2.0 2 . 7 3.0 3.2 12 . 5 

e 60/16 2.7 3.4 4.4 5.3 5.7 21. 5 

76/90 7. 3 8.7 10 . 7 12. 1 13. 0 51. 8 

0 to 90 14.0 16.7 20. 6 23.5 25 . 2 

E3= Direction of Minimum Variation 

Cf) 

0/18 18/36 36/54 54/72 72/90 0/90 

0/41 12 . l 13.2 15.0 16.5 18.4 75.2 

41/60 1. 0 1.4 1. 9 2 . 4 2.9 9.6 

e 60/76 • 8 1. 1 1. 5 1. 7 2.2 7.3 

76/90 • 9 1. 1 1. 6 1. 9 2.3 7.8 

0 to 90 14. 8 16.8 20 . 0 22.5 25.8 
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TABLE 6 

Eigenvector Distributions 22 . 5 minute intervals 

~l : Direction of Maximum Variation 

cp 

0/18 18/36 36/54 54/72 72/90 0 to 90 

0/41 . 6 . 6 . 5 .4 .4 2. 5 

41/60 1. 1 1. 1 1. 0 1. 0 . 5 4 . 7 

e 60/76 3 . 8 3 . 8 3. 3 2.4 1. 6 14. 9 

76/90 22 . 5 19. 6 16 . 7 11. 1 8.2 78. 1 

0 to 90 28 . 0 25 . 1 21. 5 14.9 10. 7 

.e.2 : Direction of Intermediate Variation 

cp 

0/18 18/36 36/54 54/72 72/90 0 to 90 

0/41 2 . 5 2 . 9 2.8 2 . 8 3 . 1 14. 1 

41/60 1. 5 1. 9 2 . 3 2.3 2 . 5 1 o. 5 

e 60/76 1. 8 2 . 6 3. 8 4. 1 4 . 8 17. 1 

76/90 7.5 9 . 2 12 . 1 14. 3 15 . 3 58.4 

0 to 90 13 . 3 16. 6 21. 0 23 . 5 25. 7 

.e.3 : Direction of Minimum Variation 

cp 

0/18 18/36 36/54 54/72 72/90 0 to 90 

0/41 12 . 0 13 . 5 14.6 17 . 4 19 . 4 76.9 

41/60 . 7 1. 1 1. 3 2 . 3 2 . 4 7 . 8 

e 60/76 . 4 . 7 1.4 1. 7 1. 9 6. 1 

76/90 . 6 1. 4 2 . 0 2 . 5 2 . 7 9 . 2 

0 to 90 13 . 7 16.7 19 . 3 23 . 9 26 . 4 
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TABLE 7 

Eigenvector Distributions 3 hour intervals 

s1: Direction of Maximum Variation 

cp 

0/18 18/36 36/54 54/72 72/90 0/90 

0/41 . 7 1. 1 . 9 1. 1 0 8 4.6 

41/60 1. 2 3. 1 2.2 . 9 1. 6 9. 0 

e 60/76 5.8 6 . 3 4.0 2 . 7 2. 9 21. 7 

76/90 19 . 5 14.4 13. 2 8.7 8. 7 64.5 

0 to 90 27 . 2 24.9 20.3 13 . 4 14. 0 

S2: Direction of Intermediate Variation 

cp 

0/18 18/36 36/54 54/72 72/90 0/90 

0/41 2 . 8 4.3 4.4 3. 7 4.0 19.2 

41/60 2 . 1 2.3 3.3 3. 6 3.8 15. 1 

e 60/76 3.4 3. 0 4. 1 4.8 4.9 20.2 

76/90 8.8 6.8 7 0 5 9. 3 12.6 "45.0 

0 to 90 17. 1 16.4 19. 3 21. 4 25.3 

~3: Direction of Minimum Variation 

cp 

0/18 18/36 36/54 54/72 72/90 0/90 

0/41 11. 0 10.7 12 . 1 13. 9 17. 0 64. 7 

41/60 l. 1 l. 9 2. 1 2. 1 4. 0 11. 2 

e 60/76 1. 2 • 7 2 . 3 2.3 2. 6 9 . 1 

76/90 1. 2 1. 4 4.4 3.9 3. 7 14.6 

0 to 90 14.5 14. 7 20.9 22.2 27 . 3 
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representative distribution in the first octant only; distributions rn 

other octants are symmetric reflections of the fir st octant. 

The distributions presented demonstrates that [
3 

has a strong 

tendency to be parallel to (B) ( 8 = o0
), whereas [ 1 and [

2 
are gen­

erally perpendicular to (]?) ( 9 = 90°) as we would expect. In addi­

tion, £
1 

tends to be nearer the X-axis (cp = o0
) than the Y-axis (cp = 90~; 

i.e., the direction of maximum power tends to be in the !::..Bx~R 

direction. This is true for each of the three different averaging 

times, and thus is characteristic of the microscale fluctuations 

over a broad frequency range. It should be remembered that the 

higher frequency fluctuations are superimposed on lower frequency 

fluctuations with larger amplitudes. The higher frequency fluctua­

tions hence appear to adjust themselves to the average "background" 

field that they see, even though this field is changing as part of a 

lower frequency variation. 

Having established that this non- stationary field-velocity 

coordinate system is preferred for the microscale fluctuations, we 

compute variances of the field along the XYZ axes . The variance of 

the magnetic field in a direction £n is given by £n · [· £n• where [ 

is the variance matrix. Table 8 gives the average fractional variances 

for both the XYZ and the R TN systems; P 5 = PX+ Py + Pz = Trace 

(£) and is thus independent of any particular coordinate system. ( ) 

denotes long term averages of the properties of variance matrices 

for a given time interval; in Table 8 the averages are taken over the 

entire Mariner V mission. In the XYZ system, (PX/P
5

), the aver-
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age fractional variance in the X direction, is consistently larger than 

(Py/P5 ), which is in turn larger than (P2 /P
5

), as we would expect 

from the eigenvector distributions . In the RTN system, (PN/P
5

) 

is larger than ( PT/P5 ) and (PR/PS) for all averaging times, as 

we would expect from the orientation of the XYZ system with respect 

to the R TN system. The £BX~ direction is of more significance 

than the ~N direction, as is shown by the fact that (PX/PS) is 25% 

larger than (PN/P
5

). We note that Rand T do not display equal 

amounts of power (as we might naively assume from the average or­

ientation of the XY Z system) because the direction of maximum power, · 

(£BX~}, is always perpendicular to the R direction, whereas it can 

have a large component along the T direction if £B has a significant 

N component. Table 8 also indicates that the average fractional 

variance along the field direction is larger for the three hour inter­

vals than for the 22. 5 min. or 168. 75 sec. intervals, even though 

Table 4 shows that the ratio of variance in field strength to the maxi-

mum component variance is smaller for the three hour intervals. 

These results at first appear inconsistent, but it must be remembered 

that for long averaging times the standard deviations in components 

become comparable to the background field strength (Table 4) and 

consequently the concept of an "average 11 background field direction 

is not as well defined for the three hour intervals in Table 8 as it is 

for the shorter averaging times. Thus we can characterize the gen­

eral statistical nature of the microscale fluctuations as consisting 

primarily of variations perpendicular to the average field direction 
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("average" referring to the time scale of interest), with more power 

along the ~Bx~R direction over a wide range of frequencies. In the 

R TN system these properties produce on the average more power in 

the N direction, with minimal power along the R direction. The 

fluctuations are primarily Alfve'nic, with magnetoacoustic wave modes 

(if present) having a small average power of the order of lO?h or less 

of that in the Alfve'n mode (Table 8). 

For completeness, we mention that one can also apply the 

basic ideas used above in a more sophisticated power spectral analy­

sis. For every six hour interval in the Mariner V mission with 

sufficient data return~ we have computed auto and cross spectral 

estimates with 32 degrees of freedom, using 168. 75 second averages 

of the magnetic field. This process yields (for each 6 hour interval) 

eight power spectral tensors (each with six independent elements, 

three auto powers and three cross powers) at eight uniformly spaced 

frequencies in the frequency range from 1/(45 min) to 1/(5. 625 min) . 

These matrices were diagonalized to obtain characteristic direc­

tions of maximum and minimum power, etc •.• for each frequency; 

properties of the power matrices (for each individual frequency) aver­

aged over the entire mission are similar to the properties of the 

variance matrices described above, over the entire frequency range. 

The advantage of the power spectral method lies in the fact that it 

can describe anisotropies characteristic of a specific frequency, 

whereas the variance matrix approach gives results that are in some 

sense representative of all frequencies above a certain minimum fre-
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quency. The drawback of the power spectral method is that it is 

quite difficult to define an average field direction for the higher 

fr~quency fluctuations, since they are superimposed on larger amp­

litude low frequency variations; thus, distributions similar to those 

in Table 5 for the higher frequency spectral estimates (using the 6 

hour averaged magnetic field as the direction of £B) are not as 

strongly peaked as those in Table 5. The variance matrix approach, 

on the other hand, provides an obvious and physically appropriate 

average "background" field for each interval, and hence provides 

the most sharply peaked distributions. · In any event, the two methods 

give basically the same result, conclusively demonstrating that the 

anisotropies described above are characteristic of the microscale 

fluctuations over a wide frequency range. 

In the above considerations we have made n'o attempt to select 

data on any basis; every interval of the Mariner V mission with suf­

ficient data return has been included. If we compute distributions 

such as those given in Tables 4 through 8 for individual solar rota­

tions instead of for the entire mission (as above), we obtain essen­

tially the same results except for the increase in power level (P5 ) as 

Mariner V approaches the sun. Average fractional variances and 

eigenvector distributions remain approximately the same from one 

solar rotation to the next, even though the average power level of 

the fluctuations increases, and it appears that the £BxeR fractional 

power excess averaged over a solar rotation is independent of dis­

tance from the sun in the range • 7 to l a. u. 
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Since all data are included in these analyses, with no attempt 

to distinguish dynamic from static effects, the observed ~BxeR 

anisotropy might be caused either by a dynamical process associated 

with fluctuations propagating in the re st frame of the wind, or , 

perhaps, by some preferred orientation of static irregularities con-

vected by the solar wind. To resolve this ambiguity, we have com­

puted distributions similar to those in Tables 4 through 8 for each 

day of the mission, using 22. 5 minute variance matrices (64 per day) 

and 168 . 75 second variance matrices (512 per day). The 168. 75 

second variances invariably show values of (PX/PS) (averaging 

over one day) larger than (Py/PS) or ( P Z/P S) . Only on very 

quiet days is ( PX/PS) approximately equal to (Py/PS) ; on more 

active days (moderate power at high frequencies) values for the dif­

ferent parameters averaged over the day are closely similar to those 

given in Table 8. The properties of the 22. 5 minute variances, con­

sidered on a day to day basis, also exhibit the expected anisotropies, 

although not as consistently as do the 168. 75 second variances (139 

days out of 150 have (Px/P5 ) > ( Py/P8 ) ). More significantly, 

the ~Bx~ anisotropy tends to be most pronounced in the interaction 

regions between high and low velocity streams , for both averaging 

times . For e xample, Table 9 gives the distribution of eigenvectors 

associated with maximum variation for both 168. 75 second and 22. 5 

minute intervals on day 192. As previously mentioned, this is a 

period of rapid velocity increase and large magnetic field variations 

(see Figure 4) . Table 9 indicates that both the 22. 5 minute and 
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TABLE 9 

~l: Direction of Maximum Variation .( 168. 75 sec intervals), Day 192 

cp 

0/18 18/36 36/54 54/72 72/90 0 to 90 

0/41 • 0 • 0 • 0 . 0 0 0 • 0 

41/60 • 0 . 0 • 0 • 0 • 0 . 0 

e 60/76 1. 3 2.2 2.2 • 3 • 9 6. 9 

76/90 31. 0 26.9 16. 5 7.9 10.8 93. 1 

0 to 90 32.3 29 . 1 18. 7 8 . 2 11. 7 

168. 75 sec, 316 matrices: 

(PS)= 
2 

(Px/Ps> . 59, (Py/PX) = . 36, (Px/P5)=. 05 6. 9y • = 

~l: Direction of Maximum Variation (22. 5 min intervals), Day 192 

cp 

0/18 18/36 36/54 54/72 72/90 0 to 90 

0/41 • 0 • 0 . 0 ·i 0 0 0 . 0 

41/60 • 0 2.5 0 0 .'O 0 0 5.0 

6 60/76 7. 5 5. 0 2.5 . 0 2. 5 17. 5 

76/90 35.0 17.5 12.5 7.5 5.0 77. 5 

0 to 90 42.5 25.0 15. 0 7.5 7. 5 

22. 5 min, 40 matrices: 

(P5)= 
2 

18. 2y , (Px/P5) = • 60. (Py/Ps> = • 30, ( Pz/Ps> = . 10 
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168. 75 second intervals have a strongly enhanced ~BX£.R anisotropy 

as compared to the average values (Tables 4 through 8). Figure 6 

is a point plot of 168. 75 second field averages on this day, clearly 

showing larger fluctuations in the normal component of the field 

at low frequencies. Figure 16 is a plot of one hour of basic magneto­

meter data (one reading in approximately 4 seconds) on this same 

day, showing roughly the same effect at higher frequencies. On the 

following day (193) the wind velocity levels off and the power in the 

field fluctuations decreases (see Figure 6); the anisotropy in the 

168. 75 second variances decreases almost exactly to the values 

given in Table 8, and the £.BX£.R anisotropy in the 22 . 5 minute 

variances essentially disappears. Figures 8 and 12 illustrate this 

same effect in the microscale fluctuations of day 228 and 236, which 

are the interaction regions for the streams shown in Figures 7 and 

11. Since the most prominent ~Bx~R anisotropies tend to occur 

during regions of definitely non-static character, it is clear that 

the effect is a dynamic one, and not due to some peculiar orientation 

of static, convected discontinuities. This is not meant to imply that 

the anisotropy occurs only in stream- stream interaction regions, as 

it is essentially always present at high frequencies, and usually 

present at lower frequencies. 
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Figure 16 .. High freque~cy magnetic fluctuations during a one hour period 
· of day 192 showing clearly the large amount of power in the N direction. 
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CHAPTER IV 

DISCUSSION OF OBSERVATIONS AND QUALITATIVE MODELS 

A. Possible Origins of the Interplanetary Alfve'n Waves 

As we have seen, Alfve'n waves occur quite often in the solar 

wind, and their energy densities are frequently com parable both to 

the unperturbed magnetic field energy density and to the thermal energy 

density. The origins and energy sources for these waves are thus 

of considerable interest, as is their contribution to the dynamics and 

heating of the solar wind. We consider three possibilities: ( 1) the 

waves are produced locally in the solar wind (in the same general 

region where they are observed) by internal plasma instabilities; (2) 

the waves are produced locally by large scale velocity differences 

in the solar wind ; (3) the waves are remnants of processes occurring 

in the solar photosphere, chromosphere, or corona. We discuss 

these points in some detail, especially as they relate to the heating 

of the solar wind by means other than thermal conduction. 

(1) Parker [1963] has pointed out that local thermal aniso­

tropies due to the radial expansion of the solar· wind should lead to 

"internal" plasma instabilities and subsequent wave generation. It 

is not immediately apparent that waves generated by such instabili­

ties would propagate predominantly outward along field lines, although 

such preferential generation might, for example , stem from the high 

energy tail of the thermal proton distribution (which is outward along 

field lines [Hundhausen et al. , 1967]) . However, plasma instabili-
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ties such as the firehose instability [Parker, 1963 ; Scarf, Wolfe, and 

Silva, 1967] do not efficiently generate waves with wavelengths many 

orders of magnitude longer than the ion cyclotron radius ('""'10 0 km). 

As the dominant wavelengths at issue are on the order of l0
6

km, 

with decreasing power at shorter wavelengths, it seems unlikely that 

internal plasma instabilities are of importance in their generation. 

(2) Several models have been proposed in which large scale velo-

city differences in the solar wind provide the basic energy source for 

the microscale fluctuations . In the analysis of the Mariner II data, it 

was suggested [Neugebauer and Snyder, 1966; Davis, et al, 1966] 

that the heating and high magnetic field activity found in the compres-

sion regions at the leading edges of high velocity streams were gen -

erated locally by the faster streams overtaking and colliding with 

slower streams . Jokipii and Davis [1969] pointed out the importance 

of such stream-stream collisions as a source of wave and thermal 

energy in the solar wind. They noted that if the collisions are pre-

dominantly between clouds moving radially, the compression will 

be mainly in the radial direction, and this will produce more fluc­

tuations in the transverse than the radial component of the magnetic 

field, in accord with observations (Table 8) [Coleman, 1966; Siscoe et 

al, 1968 J. It seems quite plausible that the high level of magnetic 

field activity in colliding stream regions is freshly generated, but 

there is no obvious reason to expect waves produced in this manner 

to propagate predominantly outward in the rest frame of the wind . 

The relatively smaller amplitude fluctuations away from such 

regions might also be related to this type of generation process, al- . 
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though there are major difficulties with this view. As Burlaga and 

Ogilvie [ 1970] point out, colliding stream regions occur infrequently 

and are of relatively limited spatial extent at la. u. (cf . Figure 3). 

Alfve'n waves generated in these regions cannot leave them faster 

than the Alfve'n velocity, and hence can propagate at most of the 

order of . l a. u . away from their point of generation by the time the 

solar wind reaches la. u . As will be seen below, field lines tend 

to make a rather small angle with the interface between high and 

low velocity regions, and hence waves that propagate along field 

lines leave the interface at a normal velocity that is much less than 

the Alfve'n velocity. Thus Alfve'n waves in the main body of a stream 

well away from regions of rapid velocity increase (greater than 12 

hours away in the spacecraft. frame) cannot be associated with waves 

generated in those regions. This is especially true of Alfve'n waves · 

in high velocity streams, since these waves are propagating toward 

the collision region rather than away from it. Observationally, the 

level of the field fluctuations usually drops abruptly immediately 

outside the colliding stream regions, as can be seen in Figures 6, 8, 

and 10, for example. It thus appears [Burlaga et al, 1970] that the 

large amplitude fluctuations found in the colliding stream regions can­

not effectively propagate away from them. 

It could be argued that fine scale velocity differences near the 

sun might produce waves but be completely eliminated by the time the 

solar wirrl has reached l a. u., leaving behind Alfve'n waves and en­

hanced temperatures in the main body of the streams. It is unlikely, 
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however, that such a process will have occurred on the trailing edges 

of the high velocity streams where the velocity is decreasing with 

time, even though we observe reasonably pure Alfvt!n waves in these 

regions. There is also no convincing reason to expect such collisions 

to generate Alfve'n waves propagating exclusively outward in the rest 

frame of the wind. Thus although there is little question that stream­

stream collisions are an important energy source for the large ampli­

tude waves actually found in the colliding stream regions, it seems 

implausible that they are also responsible for the relatively smaller 

amplitude Alfve'n waves found in the main body of velocity streams. 

In a somewhat different approach that does not emphasize 

colliding stream regions, Coleman [ 1968 J has proposed a turbulent 

model of the solar wind in which all large scale differential velocities 

feed energy into a hierarchy of turbulent eddies through instabilities 

associated with the shear and compression of the plasma. The fluid 

is treated as uniformly turbulent with a non-linear cascade of energy 

through Alfve'nic turbulence of intermediate wavelengths, where 

there is little dissipation, to very short wavelengths, where cyclo­

tron damping converts the wave energy into thermal energy. As 

above, the major objection to such a model is the lack of an explana­

tion for the predominantly outward propagation of the observed fluc­

tuations. Also, in a collisionless magnetized plasma, the coupling 

between waves of different wave numbers seems likely to be quit e 

different from that for the waves in fluids where conventional tur­

bulence theory applies. 
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In summary, it appears that unless a plausible explanation 

for preferentially outward wave generation is advanced (and this 

seems unlikely), large scale velocity differences in the solar wind 

cannot be considered a primary energy source for the Alfve'n waves 

observed at l a. u. However, such velocity differences in the solar 

wind streams do represent a potentially major source of energy for 

the microscale fluctuations, and may eventually become the dominant 

energy source beyond l a . u . 

(3) It is commonly accepted that the solar corona is heated by 

the dissipation of magnetoacoustic wave energy generated at the photo-

sphere [Van de Hulst, 1953]. Estimates of the energy requirements 

for heating the solar chromosphere and lower corona are 5 x 1029 

ergs/sec and 5 x 10
27 

ergs/sec, respectively [Osterbrook, 1961] . 

I The Alfven waves observed at l a. u . represent a net outward efflux 

24 I of energy on the order of 3 x 10 ergs sec, and can reasonably be 

viewed as the undamped remnants of waves produced at or near the 

sun. Recent theoretical work [Barnes , 1966 J. indicates that linear 

magnetoacoustic MHD waves are strongly d~mped in collisionless 

plasmas such as the solar wind (moderate to high [3) , and that the 

Alfve'nic mode is undamped. Thus, by the time the solar wind 

reaches • 7 to 1 a. u . we would expect to observe only the Alfve'nic 

remnants of what is perhaps a much broader spectrum of MHD waves 

generated closer to the sun. As long as the waves are produced at 

distanc~s from the sun of less than Alfve'nic critical point (15-50R
0 

[Weber and Davis, 1967] , only those Alfve'n waves propagating away 
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from the sun will eventually appear in the superalfve'nic solar wind. 

Generation of the observed Alfve"n waves inside the Alfve'nic critical 

point thus easily accounts for their preferential direction of propaga-

tion in the interplanetary mediwn. The waves can easily survive 

until they reach l a. u. since they are convected about ten times as 

fast as they propagate and hence make only on the order of l a. u. / 

lOA. oscillations for a wavelength of A.. For a wave of wavelength 

. 01 a. u. this is only 10 oscillations. 

The hypothesis that the interplanetary Alfve'n waves are the 

remnants of 11 noi se" introduced into the solar corona near the sun is 

an interesting one, since it suggests the possibility of monitoring 

small-scale solar activity from the orbit of the earth [Parker, 1965]. 

This possibility has important implications with regard to current 

theories of the heating of the solar wind by mechanisms other than 

thermal conduction. It is generally agreed that the solar wind re-

quires an extended heat source above the base of the corona; if the 

only energy transport from the base of the corona is conduction and 

convection, the calculated density at the or bit of the earth in the two 

fluid model is too high, and both the velocity and proton temperature 

too low, as com pared with observations [Sturrock and Hartle, 1966 J. 

It has been suggested [Parker, 1969] that the energy equation of the 

solar wind is dominated near the sun by the transport and deposition 

of energy by waves. Barnes [ 1968, 1969] has proposed a model of 

solar wind proton heating by eventual dissipation of MHD waves gener-

ated at less than 1. SR , and Hartle and Barnes [1970] have shown 
~ 
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that a heat source for protons added to the two fluid solar wind mod e l 

can increase both the proton temperature and the wind spe ed and 

lower the density at 1 a. u. if the energy disposition takes place ove r 

an extended range (2R :o::: r :-:;; 25 R ). In this model, more active 
0 0 

regions of the sun with a higher level of wave g e neration could cause 

extensive heating of the corona by wave damping near the sun, thus 

producing solar wind streams with higher velocities and proton tern-

perature s and lower densities as compared to str earns without such 

heating. The higher level of pure, outwardly propagating Alfve'nic 

wave energy observed in the high velocity streams can easily be 

interpreted as a signature of this process, since the purely outwardly 

propagating waves in the main body of the streams are very probably 

a direct consequence of 11 turbulent 11 conditions near the sun. The ob-

servational fact that the largest amplitude waves occur at the leading 

edges of the high velocity streams where the velocity is increasing 

rapidly (but before it is at a maximum) at first seems inconsistent 

with this model, since we would naively expect the highest wave ampli-

tudes to be associated with the highest velocities. However, local 

wave generation and amplification due to compression at the leading 

edges of the high velocity streams can account for this, as we shall 

see in the next section. Jt seems most probable that the exclusively 

outwardly propagating Alfve'n waves found in the main bodies of solar 

wind streams, away from sharp velocity changes, are generat e d in 

the vicinity of the sun. Alfve'n waves which cannot be definitely said 

to propagate exclusively outward, such as those found in colliding 
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stream regions, may be generated locally to a large extent. 

B. Quasi-Stationary Stream Structure in the Solar Wind 

On the basis of the discussion in points (2) and (3) above, 

and taking into account observed patterns in the solar wind stream 

structure, we would like to suggest a qualitative model for the ob­

served properties of the interplanetary Alfve'n waves and their rela­

tion to the large scale structure of the interplanetary medium. First, 

we interpret the presence of high velocity, high proton temperature, 

low density streams in the solar wind as a probable result of exten­

sive proton heating by wave damping near the sun; streams in which 

there has been a smaller amount of such heating have lower velocities 

and proton temperatures, higher densities, and less easily detectable 

Alfve'n waves. The occurrence of larger amplitude,, purely outwardly 

propagating Alfve'n waves in the main bodies of the high velocity 

streams is presumed to be a consequence of this heating process. 

The streaming pattern of a non-rotating sun would be quite simple, 

consisting of a number of (non-circular) cones containing high velocity, 

low density, hot gas (with a high level of outward Alfvdn wave acti­

vity) separated by low velocity, low temperature, dense gas (with a 

lower level of Alfvdn wave activity). The rotation of the sun com­

plicates this picture considerably. Solar rotation causes slow gas to 

be followed by fast, and fast by slow on the same radial line. The 

fast streams overtake the slow streams ahead, causing compression, 

and draw away from the slower -streams behind, causing rarefaction. 

Figure 17 illustrates what we consider to be the major fea-
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Figure 17 . Top half, two high velocity streams and adjacent low velocity 

streams shown at one instant of time for the steady state case. Dotted 

lines represent ideal spiral magnetic field lines and are also the flow 

lines for the steady .state flow in the corotating frame . Botton half, 

curves showing as functions of time the changes in solar wind properties 

which will be observed by a spacecraft as the streaming pattern sweeps 

past . crs' VT' VW' N, and Bare as defined above, and V~ 

component of the solar wind velocity . 

is the T 
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tures of the interaction between high and low velocity streams, 

assuming that the structures are long lived enough to be considered 

as quasi-stationary and corotating. The labeled regions in the upper 

half of Figure 17 have different physical characteristics. In the older, 

conventional double shock models [Dessler and Fejer, 1963; Davis, 

1966 J they would be separated by shocks or contact surfaces; for the 

present discussion it does not matter whether the lines in the figure 

represent discontinuities, extended collisionless shock structures, 

or more or less continuous transition zones. Region Sis the unper­

turbed slow stream and region F the fast stream followed by another 

slow stream. Region S' is the. slow stream gas compressed and 

accelerated by the collision and region F' is the compressed and 

decelerated fast stream gas. The velocity vectors shown are those 

in an inertial frame; in this frame, the figure rotates with the sun. 

It is instructive to consider this steady state flow in a rotating 

coordinate system. The structure in the upper half of Figure 17 now 

does not rotate; instead, the spacecraft moves clockwise in a circle 

and makes observations which, when plotted as functions of time, 

yield the idealized curves shown in the bottom half of the figure. In 

this corotating frame, the velocity is everywhere parallel to the 

smoothed magnetic field lines, and hence the flow is in a spiral whose 

pitch changes as it passes into the regions of compression because 

of the pressure gradient (or discontinuity) across the transition. 

The deflection provides a natural explanation for the observations 

[Lazar.us, 1970; Wolfe, 1970] that in a region such as S' the solar 
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wind appears to come from east of the sun while in a region such as 

F' it appears to come from the we st. This aspect of the model is veiy 

similar to that of Siscoe, Goldstein and Lazarus [ 1969] except that 

they do not emphasize the distinction between the compressed inter­

action regions and the remainder of the fast and slow streams. 

The flow along the magnetic spirals is from F to F' and from 

S to S'. In each case, the gas is compressed in the transition, and 

in the simple double shock model both transitions are ordinary fast 

shocks while the S'F' interface is a tangential discontinuity. The F 

to F' shock appears to be running backward toward the sun into a 

low density region, and hence is often called a reverse shock. 

Because of the compression, both primed regions will have higher 

temperatures, densities, and field strengths than do the adjacent 

unperturbed gases in their respective streams. Typically, the fast 

stream is decelerated more in going from F to F' than the slow stream 

is accelerated in going from S to S ', since the slow stream is more 

dense. 

Although the simplest theoretical model is that of the ideal 

double shock, the observations rarely if ever show the expected dis­

continuities in velocity, density, and magnetic field. Either this 

represents a thicker than expected shock structure or there are no 

shocks and instead a continuous transition produced by some as yet 

unexplained mechanism . In either case, the Rankine-Hugonoit con­

servation theorems must hold aero ss the transition, and most of the 

results of the simple shock analysis should be good approximations . 

Ideally, S' and F' are separated by a tangential discontinuity which 
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neither plasma nor field lines cross, and in practice this can often 

be recognized as an abrupt change in density, temperature, and wave 

amplitude (for example see Figure 7, day 236, hour 12). The fact 

that the larger amplitude Alfv~n waves from the fast stream appear 

to be confined to the fast stream side of this boundary (cf. Figure 8) 

is a strong indication that the field lines do not cross the boundary 

between the fast and slow streams. 

In region R of Figure 1 7 there should be a rarefaction, causing 

a relative decrease in density in the leading part of the slow and the 

trailing part of the fast stream. The net result of the compression 

and rarefaction is the production of an asymmetry in the shape of 

the streams, as indicated in the lower part of Figure 1 7, that in­

creases with the distance from the sun. This asymmetry in the 

streaming patterns, as well as many other features of the model, can 

be seen both in the observational data presented above (cf. Figures 

3, 4, 7, 9, and 11) and in the earlier Mariner 2 data [Neugebauer 

and Snyder, 1966]. We emphasize that in this model the increased 

density usually observed ahead of fast streams (Regions S and S') is 

for the most part not the result of the pileup of ambient gas ahead of 

the fast stream. Rather, it is primarily due to the fact that the energy 

supply at the base of the solar wind for the slow gas which precedes 

the fast is such as to produce higher densities in the slow gas (as well 

as lower velocities and temperatures) at l a. u. 

Imp I data, organized by Wilcox and Ness [1965] on the basis 

of the magnetic sector structure, i.e., the magnetic polarity, rather 

than the stream structure, also exhibit patterns similar to the curves 
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in the lower half of Figure 17 . The two methods of analysis giv e 

similar results because, in the case of the Imp I data, polarity r e ­

versals occur near the center of the prominent low velocity regions 

and there is a strong tendency for each high velocity stream to occupy 

its own sector. At the times of Mariners 2 and 5 this was not the case, 

since two or mor .e adjacent high velocity streams have the same mag­

netic polarity. In these cases analysis based on solar wind velocity 

characteristics gives clearer patterns than does the use of magnetic 

polarity. This is plausible since the variations in energy supply 

associated with velocity variations are likely to be more basic than 

are changes in magnetic polarity. An explanation is needed for the 

observation that rever sa.ls of polarity apparently occur predominantly 

in low velocity regions . Perhaps the magnetic configuration in the 

lower corona near polarity reversals affects the energy supply to 

the solar wind in such a way as to favor low velocities. 

The effect on the microscale fluctuations of the compressed 

regions in this quasi-stationary large scale streaming structure will 

be both to amplify existing waves and to generate fresh waves locally. 

Large amplitude , outwardly propagating Alfve'n waves in re15ion F prop­

agate and are convected into region F'. If the Alfve'n waves are 

initially polarized in the ;::_N direction, then they will remain purely 

Alfve'nic as they are swept into F 1 since their magnetic field fluc­

tuations remain perpendicular to the average field direction. If they 

are polarized in the solar equatorial plane, they will be partially 

converted into magnetoacoustic waves because of the abrupt turning 
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of the field lines in this plane across the transition (see Figure 17) . 

In any case, the amplitude of the waves will increase across 

the transition because of the compression. ; In the colliding stream 

region on day 192 (Figure 4}, for example, we see a considerable 

increase in the amplitude of the waves as the compression region is 

entered (around hour 21 in Figure 6), although they remain predomi­

nantly outwardly propagating across the transition (Figure 5). If 

the transition between F and F' is smooth compared to a wavelength, 

we would expect the waves convected into F' to still be outwardly 

propagating. If the transition is an ideal thin shock, an outwardly 

propagating wave will produce both outwardly and inwardly propagat­

ing waves as it passes the discontinuity. However, the latter wave 

remains in F' and is not reflected back into region F , as would. be 

the case for a discontinuity in a non-streaming medium, since the 

streaming velocity in a system in which the interface is stationary 

is faster than the wave velocity on the F side of the interface. Thus 

the waves cannot escape from F' to F and Alfve'n waves cannot escape 

into S' because the field lines do not cross the tangential discontinuity 

at the interface . Leakage out of the region F' is perhaps possible only 

because of the finite dimensions of the region normal to the field 

lines or by the partial conversion of (he Alfve'n mode into the magneto­

acoustic modes. Thus Alfve'n waves from F will be swept into F', 

amplified by compression, and channeled outward along the compressed 

leading edge of the high velocity stream. We should expect this same 

general effect for waves swept from S into S', although it should not 
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be as pronounced since the waves convected from S into S' are typi­

cally of smaller amplitude than those in F. 

At each transition we expect that the collision will, in addition 

to amplifying the convected Alfve'n waves, generate additional fluc­

tuations. These will presumably be a mixture of Alfve'n and magneto­

acoustic modes propagating both inward and outward. Again, these 

freshly generated waves will be primarily confined to the colliding 

stream region. Thus the total wave structure in the colliding stream 

regions will consist of higher amplitude fluctuations which are not as 

purely Alfve'nic or outwardly propagating as are waves in the neigh­

boring regions. 

It appears that all of the observed properties of waves in the 

solar wind follow naturally from this model. Most of the waves in the 

interplanetary medium are outwardly propagating Alfve'n waves from 

near the sun, and are remnants of the processes that supply energy 

to drive the different solar wind streams. Higher velocity streams 

undergo the mo st extensive heating, and thus contain the be st examples 

of such waves. Compression of these waves and fresh generation of 

new fluctuations in colliding stream regions account for the waves 

with the largest observed amplitudes. 

C. The Microscale Anisotropies and Wave Damping 

The analysis of the observational data has revealed a number 

of anisotropies in the microscale magnetic fluctuations whose phy­

sical basis we now consider . The main points to be explained are 

that the minimum component of the fluctuations is parallel to !:.B• the 
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direction of the average magnetic field, and that the maximum compo­

nent is in the ~Bx~ direction, where ~ may be regarded as the 

direction of the solar wind flow. The first of the anisotropies is 

explained by the predominantly Alfve'nic nature of the fluctuations. 

Thus we wish to understand why the Alfve'n waves dominate the mag­

netoacoustic modes, and why they are partially polarized in the ~x~ 

direction. Such properties may be due either to the mechanisms 

which generate the waves or to decay mechanisms. 

It is unlikely that Alfve'n waves are dominant solely because 

the magnetoacoustic mod.es are not generated strongly. In colliding 

stream regions, for example, we expect to see all types of hydro­

magnetic waves produced, but the fluctuations are pri~arily Alfve'nic 

{little variance in field strength compared to large variance in com­

ponents). Even if Alfve'n waves are preferentially generated, we 

would expect them to excite magnetoacoustic modes either because 

of non-linearities in the equations of motion or because of geometrical 

considerations (a pure Alfve'n wave must extend to infinity in the plane 

of polarization). Thus the observations suggest that magnetoacoustic 

modes must be damped at a rate sufficient for their reasonably com ­

plete removal from waves convected from near the sun and for partial 

removal from more locally generated waves. Barnes [1966] has 

shown theoretically that linear magnetoacoustic MHD waves are 

strongly damped in collisionless plasmas of moderate to high f3 (f)>. 5) 

and that the Alfve'n mode is undamped. Thus this theory both explains 

and is confirmed by the observations . 
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The re appears to be no plausible anisotropy in the g eneration 

of the Alfve'n waves which would favor the .::_Bx~ dir e ction. Thus 

we examine mechanisms which couple the undamped Alfve'n wave s 

into the strongly damped magnetoacoustic modes . For example , 

consider the convection away from the sun of Alfve'n waves which 

are initially unpolarized. Assume that the magnetic field fluctuations 

are isotropic in the plane perpendicular to an average magnetic field 

along the classic spiral. As the waves are convected outward, the 

rotation of the sun causes the average field to turn in the plane normal 

to~ as the spiral is generated. The component of the Alfve'n waves 

originally polarized along ~N is unaffected by this turning since it 

always remains normal to ~B; however, the component originally 

along ~Bx~N develops a component along B, and hence is coupled 

into magnetoacoustic modes. Thus the gradual spiraling of the field 

combined with the damping of the magnetoacoustic modes converts an 

initially isotropic distribution of Alfve'n waves into one having more 

power along ~N· 

If the average magnetic field is not along the ideal spiral then 

the exp~nsion of the solar wind in the direction normal to ~ as it 

flows outward will turn the field vector in a plane whose normal is 

The mechanism just described then produces an aniso t ropy 

in the ~BxeR direction. The ~Bx~ and the eN directions are in 

general close to each otQ.er unless ~B has a large component out of 

'the solar equatorial plane; in this case, it is the .::_Bx~ direction that 

is the preferred one , and not the ~N direction. The fact that the aver-
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age field direction freque ntly has significant components out of the 

equatorial plane explains why the R component of the fluctuations on 

the average has less power than the T component (Table 8) 7 since 

the eBxeR direction never has a component along ~R ' whereas it can 

easily have a component along ~T if ~B has a component along ~N· 

Earlier studies of Mariner 2 and Mariner 4 data [ Coleman, 196 7; 

Siscoe, 1968] have shown that the microscale field fluctuations are 

transverse to the average field direction with minimum power along 

~ . These results are confirmed by the Mariner 5 data, and are 

seen to be a natural consequence of the frequent occurrence of trans ­

verse Alfve'n waves partially polarized in the ~Bx~ direction . 

Alfve'n waves convected into colliding stream regions will see 

a rapid change in the average field direction across the transition into 

the compressed plasma (see Figure 17). This more abrupt change 

in field direction (as compared to the gradual spiraling de scribed 

above) should result in enhanced anisotropies and a higher level of 

(rapidly damped} magnetoacoustic oscillations, as observed. Another 

process suggested by J. R. Jokipii (private communication) that 

could contribute to the ~Bx~ anisotropy in these regions i~ the prob­

ability that radially colliding streams produce primarily radial 

compressions and hence amplify magnetic fluctuations primarily 

normal to~. Those fluctuations along ~Bx~ are pure Alfve'n waves 

while those along ~ x(;:_Bx~) must become mixed Alfve'nic and 

magnetoacoustic modes. The latter are rapidly darn ped leaving the 

anisotropy and a higher plasma temperature. 
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The interpretation of the ~BxeR anisotropy as a result of 

magnetoacoustic wave damping has interesting implications with 

respect to the heating of the solar wind. The observational fact 

that the anisotropy extends over the entire micro scale frequency 

range supports the conclusions of Jokipii and Davis [ 1969} that 

turbulence in the solar wind (such as in colliding stream regions) 

has no equilibrium subrange of wave numbers, in contrast to ordinary 

turbulence. Instead of a cascade of energy to shorter and shorter 

wave numbers [Coleman, 1968], it appears that all wavelengths 

damp by direct interaction with the thermal plasma. The fact that 

this anisotropy is essentially always present implies that there is a 

continuous coupling between the dynamic micr oscale fluctuations 

and the thermal plasma which feeds energy out of wave motion and 

into thermal energy. We note also that the type of damping described 

above is essentially a geometrical coupling of Alfve'n waves to the 

fast MHD mode propagating at a small angle with respect to the mag­

netic field (assuming (3 < 1). Damping of the fast MHD mode at this 

angle increases the proton temperature parallel to the magnetic field 

by resonant Landau damping between the thermal protons and the wave 

[Barnes, 1966]. Since the observed Alfve'n waves propagate predom­

inantly outward, we would expect damping of the waves to heat thermal 

protons moving outward along the field lines, since it is these protons 

which resonate strongly with the waves. Thus, damping of the out­

wardly propagating Alfvdn waves will contribute to the high energy 

tail of the proton thermal distribution [Hundhausen, 196 7]. In the 
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rest frame of the wind, the Alfve'n waves transport energy outward 

at the rate VA(oB)?"8TI", where oB is the wave amplitude and VA is 

the Alfve'n velocity. If we assume that the 5:4:1 ~Bx~ anisotropy 

commonly observed at l a. u. means that 10 percent of the energy in 

the Alfve'n waves at 1 a. u. has already been transferred by damping 

to the protons, we would expect to see an energy transport rate due 

to the high energy tail of the proton distribution of about 10- 5 ergs/cm2 

sec for an Alfve'n velocity of 50 km/sec and a wave amplitude of 2y. 

This is just the rate for the proton distribution found by Hundhausen 

[1967]. 
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CHAPTER V 

A WAVE DRIVEN SOLAR WIND MODEL 

The observational studies presented above indicate that a 

large fraction of the Alfve'n waves in the interplanetary medium are 

generated at or near the sun. The detailed behavior of these waves 

and their effect on the dynamics of the expanding solar corona as 

they propagate and are convected out into the interplanetary medium 

is of considerable interest. Let us examine the properties of solu­

tions to a steady state MHD polytrope solar wind model which in­

cludes wave energy fluxes, using the WKB approximation for the 

wave amplitudes, with no wave damping. We assume spherical 

symmetry, with no solar rotation. In sections A and B of this chap­

ter we develop the mathematical details of the model, and in section 

C we consider numerical solutions to the equations and physical 

interpretations. The presence of the coronal Alfve'n waves modifies 

the standard Bernoulli relation, and under most conditions can 

cause significant changes in the large scale streaming properties of 

the solar wind. 

A. The WKB Wave Amplitudes 

For an MHD plasma with fluid velocity V, mass density p, 

thermal pressure p, and magnetic field B, the appropriate Maxwell 

equations and the relevant equations of motion in the presence of a 

spherically symmetric gravitational potential~ are 
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a at (B) = 'V x CY. x J?) (2) 

a at (p) + 'V. (pYJ= o (3) 

'V • ~ = 0 ( 4) 

where 

i2 = 
GM 

0 
r 

We. assume a polytrope relation between p and p 

P = p ( p )a 
0 Po 

and look for solutions of Equations (1) through (4) of the form 

B = B (r) e + oB (r, t) 
- r -r -

p = p(r} 

(5) 

(6) 

( 7) 

· where o V and oB are Alfve'nic perturbations which are transverse to 

the radial direction. In the following derivation, we assume that the 

waves are linearly polarized, although the results are equally valid 

for other polarizations . Since we assume o V and 6!?. are Alfve'nic , 

they are parallel, and cause no perturbations in density or pressure. 

We consider Equations (1) through (7) in the equatorial plane of a 

spherical polar coordinate system. In this plane , the r- component 
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of Equation ( 1) is 

av 2 v __ r _ o v + ..!._ fJp + 1 a (. oB}2 o~ 
r or r p 8r 8 2 Tr r +rr = 0 

'Trpr 

The component of Equation (1) transverse to the radial direction is 

o Vr o Br o 
at (o V} + r or (ro V) = 4'Trpr Tr (roB} 

Equations (3) and (4} are simply 

and 

1 o z 
~ a-r(r pVr} = 0 
r 

(8} 

(9} 

( 10) 

( 11) 

The radial component of Equation (2) is identically zero, and the trans-

verse component is 

( 12) 
V oB 

+-1 (V oB - B 6 V) + r op 
r r · r p or 

where we have used Equations (10) and (11) to obtain the final form in 

Equation (12) . 

The WKB solution for the wave amplitudes can be obtained from 

the transverse Equations (9) and ( 12) . Let h be the scale length for 

variations in p, V , and B 
r r 

. 1 
h o.[l. ~J-

P or 
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We assume that oB and o V are of the form 

where 

k = oS or 

The parameter µ.is the ratio of the Alfve'n wavelength to the scale 

( 13) 

( 14) 

length of p, Br, and Vr, and is taken to be small, oB
1

, oB
2

, oV
1

, 

etc,, are also assumed to have scale lengths on the order of h. In-

serting Equation (13) into (9) and (12), and keeping terms to first 

order in µ., we have 

( 15) 

( 16) 

where we have assumed that r > h, The left hand sides of Equations 

(15) and (16) are of zeroth order inµ, and the right hand sides are of 

first order. The zeroth order approximation is obtained by assuming 
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the right hand sides are zero. This yields the solutions 

B 
w = k(vr ± __ r_.1 ) 

( 4rrp) ;:i 

oV - .f. 1 -

( 1 7) 

where the upper (lower) sign in Equation (17) corresponds to outwardly 

(inwardly) propagating waves . In the first order approximation, we 

insert the zeroth order solutions (17) into Equations (15) and (16), and 

keep terms to fir st order in µ. Taking the upper sign in Equation ( 17) 

for outward waves , we obtain 

0 µ[ ikB ikB 
oB 2 J r r = _ oV2 + 

( 4rrp) a 4 ·rrp 

+ [Br o 
4rrp Tr (oB

1
) + oB J v o { 1 ) 

r Tr (4rrp)a 

B VR J oB 1 
+~[ r + 

r 4'1r'P (4rrp)a 

ikB 
--r ..... oB 2 + ikBr oV 2 J 
( 4rrp) a 

B V 
+[.!.(v + r ) + 2-~] oB 

r r (4irp)a P --ar l 

oB -[B ~ ( l ) + V 2-_ {oB )] 
r or (4rrp)a r or l 

(18) 

( 19) 
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The perturbations oB2 and oV2 can be eliminated by multiplying 
1 

Equation (18) by (4rrp)a and subtracting from Equation (19). This 

leaves a differential equation for oB
1 

alone, which may be written 

in the form 

1 a 1 op ( 3
vr+VA) 

oB
1 

ar(oBl) = 4p Br Vr +VA 

where 

B 
r 

( 4rr p) a 

From Equations (10) and (11), we have 

where p , B , and V are values at the reference level r • It is 
0 0 0 0 

readily seen that 

In Equation (23). we have dropped the r subscript from V ; in the 
r 

(20) 

(21) 

(22) 

(23) 

following, we write B and V for B and V , as there is no possibility 
r r 

of confusion. · Inserting (23) into (20) and integrating gives 

oB(r) = oBO (:0 )3/4 [_ I + ~ ,] 
1 + ~(.E...)a 

Vo Po 

{24) 
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where VA
0 

is the Alfve'n velocity at the reference level, and oB(r) 

is the wave amplitude at r in the WKB approximation. This expr es-

sion was fir st obtained by Parker [1965]. 

B. The Wave Modified Bernoulli Relation 

Inserting Equations ( 17) and (24) into Equation (8) and averag -

ing over one wavelength of the waves yields 

(25) 

[ 

oB
20

2 
3 

+ _1_ ~ ~- (L)2 
8~p or p

0 
= 0 

Using Equation (5) and (6), Equation (25) can be integratPd to give 

V
2 p a-1 

a o p 
2 + (a-l)_p_ ( - ) 

o . Po 

GM 
0 ---r 

v 0 l 
(26a) 

(
2 + A (L)~) 

Vo Po 
~~~~;;...,....~~~~~- constant 

( 
VA 1 ) 2 

1 + y-(L)~ 
0 p 0 

v 
If we add the constant -

0
-

V o 
A 

oB 

2 

( + ~A0° )
2 

__ o_ to both sides of 

4~po 

Equation (26a), and multiply by the constant ( 4~p Vr 
2

), we obtain 

after some manipulation· an expression for the total energy flux F, 

which is constant for our solution. 
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l i 2 a 
V(a·pV + (a-1) p + p<P ) 

+ .!. ( .!. o V2 ) V + .!. 0 B 
2 

( V + V ) i 
;a ;a p a 4ir A f 

The first term in parenthesis contains terms corresponding to the 

(26b) 

kinetic energy density associated with the radial motion, the sum of 

the enthalpy and the energy transported by thermal conduction, and 

the gravitational energy, all convected at the bulk radial velocity V. 

The second and third terms are due entirely to the presence of the 

waves. The second is the wave kinetic energy density convected by 

the bulk velocity and the third is the radial component of the Poynting 

vector. 

We define the quantities 

E= l (°:: t (27) ii 

u2 = l Po v2 (28) a--
Po 

u 2 = i Po v 2 (29) a--
0 Po 0 

8irp 
13 = 

0 (30) 
0 B2 

0 

GM p 
H 

0 0 (31) = 
ropo 
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and note that 

= 

r 
r 

0 

u 
0 

uz2 
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f3 u 2 
0 0 

Dividing Equation (26a) by p /p and using Equations (27) through 
. 0 0 

(34L we obtain 

2 a 
U +(a-1} ( uu;z r-J -~ 

2U0~o* + (-*2) t) 
(U0~0t +PuTl) 2 

l ' 

= U 2 + a - H - _E_ ( 2U f3 z + 1 ) 
0 ra:n f3 00 

0 

This is the wave modified Bernoulli relation. 

Consider Equation {25). Using Equations (5) and (6) and 

performing the indicated differentiations gives 

(32) 

{33) 

{34} 

(35) 
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v av + po 
(a.-1) * + 

GM a. 0 --- p r 2 or p a. 
Po r 

~ + 
Vo 

( p: )kl oB 
2 

(1 + V 
0 
/V )

2 A 
v-

~= + o A o 0 
0 

- 3 

(:Jk) 
3 or 

32irp ~ p 02 

(1 + 
Vo 

A 
v-

0 

Dividing by and using Equations (27) through (34), Equation 

(36) becomes 

2U aU + 1 op 
oz P" az 

+ E o 

(

/ u 

2130 uzz 

+ H = -;::- 0 

Equation (3 7) is of the form 

zu au + w a.z p 
0 

(36) 

(37} 

{38) 
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From Equation ( 10) 

1 ~ = _ ( ~ + .!_ au 
p oLJ z u az 

so that Equation (38) can be written as 

·~ [ zu - ~ } = [ zw - ~ } 
oZ U Z z'" 

(39) 

(40) 

The critical point of the differential equation for U(Z) occurs when 

both terms in bracketts in Equation (40) are simultaneously zero. 

The critical point (U , Z ) thus satisfies 
c c 

so that 

and 

zu = c 

u 2 
c 

H 
2Z c 

= 

= 

H 
4Z c 

W (U , Z ) 
c c 

Using Equation (37) for W, we find that (U, Z ) satisfies c c 

u 2 
c = H 

4Z c 

(41) 

(42a) 
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E 
+ 7i3 

0 

H 
2Z c 

= 
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a. ( i2uo 

H~Z % 
c r + 

(42b) 

= 
u 

0 

u z 2 
c c 

= 
2V 

0 
.i 3 (43) 

H~Z 2 
c 

Equation (42) determines ( U , Z ) as a function of U , the normalized c c 0 

velocity at the reference level r , assuming H, E, and f3 are given 
0 0 

at the reference level. In order to obtain physical solutions which 

are supersonic at infinity and subsonic at the base of the corona, we 

require that such solutions pass through the critical point (cf Parker 

1963), i.e., that ( U , Z ) satisfy the modified Bernoulli relation. c c 

Using Equations(35} , (42}, and (43), this requires that U be such 
0 

that 

f u f3 ~ 
\ 0 0 

+( zuo 
.1 3 

H<?z 2 
c 

(44) 
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Assuming that H, E, and 13 are given at the reference level, 
0 

Equations {42b) and {44) are of the form 

f {U , Z ) = O 
0 c 

g {U , Z ) = 0 
0 c 

We use Equation (42b) to determine Zc as a function of U
0

, and then 

Equation (44), in the form G{U ) = g(U , Z (U ) ) = 0 , determines 
0 0 c 0 

For this value of U , the solution for U(Z) given by Equation 
0 

{35) {taking the lower branch for Z < Z and the upper for 
c 

Z > Z ) passes through the critical point, and this is the solar c 

wind solution. 

The detailed dependence of the Alfvdn wave amplitudes as 

a function of r is of interest, and we define the amplification coeffi-

cient A to be the ratio 

A ('r) = oB{r) I 
B{r) 

oB 
0 

~ 

Using Equations (22) and (24), we have 

A(r} 

C. Numerical Solutions .and Discussion 

1. Reference Level Parameters 

(45) 

(46) 

It is easily seen that the inclusion of the wave energy flux in 

Parker's one fluid polytrope model of the solar wind [Parker, 1963 J 
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should lead to significant modifications of the solutions. For example, 

6 consider the energy flux at a reference level r = 10 km, an altitude 
0 

5 about 3 x 10 km above the photosphere. The streaming velocity of 

the solar wind at this level is generally much less than the Alfve'n 

velocity, so that the outward energy flux across the reference level 

in the coronal Alfve'n waves is given by 

Fo = Vo 
w A 

oB 
2 

0 

81( 
2 

(41Tr ) = 
0 

EB 
3 

2.2xl0
33 0 

ergs/sec 
N "i 

(4 7) 

0 

where E is (oB )
2
/2B 

2 
, B is in gauss , and N is in protons per 

0 0 0 0 

cubic centimeter . If we take representative values of B and N to 
0 0 

be 1 gauss and 2 x 7 -3 I 10 cm respectively, then the Alfven velocity 

at r is about 500 km/ sec, and the outward efflux of wave energy is 
0 

E(5 x 10 29 ) ergs/sec. Moderate values of E (""". 01) give high energy 

fluxes ("""5 x 1027 ergs/sec) at the reference level. These flux esti-

mates are to be compared to estimates of the energy flux due to ther­

mal conduction from the lower corona on the order of 2 x 1027 ergs/ 

sec [Parker, 1963], and of the energy flux in the solar wind at 1 a. u . 

21 I on the order of 10 ergs sec . Even small amplitude Alfve'n waves 

at 106 km are associated with large energy fluxes because of the 

high Alfve'n velocity. It is therefore reasonable to expect moderate 

amplitude Alfve'n . waves at the reference level to cause significant 

changes. in the solar wind streaming properties far from the sun. 

Numerical solutions for the wave modified wind model have 

been obtained for a variety of different parameters, and we illustrate 
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their general properties by presenting representative cases. The 

reference level r is taken to be 10 6 km, and the density N and the 
0 0 

field strength B at this level are taken to be the same in all cases, 
0 

with values of 2 x 10 7 /cm 3 and 1 gauss, respectively. The 1 gauss 

field gives a radial field strength of 4. 44 gamma at 1 a. u., in 

reasonable agreement with observed values. The heating of the 

corona above the reference level by thermal conduction is represented 

by the amount the polytrope index a. is less than the adiabatic value 

of 5/3. For these calculations, we fix a. at 1. 228 3, for reasons 

which will soon be evident. The remaining free parameters for 

these calculations are thus E, which is representative of the wave 

energy flux at r , and T , the coronal temperature there . 
0 0 

The coronal plasma is assumed to be fully ionized hydrogen, 

so that the pres .sure p is 2NkT . From Equations (30) and (31), we 

have 

H = 8. 07 x 10
6 
/T 

0 

13 = 6. 9 x 10 - l5N T /B 2 
0 0 0 0 

(48) 

(49) 

In keeping with Equation (28), the solar wind velocity V is reduced 

0 
to dimension less form by dividing by the velocity VS , where 

v 0 
s 

. l 
2p a 

= ~) = 
Po 

From Equation (21) 

v 0 = 
A 

B 
0 

------- l 
(4irN m )a 

0 p 

= 2. 18 x 1011 

(50) 

(51) 
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Table 10 

Reference Level Parameters 
6 (r = 10 km) 

0 

T N Bo H [30 
v 0 

VA 
0 

0 0 s 

(o K) (cm- 3) (gauss) (km/ sec) (km/ sec) 

1x106 2x10 7 1 8.07 • 14 182. 489. 

1. 3 x 10 6 2x10 7 1 6.21 • 18 207. 489 • 

1. 7 x 10 6 2x10 7 1 4. 75 • 24 237. 489. 

2. 0 x 10 6 2x10 7 1 4.04 • 28 257. 489. 
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-3 where N , T , and B are in cm , degrees Kelvin, and gauss, 
0 0 0 

respectively, and VA 
0 

and VS 
0 

are in cm/sec. Table 10 gives the 

values of these various parameters at r for four different values 
. 0 

of T . 
0 

Given a value of T at the reference level (with fixed N and 
. 0 0 

B
0

), we calculate Hand f3
0 

using Equations (48) and (49). If we also 

choose a value of E, then Equations (42b) and (44) can be solved 

numerically for the normalized parameters U and Z (cf. Equations 
0 c 

(29) and (32) ) . The velocity V of the solar wind at the reference 
0 

level is then given by VS 0 u , and the critical radius by r Z • 
0 0 c 

Given U
0

, we numerically solve the transcendental Equation (35) for 

U(Z), taking the lower branch (U< U ) for Z < Z and the upper . c c 

branch (U > U ) for Z > Z • The solar wind velocity V(Z) is then c c 
0 

given by Vs U(Z). 

Figure 18 shows the locus of points in the V -r plane which 
0 c 

satisfy Equations (42b) and (44), for the four values of T given in 
0 

Table 10 and continuous values of E from O.to 10- 1• The behavior 

as E approaches zero for the curves presented is qualitatively 

different depending on whether T is greater than or less than 
0 

60 1. 5 x 10 K. In genera~ the behavior at infinitesimal E is deter-

mined by whether H (Equation (48) ) is greater than or less than 

a al' and we discuss these two classes of solutions seperately. 

2 . Wave Modifications of the Parker Solutions 

The parameter H as defined above (Equation 31) ) is the 

negative of the gravitational potential energy per gas atom at the 
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re (106 km) 

(V ' r ) for four values of T and con-
0 c 0 

to . 1, as indicated. 



-119-

reference level in units of the thermal energy there. In Parker's 

models, H must be in the interval 2a < H < ~l • 
a-

The lower limit 

on H represents the point at which the solar gravitational field 

becomes too weak to simulate the throat of a Laval nozzle and allow 

the transition from subsonic to supersonic flow. Thus, if H < 2a, 

the corona explodes outward into space, and a steady state expansion 

can be maintained only if gas is supplied at a supersonic velocity at 

the base of the corona. The upper limit on H represents the point 

at which the solar gravitational field becomes too strong to allow 

expansion. Thus if H > ~, the corona is contained as a static a- .L 

atmosphere. For the fixed value of a we have chosen, T must be 
0 

greater than T . = 1. 5 x 10 6 °K (Equation (45) ) for Parker's wind 
min 

solutions to exist. We limit ourselves in this section to a discussion 

of cases with T 
0 

above this value, so that the Parker solutions exist 

at E = o. 

In Figure 18, the Parker critical point solutions are at the 

6 0 6 0 E = O. positions on the 2 x 10 K and the l. 7 x 10 K curves. The 

effect of the waves (increasing E from zero) is to increase the solar 

wind velocity at the reference point r , and decrease the critical 
0 

radius r • A decrease in r implies an increase in the normalized c c 

critical velocity Uc (Equation (42a) ). For a given value of E, this 

change is more pronounced if T is closer to T . (compare the 
o min 

2. 0 x 10 6 °K and the l. 7 x 10
6 °K curves in Figure 18). Figure 19 

shows the solar wind velocity at l0
6

km and at l a. u., and the solar 

wind particle density N (in cm - 3 ) at 1 a. u . as functions of T ()• for 
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Figure 19. 
6 The solar wind velocity Vat 1 a.u. and 10 kmJ and the 

proton particle density N at 1 a.u.J as functions of T J for two 
0 

values of e (0. and .01). 
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two values of E (0. and .01). The Parker solutiors(E= 0.) are 

considerably changed for E = . 01 and values of T only slightly 
0 

6 0 above T . (1. 5 x 10 K). The effect is less pronounced if T is 
min o 

much greater than T .• min 

We would like to understand why for small fixed values of 

E the Parker solutions are more strongly modified if T is closer 
0 

to T . • In part this is due to the fact that as T increases for 
min o 

fixed E, the energy flux due to thermal conduction and convection 

becomes more important, eventually dominating the fix e d wave energy 

flux. It is also due to the specific form of the interaction between the 

wind and the waves in this model. Consider the Alfve'n wave ampli-

fication coefficient A(r} (Equation (45) ) for unmodified Parker solu-

tions (E = 0., i.e. the waves are infinitesimal and transport zero 

energy flux}. A(r) and the velocity V(r) are shown in Figure 20 for 

two values of T and E = O. The shape of the A(r) curves is quite 
0 

6 0 6 0 
different for the T = 1.6 x 10 Kand the T = 2.8 x 10 K solu-

o 0 

tions. This difference can be qualitatively explained by noting that 

(:J Uot (!+: 00) if V<<V A 

A 
A(r) = 

(:J3/4 Vo . 

~:J ~+ i
0

) if V>>V A 

(52) 

I£2- goes as r-s 
Po 

A(r) tends to go as r 2 -(s/4 ) in the sub-Alfve'nic 

regime, and as r 2 -(3s/4 ) in the super-Alfve'nic regime. If s = 2, 

3/. l 6 
this is r 12 or r3, respectively. The T = 1. 6 x 10 °K Parker solu­

o 
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tion in Figure 20 just barely attains escape velocity, and does not 

become super-Alfve'nic until almost 60 x I0
6
km, with the reference 

l 

velocity V = • 9 km/ sec. Thus A{r) tends to increase faster than r "i 
0 

6 over much of the range from 10 km to 1 a. u. On the other hand, the 

T = 2. 8 x io6 °K Parker solution is much more energetic, and be­
o 

comes super-Alfvdnic almost immediately, at less than 3 x I0
6

krn, 
l 

with V = 16 8 km/sec • 
0 

A{r) in this case goes as r "i over almost the 

6 
entire range from 10 km to 1 a. u. 

The differing behaviors of oB as a function of r in the sub­

Alfve'nic and super-Alfve'nic solar wind affects the rate at which 

work is done on the wind by the waves in the two regimes. Equation 

(26a) can be written as 

where 

p a-1 
.!. V2 + a o ( _P_) 
a {a:l}~ Po 

fw = -E 
2 

Vo 
A 

V-
o 

GM 
--~-®- + fw = constant 

r 

(2M A+l)M A 

(l+MA)2 

v 
VA 

(53) 

(54) 

(55) 

MA is the solar wind Alfve'n mach number The solar wind velocity 

at infinity is easily seen to be 

2 
V 2 = (vso) [U 2 + a 

00 0 n::-r (56) 

The second term in Equation (56) is the increase in the square of the 

solar wind velocity at infinity due to the waves. 
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2 
so that the increase at infinity is given approximately by 2E(VA~ X 

(VA
0 

/V
0 

). From Equation (54), it can be seen that 2/3 of this addi-

tional velocity is added at values of MA of less than 3. The waves 

are most effective in doing work on the wind at low Alfve'nic mach 

numbers. 

This property of the wave/wind interaction explains qualita-

ti vely why the additional velocity at infinity due to the waves depends 

directly on the ratio VA
0 
/V

0 
• If this quantity is large (small V ), 

0 

then generally the solar wind will not become super-Alfve'nic until 

far from the sun. Under these conditions, even a relatively small 

rate of Alfve'nic energy transport into the corona can do a large 

amount of work on the sub-Alfve'nic solar wind, since energy can be 

propagated into the wind (at the Alfve'n velocity) over a relatively 

long time and distance. The velocity of the wind at infinity is increased 

by a significant amount as long as E (VA
0 
/V

0
) ""' 1. Even if E<<l , the 

waves can still have a large effect as long as (VA
0 
/V

0 
) >> 1. On the 

other hand, if V Ao /V
0 

is not large, then the solar wind becomes 

super-Alfve'nic relatively close to the sun, and the region in which 

the waves are most effective in doing work on the wind is substan-

tially diminished . For example, the fixed value of E = • 01 in Figure 

19 results in large changes in the Parker solutions for T 
0 

only 

slightly above T . (V very small), but causes increasingly smaller 
min o 

modifications as T increases (V increasing). 
0 0 

It should be noted that care must be taken in using estimates 

for the amplification coefficient A based on the unperturbed Parker 
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solutions ( E = O. ), since the inclusion of the finite amplitude of the 

waves may significantly change the large scale structure of the solu-

tions. For example, Figure 21 is a plot of A(r) and V(r) for a fi x ed 

value of T and two values of E (0. and • 01), showing a large reduc­
o 

tion in values of A(r) for the finite amplitude wave solutions . Reliable 

estimates of amplification coefficients must be based on self-consistent 

solutions which allow for the possible influence of wave energy and 

momentum flux terms . 

As values of E increase, the waves have a greater influence 

on the wind solutions, until they eventually become the dominant 

energy source. In Figure 18 J solutions in the V -r plane for E=. 1 
0 c 

change only slightly when T 
0 

is changed. Although we do not show it 

here, variations in the polytrope index a. also cause little change in 

the solution points when E = • 1, even for a. equal to the adiabatic 

value of 5/3. The energy flux which drives the solar wind for these 

solutions is almost entirely due to the Alfvdn waves , with variations 

in the energy flux due to thermal conduction and convection causing 

relatively small perturbations in the solutions. Figures 22, 23, and 

24 show the variation as a function of E in the solar wind velocity V 

at 1 a. u., the particle density N at 1 a. u. , and the amplification 

coefficient A at 1 a . u. , respectively, for the four values of T given 
0 

in Table , 10. As E increases from small values to • 1, the 1. 7x10
6 

°K and 2 . 0x106 °K solutions move from the unperturbed Parker 

values at 1 a . u. toward similar wave dominated values . For reasons 

discussed above, the 1. 7 x 106 °K solutions show more appreciable 
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a = 1.23 

10-4 10-3 10-2 10-I 

Figure 22. The solar wind velocity at 1 a.u. as a function of s for 

four values of T • 
0 
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Figure 23. The proton particle density N at 1 a.u. as a function of E: 

for four values of T • 
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Figure 24. The amplification coefficient A at 1 a.u. as a function of 

e for four values of T • 
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change at small values of E (""'10- 3 ) than the 2. 0 x 106 °K solutions. 

Note in particular that for the 1 . 7 x 10
6 

°K solution, A at 1 a. u. 

-6 -1 drops from about 80 at E = 10 to about 20 at E = 10 , a value 

close to that for the 2 x 106 °K solution at this point. 

3. Wave Modifications of the Static Solutions 

As can be seen in Figures 18, 22, 23, and 24, solar wind 

solutions for E = • 1 are relatively insensitive to changes in T , 
0 

since for high values of E the waves are the primary energy 

source for the wind. As the wave energy flux is turned off ( E de-

creasing), the solutions with T > T . relax to the Parker solu-o min 

tions, as discussed above. For T < T . , the behavior is quite 
o min 

different, as there are no dynamic solutions to relax to in the limit 

E = O. For T < T . and E identically zero, the corona is con-o min 

tained as a completely static atmosphere, with a density profile 

given by 
1 

fcL-1) 
(57) 

and the top of the atmosphere at 

r = r m o [ H - H a. 
( a.-1) J (58) 

However, in our model, static solutions exist only if E is identically 

zero. As long as E is non-zero, even though infinitesimal, "wind" 

solutions to the Bernoulli equation exist. In the polytrope models, 

for fixed a. and T , there is a certain fixed amount of energy avail­
o 

able per unit mass, and either this energy is sufficient to lift the 
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a 
plasma out of the sun's gravitational field ( H < --r } or not 

a-1 
a 

(H > --
1 

). In this idealized wave model, however, there is always 
a-

an energy flux associated with the waves as long as E is non-zero 

(see Equation (26b) ), even if the wind velocity is everywhere zero. 

The specific wave/wind interaction developed above eventually trans-

fers this wave energy flux into plasma streaming motion. Even if 

the wave flux is infinitesimal, it is sufficient to accelerate an equally 

infinitesimal amount of mass to escape velocities. 

6 0 Figure 25 shows the wind solutions for T = 1 x 10 K and 
0 

E = 10- 5 • The heavy curve is the density profile for the static case 

6 -5 ( E = 0.), which has an atmospheric top at 3 x 10 km. For the E = 10 

case, the density profile is very nearly the static one except near the 

top of the static atmosphere. At this point the velocity increases 

abruptly from very small values and there is a very small efflux of 

particles outward. Note that the particle density is down to . Ol/cm
3 

6 by 6 x 10 km. In the limit of very small E and T < T . , it can o min 

be seen from Equation (42b) and (44) that Z approaches a constant 
c 

and V goes to zero as E2
. Hence the solar wind velocity at infinity 

0 

goes to infinity as E-l (Equation (56) L and the mass flux (Equation 

2 
(22) ) goes to zero as E as E goes to zero. Solutions for very small 

E and T < T . should not be taken seriously, since they are not 
o min 

relativistically correct. As can be seen from Figure 25, these 

solutions do reduce to the static cases, although in a pathological 

way. This is not unexpected, since in this model the purely static 

solutions have Alfvdn velocities which approach infinity as the top 

of the atmosphere is reached. 
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Figure 25. The solar wind velocity V and particle density N as 

functions of r for e = O. (static atmosphere) and e = 10-
5

, with 

T = 1 x 10
6 

°K. 
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The important point is that for moderate values of E ( ~. 001) 

we still obtain reasonable solar wind solutions even if T < T .. 
o min 

The Alfve'n waves supply the additional energy needed to lift the 

coronal plasma out of the solar gravitational field. In Figure 19, 

for example the velocity and density curves for A.= • 01 extend below 

T . into the region where Parker polytrope solutions do not exist. min 

Figures 22, 23, and 24 show the variations as a function of E for 

V, N, and A at 1 a. u. 6 for two previously static values of T ( 1. 3 x 10 
. 0 

0 6 0 Kand 1. 0 x 10 K). The most striking feature of these solutions is 

the combination of high velocities and low densities. In Figure 19, 

for example, the velocity increases and the density decreases as 

T is reduced below T . for E = • 01. In Figures 22 and 23, the 
o min 

velocity increases and the density decreases as E is reduced from 

-1 -4 6 0 6 0 10 to 10 , for both the 1. 3 x 10 Kand the 1. 0 x 10 K curves. 

In Parker's model, for fixed values of a. and variable T , higher 
0 

velocities are always associated with higher densities. In the wave 

driven solutions, we see that the reverse can be true; i.e., higher 

velocities with lower densities at 1 a. u. 

4. Comparison with Observations 

There are numerous deficiencies in this model if it is used 

to represent the actual solar wind. The model suffers from all the 

imprecisions characteristic of one fluid MHD polytr ope mode ls, as 

discussed by Parker [ 1965]. As far as the inclusion of the wave 

energy fluxes is concerned, there are two questionable assumptions 

in our representation. The first is the assumption that there is no 
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wave damping. As long as oB/B < 1, this is not unreasonable, 

since both from a theoretical and observational point of view Alfve'n 

waves in the solar wind do not appear to damp rapidly under this 

condition. If oB/B > 1, however, nonlinear and/ or mode coupling 

mechanisms will. almost certainly result in wave damping. In our 

model, the wave amplitudes of the coronal Alfve'n waves generally 

increase as r increases, so that at some point oB/B may become 

equal to 1. Beyond· this point, · the waves will most probably damp 

at a rate sufficient to keep 6B/B"""'1, thereby heating the plasma. If 

this point occurs at distances much greater than the critical radius 

r C ·' the major change in the solutions due to wave damping will 

probably be an increase in the plasma temperature, with little change 

in the bulk velocity or density. If the damping is a major effect at 

less than the critical radius, then the bulk properties of the solutions 

far from the sun may change significantly, and a more complete 

theory is needed • . In all of the numerical solutions discussed above, 

oB/B does not become comparable to 1 until values of r greater than 

The more serious deficiency of the model is the WKB approxi­

mation. The interplanetary Alfve'n waves at 1 a. u. are observed to 

have wavelengths from 10 3 to 5 x I06km, with decreasing power at 

shorter wavelengths. The frequency w given by Equation ( 17) re­

mains constant as we go inward toward the sun, and although the velo­

city V decreases, the Alfve'n velocity VA increases. The wavenum­

ber spectrum observed at 1 a. u. is thus roughly the same as that at 
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6 6 10 km. If we assume scale lengths of 10 km for the solar wind 

velocity and density structures near the sun, we see that the largest 

observed wavelengths at 1 a. u. badly violate the WKB approximation 

closer to the sun. The correction of this defect in the model will 

probably require a detailed theory as to the actual mechanisms which 

generate the waves in the lower corona, as well as a complicated 

integration scheme. For the present, we can only point out that the 

wavelengths at 1 a. u. of 1 o5km and less are probably adequately 

represented by the WKB approximation. 

With these deficiencies in mind, we feel that the model is a 

reasonable fir st attempt to .determine the effects of the coronal 

waves on the dynamics of the wind. It has two extremely attractive 

features. The first is the existence of wind solutions for ranges of 

coronal reference temperatures T for which there were no previous 
0 

dynamic solutions. The second is the fact that wave driven solutions 

can easily produce the high velocities and low densities frequently 

observed in the solar wind at 1 a. u. For example, in Figure 4 the 

high velocity stream shown has an average velocity over the first 

three hours of day 193 of 697 km/ sec, a proton number density of 

-3 1. 3 cm , an average field strength B of 5. 9 y, and an average most 

probable proton thermal speed of 110 km/sec. It is impossible to 

produce this combination of values at 1 a. u. in Parker models with 

6 reasonable parameters at 10 km. In the wave driven models, 

however, such solutions are quite reasonable. For example, using 

6 0 
the values of N , B , and a given above, a value of T = 1. 3 x 10 K, 

0 0 0 
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and E = . f'•0 3 , we obtain a solution which gives a velocity of 683 

km/sec at l a.u., with a proton number density of 1.54 cm- 3. For 

this solution, oB /B is • 077, and o B/B becomes 1 at r = 26. x 106 
0 0 

6 km, with the critical radius r at 5. 1 x 10 km . With no wave damp­c 

( 
N a-1) 4 o ing, the temperature T T

0 
(N} at 1 a.u. is only 3 x 10 K. 

. 0 

However, oB/B by 1 a. u. is 2 . 99. If we assume the wave energy 

density in excess of oB/B = 1 ( ( oB-B) 2/8rr) has been damped into the 

thermal energy density 2NkT, the plasma temperature is raised to 

• 76 x 106 °K, corresponding to a proton thermal velocity of 113 

km/sec. 

Reasonable values for a, 6 N , B , T , and E at 10 km thus 
0 0 0 

can produce at 1 a. u. hot, high velocity, low density solar wind 

streams with large amplitude outwardly propagating Alfvcln waves, 

as observed. As Parker [ 1963 J points out, low velocity, dense, 

cold streams (the "quiet" solar wind}, as in day 190 of Figure 4, 

can be easily obtained in the standard polytrope model ( E = O.) by 

suitable choice~s of a and T • It thus appears that Parker's classic 
0 

I solar wind model , as modified by the presence of Alfven wave energy 

fluxes across the base of the corona, can reproduce all of the observed 

solar wind streaming states at 1 a . u. by suitable (and reasonable) 

choices of parameters at l06km . 
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CHAPTER VI 

SUMMARY 

The research sequence on which this thesis is based is typical 

of work in this field. The design of the experimental apparatus and 

the data acquisition during the course of the Mariner V mission pre­

ceeded the work described here. Beginning with the digitalized 

magnetometer readings from the spacecraft, a reduction procedure 

(including an evaluation of the quality of each observation) was car­

ried out to organize the data into a form convenient for detailed analy­

sis. Good quality data were then plotted over a wide range of time 

scales, and a detailed and · extensive comparison was made between 

the field data and plasma data generously provided by the plasma 

experimenters, H. S. Bridge, A. J. Lazarus, and C. W. Snyder. 

Using both types of data, the Alfve'n waves were identified, and their 

frequency of occurrence, direction of propagation, and patterns of 

occurrence with respect to the large scale stream structures were 

determined. On the basis of these observations, a qualitative model 

for the origins of the waves and their relation to the streaming pro­

perties of the wind was developed. Although not quantitative, the 

model serves to organize the large amount of data into a reasonably 

simple picture, and provides the basis for more quantitative analysis. 

Observationally speaking, the properties of the waves at 1 a. u. 

are reasonably well established for this portion of the solar cycle 

(1967). The areas of significant future interest are long term obser-
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vations at 1 a. u. and observations in regions closer to and further 

from the sun. It is obviously of importance to measure oB/B over 

as wide a range of solar distances as possible, since the ratio is 

a measure of both initial wave amplitudes close to the sun and damp­

ing and propagation effects of the waves far from the sun. The de­

tailed observational behavior of the waves far beyond the orbit of 

the earth (where the magnetic field becomes tightly wound in the 

classic spiral) is of particular interest. The proposed Pioneers 

F and G missions (Jupiter 1972-74) and the Mariner Mercury-Venus 

mission ( 1973) will thus be invaluable for observational studies of 

solar wind wave properties. 

From a more theoretical point of view, we have investigated 

the properties of a simplified wind model which includes wave energy 

fluxes. Although the model is unrealistic in that it assumes a single 

fluid plasma with no wave damping, it provides useful insight into 

the qualitative effects of the observed waves on the actual solar wind. 

The next step is a two fluid model with a more sophisticated treat­

ment of the energy transport equations (including wave damping). The 

effects of the rotation of the sun and the spiral field patterns on wave 

driven solutions is also of considerable interest. The spiraling of 

the magnetic field should have little effect on the solutions inside 

1 a. u., but probably will have a large effect beyond 1 to 2 a. u. A 

more fundamental problem is the nature of the processes which gen­

erate the waves at or near the sun. This question is of obvious inter­

est for both solar and interplanetary physics. 
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In conclusion, the thesis has resolved many observational 

points and given some consideration to the theoretical points these 

observations raise. The results provide the basis of and suggest 

possibilities for future investigations, both observational and theore­

tical. 
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